1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/kobj.h> 45 #include <sys/modctl.h> 46 #include <sys/atomic.h> 47 #include <sys/policy.h> 48 #include <sys/priv.h> 49 #include <sys/taskq.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <sys/mac.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <inet/rawip_impl.h> 122 #include <inet/rts_impl.h> 123 #include <sys/sunddi.h> 124 125 #include <sys/tsol/label.h> 126 #include <sys/tsol/tnet.h> 127 128 #include <rpc/pmap_prot.h> 129 #include <sys/squeue_impl.h> 130 131 /* 132 * Values for squeue switch: 133 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 134 * IP_SQUEUE_ENTER: SQ_PROCESS 135 * IP_SQUEUE_FILL: SQ_FILL 136 */ 137 int ip_squeue_enter = 2; /* Setable in /etc/system */ 138 139 int ip_squeue_flag; 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 /* 143 * Setable in /etc/system 144 */ 145 int ip_poll_normal_ms = 100; 146 int ip_poll_normal_ticks = 0; 147 int ip_modclose_ackwait_ms = 3000; 148 149 /* 150 * It would be nice to have these present only in DEBUG systems, but the 151 * current design of the global symbol checking logic requires them to be 152 * unconditionally present. 153 */ 154 uint_t ip_thread_data; /* TSD key for debug support */ 155 krwlock_t ip_thread_rwlock; 156 list_t ip_thread_list; 157 158 /* 159 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 160 */ 161 162 struct listptr_s { 163 mblk_t *lp_head; /* pointer to the head of the list */ 164 mblk_t *lp_tail; /* pointer to the tail of the list */ 165 }; 166 167 typedef struct listptr_s listptr_t; 168 169 /* 170 * This is used by ip_snmp_get_mib2_ip_route_media and 171 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 172 */ 173 typedef struct iproutedata_s { 174 uint_t ird_idx; 175 listptr_t ird_route; /* ipRouteEntryTable */ 176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 177 listptr_t ird_attrs; /* ipRouteAttributeTable */ 178 } iproutedata_t; 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 199 uint8_t *laddrp, uint8_t *faddrp) = NULL; 200 201 /* 202 * Hook function to generate cluster wide SPI. 203 */ 204 void (*cl_inet_getspi)(uint8_t, uint8_t *, size_t) = NULL; 205 206 /* 207 * Hook function to verify if the SPI is already utlized. 208 */ 209 210 int (*cl_inet_checkspi)(uint8_t, uint32_t) = NULL; 211 212 /* 213 * Hook function to delete the SPI from the cluster wide repository. 214 */ 215 216 void (*cl_inet_deletespi)(uint8_t, uint32_t) = NULL; 217 218 /* 219 * Hook function to inform the cluster when packet received on an IDLE SA 220 */ 221 222 void (*cl_inet_idlesa)(uint8_t, uint32_t, sa_family_t, in6_addr_t, 223 in6_addr_t) = NULL; 224 225 /* 226 * Synchronization notes: 227 * 228 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 229 * MT level protection given by STREAMS. IP uses a combination of its own 230 * internal serialization mechanism and standard Solaris locking techniques. 231 * The internal serialization is per phyint (no IPMP) or per IPMP group. 232 * This is used to serialize plumbing operations, IPMP operations, certain 233 * multicast operations, most set ioctls, igmp/mld timers etc. 234 * 235 * Plumbing is a long sequence of operations involving message 236 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 237 * involved in plumbing operations. A natural model is to serialize these 238 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 239 * parallel without any interference. But various set ioctls on hme0 are best 240 * serialized. However if the system uses IPMP, the operations are easier if 241 * they are serialized on a per IPMP group basis since IPMP operations 242 * happen across ill's of a group. Thus the lowest common denominator is to 243 * serialize most set ioctls, multicast join/leave operations, IPMP operations 244 * igmp/mld timer operations, and processing of DLPI control messages received 245 * from drivers on a per IPMP group basis. If the system does not employ 246 * IPMP the serialization is on a per phyint basis. This serialization is 247 * provided by the ipsq_t and primitives operating on this. Details can 248 * be found in ip_if.c above the core primitives operating on ipsq_t. 249 * 250 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 251 * Simiarly lookup of an ire by a thread also returns a refheld ire. 252 * In addition ipif's and ill's referenced by the ire are also indirectly 253 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 254 * the ipif's address or netmask change as long as an ipif is refheld 255 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 256 * address of an ipif has to go through the ipsq_t. This ensures that only 257 * 1 such exclusive operation proceeds at any time on the ipif. It then 258 * deletes all ires associated with this ipif, and waits for all refcnts 259 * associated with this ipif to come down to zero. The address is changed 260 * only after the ipif has been quiesced. Then the ipif is brought up again. 261 * More details are described above the comment in ip_sioctl_flags. 262 * 263 * Packet processing is based mostly on IREs and are fully multi-threaded 264 * using standard Solaris MT techniques. 265 * 266 * There are explicit locks in IP to handle: 267 * - The ip_g_head list maintained by mi_open_link() and friends. 268 * 269 * - The reassembly data structures (one lock per hash bucket) 270 * 271 * - conn_lock is meant to protect conn_t fields. The fields actually 272 * protected by conn_lock are documented in the conn_t definition. 273 * 274 * - ire_lock to protect some of the fields of the ire, IRE tables 275 * (one lock per hash bucket). Refer to ip_ire.c for details. 276 * 277 * - ndp_g_lock and nce_lock for protecting NCEs. 278 * 279 * - ill_lock protects fields of the ill and ipif. Details in ip.h 280 * 281 * - ill_g_lock: This is a global reader/writer lock. Protects the following 282 * * The AVL tree based global multi list of all ills. 283 * * The linked list of all ipifs of an ill 284 * * The <ill-ipsq> mapping 285 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 286 * * The illgroup list threaded by ill_group_next. 287 * * <ill-phyint> association 288 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 289 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 290 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 291 * will all have to hold the ill_g_lock as writer for the actual duration 292 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 293 * may be found in the IPMP section. 294 * 295 * - ill_lock: This is a per ill mutex. 296 * It protects some members of the ill and is documented below. 297 * It also protects the <ill-ipsq> mapping 298 * It also protects the illgroup list threaded by ill_group_next. 299 * It also protects the <ill-phyint> assoc. 300 * It also protects the list of ipifs hanging off the ill. 301 * 302 * - ipsq_lock: This is a per ipsq_t mutex lock. 303 * This protects all the other members of the ipsq struct except 304 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 305 * 306 * - illgrp_lock: This is a per ill_group mutex lock. 307 * The only thing it protects is the illgrp_ill_schednext member of ill_group 308 * which dictates which is the next ill in an ill_group that is to be chosen 309 * for sending outgoing packets, through creation of an IRE_CACHE that 310 * references this ill. 311 * 312 * - phyint_lock: This is a per phyint mutex lock. Protects just the 313 * phyint_flags 314 * 315 * - ip_g_nd_lock: This is a global reader/writer lock. 316 * Any call to nd_load to load a new parameter to the ND table must hold the 317 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 318 * as reader. 319 * 320 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 321 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 322 * uniqueness check also done atomically. 323 * 324 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 325 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 326 * as a writer when adding or deleting elements from these lists, and 327 * as a reader when walking these lists to send a SADB update to the 328 * IPsec capable ills. 329 * 330 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 331 * group list linked by ill_usesrc_grp_next. It also protects the 332 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 333 * group is being added or deleted. This lock is taken as a reader when 334 * walking the list/group(eg: to get the number of members in a usesrc group). 335 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 336 * field is changing state i.e from NULL to non-NULL or vice-versa. For 337 * example, it is not necessary to take this lock in the initial portion 338 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 339 * ip_sioctl_flags since the these operations are executed exclusively and 340 * that ensures that the "usesrc group state" cannot change. The "usesrc 341 * group state" change can happen only in the latter part of 342 * ip_sioctl_slifusesrc and in ill_delete. 343 * 344 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 345 * 346 * To change the <ill-phyint> association, the ill_g_lock must be held 347 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 348 * must be held. 349 * 350 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 351 * and the ill_lock of the ill in question must be held. 352 * 353 * To change the <ill-illgroup> association the ill_g_lock must be held as 354 * writer and the ill_lock of the ill in question must be held. 355 * 356 * To add or delete an ipif from the list of ipifs hanging off the ill, 357 * ill_g_lock (writer) and ill_lock must be held and the thread must be 358 * a writer on the associated ipsq,. 359 * 360 * To add or delete an ill to the system, the ill_g_lock must be held as 361 * writer and the thread must be a writer on the associated ipsq. 362 * 363 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 364 * must be a writer on the associated ipsq. 365 * 366 * Lock hierarchy 367 * 368 * Some lock hierarchy scenarios are listed below. 369 * 370 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 371 * ill_g_lock -> illgrp_lock -> ill_lock 372 * ill_g_lock -> ill_lock(s) -> phyint_lock 373 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 374 * ill_g_lock -> ip_addr_avail_lock 375 * conn_lock -> irb_lock -> ill_lock -> ire_lock 376 * ill_g_lock -> ip_g_nd_lock 377 * 378 * When more than 1 ill lock is needed to be held, all ill lock addresses 379 * are sorted on address and locked starting from highest addressed lock 380 * downward. 381 * 382 * IPsec scenarios 383 * 384 * ipsa_lock -> ill_g_lock -> ill_lock 385 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 386 * ipsec_capab_ills_lock -> ipsa_lock 387 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 388 * 389 * Trusted Solaris scenarios 390 * 391 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 392 * igsa_lock -> gcdb_lock 393 * gcgrp_rwlock -> ire_lock 394 * gcgrp_rwlock -> gcdb_lock 395 * 396 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 397 * 398 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 399 * sq_lock -> conn_lock -> QLOCK(q) 400 * ill_lock -> ft_lock -> fe_lock 401 * 402 * Routing/forwarding table locking notes: 403 * 404 * Lock acquisition order: Radix tree lock, irb_lock. 405 * Requirements: 406 * i. Walker must not hold any locks during the walker callback. 407 * ii Walker must not see a truncated tree during the walk because of any node 408 * deletion. 409 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 410 * in many places in the code to walk the irb list. Thus even if all the 411 * ires in a bucket have been deleted, we still can't free the radix node 412 * until the ires have actually been inactive'd (freed). 413 * 414 * Tree traversal - Need to hold the global tree lock in read mode. 415 * Before dropping the global tree lock, need to either increment the ire_refcnt 416 * to ensure that the radix node can't be deleted. 417 * 418 * Tree add - Need to hold the global tree lock in write mode to add a 419 * radix node. To prevent the node from being deleted, increment the 420 * irb_refcnt, after the node is added to the tree. The ire itself is 421 * added later while holding the irb_lock, but not the tree lock. 422 * 423 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 424 * All associated ires must be inactive (i.e. freed), and irb_refcnt 425 * must be zero. 426 * 427 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 428 * global tree lock (read mode) for traversal. 429 * 430 * IPsec notes : 431 * 432 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 433 * in front of the actual packet. For outbound datagrams, the M_CTL 434 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 435 * information used by the IPsec code for applying the right level of 436 * protection. The information initialized by IP in the ipsec_out_t 437 * is determined by the per-socket policy or global policy in the system. 438 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 439 * ipsec_info.h) which starts out with nothing in it. It gets filled 440 * with the right information if it goes through the AH/ESP code, which 441 * happens if the incoming packet is secure. The information initialized 442 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 443 * the policy requirements needed by per-socket policy or global policy 444 * is met or not. 445 * 446 * If there is both per-socket policy (set using setsockopt) and there 447 * is also global policy match for the 5 tuples of the socket, 448 * ipsec_override_policy() makes the decision of which one to use. 449 * 450 * For fully connected sockets i.e dst, src [addr, port] is known, 451 * conn_policy_cached is set indicating that policy has been cached. 452 * conn_in_enforce_policy may or may not be set depending on whether 453 * there is a global policy match or per-socket policy match. 454 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 455 * Once the right policy is set on the conn_t, policy cannot change for 456 * this socket. This makes life simpler for TCP (UDP ?) where 457 * re-transmissions go out with the same policy. For symmetry, policy 458 * is cached for fully connected UDP sockets also. Thus if policy is cached, 459 * it also implies that policy is latched i.e policy cannot change 460 * on these sockets. As we have the right policy on the conn, we don't 461 * have to lookup global policy for every outbound and inbound datagram 462 * and thus serving as an optimization. Note that a global policy change 463 * does not affect fully connected sockets if they have policy. If fully 464 * connected sockets did not have any policy associated with it, global 465 * policy change may affect them. 466 * 467 * IP Flow control notes: 468 * 469 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 470 * cannot be sent down to the driver by IP, because of a canput failure, IP 471 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 472 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 473 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 474 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 475 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 476 * the queued messages, and removes the conn from the drain list, if all 477 * messages were drained. It also qenables the next conn in the drain list to 478 * continue the drain process. 479 * 480 * In reality the drain list is not a single list, but a configurable number 481 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 482 * list. If the ip_wsrv of the next qenabled conn does not run, because the 483 * stream closes, ip_close takes responsibility to qenable the next conn in 484 * the drain list. The directly called ip_wput path always does a putq, if 485 * it cannot putnext. Thus synchronization problems are handled between 486 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 487 * functions that manipulate this drain list. Furthermore conn_drain_insert 488 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 489 * running on a queue at any time. conn_drain_tail can be simultaneously called 490 * from both ip_wsrv and ip_close. 491 * 492 * IPQOS notes: 493 * 494 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 495 * and IPQoS modules. IPPF includes hooks in IP at different control points 496 * (callout positions) which direct packets to IPQoS modules for policy 497 * processing. Policies, if present, are global. 498 * 499 * The callout positions are located in the following paths: 500 * o local_in (packets destined for this host) 501 * o local_out (packets orginating from this host ) 502 * o fwd_in (packets forwarded by this m/c - inbound) 503 * o fwd_out (packets forwarded by this m/c - outbound) 504 * Hooks at these callout points can be enabled/disabled using the ndd variable 505 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 506 * By default all the callout positions are enabled. 507 * 508 * Outbound (local_out) 509 * Hooks are placed in ip_wput_ire and ipsec_out_process. 510 * 511 * Inbound (local_in) 512 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 513 * TCP and UDP fanout routines. 514 * 515 * Forwarding (in and out) 516 * Hooks are placed in ip_rput_forward. 517 * 518 * IP Policy Framework processing (IPPF processing) 519 * Policy processing for a packet is initiated by ip_process, which ascertains 520 * that the classifier (ipgpc) is loaded and configured, failing which the 521 * packet resumes normal processing in IP. If the clasifier is present, the 522 * packet is acted upon by one or more IPQoS modules (action instances), per 523 * filters configured in ipgpc and resumes normal IP processing thereafter. 524 * An action instance can drop a packet in course of its processing. 525 * 526 * A boolean variable, ip_policy, is used in all the fanout routines that can 527 * invoke ip_process for a packet. This variable indicates if the packet should 528 * to be sent for policy processing. The variable is set to B_TRUE by default, 529 * i.e. when the routines are invoked in the normal ip procesing path for a 530 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 531 * ip_policy is set to B_FALSE for all the routines called in these two 532 * functions because, in the former case, we don't process loopback traffic 533 * currently while in the latter, the packets have already been processed in 534 * icmp_inbound. 535 * 536 * Zones notes: 537 * 538 * The partitioning rules for networking are as follows: 539 * 1) Packets coming from a zone must have a source address belonging to that 540 * zone. 541 * 2) Packets coming from a zone can only be sent on a physical interface on 542 * which the zone has an IP address. 543 * 3) Between two zones on the same machine, packet delivery is only allowed if 544 * there's a matching route for the destination and zone in the forwarding 545 * table. 546 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 547 * different zones can bind to the same port with the wildcard address 548 * (INADDR_ANY). 549 * 550 * The granularity of interface partitioning is at the logical interface level. 551 * Therefore, every zone has its own IP addresses, and incoming packets can be 552 * attributed to a zone unambiguously. A logical interface is placed into a zone 553 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 554 * structure. Rule (1) is implemented by modifying the source address selection 555 * algorithm so that the list of eligible addresses is filtered based on the 556 * sending process zone. 557 * 558 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 559 * across all zones, depending on their type. Here is the break-up: 560 * 561 * IRE type Shared/exclusive 562 * -------- ---------------- 563 * IRE_BROADCAST Exclusive 564 * IRE_DEFAULT (default routes) Shared (*) 565 * IRE_LOCAL Exclusive (x) 566 * IRE_LOOPBACK Exclusive 567 * IRE_PREFIX (net routes) Shared (*) 568 * IRE_CACHE Exclusive 569 * IRE_IF_NORESOLVER (interface routes) Exclusive 570 * IRE_IF_RESOLVER (interface routes) Exclusive 571 * IRE_HOST (host routes) Shared (*) 572 * 573 * (*) A zone can only use a default or off-subnet route if the gateway is 574 * directly reachable from the zone, that is, if the gateway's address matches 575 * one of the zone's logical interfaces. 576 * 577 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 578 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 579 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 580 * address of the zone itself (the destination). Since IRE_LOCAL is used 581 * for communication between zones, ip_wput_ire has special logic to set 582 * the right source address when sending using an IRE_LOCAL. 583 * 584 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 585 * ire_cache_lookup restricts loopback using an IRE_LOCAL 586 * between zone to the case when L2 would have conceptually looped the packet 587 * back, i.e. the loopback which is required since neither Ethernet drivers 588 * nor Ethernet hardware loops them back. This is the case when the normal 589 * routes (ignoring IREs with different zoneids) would send out the packet on 590 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 591 * associated. 592 * 593 * Multiple zones can share a common broadcast address; typically all zones 594 * share the 255.255.255.255 address. Incoming as well as locally originated 595 * broadcast packets must be dispatched to all the zones on the broadcast 596 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 597 * since some zones may not be on the 10.16.72/24 network. To handle this, each 598 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 599 * sent to every zone that has an IRE_BROADCAST entry for the destination 600 * address on the input ill, see conn_wantpacket(). 601 * 602 * Applications in different zones can join the same multicast group address. 603 * For IPv4, group memberships are per-logical interface, so they're already 604 * inherently part of a zone. For IPv6, group memberships are per-physical 605 * interface, so we distinguish IPv6 group memberships based on group address, 606 * interface and zoneid. In both cases, received multicast packets are sent to 607 * every zone for which a group membership entry exists. On IPv6 we need to 608 * check that the target zone still has an address on the receiving physical 609 * interface; it could have been removed since the application issued the 610 * IPV6_JOIN_GROUP. 611 */ 612 613 /* 614 * Squeue Fanout flags: 615 * 0: No fanout. 616 * 1: Fanout across all squeues 617 */ 618 boolean_t ip_squeue_fanout = 0; 619 620 /* 621 * Maximum dups allowed per packet. 622 */ 623 uint_t ip_max_frag_dups = 10; 624 625 #define IS_SIMPLE_IPH(ipha) \ 626 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 627 628 /* RFC1122 Conformance */ 629 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 630 631 #define ILL_MAX_NAMELEN LIFNAMSIZ 632 633 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 634 635 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 636 cred_t *credp, boolean_t isv6); 637 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 638 ipha_t **); 639 640 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 641 ip_stack_t *); 642 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 643 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 644 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 645 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 646 mblk_t *, int, ip_stack_t *); 647 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 648 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 649 ill_t *, zoneid_t); 650 static void icmp_options_update(ipha_t *); 651 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 652 ip_stack_t *); 653 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 654 zoneid_t zoneid, ip_stack_t *); 655 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 656 static void icmp_redirect(ill_t *, mblk_t *); 657 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 658 ip_stack_t *); 659 660 static void ip_arp_news(queue_t *, mblk_t *); 661 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 662 ip_stack_t *); 663 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 664 char *ip_dot_addr(ipaddr_t, char *); 665 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 666 int ip_close(queue_t *, int); 667 static char *ip_dot_saddr(uchar_t *, char *); 668 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 669 boolean_t, boolean_t, ill_t *, zoneid_t); 670 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 671 boolean_t, boolean_t, zoneid_t); 672 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 673 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 674 static void ip_lrput(queue_t *, mblk_t *); 675 ipaddr_t ip_net_mask(ipaddr_t); 676 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 677 ip_stack_t *); 678 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 679 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 680 char *ip_nv_lookup(nv_t *, int); 681 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 682 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 683 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 684 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 685 ipndp_t *, size_t); 686 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 687 void ip_rput(queue_t *, mblk_t *); 688 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 689 void *dummy_arg); 690 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 691 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 692 ip_stack_t *); 693 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 694 ire_t *, ip_stack_t *); 695 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 696 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 697 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 698 ip_stack_t *); 699 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 700 uint16_t *); 701 int ip_snmp_get(queue_t *, mblk_t *, int); 702 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 703 mib2_ipIfStatsEntry_t *, ip_stack_t *); 704 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 705 ip_stack_t *); 706 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 707 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 708 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 709 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 710 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 711 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 712 ip_stack_t *ipst); 713 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 714 ip_stack_t *ipst); 715 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 716 ip_stack_t *ipst); 717 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 718 ip_stack_t *ipst); 719 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 720 ip_stack_t *ipst); 721 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 722 ip_stack_t *ipst); 723 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 724 ip_stack_t *ipst); 725 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 726 ip_stack_t *ipst); 727 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 728 ip_stack_t *ipst); 729 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 730 ip_stack_t *ipst); 731 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 732 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 733 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 734 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 735 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 736 static boolean_t ip_source_route_included(ipha_t *); 737 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 738 739 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 740 zoneid_t, ip_stack_t *, conn_t *); 741 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 742 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 743 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 744 zoneid_t, ip_stack_t *); 745 746 static void conn_drain_init(ip_stack_t *); 747 static void conn_drain_fini(ip_stack_t *); 748 static void conn_drain_tail(conn_t *connp, boolean_t closing); 749 750 static void conn_walk_drain(ip_stack_t *); 751 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 752 zoneid_t); 753 754 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 755 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 756 static void ip_stack_fini(netstackid_t stackid, void *arg); 757 758 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 759 zoneid_t); 760 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 761 void *dummy_arg); 762 763 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 764 765 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 766 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 767 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 768 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 769 770 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 771 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 772 caddr_t, cred_t *); 773 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 774 caddr_t cp, cred_t *cr); 775 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 776 cred_t *); 777 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 778 cred_t *); 779 static int ip_squeue_switch(int); 780 781 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 782 static void ip_kstat_fini(netstackid_t, kstat_t *); 783 static int ip_kstat_update(kstat_t *kp, int rw); 784 static void *icmp_kstat_init(netstackid_t); 785 static void icmp_kstat_fini(netstackid_t, kstat_t *); 786 static int icmp_kstat_update(kstat_t *kp, int rw); 787 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 788 static void ip_kstat2_fini(netstackid_t, kstat_t *); 789 790 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 791 792 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 793 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 794 795 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 796 ipha_t *, ill_t *, boolean_t, boolean_t); 797 798 static void ipobs_init(ip_stack_t *); 799 static void ipobs_fini(ip_stack_t *); 800 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 801 802 /* How long, in seconds, we allow frags to hang around. */ 803 #define IP_FRAG_TIMEOUT 15 804 805 /* 806 * Threshold which determines whether MDT should be used when 807 * generating IP fragments; payload size must be greater than 808 * this threshold for MDT to take place. 809 */ 810 #define IP_WPUT_FRAG_MDT_MIN 32768 811 812 /* Setable in /etc/system only */ 813 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 814 815 static long ip_rput_pullups; 816 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 817 818 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 819 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 820 821 int ip_debug; 822 823 #ifdef DEBUG 824 uint32_t ipsechw_debug = 0; 825 #endif 826 827 /* 828 * Multirouting/CGTP stuff 829 */ 830 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 831 832 /* 833 * XXX following really should only be in a header. Would need more 834 * header and .c clean up first. 835 */ 836 extern optdb_obj_t ip_opt_obj; 837 838 ulong_t ip_squeue_enter_unbound = 0; 839 840 /* 841 * Named Dispatch Parameter Table. 842 * All of these are alterable, within the min/max values given, at run time. 843 */ 844 static ipparam_t lcl_param_arr[] = { 845 /* min max value name */ 846 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 847 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 848 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 849 { 0, 1, 0, "ip_respond_to_timestamp"}, 850 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 851 { 0, 1, 1, "ip_send_redirects"}, 852 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 853 { 0, 10, 0, "ip_mrtdebug"}, 854 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 855 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 856 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 857 { 1, 255, 255, "ip_def_ttl" }, 858 { 0, 1, 0, "ip_forward_src_routed"}, 859 { 0, 256, 32, "ip_wroff_extra" }, 860 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 861 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 862 { 0, 1, 1, "ip_path_mtu_discovery" }, 863 { 0, 240, 30, "ip_ignore_delete_time" }, 864 { 0, 1, 0, "ip_ignore_redirect" }, 865 { 0, 1, 1, "ip_output_queue" }, 866 { 1, 254, 1, "ip_broadcast_ttl" }, 867 { 0, 99999, 100, "ip_icmp_err_interval" }, 868 { 1, 99999, 10, "ip_icmp_err_burst" }, 869 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 870 { 0, 1, 0, "ip_strict_dst_multihoming" }, 871 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 872 { 0, 1, 0, "ipsec_override_persocket_policy" }, 873 { 0, 1, 1, "icmp_accept_clear_messages" }, 874 { 0, 1, 1, "igmp_accept_clear_messages" }, 875 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 876 "ip_ndp_delay_first_probe_time"}, 877 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 878 "ip_ndp_max_unicast_solicit"}, 879 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 880 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 881 { 0, 1, 0, "ip6_forward_src_routed"}, 882 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 883 { 0, 1, 1, "ip6_send_redirects"}, 884 { 0, 1, 0, "ip6_ignore_redirect" }, 885 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 886 887 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 888 889 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 890 891 { 0, 1, 1, "pim_accept_clear_messages" }, 892 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 893 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 894 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 895 { 0, 15, 0, "ip_policy_mask" }, 896 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 897 { 0, 255, 1, "ip_multirt_ttl" }, 898 { 0, 1, 1, "ip_multidata_outbound" }, 899 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 900 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 901 { 0, 1000, 1, "ip_max_temp_defend" }, 902 { 0, 1000, 3, "ip_max_defend" }, 903 { 0, 999999, 30, "ip_defend_interval" }, 904 { 0, 3600000, 300000, "ip_dup_recovery" }, 905 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 906 { 0, 1, 1, "ip_lso_outbound" }, 907 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 908 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 909 { 68, 65535, 576, "ip_pmtu_min" }, 910 #ifdef DEBUG 911 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 912 #else 913 { 0, 0, 0, "" }, 914 #endif 915 }; 916 917 /* 918 * Extended NDP table 919 * The addresses for the first two are filled in to be ips_ip_g_forward 920 * and ips_ipv6_forward at init time. 921 */ 922 static ipndp_t lcl_ndp_arr[] = { 923 /* getf setf data name */ 924 #define IPNDP_IP_FORWARDING_OFFSET 0 925 { ip_param_generic_get, ip_forward_set, NULL, 926 "ip_forwarding" }, 927 #define IPNDP_IP6_FORWARDING_OFFSET 1 928 { ip_param_generic_get, ip_forward_set, NULL, 929 "ip6_forwarding" }, 930 { ip_ill_report, NULL, NULL, 931 "ip_ill_status" }, 932 { ip_ipif_report, NULL, NULL, 933 "ip_ipif_status" }, 934 { ip_conn_report, NULL, NULL, 935 "ip_conn_status" }, 936 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 937 "ip_rput_pullups" }, 938 { ip_srcid_report, NULL, NULL, 939 "ip_srcid_status" }, 940 { ip_param_generic_get, ip_input_proc_set, 941 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 942 { ip_param_generic_get, ip_int_set, 943 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 944 #define IPNDP_CGTP_FILTER_OFFSET 9 945 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 946 "ip_cgtp_filter" }, 947 #define IPNDP_IPMP_HOOK_OFFSET 10 948 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 949 "ipmp_hook_emulation" }, 950 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 951 "ip_debug" }, 952 }; 953 954 /* 955 * Table of IP ioctls encoding the various properties of the ioctl and 956 * indexed based on the last byte of the ioctl command. Occasionally there 957 * is a clash, and there is more than 1 ioctl with the same last byte. 958 * In such a case 1 ioctl is encoded in the ndx table and the remaining 959 * ioctls are encoded in the misc table. An entry in the ndx table is 960 * retrieved by indexing on the last byte of the ioctl command and comparing 961 * the ioctl command with the value in the ndx table. In the event of a 962 * mismatch the misc table is then searched sequentially for the desired 963 * ioctl command. 964 * 965 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 966 */ 967 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 968 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 969 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 970 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 971 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 972 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 973 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 974 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 975 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 976 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 977 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 978 979 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 980 MISC_CMD, ip_siocaddrt, NULL }, 981 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 982 MISC_CMD, ip_siocdelrt, NULL }, 983 984 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 985 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 986 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 987 IF_CMD, ip_sioctl_get_addr, NULL }, 988 989 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 990 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 991 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 992 IPI_GET_CMD | IPI_REPL, 993 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 994 995 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 996 IPI_PRIV | IPI_WR | IPI_REPL, 997 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 998 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 999 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1000 IF_CMD, ip_sioctl_get_flags, NULL }, 1001 1002 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1003 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1004 1005 /* copyin size cannot be coded for SIOCGIFCONF */ 1006 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1007 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1008 1009 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1010 IF_CMD, ip_sioctl_mtu, NULL }, 1011 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1012 IF_CMD, ip_sioctl_get_mtu, NULL }, 1013 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1014 IPI_GET_CMD | IPI_REPL, 1015 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1016 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1017 IF_CMD, ip_sioctl_brdaddr, NULL }, 1018 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1019 IPI_GET_CMD | IPI_REPL, 1020 IF_CMD, ip_sioctl_get_netmask, NULL }, 1021 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1022 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1023 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1024 IPI_GET_CMD | IPI_REPL, 1025 IF_CMD, ip_sioctl_get_metric, NULL }, 1026 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1027 IF_CMD, ip_sioctl_metric, NULL }, 1028 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 1030 /* See 166-168 below for extended SIOC*XARP ioctls */ 1031 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1032 ARP_CMD, ip_sioctl_arp, NULL }, 1033 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1034 ARP_CMD, ip_sioctl_arp, NULL }, 1035 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1036 ARP_CMD, ip_sioctl_arp, NULL }, 1037 1038 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 1060 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1061 MISC_CMD, if_unitsel, if_unitsel_restart }, 1062 1063 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 1082 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1083 IPI_PRIV | IPI_WR | IPI_MODOK, 1084 IF_CMD, ip_sioctl_sifname, NULL }, 1085 1086 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1087 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1088 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1089 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1090 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1091 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 1100 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1101 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1102 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1103 IF_CMD, ip_sioctl_get_muxid, NULL }, 1104 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1105 IPI_PRIV | IPI_WR | IPI_REPL, 1106 IF_CMD, ip_sioctl_muxid, NULL }, 1107 1108 /* Both if and lif variants share same func */ 1109 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1110 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1111 /* Both if and lif variants share same func */ 1112 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1113 IPI_PRIV | IPI_WR | IPI_REPL, 1114 IF_CMD, ip_sioctl_slifindex, NULL }, 1115 1116 /* copyin size cannot be coded for SIOCGIFCONF */ 1117 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1118 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1119 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1135 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 1137 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1138 IPI_PRIV | IPI_WR | IPI_REPL, 1139 LIF_CMD, ip_sioctl_removeif, 1140 ip_sioctl_removeif_restart }, 1141 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1142 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1143 LIF_CMD, ip_sioctl_addif, NULL }, 1144 #define SIOCLIFADDR_NDX 112 1145 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1146 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1147 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1148 IPI_GET_CMD | IPI_REPL, 1149 LIF_CMD, ip_sioctl_get_addr, NULL }, 1150 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1151 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1152 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1153 IPI_GET_CMD | IPI_REPL, 1154 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1155 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1156 IPI_PRIV | IPI_WR | IPI_REPL, 1157 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1158 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_flags, NULL }, 1161 1162 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 1165 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1166 ip_sioctl_get_lifconf, NULL }, 1167 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1168 LIF_CMD, ip_sioctl_mtu, NULL }, 1169 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1170 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1171 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1172 IPI_GET_CMD | IPI_REPL, 1173 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1174 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1175 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1176 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1177 IPI_GET_CMD | IPI_REPL, 1178 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1179 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1180 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1181 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1182 IPI_GET_CMD | IPI_REPL, 1183 LIF_CMD, ip_sioctl_get_metric, NULL }, 1184 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1185 LIF_CMD, ip_sioctl_metric, NULL }, 1186 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1187 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1188 LIF_CMD, ip_sioctl_slifname, 1189 ip_sioctl_slifname_restart }, 1190 1191 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1192 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1193 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1194 IPI_GET_CMD | IPI_REPL, 1195 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1196 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1197 IPI_PRIV | IPI_WR | IPI_REPL, 1198 LIF_CMD, ip_sioctl_muxid, NULL }, 1199 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1200 IPI_GET_CMD | IPI_REPL, 1201 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1202 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1203 IPI_PRIV | IPI_WR | IPI_REPL, 1204 LIF_CMD, ip_sioctl_slifindex, 0 }, 1205 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1206 LIF_CMD, ip_sioctl_token, NULL }, 1207 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1208 IPI_GET_CMD | IPI_REPL, 1209 LIF_CMD, ip_sioctl_get_token, NULL }, 1210 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1211 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1212 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1213 IPI_GET_CMD | IPI_REPL, 1214 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1215 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1216 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1217 1218 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1219 IPI_GET_CMD | IPI_REPL, 1220 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1221 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1222 LIF_CMD, ip_siocdelndp_v6, NULL }, 1223 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1224 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1225 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1226 LIF_CMD, ip_siocsetndp_v6, NULL }, 1227 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1228 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1229 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1230 MISC_CMD, ip_sioctl_tonlink, NULL }, 1231 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1232 MISC_CMD, ip_sioctl_tmysite, NULL }, 1233 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1234 TUN_CMD, ip_sioctl_tunparam, NULL }, 1235 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1236 IPI_PRIV | IPI_WR, 1237 TUN_CMD, ip_sioctl_tunparam, NULL }, 1238 1239 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1240 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1241 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1242 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1243 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1244 1245 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1246 IPI_PRIV | IPI_WR | IPI_REPL, 1247 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1248 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1249 IPI_PRIV | IPI_WR | IPI_REPL, 1250 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1251 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1252 IPI_PRIV | IPI_WR | IPI_REPL, 1253 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1254 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1255 IPI_GET_CMD | IPI_REPL, 1256 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1257 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1258 IPI_GET_CMD | IPI_REPL, 1259 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1260 1261 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1262 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1263 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1264 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1265 1266 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1267 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1268 1269 /* These are handled in ip_sioctl_copyin_setup itself */ 1270 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1271 MISC_CMD, NULL, NULL }, 1272 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1273 MISC_CMD, NULL, NULL }, 1274 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1275 1276 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1277 ip_sioctl_get_lifconf, NULL }, 1278 1279 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1280 XARP_CMD, ip_sioctl_arp, NULL }, 1281 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1282 XARP_CMD, ip_sioctl_arp, NULL }, 1283 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1284 XARP_CMD, ip_sioctl_arp, NULL }, 1285 1286 /* SIOCPOPSOCKFS is not handled by IP */ 1287 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1288 1289 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1290 IPI_GET_CMD | IPI_REPL, 1291 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1292 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1293 IPI_PRIV | IPI_WR | IPI_REPL, 1294 LIF_CMD, ip_sioctl_slifzone, 1295 ip_sioctl_slifzone_restart }, 1296 /* 172-174 are SCTP ioctls and not handled by IP */ 1297 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1298 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1299 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1300 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1301 IPI_GET_CMD, LIF_CMD, 1302 ip_sioctl_get_lifusesrc, 0 }, 1303 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1304 IPI_PRIV | IPI_WR, 1305 LIF_CMD, ip_sioctl_slifusesrc, 1306 NULL }, 1307 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1308 ip_sioctl_get_lifsrcof, NULL }, 1309 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1310 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1311 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1312 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1313 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1314 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1315 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1316 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1317 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1318 ip_sioctl_set_ipmpfailback, NULL }, 1319 /* SIOCSENABLESDP is handled by SDP */ 1320 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1321 }; 1322 1323 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1324 1325 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1326 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1327 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1328 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1329 TUN_CMD, ip_sioctl_tunparam, NULL }, 1330 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1331 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1332 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1333 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1334 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1335 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1336 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1337 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1338 MISC_CMD, mrt_ioctl}, 1339 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1340 MISC_CMD, mrt_ioctl}, 1341 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1342 MISC_CMD, mrt_ioctl} 1343 }; 1344 1345 int ip_misc_ioctl_count = 1346 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1347 1348 int conn_drain_nthreads; /* Number of drainers reqd. */ 1349 /* Settable in /etc/system */ 1350 /* Defined in ip_ire.c */ 1351 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1352 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1353 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1354 1355 static nv_t ire_nv_arr[] = { 1356 { IRE_BROADCAST, "BROADCAST" }, 1357 { IRE_LOCAL, "LOCAL" }, 1358 { IRE_LOOPBACK, "LOOPBACK" }, 1359 { IRE_CACHE, "CACHE" }, 1360 { IRE_DEFAULT, "DEFAULT" }, 1361 { IRE_PREFIX, "PREFIX" }, 1362 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1363 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1364 { IRE_HOST, "HOST" }, 1365 { 0 } 1366 }; 1367 1368 nv_t *ire_nv_tbl = ire_nv_arr; 1369 1370 /* Simple ICMP IP Header Template */ 1371 static ipha_t icmp_ipha = { 1372 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1373 }; 1374 1375 struct module_info ip_mod_info = { 1376 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1377 }; 1378 1379 /* 1380 * Duplicate static symbols within a module confuses mdb; so we avoid the 1381 * problem by making the symbols here distinct from those in udp.c. 1382 */ 1383 1384 /* 1385 * Entry points for IP as a device and as a module. 1386 * FIXME: down the road we might want a separate module and driver qinit. 1387 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1388 */ 1389 static struct qinit iprinitv4 = { 1390 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1391 &ip_mod_info 1392 }; 1393 1394 struct qinit iprinitv6 = { 1395 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1396 &ip_mod_info 1397 }; 1398 1399 static struct qinit ipwinitv4 = { 1400 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1401 &ip_mod_info 1402 }; 1403 1404 struct qinit ipwinitv6 = { 1405 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1406 &ip_mod_info 1407 }; 1408 1409 static struct qinit iplrinit = { 1410 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1411 &ip_mod_info 1412 }; 1413 1414 static struct qinit iplwinit = { 1415 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1416 &ip_mod_info 1417 }; 1418 1419 /* For AF_INET aka /dev/ip */ 1420 struct streamtab ipinfov4 = { 1421 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1422 }; 1423 1424 /* For AF_INET6 aka /dev/ip6 */ 1425 struct streamtab ipinfov6 = { 1426 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1427 }; 1428 1429 #ifdef DEBUG 1430 static boolean_t skip_sctp_cksum = B_FALSE; 1431 #endif 1432 1433 /* 1434 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1435 * ip_rput_v6(), ip_output(), etc. If the message 1436 * block already has a M_CTL at the front of it, then simply set the zoneid 1437 * appropriately. 1438 */ 1439 mblk_t * 1440 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1441 { 1442 mblk_t *first_mp; 1443 ipsec_out_t *io; 1444 1445 ASSERT(zoneid != ALL_ZONES); 1446 if (mp->b_datap->db_type == M_CTL) { 1447 io = (ipsec_out_t *)mp->b_rptr; 1448 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1449 io->ipsec_out_zoneid = zoneid; 1450 return (mp); 1451 } 1452 1453 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1454 if (first_mp == NULL) 1455 return (NULL); 1456 io = (ipsec_out_t *)first_mp->b_rptr; 1457 /* This is not a secure packet */ 1458 io->ipsec_out_secure = B_FALSE; 1459 io->ipsec_out_zoneid = zoneid; 1460 first_mp->b_cont = mp; 1461 return (first_mp); 1462 } 1463 1464 /* 1465 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1466 */ 1467 mblk_t * 1468 ip_copymsg(mblk_t *mp) 1469 { 1470 mblk_t *nmp; 1471 ipsec_info_t *in; 1472 1473 if (mp->b_datap->db_type != M_CTL) 1474 return (copymsg(mp)); 1475 1476 in = (ipsec_info_t *)mp->b_rptr; 1477 1478 /* 1479 * Note that M_CTL is also used for delivering ICMP error messages 1480 * upstream to transport layers. 1481 */ 1482 if (in->ipsec_info_type != IPSEC_OUT && 1483 in->ipsec_info_type != IPSEC_IN) 1484 return (copymsg(mp)); 1485 1486 nmp = copymsg(mp->b_cont); 1487 1488 if (in->ipsec_info_type == IPSEC_OUT) { 1489 return (ipsec_out_tag(mp, nmp, 1490 ((ipsec_out_t *)in)->ipsec_out_ns)); 1491 } else { 1492 return (ipsec_in_tag(mp, nmp, 1493 ((ipsec_in_t *)in)->ipsec_in_ns)); 1494 } 1495 } 1496 1497 /* Generate an ICMP fragmentation needed message. */ 1498 static void 1499 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1500 ip_stack_t *ipst) 1501 { 1502 icmph_t icmph; 1503 mblk_t *first_mp; 1504 boolean_t mctl_present; 1505 1506 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1507 1508 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1509 if (mctl_present) 1510 freeb(first_mp); 1511 return; 1512 } 1513 1514 bzero(&icmph, sizeof (icmph_t)); 1515 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1516 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1517 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1518 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1519 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1520 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1521 ipst); 1522 } 1523 1524 /* 1525 * icmp_inbound deals with ICMP messages in the following ways. 1526 * 1527 * 1) It needs to send a reply back and possibly delivering it 1528 * to the "interested" upper clients. 1529 * 2) It needs to send it to the upper clients only. 1530 * 3) It needs to change some values in IP only. 1531 * 4) It needs to change some values in IP and upper layers e.g TCP. 1532 * 1533 * We need to accomodate icmp messages coming in clear until we get 1534 * everything secure from the wire. If icmp_accept_clear_messages 1535 * is zero we check with the global policy and act accordingly. If 1536 * it is non-zero, we accept the message without any checks. But 1537 * *this does not mean* that this will be delivered to the upper 1538 * clients. By accepting we might send replies back, change our MTU 1539 * value etc. but delivery to the ULP/clients depends on their policy 1540 * dispositions. 1541 * 1542 * We handle the above 4 cases in the context of IPsec in the 1543 * following way : 1544 * 1545 * 1) Send the reply back in the same way as the request came in. 1546 * If it came in encrypted, it goes out encrypted. If it came in 1547 * clear, it goes out in clear. Thus, this will prevent chosen 1548 * plain text attack. 1549 * 2) The client may or may not expect things to come in secure. 1550 * If it comes in secure, the policy constraints are checked 1551 * before delivering it to the upper layers. If it comes in 1552 * clear, ipsec_inbound_accept_clear will decide whether to 1553 * accept this in clear or not. In both the cases, if the returned 1554 * message (IP header + 8 bytes) that caused the icmp message has 1555 * AH/ESP headers, it is sent up to AH/ESP for validation before 1556 * sending up. If there are only 8 bytes of returned message, then 1557 * upper client will not be notified. 1558 * 3) Check with global policy to see whether it matches the constaints. 1559 * But this will be done only if icmp_accept_messages_in_clear is 1560 * zero. 1561 * 4) If we need to change both in IP and ULP, then the decision taken 1562 * while affecting the values in IP and while delivering up to TCP 1563 * should be the same. 1564 * 1565 * There are two cases. 1566 * 1567 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1568 * failed), we will not deliver it to the ULP, even though they 1569 * are *willing* to accept in *clear*. This is fine as our global 1570 * disposition to icmp messages asks us reject the datagram. 1571 * 1572 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1573 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1574 * to deliver it to ULP (policy failed), it can lead to 1575 * consistency problems. The cases known at this time are 1576 * ICMP_DESTINATION_UNREACHABLE messages with following code 1577 * values : 1578 * 1579 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1580 * and Upper layer rejects. Then the communication will 1581 * come to a stop. This is solved by making similar decisions 1582 * at both levels. Currently, when we are unable to deliver 1583 * to the Upper Layer (due to policy failures) while IP has 1584 * adjusted ire_max_frag, the next outbound datagram would 1585 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1586 * will be with the right level of protection. Thus the right 1587 * value will be communicated even if we are not able to 1588 * communicate when we get from the wire initially. But this 1589 * assumes there would be at least one outbound datagram after 1590 * IP has adjusted its ire_max_frag value. To make things 1591 * simpler, we accept in clear after the validation of 1592 * AH/ESP headers. 1593 * 1594 * - Other ICMP ERRORS : We may not be able to deliver it to the 1595 * upper layer depending on the level of protection the upper 1596 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1597 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1598 * should be accepted in clear when the Upper layer expects secure. 1599 * Thus the communication may get aborted by some bad ICMP 1600 * packets. 1601 * 1602 * IPQoS Notes: 1603 * The only instance when a packet is sent for processing is when there 1604 * isn't an ICMP client and if we are interested in it. 1605 * If there is a client, IPPF processing will take place in the 1606 * ip_fanout_proto routine. 1607 * 1608 * Zones notes: 1609 * The packet is only processed in the context of the specified zone: typically 1610 * only this zone will reply to an echo request, and only interested clients in 1611 * this zone will receive a copy of the packet. This means that the caller must 1612 * call icmp_inbound() for each relevant zone. 1613 */ 1614 static void 1615 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1616 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1617 ill_t *recv_ill, zoneid_t zoneid) 1618 { 1619 icmph_t *icmph; 1620 ipha_t *ipha; 1621 int iph_hdr_length; 1622 int hdr_length; 1623 boolean_t interested; 1624 uint32_t ts; 1625 uchar_t *wptr; 1626 ipif_t *ipif; 1627 mblk_t *first_mp; 1628 ipsec_in_t *ii; 1629 ire_t *src_ire; 1630 boolean_t onlink; 1631 timestruc_t now; 1632 uint32_t ill_index; 1633 ip_stack_t *ipst; 1634 1635 ASSERT(ill != NULL); 1636 ipst = ill->ill_ipst; 1637 1638 first_mp = mp; 1639 if (mctl_present) { 1640 mp = first_mp->b_cont; 1641 ASSERT(mp != NULL); 1642 } 1643 1644 ipha = (ipha_t *)mp->b_rptr; 1645 if (ipst->ips_icmp_accept_clear_messages == 0) { 1646 first_mp = ipsec_check_global_policy(first_mp, NULL, 1647 ipha, NULL, mctl_present, ipst->ips_netstack); 1648 if (first_mp == NULL) 1649 return; 1650 } 1651 1652 /* 1653 * On a labeled system, we have to check whether the zone itself is 1654 * permitted to receive raw traffic. 1655 */ 1656 if (is_system_labeled()) { 1657 if (zoneid == ALL_ZONES) 1658 zoneid = tsol_packet_to_zoneid(mp); 1659 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1660 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1661 zoneid)); 1662 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1663 freemsg(first_mp); 1664 return; 1665 } 1666 } 1667 1668 /* 1669 * We have accepted the ICMP message. It means that we will 1670 * respond to the packet if needed. It may not be delivered 1671 * to the upper client depending on the policy constraints 1672 * and the disposition in ipsec_inbound_accept_clear. 1673 */ 1674 1675 ASSERT(ill != NULL); 1676 1677 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1678 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1679 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1680 /* Last chance to get real. */ 1681 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1682 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1683 freemsg(first_mp); 1684 return; 1685 } 1686 /* Refresh iph following the pullup. */ 1687 ipha = (ipha_t *)mp->b_rptr; 1688 } 1689 /* ICMP header checksum, including checksum field, should be zero. */ 1690 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1691 IP_CSUM(mp, iph_hdr_length, 0)) { 1692 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1693 freemsg(first_mp); 1694 return; 1695 } 1696 /* The IP header will always be a multiple of four bytes */ 1697 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1698 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1699 icmph->icmph_code)); 1700 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1701 /* We will set "interested" to "true" if we want a copy */ 1702 interested = B_FALSE; 1703 switch (icmph->icmph_type) { 1704 case ICMP_ECHO_REPLY: 1705 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1706 break; 1707 case ICMP_DEST_UNREACHABLE: 1708 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1709 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1710 interested = B_TRUE; /* Pass up to transport */ 1711 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1712 break; 1713 case ICMP_SOURCE_QUENCH: 1714 interested = B_TRUE; /* Pass up to transport */ 1715 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1716 break; 1717 case ICMP_REDIRECT: 1718 if (!ipst->ips_ip_ignore_redirect) 1719 interested = B_TRUE; 1720 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1721 break; 1722 case ICMP_ECHO_REQUEST: 1723 /* 1724 * Whether to respond to echo requests that come in as IP 1725 * broadcasts or as IP multicast is subject to debate 1726 * (what isn't?). We aim to please, you pick it. 1727 * Default is do it. 1728 */ 1729 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1730 /* unicast: always respond */ 1731 interested = B_TRUE; 1732 } else if (CLASSD(ipha->ipha_dst)) { 1733 /* multicast: respond based on tunable */ 1734 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1735 } else if (broadcast) { 1736 /* broadcast: respond based on tunable */ 1737 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1738 } 1739 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1740 break; 1741 case ICMP_ROUTER_ADVERTISEMENT: 1742 case ICMP_ROUTER_SOLICITATION: 1743 break; 1744 case ICMP_TIME_EXCEEDED: 1745 interested = B_TRUE; /* Pass up to transport */ 1746 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1747 break; 1748 case ICMP_PARAM_PROBLEM: 1749 interested = B_TRUE; /* Pass up to transport */ 1750 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1751 break; 1752 case ICMP_TIME_STAMP_REQUEST: 1753 /* Response to Time Stamp Requests is local policy. */ 1754 if (ipst->ips_ip_g_resp_to_timestamp && 1755 /* So is whether to respond if it was an IP broadcast. */ 1756 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1757 int tstamp_len = 3 * sizeof (uint32_t); 1758 1759 if (wptr + tstamp_len > mp->b_wptr) { 1760 if (!pullupmsg(mp, wptr + tstamp_len - 1761 mp->b_rptr)) { 1762 BUMP_MIB(ill->ill_ip_mib, 1763 ipIfStatsInDiscards); 1764 freemsg(first_mp); 1765 return; 1766 } 1767 /* Refresh ipha following the pullup. */ 1768 ipha = (ipha_t *)mp->b_rptr; 1769 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1770 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1771 } 1772 interested = B_TRUE; 1773 } 1774 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1775 break; 1776 case ICMP_TIME_STAMP_REPLY: 1777 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1778 break; 1779 case ICMP_INFO_REQUEST: 1780 /* Per RFC 1122 3.2.2.7, ignore this. */ 1781 case ICMP_INFO_REPLY: 1782 break; 1783 case ICMP_ADDRESS_MASK_REQUEST: 1784 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1785 !broadcast) && 1786 /* TODO m_pullup of complete header? */ 1787 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1788 interested = B_TRUE; 1789 } 1790 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1791 break; 1792 case ICMP_ADDRESS_MASK_REPLY: 1793 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1794 break; 1795 default: 1796 interested = B_TRUE; /* Pass up to transport */ 1797 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1798 break; 1799 } 1800 /* See if there is an ICMP client. */ 1801 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1802 /* If there is an ICMP client and we want one too, copy it. */ 1803 mblk_t *first_mp1; 1804 1805 if (!interested) { 1806 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1807 ip_policy, recv_ill, zoneid); 1808 return; 1809 } 1810 first_mp1 = ip_copymsg(first_mp); 1811 if (first_mp1 != NULL) { 1812 ip_fanout_proto(q, first_mp1, ill, ipha, 1813 0, mctl_present, ip_policy, recv_ill, zoneid); 1814 } 1815 } else if (!interested) { 1816 freemsg(first_mp); 1817 return; 1818 } else { 1819 /* 1820 * Initiate policy processing for this packet if ip_policy 1821 * is true. 1822 */ 1823 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1824 ill_index = ill->ill_phyint->phyint_ifindex; 1825 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1826 if (mp == NULL) { 1827 if (mctl_present) { 1828 freeb(first_mp); 1829 } 1830 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1831 return; 1832 } 1833 } 1834 } 1835 /* We want to do something with it. */ 1836 /* Check db_ref to make sure we can modify the packet. */ 1837 if (mp->b_datap->db_ref > 1) { 1838 mblk_t *first_mp1; 1839 1840 first_mp1 = ip_copymsg(first_mp); 1841 freemsg(first_mp); 1842 if (!first_mp1) { 1843 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1844 return; 1845 } 1846 first_mp = first_mp1; 1847 if (mctl_present) { 1848 mp = first_mp->b_cont; 1849 ASSERT(mp != NULL); 1850 } else { 1851 mp = first_mp; 1852 } 1853 ipha = (ipha_t *)mp->b_rptr; 1854 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1855 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1856 } 1857 switch (icmph->icmph_type) { 1858 case ICMP_ADDRESS_MASK_REQUEST: 1859 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1860 if (ipif == NULL) { 1861 freemsg(first_mp); 1862 return; 1863 } 1864 /* 1865 * outging interface must be IPv4 1866 */ 1867 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1868 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1869 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1870 ipif_refrele(ipif); 1871 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1872 break; 1873 case ICMP_ECHO_REQUEST: 1874 icmph->icmph_type = ICMP_ECHO_REPLY; 1875 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1876 break; 1877 case ICMP_TIME_STAMP_REQUEST: { 1878 uint32_t *tsp; 1879 1880 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1881 tsp = (uint32_t *)wptr; 1882 tsp++; /* Skip past 'originate time' */ 1883 /* Compute # of milliseconds since midnight */ 1884 gethrestime(&now); 1885 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1886 now.tv_nsec / (NANOSEC / MILLISEC); 1887 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1888 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1889 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1890 break; 1891 } 1892 default: 1893 ipha = (ipha_t *)&icmph[1]; 1894 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1895 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1896 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1897 freemsg(first_mp); 1898 return; 1899 } 1900 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1901 ipha = (ipha_t *)&icmph[1]; 1902 } 1903 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1904 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1905 freemsg(first_mp); 1906 return; 1907 } 1908 hdr_length = IPH_HDR_LENGTH(ipha); 1909 if (hdr_length < sizeof (ipha_t)) { 1910 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1911 freemsg(first_mp); 1912 return; 1913 } 1914 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1915 if (!pullupmsg(mp, 1916 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1917 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1918 freemsg(first_mp); 1919 return; 1920 } 1921 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1922 ipha = (ipha_t *)&icmph[1]; 1923 } 1924 switch (icmph->icmph_type) { 1925 case ICMP_REDIRECT: 1926 /* 1927 * As there is no upper client to deliver, we don't 1928 * need the first_mp any more. 1929 */ 1930 if (mctl_present) { 1931 freeb(first_mp); 1932 } 1933 icmp_redirect(ill, mp); 1934 return; 1935 case ICMP_DEST_UNREACHABLE: 1936 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1937 if (!icmp_inbound_too_big(icmph, ipha, ill, 1938 zoneid, mp, iph_hdr_length, ipst)) { 1939 freemsg(first_mp); 1940 return; 1941 } 1942 /* 1943 * icmp_inbound_too_big() may alter mp. 1944 * Resynch ipha and icmph accordingly. 1945 */ 1946 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1947 ipha = (ipha_t *)&icmph[1]; 1948 } 1949 /* FALLTHRU */ 1950 default : 1951 /* 1952 * IPQoS notes: Since we have already done IPQoS 1953 * processing we don't want to do it again in 1954 * the fanout routines called by 1955 * icmp_inbound_error_fanout, hence the last 1956 * argument, ip_policy, is B_FALSE. 1957 */ 1958 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1959 ipha, iph_hdr_length, hdr_length, mctl_present, 1960 B_FALSE, recv_ill, zoneid); 1961 } 1962 return; 1963 } 1964 /* Send out an ICMP packet */ 1965 icmph->icmph_checksum = 0; 1966 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1967 if (broadcast || CLASSD(ipha->ipha_dst)) { 1968 ipif_t *ipif_chosen; 1969 /* 1970 * Make it look like it was directed to us, so we don't look 1971 * like a fool with a broadcast or multicast source address. 1972 */ 1973 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1974 /* 1975 * Make sure that we haven't grabbed an interface that's DOWN. 1976 */ 1977 if (ipif != NULL) { 1978 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1979 ipha->ipha_src, zoneid); 1980 if (ipif_chosen != NULL) { 1981 ipif_refrele(ipif); 1982 ipif = ipif_chosen; 1983 } 1984 } 1985 if (ipif == NULL) { 1986 ip0dbg(("icmp_inbound: " 1987 "No source for broadcast/multicast:\n" 1988 "\tsrc 0x%x dst 0x%x ill %p " 1989 "ipif_lcl_addr 0x%x\n", 1990 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1991 (void *)ill, 1992 ill->ill_ipif->ipif_lcl_addr)); 1993 freemsg(first_mp); 1994 return; 1995 } 1996 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1997 ipha->ipha_dst = ipif->ipif_src_addr; 1998 ipif_refrele(ipif); 1999 } 2000 /* Reset time to live. */ 2001 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2002 { 2003 /* Swap source and destination addresses */ 2004 ipaddr_t tmp; 2005 2006 tmp = ipha->ipha_src; 2007 ipha->ipha_src = ipha->ipha_dst; 2008 ipha->ipha_dst = tmp; 2009 } 2010 ipha->ipha_ident = 0; 2011 if (!IS_SIMPLE_IPH(ipha)) 2012 icmp_options_update(ipha); 2013 2014 /* 2015 * ICMP echo replies should go out on the same interface 2016 * the request came on as probes used by in.mpathd for detecting 2017 * NIC failures are ECHO packets. We turn-off load spreading 2018 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2019 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2020 * function. This is in turn handled by ip_wput and ip_newroute 2021 * to make sure that the packet goes out on the interface it came 2022 * in on. If we don't turnoff load spreading, the packets might get 2023 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2024 * to go out and in.mpathd would wrongly detect a failure or 2025 * mis-detect a NIC failure for link failure. As load spreading 2026 * can happen only if ill_group is not NULL, we do only for 2027 * that case and this does not affect the normal case. 2028 * 2029 * We turn off load spreading only on echo packets that came from 2030 * on-link hosts. If the interface route has been deleted, this will 2031 * not be enforced as we can't do much. For off-link hosts, as the 2032 * default routes in IPv4 does not typically have an ire_ipif 2033 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2034 * Moreover, expecting a default route through this interface may 2035 * not be correct. We use ipha_dst because of the swap above. 2036 */ 2037 onlink = B_FALSE; 2038 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2039 /* 2040 * First, we need to make sure that it is not one of our 2041 * local addresses. If we set onlink when it is one of 2042 * our local addresses, we will end up creating IRE_CACHES 2043 * for one of our local addresses. Then, we will never 2044 * accept packets for them afterwards. 2045 */ 2046 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2047 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2048 if (src_ire == NULL) { 2049 ipif = ipif_get_next_ipif(NULL, ill); 2050 if (ipif == NULL) { 2051 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2052 freemsg(mp); 2053 return; 2054 } 2055 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2056 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2057 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2058 ipif_refrele(ipif); 2059 if (src_ire != NULL) { 2060 onlink = B_TRUE; 2061 ire_refrele(src_ire); 2062 } 2063 } else { 2064 ire_refrele(src_ire); 2065 } 2066 } 2067 if (!mctl_present) { 2068 /* 2069 * This packet should go out the same way as it 2070 * came in i.e in clear. To make sure that global 2071 * policy will not be applied to this in ip_wput_ire, 2072 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2073 */ 2074 ASSERT(first_mp == mp); 2075 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2076 if (first_mp == NULL) { 2077 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2078 freemsg(mp); 2079 return; 2080 } 2081 ii = (ipsec_in_t *)first_mp->b_rptr; 2082 2083 /* This is not a secure packet */ 2084 ii->ipsec_in_secure = B_FALSE; 2085 if (onlink) { 2086 ii->ipsec_in_attach_if = B_TRUE; 2087 ii->ipsec_in_ill_index = 2088 ill->ill_phyint->phyint_ifindex; 2089 ii->ipsec_in_rill_index = 2090 recv_ill->ill_phyint->phyint_ifindex; 2091 } 2092 first_mp->b_cont = mp; 2093 } else if (onlink) { 2094 ii = (ipsec_in_t *)first_mp->b_rptr; 2095 ii->ipsec_in_attach_if = B_TRUE; 2096 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2097 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2098 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2099 } else { 2100 ii = (ipsec_in_t *)first_mp->b_rptr; 2101 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2102 } 2103 ii->ipsec_in_zoneid = zoneid; 2104 ASSERT(zoneid != ALL_ZONES); 2105 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2106 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2107 return; 2108 } 2109 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2110 put(WR(q), first_mp); 2111 } 2112 2113 static ipaddr_t 2114 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2115 { 2116 conn_t *connp; 2117 connf_t *connfp; 2118 ipaddr_t nexthop_addr = INADDR_ANY; 2119 int hdr_length = IPH_HDR_LENGTH(ipha); 2120 uint16_t *up; 2121 uint32_t ports; 2122 ip_stack_t *ipst = ill->ill_ipst; 2123 2124 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2125 switch (ipha->ipha_protocol) { 2126 case IPPROTO_TCP: 2127 { 2128 tcph_t *tcph; 2129 2130 /* do a reverse lookup */ 2131 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2132 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2133 TCPS_LISTEN, ipst); 2134 break; 2135 } 2136 case IPPROTO_UDP: 2137 { 2138 uint32_t dstport, srcport; 2139 2140 ((uint16_t *)&ports)[0] = up[1]; 2141 ((uint16_t *)&ports)[1] = up[0]; 2142 2143 /* Extract ports in net byte order */ 2144 dstport = htons(ntohl(ports) & 0xFFFF); 2145 srcport = htons(ntohl(ports) >> 16); 2146 2147 connfp = &ipst->ips_ipcl_udp_fanout[ 2148 IPCL_UDP_HASH(dstport, ipst)]; 2149 mutex_enter(&connfp->connf_lock); 2150 connp = connfp->connf_head; 2151 2152 /* do a reverse lookup */ 2153 while ((connp != NULL) && 2154 (!IPCL_UDP_MATCH(connp, dstport, 2155 ipha->ipha_src, srcport, ipha->ipha_dst) || 2156 !IPCL_ZONE_MATCH(connp, zoneid))) { 2157 connp = connp->conn_next; 2158 } 2159 if (connp != NULL) 2160 CONN_INC_REF(connp); 2161 mutex_exit(&connfp->connf_lock); 2162 break; 2163 } 2164 case IPPROTO_SCTP: 2165 { 2166 in6_addr_t map_src, map_dst; 2167 2168 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2169 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2170 ((uint16_t *)&ports)[0] = up[1]; 2171 ((uint16_t *)&ports)[1] = up[0]; 2172 2173 connp = sctp_find_conn(&map_src, &map_dst, ports, 2174 zoneid, ipst->ips_netstack->netstack_sctp); 2175 if (connp == NULL) { 2176 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2177 zoneid, ports, ipha, ipst); 2178 } else { 2179 CONN_INC_REF(connp); 2180 SCTP_REFRELE(CONN2SCTP(connp)); 2181 } 2182 break; 2183 } 2184 default: 2185 { 2186 ipha_t ripha; 2187 2188 ripha.ipha_src = ipha->ipha_dst; 2189 ripha.ipha_dst = ipha->ipha_src; 2190 ripha.ipha_protocol = ipha->ipha_protocol; 2191 2192 connfp = &ipst->ips_ipcl_proto_fanout[ 2193 ipha->ipha_protocol]; 2194 mutex_enter(&connfp->connf_lock); 2195 connp = connfp->connf_head; 2196 for (connp = connfp->connf_head; connp != NULL; 2197 connp = connp->conn_next) { 2198 if (IPCL_PROTO_MATCH(connp, 2199 ipha->ipha_protocol, &ripha, ill, 2200 0, zoneid)) { 2201 CONN_INC_REF(connp); 2202 break; 2203 } 2204 } 2205 mutex_exit(&connfp->connf_lock); 2206 } 2207 } 2208 if (connp != NULL) { 2209 if (connp->conn_nexthop_set) 2210 nexthop_addr = connp->conn_nexthop_v4; 2211 CONN_DEC_REF(connp); 2212 } 2213 return (nexthop_addr); 2214 } 2215 2216 /* Table from RFC 1191 */ 2217 static int icmp_frag_size_table[] = 2218 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2219 2220 /* 2221 * Process received ICMP Packet too big. 2222 * After updating any IRE it does the fanout to any matching transport streams. 2223 * Assumes the message has been pulled up till the IP header that caused 2224 * the error. 2225 * 2226 * Returns B_FALSE on failure and B_TRUE on success. 2227 */ 2228 static boolean_t 2229 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2230 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2231 ip_stack_t *ipst) 2232 { 2233 ire_t *ire, *first_ire; 2234 int mtu, orig_mtu; 2235 int hdr_length; 2236 ipaddr_t nexthop_addr; 2237 boolean_t disable_pmtud; 2238 2239 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2240 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2241 ASSERT(ill != NULL); 2242 2243 hdr_length = IPH_HDR_LENGTH(ipha); 2244 2245 /* Drop if the original packet contained a source route */ 2246 if (ip_source_route_included(ipha)) { 2247 return (B_FALSE); 2248 } 2249 /* 2250 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2251 * header. 2252 */ 2253 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2254 mp->b_wptr) { 2255 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2256 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2257 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2258 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2259 return (B_FALSE); 2260 } 2261 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2262 ipha = (ipha_t *)&icmph[1]; 2263 } 2264 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2265 if (nexthop_addr != INADDR_ANY) { 2266 /* nexthop set */ 2267 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2268 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2269 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2270 } else { 2271 /* nexthop not set */ 2272 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2273 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2274 } 2275 2276 if (!first_ire) { 2277 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2278 ntohl(ipha->ipha_dst))); 2279 return (B_FALSE); 2280 } 2281 2282 /* Check for MTU discovery advice as described in RFC 1191 */ 2283 mtu = ntohs(icmph->icmph_du_mtu); 2284 orig_mtu = mtu; 2285 disable_pmtud = B_FALSE; 2286 2287 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2288 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2289 ire = ire->ire_next) { 2290 /* 2291 * Look for the connection to which this ICMP message is 2292 * directed. If it has the IP_NEXTHOP option set, then the 2293 * search is limited to IREs with the MATCH_IRE_PRIVATE 2294 * option. Else the search is limited to regular IREs. 2295 */ 2296 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2297 (nexthop_addr != ire->ire_gateway_addr)) || 2298 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2299 (nexthop_addr != INADDR_ANY))) 2300 continue; 2301 2302 mutex_enter(&ire->ire_lock); 2303 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2304 uint32_t length; 2305 int i; 2306 2307 /* 2308 * Use the table from RFC 1191 to figure out 2309 * the next "plateau" based on the length in 2310 * the original IP packet. 2311 */ 2312 length = ntohs(ipha->ipha_length); 2313 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2314 uint32_t, length); 2315 if (ire->ire_max_frag <= length && 2316 ire->ire_max_frag >= length - hdr_length) { 2317 /* 2318 * Handle broken BSD 4.2 systems that 2319 * return the wrong iph_length in ICMP 2320 * errors. 2321 */ 2322 length -= hdr_length; 2323 } 2324 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2325 if (length > icmp_frag_size_table[i]) 2326 break; 2327 } 2328 if (i == A_CNT(icmp_frag_size_table)) { 2329 /* Smaller than 68! */ 2330 disable_pmtud = B_TRUE; 2331 mtu = ipst->ips_ip_pmtu_min; 2332 } else { 2333 mtu = icmp_frag_size_table[i]; 2334 if (mtu < ipst->ips_ip_pmtu_min) { 2335 mtu = ipst->ips_ip_pmtu_min; 2336 disable_pmtud = B_TRUE; 2337 } 2338 } 2339 /* Fool the ULP into believing our guessed PMTU. */ 2340 icmph->icmph_du_zero = 0; 2341 icmph->icmph_du_mtu = htons(mtu); 2342 } 2343 if (disable_pmtud) 2344 ire->ire_frag_flag = 0; 2345 /* Reduce the IRE max frag value as advised. */ 2346 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2347 mutex_exit(&ire->ire_lock); 2348 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2349 ire, int, orig_mtu, int, mtu); 2350 } 2351 rw_exit(&first_ire->ire_bucket->irb_lock); 2352 ire_refrele(first_ire); 2353 return (B_TRUE); 2354 } 2355 2356 /* 2357 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2358 * calls this function. 2359 */ 2360 static mblk_t * 2361 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2362 { 2363 ipha_t *ipha; 2364 icmph_t *icmph; 2365 ipha_t *in_ipha; 2366 int length; 2367 2368 ASSERT(mp->b_datap->db_type == M_DATA); 2369 2370 /* 2371 * For Self-encapsulated packets, we added an extra IP header 2372 * without the options. Inner IP header is the one from which 2373 * the outer IP header was formed. Thus, we need to remove the 2374 * outer IP header. To do this, we pullup the whole message 2375 * and overlay whatever follows the outer IP header over the 2376 * outer IP header. 2377 */ 2378 2379 if (!pullupmsg(mp, -1)) 2380 return (NULL); 2381 2382 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2383 ipha = (ipha_t *)&icmph[1]; 2384 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2385 2386 /* 2387 * The length that we want to overlay is following the inner 2388 * IP header. Subtracting the IP header + icmp header + outer 2389 * IP header's length should give us the length that we want to 2390 * overlay. 2391 */ 2392 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2393 hdr_length; 2394 /* 2395 * Overlay whatever follows the inner header over the 2396 * outer header. 2397 */ 2398 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2399 2400 /* Set the wptr to account for the outer header */ 2401 mp->b_wptr -= hdr_length; 2402 return (mp); 2403 } 2404 2405 /* 2406 * Try to pass the ICMP message upstream in case the ULP cares. 2407 * 2408 * If the packet that caused the ICMP error is secure, we send 2409 * it to AH/ESP to make sure that the attached packet has a 2410 * valid association. ipha in the code below points to the 2411 * IP header of the packet that caused the error. 2412 * 2413 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2414 * in the context of IPsec. Normally we tell the upper layer 2415 * whenever we send the ire (including ip_bind), the IPsec header 2416 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2417 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2418 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2419 * same thing. As TCP has the IPsec options size that needs to be 2420 * adjusted, we just pass the MTU unchanged. 2421 * 2422 * IFN could have been generated locally or by some router. 2423 * 2424 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2425 * This happens because IP adjusted its value of MTU on an 2426 * earlier IFN message and could not tell the upper layer, 2427 * the new adjusted value of MTU e.g. Packet was encrypted 2428 * or there was not enough information to fanout to upper 2429 * layers. Thus on the next outbound datagram, ip_wput_ire 2430 * generates the IFN, where IPsec processing has *not* been 2431 * done. 2432 * 2433 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2434 * could have generated this. This happens because ire_max_frag 2435 * value in IP was set to a new value, while the IPsec processing 2436 * was being done and after we made the fragmentation check in 2437 * ip_wput_ire. Thus on return from IPsec processing, 2438 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2439 * and generates the IFN. As IPsec processing is over, we fanout 2440 * to AH/ESP to remove the header. 2441 * 2442 * In both these cases, ipsec_in_loopback will be set indicating 2443 * that IFN was generated locally. 2444 * 2445 * ROUTER : IFN could be secure or non-secure. 2446 * 2447 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2448 * packet in error has AH/ESP headers to validate the AH/ESP 2449 * headers. AH/ESP will verify whether there is a valid SA or 2450 * not and send it back. We will fanout again if we have more 2451 * data in the packet. 2452 * 2453 * If the packet in error does not have AH/ESP, we handle it 2454 * like any other case. 2455 * 2456 * * NON_SECURE : If the packet in error has AH/ESP headers, 2457 * we attach a dummy ipsec_in and send it up to AH/ESP 2458 * for validation. AH/ESP will verify whether there is a 2459 * valid SA or not and send it back. We will fanout again if 2460 * we have more data in the packet. 2461 * 2462 * If the packet in error does not have AH/ESP, we handle it 2463 * like any other case. 2464 */ 2465 static void 2466 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2467 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2468 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2469 zoneid_t zoneid) 2470 { 2471 uint16_t *up; /* Pointer to ports in ULP header */ 2472 uint32_t ports; /* reversed ports for fanout */ 2473 ipha_t ripha; /* With reversed addresses */ 2474 mblk_t *first_mp; 2475 ipsec_in_t *ii; 2476 tcph_t *tcph; 2477 conn_t *connp; 2478 ip_stack_t *ipst; 2479 2480 ASSERT(ill != NULL); 2481 2482 ASSERT(recv_ill != NULL); 2483 ipst = recv_ill->ill_ipst; 2484 2485 first_mp = mp; 2486 if (mctl_present) { 2487 mp = first_mp->b_cont; 2488 ASSERT(mp != NULL); 2489 2490 ii = (ipsec_in_t *)first_mp->b_rptr; 2491 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2492 } else { 2493 ii = NULL; 2494 } 2495 2496 switch (ipha->ipha_protocol) { 2497 case IPPROTO_UDP: 2498 /* 2499 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2500 * transport header. 2501 */ 2502 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2503 mp->b_wptr) { 2504 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2505 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2506 goto discard_pkt; 2507 } 2508 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2509 ipha = (ipha_t *)&icmph[1]; 2510 } 2511 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2512 2513 /* 2514 * Attempt to find a client stream based on port. 2515 * Note that we do a reverse lookup since the header is 2516 * in the form we sent it out. 2517 * The ripha header is only used for the IP_UDP_MATCH and we 2518 * only set the src and dst addresses and protocol. 2519 */ 2520 ripha.ipha_src = ipha->ipha_dst; 2521 ripha.ipha_dst = ipha->ipha_src; 2522 ripha.ipha_protocol = ipha->ipha_protocol; 2523 ((uint16_t *)&ports)[0] = up[1]; 2524 ((uint16_t *)&ports)[1] = up[0]; 2525 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2526 ntohl(ipha->ipha_src), ntohs(up[0]), 2527 ntohl(ipha->ipha_dst), ntohs(up[1]), 2528 icmph->icmph_type, icmph->icmph_code)); 2529 2530 /* Have to change db_type after any pullupmsg */ 2531 DB_TYPE(mp) = M_CTL; 2532 2533 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2534 mctl_present, ip_policy, recv_ill, zoneid); 2535 return; 2536 2537 case IPPROTO_TCP: 2538 /* 2539 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2540 * transport header. 2541 */ 2542 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2543 mp->b_wptr) { 2544 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2545 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2546 goto discard_pkt; 2547 } 2548 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2549 ipha = (ipha_t *)&icmph[1]; 2550 } 2551 /* 2552 * Find a TCP client stream for this packet. 2553 * Note that we do a reverse lookup since the header is 2554 * in the form we sent it out. 2555 */ 2556 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2557 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2558 ipst); 2559 if (connp == NULL) 2560 goto discard_pkt; 2561 2562 /* Have to change db_type after any pullupmsg */ 2563 DB_TYPE(mp) = M_CTL; 2564 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2565 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2566 return; 2567 2568 case IPPROTO_SCTP: 2569 /* 2570 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2571 * transport header. 2572 */ 2573 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2574 mp->b_wptr) { 2575 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2576 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2577 goto discard_pkt; 2578 } 2579 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2580 ipha = (ipha_t *)&icmph[1]; 2581 } 2582 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2583 /* 2584 * Find a SCTP client stream for this packet. 2585 * Note that we do a reverse lookup since the header is 2586 * in the form we sent it out. 2587 * The ripha header is only used for the matching and we 2588 * only set the src and dst addresses, protocol, and version. 2589 */ 2590 ripha.ipha_src = ipha->ipha_dst; 2591 ripha.ipha_dst = ipha->ipha_src; 2592 ripha.ipha_protocol = ipha->ipha_protocol; 2593 ripha.ipha_version_and_hdr_length = 2594 ipha->ipha_version_and_hdr_length; 2595 ((uint16_t *)&ports)[0] = up[1]; 2596 ((uint16_t *)&ports)[1] = up[0]; 2597 2598 /* Have to change db_type after any pullupmsg */ 2599 DB_TYPE(mp) = M_CTL; 2600 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2601 mctl_present, ip_policy, zoneid); 2602 return; 2603 2604 case IPPROTO_ESP: 2605 case IPPROTO_AH: { 2606 int ipsec_rc; 2607 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2608 2609 /* 2610 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2611 * We will re-use the IPSEC_IN if it is already present as 2612 * AH/ESP will not affect any fields in the IPSEC_IN for 2613 * ICMP errors. If there is no IPSEC_IN, allocate a new 2614 * one and attach it in the front. 2615 */ 2616 if (ii != NULL) { 2617 /* 2618 * ip_fanout_proto_again converts the ICMP errors 2619 * that come back from AH/ESP to M_DATA so that 2620 * if it is non-AH/ESP and we do a pullupmsg in 2621 * this function, it would work. Convert it back 2622 * to M_CTL before we send up as this is a ICMP 2623 * error. This could have been generated locally or 2624 * by some router. Validate the inner IPsec 2625 * headers. 2626 * 2627 * NOTE : ill_index is used by ip_fanout_proto_again 2628 * to locate the ill. 2629 */ 2630 ASSERT(ill != NULL); 2631 ii->ipsec_in_ill_index = 2632 ill->ill_phyint->phyint_ifindex; 2633 ii->ipsec_in_rill_index = 2634 recv_ill->ill_phyint->phyint_ifindex; 2635 DB_TYPE(first_mp->b_cont) = M_CTL; 2636 } else { 2637 /* 2638 * IPSEC_IN is not present. We attach a ipsec_in 2639 * message and send up to IPsec for validating 2640 * and removing the IPsec headers. Clear 2641 * ipsec_in_secure so that when we return 2642 * from IPsec, we don't mistakenly think that this 2643 * is a secure packet came from the network. 2644 * 2645 * NOTE : ill_index is used by ip_fanout_proto_again 2646 * to locate the ill. 2647 */ 2648 ASSERT(first_mp == mp); 2649 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2650 if (first_mp == NULL) { 2651 freemsg(mp); 2652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2653 return; 2654 } 2655 ii = (ipsec_in_t *)first_mp->b_rptr; 2656 2657 /* This is not a secure packet */ 2658 ii->ipsec_in_secure = B_FALSE; 2659 first_mp->b_cont = mp; 2660 DB_TYPE(mp) = M_CTL; 2661 ASSERT(ill != NULL); 2662 ii->ipsec_in_ill_index = 2663 ill->ill_phyint->phyint_ifindex; 2664 ii->ipsec_in_rill_index = 2665 recv_ill->ill_phyint->phyint_ifindex; 2666 } 2667 ip2dbg(("icmp_inbound_error: ipsec\n")); 2668 2669 if (!ipsec_loaded(ipss)) { 2670 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2671 return; 2672 } 2673 2674 if (ipha->ipha_protocol == IPPROTO_ESP) 2675 ipsec_rc = ipsecesp_icmp_error(first_mp); 2676 else 2677 ipsec_rc = ipsecah_icmp_error(first_mp); 2678 if (ipsec_rc == IPSEC_STATUS_FAILED) 2679 return; 2680 2681 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2682 return; 2683 } 2684 default: 2685 /* 2686 * The ripha header is only used for the lookup and we 2687 * only set the src and dst addresses and protocol. 2688 */ 2689 ripha.ipha_src = ipha->ipha_dst; 2690 ripha.ipha_dst = ipha->ipha_src; 2691 ripha.ipha_protocol = ipha->ipha_protocol; 2692 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2693 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2694 ntohl(ipha->ipha_dst), 2695 icmph->icmph_type, icmph->icmph_code)); 2696 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2697 ipha_t *in_ipha; 2698 2699 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2700 mp->b_wptr) { 2701 if (!pullupmsg(mp, (uchar_t *)ipha + 2702 hdr_length + sizeof (ipha_t) - 2703 mp->b_rptr)) { 2704 goto discard_pkt; 2705 } 2706 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2707 ipha = (ipha_t *)&icmph[1]; 2708 } 2709 /* 2710 * Caller has verified that length has to be 2711 * at least the size of IP header. 2712 */ 2713 ASSERT(hdr_length >= sizeof (ipha_t)); 2714 /* 2715 * Check the sanity of the inner IP header like 2716 * we did for the outer header. 2717 */ 2718 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2719 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2720 goto discard_pkt; 2721 } 2722 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2723 goto discard_pkt; 2724 } 2725 /* Check for Self-encapsulated tunnels */ 2726 if (in_ipha->ipha_src == ipha->ipha_src && 2727 in_ipha->ipha_dst == ipha->ipha_dst) { 2728 2729 mp = icmp_inbound_self_encap_error(mp, 2730 iph_hdr_length, hdr_length); 2731 if (mp == NULL) 2732 goto discard_pkt; 2733 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2734 ipha = (ipha_t *)&icmph[1]; 2735 hdr_length = IPH_HDR_LENGTH(ipha); 2736 /* 2737 * The packet in error is self-encapsualted. 2738 * And we are finding it further encapsulated 2739 * which we could not have possibly generated. 2740 */ 2741 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2742 goto discard_pkt; 2743 } 2744 icmp_inbound_error_fanout(q, ill, first_mp, 2745 icmph, ipha, iph_hdr_length, hdr_length, 2746 mctl_present, ip_policy, recv_ill, zoneid); 2747 return; 2748 } 2749 } 2750 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2751 ipha->ipha_protocol == IPPROTO_IPV6) && 2752 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2753 ii != NULL && 2754 ii->ipsec_in_loopback && 2755 ii->ipsec_in_secure) { 2756 /* 2757 * For IP tunnels that get a looped-back 2758 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2759 * reported new MTU to take into account the IPsec 2760 * headers protecting this configured tunnel. 2761 * 2762 * This allows the tunnel module (tun.c) to blindly 2763 * accept the MTU reported in an ICMP "too big" 2764 * message. 2765 * 2766 * Non-looped back ICMP messages will just be 2767 * handled by the security protocols (if needed), 2768 * and the first subsequent packet will hit this 2769 * path. 2770 */ 2771 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2772 ipsec_in_extra_length(first_mp)); 2773 } 2774 /* Have to change db_type after any pullupmsg */ 2775 DB_TYPE(mp) = M_CTL; 2776 2777 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2778 ip_policy, recv_ill, zoneid); 2779 return; 2780 } 2781 /* NOTREACHED */ 2782 discard_pkt: 2783 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2784 drop_pkt:; 2785 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2786 freemsg(first_mp); 2787 } 2788 2789 /* 2790 * Common IP options parser. 2791 * 2792 * Setup routine: fill in *optp with options-parsing state, then 2793 * tail-call ipoptp_next to return the first option. 2794 */ 2795 uint8_t 2796 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2797 { 2798 uint32_t totallen; /* total length of all options */ 2799 2800 totallen = ipha->ipha_version_and_hdr_length - 2801 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2802 totallen <<= 2; 2803 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2804 optp->ipoptp_end = optp->ipoptp_next + totallen; 2805 optp->ipoptp_flags = 0; 2806 return (ipoptp_next(optp)); 2807 } 2808 2809 /* 2810 * Common IP options parser: extract next option. 2811 */ 2812 uint8_t 2813 ipoptp_next(ipoptp_t *optp) 2814 { 2815 uint8_t *end = optp->ipoptp_end; 2816 uint8_t *cur = optp->ipoptp_next; 2817 uint8_t opt, len, pointer; 2818 2819 /* 2820 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2821 * has been corrupted. 2822 */ 2823 ASSERT(cur <= end); 2824 2825 if (cur == end) 2826 return (IPOPT_EOL); 2827 2828 opt = cur[IPOPT_OPTVAL]; 2829 2830 /* 2831 * Skip any NOP options. 2832 */ 2833 while (opt == IPOPT_NOP) { 2834 cur++; 2835 if (cur == end) 2836 return (IPOPT_EOL); 2837 opt = cur[IPOPT_OPTVAL]; 2838 } 2839 2840 if (opt == IPOPT_EOL) 2841 return (IPOPT_EOL); 2842 2843 /* 2844 * Option requiring a length. 2845 */ 2846 if ((cur + 1) >= end) { 2847 optp->ipoptp_flags |= IPOPTP_ERROR; 2848 return (IPOPT_EOL); 2849 } 2850 len = cur[IPOPT_OLEN]; 2851 if (len < 2) { 2852 optp->ipoptp_flags |= IPOPTP_ERROR; 2853 return (IPOPT_EOL); 2854 } 2855 optp->ipoptp_cur = cur; 2856 optp->ipoptp_len = len; 2857 optp->ipoptp_next = cur + len; 2858 if (cur + len > end) { 2859 optp->ipoptp_flags |= IPOPTP_ERROR; 2860 return (IPOPT_EOL); 2861 } 2862 2863 /* 2864 * For the options which require a pointer field, make sure 2865 * its there, and make sure it points to either something 2866 * inside this option, or the end of the option. 2867 */ 2868 switch (opt) { 2869 case IPOPT_RR: 2870 case IPOPT_TS: 2871 case IPOPT_LSRR: 2872 case IPOPT_SSRR: 2873 if (len <= IPOPT_OFFSET) { 2874 optp->ipoptp_flags |= IPOPTP_ERROR; 2875 return (opt); 2876 } 2877 pointer = cur[IPOPT_OFFSET]; 2878 if (pointer - 1 > len) { 2879 optp->ipoptp_flags |= IPOPTP_ERROR; 2880 return (opt); 2881 } 2882 break; 2883 } 2884 2885 /* 2886 * Sanity check the pointer field based on the type of the 2887 * option. 2888 */ 2889 switch (opt) { 2890 case IPOPT_RR: 2891 case IPOPT_SSRR: 2892 case IPOPT_LSRR: 2893 if (pointer < IPOPT_MINOFF_SR) 2894 optp->ipoptp_flags |= IPOPTP_ERROR; 2895 break; 2896 case IPOPT_TS: 2897 if (pointer < IPOPT_MINOFF_IT) 2898 optp->ipoptp_flags |= IPOPTP_ERROR; 2899 /* 2900 * Note that the Internet Timestamp option also 2901 * contains two four bit fields (the Overflow field, 2902 * and the Flag field), which follow the pointer 2903 * field. We don't need to check that these fields 2904 * fall within the length of the option because this 2905 * was implicitely done above. We've checked that the 2906 * pointer value is at least IPOPT_MINOFF_IT, and that 2907 * it falls within the option. Since IPOPT_MINOFF_IT > 2908 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2909 */ 2910 ASSERT(len > IPOPT_POS_OV_FLG); 2911 break; 2912 } 2913 2914 return (opt); 2915 } 2916 2917 /* 2918 * Use the outgoing IP header to create an IP_OPTIONS option the way 2919 * it was passed down from the application. 2920 */ 2921 int 2922 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2923 { 2924 ipoptp_t opts; 2925 const uchar_t *opt; 2926 uint8_t optval; 2927 uint8_t optlen; 2928 uint32_t len = 0; 2929 uchar_t *buf1 = buf; 2930 2931 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2932 len += IP_ADDR_LEN; 2933 bzero(buf1, IP_ADDR_LEN); 2934 2935 /* 2936 * OK to cast away const here, as we don't store through the returned 2937 * opts.ipoptp_cur pointer. 2938 */ 2939 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2940 optval != IPOPT_EOL; 2941 optval = ipoptp_next(&opts)) { 2942 int off; 2943 2944 opt = opts.ipoptp_cur; 2945 optlen = opts.ipoptp_len; 2946 switch (optval) { 2947 case IPOPT_SSRR: 2948 case IPOPT_LSRR: 2949 2950 /* 2951 * Insert ipha_dst as the first entry in the source 2952 * route and move down the entries on step. 2953 * The last entry gets placed at buf1. 2954 */ 2955 buf[IPOPT_OPTVAL] = optval; 2956 buf[IPOPT_OLEN] = optlen; 2957 buf[IPOPT_OFFSET] = optlen; 2958 2959 off = optlen - IP_ADDR_LEN; 2960 if (off < 0) { 2961 /* No entries in source route */ 2962 break; 2963 } 2964 /* Last entry in source route */ 2965 bcopy(opt + off, buf1, IP_ADDR_LEN); 2966 off -= IP_ADDR_LEN; 2967 2968 while (off > 0) { 2969 bcopy(opt + off, 2970 buf + off + IP_ADDR_LEN, 2971 IP_ADDR_LEN); 2972 off -= IP_ADDR_LEN; 2973 } 2974 /* ipha_dst into first slot */ 2975 bcopy(&ipha->ipha_dst, 2976 buf + off + IP_ADDR_LEN, 2977 IP_ADDR_LEN); 2978 buf += optlen; 2979 len += optlen; 2980 break; 2981 2982 case IPOPT_COMSEC: 2983 case IPOPT_SECURITY: 2984 /* if passing up a label is not ok, then remove */ 2985 if (is_system_labeled()) 2986 break; 2987 /* FALLTHROUGH */ 2988 default: 2989 bcopy(opt, buf, optlen); 2990 buf += optlen; 2991 len += optlen; 2992 break; 2993 } 2994 } 2995 done: 2996 /* Pad the resulting options */ 2997 while (len & 0x3) { 2998 *buf++ = IPOPT_EOL; 2999 len++; 3000 } 3001 return (len); 3002 } 3003 3004 /* 3005 * Update any record route or timestamp options to include this host. 3006 * Reverse any source route option. 3007 * This routine assumes that the options are well formed i.e. that they 3008 * have already been checked. 3009 */ 3010 static void 3011 icmp_options_update(ipha_t *ipha) 3012 { 3013 ipoptp_t opts; 3014 uchar_t *opt; 3015 uint8_t optval; 3016 ipaddr_t src; /* Our local address */ 3017 ipaddr_t dst; 3018 3019 ip2dbg(("icmp_options_update\n")); 3020 src = ipha->ipha_src; 3021 dst = ipha->ipha_dst; 3022 3023 for (optval = ipoptp_first(&opts, ipha); 3024 optval != IPOPT_EOL; 3025 optval = ipoptp_next(&opts)) { 3026 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3027 opt = opts.ipoptp_cur; 3028 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3029 optval, opts.ipoptp_len)); 3030 switch (optval) { 3031 int off1, off2; 3032 case IPOPT_SSRR: 3033 case IPOPT_LSRR: 3034 /* 3035 * Reverse the source route. The first entry 3036 * should be the next to last one in the current 3037 * source route (the last entry is our address). 3038 * The last entry should be the final destination. 3039 */ 3040 off1 = IPOPT_MINOFF_SR - 1; 3041 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3042 if (off2 < 0) { 3043 /* No entries in source route */ 3044 ip1dbg(( 3045 "icmp_options_update: bad src route\n")); 3046 break; 3047 } 3048 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3049 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3050 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3051 off2 -= IP_ADDR_LEN; 3052 3053 while (off1 < off2) { 3054 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3055 bcopy((char *)opt + off2, (char *)opt + off1, 3056 IP_ADDR_LEN); 3057 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3058 off1 += IP_ADDR_LEN; 3059 off2 -= IP_ADDR_LEN; 3060 } 3061 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3062 break; 3063 } 3064 } 3065 } 3066 3067 /* 3068 * Process received ICMP Redirect messages. 3069 */ 3070 static void 3071 icmp_redirect(ill_t *ill, mblk_t *mp) 3072 { 3073 ipha_t *ipha; 3074 int iph_hdr_length; 3075 icmph_t *icmph; 3076 ipha_t *ipha_err; 3077 ire_t *ire; 3078 ire_t *prev_ire; 3079 ire_t *save_ire; 3080 ipaddr_t src, dst, gateway; 3081 iulp_t ulp_info = { 0 }; 3082 int error; 3083 ip_stack_t *ipst; 3084 3085 ASSERT(ill != NULL); 3086 ipst = ill->ill_ipst; 3087 3088 ipha = (ipha_t *)mp->b_rptr; 3089 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3090 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3091 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3092 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3093 freemsg(mp); 3094 return; 3095 } 3096 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3097 ipha_err = (ipha_t *)&icmph[1]; 3098 src = ipha->ipha_src; 3099 dst = ipha_err->ipha_dst; 3100 gateway = icmph->icmph_rd_gateway; 3101 /* Make sure the new gateway is reachable somehow. */ 3102 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3103 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3104 /* 3105 * Make sure we had a route for the dest in question and that 3106 * that route was pointing to the old gateway (the source of the 3107 * redirect packet.) 3108 */ 3109 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3110 NULL, MATCH_IRE_GW, ipst); 3111 /* 3112 * Check that 3113 * the redirect was not from ourselves 3114 * the new gateway and the old gateway are directly reachable 3115 */ 3116 if (!prev_ire || 3117 !ire || 3118 ire->ire_type == IRE_LOCAL) { 3119 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3120 freemsg(mp); 3121 if (ire != NULL) 3122 ire_refrele(ire); 3123 if (prev_ire != NULL) 3124 ire_refrele(prev_ire); 3125 return; 3126 } 3127 3128 /* 3129 * Should we use the old ULP info to create the new gateway? From 3130 * a user's perspective, we should inherit the info so that it 3131 * is a "smooth" transition. If we do not do that, then new 3132 * connections going thru the new gateway will have no route metrics, 3133 * which is counter-intuitive to user. From a network point of 3134 * view, this may or may not make sense even though the new gateway 3135 * is still directly connected to us so the route metrics should not 3136 * change much. 3137 * 3138 * But if the old ire_uinfo is not initialized, we do another 3139 * recursive lookup on the dest using the new gateway. There may 3140 * be a route to that. If so, use it to initialize the redirect 3141 * route. 3142 */ 3143 if (prev_ire->ire_uinfo.iulp_set) { 3144 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3145 } else { 3146 ire_t *tmp_ire; 3147 ire_t *sire; 3148 3149 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3150 ALL_ZONES, 0, NULL, 3151 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3152 ipst); 3153 if (sire != NULL) { 3154 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3155 /* 3156 * If sire != NULL, ire_ftable_lookup() should not 3157 * return a NULL value. 3158 */ 3159 ASSERT(tmp_ire != NULL); 3160 ire_refrele(tmp_ire); 3161 ire_refrele(sire); 3162 } else if (tmp_ire != NULL) { 3163 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3164 sizeof (iulp_t)); 3165 ire_refrele(tmp_ire); 3166 } 3167 } 3168 if (prev_ire->ire_type == IRE_CACHE) 3169 ire_delete(prev_ire); 3170 ire_refrele(prev_ire); 3171 /* 3172 * TODO: more precise handling for cases 0, 2, 3, the latter two 3173 * require TOS routing 3174 */ 3175 switch (icmph->icmph_code) { 3176 case 0: 3177 case 1: 3178 /* TODO: TOS specificity for cases 2 and 3 */ 3179 case 2: 3180 case 3: 3181 break; 3182 default: 3183 freemsg(mp); 3184 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3185 ire_refrele(ire); 3186 return; 3187 } 3188 /* 3189 * Create a Route Association. This will allow us to remember that 3190 * someone we believe told us to use the particular gateway. 3191 */ 3192 save_ire = ire; 3193 ire = ire_create( 3194 (uchar_t *)&dst, /* dest addr */ 3195 (uchar_t *)&ip_g_all_ones, /* mask */ 3196 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3197 (uchar_t *)&gateway, /* gateway addr */ 3198 &save_ire->ire_max_frag, /* max frag */ 3199 NULL, /* no src nce */ 3200 NULL, /* no rfq */ 3201 NULL, /* no stq */ 3202 IRE_HOST, 3203 NULL, /* ipif */ 3204 0, /* cmask */ 3205 0, /* phandle */ 3206 0, /* ihandle */ 3207 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3208 &ulp_info, 3209 NULL, /* tsol_gc_t */ 3210 NULL, /* gcgrp */ 3211 ipst); 3212 3213 if (ire == NULL) { 3214 freemsg(mp); 3215 ire_refrele(save_ire); 3216 return; 3217 } 3218 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3219 ire_refrele(save_ire); 3220 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3221 3222 if (error == 0) { 3223 ire_refrele(ire); /* Held in ire_add_v4 */ 3224 /* tell routing sockets that we received a redirect */ 3225 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3226 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3227 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3228 } 3229 3230 /* 3231 * Delete any existing IRE_HOST type redirect ires for this destination. 3232 * This together with the added IRE has the effect of 3233 * modifying an existing redirect. 3234 */ 3235 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3236 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3237 if (prev_ire != NULL) { 3238 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3239 ire_delete(prev_ire); 3240 ire_refrele(prev_ire); 3241 } 3242 3243 freemsg(mp); 3244 } 3245 3246 /* 3247 * Generate an ICMP parameter problem message. 3248 */ 3249 static void 3250 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3251 ip_stack_t *ipst) 3252 { 3253 icmph_t icmph; 3254 boolean_t mctl_present; 3255 mblk_t *first_mp; 3256 3257 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3258 3259 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3260 if (mctl_present) 3261 freeb(first_mp); 3262 return; 3263 } 3264 3265 bzero(&icmph, sizeof (icmph_t)); 3266 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3267 icmph.icmph_pp_ptr = ptr; 3268 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3269 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3270 ipst); 3271 } 3272 3273 /* 3274 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3275 * the ICMP header pointed to by "stuff". (May be called as writer.) 3276 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3277 * an icmp error packet can be sent. 3278 * Assigns an appropriate source address to the packet. If ipha_dst is 3279 * one of our addresses use it for source. Otherwise pick a source based 3280 * on a route lookup back to ipha_src. 3281 * Note that ipha_src must be set here since the 3282 * packet is likely to arrive on an ill queue in ip_wput() which will 3283 * not set a source address. 3284 */ 3285 static void 3286 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3287 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3288 { 3289 ipaddr_t dst; 3290 icmph_t *icmph; 3291 ipha_t *ipha; 3292 uint_t len_needed; 3293 size_t msg_len; 3294 mblk_t *mp1; 3295 ipaddr_t src; 3296 ire_t *ire; 3297 mblk_t *ipsec_mp; 3298 ipsec_out_t *io = NULL; 3299 3300 if (mctl_present) { 3301 /* 3302 * If it is : 3303 * 3304 * 1) a IPSEC_OUT, then this is caused by outbound 3305 * datagram originating on this host. IPsec processing 3306 * may or may not have been done. Refer to comments above 3307 * icmp_inbound_error_fanout for details. 3308 * 3309 * 2) a IPSEC_IN if we are generating a icmp_message 3310 * for an incoming datagram destined for us i.e called 3311 * from ip_fanout_send_icmp. 3312 */ 3313 ipsec_info_t *in; 3314 ipsec_mp = mp; 3315 mp = ipsec_mp->b_cont; 3316 3317 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3318 ipha = (ipha_t *)mp->b_rptr; 3319 3320 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3321 in->ipsec_info_type == IPSEC_IN); 3322 3323 if (in->ipsec_info_type == IPSEC_IN) { 3324 /* 3325 * Convert the IPSEC_IN to IPSEC_OUT. 3326 */ 3327 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3328 BUMP_MIB(&ipst->ips_ip_mib, 3329 ipIfStatsOutDiscards); 3330 return; 3331 } 3332 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3333 } else { 3334 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3335 io = (ipsec_out_t *)in; 3336 /* 3337 * Clear out ipsec_out_proc_begin, so we do a fresh 3338 * ire lookup. 3339 */ 3340 io->ipsec_out_proc_begin = B_FALSE; 3341 } 3342 ASSERT(zoneid == io->ipsec_out_zoneid); 3343 ASSERT(zoneid != ALL_ZONES); 3344 } else { 3345 /* 3346 * This is in clear. The icmp message we are building 3347 * here should go out in clear. 3348 * 3349 * Pardon the convolution of it all, but it's easier to 3350 * allocate a "use cleartext" IPSEC_IN message and convert 3351 * it than it is to allocate a new one. 3352 */ 3353 ipsec_in_t *ii; 3354 ASSERT(DB_TYPE(mp) == M_DATA); 3355 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3356 if (ipsec_mp == NULL) { 3357 freemsg(mp); 3358 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3359 return; 3360 } 3361 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3362 3363 /* This is not a secure packet */ 3364 ii->ipsec_in_secure = B_FALSE; 3365 /* 3366 * For trusted extensions using a shared IP address we can 3367 * send using any zoneid. 3368 */ 3369 if (zoneid == ALL_ZONES) 3370 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3371 else 3372 ii->ipsec_in_zoneid = zoneid; 3373 ipsec_mp->b_cont = mp; 3374 ipha = (ipha_t *)mp->b_rptr; 3375 /* 3376 * Convert the IPSEC_IN to IPSEC_OUT. 3377 */ 3378 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3379 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3380 return; 3381 } 3382 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3383 } 3384 3385 /* Remember our eventual destination */ 3386 dst = ipha->ipha_src; 3387 3388 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3389 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3390 if (ire != NULL && 3391 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3392 src = ipha->ipha_dst; 3393 } else { 3394 if (ire != NULL) 3395 ire_refrele(ire); 3396 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3397 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3398 ipst); 3399 if (ire == NULL) { 3400 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3401 freemsg(ipsec_mp); 3402 return; 3403 } 3404 src = ire->ire_src_addr; 3405 } 3406 3407 if (ire != NULL) 3408 ire_refrele(ire); 3409 3410 /* 3411 * Check if we can send back more then 8 bytes in addition to 3412 * the IP header. We try to send 64 bytes of data and the internal 3413 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3414 */ 3415 len_needed = IPH_HDR_LENGTH(ipha); 3416 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3417 ipha->ipha_protocol == IPPROTO_IPV6) { 3418 3419 if (!pullupmsg(mp, -1)) { 3420 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3421 freemsg(ipsec_mp); 3422 return; 3423 } 3424 ipha = (ipha_t *)mp->b_rptr; 3425 3426 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3427 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3428 len_needed)); 3429 } else { 3430 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3431 3432 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3433 len_needed += ip_hdr_length_v6(mp, ip6h); 3434 } 3435 } 3436 len_needed += ipst->ips_ip_icmp_return; 3437 msg_len = msgdsize(mp); 3438 if (msg_len > len_needed) { 3439 (void) adjmsg(mp, len_needed - msg_len); 3440 msg_len = len_needed; 3441 } 3442 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3443 if (mp1 == NULL) { 3444 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3445 freemsg(ipsec_mp); 3446 return; 3447 } 3448 mp1->b_cont = mp; 3449 mp = mp1; 3450 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3451 ipsec_mp->b_rptr == (uint8_t *)io && 3452 io->ipsec_out_type == IPSEC_OUT); 3453 ipsec_mp->b_cont = mp; 3454 3455 /* 3456 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3457 * node generates be accepted in peace by all on-host destinations. 3458 * If we do NOT assume that all on-host destinations trust 3459 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3460 * (Look for ipsec_out_icmp_loopback). 3461 */ 3462 io->ipsec_out_icmp_loopback = B_TRUE; 3463 3464 ipha = (ipha_t *)mp->b_rptr; 3465 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3466 *ipha = icmp_ipha; 3467 ipha->ipha_src = src; 3468 ipha->ipha_dst = dst; 3469 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3470 msg_len += sizeof (icmp_ipha) + len; 3471 if (msg_len > IP_MAXPACKET) { 3472 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3473 msg_len = IP_MAXPACKET; 3474 } 3475 ipha->ipha_length = htons((uint16_t)msg_len); 3476 icmph = (icmph_t *)&ipha[1]; 3477 bcopy(stuff, icmph, len); 3478 icmph->icmph_checksum = 0; 3479 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3480 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3481 put(q, ipsec_mp); 3482 } 3483 3484 /* 3485 * Determine if an ICMP error packet can be sent given the rate limit. 3486 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3487 * in milliseconds) and a burst size. Burst size number of packets can 3488 * be sent arbitrarely closely spaced. 3489 * The state is tracked using two variables to implement an approximate 3490 * token bucket filter: 3491 * icmp_pkt_err_last - lbolt value when the last burst started 3492 * icmp_pkt_err_sent - number of packets sent in current burst 3493 */ 3494 boolean_t 3495 icmp_err_rate_limit(ip_stack_t *ipst) 3496 { 3497 clock_t now = TICK_TO_MSEC(lbolt); 3498 uint_t refilled; /* Number of packets refilled in tbf since last */ 3499 /* Guard against changes by loading into local variable */ 3500 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3501 3502 if (err_interval == 0) 3503 return (B_FALSE); 3504 3505 if (ipst->ips_icmp_pkt_err_last > now) { 3506 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3507 ipst->ips_icmp_pkt_err_last = 0; 3508 ipst->ips_icmp_pkt_err_sent = 0; 3509 } 3510 /* 3511 * If we are in a burst update the token bucket filter. 3512 * Update the "last" time to be close to "now" but make sure 3513 * we don't loose precision. 3514 */ 3515 if (ipst->ips_icmp_pkt_err_sent != 0) { 3516 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3517 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3518 ipst->ips_icmp_pkt_err_sent = 0; 3519 } else { 3520 ipst->ips_icmp_pkt_err_sent -= refilled; 3521 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3522 } 3523 } 3524 if (ipst->ips_icmp_pkt_err_sent == 0) { 3525 /* Start of new burst */ 3526 ipst->ips_icmp_pkt_err_last = now; 3527 } 3528 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3529 ipst->ips_icmp_pkt_err_sent++; 3530 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3531 ipst->ips_icmp_pkt_err_sent)); 3532 return (B_FALSE); 3533 } 3534 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3535 return (B_TRUE); 3536 } 3537 3538 /* 3539 * Check if it is ok to send an IPv4 ICMP error packet in 3540 * response to the IPv4 packet in mp. 3541 * Free the message and return null if no 3542 * ICMP error packet should be sent. 3543 */ 3544 static mblk_t * 3545 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3546 { 3547 icmph_t *icmph; 3548 ipha_t *ipha; 3549 uint_t len_needed; 3550 ire_t *src_ire; 3551 ire_t *dst_ire; 3552 3553 if (!mp) 3554 return (NULL); 3555 ipha = (ipha_t *)mp->b_rptr; 3556 if (ip_csum_hdr(ipha)) { 3557 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3558 freemsg(mp); 3559 return (NULL); 3560 } 3561 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3562 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3563 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3564 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3565 if (src_ire != NULL || dst_ire != NULL || 3566 CLASSD(ipha->ipha_dst) || 3567 CLASSD(ipha->ipha_src) || 3568 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3569 /* Note: only errors to the fragment with offset 0 */ 3570 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3571 freemsg(mp); 3572 if (src_ire != NULL) 3573 ire_refrele(src_ire); 3574 if (dst_ire != NULL) 3575 ire_refrele(dst_ire); 3576 return (NULL); 3577 } 3578 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3579 /* 3580 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3581 * errors in response to any ICMP errors. 3582 */ 3583 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3584 if (mp->b_wptr - mp->b_rptr < len_needed) { 3585 if (!pullupmsg(mp, len_needed)) { 3586 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3587 freemsg(mp); 3588 return (NULL); 3589 } 3590 ipha = (ipha_t *)mp->b_rptr; 3591 } 3592 icmph = (icmph_t *) 3593 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3594 switch (icmph->icmph_type) { 3595 case ICMP_DEST_UNREACHABLE: 3596 case ICMP_SOURCE_QUENCH: 3597 case ICMP_TIME_EXCEEDED: 3598 case ICMP_PARAM_PROBLEM: 3599 case ICMP_REDIRECT: 3600 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3601 freemsg(mp); 3602 return (NULL); 3603 default: 3604 break; 3605 } 3606 } 3607 /* 3608 * If this is a labeled system, then check to see if we're allowed to 3609 * send a response to this particular sender. If not, then just drop. 3610 */ 3611 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3612 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3613 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3614 freemsg(mp); 3615 return (NULL); 3616 } 3617 if (icmp_err_rate_limit(ipst)) { 3618 /* 3619 * Only send ICMP error packets every so often. 3620 * This should be done on a per port/source basis, 3621 * but for now this will suffice. 3622 */ 3623 freemsg(mp); 3624 return (NULL); 3625 } 3626 return (mp); 3627 } 3628 3629 /* 3630 * Generate an ICMP redirect message. 3631 */ 3632 static void 3633 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3634 { 3635 icmph_t icmph; 3636 3637 /* 3638 * We are called from ip_rput where we could 3639 * not have attached an IPSEC_IN. 3640 */ 3641 ASSERT(mp->b_datap->db_type == M_DATA); 3642 3643 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3644 return; 3645 } 3646 3647 bzero(&icmph, sizeof (icmph_t)); 3648 icmph.icmph_type = ICMP_REDIRECT; 3649 icmph.icmph_code = 1; 3650 icmph.icmph_rd_gateway = gateway; 3651 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3652 /* Redirects sent by router, and router is global zone */ 3653 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3654 } 3655 3656 /* 3657 * Generate an ICMP time exceeded message. 3658 */ 3659 void 3660 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3661 ip_stack_t *ipst) 3662 { 3663 icmph_t icmph; 3664 boolean_t mctl_present; 3665 mblk_t *first_mp; 3666 3667 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3668 3669 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3670 if (mctl_present) 3671 freeb(first_mp); 3672 return; 3673 } 3674 3675 bzero(&icmph, sizeof (icmph_t)); 3676 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3677 icmph.icmph_code = code; 3678 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3679 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3680 ipst); 3681 } 3682 3683 /* 3684 * Generate an ICMP unreachable message. 3685 */ 3686 void 3687 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3688 ip_stack_t *ipst) 3689 { 3690 icmph_t icmph; 3691 mblk_t *first_mp; 3692 boolean_t mctl_present; 3693 3694 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3695 3696 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3697 if (mctl_present) 3698 freeb(first_mp); 3699 return; 3700 } 3701 3702 bzero(&icmph, sizeof (icmph_t)); 3703 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3704 icmph.icmph_code = code; 3705 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3706 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3707 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3708 zoneid, ipst); 3709 } 3710 3711 /* 3712 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3713 * duplicate. As long as someone else holds the address, the interface will 3714 * stay down. When that conflict goes away, the interface is brought back up. 3715 * This is done so that accidental shutdowns of addresses aren't made 3716 * permanent. Your server will recover from a failure. 3717 * 3718 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3719 * user space process (dhcpagent). 3720 * 3721 * Recovery completes if ARP reports that the address is now ours (via 3722 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3723 * 3724 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3725 */ 3726 static void 3727 ipif_dup_recovery(void *arg) 3728 { 3729 ipif_t *ipif = arg; 3730 ill_t *ill = ipif->ipif_ill; 3731 mblk_t *arp_add_mp; 3732 mblk_t *arp_del_mp; 3733 area_t *area; 3734 ip_stack_t *ipst = ill->ill_ipst; 3735 3736 ipif->ipif_recovery_id = 0; 3737 3738 /* 3739 * No lock needed for moving or condemned check, as this is just an 3740 * optimization. 3741 */ 3742 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3743 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3744 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3745 /* No reason to try to bring this address back. */ 3746 return; 3747 } 3748 3749 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3750 goto alloc_fail; 3751 3752 if (ipif->ipif_arp_del_mp == NULL) { 3753 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3754 goto alloc_fail; 3755 ipif->ipif_arp_del_mp = arp_del_mp; 3756 } 3757 3758 /* Setting the 'unverified' flag restarts DAD */ 3759 area = (area_t *)arp_add_mp->b_rptr; 3760 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3761 ACE_F_UNVERIFIED; 3762 putnext(ill->ill_rq, arp_add_mp); 3763 return; 3764 3765 alloc_fail: 3766 /* 3767 * On allocation failure, just restart the timer. Note that the ipif 3768 * is down here, so no other thread could be trying to start a recovery 3769 * timer. The ill_lock protects the condemned flag and the recovery 3770 * timer ID. 3771 */ 3772 freemsg(arp_add_mp); 3773 mutex_enter(&ill->ill_lock); 3774 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3775 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3776 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3777 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3778 } 3779 mutex_exit(&ill->ill_lock); 3780 } 3781 3782 /* 3783 * This is for exclusive changes due to ARP. Either tear down an interface due 3784 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3785 */ 3786 /* ARGSUSED */ 3787 static void 3788 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3789 { 3790 ill_t *ill = rq->q_ptr; 3791 arh_t *arh; 3792 ipaddr_t src; 3793 ipif_t *ipif; 3794 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3795 char hbuf[MAC_STR_LEN]; 3796 char sbuf[INET_ADDRSTRLEN]; 3797 const char *failtype; 3798 boolean_t bring_up; 3799 ip_stack_t *ipst = ill->ill_ipst; 3800 3801 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3802 case AR_CN_READY: 3803 failtype = NULL; 3804 bring_up = B_TRUE; 3805 break; 3806 case AR_CN_FAILED: 3807 failtype = "in use"; 3808 bring_up = B_FALSE; 3809 break; 3810 default: 3811 failtype = "claimed"; 3812 bring_up = B_FALSE; 3813 break; 3814 } 3815 3816 arh = (arh_t *)mp->b_cont->b_rptr; 3817 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3818 3819 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3820 sizeof (hbuf)); 3821 (void) ip_dot_addr(src, sbuf); 3822 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3823 3824 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3825 ipif->ipif_lcl_addr != src) { 3826 continue; 3827 } 3828 3829 /* 3830 * If we failed on a recovery probe, then restart the timer to 3831 * try again later. 3832 */ 3833 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3834 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3835 ill->ill_net_type == IRE_IF_RESOLVER && 3836 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3837 ipst->ips_ip_dup_recovery > 0 && 3838 ipif->ipif_recovery_id == 0) { 3839 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3840 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3841 continue; 3842 } 3843 3844 /* 3845 * If what we're trying to do has already been done, then do 3846 * nothing. 3847 */ 3848 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3849 continue; 3850 3851 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3852 3853 if (failtype == NULL) { 3854 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3855 ibuf); 3856 } else { 3857 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3858 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3859 } 3860 3861 if (bring_up) { 3862 ASSERT(ill->ill_dl_up); 3863 /* 3864 * Free up the ARP delete message so we can allocate 3865 * a fresh one through the normal path. 3866 */ 3867 freemsg(ipif->ipif_arp_del_mp); 3868 ipif->ipif_arp_del_mp = NULL; 3869 if (ipif_resolver_up(ipif, Res_act_initial) != 3870 EINPROGRESS) { 3871 ipif->ipif_addr_ready = 1; 3872 (void) ipif_up_done(ipif); 3873 } 3874 continue; 3875 } 3876 3877 mutex_enter(&ill->ill_lock); 3878 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3879 ipif->ipif_flags |= IPIF_DUPLICATE; 3880 ill->ill_ipif_dup_count++; 3881 mutex_exit(&ill->ill_lock); 3882 /* 3883 * Already exclusive on the ill; no need to handle deferred 3884 * processing here. 3885 */ 3886 (void) ipif_down(ipif, NULL, NULL); 3887 ipif_down_tail(ipif); 3888 mutex_enter(&ill->ill_lock); 3889 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3890 ill->ill_net_type == IRE_IF_RESOLVER && 3891 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3892 ipst->ips_ip_dup_recovery > 0) { 3893 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3894 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3895 } 3896 mutex_exit(&ill->ill_lock); 3897 } 3898 freemsg(mp); 3899 } 3900 3901 /* ARGSUSED */ 3902 static void 3903 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3904 { 3905 ill_t *ill = rq->q_ptr; 3906 arh_t *arh; 3907 ipaddr_t src; 3908 ipif_t *ipif; 3909 3910 arh = (arh_t *)mp->b_cont->b_rptr; 3911 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3912 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3913 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3914 (void) ipif_resolver_up(ipif, Res_act_defend); 3915 } 3916 freemsg(mp); 3917 } 3918 3919 /* 3920 * News from ARP. ARP sends notification of interesting events down 3921 * to its clients using M_CTL messages with the interesting ARP packet 3922 * attached via b_cont. 3923 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3924 * queue as opposed to ARP sending the message to all the clients, i.e. all 3925 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3926 * table if a cache IRE is found to delete all the entries for the address in 3927 * the packet. 3928 */ 3929 static void 3930 ip_arp_news(queue_t *q, mblk_t *mp) 3931 { 3932 arcn_t *arcn; 3933 arh_t *arh; 3934 ire_t *ire = NULL; 3935 char hbuf[MAC_STR_LEN]; 3936 char sbuf[INET_ADDRSTRLEN]; 3937 ipaddr_t src; 3938 in6_addr_t v6src; 3939 boolean_t isv6 = B_FALSE; 3940 ipif_t *ipif; 3941 ill_t *ill; 3942 ip_stack_t *ipst; 3943 3944 if (CONN_Q(q)) { 3945 conn_t *connp = Q_TO_CONN(q); 3946 3947 ipst = connp->conn_netstack->netstack_ip; 3948 } else { 3949 ill_t *ill = (ill_t *)q->q_ptr; 3950 3951 ipst = ill->ill_ipst; 3952 } 3953 3954 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3955 if (q->q_next) { 3956 putnext(q, mp); 3957 } else 3958 freemsg(mp); 3959 return; 3960 } 3961 arh = (arh_t *)mp->b_cont->b_rptr; 3962 /* Is it one we are interested in? */ 3963 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3964 isv6 = B_TRUE; 3965 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3966 IPV6_ADDR_LEN); 3967 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3968 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3969 IP_ADDR_LEN); 3970 } else { 3971 freemsg(mp); 3972 return; 3973 } 3974 3975 ill = q->q_ptr; 3976 3977 arcn = (arcn_t *)mp->b_rptr; 3978 switch (arcn->arcn_code) { 3979 case AR_CN_BOGON: 3980 /* 3981 * Someone is sending ARP packets with a source protocol 3982 * address that we have published and for which we believe our 3983 * entry is authoritative and (when ill_arp_extend is set) 3984 * verified to be unique on the network. 3985 * 3986 * The ARP module internally handles the cases where the sender 3987 * is just probing (for DAD) and where the hardware address of 3988 * a non-authoritative entry has changed. Thus, these are the 3989 * real conflicts, and we have to do resolution. 3990 * 3991 * We back away quickly from the address if it's from DHCP or 3992 * otherwise temporary and hasn't been used recently (or at 3993 * all). We'd like to include "deprecated" addresses here as 3994 * well (as there's no real reason to defend something we're 3995 * discarding), but IPMP "reuses" this flag to mean something 3996 * other than the standard meaning. 3997 * 3998 * If the ARP module above is not extended (meaning that it 3999 * doesn't know how to defend the address), then we just log 4000 * the problem as we always did and continue on. It's not 4001 * right, but there's little else we can do, and those old ATM 4002 * users are going away anyway. 4003 */ 4004 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4005 hbuf, sizeof (hbuf)); 4006 (void) ip_dot_addr(src, sbuf); 4007 if (isv6) { 4008 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4009 ipst); 4010 } else { 4011 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4012 } 4013 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4014 uint32_t now; 4015 uint32_t maxage; 4016 clock_t lused; 4017 uint_t maxdefense; 4018 uint_t defs; 4019 4020 /* 4021 * First, figure out if this address hasn't been used 4022 * in a while. If it hasn't, then it's a better 4023 * candidate for abandoning. 4024 */ 4025 ipif = ire->ire_ipif; 4026 ASSERT(ipif != NULL); 4027 now = gethrestime_sec(); 4028 maxage = now - ire->ire_create_time; 4029 if (maxage > ipst->ips_ip_max_temp_idle) 4030 maxage = ipst->ips_ip_max_temp_idle; 4031 lused = drv_hztousec(ddi_get_lbolt() - 4032 ire->ire_last_used_time) / MICROSEC + 1; 4033 if (lused >= maxage && (ipif->ipif_flags & 4034 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4035 maxdefense = ipst->ips_ip_max_temp_defend; 4036 else 4037 maxdefense = ipst->ips_ip_max_defend; 4038 4039 /* 4040 * Now figure out how many times we've defended 4041 * ourselves. Ignore defenses that happened long in 4042 * the past. 4043 */ 4044 mutex_enter(&ire->ire_lock); 4045 if ((defs = ire->ire_defense_count) > 0 && 4046 now - ire->ire_defense_time > 4047 ipst->ips_ip_defend_interval) { 4048 ire->ire_defense_count = defs = 0; 4049 } 4050 ire->ire_defense_count++; 4051 ire->ire_defense_time = now; 4052 mutex_exit(&ire->ire_lock); 4053 ill_refhold(ill); 4054 ire_refrele(ire); 4055 4056 /* 4057 * If we've defended ourselves too many times already, 4058 * then give up and tear down the interface(s) using 4059 * this address. Otherwise, defend by sending out a 4060 * gratuitous ARP. 4061 */ 4062 if (defs >= maxdefense && ill->ill_arp_extend) { 4063 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4064 B_FALSE); 4065 } else { 4066 cmn_err(CE_WARN, 4067 "node %s is using our IP address %s on %s", 4068 hbuf, sbuf, ill->ill_name); 4069 /* 4070 * If this is an old (ATM) ARP module, then 4071 * don't try to defend the address. Remain 4072 * compatible with the old behavior. Defend 4073 * only with new ARP. 4074 */ 4075 if (ill->ill_arp_extend) { 4076 qwriter_ip(ill, q, mp, ip_arp_defend, 4077 NEW_OP, B_FALSE); 4078 } else { 4079 ill_refrele(ill); 4080 } 4081 } 4082 return; 4083 } 4084 cmn_err(CE_WARN, 4085 "proxy ARP problem? Node '%s' is using %s on %s", 4086 hbuf, sbuf, ill->ill_name); 4087 if (ire != NULL) 4088 ire_refrele(ire); 4089 break; 4090 case AR_CN_ANNOUNCE: 4091 if (isv6) { 4092 /* 4093 * For XRESOLV interfaces. 4094 * Delete the IRE cache entry and NCE for this 4095 * v6 address 4096 */ 4097 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4098 /* 4099 * If v6src is a non-zero, it's a router address 4100 * as below. Do the same sort of thing to clean 4101 * out off-net IRE_CACHE entries that go through 4102 * the router. 4103 */ 4104 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4105 ire_walk_v6(ire_delete_cache_gw_v6, 4106 (char *)&v6src, ALL_ZONES, ipst); 4107 } 4108 } else { 4109 nce_hw_map_t hwm; 4110 4111 /* 4112 * ARP gives us a copy of any packet where it thinks 4113 * the address has changed, so that we can update our 4114 * caches. We're responsible for caching known answers 4115 * in the current design. We check whether the 4116 * hardware address really has changed in all of our 4117 * entries that have cached this mapping, and if so, we 4118 * blow them away. This way we will immediately pick 4119 * up the rare case of a host changing hardware 4120 * address. 4121 */ 4122 if (src == 0) 4123 break; 4124 hwm.hwm_addr = src; 4125 hwm.hwm_hwlen = arh->arh_hlen; 4126 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4127 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4128 ndp_walk_common(ipst->ips_ndp4, NULL, 4129 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4130 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4131 } 4132 break; 4133 case AR_CN_READY: 4134 /* No external v6 resolver has a contract to use this */ 4135 if (isv6) 4136 break; 4137 /* If the link is down, we'll retry this later */ 4138 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4139 break; 4140 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4141 NULL, NULL, ipst); 4142 if (ipif != NULL) { 4143 /* 4144 * If this is a duplicate recovery, then we now need to 4145 * go exclusive to bring this thing back up. 4146 */ 4147 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4148 IPIF_DUPLICATE) { 4149 ipif_refrele(ipif); 4150 ill_refhold(ill); 4151 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4152 B_FALSE); 4153 return; 4154 } 4155 /* 4156 * If this is the first notice that this address is 4157 * ready, then let the user know now. 4158 */ 4159 if ((ipif->ipif_flags & IPIF_UP) && 4160 !ipif->ipif_addr_ready) { 4161 ipif_mask_reply(ipif); 4162 ipif_up_notify(ipif); 4163 } 4164 ipif->ipif_addr_ready = 1; 4165 ipif_refrele(ipif); 4166 } 4167 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4168 if (ire != NULL) { 4169 ire->ire_defense_count = 0; 4170 ire_refrele(ire); 4171 } 4172 break; 4173 case AR_CN_FAILED: 4174 /* No external v6 resolver has a contract to use this */ 4175 if (isv6) 4176 break; 4177 ill_refhold(ill); 4178 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4179 return; 4180 } 4181 freemsg(mp); 4182 } 4183 4184 /* 4185 * Create a mblk suitable for carrying the interface index and/or source link 4186 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4187 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4188 * application. 4189 */ 4190 mblk_t * 4191 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4192 ip_stack_t *ipst) 4193 { 4194 mblk_t *mp; 4195 ip_pktinfo_t *pinfo; 4196 ipha_t *ipha; 4197 struct ether_header *pether; 4198 4199 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4200 if (mp == NULL) { 4201 ip1dbg(("ip_add_info: allocation failure.\n")); 4202 return (data_mp); 4203 } 4204 4205 ipha = (ipha_t *)data_mp->b_rptr; 4206 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4207 bzero(pinfo, sizeof (ip_pktinfo_t)); 4208 pinfo->ip_pkt_flags = (uchar_t)flags; 4209 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4210 4211 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4212 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4213 if (flags & IPF_RECVADDR) { 4214 ipif_t *ipif; 4215 ire_t *ire; 4216 4217 /* 4218 * Only valid for V4 4219 */ 4220 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4221 (IPV4_VERSION << 4)); 4222 4223 ipif = ipif_get_next_ipif(NULL, ill); 4224 if (ipif != NULL) { 4225 /* 4226 * Since a decision has already been made to deliver the 4227 * packet, there is no need to test for SECATTR and 4228 * ZONEONLY. 4229 * When a multicast packet is transmitted 4230 * a cache entry is created for the multicast address. 4231 * When delivering a copy of the packet or when new 4232 * packets are received we do not want to match on the 4233 * cached entry so explicitly match on 4234 * IRE_LOCAL and IRE_LOOPBACK 4235 */ 4236 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4237 IRE_LOCAL | IRE_LOOPBACK, 4238 ipif, zoneid, NULL, 4239 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4240 if (ire == NULL) { 4241 /* 4242 * packet must have come on a different 4243 * interface. 4244 * Since a decision has already been made to 4245 * deliver the packet, there is no need to test 4246 * for SECATTR and ZONEONLY. 4247 * Only match on local and broadcast ire's. 4248 * See detailed comment above. 4249 */ 4250 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4251 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4252 NULL, MATCH_IRE_TYPE, ipst); 4253 } 4254 4255 if (ire == NULL) { 4256 /* 4257 * This is either a multicast packet or 4258 * the address has been removed since 4259 * the packet was received. 4260 * Return INADDR_ANY so that normal source 4261 * selection occurs for the response. 4262 */ 4263 4264 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4265 } else { 4266 pinfo->ip_pkt_match_addr.s_addr = 4267 ire->ire_src_addr; 4268 ire_refrele(ire); 4269 } 4270 ipif_refrele(ipif); 4271 } else { 4272 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4273 } 4274 } 4275 4276 pether = (struct ether_header *)((char *)ipha 4277 - sizeof (struct ether_header)); 4278 /* 4279 * Make sure the interface is an ethernet type, since this option 4280 * is currently supported only on this type of interface. Also make 4281 * sure we are pointing correctly above db_base. 4282 */ 4283 4284 if ((flags & IPF_RECVSLLA) && 4285 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4286 (ill->ill_type == IFT_ETHER) && 4287 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4288 4289 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4290 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4291 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4292 } else { 4293 /* 4294 * Clear the bit. Indicate to upper layer that IP is not 4295 * sending this ancillary info. 4296 */ 4297 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4298 } 4299 4300 mp->b_datap->db_type = M_CTL; 4301 mp->b_wptr += sizeof (ip_pktinfo_t); 4302 mp->b_cont = data_mp; 4303 4304 return (mp); 4305 } 4306 4307 /* 4308 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4309 * part of the bind request. 4310 */ 4311 4312 boolean_t 4313 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4314 { 4315 ipsec_in_t *ii; 4316 4317 ASSERT(policy_mp != NULL); 4318 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4319 4320 ii = (ipsec_in_t *)policy_mp->b_rptr; 4321 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4322 4323 connp->conn_policy = ii->ipsec_in_policy; 4324 ii->ipsec_in_policy = NULL; 4325 4326 if (ii->ipsec_in_action != NULL) { 4327 if (connp->conn_latch == NULL) { 4328 connp->conn_latch = iplatch_create(); 4329 if (connp->conn_latch == NULL) 4330 return (B_FALSE); 4331 } 4332 ipsec_latch_inbound(connp->conn_latch, ii); 4333 } 4334 return (B_TRUE); 4335 } 4336 4337 /* 4338 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4339 * and to arrange for power-fanout assist. The ULP is identified by 4340 * adding a single byte at the end of the original bind message. 4341 * A ULP other than UDP or TCP that wishes to be recognized passes 4342 * down a bind with a zero length address. 4343 * 4344 * The binding works as follows: 4345 * - A zero byte address means just bind to the protocol. 4346 * - A four byte address is treated as a request to validate 4347 * that the address is a valid local address, appropriate for 4348 * an application to bind to. This does not affect any fanout 4349 * information in IP. 4350 * - A sizeof sin_t byte address is used to bind to only the local address 4351 * and port. 4352 * - A sizeof ipa_conn_t byte address contains complete fanout information 4353 * consisting of local and remote addresses and ports. In 4354 * this case, the addresses are both validated as appropriate 4355 * for this operation, and, if so, the information is retained 4356 * for use in the inbound fanout. 4357 * 4358 * The ULP (except in the zero-length bind) can append an 4359 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4360 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4361 * a copy of the source or destination IRE (source for local bind; 4362 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4363 * policy information contained should be copied on to the conn. 4364 * 4365 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4366 */ 4367 mblk_t * 4368 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4369 { 4370 ssize_t len; 4371 struct T_bind_req *tbr; 4372 sin_t *sin; 4373 ipa_conn_t *ac; 4374 uchar_t *ucp; 4375 mblk_t *mp1; 4376 boolean_t ire_requested; 4377 boolean_t ipsec_policy_set = B_FALSE; 4378 int error = 0; 4379 int protocol; 4380 ipa_conn_x_t *acx; 4381 4382 ASSERT(!connp->conn_af_isv6); 4383 connp->conn_pkt_isv6 = B_FALSE; 4384 4385 len = MBLKL(mp); 4386 if (len < (sizeof (*tbr) + 1)) { 4387 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4388 "ip_bind: bogus msg, len %ld", len); 4389 /* XXX: Need to return something better */ 4390 goto bad_addr; 4391 } 4392 /* Back up and extract the protocol identifier. */ 4393 mp->b_wptr--; 4394 protocol = *mp->b_wptr & 0xFF; 4395 tbr = (struct T_bind_req *)mp->b_rptr; 4396 /* Reset the message type in preparation for shipping it back. */ 4397 DB_TYPE(mp) = M_PCPROTO; 4398 4399 connp->conn_ulp = (uint8_t)protocol; 4400 4401 /* 4402 * Check for a zero length address. This is from a protocol that 4403 * wants to register to receive all packets of its type. 4404 */ 4405 if (tbr->ADDR_length == 0) { 4406 /* 4407 * These protocols are now intercepted in ip_bind_v6(). 4408 * Reject protocol-level binds here for now. 4409 * 4410 * For SCTP raw socket, ICMP sends down a bind with sin_t 4411 * so that the protocol type cannot be SCTP. 4412 */ 4413 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4414 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4415 goto bad_addr; 4416 } 4417 4418 /* 4419 * 4420 * The udp module never sends down a zero-length address, 4421 * and allowing this on a labeled system will break MLP 4422 * functionality. 4423 */ 4424 if (is_system_labeled() && protocol == IPPROTO_UDP) 4425 goto bad_addr; 4426 4427 if (connp->conn_mac_exempt) 4428 goto bad_addr; 4429 4430 /* No hash here really. The table is big enough. */ 4431 connp->conn_srcv6 = ipv6_all_zeros; 4432 4433 ipcl_proto_insert(connp, protocol); 4434 4435 tbr->PRIM_type = T_BIND_ACK; 4436 return (mp); 4437 } 4438 4439 /* Extract the address pointer from the message. */ 4440 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4441 tbr->ADDR_length); 4442 if (ucp == NULL) { 4443 ip1dbg(("ip_bind: no address\n")); 4444 goto bad_addr; 4445 } 4446 if (!OK_32PTR(ucp)) { 4447 ip1dbg(("ip_bind: unaligned address\n")); 4448 goto bad_addr; 4449 } 4450 /* 4451 * Check for trailing mps. 4452 */ 4453 4454 mp1 = mp->b_cont; 4455 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4456 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4457 4458 switch (tbr->ADDR_length) { 4459 default: 4460 ip1dbg(("ip_bind: bad address length %d\n", 4461 (int)tbr->ADDR_length)); 4462 goto bad_addr; 4463 4464 case IP_ADDR_LEN: 4465 /* Verification of local address only */ 4466 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4467 ire_requested, ipsec_policy_set, B_FALSE); 4468 break; 4469 4470 case sizeof (sin_t): 4471 sin = (sin_t *)ucp; 4472 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4473 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4474 break; 4475 4476 case sizeof (ipa_conn_t): 4477 ac = (ipa_conn_t *)ucp; 4478 /* For raw socket, the local port is not set. */ 4479 if (ac->ac_lport == 0) 4480 ac->ac_lport = connp->conn_lport; 4481 /* Always verify destination reachability. */ 4482 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4483 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4484 ipsec_policy_set, B_TRUE, B_TRUE); 4485 break; 4486 4487 case sizeof (ipa_conn_x_t): 4488 acx = (ipa_conn_x_t *)ucp; 4489 /* 4490 * Whether or not to verify destination reachability depends 4491 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4492 */ 4493 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4494 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4495 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4496 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4497 break; 4498 } 4499 if (error == EINPROGRESS) 4500 return (NULL); 4501 else if (error != 0) 4502 goto bad_addr; 4503 /* 4504 * Pass the IPsec headers size in ire_ipsec_overhead. 4505 * We can't do this in ip_bind_insert_ire because the policy 4506 * may not have been inherited at that point in time and hence 4507 * conn_out_enforce_policy may not be set. 4508 */ 4509 mp1 = mp->b_cont; 4510 if (ire_requested && connp->conn_out_enforce_policy && 4511 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4512 ire_t *ire = (ire_t *)mp1->b_rptr; 4513 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4514 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4515 } 4516 4517 /* Send it home. */ 4518 mp->b_datap->db_type = M_PCPROTO; 4519 tbr->PRIM_type = T_BIND_ACK; 4520 return (mp); 4521 4522 bad_addr: 4523 /* 4524 * If error = -1 then we generate a TBADADDR - otherwise error is 4525 * a unix errno. 4526 */ 4527 if (error > 0) 4528 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4529 else 4530 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4531 return (mp); 4532 } 4533 4534 /* 4535 * Here address is verified to be a valid local address. 4536 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4537 * address is also considered a valid local address. 4538 * In the case of a broadcast/multicast address, however, the 4539 * upper protocol is expected to reset the src address 4540 * to 0 if it sees a IRE_BROADCAST type returned so that 4541 * no packets are emitted with broadcast/multicast address as 4542 * source address (that violates hosts requirements RFC1122) 4543 * The addresses valid for bind are: 4544 * (1) - INADDR_ANY (0) 4545 * (2) - IP address of an UP interface 4546 * (3) - IP address of a DOWN interface 4547 * (4) - valid local IP broadcast addresses. In this case 4548 * the conn will only receive packets destined to 4549 * the specified broadcast address. 4550 * (5) - a multicast address. In this case 4551 * the conn will only receive packets destined to 4552 * the specified multicast address. Note: the 4553 * application still has to issue an 4554 * IP_ADD_MEMBERSHIP socket option. 4555 * 4556 * On error, return -1 for TBADADDR otherwise pass the 4557 * errno with TSYSERR reply. 4558 * 4559 * In all the above cases, the bound address must be valid in the current zone. 4560 * When the address is loopback, multicast or broadcast, there might be many 4561 * matching IREs so bind has to look up based on the zone. 4562 * 4563 * Note: lport is in network byte order. 4564 */ 4565 int 4566 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4567 boolean_t ire_requested, boolean_t ipsec_policy_set, 4568 boolean_t fanout_insert) 4569 { 4570 int error = 0; 4571 ire_t *src_ire; 4572 mblk_t *policy_mp; 4573 ipif_t *ipif; 4574 zoneid_t zoneid; 4575 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4576 4577 if (ipsec_policy_set) { 4578 policy_mp = mp->b_cont; 4579 } 4580 4581 /* 4582 * If it was previously connected, conn_fully_bound would have 4583 * been set. 4584 */ 4585 connp->conn_fully_bound = B_FALSE; 4586 4587 src_ire = NULL; 4588 ipif = NULL; 4589 4590 zoneid = IPCL_ZONEID(connp); 4591 4592 if (src_addr) { 4593 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4594 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4595 /* 4596 * If an address other than 0.0.0.0 is requested, 4597 * we verify that it is a valid address for bind 4598 * Note: Following code is in if-else-if form for 4599 * readability compared to a condition check. 4600 */ 4601 /* LINTED - statement has no consequent */ 4602 if (IRE_IS_LOCAL(src_ire)) { 4603 /* 4604 * (2) Bind to address of local UP interface 4605 */ 4606 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4607 /* 4608 * (4) Bind to broadcast address 4609 * Note: permitted only from transports that 4610 * request IRE 4611 */ 4612 if (!ire_requested) 4613 error = EADDRNOTAVAIL; 4614 } else { 4615 /* 4616 * (3) Bind to address of local DOWN interface 4617 * (ipif_lookup_addr() looks up all interfaces 4618 * but we do not get here for UP interfaces 4619 * - case (2) above) 4620 * We put the protocol byte back into the mblk 4621 * since we may come back via ip_wput_nondata() 4622 * later with this mblk if ipif_lookup_addr chooses 4623 * to defer processing. 4624 */ 4625 *mp->b_wptr++ = (char)connp->conn_ulp; 4626 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4627 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4628 &error, ipst)) != NULL) { 4629 ipif_refrele(ipif); 4630 } else if (error == EINPROGRESS) { 4631 if (src_ire != NULL) 4632 ire_refrele(src_ire); 4633 return (EINPROGRESS); 4634 } else if (CLASSD(src_addr)) { 4635 error = 0; 4636 if (src_ire != NULL) 4637 ire_refrele(src_ire); 4638 /* 4639 * (5) bind to multicast address. 4640 * Fake out the IRE returned to upper 4641 * layer to be a broadcast IRE. 4642 */ 4643 src_ire = ire_ctable_lookup( 4644 INADDR_BROADCAST, INADDR_ANY, 4645 IRE_BROADCAST, NULL, zoneid, NULL, 4646 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4647 ipst); 4648 if (src_ire == NULL || !ire_requested) 4649 error = EADDRNOTAVAIL; 4650 } else { 4651 /* 4652 * Not a valid address for bind 4653 */ 4654 error = EADDRNOTAVAIL; 4655 } 4656 /* 4657 * Just to keep it consistent with the processing in 4658 * ip_bind_v4() 4659 */ 4660 mp->b_wptr--; 4661 } 4662 if (error) { 4663 /* Red Alert! Attempting to be a bogon! */ 4664 ip1dbg(("ip_bind: bad src address 0x%x\n", 4665 ntohl(src_addr))); 4666 goto bad_addr; 4667 } 4668 } 4669 4670 /* 4671 * Allow setting new policies. For example, disconnects come 4672 * down as ipa_t bind. As we would have set conn_policy_cached 4673 * to B_TRUE before, we should set it to B_FALSE, so that policy 4674 * can change after the disconnect. 4675 */ 4676 connp->conn_policy_cached = B_FALSE; 4677 4678 /* 4679 * If not fanout_insert this was just an address verification 4680 */ 4681 if (fanout_insert) { 4682 /* 4683 * The addresses have been verified. Time to insert in 4684 * the correct fanout list. 4685 */ 4686 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4687 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4688 connp->conn_lport = lport; 4689 connp->conn_fport = 0; 4690 /* 4691 * Do we need to add a check to reject Multicast packets 4692 */ 4693 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4694 } 4695 4696 if (error == 0) { 4697 if (ire_requested) { 4698 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4699 error = -1; 4700 /* Falls through to bad_addr */ 4701 } 4702 } else if (ipsec_policy_set) { 4703 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4704 error = -1; 4705 /* Falls through to bad_addr */ 4706 } 4707 } 4708 } 4709 bad_addr: 4710 if (error != 0) { 4711 if (connp->conn_anon_port) { 4712 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4713 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4714 B_FALSE); 4715 } 4716 connp->conn_mlp_type = mlptSingle; 4717 } 4718 if (src_ire != NULL) 4719 IRE_REFRELE(src_ire); 4720 if (ipsec_policy_set) { 4721 ASSERT(policy_mp == mp->b_cont); 4722 ASSERT(policy_mp != NULL); 4723 freeb(policy_mp); 4724 /* 4725 * As of now assume that nothing else accompanies 4726 * IPSEC_POLICY_SET. 4727 */ 4728 mp->b_cont = NULL; 4729 } 4730 return (error); 4731 } 4732 4733 /* 4734 * Verify that both the source and destination addresses 4735 * are valid. If verify_dst is false, then the destination address may be 4736 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4737 * destination reachability, while tunnels do not. 4738 * Note that we allow connect to broadcast and multicast 4739 * addresses when ire_requested is set. Thus the ULP 4740 * has to check for IRE_BROADCAST and multicast. 4741 * 4742 * Returns zero if ok. 4743 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4744 * (for use with TSYSERR reply). 4745 * 4746 * Note: lport and fport are in network byte order. 4747 */ 4748 int 4749 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4750 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4751 boolean_t ire_requested, boolean_t ipsec_policy_set, 4752 boolean_t fanout_insert, boolean_t verify_dst) 4753 { 4754 ire_t *src_ire; 4755 ire_t *dst_ire; 4756 int error = 0; 4757 int protocol; 4758 mblk_t *policy_mp; 4759 ire_t *sire = NULL; 4760 ire_t *md_dst_ire = NULL; 4761 ire_t *lso_dst_ire = NULL; 4762 ill_t *ill = NULL; 4763 zoneid_t zoneid; 4764 ipaddr_t src_addr = *src_addrp; 4765 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4766 4767 src_ire = dst_ire = NULL; 4768 protocol = *mp->b_wptr & 0xFF; 4769 4770 /* 4771 * If we never got a disconnect before, clear it now. 4772 */ 4773 connp->conn_fully_bound = B_FALSE; 4774 4775 if (ipsec_policy_set) { 4776 policy_mp = mp->b_cont; 4777 } 4778 4779 zoneid = IPCL_ZONEID(connp); 4780 4781 if (CLASSD(dst_addr)) { 4782 /* Pick up an IRE_BROADCAST */ 4783 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4784 NULL, zoneid, MBLK_GETLABEL(mp), 4785 (MATCH_IRE_RECURSIVE | 4786 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4787 MATCH_IRE_SECATTR), ipst); 4788 } else { 4789 /* 4790 * If conn_dontroute is set or if conn_nexthop_set is set, 4791 * and onlink ipif is not found set ENETUNREACH error. 4792 */ 4793 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4794 ipif_t *ipif; 4795 4796 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4797 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4798 if (ipif == NULL) { 4799 error = ENETUNREACH; 4800 goto bad_addr; 4801 } 4802 ipif_refrele(ipif); 4803 } 4804 4805 if (connp->conn_nexthop_set) { 4806 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4807 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4808 MATCH_IRE_SECATTR, ipst); 4809 } else { 4810 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4811 &sire, zoneid, MBLK_GETLABEL(mp), 4812 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4813 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4814 MATCH_IRE_SECATTR), ipst); 4815 } 4816 } 4817 /* 4818 * dst_ire can't be a broadcast when not ire_requested. 4819 * We also prevent ire's with src address INADDR_ANY to 4820 * be used, which are created temporarily for 4821 * sending out packets from endpoints that have 4822 * conn_unspec_src set. If verify_dst is true, the destination must be 4823 * reachable. If verify_dst is false, the destination needn't be 4824 * reachable. 4825 * 4826 * If we match on a reject or black hole, then we've got a 4827 * local failure. May as well fail out the connect() attempt, 4828 * since it's never going to succeed. 4829 */ 4830 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4831 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4832 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4833 /* 4834 * If we're verifying destination reachability, we always want 4835 * to complain here. 4836 * 4837 * If we're not verifying destination reachability but the 4838 * destination has a route, we still want to fail on the 4839 * temporary address and broadcast address tests. 4840 */ 4841 if (verify_dst || (dst_ire != NULL)) { 4842 if (ip_debug > 2) { 4843 pr_addr_dbg("ip_bind_connected: bad connected " 4844 "dst %s\n", AF_INET, &dst_addr); 4845 } 4846 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4847 error = ENETUNREACH; 4848 else 4849 error = EHOSTUNREACH; 4850 goto bad_addr; 4851 } 4852 } 4853 4854 /* 4855 * We now know that routing will allow us to reach the destination. 4856 * Check whether Trusted Solaris policy allows communication with this 4857 * host, and pretend that the destination is unreachable if not. 4858 * 4859 * This is never a problem for TCP, since that transport is known to 4860 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4861 * handling. If the remote is unreachable, it will be detected at that 4862 * point, so there's no reason to check it here. 4863 * 4864 * Note that for sendto (and other datagram-oriented friends), this 4865 * check is done as part of the data path label computation instead. 4866 * The check here is just to make non-TCP connect() report the right 4867 * error. 4868 */ 4869 if (dst_ire != NULL && is_system_labeled() && 4870 !IPCL_IS_TCP(connp) && 4871 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4872 connp->conn_mac_exempt, ipst) != 0) { 4873 error = EHOSTUNREACH; 4874 if (ip_debug > 2) { 4875 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4876 AF_INET, &dst_addr); 4877 } 4878 goto bad_addr; 4879 } 4880 4881 /* 4882 * If the app does a connect(), it means that it will most likely 4883 * send more than 1 packet to the destination. It makes sense 4884 * to clear the temporary flag. 4885 */ 4886 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4887 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4888 irb_t *irb = dst_ire->ire_bucket; 4889 4890 rw_enter(&irb->irb_lock, RW_WRITER); 4891 /* 4892 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4893 * the lock to guarantee irb_tmp_ire_cnt. 4894 */ 4895 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4896 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4897 irb->irb_tmp_ire_cnt--; 4898 } 4899 rw_exit(&irb->irb_lock); 4900 } 4901 4902 /* 4903 * See if we should notify ULP about LSO/MDT; we do this whether or not 4904 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4905 * eligibility tests for passive connects are handled separately 4906 * through tcp_adapt_ire(). We do this before the source address 4907 * selection, because dst_ire may change after a call to 4908 * ipif_select_source(). This is a best-effort check, as the 4909 * packet for this connection may not actually go through 4910 * dst_ire->ire_stq, and the exact IRE can only be known after 4911 * calling ip_newroute(). This is why we further check on the 4912 * IRE during LSO/Multidata packet transmission in 4913 * tcp_lsosend()/tcp_multisend(). 4914 */ 4915 if (!ipsec_policy_set && dst_ire != NULL && 4916 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4917 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4918 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4919 lso_dst_ire = dst_ire; 4920 IRE_REFHOLD(lso_dst_ire); 4921 } else if (ipst->ips_ip_multidata_outbound && 4922 ILL_MDT_CAPABLE(ill)) { 4923 md_dst_ire = dst_ire; 4924 IRE_REFHOLD(md_dst_ire); 4925 } 4926 } 4927 4928 if (dst_ire != NULL && 4929 dst_ire->ire_type == IRE_LOCAL && 4930 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4931 /* 4932 * If the IRE belongs to a different zone, look for a matching 4933 * route in the forwarding table and use the source address from 4934 * that route. 4935 */ 4936 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4937 zoneid, 0, NULL, 4938 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4939 MATCH_IRE_RJ_BHOLE, ipst); 4940 if (src_ire == NULL) { 4941 error = EHOSTUNREACH; 4942 goto bad_addr; 4943 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4944 if (!(src_ire->ire_type & IRE_HOST)) 4945 error = ENETUNREACH; 4946 else 4947 error = EHOSTUNREACH; 4948 goto bad_addr; 4949 } 4950 if (src_addr == INADDR_ANY) 4951 src_addr = src_ire->ire_src_addr; 4952 ire_refrele(src_ire); 4953 src_ire = NULL; 4954 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4955 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4956 src_addr = sire->ire_src_addr; 4957 ire_refrele(dst_ire); 4958 dst_ire = sire; 4959 sire = NULL; 4960 } else { 4961 /* 4962 * Pick a source address so that a proper inbound 4963 * load spreading would happen. 4964 */ 4965 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4966 ipif_t *src_ipif = NULL; 4967 ire_t *ipif_ire; 4968 4969 /* 4970 * Supply a local source address such that inbound 4971 * load spreading happens. 4972 * 4973 * Determine the best source address on this ill for 4974 * the destination. 4975 * 4976 * 1) For broadcast, we should return a broadcast ire 4977 * found above so that upper layers know that the 4978 * destination address is a broadcast address. 4979 * 4980 * 2) If this is part of a group, select a better 4981 * source address so that better inbound load 4982 * balancing happens. Do the same if the ipif 4983 * is DEPRECATED. 4984 * 4985 * 3) If the outgoing interface is part of a usesrc 4986 * group, then try selecting a source address from 4987 * the usesrc ILL. 4988 */ 4989 if ((dst_ire->ire_zoneid != zoneid && 4990 dst_ire->ire_zoneid != ALL_ZONES) || 4991 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4992 (!(dst_ire->ire_type & IRE_BROADCAST) && 4993 ((dst_ill->ill_group != NULL) || 4994 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4995 (dst_ill->ill_usesrc_ifindex != 0)))) { 4996 /* 4997 * If the destination is reachable via a 4998 * given gateway, the selected source address 4999 * should be in the same subnet as the gateway. 5000 * Otherwise, the destination is not reachable. 5001 * 5002 * If there are no interfaces on the same subnet 5003 * as the destination, ipif_select_source gives 5004 * first non-deprecated interface which might be 5005 * on a different subnet than the gateway. 5006 * This is not desirable. Hence pass the dst_ire 5007 * source address to ipif_select_source. 5008 * It is sure that the destination is reachable 5009 * with the dst_ire source address subnet. 5010 * So passing dst_ire source address to 5011 * ipif_select_source will make sure that the 5012 * selected source will be on the same subnet 5013 * as dst_ire source address. 5014 */ 5015 ipaddr_t saddr = 5016 dst_ire->ire_ipif->ipif_src_addr; 5017 src_ipif = ipif_select_source(dst_ill, 5018 saddr, zoneid); 5019 if (src_ipif != NULL) { 5020 if (IS_VNI(src_ipif->ipif_ill)) { 5021 /* 5022 * For VNI there is no 5023 * interface route 5024 */ 5025 src_addr = 5026 src_ipif->ipif_src_addr; 5027 } else { 5028 ipif_ire = 5029 ipif_to_ire(src_ipif); 5030 if (ipif_ire != NULL) { 5031 IRE_REFRELE(dst_ire); 5032 dst_ire = ipif_ire; 5033 } 5034 src_addr = 5035 dst_ire->ire_src_addr; 5036 } 5037 ipif_refrele(src_ipif); 5038 } else { 5039 src_addr = dst_ire->ire_src_addr; 5040 } 5041 } else { 5042 src_addr = dst_ire->ire_src_addr; 5043 } 5044 } 5045 } 5046 5047 /* 5048 * We do ire_route_lookup() here (and not 5049 * interface lookup as we assert that 5050 * src_addr should only come from an 5051 * UP interface for hard binding. 5052 */ 5053 ASSERT(src_ire == NULL); 5054 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5055 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5056 /* src_ire must be a local|loopback */ 5057 if (!IRE_IS_LOCAL(src_ire)) { 5058 if (ip_debug > 2) { 5059 pr_addr_dbg("ip_bind_connected: bad connected " 5060 "src %s\n", AF_INET, &src_addr); 5061 } 5062 error = EADDRNOTAVAIL; 5063 goto bad_addr; 5064 } 5065 5066 /* 5067 * If the source address is a loopback address, the 5068 * destination had best be local or multicast. 5069 * The transports that can't handle multicast will reject 5070 * those addresses. 5071 */ 5072 if (src_ire->ire_type == IRE_LOOPBACK && 5073 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5074 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5075 error = -1; 5076 goto bad_addr; 5077 } 5078 5079 /* 5080 * Allow setting new policies. For example, disconnects come 5081 * down as ipa_t bind. As we would have set conn_policy_cached 5082 * to B_TRUE before, we should set it to B_FALSE, so that policy 5083 * can change after the disconnect. 5084 */ 5085 connp->conn_policy_cached = B_FALSE; 5086 5087 /* 5088 * Set the conn addresses/ports immediately, so the IPsec policy calls 5089 * can handle their passed-in conn's. 5090 */ 5091 5092 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5093 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5094 connp->conn_lport = lport; 5095 connp->conn_fport = fport; 5096 *src_addrp = src_addr; 5097 5098 ASSERT(!(ipsec_policy_set && ire_requested)); 5099 if (ire_requested) { 5100 iulp_t *ulp_info = NULL; 5101 5102 /* 5103 * Note that sire will not be NULL if this is an off-link 5104 * connection and there is not cache for that dest yet. 5105 * 5106 * XXX Because of an existing bug, if there are multiple 5107 * default routes, the IRE returned now may not be the actual 5108 * default route used (default routes are chosen in a 5109 * round robin fashion). So if the metrics for different 5110 * default routes are different, we may return the wrong 5111 * metrics. This will not be a problem if the existing 5112 * bug is fixed. 5113 */ 5114 if (sire != NULL) { 5115 ulp_info = &(sire->ire_uinfo); 5116 } 5117 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5118 error = -1; 5119 goto bad_addr; 5120 } 5121 } else if (ipsec_policy_set) { 5122 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5123 error = -1; 5124 goto bad_addr; 5125 } 5126 } 5127 5128 /* 5129 * Cache IPsec policy in this conn. If we have per-socket policy, 5130 * we'll cache that. If we don't, we'll inherit global policy. 5131 * 5132 * We can't insert until the conn reflects the policy. Note that 5133 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5134 * connections where we don't have a policy. This is to prevent 5135 * global policy lookups in the inbound path. 5136 * 5137 * If we insert before we set conn_policy_cached, 5138 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5139 * because global policy cound be non-empty. We normally call 5140 * ipsec_check_policy() for conn_policy_cached connections only if 5141 * ipc_in_enforce_policy is set. But in this case, 5142 * conn_policy_cached can get set anytime since we made the 5143 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5144 * called, which will make the above assumption false. Thus, we 5145 * need to insert after we set conn_policy_cached. 5146 */ 5147 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5148 goto bad_addr; 5149 5150 if (fanout_insert) { 5151 /* 5152 * The addresses have been verified. Time to insert in 5153 * the correct fanout list. 5154 */ 5155 error = ipcl_conn_insert(connp, protocol, src_addr, 5156 dst_addr, connp->conn_ports); 5157 } 5158 5159 if (error == 0) { 5160 connp->conn_fully_bound = B_TRUE; 5161 /* 5162 * Our initial checks for LSO/MDT have passed; the IRE is not 5163 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5164 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5165 * ip_xxinfo_return(), which performs further checks 5166 * against them and upon success, returns the LSO/MDT info 5167 * mblk which we will attach to the bind acknowledgment. 5168 */ 5169 if (lso_dst_ire != NULL) { 5170 mblk_t *lsoinfo_mp; 5171 5172 ASSERT(ill->ill_lso_capab != NULL); 5173 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5174 ill->ill_name, ill->ill_lso_capab)) != NULL) 5175 linkb(mp, lsoinfo_mp); 5176 } else if (md_dst_ire != NULL) { 5177 mblk_t *mdinfo_mp; 5178 5179 ASSERT(ill->ill_mdt_capab != NULL); 5180 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5181 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5182 linkb(mp, mdinfo_mp); 5183 } 5184 } 5185 bad_addr: 5186 if (ipsec_policy_set) { 5187 ASSERT(policy_mp == mp->b_cont); 5188 ASSERT(policy_mp != NULL); 5189 freeb(policy_mp); 5190 /* 5191 * As of now assume that nothing else accompanies 5192 * IPSEC_POLICY_SET. 5193 */ 5194 mp->b_cont = NULL; 5195 } 5196 if (src_ire != NULL) 5197 IRE_REFRELE(src_ire); 5198 if (dst_ire != NULL) 5199 IRE_REFRELE(dst_ire); 5200 if (sire != NULL) 5201 IRE_REFRELE(sire); 5202 if (md_dst_ire != NULL) 5203 IRE_REFRELE(md_dst_ire); 5204 if (lso_dst_ire != NULL) 5205 IRE_REFRELE(lso_dst_ire); 5206 return (error); 5207 } 5208 5209 /* 5210 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5211 * Prefers dst_ire over src_ire. 5212 */ 5213 static boolean_t 5214 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5215 { 5216 mblk_t *mp1; 5217 ire_t *ret_ire = NULL; 5218 5219 mp1 = mp->b_cont; 5220 ASSERT(mp1 != NULL); 5221 5222 if (ire != NULL) { 5223 /* 5224 * mp1 initialized above to IRE_DB_REQ_TYPE 5225 * appended mblk. Its <upper protocol>'s 5226 * job to make sure there is room. 5227 */ 5228 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5229 return (0); 5230 5231 mp1->b_datap->db_type = IRE_DB_TYPE; 5232 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5233 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5234 ret_ire = (ire_t *)mp1->b_rptr; 5235 /* 5236 * Pass the latest setting of the ip_path_mtu_discovery and 5237 * copy the ulp info if any. 5238 */ 5239 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5240 IPH_DF : 0; 5241 if (ulp_info != NULL) { 5242 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5243 sizeof (iulp_t)); 5244 } 5245 ret_ire->ire_mp = mp1; 5246 } else { 5247 /* 5248 * No IRE was found. Remove IRE mblk. 5249 */ 5250 mp->b_cont = mp1->b_cont; 5251 freeb(mp1); 5252 } 5253 5254 return (1); 5255 } 5256 5257 /* 5258 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5259 * the final piece where we don't. Return a pointer to the first mblk in the 5260 * result, and update the pointer to the next mblk to chew on. If anything 5261 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5262 * NULL pointer. 5263 */ 5264 mblk_t * 5265 ip_carve_mp(mblk_t **mpp, ssize_t len) 5266 { 5267 mblk_t *mp0; 5268 mblk_t *mp1; 5269 mblk_t *mp2; 5270 5271 if (!len || !mpp || !(mp0 = *mpp)) 5272 return (NULL); 5273 /* If we aren't going to consume the first mblk, we need a dup. */ 5274 if (mp0->b_wptr - mp0->b_rptr > len) { 5275 mp1 = dupb(mp0); 5276 if (mp1) { 5277 /* Partition the data between the two mblks. */ 5278 mp1->b_wptr = mp1->b_rptr + len; 5279 mp0->b_rptr = mp1->b_wptr; 5280 /* 5281 * after adjustments if mblk not consumed is now 5282 * unaligned, try to align it. If this fails free 5283 * all messages and let upper layer recover. 5284 */ 5285 if (!OK_32PTR(mp0->b_rptr)) { 5286 if (!pullupmsg(mp0, -1)) { 5287 freemsg(mp0); 5288 freemsg(mp1); 5289 *mpp = NULL; 5290 return (NULL); 5291 } 5292 } 5293 } 5294 return (mp1); 5295 } 5296 /* Eat through as many mblks as we need to get len bytes. */ 5297 len -= mp0->b_wptr - mp0->b_rptr; 5298 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5299 if (mp2->b_wptr - mp2->b_rptr > len) { 5300 /* 5301 * We won't consume the entire last mblk. Like 5302 * above, dup and partition it. 5303 */ 5304 mp1->b_cont = dupb(mp2); 5305 mp1 = mp1->b_cont; 5306 if (!mp1) { 5307 /* 5308 * Trouble. Rather than go to a lot of 5309 * trouble to clean up, we free the messages. 5310 * This won't be any worse than losing it on 5311 * the wire. 5312 */ 5313 freemsg(mp0); 5314 freemsg(mp2); 5315 *mpp = NULL; 5316 return (NULL); 5317 } 5318 mp1->b_wptr = mp1->b_rptr + len; 5319 mp2->b_rptr = mp1->b_wptr; 5320 /* 5321 * after adjustments if mblk not consumed is now 5322 * unaligned, try to align it. If this fails free 5323 * all messages and let upper layer recover. 5324 */ 5325 if (!OK_32PTR(mp2->b_rptr)) { 5326 if (!pullupmsg(mp2, -1)) { 5327 freemsg(mp0); 5328 freemsg(mp2); 5329 *mpp = NULL; 5330 return (NULL); 5331 } 5332 } 5333 *mpp = mp2; 5334 return (mp0); 5335 } 5336 /* Decrement len by the amount we just got. */ 5337 len -= mp2->b_wptr - mp2->b_rptr; 5338 } 5339 /* 5340 * len should be reduced to zero now. If not our caller has 5341 * screwed up. 5342 */ 5343 if (len) { 5344 /* Shouldn't happen! */ 5345 freemsg(mp0); 5346 *mpp = NULL; 5347 return (NULL); 5348 } 5349 /* 5350 * We consumed up to exactly the end of an mblk. Detach the part 5351 * we are returning from the rest of the chain. 5352 */ 5353 mp1->b_cont = NULL; 5354 *mpp = mp2; 5355 return (mp0); 5356 } 5357 5358 /* The ill stream is being unplumbed. Called from ip_close */ 5359 int 5360 ip_modclose(ill_t *ill) 5361 { 5362 boolean_t success; 5363 ipsq_t *ipsq; 5364 ipif_t *ipif; 5365 queue_t *q = ill->ill_rq; 5366 ip_stack_t *ipst = ill->ill_ipst; 5367 5368 /* 5369 * The punlink prior to this may have initiated a capability 5370 * negotiation. But ipsq_enter will block until that finishes or 5371 * times out. 5372 */ 5373 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5374 5375 /* 5376 * Open/close/push/pop is guaranteed to be single threaded 5377 * per stream by STREAMS. FS guarantees that all references 5378 * from top are gone before close is called. So there can't 5379 * be another close thread that has set CONDEMNED on this ill. 5380 * and cause ipsq_enter to return failure. 5381 */ 5382 ASSERT(success); 5383 ipsq = ill->ill_phyint->phyint_ipsq; 5384 5385 /* 5386 * Mark it condemned. No new reference will be made to this ill. 5387 * Lookup functions will return an error. Threads that try to 5388 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5389 * that the refcnt will drop down to zero. 5390 */ 5391 mutex_enter(&ill->ill_lock); 5392 ill->ill_state_flags |= ILL_CONDEMNED; 5393 for (ipif = ill->ill_ipif; ipif != NULL; 5394 ipif = ipif->ipif_next) { 5395 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5396 } 5397 /* 5398 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5399 * returns error if ILL_CONDEMNED is set 5400 */ 5401 cv_broadcast(&ill->ill_cv); 5402 mutex_exit(&ill->ill_lock); 5403 5404 /* 5405 * Send all the deferred DLPI messages downstream which came in 5406 * during the small window right before ipsq_enter(). We do this 5407 * without waiting for the ACKs because all the ACKs for M_PROTO 5408 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5409 */ 5410 ill_dlpi_send_deferred(ill); 5411 5412 /* 5413 * Shut down fragmentation reassembly. 5414 * ill_frag_timer won't start a timer again. 5415 * Now cancel any existing timer 5416 */ 5417 (void) untimeout(ill->ill_frag_timer_id); 5418 (void) ill_frag_timeout(ill, 0); 5419 5420 /* 5421 * If MOVE was in progress, clear the 5422 * move_in_progress fields also. 5423 */ 5424 if (ill->ill_move_in_progress) { 5425 ILL_CLEAR_MOVE(ill); 5426 } 5427 5428 /* 5429 * Call ill_delete to bring down the ipifs, ilms and ill on 5430 * this ill. Then wait for the refcnts to drop to zero. 5431 * ill_is_freeable checks whether the ill is really quiescent. 5432 * Then make sure that threads that are waiting to enter the 5433 * ipsq have seen the error returned by ipsq_enter and have 5434 * gone away. Then we call ill_delete_tail which does the 5435 * DL_UNBIND_REQ with the driver and then qprocsoff. 5436 */ 5437 ill_delete(ill); 5438 mutex_enter(&ill->ill_lock); 5439 while (!ill_is_freeable(ill)) 5440 cv_wait(&ill->ill_cv, &ill->ill_lock); 5441 while (ill->ill_waiters) 5442 cv_wait(&ill->ill_cv, &ill->ill_lock); 5443 5444 mutex_exit(&ill->ill_lock); 5445 5446 /* 5447 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5448 * it held until the end of the function since the cleanup 5449 * below needs to be able to use the ip_stack_t. 5450 */ 5451 netstack_hold(ipst->ips_netstack); 5452 5453 /* qprocsoff is called in ill_delete_tail */ 5454 ill_delete_tail(ill); 5455 ASSERT(ill->ill_ipst == NULL); 5456 5457 /* 5458 * Walk through all upper (conn) streams and qenable 5459 * those that have queued data. 5460 * close synchronization needs this to 5461 * be done to ensure that all upper layers blocked 5462 * due to flow control to the closing device 5463 * get unblocked. 5464 */ 5465 ip1dbg(("ip_wsrv: walking\n")); 5466 conn_walk_drain(ipst); 5467 5468 mutex_enter(&ipst->ips_ip_mi_lock); 5469 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5470 mutex_exit(&ipst->ips_ip_mi_lock); 5471 5472 /* 5473 * credp could be null if the open didn't succeed and ip_modopen 5474 * itself calls ip_close. 5475 */ 5476 if (ill->ill_credp != NULL) 5477 crfree(ill->ill_credp); 5478 5479 /* 5480 * Now we are done with the module close pieces that 5481 * need the netstack_t. 5482 */ 5483 netstack_rele(ipst->ips_netstack); 5484 5485 mi_close_free((IDP)ill); 5486 q->q_ptr = WR(q)->q_ptr = NULL; 5487 5488 ipsq_exit(ipsq); 5489 5490 return (0); 5491 } 5492 5493 /* 5494 * This is called as part of close() for IP, UDP, ICMP, and RTS 5495 * in order to quiesce the conn. 5496 */ 5497 void 5498 ip_quiesce_conn(conn_t *connp) 5499 { 5500 boolean_t drain_cleanup_reqd = B_FALSE; 5501 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5502 boolean_t ilg_cleanup_reqd = B_FALSE; 5503 ip_stack_t *ipst; 5504 5505 ASSERT(!IPCL_IS_TCP(connp)); 5506 ipst = connp->conn_netstack->netstack_ip; 5507 5508 /* 5509 * Mark the conn as closing, and this conn must not be 5510 * inserted in future into any list. Eg. conn_drain_insert(), 5511 * won't insert this conn into the conn_drain_list. 5512 * Similarly ill_pending_mp_add() will not add any mp to 5513 * the pending mp list, after this conn has started closing. 5514 * 5515 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5516 * cannot get set henceforth. 5517 */ 5518 mutex_enter(&connp->conn_lock); 5519 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5520 connp->conn_state_flags |= CONN_CLOSING; 5521 if (connp->conn_idl != NULL) 5522 drain_cleanup_reqd = B_TRUE; 5523 if (connp->conn_oper_pending_ill != NULL) 5524 conn_ioctl_cleanup_reqd = B_TRUE; 5525 if (connp->conn_dhcpinit_ill != NULL) { 5526 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5527 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5528 connp->conn_dhcpinit_ill = NULL; 5529 } 5530 if (connp->conn_ilg_inuse != 0) 5531 ilg_cleanup_reqd = B_TRUE; 5532 mutex_exit(&connp->conn_lock); 5533 5534 if (conn_ioctl_cleanup_reqd) 5535 conn_ioctl_cleanup(connp); 5536 5537 if (is_system_labeled() && connp->conn_anon_port) { 5538 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5539 connp->conn_mlp_type, connp->conn_ulp, 5540 ntohs(connp->conn_lport), B_FALSE); 5541 connp->conn_anon_port = 0; 5542 } 5543 connp->conn_mlp_type = mlptSingle; 5544 5545 /* 5546 * Remove this conn from any fanout list it is on. 5547 * and then wait for any threads currently operating 5548 * on this endpoint to finish 5549 */ 5550 ipcl_hash_remove(connp); 5551 5552 /* 5553 * Remove this conn from the drain list, and do 5554 * any other cleanup that may be required. 5555 * (Only non-tcp streams may have a non-null conn_idl. 5556 * TCP streams are never flow controlled, and 5557 * conn_idl will be null) 5558 */ 5559 if (drain_cleanup_reqd) 5560 conn_drain_tail(connp, B_TRUE); 5561 5562 if (connp == ipst->ips_ip_g_mrouter) 5563 (void) ip_mrouter_done(NULL, ipst); 5564 5565 if (ilg_cleanup_reqd) 5566 ilg_delete_all(connp); 5567 5568 conn_delete_ire(connp, NULL); 5569 5570 /* 5571 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5572 * callers from write side can't be there now because close 5573 * is in progress. The only other caller is ipcl_walk 5574 * which checks for the condemned flag. 5575 */ 5576 mutex_enter(&connp->conn_lock); 5577 connp->conn_state_flags |= CONN_CONDEMNED; 5578 while (connp->conn_ref != 1) 5579 cv_wait(&connp->conn_cv, &connp->conn_lock); 5580 connp->conn_state_flags |= CONN_QUIESCED; 5581 mutex_exit(&connp->conn_lock); 5582 } 5583 5584 /* ARGSUSED */ 5585 int 5586 ip_close(queue_t *q, int flags) 5587 { 5588 conn_t *connp; 5589 5590 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5591 5592 /* 5593 * Call the appropriate delete routine depending on whether this is 5594 * a module or device. 5595 */ 5596 if (WR(q)->q_next != NULL) { 5597 /* This is a module close */ 5598 return (ip_modclose((ill_t *)q->q_ptr)); 5599 } 5600 5601 connp = q->q_ptr; 5602 ip_quiesce_conn(connp); 5603 5604 qprocsoff(q); 5605 5606 /* 5607 * Now we are truly single threaded on this stream, and can 5608 * delete the things hanging off the connp, and finally the connp. 5609 * We removed this connp from the fanout list, it cannot be 5610 * accessed thru the fanouts, and we already waited for the 5611 * conn_ref to drop to 0. We are already in close, so 5612 * there cannot be any other thread from the top. qprocsoff 5613 * has completed, and service has completed or won't run in 5614 * future. 5615 */ 5616 ASSERT(connp->conn_ref == 1); 5617 5618 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5619 5620 connp->conn_ref--; 5621 ipcl_conn_destroy(connp); 5622 5623 q->q_ptr = WR(q)->q_ptr = NULL; 5624 return (0); 5625 } 5626 5627 /* 5628 * Wapper around putnext() so that ip_rts_request can merely use 5629 * conn_recv. 5630 */ 5631 /*ARGSUSED2*/ 5632 static void 5633 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5634 { 5635 conn_t *connp = (conn_t *)arg1; 5636 5637 putnext(connp->conn_rq, mp); 5638 } 5639 5640 /* 5641 * Called when the module is about to be unloaded 5642 */ 5643 void 5644 ip_ddi_destroy(void) 5645 { 5646 tnet_fini(); 5647 5648 icmp_ddi_destroy(); 5649 rts_ddi_destroy(); 5650 udp_ddi_destroy(); 5651 sctp_ddi_g_destroy(); 5652 tcp_ddi_g_destroy(); 5653 ipsec_policy_g_destroy(); 5654 ipcl_g_destroy(); 5655 ip_net_g_destroy(); 5656 ip_ire_g_fini(); 5657 inet_minor_destroy(ip_minor_arena_sa); 5658 #if defined(_LP64) 5659 inet_minor_destroy(ip_minor_arena_la); 5660 #endif 5661 5662 #ifdef DEBUG 5663 list_destroy(&ip_thread_list); 5664 rw_destroy(&ip_thread_rwlock); 5665 tsd_destroy(&ip_thread_data); 5666 #endif 5667 5668 netstack_unregister(NS_IP); 5669 } 5670 5671 /* 5672 * First step in cleanup. 5673 */ 5674 /* ARGSUSED */ 5675 static void 5676 ip_stack_shutdown(netstackid_t stackid, void *arg) 5677 { 5678 ip_stack_t *ipst = (ip_stack_t *)arg; 5679 5680 #ifdef NS_DEBUG 5681 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5682 #endif 5683 5684 /* Get rid of loopback interfaces and their IREs */ 5685 ip_loopback_cleanup(ipst); 5686 5687 /* 5688 * The *_hook_shutdown()s start the process of notifying any 5689 * consumers that things are going away.... nothing is destroyed. 5690 */ 5691 ipv4_hook_shutdown(ipst); 5692 ipv6_hook_shutdown(ipst); 5693 5694 mutex_enter(&ipst->ips_capab_taskq_lock); 5695 ipst->ips_capab_taskq_quit = B_TRUE; 5696 cv_signal(&ipst->ips_capab_taskq_cv); 5697 mutex_exit(&ipst->ips_capab_taskq_lock); 5698 } 5699 5700 /* 5701 * Free the IP stack instance. 5702 */ 5703 static void 5704 ip_stack_fini(netstackid_t stackid, void *arg) 5705 { 5706 ip_stack_t *ipst = (ip_stack_t *)arg; 5707 int ret; 5708 5709 /* 5710 * At this point, all of the notifications that the events and 5711 * protocols are going away have been run, meaning that we can 5712 * now set about starting to clean things up. 5713 */ 5714 ipv4_hook_destroy(ipst); 5715 ipv6_hook_destroy(ipst); 5716 ip_net_destroy(ipst); 5717 5718 mutex_destroy(&ipst->ips_capab_taskq_lock); 5719 cv_destroy(&ipst->ips_capab_taskq_cv); 5720 list_destroy(&ipst->ips_capab_taskq_list); 5721 5722 #ifdef NS_DEBUG 5723 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5724 #endif 5725 rw_destroy(&ipst->ips_srcid_lock); 5726 5727 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5728 ipst->ips_ip_mibkp = NULL; 5729 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5730 ipst->ips_icmp_mibkp = NULL; 5731 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5732 ipst->ips_ip_kstat = NULL; 5733 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5734 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5735 ipst->ips_ip6_kstat = NULL; 5736 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5737 5738 nd_free(&ipst->ips_ip_g_nd); 5739 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5740 ipst->ips_param_arr = NULL; 5741 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5742 ipst->ips_ndp_arr = NULL; 5743 5744 ip_mrouter_stack_destroy(ipst); 5745 5746 mutex_destroy(&ipst->ips_ip_mi_lock); 5747 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5748 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5749 rw_destroy(&ipst->ips_ip_g_nd_lock); 5750 5751 ret = untimeout(ipst->ips_igmp_timeout_id); 5752 if (ret == -1) { 5753 ASSERT(ipst->ips_igmp_timeout_id == 0); 5754 } else { 5755 ASSERT(ipst->ips_igmp_timeout_id != 0); 5756 ipst->ips_igmp_timeout_id = 0; 5757 } 5758 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5759 if (ret == -1) { 5760 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5761 } else { 5762 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5763 ipst->ips_igmp_slowtimeout_id = 0; 5764 } 5765 ret = untimeout(ipst->ips_mld_timeout_id); 5766 if (ret == -1) { 5767 ASSERT(ipst->ips_mld_timeout_id == 0); 5768 } else { 5769 ASSERT(ipst->ips_mld_timeout_id != 0); 5770 ipst->ips_mld_timeout_id = 0; 5771 } 5772 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5773 if (ret == -1) { 5774 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5775 } else { 5776 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5777 ipst->ips_mld_slowtimeout_id = 0; 5778 } 5779 ret = untimeout(ipst->ips_ip_ire_expire_id); 5780 if (ret == -1) { 5781 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5782 } else { 5783 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5784 ipst->ips_ip_ire_expire_id = 0; 5785 } 5786 5787 mutex_destroy(&ipst->ips_igmp_timer_lock); 5788 mutex_destroy(&ipst->ips_mld_timer_lock); 5789 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5790 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5791 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5792 rw_destroy(&ipst->ips_ill_g_lock); 5793 5794 ipobs_fini(ipst); 5795 ip_ire_fini(ipst); 5796 ip6_asp_free(ipst); 5797 conn_drain_fini(ipst); 5798 ipcl_destroy(ipst); 5799 5800 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5801 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5802 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5803 ipst->ips_ndp4 = NULL; 5804 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5805 ipst->ips_ndp6 = NULL; 5806 5807 if (ipst->ips_loopback_ksp != NULL) { 5808 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5809 ipst->ips_loopback_ksp = NULL; 5810 } 5811 5812 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5813 ipst->ips_phyint_g_list = NULL; 5814 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5815 ipst->ips_ill_g_heads = NULL; 5816 5817 kmem_free(ipst, sizeof (*ipst)); 5818 } 5819 5820 /* 5821 * This function is called from the TSD destructor, and is used to debug 5822 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5823 * details. 5824 */ 5825 static void 5826 ip_thread_exit(void *phash) 5827 { 5828 th_hash_t *thh = phash; 5829 5830 rw_enter(&ip_thread_rwlock, RW_WRITER); 5831 list_remove(&ip_thread_list, thh); 5832 rw_exit(&ip_thread_rwlock); 5833 mod_hash_destroy_hash(thh->thh_hash); 5834 kmem_free(thh, sizeof (*thh)); 5835 } 5836 5837 /* 5838 * Called when the IP kernel module is loaded into the kernel 5839 */ 5840 void 5841 ip_ddi_init(void) 5842 { 5843 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5844 5845 /* 5846 * For IP and TCP the minor numbers should start from 2 since we have 4 5847 * initial devices: ip, ip6, tcp, tcp6. 5848 */ 5849 /* 5850 * If this is a 64-bit kernel, then create two separate arenas - 5851 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5852 * other for socket apps in the range 2^^18 through 2^^32-1. 5853 */ 5854 ip_minor_arena_la = NULL; 5855 ip_minor_arena_sa = NULL; 5856 #if defined(_LP64) 5857 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5858 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5859 cmn_err(CE_PANIC, 5860 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5861 } 5862 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5863 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5864 cmn_err(CE_PANIC, 5865 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5866 } 5867 #else 5868 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5869 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5870 cmn_err(CE_PANIC, 5871 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5872 } 5873 #endif 5874 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5875 5876 ipcl_g_init(); 5877 ip_ire_g_init(); 5878 ip_net_g_init(); 5879 5880 #ifdef DEBUG 5881 tsd_create(&ip_thread_data, ip_thread_exit); 5882 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5883 list_create(&ip_thread_list, sizeof (th_hash_t), 5884 offsetof(th_hash_t, thh_link)); 5885 #endif 5886 5887 /* 5888 * We want to be informed each time a stack is created or 5889 * destroyed in the kernel, so we can maintain the 5890 * set of udp_stack_t's. 5891 */ 5892 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5893 ip_stack_fini); 5894 5895 ipsec_policy_g_init(); 5896 tcp_ddi_g_init(); 5897 sctp_ddi_g_init(); 5898 5899 tnet_init(); 5900 5901 udp_ddi_init(); 5902 rts_ddi_init(); 5903 icmp_ddi_init(); 5904 } 5905 5906 /* 5907 * Initialize the IP stack instance. 5908 */ 5909 static void * 5910 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5911 { 5912 ip_stack_t *ipst; 5913 ipparam_t *pa; 5914 ipndp_t *na; 5915 5916 #ifdef NS_DEBUG 5917 printf("ip_stack_init(stack %d)\n", stackid); 5918 #endif 5919 5920 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5921 ipst->ips_netstack = ns; 5922 5923 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5924 KM_SLEEP); 5925 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5926 KM_SLEEP); 5927 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5928 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5929 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5930 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5931 5932 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5933 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5934 ipst->ips_igmp_deferred_next = INFINITY; 5935 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5936 ipst->ips_mld_deferred_next = INFINITY; 5937 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5938 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5939 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5940 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5941 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5942 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5943 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5944 5945 ipcl_init(ipst); 5946 ip_ire_init(ipst); 5947 ip6_asp_init(ipst); 5948 ipif_init(ipst); 5949 conn_drain_init(ipst); 5950 ip_mrouter_stack_init(ipst); 5951 5952 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5953 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5954 5955 ipst->ips_ip_multirt_log_interval = 1000; 5956 5957 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5958 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5959 ipst->ips_ill_index = 1; 5960 5961 ipst->ips_saved_ip_g_forward = -1; 5962 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5963 5964 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5965 ipst->ips_param_arr = pa; 5966 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5967 5968 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5969 ipst->ips_ndp_arr = na; 5970 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5971 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5972 (caddr_t)&ipst->ips_ip_g_forward; 5973 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5974 (caddr_t)&ipst->ips_ipv6_forward; 5975 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5976 "ip_cgtp_filter") == 0); 5977 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5978 (caddr_t)&ipst->ips_ip_cgtp_filter; 5979 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5980 "ipmp_hook_emulation") == 0); 5981 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5982 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5983 5984 (void) ip_param_register(&ipst->ips_ip_g_nd, 5985 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5986 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5987 5988 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5989 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5990 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5991 ipst->ips_ip6_kstat = 5992 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 5993 5994 ipst->ips_ipmp_enable_failback = B_TRUE; 5995 5996 ipst->ips_ip_src_id = 1; 5997 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 5998 5999 ipobs_init(ipst); 6000 ip_net_init(ipst, ns); 6001 ipv4_hook_init(ipst); 6002 ipv6_hook_init(ipst); 6003 6004 /* 6005 * Create the taskq dispatcher thread and initialize related stuff. 6006 */ 6007 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6008 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6009 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6010 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6011 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 6012 offsetof(mblk_t, b_next)); 6013 6014 return (ipst); 6015 } 6016 6017 /* 6018 * Allocate and initialize a DLPI template of the specified length. (May be 6019 * called as writer.) 6020 */ 6021 mblk_t * 6022 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6023 { 6024 mblk_t *mp; 6025 6026 mp = allocb(len, BPRI_MED); 6027 if (!mp) 6028 return (NULL); 6029 6030 /* 6031 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6032 * of which we don't seem to use) are sent with M_PCPROTO, and 6033 * that other DLPI are M_PROTO. 6034 */ 6035 if (prim == DL_INFO_REQ) { 6036 mp->b_datap->db_type = M_PCPROTO; 6037 } else { 6038 mp->b_datap->db_type = M_PROTO; 6039 } 6040 6041 mp->b_wptr = mp->b_rptr + len; 6042 bzero(mp->b_rptr, len); 6043 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6044 return (mp); 6045 } 6046 6047 /* 6048 * Debug formatting routine. Returns a character string representation of the 6049 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6050 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6051 * 6052 * Once the ndd table-printing interfaces are removed, this can be changed to 6053 * standard dotted-decimal form. 6054 */ 6055 char * 6056 ip_dot_addr(ipaddr_t addr, char *buf) 6057 { 6058 uint8_t *ap = (uint8_t *)&addr; 6059 6060 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6061 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6062 return (buf); 6063 } 6064 6065 /* 6066 * Write the given MAC address as a printable string in the usual colon- 6067 * separated format. 6068 */ 6069 const char * 6070 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6071 { 6072 char *bp; 6073 6074 if (alen == 0 || buflen < 4) 6075 return ("?"); 6076 bp = buf; 6077 for (;;) { 6078 /* 6079 * If there are more MAC address bytes available, but we won't 6080 * have any room to print them, then add "..." to the string 6081 * instead. See below for the 'magic number' explanation. 6082 */ 6083 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6084 (void) strcpy(bp, "..."); 6085 break; 6086 } 6087 (void) sprintf(bp, "%02x", *addr++); 6088 bp += 2; 6089 if (--alen == 0) 6090 break; 6091 *bp++ = ':'; 6092 buflen -= 3; 6093 /* 6094 * At this point, based on the first 'if' statement above, 6095 * either alen == 1 and buflen >= 3, or alen > 1 and 6096 * buflen >= 4. The first case leaves room for the final "xx" 6097 * number and trailing NUL byte. The second leaves room for at 6098 * least "...". Thus the apparently 'magic' numbers chosen for 6099 * that statement. 6100 */ 6101 } 6102 return (buf); 6103 } 6104 6105 /* 6106 * Send an ICMP error after patching up the packet appropriately. Returns 6107 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6108 */ 6109 static boolean_t 6110 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6111 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6112 zoneid_t zoneid, ip_stack_t *ipst) 6113 { 6114 ipha_t *ipha; 6115 mblk_t *first_mp; 6116 boolean_t secure; 6117 unsigned char db_type; 6118 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6119 6120 first_mp = mp; 6121 if (mctl_present) { 6122 mp = mp->b_cont; 6123 secure = ipsec_in_is_secure(first_mp); 6124 ASSERT(mp != NULL); 6125 } else { 6126 /* 6127 * If this is an ICMP error being reported - which goes 6128 * up as M_CTLs, we need to convert them to M_DATA till 6129 * we finish checking with global policy because 6130 * ipsec_check_global_policy() assumes M_DATA as clear 6131 * and M_CTL as secure. 6132 */ 6133 db_type = DB_TYPE(mp); 6134 DB_TYPE(mp) = M_DATA; 6135 secure = B_FALSE; 6136 } 6137 /* 6138 * We are generating an icmp error for some inbound packet. 6139 * Called from all ip_fanout_(udp, tcp, proto) functions. 6140 * Before we generate an error, check with global policy 6141 * to see whether this is allowed to enter the system. As 6142 * there is no "conn", we are checking with global policy. 6143 */ 6144 ipha = (ipha_t *)mp->b_rptr; 6145 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6146 first_mp = ipsec_check_global_policy(first_mp, NULL, 6147 ipha, NULL, mctl_present, ipst->ips_netstack); 6148 if (first_mp == NULL) 6149 return (B_FALSE); 6150 } 6151 6152 if (!mctl_present) 6153 DB_TYPE(mp) = db_type; 6154 6155 if (flags & IP_FF_SEND_ICMP) { 6156 if (flags & IP_FF_HDR_COMPLETE) { 6157 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6158 freemsg(first_mp); 6159 return (B_TRUE); 6160 } 6161 } 6162 if (flags & IP_FF_CKSUM) { 6163 /* 6164 * Have to correct checksum since 6165 * the packet might have been 6166 * fragmented and the reassembly code in ip_rput 6167 * does not restore the IP checksum. 6168 */ 6169 ipha->ipha_hdr_checksum = 0; 6170 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6171 } 6172 switch (icmp_type) { 6173 case ICMP_DEST_UNREACHABLE: 6174 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6175 ipst); 6176 break; 6177 default: 6178 freemsg(first_mp); 6179 break; 6180 } 6181 } else { 6182 freemsg(first_mp); 6183 return (B_FALSE); 6184 } 6185 6186 return (B_TRUE); 6187 } 6188 6189 /* 6190 * Used to send an ICMP error message when a packet is received for 6191 * a protocol that is not supported. The mblk passed as argument 6192 * is consumed by this function. 6193 */ 6194 void 6195 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6196 ip_stack_t *ipst) 6197 { 6198 mblk_t *mp; 6199 ipha_t *ipha; 6200 ill_t *ill; 6201 ipsec_in_t *ii; 6202 6203 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6204 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6205 6206 mp = ipsec_mp->b_cont; 6207 ipsec_mp->b_cont = NULL; 6208 ipha = (ipha_t *)mp->b_rptr; 6209 /* Get ill from index in ipsec_in_t. */ 6210 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6211 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6212 ipst); 6213 if (ill != NULL) { 6214 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6215 if (ip_fanout_send_icmp(q, mp, flags, 6216 ICMP_DEST_UNREACHABLE, 6217 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6218 BUMP_MIB(ill->ill_ip_mib, 6219 ipIfStatsInUnknownProtos); 6220 } 6221 } else { 6222 if (ip_fanout_send_icmp_v6(q, mp, flags, 6223 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6224 0, B_FALSE, zoneid, ipst)) { 6225 BUMP_MIB(ill->ill_ip_mib, 6226 ipIfStatsInUnknownProtos); 6227 } 6228 } 6229 ill_refrele(ill); 6230 } else { /* re-link for the freemsg() below. */ 6231 ipsec_mp->b_cont = mp; 6232 } 6233 6234 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6235 freemsg(ipsec_mp); 6236 } 6237 6238 /* 6239 * See if the inbound datagram has had IPsec processing applied to it. 6240 */ 6241 boolean_t 6242 ipsec_in_is_secure(mblk_t *ipsec_mp) 6243 { 6244 ipsec_in_t *ii; 6245 6246 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6247 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6248 6249 if (ii->ipsec_in_loopback) { 6250 return (ii->ipsec_in_secure); 6251 } else { 6252 return (ii->ipsec_in_ah_sa != NULL || 6253 ii->ipsec_in_esp_sa != NULL || 6254 ii->ipsec_in_decaps); 6255 } 6256 } 6257 6258 /* 6259 * Handle protocols with which IP is less intimate. There 6260 * can be more than one stream bound to a particular 6261 * protocol. When this is the case, normally each one gets a copy 6262 * of any incoming packets. 6263 * 6264 * IPsec NOTE : 6265 * 6266 * Don't allow a secure packet going up a non-secure connection. 6267 * We don't allow this because 6268 * 6269 * 1) Reply might go out in clear which will be dropped at 6270 * the sending side. 6271 * 2) If the reply goes out in clear it will give the 6272 * adversary enough information for getting the key in 6273 * most of the cases. 6274 * 6275 * Moreover getting a secure packet when we expect clear 6276 * implies that SA's were added without checking for 6277 * policy on both ends. This should not happen once ISAKMP 6278 * is used to negotiate SAs as SAs will be added only after 6279 * verifying the policy. 6280 * 6281 * NOTE : If the packet was tunneled and not multicast we only send 6282 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6283 * back to delivering packets to AF_INET6 raw sockets. 6284 * 6285 * IPQoS Notes: 6286 * Once we have determined the client, invoke IPPF processing. 6287 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6288 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6289 * ip_policy will be false. 6290 * 6291 * Zones notes: 6292 * Currently only applications in the global zone can create raw sockets for 6293 * protocols other than ICMP. So unlike the broadcast / multicast case of 6294 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6295 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6296 */ 6297 static void 6298 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6299 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6300 zoneid_t zoneid) 6301 { 6302 queue_t *rq; 6303 mblk_t *mp1, *first_mp1; 6304 uint_t protocol = ipha->ipha_protocol; 6305 ipaddr_t dst; 6306 boolean_t one_only; 6307 mblk_t *first_mp = mp; 6308 boolean_t secure; 6309 uint32_t ill_index; 6310 conn_t *connp, *first_connp, *next_connp; 6311 connf_t *connfp; 6312 boolean_t shared_addr; 6313 mib2_ipIfStatsEntry_t *mibptr; 6314 ip_stack_t *ipst = recv_ill->ill_ipst; 6315 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6316 6317 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6318 if (mctl_present) { 6319 mp = first_mp->b_cont; 6320 secure = ipsec_in_is_secure(first_mp); 6321 ASSERT(mp != NULL); 6322 } else { 6323 secure = B_FALSE; 6324 } 6325 dst = ipha->ipha_dst; 6326 /* 6327 * If the packet was tunneled and not multicast we only send to it 6328 * the first match. 6329 */ 6330 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6331 !CLASSD(dst)); 6332 6333 shared_addr = (zoneid == ALL_ZONES); 6334 if (shared_addr) { 6335 /* 6336 * We don't allow multilevel ports for raw IP, so no need to 6337 * check for that here. 6338 */ 6339 zoneid = tsol_packet_to_zoneid(mp); 6340 } 6341 6342 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6343 mutex_enter(&connfp->connf_lock); 6344 connp = connfp->connf_head; 6345 for (connp = connfp->connf_head; connp != NULL; 6346 connp = connp->conn_next) { 6347 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6348 zoneid) && 6349 (!is_system_labeled() || 6350 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6351 connp))) { 6352 break; 6353 } 6354 } 6355 6356 if (connp == NULL || connp->conn_upq == NULL) { 6357 /* 6358 * No one bound to these addresses. Is 6359 * there a client that wants all 6360 * unclaimed datagrams? 6361 */ 6362 mutex_exit(&connfp->connf_lock); 6363 /* 6364 * Check for IPPROTO_ENCAP... 6365 */ 6366 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6367 /* 6368 * If an IPsec mblk is here on a multicast 6369 * tunnel (using ip_mroute stuff), check policy here, 6370 * THEN ship off to ip_mroute_decap(). 6371 * 6372 * BTW, If I match a configured IP-in-IP 6373 * tunnel, this path will not be reached, and 6374 * ip_mroute_decap will never be called. 6375 */ 6376 first_mp = ipsec_check_global_policy(first_mp, connp, 6377 ipha, NULL, mctl_present, ipst->ips_netstack); 6378 if (first_mp != NULL) { 6379 if (mctl_present) 6380 freeb(first_mp); 6381 ip_mroute_decap(q, mp, ill); 6382 } /* Else we already freed everything! */ 6383 } else { 6384 /* 6385 * Otherwise send an ICMP protocol unreachable. 6386 */ 6387 if (ip_fanout_send_icmp(q, first_mp, flags, 6388 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6389 mctl_present, zoneid, ipst)) { 6390 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6391 } 6392 } 6393 return; 6394 } 6395 CONN_INC_REF(connp); 6396 first_connp = connp; 6397 6398 /* 6399 * Only send message to one tunnel driver by immediately 6400 * terminating the loop. 6401 */ 6402 connp = one_only ? NULL : connp->conn_next; 6403 6404 for (;;) { 6405 while (connp != NULL) { 6406 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6407 flags, zoneid) && 6408 (!is_system_labeled() || 6409 tsol_receive_local(mp, &dst, IPV4_VERSION, 6410 shared_addr, connp))) 6411 break; 6412 connp = connp->conn_next; 6413 } 6414 6415 /* 6416 * Copy the packet. 6417 */ 6418 if (connp == NULL || connp->conn_upq == NULL || 6419 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6420 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6421 /* 6422 * No more interested clients or memory 6423 * allocation failed 6424 */ 6425 connp = first_connp; 6426 break; 6427 } 6428 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6429 CONN_INC_REF(connp); 6430 mutex_exit(&connfp->connf_lock); 6431 rq = connp->conn_rq; 6432 if (!canputnext(rq)) { 6433 if (flags & IP_FF_RAWIP) { 6434 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6435 } else { 6436 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6437 } 6438 6439 freemsg(first_mp1); 6440 } else { 6441 /* 6442 * Don't enforce here if we're an actual tunnel - 6443 * let "tun" do it instead. 6444 */ 6445 if (!IPCL_IS_IPTUN(connp) && 6446 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6447 secure)) { 6448 first_mp1 = ipsec_check_inbound_policy 6449 (first_mp1, connp, ipha, NULL, 6450 mctl_present); 6451 } 6452 if (first_mp1 != NULL) { 6453 int in_flags = 0; 6454 /* 6455 * ip_fanout_proto also gets called from 6456 * icmp_inbound_error_fanout, in which case 6457 * the msg type is M_CTL. Don't add info 6458 * in this case for the time being. In future 6459 * when there is a need for knowing the 6460 * inbound iface index for ICMP error msgs, 6461 * then this can be changed. 6462 */ 6463 if (connp->conn_recvif) 6464 in_flags = IPF_RECVIF; 6465 /* 6466 * The ULP may support IP_RECVPKTINFO for both 6467 * IP v4 and v6 so pass the appropriate argument 6468 * based on conn IP version. 6469 */ 6470 if (connp->conn_ip_recvpktinfo) { 6471 if (connp->conn_af_isv6) { 6472 /* 6473 * V6 only needs index 6474 */ 6475 in_flags |= IPF_RECVIF; 6476 } else { 6477 /* 6478 * V4 needs index + 6479 * matching address. 6480 */ 6481 in_flags |= IPF_RECVADDR; 6482 } 6483 } 6484 if ((in_flags != 0) && 6485 (mp->b_datap->db_type != M_CTL)) { 6486 /* 6487 * the actual data will be 6488 * contained in b_cont upon 6489 * successful return of the 6490 * following call else 6491 * original mblk is returned 6492 */ 6493 ASSERT(recv_ill != NULL); 6494 mp1 = ip_add_info(mp1, recv_ill, 6495 in_flags, IPCL_ZONEID(connp), ipst); 6496 } 6497 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6498 if (mctl_present) 6499 freeb(first_mp1); 6500 (connp->conn_recv)(connp, mp1, NULL); 6501 } 6502 } 6503 mutex_enter(&connfp->connf_lock); 6504 /* Follow the next pointer before releasing the conn. */ 6505 next_connp = connp->conn_next; 6506 CONN_DEC_REF(connp); 6507 connp = next_connp; 6508 } 6509 6510 /* Last one. Send it upstream. */ 6511 mutex_exit(&connfp->connf_lock); 6512 6513 /* 6514 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6515 * will be set to false. 6516 */ 6517 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6518 ill_index = ill->ill_phyint->phyint_ifindex; 6519 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6520 if (mp == NULL) { 6521 CONN_DEC_REF(connp); 6522 if (mctl_present) { 6523 freeb(first_mp); 6524 } 6525 return; 6526 } 6527 } 6528 6529 rq = connp->conn_rq; 6530 if (!canputnext(rq)) { 6531 if (flags & IP_FF_RAWIP) { 6532 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6533 } else { 6534 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6535 } 6536 6537 freemsg(first_mp); 6538 } else { 6539 if (IPCL_IS_IPTUN(connp)) { 6540 /* 6541 * Tunneled packet. We enforce policy in the tunnel 6542 * module itself. 6543 * 6544 * Send the WHOLE packet up (incl. IPSEC_IN) without 6545 * a policy check. 6546 * FIXME to use conn_recv for tun later. 6547 */ 6548 putnext(rq, first_mp); 6549 CONN_DEC_REF(connp); 6550 return; 6551 } 6552 6553 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6554 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6555 ipha, NULL, mctl_present); 6556 } 6557 6558 if (first_mp != NULL) { 6559 int in_flags = 0; 6560 6561 /* 6562 * ip_fanout_proto also gets called 6563 * from icmp_inbound_error_fanout, in 6564 * which case the msg type is M_CTL. 6565 * Don't add info in this case for time 6566 * being. In future when there is a 6567 * need for knowing the inbound iface 6568 * index for ICMP error msgs, then this 6569 * can be changed 6570 */ 6571 if (connp->conn_recvif) 6572 in_flags = IPF_RECVIF; 6573 if (connp->conn_ip_recvpktinfo) { 6574 if (connp->conn_af_isv6) { 6575 /* 6576 * V6 only needs index 6577 */ 6578 in_flags |= IPF_RECVIF; 6579 } else { 6580 /* 6581 * V4 needs index + 6582 * matching address. 6583 */ 6584 in_flags |= IPF_RECVADDR; 6585 } 6586 } 6587 if ((in_flags != 0) && 6588 (mp->b_datap->db_type != M_CTL)) { 6589 6590 /* 6591 * the actual data will be contained in 6592 * b_cont upon successful return 6593 * of the following call else original 6594 * mblk is returned 6595 */ 6596 ASSERT(recv_ill != NULL); 6597 mp = ip_add_info(mp, recv_ill, 6598 in_flags, IPCL_ZONEID(connp), ipst); 6599 } 6600 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6601 (connp->conn_recv)(connp, mp, NULL); 6602 if (mctl_present) 6603 freeb(first_mp); 6604 } 6605 } 6606 CONN_DEC_REF(connp); 6607 } 6608 6609 /* 6610 * Fanout for TCP packets 6611 * The caller puts <fport, lport> in the ports parameter. 6612 * 6613 * IPQoS Notes 6614 * Before sending it to the client, invoke IPPF processing. 6615 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6616 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6617 * ip_policy is false. 6618 */ 6619 static void 6620 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6621 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6622 { 6623 mblk_t *first_mp; 6624 boolean_t secure; 6625 uint32_t ill_index; 6626 int ip_hdr_len; 6627 tcph_t *tcph; 6628 boolean_t syn_present = B_FALSE; 6629 conn_t *connp; 6630 ip_stack_t *ipst = recv_ill->ill_ipst; 6631 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6632 6633 ASSERT(recv_ill != NULL); 6634 6635 first_mp = mp; 6636 if (mctl_present) { 6637 ASSERT(first_mp->b_datap->db_type == M_CTL); 6638 mp = first_mp->b_cont; 6639 secure = ipsec_in_is_secure(first_mp); 6640 ASSERT(mp != NULL); 6641 } else { 6642 secure = B_FALSE; 6643 } 6644 6645 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6646 6647 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6648 zoneid, ipst)) == NULL) { 6649 /* 6650 * No connected connection or listener. Send a 6651 * TH_RST via tcp_xmit_listeners_reset. 6652 */ 6653 6654 /* Initiate IPPf processing, if needed. */ 6655 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6656 uint32_t ill_index; 6657 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6658 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6659 if (first_mp == NULL) 6660 return; 6661 } 6662 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6663 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6664 zoneid)); 6665 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6666 ipst->ips_netstack->netstack_tcp, NULL); 6667 return; 6668 } 6669 6670 /* 6671 * Allocate the SYN for the TCP connection here itself 6672 */ 6673 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6674 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6675 if (IPCL_IS_TCP(connp)) { 6676 squeue_t *sqp; 6677 6678 /* 6679 * For fused tcp loopback, assign the eager's 6680 * squeue to be that of the active connect's. 6681 * Note that we don't check for IP_FF_LOOPBACK 6682 * here since this routine gets called only 6683 * for loopback (unlike the IPv6 counterpart). 6684 */ 6685 ASSERT(Q_TO_CONN(q) != NULL); 6686 if (do_tcp_fusion && 6687 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6688 !secure && 6689 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6690 IPCL_IS_TCP(Q_TO_CONN(q))) { 6691 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6692 sqp = Q_TO_CONN(q)->conn_sqp; 6693 } else { 6694 sqp = IP_SQUEUE_GET(lbolt); 6695 } 6696 6697 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6698 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6699 syn_present = B_TRUE; 6700 } 6701 } 6702 6703 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6704 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6705 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6706 if ((flags & TH_RST) || (flags & TH_URG)) { 6707 CONN_DEC_REF(connp); 6708 freemsg(first_mp); 6709 return; 6710 } 6711 if (flags & TH_ACK) { 6712 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6713 ipst->ips_netstack->netstack_tcp, connp); 6714 CONN_DEC_REF(connp); 6715 return; 6716 } 6717 6718 CONN_DEC_REF(connp); 6719 freemsg(first_mp); 6720 return; 6721 } 6722 6723 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6724 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6725 NULL, mctl_present); 6726 if (first_mp == NULL) { 6727 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6728 CONN_DEC_REF(connp); 6729 return; 6730 } 6731 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6732 ASSERT(syn_present); 6733 if (mctl_present) { 6734 ASSERT(first_mp != mp); 6735 first_mp->b_datap->db_struioflag |= 6736 STRUIO_POLICY; 6737 } else { 6738 ASSERT(first_mp == mp); 6739 mp->b_datap->db_struioflag &= 6740 ~STRUIO_EAGER; 6741 mp->b_datap->db_struioflag |= 6742 STRUIO_POLICY; 6743 } 6744 } else { 6745 /* 6746 * Discard first_mp early since we're dealing with a 6747 * fully-connected conn_t and tcp doesn't do policy in 6748 * this case. 6749 */ 6750 if (mctl_present) { 6751 freeb(first_mp); 6752 mctl_present = B_FALSE; 6753 } 6754 first_mp = mp; 6755 } 6756 } 6757 6758 /* 6759 * Initiate policy processing here if needed. If we get here from 6760 * icmp_inbound_error_fanout, ip_policy is false. 6761 */ 6762 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6763 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6764 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6765 if (mp == NULL) { 6766 CONN_DEC_REF(connp); 6767 if (mctl_present) 6768 freeb(first_mp); 6769 return; 6770 } else if (mctl_present) { 6771 ASSERT(first_mp != mp); 6772 first_mp->b_cont = mp; 6773 } else { 6774 first_mp = mp; 6775 } 6776 } 6777 6778 6779 6780 /* Handle socket options. */ 6781 if (!syn_present && 6782 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6783 /* Add header */ 6784 ASSERT(recv_ill != NULL); 6785 /* 6786 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6787 * IPF_RECVIF. 6788 */ 6789 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6790 ipst); 6791 if (mp == NULL) { 6792 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6793 CONN_DEC_REF(connp); 6794 if (mctl_present) 6795 freeb(first_mp); 6796 return; 6797 } else if (mctl_present) { 6798 /* 6799 * ip_add_info might return a new mp. 6800 */ 6801 ASSERT(first_mp != mp); 6802 first_mp->b_cont = mp; 6803 } else { 6804 first_mp = mp; 6805 } 6806 } 6807 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6808 if (IPCL_IS_TCP(connp)) { 6809 /* do not drain, certain use cases can blow the stack */ 6810 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6811 connp, ip_squeue_flag, SQTAG_IP_FANOUT_TCP); 6812 } else { 6813 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6814 (connp->conn_recv)(connp, first_mp, NULL); 6815 CONN_DEC_REF(connp); 6816 } 6817 } 6818 6819 /* 6820 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6821 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6822 * is not consumed. 6823 * 6824 * One of four things can happen, all of which affect the passed-in mblk: 6825 * 6826 * 1.) ICMP messages that go through here just get returned TRUE. 6827 * 6828 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6829 * 6830 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6831 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6832 * 6833 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6834 */ 6835 static boolean_t 6836 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6837 ipsec_stack_t *ipss) 6838 { 6839 int shift, plen, iph_len; 6840 ipha_t *ipha; 6841 udpha_t *udpha; 6842 uint32_t *spi; 6843 uint32_t esp_ports; 6844 uint8_t *orptr; 6845 boolean_t free_ire; 6846 6847 if (DB_TYPE(mp) == M_CTL) { 6848 /* 6849 * ICMP message with UDP inside. Don't bother stripping, just 6850 * send it up. 6851 * 6852 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6853 * to ignore errors set by ICMP anyway ('cause they might be 6854 * forged), but that's the app's decision, not ours. 6855 */ 6856 6857 /* Bunch of reality checks for DEBUG kernels... */ 6858 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6859 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6860 6861 return (B_TRUE); 6862 } 6863 6864 ipha = (ipha_t *)mp->b_rptr; 6865 iph_len = IPH_HDR_LENGTH(ipha); 6866 plen = ntohs(ipha->ipha_length); 6867 6868 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6869 /* 6870 * Most likely a keepalive for the benefit of an intervening 6871 * NAT. These aren't for us, per se, so drop it. 6872 * 6873 * RFC 3947/8 doesn't say for sure what to do for 2-3 6874 * byte packets (keepalives are 1-byte), but we'll drop them 6875 * also. 6876 */ 6877 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6878 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6879 return (B_FALSE); 6880 } 6881 6882 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6883 /* might as well pull it all up - it might be ESP. */ 6884 if (!pullupmsg(mp, -1)) { 6885 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6886 DROPPER(ipss, ipds_esp_nomem), 6887 &ipss->ipsec_dropper); 6888 return (B_FALSE); 6889 } 6890 6891 ipha = (ipha_t *)mp->b_rptr; 6892 } 6893 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6894 if (*spi == 0) { 6895 /* UDP packet - remove 0-spi. */ 6896 shift = sizeof (uint32_t); 6897 } else { 6898 /* ESP-in-UDP packet - reduce to ESP. */ 6899 ipha->ipha_protocol = IPPROTO_ESP; 6900 shift = sizeof (udpha_t); 6901 } 6902 6903 /* Fix IP header */ 6904 ipha->ipha_length = htons(plen - shift); 6905 ipha->ipha_hdr_checksum = 0; 6906 6907 orptr = mp->b_rptr; 6908 mp->b_rptr += shift; 6909 6910 udpha = (udpha_t *)(orptr + iph_len); 6911 if (*spi == 0) { 6912 ASSERT((uint8_t *)ipha == orptr); 6913 udpha->uha_length = htons(plen - shift - iph_len); 6914 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6915 esp_ports = 0; 6916 } else { 6917 esp_ports = *((uint32_t *)udpha); 6918 ASSERT(esp_ports != 0); 6919 } 6920 ovbcopy(orptr, orptr + shift, iph_len); 6921 if (esp_ports != 0) /* Punt up for ESP processing. */ { 6922 ipha = (ipha_t *)(orptr + shift); 6923 6924 free_ire = (ire == NULL); 6925 if (free_ire) { 6926 /* Re-acquire ire. */ 6927 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6928 ipss->ipsec_netstack->netstack_ip); 6929 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6930 if (ire != NULL) 6931 ire_refrele(ire); 6932 /* 6933 * Do a regular freemsg(), as this is an IP 6934 * error (no local route) not an IPsec one. 6935 */ 6936 freemsg(mp); 6937 } 6938 } 6939 6940 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 6941 if (free_ire) 6942 ire_refrele(ire); 6943 } 6944 6945 return (esp_ports == 0); 6946 } 6947 6948 /* 6949 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6950 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6951 * Caller is responsible for dropping references to the conn, and freeing 6952 * first_mp. 6953 * 6954 * IPQoS Notes 6955 * Before sending it to the client, invoke IPPF processing. Policy processing 6956 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6957 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6958 * ip_wput_local, ip_policy is false. 6959 */ 6960 static void 6961 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6962 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6963 boolean_t ip_policy) 6964 { 6965 boolean_t mctl_present = (first_mp != NULL); 6966 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6967 uint32_t ill_index; 6968 ip_stack_t *ipst = recv_ill->ill_ipst; 6969 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6970 6971 ASSERT(ill != NULL); 6972 6973 if (mctl_present) 6974 first_mp->b_cont = mp; 6975 else 6976 first_mp = mp; 6977 6978 if (CONN_UDP_FLOWCTLD(connp)) { 6979 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6980 freemsg(first_mp); 6981 return; 6982 } 6983 6984 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6985 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6986 NULL, mctl_present); 6987 /* Freed by ipsec_check_inbound_policy(). */ 6988 if (first_mp == NULL) { 6989 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6990 return; 6991 } 6992 } 6993 if (mctl_present) 6994 freeb(first_mp); 6995 6996 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 6997 if (connp->conn_udp->udp_nat_t_endpoint) { 6998 if (mctl_present) { 6999 /* mctl_present *shouldn't* happen. */ 7000 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7001 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7002 &ipss->ipsec_dropper); 7003 return; 7004 } 7005 7006 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7007 return; 7008 } 7009 7010 /* Handle options. */ 7011 if (connp->conn_recvif) 7012 in_flags = IPF_RECVIF; 7013 /* 7014 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7015 * passed to ip_add_info is based on IP version of connp. 7016 */ 7017 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7018 if (connp->conn_af_isv6) { 7019 /* 7020 * V6 only needs index 7021 */ 7022 in_flags |= IPF_RECVIF; 7023 } else { 7024 /* 7025 * V4 needs index + matching address. 7026 */ 7027 in_flags |= IPF_RECVADDR; 7028 } 7029 } 7030 7031 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7032 in_flags |= IPF_RECVSLLA; 7033 7034 /* 7035 * Initiate IPPF processing here, if needed. Note first_mp won't be 7036 * freed if the packet is dropped. The caller will do so. 7037 */ 7038 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7039 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7040 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7041 if (mp == NULL) { 7042 return; 7043 } 7044 } 7045 if ((in_flags != 0) && 7046 (mp->b_datap->db_type != M_CTL)) { 7047 /* 7048 * The actual data will be contained in b_cont 7049 * upon successful return of the following call 7050 * else original mblk is returned 7051 */ 7052 ASSERT(recv_ill != NULL); 7053 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7054 ipst); 7055 } 7056 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7057 /* Send it upstream */ 7058 (connp->conn_recv)(connp, mp, NULL); 7059 } 7060 7061 /* 7062 * Fanout for UDP packets. 7063 * The caller puts <fport, lport> in the ports parameter. 7064 * 7065 * If SO_REUSEADDR is set all multicast and broadcast packets 7066 * will be delivered to all streams bound to the same port. 7067 * 7068 * Zones notes: 7069 * Multicast and broadcast packets will be distributed to streams in all zones. 7070 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7071 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7072 * packets. To maintain this behavior with multiple zones, the conns are grouped 7073 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7074 * each zone. If unset, all the following conns in the same zone are skipped. 7075 */ 7076 static void 7077 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7078 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7079 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7080 { 7081 uint32_t dstport, srcport; 7082 ipaddr_t dst; 7083 mblk_t *first_mp; 7084 boolean_t secure; 7085 in6_addr_t v6src; 7086 conn_t *connp; 7087 connf_t *connfp; 7088 conn_t *first_connp; 7089 conn_t *next_connp; 7090 mblk_t *mp1, *first_mp1; 7091 ipaddr_t src; 7092 zoneid_t last_zoneid; 7093 boolean_t reuseaddr; 7094 boolean_t shared_addr; 7095 boolean_t unlabeled; 7096 ip_stack_t *ipst; 7097 7098 ASSERT(recv_ill != NULL); 7099 ipst = recv_ill->ill_ipst; 7100 7101 first_mp = mp; 7102 if (mctl_present) { 7103 mp = first_mp->b_cont; 7104 first_mp->b_cont = NULL; 7105 secure = ipsec_in_is_secure(first_mp); 7106 ASSERT(mp != NULL); 7107 } else { 7108 first_mp = NULL; 7109 secure = B_FALSE; 7110 } 7111 7112 /* Extract ports in net byte order */ 7113 dstport = htons(ntohl(ports) & 0xFFFF); 7114 srcport = htons(ntohl(ports) >> 16); 7115 dst = ipha->ipha_dst; 7116 src = ipha->ipha_src; 7117 7118 unlabeled = B_FALSE; 7119 if (is_system_labeled()) 7120 /* Cred cannot be null on IPv4 */ 7121 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7122 TSLF_UNLABELED) != 0; 7123 shared_addr = (zoneid == ALL_ZONES); 7124 if (shared_addr) { 7125 /* 7126 * No need to handle exclusive-stack zones since ALL_ZONES 7127 * only applies to the shared stack. 7128 */ 7129 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7130 /* 7131 * If no shared MLP is found, tsol_mlp_findzone returns 7132 * ALL_ZONES. In that case, we assume it's SLP, and 7133 * search for the zone based on the packet label. 7134 * 7135 * If there is such a zone, we prefer to find a 7136 * connection in it. Otherwise, we look for a 7137 * MAC-exempt connection in any zone whose label 7138 * dominates the default label on the packet. 7139 */ 7140 if (zoneid == ALL_ZONES) 7141 zoneid = tsol_packet_to_zoneid(mp); 7142 else 7143 unlabeled = B_FALSE; 7144 } 7145 7146 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7147 mutex_enter(&connfp->connf_lock); 7148 connp = connfp->connf_head; 7149 if (!broadcast && !CLASSD(dst)) { 7150 /* 7151 * Not broadcast or multicast. Send to the one (first) 7152 * client we find. No need to check conn_wantpacket() 7153 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7154 * IPv4 unicast packets. 7155 */ 7156 while ((connp != NULL) && 7157 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7158 (!IPCL_ZONE_MATCH(connp, zoneid) && 7159 !(unlabeled && connp->conn_mac_exempt)))) { 7160 /* 7161 * We keep searching since the conn did not match, 7162 * or its zone did not match and it is not either 7163 * an allzones conn or a mac exempt conn (if the 7164 * sender is unlabeled.) 7165 */ 7166 connp = connp->conn_next; 7167 } 7168 7169 if (connp == NULL || connp->conn_upq == NULL) 7170 goto notfound; 7171 7172 if (is_system_labeled() && 7173 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7174 connp)) 7175 goto notfound; 7176 7177 CONN_INC_REF(connp); 7178 mutex_exit(&connfp->connf_lock); 7179 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7180 flags, recv_ill, ip_policy); 7181 IP_STAT(ipst, ip_udp_fannorm); 7182 CONN_DEC_REF(connp); 7183 return; 7184 } 7185 7186 /* 7187 * Broadcast and multicast case 7188 * 7189 * Need to check conn_wantpacket(). 7190 * If SO_REUSEADDR has been set on the first we send the 7191 * packet to all clients that have joined the group and 7192 * match the port. 7193 */ 7194 7195 while (connp != NULL) { 7196 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7197 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7198 (!is_system_labeled() || 7199 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7200 connp))) 7201 break; 7202 connp = connp->conn_next; 7203 } 7204 7205 if (connp == NULL || connp->conn_upq == NULL) 7206 goto notfound; 7207 7208 first_connp = connp; 7209 /* 7210 * When SO_REUSEADDR is not set, send the packet only to the first 7211 * matching connection in its zone by keeping track of the zoneid. 7212 */ 7213 reuseaddr = first_connp->conn_reuseaddr; 7214 last_zoneid = first_connp->conn_zoneid; 7215 7216 CONN_INC_REF(connp); 7217 connp = connp->conn_next; 7218 for (;;) { 7219 while (connp != NULL) { 7220 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7221 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7222 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7223 (!is_system_labeled() || 7224 tsol_receive_local(mp, &dst, IPV4_VERSION, 7225 shared_addr, connp))) 7226 break; 7227 connp = connp->conn_next; 7228 } 7229 /* 7230 * Just copy the data part alone. The mctl part is 7231 * needed just for verifying policy and it is never 7232 * sent up. 7233 */ 7234 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7235 ((mp1 = copymsg(mp)) == NULL))) { 7236 /* 7237 * No more interested clients or memory 7238 * allocation failed 7239 */ 7240 connp = first_connp; 7241 break; 7242 } 7243 if (connp->conn_zoneid != last_zoneid) { 7244 /* 7245 * Update the zoneid so that the packet isn't sent to 7246 * any more conns in the same zone unless SO_REUSEADDR 7247 * is set. 7248 */ 7249 reuseaddr = connp->conn_reuseaddr; 7250 last_zoneid = connp->conn_zoneid; 7251 } 7252 if (first_mp != NULL) { 7253 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7254 ipsec_info_type == IPSEC_IN); 7255 first_mp1 = ipsec_in_tag(first_mp, NULL, 7256 ipst->ips_netstack); 7257 if (first_mp1 == NULL) { 7258 freemsg(mp1); 7259 connp = first_connp; 7260 break; 7261 } 7262 } else { 7263 first_mp1 = NULL; 7264 } 7265 CONN_INC_REF(connp); 7266 mutex_exit(&connfp->connf_lock); 7267 /* 7268 * IPQoS notes: We don't send the packet for policy 7269 * processing here, will do it for the last one (below). 7270 * i.e. we do it per-packet now, but if we do policy 7271 * processing per-conn, then we would need to do it 7272 * here too. 7273 */ 7274 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7275 ipha, flags, recv_ill, B_FALSE); 7276 mutex_enter(&connfp->connf_lock); 7277 /* Follow the next pointer before releasing the conn. */ 7278 next_connp = connp->conn_next; 7279 IP_STAT(ipst, ip_udp_fanmb); 7280 CONN_DEC_REF(connp); 7281 connp = next_connp; 7282 } 7283 7284 /* Last one. Send it upstream. */ 7285 mutex_exit(&connfp->connf_lock); 7286 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7287 recv_ill, ip_policy); 7288 IP_STAT(ipst, ip_udp_fanmb); 7289 CONN_DEC_REF(connp); 7290 return; 7291 7292 notfound: 7293 7294 mutex_exit(&connfp->connf_lock); 7295 IP_STAT(ipst, ip_udp_fanothers); 7296 /* 7297 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7298 * have already been matched above, since they live in the IPv4 7299 * fanout tables. This implies we only need to 7300 * check for IPv6 in6addr_any endpoints here. 7301 * Thus we compare using ipv6_all_zeros instead of the destination 7302 * address, except for the multicast group membership lookup which 7303 * uses the IPv4 destination. 7304 */ 7305 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7306 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7307 mutex_enter(&connfp->connf_lock); 7308 connp = connfp->connf_head; 7309 if (!broadcast && !CLASSD(dst)) { 7310 while (connp != NULL) { 7311 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7312 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7313 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7314 !connp->conn_ipv6_v6only) 7315 break; 7316 connp = connp->conn_next; 7317 } 7318 7319 if (connp != NULL && is_system_labeled() && 7320 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7321 connp)) 7322 connp = NULL; 7323 7324 if (connp == NULL || connp->conn_upq == NULL) { 7325 /* 7326 * No one bound to this port. Is 7327 * there a client that wants all 7328 * unclaimed datagrams? 7329 */ 7330 mutex_exit(&connfp->connf_lock); 7331 7332 if (mctl_present) 7333 first_mp->b_cont = mp; 7334 else 7335 first_mp = mp; 7336 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7337 connf_head != NULL) { 7338 ip_fanout_proto(q, first_mp, ill, ipha, 7339 flags | IP_FF_RAWIP, mctl_present, 7340 ip_policy, recv_ill, zoneid); 7341 } else { 7342 if (ip_fanout_send_icmp(q, first_mp, flags, 7343 ICMP_DEST_UNREACHABLE, 7344 ICMP_PORT_UNREACHABLE, 7345 mctl_present, zoneid, ipst)) { 7346 BUMP_MIB(ill->ill_ip_mib, 7347 udpIfStatsNoPorts); 7348 } 7349 } 7350 return; 7351 } 7352 7353 CONN_INC_REF(connp); 7354 mutex_exit(&connfp->connf_lock); 7355 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7356 flags, recv_ill, ip_policy); 7357 CONN_DEC_REF(connp); 7358 return; 7359 } 7360 /* 7361 * IPv4 multicast packet being delivered to an AF_INET6 7362 * in6addr_any endpoint. 7363 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7364 * and not conn_wantpacket_v6() since any multicast membership is 7365 * for an IPv4-mapped multicast address. 7366 * The packet is sent to all clients in all zones that have joined the 7367 * group and match the port. 7368 */ 7369 while (connp != NULL) { 7370 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7371 srcport, v6src) && 7372 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7373 (!is_system_labeled() || 7374 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7375 connp))) 7376 break; 7377 connp = connp->conn_next; 7378 } 7379 7380 if (connp == NULL || connp->conn_upq == NULL) { 7381 /* 7382 * No one bound to this port. Is 7383 * there a client that wants all 7384 * unclaimed datagrams? 7385 */ 7386 mutex_exit(&connfp->connf_lock); 7387 7388 if (mctl_present) 7389 first_mp->b_cont = mp; 7390 else 7391 first_mp = mp; 7392 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7393 NULL) { 7394 ip_fanout_proto(q, first_mp, ill, ipha, 7395 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7396 recv_ill, zoneid); 7397 } else { 7398 /* 7399 * We used to attempt to send an icmp error here, but 7400 * since this is known to be a multicast packet 7401 * and we don't send icmp errors in response to 7402 * multicast, just drop the packet and give up sooner. 7403 */ 7404 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7405 freemsg(first_mp); 7406 } 7407 return; 7408 } 7409 7410 first_connp = connp; 7411 7412 CONN_INC_REF(connp); 7413 connp = connp->conn_next; 7414 for (;;) { 7415 while (connp != NULL) { 7416 if (IPCL_UDP_MATCH_V6(connp, dstport, 7417 ipv6_all_zeros, srcport, v6src) && 7418 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7419 (!is_system_labeled() || 7420 tsol_receive_local(mp, &dst, IPV4_VERSION, 7421 shared_addr, connp))) 7422 break; 7423 connp = connp->conn_next; 7424 } 7425 /* 7426 * Just copy the data part alone. The mctl part is 7427 * needed just for verifying policy and it is never 7428 * sent up. 7429 */ 7430 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7431 ((mp1 = copymsg(mp)) == NULL))) { 7432 /* 7433 * No more intested clients or memory 7434 * allocation failed 7435 */ 7436 connp = first_connp; 7437 break; 7438 } 7439 if (first_mp != NULL) { 7440 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7441 ipsec_info_type == IPSEC_IN); 7442 first_mp1 = ipsec_in_tag(first_mp, NULL, 7443 ipst->ips_netstack); 7444 if (first_mp1 == NULL) { 7445 freemsg(mp1); 7446 connp = first_connp; 7447 break; 7448 } 7449 } else { 7450 first_mp1 = NULL; 7451 } 7452 CONN_INC_REF(connp); 7453 mutex_exit(&connfp->connf_lock); 7454 /* 7455 * IPQoS notes: We don't send the packet for policy 7456 * processing here, will do it for the last one (below). 7457 * i.e. we do it per-packet now, but if we do policy 7458 * processing per-conn, then we would need to do it 7459 * here too. 7460 */ 7461 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7462 ipha, flags, recv_ill, B_FALSE); 7463 mutex_enter(&connfp->connf_lock); 7464 /* Follow the next pointer before releasing the conn. */ 7465 next_connp = connp->conn_next; 7466 CONN_DEC_REF(connp); 7467 connp = next_connp; 7468 } 7469 7470 /* Last one. Send it upstream. */ 7471 mutex_exit(&connfp->connf_lock); 7472 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7473 recv_ill, ip_policy); 7474 CONN_DEC_REF(connp); 7475 } 7476 7477 /* 7478 * Complete the ip_wput header so that it 7479 * is possible to generate ICMP 7480 * errors. 7481 */ 7482 int 7483 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7484 { 7485 ire_t *ire; 7486 7487 if (ipha->ipha_src == INADDR_ANY) { 7488 ire = ire_lookup_local(zoneid, ipst); 7489 if (ire == NULL) { 7490 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7491 return (1); 7492 } 7493 ipha->ipha_src = ire->ire_addr; 7494 ire_refrele(ire); 7495 } 7496 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7497 ipha->ipha_hdr_checksum = 0; 7498 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7499 return (0); 7500 } 7501 7502 /* 7503 * Nobody should be sending 7504 * packets up this stream 7505 */ 7506 static void 7507 ip_lrput(queue_t *q, mblk_t *mp) 7508 { 7509 mblk_t *mp1; 7510 7511 switch (mp->b_datap->db_type) { 7512 case M_FLUSH: 7513 /* Turn around */ 7514 if (*mp->b_rptr & FLUSHW) { 7515 *mp->b_rptr &= ~FLUSHR; 7516 qreply(q, mp); 7517 return; 7518 } 7519 break; 7520 } 7521 /* Could receive messages that passed through ar_rput */ 7522 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7523 mp1->b_prev = mp1->b_next = NULL; 7524 freemsg(mp); 7525 } 7526 7527 /* Nobody should be sending packets down this stream */ 7528 /* ARGSUSED */ 7529 void 7530 ip_lwput(queue_t *q, mblk_t *mp) 7531 { 7532 freemsg(mp); 7533 } 7534 7535 /* 7536 * Move the first hop in any source route to ipha_dst and remove that part of 7537 * the source route. Called by other protocols. Errors in option formatting 7538 * are ignored - will be handled by ip_wput_options Return the final 7539 * destination (either ipha_dst or the last entry in a source route.) 7540 */ 7541 ipaddr_t 7542 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7543 { 7544 ipoptp_t opts; 7545 uchar_t *opt; 7546 uint8_t optval; 7547 uint8_t optlen; 7548 ipaddr_t dst; 7549 int i; 7550 ire_t *ire; 7551 ip_stack_t *ipst = ns->netstack_ip; 7552 7553 ip2dbg(("ip_massage_options\n")); 7554 dst = ipha->ipha_dst; 7555 for (optval = ipoptp_first(&opts, ipha); 7556 optval != IPOPT_EOL; 7557 optval = ipoptp_next(&opts)) { 7558 opt = opts.ipoptp_cur; 7559 switch (optval) { 7560 uint8_t off; 7561 case IPOPT_SSRR: 7562 case IPOPT_LSRR: 7563 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7564 ip1dbg(("ip_massage_options: bad src route\n")); 7565 break; 7566 } 7567 optlen = opts.ipoptp_len; 7568 off = opt[IPOPT_OFFSET]; 7569 off--; 7570 redo_srr: 7571 if (optlen < IP_ADDR_LEN || 7572 off > optlen - IP_ADDR_LEN) { 7573 /* End of source route */ 7574 ip1dbg(("ip_massage_options: end of SR\n")); 7575 break; 7576 } 7577 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7578 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7579 ntohl(dst))); 7580 /* 7581 * Check if our address is present more than 7582 * once as consecutive hops in source route. 7583 * XXX verify per-interface ip_forwarding 7584 * for source route? 7585 */ 7586 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7587 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7588 if (ire != NULL) { 7589 ire_refrele(ire); 7590 off += IP_ADDR_LEN; 7591 goto redo_srr; 7592 } 7593 if (dst == htonl(INADDR_LOOPBACK)) { 7594 ip1dbg(("ip_massage_options: loopback addr in " 7595 "source route!\n")); 7596 break; 7597 } 7598 /* 7599 * Update ipha_dst to be the first hop and remove the 7600 * first hop from the source route (by overwriting 7601 * part of the option with NOP options). 7602 */ 7603 ipha->ipha_dst = dst; 7604 /* Put the last entry in dst */ 7605 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7606 3; 7607 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7608 7609 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7610 ntohl(dst))); 7611 /* Move down and overwrite */ 7612 opt[IP_ADDR_LEN] = opt[0]; 7613 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7614 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7615 for (i = 0; i < IP_ADDR_LEN; i++) 7616 opt[i] = IPOPT_NOP; 7617 break; 7618 } 7619 } 7620 return (dst); 7621 } 7622 7623 /* 7624 * Return the network mask 7625 * associated with the specified address. 7626 */ 7627 ipaddr_t 7628 ip_net_mask(ipaddr_t addr) 7629 { 7630 uchar_t *up = (uchar_t *)&addr; 7631 ipaddr_t mask = 0; 7632 uchar_t *maskp = (uchar_t *)&mask; 7633 7634 #if defined(__i386) || defined(__amd64) 7635 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7636 #endif 7637 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7638 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7639 #endif 7640 if (CLASSD(addr)) { 7641 maskp[0] = 0xF0; 7642 return (mask); 7643 } 7644 7645 /* We assume Class E default netmask to be 32 */ 7646 if (CLASSE(addr)) 7647 return (0xffffffffU); 7648 7649 if (addr == 0) 7650 return (0); 7651 maskp[0] = 0xFF; 7652 if ((up[0] & 0x80) == 0) 7653 return (mask); 7654 7655 maskp[1] = 0xFF; 7656 if ((up[0] & 0xC0) == 0x80) 7657 return (mask); 7658 7659 maskp[2] = 0xFF; 7660 if ((up[0] & 0xE0) == 0xC0) 7661 return (mask); 7662 7663 /* Otherwise return no mask */ 7664 return ((ipaddr_t)0); 7665 } 7666 7667 /* 7668 * Select an ill for the packet by considering load spreading across 7669 * a different ill in the group if dst_ill is part of some group. 7670 */ 7671 ill_t * 7672 ip_newroute_get_dst_ill(ill_t *dst_ill) 7673 { 7674 ill_t *ill; 7675 7676 /* 7677 * We schedule irrespective of whether the source address is 7678 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7679 */ 7680 ill = illgrp_scheduler(dst_ill); 7681 if (ill == NULL) 7682 return (NULL); 7683 7684 /* 7685 * For groups with names ip_sioctl_groupname ensures that all 7686 * ills are of same type. For groups without names, ifgrp_insert 7687 * ensures this. 7688 */ 7689 ASSERT(dst_ill->ill_type == ill->ill_type); 7690 7691 return (ill); 7692 } 7693 7694 /* 7695 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7696 */ 7697 ill_t * 7698 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7699 ip_stack_t *ipst) 7700 { 7701 ill_t *ret_ill; 7702 7703 ASSERT(ifindex != 0); 7704 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7705 ipst); 7706 if (ret_ill == NULL || 7707 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7708 if (isv6) { 7709 if (ill != NULL) { 7710 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7711 } else { 7712 BUMP_MIB(&ipst->ips_ip6_mib, 7713 ipIfStatsOutDiscards); 7714 } 7715 ip1dbg(("ip_grab_attach_ill (IPv6): " 7716 "bad ifindex %d.\n", ifindex)); 7717 } else { 7718 if (ill != NULL) { 7719 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7720 } else { 7721 BUMP_MIB(&ipst->ips_ip_mib, 7722 ipIfStatsOutDiscards); 7723 } 7724 ip1dbg(("ip_grab_attach_ill (IPv4): " 7725 "bad ifindex %d.\n", ifindex)); 7726 } 7727 if (ret_ill != NULL) 7728 ill_refrele(ret_ill); 7729 freemsg(first_mp); 7730 return (NULL); 7731 } 7732 7733 return (ret_ill); 7734 } 7735 7736 /* 7737 * IPv4 - 7738 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7739 * out a packet to a destination address for which we do not have specific 7740 * (or sufficient) routing information. 7741 * 7742 * NOTE : These are the scopes of some of the variables that point at IRE, 7743 * which needs to be followed while making any future modifications 7744 * to avoid memory leaks. 7745 * 7746 * - ire and sire are the entries looked up initially by 7747 * ire_ftable_lookup. 7748 * - ipif_ire is used to hold the interface ire associated with 7749 * the new cache ire. But it's scope is limited, so we always REFRELE 7750 * it before branching out to error paths. 7751 * - save_ire is initialized before ire_create, so that ire returned 7752 * by ire_create will not over-write the ire. We REFRELE save_ire 7753 * before breaking out of the switch. 7754 * 7755 * Thus on failures, we have to REFRELE only ire and sire, if they 7756 * are not NULL. 7757 */ 7758 void 7759 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7760 zoneid_t zoneid, ip_stack_t *ipst) 7761 { 7762 areq_t *areq; 7763 ipaddr_t gw = 0; 7764 ire_t *ire = NULL; 7765 mblk_t *res_mp; 7766 ipaddr_t *addrp; 7767 ipaddr_t nexthop_addr; 7768 ipif_t *src_ipif = NULL; 7769 ill_t *dst_ill = NULL; 7770 ipha_t *ipha; 7771 ire_t *sire = NULL; 7772 mblk_t *first_mp; 7773 ire_t *save_ire; 7774 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7775 ushort_t ire_marks = 0; 7776 boolean_t mctl_present; 7777 ipsec_out_t *io; 7778 mblk_t *saved_mp; 7779 ire_t *first_sire = NULL; 7780 mblk_t *copy_mp = NULL; 7781 mblk_t *xmit_mp = NULL; 7782 ipaddr_t save_dst; 7783 uint32_t multirt_flags = 7784 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7785 boolean_t multirt_is_resolvable; 7786 boolean_t multirt_resolve_next; 7787 boolean_t unspec_src; 7788 boolean_t do_attach_ill = B_FALSE; 7789 boolean_t ip_nexthop = B_FALSE; 7790 tsol_ire_gw_secattr_t *attrp = NULL; 7791 tsol_gcgrp_t *gcgrp = NULL; 7792 tsol_gcgrp_addr_t ga; 7793 7794 if (ip_debug > 2) { 7795 /* ip1dbg */ 7796 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7797 } 7798 7799 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7800 if (mctl_present) { 7801 io = (ipsec_out_t *)first_mp->b_rptr; 7802 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7803 ASSERT(zoneid == io->ipsec_out_zoneid); 7804 ASSERT(zoneid != ALL_ZONES); 7805 } 7806 7807 ipha = (ipha_t *)mp->b_rptr; 7808 7809 /* All multicast lookups come through ip_newroute_ipif() */ 7810 if (CLASSD(dst)) { 7811 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7812 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7813 freemsg(first_mp); 7814 return; 7815 } 7816 7817 if (mctl_present && io->ipsec_out_attach_if) { 7818 /* ip_grab_attach_ill returns a held ill */ 7819 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7820 io->ipsec_out_ill_index, B_FALSE, ipst); 7821 7822 /* Failure case frees things for us. */ 7823 if (attach_ill == NULL) 7824 return; 7825 7826 /* 7827 * Check if we need an ire that will not be 7828 * looked up by anybody else i.e. HIDDEN. 7829 */ 7830 if (ill_is_probeonly(attach_ill)) 7831 ire_marks = IRE_MARK_HIDDEN; 7832 } 7833 if (mctl_present && io->ipsec_out_ip_nexthop) { 7834 ip_nexthop = B_TRUE; 7835 nexthop_addr = io->ipsec_out_nexthop_addr; 7836 } 7837 /* 7838 * If this IRE is created for forwarding or it is not for 7839 * traffic for congestion controlled protocols, mark it as temporary. 7840 */ 7841 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7842 ire_marks |= IRE_MARK_TEMPORARY; 7843 7844 /* 7845 * Get what we can from ire_ftable_lookup which will follow an IRE 7846 * chain until it gets the most specific information available. 7847 * For example, we know that there is no IRE_CACHE for this dest, 7848 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7849 * ire_ftable_lookup will look up the gateway, etc. 7850 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7851 * to the destination, of equal netmask length in the forward table, 7852 * will be recursively explored. If no information is available 7853 * for the final gateway of that route, we force the returned ire 7854 * to be equal to sire using MATCH_IRE_PARENT. 7855 * At least, in this case we have a starting point (in the buckets) 7856 * to look for other routes to the destination in the forward table. 7857 * This is actually used only for multirouting, where a list 7858 * of routes has to be processed in sequence. 7859 * 7860 * In the process of coming up with the most specific information, 7861 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7862 * for the gateway (i.e., one for which the ire_nce->nce_state is 7863 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7864 * Two caveats when handling incomplete ire's in ip_newroute: 7865 * - we should be careful when accessing its ire_nce (specifically 7866 * the nce_res_mp) ast it might change underneath our feet, and, 7867 * - not all legacy code path callers are prepared to handle 7868 * incomplete ire's, so we should not create/add incomplete 7869 * ire_cache entries here. (See discussion about temporary solution 7870 * further below). 7871 * 7872 * In order to minimize packet dropping, and to preserve existing 7873 * behavior, we treat this case as if there were no IRE_CACHE for the 7874 * gateway, and instead use the IF_RESOLVER ire to send out 7875 * another request to ARP (this is achieved by passing the 7876 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7877 * arp response comes back in ip_wput_nondata, we will create 7878 * a per-dst ire_cache that has an ND_COMPLETE ire. 7879 * 7880 * Note that this is a temporary solution; the correct solution is 7881 * to create an incomplete per-dst ire_cache entry, and send the 7882 * packet out when the gw's nce is resolved. In order to achieve this, 7883 * all packet processing must have been completed prior to calling 7884 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7885 * to be modified to accomodate this solution. 7886 */ 7887 if (ip_nexthop) { 7888 /* 7889 * The first time we come here, we look for an IRE_INTERFACE 7890 * entry for the specified nexthop, set the dst to be the 7891 * nexthop address and create an IRE_CACHE entry for the 7892 * nexthop. The next time around, we are able to find an 7893 * IRE_CACHE entry for the nexthop, set the gateway to be the 7894 * nexthop address and create an IRE_CACHE entry for the 7895 * destination address via the specified nexthop. 7896 */ 7897 ire = ire_cache_lookup(nexthop_addr, zoneid, 7898 MBLK_GETLABEL(mp), ipst); 7899 if (ire != NULL) { 7900 gw = nexthop_addr; 7901 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7902 } else { 7903 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7904 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7905 MBLK_GETLABEL(mp), 7906 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7907 ipst); 7908 if (ire != NULL) { 7909 dst = nexthop_addr; 7910 } 7911 } 7912 } else if (attach_ill == NULL) { 7913 ire = ire_ftable_lookup(dst, 0, 0, 0, 7914 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7915 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7916 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7917 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7918 ipst); 7919 } else { 7920 /* 7921 * attach_ill is set only for communicating with 7922 * on-link hosts. So, don't look for DEFAULT. 7923 */ 7924 ipif_t *attach_ipif; 7925 7926 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7927 if (attach_ipif == NULL) { 7928 ill_refrele(attach_ill); 7929 goto icmp_err_ret; 7930 } 7931 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7932 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7933 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7934 MATCH_IRE_SECATTR, ipst); 7935 ipif_refrele(attach_ipif); 7936 } 7937 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7938 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7939 7940 /* 7941 * This loop is run only once in most cases. 7942 * We loop to resolve further routes only when the destination 7943 * can be reached through multiple RTF_MULTIRT-flagged ires. 7944 */ 7945 do { 7946 /* Clear the previous iteration's values */ 7947 if (src_ipif != NULL) { 7948 ipif_refrele(src_ipif); 7949 src_ipif = NULL; 7950 } 7951 if (dst_ill != NULL) { 7952 ill_refrele(dst_ill); 7953 dst_ill = NULL; 7954 } 7955 7956 multirt_resolve_next = B_FALSE; 7957 /* 7958 * We check if packets have to be multirouted. 7959 * In this case, given the current <ire, sire> couple, 7960 * we look for the next suitable <ire, sire>. 7961 * This check is done in ire_multirt_lookup(), 7962 * which applies various criteria to find the next route 7963 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7964 * unchanged if it detects it has not been tried yet. 7965 */ 7966 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7967 ip3dbg(("ip_newroute: starting next_resolution " 7968 "with first_mp %p, tag %d\n", 7969 (void *)first_mp, 7970 MULTIRT_DEBUG_TAGGED(first_mp))); 7971 7972 ASSERT(sire != NULL); 7973 multirt_is_resolvable = 7974 ire_multirt_lookup(&ire, &sire, multirt_flags, 7975 MBLK_GETLABEL(mp), ipst); 7976 7977 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7978 "ire %p, sire %p\n", 7979 multirt_is_resolvable, 7980 (void *)ire, (void *)sire)); 7981 7982 if (!multirt_is_resolvable) { 7983 /* 7984 * No more multirt route to resolve; give up 7985 * (all routes resolved or no more 7986 * resolvable routes). 7987 */ 7988 if (ire != NULL) { 7989 ire_refrele(ire); 7990 ire = NULL; 7991 } 7992 } else { 7993 ASSERT(sire != NULL); 7994 ASSERT(ire != NULL); 7995 /* 7996 * We simply use first_sire as a flag that 7997 * indicates if a resolvable multirt route 7998 * has already been found. 7999 * If it is not the case, we may have to send 8000 * an ICMP error to report that the 8001 * destination is unreachable. 8002 * We do not IRE_REFHOLD first_sire. 8003 */ 8004 if (first_sire == NULL) { 8005 first_sire = sire; 8006 } 8007 } 8008 } 8009 if (ire == NULL) { 8010 if (ip_debug > 3) { 8011 /* ip2dbg */ 8012 pr_addr_dbg("ip_newroute: " 8013 "can't resolve %s\n", AF_INET, &dst); 8014 } 8015 ip3dbg(("ip_newroute: " 8016 "ire %p, sire %p, first_sire %p\n", 8017 (void *)ire, (void *)sire, (void *)first_sire)); 8018 8019 if (sire != NULL) { 8020 ire_refrele(sire); 8021 sire = NULL; 8022 } 8023 8024 if (first_sire != NULL) { 8025 /* 8026 * At least one multirt route has been found 8027 * in the same call to ip_newroute(); 8028 * there is no need to report an ICMP error. 8029 * first_sire was not IRE_REFHOLDed. 8030 */ 8031 MULTIRT_DEBUG_UNTAG(first_mp); 8032 freemsg(first_mp); 8033 return; 8034 } 8035 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8036 RTA_DST, ipst); 8037 if (attach_ill != NULL) 8038 ill_refrele(attach_ill); 8039 goto icmp_err_ret; 8040 } 8041 8042 /* 8043 * Verify that the returned IRE does not have either 8044 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8045 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8046 */ 8047 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8048 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8049 if (attach_ill != NULL) 8050 ill_refrele(attach_ill); 8051 goto icmp_err_ret; 8052 } 8053 /* 8054 * Increment the ire_ob_pkt_count field for ire if it is an 8055 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8056 * increment the same for the parent IRE, sire, if it is some 8057 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8058 */ 8059 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8060 UPDATE_OB_PKT_COUNT(ire); 8061 ire->ire_last_used_time = lbolt; 8062 } 8063 8064 if (sire != NULL) { 8065 gw = sire->ire_gateway_addr; 8066 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8067 IRE_INTERFACE)) == 0); 8068 UPDATE_OB_PKT_COUNT(sire); 8069 sire->ire_last_used_time = lbolt; 8070 } 8071 /* 8072 * We have a route to reach the destination. 8073 * 8074 * 1) If the interface is part of ill group, try to get a new 8075 * ill taking load spreading into account. 8076 * 8077 * 2) After selecting the ill, get a source address that 8078 * might create good inbound load spreading. 8079 * ipif_select_source does this for us. 8080 * 8081 * If the application specified the ill (ifindex), we still 8082 * load spread. Only if the packets needs to go out 8083 * specifically on a given ill e.g. binding to 8084 * IPIF_NOFAILOVER address, then we don't try to use a 8085 * different ill for load spreading. 8086 */ 8087 if (attach_ill == NULL) { 8088 /* 8089 * Don't perform outbound load spreading in the 8090 * case of an RTF_MULTIRT route, as we actually 8091 * typically want to replicate outgoing packets 8092 * through particular interfaces. 8093 */ 8094 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8095 dst_ill = ire->ire_ipif->ipif_ill; 8096 /* for uniformity */ 8097 ill_refhold(dst_ill); 8098 } else { 8099 /* 8100 * If we are here trying to create an IRE_CACHE 8101 * for an offlink destination and have the 8102 * IRE_CACHE for the next hop and the latter is 8103 * using virtual IP source address selection i.e 8104 * it's ire->ire_ipif is pointing to a virtual 8105 * network interface (vni) then 8106 * ip_newroute_get_dst_ll() will return the vni 8107 * interface as the dst_ill. Since the vni is 8108 * virtual i.e not associated with any physical 8109 * interface, it cannot be the dst_ill, hence 8110 * in such a case call ip_newroute_get_dst_ll() 8111 * with the stq_ill instead of the ire_ipif ILL. 8112 * The function returns a refheld ill. 8113 */ 8114 if ((ire->ire_type == IRE_CACHE) && 8115 IS_VNI(ire->ire_ipif->ipif_ill)) 8116 dst_ill = ip_newroute_get_dst_ill( 8117 ire->ire_stq->q_ptr); 8118 else 8119 dst_ill = ip_newroute_get_dst_ill( 8120 ire->ire_ipif->ipif_ill); 8121 } 8122 if (dst_ill == NULL) { 8123 if (ip_debug > 2) { 8124 pr_addr_dbg("ip_newroute: " 8125 "no dst ill for dst" 8126 " %s\n", AF_INET, &dst); 8127 } 8128 goto icmp_err_ret; 8129 } 8130 } else { 8131 dst_ill = ire->ire_ipif->ipif_ill; 8132 /* for uniformity */ 8133 ill_refhold(dst_ill); 8134 /* 8135 * We should have found a route matching ill as we 8136 * called ire_ftable_lookup with MATCH_IRE_ILL. 8137 * Rather than asserting, when there is a mismatch, 8138 * we just drop the packet. 8139 */ 8140 if (dst_ill != attach_ill) { 8141 ip0dbg(("ip_newroute: Packet dropped as " 8142 "IPIF_NOFAILOVER ill is %s, " 8143 "ire->ire_ipif->ipif_ill is %s\n", 8144 attach_ill->ill_name, 8145 dst_ill->ill_name)); 8146 ill_refrele(attach_ill); 8147 goto icmp_err_ret; 8148 } 8149 } 8150 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8151 if (attach_ill != NULL) { 8152 ill_refrele(attach_ill); 8153 attach_ill = NULL; 8154 do_attach_ill = B_TRUE; 8155 } 8156 ASSERT(dst_ill != NULL); 8157 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8158 8159 /* 8160 * Pick the best source address from dst_ill. 8161 * 8162 * 1) If it is part of a multipathing group, we would 8163 * like to spread the inbound packets across different 8164 * interfaces. ipif_select_source picks a random source 8165 * across the different ills in the group. 8166 * 8167 * 2) If it is not part of a multipathing group, we try 8168 * to pick the source address from the destination 8169 * route. Clustering assumes that when we have multiple 8170 * prefixes hosted on an interface, the prefix of the 8171 * source address matches the prefix of the destination 8172 * route. We do this only if the address is not 8173 * DEPRECATED. 8174 * 8175 * 3) If the conn is in a different zone than the ire, we 8176 * need to pick a source address from the right zone. 8177 * 8178 * NOTE : If we hit case (1) above, the prefix of the source 8179 * address picked may not match the prefix of the 8180 * destination routes prefix as ipif_select_source 8181 * does not look at "dst" while picking a source 8182 * address. 8183 * If we want the same behavior as (2), we will need 8184 * to change the behavior of ipif_select_source. 8185 */ 8186 ASSERT(src_ipif == NULL); 8187 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8188 /* 8189 * The RTF_SETSRC flag is set in the parent ire (sire). 8190 * Check that the ipif matching the requested source 8191 * address still exists. 8192 */ 8193 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8194 zoneid, NULL, NULL, NULL, NULL, ipst); 8195 } 8196 8197 unspec_src = (connp != NULL && connp->conn_unspec_src); 8198 8199 if (src_ipif == NULL && 8200 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8201 ire_marks |= IRE_MARK_USESRC_CHECK; 8202 if ((dst_ill->ill_group != NULL) || 8203 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8204 (connp != NULL && ire->ire_zoneid != zoneid && 8205 ire->ire_zoneid != ALL_ZONES) || 8206 (dst_ill->ill_usesrc_ifindex != 0)) { 8207 /* 8208 * If the destination is reachable via a 8209 * given gateway, the selected source address 8210 * should be in the same subnet as the gateway. 8211 * Otherwise, the destination is not reachable. 8212 * 8213 * If there are no interfaces on the same subnet 8214 * as the destination, ipif_select_source gives 8215 * first non-deprecated interface which might be 8216 * on a different subnet than the gateway. 8217 * This is not desirable. Hence pass the dst_ire 8218 * source address to ipif_select_source. 8219 * It is sure that the destination is reachable 8220 * with the dst_ire source address subnet. 8221 * So passing dst_ire source address to 8222 * ipif_select_source will make sure that the 8223 * selected source will be on the same subnet 8224 * as dst_ire source address. 8225 */ 8226 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8227 src_ipif = ipif_select_source(dst_ill, saddr, 8228 zoneid); 8229 if (src_ipif == NULL) { 8230 if (ip_debug > 2) { 8231 pr_addr_dbg("ip_newroute: " 8232 "no src for dst %s ", 8233 AF_INET, &dst); 8234 printf("through interface %s\n", 8235 dst_ill->ill_name); 8236 } 8237 goto icmp_err_ret; 8238 } 8239 } else { 8240 src_ipif = ire->ire_ipif; 8241 ASSERT(src_ipif != NULL); 8242 /* hold src_ipif for uniformity */ 8243 ipif_refhold(src_ipif); 8244 } 8245 } 8246 8247 /* 8248 * Assign a source address while we have the conn. 8249 * We can't have ip_wput_ire pick a source address when the 8250 * packet returns from arp since we need to look at 8251 * conn_unspec_src and conn_zoneid, and we lose the conn when 8252 * going through arp. 8253 * 8254 * NOTE : ip_newroute_v6 does not have this piece of code as 8255 * it uses ip6i to store this information. 8256 */ 8257 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8258 ipha->ipha_src = src_ipif->ipif_src_addr; 8259 8260 if (ip_debug > 3) { 8261 /* ip2dbg */ 8262 pr_addr_dbg("ip_newroute: first hop %s\n", 8263 AF_INET, &gw); 8264 } 8265 ip2dbg(("\tire type %s (%d)\n", 8266 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8267 8268 /* 8269 * The TTL of multirouted packets is bounded by the 8270 * ip_multirt_ttl ndd variable. 8271 */ 8272 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8273 /* Force TTL of multirouted packets */ 8274 if ((ipst->ips_ip_multirt_ttl > 0) && 8275 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8276 ip2dbg(("ip_newroute: forcing multirt TTL " 8277 "to %d (was %d), dst 0x%08x\n", 8278 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8279 ntohl(sire->ire_addr))); 8280 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8281 } 8282 } 8283 /* 8284 * At this point in ip_newroute(), ire is either the 8285 * IRE_CACHE of the next-hop gateway for an off-subnet 8286 * destination or an IRE_INTERFACE type that should be used 8287 * to resolve an on-subnet destination or an on-subnet 8288 * next-hop gateway. 8289 * 8290 * In the IRE_CACHE case, we have the following : 8291 * 8292 * 1) src_ipif - used for getting a source address. 8293 * 8294 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8295 * means packets using this IRE_CACHE will go out on 8296 * dst_ill. 8297 * 8298 * 3) The IRE sire will point to the prefix that is the 8299 * longest matching route for the destination. These 8300 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8301 * 8302 * The newly created IRE_CACHE entry for the off-subnet 8303 * destination is tied to both the prefix route and the 8304 * interface route used to resolve the next-hop gateway 8305 * via the ire_phandle and ire_ihandle fields, 8306 * respectively. 8307 * 8308 * In the IRE_INTERFACE case, we have the following : 8309 * 8310 * 1) src_ipif - used for getting a source address. 8311 * 8312 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8313 * means packets using the IRE_CACHE that we will build 8314 * here will go out on dst_ill. 8315 * 8316 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8317 * to be created will only be tied to the IRE_INTERFACE 8318 * that was derived from the ire_ihandle field. 8319 * 8320 * If sire is non-NULL, it means the destination is 8321 * off-link and we will first create the IRE_CACHE for the 8322 * gateway. Next time through ip_newroute, we will create 8323 * the IRE_CACHE for the final destination as described 8324 * above. 8325 * 8326 * In both cases, after the current resolution has been 8327 * completed (or possibly initialised, in the IRE_INTERFACE 8328 * case), the loop may be re-entered to attempt the resolution 8329 * of another RTF_MULTIRT route. 8330 * 8331 * When an IRE_CACHE entry for the off-subnet destination is 8332 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8333 * for further processing in emission loops. 8334 */ 8335 save_ire = ire; 8336 switch (ire->ire_type) { 8337 case IRE_CACHE: { 8338 ire_t *ipif_ire; 8339 8340 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8341 if (gw == 0) 8342 gw = ire->ire_gateway_addr; 8343 /* 8344 * We need 3 ire's to create a new cache ire for an 8345 * off-link destination from the cache ire of the 8346 * gateway. 8347 * 8348 * 1. The prefix ire 'sire' (Note that this does 8349 * not apply to the conn_nexthop_set case) 8350 * 2. The cache ire of the gateway 'ire' 8351 * 3. The interface ire 'ipif_ire' 8352 * 8353 * We have (1) and (2). We lookup (3) below. 8354 * 8355 * If there is no interface route to the gateway, 8356 * it is a race condition, where we found the cache 8357 * but the interface route has been deleted. 8358 */ 8359 if (ip_nexthop) { 8360 ipif_ire = ire_ihandle_lookup_onlink(ire); 8361 } else { 8362 ipif_ire = 8363 ire_ihandle_lookup_offlink(ire, sire); 8364 } 8365 if (ipif_ire == NULL) { 8366 ip1dbg(("ip_newroute: " 8367 "ire_ihandle_lookup_offlink failed\n")); 8368 goto icmp_err_ret; 8369 } 8370 8371 /* 8372 * Check cached gateway IRE for any security 8373 * attributes; if found, associate the gateway 8374 * credentials group to the destination IRE. 8375 */ 8376 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8377 mutex_enter(&attrp->igsa_lock); 8378 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8379 GCGRP_REFHOLD(gcgrp); 8380 mutex_exit(&attrp->igsa_lock); 8381 } 8382 8383 /* 8384 * XXX For the source of the resolver mp, 8385 * we are using the same DL_UNITDATA_REQ 8386 * (from save_ire->ire_nce->nce_res_mp) 8387 * though the save_ire is not pointing at the same ill. 8388 * This is incorrect. We need to send it up to the 8389 * resolver to get the right res_mp. For ethernets 8390 * this may be okay (ill_type == DL_ETHER). 8391 */ 8392 8393 ire = ire_create( 8394 (uchar_t *)&dst, /* dest address */ 8395 (uchar_t *)&ip_g_all_ones, /* mask */ 8396 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8397 (uchar_t *)&gw, /* gateway address */ 8398 &save_ire->ire_max_frag, 8399 save_ire->ire_nce, /* src nce */ 8400 dst_ill->ill_rq, /* recv-from queue */ 8401 dst_ill->ill_wq, /* send-to queue */ 8402 IRE_CACHE, /* IRE type */ 8403 src_ipif, 8404 (sire != NULL) ? 8405 sire->ire_mask : 0, /* Parent mask */ 8406 (sire != NULL) ? 8407 sire->ire_phandle : 0, /* Parent handle */ 8408 ipif_ire->ire_ihandle, /* Interface handle */ 8409 (sire != NULL) ? (sire->ire_flags & 8410 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8411 (sire != NULL) ? 8412 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8413 NULL, 8414 gcgrp, 8415 ipst); 8416 8417 if (ire == NULL) { 8418 if (gcgrp != NULL) { 8419 GCGRP_REFRELE(gcgrp); 8420 gcgrp = NULL; 8421 } 8422 ire_refrele(ipif_ire); 8423 ire_refrele(save_ire); 8424 break; 8425 } 8426 8427 /* reference now held by IRE */ 8428 gcgrp = NULL; 8429 8430 ire->ire_marks |= ire_marks; 8431 8432 /* 8433 * Prevent sire and ipif_ire from getting deleted. 8434 * The newly created ire is tied to both of them via 8435 * the phandle and ihandle respectively. 8436 */ 8437 if (sire != NULL) { 8438 IRB_REFHOLD(sire->ire_bucket); 8439 /* Has it been removed already ? */ 8440 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8441 IRB_REFRELE(sire->ire_bucket); 8442 ire_refrele(ipif_ire); 8443 ire_refrele(save_ire); 8444 break; 8445 } 8446 } 8447 8448 IRB_REFHOLD(ipif_ire->ire_bucket); 8449 /* Has it been removed already ? */ 8450 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8451 IRB_REFRELE(ipif_ire->ire_bucket); 8452 if (sire != NULL) 8453 IRB_REFRELE(sire->ire_bucket); 8454 ire_refrele(ipif_ire); 8455 ire_refrele(save_ire); 8456 break; 8457 } 8458 8459 xmit_mp = first_mp; 8460 /* 8461 * In the case of multirouting, a copy 8462 * of the packet is done before its sending. 8463 * The copy is used to attempt another 8464 * route resolution, in a next loop. 8465 */ 8466 if (ire->ire_flags & RTF_MULTIRT) { 8467 copy_mp = copymsg(first_mp); 8468 if (copy_mp != NULL) { 8469 xmit_mp = copy_mp; 8470 MULTIRT_DEBUG_TAG(first_mp); 8471 } 8472 } 8473 ire_add_then_send(q, ire, xmit_mp); 8474 ire_refrele(save_ire); 8475 8476 /* Assert that sire is not deleted yet. */ 8477 if (sire != NULL) { 8478 ASSERT(sire->ire_ptpn != NULL); 8479 IRB_REFRELE(sire->ire_bucket); 8480 } 8481 8482 /* Assert that ipif_ire is not deleted yet. */ 8483 ASSERT(ipif_ire->ire_ptpn != NULL); 8484 IRB_REFRELE(ipif_ire->ire_bucket); 8485 ire_refrele(ipif_ire); 8486 8487 /* 8488 * If copy_mp is not NULL, multirouting was 8489 * requested. We loop to initiate a next 8490 * route resolution attempt, starting from sire. 8491 */ 8492 if (copy_mp != NULL) { 8493 /* 8494 * Search for the next unresolved 8495 * multirt route. 8496 */ 8497 copy_mp = NULL; 8498 ipif_ire = NULL; 8499 ire = NULL; 8500 multirt_resolve_next = B_TRUE; 8501 continue; 8502 } 8503 if (sire != NULL) 8504 ire_refrele(sire); 8505 ipif_refrele(src_ipif); 8506 ill_refrele(dst_ill); 8507 return; 8508 } 8509 case IRE_IF_NORESOLVER: { 8510 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8511 dst_ill->ill_resolver_mp == NULL) { 8512 ip1dbg(("ip_newroute: dst_ill %p " 8513 "for IRE_IF_NORESOLVER ire %p has " 8514 "no ill_resolver_mp\n", 8515 (void *)dst_ill, (void *)ire)); 8516 break; 8517 } 8518 8519 /* 8520 * TSol note: We are creating the ire cache for the 8521 * destination 'dst'. If 'dst' is offlink, going 8522 * through the first hop 'gw', the security attributes 8523 * of 'dst' must be set to point to the gateway 8524 * credentials of gateway 'gw'. If 'dst' is onlink, it 8525 * is possible that 'dst' is a potential gateway that is 8526 * referenced by some route that has some security 8527 * attributes. Thus in the former case, we need to do a 8528 * gcgrp_lookup of 'gw' while in the latter case we 8529 * need to do gcgrp_lookup of 'dst' itself. 8530 */ 8531 ga.ga_af = AF_INET; 8532 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8533 &ga.ga_addr); 8534 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8535 8536 ire = ire_create( 8537 (uchar_t *)&dst, /* dest address */ 8538 (uchar_t *)&ip_g_all_ones, /* mask */ 8539 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8540 (uchar_t *)&gw, /* gateway address */ 8541 &save_ire->ire_max_frag, 8542 NULL, /* no src nce */ 8543 dst_ill->ill_rq, /* recv-from queue */ 8544 dst_ill->ill_wq, /* send-to queue */ 8545 IRE_CACHE, 8546 src_ipif, 8547 save_ire->ire_mask, /* Parent mask */ 8548 (sire != NULL) ? /* Parent handle */ 8549 sire->ire_phandle : 0, 8550 save_ire->ire_ihandle, /* Interface handle */ 8551 (sire != NULL) ? sire->ire_flags & 8552 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8553 &(save_ire->ire_uinfo), 8554 NULL, 8555 gcgrp, 8556 ipst); 8557 8558 if (ire == NULL) { 8559 if (gcgrp != NULL) { 8560 GCGRP_REFRELE(gcgrp); 8561 gcgrp = NULL; 8562 } 8563 ire_refrele(save_ire); 8564 break; 8565 } 8566 8567 /* reference now held by IRE */ 8568 gcgrp = NULL; 8569 8570 ire->ire_marks |= ire_marks; 8571 8572 /* Prevent save_ire from getting deleted */ 8573 IRB_REFHOLD(save_ire->ire_bucket); 8574 /* Has it been removed already ? */ 8575 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8576 IRB_REFRELE(save_ire->ire_bucket); 8577 ire_refrele(save_ire); 8578 break; 8579 } 8580 8581 /* 8582 * In the case of multirouting, a copy 8583 * of the packet is made before it is sent. 8584 * The copy is used in the next 8585 * loop to attempt another resolution. 8586 */ 8587 xmit_mp = first_mp; 8588 if ((sire != NULL) && 8589 (sire->ire_flags & RTF_MULTIRT)) { 8590 copy_mp = copymsg(first_mp); 8591 if (copy_mp != NULL) { 8592 xmit_mp = copy_mp; 8593 MULTIRT_DEBUG_TAG(first_mp); 8594 } 8595 } 8596 ire_add_then_send(q, ire, xmit_mp); 8597 8598 /* Assert that it is not deleted yet. */ 8599 ASSERT(save_ire->ire_ptpn != NULL); 8600 IRB_REFRELE(save_ire->ire_bucket); 8601 ire_refrele(save_ire); 8602 8603 if (copy_mp != NULL) { 8604 /* 8605 * If we found a (no)resolver, we ignore any 8606 * trailing top priority IRE_CACHE in further 8607 * loops. This ensures that we do not omit any 8608 * (no)resolver. 8609 * This IRE_CACHE, if any, will be processed 8610 * by another thread entering ip_newroute(). 8611 * IRE_CACHE entries, if any, will be processed 8612 * by another thread entering ip_newroute(), 8613 * (upon resolver response, for instance). 8614 * This aims to force parallel multirt 8615 * resolutions as soon as a packet must be sent. 8616 * In the best case, after the tx of only one 8617 * packet, all reachable routes are resolved. 8618 * Otherwise, the resolution of all RTF_MULTIRT 8619 * routes would require several emissions. 8620 */ 8621 multirt_flags &= ~MULTIRT_CACHEGW; 8622 8623 /* 8624 * Search for the next unresolved multirt 8625 * route. 8626 */ 8627 copy_mp = NULL; 8628 save_ire = NULL; 8629 ire = NULL; 8630 multirt_resolve_next = B_TRUE; 8631 continue; 8632 } 8633 8634 /* 8635 * Don't need sire anymore 8636 */ 8637 if (sire != NULL) 8638 ire_refrele(sire); 8639 8640 ipif_refrele(src_ipif); 8641 ill_refrele(dst_ill); 8642 return; 8643 } 8644 case IRE_IF_RESOLVER: 8645 /* 8646 * We can't build an IRE_CACHE yet, but at least we 8647 * found a resolver that can help. 8648 */ 8649 res_mp = dst_ill->ill_resolver_mp; 8650 if (!OK_RESOLVER_MP(res_mp)) 8651 break; 8652 8653 /* 8654 * To be at this point in the code with a non-zero gw 8655 * means that dst is reachable through a gateway that 8656 * we have never resolved. By changing dst to the gw 8657 * addr we resolve the gateway first. 8658 * When ire_add_then_send() tries to put the IP dg 8659 * to dst, it will reenter ip_newroute() at which 8660 * time we will find the IRE_CACHE for the gw and 8661 * create another IRE_CACHE in case IRE_CACHE above. 8662 */ 8663 if (gw != INADDR_ANY) { 8664 /* 8665 * The source ipif that was determined above was 8666 * relative to the destination address, not the 8667 * gateway's. If src_ipif was not taken out of 8668 * the IRE_IF_RESOLVER entry, we'll need to call 8669 * ipif_select_source() again. 8670 */ 8671 if (src_ipif != ire->ire_ipif) { 8672 ipif_refrele(src_ipif); 8673 src_ipif = ipif_select_source(dst_ill, 8674 gw, zoneid); 8675 if (src_ipif == NULL) { 8676 if (ip_debug > 2) { 8677 pr_addr_dbg( 8678 "ip_newroute: no " 8679 "src for gw %s ", 8680 AF_INET, &gw); 8681 printf("through " 8682 "interface %s\n", 8683 dst_ill->ill_name); 8684 } 8685 goto icmp_err_ret; 8686 } 8687 } 8688 save_dst = dst; 8689 dst = gw; 8690 gw = INADDR_ANY; 8691 } 8692 8693 /* 8694 * We obtain a partial IRE_CACHE which we will pass 8695 * along with the resolver query. When the response 8696 * comes back it will be there ready for us to add. 8697 * The ire_max_frag is atomically set under the 8698 * irebucket lock in ire_add_v[46]. 8699 */ 8700 8701 ire = ire_create_mp( 8702 (uchar_t *)&dst, /* dest address */ 8703 (uchar_t *)&ip_g_all_ones, /* mask */ 8704 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8705 (uchar_t *)&gw, /* gateway address */ 8706 NULL, /* ire_max_frag */ 8707 NULL, /* no src nce */ 8708 dst_ill->ill_rq, /* recv-from queue */ 8709 dst_ill->ill_wq, /* send-to queue */ 8710 IRE_CACHE, 8711 src_ipif, /* Interface ipif */ 8712 save_ire->ire_mask, /* Parent mask */ 8713 0, 8714 save_ire->ire_ihandle, /* Interface handle */ 8715 0, /* flags if any */ 8716 &(save_ire->ire_uinfo), 8717 NULL, 8718 NULL, 8719 ipst); 8720 8721 if (ire == NULL) { 8722 ire_refrele(save_ire); 8723 break; 8724 } 8725 8726 if ((sire != NULL) && 8727 (sire->ire_flags & RTF_MULTIRT)) { 8728 copy_mp = copymsg(first_mp); 8729 if (copy_mp != NULL) 8730 MULTIRT_DEBUG_TAG(copy_mp); 8731 } 8732 8733 ire->ire_marks |= ire_marks; 8734 8735 /* 8736 * Construct message chain for the resolver 8737 * of the form: 8738 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8739 * Packet could contain a IPSEC_OUT mp. 8740 * 8741 * NOTE : ire will be added later when the response 8742 * comes back from ARP. If the response does not 8743 * come back, ARP frees the packet. For this reason, 8744 * we can't REFHOLD the bucket of save_ire to prevent 8745 * deletions. We may not be able to REFRELE the bucket 8746 * if the response never comes back. Thus, before 8747 * adding the ire, ire_add_v4 will make sure that the 8748 * interface route does not get deleted. This is the 8749 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8750 * where we can always prevent deletions because of 8751 * the synchronous nature of adding IRES i.e 8752 * ire_add_then_send is called after creating the IRE. 8753 */ 8754 ASSERT(ire->ire_mp != NULL); 8755 ire->ire_mp->b_cont = first_mp; 8756 /* Have saved_mp handy, for cleanup if canput fails */ 8757 saved_mp = mp; 8758 mp = copyb(res_mp); 8759 if (mp == NULL) { 8760 /* Prepare for cleanup */ 8761 mp = saved_mp; /* pkt */ 8762 ire_delete(ire); /* ire_mp */ 8763 ire = NULL; 8764 ire_refrele(save_ire); 8765 if (copy_mp != NULL) { 8766 MULTIRT_DEBUG_UNTAG(copy_mp); 8767 freemsg(copy_mp); 8768 copy_mp = NULL; 8769 } 8770 break; 8771 } 8772 linkb(mp, ire->ire_mp); 8773 8774 /* 8775 * Fill in the source and dest addrs for the resolver. 8776 * NOTE: this depends on memory layouts imposed by 8777 * ill_init(). 8778 */ 8779 areq = (areq_t *)mp->b_rptr; 8780 addrp = (ipaddr_t *)((char *)areq + 8781 areq->areq_sender_addr_offset); 8782 if (do_attach_ill) { 8783 /* 8784 * This is bind to no failover case. 8785 * arp packet also must go out on attach_ill. 8786 */ 8787 ASSERT(ipha->ipha_src != NULL); 8788 *addrp = ipha->ipha_src; 8789 } else { 8790 *addrp = save_ire->ire_src_addr; 8791 } 8792 8793 ire_refrele(save_ire); 8794 addrp = (ipaddr_t *)((char *)areq + 8795 areq->areq_target_addr_offset); 8796 *addrp = dst; 8797 /* Up to the resolver. */ 8798 if (canputnext(dst_ill->ill_rq) && 8799 !(dst_ill->ill_arp_closing)) { 8800 putnext(dst_ill->ill_rq, mp); 8801 ire = NULL; 8802 if (copy_mp != NULL) { 8803 /* 8804 * If we found a resolver, we ignore 8805 * any trailing top priority IRE_CACHE 8806 * in the further loops. This ensures 8807 * that we do not omit any resolver. 8808 * IRE_CACHE entries, if any, will be 8809 * processed next time we enter 8810 * ip_newroute(). 8811 */ 8812 multirt_flags &= ~MULTIRT_CACHEGW; 8813 /* 8814 * Search for the next unresolved 8815 * multirt route. 8816 */ 8817 first_mp = copy_mp; 8818 copy_mp = NULL; 8819 /* Prepare the next resolution loop. */ 8820 mp = first_mp; 8821 EXTRACT_PKT_MP(mp, first_mp, 8822 mctl_present); 8823 if (mctl_present) 8824 io = (ipsec_out_t *) 8825 first_mp->b_rptr; 8826 ipha = (ipha_t *)mp->b_rptr; 8827 8828 ASSERT(sire != NULL); 8829 8830 dst = save_dst; 8831 multirt_resolve_next = B_TRUE; 8832 continue; 8833 } 8834 8835 if (sire != NULL) 8836 ire_refrele(sire); 8837 8838 /* 8839 * The response will come back in ip_wput 8840 * with db_type IRE_DB_TYPE. 8841 */ 8842 ipif_refrele(src_ipif); 8843 ill_refrele(dst_ill); 8844 return; 8845 } else { 8846 /* Prepare for cleanup */ 8847 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8848 mp); 8849 mp->b_cont = NULL; 8850 freeb(mp); /* areq */ 8851 /* 8852 * this is an ire that is not added to the 8853 * cache. ire_freemblk will handle the release 8854 * of any resources associated with the ire. 8855 */ 8856 ire_delete(ire); /* ire_mp */ 8857 mp = saved_mp; /* pkt */ 8858 ire = NULL; 8859 if (copy_mp != NULL) { 8860 MULTIRT_DEBUG_UNTAG(copy_mp); 8861 freemsg(copy_mp); 8862 copy_mp = NULL; 8863 } 8864 break; 8865 } 8866 default: 8867 break; 8868 } 8869 } while (multirt_resolve_next); 8870 8871 ip1dbg(("ip_newroute: dropped\n")); 8872 /* Did this packet originate externally? */ 8873 if (mp->b_prev) { 8874 mp->b_next = NULL; 8875 mp->b_prev = NULL; 8876 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8877 } else { 8878 if (dst_ill != NULL) { 8879 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8880 } else { 8881 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8882 } 8883 } 8884 ASSERT(copy_mp == NULL); 8885 MULTIRT_DEBUG_UNTAG(first_mp); 8886 freemsg(first_mp); 8887 if (ire != NULL) 8888 ire_refrele(ire); 8889 if (sire != NULL) 8890 ire_refrele(sire); 8891 if (src_ipif != NULL) 8892 ipif_refrele(src_ipif); 8893 if (dst_ill != NULL) 8894 ill_refrele(dst_ill); 8895 return; 8896 8897 icmp_err_ret: 8898 ip1dbg(("ip_newroute: no route\n")); 8899 if (src_ipif != NULL) 8900 ipif_refrele(src_ipif); 8901 if (dst_ill != NULL) 8902 ill_refrele(dst_ill); 8903 if (sire != NULL) 8904 ire_refrele(sire); 8905 /* Did this packet originate externally? */ 8906 if (mp->b_prev) { 8907 mp->b_next = NULL; 8908 mp->b_prev = NULL; 8909 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8910 q = WR(q); 8911 } else { 8912 /* 8913 * There is no outgoing ill, so just increment the 8914 * system MIB. 8915 */ 8916 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8917 /* 8918 * Since ip_wput() isn't close to finished, we fill 8919 * in enough of the header for credible error reporting. 8920 */ 8921 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8922 /* Failed */ 8923 MULTIRT_DEBUG_UNTAG(first_mp); 8924 freemsg(first_mp); 8925 if (ire != NULL) 8926 ire_refrele(ire); 8927 return; 8928 } 8929 } 8930 8931 /* 8932 * At this point we will have ire only if RTF_BLACKHOLE 8933 * or RTF_REJECT flags are set on the IRE. It will not 8934 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8935 */ 8936 if (ire != NULL) { 8937 if (ire->ire_flags & RTF_BLACKHOLE) { 8938 ire_refrele(ire); 8939 MULTIRT_DEBUG_UNTAG(first_mp); 8940 freemsg(first_mp); 8941 return; 8942 } 8943 ire_refrele(ire); 8944 } 8945 if (ip_source_routed(ipha, ipst)) { 8946 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8947 zoneid, ipst); 8948 return; 8949 } 8950 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8951 } 8952 8953 ip_opt_info_t zero_info; 8954 8955 /* 8956 * IPv4 - 8957 * ip_newroute_ipif is called by ip_wput_multicast and 8958 * ip_rput_forward_multicast whenever we need to send 8959 * out a packet to a destination address for which we do not have specific 8960 * routing information. It is used when the packet will be sent out 8961 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8962 * socket option is set or icmp error message wants to go out on a particular 8963 * interface for a unicast packet. 8964 * 8965 * In most cases, the destination address is resolved thanks to the ipif 8966 * intrinsic resolver. However, there are some cases where the call to 8967 * ip_newroute_ipif must take into account the potential presence of 8968 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8969 * that uses the interface. This is specified through flags, 8970 * which can be a combination of: 8971 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8972 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8973 * and flags. Additionally, the packet source address has to be set to 8974 * the specified address. The caller is thus expected to set this flag 8975 * if the packet has no specific source address yet. 8976 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8977 * flag, the resulting ire will inherit the flag. All unresolved routes 8978 * to the destination must be explored in the same call to 8979 * ip_newroute_ipif(). 8980 */ 8981 static void 8982 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8983 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8984 { 8985 areq_t *areq; 8986 ire_t *ire = NULL; 8987 mblk_t *res_mp; 8988 ipaddr_t *addrp; 8989 mblk_t *first_mp; 8990 ire_t *save_ire = NULL; 8991 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8992 ipif_t *src_ipif = NULL; 8993 ushort_t ire_marks = 0; 8994 ill_t *dst_ill = NULL; 8995 boolean_t mctl_present; 8996 ipsec_out_t *io; 8997 ipha_t *ipha; 8998 int ihandle = 0; 8999 mblk_t *saved_mp; 9000 ire_t *fire = NULL; 9001 mblk_t *copy_mp = NULL; 9002 boolean_t multirt_resolve_next; 9003 boolean_t unspec_src; 9004 ipaddr_t ipha_dst; 9005 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9006 9007 /* 9008 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9009 * here for uniformity 9010 */ 9011 ipif_refhold(ipif); 9012 9013 /* 9014 * This loop is run only once in most cases. 9015 * We loop to resolve further routes only when the destination 9016 * can be reached through multiple RTF_MULTIRT-flagged ires. 9017 */ 9018 do { 9019 if (dst_ill != NULL) { 9020 ill_refrele(dst_ill); 9021 dst_ill = NULL; 9022 } 9023 if (src_ipif != NULL) { 9024 ipif_refrele(src_ipif); 9025 src_ipif = NULL; 9026 } 9027 multirt_resolve_next = B_FALSE; 9028 9029 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9030 ipif->ipif_ill->ill_name)); 9031 9032 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9033 if (mctl_present) 9034 io = (ipsec_out_t *)first_mp->b_rptr; 9035 9036 ipha = (ipha_t *)mp->b_rptr; 9037 9038 /* 9039 * Save the packet destination address, we may need it after 9040 * the packet has been consumed. 9041 */ 9042 ipha_dst = ipha->ipha_dst; 9043 9044 /* 9045 * If the interface is a pt-pt interface we look for an 9046 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9047 * local_address and the pt-pt destination address. Otherwise 9048 * we just match the local address. 9049 * NOTE: dst could be different than ipha->ipha_dst in case 9050 * of sending igmp multicast packets over a point-to-point 9051 * connection. 9052 * Thus we must be careful enough to check ipha_dst to be a 9053 * multicast address, otherwise it will take xmit_if path for 9054 * multicast packets resulting into kernel stack overflow by 9055 * repeated calls to ip_newroute_ipif from ire_send(). 9056 */ 9057 if (CLASSD(ipha_dst) && 9058 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9059 goto err_ret; 9060 } 9061 9062 /* 9063 * We check if an IRE_OFFSUBNET for the addr that goes through 9064 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9065 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9066 * propagate its flags to the new ire. 9067 */ 9068 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9069 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9070 ip2dbg(("ip_newroute_ipif: " 9071 "ipif_lookup_multi_ire(" 9072 "ipif %p, dst %08x) = fire %p\n", 9073 (void *)ipif, ntohl(dst), (void *)fire)); 9074 } 9075 9076 if (mctl_present && io->ipsec_out_attach_if) { 9077 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9078 io->ipsec_out_ill_index, B_FALSE, ipst); 9079 9080 /* Failure case frees things for us. */ 9081 if (attach_ill == NULL) { 9082 ipif_refrele(ipif); 9083 if (fire != NULL) 9084 ire_refrele(fire); 9085 return; 9086 } 9087 9088 /* 9089 * Check if we need an ire that will not be 9090 * looked up by anybody else i.e. HIDDEN. 9091 */ 9092 if (ill_is_probeonly(attach_ill)) { 9093 ire_marks = IRE_MARK_HIDDEN; 9094 } 9095 /* 9096 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9097 * case. 9098 */ 9099 dst_ill = ipif->ipif_ill; 9100 /* attach_ill has been refheld by ip_grab_attach_ill */ 9101 ASSERT(dst_ill == attach_ill); 9102 } else { 9103 /* 9104 * If the interface belongs to an interface group, 9105 * make sure the next possible interface in the group 9106 * is used. This encourages load spreading among 9107 * peers in an interface group. 9108 * Note: load spreading is disabled for RTF_MULTIRT 9109 * routes. 9110 */ 9111 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9112 (fire->ire_flags & RTF_MULTIRT)) { 9113 /* 9114 * Don't perform outbound load spreading 9115 * in the case of an RTF_MULTIRT issued route, 9116 * we actually typically want to replicate 9117 * outgoing packets through particular 9118 * interfaces. 9119 */ 9120 dst_ill = ipif->ipif_ill; 9121 ill_refhold(dst_ill); 9122 } else { 9123 dst_ill = ip_newroute_get_dst_ill( 9124 ipif->ipif_ill); 9125 } 9126 if (dst_ill == NULL) { 9127 if (ip_debug > 2) { 9128 pr_addr_dbg("ip_newroute_ipif: " 9129 "no dst ill for dst %s\n", 9130 AF_INET, &dst); 9131 } 9132 goto err_ret; 9133 } 9134 } 9135 9136 /* 9137 * Pick a source address preferring non-deprecated ones. 9138 * Unlike ip_newroute, we don't do any source address 9139 * selection here since for multicast it really does not help 9140 * in inbound load spreading as in the unicast case. 9141 */ 9142 if ((flags & RTF_SETSRC) && (fire != NULL) && 9143 (fire->ire_flags & RTF_SETSRC)) { 9144 /* 9145 * As requested by flags, an IRE_OFFSUBNET was looked up 9146 * on that interface. This ire has RTF_SETSRC flag, so 9147 * the source address of the packet must be changed. 9148 * Check that the ipif matching the requested source 9149 * address still exists. 9150 */ 9151 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9152 zoneid, NULL, NULL, NULL, NULL, ipst); 9153 } 9154 9155 unspec_src = (connp != NULL && connp->conn_unspec_src); 9156 9157 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9158 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9159 (connp != NULL && ipif->ipif_zoneid != zoneid && 9160 ipif->ipif_zoneid != ALL_ZONES)) && 9161 (src_ipif == NULL) && 9162 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9163 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9164 if (src_ipif == NULL) { 9165 if (ip_debug > 2) { 9166 /* ip1dbg */ 9167 pr_addr_dbg("ip_newroute_ipif: " 9168 "no src for dst %s", 9169 AF_INET, &dst); 9170 } 9171 ip1dbg((" through interface %s\n", 9172 dst_ill->ill_name)); 9173 goto err_ret; 9174 } 9175 ipif_refrele(ipif); 9176 ipif = src_ipif; 9177 ipif_refhold(ipif); 9178 } 9179 if (src_ipif == NULL) { 9180 src_ipif = ipif; 9181 ipif_refhold(src_ipif); 9182 } 9183 9184 /* 9185 * Assign a source address while we have the conn. 9186 * We can't have ip_wput_ire pick a source address when the 9187 * packet returns from arp since conn_unspec_src might be set 9188 * and we lose the conn when going through arp. 9189 */ 9190 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9191 ipha->ipha_src = src_ipif->ipif_src_addr; 9192 9193 /* 9194 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9195 * that the outgoing interface does not have an interface ire. 9196 */ 9197 if (CLASSD(ipha_dst) && (connp == NULL || 9198 connp->conn_outgoing_ill == NULL) && 9199 infop->ip_opt_ill_index == 0) { 9200 /* ipif_to_ire returns an held ire */ 9201 ire = ipif_to_ire(ipif); 9202 if (ire == NULL) 9203 goto err_ret; 9204 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9205 goto err_ret; 9206 /* 9207 * ihandle is needed when the ire is added to 9208 * cache table. 9209 */ 9210 save_ire = ire; 9211 ihandle = save_ire->ire_ihandle; 9212 9213 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9214 "flags %04x\n", 9215 (void *)ire, (void *)ipif, flags)); 9216 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9217 (fire->ire_flags & RTF_MULTIRT)) { 9218 /* 9219 * As requested by flags, an IRE_OFFSUBNET was 9220 * looked up on that interface. This ire has 9221 * RTF_MULTIRT flag, so the resolution loop will 9222 * be re-entered to resolve additional routes on 9223 * other interfaces. For that purpose, a copy of 9224 * the packet is performed at this point. 9225 */ 9226 fire->ire_last_used_time = lbolt; 9227 copy_mp = copymsg(first_mp); 9228 if (copy_mp) { 9229 MULTIRT_DEBUG_TAG(copy_mp); 9230 } 9231 } 9232 if ((flags & RTF_SETSRC) && (fire != NULL) && 9233 (fire->ire_flags & RTF_SETSRC)) { 9234 /* 9235 * As requested by flags, an IRE_OFFSUBET was 9236 * looked up on that interface. This ire has 9237 * RTF_SETSRC flag, so the source address of the 9238 * packet must be changed. 9239 */ 9240 ipha->ipha_src = fire->ire_src_addr; 9241 } 9242 } else { 9243 ASSERT((connp == NULL) || 9244 (connp->conn_outgoing_ill != NULL) || 9245 (connp->conn_dontroute) || 9246 infop->ip_opt_ill_index != 0); 9247 /* 9248 * The only ways we can come here are: 9249 * 1) IP_BOUND_IF socket option is set 9250 * 2) SO_DONTROUTE socket option is set 9251 * 3) IP_PKTINFO option is passed in as ancillary data. 9252 * In all cases, the new ire will not be added 9253 * into cache table. 9254 */ 9255 ire_marks |= IRE_MARK_NOADD; 9256 } 9257 9258 switch (ipif->ipif_net_type) { 9259 case IRE_IF_NORESOLVER: { 9260 /* We have what we need to build an IRE_CACHE. */ 9261 9262 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9263 (dst_ill->ill_resolver_mp == NULL)) { 9264 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9265 "for IRE_IF_NORESOLVER ire %p has " 9266 "no ill_resolver_mp\n", 9267 (void *)dst_ill, (void *)ire)); 9268 break; 9269 } 9270 9271 /* 9272 * The new ire inherits the IRE_OFFSUBNET flags 9273 * and source address, if this was requested. 9274 */ 9275 ire = ire_create( 9276 (uchar_t *)&dst, /* dest address */ 9277 (uchar_t *)&ip_g_all_ones, /* mask */ 9278 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9279 NULL, /* gateway address */ 9280 &ipif->ipif_mtu, 9281 NULL, /* no src nce */ 9282 dst_ill->ill_rq, /* recv-from queue */ 9283 dst_ill->ill_wq, /* send-to queue */ 9284 IRE_CACHE, 9285 src_ipif, 9286 (save_ire != NULL ? save_ire->ire_mask : 0), 9287 (fire != NULL) ? /* Parent handle */ 9288 fire->ire_phandle : 0, 9289 ihandle, /* Interface handle */ 9290 (fire != NULL) ? 9291 (fire->ire_flags & 9292 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9293 (save_ire == NULL ? &ire_uinfo_null : 9294 &save_ire->ire_uinfo), 9295 NULL, 9296 NULL, 9297 ipst); 9298 9299 if (ire == NULL) { 9300 if (save_ire != NULL) 9301 ire_refrele(save_ire); 9302 break; 9303 } 9304 9305 ire->ire_marks |= ire_marks; 9306 9307 /* 9308 * If IRE_MARK_NOADD is set then we need to convert 9309 * the max_fragp to a useable value now. This is 9310 * normally done in ire_add_v[46]. We also need to 9311 * associate the ire with an nce (normally would be 9312 * done in ip_wput_nondata()). 9313 * 9314 * Note that IRE_MARK_NOADD packets created here 9315 * do not have a non-null ire_mp pointer. The null 9316 * value of ire_bucket indicates that they were 9317 * never added. 9318 */ 9319 if (ire->ire_marks & IRE_MARK_NOADD) { 9320 uint_t max_frag; 9321 9322 max_frag = *ire->ire_max_fragp; 9323 ire->ire_max_fragp = NULL; 9324 ire->ire_max_frag = max_frag; 9325 9326 if ((ire->ire_nce = ndp_lookup_v4( 9327 ire_to_ill(ire), 9328 (ire->ire_gateway_addr != INADDR_ANY ? 9329 &ire->ire_gateway_addr : &ire->ire_addr), 9330 B_FALSE)) == NULL) { 9331 if (save_ire != NULL) 9332 ire_refrele(save_ire); 9333 break; 9334 } 9335 ASSERT(ire->ire_nce->nce_state == 9336 ND_REACHABLE); 9337 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9338 } 9339 9340 /* Prevent save_ire from getting deleted */ 9341 if (save_ire != NULL) { 9342 IRB_REFHOLD(save_ire->ire_bucket); 9343 /* Has it been removed already ? */ 9344 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9345 IRB_REFRELE(save_ire->ire_bucket); 9346 ire_refrele(save_ire); 9347 break; 9348 } 9349 } 9350 9351 ire_add_then_send(q, ire, first_mp); 9352 9353 /* Assert that save_ire is not deleted yet. */ 9354 if (save_ire != NULL) { 9355 ASSERT(save_ire->ire_ptpn != NULL); 9356 IRB_REFRELE(save_ire->ire_bucket); 9357 ire_refrele(save_ire); 9358 save_ire = NULL; 9359 } 9360 if (fire != NULL) { 9361 ire_refrele(fire); 9362 fire = NULL; 9363 } 9364 9365 /* 9366 * the resolution loop is re-entered if this 9367 * was requested through flags and if we 9368 * actually are in a multirouting case. 9369 */ 9370 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9371 boolean_t need_resolve = 9372 ire_multirt_need_resolve(ipha_dst, 9373 MBLK_GETLABEL(copy_mp), ipst); 9374 if (!need_resolve) { 9375 MULTIRT_DEBUG_UNTAG(copy_mp); 9376 freemsg(copy_mp); 9377 copy_mp = NULL; 9378 } else { 9379 /* 9380 * ipif_lookup_group() calls 9381 * ire_lookup_multi() that uses 9382 * ire_ftable_lookup() to find 9383 * an IRE_INTERFACE for the group. 9384 * In the multirt case, 9385 * ire_lookup_multi() then invokes 9386 * ire_multirt_lookup() to find 9387 * the next resolvable ire. 9388 * As a result, we obtain an new 9389 * interface, derived from the 9390 * next ire. 9391 */ 9392 ipif_refrele(ipif); 9393 ipif = ipif_lookup_group(ipha_dst, 9394 zoneid, ipst); 9395 ip2dbg(("ip_newroute_ipif: " 9396 "multirt dst %08x, ipif %p\n", 9397 htonl(dst), (void *)ipif)); 9398 if (ipif != NULL) { 9399 mp = copy_mp; 9400 copy_mp = NULL; 9401 multirt_resolve_next = B_TRUE; 9402 continue; 9403 } else { 9404 freemsg(copy_mp); 9405 } 9406 } 9407 } 9408 if (ipif != NULL) 9409 ipif_refrele(ipif); 9410 ill_refrele(dst_ill); 9411 ipif_refrele(src_ipif); 9412 return; 9413 } 9414 case IRE_IF_RESOLVER: 9415 /* 9416 * We can't build an IRE_CACHE yet, but at least 9417 * we found a resolver that can help. 9418 */ 9419 res_mp = dst_ill->ill_resolver_mp; 9420 if (!OK_RESOLVER_MP(res_mp)) 9421 break; 9422 9423 /* 9424 * We obtain a partial IRE_CACHE which we will pass 9425 * along with the resolver query. When the response 9426 * comes back it will be there ready for us to add. 9427 * The new ire inherits the IRE_OFFSUBNET flags 9428 * and source address, if this was requested. 9429 * The ire_max_frag is atomically set under the 9430 * irebucket lock in ire_add_v[46]. Only in the 9431 * case of IRE_MARK_NOADD, we set it here itself. 9432 */ 9433 ire = ire_create_mp( 9434 (uchar_t *)&dst, /* dest address */ 9435 (uchar_t *)&ip_g_all_ones, /* mask */ 9436 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9437 NULL, /* gateway address */ 9438 (ire_marks & IRE_MARK_NOADD) ? 9439 ipif->ipif_mtu : 0, /* max_frag */ 9440 NULL, /* no src nce */ 9441 dst_ill->ill_rq, /* recv-from queue */ 9442 dst_ill->ill_wq, /* send-to queue */ 9443 IRE_CACHE, 9444 src_ipif, 9445 (save_ire != NULL ? save_ire->ire_mask : 0), 9446 (fire != NULL) ? /* Parent handle */ 9447 fire->ire_phandle : 0, 9448 ihandle, /* Interface handle */ 9449 (fire != NULL) ? /* flags if any */ 9450 (fire->ire_flags & 9451 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9452 (save_ire == NULL ? &ire_uinfo_null : 9453 &save_ire->ire_uinfo), 9454 NULL, 9455 NULL, 9456 ipst); 9457 9458 if (save_ire != NULL) { 9459 ire_refrele(save_ire); 9460 save_ire = NULL; 9461 } 9462 if (ire == NULL) 9463 break; 9464 9465 ire->ire_marks |= ire_marks; 9466 /* 9467 * Construct message chain for the resolver of the 9468 * form: 9469 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9470 * 9471 * NOTE : ire will be added later when the response 9472 * comes back from ARP. If the response does not 9473 * come back, ARP frees the packet. For this reason, 9474 * we can't REFHOLD the bucket of save_ire to prevent 9475 * deletions. We may not be able to REFRELE the 9476 * bucket if the response never comes back. 9477 * Thus, before adding the ire, ire_add_v4 will make 9478 * sure that the interface route does not get deleted. 9479 * This is the only case unlike ip_newroute_v6, 9480 * ip_newroute_ipif_v6 where we can always prevent 9481 * deletions because ire_add_then_send is called after 9482 * creating the IRE. 9483 * If IRE_MARK_NOADD is set, then ire_add_then_send 9484 * does not add this IRE into the IRE CACHE. 9485 */ 9486 ASSERT(ire->ire_mp != NULL); 9487 ire->ire_mp->b_cont = first_mp; 9488 /* Have saved_mp handy, for cleanup if canput fails */ 9489 saved_mp = mp; 9490 mp = copyb(res_mp); 9491 if (mp == NULL) { 9492 /* Prepare for cleanup */ 9493 mp = saved_mp; /* pkt */ 9494 ire_delete(ire); /* ire_mp */ 9495 ire = NULL; 9496 if (copy_mp != NULL) { 9497 MULTIRT_DEBUG_UNTAG(copy_mp); 9498 freemsg(copy_mp); 9499 copy_mp = NULL; 9500 } 9501 break; 9502 } 9503 linkb(mp, ire->ire_mp); 9504 9505 /* 9506 * Fill in the source and dest addrs for the resolver. 9507 * NOTE: this depends on memory layouts imposed by 9508 * ill_init(). 9509 */ 9510 areq = (areq_t *)mp->b_rptr; 9511 addrp = (ipaddr_t *)((char *)areq + 9512 areq->areq_sender_addr_offset); 9513 *addrp = ire->ire_src_addr; 9514 addrp = (ipaddr_t *)((char *)areq + 9515 areq->areq_target_addr_offset); 9516 *addrp = dst; 9517 /* Up to the resolver. */ 9518 if (canputnext(dst_ill->ill_rq) && 9519 !(dst_ill->ill_arp_closing)) { 9520 putnext(dst_ill->ill_rq, mp); 9521 /* 9522 * The response will come back in ip_wput 9523 * with db_type IRE_DB_TYPE. 9524 */ 9525 } else { 9526 mp->b_cont = NULL; 9527 freeb(mp); /* areq */ 9528 ire_delete(ire); /* ire_mp */ 9529 saved_mp->b_next = NULL; 9530 saved_mp->b_prev = NULL; 9531 freemsg(first_mp); /* pkt */ 9532 ip2dbg(("ip_newroute_ipif: dropped\n")); 9533 } 9534 9535 if (fire != NULL) { 9536 ire_refrele(fire); 9537 fire = NULL; 9538 } 9539 9540 9541 /* 9542 * The resolution loop is re-entered if this was 9543 * requested through flags and we actually are 9544 * in a multirouting case. 9545 */ 9546 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9547 boolean_t need_resolve = 9548 ire_multirt_need_resolve(ipha_dst, 9549 MBLK_GETLABEL(copy_mp), ipst); 9550 if (!need_resolve) { 9551 MULTIRT_DEBUG_UNTAG(copy_mp); 9552 freemsg(copy_mp); 9553 copy_mp = NULL; 9554 } else { 9555 /* 9556 * ipif_lookup_group() calls 9557 * ire_lookup_multi() that uses 9558 * ire_ftable_lookup() to find 9559 * an IRE_INTERFACE for the group. 9560 * In the multirt case, 9561 * ire_lookup_multi() then invokes 9562 * ire_multirt_lookup() to find 9563 * the next resolvable ire. 9564 * As a result, we obtain an new 9565 * interface, derived from the 9566 * next ire. 9567 */ 9568 ipif_refrele(ipif); 9569 ipif = ipif_lookup_group(ipha_dst, 9570 zoneid, ipst); 9571 if (ipif != NULL) { 9572 mp = copy_mp; 9573 copy_mp = NULL; 9574 multirt_resolve_next = B_TRUE; 9575 continue; 9576 } else { 9577 freemsg(copy_mp); 9578 } 9579 } 9580 } 9581 if (ipif != NULL) 9582 ipif_refrele(ipif); 9583 ill_refrele(dst_ill); 9584 ipif_refrele(src_ipif); 9585 return; 9586 default: 9587 break; 9588 } 9589 } while (multirt_resolve_next); 9590 9591 err_ret: 9592 ip2dbg(("ip_newroute_ipif: dropped\n")); 9593 if (fire != NULL) 9594 ire_refrele(fire); 9595 ipif_refrele(ipif); 9596 /* Did this packet originate externally? */ 9597 if (dst_ill != NULL) 9598 ill_refrele(dst_ill); 9599 if (src_ipif != NULL) 9600 ipif_refrele(src_ipif); 9601 if (mp->b_prev || mp->b_next) { 9602 mp->b_next = NULL; 9603 mp->b_prev = NULL; 9604 } else { 9605 /* 9606 * Since ip_wput() isn't close to finished, we fill 9607 * in enough of the header for credible error reporting. 9608 */ 9609 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9610 /* Failed */ 9611 freemsg(first_mp); 9612 if (ire != NULL) 9613 ire_refrele(ire); 9614 return; 9615 } 9616 } 9617 /* 9618 * At this point we will have ire only if RTF_BLACKHOLE 9619 * or RTF_REJECT flags are set on the IRE. It will not 9620 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9621 */ 9622 if (ire != NULL) { 9623 if (ire->ire_flags & RTF_BLACKHOLE) { 9624 ire_refrele(ire); 9625 freemsg(first_mp); 9626 return; 9627 } 9628 ire_refrele(ire); 9629 } 9630 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9631 } 9632 9633 /* Name/Value Table Lookup Routine */ 9634 char * 9635 ip_nv_lookup(nv_t *nv, int value) 9636 { 9637 if (!nv) 9638 return (NULL); 9639 for (; nv->nv_name; nv++) { 9640 if (nv->nv_value == value) 9641 return (nv->nv_name); 9642 } 9643 return ("unknown"); 9644 } 9645 9646 /* 9647 * This is a module open, i.e. this is a control stream for access 9648 * to a DLPI device. We allocate an ill_t as the instance data in 9649 * this case. 9650 */ 9651 int 9652 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9653 { 9654 ill_t *ill; 9655 int err; 9656 zoneid_t zoneid; 9657 netstack_t *ns; 9658 ip_stack_t *ipst; 9659 9660 /* 9661 * Prevent unprivileged processes from pushing IP so that 9662 * they can't send raw IP. 9663 */ 9664 if (secpolicy_net_rawaccess(credp) != 0) 9665 return (EPERM); 9666 9667 ns = netstack_find_by_cred(credp); 9668 ASSERT(ns != NULL); 9669 ipst = ns->netstack_ip; 9670 ASSERT(ipst != NULL); 9671 9672 /* 9673 * For exclusive stacks we set the zoneid to zero 9674 * to make IP operate as if in the global zone. 9675 */ 9676 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9677 zoneid = GLOBAL_ZONEID; 9678 else 9679 zoneid = crgetzoneid(credp); 9680 9681 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9682 q->q_ptr = WR(q)->q_ptr = ill; 9683 ill->ill_ipst = ipst; 9684 ill->ill_zoneid = zoneid; 9685 9686 /* 9687 * ill_init initializes the ill fields and then sends down 9688 * down a DL_INFO_REQ after calling qprocson. 9689 */ 9690 err = ill_init(q, ill); 9691 if (err != 0) { 9692 mi_free(ill); 9693 netstack_rele(ipst->ips_netstack); 9694 q->q_ptr = NULL; 9695 WR(q)->q_ptr = NULL; 9696 return (err); 9697 } 9698 9699 /* ill_init initializes the ipsq marking this thread as writer */ 9700 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9701 /* Wait for the DL_INFO_ACK */ 9702 mutex_enter(&ill->ill_lock); 9703 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9704 /* 9705 * Return value of 0 indicates a pending signal. 9706 */ 9707 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9708 if (err == 0) { 9709 mutex_exit(&ill->ill_lock); 9710 (void) ip_close(q, 0); 9711 return (EINTR); 9712 } 9713 } 9714 mutex_exit(&ill->ill_lock); 9715 9716 /* 9717 * ip_rput_other could have set an error in ill_error on 9718 * receipt of M_ERROR. 9719 */ 9720 9721 err = ill->ill_error; 9722 if (err != 0) { 9723 (void) ip_close(q, 0); 9724 return (err); 9725 } 9726 9727 ill->ill_credp = credp; 9728 crhold(credp); 9729 9730 mutex_enter(&ipst->ips_ip_mi_lock); 9731 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9732 credp); 9733 mutex_exit(&ipst->ips_ip_mi_lock); 9734 if (err) { 9735 (void) ip_close(q, 0); 9736 return (err); 9737 } 9738 return (0); 9739 } 9740 9741 /* For /dev/ip aka AF_INET open */ 9742 int 9743 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9744 { 9745 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9746 } 9747 9748 /* For /dev/ip6 aka AF_INET6 open */ 9749 int 9750 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9751 { 9752 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9753 } 9754 9755 /* IP open routine. */ 9756 int 9757 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9758 boolean_t isv6) 9759 { 9760 conn_t *connp; 9761 major_t maj; 9762 zoneid_t zoneid; 9763 netstack_t *ns; 9764 ip_stack_t *ipst; 9765 9766 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9767 9768 /* Allow reopen. */ 9769 if (q->q_ptr != NULL) 9770 return (0); 9771 9772 if (sflag & MODOPEN) { 9773 /* This is a module open */ 9774 return (ip_modopen(q, devp, flag, sflag, credp)); 9775 } 9776 9777 ns = netstack_find_by_cred(credp); 9778 ASSERT(ns != NULL); 9779 ipst = ns->netstack_ip; 9780 ASSERT(ipst != NULL); 9781 9782 /* 9783 * For exclusive stacks we set the zoneid to zero 9784 * to make IP operate as if in the global zone. 9785 */ 9786 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9787 zoneid = GLOBAL_ZONEID; 9788 else 9789 zoneid = crgetzoneid(credp); 9790 9791 /* 9792 * We are opening as a device. This is an IP client stream, and we 9793 * allocate an conn_t as the instance data. 9794 */ 9795 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9796 9797 /* 9798 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9799 * done by netstack_find_by_cred() 9800 */ 9801 netstack_rele(ipst->ips_netstack); 9802 9803 connp->conn_zoneid = zoneid; 9804 connp->conn_sqp = NULL; 9805 connp->conn_initial_sqp = NULL; 9806 connp->conn_final_sqp = NULL; 9807 9808 connp->conn_upq = q; 9809 q->q_ptr = WR(q)->q_ptr = connp; 9810 9811 if (flag & SO_SOCKSTR) 9812 connp->conn_flags |= IPCL_SOCKET; 9813 9814 /* Minor tells us which /dev entry was opened */ 9815 if (isv6) { 9816 connp->conn_flags |= IPCL_ISV6; 9817 connp->conn_af_isv6 = B_TRUE; 9818 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9819 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9820 } else { 9821 connp->conn_af_isv6 = B_FALSE; 9822 connp->conn_pkt_isv6 = B_FALSE; 9823 } 9824 9825 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9826 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9827 connp->conn_minor_arena = ip_minor_arena_la; 9828 } else { 9829 /* 9830 * Either minor numbers in the large arena were exhausted 9831 * or a non socket application is doing the open. 9832 * Try to allocate from the small arena. 9833 */ 9834 if ((connp->conn_dev = 9835 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9836 /* CONN_DEC_REF takes care of netstack_rele() */ 9837 q->q_ptr = WR(q)->q_ptr = NULL; 9838 CONN_DEC_REF(connp); 9839 return (EBUSY); 9840 } 9841 connp->conn_minor_arena = ip_minor_arena_sa; 9842 } 9843 9844 maj = getemajor(*devp); 9845 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9846 9847 /* 9848 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9849 */ 9850 connp->conn_cred = credp; 9851 9852 /* 9853 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9854 */ 9855 connp->conn_recv = ip_conn_input; 9856 9857 crhold(connp->conn_cred); 9858 9859 /* 9860 * If the caller has the process-wide flag set, then default to MAC 9861 * exempt mode. This allows read-down to unlabeled hosts. 9862 */ 9863 if (getpflags(NET_MAC_AWARE, credp) != 0) 9864 connp->conn_mac_exempt = B_TRUE; 9865 9866 connp->conn_rq = q; 9867 connp->conn_wq = WR(q); 9868 9869 /* Non-zero default values */ 9870 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9871 9872 /* 9873 * Make the conn globally visible to walkers 9874 */ 9875 ASSERT(connp->conn_ref == 1); 9876 mutex_enter(&connp->conn_lock); 9877 connp->conn_state_flags &= ~CONN_INCIPIENT; 9878 mutex_exit(&connp->conn_lock); 9879 9880 qprocson(q); 9881 9882 return (0); 9883 } 9884 9885 /* 9886 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9887 * Note that there is no race since either ip_output function works - it 9888 * is just an optimization to enter the best ip_output routine directly. 9889 */ 9890 void 9891 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9892 ip_stack_t *ipst) 9893 { 9894 if (isv6) { 9895 if (bump_mib) { 9896 BUMP_MIB(&ipst->ips_ip6_mib, 9897 ipIfStatsOutSwitchIPVersion); 9898 } 9899 connp->conn_send = ip_output_v6; 9900 connp->conn_pkt_isv6 = B_TRUE; 9901 } else { 9902 if (bump_mib) { 9903 BUMP_MIB(&ipst->ips_ip_mib, 9904 ipIfStatsOutSwitchIPVersion); 9905 } 9906 connp->conn_send = ip_output; 9907 connp->conn_pkt_isv6 = B_FALSE; 9908 } 9909 9910 } 9911 9912 /* 9913 * See if IPsec needs loading because of the options in mp. 9914 */ 9915 static boolean_t 9916 ipsec_opt_present(mblk_t *mp) 9917 { 9918 uint8_t *optcp, *next_optcp, *opt_endcp; 9919 struct opthdr *opt; 9920 struct T_opthdr *topt; 9921 int opthdr_len; 9922 t_uscalar_t optname, optlevel; 9923 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9924 ipsec_req_t *ipsr; 9925 9926 /* 9927 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9928 * return TRUE. 9929 */ 9930 9931 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9932 opt_endcp = optcp + tor->OPT_length; 9933 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9934 opthdr_len = sizeof (struct T_opthdr); 9935 } else { /* O_OPTMGMT_REQ */ 9936 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9937 opthdr_len = sizeof (struct opthdr); 9938 } 9939 for (; optcp < opt_endcp; optcp = next_optcp) { 9940 if (optcp + opthdr_len > opt_endcp) 9941 return (B_FALSE); /* Not enough option header. */ 9942 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9943 topt = (struct T_opthdr *)optcp; 9944 optlevel = topt->level; 9945 optname = topt->name; 9946 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9947 } else { 9948 opt = (struct opthdr *)optcp; 9949 optlevel = opt->level; 9950 optname = opt->name; 9951 next_optcp = optcp + opthdr_len + 9952 _TPI_ALIGN_OPT(opt->len); 9953 } 9954 if ((next_optcp < optcp) || /* wraparound pointer space */ 9955 ((next_optcp >= opt_endcp) && /* last option bad len */ 9956 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9957 return (B_FALSE); /* bad option buffer */ 9958 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9959 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9960 /* 9961 * Check to see if it's an all-bypass or all-zeroes 9962 * IPsec request. Don't bother loading IPsec if 9963 * the socket doesn't want to use it. (A good example 9964 * is a bypass request.) 9965 * 9966 * Basically, if any of the non-NEVER bits are set, 9967 * load IPsec. 9968 */ 9969 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9970 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9971 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9972 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9973 != 0) 9974 return (B_TRUE); 9975 } 9976 } 9977 return (B_FALSE); 9978 } 9979 9980 /* 9981 * If conn is is waiting for ipsec to finish loading, kick it. 9982 */ 9983 /* ARGSUSED */ 9984 static void 9985 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9986 { 9987 t_scalar_t optreq_prim; 9988 mblk_t *mp; 9989 cred_t *cr; 9990 int err = 0; 9991 9992 /* 9993 * This function is called, after ipsec loading is complete. 9994 * Since IP checks exclusively and atomically (i.e it prevents 9995 * ipsec load from completing until ip_optcom_req completes) 9996 * whether ipsec load is complete, there cannot be a race with IP 9997 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9998 */ 9999 mutex_enter(&connp->conn_lock); 10000 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10001 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10002 mp = connp->conn_ipsec_opt_mp; 10003 connp->conn_ipsec_opt_mp = NULL; 10004 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10005 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10006 mutex_exit(&connp->conn_lock); 10007 10008 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10009 10010 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10011 if (optreq_prim == T_OPTMGMT_REQ) { 10012 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10013 &ip_opt_obj, B_FALSE); 10014 } else { 10015 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10016 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10017 &ip_opt_obj, B_FALSE); 10018 } 10019 if (err != EINPROGRESS) 10020 CONN_OPER_PENDING_DONE(connp); 10021 return; 10022 } 10023 mutex_exit(&connp->conn_lock); 10024 } 10025 10026 /* 10027 * Called from the ipsec_loader thread, outside any perimeter, to tell 10028 * ip qenable any of the queues waiting for the ipsec loader to 10029 * complete. 10030 */ 10031 void 10032 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10033 { 10034 netstack_t *ns = ipss->ipsec_netstack; 10035 10036 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10037 } 10038 10039 /* 10040 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10041 * determines the grp on which it has to become exclusive, queues the mp 10042 * and sq draining restarts the optmgmt 10043 */ 10044 static boolean_t 10045 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10046 { 10047 conn_t *connp = Q_TO_CONN(q); 10048 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10049 10050 /* 10051 * Take IPsec requests and treat them special. 10052 */ 10053 if (ipsec_opt_present(mp)) { 10054 /* First check if IPsec is loaded. */ 10055 mutex_enter(&ipss->ipsec_loader_lock); 10056 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10057 mutex_exit(&ipss->ipsec_loader_lock); 10058 return (B_FALSE); 10059 } 10060 mutex_enter(&connp->conn_lock); 10061 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10062 10063 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10064 connp->conn_ipsec_opt_mp = mp; 10065 mutex_exit(&connp->conn_lock); 10066 mutex_exit(&ipss->ipsec_loader_lock); 10067 10068 ipsec_loader_loadnow(ipss); 10069 return (B_TRUE); 10070 } 10071 return (B_FALSE); 10072 } 10073 10074 /* 10075 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10076 * all of them are copied to the conn_t. If the req is "zero", the policy is 10077 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10078 * fields. 10079 * We keep only the latest setting of the policy and thus policy setting 10080 * is not incremental/cumulative. 10081 * 10082 * Requests to set policies with multiple alternative actions will 10083 * go through a different API. 10084 */ 10085 int 10086 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10087 { 10088 uint_t ah_req = 0; 10089 uint_t esp_req = 0; 10090 uint_t se_req = 0; 10091 ipsec_selkey_t sel; 10092 ipsec_act_t *actp = NULL; 10093 uint_t nact; 10094 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10095 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10096 ipsec_policy_root_t *pr; 10097 ipsec_policy_head_t *ph; 10098 int fam; 10099 boolean_t is_pol_reset; 10100 int error = 0; 10101 netstack_t *ns = connp->conn_netstack; 10102 ip_stack_t *ipst = ns->netstack_ip; 10103 ipsec_stack_t *ipss = ns->netstack_ipsec; 10104 10105 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10106 10107 /* 10108 * The IP_SEC_OPT option does not allow variable length parameters, 10109 * hence a request cannot be NULL. 10110 */ 10111 if (req == NULL) 10112 return (EINVAL); 10113 10114 ah_req = req->ipsr_ah_req; 10115 esp_req = req->ipsr_esp_req; 10116 se_req = req->ipsr_self_encap_req; 10117 10118 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10119 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10120 return (EINVAL); 10121 10122 /* 10123 * Are we dealing with a request to reset the policy (i.e. 10124 * zero requests). 10125 */ 10126 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10127 (esp_req & REQ_MASK) == 0 && 10128 (se_req & REQ_MASK) == 0); 10129 10130 if (!is_pol_reset) { 10131 /* 10132 * If we couldn't load IPsec, fail with "protocol 10133 * not supported". 10134 * IPsec may not have been loaded for a request with zero 10135 * policies, so we don't fail in this case. 10136 */ 10137 mutex_enter(&ipss->ipsec_loader_lock); 10138 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10139 mutex_exit(&ipss->ipsec_loader_lock); 10140 return (EPROTONOSUPPORT); 10141 } 10142 mutex_exit(&ipss->ipsec_loader_lock); 10143 10144 /* 10145 * Test for valid requests. Invalid algorithms 10146 * need to be tested by IPsec code because new 10147 * algorithms can be added dynamically. 10148 */ 10149 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10150 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10151 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10152 return (EINVAL); 10153 } 10154 10155 /* 10156 * Only privileged users can issue these 10157 * requests. 10158 */ 10159 if (((ah_req & IPSEC_PREF_NEVER) || 10160 (esp_req & IPSEC_PREF_NEVER) || 10161 (se_req & IPSEC_PREF_NEVER)) && 10162 secpolicy_ip_config(cr, B_FALSE) != 0) { 10163 return (EPERM); 10164 } 10165 10166 /* 10167 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10168 * are mutually exclusive. 10169 */ 10170 if (((ah_req & REQ_MASK) == REQ_MASK) || 10171 ((esp_req & REQ_MASK) == REQ_MASK) || 10172 ((se_req & REQ_MASK) == REQ_MASK)) { 10173 /* Both of them are set */ 10174 return (EINVAL); 10175 } 10176 } 10177 10178 mutex_enter(&connp->conn_lock); 10179 10180 /* 10181 * If we have already cached policies in ip_bind_connected*(), don't 10182 * let them change now. We cache policies for connections 10183 * whose src,dst [addr, port] is known. 10184 */ 10185 if (connp->conn_policy_cached) { 10186 mutex_exit(&connp->conn_lock); 10187 return (EINVAL); 10188 } 10189 10190 /* 10191 * We have a zero policies, reset the connection policy if already 10192 * set. This will cause the connection to inherit the 10193 * global policy, if any. 10194 */ 10195 if (is_pol_reset) { 10196 if (connp->conn_policy != NULL) { 10197 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10198 connp->conn_policy = NULL; 10199 } 10200 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10201 connp->conn_in_enforce_policy = B_FALSE; 10202 connp->conn_out_enforce_policy = B_FALSE; 10203 mutex_exit(&connp->conn_lock); 10204 return (0); 10205 } 10206 10207 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10208 ipst->ips_netstack); 10209 if (ph == NULL) 10210 goto enomem; 10211 10212 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10213 if (actp == NULL) 10214 goto enomem; 10215 10216 /* 10217 * Always allocate IPv4 policy entries, since they can also 10218 * apply to ipv6 sockets being used in ipv4-compat mode. 10219 */ 10220 bzero(&sel, sizeof (sel)); 10221 sel.ipsl_valid = IPSL_IPV4; 10222 10223 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10224 ipst->ips_netstack); 10225 if (pin4 == NULL) 10226 goto enomem; 10227 10228 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10229 ipst->ips_netstack); 10230 if (pout4 == NULL) 10231 goto enomem; 10232 10233 if (connp->conn_af_isv6) { 10234 /* 10235 * We're looking at a v6 socket, also allocate the 10236 * v6-specific entries... 10237 */ 10238 sel.ipsl_valid = IPSL_IPV6; 10239 pin6 = ipsec_policy_create(&sel, actp, nact, 10240 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10241 if (pin6 == NULL) 10242 goto enomem; 10243 10244 pout6 = ipsec_policy_create(&sel, actp, nact, 10245 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10246 if (pout6 == NULL) 10247 goto enomem; 10248 10249 /* 10250 * .. and file them away in the right place. 10251 */ 10252 fam = IPSEC_AF_V6; 10253 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10254 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10255 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10256 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10257 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10258 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10259 } 10260 10261 ipsec_actvec_free(actp, nact); 10262 10263 /* 10264 * File the v4 policies. 10265 */ 10266 fam = IPSEC_AF_V4; 10267 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10268 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10269 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10270 10271 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10272 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10273 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10274 10275 /* 10276 * If the requests need security, set enforce_policy. 10277 * If the requests are IPSEC_PREF_NEVER, one should 10278 * still set conn_out_enforce_policy so that an ipsec_out 10279 * gets attached in ip_wput. This is needed so that 10280 * for connections that we don't cache policy in ip_bind, 10281 * if global policy matches in ip_wput_attach_policy, we 10282 * don't wrongly inherit global policy. Similarly, we need 10283 * to set conn_in_enforce_policy also so that we don't verify 10284 * policy wrongly. 10285 */ 10286 if ((ah_req & REQ_MASK) != 0 || 10287 (esp_req & REQ_MASK) != 0 || 10288 (se_req & REQ_MASK) != 0) { 10289 connp->conn_in_enforce_policy = B_TRUE; 10290 connp->conn_out_enforce_policy = B_TRUE; 10291 connp->conn_flags |= IPCL_CHECK_POLICY; 10292 } 10293 10294 mutex_exit(&connp->conn_lock); 10295 return (error); 10296 #undef REQ_MASK 10297 10298 /* 10299 * Common memory-allocation-failure exit path. 10300 */ 10301 enomem: 10302 mutex_exit(&connp->conn_lock); 10303 if (actp != NULL) 10304 ipsec_actvec_free(actp, nact); 10305 if (pin4 != NULL) 10306 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10307 if (pout4 != NULL) 10308 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10309 if (pin6 != NULL) 10310 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10311 if (pout6 != NULL) 10312 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10313 return (ENOMEM); 10314 } 10315 10316 /* 10317 * Only for options that pass in an IP addr. Currently only V4 options 10318 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10319 * So this function assumes level is IPPROTO_IP 10320 */ 10321 int 10322 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10323 mblk_t *first_mp) 10324 { 10325 ipif_t *ipif = NULL; 10326 int error; 10327 ill_t *ill; 10328 int zoneid; 10329 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10330 10331 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10332 10333 if (addr != INADDR_ANY || checkonly) { 10334 ASSERT(connp != NULL); 10335 zoneid = IPCL_ZONEID(connp); 10336 if (option == IP_NEXTHOP) { 10337 ipif = ipif_lookup_onlink_addr(addr, 10338 connp->conn_zoneid, ipst); 10339 } else { 10340 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10341 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10342 &error, ipst); 10343 } 10344 if (ipif == NULL) { 10345 if (error == EINPROGRESS) 10346 return (error); 10347 else if ((option == IP_MULTICAST_IF) || 10348 (option == IP_NEXTHOP)) 10349 return (EHOSTUNREACH); 10350 else 10351 return (EINVAL); 10352 } else if (checkonly) { 10353 if (option == IP_MULTICAST_IF) { 10354 ill = ipif->ipif_ill; 10355 /* not supported by the virtual network iface */ 10356 if (IS_VNI(ill)) { 10357 ipif_refrele(ipif); 10358 return (EINVAL); 10359 } 10360 } 10361 ipif_refrele(ipif); 10362 return (0); 10363 } 10364 ill = ipif->ipif_ill; 10365 mutex_enter(&connp->conn_lock); 10366 mutex_enter(&ill->ill_lock); 10367 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10368 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10369 mutex_exit(&ill->ill_lock); 10370 mutex_exit(&connp->conn_lock); 10371 ipif_refrele(ipif); 10372 return (option == IP_MULTICAST_IF ? 10373 EHOSTUNREACH : EINVAL); 10374 } 10375 } else { 10376 mutex_enter(&connp->conn_lock); 10377 } 10378 10379 /* None of the options below are supported on the VNI */ 10380 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10381 mutex_exit(&ill->ill_lock); 10382 mutex_exit(&connp->conn_lock); 10383 ipif_refrele(ipif); 10384 return (EINVAL); 10385 } 10386 10387 switch (option) { 10388 case IP_DONTFAILOVER_IF: 10389 /* 10390 * This option is used by in.mpathd to ensure 10391 * that IPMP probe packets only go out on the 10392 * test interfaces. in.mpathd sets this option 10393 * on the non-failover interfaces. 10394 * For backward compatibility, this option 10395 * implicitly sets IP_MULTICAST_IF, as used 10396 * be done in bind(), so that ip_wput gets 10397 * this ipif to send mcast packets. 10398 */ 10399 if (ipif != NULL) { 10400 ASSERT(addr != INADDR_ANY); 10401 connp->conn_nofailover_ill = ipif->ipif_ill; 10402 connp->conn_multicast_ipif = ipif; 10403 } else { 10404 ASSERT(addr == INADDR_ANY); 10405 connp->conn_nofailover_ill = NULL; 10406 connp->conn_multicast_ipif = NULL; 10407 } 10408 break; 10409 10410 case IP_MULTICAST_IF: 10411 connp->conn_multicast_ipif = ipif; 10412 break; 10413 case IP_NEXTHOP: 10414 connp->conn_nexthop_v4 = addr; 10415 connp->conn_nexthop_set = B_TRUE; 10416 break; 10417 } 10418 10419 if (ipif != NULL) { 10420 mutex_exit(&ill->ill_lock); 10421 mutex_exit(&connp->conn_lock); 10422 ipif_refrele(ipif); 10423 return (0); 10424 } 10425 mutex_exit(&connp->conn_lock); 10426 /* We succeded in cleared the option */ 10427 return (0); 10428 } 10429 10430 /* 10431 * For options that pass in an ifindex specifying the ill. V6 options always 10432 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10433 */ 10434 int 10435 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10436 int level, int option, mblk_t *first_mp) 10437 { 10438 ill_t *ill = NULL; 10439 int error = 0; 10440 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10441 10442 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10443 if (ifindex != 0) { 10444 ASSERT(connp != NULL); 10445 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10446 first_mp, ip_restart_optmgmt, &error, ipst); 10447 if (ill != NULL) { 10448 if (checkonly) { 10449 /* not supported by the virtual network iface */ 10450 if (IS_VNI(ill)) { 10451 ill_refrele(ill); 10452 return (EINVAL); 10453 } 10454 ill_refrele(ill); 10455 return (0); 10456 } 10457 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10458 0, NULL)) { 10459 ill_refrele(ill); 10460 ill = NULL; 10461 mutex_enter(&connp->conn_lock); 10462 goto setit; 10463 } 10464 mutex_enter(&connp->conn_lock); 10465 mutex_enter(&ill->ill_lock); 10466 if (ill->ill_state_flags & ILL_CONDEMNED) { 10467 mutex_exit(&ill->ill_lock); 10468 mutex_exit(&connp->conn_lock); 10469 ill_refrele(ill); 10470 ill = NULL; 10471 mutex_enter(&connp->conn_lock); 10472 } 10473 goto setit; 10474 } else if (error == EINPROGRESS) { 10475 return (error); 10476 } else { 10477 error = 0; 10478 } 10479 } 10480 mutex_enter(&connp->conn_lock); 10481 setit: 10482 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10483 10484 /* 10485 * The options below assume that the ILL (if any) transmits and/or 10486 * receives traffic. Neither of which is true for the virtual network 10487 * interface, so fail setting these on a VNI. 10488 */ 10489 if (IS_VNI(ill)) { 10490 ASSERT(ill != NULL); 10491 mutex_exit(&ill->ill_lock); 10492 mutex_exit(&connp->conn_lock); 10493 ill_refrele(ill); 10494 return (EINVAL); 10495 } 10496 10497 if (level == IPPROTO_IP) { 10498 switch (option) { 10499 case IP_BOUND_IF: 10500 connp->conn_incoming_ill = ill; 10501 connp->conn_outgoing_ill = ill; 10502 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10503 0 : ifindex; 10504 break; 10505 10506 case IP_MULTICAST_IF: 10507 /* 10508 * This option is an internal special. The socket 10509 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10510 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10511 * specifies an ifindex and we try first on V6 ill's. 10512 * If we don't find one, we they try using on v4 ill's 10513 * intenally and we come here. 10514 */ 10515 if (!checkonly && ill != NULL) { 10516 ipif_t *ipif; 10517 ipif = ill->ill_ipif; 10518 10519 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10520 mutex_exit(&ill->ill_lock); 10521 mutex_exit(&connp->conn_lock); 10522 ill_refrele(ill); 10523 ill = NULL; 10524 mutex_enter(&connp->conn_lock); 10525 } else { 10526 connp->conn_multicast_ipif = ipif; 10527 } 10528 } 10529 break; 10530 10531 case IP_DHCPINIT_IF: 10532 if (connp->conn_dhcpinit_ill != NULL) { 10533 /* 10534 * We've locked the conn so conn_cleanup_ill() 10535 * cannot clear conn_dhcpinit_ill -- so it's 10536 * safe to access the ill. 10537 */ 10538 ill_t *oill = connp->conn_dhcpinit_ill; 10539 10540 ASSERT(oill->ill_dhcpinit != 0); 10541 atomic_dec_32(&oill->ill_dhcpinit); 10542 connp->conn_dhcpinit_ill = NULL; 10543 } 10544 10545 if (ill != NULL) { 10546 connp->conn_dhcpinit_ill = ill; 10547 atomic_inc_32(&ill->ill_dhcpinit); 10548 } 10549 break; 10550 } 10551 } else { 10552 switch (option) { 10553 case IPV6_BOUND_IF: 10554 connp->conn_incoming_ill = ill; 10555 connp->conn_outgoing_ill = ill; 10556 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10557 0 : ifindex; 10558 break; 10559 10560 case IPV6_BOUND_PIF: 10561 /* 10562 * Limit all transmit to this ill. 10563 * Unlike IPV6_BOUND_IF, using this option 10564 * prevents load spreading and failover from 10565 * happening when the interface is part of the 10566 * group. That's why we don't need to remember 10567 * the ifindex in orig_bound_ifindex as in 10568 * IPV6_BOUND_IF. 10569 */ 10570 connp->conn_outgoing_pill = ill; 10571 break; 10572 10573 case IPV6_DONTFAILOVER_IF: 10574 /* 10575 * This option is used by in.mpathd to ensure 10576 * that IPMP probe packets only go out on the 10577 * test interfaces. in.mpathd sets this option 10578 * on the non-failover interfaces. 10579 */ 10580 connp->conn_nofailover_ill = ill; 10581 /* 10582 * For backward compatibility, this option 10583 * implicitly sets ip_multicast_ill as used in 10584 * IPV6_MULTICAST_IF so that ip_wput gets 10585 * this ill to send mcast packets. 10586 */ 10587 connp->conn_multicast_ill = ill; 10588 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10589 0 : ifindex; 10590 break; 10591 10592 case IPV6_MULTICAST_IF: 10593 /* 10594 * Set conn_multicast_ill to be the IPv6 ill. 10595 * Set conn_multicast_ipif to be an IPv4 ipif 10596 * for ifindex to make IPv4 mapped addresses 10597 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10598 * Even if no IPv6 ill exists for the ifindex 10599 * we need to check for an IPv4 ifindex in order 10600 * for this to work with mapped addresses. In that 10601 * case only set conn_multicast_ipif. 10602 */ 10603 if (!checkonly) { 10604 if (ifindex == 0) { 10605 connp->conn_multicast_ill = NULL; 10606 connp->conn_orig_multicast_ifindex = 0; 10607 connp->conn_multicast_ipif = NULL; 10608 } else if (ill != NULL) { 10609 connp->conn_multicast_ill = ill; 10610 connp->conn_orig_multicast_ifindex = 10611 ifindex; 10612 } 10613 } 10614 break; 10615 } 10616 } 10617 10618 if (ill != NULL) { 10619 mutex_exit(&ill->ill_lock); 10620 mutex_exit(&connp->conn_lock); 10621 ill_refrele(ill); 10622 return (0); 10623 } 10624 mutex_exit(&connp->conn_lock); 10625 /* 10626 * We succeeded in clearing the option (ifindex == 0) or failed to 10627 * locate the ill and could not set the option (ifindex != 0) 10628 */ 10629 return (ifindex == 0 ? 0 : EINVAL); 10630 } 10631 10632 /* This routine sets socket options. */ 10633 /* ARGSUSED */ 10634 int 10635 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10636 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10637 void *dummy, cred_t *cr, mblk_t *first_mp) 10638 { 10639 int *i1 = (int *)invalp; 10640 conn_t *connp = Q_TO_CONN(q); 10641 int error = 0; 10642 boolean_t checkonly; 10643 ire_t *ire; 10644 boolean_t found; 10645 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10646 10647 switch (optset_context) { 10648 10649 case SETFN_OPTCOM_CHECKONLY: 10650 checkonly = B_TRUE; 10651 /* 10652 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10653 * inlen != 0 implies value supplied and 10654 * we have to "pretend" to set it. 10655 * inlen == 0 implies that there is no 10656 * value part in T_CHECK request and just validation 10657 * done elsewhere should be enough, we just return here. 10658 */ 10659 if (inlen == 0) { 10660 *outlenp = 0; 10661 return (0); 10662 } 10663 break; 10664 case SETFN_OPTCOM_NEGOTIATE: 10665 case SETFN_UD_NEGOTIATE: 10666 case SETFN_CONN_NEGOTIATE: 10667 checkonly = B_FALSE; 10668 break; 10669 default: 10670 /* 10671 * We should never get here 10672 */ 10673 *outlenp = 0; 10674 return (EINVAL); 10675 } 10676 10677 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10678 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10679 10680 /* 10681 * For fixed length options, no sanity check 10682 * of passed in length is done. It is assumed *_optcom_req() 10683 * routines do the right thing. 10684 */ 10685 10686 switch (level) { 10687 case SOL_SOCKET: 10688 /* 10689 * conn_lock protects the bitfields, and is used to 10690 * set the fields atomically. 10691 */ 10692 switch (name) { 10693 case SO_BROADCAST: 10694 if (!checkonly) { 10695 /* TODO: use value someplace? */ 10696 mutex_enter(&connp->conn_lock); 10697 connp->conn_broadcast = *i1 ? 1 : 0; 10698 mutex_exit(&connp->conn_lock); 10699 } 10700 break; /* goto sizeof (int) option return */ 10701 case SO_USELOOPBACK: 10702 if (!checkonly) { 10703 /* TODO: use value someplace? */ 10704 mutex_enter(&connp->conn_lock); 10705 connp->conn_loopback = *i1 ? 1 : 0; 10706 mutex_exit(&connp->conn_lock); 10707 } 10708 break; /* goto sizeof (int) option return */ 10709 case SO_DONTROUTE: 10710 if (!checkonly) { 10711 mutex_enter(&connp->conn_lock); 10712 connp->conn_dontroute = *i1 ? 1 : 0; 10713 mutex_exit(&connp->conn_lock); 10714 } 10715 break; /* goto sizeof (int) option return */ 10716 case SO_REUSEADDR: 10717 if (!checkonly) { 10718 mutex_enter(&connp->conn_lock); 10719 connp->conn_reuseaddr = *i1 ? 1 : 0; 10720 mutex_exit(&connp->conn_lock); 10721 } 10722 break; /* goto sizeof (int) option return */ 10723 case SO_PROTOTYPE: 10724 if (!checkonly) { 10725 mutex_enter(&connp->conn_lock); 10726 connp->conn_proto = *i1; 10727 mutex_exit(&connp->conn_lock); 10728 } 10729 break; /* goto sizeof (int) option return */ 10730 case SO_ALLZONES: 10731 if (!checkonly) { 10732 mutex_enter(&connp->conn_lock); 10733 if (IPCL_IS_BOUND(connp)) { 10734 mutex_exit(&connp->conn_lock); 10735 return (EINVAL); 10736 } 10737 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10738 mutex_exit(&connp->conn_lock); 10739 } 10740 break; /* goto sizeof (int) option return */ 10741 case SO_ANON_MLP: 10742 if (!checkonly) { 10743 mutex_enter(&connp->conn_lock); 10744 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10745 mutex_exit(&connp->conn_lock); 10746 } 10747 break; /* goto sizeof (int) option return */ 10748 case SO_MAC_EXEMPT: 10749 if (secpolicy_net_mac_aware(cr) != 0 || 10750 IPCL_IS_BOUND(connp)) 10751 return (EACCES); 10752 if (!checkonly) { 10753 mutex_enter(&connp->conn_lock); 10754 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10755 mutex_exit(&connp->conn_lock); 10756 } 10757 break; /* goto sizeof (int) option return */ 10758 default: 10759 /* 10760 * "soft" error (negative) 10761 * option not handled at this level 10762 * Note: Do not modify *outlenp 10763 */ 10764 return (-EINVAL); 10765 } 10766 break; 10767 case IPPROTO_IP: 10768 switch (name) { 10769 case IP_NEXTHOP: 10770 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10771 return (EPERM); 10772 /* FALLTHRU */ 10773 case IP_MULTICAST_IF: 10774 case IP_DONTFAILOVER_IF: { 10775 ipaddr_t addr = *i1; 10776 10777 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10778 first_mp); 10779 if (error != 0) 10780 return (error); 10781 break; /* goto sizeof (int) option return */ 10782 } 10783 10784 case IP_MULTICAST_TTL: 10785 /* Recorded in transport above IP */ 10786 *outvalp = *invalp; 10787 *outlenp = sizeof (uchar_t); 10788 return (0); 10789 case IP_MULTICAST_LOOP: 10790 if (!checkonly) { 10791 mutex_enter(&connp->conn_lock); 10792 connp->conn_multicast_loop = *invalp ? 1 : 0; 10793 mutex_exit(&connp->conn_lock); 10794 } 10795 *outvalp = *invalp; 10796 *outlenp = sizeof (uchar_t); 10797 return (0); 10798 case IP_ADD_MEMBERSHIP: 10799 case MCAST_JOIN_GROUP: 10800 case IP_DROP_MEMBERSHIP: 10801 case MCAST_LEAVE_GROUP: { 10802 struct ip_mreq *mreqp; 10803 struct group_req *greqp; 10804 ire_t *ire; 10805 boolean_t done = B_FALSE; 10806 ipaddr_t group, ifaddr; 10807 struct sockaddr_in *sin; 10808 uint32_t *ifindexp; 10809 boolean_t mcast_opt = B_TRUE; 10810 mcast_record_t fmode; 10811 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10812 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10813 10814 switch (name) { 10815 case IP_ADD_MEMBERSHIP: 10816 mcast_opt = B_FALSE; 10817 /* FALLTHRU */ 10818 case MCAST_JOIN_GROUP: 10819 fmode = MODE_IS_EXCLUDE; 10820 optfn = ip_opt_add_group; 10821 break; 10822 10823 case IP_DROP_MEMBERSHIP: 10824 mcast_opt = B_FALSE; 10825 /* FALLTHRU */ 10826 case MCAST_LEAVE_GROUP: 10827 fmode = MODE_IS_INCLUDE; 10828 optfn = ip_opt_delete_group; 10829 break; 10830 } 10831 10832 if (mcast_opt) { 10833 greqp = (struct group_req *)i1; 10834 sin = (struct sockaddr_in *)&greqp->gr_group; 10835 if (sin->sin_family != AF_INET) { 10836 *outlenp = 0; 10837 return (ENOPROTOOPT); 10838 } 10839 group = (ipaddr_t)sin->sin_addr.s_addr; 10840 ifaddr = INADDR_ANY; 10841 ifindexp = &greqp->gr_interface; 10842 } else { 10843 mreqp = (struct ip_mreq *)i1; 10844 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10845 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10846 ifindexp = NULL; 10847 } 10848 10849 /* 10850 * In the multirouting case, we need to replicate 10851 * the request on all interfaces that will take part 10852 * in replication. We do so because multirouting is 10853 * reflective, thus we will probably receive multi- 10854 * casts on those interfaces. 10855 * The ip_multirt_apply_membership() succeeds if the 10856 * operation succeeds on at least one interface. 10857 */ 10858 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10859 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10860 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10861 if (ire != NULL) { 10862 if (ire->ire_flags & RTF_MULTIRT) { 10863 error = ip_multirt_apply_membership( 10864 optfn, ire, connp, checkonly, group, 10865 fmode, INADDR_ANY, first_mp); 10866 done = B_TRUE; 10867 } 10868 ire_refrele(ire); 10869 } 10870 if (!done) { 10871 error = optfn(connp, checkonly, group, ifaddr, 10872 ifindexp, fmode, INADDR_ANY, first_mp); 10873 } 10874 if (error) { 10875 /* 10876 * EINPROGRESS is a soft error, needs retry 10877 * so don't make *outlenp zero. 10878 */ 10879 if (error != EINPROGRESS) 10880 *outlenp = 0; 10881 return (error); 10882 } 10883 /* OK return - copy input buffer into output buffer */ 10884 if (invalp != outvalp) { 10885 /* don't trust bcopy for identical src/dst */ 10886 bcopy(invalp, outvalp, inlen); 10887 } 10888 *outlenp = inlen; 10889 return (0); 10890 } 10891 case IP_BLOCK_SOURCE: 10892 case IP_UNBLOCK_SOURCE: 10893 case IP_ADD_SOURCE_MEMBERSHIP: 10894 case IP_DROP_SOURCE_MEMBERSHIP: 10895 case MCAST_BLOCK_SOURCE: 10896 case MCAST_UNBLOCK_SOURCE: 10897 case MCAST_JOIN_SOURCE_GROUP: 10898 case MCAST_LEAVE_SOURCE_GROUP: { 10899 struct ip_mreq_source *imreqp; 10900 struct group_source_req *gsreqp; 10901 in_addr_t grp, src, ifaddr = INADDR_ANY; 10902 uint32_t ifindex = 0; 10903 mcast_record_t fmode; 10904 struct sockaddr_in *sin; 10905 ire_t *ire; 10906 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10907 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10908 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10909 10910 switch (name) { 10911 case IP_BLOCK_SOURCE: 10912 mcast_opt = B_FALSE; 10913 /* FALLTHRU */ 10914 case MCAST_BLOCK_SOURCE: 10915 fmode = MODE_IS_EXCLUDE; 10916 optfn = ip_opt_add_group; 10917 break; 10918 10919 case IP_UNBLOCK_SOURCE: 10920 mcast_opt = B_FALSE; 10921 /* FALLTHRU */ 10922 case MCAST_UNBLOCK_SOURCE: 10923 fmode = MODE_IS_EXCLUDE; 10924 optfn = ip_opt_delete_group; 10925 break; 10926 10927 case IP_ADD_SOURCE_MEMBERSHIP: 10928 mcast_opt = B_FALSE; 10929 /* FALLTHRU */ 10930 case MCAST_JOIN_SOURCE_GROUP: 10931 fmode = MODE_IS_INCLUDE; 10932 optfn = ip_opt_add_group; 10933 break; 10934 10935 case IP_DROP_SOURCE_MEMBERSHIP: 10936 mcast_opt = B_FALSE; 10937 /* FALLTHRU */ 10938 case MCAST_LEAVE_SOURCE_GROUP: 10939 fmode = MODE_IS_INCLUDE; 10940 optfn = ip_opt_delete_group; 10941 break; 10942 } 10943 10944 if (mcast_opt) { 10945 gsreqp = (struct group_source_req *)i1; 10946 if (gsreqp->gsr_group.ss_family != AF_INET) { 10947 *outlenp = 0; 10948 return (ENOPROTOOPT); 10949 } 10950 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10951 grp = (ipaddr_t)sin->sin_addr.s_addr; 10952 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10953 src = (ipaddr_t)sin->sin_addr.s_addr; 10954 ifindex = gsreqp->gsr_interface; 10955 } else { 10956 imreqp = (struct ip_mreq_source *)i1; 10957 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10958 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10959 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10960 } 10961 10962 /* 10963 * In the multirouting case, we need to replicate 10964 * the request as noted in the mcast cases above. 10965 */ 10966 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10967 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10968 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10969 if (ire != NULL) { 10970 if (ire->ire_flags & RTF_MULTIRT) { 10971 error = ip_multirt_apply_membership( 10972 optfn, ire, connp, checkonly, grp, 10973 fmode, src, first_mp); 10974 done = B_TRUE; 10975 } 10976 ire_refrele(ire); 10977 } 10978 if (!done) { 10979 error = optfn(connp, checkonly, grp, ifaddr, 10980 &ifindex, fmode, src, first_mp); 10981 } 10982 if (error != 0) { 10983 /* 10984 * EINPROGRESS is a soft error, needs retry 10985 * so don't make *outlenp zero. 10986 */ 10987 if (error != EINPROGRESS) 10988 *outlenp = 0; 10989 return (error); 10990 } 10991 /* OK return - copy input buffer into output buffer */ 10992 if (invalp != outvalp) { 10993 bcopy(invalp, outvalp, inlen); 10994 } 10995 *outlenp = inlen; 10996 return (0); 10997 } 10998 case IP_SEC_OPT: 10999 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11000 if (error != 0) { 11001 *outlenp = 0; 11002 return (error); 11003 } 11004 break; 11005 case IP_HDRINCL: 11006 case IP_OPTIONS: 11007 case T_IP_OPTIONS: 11008 case IP_TOS: 11009 case T_IP_TOS: 11010 case IP_TTL: 11011 case IP_RECVDSTADDR: 11012 case IP_RECVOPTS: 11013 /* OK return - copy input buffer into output buffer */ 11014 if (invalp != outvalp) { 11015 /* don't trust bcopy for identical src/dst */ 11016 bcopy(invalp, outvalp, inlen); 11017 } 11018 *outlenp = inlen; 11019 return (0); 11020 case IP_RECVIF: 11021 /* Retrieve the inbound interface index */ 11022 if (!checkonly) { 11023 mutex_enter(&connp->conn_lock); 11024 connp->conn_recvif = *i1 ? 1 : 0; 11025 mutex_exit(&connp->conn_lock); 11026 } 11027 break; /* goto sizeof (int) option return */ 11028 case IP_RECVPKTINFO: 11029 if (!checkonly) { 11030 mutex_enter(&connp->conn_lock); 11031 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11032 mutex_exit(&connp->conn_lock); 11033 } 11034 break; /* goto sizeof (int) option return */ 11035 case IP_RECVSLLA: 11036 /* Retrieve the source link layer address */ 11037 if (!checkonly) { 11038 mutex_enter(&connp->conn_lock); 11039 connp->conn_recvslla = *i1 ? 1 : 0; 11040 mutex_exit(&connp->conn_lock); 11041 } 11042 break; /* goto sizeof (int) option return */ 11043 case MRT_INIT: 11044 case MRT_DONE: 11045 case MRT_ADD_VIF: 11046 case MRT_DEL_VIF: 11047 case MRT_ADD_MFC: 11048 case MRT_DEL_MFC: 11049 case MRT_ASSERT: 11050 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11051 *outlenp = 0; 11052 return (error); 11053 } 11054 error = ip_mrouter_set((int)name, q, checkonly, 11055 (uchar_t *)invalp, inlen, first_mp); 11056 if (error) { 11057 *outlenp = 0; 11058 return (error); 11059 } 11060 /* OK return - copy input buffer into output buffer */ 11061 if (invalp != outvalp) { 11062 /* don't trust bcopy for identical src/dst */ 11063 bcopy(invalp, outvalp, inlen); 11064 } 11065 *outlenp = inlen; 11066 return (0); 11067 case IP_BOUND_IF: 11068 case IP_DHCPINIT_IF: 11069 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11070 level, name, first_mp); 11071 if (error != 0) 11072 return (error); 11073 break; /* goto sizeof (int) option return */ 11074 11075 case IP_UNSPEC_SRC: 11076 /* Allow sending with a zero source address */ 11077 if (!checkonly) { 11078 mutex_enter(&connp->conn_lock); 11079 connp->conn_unspec_src = *i1 ? 1 : 0; 11080 mutex_exit(&connp->conn_lock); 11081 } 11082 break; /* goto sizeof (int) option return */ 11083 default: 11084 /* 11085 * "soft" error (negative) 11086 * option not handled at this level 11087 * Note: Do not modify *outlenp 11088 */ 11089 return (-EINVAL); 11090 } 11091 break; 11092 case IPPROTO_IPV6: 11093 switch (name) { 11094 case IPV6_BOUND_IF: 11095 case IPV6_BOUND_PIF: 11096 case IPV6_DONTFAILOVER_IF: 11097 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11098 level, name, first_mp); 11099 if (error != 0) 11100 return (error); 11101 break; /* goto sizeof (int) option return */ 11102 11103 case IPV6_MULTICAST_IF: 11104 /* 11105 * The only possible errors are EINPROGRESS and 11106 * EINVAL. EINPROGRESS will be restarted and is not 11107 * a hard error. We call this option on both V4 and V6 11108 * If both return EINVAL, then this call returns 11109 * EINVAL. If at least one of them succeeds we 11110 * return success. 11111 */ 11112 found = B_FALSE; 11113 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11114 level, name, first_mp); 11115 if (error == EINPROGRESS) 11116 return (error); 11117 if (error == 0) 11118 found = B_TRUE; 11119 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11120 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11121 if (error == 0) 11122 found = B_TRUE; 11123 if (!found) 11124 return (error); 11125 break; /* goto sizeof (int) option return */ 11126 11127 case IPV6_MULTICAST_HOPS: 11128 /* Recorded in transport above IP */ 11129 break; /* goto sizeof (int) option return */ 11130 case IPV6_MULTICAST_LOOP: 11131 if (!checkonly) { 11132 mutex_enter(&connp->conn_lock); 11133 connp->conn_multicast_loop = *i1; 11134 mutex_exit(&connp->conn_lock); 11135 } 11136 break; /* goto sizeof (int) option return */ 11137 case IPV6_JOIN_GROUP: 11138 case MCAST_JOIN_GROUP: 11139 case IPV6_LEAVE_GROUP: 11140 case MCAST_LEAVE_GROUP: { 11141 struct ipv6_mreq *ip_mreqp; 11142 struct group_req *greqp; 11143 ire_t *ire; 11144 boolean_t done = B_FALSE; 11145 in6_addr_t groupv6; 11146 uint32_t ifindex; 11147 boolean_t mcast_opt = B_TRUE; 11148 mcast_record_t fmode; 11149 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11150 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11151 11152 switch (name) { 11153 case IPV6_JOIN_GROUP: 11154 mcast_opt = B_FALSE; 11155 /* FALLTHRU */ 11156 case MCAST_JOIN_GROUP: 11157 fmode = MODE_IS_EXCLUDE; 11158 optfn = ip_opt_add_group_v6; 11159 break; 11160 11161 case IPV6_LEAVE_GROUP: 11162 mcast_opt = B_FALSE; 11163 /* FALLTHRU */ 11164 case MCAST_LEAVE_GROUP: 11165 fmode = MODE_IS_INCLUDE; 11166 optfn = ip_opt_delete_group_v6; 11167 break; 11168 } 11169 11170 if (mcast_opt) { 11171 struct sockaddr_in *sin; 11172 struct sockaddr_in6 *sin6; 11173 greqp = (struct group_req *)i1; 11174 if (greqp->gr_group.ss_family == AF_INET) { 11175 sin = (struct sockaddr_in *) 11176 &(greqp->gr_group); 11177 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11178 &groupv6); 11179 } else { 11180 sin6 = (struct sockaddr_in6 *) 11181 &(greqp->gr_group); 11182 groupv6 = sin6->sin6_addr; 11183 } 11184 ifindex = greqp->gr_interface; 11185 } else { 11186 ip_mreqp = (struct ipv6_mreq *)i1; 11187 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11188 ifindex = ip_mreqp->ipv6mr_interface; 11189 } 11190 /* 11191 * In the multirouting case, we need to replicate 11192 * the request on all interfaces that will take part 11193 * in replication. We do so because multirouting is 11194 * reflective, thus we will probably receive multi- 11195 * casts on those interfaces. 11196 * The ip_multirt_apply_membership_v6() succeeds if 11197 * the operation succeeds on at least one interface. 11198 */ 11199 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11200 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11201 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11202 if (ire != NULL) { 11203 if (ire->ire_flags & RTF_MULTIRT) { 11204 error = ip_multirt_apply_membership_v6( 11205 optfn, ire, connp, checkonly, 11206 &groupv6, fmode, &ipv6_all_zeros, 11207 first_mp); 11208 done = B_TRUE; 11209 } 11210 ire_refrele(ire); 11211 } 11212 if (!done) { 11213 error = optfn(connp, checkonly, &groupv6, 11214 ifindex, fmode, &ipv6_all_zeros, first_mp); 11215 } 11216 if (error) { 11217 /* 11218 * EINPROGRESS is a soft error, needs retry 11219 * so don't make *outlenp zero. 11220 */ 11221 if (error != EINPROGRESS) 11222 *outlenp = 0; 11223 return (error); 11224 } 11225 /* OK return - copy input buffer into output buffer */ 11226 if (invalp != outvalp) { 11227 /* don't trust bcopy for identical src/dst */ 11228 bcopy(invalp, outvalp, inlen); 11229 } 11230 *outlenp = inlen; 11231 return (0); 11232 } 11233 case MCAST_BLOCK_SOURCE: 11234 case MCAST_UNBLOCK_SOURCE: 11235 case MCAST_JOIN_SOURCE_GROUP: 11236 case MCAST_LEAVE_SOURCE_GROUP: { 11237 struct group_source_req *gsreqp; 11238 in6_addr_t v6grp, v6src; 11239 uint32_t ifindex; 11240 mcast_record_t fmode; 11241 ire_t *ire; 11242 boolean_t done = B_FALSE; 11243 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11244 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11245 11246 switch (name) { 11247 case MCAST_BLOCK_SOURCE: 11248 fmode = MODE_IS_EXCLUDE; 11249 optfn = ip_opt_add_group_v6; 11250 break; 11251 case MCAST_UNBLOCK_SOURCE: 11252 fmode = MODE_IS_EXCLUDE; 11253 optfn = ip_opt_delete_group_v6; 11254 break; 11255 case MCAST_JOIN_SOURCE_GROUP: 11256 fmode = MODE_IS_INCLUDE; 11257 optfn = ip_opt_add_group_v6; 11258 break; 11259 case MCAST_LEAVE_SOURCE_GROUP: 11260 fmode = MODE_IS_INCLUDE; 11261 optfn = ip_opt_delete_group_v6; 11262 break; 11263 } 11264 11265 gsreqp = (struct group_source_req *)i1; 11266 ifindex = gsreqp->gsr_interface; 11267 if (gsreqp->gsr_group.ss_family == AF_INET) { 11268 struct sockaddr_in *s; 11269 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11270 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11271 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11272 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11273 } else { 11274 struct sockaddr_in6 *s6; 11275 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11276 v6grp = s6->sin6_addr; 11277 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11278 v6src = s6->sin6_addr; 11279 } 11280 11281 /* 11282 * In the multirouting case, we need to replicate 11283 * the request as noted in the mcast cases above. 11284 */ 11285 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11286 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11287 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11288 if (ire != NULL) { 11289 if (ire->ire_flags & RTF_MULTIRT) { 11290 error = ip_multirt_apply_membership_v6( 11291 optfn, ire, connp, checkonly, 11292 &v6grp, fmode, &v6src, first_mp); 11293 done = B_TRUE; 11294 } 11295 ire_refrele(ire); 11296 } 11297 if (!done) { 11298 error = optfn(connp, checkonly, &v6grp, 11299 ifindex, fmode, &v6src, first_mp); 11300 } 11301 if (error != 0) { 11302 /* 11303 * EINPROGRESS is a soft error, needs retry 11304 * so don't make *outlenp zero. 11305 */ 11306 if (error != EINPROGRESS) 11307 *outlenp = 0; 11308 return (error); 11309 } 11310 /* OK return - copy input buffer into output buffer */ 11311 if (invalp != outvalp) { 11312 bcopy(invalp, outvalp, inlen); 11313 } 11314 *outlenp = inlen; 11315 return (0); 11316 } 11317 case IPV6_UNICAST_HOPS: 11318 /* Recorded in transport above IP */ 11319 break; /* goto sizeof (int) option return */ 11320 case IPV6_UNSPEC_SRC: 11321 /* Allow sending with a zero source address */ 11322 if (!checkonly) { 11323 mutex_enter(&connp->conn_lock); 11324 connp->conn_unspec_src = *i1 ? 1 : 0; 11325 mutex_exit(&connp->conn_lock); 11326 } 11327 break; /* goto sizeof (int) option return */ 11328 case IPV6_RECVPKTINFO: 11329 if (!checkonly) { 11330 mutex_enter(&connp->conn_lock); 11331 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11332 mutex_exit(&connp->conn_lock); 11333 } 11334 break; /* goto sizeof (int) option return */ 11335 case IPV6_RECVTCLASS: 11336 if (!checkonly) { 11337 if (*i1 < 0 || *i1 > 1) { 11338 return (EINVAL); 11339 } 11340 mutex_enter(&connp->conn_lock); 11341 connp->conn_ipv6_recvtclass = *i1; 11342 mutex_exit(&connp->conn_lock); 11343 } 11344 break; 11345 case IPV6_RECVPATHMTU: 11346 if (!checkonly) { 11347 if (*i1 < 0 || *i1 > 1) { 11348 return (EINVAL); 11349 } 11350 mutex_enter(&connp->conn_lock); 11351 connp->conn_ipv6_recvpathmtu = *i1; 11352 mutex_exit(&connp->conn_lock); 11353 } 11354 break; 11355 case IPV6_RECVHOPLIMIT: 11356 if (!checkonly) { 11357 mutex_enter(&connp->conn_lock); 11358 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11359 mutex_exit(&connp->conn_lock); 11360 } 11361 break; /* goto sizeof (int) option return */ 11362 case IPV6_RECVHOPOPTS: 11363 if (!checkonly) { 11364 mutex_enter(&connp->conn_lock); 11365 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11366 mutex_exit(&connp->conn_lock); 11367 } 11368 break; /* goto sizeof (int) option return */ 11369 case IPV6_RECVDSTOPTS: 11370 if (!checkonly) { 11371 mutex_enter(&connp->conn_lock); 11372 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11373 mutex_exit(&connp->conn_lock); 11374 } 11375 break; /* goto sizeof (int) option return */ 11376 case IPV6_RECVRTHDR: 11377 if (!checkonly) { 11378 mutex_enter(&connp->conn_lock); 11379 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11380 mutex_exit(&connp->conn_lock); 11381 } 11382 break; /* goto sizeof (int) option return */ 11383 case IPV6_RECVRTHDRDSTOPTS: 11384 if (!checkonly) { 11385 mutex_enter(&connp->conn_lock); 11386 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11387 mutex_exit(&connp->conn_lock); 11388 } 11389 break; /* goto sizeof (int) option return */ 11390 case IPV6_PKTINFO: 11391 if (inlen == 0) 11392 return (-EINVAL); /* clearing option */ 11393 error = ip6_set_pktinfo(cr, connp, 11394 (struct in6_pktinfo *)invalp, first_mp); 11395 if (error != 0) 11396 *outlenp = 0; 11397 else 11398 *outlenp = inlen; 11399 return (error); 11400 case IPV6_NEXTHOP: { 11401 struct sockaddr_in6 *sin6; 11402 11403 /* Verify that the nexthop is reachable */ 11404 if (inlen == 0) 11405 return (-EINVAL); /* clearing option */ 11406 11407 sin6 = (struct sockaddr_in6 *)invalp; 11408 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11409 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11410 NULL, MATCH_IRE_DEFAULT, ipst); 11411 11412 if (ire == NULL) { 11413 *outlenp = 0; 11414 return (EHOSTUNREACH); 11415 } 11416 ire_refrele(ire); 11417 return (-EINVAL); 11418 } 11419 case IPV6_SEC_OPT: 11420 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11421 if (error != 0) { 11422 *outlenp = 0; 11423 return (error); 11424 } 11425 break; 11426 case IPV6_SRC_PREFERENCES: { 11427 /* 11428 * This is implemented strictly in the ip module 11429 * (here and in tcp_opt_*() to accomodate tcp 11430 * sockets). Modules above ip pass this option 11431 * down here since ip is the only one that needs to 11432 * be aware of source address preferences. 11433 * 11434 * This socket option only affects connected 11435 * sockets that haven't already bound to a specific 11436 * IPv6 address. In other words, sockets that 11437 * don't call bind() with an address other than the 11438 * unspecified address and that call connect(). 11439 * ip_bind_connected_v6() passes these preferences 11440 * to the ipif_select_source_v6() function. 11441 */ 11442 if (inlen != sizeof (uint32_t)) 11443 return (EINVAL); 11444 error = ip6_set_src_preferences(connp, 11445 *(uint32_t *)invalp); 11446 if (error != 0) { 11447 *outlenp = 0; 11448 return (error); 11449 } else { 11450 *outlenp = sizeof (uint32_t); 11451 } 11452 break; 11453 } 11454 case IPV6_V6ONLY: 11455 if (*i1 < 0 || *i1 > 1) { 11456 return (EINVAL); 11457 } 11458 mutex_enter(&connp->conn_lock); 11459 connp->conn_ipv6_v6only = *i1; 11460 mutex_exit(&connp->conn_lock); 11461 break; 11462 default: 11463 return (-EINVAL); 11464 } 11465 break; 11466 default: 11467 /* 11468 * "soft" error (negative) 11469 * option not handled at this level 11470 * Note: Do not modify *outlenp 11471 */ 11472 return (-EINVAL); 11473 } 11474 /* 11475 * Common case of return from an option that is sizeof (int) 11476 */ 11477 *(int *)outvalp = *i1; 11478 *outlenp = sizeof (int); 11479 return (0); 11480 } 11481 11482 /* 11483 * This routine gets default values of certain options whose default 11484 * values are maintained by protocol specific code 11485 */ 11486 /* ARGSUSED */ 11487 int 11488 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11489 { 11490 int *i1 = (int *)ptr; 11491 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11492 11493 switch (level) { 11494 case IPPROTO_IP: 11495 switch (name) { 11496 case IP_MULTICAST_TTL: 11497 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11498 return (sizeof (uchar_t)); 11499 case IP_MULTICAST_LOOP: 11500 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11501 return (sizeof (uchar_t)); 11502 default: 11503 return (-1); 11504 } 11505 case IPPROTO_IPV6: 11506 switch (name) { 11507 case IPV6_UNICAST_HOPS: 11508 *i1 = ipst->ips_ipv6_def_hops; 11509 return (sizeof (int)); 11510 case IPV6_MULTICAST_HOPS: 11511 *i1 = IP_DEFAULT_MULTICAST_TTL; 11512 return (sizeof (int)); 11513 case IPV6_MULTICAST_LOOP: 11514 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11515 return (sizeof (int)); 11516 case IPV6_V6ONLY: 11517 *i1 = 1; 11518 return (sizeof (int)); 11519 default: 11520 return (-1); 11521 } 11522 default: 11523 return (-1); 11524 } 11525 /* NOTREACHED */ 11526 } 11527 11528 /* 11529 * Given a destination address and a pointer to where to put the information 11530 * this routine fills in the mtuinfo. 11531 */ 11532 int 11533 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11534 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11535 { 11536 ire_t *ire; 11537 ip_stack_t *ipst = ns->netstack_ip; 11538 11539 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11540 return (-1); 11541 11542 bzero(mtuinfo, sizeof (*mtuinfo)); 11543 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11544 mtuinfo->ip6m_addr.sin6_port = port; 11545 mtuinfo->ip6m_addr.sin6_addr = *in6; 11546 11547 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11548 if (ire != NULL) { 11549 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11550 ire_refrele(ire); 11551 } else { 11552 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11553 } 11554 return (sizeof (struct ip6_mtuinfo)); 11555 } 11556 11557 /* 11558 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11559 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11560 * isn't. This doesn't matter as the error checking is done properly for the 11561 * other MRT options coming in through ip_opt_set. 11562 */ 11563 int 11564 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11565 { 11566 conn_t *connp = Q_TO_CONN(q); 11567 ipsec_req_t *req = (ipsec_req_t *)ptr; 11568 11569 switch (level) { 11570 case IPPROTO_IP: 11571 switch (name) { 11572 case MRT_VERSION: 11573 case MRT_ASSERT: 11574 (void) ip_mrouter_get(name, q, ptr); 11575 return (sizeof (int)); 11576 case IP_SEC_OPT: 11577 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11578 case IP_NEXTHOP: 11579 if (connp->conn_nexthop_set) { 11580 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11581 return (sizeof (ipaddr_t)); 11582 } else 11583 return (0); 11584 case IP_RECVPKTINFO: 11585 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11586 return (sizeof (int)); 11587 default: 11588 break; 11589 } 11590 break; 11591 case IPPROTO_IPV6: 11592 switch (name) { 11593 case IPV6_SEC_OPT: 11594 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11595 case IPV6_SRC_PREFERENCES: { 11596 return (ip6_get_src_preferences(connp, 11597 (uint32_t *)ptr)); 11598 } 11599 case IPV6_V6ONLY: 11600 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11601 return (sizeof (int)); 11602 case IPV6_PATHMTU: 11603 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11604 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11605 default: 11606 break; 11607 } 11608 break; 11609 default: 11610 break; 11611 } 11612 return (-1); 11613 } 11614 11615 /* Named Dispatch routine to get a current value out of our parameter table. */ 11616 /* ARGSUSED */ 11617 static int 11618 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11619 { 11620 ipparam_t *ippa = (ipparam_t *)cp; 11621 11622 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11623 return (0); 11624 } 11625 11626 /* ARGSUSED */ 11627 static int 11628 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11629 { 11630 11631 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11632 return (0); 11633 } 11634 11635 /* 11636 * Set ip{,6}_forwarding values. This means walking through all of the 11637 * ill's and toggling their forwarding values. 11638 */ 11639 /* ARGSUSED */ 11640 static int 11641 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11642 { 11643 long new_value; 11644 int *forwarding_value = (int *)cp; 11645 ill_t *ill; 11646 boolean_t isv6; 11647 ill_walk_context_t ctx; 11648 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11649 11650 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11651 11652 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11653 new_value < 0 || new_value > 1) { 11654 return (EINVAL); 11655 } 11656 11657 *forwarding_value = new_value; 11658 11659 /* 11660 * Regardless of the current value of ip_forwarding, set all per-ill 11661 * values of ip_forwarding to the value being set. 11662 * 11663 * Bring all the ill's up to date with the new global value. 11664 */ 11665 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11666 11667 if (isv6) 11668 ill = ILL_START_WALK_V6(&ctx, ipst); 11669 else 11670 ill = ILL_START_WALK_V4(&ctx, ipst); 11671 11672 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11673 (void) ill_forward_set(ill, new_value != 0); 11674 11675 rw_exit(&ipst->ips_ill_g_lock); 11676 return (0); 11677 } 11678 11679 /* 11680 * Walk through the param array specified registering each element with the 11681 * Named Dispatch handler. This is called only during init. So it is ok 11682 * not to acquire any locks 11683 */ 11684 static boolean_t 11685 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11686 ipndp_t *ipnd, size_t ipnd_cnt) 11687 { 11688 for (; ippa_cnt-- > 0; ippa++) { 11689 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11690 if (!nd_load(ndp, ippa->ip_param_name, 11691 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11692 nd_free(ndp); 11693 return (B_FALSE); 11694 } 11695 } 11696 } 11697 11698 for (; ipnd_cnt-- > 0; ipnd++) { 11699 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11700 if (!nd_load(ndp, ipnd->ip_ndp_name, 11701 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11702 ipnd->ip_ndp_data)) { 11703 nd_free(ndp); 11704 return (B_FALSE); 11705 } 11706 } 11707 } 11708 11709 return (B_TRUE); 11710 } 11711 11712 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11713 /* ARGSUSED */ 11714 static int 11715 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11716 { 11717 long new_value; 11718 ipparam_t *ippa = (ipparam_t *)cp; 11719 11720 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11721 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11722 return (EINVAL); 11723 } 11724 ippa->ip_param_value = new_value; 11725 return (0); 11726 } 11727 11728 /* 11729 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11730 * When an ipf is passed here for the first time, if 11731 * we already have in-order fragments on the queue, we convert from the fast- 11732 * path reassembly scheme to the hard-case scheme. From then on, additional 11733 * fragments are reassembled here. We keep track of the start and end offsets 11734 * of each piece, and the number of holes in the chain. When the hole count 11735 * goes to zero, we are done! 11736 * 11737 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11738 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11739 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11740 * after the call to ip_reassemble(). 11741 */ 11742 int 11743 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11744 size_t msg_len) 11745 { 11746 uint_t end; 11747 mblk_t *next_mp; 11748 mblk_t *mp1; 11749 uint_t offset; 11750 boolean_t incr_dups = B_TRUE; 11751 boolean_t offset_zero_seen = B_FALSE; 11752 boolean_t pkt_boundary_checked = B_FALSE; 11753 11754 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11755 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11756 11757 /* Add in byte count */ 11758 ipf->ipf_count += msg_len; 11759 if (ipf->ipf_end) { 11760 /* 11761 * We were part way through in-order reassembly, but now there 11762 * is a hole. We walk through messages already queued, and 11763 * mark them for hard case reassembly. We know that up till 11764 * now they were in order starting from offset zero. 11765 */ 11766 offset = 0; 11767 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11768 IP_REASS_SET_START(mp1, offset); 11769 if (offset == 0) { 11770 ASSERT(ipf->ipf_nf_hdr_len != 0); 11771 offset = -ipf->ipf_nf_hdr_len; 11772 } 11773 offset += mp1->b_wptr - mp1->b_rptr; 11774 IP_REASS_SET_END(mp1, offset); 11775 } 11776 /* One hole at the end. */ 11777 ipf->ipf_hole_cnt = 1; 11778 /* Brand it as a hard case, forever. */ 11779 ipf->ipf_end = 0; 11780 } 11781 /* Walk through all the new pieces. */ 11782 do { 11783 end = start + (mp->b_wptr - mp->b_rptr); 11784 /* 11785 * If start is 0, decrease 'end' only for the first mblk of 11786 * the fragment. Otherwise 'end' can get wrong value in the 11787 * second pass of the loop if first mblk is exactly the 11788 * size of ipf_nf_hdr_len. 11789 */ 11790 if (start == 0 && !offset_zero_seen) { 11791 /* First segment */ 11792 ASSERT(ipf->ipf_nf_hdr_len != 0); 11793 end -= ipf->ipf_nf_hdr_len; 11794 offset_zero_seen = B_TRUE; 11795 } 11796 next_mp = mp->b_cont; 11797 /* 11798 * We are checking to see if there is any interesing data 11799 * to process. If there isn't and the mblk isn't the 11800 * one which carries the unfragmentable header then we 11801 * drop it. It's possible to have just the unfragmentable 11802 * header come through without any data. That needs to be 11803 * saved. 11804 * 11805 * If the assert at the top of this function holds then the 11806 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11807 * is infrequently traveled enough that the test is left in 11808 * to protect against future code changes which break that 11809 * invariant. 11810 */ 11811 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11812 /* Empty. Blast it. */ 11813 IP_REASS_SET_START(mp, 0); 11814 IP_REASS_SET_END(mp, 0); 11815 /* 11816 * If the ipf points to the mblk we are about to free, 11817 * update ipf to point to the next mblk (or NULL 11818 * if none). 11819 */ 11820 if (ipf->ipf_mp->b_cont == mp) 11821 ipf->ipf_mp->b_cont = next_mp; 11822 freeb(mp); 11823 continue; 11824 } 11825 mp->b_cont = NULL; 11826 IP_REASS_SET_START(mp, start); 11827 IP_REASS_SET_END(mp, end); 11828 if (!ipf->ipf_tail_mp) { 11829 ipf->ipf_tail_mp = mp; 11830 ipf->ipf_mp->b_cont = mp; 11831 if (start == 0 || !more) { 11832 ipf->ipf_hole_cnt = 1; 11833 /* 11834 * if the first fragment comes in more than one 11835 * mblk, this loop will be executed for each 11836 * mblk. Need to adjust hole count so exiting 11837 * this routine will leave hole count at 1. 11838 */ 11839 if (next_mp) 11840 ipf->ipf_hole_cnt++; 11841 } else 11842 ipf->ipf_hole_cnt = 2; 11843 continue; 11844 } else if (ipf->ipf_last_frag_seen && !more && 11845 !pkt_boundary_checked) { 11846 /* 11847 * We check datagram boundary only if this fragment 11848 * claims to be the last fragment and we have seen a 11849 * last fragment in the past too. We do this only 11850 * once for a given fragment. 11851 * 11852 * start cannot be 0 here as fragments with start=0 11853 * and MF=0 gets handled as a complete packet. These 11854 * fragments should not reach here. 11855 */ 11856 11857 if (start + msgdsize(mp) != 11858 IP_REASS_END(ipf->ipf_tail_mp)) { 11859 /* 11860 * We have two fragments both of which claim 11861 * to be the last fragment but gives conflicting 11862 * information about the whole datagram size. 11863 * Something fishy is going on. Drop the 11864 * fragment and free up the reassembly list. 11865 */ 11866 return (IP_REASS_FAILED); 11867 } 11868 11869 /* 11870 * We shouldn't come to this code block again for this 11871 * particular fragment. 11872 */ 11873 pkt_boundary_checked = B_TRUE; 11874 } 11875 11876 /* New stuff at or beyond tail? */ 11877 offset = IP_REASS_END(ipf->ipf_tail_mp); 11878 if (start >= offset) { 11879 if (ipf->ipf_last_frag_seen) { 11880 /* current fragment is beyond last fragment */ 11881 return (IP_REASS_FAILED); 11882 } 11883 /* Link it on end. */ 11884 ipf->ipf_tail_mp->b_cont = mp; 11885 ipf->ipf_tail_mp = mp; 11886 if (more) { 11887 if (start != offset) 11888 ipf->ipf_hole_cnt++; 11889 } else if (start == offset && next_mp == NULL) 11890 ipf->ipf_hole_cnt--; 11891 continue; 11892 } 11893 mp1 = ipf->ipf_mp->b_cont; 11894 offset = IP_REASS_START(mp1); 11895 /* New stuff at the front? */ 11896 if (start < offset) { 11897 if (start == 0) { 11898 if (end >= offset) { 11899 /* Nailed the hole at the begining. */ 11900 ipf->ipf_hole_cnt--; 11901 } 11902 } else if (end < offset) { 11903 /* 11904 * A hole, stuff, and a hole where there used 11905 * to be just a hole. 11906 */ 11907 ipf->ipf_hole_cnt++; 11908 } 11909 mp->b_cont = mp1; 11910 /* Check for overlap. */ 11911 while (end > offset) { 11912 if (end < IP_REASS_END(mp1)) { 11913 mp->b_wptr -= end - offset; 11914 IP_REASS_SET_END(mp, offset); 11915 BUMP_MIB(ill->ill_ip_mib, 11916 ipIfStatsReasmPartDups); 11917 break; 11918 } 11919 /* Did we cover another hole? */ 11920 if ((mp1->b_cont && 11921 IP_REASS_END(mp1) != 11922 IP_REASS_START(mp1->b_cont) && 11923 end >= IP_REASS_START(mp1->b_cont)) || 11924 (!ipf->ipf_last_frag_seen && !more)) { 11925 ipf->ipf_hole_cnt--; 11926 } 11927 /* Clip out mp1. */ 11928 if ((mp->b_cont = mp1->b_cont) == NULL) { 11929 /* 11930 * After clipping out mp1, this guy 11931 * is now hanging off the end. 11932 */ 11933 ipf->ipf_tail_mp = mp; 11934 } 11935 IP_REASS_SET_START(mp1, 0); 11936 IP_REASS_SET_END(mp1, 0); 11937 /* Subtract byte count */ 11938 ipf->ipf_count -= mp1->b_datap->db_lim - 11939 mp1->b_datap->db_base; 11940 freeb(mp1); 11941 BUMP_MIB(ill->ill_ip_mib, 11942 ipIfStatsReasmPartDups); 11943 mp1 = mp->b_cont; 11944 if (!mp1) 11945 break; 11946 offset = IP_REASS_START(mp1); 11947 } 11948 ipf->ipf_mp->b_cont = mp; 11949 continue; 11950 } 11951 /* 11952 * The new piece starts somewhere between the start of the head 11953 * and before the end of the tail. 11954 */ 11955 for (; mp1; mp1 = mp1->b_cont) { 11956 offset = IP_REASS_END(mp1); 11957 if (start < offset) { 11958 if (end <= offset) { 11959 /* Nothing new. */ 11960 IP_REASS_SET_START(mp, 0); 11961 IP_REASS_SET_END(mp, 0); 11962 /* Subtract byte count */ 11963 ipf->ipf_count -= mp->b_datap->db_lim - 11964 mp->b_datap->db_base; 11965 if (incr_dups) { 11966 ipf->ipf_num_dups++; 11967 incr_dups = B_FALSE; 11968 } 11969 freeb(mp); 11970 BUMP_MIB(ill->ill_ip_mib, 11971 ipIfStatsReasmDuplicates); 11972 break; 11973 } 11974 /* 11975 * Trim redundant stuff off beginning of new 11976 * piece. 11977 */ 11978 IP_REASS_SET_START(mp, offset); 11979 mp->b_rptr += offset - start; 11980 BUMP_MIB(ill->ill_ip_mib, 11981 ipIfStatsReasmPartDups); 11982 start = offset; 11983 if (!mp1->b_cont) { 11984 /* 11985 * After trimming, this guy is now 11986 * hanging off the end. 11987 */ 11988 mp1->b_cont = mp; 11989 ipf->ipf_tail_mp = mp; 11990 if (!more) { 11991 ipf->ipf_hole_cnt--; 11992 } 11993 break; 11994 } 11995 } 11996 if (start >= IP_REASS_START(mp1->b_cont)) 11997 continue; 11998 /* Fill a hole */ 11999 if (start > offset) 12000 ipf->ipf_hole_cnt++; 12001 mp->b_cont = mp1->b_cont; 12002 mp1->b_cont = mp; 12003 mp1 = mp->b_cont; 12004 offset = IP_REASS_START(mp1); 12005 if (end >= offset) { 12006 ipf->ipf_hole_cnt--; 12007 /* Check for overlap. */ 12008 while (end > offset) { 12009 if (end < IP_REASS_END(mp1)) { 12010 mp->b_wptr -= end - offset; 12011 IP_REASS_SET_END(mp, offset); 12012 /* 12013 * TODO we might bump 12014 * this up twice if there is 12015 * overlap at both ends. 12016 */ 12017 BUMP_MIB(ill->ill_ip_mib, 12018 ipIfStatsReasmPartDups); 12019 break; 12020 } 12021 /* Did we cover another hole? */ 12022 if ((mp1->b_cont && 12023 IP_REASS_END(mp1) 12024 != IP_REASS_START(mp1->b_cont) && 12025 end >= 12026 IP_REASS_START(mp1->b_cont)) || 12027 (!ipf->ipf_last_frag_seen && 12028 !more)) { 12029 ipf->ipf_hole_cnt--; 12030 } 12031 /* Clip out mp1. */ 12032 if ((mp->b_cont = mp1->b_cont) == 12033 NULL) { 12034 /* 12035 * After clipping out mp1, 12036 * this guy is now hanging 12037 * off the end. 12038 */ 12039 ipf->ipf_tail_mp = mp; 12040 } 12041 IP_REASS_SET_START(mp1, 0); 12042 IP_REASS_SET_END(mp1, 0); 12043 /* Subtract byte count */ 12044 ipf->ipf_count -= 12045 mp1->b_datap->db_lim - 12046 mp1->b_datap->db_base; 12047 freeb(mp1); 12048 BUMP_MIB(ill->ill_ip_mib, 12049 ipIfStatsReasmPartDups); 12050 mp1 = mp->b_cont; 12051 if (!mp1) 12052 break; 12053 offset = IP_REASS_START(mp1); 12054 } 12055 } 12056 break; 12057 } 12058 } while (start = end, mp = next_mp); 12059 12060 /* Fragment just processed could be the last one. Remember this fact */ 12061 if (!more) 12062 ipf->ipf_last_frag_seen = B_TRUE; 12063 12064 /* Still got holes? */ 12065 if (ipf->ipf_hole_cnt) 12066 return (IP_REASS_PARTIAL); 12067 /* Clean up overloaded fields to avoid upstream disasters. */ 12068 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12069 IP_REASS_SET_START(mp1, 0); 12070 IP_REASS_SET_END(mp1, 0); 12071 } 12072 return (IP_REASS_COMPLETE); 12073 } 12074 12075 /* 12076 * ipsec processing for the fast path, used for input UDP Packets 12077 * Returns true if ready for passup to UDP. 12078 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12079 * was an ESP-in-UDP packet, etc.). 12080 */ 12081 static boolean_t 12082 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12083 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12084 { 12085 uint32_t ill_index; 12086 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12087 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12088 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12089 udp_t *udp = connp->conn_udp; 12090 12091 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12092 /* The ill_index of the incoming ILL */ 12093 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12094 12095 /* pass packet up to the transport */ 12096 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12097 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12098 NULL, mctl_present); 12099 if (*first_mpp == NULL) { 12100 return (B_FALSE); 12101 } 12102 } 12103 12104 /* Initiate IPPF processing for fastpath UDP */ 12105 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12106 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12107 if (*mpp == NULL) { 12108 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12109 "deferred/dropped during IPPF processing\n")); 12110 return (B_FALSE); 12111 } 12112 } 12113 /* 12114 * Remove 0-spi if it's 0, or move everything behind 12115 * the UDP header over it and forward to ESP via 12116 * ip_proto_input(). 12117 */ 12118 if (udp->udp_nat_t_endpoint) { 12119 if (mctl_present) { 12120 /* mctl_present *shouldn't* happen. */ 12121 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12122 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12123 &ipss->ipsec_dropper); 12124 *first_mpp = NULL; 12125 return (B_FALSE); 12126 } 12127 12128 /* "ill" is "recv_ill" in actuality. */ 12129 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12130 return (B_FALSE); 12131 12132 /* Else continue like a normal UDP packet. */ 12133 } 12134 12135 /* 12136 * We make the checks as below since we are in the fast path 12137 * and want to minimize the number of checks if the IP_RECVIF and/or 12138 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12139 */ 12140 if (connp->conn_recvif || connp->conn_recvslla || 12141 connp->conn_ip_recvpktinfo) { 12142 if (connp->conn_recvif) { 12143 in_flags = IPF_RECVIF; 12144 } 12145 /* 12146 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12147 * so the flag passed to ip_add_info is based on IP version 12148 * of connp. 12149 */ 12150 if (connp->conn_ip_recvpktinfo) { 12151 if (connp->conn_af_isv6) { 12152 /* 12153 * V6 only needs index 12154 */ 12155 in_flags |= IPF_RECVIF; 12156 } else { 12157 /* 12158 * V4 needs index + matching address. 12159 */ 12160 in_flags |= IPF_RECVADDR; 12161 } 12162 } 12163 if (connp->conn_recvslla) { 12164 in_flags |= IPF_RECVSLLA; 12165 } 12166 /* 12167 * since in_flags are being set ill will be 12168 * referenced in ip_add_info, so it better not 12169 * be NULL. 12170 */ 12171 /* 12172 * the actual data will be contained in b_cont 12173 * upon successful return of the following call. 12174 * If the call fails then the original mblk is 12175 * returned. 12176 */ 12177 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12178 ipst); 12179 } 12180 12181 return (B_TRUE); 12182 } 12183 12184 /* 12185 * Fragmentation reassembly. Each ILL has a hash table for 12186 * queuing packets undergoing reassembly for all IPIFs 12187 * associated with the ILL. The hash is based on the packet 12188 * IP ident field. The ILL frag hash table was allocated 12189 * as a timer block at the time the ILL was created. Whenever 12190 * there is anything on the reassembly queue, the timer will 12191 * be running. Returns B_TRUE if successful else B_FALSE; 12192 * frees mp on failure. 12193 */ 12194 static boolean_t 12195 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12196 uint32_t *cksum_val, uint16_t *cksum_flags) 12197 { 12198 uint32_t frag_offset_flags; 12199 ill_t *ill = (ill_t *)q->q_ptr; 12200 mblk_t *mp = *mpp; 12201 mblk_t *t_mp; 12202 ipaddr_t dst; 12203 uint8_t proto = ipha->ipha_protocol; 12204 uint32_t sum_val; 12205 uint16_t sum_flags; 12206 ipf_t *ipf; 12207 ipf_t **ipfp; 12208 ipfb_t *ipfb; 12209 uint16_t ident; 12210 uint32_t offset; 12211 ipaddr_t src; 12212 uint_t hdr_length; 12213 uint32_t end; 12214 mblk_t *mp1; 12215 mblk_t *tail_mp; 12216 size_t count; 12217 size_t msg_len; 12218 uint8_t ecn_info = 0; 12219 uint32_t packet_size; 12220 boolean_t pruned = B_FALSE; 12221 ip_stack_t *ipst = ill->ill_ipst; 12222 12223 if (cksum_val != NULL) 12224 *cksum_val = 0; 12225 if (cksum_flags != NULL) 12226 *cksum_flags = 0; 12227 12228 /* 12229 * Drop the fragmented as early as possible, if 12230 * we don't have resource(s) to re-assemble. 12231 */ 12232 if (ipst->ips_ip_reass_queue_bytes == 0) { 12233 freemsg(mp); 12234 return (B_FALSE); 12235 } 12236 12237 /* Check for fragmentation offset; return if there's none */ 12238 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12239 (IPH_MF | IPH_OFFSET)) == 0) 12240 return (B_TRUE); 12241 12242 /* 12243 * We utilize hardware computed checksum info only for UDP since 12244 * IP fragmentation is a normal occurence for the protocol. In 12245 * addition, checksum offload support for IP fragments carrying 12246 * UDP payload is commonly implemented across network adapters. 12247 */ 12248 ASSERT(ill != NULL); 12249 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12250 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12251 mblk_t *mp1 = mp->b_cont; 12252 int32_t len; 12253 12254 /* Record checksum information from the packet */ 12255 sum_val = (uint32_t)DB_CKSUM16(mp); 12256 sum_flags = DB_CKSUMFLAGS(mp); 12257 12258 /* IP payload offset from beginning of mblk */ 12259 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12260 12261 if ((sum_flags & HCK_PARTIALCKSUM) && 12262 (mp1 == NULL || mp1->b_cont == NULL) && 12263 offset >= DB_CKSUMSTART(mp) && 12264 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12265 uint32_t adj; 12266 /* 12267 * Partial checksum has been calculated by hardware 12268 * and attached to the packet; in addition, any 12269 * prepended extraneous data is even byte aligned. 12270 * If any such data exists, we adjust the checksum; 12271 * this would also handle any postpended data. 12272 */ 12273 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12274 mp, mp1, len, adj); 12275 12276 /* One's complement subtract extraneous checksum */ 12277 if (adj >= sum_val) 12278 sum_val = ~(adj - sum_val) & 0xFFFF; 12279 else 12280 sum_val -= adj; 12281 } 12282 } else { 12283 sum_val = 0; 12284 sum_flags = 0; 12285 } 12286 12287 /* Clear hardware checksumming flag */ 12288 DB_CKSUMFLAGS(mp) = 0; 12289 12290 ident = ipha->ipha_ident; 12291 offset = (frag_offset_flags << 3) & 0xFFFF; 12292 src = ipha->ipha_src; 12293 dst = ipha->ipha_dst; 12294 hdr_length = IPH_HDR_LENGTH(ipha); 12295 end = ntohs(ipha->ipha_length) - hdr_length; 12296 12297 /* If end == 0 then we have a packet with no data, so just free it */ 12298 if (end == 0) { 12299 freemsg(mp); 12300 return (B_FALSE); 12301 } 12302 12303 /* Record the ECN field info. */ 12304 ecn_info = (ipha->ipha_type_of_service & 0x3); 12305 if (offset != 0) { 12306 /* 12307 * If this isn't the first piece, strip the header, and 12308 * add the offset to the end value. 12309 */ 12310 mp->b_rptr += hdr_length; 12311 end += offset; 12312 } 12313 12314 msg_len = MBLKSIZE(mp); 12315 tail_mp = mp; 12316 while (tail_mp->b_cont != NULL) { 12317 tail_mp = tail_mp->b_cont; 12318 msg_len += MBLKSIZE(tail_mp); 12319 } 12320 12321 /* If the reassembly list for this ILL will get too big, prune it */ 12322 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12323 ipst->ips_ip_reass_queue_bytes) { 12324 ill_frag_prune(ill, 12325 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12326 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12327 pruned = B_TRUE; 12328 } 12329 12330 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12331 mutex_enter(&ipfb->ipfb_lock); 12332 12333 ipfp = &ipfb->ipfb_ipf; 12334 /* Try to find an existing fragment queue for this packet. */ 12335 for (;;) { 12336 ipf = ipfp[0]; 12337 if (ipf != NULL) { 12338 /* 12339 * It has to match on ident and src/dst address. 12340 */ 12341 if (ipf->ipf_ident == ident && 12342 ipf->ipf_src == src && 12343 ipf->ipf_dst == dst && 12344 ipf->ipf_protocol == proto) { 12345 /* 12346 * If we have received too many 12347 * duplicate fragments for this packet 12348 * free it. 12349 */ 12350 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12351 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12352 freemsg(mp); 12353 mutex_exit(&ipfb->ipfb_lock); 12354 return (B_FALSE); 12355 } 12356 /* Found it. */ 12357 break; 12358 } 12359 ipfp = &ipf->ipf_hash_next; 12360 continue; 12361 } 12362 12363 /* 12364 * If we pruned the list, do we want to store this new 12365 * fragment?. We apply an optimization here based on the 12366 * fact that most fragments will be received in order. 12367 * So if the offset of this incoming fragment is zero, 12368 * it is the first fragment of a new packet. We will 12369 * keep it. Otherwise drop the fragment, as we have 12370 * probably pruned the packet already (since the 12371 * packet cannot be found). 12372 */ 12373 if (pruned && offset != 0) { 12374 mutex_exit(&ipfb->ipfb_lock); 12375 freemsg(mp); 12376 return (B_FALSE); 12377 } 12378 12379 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12380 /* 12381 * Too many fragmented packets in this hash 12382 * bucket. Free the oldest. 12383 */ 12384 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12385 } 12386 12387 /* New guy. Allocate a frag message. */ 12388 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12389 if (mp1 == NULL) { 12390 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12391 freemsg(mp); 12392 reass_done: 12393 mutex_exit(&ipfb->ipfb_lock); 12394 return (B_FALSE); 12395 } 12396 12397 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12398 mp1->b_cont = mp; 12399 12400 /* Initialize the fragment header. */ 12401 ipf = (ipf_t *)mp1->b_rptr; 12402 ipf->ipf_mp = mp1; 12403 ipf->ipf_ptphn = ipfp; 12404 ipfp[0] = ipf; 12405 ipf->ipf_hash_next = NULL; 12406 ipf->ipf_ident = ident; 12407 ipf->ipf_protocol = proto; 12408 ipf->ipf_src = src; 12409 ipf->ipf_dst = dst; 12410 ipf->ipf_nf_hdr_len = 0; 12411 /* Record reassembly start time. */ 12412 ipf->ipf_timestamp = gethrestime_sec(); 12413 /* Record ipf generation and account for frag header */ 12414 ipf->ipf_gen = ill->ill_ipf_gen++; 12415 ipf->ipf_count = MBLKSIZE(mp1); 12416 ipf->ipf_last_frag_seen = B_FALSE; 12417 ipf->ipf_ecn = ecn_info; 12418 ipf->ipf_num_dups = 0; 12419 ipfb->ipfb_frag_pkts++; 12420 ipf->ipf_checksum = 0; 12421 ipf->ipf_checksum_flags = 0; 12422 12423 /* Store checksum value in fragment header */ 12424 if (sum_flags != 0) { 12425 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12426 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12427 ipf->ipf_checksum = sum_val; 12428 ipf->ipf_checksum_flags = sum_flags; 12429 } 12430 12431 /* 12432 * We handle reassembly two ways. In the easy case, 12433 * where all the fragments show up in order, we do 12434 * minimal bookkeeping, and just clip new pieces on 12435 * the end. If we ever see a hole, then we go off 12436 * to ip_reassemble which has to mark the pieces and 12437 * keep track of the number of holes, etc. Obviously, 12438 * the point of having both mechanisms is so we can 12439 * handle the easy case as efficiently as possible. 12440 */ 12441 if (offset == 0) { 12442 /* Easy case, in-order reassembly so far. */ 12443 ipf->ipf_count += msg_len; 12444 ipf->ipf_tail_mp = tail_mp; 12445 /* 12446 * Keep track of next expected offset in 12447 * ipf_end. 12448 */ 12449 ipf->ipf_end = end; 12450 ipf->ipf_nf_hdr_len = hdr_length; 12451 } else { 12452 /* Hard case, hole at the beginning. */ 12453 ipf->ipf_tail_mp = NULL; 12454 /* 12455 * ipf_end == 0 means that we have given up 12456 * on easy reassembly. 12457 */ 12458 ipf->ipf_end = 0; 12459 12460 /* Forget checksum offload from now on */ 12461 ipf->ipf_checksum_flags = 0; 12462 12463 /* 12464 * ipf_hole_cnt is set by ip_reassemble. 12465 * ipf_count is updated by ip_reassemble. 12466 * No need to check for return value here 12467 * as we don't expect reassembly to complete 12468 * or fail for the first fragment itself. 12469 */ 12470 (void) ip_reassemble(mp, ipf, 12471 (frag_offset_flags & IPH_OFFSET) << 3, 12472 (frag_offset_flags & IPH_MF), ill, msg_len); 12473 } 12474 /* Update per ipfb and ill byte counts */ 12475 ipfb->ipfb_count += ipf->ipf_count; 12476 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12477 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12478 /* If the frag timer wasn't already going, start it. */ 12479 mutex_enter(&ill->ill_lock); 12480 ill_frag_timer_start(ill); 12481 mutex_exit(&ill->ill_lock); 12482 goto reass_done; 12483 } 12484 12485 /* 12486 * If the packet's flag has changed (it could be coming up 12487 * from an interface different than the previous, therefore 12488 * possibly different checksum capability), then forget about 12489 * any stored checksum states. Otherwise add the value to 12490 * the existing one stored in the fragment header. 12491 */ 12492 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12493 sum_val += ipf->ipf_checksum; 12494 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12495 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12496 ipf->ipf_checksum = sum_val; 12497 } else if (ipf->ipf_checksum_flags != 0) { 12498 /* Forget checksum offload from now on */ 12499 ipf->ipf_checksum_flags = 0; 12500 } 12501 12502 /* 12503 * We have a new piece of a datagram which is already being 12504 * reassembled. Update the ECN info if all IP fragments 12505 * are ECN capable. If there is one which is not, clear 12506 * all the info. If there is at least one which has CE 12507 * code point, IP needs to report that up to transport. 12508 */ 12509 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12510 if (ecn_info == IPH_ECN_CE) 12511 ipf->ipf_ecn = IPH_ECN_CE; 12512 } else { 12513 ipf->ipf_ecn = IPH_ECN_NECT; 12514 } 12515 if (offset && ipf->ipf_end == offset) { 12516 /* The new fragment fits at the end */ 12517 ipf->ipf_tail_mp->b_cont = mp; 12518 /* Update the byte count */ 12519 ipf->ipf_count += msg_len; 12520 /* Update per ipfb and ill byte counts */ 12521 ipfb->ipfb_count += msg_len; 12522 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12523 atomic_add_32(&ill->ill_frag_count, msg_len); 12524 if (frag_offset_flags & IPH_MF) { 12525 /* More to come. */ 12526 ipf->ipf_end = end; 12527 ipf->ipf_tail_mp = tail_mp; 12528 goto reass_done; 12529 } 12530 } else { 12531 /* Go do the hard cases. */ 12532 int ret; 12533 12534 if (offset == 0) 12535 ipf->ipf_nf_hdr_len = hdr_length; 12536 12537 /* Save current byte count */ 12538 count = ipf->ipf_count; 12539 ret = ip_reassemble(mp, ipf, 12540 (frag_offset_flags & IPH_OFFSET) << 3, 12541 (frag_offset_flags & IPH_MF), ill, msg_len); 12542 /* Count of bytes added and subtracted (freeb()ed) */ 12543 count = ipf->ipf_count - count; 12544 if (count) { 12545 /* Update per ipfb and ill byte counts */ 12546 ipfb->ipfb_count += count; 12547 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12548 atomic_add_32(&ill->ill_frag_count, count); 12549 } 12550 if (ret == IP_REASS_PARTIAL) { 12551 goto reass_done; 12552 } else if (ret == IP_REASS_FAILED) { 12553 /* Reassembly failed. Free up all resources */ 12554 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12555 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12556 IP_REASS_SET_START(t_mp, 0); 12557 IP_REASS_SET_END(t_mp, 0); 12558 } 12559 freemsg(mp); 12560 goto reass_done; 12561 } 12562 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12563 } 12564 /* 12565 * We have completed reassembly. Unhook the frag header from 12566 * the reassembly list. 12567 * 12568 * Before we free the frag header, record the ECN info 12569 * to report back to the transport. 12570 */ 12571 ecn_info = ipf->ipf_ecn; 12572 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12573 ipfp = ipf->ipf_ptphn; 12574 12575 /* We need to supply these to caller */ 12576 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12577 sum_val = ipf->ipf_checksum; 12578 else 12579 sum_val = 0; 12580 12581 mp1 = ipf->ipf_mp; 12582 count = ipf->ipf_count; 12583 ipf = ipf->ipf_hash_next; 12584 if (ipf != NULL) 12585 ipf->ipf_ptphn = ipfp; 12586 ipfp[0] = ipf; 12587 atomic_add_32(&ill->ill_frag_count, -count); 12588 ASSERT(ipfb->ipfb_count >= count); 12589 ipfb->ipfb_count -= count; 12590 ipfb->ipfb_frag_pkts--; 12591 mutex_exit(&ipfb->ipfb_lock); 12592 /* Ditch the frag header. */ 12593 mp = mp1->b_cont; 12594 12595 freeb(mp1); 12596 12597 /* Restore original IP length in header. */ 12598 packet_size = (uint32_t)msgdsize(mp); 12599 if (packet_size > IP_MAXPACKET) { 12600 freemsg(mp); 12601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12602 return (B_FALSE); 12603 } 12604 12605 if (DB_REF(mp) > 1) { 12606 mblk_t *mp2 = copymsg(mp); 12607 12608 freemsg(mp); 12609 if (mp2 == NULL) { 12610 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12611 return (B_FALSE); 12612 } 12613 mp = mp2; 12614 } 12615 ipha = (ipha_t *)mp->b_rptr; 12616 12617 ipha->ipha_length = htons((uint16_t)packet_size); 12618 /* We're now complete, zip the frag state */ 12619 ipha->ipha_fragment_offset_and_flags = 0; 12620 /* Record the ECN info. */ 12621 ipha->ipha_type_of_service &= 0xFC; 12622 ipha->ipha_type_of_service |= ecn_info; 12623 *mpp = mp; 12624 12625 /* Reassembly is successful; return checksum information if needed */ 12626 if (cksum_val != NULL) 12627 *cksum_val = sum_val; 12628 if (cksum_flags != NULL) 12629 *cksum_flags = sum_flags; 12630 12631 return (B_TRUE); 12632 } 12633 12634 /* 12635 * Perform ip header check sum update local options. 12636 * return B_TRUE if all is well, else return B_FALSE and release 12637 * the mp. caller is responsible for decrementing ire ref cnt. 12638 */ 12639 static boolean_t 12640 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12641 ip_stack_t *ipst) 12642 { 12643 mblk_t *first_mp; 12644 boolean_t mctl_present; 12645 uint16_t sum; 12646 12647 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12648 /* 12649 * Don't do the checksum if it has gone through AH/ESP 12650 * processing. 12651 */ 12652 if (!mctl_present) { 12653 sum = ip_csum_hdr(ipha); 12654 if (sum != 0) { 12655 if (ill != NULL) { 12656 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12657 } else { 12658 BUMP_MIB(&ipst->ips_ip_mib, 12659 ipIfStatsInCksumErrs); 12660 } 12661 freemsg(first_mp); 12662 return (B_FALSE); 12663 } 12664 } 12665 12666 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12667 if (mctl_present) 12668 freeb(first_mp); 12669 return (B_FALSE); 12670 } 12671 12672 return (B_TRUE); 12673 } 12674 12675 /* 12676 * All udp packet are delivered to the local host via this routine. 12677 */ 12678 void 12679 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12680 ill_t *recv_ill) 12681 { 12682 uint32_t sum; 12683 uint32_t u1; 12684 boolean_t mctl_present; 12685 conn_t *connp; 12686 mblk_t *first_mp; 12687 uint16_t *up; 12688 ill_t *ill = (ill_t *)q->q_ptr; 12689 uint16_t reass_hck_flags = 0; 12690 ip_stack_t *ipst; 12691 12692 ASSERT(recv_ill != NULL); 12693 ipst = recv_ill->ill_ipst; 12694 12695 #define rptr ((uchar_t *)ipha) 12696 12697 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12698 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12699 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12700 ASSERT(ill != NULL); 12701 12702 /* 12703 * FAST PATH for udp packets 12704 */ 12705 12706 /* u1 is # words of IP options */ 12707 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12708 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12709 12710 /* IP options present */ 12711 if (u1 != 0) 12712 goto ipoptions; 12713 12714 /* Check the IP header checksum. */ 12715 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12716 /* Clear the IP header h/w cksum flag */ 12717 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12718 } else if (!mctl_present) { 12719 /* 12720 * Don't verify header checksum if this packet is coming 12721 * back from AH/ESP as we already did it. 12722 */ 12723 #define uph ((uint16_t *)ipha) 12724 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12725 uph[6] + uph[7] + uph[8] + uph[9]; 12726 #undef uph 12727 /* finish doing IP checksum */ 12728 sum = (sum & 0xFFFF) + (sum >> 16); 12729 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12730 if (sum != 0 && sum != 0xFFFF) { 12731 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12732 freemsg(first_mp); 12733 return; 12734 } 12735 } 12736 12737 /* 12738 * Count for SNMP of inbound packets for ire. 12739 * if mctl is present this might be a secure packet and 12740 * has already been counted for in ip_proto_input(). 12741 */ 12742 if (!mctl_present) { 12743 UPDATE_IB_PKT_COUNT(ire); 12744 ire->ire_last_used_time = lbolt; 12745 } 12746 12747 /* packet part of fragmented IP packet? */ 12748 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12749 if (u1 & (IPH_MF | IPH_OFFSET)) { 12750 goto fragmented; 12751 } 12752 12753 /* u1 = IP header length (20 bytes) */ 12754 u1 = IP_SIMPLE_HDR_LENGTH; 12755 12756 /* packet does not contain complete IP & UDP headers */ 12757 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12758 goto udppullup; 12759 12760 /* up points to UDP header */ 12761 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12762 #define iphs ((uint16_t *)ipha) 12763 12764 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12765 if (up[3] != 0) { 12766 mblk_t *mp1 = mp->b_cont; 12767 boolean_t cksum_err; 12768 uint16_t hck_flags = 0; 12769 12770 /* Pseudo-header checksum */ 12771 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12772 iphs[9] + up[2]; 12773 12774 /* 12775 * Revert to software checksum calculation if the interface 12776 * isn't capable of checksum offload or if IPsec is present. 12777 */ 12778 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12779 hck_flags = DB_CKSUMFLAGS(mp); 12780 12781 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12782 IP_STAT(ipst, ip_in_sw_cksum); 12783 12784 IP_CKSUM_RECV(hck_flags, u1, 12785 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12786 (int32_t)((uchar_t *)up - rptr), 12787 mp, mp1, cksum_err); 12788 12789 if (cksum_err) { 12790 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12791 if (hck_flags & HCK_FULLCKSUM) 12792 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12793 else if (hck_flags & HCK_PARTIALCKSUM) 12794 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12795 else 12796 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12797 12798 freemsg(first_mp); 12799 return; 12800 } 12801 } 12802 12803 /* Non-fragmented broadcast or multicast packet? */ 12804 if (ire->ire_type == IRE_BROADCAST) 12805 goto udpslowpath; 12806 12807 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12808 ire->ire_zoneid, ipst)) != NULL) { 12809 ASSERT(connp->conn_upq != NULL); 12810 IP_STAT(ipst, ip_udp_fast_path); 12811 12812 if (CONN_UDP_FLOWCTLD(connp)) { 12813 freemsg(mp); 12814 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12815 } else { 12816 if (!mctl_present) { 12817 BUMP_MIB(ill->ill_ip_mib, 12818 ipIfStatsHCInDelivers); 12819 } 12820 /* 12821 * mp and first_mp can change. 12822 */ 12823 if (ip_udp_check(q, connp, recv_ill, 12824 ipha, &mp, &first_mp, mctl_present, ire)) { 12825 /* Send it upstream */ 12826 (connp->conn_recv)(connp, mp, NULL); 12827 } 12828 } 12829 /* 12830 * freeb() cannot deal with null mblk being passed 12831 * in and first_mp can be set to null in the call 12832 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12833 */ 12834 if (mctl_present && first_mp != NULL) { 12835 freeb(first_mp); 12836 } 12837 CONN_DEC_REF(connp); 12838 return; 12839 } 12840 12841 /* 12842 * if we got here we know the packet is not fragmented and 12843 * has no options. The classifier could not find a conn_t and 12844 * most likely its an icmp packet so send it through slow path. 12845 */ 12846 12847 goto udpslowpath; 12848 12849 ipoptions: 12850 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12851 goto slow_done; 12852 } 12853 12854 UPDATE_IB_PKT_COUNT(ire); 12855 ire->ire_last_used_time = lbolt; 12856 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12857 if (u1 & (IPH_MF | IPH_OFFSET)) { 12858 fragmented: 12859 /* 12860 * "sum" and "reass_hck_flags" are non-zero if the 12861 * reassembled packet has a valid hardware computed 12862 * checksum information associated with it. 12863 */ 12864 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12865 goto slow_done; 12866 /* 12867 * Make sure that first_mp points back to mp as 12868 * the mp we came in with could have changed in 12869 * ip_rput_fragment(). 12870 */ 12871 ASSERT(!mctl_present); 12872 ipha = (ipha_t *)mp->b_rptr; 12873 first_mp = mp; 12874 } 12875 12876 /* Now we have a complete datagram, destined for this machine. */ 12877 u1 = IPH_HDR_LENGTH(ipha); 12878 /* Pull up the UDP header, if necessary. */ 12879 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12880 udppullup: 12881 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12882 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12883 freemsg(first_mp); 12884 goto slow_done; 12885 } 12886 ipha = (ipha_t *)mp->b_rptr; 12887 } 12888 12889 /* 12890 * Validate the checksum for the reassembled packet; for the 12891 * pullup case we calculate the payload checksum in software. 12892 */ 12893 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12894 if (up[3] != 0) { 12895 boolean_t cksum_err; 12896 12897 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12898 IP_STAT(ipst, ip_in_sw_cksum); 12899 12900 IP_CKSUM_RECV_REASS(reass_hck_flags, 12901 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12902 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12903 iphs[9] + up[2], sum, cksum_err); 12904 12905 if (cksum_err) { 12906 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12907 12908 if (reass_hck_flags & HCK_FULLCKSUM) 12909 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12910 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12911 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12912 else 12913 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12914 12915 freemsg(first_mp); 12916 goto slow_done; 12917 } 12918 } 12919 udpslowpath: 12920 12921 /* Clear hardware checksum flag to be safe */ 12922 DB_CKSUMFLAGS(mp) = 0; 12923 12924 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12925 (ire->ire_type == IRE_BROADCAST), 12926 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12927 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12928 12929 slow_done: 12930 IP_STAT(ipst, ip_udp_slow_path); 12931 return; 12932 12933 #undef iphs 12934 #undef rptr 12935 } 12936 12937 /* ARGSUSED */ 12938 static mblk_t * 12939 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12940 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12941 ill_rx_ring_t *ill_ring) 12942 { 12943 conn_t *connp; 12944 uint32_t sum; 12945 uint32_t u1; 12946 uint16_t *up; 12947 int offset; 12948 ssize_t len; 12949 mblk_t *mp1; 12950 boolean_t syn_present = B_FALSE; 12951 tcph_t *tcph; 12952 uint_t tcph_flags; 12953 uint_t ip_hdr_len; 12954 ill_t *ill = (ill_t *)q->q_ptr; 12955 zoneid_t zoneid = ire->ire_zoneid; 12956 boolean_t cksum_err; 12957 uint16_t hck_flags = 0; 12958 ip_stack_t *ipst = recv_ill->ill_ipst; 12959 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12960 12961 #define rptr ((uchar_t *)ipha) 12962 12963 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12964 ASSERT(ill != NULL); 12965 12966 /* 12967 * FAST PATH for tcp packets 12968 */ 12969 12970 /* u1 is # words of IP options */ 12971 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12972 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12973 12974 /* IP options present */ 12975 if (u1) { 12976 goto ipoptions; 12977 } else if (!mctl_present) { 12978 /* Check the IP header checksum. */ 12979 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12980 /* Clear the IP header h/w cksum flag */ 12981 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12982 } else if (!mctl_present) { 12983 /* 12984 * Don't verify header checksum if this packet 12985 * is coming back from AH/ESP as we already did it. 12986 */ 12987 #define uph ((uint16_t *)ipha) 12988 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12989 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12990 #undef uph 12991 /* finish doing IP checksum */ 12992 sum = (sum & 0xFFFF) + (sum >> 16); 12993 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12994 if (sum != 0 && sum != 0xFFFF) { 12995 BUMP_MIB(ill->ill_ip_mib, 12996 ipIfStatsInCksumErrs); 12997 goto error; 12998 } 12999 } 13000 } 13001 13002 if (!mctl_present) { 13003 UPDATE_IB_PKT_COUNT(ire); 13004 ire->ire_last_used_time = lbolt; 13005 } 13006 13007 /* packet part of fragmented IP packet? */ 13008 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13009 if (u1 & (IPH_MF | IPH_OFFSET)) { 13010 goto fragmented; 13011 } 13012 13013 /* u1 = IP header length (20 bytes) */ 13014 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13015 13016 /* does packet contain IP+TCP headers? */ 13017 len = mp->b_wptr - rptr; 13018 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13019 IP_STAT(ipst, ip_tcppullup); 13020 goto tcppullup; 13021 } 13022 13023 /* TCP options present? */ 13024 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13025 13026 /* 13027 * If options need to be pulled up, then goto tcpoptions. 13028 * otherwise we are still in the fast path 13029 */ 13030 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13031 IP_STAT(ipst, ip_tcpoptions); 13032 goto tcpoptions; 13033 } 13034 13035 /* multiple mblks of tcp data? */ 13036 if ((mp1 = mp->b_cont) != NULL) { 13037 /* more then two? */ 13038 if (mp1->b_cont != NULL) { 13039 IP_STAT(ipst, ip_multipkttcp); 13040 goto multipkttcp; 13041 } 13042 len += mp1->b_wptr - mp1->b_rptr; 13043 } 13044 13045 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13046 13047 /* part of pseudo checksum */ 13048 13049 /* TCP datagram length */ 13050 u1 = len - IP_SIMPLE_HDR_LENGTH; 13051 13052 #define iphs ((uint16_t *)ipha) 13053 13054 #ifdef _BIG_ENDIAN 13055 u1 += IPPROTO_TCP; 13056 #else 13057 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13058 #endif 13059 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13060 13061 /* 13062 * Revert to software checksum calculation if the interface 13063 * isn't capable of checksum offload or if IPsec is present. 13064 */ 13065 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13066 hck_flags = DB_CKSUMFLAGS(mp); 13067 13068 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13069 IP_STAT(ipst, ip_in_sw_cksum); 13070 13071 IP_CKSUM_RECV(hck_flags, u1, 13072 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13073 (int32_t)((uchar_t *)up - rptr), 13074 mp, mp1, cksum_err); 13075 13076 if (cksum_err) { 13077 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13078 13079 if (hck_flags & HCK_FULLCKSUM) 13080 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13081 else if (hck_flags & HCK_PARTIALCKSUM) 13082 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13083 else 13084 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13085 13086 goto error; 13087 } 13088 13089 try_again: 13090 13091 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13092 zoneid, ipst)) == NULL) { 13093 /* Send the TH_RST */ 13094 goto no_conn; 13095 } 13096 13097 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13098 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 13099 13100 /* 13101 * TCP FAST PATH for AF_INET socket. 13102 * 13103 * TCP fast path to avoid extra work. An AF_INET socket type 13104 * does not have facility to receive extra information via 13105 * ip_process or ip_add_info. Also, when the connection was 13106 * established, we made a check if this connection is impacted 13107 * by any global IPsec policy or per connection policy (a 13108 * policy that comes in effect later will not apply to this 13109 * connection). Since all this can be determined at the 13110 * connection establishment time, a quick check of flags 13111 * can avoid extra work. 13112 */ 13113 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13114 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13115 ASSERT(first_mp == mp); 13116 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13117 if (tcph_flags != (TH_SYN | TH_ACK)) { 13118 SET_SQUEUE(mp, tcp_rput_data, connp); 13119 return (mp); 13120 } 13121 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13122 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13123 SET_SQUEUE(mp, tcp_input, connp); 13124 return (mp); 13125 } 13126 13127 if (tcph_flags == TH_SYN) { 13128 if (IPCL_IS_TCP(connp)) { 13129 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13130 DB_CKSUMSTART(mp) = 13131 (intptr_t)ip_squeue_get(ill_ring); 13132 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13133 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13134 BUMP_MIB(ill->ill_ip_mib, 13135 ipIfStatsHCInDelivers); 13136 SET_SQUEUE(mp, connp->conn_recv, connp); 13137 return (mp); 13138 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13139 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13140 BUMP_MIB(ill->ill_ip_mib, 13141 ipIfStatsHCInDelivers); 13142 ip_squeue_enter_unbound++; 13143 SET_SQUEUE(mp, tcp_conn_request_unbound, 13144 connp); 13145 return (mp); 13146 } 13147 syn_present = B_TRUE; 13148 } 13149 } 13150 13151 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13152 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13153 13154 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13155 /* No need to send this packet to TCP */ 13156 if ((flags & TH_RST) || (flags & TH_URG)) { 13157 CONN_DEC_REF(connp); 13158 freemsg(first_mp); 13159 return (NULL); 13160 } 13161 if (flags & TH_ACK) { 13162 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13163 ipst->ips_netstack->netstack_tcp, connp); 13164 CONN_DEC_REF(connp); 13165 return (NULL); 13166 } 13167 13168 CONN_DEC_REF(connp); 13169 freemsg(first_mp); 13170 return (NULL); 13171 } 13172 13173 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13174 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13175 ipha, NULL, mctl_present); 13176 if (first_mp == NULL) { 13177 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13178 CONN_DEC_REF(connp); 13179 return (NULL); 13180 } 13181 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13182 ASSERT(syn_present); 13183 if (mctl_present) { 13184 ASSERT(first_mp != mp); 13185 first_mp->b_datap->db_struioflag |= 13186 STRUIO_POLICY; 13187 } else { 13188 ASSERT(first_mp == mp); 13189 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13190 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13191 } 13192 } else { 13193 /* 13194 * Discard first_mp early since we're dealing with a 13195 * fully-connected conn_t and tcp doesn't do policy in 13196 * this case. 13197 */ 13198 if (mctl_present) { 13199 freeb(first_mp); 13200 mctl_present = B_FALSE; 13201 } 13202 first_mp = mp; 13203 } 13204 } 13205 13206 /* Initiate IPPF processing for fastpath */ 13207 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13208 uint32_t ill_index; 13209 13210 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13211 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13212 if (mp == NULL) { 13213 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13214 "deferred/dropped during IPPF processing\n")); 13215 CONN_DEC_REF(connp); 13216 if (mctl_present) 13217 freeb(first_mp); 13218 return (NULL); 13219 } else if (mctl_present) { 13220 /* 13221 * ip_process might return a new mp. 13222 */ 13223 ASSERT(first_mp != mp); 13224 first_mp->b_cont = mp; 13225 } else { 13226 first_mp = mp; 13227 } 13228 13229 } 13230 13231 if (!syn_present && connp->conn_ip_recvpktinfo) { 13232 /* 13233 * TCP does not support IP_RECVPKTINFO for v4 so lets 13234 * make sure IPF_RECVIF is passed to ip_add_info. 13235 */ 13236 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13237 IPCL_ZONEID(connp), ipst); 13238 if (mp == NULL) { 13239 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13240 CONN_DEC_REF(connp); 13241 if (mctl_present) 13242 freeb(first_mp); 13243 return (NULL); 13244 } else if (mctl_present) { 13245 /* 13246 * ip_add_info might return a new mp. 13247 */ 13248 ASSERT(first_mp != mp); 13249 first_mp->b_cont = mp; 13250 } else { 13251 first_mp = mp; 13252 } 13253 } 13254 13255 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13256 if (IPCL_IS_TCP(connp)) { 13257 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13258 return (first_mp); 13259 } else { 13260 /* SOCK_RAW, IPPROTO_TCP case */ 13261 (connp->conn_recv)(connp, first_mp, NULL); 13262 CONN_DEC_REF(connp); 13263 return (NULL); 13264 } 13265 13266 no_conn: 13267 /* Initiate IPPf processing, if needed. */ 13268 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13269 uint32_t ill_index; 13270 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13271 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13272 if (first_mp == NULL) { 13273 return (NULL); 13274 } 13275 } 13276 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13277 13278 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13279 ipst->ips_netstack->netstack_tcp, NULL); 13280 return (NULL); 13281 ipoptions: 13282 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13283 goto slow_done; 13284 } 13285 13286 UPDATE_IB_PKT_COUNT(ire); 13287 ire->ire_last_used_time = lbolt; 13288 13289 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13290 if (u1 & (IPH_MF | IPH_OFFSET)) { 13291 fragmented: 13292 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13293 if (mctl_present) 13294 freeb(first_mp); 13295 goto slow_done; 13296 } 13297 /* 13298 * Make sure that first_mp points back to mp as 13299 * the mp we came in with could have changed in 13300 * ip_rput_fragment(). 13301 */ 13302 ASSERT(!mctl_present); 13303 ipha = (ipha_t *)mp->b_rptr; 13304 first_mp = mp; 13305 } 13306 13307 /* Now we have a complete datagram, destined for this machine. */ 13308 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13309 13310 len = mp->b_wptr - mp->b_rptr; 13311 /* Pull up a minimal TCP header, if necessary. */ 13312 if (len < (u1 + 20)) { 13313 tcppullup: 13314 if (!pullupmsg(mp, u1 + 20)) { 13315 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13316 goto error; 13317 } 13318 ipha = (ipha_t *)mp->b_rptr; 13319 len = mp->b_wptr - mp->b_rptr; 13320 } 13321 13322 /* 13323 * Extract the offset field from the TCP header. As usual, we 13324 * try to help the compiler more than the reader. 13325 */ 13326 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13327 if (offset != 5) { 13328 tcpoptions: 13329 if (offset < 5) { 13330 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13331 goto error; 13332 } 13333 /* 13334 * There must be TCP options. 13335 * Make sure we can grab them. 13336 */ 13337 offset <<= 2; 13338 offset += u1; 13339 if (len < offset) { 13340 if (!pullupmsg(mp, offset)) { 13341 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13342 goto error; 13343 } 13344 ipha = (ipha_t *)mp->b_rptr; 13345 len = mp->b_wptr - rptr; 13346 } 13347 } 13348 13349 /* Get the total packet length in len, including headers. */ 13350 if (mp->b_cont) { 13351 multipkttcp: 13352 len = msgdsize(mp); 13353 } 13354 13355 /* 13356 * Check the TCP checksum by pulling together the pseudo- 13357 * header checksum, and passing it to ip_csum to be added in 13358 * with the TCP datagram. 13359 * 13360 * Since we are not using the hwcksum if available we must 13361 * clear the flag. We may come here via tcppullup or tcpoptions. 13362 * If either of these fails along the way the mblk is freed. 13363 * If this logic ever changes and mblk is reused to say send 13364 * ICMP's back, then this flag may need to be cleared in 13365 * other places as well. 13366 */ 13367 DB_CKSUMFLAGS(mp) = 0; 13368 13369 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13370 13371 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13372 #ifdef _BIG_ENDIAN 13373 u1 += IPPROTO_TCP; 13374 #else 13375 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13376 #endif 13377 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13378 /* 13379 * Not M_DATA mblk or its a dup, so do the checksum now. 13380 */ 13381 IP_STAT(ipst, ip_in_sw_cksum); 13382 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13383 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13384 goto error; 13385 } 13386 13387 IP_STAT(ipst, ip_tcp_slow_path); 13388 goto try_again; 13389 #undef iphs 13390 #undef rptr 13391 13392 error: 13393 freemsg(first_mp); 13394 slow_done: 13395 return (NULL); 13396 } 13397 13398 /* ARGSUSED */ 13399 static void 13400 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13401 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13402 { 13403 conn_t *connp; 13404 uint32_t sum; 13405 uint32_t u1; 13406 ssize_t len; 13407 sctp_hdr_t *sctph; 13408 zoneid_t zoneid = ire->ire_zoneid; 13409 uint32_t pktsum; 13410 uint32_t calcsum; 13411 uint32_t ports; 13412 in6_addr_t map_src, map_dst; 13413 ill_t *ill = (ill_t *)q->q_ptr; 13414 ip_stack_t *ipst; 13415 sctp_stack_t *sctps; 13416 boolean_t sctp_csum_err = B_FALSE; 13417 13418 ASSERT(recv_ill != NULL); 13419 ipst = recv_ill->ill_ipst; 13420 sctps = ipst->ips_netstack->netstack_sctp; 13421 13422 #define rptr ((uchar_t *)ipha) 13423 13424 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13425 ASSERT(ill != NULL); 13426 13427 /* u1 is # words of IP options */ 13428 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13429 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13430 13431 /* IP options present */ 13432 if (u1 > 0) { 13433 goto ipoptions; 13434 } else { 13435 /* Check the IP header checksum. */ 13436 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13437 !mctl_present) { 13438 #define uph ((uint16_t *)ipha) 13439 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13440 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13441 #undef uph 13442 /* finish doing IP checksum */ 13443 sum = (sum & 0xFFFF) + (sum >> 16); 13444 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13445 /* 13446 * Don't verify header checksum if this packet 13447 * is coming back from AH/ESP as we already did it. 13448 */ 13449 if (sum != 0 && sum != 0xFFFF) { 13450 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13451 goto error; 13452 } 13453 } 13454 /* 13455 * Since there is no SCTP h/w cksum support yet, just 13456 * clear the flag. 13457 */ 13458 DB_CKSUMFLAGS(mp) = 0; 13459 } 13460 13461 /* 13462 * Don't verify header checksum if this packet is coming 13463 * back from AH/ESP as we already did it. 13464 */ 13465 if (!mctl_present) { 13466 UPDATE_IB_PKT_COUNT(ire); 13467 ire->ire_last_used_time = lbolt; 13468 } 13469 13470 /* packet part of fragmented IP packet? */ 13471 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13472 if (u1 & (IPH_MF | IPH_OFFSET)) 13473 goto fragmented; 13474 13475 /* u1 = IP header length (20 bytes) */ 13476 u1 = IP_SIMPLE_HDR_LENGTH; 13477 13478 find_sctp_client: 13479 /* Pullup if we don't have the sctp common header. */ 13480 len = MBLKL(mp); 13481 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13482 if (mp->b_cont == NULL || 13483 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13484 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13485 goto error; 13486 } 13487 ipha = (ipha_t *)mp->b_rptr; 13488 len = MBLKL(mp); 13489 } 13490 13491 sctph = (sctp_hdr_t *)(rptr + u1); 13492 #ifdef DEBUG 13493 if (!skip_sctp_cksum) { 13494 #endif 13495 pktsum = sctph->sh_chksum; 13496 sctph->sh_chksum = 0; 13497 calcsum = sctp_cksum(mp, u1); 13498 sctph->sh_chksum = pktsum; 13499 if (calcsum != pktsum) 13500 sctp_csum_err = B_TRUE; 13501 #ifdef DEBUG /* skip_sctp_cksum */ 13502 } 13503 #endif 13504 /* get the ports */ 13505 ports = *(uint32_t *)&sctph->sh_sport; 13506 13507 IRE_REFRELE(ire); 13508 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13509 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13510 if (sctp_csum_err) { 13511 /* 13512 * No potential sctp checksum errors go to the Sun 13513 * sctp stack however they might be Adler-32 summed 13514 * packets a userland stack bound to a raw IP socket 13515 * could reasonably use. Note though that Adler-32 is 13516 * a long deprecated algorithm and customer sctp 13517 * networks should eventually migrate to CRC-32 at 13518 * which time this facility should be removed. 13519 */ 13520 flags |= IP_FF_SCTP_CSUM_ERR; 13521 goto no_conn; 13522 } 13523 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13524 sctps)) == NULL) { 13525 /* Check for raw socket or OOTB handling */ 13526 goto no_conn; 13527 } 13528 13529 /* Found a client; up it goes */ 13530 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13531 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13532 return; 13533 13534 no_conn: 13535 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13536 ports, mctl_present, flags, B_TRUE, zoneid); 13537 return; 13538 13539 ipoptions: 13540 DB_CKSUMFLAGS(mp) = 0; 13541 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13542 goto slow_done; 13543 13544 UPDATE_IB_PKT_COUNT(ire); 13545 ire->ire_last_used_time = lbolt; 13546 13547 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13548 if (u1 & (IPH_MF | IPH_OFFSET)) { 13549 fragmented: 13550 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13551 goto slow_done; 13552 /* 13553 * Make sure that first_mp points back to mp as 13554 * the mp we came in with could have changed in 13555 * ip_rput_fragment(). 13556 */ 13557 ASSERT(!mctl_present); 13558 ipha = (ipha_t *)mp->b_rptr; 13559 first_mp = mp; 13560 } 13561 13562 /* Now we have a complete datagram, destined for this machine. */ 13563 u1 = IPH_HDR_LENGTH(ipha); 13564 goto find_sctp_client; 13565 #undef iphs 13566 #undef rptr 13567 13568 error: 13569 freemsg(first_mp); 13570 slow_done: 13571 IRE_REFRELE(ire); 13572 } 13573 13574 #define VER_BITS 0xF0 13575 #define VERSION_6 0x60 13576 13577 static boolean_t 13578 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13579 ipaddr_t *dstp, ip_stack_t *ipst) 13580 { 13581 uint_t opt_len; 13582 ipha_t *ipha; 13583 ssize_t len; 13584 uint_t pkt_len; 13585 13586 ASSERT(ill != NULL); 13587 IP_STAT(ipst, ip_ipoptions); 13588 ipha = *iphapp; 13589 13590 #define rptr ((uchar_t *)ipha) 13591 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13592 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13593 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13594 freemsg(mp); 13595 return (B_FALSE); 13596 } 13597 13598 /* multiple mblk or too short */ 13599 pkt_len = ntohs(ipha->ipha_length); 13600 13601 /* Get the number of words of IP options in the IP header. */ 13602 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13603 if (opt_len) { 13604 /* IP Options present! Validate and process. */ 13605 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13607 goto done; 13608 } 13609 /* 13610 * Recompute complete header length and make sure we 13611 * have access to all of it. 13612 */ 13613 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13614 if (len > (mp->b_wptr - rptr)) { 13615 if (len > pkt_len) { 13616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13617 goto done; 13618 } 13619 if (!pullupmsg(mp, len)) { 13620 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13621 goto done; 13622 } 13623 ipha = (ipha_t *)mp->b_rptr; 13624 } 13625 /* 13626 * Go off to ip_rput_options which returns the next hop 13627 * destination address, which may have been affected 13628 * by source routing. 13629 */ 13630 IP_STAT(ipst, ip_opt); 13631 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13632 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13633 return (B_FALSE); 13634 } 13635 } 13636 *iphapp = ipha; 13637 return (B_TRUE); 13638 done: 13639 /* clear b_prev - used by ip_mroute_decap */ 13640 mp->b_prev = NULL; 13641 freemsg(mp); 13642 return (B_FALSE); 13643 #undef rptr 13644 } 13645 13646 /* 13647 * Deal with the fact that there is no ire for the destination. 13648 */ 13649 static ire_t * 13650 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13651 { 13652 ipha_t *ipha; 13653 ill_t *ill; 13654 ire_t *ire; 13655 ip_stack_t *ipst; 13656 enum ire_forward_action ret_action; 13657 13658 ipha = (ipha_t *)mp->b_rptr; 13659 ill = (ill_t *)q->q_ptr; 13660 13661 ASSERT(ill != NULL); 13662 ipst = ill->ill_ipst; 13663 13664 /* 13665 * No IRE for this destination, so it can't be for us. 13666 * Unless we are forwarding, drop the packet. 13667 * We have to let source routed packets through 13668 * since we don't yet know if they are 'ping -l' 13669 * packets i.e. if they will go out over the 13670 * same interface as they came in on. 13671 */ 13672 if (ll_multicast) { 13673 freemsg(mp); 13674 return (NULL); 13675 } 13676 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13677 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13678 freemsg(mp); 13679 return (NULL); 13680 } 13681 13682 /* 13683 * Mark this packet as having originated externally. 13684 * 13685 * For non-forwarding code path, ire_send later double 13686 * checks this interface to see if it is still exists 13687 * post-ARP resolution. 13688 * 13689 * Also, IPQOS uses this to differentiate between 13690 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13691 * QOS packet processing in ip_wput_attach_llhdr(). 13692 * The QoS module can mark the b_band for a fastpath message 13693 * or the dl_priority field in a unitdata_req header for 13694 * CoS marking. This info can only be found in 13695 * ip_wput_attach_llhdr(). 13696 */ 13697 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13698 /* 13699 * Clear the indication that this may have a hardware checksum 13700 * as we are not using it 13701 */ 13702 DB_CKSUMFLAGS(mp) = 0; 13703 13704 ire = ire_forward(dst, &ret_action, NULL, NULL, 13705 MBLK_GETLABEL(mp), ipst); 13706 13707 if (ire == NULL && ret_action == Forward_check_multirt) { 13708 /* Let ip_newroute handle CGTP */ 13709 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13710 return (NULL); 13711 } 13712 13713 if (ire != NULL) 13714 return (ire); 13715 13716 mp->b_prev = mp->b_next = 0; 13717 13718 if (ret_action == Forward_blackhole) { 13719 freemsg(mp); 13720 return (NULL); 13721 } 13722 /* send icmp unreachable */ 13723 q = WR(q); 13724 /* Sent by forwarding path, and router is global zone */ 13725 if (ip_source_routed(ipha, ipst)) { 13726 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13727 GLOBAL_ZONEID, ipst); 13728 } else { 13729 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13730 ipst); 13731 } 13732 13733 return (NULL); 13734 13735 } 13736 13737 /* 13738 * check ip header length and align it. 13739 */ 13740 static boolean_t 13741 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13742 { 13743 ssize_t len; 13744 ill_t *ill; 13745 ipha_t *ipha; 13746 13747 len = MBLKL(mp); 13748 13749 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13750 ill = (ill_t *)q->q_ptr; 13751 13752 if (!OK_32PTR(mp->b_rptr)) 13753 IP_STAT(ipst, ip_notaligned1); 13754 else 13755 IP_STAT(ipst, ip_notaligned2); 13756 /* Guard against bogus device drivers */ 13757 if (len < 0) { 13758 /* clear b_prev - used by ip_mroute_decap */ 13759 mp->b_prev = NULL; 13760 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13761 freemsg(mp); 13762 return (B_FALSE); 13763 } 13764 13765 if (ip_rput_pullups++ == 0) { 13766 ipha = (ipha_t *)mp->b_rptr; 13767 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13768 "ip_check_and_align_header: %s forced us to " 13769 " pullup pkt, hdr len %ld, hdr addr %p", 13770 ill->ill_name, len, (void *)ipha); 13771 } 13772 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13773 /* clear b_prev - used by ip_mroute_decap */ 13774 mp->b_prev = NULL; 13775 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13776 freemsg(mp); 13777 return (B_FALSE); 13778 } 13779 } 13780 return (B_TRUE); 13781 } 13782 13783 ire_t * 13784 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13785 { 13786 ire_t *new_ire; 13787 ill_t *ire_ill; 13788 uint_t ifindex; 13789 ip_stack_t *ipst = ill->ill_ipst; 13790 boolean_t strict_check = B_FALSE; 13791 13792 /* 13793 * This packet came in on an interface other than the one associated 13794 * with the first ire we found for the destination address. We do 13795 * another ire lookup here, using the ingress ill, to see if the 13796 * interface is in an interface group. 13797 * As long as the ills belong to the same group, we don't consider 13798 * them to be arriving on the wrong interface. Thus, if the switch 13799 * is doing inbound load spreading, we won't drop packets when the 13800 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13801 * for 'usesrc groups' where the destination address may belong to 13802 * another interface to allow multipathing to happen. 13803 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13804 * where the local address may not be unique. In this case we were 13805 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13806 * actually returned. The new lookup, which is more specific, should 13807 * only find the IRE_LOCAL associated with the ingress ill if one 13808 * exists. 13809 */ 13810 13811 if (ire->ire_ipversion == IPV4_VERSION) { 13812 if (ipst->ips_ip_strict_dst_multihoming) 13813 strict_check = B_TRUE; 13814 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13815 ill->ill_ipif, ALL_ZONES, NULL, 13816 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13817 } else { 13818 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13819 if (ipst->ips_ipv6_strict_dst_multihoming) 13820 strict_check = B_TRUE; 13821 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13822 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13823 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13824 } 13825 /* 13826 * If the same ire that was returned in ip_input() is found then this 13827 * is an indication that interface groups are in use. The packet 13828 * arrived on a different ill in the group than the one associated with 13829 * the destination address. If a different ire was found then the same 13830 * IP address must be hosted on multiple ills. This is possible with 13831 * unnumbered point2point interfaces. We switch to use this new ire in 13832 * order to have accurate interface statistics. 13833 */ 13834 if (new_ire != NULL) { 13835 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13836 ire_refrele(ire); 13837 ire = new_ire; 13838 } else { 13839 ire_refrele(new_ire); 13840 } 13841 return (ire); 13842 } else if ((ire->ire_rfq == NULL) && 13843 (ire->ire_ipversion == IPV4_VERSION)) { 13844 /* 13845 * The best match could have been the original ire which 13846 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13847 * the strict multihoming checks are irrelevant as we consider 13848 * local addresses hosted on lo0 to be interface agnostic. We 13849 * only expect a null ire_rfq on IREs which are associated with 13850 * lo0 hence we can return now. 13851 */ 13852 return (ire); 13853 } 13854 13855 /* 13856 * Chase pointers once and store locally. 13857 */ 13858 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13859 (ill_t *)(ire->ire_rfq->q_ptr); 13860 ifindex = ill->ill_usesrc_ifindex; 13861 13862 /* 13863 * Check if it's a legal address on the 'usesrc' interface. 13864 */ 13865 if ((ifindex != 0) && (ire_ill != NULL) && 13866 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13867 return (ire); 13868 } 13869 13870 /* 13871 * If the ip*_strict_dst_multihoming switch is on then we can 13872 * only accept this packet if the interface is marked as routing. 13873 */ 13874 if (!(strict_check)) 13875 return (ire); 13876 13877 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13878 ILLF_ROUTER) != 0) { 13879 return (ire); 13880 } 13881 13882 ire_refrele(ire); 13883 return (NULL); 13884 } 13885 13886 /* 13887 * 13888 * This is the fast forward path. If we are here, we dont need to 13889 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13890 * needed to find the nexthop in this case is much simpler 13891 */ 13892 ire_t * 13893 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13894 { 13895 ipha_t *ipha; 13896 ire_t *src_ire; 13897 ill_t *stq_ill; 13898 uint_t hlen; 13899 uint_t pkt_len; 13900 uint32_t sum; 13901 queue_t *dev_q; 13902 ip_stack_t *ipst = ill->ill_ipst; 13903 mblk_t *fpmp; 13904 enum ire_forward_action ret_action; 13905 13906 ipha = (ipha_t *)mp->b_rptr; 13907 13908 if (ire != NULL && 13909 ire->ire_zoneid != GLOBAL_ZONEID && 13910 ire->ire_zoneid != ALL_ZONES) { 13911 /* 13912 * Should only use IREs that are visible to the global 13913 * zone for forwarding. 13914 */ 13915 ire_refrele(ire); 13916 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13917 /* 13918 * ire_cache_lookup() can return ire of IRE_LOCAL in 13919 * transient cases. In such case, just drop the packet 13920 */ 13921 if (ire->ire_type != IRE_CACHE) 13922 goto drop; 13923 } 13924 13925 /* 13926 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13927 * The loopback address check for both src and dst has already 13928 * been checked in ip_input 13929 */ 13930 13931 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13932 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13933 goto drop; 13934 } 13935 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13936 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13937 13938 if (src_ire != NULL) { 13939 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13940 ire_refrele(src_ire); 13941 goto drop; 13942 } 13943 13944 /* No ire cache of nexthop. So first create one */ 13945 if (ire == NULL) { 13946 13947 ire = ire_forward_simple(dst, &ret_action, ipst); 13948 13949 /* 13950 * We only come to ip_fast_forward if ip_cgtp_filter 13951 * is not set. So ire_forward() should not return with 13952 * Forward_check_multirt as the next action. 13953 */ 13954 ASSERT(ret_action != Forward_check_multirt); 13955 if (ire == NULL) { 13956 /* An attempt was made to forward the packet */ 13957 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13958 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13959 mp->b_prev = mp->b_next = 0; 13960 /* send icmp unreachable */ 13961 /* Sent by forwarding path, and router is global zone */ 13962 if (ret_action == Forward_ret_icmp_err) { 13963 if (ip_source_routed(ipha, ipst)) { 13964 icmp_unreachable(ill->ill_wq, mp, 13965 ICMP_SOURCE_ROUTE_FAILED, 13966 GLOBAL_ZONEID, ipst); 13967 } else { 13968 icmp_unreachable(ill->ill_wq, mp, 13969 ICMP_HOST_UNREACHABLE, 13970 GLOBAL_ZONEID, ipst); 13971 } 13972 } else { 13973 freemsg(mp); 13974 } 13975 return (NULL); 13976 } 13977 } 13978 13979 /* 13980 * Forwarding fastpath exception case: 13981 * If either of the follwoing case is true, we take 13982 * the slowpath 13983 * o forwarding is not enabled 13984 * o incoming and outgoing interface are the same, or the same 13985 * IPMP group 13986 * o corresponding ire is in incomplete state 13987 * o packet needs fragmentation 13988 * o ARP cache is not resolved 13989 * 13990 * The codeflow from here on is thus: 13991 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13992 */ 13993 pkt_len = ntohs(ipha->ipha_length); 13994 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13995 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13996 (ill == stq_ill) || 13997 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13998 (ire->ire_nce == NULL) || 13999 (pkt_len > ire->ire_max_frag) || 14000 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 14001 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 14002 ipha->ipha_ttl <= 1) { 14003 ip_rput_process_forward(ill->ill_rq, mp, ire, 14004 ipha, ill, B_FALSE, B_TRUE); 14005 return (ire); 14006 } 14007 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14008 14009 DTRACE_PROBE4(ip4__forwarding__start, 14010 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14011 14012 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14013 ipst->ips_ipv4firewall_forwarding, 14014 ill, stq_ill, ipha, mp, mp, 0, ipst); 14015 14016 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14017 14018 if (mp == NULL) 14019 goto drop; 14020 14021 mp->b_datap->db_struioun.cksum.flags = 0; 14022 /* Adjust the checksum to reflect the ttl decrement. */ 14023 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14024 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14025 ipha->ipha_ttl--; 14026 14027 /* 14028 * Write the link layer header. We can do this safely here, 14029 * because we have already tested to make sure that the IP 14030 * policy is not set, and that we have a fast path destination 14031 * header. 14032 */ 14033 mp->b_rptr -= hlen; 14034 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14035 14036 UPDATE_IB_PKT_COUNT(ire); 14037 ire->ire_last_used_time = lbolt; 14038 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14039 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14040 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14041 14042 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 14043 dev_q = ire->ire_stq->q_next; 14044 if (DEV_Q_FLOW_BLOCKED(dev_q)) 14045 goto indiscard; 14046 } 14047 14048 DTRACE_PROBE4(ip4__physical__out__start, 14049 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14050 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14051 ipst->ips_ipv4firewall_physical_out, 14052 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14053 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14054 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14055 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14056 ip6_t *, NULL, int, 0); 14057 14058 if (mp != NULL) { 14059 if (ipst->ips_ipobs_enabled) { 14060 zoneid_t szone; 14061 14062 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 14063 ipst, ALL_ZONES); 14064 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 14065 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 14066 } 14067 14068 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC); 14069 } 14070 return (ire); 14071 14072 indiscard: 14073 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14074 drop: 14075 if (mp != NULL) 14076 freemsg(mp); 14077 return (ire); 14078 14079 } 14080 14081 /* 14082 * This function is called in the forwarding slowpath, when 14083 * either the ire lacks the link-layer address, or the packet needs 14084 * further processing(eg. fragmentation), before transmission. 14085 */ 14086 14087 static void 14088 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14089 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 14090 { 14091 ill_group_t *ill_group; 14092 ill_group_t *ire_group; 14093 queue_t *dev_q; 14094 ire_t *src_ire; 14095 ip_stack_t *ipst = ill->ill_ipst; 14096 14097 ASSERT(ire->ire_stq != NULL); 14098 14099 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14100 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14101 14102 /* 14103 * If the caller of this function is ip_fast_forward() skip the 14104 * next three checks as it does not apply. 14105 */ 14106 if (from_ip_fast_forward) { 14107 ill_group = ill->ill_group; 14108 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14109 goto skip; 14110 } 14111 14112 if (ll_multicast != 0) { 14113 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14114 goto drop_pkt; 14115 } 14116 14117 /* 14118 * check if ipha_src is a broadcast address. Note that this 14119 * check is redundant when we get here from ip_fast_forward() 14120 * which has already done this check. However, since we can 14121 * also get here from ip_rput_process_broadcast() or, for 14122 * for the slow path through ip_fast_forward(), we perform 14123 * the check again for code-reusability 14124 */ 14125 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14126 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14127 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14128 if (src_ire != NULL) 14129 ire_refrele(src_ire); 14130 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14131 ip2dbg(("ip_rput_process_forward: Received packet with" 14132 " bad src/dst address on %s\n", ill->ill_name)); 14133 goto drop_pkt; 14134 } 14135 14136 ill_group = ill->ill_group; 14137 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14138 /* 14139 * Check if we want to forward this one at this time. 14140 * We allow source routed packets on a host provided that 14141 * they go out the same interface or same interface group 14142 * as they came in on. 14143 * 14144 * XXX To be quicker, we may wish to not chase pointers to 14145 * get the ILLF_ROUTER flag and instead store the 14146 * forwarding policy in the ire. An unfortunate 14147 * side-effect of that would be requiring an ire flush 14148 * whenever the ILLF_ROUTER flag changes. 14149 */ 14150 skip: 14151 if (((ill->ill_flags & 14152 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14153 ILLF_ROUTER) == 0) && 14154 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14155 (ill_group != NULL && ill_group == ire_group)))) { 14156 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14157 if (ip_source_routed(ipha, ipst)) { 14158 q = WR(q); 14159 /* 14160 * Clear the indication that this may have 14161 * hardware checksum as we are not using it. 14162 */ 14163 DB_CKSUMFLAGS(mp) = 0; 14164 /* Sent by forwarding path, and router is global zone */ 14165 icmp_unreachable(q, mp, 14166 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14167 return; 14168 } 14169 goto drop_pkt; 14170 } 14171 14172 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14173 14174 /* Packet is being forwarded. Turning off hwcksum flag. */ 14175 DB_CKSUMFLAGS(mp) = 0; 14176 if (ipst->ips_ip_g_send_redirects) { 14177 /* 14178 * Check whether the incoming interface and outgoing 14179 * interface is part of the same group. If so, 14180 * send redirects. 14181 * 14182 * Check the source address to see if it originated 14183 * on the same logical subnet it is going back out on. 14184 * If so, we should be able to send it a redirect. 14185 * Avoid sending a redirect if the destination 14186 * is directly connected (i.e., ipha_dst is the same 14187 * as ire_gateway_addr or the ire_addr of the 14188 * nexthop IRE_CACHE ), or if the packet was source 14189 * routed out this interface. 14190 */ 14191 ipaddr_t src, nhop; 14192 mblk_t *mp1; 14193 ire_t *nhop_ire = NULL; 14194 14195 /* 14196 * Check whether ire_rfq and q are from the same ill 14197 * or if they are not same, they at least belong 14198 * to the same group. If so, send redirects. 14199 */ 14200 if ((ire->ire_rfq == q || 14201 (ill_group != NULL && ill_group == ire_group)) && 14202 !ip_source_routed(ipha, ipst)) { 14203 14204 nhop = (ire->ire_gateway_addr != 0 ? 14205 ire->ire_gateway_addr : ire->ire_addr); 14206 14207 if (ipha->ipha_dst == nhop) { 14208 /* 14209 * We avoid sending a redirect if the 14210 * destination is directly connected 14211 * because it is possible that multiple 14212 * IP subnets may have been configured on 14213 * the link, and the source may not 14214 * be on the same subnet as ip destination, 14215 * even though they are on the same 14216 * physical link. 14217 */ 14218 goto sendit; 14219 } 14220 14221 src = ipha->ipha_src; 14222 14223 /* 14224 * We look up the interface ire for the nexthop, 14225 * to see if ipha_src is in the same subnet 14226 * as the nexthop. 14227 * 14228 * Note that, if, in the future, IRE_CACHE entries 14229 * are obsoleted, this lookup will not be needed, 14230 * as the ire passed to this function will be the 14231 * same as the nhop_ire computed below. 14232 */ 14233 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14234 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14235 0, NULL, MATCH_IRE_TYPE, ipst); 14236 14237 if (nhop_ire != NULL) { 14238 if ((src & nhop_ire->ire_mask) == 14239 (nhop & nhop_ire->ire_mask)) { 14240 /* 14241 * The source is directly connected. 14242 * Just copy the ip header (which is 14243 * in the first mblk) 14244 */ 14245 mp1 = copyb(mp); 14246 if (mp1 != NULL) { 14247 icmp_send_redirect(WR(q), mp1, 14248 nhop, ipst); 14249 } 14250 } 14251 ire_refrele(nhop_ire); 14252 } 14253 } 14254 } 14255 sendit: 14256 dev_q = ire->ire_stq->q_next; 14257 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14258 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14259 freemsg(mp); 14260 return; 14261 } 14262 14263 ip_rput_forward(ire, ipha, mp, ill); 14264 return; 14265 14266 drop_pkt: 14267 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14268 freemsg(mp); 14269 } 14270 14271 ire_t * 14272 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14273 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14274 { 14275 queue_t *q; 14276 uint16_t hcksumflags; 14277 ip_stack_t *ipst = ill->ill_ipst; 14278 14279 q = *qp; 14280 14281 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14282 14283 /* 14284 * Clear the indication that this may have hardware 14285 * checksum as we are not using it for forwarding. 14286 */ 14287 hcksumflags = DB_CKSUMFLAGS(mp); 14288 DB_CKSUMFLAGS(mp) = 0; 14289 14290 /* 14291 * Directed broadcast forwarding: if the packet came in over a 14292 * different interface then it is routed out over we can forward it. 14293 */ 14294 if (ipha->ipha_protocol == IPPROTO_TCP) { 14295 ire_refrele(ire); 14296 freemsg(mp); 14297 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14298 return (NULL); 14299 } 14300 /* 14301 * For multicast we have set dst to be INADDR_BROADCAST 14302 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14303 * only for broadcast packets. 14304 */ 14305 if (!CLASSD(ipha->ipha_dst)) { 14306 ire_t *new_ire; 14307 ipif_t *ipif; 14308 /* 14309 * For ill groups, as the switch duplicates broadcasts 14310 * across all the ports, we need to filter out and 14311 * send up only one copy. There is one copy for every 14312 * broadcast address on each ill. Thus, we look for a 14313 * specific IRE on this ill and look at IRE_MARK_NORECV 14314 * later to see whether this ill is eligible to receive 14315 * them or not. ill_nominate_bcast_rcv() nominates only 14316 * one set of IREs for receiving. 14317 */ 14318 14319 ipif = ipif_get_next_ipif(NULL, ill); 14320 if (ipif == NULL) { 14321 ire_refrele(ire); 14322 freemsg(mp); 14323 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14324 return (NULL); 14325 } 14326 new_ire = ire_ctable_lookup(dst, 0, 0, 14327 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14328 ipif_refrele(ipif); 14329 14330 if (new_ire != NULL) { 14331 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14332 ire_refrele(ire); 14333 ire_refrele(new_ire); 14334 freemsg(mp); 14335 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14336 return (NULL); 14337 } 14338 /* 14339 * In the special case of multirouted broadcast 14340 * packets, we unconditionally need to "gateway" 14341 * them to the appropriate interface here. 14342 * In the normal case, this cannot happen, because 14343 * there is no broadcast IRE tagged with the 14344 * RTF_MULTIRT flag. 14345 */ 14346 if (new_ire->ire_flags & RTF_MULTIRT) { 14347 ire_refrele(new_ire); 14348 if (ire->ire_rfq != NULL) { 14349 q = ire->ire_rfq; 14350 *qp = q; 14351 } 14352 } else { 14353 ire_refrele(ire); 14354 ire = new_ire; 14355 } 14356 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14357 if (!ipst->ips_ip_g_forward_directed_bcast) { 14358 /* 14359 * Free the message if 14360 * ip_g_forward_directed_bcast is turned 14361 * off for non-local broadcast. 14362 */ 14363 ire_refrele(ire); 14364 freemsg(mp); 14365 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14366 return (NULL); 14367 } 14368 } else { 14369 /* 14370 * This CGTP packet successfully passed the 14371 * CGTP filter, but the related CGTP 14372 * broadcast IRE has not been found, 14373 * meaning that the redundant ipif is 14374 * probably down. However, if we discarded 14375 * this packet, its duplicate would be 14376 * filtered out by the CGTP filter so none 14377 * of them would get through. So we keep 14378 * going with this one. 14379 */ 14380 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14381 if (ire->ire_rfq != NULL) { 14382 q = ire->ire_rfq; 14383 *qp = q; 14384 } 14385 } 14386 } 14387 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14388 /* 14389 * Verify that there are not more then one 14390 * IRE_BROADCAST with this broadcast address which 14391 * has ire_stq set. 14392 * TODO: simplify, loop over all IRE's 14393 */ 14394 ire_t *ire1; 14395 int num_stq = 0; 14396 mblk_t *mp1; 14397 14398 /* Find the first one with ire_stq set */ 14399 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14400 for (ire1 = ire; ire1 && 14401 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14402 ire1 = ire1->ire_next) 14403 ; 14404 if (ire1) { 14405 ire_refrele(ire); 14406 ire = ire1; 14407 IRE_REFHOLD(ire); 14408 } 14409 14410 /* Check if there are additional ones with stq set */ 14411 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14412 if (ire->ire_addr != ire1->ire_addr) 14413 break; 14414 if (ire1->ire_stq) { 14415 num_stq++; 14416 break; 14417 } 14418 } 14419 rw_exit(&ire->ire_bucket->irb_lock); 14420 if (num_stq == 1 && ire->ire_stq != NULL) { 14421 ip1dbg(("ip_rput_process_broadcast: directed " 14422 "broadcast to 0x%x\n", 14423 ntohl(ire->ire_addr))); 14424 mp1 = copymsg(mp); 14425 if (mp1) { 14426 switch (ipha->ipha_protocol) { 14427 case IPPROTO_UDP: 14428 ip_udp_input(q, mp1, ipha, ire, ill); 14429 break; 14430 default: 14431 ip_proto_input(q, mp1, ipha, ire, ill, 14432 0); 14433 break; 14434 } 14435 } 14436 /* 14437 * Adjust ttl to 2 (1+1 - the forward engine 14438 * will decrement it by one. 14439 */ 14440 if (ip_csum_hdr(ipha)) { 14441 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14442 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14443 freemsg(mp); 14444 ire_refrele(ire); 14445 return (NULL); 14446 } 14447 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14448 ipha->ipha_hdr_checksum = 0; 14449 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14450 ip_rput_process_forward(q, mp, ire, ipha, 14451 ill, ll_multicast, B_FALSE); 14452 ire_refrele(ire); 14453 return (NULL); 14454 } 14455 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14456 ntohl(ire->ire_addr))); 14457 } 14458 14459 14460 /* Restore any hardware checksum flags */ 14461 DB_CKSUMFLAGS(mp) = hcksumflags; 14462 return (ire); 14463 } 14464 14465 /* ARGSUSED */ 14466 static boolean_t 14467 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14468 int *ll_multicast, ipaddr_t *dstp) 14469 { 14470 ip_stack_t *ipst = ill->ill_ipst; 14471 14472 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14473 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14474 ntohs(ipha->ipha_length)); 14475 14476 /* 14477 * Forward packets only if we have joined the allmulti 14478 * group on this interface. 14479 */ 14480 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14481 int retval; 14482 14483 /* 14484 * Clear the indication that this may have hardware 14485 * checksum as we are not using it. 14486 */ 14487 DB_CKSUMFLAGS(mp) = 0; 14488 retval = ip_mforward(ill, ipha, mp); 14489 /* ip_mforward updates mib variables if needed */ 14490 /* clear b_prev - used by ip_mroute_decap */ 14491 mp->b_prev = NULL; 14492 14493 switch (retval) { 14494 case 0: 14495 /* 14496 * pkt is okay and arrived on phyint. 14497 * 14498 * If we are running as a multicast router 14499 * we need to see all IGMP and/or PIM packets. 14500 */ 14501 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14502 (ipha->ipha_protocol == IPPROTO_PIM)) { 14503 goto done; 14504 } 14505 break; 14506 case -1: 14507 /* pkt is mal-formed, toss it */ 14508 goto drop_pkt; 14509 case 1: 14510 /* pkt is okay and arrived on a tunnel */ 14511 /* 14512 * If we are running a multicast router 14513 * we need to see all igmp packets. 14514 */ 14515 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14516 *dstp = INADDR_BROADCAST; 14517 *ll_multicast = 1; 14518 return (B_FALSE); 14519 } 14520 14521 goto drop_pkt; 14522 } 14523 } 14524 14525 ILM_WALKER_HOLD(ill); 14526 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14527 /* 14528 * This might just be caused by the fact that 14529 * multiple IP Multicast addresses map to the same 14530 * link layer multicast - no need to increment counter! 14531 */ 14532 ILM_WALKER_RELE(ill); 14533 freemsg(mp); 14534 return (B_TRUE); 14535 } 14536 ILM_WALKER_RELE(ill); 14537 done: 14538 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14539 /* 14540 * This assumes the we deliver to all streams for multicast 14541 * and broadcast packets. 14542 */ 14543 *dstp = INADDR_BROADCAST; 14544 *ll_multicast = 1; 14545 return (B_FALSE); 14546 drop_pkt: 14547 ip2dbg(("ip_rput: drop pkt\n")); 14548 freemsg(mp); 14549 return (B_TRUE); 14550 } 14551 14552 /* 14553 * This function is used to both return an indication of whether or not 14554 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14555 * and in doing so, determine whether or not it is broadcast vs multicast. 14556 * For it to be a broadcast packet, we must have the appropriate mblk_t 14557 * hanging off the ill_t. If this is either not present or doesn't match 14558 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14559 * to be multicast. Thus NICs that have no broadcast address (or no 14560 * capability for one, such as point to point links) cannot return as 14561 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14562 * the return values simplifies the current use of the return value of this 14563 * function, which is to pass through the multicast/broadcast characteristic 14564 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14565 * changing the return value to some other symbol demands the appropriate 14566 * "translation" when hpe_flags is set prior to calling hook_run() for 14567 * packet events. 14568 */ 14569 int 14570 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14571 { 14572 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14573 mblk_t *bmp; 14574 14575 if (ind->dl_group_address) { 14576 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14577 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14578 MBLKL(mb) && 14579 (bmp = ill->ill_bcast_mp) != NULL) { 14580 dl_unitdata_req_t *dlur; 14581 uint8_t *bphys_addr; 14582 14583 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14584 if (ill->ill_sap_length < 0) 14585 bphys_addr = (uchar_t *)dlur + 14586 dlur->dl_dest_addr_offset; 14587 else 14588 bphys_addr = (uchar_t *)dlur + 14589 dlur->dl_dest_addr_offset + 14590 ill->ill_sap_length; 14591 14592 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14593 bphys_addr, ind->dl_dest_addr_length) == 0) { 14594 return (HPE_BROADCAST); 14595 } 14596 return (HPE_MULTICAST); 14597 } 14598 return (HPE_MULTICAST); 14599 } 14600 return (0); 14601 } 14602 14603 static boolean_t 14604 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14605 int *ll_multicast, mblk_t **mpp) 14606 { 14607 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14608 boolean_t must_copy = B_FALSE; 14609 struct iocblk *iocp; 14610 ipha_t *ipha; 14611 ip_stack_t *ipst = ill->ill_ipst; 14612 14613 #define rptr ((uchar_t *)ipha) 14614 14615 first_mp = *first_mpp; 14616 mp = *mpp; 14617 14618 ASSERT(first_mp == mp); 14619 14620 /* 14621 * if db_ref > 1 then copymsg and free original. Packet may be 14622 * changed and do not want other entity who has a reference to this 14623 * message to trip over the changes. This is a blind change because 14624 * trying to catch all places that might change packet is too 14625 * difficult (since it may be a module above this one) 14626 * 14627 * This corresponds to the non-fast path case. We walk down the full 14628 * chain in this case, and check the db_ref count of all the dblks, 14629 * and do a copymsg if required. It is possible that the db_ref counts 14630 * of the data blocks in the mblk chain can be different. 14631 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14632 * count of 1, followed by a M_DATA block with a ref count of 2, if 14633 * 'snoop' is running. 14634 */ 14635 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14636 if (mp1->b_datap->db_ref > 1) { 14637 must_copy = B_TRUE; 14638 break; 14639 } 14640 } 14641 14642 if (must_copy) { 14643 mp1 = copymsg(mp); 14644 if (mp1 == NULL) { 14645 for (mp1 = mp; mp1 != NULL; 14646 mp1 = mp1->b_cont) { 14647 mp1->b_next = NULL; 14648 mp1->b_prev = NULL; 14649 } 14650 freemsg(mp); 14651 if (ill != NULL) { 14652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14653 } else { 14654 BUMP_MIB(&ipst->ips_ip_mib, 14655 ipIfStatsInDiscards); 14656 } 14657 return (B_TRUE); 14658 } 14659 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14660 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14661 /* Copy b_prev - used by ip_mroute_decap */ 14662 to_mp->b_prev = from_mp->b_prev; 14663 from_mp->b_prev = NULL; 14664 } 14665 *first_mpp = first_mp = mp1; 14666 freemsg(mp); 14667 mp = mp1; 14668 *mpp = mp1; 14669 } 14670 14671 ipha = (ipha_t *)mp->b_rptr; 14672 14673 /* 14674 * previous code has a case for M_DATA. 14675 * We want to check how that happens. 14676 */ 14677 ASSERT(first_mp->b_datap->db_type != M_DATA); 14678 switch (first_mp->b_datap->db_type) { 14679 case M_PROTO: 14680 case M_PCPROTO: 14681 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14682 DL_UNITDATA_IND) { 14683 /* Go handle anything other than data elsewhere. */ 14684 ip_rput_dlpi(q, mp); 14685 return (B_TRUE); 14686 } 14687 14688 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14689 /* Ditch the DLPI header. */ 14690 mp1 = mp->b_cont; 14691 ASSERT(first_mp == mp); 14692 *first_mpp = mp1; 14693 freeb(mp); 14694 *mpp = mp1; 14695 return (B_FALSE); 14696 case M_IOCACK: 14697 ip1dbg(("got iocack ")); 14698 iocp = (struct iocblk *)mp->b_rptr; 14699 switch (iocp->ioc_cmd) { 14700 case DL_IOC_HDR_INFO: 14701 ill = (ill_t *)q->q_ptr; 14702 ill_fastpath_ack(ill, mp); 14703 return (B_TRUE); 14704 case SIOCSTUNPARAM: 14705 case OSIOCSTUNPARAM: 14706 /* Go through qwriter_ip */ 14707 break; 14708 case SIOCGTUNPARAM: 14709 case OSIOCGTUNPARAM: 14710 ip_rput_other(NULL, q, mp, NULL); 14711 return (B_TRUE); 14712 default: 14713 putnext(q, mp); 14714 return (B_TRUE); 14715 } 14716 /* FALLTHRU */ 14717 case M_ERROR: 14718 case M_HANGUP: 14719 /* 14720 * Since this is on the ill stream we unconditionally 14721 * bump up the refcount 14722 */ 14723 ill_refhold(ill); 14724 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14725 return (B_TRUE); 14726 case M_CTL: 14727 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14728 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14729 IPHADA_M_CTL)) { 14730 /* 14731 * It's an IPsec accelerated packet. 14732 * Make sure that the ill from which we received the 14733 * packet has enabled IPsec hardware acceleration. 14734 */ 14735 if (!(ill->ill_capabilities & 14736 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14737 /* IPsec kstats: bean counter */ 14738 freemsg(mp); 14739 return (B_TRUE); 14740 } 14741 14742 /* 14743 * Make mp point to the mblk following the M_CTL, 14744 * then process according to type of mp. 14745 * After this processing, first_mp will point to 14746 * the data-attributes and mp to the pkt following 14747 * the M_CTL. 14748 */ 14749 mp = first_mp->b_cont; 14750 if (mp == NULL) { 14751 freemsg(first_mp); 14752 return (B_TRUE); 14753 } 14754 /* 14755 * A Hardware Accelerated packet can only be M_DATA 14756 * ESP or AH packet. 14757 */ 14758 if (mp->b_datap->db_type != M_DATA) { 14759 /* non-M_DATA IPsec accelerated packet */ 14760 IPSECHW_DEBUG(IPSECHW_PKT, 14761 ("non-M_DATA IPsec accelerated pkt\n")); 14762 freemsg(first_mp); 14763 return (B_TRUE); 14764 } 14765 ipha = (ipha_t *)mp->b_rptr; 14766 if (ipha->ipha_protocol != IPPROTO_AH && 14767 ipha->ipha_protocol != IPPROTO_ESP) { 14768 IPSECHW_DEBUG(IPSECHW_PKT, 14769 ("non-M_DATA IPsec accelerated pkt\n")); 14770 freemsg(first_mp); 14771 return (B_TRUE); 14772 } 14773 *mpp = mp; 14774 return (B_FALSE); 14775 } 14776 putnext(q, mp); 14777 return (B_TRUE); 14778 case M_IOCNAK: 14779 ip1dbg(("got iocnak ")); 14780 iocp = (struct iocblk *)mp->b_rptr; 14781 switch (iocp->ioc_cmd) { 14782 case SIOCSTUNPARAM: 14783 case OSIOCSTUNPARAM: 14784 /* 14785 * Since this is on the ill stream we unconditionally 14786 * bump up the refcount 14787 */ 14788 ill_refhold(ill); 14789 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14790 return (B_TRUE); 14791 case DL_IOC_HDR_INFO: 14792 case SIOCGTUNPARAM: 14793 case OSIOCGTUNPARAM: 14794 ip_rput_other(NULL, q, mp, NULL); 14795 return (B_TRUE); 14796 default: 14797 break; 14798 } 14799 /* FALLTHRU */ 14800 default: 14801 putnext(q, mp); 14802 return (B_TRUE); 14803 } 14804 } 14805 14806 /* Read side put procedure. Packets coming from the wire arrive here. */ 14807 void 14808 ip_rput(queue_t *q, mblk_t *mp) 14809 { 14810 ill_t *ill; 14811 union DL_primitives *dl; 14812 14813 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14814 14815 ill = (ill_t *)q->q_ptr; 14816 14817 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14818 /* 14819 * If things are opening or closing, only accept high-priority 14820 * DLPI messages. (On open ill->ill_ipif has not yet been 14821 * created; on close, things hanging off the ill may have been 14822 * freed already.) 14823 */ 14824 dl = (union DL_primitives *)mp->b_rptr; 14825 if (DB_TYPE(mp) != M_PCPROTO || 14826 dl->dl_primitive == DL_UNITDATA_IND) { 14827 /* 14828 * SIOC[GS]TUNPARAM ioctls can come here. 14829 */ 14830 inet_freemsg(mp); 14831 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14832 "ip_rput_end: q %p (%S)", q, "uninit"); 14833 return; 14834 } 14835 } 14836 14837 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14838 "ip_rput_end: q %p (%S)", q, "end"); 14839 14840 ip_input(ill, NULL, mp, NULL); 14841 } 14842 14843 static mblk_t * 14844 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14845 { 14846 mblk_t *mp1; 14847 boolean_t adjusted = B_FALSE; 14848 ip_stack_t *ipst = ill->ill_ipst; 14849 14850 IP_STAT(ipst, ip_db_ref); 14851 /* 14852 * The IP_RECVSLLA option depends on having the 14853 * link layer header. First check that: 14854 * a> the underlying device is of type ether, 14855 * since this option is currently supported only 14856 * over ethernet. 14857 * b> there is enough room to copy over the link 14858 * layer header. 14859 * 14860 * Once the checks are done, adjust rptr so that 14861 * the link layer header will be copied via 14862 * copymsg. Note that, IFT_ETHER may be returned 14863 * by some non-ethernet drivers but in this case 14864 * the second check will fail. 14865 */ 14866 if (ill->ill_type == IFT_ETHER && 14867 (mp->b_rptr - mp->b_datap->db_base) >= 14868 sizeof (struct ether_header)) { 14869 mp->b_rptr -= sizeof (struct ether_header); 14870 adjusted = B_TRUE; 14871 } 14872 mp1 = copymsg(mp); 14873 14874 if (mp1 == NULL) { 14875 mp->b_next = NULL; 14876 /* clear b_prev - used by ip_mroute_decap */ 14877 mp->b_prev = NULL; 14878 freemsg(mp); 14879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14880 return (NULL); 14881 } 14882 14883 if (adjusted) { 14884 /* 14885 * Copy is done. Restore the pointer in 14886 * the _new_ mblk 14887 */ 14888 mp1->b_rptr += sizeof (struct ether_header); 14889 } 14890 14891 /* Copy b_prev - used by ip_mroute_decap */ 14892 mp1->b_prev = mp->b_prev; 14893 mp->b_prev = NULL; 14894 14895 /* preserve the hardware checksum flags and data, if present */ 14896 if (DB_CKSUMFLAGS(mp) != 0) { 14897 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14898 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14899 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14900 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14901 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14902 } 14903 14904 freemsg(mp); 14905 return (mp1); 14906 } 14907 14908 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14909 if (tail != NULL) \ 14910 tail->b_next = mp; \ 14911 else \ 14912 head = mp; \ 14913 tail = mp; \ 14914 cnt++; \ 14915 } 14916 14917 /* 14918 * Direct read side procedure capable of dealing with chains. GLDv3 based 14919 * drivers call this function directly with mblk chains while STREAMS 14920 * read side procedure ip_rput() calls this for single packet with ip_ring 14921 * set to NULL to process one packet at a time. 14922 * 14923 * The ill will always be valid if this function is called directly from 14924 * the driver. 14925 * 14926 * If ip_input() is called from GLDv3: 14927 * 14928 * - This must be a non-VLAN IP stream. 14929 * - 'mp' is either an untagged or a special priority-tagged packet. 14930 * - Any VLAN tag that was in the MAC header has been stripped. 14931 * 14932 * If the IP header in packet is not 32-bit aligned, every message in the 14933 * chain will be aligned before further operations. This is required on SPARC 14934 * platform. 14935 */ 14936 /* ARGSUSED */ 14937 void 14938 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14939 struct mac_header_info_s *mhip) 14940 { 14941 ipaddr_t dst = NULL; 14942 ipaddr_t prev_dst; 14943 ire_t *ire = NULL; 14944 ipha_t *ipha; 14945 uint_t pkt_len; 14946 ssize_t len; 14947 uint_t opt_len; 14948 int ll_multicast; 14949 int cgtp_flt_pkt; 14950 queue_t *q = ill->ill_rq; 14951 squeue_t *curr_sqp = NULL; 14952 mblk_t *head = NULL; 14953 mblk_t *tail = NULL; 14954 mblk_t *first_mp; 14955 int cnt = 0; 14956 ip_stack_t *ipst = ill->ill_ipst; 14957 mblk_t *mp; 14958 mblk_t *dmp; 14959 uint8_t tag; 14960 14961 ASSERT(mp_chain != NULL); 14962 ASSERT(ill != NULL); 14963 14964 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14965 14966 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14967 14968 #define rptr ((uchar_t *)ipha) 14969 14970 while (mp_chain != NULL) { 14971 mp = mp_chain; 14972 mp_chain = mp_chain->b_next; 14973 mp->b_next = NULL; 14974 ll_multicast = 0; 14975 14976 /* 14977 * We do ire caching from one iteration to 14978 * another. In the event the packet chain contains 14979 * all packets from the same dst, this caching saves 14980 * an ire_cache_lookup for each of the succeeding 14981 * packets in a packet chain. 14982 */ 14983 prev_dst = dst; 14984 14985 /* 14986 * if db_ref > 1 then copymsg and free original. Packet 14987 * may be changed and we do not want the other entity 14988 * who has a reference to this message to trip over the 14989 * changes. This is a blind change because trying to 14990 * catch all places that might change the packet is too 14991 * difficult. 14992 * 14993 * This corresponds to the fast path case, where we have 14994 * a chain of M_DATA mblks. We check the db_ref count 14995 * of only the 1st data block in the mblk chain. There 14996 * doesn't seem to be a reason why a device driver would 14997 * send up data with varying db_ref counts in the mblk 14998 * chain. In any case the Fast path is a private 14999 * interface, and our drivers don't do such a thing. 15000 * Given the above assumption, there is no need to walk 15001 * down the entire mblk chain (which could have a 15002 * potential performance problem) 15003 * 15004 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 15005 * to here because of exclusive ip stacks and vnics. 15006 * Packets transmitted from exclusive stack over vnic 15007 * can have db_ref > 1 and when it gets looped back to 15008 * another vnic in a different zone, you have ip_input() 15009 * getting dblks with db_ref > 1. So if someone 15010 * complains of TCP performance under this scenario, 15011 * take a serious look here on the impact of copymsg(). 15012 */ 15013 15014 if (DB_REF(mp) > 1) { 15015 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 15016 continue; 15017 } 15018 15019 /* 15020 * Check and align the IP header. 15021 */ 15022 first_mp = mp; 15023 if (DB_TYPE(mp) == M_DATA) { 15024 dmp = mp; 15025 } else if (DB_TYPE(mp) == M_PROTO && 15026 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15027 dmp = mp->b_cont; 15028 } else { 15029 dmp = NULL; 15030 } 15031 if (dmp != NULL) { 15032 /* 15033 * IP header ptr not aligned? 15034 * OR IP header not complete in first mblk 15035 */ 15036 if (!OK_32PTR(dmp->b_rptr) || 15037 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15038 if (!ip_check_and_align_header(q, dmp, ipst)) 15039 continue; 15040 } 15041 } 15042 15043 /* 15044 * ip_input fast path 15045 */ 15046 15047 /* mblk type is not M_DATA */ 15048 if (DB_TYPE(mp) != M_DATA) { 15049 if (ip_rput_process_notdata(q, &first_mp, ill, 15050 &ll_multicast, &mp)) 15051 continue; 15052 15053 /* 15054 * The only way we can get here is if we had a 15055 * packet that was either a DL_UNITDATA_IND or 15056 * an M_CTL for an IPsec accelerated packet. 15057 * 15058 * In either case, the first_mp will point to 15059 * the leading M_PROTO or M_CTL. 15060 */ 15061 ASSERT(first_mp != NULL); 15062 } else if (mhip != NULL) { 15063 /* 15064 * ll_multicast is set here so that it is ready 15065 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15066 * manipulates ll_multicast in the same fashion when 15067 * called from ip_rput_process_notdata. 15068 */ 15069 switch (mhip->mhi_dsttype) { 15070 case MAC_ADDRTYPE_MULTICAST : 15071 ll_multicast = HPE_MULTICAST; 15072 break; 15073 case MAC_ADDRTYPE_BROADCAST : 15074 ll_multicast = HPE_BROADCAST; 15075 break; 15076 default : 15077 break; 15078 } 15079 } 15080 15081 /* Only M_DATA can come here and it is always aligned */ 15082 ASSERT(DB_TYPE(mp) == M_DATA); 15083 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15084 15085 ipha = (ipha_t *)mp->b_rptr; 15086 len = mp->b_wptr - rptr; 15087 pkt_len = ntohs(ipha->ipha_length); 15088 15089 /* 15090 * We must count all incoming packets, even if they end 15091 * up being dropped later on. 15092 */ 15093 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15094 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15095 15096 /* multiple mblk or too short */ 15097 len -= pkt_len; 15098 if (len != 0) { 15099 /* 15100 * Make sure we have data length consistent 15101 * with the IP header. 15102 */ 15103 if (mp->b_cont == NULL) { 15104 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15105 BUMP_MIB(ill->ill_ip_mib, 15106 ipIfStatsInHdrErrors); 15107 ip2dbg(("ip_input: drop pkt\n")); 15108 freemsg(mp); 15109 continue; 15110 } 15111 mp->b_wptr = rptr + pkt_len; 15112 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15113 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15114 BUMP_MIB(ill->ill_ip_mib, 15115 ipIfStatsInHdrErrors); 15116 ip2dbg(("ip_input: drop pkt\n")); 15117 freemsg(mp); 15118 continue; 15119 } 15120 (void) adjmsg(mp, -len); 15121 IP_STAT(ipst, ip_multimblk3); 15122 } 15123 } 15124 15125 /* Obtain the dst of the current packet */ 15126 dst = ipha->ipha_dst; 15127 15128 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15129 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15130 ipha, ip6_t *, NULL, int, 0); 15131 15132 /* 15133 * The following test for loopback is faster than 15134 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15135 * operations. 15136 * Note that these addresses are always in network byte order 15137 */ 15138 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15139 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15140 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15141 freemsg(mp); 15142 continue; 15143 } 15144 15145 /* 15146 * The event for packets being received from a 'physical' 15147 * interface is placed after validation of the source and/or 15148 * destination address as being local so that packets can be 15149 * redirected to loopback addresses using ipnat. 15150 */ 15151 DTRACE_PROBE4(ip4__physical__in__start, 15152 ill_t *, ill, ill_t *, NULL, 15153 ipha_t *, ipha, mblk_t *, first_mp); 15154 15155 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15156 ipst->ips_ipv4firewall_physical_in, 15157 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15158 15159 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15160 15161 if (first_mp == NULL) { 15162 continue; 15163 } 15164 dst = ipha->ipha_dst; 15165 /* 15166 * Attach any necessary label information to 15167 * this packet 15168 */ 15169 if (is_system_labeled() && 15170 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15171 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15172 freemsg(mp); 15173 continue; 15174 } 15175 15176 if (ipst->ips_ipobs_enabled) { 15177 zoneid_t dzone; 15178 15179 /* 15180 * On the inbound path the src zone will be unknown as 15181 * this packet has come from the wire. 15182 */ 15183 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15184 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15185 ill, IPV4_VERSION, 0, ipst); 15186 } 15187 15188 /* 15189 * Reuse the cached ire only if the ipha_dst of the previous 15190 * packet is the same as the current packet AND it is not 15191 * INADDR_ANY. 15192 */ 15193 if (!(dst == prev_dst && dst != INADDR_ANY) && 15194 (ire != NULL)) { 15195 ire_refrele(ire); 15196 ire = NULL; 15197 } 15198 15199 opt_len = ipha->ipha_version_and_hdr_length - 15200 IP_SIMPLE_HDR_VERSION; 15201 15202 /* 15203 * Check to see if we can take the fastpath. 15204 * That is possible if the following conditions are met 15205 * o Tsol disabled 15206 * o CGTP disabled 15207 * o ipp_action_count is 0 15208 * o no options in the packet 15209 * o not a RSVP packet 15210 * o not a multicast packet 15211 * o ill not in IP_DHCPINIT_IF mode 15212 */ 15213 if (!is_system_labeled() && 15214 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15215 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15216 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15217 if (ire == NULL) 15218 ire = ire_cache_lookup_simple(dst, ipst); 15219 /* 15220 * Unless forwarding is enabled, dont call 15221 * ip_fast_forward(). Incoming packet is for forwarding 15222 */ 15223 if ((ill->ill_flags & ILLF_ROUTER) && 15224 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15225 ire = ip_fast_forward(ire, dst, ill, mp); 15226 continue; 15227 } 15228 /* incoming packet is for local consumption */ 15229 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15230 goto local; 15231 } 15232 15233 /* 15234 * Disable ire caching for anything more complex 15235 * than the simple fast path case we checked for above. 15236 */ 15237 if (ire != NULL) { 15238 ire_refrele(ire); 15239 ire = NULL; 15240 } 15241 15242 /* 15243 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15244 * server to unicast DHCP packets to a DHCP client using the 15245 * IP address it is offering to the client. This can be 15246 * disabled through the "broadcast bit", but not all DHCP 15247 * servers honor that bit. Therefore, to interoperate with as 15248 * many DHCP servers as possible, the DHCP client allows the 15249 * server to unicast, but we treat those packets as broadcast 15250 * here. Note that we don't rewrite the packet itself since 15251 * (a) that would mess up the checksums and (b) the DHCP 15252 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15253 * hand it the packet regardless. 15254 */ 15255 if (ill->ill_dhcpinit != 0 && 15256 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15257 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15258 udpha_t *udpha; 15259 15260 /* 15261 * Reload ipha since pullupmsg() can change b_rptr. 15262 */ 15263 ipha = (ipha_t *)mp->b_rptr; 15264 udpha = (udpha_t *)&ipha[1]; 15265 15266 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15267 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15268 mblk_t *, mp); 15269 dst = INADDR_BROADCAST; 15270 } 15271 } 15272 15273 /* Full-blown slow path */ 15274 if (opt_len != 0) { 15275 if (len != 0) 15276 IP_STAT(ipst, ip_multimblk4); 15277 else 15278 IP_STAT(ipst, ip_ipoptions); 15279 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15280 &dst, ipst)) 15281 continue; 15282 } 15283 15284 /* 15285 * Invoke the CGTP (multirouting) filtering module to process 15286 * the incoming packet. Packets identified as duplicates 15287 * must be discarded. Filtering is active only if the 15288 * the ip_cgtp_filter ndd variable is non-zero. 15289 */ 15290 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15291 if (ipst->ips_ip_cgtp_filter && 15292 ipst->ips_ip_cgtp_filter_ops != NULL) { 15293 netstackid_t stackid; 15294 15295 stackid = ipst->ips_netstack->netstack_stackid; 15296 cgtp_flt_pkt = 15297 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15298 ill->ill_phyint->phyint_ifindex, mp); 15299 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15300 freemsg(first_mp); 15301 continue; 15302 } 15303 } 15304 15305 /* 15306 * If rsvpd is running, let RSVP daemon handle its processing 15307 * and forwarding of RSVP multicast/unicast packets. 15308 * If rsvpd is not running but mrouted is running, RSVP 15309 * multicast packets are forwarded as multicast traffic 15310 * and RSVP unicast packets are forwarded by unicast router. 15311 * If neither rsvpd nor mrouted is running, RSVP multicast 15312 * packets are not forwarded, but the unicast packets are 15313 * forwarded like unicast traffic. 15314 */ 15315 if (ipha->ipha_protocol == IPPROTO_RSVP && 15316 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15317 NULL) { 15318 /* RSVP packet and rsvpd running. Treat as ours */ 15319 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15320 /* 15321 * This assumes that we deliver to all streams for 15322 * multicast and broadcast packets. 15323 * We have to force ll_multicast to 1 to handle the 15324 * M_DATA messages passed in from ip_mroute_decap. 15325 */ 15326 dst = INADDR_BROADCAST; 15327 ll_multicast = 1; 15328 } else if (CLASSD(dst)) { 15329 /* packet is multicast */ 15330 mp->b_next = NULL; 15331 if (ip_rput_process_multicast(q, mp, ill, ipha, 15332 &ll_multicast, &dst)) 15333 continue; 15334 } 15335 15336 if (ire == NULL) { 15337 ire = ire_cache_lookup(dst, ALL_ZONES, 15338 MBLK_GETLABEL(mp), ipst); 15339 } 15340 15341 if (ire != NULL && ire->ire_stq != NULL && 15342 ire->ire_zoneid != GLOBAL_ZONEID && 15343 ire->ire_zoneid != ALL_ZONES) { 15344 /* 15345 * Should only use IREs that are visible from the 15346 * global zone for forwarding. 15347 */ 15348 ire_refrele(ire); 15349 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15350 MBLK_GETLABEL(mp), ipst); 15351 } 15352 15353 if (ire == NULL) { 15354 /* 15355 * No IRE for this destination, so it can't be for us. 15356 * Unless we are forwarding, drop the packet. 15357 * We have to let source routed packets through 15358 * since we don't yet know if they are 'ping -l' 15359 * packets i.e. if they will go out over the 15360 * same interface as they came in on. 15361 */ 15362 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15363 if (ire == NULL) 15364 continue; 15365 } 15366 15367 /* 15368 * Broadcast IRE may indicate either broadcast or 15369 * multicast packet 15370 */ 15371 if (ire->ire_type == IRE_BROADCAST) { 15372 /* 15373 * Skip broadcast checks if packet is UDP multicast; 15374 * we'd rather not enter ip_rput_process_broadcast() 15375 * unless the packet is broadcast for real, since 15376 * that routine is a no-op for multicast. 15377 */ 15378 if (ipha->ipha_protocol != IPPROTO_UDP || 15379 !CLASSD(ipha->ipha_dst)) { 15380 ire = ip_rput_process_broadcast(&q, mp, 15381 ire, ipha, ill, dst, cgtp_flt_pkt, 15382 ll_multicast); 15383 if (ire == NULL) 15384 continue; 15385 } 15386 } else if (ire->ire_stq != NULL) { 15387 /* fowarding? */ 15388 ip_rput_process_forward(q, mp, ire, ipha, ill, 15389 ll_multicast, B_FALSE); 15390 /* ip_rput_process_forward consumed the packet */ 15391 continue; 15392 } 15393 15394 local: 15395 /* 15396 * If the queue in the ire is different to the ingress queue 15397 * then we need to check to see if we can accept the packet. 15398 * Note that for multicast packets and broadcast packets sent 15399 * to a broadcast address which is shared between multiple 15400 * interfaces we should not do this since we just got a random 15401 * broadcast ire. 15402 */ 15403 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15404 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15405 ill)) == NULL) { 15406 /* Drop packet */ 15407 BUMP_MIB(ill->ill_ip_mib, 15408 ipIfStatsForwProhibits); 15409 freemsg(mp); 15410 continue; 15411 } 15412 if (ire->ire_rfq != NULL) 15413 q = ire->ire_rfq; 15414 } 15415 15416 switch (ipha->ipha_protocol) { 15417 case IPPROTO_TCP: 15418 ASSERT(first_mp == mp); 15419 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15420 mp, 0, q, ip_ring)) != NULL) { 15421 if (curr_sqp == NULL) { 15422 curr_sqp = GET_SQUEUE(mp); 15423 ASSERT(cnt == 0); 15424 cnt++; 15425 head = tail = mp; 15426 } else if (curr_sqp == GET_SQUEUE(mp)) { 15427 ASSERT(tail != NULL); 15428 cnt++; 15429 tail->b_next = mp; 15430 tail = mp; 15431 } else { 15432 /* 15433 * A different squeue. Send the 15434 * chain for the previous squeue on 15435 * its way. This shouldn't happen 15436 * often unless interrupt binding 15437 * changes. 15438 */ 15439 IP_STAT(ipst, ip_input_multi_squeue); 15440 SQUEUE_ENTER(curr_sqp, head, 15441 tail, cnt, SQ_PROCESS, tag); 15442 curr_sqp = GET_SQUEUE(mp); 15443 head = mp; 15444 tail = mp; 15445 cnt = 1; 15446 } 15447 } 15448 continue; 15449 case IPPROTO_UDP: 15450 ASSERT(first_mp == mp); 15451 ip_udp_input(q, mp, ipha, ire, ill); 15452 continue; 15453 case IPPROTO_SCTP: 15454 ASSERT(first_mp == mp); 15455 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15456 q, dst); 15457 /* ire has been released by ip_sctp_input */ 15458 ire = NULL; 15459 continue; 15460 default: 15461 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15462 continue; 15463 } 15464 } 15465 15466 if (ire != NULL) 15467 ire_refrele(ire); 15468 15469 if (head != NULL) 15470 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15471 15472 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15473 "ip_input_end: q %p (%S)", q, "end"); 15474 #undef rptr 15475 } 15476 15477 /* 15478 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15479 * a chain of packets in the poll mode. The packets have gone through the 15480 * data link processing but not IP processing. For performance and latency 15481 * reasons, the squeue wants to process the chain in line instead of feeding 15482 * it back via ip_input path. 15483 * 15484 * So this is a light weight function which checks to see if the packets 15485 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15486 * but we still do the paranoid check) meant for local machine and we don't 15487 * have labels etc enabled. Packets that meet the criterion are returned to 15488 * the squeue and processed inline while the rest go via ip_input path. 15489 */ 15490 /*ARGSUSED*/ 15491 mblk_t * 15492 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15493 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15494 { 15495 mblk_t *mp; 15496 ipaddr_t dst = NULL; 15497 ipaddr_t prev_dst; 15498 ire_t *ire = NULL; 15499 ipha_t *ipha; 15500 uint_t pkt_len; 15501 ssize_t len; 15502 uint_t opt_len; 15503 queue_t *q = ill->ill_rq; 15504 squeue_t *curr_sqp; 15505 mblk_t *ahead = NULL; /* Accepted head */ 15506 mblk_t *atail = NULL; /* Accepted tail */ 15507 uint_t acnt = 0; /* Accepted count */ 15508 mblk_t *utail = NULL; /* Unaccepted head */ 15509 mblk_t *uhead = NULL; /* Unaccepted tail */ 15510 uint_t ucnt = 0; /* Unaccepted cnt */ 15511 ip_stack_t *ipst = ill->ill_ipst; 15512 15513 *cnt = 0; 15514 15515 ASSERT(ill != NULL); 15516 ASSERT(ip_ring != NULL); 15517 15518 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15519 15520 #define rptr ((uchar_t *)ipha) 15521 15522 while (mp_chain != NULL) { 15523 mp = mp_chain; 15524 mp_chain = mp_chain->b_next; 15525 mp->b_next = NULL; 15526 15527 /* 15528 * We do ire caching from one iteration to 15529 * another. In the event the packet chain contains 15530 * all packets from the same dst, this caching saves 15531 * an ire_cache_lookup for each of the succeeding 15532 * packets in a packet chain. 15533 */ 15534 prev_dst = dst; 15535 15536 ipha = (ipha_t *)mp->b_rptr; 15537 len = mp->b_wptr - rptr; 15538 15539 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15540 15541 /* 15542 * If it is a non TCP packet, or doesn't have H/W cksum, 15543 * or doesn't have min len, reject. 15544 */ 15545 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15546 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15547 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15548 continue; 15549 } 15550 15551 pkt_len = ntohs(ipha->ipha_length); 15552 if (len != pkt_len) { 15553 if (len > pkt_len) { 15554 mp->b_wptr = rptr + pkt_len; 15555 } else { 15556 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15557 continue; 15558 } 15559 } 15560 15561 opt_len = ipha->ipha_version_and_hdr_length - 15562 IP_SIMPLE_HDR_VERSION; 15563 dst = ipha->ipha_dst; 15564 15565 /* IP version bad or there are IP options */ 15566 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15567 mp, &ipha, &dst, ipst))) 15568 continue; 15569 15570 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15571 (ipst->ips_ip_cgtp_filter && 15572 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15573 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15574 continue; 15575 } 15576 15577 /* 15578 * Reuse the cached ire only if the ipha_dst of the previous 15579 * packet is the same as the current packet AND it is not 15580 * INADDR_ANY. 15581 */ 15582 if (!(dst == prev_dst && dst != INADDR_ANY) && 15583 (ire != NULL)) { 15584 ire_refrele(ire); 15585 ire = NULL; 15586 } 15587 15588 if (ire == NULL) 15589 ire = ire_cache_lookup_simple(dst, ipst); 15590 15591 /* 15592 * Unless forwarding is enabled, dont call 15593 * ip_fast_forward(). Incoming packet is for forwarding 15594 */ 15595 if ((ill->ill_flags & ILLF_ROUTER) && 15596 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15597 15598 DTRACE_PROBE4(ip4__physical__in__start, 15599 ill_t *, ill, ill_t *, NULL, 15600 ipha_t *, ipha, mblk_t *, mp); 15601 15602 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15603 ipst->ips_ipv4firewall_physical_in, 15604 ill, NULL, ipha, mp, mp, 0, ipst); 15605 15606 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15607 15608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15609 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15610 pkt_len); 15611 15612 ire = ip_fast_forward(ire, dst, ill, mp); 15613 continue; 15614 } 15615 15616 /* incoming packet is for local consumption */ 15617 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15618 goto local_accept; 15619 15620 /* 15621 * Disable ire caching for anything more complex 15622 * than the simple fast path case we checked for above. 15623 */ 15624 if (ire != NULL) { 15625 ire_refrele(ire); 15626 ire = NULL; 15627 } 15628 15629 ire = ire_cache_lookup(dst, ALL_ZONES, MBLK_GETLABEL(mp), 15630 ipst); 15631 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15632 ire->ire_stq != NULL) { 15633 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15634 if (ire != NULL) { 15635 ire_refrele(ire); 15636 ire = NULL; 15637 } 15638 continue; 15639 } 15640 15641 local_accept: 15642 15643 if (ire->ire_rfq != q) { 15644 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15645 if (ire != NULL) { 15646 ire_refrele(ire); 15647 ire = NULL; 15648 } 15649 continue; 15650 } 15651 15652 /* 15653 * The event for packets being received from a 'physical' 15654 * interface is placed after validation of the source and/or 15655 * destination address as being local so that packets can be 15656 * redirected to loopback addresses using ipnat. 15657 */ 15658 DTRACE_PROBE4(ip4__physical__in__start, 15659 ill_t *, ill, ill_t *, NULL, 15660 ipha_t *, ipha, mblk_t *, mp); 15661 15662 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15663 ipst->ips_ipv4firewall_physical_in, 15664 ill, NULL, ipha, mp, mp, 0, ipst); 15665 15666 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15667 15668 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15669 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15670 15671 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15672 0, q, ip_ring)) != NULL) { 15673 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15674 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15675 } else { 15676 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15677 SQ_FILL, SQTAG_IP_INPUT); 15678 } 15679 } 15680 } 15681 15682 if (ire != NULL) 15683 ire_refrele(ire); 15684 15685 if (uhead != NULL) 15686 ip_input(ill, ip_ring, uhead, NULL); 15687 15688 if (ahead != NULL) { 15689 *last = atail; 15690 *cnt = acnt; 15691 return (ahead); 15692 } 15693 15694 return (NULL); 15695 #undef rptr 15696 } 15697 15698 static void 15699 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15700 t_uscalar_t err) 15701 { 15702 if (dl_err == DL_SYSERR) { 15703 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15704 "%s: %s failed: DL_SYSERR (errno %u)\n", 15705 ill->ill_name, dl_primstr(prim), err); 15706 return; 15707 } 15708 15709 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15710 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15711 dl_errstr(dl_err)); 15712 } 15713 15714 /* 15715 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15716 * than DL_UNITDATA_IND messages. If we need to process this message 15717 * exclusively, we call qwriter_ip, in which case we also need to call 15718 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15719 */ 15720 void 15721 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15722 { 15723 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15724 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15725 ill_t *ill = q->q_ptr; 15726 t_uscalar_t prim = dloa->dl_primitive; 15727 t_uscalar_t reqprim = DL_PRIM_INVAL; 15728 15729 ip1dbg(("ip_rput_dlpi")); 15730 15731 /* 15732 * If we received an ACK but didn't send a request for it, then it 15733 * can't be part of any pending operation; discard up-front. 15734 */ 15735 switch (prim) { 15736 case DL_ERROR_ACK: 15737 reqprim = dlea->dl_error_primitive; 15738 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15739 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15740 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15741 dlea->dl_unix_errno)); 15742 break; 15743 case DL_OK_ACK: 15744 reqprim = dloa->dl_correct_primitive; 15745 break; 15746 case DL_INFO_ACK: 15747 reqprim = DL_INFO_REQ; 15748 break; 15749 case DL_BIND_ACK: 15750 reqprim = DL_BIND_REQ; 15751 break; 15752 case DL_PHYS_ADDR_ACK: 15753 reqprim = DL_PHYS_ADDR_REQ; 15754 break; 15755 case DL_NOTIFY_ACK: 15756 reqprim = DL_NOTIFY_REQ; 15757 break; 15758 case DL_CONTROL_ACK: 15759 reqprim = DL_CONTROL_REQ; 15760 break; 15761 case DL_CAPABILITY_ACK: 15762 reqprim = DL_CAPABILITY_REQ; 15763 break; 15764 } 15765 15766 if (prim != DL_NOTIFY_IND) { 15767 if (reqprim == DL_PRIM_INVAL || 15768 !ill_dlpi_pending(ill, reqprim)) { 15769 /* Not a DLPI message we support or expected */ 15770 freemsg(mp); 15771 return; 15772 } 15773 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15774 dl_primstr(reqprim))); 15775 } 15776 15777 switch (reqprim) { 15778 case DL_UNBIND_REQ: 15779 /* 15780 * NOTE: we mark the unbind as complete even if we got a 15781 * DL_ERROR_ACK, since there's not much else we can do. 15782 */ 15783 mutex_enter(&ill->ill_lock); 15784 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15785 cv_signal(&ill->ill_cv); 15786 mutex_exit(&ill->ill_lock); 15787 break; 15788 15789 case DL_ENABMULTI_REQ: 15790 if (prim == DL_OK_ACK) { 15791 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15792 ill->ill_dlpi_multicast_state = IDS_OK; 15793 } 15794 break; 15795 } 15796 15797 /* 15798 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15799 * need to become writer to continue to process it. Because an 15800 * exclusive operation doesn't complete until replies to all queued 15801 * DLPI messages have been received, we know we're in the middle of an 15802 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15803 * 15804 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15805 * Since this is on the ill stream we unconditionally bump up the 15806 * refcount without doing ILL_CAN_LOOKUP(). 15807 */ 15808 ill_refhold(ill); 15809 if (prim == DL_NOTIFY_IND) 15810 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15811 else 15812 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15813 } 15814 15815 /* 15816 * Handling of DLPI messages that require exclusive access to the ipsq. 15817 * 15818 * Need to do ill_pending_mp_release on ioctl completion, which could 15819 * happen here. (along with mi_copy_done) 15820 */ 15821 /* ARGSUSED */ 15822 static void 15823 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15824 { 15825 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15826 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15827 int err = 0; 15828 ill_t *ill; 15829 ipif_t *ipif = NULL; 15830 mblk_t *mp1 = NULL; 15831 conn_t *connp = NULL; 15832 t_uscalar_t paddrreq; 15833 mblk_t *mp_hw; 15834 boolean_t success; 15835 boolean_t ioctl_aborted = B_FALSE; 15836 boolean_t log = B_TRUE; 15837 ip_stack_t *ipst; 15838 15839 ip1dbg(("ip_rput_dlpi_writer ..")); 15840 ill = (ill_t *)q->q_ptr; 15841 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15842 15843 ASSERT(IAM_WRITER_ILL(ill)); 15844 15845 ipst = ill->ill_ipst; 15846 15847 /* 15848 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15849 * both are null or non-null. However we can assert that only 15850 * after grabbing the ipsq_lock. So we don't make any assertion 15851 * here and in other places in the code. 15852 */ 15853 ipif = ipsq->ipsq_pending_ipif; 15854 /* 15855 * The current ioctl could have been aborted by the user and a new 15856 * ioctl to bring up another ill could have started. We could still 15857 * get a response from the driver later. 15858 */ 15859 if (ipif != NULL && ipif->ipif_ill != ill) 15860 ioctl_aborted = B_TRUE; 15861 15862 switch (dloa->dl_primitive) { 15863 case DL_ERROR_ACK: 15864 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15865 dl_primstr(dlea->dl_error_primitive))); 15866 15867 switch (dlea->dl_error_primitive) { 15868 case DL_DISABMULTI_REQ: 15869 if (!ill->ill_isv6) 15870 ipsq_current_finish(ipsq); 15871 ill_dlpi_done(ill, dlea->dl_error_primitive); 15872 break; 15873 case DL_PROMISCON_REQ: 15874 case DL_PROMISCOFF_REQ: 15875 case DL_UNBIND_REQ: 15876 case DL_ATTACH_REQ: 15877 case DL_INFO_REQ: 15878 ill_dlpi_done(ill, dlea->dl_error_primitive); 15879 break; 15880 case DL_NOTIFY_REQ: 15881 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15882 log = B_FALSE; 15883 break; 15884 case DL_PHYS_ADDR_REQ: 15885 /* 15886 * For IPv6 only, there are two additional 15887 * phys_addr_req's sent to the driver to get the 15888 * IPv6 token and lla. This allows IP to acquire 15889 * the hardware address format for a given interface 15890 * without having built in knowledge of the hardware 15891 * address. ill_phys_addr_pend keeps track of the last 15892 * DL_PAR sent so we know which response we are 15893 * dealing with. ill_dlpi_done will update 15894 * ill_phys_addr_pend when it sends the next req. 15895 * We don't complete the IOCTL until all three DL_PARs 15896 * have been attempted, so set *_len to 0 and break. 15897 */ 15898 paddrreq = ill->ill_phys_addr_pend; 15899 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15900 if (paddrreq == DL_IPV6_TOKEN) { 15901 ill->ill_token_length = 0; 15902 log = B_FALSE; 15903 break; 15904 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15905 ill->ill_nd_lla_len = 0; 15906 log = B_FALSE; 15907 break; 15908 } 15909 /* 15910 * Something went wrong with the DL_PHYS_ADDR_REQ. 15911 * We presumably have an IOCTL hanging out waiting 15912 * for completion. Find it and complete the IOCTL 15913 * with the error noted. 15914 * However, ill_dl_phys was called on an ill queue 15915 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15916 * set. But the ioctl is known to be pending on ill_wq. 15917 */ 15918 if (!ill->ill_ifname_pending) 15919 break; 15920 ill->ill_ifname_pending = 0; 15921 if (!ioctl_aborted) 15922 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15923 if (mp1 != NULL) { 15924 /* 15925 * This operation (SIOCSLIFNAME) must have 15926 * happened on the ill. Assert there is no conn 15927 */ 15928 ASSERT(connp == NULL); 15929 q = ill->ill_wq; 15930 } 15931 break; 15932 case DL_BIND_REQ: 15933 ill_dlpi_done(ill, DL_BIND_REQ); 15934 if (ill->ill_ifname_pending) 15935 break; 15936 /* 15937 * Something went wrong with the bind. We presumably 15938 * have an IOCTL hanging out waiting for completion. 15939 * Find it, take down the interface that was coming 15940 * up, and complete the IOCTL with the error noted. 15941 */ 15942 if (!ioctl_aborted) 15943 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15944 if (mp1 != NULL) { 15945 /* 15946 * This operation (SIOCSLIFFLAGS) must have 15947 * happened from a conn. 15948 */ 15949 ASSERT(connp != NULL); 15950 q = CONNP_TO_WQ(connp); 15951 if (ill->ill_move_in_progress) { 15952 ILL_CLEAR_MOVE(ill); 15953 } 15954 (void) ipif_down(ipif, NULL, NULL); 15955 /* error is set below the switch */ 15956 } 15957 break; 15958 case DL_ENABMULTI_REQ: 15959 if (!ill->ill_isv6) 15960 ipsq_current_finish(ipsq); 15961 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15962 15963 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15964 ill->ill_dlpi_multicast_state = IDS_FAILED; 15965 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15966 ipif_t *ipif; 15967 15968 printf("ip: joining multicasts failed (%d)" 15969 " on %s - will use link layer " 15970 "broadcasts for multicast\n", 15971 dlea->dl_errno, ill->ill_name); 15972 15973 /* 15974 * Set up the multicast mapping alone. 15975 * writer, so ok to access ill->ill_ipif 15976 * without any lock. 15977 */ 15978 ipif = ill->ill_ipif; 15979 mutex_enter(&ill->ill_phyint->phyint_lock); 15980 ill->ill_phyint->phyint_flags |= 15981 PHYI_MULTI_BCAST; 15982 mutex_exit(&ill->ill_phyint->phyint_lock); 15983 15984 if (!ill->ill_isv6) { 15985 (void) ipif_arp_setup_multicast(ipif, 15986 NULL); 15987 } else { 15988 (void) ipif_ndp_setup_multicast(ipif, 15989 NULL); 15990 } 15991 } 15992 freemsg(mp); /* Don't want to pass this up */ 15993 return; 15994 case DL_CONTROL_REQ: 15995 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15996 "DL_CONTROL_REQ\n")); 15997 ill_dlpi_done(ill, dlea->dl_error_primitive); 15998 freemsg(mp); 15999 return; 16000 case DL_CAPABILITY_REQ: 16001 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 16002 "DL_CAPABILITY REQ\n")); 16003 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 16004 ill->ill_dlpi_capab_state = IDCS_FAILED; 16005 ill_capability_done(ill); 16006 freemsg(mp); 16007 return; 16008 } 16009 /* 16010 * Note the error for IOCTL completion (mp1 is set when 16011 * ready to complete ioctl). If ill_ifname_pending_err is 16012 * set, an error occured during plumbing (ill_ifname_pending), 16013 * so we want to report that error. 16014 * 16015 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 16016 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 16017 * expected to get errack'd if the driver doesn't support 16018 * these flags (e.g. ethernet). log will be set to B_FALSE 16019 * if these error conditions are encountered. 16020 */ 16021 if (mp1 != NULL) { 16022 if (ill->ill_ifname_pending_err != 0) { 16023 err = ill->ill_ifname_pending_err; 16024 ill->ill_ifname_pending_err = 0; 16025 } else { 16026 err = dlea->dl_unix_errno ? 16027 dlea->dl_unix_errno : ENXIO; 16028 } 16029 /* 16030 * If we're plumbing an interface and an error hasn't already 16031 * been saved, set ill_ifname_pending_err to the error passed 16032 * up. Ignore the error if log is B_FALSE (see comment above). 16033 */ 16034 } else if (log && ill->ill_ifname_pending && 16035 ill->ill_ifname_pending_err == 0) { 16036 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 16037 dlea->dl_unix_errno : ENXIO; 16038 } 16039 16040 if (log) 16041 ip_dlpi_error(ill, dlea->dl_error_primitive, 16042 dlea->dl_errno, dlea->dl_unix_errno); 16043 break; 16044 case DL_CAPABILITY_ACK: 16045 ill_capability_ack(ill, mp); 16046 /* 16047 * The message has been handed off to ill_capability_ack 16048 * and must not be freed below 16049 */ 16050 mp = NULL; 16051 break; 16052 16053 case DL_CONTROL_ACK: 16054 /* We treat all of these as "fire and forget" */ 16055 ill_dlpi_done(ill, DL_CONTROL_REQ); 16056 break; 16057 case DL_INFO_ACK: 16058 /* Call a routine to handle this one. */ 16059 ill_dlpi_done(ill, DL_INFO_REQ); 16060 ip_ll_subnet_defaults(ill, mp); 16061 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 16062 return; 16063 case DL_BIND_ACK: 16064 /* 16065 * We should have an IOCTL waiting on this unless 16066 * sent by ill_dl_phys, in which case just return 16067 */ 16068 ill_dlpi_done(ill, DL_BIND_REQ); 16069 if (ill->ill_ifname_pending) 16070 break; 16071 16072 if (!ioctl_aborted) 16073 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16074 if (mp1 == NULL) 16075 break; 16076 /* 16077 * Because mp1 was added by ill_dl_up(), and it always 16078 * passes a valid connp, connp must be valid here. 16079 */ 16080 ASSERT(connp != NULL); 16081 q = CONNP_TO_WQ(connp); 16082 16083 /* 16084 * We are exclusive. So nothing can change even after 16085 * we get the pending mp. If need be we can put it back 16086 * and restart, as in calling ipif_arp_up() below. 16087 */ 16088 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 16089 16090 mutex_enter(&ill->ill_lock); 16091 ill->ill_dl_up = 1; 16092 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 16093 mutex_exit(&ill->ill_lock); 16094 16095 /* 16096 * Now bring up the resolver; when that is complete, we'll 16097 * create IREs. Note that we intentionally mirror what 16098 * ipif_up() would have done, because we got here by way of 16099 * ill_dl_up(), which stopped ipif_up()'s processing. 16100 */ 16101 if (ill->ill_isv6) { 16102 /* 16103 * v6 interfaces. 16104 * Unlike ARP which has to do another bind 16105 * and attach, once we get here we are 16106 * done with NDP. Except in the case of 16107 * ILLF_XRESOLV, in which case we send an 16108 * AR_INTERFACE_UP to the external resolver. 16109 * If all goes well, the ioctl will complete 16110 * in ip_rput(). If there's an error, we 16111 * complete it here. 16112 */ 16113 if ((err = ipif_ndp_up(ipif)) == 0) { 16114 if (ill->ill_flags & ILLF_XRESOLV) { 16115 mutex_enter(&connp->conn_lock); 16116 mutex_enter(&ill->ill_lock); 16117 success = ipsq_pending_mp_add( 16118 connp, ipif, q, mp1, 0); 16119 mutex_exit(&ill->ill_lock); 16120 mutex_exit(&connp->conn_lock); 16121 if (success) { 16122 err = ipif_resolver_up(ipif, 16123 Res_act_initial); 16124 if (err == EINPROGRESS) { 16125 freemsg(mp); 16126 return; 16127 } 16128 ASSERT(err != 0); 16129 mp1 = ipsq_pending_mp_get(ipsq, 16130 &connp); 16131 ASSERT(mp1 != NULL); 16132 } else { 16133 /* conn has started closing */ 16134 err = EINTR; 16135 } 16136 } else { /* Non XRESOLV interface */ 16137 (void) ipif_resolver_up(ipif, 16138 Res_act_initial); 16139 err = ipif_up_done_v6(ipif); 16140 } 16141 } 16142 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16143 /* 16144 * ARP and other v4 external resolvers. 16145 * Leave the pending mblk intact so that 16146 * the ioctl completes in ip_rput(). 16147 */ 16148 mutex_enter(&connp->conn_lock); 16149 mutex_enter(&ill->ill_lock); 16150 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16151 mutex_exit(&ill->ill_lock); 16152 mutex_exit(&connp->conn_lock); 16153 if (success) { 16154 err = ipif_resolver_up(ipif, Res_act_initial); 16155 if (err == EINPROGRESS) { 16156 freemsg(mp); 16157 return; 16158 } 16159 ASSERT(err != 0); 16160 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16161 } else { 16162 /* The conn has started closing */ 16163 err = EINTR; 16164 } 16165 } else { 16166 /* 16167 * This one is complete. Reply to pending ioctl. 16168 */ 16169 (void) ipif_resolver_up(ipif, Res_act_initial); 16170 err = ipif_up_done(ipif); 16171 } 16172 16173 if ((err == 0) && (ill->ill_up_ipifs)) { 16174 err = ill_up_ipifs(ill, q, mp1); 16175 if (err == EINPROGRESS) { 16176 freemsg(mp); 16177 return; 16178 } 16179 } 16180 16181 if (ill->ill_up_ipifs) { 16182 ill_group_cleanup(ill); 16183 } 16184 16185 break; 16186 case DL_NOTIFY_IND: { 16187 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16188 ire_t *ire; 16189 boolean_t need_ire_walk_v4 = B_FALSE; 16190 boolean_t need_ire_walk_v6 = B_FALSE; 16191 16192 switch (notify->dl_notification) { 16193 case DL_NOTE_PHYS_ADDR: 16194 err = ill_set_phys_addr(ill, mp); 16195 break; 16196 16197 case DL_NOTE_FASTPATH_FLUSH: 16198 ill_fastpath_flush(ill); 16199 break; 16200 16201 case DL_NOTE_SDU_SIZE: 16202 /* 16203 * Change the MTU size of the interface, of all 16204 * attached ipif's, and of all relevant ire's. The 16205 * new value's a uint32_t at notify->dl_data. 16206 * Mtu change Vs. new ire creation - protocol below. 16207 * 16208 * a Mark the ipif as IPIF_CHANGING. 16209 * b Set the new mtu in the ipif. 16210 * c Change the ire_max_frag on all affected ires 16211 * d Unmark the IPIF_CHANGING 16212 * 16213 * To see how the protocol works, assume an interface 16214 * route is also being added simultaneously by 16215 * ip_rt_add and let 'ipif' be the ipif referenced by 16216 * the ire. If the ire is created before step a, 16217 * it will be cleaned up by step c. If the ire is 16218 * created after step d, it will see the new value of 16219 * ipif_mtu. Any attempt to create the ire between 16220 * steps a to d will fail because of the IPIF_CHANGING 16221 * flag. Note that ire_create() is passed a pointer to 16222 * the ipif_mtu, and not the value. During ire_add 16223 * under the bucket lock, the ire_max_frag of the 16224 * new ire being created is set from the ipif/ire from 16225 * which it is being derived. 16226 */ 16227 mutex_enter(&ill->ill_lock); 16228 ill->ill_max_frag = (uint_t)notify->dl_data; 16229 16230 /* 16231 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16232 * leave it alone 16233 */ 16234 if (ill->ill_mtu_userspecified) { 16235 mutex_exit(&ill->ill_lock); 16236 break; 16237 } 16238 ill->ill_max_mtu = ill->ill_max_frag; 16239 if (ill->ill_isv6) { 16240 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16241 ill->ill_max_mtu = IPV6_MIN_MTU; 16242 } else { 16243 if (ill->ill_max_mtu < IP_MIN_MTU) 16244 ill->ill_max_mtu = IP_MIN_MTU; 16245 } 16246 for (ipif = ill->ill_ipif; ipif != NULL; 16247 ipif = ipif->ipif_next) { 16248 /* 16249 * Don't override the mtu if the user 16250 * has explicitly set it. 16251 */ 16252 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16253 continue; 16254 ipif->ipif_mtu = (uint_t)notify->dl_data; 16255 if (ipif->ipif_isv6) 16256 ire = ipif_to_ire_v6(ipif); 16257 else 16258 ire = ipif_to_ire(ipif); 16259 if (ire != NULL) { 16260 ire->ire_max_frag = ipif->ipif_mtu; 16261 ire_refrele(ire); 16262 } 16263 if (ipif->ipif_flags & IPIF_UP) { 16264 if (ill->ill_isv6) 16265 need_ire_walk_v6 = B_TRUE; 16266 else 16267 need_ire_walk_v4 = B_TRUE; 16268 } 16269 } 16270 mutex_exit(&ill->ill_lock); 16271 if (need_ire_walk_v4) 16272 ire_walk_v4(ill_mtu_change, (char *)ill, 16273 ALL_ZONES, ipst); 16274 if (need_ire_walk_v6) 16275 ire_walk_v6(ill_mtu_change, (char *)ill, 16276 ALL_ZONES, ipst); 16277 break; 16278 case DL_NOTE_LINK_UP: 16279 case DL_NOTE_LINK_DOWN: { 16280 /* 16281 * We are writer. ill / phyint / ipsq assocs stable. 16282 * The RUNNING flag reflects the state of the link. 16283 */ 16284 phyint_t *phyint = ill->ill_phyint; 16285 uint64_t new_phyint_flags; 16286 boolean_t changed = B_FALSE; 16287 boolean_t went_up; 16288 16289 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16290 mutex_enter(&phyint->phyint_lock); 16291 new_phyint_flags = went_up ? 16292 phyint->phyint_flags | PHYI_RUNNING : 16293 phyint->phyint_flags & ~PHYI_RUNNING; 16294 if (new_phyint_flags != phyint->phyint_flags) { 16295 phyint->phyint_flags = new_phyint_flags; 16296 changed = B_TRUE; 16297 } 16298 mutex_exit(&phyint->phyint_lock); 16299 /* 16300 * ill_restart_dad handles the DAD restart and routing 16301 * socket notification logic. 16302 */ 16303 if (changed) { 16304 ill_restart_dad(phyint->phyint_illv4, went_up); 16305 ill_restart_dad(phyint->phyint_illv6, went_up); 16306 } 16307 break; 16308 } 16309 case DL_NOTE_PROMISC_ON_PHYS: 16310 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16311 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16312 mutex_enter(&ill->ill_lock); 16313 ill->ill_promisc_on_phys = B_TRUE; 16314 mutex_exit(&ill->ill_lock); 16315 break; 16316 case DL_NOTE_PROMISC_OFF_PHYS: 16317 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16318 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16319 mutex_enter(&ill->ill_lock); 16320 ill->ill_promisc_on_phys = B_FALSE; 16321 mutex_exit(&ill->ill_lock); 16322 break; 16323 case DL_NOTE_CAPAB_RENEG: 16324 /* 16325 * Something changed on the driver side. 16326 * It wants us to renegotiate the capabilities 16327 * on this ill. One possible cause is the aggregation 16328 * interface under us where a port got added or 16329 * went away. 16330 * 16331 * If the capability negotiation is already done 16332 * or is in progress, reset the capabilities and 16333 * mark the ill's ill_capab_reneg to be B_TRUE, 16334 * so that when the ack comes back, we can start 16335 * the renegotiation process. 16336 * 16337 * Note that if ill_capab_reneg is already B_TRUE 16338 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16339 * the capability resetting request has been sent 16340 * and the renegotiation has not been started yet; 16341 * nothing needs to be done in this case. 16342 */ 16343 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16344 ill_capability_reset(ill, B_TRUE); 16345 ipsq_current_finish(ipsq); 16346 break; 16347 default: 16348 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16349 "type 0x%x for DL_NOTIFY_IND\n", 16350 notify->dl_notification)); 16351 break; 16352 } 16353 16354 /* 16355 * As this is an asynchronous operation, we 16356 * should not call ill_dlpi_done 16357 */ 16358 break; 16359 } 16360 case DL_NOTIFY_ACK: { 16361 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16362 16363 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16364 ill->ill_note_link = 1; 16365 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16366 break; 16367 } 16368 case DL_PHYS_ADDR_ACK: { 16369 /* 16370 * As part of plumbing the interface via SIOCSLIFNAME, 16371 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16372 * whose answers we receive here. As each answer is received, 16373 * we call ill_dlpi_done() to dispatch the next request as 16374 * we're processing the current one. Once all answers have 16375 * been received, we use ipsq_pending_mp_get() to dequeue the 16376 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16377 * is invoked from an ill queue, conn_oper_pending_ill is not 16378 * available, but we know the ioctl is pending on ill_wq.) 16379 */ 16380 uint_t paddrlen, paddroff; 16381 16382 paddrreq = ill->ill_phys_addr_pend; 16383 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16384 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16385 16386 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16387 if (paddrreq == DL_IPV6_TOKEN) { 16388 /* 16389 * bcopy to low-order bits of ill_token 16390 * 16391 * XXX Temporary hack - currently, all known tokens 16392 * are 64 bits, so I'll cheat for the moment. 16393 */ 16394 bcopy(mp->b_rptr + paddroff, 16395 &ill->ill_token.s6_addr32[2], paddrlen); 16396 ill->ill_token_length = paddrlen; 16397 break; 16398 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16399 ASSERT(ill->ill_nd_lla_mp == NULL); 16400 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16401 mp = NULL; 16402 break; 16403 } 16404 16405 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16406 ASSERT(ill->ill_phys_addr_mp == NULL); 16407 if (!ill->ill_ifname_pending) 16408 break; 16409 ill->ill_ifname_pending = 0; 16410 if (!ioctl_aborted) 16411 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16412 if (mp1 != NULL) { 16413 ASSERT(connp == NULL); 16414 q = ill->ill_wq; 16415 } 16416 /* 16417 * If any error acks received during the plumbing sequence, 16418 * ill_ifname_pending_err will be set. Break out and send up 16419 * the error to the pending ioctl. 16420 */ 16421 if (ill->ill_ifname_pending_err != 0) { 16422 err = ill->ill_ifname_pending_err; 16423 ill->ill_ifname_pending_err = 0; 16424 break; 16425 } 16426 16427 ill->ill_phys_addr_mp = mp; 16428 ill->ill_phys_addr = mp->b_rptr + paddroff; 16429 mp = NULL; 16430 16431 /* 16432 * If paddrlen is zero, the DLPI provider doesn't support 16433 * physical addresses. The other two tests were historical 16434 * workarounds for bugs in our former PPP implementation, but 16435 * now other things have grown dependencies on them -- e.g., 16436 * the tun module specifies a dl_addr_length of zero in its 16437 * DL_BIND_ACK, but then specifies an incorrect value in its 16438 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16439 * but only after careful testing ensures that all dependent 16440 * broken DLPI providers have been fixed. 16441 */ 16442 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16443 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16444 ill->ill_phys_addr = NULL; 16445 } else if (paddrlen != ill->ill_phys_addr_length) { 16446 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16447 paddrlen, ill->ill_phys_addr_length)); 16448 err = EINVAL; 16449 break; 16450 } 16451 16452 if (ill->ill_nd_lla_mp == NULL) { 16453 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16454 err = ENOMEM; 16455 break; 16456 } 16457 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16458 } 16459 16460 /* 16461 * Set the interface token. If the zeroth interface address 16462 * is unspecified, then set it to the link local address. 16463 */ 16464 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16465 (void) ill_setdefaulttoken(ill); 16466 16467 ASSERT(ill->ill_ipif->ipif_id == 0); 16468 if (ipif != NULL && 16469 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16470 (void) ipif_setlinklocal(ipif); 16471 } 16472 break; 16473 } 16474 case DL_OK_ACK: 16475 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16476 dl_primstr((int)dloa->dl_correct_primitive), 16477 dloa->dl_correct_primitive)); 16478 switch (dloa->dl_correct_primitive) { 16479 case DL_ENABMULTI_REQ: 16480 case DL_DISABMULTI_REQ: 16481 if (!ill->ill_isv6) 16482 ipsq_current_finish(ipsq); 16483 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16484 break; 16485 case DL_PROMISCON_REQ: 16486 case DL_PROMISCOFF_REQ: 16487 case DL_UNBIND_REQ: 16488 case DL_ATTACH_REQ: 16489 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16490 break; 16491 } 16492 break; 16493 default: 16494 break; 16495 } 16496 16497 freemsg(mp); 16498 if (mp1 != NULL) { 16499 /* 16500 * The operation must complete without EINPROGRESS 16501 * since ipsq_pending_mp_get() has removed the mblk 16502 * from ipsq_pending_mp. Otherwise, the operation 16503 * will be stuck forever in the ipsq. 16504 */ 16505 ASSERT(err != EINPROGRESS); 16506 16507 switch (ipsq->ipsq_current_ioctl) { 16508 case 0: 16509 ipsq_current_finish(ipsq); 16510 break; 16511 16512 case SIOCLIFADDIF: 16513 case SIOCSLIFNAME: 16514 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16515 break; 16516 16517 default: 16518 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16519 break; 16520 } 16521 } 16522 } 16523 16524 /* 16525 * ip_rput_other is called by ip_rput to handle messages modifying the global 16526 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16527 */ 16528 /* ARGSUSED */ 16529 void 16530 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16531 { 16532 ill_t *ill; 16533 struct iocblk *iocp; 16534 mblk_t *mp1; 16535 conn_t *connp = NULL; 16536 16537 ip1dbg(("ip_rput_other ")); 16538 ill = (ill_t *)q->q_ptr; 16539 /* 16540 * This routine is not a writer in the case of SIOCGTUNPARAM 16541 * in which case ipsq is NULL. 16542 */ 16543 if (ipsq != NULL) { 16544 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16545 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16546 } 16547 16548 switch (mp->b_datap->db_type) { 16549 case M_ERROR: 16550 case M_HANGUP: 16551 /* 16552 * The device has a problem. We force the ILL down. It can 16553 * be brought up again manually using SIOCSIFFLAGS (via 16554 * ifconfig or equivalent). 16555 */ 16556 ASSERT(ipsq != NULL); 16557 if (mp->b_rptr < mp->b_wptr) 16558 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16559 if (ill->ill_error == 0) 16560 ill->ill_error = ENXIO; 16561 if (!ill_down_start(q, mp)) 16562 return; 16563 ipif_all_down_tail(ipsq, q, mp, NULL); 16564 break; 16565 case M_IOCACK: 16566 iocp = (struct iocblk *)mp->b_rptr; 16567 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16568 switch (iocp->ioc_cmd) { 16569 case SIOCSTUNPARAM: 16570 case OSIOCSTUNPARAM: 16571 ASSERT(ipsq != NULL); 16572 /* 16573 * Finish socket ioctl passed through to tun. 16574 * We should have an IOCTL waiting on this. 16575 */ 16576 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16577 if (ill->ill_isv6) { 16578 struct iftun_req *ta; 16579 16580 /* 16581 * if a source or destination is 16582 * being set, try and set the link 16583 * local address for the tunnel 16584 */ 16585 ta = (struct iftun_req *)mp->b_cont-> 16586 b_cont->b_rptr; 16587 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16588 ipif_set_tun_llink(ill, ta); 16589 } 16590 16591 } 16592 if (mp1 != NULL) { 16593 /* 16594 * Now copy back the b_next/b_prev used by 16595 * mi code for the mi_copy* functions. 16596 * See ip_sioctl_tunparam() for the reason. 16597 * Also protect against missing b_cont. 16598 */ 16599 if (mp->b_cont != NULL) { 16600 mp->b_cont->b_next = 16601 mp1->b_cont->b_next; 16602 mp->b_cont->b_prev = 16603 mp1->b_cont->b_prev; 16604 } 16605 inet_freemsg(mp1); 16606 ASSERT(connp != NULL); 16607 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16608 iocp->ioc_error, NO_COPYOUT, ipsq); 16609 } else { 16610 ASSERT(connp == NULL); 16611 putnext(q, mp); 16612 } 16613 break; 16614 case SIOCGTUNPARAM: 16615 case OSIOCGTUNPARAM: 16616 /* 16617 * This is really M_IOCDATA from the tunnel driver. 16618 * convert back and complete the ioctl. 16619 * We should have an IOCTL waiting on this. 16620 */ 16621 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16622 if (mp1) { 16623 /* 16624 * Now copy back the b_next/b_prev used by 16625 * mi code for the mi_copy* functions. 16626 * See ip_sioctl_tunparam() for the reason. 16627 * Also protect against missing b_cont. 16628 */ 16629 if (mp->b_cont != NULL) { 16630 mp->b_cont->b_next = 16631 mp1->b_cont->b_next; 16632 mp->b_cont->b_prev = 16633 mp1->b_cont->b_prev; 16634 } 16635 inet_freemsg(mp1); 16636 if (iocp->ioc_error == 0) 16637 mp->b_datap->db_type = M_IOCDATA; 16638 ASSERT(connp != NULL); 16639 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16640 iocp->ioc_error, COPYOUT, NULL); 16641 } else { 16642 ASSERT(connp == NULL); 16643 putnext(q, mp); 16644 } 16645 break; 16646 default: 16647 break; 16648 } 16649 break; 16650 case M_IOCNAK: 16651 iocp = (struct iocblk *)mp->b_rptr; 16652 16653 switch (iocp->ioc_cmd) { 16654 int mode; 16655 16656 case DL_IOC_HDR_INFO: 16657 /* 16658 * If this was the first attempt turn of the 16659 * fastpath probing. 16660 */ 16661 mutex_enter(&ill->ill_lock); 16662 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16663 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16664 mutex_exit(&ill->ill_lock); 16665 ill_fastpath_nack(ill); 16666 ip1dbg(("ip_rput: DLPI fastpath off on " 16667 "interface %s\n", 16668 ill->ill_name)); 16669 } else { 16670 mutex_exit(&ill->ill_lock); 16671 } 16672 freemsg(mp); 16673 break; 16674 case SIOCSTUNPARAM: 16675 case OSIOCSTUNPARAM: 16676 ASSERT(ipsq != NULL); 16677 /* 16678 * Finish socket ioctl passed through to tun 16679 * We should have an IOCTL waiting on this. 16680 */ 16681 /* FALLTHRU */ 16682 case SIOCGTUNPARAM: 16683 case OSIOCGTUNPARAM: 16684 /* 16685 * This is really M_IOCDATA from the tunnel driver. 16686 * convert back and complete the ioctl. 16687 * We should have an IOCTL waiting on this. 16688 */ 16689 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16690 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16691 mp1 = ill_pending_mp_get(ill, &connp, 16692 iocp->ioc_id); 16693 mode = COPYOUT; 16694 ipsq = NULL; 16695 } else { 16696 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16697 mode = NO_COPYOUT; 16698 } 16699 if (mp1 != NULL) { 16700 /* 16701 * Now copy back the b_next/b_prev used by 16702 * mi code for the mi_copy* functions. 16703 * See ip_sioctl_tunparam() for the reason. 16704 * Also protect against missing b_cont. 16705 */ 16706 if (mp->b_cont != NULL) { 16707 mp->b_cont->b_next = 16708 mp1->b_cont->b_next; 16709 mp->b_cont->b_prev = 16710 mp1->b_cont->b_prev; 16711 } 16712 inet_freemsg(mp1); 16713 if (iocp->ioc_error == 0) 16714 iocp->ioc_error = EINVAL; 16715 ASSERT(connp != NULL); 16716 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16717 iocp->ioc_error, mode, ipsq); 16718 } else { 16719 ASSERT(connp == NULL); 16720 putnext(q, mp); 16721 } 16722 break; 16723 default: 16724 break; 16725 } 16726 default: 16727 break; 16728 } 16729 } 16730 16731 /* 16732 * NOTE : This function does not ire_refrele the ire argument passed in. 16733 * 16734 * IPQoS notes 16735 * IP policy is invoked twice for a forwarded packet, once on the read side 16736 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16737 * enabled. An additional parameter, in_ill, has been added for this purpose. 16738 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16739 * because ip_mroute drops this information. 16740 * 16741 */ 16742 void 16743 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16744 { 16745 uint32_t old_pkt_len; 16746 uint32_t pkt_len; 16747 queue_t *q; 16748 uint32_t sum; 16749 #define rptr ((uchar_t *)ipha) 16750 uint32_t max_frag; 16751 uint32_t ill_index; 16752 ill_t *out_ill; 16753 mib2_ipIfStatsEntry_t *mibptr; 16754 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16755 16756 /* Get the ill_index of the incoming ILL */ 16757 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16758 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16759 16760 /* Initiate Read side IPPF processing */ 16761 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16762 ip_process(IPP_FWD_IN, &mp, ill_index); 16763 if (mp == NULL) { 16764 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16765 "during IPPF processing\n")); 16766 return; 16767 } 16768 } 16769 16770 /* Adjust the checksum to reflect the ttl decrement. */ 16771 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16772 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16773 16774 if (ipha->ipha_ttl-- <= 1) { 16775 if (ip_csum_hdr(ipha)) { 16776 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16777 goto drop_pkt; 16778 } 16779 /* 16780 * Note: ire_stq this will be NULL for multicast 16781 * datagrams using the long path through arp (the IRE 16782 * is not an IRE_CACHE). This should not cause 16783 * problems since we don't generate ICMP errors for 16784 * multicast packets. 16785 */ 16786 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16787 q = ire->ire_stq; 16788 if (q != NULL) { 16789 /* Sent by forwarding path, and router is global zone */ 16790 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16791 GLOBAL_ZONEID, ipst); 16792 } else 16793 freemsg(mp); 16794 return; 16795 } 16796 16797 /* 16798 * Don't forward if the interface is down 16799 */ 16800 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16801 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16802 ip2dbg(("ip_rput_forward:interface is down\n")); 16803 goto drop_pkt; 16804 } 16805 16806 /* Get the ill_index of the outgoing ILL */ 16807 out_ill = ire_to_ill(ire); 16808 ill_index = out_ill->ill_phyint->phyint_ifindex; 16809 16810 DTRACE_PROBE4(ip4__forwarding__start, 16811 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16812 16813 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16814 ipst->ips_ipv4firewall_forwarding, 16815 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16816 16817 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16818 16819 if (mp == NULL) 16820 return; 16821 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16822 16823 if (is_system_labeled()) { 16824 mblk_t *mp1; 16825 16826 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16827 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16828 goto drop_pkt; 16829 } 16830 /* Size may have changed */ 16831 mp = mp1; 16832 ipha = (ipha_t *)mp->b_rptr; 16833 pkt_len = ntohs(ipha->ipha_length); 16834 } 16835 16836 /* Check if there are options to update */ 16837 if (!IS_SIMPLE_IPH(ipha)) { 16838 if (ip_csum_hdr(ipha)) { 16839 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16840 goto drop_pkt; 16841 } 16842 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16843 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16844 return; 16845 } 16846 16847 ipha->ipha_hdr_checksum = 0; 16848 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16849 } 16850 max_frag = ire->ire_max_frag; 16851 if (pkt_len > max_frag) { 16852 /* 16853 * It needs fragging on its way out. We haven't 16854 * verified the header checksum yet. Since we 16855 * are going to put a surely good checksum in the 16856 * outgoing header, we have to make sure that it 16857 * was good coming in. 16858 */ 16859 if (ip_csum_hdr(ipha)) { 16860 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16861 goto drop_pkt; 16862 } 16863 /* Initiate Write side IPPF processing */ 16864 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16865 ip_process(IPP_FWD_OUT, &mp, ill_index); 16866 if (mp == NULL) { 16867 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16868 " during IPPF processing\n")); 16869 return; 16870 } 16871 } 16872 /* 16873 * Handle labeled packet resizing. 16874 * 16875 * If we have added a label, inform ip_wput_frag() of its 16876 * effect on the MTU for ICMP messages. 16877 */ 16878 if (pkt_len > old_pkt_len) { 16879 uint32_t secopt_size; 16880 16881 secopt_size = pkt_len - old_pkt_len; 16882 if (secopt_size < max_frag) 16883 max_frag -= secopt_size; 16884 } 16885 16886 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16887 GLOBAL_ZONEID, ipst, NULL); 16888 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16889 return; 16890 } 16891 16892 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16893 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16894 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16895 ipst->ips_ipv4firewall_physical_out, 16896 NULL, out_ill, ipha, mp, mp, 0, ipst); 16897 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16898 if (mp == NULL) 16899 return; 16900 16901 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16902 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16903 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16904 /* ip_xmit_v4 always consumes the packet */ 16905 return; 16906 16907 drop_pkt:; 16908 ip1dbg(("ip_rput_forward: drop pkt\n")); 16909 freemsg(mp); 16910 #undef rptr 16911 } 16912 16913 void 16914 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16915 { 16916 ire_t *ire; 16917 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16918 16919 ASSERT(!ipif->ipif_isv6); 16920 /* 16921 * Find an IRE which matches the destination and the outgoing 16922 * queue in the cache table. All we need is an IRE_CACHE which 16923 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16924 * then it is enough to have some IRE_CACHE in the group. 16925 */ 16926 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16927 dst = ipif->ipif_pp_dst_addr; 16928 16929 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16930 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16931 if (ire == NULL) { 16932 /* 16933 * Mark this packet to make it be delivered to 16934 * ip_rput_forward after the new ire has been 16935 * created. 16936 */ 16937 mp->b_prev = NULL; 16938 mp->b_next = mp; 16939 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16940 NULL, 0, GLOBAL_ZONEID, &zero_info); 16941 } else { 16942 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16943 IRE_REFRELE(ire); 16944 } 16945 } 16946 16947 /* Update any source route, record route or timestamp options */ 16948 static int 16949 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16950 { 16951 ipoptp_t opts; 16952 uchar_t *opt; 16953 uint8_t optval; 16954 uint8_t optlen; 16955 ipaddr_t dst; 16956 uint32_t ts; 16957 ire_t *dst_ire = NULL; 16958 ire_t *tmp_ire = NULL; 16959 timestruc_t now; 16960 16961 ip2dbg(("ip_rput_forward_options\n")); 16962 dst = ipha->ipha_dst; 16963 for (optval = ipoptp_first(&opts, ipha); 16964 optval != IPOPT_EOL; 16965 optval = ipoptp_next(&opts)) { 16966 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16967 opt = opts.ipoptp_cur; 16968 optlen = opts.ipoptp_len; 16969 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16970 optval, opts.ipoptp_len)); 16971 switch (optval) { 16972 uint32_t off; 16973 case IPOPT_SSRR: 16974 case IPOPT_LSRR: 16975 /* Check if adminstratively disabled */ 16976 if (!ipst->ips_ip_forward_src_routed) { 16977 if (ire->ire_stq != NULL) { 16978 /* 16979 * Sent by forwarding path, and router 16980 * is global zone 16981 */ 16982 icmp_unreachable(ire->ire_stq, mp, 16983 ICMP_SOURCE_ROUTE_FAILED, 16984 GLOBAL_ZONEID, ipst); 16985 } else { 16986 ip0dbg(("ip_rput_forward_options: " 16987 "unable to send unreach\n")); 16988 freemsg(mp); 16989 } 16990 return (-1); 16991 } 16992 16993 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16994 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16995 if (dst_ire == NULL) { 16996 /* 16997 * Must be partial since ip_rput_options 16998 * checked for strict. 16999 */ 17000 break; 17001 } 17002 off = opt[IPOPT_OFFSET]; 17003 off--; 17004 redo_srr: 17005 if (optlen < IP_ADDR_LEN || 17006 off > optlen - IP_ADDR_LEN) { 17007 /* End of source route */ 17008 ip1dbg(( 17009 "ip_rput_forward_options: end of SR\n")); 17010 ire_refrele(dst_ire); 17011 break; 17012 } 17013 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17014 bcopy(&ire->ire_src_addr, (char *)opt + off, 17015 IP_ADDR_LEN); 17016 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 17017 ntohl(dst))); 17018 17019 /* 17020 * Check if our address is present more than 17021 * once as consecutive hops in source route. 17022 */ 17023 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17024 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17025 if (tmp_ire != NULL) { 17026 ire_refrele(tmp_ire); 17027 off += IP_ADDR_LEN; 17028 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17029 goto redo_srr; 17030 } 17031 ipha->ipha_dst = dst; 17032 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17033 ire_refrele(dst_ire); 17034 break; 17035 case IPOPT_RR: 17036 off = opt[IPOPT_OFFSET]; 17037 off--; 17038 if (optlen < IP_ADDR_LEN || 17039 off > optlen - IP_ADDR_LEN) { 17040 /* No more room - ignore */ 17041 ip1dbg(( 17042 "ip_rput_forward_options: end of RR\n")); 17043 break; 17044 } 17045 bcopy(&ire->ire_src_addr, (char *)opt + off, 17046 IP_ADDR_LEN); 17047 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17048 break; 17049 case IPOPT_TS: 17050 /* Insert timestamp if there is room */ 17051 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17052 case IPOPT_TS_TSONLY: 17053 off = IPOPT_TS_TIMELEN; 17054 break; 17055 case IPOPT_TS_PRESPEC: 17056 case IPOPT_TS_PRESPEC_RFC791: 17057 /* Verify that the address matched */ 17058 off = opt[IPOPT_OFFSET] - 1; 17059 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17060 dst_ire = ire_ctable_lookup(dst, 0, 17061 IRE_LOCAL, NULL, ALL_ZONES, NULL, 17062 MATCH_IRE_TYPE, ipst); 17063 if (dst_ire == NULL) { 17064 /* Not for us */ 17065 break; 17066 } 17067 ire_refrele(dst_ire); 17068 /* FALLTHRU */ 17069 case IPOPT_TS_TSANDADDR: 17070 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17071 break; 17072 default: 17073 /* 17074 * ip_*put_options should have already 17075 * dropped this packet. 17076 */ 17077 cmn_err(CE_PANIC, "ip_rput_forward_options: " 17078 "unknown IT - bug in ip_rput_options?\n"); 17079 return (0); /* Keep "lint" happy */ 17080 } 17081 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17082 /* Increase overflow counter */ 17083 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17084 opt[IPOPT_POS_OV_FLG] = 17085 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17086 (off << 4)); 17087 break; 17088 } 17089 off = opt[IPOPT_OFFSET] - 1; 17090 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17091 case IPOPT_TS_PRESPEC: 17092 case IPOPT_TS_PRESPEC_RFC791: 17093 case IPOPT_TS_TSANDADDR: 17094 bcopy(&ire->ire_src_addr, 17095 (char *)opt + off, IP_ADDR_LEN); 17096 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17097 /* FALLTHRU */ 17098 case IPOPT_TS_TSONLY: 17099 off = opt[IPOPT_OFFSET] - 1; 17100 /* Compute # of milliseconds since midnight */ 17101 gethrestime(&now); 17102 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17103 now.tv_nsec / (NANOSEC / MILLISEC); 17104 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17105 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17106 break; 17107 } 17108 break; 17109 } 17110 } 17111 return (0); 17112 } 17113 17114 /* 17115 * This is called after processing at least one of AH/ESP headers. 17116 * 17117 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17118 * the actual, physical interface on which the packet was received, 17119 * but, when ip_strict_dst_multihoming is set to 1, could be the 17120 * interface which had the ipha_dst configured when the packet went 17121 * through ip_rput. The ill_index corresponding to the recv_ill 17122 * is saved in ipsec_in_rill_index 17123 * 17124 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17125 * cannot assume "ire" points to valid data for any IPv6 cases. 17126 */ 17127 void 17128 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17129 { 17130 mblk_t *mp; 17131 ipaddr_t dst; 17132 in6_addr_t *v6dstp; 17133 ipha_t *ipha; 17134 ip6_t *ip6h; 17135 ipsec_in_t *ii; 17136 boolean_t ill_need_rele = B_FALSE; 17137 boolean_t rill_need_rele = B_FALSE; 17138 boolean_t ire_need_rele = B_FALSE; 17139 netstack_t *ns; 17140 ip_stack_t *ipst; 17141 17142 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17143 ASSERT(ii->ipsec_in_ill_index != 0); 17144 ns = ii->ipsec_in_ns; 17145 ASSERT(ii->ipsec_in_ns != NULL); 17146 ipst = ns->netstack_ip; 17147 17148 mp = ipsec_mp->b_cont; 17149 ASSERT(mp != NULL); 17150 17151 17152 if (ill == NULL) { 17153 ASSERT(recv_ill == NULL); 17154 /* 17155 * We need to get the original queue on which ip_rput_local 17156 * or ip_rput_data_v6 was called. 17157 */ 17158 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17159 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17160 ill_need_rele = B_TRUE; 17161 17162 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17163 recv_ill = ill_lookup_on_ifindex( 17164 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17165 NULL, NULL, NULL, NULL, ipst); 17166 rill_need_rele = B_TRUE; 17167 } else { 17168 recv_ill = ill; 17169 } 17170 17171 if ((ill == NULL) || (recv_ill == NULL)) { 17172 ip0dbg(("ip_fanout_proto_again: interface " 17173 "disappeared\n")); 17174 if (ill != NULL) 17175 ill_refrele(ill); 17176 if (recv_ill != NULL) 17177 ill_refrele(recv_ill); 17178 freemsg(ipsec_mp); 17179 return; 17180 } 17181 } 17182 17183 ASSERT(ill != NULL && recv_ill != NULL); 17184 17185 if (mp->b_datap->db_type == M_CTL) { 17186 /* 17187 * AH/ESP is returning the ICMP message after 17188 * removing their headers. Fanout again till 17189 * it gets to the right protocol. 17190 */ 17191 if (ii->ipsec_in_v4) { 17192 icmph_t *icmph; 17193 int iph_hdr_length; 17194 int hdr_length; 17195 17196 ipha = (ipha_t *)mp->b_rptr; 17197 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17198 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17199 ipha = (ipha_t *)&icmph[1]; 17200 hdr_length = IPH_HDR_LENGTH(ipha); 17201 /* 17202 * icmp_inbound_error_fanout may need to do pullupmsg. 17203 * Reset the type to M_DATA. 17204 */ 17205 mp->b_datap->db_type = M_DATA; 17206 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17207 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17208 B_FALSE, ill, ii->ipsec_in_zoneid); 17209 } else { 17210 icmp6_t *icmp6; 17211 int hdr_length; 17212 17213 ip6h = (ip6_t *)mp->b_rptr; 17214 /* Don't call hdr_length_v6() unless you have to. */ 17215 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17216 hdr_length = ip_hdr_length_v6(mp, ip6h); 17217 else 17218 hdr_length = IPV6_HDR_LEN; 17219 17220 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17221 /* 17222 * icmp_inbound_error_fanout_v6 may need to do 17223 * pullupmsg. Reset the type to M_DATA. 17224 */ 17225 mp->b_datap->db_type = M_DATA; 17226 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17227 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17228 } 17229 if (ill_need_rele) 17230 ill_refrele(ill); 17231 if (rill_need_rele) 17232 ill_refrele(recv_ill); 17233 return; 17234 } 17235 17236 if (ii->ipsec_in_v4) { 17237 ipha = (ipha_t *)mp->b_rptr; 17238 dst = ipha->ipha_dst; 17239 if (CLASSD(dst)) { 17240 /* 17241 * Multicast has to be delivered to all streams. 17242 */ 17243 dst = INADDR_BROADCAST; 17244 } 17245 17246 if (ire == NULL) { 17247 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17248 MBLK_GETLABEL(mp), ipst); 17249 if (ire == NULL) { 17250 if (ill_need_rele) 17251 ill_refrele(ill); 17252 if (rill_need_rele) 17253 ill_refrele(recv_ill); 17254 ip1dbg(("ip_fanout_proto_again: " 17255 "IRE not found")); 17256 freemsg(ipsec_mp); 17257 return; 17258 } 17259 ire_need_rele = B_TRUE; 17260 } 17261 17262 switch (ipha->ipha_protocol) { 17263 case IPPROTO_UDP: 17264 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17265 recv_ill); 17266 if (ire_need_rele) 17267 ire_refrele(ire); 17268 break; 17269 case IPPROTO_TCP: 17270 if (!ire_need_rele) 17271 IRE_REFHOLD(ire); 17272 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17273 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17274 IRE_REFRELE(ire); 17275 if (mp != NULL) { 17276 17277 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17278 mp, 1, SQ_PROCESS, 17279 SQTAG_IP_PROTO_AGAIN); 17280 } 17281 break; 17282 case IPPROTO_SCTP: 17283 if (!ire_need_rele) 17284 IRE_REFHOLD(ire); 17285 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17286 ipsec_mp, 0, ill->ill_rq, dst); 17287 break; 17288 default: 17289 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17290 recv_ill, 0); 17291 if (ire_need_rele) 17292 ire_refrele(ire); 17293 break; 17294 } 17295 } else { 17296 uint32_t rput_flags = 0; 17297 17298 ip6h = (ip6_t *)mp->b_rptr; 17299 v6dstp = &ip6h->ip6_dst; 17300 /* 17301 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17302 * address. 17303 * 17304 * Currently, we don't store that state in the IPSEC_IN 17305 * message, and we may need to. 17306 */ 17307 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17308 IP6_IN_LLMCAST : 0); 17309 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17310 NULL, NULL); 17311 } 17312 if (ill_need_rele) 17313 ill_refrele(ill); 17314 if (rill_need_rele) 17315 ill_refrele(recv_ill); 17316 } 17317 17318 /* 17319 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17320 * returns 'true' if there are still fragments left on the queue, in 17321 * which case we restart the timer. 17322 */ 17323 void 17324 ill_frag_timer(void *arg) 17325 { 17326 ill_t *ill = (ill_t *)arg; 17327 boolean_t frag_pending; 17328 ip_stack_t *ipst = ill->ill_ipst; 17329 17330 mutex_enter(&ill->ill_lock); 17331 ASSERT(!ill->ill_fragtimer_executing); 17332 if (ill->ill_state_flags & ILL_CONDEMNED) { 17333 ill->ill_frag_timer_id = 0; 17334 mutex_exit(&ill->ill_lock); 17335 return; 17336 } 17337 ill->ill_fragtimer_executing = 1; 17338 mutex_exit(&ill->ill_lock); 17339 17340 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17341 17342 /* 17343 * Restart the timer, if we have fragments pending or if someone 17344 * wanted us to be scheduled again. 17345 */ 17346 mutex_enter(&ill->ill_lock); 17347 ill->ill_fragtimer_executing = 0; 17348 ill->ill_frag_timer_id = 0; 17349 if (frag_pending || ill->ill_fragtimer_needrestart) 17350 ill_frag_timer_start(ill); 17351 mutex_exit(&ill->ill_lock); 17352 } 17353 17354 void 17355 ill_frag_timer_start(ill_t *ill) 17356 { 17357 ip_stack_t *ipst = ill->ill_ipst; 17358 17359 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17360 17361 /* If the ill is closing or opening don't proceed */ 17362 if (ill->ill_state_flags & ILL_CONDEMNED) 17363 return; 17364 17365 if (ill->ill_fragtimer_executing) { 17366 /* 17367 * ill_frag_timer is currently executing. Just record the 17368 * the fact that we want the timer to be restarted. 17369 * ill_frag_timer will post a timeout before it returns, 17370 * ensuring it will be called again. 17371 */ 17372 ill->ill_fragtimer_needrestart = 1; 17373 return; 17374 } 17375 17376 if (ill->ill_frag_timer_id == 0) { 17377 /* 17378 * The timer is neither running nor is the timeout handler 17379 * executing. Post a timeout so that ill_frag_timer will be 17380 * called 17381 */ 17382 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17383 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17384 ill->ill_fragtimer_needrestart = 0; 17385 } 17386 } 17387 17388 /* 17389 * This routine is needed for loopback when forwarding multicasts. 17390 * 17391 * IPQoS Notes: 17392 * IPPF processing is done in fanout routines. 17393 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17394 * processing for IPsec packets is done when it comes back in clear. 17395 * NOTE : The callers of this function need to do the ire_refrele for the 17396 * ire that is being passed in. 17397 */ 17398 void 17399 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17400 ill_t *recv_ill, uint32_t esp_udp_ports) 17401 { 17402 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17403 ill_t *ill = (ill_t *)q->q_ptr; 17404 uint32_t sum; 17405 uint32_t u1; 17406 uint32_t u2; 17407 int hdr_length; 17408 boolean_t mctl_present; 17409 mblk_t *first_mp = mp; 17410 mblk_t *hada_mp = NULL; 17411 ipha_t *inner_ipha; 17412 ip_stack_t *ipst; 17413 17414 ASSERT(recv_ill != NULL); 17415 ipst = recv_ill->ill_ipst; 17416 17417 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17418 "ip_rput_locl_start: q %p", q); 17419 17420 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17421 ASSERT(ill != NULL); 17422 17423 17424 #define rptr ((uchar_t *)ipha) 17425 #define iphs ((uint16_t *)ipha) 17426 17427 /* 17428 * no UDP or TCP packet should come here anymore. 17429 */ 17430 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17431 ipha->ipha_protocol != IPPROTO_UDP); 17432 17433 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17434 if (mctl_present && 17435 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17436 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17437 17438 /* 17439 * It's an IPsec accelerated packet. 17440 * Keep a pointer to the data attributes around until 17441 * we allocate the ipsec_info_t. 17442 */ 17443 IPSECHW_DEBUG(IPSECHW_PKT, 17444 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17445 hada_mp = first_mp; 17446 hada_mp->b_cont = NULL; 17447 /* 17448 * Since it is accelerated, it comes directly from 17449 * the ill and the data attributes is followed by 17450 * the packet data. 17451 */ 17452 ASSERT(mp->b_datap->db_type != M_CTL); 17453 first_mp = mp; 17454 mctl_present = B_FALSE; 17455 } 17456 17457 /* 17458 * IF M_CTL is not present, then ipsec_in_is_secure 17459 * should return B_TRUE. There is a case where loopback 17460 * packets has an M_CTL in the front with all the 17461 * IPsec options set to IPSEC_PREF_NEVER - which means 17462 * ipsec_in_is_secure will return B_FALSE. As loopback 17463 * packets never comes here, it is safe to ASSERT the 17464 * following. 17465 */ 17466 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17467 17468 /* 17469 * Also, we should never have an mctl_present if this is an 17470 * ESP-in-UDP packet. 17471 */ 17472 ASSERT(!mctl_present || !esp_in_udp_packet); 17473 17474 17475 /* u1 is # words of IP options */ 17476 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17477 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17478 17479 /* 17480 * Don't verify header checksum if we just removed UDP header or 17481 * packet is coming back from AH/ESP. 17482 */ 17483 if (!esp_in_udp_packet && !mctl_present) { 17484 if (u1) { 17485 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17486 if (hada_mp != NULL) 17487 freemsg(hada_mp); 17488 return; 17489 } 17490 } else { 17491 /* Check the IP header checksum. */ 17492 #define uph ((uint16_t *)ipha) 17493 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17494 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17495 #undef uph 17496 /* finish doing IP checksum */ 17497 sum = (sum & 0xFFFF) + (sum >> 16); 17498 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17499 if (sum && sum != 0xFFFF) { 17500 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17501 goto drop_pkt; 17502 } 17503 } 17504 } 17505 17506 /* 17507 * Count for SNMP of inbound packets for ire. As ip_proto_input 17508 * might be called more than once for secure packets, count only 17509 * the first time. 17510 */ 17511 if (!mctl_present) { 17512 UPDATE_IB_PKT_COUNT(ire); 17513 ire->ire_last_used_time = lbolt; 17514 } 17515 17516 /* Check for fragmentation offset. */ 17517 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17518 u1 = u2 & (IPH_MF | IPH_OFFSET); 17519 if (u1) { 17520 /* 17521 * We re-assemble fragments before we do the AH/ESP 17522 * processing. Thus, M_CTL should not be present 17523 * while we are re-assembling. 17524 */ 17525 ASSERT(!mctl_present); 17526 ASSERT(first_mp == mp); 17527 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17528 return; 17529 } 17530 /* 17531 * Make sure that first_mp points back to mp as 17532 * the mp we came in with could have changed in 17533 * ip_rput_fragment(). 17534 */ 17535 ipha = (ipha_t *)mp->b_rptr; 17536 first_mp = mp; 17537 } 17538 17539 /* 17540 * Clear hardware checksumming flag as it is currently only 17541 * used by TCP and UDP. 17542 */ 17543 DB_CKSUMFLAGS(mp) = 0; 17544 17545 /* Now we have a complete datagram, destined for this machine. */ 17546 u1 = IPH_HDR_LENGTH(ipha); 17547 switch (ipha->ipha_protocol) { 17548 case IPPROTO_ICMP: { 17549 ire_t *ire_zone; 17550 ilm_t *ilm; 17551 mblk_t *mp1; 17552 zoneid_t last_zoneid; 17553 17554 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17555 ASSERT(ire->ire_type == IRE_BROADCAST); 17556 /* 17557 * Inactive/Failed interfaces are not supposed to 17558 * respond to the multicast packets. 17559 */ 17560 if (ill_is_probeonly(ill)) { 17561 freemsg(first_mp); 17562 return; 17563 } 17564 17565 /* 17566 * In the multicast case, applications may have joined 17567 * the group from different zones, so we need to deliver 17568 * the packet to each of them. Loop through the 17569 * multicast memberships structures (ilm) on the receive 17570 * ill and send a copy of the packet up each matching 17571 * one. However, we don't do this for multicasts sent on 17572 * the loopback interface (PHYI_LOOPBACK flag set) as 17573 * they must stay in the sender's zone. 17574 * 17575 * ilm_add_v6() ensures that ilms in the same zone are 17576 * contiguous in the ill_ilm list. We use this property 17577 * to avoid sending duplicates needed when two 17578 * applications in the same zone join the same group on 17579 * different logical interfaces: we ignore the ilm if 17580 * its zoneid is the same as the last matching one. 17581 * In addition, the sending of the packet for 17582 * ire_zoneid is delayed until all of the other ilms 17583 * have been exhausted. 17584 */ 17585 last_zoneid = -1; 17586 ILM_WALKER_HOLD(recv_ill); 17587 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17588 ilm = ilm->ilm_next) { 17589 if ((ilm->ilm_flags & ILM_DELETED) || 17590 ipha->ipha_dst != ilm->ilm_addr || 17591 ilm->ilm_zoneid == last_zoneid || 17592 ilm->ilm_zoneid == ire->ire_zoneid || 17593 ilm->ilm_zoneid == ALL_ZONES || 17594 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17595 continue; 17596 mp1 = ip_copymsg(first_mp); 17597 if (mp1 == NULL) 17598 continue; 17599 icmp_inbound(q, mp1, B_TRUE, ill, 17600 0, sum, mctl_present, B_TRUE, 17601 recv_ill, ilm->ilm_zoneid); 17602 last_zoneid = ilm->ilm_zoneid; 17603 } 17604 ILM_WALKER_RELE(recv_ill); 17605 } else if (ire->ire_type == IRE_BROADCAST) { 17606 /* 17607 * In the broadcast case, there may be many zones 17608 * which need a copy of the packet delivered to them. 17609 * There is one IRE_BROADCAST per broadcast address 17610 * and per zone; we walk those using a helper function. 17611 * In addition, the sending of the packet for ire is 17612 * delayed until all of the other ires have been 17613 * processed. 17614 */ 17615 IRB_REFHOLD(ire->ire_bucket); 17616 ire_zone = NULL; 17617 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17618 ire)) != NULL) { 17619 mp1 = ip_copymsg(first_mp); 17620 if (mp1 == NULL) 17621 continue; 17622 17623 UPDATE_IB_PKT_COUNT(ire_zone); 17624 ire_zone->ire_last_used_time = lbolt; 17625 icmp_inbound(q, mp1, B_TRUE, ill, 17626 0, sum, mctl_present, B_TRUE, 17627 recv_ill, ire_zone->ire_zoneid); 17628 } 17629 IRB_REFRELE(ire->ire_bucket); 17630 } 17631 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17632 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17633 ire->ire_zoneid); 17634 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17635 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17636 return; 17637 } 17638 case IPPROTO_IGMP: 17639 /* 17640 * If we are not willing to accept IGMP packets in clear, 17641 * then check with global policy. 17642 */ 17643 if (ipst->ips_igmp_accept_clear_messages == 0) { 17644 first_mp = ipsec_check_global_policy(first_mp, NULL, 17645 ipha, NULL, mctl_present, ipst->ips_netstack); 17646 if (first_mp == NULL) 17647 return; 17648 } 17649 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17650 freemsg(first_mp); 17651 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17653 return; 17654 } 17655 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17656 /* Bad packet - discarded by igmp_input */ 17657 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17658 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17659 if (mctl_present) 17660 freeb(first_mp); 17661 return; 17662 } 17663 /* 17664 * igmp_input() may have returned the pulled up message. 17665 * So first_mp and ipha need to be reinitialized. 17666 */ 17667 ipha = (ipha_t *)mp->b_rptr; 17668 if (mctl_present) 17669 first_mp->b_cont = mp; 17670 else 17671 first_mp = mp; 17672 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17673 connf_head != NULL) { 17674 /* No user-level listener for IGMP packets */ 17675 goto drop_pkt; 17676 } 17677 /* deliver to local raw users */ 17678 break; 17679 case IPPROTO_PIM: 17680 /* 17681 * If we are not willing to accept PIM packets in clear, 17682 * then check with global policy. 17683 */ 17684 if (ipst->ips_pim_accept_clear_messages == 0) { 17685 first_mp = ipsec_check_global_policy(first_mp, NULL, 17686 ipha, NULL, mctl_present, ipst->ips_netstack); 17687 if (first_mp == NULL) 17688 return; 17689 } 17690 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17691 freemsg(first_mp); 17692 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17693 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17694 return; 17695 } 17696 if (pim_input(q, mp, ill) != 0) { 17697 /* Bad packet - discarded by pim_input */ 17698 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17699 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17700 if (mctl_present) 17701 freeb(first_mp); 17702 return; 17703 } 17704 17705 /* 17706 * pim_input() may have pulled up the message so ipha needs to 17707 * be reinitialized. 17708 */ 17709 ipha = (ipha_t *)mp->b_rptr; 17710 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17711 connf_head != NULL) { 17712 /* No user-level listener for PIM packets */ 17713 goto drop_pkt; 17714 } 17715 /* deliver to local raw users */ 17716 break; 17717 case IPPROTO_ENCAP: 17718 /* 17719 * Handle self-encapsulated packets (IP-in-IP where 17720 * the inner addresses == the outer addresses). 17721 */ 17722 hdr_length = IPH_HDR_LENGTH(ipha); 17723 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17724 mp->b_wptr) { 17725 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17726 sizeof (ipha_t) - mp->b_rptr)) { 17727 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17728 freemsg(first_mp); 17729 return; 17730 } 17731 ipha = (ipha_t *)mp->b_rptr; 17732 } 17733 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17734 /* 17735 * Check the sanity of the inner IP header. 17736 */ 17737 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17738 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17739 freemsg(first_mp); 17740 return; 17741 } 17742 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17743 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17744 freemsg(first_mp); 17745 return; 17746 } 17747 if (inner_ipha->ipha_src == ipha->ipha_src && 17748 inner_ipha->ipha_dst == ipha->ipha_dst) { 17749 ipsec_in_t *ii; 17750 17751 /* 17752 * Self-encapsulated tunnel packet. Remove 17753 * the outer IP header and fanout again. 17754 * We also need to make sure that the inner 17755 * header is pulled up until options. 17756 */ 17757 mp->b_rptr = (uchar_t *)inner_ipha; 17758 ipha = inner_ipha; 17759 hdr_length = IPH_HDR_LENGTH(ipha); 17760 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17761 if (!pullupmsg(mp, (uchar_t *)ipha + 17762 + hdr_length - mp->b_rptr)) { 17763 freemsg(first_mp); 17764 return; 17765 } 17766 ipha = (ipha_t *)mp->b_rptr; 17767 } 17768 if (hdr_length > sizeof (ipha_t)) { 17769 /* We got options on the inner packet. */ 17770 ipaddr_t dst = ipha->ipha_dst; 17771 17772 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17773 -1) { 17774 /* Bad options! */ 17775 return; 17776 } 17777 if (dst != ipha->ipha_dst) { 17778 /* 17779 * Someone put a source-route in 17780 * the inside header of a self- 17781 * encapsulated packet. Drop it 17782 * with extreme prejudice and let 17783 * the sender know. 17784 */ 17785 icmp_unreachable(q, first_mp, 17786 ICMP_SOURCE_ROUTE_FAILED, 17787 recv_ill->ill_zoneid, ipst); 17788 return; 17789 } 17790 } 17791 if (!mctl_present) { 17792 ASSERT(first_mp == mp); 17793 /* 17794 * This means that somebody is sending 17795 * Self-encapsualted packets without AH/ESP. 17796 * If AH/ESP was present, we would have already 17797 * allocated the first_mp. 17798 * 17799 * Send this packet to find a tunnel endpoint. 17800 * if I can't find one, an ICMP 17801 * PROTOCOL_UNREACHABLE will get sent. 17802 */ 17803 goto fanout; 17804 } 17805 /* 17806 * We generally store the ill_index if we need to 17807 * do IPsec processing as we lose the ill queue when 17808 * we come back. But in this case, we never should 17809 * have to store the ill_index here as it should have 17810 * been stored previously when we processed the 17811 * AH/ESP header in this routine or for non-ipsec 17812 * cases, we still have the queue. But for some bad 17813 * packets from the wire, we can get to IPsec after 17814 * this and we better store the index for that case. 17815 */ 17816 ill = (ill_t *)q->q_ptr; 17817 ii = (ipsec_in_t *)first_mp->b_rptr; 17818 ii->ipsec_in_ill_index = 17819 ill->ill_phyint->phyint_ifindex; 17820 ii->ipsec_in_rill_index = 17821 recv_ill->ill_phyint->phyint_ifindex; 17822 if (ii->ipsec_in_decaps) { 17823 /* 17824 * This packet is self-encapsulated multiple 17825 * times. We don't want to recurse infinitely. 17826 * To keep it simple, drop the packet. 17827 */ 17828 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17829 freemsg(first_mp); 17830 return; 17831 } 17832 ii->ipsec_in_decaps = B_TRUE; 17833 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17834 ire); 17835 return; 17836 } 17837 break; 17838 case IPPROTO_AH: 17839 case IPPROTO_ESP: { 17840 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17841 17842 /* 17843 * Fast path for AH/ESP. If this is the first time 17844 * we are sending a datagram to AH/ESP, allocate 17845 * a IPSEC_IN message and prepend it. Otherwise, 17846 * just fanout. 17847 */ 17848 17849 int ipsec_rc; 17850 ipsec_in_t *ii; 17851 netstack_t *ns = ipst->ips_netstack; 17852 17853 IP_STAT(ipst, ipsec_proto_ahesp); 17854 if (!mctl_present) { 17855 ASSERT(first_mp == mp); 17856 first_mp = ipsec_in_alloc(B_TRUE, ns); 17857 if (first_mp == NULL) { 17858 ip1dbg(("ip_proto_input: IPSEC_IN " 17859 "allocation failure.\n")); 17860 freemsg(hada_mp); /* okay ifnull */ 17861 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17862 freemsg(mp); 17863 return; 17864 } 17865 /* 17866 * Store the ill_index so that when we come back 17867 * from IPsec we ride on the same queue. 17868 */ 17869 ill = (ill_t *)q->q_ptr; 17870 ii = (ipsec_in_t *)first_mp->b_rptr; 17871 ii->ipsec_in_ill_index = 17872 ill->ill_phyint->phyint_ifindex; 17873 ii->ipsec_in_rill_index = 17874 recv_ill->ill_phyint->phyint_ifindex; 17875 first_mp->b_cont = mp; 17876 /* 17877 * Cache hardware acceleration info. 17878 */ 17879 if (hada_mp != NULL) { 17880 IPSECHW_DEBUG(IPSECHW_PKT, 17881 ("ip_rput_local: caching data attr.\n")); 17882 ii->ipsec_in_accelerated = B_TRUE; 17883 ii->ipsec_in_da = hada_mp; 17884 hada_mp = NULL; 17885 } 17886 } else { 17887 ii = (ipsec_in_t *)first_mp->b_rptr; 17888 } 17889 17890 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17891 17892 if (!ipsec_loaded(ipss)) { 17893 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17894 ire->ire_zoneid, ipst); 17895 return; 17896 } 17897 17898 ns = ipst->ips_netstack; 17899 /* select inbound SA and have IPsec process the pkt */ 17900 if (ipha->ipha_protocol == IPPROTO_ESP) { 17901 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17902 boolean_t esp_in_udp_sa; 17903 if (esph == NULL) 17904 return; 17905 ASSERT(ii->ipsec_in_esp_sa != NULL); 17906 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17907 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17908 IPSA_F_NATT) != 0); 17909 /* 17910 * The following is a fancy, but quick, way of saying: 17911 * ESP-in-UDP SA and Raw ESP packet --> drop 17912 * OR 17913 * ESP SA and ESP-in-UDP packet --> drop 17914 */ 17915 if (esp_in_udp_sa != esp_in_udp_packet) { 17916 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17917 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17918 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17919 &ns->netstack_ipsec->ipsec_dropper); 17920 return; 17921 } 17922 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17923 first_mp, esph); 17924 } else { 17925 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17926 if (ah == NULL) 17927 return; 17928 ASSERT(ii->ipsec_in_ah_sa != NULL); 17929 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17930 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17931 first_mp, ah); 17932 } 17933 17934 switch (ipsec_rc) { 17935 case IPSEC_STATUS_SUCCESS: 17936 break; 17937 case IPSEC_STATUS_FAILED: 17938 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17939 /* FALLTHRU */ 17940 case IPSEC_STATUS_PENDING: 17941 return; 17942 } 17943 /* we're done with IPsec processing, send it up */ 17944 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17945 return; 17946 } 17947 default: 17948 break; 17949 } 17950 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17951 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17952 ire->ire_zoneid)); 17953 goto drop_pkt; 17954 } 17955 /* 17956 * Handle protocols with which IP is less intimate. There 17957 * can be more than one stream bound to a particular 17958 * protocol. When this is the case, each one gets a copy 17959 * of any incoming packets. 17960 */ 17961 fanout: 17962 ip_fanout_proto(q, first_mp, ill, ipha, 17963 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17964 B_TRUE, recv_ill, ire->ire_zoneid); 17965 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17966 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17967 return; 17968 17969 drop_pkt: 17970 freemsg(first_mp); 17971 if (hada_mp != NULL) 17972 freeb(hada_mp); 17973 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17974 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17975 #undef rptr 17976 #undef iphs 17977 17978 } 17979 17980 /* 17981 * Update any source route, record route or timestamp options. 17982 * Check that we are at end of strict source route. 17983 * The options have already been checked for sanity in ip_rput_options(). 17984 */ 17985 static boolean_t 17986 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17987 ip_stack_t *ipst) 17988 { 17989 ipoptp_t opts; 17990 uchar_t *opt; 17991 uint8_t optval; 17992 uint8_t optlen; 17993 ipaddr_t dst; 17994 uint32_t ts; 17995 ire_t *dst_ire; 17996 timestruc_t now; 17997 zoneid_t zoneid; 17998 ill_t *ill; 17999 18000 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18001 18002 ip2dbg(("ip_rput_local_options\n")); 18003 18004 for (optval = ipoptp_first(&opts, ipha); 18005 optval != IPOPT_EOL; 18006 optval = ipoptp_next(&opts)) { 18007 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18008 opt = opts.ipoptp_cur; 18009 optlen = opts.ipoptp_len; 18010 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 18011 optval, optlen)); 18012 switch (optval) { 18013 uint32_t off; 18014 case IPOPT_SSRR: 18015 case IPOPT_LSRR: 18016 off = opt[IPOPT_OFFSET]; 18017 off--; 18018 if (optlen < IP_ADDR_LEN || 18019 off > optlen - IP_ADDR_LEN) { 18020 /* End of source route */ 18021 ip1dbg(("ip_rput_local_options: end of SR\n")); 18022 break; 18023 } 18024 /* 18025 * This will only happen if two consecutive entries 18026 * in the source route contains our address or if 18027 * it is a packet with a loose source route which 18028 * reaches us before consuming the whole source route 18029 */ 18030 ip1dbg(("ip_rput_local_options: not end of SR\n")); 18031 if (optval == IPOPT_SSRR) { 18032 goto bad_src_route; 18033 } 18034 /* 18035 * Hack: instead of dropping the packet truncate the 18036 * source route to what has been used by filling the 18037 * rest with IPOPT_NOP. 18038 */ 18039 opt[IPOPT_OLEN] = (uint8_t)off; 18040 while (off < optlen) { 18041 opt[off++] = IPOPT_NOP; 18042 } 18043 break; 18044 case IPOPT_RR: 18045 off = opt[IPOPT_OFFSET]; 18046 off--; 18047 if (optlen < IP_ADDR_LEN || 18048 off > optlen - IP_ADDR_LEN) { 18049 /* No more room - ignore */ 18050 ip1dbg(( 18051 "ip_rput_local_options: end of RR\n")); 18052 break; 18053 } 18054 bcopy(&ire->ire_src_addr, (char *)opt + off, 18055 IP_ADDR_LEN); 18056 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18057 break; 18058 case IPOPT_TS: 18059 /* Insert timestamp if there is romm */ 18060 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18061 case IPOPT_TS_TSONLY: 18062 off = IPOPT_TS_TIMELEN; 18063 break; 18064 case IPOPT_TS_PRESPEC: 18065 case IPOPT_TS_PRESPEC_RFC791: 18066 /* Verify that the address matched */ 18067 off = opt[IPOPT_OFFSET] - 1; 18068 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18069 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 18070 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 18071 ipst); 18072 if (dst_ire == NULL) { 18073 /* Not for us */ 18074 break; 18075 } 18076 ire_refrele(dst_ire); 18077 /* FALLTHRU */ 18078 case IPOPT_TS_TSANDADDR: 18079 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18080 break; 18081 default: 18082 /* 18083 * ip_*put_options should have already 18084 * dropped this packet. 18085 */ 18086 cmn_err(CE_PANIC, "ip_rput_local_options: " 18087 "unknown IT - bug in ip_rput_options?\n"); 18088 return (B_TRUE); /* Keep "lint" happy */ 18089 } 18090 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 18091 /* Increase overflow counter */ 18092 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 18093 opt[IPOPT_POS_OV_FLG] = 18094 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 18095 (off << 4)); 18096 break; 18097 } 18098 off = opt[IPOPT_OFFSET] - 1; 18099 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18100 case IPOPT_TS_PRESPEC: 18101 case IPOPT_TS_PRESPEC_RFC791: 18102 case IPOPT_TS_TSANDADDR: 18103 bcopy(&ire->ire_src_addr, (char *)opt + off, 18104 IP_ADDR_LEN); 18105 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18106 /* FALLTHRU */ 18107 case IPOPT_TS_TSONLY: 18108 off = opt[IPOPT_OFFSET] - 1; 18109 /* Compute # of milliseconds since midnight */ 18110 gethrestime(&now); 18111 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 18112 now.tv_nsec / (NANOSEC / MILLISEC); 18113 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 18114 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 18115 break; 18116 } 18117 break; 18118 } 18119 } 18120 return (B_TRUE); 18121 18122 bad_src_route: 18123 q = WR(q); 18124 if (q->q_next != NULL) 18125 ill = q->q_ptr; 18126 else 18127 ill = NULL; 18128 18129 /* make sure we clear any indication of a hardware checksum */ 18130 DB_CKSUMFLAGS(mp) = 0; 18131 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 18132 if (zoneid == ALL_ZONES) 18133 freemsg(mp); 18134 else 18135 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18136 return (B_FALSE); 18137 18138 } 18139 18140 /* 18141 * Process IP options in an inbound packet. If an option affects the 18142 * effective destination address, return the next hop address via dstp. 18143 * Returns -1 if something fails in which case an ICMP error has been sent 18144 * and mp freed. 18145 */ 18146 static int 18147 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18148 ip_stack_t *ipst) 18149 { 18150 ipoptp_t opts; 18151 uchar_t *opt; 18152 uint8_t optval; 18153 uint8_t optlen; 18154 ipaddr_t dst; 18155 intptr_t code = 0; 18156 ire_t *ire = NULL; 18157 zoneid_t zoneid; 18158 ill_t *ill; 18159 18160 ip2dbg(("ip_rput_options\n")); 18161 dst = ipha->ipha_dst; 18162 for (optval = ipoptp_first(&opts, ipha); 18163 optval != IPOPT_EOL; 18164 optval = ipoptp_next(&opts)) { 18165 opt = opts.ipoptp_cur; 18166 optlen = opts.ipoptp_len; 18167 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18168 optval, optlen)); 18169 /* 18170 * Note: we need to verify the checksum before we 18171 * modify anything thus this routine only extracts the next 18172 * hop dst from any source route. 18173 */ 18174 switch (optval) { 18175 uint32_t off; 18176 case IPOPT_SSRR: 18177 case IPOPT_LSRR: 18178 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18179 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18180 if (ire == NULL) { 18181 if (optval == IPOPT_SSRR) { 18182 ip1dbg(("ip_rput_options: not next" 18183 " strict source route 0x%x\n", 18184 ntohl(dst))); 18185 code = (char *)&ipha->ipha_dst - 18186 (char *)ipha; 18187 goto param_prob; /* RouterReq's */ 18188 } 18189 ip2dbg(("ip_rput_options: " 18190 "not next source route 0x%x\n", 18191 ntohl(dst))); 18192 break; 18193 } 18194 ire_refrele(ire); 18195 18196 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18197 ip1dbg(( 18198 "ip_rput_options: bad option offset\n")); 18199 code = (char *)&opt[IPOPT_OLEN] - 18200 (char *)ipha; 18201 goto param_prob; 18202 } 18203 off = opt[IPOPT_OFFSET]; 18204 off--; 18205 redo_srr: 18206 if (optlen < IP_ADDR_LEN || 18207 off > optlen - IP_ADDR_LEN) { 18208 /* End of source route */ 18209 ip1dbg(("ip_rput_options: end of SR\n")); 18210 break; 18211 } 18212 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18213 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18214 ntohl(dst))); 18215 18216 /* 18217 * Check if our address is present more than 18218 * once as consecutive hops in source route. 18219 * XXX verify per-interface ip_forwarding 18220 * for source route? 18221 */ 18222 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18223 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18224 18225 if (ire != NULL) { 18226 ire_refrele(ire); 18227 off += IP_ADDR_LEN; 18228 goto redo_srr; 18229 } 18230 18231 if (dst == htonl(INADDR_LOOPBACK)) { 18232 ip1dbg(("ip_rput_options: loopback addr in " 18233 "source route!\n")); 18234 goto bad_src_route; 18235 } 18236 /* 18237 * For strict: verify that dst is directly 18238 * reachable. 18239 */ 18240 if (optval == IPOPT_SSRR) { 18241 ire = ire_ftable_lookup(dst, 0, 0, 18242 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18243 MBLK_GETLABEL(mp), 18244 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18245 if (ire == NULL) { 18246 ip1dbg(("ip_rput_options: SSRR not " 18247 "directly reachable: 0x%x\n", 18248 ntohl(dst))); 18249 goto bad_src_route; 18250 } 18251 ire_refrele(ire); 18252 } 18253 /* 18254 * Defer update of the offset and the record route 18255 * until the packet is forwarded. 18256 */ 18257 break; 18258 case IPOPT_RR: 18259 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18260 ip1dbg(( 18261 "ip_rput_options: bad option offset\n")); 18262 code = (char *)&opt[IPOPT_OLEN] - 18263 (char *)ipha; 18264 goto param_prob; 18265 } 18266 break; 18267 case IPOPT_TS: 18268 /* 18269 * Verify that length >= 5 and that there is either 18270 * room for another timestamp or that the overflow 18271 * counter is not maxed out. 18272 */ 18273 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18274 if (optlen < IPOPT_MINLEN_IT) { 18275 goto param_prob; 18276 } 18277 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18278 ip1dbg(( 18279 "ip_rput_options: bad option offset\n")); 18280 code = (char *)&opt[IPOPT_OFFSET] - 18281 (char *)ipha; 18282 goto param_prob; 18283 } 18284 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18285 case IPOPT_TS_TSONLY: 18286 off = IPOPT_TS_TIMELEN; 18287 break; 18288 case IPOPT_TS_TSANDADDR: 18289 case IPOPT_TS_PRESPEC: 18290 case IPOPT_TS_PRESPEC_RFC791: 18291 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18292 break; 18293 default: 18294 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18295 (char *)ipha; 18296 goto param_prob; 18297 } 18298 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18299 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18300 /* 18301 * No room and the overflow counter is 15 18302 * already. 18303 */ 18304 goto param_prob; 18305 } 18306 break; 18307 } 18308 } 18309 18310 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18311 *dstp = dst; 18312 return (0); 18313 } 18314 18315 ip1dbg(("ip_rput_options: error processing IP options.")); 18316 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18317 18318 param_prob: 18319 q = WR(q); 18320 if (q->q_next != NULL) 18321 ill = q->q_ptr; 18322 else 18323 ill = NULL; 18324 18325 /* make sure we clear any indication of a hardware checksum */ 18326 DB_CKSUMFLAGS(mp) = 0; 18327 /* Don't know whether this is for non-global or global/forwarding */ 18328 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18329 if (zoneid == ALL_ZONES) 18330 freemsg(mp); 18331 else 18332 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18333 return (-1); 18334 18335 bad_src_route: 18336 q = WR(q); 18337 if (q->q_next != NULL) 18338 ill = q->q_ptr; 18339 else 18340 ill = NULL; 18341 18342 /* make sure we clear any indication of a hardware checksum */ 18343 DB_CKSUMFLAGS(mp) = 0; 18344 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18345 if (zoneid == ALL_ZONES) 18346 freemsg(mp); 18347 else 18348 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18349 return (-1); 18350 } 18351 18352 /* 18353 * IP & ICMP info in >=14 msg's ... 18354 * - ip fixed part (mib2_ip_t) 18355 * - icmp fixed part (mib2_icmp_t) 18356 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18357 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18358 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18359 * - ipRouteAttributeTable (ip 102) labeled routes 18360 * - ip multicast membership (ip_member_t) 18361 * - ip multicast source filtering (ip_grpsrc_t) 18362 * - igmp fixed part (struct igmpstat) 18363 * - multicast routing stats (struct mrtstat) 18364 * - multicast routing vifs (array of struct vifctl) 18365 * - multicast routing routes (array of struct mfcctl) 18366 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18367 * One per ill plus one generic 18368 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18369 * One per ill plus one generic 18370 * - ipv6RouteEntry all IPv6 IREs 18371 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18372 * - ipv6NetToMediaEntry all Neighbor Cache entries 18373 * - ipv6AddrEntry all IPv6 ipifs 18374 * - ipv6 multicast membership (ipv6_member_t) 18375 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18376 * 18377 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18378 * 18379 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18380 * already filled in by the caller. 18381 * Return value of 0 indicates that no messages were sent and caller 18382 * should free mpctl. 18383 */ 18384 int 18385 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18386 { 18387 ip_stack_t *ipst; 18388 sctp_stack_t *sctps; 18389 18390 if (q->q_next != NULL) { 18391 ipst = ILLQ_TO_IPST(q); 18392 } else { 18393 ipst = CONNQ_TO_IPST(q); 18394 } 18395 ASSERT(ipst != NULL); 18396 sctps = ipst->ips_netstack->netstack_sctp; 18397 18398 if (mpctl == NULL || mpctl->b_cont == NULL) { 18399 return (0); 18400 } 18401 18402 /* 18403 * For the purposes of the (broken) packet shell use 18404 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18405 * to make TCP and UDP appear first in the list of mib items. 18406 * TBD: We could expand this and use it in netstat so that 18407 * the kernel doesn't have to produce large tables (connections, 18408 * routes, etc) when netstat only wants the statistics or a particular 18409 * table. 18410 */ 18411 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18412 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18413 return (1); 18414 } 18415 } 18416 18417 if (level != MIB2_TCP) { 18418 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18419 return (1); 18420 } 18421 } 18422 18423 if (level != MIB2_UDP) { 18424 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18425 return (1); 18426 } 18427 } 18428 18429 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18430 ipst)) == NULL) { 18431 return (1); 18432 } 18433 18434 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18435 return (1); 18436 } 18437 18438 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18439 return (1); 18440 } 18441 18442 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18443 return (1); 18444 } 18445 18446 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18447 return (1); 18448 } 18449 18450 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18451 return (1); 18452 } 18453 18454 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18455 return (1); 18456 } 18457 18458 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18459 return (1); 18460 } 18461 18462 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18463 return (1); 18464 } 18465 18466 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18467 return (1); 18468 } 18469 18470 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18471 return (1); 18472 } 18473 18474 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18475 return (1); 18476 } 18477 18478 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18479 return (1); 18480 } 18481 18482 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18483 return (1); 18484 } 18485 18486 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18487 return (1); 18488 } 18489 18490 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18491 if (mpctl == NULL) { 18492 return (1); 18493 } 18494 18495 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18496 return (1); 18497 } 18498 freemsg(mpctl); 18499 return (1); 18500 } 18501 18502 18503 /* Get global (legacy) IPv4 statistics */ 18504 static mblk_t * 18505 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18506 ip_stack_t *ipst) 18507 { 18508 mib2_ip_t old_ip_mib; 18509 struct opthdr *optp; 18510 mblk_t *mp2ctl; 18511 18512 /* 18513 * make a copy of the original message 18514 */ 18515 mp2ctl = copymsg(mpctl); 18516 18517 /* fixed length IP structure... */ 18518 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18519 optp->level = MIB2_IP; 18520 optp->name = 0; 18521 SET_MIB(old_ip_mib.ipForwarding, 18522 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18523 SET_MIB(old_ip_mib.ipDefaultTTL, 18524 (uint32_t)ipst->ips_ip_def_ttl); 18525 SET_MIB(old_ip_mib.ipReasmTimeout, 18526 ipst->ips_ip_g_frag_timeout); 18527 SET_MIB(old_ip_mib.ipAddrEntrySize, 18528 sizeof (mib2_ipAddrEntry_t)); 18529 SET_MIB(old_ip_mib.ipRouteEntrySize, 18530 sizeof (mib2_ipRouteEntry_t)); 18531 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18532 sizeof (mib2_ipNetToMediaEntry_t)); 18533 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18534 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18535 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18536 sizeof (mib2_ipAttributeEntry_t)); 18537 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18538 18539 /* 18540 * Grab the statistics from the new IP MIB 18541 */ 18542 SET_MIB(old_ip_mib.ipInReceives, 18543 (uint32_t)ipmib->ipIfStatsHCInReceives); 18544 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18545 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18546 SET_MIB(old_ip_mib.ipForwDatagrams, 18547 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18548 SET_MIB(old_ip_mib.ipInUnknownProtos, 18549 ipmib->ipIfStatsInUnknownProtos); 18550 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18551 SET_MIB(old_ip_mib.ipInDelivers, 18552 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18553 SET_MIB(old_ip_mib.ipOutRequests, 18554 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18555 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18556 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18557 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18558 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18559 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18560 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18561 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18562 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18563 18564 /* ipRoutingDiscards is not being used */ 18565 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18566 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18567 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18568 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18569 SET_MIB(old_ip_mib.ipReasmDuplicates, 18570 ipmib->ipIfStatsReasmDuplicates); 18571 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18572 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18573 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18574 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18575 SET_MIB(old_ip_mib.rawipInOverflows, 18576 ipmib->rawipIfStatsInOverflows); 18577 18578 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18579 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18580 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18581 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18582 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18583 ipmib->ipIfStatsOutSwitchIPVersion); 18584 18585 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18586 (int)sizeof (old_ip_mib))) { 18587 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18588 (uint_t)sizeof (old_ip_mib))); 18589 } 18590 18591 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18592 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18593 (int)optp->level, (int)optp->name, (int)optp->len)); 18594 qreply(q, mpctl); 18595 return (mp2ctl); 18596 } 18597 18598 /* Per interface IPv4 statistics */ 18599 static mblk_t * 18600 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18601 { 18602 struct opthdr *optp; 18603 mblk_t *mp2ctl; 18604 ill_t *ill; 18605 ill_walk_context_t ctx; 18606 mblk_t *mp_tail = NULL; 18607 mib2_ipIfStatsEntry_t global_ip_mib; 18608 18609 /* 18610 * Make a copy of the original message 18611 */ 18612 mp2ctl = copymsg(mpctl); 18613 18614 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18615 optp->level = MIB2_IP; 18616 optp->name = MIB2_IP_TRAFFIC_STATS; 18617 /* Include "unknown interface" ip_mib */ 18618 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18619 ipst->ips_ip_mib.ipIfStatsIfIndex = 18620 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18621 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18622 (ipst->ips_ip_g_forward ? 1 : 2)); 18623 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18624 (uint32_t)ipst->ips_ip_def_ttl); 18625 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18626 sizeof (mib2_ipIfStatsEntry_t)); 18627 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18628 sizeof (mib2_ipAddrEntry_t)); 18629 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18630 sizeof (mib2_ipRouteEntry_t)); 18631 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18632 sizeof (mib2_ipNetToMediaEntry_t)); 18633 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18634 sizeof (ip_member_t)); 18635 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18636 sizeof (ip_grpsrc_t)); 18637 18638 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18639 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18640 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18641 "failed to allocate %u bytes\n", 18642 (uint_t)sizeof (ipst->ips_ip_mib))); 18643 } 18644 18645 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18646 18647 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18648 ill = ILL_START_WALK_V4(&ctx, ipst); 18649 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18650 ill->ill_ip_mib->ipIfStatsIfIndex = 18651 ill->ill_phyint->phyint_ifindex; 18652 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18653 (ipst->ips_ip_g_forward ? 1 : 2)); 18654 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18655 (uint32_t)ipst->ips_ip_def_ttl); 18656 18657 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18658 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18659 (char *)ill->ill_ip_mib, 18660 (int)sizeof (*ill->ill_ip_mib))) { 18661 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18662 "failed to allocate %u bytes\n", 18663 (uint_t)sizeof (*ill->ill_ip_mib))); 18664 } 18665 } 18666 rw_exit(&ipst->ips_ill_g_lock); 18667 18668 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18669 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18670 "level %d, name %d, len %d\n", 18671 (int)optp->level, (int)optp->name, (int)optp->len)); 18672 qreply(q, mpctl); 18673 18674 if (mp2ctl == NULL) 18675 return (NULL); 18676 18677 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18678 } 18679 18680 /* Global IPv4 ICMP statistics */ 18681 static mblk_t * 18682 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18683 { 18684 struct opthdr *optp; 18685 mblk_t *mp2ctl; 18686 18687 /* 18688 * Make a copy of the original message 18689 */ 18690 mp2ctl = copymsg(mpctl); 18691 18692 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18693 optp->level = MIB2_ICMP; 18694 optp->name = 0; 18695 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18696 (int)sizeof (ipst->ips_icmp_mib))) { 18697 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18698 (uint_t)sizeof (ipst->ips_icmp_mib))); 18699 } 18700 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18701 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18702 (int)optp->level, (int)optp->name, (int)optp->len)); 18703 qreply(q, mpctl); 18704 return (mp2ctl); 18705 } 18706 18707 /* Global IPv4 IGMP statistics */ 18708 static mblk_t * 18709 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18710 { 18711 struct opthdr *optp; 18712 mblk_t *mp2ctl; 18713 18714 /* 18715 * make a copy of the original message 18716 */ 18717 mp2ctl = copymsg(mpctl); 18718 18719 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18720 optp->level = EXPER_IGMP; 18721 optp->name = 0; 18722 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18723 (int)sizeof (ipst->ips_igmpstat))) { 18724 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18725 (uint_t)sizeof (ipst->ips_igmpstat))); 18726 } 18727 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18728 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18729 (int)optp->level, (int)optp->name, (int)optp->len)); 18730 qreply(q, mpctl); 18731 return (mp2ctl); 18732 } 18733 18734 /* Global IPv4 Multicast Routing statistics */ 18735 static mblk_t * 18736 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18737 { 18738 struct opthdr *optp; 18739 mblk_t *mp2ctl; 18740 18741 /* 18742 * make a copy of the original message 18743 */ 18744 mp2ctl = copymsg(mpctl); 18745 18746 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18747 optp->level = EXPER_DVMRP; 18748 optp->name = 0; 18749 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18750 ip0dbg(("ip_mroute_stats: failed\n")); 18751 } 18752 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18753 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18754 (int)optp->level, (int)optp->name, (int)optp->len)); 18755 qreply(q, mpctl); 18756 return (mp2ctl); 18757 } 18758 18759 /* IPv4 address information */ 18760 static mblk_t * 18761 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18762 { 18763 struct opthdr *optp; 18764 mblk_t *mp2ctl; 18765 mblk_t *mp_tail = NULL; 18766 ill_t *ill; 18767 ipif_t *ipif; 18768 uint_t bitval; 18769 mib2_ipAddrEntry_t mae; 18770 zoneid_t zoneid; 18771 ill_walk_context_t ctx; 18772 18773 /* 18774 * make a copy of the original message 18775 */ 18776 mp2ctl = copymsg(mpctl); 18777 18778 /* ipAddrEntryTable */ 18779 18780 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18781 optp->level = MIB2_IP; 18782 optp->name = MIB2_IP_ADDR; 18783 zoneid = Q_TO_CONN(q)->conn_zoneid; 18784 18785 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18786 ill = ILL_START_WALK_V4(&ctx, ipst); 18787 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18788 for (ipif = ill->ill_ipif; ipif != NULL; 18789 ipif = ipif->ipif_next) { 18790 if (ipif->ipif_zoneid != zoneid && 18791 ipif->ipif_zoneid != ALL_ZONES) 18792 continue; 18793 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18794 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18795 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18796 18797 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18798 OCTET_LENGTH); 18799 mae.ipAdEntIfIndex.o_length = 18800 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18801 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18802 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18803 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18804 mae.ipAdEntInfo.ae_subnet_len = 18805 ip_mask_to_plen(ipif->ipif_net_mask); 18806 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18807 for (bitval = 1; 18808 bitval && 18809 !(bitval & ipif->ipif_brd_addr); 18810 bitval <<= 1) 18811 noop; 18812 mae.ipAdEntBcastAddr = bitval; 18813 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18814 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18815 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18816 mae.ipAdEntInfo.ae_broadcast_addr = 18817 ipif->ipif_brd_addr; 18818 mae.ipAdEntInfo.ae_pp_dst_addr = 18819 ipif->ipif_pp_dst_addr; 18820 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18821 ill->ill_flags | ill->ill_phyint->phyint_flags; 18822 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18823 18824 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18825 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18826 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18827 "allocate %u bytes\n", 18828 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18829 } 18830 } 18831 } 18832 rw_exit(&ipst->ips_ill_g_lock); 18833 18834 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18835 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18836 (int)optp->level, (int)optp->name, (int)optp->len)); 18837 qreply(q, mpctl); 18838 return (mp2ctl); 18839 } 18840 18841 /* IPv6 address information */ 18842 static mblk_t * 18843 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18844 { 18845 struct opthdr *optp; 18846 mblk_t *mp2ctl; 18847 mblk_t *mp_tail = NULL; 18848 ill_t *ill; 18849 ipif_t *ipif; 18850 mib2_ipv6AddrEntry_t mae6; 18851 zoneid_t zoneid; 18852 ill_walk_context_t ctx; 18853 18854 /* 18855 * make a copy of the original message 18856 */ 18857 mp2ctl = copymsg(mpctl); 18858 18859 /* ipv6AddrEntryTable */ 18860 18861 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18862 optp->level = MIB2_IP6; 18863 optp->name = MIB2_IP6_ADDR; 18864 zoneid = Q_TO_CONN(q)->conn_zoneid; 18865 18866 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18867 ill = ILL_START_WALK_V6(&ctx, ipst); 18868 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18869 for (ipif = ill->ill_ipif; ipif != NULL; 18870 ipif = ipif->ipif_next) { 18871 if (ipif->ipif_zoneid != zoneid && 18872 ipif->ipif_zoneid != ALL_ZONES) 18873 continue; 18874 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18875 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18876 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18877 18878 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18879 OCTET_LENGTH); 18880 mae6.ipv6AddrIfIndex.o_length = 18881 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18882 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18883 mae6.ipv6AddrPfxLength = 18884 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18885 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18886 mae6.ipv6AddrInfo.ae_subnet_len = 18887 mae6.ipv6AddrPfxLength; 18888 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18889 18890 /* Type: stateless(1), stateful(2), unknown(3) */ 18891 if (ipif->ipif_flags & IPIF_ADDRCONF) 18892 mae6.ipv6AddrType = 1; 18893 else 18894 mae6.ipv6AddrType = 2; 18895 /* Anycast: true(1), false(2) */ 18896 if (ipif->ipif_flags & IPIF_ANYCAST) 18897 mae6.ipv6AddrAnycastFlag = 1; 18898 else 18899 mae6.ipv6AddrAnycastFlag = 2; 18900 18901 /* 18902 * Address status: preferred(1), deprecated(2), 18903 * invalid(3), inaccessible(4), unknown(5) 18904 */ 18905 if (ipif->ipif_flags & IPIF_NOLOCAL) 18906 mae6.ipv6AddrStatus = 3; 18907 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18908 mae6.ipv6AddrStatus = 2; 18909 else 18910 mae6.ipv6AddrStatus = 1; 18911 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18912 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18913 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18914 ipif->ipif_v6pp_dst_addr; 18915 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18916 ill->ill_flags | ill->ill_phyint->phyint_flags; 18917 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18918 mae6.ipv6AddrIdentifier = ill->ill_token; 18919 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18920 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18921 mae6.ipv6AddrRetransmitTime = 18922 ill->ill_reachable_retrans_time; 18923 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18924 (char *)&mae6, 18925 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18926 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18927 "allocate %u bytes\n", 18928 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18929 } 18930 } 18931 } 18932 rw_exit(&ipst->ips_ill_g_lock); 18933 18934 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18935 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18936 (int)optp->level, (int)optp->name, (int)optp->len)); 18937 qreply(q, mpctl); 18938 return (mp2ctl); 18939 } 18940 18941 /* IPv4 multicast group membership. */ 18942 static mblk_t * 18943 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18944 { 18945 struct opthdr *optp; 18946 mblk_t *mp2ctl; 18947 ill_t *ill; 18948 ipif_t *ipif; 18949 ilm_t *ilm; 18950 ip_member_t ipm; 18951 mblk_t *mp_tail = NULL; 18952 ill_walk_context_t ctx; 18953 zoneid_t zoneid; 18954 18955 /* 18956 * make a copy of the original message 18957 */ 18958 mp2ctl = copymsg(mpctl); 18959 zoneid = Q_TO_CONN(q)->conn_zoneid; 18960 18961 /* ipGroupMember table */ 18962 optp = (struct opthdr *)&mpctl->b_rptr[ 18963 sizeof (struct T_optmgmt_ack)]; 18964 optp->level = MIB2_IP; 18965 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18966 18967 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18968 ill = ILL_START_WALK_V4(&ctx, ipst); 18969 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18970 ILM_WALKER_HOLD(ill); 18971 for (ipif = ill->ill_ipif; ipif != NULL; 18972 ipif = ipif->ipif_next) { 18973 if (ipif->ipif_zoneid != zoneid && 18974 ipif->ipif_zoneid != ALL_ZONES) 18975 continue; /* not this zone */ 18976 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18977 OCTET_LENGTH); 18978 ipm.ipGroupMemberIfIndex.o_length = 18979 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18980 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18981 ASSERT(ilm->ilm_ipif != NULL); 18982 ASSERT(ilm->ilm_ill == NULL); 18983 if (ilm->ilm_ipif != ipif) 18984 continue; 18985 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18986 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18987 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18988 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18989 (char *)&ipm, (int)sizeof (ipm))) { 18990 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18991 "failed to allocate %u bytes\n", 18992 (uint_t)sizeof (ipm))); 18993 } 18994 } 18995 } 18996 ILM_WALKER_RELE(ill); 18997 } 18998 rw_exit(&ipst->ips_ill_g_lock); 18999 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19000 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19001 (int)optp->level, (int)optp->name, (int)optp->len)); 19002 qreply(q, mpctl); 19003 return (mp2ctl); 19004 } 19005 19006 /* IPv6 multicast group membership. */ 19007 static mblk_t * 19008 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19009 { 19010 struct opthdr *optp; 19011 mblk_t *mp2ctl; 19012 ill_t *ill; 19013 ilm_t *ilm; 19014 ipv6_member_t ipm6; 19015 mblk_t *mp_tail = NULL; 19016 ill_walk_context_t ctx; 19017 zoneid_t zoneid; 19018 19019 /* 19020 * make a copy of the original message 19021 */ 19022 mp2ctl = copymsg(mpctl); 19023 zoneid = Q_TO_CONN(q)->conn_zoneid; 19024 19025 /* ip6GroupMember table */ 19026 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19027 optp->level = MIB2_IP6; 19028 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 19029 19030 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19031 ill = ILL_START_WALK_V6(&ctx, ipst); 19032 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19033 ILM_WALKER_HOLD(ill); 19034 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 19035 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 19036 ASSERT(ilm->ilm_ipif == NULL); 19037 ASSERT(ilm->ilm_ill != NULL); 19038 if (ilm->ilm_zoneid != zoneid) 19039 continue; /* not this zone */ 19040 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 19041 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 19042 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 19043 if (!snmp_append_data2(mpctl->b_cont, 19044 &mp_tail, 19045 (char *)&ipm6, (int)sizeof (ipm6))) { 19046 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 19047 "failed to allocate %u bytes\n", 19048 (uint_t)sizeof (ipm6))); 19049 } 19050 } 19051 ILM_WALKER_RELE(ill); 19052 } 19053 rw_exit(&ipst->ips_ill_g_lock); 19054 19055 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19056 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19057 (int)optp->level, (int)optp->name, (int)optp->len)); 19058 qreply(q, mpctl); 19059 return (mp2ctl); 19060 } 19061 19062 /* IP multicast filtered sources */ 19063 static mblk_t * 19064 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19065 { 19066 struct opthdr *optp; 19067 mblk_t *mp2ctl; 19068 ill_t *ill; 19069 ipif_t *ipif; 19070 ilm_t *ilm; 19071 ip_grpsrc_t ips; 19072 mblk_t *mp_tail = NULL; 19073 ill_walk_context_t ctx; 19074 zoneid_t zoneid; 19075 int i; 19076 slist_t *sl; 19077 19078 /* 19079 * make a copy of the original message 19080 */ 19081 mp2ctl = copymsg(mpctl); 19082 zoneid = Q_TO_CONN(q)->conn_zoneid; 19083 19084 /* ipGroupSource table */ 19085 optp = (struct opthdr *)&mpctl->b_rptr[ 19086 sizeof (struct T_optmgmt_ack)]; 19087 optp->level = MIB2_IP; 19088 optp->name = EXPER_IP_GROUP_SOURCES; 19089 19090 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19091 ill = ILL_START_WALK_V4(&ctx, ipst); 19092 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19093 ILM_WALKER_HOLD(ill); 19094 for (ipif = ill->ill_ipif; ipif != NULL; 19095 ipif = ipif->ipif_next) { 19096 if (ipif->ipif_zoneid != zoneid) 19097 continue; /* not this zone */ 19098 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 19099 OCTET_LENGTH); 19100 ips.ipGroupSourceIfIndex.o_length = 19101 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 19102 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 19103 ASSERT(ilm->ilm_ipif != NULL); 19104 ASSERT(ilm->ilm_ill == NULL); 19105 sl = ilm->ilm_filter; 19106 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 19107 continue; 19108 ips.ipGroupSourceGroup = ilm->ilm_addr; 19109 for (i = 0; i < sl->sl_numsrc; i++) { 19110 if (!IN6_IS_ADDR_V4MAPPED( 19111 &sl->sl_addr[i])) 19112 continue; 19113 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 19114 ips.ipGroupSourceAddress); 19115 if (snmp_append_data2(mpctl->b_cont, 19116 &mp_tail, (char *)&ips, 19117 (int)sizeof (ips)) == 0) { 19118 ip1dbg(("ip_snmp_get_mib2_" 19119 "ip_group_src: failed to " 19120 "allocate %u bytes\n", 19121 (uint_t)sizeof (ips))); 19122 } 19123 } 19124 } 19125 } 19126 ILM_WALKER_RELE(ill); 19127 } 19128 rw_exit(&ipst->ips_ill_g_lock); 19129 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19130 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19131 (int)optp->level, (int)optp->name, (int)optp->len)); 19132 qreply(q, mpctl); 19133 return (mp2ctl); 19134 } 19135 19136 /* IPv6 multicast filtered sources. */ 19137 static mblk_t * 19138 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19139 { 19140 struct opthdr *optp; 19141 mblk_t *mp2ctl; 19142 ill_t *ill; 19143 ilm_t *ilm; 19144 ipv6_grpsrc_t ips6; 19145 mblk_t *mp_tail = NULL; 19146 ill_walk_context_t ctx; 19147 zoneid_t zoneid; 19148 int i; 19149 slist_t *sl; 19150 19151 /* 19152 * make a copy of the original message 19153 */ 19154 mp2ctl = copymsg(mpctl); 19155 zoneid = Q_TO_CONN(q)->conn_zoneid; 19156 19157 /* ip6GroupMember table */ 19158 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19159 optp->level = MIB2_IP6; 19160 optp->name = EXPER_IP6_GROUP_SOURCES; 19161 19162 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19163 ill = ILL_START_WALK_V6(&ctx, ipst); 19164 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19165 ILM_WALKER_HOLD(ill); 19166 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19167 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 19168 ASSERT(ilm->ilm_ipif == NULL); 19169 ASSERT(ilm->ilm_ill != NULL); 19170 sl = ilm->ilm_filter; 19171 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19172 continue; 19173 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19174 for (i = 0; i < sl->sl_numsrc; i++) { 19175 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19176 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19177 (char *)&ips6, (int)sizeof (ips6))) { 19178 ip1dbg(("ip_snmp_get_mib2_ip6_" 19179 "group_src: failed to allocate " 19180 "%u bytes\n", 19181 (uint_t)sizeof (ips6))); 19182 } 19183 } 19184 } 19185 ILM_WALKER_RELE(ill); 19186 } 19187 rw_exit(&ipst->ips_ill_g_lock); 19188 19189 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19190 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19191 (int)optp->level, (int)optp->name, (int)optp->len)); 19192 qreply(q, mpctl); 19193 return (mp2ctl); 19194 } 19195 19196 /* Multicast routing virtual interface table. */ 19197 static mblk_t * 19198 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19199 { 19200 struct opthdr *optp; 19201 mblk_t *mp2ctl; 19202 19203 /* 19204 * make a copy of the original message 19205 */ 19206 mp2ctl = copymsg(mpctl); 19207 19208 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19209 optp->level = EXPER_DVMRP; 19210 optp->name = EXPER_DVMRP_VIF; 19211 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19212 ip0dbg(("ip_mroute_vif: failed\n")); 19213 } 19214 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19215 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19216 (int)optp->level, (int)optp->name, (int)optp->len)); 19217 qreply(q, mpctl); 19218 return (mp2ctl); 19219 } 19220 19221 /* Multicast routing table. */ 19222 static mblk_t * 19223 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19224 { 19225 struct opthdr *optp; 19226 mblk_t *mp2ctl; 19227 19228 /* 19229 * make a copy of the original message 19230 */ 19231 mp2ctl = copymsg(mpctl); 19232 19233 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19234 optp->level = EXPER_DVMRP; 19235 optp->name = EXPER_DVMRP_MRT; 19236 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19237 ip0dbg(("ip_mroute_mrt: failed\n")); 19238 } 19239 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19240 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19241 (int)optp->level, (int)optp->name, (int)optp->len)); 19242 qreply(q, mpctl); 19243 return (mp2ctl); 19244 } 19245 19246 /* 19247 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19248 * in one IRE walk. 19249 */ 19250 static mblk_t * 19251 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19252 { 19253 struct opthdr *optp; 19254 mblk_t *mp2ctl; /* Returned */ 19255 mblk_t *mp3ctl; /* nettomedia */ 19256 mblk_t *mp4ctl; /* routeattrs */ 19257 iproutedata_t ird; 19258 zoneid_t zoneid; 19259 19260 /* 19261 * make copies of the original message 19262 * - mp2ctl is returned unchanged to the caller for his use 19263 * - mpctl is sent upstream as ipRouteEntryTable 19264 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19265 * - mp4ctl is sent upstream as ipRouteAttributeTable 19266 */ 19267 mp2ctl = copymsg(mpctl); 19268 mp3ctl = copymsg(mpctl); 19269 mp4ctl = copymsg(mpctl); 19270 if (mp3ctl == NULL || mp4ctl == NULL) { 19271 freemsg(mp4ctl); 19272 freemsg(mp3ctl); 19273 freemsg(mp2ctl); 19274 freemsg(mpctl); 19275 return (NULL); 19276 } 19277 19278 bzero(&ird, sizeof (ird)); 19279 19280 ird.ird_route.lp_head = mpctl->b_cont; 19281 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19282 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19283 19284 zoneid = Q_TO_CONN(q)->conn_zoneid; 19285 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19286 19287 /* ipRouteEntryTable in mpctl */ 19288 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19289 optp->level = MIB2_IP; 19290 optp->name = MIB2_IP_ROUTE; 19291 optp->len = msgdsize(ird.ird_route.lp_head); 19292 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19293 (int)optp->level, (int)optp->name, (int)optp->len)); 19294 qreply(q, mpctl); 19295 19296 /* ipNetToMediaEntryTable in mp3ctl */ 19297 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19298 optp->level = MIB2_IP; 19299 optp->name = MIB2_IP_MEDIA; 19300 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19301 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19302 (int)optp->level, (int)optp->name, (int)optp->len)); 19303 qreply(q, mp3ctl); 19304 19305 /* ipRouteAttributeTable in mp4ctl */ 19306 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19307 optp->level = MIB2_IP; 19308 optp->name = EXPER_IP_RTATTR; 19309 optp->len = msgdsize(ird.ird_attrs.lp_head); 19310 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19311 (int)optp->level, (int)optp->name, (int)optp->len)); 19312 if (optp->len == 0) 19313 freemsg(mp4ctl); 19314 else 19315 qreply(q, mp4ctl); 19316 19317 return (mp2ctl); 19318 } 19319 19320 /* 19321 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19322 * ipv6NetToMediaEntryTable in an NDP walk. 19323 */ 19324 static mblk_t * 19325 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19326 { 19327 struct opthdr *optp; 19328 mblk_t *mp2ctl; /* Returned */ 19329 mblk_t *mp3ctl; /* nettomedia */ 19330 mblk_t *mp4ctl; /* routeattrs */ 19331 iproutedata_t ird; 19332 zoneid_t zoneid; 19333 19334 /* 19335 * make copies of the original message 19336 * - mp2ctl is returned unchanged to the caller for his use 19337 * - mpctl is sent upstream as ipv6RouteEntryTable 19338 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19339 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19340 */ 19341 mp2ctl = copymsg(mpctl); 19342 mp3ctl = copymsg(mpctl); 19343 mp4ctl = copymsg(mpctl); 19344 if (mp3ctl == NULL || mp4ctl == NULL) { 19345 freemsg(mp4ctl); 19346 freemsg(mp3ctl); 19347 freemsg(mp2ctl); 19348 freemsg(mpctl); 19349 return (NULL); 19350 } 19351 19352 bzero(&ird, sizeof (ird)); 19353 19354 ird.ird_route.lp_head = mpctl->b_cont; 19355 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19356 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19357 19358 zoneid = Q_TO_CONN(q)->conn_zoneid; 19359 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19360 19361 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19362 optp->level = MIB2_IP6; 19363 optp->name = MIB2_IP6_ROUTE; 19364 optp->len = msgdsize(ird.ird_route.lp_head); 19365 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19366 (int)optp->level, (int)optp->name, (int)optp->len)); 19367 qreply(q, mpctl); 19368 19369 /* ipv6NetToMediaEntryTable in mp3ctl */ 19370 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19371 19372 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19373 optp->level = MIB2_IP6; 19374 optp->name = MIB2_IP6_MEDIA; 19375 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19376 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19377 (int)optp->level, (int)optp->name, (int)optp->len)); 19378 qreply(q, mp3ctl); 19379 19380 /* ipv6RouteAttributeTable in mp4ctl */ 19381 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19382 optp->level = MIB2_IP6; 19383 optp->name = EXPER_IP_RTATTR; 19384 optp->len = msgdsize(ird.ird_attrs.lp_head); 19385 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19386 (int)optp->level, (int)optp->name, (int)optp->len)); 19387 if (optp->len == 0) 19388 freemsg(mp4ctl); 19389 else 19390 qreply(q, mp4ctl); 19391 19392 return (mp2ctl); 19393 } 19394 19395 /* 19396 * IPv6 mib: One per ill 19397 */ 19398 static mblk_t * 19399 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19400 { 19401 struct opthdr *optp; 19402 mblk_t *mp2ctl; 19403 ill_t *ill; 19404 ill_walk_context_t ctx; 19405 mblk_t *mp_tail = NULL; 19406 19407 /* 19408 * Make a copy of the original message 19409 */ 19410 mp2ctl = copymsg(mpctl); 19411 19412 /* fixed length IPv6 structure ... */ 19413 19414 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19415 optp->level = MIB2_IP6; 19416 optp->name = 0; 19417 /* Include "unknown interface" ip6_mib */ 19418 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19419 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19420 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19421 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19422 ipst->ips_ipv6_forward ? 1 : 2); 19423 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19424 ipst->ips_ipv6_def_hops); 19425 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19426 sizeof (mib2_ipIfStatsEntry_t)); 19427 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19428 sizeof (mib2_ipv6AddrEntry_t)); 19429 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19430 sizeof (mib2_ipv6RouteEntry_t)); 19431 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19432 sizeof (mib2_ipv6NetToMediaEntry_t)); 19433 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19434 sizeof (ipv6_member_t)); 19435 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19436 sizeof (ipv6_grpsrc_t)); 19437 19438 /* 19439 * Synchronize 64- and 32-bit counters 19440 */ 19441 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19442 ipIfStatsHCInReceives); 19443 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19444 ipIfStatsHCInDelivers); 19445 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19446 ipIfStatsHCOutRequests); 19447 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19448 ipIfStatsHCOutForwDatagrams); 19449 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19450 ipIfStatsHCOutMcastPkts); 19451 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19452 ipIfStatsHCInMcastPkts); 19453 19454 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19455 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19456 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19457 (uint_t)sizeof (ipst->ips_ip6_mib))); 19458 } 19459 19460 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19461 ill = ILL_START_WALK_V6(&ctx, ipst); 19462 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19463 ill->ill_ip_mib->ipIfStatsIfIndex = 19464 ill->ill_phyint->phyint_ifindex; 19465 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19466 ipst->ips_ipv6_forward ? 1 : 2); 19467 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19468 ill->ill_max_hops); 19469 19470 /* 19471 * Synchronize 64- and 32-bit counters 19472 */ 19473 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19474 ipIfStatsHCInReceives); 19475 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19476 ipIfStatsHCInDelivers); 19477 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19478 ipIfStatsHCOutRequests); 19479 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19480 ipIfStatsHCOutForwDatagrams); 19481 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19482 ipIfStatsHCOutMcastPkts); 19483 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19484 ipIfStatsHCInMcastPkts); 19485 19486 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19487 (char *)ill->ill_ip_mib, 19488 (int)sizeof (*ill->ill_ip_mib))) { 19489 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19490 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19491 } 19492 } 19493 rw_exit(&ipst->ips_ill_g_lock); 19494 19495 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19496 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19497 (int)optp->level, (int)optp->name, (int)optp->len)); 19498 qreply(q, mpctl); 19499 return (mp2ctl); 19500 } 19501 19502 /* 19503 * ICMPv6 mib: One per ill 19504 */ 19505 static mblk_t * 19506 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19507 { 19508 struct opthdr *optp; 19509 mblk_t *mp2ctl; 19510 ill_t *ill; 19511 ill_walk_context_t ctx; 19512 mblk_t *mp_tail = NULL; 19513 /* 19514 * Make a copy of the original message 19515 */ 19516 mp2ctl = copymsg(mpctl); 19517 19518 /* fixed length ICMPv6 structure ... */ 19519 19520 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19521 optp->level = MIB2_ICMP6; 19522 optp->name = 0; 19523 /* Include "unknown interface" icmp6_mib */ 19524 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19525 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19526 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19527 sizeof (mib2_ipv6IfIcmpEntry_t); 19528 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19529 (char *)&ipst->ips_icmp6_mib, 19530 (int)sizeof (ipst->ips_icmp6_mib))) { 19531 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19532 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19533 } 19534 19535 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19536 ill = ILL_START_WALK_V6(&ctx, ipst); 19537 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19538 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19539 ill->ill_phyint->phyint_ifindex; 19540 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19541 (char *)ill->ill_icmp6_mib, 19542 (int)sizeof (*ill->ill_icmp6_mib))) { 19543 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19544 "%u bytes\n", 19545 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19546 } 19547 } 19548 rw_exit(&ipst->ips_ill_g_lock); 19549 19550 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19551 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19552 (int)optp->level, (int)optp->name, (int)optp->len)); 19553 qreply(q, mpctl); 19554 return (mp2ctl); 19555 } 19556 19557 /* 19558 * ire_walk routine to create both ipRouteEntryTable and 19559 * ipRouteAttributeTable in one IRE walk 19560 */ 19561 static void 19562 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19563 { 19564 ill_t *ill; 19565 ipif_t *ipif; 19566 mib2_ipRouteEntry_t *re; 19567 mib2_ipAttributeEntry_t *iae, *iaeptr; 19568 ipaddr_t gw_addr; 19569 tsol_ire_gw_secattr_t *attrp; 19570 tsol_gc_t *gc = NULL; 19571 tsol_gcgrp_t *gcgrp = NULL; 19572 uint_t sacnt = 0; 19573 int i; 19574 19575 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19576 19577 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19578 return; 19579 19580 if ((attrp = ire->ire_gw_secattr) != NULL) { 19581 mutex_enter(&attrp->igsa_lock); 19582 if ((gc = attrp->igsa_gc) != NULL) { 19583 gcgrp = gc->gc_grp; 19584 ASSERT(gcgrp != NULL); 19585 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19586 sacnt = 1; 19587 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19588 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19589 gc = gcgrp->gcgrp_head; 19590 sacnt = gcgrp->gcgrp_count; 19591 } 19592 mutex_exit(&attrp->igsa_lock); 19593 19594 /* do nothing if there's no gc to report */ 19595 if (gc == NULL) { 19596 ASSERT(sacnt == 0); 19597 if (gcgrp != NULL) { 19598 /* we might as well drop the lock now */ 19599 rw_exit(&gcgrp->gcgrp_rwlock); 19600 gcgrp = NULL; 19601 } 19602 attrp = NULL; 19603 } 19604 19605 ASSERT(gc == NULL || (gcgrp != NULL && 19606 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19607 } 19608 ASSERT(sacnt == 0 || gc != NULL); 19609 19610 if (sacnt != 0 && 19611 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19612 kmem_free(re, sizeof (*re)); 19613 rw_exit(&gcgrp->gcgrp_rwlock); 19614 return; 19615 } 19616 19617 /* 19618 * Return all IRE types for route table... let caller pick and choose 19619 */ 19620 re->ipRouteDest = ire->ire_addr; 19621 ipif = ire->ire_ipif; 19622 re->ipRouteIfIndex.o_length = 0; 19623 if (ire->ire_type == IRE_CACHE) { 19624 ill = (ill_t *)ire->ire_stq->q_ptr; 19625 re->ipRouteIfIndex.o_length = 19626 ill->ill_name_length == 0 ? 0 : 19627 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19628 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19629 re->ipRouteIfIndex.o_length); 19630 } else if (ipif != NULL) { 19631 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19632 re->ipRouteIfIndex.o_length = 19633 mi_strlen(re->ipRouteIfIndex.o_bytes); 19634 } 19635 re->ipRouteMetric1 = -1; 19636 re->ipRouteMetric2 = -1; 19637 re->ipRouteMetric3 = -1; 19638 re->ipRouteMetric4 = -1; 19639 19640 gw_addr = ire->ire_gateway_addr; 19641 19642 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19643 re->ipRouteNextHop = ire->ire_src_addr; 19644 else 19645 re->ipRouteNextHop = gw_addr; 19646 /* indirect(4), direct(3), or invalid(2) */ 19647 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19648 re->ipRouteType = 2; 19649 else 19650 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19651 re->ipRouteProto = -1; 19652 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19653 re->ipRouteMask = ire->ire_mask; 19654 re->ipRouteMetric5 = -1; 19655 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19656 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19657 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19658 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19659 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19660 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19661 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19662 re->ipRouteInfo.re_flags = ire->ire_flags; 19663 19664 if (ire->ire_flags & RTF_DYNAMIC) { 19665 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19666 } else { 19667 re->ipRouteInfo.re_ire_type = ire->ire_type; 19668 } 19669 19670 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19671 (char *)re, (int)sizeof (*re))) { 19672 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19673 (uint_t)sizeof (*re))); 19674 } 19675 19676 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19677 iaeptr->iae_routeidx = ird->ird_idx; 19678 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19679 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19680 } 19681 19682 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19683 (char *)iae, sacnt * sizeof (*iae))) { 19684 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19685 (unsigned)(sacnt * sizeof (*iae)))); 19686 } 19687 19688 /* bump route index for next pass */ 19689 ird->ird_idx++; 19690 19691 kmem_free(re, sizeof (*re)); 19692 if (sacnt != 0) 19693 kmem_free(iae, sacnt * sizeof (*iae)); 19694 19695 if (gcgrp != NULL) 19696 rw_exit(&gcgrp->gcgrp_rwlock); 19697 } 19698 19699 /* 19700 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19701 */ 19702 static void 19703 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19704 { 19705 ill_t *ill; 19706 ipif_t *ipif; 19707 mib2_ipv6RouteEntry_t *re; 19708 mib2_ipAttributeEntry_t *iae, *iaeptr; 19709 in6_addr_t gw_addr_v6; 19710 tsol_ire_gw_secattr_t *attrp; 19711 tsol_gc_t *gc = NULL; 19712 tsol_gcgrp_t *gcgrp = NULL; 19713 uint_t sacnt = 0; 19714 int i; 19715 19716 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19717 19718 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19719 return; 19720 19721 if ((attrp = ire->ire_gw_secattr) != NULL) { 19722 mutex_enter(&attrp->igsa_lock); 19723 if ((gc = attrp->igsa_gc) != NULL) { 19724 gcgrp = gc->gc_grp; 19725 ASSERT(gcgrp != NULL); 19726 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19727 sacnt = 1; 19728 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19729 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19730 gc = gcgrp->gcgrp_head; 19731 sacnt = gcgrp->gcgrp_count; 19732 } 19733 mutex_exit(&attrp->igsa_lock); 19734 19735 /* do nothing if there's no gc to report */ 19736 if (gc == NULL) { 19737 ASSERT(sacnt == 0); 19738 if (gcgrp != NULL) { 19739 /* we might as well drop the lock now */ 19740 rw_exit(&gcgrp->gcgrp_rwlock); 19741 gcgrp = NULL; 19742 } 19743 attrp = NULL; 19744 } 19745 19746 ASSERT(gc == NULL || (gcgrp != NULL && 19747 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19748 } 19749 ASSERT(sacnt == 0 || gc != NULL); 19750 19751 if (sacnt != 0 && 19752 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19753 kmem_free(re, sizeof (*re)); 19754 rw_exit(&gcgrp->gcgrp_rwlock); 19755 return; 19756 } 19757 19758 /* 19759 * Return all IRE types for route table... let caller pick and choose 19760 */ 19761 re->ipv6RouteDest = ire->ire_addr_v6; 19762 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19763 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19764 re->ipv6RouteIfIndex.o_length = 0; 19765 ipif = ire->ire_ipif; 19766 if (ire->ire_type == IRE_CACHE) { 19767 ill = (ill_t *)ire->ire_stq->q_ptr; 19768 re->ipv6RouteIfIndex.o_length = 19769 ill->ill_name_length == 0 ? 0 : 19770 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19771 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19772 re->ipv6RouteIfIndex.o_length); 19773 } else if (ipif != NULL) { 19774 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19775 re->ipv6RouteIfIndex.o_length = 19776 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19777 } 19778 19779 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19780 19781 mutex_enter(&ire->ire_lock); 19782 gw_addr_v6 = ire->ire_gateway_addr_v6; 19783 mutex_exit(&ire->ire_lock); 19784 19785 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19786 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19787 else 19788 re->ipv6RouteNextHop = gw_addr_v6; 19789 19790 /* remote(4), local(3), or discard(2) */ 19791 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19792 re->ipv6RouteType = 2; 19793 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19794 re->ipv6RouteType = 3; 19795 else 19796 re->ipv6RouteType = 4; 19797 19798 re->ipv6RouteProtocol = -1; 19799 re->ipv6RoutePolicy = 0; 19800 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19801 re->ipv6RouteNextHopRDI = 0; 19802 re->ipv6RouteWeight = 0; 19803 re->ipv6RouteMetric = 0; 19804 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19805 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19806 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19807 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19808 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19809 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19810 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19811 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19812 19813 if (ire->ire_flags & RTF_DYNAMIC) { 19814 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19815 } else { 19816 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19817 } 19818 19819 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19820 (char *)re, (int)sizeof (*re))) { 19821 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19822 (uint_t)sizeof (*re))); 19823 } 19824 19825 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19826 iaeptr->iae_routeidx = ird->ird_idx; 19827 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19828 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19829 } 19830 19831 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19832 (char *)iae, sacnt * sizeof (*iae))) { 19833 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19834 (unsigned)(sacnt * sizeof (*iae)))); 19835 } 19836 19837 /* bump route index for next pass */ 19838 ird->ird_idx++; 19839 19840 kmem_free(re, sizeof (*re)); 19841 if (sacnt != 0) 19842 kmem_free(iae, sacnt * sizeof (*iae)); 19843 19844 if (gcgrp != NULL) 19845 rw_exit(&gcgrp->gcgrp_rwlock); 19846 } 19847 19848 /* 19849 * ndp_walk routine to create ipv6NetToMediaEntryTable 19850 */ 19851 static int 19852 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19853 { 19854 ill_t *ill; 19855 mib2_ipv6NetToMediaEntry_t ntme; 19856 dl_unitdata_req_t *dl; 19857 19858 ill = nce->nce_ill; 19859 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19860 return (0); 19861 19862 /* 19863 * Neighbor cache entry attached to IRE with on-link 19864 * destination. 19865 */ 19866 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19867 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19868 if ((ill->ill_flags & ILLF_XRESOLV) && 19869 (nce->nce_res_mp != NULL)) { 19870 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19871 ntme.ipv6NetToMediaPhysAddress.o_length = 19872 dl->dl_dest_addr_length; 19873 } else { 19874 ntme.ipv6NetToMediaPhysAddress.o_length = 19875 ill->ill_phys_addr_length; 19876 } 19877 if (nce->nce_res_mp != NULL) { 19878 bcopy((char *)nce->nce_res_mp->b_rptr + 19879 NCE_LL_ADDR_OFFSET(ill), 19880 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19881 ntme.ipv6NetToMediaPhysAddress.o_length); 19882 } else { 19883 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19884 ill->ill_phys_addr_length); 19885 } 19886 /* 19887 * Note: Returns ND_* states. Should be: 19888 * reachable(1), stale(2), delay(3), probe(4), 19889 * invalid(5), unknown(6) 19890 */ 19891 ntme.ipv6NetToMediaState = nce->nce_state; 19892 ntme.ipv6NetToMediaLastUpdated = 0; 19893 19894 /* other(1), dynamic(2), static(3), local(4) */ 19895 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19896 ntme.ipv6NetToMediaType = 4; 19897 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19898 ntme.ipv6NetToMediaType = 1; 19899 } else { 19900 ntme.ipv6NetToMediaType = 2; 19901 } 19902 19903 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19904 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19905 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19906 (uint_t)sizeof (ntme))); 19907 } 19908 return (0); 19909 } 19910 19911 /* 19912 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19913 */ 19914 /* ARGSUSED */ 19915 int 19916 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19917 { 19918 switch (level) { 19919 case MIB2_IP: 19920 case MIB2_ICMP: 19921 switch (name) { 19922 default: 19923 break; 19924 } 19925 return (1); 19926 default: 19927 return (1); 19928 } 19929 } 19930 19931 /* 19932 * When there exists both a 64- and 32-bit counter of a particular type 19933 * (i.e., InReceives), only the 64-bit counters are added. 19934 */ 19935 void 19936 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19937 { 19938 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19939 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19940 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19941 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19942 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19943 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19944 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19945 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19946 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19947 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19948 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19949 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19950 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19951 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19952 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19953 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19954 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19955 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19956 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19957 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19958 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19959 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19960 o2->ipIfStatsInWrongIPVersion); 19961 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19962 o2->ipIfStatsInWrongIPVersion); 19963 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19964 o2->ipIfStatsOutSwitchIPVersion); 19965 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19966 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19967 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19968 o2->ipIfStatsHCInForwDatagrams); 19969 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19970 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19971 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19972 o2->ipIfStatsHCOutForwDatagrams); 19973 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19974 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19975 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19976 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19977 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19978 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19979 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19980 o2->ipIfStatsHCOutMcastOctets); 19981 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19982 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19983 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19984 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19985 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19986 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19987 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19988 } 19989 19990 void 19991 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19992 { 19993 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19994 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19995 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19996 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19997 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19998 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19999 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 20000 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 20001 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 20002 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 20003 o2->ipv6IfIcmpInRouterSolicits); 20004 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 20005 o2->ipv6IfIcmpInRouterAdvertisements); 20006 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 20007 o2->ipv6IfIcmpInNeighborSolicits); 20008 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 20009 o2->ipv6IfIcmpInNeighborAdvertisements); 20010 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 20011 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 20012 o2->ipv6IfIcmpInGroupMembQueries); 20013 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 20014 o2->ipv6IfIcmpInGroupMembResponses); 20015 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 20016 o2->ipv6IfIcmpInGroupMembReductions); 20017 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 20018 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 20019 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 20020 o2->ipv6IfIcmpOutDestUnreachs); 20021 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 20022 o2->ipv6IfIcmpOutAdminProhibs); 20023 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 20024 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 20025 o2->ipv6IfIcmpOutParmProblems); 20026 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 20027 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 20028 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 20029 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 20030 o2->ipv6IfIcmpOutRouterSolicits); 20031 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 20032 o2->ipv6IfIcmpOutRouterAdvertisements); 20033 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 20034 o2->ipv6IfIcmpOutNeighborSolicits); 20035 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 20036 o2->ipv6IfIcmpOutNeighborAdvertisements); 20037 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 20038 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 20039 o2->ipv6IfIcmpOutGroupMembQueries); 20040 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 20041 o2->ipv6IfIcmpOutGroupMembResponses); 20042 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 20043 o2->ipv6IfIcmpOutGroupMembReductions); 20044 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 20045 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 20046 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 20047 o2->ipv6IfIcmpInBadNeighborAdvertisements); 20048 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 20049 o2->ipv6IfIcmpInBadNeighborSolicitations); 20050 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 20051 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 20052 o2->ipv6IfIcmpInGroupMembTotal); 20053 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 20054 o2->ipv6IfIcmpInGroupMembBadQueries); 20055 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 20056 o2->ipv6IfIcmpInGroupMembBadReports); 20057 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 20058 o2->ipv6IfIcmpInGroupMembOurReports); 20059 } 20060 20061 /* 20062 * Called before the options are updated to check if this packet will 20063 * be source routed from here. 20064 * This routine assumes that the options are well formed i.e. that they 20065 * have already been checked. 20066 */ 20067 static boolean_t 20068 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 20069 { 20070 ipoptp_t opts; 20071 uchar_t *opt; 20072 uint8_t optval; 20073 uint8_t optlen; 20074 ipaddr_t dst; 20075 ire_t *ire; 20076 20077 if (IS_SIMPLE_IPH(ipha)) { 20078 ip2dbg(("not source routed\n")); 20079 return (B_FALSE); 20080 } 20081 dst = ipha->ipha_dst; 20082 for (optval = ipoptp_first(&opts, ipha); 20083 optval != IPOPT_EOL; 20084 optval = ipoptp_next(&opts)) { 20085 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20086 opt = opts.ipoptp_cur; 20087 optlen = opts.ipoptp_len; 20088 ip2dbg(("ip_source_routed: opt %d, len %d\n", 20089 optval, optlen)); 20090 switch (optval) { 20091 uint32_t off; 20092 case IPOPT_SSRR: 20093 case IPOPT_LSRR: 20094 /* 20095 * If dst is one of our addresses and there are some 20096 * entries left in the source route return (true). 20097 */ 20098 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 20099 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 20100 if (ire == NULL) { 20101 ip2dbg(("ip_source_routed: not next" 20102 " source route 0x%x\n", 20103 ntohl(dst))); 20104 return (B_FALSE); 20105 } 20106 ire_refrele(ire); 20107 off = opt[IPOPT_OFFSET]; 20108 off--; 20109 if (optlen < IP_ADDR_LEN || 20110 off > optlen - IP_ADDR_LEN) { 20111 /* End of source route */ 20112 ip1dbg(("ip_source_routed: end of SR\n")); 20113 return (B_FALSE); 20114 } 20115 return (B_TRUE); 20116 } 20117 } 20118 ip2dbg(("not source routed\n")); 20119 return (B_FALSE); 20120 } 20121 20122 /* 20123 * Check if the packet contains any source route. 20124 */ 20125 static boolean_t 20126 ip_source_route_included(ipha_t *ipha) 20127 { 20128 ipoptp_t opts; 20129 uint8_t optval; 20130 20131 if (IS_SIMPLE_IPH(ipha)) 20132 return (B_FALSE); 20133 for (optval = ipoptp_first(&opts, ipha); 20134 optval != IPOPT_EOL; 20135 optval = ipoptp_next(&opts)) { 20136 switch (optval) { 20137 case IPOPT_SSRR: 20138 case IPOPT_LSRR: 20139 return (B_TRUE); 20140 } 20141 } 20142 return (B_FALSE); 20143 } 20144 20145 /* 20146 * Called when the IRE expiration timer fires. 20147 */ 20148 void 20149 ip_trash_timer_expire(void *args) 20150 { 20151 int flush_flag = 0; 20152 ire_expire_arg_t iea; 20153 ip_stack_t *ipst = (ip_stack_t *)args; 20154 20155 iea.iea_ipst = ipst; /* No netstack_hold */ 20156 20157 /* 20158 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20159 * This lock makes sure that a new invocation of this function 20160 * that occurs due to an almost immediate timer firing will not 20161 * progress beyond this point until the current invocation is done 20162 */ 20163 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20164 ipst->ips_ip_ire_expire_id = 0; 20165 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20166 20167 /* Periodic timer */ 20168 if (ipst->ips_ip_ire_arp_time_elapsed >= 20169 ipst->ips_ip_ire_arp_interval) { 20170 /* 20171 * Remove all IRE_CACHE entries since they might 20172 * contain arp information. 20173 */ 20174 flush_flag |= FLUSH_ARP_TIME; 20175 ipst->ips_ip_ire_arp_time_elapsed = 0; 20176 IP_STAT(ipst, ip_ire_arp_timer_expired); 20177 } 20178 if (ipst->ips_ip_ire_rd_time_elapsed >= 20179 ipst->ips_ip_ire_redir_interval) { 20180 /* Remove all redirects */ 20181 flush_flag |= FLUSH_REDIRECT_TIME; 20182 ipst->ips_ip_ire_rd_time_elapsed = 0; 20183 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20184 } 20185 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20186 ipst->ips_ip_ire_pathmtu_interval) { 20187 /* Increase path mtu */ 20188 flush_flag |= FLUSH_MTU_TIME; 20189 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20190 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20191 } 20192 20193 /* 20194 * Optimize for the case when there are no redirects in the 20195 * ftable, that is, no need to walk the ftable in that case. 20196 */ 20197 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20198 iea.iea_flush_flag = flush_flag; 20199 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20200 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20201 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20202 NULL, ALL_ZONES, ipst); 20203 } 20204 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20205 ipst->ips_ip_redirect_cnt > 0) { 20206 iea.iea_flush_flag = flush_flag; 20207 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20208 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20209 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20210 } 20211 if (flush_flag & FLUSH_MTU_TIME) { 20212 /* 20213 * Walk all IPv6 IRE's and update them 20214 * Note that ARP and redirect timers are not 20215 * needed since NUD handles stale entries. 20216 */ 20217 flush_flag = FLUSH_MTU_TIME; 20218 iea.iea_flush_flag = flush_flag; 20219 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20220 ALL_ZONES, ipst); 20221 } 20222 20223 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20224 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20225 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20226 20227 /* 20228 * Hold the lock to serialize timeout calls and prevent 20229 * stale values in ip_ire_expire_id. Otherwise it is possible 20230 * for the timer to fire and a new invocation of this function 20231 * to start before the return value of timeout has been stored 20232 * in ip_ire_expire_id by the current invocation. 20233 */ 20234 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20235 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20236 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20237 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20238 } 20239 20240 /* 20241 * Called by the memory allocator subsystem directly, when the system 20242 * is running low on memory. 20243 */ 20244 /* ARGSUSED */ 20245 void 20246 ip_trash_ire_reclaim(void *args) 20247 { 20248 netstack_handle_t nh; 20249 netstack_t *ns; 20250 20251 netstack_next_init(&nh); 20252 while ((ns = netstack_next(&nh)) != NULL) { 20253 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20254 netstack_rele(ns); 20255 } 20256 netstack_next_fini(&nh); 20257 } 20258 20259 static void 20260 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20261 { 20262 ire_cache_count_t icc; 20263 ire_cache_reclaim_t icr; 20264 ncc_cache_count_t ncc; 20265 nce_cache_reclaim_t ncr; 20266 uint_t delete_cnt; 20267 /* 20268 * Memory reclaim call back. 20269 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20270 * Then, with a target of freeing 1/Nth of IRE_CACHE 20271 * entries, determine what fraction to free for 20272 * each category of IRE_CACHE entries giving absolute priority 20273 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20274 * entry will be freed unless all offlink entries are freed). 20275 */ 20276 icc.icc_total = 0; 20277 icc.icc_unused = 0; 20278 icc.icc_offlink = 0; 20279 icc.icc_pmtu = 0; 20280 icc.icc_onlink = 0; 20281 ire_walk(ire_cache_count, (char *)&icc, ipst); 20282 20283 /* 20284 * Free NCEs for IPv6 like the onlink ires. 20285 */ 20286 ncc.ncc_total = 0; 20287 ncc.ncc_host = 0; 20288 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20289 20290 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20291 icc.icc_pmtu + icc.icc_onlink); 20292 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20293 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20294 if (delete_cnt == 0) 20295 return; 20296 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20297 /* Always delete all unused offlink entries */ 20298 icr.icr_ipst = ipst; 20299 icr.icr_unused = 1; 20300 if (delete_cnt <= icc.icc_unused) { 20301 /* 20302 * Only need to free unused entries. In other words, 20303 * there are enough unused entries to free to meet our 20304 * target number of freed ire cache entries. 20305 */ 20306 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20307 ncr.ncr_host = 0; 20308 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20309 /* 20310 * Only need to free unused entries, plus a fraction of offlink 20311 * entries. It follows from the first if statement that 20312 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20313 */ 20314 delete_cnt -= icc.icc_unused; 20315 /* Round up # deleted by truncating fraction */ 20316 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20317 icr.icr_pmtu = icr.icr_onlink = 0; 20318 ncr.ncr_host = 0; 20319 } else if (delete_cnt <= 20320 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20321 /* 20322 * Free all unused and offlink entries, plus a fraction of 20323 * pmtu entries. It follows from the previous if statement 20324 * that icc_pmtu is non-zero, and that 20325 * delete_cnt != icc_unused + icc_offlink. 20326 */ 20327 icr.icr_offlink = 1; 20328 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20329 /* Round up # deleted by truncating fraction */ 20330 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20331 icr.icr_onlink = 0; 20332 ncr.ncr_host = 0; 20333 } else { 20334 /* 20335 * Free all unused, offlink, and pmtu entries, plus a fraction 20336 * of onlink entries. If we're here, then we know that 20337 * icc_onlink is non-zero, and that 20338 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20339 */ 20340 icr.icr_offlink = icr.icr_pmtu = 1; 20341 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20342 icc.icc_pmtu; 20343 /* Round up # deleted by truncating fraction */ 20344 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20345 /* Using the same delete fraction as for onlink IREs */ 20346 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20347 } 20348 #ifdef DEBUG 20349 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20350 "fractions %d/%d/%d/%d\n", 20351 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20352 icc.icc_unused, icc.icc_offlink, 20353 icc.icc_pmtu, icc.icc_onlink, 20354 icr.icr_unused, icr.icr_offlink, 20355 icr.icr_pmtu, icr.icr_onlink)); 20356 #endif 20357 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20358 if (ncr.ncr_host != 0) 20359 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20360 (uchar_t *)&ncr, ipst); 20361 #ifdef DEBUG 20362 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20363 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20364 ire_walk(ire_cache_count, (char *)&icc, ipst); 20365 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20366 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20367 icc.icc_pmtu, icc.icc_onlink)); 20368 #endif 20369 } 20370 20371 /* 20372 * ip_unbind is called when a copy of an unbind request is received from the 20373 * upper level protocol. We remove this conn from any fanout hash list it is 20374 * on, and zero out the bind information. No reply is expected up above. 20375 */ 20376 mblk_t * 20377 ip_unbind(queue_t *q, mblk_t *mp) 20378 { 20379 conn_t *connp = Q_TO_CONN(q); 20380 20381 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20382 20383 if (is_system_labeled() && connp->conn_anon_port) { 20384 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20385 connp->conn_mlp_type, connp->conn_ulp, 20386 ntohs(connp->conn_lport), B_FALSE); 20387 connp->conn_anon_port = 0; 20388 } 20389 connp->conn_mlp_type = mlptSingle; 20390 20391 ipcl_hash_remove(connp); 20392 20393 ASSERT(mp->b_cont == NULL); 20394 /* 20395 * Convert mp into a T_OK_ACK 20396 */ 20397 mp = mi_tpi_ok_ack_alloc(mp); 20398 20399 /* 20400 * should not happen in practice... T_OK_ACK is smaller than the 20401 * original message. 20402 */ 20403 if (mp == NULL) 20404 return (NULL); 20405 20406 return (mp); 20407 } 20408 20409 /* 20410 * Write side put procedure. Outbound data, IOCTLs, responses from 20411 * resolvers, etc, come down through here. 20412 * 20413 * arg2 is always a queue_t *. 20414 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20415 * the zoneid. 20416 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20417 */ 20418 void 20419 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20420 { 20421 ip_output_options(arg, mp, arg2, caller, &zero_info); 20422 } 20423 20424 void 20425 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20426 ip_opt_info_t *infop) 20427 { 20428 conn_t *connp = NULL; 20429 queue_t *q = (queue_t *)arg2; 20430 ipha_t *ipha; 20431 #define rptr ((uchar_t *)ipha) 20432 ire_t *ire = NULL; 20433 ire_t *sctp_ire = NULL; 20434 uint32_t v_hlen_tos_len; 20435 ipaddr_t dst; 20436 mblk_t *first_mp = NULL; 20437 boolean_t mctl_present; 20438 ipsec_out_t *io; 20439 int match_flags; 20440 ill_t *attach_ill = NULL; 20441 /* Bind to IPIF_NOFAILOVER ill etc. */ 20442 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20443 ipif_t *dst_ipif; 20444 boolean_t multirt_need_resolve = B_FALSE; 20445 mblk_t *copy_mp = NULL; 20446 int err; 20447 zoneid_t zoneid; 20448 boolean_t need_decref = B_FALSE; 20449 boolean_t ignore_dontroute = B_FALSE; 20450 boolean_t ignore_nexthop = B_FALSE; 20451 boolean_t ip_nexthop = B_FALSE; 20452 ipaddr_t nexthop_addr; 20453 ip_stack_t *ipst; 20454 20455 #ifdef _BIG_ENDIAN 20456 #define V_HLEN (v_hlen_tos_len >> 24) 20457 #else 20458 #define V_HLEN (v_hlen_tos_len & 0xFF) 20459 #endif 20460 20461 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20462 "ip_wput_start: q %p", q); 20463 20464 /* 20465 * ip_wput fast path 20466 */ 20467 20468 /* is packet from ARP ? */ 20469 if (q->q_next != NULL) { 20470 zoneid = (zoneid_t)(uintptr_t)arg; 20471 goto qnext; 20472 } 20473 20474 connp = (conn_t *)arg; 20475 ASSERT(connp != NULL); 20476 zoneid = connp->conn_zoneid; 20477 ipst = connp->conn_netstack->netstack_ip; 20478 20479 /* is queue flow controlled? */ 20480 if ((q->q_first != NULL || connp->conn_draining) && 20481 (caller == IP_WPUT)) { 20482 ASSERT(!need_decref); 20483 (void) putq(q, mp); 20484 return; 20485 } 20486 20487 /* Multidata transmit? */ 20488 if (DB_TYPE(mp) == M_MULTIDATA) { 20489 /* 20490 * We should never get here, since all Multidata messages 20491 * originating from tcp should have been directed over to 20492 * tcp_multisend() in the first place. 20493 */ 20494 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20495 freemsg(mp); 20496 return; 20497 } else if (DB_TYPE(mp) != M_DATA) 20498 goto notdata; 20499 20500 if (mp->b_flag & MSGHASREF) { 20501 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20502 mp->b_flag &= ~MSGHASREF; 20503 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20504 need_decref = B_TRUE; 20505 } 20506 ipha = (ipha_t *)mp->b_rptr; 20507 20508 /* is IP header non-aligned or mblk smaller than basic IP header */ 20509 #ifndef SAFETY_BEFORE_SPEED 20510 if (!OK_32PTR(rptr) || 20511 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20512 goto hdrtoosmall; 20513 #endif 20514 20515 ASSERT(OK_32PTR(ipha)); 20516 20517 /* 20518 * This function assumes that mp points to an IPv4 packet. If it's the 20519 * wrong version, we'll catch it again in ip_output_v6. 20520 * 20521 * Note that this is *only* locally-generated output here, and never 20522 * forwarded data, and that we need to deal only with transports that 20523 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20524 * label.) 20525 */ 20526 if (is_system_labeled() && 20527 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20528 !connp->conn_ulp_labeled) { 20529 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20530 connp->conn_mac_exempt, ipst); 20531 ipha = (ipha_t *)mp->b_rptr; 20532 if (err != 0) { 20533 first_mp = mp; 20534 if (err == EINVAL) 20535 goto icmp_parameter_problem; 20536 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20537 goto discard_pkt; 20538 } 20539 } 20540 20541 ASSERT(infop != NULL); 20542 20543 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20544 /* 20545 * IP_PKTINFO ancillary option is present. 20546 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20547 * allows using address of any zone as the source address. 20548 */ 20549 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20550 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20551 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20552 if (ire == NULL) 20553 goto drop_pkt; 20554 ire_refrele(ire); 20555 ire = NULL; 20556 } 20557 20558 /* 20559 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20560 * passed in IP_PKTINFO. 20561 */ 20562 if (infop->ip_opt_ill_index != 0 && 20563 connp->conn_outgoing_ill == NULL && 20564 connp->conn_nofailover_ill == NULL) { 20565 20566 xmit_ill = ill_lookup_on_ifindex( 20567 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20568 ipst); 20569 20570 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20571 goto drop_pkt; 20572 /* 20573 * check that there is an ipif belonging 20574 * to our zone. IPCL_ZONEID is not used because 20575 * IP_ALLZONES option is valid only when the ill is 20576 * accessible from all zones i.e has a valid ipif in 20577 * all zones. 20578 */ 20579 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20580 goto drop_pkt; 20581 } 20582 } 20583 20584 /* 20585 * If there is a policy, try to attach an ipsec_out in 20586 * the front. At the end, first_mp either points to a 20587 * M_DATA message or IPSEC_OUT message linked to a 20588 * M_DATA message. We have to do it now as we might 20589 * lose the "conn" if we go through ip_newroute. 20590 */ 20591 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20592 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20593 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20594 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20595 if (need_decref) 20596 CONN_DEC_REF(connp); 20597 return; 20598 } else { 20599 ASSERT(mp->b_datap->db_type == M_CTL); 20600 first_mp = mp; 20601 mp = mp->b_cont; 20602 mctl_present = B_TRUE; 20603 } 20604 } else { 20605 first_mp = mp; 20606 mctl_present = B_FALSE; 20607 } 20608 20609 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20610 20611 /* is wrong version or IP options present */ 20612 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20613 goto version_hdrlen_check; 20614 dst = ipha->ipha_dst; 20615 20616 if (connp->conn_nofailover_ill != NULL) { 20617 attach_ill = conn_get_held_ill(connp, 20618 &connp->conn_nofailover_ill, &err); 20619 if (err == ILL_LOOKUP_FAILED) { 20620 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20621 if (need_decref) 20622 CONN_DEC_REF(connp); 20623 freemsg(first_mp); 20624 return; 20625 } 20626 } 20627 20628 /* If IP_BOUND_IF has been set, use that ill. */ 20629 if (connp->conn_outgoing_ill != NULL) { 20630 xmit_ill = conn_get_held_ill(connp, 20631 &connp->conn_outgoing_ill, &err); 20632 if (err == ILL_LOOKUP_FAILED) 20633 goto drop_pkt; 20634 20635 goto send_from_ill; 20636 } 20637 20638 /* is packet multicast? */ 20639 if (CLASSD(dst)) 20640 goto multicast; 20641 20642 /* 20643 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20644 * takes precedence over conn_dontroute and conn_nexthop_set 20645 */ 20646 if (xmit_ill != NULL) 20647 goto send_from_ill; 20648 20649 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20650 /* 20651 * If the destination is a broadcast, local, or loopback 20652 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20653 * standard path. 20654 */ 20655 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20656 if ((ire == NULL) || (ire->ire_type & 20657 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20658 if (ire != NULL) { 20659 ire_refrele(ire); 20660 /* No more access to ire */ 20661 ire = NULL; 20662 } 20663 /* 20664 * bypass routing checks and go directly to interface. 20665 */ 20666 if (connp->conn_dontroute) 20667 goto dontroute; 20668 20669 ASSERT(connp->conn_nexthop_set); 20670 ip_nexthop = B_TRUE; 20671 nexthop_addr = connp->conn_nexthop_v4; 20672 goto send_from_ill; 20673 } 20674 20675 /* Must be a broadcast, a loopback or a local ire */ 20676 ire_refrele(ire); 20677 /* No more access to ire */ 20678 ire = NULL; 20679 } 20680 20681 if (attach_ill != NULL) 20682 goto send_from_ill; 20683 20684 /* 20685 * We cache IRE_CACHEs to avoid lookups. We don't do 20686 * this for the tcp global queue and listen end point 20687 * as it does not really have a real destination to 20688 * talk to. This is also true for SCTP. 20689 */ 20690 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20691 !connp->conn_fully_bound) { 20692 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20693 if (ire == NULL) 20694 goto noirefound; 20695 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20696 "ip_wput_end: q %p (%S)", q, "end"); 20697 20698 /* 20699 * Check if the ire has the RTF_MULTIRT flag, inherited 20700 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20701 */ 20702 if (ire->ire_flags & RTF_MULTIRT) { 20703 20704 /* 20705 * Force the TTL of multirouted packets if required. 20706 * The TTL of such packets is bounded by the 20707 * ip_multirt_ttl ndd variable. 20708 */ 20709 if ((ipst->ips_ip_multirt_ttl > 0) && 20710 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20711 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20712 "(was %d), dst 0x%08x\n", 20713 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20714 ntohl(ire->ire_addr))); 20715 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20716 } 20717 /* 20718 * We look at this point if there are pending 20719 * unresolved routes. ire_multirt_resolvable() 20720 * checks in O(n) that all IRE_OFFSUBNET ire 20721 * entries for the packet's destination and 20722 * flagged RTF_MULTIRT are currently resolved. 20723 * If some remain unresolved, we make a copy 20724 * of the current message. It will be used 20725 * to initiate additional route resolutions. 20726 */ 20727 multirt_need_resolve = 20728 ire_multirt_need_resolve(ire->ire_addr, 20729 MBLK_GETLABEL(first_mp), ipst); 20730 ip2dbg(("ip_wput[TCP]: ire %p, " 20731 "multirt_need_resolve %d, first_mp %p\n", 20732 (void *)ire, multirt_need_resolve, 20733 (void *)first_mp)); 20734 if (multirt_need_resolve) { 20735 copy_mp = copymsg(first_mp); 20736 if (copy_mp != NULL) { 20737 MULTIRT_DEBUG_TAG(copy_mp); 20738 } 20739 } 20740 } 20741 20742 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20743 20744 /* 20745 * Try to resolve another multiroute if 20746 * ire_multirt_need_resolve() deemed it necessary. 20747 */ 20748 if (copy_mp != NULL) 20749 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20750 if (need_decref) 20751 CONN_DEC_REF(connp); 20752 return; 20753 } 20754 20755 /* 20756 * Access to conn_ire_cache. (protected by conn_lock) 20757 * 20758 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20759 * the ire bucket lock here to check for CONDEMNED as it is okay to 20760 * send a packet or two with the IRE_CACHE that is going away. 20761 * Access to the ire requires an ire refhold on the ire prior to 20762 * its use since an interface unplumb thread may delete the cached 20763 * ire and release the refhold at any time. 20764 * 20765 * Caching an ire in the conn_ire_cache 20766 * 20767 * o Caching an ire pointer in the conn requires a strict check for 20768 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20769 * ires before cleaning up the conns. So the caching of an ire pointer 20770 * in the conn is done after making sure under the bucket lock that the 20771 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20772 * caching an ire after the unplumb thread has cleaned up the conn. 20773 * If the conn does not send a packet subsequently the unplumb thread 20774 * will be hanging waiting for the ire count to drop to zero. 20775 * 20776 * o We also need to atomically test for a null conn_ire_cache and 20777 * set the conn_ire_cache under the the protection of the conn_lock 20778 * to avoid races among concurrent threads trying to simultaneously 20779 * cache an ire in the conn_ire_cache. 20780 */ 20781 mutex_enter(&connp->conn_lock); 20782 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20783 20784 if (ire != NULL && ire->ire_addr == dst && 20785 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20786 20787 IRE_REFHOLD(ire); 20788 mutex_exit(&connp->conn_lock); 20789 20790 } else { 20791 boolean_t cached = B_FALSE; 20792 connp->conn_ire_cache = NULL; 20793 mutex_exit(&connp->conn_lock); 20794 /* Release the old ire */ 20795 if (ire != NULL && sctp_ire == NULL) 20796 IRE_REFRELE_NOTR(ire); 20797 20798 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20799 if (ire == NULL) 20800 goto noirefound; 20801 IRE_REFHOLD_NOTR(ire); 20802 20803 mutex_enter(&connp->conn_lock); 20804 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20805 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20806 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20807 if (connp->conn_ulp == IPPROTO_TCP) 20808 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20809 connp->conn_ire_cache = ire; 20810 cached = B_TRUE; 20811 } 20812 rw_exit(&ire->ire_bucket->irb_lock); 20813 } 20814 mutex_exit(&connp->conn_lock); 20815 20816 /* 20817 * We can continue to use the ire but since it was 20818 * not cached, we should drop the extra reference. 20819 */ 20820 if (!cached) 20821 IRE_REFRELE_NOTR(ire); 20822 } 20823 20824 20825 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20826 "ip_wput_end: q %p (%S)", q, "end"); 20827 20828 /* 20829 * Check if the ire has the RTF_MULTIRT flag, inherited 20830 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20831 */ 20832 if (ire->ire_flags & RTF_MULTIRT) { 20833 20834 /* 20835 * Force the TTL of multirouted packets if required. 20836 * The TTL of such packets is bounded by the 20837 * ip_multirt_ttl ndd variable. 20838 */ 20839 if ((ipst->ips_ip_multirt_ttl > 0) && 20840 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20841 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20842 "(was %d), dst 0x%08x\n", 20843 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20844 ntohl(ire->ire_addr))); 20845 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20846 } 20847 20848 /* 20849 * At this point, we check to see if there are any pending 20850 * unresolved routes. ire_multirt_resolvable() 20851 * checks in O(n) that all IRE_OFFSUBNET ire 20852 * entries for the packet's destination and 20853 * flagged RTF_MULTIRT are currently resolved. 20854 * If some remain unresolved, we make a copy 20855 * of the current message. It will be used 20856 * to initiate additional route resolutions. 20857 */ 20858 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20859 MBLK_GETLABEL(first_mp), ipst); 20860 ip2dbg(("ip_wput[not TCP]: ire %p, " 20861 "multirt_need_resolve %d, first_mp %p\n", 20862 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20863 if (multirt_need_resolve) { 20864 copy_mp = copymsg(first_mp); 20865 if (copy_mp != NULL) { 20866 MULTIRT_DEBUG_TAG(copy_mp); 20867 } 20868 } 20869 } 20870 20871 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20872 20873 /* 20874 * Try to resolve another multiroute if 20875 * ire_multirt_resolvable() deemed it necessary 20876 */ 20877 if (copy_mp != NULL) 20878 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20879 if (need_decref) 20880 CONN_DEC_REF(connp); 20881 return; 20882 20883 qnext: 20884 /* 20885 * Upper Level Protocols pass down complete IP datagrams 20886 * as M_DATA messages. Everything else is a sideshow. 20887 * 20888 * 1) We could be re-entering ip_wput because of ip_neworute 20889 * in which case we could have a IPSEC_OUT message. We 20890 * need to pass through ip_wput like other datagrams and 20891 * hence cannot branch to ip_wput_nondata. 20892 * 20893 * 2) ARP, AH, ESP, and other clients who are on the module 20894 * instance of IP stream, give us something to deal with. 20895 * We will handle AH and ESP here and rest in ip_wput_nondata. 20896 * 20897 * 3) ICMP replies also could come here. 20898 */ 20899 ipst = ILLQ_TO_IPST(q); 20900 20901 if (DB_TYPE(mp) != M_DATA) { 20902 notdata: 20903 if (DB_TYPE(mp) == M_CTL) { 20904 /* 20905 * M_CTL messages are used by ARP, AH and ESP to 20906 * communicate with IP. We deal with IPSEC_IN and 20907 * IPSEC_OUT here. ip_wput_nondata handles other 20908 * cases. 20909 */ 20910 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20911 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20912 first_mp = mp->b_cont; 20913 first_mp->b_flag &= ~MSGHASREF; 20914 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20915 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20916 CONN_DEC_REF(connp); 20917 connp = NULL; 20918 } 20919 if (ii->ipsec_info_type == IPSEC_IN) { 20920 /* 20921 * Either this message goes back to 20922 * IPsec for further processing or to 20923 * ULP after policy checks. 20924 */ 20925 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20926 return; 20927 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20928 io = (ipsec_out_t *)ii; 20929 if (io->ipsec_out_proc_begin) { 20930 /* 20931 * IPsec processing has already started. 20932 * Complete it. 20933 * IPQoS notes: We don't care what is 20934 * in ipsec_out_ill_index since this 20935 * won't be processed for IPQoS policies 20936 * in ipsec_out_process. 20937 */ 20938 ipsec_out_process(q, mp, NULL, 20939 io->ipsec_out_ill_index); 20940 return; 20941 } else { 20942 connp = (q->q_next != NULL) ? 20943 NULL : Q_TO_CONN(q); 20944 first_mp = mp; 20945 mp = mp->b_cont; 20946 mctl_present = B_TRUE; 20947 } 20948 zoneid = io->ipsec_out_zoneid; 20949 ASSERT(zoneid != ALL_ZONES); 20950 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20951 /* 20952 * It's an IPsec control message requesting 20953 * an SADB update to be sent to the IPsec 20954 * hardware acceleration capable ills. 20955 */ 20956 ipsec_ctl_t *ipsec_ctl = 20957 (ipsec_ctl_t *)mp->b_rptr; 20958 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20959 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20960 mblk_t *cmp = mp->b_cont; 20961 20962 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20963 ASSERT(cmp != NULL); 20964 20965 freeb(mp); 20966 ill_ipsec_capab_send_all(satype, cmp, sa, 20967 ipst->ips_netstack); 20968 return; 20969 } else { 20970 /* 20971 * This must be ARP or special TSOL signaling. 20972 */ 20973 ip_wput_nondata(NULL, q, mp, NULL); 20974 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20975 "ip_wput_end: q %p (%S)", q, "nondata"); 20976 return; 20977 } 20978 } else { 20979 /* 20980 * This must be non-(ARP/AH/ESP) messages. 20981 */ 20982 ASSERT(!need_decref); 20983 ip_wput_nondata(NULL, q, mp, NULL); 20984 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20985 "ip_wput_end: q %p (%S)", q, "nondata"); 20986 return; 20987 } 20988 } else { 20989 first_mp = mp; 20990 mctl_present = B_FALSE; 20991 } 20992 20993 ASSERT(first_mp != NULL); 20994 /* 20995 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20996 * to make sure that this packet goes out on the same interface it 20997 * came in. We handle that here. 20998 */ 20999 if (mctl_present) { 21000 uint_t ifindex; 21001 21002 io = (ipsec_out_t *)first_mp->b_rptr; 21003 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 21004 /* 21005 * We may have lost the conn context if we are 21006 * coming here from ip_newroute(). Copy the 21007 * nexthop information. 21008 */ 21009 if (io->ipsec_out_ip_nexthop) { 21010 ip_nexthop = B_TRUE; 21011 nexthop_addr = io->ipsec_out_nexthop_addr; 21012 21013 ipha = (ipha_t *)mp->b_rptr; 21014 dst = ipha->ipha_dst; 21015 goto send_from_ill; 21016 } else { 21017 ASSERT(io->ipsec_out_ill_index != 0); 21018 ifindex = io->ipsec_out_ill_index; 21019 attach_ill = ill_lookup_on_ifindex(ifindex, 21020 B_FALSE, NULL, NULL, NULL, NULL, ipst); 21021 if (attach_ill == NULL) { 21022 ASSERT(xmit_ill == NULL); 21023 ip1dbg(("ip_output: bad ifindex for " 21024 "(BIND TO IPIF_NOFAILOVER) %d\n", 21025 ifindex)); 21026 freemsg(first_mp); 21027 BUMP_MIB(&ipst->ips_ip_mib, 21028 ipIfStatsOutDiscards); 21029 ASSERT(!need_decref); 21030 return; 21031 } 21032 } 21033 } 21034 } 21035 21036 ASSERT(xmit_ill == NULL); 21037 21038 /* We have a complete IP datagram heading outbound. */ 21039 ipha = (ipha_t *)mp->b_rptr; 21040 21041 #ifndef SPEED_BEFORE_SAFETY 21042 /* 21043 * Make sure we have a full-word aligned message and that at least 21044 * a simple IP header is accessible in the first message. If not, 21045 * try a pullup. For labeled systems we need to always take this 21046 * path as M_CTLs are "notdata" but have trailing data to process. 21047 */ 21048 if (!OK_32PTR(rptr) || 21049 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 21050 hdrtoosmall: 21051 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 21052 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21053 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 21054 if (first_mp == NULL) 21055 first_mp = mp; 21056 goto discard_pkt; 21057 } 21058 21059 /* This function assumes that mp points to an IPv4 packet. */ 21060 if (is_system_labeled() && q->q_next == NULL && 21061 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 21062 !connp->conn_ulp_labeled) { 21063 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 21064 connp->conn_mac_exempt, ipst); 21065 ipha = (ipha_t *)mp->b_rptr; 21066 if (first_mp != NULL) 21067 first_mp->b_cont = mp; 21068 if (err != 0) { 21069 if (first_mp == NULL) 21070 first_mp = mp; 21071 if (err == EINVAL) 21072 goto icmp_parameter_problem; 21073 ip2dbg(("ip_wput: label check failed (%d)\n", 21074 err)); 21075 goto discard_pkt; 21076 } 21077 } 21078 21079 ipha = (ipha_t *)mp->b_rptr; 21080 if (first_mp == NULL) { 21081 ASSERT(attach_ill == NULL && xmit_ill == NULL); 21082 /* 21083 * If we got here because of "goto hdrtoosmall" 21084 * We need to attach a IPSEC_OUT. 21085 */ 21086 if (connp->conn_out_enforce_policy) { 21087 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 21088 NULL, ipha->ipha_protocol, 21089 ipst->ips_netstack)) == NULL)) { 21090 BUMP_MIB(&ipst->ips_ip_mib, 21091 ipIfStatsOutDiscards); 21092 if (need_decref) 21093 CONN_DEC_REF(connp); 21094 return; 21095 } else { 21096 ASSERT(mp->b_datap->db_type == M_CTL); 21097 first_mp = mp; 21098 mp = mp->b_cont; 21099 mctl_present = B_TRUE; 21100 } 21101 } else { 21102 first_mp = mp; 21103 mctl_present = B_FALSE; 21104 } 21105 } 21106 } 21107 #endif 21108 21109 /* Most of the code below is written for speed, not readability */ 21110 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21111 21112 /* 21113 * If ip_newroute() fails, we're going to need a full 21114 * header for the icmp wraparound. 21115 */ 21116 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21117 uint_t v_hlen; 21118 version_hdrlen_check: 21119 ASSERT(first_mp != NULL); 21120 v_hlen = V_HLEN; 21121 /* 21122 * siphon off IPv6 packets coming down from transport 21123 * layer modules here. 21124 * Note: high-order bit carries NUD reachability confirmation 21125 */ 21126 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21127 /* 21128 * FIXME: assume that callers of ip_output* call 21129 * the right version? 21130 */ 21131 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21132 ASSERT(xmit_ill == NULL); 21133 if (attach_ill != NULL) 21134 ill_refrele(attach_ill); 21135 if (need_decref) 21136 mp->b_flag |= MSGHASREF; 21137 (void) ip_output_v6(arg, first_mp, arg2, caller); 21138 return; 21139 } 21140 21141 if ((v_hlen >> 4) != IP_VERSION) { 21142 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21143 "ip_wput_end: q %p (%S)", q, "badvers"); 21144 goto discard_pkt; 21145 } 21146 /* 21147 * Is the header length at least 20 bytes? 21148 * 21149 * Are there enough bytes accessible in the header? If 21150 * not, try a pullup. 21151 */ 21152 v_hlen &= 0xF; 21153 v_hlen <<= 2; 21154 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21155 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21156 "ip_wput_end: q %p (%S)", q, "badlen"); 21157 goto discard_pkt; 21158 } 21159 if (v_hlen > (mp->b_wptr - rptr)) { 21160 if (!pullupmsg(mp, v_hlen)) { 21161 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21162 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21163 goto discard_pkt; 21164 } 21165 ipha = (ipha_t *)mp->b_rptr; 21166 } 21167 /* 21168 * Move first entry from any source route into ipha_dst and 21169 * verify the options 21170 */ 21171 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21172 zoneid, ipst)) { 21173 ASSERT(xmit_ill == NULL); 21174 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21175 if (attach_ill != NULL) 21176 ill_refrele(attach_ill); 21177 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21178 "ip_wput_end: q %p (%S)", q, "badopts"); 21179 if (need_decref) 21180 CONN_DEC_REF(connp); 21181 return; 21182 } 21183 } 21184 dst = ipha->ipha_dst; 21185 21186 /* 21187 * Try to get an IRE_CACHE for the destination address. If we can't, 21188 * we have to run the packet through ip_newroute which will take 21189 * the appropriate action to arrange for an IRE_CACHE, such as querying 21190 * a resolver, or assigning a default gateway, etc. 21191 */ 21192 if (CLASSD(dst)) { 21193 ipif_t *ipif; 21194 uint32_t setsrc = 0; 21195 21196 multicast: 21197 ASSERT(first_mp != NULL); 21198 ip2dbg(("ip_wput: CLASSD\n")); 21199 if (connp == NULL) { 21200 /* 21201 * Use the first good ipif on the ill. 21202 * XXX Should this ever happen? (Appears 21203 * to show up with just ppp and no ethernet due 21204 * to in.rdisc.) 21205 * However, ire_send should be able to 21206 * call ip_wput_ire directly. 21207 * 21208 * XXX Also, this can happen for ICMP and other packets 21209 * with multicast source addresses. Perhaps we should 21210 * fix things so that we drop the packet in question, 21211 * but for now, just run with it. 21212 */ 21213 ill_t *ill = (ill_t *)q->q_ptr; 21214 21215 /* 21216 * Don't honor attach_if for this case. If ill 21217 * is part of the group, ipif could belong to 21218 * any ill and we cannot maintain attach_ill 21219 * and ipif_ill same anymore and the assert 21220 * below would fail. 21221 */ 21222 if (mctl_present && io->ipsec_out_attach_if) { 21223 io->ipsec_out_ill_index = 0; 21224 io->ipsec_out_attach_if = B_FALSE; 21225 ASSERT(attach_ill != NULL); 21226 ill_refrele(attach_ill); 21227 attach_ill = NULL; 21228 } 21229 21230 ASSERT(attach_ill == NULL); 21231 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21232 if (ipif == NULL) { 21233 if (need_decref) 21234 CONN_DEC_REF(connp); 21235 freemsg(first_mp); 21236 return; 21237 } 21238 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21239 ntohl(dst), ill->ill_name)); 21240 } else { 21241 /* 21242 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21243 * and IP_MULTICAST_IF. The block comment above this 21244 * function explains the locking mechanism used here. 21245 */ 21246 if (xmit_ill == NULL) { 21247 xmit_ill = conn_get_held_ill(connp, 21248 &connp->conn_outgoing_ill, &err); 21249 if (err == ILL_LOOKUP_FAILED) { 21250 ip1dbg(("ip_wput: No ill for " 21251 "IP_BOUND_IF\n")); 21252 BUMP_MIB(&ipst->ips_ip_mib, 21253 ipIfStatsOutNoRoutes); 21254 goto drop_pkt; 21255 } 21256 } 21257 21258 if (xmit_ill == NULL) { 21259 ipif = conn_get_held_ipif(connp, 21260 &connp->conn_multicast_ipif, &err); 21261 if (err == IPIF_LOOKUP_FAILED) { 21262 ip1dbg(("ip_wput: No ipif for " 21263 "multicast\n")); 21264 BUMP_MIB(&ipst->ips_ip_mib, 21265 ipIfStatsOutNoRoutes); 21266 goto drop_pkt; 21267 } 21268 } 21269 if (xmit_ill != NULL) { 21270 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21271 if (ipif == NULL) { 21272 ip1dbg(("ip_wput: No ipif for " 21273 "xmit_ill\n")); 21274 BUMP_MIB(&ipst->ips_ip_mib, 21275 ipIfStatsOutNoRoutes); 21276 goto drop_pkt; 21277 } 21278 } else if (ipif == NULL || ipif->ipif_isv6) { 21279 /* 21280 * We must do this ipif determination here 21281 * else we could pass through ip_newroute 21282 * and come back here without the conn context. 21283 * 21284 * Note: we do late binding i.e. we bind to 21285 * the interface when the first packet is sent. 21286 * For performance reasons we do not rebind on 21287 * each packet but keep the binding until the 21288 * next IP_MULTICAST_IF option. 21289 * 21290 * conn_multicast_{ipif,ill} are shared between 21291 * IPv4 and IPv6 and AF_INET6 sockets can 21292 * send both IPv4 and IPv6 packets. Hence 21293 * we have to check that "isv6" matches above. 21294 */ 21295 if (ipif != NULL) 21296 ipif_refrele(ipif); 21297 ipif = ipif_lookup_group(dst, zoneid, ipst); 21298 if (ipif == NULL) { 21299 ip1dbg(("ip_wput: No ipif for " 21300 "multicast\n")); 21301 BUMP_MIB(&ipst->ips_ip_mib, 21302 ipIfStatsOutNoRoutes); 21303 goto drop_pkt; 21304 } 21305 err = conn_set_held_ipif(connp, 21306 &connp->conn_multicast_ipif, ipif); 21307 if (err == IPIF_LOOKUP_FAILED) { 21308 ipif_refrele(ipif); 21309 ip1dbg(("ip_wput: No ipif for " 21310 "multicast\n")); 21311 BUMP_MIB(&ipst->ips_ip_mib, 21312 ipIfStatsOutNoRoutes); 21313 goto drop_pkt; 21314 } 21315 } 21316 } 21317 ASSERT(!ipif->ipif_isv6); 21318 /* 21319 * As we may lose the conn by the time we reach ip_wput_ire, 21320 * we copy conn_multicast_loop and conn_dontroute on to an 21321 * ipsec_out. In case if this datagram goes out secure, 21322 * we need the ill_index also. Copy that also into the 21323 * ipsec_out. 21324 */ 21325 if (mctl_present) { 21326 io = (ipsec_out_t *)first_mp->b_rptr; 21327 ASSERT(first_mp->b_datap->db_type == M_CTL); 21328 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21329 } else { 21330 ASSERT(mp == first_mp); 21331 if ((first_mp = allocb(sizeof (ipsec_info_t), 21332 BPRI_HI)) == NULL) { 21333 ipif_refrele(ipif); 21334 first_mp = mp; 21335 goto discard_pkt; 21336 } 21337 first_mp->b_datap->db_type = M_CTL; 21338 first_mp->b_wptr += sizeof (ipsec_info_t); 21339 /* ipsec_out_secure is B_FALSE now */ 21340 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21341 io = (ipsec_out_t *)first_mp->b_rptr; 21342 io->ipsec_out_type = IPSEC_OUT; 21343 io->ipsec_out_len = sizeof (ipsec_out_t); 21344 io->ipsec_out_use_global_policy = B_TRUE; 21345 io->ipsec_out_ns = ipst->ips_netstack; 21346 first_mp->b_cont = mp; 21347 mctl_present = B_TRUE; 21348 } 21349 if (attach_ill != NULL) { 21350 ASSERT(attach_ill == ipif->ipif_ill); 21351 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21352 21353 /* 21354 * Check if we need an ire that will not be 21355 * looked up by anybody else i.e. HIDDEN. 21356 */ 21357 if (ill_is_probeonly(attach_ill)) { 21358 match_flags |= MATCH_IRE_MARK_HIDDEN; 21359 } 21360 io->ipsec_out_ill_index = 21361 attach_ill->ill_phyint->phyint_ifindex; 21362 io->ipsec_out_attach_if = B_TRUE; 21363 } else { 21364 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21365 io->ipsec_out_ill_index = 21366 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21367 } 21368 if (connp != NULL) { 21369 io->ipsec_out_multicast_loop = 21370 connp->conn_multicast_loop; 21371 io->ipsec_out_dontroute = connp->conn_dontroute; 21372 io->ipsec_out_zoneid = connp->conn_zoneid; 21373 } 21374 /* 21375 * If the application uses IP_MULTICAST_IF with 21376 * different logical addresses of the same ILL, we 21377 * need to make sure that the soruce address of 21378 * the packet matches the logical IP address used 21379 * in the option. We do it by initializing ipha_src 21380 * here. This should keep IPsec also happy as 21381 * when we return from IPsec processing, we don't 21382 * have to worry about getting the right address on 21383 * the packet. Thus it is sufficient to look for 21384 * IRE_CACHE using MATCH_IRE_ILL rathen than 21385 * MATCH_IRE_IPIF. 21386 * 21387 * NOTE : We need to do it for non-secure case also as 21388 * this might go out secure if there is a global policy 21389 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21390 * address, the source should be initialized already and 21391 * hence we won't be initializing here. 21392 * 21393 * As we do not have the ire yet, it is possible that 21394 * we set the source address here and then later discover 21395 * that the ire implies the source address to be assigned 21396 * through the RTF_SETSRC flag. 21397 * In that case, the setsrc variable will remind us 21398 * that overwritting the source address by the one 21399 * of the RTF_SETSRC-flagged ire is allowed. 21400 */ 21401 if (ipha->ipha_src == INADDR_ANY && 21402 (connp == NULL || !connp->conn_unspec_src)) { 21403 ipha->ipha_src = ipif->ipif_src_addr; 21404 setsrc = RTF_SETSRC; 21405 } 21406 /* 21407 * Find an IRE which matches the destination and the outgoing 21408 * queue (i.e. the outgoing interface.) 21409 * For loopback use a unicast IP address for 21410 * the ire lookup. 21411 */ 21412 if (IS_LOOPBACK(ipif->ipif_ill)) 21413 dst = ipif->ipif_lcl_addr; 21414 21415 /* 21416 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21417 * We don't need to lookup ire in ctable as the packet 21418 * needs to be sent to the destination through the specified 21419 * ill irrespective of ires in the cache table. 21420 */ 21421 ire = NULL; 21422 if (xmit_ill == NULL) { 21423 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21424 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21425 } 21426 21427 /* 21428 * refrele attach_ill as its not needed anymore. 21429 */ 21430 if (attach_ill != NULL) { 21431 ill_refrele(attach_ill); 21432 attach_ill = NULL; 21433 } 21434 21435 if (ire == NULL) { 21436 /* 21437 * Multicast loopback and multicast forwarding is 21438 * done in ip_wput_ire. 21439 * 21440 * Mark this packet to make it be delivered to 21441 * ip_wput_ire after the new ire has been 21442 * created. 21443 * 21444 * The call to ip_newroute_ipif takes into account 21445 * the setsrc reminder. In any case, we take care 21446 * of the RTF_MULTIRT flag. 21447 */ 21448 mp->b_prev = mp->b_next = NULL; 21449 if (xmit_ill == NULL || 21450 xmit_ill->ill_ipif_up_count > 0) { 21451 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21452 setsrc | RTF_MULTIRT, zoneid, infop); 21453 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21454 "ip_wput_end: q %p (%S)", q, "noire"); 21455 } else { 21456 freemsg(first_mp); 21457 } 21458 ipif_refrele(ipif); 21459 if (xmit_ill != NULL) 21460 ill_refrele(xmit_ill); 21461 if (need_decref) 21462 CONN_DEC_REF(connp); 21463 return; 21464 } 21465 21466 ipif_refrele(ipif); 21467 ipif = NULL; 21468 ASSERT(xmit_ill == NULL); 21469 21470 /* 21471 * Honor the RTF_SETSRC flag for multicast packets, 21472 * if allowed by the setsrc reminder. 21473 */ 21474 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21475 ipha->ipha_src = ire->ire_src_addr; 21476 } 21477 21478 /* 21479 * Unconditionally force the TTL to 1 for 21480 * multirouted multicast packets: 21481 * multirouted multicast should not cross 21482 * multicast routers. 21483 */ 21484 if (ire->ire_flags & RTF_MULTIRT) { 21485 if (ipha->ipha_ttl > 1) { 21486 ip2dbg(("ip_wput: forcing multicast " 21487 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21488 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21489 ipha->ipha_ttl = 1; 21490 } 21491 } 21492 } else { 21493 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21494 if ((ire != NULL) && (ire->ire_type & 21495 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21496 ignore_dontroute = B_TRUE; 21497 ignore_nexthop = B_TRUE; 21498 } 21499 if (ire != NULL) { 21500 ire_refrele(ire); 21501 ire = NULL; 21502 } 21503 /* 21504 * Guard against coming in from arp in which case conn is NULL. 21505 * Also guard against non M_DATA with dontroute set but 21506 * destined to local, loopback or broadcast addresses. 21507 */ 21508 if (connp != NULL && connp->conn_dontroute && 21509 !ignore_dontroute) { 21510 dontroute: 21511 /* 21512 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21513 * routing protocols from seeing false direct 21514 * connectivity. 21515 */ 21516 ipha->ipha_ttl = 1; 21517 21518 /* If suitable ipif not found, drop packet */ 21519 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21520 if (dst_ipif == NULL) { 21521 noroute: 21522 ip1dbg(("ip_wput: no route for dst using" 21523 " SO_DONTROUTE\n")); 21524 BUMP_MIB(&ipst->ips_ip_mib, 21525 ipIfStatsOutNoRoutes); 21526 mp->b_prev = mp->b_next = NULL; 21527 if (first_mp == NULL) 21528 first_mp = mp; 21529 goto drop_pkt; 21530 } else { 21531 /* 21532 * If suitable ipif has been found, set 21533 * xmit_ill to the corresponding 21534 * ipif_ill because we'll be using the 21535 * send_from_ill logic below. 21536 */ 21537 ASSERT(xmit_ill == NULL); 21538 xmit_ill = dst_ipif->ipif_ill; 21539 mutex_enter(&xmit_ill->ill_lock); 21540 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21541 mutex_exit(&xmit_ill->ill_lock); 21542 xmit_ill = NULL; 21543 ipif_refrele(dst_ipif); 21544 goto noroute; 21545 } 21546 ill_refhold_locked(xmit_ill); 21547 mutex_exit(&xmit_ill->ill_lock); 21548 ipif_refrele(dst_ipif); 21549 } 21550 } 21551 /* 21552 * If we are bound to IPIF_NOFAILOVER address, look for 21553 * an IRE_CACHE matching the ill. 21554 */ 21555 send_from_ill: 21556 if (attach_ill != NULL) { 21557 ipif_t *attach_ipif; 21558 21559 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21560 21561 /* 21562 * Check if we need an ire that will not be 21563 * looked up by anybody else i.e. HIDDEN. 21564 */ 21565 if (ill_is_probeonly(attach_ill)) { 21566 match_flags |= MATCH_IRE_MARK_HIDDEN; 21567 } 21568 21569 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21570 if (attach_ipif == NULL) { 21571 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21572 goto discard_pkt; 21573 } 21574 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21575 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21576 ipif_refrele(attach_ipif); 21577 } else if (xmit_ill != NULL) { 21578 ipif_t *ipif; 21579 21580 /* 21581 * Mark this packet as originated locally 21582 */ 21583 mp->b_prev = mp->b_next = NULL; 21584 21585 /* 21586 * Could be SO_DONTROUTE case also. 21587 * Verify that at least one ipif is up on the ill. 21588 */ 21589 if (xmit_ill->ill_ipif_up_count == 0) { 21590 ip1dbg(("ip_output: xmit_ill %s is down\n", 21591 xmit_ill->ill_name)); 21592 goto drop_pkt; 21593 } 21594 21595 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21596 if (ipif == NULL) { 21597 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21598 xmit_ill->ill_name)); 21599 goto drop_pkt; 21600 } 21601 21602 /* 21603 * Look for a ire that is part of the group, 21604 * if found use it else call ip_newroute_ipif. 21605 * IPCL_ZONEID is not used for matching because 21606 * IP_ALLZONES option is valid only when the 21607 * ill is accessible from all zones i.e has a 21608 * valid ipif in all zones. 21609 */ 21610 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21611 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21612 MBLK_GETLABEL(mp), match_flags, ipst); 21613 /* 21614 * If an ire exists use it or else create 21615 * an ire but don't add it to the cache. 21616 * Adding an ire may cause issues with 21617 * asymmetric routing. 21618 * In case of multiroute always act as if 21619 * ire does not exist. 21620 */ 21621 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21622 if (ire != NULL) 21623 ire_refrele(ire); 21624 ip_newroute_ipif(q, first_mp, ipif, 21625 dst, connp, 0, zoneid, infop); 21626 ipif_refrele(ipif); 21627 ip1dbg(("ip_output: xmit_ill via %s\n", 21628 xmit_ill->ill_name)); 21629 ill_refrele(xmit_ill); 21630 if (need_decref) 21631 CONN_DEC_REF(connp); 21632 return; 21633 } 21634 ipif_refrele(ipif); 21635 } else if (ip_nexthop || (connp != NULL && 21636 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21637 if (!ip_nexthop) { 21638 ip_nexthop = B_TRUE; 21639 nexthop_addr = connp->conn_nexthop_v4; 21640 } 21641 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21642 MATCH_IRE_GW; 21643 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21644 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21645 } else { 21646 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21647 ipst); 21648 } 21649 if (!ire) { 21650 /* 21651 * Make sure we don't load spread if this 21652 * is IPIF_NOFAILOVER case. 21653 */ 21654 if ((attach_ill != NULL) || 21655 (ip_nexthop && !ignore_nexthop)) { 21656 if (mctl_present) { 21657 io = (ipsec_out_t *)first_mp->b_rptr; 21658 ASSERT(first_mp->b_datap->db_type == 21659 M_CTL); 21660 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21661 } else { 21662 ASSERT(mp == first_mp); 21663 first_mp = allocb( 21664 sizeof (ipsec_info_t), BPRI_HI); 21665 if (first_mp == NULL) { 21666 first_mp = mp; 21667 goto discard_pkt; 21668 } 21669 first_mp->b_datap->db_type = M_CTL; 21670 first_mp->b_wptr += 21671 sizeof (ipsec_info_t); 21672 /* ipsec_out_secure is B_FALSE now */ 21673 bzero(first_mp->b_rptr, 21674 sizeof (ipsec_info_t)); 21675 io = (ipsec_out_t *)first_mp->b_rptr; 21676 io->ipsec_out_type = IPSEC_OUT; 21677 io->ipsec_out_len = 21678 sizeof (ipsec_out_t); 21679 io->ipsec_out_use_global_policy = 21680 B_TRUE; 21681 io->ipsec_out_ns = ipst->ips_netstack; 21682 first_mp->b_cont = mp; 21683 mctl_present = B_TRUE; 21684 } 21685 if (attach_ill != NULL) { 21686 io->ipsec_out_ill_index = attach_ill-> 21687 ill_phyint->phyint_ifindex; 21688 io->ipsec_out_attach_if = B_TRUE; 21689 } else { 21690 io->ipsec_out_ip_nexthop = ip_nexthop; 21691 io->ipsec_out_nexthop_addr = 21692 nexthop_addr; 21693 } 21694 } 21695 noirefound: 21696 /* 21697 * Mark this packet as having originated on 21698 * this machine. This will be noted in 21699 * ire_add_then_send, which needs to know 21700 * whether to run it back through ip_wput or 21701 * ip_rput following successful resolution. 21702 */ 21703 mp->b_prev = NULL; 21704 mp->b_next = NULL; 21705 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21706 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21707 "ip_wput_end: q %p (%S)", q, "newroute"); 21708 if (attach_ill != NULL) 21709 ill_refrele(attach_ill); 21710 if (xmit_ill != NULL) 21711 ill_refrele(xmit_ill); 21712 if (need_decref) 21713 CONN_DEC_REF(connp); 21714 return; 21715 } 21716 } 21717 21718 /* We now know where we are going with it. */ 21719 21720 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21721 "ip_wput_end: q %p (%S)", q, "end"); 21722 21723 /* 21724 * Check if the ire has the RTF_MULTIRT flag, inherited 21725 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21726 */ 21727 if (ire->ire_flags & RTF_MULTIRT) { 21728 /* 21729 * Force the TTL of multirouted packets if required. 21730 * The TTL of such packets is bounded by the 21731 * ip_multirt_ttl ndd variable. 21732 */ 21733 if ((ipst->ips_ip_multirt_ttl > 0) && 21734 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21735 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21736 "(was %d), dst 0x%08x\n", 21737 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21738 ntohl(ire->ire_addr))); 21739 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21740 } 21741 /* 21742 * At this point, we check to see if there are any pending 21743 * unresolved routes. ire_multirt_resolvable() 21744 * checks in O(n) that all IRE_OFFSUBNET ire 21745 * entries for the packet's destination and 21746 * flagged RTF_MULTIRT are currently resolved. 21747 * If some remain unresolved, we make a copy 21748 * of the current message. It will be used 21749 * to initiate additional route resolutions. 21750 */ 21751 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21752 MBLK_GETLABEL(first_mp), ipst); 21753 ip2dbg(("ip_wput[noirefound]: ire %p, " 21754 "multirt_need_resolve %d, first_mp %p\n", 21755 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21756 if (multirt_need_resolve) { 21757 copy_mp = copymsg(first_mp); 21758 if (copy_mp != NULL) { 21759 MULTIRT_DEBUG_TAG(copy_mp); 21760 } 21761 } 21762 } 21763 21764 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21765 /* 21766 * Try to resolve another multiroute if 21767 * ire_multirt_resolvable() deemed it necessary. 21768 * At this point, we need to distinguish 21769 * multicasts from other packets. For multicasts, 21770 * we call ip_newroute_ipif() and request that both 21771 * multirouting and setsrc flags are checked. 21772 */ 21773 if (copy_mp != NULL) { 21774 if (CLASSD(dst)) { 21775 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21776 if (ipif) { 21777 ASSERT(infop->ip_opt_ill_index == 0); 21778 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21779 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21780 ipif_refrele(ipif); 21781 } else { 21782 MULTIRT_DEBUG_UNTAG(copy_mp); 21783 freemsg(copy_mp); 21784 copy_mp = NULL; 21785 } 21786 } else { 21787 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21788 } 21789 } 21790 if (attach_ill != NULL) 21791 ill_refrele(attach_ill); 21792 if (xmit_ill != NULL) 21793 ill_refrele(xmit_ill); 21794 if (need_decref) 21795 CONN_DEC_REF(connp); 21796 return; 21797 21798 icmp_parameter_problem: 21799 /* could not have originated externally */ 21800 ASSERT(mp->b_prev == NULL); 21801 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21802 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21803 /* it's the IP header length that's in trouble */ 21804 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21805 first_mp = NULL; 21806 } 21807 21808 discard_pkt: 21809 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21810 drop_pkt: 21811 ip1dbg(("ip_wput: dropped packet\n")); 21812 if (ire != NULL) 21813 ire_refrele(ire); 21814 if (need_decref) 21815 CONN_DEC_REF(connp); 21816 freemsg(first_mp); 21817 if (attach_ill != NULL) 21818 ill_refrele(attach_ill); 21819 if (xmit_ill != NULL) 21820 ill_refrele(xmit_ill); 21821 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21822 "ip_wput_end: q %p (%S)", q, "droppkt"); 21823 } 21824 21825 /* 21826 * If this is a conn_t queue, then we pass in the conn. This includes the 21827 * zoneid. 21828 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21829 * in which case we use the global zoneid since those are all part of 21830 * the global zone. 21831 */ 21832 void 21833 ip_wput(queue_t *q, mblk_t *mp) 21834 { 21835 if (CONN_Q(q)) 21836 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21837 else 21838 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21839 } 21840 21841 /* 21842 * 21843 * The following rules must be observed when accessing any ipif or ill 21844 * that has been cached in the conn. Typically conn_nofailover_ill, 21845 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21846 * 21847 * Access: The ipif or ill pointed to from the conn can be accessed under 21848 * the protection of the conn_lock or after it has been refheld under the 21849 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21850 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21851 * The reason for this is that a concurrent unplumb could actually be 21852 * cleaning up these cached pointers by walking the conns and might have 21853 * finished cleaning up the conn in question. The macros check that an 21854 * unplumb has not yet started on the ipif or ill. 21855 * 21856 * Caching: An ipif or ill pointer may be cached in the conn only after 21857 * making sure that an unplumb has not started. So the caching is done 21858 * while holding both the conn_lock and the ill_lock and after using the 21859 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21860 * flag before starting the cleanup of conns. 21861 * 21862 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21863 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21864 * or a reference to the ipif or a reference to an ire that references the 21865 * ipif. An ipif does not change its ill except for failover/failback. Since 21866 * failover/failback happens only after bringing down the ipif and making sure 21867 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21868 * the above holds. 21869 */ 21870 ipif_t * 21871 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21872 { 21873 ipif_t *ipif; 21874 ill_t *ill; 21875 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21876 21877 *err = 0; 21878 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21879 mutex_enter(&connp->conn_lock); 21880 ipif = *ipifp; 21881 if (ipif != NULL) { 21882 ill = ipif->ipif_ill; 21883 mutex_enter(&ill->ill_lock); 21884 if (IPIF_CAN_LOOKUP(ipif)) { 21885 ipif_refhold_locked(ipif); 21886 mutex_exit(&ill->ill_lock); 21887 mutex_exit(&connp->conn_lock); 21888 rw_exit(&ipst->ips_ill_g_lock); 21889 return (ipif); 21890 } else { 21891 *err = IPIF_LOOKUP_FAILED; 21892 } 21893 mutex_exit(&ill->ill_lock); 21894 } 21895 mutex_exit(&connp->conn_lock); 21896 rw_exit(&ipst->ips_ill_g_lock); 21897 return (NULL); 21898 } 21899 21900 ill_t * 21901 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21902 { 21903 ill_t *ill; 21904 21905 *err = 0; 21906 mutex_enter(&connp->conn_lock); 21907 ill = *illp; 21908 if (ill != NULL) { 21909 mutex_enter(&ill->ill_lock); 21910 if (ILL_CAN_LOOKUP(ill)) { 21911 ill_refhold_locked(ill); 21912 mutex_exit(&ill->ill_lock); 21913 mutex_exit(&connp->conn_lock); 21914 return (ill); 21915 } else { 21916 *err = ILL_LOOKUP_FAILED; 21917 } 21918 mutex_exit(&ill->ill_lock); 21919 } 21920 mutex_exit(&connp->conn_lock); 21921 return (NULL); 21922 } 21923 21924 static int 21925 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21926 { 21927 ill_t *ill; 21928 21929 ill = ipif->ipif_ill; 21930 mutex_enter(&connp->conn_lock); 21931 mutex_enter(&ill->ill_lock); 21932 if (IPIF_CAN_LOOKUP(ipif)) { 21933 *ipifp = ipif; 21934 mutex_exit(&ill->ill_lock); 21935 mutex_exit(&connp->conn_lock); 21936 return (0); 21937 } 21938 mutex_exit(&ill->ill_lock); 21939 mutex_exit(&connp->conn_lock); 21940 return (IPIF_LOOKUP_FAILED); 21941 } 21942 21943 /* 21944 * This is called if the outbound datagram needs fragmentation. 21945 * 21946 * NOTE : This function does not ire_refrele the ire argument passed in. 21947 */ 21948 static void 21949 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21950 ip_stack_t *ipst, conn_t *connp) 21951 { 21952 ipha_t *ipha; 21953 mblk_t *mp; 21954 uint32_t v_hlen_tos_len; 21955 uint32_t max_frag; 21956 uint32_t frag_flag; 21957 boolean_t dont_use; 21958 21959 if (ipsec_mp->b_datap->db_type == M_CTL) { 21960 mp = ipsec_mp->b_cont; 21961 } else { 21962 mp = ipsec_mp; 21963 } 21964 21965 ipha = (ipha_t *)mp->b_rptr; 21966 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21967 21968 #ifdef _BIG_ENDIAN 21969 #define V_HLEN (v_hlen_tos_len >> 24) 21970 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21971 #else 21972 #define V_HLEN (v_hlen_tos_len & 0xFF) 21973 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21974 #endif 21975 21976 #ifndef SPEED_BEFORE_SAFETY 21977 /* 21978 * Check that ipha_length is consistent with 21979 * the mblk length 21980 */ 21981 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21982 ip0dbg(("Packet length mismatch: %d, %ld\n", 21983 LENGTH, msgdsize(mp))); 21984 freemsg(ipsec_mp); 21985 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21986 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21987 "packet length mismatch"); 21988 return; 21989 } 21990 #endif 21991 /* 21992 * Don't use frag_flag if pre-built packet or source 21993 * routed or if multicast (since multicast packets do not solicit 21994 * ICMP "packet too big" messages). Get the values of 21995 * max_frag and frag_flag atomically by acquiring the 21996 * ire_lock. 21997 */ 21998 mutex_enter(&ire->ire_lock); 21999 max_frag = ire->ire_max_frag; 22000 frag_flag = ire->ire_frag_flag; 22001 mutex_exit(&ire->ire_lock); 22002 22003 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 22004 (V_HLEN != IP_SIMPLE_HDR_VERSION && 22005 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 22006 22007 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 22008 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 22009 } 22010 22011 /* 22012 * Used for deciding the MSS size for the upper layer. Thus 22013 * we need to check the outbound policy values in the conn. 22014 */ 22015 int 22016 conn_ipsec_length(conn_t *connp) 22017 { 22018 ipsec_latch_t *ipl; 22019 22020 ipl = connp->conn_latch; 22021 if (ipl == NULL) 22022 return (0); 22023 22024 if (ipl->ipl_out_policy == NULL) 22025 return (0); 22026 22027 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 22028 } 22029 22030 /* 22031 * Returns an estimate of the IPsec headers size. This is used if 22032 * we don't want to call into IPsec to get the exact size. 22033 */ 22034 int 22035 ipsec_out_extra_length(mblk_t *ipsec_mp) 22036 { 22037 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 22038 ipsec_action_t *a; 22039 22040 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22041 if (!io->ipsec_out_secure) 22042 return (0); 22043 22044 a = io->ipsec_out_act; 22045 22046 if (a == NULL) { 22047 ASSERT(io->ipsec_out_policy != NULL); 22048 a = io->ipsec_out_policy->ipsp_act; 22049 } 22050 ASSERT(a != NULL); 22051 22052 return (a->ipa_ovhd); 22053 } 22054 22055 /* 22056 * Returns an estimate of the IPsec headers size. This is used if 22057 * we don't want to call into IPsec to get the exact size. 22058 */ 22059 int 22060 ipsec_in_extra_length(mblk_t *ipsec_mp) 22061 { 22062 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22063 ipsec_action_t *a; 22064 22065 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22066 22067 a = ii->ipsec_in_action; 22068 return (a == NULL ? 0 : a->ipa_ovhd); 22069 } 22070 22071 /* 22072 * If there are any source route options, return the true final 22073 * destination. Otherwise, return the destination. 22074 */ 22075 ipaddr_t 22076 ip_get_dst(ipha_t *ipha) 22077 { 22078 ipoptp_t opts; 22079 uchar_t *opt; 22080 uint8_t optval; 22081 uint8_t optlen; 22082 ipaddr_t dst; 22083 uint32_t off; 22084 22085 dst = ipha->ipha_dst; 22086 22087 if (IS_SIMPLE_IPH(ipha)) 22088 return (dst); 22089 22090 for (optval = ipoptp_first(&opts, ipha); 22091 optval != IPOPT_EOL; 22092 optval = ipoptp_next(&opts)) { 22093 opt = opts.ipoptp_cur; 22094 optlen = opts.ipoptp_len; 22095 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22096 switch (optval) { 22097 case IPOPT_SSRR: 22098 case IPOPT_LSRR: 22099 off = opt[IPOPT_OFFSET]; 22100 /* 22101 * If one of the conditions is true, it means 22102 * end of options and dst already has the right 22103 * value. 22104 */ 22105 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22106 off = optlen - IP_ADDR_LEN; 22107 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22108 } 22109 return (dst); 22110 default: 22111 break; 22112 } 22113 } 22114 22115 return (dst); 22116 } 22117 22118 mblk_t * 22119 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22120 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22121 { 22122 ipsec_out_t *io; 22123 mblk_t *first_mp; 22124 boolean_t policy_present; 22125 ip_stack_t *ipst; 22126 ipsec_stack_t *ipss; 22127 22128 ASSERT(ire != NULL); 22129 ipst = ire->ire_ipst; 22130 ipss = ipst->ips_netstack->netstack_ipsec; 22131 22132 first_mp = mp; 22133 if (mp->b_datap->db_type == M_CTL) { 22134 io = (ipsec_out_t *)first_mp->b_rptr; 22135 /* 22136 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22137 * 22138 * 1) There is per-socket policy (including cached global 22139 * policy) or a policy on the IP-in-IP tunnel. 22140 * 2) There is no per-socket policy, but it is 22141 * a multicast packet that needs to go out 22142 * on a specific interface. This is the case 22143 * where (ip_wput and ip_wput_multicast) attaches 22144 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22145 * 22146 * In case (2) we check with global policy to 22147 * see if there is a match and set the ill_index 22148 * appropriately so that we can lookup the ire 22149 * properly in ip_wput_ipsec_out. 22150 */ 22151 22152 /* 22153 * ipsec_out_use_global_policy is set to B_FALSE 22154 * in ipsec_in_to_out(). Refer to that function for 22155 * details. 22156 */ 22157 if ((io->ipsec_out_latch == NULL) && 22158 (io->ipsec_out_use_global_policy)) { 22159 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22160 ire, connp, unspec_src, zoneid)); 22161 } 22162 if (!io->ipsec_out_secure) { 22163 /* 22164 * If this is not a secure packet, drop 22165 * the IPSEC_OUT mp and treat it as a clear 22166 * packet. This happens when we are sending 22167 * a ICMP reply back to a clear packet. See 22168 * ipsec_in_to_out() for details. 22169 */ 22170 mp = first_mp->b_cont; 22171 freeb(first_mp); 22172 } 22173 return (mp); 22174 } 22175 /* 22176 * See whether we need to attach a global policy here. We 22177 * don't depend on the conn (as it could be null) for deciding 22178 * what policy this datagram should go through because it 22179 * should have happened in ip_wput if there was some 22180 * policy. This normally happens for connections which are not 22181 * fully bound preventing us from caching policies in 22182 * ip_bind. Packets coming from the TCP listener/global queue 22183 * - which are non-hard_bound - could also be affected by 22184 * applying policy here. 22185 * 22186 * If this packet is coming from tcp global queue or listener, 22187 * we will be applying policy here. This may not be *right* 22188 * if these packets are coming from the detached connection as 22189 * it could have gone in clear before. This happens only if a 22190 * TCP connection started when there is no policy and somebody 22191 * added policy before it became detached. Thus packets of the 22192 * detached connection could go out secure and the other end 22193 * would drop it because it will be expecting in clear. The 22194 * converse is not true i.e if somebody starts a TCP 22195 * connection and deletes the policy, all the packets will 22196 * still go out with the policy that existed before deleting 22197 * because ip_unbind sends up policy information which is used 22198 * by TCP on subsequent ip_wputs. The right solution is to fix 22199 * TCP to attach a dummy IPSEC_OUT and set 22200 * ipsec_out_use_global_policy to B_FALSE. As this might 22201 * affect performance for normal cases, we are not doing it. 22202 * Thus, set policy before starting any TCP connections. 22203 * 22204 * NOTE - We might apply policy even for a hard bound connection 22205 * - for which we cached policy in ip_bind - if somebody added 22206 * global policy after we inherited the policy in ip_bind. 22207 * This means that the packets that were going out in clear 22208 * previously would start going secure and hence get dropped 22209 * on the other side. To fix this, TCP attaches a dummy 22210 * ipsec_out and make sure that we don't apply global policy. 22211 */ 22212 if (ipha != NULL) 22213 policy_present = ipss->ipsec_outbound_v4_policy_present; 22214 else 22215 policy_present = ipss->ipsec_outbound_v6_policy_present; 22216 if (!policy_present) 22217 return (mp); 22218 22219 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22220 zoneid)); 22221 } 22222 22223 ire_t * 22224 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 22225 { 22226 ipaddr_t addr; 22227 ire_t *save_ire; 22228 irb_t *irb; 22229 ill_group_t *illgrp; 22230 int err; 22231 22232 save_ire = ire; 22233 addr = ire->ire_addr; 22234 22235 ASSERT(ire->ire_type == IRE_BROADCAST); 22236 22237 illgrp = connp->conn_outgoing_ill->ill_group; 22238 if (illgrp == NULL) { 22239 *conn_outgoing_ill = conn_get_held_ill(connp, 22240 &connp->conn_outgoing_ill, &err); 22241 if (err == ILL_LOOKUP_FAILED) { 22242 ire_refrele(save_ire); 22243 return (NULL); 22244 } 22245 return (save_ire); 22246 } 22247 /* 22248 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22249 * If it is part of the group, we need to send on the ire 22250 * that has been cleared of IRE_MARK_NORECV and that belongs 22251 * to this group. This is okay as IP_BOUND_IF really means 22252 * any ill in the group. We depend on the fact that the 22253 * first ire in the group is always cleared of IRE_MARK_NORECV 22254 * if such an ire exists. This is possible only if you have 22255 * at least one ill in the group that has not failed. 22256 * 22257 * First get to the ire that matches the address and group. 22258 * 22259 * We don't look for an ire with a matching zoneid because a given zone 22260 * won't always have broadcast ires on all ills in the group. 22261 */ 22262 irb = ire->ire_bucket; 22263 rw_enter(&irb->irb_lock, RW_READER); 22264 if (ire->ire_marks & IRE_MARK_NORECV) { 22265 /* 22266 * If the current zone only has an ire broadcast for this 22267 * address marked NORECV, the ire we want is ahead in the 22268 * bucket, so we look it up deliberately ignoring the zoneid. 22269 */ 22270 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22271 if (ire->ire_addr != addr) 22272 continue; 22273 /* skip over deleted ires */ 22274 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22275 continue; 22276 } 22277 } 22278 while (ire != NULL) { 22279 /* 22280 * If a new interface is coming up, we could end up 22281 * seeing the loopback ire and the non-loopback ire 22282 * may not have been added yet. So check for ire_stq 22283 */ 22284 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22285 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22286 break; 22287 } 22288 ire = ire->ire_next; 22289 } 22290 if (ire != NULL && ire->ire_addr == addr && 22291 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22292 IRE_REFHOLD(ire); 22293 rw_exit(&irb->irb_lock); 22294 ire_refrele(save_ire); 22295 *conn_outgoing_ill = ire_to_ill(ire); 22296 /* 22297 * Refhold the ill to make the conn_outgoing_ill 22298 * independent of the ire. ip_wput_ire goes in a loop 22299 * and may refrele the ire. Since we have an ire at this 22300 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22301 */ 22302 ill_refhold(*conn_outgoing_ill); 22303 return (ire); 22304 } 22305 rw_exit(&irb->irb_lock); 22306 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22307 /* 22308 * If we can't find a suitable ire, return the original ire. 22309 */ 22310 return (save_ire); 22311 } 22312 22313 /* 22314 * This function does the ire_refrele of the ire passed in as the 22315 * argument. As this function looks up more ires i.e broadcast ires, 22316 * it needs to REFRELE them. Currently, for simplicity we don't 22317 * differentiate the one passed in and looked up here. We always 22318 * REFRELE. 22319 * IPQoS Notes: 22320 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22321 * IPsec packets are done in ipsec_out_process. 22322 * 22323 */ 22324 void 22325 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22326 zoneid_t zoneid) 22327 { 22328 ipha_t *ipha; 22329 #define rptr ((uchar_t *)ipha) 22330 queue_t *stq; 22331 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22332 uint32_t v_hlen_tos_len; 22333 uint32_t ttl_protocol; 22334 ipaddr_t src; 22335 ipaddr_t dst; 22336 uint32_t cksum; 22337 ipaddr_t orig_src; 22338 ire_t *ire1; 22339 mblk_t *next_mp; 22340 uint_t hlen; 22341 uint16_t *up; 22342 uint32_t max_frag = ire->ire_max_frag; 22343 ill_t *ill = ire_to_ill(ire); 22344 int clusterwide; 22345 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22346 int ipsec_len; 22347 mblk_t *first_mp; 22348 ipsec_out_t *io; 22349 boolean_t conn_dontroute; /* conn value for multicast */ 22350 boolean_t conn_multicast_loop; /* conn value for multicast */ 22351 boolean_t multicast_forward; /* Should we forward ? */ 22352 boolean_t unspec_src; 22353 ill_t *conn_outgoing_ill = NULL; 22354 ill_t *ire_ill; 22355 ill_t *ire1_ill; 22356 ill_t *out_ill; 22357 uint32_t ill_index = 0; 22358 boolean_t multirt_send = B_FALSE; 22359 int err; 22360 ipxmit_state_t pktxmit_state; 22361 ip_stack_t *ipst = ire->ire_ipst; 22362 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22363 22364 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22365 "ip_wput_ire_start: q %p", q); 22366 22367 multicast_forward = B_FALSE; 22368 unspec_src = (connp != NULL && connp->conn_unspec_src); 22369 22370 if (ire->ire_flags & RTF_MULTIRT) { 22371 /* 22372 * Multirouting case. The bucket where ire is stored 22373 * probably holds other RTF_MULTIRT flagged ire 22374 * to the destination. In this call to ip_wput_ire, 22375 * we attempt to send the packet through all 22376 * those ires. Thus, we first ensure that ire is the 22377 * first RTF_MULTIRT ire in the bucket, 22378 * before walking the ire list. 22379 */ 22380 ire_t *first_ire; 22381 irb_t *irb = ire->ire_bucket; 22382 ASSERT(irb != NULL); 22383 22384 /* Make sure we do not omit any multiroute ire. */ 22385 IRB_REFHOLD(irb); 22386 for (first_ire = irb->irb_ire; 22387 first_ire != NULL; 22388 first_ire = first_ire->ire_next) { 22389 if ((first_ire->ire_flags & RTF_MULTIRT) && 22390 (first_ire->ire_addr == ire->ire_addr) && 22391 !(first_ire->ire_marks & 22392 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22393 break; 22394 } 22395 } 22396 22397 if ((first_ire != NULL) && (first_ire != ire)) { 22398 IRE_REFHOLD(first_ire); 22399 ire_refrele(ire); 22400 ire = first_ire; 22401 ill = ire_to_ill(ire); 22402 } 22403 IRB_REFRELE(irb); 22404 } 22405 22406 /* 22407 * conn_outgoing_ill variable is used only in the broadcast loop. 22408 * for performance we don't grab the mutexs in the fastpath 22409 */ 22410 if ((connp != NULL) && 22411 (ire->ire_type == IRE_BROADCAST) && 22412 ((connp->conn_nofailover_ill != NULL) || 22413 (connp->conn_outgoing_ill != NULL))) { 22414 /* 22415 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22416 * option. So, see if this endpoint is bound to a 22417 * IPIF_NOFAILOVER address. If so, honor it. This implies 22418 * that if the interface is failed, we will still send 22419 * the packet on the same ill which is what we want. 22420 */ 22421 conn_outgoing_ill = conn_get_held_ill(connp, 22422 &connp->conn_nofailover_ill, &err); 22423 if (err == ILL_LOOKUP_FAILED) { 22424 ire_refrele(ire); 22425 freemsg(mp); 22426 return; 22427 } 22428 if (conn_outgoing_ill == NULL) { 22429 /* 22430 * Choose a good ill in the group to send the 22431 * packets on. 22432 */ 22433 ire = conn_set_outgoing_ill(connp, ire, 22434 &conn_outgoing_ill); 22435 if (ire == NULL) { 22436 freemsg(mp); 22437 return; 22438 } 22439 } 22440 } 22441 22442 if (mp->b_datap->db_type != M_CTL) { 22443 ipha = (ipha_t *)mp->b_rptr; 22444 } else { 22445 io = (ipsec_out_t *)mp->b_rptr; 22446 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22447 ASSERT(zoneid == io->ipsec_out_zoneid); 22448 ASSERT(zoneid != ALL_ZONES); 22449 ipha = (ipha_t *)mp->b_cont->b_rptr; 22450 dst = ipha->ipha_dst; 22451 /* 22452 * For the multicast case, ipsec_out carries conn_dontroute and 22453 * conn_multicast_loop as conn may not be available here. We 22454 * need this for multicast loopback and forwarding which is done 22455 * later in the code. 22456 */ 22457 if (CLASSD(dst)) { 22458 conn_dontroute = io->ipsec_out_dontroute; 22459 conn_multicast_loop = io->ipsec_out_multicast_loop; 22460 /* 22461 * If conn_dontroute is not set or conn_multicast_loop 22462 * is set, we need to do forwarding/loopback. For 22463 * datagrams from ip_wput_multicast, conn_dontroute is 22464 * set to B_TRUE and conn_multicast_loop is set to 22465 * B_FALSE so that we neither do forwarding nor 22466 * loopback. 22467 */ 22468 if (!conn_dontroute || conn_multicast_loop) 22469 multicast_forward = B_TRUE; 22470 } 22471 } 22472 22473 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22474 ire->ire_zoneid != ALL_ZONES) { 22475 /* 22476 * When a zone sends a packet to another zone, we try to deliver 22477 * the packet under the same conditions as if the destination 22478 * was a real node on the network. To do so, we look for a 22479 * matching route in the forwarding table. 22480 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22481 * ip_newroute() does. 22482 * Note that IRE_LOCAL are special, since they are used 22483 * when the zoneid doesn't match in some cases. This means that 22484 * we need to handle ipha_src differently since ire_src_addr 22485 * belongs to the receiving zone instead of the sending zone. 22486 * When ip_restrict_interzone_loopback is set, then 22487 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22488 * for loopback between zones when the logical "Ethernet" would 22489 * have looped them back. 22490 */ 22491 ire_t *src_ire; 22492 22493 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22494 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22495 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22496 if (src_ire != NULL && 22497 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22498 (!ipst->ips_ip_restrict_interzone_loopback || 22499 ire_local_same_ill_group(ire, src_ire))) { 22500 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22501 ipha->ipha_src = src_ire->ire_src_addr; 22502 ire_refrele(src_ire); 22503 } else { 22504 ire_refrele(ire); 22505 if (conn_outgoing_ill != NULL) 22506 ill_refrele(conn_outgoing_ill); 22507 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22508 if (src_ire != NULL) { 22509 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22510 ire_refrele(src_ire); 22511 freemsg(mp); 22512 return; 22513 } 22514 ire_refrele(src_ire); 22515 } 22516 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22517 /* Failed */ 22518 freemsg(mp); 22519 return; 22520 } 22521 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22522 ipst); 22523 return; 22524 } 22525 } 22526 22527 if (mp->b_datap->db_type == M_CTL || 22528 ipss->ipsec_outbound_v4_policy_present) { 22529 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22530 unspec_src, zoneid); 22531 if (mp == NULL) { 22532 ire_refrele(ire); 22533 if (conn_outgoing_ill != NULL) 22534 ill_refrele(conn_outgoing_ill); 22535 return; 22536 } 22537 /* 22538 * Trusted Extensions supports all-zones interfaces, so 22539 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22540 * the global zone. 22541 */ 22542 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22543 io = (ipsec_out_t *)mp->b_rptr; 22544 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22545 zoneid = io->ipsec_out_zoneid; 22546 } 22547 } 22548 22549 first_mp = mp; 22550 ipsec_len = 0; 22551 22552 if (first_mp->b_datap->db_type == M_CTL) { 22553 io = (ipsec_out_t *)first_mp->b_rptr; 22554 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22555 mp = first_mp->b_cont; 22556 ipsec_len = ipsec_out_extra_length(first_mp); 22557 ASSERT(ipsec_len >= 0); 22558 /* We already picked up the zoneid from the M_CTL above */ 22559 ASSERT(zoneid == io->ipsec_out_zoneid); 22560 ASSERT(zoneid != ALL_ZONES); 22561 22562 /* 22563 * Drop M_CTL here if IPsec processing is not needed. 22564 * (Non-IPsec use of M_CTL extracted any information it 22565 * needed above). 22566 */ 22567 if (ipsec_len == 0) { 22568 freeb(first_mp); 22569 first_mp = mp; 22570 } 22571 } 22572 22573 /* 22574 * Fast path for ip_wput_ire 22575 */ 22576 22577 ipha = (ipha_t *)mp->b_rptr; 22578 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22579 dst = ipha->ipha_dst; 22580 22581 /* 22582 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22583 * if the socket is a SOCK_RAW type. The transport checksum should 22584 * be provided in the pre-built packet, so we don't need to compute it. 22585 * Also, other application set flags, like DF, should not be altered. 22586 * Other transport MUST pass down zero. 22587 */ 22588 ip_hdr_included = ipha->ipha_ident; 22589 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22590 22591 if (CLASSD(dst)) { 22592 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22593 ntohl(dst), 22594 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22595 ntohl(ire->ire_addr))); 22596 } 22597 22598 /* Macros to extract header fields from data already in registers */ 22599 #ifdef _BIG_ENDIAN 22600 #define V_HLEN (v_hlen_tos_len >> 24) 22601 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22602 #define PROTO (ttl_protocol & 0xFF) 22603 #else 22604 #define V_HLEN (v_hlen_tos_len & 0xFF) 22605 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22606 #define PROTO (ttl_protocol >> 8) 22607 #endif 22608 22609 22610 orig_src = src = ipha->ipha_src; 22611 /* (The loop back to "another" is explained down below.) */ 22612 another:; 22613 /* 22614 * Assign an ident value for this packet. We assign idents on 22615 * a per destination basis out of the IRE. There could be 22616 * other threads targeting the same destination, so we have to 22617 * arrange for a atomic increment. Note that we use a 32-bit 22618 * atomic add because it has better performance than its 22619 * 16-bit sibling. 22620 * 22621 * If running in cluster mode and if the source address 22622 * belongs to a replicated service then vector through 22623 * cl_inet_ipident vector to allocate ip identifier 22624 * NOTE: This is a contract private interface with the 22625 * clustering group. 22626 */ 22627 clusterwide = 0; 22628 if (cl_inet_ipident) { 22629 ASSERT(cl_inet_isclusterwide); 22630 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22631 AF_INET, (uint8_t *)(uintptr_t)src)) { 22632 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22633 AF_INET, (uint8_t *)(uintptr_t)src, 22634 (uint8_t *)(uintptr_t)dst); 22635 clusterwide = 1; 22636 } 22637 } 22638 if (!clusterwide) { 22639 ipha->ipha_ident = 22640 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22641 } 22642 22643 #ifndef _BIG_ENDIAN 22644 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22645 #endif 22646 22647 /* 22648 * Set source address unless sent on an ill or conn_unspec_src is set. 22649 * This is needed to obey conn_unspec_src when packets go through 22650 * ip_newroute + arp. 22651 * Assumes ip_newroute{,_multi} sets the source address as well. 22652 */ 22653 if (src == INADDR_ANY && !unspec_src) { 22654 /* 22655 * Assign the appropriate source address from the IRE if none 22656 * was specified. 22657 */ 22658 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22659 22660 /* 22661 * With IP multipathing, broadcast packets are sent on the ire 22662 * that has been cleared of IRE_MARK_NORECV and that belongs to 22663 * the group. However, this ire might not be in the same zone so 22664 * we can't always use its source address. We look for a 22665 * broadcast ire in the same group and in the right zone. 22666 */ 22667 if (ire->ire_type == IRE_BROADCAST && 22668 ire->ire_zoneid != zoneid) { 22669 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22670 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22671 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22672 if (src_ire != NULL) { 22673 src = src_ire->ire_src_addr; 22674 ire_refrele(src_ire); 22675 } else { 22676 ire_refrele(ire); 22677 if (conn_outgoing_ill != NULL) 22678 ill_refrele(conn_outgoing_ill); 22679 freemsg(first_mp); 22680 if (ill != NULL) { 22681 BUMP_MIB(ill->ill_ip_mib, 22682 ipIfStatsOutDiscards); 22683 } else { 22684 BUMP_MIB(&ipst->ips_ip_mib, 22685 ipIfStatsOutDiscards); 22686 } 22687 return; 22688 } 22689 } else { 22690 src = ire->ire_src_addr; 22691 } 22692 22693 if (connp == NULL) { 22694 ip1dbg(("ip_wput_ire: no connp and no src " 22695 "address for dst 0x%x, using src 0x%x\n", 22696 ntohl(dst), 22697 ntohl(src))); 22698 } 22699 ipha->ipha_src = src; 22700 } 22701 stq = ire->ire_stq; 22702 22703 /* 22704 * We only allow ire chains for broadcasts since there will 22705 * be multiple IRE_CACHE entries for the same multicast 22706 * address (one per ipif). 22707 */ 22708 next_mp = NULL; 22709 22710 /* broadcast packet */ 22711 if (ire->ire_type == IRE_BROADCAST) 22712 goto broadcast; 22713 22714 /* loopback ? */ 22715 if (stq == NULL) 22716 goto nullstq; 22717 22718 /* The ill_index for outbound ILL */ 22719 ill_index = Q_TO_INDEX(stq); 22720 22721 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22722 ttl_protocol = ((uint16_t *)ipha)[4]; 22723 22724 /* pseudo checksum (do it in parts for IP header checksum) */ 22725 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22726 22727 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22728 queue_t *dev_q = stq->q_next; 22729 22730 /* flow controlled */ 22731 if (DEV_Q_FLOW_BLOCKED(dev_q)) 22732 goto blocked; 22733 22734 if ((PROTO == IPPROTO_UDP) && 22735 (ip_hdr_included != IP_HDR_INCLUDED)) { 22736 hlen = (V_HLEN & 0xF) << 2; 22737 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22738 if (*up != 0) { 22739 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22740 hlen, LENGTH, max_frag, ipsec_len, cksum); 22741 /* Software checksum? */ 22742 if (DB_CKSUMFLAGS(mp) == 0) { 22743 IP_STAT(ipst, ip_out_sw_cksum); 22744 IP_STAT_UPDATE(ipst, 22745 ip_udp_out_sw_cksum_bytes, 22746 LENGTH - hlen); 22747 } 22748 } 22749 } 22750 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22751 hlen = (V_HLEN & 0xF) << 2; 22752 if (PROTO == IPPROTO_TCP) { 22753 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22754 /* 22755 * The packet header is processed once and for all, even 22756 * in the multirouting case. We disable hardware 22757 * checksum if the packet is multirouted, as it will be 22758 * replicated via several interfaces, and not all of 22759 * them may have this capability. 22760 */ 22761 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22762 LENGTH, max_frag, ipsec_len, cksum); 22763 /* Software checksum? */ 22764 if (DB_CKSUMFLAGS(mp) == 0) { 22765 IP_STAT(ipst, ip_out_sw_cksum); 22766 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22767 LENGTH - hlen); 22768 } 22769 } else { 22770 sctp_hdr_t *sctph; 22771 22772 ASSERT(PROTO == IPPROTO_SCTP); 22773 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22774 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22775 /* 22776 * Zero out the checksum field to ensure proper 22777 * checksum calculation. 22778 */ 22779 sctph->sh_chksum = 0; 22780 #ifdef DEBUG 22781 if (!skip_sctp_cksum) 22782 #endif 22783 sctph->sh_chksum = sctp_cksum(mp, hlen); 22784 } 22785 } 22786 22787 /* 22788 * If this is a multicast packet and originated from ip_wput 22789 * we need to do loopback and forwarding checks. If it comes 22790 * from ip_wput_multicast, we SHOULD not do this. 22791 */ 22792 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22793 22794 /* checksum */ 22795 cksum += ttl_protocol; 22796 22797 /* fragment the packet */ 22798 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22799 goto fragmentit; 22800 /* 22801 * Don't use frag_flag if packet is pre-built or source 22802 * routed or if multicast (since multicast packets do 22803 * not solicit ICMP "packet too big" messages). 22804 */ 22805 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22806 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22807 !ip_source_route_included(ipha)) && 22808 !CLASSD(ipha->ipha_dst)) 22809 ipha->ipha_fragment_offset_and_flags |= 22810 htons(ire->ire_frag_flag); 22811 22812 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22813 /* calculate IP header checksum */ 22814 cksum += ipha->ipha_ident; 22815 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22816 cksum += ipha->ipha_fragment_offset_and_flags; 22817 22818 /* IP options present */ 22819 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22820 if (hlen) 22821 goto checksumoptions; 22822 22823 /* calculate hdr checksum */ 22824 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22825 cksum = ~(cksum + (cksum >> 16)); 22826 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22827 } 22828 if (ipsec_len != 0) { 22829 /* 22830 * We will do the rest of the processing after 22831 * we come back from IPsec in ip_wput_ipsec_out(). 22832 */ 22833 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22834 22835 io = (ipsec_out_t *)first_mp->b_rptr; 22836 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22837 ill_phyint->phyint_ifindex; 22838 22839 ipsec_out_process(q, first_mp, ire, ill_index); 22840 ire_refrele(ire); 22841 if (conn_outgoing_ill != NULL) 22842 ill_refrele(conn_outgoing_ill); 22843 return; 22844 } 22845 22846 /* 22847 * In most cases, the emission loop below is entered only 22848 * once. Only in the case where the ire holds the 22849 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22850 * flagged ires in the bucket, and send the packet 22851 * through all crossed RTF_MULTIRT routes. 22852 */ 22853 if (ire->ire_flags & RTF_MULTIRT) { 22854 multirt_send = B_TRUE; 22855 } 22856 do { 22857 if (multirt_send) { 22858 irb_t *irb; 22859 /* 22860 * We are in a multiple send case, need to get 22861 * the next ire and make a duplicate of the packet. 22862 * ire1 holds here the next ire to process in the 22863 * bucket. If multirouting is expected, 22864 * any non-RTF_MULTIRT ire that has the 22865 * right destination address is ignored. 22866 */ 22867 irb = ire->ire_bucket; 22868 ASSERT(irb != NULL); 22869 22870 IRB_REFHOLD(irb); 22871 for (ire1 = ire->ire_next; 22872 ire1 != NULL; 22873 ire1 = ire1->ire_next) { 22874 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22875 continue; 22876 if (ire1->ire_addr != ire->ire_addr) 22877 continue; 22878 if (ire1->ire_marks & 22879 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22880 continue; 22881 22882 /* Got one */ 22883 IRE_REFHOLD(ire1); 22884 break; 22885 } 22886 IRB_REFRELE(irb); 22887 22888 if (ire1 != NULL) { 22889 next_mp = copyb(mp); 22890 if ((next_mp == NULL) || 22891 ((mp->b_cont != NULL) && 22892 ((next_mp->b_cont = 22893 dupmsg(mp->b_cont)) == NULL))) { 22894 freemsg(next_mp); 22895 next_mp = NULL; 22896 ire_refrele(ire1); 22897 ire1 = NULL; 22898 } 22899 } 22900 22901 /* Last multiroute ire; don't loop anymore. */ 22902 if (ire1 == NULL) { 22903 multirt_send = B_FALSE; 22904 } 22905 } 22906 22907 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22908 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22909 mblk_t *, mp); 22910 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22911 ipst->ips_ipv4firewall_physical_out, 22912 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22913 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22914 22915 if (mp == NULL) 22916 goto release_ire_and_ill; 22917 22918 if (ipst->ips_ipobs_enabled) { 22919 zoneid_t szone; 22920 22921 /* 22922 * On the outbound path the destination zone will be 22923 * unknown as we're sending this packet out on the 22924 * wire. 22925 */ 22926 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22927 ALL_ZONES); 22928 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22929 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22930 } 22931 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22932 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22933 22934 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22935 22936 if ((pktxmit_state == SEND_FAILED) || 22937 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22938 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22939 "- packet dropped\n")); 22940 release_ire_and_ill: 22941 ire_refrele(ire); 22942 if (next_mp != NULL) { 22943 freemsg(next_mp); 22944 ire_refrele(ire1); 22945 } 22946 if (conn_outgoing_ill != NULL) 22947 ill_refrele(conn_outgoing_ill); 22948 return; 22949 } 22950 22951 if (CLASSD(dst)) { 22952 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22953 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22954 LENGTH); 22955 } 22956 22957 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22958 "ip_wput_ire_end: q %p (%S)", 22959 q, "last copy out"); 22960 IRE_REFRELE(ire); 22961 22962 if (multirt_send) { 22963 ASSERT(ire1); 22964 /* 22965 * Proceed with the next RTF_MULTIRT ire, 22966 * Also set up the send-to queue accordingly. 22967 */ 22968 ire = ire1; 22969 ire1 = NULL; 22970 stq = ire->ire_stq; 22971 mp = next_mp; 22972 next_mp = NULL; 22973 ipha = (ipha_t *)mp->b_rptr; 22974 ill_index = Q_TO_INDEX(stq); 22975 ill = (ill_t *)stq->q_ptr; 22976 } 22977 } while (multirt_send); 22978 if (conn_outgoing_ill != NULL) 22979 ill_refrele(conn_outgoing_ill); 22980 return; 22981 22982 /* 22983 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22984 */ 22985 broadcast: 22986 { 22987 /* 22988 * To avoid broadcast storms, we usually set the TTL to 1 for 22989 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22990 * can be overridden stack-wide through the ip_broadcast_ttl 22991 * ndd tunable, or on a per-connection basis through the 22992 * IP_BROADCAST_TTL socket option. 22993 * 22994 * In the event that we are replying to incoming ICMP packets, 22995 * connp could be NULL. 22996 */ 22997 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22998 if (connp != NULL) { 22999 if (connp->conn_dontroute) 23000 ipha->ipha_ttl = 1; 23001 else if (connp->conn_broadcast_ttl != 0) 23002 ipha->ipha_ttl = connp->conn_broadcast_ttl; 23003 } 23004 23005 /* 23006 * Note that we are not doing a IRB_REFHOLD here. 23007 * Actually we don't care if the list changes i.e 23008 * if somebody deletes an IRE from the list while 23009 * we drop the lock, the next time we come around 23010 * ire_next will be NULL and hence we won't send 23011 * out multiple copies which is fine. 23012 */ 23013 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 23014 ire1 = ire->ire_next; 23015 if (conn_outgoing_ill != NULL) { 23016 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 23017 ASSERT(ire1 == ire->ire_next); 23018 if (ire1 != NULL && ire1->ire_addr == dst) { 23019 ire_refrele(ire); 23020 ire = ire1; 23021 IRE_REFHOLD(ire); 23022 ire1 = ire->ire_next; 23023 continue; 23024 } 23025 rw_exit(&ire->ire_bucket->irb_lock); 23026 /* Did not find a matching ill */ 23027 ip1dbg(("ip_wput_ire: broadcast with no " 23028 "matching IP_BOUND_IF ill %s dst %x\n", 23029 conn_outgoing_ill->ill_name, dst)); 23030 freemsg(first_mp); 23031 if (ire != NULL) 23032 ire_refrele(ire); 23033 ill_refrele(conn_outgoing_ill); 23034 return; 23035 } 23036 } else if (ire1 != NULL && ire1->ire_addr == dst) { 23037 /* 23038 * If the next IRE has the same address and is not one 23039 * of the two copies that we need to send, try to see 23040 * whether this copy should be sent at all. This 23041 * assumes that we insert loopbacks first and then 23042 * non-loopbacks. This is acheived by inserting the 23043 * loopback always before non-loopback. 23044 * This is used to send a single copy of a broadcast 23045 * packet out all physical interfaces that have an 23046 * matching IRE_BROADCAST while also looping 23047 * back one copy (to ip_wput_local) for each 23048 * matching physical interface. However, we avoid 23049 * sending packets out different logical that match by 23050 * having ipif_up/ipif_down supress duplicate 23051 * IRE_BROADCASTS. 23052 * 23053 * This feature is currently used to get broadcasts 23054 * sent to multiple interfaces, when the broadcast 23055 * address being used applies to multiple interfaces. 23056 * For example, a whole net broadcast will be 23057 * replicated on every connected subnet of 23058 * the target net. 23059 * 23060 * Each zone has its own set of IRE_BROADCASTs, so that 23061 * we're able to distribute inbound packets to multiple 23062 * zones who share a broadcast address. We avoid looping 23063 * back outbound packets in different zones but on the 23064 * same ill, as the application would see duplicates. 23065 * 23066 * If the interfaces are part of the same group, 23067 * we would want to send only one copy out for 23068 * whole group. 23069 * 23070 * This logic assumes that ire_add_v4() groups the 23071 * IRE_BROADCAST entries so that those with the same 23072 * ire_addr and ill_group are kept together. 23073 */ 23074 ire_ill = ire->ire_ipif->ipif_ill; 23075 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 23076 if (ire_ill->ill_group != NULL && 23077 (ire->ire_marks & IRE_MARK_NORECV)) { 23078 /* 23079 * If the current zone only has an ire 23080 * broadcast for this address marked 23081 * NORECV, the ire we want is ahead in 23082 * the bucket, so we look it up 23083 * deliberately ignoring the zoneid. 23084 */ 23085 for (ire1 = ire->ire_bucket->irb_ire; 23086 ire1 != NULL; 23087 ire1 = ire1->ire_next) { 23088 ire1_ill = 23089 ire1->ire_ipif->ipif_ill; 23090 if (ire1->ire_addr != dst) 23091 continue; 23092 /* skip over the current ire */ 23093 if (ire1 == ire) 23094 continue; 23095 /* skip over deleted ires */ 23096 if (ire1->ire_marks & 23097 IRE_MARK_CONDEMNED) 23098 continue; 23099 /* 23100 * non-loopback ire in our 23101 * group: use it for the next 23102 * pass in the loop 23103 */ 23104 if (ire1->ire_stq != NULL && 23105 ire1_ill->ill_group == 23106 ire_ill->ill_group) 23107 break; 23108 } 23109 } 23110 } else { 23111 while (ire1 != NULL && ire1->ire_addr == dst) { 23112 ire1_ill = ire1->ire_ipif->ipif_ill; 23113 /* 23114 * We can have two broadcast ires on the 23115 * same ill in different zones; here 23116 * we'll send a copy of the packet on 23117 * each ill and the fanout code will 23118 * call conn_wantpacket() to check that 23119 * the zone has the broadcast address 23120 * configured on the ill. If the two 23121 * ires are in the same group we only 23122 * send one copy up. 23123 */ 23124 if (ire1_ill != ire_ill && 23125 (ire1_ill->ill_group == NULL || 23126 ire_ill->ill_group == NULL || 23127 ire1_ill->ill_group != 23128 ire_ill->ill_group)) { 23129 break; 23130 } 23131 ire1 = ire1->ire_next; 23132 } 23133 } 23134 } 23135 ASSERT(multirt_send == B_FALSE); 23136 if (ire1 != NULL && ire1->ire_addr == dst) { 23137 if ((ire->ire_flags & RTF_MULTIRT) && 23138 (ire1->ire_flags & RTF_MULTIRT)) { 23139 /* 23140 * We are in the multirouting case. 23141 * The message must be sent at least 23142 * on both ires. These ires have been 23143 * inserted AFTER the standard ones 23144 * in ip_rt_add(). There are thus no 23145 * other ire entries for the destination 23146 * address in the rest of the bucket 23147 * that do not have the RTF_MULTIRT 23148 * flag. We don't process a copy 23149 * of the message here. This will be 23150 * done in the final sending loop. 23151 */ 23152 multirt_send = B_TRUE; 23153 } else { 23154 next_mp = ip_copymsg(first_mp); 23155 if (next_mp != NULL) 23156 IRE_REFHOLD(ire1); 23157 } 23158 } 23159 rw_exit(&ire->ire_bucket->irb_lock); 23160 } 23161 23162 if (stq) { 23163 /* 23164 * A non-NULL send-to queue means this packet is going 23165 * out of this machine. 23166 */ 23167 out_ill = (ill_t *)stq->q_ptr; 23168 23169 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 23170 ttl_protocol = ((uint16_t *)ipha)[4]; 23171 /* 23172 * We accumulate the pseudo header checksum in cksum. 23173 * This is pretty hairy code, so watch close. One 23174 * thing to keep in mind is that UDP and TCP have 23175 * stored their respective datagram lengths in their 23176 * checksum fields. This lines things up real nice. 23177 */ 23178 cksum = (dst >> 16) + (dst & 0xFFFF) + 23179 (src >> 16) + (src & 0xFFFF); 23180 /* 23181 * We assume the udp checksum field contains the 23182 * length, so to compute the pseudo header checksum, 23183 * all we need is the protocol number and src/dst. 23184 */ 23185 /* Provide the checksums for UDP and TCP. */ 23186 if ((PROTO == IPPROTO_TCP) && 23187 (ip_hdr_included != IP_HDR_INCLUDED)) { 23188 /* hlen gets the number of uchar_ts in the IP header */ 23189 hlen = (V_HLEN & 0xF) << 2; 23190 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 23191 IP_STAT(ipst, ip_out_sw_cksum); 23192 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 23193 LENGTH - hlen); 23194 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 23195 } else if (PROTO == IPPROTO_SCTP && 23196 (ip_hdr_included != IP_HDR_INCLUDED)) { 23197 sctp_hdr_t *sctph; 23198 23199 hlen = (V_HLEN & 0xF) << 2; 23200 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 23201 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 23202 sctph->sh_chksum = 0; 23203 #ifdef DEBUG 23204 if (!skip_sctp_cksum) 23205 #endif 23206 sctph->sh_chksum = sctp_cksum(mp, hlen); 23207 } else { 23208 queue_t *dev_q = stq->q_next; 23209 23210 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 23211 blocked: 23212 ipha->ipha_ident = ip_hdr_included; 23213 /* 23214 * If we don't have a conn to apply 23215 * backpressure, free the message. 23216 * In the ire_send path, we don't know 23217 * the position to requeue the packet. Rather 23218 * than reorder packets, we just drop this 23219 * packet. 23220 */ 23221 if (ipst->ips_ip_output_queue && 23222 connp != NULL && 23223 caller != IRE_SEND) { 23224 if (caller == IP_WSRV) { 23225 connp->conn_did_putbq = 1; 23226 (void) putbq(connp->conn_wq, 23227 first_mp); 23228 conn_drain_insert(connp); 23229 /* 23230 * This is the service thread, 23231 * and the queue is already 23232 * noenabled. The check for 23233 * canput and the putbq is not 23234 * atomic. So we need to check 23235 * again. 23236 */ 23237 if (canput(stq->q_next)) 23238 connp->conn_did_putbq 23239 = 0; 23240 IP_STAT(ipst, ip_conn_flputbq); 23241 } else { 23242 /* 23243 * We are not the service proc. 23244 * ip_wsrv will be scheduled or 23245 * is already running. 23246 */ 23247 (void) putq(connp->conn_wq, 23248 first_mp); 23249 } 23250 } else { 23251 out_ill = (ill_t *)stq->q_ptr; 23252 BUMP_MIB(out_ill->ill_ip_mib, 23253 ipIfStatsOutDiscards); 23254 freemsg(first_mp); 23255 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23256 "ip_wput_ire_end: q %p (%S)", 23257 q, "discard"); 23258 } 23259 ire_refrele(ire); 23260 if (next_mp) { 23261 ire_refrele(ire1); 23262 freemsg(next_mp); 23263 } 23264 if (conn_outgoing_ill != NULL) 23265 ill_refrele(conn_outgoing_ill); 23266 return; 23267 } 23268 if ((PROTO == IPPROTO_UDP) && 23269 (ip_hdr_included != IP_HDR_INCLUDED)) { 23270 /* 23271 * hlen gets the number of uchar_ts in the 23272 * IP header 23273 */ 23274 hlen = (V_HLEN & 0xF) << 2; 23275 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23276 max_frag = ire->ire_max_frag; 23277 if (*up != 0) { 23278 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 23279 up, PROTO, hlen, LENGTH, max_frag, 23280 ipsec_len, cksum); 23281 /* Software checksum? */ 23282 if (DB_CKSUMFLAGS(mp) == 0) { 23283 IP_STAT(ipst, ip_out_sw_cksum); 23284 IP_STAT_UPDATE(ipst, 23285 ip_udp_out_sw_cksum_bytes, 23286 LENGTH - hlen); 23287 } 23288 } 23289 } 23290 } 23291 /* 23292 * Need to do this even when fragmenting. The local 23293 * loopback can be done without computing checksums 23294 * but forwarding out other interface must be done 23295 * after the IP checksum (and ULP checksums) have been 23296 * computed. 23297 * 23298 * NOTE : multicast_forward is set only if this packet 23299 * originated from ip_wput. For packets originating from 23300 * ip_wput_multicast, it is not set. 23301 */ 23302 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23303 multi_loopback: 23304 ip2dbg(("ip_wput: multicast, loop %d\n", 23305 conn_multicast_loop)); 23306 23307 /* Forget header checksum offload */ 23308 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23309 23310 /* 23311 * Local loopback of multicasts? Check the 23312 * ill. 23313 * 23314 * Note that the loopback function will not come 23315 * in through ip_rput - it will only do the 23316 * client fanout thus we need to do an mforward 23317 * as well. The is different from the BSD 23318 * logic. 23319 */ 23320 if (ill != NULL) { 23321 ilm_t *ilm; 23322 23323 ILM_WALKER_HOLD(ill); 23324 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23325 ALL_ZONES); 23326 ILM_WALKER_RELE(ill); 23327 if (ilm != NULL) { 23328 /* 23329 * Pass along the virtual output q. 23330 * ip_wput_local() will distribute the 23331 * packet to all the matching zones, 23332 * except the sending zone when 23333 * IP_MULTICAST_LOOP is false. 23334 */ 23335 ip_multicast_loopback(q, ill, first_mp, 23336 conn_multicast_loop ? 0 : 23337 IP_FF_NO_MCAST_LOOP, zoneid); 23338 } 23339 } 23340 if (ipha->ipha_ttl == 0) { 23341 /* 23342 * 0 => only to this host i.e. we are 23343 * done. We are also done if this was the 23344 * loopback interface since it is sufficient 23345 * to loopback one copy of a multicast packet. 23346 */ 23347 freemsg(first_mp); 23348 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23349 "ip_wput_ire_end: q %p (%S)", 23350 q, "loopback"); 23351 ire_refrele(ire); 23352 if (conn_outgoing_ill != NULL) 23353 ill_refrele(conn_outgoing_ill); 23354 return; 23355 } 23356 /* 23357 * ILLF_MULTICAST is checked in ip_newroute 23358 * i.e. we don't need to check it here since 23359 * all IRE_CACHEs come from ip_newroute. 23360 * For multicast traffic, SO_DONTROUTE is interpreted 23361 * to mean only send the packet out the interface 23362 * (optionally specified with IP_MULTICAST_IF) 23363 * and do not forward it out additional interfaces. 23364 * RSVP and the rsvp daemon is an example of a 23365 * protocol and user level process that 23366 * handles it's own routing. Hence, it uses the 23367 * SO_DONTROUTE option to accomplish this. 23368 */ 23369 23370 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23371 ill != NULL) { 23372 /* Unconditionally redo the checksum */ 23373 ipha->ipha_hdr_checksum = 0; 23374 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23375 23376 /* 23377 * If this needs to go out secure, we need 23378 * to wait till we finish the IPsec 23379 * processing. 23380 */ 23381 if (ipsec_len == 0 && 23382 ip_mforward(ill, ipha, mp)) { 23383 freemsg(first_mp); 23384 ip1dbg(("ip_wput: mforward failed\n")); 23385 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23386 "ip_wput_ire_end: q %p (%S)", 23387 q, "mforward failed"); 23388 ire_refrele(ire); 23389 if (conn_outgoing_ill != NULL) 23390 ill_refrele(conn_outgoing_ill); 23391 return; 23392 } 23393 } 23394 } 23395 max_frag = ire->ire_max_frag; 23396 cksum += ttl_protocol; 23397 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23398 /* No fragmentation required for this one. */ 23399 /* 23400 * Don't use frag_flag if packet is pre-built or source 23401 * routed or if multicast (since multicast packets do 23402 * not solicit ICMP "packet too big" messages). 23403 */ 23404 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23405 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23406 !ip_source_route_included(ipha)) && 23407 !CLASSD(ipha->ipha_dst)) 23408 ipha->ipha_fragment_offset_and_flags |= 23409 htons(ire->ire_frag_flag); 23410 23411 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23412 /* Complete the IP header checksum. */ 23413 cksum += ipha->ipha_ident; 23414 cksum += (v_hlen_tos_len >> 16)+ 23415 (v_hlen_tos_len & 0xFFFF); 23416 cksum += ipha->ipha_fragment_offset_and_flags; 23417 hlen = (V_HLEN & 0xF) - 23418 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23419 if (hlen) { 23420 checksumoptions: 23421 /* 23422 * Account for the IP Options in the IP 23423 * header checksum. 23424 */ 23425 up = (uint16_t *)(rptr+ 23426 IP_SIMPLE_HDR_LENGTH); 23427 do { 23428 cksum += up[0]; 23429 cksum += up[1]; 23430 up += 2; 23431 } while (--hlen); 23432 } 23433 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23434 cksum = ~(cksum + (cksum >> 16)); 23435 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23436 } 23437 if (ipsec_len != 0) { 23438 ipsec_out_process(q, first_mp, ire, ill_index); 23439 if (!next_mp) { 23440 ire_refrele(ire); 23441 if (conn_outgoing_ill != NULL) 23442 ill_refrele(conn_outgoing_ill); 23443 return; 23444 } 23445 goto next; 23446 } 23447 23448 /* 23449 * multirt_send has already been handled 23450 * for broadcast, but not yet for multicast 23451 * or IP options. 23452 */ 23453 if (next_mp == NULL) { 23454 if (ire->ire_flags & RTF_MULTIRT) { 23455 multirt_send = B_TRUE; 23456 } 23457 } 23458 23459 /* 23460 * In most cases, the emission loop below is 23461 * entered only once. Only in the case where 23462 * the ire holds the RTF_MULTIRT flag, do we loop 23463 * to process all RTF_MULTIRT ires in the bucket, 23464 * and send the packet through all crossed 23465 * RTF_MULTIRT routes. 23466 */ 23467 do { 23468 if (multirt_send) { 23469 irb_t *irb; 23470 23471 irb = ire->ire_bucket; 23472 ASSERT(irb != NULL); 23473 /* 23474 * We are in a multiple send case, 23475 * need to get the next IRE and make 23476 * a duplicate of the packet. 23477 */ 23478 IRB_REFHOLD(irb); 23479 for (ire1 = ire->ire_next; 23480 ire1 != NULL; 23481 ire1 = ire1->ire_next) { 23482 if (!(ire1->ire_flags & 23483 RTF_MULTIRT)) { 23484 continue; 23485 } 23486 if (ire1->ire_addr != 23487 ire->ire_addr) { 23488 continue; 23489 } 23490 if (ire1->ire_marks & 23491 (IRE_MARK_CONDEMNED| 23492 IRE_MARK_HIDDEN)) { 23493 continue; 23494 } 23495 23496 /* Got one */ 23497 IRE_REFHOLD(ire1); 23498 break; 23499 } 23500 IRB_REFRELE(irb); 23501 23502 if (ire1 != NULL) { 23503 next_mp = copyb(mp); 23504 if ((next_mp == NULL) || 23505 ((mp->b_cont != NULL) && 23506 ((next_mp->b_cont = 23507 dupmsg(mp->b_cont)) 23508 == NULL))) { 23509 freemsg(next_mp); 23510 next_mp = NULL; 23511 ire_refrele(ire1); 23512 ire1 = NULL; 23513 } 23514 } 23515 23516 /* 23517 * Last multiroute ire; don't loop 23518 * anymore. The emission is over 23519 * and next_mp is NULL. 23520 */ 23521 if (ire1 == NULL) { 23522 multirt_send = B_FALSE; 23523 } 23524 } 23525 23526 out_ill = ire_to_ill(ire); 23527 DTRACE_PROBE4(ip4__physical__out__start, 23528 ill_t *, NULL, 23529 ill_t *, out_ill, 23530 ipha_t *, ipha, mblk_t *, mp); 23531 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23532 ipst->ips_ipv4firewall_physical_out, 23533 NULL, out_ill, ipha, mp, mp, 0, ipst); 23534 DTRACE_PROBE1(ip4__physical__out__end, 23535 mblk_t *, mp); 23536 if (mp == NULL) 23537 goto release_ire_and_ill_2; 23538 23539 ASSERT(ipsec_len == 0); 23540 mp->b_prev = 23541 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23542 DTRACE_PROBE2(ip__xmit__2, 23543 mblk_t *, mp, ire_t *, ire); 23544 pktxmit_state = ip_xmit_v4(mp, ire, 23545 NULL, B_TRUE, connp); 23546 if ((pktxmit_state == SEND_FAILED) || 23547 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23548 release_ire_and_ill_2: 23549 if (next_mp) { 23550 freemsg(next_mp); 23551 ire_refrele(ire1); 23552 } 23553 ire_refrele(ire); 23554 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23555 "ip_wput_ire_end: q %p (%S)", 23556 q, "discard MDATA"); 23557 if (conn_outgoing_ill != NULL) 23558 ill_refrele(conn_outgoing_ill); 23559 return; 23560 } 23561 23562 if (CLASSD(dst)) { 23563 BUMP_MIB(out_ill->ill_ip_mib, 23564 ipIfStatsHCOutMcastPkts); 23565 UPDATE_MIB(out_ill->ill_ip_mib, 23566 ipIfStatsHCOutMcastOctets, 23567 LENGTH); 23568 } else if (ire->ire_type == IRE_BROADCAST) { 23569 BUMP_MIB(out_ill->ill_ip_mib, 23570 ipIfStatsHCOutBcastPkts); 23571 } 23572 23573 if (multirt_send) { 23574 /* 23575 * We are in a multiple send case, 23576 * need to re-enter the sending loop 23577 * using the next ire. 23578 */ 23579 ire_refrele(ire); 23580 ire = ire1; 23581 stq = ire->ire_stq; 23582 mp = next_mp; 23583 next_mp = NULL; 23584 ipha = (ipha_t *)mp->b_rptr; 23585 ill_index = Q_TO_INDEX(stq); 23586 } 23587 } while (multirt_send); 23588 23589 if (!next_mp) { 23590 /* 23591 * Last copy going out (the ultra-common 23592 * case). Note that we intentionally replicate 23593 * the putnext rather than calling it before 23594 * the next_mp check in hopes of a little 23595 * tail-call action out of the compiler. 23596 */ 23597 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23598 "ip_wput_ire_end: q %p (%S)", 23599 q, "last copy out(1)"); 23600 ire_refrele(ire); 23601 if (conn_outgoing_ill != NULL) 23602 ill_refrele(conn_outgoing_ill); 23603 return; 23604 } 23605 /* More copies going out below. */ 23606 } else { 23607 int offset; 23608 fragmentit: 23609 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23610 /* 23611 * If this would generate a icmp_frag_needed message, 23612 * we need to handle it before we do the IPsec 23613 * processing. Otherwise, we need to strip the IPsec 23614 * headers before we send up the message to the ULPs 23615 * which becomes messy and difficult. 23616 */ 23617 if (ipsec_len != 0) { 23618 if ((max_frag < (unsigned int)(LENGTH + 23619 ipsec_len)) && (offset & IPH_DF)) { 23620 out_ill = (ill_t *)stq->q_ptr; 23621 BUMP_MIB(out_ill->ill_ip_mib, 23622 ipIfStatsOutFragFails); 23623 BUMP_MIB(out_ill->ill_ip_mib, 23624 ipIfStatsOutFragReqds); 23625 ipha->ipha_hdr_checksum = 0; 23626 ipha->ipha_hdr_checksum = 23627 (uint16_t)ip_csum_hdr(ipha); 23628 icmp_frag_needed(ire->ire_stq, first_mp, 23629 max_frag, zoneid, ipst); 23630 if (!next_mp) { 23631 ire_refrele(ire); 23632 if (conn_outgoing_ill != NULL) { 23633 ill_refrele( 23634 conn_outgoing_ill); 23635 } 23636 return; 23637 } 23638 } else { 23639 /* 23640 * This won't cause a icmp_frag_needed 23641 * message. to be generated. Send it on 23642 * the wire. Note that this could still 23643 * cause fragmentation and all we 23644 * do is the generation of the message 23645 * to the ULP if needed before IPsec. 23646 */ 23647 if (!next_mp) { 23648 ipsec_out_process(q, first_mp, 23649 ire, ill_index); 23650 TRACE_2(TR_FAC_IP, 23651 TR_IP_WPUT_IRE_END, 23652 "ip_wput_ire_end: q %p " 23653 "(%S)", q, 23654 "last ipsec_out_process"); 23655 ire_refrele(ire); 23656 if (conn_outgoing_ill != NULL) { 23657 ill_refrele( 23658 conn_outgoing_ill); 23659 } 23660 return; 23661 } 23662 ipsec_out_process(q, first_mp, 23663 ire, ill_index); 23664 } 23665 } else { 23666 /* 23667 * Initiate IPPF processing. For 23668 * fragmentable packets we finish 23669 * all QOS packet processing before 23670 * calling: 23671 * ip_wput_ire_fragmentit->ip_wput_frag 23672 */ 23673 23674 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23675 ip_process(IPP_LOCAL_OUT, &mp, 23676 ill_index); 23677 if (mp == NULL) { 23678 out_ill = (ill_t *)stq->q_ptr; 23679 BUMP_MIB(out_ill->ill_ip_mib, 23680 ipIfStatsOutDiscards); 23681 if (next_mp != NULL) { 23682 freemsg(next_mp); 23683 ire_refrele(ire1); 23684 } 23685 ire_refrele(ire); 23686 TRACE_2(TR_FAC_IP, 23687 TR_IP_WPUT_IRE_END, 23688 "ip_wput_ire: q %p (%S)", 23689 q, "discard MDATA"); 23690 if (conn_outgoing_ill != NULL) { 23691 ill_refrele( 23692 conn_outgoing_ill); 23693 } 23694 return; 23695 } 23696 } 23697 if (!next_mp) { 23698 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23699 "ip_wput_ire_end: q %p (%S)", 23700 q, "last fragmentation"); 23701 ip_wput_ire_fragmentit(mp, ire, 23702 zoneid, ipst, connp); 23703 ire_refrele(ire); 23704 if (conn_outgoing_ill != NULL) 23705 ill_refrele(conn_outgoing_ill); 23706 return; 23707 } 23708 ip_wput_ire_fragmentit(mp, ire, 23709 zoneid, ipst, connp); 23710 } 23711 } 23712 } else { 23713 nullstq: 23714 /* A NULL stq means the destination address is local. */ 23715 UPDATE_OB_PKT_COUNT(ire); 23716 ire->ire_last_used_time = lbolt; 23717 ASSERT(ire->ire_ipif != NULL); 23718 if (!next_mp) { 23719 /* 23720 * Is there an "in" and "out" for traffic local 23721 * to a host (loopback)? The code in Solaris doesn't 23722 * explicitly draw a line in its code for in vs out, 23723 * so we've had to draw a line in the sand: ip_wput_ire 23724 * is considered to be the "output" side and 23725 * ip_wput_local to be the "input" side. 23726 */ 23727 out_ill = ire_to_ill(ire); 23728 23729 /* 23730 * DTrace this as ip:::send. A blocked packet will 23731 * fire the send probe, but not the receive probe. 23732 */ 23733 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23734 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23735 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23736 23737 DTRACE_PROBE4(ip4__loopback__out__start, 23738 ill_t *, NULL, ill_t *, out_ill, 23739 ipha_t *, ipha, mblk_t *, first_mp); 23740 23741 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23742 ipst->ips_ipv4firewall_loopback_out, 23743 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23744 23745 DTRACE_PROBE1(ip4__loopback__out_end, 23746 mblk_t *, first_mp); 23747 23748 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23749 "ip_wput_ire_end: q %p (%S)", 23750 q, "local address"); 23751 23752 if (first_mp != NULL) 23753 ip_wput_local(q, out_ill, ipha, 23754 first_mp, ire, 0, ire->ire_zoneid); 23755 ire_refrele(ire); 23756 if (conn_outgoing_ill != NULL) 23757 ill_refrele(conn_outgoing_ill); 23758 return; 23759 } 23760 23761 out_ill = ire_to_ill(ire); 23762 23763 /* 23764 * DTrace this as ip:::send. A blocked packet will fire the 23765 * send probe, but not the receive probe. 23766 */ 23767 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23768 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23769 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23770 23771 DTRACE_PROBE4(ip4__loopback__out__start, 23772 ill_t *, NULL, ill_t *, out_ill, 23773 ipha_t *, ipha, mblk_t *, first_mp); 23774 23775 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23776 ipst->ips_ipv4firewall_loopback_out, 23777 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23778 23779 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23780 23781 if (first_mp != NULL) 23782 ip_wput_local(q, out_ill, ipha, 23783 first_mp, ire, 0, ire->ire_zoneid); 23784 } 23785 next: 23786 /* 23787 * More copies going out to additional interfaces. 23788 * ire1 has already been held. We don't need the 23789 * "ire" anymore. 23790 */ 23791 ire_refrele(ire); 23792 ire = ire1; 23793 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23794 mp = next_mp; 23795 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23796 ill = ire_to_ill(ire); 23797 first_mp = mp; 23798 if (ipsec_len != 0) { 23799 ASSERT(first_mp->b_datap->db_type == M_CTL); 23800 mp = mp->b_cont; 23801 } 23802 dst = ire->ire_addr; 23803 ipha = (ipha_t *)mp->b_rptr; 23804 /* 23805 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23806 * Restore ipha_ident "no checksum" flag. 23807 */ 23808 src = orig_src; 23809 ipha->ipha_ident = ip_hdr_included; 23810 goto another; 23811 23812 #undef rptr 23813 #undef Q_TO_INDEX 23814 } 23815 23816 /* 23817 * Routine to allocate a message that is used to notify the ULP about MDT. 23818 * The caller may provide a pointer to the link-layer MDT capabilities, 23819 * or NULL if MDT is to be disabled on the stream. 23820 */ 23821 mblk_t * 23822 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23823 { 23824 mblk_t *mp; 23825 ip_mdt_info_t *mdti; 23826 ill_mdt_capab_t *idst; 23827 23828 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23829 DB_TYPE(mp) = M_CTL; 23830 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23831 mdti = (ip_mdt_info_t *)mp->b_rptr; 23832 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23833 idst = &(mdti->mdt_capab); 23834 23835 /* 23836 * If the caller provides us with the capability, copy 23837 * it over into our notification message; otherwise 23838 * we zero out the capability portion. 23839 */ 23840 if (isrc != NULL) 23841 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23842 else 23843 bzero((caddr_t)idst, sizeof (*idst)); 23844 } 23845 return (mp); 23846 } 23847 23848 /* 23849 * Routine which determines whether MDT can be enabled on the destination 23850 * IRE and IPC combination, and if so, allocates and returns the MDT 23851 * notification mblk that may be used by ULP. We also check if we need to 23852 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23853 * MDT usage in the past have been lifted. This gets called during IP 23854 * and ULP binding. 23855 */ 23856 mblk_t * 23857 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23858 ill_mdt_capab_t *mdt_cap) 23859 { 23860 mblk_t *mp; 23861 boolean_t rc = B_FALSE; 23862 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23863 23864 ASSERT(dst_ire != NULL); 23865 ASSERT(connp != NULL); 23866 ASSERT(mdt_cap != NULL); 23867 23868 /* 23869 * Currently, we only support simple TCP/{IPv4,IPv6} with 23870 * Multidata, which is handled in tcp_multisend(). This 23871 * is the reason why we do all these checks here, to ensure 23872 * that we don't enable Multidata for the cases which we 23873 * can't handle at the moment. 23874 */ 23875 do { 23876 /* Only do TCP at the moment */ 23877 if (connp->conn_ulp != IPPROTO_TCP) 23878 break; 23879 23880 /* 23881 * IPsec outbound policy present? Note that we get here 23882 * after calling ipsec_conn_cache_policy() where the global 23883 * policy checking is performed. conn_latch will be 23884 * non-NULL as long as there's a policy defined, 23885 * i.e. conn_out_enforce_policy may be NULL in such case 23886 * when the connection is non-secure, and hence we check 23887 * further if the latch refers to an outbound policy. 23888 */ 23889 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23890 break; 23891 23892 /* CGTP (multiroute) is enabled? */ 23893 if (dst_ire->ire_flags & RTF_MULTIRT) 23894 break; 23895 23896 /* Outbound IPQoS enabled? */ 23897 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23898 /* 23899 * In this case, we disable MDT for this and all 23900 * future connections going over the interface. 23901 */ 23902 mdt_cap->ill_mdt_on = 0; 23903 break; 23904 } 23905 23906 /* socket option(s) present? */ 23907 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23908 break; 23909 23910 rc = B_TRUE; 23911 /* CONSTCOND */ 23912 } while (0); 23913 23914 /* Remember the result */ 23915 connp->conn_mdt_ok = rc; 23916 23917 if (!rc) 23918 return (NULL); 23919 else if (!mdt_cap->ill_mdt_on) { 23920 /* 23921 * If MDT has been previously turned off in the past, and we 23922 * currently can do MDT (due to IPQoS policy removal, etc.) 23923 * then enable it for this interface. 23924 */ 23925 mdt_cap->ill_mdt_on = 1; 23926 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23927 "interface %s\n", ill_name)); 23928 } 23929 23930 /* Allocate the MDT info mblk */ 23931 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23932 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23933 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23934 return (NULL); 23935 } 23936 return (mp); 23937 } 23938 23939 /* 23940 * Routine to allocate a message that is used to notify the ULP about LSO. 23941 * The caller may provide a pointer to the link-layer LSO capabilities, 23942 * or NULL if LSO is to be disabled on the stream. 23943 */ 23944 mblk_t * 23945 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23946 { 23947 mblk_t *mp; 23948 ip_lso_info_t *lsoi; 23949 ill_lso_capab_t *idst; 23950 23951 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23952 DB_TYPE(mp) = M_CTL; 23953 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23954 lsoi = (ip_lso_info_t *)mp->b_rptr; 23955 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23956 idst = &(lsoi->lso_capab); 23957 23958 /* 23959 * If the caller provides us with the capability, copy 23960 * it over into our notification message; otherwise 23961 * we zero out the capability portion. 23962 */ 23963 if (isrc != NULL) 23964 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23965 else 23966 bzero((caddr_t)idst, sizeof (*idst)); 23967 } 23968 return (mp); 23969 } 23970 23971 /* 23972 * Routine which determines whether LSO can be enabled on the destination 23973 * IRE and IPC combination, and if so, allocates and returns the LSO 23974 * notification mblk that may be used by ULP. We also check if we need to 23975 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23976 * LSO usage in the past have been lifted. This gets called during IP 23977 * and ULP binding. 23978 */ 23979 mblk_t * 23980 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23981 ill_lso_capab_t *lso_cap) 23982 { 23983 mblk_t *mp; 23984 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23985 23986 ASSERT(dst_ire != NULL); 23987 ASSERT(connp != NULL); 23988 ASSERT(lso_cap != NULL); 23989 23990 connp->conn_lso_ok = B_TRUE; 23991 23992 if ((connp->conn_ulp != IPPROTO_TCP) || 23993 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23994 (dst_ire->ire_flags & RTF_MULTIRT) || 23995 !CONN_IS_LSO_MD_FASTPATH(connp) || 23996 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23997 connp->conn_lso_ok = B_FALSE; 23998 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23999 /* 24000 * Disable LSO for this and all future connections going 24001 * over the interface. 24002 */ 24003 lso_cap->ill_lso_on = 0; 24004 } 24005 } 24006 24007 if (!connp->conn_lso_ok) 24008 return (NULL); 24009 else if (!lso_cap->ill_lso_on) { 24010 /* 24011 * If LSO has been previously turned off in the past, and we 24012 * currently can do LSO (due to IPQoS policy removal, etc.) 24013 * then enable it for this interface. 24014 */ 24015 lso_cap->ill_lso_on = 1; 24016 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 24017 ill_name)); 24018 } 24019 24020 /* Allocate the LSO info mblk */ 24021 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 24022 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 24023 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 24024 24025 return (mp); 24026 } 24027 24028 /* 24029 * Create destination address attribute, and fill it with the physical 24030 * destination address and SAP taken from the template DL_UNITDATA_REQ 24031 * message block. 24032 */ 24033 boolean_t 24034 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 24035 { 24036 dl_unitdata_req_t *dlurp; 24037 pattr_t *pa; 24038 pattrinfo_t pa_info; 24039 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 24040 uint_t das_len, das_off; 24041 24042 ASSERT(dlmp != NULL); 24043 24044 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 24045 das_len = dlurp->dl_dest_addr_length; 24046 das_off = dlurp->dl_dest_addr_offset; 24047 24048 pa_info.type = PATTR_DSTADDRSAP; 24049 pa_info.len = sizeof (**das) + das_len - 1; 24050 24051 /* create and associate the attribute */ 24052 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 24053 if (pa != NULL) { 24054 ASSERT(*das != NULL); 24055 (*das)->addr_is_group = 0; 24056 (*das)->addr_len = (uint8_t)das_len; 24057 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 24058 } 24059 24060 return (pa != NULL); 24061 } 24062 24063 /* 24064 * Create hardware checksum attribute and fill it with the values passed. 24065 */ 24066 boolean_t 24067 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 24068 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 24069 { 24070 pattr_t *pa; 24071 pattrinfo_t pa_info; 24072 24073 ASSERT(mmd != NULL); 24074 24075 pa_info.type = PATTR_HCKSUM; 24076 pa_info.len = sizeof (pattr_hcksum_t); 24077 24078 /* create and associate the attribute */ 24079 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 24080 if (pa != NULL) { 24081 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 24082 24083 hck->hcksum_start_offset = start_offset; 24084 hck->hcksum_stuff_offset = stuff_offset; 24085 hck->hcksum_end_offset = end_offset; 24086 hck->hcksum_flags = flags; 24087 } 24088 return (pa != NULL); 24089 } 24090 24091 /* 24092 * Create zerocopy attribute and fill it with the specified flags 24093 */ 24094 boolean_t 24095 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 24096 { 24097 pattr_t *pa; 24098 pattrinfo_t pa_info; 24099 24100 ASSERT(mmd != NULL); 24101 pa_info.type = PATTR_ZCOPY; 24102 pa_info.len = sizeof (pattr_zcopy_t); 24103 24104 /* create and associate the attribute */ 24105 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 24106 if (pa != NULL) { 24107 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 24108 24109 zcopy->zcopy_flags = flags; 24110 } 24111 return (pa != NULL); 24112 } 24113 24114 /* 24115 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 24116 * block chain. We could rewrite to handle arbitrary message block chains but 24117 * that would make the code complicated and slow. Right now there three 24118 * restrictions: 24119 * 24120 * 1. The first message block must contain the complete IP header and 24121 * at least 1 byte of payload data. 24122 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 24123 * so that we can use a single Multidata message. 24124 * 3. No frag must be distributed over two or more message blocks so 24125 * that we don't need more than two packet descriptors per frag. 24126 * 24127 * The above restrictions allow us to support userland applications (which 24128 * will send down a single message block) and NFS over UDP (which will 24129 * send down a chain of at most three message blocks). 24130 * 24131 * We also don't use MDT for payloads with less than or equal to 24132 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 24133 */ 24134 boolean_t 24135 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 24136 { 24137 int blocks; 24138 ssize_t total, missing, size; 24139 24140 ASSERT(mp != NULL); 24141 ASSERT(hdr_len > 0); 24142 24143 size = MBLKL(mp) - hdr_len; 24144 if (size <= 0) 24145 return (B_FALSE); 24146 24147 /* The first mblk contains the header and some payload. */ 24148 blocks = 1; 24149 total = size; 24150 size %= len; 24151 missing = (size == 0) ? 0 : (len - size); 24152 mp = mp->b_cont; 24153 24154 while (mp != NULL) { 24155 /* 24156 * Give up if we encounter a zero length message block. 24157 * In practice, this should rarely happen and therefore 24158 * not worth the trouble of freeing and re-linking the 24159 * mblk from the chain to handle such case. 24160 */ 24161 if ((size = MBLKL(mp)) == 0) 24162 return (B_FALSE); 24163 24164 /* Too many payload buffers for a single Multidata message? */ 24165 if (++blocks > MULTIDATA_MAX_PBUFS) 24166 return (B_FALSE); 24167 24168 total += size; 24169 /* Is a frag distributed over two or more message blocks? */ 24170 if (missing > size) 24171 return (B_FALSE); 24172 size -= missing; 24173 24174 size %= len; 24175 missing = (size == 0) ? 0 : (len - size); 24176 24177 mp = mp->b_cont; 24178 } 24179 24180 return (total > ip_wput_frag_mdt_min); 24181 } 24182 24183 /* 24184 * Outbound IPv4 fragmentation routine using MDT. 24185 */ 24186 static void 24187 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 24188 uint32_t frag_flag, int offset) 24189 { 24190 ipha_t *ipha_orig; 24191 int i1, ip_data_end; 24192 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 24193 mblk_t *hdr_mp, *md_mp = NULL; 24194 unsigned char *hdr_ptr, *pld_ptr; 24195 multidata_t *mmd; 24196 ip_pdescinfo_t pdi; 24197 ill_t *ill; 24198 ip_stack_t *ipst = ire->ire_ipst; 24199 24200 ASSERT(DB_TYPE(mp) == M_DATA); 24201 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 24202 24203 ill = ire_to_ill(ire); 24204 ASSERT(ill != NULL); 24205 24206 ipha_orig = (ipha_t *)mp->b_rptr; 24207 mp->b_rptr += sizeof (ipha_t); 24208 24209 /* Calculate how many packets we will send out */ 24210 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24211 pkts = (i1 + len - 1) / len; 24212 ASSERT(pkts > 1); 24213 24214 /* Allocate a message block which will hold all the IP Headers. */ 24215 wroff = ipst->ips_ip_wroff_extra; 24216 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24217 24218 i1 = pkts * hdr_chunk_len; 24219 /* 24220 * Create the header buffer, Multidata and destination address 24221 * and SAP attribute that should be associated with it. 24222 */ 24223 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24224 ((hdr_mp->b_wptr += i1), 24225 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24226 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24227 freemsg(mp); 24228 if (md_mp == NULL) { 24229 freemsg(hdr_mp); 24230 } else { 24231 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24232 freemsg(md_mp); 24233 } 24234 IP_STAT(ipst, ip_frag_mdt_allocfail); 24235 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24236 return; 24237 } 24238 IP_STAT(ipst, ip_frag_mdt_allocd); 24239 24240 /* 24241 * Add a payload buffer to the Multidata; this operation must not 24242 * fail, or otherwise our logic in this routine is broken. There 24243 * is no memory allocation done by the routine, so any returned 24244 * failure simply tells us that we've done something wrong. 24245 * 24246 * A failure tells us that either we're adding the same payload 24247 * buffer more than once, or we're trying to add more buffers than 24248 * allowed. None of the above cases should happen, and we panic 24249 * because either there's horrible heap corruption, and/or 24250 * programming mistake. 24251 */ 24252 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24253 goto pbuf_panic; 24254 24255 hdr_ptr = hdr_mp->b_rptr; 24256 pld_ptr = mp->b_rptr; 24257 24258 /* Establish the ending byte offset, based on the starting offset. */ 24259 offset <<= 3; 24260 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24261 IP_SIMPLE_HDR_LENGTH; 24262 24263 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24264 24265 while (pld_ptr < mp->b_wptr) { 24266 ipha_t *ipha; 24267 uint16_t offset_and_flags; 24268 uint16_t ip_len; 24269 int error; 24270 24271 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24272 ipha = (ipha_t *)(hdr_ptr + wroff); 24273 ASSERT(OK_32PTR(ipha)); 24274 *ipha = *ipha_orig; 24275 24276 if (ip_data_end - offset > len) { 24277 offset_and_flags = IPH_MF; 24278 } else { 24279 /* 24280 * Last frag. Set len to the length of this last piece. 24281 */ 24282 len = ip_data_end - offset; 24283 /* A frag of a frag might have IPH_MF non-zero */ 24284 offset_and_flags = 24285 ntohs(ipha->ipha_fragment_offset_and_flags) & 24286 IPH_MF; 24287 } 24288 offset_and_flags |= (uint16_t)(offset >> 3); 24289 offset_and_flags |= (uint16_t)frag_flag; 24290 /* Store the offset and flags in the IP header. */ 24291 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24292 24293 /* Store the length in the IP header. */ 24294 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24295 ipha->ipha_length = htons(ip_len); 24296 24297 /* 24298 * Set the IP header checksum. Note that mp is just 24299 * the header, so this is easy to pass to ip_csum. 24300 */ 24301 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24302 24303 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24304 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24305 NULL, int, 0); 24306 24307 /* 24308 * Record offset and size of header and data of the next packet 24309 * in the multidata message. 24310 */ 24311 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24312 PDESC_PLD_INIT(&pdi); 24313 i1 = MIN(mp->b_wptr - pld_ptr, len); 24314 ASSERT(i1 > 0); 24315 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24316 if (i1 == len) { 24317 pld_ptr += len; 24318 } else { 24319 i1 = len - i1; 24320 mp = mp->b_cont; 24321 ASSERT(mp != NULL); 24322 ASSERT(MBLKL(mp) >= i1); 24323 /* 24324 * Attach the next payload message block to the 24325 * multidata message. 24326 */ 24327 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24328 goto pbuf_panic; 24329 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24330 pld_ptr = mp->b_rptr + i1; 24331 } 24332 24333 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24334 KM_NOSLEEP)) == NULL) { 24335 /* 24336 * Any failure other than ENOMEM indicates that we 24337 * have passed in invalid pdesc info or parameters 24338 * to mmd_addpdesc, which must not happen. 24339 * 24340 * EINVAL is a result of failure on boundary checks 24341 * against the pdesc info contents. It should not 24342 * happen, and we panic because either there's 24343 * horrible heap corruption, and/or programming 24344 * mistake. 24345 */ 24346 if (error != ENOMEM) { 24347 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24348 "pdesc logic error detected for " 24349 "mmd %p pinfo %p (%d)\n", 24350 (void *)mmd, (void *)&pdi, error); 24351 /* NOTREACHED */ 24352 } 24353 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24354 /* Free unattached payload message blocks as well */ 24355 md_mp->b_cont = mp->b_cont; 24356 goto free_mmd; 24357 } 24358 24359 /* Advance fragment offset. */ 24360 offset += len; 24361 24362 /* Advance to location for next header in the buffer. */ 24363 hdr_ptr += hdr_chunk_len; 24364 24365 /* Did we reach the next payload message block? */ 24366 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24367 mp = mp->b_cont; 24368 /* 24369 * Attach the next message block with payload 24370 * data to the multidata message. 24371 */ 24372 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24373 goto pbuf_panic; 24374 pld_ptr = mp->b_rptr; 24375 } 24376 } 24377 24378 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24379 ASSERT(mp->b_wptr == pld_ptr); 24380 24381 /* Update IP statistics */ 24382 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24383 24384 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24385 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24386 24387 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24388 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24389 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24390 24391 if (pkt_type == OB_PKT) { 24392 ire->ire_ob_pkt_count += pkts; 24393 if (ire->ire_ipif != NULL) 24394 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24395 } else { 24396 /* The type is IB_PKT in the forwarding path. */ 24397 ire->ire_ib_pkt_count += pkts; 24398 ASSERT(!IRE_IS_LOCAL(ire)); 24399 if (ire->ire_type & IRE_BROADCAST) { 24400 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24401 } else { 24402 UPDATE_MIB(ill->ill_ip_mib, 24403 ipIfStatsHCOutForwDatagrams, pkts); 24404 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24405 } 24406 } 24407 ire->ire_last_used_time = lbolt; 24408 /* Send it down */ 24409 putnext(ire->ire_stq, md_mp); 24410 return; 24411 24412 pbuf_panic: 24413 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24414 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24415 pbuf_idx); 24416 /* NOTREACHED */ 24417 } 24418 24419 /* 24420 * Outbound IP fragmentation routine. 24421 * 24422 * NOTE : This routine does not ire_refrele the ire that is passed in 24423 * as the argument. 24424 */ 24425 static void 24426 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24427 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 24428 { 24429 int i1; 24430 mblk_t *ll_hdr_mp; 24431 int ll_hdr_len; 24432 int hdr_len; 24433 mblk_t *hdr_mp; 24434 ipha_t *ipha; 24435 int ip_data_end; 24436 int len; 24437 mblk_t *mp = mp_orig, *mp1; 24438 int offset; 24439 queue_t *q; 24440 uint32_t v_hlen_tos_len; 24441 mblk_t *first_mp; 24442 boolean_t mctl_present; 24443 ill_t *ill; 24444 ill_t *out_ill; 24445 mblk_t *xmit_mp; 24446 mblk_t *carve_mp; 24447 ire_t *ire1 = NULL; 24448 ire_t *save_ire = NULL; 24449 mblk_t *next_mp = NULL; 24450 boolean_t last_frag = B_FALSE; 24451 boolean_t multirt_send = B_FALSE; 24452 ire_t *first_ire = NULL; 24453 irb_t *irb = NULL; 24454 mib2_ipIfStatsEntry_t *mibptr = NULL; 24455 24456 ill = ire_to_ill(ire); 24457 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24458 24459 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24460 24461 if (max_frag == 0) { 24462 ip1dbg(("ip_wput_frag: ire frag size is 0" 24463 " - dropping packet\n")); 24464 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24465 freemsg(mp); 24466 return; 24467 } 24468 24469 /* 24470 * IPsec does not allow hw accelerated packets to be fragmented 24471 * This check is made in ip_wput_ipsec_out prior to coming here 24472 * via ip_wput_ire_fragmentit. 24473 * 24474 * If at this point we have an ire whose ARP request has not 24475 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24476 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24477 * This packet and all fragmentable packets for this ire will 24478 * continue to get dropped while ire_nce->nce_state remains in 24479 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24480 * ND_REACHABLE, all subsquent large packets for this ire will 24481 * get fragemented and sent out by this function. 24482 */ 24483 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24484 /* If nce_state is ND_INITIAL, trigger ARP query */ 24485 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24486 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24487 " - dropping packet\n")); 24488 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24489 freemsg(mp); 24490 return; 24491 } 24492 24493 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24494 "ip_wput_frag_start:"); 24495 24496 if (mp->b_datap->db_type == M_CTL) { 24497 first_mp = mp; 24498 mp_orig = mp = mp->b_cont; 24499 mctl_present = B_TRUE; 24500 } else { 24501 first_mp = mp; 24502 mctl_present = B_FALSE; 24503 } 24504 24505 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24506 ipha = (ipha_t *)mp->b_rptr; 24507 24508 /* 24509 * If the Don't Fragment flag is on, generate an ICMP destination 24510 * unreachable, fragmentation needed. 24511 */ 24512 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24513 if (offset & IPH_DF) { 24514 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24515 if (is_system_labeled()) { 24516 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24517 ire->ire_max_frag - max_frag, AF_INET); 24518 } 24519 /* 24520 * Need to compute hdr checksum if called from ip_wput_ire. 24521 * Note that ip_rput_forward verifies the checksum before 24522 * calling this routine so in that case this is a noop. 24523 */ 24524 ipha->ipha_hdr_checksum = 0; 24525 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24526 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24527 ipst); 24528 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24529 "ip_wput_frag_end:(%S)", 24530 "don't fragment"); 24531 return; 24532 } 24533 /* 24534 * Labeled systems adjust max_frag if they add a label 24535 * to send the correct path mtu. We need the real mtu since we 24536 * are fragmenting the packet after label adjustment. 24537 */ 24538 if (is_system_labeled()) 24539 max_frag = ire->ire_max_frag; 24540 if (mctl_present) 24541 freeb(first_mp); 24542 /* 24543 * Establish the starting offset. May not be zero if we are fragging 24544 * a fragment that is being forwarded. 24545 */ 24546 offset = offset & IPH_OFFSET; 24547 24548 /* TODO why is this test needed? */ 24549 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24550 if (((max_frag - LENGTH) & ~7) < 8) { 24551 /* TODO: notify ulp somehow */ 24552 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24553 freemsg(mp); 24554 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24555 "ip_wput_frag_end:(%S)", 24556 "len < 8"); 24557 return; 24558 } 24559 24560 hdr_len = (V_HLEN & 0xF) << 2; 24561 24562 ipha->ipha_hdr_checksum = 0; 24563 24564 /* 24565 * Establish the number of bytes maximum per frag, after putting 24566 * in the header. 24567 */ 24568 len = (max_frag - hdr_len) & ~7; 24569 24570 /* Check if we can use MDT to send out the frags. */ 24571 ASSERT(!IRE_IS_LOCAL(ire)); 24572 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24573 ipst->ips_ip_multidata_outbound && 24574 !(ire->ire_flags & RTF_MULTIRT) && 24575 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24576 ill != NULL && ILL_MDT_CAPABLE(ill) && 24577 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24578 ASSERT(ill->ill_mdt_capab != NULL); 24579 if (!ill->ill_mdt_capab->ill_mdt_on) { 24580 /* 24581 * If MDT has been previously turned off in the past, 24582 * and we currently can do MDT (due to IPQoS policy 24583 * removal, etc.) then enable it for this interface. 24584 */ 24585 ill->ill_mdt_capab->ill_mdt_on = 1; 24586 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24587 ill->ill_name)); 24588 } 24589 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24590 offset); 24591 return; 24592 } 24593 24594 /* Get a copy of the header for the trailing frags */ 24595 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24596 if (!hdr_mp) { 24597 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24598 freemsg(mp); 24599 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24600 "ip_wput_frag_end:(%S)", 24601 "couldn't copy hdr"); 24602 return; 24603 } 24604 if (DB_CRED(mp) != NULL) 24605 mblk_setcred(hdr_mp, DB_CRED(mp)); 24606 24607 /* Store the starting offset, with the MoreFrags flag. */ 24608 i1 = offset | IPH_MF | frag_flag; 24609 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24610 24611 /* Establish the ending byte offset, based on the starting offset. */ 24612 offset <<= 3; 24613 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24614 24615 /* Store the length of the first fragment in the IP header. */ 24616 i1 = len + hdr_len; 24617 ASSERT(i1 <= IP_MAXPACKET); 24618 ipha->ipha_length = htons((uint16_t)i1); 24619 24620 /* 24621 * Compute the IP header checksum for the first frag. We have to 24622 * watch out that we stop at the end of the header. 24623 */ 24624 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24625 24626 /* 24627 * Now carve off the first frag. Note that this will include the 24628 * original IP header. 24629 */ 24630 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24631 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24632 freeb(hdr_mp); 24633 freemsg(mp_orig); 24634 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24635 "ip_wput_frag_end:(%S)", 24636 "couldn't carve first"); 24637 return; 24638 } 24639 24640 /* 24641 * Multirouting case. Each fragment is replicated 24642 * via all non-condemned RTF_MULTIRT routes 24643 * currently resolved. 24644 * We ensure that first_ire is the first RTF_MULTIRT 24645 * ire in the bucket. 24646 */ 24647 if (ire->ire_flags & RTF_MULTIRT) { 24648 irb = ire->ire_bucket; 24649 ASSERT(irb != NULL); 24650 24651 multirt_send = B_TRUE; 24652 24653 /* Make sure we do not omit any multiroute ire. */ 24654 IRB_REFHOLD(irb); 24655 for (first_ire = irb->irb_ire; 24656 first_ire != NULL; 24657 first_ire = first_ire->ire_next) { 24658 if ((first_ire->ire_flags & RTF_MULTIRT) && 24659 (first_ire->ire_addr == ire->ire_addr) && 24660 !(first_ire->ire_marks & 24661 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24662 break; 24663 } 24664 } 24665 24666 if (first_ire != NULL) { 24667 if (first_ire != ire) { 24668 IRE_REFHOLD(first_ire); 24669 /* 24670 * Do not release the ire passed in 24671 * as the argument. 24672 */ 24673 ire = first_ire; 24674 } else { 24675 first_ire = NULL; 24676 } 24677 } 24678 IRB_REFRELE(irb); 24679 24680 /* 24681 * Save the first ire; we will need to restore it 24682 * for the trailing frags. 24683 * We REFHOLD save_ire, as each iterated ire will be 24684 * REFRELEd. 24685 */ 24686 save_ire = ire; 24687 IRE_REFHOLD(save_ire); 24688 } 24689 24690 /* 24691 * First fragment emission loop. 24692 * In most cases, the emission loop below is entered only 24693 * once. Only in the case where the ire holds the RTF_MULTIRT 24694 * flag, do we loop to process all RTF_MULTIRT ires in the 24695 * bucket, and send the fragment through all crossed 24696 * RTF_MULTIRT routes. 24697 */ 24698 do { 24699 if (ire->ire_flags & RTF_MULTIRT) { 24700 /* 24701 * We are in a multiple send case, need to get 24702 * the next ire and make a copy of the packet. 24703 * ire1 holds here the next ire to process in the 24704 * bucket. If multirouting is expected, 24705 * any non-RTF_MULTIRT ire that has the 24706 * right destination address is ignored. 24707 * 24708 * We have to take into account the MTU of 24709 * each walked ire. max_frag is set by the 24710 * the caller and generally refers to 24711 * the primary ire entry. Here we ensure that 24712 * no route with a lower MTU will be used, as 24713 * fragments are carved once for all ires, 24714 * then replicated. 24715 */ 24716 ASSERT(irb != NULL); 24717 IRB_REFHOLD(irb); 24718 for (ire1 = ire->ire_next; 24719 ire1 != NULL; 24720 ire1 = ire1->ire_next) { 24721 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24722 continue; 24723 if (ire1->ire_addr != ire->ire_addr) 24724 continue; 24725 if (ire1->ire_marks & 24726 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24727 continue; 24728 /* 24729 * Ensure we do not exceed the MTU 24730 * of the next route. 24731 */ 24732 if (ire1->ire_max_frag < max_frag) { 24733 ip_multirt_bad_mtu(ire1, max_frag); 24734 continue; 24735 } 24736 24737 /* Got one. */ 24738 IRE_REFHOLD(ire1); 24739 break; 24740 } 24741 IRB_REFRELE(irb); 24742 24743 if (ire1 != NULL) { 24744 next_mp = copyb(mp); 24745 if ((next_mp == NULL) || 24746 ((mp->b_cont != NULL) && 24747 ((next_mp->b_cont = 24748 dupmsg(mp->b_cont)) == NULL))) { 24749 freemsg(next_mp); 24750 next_mp = NULL; 24751 ire_refrele(ire1); 24752 ire1 = NULL; 24753 } 24754 } 24755 24756 /* Last multiroute ire; don't loop anymore. */ 24757 if (ire1 == NULL) { 24758 multirt_send = B_FALSE; 24759 } 24760 } 24761 24762 ll_hdr_len = 0; 24763 LOCK_IRE_FP_MP(ire); 24764 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24765 if (ll_hdr_mp != NULL) { 24766 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24767 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24768 } else { 24769 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24770 } 24771 24772 /* If there is a transmit header, get a copy for this frag. */ 24773 /* 24774 * TODO: should check db_ref before calling ip_carve_mp since 24775 * it might give us a dup. 24776 */ 24777 if (!ll_hdr_mp) { 24778 /* No xmit header. */ 24779 xmit_mp = mp; 24780 24781 /* We have a link-layer header that can fit in our mblk. */ 24782 } else if (mp->b_datap->db_ref == 1 && 24783 ll_hdr_len != 0 && 24784 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24785 /* M_DATA fastpath */ 24786 mp->b_rptr -= ll_hdr_len; 24787 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24788 xmit_mp = mp; 24789 24790 /* Corner case if copyb has failed */ 24791 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24792 UNLOCK_IRE_FP_MP(ire); 24793 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24794 freeb(hdr_mp); 24795 freemsg(mp); 24796 freemsg(mp_orig); 24797 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24798 "ip_wput_frag_end:(%S)", 24799 "discard"); 24800 24801 if (multirt_send) { 24802 ASSERT(ire1); 24803 ASSERT(next_mp); 24804 24805 freemsg(next_mp); 24806 ire_refrele(ire1); 24807 } 24808 if (save_ire != NULL) 24809 IRE_REFRELE(save_ire); 24810 24811 if (first_ire != NULL) 24812 ire_refrele(first_ire); 24813 return; 24814 24815 /* 24816 * Case of res_mp OR the fastpath mp can't fit 24817 * in the mblk 24818 */ 24819 } else { 24820 xmit_mp->b_cont = mp; 24821 if (DB_CRED(mp) != NULL) 24822 mblk_setcred(xmit_mp, DB_CRED(mp)); 24823 /* 24824 * Get priority marking, if any. 24825 * We propagate the CoS marking from the 24826 * original packet that went to QoS processing 24827 * in ip_wput_ire to the newly carved mp. 24828 */ 24829 if (DB_TYPE(xmit_mp) == M_DATA) 24830 xmit_mp->b_band = mp->b_band; 24831 } 24832 UNLOCK_IRE_FP_MP(ire); 24833 24834 q = ire->ire_stq; 24835 out_ill = (ill_t *)q->q_ptr; 24836 24837 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24838 24839 DTRACE_PROBE4(ip4__physical__out__start, 24840 ill_t *, NULL, ill_t *, out_ill, 24841 ipha_t *, ipha, mblk_t *, xmit_mp); 24842 24843 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24844 ipst->ips_ipv4firewall_physical_out, 24845 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24846 24847 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24848 24849 if (xmit_mp != NULL) { 24850 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24851 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24852 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24853 24854 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0); 24855 24856 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24857 UPDATE_MIB(out_ill->ill_ip_mib, 24858 ipIfStatsHCOutOctets, i1); 24859 24860 if (pkt_type != OB_PKT) { 24861 /* 24862 * Update the packet count and MIB stats 24863 * of trailing RTF_MULTIRT ires. 24864 */ 24865 UPDATE_OB_PKT_COUNT(ire); 24866 BUMP_MIB(out_ill->ill_ip_mib, 24867 ipIfStatsOutFragReqds); 24868 } 24869 } 24870 24871 if (multirt_send) { 24872 /* 24873 * We are in a multiple send case; look for 24874 * the next ire and re-enter the loop. 24875 */ 24876 ASSERT(ire1); 24877 ASSERT(next_mp); 24878 /* REFRELE the current ire before looping */ 24879 ire_refrele(ire); 24880 ire = ire1; 24881 ire1 = NULL; 24882 mp = next_mp; 24883 next_mp = NULL; 24884 } 24885 } while (multirt_send); 24886 24887 ASSERT(ire1 == NULL); 24888 24889 /* Restore the original ire; we need it for the trailing frags */ 24890 if (save_ire != NULL) { 24891 /* REFRELE the last iterated ire */ 24892 ire_refrele(ire); 24893 /* save_ire has been REFHOLDed */ 24894 ire = save_ire; 24895 save_ire = NULL; 24896 q = ire->ire_stq; 24897 } 24898 24899 if (pkt_type == OB_PKT) { 24900 UPDATE_OB_PKT_COUNT(ire); 24901 } else { 24902 out_ill = (ill_t *)q->q_ptr; 24903 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24904 UPDATE_IB_PKT_COUNT(ire); 24905 } 24906 24907 /* Advance the offset to the second frag starting point. */ 24908 offset += len; 24909 /* 24910 * Update hdr_len from the copied header - there might be less options 24911 * in the later fragments. 24912 */ 24913 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24914 /* Loop until done. */ 24915 for (;;) { 24916 uint16_t offset_and_flags; 24917 uint16_t ip_len; 24918 24919 if (ip_data_end - offset > len) { 24920 /* 24921 * Carve off the appropriate amount from the original 24922 * datagram. 24923 */ 24924 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24925 mp = NULL; 24926 break; 24927 } 24928 /* 24929 * More frags after this one. Get another copy 24930 * of the header. 24931 */ 24932 if (carve_mp->b_datap->db_ref == 1 && 24933 hdr_mp->b_wptr - hdr_mp->b_rptr < 24934 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24935 /* Inline IP header */ 24936 carve_mp->b_rptr -= hdr_mp->b_wptr - 24937 hdr_mp->b_rptr; 24938 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24939 hdr_mp->b_wptr - hdr_mp->b_rptr); 24940 mp = carve_mp; 24941 } else { 24942 if (!(mp = copyb(hdr_mp))) { 24943 freemsg(carve_mp); 24944 break; 24945 } 24946 /* Get priority marking, if any. */ 24947 mp->b_band = carve_mp->b_band; 24948 mp->b_cont = carve_mp; 24949 } 24950 ipha = (ipha_t *)mp->b_rptr; 24951 offset_and_flags = IPH_MF; 24952 } else { 24953 /* 24954 * Last frag. Consume the header. Set len to 24955 * the length of this last piece. 24956 */ 24957 len = ip_data_end - offset; 24958 24959 /* 24960 * Carve off the appropriate amount from the original 24961 * datagram. 24962 */ 24963 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24964 mp = NULL; 24965 break; 24966 } 24967 if (carve_mp->b_datap->db_ref == 1 && 24968 hdr_mp->b_wptr - hdr_mp->b_rptr < 24969 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24970 /* Inline IP header */ 24971 carve_mp->b_rptr -= hdr_mp->b_wptr - 24972 hdr_mp->b_rptr; 24973 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24974 hdr_mp->b_wptr - hdr_mp->b_rptr); 24975 mp = carve_mp; 24976 freeb(hdr_mp); 24977 hdr_mp = mp; 24978 } else { 24979 mp = hdr_mp; 24980 /* Get priority marking, if any. */ 24981 mp->b_band = carve_mp->b_band; 24982 mp->b_cont = carve_mp; 24983 } 24984 ipha = (ipha_t *)mp->b_rptr; 24985 /* A frag of a frag might have IPH_MF non-zero */ 24986 offset_and_flags = 24987 ntohs(ipha->ipha_fragment_offset_and_flags) & 24988 IPH_MF; 24989 } 24990 offset_and_flags |= (uint16_t)(offset >> 3); 24991 offset_and_flags |= (uint16_t)frag_flag; 24992 /* Store the offset and flags in the IP header. */ 24993 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24994 24995 /* Store the length in the IP header. */ 24996 ip_len = (uint16_t)(len + hdr_len); 24997 ipha->ipha_length = htons(ip_len); 24998 24999 /* 25000 * Set the IP header checksum. Note that mp is just 25001 * the header, so this is easy to pass to ip_csum. 25002 */ 25003 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 25004 25005 /* Attach a transmit header, if any, and ship it. */ 25006 if (pkt_type == OB_PKT) { 25007 UPDATE_OB_PKT_COUNT(ire); 25008 } else { 25009 out_ill = (ill_t *)q->q_ptr; 25010 BUMP_MIB(out_ill->ill_ip_mib, 25011 ipIfStatsHCOutForwDatagrams); 25012 UPDATE_IB_PKT_COUNT(ire); 25013 } 25014 25015 if (ire->ire_flags & RTF_MULTIRT) { 25016 irb = ire->ire_bucket; 25017 ASSERT(irb != NULL); 25018 25019 multirt_send = B_TRUE; 25020 25021 /* 25022 * Save the original ire; we will need to restore it 25023 * for the tailing frags. 25024 */ 25025 save_ire = ire; 25026 IRE_REFHOLD(save_ire); 25027 } 25028 /* 25029 * Emission loop for this fragment, similar 25030 * to what is done for the first fragment. 25031 */ 25032 do { 25033 if (multirt_send) { 25034 /* 25035 * We are in a multiple send case, need to get 25036 * the next ire and make a copy of the packet. 25037 */ 25038 ASSERT(irb != NULL); 25039 IRB_REFHOLD(irb); 25040 for (ire1 = ire->ire_next; 25041 ire1 != NULL; 25042 ire1 = ire1->ire_next) { 25043 if (!(ire1->ire_flags & RTF_MULTIRT)) 25044 continue; 25045 if (ire1->ire_addr != ire->ire_addr) 25046 continue; 25047 if (ire1->ire_marks & 25048 (IRE_MARK_CONDEMNED| 25049 IRE_MARK_HIDDEN)) { 25050 continue; 25051 } 25052 /* 25053 * Ensure we do not exceed the MTU 25054 * of the next route. 25055 */ 25056 if (ire1->ire_max_frag < max_frag) { 25057 ip_multirt_bad_mtu(ire1, 25058 max_frag); 25059 continue; 25060 } 25061 25062 /* Got one. */ 25063 IRE_REFHOLD(ire1); 25064 break; 25065 } 25066 IRB_REFRELE(irb); 25067 25068 if (ire1 != NULL) { 25069 next_mp = copyb(mp); 25070 if ((next_mp == NULL) || 25071 ((mp->b_cont != NULL) && 25072 ((next_mp->b_cont = 25073 dupmsg(mp->b_cont)) == NULL))) { 25074 freemsg(next_mp); 25075 next_mp = NULL; 25076 ire_refrele(ire1); 25077 ire1 = NULL; 25078 } 25079 } 25080 25081 /* Last multiroute ire; don't loop anymore. */ 25082 if (ire1 == NULL) { 25083 multirt_send = B_FALSE; 25084 } 25085 } 25086 25087 /* Update transmit header */ 25088 ll_hdr_len = 0; 25089 LOCK_IRE_FP_MP(ire); 25090 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 25091 if (ll_hdr_mp != NULL) { 25092 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 25093 ll_hdr_len = MBLKL(ll_hdr_mp); 25094 } else { 25095 ll_hdr_mp = ire->ire_nce->nce_res_mp; 25096 } 25097 25098 if (!ll_hdr_mp) { 25099 xmit_mp = mp; 25100 25101 /* 25102 * We have link-layer header that can fit in 25103 * our mblk. 25104 */ 25105 } else if (mp->b_datap->db_ref == 1 && 25106 ll_hdr_len != 0 && 25107 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 25108 /* M_DATA fastpath */ 25109 mp->b_rptr -= ll_hdr_len; 25110 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 25111 ll_hdr_len); 25112 xmit_mp = mp; 25113 25114 /* 25115 * Case of res_mp OR the fastpath mp can't fit 25116 * in the mblk 25117 */ 25118 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 25119 xmit_mp->b_cont = mp; 25120 if (DB_CRED(mp) != NULL) 25121 mblk_setcred(xmit_mp, DB_CRED(mp)); 25122 /* Get priority marking, if any. */ 25123 if (DB_TYPE(xmit_mp) == M_DATA) 25124 xmit_mp->b_band = mp->b_band; 25125 25126 /* Corner case if copyb failed */ 25127 } else { 25128 /* 25129 * Exit both the replication and 25130 * fragmentation loops. 25131 */ 25132 UNLOCK_IRE_FP_MP(ire); 25133 goto drop_pkt; 25134 } 25135 UNLOCK_IRE_FP_MP(ire); 25136 25137 mp1 = mp; 25138 out_ill = (ill_t *)q->q_ptr; 25139 25140 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 25141 25142 DTRACE_PROBE4(ip4__physical__out__start, 25143 ill_t *, NULL, ill_t *, out_ill, 25144 ipha_t *, ipha, mblk_t *, xmit_mp); 25145 25146 FW_HOOKS(ipst->ips_ip4_physical_out_event, 25147 ipst->ips_ipv4firewall_physical_out, 25148 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 25149 25150 DTRACE_PROBE1(ip4__physical__out__end, 25151 mblk_t *, xmit_mp); 25152 25153 if (mp != mp1 && hdr_mp == mp1) 25154 hdr_mp = mp; 25155 if (mp != mp1 && mp_orig == mp1) 25156 mp_orig = mp; 25157 25158 if (xmit_mp != NULL) { 25159 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 25160 NULL, void_ip_t *, ipha, 25161 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 25162 ipha, ip6_t *, NULL, int, 0); 25163 25164 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0); 25165 25166 BUMP_MIB(out_ill->ill_ip_mib, 25167 ipIfStatsHCOutTransmits); 25168 UPDATE_MIB(out_ill->ill_ip_mib, 25169 ipIfStatsHCOutOctets, ip_len); 25170 25171 if (pkt_type != OB_PKT) { 25172 /* 25173 * Update the packet count of trailing 25174 * RTF_MULTIRT ires. 25175 */ 25176 UPDATE_OB_PKT_COUNT(ire); 25177 } 25178 } 25179 25180 /* All done if we just consumed the hdr_mp. */ 25181 if (mp == hdr_mp) { 25182 last_frag = B_TRUE; 25183 BUMP_MIB(out_ill->ill_ip_mib, 25184 ipIfStatsOutFragOKs); 25185 } 25186 25187 if (multirt_send) { 25188 /* 25189 * We are in a multiple send case; look for 25190 * the next ire and re-enter the loop. 25191 */ 25192 ASSERT(ire1); 25193 ASSERT(next_mp); 25194 /* REFRELE the current ire before looping */ 25195 ire_refrele(ire); 25196 ire = ire1; 25197 ire1 = NULL; 25198 q = ire->ire_stq; 25199 mp = next_mp; 25200 next_mp = NULL; 25201 } 25202 } while (multirt_send); 25203 /* 25204 * Restore the original ire; we need it for the 25205 * trailing frags 25206 */ 25207 if (save_ire != NULL) { 25208 ASSERT(ire1 == NULL); 25209 /* REFRELE the last iterated ire */ 25210 ire_refrele(ire); 25211 /* save_ire has been REFHOLDed */ 25212 ire = save_ire; 25213 q = ire->ire_stq; 25214 save_ire = NULL; 25215 } 25216 25217 if (last_frag) { 25218 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25219 "ip_wput_frag_end:(%S)", 25220 "consumed hdr_mp"); 25221 25222 if (first_ire != NULL) 25223 ire_refrele(first_ire); 25224 return; 25225 } 25226 /* Otherwise, advance and loop. */ 25227 offset += len; 25228 } 25229 25230 drop_pkt: 25231 /* Clean up following allocation failure. */ 25232 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25233 freemsg(mp); 25234 if (mp != hdr_mp) 25235 freeb(hdr_mp); 25236 if (mp != mp_orig) 25237 freemsg(mp_orig); 25238 25239 if (save_ire != NULL) 25240 IRE_REFRELE(save_ire); 25241 if (first_ire != NULL) 25242 ire_refrele(first_ire); 25243 25244 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25245 "ip_wput_frag_end:(%S)", 25246 "end--alloc failure"); 25247 } 25248 25249 /* 25250 * Copy the header plus those options which have the copy bit set 25251 */ 25252 static mblk_t * 25253 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25254 { 25255 mblk_t *mp; 25256 uchar_t *up; 25257 25258 /* 25259 * Quick check if we need to look for options without the copy bit 25260 * set 25261 */ 25262 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25263 if (!mp) 25264 return (mp); 25265 mp->b_rptr += ipst->ips_ip_wroff_extra; 25266 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25267 bcopy(rptr, mp->b_rptr, hdr_len); 25268 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25269 return (mp); 25270 } 25271 up = mp->b_rptr; 25272 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25273 up += IP_SIMPLE_HDR_LENGTH; 25274 rptr += IP_SIMPLE_HDR_LENGTH; 25275 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25276 while (hdr_len > 0) { 25277 uint32_t optval; 25278 uint32_t optlen; 25279 25280 optval = *rptr; 25281 if (optval == IPOPT_EOL) 25282 break; 25283 if (optval == IPOPT_NOP) 25284 optlen = 1; 25285 else 25286 optlen = rptr[1]; 25287 if (optval & IPOPT_COPY) { 25288 bcopy(rptr, up, optlen); 25289 up += optlen; 25290 } 25291 rptr += optlen; 25292 hdr_len -= optlen; 25293 } 25294 /* 25295 * Make sure that we drop an even number of words by filling 25296 * with EOL to the next word boundary. 25297 */ 25298 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25299 hdr_len & 0x3; hdr_len++) 25300 *up++ = IPOPT_EOL; 25301 mp->b_wptr = up; 25302 /* Update header length */ 25303 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25304 return (mp); 25305 } 25306 25307 /* 25308 * Delivery to local recipients including fanout to multiple recipients. 25309 * Does not do checksumming of UDP/TCP. 25310 * Note: q should be the read side queue for either the ill or conn. 25311 * Note: rq should be the read side q for the lower (ill) stream. 25312 * We don't send packets to IPPF processing, thus the last argument 25313 * to all the fanout calls are B_FALSE. 25314 */ 25315 void 25316 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25317 int fanout_flags, zoneid_t zoneid) 25318 { 25319 uint32_t protocol; 25320 mblk_t *first_mp; 25321 boolean_t mctl_present; 25322 int ire_type; 25323 #define rptr ((uchar_t *)ipha) 25324 ip_stack_t *ipst = ill->ill_ipst; 25325 25326 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25327 "ip_wput_local_start: q %p", q); 25328 25329 if (ire != NULL) { 25330 ire_type = ire->ire_type; 25331 } else { 25332 /* 25333 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25334 * packet is not multicast, we can't tell the ire type. 25335 */ 25336 ASSERT(CLASSD(ipha->ipha_dst)); 25337 ire_type = IRE_BROADCAST; 25338 } 25339 25340 first_mp = mp; 25341 if (first_mp->b_datap->db_type == M_CTL) { 25342 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25343 if (!io->ipsec_out_secure) { 25344 /* 25345 * This ipsec_out_t was allocated in ip_wput 25346 * for multicast packets to store the ill_index. 25347 * As this is being delivered locally, we don't 25348 * need this anymore. 25349 */ 25350 mp = first_mp->b_cont; 25351 freeb(first_mp); 25352 first_mp = mp; 25353 mctl_present = B_FALSE; 25354 } else { 25355 /* 25356 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25357 * security properties for the looped-back packet. 25358 */ 25359 mctl_present = B_TRUE; 25360 mp = first_mp->b_cont; 25361 ASSERT(mp != NULL); 25362 ipsec_out_to_in(first_mp); 25363 } 25364 } else { 25365 mctl_present = B_FALSE; 25366 } 25367 25368 DTRACE_PROBE4(ip4__loopback__in__start, 25369 ill_t *, ill, ill_t *, NULL, 25370 ipha_t *, ipha, mblk_t *, first_mp); 25371 25372 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25373 ipst->ips_ipv4firewall_loopback_in, 25374 ill, NULL, ipha, first_mp, mp, 0, ipst); 25375 25376 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25377 25378 if (first_mp == NULL) 25379 return; 25380 25381 if (ipst->ips_ipobs_enabled) { 25382 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25383 zoneid_t stackzoneid = netstackid_to_zoneid( 25384 ipst->ips_netstack->netstack_stackid); 25385 25386 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25387 /* 25388 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25389 * address. Restrict the lookup below to the destination zone. 25390 */ 25391 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25392 lookup_zoneid = zoneid; 25393 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25394 lookup_zoneid); 25395 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25396 IPV4_VERSION, 0, ipst); 25397 } 25398 25399 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25400 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25401 int, 1); 25402 25403 ipst->ips_loopback_packets++; 25404 25405 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25406 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25407 if (!IS_SIMPLE_IPH(ipha)) { 25408 ip_wput_local_options(ipha, ipst); 25409 } 25410 25411 protocol = ipha->ipha_protocol; 25412 switch (protocol) { 25413 case IPPROTO_ICMP: { 25414 ire_t *ire_zone; 25415 ilm_t *ilm; 25416 mblk_t *mp1; 25417 zoneid_t last_zoneid; 25418 25419 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25420 ASSERT(ire_type == IRE_BROADCAST); 25421 /* 25422 * In the multicast case, applications may have joined 25423 * the group from different zones, so we need to deliver 25424 * the packet to each of them. Loop through the 25425 * multicast memberships structures (ilm) on the receive 25426 * ill and send a copy of the packet up each matching 25427 * one. However, we don't do this for multicasts sent on 25428 * the loopback interface (PHYI_LOOPBACK flag set) as 25429 * they must stay in the sender's zone. 25430 * 25431 * ilm_add_v6() ensures that ilms in the same zone are 25432 * contiguous in the ill_ilm list. We use this property 25433 * to avoid sending duplicates needed when two 25434 * applications in the same zone join the same group on 25435 * different logical interfaces: we ignore the ilm if 25436 * it's zoneid is the same as the last matching one. 25437 * In addition, the sending of the packet for 25438 * ire_zoneid is delayed until all of the other ilms 25439 * have been exhausted. 25440 */ 25441 last_zoneid = -1; 25442 ILM_WALKER_HOLD(ill); 25443 for (ilm = ill->ill_ilm; ilm != NULL; 25444 ilm = ilm->ilm_next) { 25445 if ((ilm->ilm_flags & ILM_DELETED) || 25446 ipha->ipha_dst != ilm->ilm_addr || 25447 ilm->ilm_zoneid == last_zoneid || 25448 ilm->ilm_zoneid == zoneid || 25449 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25450 continue; 25451 mp1 = ip_copymsg(first_mp); 25452 if (mp1 == NULL) 25453 continue; 25454 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25455 mctl_present, B_FALSE, ill, 25456 ilm->ilm_zoneid); 25457 last_zoneid = ilm->ilm_zoneid; 25458 } 25459 ILM_WALKER_RELE(ill); 25460 /* 25461 * Loopback case: the sending endpoint has 25462 * IP_MULTICAST_LOOP disabled, therefore we don't 25463 * dispatch the multicast packet to the sending zone. 25464 */ 25465 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25466 freemsg(first_mp); 25467 return; 25468 } 25469 } else if (ire_type == IRE_BROADCAST) { 25470 /* 25471 * In the broadcast case, there may be many zones 25472 * which need a copy of the packet delivered to them. 25473 * There is one IRE_BROADCAST per broadcast address 25474 * and per zone; we walk those using a helper function. 25475 * In addition, the sending of the packet for zoneid is 25476 * delayed until all of the other ires have been 25477 * processed. 25478 */ 25479 IRB_REFHOLD(ire->ire_bucket); 25480 ire_zone = NULL; 25481 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25482 ire)) != NULL) { 25483 mp1 = ip_copymsg(first_mp); 25484 if (mp1 == NULL) 25485 continue; 25486 25487 UPDATE_IB_PKT_COUNT(ire_zone); 25488 ire_zone->ire_last_used_time = lbolt; 25489 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25490 mctl_present, B_FALSE, ill, 25491 ire_zone->ire_zoneid); 25492 } 25493 IRB_REFRELE(ire->ire_bucket); 25494 } 25495 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25496 0, mctl_present, B_FALSE, ill, zoneid); 25497 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25498 "ip_wput_local_end: q %p (%S)", 25499 q, "icmp"); 25500 return; 25501 } 25502 case IPPROTO_IGMP: 25503 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25504 /* Bad packet - discarded by igmp_input */ 25505 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25506 "ip_wput_local_end: q %p (%S)", 25507 q, "igmp_input--bad packet"); 25508 if (mctl_present) 25509 freeb(first_mp); 25510 return; 25511 } 25512 /* 25513 * igmp_input() may have returned the pulled up message. 25514 * So first_mp and ipha need to be reinitialized. 25515 */ 25516 ipha = (ipha_t *)mp->b_rptr; 25517 if (mctl_present) 25518 first_mp->b_cont = mp; 25519 else 25520 first_mp = mp; 25521 /* deliver to local raw users */ 25522 break; 25523 case IPPROTO_ENCAP: 25524 /* 25525 * This case is covered by either ip_fanout_proto, or by 25526 * the above security processing for self-tunneled packets. 25527 */ 25528 break; 25529 case IPPROTO_UDP: { 25530 uint16_t *up; 25531 uint32_t ports; 25532 25533 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25534 UDP_PORTS_OFFSET); 25535 /* Force a 'valid' checksum. */ 25536 up[3] = 0; 25537 25538 ports = *(uint32_t *)up; 25539 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25540 (ire_type == IRE_BROADCAST), 25541 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25542 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25543 ill, zoneid); 25544 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25545 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25546 return; 25547 } 25548 case IPPROTO_TCP: { 25549 25550 /* 25551 * For TCP, discard broadcast packets. 25552 */ 25553 if ((ushort_t)ire_type == IRE_BROADCAST) { 25554 freemsg(first_mp); 25555 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25556 ip2dbg(("ip_wput_local: discard broadcast\n")); 25557 return; 25558 } 25559 25560 if (mp->b_datap->db_type == M_DATA) { 25561 /* 25562 * M_DATA mblk, so init mblk (chain) for no struio(). 25563 */ 25564 mblk_t *mp1 = mp; 25565 25566 do { 25567 mp1->b_datap->db_struioflag = 0; 25568 } while ((mp1 = mp1->b_cont) != NULL); 25569 } 25570 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25571 <= mp->b_wptr); 25572 ip_fanout_tcp(q, first_mp, ill, ipha, 25573 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25574 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25575 mctl_present, B_FALSE, zoneid); 25576 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25577 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25578 return; 25579 } 25580 case IPPROTO_SCTP: 25581 { 25582 uint32_t ports; 25583 25584 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25585 ip_fanout_sctp(first_mp, ill, ipha, ports, 25586 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25587 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25588 return; 25589 } 25590 25591 default: 25592 break; 25593 } 25594 /* 25595 * Find a client for some other protocol. We give 25596 * copies to multiple clients, if more than one is 25597 * bound. 25598 */ 25599 ip_fanout_proto(q, first_mp, ill, ipha, 25600 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25601 mctl_present, B_FALSE, ill, zoneid); 25602 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25603 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25604 #undef rptr 25605 } 25606 25607 /* 25608 * Update any source route, record route, or timestamp options. 25609 * Check that we are at end of strict source route. 25610 * The options have been sanity checked by ip_wput_options(). 25611 */ 25612 static void 25613 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25614 { 25615 ipoptp_t opts; 25616 uchar_t *opt; 25617 uint8_t optval; 25618 uint8_t optlen; 25619 ipaddr_t dst; 25620 uint32_t ts; 25621 ire_t *ire; 25622 timestruc_t now; 25623 25624 ip2dbg(("ip_wput_local_options\n")); 25625 for (optval = ipoptp_first(&opts, ipha); 25626 optval != IPOPT_EOL; 25627 optval = ipoptp_next(&opts)) { 25628 opt = opts.ipoptp_cur; 25629 optlen = opts.ipoptp_len; 25630 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25631 switch (optval) { 25632 uint32_t off; 25633 case IPOPT_SSRR: 25634 case IPOPT_LSRR: 25635 off = opt[IPOPT_OFFSET]; 25636 off--; 25637 if (optlen < IP_ADDR_LEN || 25638 off > optlen - IP_ADDR_LEN) { 25639 /* End of source route */ 25640 break; 25641 } 25642 /* 25643 * This will only happen if two consecutive entries 25644 * in the source route contains our address or if 25645 * it is a packet with a loose source route which 25646 * reaches us before consuming the whole source route 25647 */ 25648 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25649 if (optval == IPOPT_SSRR) { 25650 return; 25651 } 25652 /* 25653 * Hack: instead of dropping the packet truncate the 25654 * source route to what has been used by filling the 25655 * rest with IPOPT_NOP. 25656 */ 25657 opt[IPOPT_OLEN] = (uint8_t)off; 25658 while (off < optlen) { 25659 opt[off++] = IPOPT_NOP; 25660 } 25661 break; 25662 case IPOPT_RR: 25663 off = opt[IPOPT_OFFSET]; 25664 off--; 25665 if (optlen < IP_ADDR_LEN || 25666 off > optlen - IP_ADDR_LEN) { 25667 /* No more room - ignore */ 25668 ip1dbg(( 25669 "ip_wput_forward_options: end of RR\n")); 25670 break; 25671 } 25672 dst = htonl(INADDR_LOOPBACK); 25673 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25674 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25675 break; 25676 case IPOPT_TS: 25677 /* Insert timestamp if there is romm */ 25678 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25679 case IPOPT_TS_TSONLY: 25680 off = IPOPT_TS_TIMELEN; 25681 break; 25682 case IPOPT_TS_PRESPEC: 25683 case IPOPT_TS_PRESPEC_RFC791: 25684 /* Verify that the address matched */ 25685 off = opt[IPOPT_OFFSET] - 1; 25686 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25687 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25688 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25689 ipst); 25690 if (ire == NULL) { 25691 /* Not for us */ 25692 break; 25693 } 25694 ire_refrele(ire); 25695 /* FALLTHRU */ 25696 case IPOPT_TS_TSANDADDR: 25697 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25698 break; 25699 default: 25700 /* 25701 * ip_*put_options should have already 25702 * dropped this packet. 25703 */ 25704 cmn_err(CE_PANIC, "ip_wput_local_options: " 25705 "unknown IT - bug in ip_wput_options?\n"); 25706 return; /* Keep "lint" happy */ 25707 } 25708 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25709 /* Increase overflow counter */ 25710 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25711 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25712 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25713 (off << 4); 25714 break; 25715 } 25716 off = opt[IPOPT_OFFSET] - 1; 25717 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25718 case IPOPT_TS_PRESPEC: 25719 case IPOPT_TS_PRESPEC_RFC791: 25720 case IPOPT_TS_TSANDADDR: 25721 dst = htonl(INADDR_LOOPBACK); 25722 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25723 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25724 /* FALLTHRU */ 25725 case IPOPT_TS_TSONLY: 25726 off = opt[IPOPT_OFFSET] - 1; 25727 /* Compute # of milliseconds since midnight */ 25728 gethrestime(&now); 25729 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25730 now.tv_nsec / (NANOSEC / MILLISEC); 25731 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25732 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25733 break; 25734 } 25735 break; 25736 } 25737 } 25738 } 25739 25740 /* 25741 * Send out a multicast packet on interface ipif. 25742 * The sender does not have an conn. 25743 * Caller verifies that this isn't a PHYI_LOOPBACK. 25744 */ 25745 void 25746 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25747 { 25748 ipha_t *ipha; 25749 ire_t *ire; 25750 ipaddr_t dst; 25751 mblk_t *first_mp; 25752 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25753 25754 /* igmp_sendpkt always allocates a ipsec_out_t */ 25755 ASSERT(mp->b_datap->db_type == M_CTL); 25756 ASSERT(!ipif->ipif_isv6); 25757 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25758 25759 first_mp = mp; 25760 mp = first_mp->b_cont; 25761 ASSERT(mp->b_datap->db_type == M_DATA); 25762 ipha = (ipha_t *)mp->b_rptr; 25763 25764 /* 25765 * Find an IRE which matches the destination and the outgoing 25766 * queue (i.e. the outgoing interface.) 25767 */ 25768 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25769 dst = ipif->ipif_pp_dst_addr; 25770 else 25771 dst = ipha->ipha_dst; 25772 /* 25773 * The source address has already been initialized by the 25774 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25775 * be sufficient rather than MATCH_IRE_IPIF. 25776 * 25777 * This function is used for sending IGMP packets. We need 25778 * to make sure that we send the packet out of the interface 25779 * (ipif->ipif_ill) where we joined the group. This is to 25780 * prevent from switches doing IGMP snooping to send us multicast 25781 * packets for a given group on the interface we have joined. 25782 * If we can't find an ire, igmp_sendpkt has already initialized 25783 * ipsec_out_attach_if so that this will not be load spread in 25784 * ip_newroute_ipif. 25785 */ 25786 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25787 MATCH_IRE_ILL, ipst); 25788 if (!ire) { 25789 /* 25790 * Mark this packet to make it be delivered to 25791 * ip_wput_ire after the new ire has been 25792 * created. 25793 */ 25794 mp->b_prev = NULL; 25795 mp->b_next = NULL; 25796 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25797 zoneid, &zero_info); 25798 return; 25799 } 25800 25801 /* 25802 * Honor the RTF_SETSRC flag; this is the only case 25803 * where we force this addr whatever the current src addr is, 25804 * because this address is set by igmp_sendpkt(), and 25805 * cannot be specified by any user. 25806 */ 25807 if (ire->ire_flags & RTF_SETSRC) { 25808 ipha->ipha_src = ire->ire_src_addr; 25809 } 25810 25811 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25812 } 25813 25814 /* 25815 * NOTE : This function does not ire_refrele the ire argument passed in. 25816 * 25817 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25818 * failure. The nce_fp_mp can vanish any time in the case of 25819 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25820 * the ire_lock to access the nce_fp_mp in this case. 25821 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25822 * prepending a fastpath message IPQoS processing must precede it, we also set 25823 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25824 * (IPQoS might have set the b_band for CoS marking). 25825 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25826 * must follow it so that IPQoS can mark the dl_priority field for CoS 25827 * marking, if needed. 25828 */ 25829 static mblk_t * 25830 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25831 uint32_t ill_index, ipha_t **iphap) 25832 { 25833 uint_t hlen; 25834 ipha_t *ipha; 25835 mblk_t *mp1; 25836 boolean_t qos_done = B_FALSE; 25837 uchar_t *ll_hdr; 25838 ip_stack_t *ipst = ire->ire_ipst; 25839 25840 #define rptr ((uchar_t *)ipha) 25841 25842 ipha = (ipha_t *)mp->b_rptr; 25843 hlen = 0; 25844 LOCK_IRE_FP_MP(ire); 25845 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25846 ASSERT(DB_TYPE(mp1) == M_DATA); 25847 /* Initiate IPPF processing */ 25848 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25849 UNLOCK_IRE_FP_MP(ire); 25850 ip_process(proc, &mp, ill_index); 25851 if (mp == NULL) 25852 return (NULL); 25853 25854 ipha = (ipha_t *)mp->b_rptr; 25855 LOCK_IRE_FP_MP(ire); 25856 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25857 qos_done = B_TRUE; 25858 goto no_fp_mp; 25859 } 25860 ASSERT(DB_TYPE(mp1) == M_DATA); 25861 } 25862 hlen = MBLKL(mp1); 25863 /* 25864 * Check if we have enough room to prepend fastpath 25865 * header 25866 */ 25867 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25868 ll_hdr = rptr - hlen; 25869 bcopy(mp1->b_rptr, ll_hdr, hlen); 25870 /* 25871 * Set the b_rptr to the start of the link layer 25872 * header 25873 */ 25874 mp->b_rptr = ll_hdr; 25875 mp1 = mp; 25876 } else { 25877 mp1 = copyb(mp1); 25878 if (mp1 == NULL) 25879 goto unlock_err; 25880 mp1->b_band = mp->b_band; 25881 mp1->b_cont = mp; 25882 /* 25883 * certain system generated traffic may not 25884 * have cred/label in ip header block. This 25885 * is true even for a labeled system. But for 25886 * labeled traffic, inherit the label in the 25887 * new header. 25888 */ 25889 if (DB_CRED(mp) != NULL) 25890 mblk_setcred(mp1, DB_CRED(mp)); 25891 /* 25892 * XXX disable ICK_VALID and compute checksum 25893 * here; can happen if nce_fp_mp changes and 25894 * it can't be copied now due to insufficient 25895 * space. (unlikely, fp mp can change, but it 25896 * does not increase in length) 25897 */ 25898 } 25899 UNLOCK_IRE_FP_MP(ire); 25900 } else { 25901 no_fp_mp: 25902 mp1 = copyb(ire->ire_nce->nce_res_mp); 25903 if (mp1 == NULL) { 25904 unlock_err: 25905 UNLOCK_IRE_FP_MP(ire); 25906 freemsg(mp); 25907 return (NULL); 25908 } 25909 UNLOCK_IRE_FP_MP(ire); 25910 mp1->b_cont = mp; 25911 /* 25912 * certain system generated traffic may not 25913 * have cred/label in ip header block. This 25914 * is true even for a labeled system. But for 25915 * labeled traffic, inherit the label in the 25916 * new header. 25917 */ 25918 if (DB_CRED(mp) != NULL) 25919 mblk_setcred(mp1, DB_CRED(mp)); 25920 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25921 ip_process(proc, &mp1, ill_index); 25922 if (mp1 == NULL) 25923 return (NULL); 25924 25925 if (mp1->b_cont == NULL) 25926 ipha = NULL; 25927 else 25928 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25929 } 25930 } 25931 25932 *iphap = ipha; 25933 return (mp1); 25934 #undef rptr 25935 } 25936 25937 /* 25938 * Finish the outbound IPsec processing for an IPv6 packet. This function 25939 * is called from ipsec_out_process() if the IPsec packet was processed 25940 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25941 * asynchronously. 25942 */ 25943 void 25944 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25945 ire_t *ire_arg) 25946 { 25947 in6_addr_t *v6dstp; 25948 ire_t *ire; 25949 mblk_t *mp; 25950 ip6_t *ip6h1; 25951 uint_t ill_index; 25952 ipsec_out_t *io; 25953 boolean_t attach_if, hwaccel; 25954 uint32_t flags = IP6_NO_IPPOLICY; 25955 int match_flags; 25956 zoneid_t zoneid; 25957 boolean_t ill_need_rele = B_FALSE; 25958 boolean_t ire_need_rele = B_FALSE; 25959 ip_stack_t *ipst; 25960 25961 mp = ipsec_mp->b_cont; 25962 ip6h1 = (ip6_t *)mp->b_rptr; 25963 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25964 ASSERT(io->ipsec_out_ns != NULL); 25965 ipst = io->ipsec_out_ns->netstack_ip; 25966 ill_index = io->ipsec_out_ill_index; 25967 if (io->ipsec_out_reachable) { 25968 flags |= IPV6_REACHABILITY_CONFIRMATION; 25969 } 25970 attach_if = io->ipsec_out_attach_if; 25971 hwaccel = io->ipsec_out_accelerated; 25972 zoneid = io->ipsec_out_zoneid; 25973 ASSERT(zoneid != ALL_ZONES); 25974 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25975 /* Multicast addresses should have non-zero ill_index. */ 25976 v6dstp = &ip6h->ip6_dst; 25977 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25978 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25979 ASSERT(!attach_if || ill_index != 0); 25980 if (ill_index != 0) { 25981 if (ill == NULL) { 25982 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25983 B_TRUE, ipst); 25984 25985 /* Failure case frees things for us. */ 25986 if (ill == NULL) 25987 return; 25988 25989 ill_need_rele = B_TRUE; 25990 } 25991 /* 25992 * If this packet needs to go out on a particular interface 25993 * honor it. 25994 */ 25995 if (attach_if) { 25996 match_flags = MATCH_IRE_ILL; 25997 25998 /* 25999 * Check if we need an ire that will not be 26000 * looked up by anybody else i.e. HIDDEN. 26001 */ 26002 if (ill_is_probeonly(ill)) { 26003 match_flags |= MATCH_IRE_MARK_HIDDEN; 26004 } 26005 } 26006 } 26007 ASSERT(mp != NULL); 26008 26009 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 26010 boolean_t unspec_src; 26011 ipif_t *ipif; 26012 26013 /* 26014 * Use the ill_index to get the right ill. 26015 */ 26016 unspec_src = io->ipsec_out_unspec_src; 26017 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26018 if (ipif == NULL) { 26019 if (ill_need_rele) 26020 ill_refrele(ill); 26021 freemsg(ipsec_mp); 26022 return; 26023 } 26024 26025 if (ire_arg != NULL) { 26026 ire = ire_arg; 26027 } else { 26028 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 26029 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26030 ire_need_rele = B_TRUE; 26031 } 26032 if (ire != NULL) { 26033 ipif_refrele(ipif); 26034 /* 26035 * XXX Do the multicast forwarding now, as the IPsec 26036 * processing has been done. 26037 */ 26038 goto send; 26039 } 26040 26041 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 26042 mp->b_prev = NULL; 26043 mp->b_next = NULL; 26044 26045 /* 26046 * If the IPsec packet was processed asynchronously, 26047 * drop it now. 26048 */ 26049 if (q == NULL) { 26050 if (ill_need_rele) 26051 ill_refrele(ill); 26052 freemsg(ipsec_mp); 26053 return; 26054 } 26055 26056 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 26057 unspec_src, zoneid); 26058 ipif_refrele(ipif); 26059 } else { 26060 if (attach_if) { 26061 ipif_t *ipif; 26062 26063 ipif = ipif_get_next_ipif(NULL, ill); 26064 if (ipif == NULL) { 26065 if (ill_need_rele) 26066 ill_refrele(ill); 26067 freemsg(ipsec_mp); 26068 return; 26069 } 26070 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 26071 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26072 ire_need_rele = B_TRUE; 26073 ipif_refrele(ipif); 26074 } else { 26075 if (ire_arg != NULL) { 26076 ire = ire_arg; 26077 } else { 26078 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 26079 ipst); 26080 ire_need_rele = B_TRUE; 26081 } 26082 } 26083 if (ire != NULL) 26084 goto send; 26085 /* 26086 * ire disappeared underneath. 26087 * 26088 * What we need to do here is the ip_newroute 26089 * logic to get the ire without doing the IPsec 26090 * processing. Follow the same old path. But this 26091 * time, ip_wput or ire_add_then_send will call us 26092 * directly as all the IPsec operations are done. 26093 */ 26094 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 26095 mp->b_prev = NULL; 26096 mp->b_next = NULL; 26097 26098 /* 26099 * If the IPsec packet was processed asynchronously, 26100 * drop it now. 26101 */ 26102 if (q == NULL) { 26103 if (ill_need_rele) 26104 ill_refrele(ill); 26105 freemsg(ipsec_mp); 26106 return; 26107 } 26108 26109 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 26110 zoneid, ipst); 26111 } 26112 if (ill != NULL && ill_need_rele) 26113 ill_refrele(ill); 26114 return; 26115 send: 26116 if (ill != NULL && ill_need_rele) 26117 ill_refrele(ill); 26118 26119 /* Local delivery */ 26120 if (ire->ire_stq == NULL) { 26121 ill_t *out_ill; 26122 ASSERT(q != NULL); 26123 26124 /* PFHooks: LOOPBACK_OUT */ 26125 out_ill = ire_to_ill(ire); 26126 26127 /* 26128 * DTrace this as ip:::send. A blocked packet will fire the 26129 * send probe, but not the receive probe. 26130 */ 26131 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26132 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 26133 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 26134 26135 DTRACE_PROBE4(ip6__loopback__out__start, 26136 ill_t *, NULL, ill_t *, out_ill, 26137 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 26138 26139 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 26140 ipst->ips_ipv6firewall_loopback_out, 26141 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 26142 26143 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 26144 26145 if (ipsec_mp != NULL) { 26146 ip_wput_local_v6(RD(q), out_ill, 26147 ip6h, ipsec_mp, ire, 0, zoneid); 26148 } 26149 if (ire_need_rele) 26150 ire_refrele(ire); 26151 return; 26152 } 26153 /* 26154 * Everything is done. Send it out on the wire. 26155 * We force the insertion of a fragment header using the 26156 * IPH_FRAG_HDR flag in two cases: 26157 * - after reception of an ICMPv6 "packet too big" message 26158 * with a MTU < 1280 (cf. RFC 2460 section 5) 26159 * - for multirouted IPv6 packets, so that the receiver can 26160 * discard duplicates according to their fragment identifier 26161 */ 26162 /* XXX fix flow control problems. */ 26163 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 26164 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 26165 if (hwaccel) { 26166 /* 26167 * hardware acceleration does not handle these 26168 * "slow path" cases. 26169 */ 26170 /* IPsec KSTATS: should bump bean counter here. */ 26171 if (ire_need_rele) 26172 ire_refrele(ire); 26173 freemsg(ipsec_mp); 26174 return; 26175 } 26176 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 26177 (mp->b_cont ? msgdsize(mp) : 26178 mp->b_wptr - (uchar_t *)ip6h)) { 26179 /* IPsec KSTATS: should bump bean counter here. */ 26180 ip0dbg(("Packet length mismatch: %d, %ld\n", 26181 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 26182 msgdsize(mp))); 26183 if (ire_need_rele) 26184 ire_refrele(ire); 26185 freemsg(ipsec_mp); 26186 return; 26187 } 26188 ASSERT(mp->b_prev == NULL); 26189 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 26190 ntohs(ip6h->ip6_plen) + 26191 IPV6_HDR_LEN, ire->ire_max_frag)); 26192 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 26193 ire->ire_max_frag); 26194 } else { 26195 UPDATE_OB_PKT_COUNT(ire); 26196 ire->ire_last_used_time = lbolt; 26197 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 26198 } 26199 if (ire_need_rele) 26200 ire_refrele(ire); 26201 freeb(ipsec_mp); 26202 } 26203 26204 void 26205 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 26206 { 26207 mblk_t *hada_mp; /* attributes M_CTL mblk */ 26208 da_ipsec_t *hada; /* data attributes */ 26209 ill_t *ill = (ill_t *)q->q_ptr; 26210 26211 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 26212 26213 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 26214 /* IPsec KSTATS: Bump lose counter here! */ 26215 freemsg(mp); 26216 return; 26217 } 26218 26219 /* 26220 * It's an IPsec packet that must be 26221 * accelerated by the Provider, and the 26222 * outbound ill is IPsec acceleration capable. 26223 * Prepends the mblk with an IPHADA_M_CTL, and ship it 26224 * to the ill. 26225 * IPsec KSTATS: should bump packet counter here. 26226 */ 26227 26228 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26229 if (hada_mp == NULL) { 26230 /* IPsec KSTATS: should bump packet counter here. */ 26231 freemsg(mp); 26232 return; 26233 } 26234 26235 hada_mp->b_datap->db_type = M_CTL; 26236 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26237 hada_mp->b_cont = mp; 26238 26239 hada = (da_ipsec_t *)hada_mp->b_rptr; 26240 bzero(hada, sizeof (da_ipsec_t)); 26241 hada->da_type = IPHADA_M_CTL; 26242 26243 putnext(q, hada_mp); 26244 } 26245 26246 /* 26247 * Finish the outbound IPsec processing. This function is called from 26248 * ipsec_out_process() if the IPsec packet was processed 26249 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26250 * asynchronously. 26251 */ 26252 void 26253 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26254 ire_t *ire_arg) 26255 { 26256 uint32_t v_hlen_tos_len; 26257 ipaddr_t dst; 26258 ipif_t *ipif = NULL; 26259 ire_t *ire; 26260 ire_t *ire1 = NULL; 26261 mblk_t *next_mp = NULL; 26262 uint32_t max_frag; 26263 boolean_t multirt_send = B_FALSE; 26264 mblk_t *mp; 26265 ipha_t *ipha1; 26266 uint_t ill_index; 26267 ipsec_out_t *io; 26268 boolean_t attach_if; 26269 int match_flags; 26270 irb_t *irb = NULL; 26271 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26272 zoneid_t zoneid; 26273 ipxmit_state_t pktxmit_state; 26274 ip_stack_t *ipst; 26275 26276 #ifdef _BIG_ENDIAN 26277 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26278 #else 26279 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26280 #endif 26281 26282 mp = ipsec_mp->b_cont; 26283 ipha1 = (ipha_t *)mp->b_rptr; 26284 ASSERT(mp != NULL); 26285 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26286 dst = ipha->ipha_dst; 26287 26288 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26289 ill_index = io->ipsec_out_ill_index; 26290 attach_if = io->ipsec_out_attach_if; 26291 zoneid = io->ipsec_out_zoneid; 26292 ASSERT(zoneid != ALL_ZONES); 26293 ipst = io->ipsec_out_ns->netstack_ip; 26294 ASSERT(io->ipsec_out_ns != NULL); 26295 26296 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26297 if (ill_index != 0) { 26298 if (ill == NULL) { 26299 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26300 ill_index, B_FALSE, ipst); 26301 26302 /* Failure case frees things for us. */ 26303 if (ill == NULL) 26304 return; 26305 26306 ill_need_rele = B_TRUE; 26307 } 26308 /* 26309 * If this packet needs to go out on a particular interface 26310 * honor it. 26311 */ 26312 if (attach_if) { 26313 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26314 26315 /* 26316 * Check if we need an ire that will not be 26317 * looked up by anybody else i.e. HIDDEN. 26318 */ 26319 if (ill_is_probeonly(ill)) { 26320 match_flags |= MATCH_IRE_MARK_HIDDEN; 26321 } 26322 } 26323 } 26324 26325 if (CLASSD(dst)) { 26326 boolean_t conn_dontroute; 26327 /* 26328 * Use the ill_index to get the right ipif. 26329 */ 26330 conn_dontroute = io->ipsec_out_dontroute; 26331 if (ill_index == 0) 26332 ipif = ipif_lookup_group(dst, zoneid, ipst); 26333 else 26334 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26335 if (ipif == NULL) { 26336 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26337 " multicast\n")); 26338 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26339 freemsg(ipsec_mp); 26340 goto done; 26341 } 26342 /* 26343 * ipha_src has already been intialized with the 26344 * value of the ipif in ip_wput. All we need now is 26345 * an ire to send this downstream. 26346 */ 26347 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26348 MBLK_GETLABEL(mp), match_flags, ipst); 26349 if (ire != NULL) { 26350 ill_t *ill1; 26351 /* 26352 * Do the multicast forwarding now, as the IPsec 26353 * processing has been done. 26354 */ 26355 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26356 (ill1 = ire_to_ill(ire))) { 26357 if (ip_mforward(ill1, ipha, mp)) { 26358 freemsg(ipsec_mp); 26359 ip1dbg(("ip_wput_ipsec_out: mforward " 26360 "failed\n")); 26361 ire_refrele(ire); 26362 goto done; 26363 } 26364 } 26365 goto send; 26366 } 26367 26368 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26369 mp->b_prev = NULL; 26370 mp->b_next = NULL; 26371 26372 /* 26373 * If the IPsec packet was processed asynchronously, 26374 * drop it now. 26375 */ 26376 if (q == NULL) { 26377 freemsg(ipsec_mp); 26378 goto done; 26379 } 26380 26381 /* 26382 * We may be using a wrong ipif to create the ire. 26383 * But it is okay as the source address is assigned 26384 * for the packet already. Next outbound packet would 26385 * create the IRE with the right IPIF in ip_wput. 26386 * 26387 * Also handle RTF_MULTIRT routes. 26388 */ 26389 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26390 zoneid, &zero_info); 26391 } else { 26392 if (attach_if) { 26393 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26394 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26395 } else { 26396 if (ire_arg != NULL) { 26397 ire = ire_arg; 26398 ire_need_rele = B_FALSE; 26399 } else { 26400 ire = ire_cache_lookup(dst, zoneid, 26401 MBLK_GETLABEL(mp), ipst); 26402 } 26403 } 26404 if (ire != NULL) { 26405 goto send; 26406 } 26407 26408 /* 26409 * ire disappeared underneath. 26410 * 26411 * What we need to do here is the ip_newroute 26412 * logic to get the ire without doing the IPsec 26413 * processing. Follow the same old path. But this 26414 * time, ip_wput or ire_add_then_put will call us 26415 * directly as all the IPsec operations are done. 26416 */ 26417 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26418 mp->b_prev = NULL; 26419 mp->b_next = NULL; 26420 26421 /* 26422 * If the IPsec packet was processed asynchronously, 26423 * drop it now. 26424 */ 26425 if (q == NULL) { 26426 freemsg(ipsec_mp); 26427 goto done; 26428 } 26429 26430 /* 26431 * Since we're going through ip_newroute() again, we 26432 * need to make sure we don't: 26433 * 26434 * 1.) Trigger the ASSERT() with the ipha_ident 26435 * overloading. 26436 * 2.) Redo transport-layer checksumming, since we've 26437 * already done all that to get this far. 26438 * 26439 * The easiest way not do either of the above is to set 26440 * the ipha_ident field to IP_HDR_INCLUDED. 26441 */ 26442 ipha->ipha_ident = IP_HDR_INCLUDED; 26443 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26444 zoneid, ipst); 26445 } 26446 goto done; 26447 send: 26448 if (ire->ire_stq == NULL) { 26449 ill_t *out_ill; 26450 /* 26451 * Loopbacks go through ip_wput_local except for one case. 26452 * We come here if we generate a icmp_frag_needed message 26453 * after IPsec processing is over. When this function calls 26454 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26455 * icmp_frag_needed. The message generated comes back here 26456 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26457 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26458 * source address as it is usually set in ip_wput_ire. As 26459 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26460 * and we end up here. We can't enter ip_wput_ire once the 26461 * IPsec processing is over and hence we need to do it here. 26462 */ 26463 ASSERT(q != NULL); 26464 UPDATE_OB_PKT_COUNT(ire); 26465 ire->ire_last_used_time = lbolt; 26466 if (ipha->ipha_src == 0) 26467 ipha->ipha_src = ire->ire_src_addr; 26468 26469 /* PFHooks: LOOPBACK_OUT */ 26470 out_ill = ire_to_ill(ire); 26471 26472 /* 26473 * DTrace this as ip:::send. A blocked packet will fire the 26474 * send probe, but not the receive probe. 26475 */ 26476 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26477 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26478 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26479 26480 DTRACE_PROBE4(ip4__loopback__out__start, 26481 ill_t *, NULL, ill_t *, out_ill, 26482 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26483 26484 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26485 ipst->ips_ipv4firewall_loopback_out, 26486 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26487 26488 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26489 26490 if (ipsec_mp != NULL) 26491 ip_wput_local(RD(q), out_ill, 26492 ipha, ipsec_mp, ire, 0, zoneid); 26493 if (ire_need_rele) 26494 ire_refrele(ire); 26495 goto done; 26496 } 26497 26498 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26499 /* 26500 * We are through with IPsec processing. 26501 * Fragment this and send it on the wire. 26502 */ 26503 if (io->ipsec_out_accelerated) { 26504 /* 26505 * The packet has been accelerated but must 26506 * be fragmented. This should not happen 26507 * since AH and ESP must not accelerate 26508 * packets that need fragmentation, however 26509 * the configuration could have changed 26510 * since the AH or ESP processing. 26511 * Drop packet. 26512 * IPsec KSTATS: bump bean counter here. 26513 */ 26514 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26515 "fragmented accelerated packet!\n")); 26516 freemsg(ipsec_mp); 26517 } else { 26518 ip_wput_ire_fragmentit(ipsec_mp, ire, 26519 zoneid, ipst, NULL); 26520 } 26521 if (ire_need_rele) 26522 ire_refrele(ire); 26523 goto done; 26524 } 26525 26526 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26527 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26528 (void *)ire->ire_ipif, (void *)ipif)); 26529 26530 /* 26531 * Multiroute the secured packet, unless IPsec really 26532 * requires the packet to go out only through a particular 26533 * interface. 26534 */ 26535 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26536 ire_t *first_ire; 26537 irb = ire->ire_bucket; 26538 ASSERT(irb != NULL); 26539 /* 26540 * This ire has been looked up as the one that 26541 * goes through the given ipif; 26542 * make sure we do not omit any other multiroute ire 26543 * that may be present in the bucket before this one. 26544 */ 26545 IRB_REFHOLD(irb); 26546 for (first_ire = irb->irb_ire; 26547 first_ire != NULL; 26548 first_ire = first_ire->ire_next) { 26549 if ((first_ire->ire_flags & RTF_MULTIRT) && 26550 (first_ire->ire_addr == ire->ire_addr) && 26551 !(first_ire->ire_marks & 26552 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26553 break; 26554 } 26555 } 26556 26557 if ((first_ire != NULL) && (first_ire != ire)) { 26558 /* 26559 * Don't change the ire if the packet must 26560 * be fragmented if sent via this new one. 26561 */ 26562 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26563 IRE_REFHOLD(first_ire); 26564 if (ire_need_rele) 26565 ire_refrele(ire); 26566 else 26567 ire_need_rele = B_TRUE; 26568 ire = first_ire; 26569 } 26570 } 26571 IRB_REFRELE(irb); 26572 26573 multirt_send = B_TRUE; 26574 max_frag = ire->ire_max_frag; 26575 } else { 26576 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26577 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26578 "flag, attach_if %d\n", attach_if)); 26579 } 26580 } 26581 26582 /* 26583 * In most cases, the emission loop below is entered only once. 26584 * Only in the case where the ire holds the RTF_MULTIRT 26585 * flag, we loop to process all RTF_MULTIRT ires in the 26586 * bucket, and send the packet through all crossed 26587 * RTF_MULTIRT routes. 26588 */ 26589 do { 26590 if (multirt_send) { 26591 /* 26592 * ire1 holds here the next ire to process in the 26593 * bucket. If multirouting is expected, 26594 * any non-RTF_MULTIRT ire that has the 26595 * right destination address is ignored. 26596 */ 26597 ASSERT(irb != NULL); 26598 IRB_REFHOLD(irb); 26599 for (ire1 = ire->ire_next; 26600 ire1 != NULL; 26601 ire1 = ire1->ire_next) { 26602 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26603 continue; 26604 if (ire1->ire_addr != ire->ire_addr) 26605 continue; 26606 if (ire1->ire_marks & 26607 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26608 continue; 26609 /* No loopback here */ 26610 if (ire1->ire_stq == NULL) 26611 continue; 26612 /* 26613 * Ensure we do not exceed the MTU 26614 * of the next route. 26615 */ 26616 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26617 ip_multirt_bad_mtu(ire1, max_frag); 26618 continue; 26619 } 26620 26621 IRE_REFHOLD(ire1); 26622 break; 26623 } 26624 IRB_REFRELE(irb); 26625 if (ire1 != NULL) { 26626 /* 26627 * We are in a multiple send case, need to 26628 * make a copy of the packet. 26629 */ 26630 next_mp = copymsg(ipsec_mp); 26631 if (next_mp == NULL) { 26632 ire_refrele(ire1); 26633 ire1 = NULL; 26634 } 26635 } 26636 } 26637 /* 26638 * Everything is done. Send it out on the wire 26639 * 26640 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26641 * either send it on the wire or, in the case of 26642 * HW acceleration, call ipsec_hw_putnext. 26643 */ 26644 if (ire->ire_nce && 26645 ire->ire_nce->nce_state != ND_REACHABLE) { 26646 DTRACE_PROBE2(ip__wput__ipsec__bail, 26647 (ire_t *), ire, (mblk_t *), ipsec_mp); 26648 /* 26649 * If ire's link-layer is unresolved (this 26650 * would only happen if the incomplete ire 26651 * was added to cachetable via forwarding path) 26652 * don't bother going to ip_xmit_v4. Just drop the 26653 * packet. 26654 * There is a slight risk here, in that, if we 26655 * have the forwarding path create an incomplete 26656 * IRE, then until the IRE is completed, any 26657 * transmitted IPsec packets will be dropped 26658 * instead of being queued waiting for resolution. 26659 * 26660 * But the likelihood of a forwarding packet and a wput 26661 * packet sending to the same dst at the same time 26662 * and there not yet be an ARP entry for it is small. 26663 * Furthermore, if this actually happens, it might 26664 * be likely that wput would generate multiple 26665 * packets (and forwarding would also have a train 26666 * of packets) for that destination. If this is 26667 * the case, some of them would have been dropped 26668 * anyway, since ARP only queues a few packets while 26669 * waiting for resolution 26670 * 26671 * NOTE: We should really call ip_xmit_v4, 26672 * and let it queue the packet and send the 26673 * ARP query and have ARP come back thus: 26674 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26675 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26676 * hw accel work. But it's too complex to get 26677 * the IPsec hw acceleration approach to fit 26678 * well with ip_xmit_v4 doing ARP without 26679 * doing IPsec simplification. For now, we just 26680 * poke ip_xmit_v4 to trigger the arp resolve, so 26681 * that we can continue with the send on the next 26682 * attempt. 26683 * 26684 * XXX THis should be revisited, when 26685 * the IPsec/IP interaction is cleaned up 26686 */ 26687 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26688 " - dropping packet\n")); 26689 freemsg(ipsec_mp); 26690 /* 26691 * Call ip_xmit_v4() to trigger ARP query 26692 * in case the nce_state is ND_INITIAL 26693 */ 26694 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26695 goto drop_pkt; 26696 } 26697 26698 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26699 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26700 mblk_t *, ipsec_mp); 26701 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26702 ipst->ips_ipv4firewall_physical_out, NULL, 26703 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26704 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26705 if (ipsec_mp == NULL) 26706 goto drop_pkt; 26707 26708 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26709 pktxmit_state = ip_xmit_v4(mp, ire, 26710 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26711 26712 if ((pktxmit_state == SEND_FAILED) || 26713 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26714 26715 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26716 drop_pkt: 26717 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26718 ipIfStatsOutDiscards); 26719 if (ire_need_rele) 26720 ire_refrele(ire); 26721 if (ire1 != NULL) { 26722 ire_refrele(ire1); 26723 freemsg(next_mp); 26724 } 26725 goto done; 26726 } 26727 26728 freeb(ipsec_mp); 26729 if (ire_need_rele) 26730 ire_refrele(ire); 26731 26732 if (ire1 != NULL) { 26733 ire = ire1; 26734 ire_need_rele = B_TRUE; 26735 ASSERT(next_mp); 26736 ipsec_mp = next_mp; 26737 mp = ipsec_mp->b_cont; 26738 ire1 = NULL; 26739 next_mp = NULL; 26740 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26741 } else { 26742 multirt_send = B_FALSE; 26743 } 26744 } while (multirt_send); 26745 done: 26746 if (ill != NULL && ill_need_rele) 26747 ill_refrele(ill); 26748 if (ipif != NULL) 26749 ipif_refrele(ipif); 26750 } 26751 26752 /* 26753 * Get the ill corresponding to the specified ire, and compare its 26754 * capabilities with the protocol and algorithms specified by the 26755 * the SA obtained from ipsec_out. If they match, annotate the 26756 * ipsec_out structure to indicate that the packet needs acceleration. 26757 * 26758 * 26759 * A packet is eligible for outbound hardware acceleration if the 26760 * following conditions are satisfied: 26761 * 26762 * 1. the packet will not be fragmented 26763 * 2. the provider supports the algorithm 26764 * 3. there is no pending control message being exchanged 26765 * 4. snoop is not attached 26766 * 5. the destination address is not a broadcast or multicast address. 26767 * 26768 * Rationale: 26769 * - Hardware drivers do not support fragmentation with 26770 * the current interface. 26771 * - snoop, multicast, and broadcast may result in exposure of 26772 * a cleartext datagram. 26773 * We check all five of these conditions here. 26774 * 26775 * XXX would like to nuke "ire_t *" parameter here; problem is that 26776 * IRE is only way to figure out if a v4 address is a broadcast and 26777 * thus ineligible for acceleration... 26778 */ 26779 static void 26780 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26781 { 26782 ipsec_out_t *io; 26783 mblk_t *data_mp; 26784 uint_t plen, overhead; 26785 ip_stack_t *ipst; 26786 26787 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26788 return; 26789 26790 if (ill == NULL) 26791 return; 26792 ipst = ill->ill_ipst; 26793 /* 26794 * Destination address is a broadcast or multicast. Punt. 26795 */ 26796 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26797 IRE_LOCAL))) 26798 return; 26799 26800 data_mp = ipsec_mp->b_cont; 26801 26802 if (ill->ill_isv6) { 26803 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26804 26805 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26806 return; 26807 26808 plen = ip6h->ip6_plen; 26809 } else { 26810 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26811 26812 if (CLASSD(ipha->ipha_dst)) 26813 return; 26814 26815 plen = ipha->ipha_length; 26816 } 26817 /* 26818 * Is there a pending DLPI control message being exchanged 26819 * between IP/IPsec and the DLS Provider? If there is, it 26820 * could be a SADB update, and the state of the DLS Provider 26821 * SADB might not be in sync with the SADB maintained by 26822 * IPsec. To avoid dropping packets or using the wrong keying 26823 * material, we do not accelerate this packet. 26824 */ 26825 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26826 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26827 "ill_dlpi_pending! don't accelerate packet\n")); 26828 return; 26829 } 26830 26831 /* 26832 * Is the Provider in promiscous mode? If it does, we don't 26833 * accelerate the packet since it will bounce back up to the 26834 * listeners in the clear. 26835 */ 26836 if (ill->ill_promisc_on_phys) { 26837 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26838 "ill in promiscous mode, don't accelerate packet\n")); 26839 return; 26840 } 26841 26842 /* 26843 * Will the packet require fragmentation? 26844 */ 26845 26846 /* 26847 * IPsec ESP note: this is a pessimistic estimate, but the same 26848 * as is used elsewhere. 26849 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26850 * + 2-byte trailer 26851 */ 26852 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26853 IPSEC_BASE_ESP_HDR_SIZE(sa); 26854 26855 if ((plen + overhead) > ill->ill_max_mtu) 26856 return; 26857 26858 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26859 26860 /* 26861 * Can the ill accelerate this IPsec protocol and algorithm 26862 * specified by the SA? 26863 */ 26864 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26865 ill->ill_isv6, sa, ipst->ips_netstack)) { 26866 return; 26867 } 26868 26869 /* 26870 * Tell AH or ESP that the outbound ill is capable of 26871 * accelerating this packet. 26872 */ 26873 io->ipsec_out_is_capab_ill = B_TRUE; 26874 } 26875 26876 /* 26877 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26878 * 26879 * If this function returns B_TRUE, the requested SA's have been filled 26880 * into the ipsec_out_*_sa pointers. 26881 * 26882 * If the function returns B_FALSE, the packet has been "consumed", most 26883 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26884 * 26885 * The SA references created by the protocol-specific "select" 26886 * function will be released when the ipsec_mp is freed, thanks to the 26887 * ipsec_out_free destructor -- see spd.c. 26888 */ 26889 static boolean_t 26890 ipsec_out_select_sa(mblk_t *ipsec_mp) 26891 { 26892 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26893 ipsec_out_t *io; 26894 ipsec_policy_t *pp; 26895 ipsec_action_t *ap; 26896 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26897 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26898 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26899 26900 if (!io->ipsec_out_secure) { 26901 /* 26902 * We came here by mistake. 26903 * Don't bother with ipsec processing 26904 * We should "discourage" this path in the future. 26905 */ 26906 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26907 return (B_FALSE); 26908 } 26909 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26910 ASSERT((io->ipsec_out_policy != NULL) || 26911 (io->ipsec_out_act != NULL)); 26912 26913 ASSERT(io->ipsec_out_failed == B_FALSE); 26914 26915 /* 26916 * IPsec processing has started. 26917 */ 26918 io->ipsec_out_proc_begin = B_TRUE; 26919 ap = io->ipsec_out_act; 26920 if (ap == NULL) { 26921 pp = io->ipsec_out_policy; 26922 ASSERT(pp != NULL); 26923 ap = pp->ipsp_act; 26924 ASSERT(ap != NULL); 26925 } 26926 26927 /* 26928 * We have an action. now, let's select SA's. 26929 * (In the future, we can cache this in the conn_t..) 26930 */ 26931 if (ap->ipa_want_esp) { 26932 if (io->ipsec_out_esp_sa == NULL) { 26933 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26934 IPPROTO_ESP); 26935 } 26936 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26937 } 26938 26939 if (ap->ipa_want_ah) { 26940 if (io->ipsec_out_ah_sa == NULL) { 26941 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26942 IPPROTO_AH); 26943 } 26944 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26945 /* 26946 * The ESP and AH processing order needs to be preserved 26947 * when both protocols are required (ESP should be applied 26948 * before AH for an outbound packet). Force an ESP ACQUIRE 26949 * when both ESP and AH are required, and an AH ACQUIRE 26950 * is needed. 26951 */ 26952 if (ap->ipa_want_esp && need_ah_acquire) 26953 need_esp_acquire = B_TRUE; 26954 } 26955 26956 /* 26957 * Send an ACQUIRE (extended, regular, or both) if we need one. 26958 * Release SAs that got referenced, but will not be used until we 26959 * acquire _all_ of the SAs we need. 26960 */ 26961 if (need_ah_acquire || need_esp_acquire) { 26962 if (io->ipsec_out_ah_sa != NULL) { 26963 IPSA_REFRELE(io->ipsec_out_ah_sa); 26964 io->ipsec_out_ah_sa = NULL; 26965 } 26966 if (io->ipsec_out_esp_sa != NULL) { 26967 IPSA_REFRELE(io->ipsec_out_esp_sa); 26968 io->ipsec_out_esp_sa = NULL; 26969 } 26970 26971 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26972 return (B_FALSE); 26973 } 26974 26975 return (B_TRUE); 26976 } 26977 26978 /* 26979 * Process an IPSEC_OUT message and see what you can 26980 * do with it. 26981 * IPQoS Notes: 26982 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26983 * IPsec. 26984 * XXX would like to nuke ire_t. 26985 * XXX ill_index better be "real" 26986 */ 26987 void 26988 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26989 { 26990 ipsec_out_t *io; 26991 ipsec_policy_t *pp; 26992 ipsec_action_t *ap; 26993 ipha_t *ipha; 26994 ip6_t *ip6h; 26995 mblk_t *mp; 26996 ill_t *ill; 26997 zoneid_t zoneid; 26998 ipsec_status_t ipsec_rc; 26999 boolean_t ill_need_rele = B_FALSE; 27000 ip_stack_t *ipst; 27001 ipsec_stack_t *ipss; 27002 27003 io = (ipsec_out_t *)ipsec_mp->b_rptr; 27004 ASSERT(io->ipsec_out_type == IPSEC_OUT); 27005 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 27006 ipst = io->ipsec_out_ns->netstack_ip; 27007 mp = ipsec_mp->b_cont; 27008 27009 /* 27010 * Initiate IPPF processing. We do it here to account for packets 27011 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 27012 * We can check for ipsec_out_proc_begin even for such packets, as 27013 * they will always be false (asserted below). 27014 */ 27015 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 27016 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 27017 io->ipsec_out_ill_index : ill_index); 27018 if (mp == NULL) { 27019 ip2dbg(("ipsec_out_process: packet dropped "\ 27020 "during IPPF processing\n")); 27021 freeb(ipsec_mp); 27022 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 27023 return; 27024 } 27025 } 27026 27027 if (!io->ipsec_out_secure) { 27028 /* 27029 * We came here by mistake. 27030 * Don't bother with ipsec processing 27031 * Should "discourage" this path in the future. 27032 */ 27033 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 27034 goto done; 27035 } 27036 ASSERT(io->ipsec_out_need_policy == B_FALSE); 27037 ASSERT((io->ipsec_out_policy != NULL) || 27038 (io->ipsec_out_act != NULL)); 27039 ASSERT(io->ipsec_out_failed == B_FALSE); 27040 27041 ipss = ipst->ips_netstack->netstack_ipsec; 27042 if (!ipsec_loaded(ipss)) { 27043 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 27044 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27045 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 27046 } else { 27047 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 27048 } 27049 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 27050 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 27051 &ipss->ipsec_dropper); 27052 return; 27053 } 27054 27055 /* 27056 * IPsec processing has started. 27057 */ 27058 io->ipsec_out_proc_begin = B_TRUE; 27059 ap = io->ipsec_out_act; 27060 if (ap == NULL) { 27061 pp = io->ipsec_out_policy; 27062 ASSERT(pp != NULL); 27063 ap = pp->ipsp_act; 27064 ASSERT(ap != NULL); 27065 } 27066 27067 /* 27068 * Save the outbound ill index. When the packet comes back 27069 * from IPsec, we make sure the ill hasn't changed or disappeared 27070 * before sending it the accelerated packet. 27071 */ 27072 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 27073 int ifindex; 27074 ill = ire_to_ill(ire); 27075 ifindex = ill->ill_phyint->phyint_ifindex; 27076 io->ipsec_out_capab_ill_index = ifindex; 27077 } 27078 27079 /* 27080 * The order of processing is first insert a IP header if needed. 27081 * Then insert the ESP header and then the AH header. 27082 */ 27083 if ((io->ipsec_out_se_done == B_FALSE) && 27084 (ap->ipa_want_se)) { 27085 /* 27086 * First get the outer IP header before sending 27087 * it to ESP. 27088 */ 27089 ipha_t *oipha, *iipha; 27090 mblk_t *outer_mp, *inner_mp; 27091 27092 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 27093 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 27094 "ipsec_out_process: " 27095 "Self-Encapsulation failed: Out of memory\n"); 27096 freemsg(ipsec_mp); 27097 if (ill != NULL) { 27098 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27099 } else { 27100 BUMP_MIB(&ipst->ips_ip_mib, 27101 ipIfStatsOutDiscards); 27102 } 27103 return; 27104 } 27105 inner_mp = ipsec_mp->b_cont; 27106 ASSERT(inner_mp->b_datap->db_type == M_DATA); 27107 oipha = (ipha_t *)outer_mp->b_rptr; 27108 iipha = (ipha_t *)inner_mp->b_rptr; 27109 *oipha = *iipha; 27110 outer_mp->b_wptr += sizeof (ipha_t); 27111 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 27112 sizeof (ipha_t)); 27113 oipha->ipha_protocol = IPPROTO_ENCAP; 27114 oipha->ipha_version_and_hdr_length = 27115 IP_SIMPLE_HDR_VERSION; 27116 oipha->ipha_hdr_checksum = 0; 27117 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 27118 outer_mp->b_cont = inner_mp; 27119 ipsec_mp->b_cont = outer_mp; 27120 27121 io->ipsec_out_se_done = B_TRUE; 27122 io->ipsec_out_tunnel = B_TRUE; 27123 } 27124 27125 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 27126 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 27127 !ipsec_out_select_sa(ipsec_mp)) 27128 return; 27129 27130 /* 27131 * By now, we know what SA's to use. Toss over to ESP & AH 27132 * to do the heavy lifting. 27133 */ 27134 zoneid = io->ipsec_out_zoneid; 27135 ASSERT(zoneid != ALL_ZONES); 27136 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 27137 ASSERT(io->ipsec_out_esp_sa != NULL); 27138 io->ipsec_out_esp_done = B_TRUE; 27139 /* 27140 * Note that since hw accel can only apply one transform, 27141 * not two, we skip hw accel for ESP if we also have AH 27142 * This is an design limitation of the interface 27143 * which should be revisited. 27144 */ 27145 ASSERT(ire != NULL); 27146 if (io->ipsec_out_ah_sa == NULL) { 27147 ill = (ill_t *)ire->ire_stq->q_ptr; 27148 ipsec_out_is_accelerated(ipsec_mp, 27149 io->ipsec_out_esp_sa, ill, ire); 27150 } 27151 27152 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 27153 switch (ipsec_rc) { 27154 case IPSEC_STATUS_SUCCESS: 27155 break; 27156 case IPSEC_STATUS_FAILED: 27157 if (ill != NULL) { 27158 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27159 } else { 27160 BUMP_MIB(&ipst->ips_ip_mib, 27161 ipIfStatsOutDiscards); 27162 } 27163 /* FALLTHRU */ 27164 case IPSEC_STATUS_PENDING: 27165 return; 27166 } 27167 } 27168 27169 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 27170 ASSERT(io->ipsec_out_ah_sa != NULL); 27171 io->ipsec_out_ah_done = B_TRUE; 27172 if (ire == NULL) { 27173 int idx = io->ipsec_out_capab_ill_index; 27174 ill = ill_lookup_on_ifindex(idx, B_FALSE, 27175 NULL, NULL, NULL, NULL, ipst); 27176 ill_need_rele = B_TRUE; 27177 } else { 27178 ill = (ill_t *)ire->ire_stq->q_ptr; 27179 } 27180 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 27181 ire); 27182 27183 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 27184 switch (ipsec_rc) { 27185 case IPSEC_STATUS_SUCCESS: 27186 break; 27187 case IPSEC_STATUS_FAILED: 27188 if (ill != NULL) { 27189 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27190 } else { 27191 BUMP_MIB(&ipst->ips_ip_mib, 27192 ipIfStatsOutDiscards); 27193 } 27194 /* FALLTHRU */ 27195 case IPSEC_STATUS_PENDING: 27196 if (ill != NULL && ill_need_rele) 27197 ill_refrele(ill); 27198 return; 27199 } 27200 } 27201 /* 27202 * We are done with IPsec processing. Send it over 27203 * the wire. 27204 */ 27205 done: 27206 mp = ipsec_mp->b_cont; 27207 ipha = (ipha_t *)mp->b_rptr; 27208 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27209 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 27210 } else { 27211 ip6h = (ip6_t *)ipha; 27212 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 27213 } 27214 if (ill != NULL && ill_need_rele) 27215 ill_refrele(ill); 27216 } 27217 27218 /* ARGSUSED */ 27219 void 27220 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 27221 { 27222 opt_restart_t *or; 27223 int err; 27224 conn_t *connp; 27225 27226 ASSERT(CONN_Q(q)); 27227 connp = Q_TO_CONN(q); 27228 27229 ASSERT(first_mp->b_datap->db_type == M_CTL); 27230 or = (opt_restart_t *)first_mp->b_rptr; 27231 /* 27232 * We don't need to pass any credentials here since this is just 27233 * a restart. The credentials are passed in when svr4_optcom_req 27234 * is called the first time (from ip_wput_nondata). 27235 */ 27236 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27237 err = svr4_optcom_req(q, first_mp, NULL, 27238 &ip_opt_obj, B_FALSE); 27239 } else { 27240 ASSERT(or->or_type == T_OPTMGMT_REQ); 27241 err = tpi_optcom_req(q, first_mp, NULL, 27242 &ip_opt_obj, B_FALSE); 27243 } 27244 if (err != EINPROGRESS) { 27245 /* operation is done */ 27246 CONN_OPER_PENDING_DONE(connp); 27247 } 27248 } 27249 27250 /* 27251 * ioctls that go through a down/up sequence may need to wait for the down 27252 * to complete. This involves waiting for the ire and ipif refcnts to go down 27253 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27254 */ 27255 /* ARGSUSED */ 27256 void 27257 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27258 { 27259 struct iocblk *iocp; 27260 mblk_t *mp1; 27261 ip_ioctl_cmd_t *ipip; 27262 int err; 27263 sin_t *sin; 27264 struct lifreq *lifr; 27265 struct ifreq *ifr; 27266 27267 iocp = (struct iocblk *)mp->b_rptr; 27268 ASSERT(ipsq != NULL); 27269 /* Existence of mp1 verified in ip_wput_nondata */ 27270 mp1 = mp->b_cont->b_cont; 27271 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27272 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27273 /* 27274 * Special case where ipsq_current_ipif is not set: 27275 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27276 * ill could also have become part of a ipmp group in the 27277 * process, we are here as were not able to complete the 27278 * operation in ipif_set_values because we could not become 27279 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27280 * will not be set so we need to set it. 27281 */ 27282 ill_t *ill = q->q_ptr; 27283 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27284 } 27285 ASSERT(ipsq->ipsq_current_ipif != NULL); 27286 27287 if (ipip->ipi_cmd_type == IF_CMD) { 27288 /* This a old style SIOC[GS]IF* command */ 27289 ifr = (struct ifreq *)mp1->b_rptr; 27290 sin = (sin_t *)&ifr->ifr_addr; 27291 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27292 /* This a new style SIOC[GS]LIF* command */ 27293 lifr = (struct lifreq *)mp1->b_rptr; 27294 sin = (sin_t *)&lifr->lifr_addr; 27295 } else { 27296 sin = NULL; 27297 } 27298 27299 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27300 ipip, mp1->b_rptr); 27301 27302 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27303 } 27304 27305 /* 27306 * ioctl processing 27307 * 27308 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 27309 * the ioctl command in the ioctl tables, determines the copyin data size 27310 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 27311 * 27312 * ioctl processing then continues when the M_IOCDATA makes its way down to 27313 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 27314 * associated 'conn' is refheld till the end of the ioctl and the general 27315 * ioctl processing function ip_process_ioctl() is called to extract the 27316 * arguments and process the ioctl. To simplify extraction, ioctl commands 27317 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 27318 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 27319 * is used to extract the ioctl's arguments. 27320 * 27321 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27322 * so goes thru the serialization primitive ipsq_try_enter. Then the 27323 * appropriate function to handle the ioctl is called based on the entry in 27324 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27325 * which also refreleases the 'conn' that was refheld at the start of the 27326 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27327 * 27328 * Many exclusive ioctls go thru an internal down up sequence as part of 27329 * the operation. For example an attempt to change the IP address of an 27330 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27331 * does all the cleanup such as deleting all ires that use this address. 27332 * Then we need to wait till all references to the interface go away. 27333 */ 27334 void 27335 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27336 { 27337 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27338 ip_ioctl_cmd_t *ipip = arg; 27339 ip_extract_func_t *extract_funcp; 27340 cmd_info_t ci; 27341 int err; 27342 27343 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27344 27345 if (ipip == NULL) 27346 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27347 27348 /* 27349 * SIOCLIFADDIF needs to go thru a special path since the 27350 * ill may not exist yet. This happens in the case of lo0 27351 * which is created using this ioctl. 27352 */ 27353 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27354 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27355 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27356 return; 27357 } 27358 27359 ci.ci_ipif = NULL; 27360 if (ipip->ipi_cmd_type == MISC_CMD) { 27361 /* 27362 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27363 */ 27364 if (ipip->ipi_cmd == IF_UNITSEL) { 27365 /* ioctl comes down the ill */ 27366 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27367 ipif_refhold(ci.ci_ipif); 27368 } 27369 err = 0; 27370 ci.ci_sin = NULL; 27371 ci.ci_sin6 = NULL; 27372 ci.ci_lifr = NULL; 27373 } else { 27374 switch (ipip->ipi_cmd_type) { 27375 case IF_CMD: 27376 case LIF_CMD: 27377 extract_funcp = ip_extract_lifreq; 27378 break; 27379 27380 case ARP_CMD: 27381 case XARP_CMD: 27382 extract_funcp = ip_extract_arpreq; 27383 break; 27384 27385 case TUN_CMD: 27386 extract_funcp = ip_extract_tunreq; 27387 break; 27388 27389 case MSFILT_CMD: 27390 extract_funcp = ip_extract_msfilter; 27391 break; 27392 27393 default: 27394 ASSERT(0); 27395 } 27396 27397 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27398 if (err != 0) { 27399 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27400 return; 27401 } 27402 27403 /* 27404 * All of the extraction functions return a refheld ipif. 27405 */ 27406 ASSERT(ci.ci_ipif != NULL); 27407 } 27408 27409 if (!(ipip->ipi_flags & IPI_WR)) { 27410 /* 27411 * A return value of EINPROGRESS means the ioctl is 27412 * either queued and waiting for some reason or has 27413 * already completed. 27414 */ 27415 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27416 ci.ci_lifr); 27417 if (ci.ci_ipif != NULL) 27418 ipif_refrele(ci.ci_ipif); 27419 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27420 return; 27421 } 27422 27423 /* 27424 * If ipsq is non-null, we are already being called exclusively on an 27425 * ill but in the case of a failover in progress it is the "from" ill, 27426 * rather than the "to" ill (which is the ill ptr passed in). 27427 * In order to ensure we are exclusive on both ILLs we rerun 27428 * ipsq_try_enter() here, ipsq's support recursive entry. 27429 */ 27430 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27431 ASSERT(ci.ci_ipif != NULL); 27432 27433 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27434 NEW_OP, B_TRUE); 27435 27436 /* 27437 * Release the ipif so that ipif_down and friends that wait for 27438 * references to go away are not misled about the current ipif_refcnt 27439 * values. We are writer so we can access the ipif even after releasing 27440 * the ipif. 27441 */ 27442 ipif_refrele(ci.ci_ipif); 27443 if (ipsq == NULL) 27444 return; 27445 27446 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27447 27448 /* 27449 * For most set ioctls that come here, this serves as a single point 27450 * where we set the IPIF_CHANGING flag. This ensures that there won't 27451 * be any new references to the ipif. This helps functions that go 27452 * through this path and end up trying to wait for the refcnts 27453 * associated with the ipif to go down to zero. Some exceptions are 27454 * Failover, Failback, and Groupname commands that operate on more than 27455 * just the ci.ci_ipif. These commands internally determine the 27456 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27457 * flags on that set. Another exception is the Removeif command that 27458 * sets the IPIF_CONDEMNED flag internally after identifying the right 27459 * ipif to operate on. 27460 */ 27461 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27462 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27463 ipip->ipi_cmd != SIOCLIFFAILOVER && 27464 ipip->ipi_cmd != SIOCLIFFAILBACK && 27465 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27466 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27467 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27468 27469 /* 27470 * A return value of EINPROGRESS means the ioctl is 27471 * either queued and waiting for some reason or has 27472 * already completed. 27473 */ 27474 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27475 27476 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27477 27478 ipsq_exit(ipsq); 27479 } 27480 27481 /* 27482 * Complete the ioctl. Typically ioctls use the mi package and need to 27483 * do mi_copyout/mi_copy_done. 27484 */ 27485 void 27486 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27487 { 27488 conn_t *connp = NULL; 27489 27490 if (err == EINPROGRESS) 27491 return; 27492 27493 if (CONN_Q(q)) { 27494 connp = Q_TO_CONN(q); 27495 ASSERT(connp->conn_ref >= 2); 27496 } 27497 27498 switch (mode) { 27499 case COPYOUT: 27500 if (err == 0) 27501 mi_copyout(q, mp); 27502 else 27503 mi_copy_done(q, mp, err); 27504 break; 27505 27506 case NO_COPYOUT: 27507 mi_copy_done(q, mp, err); 27508 break; 27509 27510 default: 27511 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27512 break; 27513 } 27514 27515 /* 27516 * The refhold placed at the start of the ioctl is released here. 27517 */ 27518 if (connp != NULL) 27519 CONN_OPER_PENDING_DONE(connp); 27520 27521 if (ipsq != NULL) 27522 ipsq_current_finish(ipsq); 27523 } 27524 27525 /* 27526 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27527 */ 27528 /* ARGSUSED */ 27529 void 27530 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27531 { 27532 conn_t *connp = arg; 27533 tcp_t *tcp; 27534 27535 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27536 tcp = connp->conn_tcp; 27537 27538 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27539 freemsg(mp); 27540 else 27541 tcp_rput_other(tcp, mp); 27542 CONN_OPER_PENDING_DONE(connp); 27543 } 27544 27545 /* Called from ip_wput for all non data messages */ 27546 /* ARGSUSED */ 27547 void 27548 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27549 { 27550 mblk_t *mp1; 27551 ire_t *ire, *fake_ire; 27552 ill_t *ill; 27553 struct iocblk *iocp; 27554 ip_ioctl_cmd_t *ipip; 27555 cred_t *cr; 27556 conn_t *connp; 27557 int err; 27558 nce_t *nce; 27559 ipif_t *ipif; 27560 ip_stack_t *ipst; 27561 char *proto_str; 27562 27563 if (CONN_Q(q)) { 27564 connp = Q_TO_CONN(q); 27565 ipst = connp->conn_netstack->netstack_ip; 27566 } else { 27567 connp = NULL; 27568 ipst = ILLQ_TO_IPST(q); 27569 } 27570 27571 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27572 27573 switch (DB_TYPE(mp)) { 27574 case M_IOCTL: 27575 /* 27576 * IOCTL processing begins in ip_sioctl_copyin_setup which 27577 * will arrange to copy in associated control structures. 27578 */ 27579 ip_sioctl_copyin_setup(q, mp); 27580 return; 27581 case M_IOCDATA: 27582 /* 27583 * Ensure that this is associated with one of our trans- 27584 * parent ioctls. If it's not ours, discard it if we're 27585 * running as a driver, or pass it on if we're a module. 27586 */ 27587 iocp = (struct iocblk *)mp->b_rptr; 27588 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27589 if (ipip == NULL) { 27590 if (q->q_next == NULL) { 27591 goto nak; 27592 } else { 27593 putnext(q, mp); 27594 } 27595 return; 27596 } 27597 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27598 /* 27599 * the ioctl is one we recognise, but is not 27600 * consumed by IP as a module, pass M_IOCDATA 27601 * for processing downstream, but only for 27602 * common Streams ioctls. 27603 */ 27604 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27605 putnext(q, mp); 27606 return; 27607 } else { 27608 goto nak; 27609 } 27610 } 27611 27612 /* IOCTL continuation following copyin or copyout. */ 27613 if (mi_copy_state(q, mp, NULL) == -1) { 27614 /* 27615 * The copy operation failed. mi_copy_state already 27616 * cleaned up, so we're out of here. 27617 */ 27618 return; 27619 } 27620 /* 27621 * If we just completed a copy in, we become writer and 27622 * continue processing in ip_sioctl_copyin_done. If it 27623 * was a copy out, we call mi_copyout again. If there is 27624 * nothing more to copy out, it will complete the IOCTL. 27625 */ 27626 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27627 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27628 mi_copy_done(q, mp, EPROTO); 27629 return; 27630 } 27631 /* 27632 * Check for cases that need more copying. A return 27633 * value of 0 means a second copyin has been started, 27634 * so we return; a return value of 1 means no more 27635 * copying is needed, so we continue. 27636 */ 27637 if (ipip->ipi_cmd_type == MSFILT_CMD && 27638 MI_COPY_COUNT(mp) == 1) { 27639 if (ip_copyin_msfilter(q, mp) == 0) 27640 return; 27641 } 27642 /* 27643 * Refhold the conn, till the ioctl completes. This is 27644 * needed in case the ioctl ends up in the pending mp 27645 * list. Every mp in the ill_pending_mp list and 27646 * the ipsq_pending_mp must have a refhold on the conn 27647 * to resume processing. The refhold is released when 27648 * the ioctl completes. (normally or abnormally) 27649 * In all cases ip_ioctl_finish is called to finish 27650 * the ioctl. 27651 */ 27652 if (connp != NULL) { 27653 /* This is not a reentry */ 27654 ASSERT(ipsq == NULL); 27655 CONN_INC_REF(connp); 27656 } else { 27657 if (!(ipip->ipi_flags & IPI_MODOK)) { 27658 mi_copy_done(q, mp, EINVAL); 27659 return; 27660 } 27661 } 27662 27663 ip_process_ioctl(ipsq, q, mp, ipip); 27664 27665 } else { 27666 mi_copyout(q, mp); 27667 } 27668 return; 27669 nak: 27670 iocp->ioc_error = EINVAL; 27671 mp->b_datap->db_type = M_IOCNAK; 27672 iocp->ioc_count = 0; 27673 qreply(q, mp); 27674 return; 27675 27676 case M_IOCNAK: 27677 /* 27678 * The only way we could get here is if a resolver didn't like 27679 * an IOCTL we sent it. This shouldn't happen. 27680 */ 27681 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27682 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27683 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27684 freemsg(mp); 27685 return; 27686 case M_IOCACK: 27687 /* /dev/ip shouldn't see this */ 27688 if (CONN_Q(q)) 27689 goto nak; 27690 27691 /* Finish socket ioctls passed through to ARP. */ 27692 ip_sioctl_iocack(q, mp); 27693 return; 27694 case M_FLUSH: 27695 if (*mp->b_rptr & FLUSHW) 27696 flushq(q, FLUSHALL); 27697 if (q->q_next) { 27698 putnext(q, mp); 27699 return; 27700 } 27701 if (*mp->b_rptr & FLUSHR) { 27702 *mp->b_rptr &= ~FLUSHW; 27703 qreply(q, mp); 27704 return; 27705 } 27706 freemsg(mp); 27707 return; 27708 case IRE_DB_REQ_TYPE: 27709 if (connp == NULL) { 27710 proto_str = "IRE_DB_REQ_TYPE"; 27711 goto protonak; 27712 } 27713 /* An Upper Level Protocol wants a copy of an IRE. */ 27714 ip_ire_req(q, mp); 27715 return; 27716 case M_CTL: 27717 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27718 break; 27719 27720 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27721 TUN_HELLO) { 27722 ASSERT(connp != NULL); 27723 connp->conn_flags |= IPCL_IPTUN; 27724 freeb(mp); 27725 return; 27726 } 27727 27728 /* M_CTL messages are used by ARP to tell us things. */ 27729 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27730 break; 27731 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27732 case AR_ENTRY_SQUERY: 27733 ip_wput_ctl(q, mp); 27734 return; 27735 case AR_CLIENT_NOTIFY: 27736 ip_arp_news(q, mp); 27737 return; 27738 case AR_DLPIOP_DONE: 27739 ASSERT(q->q_next != NULL); 27740 ill = (ill_t *)q->q_ptr; 27741 /* qwriter_ip releases the refhold */ 27742 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27743 ill_refhold(ill); 27744 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27745 return; 27746 case AR_ARP_CLOSING: 27747 /* 27748 * ARP (above us) is closing. If no ARP bringup is 27749 * currently pending, ack the message so that ARP 27750 * can complete its close. Also mark ill_arp_closing 27751 * so that new ARP bringups will fail. If any 27752 * ARP bringup is currently in progress, we will 27753 * ack this when the current ARP bringup completes. 27754 */ 27755 ASSERT(q->q_next != NULL); 27756 ill = (ill_t *)q->q_ptr; 27757 mutex_enter(&ill->ill_lock); 27758 ill->ill_arp_closing = 1; 27759 if (!ill->ill_arp_bringup_pending) { 27760 mutex_exit(&ill->ill_lock); 27761 qreply(q, mp); 27762 } else { 27763 mutex_exit(&ill->ill_lock); 27764 freemsg(mp); 27765 } 27766 return; 27767 case AR_ARP_EXTEND: 27768 /* 27769 * The ARP module above us is capable of duplicate 27770 * address detection. Old ATM drivers will not send 27771 * this message. 27772 */ 27773 ASSERT(q->q_next != NULL); 27774 ill = (ill_t *)q->q_ptr; 27775 ill->ill_arp_extend = B_TRUE; 27776 freemsg(mp); 27777 return; 27778 default: 27779 break; 27780 } 27781 break; 27782 case M_PROTO: 27783 case M_PCPROTO: 27784 /* 27785 * The only PROTO messages we expect are ULP binds and 27786 * copies of option negotiation acknowledgements. 27787 */ 27788 switch (((union T_primitives *)mp->b_rptr)->type) { 27789 case O_T_BIND_REQ: 27790 case T_BIND_REQ: { 27791 /* Request can get queued in bind */ 27792 if (connp == NULL) { 27793 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27794 goto protonak; 27795 } 27796 /* 27797 * The transports except SCTP call ip_bind_{v4,v6}() 27798 * directly instead of a a putnext. SCTP doesn't 27799 * generate any T_BIND_REQ since it has its own 27800 * fanout data structures. However, ESP and AH 27801 * come in for regular binds; all other cases are 27802 * bind retries. 27803 */ 27804 ASSERT(!IPCL_IS_SCTP(connp)); 27805 27806 /* Don't increment refcnt if this is a re-entry */ 27807 if (ipsq == NULL) 27808 CONN_INC_REF(connp); 27809 27810 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27811 connp, NULL) : ip_bind_v4(q, mp, connp); 27812 if (mp == NULL) 27813 return; 27814 if (IPCL_IS_TCP(connp)) { 27815 /* 27816 * In the case of TCP endpoint we 27817 * come here only for bind retries 27818 */ 27819 ASSERT(ipsq != NULL); 27820 CONN_INC_REF(connp); 27821 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 27822 ip_resume_tcp_bind, connp, 27823 SQ_FILL, SQTAG_BIND_RETRY); 27824 } else if (IPCL_IS_UDP(connp)) { 27825 /* 27826 * In the case of UDP endpoint we 27827 * come here only for bind retries 27828 */ 27829 ASSERT(ipsq != NULL); 27830 udp_resume_bind(connp, mp); 27831 } else if (IPCL_IS_RAWIP(connp)) { 27832 /* 27833 * In the case of RAWIP endpoint we 27834 * come here only for bind retries 27835 */ 27836 ASSERT(ipsq != NULL); 27837 rawip_resume_bind(connp, mp); 27838 } else { 27839 /* The case of AH and ESP */ 27840 qreply(q, mp); 27841 CONN_OPER_PENDING_DONE(connp); 27842 } 27843 return; 27844 } 27845 case T_SVR4_OPTMGMT_REQ: 27846 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27847 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27848 27849 if (connp == NULL) { 27850 proto_str = "T_SVR4_OPTMGMT_REQ"; 27851 goto protonak; 27852 } 27853 27854 if (!snmpcom_req(q, mp, ip_snmp_set, 27855 ip_snmp_get, cr)) { 27856 /* 27857 * Call svr4_optcom_req so that it can 27858 * generate the ack. We don't come here 27859 * if this operation is being restarted. 27860 * ip_restart_optmgmt will drop the conn ref. 27861 * In the case of ipsec option after the ipsec 27862 * load is complete conn_restart_ipsec_waiter 27863 * drops the conn ref. 27864 */ 27865 ASSERT(ipsq == NULL); 27866 CONN_INC_REF(connp); 27867 if (ip_check_for_ipsec_opt(q, mp)) 27868 return; 27869 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27870 B_FALSE); 27871 if (err != EINPROGRESS) { 27872 /* Operation is done */ 27873 CONN_OPER_PENDING_DONE(connp); 27874 } 27875 } 27876 return; 27877 case T_OPTMGMT_REQ: 27878 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27879 /* 27880 * Note: No snmpcom_req support through new 27881 * T_OPTMGMT_REQ. 27882 * Call tpi_optcom_req so that it can 27883 * generate the ack. 27884 */ 27885 if (connp == NULL) { 27886 proto_str = "T_OPTMGMT_REQ"; 27887 goto protonak; 27888 } 27889 27890 ASSERT(ipsq == NULL); 27891 /* 27892 * We don't come here for restart. ip_restart_optmgmt 27893 * will drop the conn ref. In the case of ipsec option 27894 * after the ipsec load is complete 27895 * conn_restart_ipsec_waiter drops the conn ref. 27896 */ 27897 CONN_INC_REF(connp); 27898 if (ip_check_for_ipsec_opt(q, mp)) 27899 return; 27900 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27901 if (err != EINPROGRESS) { 27902 /* Operation is done */ 27903 CONN_OPER_PENDING_DONE(connp); 27904 } 27905 return; 27906 case T_UNBIND_REQ: 27907 if (connp == NULL) { 27908 proto_str = "T_UNBIND_REQ"; 27909 goto protonak; 27910 } 27911 mp = ip_unbind(q, mp); 27912 qreply(q, mp); 27913 return; 27914 default: 27915 /* 27916 * Have to drop any DLPI messages coming down from 27917 * arp (such as an info_req which would cause ip 27918 * to receive an extra info_ack if it was passed 27919 * through. 27920 */ 27921 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27922 (int)*(uint_t *)mp->b_rptr)); 27923 freemsg(mp); 27924 return; 27925 } 27926 /* NOTREACHED */ 27927 case IRE_DB_TYPE: { 27928 nce_t *nce; 27929 ill_t *ill; 27930 in6_addr_t gw_addr_v6; 27931 27932 27933 /* 27934 * This is a response back from a resolver. It 27935 * consists of a message chain containing: 27936 * IRE_MBLK-->LL_HDR_MBLK->pkt 27937 * The IRE_MBLK is the one we allocated in ip_newroute. 27938 * The LL_HDR_MBLK is the DLPI header to use to get 27939 * the attached packet, and subsequent ones for the 27940 * same destination, transmitted. 27941 */ 27942 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27943 break; 27944 /* 27945 * First, check to make sure the resolution succeeded. 27946 * If it failed, the second mblk will be empty. 27947 * If it is, free the chain, dropping the packet. 27948 * (We must ire_delete the ire; that frees the ire mblk) 27949 * We're doing this now to support PVCs for ATM; it's 27950 * a partial xresolv implementation. When we fully implement 27951 * xresolv interfaces, instead of freeing everything here 27952 * we'll initiate neighbor discovery. 27953 * 27954 * For v4 (ARP and other external resolvers) the resolver 27955 * frees the message, so no check is needed. This check 27956 * is required, though, for a full xresolve implementation. 27957 * Including this code here now both shows how external 27958 * resolvers can NACK a resolution request using an 27959 * existing design that has no specific provisions for NACKs, 27960 * and also takes into account that the current non-ARP 27961 * external resolver has been coded to use this method of 27962 * NACKing for all IPv6 (xresolv) cases, 27963 * whether our xresolv implementation is complete or not. 27964 * 27965 */ 27966 ire = (ire_t *)mp->b_rptr; 27967 ill = ire_to_ill(ire); 27968 mp1 = mp->b_cont; /* dl_unitdata_req */ 27969 if (mp1->b_rptr == mp1->b_wptr) { 27970 if (ire->ire_ipversion == IPV6_VERSION) { 27971 /* 27972 * XRESOLV interface. 27973 */ 27974 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27975 mutex_enter(&ire->ire_lock); 27976 gw_addr_v6 = ire->ire_gateway_addr_v6; 27977 mutex_exit(&ire->ire_lock); 27978 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27979 nce = ndp_lookup_v6(ill, 27980 &ire->ire_addr_v6, B_FALSE); 27981 } else { 27982 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27983 B_FALSE); 27984 } 27985 if (nce != NULL) { 27986 nce_resolv_failed(nce); 27987 ndp_delete(nce); 27988 NCE_REFRELE(nce); 27989 } 27990 } 27991 mp->b_cont = NULL; 27992 freemsg(mp1); /* frees the pkt as well */ 27993 ASSERT(ire->ire_nce == NULL); 27994 ire_delete((ire_t *)mp->b_rptr); 27995 return; 27996 } 27997 27998 /* 27999 * Split them into IRE_MBLK and pkt and feed it into 28000 * ire_add_then_send. Then in ire_add_then_send 28001 * the IRE will be added, and then the packet will be 28002 * run back through ip_wput. This time it will make 28003 * it to the wire. 28004 */ 28005 mp->b_cont = NULL; 28006 mp = mp1->b_cont; /* now, mp points to pkt */ 28007 mp1->b_cont = NULL; 28008 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 28009 if (ire->ire_ipversion == IPV6_VERSION) { 28010 /* 28011 * XRESOLV interface. Find the nce and put a copy 28012 * of the dl_unitdata_req in nce_res_mp 28013 */ 28014 ASSERT(ill->ill_flags & ILLF_XRESOLV); 28015 mutex_enter(&ire->ire_lock); 28016 gw_addr_v6 = ire->ire_gateway_addr_v6; 28017 mutex_exit(&ire->ire_lock); 28018 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 28019 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 28020 B_FALSE); 28021 } else { 28022 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 28023 } 28024 if (nce != NULL) { 28025 /* 28026 * We have to protect nce_res_mp here 28027 * from being accessed by other threads 28028 * while we change the mblk pointer. 28029 * Other functions will also lock the nce when 28030 * accessing nce_res_mp. 28031 * 28032 * The reason we change the mblk pointer 28033 * here rather than copying the resolved address 28034 * into the template is that, unlike with 28035 * ethernet, we have no guarantee that the 28036 * resolved address length will be 28037 * smaller than or equal to the lla length 28038 * with which the template was allocated, 28039 * (for ethernet, they're equal) 28040 * so we have to use the actual resolved 28041 * address mblk - which holds the real 28042 * dl_unitdata_req with the resolved address. 28043 * 28044 * Doing this is the same behavior as was 28045 * previously used in the v4 ARP case. 28046 */ 28047 mutex_enter(&nce->nce_lock); 28048 if (nce->nce_res_mp != NULL) 28049 freemsg(nce->nce_res_mp); 28050 nce->nce_res_mp = mp1; 28051 mutex_exit(&nce->nce_lock); 28052 /* 28053 * We do a fastpath probe here because 28054 * we have resolved the address without 28055 * using Neighbor Discovery. 28056 * In the non-XRESOLV v6 case, the fastpath 28057 * probe is done right after neighbor 28058 * discovery completes. 28059 */ 28060 if (nce->nce_res_mp != NULL) { 28061 int res; 28062 nce_fastpath_list_add(nce); 28063 res = ill_fastpath_probe(ill, 28064 nce->nce_res_mp); 28065 if (res != 0 && res != EAGAIN) 28066 nce_fastpath_list_delete(nce); 28067 } 28068 28069 ire_add_then_send(q, ire, mp); 28070 /* 28071 * Now we have to clean out any packets 28072 * that may have been queued on the nce 28073 * while it was waiting for address resolution 28074 * to complete. 28075 */ 28076 mutex_enter(&nce->nce_lock); 28077 mp1 = nce->nce_qd_mp; 28078 nce->nce_qd_mp = NULL; 28079 mutex_exit(&nce->nce_lock); 28080 while (mp1 != NULL) { 28081 mblk_t *nxt_mp; 28082 queue_t *fwdq = NULL; 28083 ill_t *inbound_ill; 28084 uint_t ifindex; 28085 28086 nxt_mp = mp1->b_next; 28087 mp1->b_next = NULL; 28088 /* 28089 * Retrieve ifindex stored in 28090 * ip_rput_data_v6() 28091 */ 28092 ifindex = 28093 (uint_t)(uintptr_t)mp1->b_prev; 28094 inbound_ill = 28095 ill_lookup_on_ifindex(ifindex, 28096 B_TRUE, NULL, NULL, NULL, 28097 NULL, ipst); 28098 mp1->b_prev = NULL; 28099 if (inbound_ill != NULL) 28100 fwdq = inbound_ill->ill_rq; 28101 28102 if (fwdq != NULL) { 28103 put(fwdq, mp1); 28104 ill_refrele(inbound_ill); 28105 } else 28106 put(WR(ill->ill_rq), mp1); 28107 mp1 = nxt_mp; 28108 } 28109 NCE_REFRELE(nce); 28110 } else { /* nce is NULL; clean up */ 28111 ire_delete(ire); 28112 freemsg(mp); 28113 freemsg(mp1); 28114 return; 28115 } 28116 } else { 28117 nce_t *arpce; 28118 /* 28119 * Link layer resolution succeeded. Recompute the 28120 * ire_nce. 28121 */ 28122 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 28123 if ((arpce = ndp_lookup_v4(ill, 28124 (ire->ire_gateway_addr != INADDR_ANY ? 28125 &ire->ire_gateway_addr : &ire->ire_addr), 28126 B_FALSE)) == NULL) { 28127 freeb(ire->ire_mp); 28128 freeb(mp1); 28129 freemsg(mp); 28130 return; 28131 } 28132 mutex_enter(&arpce->nce_lock); 28133 arpce->nce_last = TICK_TO_MSEC(lbolt64); 28134 if (arpce->nce_state == ND_REACHABLE) { 28135 /* 28136 * Someone resolved this before us; 28137 * cleanup the res_mp. Since ire has 28138 * not been added yet, the call to ire_add_v4 28139 * from ire_add_then_send (when a dup is 28140 * detected) will clean up the ire. 28141 */ 28142 freeb(mp1); 28143 } else { 28144 ASSERT(arpce->nce_res_mp == NULL); 28145 arpce->nce_res_mp = mp1; 28146 arpce->nce_state = ND_REACHABLE; 28147 } 28148 mutex_exit(&arpce->nce_lock); 28149 if (ire->ire_marks & IRE_MARK_NOADD) { 28150 /* 28151 * this ire will not be added to the ire 28152 * cache table, so we can set the ire_nce 28153 * here, as there are no atomicity constraints. 28154 */ 28155 ire->ire_nce = arpce; 28156 /* 28157 * We are associating this nce with the ire 28158 * so change the nce ref taken in 28159 * ndp_lookup_v4() from 28160 * NCE_REFHOLD to NCE_REFHOLD_NOTR 28161 */ 28162 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 28163 } else { 28164 NCE_REFRELE(arpce); 28165 } 28166 ire_add_then_send(q, ire, mp); 28167 } 28168 return; /* All is well, the packet has been sent. */ 28169 } 28170 case IRE_ARPRESOLVE_TYPE: { 28171 28172 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 28173 break; 28174 mp1 = mp->b_cont; /* dl_unitdata_req */ 28175 mp->b_cont = NULL; 28176 /* 28177 * First, check to make sure the resolution succeeded. 28178 * If it failed, the second mblk will be empty. 28179 */ 28180 if (mp1->b_rptr == mp1->b_wptr) { 28181 /* cleanup the incomplete ire, free queued packets */ 28182 freemsg(mp); /* fake ire */ 28183 freeb(mp1); /* dl_unitdata response */ 28184 return; 28185 } 28186 28187 /* 28188 * Update any incomplete nce_t found. We search the ctable 28189 * and find the nce from the ire->ire_nce because we need 28190 * to pass the ire to ip_xmit_v4 later, and can find both 28191 * ire and nce in one lookup. 28192 */ 28193 fake_ire = (ire_t *)mp->b_rptr; 28194 28195 /* 28196 * By the time we come back here from ARP the incomplete ire 28197 * created in ire_forward() could have been removed. We use 28198 * the parameters stored in the fake_ire to specify the real 28199 * ire as explicitly as possible. This avoids problems when 28200 * IPMP groups are configured as an ipif can 'float' 28201 * across several ill queues. We can be confident that the 28202 * the inability to find an ire is because it no longer exists. 28203 */ 28204 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 28205 NULL, NULL, NULL, NULL, ipst); 28206 if (ill == NULL) { 28207 ip1dbg(("ill for incomplete ire vanished\n")); 28208 freemsg(mp); /* fake ire */ 28209 freeb(mp1); /* dl_unitdata response */ 28210 return; 28211 } 28212 28213 /* Get the outgoing ipif */ 28214 mutex_enter(&ill->ill_lock); 28215 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 28216 if (ipif == NULL) { 28217 mutex_exit(&ill->ill_lock); 28218 ill_refrele(ill); 28219 ip1dbg(("logical intrf to incomplete ire vanished\n")); 28220 freemsg(mp); /* fake_ire */ 28221 freeb(mp1); /* dl_unitdata response */ 28222 return; 28223 } 28224 28225 ipif_refhold_locked(ipif); 28226 mutex_exit(&ill->ill_lock); 28227 ill_refrele(ill); 28228 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 28229 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 28230 ipst, ((ill_t *)q->q_ptr)->ill_wq); 28231 ipif_refrele(ipif); 28232 if (ire == NULL) { 28233 /* 28234 * no ire was found; check if there is an nce 28235 * for this lookup; if it has no ire's pointing at it 28236 * cleanup. 28237 */ 28238 if ((nce = ndp_lookup_v4(q->q_ptr, 28239 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28240 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28241 B_FALSE)) != NULL) { 28242 /* 28243 * cleanup: 28244 * We check for refcnt 2 (one for the nce 28245 * hash list + 1 for the ref taken by 28246 * ndp_lookup_v4) to check that there are 28247 * no ire's pointing at the nce. 28248 */ 28249 if (nce->nce_refcnt == 2) 28250 ndp_delete(nce); 28251 NCE_REFRELE(nce); 28252 } 28253 freeb(mp1); /* dl_unitdata response */ 28254 freemsg(mp); /* fake ire */ 28255 return; 28256 } 28257 nce = ire->ire_nce; 28258 DTRACE_PROBE2(ire__arpresolve__type, 28259 ire_t *, ire, nce_t *, nce); 28260 ASSERT(nce->nce_state != ND_INITIAL); 28261 mutex_enter(&nce->nce_lock); 28262 nce->nce_last = TICK_TO_MSEC(lbolt64); 28263 if (nce->nce_state == ND_REACHABLE) { 28264 /* 28265 * Someone resolved this before us; 28266 * our response is not needed any more. 28267 */ 28268 mutex_exit(&nce->nce_lock); 28269 freeb(mp1); /* dl_unitdata response */ 28270 } else { 28271 ASSERT(nce->nce_res_mp == NULL); 28272 nce->nce_res_mp = mp1; 28273 nce->nce_state = ND_REACHABLE; 28274 mutex_exit(&nce->nce_lock); 28275 nce_fastpath(nce); 28276 } 28277 /* 28278 * The cached nce_t has been updated to be reachable; 28279 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 28280 */ 28281 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28282 freemsg(mp); 28283 /* 28284 * send out queued packets. 28285 */ 28286 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 28287 28288 IRE_REFRELE(ire); 28289 return; 28290 } 28291 default: 28292 break; 28293 } 28294 if (q->q_next) { 28295 putnext(q, mp); 28296 } else 28297 freemsg(mp); 28298 return; 28299 28300 protonak: 28301 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28302 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28303 qreply(q, mp); 28304 } 28305 28306 /* 28307 * Process IP options in an outbound packet. Modify the destination if there 28308 * is a source route option. 28309 * Returns non-zero if something fails in which case an ICMP error has been 28310 * sent and mp freed. 28311 */ 28312 static int 28313 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28314 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28315 { 28316 ipoptp_t opts; 28317 uchar_t *opt; 28318 uint8_t optval; 28319 uint8_t optlen; 28320 ipaddr_t dst; 28321 intptr_t code = 0; 28322 mblk_t *mp; 28323 ire_t *ire = NULL; 28324 28325 ip2dbg(("ip_wput_options\n")); 28326 mp = ipsec_mp; 28327 if (mctl_present) { 28328 mp = ipsec_mp->b_cont; 28329 } 28330 28331 dst = ipha->ipha_dst; 28332 for (optval = ipoptp_first(&opts, ipha); 28333 optval != IPOPT_EOL; 28334 optval = ipoptp_next(&opts)) { 28335 opt = opts.ipoptp_cur; 28336 optlen = opts.ipoptp_len; 28337 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28338 optval, optlen)); 28339 switch (optval) { 28340 uint32_t off; 28341 case IPOPT_SSRR: 28342 case IPOPT_LSRR: 28343 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28344 ip1dbg(( 28345 "ip_wput_options: bad option offset\n")); 28346 code = (char *)&opt[IPOPT_OLEN] - 28347 (char *)ipha; 28348 goto param_prob; 28349 } 28350 off = opt[IPOPT_OFFSET]; 28351 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28352 ntohl(dst))); 28353 /* 28354 * For strict: verify that dst is directly 28355 * reachable. 28356 */ 28357 if (optval == IPOPT_SSRR) { 28358 ire = ire_ftable_lookup(dst, 0, 0, 28359 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28360 MBLK_GETLABEL(mp), 28361 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28362 if (ire == NULL) { 28363 ip1dbg(("ip_wput_options: SSRR not" 28364 " directly reachable: 0x%x\n", 28365 ntohl(dst))); 28366 goto bad_src_route; 28367 } 28368 ire_refrele(ire); 28369 } 28370 break; 28371 case IPOPT_RR: 28372 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28373 ip1dbg(( 28374 "ip_wput_options: bad option offset\n")); 28375 code = (char *)&opt[IPOPT_OLEN] - 28376 (char *)ipha; 28377 goto param_prob; 28378 } 28379 break; 28380 case IPOPT_TS: 28381 /* 28382 * Verify that length >=5 and that there is either 28383 * room for another timestamp or that the overflow 28384 * counter is not maxed out. 28385 */ 28386 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28387 if (optlen < IPOPT_MINLEN_IT) { 28388 goto param_prob; 28389 } 28390 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28391 ip1dbg(( 28392 "ip_wput_options: bad option offset\n")); 28393 code = (char *)&opt[IPOPT_OFFSET] - 28394 (char *)ipha; 28395 goto param_prob; 28396 } 28397 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28398 case IPOPT_TS_TSONLY: 28399 off = IPOPT_TS_TIMELEN; 28400 break; 28401 case IPOPT_TS_TSANDADDR: 28402 case IPOPT_TS_PRESPEC: 28403 case IPOPT_TS_PRESPEC_RFC791: 28404 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28405 break; 28406 default: 28407 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28408 (char *)ipha; 28409 goto param_prob; 28410 } 28411 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28412 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28413 /* 28414 * No room and the overflow counter is 15 28415 * already. 28416 */ 28417 goto param_prob; 28418 } 28419 break; 28420 } 28421 } 28422 28423 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28424 return (0); 28425 28426 ip1dbg(("ip_wput_options: error processing IP options.")); 28427 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28428 28429 param_prob: 28430 /* 28431 * Since ip_wput() isn't close to finished, we fill 28432 * in enough of the header for credible error reporting. 28433 */ 28434 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28435 /* Failed */ 28436 freemsg(ipsec_mp); 28437 return (-1); 28438 } 28439 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28440 return (-1); 28441 28442 bad_src_route: 28443 /* 28444 * Since ip_wput() isn't close to finished, we fill 28445 * in enough of the header for credible error reporting. 28446 */ 28447 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28448 /* Failed */ 28449 freemsg(ipsec_mp); 28450 return (-1); 28451 } 28452 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28453 return (-1); 28454 } 28455 28456 /* 28457 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28458 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28459 * thru /etc/system. 28460 */ 28461 #define CONN_MAXDRAINCNT 64 28462 28463 static void 28464 conn_drain_init(ip_stack_t *ipst) 28465 { 28466 int i; 28467 28468 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28469 28470 if ((ipst->ips_conn_drain_list_cnt == 0) || 28471 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28472 /* 28473 * Default value of the number of drainers is the 28474 * number of cpus, subject to maximum of 8 drainers. 28475 */ 28476 if (boot_max_ncpus != -1) 28477 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28478 else 28479 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28480 } 28481 28482 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28483 sizeof (idl_t), KM_SLEEP); 28484 28485 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28486 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28487 MUTEX_DEFAULT, NULL); 28488 } 28489 } 28490 28491 static void 28492 conn_drain_fini(ip_stack_t *ipst) 28493 { 28494 int i; 28495 28496 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28497 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28498 kmem_free(ipst->ips_conn_drain_list, 28499 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28500 ipst->ips_conn_drain_list = NULL; 28501 } 28502 28503 /* 28504 * Note: For an overview of how flowcontrol is handled in IP please see the 28505 * IP Flowcontrol notes at the top of this file. 28506 * 28507 * Flow control has blocked us from proceeding. Insert the given conn in one 28508 * of the conn drain lists. These conn wq's will be qenabled later on when 28509 * STREAMS flow control does a backenable. conn_walk_drain will enable 28510 * the first conn in each of these drain lists. Each of these qenabled conns 28511 * in turn enables the next in the list, after it runs, or when it closes, 28512 * thus sustaining the drain process. 28513 * 28514 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28515 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28516 * running at any time, on a given conn, since there can be only 1 service proc 28517 * running on a queue at any time. 28518 */ 28519 void 28520 conn_drain_insert(conn_t *connp) 28521 { 28522 idl_t *idl; 28523 uint_t index; 28524 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28525 28526 mutex_enter(&connp->conn_lock); 28527 if (connp->conn_state_flags & CONN_CLOSING) { 28528 /* 28529 * The conn is closing as a result of which CONN_CLOSING 28530 * is set. Return. 28531 */ 28532 mutex_exit(&connp->conn_lock); 28533 return; 28534 } else if (connp->conn_idl == NULL) { 28535 /* 28536 * Assign the next drain list round robin. We dont' use 28537 * a lock, and thus it may not be strictly round robin. 28538 * Atomicity of load/stores is enough to make sure that 28539 * conn_drain_list_index is always within bounds. 28540 */ 28541 index = ipst->ips_conn_drain_list_index; 28542 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28543 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28544 index++; 28545 if (index == ipst->ips_conn_drain_list_cnt) 28546 index = 0; 28547 ipst->ips_conn_drain_list_index = index; 28548 } 28549 mutex_exit(&connp->conn_lock); 28550 28551 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28552 if ((connp->conn_drain_prev != NULL) || 28553 (connp->conn_state_flags & CONN_CLOSING)) { 28554 /* 28555 * The conn is already in the drain list, OR 28556 * the conn is closing. We need to check again for 28557 * the closing case again since close can happen 28558 * after we drop the conn_lock, and before we 28559 * acquire the CONN_DRAIN_LIST_LOCK. 28560 */ 28561 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28562 return; 28563 } else { 28564 idl = connp->conn_idl; 28565 } 28566 28567 /* 28568 * The conn is not in the drain list. Insert it at the 28569 * tail of the drain list. The drain list is circular 28570 * and doubly linked. idl_conn points to the 1st element 28571 * in the list. 28572 */ 28573 if (idl->idl_conn == NULL) { 28574 idl->idl_conn = connp; 28575 connp->conn_drain_next = connp; 28576 connp->conn_drain_prev = connp; 28577 } else { 28578 conn_t *head = idl->idl_conn; 28579 28580 connp->conn_drain_next = head; 28581 connp->conn_drain_prev = head->conn_drain_prev; 28582 head->conn_drain_prev->conn_drain_next = connp; 28583 head->conn_drain_prev = connp; 28584 } 28585 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28586 } 28587 28588 /* 28589 * This conn is closing, and we are called from ip_close. OR 28590 * This conn has been serviced by ip_wsrv, and we need to do the tail 28591 * processing. 28592 * If this conn is part of the drain list, we may need to sustain the drain 28593 * process by qenabling the next conn in the drain list. We may also need to 28594 * remove this conn from the list, if it is done. 28595 */ 28596 static void 28597 conn_drain_tail(conn_t *connp, boolean_t closing) 28598 { 28599 idl_t *idl; 28600 28601 /* 28602 * connp->conn_idl is stable at this point, and no lock is needed 28603 * to check it. If we are called from ip_close, close has already 28604 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28605 * called us only because conn_idl is non-null. If we are called thru 28606 * service, conn_idl could be null, but it cannot change because 28607 * service is single-threaded per queue, and there cannot be another 28608 * instance of service trying to call conn_drain_insert on this conn 28609 * now. 28610 */ 28611 ASSERT(!closing || (connp->conn_idl != NULL)); 28612 28613 /* 28614 * If connp->conn_idl is null, the conn has not been inserted into any 28615 * drain list even once since creation of the conn. Just return. 28616 */ 28617 if (connp->conn_idl == NULL) 28618 return; 28619 28620 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28621 28622 if (connp->conn_drain_prev == NULL) { 28623 /* This conn is currently not in the drain list. */ 28624 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28625 return; 28626 } 28627 idl = connp->conn_idl; 28628 if (idl->idl_conn_draining == connp) { 28629 /* 28630 * This conn is the current drainer. If this is the last conn 28631 * in the drain list, we need to do more checks, in the 'if' 28632 * below. Otherwwise we need to just qenable the next conn, 28633 * to sustain the draining, and is handled in the 'else' 28634 * below. 28635 */ 28636 if (connp->conn_drain_next == idl->idl_conn) { 28637 /* 28638 * This conn is the last in this list. This round 28639 * of draining is complete. If idl_repeat is set, 28640 * it means another flow enabling has happened from 28641 * the driver/streams and we need to another round 28642 * of draining. 28643 * If there are more than 2 conns in the drain list, 28644 * do a left rotate by 1, so that all conns except the 28645 * conn at the head move towards the head by 1, and the 28646 * the conn at the head goes to the tail. This attempts 28647 * a more even share for all queues that are being 28648 * drained. 28649 */ 28650 if ((connp->conn_drain_next != connp) && 28651 (idl->idl_conn->conn_drain_next != connp)) { 28652 idl->idl_conn = idl->idl_conn->conn_drain_next; 28653 } 28654 if (idl->idl_repeat) { 28655 qenable(idl->idl_conn->conn_wq); 28656 idl->idl_conn_draining = idl->idl_conn; 28657 idl->idl_repeat = 0; 28658 } else { 28659 idl->idl_conn_draining = NULL; 28660 } 28661 } else { 28662 /* 28663 * If the next queue that we are now qenable'ing, 28664 * is closing, it will remove itself from this list 28665 * and qenable the subsequent queue in ip_close(). 28666 * Serialization is acheived thru idl_lock. 28667 */ 28668 qenable(connp->conn_drain_next->conn_wq); 28669 idl->idl_conn_draining = connp->conn_drain_next; 28670 } 28671 } 28672 if (!connp->conn_did_putbq || closing) { 28673 /* 28674 * Remove ourself from the drain list, if we did not do 28675 * a putbq, or if the conn is closing. 28676 * Note: It is possible that q->q_first is non-null. It means 28677 * that these messages landed after we did a enableok() in 28678 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28679 * service them. 28680 */ 28681 if (connp->conn_drain_next == connp) { 28682 /* Singleton in the list */ 28683 ASSERT(connp->conn_drain_prev == connp); 28684 idl->idl_conn = NULL; 28685 idl->idl_conn_draining = NULL; 28686 } else { 28687 connp->conn_drain_prev->conn_drain_next = 28688 connp->conn_drain_next; 28689 connp->conn_drain_next->conn_drain_prev = 28690 connp->conn_drain_prev; 28691 if (idl->idl_conn == connp) 28692 idl->idl_conn = connp->conn_drain_next; 28693 ASSERT(idl->idl_conn_draining != connp); 28694 28695 } 28696 connp->conn_drain_next = NULL; 28697 connp->conn_drain_prev = NULL; 28698 } 28699 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28700 } 28701 28702 /* 28703 * Write service routine. Shared perimeter entry point. 28704 * ip_wsrv can be called in any of the following ways. 28705 * 1. The device queue's messages has fallen below the low water mark 28706 * and STREAMS has backenabled the ill_wq. We walk thru all the 28707 * the drain lists and backenable the first conn in each list. 28708 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28709 * qenabled non-tcp upper layers. We start dequeing messages and call 28710 * ip_wput for each message. 28711 */ 28712 28713 void 28714 ip_wsrv(queue_t *q) 28715 { 28716 conn_t *connp; 28717 ill_t *ill; 28718 mblk_t *mp; 28719 28720 if (q->q_next) { 28721 ill = (ill_t *)q->q_ptr; 28722 if (ill->ill_state_flags == 0) { 28723 /* 28724 * The device flow control has opened up. 28725 * Walk through conn drain lists and qenable the 28726 * first conn in each list. This makes sense only 28727 * if the stream is fully plumbed and setup. 28728 * Hence the if check above. 28729 */ 28730 ip1dbg(("ip_wsrv: walking\n")); 28731 conn_walk_drain(ill->ill_ipst); 28732 } 28733 return; 28734 } 28735 28736 connp = Q_TO_CONN(q); 28737 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28738 28739 /* 28740 * 1. Set conn_draining flag to signal that service is active. 28741 * 28742 * 2. ip_output determines whether it has been called from service, 28743 * based on the last parameter. If it is IP_WSRV it concludes it 28744 * has been called from service. 28745 * 28746 * 3. Message ordering is preserved by the following logic. 28747 * i. A directly called ip_output (i.e. not thru service) will queue 28748 * the message at the tail, if conn_draining is set (i.e. service 28749 * is running) or if q->q_first is non-null. 28750 * 28751 * ii. If ip_output is called from service, and if ip_output cannot 28752 * putnext due to flow control, it does a putbq. 28753 * 28754 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28755 * (causing an infinite loop). 28756 */ 28757 ASSERT(!connp->conn_did_putbq); 28758 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28759 connp->conn_draining = 1; 28760 noenable(q); 28761 while ((mp = getq(q)) != NULL) { 28762 ASSERT(CONN_Q(q)); 28763 28764 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28765 if (connp->conn_did_putbq) { 28766 /* ip_wput did a putbq */ 28767 break; 28768 } 28769 } 28770 /* 28771 * At this point, a thread coming down from top, calling 28772 * ip_wput, may end up queueing the message. We have not yet 28773 * enabled the queue, so ip_wsrv won't be called again. 28774 * To avoid this race, check q->q_first again (in the loop) 28775 * If the other thread queued the message before we call 28776 * enableok(), we will catch it in the q->q_first check. 28777 * If the other thread queues the message after we call 28778 * enableok(), ip_wsrv will be called again by STREAMS. 28779 */ 28780 connp->conn_draining = 0; 28781 enableok(q); 28782 } 28783 28784 /* Enable the next conn for draining */ 28785 conn_drain_tail(connp, B_FALSE); 28786 28787 connp->conn_did_putbq = 0; 28788 } 28789 28790 /* 28791 * Callback to disable flow control in IP. 28792 * 28793 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28794 * is enabled. 28795 * 28796 * When MAC_TX() is not able to send any more packets, dld sets its queue 28797 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28798 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28799 * function and wakes up corresponding mac worker threads, which in turn 28800 * calls this callback function, and disables flow control. 28801 */ 28802 /* ARGSUSED */ 28803 void 28804 ill_flow_enable(void *ill, ip_mac_tx_cookie_t cookie) 28805 { 28806 qenable(((ill_t *)ill)->ill_wq); 28807 } 28808 28809 /* 28810 * Walk the list of all conn's calling the function provided with the 28811 * specified argument for each. Note that this only walks conn's that 28812 * have been bound. 28813 * Applies to both IPv4 and IPv6. 28814 */ 28815 static void 28816 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28817 { 28818 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28819 ipst->ips_ipcl_udp_fanout_size, 28820 func, arg, zoneid); 28821 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28822 ipst->ips_ipcl_conn_fanout_size, 28823 func, arg, zoneid); 28824 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28825 ipst->ips_ipcl_bind_fanout_size, 28826 func, arg, zoneid); 28827 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28828 IPPROTO_MAX, func, arg, zoneid); 28829 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28830 IPPROTO_MAX, func, arg, zoneid); 28831 } 28832 28833 /* 28834 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28835 * of conns that need to be drained, check if drain is already in progress. 28836 * If so set the idl_repeat bit, indicating that the last conn in the list 28837 * needs to reinitiate the drain once again, for the list. If drain is not 28838 * in progress for the list, initiate the draining, by qenabling the 1st 28839 * conn in the list. The drain is self-sustaining, each qenabled conn will 28840 * in turn qenable the next conn, when it is done/blocked/closing. 28841 */ 28842 static void 28843 conn_walk_drain(ip_stack_t *ipst) 28844 { 28845 int i; 28846 idl_t *idl; 28847 28848 IP_STAT(ipst, ip_conn_walk_drain); 28849 28850 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28851 idl = &ipst->ips_conn_drain_list[i]; 28852 mutex_enter(&idl->idl_lock); 28853 if (idl->idl_conn == NULL) { 28854 mutex_exit(&idl->idl_lock); 28855 continue; 28856 } 28857 /* 28858 * If this list is not being drained currently by 28859 * an ip_wsrv thread, start the process. 28860 */ 28861 if (idl->idl_conn_draining == NULL) { 28862 ASSERT(idl->idl_repeat == 0); 28863 qenable(idl->idl_conn->conn_wq); 28864 idl->idl_conn_draining = idl->idl_conn; 28865 } else { 28866 idl->idl_repeat = 1; 28867 } 28868 mutex_exit(&idl->idl_lock); 28869 } 28870 } 28871 28872 /* 28873 * Walk an conn hash table of `count' buckets, calling func for each entry. 28874 */ 28875 static void 28876 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28877 zoneid_t zoneid) 28878 { 28879 conn_t *connp; 28880 28881 while (count-- > 0) { 28882 mutex_enter(&connfp->connf_lock); 28883 for (connp = connfp->connf_head; connp != NULL; 28884 connp = connp->conn_next) { 28885 if (zoneid == GLOBAL_ZONEID || 28886 zoneid == connp->conn_zoneid) { 28887 CONN_INC_REF(connp); 28888 mutex_exit(&connfp->connf_lock); 28889 (*func)(connp, arg); 28890 mutex_enter(&connfp->connf_lock); 28891 CONN_DEC_REF(connp); 28892 } 28893 } 28894 mutex_exit(&connfp->connf_lock); 28895 connfp++; 28896 } 28897 } 28898 28899 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28900 static void 28901 conn_report1(conn_t *connp, void *mp) 28902 { 28903 char buf1[INET6_ADDRSTRLEN]; 28904 char buf2[INET6_ADDRSTRLEN]; 28905 uint_t print_len, buf_len; 28906 28907 ASSERT(connp != NULL); 28908 28909 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28910 if (buf_len <= 0) 28911 return; 28912 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28913 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28914 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28915 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28916 "%5d %s/%05d %s/%05d\n", 28917 (void *)connp, (void *)CONNP_TO_RQ(connp), 28918 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28919 buf1, connp->conn_lport, 28920 buf2, connp->conn_fport); 28921 if (print_len < buf_len) { 28922 ((mblk_t *)mp)->b_wptr += print_len; 28923 } else { 28924 ((mblk_t *)mp)->b_wptr += buf_len; 28925 } 28926 } 28927 28928 /* 28929 * Named Dispatch routine to produce a formatted report on all conns 28930 * that are listed in one of the fanout tables. 28931 * This report is accessed by using the ndd utility to "get" ND variable 28932 * "ip_conn_status". 28933 */ 28934 /* ARGSUSED */ 28935 static int 28936 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28937 { 28938 conn_t *connp = Q_TO_CONN(q); 28939 28940 (void) mi_mpprintf(mp, 28941 "CONN " MI_COL_HDRPAD_STR 28942 "rfq " MI_COL_HDRPAD_STR 28943 "stq " MI_COL_HDRPAD_STR 28944 " zone local remote"); 28945 28946 /* 28947 * Because of the ndd constraint, at most we can have 64K buffer 28948 * to put in all conn info. So to be more efficient, just 28949 * allocate a 64K buffer here, assuming we need that large buffer. 28950 * This should be OK as only privileged processes can do ndd /dev/ip. 28951 */ 28952 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28953 /* The following may work even if we cannot get a large buf. */ 28954 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28955 return (0); 28956 } 28957 28958 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28959 connp->conn_netstack->netstack_ip); 28960 return (0); 28961 } 28962 28963 /* 28964 * Determine if the ill and multicast aspects of that packets 28965 * "matches" the conn. 28966 */ 28967 boolean_t 28968 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28969 zoneid_t zoneid) 28970 { 28971 ill_t *in_ill; 28972 boolean_t found; 28973 ipif_t *ipif; 28974 ire_t *ire; 28975 ipaddr_t dst, src; 28976 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28977 28978 dst = ipha->ipha_dst; 28979 src = ipha->ipha_src; 28980 28981 /* 28982 * conn_incoming_ill is set by IP_BOUND_IF which limits 28983 * unicast, broadcast and multicast reception to 28984 * conn_incoming_ill. conn_wantpacket itself is called 28985 * only for BROADCAST and multicast. 28986 * 28987 * 1) ip_rput supresses duplicate broadcasts if the ill 28988 * is part of a group. Hence, we should be receiving 28989 * just one copy of broadcast for the whole group. 28990 * Thus, if it is part of the group the packet could 28991 * come on any ill of the group and hence we need a 28992 * match on the group. Otherwise, match on ill should 28993 * be sufficient. 28994 * 28995 * 2) ip_rput does not suppress duplicate multicast packets. 28996 * If there are two interfaces in a ill group and we have 28997 * 2 applications (conns) joined a multicast group G on 28998 * both the interfaces, ilm_lookup_ill filter in ip_rput 28999 * will give us two packets because we join G on both the 29000 * interfaces rather than nominating just one interface 29001 * for receiving multicast like broadcast above. So, 29002 * we have to call ilg_lookup_ill to filter out duplicate 29003 * copies, if ill is part of a group. 29004 */ 29005 in_ill = connp->conn_incoming_ill; 29006 if (in_ill != NULL) { 29007 if (in_ill->ill_group == NULL) { 29008 if (in_ill != ill) 29009 return (B_FALSE); 29010 } else if (in_ill->ill_group != ill->ill_group) { 29011 return (B_FALSE); 29012 } 29013 } 29014 29015 if (!CLASSD(dst)) { 29016 if (IPCL_ZONE_MATCH(connp, zoneid)) 29017 return (B_TRUE); 29018 /* 29019 * The conn is in a different zone; we need to check that this 29020 * broadcast address is configured in the application's zone and 29021 * on one ill in the group. 29022 */ 29023 ipif = ipif_get_next_ipif(NULL, ill); 29024 if (ipif == NULL) 29025 return (B_FALSE); 29026 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 29027 connp->conn_zoneid, NULL, 29028 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 29029 ipif_refrele(ipif); 29030 if (ire != NULL) { 29031 ire_refrele(ire); 29032 return (B_TRUE); 29033 } else { 29034 return (B_FALSE); 29035 } 29036 } 29037 29038 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 29039 connp->conn_zoneid == zoneid) { 29040 /* 29041 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 29042 * disabled, therefore we don't dispatch the multicast packet to 29043 * the sending zone. 29044 */ 29045 return (B_FALSE); 29046 } 29047 29048 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 29049 /* 29050 * Multicast packet on the loopback interface: we only match 29051 * conns who joined the group in the specified zone. 29052 */ 29053 return (B_FALSE); 29054 } 29055 29056 if (connp->conn_multi_router) { 29057 /* multicast packet and multicast router socket: send up */ 29058 return (B_TRUE); 29059 } 29060 29061 mutex_enter(&connp->conn_lock); 29062 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 29063 mutex_exit(&connp->conn_lock); 29064 return (found); 29065 } 29066 29067 /* 29068 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 29069 */ 29070 /* ARGSUSED */ 29071 static void 29072 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 29073 { 29074 ill_t *ill = (ill_t *)q->q_ptr; 29075 mblk_t *mp1, *mp2; 29076 ipif_t *ipif; 29077 int err = 0; 29078 conn_t *connp = NULL; 29079 ipsq_t *ipsq; 29080 arc_t *arc; 29081 29082 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 29083 29084 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 29085 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 29086 29087 ASSERT(IAM_WRITER_ILL(ill)); 29088 mp2 = mp->b_cont; 29089 mp->b_cont = NULL; 29090 29091 /* 29092 * We have now received the arp bringup completion message 29093 * from ARP. Mark the arp bringup as done. Also if the arp 29094 * stream has already started closing, send up the AR_ARP_CLOSING 29095 * ack now since ARP is waiting in close for this ack. 29096 */ 29097 mutex_enter(&ill->ill_lock); 29098 ill->ill_arp_bringup_pending = 0; 29099 if (ill->ill_arp_closing) { 29100 mutex_exit(&ill->ill_lock); 29101 /* Let's reuse the mp for sending the ack */ 29102 arc = (arc_t *)mp->b_rptr; 29103 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 29104 arc->arc_cmd = AR_ARP_CLOSING; 29105 qreply(q, mp); 29106 } else { 29107 mutex_exit(&ill->ill_lock); 29108 freeb(mp); 29109 } 29110 29111 ipsq = ill->ill_phyint->phyint_ipsq; 29112 ipif = ipsq->ipsq_pending_ipif; 29113 mp1 = ipsq_pending_mp_get(ipsq, &connp); 29114 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 29115 if (mp1 == NULL) { 29116 /* bringup was aborted by the user */ 29117 freemsg(mp2); 29118 return; 29119 } 29120 29121 /* 29122 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 29123 * must have an associated conn_t. Otherwise, we're bringing this 29124 * interface back up as part of handling an asynchronous event (e.g., 29125 * physical address change). 29126 */ 29127 if (ipsq->ipsq_current_ioctl != 0) { 29128 ASSERT(connp != NULL); 29129 q = CONNP_TO_WQ(connp); 29130 } else { 29131 ASSERT(connp == NULL); 29132 q = ill->ill_rq; 29133 } 29134 29135 /* 29136 * If the DL_BIND_REQ fails, it is noted 29137 * in arc_name_offset. 29138 */ 29139 err = *((int *)mp2->b_rptr); 29140 if (err == 0) { 29141 if (ipif->ipif_isv6) { 29142 if ((err = ipif_up_done_v6(ipif)) != 0) 29143 ip0dbg(("ip_arp_done: init failed\n")); 29144 } else { 29145 if ((err = ipif_up_done(ipif)) != 0) 29146 ip0dbg(("ip_arp_done: init failed\n")); 29147 } 29148 } else { 29149 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 29150 } 29151 29152 freemsg(mp2); 29153 29154 if ((err == 0) && (ill->ill_up_ipifs)) { 29155 err = ill_up_ipifs(ill, q, mp1); 29156 if (err == EINPROGRESS) 29157 return; 29158 } 29159 29160 if (ill->ill_up_ipifs) 29161 ill_group_cleanup(ill); 29162 29163 /* 29164 * The operation must complete without EINPROGRESS since 29165 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 29166 * Otherwise, the operation will be stuck forever in the ipsq. 29167 */ 29168 ASSERT(err != EINPROGRESS); 29169 if (ipsq->ipsq_current_ioctl != 0) 29170 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 29171 else 29172 ipsq_current_finish(ipsq); 29173 } 29174 29175 /* Allocate the private structure */ 29176 static int 29177 ip_priv_alloc(void **bufp) 29178 { 29179 void *buf; 29180 29181 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 29182 return (ENOMEM); 29183 29184 *bufp = buf; 29185 return (0); 29186 } 29187 29188 /* Function to delete the private structure */ 29189 void 29190 ip_priv_free(void *buf) 29191 { 29192 ASSERT(buf != NULL); 29193 kmem_free(buf, sizeof (ip_priv_t)); 29194 } 29195 29196 /* 29197 * The entry point for IPPF processing. 29198 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 29199 * routine just returns. 29200 * 29201 * When called, ip_process generates an ipp_packet_t structure 29202 * which holds the state information for this packet and invokes the 29203 * the classifier (via ipp_packet_process). The classification, depending on 29204 * configured filters, results in a list of actions for this packet. Invoking 29205 * an action may cause the packet to be dropped, in which case the resulting 29206 * mblk (*mpp) is NULL. proc indicates the callout position for 29207 * this packet and ill_index is the interface this packet on or will leave 29208 * on (inbound and outbound resp.). 29209 */ 29210 void 29211 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 29212 { 29213 mblk_t *mp; 29214 ip_priv_t *priv; 29215 ipp_action_id_t aid; 29216 int rc = 0; 29217 ipp_packet_t *pp; 29218 #define IP_CLASS "ip" 29219 29220 /* If the classifier is not loaded, return */ 29221 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 29222 return; 29223 } 29224 29225 mp = *mpp; 29226 ASSERT(mp != NULL); 29227 29228 /* Allocate the packet structure */ 29229 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 29230 if (rc != 0) { 29231 *mpp = NULL; 29232 freemsg(mp); 29233 return; 29234 } 29235 29236 /* Allocate the private structure */ 29237 rc = ip_priv_alloc((void **)&priv); 29238 if (rc != 0) { 29239 *mpp = NULL; 29240 freemsg(mp); 29241 ipp_packet_free(pp); 29242 return; 29243 } 29244 priv->proc = proc; 29245 priv->ill_index = ill_index; 29246 ipp_packet_set_private(pp, priv, ip_priv_free); 29247 ipp_packet_set_data(pp, mp); 29248 29249 /* Invoke the classifier */ 29250 rc = ipp_packet_process(&pp); 29251 if (pp != NULL) { 29252 mp = ipp_packet_get_data(pp); 29253 ipp_packet_free(pp); 29254 if (rc != 0) { 29255 freemsg(mp); 29256 *mpp = NULL; 29257 } 29258 } else { 29259 *mpp = NULL; 29260 } 29261 #undef IP_CLASS 29262 } 29263 29264 /* 29265 * Propagate a multicast group membership operation (add/drop) on 29266 * all the interfaces crossed by the related multirt routes. 29267 * The call is considered successful if the operation succeeds 29268 * on at least one interface. 29269 */ 29270 static int 29271 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29272 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29273 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29274 mblk_t *first_mp) 29275 { 29276 ire_t *ire_gw; 29277 irb_t *irb; 29278 int error = 0; 29279 opt_restart_t *or; 29280 ip_stack_t *ipst = ire->ire_ipst; 29281 29282 irb = ire->ire_bucket; 29283 ASSERT(irb != NULL); 29284 29285 ASSERT(DB_TYPE(first_mp) == M_CTL); 29286 29287 or = (opt_restart_t *)first_mp->b_rptr; 29288 IRB_REFHOLD(irb); 29289 for (; ire != NULL; ire = ire->ire_next) { 29290 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29291 continue; 29292 if (ire->ire_addr != group) 29293 continue; 29294 29295 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29296 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29297 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29298 /* No resolver exists for the gateway; skip this ire. */ 29299 if (ire_gw == NULL) 29300 continue; 29301 29302 /* 29303 * This function can return EINPROGRESS. If so the operation 29304 * will be restarted from ip_restart_optmgmt which will 29305 * call ip_opt_set and option processing will restart for 29306 * this option. So we may end up calling 'fn' more than once. 29307 * This requires that 'fn' is idempotent except for the 29308 * return value. The operation is considered a success if 29309 * it succeeds at least once on any one interface. 29310 */ 29311 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29312 NULL, fmode, src, first_mp); 29313 if (error == 0) 29314 or->or_private = CGTP_MCAST_SUCCESS; 29315 29316 if (ip_debug > 0) { 29317 ulong_t off; 29318 char *ksym; 29319 ksym = kobj_getsymname((uintptr_t)fn, &off); 29320 ip2dbg(("ip_multirt_apply_membership: " 29321 "called %s, multirt group 0x%08x via itf 0x%08x, " 29322 "error %d [success %u]\n", 29323 ksym ? ksym : "?", 29324 ntohl(group), ntohl(ire_gw->ire_src_addr), 29325 error, or->or_private)); 29326 } 29327 29328 ire_refrele(ire_gw); 29329 if (error == EINPROGRESS) { 29330 IRB_REFRELE(irb); 29331 return (error); 29332 } 29333 } 29334 IRB_REFRELE(irb); 29335 /* 29336 * Consider the call as successful if we succeeded on at least 29337 * one interface. Otherwise, return the last encountered error. 29338 */ 29339 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29340 } 29341 29342 29343 /* 29344 * Issue a warning regarding a route crossing an interface with an 29345 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29346 * amount of time is logged. 29347 */ 29348 static void 29349 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29350 { 29351 hrtime_t current = gethrtime(); 29352 char buf[INET_ADDRSTRLEN]; 29353 ip_stack_t *ipst = ire->ire_ipst; 29354 29355 /* Convert interval in ms to hrtime in ns */ 29356 if (ipst->ips_multirt_bad_mtu_last_time + 29357 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29358 current) { 29359 cmn_err(CE_WARN, "ip: ignoring multiroute " 29360 "to %s, incorrect MTU %u (expected %u)\n", 29361 ip_dot_addr(ire->ire_addr, buf), 29362 ire->ire_max_frag, max_frag); 29363 29364 ipst->ips_multirt_bad_mtu_last_time = current; 29365 } 29366 } 29367 29368 29369 /* 29370 * Get the CGTP (multirouting) filtering status. 29371 * If 0, the CGTP hooks are transparent. 29372 */ 29373 /* ARGSUSED */ 29374 static int 29375 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29376 { 29377 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29378 29379 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29380 return (0); 29381 } 29382 29383 29384 /* 29385 * Set the CGTP (multirouting) filtering status. 29386 * If the status is changed from active to transparent 29387 * or from transparent to active, forward the new status 29388 * to the filtering module (if loaded). 29389 */ 29390 /* ARGSUSED */ 29391 static int 29392 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29393 cred_t *ioc_cr) 29394 { 29395 long new_value; 29396 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29397 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29398 29399 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29400 return (EPERM); 29401 29402 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29403 new_value < 0 || new_value > 1) { 29404 return (EINVAL); 29405 } 29406 29407 if ((!*ip_cgtp_filter_value) && new_value) { 29408 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29409 ipst->ips_ip_cgtp_filter_ops == NULL ? 29410 " (module not loaded)" : ""); 29411 } 29412 if (*ip_cgtp_filter_value && (!new_value)) { 29413 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29414 ipst->ips_ip_cgtp_filter_ops == NULL ? 29415 " (module not loaded)" : ""); 29416 } 29417 29418 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29419 int res; 29420 netstackid_t stackid; 29421 29422 stackid = ipst->ips_netstack->netstack_stackid; 29423 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29424 new_value); 29425 if (res) 29426 return (res); 29427 } 29428 29429 *ip_cgtp_filter_value = (boolean_t)new_value; 29430 29431 return (0); 29432 } 29433 29434 29435 /* 29436 * Return the expected CGTP hooks version number. 29437 */ 29438 int 29439 ip_cgtp_filter_supported(void) 29440 { 29441 return (ip_cgtp_filter_rev); 29442 } 29443 29444 29445 /* 29446 * CGTP hooks can be registered by invoking this function. 29447 * Checks that the version number matches. 29448 */ 29449 int 29450 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29451 { 29452 netstack_t *ns; 29453 ip_stack_t *ipst; 29454 29455 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29456 return (ENOTSUP); 29457 29458 ns = netstack_find_by_stackid(stackid); 29459 if (ns == NULL) 29460 return (EINVAL); 29461 ipst = ns->netstack_ip; 29462 ASSERT(ipst != NULL); 29463 29464 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29465 netstack_rele(ns); 29466 return (EALREADY); 29467 } 29468 29469 ipst->ips_ip_cgtp_filter_ops = ops; 29470 netstack_rele(ns); 29471 return (0); 29472 } 29473 29474 /* 29475 * CGTP hooks can be unregistered by invoking this function. 29476 * Returns ENXIO if there was no registration. 29477 * Returns EBUSY if the ndd variable has not been turned off. 29478 */ 29479 int 29480 ip_cgtp_filter_unregister(netstackid_t stackid) 29481 { 29482 netstack_t *ns; 29483 ip_stack_t *ipst; 29484 29485 ns = netstack_find_by_stackid(stackid); 29486 if (ns == NULL) 29487 return (EINVAL); 29488 ipst = ns->netstack_ip; 29489 ASSERT(ipst != NULL); 29490 29491 if (ipst->ips_ip_cgtp_filter) { 29492 netstack_rele(ns); 29493 return (EBUSY); 29494 } 29495 29496 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29497 netstack_rele(ns); 29498 return (ENXIO); 29499 } 29500 ipst->ips_ip_cgtp_filter_ops = NULL; 29501 netstack_rele(ns); 29502 return (0); 29503 } 29504 29505 /* 29506 * Check whether there is a CGTP filter registration. 29507 * Returns non-zero if there is a registration, otherwise returns zero. 29508 * Note: returns zero if bad stackid. 29509 */ 29510 int 29511 ip_cgtp_filter_is_registered(netstackid_t stackid) 29512 { 29513 netstack_t *ns; 29514 ip_stack_t *ipst; 29515 int ret; 29516 29517 ns = netstack_find_by_stackid(stackid); 29518 if (ns == NULL) 29519 return (0); 29520 ipst = ns->netstack_ip; 29521 ASSERT(ipst != NULL); 29522 29523 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29524 ret = 1; 29525 else 29526 ret = 0; 29527 29528 netstack_rele(ns); 29529 return (ret); 29530 } 29531 29532 static int 29533 ip_squeue_switch(int val) 29534 { 29535 int rval = SQ_FILL; 29536 29537 switch (val) { 29538 case IP_SQUEUE_ENTER_NODRAIN: 29539 rval = SQ_NODRAIN; 29540 break; 29541 case IP_SQUEUE_ENTER: 29542 rval = SQ_PROCESS; 29543 break; 29544 default: 29545 break; 29546 } 29547 return (rval); 29548 } 29549 29550 /* ARGSUSED */ 29551 static int 29552 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29553 caddr_t addr, cred_t *cr) 29554 { 29555 int *v = (int *)addr; 29556 long new_value; 29557 29558 if (secpolicy_net_config(cr, B_FALSE) != 0) 29559 return (EPERM); 29560 29561 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29562 return (EINVAL); 29563 29564 ip_squeue_flag = ip_squeue_switch(new_value); 29565 *v = new_value; 29566 return (0); 29567 } 29568 29569 /* 29570 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29571 * ip_debug. 29572 */ 29573 /* ARGSUSED */ 29574 static int 29575 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29576 caddr_t addr, cred_t *cr) 29577 { 29578 int *v = (int *)addr; 29579 long new_value; 29580 29581 if (secpolicy_net_config(cr, B_FALSE) != 0) 29582 return (EPERM); 29583 29584 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29585 return (EINVAL); 29586 29587 *v = new_value; 29588 return (0); 29589 } 29590 29591 /* 29592 * Handle changes to ipmp_hook_emulation ndd variable. 29593 * Need to update phyint_hook_ifindex. 29594 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29595 */ 29596 static void 29597 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29598 { 29599 phyint_t *phyi; 29600 phyint_t *phyi_tmp; 29601 char *groupname; 29602 int namelen; 29603 ill_t *ill; 29604 boolean_t new_group; 29605 29606 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29607 /* 29608 * Group indicies are stored in the phyint - a common structure 29609 * to both IPv4 and IPv6. 29610 */ 29611 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29612 for (; phyi != NULL; 29613 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29614 phyi, AVL_AFTER)) { 29615 /* Ignore the ones that do not have a group */ 29616 if (phyi->phyint_groupname_len == 0) 29617 continue; 29618 29619 /* 29620 * Look for other phyint in group. 29621 * Clear name/namelen so the lookup doesn't find ourselves. 29622 */ 29623 namelen = phyi->phyint_groupname_len; 29624 groupname = phyi->phyint_groupname; 29625 phyi->phyint_groupname_len = 0; 29626 phyi->phyint_groupname = NULL; 29627 29628 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29629 /* Restore */ 29630 phyi->phyint_groupname_len = namelen; 29631 phyi->phyint_groupname = groupname; 29632 29633 new_group = B_FALSE; 29634 if (ipst->ips_ipmp_hook_emulation) { 29635 /* 29636 * If the group already exists and has already 29637 * been assigned a group ifindex, we use the existing 29638 * group_ifindex, otherwise we pick a new group_ifindex 29639 * here. 29640 */ 29641 if (phyi_tmp != NULL && 29642 phyi_tmp->phyint_group_ifindex != 0) { 29643 phyi->phyint_group_ifindex = 29644 phyi_tmp->phyint_group_ifindex; 29645 } else { 29646 /* XXX We need a recovery strategy here. */ 29647 if (!ip_assign_ifindex( 29648 &phyi->phyint_group_ifindex, ipst)) 29649 cmn_err(CE_PANIC, 29650 "ip_assign_ifindex() failed"); 29651 new_group = B_TRUE; 29652 } 29653 } else { 29654 phyi->phyint_group_ifindex = 0; 29655 } 29656 if (ipst->ips_ipmp_hook_emulation) 29657 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29658 else 29659 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29660 29661 /* 29662 * For IP Filter to find out the relationship between 29663 * names and interface indicies, we need to generate 29664 * a NE_PLUMB event when a new group can appear. 29665 * We always generate events when a new interface appears 29666 * (even when ipmp_hook_emulation is set) so there 29667 * is no need to generate NE_PLUMB events when 29668 * ipmp_hook_emulation is turned off. 29669 * And since it isn't critical for IP Filter to get 29670 * the NE_UNPLUMB events we skip those here. 29671 */ 29672 if (new_group) { 29673 /* 29674 * First phyint in group - generate group PLUMB event. 29675 * Since we are not running inside the ipsq we do 29676 * the dispatch immediately. 29677 */ 29678 if (phyi->phyint_illv4 != NULL) 29679 ill = phyi->phyint_illv4; 29680 else 29681 ill = phyi->phyint_illv6; 29682 29683 if (ill != NULL) 29684 ill_nic_event_plumb(ill, B_TRUE); 29685 } 29686 } 29687 rw_exit(&ipst->ips_ill_g_lock); 29688 } 29689 29690 /* ARGSUSED */ 29691 static int 29692 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29693 caddr_t addr, cred_t *cr) 29694 { 29695 int *v = (int *)addr; 29696 long new_value; 29697 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29698 29699 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29700 return (EINVAL); 29701 29702 if (*v != new_value) { 29703 *v = new_value; 29704 ipmp_hook_emulation_changed(ipst); 29705 } 29706 return (0); 29707 } 29708 29709 static void * 29710 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29711 { 29712 kstat_t *ksp; 29713 29714 ip_stat_t template = { 29715 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29716 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29717 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29718 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29719 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29720 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29721 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29722 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29723 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29724 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29725 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29726 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29727 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29728 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29729 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29730 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29731 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29732 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29733 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29734 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29735 { "ip_opt", KSTAT_DATA_UINT64 }, 29736 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29737 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29738 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29739 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29740 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29741 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29742 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29743 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29744 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29745 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29746 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29747 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29748 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29749 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29750 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29751 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29752 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29753 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29754 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29755 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29756 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29757 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29758 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29759 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29760 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29761 }; 29762 29763 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29764 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29765 KSTAT_FLAG_VIRTUAL, stackid); 29766 29767 if (ksp == NULL) 29768 return (NULL); 29769 29770 bcopy(&template, ip_statisticsp, sizeof (template)); 29771 ksp->ks_data = (void *)ip_statisticsp; 29772 ksp->ks_private = (void *)(uintptr_t)stackid; 29773 29774 kstat_install(ksp); 29775 return (ksp); 29776 } 29777 29778 static void 29779 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29780 { 29781 if (ksp != NULL) { 29782 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29783 kstat_delete_netstack(ksp, stackid); 29784 } 29785 } 29786 29787 static void * 29788 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29789 { 29790 kstat_t *ksp; 29791 29792 ip_named_kstat_t template = { 29793 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29794 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29795 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29796 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29797 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29798 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29799 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29800 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29801 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29802 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29803 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29804 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29805 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29806 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29807 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29808 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29809 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29810 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29811 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29812 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29813 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29814 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29815 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29816 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29817 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29818 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29819 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29820 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29821 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29822 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29823 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29824 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29825 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29826 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29827 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29828 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29829 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29830 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29831 }; 29832 29833 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29834 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29835 if (ksp == NULL || ksp->ks_data == NULL) 29836 return (NULL); 29837 29838 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29839 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29840 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29841 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29842 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29843 29844 template.netToMediaEntrySize.value.i32 = 29845 sizeof (mib2_ipNetToMediaEntry_t); 29846 29847 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29848 29849 bcopy(&template, ksp->ks_data, sizeof (template)); 29850 ksp->ks_update = ip_kstat_update; 29851 ksp->ks_private = (void *)(uintptr_t)stackid; 29852 29853 kstat_install(ksp); 29854 return (ksp); 29855 } 29856 29857 static void 29858 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29859 { 29860 if (ksp != NULL) { 29861 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29862 kstat_delete_netstack(ksp, stackid); 29863 } 29864 } 29865 29866 static int 29867 ip_kstat_update(kstat_t *kp, int rw) 29868 { 29869 ip_named_kstat_t *ipkp; 29870 mib2_ipIfStatsEntry_t ipmib; 29871 ill_walk_context_t ctx; 29872 ill_t *ill; 29873 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29874 netstack_t *ns; 29875 ip_stack_t *ipst; 29876 29877 if (kp == NULL || kp->ks_data == NULL) 29878 return (EIO); 29879 29880 if (rw == KSTAT_WRITE) 29881 return (EACCES); 29882 29883 ns = netstack_find_by_stackid(stackid); 29884 if (ns == NULL) 29885 return (-1); 29886 ipst = ns->netstack_ip; 29887 if (ipst == NULL) { 29888 netstack_rele(ns); 29889 return (-1); 29890 } 29891 ipkp = (ip_named_kstat_t *)kp->ks_data; 29892 29893 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29894 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29895 ill = ILL_START_WALK_V4(&ctx, ipst); 29896 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29897 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29898 rw_exit(&ipst->ips_ill_g_lock); 29899 29900 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29901 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29902 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29903 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29904 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29905 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29906 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29907 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29908 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29909 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29910 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29911 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29912 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29913 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29914 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29915 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29916 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29917 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29918 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29919 29920 ipkp->routingDiscards.value.ui32 = 0; 29921 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29922 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29923 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29924 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29925 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29926 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29927 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29928 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29929 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29930 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29931 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29932 29933 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29934 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29935 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29936 29937 netstack_rele(ns); 29938 29939 return (0); 29940 } 29941 29942 static void * 29943 icmp_kstat_init(netstackid_t stackid) 29944 { 29945 kstat_t *ksp; 29946 29947 icmp_named_kstat_t template = { 29948 { "inMsgs", KSTAT_DATA_UINT32 }, 29949 { "inErrors", KSTAT_DATA_UINT32 }, 29950 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29951 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29952 { "inParmProbs", KSTAT_DATA_UINT32 }, 29953 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29954 { "inRedirects", KSTAT_DATA_UINT32 }, 29955 { "inEchos", KSTAT_DATA_UINT32 }, 29956 { "inEchoReps", KSTAT_DATA_UINT32 }, 29957 { "inTimestamps", KSTAT_DATA_UINT32 }, 29958 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29959 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29960 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29961 { "outMsgs", KSTAT_DATA_UINT32 }, 29962 { "outErrors", KSTAT_DATA_UINT32 }, 29963 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29964 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29965 { "outParmProbs", KSTAT_DATA_UINT32 }, 29966 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29967 { "outRedirects", KSTAT_DATA_UINT32 }, 29968 { "outEchos", KSTAT_DATA_UINT32 }, 29969 { "outEchoReps", KSTAT_DATA_UINT32 }, 29970 { "outTimestamps", KSTAT_DATA_UINT32 }, 29971 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29972 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29973 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29974 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29975 { "inUnknowns", KSTAT_DATA_UINT32 }, 29976 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29977 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29978 { "outDrops", KSTAT_DATA_UINT32 }, 29979 { "inOverFlows", KSTAT_DATA_UINT32 }, 29980 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29981 }; 29982 29983 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29984 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29985 if (ksp == NULL || ksp->ks_data == NULL) 29986 return (NULL); 29987 29988 bcopy(&template, ksp->ks_data, sizeof (template)); 29989 29990 ksp->ks_update = icmp_kstat_update; 29991 ksp->ks_private = (void *)(uintptr_t)stackid; 29992 29993 kstat_install(ksp); 29994 return (ksp); 29995 } 29996 29997 static void 29998 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29999 { 30000 if (ksp != NULL) { 30001 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 30002 kstat_delete_netstack(ksp, stackid); 30003 } 30004 } 30005 30006 static int 30007 icmp_kstat_update(kstat_t *kp, int rw) 30008 { 30009 icmp_named_kstat_t *icmpkp; 30010 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 30011 netstack_t *ns; 30012 ip_stack_t *ipst; 30013 30014 if ((kp == NULL) || (kp->ks_data == NULL)) 30015 return (EIO); 30016 30017 if (rw == KSTAT_WRITE) 30018 return (EACCES); 30019 30020 ns = netstack_find_by_stackid(stackid); 30021 if (ns == NULL) 30022 return (-1); 30023 ipst = ns->netstack_ip; 30024 if (ipst == NULL) { 30025 netstack_rele(ns); 30026 return (-1); 30027 } 30028 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 30029 30030 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 30031 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 30032 icmpkp->inDestUnreachs.value.ui32 = 30033 ipst->ips_icmp_mib.icmpInDestUnreachs; 30034 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 30035 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 30036 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 30037 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 30038 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 30039 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 30040 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 30041 icmpkp->inTimestampReps.value.ui32 = 30042 ipst->ips_icmp_mib.icmpInTimestampReps; 30043 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 30044 icmpkp->inAddrMaskReps.value.ui32 = 30045 ipst->ips_icmp_mib.icmpInAddrMaskReps; 30046 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 30047 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 30048 icmpkp->outDestUnreachs.value.ui32 = 30049 ipst->ips_icmp_mib.icmpOutDestUnreachs; 30050 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 30051 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 30052 icmpkp->outSrcQuenchs.value.ui32 = 30053 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 30054 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 30055 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 30056 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 30057 icmpkp->outTimestamps.value.ui32 = 30058 ipst->ips_icmp_mib.icmpOutTimestamps; 30059 icmpkp->outTimestampReps.value.ui32 = 30060 ipst->ips_icmp_mib.icmpOutTimestampReps; 30061 icmpkp->outAddrMasks.value.ui32 = 30062 ipst->ips_icmp_mib.icmpOutAddrMasks; 30063 icmpkp->outAddrMaskReps.value.ui32 = 30064 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 30065 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 30066 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 30067 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 30068 icmpkp->outFragNeeded.value.ui32 = 30069 ipst->ips_icmp_mib.icmpOutFragNeeded; 30070 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 30071 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 30072 icmpkp->inBadRedirects.value.ui32 = 30073 ipst->ips_icmp_mib.icmpInBadRedirects; 30074 30075 netstack_rele(ns); 30076 return (0); 30077 } 30078 30079 /* 30080 * This is the fanout function for raw socket opened for SCTP. Note 30081 * that it is called after SCTP checks that there is no socket which 30082 * wants a packet. Then before SCTP handles this out of the blue packet, 30083 * this function is called to see if there is any raw socket for SCTP. 30084 * If there is and it is bound to the correct address, the packet will 30085 * be sent to that socket. Note that only one raw socket can be bound to 30086 * a port. This is assured in ipcl_sctp_hash_insert(); 30087 */ 30088 void 30089 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 30090 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 30091 zoneid_t zoneid) 30092 { 30093 conn_t *connp; 30094 queue_t *rq; 30095 mblk_t *first_mp; 30096 boolean_t secure; 30097 ip6_t *ip6h; 30098 ip_stack_t *ipst = recv_ill->ill_ipst; 30099 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 30100 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 30101 boolean_t sctp_csum_err = B_FALSE; 30102 30103 if (flags & IP_FF_SCTP_CSUM_ERR) { 30104 sctp_csum_err = B_TRUE; 30105 flags &= ~IP_FF_SCTP_CSUM_ERR; 30106 } 30107 30108 first_mp = mp; 30109 if (mctl_present) { 30110 mp = first_mp->b_cont; 30111 secure = ipsec_in_is_secure(first_mp); 30112 ASSERT(mp != NULL); 30113 } else { 30114 secure = B_FALSE; 30115 } 30116 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 30117 30118 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 30119 if (connp == NULL) { 30120 /* 30121 * Although raw sctp is not summed, OOB chunks must be. 30122 * Drop the packet here if the sctp checksum failed. 30123 */ 30124 if (sctp_csum_err) { 30125 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 30126 freemsg(first_mp); 30127 return; 30128 } 30129 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 30130 return; 30131 } 30132 rq = connp->conn_rq; 30133 if (!canputnext(rq)) { 30134 CONN_DEC_REF(connp); 30135 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 30136 freemsg(first_mp); 30137 return; 30138 } 30139 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 30140 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 30141 first_mp = ipsec_check_inbound_policy(first_mp, connp, 30142 (isv4 ? ipha : NULL), ip6h, mctl_present); 30143 if (first_mp == NULL) { 30144 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 30145 CONN_DEC_REF(connp); 30146 return; 30147 } 30148 } 30149 /* 30150 * We probably should not send M_CTL message up to 30151 * raw socket. 30152 */ 30153 if (mctl_present) 30154 freeb(first_mp); 30155 30156 /* Initiate IPPF processing here if needed. */ 30157 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 30158 (!isv4 && IP6_IN_IPP(flags, ipst))) { 30159 ip_process(IPP_LOCAL_IN, &mp, 30160 recv_ill->ill_phyint->phyint_ifindex); 30161 if (mp == NULL) { 30162 CONN_DEC_REF(connp); 30163 return; 30164 } 30165 } 30166 30167 if (connp->conn_recvif || connp->conn_recvslla || 30168 ((connp->conn_ip_recvpktinfo || 30169 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 30170 (flags & IP_FF_IPINFO))) { 30171 int in_flags = 0; 30172 30173 /* 30174 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 30175 * IPF_RECVIF. 30176 */ 30177 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 30178 in_flags = IPF_RECVIF; 30179 } 30180 if (connp->conn_recvslla) { 30181 in_flags |= IPF_RECVSLLA; 30182 } 30183 if (isv4) { 30184 mp = ip_add_info(mp, recv_ill, in_flags, 30185 IPCL_ZONEID(connp), ipst); 30186 } else { 30187 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 30188 if (mp == NULL) { 30189 BUMP_MIB(recv_ill->ill_ip_mib, 30190 ipIfStatsInDiscards); 30191 CONN_DEC_REF(connp); 30192 return; 30193 } 30194 } 30195 } 30196 30197 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 30198 /* 30199 * We are sending the IPSEC_IN message also up. Refer 30200 * to comments above this function. 30201 * This is the SOCK_RAW, IPPROTO_SCTP case. 30202 */ 30203 (connp->conn_recv)(connp, mp, NULL); 30204 CONN_DEC_REF(connp); 30205 } 30206 30207 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 30208 { \ 30209 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 30210 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 30211 } 30212 /* 30213 * This function should be called only if all packet processing 30214 * including fragmentation is complete. Callers of this function 30215 * must set mp->b_prev to one of these values: 30216 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 30217 * prior to handing over the mp as first argument to this function. 30218 * 30219 * If the ire passed by caller is incomplete, this function 30220 * queues the packet and if necessary, sends ARP request and bails. 30221 * If the ire passed is fully resolved, we simply prepend 30222 * the link-layer header to the packet, do ipsec hw acceleration 30223 * work if necessary, and send the packet out on the wire. 30224 * 30225 * NOTE: IPsec will only call this function with fully resolved 30226 * ires if hw acceleration is involved. 30227 * TODO list : 30228 * a Handle M_MULTIDATA so that 30229 * tcp_multisend->tcp_multisend_data can 30230 * call ip_xmit_v4 directly 30231 * b Handle post-ARP work for fragments so that 30232 * ip_wput_frag can call this function. 30233 */ 30234 ipxmit_state_t 30235 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 30236 boolean_t flow_ctl_enabled, conn_t *connp) 30237 { 30238 nce_t *arpce; 30239 ipha_t *ipha; 30240 queue_t *q; 30241 int ill_index; 30242 mblk_t *nxt_mp, *first_mp; 30243 boolean_t xmit_drop = B_FALSE; 30244 ip_proc_t proc; 30245 ill_t *out_ill; 30246 int pkt_len; 30247 30248 arpce = ire->ire_nce; 30249 ASSERT(arpce != NULL); 30250 30251 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30252 30253 mutex_enter(&arpce->nce_lock); 30254 switch (arpce->nce_state) { 30255 case ND_REACHABLE: 30256 /* If there are other queued packets, queue this packet */ 30257 if (arpce->nce_qd_mp != NULL) { 30258 if (mp != NULL) 30259 nce_queue_mp_common(arpce, mp, B_FALSE); 30260 mp = arpce->nce_qd_mp; 30261 } 30262 arpce->nce_qd_mp = NULL; 30263 mutex_exit(&arpce->nce_lock); 30264 30265 /* 30266 * Flush the queue. In the common case, where the 30267 * ARP is already resolved, it will go through the 30268 * while loop only once. 30269 */ 30270 while (mp != NULL) { 30271 30272 nxt_mp = mp->b_next; 30273 mp->b_next = NULL; 30274 ASSERT(mp->b_datap->db_type != M_CTL); 30275 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30276 /* 30277 * This info is needed for IPQOS to do COS marking 30278 * in ip_wput_attach_llhdr->ip_process. 30279 */ 30280 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30281 mp->b_prev = NULL; 30282 30283 /* set up ill index for outbound qos processing */ 30284 out_ill = ire_to_ill(ire); 30285 ill_index = out_ill->ill_phyint->phyint_ifindex; 30286 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30287 ill_index, &ipha); 30288 if (first_mp == NULL) { 30289 xmit_drop = B_TRUE; 30290 BUMP_MIB(out_ill->ill_ip_mib, 30291 ipIfStatsOutDiscards); 30292 goto next_mp; 30293 } 30294 30295 /* non-ipsec hw accel case */ 30296 if (io == NULL || !io->ipsec_out_accelerated) { 30297 /* send it */ 30298 q = ire->ire_stq; 30299 if (proc == IPP_FWD_OUT) { 30300 UPDATE_IB_PKT_COUNT(ire); 30301 } else { 30302 UPDATE_OB_PKT_COUNT(ire); 30303 } 30304 ire->ire_last_used_time = lbolt; 30305 30306 if (flow_ctl_enabled || canputnext(q)) { 30307 if (proc == IPP_FWD_OUT) { 30308 30309 BUMP_MIB(out_ill->ill_ip_mib, 30310 ipIfStatsHCOutForwDatagrams); 30311 30312 } 30313 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30314 pkt_len); 30315 30316 DTRACE_IP7(send, mblk_t *, first_mp, 30317 conn_t *, NULL, void_ip_t *, ipha, 30318 __dtrace_ipsr_ill_t *, out_ill, 30319 ipha_t *, ipha, ip6_t *, NULL, int, 30320 0); 30321 30322 ILL_SEND_TX(out_ill, 30323 ire, connp, first_mp, 0); 30324 } else { 30325 BUMP_MIB(out_ill->ill_ip_mib, 30326 ipIfStatsOutDiscards); 30327 xmit_drop = B_TRUE; 30328 freemsg(first_mp); 30329 } 30330 } else { 30331 /* 30332 * Safety Pup says: make sure this 30333 * is going to the right interface! 30334 */ 30335 ill_t *ill1 = 30336 (ill_t *)ire->ire_stq->q_ptr; 30337 int ifindex = 30338 ill1->ill_phyint->phyint_ifindex; 30339 if (ifindex != 30340 io->ipsec_out_capab_ill_index) { 30341 xmit_drop = B_TRUE; 30342 freemsg(mp); 30343 } else { 30344 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30345 pkt_len); 30346 30347 DTRACE_IP7(send, mblk_t *, first_mp, 30348 conn_t *, NULL, void_ip_t *, ipha, 30349 __dtrace_ipsr_ill_t *, ill1, 30350 ipha_t *, ipha, ip6_t *, NULL, 30351 int, 0); 30352 30353 ipsec_hw_putnext(ire->ire_stq, mp); 30354 } 30355 } 30356 next_mp: 30357 mp = nxt_mp; 30358 } /* while (mp != NULL) */ 30359 if (xmit_drop) 30360 return (SEND_FAILED); 30361 else 30362 return (SEND_PASSED); 30363 30364 case ND_INITIAL: 30365 case ND_INCOMPLETE: 30366 30367 /* 30368 * While we do send off packets to dests that 30369 * use fully-resolved CGTP routes, we do not 30370 * handle unresolved CGTP routes. 30371 */ 30372 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30373 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30374 30375 if (mp != NULL) { 30376 /* queue the packet */ 30377 nce_queue_mp_common(arpce, mp, B_FALSE); 30378 } 30379 30380 if (arpce->nce_state == ND_INCOMPLETE) { 30381 mutex_exit(&arpce->nce_lock); 30382 DTRACE_PROBE3(ip__xmit__incomplete, 30383 (ire_t *), ire, (mblk_t *), mp, 30384 (ipsec_out_t *), io); 30385 return (LOOKUP_IN_PROGRESS); 30386 } 30387 30388 arpce->nce_state = ND_INCOMPLETE; 30389 mutex_exit(&arpce->nce_lock); 30390 /* 30391 * Note that ire_add() (called from ire_forward()) 30392 * holds a ref on the ire until ARP is completed. 30393 */ 30394 30395 ire_arpresolve(ire, ire_to_ill(ire)); 30396 return (LOOKUP_IN_PROGRESS); 30397 default: 30398 ASSERT(0); 30399 mutex_exit(&arpce->nce_lock); 30400 return (LLHDR_RESLV_FAILED); 30401 } 30402 } 30403 30404 #undef UPDATE_IP_MIB_OB_COUNTERS 30405 30406 /* 30407 * Return B_TRUE if the buffers differ in length or content. 30408 * This is used for comparing extension header buffers. 30409 * Note that an extension header would be declared different 30410 * even if all that changed was the next header value in that header i.e. 30411 * what really changed is the next extension header. 30412 */ 30413 boolean_t 30414 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30415 uint_t blen) 30416 { 30417 if (!b_valid) 30418 blen = 0; 30419 30420 if (alen != blen) 30421 return (B_TRUE); 30422 if (alen == 0) 30423 return (B_FALSE); /* Both zero length */ 30424 return (bcmp(abuf, bbuf, alen)); 30425 } 30426 30427 /* 30428 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30429 * Return B_FALSE if memory allocation fails - don't change any state! 30430 */ 30431 boolean_t 30432 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30433 const void *src, uint_t srclen) 30434 { 30435 void *dst; 30436 30437 if (!src_valid) 30438 srclen = 0; 30439 30440 ASSERT(*dstlenp == 0); 30441 if (src != NULL && srclen != 0) { 30442 dst = mi_alloc(srclen, BPRI_MED); 30443 if (dst == NULL) 30444 return (B_FALSE); 30445 } else { 30446 dst = NULL; 30447 } 30448 if (*dstp != NULL) 30449 mi_free(*dstp); 30450 *dstp = dst; 30451 *dstlenp = dst == NULL ? 0 : srclen; 30452 return (B_TRUE); 30453 } 30454 30455 /* 30456 * Replace what is in *dst, *dstlen with the source. 30457 * Assumes ip_allocbuf has already been called. 30458 */ 30459 void 30460 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30461 const void *src, uint_t srclen) 30462 { 30463 if (!src_valid) 30464 srclen = 0; 30465 30466 ASSERT(*dstlenp == srclen); 30467 if (src != NULL && srclen != 0) 30468 bcopy(src, *dstp, srclen); 30469 } 30470 30471 /* 30472 * Free the storage pointed to by the members of an ip6_pkt_t. 30473 */ 30474 void 30475 ip6_pkt_free(ip6_pkt_t *ipp) 30476 { 30477 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30478 30479 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30480 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30481 ipp->ipp_hopopts = NULL; 30482 ipp->ipp_hopoptslen = 0; 30483 } 30484 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30485 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30486 ipp->ipp_rtdstopts = NULL; 30487 ipp->ipp_rtdstoptslen = 0; 30488 } 30489 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30490 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30491 ipp->ipp_dstopts = NULL; 30492 ipp->ipp_dstoptslen = 0; 30493 } 30494 if (ipp->ipp_fields & IPPF_RTHDR) { 30495 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30496 ipp->ipp_rthdr = NULL; 30497 ipp->ipp_rthdrlen = 0; 30498 } 30499 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30500 IPPF_RTHDR); 30501 } 30502 30503 zoneid_t 30504 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 30505 zoneid_t lookup_zoneid) 30506 { 30507 ire_t *ire; 30508 int ire_flags = MATCH_IRE_TYPE; 30509 zoneid_t zoneid = ALL_ZONES; 30510 30511 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30512 return (ALL_ZONES); 30513 30514 if (lookup_zoneid != ALL_ZONES) 30515 ire_flags |= MATCH_IRE_ZONEONLY; 30516 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 30517 lookup_zoneid, NULL, ire_flags, ipst); 30518 if (ire != NULL) { 30519 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30520 ire_refrele(ire); 30521 } 30522 return (zoneid); 30523 } 30524 30525 zoneid_t 30526 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 30527 ip_stack_t *ipst, zoneid_t lookup_zoneid) 30528 { 30529 ire_t *ire; 30530 int ire_flags = MATCH_IRE_TYPE; 30531 zoneid_t zoneid = ALL_ZONES; 30532 ipif_t *ipif_arg = NULL; 30533 30534 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30535 return (ALL_ZONES); 30536 30537 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 30538 ire_flags |= MATCH_IRE_ILL_GROUP; 30539 ipif_arg = ill->ill_ipif; 30540 } 30541 if (lookup_zoneid != ALL_ZONES) 30542 ire_flags |= MATCH_IRE_ZONEONLY; 30543 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 30544 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 30545 if (ire != NULL) { 30546 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30547 ire_refrele(ire); 30548 } 30549 return (zoneid); 30550 } 30551 30552 /* 30553 * IP obserability hook support functions. 30554 */ 30555 30556 static void 30557 ipobs_init(ip_stack_t *ipst) 30558 { 30559 ipst->ips_ipobs_enabled = B_FALSE; 30560 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 30561 offsetof(ipobs_cb_t, ipobs_cbnext)); 30562 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 30563 ipst->ips_ipobs_cb_nwalkers = 0; 30564 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 30565 } 30566 30567 static void 30568 ipobs_fini(ip_stack_t *ipst) 30569 { 30570 ipobs_cb_t *cb; 30571 30572 mutex_enter(&ipst->ips_ipobs_cb_lock); 30573 while (ipst->ips_ipobs_cb_nwalkers != 0) 30574 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30575 30576 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 30577 list_remove(&ipst->ips_ipobs_cb_list, cb); 30578 kmem_free(cb, sizeof (*cb)); 30579 } 30580 list_destroy(&ipst->ips_ipobs_cb_list); 30581 mutex_exit(&ipst->ips_ipobs_cb_lock); 30582 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30583 cv_destroy(&ipst->ips_ipobs_cb_cv); 30584 } 30585 30586 void 30587 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30588 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30589 { 30590 ipobs_cb_t *ipobs_cb; 30591 30592 ASSERT(DB_TYPE(mp) == M_DATA); 30593 30594 mutex_enter(&ipst->ips_ipobs_cb_lock); 30595 ipst->ips_ipobs_cb_nwalkers++; 30596 mutex_exit(&ipst->ips_ipobs_cb_lock); 30597 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30598 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30599 mblk_t *mp2 = allocb(sizeof (ipobs_hook_data_t), 30600 BPRI_HI); 30601 if (mp2 != NULL) { 30602 ipobs_hook_data_t *ihd = 30603 (ipobs_hook_data_t *)mp2->b_rptr; 30604 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30605 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30606 freemsg(mp2); 30607 continue; 30608 } 30609 ihd->ihd_mp->b_rptr += hlen; 30610 ihd->ihd_htype = htype; 30611 ihd->ihd_ipver = ipver; 30612 ihd->ihd_zsrc = zsrc; 30613 ihd->ihd_zdst = zdst; 30614 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30615 ihd->ihd_stack = ipst->ips_netstack; 30616 mp2->b_wptr += sizeof (*ihd); 30617 ipobs_cb->ipobs_cbfunc(mp2); 30618 } 30619 } 30620 mutex_enter(&ipst->ips_ipobs_cb_lock); 30621 ipst->ips_ipobs_cb_nwalkers--; 30622 if (ipst->ips_ipobs_cb_nwalkers == 0) 30623 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30624 mutex_exit(&ipst->ips_ipobs_cb_lock); 30625 } 30626 30627 void 30628 ipobs_register_hook(netstack_t *ns, pfv_t func) 30629 { 30630 ipobs_cb_t *cb; 30631 ip_stack_t *ipst = ns->netstack_ip; 30632 30633 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30634 30635 mutex_enter(&ipst->ips_ipobs_cb_lock); 30636 while (ipst->ips_ipobs_cb_nwalkers != 0) 30637 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30638 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30639 30640 cb->ipobs_cbfunc = func; 30641 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30642 ipst->ips_ipobs_enabled = B_TRUE; 30643 mutex_exit(&ipst->ips_ipobs_cb_lock); 30644 } 30645 30646 void 30647 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30648 { 30649 ipobs_cb_t *curcb; 30650 ip_stack_t *ipst = ns->netstack_ip; 30651 30652 mutex_enter(&ipst->ips_ipobs_cb_lock); 30653 while (ipst->ips_ipobs_cb_nwalkers != 0) 30654 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30655 30656 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30657 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30658 if (func == curcb->ipobs_cbfunc) { 30659 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30660 kmem_free(curcb, sizeof (*curcb)); 30661 break; 30662 } 30663 } 30664 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30665 ipst->ips_ipobs_enabled = B_FALSE; 30666 mutex_exit(&ipst->ips_ipobs_cb_lock); 30667 } 30668