1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <sys/mac.h> 60 #include <net/if.h> 61 #include <net/if_arp.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <net/if_dl.h> 66 67 #include <inet/common.h> 68 #include <inet/mi.h> 69 #include <inet/mib2.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/snmpcom.h> 73 #include <inet/optcom.h> 74 #include <inet/kstatcom.h> 75 76 #include <netinet/igmp_var.h> 77 #include <netinet/ip6.h> 78 #include <netinet/icmp6.h> 79 #include <netinet/sctp.h> 80 81 #include <inet/ip.h> 82 #include <inet/ip_impl.h> 83 #include <inet/ip6.h> 84 #include <inet/ip6_asp.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <inet/ip_multi.h> 88 #include <inet/ip_if.h> 89 #include <inet/ip_ire.h> 90 #include <inet/ip_ftable.h> 91 #include <inet/ip_rts.h> 92 #include <inet/ip_ndp.h> 93 #include <inet/ip_listutils.h> 94 #include <netinet/igmp.h> 95 #include <netinet/ip_mroute.h> 96 #include <inet/ipp_common.h> 97 98 #include <net/pfkeyv2.h> 99 #include <inet/ipsec_info.h> 100 #include <inet/sadb.h> 101 #include <inet/ipsec_impl.h> 102 #include <sys/iphada.h> 103 #include <inet/tun.h> 104 #include <inet/ipdrop.h> 105 #include <inet/ip_netinfo.h> 106 107 #include <sys/ethernet.h> 108 #include <net/if_types.h> 109 #include <sys/cpuvar.h> 110 111 #include <ipp/ipp.h> 112 #include <ipp/ipp_impl.h> 113 #include <ipp/ipgpc/ipgpc.h> 114 115 #include <sys/multidata.h> 116 #include <sys/pattr.h> 117 118 #include <inet/ipclassifier.h> 119 #include <inet/sctp_ip.h> 120 #include <inet/sctp/sctp_impl.h> 121 #include <inet/udp_impl.h> 122 #include <inet/rawip_impl.h> 123 #include <inet/rts_impl.h> 124 #include <sys/sunddi.h> 125 126 #include <sys/tsol/label.h> 127 #include <sys/tsol/tnet.h> 128 129 #include <rpc/pmap_prot.h> 130 131 /* 132 * Values for squeue switch: 133 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 134 * IP_SQUEUE_ENTER: squeue_enter 135 * IP_SQUEUE_FILL: squeue_fill 136 */ 137 int ip_squeue_enter = 2; /* Setable in /etc/system */ 138 139 squeue_func_t ip_input_proc; 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 /* 143 * Setable in /etc/system 144 */ 145 int ip_poll_normal_ms = 100; 146 int ip_poll_normal_ticks = 0; 147 int ip_modclose_ackwait_ms = 3000; 148 149 /* 150 * It would be nice to have these present only in DEBUG systems, but the 151 * current design of the global symbol checking logic requires them to be 152 * unconditionally present. 153 */ 154 uint_t ip_thread_data; /* TSD key for debug support */ 155 krwlock_t ip_thread_rwlock; 156 list_t ip_thread_list; 157 158 /* 159 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 160 */ 161 162 struct listptr_s { 163 mblk_t *lp_head; /* pointer to the head of the list */ 164 mblk_t *lp_tail; /* pointer to the tail of the list */ 165 }; 166 167 typedef struct listptr_s listptr_t; 168 169 /* 170 * This is used by ip_snmp_get_mib2_ip_route_media and 171 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 172 */ 173 typedef struct iproutedata_s { 174 uint_t ird_idx; 175 listptr_t ird_route; /* ipRouteEntryTable */ 176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 177 listptr_t ird_attrs; /* ipRouteAttributeTable */ 178 } iproutedata_t; 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 199 uint8_t *laddrp, uint8_t *faddrp) = NULL; 200 201 /* 202 * Synchronization notes: 203 * 204 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 205 * MT level protection given by STREAMS. IP uses a combination of its own 206 * internal serialization mechanism and standard Solaris locking techniques. 207 * The internal serialization is per phyint (no IPMP) or per IPMP group. 208 * This is used to serialize plumbing operations, IPMP operations, certain 209 * multicast operations, most set ioctls, igmp/mld timers etc. 210 * 211 * Plumbing is a long sequence of operations involving message 212 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 213 * involved in plumbing operations. A natural model is to serialize these 214 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 215 * parallel without any interference. But various set ioctls on hme0 are best 216 * serialized. However if the system uses IPMP, the operations are easier if 217 * they are serialized on a per IPMP group basis since IPMP operations 218 * happen across ill's of a group. Thus the lowest common denominator is to 219 * serialize most set ioctls, multicast join/leave operations, IPMP operations 220 * igmp/mld timer operations, and processing of DLPI control messages received 221 * from drivers on a per IPMP group basis. If the system does not employ 222 * IPMP the serialization is on a per phyint basis. This serialization is 223 * provided by the ipsq_t and primitives operating on this. Details can 224 * be found in ip_if.c above the core primitives operating on ipsq_t. 225 * 226 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 227 * Simiarly lookup of an ire by a thread also returns a refheld ire. 228 * In addition ipif's and ill's referenced by the ire are also indirectly 229 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 230 * the ipif's address or netmask change as long as an ipif is refheld 231 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 232 * address of an ipif has to go through the ipsq_t. This ensures that only 233 * 1 such exclusive operation proceeds at any time on the ipif. It then 234 * deletes all ires associated with this ipif, and waits for all refcnts 235 * associated with this ipif to come down to zero. The address is changed 236 * only after the ipif has been quiesced. Then the ipif is brought up again. 237 * More details are described above the comment in ip_sioctl_flags. 238 * 239 * Packet processing is based mostly on IREs and are fully multi-threaded 240 * using standard Solaris MT techniques. 241 * 242 * There are explicit locks in IP to handle: 243 * - The ip_g_head list maintained by mi_open_link() and friends. 244 * 245 * - The reassembly data structures (one lock per hash bucket) 246 * 247 * - conn_lock is meant to protect conn_t fields. The fields actually 248 * protected by conn_lock are documented in the conn_t definition. 249 * 250 * - ire_lock to protect some of the fields of the ire, IRE tables 251 * (one lock per hash bucket). Refer to ip_ire.c for details. 252 * 253 * - ndp_g_lock and nce_lock for protecting NCEs. 254 * 255 * - ill_lock protects fields of the ill and ipif. Details in ip.h 256 * 257 * - ill_g_lock: This is a global reader/writer lock. Protects the following 258 * * The AVL tree based global multi list of all ills. 259 * * The linked list of all ipifs of an ill 260 * * The <ill-ipsq> mapping 261 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 262 * * The illgroup list threaded by ill_group_next. 263 * * <ill-phyint> association 264 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 265 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 266 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 267 * will all have to hold the ill_g_lock as writer for the actual duration 268 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 269 * may be found in the IPMP section. 270 * 271 * - ill_lock: This is a per ill mutex. 272 * It protects some members of the ill and is documented below. 273 * It also protects the <ill-ipsq> mapping 274 * It also protects the illgroup list threaded by ill_group_next. 275 * It also protects the <ill-phyint> assoc. 276 * It also protects the list of ipifs hanging off the ill. 277 * 278 * - ipsq_lock: This is a per ipsq_t mutex lock. 279 * This protects all the other members of the ipsq struct except 280 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 281 * 282 * - illgrp_lock: This is a per ill_group mutex lock. 283 * The only thing it protects is the illgrp_ill_schednext member of ill_group 284 * which dictates which is the next ill in an ill_group that is to be chosen 285 * for sending outgoing packets, through creation of an IRE_CACHE that 286 * references this ill. 287 * 288 * - phyint_lock: This is a per phyint mutex lock. Protects just the 289 * phyint_flags 290 * 291 * - ip_g_nd_lock: This is a global reader/writer lock. 292 * Any call to nd_load to load a new parameter to the ND table must hold the 293 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 294 * as reader. 295 * 296 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 297 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 298 * uniqueness check also done atomically. 299 * 300 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 301 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 302 * as a writer when adding or deleting elements from these lists, and 303 * as a reader when walking these lists to send a SADB update to the 304 * IPsec capable ills. 305 * 306 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 307 * group list linked by ill_usesrc_grp_next. It also protects the 308 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 309 * group is being added or deleted. This lock is taken as a reader when 310 * walking the list/group(eg: to get the number of members in a usesrc group). 311 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 312 * field is changing state i.e from NULL to non-NULL or vice-versa. For 313 * example, it is not necessary to take this lock in the initial portion 314 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 315 * ip_sioctl_flags since the these operations are executed exclusively and 316 * that ensures that the "usesrc group state" cannot change. The "usesrc 317 * group state" change can happen only in the latter part of 318 * ip_sioctl_slifusesrc and in ill_delete. 319 * 320 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 321 * 322 * To change the <ill-phyint> association, the ill_g_lock must be held 323 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 324 * must be held. 325 * 326 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 327 * and the ill_lock of the ill in question must be held. 328 * 329 * To change the <ill-illgroup> association the ill_g_lock must be held as 330 * writer and the ill_lock of the ill in question must be held. 331 * 332 * To add or delete an ipif from the list of ipifs hanging off the ill, 333 * ill_g_lock (writer) and ill_lock must be held and the thread must be 334 * a writer on the associated ipsq,. 335 * 336 * To add or delete an ill to the system, the ill_g_lock must be held as 337 * writer and the thread must be a writer on the associated ipsq. 338 * 339 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 340 * must be a writer on the associated ipsq. 341 * 342 * Lock hierarchy 343 * 344 * Some lock hierarchy scenarios are listed below. 345 * 346 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 347 * ill_g_lock -> illgrp_lock -> ill_lock 348 * ill_g_lock -> ill_lock(s) -> phyint_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 350 * ill_g_lock -> ip_addr_avail_lock 351 * conn_lock -> irb_lock -> ill_lock -> ire_lock 352 * ill_g_lock -> ip_g_nd_lock 353 * 354 * When more than 1 ill lock is needed to be held, all ill lock addresses 355 * are sorted on address and locked starting from highest addressed lock 356 * downward. 357 * 358 * IPsec scenarios 359 * 360 * ipsa_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 362 * ipsec_capab_ills_lock -> ipsa_lock 363 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 364 * 365 * Trusted Solaris scenarios 366 * 367 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 368 * igsa_lock -> gcdb_lock 369 * gcgrp_rwlock -> ire_lock 370 * gcgrp_rwlock -> gcdb_lock 371 * 372 * 373 * Routing/forwarding table locking notes: 374 * 375 * Lock acquisition order: Radix tree lock, irb_lock. 376 * Requirements: 377 * i. Walker must not hold any locks during the walker callback. 378 * ii Walker must not see a truncated tree during the walk because of any node 379 * deletion. 380 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 381 * in many places in the code to walk the irb list. Thus even if all the 382 * ires in a bucket have been deleted, we still can't free the radix node 383 * until the ires have actually been inactive'd (freed). 384 * 385 * Tree traversal - Need to hold the global tree lock in read mode. 386 * Before dropping the global tree lock, need to either increment the ire_refcnt 387 * to ensure that the radix node can't be deleted. 388 * 389 * Tree add - Need to hold the global tree lock in write mode to add a 390 * radix node. To prevent the node from being deleted, increment the 391 * irb_refcnt, after the node is added to the tree. The ire itself is 392 * added later while holding the irb_lock, but not the tree lock. 393 * 394 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 395 * All associated ires must be inactive (i.e. freed), and irb_refcnt 396 * must be zero. 397 * 398 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 399 * global tree lock (read mode) for traversal. 400 * 401 * IPsec notes : 402 * 403 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 404 * in front of the actual packet. For outbound datagrams, the M_CTL 405 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 406 * information used by the IPsec code for applying the right level of 407 * protection. The information initialized by IP in the ipsec_out_t 408 * is determined by the per-socket policy or global policy in the system. 409 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 410 * ipsec_info.h) which starts out with nothing in it. It gets filled 411 * with the right information if it goes through the AH/ESP code, which 412 * happens if the incoming packet is secure. The information initialized 413 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 414 * the policy requirements needed by per-socket policy or global policy 415 * is met or not. 416 * 417 * If there is both per-socket policy (set using setsockopt) and there 418 * is also global policy match for the 5 tuples of the socket, 419 * ipsec_override_policy() makes the decision of which one to use. 420 * 421 * For fully connected sockets i.e dst, src [addr, port] is known, 422 * conn_policy_cached is set indicating that policy has been cached. 423 * conn_in_enforce_policy may or may not be set depending on whether 424 * there is a global policy match or per-socket policy match. 425 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 426 * Once the right policy is set on the conn_t, policy cannot change for 427 * this socket. This makes life simpler for TCP (UDP ?) where 428 * re-transmissions go out with the same policy. For symmetry, policy 429 * is cached for fully connected UDP sockets also. Thus if policy is cached, 430 * it also implies that policy is latched i.e policy cannot change 431 * on these sockets. As we have the right policy on the conn, we don't 432 * have to lookup global policy for every outbound and inbound datagram 433 * and thus serving as an optimization. Note that a global policy change 434 * does not affect fully connected sockets if they have policy. If fully 435 * connected sockets did not have any policy associated with it, global 436 * policy change may affect them. 437 * 438 * IP Flow control notes: 439 * 440 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 441 * cannot be sent down to the driver by IP, because of a canput failure, IP 442 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 443 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 444 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 445 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 446 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 447 * the queued messages, and removes the conn from the drain list, if all 448 * messages were drained. It also qenables the next conn in the drain list to 449 * continue the drain process. 450 * 451 * In reality the drain list is not a single list, but a configurable number 452 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 453 * list. If the ip_wsrv of the next qenabled conn does not run, because the 454 * stream closes, ip_close takes responsibility to qenable the next conn in 455 * the drain list. The directly called ip_wput path always does a putq, if 456 * it cannot putnext. Thus synchronization problems are handled between 457 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 458 * functions that manipulate this drain list. Furthermore conn_drain_insert 459 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 460 * running on a queue at any time. conn_drain_tail can be simultaneously called 461 * from both ip_wsrv and ip_close. 462 * 463 * IPQOS notes: 464 * 465 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 466 * and IPQoS modules. IPPF includes hooks in IP at different control points 467 * (callout positions) which direct packets to IPQoS modules for policy 468 * processing. Policies, if present, are global. 469 * 470 * The callout positions are located in the following paths: 471 * o local_in (packets destined for this host) 472 * o local_out (packets orginating from this host ) 473 * o fwd_in (packets forwarded by this m/c - inbound) 474 * o fwd_out (packets forwarded by this m/c - outbound) 475 * Hooks at these callout points can be enabled/disabled using the ndd variable 476 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 477 * By default all the callout positions are enabled. 478 * 479 * Outbound (local_out) 480 * Hooks are placed in ip_wput_ire and ipsec_out_process. 481 * 482 * Inbound (local_in) 483 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 484 * TCP and UDP fanout routines. 485 * 486 * Forwarding (in and out) 487 * Hooks are placed in ip_rput_forward. 488 * 489 * IP Policy Framework processing (IPPF processing) 490 * Policy processing for a packet is initiated by ip_process, which ascertains 491 * that the classifier (ipgpc) is loaded and configured, failing which the 492 * packet resumes normal processing in IP. If the clasifier is present, the 493 * packet is acted upon by one or more IPQoS modules (action instances), per 494 * filters configured in ipgpc and resumes normal IP processing thereafter. 495 * An action instance can drop a packet in course of its processing. 496 * 497 * A boolean variable, ip_policy, is used in all the fanout routines that can 498 * invoke ip_process for a packet. This variable indicates if the packet should 499 * to be sent for policy processing. The variable is set to B_TRUE by default, 500 * i.e. when the routines are invoked in the normal ip procesing path for a 501 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 502 * ip_policy is set to B_FALSE for all the routines called in these two 503 * functions because, in the former case, we don't process loopback traffic 504 * currently while in the latter, the packets have already been processed in 505 * icmp_inbound. 506 * 507 * Zones notes: 508 * 509 * The partitioning rules for networking are as follows: 510 * 1) Packets coming from a zone must have a source address belonging to that 511 * zone. 512 * 2) Packets coming from a zone can only be sent on a physical interface on 513 * which the zone has an IP address. 514 * 3) Between two zones on the same machine, packet delivery is only allowed if 515 * there's a matching route for the destination and zone in the forwarding 516 * table. 517 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 518 * different zones can bind to the same port with the wildcard address 519 * (INADDR_ANY). 520 * 521 * The granularity of interface partitioning is at the logical interface level. 522 * Therefore, every zone has its own IP addresses, and incoming packets can be 523 * attributed to a zone unambiguously. A logical interface is placed into a zone 524 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 525 * structure. Rule (1) is implemented by modifying the source address selection 526 * algorithm so that the list of eligible addresses is filtered based on the 527 * sending process zone. 528 * 529 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 530 * across all zones, depending on their type. Here is the break-up: 531 * 532 * IRE type Shared/exclusive 533 * -------- ---------------- 534 * IRE_BROADCAST Exclusive 535 * IRE_DEFAULT (default routes) Shared (*) 536 * IRE_LOCAL Exclusive (x) 537 * IRE_LOOPBACK Exclusive 538 * IRE_PREFIX (net routes) Shared (*) 539 * IRE_CACHE Exclusive 540 * IRE_IF_NORESOLVER (interface routes) Exclusive 541 * IRE_IF_RESOLVER (interface routes) Exclusive 542 * IRE_HOST (host routes) Shared (*) 543 * 544 * (*) A zone can only use a default or off-subnet route if the gateway is 545 * directly reachable from the zone, that is, if the gateway's address matches 546 * one of the zone's logical interfaces. 547 * 548 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 549 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 550 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 551 * address of the zone itself (the destination). Since IRE_LOCAL is used 552 * for communication between zones, ip_wput_ire has special logic to set 553 * the right source address when sending using an IRE_LOCAL. 554 * 555 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 556 * ire_cache_lookup restricts loopback using an IRE_LOCAL 557 * between zone to the case when L2 would have conceptually looped the packet 558 * back, i.e. the loopback which is required since neither Ethernet drivers 559 * nor Ethernet hardware loops them back. This is the case when the normal 560 * routes (ignoring IREs with different zoneids) would send out the packet on 561 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 562 * associated. 563 * 564 * Multiple zones can share a common broadcast address; typically all zones 565 * share the 255.255.255.255 address. Incoming as well as locally originated 566 * broadcast packets must be dispatched to all the zones on the broadcast 567 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 568 * since some zones may not be on the 10.16.72/24 network. To handle this, each 569 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 570 * sent to every zone that has an IRE_BROADCAST entry for the destination 571 * address on the input ill, see conn_wantpacket(). 572 * 573 * Applications in different zones can join the same multicast group address. 574 * For IPv4, group memberships are per-logical interface, so they're already 575 * inherently part of a zone. For IPv6, group memberships are per-physical 576 * interface, so we distinguish IPv6 group memberships based on group address, 577 * interface and zoneid. In both cases, received multicast packets are sent to 578 * every zone for which a group membership entry exists. On IPv6 we need to 579 * check that the target zone still has an address on the receiving physical 580 * interface; it could have been removed since the application issued the 581 * IPV6_JOIN_GROUP. 582 */ 583 584 /* 585 * Squeue Fanout flags: 586 * 0: No fanout. 587 * 1: Fanout across all squeues 588 */ 589 boolean_t ip_squeue_fanout = 0; 590 591 /* 592 * Maximum dups allowed per packet. 593 */ 594 uint_t ip_max_frag_dups = 10; 595 596 #define IS_SIMPLE_IPH(ipha) \ 597 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 598 599 /* RFC1122 Conformance */ 600 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 601 602 #define ILL_MAX_NAMELEN LIFNAMSIZ 603 604 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 605 606 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 607 cred_t *credp, boolean_t isv6); 608 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 609 ipha_t **); 610 611 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 612 ip_stack_t *); 613 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 614 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 615 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 616 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 617 mblk_t *, int, ip_stack_t *); 618 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 619 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 620 ill_t *, zoneid_t); 621 static void icmp_options_update(ipha_t *); 622 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 623 ip_stack_t *); 624 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 625 zoneid_t zoneid, ip_stack_t *); 626 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 627 static void icmp_redirect(ill_t *, mblk_t *); 628 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 629 ip_stack_t *); 630 631 static void ip_arp_news(queue_t *, mblk_t *); 632 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 633 ip_stack_t *); 634 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 635 char *ip_dot_addr(ipaddr_t, char *); 636 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 637 int ip_close(queue_t *, int); 638 static char *ip_dot_saddr(uchar_t *, char *); 639 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, ill_t *, zoneid_t); 641 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 642 boolean_t, boolean_t, zoneid_t); 643 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 644 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 645 static void ip_lrput(queue_t *, mblk_t *); 646 ipaddr_t ip_net_mask(ipaddr_t); 647 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 648 ip_stack_t *); 649 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 650 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 651 char *ip_nv_lookup(nv_t *, int); 652 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 653 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 654 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 655 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 656 ipndp_t *, size_t); 657 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 658 void ip_rput(queue_t *, mblk_t *); 659 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 660 void *dummy_arg); 661 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 662 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 663 ip_stack_t *); 664 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 665 ire_t *, ip_stack_t *); 666 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 667 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 668 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 669 ip_stack_t *); 670 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 671 uint16_t *); 672 int ip_snmp_get(queue_t *, mblk_t *, int); 673 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 674 mib2_ipIfStatsEntry_t *, ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 676 ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 678 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 703 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 704 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 705 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 706 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 707 static boolean_t ip_source_route_included(ipha_t *); 708 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 709 710 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 711 zoneid_t, ip_stack_t *); 712 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 713 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 714 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 715 zoneid_t, ip_stack_t *); 716 717 static void conn_drain_init(ip_stack_t *); 718 static void conn_drain_fini(ip_stack_t *); 719 static void conn_drain_tail(conn_t *connp, boolean_t closing); 720 721 static void conn_walk_drain(ip_stack_t *); 722 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 723 zoneid_t); 724 725 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 726 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 727 static void ip_stack_fini(netstackid_t stackid, void *arg); 728 729 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 730 zoneid_t); 731 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 732 void *dummy_arg); 733 734 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 735 736 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 737 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 738 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 739 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 740 741 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 742 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 743 caddr_t, cred_t *); 744 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 745 caddr_t cp, cred_t *cr); 746 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 747 cred_t *); 748 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 749 caddr_t cp, cred_t *cr); 750 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 753 cred_t *); 754 static squeue_func_t ip_squeue_switch(int); 755 756 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 757 static void ip_kstat_fini(netstackid_t, kstat_t *); 758 static int ip_kstat_update(kstat_t *kp, int rw); 759 static void *icmp_kstat_init(netstackid_t); 760 static void icmp_kstat_fini(netstackid_t, kstat_t *); 761 static int icmp_kstat_update(kstat_t *kp, int rw); 762 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 763 static void ip_kstat2_fini(netstackid_t, kstat_t *); 764 765 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 766 767 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 768 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 769 770 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 771 ipha_t *, ill_t *, boolean_t); 772 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 773 774 /* How long, in seconds, we allow frags to hang around. */ 775 #define IP_FRAG_TIMEOUT 60 776 777 /* 778 * Threshold which determines whether MDT should be used when 779 * generating IP fragments; payload size must be greater than 780 * this threshold for MDT to take place. 781 */ 782 #define IP_WPUT_FRAG_MDT_MIN 32768 783 784 /* Setable in /etc/system only */ 785 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 786 787 static long ip_rput_pullups; 788 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 789 790 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 791 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 792 793 int ip_debug; 794 795 #ifdef DEBUG 796 uint32_t ipsechw_debug = 0; 797 #endif 798 799 /* 800 * Multirouting/CGTP stuff 801 */ 802 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 803 804 /* 805 * XXX following really should only be in a header. Would need more 806 * header and .c clean up first. 807 */ 808 extern optdb_obj_t ip_opt_obj; 809 810 ulong_t ip_squeue_enter_unbound = 0; 811 812 /* 813 * Named Dispatch Parameter Table. 814 * All of these are alterable, within the min/max values given, at run time. 815 */ 816 static ipparam_t lcl_param_arr[] = { 817 /* min max value name */ 818 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 819 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 820 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 821 { 0, 1, 0, "ip_respond_to_timestamp"}, 822 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 823 { 0, 1, 1, "ip_send_redirects"}, 824 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 825 { 0, 10, 0, "ip_mrtdebug"}, 826 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 827 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 828 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 829 { 1, 255, 255, "ip_def_ttl" }, 830 { 0, 1, 0, "ip_forward_src_routed"}, 831 { 0, 256, 32, "ip_wroff_extra" }, 832 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 833 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 834 { 0, 1, 1, "ip_path_mtu_discovery" }, 835 { 0, 240, 30, "ip_ignore_delete_time" }, 836 { 0, 1, 0, "ip_ignore_redirect" }, 837 { 0, 1, 1, "ip_output_queue" }, 838 { 1, 254, 1, "ip_broadcast_ttl" }, 839 { 0, 99999, 100, "ip_icmp_err_interval" }, 840 { 1, 99999, 10, "ip_icmp_err_burst" }, 841 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 842 { 0, 1, 0, "ip_strict_dst_multihoming" }, 843 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 844 { 0, 1, 0, "ipsec_override_persocket_policy" }, 845 { 0, 1, 1, "icmp_accept_clear_messages" }, 846 { 0, 1, 1, "igmp_accept_clear_messages" }, 847 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 848 "ip_ndp_delay_first_probe_time"}, 849 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 850 "ip_ndp_max_unicast_solicit"}, 851 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 852 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 853 { 0, 1, 0, "ip6_forward_src_routed"}, 854 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 855 { 0, 1, 1, "ip6_send_redirects"}, 856 { 0, 1, 0, "ip6_ignore_redirect" }, 857 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 858 859 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 860 861 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 862 863 { 0, 1, 1, "pim_accept_clear_messages" }, 864 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 865 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 866 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 867 { 0, 15, 0, "ip_policy_mask" }, 868 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 869 { 0, 255, 1, "ip_multirt_ttl" }, 870 { 0, 1, 1, "ip_multidata_outbound" }, 871 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 872 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 873 { 0, 1000, 1, "ip_max_temp_defend" }, 874 { 0, 1000, 3, "ip_max_defend" }, 875 { 0, 999999, 30, "ip_defend_interval" }, 876 { 0, 3600000, 300000, "ip_dup_recovery" }, 877 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 878 { 0, 1, 1, "ip_lso_outbound" }, 879 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 880 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 881 #ifdef DEBUG 882 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 883 #else 884 { 0, 0, 0, "" }, 885 #endif 886 }; 887 888 /* 889 * Extended NDP table 890 * The addresses for the first two are filled in to be ips_ip_g_forward 891 * and ips_ipv6_forward at init time. 892 */ 893 static ipndp_t lcl_ndp_arr[] = { 894 /* getf setf data name */ 895 #define IPNDP_IP_FORWARDING_OFFSET 0 896 { ip_param_generic_get, ip_forward_set, NULL, 897 "ip_forwarding" }, 898 #define IPNDP_IP6_FORWARDING_OFFSET 1 899 { ip_param_generic_get, ip_forward_set, NULL, 900 "ip6_forwarding" }, 901 { ip_ill_report, NULL, NULL, 902 "ip_ill_status" }, 903 { ip_ipif_report, NULL, NULL, 904 "ip_ipif_status" }, 905 { ip_conn_report, NULL, NULL, 906 "ip_conn_status" }, 907 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 908 "ip_rput_pullups" }, 909 { ip_srcid_report, NULL, NULL, 910 "ip_srcid_status" }, 911 { ip_param_generic_get, ip_squeue_profile_set, 912 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 913 { ip_param_generic_get, ip_squeue_bind_set, 914 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 915 { ip_param_generic_get, ip_input_proc_set, 916 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 917 { ip_param_generic_get, ip_int_set, 918 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 919 #define IPNDP_CGTP_FILTER_OFFSET 11 920 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 921 "ip_cgtp_filter" }, 922 { ip_param_generic_get, ip_int_set, 923 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 924 #define IPNDP_IPMP_HOOK_OFFSET 13 925 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 926 "ipmp_hook_emulation" }, 927 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 928 "ip_debug" }, 929 }; 930 931 /* 932 * Table of IP ioctls encoding the various properties of the ioctl and 933 * indexed based on the last byte of the ioctl command. Occasionally there 934 * is a clash, and there is more than 1 ioctl with the same last byte. 935 * In such a case 1 ioctl is encoded in the ndx table and the remaining 936 * ioctls are encoded in the misc table. An entry in the ndx table is 937 * retrieved by indexing on the last byte of the ioctl command and comparing 938 * the ioctl command with the value in the ndx table. In the event of a 939 * mismatch the misc table is then searched sequentially for the desired 940 * ioctl command. 941 * 942 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 943 */ 944 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 945 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 956 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 957 MISC_CMD, ip_siocaddrt, NULL }, 958 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 959 MISC_CMD, ip_siocdelrt, NULL }, 960 961 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 962 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 963 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 964 IF_CMD, ip_sioctl_get_addr, NULL }, 965 966 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 967 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 968 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 969 IPI_GET_CMD | IPI_REPL, 970 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 971 972 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 973 IPI_PRIV | IPI_WR | IPI_REPL, 974 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 975 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 976 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 977 IF_CMD, ip_sioctl_get_flags, NULL }, 978 979 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 980 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 981 982 /* copyin size cannot be coded for SIOCGIFCONF */ 983 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 984 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 985 986 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 987 IF_CMD, ip_sioctl_mtu, NULL }, 988 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 989 IF_CMD, ip_sioctl_get_mtu, NULL }, 990 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 991 IPI_GET_CMD | IPI_REPL, 992 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 993 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 994 IF_CMD, ip_sioctl_brdaddr, NULL }, 995 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 996 IPI_GET_CMD | IPI_REPL, 997 IF_CMD, ip_sioctl_get_netmask, NULL }, 998 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 999 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1000 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1001 IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_metric, NULL }, 1003 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1004 IF_CMD, ip_sioctl_metric, NULL }, 1005 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1006 1007 /* See 166-168 below for extended SIOC*XARP ioctls */ 1008 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1009 ARP_CMD, ip_sioctl_arp, NULL }, 1010 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1011 ARP_CMD, ip_sioctl_arp, NULL }, 1012 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1013 ARP_CMD, ip_sioctl_arp, NULL }, 1014 1015 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 1037 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1038 MISC_CMD, if_unitsel, if_unitsel_restart }, 1039 1040 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 1059 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1060 IPI_PRIV | IPI_WR | IPI_MODOK, 1061 IF_CMD, ip_sioctl_sifname, NULL }, 1062 1063 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 1077 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1078 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1079 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1080 IF_CMD, ip_sioctl_get_muxid, NULL }, 1081 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1082 IPI_PRIV | IPI_WR | IPI_REPL, 1083 IF_CMD, ip_sioctl_muxid, NULL }, 1084 1085 /* Both if and lif variants share same func */ 1086 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1087 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1088 /* Both if and lif variants share same func */ 1089 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1090 IPI_PRIV | IPI_WR | IPI_REPL, 1091 IF_CMD, ip_sioctl_slifindex, NULL }, 1092 1093 /* copyin size cannot be coded for SIOCGIFCONF */ 1094 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1095 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1096 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 1114 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1115 IPI_PRIV | IPI_WR | IPI_REPL, 1116 LIF_CMD, ip_sioctl_removeif, 1117 ip_sioctl_removeif_restart }, 1118 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1119 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1120 LIF_CMD, ip_sioctl_addif, NULL }, 1121 #define SIOCLIFADDR_NDX 112 1122 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1123 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1124 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1125 IPI_GET_CMD | IPI_REPL, 1126 LIF_CMD, ip_sioctl_get_addr, NULL }, 1127 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1128 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1129 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1130 IPI_GET_CMD | IPI_REPL, 1131 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1132 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1133 IPI_PRIV | IPI_WR | IPI_REPL, 1134 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1135 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1136 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1137 LIF_CMD, ip_sioctl_get_flags, NULL }, 1138 1139 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 1142 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1143 ip_sioctl_get_lifconf, NULL }, 1144 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1145 LIF_CMD, ip_sioctl_mtu, NULL }, 1146 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1147 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1148 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1149 IPI_GET_CMD | IPI_REPL, 1150 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1151 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1152 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1153 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1154 IPI_GET_CMD | IPI_REPL, 1155 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1156 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1157 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1158 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_metric, NULL }, 1161 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1162 LIF_CMD, ip_sioctl_metric, NULL }, 1163 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1164 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1165 LIF_CMD, ip_sioctl_slifname, 1166 ip_sioctl_slifname_restart }, 1167 1168 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1169 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1170 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1171 IPI_GET_CMD | IPI_REPL, 1172 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1173 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1174 IPI_PRIV | IPI_WR | IPI_REPL, 1175 LIF_CMD, ip_sioctl_muxid, NULL }, 1176 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1177 IPI_GET_CMD | IPI_REPL, 1178 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1179 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1180 IPI_PRIV | IPI_WR | IPI_REPL, 1181 LIF_CMD, ip_sioctl_slifindex, 0 }, 1182 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1183 LIF_CMD, ip_sioctl_token, NULL }, 1184 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1185 IPI_GET_CMD | IPI_REPL, 1186 LIF_CMD, ip_sioctl_get_token, NULL }, 1187 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1188 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1189 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1190 IPI_GET_CMD | IPI_REPL, 1191 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1192 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1194 1195 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1196 IPI_GET_CMD | IPI_REPL, 1197 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1198 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1199 LIF_CMD, ip_siocdelndp_v6, NULL }, 1200 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1201 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1202 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1203 LIF_CMD, ip_siocsetndp_v6, NULL }, 1204 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1205 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1206 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1207 MISC_CMD, ip_sioctl_tonlink, NULL }, 1208 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1209 MISC_CMD, ip_sioctl_tmysite, NULL }, 1210 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1211 TUN_CMD, ip_sioctl_tunparam, NULL }, 1212 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1213 IPI_PRIV | IPI_WR, 1214 TUN_CMD, ip_sioctl_tunparam, NULL }, 1215 1216 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1217 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1218 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1219 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1220 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1221 1222 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1223 IPI_PRIV | IPI_WR | IPI_REPL, 1224 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1225 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1226 IPI_PRIV | IPI_WR | IPI_REPL, 1227 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1228 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1229 IPI_PRIV | IPI_WR, 1230 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1231 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1232 IPI_GET_CMD | IPI_REPL, 1233 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1234 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1235 IPI_GET_CMD | IPI_REPL, 1236 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1237 1238 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1239 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1241 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1242 1243 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1244 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1245 1246 /* These are handled in ip_sioctl_copyin_setup itself */ 1247 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1248 MISC_CMD, NULL, NULL }, 1249 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1250 MISC_CMD, NULL, NULL }, 1251 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1252 1253 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1254 ip_sioctl_get_lifconf, NULL }, 1255 1256 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1257 XARP_CMD, ip_sioctl_arp, NULL }, 1258 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1259 XARP_CMD, ip_sioctl_arp, NULL }, 1260 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1261 XARP_CMD, ip_sioctl_arp, NULL }, 1262 1263 /* SIOCPOPSOCKFS is not handled by IP */ 1264 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1265 1266 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1267 IPI_GET_CMD | IPI_REPL, 1268 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1269 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1270 IPI_PRIV | IPI_WR | IPI_REPL, 1271 LIF_CMD, ip_sioctl_slifzone, 1272 ip_sioctl_slifzone_restart }, 1273 /* 172-174 are SCTP ioctls and not handled by IP */ 1274 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1275 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1276 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1277 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1278 IPI_GET_CMD, LIF_CMD, 1279 ip_sioctl_get_lifusesrc, 0 }, 1280 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1281 IPI_PRIV | IPI_WR, 1282 LIF_CMD, ip_sioctl_slifusesrc, 1283 NULL }, 1284 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1285 ip_sioctl_get_lifsrcof, NULL }, 1286 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1287 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1288 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1289 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1290 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1291 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1292 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1293 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1294 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1295 ip_sioctl_set_ipmpfailback, NULL }, 1296 /* SIOCSENABLESDP is handled by SDP */ 1297 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1298 }; 1299 1300 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1301 1302 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1303 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1304 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1305 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1306 TUN_CMD, ip_sioctl_tunparam, NULL }, 1307 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1308 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1309 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1313 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1314 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1315 MISC_CMD, mrt_ioctl}, 1316 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1317 MISC_CMD, mrt_ioctl}, 1318 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1319 MISC_CMD, mrt_ioctl} 1320 }; 1321 1322 int ip_misc_ioctl_count = 1323 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1324 1325 int conn_drain_nthreads; /* Number of drainers reqd. */ 1326 /* Settable in /etc/system */ 1327 /* Defined in ip_ire.c */ 1328 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1329 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1330 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1331 1332 static nv_t ire_nv_arr[] = { 1333 { IRE_BROADCAST, "BROADCAST" }, 1334 { IRE_LOCAL, "LOCAL" }, 1335 { IRE_LOOPBACK, "LOOPBACK" }, 1336 { IRE_CACHE, "CACHE" }, 1337 { IRE_DEFAULT, "DEFAULT" }, 1338 { IRE_PREFIX, "PREFIX" }, 1339 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1340 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1341 { IRE_HOST, "HOST" }, 1342 { 0 } 1343 }; 1344 1345 nv_t *ire_nv_tbl = ire_nv_arr; 1346 1347 /* Simple ICMP IP Header Template */ 1348 static ipha_t icmp_ipha = { 1349 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1350 }; 1351 1352 struct module_info ip_mod_info = { 1353 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1354 }; 1355 1356 /* 1357 * Duplicate static symbols within a module confuses mdb; so we avoid the 1358 * problem by making the symbols here distinct from those in udp.c. 1359 */ 1360 1361 /* 1362 * Entry points for IP as a device and as a module. 1363 * FIXME: down the road we might want a separate module and driver qinit. 1364 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1365 */ 1366 static struct qinit iprinitv4 = { 1367 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1368 &ip_mod_info 1369 }; 1370 1371 struct qinit iprinitv6 = { 1372 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1373 &ip_mod_info 1374 }; 1375 1376 static struct qinit ipwinitv4 = { 1377 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1378 &ip_mod_info 1379 }; 1380 1381 struct qinit ipwinitv6 = { 1382 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1383 &ip_mod_info 1384 }; 1385 1386 static struct qinit iplrinit = { 1387 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1388 &ip_mod_info 1389 }; 1390 1391 static struct qinit iplwinit = { 1392 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1393 &ip_mod_info 1394 }; 1395 1396 /* For AF_INET aka /dev/ip */ 1397 struct streamtab ipinfov4 = { 1398 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1399 }; 1400 1401 /* For AF_INET6 aka /dev/ip6 */ 1402 struct streamtab ipinfov6 = { 1403 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1404 }; 1405 1406 #ifdef DEBUG 1407 static boolean_t skip_sctp_cksum = B_FALSE; 1408 #endif 1409 1410 /* 1411 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1412 * ip_rput_v6(), ip_output(), etc. If the message 1413 * block already has a M_CTL at the front of it, then simply set the zoneid 1414 * appropriately. 1415 */ 1416 mblk_t * 1417 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1418 { 1419 mblk_t *first_mp; 1420 ipsec_out_t *io; 1421 1422 ASSERT(zoneid != ALL_ZONES); 1423 if (mp->b_datap->db_type == M_CTL) { 1424 io = (ipsec_out_t *)mp->b_rptr; 1425 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1426 io->ipsec_out_zoneid = zoneid; 1427 return (mp); 1428 } 1429 1430 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1431 if (first_mp == NULL) 1432 return (NULL); 1433 io = (ipsec_out_t *)first_mp->b_rptr; 1434 /* This is not a secure packet */ 1435 io->ipsec_out_secure = B_FALSE; 1436 io->ipsec_out_zoneid = zoneid; 1437 first_mp->b_cont = mp; 1438 return (first_mp); 1439 } 1440 1441 /* 1442 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1443 */ 1444 mblk_t * 1445 ip_copymsg(mblk_t *mp) 1446 { 1447 mblk_t *nmp; 1448 ipsec_info_t *in; 1449 1450 if (mp->b_datap->db_type != M_CTL) 1451 return (copymsg(mp)); 1452 1453 in = (ipsec_info_t *)mp->b_rptr; 1454 1455 /* 1456 * Note that M_CTL is also used for delivering ICMP error messages 1457 * upstream to transport layers. 1458 */ 1459 if (in->ipsec_info_type != IPSEC_OUT && 1460 in->ipsec_info_type != IPSEC_IN) 1461 return (copymsg(mp)); 1462 1463 nmp = copymsg(mp->b_cont); 1464 1465 if (in->ipsec_info_type == IPSEC_OUT) { 1466 return (ipsec_out_tag(mp, nmp, 1467 ((ipsec_out_t *)in)->ipsec_out_ns)); 1468 } else { 1469 return (ipsec_in_tag(mp, nmp, 1470 ((ipsec_in_t *)in)->ipsec_in_ns)); 1471 } 1472 } 1473 1474 /* Generate an ICMP fragmentation needed message. */ 1475 static void 1476 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1477 ip_stack_t *ipst) 1478 { 1479 icmph_t icmph; 1480 mblk_t *first_mp; 1481 boolean_t mctl_present; 1482 1483 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1484 1485 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1486 if (mctl_present) 1487 freeb(first_mp); 1488 return; 1489 } 1490 1491 bzero(&icmph, sizeof (icmph_t)); 1492 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1493 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1494 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1495 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1496 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1497 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1498 ipst); 1499 } 1500 1501 /* 1502 * icmp_inbound deals with ICMP messages in the following ways. 1503 * 1504 * 1) It needs to send a reply back and possibly delivering it 1505 * to the "interested" upper clients. 1506 * 2) It needs to send it to the upper clients only. 1507 * 3) It needs to change some values in IP only. 1508 * 4) It needs to change some values in IP and upper layers e.g TCP. 1509 * 1510 * We need to accomodate icmp messages coming in clear until we get 1511 * everything secure from the wire. If icmp_accept_clear_messages 1512 * is zero we check with the global policy and act accordingly. If 1513 * it is non-zero, we accept the message without any checks. But 1514 * *this does not mean* that this will be delivered to the upper 1515 * clients. By accepting we might send replies back, change our MTU 1516 * value etc. but delivery to the ULP/clients depends on their policy 1517 * dispositions. 1518 * 1519 * We handle the above 4 cases in the context of IPsec in the 1520 * following way : 1521 * 1522 * 1) Send the reply back in the same way as the request came in. 1523 * If it came in encrypted, it goes out encrypted. If it came in 1524 * clear, it goes out in clear. Thus, this will prevent chosen 1525 * plain text attack. 1526 * 2) The client may or may not expect things to come in secure. 1527 * If it comes in secure, the policy constraints are checked 1528 * before delivering it to the upper layers. If it comes in 1529 * clear, ipsec_inbound_accept_clear will decide whether to 1530 * accept this in clear or not. In both the cases, if the returned 1531 * message (IP header + 8 bytes) that caused the icmp message has 1532 * AH/ESP headers, it is sent up to AH/ESP for validation before 1533 * sending up. If there are only 8 bytes of returned message, then 1534 * upper client will not be notified. 1535 * 3) Check with global policy to see whether it matches the constaints. 1536 * But this will be done only if icmp_accept_messages_in_clear is 1537 * zero. 1538 * 4) If we need to change both in IP and ULP, then the decision taken 1539 * while affecting the values in IP and while delivering up to TCP 1540 * should be the same. 1541 * 1542 * There are two cases. 1543 * 1544 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1545 * failed), we will not deliver it to the ULP, even though they 1546 * are *willing* to accept in *clear*. This is fine as our global 1547 * disposition to icmp messages asks us reject the datagram. 1548 * 1549 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1550 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1551 * to deliver it to ULP (policy failed), it can lead to 1552 * consistency problems. The cases known at this time are 1553 * ICMP_DESTINATION_UNREACHABLE messages with following code 1554 * values : 1555 * 1556 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1557 * and Upper layer rejects. Then the communication will 1558 * come to a stop. This is solved by making similar decisions 1559 * at both levels. Currently, when we are unable to deliver 1560 * to the Upper Layer (due to policy failures) while IP has 1561 * adjusted ire_max_frag, the next outbound datagram would 1562 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1563 * will be with the right level of protection. Thus the right 1564 * value will be communicated even if we are not able to 1565 * communicate when we get from the wire initially. But this 1566 * assumes there would be at least one outbound datagram after 1567 * IP has adjusted its ire_max_frag value. To make things 1568 * simpler, we accept in clear after the validation of 1569 * AH/ESP headers. 1570 * 1571 * - Other ICMP ERRORS : We may not be able to deliver it to the 1572 * upper layer depending on the level of protection the upper 1573 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1574 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1575 * should be accepted in clear when the Upper layer expects secure. 1576 * Thus the communication may get aborted by some bad ICMP 1577 * packets. 1578 * 1579 * IPQoS Notes: 1580 * The only instance when a packet is sent for processing is when there 1581 * isn't an ICMP client and if we are interested in it. 1582 * If there is a client, IPPF processing will take place in the 1583 * ip_fanout_proto routine. 1584 * 1585 * Zones notes: 1586 * The packet is only processed in the context of the specified zone: typically 1587 * only this zone will reply to an echo request, and only interested clients in 1588 * this zone will receive a copy of the packet. This means that the caller must 1589 * call icmp_inbound() for each relevant zone. 1590 */ 1591 static void 1592 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1593 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1594 ill_t *recv_ill, zoneid_t zoneid) 1595 { 1596 icmph_t *icmph; 1597 ipha_t *ipha; 1598 int iph_hdr_length; 1599 int hdr_length; 1600 boolean_t interested; 1601 uint32_t ts; 1602 uchar_t *wptr; 1603 ipif_t *ipif; 1604 mblk_t *first_mp; 1605 ipsec_in_t *ii; 1606 ire_t *src_ire; 1607 boolean_t onlink; 1608 timestruc_t now; 1609 uint32_t ill_index; 1610 ip_stack_t *ipst; 1611 1612 ASSERT(ill != NULL); 1613 ipst = ill->ill_ipst; 1614 1615 first_mp = mp; 1616 if (mctl_present) { 1617 mp = first_mp->b_cont; 1618 ASSERT(mp != NULL); 1619 } 1620 1621 ipha = (ipha_t *)mp->b_rptr; 1622 if (ipst->ips_icmp_accept_clear_messages == 0) { 1623 first_mp = ipsec_check_global_policy(first_mp, NULL, 1624 ipha, NULL, mctl_present, ipst->ips_netstack); 1625 if (first_mp == NULL) 1626 return; 1627 } 1628 1629 /* 1630 * On a labeled system, we have to check whether the zone itself is 1631 * permitted to receive raw traffic. 1632 */ 1633 if (is_system_labeled()) { 1634 if (zoneid == ALL_ZONES) 1635 zoneid = tsol_packet_to_zoneid(mp); 1636 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1637 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1638 zoneid)); 1639 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1640 freemsg(first_mp); 1641 return; 1642 } 1643 } 1644 1645 /* 1646 * We have accepted the ICMP message. It means that we will 1647 * respond to the packet if needed. It may not be delivered 1648 * to the upper client depending on the policy constraints 1649 * and the disposition in ipsec_inbound_accept_clear. 1650 */ 1651 1652 ASSERT(ill != NULL); 1653 1654 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1655 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1656 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1657 /* Last chance to get real. */ 1658 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1660 freemsg(first_mp); 1661 return; 1662 } 1663 /* Refresh iph following the pullup. */ 1664 ipha = (ipha_t *)mp->b_rptr; 1665 } 1666 /* ICMP header checksum, including checksum field, should be zero. */ 1667 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1668 IP_CSUM(mp, iph_hdr_length, 0)) { 1669 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1670 freemsg(first_mp); 1671 return; 1672 } 1673 /* The IP header will always be a multiple of four bytes */ 1674 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1675 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1676 icmph->icmph_code)); 1677 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1678 /* We will set "interested" to "true" if we want a copy */ 1679 interested = B_FALSE; 1680 switch (icmph->icmph_type) { 1681 case ICMP_ECHO_REPLY: 1682 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1683 break; 1684 case ICMP_DEST_UNREACHABLE: 1685 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1686 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1687 interested = B_TRUE; /* Pass up to transport */ 1688 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1689 break; 1690 case ICMP_SOURCE_QUENCH: 1691 interested = B_TRUE; /* Pass up to transport */ 1692 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1693 break; 1694 case ICMP_REDIRECT: 1695 if (!ipst->ips_ip_ignore_redirect) 1696 interested = B_TRUE; 1697 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1698 break; 1699 case ICMP_ECHO_REQUEST: 1700 /* 1701 * Whether to respond to echo requests that come in as IP 1702 * broadcasts or as IP multicast is subject to debate 1703 * (what isn't?). We aim to please, you pick it. 1704 * Default is do it. 1705 */ 1706 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1707 /* unicast: always respond */ 1708 interested = B_TRUE; 1709 } else if (CLASSD(ipha->ipha_dst)) { 1710 /* multicast: respond based on tunable */ 1711 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1712 } else if (broadcast) { 1713 /* broadcast: respond based on tunable */ 1714 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1715 } 1716 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1717 break; 1718 case ICMP_ROUTER_ADVERTISEMENT: 1719 case ICMP_ROUTER_SOLICITATION: 1720 break; 1721 case ICMP_TIME_EXCEEDED: 1722 interested = B_TRUE; /* Pass up to transport */ 1723 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1724 break; 1725 case ICMP_PARAM_PROBLEM: 1726 interested = B_TRUE; /* Pass up to transport */ 1727 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1728 break; 1729 case ICMP_TIME_STAMP_REQUEST: 1730 /* Response to Time Stamp Requests is local policy. */ 1731 if (ipst->ips_ip_g_resp_to_timestamp && 1732 /* So is whether to respond if it was an IP broadcast. */ 1733 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1734 int tstamp_len = 3 * sizeof (uint32_t); 1735 1736 if (wptr + tstamp_len > mp->b_wptr) { 1737 if (!pullupmsg(mp, wptr + tstamp_len - 1738 mp->b_rptr)) { 1739 BUMP_MIB(ill->ill_ip_mib, 1740 ipIfStatsInDiscards); 1741 freemsg(first_mp); 1742 return; 1743 } 1744 /* Refresh ipha following the pullup. */ 1745 ipha = (ipha_t *)mp->b_rptr; 1746 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1747 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1748 } 1749 interested = B_TRUE; 1750 } 1751 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1752 break; 1753 case ICMP_TIME_STAMP_REPLY: 1754 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1755 break; 1756 case ICMP_INFO_REQUEST: 1757 /* Per RFC 1122 3.2.2.7, ignore this. */ 1758 case ICMP_INFO_REPLY: 1759 break; 1760 case ICMP_ADDRESS_MASK_REQUEST: 1761 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1762 !broadcast) && 1763 /* TODO m_pullup of complete header? */ 1764 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1765 interested = B_TRUE; 1766 } 1767 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1768 break; 1769 case ICMP_ADDRESS_MASK_REPLY: 1770 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1771 break; 1772 default: 1773 interested = B_TRUE; /* Pass up to transport */ 1774 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1775 break; 1776 } 1777 /* See if there is an ICMP client. */ 1778 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1779 /* If there is an ICMP client and we want one too, copy it. */ 1780 mblk_t *first_mp1; 1781 1782 if (!interested) { 1783 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1784 ip_policy, recv_ill, zoneid); 1785 return; 1786 } 1787 first_mp1 = ip_copymsg(first_mp); 1788 if (first_mp1 != NULL) { 1789 ip_fanout_proto(q, first_mp1, ill, ipha, 1790 0, mctl_present, ip_policy, recv_ill, zoneid); 1791 } 1792 } else if (!interested) { 1793 freemsg(first_mp); 1794 return; 1795 } else { 1796 /* 1797 * Initiate policy processing for this packet if ip_policy 1798 * is true. 1799 */ 1800 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1801 ill_index = ill->ill_phyint->phyint_ifindex; 1802 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1803 if (mp == NULL) { 1804 if (mctl_present) { 1805 freeb(first_mp); 1806 } 1807 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1808 return; 1809 } 1810 } 1811 } 1812 /* We want to do something with it. */ 1813 /* Check db_ref to make sure we can modify the packet. */ 1814 if (mp->b_datap->db_ref > 1) { 1815 mblk_t *first_mp1; 1816 1817 first_mp1 = ip_copymsg(first_mp); 1818 freemsg(first_mp); 1819 if (!first_mp1) { 1820 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1821 return; 1822 } 1823 first_mp = first_mp1; 1824 if (mctl_present) { 1825 mp = first_mp->b_cont; 1826 ASSERT(mp != NULL); 1827 } else { 1828 mp = first_mp; 1829 } 1830 ipha = (ipha_t *)mp->b_rptr; 1831 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1832 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1833 } 1834 switch (icmph->icmph_type) { 1835 case ICMP_ADDRESS_MASK_REQUEST: 1836 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1837 if (ipif == NULL) { 1838 freemsg(first_mp); 1839 return; 1840 } 1841 /* 1842 * outging interface must be IPv4 1843 */ 1844 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1845 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1846 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1847 ipif_refrele(ipif); 1848 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1849 break; 1850 case ICMP_ECHO_REQUEST: 1851 icmph->icmph_type = ICMP_ECHO_REPLY; 1852 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1853 break; 1854 case ICMP_TIME_STAMP_REQUEST: { 1855 uint32_t *tsp; 1856 1857 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1858 tsp = (uint32_t *)wptr; 1859 tsp++; /* Skip past 'originate time' */ 1860 /* Compute # of milliseconds since midnight */ 1861 gethrestime(&now); 1862 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1863 now.tv_nsec / (NANOSEC / MILLISEC); 1864 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1865 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1866 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1867 break; 1868 } 1869 default: 1870 ipha = (ipha_t *)&icmph[1]; 1871 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1872 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1873 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1874 freemsg(first_mp); 1875 return; 1876 } 1877 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1878 ipha = (ipha_t *)&icmph[1]; 1879 } 1880 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1881 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1882 freemsg(first_mp); 1883 return; 1884 } 1885 hdr_length = IPH_HDR_LENGTH(ipha); 1886 if (hdr_length < sizeof (ipha_t)) { 1887 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1888 freemsg(first_mp); 1889 return; 1890 } 1891 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1892 if (!pullupmsg(mp, 1893 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1894 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1895 freemsg(first_mp); 1896 return; 1897 } 1898 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1899 ipha = (ipha_t *)&icmph[1]; 1900 } 1901 switch (icmph->icmph_type) { 1902 case ICMP_REDIRECT: 1903 /* 1904 * As there is no upper client to deliver, we don't 1905 * need the first_mp any more. 1906 */ 1907 if (mctl_present) { 1908 freeb(first_mp); 1909 } 1910 icmp_redirect(ill, mp); 1911 return; 1912 case ICMP_DEST_UNREACHABLE: 1913 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1914 if (!icmp_inbound_too_big(icmph, ipha, ill, 1915 zoneid, mp, iph_hdr_length, ipst)) { 1916 freemsg(first_mp); 1917 return; 1918 } 1919 /* 1920 * icmp_inbound_too_big() may alter mp. 1921 * Resynch ipha and icmph accordingly. 1922 */ 1923 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1924 ipha = (ipha_t *)&icmph[1]; 1925 } 1926 /* FALLTHRU */ 1927 default : 1928 /* 1929 * IPQoS notes: Since we have already done IPQoS 1930 * processing we don't want to do it again in 1931 * the fanout routines called by 1932 * icmp_inbound_error_fanout, hence the last 1933 * argument, ip_policy, is B_FALSE. 1934 */ 1935 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1936 ipha, iph_hdr_length, hdr_length, mctl_present, 1937 B_FALSE, recv_ill, zoneid); 1938 } 1939 return; 1940 } 1941 /* Send out an ICMP packet */ 1942 icmph->icmph_checksum = 0; 1943 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1944 if (broadcast || CLASSD(ipha->ipha_dst)) { 1945 ipif_t *ipif_chosen; 1946 /* 1947 * Make it look like it was directed to us, so we don't look 1948 * like a fool with a broadcast or multicast source address. 1949 */ 1950 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1951 /* 1952 * Make sure that we haven't grabbed an interface that's DOWN. 1953 */ 1954 if (ipif != NULL) { 1955 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1956 ipha->ipha_src, zoneid); 1957 if (ipif_chosen != NULL) { 1958 ipif_refrele(ipif); 1959 ipif = ipif_chosen; 1960 } 1961 } 1962 if (ipif == NULL) { 1963 ip0dbg(("icmp_inbound: " 1964 "No source for broadcast/multicast:\n" 1965 "\tsrc 0x%x dst 0x%x ill %p " 1966 "ipif_lcl_addr 0x%x\n", 1967 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1968 (void *)ill, 1969 ill->ill_ipif->ipif_lcl_addr)); 1970 freemsg(first_mp); 1971 return; 1972 } 1973 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1974 ipha->ipha_dst = ipif->ipif_src_addr; 1975 ipif_refrele(ipif); 1976 } 1977 /* Reset time to live. */ 1978 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1979 { 1980 /* Swap source and destination addresses */ 1981 ipaddr_t tmp; 1982 1983 tmp = ipha->ipha_src; 1984 ipha->ipha_src = ipha->ipha_dst; 1985 ipha->ipha_dst = tmp; 1986 } 1987 ipha->ipha_ident = 0; 1988 if (!IS_SIMPLE_IPH(ipha)) 1989 icmp_options_update(ipha); 1990 1991 /* 1992 * ICMP echo replies should go out on the same interface 1993 * the request came on as probes used by in.mpathd for detecting 1994 * NIC failures are ECHO packets. We turn-off load spreading 1995 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1996 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1997 * function. This is in turn handled by ip_wput and ip_newroute 1998 * to make sure that the packet goes out on the interface it came 1999 * in on. If we don't turnoff load spreading, the packets might get 2000 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2001 * to go out and in.mpathd would wrongly detect a failure or 2002 * mis-detect a NIC failure for link failure. As load spreading 2003 * can happen only if ill_group is not NULL, we do only for 2004 * that case and this does not affect the normal case. 2005 * 2006 * We turn off load spreading only on echo packets that came from 2007 * on-link hosts. If the interface route has been deleted, this will 2008 * not be enforced as we can't do much. For off-link hosts, as the 2009 * default routes in IPv4 does not typically have an ire_ipif 2010 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2011 * Moreover, expecting a default route through this interface may 2012 * not be correct. We use ipha_dst because of the swap above. 2013 */ 2014 onlink = B_FALSE; 2015 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2016 /* 2017 * First, we need to make sure that it is not one of our 2018 * local addresses. If we set onlink when it is one of 2019 * our local addresses, we will end up creating IRE_CACHES 2020 * for one of our local addresses. Then, we will never 2021 * accept packets for them afterwards. 2022 */ 2023 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2024 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2025 if (src_ire == NULL) { 2026 ipif = ipif_get_next_ipif(NULL, ill); 2027 if (ipif == NULL) { 2028 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2029 freemsg(mp); 2030 return; 2031 } 2032 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2033 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2034 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2035 ipif_refrele(ipif); 2036 if (src_ire != NULL) { 2037 onlink = B_TRUE; 2038 ire_refrele(src_ire); 2039 } 2040 } else { 2041 ire_refrele(src_ire); 2042 } 2043 } 2044 if (!mctl_present) { 2045 /* 2046 * This packet should go out the same way as it 2047 * came in i.e in clear. To make sure that global 2048 * policy will not be applied to this in ip_wput_ire, 2049 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2050 */ 2051 ASSERT(first_mp == mp); 2052 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2053 if (first_mp == NULL) { 2054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2055 freemsg(mp); 2056 return; 2057 } 2058 ii = (ipsec_in_t *)first_mp->b_rptr; 2059 2060 /* This is not a secure packet */ 2061 ii->ipsec_in_secure = B_FALSE; 2062 if (onlink) { 2063 ii->ipsec_in_attach_if = B_TRUE; 2064 ii->ipsec_in_ill_index = 2065 ill->ill_phyint->phyint_ifindex; 2066 ii->ipsec_in_rill_index = 2067 recv_ill->ill_phyint->phyint_ifindex; 2068 } 2069 first_mp->b_cont = mp; 2070 } else if (onlink) { 2071 ii = (ipsec_in_t *)first_mp->b_rptr; 2072 ii->ipsec_in_attach_if = B_TRUE; 2073 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2074 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2075 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2076 } else { 2077 ii = (ipsec_in_t *)first_mp->b_rptr; 2078 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2079 } 2080 ii->ipsec_in_zoneid = zoneid; 2081 ASSERT(zoneid != ALL_ZONES); 2082 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2083 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2084 return; 2085 } 2086 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2087 put(WR(q), first_mp); 2088 } 2089 2090 static ipaddr_t 2091 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2092 { 2093 conn_t *connp; 2094 connf_t *connfp; 2095 ipaddr_t nexthop_addr = INADDR_ANY; 2096 int hdr_length = IPH_HDR_LENGTH(ipha); 2097 uint16_t *up; 2098 uint32_t ports; 2099 ip_stack_t *ipst = ill->ill_ipst; 2100 2101 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2102 switch (ipha->ipha_protocol) { 2103 case IPPROTO_TCP: 2104 { 2105 tcph_t *tcph; 2106 2107 /* do a reverse lookup */ 2108 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2109 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2110 TCPS_LISTEN, ipst); 2111 break; 2112 } 2113 case IPPROTO_UDP: 2114 { 2115 uint32_t dstport, srcport; 2116 2117 ((uint16_t *)&ports)[0] = up[1]; 2118 ((uint16_t *)&ports)[1] = up[0]; 2119 2120 /* Extract ports in net byte order */ 2121 dstport = htons(ntohl(ports) & 0xFFFF); 2122 srcport = htons(ntohl(ports) >> 16); 2123 2124 connfp = &ipst->ips_ipcl_udp_fanout[ 2125 IPCL_UDP_HASH(dstport, ipst)]; 2126 mutex_enter(&connfp->connf_lock); 2127 connp = connfp->connf_head; 2128 2129 /* do a reverse lookup */ 2130 while ((connp != NULL) && 2131 (!IPCL_UDP_MATCH(connp, dstport, 2132 ipha->ipha_src, srcport, ipha->ipha_dst) || 2133 !IPCL_ZONE_MATCH(connp, zoneid))) { 2134 connp = connp->conn_next; 2135 } 2136 if (connp != NULL) 2137 CONN_INC_REF(connp); 2138 mutex_exit(&connfp->connf_lock); 2139 break; 2140 } 2141 case IPPROTO_SCTP: 2142 { 2143 in6_addr_t map_src, map_dst; 2144 2145 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2146 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2147 ((uint16_t *)&ports)[0] = up[1]; 2148 ((uint16_t *)&ports)[1] = up[0]; 2149 2150 connp = sctp_find_conn(&map_src, &map_dst, ports, 2151 zoneid, ipst->ips_netstack->netstack_sctp); 2152 if (connp == NULL) { 2153 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2154 zoneid, ports, ipha, ipst); 2155 } else { 2156 CONN_INC_REF(connp); 2157 SCTP_REFRELE(CONN2SCTP(connp)); 2158 } 2159 break; 2160 } 2161 default: 2162 { 2163 ipha_t ripha; 2164 2165 ripha.ipha_src = ipha->ipha_dst; 2166 ripha.ipha_dst = ipha->ipha_src; 2167 ripha.ipha_protocol = ipha->ipha_protocol; 2168 2169 connfp = &ipst->ips_ipcl_proto_fanout[ 2170 ipha->ipha_protocol]; 2171 mutex_enter(&connfp->connf_lock); 2172 connp = connfp->connf_head; 2173 for (connp = connfp->connf_head; connp != NULL; 2174 connp = connp->conn_next) { 2175 if (IPCL_PROTO_MATCH(connp, 2176 ipha->ipha_protocol, &ripha, ill, 2177 0, zoneid)) { 2178 CONN_INC_REF(connp); 2179 break; 2180 } 2181 } 2182 mutex_exit(&connfp->connf_lock); 2183 } 2184 } 2185 if (connp != NULL) { 2186 if (connp->conn_nexthop_set) 2187 nexthop_addr = connp->conn_nexthop_v4; 2188 CONN_DEC_REF(connp); 2189 } 2190 return (nexthop_addr); 2191 } 2192 2193 /* Table from RFC 1191 */ 2194 static int icmp_frag_size_table[] = 2195 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2196 2197 /* 2198 * Process received ICMP Packet too big. 2199 * After updating any IRE it does the fanout to any matching transport streams. 2200 * Assumes the message has been pulled up till the IP header that caused 2201 * the error. 2202 * 2203 * Returns B_FALSE on failure and B_TRUE on success. 2204 */ 2205 static boolean_t 2206 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2207 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2208 ip_stack_t *ipst) 2209 { 2210 ire_t *ire, *first_ire; 2211 int mtu; 2212 int hdr_length; 2213 ipaddr_t nexthop_addr; 2214 2215 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2216 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2217 ASSERT(ill != NULL); 2218 2219 hdr_length = IPH_HDR_LENGTH(ipha); 2220 2221 /* Drop if the original packet contained a source route */ 2222 if (ip_source_route_included(ipha)) { 2223 return (B_FALSE); 2224 } 2225 /* 2226 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2227 * header. 2228 */ 2229 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2230 mp->b_wptr) { 2231 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2232 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2233 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2234 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2235 return (B_FALSE); 2236 } 2237 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2238 ipha = (ipha_t *)&icmph[1]; 2239 } 2240 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2241 if (nexthop_addr != INADDR_ANY) { 2242 /* nexthop set */ 2243 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2244 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2245 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2246 } else { 2247 /* nexthop not set */ 2248 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2249 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2250 } 2251 2252 if (!first_ire) { 2253 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2254 ntohl(ipha->ipha_dst))); 2255 return (B_FALSE); 2256 } 2257 /* Check for MTU discovery advice as described in RFC 1191 */ 2258 mtu = ntohs(icmph->icmph_du_mtu); 2259 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2260 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2261 ire = ire->ire_next) { 2262 /* 2263 * Look for the connection to which this ICMP message is 2264 * directed. If it has the IP_NEXTHOP option set, then the 2265 * search is limited to IREs with the MATCH_IRE_PRIVATE 2266 * option. Else the search is limited to regular IREs. 2267 */ 2268 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2269 (nexthop_addr != ire->ire_gateway_addr)) || 2270 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2271 (nexthop_addr != INADDR_ANY))) 2272 continue; 2273 2274 mutex_enter(&ire->ire_lock); 2275 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2276 /* Reduce the IRE max frag value as advised. */ 2277 ip1dbg(("Received mtu from router: %d (was %d)\n", 2278 mtu, ire->ire_max_frag)); 2279 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2280 } else { 2281 uint32_t length; 2282 int i; 2283 2284 /* 2285 * Use the table from RFC 1191 to figure out 2286 * the next "plateau" based on the length in 2287 * the original IP packet. 2288 */ 2289 length = ntohs(ipha->ipha_length); 2290 if (ire->ire_max_frag <= length && 2291 ire->ire_max_frag >= length - hdr_length) { 2292 /* 2293 * Handle broken BSD 4.2 systems that 2294 * return the wrong iph_length in ICMP 2295 * errors. 2296 */ 2297 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2298 length, ire->ire_max_frag)); 2299 length -= hdr_length; 2300 } 2301 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2302 if (length > icmp_frag_size_table[i]) 2303 break; 2304 } 2305 if (i == A_CNT(icmp_frag_size_table)) { 2306 /* Smaller than 68! */ 2307 ip1dbg(("Too big for packet size %d\n", 2308 length)); 2309 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2310 ire->ire_frag_flag = 0; 2311 } else { 2312 mtu = icmp_frag_size_table[i]; 2313 ip1dbg(("Calculated mtu %d, packet size %d, " 2314 "before %d", mtu, length, 2315 ire->ire_max_frag)); 2316 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2317 ip1dbg((", after %d\n", ire->ire_max_frag)); 2318 } 2319 /* Record the new max frag size for the ULP. */ 2320 icmph->icmph_du_zero = 0; 2321 icmph->icmph_du_mtu = 2322 htons((uint16_t)ire->ire_max_frag); 2323 } 2324 mutex_exit(&ire->ire_lock); 2325 } 2326 rw_exit(&first_ire->ire_bucket->irb_lock); 2327 ire_refrele(first_ire); 2328 return (B_TRUE); 2329 } 2330 2331 /* 2332 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2333 * calls this function. 2334 */ 2335 static mblk_t * 2336 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2337 { 2338 ipha_t *ipha; 2339 icmph_t *icmph; 2340 ipha_t *in_ipha; 2341 int length; 2342 2343 ASSERT(mp->b_datap->db_type == M_DATA); 2344 2345 /* 2346 * For Self-encapsulated packets, we added an extra IP header 2347 * without the options. Inner IP header is the one from which 2348 * the outer IP header was formed. Thus, we need to remove the 2349 * outer IP header. To do this, we pullup the whole message 2350 * and overlay whatever follows the outer IP header over the 2351 * outer IP header. 2352 */ 2353 2354 if (!pullupmsg(mp, -1)) 2355 return (NULL); 2356 2357 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2358 ipha = (ipha_t *)&icmph[1]; 2359 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2360 2361 /* 2362 * The length that we want to overlay is following the inner 2363 * IP header. Subtracting the IP header + icmp header + outer 2364 * IP header's length should give us the length that we want to 2365 * overlay. 2366 */ 2367 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2368 hdr_length; 2369 /* 2370 * Overlay whatever follows the inner header over the 2371 * outer header. 2372 */ 2373 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2374 2375 /* Set the wptr to account for the outer header */ 2376 mp->b_wptr -= hdr_length; 2377 return (mp); 2378 } 2379 2380 /* 2381 * Try to pass the ICMP message upstream in case the ULP cares. 2382 * 2383 * If the packet that caused the ICMP error is secure, we send 2384 * it to AH/ESP to make sure that the attached packet has a 2385 * valid association. ipha in the code below points to the 2386 * IP header of the packet that caused the error. 2387 * 2388 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2389 * in the context of IPsec. Normally we tell the upper layer 2390 * whenever we send the ire (including ip_bind), the IPsec header 2391 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2392 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2393 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2394 * same thing. As TCP has the IPsec options size that needs to be 2395 * adjusted, we just pass the MTU unchanged. 2396 * 2397 * IFN could have been generated locally or by some router. 2398 * 2399 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2400 * This happens because IP adjusted its value of MTU on an 2401 * earlier IFN message and could not tell the upper layer, 2402 * the new adjusted value of MTU e.g. Packet was encrypted 2403 * or there was not enough information to fanout to upper 2404 * layers. Thus on the next outbound datagram, ip_wput_ire 2405 * generates the IFN, where IPsec processing has *not* been 2406 * done. 2407 * 2408 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2409 * could have generated this. This happens because ire_max_frag 2410 * value in IP was set to a new value, while the IPsec processing 2411 * was being done and after we made the fragmentation check in 2412 * ip_wput_ire. Thus on return from IPsec processing, 2413 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2414 * and generates the IFN. As IPsec processing is over, we fanout 2415 * to AH/ESP to remove the header. 2416 * 2417 * In both these cases, ipsec_in_loopback will be set indicating 2418 * that IFN was generated locally. 2419 * 2420 * ROUTER : IFN could be secure or non-secure. 2421 * 2422 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2423 * packet in error has AH/ESP headers to validate the AH/ESP 2424 * headers. AH/ESP will verify whether there is a valid SA or 2425 * not and send it back. We will fanout again if we have more 2426 * data in the packet. 2427 * 2428 * If the packet in error does not have AH/ESP, we handle it 2429 * like any other case. 2430 * 2431 * * NON_SECURE : If the packet in error has AH/ESP headers, 2432 * we attach a dummy ipsec_in and send it up to AH/ESP 2433 * for validation. AH/ESP will verify whether there is a 2434 * valid SA or not and send it back. We will fanout again if 2435 * we have more data in the packet. 2436 * 2437 * If the packet in error does not have AH/ESP, we handle it 2438 * like any other case. 2439 */ 2440 static void 2441 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2442 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2443 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2444 zoneid_t zoneid) 2445 { 2446 uint16_t *up; /* Pointer to ports in ULP header */ 2447 uint32_t ports; /* reversed ports for fanout */ 2448 ipha_t ripha; /* With reversed addresses */ 2449 mblk_t *first_mp; 2450 ipsec_in_t *ii; 2451 tcph_t *tcph; 2452 conn_t *connp; 2453 ip_stack_t *ipst; 2454 2455 ASSERT(ill != NULL); 2456 2457 ASSERT(recv_ill != NULL); 2458 ipst = recv_ill->ill_ipst; 2459 2460 first_mp = mp; 2461 if (mctl_present) { 2462 mp = first_mp->b_cont; 2463 ASSERT(mp != NULL); 2464 2465 ii = (ipsec_in_t *)first_mp->b_rptr; 2466 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2467 } else { 2468 ii = NULL; 2469 } 2470 2471 switch (ipha->ipha_protocol) { 2472 case IPPROTO_UDP: 2473 /* 2474 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2475 * transport header. 2476 */ 2477 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2478 mp->b_wptr) { 2479 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2480 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2481 goto discard_pkt; 2482 } 2483 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2484 ipha = (ipha_t *)&icmph[1]; 2485 } 2486 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2487 2488 /* 2489 * Attempt to find a client stream based on port. 2490 * Note that we do a reverse lookup since the header is 2491 * in the form we sent it out. 2492 * The ripha header is only used for the IP_UDP_MATCH and we 2493 * only set the src and dst addresses and protocol. 2494 */ 2495 ripha.ipha_src = ipha->ipha_dst; 2496 ripha.ipha_dst = ipha->ipha_src; 2497 ripha.ipha_protocol = ipha->ipha_protocol; 2498 ((uint16_t *)&ports)[0] = up[1]; 2499 ((uint16_t *)&ports)[1] = up[0]; 2500 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2501 ntohl(ipha->ipha_src), ntohs(up[0]), 2502 ntohl(ipha->ipha_dst), ntohs(up[1]), 2503 icmph->icmph_type, icmph->icmph_code)); 2504 2505 /* Have to change db_type after any pullupmsg */ 2506 DB_TYPE(mp) = M_CTL; 2507 2508 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2509 mctl_present, ip_policy, recv_ill, zoneid); 2510 return; 2511 2512 case IPPROTO_TCP: 2513 /* 2514 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2515 * transport header. 2516 */ 2517 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2518 mp->b_wptr) { 2519 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2520 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2521 goto discard_pkt; 2522 } 2523 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2524 ipha = (ipha_t *)&icmph[1]; 2525 } 2526 /* 2527 * Find a TCP client stream for this packet. 2528 * Note that we do a reverse lookup since the header is 2529 * in the form we sent it out. 2530 */ 2531 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2532 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2533 ipst); 2534 if (connp == NULL) 2535 goto discard_pkt; 2536 2537 /* Have to change db_type after any pullupmsg */ 2538 DB_TYPE(mp) = M_CTL; 2539 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2540 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2541 return; 2542 2543 case IPPROTO_SCTP: 2544 /* 2545 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2546 * transport header. 2547 */ 2548 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2549 mp->b_wptr) { 2550 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2551 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2552 goto discard_pkt; 2553 } 2554 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2555 ipha = (ipha_t *)&icmph[1]; 2556 } 2557 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2558 /* 2559 * Find a SCTP client stream for this packet. 2560 * Note that we do a reverse lookup since the header is 2561 * in the form we sent it out. 2562 * The ripha header is only used for the matching and we 2563 * only set the src and dst addresses, protocol, and version. 2564 */ 2565 ripha.ipha_src = ipha->ipha_dst; 2566 ripha.ipha_dst = ipha->ipha_src; 2567 ripha.ipha_protocol = ipha->ipha_protocol; 2568 ripha.ipha_version_and_hdr_length = 2569 ipha->ipha_version_and_hdr_length; 2570 ((uint16_t *)&ports)[0] = up[1]; 2571 ((uint16_t *)&ports)[1] = up[0]; 2572 2573 /* Have to change db_type after any pullupmsg */ 2574 DB_TYPE(mp) = M_CTL; 2575 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2576 mctl_present, ip_policy, zoneid); 2577 return; 2578 2579 case IPPROTO_ESP: 2580 case IPPROTO_AH: { 2581 int ipsec_rc; 2582 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2583 2584 /* 2585 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2586 * We will re-use the IPSEC_IN if it is already present as 2587 * AH/ESP will not affect any fields in the IPSEC_IN for 2588 * ICMP errors. If there is no IPSEC_IN, allocate a new 2589 * one and attach it in the front. 2590 */ 2591 if (ii != NULL) { 2592 /* 2593 * ip_fanout_proto_again converts the ICMP errors 2594 * that come back from AH/ESP to M_DATA so that 2595 * if it is non-AH/ESP and we do a pullupmsg in 2596 * this function, it would work. Convert it back 2597 * to M_CTL before we send up as this is a ICMP 2598 * error. This could have been generated locally or 2599 * by some router. Validate the inner IPsec 2600 * headers. 2601 * 2602 * NOTE : ill_index is used by ip_fanout_proto_again 2603 * to locate the ill. 2604 */ 2605 ASSERT(ill != NULL); 2606 ii->ipsec_in_ill_index = 2607 ill->ill_phyint->phyint_ifindex; 2608 ii->ipsec_in_rill_index = 2609 recv_ill->ill_phyint->phyint_ifindex; 2610 DB_TYPE(first_mp->b_cont) = M_CTL; 2611 } else { 2612 /* 2613 * IPSEC_IN is not present. We attach a ipsec_in 2614 * message and send up to IPsec for validating 2615 * and removing the IPsec headers. Clear 2616 * ipsec_in_secure so that when we return 2617 * from IPsec, we don't mistakenly think that this 2618 * is a secure packet came from the network. 2619 * 2620 * NOTE : ill_index is used by ip_fanout_proto_again 2621 * to locate the ill. 2622 */ 2623 ASSERT(first_mp == mp); 2624 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2625 if (first_mp == NULL) { 2626 freemsg(mp); 2627 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2628 return; 2629 } 2630 ii = (ipsec_in_t *)first_mp->b_rptr; 2631 2632 /* This is not a secure packet */ 2633 ii->ipsec_in_secure = B_FALSE; 2634 first_mp->b_cont = mp; 2635 DB_TYPE(mp) = M_CTL; 2636 ASSERT(ill != NULL); 2637 ii->ipsec_in_ill_index = 2638 ill->ill_phyint->phyint_ifindex; 2639 ii->ipsec_in_rill_index = 2640 recv_ill->ill_phyint->phyint_ifindex; 2641 } 2642 ip2dbg(("icmp_inbound_error: ipsec\n")); 2643 2644 if (!ipsec_loaded(ipss)) { 2645 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2646 return; 2647 } 2648 2649 if (ipha->ipha_protocol == IPPROTO_ESP) 2650 ipsec_rc = ipsecesp_icmp_error(first_mp); 2651 else 2652 ipsec_rc = ipsecah_icmp_error(first_mp); 2653 if (ipsec_rc == IPSEC_STATUS_FAILED) 2654 return; 2655 2656 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2657 return; 2658 } 2659 default: 2660 /* 2661 * The ripha header is only used for the lookup and we 2662 * only set the src and dst addresses and protocol. 2663 */ 2664 ripha.ipha_src = ipha->ipha_dst; 2665 ripha.ipha_dst = ipha->ipha_src; 2666 ripha.ipha_protocol = ipha->ipha_protocol; 2667 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2668 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2669 ntohl(ipha->ipha_dst), 2670 icmph->icmph_type, icmph->icmph_code)); 2671 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2672 ipha_t *in_ipha; 2673 2674 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2675 mp->b_wptr) { 2676 if (!pullupmsg(mp, (uchar_t *)ipha + 2677 hdr_length + sizeof (ipha_t) - 2678 mp->b_rptr)) { 2679 goto discard_pkt; 2680 } 2681 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2682 ipha = (ipha_t *)&icmph[1]; 2683 } 2684 /* 2685 * Caller has verified that length has to be 2686 * at least the size of IP header. 2687 */ 2688 ASSERT(hdr_length >= sizeof (ipha_t)); 2689 /* 2690 * Check the sanity of the inner IP header like 2691 * we did for the outer header. 2692 */ 2693 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2694 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2695 goto discard_pkt; 2696 } 2697 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2698 goto discard_pkt; 2699 } 2700 /* Check for Self-encapsulated tunnels */ 2701 if (in_ipha->ipha_src == ipha->ipha_src && 2702 in_ipha->ipha_dst == ipha->ipha_dst) { 2703 2704 mp = icmp_inbound_self_encap_error(mp, 2705 iph_hdr_length, hdr_length); 2706 if (mp == NULL) 2707 goto discard_pkt; 2708 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2709 ipha = (ipha_t *)&icmph[1]; 2710 hdr_length = IPH_HDR_LENGTH(ipha); 2711 /* 2712 * The packet in error is self-encapsualted. 2713 * And we are finding it further encapsulated 2714 * which we could not have possibly generated. 2715 */ 2716 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2717 goto discard_pkt; 2718 } 2719 icmp_inbound_error_fanout(q, ill, first_mp, 2720 icmph, ipha, iph_hdr_length, hdr_length, 2721 mctl_present, ip_policy, recv_ill, zoneid); 2722 return; 2723 } 2724 } 2725 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2726 ipha->ipha_protocol == IPPROTO_IPV6) && 2727 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2728 ii != NULL && 2729 ii->ipsec_in_loopback && 2730 ii->ipsec_in_secure) { 2731 /* 2732 * For IP tunnels that get a looped-back 2733 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2734 * reported new MTU to take into account the IPsec 2735 * headers protecting this configured tunnel. 2736 * 2737 * This allows the tunnel module (tun.c) to blindly 2738 * accept the MTU reported in an ICMP "too big" 2739 * message. 2740 * 2741 * Non-looped back ICMP messages will just be 2742 * handled by the security protocols (if needed), 2743 * and the first subsequent packet will hit this 2744 * path. 2745 */ 2746 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2747 ipsec_in_extra_length(first_mp)); 2748 } 2749 /* Have to change db_type after any pullupmsg */ 2750 DB_TYPE(mp) = M_CTL; 2751 2752 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2753 ip_policy, recv_ill, zoneid); 2754 return; 2755 } 2756 /* NOTREACHED */ 2757 discard_pkt: 2758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2759 drop_pkt:; 2760 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2761 freemsg(first_mp); 2762 } 2763 2764 /* 2765 * Common IP options parser. 2766 * 2767 * Setup routine: fill in *optp with options-parsing state, then 2768 * tail-call ipoptp_next to return the first option. 2769 */ 2770 uint8_t 2771 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2772 { 2773 uint32_t totallen; /* total length of all options */ 2774 2775 totallen = ipha->ipha_version_and_hdr_length - 2776 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2777 totallen <<= 2; 2778 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2779 optp->ipoptp_end = optp->ipoptp_next + totallen; 2780 optp->ipoptp_flags = 0; 2781 return (ipoptp_next(optp)); 2782 } 2783 2784 /* 2785 * Common IP options parser: extract next option. 2786 */ 2787 uint8_t 2788 ipoptp_next(ipoptp_t *optp) 2789 { 2790 uint8_t *end = optp->ipoptp_end; 2791 uint8_t *cur = optp->ipoptp_next; 2792 uint8_t opt, len, pointer; 2793 2794 /* 2795 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2796 * has been corrupted. 2797 */ 2798 ASSERT(cur <= end); 2799 2800 if (cur == end) 2801 return (IPOPT_EOL); 2802 2803 opt = cur[IPOPT_OPTVAL]; 2804 2805 /* 2806 * Skip any NOP options. 2807 */ 2808 while (opt == IPOPT_NOP) { 2809 cur++; 2810 if (cur == end) 2811 return (IPOPT_EOL); 2812 opt = cur[IPOPT_OPTVAL]; 2813 } 2814 2815 if (opt == IPOPT_EOL) 2816 return (IPOPT_EOL); 2817 2818 /* 2819 * Option requiring a length. 2820 */ 2821 if ((cur + 1) >= end) { 2822 optp->ipoptp_flags |= IPOPTP_ERROR; 2823 return (IPOPT_EOL); 2824 } 2825 len = cur[IPOPT_OLEN]; 2826 if (len < 2) { 2827 optp->ipoptp_flags |= IPOPTP_ERROR; 2828 return (IPOPT_EOL); 2829 } 2830 optp->ipoptp_cur = cur; 2831 optp->ipoptp_len = len; 2832 optp->ipoptp_next = cur + len; 2833 if (cur + len > end) { 2834 optp->ipoptp_flags |= IPOPTP_ERROR; 2835 return (IPOPT_EOL); 2836 } 2837 2838 /* 2839 * For the options which require a pointer field, make sure 2840 * its there, and make sure it points to either something 2841 * inside this option, or the end of the option. 2842 */ 2843 switch (opt) { 2844 case IPOPT_RR: 2845 case IPOPT_TS: 2846 case IPOPT_LSRR: 2847 case IPOPT_SSRR: 2848 if (len <= IPOPT_OFFSET) { 2849 optp->ipoptp_flags |= IPOPTP_ERROR; 2850 return (opt); 2851 } 2852 pointer = cur[IPOPT_OFFSET]; 2853 if (pointer - 1 > len) { 2854 optp->ipoptp_flags |= IPOPTP_ERROR; 2855 return (opt); 2856 } 2857 break; 2858 } 2859 2860 /* 2861 * Sanity check the pointer field based on the type of the 2862 * option. 2863 */ 2864 switch (opt) { 2865 case IPOPT_RR: 2866 case IPOPT_SSRR: 2867 case IPOPT_LSRR: 2868 if (pointer < IPOPT_MINOFF_SR) 2869 optp->ipoptp_flags |= IPOPTP_ERROR; 2870 break; 2871 case IPOPT_TS: 2872 if (pointer < IPOPT_MINOFF_IT) 2873 optp->ipoptp_flags |= IPOPTP_ERROR; 2874 /* 2875 * Note that the Internet Timestamp option also 2876 * contains two four bit fields (the Overflow field, 2877 * and the Flag field), which follow the pointer 2878 * field. We don't need to check that these fields 2879 * fall within the length of the option because this 2880 * was implicitely done above. We've checked that the 2881 * pointer value is at least IPOPT_MINOFF_IT, and that 2882 * it falls within the option. Since IPOPT_MINOFF_IT > 2883 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2884 */ 2885 ASSERT(len > IPOPT_POS_OV_FLG); 2886 break; 2887 } 2888 2889 return (opt); 2890 } 2891 2892 /* 2893 * Use the outgoing IP header to create an IP_OPTIONS option the way 2894 * it was passed down from the application. 2895 */ 2896 int 2897 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2898 { 2899 ipoptp_t opts; 2900 const uchar_t *opt; 2901 uint8_t optval; 2902 uint8_t optlen; 2903 uint32_t len = 0; 2904 uchar_t *buf1 = buf; 2905 2906 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2907 len += IP_ADDR_LEN; 2908 bzero(buf1, IP_ADDR_LEN); 2909 2910 /* 2911 * OK to cast away const here, as we don't store through the returned 2912 * opts.ipoptp_cur pointer. 2913 */ 2914 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2915 optval != IPOPT_EOL; 2916 optval = ipoptp_next(&opts)) { 2917 int off; 2918 2919 opt = opts.ipoptp_cur; 2920 optlen = opts.ipoptp_len; 2921 switch (optval) { 2922 case IPOPT_SSRR: 2923 case IPOPT_LSRR: 2924 2925 /* 2926 * Insert ipha_dst as the first entry in the source 2927 * route and move down the entries on step. 2928 * The last entry gets placed at buf1. 2929 */ 2930 buf[IPOPT_OPTVAL] = optval; 2931 buf[IPOPT_OLEN] = optlen; 2932 buf[IPOPT_OFFSET] = optlen; 2933 2934 off = optlen - IP_ADDR_LEN; 2935 if (off < 0) { 2936 /* No entries in source route */ 2937 break; 2938 } 2939 /* Last entry in source route */ 2940 bcopy(opt + off, buf1, IP_ADDR_LEN); 2941 off -= IP_ADDR_LEN; 2942 2943 while (off > 0) { 2944 bcopy(opt + off, 2945 buf + off + IP_ADDR_LEN, 2946 IP_ADDR_LEN); 2947 off -= IP_ADDR_LEN; 2948 } 2949 /* ipha_dst into first slot */ 2950 bcopy(&ipha->ipha_dst, 2951 buf + off + IP_ADDR_LEN, 2952 IP_ADDR_LEN); 2953 buf += optlen; 2954 len += optlen; 2955 break; 2956 2957 case IPOPT_COMSEC: 2958 case IPOPT_SECURITY: 2959 /* if passing up a label is not ok, then remove */ 2960 if (is_system_labeled()) 2961 break; 2962 /* FALLTHROUGH */ 2963 default: 2964 bcopy(opt, buf, optlen); 2965 buf += optlen; 2966 len += optlen; 2967 break; 2968 } 2969 } 2970 done: 2971 /* Pad the resulting options */ 2972 while (len & 0x3) { 2973 *buf++ = IPOPT_EOL; 2974 len++; 2975 } 2976 return (len); 2977 } 2978 2979 /* 2980 * Update any record route or timestamp options to include this host. 2981 * Reverse any source route option. 2982 * This routine assumes that the options are well formed i.e. that they 2983 * have already been checked. 2984 */ 2985 static void 2986 icmp_options_update(ipha_t *ipha) 2987 { 2988 ipoptp_t opts; 2989 uchar_t *opt; 2990 uint8_t optval; 2991 ipaddr_t src; /* Our local address */ 2992 ipaddr_t dst; 2993 2994 ip2dbg(("icmp_options_update\n")); 2995 src = ipha->ipha_src; 2996 dst = ipha->ipha_dst; 2997 2998 for (optval = ipoptp_first(&opts, ipha); 2999 optval != IPOPT_EOL; 3000 optval = ipoptp_next(&opts)) { 3001 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3002 opt = opts.ipoptp_cur; 3003 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3004 optval, opts.ipoptp_len)); 3005 switch (optval) { 3006 int off1, off2; 3007 case IPOPT_SSRR: 3008 case IPOPT_LSRR: 3009 /* 3010 * Reverse the source route. The first entry 3011 * should be the next to last one in the current 3012 * source route (the last entry is our address). 3013 * The last entry should be the final destination. 3014 */ 3015 off1 = IPOPT_MINOFF_SR - 1; 3016 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3017 if (off2 < 0) { 3018 /* No entries in source route */ 3019 ip1dbg(( 3020 "icmp_options_update: bad src route\n")); 3021 break; 3022 } 3023 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3024 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3025 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3026 off2 -= IP_ADDR_LEN; 3027 3028 while (off1 < off2) { 3029 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3030 bcopy((char *)opt + off2, (char *)opt + off1, 3031 IP_ADDR_LEN); 3032 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3033 off1 += IP_ADDR_LEN; 3034 off2 -= IP_ADDR_LEN; 3035 } 3036 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3037 break; 3038 } 3039 } 3040 } 3041 3042 /* 3043 * Process received ICMP Redirect messages. 3044 */ 3045 static void 3046 icmp_redirect(ill_t *ill, mblk_t *mp) 3047 { 3048 ipha_t *ipha; 3049 int iph_hdr_length; 3050 icmph_t *icmph; 3051 ipha_t *ipha_err; 3052 ire_t *ire; 3053 ire_t *prev_ire; 3054 ire_t *save_ire; 3055 ipaddr_t src, dst, gateway; 3056 iulp_t ulp_info = { 0 }; 3057 int error; 3058 ip_stack_t *ipst; 3059 3060 ASSERT(ill != NULL); 3061 ipst = ill->ill_ipst; 3062 3063 ipha = (ipha_t *)mp->b_rptr; 3064 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3065 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3066 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3067 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3068 freemsg(mp); 3069 return; 3070 } 3071 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3072 ipha_err = (ipha_t *)&icmph[1]; 3073 src = ipha->ipha_src; 3074 dst = ipha_err->ipha_dst; 3075 gateway = icmph->icmph_rd_gateway; 3076 /* Make sure the new gateway is reachable somehow. */ 3077 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3078 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3079 /* 3080 * Make sure we had a route for the dest in question and that 3081 * that route was pointing to the old gateway (the source of the 3082 * redirect packet.) 3083 */ 3084 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3085 NULL, MATCH_IRE_GW, ipst); 3086 /* 3087 * Check that 3088 * the redirect was not from ourselves 3089 * the new gateway and the old gateway are directly reachable 3090 */ 3091 if (!prev_ire || 3092 !ire || 3093 ire->ire_type == IRE_LOCAL) { 3094 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3095 freemsg(mp); 3096 if (ire != NULL) 3097 ire_refrele(ire); 3098 if (prev_ire != NULL) 3099 ire_refrele(prev_ire); 3100 return; 3101 } 3102 3103 /* 3104 * Should we use the old ULP info to create the new gateway? From 3105 * a user's perspective, we should inherit the info so that it 3106 * is a "smooth" transition. If we do not do that, then new 3107 * connections going thru the new gateway will have no route metrics, 3108 * which is counter-intuitive to user. From a network point of 3109 * view, this may or may not make sense even though the new gateway 3110 * is still directly connected to us so the route metrics should not 3111 * change much. 3112 * 3113 * But if the old ire_uinfo is not initialized, we do another 3114 * recursive lookup on the dest using the new gateway. There may 3115 * be a route to that. If so, use it to initialize the redirect 3116 * route. 3117 */ 3118 if (prev_ire->ire_uinfo.iulp_set) { 3119 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3120 } else { 3121 ire_t *tmp_ire; 3122 ire_t *sire; 3123 3124 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3125 ALL_ZONES, 0, NULL, 3126 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3127 ipst); 3128 if (sire != NULL) { 3129 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3130 /* 3131 * If sire != NULL, ire_ftable_lookup() should not 3132 * return a NULL value. 3133 */ 3134 ASSERT(tmp_ire != NULL); 3135 ire_refrele(tmp_ire); 3136 ire_refrele(sire); 3137 } else if (tmp_ire != NULL) { 3138 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3139 sizeof (iulp_t)); 3140 ire_refrele(tmp_ire); 3141 } 3142 } 3143 if (prev_ire->ire_type == IRE_CACHE) 3144 ire_delete(prev_ire); 3145 ire_refrele(prev_ire); 3146 /* 3147 * TODO: more precise handling for cases 0, 2, 3, the latter two 3148 * require TOS routing 3149 */ 3150 switch (icmph->icmph_code) { 3151 case 0: 3152 case 1: 3153 /* TODO: TOS specificity for cases 2 and 3 */ 3154 case 2: 3155 case 3: 3156 break; 3157 default: 3158 freemsg(mp); 3159 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3160 ire_refrele(ire); 3161 return; 3162 } 3163 /* 3164 * Create a Route Association. This will allow us to remember that 3165 * someone we believe told us to use the particular gateway. 3166 */ 3167 save_ire = ire; 3168 ire = ire_create( 3169 (uchar_t *)&dst, /* dest addr */ 3170 (uchar_t *)&ip_g_all_ones, /* mask */ 3171 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3172 (uchar_t *)&gateway, /* gateway addr */ 3173 &save_ire->ire_max_frag, /* max frag */ 3174 NULL, /* no src nce */ 3175 NULL, /* no rfq */ 3176 NULL, /* no stq */ 3177 IRE_HOST, 3178 NULL, /* ipif */ 3179 0, /* cmask */ 3180 0, /* phandle */ 3181 0, /* ihandle */ 3182 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3183 &ulp_info, 3184 NULL, /* tsol_gc_t */ 3185 NULL, /* gcgrp */ 3186 ipst); 3187 3188 if (ire == NULL) { 3189 freemsg(mp); 3190 ire_refrele(save_ire); 3191 return; 3192 } 3193 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3194 ire_refrele(save_ire); 3195 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3196 3197 if (error == 0) { 3198 ire_refrele(ire); /* Held in ire_add_v4 */ 3199 /* tell routing sockets that we received a redirect */ 3200 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3201 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3202 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3203 } 3204 3205 /* 3206 * Delete any existing IRE_HOST type redirect ires for this destination. 3207 * This together with the added IRE has the effect of 3208 * modifying an existing redirect. 3209 */ 3210 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3211 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3212 if (prev_ire != NULL) { 3213 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3214 ire_delete(prev_ire); 3215 ire_refrele(prev_ire); 3216 } 3217 3218 freemsg(mp); 3219 } 3220 3221 /* 3222 * Generate an ICMP parameter problem message. 3223 */ 3224 static void 3225 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3226 ip_stack_t *ipst) 3227 { 3228 icmph_t icmph; 3229 boolean_t mctl_present; 3230 mblk_t *first_mp; 3231 3232 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3233 3234 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3235 if (mctl_present) 3236 freeb(first_mp); 3237 return; 3238 } 3239 3240 bzero(&icmph, sizeof (icmph_t)); 3241 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3242 icmph.icmph_pp_ptr = ptr; 3243 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3244 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3245 ipst); 3246 } 3247 3248 /* 3249 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3250 * the ICMP header pointed to by "stuff". (May be called as writer.) 3251 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3252 * an icmp error packet can be sent. 3253 * Assigns an appropriate source address to the packet. If ipha_dst is 3254 * one of our addresses use it for source. Otherwise pick a source based 3255 * on a route lookup back to ipha_src. 3256 * Note that ipha_src must be set here since the 3257 * packet is likely to arrive on an ill queue in ip_wput() which will 3258 * not set a source address. 3259 */ 3260 static void 3261 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3262 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3263 { 3264 ipaddr_t dst; 3265 icmph_t *icmph; 3266 ipha_t *ipha; 3267 uint_t len_needed; 3268 size_t msg_len; 3269 mblk_t *mp1; 3270 ipaddr_t src; 3271 ire_t *ire; 3272 mblk_t *ipsec_mp; 3273 ipsec_out_t *io = NULL; 3274 3275 if (mctl_present) { 3276 /* 3277 * If it is : 3278 * 3279 * 1) a IPSEC_OUT, then this is caused by outbound 3280 * datagram originating on this host. IPsec processing 3281 * may or may not have been done. Refer to comments above 3282 * icmp_inbound_error_fanout for details. 3283 * 3284 * 2) a IPSEC_IN if we are generating a icmp_message 3285 * for an incoming datagram destined for us i.e called 3286 * from ip_fanout_send_icmp. 3287 */ 3288 ipsec_info_t *in; 3289 ipsec_mp = mp; 3290 mp = ipsec_mp->b_cont; 3291 3292 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3293 ipha = (ipha_t *)mp->b_rptr; 3294 3295 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3296 in->ipsec_info_type == IPSEC_IN); 3297 3298 if (in->ipsec_info_type == IPSEC_IN) { 3299 /* 3300 * Convert the IPSEC_IN to IPSEC_OUT. 3301 */ 3302 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3303 BUMP_MIB(&ipst->ips_ip_mib, 3304 ipIfStatsOutDiscards); 3305 return; 3306 } 3307 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3308 } else { 3309 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3310 io = (ipsec_out_t *)in; 3311 /* 3312 * Clear out ipsec_out_proc_begin, so we do a fresh 3313 * ire lookup. 3314 */ 3315 io->ipsec_out_proc_begin = B_FALSE; 3316 } 3317 ASSERT(zoneid == io->ipsec_out_zoneid); 3318 ASSERT(zoneid != ALL_ZONES); 3319 } else { 3320 /* 3321 * This is in clear. The icmp message we are building 3322 * here should go out in clear. 3323 * 3324 * Pardon the convolution of it all, but it's easier to 3325 * allocate a "use cleartext" IPSEC_IN message and convert 3326 * it than it is to allocate a new one. 3327 */ 3328 ipsec_in_t *ii; 3329 ASSERT(DB_TYPE(mp) == M_DATA); 3330 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3331 if (ipsec_mp == NULL) { 3332 freemsg(mp); 3333 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3334 return; 3335 } 3336 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3337 3338 /* This is not a secure packet */ 3339 ii->ipsec_in_secure = B_FALSE; 3340 /* 3341 * For trusted extensions using a shared IP address we can 3342 * send using any zoneid. 3343 */ 3344 if (zoneid == ALL_ZONES) 3345 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3346 else 3347 ii->ipsec_in_zoneid = zoneid; 3348 ipsec_mp->b_cont = mp; 3349 ipha = (ipha_t *)mp->b_rptr; 3350 /* 3351 * Convert the IPSEC_IN to IPSEC_OUT. 3352 */ 3353 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3354 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3355 return; 3356 } 3357 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3358 } 3359 3360 /* Remember our eventual destination */ 3361 dst = ipha->ipha_src; 3362 3363 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3364 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3365 if (ire != NULL && 3366 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3367 src = ipha->ipha_dst; 3368 } else { 3369 if (ire != NULL) 3370 ire_refrele(ire); 3371 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3372 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3373 ipst); 3374 if (ire == NULL) { 3375 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3376 freemsg(ipsec_mp); 3377 return; 3378 } 3379 src = ire->ire_src_addr; 3380 } 3381 3382 if (ire != NULL) 3383 ire_refrele(ire); 3384 3385 /* 3386 * Check if we can send back more then 8 bytes in addition to 3387 * the IP header. We try to send 64 bytes of data and the internal 3388 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3389 */ 3390 len_needed = IPH_HDR_LENGTH(ipha); 3391 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3392 ipha->ipha_protocol == IPPROTO_IPV6) { 3393 3394 if (!pullupmsg(mp, -1)) { 3395 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3396 freemsg(ipsec_mp); 3397 return; 3398 } 3399 ipha = (ipha_t *)mp->b_rptr; 3400 3401 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3402 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3403 len_needed)); 3404 } else { 3405 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3406 3407 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3408 len_needed += ip_hdr_length_v6(mp, ip6h); 3409 } 3410 } 3411 len_needed += ipst->ips_ip_icmp_return; 3412 msg_len = msgdsize(mp); 3413 if (msg_len > len_needed) { 3414 (void) adjmsg(mp, len_needed - msg_len); 3415 msg_len = len_needed; 3416 } 3417 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3418 if (mp1 == NULL) { 3419 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3420 freemsg(ipsec_mp); 3421 return; 3422 } 3423 mp1->b_cont = mp; 3424 mp = mp1; 3425 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3426 ipsec_mp->b_rptr == (uint8_t *)io && 3427 io->ipsec_out_type == IPSEC_OUT); 3428 ipsec_mp->b_cont = mp; 3429 3430 /* 3431 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3432 * node generates be accepted in peace by all on-host destinations. 3433 * If we do NOT assume that all on-host destinations trust 3434 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3435 * (Look for ipsec_out_icmp_loopback). 3436 */ 3437 io->ipsec_out_icmp_loopback = B_TRUE; 3438 3439 ipha = (ipha_t *)mp->b_rptr; 3440 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3441 *ipha = icmp_ipha; 3442 ipha->ipha_src = src; 3443 ipha->ipha_dst = dst; 3444 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3445 msg_len += sizeof (icmp_ipha) + len; 3446 if (msg_len > IP_MAXPACKET) { 3447 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3448 msg_len = IP_MAXPACKET; 3449 } 3450 ipha->ipha_length = htons((uint16_t)msg_len); 3451 icmph = (icmph_t *)&ipha[1]; 3452 bcopy(stuff, icmph, len); 3453 icmph->icmph_checksum = 0; 3454 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3455 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3456 put(q, ipsec_mp); 3457 } 3458 3459 /* 3460 * Determine if an ICMP error packet can be sent given the rate limit. 3461 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3462 * in milliseconds) and a burst size. Burst size number of packets can 3463 * be sent arbitrarely closely spaced. 3464 * The state is tracked using two variables to implement an approximate 3465 * token bucket filter: 3466 * icmp_pkt_err_last - lbolt value when the last burst started 3467 * icmp_pkt_err_sent - number of packets sent in current burst 3468 */ 3469 boolean_t 3470 icmp_err_rate_limit(ip_stack_t *ipst) 3471 { 3472 clock_t now = TICK_TO_MSEC(lbolt); 3473 uint_t refilled; /* Number of packets refilled in tbf since last */ 3474 /* Guard against changes by loading into local variable */ 3475 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3476 3477 if (err_interval == 0) 3478 return (B_FALSE); 3479 3480 if (ipst->ips_icmp_pkt_err_last > now) { 3481 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3482 ipst->ips_icmp_pkt_err_last = 0; 3483 ipst->ips_icmp_pkt_err_sent = 0; 3484 } 3485 /* 3486 * If we are in a burst update the token bucket filter. 3487 * Update the "last" time to be close to "now" but make sure 3488 * we don't loose precision. 3489 */ 3490 if (ipst->ips_icmp_pkt_err_sent != 0) { 3491 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3492 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3493 ipst->ips_icmp_pkt_err_sent = 0; 3494 } else { 3495 ipst->ips_icmp_pkt_err_sent -= refilled; 3496 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3497 } 3498 } 3499 if (ipst->ips_icmp_pkt_err_sent == 0) { 3500 /* Start of new burst */ 3501 ipst->ips_icmp_pkt_err_last = now; 3502 } 3503 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3504 ipst->ips_icmp_pkt_err_sent++; 3505 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3506 ipst->ips_icmp_pkt_err_sent)); 3507 return (B_FALSE); 3508 } 3509 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3510 return (B_TRUE); 3511 } 3512 3513 /* 3514 * Check if it is ok to send an IPv4 ICMP error packet in 3515 * response to the IPv4 packet in mp. 3516 * Free the message and return null if no 3517 * ICMP error packet should be sent. 3518 */ 3519 static mblk_t * 3520 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3521 { 3522 icmph_t *icmph; 3523 ipha_t *ipha; 3524 uint_t len_needed; 3525 ire_t *src_ire; 3526 ire_t *dst_ire; 3527 3528 if (!mp) 3529 return (NULL); 3530 ipha = (ipha_t *)mp->b_rptr; 3531 if (ip_csum_hdr(ipha)) { 3532 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3533 freemsg(mp); 3534 return (NULL); 3535 } 3536 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3537 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3538 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3539 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3540 if (src_ire != NULL || dst_ire != NULL || 3541 CLASSD(ipha->ipha_dst) || 3542 CLASSD(ipha->ipha_src) || 3543 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3544 /* Note: only errors to the fragment with offset 0 */ 3545 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3546 freemsg(mp); 3547 if (src_ire != NULL) 3548 ire_refrele(src_ire); 3549 if (dst_ire != NULL) 3550 ire_refrele(dst_ire); 3551 return (NULL); 3552 } 3553 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3554 /* 3555 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3556 * errors in response to any ICMP errors. 3557 */ 3558 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3559 if (mp->b_wptr - mp->b_rptr < len_needed) { 3560 if (!pullupmsg(mp, len_needed)) { 3561 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3562 freemsg(mp); 3563 return (NULL); 3564 } 3565 ipha = (ipha_t *)mp->b_rptr; 3566 } 3567 icmph = (icmph_t *) 3568 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3569 switch (icmph->icmph_type) { 3570 case ICMP_DEST_UNREACHABLE: 3571 case ICMP_SOURCE_QUENCH: 3572 case ICMP_TIME_EXCEEDED: 3573 case ICMP_PARAM_PROBLEM: 3574 case ICMP_REDIRECT: 3575 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3576 freemsg(mp); 3577 return (NULL); 3578 default: 3579 break; 3580 } 3581 } 3582 /* 3583 * If this is a labeled system, then check to see if we're allowed to 3584 * send a response to this particular sender. If not, then just drop. 3585 */ 3586 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3587 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3588 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3589 freemsg(mp); 3590 return (NULL); 3591 } 3592 if (icmp_err_rate_limit(ipst)) { 3593 /* 3594 * Only send ICMP error packets every so often. 3595 * This should be done on a per port/source basis, 3596 * but for now this will suffice. 3597 */ 3598 freemsg(mp); 3599 return (NULL); 3600 } 3601 return (mp); 3602 } 3603 3604 /* 3605 * Generate an ICMP redirect message. 3606 */ 3607 static void 3608 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3609 { 3610 icmph_t icmph; 3611 3612 /* 3613 * We are called from ip_rput where we could 3614 * not have attached an IPSEC_IN. 3615 */ 3616 ASSERT(mp->b_datap->db_type == M_DATA); 3617 3618 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3619 return; 3620 } 3621 3622 bzero(&icmph, sizeof (icmph_t)); 3623 icmph.icmph_type = ICMP_REDIRECT; 3624 icmph.icmph_code = 1; 3625 icmph.icmph_rd_gateway = gateway; 3626 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3627 /* Redirects sent by router, and router is global zone */ 3628 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3629 } 3630 3631 /* 3632 * Generate an ICMP time exceeded message. 3633 */ 3634 void 3635 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3636 ip_stack_t *ipst) 3637 { 3638 icmph_t icmph; 3639 boolean_t mctl_present; 3640 mblk_t *first_mp; 3641 3642 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3643 3644 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3645 if (mctl_present) 3646 freeb(first_mp); 3647 return; 3648 } 3649 3650 bzero(&icmph, sizeof (icmph_t)); 3651 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3652 icmph.icmph_code = code; 3653 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3654 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3655 ipst); 3656 } 3657 3658 /* 3659 * Generate an ICMP unreachable message. 3660 */ 3661 void 3662 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3663 ip_stack_t *ipst) 3664 { 3665 icmph_t icmph; 3666 mblk_t *first_mp; 3667 boolean_t mctl_present; 3668 3669 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3670 3671 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3672 if (mctl_present) 3673 freeb(first_mp); 3674 return; 3675 } 3676 3677 bzero(&icmph, sizeof (icmph_t)); 3678 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3679 icmph.icmph_code = code; 3680 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3681 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3682 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3683 zoneid, ipst); 3684 } 3685 3686 /* 3687 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3688 * duplicate. As long as someone else holds the address, the interface will 3689 * stay down. When that conflict goes away, the interface is brought back up. 3690 * This is done so that accidental shutdowns of addresses aren't made 3691 * permanent. Your server will recover from a failure. 3692 * 3693 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3694 * user space process (dhcpagent). 3695 * 3696 * Recovery completes if ARP reports that the address is now ours (via 3697 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3698 * 3699 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3700 */ 3701 static void 3702 ipif_dup_recovery(void *arg) 3703 { 3704 ipif_t *ipif = arg; 3705 ill_t *ill = ipif->ipif_ill; 3706 mblk_t *arp_add_mp; 3707 mblk_t *arp_del_mp; 3708 area_t *area; 3709 ip_stack_t *ipst = ill->ill_ipst; 3710 3711 ipif->ipif_recovery_id = 0; 3712 3713 /* 3714 * No lock needed for moving or condemned check, as this is just an 3715 * optimization. 3716 */ 3717 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3718 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3719 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3720 /* No reason to try to bring this address back. */ 3721 return; 3722 } 3723 3724 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3725 goto alloc_fail; 3726 3727 if (ipif->ipif_arp_del_mp == NULL) { 3728 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3729 goto alloc_fail; 3730 ipif->ipif_arp_del_mp = arp_del_mp; 3731 } 3732 3733 /* Setting the 'unverified' flag restarts DAD */ 3734 area = (area_t *)arp_add_mp->b_rptr; 3735 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3736 ACE_F_UNVERIFIED; 3737 putnext(ill->ill_rq, arp_add_mp); 3738 return; 3739 3740 alloc_fail: 3741 /* 3742 * On allocation failure, just restart the timer. Note that the ipif 3743 * is down here, so no other thread could be trying to start a recovery 3744 * timer. The ill_lock protects the condemned flag and the recovery 3745 * timer ID. 3746 */ 3747 freemsg(arp_add_mp); 3748 mutex_enter(&ill->ill_lock); 3749 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3750 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3751 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3752 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3753 } 3754 mutex_exit(&ill->ill_lock); 3755 } 3756 3757 /* 3758 * This is for exclusive changes due to ARP. Either tear down an interface due 3759 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3760 */ 3761 /* ARGSUSED */ 3762 static void 3763 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3764 { 3765 ill_t *ill = rq->q_ptr; 3766 arh_t *arh; 3767 ipaddr_t src; 3768 ipif_t *ipif; 3769 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3770 char hbuf[MAC_STR_LEN]; 3771 char sbuf[INET_ADDRSTRLEN]; 3772 const char *failtype; 3773 boolean_t bring_up; 3774 ip_stack_t *ipst = ill->ill_ipst; 3775 3776 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3777 case AR_CN_READY: 3778 failtype = NULL; 3779 bring_up = B_TRUE; 3780 break; 3781 case AR_CN_FAILED: 3782 failtype = "in use"; 3783 bring_up = B_FALSE; 3784 break; 3785 default: 3786 failtype = "claimed"; 3787 bring_up = B_FALSE; 3788 break; 3789 } 3790 3791 arh = (arh_t *)mp->b_cont->b_rptr; 3792 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3793 3794 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3795 sizeof (hbuf)); 3796 (void) ip_dot_addr(src, sbuf); 3797 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3798 3799 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3800 ipif->ipif_lcl_addr != src) { 3801 continue; 3802 } 3803 3804 /* 3805 * If we failed on a recovery probe, then restart the timer to 3806 * try again later. 3807 */ 3808 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3809 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3810 ill->ill_net_type == IRE_IF_RESOLVER && 3811 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3812 ipst->ips_ip_dup_recovery > 0 && 3813 ipif->ipif_recovery_id == 0) { 3814 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3815 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3816 continue; 3817 } 3818 3819 /* 3820 * If what we're trying to do has already been done, then do 3821 * nothing. 3822 */ 3823 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3824 continue; 3825 3826 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3827 3828 if (failtype == NULL) { 3829 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3830 ibuf); 3831 } else { 3832 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3833 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3834 } 3835 3836 if (bring_up) { 3837 ASSERT(ill->ill_dl_up); 3838 /* 3839 * Free up the ARP delete message so we can allocate 3840 * a fresh one through the normal path. 3841 */ 3842 freemsg(ipif->ipif_arp_del_mp); 3843 ipif->ipif_arp_del_mp = NULL; 3844 if (ipif_resolver_up(ipif, Res_act_initial) != 3845 EINPROGRESS) { 3846 ipif->ipif_addr_ready = 1; 3847 (void) ipif_up_done(ipif); 3848 } 3849 continue; 3850 } 3851 3852 mutex_enter(&ill->ill_lock); 3853 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3854 ipif->ipif_flags |= IPIF_DUPLICATE; 3855 ill->ill_ipif_dup_count++; 3856 mutex_exit(&ill->ill_lock); 3857 /* 3858 * Already exclusive on the ill; no need to handle deferred 3859 * processing here. 3860 */ 3861 (void) ipif_down(ipif, NULL, NULL); 3862 ipif_down_tail(ipif); 3863 mutex_enter(&ill->ill_lock); 3864 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3865 ill->ill_net_type == IRE_IF_RESOLVER && 3866 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3867 ipst->ips_ip_dup_recovery > 0) { 3868 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3869 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3870 } 3871 mutex_exit(&ill->ill_lock); 3872 } 3873 freemsg(mp); 3874 } 3875 3876 /* ARGSUSED */ 3877 static void 3878 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3879 { 3880 ill_t *ill = rq->q_ptr; 3881 arh_t *arh; 3882 ipaddr_t src; 3883 ipif_t *ipif; 3884 3885 arh = (arh_t *)mp->b_cont->b_rptr; 3886 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3887 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3888 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3889 (void) ipif_resolver_up(ipif, Res_act_defend); 3890 } 3891 freemsg(mp); 3892 } 3893 3894 /* 3895 * News from ARP. ARP sends notification of interesting events down 3896 * to its clients using M_CTL messages with the interesting ARP packet 3897 * attached via b_cont. 3898 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3899 * queue as opposed to ARP sending the message to all the clients, i.e. all 3900 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3901 * table if a cache IRE is found to delete all the entries for the address in 3902 * the packet. 3903 */ 3904 static void 3905 ip_arp_news(queue_t *q, mblk_t *mp) 3906 { 3907 arcn_t *arcn; 3908 arh_t *arh; 3909 ire_t *ire = NULL; 3910 char hbuf[MAC_STR_LEN]; 3911 char sbuf[INET_ADDRSTRLEN]; 3912 ipaddr_t src; 3913 in6_addr_t v6src; 3914 boolean_t isv6 = B_FALSE; 3915 ipif_t *ipif; 3916 ill_t *ill; 3917 ip_stack_t *ipst; 3918 3919 if (CONN_Q(q)) { 3920 conn_t *connp = Q_TO_CONN(q); 3921 3922 ipst = connp->conn_netstack->netstack_ip; 3923 } else { 3924 ill_t *ill = (ill_t *)q->q_ptr; 3925 3926 ipst = ill->ill_ipst; 3927 } 3928 3929 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3930 if (q->q_next) { 3931 putnext(q, mp); 3932 } else 3933 freemsg(mp); 3934 return; 3935 } 3936 arh = (arh_t *)mp->b_cont->b_rptr; 3937 /* Is it one we are interested in? */ 3938 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3939 isv6 = B_TRUE; 3940 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3941 IPV6_ADDR_LEN); 3942 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3943 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3944 IP_ADDR_LEN); 3945 } else { 3946 freemsg(mp); 3947 return; 3948 } 3949 3950 ill = q->q_ptr; 3951 3952 arcn = (arcn_t *)mp->b_rptr; 3953 switch (arcn->arcn_code) { 3954 case AR_CN_BOGON: 3955 /* 3956 * Someone is sending ARP packets with a source protocol 3957 * address that we have published and for which we believe our 3958 * entry is authoritative and (when ill_arp_extend is set) 3959 * verified to be unique on the network. 3960 * 3961 * The ARP module internally handles the cases where the sender 3962 * is just probing (for DAD) and where the hardware address of 3963 * a non-authoritative entry has changed. Thus, these are the 3964 * real conflicts, and we have to do resolution. 3965 * 3966 * We back away quickly from the address if it's from DHCP or 3967 * otherwise temporary and hasn't been used recently (or at 3968 * all). We'd like to include "deprecated" addresses here as 3969 * well (as there's no real reason to defend something we're 3970 * discarding), but IPMP "reuses" this flag to mean something 3971 * other than the standard meaning. 3972 * 3973 * If the ARP module above is not extended (meaning that it 3974 * doesn't know how to defend the address), then we just log 3975 * the problem as we always did and continue on. It's not 3976 * right, but there's little else we can do, and those old ATM 3977 * users are going away anyway. 3978 */ 3979 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3980 hbuf, sizeof (hbuf)); 3981 (void) ip_dot_addr(src, sbuf); 3982 if (isv6) { 3983 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3984 ipst); 3985 } else { 3986 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3987 } 3988 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3989 uint32_t now; 3990 uint32_t maxage; 3991 clock_t lused; 3992 uint_t maxdefense; 3993 uint_t defs; 3994 3995 /* 3996 * First, figure out if this address hasn't been used 3997 * in a while. If it hasn't, then it's a better 3998 * candidate for abandoning. 3999 */ 4000 ipif = ire->ire_ipif; 4001 ASSERT(ipif != NULL); 4002 now = gethrestime_sec(); 4003 maxage = now - ire->ire_create_time; 4004 if (maxage > ipst->ips_ip_max_temp_idle) 4005 maxage = ipst->ips_ip_max_temp_idle; 4006 lused = drv_hztousec(ddi_get_lbolt() - 4007 ire->ire_last_used_time) / MICROSEC + 1; 4008 if (lused >= maxage && (ipif->ipif_flags & 4009 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4010 maxdefense = ipst->ips_ip_max_temp_defend; 4011 else 4012 maxdefense = ipst->ips_ip_max_defend; 4013 4014 /* 4015 * Now figure out how many times we've defended 4016 * ourselves. Ignore defenses that happened long in 4017 * the past. 4018 */ 4019 mutex_enter(&ire->ire_lock); 4020 if ((defs = ire->ire_defense_count) > 0 && 4021 now - ire->ire_defense_time > 4022 ipst->ips_ip_defend_interval) { 4023 ire->ire_defense_count = defs = 0; 4024 } 4025 ire->ire_defense_count++; 4026 ire->ire_defense_time = now; 4027 mutex_exit(&ire->ire_lock); 4028 ill_refhold(ill); 4029 ire_refrele(ire); 4030 4031 /* 4032 * If we've defended ourselves too many times already, 4033 * then give up and tear down the interface(s) using 4034 * this address. Otherwise, defend by sending out a 4035 * gratuitous ARP. 4036 */ 4037 if (defs >= maxdefense && ill->ill_arp_extend) { 4038 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4039 B_FALSE); 4040 } else { 4041 cmn_err(CE_WARN, 4042 "node %s is using our IP address %s on %s", 4043 hbuf, sbuf, ill->ill_name); 4044 /* 4045 * If this is an old (ATM) ARP module, then 4046 * don't try to defend the address. Remain 4047 * compatible with the old behavior. Defend 4048 * only with new ARP. 4049 */ 4050 if (ill->ill_arp_extend) { 4051 qwriter_ip(ill, q, mp, ip_arp_defend, 4052 NEW_OP, B_FALSE); 4053 } else { 4054 ill_refrele(ill); 4055 } 4056 } 4057 return; 4058 } 4059 cmn_err(CE_WARN, 4060 "proxy ARP problem? Node '%s' is using %s on %s", 4061 hbuf, sbuf, ill->ill_name); 4062 if (ire != NULL) 4063 ire_refrele(ire); 4064 break; 4065 case AR_CN_ANNOUNCE: 4066 if (isv6) { 4067 /* 4068 * For XRESOLV interfaces. 4069 * Delete the IRE cache entry and NCE for this 4070 * v6 address 4071 */ 4072 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4073 /* 4074 * If v6src is a non-zero, it's a router address 4075 * as below. Do the same sort of thing to clean 4076 * out off-net IRE_CACHE entries that go through 4077 * the router. 4078 */ 4079 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4080 ire_walk_v6(ire_delete_cache_gw_v6, 4081 (char *)&v6src, ALL_ZONES, ipst); 4082 } 4083 } else { 4084 nce_hw_map_t hwm; 4085 4086 /* 4087 * ARP gives us a copy of any packet where it thinks 4088 * the address has changed, so that we can update our 4089 * caches. We're responsible for caching known answers 4090 * in the current design. We check whether the 4091 * hardware address really has changed in all of our 4092 * entries that have cached this mapping, and if so, we 4093 * blow them away. This way we will immediately pick 4094 * up the rare case of a host changing hardware 4095 * address. 4096 */ 4097 if (src == 0) 4098 break; 4099 hwm.hwm_addr = src; 4100 hwm.hwm_hwlen = arh->arh_hlen; 4101 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4102 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4103 ndp_walk_common(ipst->ips_ndp4, NULL, 4104 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4105 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4106 } 4107 break; 4108 case AR_CN_READY: 4109 /* No external v6 resolver has a contract to use this */ 4110 if (isv6) 4111 break; 4112 /* If the link is down, we'll retry this later */ 4113 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4114 break; 4115 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4116 NULL, NULL, ipst); 4117 if (ipif != NULL) { 4118 /* 4119 * If this is a duplicate recovery, then we now need to 4120 * go exclusive to bring this thing back up. 4121 */ 4122 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4123 IPIF_DUPLICATE) { 4124 ipif_refrele(ipif); 4125 ill_refhold(ill); 4126 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4127 B_FALSE); 4128 return; 4129 } 4130 /* 4131 * If this is the first notice that this address is 4132 * ready, then let the user know now. 4133 */ 4134 if ((ipif->ipif_flags & IPIF_UP) && 4135 !ipif->ipif_addr_ready) { 4136 ipif_mask_reply(ipif); 4137 ip_rts_ifmsg(ipif); 4138 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4139 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4140 } 4141 ipif->ipif_addr_ready = 1; 4142 ipif_refrele(ipif); 4143 } 4144 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4145 if (ire != NULL) { 4146 ire->ire_defense_count = 0; 4147 ire_refrele(ire); 4148 } 4149 break; 4150 case AR_CN_FAILED: 4151 /* No external v6 resolver has a contract to use this */ 4152 if (isv6) 4153 break; 4154 ill_refhold(ill); 4155 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4156 return; 4157 } 4158 freemsg(mp); 4159 } 4160 4161 /* 4162 * Create a mblk suitable for carrying the interface index and/or source link 4163 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4164 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4165 * application. 4166 */ 4167 mblk_t * 4168 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4169 ip_stack_t *ipst) 4170 { 4171 mblk_t *mp; 4172 ip_pktinfo_t *pinfo; 4173 ipha_t *ipha; 4174 struct ether_header *pether; 4175 4176 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4177 if (mp == NULL) { 4178 ip1dbg(("ip_add_info: allocation failure.\n")); 4179 return (data_mp); 4180 } 4181 4182 ipha = (ipha_t *)data_mp->b_rptr; 4183 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4184 bzero(pinfo, sizeof (ip_pktinfo_t)); 4185 pinfo->ip_pkt_flags = (uchar_t)flags; 4186 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4187 4188 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4189 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4190 if (flags & IPF_RECVADDR) { 4191 ipif_t *ipif; 4192 ire_t *ire; 4193 4194 /* 4195 * Only valid for V4 4196 */ 4197 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4198 (IPV4_VERSION << 4)); 4199 4200 ipif = ipif_get_next_ipif(NULL, ill); 4201 if (ipif != NULL) { 4202 /* 4203 * Since a decision has already been made to deliver the 4204 * packet, there is no need to test for SECATTR and 4205 * ZONEONLY. 4206 * When a multicast packet is transmitted 4207 * a cache entry is created for the multicast address. 4208 * When delivering a copy of the packet or when new 4209 * packets are received we do not want to match on the 4210 * cached entry so explicitly match on 4211 * IRE_LOCAL and IRE_LOOPBACK 4212 */ 4213 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4214 IRE_LOCAL | IRE_LOOPBACK, 4215 ipif, zoneid, NULL, 4216 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4217 if (ire == NULL) { 4218 /* 4219 * packet must have come on a different 4220 * interface. 4221 * Since a decision has already been made to 4222 * deliver the packet, there is no need to test 4223 * for SECATTR and ZONEONLY. 4224 * Only match on local and broadcast ire's. 4225 * See detailed comment above. 4226 */ 4227 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4228 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4229 NULL, MATCH_IRE_TYPE, ipst); 4230 } 4231 4232 if (ire == NULL) { 4233 /* 4234 * This is either a multicast packet or 4235 * the address has been removed since 4236 * the packet was received. 4237 * Return INADDR_ANY so that normal source 4238 * selection occurs for the response. 4239 */ 4240 4241 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4242 } else { 4243 pinfo->ip_pkt_match_addr.s_addr = 4244 ire->ire_src_addr; 4245 ire_refrele(ire); 4246 } 4247 ipif_refrele(ipif); 4248 } else { 4249 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4250 } 4251 } 4252 4253 pether = (struct ether_header *)((char *)ipha 4254 - sizeof (struct ether_header)); 4255 /* 4256 * Make sure the interface is an ethernet type, since this option 4257 * is currently supported only on this type of interface. Also make 4258 * sure we are pointing correctly above db_base. 4259 */ 4260 4261 if ((flags & IPF_RECVSLLA) && 4262 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4263 (ill->ill_type == IFT_ETHER) && 4264 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4265 4266 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4267 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4268 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4269 } else { 4270 /* 4271 * Clear the bit. Indicate to upper layer that IP is not 4272 * sending this ancillary info. 4273 */ 4274 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4275 } 4276 4277 mp->b_datap->db_type = M_CTL; 4278 mp->b_wptr += sizeof (ip_pktinfo_t); 4279 mp->b_cont = data_mp; 4280 4281 return (mp); 4282 } 4283 4284 /* 4285 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4286 * part of the bind request. 4287 */ 4288 4289 boolean_t 4290 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4291 { 4292 ipsec_in_t *ii; 4293 4294 ASSERT(policy_mp != NULL); 4295 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4296 4297 ii = (ipsec_in_t *)policy_mp->b_rptr; 4298 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4299 4300 connp->conn_policy = ii->ipsec_in_policy; 4301 ii->ipsec_in_policy = NULL; 4302 4303 if (ii->ipsec_in_action != NULL) { 4304 if (connp->conn_latch == NULL) { 4305 connp->conn_latch = iplatch_create(); 4306 if (connp->conn_latch == NULL) 4307 return (B_FALSE); 4308 } 4309 ipsec_latch_inbound(connp->conn_latch, ii); 4310 } 4311 return (B_TRUE); 4312 } 4313 4314 /* 4315 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4316 * and to arrange for power-fanout assist. The ULP is identified by 4317 * adding a single byte at the end of the original bind message. 4318 * A ULP other than UDP or TCP that wishes to be recognized passes 4319 * down a bind with a zero length address. 4320 * 4321 * The binding works as follows: 4322 * - A zero byte address means just bind to the protocol. 4323 * - A four byte address is treated as a request to validate 4324 * that the address is a valid local address, appropriate for 4325 * an application to bind to. This does not affect any fanout 4326 * information in IP. 4327 * - A sizeof sin_t byte address is used to bind to only the local address 4328 * and port. 4329 * - A sizeof ipa_conn_t byte address contains complete fanout information 4330 * consisting of local and remote addresses and ports. In 4331 * this case, the addresses are both validated as appropriate 4332 * for this operation, and, if so, the information is retained 4333 * for use in the inbound fanout. 4334 * 4335 * The ULP (except in the zero-length bind) can append an 4336 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4337 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4338 * a copy of the source or destination IRE (source for local bind; 4339 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4340 * policy information contained should be copied on to the conn. 4341 * 4342 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4343 */ 4344 mblk_t * 4345 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4346 { 4347 ssize_t len; 4348 struct T_bind_req *tbr; 4349 sin_t *sin; 4350 ipa_conn_t *ac; 4351 uchar_t *ucp; 4352 mblk_t *mp1; 4353 boolean_t ire_requested; 4354 boolean_t ipsec_policy_set = B_FALSE; 4355 int error = 0; 4356 int protocol; 4357 ipa_conn_x_t *acx; 4358 4359 ASSERT(!connp->conn_af_isv6); 4360 connp->conn_pkt_isv6 = B_FALSE; 4361 4362 len = MBLKL(mp); 4363 if (len < (sizeof (*tbr) + 1)) { 4364 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4365 "ip_bind: bogus msg, len %ld", len); 4366 /* XXX: Need to return something better */ 4367 goto bad_addr; 4368 } 4369 /* Back up and extract the protocol identifier. */ 4370 mp->b_wptr--; 4371 protocol = *mp->b_wptr & 0xFF; 4372 tbr = (struct T_bind_req *)mp->b_rptr; 4373 /* Reset the message type in preparation for shipping it back. */ 4374 DB_TYPE(mp) = M_PCPROTO; 4375 4376 connp->conn_ulp = (uint8_t)protocol; 4377 4378 /* 4379 * Check for a zero length address. This is from a protocol that 4380 * wants to register to receive all packets of its type. 4381 */ 4382 if (tbr->ADDR_length == 0) { 4383 /* 4384 * These protocols are now intercepted in ip_bind_v6(). 4385 * Reject protocol-level binds here for now. 4386 * 4387 * For SCTP raw socket, ICMP sends down a bind with sin_t 4388 * so that the protocol type cannot be SCTP. 4389 */ 4390 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4391 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4392 goto bad_addr; 4393 } 4394 4395 /* 4396 * 4397 * The udp module never sends down a zero-length address, 4398 * and allowing this on a labeled system will break MLP 4399 * functionality. 4400 */ 4401 if (is_system_labeled() && protocol == IPPROTO_UDP) 4402 goto bad_addr; 4403 4404 if (connp->conn_mac_exempt) 4405 goto bad_addr; 4406 4407 /* No hash here really. The table is big enough. */ 4408 connp->conn_srcv6 = ipv6_all_zeros; 4409 4410 ipcl_proto_insert(connp, protocol); 4411 4412 tbr->PRIM_type = T_BIND_ACK; 4413 return (mp); 4414 } 4415 4416 /* Extract the address pointer from the message. */ 4417 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4418 tbr->ADDR_length); 4419 if (ucp == NULL) { 4420 ip1dbg(("ip_bind: no address\n")); 4421 goto bad_addr; 4422 } 4423 if (!OK_32PTR(ucp)) { 4424 ip1dbg(("ip_bind: unaligned address\n")); 4425 goto bad_addr; 4426 } 4427 /* 4428 * Check for trailing mps. 4429 */ 4430 4431 mp1 = mp->b_cont; 4432 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4433 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4434 4435 switch (tbr->ADDR_length) { 4436 default: 4437 ip1dbg(("ip_bind: bad address length %d\n", 4438 (int)tbr->ADDR_length)); 4439 goto bad_addr; 4440 4441 case IP_ADDR_LEN: 4442 /* Verification of local address only */ 4443 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4444 ire_requested, ipsec_policy_set, B_FALSE); 4445 break; 4446 4447 case sizeof (sin_t): 4448 sin = (sin_t *)ucp; 4449 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4450 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4451 break; 4452 4453 case sizeof (ipa_conn_t): 4454 ac = (ipa_conn_t *)ucp; 4455 /* For raw socket, the local port is not set. */ 4456 if (ac->ac_lport == 0) 4457 ac->ac_lport = connp->conn_lport; 4458 /* Always verify destination reachability. */ 4459 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4460 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4461 ipsec_policy_set, B_TRUE, B_TRUE); 4462 break; 4463 4464 case sizeof (ipa_conn_x_t): 4465 acx = (ipa_conn_x_t *)ucp; 4466 /* 4467 * Whether or not to verify destination reachability depends 4468 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4469 */ 4470 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4471 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4472 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4473 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4474 break; 4475 } 4476 if (error == EINPROGRESS) 4477 return (NULL); 4478 else if (error != 0) 4479 goto bad_addr; 4480 /* 4481 * Pass the IPsec headers size in ire_ipsec_overhead. 4482 * We can't do this in ip_bind_insert_ire because the policy 4483 * may not have been inherited at that point in time and hence 4484 * conn_out_enforce_policy may not be set. 4485 */ 4486 mp1 = mp->b_cont; 4487 if (ire_requested && connp->conn_out_enforce_policy && 4488 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4489 ire_t *ire = (ire_t *)mp1->b_rptr; 4490 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4491 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4492 } 4493 4494 /* Send it home. */ 4495 mp->b_datap->db_type = M_PCPROTO; 4496 tbr->PRIM_type = T_BIND_ACK; 4497 return (mp); 4498 4499 bad_addr: 4500 /* 4501 * If error = -1 then we generate a TBADADDR - otherwise error is 4502 * a unix errno. 4503 */ 4504 if (error > 0) 4505 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4506 else 4507 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4508 return (mp); 4509 } 4510 4511 /* 4512 * Here address is verified to be a valid local address. 4513 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4514 * address is also considered a valid local address. 4515 * In the case of a broadcast/multicast address, however, the 4516 * upper protocol is expected to reset the src address 4517 * to 0 if it sees a IRE_BROADCAST type returned so that 4518 * no packets are emitted with broadcast/multicast address as 4519 * source address (that violates hosts requirements RFC1122) 4520 * The addresses valid for bind are: 4521 * (1) - INADDR_ANY (0) 4522 * (2) - IP address of an UP interface 4523 * (3) - IP address of a DOWN interface 4524 * (4) - valid local IP broadcast addresses. In this case 4525 * the conn will only receive packets destined to 4526 * the specified broadcast address. 4527 * (5) - a multicast address. In this case 4528 * the conn will only receive packets destined to 4529 * the specified multicast address. Note: the 4530 * application still has to issue an 4531 * IP_ADD_MEMBERSHIP socket option. 4532 * 4533 * On error, return -1 for TBADADDR otherwise pass the 4534 * errno with TSYSERR reply. 4535 * 4536 * In all the above cases, the bound address must be valid in the current zone. 4537 * When the address is loopback, multicast or broadcast, there might be many 4538 * matching IREs so bind has to look up based on the zone. 4539 * 4540 * Note: lport is in network byte order. 4541 */ 4542 int 4543 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4544 boolean_t ire_requested, boolean_t ipsec_policy_set, 4545 boolean_t fanout_insert) 4546 { 4547 int error = 0; 4548 ire_t *src_ire; 4549 mblk_t *policy_mp; 4550 ipif_t *ipif; 4551 zoneid_t zoneid; 4552 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4553 4554 if (ipsec_policy_set) { 4555 policy_mp = mp->b_cont; 4556 } 4557 4558 /* 4559 * If it was previously connected, conn_fully_bound would have 4560 * been set. 4561 */ 4562 connp->conn_fully_bound = B_FALSE; 4563 4564 src_ire = NULL; 4565 ipif = NULL; 4566 4567 zoneid = IPCL_ZONEID(connp); 4568 4569 if (src_addr) { 4570 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4571 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4572 /* 4573 * If an address other than 0.0.0.0 is requested, 4574 * we verify that it is a valid address for bind 4575 * Note: Following code is in if-else-if form for 4576 * readability compared to a condition check. 4577 */ 4578 /* LINTED - statement has no consequent */ 4579 if (IRE_IS_LOCAL(src_ire)) { 4580 /* 4581 * (2) Bind to address of local UP interface 4582 */ 4583 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4584 /* 4585 * (4) Bind to broadcast address 4586 * Note: permitted only from transports that 4587 * request IRE 4588 */ 4589 if (!ire_requested) 4590 error = EADDRNOTAVAIL; 4591 } else { 4592 /* 4593 * (3) Bind to address of local DOWN interface 4594 * (ipif_lookup_addr() looks up all interfaces 4595 * but we do not get here for UP interfaces 4596 * - case (2) above) 4597 * We put the protocol byte back into the mblk 4598 * since we may come back via ip_wput_nondata() 4599 * later with this mblk if ipif_lookup_addr chooses 4600 * to defer processing. 4601 */ 4602 *mp->b_wptr++ = (char)connp->conn_ulp; 4603 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4604 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4605 &error, ipst)) != NULL) { 4606 ipif_refrele(ipif); 4607 } else if (error == EINPROGRESS) { 4608 if (src_ire != NULL) 4609 ire_refrele(src_ire); 4610 return (EINPROGRESS); 4611 } else if (CLASSD(src_addr)) { 4612 error = 0; 4613 if (src_ire != NULL) 4614 ire_refrele(src_ire); 4615 /* 4616 * (5) bind to multicast address. 4617 * Fake out the IRE returned to upper 4618 * layer to be a broadcast IRE. 4619 */ 4620 src_ire = ire_ctable_lookup( 4621 INADDR_BROADCAST, INADDR_ANY, 4622 IRE_BROADCAST, NULL, zoneid, NULL, 4623 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4624 ipst); 4625 if (src_ire == NULL || !ire_requested) 4626 error = EADDRNOTAVAIL; 4627 } else { 4628 /* 4629 * Not a valid address for bind 4630 */ 4631 error = EADDRNOTAVAIL; 4632 } 4633 /* 4634 * Just to keep it consistent with the processing in 4635 * ip_bind_v4() 4636 */ 4637 mp->b_wptr--; 4638 } 4639 if (error) { 4640 /* Red Alert! Attempting to be a bogon! */ 4641 ip1dbg(("ip_bind: bad src address 0x%x\n", 4642 ntohl(src_addr))); 4643 goto bad_addr; 4644 } 4645 } 4646 4647 /* 4648 * Allow setting new policies. For example, disconnects come 4649 * down as ipa_t bind. As we would have set conn_policy_cached 4650 * to B_TRUE before, we should set it to B_FALSE, so that policy 4651 * can change after the disconnect. 4652 */ 4653 connp->conn_policy_cached = B_FALSE; 4654 4655 /* 4656 * If not fanout_insert this was just an address verification 4657 */ 4658 if (fanout_insert) { 4659 /* 4660 * The addresses have been verified. Time to insert in 4661 * the correct fanout list. 4662 */ 4663 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4664 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4665 connp->conn_lport = lport; 4666 connp->conn_fport = 0; 4667 /* 4668 * Do we need to add a check to reject Multicast packets 4669 */ 4670 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4671 } 4672 4673 if (error == 0) { 4674 if (ire_requested) { 4675 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4676 error = -1; 4677 /* Falls through to bad_addr */ 4678 } 4679 } else if (ipsec_policy_set) { 4680 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4681 error = -1; 4682 /* Falls through to bad_addr */ 4683 } 4684 } 4685 } 4686 bad_addr: 4687 if (error != 0) { 4688 if (connp->conn_anon_port) { 4689 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4690 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4691 B_FALSE); 4692 } 4693 connp->conn_mlp_type = mlptSingle; 4694 } 4695 if (src_ire != NULL) 4696 IRE_REFRELE(src_ire); 4697 if (ipsec_policy_set) { 4698 ASSERT(policy_mp == mp->b_cont); 4699 ASSERT(policy_mp != NULL); 4700 freeb(policy_mp); 4701 /* 4702 * As of now assume that nothing else accompanies 4703 * IPSEC_POLICY_SET. 4704 */ 4705 mp->b_cont = NULL; 4706 } 4707 return (error); 4708 } 4709 4710 /* 4711 * Verify that both the source and destination addresses 4712 * are valid. If verify_dst is false, then the destination address may be 4713 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4714 * destination reachability, while tunnels do not. 4715 * Note that we allow connect to broadcast and multicast 4716 * addresses when ire_requested is set. Thus the ULP 4717 * has to check for IRE_BROADCAST and multicast. 4718 * 4719 * Returns zero if ok. 4720 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4721 * (for use with TSYSERR reply). 4722 * 4723 * Note: lport and fport are in network byte order. 4724 */ 4725 int 4726 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4727 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4728 boolean_t ire_requested, boolean_t ipsec_policy_set, 4729 boolean_t fanout_insert, boolean_t verify_dst) 4730 { 4731 ire_t *src_ire; 4732 ire_t *dst_ire; 4733 int error = 0; 4734 int protocol; 4735 mblk_t *policy_mp; 4736 ire_t *sire = NULL; 4737 ire_t *md_dst_ire = NULL; 4738 ire_t *lso_dst_ire = NULL; 4739 ill_t *ill = NULL; 4740 zoneid_t zoneid; 4741 ipaddr_t src_addr = *src_addrp; 4742 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4743 4744 src_ire = dst_ire = NULL; 4745 protocol = *mp->b_wptr & 0xFF; 4746 4747 /* 4748 * If we never got a disconnect before, clear it now. 4749 */ 4750 connp->conn_fully_bound = B_FALSE; 4751 4752 if (ipsec_policy_set) { 4753 policy_mp = mp->b_cont; 4754 } 4755 4756 zoneid = IPCL_ZONEID(connp); 4757 4758 if (CLASSD(dst_addr)) { 4759 /* Pick up an IRE_BROADCAST */ 4760 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4761 NULL, zoneid, MBLK_GETLABEL(mp), 4762 (MATCH_IRE_RECURSIVE | 4763 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4764 MATCH_IRE_SECATTR), ipst); 4765 } else { 4766 /* 4767 * If conn_dontroute is set or if conn_nexthop_set is set, 4768 * and onlink ipif is not found set ENETUNREACH error. 4769 */ 4770 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4771 ipif_t *ipif; 4772 4773 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4774 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4775 if (ipif == NULL) { 4776 error = ENETUNREACH; 4777 goto bad_addr; 4778 } 4779 ipif_refrele(ipif); 4780 } 4781 4782 if (connp->conn_nexthop_set) { 4783 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4784 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4785 MATCH_IRE_SECATTR, ipst); 4786 } else { 4787 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4788 &sire, zoneid, MBLK_GETLABEL(mp), 4789 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4790 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4791 MATCH_IRE_SECATTR), ipst); 4792 } 4793 } 4794 /* 4795 * dst_ire can't be a broadcast when not ire_requested. 4796 * We also prevent ire's with src address INADDR_ANY to 4797 * be used, which are created temporarily for 4798 * sending out packets from endpoints that have 4799 * conn_unspec_src set. If verify_dst is true, the destination must be 4800 * reachable. If verify_dst is false, the destination needn't be 4801 * reachable. 4802 * 4803 * If we match on a reject or black hole, then we've got a 4804 * local failure. May as well fail out the connect() attempt, 4805 * since it's never going to succeed. 4806 */ 4807 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4808 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4809 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4810 /* 4811 * If we're verifying destination reachability, we always want 4812 * to complain here. 4813 * 4814 * If we're not verifying destination reachability but the 4815 * destination has a route, we still want to fail on the 4816 * temporary address and broadcast address tests. 4817 */ 4818 if (verify_dst || (dst_ire != NULL)) { 4819 if (ip_debug > 2) { 4820 pr_addr_dbg("ip_bind_connected: bad connected " 4821 "dst %s\n", AF_INET, &dst_addr); 4822 } 4823 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4824 error = ENETUNREACH; 4825 else 4826 error = EHOSTUNREACH; 4827 goto bad_addr; 4828 } 4829 } 4830 4831 /* 4832 * We now know that routing will allow us to reach the destination. 4833 * Check whether Trusted Solaris policy allows communication with this 4834 * host, and pretend that the destination is unreachable if not. 4835 * 4836 * This is never a problem for TCP, since that transport is known to 4837 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4838 * handling. If the remote is unreachable, it will be detected at that 4839 * point, so there's no reason to check it here. 4840 * 4841 * Note that for sendto (and other datagram-oriented friends), this 4842 * check is done as part of the data path label computation instead. 4843 * The check here is just to make non-TCP connect() report the right 4844 * error. 4845 */ 4846 if (dst_ire != NULL && is_system_labeled() && 4847 !IPCL_IS_TCP(connp) && 4848 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4849 connp->conn_mac_exempt, ipst) != 0) { 4850 error = EHOSTUNREACH; 4851 if (ip_debug > 2) { 4852 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4853 AF_INET, &dst_addr); 4854 } 4855 goto bad_addr; 4856 } 4857 4858 /* 4859 * If the app does a connect(), it means that it will most likely 4860 * send more than 1 packet to the destination. It makes sense 4861 * to clear the temporary flag. 4862 */ 4863 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4864 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4865 irb_t *irb = dst_ire->ire_bucket; 4866 4867 rw_enter(&irb->irb_lock, RW_WRITER); 4868 /* 4869 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4870 * the lock to guarantee irb_tmp_ire_cnt. 4871 */ 4872 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4873 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4874 irb->irb_tmp_ire_cnt--; 4875 } 4876 rw_exit(&irb->irb_lock); 4877 } 4878 4879 /* 4880 * See if we should notify ULP about LSO/MDT; we do this whether or not 4881 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4882 * eligibility tests for passive connects are handled separately 4883 * through tcp_adapt_ire(). We do this before the source address 4884 * selection, because dst_ire may change after a call to 4885 * ipif_select_source(). This is a best-effort check, as the 4886 * packet for this connection may not actually go through 4887 * dst_ire->ire_stq, and the exact IRE can only be known after 4888 * calling ip_newroute(). This is why we further check on the 4889 * IRE during LSO/Multidata packet transmission in 4890 * tcp_lsosend()/tcp_multisend(). 4891 */ 4892 if (!ipsec_policy_set && dst_ire != NULL && 4893 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4894 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4895 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4896 lso_dst_ire = dst_ire; 4897 IRE_REFHOLD(lso_dst_ire); 4898 } else if (ipst->ips_ip_multidata_outbound && 4899 ILL_MDT_CAPABLE(ill)) { 4900 md_dst_ire = dst_ire; 4901 IRE_REFHOLD(md_dst_ire); 4902 } 4903 } 4904 4905 if (dst_ire != NULL && 4906 dst_ire->ire_type == IRE_LOCAL && 4907 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4908 /* 4909 * If the IRE belongs to a different zone, look for a matching 4910 * route in the forwarding table and use the source address from 4911 * that route. 4912 */ 4913 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4914 zoneid, 0, NULL, 4915 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4916 MATCH_IRE_RJ_BHOLE, ipst); 4917 if (src_ire == NULL) { 4918 error = EHOSTUNREACH; 4919 goto bad_addr; 4920 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4921 if (!(src_ire->ire_type & IRE_HOST)) 4922 error = ENETUNREACH; 4923 else 4924 error = EHOSTUNREACH; 4925 goto bad_addr; 4926 } 4927 if (src_addr == INADDR_ANY) 4928 src_addr = src_ire->ire_src_addr; 4929 ire_refrele(src_ire); 4930 src_ire = NULL; 4931 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4932 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4933 src_addr = sire->ire_src_addr; 4934 ire_refrele(dst_ire); 4935 dst_ire = sire; 4936 sire = NULL; 4937 } else { 4938 /* 4939 * Pick a source address so that a proper inbound 4940 * load spreading would happen. 4941 */ 4942 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4943 ipif_t *src_ipif = NULL; 4944 ire_t *ipif_ire; 4945 4946 /* 4947 * Supply a local source address such that inbound 4948 * load spreading happens. 4949 * 4950 * Determine the best source address on this ill for 4951 * the destination. 4952 * 4953 * 1) For broadcast, we should return a broadcast ire 4954 * found above so that upper layers know that the 4955 * destination address is a broadcast address. 4956 * 4957 * 2) If this is part of a group, select a better 4958 * source address so that better inbound load 4959 * balancing happens. Do the same if the ipif 4960 * is DEPRECATED. 4961 * 4962 * 3) If the outgoing interface is part of a usesrc 4963 * group, then try selecting a source address from 4964 * the usesrc ILL. 4965 */ 4966 if ((dst_ire->ire_zoneid != zoneid && 4967 dst_ire->ire_zoneid != ALL_ZONES) || 4968 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4969 (!(dst_ire->ire_type & IRE_BROADCAST) && 4970 ((dst_ill->ill_group != NULL) || 4971 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4972 (dst_ill->ill_usesrc_ifindex != 0)))) { 4973 /* 4974 * If the destination is reachable via a 4975 * given gateway, the selected source address 4976 * should be in the same subnet as the gateway. 4977 * Otherwise, the destination is not reachable. 4978 * 4979 * If there are no interfaces on the same subnet 4980 * as the destination, ipif_select_source gives 4981 * first non-deprecated interface which might be 4982 * on a different subnet than the gateway. 4983 * This is not desirable. Hence pass the dst_ire 4984 * source address to ipif_select_source. 4985 * It is sure that the destination is reachable 4986 * with the dst_ire source address subnet. 4987 * So passing dst_ire source address to 4988 * ipif_select_source will make sure that the 4989 * selected source will be on the same subnet 4990 * as dst_ire source address. 4991 */ 4992 ipaddr_t saddr = 4993 dst_ire->ire_ipif->ipif_src_addr; 4994 src_ipif = ipif_select_source(dst_ill, 4995 saddr, zoneid); 4996 if (src_ipif != NULL) { 4997 if (IS_VNI(src_ipif->ipif_ill)) { 4998 /* 4999 * For VNI there is no 5000 * interface route 5001 */ 5002 src_addr = 5003 src_ipif->ipif_src_addr; 5004 } else { 5005 ipif_ire = 5006 ipif_to_ire(src_ipif); 5007 if (ipif_ire != NULL) { 5008 IRE_REFRELE(dst_ire); 5009 dst_ire = ipif_ire; 5010 } 5011 src_addr = 5012 dst_ire->ire_src_addr; 5013 } 5014 ipif_refrele(src_ipif); 5015 } else { 5016 src_addr = dst_ire->ire_src_addr; 5017 } 5018 } else { 5019 src_addr = dst_ire->ire_src_addr; 5020 } 5021 } 5022 } 5023 5024 /* 5025 * We do ire_route_lookup() here (and not 5026 * interface lookup as we assert that 5027 * src_addr should only come from an 5028 * UP interface for hard binding. 5029 */ 5030 ASSERT(src_ire == NULL); 5031 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5032 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5033 /* src_ire must be a local|loopback */ 5034 if (!IRE_IS_LOCAL(src_ire)) { 5035 if (ip_debug > 2) { 5036 pr_addr_dbg("ip_bind_connected: bad connected " 5037 "src %s\n", AF_INET, &src_addr); 5038 } 5039 error = EADDRNOTAVAIL; 5040 goto bad_addr; 5041 } 5042 5043 /* 5044 * If the source address is a loopback address, the 5045 * destination had best be local or multicast. 5046 * The transports that can't handle multicast will reject 5047 * those addresses. 5048 */ 5049 if (src_ire->ire_type == IRE_LOOPBACK && 5050 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5051 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5052 error = -1; 5053 goto bad_addr; 5054 } 5055 5056 /* 5057 * Allow setting new policies. For example, disconnects come 5058 * down as ipa_t bind. As we would have set conn_policy_cached 5059 * to B_TRUE before, we should set it to B_FALSE, so that policy 5060 * can change after the disconnect. 5061 */ 5062 connp->conn_policy_cached = B_FALSE; 5063 5064 /* 5065 * Set the conn addresses/ports immediately, so the IPsec policy calls 5066 * can handle their passed-in conn's. 5067 */ 5068 5069 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5070 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5071 connp->conn_lport = lport; 5072 connp->conn_fport = fport; 5073 *src_addrp = src_addr; 5074 5075 ASSERT(!(ipsec_policy_set && ire_requested)); 5076 if (ire_requested) { 5077 iulp_t *ulp_info = NULL; 5078 5079 /* 5080 * Note that sire will not be NULL if this is an off-link 5081 * connection and there is not cache for that dest yet. 5082 * 5083 * XXX Because of an existing bug, if there are multiple 5084 * default routes, the IRE returned now may not be the actual 5085 * default route used (default routes are chosen in a 5086 * round robin fashion). So if the metrics for different 5087 * default routes are different, we may return the wrong 5088 * metrics. This will not be a problem if the existing 5089 * bug is fixed. 5090 */ 5091 if (sire != NULL) { 5092 ulp_info = &(sire->ire_uinfo); 5093 } 5094 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5095 error = -1; 5096 goto bad_addr; 5097 } 5098 } else if (ipsec_policy_set) { 5099 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5100 error = -1; 5101 goto bad_addr; 5102 } 5103 } 5104 5105 /* 5106 * Cache IPsec policy in this conn. If we have per-socket policy, 5107 * we'll cache that. If we don't, we'll inherit global policy. 5108 * 5109 * We can't insert until the conn reflects the policy. Note that 5110 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5111 * connections where we don't have a policy. This is to prevent 5112 * global policy lookups in the inbound path. 5113 * 5114 * If we insert before we set conn_policy_cached, 5115 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5116 * because global policy cound be non-empty. We normally call 5117 * ipsec_check_policy() for conn_policy_cached connections only if 5118 * ipc_in_enforce_policy is set. But in this case, 5119 * conn_policy_cached can get set anytime since we made the 5120 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5121 * called, which will make the above assumption false. Thus, we 5122 * need to insert after we set conn_policy_cached. 5123 */ 5124 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5125 goto bad_addr; 5126 5127 if (fanout_insert) { 5128 /* 5129 * The addresses have been verified. Time to insert in 5130 * the correct fanout list. 5131 */ 5132 error = ipcl_conn_insert(connp, protocol, src_addr, 5133 dst_addr, connp->conn_ports); 5134 } 5135 5136 if (error == 0) { 5137 connp->conn_fully_bound = B_TRUE; 5138 /* 5139 * Our initial checks for LSO/MDT have passed; the IRE is not 5140 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5141 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5142 * ip_xxinfo_return(), which performs further checks 5143 * against them and upon success, returns the LSO/MDT info 5144 * mblk which we will attach to the bind acknowledgment. 5145 */ 5146 if (lso_dst_ire != NULL) { 5147 mblk_t *lsoinfo_mp; 5148 5149 ASSERT(ill->ill_lso_capab != NULL); 5150 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5151 ill->ill_name, ill->ill_lso_capab)) != NULL) 5152 linkb(mp, lsoinfo_mp); 5153 } else if (md_dst_ire != NULL) { 5154 mblk_t *mdinfo_mp; 5155 5156 ASSERT(ill->ill_mdt_capab != NULL); 5157 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5158 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5159 linkb(mp, mdinfo_mp); 5160 } 5161 } 5162 bad_addr: 5163 if (ipsec_policy_set) { 5164 ASSERT(policy_mp == mp->b_cont); 5165 ASSERT(policy_mp != NULL); 5166 freeb(policy_mp); 5167 /* 5168 * As of now assume that nothing else accompanies 5169 * IPSEC_POLICY_SET. 5170 */ 5171 mp->b_cont = NULL; 5172 } 5173 if (src_ire != NULL) 5174 IRE_REFRELE(src_ire); 5175 if (dst_ire != NULL) 5176 IRE_REFRELE(dst_ire); 5177 if (sire != NULL) 5178 IRE_REFRELE(sire); 5179 if (md_dst_ire != NULL) 5180 IRE_REFRELE(md_dst_ire); 5181 if (lso_dst_ire != NULL) 5182 IRE_REFRELE(lso_dst_ire); 5183 return (error); 5184 } 5185 5186 /* 5187 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5188 * Prefers dst_ire over src_ire. 5189 */ 5190 static boolean_t 5191 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5192 { 5193 mblk_t *mp1; 5194 ire_t *ret_ire = NULL; 5195 5196 mp1 = mp->b_cont; 5197 ASSERT(mp1 != NULL); 5198 5199 if (ire != NULL) { 5200 /* 5201 * mp1 initialized above to IRE_DB_REQ_TYPE 5202 * appended mblk. Its <upper protocol>'s 5203 * job to make sure there is room. 5204 */ 5205 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5206 return (0); 5207 5208 mp1->b_datap->db_type = IRE_DB_TYPE; 5209 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5210 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5211 ret_ire = (ire_t *)mp1->b_rptr; 5212 /* 5213 * Pass the latest setting of the ip_path_mtu_discovery and 5214 * copy the ulp info if any. 5215 */ 5216 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5217 IPH_DF : 0; 5218 if (ulp_info != NULL) { 5219 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5220 sizeof (iulp_t)); 5221 } 5222 ret_ire->ire_mp = mp1; 5223 } else { 5224 /* 5225 * No IRE was found. Remove IRE mblk. 5226 */ 5227 mp->b_cont = mp1->b_cont; 5228 freeb(mp1); 5229 } 5230 5231 return (1); 5232 } 5233 5234 /* 5235 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5236 * the final piece where we don't. Return a pointer to the first mblk in the 5237 * result, and update the pointer to the next mblk to chew on. If anything 5238 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5239 * NULL pointer. 5240 */ 5241 mblk_t * 5242 ip_carve_mp(mblk_t **mpp, ssize_t len) 5243 { 5244 mblk_t *mp0; 5245 mblk_t *mp1; 5246 mblk_t *mp2; 5247 5248 if (!len || !mpp || !(mp0 = *mpp)) 5249 return (NULL); 5250 /* If we aren't going to consume the first mblk, we need a dup. */ 5251 if (mp0->b_wptr - mp0->b_rptr > len) { 5252 mp1 = dupb(mp0); 5253 if (mp1) { 5254 /* Partition the data between the two mblks. */ 5255 mp1->b_wptr = mp1->b_rptr + len; 5256 mp0->b_rptr = mp1->b_wptr; 5257 /* 5258 * after adjustments if mblk not consumed is now 5259 * unaligned, try to align it. If this fails free 5260 * all messages and let upper layer recover. 5261 */ 5262 if (!OK_32PTR(mp0->b_rptr)) { 5263 if (!pullupmsg(mp0, -1)) { 5264 freemsg(mp0); 5265 freemsg(mp1); 5266 *mpp = NULL; 5267 return (NULL); 5268 } 5269 } 5270 } 5271 return (mp1); 5272 } 5273 /* Eat through as many mblks as we need to get len bytes. */ 5274 len -= mp0->b_wptr - mp0->b_rptr; 5275 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5276 if (mp2->b_wptr - mp2->b_rptr > len) { 5277 /* 5278 * We won't consume the entire last mblk. Like 5279 * above, dup and partition it. 5280 */ 5281 mp1->b_cont = dupb(mp2); 5282 mp1 = mp1->b_cont; 5283 if (!mp1) { 5284 /* 5285 * Trouble. Rather than go to a lot of 5286 * trouble to clean up, we free the messages. 5287 * This won't be any worse than losing it on 5288 * the wire. 5289 */ 5290 freemsg(mp0); 5291 freemsg(mp2); 5292 *mpp = NULL; 5293 return (NULL); 5294 } 5295 mp1->b_wptr = mp1->b_rptr + len; 5296 mp2->b_rptr = mp1->b_wptr; 5297 /* 5298 * after adjustments if mblk not consumed is now 5299 * unaligned, try to align it. If this fails free 5300 * all messages and let upper layer recover. 5301 */ 5302 if (!OK_32PTR(mp2->b_rptr)) { 5303 if (!pullupmsg(mp2, -1)) { 5304 freemsg(mp0); 5305 freemsg(mp2); 5306 *mpp = NULL; 5307 return (NULL); 5308 } 5309 } 5310 *mpp = mp2; 5311 return (mp0); 5312 } 5313 /* Decrement len by the amount we just got. */ 5314 len -= mp2->b_wptr - mp2->b_rptr; 5315 } 5316 /* 5317 * len should be reduced to zero now. If not our caller has 5318 * screwed up. 5319 */ 5320 if (len) { 5321 /* Shouldn't happen! */ 5322 freemsg(mp0); 5323 *mpp = NULL; 5324 return (NULL); 5325 } 5326 /* 5327 * We consumed up to exactly the end of an mblk. Detach the part 5328 * we are returning from the rest of the chain. 5329 */ 5330 mp1->b_cont = NULL; 5331 *mpp = mp2; 5332 return (mp0); 5333 } 5334 5335 /* The ill stream is being unplumbed. Called from ip_close */ 5336 int 5337 ip_modclose(ill_t *ill) 5338 { 5339 boolean_t success; 5340 ipsq_t *ipsq; 5341 ipif_t *ipif; 5342 queue_t *q = ill->ill_rq; 5343 ip_stack_t *ipst = ill->ill_ipst; 5344 clock_t timeout; 5345 5346 /* 5347 * Wait for the ACKs of all deferred control messages to be processed. 5348 * In particular, we wait for a potential capability reset initiated 5349 * in ip_sioctl_plink() to complete before proceeding. 5350 * 5351 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5352 * in case the driver never replies. 5353 */ 5354 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5355 mutex_enter(&ill->ill_lock); 5356 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5357 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5358 /* Timeout */ 5359 break; 5360 } 5361 } 5362 mutex_exit(&ill->ill_lock); 5363 5364 /* 5365 * Forcibly enter the ipsq after some delay. This is to take 5366 * care of the case when some ioctl does not complete because 5367 * we sent a control message to the driver and it did not 5368 * send us a reply. We want to be able to at least unplumb 5369 * and replumb rather than force the user to reboot the system. 5370 */ 5371 success = ipsq_enter(ill, B_FALSE); 5372 5373 /* 5374 * Open/close/push/pop is guaranteed to be single threaded 5375 * per stream by STREAMS. FS guarantees that all references 5376 * from top are gone before close is called. So there can't 5377 * be another close thread that has set CONDEMNED on this ill. 5378 * and cause ipsq_enter to return failure. 5379 */ 5380 ASSERT(success); 5381 ipsq = ill->ill_phyint->phyint_ipsq; 5382 5383 /* 5384 * Mark it condemned. No new reference will be made to this ill. 5385 * Lookup functions will return an error. Threads that try to 5386 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5387 * that the refcnt will drop down to zero. 5388 */ 5389 mutex_enter(&ill->ill_lock); 5390 ill->ill_state_flags |= ILL_CONDEMNED; 5391 for (ipif = ill->ill_ipif; ipif != NULL; 5392 ipif = ipif->ipif_next) { 5393 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5394 } 5395 /* 5396 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5397 * returns error if ILL_CONDEMNED is set 5398 */ 5399 cv_broadcast(&ill->ill_cv); 5400 mutex_exit(&ill->ill_lock); 5401 5402 /* 5403 * Send all the deferred DLPI messages downstream which came in 5404 * during the small window right before ipsq_enter(). We do this 5405 * without waiting for the ACKs because all the ACKs for M_PROTO 5406 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5407 */ 5408 ill_dlpi_send_deferred(ill); 5409 5410 /* 5411 * Shut down fragmentation reassembly. 5412 * ill_frag_timer won't start a timer again. 5413 * Now cancel any existing timer 5414 */ 5415 (void) untimeout(ill->ill_frag_timer_id); 5416 (void) ill_frag_timeout(ill, 0); 5417 5418 /* 5419 * If MOVE was in progress, clear the 5420 * move_in_progress fields also. 5421 */ 5422 if (ill->ill_move_in_progress) { 5423 ILL_CLEAR_MOVE(ill); 5424 } 5425 5426 /* 5427 * Call ill_delete to bring down the ipifs, ilms and ill on 5428 * this ill. Then wait for the refcnts to drop to zero. 5429 * ill_is_freeable checks whether the ill is really quiescent. 5430 * Then make sure that threads that are waiting to enter the 5431 * ipsq have seen the error returned by ipsq_enter and have 5432 * gone away. Then we call ill_delete_tail which does the 5433 * DL_UNBIND_REQ with the driver and then qprocsoff. 5434 */ 5435 ill_delete(ill); 5436 mutex_enter(&ill->ill_lock); 5437 while (!ill_is_freeable(ill)) 5438 cv_wait(&ill->ill_cv, &ill->ill_lock); 5439 while (ill->ill_waiters) 5440 cv_wait(&ill->ill_cv, &ill->ill_lock); 5441 5442 mutex_exit(&ill->ill_lock); 5443 5444 /* 5445 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5446 * it held until the end of the function since the cleanup 5447 * below needs to be able to use the ip_stack_t. 5448 */ 5449 netstack_hold(ipst->ips_netstack); 5450 5451 /* qprocsoff is called in ill_delete_tail */ 5452 ill_delete_tail(ill); 5453 ASSERT(ill->ill_ipst == NULL); 5454 5455 /* 5456 * Walk through all upper (conn) streams and qenable 5457 * those that have queued data. 5458 * close synchronization needs this to 5459 * be done to ensure that all upper layers blocked 5460 * due to flow control to the closing device 5461 * get unblocked. 5462 */ 5463 ip1dbg(("ip_wsrv: walking\n")); 5464 conn_walk_drain(ipst); 5465 5466 mutex_enter(&ipst->ips_ip_mi_lock); 5467 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5468 mutex_exit(&ipst->ips_ip_mi_lock); 5469 5470 /* 5471 * credp could be null if the open didn't succeed and ip_modopen 5472 * itself calls ip_close. 5473 */ 5474 if (ill->ill_credp != NULL) 5475 crfree(ill->ill_credp); 5476 5477 mutex_enter(&ill->ill_lock); 5478 ill_nic_info_dispatch(ill); 5479 mutex_exit(&ill->ill_lock); 5480 5481 /* 5482 * Now we are done with the module close pieces that 5483 * need the netstack_t. 5484 */ 5485 netstack_rele(ipst->ips_netstack); 5486 5487 mi_close_free((IDP)ill); 5488 q->q_ptr = WR(q)->q_ptr = NULL; 5489 5490 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5491 5492 return (0); 5493 } 5494 5495 /* 5496 * This is called as part of close() for IP, UDP, ICMP, and RTS 5497 * in order to quiesce the conn. 5498 */ 5499 void 5500 ip_quiesce_conn(conn_t *connp) 5501 { 5502 boolean_t drain_cleanup_reqd = B_FALSE; 5503 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5504 boolean_t ilg_cleanup_reqd = B_FALSE; 5505 ip_stack_t *ipst; 5506 5507 ASSERT(!IPCL_IS_TCP(connp)); 5508 ipst = connp->conn_netstack->netstack_ip; 5509 5510 /* 5511 * Mark the conn as closing, and this conn must not be 5512 * inserted in future into any list. Eg. conn_drain_insert(), 5513 * won't insert this conn into the conn_drain_list. 5514 * Similarly ill_pending_mp_add() will not add any mp to 5515 * the pending mp list, after this conn has started closing. 5516 * 5517 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5518 * cannot get set henceforth. 5519 */ 5520 mutex_enter(&connp->conn_lock); 5521 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5522 connp->conn_state_flags |= CONN_CLOSING; 5523 if (connp->conn_idl != NULL) 5524 drain_cleanup_reqd = B_TRUE; 5525 if (connp->conn_oper_pending_ill != NULL) 5526 conn_ioctl_cleanup_reqd = B_TRUE; 5527 if (connp->conn_dhcpinit_ill != NULL) { 5528 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5529 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5530 connp->conn_dhcpinit_ill = NULL; 5531 } 5532 if (connp->conn_ilg_inuse != 0) 5533 ilg_cleanup_reqd = B_TRUE; 5534 mutex_exit(&connp->conn_lock); 5535 5536 if (conn_ioctl_cleanup_reqd) 5537 conn_ioctl_cleanup(connp); 5538 5539 if (is_system_labeled() && connp->conn_anon_port) { 5540 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5541 connp->conn_mlp_type, connp->conn_ulp, 5542 ntohs(connp->conn_lport), B_FALSE); 5543 connp->conn_anon_port = 0; 5544 } 5545 connp->conn_mlp_type = mlptSingle; 5546 5547 /* 5548 * Remove this conn from any fanout list it is on. 5549 * and then wait for any threads currently operating 5550 * on this endpoint to finish 5551 */ 5552 ipcl_hash_remove(connp); 5553 5554 /* 5555 * Remove this conn from the drain list, and do 5556 * any other cleanup that may be required. 5557 * (Only non-tcp streams may have a non-null conn_idl. 5558 * TCP streams are never flow controlled, and 5559 * conn_idl will be null) 5560 */ 5561 if (drain_cleanup_reqd) 5562 conn_drain_tail(connp, B_TRUE); 5563 5564 if (connp == ipst->ips_ip_g_mrouter) 5565 (void) ip_mrouter_done(NULL, ipst); 5566 5567 if (ilg_cleanup_reqd) 5568 ilg_delete_all(connp); 5569 5570 conn_delete_ire(connp, NULL); 5571 5572 /* 5573 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5574 * callers from write side can't be there now because close 5575 * is in progress. The only other caller is ipcl_walk 5576 * which checks for the condemned flag. 5577 */ 5578 mutex_enter(&connp->conn_lock); 5579 connp->conn_state_flags |= CONN_CONDEMNED; 5580 while (connp->conn_ref != 1) 5581 cv_wait(&connp->conn_cv, &connp->conn_lock); 5582 connp->conn_state_flags |= CONN_QUIESCED; 5583 mutex_exit(&connp->conn_lock); 5584 } 5585 5586 /* ARGSUSED */ 5587 int 5588 ip_close(queue_t *q, int flags) 5589 { 5590 conn_t *connp; 5591 5592 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5593 5594 /* 5595 * Call the appropriate delete routine depending on whether this is 5596 * a module or device. 5597 */ 5598 if (WR(q)->q_next != NULL) { 5599 /* This is a module close */ 5600 return (ip_modclose((ill_t *)q->q_ptr)); 5601 } 5602 5603 connp = q->q_ptr; 5604 ip_quiesce_conn(connp); 5605 5606 qprocsoff(q); 5607 5608 /* 5609 * Now we are truly single threaded on this stream, and can 5610 * delete the things hanging off the connp, and finally the connp. 5611 * We removed this connp from the fanout list, it cannot be 5612 * accessed thru the fanouts, and we already waited for the 5613 * conn_ref to drop to 0. We are already in close, so 5614 * there cannot be any other thread from the top. qprocsoff 5615 * has completed, and service has completed or won't run in 5616 * future. 5617 */ 5618 ASSERT(connp->conn_ref == 1); 5619 5620 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5621 5622 connp->conn_ref--; 5623 ipcl_conn_destroy(connp); 5624 5625 q->q_ptr = WR(q)->q_ptr = NULL; 5626 return (0); 5627 } 5628 5629 /* 5630 * Wapper around putnext() so that ip_rts_request can merely use 5631 * conn_recv. 5632 */ 5633 /*ARGSUSED2*/ 5634 static void 5635 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5636 { 5637 conn_t *connp = (conn_t *)arg1; 5638 5639 putnext(connp->conn_rq, mp); 5640 } 5641 5642 /* Return the IP checksum for the IP header at "iph". */ 5643 uint16_t 5644 ip_csum_hdr(ipha_t *ipha) 5645 { 5646 uint16_t *uph; 5647 uint32_t sum; 5648 int opt_len; 5649 5650 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5651 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5652 uph = (uint16_t *)ipha; 5653 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5654 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5655 if (opt_len > 0) { 5656 do { 5657 sum += uph[10]; 5658 sum += uph[11]; 5659 uph += 2; 5660 } while (--opt_len); 5661 } 5662 sum = (sum & 0xFFFF) + (sum >> 16); 5663 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5664 if (sum == 0xffff) 5665 sum = 0; 5666 return ((uint16_t)sum); 5667 } 5668 5669 /* 5670 * Called when the module is about to be unloaded 5671 */ 5672 void 5673 ip_ddi_destroy(void) 5674 { 5675 tnet_fini(); 5676 5677 icmp_ddi_destroy(); 5678 rts_ddi_destroy(); 5679 udp_ddi_destroy(); 5680 sctp_ddi_g_destroy(); 5681 tcp_ddi_g_destroy(); 5682 ipsec_policy_g_destroy(); 5683 ipcl_g_destroy(); 5684 ip_net_g_destroy(); 5685 ip_ire_g_fini(); 5686 inet_minor_destroy(ip_minor_arena_sa); 5687 #if defined(_LP64) 5688 inet_minor_destroy(ip_minor_arena_la); 5689 #endif 5690 5691 #ifdef DEBUG 5692 list_destroy(&ip_thread_list); 5693 rw_destroy(&ip_thread_rwlock); 5694 tsd_destroy(&ip_thread_data); 5695 #endif 5696 5697 netstack_unregister(NS_IP); 5698 } 5699 5700 /* 5701 * First step in cleanup. 5702 */ 5703 /* ARGSUSED */ 5704 static void 5705 ip_stack_shutdown(netstackid_t stackid, void *arg) 5706 { 5707 ip_stack_t *ipst = (ip_stack_t *)arg; 5708 5709 #ifdef NS_DEBUG 5710 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5711 #endif 5712 5713 /* Get rid of loopback interfaces and their IREs */ 5714 ip_loopback_cleanup(ipst); 5715 } 5716 5717 /* 5718 * Free the IP stack instance. 5719 */ 5720 static void 5721 ip_stack_fini(netstackid_t stackid, void *arg) 5722 { 5723 ip_stack_t *ipst = (ip_stack_t *)arg; 5724 int ret; 5725 5726 #ifdef NS_DEBUG 5727 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5728 #endif 5729 ipv4_hook_destroy(ipst); 5730 ipv6_hook_destroy(ipst); 5731 ip_net_destroy(ipst); 5732 5733 rw_destroy(&ipst->ips_srcid_lock); 5734 5735 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5736 ipst->ips_ip_mibkp = NULL; 5737 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5738 ipst->ips_icmp_mibkp = NULL; 5739 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5740 ipst->ips_ip_kstat = NULL; 5741 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5742 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5743 ipst->ips_ip6_kstat = NULL; 5744 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5745 5746 nd_free(&ipst->ips_ip_g_nd); 5747 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5748 ipst->ips_param_arr = NULL; 5749 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5750 ipst->ips_ndp_arr = NULL; 5751 5752 ip_mrouter_stack_destroy(ipst); 5753 5754 mutex_destroy(&ipst->ips_ip_mi_lock); 5755 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5756 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5757 rw_destroy(&ipst->ips_ip_g_nd_lock); 5758 5759 ret = untimeout(ipst->ips_igmp_timeout_id); 5760 if (ret == -1) { 5761 ASSERT(ipst->ips_igmp_timeout_id == 0); 5762 } else { 5763 ASSERT(ipst->ips_igmp_timeout_id != 0); 5764 ipst->ips_igmp_timeout_id = 0; 5765 } 5766 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5767 if (ret == -1) { 5768 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5769 } else { 5770 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5771 ipst->ips_igmp_slowtimeout_id = 0; 5772 } 5773 ret = untimeout(ipst->ips_mld_timeout_id); 5774 if (ret == -1) { 5775 ASSERT(ipst->ips_mld_timeout_id == 0); 5776 } else { 5777 ASSERT(ipst->ips_mld_timeout_id != 0); 5778 ipst->ips_mld_timeout_id = 0; 5779 } 5780 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5781 if (ret == -1) { 5782 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5783 } else { 5784 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5785 ipst->ips_mld_slowtimeout_id = 0; 5786 } 5787 ret = untimeout(ipst->ips_ip_ire_expire_id); 5788 if (ret == -1) { 5789 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5790 } else { 5791 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5792 ipst->ips_ip_ire_expire_id = 0; 5793 } 5794 5795 mutex_destroy(&ipst->ips_igmp_timer_lock); 5796 mutex_destroy(&ipst->ips_mld_timer_lock); 5797 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5798 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5799 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5800 rw_destroy(&ipst->ips_ill_g_lock); 5801 5802 ip_ire_fini(ipst); 5803 ip6_asp_free(ipst); 5804 conn_drain_fini(ipst); 5805 ipcl_destroy(ipst); 5806 5807 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5808 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5809 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5810 ipst->ips_ndp4 = NULL; 5811 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5812 ipst->ips_ndp6 = NULL; 5813 5814 if (ipst->ips_loopback_ksp != NULL) { 5815 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5816 ipst->ips_loopback_ksp = NULL; 5817 } 5818 5819 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5820 ipst->ips_phyint_g_list = NULL; 5821 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5822 ipst->ips_ill_g_heads = NULL; 5823 5824 kmem_free(ipst, sizeof (*ipst)); 5825 } 5826 5827 /* 5828 * This function is called from the TSD destructor, and is used to debug 5829 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5830 * details. 5831 */ 5832 static void 5833 ip_thread_exit(void *phash) 5834 { 5835 th_hash_t *thh = phash; 5836 5837 rw_enter(&ip_thread_rwlock, RW_WRITER); 5838 list_remove(&ip_thread_list, thh); 5839 rw_exit(&ip_thread_rwlock); 5840 mod_hash_destroy_hash(thh->thh_hash); 5841 kmem_free(thh, sizeof (*thh)); 5842 } 5843 5844 /* 5845 * Called when the IP kernel module is loaded into the kernel 5846 */ 5847 void 5848 ip_ddi_init(void) 5849 { 5850 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5851 5852 /* 5853 * For IP and TCP the minor numbers should start from 2 since we have 4 5854 * initial devices: ip, ip6, tcp, tcp6. 5855 */ 5856 /* 5857 * If this is a 64-bit kernel, then create two separate arenas - 5858 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5859 * other for socket apps in the range 2^^18 through 2^^32-1. 5860 */ 5861 ip_minor_arena_la = NULL; 5862 ip_minor_arena_sa = NULL; 5863 #if defined(_LP64) 5864 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5865 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5866 cmn_err(CE_PANIC, 5867 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5868 } 5869 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5870 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5871 cmn_err(CE_PANIC, 5872 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5873 } 5874 #else 5875 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5876 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5877 cmn_err(CE_PANIC, 5878 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5879 } 5880 #endif 5881 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5882 5883 ipcl_g_init(); 5884 ip_ire_g_init(); 5885 ip_net_g_init(); 5886 5887 #ifdef DEBUG 5888 tsd_create(&ip_thread_data, ip_thread_exit); 5889 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5890 list_create(&ip_thread_list, sizeof (th_hash_t), 5891 offsetof(th_hash_t, thh_link)); 5892 #endif 5893 5894 /* 5895 * We want to be informed each time a stack is created or 5896 * destroyed in the kernel, so we can maintain the 5897 * set of udp_stack_t's. 5898 */ 5899 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5900 ip_stack_fini); 5901 5902 ipsec_policy_g_init(); 5903 tcp_ddi_g_init(); 5904 sctp_ddi_g_init(); 5905 5906 tnet_init(); 5907 5908 udp_ddi_init(); 5909 rts_ddi_init(); 5910 icmp_ddi_init(); 5911 } 5912 5913 /* 5914 * Initialize the IP stack instance. 5915 */ 5916 static void * 5917 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5918 { 5919 ip_stack_t *ipst; 5920 ipparam_t *pa; 5921 ipndp_t *na; 5922 5923 #ifdef NS_DEBUG 5924 printf("ip_stack_init(stack %d)\n", stackid); 5925 #endif 5926 5927 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5928 ipst->ips_netstack = ns; 5929 5930 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5931 KM_SLEEP); 5932 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5933 KM_SLEEP); 5934 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5935 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5936 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5937 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5938 5939 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5940 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5941 ipst->ips_igmp_deferred_next = INFINITY; 5942 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5943 ipst->ips_mld_deferred_next = INFINITY; 5944 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5945 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5946 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5947 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5948 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5949 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5950 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5951 5952 ipcl_init(ipst); 5953 ip_ire_init(ipst); 5954 ip6_asp_init(ipst); 5955 ipif_init(ipst); 5956 conn_drain_init(ipst); 5957 ip_mrouter_stack_init(ipst); 5958 5959 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5960 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5961 5962 ipst->ips_ip_multirt_log_interval = 1000; 5963 5964 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5965 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5966 ipst->ips_ill_index = 1; 5967 5968 ipst->ips_saved_ip_g_forward = -1; 5969 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5970 5971 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5972 ipst->ips_param_arr = pa; 5973 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5974 5975 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5976 ipst->ips_ndp_arr = na; 5977 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5978 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5979 (caddr_t)&ipst->ips_ip_g_forward; 5980 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5981 (caddr_t)&ipst->ips_ipv6_forward; 5982 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5983 "ip_cgtp_filter") == 0); 5984 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5985 (caddr_t)&ipst->ips_ip_cgtp_filter; 5986 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5987 "ipmp_hook_emulation") == 0); 5988 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5989 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5990 5991 (void) ip_param_register(&ipst->ips_ip_g_nd, 5992 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5993 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5994 5995 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5996 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5997 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5998 ipst->ips_ip6_kstat = 5999 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6000 6001 ipst->ips_ipmp_enable_failback = B_TRUE; 6002 6003 ipst->ips_ip_src_id = 1; 6004 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6005 6006 ip_net_init(ipst, ns); 6007 ipv4_hook_init(ipst); 6008 ipv6_hook_init(ipst); 6009 6010 return (ipst); 6011 } 6012 6013 /* 6014 * Allocate and initialize a DLPI template of the specified length. (May be 6015 * called as writer.) 6016 */ 6017 mblk_t * 6018 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6019 { 6020 mblk_t *mp; 6021 6022 mp = allocb(len, BPRI_MED); 6023 if (!mp) 6024 return (NULL); 6025 6026 /* 6027 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6028 * of which we don't seem to use) are sent with M_PCPROTO, and 6029 * that other DLPI are M_PROTO. 6030 */ 6031 if (prim == DL_INFO_REQ) { 6032 mp->b_datap->db_type = M_PCPROTO; 6033 } else { 6034 mp->b_datap->db_type = M_PROTO; 6035 } 6036 6037 mp->b_wptr = mp->b_rptr + len; 6038 bzero(mp->b_rptr, len); 6039 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6040 return (mp); 6041 } 6042 6043 /* 6044 * Debug formatting routine. Returns a character string representation of the 6045 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6046 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6047 * 6048 * Once the ndd table-printing interfaces are removed, this can be changed to 6049 * standard dotted-decimal form. 6050 */ 6051 char * 6052 ip_dot_addr(ipaddr_t addr, char *buf) 6053 { 6054 uint8_t *ap = (uint8_t *)&addr; 6055 6056 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6057 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6058 return (buf); 6059 } 6060 6061 /* 6062 * Write the given MAC address as a printable string in the usual colon- 6063 * separated format. 6064 */ 6065 const char * 6066 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6067 { 6068 char *bp; 6069 6070 if (alen == 0 || buflen < 4) 6071 return ("?"); 6072 bp = buf; 6073 for (;;) { 6074 /* 6075 * If there are more MAC address bytes available, but we won't 6076 * have any room to print them, then add "..." to the string 6077 * instead. See below for the 'magic number' explanation. 6078 */ 6079 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6080 (void) strcpy(bp, "..."); 6081 break; 6082 } 6083 (void) sprintf(bp, "%02x", *addr++); 6084 bp += 2; 6085 if (--alen == 0) 6086 break; 6087 *bp++ = ':'; 6088 buflen -= 3; 6089 /* 6090 * At this point, based on the first 'if' statement above, 6091 * either alen == 1 and buflen >= 3, or alen > 1 and 6092 * buflen >= 4. The first case leaves room for the final "xx" 6093 * number and trailing NUL byte. The second leaves room for at 6094 * least "...". Thus the apparently 'magic' numbers chosen for 6095 * that statement. 6096 */ 6097 } 6098 return (buf); 6099 } 6100 6101 /* 6102 * Send an ICMP error after patching up the packet appropriately. Returns 6103 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6104 */ 6105 static boolean_t 6106 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6107 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6108 zoneid_t zoneid, ip_stack_t *ipst) 6109 { 6110 ipha_t *ipha; 6111 mblk_t *first_mp; 6112 boolean_t secure; 6113 unsigned char db_type; 6114 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6115 6116 first_mp = mp; 6117 if (mctl_present) { 6118 mp = mp->b_cont; 6119 secure = ipsec_in_is_secure(first_mp); 6120 ASSERT(mp != NULL); 6121 } else { 6122 /* 6123 * If this is an ICMP error being reported - which goes 6124 * up as M_CTLs, we need to convert them to M_DATA till 6125 * we finish checking with global policy because 6126 * ipsec_check_global_policy() assumes M_DATA as clear 6127 * and M_CTL as secure. 6128 */ 6129 db_type = DB_TYPE(mp); 6130 DB_TYPE(mp) = M_DATA; 6131 secure = B_FALSE; 6132 } 6133 /* 6134 * We are generating an icmp error for some inbound packet. 6135 * Called from all ip_fanout_(udp, tcp, proto) functions. 6136 * Before we generate an error, check with global policy 6137 * to see whether this is allowed to enter the system. As 6138 * there is no "conn", we are checking with global policy. 6139 */ 6140 ipha = (ipha_t *)mp->b_rptr; 6141 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6142 first_mp = ipsec_check_global_policy(first_mp, NULL, 6143 ipha, NULL, mctl_present, ipst->ips_netstack); 6144 if (first_mp == NULL) 6145 return (B_FALSE); 6146 } 6147 6148 if (!mctl_present) 6149 DB_TYPE(mp) = db_type; 6150 6151 if (flags & IP_FF_SEND_ICMP) { 6152 if (flags & IP_FF_HDR_COMPLETE) { 6153 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6154 freemsg(first_mp); 6155 return (B_TRUE); 6156 } 6157 } 6158 if (flags & IP_FF_CKSUM) { 6159 /* 6160 * Have to correct checksum since 6161 * the packet might have been 6162 * fragmented and the reassembly code in ip_rput 6163 * does not restore the IP checksum. 6164 */ 6165 ipha->ipha_hdr_checksum = 0; 6166 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6167 } 6168 switch (icmp_type) { 6169 case ICMP_DEST_UNREACHABLE: 6170 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6171 ipst); 6172 break; 6173 default: 6174 freemsg(first_mp); 6175 break; 6176 } 6177 } else { 6178 freemsg(first_mp); 6179 return (B_FALSE); 6180 } 6181 6182 return (B_TRUE); 6183 } 6184 6185 /* 6186 * Used to send an ICMP error message when a packet is received for 6187 * a protocol that is not supported. The mblk passed as argument 6188 * is consumed by this function. 6189 */ 6190 void 6191 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6192 ip_stack_t *ipst) 6193 { 6194 mblk_t *mp; 6195 ipha_t *ipha; 6196 ill_t *ill; 6197 ipsec_in_t *ii; 6198 6199 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6200 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6201 6202 mp = ipsec_mp->b_cont; 6203 ipsec_mp->b_cont = NULL; 6204 ipha = (ipha_t *)mp->b_rptr; 6205 /* Get ill from index in ipsec_in_t. */ 6206 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6207 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6208 ipst); 6209 if (ill != NULL) { 6210 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6211 if (ip_fanout_send_icmp(q, mp, flags, 6212 ICMP_DEST_UNREACHABLE, 6213 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6214 BUMP_MIB(ill->ill_ip_mib, 6215 ipIfStatsInUnknownProtos); 6216 } 6217 } else { 6218 if (ip_fanout_send_icmp_v6(q, mp, flags, 6219 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6220 0, B_FALSE, zoneid, ipst)) { 6221 BUMP_MIB(ill->ill_ip_mib, 6222 ipIfStatsInUnknownProtos); 6223 } 6224 } 6225 ill_refrele(ill); 6226 } else { /* re-link for the freemsg() below. */ 6227 ipsec_mp->b_cont = mp; 6228 } 6229 6230 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6231 freemsg(ipsec_mp); 6232 } 6233 6234 /* 6235 * See if the inbound datagram has had IPsec processing applied to it. 6236 */ 6237 boolean_t 6238 ipsec_in_is_secure(mblk_t *ipsec_mp) 6239 { 6240 ipsec_in_t *ii; 6241 6242 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6243 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6244 6245 if (ii->ipsec_in_loopback) { 6246 return (ii->ipsec_in_secure); 6247 } else { 6248 return (ii->ipsec_in_ah_sa != NULL || 6249 ii->ipsec_in_esp_sa != NULL || 6250 ii->ipsec_in_decaps); 6251 } 6252 } 6253 6254 /* 6255 * Handle protocols with which IP is less intimate. There 6256 * can be more than one stream bound to a particular 6257 * protocol. When this is the case, normally each one gets a copy 6258 * of any incoming packets. 6259 * 6260 * IPsec NOTE : 6261 * 6262 * Don't allow a secure packet going up a non-secure connection. 6263 * We don't allow this because 6264 * 6265 * 1) Reply might go out in clear which will be dropped at 6266 * the sending side. 6267 * 2) If the reply goes out in clear it will give the 6268 * adversary enough information for getting the key in 6269 * most of the cases. 6270 * 6271 * Moreover getting a secure packet when we expect clear 6272 * implies that SA's were added without checking for 6273 * policy on both ends. This should not happen once ISAKMP 6274 * is used to negotiate SAs as SAs will be added only after 6275 * verifying the policy. 6276 * 6277 * NOTE : If the packet was tunneled and not multicast we only send 6278 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6279 * back to delivering packets to AF_INET6 raw sockets. 6280 * 6281 * IPQoS Notes: 6282 * Once we have determined the client, invoke IPPF processing. 6283 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6284 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6285 * ip_policy will be false. 6286 * 6287 * Zones notes: 6288 * Currently only applications in the global zone can create raw sockets for 6289 * protocols other than ICMP. So unlike the broadcast / multicast case of 6290 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6291 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6292 */ 6293 static void 6294 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6295 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6296 zoneid_t zoneid) 6297 { 6298 queue_t *rq; 6299 mblk_t *mp1, *first_mp1; 6300 uint_t protocol = ipha->ipha_protocol; 6301 ipaddr_t dst; 6302 boolean_t one_only; 6303 mblk_t *first_mp = mp; 6304 boolean_t secure; 6305 uint32_t ill_index; 6306 conn_t *connp, *first_connp, *next_connp; 6307 connf_t *connfp; 6308 boolean_t shared_addr; 6309 mib2_ipIfStatsEntry_t *mibptr; 6310 ip_stack_t *ipst = recv_ill->ill_ipst; 6311 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6312 6313 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6314 if (mctl_present) { 6315 mp = first_mp->b_cont; 6316 secure = ipsec_in_is_secure(first_mp); 6317 ASSERT(mp != NULL); 6318 } else { 6319 secure = B_FALSE; 6320 } 6321 dst = ipha->ipha_dst; 6322 /* 6323 * If the packet was tunneled and not multicast we only send to it 6324 * the first match. 6325 */ 6326 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6327 !CLASSD(dst)); 6328 6329 shared_addr = (zoneid == ALL_ZONES); 6330 if (shared_addr) { 6331 /* 6332 * We don't allow multilevel ports for raw IP, so no need to 6333 * check for that here. 6334 */ 6335 zoneid = tsol_packet_to_zoneid(mp); 6336 } 6337 6338 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6339 mutex_enter(&connfp->connf_lock); 6340 connp = connfp->connf_head; 6341 for (connp = connfp->connf_head; connp != NULL; 6342 connp = connp->conn_next) { 6343 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6344 zoneid) && 6345 (!is_system_labeled() || 6346 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6347 connp))) { 6348 break; 6349 } 6350 } 6351 6352 if (connp == NULL || connp->conn_upq == NULL) { 6353 /* 6354 * No one bound to these addresses. Is 6355 * there a client that wants all 6356 * unclaimed datagrams? 6357 */ 6358 mutex_exit(&connfp->connf_lock); 6359 /* 6360 * Check for IPPROTO_ENCAP... 6361 */ 6362 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6363 /* 6364 * If an IPsec mblk is here on a multicast 6365 * tunnel (using ip_mroute stuff), check policy here, 6366 * THEN ship off to ip_mroute_decap(). 6367 * 6368 * BTW, If I match a configured IP-in-IP 6369 * tunnel, this path will not be reached, and 6370 * ip_mroute_decap will never be called. 6371 */ 6372 first_mp = ipsec_check_global_policy(first_mp, connp, 6373 ipha, NULL, mctl_present, ipst->ips_netstack); 6374 if (first_mp != NULL) { 6375 if (mctl_present) 6376 freeb(first_mp); 6377 ip_mroute_decap(q, mp, ill); 6378 } /* Else we already freed everything! */ 6379 } else { 6380 /* 6381 * Otherwise send an ICMP protocol unreachable. 6382 */ 6383 if (ip_fanout_send_icmp(q, first_mp, flags, 6384 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6385 mctl_present, zoneid, ipst)) { 6386 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6387 } 6388 } 6389 return; 6390 } 6391 CONN_INC_REF(connp); 6392 first_connp = connp; 6393 6394 /* 6395 * Only send message to one tunnel driver by immediately 6396 * terminating the loop. 6397 */ 6398 connp = one_only ? NULL : connp->conn_next; 6399 6400 for (;;) { 6401 while (connp != NULL) { 6402 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6403 flags, zoneid) && 6404 (!is_system_labeled() || 6405 tsol_receive_local(mp, &dst, IPV4_VERSION, 6406 shared_addr, connp))) 6407 break; 6408 connp = connp->conn_next; 6409 } 6410 6411 /* 6412 * Copy the packet. 6413 */ 6414 if (connp == NULL || connp->conn_upq == NULL || 6415 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6416 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6417 /* 6418 * No more interested clients or memory 6419 * allocation failed 6420 */ 6421 connp = first_connp; 6422 break; 6423 } 6424 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6425 CONN_INC_REF(connp); 6426 mutex_exit(&connfp->connf_lock); 6427 rq = connp->conn_rq; 6428 if (!canputnext(rq)) { 6429 if (flags & IP_FF_RAWIP) { 6430 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6431 } else { 6432 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6433 } 6434 6435 freemsg(first_mp1); 6436 } else { 6437 /* 6438 * Don't enforce here if we're an actual tunnel - 6439 * let "tun" do it instead. 6440 */ 6441 if (!IPCL_IS_IPTUN(connp) && 6442 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6443 secure)) { 6444 first_mp1 = ipsec_check_inbound_policy 6445 (first_mp1, connp, ipha, NULL, 6446 mctl_present); 6447 } 6448 if (first_mp1 != NULL) { 6449 int in_flags = 0; 6450 /* 6451 * ip_fanout_proto also gets called from 6452 * icmp_inbound_error_fanout, in which case 6453 * the msg type is M_CTL. Don't add info 6454 * in this case for the time being. In future 6455 * when there is a need for knowing the 6456 * inbound iface index for ICMP error msgs, 6457 * then this can be changed. 6458 */ 6459 if (connp->conn_recvif) 6460 in_flags = IPF_RECVIF; 6461 /* 6462 * The ULP may support IP_RECVPKTINFO for both 6463 * IP v4 and v6 so pass the appropriate argument 6464 * based on conn IP version. 6465 */ 6466 if (connp->conn_ip_recvpktinfo) { 6467 if (connp->conn_af_isv6) { 6468 /* 6469 * V6 only needs index 6470 */ 6471 in_flags |= IPF_RECVIF; 6472 } else { 6473 /* 6474 * V4 needs index + 6475 * matching address. 6476 */ 6477 in_flags |= IPF_RECVADDR; 6478 } 6479 } 6480 if ((in_flags != 0) && 6481 (mp->b_datap->db_type != M_CTL)) { 6482 /* 6483 * the actual data will be 6484 * contained in b_cont upon 6485 * successful return of the 6486 * following call else 6487 * original mblk is returned 6488 */ 6489 ASSERT(recv_ill != NULL); 6490 mp1 = ip_add_info(mp1, recv_ill, 6491 in_flags, IPCL_ZONEID(connp), ipst); 6492 } 6493 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6494 if (mctl_present) 6495 freeb(first_mp1); 6496 (connp->conn_recv)(connp, mp1, NULL); 6497 } 6498 } 6499 mutex_enter(&connfp->connf_lock); 6500 /* Follow the next pointer before releasing the conn. */ 6501 next_connp = connp->conn_next; 6502 CONN_DEC_REF(connp); 6503 connp = next_connp; 6504 } 6505 6506 /* Last one. Send it upstream. */ 6507 mutex_exit(&connfp->connf_lock); 6508 6509 /* 6510 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6511 * will be set to false. 6512 */ 6513 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6514 ill_index = ill->ill_phyint->phyint_ifindex; 6515 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6516 if (mp == NULL) { 6517 CONN_DEC_REF(connp); 6518 if (mctl_present) { 6519 freeb(first_mp); 6520 } 6521 return; 6522 } 6523 } 6524 6525 rq = connp->conn_rq; 6526 if (!canputnext(rq)) { 6527 if (flags & IP_FF_RAWIP) { 6528 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6529 } else { 6530 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6531 } 6532 6533 freemsg(first_mp); 6534 } else { 6535 if (IPCL_IS_IPTUN(connp)) { 6536 /* 6537 * Tunneled packet. We enforce policy in the tunnel 6538 * module itself. 6539 * 6540 * Send the WHOLE packet up (incl. IPSEC_IN) without 6541 * a policy check. 6542 * FIXME to use conn_recv for tun later. 6543 */ 6544 putnext(rq, first_mp); 6545 CONN_DEC_REF(connp); 6546 return; 6547 } 6548 6549 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6550 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6551 ipha, NULL, mctl_present); 6552 } 6553 6554 if (first_mp != NULL) { 6555 int in_flags = 0; 6556 6557 /* 6558 * ip_fanout_proto also gets called 6559 * from icmp_inbound_error_fanout, in 6560 * which case the msg type is M_CTL. 6561 * Don't add info in this case for time 6562 * being. In future when there is a 6563 * need for knowing the inbound iface 6564 * index for ICMP error msgs, then this 6565 * can be changed 6566 */ 6567 if (connp->conn_recvif) 6568 in_flags = IPF_RECVIF; 6569 if (connp->conn_ip_recvpktinfo) { 6570 if (connp->conn_af_isv6) { 6571 /* 6572 * V6 only needs index 6573 */ 6574 in_flags |= IPF_RECVIF; 6575 } else { 6576 /* 6577 * V4 needs index + 6578 * matching address. 6579 */ 6580 in_flags |= IPF_RECVADDR; 6581 } 6582 } 6583 if ((in_flags != 0) && 6584 (mp->b_datap->db_type != M_CTL)) { 6585 6586 /* 6587 * the actual data will be contained in 6588 * b_cont upon successful return 6589 * of the following call else original 6590 * mblk is returned 6591 */ 6592 ASSERT(recv_ill != NULL); 6593 mp = ip_add_info(mp, recv_ill, 6594 in_flags, IPCL_ZONEID(connp), ipst); 6595 } 6596 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6597 (connp->conn_recv)(connp, mp, NULL); 6598 if (mctl_present) 6599 freeb(first_mp); 6600 } 6601 } 6602 CONN_DEC_REF(connp); 6603 } 6604 6605 /* 6606 * Fanout for TCP packets 6607 * The caller puts <fport, lport> in the ports parameter. 6608 * 6609 * IPQoS Notes 6610 * Before sending it to the client, invoke IPPF processing. 6611 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6612 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6613 * ip_policy is false. 6614 */ 6615 static void 6616 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6617 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6618 { 6619 mblk_t *first_mp; 6620 boolean_t secure; 6621 uint32_t ill_index; 6622 int ip_hdr_len; 6623 tcph_t *tcph; 6624 boolean_t syn_present = B_FALSE; 6625 conn_t *connp; 6626 ip_stack_t *ipst = recv_ill->ill_ipst; 6627 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6628 6629 ASSERT(recv_ill != NULL); 6630 6631 first_mp = mp; 6632 if (mctl_present) { 6633 ASSERT(first_mp->b_datap->db_type == M_CTL); 6634 mp = first_mp->b_cont; 6635 secure = ipsec_in_is_secure(first_mp); 6636 ASSERT(mp != NULL); 6637 } else { 6638 secure = B_FALSE; 6639 } 6640 6641 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6642 6643 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6644 zoneid, ipst)) == NULL) { 6645 /* 6646 * No connected connection or listener. Send a 6647 * TH_RST via tcp_xmit_listeners_reset. 6648 */ 6649 6650 /* Initiate IPPf processing, if needed. */ 6651 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6652 uint32_t ill_index; 6653 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6654 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6655 if (first_mp == NULL) 6656 return; 6657 } 6658 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6659 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6660 zoneid)); 6661 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6662 ipst->ips_netstack->netstack_tcp, NULL); 6663 return; 6664 } 6665 6666 /* 6667 * Allocate the SYN for the TCP connection here itself 6668 */ 6669 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6670 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6671 if (IPCL_IS_TCP(connp)) { 6672 squeue_t *sqp; 6673 6674 /* 6675 * For fused tcp loopback, assign the eager's 6676 * squeue to be that of the active connect's. 6677 * Note that we don't check for IP_FF_LOOPBACK 6678 * here since this routine gets called only 6679 * for loopback (unlike the IPv6 counterpart). 6680 */ 6681 ASSERT(Q_TO_CONN(q) != NULL); 6682 if (do_tcp_fusion && 6683 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6684 !secure && 6685 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6686 IPCL_IS_TCP(Q_TO_CONN(q))) { 6687 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6688 sqp = Q_TO_CONN(q)->conn_sqp; 6689 } else { 6690 sqp = IP_SQUEUE_GET(lbolt); 6691 } 6692 6693 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6694 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6695 syn_present = B_TRUE; 6696 } 6697 } 6698 6699 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6700 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6701 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6702 if ((flags & TH_RST) || (flags & TH_URG)) { 6703 CONN_DEC_REF(connp); 6704 freemsg(first_mp); 6705 return; 6706 } 6707 if (flags & TH_ACK) { 6708 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6709 ipst->ips_netstack->netstack_tcp, connp); 6710 CONN_DEC_REF(connp); 6711 return; 6712 } 6713 6714 CONN_DEC_REF(connp); 6715 freemsg(first_mp); 6716 return; 6717 } 6718 6719 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6720 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6721 NULL, mctl_present); 6722 if (first_mp == NULL) { 6723 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6724 CONN_DEC_REF(connp); 6725 return; 6726 } 6727 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6728 ASSERT(syn_present); 6729 if (mctl_present) { 6730 ASSERT(first_mp != mp); 6731 first_mp->b_datap->db_struioflag |= 6732 STRUIO_POLICY; 6733 } else { 6734 ASSERT(first_mp == mp); 6735 mp->b_datap->db_struioflag &= 6736 ~STRUIO_EAGER; 6737 mp->b_datap->db_struioflag |= 6738 STRUIO_POLICY; 6739 } 6740 } else { 6741 /* 6742 * Discard first_mp early since we're dealing with a 6743 * fully-connected conn_t and tcp doesn't do policy in 6744 * this case. 6745 */ 6746 if (mctl_present) { 6747 freeb(first_mp); 6748 mctl_present = B_FALSE; 6749 } 6750 first_mp = mp; 6751 } 6752 } 6753 6754 /* 6755 * Initiate policy processing here if needed. If we get here from 6756 * icmp_inbound_error_fanout, ip_policy is false. 6757 */ 6758 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6759 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6760 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6761 if (mp == NULL) { 6762 CONN_DEC_REF(connp); 6763 if (mctl_present) 6764 freeb(first_mp); 6765 return; 6766 } else if (mctl_present) { 6767 ASSERT(first_mp != mp); 6768 first_mp->b_cont = mp; 6769 } else { 6770 first_mp = mp; 6771 } 6772 } 6773 6774 6775 6776 /* Handle socket options. */ 6777 if (!syn_present && 6778 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6779 /* Add header */ 6780 ASSERT(recv_ill != NULL); 6781 /* 6782 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6783 * IPF_RECVIF. 6784 */ 6785 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6786 ipst); 6787 if (mp == NULL) { 6788 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6789 CONN_DEC_REF(connp); 6790 if (mctl_present) 6791 freeb(first_mp); 6792 return; 6793 } else if (mctl_present) { 6794 /* 6795 * ip_add_info might return a new mp. 6796 */ 6797 ASSERT(first_mp != mp); 6798 first_mp->b_cont = mp; 6799 } else { 6800 first_mp = mp; 6801 } 6802 } 6803 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6804 if (IPCL_IS_TCP(connp)) { 6805 /* do not drain, certain use cases can blow the stack */ 6806 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6807 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6808 } else { 6809 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6810 (connp->conn_recv)(connp, first_mp, NULL); 6811 CONN_DEC_REF(connp); 6812 } 6813 } 6814 6815 /* 6816 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6817 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6818 * is not consumed. 6819 * 6820 * One of four things can happen, all of which affect the passed-in mblk: 6821 * 6822 * 1.) ICMP messages that go through here just get returned TRUE. 6823 * 6824 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6825 * 6826 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6827 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6828 * 6829 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6830 */ 6831 static boolean_t 6832 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6833 ipsec_stack_t *ipss) 6834 { 6835 int shift, plen, iph_len; 6836 ipha_t *ipha; 6837 udpha_t *udpha; 6838 uint32_t *spi; 6839 uint8_t *orptr; 6840 boolean_t udp_pkt, free_ire; 6841 6842 if (DB_TYPE(mp) == M_CTL) { 6843 /* 6844 * ICMP message with UDP inside. Don't bother stripping, just 6845 * send it up. 6846 * 6847 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6848 * to ignore errors set by ICMP anyway ('cause they might be 6849 * forged), but that's the app's decision, not ours. 6850 */ 6851 6852 /* Bunch of reality checks for DEBUG kernels... */ 6853 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6854 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6855 6856 return (B_TRUE); 6857 } 6858 6859 ipha = (ipha_t *)mp->b_rptr; 6860 iph_len = IPH_HDR_LENGTH(ipha); 6861 plen = ntohs(ipha->ipha_length); 6862 6863 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6864 /* 6865 * Most likely a keepalive for the benefit of an intervening 6866 * NAT. These aren't for us, per se, so drop it. 6867 * 6868 * RFC 3947/8 doesn't say for sure what to do for 2-3 6869 * byte packets (keepalives are 1-byte), but we'll drop them 6870 * also. 6871 */ 6872 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6873 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6874 return (B_FALSE); 6875 } 6876 6877 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6878 /* might as well pull it all up - it might be ESP. */ 6879 if (!pullupmsg(mp, -1)) { 6880 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6881 DROPPER(ipss, ipds_esp_nomem), 6882 &ipss->ipsec_dropper); 6883 return (B_FALSE); 6884 } 6885 6886 ipha = (ipha_t *)mp->b_rptr; 6887 } 6888 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6889 if (*spi == 0) { 6890 /* UDP packet - remove 0-spi. */ 6891 shift = sizeof (uint32_t); 6892 } else { 6893 /* ESP-in-UDP packet - reduce to ESP. */ 6894 ipha->ipha_protocol = IPPROTO_ESP; 6895 shift = sizeof (udpha_t); 6896 } 6897 6898 /* Fix IP header */ 6899 ipha->ipha_length = htons(plen - shift); 6900 ipha->ipha_hdr_checksum = 0; 6901 6902 orptr = mp->b_rptr; 6903 mp->b_rptr += shift; 6904 6905 if (*spi == 0) { 6906 ASSERT((uint8_t *)ipha == orptr); 6907 udpha = (udpha_t *)(orptr + iph_len); 6908 udpha->uha_length = htons(plen - shift - iph_len); 6909 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6910 udp_pkt = B_TRUE; 6911 } else { 6912 udp_pkt = B_FALSE; 6913 } 6914 ovbcopy(orptr, orptr + shift, iph_len); 6915 if (!udp_pkt) /* Punt up for ESP processing. */ { 6916 ipha = (ipha_t *)(orptr + shift); 6917 6918 free_ire = (ire == NULL); 6919 if (free_ire) { 6920 /* Re-acquire ire. */ 6921 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6922 ipss->ipsec_netstack->netstack_ip); 6923 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6924 if (ire != NULL) 6925 ire_refrele(ire); 6926 /* 6927 * Do a regular freemsg(), as this is an IP 6928 * error (no local route) not an IPsec one. 6929 */ 6930 freemsg(mp); 6931 } 6932 } 6933 6934 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 6935 if (free_ire) 6936 ire_refrele(ire); 6937 } 6938 6939 return (udp_pkt); 6940 } 6941 6942 /* 6943 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6944 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6945 * Caller is responsible for dropping references to the conn, and freeing 6946 * first_mp. 6947 * 6948 * IPQoS Notes 6949 * Before sending it to the client, invoke IPPF processing. Policy processing 6950 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6951 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6952 * ip_wput_local, ip_policy is false. 6953 */ 6954 static void 6955 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6956 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6957 boolean_t ip_policy) 6958 { 6959 boolean_t mctl_present = (first_mp != NULL); 6960 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6961 uint32_t ill_index; 6962 ip_stack_t *ipst = recv_ill->ill_ipst; 6963 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6964 6965 ASSERT(ill != NULL); 6966 6967 if (mctl_present) 6968 first_mp->b_cont = mp; 6969 else 6970 first_mp = mp; 6971 6972 if (CONN_UDP_FLOWCTLD(connp)) { 6973 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6974 freemsg(first_mp); 6975 return; 6976 } 6977 6978 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6979 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6980 NULL, mctl_present); 6981 if (first_mp == NULL) { 6982 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6983 return; /* Freed by ipsec_check_inbound_policy(). */ 6984 } 6985 } 6986 if (mctl_present) 6987 freeb(first_mp); 6988 6989 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 6990 if (connp->conn_udp->udp_nat_t_endpoint) { 6991 if (mctl_present) { 6992 /* mctl_present *shouldn't* happen. */ 6993 ip_drop_packet(mp, B_TRUE, NULL, NULL, 6994 DROPPER(ipss, ipds_esp_nat_t_ipsec), 6995 &ipss->ipsec_dropper); 6996 return; 6997 } 6998 6999 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7000 return; 7001 } 7002 7003 /* Handle options. */ 7004 if (connp->conn_recvif) 7005 in_flags = IPF_RECVIF; 7006 /* 7007 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7008 * passed to ip_add_info is based on IP version of connp. 7009 */ 7010 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7011 if (connp->conn_af_isv6) { 7012 /* 7013 * V6 only needs index 7014 */ 7015 in_flags |= IPF_RECVIF; 7016 } else { 7017 /* 7018 * V4 needs index + matching address. 7019 */ 7020 in_flags |= IPF_RECVADDR; 7021 } 7022 } 7023 7024 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7025 in_flags |= IPF_RECVSLLA; 7026 7027 /* 7028 * Initiate IPPF processing here, if needed. Note first_mp won't be 7029 * freed if the packet is dropped. The caller will do so. 7030 */ 7031 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7032 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7033 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7034 if (mp == NULL) { 7035 return; 7036 } 7037 } 7038 if ((in_flags != 0) && 7039 (mp->b_datap->db_type != M_CTL)) { 7040 /* 7041 * The actual data will be contained in b_cont 7042 * upon successful return of the following call 7043 * else original mblk is returned 7044 */ 7045 ASSERT(recv_ill != NULL); 7046 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7047 ipst); 7048 } 7049 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7050 /* Send it upstream */ 7051 (connp->conn_recv)(connp, mp, NULL); 7052 } 7053 7054 /* 7055 * Fanout for UDP packets. 7056 * The caller puts <fport, lport> in the ports parameter. 7057 * 7058 * If SO_REUSEADDR is set all multicast and broadcast packets 7059 * will be delivered to all streams bound to the same port. 7060 * 7061 * Zones notes: 7062 * Multicast and broadcast packets will be distributed to streams in all zones. 7063 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7064 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7065 * packets. To maintain this behavior with multiple zones, the conns are grouped 7066 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7067 * each zone. If unset, all the following conns in the same zone are skipped. 7068 */ 7069 static void 7070 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7071 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7072 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7073 { 7074 uint32_t dstport, srcport; 7075 ipaddr_t dst; 7076 mblk_t *first_mp; 7077 boolean_t secure; 7078 in6_addr_t v6src; 7079 conn_t *connp; 7080 connf_t *connfp; 7081 conn_t *first_connp; 7082 conn_t *next_connp; 7083 mblk_t *mp1, *first_mp1; 7084 ipaddr_t src; 7085 zoneid_t last_zoneid; 7086 boolean_t reuseaddr; 7087 boolean_t shared_addr; 7088 boolean_t unlabeled; 7089 ip_stack_t *ipst; 7090 7091 ASSERT(recv_ill != NULL); 7092 ipst = recv_ill->ill_ipst; 7093 7094 first_mp = mp; 7095 if (mctl_present) { 7096 mp = first_mp->b_cont; 7097 first_mp->b_cont = NULL; 7098 secure = ipsec_in_is_secure(first_mp); 7099 ASSERT(mp != NULL); 7100 } else { 7101 first_mp = NULL; 7102 secure = B_FALSE; 7103 } 7104 7105 /* Extract ports in net byte order */ 7106 dstport = htons(ntohl(ports) & 0xFFFF); 7107 srcport = htons(ntohl(ports) >> 16); 7108 dst = ipha->ipha_dst; 7109 src = ipha->ipha_src; 7110 7111 unlabeled = B_FALSE; 7112 if (is_system_labeled()) 7113 /* Cred cannot be null on IPv4 */ 7114 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7115 TSLF_UNLABELED) != 0; 7116 shared_addr = (zoneid == ALL_ZONES); 7117 if (shared_addr) { 7118 /* 7119 * No need to handle exclusive-stack zones since ALL_ZONES 7120 * only applies to the shared stack. 7121 */ 7122 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7123 /* 7124 * If no shared MLP is found, tsol_mlp_findzone returns 7125 * ALL_ZONES. In that case, we assume it's SLP, and 7126 * search for the zone based on the packet label. 7127 * 7128 * If there is such a zone, we prefer to find a 7129 * connection in it. Otherwise, we look for a 7130 * MAC-exempt connection in any zone whose label 7131 * dominates the default label on the packet. 7132 */ 7133 if (zoneid == ALL_ZONES) 7134 zoneid = tsol_packet_to_zoneid(mp); 7135 else 7136 unlabeled = B_FALSE; 7137 } 7138 7139 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7140 mutex_enter(&connfp->connf_lock); 7141 connp = connfp->connf_head; 7142 if (!broadcast && !CLASSD(dst)) { 7143 /* 7144 * Not broadcast or multicast. Send to the one (first) 7145 * client we find. No need to check conn_wantpacket() 7146 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7147 * IPv4 unicast packets. 7148 */ 7149 while ((connp != NULL) && 7150 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7151 (!IPCL_ZONE_MATCH(connp, zoneid) && 7152 !(unlabeled && connp->conn_mac_exempt)))) { 7153 /* 7154 * We keep searching since the conn did not match, 7155 * or its zone did not match and it is not either 7156 * an allzones conn or a mac exempt conn (if the 7157 * sender is unlabeled.) 7158 */ 7159 connp = connp->conn_next; 7160 } 7161 7162 if (connp == NULL || connp->conn_upq == NULL) 7163 goto notfound; 7164 7165 if (is_system_labeled() && 7166 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7167 connp)) 7168 goto notfound; 7169 7170 CONN_INC_REF(connp); 7171 mutex_exit(&connfp->connf_lock); 7172 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7173 flags, recv_ill, ip_policy); 7174 IP_STAT(ipst, ip_udp_fannorm); 7175 CONN_DEC_REF(connp); 7176 return; 7177 } 7178 7179 /* 7180 * Broadcast and multicast case 7181 * 7182 * Need to check conn_wantpacket(). 7183 * If SO_REUSEADDR has been set on the first we send the 7184 * packet to all clients that have joined the group and 7185 * match the port. 7186 */ 7187 7188 while (connp != NULL) { 7189 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7190 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7191 (!is_system_labeled() || 7192 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7193 connp))) 7194 break; 7195 connp = connp->conn_next; 7196 } 7197 7198 if (connp == NULL || connp->conn_upq == NULL) 7199 goto notfound; 7200 7201 first_connp = connp; 7202 /* 7203 * When SO_REUSEADDR is not set, send the packet only to the first 7204 * matching connection in its zone by keeping track of the zoneid. 7205 */ 7206 reuseaddr = first_connp->conn_reuseaddr; 7207 last_zoneid = first_connp->conn_zoneid; 7208 7209 CONN_INC_REF(connp); 7210 connp = connp->conn_next; 7211 for (;;) { 7212 while (connp != NULL) { 7213 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7214 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7215 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7216 (!is_system_labeled() || 7217 tsol_receive_local(mp, &dst, IPV4_VERSION, 7218 shared_addr, connp))) 7219 break; 7220 connp = connp->conn_next; 7221 } 7222 /* 7223 * Just copy the data part alone. The mctl part is 7224 * needed just for verifying policy and it is never 7225 * sent up. 7226 */ 7227 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7228 ((mp1 = copymsg(mp)) == NULL))) { 7229 /* 7230 * No more interested clients or memory 7231 * allocation failed 7232 */ 7233 connp = first_connp; 7234 break; 7235 } 7236 if (connp->conn_zoneid != last_zoneid) { 7237 /* 7238 * Update the zoneid so that the packet isn't sent to 7239 * any more conns in the same zone unless SO_REUSEADDR 7240 * is set. 7241 */ 7242 reuseaddr = connp->conn_reuseaddr; 7243 last_zoneid = connp->conn_zoneid; 7244 } 7245 if (first_mp != NULL) { 7246 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7247 ipsec_info_type == IPSEC_IN); 7248 first_mp1 = ipsec_in_tag(first_mp, NULL, 7249 ipst->ips_netstack); 7250 if (first_mp1 == NULL) { 7251 freemsg(mp1); 7252 connp = first_connp; 7253 break; 7254 } 7255 } else { 7256 first_mp1 = NULL; 7257 } 7258 CONN_INC_REF(connp); 7259 mutex_exit(&connfp->connf_lock); 7260 /* 7261 * IPQoS notes: We don't send the packet for policy 7262 * processing here, will do it for the last one (below). 7263 * i.e. we do it per-packet now, but if we do policy 7264 * processing per-conn, then we would need to do it 7265 * here too. 7266 */ 7267 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7268 ipha, flags, recv_ill, B_FALSE); 7269 mutex_enter(&connfp->connf_lock); 7270 /* Follow the next pointer before releasing the conn. */ 7271 next_connp = connp->conn_next; 7272 IP_STAT(ipst, ip_udp_fanmb); 7273 CONN_DEC_REF(connp); 7274 connp = next_connp; 7275 } 7276 7277 /* Last one. Send it upstream. */ 7278 mutex_exit(&connfp->connf_lock); 7279 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7280 recv_ill, ip_policy); 7281 IP_STAT(ipst, ip_udp_fanmb); 7282 CONN_DEC_REF(connp); 7283 return; 7284 7285 notfound: 7286 7287 mutex_exit(&connfp->connf_lock); 7288 IP_STAT(ipst, ip_udp_fanothers); 7289 /* 7290 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7291 * have already been matched above, since they live in the IPv4 7292 * fanout tables. This implies we only need to 7293 * check for IPv6 in6addr_any endpoints here. 7294 * Thus we compare using ipv6_all_zeros instead of the destination 7295 * address, except for the multicast group membership lookup which 7296 * uses the IPv4 destination. 7297 */ 7298 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7299 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7300 mutex_enter(&connfp->connf_lock); 7301 connp = connfp->connf_head; 7302 if (!broadcast && !CLASSD(dst)) { 7303 while (connp != NULL) { 7304 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7305 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7306 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7307 !connp->conn_ipv6_v6only) 7308 break; 7309 connp = connp->conn_next; 7310 } 7311 7312 if (connp != NULL && is_system_labeled() && 7313 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7314 connp)) 7315 connp = NULL; 7316 7317 if (connp == NULL || connp->conn_upq == NULL) { 7318 /* 7319 * No one bound to this port. Is 7320 * there a client that wants all 7321 * unclaimed datagrams? 7322 */ 7323 mutex_exit(&connfp->connf_lock); 7324 7325 if (mctl_present) 7326 first_mp->b_cont = mp; 7327 else 7328 first_mp = mp; 7329 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7330 connf_head != NULL) { 7331 ip_fanout_proto(q, first_mp, ill, ipha, 7332 flags | IP_FF_RAWIP, mctl_present, 7333 ip_policy, recv_ill, zoneid); 7334 } else { 7335 if (ip_fanout_send_icmp(q, first_mp, flags, 7336 ICMP_DEST_UNREACHABLE, 7337 ICMP_PORT_UNREACHABLE, 7338 mctl_present, zoneid, ipst)) { 7339 BUMP_MIB(ill->ill_ip_mib, 7340 udpIfStatsNoPorts); 7341 } 7342 } 7343 return; 7344 } 7345 7346 CONN_INC_REF(connp); 7347 mutex_exit(&connfp->connf_lock); 7348 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7349 flags, recv_ill, ip_policy); 7350 CONN_DEC_REF(connp); 7351 return; 7352 } 7353 /* 7354 * IPv4 multicast packet being delivered to an AF_INET6 7355 * in6addr_any endpoint. 7356 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7357 * and not conn_wantpacket_v6() since any multicast membership is 7358 * for an IPv4-mapped multicast address. 7359 * The packet is sent to all clients in all zones that have joined the 7360 * group and match the port. 7361 */ 7362 while (connp != NULL) { 7363 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7364 srcport, v6src) && 7365 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7366 (!is_system_labeled() || 7367 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7368 connp))) 7369 break; 7370 connp = connp->conn_next; 7371 } 7372 7373 if (connp == NULL || connp->conn_upq == NULL) { 7374 /* 7375 * No one bound to this port. Is 7376 * there a client that wants all 7377 * unclaimed datagrams? 7378 */ 7379 mutex_exit(&connfp->connf_lock); 7380 7381 if (mctl_present) 7382 first_mp->b_cont = mp; 7383 else 7384 first_mp = mp; 7385 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7386 NULL) { 7387 ip_fanout_proto(q, first_mp, ill, ipha, 7388 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7389 recv_ill, zoneid); 7390 } else { 7391 /* 7392 * We used to attempt to send an icmp error here, but 7393 * since this is known to be a multicast packet 7394 * and we don't send icmp errors in response to 7395 * multicast, just drop the packet and give up sooner. 7396 */ 7397 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7398 freemsg(first_mp); 7399 } 7400 return; 7401 } 7402 7403 first_connp = connp; 7404 7405 CONN_INC_REF(connp); 7406 connp = connp->conn_next; 7407 for (;;) { 7408 while (connp != NULL) { 7409 if (IPCL_UDP_MATCH_V6(connp, dstport, 7410 ipv6_all_zeros, srcport, v6src) && 7411 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7412 (!is_system_labeled() || 7413 tsol_receive_local(mp, &dst, IPV4_VERSION, 7414 shared_addr, connp))) 7415 break; 7416 connp = connp->conn_next; 7417 } 7418 /* 7419 * Just copy the data part alone. The mctl part is 7420 * needed just for verifying policy and it is never 7421 * sent up. 7422 */ 7423 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7424 ((mp1 = copymsg(mp)) == NULL))) { 7425 /* 7426 * No more intested clients or memory 7427 * allocation failed 7428 */ 7429 connp = first_connp; 7430 break; 7431 } 7432 if (first_mp != NULL) { 7433 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7434 ipsec_info_type == IPSEC_IN); 7435 first_mp1 = ipsec_in_tag(first_mp, NULL, 7436 ipst->ips_netstack); 7437 if (first_mp1 == NULL) { 7438 freemsg(mp1); 7439 connp = first_connp; 7440 break; 7441 } 7442 } else { 7443 first_mp1 = NULL; 7444 } 7445 CONN_INC_REF(connp); 7446 mutex_exit(&connfp->connf_lock); 7447 /* 7448 * IPQoS notes: We don't send the packet for policy 7449 * processing here, will do it for the last one (below). 7450 * i.e. we do it per-packet now, but if we do policy 7451 * processing per-conn, then we would need to do it 7452 * here too. 7453 */ 7454 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7455 ipha, flags, recv_ill, B_FALSE); 7456 mutex_enter(&connfp->connf_lock); 7457 /* Follow the next pointer before releasing the conn. */ 7458 next_connp = connp->conn_next; 7459 CONN_DEC_REF(connp); 7460 connp = next_connp; 7461 } 7462 7463 /* Last one. Send it upstream. */ 7464 mutex_exit(&connfp->connf_lock); 7465 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7466 recv_ill, ip_policy); 7467 CONN_DEC_REF(connp); 7468 } 7469 7470 /* 7471 * Complete the ip_wput header so that it 7472 * is possible to generate ICMP 7473 * errors. 7474 */ 7475 int 7476 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7477 { 7478 ire_t *ire; 7479 7480 if (ipha->ipha_src == INADDR_ANY) { 7481 ire = ire_lookup_local(zoneid, ipst); 7482 if (ire == NULL) { 7483 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7484 return (1); 7485 } 7486 ipha->ipha_src = ire->ire_addr; 7487 ire_refrele(ire); 7488 } 7489 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7490 ipha->ipha_hdr_checksum = 0; 7491 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7492 return (0); 7493 } 7494 7495 /* 7496 * Nobody should be sending 7497 * packets up this stream 7498 */ 7499 static void 7500 ip_lrput(queue_t *q, mblk_t *mp) 7501 { 7502 mblk_t *mp1; 7503 7504 switch (mp->b_datap->db_type) { 7505 case M_FLUSH: 7506 /* Turn around */ 7507 if (*mp->b_rptr & FLUSHW) { 7508 *mp->b_rptr &= ~FLUSHR; 7509 qreply(q, mp); 7510 return; 7511 } 7512 break; 7513 } 7514 /* Could receive messages that passed through ar_rput */ 7515 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7516 mp1->b_prev = mp1->b_next = NULL; 7517 freemsg(mp); 7518 } 7519 7520 /* Nobody should be sending packets down this stream */ 7521 /* ARGSUSED */ 7522 void 7523 ip_lwput(queue_t *q, mblk_t *mp) 7524 { 7525 freemsg(mp); 7526 } 7527 7528 /* 7529 * Move the first hop in any source route to ipha_dst and remove that part of 7530 * the source route. Called by other protocols. Errors in option formatting 7531 * are ignored - will be handled by ip_wput_options Return the final 7532 * destination (either ipha_dst or the last entry in a source route.) 7533 */ 7534 ipaddr_t 7535 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7536 { 7537 ipoptp_t opts; 7538 uchar_t *opt; 7539 uint8_t optval; 7540 uint8_t optlen; 7541 ipaddr_t dst; 7542 int i; 7543 ire_t *ire; 7544 ip_stack_t *ipst = ns->netstack_ip; 7545 7546 ip2dbg(("ip_massage_options\n")); 7547 dst = ipha->ipha_dst; 7548 for (optval = ipoptp_first(&opts, ipha); 7549 optval != IPOPT_EOL; 7550 optval = ipoptp_next(&opts)) { 7551 opt = opts.ipoptp_cur; 7552 switch (optval) { 7553 uint8_t off; 7554 case IPOPT_SSRR: 7555 case IPOPT_LSRR: 7556 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7557 ip1dbg(("ip_massage_options: bad src route\n")); 7558 break; 7559 } 7560 optlen = opts.ipoptp_len; 7561 off = opt[IPOPT_OFFSET]; 7562 off--; 7563 redo_srr: 7564 if (optlen < IP_ADDR_LEN || 7565 off > optlen - IP_ADDR_LEN) { 7566 /* End of source route */ 7567 ip1dbg(("ip_massage_options: end of SR\n")); 7568 break; 7569 } 7570 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7571 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7572 ntohl(dst))); 7573 /* 7574 * Check if our address is present more than 7575 * once as consecutive hops in source route. 7576 * XXX verify per-interface ip_forwarding 7577 * for source route? 7578 */ 7579 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7580 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7581 if (ire != NULL) { 7582 ire_refrele(ire); 7583 off += IP_ADDR_LEN; 7584 goto redo_srr; 7585 } 7586 if (dst == htonl(INADDR_LOOPBACK)) { 7587 ip1dbg(("ip_massage_options: loopback addr in " 7588 "source route!\n")); 7589 break; 7590 } 7591 /* 7592 * Update ipha_dst to be the first hop and remove the 7593 * first hop from the source route (by overwriting 7594 * part of the option with NOP options). 7595 */ 7596 ipha->ipha_dst = dst; 7597 /* Put the last entry in dst */ 7598 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7599 3; 7600 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7601 7602 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7603 ntohl(dst))); 7604 /* Move down and overwrite */ 7605 opt[IP_ADDR_LEN] = opt[0]; 7606 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7607 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7608 for (i = 0; i < IP_ADDR_LEN; i++) 7609 opt[i] = IPOPT_NOP; 7610 break; 7611 } 7612 } 7613 return (dst); 7614 } 7615 7616 /* 7617 * Return the network mask 7618 * associated with the specified address. 7619 */ 7620 ipaddr_t 7621 ip_net_mask(ipaddr_t addr) 7622 { 7623 uchar_t *up = (uchar_t *)&addr; 7624 ipaddr_t mask = 0; 7625 uchar_t *maskp = (uchar_t *)&mask; 7626 7627 #if defined(__i386) || defined(__amd64) 7628 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7629 #endif 7630 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7631 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7632 #endif 7633 if (CLASSD(addr)) { 7634 maskp[0] = 0xF0; 7635 return (mask); 7636 } 7637 7638 /* We assume Class E default netmask to be 32 */ 7639 if (CLASSE(addr)) 7640 return (0xffffffffU); 7641 7642 if (addr == 0) 7643 return (0); 7644 maskp[0] = 0xFF; 7645 if ((up[0] & 0x80) == 0) 7646 return (mask); 7647 7648 maskp[1] = 0xFF; 7649 if ((up[0] & 0xC0) == 0x80) 7650 return (mask); 7651 7652 maskp[2] = 0xFF; 7653 if ((up[0] & 0xE0) == 0xC0) 7654 return (mask); 7655 7656 /* Otherwise return no mask */ 7657 return ((ipaddr_t)0); 7658 } 7659 7660 /* 7661 * Select an ill for the packet by considering load spreading across 7662 * a different ill in the group if dst_ill is part of some group. 7663 */ 7664 ill_t * 7665 ip_newroute_get_dst_ill(ill_t *dst_ill) 7666 { 7667 ill_t *ill; 7668 7669 /* 7670 * We schedule irrespective of whether the source address is 7671 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7672 */ 7673 ill = illgrp_scheduler(dst_ill); 7674 if (ill == NULL) 7675 return (NULL); 7676 7677 /* 7678 * For groups with names ip_sioctl_groupname ensures that all 7679 * ills are of same type. For groups without names, ifgrp_insert 7680 * ensures this. 7681 */ 7682 ASSERT(dst_ill->ill_type == ill->ill_type); 7683 7684 return (ill); 7685 } 7686 7687 /* 7688 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7689 */ 7690 ill_t * 7691 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7692 ip_stack_t *ipst) 7693 { 7694 ill_t *ret_ill; 7695 7696 ASSERT(ifindex != 0); 7697 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7698 ipst); 7699 if (ret_ill == NULL || 7700 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7701 if (isv6) { 7702 if (ill != NULL) { 7703 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7704 } else { 7705 BUMP_MIB(&ipst->ips_ip6_mib, 7706 ipIfStatsOutDiscards); 7707 } 7708 ip1dbg(("ip_grab_attach_ill (IPv6): " 7709 "bad ifindex %d.\n", ifindex)); 7710 } else { 7711 if (ill != NULL) { 7712 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7713 } else { 7714 BUMP_MIB(&ipst->ips_ip_mib, 7715 ipIfStatsOutDiscards); 7716 } 7717 ip1dbg(("ip_grab_attach_ill (IPv4): " 7718 "bad ifindex %d.\n", ifindex)); 7719 } 7720 if (ret_ill != NULL) 7721 ill_refrele(ret_ill); 7722 freemsg(first_mp); 7723 return (NULL); 7724 } 7725 7726 return (ret_ill); 7727 } 7728 7729 /* 7730 * IPv4 - 7731 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7732 * out a packet to a destination address for which we do not have specific 7733 * (or sufficient) routing information. 7734 * 7735 * NOTE : These are the scopes of some of the variables that point at IRE, 7736 * which needs to be followed while making any future modifications 7737 * to avoid memory leaks. 7738 * 7739 * - ire and sire are the entries looked up initially by 7740 * ire_ftable_lookup. 7741 * - ipif_ire is used to hold the interface ire associated with 7742 * the new cache ire. But it's scope is limited, so we always REFRELE 7743 * it before branching out to error paths. 7744 * - save_ire is initialized before ire_create, so that ire returned 7745 * by ire_create will not over-write the ire. We REFRELE save_ire 7746 * before breaking out of the switch. 7747 * 7748 * Thus on failures, we have to REFRELE only ire and sire, if they 7749 * are not NULL. 7750 */ 7751 void 7752 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7753 zoneid_t zoneid, ip_stack_t *ipst) 7754 { 7755 areq_t *areq; 7756 ipaddr_t gw = 0; 7757 ire_t *ire = NULL; 7758 mblk_t *res_mp; 7759 ipaddr_t *addrp; 7760 ipaddr_t nexthop_addr; 7761 ipif_t *src_ipif = NULL; 7762 ill_t *dst_ill = NULL; 7763 ipha_t *ipha; 7764 ire_t *sire = NULL; 7765 mblk_t *first_mp; 7766 ire_t *save_ire; 7767 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7768 ushort_t ire_marks = 0; 7769 boolean_t mctl_present; 7770 ipsec_out_t *io; 7771 mblk_t *saved_mp; 7772 ire_t *first_sire = NULL; 7773 mblk_t *copy_mp = NULL; 7774 mblk_t *xmit_mp = NULL; 7775 ipaddr_t save_dst; 7776 uint32_t multirt_flags = 7777 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7778 boolean_t multirt_is_resolvable; 7779 boolean_t multirt_resolve_next; 7780 boolean_t unspec_src; 7781 boolean_t do_attach_ill = B_FALSE; 7782 boolean_t ip_nexthop = B_FALSE; 7783 tsol_ire_gw_secattr_t *attrp = NULL; 7784 tsol_gcgrp_t *gcgrp = NULL; 7785 tsol_gcgrp_addr_t ga; 7786 7787 if (ip_debug > 2) { 7788 /* ip1dbg */ 7789 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7790 } 7791 7792 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7793 if (mctl_present) { 7794 io = (ipsec_out_t *)first_mp->b_rptr; 7795 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7796 ASSERT(zoneid == io->ipsec_out_zoneid); 7797 ASSERT(zoneid != ALL_ZONES); 7798 } 7799 7800 ipha = (ipha_t *)mp->b_rptr; 7801 7802 /* All multicast lookups come through ip_newroute_ipif() */ 7803 if (CLASSD(dst)) { 7804 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7805 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7806 freemsg(first_mp); 7807 return; 7808 } 7809 7810 if (mctl_present && io->ipsec_out_attach_if) { 7811 /* ip_grab_attach_ill returns a held ill */ 7812 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7813 io->ipsec_out_ill_index, B_FALSE, ipst); 7814 7815 /* Failure case frees things for us. */ 7816 if (attach_ill == NULL) 7817 return; 7818 7819 /* 7820 * Check if we need an ire that will not be 7821 * looked up by anybody else i.e. HIDDEN. 7822 */ 7823 if (ill_is_probeonly(attach_ill)) 7824 ire_marks = IRE_MARK_HIDDEN; 7825 } 7826 if (mctl_present && io->ipsec_out_ip_nexthop) { 7827 ip_nexthop = B_TRUE; 7828 nexthop_addr = io->ipsec_out_nexthop_addr; 7829 } 7830 /* 7831 * If this IRE is created for forwarding or it is not for 7832 * traffic for congestion controlled protocols, mark it as temporary. 7833 */ 7834 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7835 ire_marks |= IRE_MARK_TEMPORARY; 7836 7837 /* 7838 * Get what we can from ire_ftable_lookup which will follow an IRE 7839 * chain until it gets the most specific information available. 7840 * For example, we know that there is no IRE_CACHE for this dest, 7841 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7842 * ire_ftable_lookup will look up the gateway, etc. 7843 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7844 * to the destination, of equal netmask length in the forward table, 7845 * will be recursively explored. If no information is available 7846 * for the final gateway of that route, we force the returned ire 7847 * to be equal to sire using MATCH_IRE_PARENT. 7848 * At least, in this case we have a starting point (in the buckets) 7849 * to look for other routes to the destination in the forward table. 7850 * This is actually used only for multirouting, where a list 7851 * of routes has to be processed in sequence. 7852 * 7853 * In the process of coming up with the most specific information, 7854 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7855 * for the gateway (i.e., one for which the ire_nce->nce_state is 7856 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7857 * Two caveats when handling incomplete ire's in ip_newroute: 7858 * - we should be careful when accessing its ire_nce (specifically 7859 * the nce_res_mp) ast it might change underneath our feet, and, 7860 * - not all legacy code path callers are prepared to handle 7861 * incomplete ire's, so we should not create/add incomplete 7862 * ire_cache entries here. (See discussion about temporary solution 7863 * further below). 7864 * 7865 * In order to minimize packet dropping, and to preserve existing 7866 * behavior, we treat this case as if there were no IRE_CACHE for the 7867 * gateway, and instead use the IF_RESOLVER ire to send out 7868 * another request to ARP (this is achieved by passing the 7869 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7870 * arp response comes back in ip_wput_nondata, we will create 7871 * a per-dst ire_cache that has an ND_COMPLETE ire. 7872 * 7873 * Note that this is a temporary solution; the correct solution is 7874 * to create an incomplete per-dst ire_cache entry, and send the 7875 * packet out when the gw's nce is resolved. In order to achieve this, 7876 * all packet processing must have been completed prior to calling 7877 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7878 * to be modified to accomodate this solution. 7879 */ 7880 if (ip_nexthop) { 7881 /* 7882 * The first time we come here, we look for an IRE_INTERFACE 7883 * entry for the specified nexthop, set the dst to be the 7884 * nexthop address and create an IRE_CACHE entry for the 7885 * nexthop. The next time around, we are able to find an 7886 * IRE_CACHE entry for the nexthop, set the gateway to be the 7887 * nexthop address and create an IRE_CACHE entry for the 7888 * destination address via the specified nexthop. 7889 */ 7890 ire = ire_cache_lookup(nexthop_addr, zoneid, 7891 MBLK_GETLABEL(mp), ipst); 7892 if (ire != NULL) { 7893 gw = nexthop_addr; 7894 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7895 } else { 7896 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7897 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7898 MBLK_GETLABEL(mp), 7899 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7900 ipst); 7901 if (ire != NULL) { 7902 dst = nexthop_addr; 7903 } 7904 } 7905 } else if (attach_ill == NULL) { 7906 ire = ire_ftable_lookup(dst, 0, 0, 0, 7907 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7908 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7909 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7910 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7911 ipst); 7912 } else { 7913 /* 7914 * attach_ill is set only for communicating with 7915 * on-link hosts. So, don't look for DEFAULT. 7916 */ 7917 ipif_t *attach_ipif; 7918 7919 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7920 if (attach_ipif == NULL) { 7921 ill_refrele(attach_ill); 7922 goto icmp_err_ret; 7923 } 7924 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7925 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7926 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7927 MATCH_IRE_SECATTR, ipst); 7928 ipif_refrele(attach_ipif); 7929 } 7930 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7931 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7932 7933 /* 7934 * This loop is run only once in most cases. 7935 * We loop to resolve further routes only when the destination 7936 * can be reached through multiple RTF_MULTIRT-flagged ires. 7937 */ 7938 do { 7939 /* Clear the previous iteration's values */ 7940 if (src_ipif != NULL) { 7941 ipif_refrele(src_ipif); 7942 src_ipif = NULL; 7943 } 7944 if (dst_ill != NULL) { 7945 ill_refrele(dst_ill); 7946 dst_ill = NULL; 7947 } 7948 7949 multirt_resolve_next = B_FALSE; 7950 /* 7951 * We check if packets have to be multirouted. 7952 * In this case, given the current <ire, sire> couple, 7953 * we look for the next suitable <ire, sire>. 7954 * This check is done in ire_multirt_lookup(), 7955 * which applies various criteria to find the next route 7956 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7957 * unchanged if it detects it has not been tried yet. 7958 */ 7959 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7960 ip3dbg(("ip_newroute: starting next_resolution " 7961 "with first_mp %p, tag %d\n", 7962 (void *)first_mp, 7963 MULTIRT_DEBUG_TAGGED(first_mp))); 7964 7965 ASSERT(sire != NULL); 7966 multirt_is_resolvable = 7967 ire_multirt_lookup(&ire, &sire, multirt_flags, 7968 MBLK_GETLABEL(mp), ipst); 7969 7970 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7971 "ire %p, sire %p\n", 7972 multirt_is_resolvable, 7973 (void *)ire, (void *)sire)); 7974 7975 if (!multirt_is_resolvable) { 7976 /* 7977 * No more multirt route to resolve; give up 7978 * (all routes resolved or no more 7979 * resolvable routes). 7980 */ 7981 if (ire != NULL) { 7982 ire_refrele(ire); 7983 ire = NULL; 7984 } 7985 } else { 7986 ASSERT(sire != NULL); 7987 ASSERT(ire != NULL); 7988 /* 7989 * We simply use first_sire as a flag that 7990 * indicates if a resolvable multirt route 7991 * has already been found. 7992 * If it is not the case, we may have to send 7993 * an ICMP error to report that the 7994 * destination is unreachable. 7995 * We do not IRE_REFHOLD first_sire. 7996 */ 7997 if (first_sire == NULL) { 7998 first_sire = sire; 7999 } 8000 } 8001 } 8002 if (ire == NULL) { 8003 if (ip_debug > 3) { 8004 /* ip2dbg */ 8005 pr_addr_dbg("ip_newroute: " 8006 "can't resolve %s\n", AF_INET, &dst); 8007 } 8008 ip3dbg(("ip_newroute: " 8009 "ire %p, sire %p, first_sire %p\n", 8010 (void *)ire, (void *)sire, (void *)first_sire)); 8011 8012 if (sire != NULL) { 8013 ire_refrele(sire); 8014 sire = NULL; 8015 } 8016 8017 if (first_sire != NULL) { 8018 /* 8019 * At least one multirt route has been found 8020 * in the same call to ip_newroute(); 8021 * there is no need to report an ICMP error. 8022 * first_sire was not IRE_REFHOLDed. 8023 */ 8024 MULTIRT_DEBUG_UNTAG(first_mp); 8025 freemsg(first_mp); 8026 return; 8027 } 8028 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8029 RTA_DST, ipst); 8030 if (attach_ill != NULL) 8031 ill_refrele(attach_ill); 8032 goto icmp_err_ret; 8033 } 8034 8035 /* 8036 * Verify that the returned IRE does not have either 8037 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8038 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8039 */ 8040 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8041 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8042 if (attach_ill != NULL) 8043 ill_refrele(attach_ill); 8044 goto icmp_err_ret; 8045 } 8046 /* 8047 * Increment the ire_ob_pkt_count field for ire if it is an 8048 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8049 * increment the same for the parent IRE, sire, if it is some 8050 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8051 */ 8052 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8053 UPDATE_OB_PKT_COUNT(ire); 8054 ire->ire_last_used_time = lbolt; 8055 } 8056 8057 if (sire != NULL) { 8058 gw = sire->ire_gateway_addr; 8059 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8060 IRE_INTERFACE)) == 0); 8061 UPDATE_OB_PKT_COUNT(sire); 8062 sire->ire_last_used_time = lbolt; 8063 } 8064 /* 8065 * We have a route to reach the destination. 8066 * 8067 * 1) If the interface is part of ill group, try to get a new 8068 * ill taking load spreading into account. 8069 * 8070 * 2) After selecting the ill, get a source address that 8071 * might create good inbound load spreading. 8072 * ipif_select_source does this for us. 8073 * 8074 * If the application specified the ill (ifindex), we still 8075 * load spread. Only if the packets needs to go out 8076 * specifically on a given ill e.g. binding to 8077 * IPIF_NOFAILOVER address, then we don't try to use a 8078 * different ill for load spreading. 8079 */ 8080 if (attach_ill == NULL) { 8081 /* 8082 * Don't perform outbound load spreading in the 8083 * case of an RTF_MULTIRT route, as we actually 8084 * typically want to replicate outgoing packets 8085 * through particular interfaces. 8086 */ 8087 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8088 dst_ill = ire->ire_ipif->ipif_ill; 8089 /* for uniformity */ 8090 ill_refhold(dst_ill); 8091 } else { 8092 /* 8093 * If we are here trying to create an IRE_CACHE 8094 * for an offlink destination and have the 8095 * IRE_CACHE for the next hop and the latter is 8096 * using virtual IP source address selection i.e 8097 * it's ire->ire_ipif is pointing to a virtual 8098 * network interface (vni) then 8099 * ip_newroute_get_dst_ll() will return the vni 8100 * interface as the dst_ill. Since the vni is 8101 * virtual i.e not associated with any physical 8102 * interface, it cannot be the dst_ill, hence 8103 * in such a case call ip_newroute_get_dst_ll() 8104 * with the stq_ill instead of the ire_ipif ILL. 8105 * The function returns a refheld ill. 8106 */ 8107 if ((ire->ire_type == IRE_CACHE) && 8108 IS_VNI(ire->ire_ipif->ipif_ill)) 8109 dst_ill = ip_newroute_get_dst_ill( 8110 ire->ire_stq->q_ptr); 8111 else 8112 dst_ill = ip_newroute_get_dst_ill( 8113 ire->ire_ipif->ipif_ill); 8114 } 8115 if (dst_ill == NULL) { 8116 if (ip_debug > 2) { 8117 pr_addr_dbg("ip_newroute: " 8118 "no dst ill for dst" 8119 " %s\n", AF_INET, &dst); 8120 } 8121 goto icmp_err_ret; 8122 } 8123 } else { 8124 dst_ill = ire->ire_ipif->ipif_ill; 8125 /* for uniformity */ 8126 ill_refhold(dst_ill); 8127 /* 8128 * We should have found a route matching ill as we 8129 * called ire_ftable_lookup with MATCH_IRE_ILL. 8130 * Rather than asserting, when there is a mismatch, 8131 * we just drop the packet. 8132 */ 8133 if (dst_ill != attach_ill) { 8134 ip0dbg(("ip_newroute: Packet dropped as " 8135 "IPIF_NOFAILOVER ill is %s, " 8136 "ire->ire_ipif->ipif_ill is %s\n", 8137 attach_ill->ill_name, 8138 dst_ill->ill_name)); 8139 ill_refrele(attach_ill); 8140 goto icmp_err_ret; 8141 } 8142 } 8143 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8144 if (attach_ill != NULL) { 8145 ill_refrele(attach_ill); 8146 attach_ill = NULL; 8147 do_attach_ill = B_TRUE; 8148 } 8149 ASSERT(dst_ill != NULL); 8150 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8151 8152 /* 8153 * Pick the best source address from dst_ill. 8154 * 8155 * 1) If it is part of a multipathing group, we would 8156 * like to spread the inbound packets across different 8157 * interfaces. ipif_select_source picks a random source 8158 * across the different ills in the group. 8159 * 8160 * 2) If it is not part of a multipathing group, we try 8161 * to pick the source address from the destination 8162 * route. Clustering assumes that when we have multiple 8163 * prefixes hosted on an interface, the prefix of the 8164 * source address matches the prefix of the destination 8165 * route. We do this only if the address is not 8166 * DEPRECATED. 8167 * 8168 * 3) If the conn is in a different zone than the ire, we 8169 * need to pick a source address from the right zone. 8170 * 8171 * NOTE : If we hit case (1) above, the prefix of the source 8172 * address picked may not match the prefix of the 8173 * destination routes prefix as ipif_select_source 8174 * does not look at "dst" while picking a source 8175 * address. 8176 * If we want the same behavior as (2), we will need 8177 * to change the behavior of ipif_select_source. 8178 */ 8179 ASSERT(src_ipif == NULL); 8180 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8181 /* 8182 * The RTF_SETSRC flag is set in the parent ire (sire). 8183 * Check that the ipif matching the requested source 8184 * address still exists. 8185 */ 8186 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8187 zoneid, NULL, NULL, NULL, NULL, ipst); 8188 } 8189 8190 unspec_src = (connp != NULL && connp->conn_unspec_src); 8191 8192 if (src_ipif == NULL && 8193 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8194 ire_marks |= IRE_MARK_USESRC_CHECK; 8195 if ((dst_ill->ill_group != NULL) || 8196 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8197 (connp != NULL && ire->ire_zoneid != zoneid && 8198 ire->ire_zoneid != ALL_ZONES) || 8199 (dst_ill->ill_usesrc_ifindex != 0)) { 8200 /* 8201 * If the destination is reachable via a 8202 * given gateway, the selected source address 8203 * should be in the same subnet as the gateway. 8204 * Otherwise, the destination is not reachable. 8205 * 8206 * If there are no interfaces on the same subnet 8207 * as the destination, ipif_select_source gives 8208 * first non-deprecated interface which might be 8209 * on a different subnet than the gateway. 8210 * This is not desirable. Hence pass the dst_ire 8211 * source address to ipif_select_source. 8212 * It is sure that the destination is reachable 8213 * with the dst_ire source address subnet. 8214 * So passing dst_ire source address to 8215 * ipif_select_source will make sure that the 8216 * selected source will be on the same subnet 8217 * as dst_ire source address. 8218 */ 8219 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8220 src_ipif = ipif_select_source(dst_ill, saddr, 8221 zoneid); 8222 if (src_ipif == NULL) { 8223 if (ip_debug > 2) { 8224 pr_addr_dbg("ip_newroute: " 8225 "no src for dst %s ", 8226 AF_INET, &dst); 8227 printf("through interface %s\n", 8228 dst_ill->ill_name); 8229 } 8230 goto icmp_err_ret; 8231 } 8232 } else { 8233 src_ipif = ire->ire_ipif; 8234 ASSERT(src_ipif != NULL); 8235 /* hold src_ipif for uniformity */ 8236 ipif_refhold(src_ipif); 8237 } 8238 } 8239 8240 /* 8241 * Assign a source address while we have the conn. 8242 * We can't have ip_wput_ire pick a source address when the 8243 * packet returns from arp since we need to look at 8244 * conn_unspec_src and conn_zoneid, and we lose the conn when 8245 * going through arp. 8246 * 8247 * NOTE : ip_newroute_v6 does not have this piece of code as 8248 * it uses ip6i to store this information. 8249 */ 8250 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8251 ipha->ipha_src = src_ipif->ipif_src_addr; 8252 8253 if (ip_debug > 3) { 8254 /* ip2dbg */ 8255 pr_addr_dbg("ip_newroute: first hop %s\n", 8256 AF_INET, &gw); 8257 } 8258 ip2dbg(("\tire type %s (%d)\n", 8259 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8260 8261 /* 8262 * The TTL of multirouted packets is bounded by the 8263 * ip_multirt_ttl ndd variable. 8264 */ 8265 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8266 /* Force TTL of multirouted packets */ 8267 if ((ipst->ips_ip_multirt_ttl > 0) && 8268 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8269 ip2dbg(("ip_newroute: forcing multirt TTL " 8270 "to %d (was %d), dst 0x%08x\n", 8271 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8272 ntohl(sire->ire_addr))); 8273 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8274 } 8275 } 8276 /* 8277 * At this point in ip_newroute(), ire is either the 8278 * IRE_CACHE of the next-hop gateway for an off-subnet 8279 * destination or an IRE_INTERFACE type that should be used 8280 * to resolve an on-subnet destination or an on-subnet 8281 * next-hop gateway. 8282 * 8283 * In the IRE_CACHE case, we have the following : 8284 * 8285 * 1) src_ipif - used for getting a source address. 8286 * 8287 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8288 * means packets using this IRE_CACHE will go out on 8289 * dst_ill. 8290 * 8291 * 3) The IRE sire will point to the prefix that is the 8292 * longest matching route for the destination. These 8293 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8294 * 8295 * The newly created IRE_CACHE entry for the off-subnet 8296 * destination is tied to both the prefix route and the 8297 * interface route used to resolve the next-hop gateway 8298 * via the ire_phandle and ire_ihandle fields, 8299 * respectively. 8300 * 8301 * In the IRE_INTERFACE case, we have the following : 8302 * 8303 * 1) src_ipif - used for getting a source address. 8304 * 8305 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8306 * means packets using the IRE_CACHE that we will build 8307 * here will go out on dst_ill. 8308 * 8309 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8310 * to be created will only be tied to the IRE_INTERFACE 8311 * that was derived from the ire_ihandle field. 8312 * 8313 * If sire is non-NULL, it means the destination is 8314 * off-link and we will first create the IRE_CACHE for the 8315 * gateway. Next time through ip_newroute, we will create 8316 * the IRE_CACHE for the final destination as described 8317 * above. 8318 * 8319 * In both cases, after the current resolution has been 8320 * completed (or possibly initialised, in the IRE_INTERFACE 8321 * case), the loop may be re-entered to attempt the resolution 8322 * of another RTF_MULTIRT route. 8323 * 8324 * When an IRE_CACHE entry for the off-subnet destination is 8325 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8326 * for further processing in emission loops. 8327 */ 8328 save_ire = ire; 8329 switch (ire->ire_type) { 8330 case IRE_CACHE: { 8331 ire_t *ipif_ire; 8332 8333 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8334 if (gw == 0) 8335 gw = ire->ire_gateway_addr; 8336 /* 8337 * We need 3 ire's to create a new cache ire for an 8338 * off-link destination from the cache ire of the 8339 * gateway. 8340 * 8341 * 1. The prefix ire 'sire' (Note that this does 8342 * not apply to the conn_nexthop_set case) 8343 * 2. The cache ire of the gateway 'ire' 8344 * 3. The interface ire 'ipif_ire' 8345 * 8346 * We have (1) and (2). We lookup (3) below. 8347 * 8348 * If there is no interface route to the gateway, 8349 * it is a race condition, where we found the cache 8350 * but the interface route has been deleted. 8351 */ 8352 if (ip_nexthop) { 8353 ipif_ire = ire_ihandle_lookup_onlink(ire); 8354 } else { 8355 ipif_ire = 8356 ire_ihandle_lookup_offlink(ire, sire); 8357 } 8358 if (ipif_ire == NULL) { 8359 ip1dbg(("ip_newroute: " 8360 "ire_ihandle_lookup_offlink failed\n")); 8361 goto icmp_err_ret; 8362 } 8363 8364 /* 8365 * Check cached gateway IRE for any security 8366 * attributes; if found, associate the gateway 8367 * credentials group to the destination IRE. 8368 */ 8369 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8370 mutex_enter(&attrp->igsa_lock); 8371 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8372 GCGRP_REFHOLD(gcgrp); 8373 mutex_exit(&attrp->igsa_lock); 8374 } 8375 8376 /* 8377 * XXX For the source of the resolver mp, 8378 * we are using the same DL_UNITDATA_REQ 8379 * (from save_ire->ire_nce->nce_res_mp) 8380 * though the save_ire is not pointing at the same ill. 8381 * This is incorrect. We need to send it up to the 8382 * resolver to get the right res_mp. For ethernets 8383 * this may be okay (ill_type == DL_ETHER). 8384 */ 8385 8386 ire = ire_create( 8387 (uchar_t *)&dst, /* dest address */ 8388 (uchar_t *)&ip_g_all_ones, /* mask */ 8389 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8390 (uchar_t *)&gw, /* gateway address */ 8391 &save_ire->ire_max_frag, 8392 save_ire->ire_nce, /* src nce */ 8393 dst_ill->ill_rq, /* recv-from queue */ 8394 dst_ill->ill_wq, /* send-to queue */ 8395 IRE_CACHE, /* IRE type */ 8396 src_ipif, 8397 (sire != NULL) ? 8398 sire->ire_mask : 0, /* Parent mask */ 8399 (sire != NULL) ? 8400 sire->ire_phandle : 0, /* Parent handle */ 8401 ipif_ire->ire_ihandle, /* Interface handle */ 8402 (sire != NULL) ? (sire->ire_flags & 8403 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8404 (sire != NULL) ? 8405 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8406 NULL, 8407 gcgrp, 8408 ipst); 8409 8410 if (ire == NULL) { 8411 if (gcgrp != NULL) { 8412 GCGRP_REFRELE(gcgrp); 8413 gcgrp = NULL; 8414 } 8415 ire_refrele(ipif_ire); 8416 ire_refrele(save_ire); 8417 break; 8418 } 8419 8420 /* reference now held by IRE */ 8421 gcgrp = NULL; 8422 8423 ire->ire_marks |= ire_marks; 8424 8425 /* 8426 * Prevent sire and ipif_ire from getting deleted. 8427 * The newly created ire is tied to both of them via 8428 * the phandle and ihandle respectively. 8429 */ 8430 if (sire != NULL) { 8431 IRB_REFHOLD(sire->ire_bucket); 8432 /* Has it been removed already ? */ 8433 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8434 IRB_REFRELE(sire->ire_bucket); 8435 ire_refrele(ipif_ire); 8436 ire_refrele(save_ire); 8437 break; 8438 } 8439 } 8440 8441 IRB_REFHOLD(ipif_ire->ire_bucket); 8442 /* Has it been removed already ? */ 8443 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8444 IRB_REFRELE(ipif_ire->ire_bucket); 8445 if (sire != NULL) 8446 IRB_REFRELE(sire->ire_bucket); 8447 ire_refrele(ipif_ire); 8448 ire_refrele(save_ire); 8449 break; 8450 } 8451 8452 xmit_mp = first_mp; 8453 /* 8454 * In the case of multirouting, a copy 8455 * of the packet is done before its sending. 8456 * The copy is used to attempt another 8457 * route resolution, in a next loop. 8458 */ 8459 if (ire->ire_flags & RTF_MULTIRT) { 8460 copy_mp = copymsg(first_mp); 8461 if (copy_mp != NULL) { 8462 xmit_mp = copy_mp; 8463 MULTIRT_DEBUG_TAG(first_mp); 8464 } 8465 } 8466 ire_add_then_send(q, ire, xmit_mp); 8467 ire_refrele(save_ire); 8468 8469 /* Assert that sire is not deleted yet. */ 8470 if (sire != NULL) { 8471 ASSERT(sire->ire_ptpn != NULL); 8472 IRB_REFRELE(sire->ire_bucket); 8473 } 8474 8475 /* Assert that ipif_ire is not deleted yet. */ 8476 ASSERT(ipif_ire->ire_ptpn != NULL); 8477 IRB_REFRELE(ipif_ire->ire_bucket); 8478 ire_refrele(ipif_ire); 8479 8480 /* 8481 * If copy_mp is not NULL, multirouting was 8482 * requested. We loop to initiate a next 8483 * route resolution attempt, starting from sire. 8484 */ 8485 if (copy_mp != NULL) { 8486 /* 8487 * Search for the next unresolved 8488 * multirt route. 8489 */ 8490 copy_mp = NULL; 8491 ipif_ire = NULL; 8492 ire = NULL; 8493 multirt_resolve_next = B_TRUE; 8494 continue; 8495 } 8496 if (sire != NULL) 8497 ire_refrele(sire); 8498 ipif_refrele(src_ipif); 8499 ill_refrele(dst_ill); 8500 return; 8501 } 8502 case IRE_IF_NORESOLVER: { 8503 8504 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8505 dst_ill->ill_resolver_mp == NULL) { 8506 ip1dbg(("ip_newroute: dst_ill %p " 8507 "for IRE_IF_NORESOLVER ire %p has " 8508 "no ill_resolver_mp\n", 8509 (void *)dst_ill, (void *)ire)); 8510 break; 8511 } 8512 8513 /* 8514 * TSol note: We are creating the ire cache for the 8515 * destination 'dst'. If 'dst' is offlink, going 8516 * through the first hop 'gw', the security attributes 8517 * of 'dst' must be set to point to the gateway 8518 * credentials of gateway 'gw'. If 'dst' is onlink, it 8519 * is possible that 'dst' is a potential gateway that is 8520 * referenced by some route that has some security 8521 * attributes. Thus in the former case, we need to do a 8522 * gcgrp_lookup of 'gw' while in the latter case we 8523 * need to do gcgrp_lookup of 'dst' itself. 8524 */ 8525 ga.ga_af = AF_INET; 8526 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8527 &ga.ga_addr); 8528 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8529 8530 ire = ire_create( 8531 (uchar_t *)&dst, /* dest address */ 8532 (uchar_t *)&ip_g_all_ones, /* mask */ 8533 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8534 (uchar_t *)&gw, /* gateway address */ 8535 &save_ire->ire_max_frag, 8536 NULL, /* no src nce */ 8537 dst_ill->ill_rq, /* recv-from queue */ 8538 dst_ill->ill_wq, /* send-to queue */ 8539 IRE_CACHE, 8540 src_ipif, 8541 save_ire->ire_mask, /* Parent mask */ 8542 (sire != NULL) ? /* Parent handle */ 8543 sire->ire_phandle : 0, 8544 save_ire->ire_ihandle, /* Interface handle */ 8545 (sire != NULL) ? sire->ire_flags & 8546 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8547 &(save_ire->ire_uinfo), 8548 NULL, 8549 gcgrp, 8550 ipst); 8551 8552 if (ire == NULL) { 8553 if (gcgrp != NULL) { 8554 GCGRP_REFRELE(gcgrp); 8555 gcgrp = NULL; 8556 } 8557 ire_refrele(save_ire); 8558 break; 8559 } 8560 8561 /* reference now held by IRE */ 8562 gcgrp = NULL; 8563 8564 ire->ire_marks |= ire_marks; 8565 8566 /* Prevent save_ire from getting deleted */ 8567 IRB_REFHOLD(save_ire->ire_bucket); 8568 /* Has it been removed already ? */ 8569 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8570 IRB_REFRELE(save_ire->ire_bucket); 8571 ire_refrele(save_ire); 8572 break; 8573 } 8574 8575 /* 8576 * In the case of multirouting, a copy 8577 * of the packet is made before it is sent. 8578 * The copy is used in the next 8579 * loop to attempt another resolution. 8580 */ 8581 xmit_mp = first_mp; 8582 if ((sire != NULL) && 8583 (sire->ire_flags & RTF_MULTIRT)) { 8584 copy_mp = copymsg(first_mp); 8585 if (copy_mp != NULL) { 8586 xmit_mp = copy_mp; 8587 MULTIRT_DEBUG_TAG(first_mp); 8588 } 8589 } 8590 ire_add_then_send(q, ire, xmit_mp); 8591 8592 /* Assert that it is not deleted yet. */ 8593 ASSERT(save_ire->ire_ptpn != NULL); 8594 IRB_REFRELE(save_ire->ire_bucket); 8595 ire_refrele(save_ire); 8596 8597 if (copy_mp != NULL) { 8598 /* 8599 * If we found a (no)resolver, we ignore any 8600 * trailing top priority IRE_CACHE in further 8601 * loops. This ensures that we do not omit any 8602 * (no)resolver. 8603 * This IRE_CACHE, if any, will be processed 8604 * by another thread entering ip_newroute(). 8605 * IRE_CACHE entries, if any, will be processed 8606 * by another thread entering ip_newroute(), 8607 * (upon resolver response, for instance). 8608 * This aims to force parallel multirt 8609 * resolutions as soon as a packet must be sent. 8610 * In the best case, after the tx of only one 8611 * packet, all reachable routes are resolved. 8612 * Otherwise, the resolution of all RTF_MULTIRT 8613 * routes would require several emissions. 8614 */ 8615 multirt_flags &= ~MULTIRT_CACHEGW; 8616 8617 /* 8618 * Search for the next unresolved multirt 8619 * route. 8620 */ 8621 copy_mp = NULL; 8622 save_ire = NULL; 8623 ire = NULL; 8624 multirt_resolve_next = B_TRUE; 8625 continue; 8626 } 8627 8628 /* 8629 * Don't need sire anymore 8630 */ 8631 if (sire != NULL) 8632 ire_refrele(sire); 8633 8634 ipif_refrele(src_ipif); 8635 ill_refrele(dst_ill); 8636 return; 8637 } 8638 case IRE_IF_RESOLVER: 8639 /* 8640 * We can't build an IRE_CACHE yet, but at least we 8641 * found a resolver that can help. 8642 */ 8643 res_mp = dst_ill->ill_resolver_mp; 8644 if (!OK_RESOLVER_MP(res_mp)) 8645 break; 8646 8647 /* 8648 * To be at this point in the code with a non-zero gw 8649 * means that dst is reachable through a gateway that 8650 * we have never resolved. By changing dst to the gw 8651 * addr we resolve the gateway first. 8652 * When ire_add_then_send() tries to put the IP dg 8653 * to dst, it will reenter ip_newroute() at which 8654 * time we will find the IRE_CACHE for the gw and 8655 * create another IRE_CACHE in case IRE_CACHE above. 8656 */ 8657 if (gw != INADDR_ANY) { 8658 /* 8659 * The source ipif that was determined above was 8660 * relative to the destination address, not the 8661 * gateway's. If src_ipif was not taken out of 8662 * the IRE_IF_RESOLVER entry, we'll need to call 8663 * ipif_select_source() again. 8664 */ 8665 if (src_ipif != ire->ire_ipif) { 8666 ipif_refrele(src_ipif); 8667 src_ipif = ipif_select_source(dst_ill, 8668 gw, zoneid); 8669 if (src_ipif == NULL) { 8670 if (ip_debug > 2) { 8671 pr_addr_dbg( 8672 "ip_newroute: no " 8673 "src for gw %s ", 8674 AF_INET, &gw); 8675 printf("through " 8676 "interface %s\n", 8677 dst_ill->ill_name); 8678 } 8679 goto icmp_err_ret; 8680 } 8681 } 8682 save_dst = dst; 8683 dst = gw; 8684 gw = INADDR_ANY; 8685 } 8686 8687 /* 8688 * We obtain a partial IRE_CACHE which we will pass 8689 * along with the resolver query. When the response 8690 * comes back it will be there ready for us to add. 8691 * The ire_max_frag is atomically set under the 8692 * irebucket lock in ire_add_v[46]. 8693 */ 8694 8695 ire = ire_create_mp( 8696 (uchar_t *)&dst, /* dest address */ 8697 (uchar_t *)&ip_g_all_ones, /* mask */ 8698 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8699 (uchar_t *)&gw, /* gateway address */ 8700 NULL, /* ire_max_frag */ 8701 NULL, /* no src nce */ 8702 dst_ill->ill_rq, /* recv-from queue */ 8703 dst_ill->ill_wq, /* send-to queue */ 8704 IRE_CACHE, 8705 src_ipif, /* Interface ipif */ 8706 save_ire->ire_mask, /* Parent mask */ 8707 0, 8708 save_ire->ire_ihandle, /* Interface handle */ 8709 0, /* flags if any */ 8710 &(save_ire->ire_uinfo), 8711 NULL, 8712 NULL, 8713 ipst); 8714 8715 if (ire == NULL) { 8716 ire_refrele(save_ire); 8717 break; 8718 } 8719 8720 if ((sire != NULL) && 8721 (sire->ire_flags & RTF_MULTIRT)) { 8722 copy_mp = copymsg(first_mp); 8723 if (copy_mp != NULL) 8724 MULTIRT_DEBUG_TAG(copy_mp); 8725 } 8726 8727 ire->ire_marks |= ire_marks; 8728 8729 /* 8730 * Construct message chain for the resolver 8731 * of the form: 8732 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8733 * Packet could contain a IPSEC_OUT mp. 8734 * 8735 * NOTE : ire will be added later when the response 8736 * comes back from ARP. If the response does not 8737 * come back, ARP frees the packet. For this reason, 8738 * we can't REFHOLD the bucket of save_ire to prevent 8739 * deletions. We may not be able to REFRELE the bucket 8740 * if the response never comes back. Thus, before 8741 * adding the ire, ire_add_v4 will make sure that the 8742 * interface route does not get deleted. This is the 8743 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8744 * where we can always prevent deletions because of 8745 * the synchronous nature of adding IRES i.e 8746 * ire_add_then_send is called after creating the IRE. 8747 */ 8748 ASSERT(ire->ire_mp != NULL); 8749 ire->ire_mp->b_cont = first_mp; 8750 /* Have saved_mp handy, for cleanup if canput fails */ 8751 saved_mp = mp; 8752 mp = copyb(res_mp); 8753 if (mp == NULL) { 8754 /* Prepare for cleanup */ 8755 mp = saved_mp; /* pkt */ 8756 ire_delete(ire); /* ire_mp */ 8757 ire = NULL; 8758 ire_refrele(save_ire); 8759 if (copy_mp != NULL) { 8760 MULTIRT_DEBUG_UNTAG(copy_mp); 8761 freemsg(copy_mp); 8762 copy_mp = NULL; 8763 } 8764 break; 8765 } 8766 linkb(mp, ire->ire_mp); 8767 8768 /* 8769 * Fill in the source and dest addrs for the resolver. 8770 * NOTE: this depends on memory layouts imposed by 8771 * ill_init(). 8772 */ 8773 areq = (areq_t *)mp->b_rptr; 8774 addrp = (ipaddr_t *)((char *)areq + 8775 areq->areq_sender_addr_offset); 8776 if (do_attach_ill) { 8777 /* 8778 * This is bind to no failover case. 8779 * arp packet also must go out on attach_ill. 8780 */ 8781 ASSERT(ipha->ipha_src != NULL); 8782 *addrp = ipha->ipha_src; 8783 } else { 8784 *addrp = save_ire->ire_src_addr; 8785 } 8786 8787 ire_refrele(save_ire); 8788 addrp = (ipaddr_t *)((char *)areq + 8789 areq->areq_target_addr_offset); 8790 *addrp = dst; 8791 /* Up to the resolver. */ 8792 if (canputnext(dst_ill->ill_rq) && 8793 !(dst_ill->ill_arp_closing)) { 8794 putnext(dst_ill->ill_rq, mp); 8795 ire = NULL; 8796 if (copy_mp != NULL) { 8797 /* 8798 * If we found a resolver, we ignore 8799 * any trailing top priority IRE_CACHE 8800 * in the further loops. This ensures 8801 * that we do not omit any resolver. 8802 * IRE_CACHE entries, if any, will be 8803 * processed next time we enter 8804 * ip_newroute(). 8805 */ 8806 multirt_flags &= ~MULTIRT_CACHEGW; 8807 /* 8808 * Search for the next unresolved 8809 * multirt route. 8810 */ 8811 first_mp = copy_mp; 8812 copy_mp = NULL; 8813 /* Prepare the next resolution loop. */ 8814 mp = first_mp; 8815 EXTRACT_PKT_MP(mp, first_mp, 8816 mctl_present); 8817 if (mctl_present) 8818 io = (ipsec_out_t *) 8819 first_mp->b_rptr; 8820 ipha = (ipha_t *)mp->b_rptr; 8821 8822 ASSERT(sire != NULL); 8823 8824 dst = save_dst; 8825 multirt_resolve_next = B_TRUE; 8826 continue; 8827 } 8828 8829 if (sire != NULL) 8830 ire_refrele(sire); 8831 8832 /* 8833 * The response will come back in ip_wput 8834 * with db_type IRE_DB_TYPE. 8835 */ 8836 ipif_refrele(src_ipif); 8837 ill_refrele(dst_ill); 8838 return; 8839 } else { 8840 /* Prepare for cleanup */ 8841 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8842 mp); 8843 mp->b_cont = NULL; 8844 freeb(mp); /* areq */ 8845 /* 8846 * this is an ire that is not added to the 8847 * cache. ire_freemblk will handle the release 8848 * of any resources associated with the ire. 8849 */ 8850 ire_delete(ire); /* ire_mp */ 8851 mp = saved_mp; /* pkt */ 8852 ire = NULL; 8853 if (copy_mp != NULL) { 8854 MULTIRT_DEBUG_UNTAG(copy_mp); 8855 freemsg(copy_mp); 8856 copy_mp = NULL; 8857 } 8858 break; 8859 } 8860 default: 8861 break; 8862 } 8863 } while (multirt_resolve_next); 8864 8865 ip1dbg(("ip_newroute: dropped\n")); 8866 /* Did this packet originate externally? */ 8867 if (mp->b_prev) { 8868 mp->b_next = NULL; 8869 mp->b_prev = NULL; 8870 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8871 } else { 8872 if (dst_ill != NULL) { 8873 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8874 } else { 8875 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8876 } 8877 } 8878 ASSERT(copy_mp == NULL); 8879 MULTIRT_DEBUG_UNTAG(first_mp); 8880 freemsg(first_mp); 8881 if (ire != NULL) 8882 ire_refrele(ire); 8883 if (sire != NULL) 8884 ire_refrele(sire); 8885 if (src_ipif != NULL) 8886 ipif_refrele(src_ipif); 8887 if (dst_ill != NULL) 8888 ill_refrele(dst_ill); 8889 return; 8890 8891 icmp_err_ret: 8892 ip1dbg(("ip_newroute: no route\n")); 8893 if (src_ipif != NULL) 8894 ipif_refrele(src_ipif); 8895 if (dst_ill != NULL) 8896 ill_refrele(dst_ill); 8897 if (sire != NULL) 8898 ire_refrele(sire); 8899 /* Did this packet originate externally? */ 8900 if (mp->b_prev) { 8901 mp->b_next = NULL; 8902 mp->b_prev = NULL; 8903 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8904 q = WR(q); 8905 } else { 8906 /* 8907 * There is no outgoing ill, so just increment the 8908 * system MIB. 8909 */ 8910 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8911 /* 8912 * Since ip_wput() isn't close to finished, we fill 8913 * in enough of the header for credible error reporting. 8914 */ 8915 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8916 /* Failed */ 8917 MULTIRT_DEBUG_UNTAG(first_mp); 8918 freemsg(first_mp); 8919 if (ire != NULL) 8920 ire_refrele(ire); 8921 return; 8922 } 8923 } 8924 8925 /* 8926 * At this point we will have ire only if RTF_BLACKHOLE 8927 * or RTF_REJECT flags are set on the IRE. It will not 8928 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8929 */ 8930 if (ire != NULL) { 8931 if (ire->ire_flags & RTF_BLACKHOLE) { 8932 ire_refrele(ire); 8933 MULTIRT_DEBUG_UNTAG(first_mp); 8934 freemsg(first_mp); 8935 return; 8936 } 8937 ire_refrele(ire); 8938 } 8939 if (ip_source_routed(ipha, ipst)) { 8940 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8941 zoneid, ipst); 8942 return; 8943 } 8944 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8945 } 8946 8947 ip_opt_info_t zero_info; 8948 8949 /* 8950 * IPv4 - 8951 * ip_newroute_ipif is called by ip_wput_multicast and 8952 * ip_rput_forward_multicast whenever we need to send 8953 * out a packet to a destination address for which we do not have specific 8954 * routing information. It is used when the packet will be sent out 8955 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8956 * socket option is set or icmp error message wants to go out on a particular 8957 * interface for a unicast packet. 8958 * 8959 * In most cases, the destination address is resolved thanks to the ipif 8960 * intrinsic resolver. However, there are some cases where the call to 8961 * ip_newroute_ipif must take into account the potential presence of 8962 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8963 * that uses the interface. This is specified through flags, 8964 * which can be a combination of: 8965 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8966 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8967 * and flags. Additionally, the packet source address has to be set to 8968 * the specified address. The caller is thus expected to set this flag 8969 * if the packet has no specific source address yet. 8970 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8971 * flag, the resulting ire will inherit the flag. All unresolved routes 8972 * to the destination must be explored in the same call to 8973 * ip_newroute_ipif(). 8974 */ 8975 static void 8976 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8977 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8978 { 8979 areq_t *areq; 8980 ire_t *ire = NULL; 8981 mblk_t *res_mp; 8982 ipaddr_t *addrp; 8983 mblk_t *first_mp; 8984 ire_t *save_ire = NULL; 8985 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8986 ipif_t *src_ipif = NULL; 8987 ushort_t ire_marks = 0; 8988 ill_t *dst_ill = NULL; 8989 boolean_t mctl_present; 8990 ipsec_out_t *io; 8991 ipha_t *ipha; 8992 int ihandle = 0; 8993 mblk_t *saved_mp; 8994 ire_t *fire = NULL; 8995 mblk_t *copy_mp = NULL; 8996 boolean_t multirt_resolve_next; 8997 boolean_t unspec_src; 8998 ipaddr_t ipha_dst; 8999 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9000 9001 /* 9002 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9003 * here for uniformity 9004 */ 9005 ipif_refhold(ipif); 9006 9007 /* 9008 * This loop is run only once in most cases. 9009 * We loop to resolve further routes only when the destination 9010 * can be reached through multiple RTF_MULTIRT-flagged ires. 9011 */ 9012 do { 9013 if (dst_ill != NULL) { 9014 ill_refrele(dst_ill); 9015 dst_ill = NULL; 9016 } 9017 if (src_ipif != NULL) { 9018 ipif_refrele(src_ipif); 9019 src_ipif = NULL; 9020 } 9021 multirt_resolve_next = B_FALSE; 9022 9023 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9024 ipif->ipif_ill->ill_name)); 9025 9026 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9027 if (mctl_present) 9028 io = (ipsec_out_t *)first_mp->b_rptr; 9029 9030 ipha = (ipha_t *)mp->b_rptr; 9031 9032 /* 9033 * Save the packet destination address, we may need it after 9034 * the packet has been consumed. 9035 */ 9036 ipha_dst = ipha->ipha_dst; 9037 9038 /* 9039 * If the interface is a pt-pt interface we look for an 9040 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9041 * local_address and the pt-pt destination address. Otherwise 9042 * we just match the local address. 9043 * NOTE: dst could be different than ipha->ipha_dst in case 9044 * of sending igmp multicast packets over a point-to-point 9045 * connection. 9046 * Thus we must be careful enough to check ipha_dst to be a 9047 * multicast address, otherwise it will take xmit_if path for 9048 * multicast packets resulting into kernel stack overflow by 9049 * repeated calls to ip_newroute_ipif from ire_send(). 9050 */ 9051 if (CLASSD(ipha_dst) && 9052 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9053 goto err_ret; 9054 } 9055 9056 /* 9057 * We check if an IRE_OFFSUBNET for the addr that goes through 9058 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9059 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9060 * propagate its flags to the new ire. 9061 */ 9062 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9063 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9064 ip2dbg(("ip_newroute_ipif: " 9065 "ipif_lookup_multi_ire(" 9066 "ipif %p, dst %08x) = fire %p\n", 9067 (void *)ipif, ntohl(dst), (void *)fire)); 9068 } 9069 9070 if (mctl_present && io->ipsec_out_attach_if) { 9071 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9072 io->ipsec_out_ill_index, B_FALSE, ipst); 9073 9074 /* Failure case frees things for us. */ 9075 if (attach_ill == NULL) { 9076 ipif_refrele(ipif); 9077 if (fire != NULL) 9078 ire_refrele(fire); 9079 return; 9080 } 9081 9082 /* 9083 * Check if we need an ire that will not be 9084 * looked up by anybody else i.e. HIDDEN. 9085 */ 9086 if (ill_is_probeonly(attach_ill)) { 9087 ire_marks = IRE_MARK_HIDDEN; 9088 } 9089 /* 9090 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9091 * case. 9092 */ 9093 dst_ill = ipif->ipif_ill; 9094 /* attach_ill has been refheld by ip_grab_attach_ill */ 9095 ASSERT(dst_ill == attach_ill); 9096 } else { 9097 /* 9098 * If the interface belongs to an interface group, 9099 * make sure the next possible interface in the group 9100 * is used. This encourages load spreading among 9101 * peers in an interface group. 9102 * Note: load spreading is disabled for RTF_MULTIRT 9103 * routes. 9104 */ 9105 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9106 (fire->ire_flags & RTF_MULTIRT)) { 9107 /* 9108 * Don't perform outbound load spreading 9109 * in the case of an RTF_MULTIRT issued route, 9110 * we actually typically want to replicate 9111 * outgoing packets through particular 9112 * interfaces. 9113 */ 9114 dst_ill = ipif->ipif_ill; 9115 ill_refhold(dst_ill); 9116 } else { 9117 dst_ill = ip_newroute_get_dst_ill( 9118 ipif->ipif_ill); 9119 } 9120 if (dst_ill == NULL) { 9121 if (ip_debug > 2) { 9122 pr_addr_dbg("ip_newroute_ipif: " 9123 "no dst ill for dst %s\n", 9124 AF_INET, &dst); 9125 } 9126 goto err_ret; 9127 } 9128 } 9129 9130 /* 9131 * Pick a source address preferring non-deprecated ones. 9132 * Unlike ip_newroute, we don't do any source address 9133 * selection here since for multicast it really does not help 9134 * in inbound load spreading as in the unicast case. 9135 */ 9136 if ((flags & RTF_SETSRC) && (fire != NULL) && 9137 (fire->ire_flags & RTF_SETSRC)) { 9138 /* 9139 * As requested by flags, an IRE_OFFSUBNET was looked up 9140 * on that interface. This ire has RTF_SETSRC flag, so 9141 * the source address of the packet must be changed. 9142 * Check that the ipif matching the requested source 9143 * address still exists. 9144 */ 9145 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9146 zoneid, NULL, NULL, NULL, NULL, ipst); 9147 } 9148 9149 unspec_src = (connp != NULL && connp->conn_unspec_src); 9150 9151 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9152 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9153 (connp != NULL && ipif->ipif_zoneid != zoneid && 9154 ipif->ipif_zoneid != ALL_ZONES)) && 9155 (src_ipif == NULL) && 9156 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9157 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9158 if (src_ipif == NULL) { 9159 if (ip_debug > 2) { 9160 /* ip1dbg */ 9161 pr_addr_dbg("ip_newroute_ipif: " 9162 "no src for dst %s", 9163 AF_INET, &dst); 9164 } 9165 ip1dbg((" through interface %s\n", 9166 dst_ill->ill_name)); 9167 goto err_ret; 9168 } 9169 ipif_refrele(ipif); 9170 ipif = src_ipif; 9171 ipif_refhold(ipif); 9172 } 9173 if (src_ipif == NULL) { 9174 src_ipif = ipif; 9175 ipif_refhold(src_ipif); 9176 } 9177 9178 /* 9179 * Assign a source address while we have the conn. 9180 * We can't have ip_wput_ire pick a source address when the 9181 * packet returns from arp since conn_unspec_src might be set 9182 * and we lose the conn when going through arp. 9183 */ 9184 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9185 ipha->ipha_src = src_ipif->ipif_src_addr; 9186 9187 /* 9188 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9189 * that the outgoing interface does not have an interface ire. 9190 */ 9191 if (CLASSD(ipha_dst) && (connp == NULL || 9192 connp->conn_outgoing_ill == NULL) && 9193 infop->ip_opt_ill_index == 0) { 9194 /* ipif_to_ire returns an held ire */ 9195 ire = ipif_to_ire(ipif); 9196 if (ire == NULL) 9197 goto err_ret; 9198 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9199 goto err_ret; 9200 /* 9201 * ihandle is needed when the ire is added to 9202 * cache table. 9203 */ 9204 save_ire = ire; 9205 ihandle = save_ire->ire_ihandle; 9206 9207 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9208 "flags %04x\n", 9209 (void *)ire, (void *)ipif, flags)); 9210 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9211 (fire->ire_flags & RTF_MULTIRT)) { 9212 /* 9213 * As requested by flags, an IRE_OFFSUBNET was 9214 * looked up on that interface. This ire has 9215 * RTF_MULTIRT flag, so the resolution loop will 9216 * be re-entered to resolve additional routes on 9217 * other interfaces. For that purpose, a copy of 9218 * the packet is performed at this point. 9219 */ 9220 fire->ire_last_used_time = lbolt; 9221 copy_mp = copymsg(first_mp); 9222 if (copy_mp) { 9223 MULTIRT_DEBUG_TAG(copy_mp); 9224 } 9225 } 9226 if ((flags & RTF_SETSRC) && (fire != NULL) && 9227 (fire->ire_flags & RTF_SETSRC)) { 9228 /* 9229 * As requested by flags, an IRE_OFFSUBET was 9230 * looked up on that interface. This ire has 9231 * RTF_SETSRC flag, so the source address of the 9232 * packet must be changed. 9233 */ 9234 ipha->ipha_src = fire->ire_src_addr; 9235 } 9236 } else { 9237 ASSERT((connp == NULL) || 9238 (connp->conn_outgoing_ill != NULL) || 9239 (connp->conn_dontroute) || 9240 infop->ip_opt_ill_index != 0); 9241 /* 9242 * The only ways we can come here are: 9243 * 1) IP_BOUND_IF socket option is set 9244 * 2) SO_DONTROUTE socket option is set 9245 * 3) IP_PKTINFO option is passed in as ancillary data. 9246 * In all cases, the new ire will not be added 9247 * into cache table. 9248 */ 9249 ire_marks |= IRE_MARK_NOADD; 9250 } 9251 9252 switch (ipif->ipif_net_type) { 9253 case IRE_IF_NORESOLVER: { 9254 /* We have what we need to build an IRE_CACHE. */ 9255 9256 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9257 (dst_ill->ill_resolver_mp == NULL)) { 9258 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9259 "for IRE_IF_NORESOLVER ire %p has " 9260 "no ill_resolver_mp\n", 9261 (void *)dst_ill, (void *)ire)); 9262 break; 9263 } 9264 9265 /* 9266 * The new ire inherits the IRE_OFFSUBNET flags 9267 * and source address, if this was requested. 9268 */ 9269 ire = ire_create( 9270 (uchar_t *)&dst, /* dest address */ 9271 (uchar_t *)&ip_g_all_ones, /* mask */ 9272 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9273 NULL, /* gateway address */ 9274 &ipif->ipif_mtu, 9275 NULL, /* no src nce */ 9276 dst_ill->ill_rq, /* recv-from queue */ 9277 dst_ill->ill_wq, /* send-to queue */ 9278 IRE_CACHE, 9279 src_ipif, 9280 (save_ire != NULL ? save_ire->ire_mask : 0), 9281 (fire != NULL) ? /* Parent handle */ 9282 fire->ire_phandle : 0, 9283 ihandle, /* Interface handle */ 9284 (fire != NULL) ? 9285 (fire->ire_flags & 9286 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9287 (save_ire == NULL ? &ire_uinfo_null : 9288 &save_ire->ire_uinfo), 9289 NULL, 9290 NULL, 9291 ipst); 9292 9293 if (ire == NULL) { 9294 if (save_ire != NULL) 9295 ire_refrele(save_ire); 9296 break; 9297 } 9298 9299 ire->ire_marks |= ire_marks; 9300 9301 /* 9302 * If IRE_MARK_NOADD is set then we need to convert 9303 * the max_fragp to a useable value now. This is 9304 * normally done in ire_add_v[46]. We also need to 9305 * associate the ire with an nce (normally would be 9306 * done in ip_wput_nondata()). 9307 * 9308 * Note that IRE_MARK_NOADD packets created here 9309 * do not have a non-null ire_mp pointer. The null 9310 * value of ire_bucket indicates that they were 9311 * never added. 9312 */ 9313 if (ire->ire_marks & IRE_MARK_NOADD) { 9314 uint_t max_frag; 9315 9316 max_frag = *ire->ire_max_fragp; 9317 ire->ire_max_fragp = NULL; 9318 ire->ire_max_frag = max_frag; 9319 9320 if ((ire->ire_nce = ndp_lookup_v4( 9321 ire_to_ill(ire), 9322 (ire->ire_gateway_addr != INADDR_ANY ? 9323 &ire->ire_gateway_addr : &ire->ire_addr), 9324 B_FALSE)) == NULL) { 9325 if (save_ire != NULL) 9326 ire_refrele(save_ire); 9327 break; 9328 } 9329 ASSERT(ire->ire_nce->nce_state == 9330 ND_REACHABLE); 9331 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9332 } 9333 9334 /* Prevent save_ire from getting deleted */ 9335 if (save_ire != NULL) { 9336 IRB_REFHOLD(save_ire->ire_bucket); 9337 /* Has it been removed already ? */ 9338 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9339 IRB_REFRELE(save_ire->ire_bucket); 9340 ire_refrele(save_ire); 9341 break; 9342 } 9343 } 9344 9345 ire_add_then_send(q, ire, first_mp); 9346 9347 /* Assert that save_ire is not deleted yet. */ 9348 if (save_ire != NULL) { 9349 ASSERT(save_ire->ire_ptpn != NULL); 9350 IRB_REFRELE(save_ire->ire_bucket); 9351 ire_refrele(save_ire); 9352 save_ire = NULL; 9353 } 9354 if (fire != NULL) { 9355 ire_refrele(fire); 9356 fire = NULL; 9357 } 9358 9359 /* 9360 * the resolution loop is re-entered if this 9361 * was requested through flags and if we 9362 * actually are in a multirouting case. 9363 */ 9364 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9365 boolean_t need_resolve = 9366 ire_multirt_need_resolve(ipha_dst, 9367 MBLK_GETLABEL(copy_mp), ipst); 9368 if (!need_resolve) { 9369 MULTIRT_DEBUG_UNTAG(copy_mp); 9370 freemsg(copy_mp); 9371 copy_mp = NULL; 9372 } else { 9373 /* 9374 * ipif_lookup_group() calls 9375 * ire_lookup_multi() that uses 9376 * ire_ftable_lookup() to find 9377 * an IRE_INTERFACE for the group. 9378 * In the multirt case, 9379 * ire_lookup_multi() then invokes 9380 * ire_multirt_lookup() to find 9381 * the next resolvable ire. 9382 * As a result, we obtain an new 9383 * interface, derived from the 9384 * next ire. 9385 */ 9386 ipif_refrele(ipif); 9387 ipif = ipif_lookup_group(ipha_dst, 9388 zoneid, ipst); 9389 ip2dbg(("ip_newroute_ipif: " 9390 "multirt dst %08x, ipif %p\n", 9391 htonl(dst), (void *)ipif)); 9392 if (ipif != NULL) { 9393 mp = copy_mp; 9394 copy_mp = NULL; 9395 multirt_resolve_next = B_TRUE; 9396 continue; 9397 } else { 9398 freemsg(copy_mp); 9399 } 9400 } 9401 } 9402 if (ipif != NULL) 9403 ipif_refrele(ipif); 9404 ill_refrele(dst_ill); 9405 ipif_refrele(src_ipif); 9406 return; 9407 } 9408 case IRE_IF_RESOLVER: 9409 /* 9410 * We can't build an IRE_CACHE yet, but at least 9411 * we found a resolver that can help. 9412 */ 9413 res_mp = dst_ill->ill_resolver_mp; 9414 if (!OK_RESOLVER_MP(res_mp)) 9415 break; 9416 9417 /* 9418 * We obtain a partial IRE_CACHE which we will pass 9419 * along with the resolver query. When the response 9420 * comes back it will be there ready for us to add. 9421 * The new ire inherits the IRE_OFFSUBNET flags 9422 * and source address, if this was requested. 9423 * The ire_max_frag is atomically set under the 9424 * irebucket lock in ire_add_v[46]. Only in the 9425 * case of IRE_MARK_NOADD, we set it here itself. 9426 */ 9427 ire = ire_create_mp( 9428 (uchar_t *)&dst, /* dest address */ 9429 (uchar_t *)&ip_g_all_ones, /* mask */ 9430 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9431 NULL, /* gateway address */ 9432 (ire_marks & IRE_MARK_NOADD) ? 9433 ipif->ipif_mtu : 0, /* max_frag */ 9434 NULL, /* no src nce */ 9435 dst_ill->ill_rq, /* recv-from queue */ 9436 dst_ill->ill_wq, /* send-to queue */ 9437 IRE_CACHE, 9438 src_ipif, 9439 (save_ire != NULL ? save_ire->ire_mask : 0), 9440 (fire != NULL) ? /* Parent handle */ 9441 fire->ire_phandle : 0, 9442 ihandle, /* Interface handle */ 9443 (fire != NULL) ? /* flags if any */ 9444 (fire->ire_flags & 9445 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9446 (save_ire == NULL ? &ire_uinfo_null : 9447 &save_ire->ire_uinfo), 9448 NULL, 9449 NULL, 9450 ipst); 9451 9452 if (save_ire != NULL) { 9453 ire_refrele(save_ire); 9454 save_ire = NULL; 9455 } 9456 if (ire == NULL) 9457 break; 9458 9459 ire->ire_marks |= ire_marks; 9460 /* 9461 * Construct message chain for the resolver of the 9462 * form: 9463 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9464 * 9465 * NOTE : ire will be added later when the response 9466 * comes back from ARP. If the response does not 9467 * come back, ARP frees the packet. For this reason, 9468 * we can't REFHOLD the bucket of save_ire to prevent 9469 * deletions. We may not be able to REFRELE the 9470 * bucket if the response never comes back. 9471 * Thus, before adding the ire, ire_add_v4 will make 9472 * sure that the interface route does not get deleted. 9473 * This is the only case unlike ip_newroute_v6, 9474 * ip_newroute_ipif_v6 where we can always prevent 9475 * deletions because ire_add_then_send is called after 9476 * creating the IRE. 9477 * If IRE_MARK_NOADD is set, then ire_add_then_send 9478 * does not add this IRE into the IRE CACHE. 9479 */ 9480 ASSERT(ire->ire_mp != NULL); 9481 ire->ire_mp->b_cont = first_mp; 9482 /* Have saved_mp handy, for cleanup if canput fails */ 9483 saved_mp = mp; 9484 mp = copyb(res_mp); 9485 if (mp == NULL) { 9486 /* Prepare for cleanup */ 9487 mp = saved_mp; /* pkt */ 9488 ire_delete(ire); /* ire_mp */ 9489 ire = NULL; 9490 if (copy_mp != NULL) { 9491 MULTIRT_DEBUG_UNTAG(copy_mp); 9492 freemsg(copy_mp); 9493 copy_mp = NULL; 9494 } 9495 break; 9496 } 9497 linkb(mp, ire->ire_mp); 9498 9499 /* 9500 * Fill in the source and dest addrs for the resolver. 9501 * NOTE: this depends on memory layouts imposed by 9502 * ill_init(). 9503 */ 9504 areq = (areq_t *)mp->b_rptr; 9505 addrp = (ipaddr_t *)((char *)areq + 9506 areq->areq_sender_addr_offset); 9507 *addrp = ire->ire_src_addr; 9508 addrp = (ipaddr_t *)((char *)areq + 9509 areq->areq_target_addr_offset); 9510 *addrp = dst; 9511 /* Up to the resolver. */ 9512 if (canputnext(dst_ill->ill_rq) && 9513 !(dst_ill->ill_arp_closing)) { 9514 putnext(dst_ill->ill_rq, mp); 9515 /* 9516 * The response will come back in ip_wput 9517 * with db_type IRE_DB_TYPE. 9518 */ 9519 } else { 9520 mp->b_cont = NULL; 9521 freeb(mp); /* areq */ 9522 ire_delete(ire); /* ire_mp */ 9523 saved_mp->b_next = NULL; 9524 saved_mp->b_prev = NULL; 9525 freemsg(first_mp); /* pkt */ 9526 ip2dbg(("ip_newroute_ipif: dropped\n")); 9527 } 9528 9529 if (fire != NULL) { 9530 ire_refrele(fire); 9531 fire = NULL; 9532 } 9533 9534 9535 /* 9536 * The resolution loop is re-entered if this was 9537 * requested through flags and we actually are 9538 * in a multirouting case. 9539 */ 9540 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9541 boolean_t need_resolve = 9542 ire_multirt_need_resolve(ipha_dst, 9543 MBLK_GETLABEL(copy_mp), ipst); 9544 if (!need_resolve) { 9545 MULTIRT_DEBUG_UNTAG(copy_mp); 9546 freemsg(copy_mp); 9547 copy_mp = NULL; 9548 } else { 9549 /* 9550 * ipif_lookup_group() calls 9551 * ire_lookup_multi() that uses 9552 * ire_ftable_lookup() to find 9553 * an IRE_INTERFACE for the group. 9554 * In the multirt case, 9555 * ire_lookup_multi() then invokes 9556 * ire_multirt_lookup() to find 9557 * the next resolvable ire. 9558 * As a result, we obtain an new 9559 * interface, derived from the 9560 * next ire. 9561 */ 9562 ipif_refrele(ipif); 9563 ipif = ipif_lookup_group(ipha_dst, 9564 zoneid, ipst); 9565 if (ipif != NULL) { 9566 mp = copy_mp; 9567 copy_mp = NULL; 9568 multirt_resolve_next = B_TRUE; 9569 continue; 9570 } else { 9571 freemsg(copy_mp); 9572 } 9573 } 9574 } 9575 if (ipif != NULL) 9576 ipif_refrele(ipif); 9577 ill_refrele(dst_ill); 9578 ipif_refrele(src_ipif); 9579 return; 9580 default: 9581 break; 9582 } 9583 } while (multirt_resolve_next); 9584 9585 err_ret: 9586 ip2dbg(("ip_newroute_ipif: dropped\n")); 9587 if (fire != NULL) 9588 ire_refrele(fire); 9589 ipif_refrele(ipif); 9590 /* Did this packet originate externally? */ 9591 if (dst_ill != NULL) 9592 ill_refrele(dst_ill); 9593 if (src_ipif != NULL) 9594 ipif_refrele(src_ipif); 9595 if (mp->b_prev || mp->b_next) { 9596 mp->b_next = NULL; 9597 mp->b_prev = NULL; 9598 } else { 9599 /* 9600 * Since ip_wput() isn't close to finished, we fill 9601 * in enough of the header for credible error reporting. 9602 */ 9603 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9604 /* Failed */ 9605 freemsg(first_mp); 9606 if (ire != NULL) 9607 ire_refrele(ire); 9608 return; 9609 } 9610 } 9611 /* 9612 * At this point we will have ire only if RTF_BLACKHOLE 9613 * or RTF_REJECT flags are set on the IRE. It will not 9614 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9615 */ 9616 if (ire != NULL) { 9617 if (ire->ire_flags & RTF_BLACKHOLE) { 9618 ire_refrele(ire); 9619 freemsg(first_mp); 9620 return; 9621 } 9622 ire_refrele(ire); 9623 } 9624 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9625 } 9626 9627 /* Name/Value Table Lookup Routine */ 9628 char * 9629 ip_nv_lookup(nv_t *nv, int value) 9630 { 9631 if (!nv) 9632 return (NULL); 9633 for (; nv->nv_name; nv++) { 9634 if (nv->nv_value == value) 9635 return (nv->nv_name); 9636 } 9637 return ("unknown"); 9638 } 9639 9640 /* 9641 * This is a module open, i.e. this is a control stream for access 9642 * to a DLPI device. We allocate an ill_t as the instance data in 9643 * this case. 9644 */ 9645 int 9646 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9647 { 9648 ill_t *ill; 9649 int err; 9650 zoneid_t zoneid; 9651 netstack_t *ns; 9652 ip_stack_t *ipst; 9653 9654 /* 9655 * Prevent unprivileged processes from pushing IP so that 9656 * they can't send raw IP. 9657 */ 9658 if (secpolicy_net_rawaccess(credp) != 0) 9659 return (EPERM); 9660 9661 ns = netstack_find_by_cred(credp); 9662 ASSERT(ns != NULL); 9663 ipst = ns->netstack_ip; 9664 ASSERT(ipst != NULL); 9665 9666 /* 9667 * For exclusive stacks we set the zoneid to zero 9668 * to make IP operate as if in the global zone. 9669 */ 9670 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9671 zoneid = GLOBAL_ZONEID; 9672 else 9673 zoneid = crgetzoneid(credp); 9674 9675 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9676 q->q_ptr = WR(q)->q_ptr = ill; 9677 ill->ill_ipst = ipst; 9678 ill->ill_zoneid = zoneid; 9679 9680 /* 9681 * ill_init initializes the ill fields and then sends down 9682 * down a DL_INFO_REQ after calling qprocson. 9683 */ 9684 err = ill_init(q, ill); 9685 if (err != 0) { 9686 mi_free(ill); 9687 netstack_rele(ipst->ips_netstack); 9688 q->q_ptr = NULL; 9689 WR(q)->q_ptr = NULL; 9690 return (err); 9691 } 9692 9693 /* ill_init initializes the ipsq marking this thread as writer */ 9694 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9695 /* Wait for the DL_INFO_ACK */ 9696 mutex_enter(&ill->ill_lock); 9697 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9698 /* 9699 * Return value of 0 indicates a pending signal. 9700 */ 9701 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9702 if (err == 0) { 9703 mutex_exit(&ill->ill_lock); 9704 (void) ip_close(q, 0); 9705 return (EINTR); 9706 } 9707 } 9708 mutex_exit(&ill->ill_lock); 9709 9710 /* 9711 * ip_rput_other could have set an error in ill_error on 9712 * receipt of M_ERROR. 9713 */ 9714 9715 err = ill->ill_error; 9716 if (err != 0) { 9717 (void) ip_close(q, 0); 9718 return (err); 9719 } 9720 9721 ill->ill_credp = credp; 9722 crhold(credp); 9723 9724 mutex_enter(&ipst->ips_ip_mi_lock); 9725 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9726 credp); 9727 mutex_exit(&ipst->ips_ip_mi_lock); 9728 if (err) { 9729 (void) ip_close(q, 0); 9730 return (err); 9731 } 9732 return (0); 9733 } 9734 9735 /* For /dev/ip aka AF_INET open */ 9736 int 9737 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9738 { 9739 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9740 } 9741 9742 /* For /dev/ip6 aka AF_INET6 open */ 9743 int 9744 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9745 { 9746 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9747 } 9748 9749 /* IP open routine. */ 9750 int 9751 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9752 boolean_t isv6) 9753 { 9754 conn_t *connp; 9755 major_t maj; 9756 zoneid_t zoneid; 9757 netstack_t *ns; 9758 ip_stack_t *ipst; 9759 9760 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9761 9762 /* Allow reopen. */ 9763 if (q->q_ptr != NULL) 9764 return (0); 9765 9766 if (sflag & MODOPEN) { 9767 /* This is a module open */ 9768 return (ip_modopen(q, devp, flag, sflag, credp)); 9769 } 9770 9771 ns = netstack_find_by_cred(credp); 9772 ASSERT(ns != NULL); 9773 ipst = ns->netstack_ip; 9774 ASSERT(ipst != NULL); 9775 9776 /* 9777 * For exclusive stacks we set the zoneid to zero 9778 * to make IP operate as if in the global zone. 9779 */ 9780 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9781 zoneid = GLOBAL_ZONEID; 9782 else 9783 zoneid = crgetzoneid(credp); 9784 9785 /* 9786 * We are opening as a device. This is an IP client stream, and we 9787 * allocate an conn_t as the instance data. 9788 */ 9789 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9790 9791 /* 9792 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9793 * done by netstack_find_by_cred() 9794 */ 9795 netstack_rele(ipst->ips_netstack); 9796 9797 connp->conn_zoneid = zoneid; 9798 9799 connp->conn_upq = q; 9800 q->q_ptr = WR(q)->q_ptr = connp; 9801 9802 if (flag & SO_SOCKSTR) 9803 connp->conn_flags |= IPCL_SOCKET; 9804 9805 /* Minor tells us which /dev entry was opened */ 9806 if (isv6) { 9807 connp->conn_flags |= IPCL_ISV6; 9808 connp->conn_af_isv6 = B_TRUE; 9809 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9810 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9811 } else { 9812 connp->conn_af_isv6 = B_FALSE; 9813 connp->conn_pkt_isv6 = B_FALSE; 9814 } 9815 9816 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9817 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9818 connp->conn_minor_arena = ip_minor_arena_la; 9819 } else { 9820 /* 9821 * Either minor numbers in the large arena were exhausted 9822 * or a non socket application is doing the open. 9823 * Try to allocate from the small arena. 9824 */ 9825 if ((connp->conn_dev = 9826 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9827 /* CONN_DEC_REF takes care of netstack_rele() */ 9828 q->q_ptr = WR(q)->q_ptr = NULL; 9829 CONN_DEC_REF(connp); 9830 return (EBUSY); 9831 } 9832 connp->conn_minor_arena = ip_minor_arena_sa; 9833 } 9834 9835 maj = getemajor(*devp); 9836 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9837 9838 /* 9839 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9840 */ 9841 connp->conn_cred = credp; 9842 9843 /* 9844 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9845 */ 9846 connp->conn_recv = ip_conn_input; 9847 9848 crhold(connp->conn_cred); 9849 9850 /* 9851 * If the caller has the process-wide flag set, then default to MAC 9852 * exempt mode. This allows read-down to unlabeled hosts. 9853 */ 9854 if (getpflags(NET_MAC_AWARE, credp) != 0) 9855 connp->conn_mac_exempt = B_TRUE; 9856 9857 connp->conn_rq = q; 9858 connp->conn_wq = WR(q); 9859 9860 /* Non-zero default values */ 9861 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9862 9863 /* 9864 * Make the conn globally visible to walkers 9865 */ 9866 ASSERT(connp->conn_ref == 1); 9867 mutex_enter(&connp->conn_lock); 9868 connp->conn_state_flags &= ~CONN_INCIPIENT; 9869 mutex_exit(&connp->conn_lock); 9870 9871 qprocson(q); 9872 9873 return (0); 9874 } 9875 9876 /* 9877 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9878 * Note that there is no race since either ip_output function works - it 9879 * is just an optimization to enter the best ip_output routine directly. 9880 */ 9881 void 9882 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9883 ip_stack_t *ipst) 9884 { 9885 if (isv6) { 9886 if (bump_mib) { 9887 BUMP_MIB(&ipst->ips_ip6_mib, 9888 ipIfStatsOutSwitchIPVersion); 9889 } 9890 connp->conn_send = ip_output_v6; 9891 connp->conn_pkt_isv6 = B_TRUE; 9892 } else { 9893 if (bump_mib) { 9894 BUMP_MIB(&ipst->ips_ip_mib, 9895 ipIfStatsOutSwitchIPVersion); 9896 } 9897 connp->conn_send = ip_output; 9898 connp->conn_pkt_isv6 = B_FALSE; 9899 } 9900 9901 } 9902 9903 /* 9904 * See if IPsec needs loading because of the options in mp. 9905 */ 9906 static boolean_t 9907 ipsec_opt_present(mblk_t *mp) 9908 { 9909 uint8_t *optcp, *next_optcp, *opt_endcp; 9910 struct opthdr *opt; 9911 struct T_opthdr *topt; 9912 int opthdr_len; 9913 t_uscalar_t optname, optlevel; 9914 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9915 ipsec_req_t *ipsr; 9916 9917 /* 9918 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9919 * return TRUE. 9920 */ 9921 9922 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9923 opt_endcp = optcp + tor->OPT_length; 9924 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9925 opthdr_len = sizeof (struct T_opthdr); 9926 } else { /* O_OPTMGMT_REQ */ 9927 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9928 opthdr_len = sizeof (struct opthdr); 9929 } 9930 for (; optcp < opt_endcp; optcp = next_optcp) { 9931 if (optcp + opthdr_len > opt_endcp) 9932 return (B_FALSE); /* Not enough option header. */ 9933 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9934 topt = (struct T_opthdr *)optcp; 9935 optlevel = topt->level; 9936 optname = topt->name; 9937 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9938 } else { 9939 opt = (struct opthdr *)optcp; 9940 optlevel = opt->level; 9941 optname = opt->name; 9942 next_optcp = optcp + opthdr_len + 9943 _TPI_ALIGN_OPT(opt->len); 9944 } 9945 if ((next_optcp < optcp) || /* wraparound pointer space */ 9946 ((next_optcp >= opt_endcp) && /* last option bad len */ 9947 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9948 return (B_FALSE); /* bad option buffer */ 9949 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9950 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9951 /* 9952 * Check to see if it's an all-bypass or all-zeroes 9953 * IPsec request. Don't bother loading IPsec if 9954 * the socket doesn't want to use it. (A good example 9955 * is a bypass request.) 9956 * 9957 * Basically, if any of the non-NEVER bits are set, 9958 * load IPsec. 9959 */ 9960 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9961 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9962 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9963 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9964 != 0) 9965 return (B_TRUE); 9966 } 9967 } 9968 return (B_FALSE); 9969 } 9970 9971 /* 9972 * If conn is is waiting for ipsec to finish loading, kick it. 9973 */ 9974 /* ARGSUSED */ 9975 static void 9976 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9977 { 9978 t_scalar_t optreq_prim; 9979 mblk_t *mp; 9980 cred_t *cr; 9981 int err = 0; 9982 9983 /* 9984 * This function is called, after ipsec loading is complete. 9985 * Since IP checks exclusively and atomically (i.e it prevents 9986 * ipsec load from completing until ip_optcom_req completes) 9987 * whether ipsec load is complete, there cannot be a race with IP 9988 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9989 */ 9990 mutex_enter(&connp->conn_lock); 9991 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9992 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9993 mp = connp->conn_ipsec_opt_mp; 9994 connp->conn_ipsec_opt_mp = NULL; 9995 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9996 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9997 mutex_exit(&connp->conn_lock); 9998 9999 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10000 10001 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10002 if (optreq_prim == T_OPTMGMT_REQ) { 10003 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10004 &ip_opt_obj, B_FALSE); 10005 } else { 10006 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10007 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10008 &ip_opt_obj, B_FALSE); 10009 } 10010 if (err != EINPROGRESS) 10011 CONN_OPER_PENDING_DONE(connp); 10012 return; 10013 } 10014 mutex_exit(&connp->conn_lock); 10015 } 10016 10017 /* 10018 * Called from the ipsec_loader thread, outside any perimeter, to tell 10019 * ip qenable any of the queues waiting for the ipsec loader to 10020 * complete. 10021 */ 10022 void 10023 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10024 { 10025 netstack_t *ns = ipss->ipsec_netstack; 10026 10027 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10028 } 10029 10030 /* 10031 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10032 * determines the grp on which it has to become exclusive, queues the mp 10033 * and sq draining restarts the optmgmt 10034 */ 10035 static boolean_t 10036 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10037 { 10038 conn_t *connp = Q_TO_CONN(q); 10039 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10040 10041 /* 10042 * Take IPsec requests and treat them special. 10043 */ 10044 if (ipsec_opt_present(mp)) { 10045 /* First check if IPsec is loaded. */ 10046 mutex_enter(&ipss->ipsec_loader_lock); 10047 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10048 mutex_exit(&ipss->ipsec_loader_lock); 10049 return (B_FALSE); 10050 } 10051 mutex_enter(&connp->conn_lock); 10052 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10053 10054 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10055 connp->conn_ipsec_opt_mp = mp; 10056 mutex_exit(&connp->conn_lock); 10057 mutex_exit(&ipss->ipsec_loader_lock); 10058 10059 ipsec_loader_loadnow(ipss); 10060 return (B_TRUE); 10061 } 10062 return (B_FALSE); 10063 } 10064 10065 /* 10066 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10067 * all of them are copied to the conn_t. If the req is "zero", the policy is 10068 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10069 * fields. 10070 * We keep only the latest setting of the policy and thus policy setting 10071 * is not incremental/cumulative. 10072 * 10073 * Requests to set policies with multiple alternative actions will 10074 * go through a different API. 10075 */ 10076 int 10077 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10078 { 10079 uint_t ah_req = 0; 10080 uint_t esp_req = 0; 10081 uint_t se_req = 0; 10082 ipsec_selkey_t sel; 10083 ipsec_act_t *actp = NULL; 10084 uint_t nact; 10085 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10086 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10087 ipsec_policy_root_t *pr; 10088 ipsec_policy_head_t *ph; 10089 int fam; 10090 boolean_t is_pol_reset; 10091 int error = 0; 10092 netstack_t *ns = connp->conn_netstack; 10093 ip_stack_t *ipst = ns->netstack_ip; 10094 ipsec_stack_t *ipss = ns->netstack_ipsec; 10095 10096 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10097 10098 /* 10099 * The IP_SEC_OPT option does not allow variable length parameters, 10100 * hence a request cannot be NULL. 10101 */ 10102 if (req == NULL) 10103 return (EINVAL); 10104 10105 ah_req = req->ipsr_ah_req; 10106 esp_req = req->ipsr_esp_req; 10107 se_req = req->ipsr_self_encap_req; 10108 10109 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10110 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10111 return (EINVAL); 10112 10113 /* 10114 * Are we dealing with a request to reset the policy (i.e. 10115 * zero requests). 10116 */ 10117 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10118 (esp_req & REQ_MASK) == 0 && 10119 (se_req & REQ_MASK) == 0); 10120 10121 if (!is_pol_reset) { 10122 /* 10123 * If we couldn't load IPsec, fail with "protocol 10124 * not supported". 10125 * IPsec may not have been loaded for a request with zero 10126 * policies, so we don't fail in this case. 10127 */ 10128 mutex_enter(&ipss->ipsec_loader_lock); 10129 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10130 mutex_exit(&ipss->ipsec_loader_lock); 10131 return (EPROTONOSUPPORT); 10132 } 10133 mutex_exit(&ipss->ipsec_loader_lock); 10134 10135 /* 10136 * Test for valid requests. Invalid algorithms 10137 * need to be tested by IPsec code because new 10138 * algorithms can be added dynamically. 10139 */ 10140 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10141 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10142 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10143 return (EINVAL); 10144 } 10145 10146 /* 10147 * Only privileged users can issue these 10148 * requests. 10149 */ 10150 if (((ah_req & IPSEC_PREF_NEVER) || 10151 (esp_req & IPSEC_PREF_NEVER) || 10152 (se_req & IPSEC_PREF_NEVER)) && 10153 secpolicy_ip_config(cr, B_FALSE) != 0) { 10154 return (EPERM); 10155 } 10156 10157 /* 10158 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10159 * are mutually exclusive. 10160 */ 10161 if (((ah_req & REQ_MASK) == REQ_MASK) || 10162 ((esp_req & REQ_MASK) == REQ_MASK) || 10163 ((se_req & REQ_MASK) == REQ_MASK)) { 10164 /* Both of them are set */ 10165 return (EINVAL); 10166 } 10167 } 10168 10169 mutex_enter(&connp->conn_lock); 10170 10171 /* 10172 * If we have already cached policies in ip_bind_connected*(), don't 10173 * let them change now. We cache policies for connections 10174 * whose src,dst [addr, port] is known. 10175 */ 10176 if (connp->conn_policy_cached) { 10177 mutex_exit(&connp->conn_lock); 10178 return (EINVAL); 10179 } 10180 10181 /* 10182 * We have a zero policies, reset the connection policy if already 10183 * set. This will cause the connection to inherit the 10184 * global policy, if any. 10185 */ 10186 if (is_pol_reset) { 10187 if (connp->conn_policy != NULL) { 10188 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10189 connp->conn_policy = NULL; 10190 } 10191 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10192 connp->conn_in_enforce_policy = B_FALSE; 10193 connp->conn_out_enforce_policy = B_FALSE; 10194 mutex_exit(&connp->conn_lock); 10195 return (0); 10196 } 10197 10198 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10199 ipst->ips_netstack); 10200 if (ph == NULL) 10201 goto enomem; 10202 10203 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10204 if (actp == NULL) 10205 goto enomem; 10206 10207 /* 10208 * Always allocate IPv4 policy entries, since they can also 10209 * apply to ipv6 sockets being used in ipv4-compat mode. 10210 */ 10211 bzero(&sel, sizeof (sel)); 10212 sel.ipsl_valid = IPSL_IPV4; 10213 10214 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10215 ipst->ips_netstack); 10216 if (pin4 == NULL) 10217 goto enomem; 10218 10219 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10220 ipst->ips_netstack); 10221 if (pout4 == NULL) 10222 goto enomem; 10223 10224 if (connp->conn_af_isv6) { 10225 /* 10226 * We're looking at a v6 socket, also allocate the 10227 * v6-specific entries... 10228 */ 10229 sel.ipsl_valid = IPSL_IPV6; 10230 pin6 = ipsec_policy_create(&sel, actp, nact, 10231 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10232 if (pin6 == NULL) 10233 goto enomem; 10234 10235 pout6 = ipsec_policy_create(&sel, actp, nact, 10236 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10237 if (pout6 == NULL) 10238 goto enomem; 10239 10240 /* 10241 * .. and file them away in the right place. 10242 */ 10243 fam = IPSEC_AF_V6; 10244 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10245 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10246 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10247 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10248 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10249 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10250 } 10251 10252 ipsec_actvec_free(actp, nact); 10253 10254 /* 10255 * File the v4 policies. 10256 */ 10257 fam = IPSEC_AF_V4; 10258 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10259 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10260 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10261 10262 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10263 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10264 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10265 10266 /* 10267 * If the requests need security, set enforce_policy. 10268 * If the requests are IPSEC_PREF_NEVER, one should 10269 * still set conn_out_enforce_policy so that an ipsec_out 10270 * gets attached in ip_wput. This is needed so that 10271 * for connections that we don't cache policy in ip_bind, 10272 * if global policy matches in ip_wput_attach_policy, we 10273 * don't wrongly inherit global policy. Similarly, we need 10274 * to set conn_in_enforce_policy also so that we don't verify 10275 * policy wrongly. 10276 */ 10277 if ((ah_req & REQ_MASK) != 0 || 10278 (esp_req & REQ_MASK) != 0 || 10279 (se_req & REQ_MASK) != 0) { 10280 connp->conn_in_enforce_policy = B_TRUE; 10281 connp->conn_out_enforce_policy = B_TRUE; 10282 connp->conn_flags |= IPCL_CHECK_POLICY; 10283 } 10284 10285 mutex_exit(&connp->conn_lock); 10286 return (error); 10287 #undef REQ_MASK 10288 10289 /* 10290 * Common memory-allocation-failure exit path. 10291 */ 10292 enomem: 10293 mutex_exit(&connp->conn_lock); 10294 if (actp != NULL) 10295 ipsec_actvec_free(actp, nact); 10296 if (pin4 != NULL) 10297 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10298 if (pout4 != NULL) 10299 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10300 if (pin6 != NULL) 10301 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10302 if (pout6 != NULL) 10303 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10304 return (ENOMEM); 10305 } 10306 10307 /* 10308 * Only for options that pass in an IP addr. Currently only V4 options 10309 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10310 * So this function assumes level is IPPROTO_IP 10311 */ 10312 int 10313 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10314 mblk_t *first_mp) 10315 { 10316 ipif_t *ipif = NULL; 10317 int error; 10318 ill_t *ill; 10319 int zoneid; 10320 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10321 10322 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10323 10324 if (addr != INADDR_ANY || checkonly) { 10325 ASSERT(connp != NULL); 10326 zoneid = IPCL_ZONEID(connp); 10327 if (option == IP_NEXTHOP) { 10328 ipif = ipif_lookup_onlink_addr(addr, 10329 connp->conn_zoneid, ipst); 10330 } else { 10331 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10332 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10333 &error, ipst); 10334 } 10335 if (ipif == NULL) { 10336 if (error == EINPROGRESS) 10337 return (error); 10338 else if ((option == IP_MULTICAST_IF) || 10339 (option == IP_NEXTHOP)) 10340 return (EHOSTUNREACH); 10341 else 10342 return (EINVAL); 10343 } else if (checkonly) { 10344 if (option == IP_MULTICAST_IF) { 10345 ill = ipif->ipif_ill; 10346 /* not supported by the virtual network iface */ 10347 if (IS_VNI(ill)) { 10348 ipif_refrele(ipif); 10349 return (EINVAL); 10350 } 10351 } 10352 ipif_refrele(ipif); 10353 return (0); 10354 } 10355 ill = ipif->ipif_ill; 10356 mutex_enter(&connp->conn_lock); 10357 mutex_enter(&ill->ill_lock); 10358 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10359 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10360 mutex_exit(&ill->ill_lock); 10361 mutex_exit(&connp->conn_lock); 10362 ipif_refrele(ipif); 10363 return (option == IP_MULTICAST_IF ? 10364 EHOSTUNREACH : EINVAL); 10365 } 10366 } else { 10367 mutex_enter(&connp->conn_lock); 10368 } 10369 10370 /* None of the options below are supported on the VNI */ 10371 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10372 mutex_exit(&ill->ill_lock); 10373 mutex_exit(&connp->conn_lock); 10374 ipif_refrele(ipif); 10375 return (EINVAL); 10376 } 10377 10378 switch (option) { 10379 case IP_DONTFAILOVER_IF: 10380 /* 10381 * This option is used by in.mpathd to ensure 10382 * that IPMP probe packets only go out on the 10383 * test interfaces. in.mpathd sets this option 10384 * on the non-failover interfaces. 10385 * For backward compatibility, this option 10386 * implicitly sets IP_MULTICAST_IF, as used 10387 * be done in bind(), so that ip_wput gets 10388 * this ipif to send mcast packets. 10389 */ 10390 if (ipif != NULL) { 10391 ASSERT(addr != INADDR_ANY); 10392 connp->conn_nofailover_ill = ipif->ipif_ill; 10393 connp->conn_multicast_ipif = ipif; 10394 } else { 10395 ASSERT(addr == INADDR_ANY); 10396 connp->conn_nofailover_ill = NULL; 10397 connp->conn_multicast_ipif = NULL; 10398 } 10399 break; 10400 10401 case IP_MULTICAST_IF: 10402 connp->conn_multicast_ipif = ipif; 10403 break; 10404 case IP_NEXTHOP: 10405 connp->conn_nexthop_v4 = addr; 10406 connp->conn_nexthop_set = B_TRUE; 10407 break; 10408 } 10409 10410 if (ipif != NULL) { 10411 mutex_exit(&ill->ill_lock); 10412 mutex_exit(&connp->conn_lock); 10413 ipif_refrele(ipif); 10414 return (0); 10415 } 10416 mutex_exit(&connp->conn_lock); 10417 /* We succeded in cleared the option */ 10418 return (0); 10419 } 10420 10421 /* 10422 * For options that pass in an ifindex specifying the ill. V6 options always 10423 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10424 */ 10425 int 10426 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10427 int level, int option, mblk_t *first_mp) 10428 { 10429 ill_t *ill = NULL; 10430 int error = 0; 10431 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10432 10433 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10434 if (ifindex != 0) { 10435 ASSERT(connp != NULL); 10436 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10437 first_mp, ip_restart_optmgmt, &error, ipst); 10438 if (ill != NULL) { 10439 if (checkonly) { 10440 /* not supported by the virtual network iface */ 10441 if (IS_VNI(ill)) { 10442 ill_refrele(ill); 10443 return (EINVAL); 10444 } 10445 ill_refrele(ill); 10446 return (0); 10447 } 10448 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10449 0, NULL)) { 10450 ill_refrele(ill); 10451 ill = NULL; 10452 mutex_enter(&connp->conn_lock); 10453 goto setit; 10454 } 10455 mutex_enter(&connp->conn_lock); 10456 mutex_enter(&ill->ill_lock); 10457 if (ill->ill_state_flags & ILL_CONDEMNED) { 10458 mutex_exit(&ill->ill_lock); 10459 mutex_exit(&connp->conn_lock); 10460 ill_refrele(ill); 10461 ill = NULL; 10462 mutex_enter(&connp->conn_lock); 10463 } 10464 goto setit; 10465 } else if (error == EINPROGRESS) { 10466 return (error); 10467 } else { 10468 error = 0; 10469 } 10470 } 10471 mutex_enter(&connp->conn_lock); 10472 setit: 10473 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10474 10475 /* 10476 * The options below assume that the ILL (if any) transmits and/or 10477 * receives traffic. Neither of which is true for the virtual network 10478 * interface, so fail setting these on a VNI. 10479 */ 10480 if (IS_VNI(ill)) { 10481 ASSERT(ill != NULL); 10482 mutex_exit(&ill->ill_lock); 10483 mutex_exit(&connp->conn_lock); 10484 ill_refrele(ill); 10485 return (EINVAL); 10486 } 10487 10488 if (level == IPPROTO_IP) { 10489 switch (option) { 10490 case IP_BOUND_IF: 10491 connp->conn_incoming_ill = ill; 10492 connp->conn_outgoing_ill = ill; 10493 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10494 0 : ifindex; 10495 break; 10496 10497 case IP_MULTICAST_IF: 10498 /* 10499 * This option is an internal special. The socket 10500 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10501 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10502 * specifies an ifindex and we try first on V6 ill's. 10503 * If we don't find one, we they try using on v4 ill's 10504 * intenally and we come here. 10505 */ 10506 if (!checkonly && ill != NULL) { 10507 ipif_t *ipif; 10508 ipif = ill->ill_ipif; 10509 10510 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10511 mutex_exit(&ill->ill_lock); 10512 mutex_exit(&connp->conn_lock); 10513 ill_refrele(ill); 10514 ill = NULL; 10515 mutex_enter(&connp->conn_lock); 10516 } else { 10517 connp->conn_multicast_ipif = ipif; 10518 } 10519 } 10520 break; 10521 10522 case IP_DHCPINIT_IF: 10523 if (connp->conn_dhcpinit_ill != NULL) { 10524 /* 10525 * We've locked the conn so conn_cleanup_ill() 10526 * cannot clear conn_dhcpinit_ill -- so it's 10527 * safe to access the ill. 10528 */ 10529 ill_t *oill = connp->conn_dhcpinit_ill; 10530 10531 ASSERT(oill->ill_dhcpinit != 0); 10532 atomic_dec_32(&oill->ill_dhcpinit); 10533 connp->conn_dhcpinit_ill = NULL; 10534 } 10535 10536 if (ill != NULL) { 10537 connp->conn_dhcpinit_ill = ill; 10538 atomic_inc_32(&ill->ill_dhcpinit); 10539 } 10540 break; 10541 } 10542 } else { 10543 switch (option) { 10544 case IPV6_BOUND_IF: 10545 connp->conn_incoming_ill = ill; 10546 connp->conn_outgoing_ill = ill; 10547 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10548 0 : ifindex; 10549 break; 10550 10551 case IPV6_BOUND_PIF: 10552 /* 10553 * Limit all transmit to this ill. 10554 * Unlike IPV6_BOUND_IF, using this option 10555 * prevents load spreading and failover from 10556 * happening when the interface is part of the 10557 * group. That's why we don't need to remember 10558 * the ifindex in orig_bound_ifindex as in 10559 * IPV6_BOUND_IF. 10560 */ 10561 connp->conn_outgoing_pill = ill; 10562 break; 10563 10564 case IPV6_DONTFAILOVER_IF: 10565 /* 10566 * This option is used by in.mpathd to ensure 10567 * that IPMP probe packets only go out on the 10568 * test interfaces. in.mpathd sets this option 10569 * on the non-failover interfaces. 10570 */ 10571 connp->conn_nofailover_ill = ill; 10572 /* 10573 * For backward compatibility, this option 10574 * implicitly sets ip_multicast_ill as used in 10575 * IPV6_MULTICAST_IF so that ip_wput gets 10576 * this ill to send mcast packets. 10577 */ 10578 connp->conn_multicast_ill = ill; 10579 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10580 0 : ifindex; 10581 break; 10582 10583 case IPV6_MULTICAST_IF: 10584 /* 10585 * Set conn_multicast_ill to be the IPv6 ill. 10586 * Set conn_multicast_ipif to be an IPv4 ipif 10587 * for ifindex to make IPv4 mapped addresses 10588 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10589 * Even if no IPv6 ill exists for the ifindex 10590 * we need to check for an IPv4 ifindex in order 10591 * for this to work with mapped addresses. In that 10592 * case only set conn_multicast_ipif. 10593 */ 10594 if (!checkonly) { 10595 if (ifindex == 0) { 10596 connp->conn_multicast_ill = NULL; 10597 connp->conn_orig_multicast_ifindex = 0; 10598 connp->conn_multicast_ipif = NULL; 10599 } else if (ill != NULL) { 10600 connp->conn_multicast_ill = ill; 10601 connp->conn_orig_multicast_ifindex = 10602 ifindex; 10603 } 10604 } 10605 break; 10606 } 10607 } 10608 10609 if (ill != NULL) { 10610 mutex_exit(&ill->ill_lock); 10611 mutex_exit(&connp->conn_lock); 10612 ill_refrele(ill); 10613 return (0); 10614 } 10615 mutex_exit(&connp->conn_lock); 10616 /* 10617 * We succeeded in clearing the option (ifindex == 0) or failed to 10618 * locate the ill and could not set the option (ifindex != 0) 10619 */ 10620 return (ifindex == 0 ? 0 : EINVAL); 10621 } 10622 10623 /* This routine sets socket options. */ 10624 /* ARGSUSED */ 10625 int 10626 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10627 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10628 void *dummy, cred_t *cr, mblk_t *first_mp) 10629 { 10630 int *i1 = (int *)invalp; 10631 conn_t *connp = Q_TO_CONN(q); 10632 int error = 0; 10633 boolean_t checkonly; 10634 ire_t *ire; 10635 boolean_t found; 10636 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10637 10638 switch (optset_context) { 10639 10640 case SETFN_OPTCOM_CHECKONLY: 10641 checkonly = B_TRUE; 10642 /* 10643 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10644 * inlen != 0 implies value supplied and 10645 * we have to "pretend" to set it. 10646 * inlen == 0 implies that there is no 10647 * value part in T_CHECK request and just validation 10648 * done elsewhere should be enough, we just return here. 10649 */ 10650 if (inlen == 0) { 10651 *outlenp = 0; 10652 return (0); 10653 } 10654 break; 10655 case SETFN_OPTCOM_NEGOTIATE: 10656 case SETFN_UD_NEGOTIATE: 10657 case SETFN_CONN_NEGOTIATE: 10658 checkonly = B_FALSE; 10659 break; 10660 default: 10661 /* 10662 * We should never get here 10663 */ 10664 *outlenp = 0; 10665 return (EINVAL); 10666 } 10667 10668 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10669 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10670 10671 /* 10672 * For fixed length options, no sanity check 10673 * of passed in length is done. It is assumed *_optcom_req() 10674 * routines do the right thing. 10675 */ 10676 10677 switch (level) { 10678 case SOL_SOCKET: 10679 /* 10680 * conn_lock protects the bitfields, and is used to 10681 * set the fields atomically. 10682 */ 10683 switch (name) { 10684 case SO_BROADCAST: 10685 if (!checkonly) { 10686 /* TODO: use value someplace? */ 10687 mutex_enter(&connp->conn_lock); 10688 connp->conn_broadcast = *i1 ? 1 : 0; 10689 mutex_exit(&connp->conn_lock); 10690 } 10691 break; /* goto sizeof (int) option return */ 10692 case SO_USELOOPBACK: 10693 if (!checkonly) { 10694 /* TODO: use value someplace? */ 10695 mutex_enter(&connp->conn_lock); 10696 connp->conn_loopback = *i1 ? 1 : 0; 10697 mutex_exit(&connp->conn_lock); 10698 } 10699 break; /* goto sizeof (int) option return */ 10700 case SO_DONTROUTE: 10701 if (!checkonly) { 10702 mutex_enter(&connp->conn_lock); 10703 connp->conn_dontroute = *i1 ? 1 : 0; 10704 mutex_exit(&connp->conn_lock); 10705 } 10706 break; /* goto sizeof (int) option return */ 10707 case SO_REUSEADDR: 10708 if (!checkonly) { 10709 mutex_enter(&connp->conn_lock); 10710 connp->conn_reuseaddr = *i1 ? 1 : 0; 10711 mutex_exit(&connp->conn_lock); 10712 } 10713 break; /* goto sizeof (int) option return */ 10714 case SO_PROTOTYPE: 10715 if (!checkonly) { 10716 mutex_enter(&connp->conn_lock); 10717 connp->conn_proto = *i1; 10718 mutex_exit(&connp->conn_lock); 10719 } 10720 break; /* goto sizeof (int) option return */ 10721 case SO_ALLZONES: 10722 if (!checkonly) { 10723 mutex_enter(&connp->conn_lock); 10724 if (IPCL_IS_BOUND(connp)) { 10725 mutex_exit(&connp->conn_lock); 10726 return (EINVAL); 10727 } 10728 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10729 mutex_exit(&connp->conn_lock); 10730 } 10731 break; /* goto sizeof (int) option return */ 10732 case SO_ANON_MLP: 10733 if (!checkonly) { 10734 mutex_enter(&connp->conn_lock); 10735 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10736 mutex_exit(&connp->conn_lock); 10737 } 10738 break; /* goto sizeof (int) option return */ 10739 case SO_MAC_EXEMPT: 10740 if (secpolicy_net_mac_aware(cr) != 0 || 10741 IPCL_IS_BOUND(connp)) 10742 return (EACCES); 10743 if (!checkonly) { 10744 mutex_enter(&connp->conn_lock); 10745 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10746 mutex_exit(&connp->conn_lock); 10747 } 10748 break; /* goto sizeof (int) option return */ 10749 default: 10750 /* 10751 * "soft" error (negative) 10752 * option not handled at this level 10753 * Note: Do not modify *outlenp 10754 */ 10755 return (-EINVAL); 10756 } 10757 break; 10758 case IPPROTO_IP: 10759 switch (name) { 10760 case IP_NEXTHOP: 10761 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10762 return (EPERM); 10763 /* FALLTHRU */ 10764 case IP_MULTICAST_IF: 10765 case IP_DONTFAILOVER_IF: { 10766 ipaddr_t addr = *i1; 10767 10768 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10769 first_mp); 10770 if (error != 0) 10771 return (error); 10772 break; /* goto sizeof (int) option return */ 10773 } 10774 10775 case IP_MULTICAST_TTL: 10776 /* Recorded in transport above IP */ 10777 *outvalp = *invalp; 10778 *outlenp = sizeof (uchar_t); 10779 return (0); 10780 case IP_MULTICAST_LOOP: 10781 if (!checkonly) { 10782 mutex_enter(&connp->conn_lock); 10783 connp->conn_multicast_loop = *invalp ? 1 : 0; 10784 mutex_exit(&connp->conn_lock); 10785 } 10786 *outvalp = *invalp; 10787 *outlenp = sizeof (uchar_t); 10788 return (0); 10789 case IP_ADD_MEMBERSHIP: 10790 case MCAST_JOIN_GROUP: 10791 case IP_DROP_MEMBERSHIP: 10792 case MCAST_LEAVE_GROUP: { 10793 struct ip_mreq *mreqp; 10794 struct group_req *greqp; 10795 ire_t *ire; 10796 boolean_t done = B_FALSE; 10797 ipaddr_t group, ifaddr; 10798 struct sockaddr_in *sin; 10799 uint32_t *ifindexp; 10800 boolean_t mcast_opt = B_TRUE; 10801 mcast_record_t fmode; 10802 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10803 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10804 10805 switch (name) { 10806 case IP_ADD_MEMBERSHIP: 10807 mcast_opt = B_FALSE; 10808 /* FALLTHRU */ 10809 case MCAST_JOIN_GROUP: 10810 fmode = MODE_IS_EXCLUDE; 10811 optfn = ip_opt_add_group; 10812 break; 10813 10814 case IP_DROP_MEMBERSHIP: 10815 mcast_opt = B_FALSE; 10816 /* FALLTHRU */ 10817 case MCAST_LEAVE_GROUP: 10818 fmode = MODE_IS_INCLUDE; 10819 optfn = ip_opt_delete_group; 10820 break; 10821 } 10822 10823 if (mcast_opt) { 10824 greqp = (struct group_req *)i1; 10825 sin = (struct sockaddr_in *)&greqp->gr_group; 10826 if (sin->sin_family != AF_INET) { 10827 *outlenp = 0; 10828 return (ENOPROTOOPT); 10829 } 10830 group = (ipaddr_t)sin->sin_addr.s_addr; 10831 ifaddr = INADDR_ANY; 10832 ifindexp = &greqp->gr_interface; 10833 } else { 10834 mreqp = (struct ip_mreq *)i1; 10835 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10836 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10837 ifindexp = NULL; 10838 } 10839 10840 /* 10841 * In the multirouting case, we need to replicate 10842 * the request on all interfaces that will take part 10843 * in replication. We do so because multirouting is 10844 * reflective, thus we will probably receive multi- 10845 * casts on those interfaces. 10846 * The ip_multirt_apply_membership() succeeds if the 10847 * operation succeeds on at least one interface. 10848 */ 10849 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10850 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10851 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10852 if (ire != NULL) { 10853 if (ire->ire_flags & RTF_MULTIRT) { 10854 error = ip_multirt_apply_membership( 10855 optfn, ire, connp, checkonly, group, 10856 fmode, INADDR_ANY, first_mp); 10857 done = B_TRUE; 10858 } 10859 ire_refrele(ire); 10860 } 10861 if (!done) { 10862 error = optfn(connp, checkonly, group, ifaddr, 10863 ifindexp, fmode, INADDR_ANY, first_mp); 10864 } 10865 if (error) { 10866 /* 10867 * EINPROGRESS is a soft error, needs retry 10868 * so don't make *outlenp zero. 10869 */ 10870 if (error != EINPROGRESS) 10871 *outlenp = 0; 10872 return (error); 10873 } 10874 /* OK return - copy input buffer into output buffer */ 10875 if (invalp != outvalp) { 10876 /* don't trust bcopy for identical src/dst */ 10877 bcopy(invalp, outvalp, inlen); 10878 } 10879 *outlenp = inlen; 10880 return (0); 10881 } 10882 case IP_BLOCK_SOURCE: 10883 case IP_UNBLOCK_SOURCE: 10884 case IP_ADD_SOURCE_MEMBERSHIP: 10885 case IP_DROP_SOURCE_MEMBERSHIP: 10886 case MCAST_BLOCK_SOURCE: 10887 case MCAST_UNBLOCK_SOURCE: 10888 case MCAST_JOIN_SOURCE_GROUP: 10889 case MCAST_LEAVE_SOURCE_GROUP: { 10890 struct ip_mreq_source *imreqp; 10891 struct group_source_req *gsreqp; 10892 in_addr_t grp, src, ifaddr = INADDR_ANY; 10893 uint32_t ifindex = 0; 10894 mcast_record_t fmode; 10895 struct sockaddr_in *sin; 10896 ire_t *ire; 10897 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10898 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10899 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10900 10901 switch (name) { 10902 case IP_BLOCK_SOURCE: 10903 mcast_opt = B_FALSE; 10904 /* FALLTHRU */ 10905 case MCAST_BLOCK_SOURCE: 10906 fmode = MODE_IS_EXCLUDE; 10907 optfn = ip_opt_add_group; 10908 break; 10909 10910 case IP_UNBLOCK_SOURCE: 10911 mcast_opt = B_FALSE; 10912 /* FALLTHRU */ 10913 case MCAST_UNBLOCK_SOURCE: 10914 fmode = MODE_IS_EXCLUDE; 10915 optfn = ip_opt_delete_group; 10916 break; 10917 10918 case IP_ADD_SOURCE_MEMBERSHIP: 10919 mcast_opt = B_FALSE; 10920 /* FALLTHRU */ 10921 case MCAST_JOIN_SOURCE_GROUP: 10922 fmode = MODE_IS_INCLUDE; 10923 optfn = ip_opt_add_group; 10924 break; 10925 10926 case IP_DROP_SOURCE_MEMBERSHIP: 10927 mcast_opt = B_FALSE; 10928 /* FALLTHRU */ 10929 case MCAST_LEAVE_SOURCE_GROUP: 10930 fmode = MODE_IS_INCLUDE; 10931 optfn = ip_opt_delete_group; 10932 break; 10933 } 10934 10935 if (mcast_opt) { 10936 gsreqp = (struct group_source_req *)i1; 10937 if (gsreqp->gsr_group.ss_family != AF_INET) { 10938 *outlenp = 0; 10939 return (ENOPROTOOPT); 10940 } 10941 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10942 grp = (ipaddr_t)sin->sin_addr.s_addr; 10943 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10944 src = (ipaddr_t)sin->sin_addr.s_addr; 10945 ifindex = gsreqp->gsr_interface; 10946 } else { 10947 imreqp = (struct ip_mreq_source *)i1; 10948 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10949 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10950 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10951 } 10952 10953 /* 10954 * In the multirouting case, we need to replicate 10955 * the request as noted in the mcast cases above. 10956 */ 10957 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10958 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10959 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10960 if (ire != NULL) { 10961 if (ire->ire_flags & RTF_MULTIRT) { 10962 error = ip_multirt_apply_membership( 10963 optfn, ire, connp, checkonly, grp, 10964 fmode, src, first_mp); 10965 done = B_TRUE; 10966 } 10967 ire_refrele(ire); 10968 } 10969 if (!done) { 10970 error = optfn(connp, checkonly, grp, ifaddr, 10971 &ifindex, fmode, src, first_mp); 10972 } 10973 if (error != 0) { 10974 /* 10975 * EINPROGRESS is a soft error, needs retry 10976 * so don't make *outlenp zero. 10977 */ 10978 if (error != EINPROGRESS) 10979 *outlenp = 0; 10980 return (error); 10981 } 10982 /* OK return - copy input buffer into output buffer */ 10983 if (invalp != outvalp) { 10984 bcopy(invalp, outvalp, inlen); 10985 } 10986 *outlenp = inlen; 10987 return (0); 10988 } 10989 case IP_SEC_OPT: 10990 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10991 if (error != 0) { 10992 *outlenp = 0; 10993 return (error); 10994 } 10995 break; 10996 case IP_HDRINCL: 10997 case IP_OPTIONS: 10998 case T_IP_OPTIONS: 10999 case IP_TOS: 11000 case T_IP_TOS: 11001 case IP_TTL: 11002 case IP_RECVDSTADDR: 11003 case IP_RECVOPTS: 11004 /* OK return - copy input buffer into output buffer */ 11005 if (invalp != outvalp) { 11006 /* don't trust bcopy for identical src/dst */ 11007 bcopy(invalp, outvalp, inlen); 11008 } 11009 *outlenp = inlen; 11010 return (0); 11011 case IP_RECVIF: 11012 /* Retrieve the inbound interface index */ 11013 if (!checkonly) { 11014 mutex_enter(&connp->conn_lock); 11015 connp->conn_recvif = *i1 ? 1 : 0; 11016 mutex_exit(&connp->conn_lock); 11017 } 11018 break; /* goto sizeof (int) option return */ 11019 case IP_RECVPKTINFO: 11020 if (!checkonly) { 11021 mutex_enter(&connp->conn_lock); 11022 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11023 mutex_exit(&connp->conn_lock); 11024 } 11025 break; /* goto sizeof (int) option return */ 11026 case IP_RECVSLLA: 11027 /* Retrieve the source link layer address */ 11028 if (!checkonly) { 11029 mutex_enter(&connp->conn_lock); 11030 connp->conn_recvslla = *i1 ? 1 : 0; 11031 mutex_exit(&connp->conn_lock); 11032 } 11033 break; /* goto sizeof (int) option return */ 11034 case MRT_INIT: 11035 case MRT_DONE: 11036 case MRT_ADD_VIF: 11037 case MRT_DEL_VIF: 11038 case MRT_ADD_MFC: 11039 case MRT_DEL_MFC: 11040 case MRT_ASSERT: 11041 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11042 *outlenp = 0; 11043 return (error); 11044 } 11045 error = ip_mrouter_set((int)name, q, checkonly, 11046 (uchar_t *)invalp, inlen, first_mp); 11047 if (error) { 11048 *outlenp = 0; 11049 return (error); 11050 } 11051 /* OK return - copy input buffer into output buffer */ 11052 if (invalp != outvalp) { 11053 /* don't trust bcopy for identical src/dst */ 11054 bcopy(invalp, outvalp, inlen); 11055 } 11056 *outlenp = inlen; 11057 return (0); 11058 case IP_BOUND_IF: 11059 case IP_DHCPINIT_IF: 11060 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11061 level, name, first_mp); 11062 if (error != 0) 11063 return (error); 11064 break; /* goto sizeof (int) option return */ 11065 11066 case IP_UNSPEC_SRC: 11067 /* Allow sending with a zero source address */ 11068 if (!checkonly) { 11069 mutex_enter(&connp->conn_lock); 11070 connp->conn_unspec_src = *i1 ? 1 : 0; 11071 mutex_exit(&connp->conn_lock); 11072 } 11073 break; /* goto sizeof (int) option return */ 11074 default: 11075 /* 11076 * "soft" error (negative) 11077 * option not handled at this level 11078 * Note: Do not modify *outlenp 11079 */ 11080 return (-EINVAL); 11081 } 11082 break; 11083 case IPPROTO_IPV6: 11084 switch (name) { 11085 case IPV6_BOUND_IF: 11086 case IPV6_BOUND_PIF: 11087 case IPV6_DONTFAILOVER_IF: 11088 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11089 level, name, first_mp); 11090 if (error != 0) 11091 return (error); 11092 break; /* goto sizeof (int) option return */ 11093 11094 case IPV6_MULTICAST_IF: 11095 /* 11096 * The only possible errors are EINPROGRESS and 11097 * EINVAL. EINPROGRESS will be restarted and is not 11098 * a hard error. We call this option on both V4 and V6 11099 * If both return EINVAL, then this call returns 11100 * EINVAL. If at least one of them succeeds we 11101 * return success. 11102 */ 11103 found = B_FALSE; 11104 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11105 level, name, first_mp); 11106 if (error == EINPROGRESS) 11107 return (error); 11108 if (error == 0) 11109 found = B_TRUE; 11110 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11111 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11112 if (error == 0) 11113 found = B_TRUE; 11114 if (!found) 11115 return (error); 11116 break; /* goto sizeof (int) option return */ 11117 11118 case IPV6_MULTICAST_HOPS: 11119 /* Recorded in transport above IP */ 11120 break; /* goto sizeof (int) option return */ 11121 case IPV6_MULTICAST_LOOP: 11122 if (!checkonly) { 11123 mutex_enter(&connp->conn_lock); 11124 connp->conn_multicast_loop = *i1; 11125 mutex_exit(&connp->conn_lock); 11126 } 11127 break; /* goto sizeof (int) option return */ 11128 case IPV6_JOIN_GROUP: 11129 case MCAST_JOIN_GROUP: 11130 case IPV6_LEAVE_GROUP: 11131 case MCAST_LEAVE_GROUP: { 11132 struct ipv6_mreq *ip_mreqp; 11133 struct group_req *greqp; 11134 ire_t *ire; 11135 boolean_t done = B_FALSE; 11136 in6_addr_t groupv6; 11137 uint32_t ifindex; 11138 boolean_t mcast_opt = B_TRUE; 11139 mcast_record_t fmode; 11140 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11141 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11142 11143 switch (name) { 11144 case IPV6_JOIN_GROUP: 11145 mcast_opt = B_FALSE; 11146 /* FALLTHRU */ 11147 case MCAST_JOIN_GROUP: 11148 fmode = MODE_IS_EXCLUDE; 11149 optfn = ip_opt_add_group_v6; 11150 break; 11151 11152 case IPV6_LEAVE_GROUP: 11153 mcast_opt = B_FALSE; 11154 /* FALLTHRU */ 11155 case MCAST_LEAVE_GROUP: 11156 fmode = MODE_IS_INCLUDE; 11157 optfn = ip_opt_delete_group_v6; 11158 break; 11159 } 11160 11161 if (mcast_opt) { 11162 struct sockaddr_in *sin; 11163 struct sockaddr_in6 *sin6; 11164 greqp = (struct group_req *)i1; 11165 if (greqp->gr_group.ss_family == AF_INET) { 11166 sin = (struct sockaddr_in *) 11167 &(greqp->gr_group); 11168 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11169 &groupv6); 11170 } else { 11171 sin6 = (struct sockaddr_in6 *) 11172 &(greqp->gr_group); 11173 groupv6 = sin6->sin6_addr; 11174 } 11175 ifindex = greqp->gr_interface; 11176 } else { 11177 ip_mreqp = (struct ipv6_mreq *)i1; 11178 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11179 ifindex = ip_mreqp->ipv6mr_interface; 11180 } 11181 /* 11182 * In the multirouting case, we need to replicate 11183 * the request on all interfaces that will take part 11184 * in replication. We do so because multirouting is 11185 * reflective, thus we will probably receive multi- 11186 * casts on those interfaces. 11187 * The ip_multirt_apply_membership_v6() succeeds if 11188 * the operation succeeds on at least one interface. 11189 */ 11190 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11191 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11192 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11193 if (ire != NULL) { 11194 if (ire->ire_flags & RTF_MULTIRT) { 11195 error = ip_multirt_apply_membership_v6( 11196 optfn, ire, connp, checkonly, 11197 &groupv6, fmode, &ipv6_all_zeros, 11198 first_mp); 11199 done = B_TRUE; 11200 } 11201 ire_refrele(ire); 11202 } 11203 if (!done) { 11204 error = optfn(connp, checkonly, &groupv6, 11205 ifindex, fmode, &ipv6_all_zeros, first_mp); 11206 } 11207 if (error) { 11208 /* 11209 * EINPROGRESS is a soft error, needs retry 11210 * so don't make *outlenp zero. 11211 */ 11212 if (error != EINPROGRESS) 11213 *outlenp = 0; 11214 return (error); 11215 } 11216 /* OK return - copy input buffer into output buffer */ 11217 if (invalp != outvalp) { 11218 /* don't trust bcopy for identical src/dst */ 11219 bcopy(invalp, outvalp, inlen); 11220 } 11221 *outlenp = inlen; 11222 return (0); 11223 } 11224 case MCAST_BLOCK_SOURCE: 11225 case MCAST_UNBLOCK_SOURCE: 11226 case MCAST_JOIN_SOURCE_GROUP: 11227 case MCAST_LEAVE_SOURCE_GROUP: { 11228 struct group_source_req *gsreqp; 11229 in6_addr_t v6grp, v6src; 11230 uint32_t ifindex; 11231 mcast_record_t fmode; 11232 ire_t *ire; 11233 boolean_t done = B_FALSE; 11234 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11235 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11236 11237 switch (name) { 11238 case MCAST_BLOCK_SOURCE: 11239 fmode = MODE_IS_EXCLUDE; 11240 optfn = ip_opt_add_group_v6; 11241 break; 11242 case MCAST_UNBLOCK_SOURCE: 11243 fmode = MODE_IS_EXCLUDE; 11244 optfn = ip_opt_delete_group_v6; 11245 break; 11246 case MCAST_JOIN_SOURCE_GROUP: 11247 fmode = MODE_IS_INCLUDE; 11248 optfn = ip_opt_add_group_v6; 11249 break; 11250 case MCAST_LEAVE_SOURCE_GROUP: 11251 fmode = MODE_IS_INCLUDE; 11252 optfn = ip_opt_delete_group_v6; 11253 break; 11254 } 11255 11256 gsreqp = (struct group_source_req *)i1; 11257 ifindex = gsreqp->gsr_interface; 11258 if (gsreqp->gsr_group.ss_family == AF_INET) { 11259 struct sockaddr_in *s; 11260 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11261 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11262 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11263 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11264 } else { 11265 struct sockaddr_in6 *s6; 11266 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11267 v6grp = s6->sin6_addr; 11268 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11269 v6src = s6->sin6_addr; 11270 } 11271 11272 /* 11273 * In the multirouting case, we need to replicate 11274 * the request as noted in the mcast cases above. 11275 */ 11276 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11277 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11278 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11279 if (ire != NULL) { 11280 if (ire->ire_flags & RTF_MULTIRT) { 11281 error = ip_multirt_apply_membership_v6( 11282 optfn, ire, connp, checkonly, 11283 &v6grp, fmode, &v6src, first_mp); 11284 done = B_TRUE; 11285 } 11286 ire_refrele(ire); 11287 } 11288 if (!done) { 11289 error = optfn(connp, checkonly, &v6grp, 11290 ifindex, fmode, &v6src, first_mp); 11291 } 11292 if (error != 0) { 11293 /* 11294 * EINPROGRESS is a soft error, needs retry 11295 * so don't make *outlenp zero. 11296 */ 11297 if (error != EINPROGRESS) 11298 *outlenp = 0; 11299 return (error); 11300 } 11301 /* OK return - copy input buffer into output buffer */ 11302 if (invalp != outvalp) { 11303 bcopy(invalp, outvalp, inlen); 11304 } 11305 *outlenp = inlen; 11306 return (0); 11307 } 11308 case IPV6_UNICAST_HOPS: 11309 /* Recorded in transport above IP */ 11310 break; /* goto sizeof (int) option return */ 11311 case IPV6_UNSPEC_SRC: 11312 /* Allow sending with a zero source address */ 11313 if (!checkonly) { 11314 mutex_enter(&connp->conn_lock); 11315 connp->conn_unspec_src = *i1 ? 1 : 0; 11316 mutex_exit(&connp->conn_lock); 11317 } 11318 break; /* goto sizeof (int) option return */ 11319 case IPV6_RECVPKTINFO: 11320 if (!checkonly) { 11321 mutex_enter(&connp->conn_lock); 11322 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11323 mutex_exit(&connp->conn_lock); 11324 } 11325 break; /* goto sizeof (int) option return */ 11326 case IPV6_RECVTCLASS: 11327 if (!checkonly) { 11328 if (*i1 < 0 || *i1 > 1) { 11329 return (EINVAL); 11330 } 11331 mutex_enter(&connp->conn_lock); 11332 connp->conn_ipv6_recvtclass = *i1; 11333 mutex_exit(&connp->conn_lock); 11334 } 11335 break; 11336 case IPV6_RECVPATHMTU: 11337 if (!checkonly) { 11338 if (*i1 < 0 || *i1 > 1) { 11339 return (EINVAL); 11340 } 11341 mutex_enter(&connp->conn_lock); 11342 connp->conn_ipv6_recvpathmtu = *i1; 11343 mutex_exit(&connp->conn_lock); 11344 } 11345 break; 11346 case IPV6_RECVHOPLIMIT: 11347 if (!checkonly) { 11348 mutex_enter(&connp->conn_lock); 11349 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11350 mutex_exit(&connp->conn_lock); 11351 } 11352 break; /* goto sizeof (int) option return */ 11353 case IPV6_RECVHOPOPTS: 11354 if (!checkonly) { 11355 mutex_enter(&connp->conn_lock); 11356 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11357 mutex_exit(&connp->conn_lock); 11358 } 11359 break; /* goto sizeof (int) option return */ 11360 case IPV6_RECVDSTOPTS: 11361 if (!checkonly) { 11362 mutex_enter(&connp->conn_lock); 11363 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11364 mutex_exit(&connp->conn_lock); 11365 } 11366 break; /* goto sizeof (int) option return */ 11367 case IPV6_RECVRTHDR: 11368 if (!checkonly) { 11369 mutex_enter(&connp->conn_lock); 11370 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11371 mutex_exit(&connp->conn_lock); 11372 } 11373 break; /* goto sizeof (int) option return */ 11374 case IPV6_RECVRTHDRDSTOPTS: 11375 if (!checkonly) { 11376 mutex_enter(&connp->conn_lock); 11377 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11378 mutex_exit(&connp->conn_lock); 11379 } 11380 break; /* goto sizeof (int) option return */ 11381 case IPV6_PKTINFO: 11382 if (inlen == 0) 11383 return (-EINVAL); /* clearing option */ 11384 error = ip6_set_pktinfo(cr, connp, 11385 (struct in6_pktinfo *)invalp, first_mp); 11386 if (error != 0) 11387 *outlenp = 0; 11388 else 11389 *outlenp = inlen; 11390 return (error); 11391 case IPV6_NEXTHOP: { 11392 struct sockaddr_in6 *sin6; 11393 11394 /* Verify that the nexthop is reachable */ 11395 if (inlen == 0) 11396 return (-EINVAL); /* clearing option */ 11397 11398 sin6 = (struct sockaddr_in6 *)invalp; 11399 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11400 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11401 NULL, MATCH_IRE_DEFAULT, ipst); 11402 11403 if (ire == NULL) { 11404 *outlenp = 0; 11405 return (EHOSTUNREACH); 11406 } 11407 ire_refrele(ire); 11408 return (-EINVAL); 11409 } 11410 case IPV6_SEC_OPT: 11411 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11412 if (error != 0) { 11413 *outlenp = 0; 11414 return (error); 11415 } 11416 break; 11417 case IPV6_SRC_PREFERENCES: { 11418 /* 11419 * This is implemented strictly in the ip module 11420 * (here and in tcp_opt_*() to accomodate tcp 11421 * sockets). Modules above ip pass this option 11422 * down here since ip is the only one that needs to 11423 * be aware of source address preferences. 11424 * 11425 * This socket option only affects connected 11426 * sockets that haven't already bound to a specific 11427 * IPv6 address. In other words, sockets that 11428 * don't call bind() with an address other than the 11429 * unspecified address and that call connect(). 11430 * ip_bind_connected_v6() passes these preferences 11431 * to the ipif_select_source_v6() function. 11432 */ 11433 if (inlen != sizeof (uint32_t)) 11434 return (EINVAL); 11435 error = ip6_set_src_preferences(connp, 11436 *(uint32_t *)invalp); 11437 if (error != 0) { 11438 *outlenp = 0; 11439 return (error); 11440 } else { 11441 *outlenp = sizeof (uint32_t); 11442 } 11443 break; 11444 } 11445 case IPV6_V6ONLY: 11446 if (*i1 < 0 || *i1 > 1) { 11447 return (EINVAL); 11448 } 11449 mutex_enter(&connp->conn_lock); 11450 connp->conn_ipv6_v6only = *i1; 11451 mutex_exit(&connp->conn_lock); 11452 break; 11453 default: 11454 return (-EINVAL); 11455 } 11456 break; 11457 default: 11458 /* 11459 * "soft" error (negative) 11460 * option not handled at this level 11461 * Note: Do not modify *outlenp 11462 */ 11463 return (-EINVAL); 11464 } 11465 /* 11466 * Common case of return from an option that is sizeof (int) 11467 */ 11468 *(int *)outvalp = *i1; 11469 *outlenp = sizeof (int); 11470 return (0); 11471 } 11472 11473 /* 11474 * This routine gets default values of certain options whose default 11475 * values are maintained by protocol specific code 11476 */ 11477 /* ARGSUSED */ 11478 int 11479 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11480 { 11481 int *i1 = (int *)ptr; 11482 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11483 11484 switch (level) { 11485 case IPPROTO_IP: 11486 switch (name) { 11487 case IP_MULTICAST_TTL: 11488 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11489 return (sizeof (uchar_t)); 11490 case IP_MULTICAST_LOOP: 11491 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11492 return (sizeof (uchar_t)); 11493 default: 11494 return (-1); 11495 } 11496 case IPPROTO_IPV6: 11497 switch (name) { 11498 case IPV6_UNICAST_HOPS: 11499 *i1 = ipst->ips_ipv6_def_hops; 11500 return (sizeof (int)); 11501 case IPV6_MULTICAST_HOPS: 11502 *i1 = IP_DEFAULT_MULTICAST_TTL; 11503 return (sizeof (int)); 11504 case IPV6_MULTICAST_LOOP: 11505 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11506 return (sizeof (int)); 11507 case IPV6_V6ONLY: 11508 *i1 = 1; 11509 return (sizeof (int)); 11510 default: 11511 return (-1); 11512 } 11513 default: 11514 return (-1); 11515 } 11516 /* NOTREACHED */ 11517 } 11518 11519 /* 11520 * Given a destination address and a pointer to where to put the information 11521 * this routine fills in the mtuinfo. 11522 */ 11523 int 11524 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11525 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11526 { 11527 ire_t *ire; 11528 ip_stack_t *ipst = ns->netstack_ip; 11529 11530 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11531 return (-1); 11532 11533 bzero(mtuinfo, sizeof (*mtuinfo)); 11534 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11535 mtuinfo->ip6m_addr.sin6_port = port; 11536 mtuinfo->ip6m_addr.sin6_addr = *in6; 11537 11538 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11539 if (ire != NULL) { 11540 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11541 ire_refrele(ire); 11542 } else { 11543 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11544 } 11545 return (sizeof (struct ip6_mtuinfo)); 11546 } 11547 11548 /* 11549 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11550 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11551 * isn't. This doesn't matter as the error checking is done properly for the 11552 * other MRT options coming in through ip_opt_set. 11553 */ 11554 int 11555 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11556 { 11557 conn_t *connp = Q_TO_CONN(q); 11558 ipsec_req_t *req = (ipsec_req_t *)ptr; 11559 11560 switch (level) { 11561 case IPPROTO_IP: 11562 switch (name) { 11563 case MRT_VERSION: 11564 case MRT_ASSERT: 11565 (void) ip_mrouter_get(name, q, ptr); 11566 return (sizeof (int)); 11567 case IP_SEC_OPT: 11568 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11569 case IP_NEXTHOP: 11570 if (connp->conn_nexthop_set) { 11571 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11572 return (sizeof (ipaddr_t)); 11573 } else 11574 return (0); 11575 case IP_RECVPKTINFO: 11576 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11577 return (sizeof (int)); 11578 default: 11579 break; 11580 } 11581 break; 11582 case IPPROTO_IPV6: 11583 switch (name) { 11584 case IPV6_SEC_OPT: 11585 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11586 case IPV6_SRC_PREFERENCES: { 11587 return (ip6_get_src_preferences(connp, 11588 (uint32_t *)ptr)); 11589 } 11590 case IPV6_V6ONLY: 11591 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11592 return (sizeof (int)); 11593 case IPV6_PATHMTU: 11594 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11595 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11596 default: 11597 break; 11598 } 11599 break; 11600 default: 11601 break; 11602 } 11603 return (-1); 11604 } 11605 11606 /* Named Dispatch routine to get a current value out of our parameter table. */ 11607 /* ARGSUSED */ 11608 static int 11609 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11610 { 11611 ipparam_t *ippa = (ipparam_t *)cp; 11612 11613 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11614 return (0); 11615 } 11616 11617 /* ARGSUSED */ 11618 static int 11619 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11620 { 11621 11622 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11623 return (0); 11624 } 11625 11626 /* 11627 * Set ip{,6}_forwarding values. This means walking through all of the 11628 * ill's and toggling their forwarding values. 11629 */ 11630 /* ARGSUSED */ 11631 static int 11632 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11633 { 11634 long new_value; 11635 int *forwarding_value = (int *)cp; 11636 ill_t *ill; 11637 boolean_t isv6; 11638 ill_walk_context_t ctx; 11639 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11640 11641 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11642 11643 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11644 new_value < 0 || new_value > 1) { 11645 return (EINVAL); 11646 } 11647 11648 *forwarding_value = new_value; 11649 11650 /* 11651 * Regardless of the current value of ip_forwarding, set all per-ill 11652 * values of ip_forwarding to the value being set. 11653 * 11654 * Bring all the ill's up to date with the new global value. 11655 */ 11656 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11657 11658 if (isv6) 11659 ill = ILL_START_WALK_V6(&ctx, ipst); 11660 else 11661 ill = ILL_START_WALK_V4(&ctx, ipst); 11662 11663 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11664 (void) ill_forward_set(ill, new_value != 0); 11665 11666 rw_exit(&ipst->ips_ill_g_lock); 11667 return (0); 11668 } 11669 11670 /* 11671 * Walk through the param array specified registering each element with the 11672 * Named Dispatch handler. This is called only during init. So it is ok 11673 * not to acquire any locks 11674 */ 11675 static boolean_t 11676 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11677 ipndp_t *ipnd, size_t ipnd_cnt) 11678 { 11679 for (; ippa_cnt-- > 0; ippa++) { 11680 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11681 if (!nd_load(ndp, ippa->ip_param_name, 11682 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11683 nd_free(ndp); 11684 return (B_FALSE); 11685 } 11686 } 11687 } 11688 11689 for (; ipnd_cnt-- > 0; ipnd++) { 11690 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11691 if (!nd_load(ndp, ipnd->ip_ndp_name, 11692 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11693 ipnd->ip_ndp_data)) { 11694 nd_free(ndp); 11695 return (B_FALSE); 11696 } 11697 } 11698 } 11699 11700 return (B_TRUE); 11701 } 11702 11703 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11704 /* ARGSUSED */ 11705 static int 11706 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11707 { 11708 long new_value; 11709 ipparam_t *ippa = (ipparam_t *)cp; 11710 11711 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11712 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11713 return (EINVAL); 11714 } 11715 ippa->ip_param_value = new_value; 11716 return (0); 11717 } 11718 11719 /* 11720 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11721 * When an ipf is passed here for the first time, if 11722 * we already have in-order fragments on the queue, we convert from the fast- 11723 * path reassembly scheme to the hard-case scheme. From then on, additional 11724 * fragments are reassembled here. We keep track of the start and end offsets 11725 * of each piece, and the number of holes in the chain. When the hole count 11726 * goes to zero, we are done! 11727 * 11728 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11729 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11730 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11731 * after the call to ip_reassemble(). 11732 */ 11733 int 11734 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11735 size_t msg_len) 11736 { 11737 uint_t end; 11738 mblk_t *next_mp; 11739 mblk_t *mp1; 11740 uint_t offset; 11741 boolean_t incr_dups = B_TRUE; 11742 boolean_t offset_zero_seen = B_FALSE; 11743 boolean_t pkt_boundary_checked = B_FALSE; 11744 11745 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11746 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11747 11748 /* Add in byte count */ 11749 ipf->ipf_count += msg_len; 11750 if (ipf->ipf_end) { 11751 /* 11752 * We were part way through in-order reassembly, but now there 11753 * is a hole. We walk through messages already queued, and 11754 * mark them for hard case reassembly. We know that up till 11755 * now they were in order starting from offset zero. 11756 */ 11757 offset = 0; 11758 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11759 IP_REASS_SET_START(mp1, offset); 11760 if (offset == 0) { 11761 ASSERT(ipf->ipf_nf_hdr_len != 0); 11762 offset = -ipf->ipf_nf_hdr_len; 11763 } 11764 offset += mp1->b_wptr - mp1->b_rptr; 11765 IP_REASS_SET_END(mp1, offset); 11766 } 11767 /* One hole at the end. */ 11768 ipf->ipf_hole_cnt = 1; 11769 /* Brand it as a hard case, forever. */ 11770 ipf->ipf_end = 0; 11771 } 11772 /* Walk through all the new pieces. */ 11773 do { 11774 end = start + (mp->b_wptr - mp->b_rptr); 11775 /* 11776 * If start is 0, decrease 'end' only for the first mblk of 11777 * the fragment. Otherwise 'end' can get wrong value in the 11778 * second pass of the loop if first mblk is exactly the 11779 * size of ipf_nf_hdr_len. 11780 */ 11781 if (start == 0 && !offset_zero_seen) { 11782 /* First segment */ 11783 ASSERT(ipf->ipf_nf_hdr_len != 0); 11784 end -= ipf->ipf_nf_hdr_len; 11785 offset_zero_seen = B_TRUE; 11786 } 11787 next_mp = mp->b_cont; 11788 /* 11789 * We are checking to see if there is any interesing data 11790 * to process. If there isn't and the mblk isn't the 11791 * one which carries the unfragmentable header then we 11792 * drop it. It's possible to have just the unfragmentable 11793 * header come through without any data. That needs to be 11794 * saved. 11795 * 11796 * If the assert at the top of this function holds then the 11797 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11798 * is infrequently traveled enough that the test is left in 11799 * to protect against future code changes which break that 11800 * invariant. 11801 */ 11802 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11803 /* Empty. Blast it. */ 11804 IP_REASS_SET_START(mp, 0); 11805 IP_REASS_SET_END(mp, 0); 11806 /* 11807 * If the ipf points to the mblk we are about to free, 11808 * update ipf to point to the next mblk (or NULL 11809 * if none). 11810 */ 11811 if (ipf->ipf_mp->b_cont == mp) 11812 ipf->ipf_mp->b_cont = next_mp; 11813 freeb(mp); 11814 continue; 11815 } 11816 mp->b_cont = NULL; 11817 IP_REASS_SET_START(mp, start); 11818 IP_REASS_SET_END(mp, end); 11819 if (!ipf->ipf_tail_mp) { 11820 ipf->ipf_tail_mp = mp; 11821 ipf->ipf_mp->b_cont = mp; 11822 if (start == 0 || !more) { 11823 ipf->ipf_hole_cnt = 1; 11824 /* 11825 * if the first fragment comes in more than one 11826 * mblk, this loop will be executed for each 11827 * mblk. Need to adjust hole count so exiting 11828 * this routine will leave hole count at 1. 11829 */ 11830 if (next_mp) 11831 ipf->ipf_hole_cnt++; 11832 } else 11833 ipf->ipf_hole_cnt = 2; 11834 continue; 11835 } else if (ipf->ipf_last_frag_seen && !more && 11836 !pkt_boundary_checked) { 11837 /* 11838 * We check datagram boundary only if this fragment 11839 * claims to be the last fragment and we have seen a 11840 * last fragment in the past too. We do this only 11841 * once for a given fragment. 11842 * 11843 * start cannot be 0 here as fragments with start=0 11844 * and MF=0 gets handled as a complete packet. These 11845 * fragments should not reach here. 11846 */ 11847 11848 if (start + msgdsize(mp) != 11849 IP_REASS_END(ipf->ipf_tail_mp)) { 11850 /* 11851 * We have two fragments both of which claim 11852 * to be the last fragment but gives conflicting 11853 * information about the whole datagram size. 11854 * Something fishy is going on. Drop the 11855 * fragment and free up the reassembly list. 11856 */ 11857 return (IP_REASS_FAILED); 11858 } 11859 11860 /* 11861 * We shouldn't come to this code block again for this 11862 * particular fragment. 11863 */ 11864 pkt_boundary_checked = B_TRUE; 11865 } 11866 11867 /* New stuff at or beyond tail? */ 11868 offset = IP_REASS_END(ipf->ipf_tail_mp); 11869 if (start >= offset) { 11870 if (ipf->ipf_last_frag_seen) { 11871 /* current fragment is beyond last fragment */ 11872 return (IP_REASS_FAILED); 11873 } 11874 /* Link it on end. */ 11875 ipf->ipf_tail_mp->b_cont = mp; 11876 ipf->ipf_tail_mp = mp; 11877 if (more) { 11878 if (start != offset) 11879 ipf->ipf_hole_cnt++; 11880 } else if (start == offset && next_mp == NULL) 11881 ipf->ipf_hole_cnt--; 11882 continue; 11883 } 11884 mp1 = ipf->ipf_mp->b_cont; 11885 offset = IP_REASS_START(mp1); 11886 /* New stuff at the front? */ 11887 if (start < offset) { 11888 if (start == 0) { 11889 if (end >= offset) { 11890 /* Nailed the hole at the begining. */ 11891 ipf->ipf_hole_cnt--; 11892 } 11893 } else if (end < offset) { 11894 /* 11895 * A hole, stuff, and a hole where there used 11896 * to be just a hole. 11897 */ 11898 ipf->ipf_hole_cnt++; 11899 } 11900 mp->b_cont = mp1; 11901 /* Check for overlap. */ 11902 while (end > offset) { 11903 if (end < IP_REASS_END(mp1)) { 11904 mp->b_wptr -= end - offset; 11905 IP_REASS_SET_END(mp, offset); 11906 BUMP_MIB(ill->ill_ip_mib, 11907 ipIfStatsReasmPartDups); 11908 break; 11909 } 11910 /* Did we cover another hole? */ 11911 if ((mp1->b_cont && 11912 IP_REASS_END(mp1) != 11913 IP_REASS_START(mp1->b_cont) && 11914 end >= IP_REASS_START(mp1->b_cont)) || 11915 (!ipf->ipf_last_frag_seen && !more)) { 11916 ipf->ipf_hole_cnt--; 11917 } 11918 /* Clip out mp1. */ 11919 if ((mp->b_cont = mp1->b_cont) == NULL) { 11920 /* 11921 * After clipping out mp1, this guy 11922 * is now hanging off the end. 11923 */ 11924 ipf->ipf_tail_mp = mp; 11925 } 11926 IP_REASS_SET_START(mp1, 0); 11927 IP_REASS_SET_END(mp1, 0); 11928 /* Subtract byte count */ 11929 ipf->ipf_count -= mp1->b_datap->db_lim - 11930 mp1->b_datap->db_base; 11931 freeb(mp1); 11932 BUMP_MIB(ill->ill_ip_mib, 11933 ipIfStatsReasmPartDups); 11934 mp1 = mp->b_cont; 11935 if (!mp1) 11936 break; 11937 offset = IP_REASS_START(mp1); 11938 } 11939 ipf->ipf_mp->b_cont = mp; 11940 continue; 11941 } 11942 /* 11943 * The new piece starts somewhere between the start of the head 11944 * and before the end of the tail. 11945 */ 11946 for (; mp1; mp1 = mp1->b_cont) { 11947 offset = IP_REASS_END(mp1); 11948 if (start < offset) { 11949 if (end <= offset) { 11950 /* Nothing new. */ 11951 IP_REASS_SET_START(mp, 0); 11952 IP_REASS_SET_END(mp, 0); 11953 /* Subtract byte count */ 11954 ipf->ipf_count -= mp->b_datap->db_lim - 11955 mp->b_datap->db_base; 11956 if (incr_dups) { 11957 ipf->ipf_num_dups++; 11958 incr_dups = B_FALSE; 11959 } 11960 freeb(mp); 11961 BUMP_MIB(ill->ill_ip_mib, 11962 ipIfStatsReasmDuplicates); 11963 break; 11964 } 11965 /* 11966 * Trim redundant stuff off beginning of new 11967 * piece. 11968 */ 11969 IP_REASS_SET_START(mp, offset); 11970 mp->b_rptr += offset - start; 11971 BUMP_MIB(ill->ill_ip_mib, 11972 ipIfStatsReasmPartDups); 11973 start = offset; 11974 if (!mp1->b_cont) { 11975 /* 11976 * After trimming, this guy is now 11977 * hanging off the end. 11978 */ 11979 mp1->b_cont = mp; 11980 ipf->ipf_tail_mp = mp; 11981 if (!more) { 11982 ipf->ipf_hole_cnt--; 11983 } 11984 break; 11985 } 11986 } 11987 if (start >= IP_REASS_START(mp1->b_cont)) 11988 continue; 11989 /* Fill a hole */ 11990 if (start > offset) 11991 ipf->ipf_hole_cnt++; 11992 mp->b_cont = mp1->b_cont; 11993 mp1->b_cont = mp; 11994 mp1 = mp->b_cont; 11995 offset = IP_REASS_START(mp1); 11996 if (end >= offset) { 11997 ipf->ipf_hole_cnt--; 11998 /* Check for overlap. */ 11999 while (end > offset) { 12000 if (end < IP_REASS_END(mp1)) { 12001 mp->b_wptr -= end - offset; 12002 IP_REASS_SET_END(mp, offset); 12003 /* 12004 * TODO we might bump 12005 * this up twice if there is 12006 * overlap at both ends. 12007 */ 12008 BUMP_MIB(ill->ill_ip_mib, 12009 ipIfStatsReasmPartDups); 12010 break; 12011 } 12012 /* Did we cover another hole? */ 12013 if ((mp1->b_cont && 12014 IP_REASS_END(mp1) 12015 != IP_REASS_START(mp1->b_cont) && 12016 end >= 12017 IP_REASS_START(mp1->b_cont)) || 12018 (!ipf->ipf_last_frag_seen && 12019 !more)) { 12020 ipf->ipf_hole_cnt--; 12021 } 12022 /* Clip out mp1. */ 12023 if ((mp->b_cont = mp1->b_cont) == 12024 NULL) { 12025 /* 12026 * After clipping out mp1, 12027 * this guy is now hanging 12028 * off the end. 12029 */ 12030 ipf->ipf_tail_mp = mp; 12031 } 12032 IP_REASS_SET_START(mp1, 0); 12033 IP_REASS_SET_END(mp1, 0); 12034 /* Subtract byte count */ 12035 ipf->ipf_count -= 12036 mp1->b_datap->db_lim - 12037 mp1->b_datap->db_base; 12038 freeb(mp1); 12039 BUMP_MIB(ill->ill_ip_mib, 12040 ipIfStatsReasmPartDups); 12041 mp1 = mp->b_cont; 12042 if (!mp1) 12043 break; 12044 offset = IP_REASS_START(mp1); 12045 } 12046 } 12047 break; 12048 } 12049 } while (start = end, mp = next_mp); 12050 12051 /* Fragment just processed could be the last one. Remember this fact */ 12052 if (!more) 12053 ipf->ipf_last_frag_seen = B_TRUE; 12054 12055 /* Still got holes? */ 12056 if (ipf->ipf_hole_cnt) 12057 return (IP_REASS_PARTIAL); 12058 /* Clean up overloaded fields to avoid upstream disasters. */ 12059 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12060 IP_REASS_SET_START(mp1, 0); 12061 IP_REASS_SET_END(mp1, 0); 12062 } 12063 return (IP_REASS_COMPLETE); 12064 } 12065 12066 /* 12067 * ipsec processing for the fast path, used for input UDP Packets 12068 * Returns true if ready for passup to UDP. 12069 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12070 * was an ESP-in-UDP packet, etc.). 12071 */ 12072 static boolean_t 12073 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12074 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12075 { 12076 uint32_t ill_index; 12077 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12078 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12079 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12080 udp_t *udp = connp->conn_udp; 12081 12082 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12083 /* The ill_index of the incoming ILL */ 12084 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12085 12086 /* pass packet up to the transport */ 12087 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12088 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12089 NULL, mctl_present); 12090 if (*first_mpp == NULL) { 12091 return (B_FALSE); 12092 } 12093 } 12094 12095 /* Initiate IPPF processing for fastpath UDP */ 12096 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12097 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12098 if (*mpp == NULL) { 12099 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12100 "deferred/dropped during IPPF processing\n")); 12101 return (B_FALSE); 12102 } 12103 } 12104 /* 12105 * Remove 0-spi if it's 0, or move everything behind 12106 * the UDP header over it and forward to ESP via 12107 * ip_proto_input(). 12108 */ 12109 if (udp->udp_nat_t_endpoint) { 12110 if (mctl_present) { 12111 /* mctl_present *shouldn't* happen. */ 12112 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12113 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12114 &ipss->ipsec_dropper); 12115 *first_mpp = NULL; 12116 return (B_FALSE); 12117 } 12118 12119 /* "ill" is "recv_ill" in actuality. */ 12120 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12121 return (B_FALSE); 12122 12123 /* Else continue like a normal UDP packet. */ 12124 } 12125 12126 /* 12127 * We make the checks as below since we are in the fast path 12128 * and want to minimize the number of checks if the IP_RECVIF and/or 12129 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12130 */ 12131 if (connp->conn_recvif || connp->conn_recvslla || 12132 connp->conn_ip_recvpktinfo) { 12133 if (connp->conn_recvif) { 12134 in_flags = IPF_RECVIF; 12135 } 12136 /* 12137 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12138 * so the flag passed to ip_add_info is based on IP version 12139 * of connp. 12140 */ 12141 if (connp->conn_ip_recvpktinfo) { 12142 if (connp->conn_af_isv6) { 12143 /* 12144 * V6 only needs index 12145 */ 12146 in_flags |= IPF_RECVIF; 12147 } else { 12148 /* 12149 * V4 needs index + matching address. 12150 */ 12151 in_flags |= IPF_RECVADDR; 12152 } 12153 } 12154 if (connp->conn_recvslla) { 12155 in_flags |= IPF_RECVSLLA; 12156 } 12157 /* 12158 * since in_flags are being set ill will be 12159 * referenced in ip_add_info, so it better not 12160 * be NULL. 12161 */ 12162 /* 12163 * the actual data will be contained in b_cont 12164 * upon successful return of the following call. 12165 * If the call fails then the original mblk is 12166 * returned. 12167 */ 12168 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12169 ipst); 12170 } 12171 12172 return (B_TRUE); 12173 } 12174 12175 /* 12176 * Fragmentation reassembly. Each ILL has a hash table for 12177 * queuing packets undergoing reassembly for all IPIFs 12178 * associated with the ILL. The hash is based on the packet 12179 * IP ident field. The ILL frag hash table was allocated 12180 * as a timer block at the time the ILL was created. Whenever 12181 * there is anything on the reassembly queue, the timer will 12182 * be running. Returns B_TRUE if successful else B_FALSE; 12183 * frees mp on failure. 12184 */ 12185 static boolean_t 12186 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12187 uint32_t *cksum_val, uint16_t *cksum_flags) 12188 { 12189 uint32_t frag_offset_flags; 12190 ill_t *ill = (ill_t *)q->q_ptr; 12191 mblk_t *mp = *mpp; 12192 mblk_t *t_mp; 12193 ipaddr_t dst; 12194 uint8_t proto = ipha->ipha_protocol; 12195 uint32_t sum_val; 12196 uint16_t sum_flags; 12197 ipf_t *ipf; 12198 ipf_t **ipfp; 12199 ipfb_t *ipfb; 12200 uint16_t ident; 12201 uint32_t offset; 12202 ipaddr_t src; 12203 uint_t hdr_length; 12204 uint32_t end; 12205 mblk_t *mp1; 12206 mblk_t *tail_mp; 12207 size_t count; 12208 size_t msg_len; 12209 uint8_t ecn_info = 0; 12210 uint32_t packet_size; 12211 boolean_t pruned = B_FALSE; 12212 ip_stack_t *ipst = ill->ill_ipst; 12213 12214 if (cksum_val != NULL) 12215 *cksum_val = 0; 12216 if (cksum_flags != NULL) 12217 *cksum_flags = 0; 12218 12219 /* 12220 * Drop the fragmented as early as possible, if 12221 * we don't have resource(s) to re-assemble. 12222 */ 12223 if (ipst->ips_ip_reass_queue_bytes == 0) { 12224 freemsg(mp); 12225 return (B_FALSE); 12226 } 12227 12228 /* Check for fragmentation offset; return if there's none */ 12229 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12230 (IPH_MF | IPH_OFFSET)) == 0) 12231 return (B_TRUE); 12232 12233 /* 12234 * We utilize hardware computed checksum info only for UDP since 12235 * IP fragmentation is a normal occurence for the protocol. In 12236 * addition, checksum offload support for IP fragments carrying 12237 * UDP payload is commonly implemented across network adapters. 12238 */ 12239 ASSERT(ill != NULL); 12240 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12241 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12242 mblk_t *mp1 = mp->b_cont; 12243 int32_t len; 12244 12245 /* Record checksum information from the packet */ 12246 sum_val = (uint32_t)DB_CKSUM16(mp); 12247 sum_flags = DB_CKSUMFLAGS(mp); 12248 12249 /* IP payload offset from beginning of mblk */ 12250 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12251 12252 if ((sum_flags & HCK_PARTIALCKSUM) && 12253 (mp1 == NULL || mp1->b_cont == NULL) && 12254 offset >= DB_CKSUMSTART(mp) && 12255 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12256 uint32_t adj; 12257 /* 12258 * Partial checksum has been calculated by hardware 12259 * and attached to the packet; in addition, any 12260 * prepended extraneous data is even byte aligned. 12261 * If any such data exists, we adjust the checksum; 12262 * this would also handle any postpended data. 12263 */ 12264 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12265 mp, mp1, len, adj); 12266 12267 /* One's complement subtract extraneous checksum */ 12268 if (adj >= sum_val) 12269 sum_val = ~(adj - sum_val) & 0xFFFF; 12270 else 12271 sum_val -= adj; 12272 } 12273 } else { 12274 sum_val = 0; 12275 sum_flags = 0; 12276 } 12277 12278 /* Clear hardware checksumming flag */ 12279 DB_CKSUMFLAGS(mp) = 0; 12280 12281 ident = ipha->ipha_ident; 12282 offset = (frag_offset_flags << 3) & 0xFFFF; 12283 src = ipha->ipha_src; 12284 dst = ipha->ipha_dst; 12285 hdr_length = IPH_HDR_LENGTH(ipha); 12286 end = ntohs(ipha->ipha_length) - hdr_length; 12287 12288 /* If end == 0 then we have a packet with no data, so just free it */ 12289 if (end == 0) { 12290 freemsg(mp); 12291 return (B_FALSE); 12292 } 12293 12294 /* Record the ECN field info. */ 12295 ecn_info = (ipha->ipha_type_of_service & 0x3); 12296 if (offset != 0) { 12297 /* 12298 * If this isn't the first piece, strip the header, and 12299 * add the offset to the end value. 12300 */ 12301 mp->b_rptr += hdr_length; 12302 end += offset; 12303 } 12304 12305 msg_len = MBLKSIZE(mp); 12306 tail_mp = mp; 12307 while (tail_mp->b_cont != NULL) { 12308 tail_mp = tail_mp->b_cont; 12309 msg_len += MBLKSIZE(tail_mp); 12310 } 12311 12312 /* If the reassembly list for this ILL will get too big, prune it */ 12313 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12314 ipst->ips_ip_reass_queue_bytes) { 12315 ill_frag_prune(ill, 12316 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12317 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12318 pruned = B_TRUE; 12319 } 12320 12321 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12322 mutex_enter(&ipfb->ipfb_lock); 12323 12324 ipfp = &ipfb->ipfb_ipf; 12325 /* Try to find an existing fragment queue for this packet. */ 12326 for (;;) { 12327 ipf = ipfp[0]; 12328 if (ipf != NULL) { 12329 /* 12330 * It has to match on ident and src/dst address. 12331 */ 12332 if (ipf->ipf_ident == ident && 12333 ipf->ipf_src == src && 12334 ipf->ipf_dst == dst && 12335 ipf->ipf_protocol == proto) { 12336 /* 12337 * If we have received too many 12338 * duplicate fragments for this packet 12339 * free it. 12340 */ 12341 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12342 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12343 freemsg(mp); 12344 mutex_exit(&ipfb->ipfb_lock); 12345 return (B_FALSE); 12346 } 12347 /* Found it. */ 12348 break; 12349 } 12350 ipfp = &ipf->ipf_hash_next; 12351 continue; 12352 } 12353 12354 /* 12355 * If we pruned the list, do we want to store this new 12356 * fragment?. We apply an optimization here based on the 12357 * fact that most fragments will be received in order. 12358 * So if the offset of this incoming fragment is zero, 12359 * it is the first fragment of a new packet. We will 12360 * keep it. Otherwise drop the fragment, as we have 12361 * probably pruned the packet already (since the 12362 * packet cannot be found). 12363 */ 12364 if (pruned && offset != 0) { 12365 mutex_exit(&ipfb->ipfb_lock); 12366 freemsg(mp); 12367 return (B_FALSE); 12368 } 12369 12370 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12371 /* 12372 * Too many fragmented packets in this hash 12373 * bucket. Free the oldest. 12374 */ 12375 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12376 } 12377 12378 /* New guy. Allocate a frag message. */ 12379 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12380 if (mp1 == NULL) { 12381 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12382 freemsg(mp); 12383 reass_done: 12384 mutex_exit(&ipfb->ipfb_lock); 12385 return (B_FALSE); 12386 } 12387 12388 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12389 mp1->b_cont = mp; 12390 12391 /* Initialize the fragment header. */ 12392 ipf = (ipf_t *)mp1->b_rptr; 12393 ipf->ipf_mp = mp1; 12394 ipf->ipf_ptphn = ipfp; 12395 ipfp[0] = ipf; 12396 ipf->ipf_hash_next = NULL; 12397 ipf->ipf_ident = ident; 12398 ipf->ipf_protocol = proto; 12399 ipf->ipf_src = src; 12400 ipf->ipf_dst = dst; 12401 ipf->ipf_nf_hdr_len = 0; 12402 /* Record reassembly start time. */ 12403 ipf->ipf_timestamp = gethrestime_sec(); 12404 /* Record ipf generation and account for frag header */ 12405 ipf->ipf_gen = ill->ill_ipf_gen++; 12406 ipf->ipf_count = MBLKSIZE(mp1); 12407 ipf->ipf_last_frag_seen = B_FALSE; 12408 ipf->ipf_ecn = ecn_info; 12409 ipf->ipf_num_dups = 0; 12410 ipfb->ipfb_frag_pkts++; 12411 ipf->ipf_checksum = 0; 12412 ipf->ipf_checksum_flags = 0; 12413 12414 /* Store checksum value in fragment header */ 12415 if (sum_flags != 0) { 12416 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12417 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12418 ipf->ipf_checksum = sum_val; 12419 ipf->ipf_checksum_flags = sum_flags; 12420 } 12421 12422 /* 12423 * We handle reassembly two ways. In the easy case, 12424 * where all the fragments show up in order, we do 12425 * minimal bookkeeping, and just clip new pieces on 12426 * the end. If we ever see a hole, then we go off 12427 * to ip_reassemble which has to mark the pieces and 12428 * keep track of the number of holes, etc. Obviously, 12429 * the point of having both mechanisms is so we can 12430 * handle the easy case as efficiently as possible. 12431 */ 12432 if (offset == 0) { 12433 /* Easy case, in-order reassembly so far. */ 12434 ipf->ipf_count += msg_len; 12435 ipf->ipf_tail_mp = tail_mp; 12436 /* 12437 * Keep track of next expected offset in 12438 * ipf_end. 12439 */ 12440 ipf->ipf_end = end; 12441 ipf->ipf_nf_hdr_len = hdr_length; 12442 } else { 12443 /* Hard case, hole at the beginning. */ 12444 ipf->ipf_tail_mp = NULL; 12445 /* 12446 * ipf_end == 0 means that we have given up 12447 * on easy reassembly. 12448 */ 12449 ipf->ipf_end = 0; 12450 12451 /* Forget checksum offload from now on */ 12452 ipf->ipf_checksum_flags = 0; 12453 12454 /* 12455 * ipf_hole_cnt is set by ip_reassemble. 12456 * ipf_count is updated by ip_reassemble. 12457 * No need to check for return value here 12458 * as we don't expect reassembly to complete 12459 * or fail for the first fragment itself. 12460 */ 12461 (void) ip_reassemble(mp, ipf, 12462 (frag_offset_flags & IPH_OFFSET) << 3, 12463 (frag_offset_flags & IPH_MF), ill, msg_len); 12464 } 12465 /* Update per ipfb and ill byte counts */ 12466 ipfb->ipfb_count += ipf->ipf_count; 12467 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12468 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12469 /* If the frag timer wasn't already going, start it. */ 12470 mutex_enter(&ill->ill_lock); 12471 ill_frag_timer_start(ill); 12472 mutex_exit(&ill->ill_lock); 12473 goto reass_done; 12474 } 12475 12476 /* 12477 * If the packet's flag has changed (it could be coming up 12478 * from an interface different than the previous, therefore 12479 * possibly different checksum capability), then forget about 12480 * any stored checksum states. Otherwise add the value to 12481 * the existing one stored in the fragment header. 12482 */ 12483 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12484 sum_val += ipf->ipf_checksum; 12485 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12486 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12487 ipf->ipf_checksum = sum_val; 12488 } else if (ipf->ipf_checksum_flags != 0) { 12489 /* Forget checksum offload from now on */ 12490 ipf->ipf_checksum_flags = 0; 12491 } 12492 12493 /* 12494 * We have a new piece of a datagram which is already being 12495 * reassembled. Update the ECN info if all IP fragments 12496 * are ECN capable. If there is one which is not, clear 12497 * all the info. If there is at least one which has CE 12498 * code point, IP needs to report that up to transport. 12499 */ 12500 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12501 if (ecn_info == IPH_ECN_CE) 12502 ipf->ipf_ecn = IPH_ECN_CE; 12503 } else { 12504 ipf->ipf_ecn = IPH_ECN_NECT; 12505 } 12506 if (offset && ipf->ipf_end == offset) { 12507 /* The new fragment fits at the end */ 12508 ipf->ipf_tail_mp->b_cont = mp; 12509 /* Update the byte count */ 12510 ipf->ipf_count += msg_len; 12511 /* Update per ipfb and ill byte counts */ 12512 ipfb->ipfb_count += msg_len; 12513 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12514 atomic_add_32(&ill->ill_frag_count, msg_len); 12515 if (frag_offset_flags & IPH_MF) { 12516 /* More to come. */ 12517 ipf->ipf_end = end; 12518 ipf->ipf_tail_mp = tail_mp; 12519 goto reass_done; 12520 } 12521 } else { 12522 /* Go do the hard cases. */ 12523 int ret; 12524 12525 if (offset == 0) 12526 ipf->ipf_nf_hdr_len = hdr_length; 12527 12528 /* Save current byte count */ 12529 count = ipf->ipf_count; 12530 ret = ip_reassemble(mp, ipf, 12531 (frag_offset_flags & IPH_OFFSET) << 3, 12532 (frag_offset_flags & IPH_MF), ill, msg_len); 12533 /* Count of bytes added and subtracted (freeb()ed) */ 12534 count = ipf->ipf_count - count; 12535 if (count) { 12536 /* Update per ipfb and ill byte counts */ 12537 ipfb->ipfb_count += count; 12538 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12539 atomic_add_32(&ill->ill_frag_count, count); 12540 } 12541 if (ret == IP_REASS_PARTIAL) { 12542 goto reass_done; 12543 } else if (ret == IP_REASS_FAILED) { 12544 /* Reassembly failed. Free up all resources */ 12545 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12546 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12547 IP_REASS_SET_START(t_mp, 0); 12548 IP_REASS_SET_END(t_mp, 0); 12549 } 12550 freemsg(mp); 12551 goto reass_done; 12552 } 12553 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12554 } 12555 /* 12556 * We have completed reassembly. Unhook the frag header from 12557 * the reassembly list. 12558 * 12559 * Before we free the frag header, record the ECN info 12560 * to report back to the transport. 12561 */ 12562 ecn_info = ipf->ipf_ecn; 12563 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12564 ipfp = ipf->ipf_ptphn; 12565 12566 /* We need to supply these to caller */ 12567 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12568 sum_val = ipf->ipf_checksum; 12569 else 12570 sum_val = 0; 12571 12572 mp1 = ipf->ipf_mp; 12573 count = ipf->ipf_count; 12574 ipf = ipf->ipf_hash_next; 12575 if (ipf != NULL) 12576 ipf->ipf_ptphn = ipfp; 12577 ipfp[0] = ipf; 12578 atomic_add_32(&ill->ill_frag_count, -count); 12579 ASSERT(ipfb->ipfb_count >= count); 12580 ipfb->ipfb_count -= count; 12581 ipfb->ipfb_frag_pkts--; 12582 mutex_exit(&ipfb->ipfb_lock); 12583 /* Ditch the frag header. */ 12584 mp = mp1->b_cont; 12585 12586 freeb(mp1); 12587 12588 /* Restore original IP length in header. */ 12589 packet_size = (uint32_t)msgdsize(mp); 12590 if (packet_size > IP_MAXPACKET) { 12591 freemsg(mp); 12592 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12593 return (B_FALSE); 12594 } 12595 12596 if (DB_REF(mp) > 1) { 12597 mblk_t *mp2 = copymsg(mp); 12598 12599 freemsg(mp); 12600 if (mp2 == NULL) { 12601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12602 return (B_FALSE); 12603 } 12604 mp = mp2; 12605 } 12606 ipha = (ipha_t *)mp->b_rptr; 12607 12608 ipha->ipha_length = htons((uint16_t)packet_size); 12609 /* We're now complete, zip the frag state */ 12610 ipha->ipha_fragment_offset_and_flags = 0; 12611 /* Record the ECN info. */ 12612 ipha->ipha_type_of_service &= 0xFC; 12613 ipha->ipha_type_of_service |= ecn_info; 12614 *mpp = mp; 12615 12616 /* Reassembly is successful; return checksum information if needed */ 12617 if (cksum_val != NULL) 12618 *cksum_val = sum_val; 12619 if (cksum_flags != NULL) 12620 *cksum_flags = sum_flags; 12621 12622 return (B_TRUE); 12623 } 12624 12625 /* 12626 * Perform ip header check sum update local options. 12627 * return B_TRUE if all is well, else return B_FALSE and release 12628 * the mp. caller is responsible for decrementing ire ref cnt. 12629 */ 12630 static boolean_t 12631 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12632 ip_stack_t *ipst) 12633 { 12634 mblk_t *first_mp; 12635 boolean_t mctl_present; 12636 uint16_t sum; 12637 12638 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12639 /* 12640 * Don't do the checksum if it has gone through AH/ESP 12641 * processing. 12642 */ 12643 if (!mctl_present) { 12644 sum = ip_csum_hdr(ipha); 12645 if (sum != 0) { 12646 if (ill != NULL) { 12647 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12648 } else { 12649 BUMP_MIB(&ipst->ips_ip_mib, 12650 ipIfStatsInCksumErrs); 12651 } 12652 freemsg(first_mp); 12653 return (B_FALSE); 12654 } 12655 } 12656 12657 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12658 if (mctl_present) 12659 freeb(first_mp); 12660 return (B_FALSE); 12661 } 12662 12663 return (B_TRUE); 12664 } 12665 12666 /* 12667 * All udp packet are delivered to the local host via this routine. 12668 */ 12669 void 12670 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12671 ill_t *recv_ill) 12672 { 12673 uint32_t sum; 12674 uint32_t u1; 12675 boolean_t mctl_present; 12676 conn_t *connp; 12677 mblk_t *first_mp; 12678 uint16_t *up; 12679 ill_t *ill = (ill_t *)q->q_ptr; 12680 uint16_t reass_hck_flags = 0; 12681 ip_stack_t *ipst; 12682 12683 ASSERT(recv_ill != NULL); 12684 ipst = recv_ill->ill_ipst; 12685 12686 #define rptr ((uchar_t *)ipha) 12687 12688 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12689 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12690 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12691 ASSERT(ill != NULL); 12692 12693 /* 12694 * FAST PATH for udp packets 12695 */ 12696 12697 /* u1 is # words of IP options */ 12698 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12699 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12700 12701 /* IP options present */ 12702 if (u1 != 0) 12703 goto ipoptions; 12704 12705 /* Check the IP header checksum. */ 12706 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12707 /* Clear the IP header h/w cksum flag */ 12708 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12709 } else if (!mctl_present) { 12710 /* 12711 * Don't verify header checksum if this packet is coming 12712 * back from AH/ESP as we already did it. 12713 */ 12714 #define uph ((uint16_t *)ipha) 12715 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12716 uph[6] + uph[7] + uph[8] + uph[9]; 12717 #undef uph 12718 /* finish doing IP checksum */ 12719 sum = (sum & 0xFFFF) + (sum >> 16); 12720 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12721 if (sum != 0 && sum != 0xFFFF) { 12722 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12723 freemsg(first_mp); 12724 return; 12725 } 12726 } 12727 12728 /* 12729 * Count for SNMP of inbound packets for ire. 12730 * if mctl is present this might be a secure packet and 12731 * has already been counted for in ip_proto_input(). 12732 */ 12733 if (!mctl_present) { 12734 UPDATE_IB_PKT_COUNT(ire); 12735 ire->ire_last_used_time = lbolt; 12736 } 12737 12738 /* packet part of fragmented IP packet? */ 12739 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12740 if (u1 & (IPH_MF | IPH_OFFSET)) { 12741 goto fragmented; 12742 } 12743 12744 /* u1 = IP header length (20 bytes) */ 12745 u1 = IP_SIMPLE_HDR_LENGTH; 12746 12747 /* packet does not contain complete IP & UDP headers */ 12748 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12749 goto udppullup; 12750 12751 /* up points to UDP header */ 12752 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12753 #define iphs ((uint16_t *)ipha) 12754 12755 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12756 if (up[3] != 0) { 12757 mblk_t *mp1 = mp->b_cont; 12758 boolean_t cksum_err; 12759 uint16_t hck_flags = 0; 12760 12761 /* Pseudo-header checksum */ 12762 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12763 iphs[9] + up[2]; 12764 12765 /* 12766 * Revert to software checksum calculation if the interface 12767 * isn't capable of checksum offload or if IPsec is present. 12768 */ 12769 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12770 hck_flags = DB_CKSUMFLAGS(mp); 12771 12772 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12773 IP_STAT(ipst, ip_in_sw_cksum); 12774 12775 IP_CKSUM_RECV(hck_flags, u1, 12776 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12777 (int32_t)((uchar_t *)up - rptr), 12778 mp, mp1, cksum_err); 12779 12780 if (cksum_err) { 12781 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12782 if (hck_flags & HCK_FULLCKSUM) 12783 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12784 else if (hck_flags & HCK_PARTIALCKSUM) 12785 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12786 else 12787 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12788 12789 freemsg(first_mp); 12790 return; 12791 } 12792 } 12793 12794 /* Non-fragmented broadcast or multicast packet? */ 12795 if (ire->ire_type == IRE_BROADCAST) 12796 goto udpslowpath; 12797 12798 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12799 ire->ire_zoneid, ipst)) != NULL) { 12800 ASSERT(connp->conn_upq != NULL); 12801 IP_STAT(ipst, ip_udp_fast_path); 12802 12803 if (CONN_UDP_FLOWCTLD(connp)) { 12804 freemsg(mp); 12805 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12806 } else { 12807 if (!mctl_present) { 12808 BUMP_MIB(ill->ill_ip_mib, 12809 ipIfStatsHCInDelivers); 12810 } 12811 /* 12812 * mp and first_mp can change. 12813 */ 12814 if (ip_udp_check(q, connp, recv_ill, 12815 ipha, &mp, &first_mp, mctl_present, ire)) { 12816 /* Send it upstream */ 12817 (connp->conn_recv)(connp, mp, NULL); 12818 } 12819 } 12820 /* 12821 * freeb() cannot deal with null mblk being passed 12822 * in and first_mp can be set to null in the call 12823 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12824 */ 12825 if (mctl_present && first_mp != NULL) { 12826 freeb(first_mp); 12827 } 12828 CONN_DEC_REF(connp); 12829 return; 12830 } 12831 12832 /* 12833 * if we got here we know the packet is not fragmented and 12834 * has no options. The classifier could not find a conn_t and 12835 * most likely its an icmp packet so send it through slow path. 12836 */ 12837 12838 goto udpslowpath; 12839 12840 ipoptions: 12841 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12842 goto slow_done; 12843 } 12844 12845 UPDATE_IB_PKT_COUNT(ire); 12846 ire->ire_last_used_time = lbolt; 12847 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12848 if (u1 & (IPH_MF | IPH_OFFSET)) { 12849 fragmented: 12850 /* 12851 * "sum" and "reass_hck_flags" are non-zero if the 12852 * reassembled packet has a valid hardware computed 12853 * checksum information associated with it. 12854 */ 12855 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12856 goto slow_done; 12857 /* 12858 * Make sure that first_mp points back to mp as 12859 * the mp we came in with could have changed in 12860 * ip_rput_fragment(). 12861 */ 12862 ASSERT(!mctl_present); 12863 ipha = (ipha_t *)mp->b_rptr; 12864 first_mp = mp; 12865 } 12866 12867 /* Now we have a complete datagram, destined for this machine. */ 12868 u1 = IPH_HDR_LENGTH(ipha); 12869 /* Pull up the UDP header, if necessary. */ 12870 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12871 udppullup: 12872 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12873 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12874 freemsg(first_mp); 12875 goto slow_done; 12876 } 12877 ipha = (ipha_t *)mp->b_rptr; 12878 } 12879 12880 /* 12881 * Validate the checksum for the reassembled packet; for the 12882 * pullup case we calculate the payload checksum in software. 12883 */ 12884 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12885 if (up[3] != 0) { 12886 boolean_t cksum_err; 12887 12888 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12889 IP_STAT(ipst, ip_in_sw_cksum); 12890 12891 IP_CKSUM_RECV_REASS(reass_hck_flags, 12892 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12893 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12894 iphs[9] + up[2], sum, cksum_err); 12895 12896 if (cksum_err) { 12897 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12898 12899 if (reass_hck_flags & HCK_FULLCKSUM) 12900 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12901 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12902 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12903 else 12904 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12905 12906 freemsg(first_mp); 12907 goto slow_done; 12908 } 12909 } 12910 udpslowpath: 12911 12912 /* Clear hardware checksum flag to be safe */ 12913 DB_CKSUMFLAGS(mp) = 0; 12914 12915 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12916 (ire->ire_type == IRE_BROADCAST), 12917 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12918 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12919 12920 slow_done: 12921 IP_STAT(ipst, ip_udp_slow_path); 12922 return; 12923 12924 #undef iphs 12925 #undef rptr 12926 } 12927 12928 /* ARGSUSED */ 12929 static mblk_t * 12930 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12931 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12932 ill_rx_ring_t *ill_ring) 12933 { 12934 conn_t *connp; 12935 uint32_t sum; 12936 uint32_t u1; 12937 uint16_t *up; 12938 int offset; 12939 ssize_t len; 12940 mblk_t *mp1; 12941 boolean_t syn_present = B_FALSE; 12942 tcph_t *tcph; 12943 uint_t ip_hdr_len; 12944 ill_t *ill = (ill_t *)q->q_ptr; 12945 zoneid_t zoneid = ire->ire_zoneid; 12946 boolean_t cksum_err; 12947 uint16_t hck_flags = 0; 12948 ip_stack_t *ipst = recv_ill->ill_ipst; 12949 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12950 12951 #define rptr ((uchar_t *)ipha) 12952 12953 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12954 ASSERT(ill != NULL); 12955 12956 /* 12957 * FAST PATH for tcp packets 12958 */ 12959 12960 /* u1 is # words of IP options */ 12961 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12962 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12963 12964 /* IP options present */ 12965 if (u1) { 12966 goto ipoptions; 12967 } else if (!mctl_present) { 12968 /* Check the IP header checksum. */ 12969 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12970 /* Clear the IP header h/w cksum flag */ 12971 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12972 } else if (!mctl_present) { 12973 /* 12974 * Don't verify header checksum if this packet 12975 * is coming back from AH/ESP as we already did it. 12976 */ 12977 #define uph ((uint16_t *)ipha) 12978 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12979 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12980 #undef uph 12981 /* finish doing IP checksum */ 12982 sum = (sum & 0xFFFF) + (sum >> 16); 12983 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12984 if (sum != 0 && sum != 0xFFFF) { 12985 BUMP_MIB(ill->ill_ip_mib, 12986 ipIfStatsInCksumErrs); 12987 goto error; 12988 } 12989 } 12990 } 12991 12992 if (!mctl_present) { 12993 UPDATE_IB_PKT_COUNT(ire); 12994 ire->ire_last_used_time = lbolt; 12995 } 12996 12997 /* packet part of fragmented IP packet? */ 12998 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12999 if (u1 & (IPH_MF | IPH_OFFSET)) { 13000 goto fragmented; 13001 } 13002 13003 /* u1 = IP header length (20 bytes) */ 13004 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13005 13006 /* does packet contain IP+TCP headers? */ 13007 len = mp->b_wptr - rptr; 13008 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13009 IP_STAT(ipst, ip_tcppullup); 13010 goto tcppullup; 13011 } 13012 13013 /* TCP options present? */ 13014 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13015 13016 /* 13017 * If options need to be pulled up, then goto tcpoptions. 13018 * otherwise we are still in the fast path 13019 */ 13020 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13021 IP_STAT(ipst, ip_tcpoptions); 13022 goto tcpoptions; 13023 } 13024 13025 /* multiple mblks of tcp data? */ 13026 if ((mp1 = mp->b_cont) != NULL) { 13027 /* more then two? */ 13028 if (mp1->b_cont != NULL) { 13029 IP_STAT(ipst, ip_multipkttcp); 13030 goto multipkttcp; 13031 } 13032 len += mp1->b_wptr - mp1->b_rptr; 13033 } 13034 13035 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13036 13037 /* part of pseudo checksum */ 13038 13039 /* TCP datagram length */ 13040 u1 = len - IP_SIMPLE_HDR_LENGTH; 13041 13042 #define iphs ((uint16_t *)ipha) 13043 13044 #ifdef _BIG_ENDIAN 13045 u1 += IPPROTO_TCP; 13046 #else 13047 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13048 #endif 13049 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13050 13051 /* 13052 * Revert to software checksum calculation if the interface 13053 * isn't capable of checksum offload or if IPsec is present. 13054 */ 13055 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13056 hck_flags = DB_CKSUMFLAGS(mp); 13057 13058 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13059 IP_STAT(ipst, ip_in_sw_cksum); 13060 13061 IP_CKSUM_RECV(hck_flags, u1, 13062 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13063 (int32_t)((uchar_t *)up - rptr), 13064 mp, mp1, cksum_err); 13065 13066 if (cksum_err) { 13067 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13068 13069 if (hck_flags & HCK_FULLCKSUM) 13070 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13071 else if (hck_flags & HCK_PARTIALCKSUM) 13072 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13073 else 13074 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13075 13076 goto error; 13077 } 13078 13079 try_again: 13080 13081 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13082 zoneid, ipst)) == NULL) { 13083 /* Send the TH_RST */ 13084 goto no_conn; 13085 } 13086 13087 /* 13088 * TCP FAST PATH for AF_INET socket. 13089 * 13090 * TCP fast path to avoid extra work. An AF_INET socket type 13091 * does not have facility to receive extra information via 13092 * ip_process or ip_add_info. Also, when the connection was 13093 * established, we made a check if this connection is impacted 13094 * by any global IPsec policy or per connection policy (a 13095 * policy that comes in effect later will not apply to this 13096 * connection). Since all this can be determined at the 13097 * connection establishment time, a quick check of flags 13098 * can avoid extra work. 13099 */ 13100 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13101 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13102 ASSERT(first_mp == mp); 13103 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13104 SET_SQUEUE(mp, tcp_rput_data, connp); 13105 return (mp); 13106 } 13107 13108 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13109 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13110 if (IPCL_IS_TCP(connp)) { 13111 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13112 DB_CKSUMSTART(mp) = 13113 (intptr_t)ip_squeue_get(ill_ring); 13114 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13115 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13116 BUMP_MIB(ill->ill_ip_mib, 13117 ipIfStatsHCInDelivers); 13118 SET_SQUEUE(mp, connp->conn_recv, connp); 13119 return (mp); 13120 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13121 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13122 BUMP_MIB(ill->ill_ip_mib, 13123 ipIfStatsHCInDelivers); 13124 ip_squeue_enter_unbound++; 13125 SET_SQUEUE(mp, tcp_conn_request_unbound, 13126 connp); 13127 return (mp); 13128 } 13129 syn_present = B_TRUE; 13130 } 13131 13132 } 13133 13134 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13135 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13136 13137 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13138 /* No need to send this packet to TCP */ 13139 if ((flags & TH_RST) || (flags & TH_URG)) { 13140 CONN_DEC_REF(connp); 13141 freemsg(first_mp); 13142 return (NULL); 13143 } 13144 if (flags & TH_ACK) { 13145 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13146 ipst->ips_netstack->netstack_tcp, connp); 13147 CONN_DEC_REF(connp); 13148 return (NULL); 13149 } 13150 13151 CONN_DEC_REF(connp); 13152 freemsg(first_mp); 13153 return (NULL); 13154 } 13155 13156 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13157 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13158 ipha, NULL, mctl_present); 13159 if (first_mp == NULL) { 13160 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13161 CONN_DEC_REF(connp); 13162 return (NULL); 13163 } 13164 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13165 ASSERT(syn_present); 13166 if (mctl_present) { 13167 ASSERT(first_mp != mp); 13168 first_mp->b_datap->db_struioflag |= 13169 STRUIO_POLICY; 13170 } else { 13171 ASSERT(first_mp == mp); 13172 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13173 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13174 } 13175 } else { 13176 /* 13177 * Discard first_mp early since we're dealing with a 13178 * fully-connected conn_t and tcp doesn't do policy in 13179 * this case. 13180 */ 13181 if (mctl_present) { 13182 freeb(first_mp); 13183 mctl_present = B_FALSE; 13184 } 13185 first_mp = mp; 13186 } 13187 } 13188 13189 /* Initiate IPPF processing for fastpath */ 13190 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13191 uint32_t ill_index; 13192 13193 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13194 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13195 if (mp == NULL) { 13196 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13197 "deferred/dropped during IPPF processing\n")); 13198 CONN_DEC_REF(connp); 13199 if (mctl_present) 13200 freeb(first_mp); 13201 return (NULL); 13202 } else if (mctl_present) { 13203 /* 13204 * ip_process might return a new mp. 13205 */ 13206 ASSERT(first_mp != mp); 13207 first_mp->b_cont = mp; 13208 } else { 13209 first_mp = mp; 13210 } 13211 13212 } 13213 13214 if (!syn_present && connp->conn_ip_recvpktinfo) { 13215 /* 13216 * TCP does not support IP_RECVPKTINFO for v4 so lets 13217 * make sure IPF_RECVIF is passed to ip_add_info. 13218 */ 13219 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13220 IPCL_ZONEID(connp), ipst); 13221 if (mp == NULL) { 13222 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13223 CONN_DEC_REF(connp); 13224 if (mctl_present) 13225 freeb(first_mp); 13226 return (NULL); 13227 } else if (mctl_present) { 13228 /* 13229 * ip_add_info might return a new mp. 13230 */ 13231 ASSERT(first_mp != mp); 13232 first_mp->b_cont = mp; 13233 } else { 13234 first_mp = mp; 13235 } 13236 } 13237 13238 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13239 if (IPCL_IS_TCP(connp)) { 13240 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13241 return (first_mp); 13242 } else { 13243 /* SOCK_RAW, IPPROTO_TCP case */ 13244 (connp->conn_recv)(connp, first_mp, NULL); 13245 CONN_DEC_REF(connp); 13246 return (NULL); 13247 } 13248 13249 no_conn: 13250 /* Initiate IPPf processing, if needed. */ 13251 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13252 uint32_t ill_index; 13253 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13254 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13255 if (first_mp == NULL) { 13256 return (NULL); 13257 } 13258 } 13259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13260 13261 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13262 ipst->ips_netstack->netstack_tcp, NULL); 13263 return (NULL); 13264 ipoptions: 13265 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13266 goto slow_done; 13267 } 13268 13269 UPDATE_IB_PKT_COUNT(ire); 13270 ire->ire_last_used_time = lbolt; 13271 13272 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13273 if (u1 & (IPH_MF | IPH_OFFSET)) { 13274 fragmented: 13275 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13276 if (mctl_present) 13277 freeb(first_mp); 13278 goto slow_done; 13279 } 13280 /* 13281 * Make sure that first_mp points back to mp as 13282 * the mp we came in with could have changed in 13283 * ip_rput_fragment(). 13284 */ 13285 ASSERT(!mctl_present); 13286 ipha = (ipha_t *)mp->b_rptr; 13287 first_mp = mp; 13288 } 13289 13290 /* Now we have a complete datagram, destined for this machine. */ 13291 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13292 13293 len = mp->b_wptr - mp->b_rptr; 13294 /* Pull up a minimal TCP header, if necessary. */ 13295 if (len < (u1 + 20)) { 13296 tcppullup: 13297 if (!pullupmsg(mp, u1 + 20)) { 13298 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13299 goto error; 13300 } 13301 ipha = (ipha_t *)mp->b_rptr; 13302 len = mp->b_wptr - mp->b_rptr; 13303 } 13304 13305 /* 13306 * Extract the offset field from the TCP header. As usual, we 13307 * try to help the compiler more than the reader. 13308 */ 13309 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13310 if (offset != 5) { 13311 tcpoptions: 13312 if (offset < 5) { 13313 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13314 goto error; 13315 } 13316 /* 13317 * There must be TCP options. 13318 * Make sure we can grab them. 13319 */ 13320 offset <<= 2; 13321 offset += u1; 13322 if (len < offset) { 13323 if (!pullupmsg(mp, offset)) { 13324 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13325 goto error; 13326 } 13327 ipha = (ipha_t *)mp->b_rptr; 13328 len = mp->b_wptr - rptr; 13329 } 13330 } 13331 13332 /* Get the total packet length in len, including headers. */ 13333 if (mp->b_cont) { 13334 multipkttcp: 13335 len = msgdsize(mp); 13336 } 13337 13338 /* 13339 * Check the TCP checksum by pulling together the pseudo- 13340 * header checksum, and passing it to ip_csum to be added in 13341 * with the TCP datagram. 13342 * 13343 * Since we are not using the hwcksum if available we must 13344 * clear the flag. We may come here via tcppullup or tcpoptions. 13345 * If either of these fails along the way the mblk is freed. 13346 * If this logic ever changes and mblk is reused to say send 13347 * ICMP's back, then this flag may need to be cleared in 13348 * other places as well. 13349 */ 13350 DB_CKSUMFLAGS(mp) = 0; 13351 13352 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13353 13354 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13355 #ifdef _BIG_ENDIAN 13356 u1 += IPPROTO_TCP; 13357 #else 13358 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13359 #endif 13360 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13361 /* 13362 * Not M_DATA mblk or its a dup, so do the checksum now. 13363 */ 13364 IP_STAT(ipst, ip_in_sw_cksum); 13365 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13366 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13367 goto error; 13368 } 13369 13370 IP_STAT(ipst, ip_tcp_slow_path); 13371 goto try_again; 13372 #undef iphs 13373 #undef rptr 13374 13375 error: 13376 freemsg(first_mp); 13377 slow_done: 13378 return (NULL); 13379 } 13380 13381 /* ARGSUSED */ 13382 static void 13383 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13384 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13385 { 13386 conn_t *connp; 13387 uint32_t sum; 13388 uint32_t u1; 13389 ssize_t len; 13390 sctp_hdr_t *sctph; 13391 zoneid_t zoneid = ire->ire_zoneid; 13392 uint32_t pktsum; 13393 uint32_t calcsum; 13394 uint32_t ports; 13395 in6_addr_t map_src, map_dst; 13396 ill_t *ill = (ill_t *)q->q_ptr; 13397 ip_stack_t *ipst; 13398 sctp_stack_t *sctps; 13399 boolean_t sctp_csum_err = B_FALSE; 13400 13401 ASSERT(recv_ill != NULL); 13402 ipst = recv_ill->ill_ipst; 13403 sctps = ipst->ips_netstack->netstack_sctp; 13404 13405 #define rptr ((uchar_t *)ipha) 13406 13407 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13408 ASSERT(ill != NULL); 13409 13410 /* u1 is # words of IP options */ 13411 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13412 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13413 13414 /* IP options present */ 13415 if (u1 > 0) { 13416 goto ipoptions; 13417 } else { 13418 /* Check the IP header checksum. */ 13419 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13420 !mctl_present) { 13421 #define uph ((uint16_t *)ipha) 13422 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13423 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13424 #undef uph 13425 /* finish doing IP checksum */ 13426 sum = (sum & 0xFFFF) + (sum >> 16); 13427 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13428 /* 13429 * Don't verify header checksum if this packet 13430 * is coming back from AH/ESP as we already did it. 13431 */ 13432 if (sum != 0 && sum != 0xFFFF) { 13433 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13434 goto error; 13435 } 13436 } 13437 /* 13438 * Since there is no SCTP h/w cksum support yet, just 13439 * clear the flag. 13440 */ 13441 DB_CKSUMFLAGS(mp) = 0; 13442 } 13443 13444 /* 13445 * Don't verify header checksum if this packet is coming 13446 * back from AH/ESP as we already did it. 13447 */ 13448 if (!mctl_present) { 13449 UPDATE_IB_PKT_COUNT(ire); 13450 ire->ire_last_used_time = lbolt; 13451 } 13452 13453 /* packet part of fragmented IP packet? */ 13454 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13455 if (u1 & (IPH_MF | IPH_OFFSET)) 13456 goto fragmented; 13457 13458 /* u1 = IP header length (20 bytes) */ 13459 u1 = IP_SIMPLE_HDR_LENGTH; 13460 13461 find_sctp_client: 13462 /* Pullup if we don't have the sctp common header. */ 13463 len = MBLKL(mp); 13464 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13465 if (mp->b_cont == NULL || 13466 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13467 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13468 goto error; 13469 } 13470 ipha = (ipha_t *)mp->b_rptr; 13471 len = MBLKL(mp); 13472 } 13473 13474 sctph = (sctp_hdr_t *)(rptr + u1); 13475 #ifdef DEBUG 13476 if (!skip_sctp_cksum) { 13477 #endif 13478 pktsum = sctph->sh_chksum; 13479 sctph->sh_chksum = 0; 13480 calcsum = sctp_cksum(mp, u1); 13481 sctph->sh_chksum = pktsum; 13482 if (calcsum != pktsum) 13483 sctp_csum_err = B_TRUE; 13484 #ifdef DEBUG /* skip_sctp_cksum */ 13485 } 13486 #endif 13487 /* get the ports */ 13488 ports = *(uint32_t *)&sctph->sh_sport; 13489 13490 IRE_REFRELE(ire); 13491 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13492 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13493 if (sctp_csum_err) { 13494 /* 13495 * No potential sctp checksum errors go to the Sun 13496 * sctp stack however they might be Adler-32 summed 13497 * packets a userland stack bound to a raw IP socket 13498 * could reasonably use. Note though that Adler-32 is 13499 * a long deprecated algorithm and customer sctp 13500 * networks should eventually migrate to CRC-32 at 13501 * which time this facility should be removed. 13502 */ 13503 flags |= IP_FF_SCTP_CSUM_ERR; 13504 goto no_conn; 13505 } 13506 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13507 sctps)) == NULL) { 13508 /* Check for raw socket or OOTB handling */ 13509 goto no_conn; 13510 } 13511 13512 /* Found a client; up it goes */ 13513 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13514 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13515 return; 13516 13517 no_conn: 13518 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13519 ports, mctl_present, flags, B_TRUE, zoneid); 13520 return; 13521 13522 ipoptions: 13523 DB_CKSUMFLAGS(mp) = 0; 13524 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13525 goto slow_done; 13526 13527 UPDATE_IB_PKT_COUNT(ire); 13528 ire->ire_last_used_time = lbolt; 13529 13530 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13531 if (u1 & (IPH_MF | IPH_OFFSET)) { 13532 fragmented: 13533 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13534 goto slow_done; 13535 /* 13536 * Make sure that first_mp points back to mp as 13537 * the mp we came in with could have changed in 13538 * ip_rput_fragment(). 13539 */ 13540 ASSERT(!mctl_present); 13541 ipha = (ipha_t *)mp->b_rptr; 13542 first_mp = mp; 13543 } 13544 13545 /* Now we have a complete datagram, destined for this machine. */ 13546 u1 = IPH_HDR_LENGTH(ipha); 13547 goto find_sctp_client; 13548 #undef iphs 13549 #undef rptr 13550 13551 error: 13552 freemsg(first_mp); 13553 slow_done: 13554 IRE_REFRELE(ire); 13555 } 13556 13557 #define VER_BITS 0xF0 13558 #define VERSION_6 0x60 13559 13560 static boolean_t 13561 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13562 ipaddr_t *dstp, ip_stack_t *ipst) 13563 { 13564 uint_t opt_len; 13565 ipha_t *ipha; 13566 ssize_t len; 13567 uint_t pkt_len; 13568 13569 ASSERT(ill != NULL); 13570 IP_STAT(ipst, ip_ipoptions); 13571 ipha = *iphapp; 13572 13573 #define rptr ((uchar_t *)ipha) 13574 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13575 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13577 freemsg(mp); 13578 return (B_FALSE); 13579 } 13580 13581 /* multiple mblk or too short */ 13582 pkt_len = ntohs(ipha->ipha_length); 13583 13584 /* Get the number of words of IP options in the IP header. */ 13585 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13586 if (opt_len) { 13587 /* IP Options present! Validate and process. */ 13588 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13589 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13590 goto done; 13591 } 13592 /* 13593 * Recompute complete header length and make sure we 13594 * have access to all of it. 13595 */ 13596 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13597 if (len > (mp->b_wptr - rptr)) { 13598 if (len > pkt_len) { 13599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13600 goto done; 13601 } 13602 if (!pullupmsg(mp, len)) { 13603 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13604 goto done; 13605 } 13606 ipha = (ipha_t *)mp->b_rptr; 13607 } 13608 /* 13609 * Go off to ip_rput_options which returns the next hop 13610 * destination address, which may have been affected 13611 * by source routing. 13612 */ 13613 IP_STAT(ipst, ip_opt); 13614 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13616 return (B_FALSE); 13617 } 13618 } 13619 *iphapp = ipha; 13620 return (B_TRUE); 13621 done: 13622 /* clear b_prev - used by ip_mroute_decap */ 13623 mp->b_prev = NULL; 13624 freemsg(mp); 13625 return (B_FALSE); 13626 #undef rptr 13627 } 13628 13629 /* 13630 * Deal with the fact that there is no ire for the destination. 13631 */ 13632 static ire_t * 13633 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13634 { 13635 ipha_t *ipha; 13636 ill_t *ill; 13637 ire_t *ire; 13638 ip_stack_t *ipst; 13639 enum ire_forward_action ret_action; 13640 13641 ipha = (ipha_t *)mp->b_rptr; 13642 ill = (ill_t *)q->q_ptr; 13643 13644 ASSERT(ill != NULL); 13645 ipst = ill->ill_ipst; 13646 13647 /* 13648 * No IRE for this destination, so it can't be for us. 13649 * Unless we are forwarding, drop the packet. 13650 * We have to let source routed packets through 13651 * since we don't yet know if they are 'ping -l' 13652 * packets i.e. if they will go out over the 13653 * same interface as they came in on. 13654 */ 13655 if (ll_multicast) { 13656 freemsg(mp); 13657 return (NULL); 13658 } 13659 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13660 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13661 freemsg(mp); 13662 return (NULL); 13663 } 13664 13665 /* 13666 * Mark this packet as having originated externally. 13667 * 13668 * For non-forwarding code path, ire_send later double 13669 * checks this interface to see if it is still exists 13670 * post-ARP resolution. 13671 * 13672 * Also, IPQOS uses this to differentiate between 13673 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13674 * QOS packet processing in ip_wput_attach_llhdr(). 13675 * The QoS module can mark the b_band for a fastpath message 13676 * or the dl_priority field in a unitdata_req header for 13677 * CoS marking. This info can only be found in 13678 * ip_wput_attach_llhdr(). 13679 */ 13680 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13681 /* 13682 * Clear the indication that this may have a hardware checksum 13683 * as we are not using it 13684 */ 13685 DB_CKSUMFLAGS(mp) = 0; 13686 13687 ire = ire_forward(dst, &ret_action, NULL, NULL, 13688 MBLK_GETLABEL(mp), ipst); 13689 13690 if (ire == NULL && ret_action == Forward_check_multirt) { 13691 /* Let ip_newroute handle CGTP */ 13692 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13693 return (NULL); 13694 } 13695 13696 if (ire != NULL) 13697 return (ire); 13698 13699 mp->b_prev = mp->b_next = 0; 13700 13701 if (ret_action == Forward_blackhole) { 13702 freemsg(mp); 13703 return (NULL); 13704 } 13705 /* send icmp unreachable */ 13706 q = WR(q); 13707 /* Sent by forwarding path, and router is global zone */ 13708 if (ip_source_routed(ipha, ipst)) { 13709 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13710 GLOBAL_ZONEID, ipst); 13711 } else { 13712 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13713 ipst); 13714 } 13715 13716 return (NULL); 13717 13718 } 13719 13720 /* 13721 * check ip header length and align it. 13722 */ 13723 static boolean_t 13724 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13725 { 13726 ssize_t len; 13727 ill_t *ill; 13728 ipha_t *ipha; 13729 13730 len = MBLKL(mp); 13731 13732 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13733 ill = (ill_t *)q->q_ptr; 13734 13735 if (!OK_32PTR(mp->b_rptr)) 13736 IP_STAT(ipst, ip_notaligned1); 13737 else 13738 IP_STAT(ipst, ip_notaligned2); 13739 /* Guard against bogus device drivers */ 13740 if (len < 0) { 13741 /* clear b_prev - used by ip_mroute_decap */ 13742 mp->b_prev = NULL; 13743 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13744 freemsg(mp); 13745 return (B_FALSE); 13746 } 13747 13748 if (ip_rput_pullups++ == 0) { 13749 ipha = (ipha_t *)mp->b_rptr; 13750 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13751 "ip_check_and_align_header: %s forced us to " 13752 " pullup pkt, hdr len %ld, hdr addr %p", 13753 ill->ill_name, len, ipha); 13754 } 13755 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13756 /* clear b_prev - used by ip_mroute_decap */ 13757 mp->b_prev = NULL; 13758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13759 freemsg(mp); 13760 return (B_FALSE); 13761 } 13762 } 13763 return (B_TRUE); 13764 } 13765 13766 ire_t * 13767 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13768 { 13769 ire_t *new_ire; 13770 ill_t *ire_ill; 13771 uint_t ifindex; 13772 ip_stack_t *ipst = ill->ill_ipst; 13773 boolean_t strict_check = B_FALSE; 13774 13775 /* 13776 * This packet came in on an interface other than the one associated 13777 * with the first ire we found for the destination address. We do 13778 * another ire lookup here, using the ingress ill, to see if the 13779 * interface is in an interface group. 13780 * As long as the ills belong to the same group, we don't consider 13781 * them to be arriving on the wrong interface. Thus, if the switch 13782 * is doing inbound load spreading, we won't drop packets when the 13783 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13784 * for 'usesrc groups' where the destination address may belong to 13785 * another interface to allow multipathing to happen. 13786 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13787 * where the local address may not be unique. In this case we were 13788 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13789 * actually returned. The new lookup, which is more specific, should 13790 * only find the IRE_LOCAL associated with the ingress ill if one 13791 * exists. 13792 */ 13793 13794 if (ire->ire_ipversion == IPV4_VERSION) { 13795 if (ipst->ips_ip_strict_dst_multihoming) 13796 strict_check = B_TRUE; 13797 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13798 ill->ill_ipif, ALL_ZONES, NULL, 13799 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13800 } else { 13801 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13802 if (ipst->ips_ipv6_strict_dst_multihoming) 13803 strict_check = B_TRUE; 13804 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13805 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13806 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13807 } 13808 /* 13809 * If the same ire that was returned in ip_input() is found then this 13810 * is an indication that interface groups are in use. The packet 13811 * arrived on a different ill in the group than the one associated with 13812 * the destination address. If a different ire was found then the same 13813 * IP address must be hosted on multiple ills. This is possible with 13814 * unnumbered point2point interfaces. We switch to use this new ire in 13815 * order to have accurate interface statistics. 13816 */ 13817 if (new_ire != NULL) { 13818 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13819 ire_refrele(ire); 13820 ire = new_ire; 13821 } else { 13822 ire_refrele(new_ire); 13823 } 13824 return (ire); 13825 } else if ((ire->ire_rfq == NULL) && 13826 (ire->ire_ipversion == IPV4_VERSION)) { 13827 /* 13828 * The best match could have been the original ire which 13829 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13830 * the strict multihoming checks are irrelevant as we consider 13831 * local addresses hosted on lo0 to be interface agnostic. We 13832 * only expect a null ire_rfq on IREs which are associated with 13833 * lo0 hence we can return now. 13834 */ 13835 return (ire); 13836 } 13837 13838 /* 13839 * Chase pointers once and store locally. 13840 */ 13841 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13842 (ill_t *)(ire->ire_rfq->q_ptr); 13843 ifindex = ill->ill_usesrc_ifindex; 13844 13845 /* 13846 * Check if it's a legal address on the 'usesrc' interface. 13847 */ 13848 if ((ifindex != 0) && (ire_ill != NULL) && 13849 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13850 return (ire); 13851 } 13852 13853 /* 13854 * If the ip*_strict_dst_multihoming switch is on then we can 13855 * only accept this packet if the interface is marked as routing. 13856 */ 13857 if (!(strict_check)) 13858 return (ire); 13859 13860 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13861 ILLF_ROUTER) != 0) { 13862 return (ire); 13863 } 13864 13865 ire_refrele(ire); 13866 return (NULL); 13867 } 13868 13869 ire_t * 13870 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13871 { 13872 ipha_t *ipha; 13873 ire_t *src_ire; 13874 ill_t *stq_ill; 13875 uint_t hlen; 13876 uint_t pkt_len; 13877 uint32_t sum; 13878 queue_t *dev_q; 13879 ip_stack_t *ipst = ill->ill_ipst; 13880 mblk_t *fpmp; 13881 enum ire_forward_action ret_action; 13882 13883 ipha = (ipha_t *)mp->b_rptr; 13884 13885 if (ire != NULL && 13886 ire->ire_zoneid != GLOBAL_ZONEID && 13887 ire->ire_zoneid != ALL_ZONES) { 13888 /* 13889 * Should only use IREs that are visible to the global 13890 * zone for forwarding. 13891 */ 13892 ire_refrele(ire); 13893 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13894 } 13895 13896 /* 13897 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13898 * The loopback address check for both src and dst has already 13899 * been checked in ip_input 13900 */ 13901 13902 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13903 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13904 goto drop; 13905 } 13906 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13907 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13908 13909 if (src_ire != NULL) { 13910 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13911 ire_refrele(src_ire); 13912 goto drop; 13913 } 13914 13915 /* No ire cache of nexthop. So first create one */ 13916 if (ire == NULL) { 13917 13918 ire = ire_forward(dst, &ret_action, NULL, NULL, 13919 NULL, ipst); 13920 /* 13921 * We only come to ip_fast_forward if ip_cgtp_filter 13922 * is not set. So ire_forward() should not return with 13923 * Forward_check_multirt as the next action. 13924 */ 13925 ASSERT(ret_action != Forward_check_multirt); 13926 if (ire == NULL) { 13927 /* An attempt was made to forward the packet */ 13928 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13929 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13930 mp->b_prev = mp->b_next = 0; 13931 /* send icmp unreachable */ 13932 /* Sent by forwarding path, and router is global zone */ 13933 if (ret_action == Forward_ret_icmp_err) { 13934 if (ip_source_routed(ipha, ipst)) { 13935 icmp_unreachable(ill->ill_wq, mp, 13936 ICMP_SOURCE_ROUTE_FAILED, 13937 GLOBAL_ZONEID, ipst); 13938 } else { 13939 icmp_unreachable(ill->ill_wq, mp, 13940 ICMP_HOST_UNREACHABLE, 13941 GLOBAL_ZONEID, ipst); 13942 } 13943 } else { 13944 freemsg(mp); 13945 } 13946 return (NULL); 13947 } 13948 } 13949 13950 /* 13951 * Forwarding fastpath exception case: 13952 * If either of the follwoing case is true, we take 13953 * the slowpath 13954 * o forwarding is not enabled 13955 * o incoming and outgoing interface are the same, or the same 13956 * IPMP group 13957 * o corresponding ire is in incomplete state 13958 * o packet needs fragmentation 13959 * o ARP cache is not resolved 13960 * 13961 * The codeflow from here on is thus: 13962 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13963 */ 13964 pkt_len = ntohs(ipha->ipha_length); 13965 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13966 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13967 !(ill->ill_flags & ILLF_ROUTER) || 13968 (ill == stq_ill) || 13969 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13970 (ire->ire_nce == NULL) || 13971 (pkt_len > ire->ire_max_frag) || 13972 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13973 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13974 ipha->ipha_ttl <= 1) { 13975 ip_rput_process_forward(ill->ill_rq, mp, ire, 13976 ipha, ill, B_FALSE); 13977 return (ire); 13978 } 13979 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13980 13981 DTRACE_PROBE4(ip4__forwarding__start, 13982 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13983 13984 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13985 ipst->ips_ipv4firewall_forwarding, 13986 ill, stq_ill, ipha, mp, mp, 0, ipst); 13987 13988 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13989 13990 if (mp == NULL) 13991 goto drop; 13992 13993 mp->b_datap->db_struioun.cksum.flags = 0; 13994 /* Adjust the checksum to reflect the ttl decrement. */ 13995 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13996 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13997 ipha->ipha_ttl--; 13998 13999 /* 14000 * Write the link layer header. We can do this safely here, 14001 * because we have already tested to make sure that the IP 14002 * policy is not set, and that we have a fast path destination 14003 * header. 14004 */ 14005 mp->b_rptr -= hlen; 14006 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14007 14008 UPDATE_IB_PKT_COUNT(ire); 14009 ire->ire_last_used_time = lbolt; 14010 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14011 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14012 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14013 14014 dev_q = ire->ire_stq->q_next; 14015 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 14016 !canputnext(ire->ire_stq)) { 14017 goto indiscard; 14018 } 14019 if (ILL_DLS_CAPABLE(stq_ill)) { 14020 /* 14021 * Send the packet directly to DLD, where it 14022 * may be queued depending on the availability 14023 * of transmit resources at the media layer. 14024 */ 14025 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst); 14026 } else { 14027 DTRACE_PROBE4(ip4__physical__out__start, 14028 ill_t *, NULL, ill_t *, stq_ill, 14029 ipha_t *, ipha, mblk_t *, mp); 14030 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14031 ipst->ips_ipv4firewall_physical_out, 14032 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14033 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14034 if (mp == NULL) 14035 goto drop; 14036 14037 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14038 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14039 ip6_t *, NULL, int, 0); 14040 14041 putnext(ire->ire_stq, mp); 14042 } 14043 return (ire); 14044 14045 indiscard: 14046 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14047 drop: 14048 if (mp != NULL) 14049 freemsg(mp); 14050 return (ire); 14051 14052 } 14053 14054 /* 14055 * This function is called in the forwarding slowpath, when 14056 * either the ire lacks the link-layer address, or the packet needs 14057 * further processing(eg. fragmentation), before transmission. 14058 */ 14059 14060 static void 14061 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14062 ill_t *ill, boolean_t ll_multicast) 14063 { 14064 ill_group_t *ill_group; 14065 ill_group_t *ire_group; 14066 queue_t *dev_q; 14067 ire_t *src_ire; 14068 ip_stack_t *ipst = ill->ill_ipst; 14069 14070 ASSERT(ire->ire_stq != NULL); 14071 14072 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14073 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14074 14075 if (ll_multicast != 0) { 14076 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14077 goto drop_pkt; 14078 } 14079 14080 /* 14081 * check if ipha_src is a broadcast address. Note that this 14082 * check is redundant when we get here from ip_fast_forward() 14083 * which has already done this check. However, since we can 14084 * also get here from ip_rput_process_broadcast() or, for 14085 * for the slow path through ip_fast_forward(), we perform 14086 * the check again for code-reusability 14087 */ 14088 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14089 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14090 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14091 if (src_ire != NULL) 14092 ire_refrele(src_ire); 14093 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14094 ip2dbg(("ip_rput_process_forward: Received packet with" 14095 " bad src/dst address on %s\n", ill->ill_name)); 14096 goto drop_pkt; 14097 } 14098 14099 ill_group = ill->ill_group; 14100 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14101 /* 14102 * Check if we want to forward this one at this time. 14103 * We allow source routed packets on a host provided that 14104 * they go out the same interface or same interface group 14105 * as they came in on. 14106 * 14107 * XXX To be quicker, we may wish to not chase pointers to 14108 * get the ILLF_ROUTER flag and instead store the 14109 * forwarding policy in the ire. An unfortunate 14110 * side-effect of that would be requiring an ire flush 14111 * whenever the ILLF_ROUTER flag changes. 14112 */ 14113 if (((ill->ill_flags & 14114 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14115 ILLF_ROUTER) == 0) && 14116 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14117 (ill_group != NULL && ill_group == ire_group)))) { 14118 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14119 if (ip_source_routed(ipha, ipst)) { 14120 q = WR(q); 14121 /* 14122 * Clear the indication that this may have 14123 * hardware checksum as we are not using it. 14124 */ 14125 DB_CKSUMFLAGS(mp) = 0; 14126 /* Sent by forwarding path, and router is global zone */ 14127 icmp_unreachable(q, mp, 14128 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14129 return; 14130 } 14131 goto drop_pkt; 14132 } 14133 14134 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14135 14136 /* Packet is being forwarded. Turning off hwcksum flag. */ 14137 DB_CKSUMFLAGS(mp) = 0; 14138 if (ipst->ips_ip_g_send_redirects) { 14139 /* 14140 * Check whether the incoming interface and outgoing 14141 * interface is part of the same group. If so, 14142 * send redirects. 14143 * 14144 * Check the source address to see if it originated 14145 * on the same logical subnet it is going back out on. 14146 * If so, we should be able to send it a redirect. 14147 * Avoid sending a redirect if the destination 14148 * is directly connected (i.e., ipha_dst is the same 14149 * as ire_gateway_addr or the ire_addr of the 14150 * nexthop IRE_CACHE ), or if the packet was source 14151 * routed out this interface. 14152 */ 14153 ipaddr_t src, nhop; 14154 mblk_t *mp1; 14155 ire_t *nhop_ire = NULL; 14156 14157 /* 14158 * Check whether ire_rfq and q are from the same ill 14159 * or if they are not same, they at least belong 14160 * to the same group. If so, send redirects. 14161 */ 14162 if ((ire->ire_rfq == q || 14163 (ill_group != NULL && ill_group == ire_group)) && 14164 !ip_source_routed(ipha, ipst)) { 14165 14166 nhop = (ire->ire_gateway_addr != 0 ? 14167 ire->ire_gateway_addr : ire->ire_addr); 14168 14169 if (ipha->ipha_dst == nhop) { 14170 /* 14171 * We avoid sending a redirect if the 14172 * destination is directly connected 14173 * because it is possible that multiple 14174 * IP subnets may have been configured on 14175 * the link, and the source may not 14176 * be on the same subnet as ip destination, 14177 * even though they are on the same 14178 * physical link. 14179 */ 14180 goto sendit; 14181 } 14182 14183 src = ipha->ipha_src; 14184 14185 /* 14186 * We look up the interface ire for the nexthop, 14187 * to see if ipha_src is in the same subnet 14188 * as the nexthop. 14189 * 14190 * Note that, if, in the future, IRE_CACHE entries 14191 * are obsoleted, this lookup will not be needed, 14192 * as the ire passed to this function will be the 14193 * same as the nhop_ire computed below. 14194 */ 14195 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14196 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14197 0, NULL, MATCH_IRE_TYPE, ipst); 14198 14199 if (nhop_ire != NULL) { 14200 if ((src & nhop_ire->ire_mask) == 14201 (nhop & nhop_ire->ire_mask)) { 14202 /* 14203 * The source is directly connected. 14204 * Just copy the ip header (which is 14205 * in the first mblk) 14206 */ 14207 mp1 = copyb(mp); 14208 if (mp1 != NULL) { 14209 icmp_send_redirect(WR(q), mp1, 14210 nhop, ipst); 14211 } 14212 } 14213 ire_refrele(nhop_ire); 14214 } 14215 } 14216 } 14217 sendit: 14218 dev_q = ire->ire_stq->q_next; 14219 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14220 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14221 freemsg(mp); 14222 return; 14223 } 14224 14225 ip_rput_forward(ire, ipha, mp, ill); 14226 return; 14227 14228 drop_pkt: 14229 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14230 freemsg(mp); 14231 } 14232 14233 ire_t * 14234 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14235 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14236 { 14237 queue_t *q; 14238 uint16_t hcksumflags; 14239 ip_stack_t *ipst = ill->ill_ipst; 14240 14241 q = *qp; 14242 14243 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14244 14245 /* 14246 * Clear the indication that this may have hardware 14247 * checksum as we are not using it for forwarding. 14248 */ 14249 hcksumflags = DB_CKSUMFLAGS(mp); 14250 DB_CKSUMFLAGS(mp) = 0; 14251 14252 /* 14253 * Directed broadcast forwarding: if the packet came in over a 14254 * different interface then it is routed out over we can forward it. 14255 */ 14256 if (ipha->ipha_protocol == IPPROTO_TCP) { 14257 ire_refrele(ire); 14258 freemsg(mp); 14259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14260 return (NULL); 14261 } 14262 /* 14263 * For multicast we have set dst to be INADDR_BROADCAST 14264 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14265 * only for broadcast packets. 14266 */ 14267 if (!CLASSD(ipha->ipha_dst)) { 14268 ire_t *new_ire; 14269 ipif_t *ipif; 14270 /* 14271 * For ill groups, as the switch duplicates broadcasts 14272 * across all the ports, we need to filter out and 14273 * send up only one copy. There is one copy for every 14274 * broadcast address on each ill. Thus, we look for a 14275 * specific IRE on this ill and look at IRE_MARK_NORECV 14276 * later to see whether this ill is eligible to receive 14277 * them or not. ill_nominate_bcast_rcv() nominates only 14278 * one set of IREs for receiving. 14279 */ 14280 14281 ipif = ipif_get_next_ipif(NULL, ill); 14282 if (ipif == NULL) { 14283 ire_refrele(ire); 14284 freemsg(mp); 14285 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14286 return (NULL); 14287 } 14288 new_ire = ire_ctable_lookup(dst, 0, 0, 14289 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14290 ipif_refrele(ipif); 14291 14292 if (new_ire != NULL) { 14293 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14294 ire_refrele(ire); 14295 ire_refrele(new_ire); 14296 freemsg(mp); 14297 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14298 return (NULL); 14299 } 14300 /* 14301 * In the special case of multirouted broadcast 14302 * packets, we unconditionally need to "gateway" 14303 * them to the appropriate interface here. 14304 * In the normal case, this cannot happen, because 14305 * there is no broadcast IRE tagged with the 14306 * RTF_MULTIRT flag. 14307 */ 14308 if (new_ire->ire_flags & RTF_MULTIRT) { 14309 ire_refrele(new_ire); 14310 if (ire->ire_rfq != NULL) { 14311 q = ire->ire_rfq; 14312 *qp = q; 14313 } 14314 } else { 14315 ire_refrele(ire); 14316 ire = new_ire; 14317 } 14318 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14319 if (!ipst->ips_ip_g_forward_directed_bcast) { 14320 /* 14321 * Free the message if 14322 * ip_g_forward_directed_bcast is turned 14323 * off for non-local broadcast. 14324 */ 14325 ire_refrele(ire); 14326 freemsg(mp); 14327 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14328 return (NULL); 14329 } 14330 } else { 14331 /* 14332 * This CGTP packet successfully passed the 14333 * CGTP filter, but the related CGTP 14334 * broadcast IRE has not been found, 14335 * meaning that the redundant ipif is 14336 * probably down. However, if we discarded 14337 * this packet, its duplicate would be 14338 * filtered out by the CGTP filter so none 14339 * of them would get through. So we keep 14340 * going with this one. 14341 */ 14342 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14343 if (ire->ire_rfq != NULL) { 14344 q = ire->ire_rfq; 14345 *qp = q; 14346 } 14347 } 14348 } 14349 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14350 /* 14351 * Verify that there are not more then one 14352 * IRE_BROADCAST with this broadcast address which 14353 * has ire_stq set. 14354 * TODO: simplify, loop over all IRE's 14355 */ 14356 ire_t *ire1; 14357 int num_stq = 0; 14358 mblk_t *mp1; 14359 14360 /* Find the first one with ire_stq set */ 14361 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14362 for (ire1 = ire; ire1 && 14363 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14364 ire1 = ire1->ire_next) 14365 ; 14366 if (ire1) { 14367 ire_refrele(ire); 14368 ire = ire1; 14369 IRE_REFHOLD(ire); 14370 } 14371 14372 /* Check if there are additional ones with stq set */ 14373 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14374 if (ire->ire_addr != ire1->ire_addr) 14375 break; 14376 if (ire1->ire_stq) { 14377 num_stq++; 14378 break; 14379 } 14380 } 14381 rw_exit(&ire->ire_bucket->irb_lock); 14382 if (num_stq == 1 && ire->ire_stq != NULL) { 14383 ip1dbg(("ip_rput_process_broadcast: directed " 14384 "broadcast to 0x%x\n", 14385 ntohl(ire->ire_addr))); 14386 mp1 = copymsg(mp); 14387 if (mp1) { 14388 switch (ipha->ipha_protocol) { 14389 case IPPROTO_UDP: 14390 ip_udp_input(q, mp1, ipha, ire, ill); 14391 break; 14392 default: 14393 ip_proto_input(q, mp1, ipha, ire, ill, 14394 B_FALSE); 14395 break; 14396 } 14397 } 14398 /* 14399 * Adjust ttl to 2 (1+1 - the forward engine 14400 * will decrement it by one. 14401 */ 14402 if (ip_csum_hdr(ipha)) { 14403 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14404 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14405 freemsg(mp); 14406 ire_refrele(ire); 14407 return (NULL); 14408 } 14409 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14410 ipha->ipha_hdr_checksum = 0; 14411 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14412 ip_rput_process_forward(q, mp, ire, ipha, 14413 ill, ll_multicast); 14414 ire_refrele(ire); 14415 return (NULL); 14416 } 14417 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14418 ntohl(ire->ire_addr))); 14419 } 14420 14421 14422 /* Restore any hardware checksum flags */ 14423 DB_CKSUMFLAGS(mp) = hcksumflags; 14424 return (ire); 14425 } 14426 14427 /* ARGSUSED */ 14428 static boolean_t 14429 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14430 int *ll_multicast, ipaddr_t *dstp) 14431 { 14432 ip_stack_t *ipst = ill->ill_ipst; 14433 14434 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14435 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14436 ntohs(ipha->ipha_length)); 14437 14438 /* 14439 * Forward packets only if we have joined the allmulti 14440 * group on this interface. 14441 */ 14442 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14443 int retval; 14444 14445 /* 14446 * Clear the indication that this may have hardware 14447 * checksum as we are not using it. 14448 */ 14449 DB_CKSUMFLAGS(mp) = 0; 14450 retval = ip_mforward(ill, ipha, mp); 14451 /* ip_mforward updates mib variables if needed */ 14452 /* clear b_prev - used by ip_mroute_decap */ 14453 mp->b_prev = NULL; 14454 14455 switch (retval) { 14456 case 0: 14457 /* 14458 * pkt is okay and arrived on phyint. 14459 * 14460 * If we are running as a multicast router 14461 * we need to see all IGMP and/or PIM packets. 14462 */ 14463 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14464 (ipha->ipha_protocol == IPPROTO_PIM)) { 14465 goto done; 14466 } 14467 break; 14468 case -1: 14469 /* pkt is mal-formed, toss it */ 14470 goto drop_pkt; 14471 case 1: 14472 /* pkt is okay and arrived on a tunnel */ 14473 /* 14474 * If we are running a multicast router 14475 * we need to see all igmp packets. 14476 */ 14477 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14478 *dstp = INADDR_BROADCAST; 14479 *ll_multicast = 1; 14480 return (B_FALSE); 14481 } 14482 14483 goto drop_pkt; 14484 } 14485 } 14486 14487 ILM_WALKER_HOLD(ill); 14488 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14489 /* 14490 * This might just be caused by the fact that 14491 * multiple IP Multicast addresses map to the same 14492 * link layer multicast - no need to increment counter! 14493 */ 14494 ILM_WALKER_RELE(ill); 14495 freemsg(mp); 14496 return (B_TRUE); 14497 } 14498 ILM_WALKER_RELE(ill); 14499 done: 14500 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14501 /* 14502 * This assumes the we deliver to all streams for multicast 14503 * and broadcast packets. 14504 */ 14505 *dstp = INADDR_BROADCAST; 14506 *ll_multicast = 1; 14507 return (B_FALSE); 14508 drop_pkt: 14509 ip2dbg(("ip_rput: drop pkt\n")); 14510 freemsg(mp); 14511 return (B_TRUE); 14512 } 14513 14514 /* 14515 * This function is used to both return an indication of whether or not 14516 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14517 * and in doing so, determine whether or not it is broadcast vs multicast. 14518 * For it to be a broadcast packet, we must have the appropriate mblk_t 14519 * hanging off the ill_t. If this is either not present or doesn't match 14520 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14521 * to be multicast. Thus NICs that have no broadcast address (or no 14522 * capability for one, such as point to point links) cannot return as 14523 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14524 * the return values simplifies the current use of the return value of this 14525 * function, which is to pass through the multicast/broadcast characteristic 14526 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14527 * changing the return value to some other symbol demands the appropriate 14528 * "translation" when hpe_flags is set prior to calling hook_run() for 14529 * packet events. 14530 */ 14531 int 14532 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14533 { 14534 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14535 mblk_t *bmp; 14536 14537 if (ind->dl_group_address) { 14538 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14539 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14540 MBLKL(mb) && 14541 (bmp = ill->ill_bcast_mp) != NULL) { 14542 dl_unitdata_req_t *dlur; 14543 uint8_t *bphys_addr; 14544 14545 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14546 if (ill->ill_sap_length < 0) 14547 bphys_addr = (uchar_t *)dlur + 14548 dlur->dl_dest_addr_offset; 14549 else 14550 bphys_addr = (uchar_t *)dlur + 14551 dlur->dl_dest_addr_offset + 14552 ill->ill_sap_length; 14553 14554 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14555 bphys_addr, ind->dl_dest_addr_length) == 0) { 14556 return (HPE_BROADCAST); 14557 } 14558 return (HPE_MULTICAST); 14559 } 14560 return (HPE_MULTICAST); 14561 } 14562 return (0); 14563 } 14564 14565 static boolean_t 14566 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14567 int *ll_multicast, mblk_t **mpp) 14568 { 14569 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14570 boolean_t must_copy = B_FALSE; 14571 struct iocblk *iocp; 14572 ipha_t *ipha; 14573 ip_stack_t *ipst = ill->ill_ipst; 14574 14575 #define rptr ((uchar_t *)ipha) 14576 14577 first_mp = *first_mpp; 14578 mp = *mpp; 14579 14580 ASSERT(first_mp == mp); 14581 14582 /* 14583 * if db_ref > 1 then copymsg and free original. Packet may be 14584 * changed and do not want other entity who has a reference to this 14585 * message to trip over the changes. This is a blind change because 14586 * trying to catch all places that might change packet is too 14587 * difficult (since it may be a module above this one) 14588 * 14589 * This corresponds to the non-fast path case. We walk down the full 14590 * chain in this case, and check the db_ref count of all the dblks, 14591 * and do a copymsg if required. It is possible that the db_ref counts 14592 * of the data blocks in the mblk chain can be different. 14593 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14594 * count of 1, followed by a M_DATA block with a ref count of 2, if 14595 * 'snoop' is running. 14596 */ 14597 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14598 if (mp1->b_datap->db_ref > 1) { 14599 must_copy = B_TRUE; 14600 break; 14601 } 14602 } 14603 14604 if (must_copy) { 14605 mp1 = copymsg(mp); 14606 if (mp1 == NULL) { 14607 for (mp1 = mp; mp1 != NULL; 14608 mp1 = mp1->b_cont) { 14609 mp1->b_next = NULL; 14610 mp1->b_prev = NULL; 14611 } 14612 freemsg(mp); 14613 if (ill != NULL) { 14614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14615 } else { 14616 BUMP_MIB(&ipst->ips_ip_mib, 14617 ipIfStatsInDiscards); 14618 } 14619 return (B_TRUE); 14620 } 14621 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14622 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14623 /* Copy b_prev - used by ip_mroute_decap */ 14624 to_mp->b_prev = from_mp->b_prev; 14625 from_mp->b_prev = NULL; 14626 } 14627 *first_mpp = first_mp = mp1; 14628 freemsg(mp); 14629 mp = mp1; 14630 *mpp = mp1; 14631 } 14632 14633 ipha = (ipha_t *)mp->b_rptr; 14634 14635 /* 14636 * previous code has a case for M_DATA. 14637 * We want to check how that happens. 14638 */ 14639 ASSERT(first_mp->b_datap->db_type != M_DATA); 14640 switch (first_mp->b_datap->db_type) { 14641 case M_PROTO: 14642 case M_PCPROTO: 14643 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14644 DL_UNITDATA_IND) { 14645 /* Go handle anything other than data elsewhere. */ 14646 ip_rput_dlpi(q, mp); 14647 return (B_TRUE); 14648 } 14649 14650 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14651 /* Ditch the DLPI header. */ 14652 mp1 = mp->b_cont; 14653 ASSERT(first_mp == mp); 14654 *first_mpp = mp1; 14655 freeb(mp); 14656 *mpp = mp1; 14657 return (B_FALSE); 14658 case M_IOCACK: 14659 ip1dbg(("got iocack ")); 14660 iocp = (struct iocblk *)mp->b_rptr; 14661 switch (iocp->ioc_cmd) { 14662 case DL_IOC_HDR_INFO: 14663 ill = (ill_t *)q->q_ptr; 14664 ill_fastpath_ack(ill, mp); 14665 return (B_TRUE); 14666 case SIOCSTUNPARAM: 14667 case OSIOCSTUNPARAM: 14668 /* Go through qwriter_ip */ 14669 break; 14670 case SIOCGTUNPARAM: 14671 case OSIOCGTUNPARAM: 14672 ip_rput_other(NULL, q, mp, NULL); 14673 return (B_TRUE); 14674 default: 14675 putnext(q, mp); 14676 return (B_TRUE); 14677 } 14678 /* FALLTHRU */ 14679 case M_ERROR: 14680 case M_HANGUP: 14681 /* 14682 * Since this is on the ill stream we unconditionally 14683 * bump up the refcount 14684 */ 14685 ill_refhold(ill); 14686 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14687 return (B_TRUE); 14688 case M_CTL: 14689 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14690 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14691 IPHADA_M_CTL)) { 14692 /* 14693 * It's an IPsec accelerated packet. 14694 * Make sure that the ill from which we received the 14695 * packet has enabled IPsec hardware acceleration. 14696 */ 14697 if (!(ill->ill_capabilities & 14698 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14699 /* IPsec kstats: bean counter */ 14700 freemsg(mp); 14701 return (B_TRUE); 14702 } 14703 14704 /* 14705 * Make mp point to the mblk following the M_CTL, 14706 * then process according to type of mp. 14707 * After this processing, first_mp will point to 14708 * the data-attributes and mp to the pkt following 14709 * the M_CTL. 14710 */ 14711 mp = first_mp->b_cont; 14712 if (mp == NULL) { 14713 freemsg(first_mp); 14714 return (B_TRUE); 14715 } 14716 /* 14717 * A Hardware Accelerated packet can only be M_DATA 14718 * ESP or AH packet. 14719 */ 14720 if (mp->b_datap->db_type != M_DATA) { 14721 /* non-M_DATA IPsec accelerated packet */ 14722 IPSECHW_DEBUG(IPSECHW_PKT, 14723 ("non-M_DATA IPsec accelerated pkt\n")); 14724 freemsg(first_mp); 14725 return (B_TRUE); 14726 } 14727 ipha = (ipha_t *)mp->b_rptr; 14728 if (ipha->ipha_protocol != IPPROTO_AH && 14729 ipha->ipha_protocol != IPPROTO_ESP) { 14730 IPSECHW_DEBUG(IPSECHW_PKT, 14731 ("non-M_DATA IPsec accelerated pkt\n")); 14732 freemsg(first_mp); 14733 return (B_TRUE); 14734 } 14735 *mpp = mp; 14736 return (B_FALSE); 14737 } 14738 putnext(q, mp); 14739 return (B_TRUE); 14740 case M_IOCNAK: 14741 ip1dbg(("got iocnak ")); 14742 iocp = (struct iocblk *)mp->b_rptr; 14743 switch (iocp->ioc_cmd) { 14744 case SIOCSTUNPARAM: 14745 case OSIOCSTUNPARAM: 14746 /* 14747 * Since this is on the ill stream we unconditionally 14748 * bump up the refcount 14749 */ 14750 ill_refhold(ill); 14751 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14752 return (B_TRUE); 14753 case DL_IOC_HDR_INFO: 14754 case SIOCGTUNPARAM: 14755 case OSIOCGTUNPARAM: 14756 ip_rput_other(NULL, q, mp, NULL); 14757 return (B_TRUE); 14758 default: 14759 break; 14760 } 14761 /* FALLTHRU */ 14762 default: 14763 putnext(q, mp); 14764 return (B_TRUE); 14765 } 14766 } 14767 14768 /* Read side put procedure. Packets coming from the wire arrive here. */ 14769 void 14770 ip_rput(queue_t *q, mblk_t *mp) 14771 { 14772 ill_t *ill; 14773 union DL_primitives *dl; 14774 14775 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14776 14777 ill = (ill_t *)q->q_ptr; 14778 14779 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14780 /* 14781 * If things are opening or closing, only accept high-priority 14782 * DLPI messages. (On open ill->ill_ipif has not yet been 14783 * created; on close, things hanging off the ill may have been 14784 * freed already.) 14785 */ 14786 dl = (union DL_primitives *)mp->b_rptr; 14787 if (DB_TYPE(mp) != M_PCPROTO || 14788 dl->dl_primitive == DL_UNITDATA_IND) { 14789 /* 14790 * SIOC[GS]TUNPARAM ioctls can come here. 14791 */ 14792 inet_freemsg(mp); 14793 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14794 "ip_rput_end: q %p (%S)", q, "uninit"); 14795 return; 14796 } 14797 } 14798 14799 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14800 "ip_rput_end: q %p (%S)", q, "end"); 14801 14802 ip_input(ill, NULL, mp, NULL); 14803 } 14804 14805 static mblk_t * 14806 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14807 { 14808 mblk_t *mp1; 14809 boolean_t adjusted = B_FALSE; 14810 ip_stack_t *ipst = ill->ill_ipst; 14811 14812 IP_STAT(ipst, ip_db_ref); 14813 /* 14814 * The IP_RECVSLLA option depends on having the 14815 * link layer header. First check that: 14816 * a> the underlying device is of type ether, 14817 * since this option is currently supported only 14818 * over ethernet. 14819 * b> there is enough room to copy over the link 14820 * layer header. 14821 * 14822 * Once the checks are done, adjust rptr so that 14823 * the link layer header will be copied via 14824 * copymsg. Note that, IFT_ETHER may be returned 14825 * by some non-ethernet drivers but in this case 14826 * the second check will fail. 14827 */ 14828 if (ill->ill_type == IFT_ETHER && 14829 (mp->b_rptr - mp->b_datap->db_base) >= 14830 sizeof (struct ether_header)) { 14831 mp->b_rptr -= sizeof (struct ether_header); 14832 adjusted = B_TRUE; 14833 } 14834 mp1 = copymsg(mp); 14835 14836 if (mp1 == NULL) { 14837 mp->b_next = NULL; 14838 /* clear b_prev - used by ip_mroute_decap */ 14839 mp->b_prev = NULL; 14840 freemsg(mp); 14841 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14842 return (NULL); 14843 } 14844 14845 if (adjusted) { 14846 /* 14847 * Copy is done. Restore the pointer in 14848 * the _new_ mblk 14849 */ 14850 mp1->b_rptr += sizeof (struct ether_header); 14851 } 14852 14853 /* Copy b_prev - used by ip_mroute_decap */ 14854 mp1->b_prev = mp->b_prev; 14855 mp->b_prev = NULL; 14856 14857 /* preserve the hardware checksum flags and data, if present */ 14858 if (DB_CKSUMFLAGS(mp) != 0) { 14859 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14860 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14861 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14862 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14863 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14864 } 14865 14866 freemsg(mp); 14867 return (mp1); 14868 } 14869 14870 /* 14871 * Direct read side procedure capable of dealing with chains. GLDv3 based 14872 * drivers call this function directly with mblk chains while STREAMS 14873 * read side procedure ip_rput() calls this for single packet with ip_ring 14874 * set to NULL to process one packet at a time. 14875 * 14876 * The ill will always be valid if this function is called directly from 14877 * the driver. 14878 * 14879 * If ip_input() is called from GLDv3: 14880 * 14881 * - This must be a non-VLAN IP stream. 14882 * - 'mp' is either an untagged or a special priority-tagged packet. 14883 * - Any VLAN tag that was in the MAC header has been stripped. 14884 * 14885 * If the IP header in packet is not 32-bit aligned, every message in the 14886 * chain will be aligned before further operations. This is required on SPARC 14887 * platform. 14888 */ 14889 /* ARGSUSED */ 14890 void 14891 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14892 struct mac_header_info_s *mhip) 14893 { 14894 ipaddr_t dst = NULL; 14895 ipaddr_t prev_dst; 14896 ire_t *ire = NULL; 14897 ipha_t *ipha; 14898 uint_t pkt_len; 14899 ssize_t len; 14900 uint_t opt_len; 14901 int ll_multicast; 14902 int cgtp_flt_pkt; 14903 queue_t *q = ill->ill_rq; 14904 squeue_t *curr_sqp = NULL; 14905 mblk_t *head = NULL; 14906 mblk_t *tail = NULL; 14907 mblk_t *first_mp; 14908 mblk_t *mp; 14909 mblk_t *dmp; 14910 int cnt = 0; 14911 ip_stack_t *ipst = ill->ill_ipst; 14912 14913 ASSERT(mp_chain != NULL); 14914 ASSERT(ill != NULL); 14915 14916 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14917 14918 #define rptr ((uchar_t *)ipha) 14919 14920 while (mp_chain != NULL) { 14921 first_mp = mp = mp_chain; 14922 mp_chain = mp_chain->b_next; 14923 mp->b_next = NULL; 14924 ll_multicast = 0; 14925 14926 /* 14927 * We do ire caching from one iteration to 14928 * another. In the event the packet chain contains 14929 * all packets from the same dst, this caching saves 14930 * an ire_cache_lookup for each of the succeeding 14931 * packets in a packet chain. 14932 */ 14933 prev_dst = dst; 14934 14935 /* 14936 * if db_ref > 1 then copymsg and free original. Packet 14937 * may be changed and we do not want the other entity 14938 * who has a reference to this message to trip over the 14939 * changes. This is a blind change because trying to 14940 * catch all places that might change the packet is too 14941 * difficult. 14942 * 14943 * This corresponds to the fast path case, where we have 14944 * a chain of M_DATA mblks. We check the db_ref count 14945 * of only the 1st data block in the mblk chain. There 14946 * doesn't seem to be a reason why a device driver would 14947 * send up data with varying db_ref counts in the mblk 14948 * chain. In any case the Fast path is a private 14949 * interface, and our drivers don't do such a thing. 14950 * Given the above assumption, there is no need to walk 14951 * down the entire mblk chain (which could have a 14952 * potential performance problem) 14953 */ 14954 14955 if (DB_REF(mp) > 1) { 14956 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14957 continue; 14958 } 14959 14960 /* 14961 * Check and align the IP header. 14962 */ 14963 first_mp = mp; 14964 if (DB_TYPE(mp) == M_DATA) { 14965 dmp = mp; 14966 } else if (DB_TYPE(mp) == M_PROTO && 14967 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14968 dmp = mp->b_cont; 14969 } else { 14970 dmp = NULL; 14971 } 14972 if (dmp != NULL) { 14973 /* 14974 * IP header ptr not aligned? 14975 * OR IP header not complete in first mblk 14976 */ 14977 if (!OK_32PTR(dmp->b_rptr) || 14978 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14979 if (!ip_check_and_align_header(q, dmp, ipst)) 14980 continue; 14981 } 14982 } 14983 14984 /* 14985 * ip_input fast path 14986 */ 14987 14988 /* mblk type is not M_DATA */ 14989 if (DB_TYPE(mp) != M_DATA) { 14990 if (ip_rput_process_notdata(q, &first_mp, ill, 14991 &ll_multicast, &mp)) 14992 continue; 14993 14994 /* 14995 * The only way we can get here is if we had a 14996 * packet that was either a DL_UNITDATA_IND or 14997 * an M_CTL for an IPsec accelerated packet. 14998 * 14999 * In either case, the first_mp will point to 15000 * the leading M_PROTO or M_CTL. 15001 */ 15002 ASSERT(first_mp != NULL); 15003 } else if (mhip != NULL) { 15004 /* 15005 * ll_multicast is set here so that it is ready 15006 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15007 * manipulates ll_multicast in the same fashion when 15008 * called from ip_rput_process_notdata. 15009 */ 15010 switch (mhip->mhi_dsttype) { 15011 case MAC_ADDRTYPE_MULTICAST : 15012 ll_multicast = HPE_MULTICAST; 15013 break; 15014 case MAC_ADDRTYPE_BROADCAST : 15015 ll_multicast = HPE_BROADCAST; 15016 break; 15017 default : 15018 break; 15019 } 15020 } 15021 15022 /* Make sure its an M_DATA and that its aligned */ 15023 ASSERT(DB_TYPE(mp) == M_DATA); 15024 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15025 15026 ipha = (ipha_t *)mp->b_rptr; 15027 len = mp->b_wptr - rptr; 15028 pkt_len = ntohs(ipha->ipha_length); 15029 15030 /* 15031 * We must count all incoming packets, even if they end 15032 * up being dropped later on. 15033 */ 15034 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15035 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15036 15037 /* multiple mblk or too short */ 15038 len -= pkt_len; 15039 if (len != 0) { 15040 /* 15041 * Make sure we have data length consistent 15042 * with the IP header. 15043 */ 15044 if (mp->b_cont == NULL) { 15045 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15046 BUMP_MIB(ill->ill_ip_mib, 15047 ipIfStatsInHdrErrors); 15048 ip2dbg(("ip_input: drop pkt\n")); 15049 freemsg(mp); 15050 continue; 15051 } 15052 mp->b_wptr = rptr + pkt_len; 15053 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15054 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15055 BUMP_MIB(ill->ill_ip_mib, 15056 ipIfStatsInHdrErrors); 15057 ip2dbg(("ip_input: drop pkt\n")); 15058 freemsg(mp); 15059 continue; 15060 } 15061 (void) adjmsg(mp, -len); 15062 IP_STAT(ipst, ip_multimblk3); 15063 } 15064 } 15065 15066 /* Obtain the dst of the current packet */ 15067 dst = ipha->ipha_dst; 15068 15069 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15070 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15071 ipha, ip6_t *, NULL, int, 0); 15072 15073 /* 15074 * The following test for loopback is faster than 15075 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15076 * operations. 15077 * Note that these addresses are always in network byte order 15078 */ 15079 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15080 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15081 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15082 freemsg(mp); 15083 continue; 15084 } 15085 15086 /* 15087 * The event for packets being received from a 'physical' 15088 * interface is placed after validation of the source and/or 15089 * destination address as being local so that packets can be 15090 * redirected to loopback addresses using ipnat. 15091 */ 15092 DTRACE_PROBE4(ip4__physical__in__start, 15093 ill_t *, ill, ill_t *, NULL, 15094 ipha_t *, ipha, mblk_t *, first_mp); 15095 15096 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15097 ipst->ips_ipv4firewall_physical_in, 15098 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15099 15100 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15101 15102 if (first_mp == NULL) { 15103 continue; 15104 } 15105 dst = ipha->ipha_dst; 15106 15107 /* 15108 * Attach any necessary label information to 15109 * this packet 15110 */ 15111 if (is_system_labeled() && 15112 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15113 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15114 freemsg(mp); 15115 continue; 15116 } 15117 15118 /* 15119 * Reuse the cached ire only if the ipha_dst of the previous 15120 * packet is the same as the current packet AND it is not 15121 * INADDR_ANY. 15122 */ 15123 if (!(dst == prev_dst && dst != INADDR_ANY) && 15124 (ire != NULL)) { 15125 ire_refrele(ire); 15126 ire = NULL; 15127 } 15128 opt_len = ipha->ipha_version_and_hdr_length - 15129 IP_SIMPLE_HDR_VERSION; 15130 15131 /* 15132 * Check to see if we can take the fastpath. 15133 * That is possible if the following conditions are met 15134 * o Tsol disabled 15135 * o CGTP disabled 15136 * o ipp_action_count is 0 15137 * o no options in the packet 15138 * o not a RSVP packet 15139 * o not a multicast packet 15140 * o ill not in IP_DHCPINIT_IF mode 15141 */ 15142 if (!is_system_labeled() && 15143 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15144 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15145 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15146 if (ire == NULL) 15147 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15148 ipst); 15149 15150 /* incoming packet is for forwarding */ 15151 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15152 ire = ip_fast_forward(ire, dst, ill, mp); 15153 continue; 15154 } 15155 /* incoming packet is for local consumption */ 15156 if (ire->ire_type & IRE_LOCAL) 15157 goto local; 15158 } 15159 15160 /* 15161 * Disable ire caching for anything more complex 15162 * than the simple fast path case we checked for above. 15163 */ 15164 if (ire != NULL) { 15165 ire_refrele(ire); 15166 ire = NULL; 15167 } 15168 15169 /* 15170 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15171 * server to unicast DHCP packets to a DHCP client using the 15172 * IP address it is offering to the client. This can be 15173 * disabled through the "broadcast bit", but not all DHCP 15174 * servers honor that bit. Therefore, to interoperate with as 15175 * many DHCP servers as possible, the DHCP client allows the 15176 * server to unicast, but we treat those packets as broadcast 15177 * here. Note that we don't rewrite the packet itself since 15178 * (a) that would mess up the checksums and (b) the DHCP 15179 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15180 * hand it the packet regardless. 15181 */ 15182 if (ill->ill_dhcpinit != 0 && 15183 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15184 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15185 udpha_t *udpha; 15186 15187 /* 15188 * Reload ipha since pullupmsg() can change b_rptr. 15189 */ 15190 ipha = (ipha_t *)mp->b_rptr; 15191 udpha = (udpha_t *)&ipha[1]; 15192 15193 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15194 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15195 mblk_t *, mp); 15196 dst = INADDR_BROADCAST; 15197 } 15198 } 15199 15200 /* Full-blown slow path */ 15201 if (opt_len != 0) { 15202 if (len != 0) 15203 IP_STAT(ipst, ip_multimblk4); 15204 else 15205 IP_STAT(ipst, ip_ipoptions); 15206 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15207 &dst, ipst)) 15208 continue; 15209 } 15210 15211 /* 15212 * Invoke the CGTP (multirouting) filtering module to process 15213 * the incoming packet. Packets identified as duplicates 15214 * must be discarded. Filtering is active only if the 15215 * the ip_cgtp_filter ndd variable is non-zero. 15216 */ 15217 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15218 if (ipst->ips_ip_cgtp_filter && 15219 ipst->ips_ip_cgtp_filter_ops != NULL) { 15220 netstackid_t stackid; 15221 15222 stackid = ipst->ips_netstack->netstack_stackid; 15223 cgtp_flt_pkt = 15224 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15225 ill->ill_phyint->phyint_ifindex, mp); 15226 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15227 freemsg(first_mp); 15228 continue; 15229 } 15230 } 15231 15232 /* 15233 * If rsvpd is running, let RSVP daemon handle its processing 15234 * and forwarding of RSVP multicast/unicast packets. 15235 * If rsvpd is not running but mrouted is running, RSVP 15236 * multicast packets are forwarded as multicast traffic 15237 * and RSVP unicast packets are forwarded by unicast router. 15238 * If neither rsvpd nor mrouted is running, RSVP multicast 15239 * packets are not forwarded, but the unicast packets are 15240 * forwarded like unicast traffic. 15241 */ 15242 if (ipha->ipha_protocol == IPPROTO_RSVP && 15243 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15244 NULL) { 15245 /* RSVP packet and rsvpd running. Treat as ours */ 15246 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15247 /* 15248 * This assumes that we deliver to all streams for 15249 * multicast and broadcast packets. 15250 * We have to force ll_multicast to 1 to handle the 15251 * M_DATA messages passed in from ip_mroute_decap. 15252 */ 15253 dst = INADDR_BROADCAST; 15254 ll_multicast = 1; 15255 } else if (CLASSD(dst)) { 15256 /* packet is multicast */ 15257 mp->b_next = NULL; 15258 if (ip_rput_process_multicast(q, mp, ill, ipha, 15259 &ll_multicast, &dst)) 15260 continue; 15261 } 15262 15263 if (ire == NULL) { 15264 ire = ire_cache_lookup(dst, ALL_ZONES, 15265 MBLK_GETLABEL(mp), ipst); 15266 } 15267 15268 if (ire != NULL && ire->ire_stq != NULL && 15269 ire->ire_zoneid != GLOBAL_ZONEID && 15270 ire->ire_zoneid != ALL_ZONES) { 15271 /* 15272 * Should only use IREs that are visible from the 15273 * global zone for forwarding. 15274 */ 15275 ire_refrele(ire); 15276 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15277 MBLK_GETLABEL(mp), ipst); 15278 } 15279 15280 if (ire == NULL) { 15281 /* 15282 * No IRE for this destination, so it can't be for us. 15283 * Unless we are forwarding, drop the packet. 15284 * We have to let source routed packets through 15285 * since we don't yet know if they are 'ping -l' 15286 * packets i.e. if they will go out over the 15287 * same interface as they came in on. 15288 */ 15289 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15290 if (ire == NULL) 15291 continue; 15292 } 15293 15294 /* 15295 * Broadcast IRE may indicate either broadcast or 15296 * multicast packet 15297 */ 15298 if (ire->ire_type == IRE_BROADCAST) { 15299 /* 15300 * Skip broadcast checks if packet is UDP multicast; 15301 * we'd rather not enter ip_rput_process_broadcast() 15302 * unless the packet is broadcast for real, since 15303 * that routine is a no-op for multicast. 15304 */ 15305 if (ipha->ipha_protocol != IPPROTO_UDP || 15306 !CLASSD(ipha->ipha_dst)) { 15307 ire = ip_rput_process_broadcast(&q, mp, 15308 ire, ipha, ill, dst, cgtp_flt_pkt, 15309 ll_multicast); 15310 if (ire == NULL) 15311 continue; 15312 } 15313 } else if (ire->ire_stq != NULL) { 15314 /* fowarding? */ 15315 ip_rput_process_forward(q, mp, ire, ipha, ill, 15316 ll_multicast); 15317 /* ip_rput_process_forward consumed the packet */ 15318 continue; 15319 } 15320 15321 local: 15322 /* 15323 * If the queue in the ire is different to the ingress queue 15324 * then we need to check to see if we can accept the packet. 15325 * Note that for multicast packets and broadcast packets sent 15326 * to a broadcast address which is shared between multiple 15327 * interfaces we should not do this since we just got a random 15328 * broadcast ire. 15329 */ 15330 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15331 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15332 ill)) == NULL) { 15333 /* Drop packet */ 15334 BUMP_MIB(ill->ill_ip_mib, 15335 ipIfStatsForwProhibits); 15336 freemsg(mp); 15337 continue; 15338 } 15339 if (ire->ire_rfq != NULL) 15340 q = ire->ire_rfq; 15341 } 15342 15343 switch (ipha->ipha_protocol) { 15344 case IPPROTO_TCP: 15345 ASSERT(first_mp == mp); 15346 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15347 mp, 0, q, ip_ring)) != NULL) { 15348 if (curr_sqp == NULL) { 15349 curr_sqp = GET_SQUEUE(mp); 15350 ASSERT(cnt == 0); 15351 cnt++; 15352 head = tail = mp; 15353 } else if (curr_sqp == GET_SQUEUE(mp)) { 15354 ASSERT(tail != NULL); 15355 cnt++; 15356 tail->b_next = mp; 15357 tail = mp; 15358 } else { 15359 /* 15360 * A different squeue. Send the 15361 * chain for the previous squeue on 15362 * its way. This shouldn't happen 15363 * often unless interrupt binding 15364 * changes. 15365 */ 15366 IP_STAT(ipst, ip_input_multi_squeue); 15367 squeue_enter_chain(curr_sqp, head, 15368 tail, cnt, SQTAG_IP_INPUT); 15369 curr_sqp = GET_SQUEUE(mp); 15370 head = mp; 15371 tail = mp; 15372 cnt = 1; 15373 } 15374 } 15375 continue; 15376 case IPPROTO_UDP: 15377 ASSERT(first_mp == mp); 15378 ip_udp_input(q, mp, ipha, ire, ill); 15379 continue; 15380 case IPPROTO_SCTP: 15381 ASSERT(first_mp == mp); 15382 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15383 q, dst); 15384 /* ire has been released by ip_sctp_input */ 15385 ire = NULL; 15386 continue; 15387 default: 15388 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15389 continue; 15390 } 15391 } 15392 15393 if (ire != NULL) 15394 ire_refrele(ire); 15395 15396 if (head != NULL) 15397 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15398 15399 /* 15400 * This code is there just to make netperf/ttcp look good. 15401 * 15402 * Its possible that after being in polling mode (and having cleared 15403 * the backlog), squeues have turned the interrupt frequency higher 15404 * to improve latency at the expense of more CPU utilization (less 15405 * packets per interrupts or more number of interrupts). Workloads 15406 * like ttcp/netperf do manage to tickle polling once in a while 15407 * but for the remaining time, stay in higher interrupt mode since 15408 * their packet arrival rate is pretty uniform and this shows up 15409 * as higher CPU utilization. Since people care about CPU utilization 15410 * while running netperf/ttcp, turn the interrupt frequency back to 15411 * normal/default if polling has not been used in ip_poll_normal_ticks. 15412 */ 15413 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15414 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15415 ip_ring->rr_poll_state &= ~ILL_POLLING; 15416 ip_ring->rr_blank(ip_ring->rr_handle, 15417 ip_ring->rr_normal_blank_time, 15418 ip_ring->rr_normal_pkt_cnt); 15419 } 15420 } 15421 15422 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15423 "ip_input_end: q %p (%S)", q, "end"); 15424 #undef rptr 15425 } 15426 15427 static void 15428 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15429 t_uscalar_t err) 15430 { 15431 if (dl_err == DL_SYSERR) { 15432 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15433 "%s: %s failed: DL_SYSERR (errno %u)\n", 15434 ill->ill_name, dl_primstr(prim), err); 15435 return; 15436 } 15437 15438 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15439 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15440 dl_errstr(dl_err)); 15441 } 15442 15443 /* 15444 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15445 * than DL_UNITDATA_IND messages. If we need to process this message 15446 * exclusively, we call qwriter_ip, in which case we also need to call 15447 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15448 */ 15449 void 15450 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15451 { 15452 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15453 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15454 ill_t *ill = q->q_ptr; 15455 t_uscalar_t prim = dloa->dl_primitive; 15456 t_uscalar_t reqprim = DL_PRIM_INVAL; 15457 15458 ip1dbg(("ip_rput_dlpi")); 15459 15460 /* 15461 * If we received an ACK but didn't send a request for it, then it 15462 * can't be part of any pending operation; discard up-front. 15463 */ 15464 switch (prim) { 15465 case DL_ERROR_ACK: 15466 reqprim = dlea->dl_error_primitive; 15467 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15468 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15469 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15470 dlea->dl_unix_errno)); 15471 break; 15472 case DL_OK_ACK: 15473 reqprim = dloa->dl_correct_primitive; 15474 break; 15475 case DL_INFO_ACK: 15476 reqprim = DL_INFO_REQ; 15477 break; 15478 case DL_BIND_ACK: 15479 reqprim = DL_BIND_REQ; 15480 break; 15481 case DL_PHYS_ADDR_ACK: 15482 reqprim = DL_PHYS_ADDR_REQ; 15483 break; 15484 case DL_NOTIFY_ACK: 15485 reqprim = DL_NOTIFY_REQ; 15486 break; 15487 case DL_CONTROL_ACK: 15488 reqprim = DL_CONTROL_REQ; 15489 break; 15490 case DL_CAPABILITY_ACK: 15491 reqprim = DL_CAPABILITY_REQ; 15492 break; 15493 } 15494 15495 if (prim != DL_NOTIFY_IND) { 15496 if (reqprim == DL_PRIM_INVAL || 15497 !ill_dlpi_pending(ill, reqprim)) { 15498 /* Not a DLPI message we support or expected */ 15499 freemsg(mp); 15500 return; 15501 } 15502 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15503 dl_primstr(reqprim))); 15504 } 15505 15506 switch (reqprim) { 15507 case DL_UNBIND_REQ: 15508 /* 15509 * NOTE: we mark the unbind as complete even if we got a 15510 * DL_ERROR_ACK, since there's not much else we can do. 15511 */ 15512 mutex_enter(&ill->ill_lock); 15513 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15514 cv_signal(&ill->ill_cv); 15515 mutex_exit(&ill->ill_lock); 15516 break; 15517 15518 case DL_ENABMULTI_REQ: 15519 if (prim == DL_OK_ACK) { 15520 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15521 ill->ill_dlpi_multicast_state = IDS_OK; 15522 } 15523 break; 15524 } 15525 15526 /* 15527 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15528 * need to become writer to continue to process it. Because an 15529 * exclusive operation doesn't complete until replies to all queued 15530 * DLPI messages have been received, we know we're in the middle of an 15531 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15532 * 15533 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15534 * Since this is on the ill stream we unconditionally bump up the 15535 * refcount without doing ILL_CAN_LOOKUP(). 15536 */ 15537 ill_refhold(ill); 15538 if (prim == DL_NOTIFY_IND) 15539 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15540 else 15541 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15542 } 15543 15544 /* 15545 * Handling of DLPI messages that require exclusive access to the ipsq. 15546 * 15547 * Need to do ill_pending_mp_release on ioctl completion, which could 15548 * happen here. (along with mi_copy_done) 15549 */ 15550 /* ARGSUSED */ 15551 static void 15552 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15553 { 15554 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15555 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15556 int err = 0; 15557 ill_t *ill; 15558 ipif_t *ipif = NULL; 15559 mblk_t *mp1 = NULL; 15560 conn_t *connp = NULL; 15561 t_uscalar_t paddrreq; 15562 mblk_t *mp_hw; 15563 boolean_t success; 15564 boolean_t ioctl_aborted = B_FALSE; 15565 boolean_t log = B_TRUE; 15566 ip_stack_t *ipst; 15567 15568 ip1dbg(("ip_rput_dlpi_writer ..")); 15569 ill = (ill_t *)q->q_ptr; 15570 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15571 15572 ASSERT(IAM_WRITER_ILL(ill)); 15573 15574 ipst = ill->ill_ipst; 15575 15576 /* 15577 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15578 * both are null or non-null. However we can assert that only 15579 * after grabbing the ipsq_lock. So we don't make any assertion 15580 * here and in other places in the code. 15581 */ 15582 ipif = ipsq->ipsq_pending_ipif; 15583 /* 15584 * The current ioctl could have been aborted by the user and a new 15585 * ioctl to bring up another ill could have started. We could still 15586 * get a response from the driver later. 15587 */ 15588 if (ipif != NULL && ipif->ipif_ill != ill) 15589 ioctl_aborted = B_TRUE; 15590 15591 switch (dloa->dl_primitive) { 15592 case DL_ERROR_ACK: 15593 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15594 dl_primstr(dlea->dl_error_primitive))); 15595 15596 switch (dlea->dl_error_primitive) { 15597 case DL_DISABMULTI_REQ: 15598 if (!ill->ill_isv6) 15599 ipsq_current_finish(ipsq); 15600 ill_dlpi_done(ill, dlea->dl_error_primitive); 15601 break; 15602 case DL_PROMISCON_REQ: 15603 case DL_PROMISCOFF_REQ: 15604 case DL_UNBIND_REQ: 15605 case DL_ATTACH_REQ: 15606 case DL_INFO_REQ: 15607 ill_dlpi_done(ill, dlea->dl_error_primitive); 15608 break; 15609 case DL_NOTIFY_REQ: 15610 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15611 log = B_FALSE; 15612 break; 15613 case DL_PHYS_ADDR_REQ: 15614 /* 15615 * For IPv6 only, there are two additional 15616 * phys_addr_req's sent to the driver to get the 15617 * IPv6 token and lla. This allows IP to acquire 15618 * the hardware address format for a given interface 15619 * without having built in knowledge of the hardware 15620 * address. ill_phys_addr_pend keeps track of the last 15621 * DL_PAR sent so we know which response we are 15622 * dealing with. ill_dlpi_done will update 15623 * ill_phys_addr_pend when it sends the next req. 15624 * We don't complete the IOCTL until all three DL_PARs 15625 * have been attempted, so set *_len to 0 and break. 15626 */ 15627 paddrreq = ill->ill_phys_addr_pend; 15628 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15629 if (paddrreq == DL_IPV6_TOKEN) { 15630 ill->ill_token_length = 0; 15631 log = B_FALSE; 15632 break; 15633 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15634 ill->ill_nd_lla_len = 0; 15635 log = B_FALSE; 15636 break; 15637 } 15638 /* 15639 * Something went wrong with the DL_PHYS_ADDR_REQ. 15640 * We presumably have an IOCTL hanging out waiting 15641 * for completion. Find it and complete the IOCTL 15642 * with the error noted. 15643 * However, ill_dl_phys was called on an ill queue 15644 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15645 * set. But the ioctl is known to be pending on ill_wq. 15646 */ 15647 if (!ill->ill_ifname_pending) 15648 break; 15649 ill->ill_ifname_pending = 0; 15650 if (!ioctl_aborted) 15651 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15652 if (mp1 != NULL) { 15653 /* 15654 * This operation (SIOCSLIFNAME) must have 15655 * happened on the ill. Assert there is no conn 15656 */ 15657 ASSERT(connp == NULL); 15658 q = ill->ill_wq; 15659 } 15660 break; 15661 case DL_BIND_REQ: 15662 ill_dlpi_done(ill, DL_BIND_REQ); 15663 if (ill->ill_ifname_pending) 15664 break; 15665 /* 15666 * Something went wrong with the bind. We presumably 15667 * have an IOCTL hanging out waiting for completion. 15668 * Find it, take down the interface that was coming 15669 * up, and complete the IOCTL with the error noted. 15670 */ 15671 if (!ioctl_aborted) 15672 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15673 if (mp1 != NULL) { 15674 /* 15675 * This operation (SIOCSLIFFLAGS) must have 15676 * happened from a conn. 15677 */ 15678 ASSERT(connp != NULL); 15679 q = CONNP_TO_WQ(connp); 15680 if (ill->ill_move_in_progress) { 15681 ILL_CLEAR_MOVE(ill); 15682 } 15683 (void) ipif_down(ipif, NULL, NULL); 15684 /* error is set below the switch */ 15685 } 15686 break; 15687 case DL_ENABMULTI_REQ: 15688 if (!ill->ill_isv6) 15689 ipsq_current_finish(ipsq); 15690 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15691 15692 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15693 ill->ill_dlpi_multicast_state = IDS_FAILED; 15694 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15695 ipif_t *ipif; 15696 15697 printf("ip: joining multicasts failed (%d)" 15698 " on %s - will use link layer " 15699 "broadcasts for multicast\n", 15700 dlea->dl_errno, ill->ill_name); 15701 15702 /* 15703 * Set up the multicast mapping alone. 15704 * writer, so ok to access ill->ill_ipif 15705 * without any lock. 15706 */ 15707 ipif = ill->ill_ipif; 15708 mutex_enter(&ill->ill_phyint->phyint_lock); 15709 ill->ill_phyint->phyint_flags |= 15710 PHYI_MULTI_BCAST; 15711 mutex_exit(&ill->ill_phyint->phyint_lock); 15712 15713 if (!ill->ill_isv6) { 15714 (void) ipif_arp_setup_multicast(ipif, 15715 NULL); 15716 } else { 15717 (void) ipif_ndp_setup_multicast(ipif, 15718 NULL); 15719 } 15720 } 15721 freemsg(mp); /* Don't want to pass this up */ 15722 return; 15723 15724 case DL_CAPABILITY_REQ: 15725 case DL_CONTROL_REQ: 15726 ill_dlpi_done(ill, dlea->dl_error_primitive); 15727 ill->ill_dlpi_capab_state = IDS_FAILED; 15728 freemsg(mp); 15729 return; 15730 } 15731 /* 15732 * Note the error for IOCTL completion (mp1 is set when 15733 * ready to complete ioctl). If ill_ifname_pending_err is 15734 * set, an error occured during plumbing (ill_ifname_pending), 15735 * so we want to report that error. 15736 * 15737 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15738 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15739 * expected to get errack'd if the driver doesn't support 15740 * these flags (e.g. ethernet). log will be set to B_FALSE 15741 * if these error conditions are encountered. 15742 */ 15743 if (mp1 != NULL) { 15744 if (ill->ill_ifname_pending_err != 0) { 15745 err = ill->ill_ifname_pending_err; 15746 ill->ill_ifname_pending_err = 0; 15747 } else { 15748 err = dlea->dl_unix_errno ? 15749 dlea->dl_unix_errno : ENXIO; 15750 } 15751 /* 15752 * If we're plumbing an interface and an error hasn't already 15753 * been saved, set ill_ifname_pending_err to the error passed 15754 * up. Ignore the error if log is B_FALSE (see comment above). 15755 */ 15756 } else if (log && ill->ill_ifname_pending && 15757 ill->ill_ifname_pending_err == 0) { 15758 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15759 dlea->dl_unix_errno : ENXIO; 15760 } 15761 15762 if (log) 15763 ip_dlpi_error(ill, dlea->dl_error_primitive, 15764 dlea->dl_errno, dlea->dl_unix_errno); 15765 break; 15766 case DL_CAPABILITY_ACK: 15767 /* Call a routine to handle this one. */ 15768 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15769 ill_capability_ack(ill, mp); 15770 15771 /* 15772 * If the ack is due to renegotiation, we will need to send 15773 * a new CAPABILITY_REQ to start the renegotiation. 15774 */ 15775 if (ill->ill_capab_reneg) { 15776 ill->ill_capab_reneg = B_FALSE; 15777 ill_capability_probe(ill); 15778 } 15779 break; 15780 case DL_CONTROL_ACK: 15781 /* We treat all of these as "fire and forget" */ 15782 ill_dlpi_done(ill, DL_CONTROL_REQ); 15783 break; 15784 case DL_INFO_ACK: 15785 /* Call a routine to handle this one. */ 15786 ill_dlpi_done(ill, DL_INFO_REQ); 15787 ip_ll_subnet_defaults(ill, mp); 15788 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15789 return; 15790 case DL_BIND_ACK: 15791 /* 15792 * We should have an IOCTL waiting on this unless 15793 * sent by ill_dl_phys, in which case just return 15794 */ 15795 ill_dlpi_done(ill, DL_BIND_REQ); 15796 if (ill->ill_ifname_pending) 15797 break; 15798 15799 if (!ioctl_aborted) 15800 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15801 if (mp1 == NULL) 15802 break; 15803 /* 15804 * Because mp1 was added by ill_dl_up(), and it always 15805 * passes a valid connp, connp must be valid here. 15806 */ 15807 ASSERT(connp != NULL); 15808 q = CONNP_TO_WQ(connp); 15809 15810 /* 15811 * We are exclusive. So nothing can change even after 15812 * we get the pending mp. If need be we can put it back 15813 * and restart, as in calling ipif_arp_up() below. 15814 */ 15815 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15816 15817 mutex_enter(&ill->ill_lock); 15818 ill->ill_dl_up = 1; 15819 (void) ill_hook_event_create(ill, 0, NE_UP, NULL, 0); 15820 mutex_exit(&ill->ill_lock); 15821 15822 /* 15823 * Now bring up the resolver; when that is complete, we'll 15824 * create IREs. Note that we intentionally mirror what 15825 * ipif_up() would have done, because we got here by way of 15826 * ill_dl_up(), which stopped ipif_up()'s processing. 15827 */ 15828 if (ill->ill_isv6) { 15829 /* 15830 * v6 interfaces. 15831 * Unlike ARP which has to do another bind 15832 * and attach, once we get here we are 15833 * done with NDP. Except in the case of 15834 * ILLF_XRESOLV, in which case we send an 15835 * AR_INTERFACE_UP to the external resolver. 15836 * If all goes well, the ioctl will complete 15837 * in ip_rput(). If there's an error, we 15838 * complete it here. 15839 */ 15840 if ((err = ipif_ndp_up(ipif)) == 0) { 15841 if (ill->ill_flags & ILLF_XRESOLV) { 15842 mutex_enter(&connp->conn_lock); 15843 mutex_enter(&ill->ill_lock); 15844 success = ipsq_pending_mp_add( 15845 connp, ipif, q, mp1, 0); 15846 mutex_exit(&ill->ill_lock); 15847 mutex_exit(&connp->conn_lock); 15848 if (success) { 15849 err = ipif_resolver_up(ipif, 15850 Res_act_initial); 15851 if (err == EINPROGRESS) { 15852 freemsg(mp); 15853 return; 15854 } 15855 ASSERT(err != 0); 15856 mp1 = ipsq_pending_mp_get(ipsq, 15857 &connp); 15858 ASSERT(mp1 != NULL); 15859 } else { 15860 /* conn has started closing */ 15861 err = EINTR; 15862 } 15863 } else { /* Non XRESOLV interface */ 15864 (void) ipif_resolver_up(ipif, 15865 Res_act_initial); 15866 err = ipif_up_done_v6(ipif); 15867 } 15868 } 15869 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15870 /* 15871 * ARP and other v4 external resolvers. 15872 * Leave the pending mblk intact so that 15873 * the ioctl completes in ip_rput(). 15874 */ 15875 mutex_enter(&connp->conn_lock); 15876 mutex_enter(&ill->ill_lock); 15877 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15878 mutex_exit(&ill->ill_lock); 15879 mutex_exit(&connp->conn_lock); 15880 if (success) { 15881 err = ipif_resolver_up(ipif, Res_act_initial); 15882 if (err == EINPROGRESS) { 15883 freemsg(mp); 15884 return; 15885 } 15886 ASSERT(err != 0); 15887 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15888 } else { 15889 /* The conn has started closing */ 15890 err = EINTR; 15891 } 15892 } else { 15893 /* 15894 * This one is complete. Reply to pending ioctl. 15895 */ 15896 (void) ipif_resolver_up(ipif, Res_act_initial); 15897 err = ipif_up_done(ipif); 15898 } 15899 15900 if ((err == 0) && (ill->ill_up_ipifs)) { 15901 err = ill_up_ipifs(ill, q, mp1); 15902 if (err == EINPROGRESS) { 15903 freemsg(mp); 15904 return; 15905 } 15906 } 15907 15908 if (ill->ill_up_ipifs) { 15909 ill_group_cleanup(ill); 15910 } 15911 15912 break; 15913 case DL_NOTIFY_IND: { 15914 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15915 ire_t *ire; 15916 boolean_t need_ire_walk_v4 = B_FALSE; 15917 boolean_t need_ire_walk_v6 = B_FALSE; 15918 15919 switch (notify->dl_notification) { 15920 case DL_NOTE_PHYS_ADDR: 15921 err = ill_set_phys_addr(ill, mp); 15922 break; 15923 15924 case DL_NOTE_FASTPATH_FLUSH: 15925 ill_fastpath_flush(ill); 15926 break; 15927 15928 case DL_NOTE_SDU_SIZE: 15929 /* 15930 * Change the MTU size of the interface, of all 15931 * attached ipif's, and of all relevant ire's. The 15932 * new value's a uint32_t at notify->dl_data. 15933 * Mtu change Vs. new ire creation - protocol below. 15934 * 15935 * a Mark the ipif as IPIF_CHANGING. 15936 * b Set the new mtu in the ipif. 15937 * c Change the ire_max_frag on all affected ires 15938 * d Unmark the IPIF_CHANGING 15939 * 15940 * To see how the protocol works, assume an interface 15941 * route is also being added simultaneously by 15942 * ip_rt_add and let 'ipif' be the ipif referenced by 15943 * the ire. If the ire is created before step a, 15944 * it will be cleaned up by step c. If the ire is 15945 * created after step d, it will see the new value of 15946 * ipif_mtu. Any attempt to create the ire between 15947 * steps a to d will fail because of the IPIF_CHANGING 15948 * flag. Note that ire_create() is passed a pointer to 15949 * the ipif_mtu, and not the value. During ire_add 15950 * under the bucket lock, the ire_max_frag of the 15951 * new ire being created is set from the ipif/ire from 15952 * which it is being derived. 15953 */ 15954 mutex_enter(&ill->ill_lock); 15955 ill->ill_max_frag = (uint_t)notify->dl_data; 15956 15957 /* 15958 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15959 * leave it alone 15960 */ 15961 if (ill->ill_mtu_userspecified) { 15962 mutex_exit(&ill->ill_lock); 15963 break; 15964 } 15965 ill->ill_max_mtu = ill->ill_max_frag; 15966 if (ill->ill_isv6) { 15967 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15968 ill->ill_max_mtu = IPV6_MIN_MTU; 15969 } else { 15970 if (ill->ill_max_mtu < IP_MIN_MTU) 15971 ill->ill_max_mtu = IP_MIN_MTU; 15972 } 15973 for (ipif = ill->ill_ipif; ipif != NULL; 15974 ipif = ipif->ipif_next) { 15975 /* 15976 * Don't override the mtu if the user 15977 * has explicitly set it. 15978 */ 15979 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15980 continue; 15981 ipif->ipif_mtu = (uint_t)notify->dl_data; 15982 if (ipif->ipif_isv6) 15983 ire = ipif_to_ire_v6(ipif); 15984 else 15985 ire = ipif_to_ire(ipif); 15986 if (ire != NULL) { 15987 ire->ire_max_frag = ipif->ipif_mtu; 15988 ire_refrele(ire); 15989 } 15990 if (ipif->ipif_flags & IPIF_UP) { 15991 if (ill->ill_isv6) 15992 need_ire_walk_v6 = B_TRUE; 15993 else 15994 need_ire_walk_v4 = B_TRUE; 15995 } 15996 } 15997 mutex_exit(&ill->ill_lock); 15998 if (need_ire_walk_v4) 15999 ire_walk_v4(ill_mtu_change, (char *)ill, 16000 ALL_ZONES, ipst); 16001 if (need_ire_walk_v6) 16002 ire_walk_v6(ill_mtu_change, (char *)ill, 16003 ALL_ZONES, ipst); 16004 break; 16005 case DL_NOTE_LINK_UP: 16006 case DL_NOTE_LINK_DOWN: { 16007 /* 16008 * We are writer. ill / phyint / ipsq assocs stable. 16009 * The RUNNING flag reflects the state of the link. 16010 */ 16011 phyint_t *phyint = ill->ill_phyint; 16012 uint64_t new_phyint_flags; 16013 boolean_t changed = B_FALSE; 16014 boolean_t went_up; 16015 16016 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16017 mutex_enter(&phyint->phyint_lock); 16018 new_phyint_flags = went_up ? 16019 phyint->phyint_flags | PHYI_RUNNING : 16020 phyint->phyint_flags & ~PHYI_RUNNING; 16021 if (new_phyint_flags != phyint->phyint_flags) { 16022 phyint->phyint_flags = new_phyint_flags; 16023 changed = B_TRUE; 16024 } 16025 mutex_exit(&phyint->phyint_lock); 16026 /* 16027 * ill_restart_dad handles the DAD restart and routing 16028 * socket notification logic. 16029 */ 16030 if (changed) { 16031 ill_restart_dad(phyint->phyint_illv4, went_up); 16032 ill_restart_dad(phyint->phyint_illv6, went_up); 16033 } 16034 break; 16035 } 16036 case DL_NOTE_PROMISC_ON_PHYS: 16037 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16038 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16039 mutex_enter(&ill->ill_lock); 16040 ill->ill_promisc_on_phys = B_TRUE; 16041 mutex_exit(&ill->ill_lock); 16042 break; 16043 case DL_NOTE_PROMISC_OFF_PHYS: 16044 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16045 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16046 mutex_enter(&ill->ill_lock); 16047 ill->ill_promisc_on_phys = B_FALSE; 16048 mutex_exit(&ill->ill_lock); 16049 break; 16050 case DL_NOTE_CAPAB_RENEG: 16051 /* 16052 * Something changed on the driver side. 16053 * It wants us to renegotiate the capabilities 16054 * on this ill. One possible cause is the aggregation 16055 * interface under us where a port got added or 16056 * went away. 16057 * 16058 * If the capability negotiation is already done 16059 * or is in progress, reset the capabilities and 16060 * mark the ill's ill_capab_reneg to be B_TRUE, 16061 * so that when the ack comes back, we can start 16062 * the renegotiation process. 16063 * 16064 * Note that if ill_capab_reneg is already B_TRUE 16065 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16066 * the capability resetting request has been sent 16067 * and the renegotiation has not been started yet; 16068 * nothing needs to be done in this case. 16069 */ 16070 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16071 ill_capability_reset(ill); 16072 ill->ill_capab_reneg = B_TRUE; 16073 } 16074 break; 16075 default: 16076 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16077 "type 0x%x for DL_NOTIFY_IND\n", 16078 notify->dl_notification)); 16079 break; 16080 } 16081 16082 /* 16083 * As this is an asynchronous operation, we 16084 * should not call ill_dlpi_done 16085 */ 16086 break; 16087 } 16088 case DL_NOTIFY_ACK: { 16089 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16090 16091 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16092 ill->ill_note_link = 1; 16093 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16094 break; 16095 } 16096 case DL_PHYS_ADDR_ACK: { 16097 /* 16098 * As part of plumbing the interface via SIOCSLIFNAME, 16099 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16100 * whose answers we receive here. As each answer is received, 16101 * we call ill_dlpi_done() to dispatch the next request as 16102 * we're processing the current one. Once all answers have 16103 * been received, we use ipsq_pending_mp_get() to dequeue the 16104 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16105 * is invoked from an ill queue, conn_oper_pending_ill is not 16106 * available, but we know the ioctl is pending on ill_wq.) 16107 */ 16108 uint_t paddrlen, paddroff; 16109 16110 paddrreq = ill->ill_phys_addr_pend; 16111 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16112 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16113 16114 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16115 if (paddrreq == DL_IPV6_TOKEN) { 16116 /* 16117 * bcopy to low-order bits of ill_token 16118 * 16119 * XXX Temporary hack - currently, all known tokens 16120 * are 64 bits, so I'll cheat for the moment. 16121 */ 16122 bcopy(mp->b_rptr + paddroff, 16123 &ill->ill_token.s6_addr32[2], paddrlen); 16124 ill->ill_token_length = paddrlen; 16125 break; 16126 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16127 ASSERT(ill->ill_nd_lla_mp == NULL); 16128 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16129 mp = NULL; 16130 break; 16131 } 16132 16133 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16134 ASSERT(ill->ill_phys_addr_mp == NULL); 16135 if (!ill->ill_ifname_pending) 16136 break; 16137 ill->ill_ifname_pending = 0; 16138 if (!ioctl_aborted) 16139 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16140 if (mp1 != NULL) { 16141 ASSERT(connp == NULL); 16142 q = ill->ill_wq; 16143 } 16144 /* 16145 * If any error acks received during the plumbing sequence, 16146 * ill_ifname_pending_err will be set. Break out and send up 16147 * the error to the pending ioctl. 16148 */ 16149 if (ill->ill_ifname_pending_err != 0) { 16150 err = ill->ill_ifname_pending_err; 16151 ill->ill_ifname_pending_err = 0; 16152 break; 16153 } 16154 16155 ill->ill_phys_addr_mp = mp; 16156 ill->ill_phys_addr = mp->b_rptr + paddroff; 16157 mp = NULL; 16158 16159 /* 16160 * If paddrlen is zero, the DLPI provider doesn't support 16161 * physical addresses. The other two tests were historical 16162 * workarounds for bugs in our former PPP implementation, but 16163 * now other things have grown dependencies on them -- e.g., 16164 * the tun module specifies a dl_addr_length of zero in its 16165 * DL_BIND_ACK, but then specifies an incorrect value in its 16166 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16167 * but only after careful testing ensures that all dependent 16168 * broken DLPI providers have been fixed. 16169 */ 16170 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16171 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16172 ill->ill_phys_addr = NULL; 16173 } else if (paddrlen != ill->ill_phys_addr_length) { 16174 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16175 paddrlen, ill->ill_phys_addr_length)); 16176 err = EINVAL; 16177 break; 16178 } 16179 16180 if (ill->ill_nd_lla_mp == NULL) { 16181 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16182 err = ENOMEM; 16183 break; 16184 } 16185 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16186 } 16187 16188 /* 16189 * Set the interface token. If the zeroth interface address 16190 * is unspecified, then set it to the link local address. 16191 */ 16192 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16193 (void) ill_setdefaulttoken(ill); 16194 16195 ASSERT(ill->ill_ipif->ipif_id == 0); 16196 if (ipif != NULL && 16197 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16198 (void) ipif_setlinklocal(ipif); 16199 } 16200 break; 16201 } 16202 case DL_OK_ACK: 16203 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16204 dl_primstr((int)dloa->dl_correct_primitive), 16205 dloa->dl_correct_primitive)); 16206 switch (dloa->dl_correct_primitive) { 16207 case DL_ENABMULTI_REQ: 16208 case DL_DISABMULTI_REQ: 16209 if (!ill->ill_isv6) 16210 ipsq_current_finish(ipsq); 16211 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16212 break; 16213 case DL_PROMISCON_REQ: 16214 case DL_PROMISCOFF_REQ: 16215 case DL_UNBIND_REQ: 16216 case DL_ATTACH_REQ: 16217 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16218 break; 16219 } 16220 break; 16221 default: 16222 break; 16223 } 16224 16225 freemsg(mp); 16226 if (mp1 != NULL) { 16227 /* 16228 * The operation must complete without EINPROGRESS 16229 * since ipsq_pending_mp_get() has removed the mblk 16230 * from ipsq_pending_mp. Otherwise, the operation 16231 * will be stuck forever in the ipsq. 16232 */ 16233 ASSERT(err != EINPROGRESS); 16234 16235 switch (ipsq->ipsq_current_ioctl) { 16236 case 0: 16237 ipsq_current_finish(ipsq); 16238 break; 16239 16240 case SIOCLIFADDIF: 16241 case SIOCSLIFNAME: 16242 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16243 break; 16244 16245 default: 16246 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16247 break; 16248 } 16249 } 16250 } 16251 16252 /* 16253 * ip_rput_other is called by ip_rput to handle messages modifying the global 16254 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16255 */ 16256 /* ARGSUSED */ 16257 void 16258 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16259 { 16260 ill_t *ill; 16261 struct iocblk *iocp; 16262 mblk_t *mp1; 16263 conn_t *connp = NULL; 16264 16265 ip1dbg(("ip_rput_other ")); 16266 ill = (ill_t *)q->q_ptr; 16267 /* 16268 * This routine is not a writer in the case of SIOCGTUNPARAM 16269 * in which case ipsq is NULL. 16270 */ 16271 if (ipsq != NULL) { 16272 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16273 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16274 } 16275 16276 switch (mp->b_datap->db_type) { 16277 case M_ERROR: 16278 case M_HANGUP: 16279 /* 16280 * The device has a problem. We force the ILL down. It can 16281 * be brought up again manually using SIOCSIFFLAGS (via 16282 * ifconfig or equivalent). 16283 */ 16284 ASSERT(ipsq != NULL); 16285 if (mp->b_rptr < mp->b_wptr) 16286 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16287 if (ill->ill_error == 0) 16288 ill->ill_error = ENXIO; 16289 if (!ill_down_start(q, mp)) 16290 return; 16291 ipif_all_down_tail(ipsq, q, mp, NULL); 16292 break; 16293 case M_IOCACK: 16294 iocp = (struct iocblk *)mp->b_rptr; 16295 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16296 switch (iocp->ioc_cmd) { 16297 case SIOCSTUNPARAM: 16298 case OSIOCSTUNPARAM: 16299 ASSERT(ipsq != NULL); 16300 /* 16301 * Finish socket ioctl passed through to tun. 16302 * We should have an IOCTL waiting on this. 16303 */ 16304 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16305 if (ill->ill_isv6) { 16306 struct iftun_req *ta; 16307 16308 /* 16309 * if a source or destination is 16310 * being set, try and set the link 16311 * local address for the tunnel 16312 */ 16313 ta = (struct iftun_req *)mp->b_cont-> 16314 b_cont->b_rptr; 16315 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16316 ipif_set_tun_llink(ill, ta); 16317 } 16318 16319 } 16320 if (mp1 != NULL) { 16321 /* 16322 * Now copy back the b_next/b_prev used by 16323 * mi code for the mi_copy* functions. 16324 * See ip_sioctl_tunparam() for the reason. 16325 * Also protect against missing b_cont. 16326 */ 16327 if (mp->b_cont != NULL) { 16328 mp->b_cont->b_next = 16329 mp1->b_cont->b_next; 16330 mp->b_cont->b_prev = 16331 mp1->b_cont->b_prev; 16332 } 16333 inet_freemsg(mp1); 16334 ASSERT(connp != NULL); 16335 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16336 iocp->ioc_error, NO_COPYOUT, ipsq); 16337 } else { 16338 ASSERT(connp == NULL); 16339 putnext(q, mp); 16340 } 16341 break; 16342 case SIOCGTUNPARAM: 16343 case OSIOCGTUNPARAM: 16344 /* 16345 * This is really M_IOCDATA from the tunnel driver. 16346 * convert back and complete the ioctl. 16347 * We should have an IOCTL waiting on this. 16348 */ 16349 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16350 if (mp1) { 16351 /* 16352 * Now copy back the b_next/b_prev used by 16353 * mi code for the mi_copy* functions. 16354 * See ip_sioctl_tunparam() for the reason. 16355 * Also protect against missing b_cont. 16356 */ 16357 if (mp->b_cont != NULL) { 16358 mp->b_cont->b_next = 16359 mp1->b_cont->b_next; 16360 mp->b_cont->b_prev = 16361 mp1->b_cont->b_prev; 16362 } 16363 inet_freemsg(mp1); 16364 if (iocp->ioc_error == 0) 16365 mp->b_datap->db_type = M_IOCDATA; 16366 ASSERT(connp != NULL); 16367 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16368 iocp->ioc_error, COPYOUT, NULL); 16369 } else { 16370 ASSERT(connp == NULL); 16371 putnext(q, mp); 16372 } 16373 break; 16374 default: 16375 break; 16376 } 16377 break; 16378 case M_IOCNAK: 16379 iocp = (struct iocblk *)mp->b_rptr; 16380 16381 switch (iocp->ioc_cmd) { 16382 int mode; 16383 16384 case DL_IOC_HDR_INFO: 16385 /* 16386 * If this was the first attempt turn of the 16387 * fastpath probing. 16388 */ 16389 mutex_enter(&ill->ill_lock); 16390 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16391 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16392 mutex_exit(&ill->ill_lock); 16393 ill_fastpath_nack(ill); 16394 ip1dbg(("ip_rput: DLPI fastpath off on " 16395 "interface %s\n", 16396 ill->ill_name)); 16397 } else { 16398 mutex_exit(&ill->ill_lock); 16399 } 16400 freemsg(mp); 16401 break; 16402 case SIOCSTUNPARAM: 16403 case OSIOCSTUNPARAM: 16404 ASSERT(ipsq != NULL); 16405 /* 16406 * Finish socket ioctl passed through to tun 16407 * We should have an IOCTL waiting on this. 16408 */ 16409 /* FALLTHRU */ 16410 case SIOCGTUNPARAM: 16411 case OSIOCGTUNPARAM: 16412 /* 16413 * This is really M_IOCDATA from the tunnel driver. 16414 * convert back and complete the ioctl. 16415 * We should have an IOCTL waiting on this. 16416 */ 16417 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16418 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16419 mp1 = ill_pending_mp_get(ill, &connp, 16420 iocp->ioc_id); 16421 mode = COPYOUT; 16422 ipsq = NULL; 16423 } else { 16424 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16425 mode = NO_COPYOUT; 16426 } 16427 if (mp1 != NULL) { 16428 /* 16429 * Now copy back the b_next/b_prev used by 16430 * mi code for the mi_copy* functions. 16431 * See ip_sioctl_tunparam() for the reason. 16432 * Also protect against missing b_cont. 16433 */ 16434 if (mp->b_cont != NULL) { 16435 mp->b_cont->b_next = 16436 mp1->b_cont->b_next; 16437 mp->b_cont->b_prev = 16438 mp1->b_cont->b_prev; 16439 } 16440 inet_freemsg(mp1); 16441 if (iocp->ioc_error == 0) 16442 iocp->ioc_error = EINVAL; 16443 ASSERT(connp != NULL); 16444 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16445 iocp->ioc_error, mode, ipsq); 16446 } else { 16447 ASSERT(connp == NULL); 16448 putnext(q, mp); 16449 } 16450 break; 16451 default: 16452 break; 16453 } 16454 default: 16455 break; 16456 } 16457 } 16458 16459 /* 16460 * NOTE : This function does not ire_refrele the ire argument passed in. 16461 * 16462 * IPQoS notes 16463 * IP policy is invoked twice for a forwarded packet, once on the read side 16464 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16465 * enabled. An additional parameter, in_ill, has been added for this purpose. 16466 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16467 * because ip_mroute drops this information. 16468 * 16469 */ 16470 void 16471 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16472 { 16473 uint32_t old_pkt_len; 16474 uint32_t pkt_len; 16475 queue_t *q; 16476 uint32_t sum; 16477 #define rptr ((uchar_t *)ipha) 16478 uint32_t max_frag; 16479 uint32_t ill_index; 16480 ill_t *out_ill; 16481 mib2_ipIfStatsEntry_t *mibptr; 16482 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16483 16484 /* Get the ill_index of the incoming ILL */ 16485 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16486 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16487 16488 /* Initiate Read side IPPF processing */ 16489 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16490 ip_process(IPP_FWD_IN, &mp, ill_index); 16491 if (mp == NULL) { 16492 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16493 "during IPPF processing\n")); 16494 return; 16495 } 16496 } 16497 16498 /* Adjust the checksum to reflect the ttl decrement. */ 16499 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16500 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16501 16502 if (ipha->ipha_ttl-- <= 1) { 16503 if (ip_csum_hdr(ipha)) { 16504 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16505 goto drop_pkt; 16506 } 16507 /* 16508 * Note: ire_stq this will be NULL for multicast 16509 * datagrams using the long path through arp (the IRE 16510 * is not an IRE_CACHE). This should not cause 16511 * problems since we don't generate ICMP errors for 16512 * multicast packets. 16513 */ 16514 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16515 q = ire->ire_stq; 16516 if (q != NULL) { 16517 /* Sent by forwarding path, and router is global zone */ 16518 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16519 GLOBAL_ZONEID, ipst); 16520 } else 16521 freemsg(mp); 16522 return; 16523 } 16524 16525 /* 16526 * Don't forward if the interface is down 16527 */ 16528 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16529 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16530 ip2dbg(("ip_rput_forward:interface is down\n")); 16531 goto drop_pkt; 16532 } 16533 16534 /* Get the ill_index of the outgoing ILL */ 16535 out_ill = ire_to_ill(ire); 16536 ill_index = out_ill->ill_phyint->phyint_ifindex; 16537 16538 DTRACE_PROBE4(ip4__forwarding__start, 16539 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16540 16541 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16542 ipst->ips_ipv4firewall_forwarding, 16543 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16544 16545 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16546 16547 if (mp == NULL) 16548 return; 16549 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16550 16551 if (is_system_labeled()) { 16552 mblk_t *mp1; 16553 16554 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16555 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16556 goto drop_pkt; 16557 } 16558 /* Size may have changed */ 16559 mp = mp1; 16560 ipha = (ipha_t *)mp->b_rptr; 16561 pkt_len = ntohs(ipha->ipha_length); 16562 } 16563 16564 /* Check if there are options to update */ 16565 if (!IS_SIMPLE_IPH(ipha)) { 16566 if (ip_csum_hdr(ipha)) { 16567 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16568 goto drop_pkt; 16569 } 16570 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16571 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16572 return; 16573 } 16574 16575 ipha->ipha_hdr_checksum = 0; 16576 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16577 } 16578 max_frag = ire->ire_max_frag; 16579 if (pkt_len > max_frag) { 16580 /* 16581 * It needs fragging on its way out. We haven't 16582 * verified the header checksum yet. Since we 16583 * are going to put a surely good checksum in the 16584 * outgoing header, we have to make sure that it 16585 * was good coming in. 16586 */ 16587 if (ip_csum_hdr(ipha)) { 16588 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16589 goto drop_pkt; 16590 } 16591 /* Initiate Write side IPPF processing */ 16592 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16593 ip_process(IPP_FWD_OUT, &mp, ill_index); 16594 if (mp == NULL) { 16595 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16596 " during IPPF processing\n")); 16597 return; 16598 } 16599 } 16600 /* 16601 * Handle labeled packet resizing. 16602 * 16603 * If we have added a label, inform ip_wput_frag() of its 16604 * effect on the MTU for ICMP messages. 16605 */ 16606 if (pkt_len > old_pkt_len) { 16607 uint32_t secopt_size; 16608 16609 secopt_size = pkt_len - old_pkt_len; 16610 if (secopt_size < max_frag) 16611 max_frag -= secopt_size; 16612 } 16613 16614 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16615 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16616 return; 16617 } 16618 16619 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16620 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16621 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16622 ipst->ips_ipv4firewall_physical_out, 16623 NULL, out_ill, ipha, mp, mp, 0, ipst); 16624 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16625 if (mp == NULL) 16626 return; 16627 16628 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16629 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16630 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16631 /* ip_xmit_v4 always consumes the packet */ 16632 return; 16633 16634 drop_pkt:; 16635 ip1dbg(("ip_rput_forward: drop pkt\n")); 16636 freemsg(mp); 16637 #undef rptr 16638 } 16639 16640 void 16641 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16642 { 16643 ire_t *ire; 16644 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16645 16646 ASSERT(!ipif->ipif_isv6); 16647 /* 16648 * Find an IRE which matches the destination and the outgoing 16649 * queue in the cache table. All we need is an IRE_CACHE which 16650 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16651 * then it is enough to have some IRE_CACHE in the group. 16652 */ 16653 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16654 dst = ipif->ipif_pp_dst_addr; 16655 16656 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16657 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16658 if (ire == NULL) { 16659 /* 16660 * Mark this packet to make it be delivered to 16661 * ip_rput_forward after the new ire has been 16662 * created. 16663 */ 16664 mp->b_prev = NULL; 16665 mp->b_next = mp; 16666 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16667 NULL, 0, GLOBAL_ZONEID, &zero_info); 16668 } else { 16669 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16670 IRE_REFRELE(ire); 16671 } 16672 } 16673 16674 /* Update any source route, record route or timestamp options */ 16675 static int 16676 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16677 { 16678 ipoptp_t opts; 16679 uchar_t *opt; 16680 uint8_t optval; 16681 uint8_t optlen; 16682 ipaddr_t dst; 16683 uint32_t ts; 16684 ire_t *dst_ire = NULL; 16685 ire_t *tmp_ire = NULL; 16686 timestruc_t now; 16687 16688 ip2dbg(("ip_rput_forward_options\n")); 16689 dst = ipha->ipha_dst; 16690 for (optval = ipoptp_first(&opts, ipha); 16691 optval != IPOPT_EOL; 16692 optval = ipoptp_next(&opts)) { 16693 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16694 opt = opts.ipoptp_cur; 16695 optlen = opts.ipoptp_len; 16696 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16697 optval, opts.ipoptp_len)); 16698 switch (optval) { 16699 uint32_t off; 16700 case IPOPT_SSRR: 16701 case IPOPT_LSRR: 16702 /* Check if adminstratively disabled */ 16703 if (!ipst->ips_ip_forward_src_routed) { 16704 if (ire->ire_stq != NULL) { 16705 /* 16706 * Sent by forwarding path, and router 16707 * is global zone 16708 */ 16709 icmp_unreachable(ire->ire_stq, mp, 16710 ICMP_SOURCE_ROUTE_FAILED, 16711 GLOBAL_ZONEID, ipst); 16712 } else { 16713 ip0dbg(("ip_rput_forward_options: " 16714 "unable to send unreach\n")); 16715 freemsg(mp); 16716 } 16717 return (-1); 16718 } 16719 16720 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16721 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16722 if (dst_ire == NULL) { 16723 /* 16724 * Must be partial since ip_rput_options 16725 * checked for strict. 16726 */ 16727 break; 16728 } 16729 off = opt[IPOPT_OFFSET]; 16730 off--; 16731 redo_srr: 16732 if (optlen < IP_ADDR_LEN || 16733 off > optlen - IP_ADDR_LEN) { 16734 /* End of source route */ 16735 ip1dbg(( 16736 "ip_rput_forward_options: end of SR\n")); 16737 ire_refrele(dst_ire); 16738 break; 16739 } 16740 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16741 bcopy(&ire->ire_src_addr, (char *)opt + off, 16742 IP_ADDR_LEN); 16743 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16744 ntohl(dst))); 16745 16746 /* 16747 * Check if our address is present more than 16748 * once as consecutive hops in source route. 16749 */ 16750 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16751 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16752 if (tmp_ire != NULL) { 16753 ire_refrele(tmp_ire); 16754 off += IP_ADDR_LEN; 16755 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16756 goto redo_srr; 16757 } 16758 ipha->ipha_dst = dst; 16759 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16760 ire_refrele(dst_ire); 16761 break; 16762 case IPOPT_RR: 16763 off = opt[IPOPT_OFFSET]; 16764 off--; 16765 if (optlen < IP_ADDR_LEN || 16766 off > optlen - IP_ADDR_LEN) { 16767 /* No more room - ignore */ 16768 ip1dbg(( 16769 "ip_rput_forward_options: end of RR\n")); 16770 break; 16771 } 16772 bcopy(&ire->ire_src_addr, (char *)opt + off, 16773 IP_ADDR_LEN); 16774 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16775 break; 16776 case IPOPT_TS: 16777 /* Insert timestamp if there is room */ 16778 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16779 case IPOPT_TS_TSONLY: 16780 off = IPOPT_TS_TIMELEN; 16781 break; 16782 case IPOPT_TS_PRESPEC: 16783 case IPOPT_TS_PRESPEC_RFC791: 16784 /* Verify that the address matched */ 16785 off = opt[IPOPT_OFFSET] - 1; 16786 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16787 dst_ire = ire_ctable_lookup(dst, 0, 16788 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16789 MATCH_IRE_TYPE, ipst); 16790 if (dst_ire == NULL) { 16791 /* Not for us */ 16792 break; 16793 } 16794 ire_refrele(dst_ire); 16795 /* FALLTHRU */ 16796 case IPOPT_TS_TSANDADDR: 16797 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16798 break; 16799 default: 16800 /* 16801 * ip_*put_options should have already 16802 * dropped this packet. 16803 */ 16804 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16805 "unknown IT - bug in ip_rput_options?\n"); 16806 return (0); /* Keep "lint" happy */ 16807 } 16808 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16809 /* Increase overflow counter */ 16810 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16811 opt[IPOPT_POS_OV_FLG] = 16812 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16813 (off << 4)); 16814 break; 16815 } 16816 off = opt[IPOPT_OFFSET] - 1; 16817 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16818 case IPOPT_TS_PRESPEC: 16819 case IPOPT_TS_PRESPEC_RFC791: 16820 case IPOPT_TS_TSANDADDR: 16821 bcopy(&ire->ire_src_addr, 16822 (char *)opt + off, IP_ADDR_LEN); 16823 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16824 /* FALLTHRU */ 16825 case IPOPT_TS_TSONLY: 16826 off = opt[IPOPT_OFFSET] - 1; 16827 /* Compute # of milliseconds since midnight */ 16828 gethrestime(&now); 16829 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16830 now.tv_nsec / (NANOSEC / MILLISEC); 16831 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16832 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16833 break; 16834 } 16835 break; 16836 } 16837 } 16838 return (0); 16839 } 16840 16841 /* 16842 * This is called after processing at least one of AH/ESP headers. 16843 * 16844 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16845 * the actual, physical interface on which the packet was received, 16846 * but, when ip_strict_dst_multihoming is set to 1, could be the 16847 * interface which had the ipha_dst configured when the packet went 16848 * through ip_rput. The ill_index corresponding to the recv_ill 16849 * is saved in ipsec_in_rill_index 16850 * 16851 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16852 * cannot assume "ire" points to valid data for any IPv6 cases. 16853 */ 16854 void 16855 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16856 { 16857 mblk_t *mp; 16858 ipaddr_t dst; 16859 in6_addr_t *v6dstp; 16860 ipha_t *ipha; 16861 ip6_t *ip6h; 16862 ipsec_in_t *ii; 16863 boolean_t ill_need_rele = B_FALSE; 16864 boolean_t rill_need_rele = B_FALSE; 16865 boolean_t ire_need_rele = B_FALSE; 16866 netstack_t *ns; 16867 ip_stack_t *ipst; 16868 16869 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16870 ASSERT(ii->ipsec_in_ill_index != 0); 16871 ns = ii->ipsec_in_ns; 16872 ASSERT(ii->ipsec_in_ns != NULL); 16873 ipst = ns->netstack_ip; 16874 16875 mp = ipsec_mp->b_cont; 16876 ASSERT(mp != NULL); 16877 16878 16879 if (ill == NULL) { 16880 ASSERT(recv_ill == NULL); 16881 /* 16882 * We need to get the original queue on which ip_rput_local 16883 * or ip_rput_data_v6 was called. 16884 */ 16885 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16886 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16887 ill_need_rele = B_TRUE; 16888 16889 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16890 recv_ill = ill_lookup_on_ifindex( 16891 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16892 NULL, NULL, NULL, NULL, ipst); 16893 rill_need_rele = B_TRUE; 16894 } else { 16895 recv_ill = ill; 16896 } 16897 16898 if ((ill == NULL) || (recv_ill == NULL)) { 16899 ip0dbg(("ip_fanout_proto_again: interface " 16900 "disappeared\n")); 16901 if (ill != NULL) 16902 ill_refrele(ill); 16903 if (recv_ill != NULL) 16904 ill_refrele(recv_ill); 16905 freemsg(ipsec_mp); 16906 return; 16907 } 16908 } 16909 16910 ASSERT(ill != NULL && recv_ill != NULL); 16911 16912 if (mp->b_datap->db_type == M_CTL) { 16913 /* 16914 * AH/ESP is returning the ICMP message after 16915 * removing their headers. Fanout again till 16916 * it gets to the right protocol. 16917 */ 16918 if (ii->ipsec_in_v4) { 16919 icmph_t *icmph; 16920 int iph_hdr_length; 16921 int hdr_length; 16922 16923 ipha = (ipha_t *)mp->b_rptr; 16924 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16925 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16926 ipha = (ipha_t *)&icmph[1]; 16927 hdr_length = IPH_HDR_LENGTH(ipha); 16928 /* 16929 * icmp_inbound_error_fanout may need to do pullupmsg. 16930 * Reset the type to M_DATA. 16931 */ 16932 mp->b_datap->db_type = M_DATA; 16933 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16934 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16935 B_FALSE, ill, ii->ipsec_in_zoneid); 16936 } else { 16937 icmp6_t *icmp6; 16938 int hdr_length; 16939 16940 ip6h = (ip6_t *)mp->b_rptr; 16941 /* Don't call hdr_length_v6() unless you have to. */ 16942 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16943 hdr_length = ip_hdr_length_v6(mp, ip6h); 16944 else 16945 hdr_length = IPV6_HDR_LEN; 16946 16947 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16948 /* 16949 * icmp_inbound_error_fanout_v6 may need to do 16950 * pullupmsg. Reset the type to M_DATA. 16951 */ 16952 mp->b_datap->db_type = M_DATA; 16953 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16954 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16955 } 16956 if (ill_need_rele) 16957 ill_refrele(ill); 16958 if (rill_need_rele) 16959 ill_refrele(recv_ill); 16960 return; 16961 } 16962 16963 if (ii->ipsec_in_v4) { 16964 ipha = (ipha_t *)mp->b_rptr; 16965 dst = ipha->ipha_dst; 16966 if (CLASSD(dst)) { 16967 /* 16968 * Multicast has to be delivered to all streams. 16969 */ 16970 dst = INADDR_BROADCAST; 16971 } 16972 16973 if (ire == NULL) { 16974 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16975 MBLK_GETLABEL(mp), ipst); 16976 if (ire == NULL) { 16977 if (ill_need_rele) 16978 ill_refrele(ill); 16979 if (rill_need_rele) 16980 ill_refrele(recv_ill); 16981 ip1dbg(("ip_fanout_proto_again: " 16982 "IRE not found")); 16983 freemsg(ipsec_mp); 16984 return; 16985 } 16986 ire_need_rele = B_TRUE; 16987 } 16988 16989 switch (ipha->ipha_protocol) { 16990 case IPPROTO_UDP: 16991 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16992 recv_ill); 16993 if (ire_need_rele) 16994 ire_refrele(ire); 16995 break; 16996 case IPPROTO_TCP: 16997 if (!ire_need_rele) 16998 IRE_REFHOLD(ire); 16999 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17000 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17001 IRE_REFRELE(ire); 17002 if (mp != NULL) 17003 squeue_enter_chain(GET_SQUEUE(mp), mp, 17004 mp, 1, SQTAG_IP_PROTO_AGAIN); 17005 break; 17006 case IPPROTO_SCTP: 17007 if (!ire_need_rele) 17008 IRE_REFHOLD(ire); 17009 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17010 ipsec_mp, 0, ill->ill_rq, dst); 17011 break; 17012 default: 17013 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17014 recv_ill, B_FALSE); 17015 if (ire_need_rele) 17016 ire_refrele(ire); 17017 break; 17018 } 17019 } else { 17020 uint32_t rput_flags = 0; 17021 17022 ip6h = (ip6_t *)mp->b_rptr; 17023 v6dstp = &ip6h->ip6_dst; 17024 /* 17025 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17026 * address. 17027 * 17028 * Currently, we don't store that state in the IPSEC_IN 17029 * message, and we may need to. 17030 */ 17031 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17032 IP6_IN_LLMCAST : 0); 17033 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17034 NULL, NULL); 17035 } 17036 if (ill_need_rele) 17037 ill_refrele(ill); 17038 if (rill_need_rele) 17039 ill_refrele(recv_ill); 17040 } 17041 17042 /* 17043 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17044 * returns 'true' if there are still fragments left on the queue, in 17045 * which case we restart the timer. 17046 */ 17047 void 17048 ill_frag_timer(void *arg) 17049 { 17050 ill_t *ill = (ill_t *)arg; 17051 boolean_t frag_pending; 17052 ip_stack_t *ipst = ill->ill_ipst; 17053 17054 mutex_enter(&ill->ill_lock); 17055 ASSERT(!ill->ill_fragtimer_executing); 17056 if (ill->ill_state_flags & ILL_CONDEMNED) { 17057 ill->ill_frag_timer_id = 0; 17058 mutex_exit(&ill->ill_lock); 17059 return; 17060 } 17061 ill->ill_fragtimer_executing = 1; 17062 mutex_exit(&ill->ill_lock); 17063 17064 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17065 17066 /* 17067 * Restart the timer, if we have fragments pending or if someone 17068 * wanted us to be scheduled again. 17069 */ 17070 mutex_enter(&ill->ill_lock); 17071 ill->ill_fragtimer_executing = 0; 17072 ill->ill_frag_timer_id = 0; 17073 if (frag_pending || ill->ill_fragtimer_needrestart) 17074 ill_frag_timer_start(ill); 17075 mutex_exit(&ill->ill_lock); 17076 } 17077 17078 void 17079 ill_frag_timer_start(ill_t *ill) 17080 { 17081 ip_stack_t *ipst = ill->ill_ipst; 17082 17083 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17084 17085 /* If the ill is closing or opening don't proceed */ 17086 if (ill->ill_state_flags & ILL_CONDEMNED) 17087 return; 17088 17089 if (ill->ill_fragtimer_executing) { 17090 /* 17091 * ill_frag_timer is currently executing. Just record the 17092 * the fact that we want the timer to be restarted. 17093 * ill_frag_timer will post a timeout before it returns, 17094 * ensuring it will be called again. 17095 */ 17096 ill->ill_fragtimer_needrestart = 1; 17097 return; 17098 } 17099 17100 if (ill->ill_frag_timer_id == 0) { 17101 /* 17102 * The timer is neither running nor is the timeout handler 17103 * executing. Post a timeout so that ill_frag_timer will be 17104 * called 17105 */ 17106 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17107 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17108 ill->ill_fragtimer_needrestart = 0; 17109 } 17110 } 17111 17112 /* 17113 * This routine is needed for loopback when forwarding multicasts. 17114 * 17115 * IPQoS Notes: 17116 * IPPF processing is done in fanout routines. 17117 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17118 * processing for IPsec packets is done when it comes back in clear. 17119 * NOTE : The callers of this function need to do the ire_refrele for the 17120 * ire that is being passed in. 17121 */ 17122 void 17123 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17124 ill_t *recv_ill, boolean_t esp_in_udp_packet) 17125 { 17126 ill_t *ill = (ill_t *)q->q_ptr; 17127 uint32_t sum; 17128 uint32_t u1; 17129 uint32_t u2; 17130 int hdr_length; 17131 boolean_t mctl_present; 17132 mblk_t *first_mp = mp; 17133 mblk_t *hada_mp = NULL; 17134 ipha_t *inner_ipha; 17135 ip_stack_t *ipst; 17136 17137 ASSERT(recv_ill != NULL); 17138 ipst = recv_ill->ill_ipst; 17139 17140 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17141 "ip_rput_locl_start: q %p", q); 17142 17143 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17144 ASSERT(ill != NULL); 17145 17146 17147 #define rptr ((uchar_t *)ipha) 17148 #define iphs ((uint16_t *)ipha) 17149 17150 /* 17151 * no UDP or TCP packet should come here anymore. 17152 */ 17153 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17154 ipha->ipha_protocol != IPPROTO_UDP); 17155 17156 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17157 if (mctl_present && 17158 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17159 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17160 17161 /* 17162 * It's an IPsec accelerated packet. 17163 * Keep a pointer to the data attributes around until 17164 * we allocate the ipsec_info_t. 17165 */ 17166 IPSECHW_DEBUG(IPSECHW_PKT, 17167 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17168 hada_mp = first_mp; 17169 hada_mp->b_cont = NULL; 17170 /* 17171 * Since it is accelerated, it comes directly from 17172 * the ill and the data attributes is followed by 17173 * the packet data. 17174 */ 17175 ASSERT(mp->b_datap->db_type != M_CTL); 17176 first_mp = mp; 17177 mctl_present = B_FALSE; 17178 } 17179 17180 /* 17181 * IF M_CTL is not present, then ipsec_in_is_secure 17182 * should return B_TRUE. There is a case where loopback 17183 * packets has an M_CTL in the front with all the 17184 * IPsec options set to IPSEC_PREF_NEVER - which means 17185 * ipsec_in_is_secure will return B_FALSE. As loopback 17186 * packets never comes here, it is safe to ASSERT the 17187 * following. 17188 */ 17189 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17190 17191 /* 17192 * Also, we should never have an mctl_present if this is an 17193 * ESP-in-UDP packet. 17194 */ 17195 ASSERT(!mctl_present || !esp_in_udp_packet); 17196 17197 17198 /* u1 is # words of IP options */ 17199 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17200 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17201 17202 /* 17203 * Don't verify header checksum if we just removed UDP header or 17204 * packet is coming back from AH/ESP. 17205 */ 17206 if (!esp_in_udp_packet && !mctl_present) { 17207 if (u1) { 17208 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17209 if (hada_mp != NULL) 17210 freemsg(hada_mp); 17211 return; 17212 } 17213 } else { 17214 /* Check the IP header checksum. */ 17215 #define uph ((uint16_t *)ipha) 17216 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17217 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17218 #undef uph 17219 /* finish doing IP checksum */ 17220 sum = (sum & 0xFFFF) + (sum >> 16); 17221 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17222 if (sum && sum != 0xFFFF) { 17223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17224 goto drop_pkt; 17225 } 17226 } 17227 } 17228 17229 /* 17230 * Count for SNMP of inbound packets for ire. As ip_proto_input 17231 * might be called more than once for secure packets, count only 17232 * the first time. 17233 */ 17234 if (!mctl_present) { 17235 UPDATE_IB_PKT_COUNT(ire); 17236 ire->ire_last_used_time = lbolt; 17237 } 17238 17239 /* Check for fragmentation offset. */ 17240 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17241 u1 = u2 & (IPH_MF | IPH_OFFSET); 17242 if (u1) { 17243 /* 17244 * We re-assemble fragments before we do the AH/ESP 17245 * processing. Thus, M_CTL should not be present 17246 * while we are re-assembling. 17247 */ 17248 ASSERT(!mctl_present); 17249 ASSERT(first_mp == mp); 17250 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17251 return; 17252 } 17253 /* 17254 * Make sure that first_mp points back to mp as 17255 * the mp we came in with could have changed in 17256 * ip_rput_fragment(). 17257 */ 17258 ipha = (ipha_t *)mp->b_rptr; 17259 first_mp = mp; 17260 } 17261 17262 /* 17263 * Clear hardware checksumming flag as it is currently only 17264 * used by TCP and UDP. 17265 */ 17266 DB_CKSUMFLAGS(mp) = 0; 17267 17268 /* Now we have a complete datagram, destined for this machine. */ 17269 u1 = IPH_HDR_LENGTH(ipha); 17270 switch (ipha->ipha_protocol) { 17271 case IPPROTO_ICMP: { 17272 ire_t *ire_zone; 17273 ilm_t *ilm; 17274 mblk_t *mp1; 17275 zoneid_t last_zoneid; 17276 17277 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17278 ASSERT(ire->ire_type == IRE_BROADCAST); 17279 /* 17280 * In the multicast case, applications may have joined 17281 * the group from different zones, so we need to deliver 17282 * the packet to each of them. Loop through the 17283 * multicast memberships structures (ilm) on the receive 17284 * ill and send a copy of the packet up each matching 17285 * one. However, we don't do this for multicasts sent on 17286 * the loopback interface (PHYI_LOOPBACK flag set) as 17287 * they must stay in the sender's zone. 17288 * 17289 * ilm_add_v6() ensures that ilms in the same zone are 17290 * contiguous in the ill_ilm list. We use this property 17291 * to avoid sending duplicates needed when two 17292 * applications in the same zone join the same group on 17293 * different logical interfaces: we ignore the ilm if 17294 * its zoneid is the same as the last matching one. 17295 * In addition, the sending of the packet for 17296 * ire_zoneid is delayed until all of the other ilms 17297 * have been exhausted. 17298 */ 17299 last_zoneid = -1; 17300 ILM_WALKER_HOLD(recv_ill); 17301 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17302 ilm = ilm->ilm_next) { 17303 if ((ilm->ilm_flags & ILM_DELETED) || 17304 ipha->ipha_dst != ilm->ilm_addr || 17305 ilm->ilm_zoneid == last_zoneid || 17306 ilm->ilm_zoneid == ire->ire_zoneid || 17307 ilm->ilm_zoneid == ALL_ZONES || 17308 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17309 continue; 17310 mp1 = ip_copymsg(first_mp); 17311 if (mp1 == NULL) 17312 continue; 17313 icmp_inbound(q, mp1, B_TRUE, ill, 17314 0, sum, mctl_present, B_TRUE, 17315 recv_ill, ilm->ilm_zoneid); 17316 last_zoneid = ilm->ilm_zoneid; 17317 } 17318 ILM_WALKER_RELE(recv_ill); 17319 } else if (ire->ire_type == IRE_BROADCAST) { 17320 /* 17321 * In the broadcast case, there may be many zones 17322 * which need a copy of the packet delivered to them. 17323 * There is one IRE_BROADCAST per broadcast address 17324 * and per zone; we walk those using a helper function. 17325 * In addition, the sending of the packet for ire is 17326 * delayed until all of the other ires have been 17327 * processed. 17328 */ 17329 IRB_REFHOLD(ire->ire_bucket); 17330 ire_zone = NULL; 17331 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17332 ire)) != NULL) { 17333 mp1 = ip_copymsg(first_mp); 17334 if (mp1 == NULL) 17335 continue; 17336 17337 UPDATE_IB_PKT_COUNT(ire_zone); 17338 ire_zone->ire_last_used_time = lbolt; 17339 icmp_inbound(q, mp1, B_TRUE, ill, 17340 0, sum, mctl_present, B_TRUE, 17341 recv_ill, ire_zone->ire_zoneid); 17342 } 17343 IRB_REFRELE(ire->ire_bucket); 17344 } 17345 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17346 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17347 ire->ire_zoneid); 17348 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17349 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17350 return; 17351 } 17352 case IPPROTO_IGMP: 17353 /* 17354 * If we are not willing to accept IGMP packets in clear, 17355 * then check with global policy. 17356 */ 17357 if (ipst->ips_igmp_accept_clear_messages == 0) { 17358 first_mp = ipsec_check_global_policy(first_mp, NULL, 17359 ipha, NULL, mctl_present, ipst->ips_netstack); 17360 if (first_mp == NULL) 17361 return; 17362 } 17363 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17364 freemsg(first_mp); 17365 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17366 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17367 return; 17368 } 17369 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17370 /* Bad packet - discarded by igmp_input */ 17371 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17372 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17373 if (mctl_present) 17374 freeb(first_mp); 17375 return; 17376 } 17377 /* 17378 * igmp_input() may have returned the pulled up message. 17379 * So first_mp and ipha need to be reinitialized. 17380 */ 17381 ipha = (ipha_t *)mp->b_rptr; 17382 if (mctl_present) 17383 first_mp->b_cont = mp; 17384 else 17385 first_mp = mp; 17386 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17387 connf_head != NULL) { 17388 /* No user-level listener for IGMP packets */ 17389 goto drop_pkt; 17390 } 17391 /* deliver to local raw users */ 17392 break; 17393 case IPPROTO_PIM: 17394 /* 17395 * If we are not willing to accept PIM packets in clear, 17396 * then check with global policy. 17397 */ 17398 if (ipst->ips_pim_accept_clear_messages == 0) { 17399 first_mp = ipsec_check_global_policy(first_mp, NULL, 17400 ipha, NULL, mctl_present, ipst->ips_netstack); 17401 if (first_mp == NULL) 17402 return; 17403 } 17404 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17405 freemsg(first_mp); 17406 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17407 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17408 return; 17409 } 17410 if (pim_input(q, mp, ill) != 0) { 17411 /* Bad packet - discarded by pim_input */ 17412 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17413 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17414 if (mctl_present) 17415 freeb(first_mp); 17416 return; 17417 } 17418 17419 /* 17420 * pim_input() may have pulled up the message so ipha needs to 17421 * be reinitialized. 17422 */ 17423 ipha = (ipha_t *)mp->b_rptr; 17424 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17425 connf_head != NULL) { 17426 /* No user-level listener for PIM packets */ 17427 goto drop_pkt; 17428 } 17429 /* deliver to local raw users */ 17430 break; 17431 case IPPROTO_ENCAP: 17432 /* 17433 * Handle self-encapsulated packets (IP-in-IP where 17434 * the inner addresses == the outer addresses). 17435 */ 17436 hdr_length = IPH_HDR_LENGTH(ipha); 17437 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17438 mp->b_wptr) { 17439 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17440 sizeof (ipha_t) - mp->b_rptr)) { 17441 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17442 freemsg(first_mp); 17443 return; 17444 } 17445 ipha = (ipha_t *)mp->b_rptr; 17446 } 17447 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17448 /* 17449 * Check the sanity of the inner IP header. 17450 */ 17451 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17452 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17453 freemsg(first_mp); 17454 return; 17455 } 17456 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17457 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17458 freemsg(first_mp); 17459 return; 17460 } 17461 if (inner_ipha->ipha_src == ipha->ipha_src && 17462 inner_ipha->ipha_dst == ipha->ipha_dst) { 17463 ipsec_in_t *ii; 17464 17465 /* 17466 * Self-encapsulated tunnel packet. Remove 17467 * the outer IP header and fanout again. 17468 * We also need to make sure that the inner 17469 * header is pulled up until options. 17470 */ 17471 mp->b_rptr = (uchar_t *)inner_ipha; 17472 ipha = inner_ipha; 17473 hdr_length = IPH_HDR_LENGTH(ipha); 17474 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17475 if (!pullupmsg(mp, (uchar_t *)ipha + 17476 + hdr_length - mp->b_rptr)) { 17477 freemsg(first_mp); 17478 return; 17479 } 17480 ipha = (ipha_t *)mp->b_rptr; 17481 } 17482 if (hdr_length > sizeof (ipha_t)) { 17483 /* We got options on the inner packet. */ 17484 ipaddr_t dst = ipha->ipha_dst; 17485 17486 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17487 -1) { 17488 /* Bad options! */ 17489 return; 17490 } 17491 if (dst != ipha->ipha_dst) { 17492 /* 17493 * Someone put a source-route in 17494 * the inside header of a self- 17495 * encapsulated packet. Drop it 17496 * with extreme prejudice and let 17497 * the sender know. 17498 */ 17499 icmp_unreachable(q, first_mp, 17500 ICMP_SOURCE_ROUTE_FAILED, 17501 recv_ill->ill_zoneid, ipst); 17502 return; 17503 } 17504 } 17505 if (!mctl_present) { 17506 ASSERT(first_mp == mp); 17507 /* 17508 * This means that somebody is sending 17509 * Self-encapsualted packets without AH/ESP. 17510 * If AH/ESP was present, we would have already 17511 * allocated the first_mp. 17512 * 17513 * Send this packet to find a tunnel endpoint. 17514 * if I can't find one, an ICMP 17515 * PROTOCOL_UNREACHABLE will get sent. 17516 */ 17517 goto fanout; 17518 } 17519 /* 17520 * We generally store the ill_index if we need to 17521 * do IPsec processing as we lose the ill queue when 17522 * we come back. But in this case, we never should 17523 * have to store the ill_index here as it should have 17524 * been stored previously when we processed the 17525 * AH/ESP header in this routine or for non-ipsec 17526 * cases, we still have the queue. But for some bad 17527 * packets from the wire, we can get to IPsec after 17528 * this and we better store the index for that case. 17529 */ 17530 ill = (ill_t *)q->q_ptr; 17531 ii = (ipsec_in_t *)first_mp->b_rptr; 17532 ii->ipsec_in_ill_index = 17533 ill->ill_phyint->phyint_ifindex; 17534 ii->ipsec_in_rill_index = 17535 recv_ill->ill_phyint->phyint_ifindex; 17536 if (ii->ipsec_in_decaps) { 17537 /* 17538 * This packet is self-encapsulated multiple 17539 * times. We don't want to recurse infinitely. 17540 * To keep it simple, drop the packet. 17541 */ 17542 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17543 freemsg(first_mp); 17544 return; 17545 } 17546 ii->ipsec_in_decaps = B_TRUE; 17547 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17548 ire); 17549 return; 17550 } 17551 break; 17552 case IPPROTO_AH: 17553 case IPPROTO_ESP: { 17554 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17555 17556 /* 17557 * Fast path for AH/ESP. If this is the first time 17558 * we are sending a datagram to AH/ESP, allocate 17559 * a IPSEC_IN message and prepend it. Otherwise, 17560 * just fanout. 17561 */ 17562 17563 int ipsec_rc; 17564 ipsec_in_t *ii; 17565 netstack_t *ns = ipst->ips_netstack; 17566 17567 IP_STAT(ipst, ipsec_proto_ahesp); 17568 if (!mctl_present) { 17569 ASSERT(first_mp == mp); 17570 first_mp = ipsec_in_alloc(B_TRUE, ns); 17571 if (first_mp == NULL) { 17572 ip1dbg(("ip_proto_input: IPSEC_IN " 17573 "allocation failure.\n")); 17574 freemsg(hada_mp); /* okay ifnull */ 17575 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17576 freemsg(mp); 17577 return; 17578 } 17579 /* 17580 * Store the ill_index so that when we come back 17581 * from IPsec we ride on the same queue. 17582 */ 17583 ill = (ill_t *)q->q_ptr; 17584 ii = (ipsec_in_t *)first_mp->b_rptr; 17585 ii->ipsec_in_ill_index = 17586 ill->ill_phyint->phyint_ifindex; 17587 ii->ipsec_in_rill_index = 17588 recv_ill->ill_phyint->phyint_ifindex; 17589 first_mp->b_cont = mp; 17590 /* 17591 * Cache hardware acceleration info. 17592 */ 17593 if (hada_mp != NULL) { 17594 IPSECHW_DEBUG(IPSECHW_PKT, 17595 ("ip_rput_local: caching data attr.\n")); 17596 ii->ipsec_in_accelerated = B_TRUE; 17597 ii->ipsec_in_da = hada_mp; 17598 hada_mp = NULL; 17599 } 17600 } else { 17601 ii = (ipsec_in_t *)first_mp->b_rptr; 17602 } 17603 17604 if (!ipsec_loaded(ipss)) { 17605 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17606 ire->ire_zoneid, ipst); 17607 return; 17608 } 17609 17610 ns = ipst->ips_netstack; 17611 /* select inbound SA and have IPsec process the pkt */ 17612 if (ipha->ipha_protocol == IPPROTO_ESP) { 17613 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17614 boolean_t esp_in_udp_sa; 17615 if (esph == NULL) 17616 return; 17617 ASSERT(ii->ipsec_in_esp_sa != NULL); 17618 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17619 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17620 IPSA_F_NATT) != 0); 17621 /* 17622 * The following is a fancy, but quick, way of saying: 17623 * ESP-in-UDP SA and Raw ESP packet --> drop 17624 * OR 17625 * ESP SA and ESP-in-UDP packet --> drop 17626 */ 17627 if (esp_in_udp_sa != esp_in_udp_packet) { 17628 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17629 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17630 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17631 &ns->netstack_ipsec->ipsec_dropper); 17632 return; 17633 } 17634 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17635 first_mp, esph); 17636 } else { 17637 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17638 if (ah == NULL) 17639 return; 17640 ASSERT(ii->ipsec_in_ah_sa != NULL); 17641 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17642 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17643 first_mp, ah); 17644 } 17645 17646 switch (ipsec_rc) { 17647 case IPSEC_STATUS_SUCCESS: 17648 break; 17649 case IPSEC_STATUS_FAILED: 17650 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17651 /* FALLTHRU */ 17652 case IPSEC_STATUS_PENDING: 17653 return; 17654 } 17655 /* we're done with IPsec processing, send it up */ 17656 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17657 return; 17658 } 17659 default: 17660 break; 17661 } 17662 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17663 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17664 ire->ire_zoneid)); 17665 goto drop_pkt; 17666 } 17667 /* 17668 * Handle protocols with which IP is less intimate. There 17669 * can be more than one stream bound to a particular 17670 * protocol. When this is the case, each one gets a copy 17671 * of any incoming packets. 17672 */ 17673 fanout: 17674 ip_fanout_proto(q, first_mp, ill, ipha, 17675 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17676 B_TRUE, recv_ill, ire->ire_zoneid); 17677 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17678 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17679 return; 17680 17681 drop_pkt: 17682 freemsg(first_mp); 17683 if (hada_mp != NULL) 17684 freeb(hada_mp); 17685 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17686 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17687 #undef rptr 17688 #undef iphs 17689 17690 } 17691 17692 /* 17693 * Update any source route, record route or timestamp options. 17694 * Check that we are at end of strict source route. 17695 * The options have already been checked for sanity in ip_rput_options(). 17696 */ 17697 static boolean_t 17698 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17699 ip_stack_t *ipst) 17700 { 17701 ipoptp_t opts; 17702 uchar_t *opt; 17703 uint8_t optval; 17704 uint8_t optlen; 17705 ipaddr_t dst; 17706 uint32_t ts; 17707 ire_t *dst_ire; 17708 timestruc_t now; 17709 zoneid_t zoneid; 17710 ill_t *ill; 17711 17712 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17713 17714 ip2dbg(("ip_rput_local_options\n")); 17715 17716 for (optval = ipoptp_first(&opts, ipha); 17717 optval != IPOPT_EOL; 17718 optval = ipoptp_next(&opts)) { 17719 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17720 opt = opts.ipoptp_cur; 17721 optlen = opts.ipoptp_len; 17722 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17723 optval, optlen)); 17724 switch (optval) { 17725 uint32_t off; 17726 case IPOPT_SSRR: 17727 case IPOPT_LSRR: 17728 off = opt[IPOPT_OFFSET]; 17729 off--; 17730 if (optlen < IP_ADDR_LEN || 17731 off > optlen - IP_ADDR_LEN) { 17732 /* End of source route */ 17733 ip1dbg(("ip_rput_local_options: end of SR\n")); 17734 break; 17735 } 17736 /* 17737 * This will only happen if two consecutive entries 17738 * in the source route contains our address or if 17739 * it is a packet with a loose source route which 17740 * reaches us before consuming the whole source route 17741 */ 17742 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17743 if (optval == IPOPT_SSRR) { 17744 goto bad_src_route; 17745 } 17746 /* 17747 * Hack: instead of dropping the packet truncate the 17748 * source route to what has been used by filling the 17749 * rest with IPOPT_NOP. 17750 */ 17751 opt[IPOPT_OLEN] = (uint8_t)off; 17752 while (off < optlen) { 17753 opt[off++] = IPOPT_NOP; 17754 } 17755 break; 17756 case IPOPT_RR: 17757 off = opt[IPOPT_OFFSET]; 17758 off--; 17759 if (optlen < IP_ADDR_LEN || 17760 off > optlen - IP_ADDR_LEN) { 17761 /* No more room - ignore */ 17762 ip1dbg(( 17763 "ip_rput_local_options: end of RR\n")); 17764 break; 17765 } 17766 bcopy(&ire->ire_src_addr, (char *)opt + off, 17767 IP_ADDR_LEN); 17768 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17769 break; 17770 case IPOPT_TS: 17771 /* Insert timestamp if there is romm */ 17772 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17773 case IPOPT_TS_TSONLY: 17774 off = IPOPT_TS_TIMELEN; 17775 break; 17776 case IPOPT_TS_PRESPEC: 17777 case IPOPT_TS_PRESPEC_RFC791: 17778 /* Verify that the address matched */ 17779 off = opt[IPOPT_OFFSET] - 1; 17780 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17781 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17782 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17783 ipst); 17784 if (dst_ire == NULL) { 17785 /* Not for us */ 17786 break; 17787 } 17788 ire_refrele(dst_ire); 17789 /* FALLTHRU */ 17790 case IPOPT_TS_TSANDADDR: 17791 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17792 break; 17793 default: 17794 /* 17795 * ip_*put_options should have already 17796 * dropped this packet. 17797 */ 17798 cmn_err(CE_PANIC, "ip_rput_local_options: " 17799 "unknown IT - bug in ip_rput_options?\n"); 17800 return (B_TRUE); /* Keep "lint" happy */ 17801 } 17802 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17803 /* Increase overflow counter */ 17804 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17805 opt[IPOPT_POS_OV_FLG] = 17806 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17807 (off << 4)); 17808 break; 17809 } 17810 off = opt[IPOPT_OFFSET] - 1; 17811 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17812 case IPOPT_TS_PRESPEC: 17813 case IPOPT_TS_PRESPEC_RFC791: 17814 case IPOPT_TS_TSANDADDR: 17815 bcopy(&ire->ire_src_addr, (char *)opt + off, 17816 IP_ADDR_LEN); 17817 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17818 /* FALLTHRU */ 17819 case IPOPT_TS_TSONLY: 17820 off = opt[IPOPT_OFFSET] - 1; 17821 /* Compute # of milliseconds since midnight */ 17822 gethrestime(&now); 17823 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17824 now.tv_nsec / (NANOSEC / MILLISEC); 17825 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17826 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17827 break; 17828 } 17829 break; 17830 } 17831 } 17832 return (B_TRUE); 17833 17834 bad_src_route: 17835 q = WR(q); 17836 if (q->q_next != NULL) 17837 ill = q->q_ptr; 17838 else 17839 ill = NULL; 17840 17841 /* make sure we clear any indication of a hardware checksum */ 17842 DB_CKSUMFLAGS(mp) = 0; 17843 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17844 if (zoneid == ALL_ZONES) 17845 freemsg(mp); 17846 else 17847 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17848 return (B_FALSE); 17849 17850 } 17851 17852 /* 17853 * Process IP options in an inbound packet. If an option affects the 17854 * effective destination address, return the next hop address via dstp. 17855 * Returns -1 if something fails in which case an ICMP error has been sent 17856 * and mp freed. 17857 */ 17858 static int 17859 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17860 ip_stack_t *ipst) 17861 { 17862 ipoptp_t opts; 17863 uchar_t *opt; 17864 uint8_t optval; 17865 uint8_t optlen; 17866 ipaddr_t dst; 17867 intptr_t code = 0; 17868 ire_t *ire = NULL; 17869 zoneid_t zoneid; 17870 ill_t *ill; 17871 17872 ip2dbg(("ip_rput_options\n")); 17873 dst = ipha->ipha_dst; 17874 for (optval = ipoptp_first(&opts, ipha); 17875 optval != IPOPT_EOL; 17876 optval = ipoptp_next(&opts)) { 17877 opt = opts.ipoptp_cur; 17878 optlen = opts.ipoptp_len; 17879 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17880 optval, optlen)); 17881 /* 17882 * Note: we need to verify the checksum before we 17883 * modify anything thus this routine only extracts the next 17884 * hop dst from any source route. 17885 */ 17886 switch (optval) { 17887 uint32_t off; 17888 case IPOPT_SSRR: 17889 case IPOPT_LSRR: 17890 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17891 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17892 if (ire == NULL) { 17893 if (optval == IPOPT_SSRR) { 17894 ip1dbg(("ip_rput_options: not next" 17895 " strict source route 0x%x\n", 17896 ntohl(dst))); 17897 code = (char *)&ipha->ipha_dst - 17898 (char *)ipha; 17899 goto param_prob; /* RouterReq's */ 17900 } 17901 ip2dbg(("ip_rput_options: " 17902 "not next source route 0x%x\n", 17903 ntohl(dst))); 17904 break; 17905 } 17906 ire_refrele(ire); 17907 17908 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17909 ip1dbg(( 17910 "ip_rput_options: bad option offset\n")); 17911 code = (char *)&opt[IPOPT_OLEN] - 17912 (char *)ipha; 17913 goto param_prob; 17914 } 17915 off = opt[IPOPT_OFFSET]; 17916 off--; 17917 redo_srr: 17918 if (optlen < IP_ADDR_LEN || 17919 off > optlen - IP_ADDR_LEN) { 17920 /* End of source route */ 17921 ip1dbg(("ip_rput_options: end of SR\n")); 17922 break; 17923 } 17924 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17925 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17926 ntohl(dst))); 17927 17928 /* 17929 * Check if our address is present more than 17930 * once as consecutive hops in source route. 17931 * XXX verify per-interface ip_forwarding 17932 * for source route? 17933 */ 17934 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17935 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17936 17937 if (ire != NULL) { 17938 ire_refrele(ire); 17939 off += IP_ADDR_LEN; 17940 goto redo_srr; 17941 } 17942 17943 if (dst == htonl(INADDR_LOOPBACK)) { 17944 ip1dbg(("ip_rput_options: loopback addr in " 17945 "source route!\n")); 17946 goto bad_src_route; 17947 } 17948 /* 17949 * For strict: verify that dst is directly 17950 * reachable. 17951 */ 17952 if (optval == IPOPT_SSRR) { 17953 ire = ire_ftable_lookup(dst, 0, 0, 17954 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17955 MBLK_GETLABEL(mp), 17956 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17957 if (ire == NULL) { 17958 ip1dbg(("ip_rput_options: SSRR not " 17959 "directly reachable: 0x%x\n", 17960 ntohl(dst))); 17961 goto bad_src_route; 17962 } 17963 ire_refrele(ire); 17964 } 17965 /* 17966 * Defer update of the offset and the record route 17967 * until the packet is forwarded. 17968 */ 17969 break; 17970 case IPOPT_RR: 17971 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17972 ip1dbg(( 17973 "ip_rput_options: bad option offset\n")); 17974 code = (char *)&opt[IPOPT_OLEN] - 17975 (char *)ipha; 17976 goto param_prob; 17977 } 17978 break; 17979 case IPOPT_TS: 17980 /* 17981 * Verify that length >= 5 and that there is either 17982 * room for another timestamp or that the overflow 17983 * counter is not maxed out. 17984 */ 17985 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17986 if (optlen < IPOPT_MINLEN_IT) { 17987 goto param_prob; 17988 } 17989 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17990 ip1dbg(( 17991 "ip_rput_options: bad option offset\n")); 17992 code = (char *)&opt[IPOPT_OFFSET] - 17993 (char *)ipha; 17994 goto param_prob; 17995 } 17996 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17997 case IPOPT_TS_TSONLY: 17998 off = IPOPT_TS_TIMELEN; 17999 break; 18000 case IPOPT_TS_TSANDADDR: 18001 case IPOPT_TS_PRESPEC: 18002 case IPOPT_TS_PRESPEC_RFC791: 18003 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18004 break; 18005 default: 18006 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18007 (char *)ipha; 18008 goto param_prob; 18009 } 18010 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18011 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18012 /* 18013 * No room and the overflow counter is 15 18014 * already. 18015 */ 18016 goto param_prob; 18017 } 18018 break; 18019 } 18020 } 18021 18022 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18023 *dstp = dst; 18024 return (0); 18025 } 18026 18027 ip1dbg(("ip_rput_options: error processing IP options.")); 18028 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18029 18030 param_prob: 18031 q = WR(q); 18032 if (q->q_next != NULL) 18033 ill = q->q_ptr; 18034 else 18035 ill = NULL; 18036 18037 /* make sure we clear any indication of a hardware checksum */ 18038 DB_CKSUMFLAGS(mp) = 0; 18039 /* Don't know whether this is for non-global or global/forwarding */ 18040 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18041 if (zoneid == ALL_ZONES) 18042 freemsg(mp); 18043 else 18044 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18045 return (-1); 18046 18047 bad_src_route: 18048 q = WR(q); 18049 if (q->q_next != NULL) 18050 ill = q->q_ptr; 18051 else 18052 ill = NULL; 18053 18054 /* make sure we clear any indication of a hardware checksum */ 18055 DB_CKSUMFLAGS(mp) = 0; 18056 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18057 if (zoneid == ALL_ZONES) 18058 freemsg(mp); 18059 else 18060 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18061 return (-1); 18062 } 18063 18064 /* 18065 * IP & ICMP info in >=14 msg's ... 18066 * - ip fixed part (mib2_ip_t) 18067 * - icmp fixed part (mib2_icmp_t) 18068 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18069 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18070 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18071 * - ipRouteAttributeTable (ip 102) labeled routes 18072 * - ip multicast membership (ip_member_t) 18073 * - ip multicast source filtering (ip_grpsrc_t) 18074 * - igmp fixed part (struct igmpstat) 18075 * - multicast routing stats (struct mrtstat) 18076 * - multicast routing vifs (array of struct vifctl) 18077 * - multicast routing routes (array of struct mfcctl) 18078 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18079 * One per ill plus one generic 18080 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18081 * One per ill plus one generic 18082 * - ipv6RouteEntry all IPv6 IREs 18083 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18084 * - ipv6NetToMediaEntry all Neighbor Cache entries 18085 * - ipv6AddrEntry all IPv6 ipifs 18086 * - ipv6 multicast membership (ipv6_member_t) 18087 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18088 * 18089 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18090 * 18091 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18092 * already filled in by the caller. 18093 * Return value of 0 indicates that no messages were sent and caller 18094 * should free mpctl. 18095 */ 18096 int 18097 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18098 { 18099 ip_stack_t *ipst; 18100 sctp_stack_t *sctps; 18101 18102 if (q->q_next != NULL) { 18103 ipst = ILLQ_TO_IPST(q); 18104 } else { 18105 ipst = CONNQ_TO_IPST(q); 18106 } 18107 ASSERT(ipst != NULL); 18108 sctps = ipst->ips_netstack->netstack_sctp; 18109 18110 if (mpctl == NULL || mpctl->b_cont == NULL) { 18111 return (0); 18112 } 18113 18114 /* 18115 * For the purposes of the (broken) packet shell use 18116 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18117 * to make TCP and UDP appear first in the list of mib items. 18118 * TBD: We could expand this and use it in netstat so that 18119 * the kernel doesn't have to produce large tables (connections, 18120 * routes, etc) when netstat only wants the statistics or a particular 18121 * table. 18122 */ 18123 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18124 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18125 return (1); 18126 } 18127 } 18128 18129 if (level != MIB2_TCP) { 18130 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18131 return (1); 18132 } 18133 } 18134 18135 if (level != MIB2_UDP) { 18136 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18137 return (1); 18138 } 18139 } 18140 18141 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18142 ipst)) == NULL) { 18143 return (1); 18144 } 18145 18146 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18147 return (1); 18148 } 18149 18150 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18151 return (1); 18152 } 18153 18154 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18155 return (1); 18156 } 18157 18158 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18159 return (1); 18160 } 18161 18162 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18163 return (1); 18164 } 18165 18166 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18167 return (1); 18168 } 18169 18170 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18171 return (1); 18172 } 18173 18174 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18175 return (1); 18176 } 18177 18178 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18179 return (1); 18180 } 18181 18182 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18183 return (1); 18184 } 18185 18186 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18187 return (1); 18188 } 18189 18190 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18191 return (1); 18192 } 18193 18194 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18195 return (1); 18196 } 18197 18198 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18199 return (1); 18200 } 18201 18202 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18203 if (mpctl == NULL) { 18204 return (1); 18205 } 18206 18207 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18208 return (1); 18209 } 18210 freemsg(mpctl); 18211 return (1); 18212 } 18213 18214 18215 /* Get global (legacy) IPv4 statistics */ 18216 static mblk_t * 18217 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18218 ip_stack_t *ipst) 18219 { 18220 mib2_ip_t old_ip_mib; 18221 struct opthdr *optp; 18222 mblk_t *mp2ctl; 18223 18224 /* 18225 * make a copy of the original message 18226 */ 18227 mp2ctl = copymsg(mpctl); 18228 18229 /* fixed length IP structure... */ 18230 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18231 optp->level = MIB2_IP; 18232 optp->name = 0; 18233 SET_MIB(old_ip_mib.ipForwarding, 18234 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18235 SET_MIB(old_ip_mib.ipDefaultTTL, 18236 (uint32_t)ipst->ips_ip_def_ttl); 18237 SET_MIB(old_ip_mib.ipReasmTimeout, 18238 ipst->ips_ip_g_frag_timeout); 18239 SET_MIB(old_ip_mib.ipAddrEntrySize, 18240 sizeof (mib2_ipAddrEntry_t)); 18241 SET_MIB(old_ip_mib.ipRouteEntrySize, 18242 sizeof (mib2_ipRouteEntry_t)); 18243 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18244 sizeof (mib2_ipNetToMediaEntry_t)); 18245 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18246 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18247 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18248 sizeof (mib2_ipAttributeEntry_t)); 18249 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18250 18251 /* 18252 * Grab the statistics from the new IP MIB 18253 */ 18254 SET_MIB(old_ip_mib.ipInReceives, 18255 (uint32_t)ipmib->ipIfStatsHCInReceives); 18256 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18257 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18258 SET_MIB(old_ip_mib.ipForwDatagrams, 18259 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18260 SET_MIB(old_ip_mib.ipInUnknownProtos, 18261 ipmib->ipIfStatsInUnknownProtos); 18262 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18263 SET_MIB(old_ip_mib.ipInDelivers, 18264 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18265 SET_MIB(old_ip_mib.ipOutRequests, 18266 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18267 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18268 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18269 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18270 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18271 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18272 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18273 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18274 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18275 18276 /* ipRoutingDiscards is not being used */ 18277 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18278 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18279 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18280 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18281 SET_MIB(old_ip_mib.ipReasmDuplicates, 18282 ipmib->ipIfStatsReasmDuplicates); 18283 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18284 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18285 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18286 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18287 SET_MIB(old_ip_mib.rawipInOverflows, 18288 ipmib->rawipIfStatsInOverflows); 18289 18290 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18291 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18292 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18293 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18294 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18295 ipmib->ipIfStatsOutSwitchIPVersion); 18296 18297 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18298 (int)sizeof (old_ip_mib))) { 18299 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18300 (uint_t)sizeof (old_ip_mib))); 18301 } 18302 18303 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18304 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18305 (int)optp->level, (int)optp->name, (int)optp->len)); 18306 qreply(q, mpctl); 18307 return (mp2ctl); 18308 } 18309 18310 /* Per interface IPv4 statistics */ 18311 static mblk_t * 18312 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18313 { 18314 struct opthdr *optp; 18315 mblk_t *mp2ctl; 18316 ill_t *ill; 18317 ill_walk_context_t ctx; 18318 mblk_t *mp_tail = NULL; 18319 mib2_ipIfStatsEntry_t global_ip_mib; 18320 18321 /* 18322 * Make a copy of the original message 18323 */ 18324 mp2ctl = copymsg(mpctl); 18325 18326 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18327 optp->level = MIB2_IP; 18328 optp->name = MIB2_IP_TRAFFIC_STATS; 18329 /* Include "unknown interface" ip_mib */ 18330 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18331 ipst->ips_ip_mib.ipIfStatsIfIndex = 18332 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18333 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18334 (ipst->ips_ip_g_forward ? 1 : 2)); 18335 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18336 (uint32_t)ipst->ips_ip_def_ttl); 18337 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18338 sizeof (mib2_ipIfStatsEntry_t)); 18339 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18340 sizeof (mib2_ipAddrEntry_t)); 18341 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18342 sizeof (mib2_ipRouteEntry_t)); 18343 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18344 sizeof (mib2_ipNetToMediaEntry_t)); 18345 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18346 sizeof (ip_member_t)); 18347 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18348 sizeof (ip_grpsrc_t)); 18349 18350 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18351 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18352 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18353 "failed to allocate %u bytes\n", 18354 (uint_t)sizeof (ipst->ips_ip_mib))); 18355 } 18356 18357 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18358 18359 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18360 ill = ILL_START_WALK_V4(&ctx, ipst); 18361 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18362 ill->ill_ip_mib->ipIfStatsIfIndex = 18363 ill->ill_phyint->phyint_ifindex; 18364 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18365 (ipst->ips_ip_g_forward ? 1 : 2)); 18366 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18367 (uint32_t)ipst->ips_ip_def_ttl); 18368 18369 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18370 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18371 (char *)ill->ill_ip_mib, 18372 (int)sizeof (*ill->ill_ip_mib))) { 18373 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18374 "failed to allocate %u bytes\n", 18375 (uint_t)sizeof (*ill->ill_ip_mib))); 18376 } 18377 } 18378 rw_exit(&ipst->ips_ill_g_lock); 18379 18380 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18381 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18382 "level %d, name %d, len %d\n", 18383 (int)optp->level, (int)optp->name, (int)optp->len)); 18384 qreply(q, mpctl); 18385 18386 if (mp2ctl == NULL) 18387 return (NULL); 18388 18389 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18390 } 18391 18392 /* Global IPv4 ICMP statistics */ 18393 static mblk_t * 18394 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18395 { 18396 struct opthdr *optp; 18397 mblk_t *mp2ctl; 18398 18399 /* 18400 * Make a copy of the original message 18401 */ 18402 mp2ctl = copymsg(mpctl); 18403 18404 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18405 optp->level = MIB2_ICMP; 18406 optp->name = 0; 18407 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18408 (int)sizeof (ipst->ips_icmp_mib))) { 18409 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18410 (uint_t)sizeof (ipst->ips_icmp_mib))); 18411 } 18412 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18413 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18414 (int)optp->level, (int)optp->name, (int)optp->len)); 18415 qreply(q, mpctl); 18416 return (mp2ctl); 18417 } 18418 18419 /* Global IPv4 IGMP statistics */ 18420 static mblk_t * 18421 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18422 { 18423 struct opthdr *optp; 18424 mblk_t *mp2ctl; 18425 18426 /* 18427 * make a copy of the original message 18428 */ 18429 mp2ctl = copymsg(mpctl); 18430 18431 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18432 optp->level = EXPER_IGMP; 18433 optp->name = 0; 18434 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18435 (int)sizeof (ipst->ips_igmpstat))) { 18436 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18437 (uint_t)sizeof (ipst->ips_igmpstat))); 18438 } 18439 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18440 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18441 (int)optp->level, (int)optp->name, (int)optp->len)); 18442 qreply(q, mpctl); 18443 return (mp2ctl); 18444 } 18445 18446 /* Global IPv4 Multicast Routing statistics */ 18447 static mblk_t * 18448 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18449 { 18450 struct opthdr *optp; 18451 mblk_t *mp2ctl; 18452 18453 /* 18454 * make a copy of the original message 18455 */ 18456 mp2ctl = copymsg(mpctl); 18457 18458 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18459 optp->level = EXPER_DVMRP; 18460 optp->name = 0; 18461 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18462 ip0dbg(("ip_mroute_stats: failed\n")); 18463 } 18464 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18465 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18466 (int)optp->level, (int)optp->name, (int)optp->len)); 18467 qreply(q, mpctl); 18468 return (mp2ctl); 18469 } 18470 18471 /* IPv4 address information */ 18472 static mblk_t * 18473 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18474 { 18475 struct opthdr *optp; 18476 mblk_t *mp2ctl; 18477 mblk_t *mp_tail = NULL; 18478 ill_t *ill; 18479 ipif_t *ipif; 18480 uint_t bitval; 18481 mib2_ipAddrEntry_t mae; 18482 zoneid_t zoneid; 18483 ill_walk_context_t ctx; 18484 18485 /* 18486 * make a copy of the original message 18487 */ 18488 mp2ctl = copymsg(mpctl); 18489 18490 /* ipAddrEntryTable */ 18491 18492 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18493 optp->level = MIB2_IP; 18494 optp->name = MIB2_IP_ADDR; 18495 zoneid = Q_TO_CONN(q)->conn_zoneid; 18496 18497 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18498 ill = ILL_START_WALK_V4(&ctx, ipst); 18499 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18500 for (ipif = ill->ill_ipif; ipif != NULL; 18501 ipif = ipif->ipif_next) { 18502 if (ipif->ipif_zoneid != zoneid && 18503 ipif->ipif_zoneid != ALL_ZONES) 18504 continue; 18505 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18506 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18507 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18508 18509 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18510 OCTET_LENGTH); 18511 mae.ipAdEntIfIndex.o_length = 18512 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18513 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18514 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18515 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18516 mae.ipAdEntInfo.ae_subnet_len = 18517 ip_mask_to_plen(ipif->ipif_net_mask); 18518 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18519 for (bitval = 1; 18520 bitval && 18521 !(bitval & ipif->ipif_brd_addr); 18522 bitval <<= 1) 18523 noop; 18524 mae.ipAdEntBcastAddr = bitval; 18525 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18526 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18527 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18528 mae.ipAdEntInfo.ae_broadcast_addr = 18529 ipif->ipif_brd_addr; 18530 mae.ipAdEntInfo.ae_pp_dst_addr = 18531 ipif->ipif_pp_dst_addr; 18532 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18533 ill->ill_flags | ill->ill_phyint->phyint_flags; 18534 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18535 18536 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18537 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18538 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18539 "allocate %u bytes\n", 18540 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18541 } 18542 } 18543 } 18544 rw_exit(&ipst->ips_ill_g_lock); 18545 18546 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18547 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18548 (int)optp->level, (int)optp->name, (int)optp->len)); 18549 qreply(q, mpctl); 18550 return (mp2ctl); 18551 } 18552 18553 /* IPv6 address information */ 18554 static mblk_t * 18555 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18556 { 18557 struct opthdr *optp; 18558 mblk_t *mp2ctl; 18559 mblk_t *mp_tail = NULL; 18560 ill_t *ill; 18561 ipif_t *ipif; 18562 mib2_ipv6AddrEntry_t mae6; 18563 zoneid_t zoneid; 18564 ill_walk_context_t ctx; 18565 18566 /* 18567 * make a copy of the original message 18568 */ 18569 mp2ctl = copymsg(mpctl); 18570 18571 /* ipv6AddrEntryTable */ 18572 18573 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18574 optp->level = MIB2_IP6; 18575 optp->name = MIB2_IP6_ADDR; 18576 zoneid = Q_TO_CONN(q)->conn_zoneid; 18577 18578 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18579 ill = ILL_START_WALK_V6(&ctx, ipst); 18580 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18581 for (ipif = ill->ill_ipif; ipif != NULL; 18582 ipif = ipif->ipif_next) { 18583 if (ipif->ipif_zoneid != zoneid && 18584 ipif->ipif_zoneid != ALL_ZONES) 18585 continue; 18586 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18587 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18588 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18589 18590 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18591 OCTET_LENGTH); 18592 mae6.ipv6AddrIfIndex.o_length = 18593 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18594 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18595 mae6.ipv6AddrPfxLength = 18596 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18597 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18598 mae6.ipv6AddrInfo.ae_subnet_len = 18599 mae6.ipv6AddrPfxLength; 18600 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18601 18602 /* Type: stateless(1), stateful(2), unknown(3) */ 18603 if (ipif->ipif_flags & IPIF_ADDRCONF) 18604 mae6.ipv6AddrType = 1; 18605 else 18606 mae6.ipv6AddrType = 2; 18607 /* Anycast: true(1), false(2) */ 18608 if (ipif->ipif_flags & IPIF_ANYCAST) 18609 mae6.ipv6AddrAnycastFlag = 1; 18610 else 18611 mae6.ipv6AddrAnycastFlag = 2; 18612 18613 /* 18614 * Address status: preferred(1), deprecated(2), 18615 * invalid(3), inaccessible(4), unknown(5) 18616 */ 18617 if (ipif->ipif_flags & IPIF_NOLOCAL) 18618 mae6.ipv6AddrStatus = 3; 18619 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18620 mae6.ipv6AddrStatus = 2; 18621 else 18622 mae6.ipv6AddrStatus = 1; 18623 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18624 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18625 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18626 ipif->ipif_v6pp_dst_addr; 18627 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18628 ill->ill_flags | ill->ill_phyint->phyint_flags; 18629 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18630 mae6.ipv6AddrIdentifier = ill->ill_token; 18631 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18632 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18633 mae6.ipv6AddrRetransmitTime = 18634 ill->ill_reachable_retrans_time; 18635 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18636 (char *)&mae6, 18637 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18638 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18639 "allocate %u bytes\n", 18640 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18641 } 18642 } 18643 } 18644 rw_exit(&ipst->ips_ill_g_lock); 18645 18646 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18647 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18648 (int)optp->level, (int)optp->name, (int)optp->len)); 18649 qreply(q, mpctl); 18650 return (mp2ctl); 18651 } 18652 18653 /* IPv4 multicast group membership. */ 18654 static mblk_t * 18655 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18656 { 18657 struct opthdr *optp; 18658 mblk_t *mp2ctl; 18659 ill_t *ill; 18660 ipif_t *ipif; 18661 ilm_t *ilm; 18662 ip_member_t ipm; 18663 mblk_t *mp_tail = NULL; 18664 ill_walk_context_t ctx; 18665 zoneid_t zoneid; 18666 18667 /* 18668 * make a copy of the original message 18669 */ 18670 mp2ctl = copymsg(mpctl); 18671 zoneid = Q_TO_CONN(q)->conn_zoneid; 18672 18673 /* ipGroupMember table */ 18674 optp = (struct opthdr *)&mpctl->b_rptr[ 18675 sizeof (struct T_optmgmt_ack)]; 18676 optp->level = MIB2_IP; 18677 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18678 18679 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18680 ill = ILL_START_WALK_V4(&ctx, ipst); 18681 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18682 ILM_WALKER_HOLD(ill); 18683 for (ipif = ill->ill_ipif; ipif != NULL; 18684 ipif = ipif->ipif_next) { 18685 if (ipif->ipif_zoneid != zoneid && 18686 ipif->ipif_zoneid != ALL_ZONES) 18687 continue; /* not this zone */ 18688 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18689 OCTET_LENGTH); 18690 ipm.ipGroupMemberIfIndex.o_length = 18691 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18692 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18693 ASSERT(ilm->ilm_ipif != NULL); 18694 ASSERT(ilm->ilm_ill == NULL); 18695 if (ilm->ilm_ipif != ipif) 18696 continue; 18697 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18698 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18699 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18700 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18701 (char *)&ipm, (int)sizeof (ipm))) { 18702 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18703 "failed to allocate %u bytes\n", 18704 (uint_t)sizeof (ipm))); 18705 } 18706 } 18707 } 18708 ILM_WALKER_RELE(ill); 18709 } 18710 rw_exit(&ipst->ips_ill_g_lock); 18711 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18712 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18713 (int)optp->level, (int)optp->name, (int)optp->len)); 18714 qreply(q, mpctl); 18715 return (mp2ctl); 18716 } 18717 18718 /* IPv6 multicast group membership. */ 18719 static mblk_t * 18720 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18721 { 18722 struct opthdr *optp; 18723 mblk_t *mp2ctl; 18724 ill_t *ill; 18725 ilm_t *ilm; 18726 ipv6_member_t ipm6; 18727 mblk_t *mp_tail = NULL; 18728 ill_walk_context_t ctx; 18729 zoneid_t zoneid; 18730 18731 /* 18732 * make a copy of the original message 18733 */ 18734 mp2ctl = copymsg(mpctl); 18735 zoneid = Q_TO_CONN(q)->conn_zoneid; 18736 18737 /* ip6GroupMember table */ 18738 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18739 optp->level = MIB2_IP6; 18740 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18741 18742 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18743 ill = ILL_START_WALK_V6(&ctx, ipst); 18744 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18745 ILM_WALKER_HOLD(ill); 18746 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18747 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18748 ASSERT(ilm->ilm_ipif == NULL); 18749 ASSERT(ilm->ilm_ill != NULL); 18750 if (ilm->ilm_zoneid != zoneid) 18751 continue; /* not this zone */ 18752 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18753 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18754 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18755 if (!snmp_append_data2(mpctl->b_cont, 18756 &mp_tail, 18757 (char *)&ipm6, (int)sizeof (ipm6))) { 18758 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18759 "failed to allocate %u bytes\n", 18760 (uint_t)sizeof (ipm6))); 18761 } 18762 } 18763 ILM_WALKER_RELE(ill); 18764 } 18765 rw_exit(&ipst->ips_ill_g_lock); 18766 18767 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18768 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18769 (int)optp->level, (int)optp->name, (int)optp->len)); 18770 qreply(q, mpctl); 18771 return (mp2ctl); 18772 } 18773 18774 /* IP multicast filtered sources */ 18775 static mblk_t * 18776 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18777 { 18778 struct opthdr *optp; 18779 mblk_t *mp2ctl; 18780 ill_t *ill; 18781 ipif_t *ipif; 18782 ilm_t *ilm; 18783 ip_grpsrc_t ips; 18784 mblk_t *mp_tail = NULL; 18785 ill_walk_context_t ctx; 18786 zoneid_t zoneid; 18787 int i; 18788 slist_t *sl; 18789 18790 /* 18791 * make a copy of the original message 18792 */ 18793 mp2ctl = copymsg(mpctl); 18794 zoneid = Q_TO_CONN(q)->conn_zoneid; 18795 18796 /* ipGroupSource table */ 18797 optp = (struct opthdr *)&mpctl->b_rptr[ 18798 sizeof (struct T_optmgmt_ack)]; 18799 optp->level = MIB2_IP; 18800 optp->name = EXPER_IP_GROUP_SOURCES; 18801 18802 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18803 ill = ILL_START_WALK_V4(&ctx, ipst); 18804 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18805 ILM_WALKER_HOLD(ill); 18806 for (ipif = ill->ill_ipif; ipif != NULL; 18807 ipif = ipif->ipif_next) { 18808 if (ipif->ipif_zoneid != zoneid) 18809 continue; /* not this zone */ 18810 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18811 OCTET_LENGTH); 18812 ips.ipGroupSourceIfIndex.o_length = 18813 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18814 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18815 ASSERT(ilm->ilm_ipif != NULL); 18816 ASSERT(ilm->ilm_ill == NULL); 18817 sl = ilm->ilm_filter; 18818 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18819 continue; 18820 ips.ipGroupSourceGroup = ilm->ilm_addr; 18821 for (i = 0; i < sl->sl_numsrc; i++) { 18822 if (!IN6_IS_ADDR_V4MAPPED( 18823 &sl->sl_addr[i])) 18824 continue; 18825 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18826 ips.ipGroupSourceAddress); 18827 if (snmp_append_data2(mpctl->b_cont, 18828 &mp_tail, (char *)&ips, 18829 (int)sizeof (ips)) == 0) { 18830 ip1dbg(("ip_snmp_get_mib2_" 18831 "ip_group_src: failed to " 18832 "allocate %u bytes\n", 18833 (uint_t)sizeof (ips))); 18834 } 18835 } 18836 } 18837 } 18838 ILM_WALKER_RELE(ill); 18839 } 18840 rw_exit(&ipst->ips_ill_g_lock); 18841 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18842 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18843 (int)optp->level, (int)optp->name, (int)optp->len)); 18844 qreply(q, mpctl); 18845 return (mp2ctl); 18846 } 18847 18848 /* IPv6 multicast filtered sources. */ 18849 static mblk_t * 18850 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18851 { 18852 struct opthdr *optp; 18853 mblk_t *mp2ctl; 18854 ill_t *ill; 18855 ilm_t *ilm; 18856 ipv6_grpsrc_t ips6; 18857 mblk_t *mp_tail = NULL; 18858 ill_walk_context_t ctx; 18859 zoneid_t zoneid; 18860 int i; 18861 slist_t *sl; 18862 18863 /* 18864 * make a copy of the original message 18865 */ 18866 mp2ctl = copymsg(mpctl); 18867 zoneid = Q_TO_CONN(q)->conn_zoneid; 18868 18869 /* ip6GroupMember table */ 18870 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18871 optp->level = MIB2_IP6; 18872 optp->name = EXPER_IP6_GROUP_SOURCES; 18873 18874 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18875 ill = ILL_START_WALK_V6(&ctx, ipst); 18876 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18877 ILM_WALKER_HOLD(ill); 18878 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18879 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18880 ASSERT(ilm->ilm_ipif == NULL); 18881 ASSERT(ilm->ilm_ill != NULL); 18882 sl = ilm->ilm_filter; 18883 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18884 continue; 18885 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18886 for (i = 0; i < sl->sl_numsrc; i++) { 18887 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18888 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18889 (char *)&ips6, (int)sizeof (ips6))) { 18890 ip1dbg(("ip_snmp_get_mib2_ip6_" 18891 "group_src: failed to allocate " 18892 "%u bytes\n", 18893 (uint_t)sizeof (ips6))); 18894 } 18895 } 18896 } 18897 ILM_WALKER_RELE(ill); 18898 } 18899 rw_exit(&ipst->ips_ill_g_lock); 18900 18901 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18902 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18903 (int)optp->level, (int)optp->name, (int)optp->len)); 18904 qreply(q, mpctl); 18905 return (mp2ctl); 18906 } 18907 18908 /* Multicast routing virtual interface table. */ 18909 static mblk_t * 18910 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18911 { 18912 struct opthdr *optp; 18913 mblk_t *mp2ctl; 18914 18915 /* 18916 * make a copy of the original message 18917 */ 18918 mp2ctl = copymsg(mpctl); 18919 18920 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18921 optp->level = EXPER_DVMRP; 18922 optp->name = EXPER_DVMRP_VIF; 18923 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18924 ip0dbg(("ip_mroute_vif: failed\n")); 18925 } 18926 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18927 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18928 (int)optp->level, (int)optp->name, (int)optp->len)); 18929 qreply(q, mpctl); 18930 return (mp2ctl); 18931 } 18932 18933 /* Multicast routing table. */ 18934 static mblk_t * 18935 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18936 { 18937 struct opthdr *optp; 18938 mblk_t *mp2ctl; 18939 18940 /* 18941 * make a copy of the original message 18942 */ 18943 mp2ctl = copymsg(mpctl); 18944 18945 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18946 optp->level = EXPER_DVMRP; 18947 optp->name = EXPER_DVMRP_MRT; 18948 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18949 ip0dbg(("ip_mroute_mrt: failed\n")); 18950 } 18951 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18952 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18953 (int)optp->level, (int)optp->name, (int)optp->len)); 18954 qreply(q, mpctl); 18955 return (mp2ctl); 18956 } 18957 18958 /* 18959 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18960 * in one IRE walk. 18961 */ 18962 static mblk_t * 18963 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18964 { 18965 struct opthdr *optp; 18966 mblk_t *mp2ctl; /* Returned */ 18967 mblk_t *mp3ctl; /* nettomedia */ 18968 mblk_t *mp4ctl; /* routeattrs */ 18969 iproutedata_t ird; 18970 zoneid_t zoneid; 18971 18972 /* 18973 * make copies of the original message 18974 * - mp2ctl is returned unchanged to the caller for his use 18975 * - mpctl is sent upstream as ipRouteEntryTable 18976 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18977 * - mp4ctl is sent upstream as ipRouteAttributeTable 18978 */ 18979 mp2ctl = copymsg(mpctl); 18980 mp3ctl = copymsg(mpctl); 18981 mp4ctl = copymsg(mpctl); 18982 if (mp3ctl == NULL || mp4ctl == NULL) { 18983 freemsg(mp4ctl); 18984 freemsg(mp3ctl); 18985 freemsg(mp2ctl); 18986 freemsg(mpctl); 18987 return (NULL); 18988 } 18989 18990 bzero(&ird, sizeof (ird)); 18991 18992 ird.ird_route.lp_head = mpctl->b_cont; 18993 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18994 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18995 18996 zoneid = Q_TO_CONN(q)->conn_zoneid; 18997 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18998 18999 /* ipRouteEntryTable in mpctl */ 19000 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19001 optp->level = MIB2_IP; 19002 optp->name = MIB2_IP_ROUTE; 19003 optp->len = msgdsize(ird.ird_route.lp_head); 19004 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19005 (int)optp->level, (int)optp->name, (int)optp->len)); 19006 qreply(q, mpctl); 19007 19008 /* ipNetToMediaEntryTable in mp3ctl */ 19009 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19010 optp->level = MIB2_IP; 19011 optp->name = MIB2_IP_MEDIA; 19012 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19013 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19014 (int)optp->level, (int)optp->name, (int)optp->len)); 19015 qreply(q, mp3ctl); 19016 19017 /* ipRouteAttributeTable in mp4ctl */ 19018 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19019 optp->level = MIB2_IP; 19020 optp->name = EXPER_IP_RTATTR; 19021 optp->len = msgdsize(ird.ird_attrs.lp_head); 19022 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19023 (int)optp->level, (int)optp->name, (int)optp->len)); 19024 if (optp->len == 0) 19025 freemsg(mp4ctl); 19026 else 19027 qreply(q, mp4ctl); 19028 19029 return (mp2ctl); 19030 } 19031 19032 /* 19033 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19034 * ipv6NetToMediaEntryTable in an NDP walk. 19035 */ 19036 static mblk_t * 19037 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19038 { 19039 struct opthdr *optp; 19040 mblk_t *mp2ctl; /* Returned */ 19041 mblk_t *mp3ctl; /* nettomedia */ 19042 mblk_t *mp4ctl; /* routeattrs */ 19043 iproutedata_t ird; 19044 zoneid_t zoneid; 19045 19046 /* 19047 * make copies of the original message 19048 * - mp2ctl is returned unchanged to the caller for his use 19049 * - mpctl is sent upstream as ipv6RouteEntryTable 19050 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19051 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19052 */ 19053 mp2ctl = copymsg(mpctl); 19054 mp3ctl = copymsg(mpctl); 19055 mp4ctl = copymsg(mpctl); 19056 if (mp3ctl == NULL || mp4ctl == NULL) { 19057 freemsg(mp4ctl); 19058 freemsg(mp3ctl); 19059 freemsg(mp2ctl); 19060 freemsg(mpctl); 19061 return (NULL); 19062 } 19063 19064 bzero(&ird, sizeof (ird)); 19065 19066 ird.ird_route.lp_head = mpctl->b_cont; 19067 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19068 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19069 19070 zoneid = Q_TO_CONN(q)->conn_zoneid; 19071 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19072 19073 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19074 optp->level = MIB2_IP6; 19075 optp->name = MIB2_IP6_ROUTE; 19076 optp->len = msgdsize(ird.ird_route.lp_head); 19077 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19078 (int)optp->level, (int)optp->name, (int)optp->len)); 19079 qreply(q, mpctl); 19080 19081 /* ipv6NetToMediaEntryTable in mp3ctl */ 19082 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19083 19084 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19085 optp->level = MIB2_IP6; 19086 optp->name = MIB2_IP6_MEDIA; 19087 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19088 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19089 (int)optp->level, (int)optp->name, (int)optp->len)); 19090 qreply(q, mp3ctl); 19091 19092 /* ipv6RouteAttributeTable in mp4ctl */ 19093 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19094 optp->level = MIB2_IP6; 19095 optp->name = EXPER_IP_RTATTR; 19096 optp->len = msgdsize(ird.ird_attrs.lp_head); 19097 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19098 (int)optp->level, (int)optp->name, (int)optp->len)); 19099 if (optp->len == 0) 19100 freemsg(mp4ctl); 19101 else 19102 qreply(q, mp4ctl); 19103 19104 return (mp2ctl); 19105 } 19106 19107 /* 19108 * IPv6 mib: One per ill 19109 */ 19110 static mblk_t * 19111 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19112 { 19113 struct opthdr *optp; 19114 mblk_t *mp2ctl; 19115 ill_t *ill; 19116 ill_walk_context_t ctx; 19117 mblk_t *mp_tail = NULL; 19118 19119 /* 19120 * Make a copy of the original message 19121 */ 19122 mp2ctl = copymsg(mpctl); 19123 19124 /* fixed length IPv6 structure ... */ 19125 19126 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19127 optp->level = MIB2_IP6; 19128 optp->name = 0; 19129 /* Include "unknown interface" ip6_mib */ 19130 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19131 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19132 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19133 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19134 ipst->ips_ipv6_forward ? 1 : 2); 19135 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19136 ipst->ips_ipv6_def_hops); 19137 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19138 sizeof (mib2_ipIfStatsEntry_t)); 19139 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19140 sizeof (mib2_ipv6AddrEntry_t)); 19141 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19142 sizeof (mib2_ipv6RouteEntry_t)); 19143 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19144 sizeof (mib2_ipv6NetToMediaEntry_t)); 19145 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19146 sizeof (ipv6_member_t)); 19147 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19148 sizeof (ipv6_grpsrc_t)); 19149 19150 /* 19151 * Synchronize 64- and 32-bit counters 19152 */ 19153 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19154 ipIfStatsHCInReceives); 19155 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19156 ipIfStatsHCInDelivers); 19157 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19158 ipIfStatsHCOutRequests); 19159 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19160 ipIfStatsHCOutForwDatagrams); 19161 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19162 ipIfStatsHCOutMcastPkts); 19163 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19164 ipIfStatsHCInMcastPkts); 19165 19166 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19167 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19168 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19169 (uint_t)sizeof (ipst->ips_ip6_mib))); 19170 } 19171 19172 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19173 ill = ILL_START_WALK_V6(&ctx, ipst); 19174 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19175 ill->ill_ip_mib->ipIfStatsIfIndex = 19176 ill->ill_phyint->phyint_ifindex; 19177 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19178 ipst->ips_ipv6_forward ? 1 : 2); 19179 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19180 ill->ill_max_hops); 19181 19182 /* 19183 * Synchronize 64- and 32-bit counters 19184 */ 19185 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19186 ipIfStatsHCInReceives); 19187 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19188 ipIfStatsHCInDelivers); 19189 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19190 ipIfStatsHCOutRequests); 19191 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19192 ipIfStatsHCOutForwDatagrams); 19193 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19194 ipIfStatsHCOutMcastPkts); 19195 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19196 ipIfStatsHCInMcastPkts); 19197 19198 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19199 (char *)ill->ill_ip_mib, 19200 (int)sizeof (*ill->ill_ip_mib))) { 19201 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19202 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19203 } 19204 } 19205 rw_exit(&ipst->ips_ill_g_lock); 19206 19207 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19208 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19209 (int)optp->level, (int)optp->name, (int)optp->len)); 19210 qreply(q, mpctl); 19211 return (mp2ctl); 19212 } 19213 19214 /* 19215 * ICMPv6 mib: One per ill 19216 */ 19217 static mblk_t * 19218 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19219 { 19220 struct opthdr *optp; 19221 mblk_t *mp2ctl; 19222 ill_t *ill; 19223 ill_walk_context_t ctx; 19224 mblk_t *mp_tail = NULL; 19225 /* 19226 * Make a copy of the original message 19227 */ 19228 mp2ctl = copymsg(mpctl); 19229 19230 /* fixed length ICMPv6 structure ... */ 19231 19232 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19233 optp->level = MIB2_ICMP6; 19234 optp->name = 0; 19235 /* Include "unknown interface" icmp6_mib */ 19236 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19237 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19238 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19239 sizeof (mib2_ipv6IfIcmpEntry_t); 19240 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19241 (char *)&ipst->ips_icmp6_mib, 19242 (int)sizeof (ipst->ips_icmp6_mib))) { 19243 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19244 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19245 } 19246 19247 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19248 ill = ILL_START_WALK_V6(&ctx, ipst); 19249 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19250 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19251 ill->ill_phyint->phyint_ifindex; 19252 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19253 (char *)ill->ill_icmp6_mib, 19254 (int)sizeof (*ill->ill_icmp6_mib))) { 19255 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19256 "%u bytes\n", 19257 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19258 } 19259 } 19260 rw_exit(&ipst->ips_ill_g_lock); 19261 19262 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19263 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19264 (int)optp->level, (int)optp->name, (int)optp->len)); 19265 qreply(q, mpctl); 19266 return (mp2ctl); 19267 } 19268 19269 /* 19270 * ire_walk routine to create both ipRouteEntryTable and 19271 * ipRouteAttributeTable in one IRE walk 19272 */ 19273 static void 19274 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19275 { 19276 ill_t *ill; 19277 ipif_t *ipif; 19278 mib2_ipRouteEntry_t *re; 19279 mib2_ipAttributeEntry_t *iae, *iaeptr; 19280 ipaddr_t gw_addr; 19281 tsol_ire_gw_secattr_t *attrp; 19282 tsol_gc_t *gc = NULL; 19283 tsol_gcgrp_t *gcgrp = NULL; 19284 uint_t sacnt = 0; 19285 int i; 19286 19287 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19288 19289 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19290 return; 19291 19292 if ((attrp = ire->ire_gw_secattr) != NULL) { 19293 mutex_enter(&attrp->igsa_lock); 19294 if ((gc = attrp->igsa_gc) != NULL) { 19295 gcgrp = gc->gc_grp; 19296 ASSERT(gcgrp != NULL); 19297 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19298 sacnt = 1; 19299 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19300 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19301 gc = gcgrp->gcgrp_head; 19302 sacnt = gcgrp->gcgrp_count; 19303 } 19304 mutex_exit(&attrp->igsa_lock); 19305 19306 /* do nothing if there's no gc to report */ 19307 if (gc == NULL) { 19308 ASSERT(sacnt == 0); 19309 if (gcgrp != NULL) { 19310 /* we might as well drop the lock now */ 19311 rw_exit(&gcgrp->gcgrp_rwlock); 19312 gcgrp = NULL; 19313 } 19314 attrp = NULL; 19315 } 19316 19317 ASSERT(gc == NULL || (gcgrp != NULL && 19318 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19319 } 19320 ASSERT(sacnt == 0 || gc != NULL); 19321 19322 if (sacnt != 0 && 19323 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19324 kmem_free(re, sizeof (*re)); 19325 rw_exit(&gcgrp->gcgrp_rwlock); 19326 return; 19327 } 19328 19329 /* 19330 * Return all IRE types for route table... let caller pick and choose 19331 */ 19332 re->ipRouteDest = ire->ire_addr; 19333 ipif = ire->ire_ipif; 19334 re->ipRouteIfIndex.o_length = 0; 19335 if (ire->ire_type == IRE_CACHE) { 19336 ill = (ill_t *)ire->ire_stq->q_ptr; 19337 re->ipRouteIfIndex.o_length = 19338 ill->ill_name_length == 0 ? 0 : 19339 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19340 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19341 re->ipRouteIfIndex.o_length); 19342 } else if (ipif != NULL) { 19343 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19344 re->ipRouteIfIndex.o_length = 19345 mi_strlen(re->ipRouteIfIndex.o_bytes); 19346 } 19347 re->ipRouteMetric1 = -1; 19348 re->ipRouteMetric2 = -1; 19349 re->ipRouteMetric3 = -1; 19350 re->ipRouteMetric4 = -1; 19351 19352 gw_addr = ire->ire_gateway_addr; 19353 19354 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19355 re->ipRouteNextHop = ire->ire_src_addr; 19356 else 19357 re->ipRouteNextHop = gw_addr; 19358 /* indirect(4), direct(3), or invalid(2) */ 19359 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19360 re->ipRouteType = 2; 19361 else 19362 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19363 re->ipRouteProto = -1; 19364 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19365 re->ipRouteMask = ire->ire_mask; 19366 re->ipRouteMetric5 = -1; 19367 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19368 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19369 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19370 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19371 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19372 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19373 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19374 re->ipRouteInfo.re_flags = ire->ire_flags; 19375 19376 if (ire->ire_flags & RTF_DYNAMIC) { 19377 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19378 } else { 19379 re->ipRouteInfo.re_ire_type = ire->ire_type; 19380 } 19381 19382 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19383 (char *)re, (int)sizeof (*re))) { 19384 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19385 (uint_t)sizeof (*re))); 19386 } 19387 19388 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19389 iaeptr->iae_routeidx = ird->ird_idx; 19390 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19391 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19392 } 19393 19394 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19395 (char *)iae, sacnt * sizeof (*iae))) { 19396 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19397 (unsigned)(sacnt * sizeof (*iae)))); 19398 } 19399 19400 /* bump route index for next pass */ 19401 ird->ird_idx++; 19402 19403 kmem_free(re, sizeof (*re)); 19404 if (sacnt != 0) 19405 kmem_free(iae, sacnt * sizeof (*iae)); 19406 19407 if (gcgrp != NULL) 19408 rw_exit(&gcgrp->gcgrp_rwlock); 19409 } 19410 19411 /* 19412 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19413 */ 19414 static void 19415 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19416 { 19417 ill_t *ill; 19418 ipif_t *ipif; 19419 mib2_ipv6RouteEntry_t *re; 19420 mib2_ipAttributeEntry_t *iae, *iaeptr; 19421 in6_addr_t gw_addr_v6; 19422 tsol_ire_gw_secattr_t *attrp; 19423 tsol_gc_t *gc = NULL; 19424 tsol_gcgrp_t *gcgrp = NULL; 19425 uint_t sacnt = 0; 19426 int i; 19427 19428 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19429 19430 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19431 return; 19432 19433 if ((attrp = ire->ire_gw_secattr) != NULL) { 19434 mutex_enter(&attrp->igsa_lock); 19435 if ((gc = attrp->igsa_gc) != NULL) { 19436 gcgrp = gc->gc_grp; 19437 ASSERT(gcgrp != NULL); 19438 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19439 sacnt = 1; 19440 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19441 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19442 gc = gcgrp->gcgrp_head; 19443 sacnt = gcgrp->gcgrp_count; 19444 } 19445 mutex_exit(&attrp->igsa_lock); 19446 19447 /* do nothing if there's no gc to report */ 19448 if (gc == NULL) { 19449 ASSERT(sacnt == 0); 19450 if (gcgrp != NULL) { 19451 /* we might as well drop the lock now */ 19452 rw_exit(&gcgrp->gcgrp_rwlock); 19453 gcgrp = NULL; 19454 } 19455 attrp = NULL; 19456 } 19457 19458 ASSERT(gc == NULL || (gcgrp != NULL && 19459 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19460 } 19461 ASSERT(sacnt == 0 || gc != NULL); 19462 19463 if (sacnt != 0 && 19464 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19465 kmem_free(re, sizeof (*re)); 19466 rw_exit(&gcgrp->gcgrp_rwlock); 19467 return; 19468 } 19469 19470 /* 19471 * Return all IRE types for route table... let caller pick and choose 19472 */ 19473 re->ipv6RouteDest = ire->ire_addr_v6; 19474 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19475 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19476 re->ipv6RouteIfIndex.o_length = 0; 19477 ipif = ire->ire_ipif; 19478 if (ire->ire_type == IRE_CACHE) { 19479 ill = (ill_t *)ire->ire_stq->q_ptr; 19480 re->ipv6RouteIfIndex.o_length = 19481 ill->ill_name_length == 0 ? 0 : 19482 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19483 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19484 re->ipv6RouteIfIndex.o_length); 19485 } else if (ipif != NULL) { 19486 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19487 re->ipv6RouteIfIndex.o_length = 19488 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19489 } 19490 19491 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19492 19493 mutex_enter(&ire->ire_lock); 19494 gw_addr_v6 = ire->ire_gateway_addr_v6; 19495 mutex_exit(&ire->ire_lock); 19496 19497 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19498 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19499 else 19500 re->ipv6RouteNextHop = gw_addr_v6; 19501 19502 /* remote(4), local(3), or discard(2) */ 19503 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19504 re->ipv6RouteType = 2; 19505 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19506 re->ipv6RouteType = 3; 19507 else 19508 re->ipv6RouteType = 4; 19509 19510 re->ipv6RouteProtocol = -1; 19511 re->ipv6RoutePolicy = 0; 19512 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19513 re->ipv6RouteNextHopRDI = 0; 19514 re->ipv6RouteWeight = 0; 19515 re->ipv6RouteMetric = 0; 19516 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19517 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19518 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19519 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19520 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19521 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19522 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19523 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19524 19525 if (ire->ire_flags & RTF_DYNAMIC) { 19526 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19527 } else { 19528 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19529 } 19530 19531 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19532 (char *)re, (int)sizeof (*re))) { 19533 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19534 (uint_t)sizeof (*re))); 19535 } 19536 19537 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19538 iaeptr->iae_routeidx = ird->ird_idx; 19539 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19540 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19541 } 19542 19543 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19544 (char *)iae, sacnt * sizeof (*iae))) { 19545 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19546 (unsigned)(sacnt * sizeof (*iae)))); 19547 } 19548 19549 /* bump route index for next pass */ 19550 ird->ird_idx++; 19551 19552 kmem_free(re, sizeof (*re)); 19553 if (sacnt != 0) 19554 kmem_free(iae, sacnt * sizeof (*iae)); 19555 19556 if (gcgrp != NULL) 19557 rw_exit(&gcgrp->gcgrp_rwlock); 19558 } 19559 19560 /* 19561 * ndp_walk routine to create ipv6NetToMediaEntryTable 19562 */ 19563 static int 19564 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19565 { 19566 ill_t *ill; 19567 mib2_ipv6NetToMediaEntry_t ntme; 19568 dl_unitdata_req_t *dl; 19569 19570 ill = nce->nce_ill; 19571 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19572 return (0); 19573 19574 /* 19575 * Neighbor cache entry attached to IRE with on-link 19576 * destination. 19577 */ 19578 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19579 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19580 if ((ill->ill_flags & ILLF_XRESOLV) && 19581 (nce->nce_res_mp != NULL)) { 19582 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19583 ntme.ipv6NetToMediaPhysAddress.o_length = 19584 dl->dl_dest_addr_length; 19585 } else { 19586 ntme.ipv6NetToMediaPhysAddress.o_length = 19587 ill->ill_phys_addr_length; 19588 } 19589 if (nce->nce_res_mp != NULL) { 19590 bcopy((char *)nce->nce_res_mp->b_rptr + 19591 NCE_LL_ADDR_OFFSET(ill), 19592 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19593 ntme.ipv6NetToMediaPhysAddress.o_length); 19594 } else { 19595 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19596 ill->ill_phys_addr_length); 19597 } 19598 /* 19599 * Note: Returns ND_* states. Should be: 19600 * reachable(1), stale(2), delay(3), probe(4), 19601 * invalid(5), unknown(6) 19602 */ 19603 ntme.ipv6NetToMediaState = nce->nce_state; 19604 ntme.ipv6NetToMediaLastUpdated = 0; 19605 19606 /* other(1), dynamic(2), static(3), local(4) */ 19607 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19608 ntme.ipv6NetToMediaType = 4; 19609 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19610 ntme.ipv6NetToMediaType = 1; 19611 } else { 19612 ntme.ipv6NetToMediaType = 2; 19613 } 19614 19615 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19616 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19617 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19618 (uint_t)sizeof (ntme))); 19619 } 19620 return (0); 19621 } 19622 19623 /* 19624 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19625 */ 19626 /* ARGSUSED */ 19627 int 19628 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19629 { 19630 switch (level) { 19631 case MIB2_IP: 19632 case MIB2_ICMP: 19633 switch (name) { 19634 default: 19635 break; 19636 } 19637 return (1); 19638 default: 19639 return (1); 19640 } 19641 } 19642 19643 /* 19644 * When there exists both a 64- and 32-bit counter of a particular type 19645 * (i.e., InReceives), only the 64-bit counters are added. 19646 */ 19647 void 19648 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19649 { 19650 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19651 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19652 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19653 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19654 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19655 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19656 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19657 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19658 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19659 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19660 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19661 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19662 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19663 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19664 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19665 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19666 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19667 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19668 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19669 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19670 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19671 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19672 o2->ipIfStatsInWrongIPVersion); 19673 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19674 o2->ipIfStatsInWrongIPVersion); 19675 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19676 o2->ipIfStatsOutSwitchIPVersion); 19677 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19678 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19679 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19680 o2->ipIfStatsHCInForwDatagrams); 19681 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19682 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19683 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19684 o2->ipIfStatsHCOutForwDatagrams); 19685 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19686 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19687 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19688 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19689 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19690 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19691 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19692 o2->ipIfStatsHCOutMcastOctets); 19693 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19694 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19695 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19696 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19697 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19698 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19699 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19700 } 19701 19702 void 19703 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19704 { 19705 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19706 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19707 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19708 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19709 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19710 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19711 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19712 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19713 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19714 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19715 o2->ipv6IfIcmpInRouterSolicits); 19716 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19717 o2->ipv6IfIcmpInRouterAdvertisements); 19718 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19719 o2->ipv6IfIcmpInNeighborSolicits); 19720 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19721 o2->ipv6IfIcmpInNeighborAdvertisements); 19722 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19723 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19724 o2->ipv6IfIcmpInGroupMembQueries); 19725 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19726 o2->ipv6IfIcmpInGroupMembResponses); 19727 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19728 o2->ipv6IfIcmpInGroupMembReductions); 19729 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19730 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19731 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19732 o2->ipv6IfIcmpOutDestUnreachs); 19733 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19734 o2->ipv6IfIcmpOutAdminProhibs); 19735 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19736 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19737 o2->ipv6IfIcmpOutParmProblems); 19738 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19739 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19740 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19741 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19742 o2->ipv6IfIcmpOutRouterSolicits); 19743 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19744 o2->ipv6IfIcmpOutRouterAdvertisements); 19745 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19746 o2->ipv6IfIcmpOutNeighborSolicits); 19747 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19748 o2->ipv6IfIcmpOutNeighborAdvertisements); 19749 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19750 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19751 o2->ipv6IfIcmpOutGroupMembQueries); 19752 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19753 o2->ipv6IfIcmpOutGroupMembResponses); 19754 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19755 o2->ipv6IfIcmpOutGroupMembReductions); 19756 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19757 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19758 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19759 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19760 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19761 o2->ipv6IfIcmpInBadNeighborSolicitations); 19762 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19763 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19764 o2->ipv6IfIcmpInGroupMembTotal); 19765 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19766 o2->ipv6IfIcmpInGroupMembBadQueries); 19767 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19768 o2->ipv6IfIcmpInGroupMembBadReports); 19769 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19770 o2->ipv6IfIcmpInGroupMembOurReports); 19771 } 19772 19773 /* 19774 * Called before the options are updated to check if this packet will 19775 * be source routed from here. 19776 * This routine assumes that the options are well formed i.e. that they 19777 * have already been checked. 19778 */ 19779 static boolean_t 19780 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19781 { 19782 ipoptp_t opts; 19783 uchar_t *opt; 19784 uint8_t optval; 19785 uint8_t optlen; 19786 ipaddr_t dst; 19787 ire_t *ire; 19788 19789 if (IS_SIMPLE_IPH(ipha)) { 19790 ip2dbg(("not source routed\n")); 19791 return (B_FALSE); 19792 } 19793 dst = ipha->ipha_dst; 19794 for (optval = ipoptp_first(&opts, ipha); 19795 optval != IPOPT_EOL; 19796 optval = ipoptp_next(&opts)) { 19797 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19798 opt = opts.ipoptp_cur; 19799 optlen = opts.ipoptp_len; 19800 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19801 optval, optlen)); 19802 switch (optval) { 19803 uint32_t off; 19804 case IPOPT_SSRR: 19805 case IPOPT_LSRR: 19806 /* 19807 * If dst is one of our addresses and there are some 19808 * entries left in the source route return (true). 19809 */ 19810 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19811 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19812 if (ire == NULL) { 19813 ip2dbg(("ip_source_routed: not next" 19814 " source route 0x%x\n", 19815 ntohl(dst))); 19816 return (B_FALSE); 19817 } 19818 ire_refrele(ire); 19819 off = opt[IPOPT_OFFSET]; 19820 off--; 19821 if (optlen < IP_ADDR_LEN || 19822 off > optlen - IP_ADDR_LEN) { 19823 /* End of source route */ 19824 ip1dbg(("ip_source_routed: end of SR\n")); 19825 return (B_FALSE); 19826 } 19827 return (B_TRUE); 19828 } 19829 } 19830 ip2dbg(("not source routed\n")); 19831 return (B_FALSE); 19832 } 19833 19834 /* 19835 * Check if the packet contains any source route. 19836 */ 19837 static boolean_t 19838 ip_source_route_included(ipha_t *ipha) 19839 { 19840 ipoptp_t opts; 19841 uint8_t optval; 19842 19843 if (IS_SIMPLE_IPH(ipha)) 19844 return (B_FALSE); 19845 for (optval = ipoptp_first(&opts, ipha); 19846 optval != IPOPT_EOL; 19847 optval = ipoptp_next(&opts)) { 19848 switch (optval) { 19849 case IPOPT_SSRR: 19850 case IPOPT_LSRR: 19851 return (B_TRUE); 19852 } 19853 } 19854 return (B_FALSE); 19855 } 19856 19857 /* 19858 * Called when the IRE expiration timer fires. 19859 */ 19860 void 19861 ip_trash_timer_expire(void *args) 19862 { 19863 int flush_flag = 0; 19864 ire_expire_arg_t iea; 19865 ip_stack_t *ipst = (ip_stack_t *)args; 19866 19867 iea.iea_ipst = ipst; /* No netstack_hold */ 19868 19869 /* 19870 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19871 * This lock makes sure that a new invocation of this function 19872 * that occurs due to an almost immediate timer firing will not 19873 * progress beyond this point until the current invocation is done 19874 */ 19875 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19876 ipst->ips_ip_ire_expire_id = 0; 19877 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19878 19879 /* Periodic timer */ 19880 if (ipst->ips_ip_ire_arp_time_elapsed >= 19881 ipst->ips_ip_ire_arp_interval) { 19882 /* 19883 * Remove all IRE_CACHE entries since they might 19884 * contain arp information. 19885 */ 19886 flush_flag |= FLUSH_ARP_TIME; 19887 ipst->ips_ip_ire_arp_time_elapsed = 0; 19888 IP_STAT(ipst, ip_ire_arp_timer_expired); 19889 } 19890 if (ipst->ips_ip_ire_rd_time_elapsed >= 19891 ipst->ips_ip_ire_redir_interval) { 19892 /* Remove all redirects */ 19893 flush_flag |= FLUSH_REDIRECT_TIME; 19894 ipst->ips_ip_ire_rd_time_elapsed = 0; 19895 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19896 } 19897 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19898 ipst->ips_ip_ire_pathmtu_interval) { 19899 /* Increase path mtu */ 19900 flush_flag |= FLUSH_MTU_TIME; 19901 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19902 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19903 } 19904 19905 /* 19906 * Optimize for the case when there are no redirects in the 19907 * ftable, that is, no need to walk the ftable in that case. 19908 */ 19909 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19910 iea.iea_flush_flag = flush_flag; 19911 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19912 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19913 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19914 NULL, ALL_ZONES, ipst); 19915 } 19916 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19917 ipst->ips_ip_redirect_cnt > 0) { 19918 iea.iea_flush_flag = flush_flag; 19919 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19920 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19921 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19922 } 19923 if (flush_flag & FLUSH_MTU_TIME) { 19924 /* 19925 * Walk all IPv6 IRE's and update them 19926 * Note that ARP and redirect timers are not 19927 * needed since NUD handles stale entries. 19928 */ 19929 flush_flag = FLUSH_MTU_TIME; 19930 iea.iea_flush_flag = flush_flag; 19931 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19932 ALL_ZONES, ipst); 19933 } 19934 19935 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19936 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19937 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19938 19939 /* 19940 * Hold the lock to serialize timeout calls and prevent 19941 * stale values in ip_ire_expire_id. Otherwise it is possible 19942 * for the timer to fire and a new invocation of this function 19943 * to start before the return value of timeout has been stored 19944 * in ip_ire_expire_id by the current invocation. 19945 */ 19946 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19947 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19948 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19949 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19950 } 19951 19952 /* 19953 * Called by the memory allocator subsystem directly, when the system 19954 * is running low on memory. 19955 */ 19956 /* ARGSUSED */ 19957 void 19958 ip_trash_ire_reclaim(void *args) 19959 { 19960 netstack_handle_t nh; 19961 netstack_t *ns; 19962 19963 netstack_next_init(&nh); 19964 while ((ns = netstack_next(&nh)) != NULL) { 19965 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19966 netstack_rele(ns); 19967 } 19968 netstack_next_fini(&nh); 19969 } 19970 19971 static void 19972 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19973 { 19974 ire_cache_count_t icc; 19975 ire_cache_reclaim_t icr; 19976 ncc_cache_count_t ncc; 19977 nce_cache_reclaim_t ncr; 19978 uint_t delete_cnt; 19979 /* 19980 * Memory reclaim call back. 19981 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19982 * Then, with a target of freeing 1/Nth of IRE_CACHE 19983 * entries, determine what fraction to free for 19984 * each category of IRE_CACHE entries giving absolute priority 19985 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19986 * entry will be freed unless all offlink entries are freed). 19987 */ 19988 icc.icc_total = 0; 19989 icc.icc_unused = 0; 19990 icc.icc_offlink = 0; 19991 icc.icc_pmtu = 0; 19992 icc.icc_onlink = 0; 19993 ire_walk(ire_cache_count, (char *)&icc, ipst); 19994 19995 /* 19996 * Free NCEs for IPv6 like the onlink ires. 19997 */ 19998 ncc.ncc_total = 0; 19999 ncc.ncc_host = 0; 20000 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20001 20002 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20003 icc.icc_pmtu + icc.icc_onlink); 20004 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20005 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20006 if (delete_cnt == 0) 20007 return; 20008 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20009 /* Always delete all unused offlink entries */ 20010 icr.icr_ipst = ipst; 20011 icr.icr_unused = 1; 20012 if (delete_cnt <= icc.icc_unused) { 20013 /* 20014 * Only need to free unused entries. In other words, 20015 * there are enough unused entries to free to meet our 20016 * target number of freed ire cache entries. 20017 */ 20018 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20019 ncr.ncr_host = 0; 20020 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20021 /* 20022 * Only need to free unused entries, plus a fraction of offlink 20023 * entries. It follows from the first if statement that 20024 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20025 */ 20026 delete_cnt -= icc.icc_unused; 20027 /* Round up # deleted by truncating fraction */ 20028 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20029 icr.icr_pmtu = icr.icr_onlink = 0; 20030 ncr.ncr_host = 0; 20031 } else if (delete_cnt <= 20032 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20033 /* 20034 * Free all unused and offlink entries, plus a fraction of 20035 * pmtu entries. It follows from the previous if statement 20036 * that icc_pmtu is non-zero, and that 20037 * delete_cnt != icc_unused + icc_offlink. 20038 */ 20039 icr.icr_offlink = 1; 20040 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20041 /* Round up # deleted by truncating fraction */ 20042 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20043 icr.icr_onlink = 0; 20044 ncr.ncr_host = 0; 20045 } else { 20046 /* 20047 * Free all unused, offlink, and pmtu entries, plus a fraction 20048 * of onlink entries. If we're here, then we know that 20049 * icc_onlink is non-zero, and that 20050 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20051 */ 20052 icr.icr_offlink = icr.icr_pmtu = 1; 20053 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20054 icc.icc_pmtu; 20055 /* Round up # deleted by truncating fraction */ 20056 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20057 /* Using the same delete fraction as for onlink IREs */ 20058 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20059 } 20060 #ifdef DEBUG 20061 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20062 "fractions %d/%d/%d/%d\n", 20063 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20064 icc.icc_unused, icc.icc_offlink, 20065 icc.icc_pmtu, icc.icc_onlink, 20066 icr.icr_unused, icr.icr_offlink, 20067 icr.icr_pmtu, icr.icr_onlink)); 20068 #endif 20069 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20070 if (ncr.ncr_host != 0) 20071 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20072 (uchar_t *)&ncr, ipst); 20073 #ifdef DEBUG 20074 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20075 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20076 ire_walk(ire_cache_count, (char *)&icc, ipst); 20077 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20078 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20079 icc.icc_pmtu, icc.icc_onlink)); 20080 #endif 20081 } 20082 20083 /* 20084 * ip_unbind is called when a copy of an unbind request is received from the 20085 * upper level protocol. We remove this conn from any fanout hash list it is 20086 * on, and zero out the bind information. No reply is expected up above. 20087 */ 20088 mblk_t * 20089 ip_unbind(queue_t *q, mblk_t *mp) 20090 { 20091 conn_t *connp = Q_TO_CONN(q); 20092 20093 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20094 20095 if (is_system_labeled() && connp->conn_anon_port) { 20096 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20097 connp->conn_mlp_type, connp->conn_ulp, 20098 ntohs(connp->conn_lport), B_FALSE); 20099 connp->conn_anon_port = 0; 20100 } 20101 connp->conn_mlp_type = mlptSingle; 20102 20103 ipcl_hash_remove(connp); 20104 20105 ASSERT(mp->b_cont == NULL); 20106 /* 20107 * Convert mp into a T_OK_ACK 20108 */ 20109 mp = mi_tpi_ok_ack_alloc(mp); 20110 20111 /* 20112 * should not happen in practice... T_OK_ACK is smaller than the 20113 * original message. 20114 */ 20115 if (mp == NULL) 20116 return (NULL); 20117 20118 return (mp); 20119 } 20120 20121 /* 20122 * Write side put procedure. Outbound data, IOCTLs, responses from 20123 * resolvers, etc, come down through here. 20124 * 20125 * arg2 is always a queue_t *. 20126 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20127 * the zoneid. 20128 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20129 */ 20130 void 20131 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20132 { 20133 ip_output_options(arg, mp, arg2, caller, &zero_info); 20134 } 20135 20136 void 20137 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20138 ip_opt_info_t *infop) 20139 { 20140 conn_t *connp = NULL; 20141 queue_t *q = (queue_t *)arg2; 20142 ipha_t *ipha; 20143 #define rptr ((uchar_t *)ipha) 20144 ire_t *ire = NULL; 20145 ire_t *sctp_ire = NULL; 20146 uint32_t v_hlen_tos_len; 20147 ipaddr_t dst; 20148 mblk_t *first_mp = NULL; 20149 boolean_t mctl_present; 20150 ipsec_out_t *io; 20151 int match_flags; 20152 ill_t *attach_ill = NULL; 20153 /* Bind to IPIF_NOFAILOVER ill etc. */ 20154 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20155 ipif_t *dst_ipif; 20156 boolean_t multirt_need_resolve = B_FALSE; 20157 mblk_t *copy_mp = NULL; 20158 int err; 20159 zoneid_t zoneid; 20160 boolean_t need_decref = B_FALSE; 20161 boolean_t ignore_dontroute = B_FALSE; 20162 boolean_t ignore_nexthop = B_FALSE; 20163 boolean_t ip_nexthop = B_FALSE; 20164 ipaddr_t nexthop_addr; 20165 ip_stack_t *ipst; 20166 20167 #ifdef _BIG_ENDIAN 20168 #define V_HLEN (v_hlen_tos_len >> 24) 20169 #else 20170 #define V_HLEN (v_hlen_tos_len & 0xFF) 20171 #endif 20172 20173 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20174 "ip_wput_start: q %p", q); 20175 20176 /* 20177 * ip_wput fast path 20178 */ 20179 20180 /* is packet from ARP ? */ 20181 if (q->q_next != NULL) { 20182 zoneid = (zoneid_t)(uintptr_t)arg; 20183 goto qnext; 20184 } 20185 20186 connp = (conn_t *)arg; 20187 ASSERT(connp != NULL); 20188 zoneid = connp->conn_zoneid; 20189 ipst = connp->conn_netstack->netstack_ip; 20190 20191 /* is queue flow controlled? */ 20192 if ((q->q_first != NULL || connp->conn_draining) && 20193 (caller == IP_WPUT)) { 20194 ASSERT(!need_decref); 20195 (void) putq(q, mp); 20196 return; 20197 } 20198 20199 /* Multidata transmit? */ 20200 if (DB_TYPE(mp) == M_MULTIDATA) { 20201 /* 20202 * We should never get here, since all Multidata messages 20203 * originating from tcp should have been directed over to 20204 * tcp_multisend() in the first place. 20205 */ 20206 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20207 freemsg(mp); 20208 return; 20209 } else if (DB_TYPE(mp) != M_DATA) 20210 goto notdata; 20211 20212 if (mp->b_flag & MSGHASREF) { 20213 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20214 mp->b_flag &= ~MSGHASREF; 20215 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20216 need_decref = B_TRUE; 20217 } 20218 ipha = (ipha_t *)mp->b_rptr; 20219 20220 /* is IP header non-aligned or mblk smaller than basic IP header */ 20221 #ifndef SAFETY_BEFORE_SPEED 20222 if (!OK_32PTR(rptr) || 20223 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20224 goto hdrtoosmall; 20225 #endif 20226 20227 ASSERT(OK_32PTR(ipha)); 20228 20229 /* 20230 * This function assumes that mp points to an IPv4 packet. If it's the 20231 * wrong version, we'll catch it again in ip_output_v6. 20232 * 20233 * Note that this is *only* locally-generated output here, and never 20234 * forwarded data, and that we need to deal only with transports that 20235 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20236 * label.) 20237 */ 20238 if (is_system_labeled() && 20239 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20240 !connp->conn_ulp_labeled) { 20241 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20242 connp->conn_mac_exempt, ipst); 20243 ipha = (ipha_t *)mp->b_rptr; 20244 if (err != 0) { 20245 first_mp = mp; 20246 if (err == EINVAL) 20247 goto icmp_parameter_problem; 20248 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20249 goto discard_pkt; 20250 } 20251 } 20252 20253 ASSERT(infop != NULL); 20254 20255 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20256 /* 20257 * IP_PKTINFO ancillary option is present. 20258 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20259 * allows using address of any zone as the source address. 20260 */ 20261 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20262 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20263 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20264 if (ire == NULL) 20265 goto drop_pkt; 20266 ire_refrele(ire); 20267 ire = NULL; 20268 } 20269 20270 /* 20271 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20272 * passed in IP_PKTINFO. 20273 */ 20274 if (infop->ip_opt_ill_index != 0 && 20275 connp->conn_outgoing_ill == NULL && 20276 connp->conn_nofailover_ill == NULL) { 20277 20278 xmit_ill = ill_lookup_on_ifindex( 20279 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20280 ipst); 20281 20282 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20283 goto drop_pkt; 20284 /* 20285 * check that there is an ipif belonging 20286 * to our zone. IPCL_ZONEID is not used because 20287 * IP_ALLZONES option is valid only when the ill is 20288 * accessible from all zones i.e has a valid ipif in 20289 * all zones. 20290 */ 20291 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20292 goto drop_pkt; 20293 } 20294 } 20295 20296 /* 20297 * If there is a policy, try to attach an ipsec_out in 20298 * the front. At the end, first_mp either points to a 20299 * M_DATA message or IPSEC_OUT message linked to a 20300 * M_DATA message. We have to do it now as we might 20301 * lose the "conn" if we go through ip_newroute. 20302 */ 20303 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20304 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20305 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20306 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20307 if (need_decref) 20308 CONN_DEC_REF(connp); 20309 return; 20310 } else { 20311 ASSERT(mp->b_datap->db_type == M_CTL); 20312 first_mp = mp; 20313 mp = mp->b_cont; 20314 mctl_present = B_TRUE; 20315 } 20316 } else { 20317 first_mp = mp; 20318 mctl_present = B_FALSE; 20319 } 20320 20321 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20322 20323 /* is wrong version or IP options present */ 20324 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20325 goto version_hdrlen_check; 20326 dst = ipha->ipha_dst; 20327 20328 if (connp->conn_nofailover_ill != NULL) { 20329 attach_ill = conn_get_held_ill(connp, 20330 &connp->conn_nofailover_ill, &err); 20331 if (err == ILL_LOOKUP_FAILED) { 20332 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20333 if (need_decref) 20334 CONN_DEC_REF(connp); 20335 freemsg(first_mp); 20336 return; 20337 } 20338 } 20339 20340 /* If IP_BOUND_IF has been set, use that ill. */ 20341 if (connp->conn_outgoing_ill != NULL) { 20342 xmit_ill = conn_get_held_ill(connp, 20343 &connp->conn_outgoing_ill, &err); 20344 if (err == ILL_LOOKUP_FAILED) 20345 goto drop_pkt; 20346 20347 goto send_from_ill; 20348 } 20349 20350 /* is packet multicast? */ 20351 if (CLASSD(dst)) 20352 goto multicast; 20353 20354 /* 20355 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20356 * takes precedence over conn_dontroute and conn_nexthop_set 20357 */ 20358 if (xmit_ill != NULL) 20359 goto send_from_ill; 20360 20361 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20362 /* 20363 * If the destination is a broadcast, local, or loopback 20364 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20365 * standard path. 20366 */ 20367 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20368 if ((ire == NULL) || (ire->ire_type & 20369 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20370 if (ire != NULL) { 20371 ire_refrele(ire); 20372 /* No more access to ire */ 20373 ire = NULL; 20374 } 20375 /* 20376 * bypass routing checks and go directly to interface. 20377 */ 20378 if (connp->conn_dontroute) 20379 goto dontroute; 20380 20381 ASSERT(connp->conn_nexthop_set); 20382 ip_nexthop = B_TRUE; 20383 nexthop_addr = connp->conn_nexthop_v4; 20384 goto send_from_ill; 20385 } 20386 20387 /* Must be a broadcast, a loopback or a local ire */ 20388 ire_refrele(ire); 20389 /* No more access to ire */ 20390 ire = NULL; 20391 } 20392 20393 if (attach_ill != NULL) 20394 goto send_from_ill; 20395 20396 /* 20397 * We cache IRE_CACHEs to avoid lookups. We don't do 20398 * this for the tcp global queue and listen end point 20399 * as it does not really have a real destination to 20400 * talk to. This is also true for SCTP. 20401 */ 20402 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20403 !connp->conn_fully_bound) { 20404 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20405 if (ire == NULL) 20406 goto noirefound; 20407 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20408 "ip_wput_end: q %p (%S)", q, "end"); 20409 20410 /* 20411 * Check if the ire has the RTF_MULTIRT flag, inherited 20412 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20413 */ 20414 if (ire->ire_flags & RTF_MULTIRT) { 20415 20416 /* 20417 * Force the TTL of multirouted packets if required. 20418 * The TTL of such packets is bounded by the 20419 * ip_multirt_ttl ndd variable. 20420 */ 20421 if ((ipst->ips_ip_multirt_ttl > 0) && 20422 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20423 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20424 "(was %d), dst 0x%08x\n", 20425 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20426 ntohl(ire->ire_addr))); 20427 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20428 } 20429 /* 20430 * We look at this point if there are pending 20431 * unresolved routes. ire_multirt_resolvable() 20432 * checks in O(n) that all IRE_OFFSUBNET ire 20433 * entries for the packet's destination and 20434 * flagged RTF_MULTIRT are currently resolved. 20435 * If some remain unresolved, we make a copy 20436 * of the current message. It will be used 20437 * to initiate additional route resolutions. 20438 */ 20439 multirt_need_resolve = 20440 ire_multirt_need_resolve(ire->ire_addr, 20441 MBLK_GETLABEL(first_mp), ipst); 20442 ip2dbg(("ip_wput[TCP]: ire %p, " 20443 "multirt_need_resolve %d, first_mp %p\n", 20444 (void *)ire, multirt_need_resolve, 20445 (void *)first_mp)); 20446 if (multirt_need_resolve) { 20447 copy_mp = copymsg(first_mp); 20448 if (copy_mp != NULL) { 20449 MULTIRT_DEBUG_TAG(copy_mp); 20450 } 20451 } 20452 } 20453 20454 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20455 20456 /* 20457 * Try to resolve another multiroute if 20458 * ire_multirt_need_resolve() deemed it necessary. 20459 */ 20460 if (copy_mp != NULL) 20461 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20462 if (need_decref) 20463 CONN_DEC_REF(connp); 20464 return; 20465 } 20466 20467 /* 20468 * Access to conn_ire_cache. (protected by conn_lock) 20469 * 20470 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20471 * the ire bucket lock here to check for CONDEMNED as it is okay to 20472 * send a packet or two with the IRE_CACHE that is going away. 20473 * Access to the ire requires an ire refhold on the ire prior to 20474 * its use since an interface unplumb thread may delete the cached 20475 * ire and release the refhold at any time. 20476 * 20477 * Caching an ire in the conn_ire_cache 20478 * 20479 * o Caching an ire pointer in the conn requires a strict check for 20480 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20481 * ires before cleaning up the conns. So the caching of an ire pointer 20482 * in the conn is done after making sure under the bucket lock that the 20483 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20484 * caching an ire after the unplumb thread has cleaned up the conn. 20485 * If the conn does not send a packet subsequently the unplumb thread 20486 * will be hanging waiting for the ire count to drop to zero. 20487 * 20488 * o We also need to atomically test for a null conn_ire_cache and 20489 * set the conn_ire_cache under the the protection of the conn_lock 20490 * to avoid races among concurrent threads trying to simultaneously 20491 * cache an ire in the conn_ire_cache. 20492 */ 20493 mutex_enter(&connp->conn_lock); 20494 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20495 20496 if (ire != NULL && ire->ire_addr == dst && 20497 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20498 20499 IRE_REFHOLD(ire); 20500 mutex_exit(&connp->conn_lock); 20501 20502 } else { 20503 boolean_t cached = B_FALSE; 20504 connp->conn_ire_cache = NULL; 20505 mutex_exit(&connp->conn_lock); 20506 /* Release the old ire */ 20507 if (ire != NULL && sctp_ire == NULL) 20508 IRE_REFRELE_NOTR(ire); 20509 20510 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20511 if (ire == NULL) 20512 goto noirefound; 20513 IRE_REFHOLD_NOTR(ire); 20514 20515 mutex_enter(&connp->conn_lock); 20516 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20517 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20518 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20519 if (connp->conn_ulp == IPPROTO_TCP) 20520 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20521 connp->conn_ire_cache = ire; 20522 cached = B_TRUE; 20523 } 20524 rw_exit(&ire->ire_bucket->irb_lock); 20525 } 20526 mutex_exit(&connp->conn_lock); 20527 20528 /* 20529 * We can continue to use the ire but since it was 20530 * not cached, we should drop the extra reference. 20531 */ 20532 if (!cached) 20533 IRE_REFRELE_NOTR(ire); 20534 } 20535 20536 20537 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20538 "ip_wput_end: q %p (%S)", q, "end"); 20539 20540 /* 20541 * Check if the ire has the RTF_MULTIRT flag, inherited 20542 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20543 */ 20544 if (ire->ire_flags & RTF_MULTIRT) { 20545 20546 /* 20547 * Force the TTL of multirouted packets if required. 20548 * The TTL of such packets is bounded by the 20549 * ip_multirt_ttl ndd variable. 20550 */ 20551 if ((ipst->ips_ip_multirt_ttl > 0) && 20552 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20553 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20554 "(was %d), dst 0x%08x\n", 20555 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20556 ntohl(ire->ire_addr))); 20557 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20558 } 20559 20560 /* 20561 * At this point, we check to see if there are any pending 20562 * unresolved routes. ire_multirt_resolvable() 20563 * checks in O(n) that all IRE_OFFSUBNET ire 20564 * entries for the packet's destination and 20565 * flagged RTF_MULTIRT are currently resolved. 20566 * If some remain unresolved, we make a copy 20567 * of the current message. It will be used 20568 * to initiate additional route resolutions. 20569 */ 20570 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20571 MBLK_GETLABEL(first_mp), ipst); 20572 ip2dbg(("ip_wput[not TCP]: ire %p, " 20573 "multirt_need_resolve %d, first_mp %p\n", 20574 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20575 if (multirt_need_resolve) { 20576 copy_mp = copymsg(first_mp); 20577 if (copy_mp != NULL) { 20578 MULTIRT_DEBUG_TAG(copy_mp); 20579 } 20580 } 20581 } 20582 20583 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20584 20585 /* 20586 * Try to resolve another multiroute if 20587 * ire_multirt_resolvable() deemed it necessary 20588 */ 20589 if (copy_mp != NULL) 20590 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20591 if (need_decref) 20592 CONN_DEC_REF(connp); 20593 return; 20594 20595 qnext: 20596 /* 20597 * Upper Level Protocols pass down complete IP datagrams 20598 * as M_DATA messages. Everything else is a sideshow. 20599 * 20600 * 1) We could be re-entering ip_wput because of ip_neworute 20601 * in which case we could have a IPSEC_OUT message. We 20602 * need to pass through ip_wput like other datagrams and 20603 * hence cannot branch to ip_wput_nondata. 20604 * 20605 * 2) ARP, AH, ESP, and other clients who are on the module 20606 * instance of IP stream, give us something to deal with. 20607 * We will handle AH and ESP here and rest in ip_wput_nondata. 20608 * 20609 * 3) ICMP replies also could come here. 20610 */ 20611 ipst = ILLQ_TO_IPST(q); 20612 20613 if (DB_TYPE(mp) != M_DATA) { 20614 notdata: 20615 if (DB_TYPE(mp) == M_CTL) { 20616 /* 20617 * M_CTL messages are used by ARP, AH and ESP to 20618 * communicate with IP. We deal with IPSEC_IN and 20619 * IPSEC_OUT here. ip_wput_nondata handles other 20620 * cases. 20621 */ 20622 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20623 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20624 first_mp = mp->b_cont; 20625 first_mp->b_flag &= ~MSGHASREF; 20626 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20627 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20628 CONN_DEC_REF(connp); 20629 connp = NULL; 20630 } 20631 if (ii->ipsec_info_type == IPSEC_IN) { 20632 /* 20633 * Either this message goes back to 20634 * IPsec for further processing or to 20635 * ULP after policy checks. 20636 */ 20637 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20638 return; 20639 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20640 io = (ipsec_out_t *)ii; 20641 if (io->ipsec_out_proc_begin) { 20642 /* 20643 * IPsec processing has already started. 20644 * Complete it. 20645 * IPQoS notes: We don't care what is 20646 * in ipsec_out_ill_index since this 20647 * won't be processed for IPQoS policies 20648 * in ipsec_out_process. 20649 */ 20650 ipsec_out_process(q, mp, NULL, 20651 io->ipsec_out_ill_index); 20652 return; 20653 } else { 20654 connp = (q->q_next != NULL) ? 20655 NULL : Q_TO_CONN(q); 20656 first_mp = mp; 20657 mp = mp->b_cont; 20658 mctl_present = B_TRUE; 20659 } 20660 zoneid = io->ipsec_out_zoneid; 20661 ASSERT(zoneid != ALL_ZONES); 20662 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20663 /* 20664 * It's an IPsec control message requesting 20665 * an SADB update to be sent to the IPsec 20666 * hardware acceleration capable ills. 20667 */ 20668 ipsec_ctl_t *ipsec_ctl = 20669 (ipsec_ctl_t *)mp->b_rptr; 20670 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20671 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20672 mblk_t *cmp = mp->b_cont; 20673 20674 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20675 ASSERT(cmp != NULL); 20676 20677 freeb(mp); 20678 ill_ipsec_capab_send_all(satype, cmp, sa, 20679 ipst->ips_netstack); 20680 return; 20681 } else { 20682 /* 20683 * This must be ARP or special TSOL signaling. 20684 */ 20685 ip_wput_nondata(NULL, q, mp, NULL); 20686 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20687 "ip_wput_end: q %p (%S)", q, "nondata"); 20688 return; 20689 } 20690 } else { 20691 /* 20692 * This must be non-(ARP/AH/ESP) messages. 20693 */ 20694 ASSERT(!need_decref); 20695 ip_wput_nondata(NULL, q, mp, NULL); 20696 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20697 "ip_wput_end: q %p (%S)", q, "nondata"); 20698 return; 20699 } 20700 } else { 20701 first_mp = mp; 20702 mctl_present = B_FALSE; 20703 } 20704 20705 ASSERT(first_mp != NULL); 20706 /* 20707 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20708 * to make sure that this packet goes out on the same interface it 20709 * came in. We handle that here. 20710 */ 20711 if (mctl_present) { 20712 uint_t ifindex; 20713 20714 io = (ipsec_out_t *)first_mp->b_rptr; 20715 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20716 /* 20717 * We may have lost the conn context if we are 20718 * coming here from ip_newroute(). Copy the 20719 * nexthop information. 20720 */ 20721 if (io->ipsec_out_ip_nexthop) { 20722 ip_nexthop = B_TRUE; 20723 nexthop_addr = io->ipsec_out_nexthop_addr; 20724 20725 ipha = (ipha_t *)mp->b_rptr; 20726 dst = ipha->ipha_dst; 20727 goto send_from_ill; 20728 } else { 20729 ASSERT(io->ipsec_out_ill_index != 0); 20730 ifindex = io->ipsec_out_ill_index; 20731 attach_ill = ill_lookup_on_ifindex(ifindex, 20732 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20733 if (attach_ill == NULL) { 20734 ASSERT(xmit_ill == NULL); 20735 ip1dbg(("ip_output: bad ifindex for " 20736 "(BIND TO IPIF_NOFAILOVER) %d\n", 20737 ifindex)); 20738 freemsg(first_mp); 20739 BUMP_MIB(&ipst->ips_ip_mib, 20740 ipIfStatsOutDiscards); 20741 ASSERT(!need_decref); 20742 return; 20743 } 20744 } 20745 } 20746 } 20747 20748 ASSERT(xmit_ill == NULL); 20749 20750 /* We have a complete IP datagram heading outbound. */ 20751 ipha = (ipha_t *)mp->b_rptr; 20752 20753 #ifndef SPEED_BEFORE_SAFETY 20754 /* 20755 * Make sure we have a full-word aligned message and that at least 20756 * a simple IP header is accessible in the first message. If not, 20757 * try a pullup. For labeled systems we need to always take this 20758 * path as M_CTLs are "notdata" but have trailing data to process. 20759 */ 20760 if (!OK_32PTR(rptr) || 20761 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20762 hdrtoosmall: 20763 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20764 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20765 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20766 if (first_mp == NULL) 20767 first_mp = mp; 20768 goto discard_pkt; 20769 } 20770 20771 /* This function assumes that mp points to an IPv4 packet. */ 20772 if (is_system_labeled() && q->q_next == NULL && 20773 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20774 !connp->conn_ulp_labeled) { 20775 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20776 connp->conn_mac_exempt, ipst); 20777 ipha = (ipha_t *)mp->b_rptr; 20778 if (first_mp != NULL) 20779 first_mp->b_cont = mp; 20780 if (err != 0) { 20781 if (first_mp == NULL) 20782 first_mp = mp; 20783 if (err == EINVAL) 20784 goto icmp_parameter_problem; 20785 ip2dbg(("ip_wput: label check failed (%d)\n", 20786 err)); 20787 goto discard_pkt; 20788 } 20789 } 20790 20791 ipha = (ipha_t *)mp->b_rptr; 20792 if (first_mp == NULL) { 20793 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20794 /* 20795 * If we got here because of "goto hdrtoosmall" 20796 * We need to attach a IPSEC_OUT. 20797 */ 20798 if (connp->conn_out_enforce_policy) { 20799 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20800 NULL, ipha->ipha_protocol, 20801 ipst->ips_netstack)) == NULL)) { 20802 BUMP_MIB(&ipst->ips_ip_mib, 20803 ipIfStatsOutDiscards); 20804 if (need_decref) 20805 CONN_DEC_REF(connp); 20806 return; 20807 } else { 20808 ASSERT(mp->b_datap->db_type == M_CTL); 20809 first_mp = mp; 20810 mp = mp->b_cont; 20811 mctl_present = B_TRUE; 20812 } 20813 } else { 20814 first_mp = mp; 20815 mctl_present = B_FALSE; 20816 } 20817 } 20818 } 20819 #endif 20820 20821 /* Most of the code below is written for speed, not readability */ 20822 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20823 20824 /* 20825 * If ip_newroute() fails, we're going to need a full 20826 * header for the icmp wraparound. 20827 */ 20828 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20829 uint_t v_hlen; 20830 version_hdrlen_check: 20831 ASSERT(first_mp != NULL); 20832 v_hlen = V_HLEN; 20833 /* 20834 * siphon off IPv6 packets coming down from transport 20835 * layer modules here. 20836 * Note: high-order bit carries NUD reachability confirmation 20837 */ 20838 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20839 /* 20840 * FIXME: assume that callers of ip_output* call 20841 * the right version? 20842 */ 20843 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20844 ASSERT(xmit_ill == NULL); 20845 if (attach_ill != NULL) 20846 ill_refrele(attach_ill); 20847 if (need_decref) 20848 mp->b_flag |= MSGHASREF; 20849 (void) ip_output_v6(arg, first_mp, arg2, caller); 20850 return; 20851 } 20852 20853 if ((v_hlen >> 4) != IP_VERSION) { 20854 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20855 "ip_wput_end: q %p (%S)", q, "badvers"); 20856 goto discard_pkt; 20857 } 20858 /* 20859 * Is the header length at least 20 bytes? 20860 * 20861 * Are there enough bytes accessible in the header? If 20862 * not, try a pullup. 20863 */ 20864 v_hlen &= 0xF; 20865 v_hlen <<= 2; 20866 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20867 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20868 "ip_wput_end: q %p (%S)", q, "badlen"); 20869 goto discard_pkt; 20870 } 20871 if (v_hlen > (mp->b_wptr - rptr)) { 20872 if (!pullupmsg(mp, v_hlen)) { 20873 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20874 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20875 goto discard_pkt; 20876 } 20877 ipha = (ipha_t *)mp->b_rptr; 20878 } 20879 /* 20880 * Move first entry from any source route into ipha_dst and 20881 * verify the options 20882 */ 20883 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20884 zoneid, ipst)) { 20885 ASSERT(xmit_ill == NULL); 20886 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20887 if (attach_ill != NULL) 20888 ill_refrele(attach_ill); 20889 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20890 "ip_wput_end: q %p (%S)", q, "badopts"); 20891 if (need_decref) 20892 CONN_DEC_REF(connp); 20893 return; 20894 } 20895 } 20896 dst = ipha->ipha_dst; 20897 20898 /* 20899 * Try to get an IRE_CACHE for the destination address. If we can't, 20900 * we have to run the packet through ip_newroute which will take 20901 * the appropriate action to arrange for an IRE_CACHE, such as querying 20902 * a resolver, or assigning a default gateway, etc. 20903 */ 20904 if (CLASSD(dst)) { 20905 ipif_t *ipif; 20906 uint32_t setsrc = 0; 20907 20908 multicast: 20909 ASSERT(first_mp != NULL); 20910 ip2dbg(("ip_wput: CLASSD\n")); 20911 if (connp == NULL) { 20912 /* 20913 * Use the first good ipif on the ill. 20914 * XXX Should this ever happen? (Appears 20915 * to show up with just ppp and no ethernet due 20916 * to in.rdisc.) 20917 * However, ire_send should be able to 20918 * call ip_wput_ire directly. 20919 * 20920 * XXX Also, this can happen for ICMP and other packets 20921 * with multicast source addresses. Perhaps we should 20922 * fix things so that we drop the packet in question, 20923 * but for now, just run with it. 20924 */ 20925 ill_t *ill = (ill_t *)q->q_ptr; 20926 20927 /* 20928 * Don't honor attach_if for this case. If ill 20929 * is part of the group, ipif could belong to 20930 * any ill and we cannot maintain attach_ill 20931 * and ipif_ill same anymore and the assert 20932 * below would fail. 20933 */ 20934 if (mctl_present && io->ipsec_out_attach_if) { 20935 io->ipsec_out_ill_index = 0; 20936 io->ipsec_out_attach_if = B_FALSE; 20937 ASSERT(attach_ill != NULL); 20938 ill_refrele(attach_ill); 20939 attach_ill = NULL; 20940 } 20941 20942 ASSERT(attach_ill == NULL); 20943 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20944 if (ipif == NULL) { 20945 if (need_decref) 20946 CONN_DEC_REF(connp); 20947 freemsg(first_mp); 20948 return; 20949 } 20950 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20951 ntohl(dst), ill->ill_name)); 20952 } else { 20953 /* 20954 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20955 * and IP_MULTICAST_IF. The block comment above this 20956 * function explains the locking mechanism used here. 20957 */ 20958 if (xmit_ill == NULL) { 20959 xmit_ill = conn_get_held_ill(connp, 20960 &connp->conn_outgoing_ill, &err); 20961 if (err == ILL_LOOKUP_FAILED) { 20962 ip1dbg(("ip_wput: No ill for " 20963 "IP_BOUND_IF\n")); 20964 BUMP_MIB(&ipst->ips_ip_mib, 20965 ipIfStatsOutNoRoutes); 20966 goto drop_pkt; 20967 } 20968 } 20969 20970 if (xmit_ill == NULL) { 20971 ipif = conn_get_held_ipif(connp, 20972 &connp->conn_multicast_ipif, &err); 20973 if (err == IPIF_LOOKUP_FAILED) { 20974 ip1dbg(("ip_wput: No ipif for " 20975 "multicast\n")); 20976 BUMP_MIB(&ipst->ips_ip_mib, 20977 ipIfStatsOutNoRoutes); 20978 goto drop_pkt; 20979 } 20980 } 20981 if (xmit_ill != NULL) { 20982 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20983 if (ipif == NULL) { 20984 ip1dbg(("ip_wput: No ipif for " 20985 "xmit_ill\n")); 20986 BUMP_MIB(&ipst->ips_ip_mib, 20987 ipIfStatsOutNoRoutes); 20988 goto drop_pkt; 20989 } 20990 } else if (ipif == NULL || ipif->ipif_isv6) { 20991 /* 20992 * We must do this ipif determination here 20993 * else we could pass through ip_newroute 20994 * and come back here without the conn context. 20995 * 20996 * Note: we do late binding i.e. we bind to 20997 * the interface when the first packet is sent. 20998 * For performance reasons we do not rebind on 20999 * each packet but keep the binding until the 21000 * next IP_MULTICAST_IF option. 21001 * 21002 * conn_multicast_{ipif,ill} are shared between 21003 * IPv4 and IPv6 and AF_INET6 sockets can 21004 * send both IPv4 and IPv6 packets. Hence 21005 * we have to check that "isv6" matches above. 21006 */ 21007 if (ipif != NULL) 21008 ipif_refrele(ipif); 21009 ipif = ipif_lookup_group(dst, zoneid, ipst); 21010 if (ipif == NULL) { 21011 ip1dbg(("ip_wput: No ipif for " 21012 "multicast\n")); 21013 BUMP_MIB(&ipst->ips_ip_mib, 21014 ipIfStatsOutNoRoutes); 21015 goto drop_pkt; 21016 } 21017 err = conn_set_held_ipif(connp, 21018 &connp->conn_multicast_ipif, ipif); 21019 if (err == IPIF_LOOKUP_FAILED) { 21020 ipif_refrele(ipif); 21021 ip1dbg(("ip_wput: No ipif for " 21022 "multicast\n")); 21023 BUMP_MIB(&ipst->ips_ip_mib, 21024 ipIfStatsOutNoRoutes); 21025 goto drop_pkt; 21026 } 21027 } 21028 } 21029 ASSERT(!ipif->ipif_isv6); 21030 /* 21031 * As we may lose the conn by the time we reach ip_wput_ire, 21032 * we copy conn_multicast_loop and conn_dontroute on to an 21033 * ipsec_out. In case if this datagram goes out secure, 21034 * we need the ill_index also. Copy that also into the 21035 * ipsec_out. 21036 */ 21037 if (mctl_present) { 21038 io = (ipsec_out_t *)first_mp->b_rptr; 21039 ASSERT(first_mp->b_datap->db_type == M_CTL); 21040 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21041 } else { 21042 ASSERT(mp == first_mp); 21043 if ((first_mp = allocb(sizeof (ipsec_info_t), 21044 BPRI_HI)) == NULL) { 21045 ipif_refrele(ipif); 21046 first_mp = mp; 21047 goto discard_pkt; 21048 } 21049 first_mp->b_datap->db_type = M_CTL; 21050 first_mp->b_wptr += sizeof (ipsec_info_t); 21051 /* ipsec_out_secure is B_FALSE now */ 21052 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21053 io = (ipsec_out_t *)first_mp->b_rptr; 21054 io->ipsec_out_type = IPSEC_OUT; 21055 io->ipsec_out_len = sizeof (ipsec_out_t); 21056 io->ipsec_out_use_global_policy = B_TRUE; 21057 io->ipsec_out_ns = ipst->ips_netstack; 21058 first_mp->b_cont = mp; 21059 mctl_present = B_TRUE; 21060 } 21061 if (attach_ill != NULL) { 21062 ASSERT(attach_ill == ipif->ipif_ill); 21063 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21064 21065 /* 21066 * Check if we need an ire that will not be 21067 * looked up by anybody else i.e. HIDDEN. 21068 */ 21069 if (ill_is_probeonly(attach_ill)) { 21070 match_flags |= MATCH_IRE_MARK_HIDDEN; 21071 } 21072 io->ipsec_out_ill_index = 21073 attach_ill->ill_phyint->phyint_ifindex; 21074 io->ipsec_out_attach_if = B_TRUE; 21075 } else { 21076 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21077 io->ipsec_out_ill_index = 21078 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21079 } 21080 if (connp != NULL) { 21081 io->ipsec_out_multicast_loop = 21082 connp->conn_multicast_loop; 21083 io->ipsec_out_dontroute = connp->conn_dontroute; 21084 io->ipsec_out_zoneid = connp->conn_zoneid; 21085 } 21086 /* 21087 * If the application uses IP_MULTICAST_IF with 21088 * different logical addresses of the same ILL, we 21089 * need to make sure that the soruce address of 21090 * the packet matches the logical IP address used 21091 * in the option. We do it by initializing ipha_src 21092 * here. This should keep IPsec also happy as 21093 * when we return from IPsec processing, we don't 21094 * have to worry about getting the right address on 21095 * the packet. Thus it is sufficient to look for 21096 * IRE_CACHE using MATCH_IRE_ILL rathen than 21097 * MATCH_IRE_IPIF. 21098 * 21099 * NOTE : We need to do it for non-secure case also as 21100 * this might go out secure if there is a global policy 21101 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21102 * address, the source should be initialized already and 21103 * hence we won't be initializing here. 21104 * 21105 * As we do not have the ire yet, it is possible that 21106 * we set the source address here and then later discover 21107 * that the ire implies the source address to be assigned 21108 * through the RTF_SETSRC flag. 21109 * In that case, the setsrc variable will remind us 21110 * that overwritting the source address by the one 21111 * of the RTF_SETSRC-flagged ire is allowed. 21112 */ 21113 if (ipha->ipha_src == INADDR_ANY && 21114 (connp == NULL || !connp->conn_unspec_src)) { 21115 ipha->ipha_src = ipif->ipif_src_addr; 21116 setsrc = RTF_SETSRC; 21117 } 21118 /* 21119 * Find an IRE which matches the destination and the outgoing 21120 * queue (i.e. the outgoing interface.) 21121 * For loopback use a unicast IP address for 21122 * the ire lookup. 21123 */ 21124 if (IS_LOOPBACK(ipif->ipif_ill)) 21125 dst = ipif->ipif_lcl_addr; 21126 21127 /* 21128 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21129 * We don't need to lookup ire in ctable as the packet 21130 * needs to be sent to the destination through the specified 21131 * ill irrespective of ires in the cache table. 21132 */ 21133 ire = NULL; 21134 if (xmit_ill == NULL) { 21135 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21136 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21137 } 21138 21139 /* 21140 * refrele attach_ill as its not needed anymore. 21141 */ 21142 if (attach_ill != NULL) { 21143 ill_refrele(attach_ill); 21144 attach_ill = NULL; 21145 } 21146 21147 if (ire == NULL) { 21148 /* 21149 * Multicast loopback and multicast forwarding is 21150 * done in ip_wput_ire. 21151 * 21152 * Mark this packet to make it be delivered to 21153 * ip_wput_ire after the new ire has been 21154 * created. 21155 * 21156 * The call to ip_newroute_ipif takes into account 21157 * the setsrc reminder. In any case, we take care 21158 * of the RTF_MULTIRT flag. 21159 */ 21160 mp->b_prev = mp->b_next = NULL; 21161 if (xmit_ill == NULL || 21162 xmit_ill->ill_ipif_up_count > 0) { 21163 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21164 setsrc | RTF_MULTIRT, zoneid, infop); 21165 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21166 "ip_wput_end: q %p (%S)", q, "noire"); 21167 } else { 21168 freemsg(first_mp); 21169 } 21170 ipif_refrele(ipif); 21171 if (xmit_ill != NULL) 21172 ill_refrele(xmit_ill); 21173 if (need_decref) 21174 CONN_DEC_REF(connp); 21175 return; 21176 } 21177 21178 ipif_refrele(ipif); 21179 ipif = NULL; 21180 ASSERT(xmit_ill == NULL); 21181 21182 /* 21183 * Honor the RTF_SETSRC flag for multicast packets, 21184 * if allowed by the setsrc reminder. 21185 */ 21186 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21187 ipha->ipha_src = ire->ire_src_addr; 21188 } 21189 21190 /* 21191 * Unconditionally force the TTL to 1 for 21192 * multirouted multicast packets: 21193 * multirouted multicast should not cross 21194 * multicast routers. 21195 */ 21196 if (ire->ire_flags & RTF_MULTIRT) { 21197 if (ipha->ipha_ttl > 1) { 21198 ip2dbg(("ip_wput: forcing multicast " 21199 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21200 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21201 ipha->ipha_ttl = 1; 21202 } 21203 } 21204 } else { 21205 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21206 if ((ire != NULL) && (ire->ire_type & 21207 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21208 ignore_dontroute = B_TRUE; 21209 ignore_nexthop = B_TRUE; 21210 } 21211 if (ire != NULL) { 21212 ire_refrele(ire); 21213 ire = NULL; 21214 } 21215 /* 21216 * Guard against coming in from arp in which case conn is NULL. 21217 * Also guard against non M_DATA with dontroute set but 21218 * destined to local, loopback or broadcast addresses. 21219 */ 21220 if (connp != NULL && connp->conn_dontroute && 21221 !ignore_dontroute) { 21222 dontroute: 21223 /* 21224 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21225 * routing protocols from seeing false direct 21226 * connectivity. 21227 */ 21228 ipha->ipha_ttl = 1; 21229 21230 /* If suitable ipif not found, drop packet */ 21231 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21232 if (dst_ipif == NULL) { 21233 noroute: 21234 ip1dbg(("ip_wput: no route for dst using" 21235 " SO_DONTROUTE\n")); 21236 BUMP_MIB(&ipst->ips_ip_mib, 21237 ipIfStatsOutNoRoutes); 21238 mp->b_prev = mp->b_next = NULL; 21239 if (first_mp == NULL) 21240 first_mp = mp; 21241 goto drop_pkt; 21242 } else { 21243 /* 21244 * If suitable ipif has been found, set 21245 * xmit_ill to the corresponding 21246 * ipif_ill because we'll be using the 21247 * send_from_ill logic below. 21248 */ 21249 ASSERT(xmit_ill == NULL); 21250 xmit_ill = dst_ipif->ipif_ill; 21251 mutex_enter(&xmit_ill->ill_lock); 21252 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21253 mutex_exit(&xmit_ill->ill_lock); 21254 xmit_ill = NULL; 21255 ipif_refrele(dst_ipif); 21256 goto noroute; 21257 } 21258 ill_refhold_locked(xmit_ill); 21259 mutex_exit(&xmit_ill->ill_lock); 21260 ipif_refrele(dst_ipif); 21261 } 21262 } 21263 /* 21264 * If we are bound to IPIF_NOFAILOVER address, look for 21265 * an IRE_CACHE matching the ill. 21266 */ 21267 send_from_ill: 21268 if (attach_ill != NULL) { 21269 ipif_t *attach_ipif; 21270 21271 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21272 21273 /* 21274 * Check if we need an ire that will not be 21275 * looked up by anybody else i.e. HIDDEN. 21276 */ 21277 if (ill_is_probeonly(attach_ill)) { 21278 match_flags |= MATCH_IRE_MARK_HIDDEN; 21279 } 21280 21281 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21282 if (attach_ipif == NULL) { 21283 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21284 goto discard_pkt; 21285 } 21286 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21287 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21288 ipif_refrele(attach_ipif); 21289 } else if (xmit_ill != NULL) { 21290 ipif_t *ipif; 21291 21292 /* 21293 * Mark this packet as originated locally 21294 */ 21295 mp->b_prev = mp->b_next = NULL; 21296 21297 /* 21298 * Could be SO_DONTROUTE case also. 21299 * Verify that at least one ipif is up on the ill. 21300 */ 21301 if (xmit_ill->ill_ipif_up_count == 0) { 21302 ip1dbg(("ip_output: xmit_ill %s is down\n", 21303 xmit_ill->ill_name)); 21304 goto drop_pkt; 21305 } 21306 21307 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21308 if (ipif == NULL) { 21309 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21310 xmit_ill->ill_name)); 21311 goto drop_pkt; 21312 } 21313 21314 /* 21315 * Look for a ire that is part of the group, 21316 * if found use it else call ip_newroute_ipif. 21317 * IPCL_ZONEID is not used for matching because 21318 * IP_ALLZONES option is valid only when the 21319 * ill is accessible from all zones i.e has a 21320 * valid ipif in all zones. 21321 */ 21322 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21323 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21324 MBLK_GETLABEL(mp), match_flags, ipst); 21325 /* 21326 * If an ire exists use it or else create 21327 * an ire but don't add it to the cache. 21328 * Adding an ire may cause issues with 21329 * asymmetric routing. 21330 * In case of multiroute always act as if 21331 * ire does not exist. 21332 */ 21333 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21334 if (ire != NULL) 21335 ire_refrele(ire); 21336 ip_newroute_ipif(q, first_mp, ipif, 21337 dst, connp, 0, zoneid, infop); 21338 ipif_refrele(ipif); 21339 ip1dbg(("ip_output: xmit_ill via %s\n", 21340 xmit_ill->ill_name)); 21341 ill_refrele(xmit_ill); 21342 if (need_decref) 21343 CONN_DEC_REF(connp); 21344 return; 21345 } 21346 ipif_refrele(ipif); 21347 } else if (ip_nexthop || (connp != NULL && 21348 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21349 if (!ip_nexthop) { 21350 ip_nexthop = B_TRUE; 21351 nexthop_addr = connp->conn_nexthop_v4; 21352 } 21353 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21354 MATCH_IRE_GW; 21355 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21356 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21357 } else { 21358 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21359 ipst); 21360 } 21361 if (!ire) { 21362 /* 21363 * Make sure we don't load spread if this 21364 * is IPIF_NOFAILOVER case. 21365 */ 21366 if ((attach_ill != NULL) || 21367 (ip_nexthop && !ignore_nexthop)) { 21368 if (mctl_present) { 21369 io = (ipsec_out_t *)first_mp->b_rptr; 21370 ASSERT(first_mp->b_datap->db_type == 21371 M_CTL); 21372 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21373 } else { 21374 ASSERT(mp == first_mp); 21375 first_mp = allocb( 21376 sizeof (ipsec_info_t), BPRI_HI); 21377 if (first_mp == NULL) { 21378 first_mp = mp; 21379 goto discard_pkt; 21380 } 21381 first_mp->b_datap->db_type = M_CTL; 21382 first_mp->b_wptr += 21383 sizeof (ipsec_info_t); 21384 /* ipsec_out_secure is B_FALSE now */ 21385 bzero(first_mp->b_rptr, 21386 sizeof (ipsec_info_t)); 21387 io = (ipsec_out_t *)first_mp->b_rptr; 21388 io->ipsec_out_type = IPSEC_OUT; 21389 io->ipsec_out_len = 21390 sizeof (ipsec_out_t); 21391 io->ipsec_out_use_global_policy = 21392 B_TRUE; 21393 io->ipsec_out_ns = ipst->ips_netstack; 21394 first_mp->b_cont = mp; 21395 mctl_present = B_TRUE; 21396 } 21397 if (attach_ill != NULL) { 21398 io->ipsec_out_ill_index = attach_ill-> 21399 ill_phyint->phyint_ifindex; 21400 io->ipsec_out_attach_if = B_TRUE; 21401 } else { 21402 io->ipsec_out_ip_nexthop = ip_nexthop; 21403 io->ipsec_out_nexthop_addr = 21404 nexthop_addr; 21405 } 21406 } 21407 noirefound: 21408 /* 21409 * Mark this packet as having originated on 21410 * this machine. This will be noted in 21411 * ire_add_then_send, which needs to know 21412 * whether to run it back through ip_wput or 21413 * ip_rput following successful resolution. 21414 */ 21415 mp->b_prev = NULL; 21416 mp->b_next = NULL; 21417 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21418 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21419 "ip_wput_end: q %p (%S)", q, "newroute"); 21420 if (attach_ill != NULL) 21421 ill_refrele(attach_ill); 21422 if (xmit_ill != NULL) 21423 ill_refrele(xmit_ill); 21424 if (need_decref) 21425 CONN_DEC_REF(connp); 21426 return; 21427 } 21428 } 21429 21430 /* We now know where we are going with it. */ 21431 21432 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21433 "ip_wput_end: q %p (%S)", q, "end"); 21434 21435 /* 21436 * Check if the ire has the RTF_MULTIRT flag, inherited 21437 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21438 */ 21439 if (ire->ire_flags & RTF_MULTIRT) { 21440 /* 21441 * Force the TTL of multirouted packets if required. 21442 * The TTL of such packets is bounded by the 21443 * ip_multirt_ttl ndd variable. 21444 */ 21445 if ((ipst->ips_ip_multirt_ttl > 0) && 21446 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21447 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21448 "(was %d), dst 0x%08x\n", 21449 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21450 ntohl(ire->ire_addr))); 21451 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21452 } 21453 /* 21454 * At this point, we check to see if there are any pending 21455 * unresolved routes. ire_multirt_resolvable() 21456 * checks in O(n) that all IRE_OFFSUBNET ire 21457 * entries for the packet's destination and 21458 * flagged RTF_MULTIRT are currently resolved. 21459 * If some remain unresolved, we make a copy 21460 * of the current message. It will be used 21461 * to initiate additional route resolutions. 21462 */ 21463 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21464 MBLK_GETLABEL(first_mp), ipst); 21465 ip2dbg(("ip_wput[noirefound]: ire %p, " 21466 "multirt_need_resolve %d, first_mp %p\n", 21467 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21468 if (multirt_need_resolve) { 21469 copy_mp = copymsg(first_mp); 21470 if (copy_mp != NULL) { 21471 MULTIRT_DEBUG_TAG(copy_mp); 21472 } 21473 } 21474 } 21475 21476 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21477 /* 21478 * Try to resolve another multiroute if 21479 * ire_multirt_resolvable() deemed it necessary. 21480 * At this point, we need to distinguish 21481 * multicasts from other packets. For multicasts, 21482 * we call ip_newroute_ipif() and request that both 21483 * multirouting and setsrc flags are checked. 21484 */ 21485 if (copy_mp != NULL) { 21486 if (CLASSD(dst)) { 21487 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21488 if (ipif) { 21489 ASSERT(infop->ip_opt_ill_index == 0); 21490 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21491 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21492 ipif_refrele(ipif); 21493 } else { 21494 MULTIRT_DEBUG_UNTAG(copy_mp); 21495 freemsg(copy_mp); 21496 copy_mp = NULL; 21497 } 21498 } else { 21499 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21500 } 21501 } 21502 if (attach_ill != NULL) 21503 ill_refrele(attach_ill); 21504 if (xmit_ill != NULL) 21505 ill_refrele(xmit_ill); 21506 if (need_decref) 21507 CONN_DEC_REF(connp); 21508 return; 21509 21510 icmp_parameter_problem: 21511 /* could not have originated externally */ 21512 ASSERT(mp->b_prev == NULL); 21513 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21514 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21515 /* it's the IP header length that's in trouble */ 21516 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21517 first_mp = NULL; 21518 } 21519 21520 discard_pkt: 21521 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21522 drop_pkt: 21523 ip1dbg(("ip_wput: dropped packet\n")); 21524 if (ire != NULL) 21525 ire_refrele(ire); 21526 if (need_decref) 21527 CONN_DEC_REF(connp); 21528 freemsg(first_mp); 21529 if (attach_ill != NULL) 21530 ill_refrele(attach_ill); 21531 if (xmit_ill != NULL) 21532 ill_refrele(xmit_ill); 21533 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21534 "ip_wput_end: q %p (%S)", q, "droppkt"); 21535 } 21536 21537 /* 21538 * If this is a conn_t queue, then we pass in the conn. This includes the 21539 * zoneid. 21540 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21541 * in which case we use the global zoneid since those are all part of 21542 * the global zone. 21543 */ 21544 void 21545 ip_wput(queue_t *q, mblk_t *mp) 21546 { 21547 if (CONN_Q(q)) 21548 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21549 else 21550 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21551 } 21552 21553 /* 21554 * 21555 * The following rules must be observed when accessing any ipif or ill 21556 * that has been cached in the conn. Typically conn_nofailover_ill, 21557 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21558 * 21559 * Access: The ipif or ill pointed to from the conn can be accessed under 21560 * the protection of the conn_lock or after it has been refheld under the 21561 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21562 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21563 * The reason for this is that a concurrent unplumb could actually be 21564 * cleaning up these cached pointers by walking the conns and might have 21565 * finished cleaning up the conn in question. The macros check that an 21566 * unplumb has not yet started on the ipif or ill. 21567 * 21568 * Caching: An ipif or ill pointer may be cached in the conn only after 21569 * making sure that an unplumb has not started. So the caching is done 21570 * while holding both the conn_lock and the ill_lock and after using the 21571 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21572 * flag before starting the cleanup of conns. 21573 * 21574 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21575 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21576 * or a reference to the ipif or a reference to an ire that references the 21577 * ipif. An ipif does not change its ill except for failover/failback. Since 21578 * failover/failback happens only after bringing down the ipif and making sure 21579 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21580 * the above holds. 21581 */ 21582 ipif_t * 21583 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21584 { 21585 ipif_t *ipif; 21586 ill_t *ill; 21587 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21588 21589 *err = 0; 21590 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21591 mutex_enter(&connp->conn_lock); 21592 ipif = *ipifp; 21593 if (ipif != NULL) { 21594 ill = ipif->ipif_ill; 21595 mutex_enter(&ill->ill_lock); 21596 if (IPIF_CAN_LOOKUP(ipif)) { 21597 ipif_refhold_locked(ipif); 21598 mutex_exit(&ill->ill_lock); 21599 mutex_exit(&connp->conn_lock); 21600 rw_exit(&ipst->ips_ill_g_lock); 21601 return (ipif); 21602 } else { 21603 *err = IPIF_LOOKUP_FAILED; 21604 } 21605 mutex_exit(&ill->ill_lock); 21606 } 21607 mutex_exit(&connp->conn_lock); 21608 rw_exit(&ipst->ips_ill_g_lock); 21609 return (NULL); 21610 } 21611 21612 ill_t * 21613 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21614 { 21615 ill_t *ill; 21616 21617 *err = 0; 21618 mutex_enter(&connp->conn_lock); 21619 ill = *illp; 21620 if (ill != NULL) { 21621 mutex_enter(&ill->ill_lock); 21622 if (ILL_CAN_LOOKUP(ill)) { 21623 ill_refhold_locked(ill); 21624 mutex_exit(&ill->ill_lock); 21625 mutex_exit(&connp->conn_lock); 21626 return (ill); 21627 } else { 21628 *err = ILL_LOOKUP_FAILED; 21629 } 21630 mutex_exit(&ill->ill_lock); 21631 } 21632 mutex_exit(&connp->conn_lock); 21633 return (NULL); 21634 } 21635 21636 static int 21637 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21638 { 21639 ill_t *ill; 21640 21641 ill = ipif->ipif_ill; 21642 mutex_enter(&connp->conn_lock); 21643 mutex_enter(&ill->ill_lock); 21644 if (IPIF_CAN_LOOKUP(ipif)) { 21645 *ipifp = ipif; 21646 mutex_exit(&ill->ill_lock); 21647 mutex_exit(&connp->conn_lock); 21648 return (0); 21649 } 21650 mutex_exit(&ill->ill_lock); 21651 mutex_exit(&connp->conn_lock); 21652 return (IPIF_LOOKUP_FAILED); 21653 } 21654 21655 /* 21656 * This is called if the outbound datagram needs fragmentation. 21657 * 21658 * NOTE : This function does not ire_refrele the ire argument passed in. 21659 */ 21660 static void 21661 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21662 ip_stack_t *ipst) 21663 { 21664 ipha_t *ipha; 21665 mblk_t *mp; 21666 uint32_t v_hlen_tos_len; 21667 uint32_t max_frag; 21668 uint32_t frag_flag; 21669 boolean_t dont_use; 21670 21671 if (ipsec_mp->b_datap->db_type == M_CTL) { 21672 mp = ipsec_mp->b_cont; 21673 } else { 21674 mp = ipsec_mp; 21675 } 21676 21677 ipha = (ipha_t *)mp->b_rptr; 21678 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21679 21680 #ifdef _BIG_ENDIAN 21681 #define V_HLEN (v_hlen_tos_len >> 24) 21682 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21683 #else 21684 #define V_HLEN (v_hlen_tos_len & 0xFF) 21685 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21686 #endif 21687 21688 #ifndef SPEED_BEFORE_SAFETY 21689 /* 21690 * Check that ipha_length is consistent with 21691 * the mblk length 21692 */ 21693 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21694 ip0dbg(("Packet length mismatch: %d, %ld\n", 21695 LENGTH, msgdsize(mp))); 21696 freemsg(ipsec_mp); 21697 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21698 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21699 "packet length mismatch"); 21700 return; 21701 } 21702 #endif 21703 /* 21704 * Don't use frag_flag if pre-built packet or source 21705 * routed or if multicast (since multicast packets do not solicit 21706 * ICMP "packet too big" messages). Get the values of 21707 * max_frag and frag_flag atomically by acquiring the 21708 * ire_lock. 21709 */ 21710 mutex_enter(&ire->ire_lock); 21711 max_frag = ire->ire_max_frag; 21712 frag_flag = ire->ire_frag_flag; 21713 mutex_exit(&ire->ire_lock); 21714 21715 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21716 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21717 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21718 21719 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21720 (dont_use ? 0 : frag_flag), zoneid, ipst); 21721 } 21722 21723 /* 21724 * Used for deciding the MSS size for the upper layer. Thus 21725 * we need to check the outbound policy values in the conn. 21726 */ 21727 int 21728 conn_ipsec_length(conn_t *connp) 21729 { 21730 ipsec_latch_t *ipl; 21731 21732 ipl = connp->conn_latch; 21733 if (ipl == NULL) 21734 return (0); 21735 21736 if (ipl->ipl_out_policy == NULL) 21737 return (0); 21738 21739 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21740 } 21741 21742 /* 21743 * Returns an estimate of the IPsec headers size. This is used if 21744 * we don't want to call into IPsec to get the exact size. 21745 */ 21746 int 21747 ipsec_out_extra_length(mblk_t *ipsec_mp) 21748 { 21749 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21750 ipsec_action_t *a; 21751 21752 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21753 if (!io->ipsec_out_secure) 21754 return (0); 21755 21756 a = io->ipsec_out_act; 21757 21758 if (a == NULL) { 21759 ASSERT(io->ipsec_out_policy != NULL); 21760 a = io->ipsec_out_policy->ipsp_act; 21761 } 21762 ASSERT(a != NULL); 21763 21764 return (a->ipa_ovhd); 21765 } 21766 21767 /* 21768 * Returns an estimate of the IPsec headers size. This is used if 21769 * we don't want to call into IPsec to get the exact size. 21770 */ 21771 int 21772 ipsec_in_extra_length(mblk_t *ipsec_mp) 21773 { 21774 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21775 ipsec_action_t *a; 21776 21777 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21778 21779 a = ii->ipsec_in_action; 21780 return (a == NULL ? 0 : a->ipa_ovhd); 21781 } 21782 21783 /* 21784 * If there are any source route options, return the true final 21785 * destination. Otherwise, return the destination. 21786 */ 21787 ipaddr_t 21788 ip_get_dst(ipha_t *ipha) 21789 { 21790 ipoptp_t opts; 21791 uchar_t *opt; 21792 uint8_t optval; 21793 uint8_t optlen; 21794 ipaddr_t dst; 21795 uint32_t off; 21796 21797 dst = ipha->ipha_dst; 21798 21799 if (IS_SIMPLE_IPH(ipha)) 21800 return (dst); 21801 21802 for (optval = ipoptp_first(&opts, ipha); 21803 optval != IPOPT_EOL; 21804 optval = ipoptp_next(&opts)) { 21805 opt = opts.ipoptp_cur; 21806 optlen = opts.ipoptp_len; 21807 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21808 switch (optval) { 21809 case IPOPT_SSRR: 21810 case IPOPT_LSRR: 21811 off = opt[IPOPT_OFFSET]; 21812 /* 21813 * If one of the conditions is true, it means 21814 * end of options and dst already has the right 21815 * value. 21816 */ 21817 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21818 off = optlen - IP_ADDR_LEN; 21819 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21820 } 21821 return (dst); 21822 default: 21823 break; 21824 } 21825 } 21826 21827 return (dst); 21828 } 21829 21830 mblk_t * 21831 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21832 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21833 { 21834 ipsec_out_t *io; 21835 mblk_t *first_mp; 21836 boolean_t policy_present; 21837 ip_stack_t *ipst; 21838 ipsec_stack_t *ipss; 21839 21840 ASSERT(ire != NULL); 21841 ipst = ire->ire_ipst; 21842 ipss = ipst->ips_netstack->netstack_ipsec; 21843 21844 first_mp = mp; 21845 if (mp->b_datap->db_type == M_CTL) { 21846 io = (ipsec_out_t *)first_mp->b_rptr; 21847 /* 21848 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21849 * 21850 * 1) There is per-socket policy (including cached global 21851 * policy) or a policy on the IP-in-IP tunnel. 21852 * 2) There is no per-socket policy, but it is 21853 * a multicast packet that needs to go out 21854 * on a specific interface. This is the case 21855 * where (ip_wput and ip_wput_multicast) attaches 21856 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21857 * 21858 * In case (2) we check with global policy to 21859 * see if there is a match and set the ill_index 21860 * appropriately so that we can lookup the ire 21861 * properly in ip_wput_ipsec_out. 21862 */ 21863 21864 /* 21865 * ipsec_out_use_global_policy is set to B_FALSE 21866 * in ipsec_in_to_out(). Refer to that function for 21867 * details. 21868 */ 21869 if ((io->ipsec_out_latch == NULL) && 21870 (io->ipsec_out_use_global_policy)) { 21871 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21872 ire, connp, unspec_src, zoneid)); 21873 } 21874 if (!io->ipsec_out_secure) { 21875 /* 21876 * If this is not a secure packet, drop 21877 * the IPSEC_OUT mp and treat it as a clear 21878 * packet. This happens when we are sending 21879 * a ICMP reply back to a clear packet. See 21880 * ipsec_in_to_out() for details. 21881 */ 21882 mp = first_mp->b_cont; 21883 freeb(first_mp); 21884 } 21885 return (mp); 21886 } 21887 /* 21888 * See whether we need to attach a global policy here. We 21889 * don't depend on the conn (as it could be null) for deciding 21890 * what policy this datagram should go through because it 21891 * should have happened in ip_wput if there was some 21892 * policy. This normally happens for connections which are not 21893 * fully bound preventing us from caching policies in 21894 * ip_bind. Packets coming from the TCP listener/global queue 21895 * - which are non-hard_bound - could also be affected by 21896 * applying policy here. 21897 * 21898 * If this packet is coming from tcp global queue or listener, 21899 * we will be applying policy here. This may not be *right* 21900 * if these packets are coming from the detached connection as 21901 * it could have gone in clear before. This happens only if a 21902 * TCP connection started when there is no policy and somebody 21903 * added policy before it became detached. Thus packets of the 21904 * detached connection could go out secure and the other end 21905 * would drop it because it will be expecting in clear. The 21906 * converse is not true i.e if somebody starts a TCP 21907 * connection and deletes the policy, all the packets will 21908 * still go out with the policy that existed before deleting 21909 * because ip_unbind sends up policy information which is used 21910 * by TCP on subsequent ip_wputs. The right solution is to fix 21911 * TCP to attach a dummy IPSEC_OUT and set 21912 * ipsec_out_use_global_policy to B_FALSE. As this might 21913 * affect performance for normal cases, we are not doing it. 21914 * Thus, set policy before starting any TCP connections. 21915 * 21916 * NOTE - We might apply policy even for a hard bound connection 21917 * - for which we cached policy in ip_bind - if somebody added 21918 * global policy after we inherited the policy in ip_bind. 21919 * This means that the packets that were going out in clear 21920 * previously would start going secure and hence get dropped 21921 * on the other side. To fix this, TCP attaches a dummy 21922 * ipsec_out and make sure that we don't apply global policy. 21923 */ 21924 if (ipha != NULL) 21925 policy_present = ipss->ipsec_outbound_v4_policy_present; 21926 else 21927 policy_present = ipss->ipsec_outbound_v6_policy_present; 21928 if (!policy_present) 21929 return (mp); 21930 21931 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21932 zoneid)); 21933 } 21934 21935 ire_t * 21936 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21937 { 21938 ipaddr_t addr; 21939 ire_t *save_ire; 21940 irb_t *irb; 21941 ill_group_t *illgrp; 21942 int err; 21943 21944 save_ire = ire; 21945 addr = ire->ire_addr; 21946 21947 ASSERT(ire->ire_type == IRE_BROADCAST); 21948 21949 illgrp = connp->conn_outgoing_ill->ill_group; 21950 if (illgrp == NULL) { 21951 *conn_outgoing_ill = conn_get_held_ill(connp, 21952 &connp->conn_outgoing_ill, &err); 21953 if (err == ILL_LOOKUP_FAILED) { 21954 ire_refrele(save_ire); 21955 return (NULL); 21956 } 21957 return (save_ire); 21958 } 21959 /* 21960 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21961 * If it is part of the group, we need to send on the ire 21962 * that has been cleared of IRE_MARK_NORECV and that belongs 21963 * to this group. This is okay as IP_BOUND_IF really means 21964 * any ill in the group. We depend on the fact that the 21965 * first ire in the group is always cleared of IRE_MARK_NORECV 21966 * if such an ire exists. This is possible only if you have 21967 * at least one ill in the group that has not failed. 21968 * 21969 * First get to the ire that matches the address and group. 21970 * 21971 * We don't look for an ire with a matching zoneid because a given zone 21972 * won't always have broadcast ires on all ills in the group. 21973 */ 21974 irb = ire->ire_bucket; 21975 rw_enter(&irb->irb_lock, RW_READER); 21976 if (ire->ire_marks & IRE_MARK_NORECV) { 21977 /* 21978 * If the current zone only has an ire broadcast for this 21979 * address marked NORECV, the ire we want is ahead in the 21980 * bucket, so we look it up deliberately ignoring the zoneid. 21981 */ 21982 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21983 if (ire->ire_addr != addr) 21984 continue; 21985 /* skip over deleted ires */ 21986 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21987 continue; 21988 } 21989 } 21990 while (ire != NULL) { 21991 /* 21992 * If a new interface is coming up, we could end up 21993 * seeing the loopback ire and the non-loopback ire 21994 * may not have been added yet. So check for ire_stq 21995 */ 21996 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21997 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21998 break; 21999 } 22000 ire = ire->ire_next; 22001 } 22002 if (ire != NULL && ire->ire_addr == addr && 22003 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22004 IRE_REFHOLD(ire); 22005 rw_exit(&irb->irb_lock); 22006 ire_refrele(save_ire); 22007 *conn_outgoing_ill = ire_to_ill(ire); 22008 /* 22009 * Refhold the ill to make the conn_outgoing_ill 22010 * independent of the ire. ip_wput_ire goes in a loop 22011 * and may refrele the ire. Since we have an ire at this 22012 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22013 */ 22014 ill_refhold(*conn_outgoing_ill); 22015 return (ire); 22016 } 22017 rw_exit(&irb->irb_lock); 22018 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22019 /* 22020 * If we can't find a suitable ire, return the original ire. 22021 */ 22022 return (save_ire); 22023 } 22024 22025 /* 22026 * This function does the ire_refrele of the ire passed in as the 22027 * argument. As this function looks up more ires i.e broadcast ires, 22028 * it needs to REFRELE them. Currently, for simplicity we don't 22029 * differentiate the one passed in and looked up here. We always 22030 * REFRELE. 22031 * IPQoS Notes: 22032 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22033 * IPsec packets are done in ipsec_out_process. 22034 * 22035 */ 22036 void 22037 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22038 zoneid_t zoneid) 22039 { 22040 ipha_t *ipha; 22041 #define rptr ((uchar_t *)ipha) 22042 queue_t *stq; 22043 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22044 uint32_t v_hlen_tos_len; 22045 uint32_t ttl_protocol; 22046 ipaddr_t src; 22047 ipaddr_t dst; 22048 uint32_t cksum; 22049 ipaddr_t orig_src; 22050 ire_t *ire1; 22051 mblk_t *next_mp; 22052 uint_t hlen; 22053 uint16_t *up; 22054 uint32_t max_frag = ire->ire_max_frag; 22055 ill_t *ill = ire_to_ill(ire); 22056 int clusterwide; 22057 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22058 int ipsec_len; 22059 mblk_t *first_mp; 22060 ipsec_out_t *io; 22061 boolean_t conn_dontroute; /* conn value for multicast */ 22062 boolean_t conn_multicast_loop; /* conn value for multicast */ 22063 boolean_t multicast_forward; /* Should we forward ? */ 22064 boolean_t unspec_src; 22065 ill_t *conn_outgoing_ill = NULL; 22066 ill_t *ire_ill; 22067 ill_t *ire1_ill; 22068 ill_t *out_ill; 22069 uint32_t ill_index = 0; 22070 boolean_t multirt_send = B_FALSE; 22071 int err; 22072 ipxmit_state_t pktxmit_state; 22073 ip_stack_t *ipst = ire->ire_ipst; 22074 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22075 22076 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22077 "ip_wput_ire_start: q %p", q); 22078 22079 multicast_forward = B_FALSE; 22080 unspec_src = (connp != NULL && connp->conn_unspec_src); 22081 22082 if (ire->ire_flags & RTF_MULTIRT) { 22083 /* 22084 * Multirouting case. The bucket where ire is stored 22085 * probably holds other RTF_MULTIRT flagged ire 22086 * to the destination. In this call to ip_wput_ire, 22087 * we attempt to send the packet through all 22088 * those ires. Thus, we first ensure that ire is the 22089 * first RTF_MULTIRT ire in the bucket, 22090 * before walking the ire list. 22091 */ 22092 ire_t *first_ire; 22093 irb_t *irb = ire->ire_bucket; 22094 ASSERT(irb != NULL); 22095 22096 /* Make sure we do not omit any multiroute ire. */ 22097 IRB_REFHOLD(irb); 22098 for (first_ire = irb->irb_ire; 22099 first_ire != NULL; 22100 first_ire = first_ire->ire_next) { 22101 if ((first_ire->ire_flags & RTF_MULTIRT) && 22102 (first_ire->ire_addr == ire->ire_addr) && 22103 !(first_ire->ire_marks & 22104 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22105 break; 22106 } 22107 } 22108 22109 if ((first_ire != NULL) && (first_ire != ire)) { 22110 IRE_REFHOLD(first_ire); 22111 ire_refrele(ire); 22112 ire = first_ire; 22113 ill = ire_to_ill(ire); 22114 } 22115 IRB_REFRELE(irb); 22116 } 22117 22118 /* 22119 * conn_outgoing_ill variable is used only in the broadcast loop. 22120 * for performance we don't grab the mutexs in the fastpath 22121 */ 22122 if ((connp != NULL) && 22123 (ire->ire_type == IRE_BROADCAST) && 22124 ((connp->conn_nofailover_ill != NULL) || 22125 (connp->conn_outgoing_ill != NULL))) { 22126 /* 22127 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22128 * option. So, see if this endpoint is bound to a 22129 * IPIF_NOFAILOVER address. If so, honor it. This implies 22130 * that if the interface is failed, we will still send 22131 * the packet on the same ill which is what we want. 22132 */ 22133 conn_outgoing_ill = conn_get_held_ill(connp, 22134 &connp->conn_nofailover_ill, &err); 22135 if (err == ILL_LOOKUP_FAILED) { 22136 ire_refrele(ire); 22137 freemsg(mp); 22138 return; 22139 } 22140 if (conn_outgoing_ill == NULL) { 22141 /* 22142 * Choose a good ill in the group to send the 22143 * packets on. 22144 */ 22145 ire = conn_set_outgoing_ill(connp, ire, 22146 &conn_outgoing_ill); 22147 if (ire == NULL) { 22148 freemsg(mp); 22149 return; 22150 } 22151 } 22152 } 22153 22154 if (mp->b_datap->db_type != M_CTL) { 22155 ipha = (ipha_t *)mp->b_rptr; 22156 } else { 22157 io = (ipsec_out_t *)mp->b_rptr; 22158 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22159 ASSERT(zoneid == io->ipsec_out_zoneid); 22160 ASSERT(zoneid != ALL_ZONES); 22161 ipha = (ipha_t *)mp->b_cont->b_rptr; 22162 dst = ipha->ipha_dst; 22163 /* 22164 * For the multicast case, ipsec_out carries conn_dontroute and 22165 * conn_multicast_loop as conn may not be available here. We 22166 * need this for multicast loopback and forwarding which is done 22167 * later in the code. 22168 */ 22169 if (CLASSD(dst)) { 22170 conn_dontroute = io->ipsec_out_dontroute; 22171 conn_multicast_loop = io->ipsec_out_multicast_loop; 22172 /* 22173 * If conn_dontroute is not set or conn_multicast_loop 22174 * is set, we need to do forwarding/loopback. For 22175 * datagrams from ip_wput_multicast, conn_dontroute is 22176 * set to B_TRUE and conn_multicast_loop is set to 22177 * B_FALSE so that we neither do forwarding nor 22178 * loopback. 22179 */ 22180 if (!conn_dontroute || conn_multicast_loop) 22181 multicast_forward = B_TRUE; 22182 } 22183 } 22184 22185 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22186 ire->ire_zoneid != ALL_ZONES) { 22187 /* 22188 * When a zone sends a packet to another zone, we try to deliver 22189 * the packet under the same conditions as if the destination 22190 * was a real node on the network. To do so, we look for a 22191 * matching route in the forwarding table. 22192 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22193 * ip_newroute() does. 22194 * Note that IRE_LOCAL are special, since they are used 22195 * when the zoneid doesn't match in some cases. This means that 22196 * we need to handle ipha_src differently since ire_src_addr 22197 * belongs to the receiving zone instead of the sending zone. 22198 * When ip_restrict_interzone_loopback is set, then 22199 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22200 * for loopback between zones when the logical "Ethernet" would 22201 * have looped them back. 22202 */ 22203 ire_t *src_ire; 22204 22205 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22206 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22207 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22208 if (src_ire != NULL && 22209 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22210 (!ipst->ips_ip_restrict_interzone_loopback || 22211 ire_local_same_ill_group(ire, src_ire))) { 22212 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22213 ipha->ipha_src = src_ire->ire_src_addr; 22214 ire_refrele(src_ire); 22215 } else { 22216 ire_refrele(ire); 22217 if (conn_outgoing_ill != NULL) 22218 ill_refrele(conn_outgoing_ill); 22219 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22220 if (src_ire != NULL) { 22221 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22222 ire_refrele(src_ire); 22223 freemsg(mp); 22224 return; 22225 } 22226 ire_refrele(src_ire); 22227 } 22228 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22229 /* Failed */ 22230 freemsg(mp); 22231 return; 22232 } 22233 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22234 ipst); 22235 return; 22236 } 22237 } 22238 22239 if (mp->b_datap->db_type == M_CTL || 22240 ipss->ipsec_outbound_v4_policy_present) { 22241 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22242 unspec_src, zoneid); 22243 if (mp == NULL) { 22244 ire_refrele(ire); 22245 if (conn_outgoing_ill != NULL) 22246 ill_refrele(conn_outgoing_ill); 22247 return; 22248 } 22249 /* 22250 * Trusted Extensions supports all-zones interfaces, so 22251 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22252 * the global zone. 22253 */ 22254 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22255 io = (ipsec_out_t *)mp->b_rptr; 22256 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22257 zoneid = io->ipsec_out_zoneid; 22258 } 22259 } 22260 22261 first_mp = mp; 22262 ipsec_len = 0; 22263 22264 if (first_mp->b_datap->db_type == M_CTL) { 22265 io = (ipsec_out_t *)first_mp->b_rptr; 22266 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22267 mp = first_mp->b_cont; 22268 ipsec_len = ipsec_out_extra_length(first_mp); 22269 ASSERT(ipsec_len >= 0); 22270 /* We already picked up the zoneid from the M_CTL above */ 22271 ASSERT(zoneid == io->ipsec_out_zoneid); 22272 ASSERT(zoneid != ALL_ZONES); 22273 22274 /* 22275 * Drop M_CTL here if IPsec processing is not needed. 22276 * (Non-IPsec use of M_CTL extracted any information it 22277 * needed above). 22278 */ 22279 if (ipsec_len == 0) { 22280 freeb(first_mp); 22281 first_mp = mp; 22282 } 22283 } 22284 22285 /* 22286 * Fast path for ip_wput_ire 22287 */ 22288 22289 ipha = (ipha_t *)mp->b_rptr; 22290 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22291 dst = ipha->ipha_dst; 22292 22293 /* 22294 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22295 * if the socket is a SOCK_RAW type. The transport checksum should 22296 * be provided in the pre-built packet, so we don't need to compute it. 22297 * Also, other application set flags, like DF, should not be altered. 22298 * Other transport MUST pass down zero. 22299 */ 22300 ip_hdr_included = ipha->ipha_ident; 22301 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22302 22303 if (CLASSD(dst)) { 22304 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22305 ntohl(dst), 22306 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22307 ntohl(ire->ire_addr))); 22308 } 22309 22310 /* Macros to extract header fields from data already in registers */ 22311 #ifdef _BIG_ENDIAN 22312 #define V_HLEN (v_hlen_tos_len >> 24) 22313 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22314 #define PROTO (ttl_protocol & 0xFF) 22315 #else 22316 #define V_HLEN (v_hlen_tos_len & 0xFF) 22317 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22318 #define PROTO (ttl_protocol >> 8) 22319 #endif 22320 22321 22322 orig_src = src = ipha->ipha_src; 22323 /* (The loop back to "another" is explained down below.) */ 22324 another:; 22325 /* 22326 * Assign an ident value for this packet. We assign idents on 22327 * a per destination basis out of the IRE. There could be 22328 * other threads targeting the same destination, so we have to 22329 * arrange for a atomic increment. Note that we use a 32-bit 22330 * atomic add because it has better performance than its 22331 * 16-bit sibling. 22332 * 22333 * If running in cluster mode and if the source address 22334 * belongs to a replicated service then vector through 22335 * cl_inet_ipident vector to allocate ip identifier 22336 * NOTE: This is a contract private interface with the 22337 * clustering group. 22338 */ 22339 clusterwide = 0; 22340 if (cl_inet_ipident) { 22341 ASSERT(cl_inet_isclusterwide); 22342 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22343 AF_INET, (uint8_t *)(uintptr_t)src)) { 22344 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22345 AF_INET, (uint8_t *)(uintptr_t)src, 22346 (uint8_t *)(uintptr_t)dst); 22347 clusterwide = 1; 22348 } 22349 } 22350 if (!clusterwide) { 22351 ipha->ipha_ident = 22352 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22353 } 22354 22355 #ifndef _BIG_ENDIAN 22356 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22357 #endif 22358 22359 /* 22360 * Set source address unless sent on an ill or conn_unspec_src is set. 22361 * This is needed to obey conn_unspec_src when packets go through 22362 * ip_newroute + arp. 22363 * Assumes ip_newroute{,_multi} sets the source address as well. 22364 */ 22365 if (src == INADDR_ANY && !unspec_src) { 22366 /* 22367 * Assign the appropriate source address from the IRE if none 22368 * was specified. 22369 */ 22370 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22371 22372 /* 22373 * With IP multipathing, broadcast packets are sent on the ire 22374 * that has been cleared of IRE_MARK_NORECV and that belongs to 22375 * the group. However, this ire might not be in the same zone so 22376 * we can't always use its source address. We look for a 22377 * broadcast ire in the same group and in the right zone. 22378 */ 22379 if (ire->ire_type == IRE_BROADCAST && 22380 ire->ire_zoneid != zoneid) { 22381 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22382 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22383 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22384 if (src_ire != NULL) { 22385 src = src_ire->ire_src_addr; 22386 ire_refrele(src_ire); 22387 } else { 22388 ire_refrele(ire); 22389 if (conn_outgoing_ill != NULL) 22390 ill_refrele(conn_outgoing_ill); 22391 freemsg(first_mp); 22392 if (ill != NULL) { 22393 BUMP_MIB(ill->ill_ip_mib, 22394 ipIfStatsOutDiscards); 22395 } else { 22396 BUMP_MIB(&ipst->ips_ip_mib, 22397 ipIfStatsOutDiscards); 22398 } 22399 return; 22400 } 22401 } else { 22402 src = ire->ire_src_addr; 22403 } 22404 22405 if (connp == NULL) { 22406 ip1dbg(("ip_wput_ire: no connp and no src " 22407 "address for dst 0x%x, using src 0x%x\n", 22408 ntohl(dst), 22409 ntohl(src))); 22410 } 22411 ipha->ipha_src = src; 22412 } 22413 stq = ire->ire_stq; 22414 22415 /* 22416 * We only allow ire chains for broadcasts since there will 22417 * be multiple IRE_CACHE entries for the same multicast 22418 * address (one per ipif). 22419 */ 22420 next_mp = NULL; 22421 22422 /* broadcast packet */ 22423 if (ire->ire_type == IRE_BROADCAST) 22424 goto broadcast; 22425 22426 /* loopback ? */ 22427 if (stq == NULL) 22428 goto nullstq; 22429 22430 /* The ill_index for outbound ILL */ 22431 ill_index = Q_TO_INDEX(stq); 22432 22433 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22434 ttl_protocol = ((uint16_t *)ipha)[4]; 22435 22436 /* pseudo checksum (do it in parts for IP header checksum) */ 22437 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22438 22439 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22440 queue_t *dev_q = stq->q_next; 22441 22442 /* flow controlled */ 22443 if ((dev_q->q_next || dev_q->q_first) && 22444 !canput(dev_q)) 22445 goto blocked; 22446 if ((PROTO == IPPROTO_UDP) && 22447 (ip_hdr_included != IP_HDR_INCLUDED)) { 22448 hlen = (V_HLEN & 0xF) << 2; 22449 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22450 if (*up != 0) { 22451 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22452 hlen, LENGTH, max_frag, ipsec_len, cksum); 22453 /* Software checksum? */ 22454 if (DB_CKSUMFLAGS(mp) == 0) { 22455 IP_STAT(ipst, ip_out_sw_cksum); 22456 IP_STAT_UPDATE(ipst, 22457 ip_udp_out_sw_cksum_bytes, 22458 LENGTH - hlen); 22459 } 22460 } 22461 } 22462 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22463 hlen = (V_HLEN & 0xF) << 2; 22464 if (PROTO == IPPROTO_TCP) { 22465 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22466 /* 22467 * The packet header is processed once and for all, even 22468 * in the multirouting case. We disable hardware 22469 * checksum if the packet is multirouted, as it will be 22470 * replicated via several interfaces, and not all of 22471 * them may have this capability. 22472 */ 22473 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22474 LENGTH, max_frag, ipsec_len, cksum); 22475 /* Software checksum? */ 22476 if (DB_CKSUMFLAGS(mp) == 0) { 22477 IP_STAT(ipst, ip_out_sw_cksum); 22478 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22479 LENGTH - hlen); 22480 } 22481 } else { 22482 sctp_hdr_t *sctph; 22483 22484 ASSERT(PROTO == IPPROTO_SCTP); 22485 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22486 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22487 /* 22488 * Zero out the checksum field to ensure proper 22489 * checksum calculation. 22490 */ 22491 sctph->sh_chksum = 0; 22492 #ifdef DEBUG 22493 if (!skip_sctp_cksum) 22494 #endif 22495 sctph->sh_chksum = sctp_cksum(mp, hlen); 22496 } 22497 } 22498 22499 /* 22500 * If this is a multicast packet and originated from ip_wput 22501 * we need to do loopback and forwarding checks. If it comes 22502 * from ip_wput_multicast, we SHOULD not do this. 22503 */ 22504 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22505 22506 /* checksum */ 22507 cksum += ttl_protocol; 22508 22509 /* fragment the packet */ 22510 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22511 goto fragmentit; 22512 /* 22513 * Don't use frag_flag if packet is pre-built or source 22514 * routed or if multicast (since multicast packets do 22515 * not solicit ICMP "packet too big" messages). 22516 */ 22517 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22518 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22519 !ip_source_route_included(ipha)) && 22520 !CLASSD(ipha->ipha_dst)) 22521 ipha->ipha_fragment_offset_and_flags |= 22522 htons(ire->ire_frag_flag); 22523 22524 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22525 /* calculate IP header checksum */ 22526 cksum += ipha->ipha_ident; 22527 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22528 cksum += ipha->ipha_fragment_offset_and_flags; 22529 22530 /* IP options present */ 22531 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22532 if (hlen) 22533 goto checksumoptions; 22534 22535 /* calculate hdr checksum */ 22536 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22537 cksum = ~(cksum + (cksum >> 16)); 22538 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22539 } 22540 if (ipsec_len != 0) { 22541 /* 22542 * We will do the rest of the processing after 22543 * we come back from IPsec in ip_wput_ipsec_out(). 22544 */ 22545 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22546 22547 io = (ipsec_out_t *)first_mp->b_rptr; 22548 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22549 ill_phyint->phyint_ifindex; 22550 22551 ipsec_out_process(q, first_mp, ire, ill_index); 22552 ire_refrele(ire); 22553 if (conn_outgoing_ill != NULL) 22554 ill_refrele(conn_outgoing_ill); 22555 return; 22556 } 22557 22558 /* 22559 * In most cases, the emission loop below is entered only 22560 * once. Only in the case where the ire holds the 22561 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22562 * flagged ires in the bucket, and send the packet 22563 * through all crossed RTF_MULTIRT routes. 22564 */ 22565 if (ire->ire_flags & RTF_MULTIRT) { 22566 multirt_send = B_TRUE; 22567 } 22568 do { 22569 if (multirt_send) { 22570 irb_t *irb; 22571 /* 22572 * We are in a multiple send case, need to get 22573 * the next ire and make a duplicate of the packet. 22574 * ire1 holds here the next ire to process in the 22575 * bucket. If multirouting is expected, 22576 * any non-RTF_MULTIRT ire that has the 22577 * right destination address is ignored. 22578 */ 22579 irb = ire->ire_bucket; 22580 ASSERT(irb != NULL); 22581 22582 IRB_REFHOLD(irb); 22583 for (ire1 = ire->ire_next; 22584 ire1 != NULL; 22585 ire1 = ire1->ire_next) { 22586 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22587 continue; 22588 if (ire1->ire_addr != ire->ire_addr) 22589 continue; 22590 if (ire1->ire_marks & 22591 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22592 continue; 22593 22594 /* Got one */ 22595 IRE_REFHOLD(ire1); 22596 break; 22597 } 22598 IRB_REFRELE(irb); 22599 22600 if (ire1 != NULL) { 22601 next_mp = copyb(mp); 22602 if ((next_mp == NULL) || 22603 ((mp->b_cont != NULL) && 22604 ((next_mp->b_cont = 22605 dupmsg(mp->b_cont)) == NULL))) { 22606 freemsg(next_mp); 22607 next_mp = NULL; 22608 ire_refrele(ire1); 22609 ire1 = NULL; 22610 } 22611 } 22612 22613 /* Last multiroute ire; don't loop anymore. */ 22614 if (ire1 == NULL) { 22615 multirt_send = B_FALSE; 22616 } 22617 } 22618 22619 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22620 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22621 mblk_t *, mp); 22622 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22623 ipst->ips_ipv4firewall_physical_out, 22624 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22625 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22626 if (mp == NULL) 22627 goto release_ire_and_ill; 22628 22629 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22630 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22631 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22632 if ((pktxmit_state == SEND_FAILED) || 22633 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22634 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22635 "- packet dropped\n")); 22636 release_ire_and_ill: 22637 ire_refrele(ire); 22638 if (next_mp != NULL) { 22639 freemsg(next_mp); 22640 ire_refrele(ire1); 22641 } 22642 if (conn_outgoing_ill != NULL) 22643 ill_refrele(conn_outgoing_ill); 22644 return; 22645 } 22646 22647 if (CLASSD(dst)) { 22648 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22649 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22650 LENGTH); 22651 } 22652 22653 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22654 "ip_wput_ire_end: q %p (%S)", 22655 q, "last copy out"); 22656 IRE_REFRELE(ire); 22657 22658 if (multirt_send) { 22659 ASSERT(ire1); 22660 /* 22661 * Proceed with the next RTF_MULTIRT ire, 22662 * Also set up the send-to queue accordingly. 22663 */ 22664 ire = ire1; 22665 ire1 = NULL; 22666 stq = ire->ire_stq; 22667 mp = next_mp; 22668 next_mp = NULL; 22669 ipha = (ipha_t *)mp->b_rptr; 22670 ill_index = Q_TO_INDEX(stq); 22671 ill = (ill_t *)stq->q_ptr; 22672 } 22673 } while (multirt_send); 22674 if (conn_outgoing_ill != NULL) 22675 ill_refrele(conn_outgoing_ill); 22676 return; 22677 22678 /* 22679 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22680 */ 22681 broadcast: 22682 { 22683 /* 22684 * To avoid broadcast storms, we usually set the TTL to 1 for 22685 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22686 * can be overridden stack-wide through the ip_broadcast_ttl 22687 * ndd tunable, or on a per-connection basis through the 22688 * IP_BROADCAST_TTL socket option. 22689 * 22690 * In the event that we are replying to incoming ICMP packets, 22691 * connp could be NULL. 22692 */ 22693 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22694 if (connp != NULL) { 22695 if (connp->conn_dontroute) 22696 ipha->ipha_ttl = 1; 22697 else if (connp->conn_broadcast_ttl != 0) 22698 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22699 } 22700 22701 /* 22702 * Note that we are not doing a IRB_REFHOLD here. 22703 * Actually we don't care if the list changes i.e 22704 * if somebody deletes an IRE from the list while 22705 * we drop the lock, the next time we come around 22706 * ire_next will be NULL and hence we won't send 22707 * out multiple copies which is fine. 22708 */ 22709 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22710 ire1 = ire->ire_next; 22711 if (conn_outgoing_ill != NULL) { 22712 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22713 ASSERT(ire1 == ire->ire_next); 22714 if (ire1 != NULL && ire1->ire_addr == dst) { 22715 ire_refrele(ire); 22716 ire = ire1; 22717 IRE_REFHOLD(ire); 22718 ire1 = ire->ire_next; 22719 continue; 22720 } 22721 rw_exit(&ire->ire_bucket->irb_lock); 22722 /* Did not find a matching ill */ 22723 ip1dbg(("ip_wput_ire: broadcast with no " 22724 "matching IP_BOUND_IF ill %s dst %x\n", 22725 conn_outgoing_ill->ill_name, dst)); 22726 freemsg(first_mp); 22727 if (ire != NULL) 22728 ire_refrele(ire); 22729 ill_refrele(conn_outgoing_ill); 22730 return; 22731 } 22732 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22733 /* 22734 * If the next IRE has the same address and is not one 22735 * of the two copies that we need to send, try to see 22736 * whether this copy should be sent at all. This 22737 * assumes that we insert loopbacks first and then 22738 * non-loopbacks. This is acheived by inserting the 22739 * loopback always before non-loopback. 22740 * This is used to send a single copy of a broadcast 22741 * packet out all physical interfaces that have an 22742 * matching IRE_BROADCAST while also looping 22743 * back one copy (to ip_wput_local) for each 22744 * matching physical interface. However, we avoid 22745 * sending packets out different logical that match by 22746 * having ipif_up/ipif_down supress duplicate 22747 * IRE_BROADCASTS. 22748 * 22749 * This feature is currently used to get broadcasts 22750 * sent to multiple interfaces, when the broadcast 22751 * address being used applies to multiple interfaces. 22752 * For example, a whole net broadcast will be 22753 * replicated on every connected subnet of 22754 * the target net. 22755 * 22756 * Each zone has its own set of IRE_BROADCASTs, so that 22757 * we're able to distribute inbound packets to multiple 22758 * zones who share a broadcast address. We avoid looping 22759 * back outbound packets in different zones but on the 22760 * same ill, as the application would see duplicates. 22761 * 22762 * If the interfaces are part of the same group, 22763 * we would want to send only one copy out for 22764 * whole group. 22765 * 22766 * This logic assumes that ire_add_v4() groups the 22767 * IRE_BROADCAST entries so that those with the same 22768 * ire_addr and ill_group are kept together. 22769 */ 22770 ire_ill = ire->ire_ipif->ipif_ill; 22771 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22772 if (ire_ill->ill_group != NULL && 22773 (ire->ire_marks & IRE_MARK_NORECV)) { 22774 /* 22775 * If the current zone only has an ire 22776 * broadcast for this address marked 22777 * NORECV, the ire we want is ahead in 22778 * the bucket, so we look it up 22779 * deliberately ignoring the zoneid. 22780 */ 22781 for (ire1 = ire->ire_bucket->irb_ire; 22782 ire1 != NULL; 22783 ire1 = ire1->ire_next) { 22784 ire1_ill = 22785 ire1->ire_ipif->ipif_ill; 22786 if (ire1->ire_addr != dst) 22787 continue; 22788 /* skip over the current ire */ 22789 if (ire1 == ire) 22790 continue; 22791 /* skip over deleted ires */ 22792 if (ire1->ire_marks & 22793 IRE_MARK_CONDEMNED) 22794 continue; 22795 /* 22796 * non-loopback ire in our 22797 * group: use it for the next 22798 * pass in the loop 22799 */ 22800 if (ire1->ire_stq != NULL && 22801 ire1_ill->ill_group == 22802 ire_ill->ill_group) 22803 break; 22804 } 22805 } 22806 } else { 22807 while (ire1 != NULL && ire1->ire_addr == dst) { 22808 ire1_ill = ire1->ire_ipif->ipif_ill; 22809 /* 22810 * We can have two broadcast ires on the 22811 * same ill in different zones; here 22812 * we'll send a copy of the packet on 22813 * each ill and the fanout code will 22814 * call conn_wantpacket() to check that 22815 * the zone has the broadcast address 22816 * configured on the ill. If the two 22817 * ires are in the same group we only 22818 * send one copy up. 22819 */ 22820 if (ire1_ill != ire_ill && 22821 (ire1_ill->ill_group == NULL || 22822 ire_ill->ill_group == NULL || 22823 ire1_ill->ill_group != 22824 ire_ill->ill_group)) { 22825 break; 22826 } 22827 ire1 = ire1->ire_next; 22828 } 22829 } 22830 } 22831 ASSERT(multirt_send == B_FALSE); 22832 if (ire1 != NULL && ire1->ire_addr == dst) { 22833 if ((ire->ire_flags & RTF_MULTIRT) && 22834 (ire1->ire_flags & RTF_MULTIRT)) { 22835 /* 22836 * We are in the multirouting case. 22837 * The message must be sent at least 22838 * on both ires. These ires have been 22839 * inserted AFTER the standard ones 22840 * in ip_rt_add(). There are thus no 22841 * other ire entries for the destination 22842 * address in the rest of the bucket 22843 * that do not have the RTF_MULTIRT 22844 * flag. We don't process a copy 22845 * of the message here. This will be 22846 * done in the final sending loop. 22847 */ 22848 multirt_send = B_TRUE; 22849 } else { 22850 next_mp = ip_copymsg(first_mp); 22851 if (next_mp != NULL) 22852 IRE_REFHOLD(ire1); 22853 } 22854 } 22855 rw_exit(&ire->ire_bucket->irb_lock); 22856 } 22857 22858 if (stq) { 22859 /* 22860 * A non-NULL send-to queue means this packet is going 22861 * out of this machine. 22862 */ 22863 out_ill = (ill_t *)stq->q_ptr; 22864 22865 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22866 ttl_protocol = ((uint16_t *)ipha)[4]; 22867 /* 22868 * We accumulate the pseudo header checksum in cksum. 22869 * This is pretty hairy code, so watch close. One 22870 * thing to keep in mind is that UDP and TCP have 22871 * stored their respective datagram lengths in their 22872 * checksum fields. This lines things up real nice. 22873 */ 22874 cksum = (dst >> 16) + (dst & 0xFFFF) + 22875 (src >> 16) + (src & 0xFFFF); 22876 /* 22877 * We assume the udp checksum field contains the 22878 * length, so to compute the pseudo header checksum, 22879 * all we need is the protocol number and src/dst. 22880 */ 22881 /* Provide the checksums for UDP and TCP. */ 22882 if ((PROTO == IPPROTO_TCP) && 22883 (ip_hdr_included != IP_HDR_INCLUDED)) { 22884 /* hlen gets the number of uchar_ts in the IP header */ 22885 hlen = (V_HLEN & 0xF) << 2; 22886 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22887 IP_STAT(ipst, ip_out_sw_cksum); 22888 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22889 LENGTH - hlen); 22890 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22891 } else if (PROTO == IPPROTO_SCTP && 22892 (ip_hdr_included != IP_HDR_INCLUDED)) { 22893 sctp_hdr_t *sctph; 22894 22895 hlen = (V_HLEN & 0xF) << 2; 22896 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22897 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22898 sctph->sh_chksum = 0; 22899 #ifdef DEBUG 22900 if (!skip_sctp_cksum) 22901 #endif 22902 sctph->sh_chksum = sctp_cksum(mp, hlen); 22903 } else { 22904 queue_t *dev_q = stq->q_next; 22905 22906 if ((dev_q->q_next || dev_q->q_first) && 22907 !canput(dev_q)) { 22908 blocked: 22909 ipha->ipha_ident = ip_hdr_included; 22910 /* 22911 * If we don't have a conn to apply 22912 * backpressure, free the message. 22913 * In the ire_send path, we don't know 22914 * the position to requeue the packet. Rather 22915 * than reorder packets, we just drop this 22916 * packet. 22917 */ 22918 if (ipst->ips_ip_output_queue && 22919 connp != NULL && 22920 caller != IRE_SEND) { 22921 if (caller == IP_WSRV) { 22922 connp->conn_did_putbq = 1; 22923 (void) putbq(connp->conn_wq, 22924 first_mp); 22925 conn_drain_insert(connp); 22926 /* 22927 * This is the service thread, 22928 * and the queue is already 22929 * noenabled. The check for 22930 * canput and the putbq is not 22931 * atomic. So we need to check 22932 * again. 22933 */ 22934 if (canput(stq->q_next)) 22935 connp->conn_did_putbq 22936 = 0; 22937 IP_STAT(ipst, ip_conn_flputbq); 22938 } else { 22939 /* 22940 * We are not the service proc. 22941 * ip_wsrv will be scheduled or 22942 * is already running. 22943 */ 22944 (void) putq(connp->conn_wq, 22945 first_mp); 22946 } 22947 } else { 22948 out_ill = (ill_t *)stq->q_ptr; 22949 BUMP_MIB(out_ill->ill_ip_mib, 22950 ipIfStatsOutDiscards); 22951 freemsg(first_mp); 22952 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22953 "ip_wput_ire_end: q %p (%S)", 22954 q, "discard"); 22955 } 22956 ire_refrele(ire); 22957 if (next_mp) { 22958 ire_refrele(ire1); 22959 freemsg(next_mp); 22960 } 22961 if (conn_outgoing_ill != NULL) 22962 ill_refrele(conn_outgoing_ill); 22963 return; 22964 } 22965 if ((PROTO == IPPROTO_UDP) && 22966 (ip_hdr_included != IP_HDR_INCLUDED)) { 22967 /* 22968 * hlen gets the number of uchar_ts in the 22969 * IP header 22970 */ 22971 hlen = (V_HLEN & 0xF) << 2; 22972 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22973 max_frag = ire->ire_max_frag; 22974 if (*up != 0) { 22975 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22976 up, PROTO, hlen, LENGTH, max_frag, 22977 ipsec_len, cksum); 22978 /* Software checksum? */ 22979 if (DB_CKSUMFLAGS(mp) == 0) { 22980 IP_STAT(ipst, ip_out_sw_cksum); 22981 IP_STAT_UPDATE(ipst, 22982 ip_udp_out_sw_cksum_bytes, 22983 LENGTH - hlen); 22984 } 22985 } 22986 } 22987 } 22988 /* 22989 * Need to do this even when fragmenting. The local 22990 * loopback can be done without computing checksums 22991 * but forwarding out other interface must be done 22992 * after the IP checksum (and ULP checksums) have been 22993 * computed. 22994 * 22995 * NOTE : multicast_forward is set only if this packet 22996 * originated from ip_wput. For packets originating from 22997 * ip_wput_multicast, it is not set. 22998 */ 22999 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23000 multi_loopback: 23001 ip2dbg(("ip_wput: multicast, loop %d\n", 23002 conn_multicast_loop)); 23003 23004 /* Forget header checksum offload */ 23005 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23006 23007 /* 23008 * Local loopback of multicasts? Check the 23009 * ill. 23010 * 23011 * Note that the loopback function will not come 23012 * in through ip_rput - it will only do the 23013 * client fanout thus we need to do an mforward 23014 * as well. The is different from the BSD 23015 * logic. 23016 */ 23017 if (ill != NULL) { 23018 ilm_t *ilm; 23019 23020 ILM_WALKER_HOLD(ill); 23021 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23022 ALL_ZONES); 23023 ILM_WALKER_RELE(ill); 23024 if (ilm != NULL) { 23025 /* 23026 * Pass along the virtual output q. 23027 * ip_wput_local() will distribute the 23028 * packet to all the matching zones, 23029 * except the sending zone when 23030 * IP_MULTICAST_LOOP is false. 23031 */ 23032 ip_multicast_loopback(q, ill, first_mp, 23033 conn_multicast_loop ? 0 : 23034 IP_FF_NO_MCAST_LOOP, zoneid); 23035 } 23036 } 23037 if (ipha->ipha_ttl == 0) { 23038 /* 23039 * 0 => only to this host i.e. we are 23040 * done. We are also done if this was the 23041 * loopback interface since it is sufficient 23042 * to loopback one copy of a multicast packet. 23043 */ 23044 freemsg(first_mp); 23045 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23046 "ip_wput_ire_end: q %p (%S)", 23047 q, "loopback"); 23048 ire_refrele(ire); 23049 if (conn_outgoing_ill != NULL) 23050 ill_refrele(conn_outgoing_ill); 23051 return; 23052 } 23053 /* 23054 * ILLF_MULTICAST is checked in ip_newroute 23055 * i.e. we don't need to check it here since 23056 * all IRE_CACHEs come from ip_newroute. 23057 * For multicast traffic, SO_DONTROUTE is interpreted 23058 * to mean only send the packet out the interface 23059 * (optionally specified with IP_MULTICAST_IF) 23060 * and do not forward it out additional interfaces. 23061 * RSVP and the rsvp daemon is an example of a 23062 * protocol and user level process that 23063 * handles it's own routing. Hence, it uses the 23064 * SO_DONTROUTE option to accomplish this. 23065 */ 23066 23067 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23068 ill != NULL) { 23069 /* Unconditionally redo the checksum */ 23070 ipha->ipha_hdr_checksum = 0; 23071 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23072 23073 /* 23074 * If this needs to go out secure, we need 23075 * to wait till we finish the IPsec 23076 * processing. 23077 */ 23078 if (ipsec_len == 0 && 23079 ip_mforward(ill, ipha, mp)) { 23080 freemsg(first_mp); 23081 ip1dbg(("ip_wput: mforward failed\n")); 23082 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23083 "ip_wput_ire_end: q %p (%S)", 23084 q, "mforward failed"); 23085 ire_refrele(ire); 23086 if (conn_outgoing_ill != NULL) 23087 ill_refrele(conn_outgoing_ill); 23088 return; 23089 } 23090 } 23091 } 23092 max_frag = ire->ire_max_frag; 23093 cksum += ttl_protocol; 23094 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23095 /* No fragmentation required for this one. */ 23096 /* 23097 * Don't use frag_flag if packet is pre-built or source 23098 * routed or if multicast (since multicast packets do 23099 * not solicit ICMP "packet too big" messages). 23100 */ 23101 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23102 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23103 !ip_source_route_included(ipha)) && 23104 !CLASSD(ipha->ipha_dst)) 23105 ipha->ipha_fragment_offset_and_flags |= 23106 htons(ire->ire_frag_flag); 23107 23108 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23109 /* Complete the IP header checksum. */ 23110 cksum += ipha->ipha_ident; 23111 cksum += (v_hlen_tos_len >> 16)+ 23112 (v_hlen_tos_len & 0xFFFF); 23113 cksum += ipha->ipha_fragment_offset_and_flags; 23114 hlen = (V_HLEN & 0xF) - 23115 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23116 if (hlen) { 23117 checksumoptions: 23118 /* 23119 * Account for the IP Options in the IP 23120 * header checksum. 23121 */ 23122 up = (uint16_t *)(rptr+ 23123 IP_SIMPLE_HDR_LENGTH); 23124 do { 23125 cksum += up[0]; 23126 cksum += up[1]; 23127 up += 2; 23128 } while (--hlen); 23129 } 23130 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23131 cksum = ~(cksum + (cksum >> 16)); 23132 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23133 } 23134 if (ipsec_len != 0) { 23135 ipsec_out_process(q, first_mp, ire, ill_index); 23136 if (!next_mp) { 23137 ire_refrele(ire); 23138 if (conn_outgoing_ill != NULL) 23139 ill_refrele(conn_outgoing_ill); 23140 return; 23141 } 23142 goto next; 23143 } 23144 23145 /* 23146 * multirt_send has already been handled 23147 * for broadcast, but not yet for multicast 23148 * or IP options. 23149 */ 23150 if (next_mp == NULL) { 23151 if (ire->ire_flags & RTF_MULTIRT) { 23152 multirt_send = B_TRUE; 23153 } 23154 } 23155 23156 /* 23157 * In most cases, the emission loop below is 23158 * entered only once. Only in the case where 23159 * the ire holds the RTF_MULTIRT flag, do we loop 23160 * to process all RTF_MULTIRT ires in the bucket, 23161 * and send the packet through all crossed 23162 * RTF_MULTIRT routes. 23163 */ 23164 do { 23165 if (multirt_send) { 23166 irb_t *irb; 23167 23168 irb = ire->ire_bucket; 23169 ASSERT(irb != NULL); 23170 /* 23171 * We are in a multiple send case, 23172 * need to get the next IRE and make 23173 * a duplicate of the packet. 23174 */ 23175 IRB_REFHOLD(irb); 23176 for (ire1 = ire->ire_next; 23177 ire1 != NULL; 23178 ire1 = ire1->ire_next) { 23179 if (!(ire1->ire_flags & 23180 RTF_MULTIRT)) { 23181 continue; 23182 } 23183 if (ire1->ire_addr != 23184 ire->ire_addr) { 23185 continue; 23186 } 23187 if (ire1->ire_marks & 23188 (IRE_MARK_CONDEMNED| 23189 IRE_MARK_HIDDEN)) { 23190 continue; 23191 } 23192 23193 /* Got one */ 23194 IRE_REFHOLD(ire1); 23195 break; 23196 } 23197 IRB_REFRELE(irb); 23198 23199 if (ire1 != NULL) { 23200 next_mp = copyb(mp); 23201 if ((next_mp == NULL) || 23202 ((mp->b_cont != NULL) && 23203 ((next_mp->b_cont = 23204 dupmsg(mp->b_cont)) 23205 == NULL))) { 23206 freemsg(next_mp); 23207 next_mp = NULL; 23208 ire_refrele(ire1); 23209 ire1 = NULL; 23210 } 23211 } 23212 23213 /* 23214 * Last multiroute ire; don't loop 23215 * anymore. The emission is over 23216 * and next_mp is NULL. 23217 */ 23218 if (ire1 == NULL) { 23219 multirt_send = B_FALSE; 23220 } 23221 } 23222 23223 out_ill = ire_to_ill(ire); 23224 DTRACE_PROBE4(ip4__physical__out__start, 23225 ill_t *, NULL, 23226 ill_t *, out_ill, 23227 ipha_t *, ipha, mblk_t *, mp); 23228 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23229 ipst->ips_ipv4firewall_physical_out, 23230 NULL, out_ill, ipha, mp, mp, 0, ipst); 23231 DTRACE_PROBE1(ip4__physical__out__end, 23232 mblk_t *, mp); 23233 if (mp == NULL) 23234 goto release_ire_and_ill_2; 23235 23236 ASSERT(ipsec_len == 0); 23237 mp->b_prev = 23238 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23239 DTRACE_PROBE2(ip__xmit__2, 23240 mblk_t *, mp, ire_t *, ire); 23241 pktxmit_state = ip_xmit_v4(mp, ire, 23242 NULL, B_TRUE); 23243 if ((pktxmit_state == SEND_FAILED) || 23244 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23245 release_ire_and_ill_2: 23246 if (next_mp) { 23247 freemsg(next_mp); 23248 ire_refrele(ire1); 23249 } 23250 ire_refrele(ire); 23251 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23252 "ip_wput_ire_end: q %p (%S)", 23253 q, "discard MDATA"); 23254 if (conn_outgoing_ill != NULL) 23255 ill_refrele(conn_outgoing_ill); 23256 return; 23257 } 23258 23259 if (CLASSD(dst)) { 23260 BUMP_MIB(out_ill->ill_ip_mib, 23261 ipIfStatsHCOutMcastPkts); 23262 UPDATE_MIB(out_ill->ill_ip_mib, 23263 ipIfStatsHCOutMcastOctets, 23264 LENGTH); 23265 } else if (ire->ire_type == IRE_BROADCAST) { 23266 BUMP_MIB(out_ill->ill_ip_mib, 23267 ipIfStatsHCOutBcastPkts); 23268 } 23269 23270 if (multirt_send) { 23271 /* 23272 * We are in a multiple send case, 23273 * need to re-enter the sending loop 23274 * using the next ire. 23275 */ 23276 ire_refrele(ire); 23277 ire = ire1; 23278 stq = ire->ire_stq; 23279 mp = next_mp; 23280 next_mp = NULL; 23281 ipha = (ipha_t *)mp->b_rptr; 23282 ill_index = Q_TO_INDEX(stq); 23283 } 23284 } while (multirt_send); 23285 23286 if (!next_mp) { 23287 /* 23288 * Last copy going out (the ultra-common 23289 * case). Note that we intentionally replicate 23290 * the putnext rather than calling it before 23291 * the next_mp check in hopes of a little 23292 * tail-call action out of the compiler. 23293 */ 23294 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23295 "ip_wput_ire_end: q %p (%S)", 23296 q, "last copy out(1)"); 23297 ire_refrele(ire); 23298 if (conn_outgoing_ill != NULL) 23299 ill_refrele(conn_outgoing_ill); 23300 return; 23301 } 23302 /* More copies going out below. */ 23303 } else { 23304 int offset; 23305 fragmentit: 23306 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23307 /* 23308 * If this would generate a icmp_frag_needed message, 23309 * we need to handle it before we do the IPsec 23310 * processing. Otherwise, we need to strip the IPsec 23311 * headers before we send up the message to the ULPs 23312 * which becomes messy and difficult. 23313 */ 23314 if (ipsec_len != 0) { 23315 if ((max_frag < (unsigned int)(LENGTH + 23316 ipsec_len)) && (offset & IPH_DF)) { 23317 out_ill = (ill_t *)stq->q_ptr; 23318 BUMP_MIB(out_ill->ill_ip_mib, 23319 ipIfStatsOutFragFails); 23320 BUMP_MIB(out_ill->ill_ip_mib, 23321 ipIfStatsOutFragReqds); 23322 ipha->ipha_hdr_checksum = 0; 23323 ipha->ipha_hdr_checksum = 23324 (uint16_t)ip_csum_hdr(ipha); 23325 icmp_frag_needed(ire->ire_stq, first_mp, 23326 max_frag, zoneid, ipst); 23327 if (!next_mp) { 23328 ire_refrele(ire); 23329 if (conn_outgoing_ill != NULL) { 23330 ill_refrele( 23331 conn_outgoing_ill); 23332 } 23333 return; 23334 } 23335 } else { 23336 /* 23337 * This won't cause a icmp_frag_needed 23338 * message. to be generated. Send it on 23339 * the wire. Note that this could still 23340 * cause fragmentation and all we 23341 * do is the generation of the message 23342 * to the ULP if needed before IPsec. 23343 */ 23344 if (!next_mp) { 23345 ipsec_out_process(q, first_mp, 23346 ire, ill_index); 23347 TRACE_2(TR_FAC_IP, 23348 TR_IP_WPUT_IRE_END, 23349 "ip_wput_ire_end: q %p " 23350 "(%S)", q, 23351 "last ipsec_out_process"); 23352 ire_refrele(ire); 23353 if (conn_outgoing_ill != NULL) { 23354 ill_refrele( 23355 conn_outgoing_ill); 23356 } 23357 return; 23358 } 23359 ipsec_out_process(q, first_mp, 23360 ire, ill_index); 23361 } 23362 } else { 23363 /* 23364 * Initiate IPPF processing. For 23365 * fragmentable packets we finish 23366 * all QOS packet processing before 23367 * calling: 23368 * ip_wput_ire_fragmentit->ip_wput_frag 23369 */ 23370 23371 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23372 ip_process(IPP_LOCAL_OUT, &mp, 23373 ill_index); 23374 if (mp == NULL) { 23375 out_ill = (ill_t *)stq->q_ptr; 23376 BUMP_MIB(out_ill->ill_ip_mib, 23377 ipIfStatsOutDiscards); 23378 if (next_mp != NULL) { 23379 freemsg(next_mp); 23380 ire_refrele(ire1); 23381 } 23382 ire_refrele(ire); 23383 TRACE_2(TR_FAC_IP, 23384 TR_IP_WPUT_IRE_END, 23385 "ip_wput_ire: q %p (%S)", 23386 q, "discard MDATA"); 23387 if (conn_outgoing_ill != NULL) { 23388 ill_refrele( 23389 conn_outgoing_ill); 23390 } 23391 return; 23392 } 23393 } 23394 if (!next_mp) { 23395 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23396 "ip_wput_ire_end: q %p (%S)", 23397 q, "last fragmentation"); 23398 ip_wput_ire_fragmentit(mp, ire, 23399 zoneid, ipst); 23400 ire_refrele(ire); 23401 if (conn_outgoing_ill != NULL) 23402 ill_refrele(conn_outgoing_ill); 23403 return; 23404 } 23405 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23406 } 23407 } 23408 } else { 23409 nullstq: 23410 /* A NULL stq means the destination address is local. */ 23411 UPDATE_OB_PKT_COUNT(ire); 23412 ire->ire_last_used_time = lbolt; 23413 ASSERT(ire->ire_ipif != NULL); 23414 if (!next_mp) { 23415 /* 23416 * Is there an "in" and "out" for traffic local 23417 * to a host (loopback)? The code in Solaris doesn't 23418 * explicitly draw a line in its code for in vs out, 23419 * so we've had to draw a line in the sand: ip_wput_ire 23420 * is considered to be the "output" side and 23421 * ip_wput_local to be the "input" side. 23422 */ 23423 out_ill = ire_to_ill(ire); 23424 23425 /* 23426 * DTrace this as ip:::send. A blocked packet will 23427 * fire the send probe, but not the receive probe. 23428 */ 23429 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23430 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23431 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23432 23433 DTRACE_PROBE4(ip4__loopback__out__start, 23434 ill_t *, NULL, ill_t *, out_ill, 23435 ipha_t *, ipha, mblk_t *, first_mp); 23436 23437 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23438 ipst->ips_ipv4firewall_loopback_out, 23439 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23440 23441 DTRACE_PROBE1(ip4__loopback__out_end, 23442 mblk_t *, first_mp); 23443 23444 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23445 "ip_wput_ire_end: q %p (%S)", 23446 q, "local address"); 23447 23448 if (first_mp != NULL) 23449 ip_wput_local(q, out_ill, ipha, 23450 first_mp, ire, 0, ire->ire_zoneid); 23451 ire_refrele(ire); 23452 if (conn_outgoing_ill != NULL) 23453 ill_refrele(conn_outgoing_ill); 23454 return; 23455 } 23456 23457 out_ill = ire_to_ill(ire); 23458 23459 /* 23460 * DTrace this as ip:::send. A blocked packet will fire the 23461 * send probe, but not the receive probe. 23462 */ 23463 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23464 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23465 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23466 23467 DTRACE_PROBE4(ip4__loopback__out__start, 23468 ill_t *, NULL, ill_t *, out_ill, 23469 ipha_t *, ipha, mblk_t *, first_mp); 23470 23471 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23472 ipst->ips_ipv4firewall_loopback_out, 23473 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23474 23475 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23476 23477 if (first_mp != NULL) 23478 ip_wput_local(q, out_ill, ipha, 23479 first_mp, ire, 0, ire->ire_zoneid); 23480 } 23481 next: 23482 /* 23483 * More copies going out to additional interfaces. 23484 * ire1 has already been held. We don't need the 23485 * "ire" anymore. 23486 */ 23487 ire_refrele(ire); 23488 ire = ire1; 23489 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23490 mp = next_mp; 23491 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23492 ill = ire_to_ill(ire); 23493 first_mp = mp; 23494 if (ipsec_len != 0) { 23495 ASSERT(first_mp->b_datap->db_type == M_CTL); 23496 mp = mp->b_cont; 23497 } 23498 dst = ire->ire_addr; 23499 ipha = (ipha_t *)mp->b_rptr; 23500 /* 23501 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23502 * Restore ipha_ident "no checksum" flag. 23503 */ 23504 src = orig_src; 23505 ipha->ipha_ident = ip_hdr_included; 23506 goto another; 23507 23508 #undef rptr 23509 #undef Q_TO_INDEX 23510 } 23511 23512 /* 23513 * Routine to allocate a message that is used to notify the ULP about MDT. 23514 * The caller may provide a pointer to the link-layer MDT capabilities, 23515 * or NULL if MDT is to be disabled on the stream. 23516 */ 23517 mblk_t * 23518 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23519 { 23520 mblk_t *mp; 23521 ip_mdt_info_t *mdti; 23522 ill_mdt_capab_t *idst; 23523 23524 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23525 DB_TYPE(mp) = M_CTL; 23526 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23527 mdti = (ip_mdt_info_t *)mp->b_rptr; 23528 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23529 idst = &(mdti->mdt_capab); 23530 23531 /* 23532 * If the caller provides us with the capability, copy 23533 * it over into our notification message; otherwise 23534 * we zero out the capability portion. 23535 */ 23536 if (isrc != NULL) 23537 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23538 else 23539 bzero((caddr_t)idst, sizeof (*idst)); 23540 } 23541 return (mp); 23542 } 23543 23544 /* 23545 * Routine which determines whether MDT can be enabled on the destination 23546 * IRE and IPC combination, and if so, allocates and returns the MDT 23547 * notification mblk that may be used by ULP. We also check if we need to 23548 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23549 * MDT usage in the past have been lifted. This gets called during IP 23550 * and ULP binding. 23551 */ 23552 mblk_t * 23553 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23554 ill_mdt_capab_t *mdt_cap) 23555 { 23556 mblk_t *mp; 23557 boolean_t rc = B_FALSE; 23558 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23559 23560 ASSERT(dst_ire != NULL); 23561 ASSERT(connp != NULL); 23562 ASSERT(mdt_cap != NULL); 23563 23564 /* 23565 * Currently, we only support simple TCP/{IPv4,IPv6} with 23566 * Multidata, which is handled in tcp_multisend(). This 23567 * is the reason why we do all these checks here, to ensure 23568 * that we don't enable Multidata for the cases which we 23569 * can't handle at the moment. 23570 */ 23571 do { 23572 /* Only do TCP at the moment */ 23573 if (connp->conn_ulp != IPPROTO_TCP) 23574 break; 23575 23576 /* 23577 * IPsec outbound policy present? Note that we get here 23578 * after calling ipsec_conn_cache_policy() where the global 23579 * policy checking is performed. conn_latch will be 23580 * non-NULL as long as there's a policy defined, 23581 * i.e. conn_out_enforce_policy may be NULL in such case 23582 * when the connection is non-secure, and hence we check 23583 * further if the latch refers to an outbound policy. 23584 */ 23585 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23586 break; 23587 23588 /* CGTP (multiroute) is enabled? */ 23589 if (dst_ire->ire_flags & RTF_MULTIRT) 23590 break; 23591 23592 /* Outbound IPQoS enabled? */ 23593 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23594 /* 23595 * In this case, we disable MDT for this and all 23596 * future connections going over the interface. 23597 */ 23598 mdt_cap->ill_mdt_on = 0; 23599 break; 23600 } 23601 23602 /* socket option(s) present? */ 23603 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23604 break; 23605 23606 rc = B_TRUE; 23607 /* CONSTCOND */ 23608 } while (0); 23609 23610 /* Remember the result */ 23611 connp->conn_mdt_ok = rc; 23612 23613 if (!rc) 23614 return (NULL); 23615 else if (!mdt_cap->ill_mdt_on) { 23616 /* 23617 * If MDT has been previously turned off in the past, and we 23618 * currently can do MDT (due to IPQoS policy removal, etc.) 23619 * then enable it for this interface. 23620 */ 23621 mdt_cap->ill_mdt_on = 1; 23622 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23623 "interface %s\n", ill_name)); 23624 } 23625 23626 /* Allocate the MDT info mblk */ 23627 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23628 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23629 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23630 return (NULL); 23631 } 23632 return (mp); 23633 } 23634 23635 /* 23636 * Routine to allocate a message that is used to notify the ULP about LSO. 23637 * The caller may provide a pointer to the link-layer LSO capabilities, 23638 * or NULL if LSO is to be disabled on the stream. 23639 */ 23640 mblk_t * 23641 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23642 { 23643 mblk_t *mp; 23644 ip_lso_info_t *lsoi; 23645 ill_lso_capab_t *idst; 23646 23647 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23648 DB_TYPE(mp) = M_CTL; 23649 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23650 lsoi = (ip_lso_info_t *)mp->b_rptr; 23651 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23652 idst = &(lsoi->lso_capab); 23653 23654 /* 23655 * If the caller provides us with the capability, copy 23656 * it over into our notification message; otherwise 23657 * we zero out the capability portion. 23658 */ 23659 if (isrc != NULL) 23660 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23661 else 23662 bzero((caddr_t)idst, sizeof (*idst)); 23663 } 23664 return (mp); 23665 } 23666 23667 /* 23668 * Routine which determines whether LSO can be enabled on the destination 23669 * IRE and IPC combination, and if so, allocates and returns the LSO 23670 * notification mblk that may be used by ULP. We also check if we need to 23671 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23672 * LSO usage in the past have been lifted. This gets called during IP 23673 * and ULP binding. 23674 */ 23675 mblk_t * 23676 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23677 ill_lso_capab_t *lso_cap) 23678 { 23679 mblk_t *mp; 23680 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23681 23682 ASSERT(dst_ire != NULL); 23683 ASSERT(connp != NULL); 23684 ASSERT(lso_cap != NULL); 23685 23686 connp->conn_lso_ok = B_TRUE; 23687 23688 if ((connp->conn_ulp != IPPROTO_TCP) || 23689 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23690 (dst_ire->ire_flags & RTF_MULTIRT) || 23691 !CONN_IS_LSO_MD_FASTPATH(connp) || 23692 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23693 connp->conn_lso_ok = B_FALSE; 23694 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23695 /* 23696 * Disable LSO for this and all future connections going 23697 * over the interface. 23698 */ 23699 lso_cap->ill_lso_on = 0; 23700 } 23701 } 23702 23703 if (!connp->conn_lso_ok) 23704 return (NULL); 23705 else if (!lso_cap->ill_lso_on) { 23706 /* 23707 * If LSO has been previously turned off in the past, and we 23708 * currently can do LSO (due to IPQoS policy removal, etc.) 23709 * then enable it for this interface. 23710 */ 23711 lso_cap->ill_lso_on = 1; 23712 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23713 ill_name)); 23714 } 23715 23716 /* Allocate the LSO info mblk */ 23717 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23718 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23719 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23720 23721 return (mp); 23722 } 23723 23724 /* 23725 * Create destination address attribute, and fill it with the physical 23726 * destination address and SAP taken from the template DL_UNITDATA_REQ 23727 * message block. 23728 */ 23729 boolean_t 23730 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23731 { 23732 dl_unitdata_req_t *dlurp; 23733 pattr_t *pa; 23734 pattrinfo_t pa_info; 23735 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23736 uint_t das_len, das_off; 23737 23738 ASSERT(dlmp != NULL); 23739 23740 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23741 das_len = dlurp->dl_dest_addr_length; 23742 das_off = dlurp->dl_dest_addr_offset; 23743 23744 pa_info.type = PATTR_DSTADDRSAP; 23745 pa_info.len = sizeof (**das) + das_len - 1; 23746 23747 /* create and associate the attribute */ 23748 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23749 if (pa != NULL) { 23750 ASSERT(*das != NULL); 23751 (*das)->addr_is_group = 0; 23752 (*das)->addr_len = (uint8_t)das_len; 23753 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23754 } 23755 23756 return (pa != NULL); 23757 } 23758 23759 /* 23760 * Create hardware checksum attribute and fill it with the values passed. 23761 */ 23762 boolean_t 23763 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23764 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23765 { 23766 pattr_t *pa; 23767 pattrinfo_t pa_info; 23768 23769 ASSERT(mmd != NULL); 23770 23771 pa_info.type = PATTR_HCKSUM; 23772 pa_info.len = sizeof (pattr_hcksum_t); 23773 23774 /* create and associate the attribute */ 23775 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23776 if (pa != NULL) { 23777 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23778 23779 hck->hcksum_start_offset = start_offset; 23780 hck->hcksum_stuff_offset = stuff_offset; 23781 hck->hcksum_end_offset = end_offset; 23782 hck->hcksum_flags = flags; 23783 } 23784 return (pa != NULL); 23785 } 23786 23787 /* 23788 * Create zerocopy attribute and fill it with the specified flags 23789 */ 23790 boolean_t 23791 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23792 { 23793 pattr_t *pa; 23794 pattrinfo_t pa_info; 23795 23796 ASSERT(mmd != NULL); 23797 pa_info.type = PATTR_ZCOPY; 23798 pa_info.len = sizeof (pattr_zcopy_t); 23799 23800 /* create and associate the attribute */ 23801 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23802 if (pa != NULL) { 23803 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23804 23805 zcopy->zcopy_flags = flags; 23806 } 23807 return (pa != NULL); 23808 } 23809 23810 /* 23811 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23812 * block chain. We could rewrite to handle arbitrary message block chains but 23813 * that would make the code complicated and slow. Right now there three 23814 * restrictions: 23815 * 23816 * 1. The first message block must contain the complete IP header and 23817 * at least 1 byte of payload data. 23818 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23819 * so that we can use a single Multidata message. 23820 * 3. No frag must be distributed over two or more message blocks so 23821 * that we don't need more than two packet descriptors per frag. 23822 * 23823 * The above restrictions allow us to support userland applications (which 23824 * will send down a single message block) and NFS over UDP (which will 23825 * send down a chain of at most three message blocks). 23826 * 23827 * We also don't use MDT for payloads with less than or equal to 23828 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23829 */ 23830 boolean_t 23831 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23832 { 23833 int blocks; 23834 ssize_t total, missing, size; 23835 23836 ASSERT(mp != NULL); 23837 ASSERT(hdr_len > 0); 23838 23839 size = MBLKL(mp) - hdr_len; 23840 if (size <= 0) 23841 return (B_FALSE); 23842 23843 /* The first mblk contains the header and some payload. */ 23844 blocks = 1; 23845 total = size; 23846 size %= len; 23847 missing = (size == 0) ? 0 : (len - size); 23848 mp = mp->b_cont; 23849 23850 while (mp != NULL) { 23851 /* 23852 * Give up if we encounter a zero length message block. 23853 * In practice, this should rarely happen and therefore 23854 * not worth the trouble of freeing and re-linking the 23855 * mblk from the chain to handle such case. 23856 */ 23857 if ((size = MBLKL(mp)) == 0) 23858 return (B_FALSE); 23859 23860 /* Too many payload buffers for a single Multidata message? */ 23861 if (++blocks > MULTIDATA_MAX_PBUFS) 23862 return (B_FALSE); 23863 23864 total += size; 23865 /* Is a frag distributed over two or more message blocks? */ 23866 if (missing > size) 23867 return (B_FALSE); 23868 size -= missing; 23869 23870 size %= len; 23871 missing = (size == 0) ? 0 : (len - size); 23872 23873 mp = mp->b_cont; 23874 } 23875 23876 return (total > ip_wput_frag_mdt_min); 23877 } 23878 23879 /* 23880 * Outbound IPv4 fragmentation routine using MDT. 23881 */ 23882 static void 23883 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23884 uint32_t frag_flag, int offset) 23885 { 23886 ipha_t *ipha_orig; 23887 int i1, ip_data_end; 23888 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23889 mblk_t *hdr_mp, *md_mp = NULL; 23890 unsigned char *hdr_ptr, *pld_ptr; 23891 multidata_t *mmd; 23892 ip_pdescinfo_t pdi; 23893 ill_t *ill; 23894 ip_stack_t *ipst = ire->ire_ipst; 23895 23896 ASSERT(DB_TYPE(mp) == M_DATA); 23897 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23898 23899 ill = ire_to_ill(ire); 23900 ASSERT(ill != NULL); 23901 23902 ipha_orig = (ipha_t *)mp->b_rptr; 23903 mp->b_rptr += sizeof (ipha_t); 23904 23905 /* Calculate how many packets we will send out */ 23906 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23907 pkts = (i1 + len - 1) / len; 23908 ASSERT(pkts > 1); 23909 23910 /* Allocate a message block which will hold all the IP Headers. */ 23911 wroff = ipst->ips_ip_wroff_extra; 23912 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23913 23914 i1 = pkts * hdr_chunk_len; 23915 /* 23916 * Create the header buffer, Multidata and destination address 23917 * and SAP attribute that should be associated with it. 23918 */ 23919 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23920 ((hdr_mp->b_wptr += i1), 23921 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23922 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23923 freemsg(mp); 23924 if (md_mp == NULL) { 23925 freemsg(hdr_mp); 23926 } else { 23927 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23928 freemsg(md_mp); 23929 } 23930 IP_STAT(ipst, ip_frag_mdt_allocfail); 23931 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23932 return; 23933 } 23934 IP_STAT(ipst, ip_frag_mdt_allocd); 23935 23936 /* 23937 * Add a payload buffer to the Multidata; this operation must not 23938 * fail, or otherwise our logic in this routine is broken. There 23939 * is no memory allocation done by the routine, so any returned 23940 * failure simply tells us that we've done something wrong. 23941 * 23942 * A failure tells us that either we're adding the same payload 23943 * buffer more than once, or we're trying to add more buffers than 23944 * allowed. None of the above cases should happen, and we panic 23945 * because either there's horrible heap corruption, and/or 23946 * programming mistake. 23947 */ 23948 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23949 goto pbuf_panic; 23950 23951 hdr_ptr = hdr_mp->b_rptr; 23952 pld_ptr = mp->b_rptr; 23953 23954 /* Establish the ending byte offset, based on the starting offset. */ 23955 offset <<= 3; 23956 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23957 IP_SIMPLE_HDR_LENGTH; 23958 23959 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23960 23961 while (pld_ptr < mp->b_wptr) { 23962 ipha_t *ipha; 23963 uint16_t offset_and_flags; 23964 uint16_t ip_len; 23965 int error; 23966 23967 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23968 ipha = (ipha_t *)(hdr_ptr + wroff); 23969 ASSERT(OK_32PTR(ipha)); 23970 *ipha = *ipha_orig; 23971 23972 if (ip_data_end - offset > len) { 23973 offset_and_flags = IPH_MF; 23974 } else { 23975 /* 23976 * Last frag. Set len to the length of this last piece. 23977 */ 23978 len = ip_data_end - offset; 23979 /* A frag of a frag might have IPH_MF non-zero */ 23980 offset_and_flags = 23981 ntohs(ipha->ipha_fragment_offset_and_flags) & 23982 IPH_MF; 23983 } 23984 offset_and_flags |= (uint16_t)(offset >> 3); 23985 offset_and_flags |= (uint16_t)frag_flag; 23986 /* Store the offset and flags in the IP header. */ 23987 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23988 23989 /* Store the length in the IP header. */ 23990 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23991 ipha->ipha_length = htons(ip_len); 23992 23993 /* 23994 * Set the IP header checksum. Note that mp is just 23995 * the header, so this is easy to pass to ip_csum. 23996 */ 23997 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23998 23999 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24000 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24001 NULL, int, 0); 24002 24003 /* 24004 * Record offset and size of header and data of the next packet 24005 * in the multidata message. 24006 */ 24007 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24008 PDESC_PLD_INIT(&pdi); 24009 i1 = MIN(mp->b_wptr - pld_ptr, len); 24010 ASSERT(i1 > 0); 24011 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24012 if (i1 == len) { 24013 pld_ptr += len; 24014 } else { 24015 i1 = len - i1; 24016 mp = mp->b_cont; 24017 ASSERT(mp != NULL); 24018 ASSERT(MBLKL(mp) >= i1); 24019 /* 24020 * Attach the next payload message block to the 24021 * multidata message. 24022 */ 24023 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24024 goto pbuf_panic; 24025 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24026 pld_ptr = mp->b_rptr + i1; 24027 } 24028 24029 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24030 KM_NOSLEEP)) == NULL) { 24031 /* 24032 * Any failure other than ENOMEM indicates that we 24033 * have passed in invalid pdesc info or parameters 24034 * to mmd_addpdesc, which must not happen. 24035 * 24036 * EINVAL is a result of failure on boundary checks 24037 * against the pdesc info contents. It should not 24038 * happen, and we panic because either there's 24039 * horrible heap corruption, and/or programming 24040 * mistake. 24041 */ 24042 if (error != ENOMEM) { 24043 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24044 "pdesc logic error detected for " 24045 "mmd %p pinfo %p (%d)\n", 24046 (void *)mmd, (void *)&pdi, error); 24047 /* NOTREACHED */ 24048 } 24049 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24050 /* Free unattached payload message blocks as well */ 24051 md_mp->b_cont = mp->b_cont; 24052 goto free_mmd; 24053 } 24054 24055 /* Advance fragment offset. */ 24056 offset += len; 24057 24058 /* Advance to location for next header in the buffer. */ 24059 hdr_ptr += hdr_chunk_len; 24060 24061 /* Did we reach the next payload message block? */ 24062 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24063 mp = mp->b_cont; 24064 /* 24065 * Attach the next message block with payload 24066 * data to the multidata message. 24067 */ 24068 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24069 goto pbuf_panic; 24070 pld_ptr = mp->b_rptr; 24071 } 24072 } 24073 24074 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24075 ASSERT(mp->b_wptr == pld_ptr); 24076 24077 /* Update IP statistics */ 24078 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24079 24080 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24081 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24082 24083 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24084 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24085 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24086 24087 if (pkt_type == OB_PKT) { 24088 ire->ire_ob_pkt_count += pkts; 24089 if (ire->ire_ipif != NULL) 24090 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24091 } else { 24092 /* The type is IB_PKT in the forwarding path. */ 24093 ire->ire_ib_pkt_count += pkts; 24094 ASSERT(!IRE_IS_LOCAL(ire)); 24095 if (ire->ire_type & IRE_BROADCAST) { 24096 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24097 } else { 24098 UPDATE_MIB(ill->ill_ip_mib, 24099 ipIfStatsHCOutForwDatagrams, pkts); 24100 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24101 } 24102 } 24103 ire->ire_last_used_time = lbolt; 24104 /* Send it down */ 24105 putnext(ire->ire_stq, md_mp); 24106 return; 24107 24108 pbuf_panic: 24109 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24110 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24111 pbuf_idx); 24112 /* NOTREACHED */ 24113 } 24114 24115 /* 24116 * Outbound IP fragmentation routine. 24117 * 24118 * NOTE : This routine does not ire_refrele the ire that is passed in 24119 * as the argument. 24120 */ 24121 static void 24122 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24123 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24124 { 24125 int i1; 24126 mblk_t *ll_hdr_mp; 24127 int ll_hdr_len; 24128 int hdr_len; 24129 mblk_t *hdr_mp; 24130 ipha_t *ipha; 24131 int ip_data_end; 24132 int len; 24133 mblk_t *mp = mp_orig, *mp1; 24134 int offset; 24135 queue_t *q; 24136 uint32_t v_hlen_tos_len; 24137 mblk_t *first_mp; 24138 boolean_t mctl_present; 24139 ill_t *ill; 24140 ill_t *out_ill; 24141 mblk_t *xmit_mp; 24142 mblk_t *carve_mp; 24143 ire_t *ire1 = NULL; 24144 ire_t *save_ire = NULL; 24145 mblk_t *next_mp = NULL; 24146 boolean_t last_frag = B_FALSE; 24147 boolean_t multirt_send = B_FALSE; 24148 ire_t *first_ire = NULL; 24149 irb_t *irb = NULL; 24150 mib2_ipIfStatsEntry_t *mibptr = NULL; 24151 24152 ill = ire_to_ill(ire); 24153 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24154 24155 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24156 24157 if (max_frag == 0) { 24158 ip1dbg(("ip_wput_frag: ire frag size is 0" 24159 " - dropping packet\n")); 24160 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24161 freemsg(mp); 24162 return; 24163 } 24164 24165 /* 24166 * IPsec does not allow hw accelerated packets to be fragmented 24167 * This check is made in ip_wput_ipsec_out prior to coming here 24168 * via ip_wput_ire_fragmentit. 24169 * 24170 * If at this point we have an ire whose ARP request has not 24171 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24172 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24173 * This packet and all fragmentable packets for this ire will 24174 * continue to get dropped while ire_nce->nce_state remains in 24175 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24176 * ND_REACHABLE, all subsquent large packets for this ire will 24177 * get fragemented and sent out by this function. 24178 */ 24179 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24180 /* If nce_state is ND_INITIAL, trigger ARP query */ 24181 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24182 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24183 " - dropping packet\n")); 24184 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24185 freemsg(mp); 24186 return; 24187 } 24188 24189 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24190 "ip_wput_frag_start:"); 24191 24192 if (mp->b_datap->db_type == M_CTL) { 24193 first_mp = mp; 24194 mp_orig = mp = mp->b_cont; 24195 mctl_present = B_TRUE; 24196 } else { 24197 first_mp = mp; 24198 mctl_present = B_FALSE; 24199 } 24200 24201 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24202 ipha = (ipha_t *)mp->b_rptr; 24203 24204 /* 24205 * If the Don't Fragment flag is on, generate an ICMP destination 24206 * unreachable, fragmentation needed. 24207 */ 24208 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24209 if (offset & IPH_DF) { 24210 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24211 if (is_system_labeled()) { 24212 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24213 ire->ire_max_frag - max_frag, AF_INET); 24214 } 24215 /* 24216 * Need to compute hdr checksum if called from ip_wput_ire. 24217 * Note that ip_rput_forward verifies the checksum before 24218 * calling this routine so in that case this is a noop. 24219 */ 24220 ipha->ipha_hdr_checksum = 0; 24221 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24222 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24223 ipst); 24224 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24225 "ip_wput_frag_end:(%S)", 24226 "don't fragment"); 24227 return; 24228 } 24229 /* 24230 * Labeled systems adjust max_frag if they add a label 24231 * to send the correct path mtu. We need the real mtu since we 24232 * are fragmenting the packet after label adjustment. 24233 */ 24234 if (is_system_labeled()) 24235 max_frag = ire->ire_max_frag; 24236 if (mctl_present) 24237 freeb(first_mp); 24238 /* 24239 * Establish the starting offset. May not be zero if we are fragging 24240 * a fragment that is being forwarded. 24241 */ 24242 offset = offset & IPH_OFFSET; 24243 24244 /* TODO why is this test needed? */ 24245 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24246 if (((max_frag - LENGTH) & ~7) < 8) { 24247 /* TODO: notify ulp somehow */ 24248 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24249 freemsg(mp); 24250 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24251 "ip_wput_frag_end:(%S)", 24252 "len < 8"); 24253 return; 24254 } 24255 24256 hdr_len = (V_HLEN & 0xF) << 2; 24257 24258 ipha->ipha_hdr_checksum = 0; 24259 24260 /* 24261 * Establish the number of bytes maximum per frag, after putting 24262 * in the header. 24263 */ 24264 len = (max_frag - hdr_len) & ~7; 24265 24266 /* Check if we can use MDT to send out the frags. */ 24267 ASSERT(!IRE_IS_LOCAL(ire)); 24268 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24269 ipst->ips_ip_multidata_outbound && 24270 !(ire->ire_flags & RTF_MULTIRT) && 24271 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24272 ill != NULL && ILL_MDT_CAPABLE(ill) && 24273 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24274 ASSERT(ill->ill_mdt_capab != NULL); 24275 if (!ill->ill_mdt_capab->ill_mdt_on) { 24276 /* 24277 * If MDT has been previously turned off in the past, 24278 * and we currently can do MDT (due to IPQoS policy 24279 * removal, etc.) then enable it for this interface. 24280 */ 24281 ill->ill_mdt_capab->ill_mdt_on = 1; 24282 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24283 ill->ill_name)); 24284 } 24285 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24286 offset); 24287 return; 24288 } 24289 24290 /* Get a copy of the header for the trailing frags */ 24291 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24292 if (!hdr_mp) { 24293 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24294 freemsg(mp); 24295 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24296 "ip_wput_frag_end:(%S)", 24297 "couldn't copy hdr"); 24298 return; 24299 } 24300 if (DB_CRED(mp) != NULL) 24301 mblk_setcred(hdr_mp, DB_CRED(mp)); 24302 24303 /* Store the starting offset, with the MoreFrags flag. */ 24304 i1 = offset | IPH_MF | frag_flag; 24305 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24306 24307 /* Establish the ending byte offset, based on the starting offset. */ 24308 offset <<= 3; 24309 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24310 24311 /* Store the length of the first fragment in the IP header. */ 24312 i1 = len + hdr_len; 24313 ASSERT(i1 <= IP_MAXPACKET); 24314 ipha->ipha_length = htons((uint16_t)i1); 24315 24316 /* 24317 * Compute the IP header checksum for the first frag. We have to 24318 * watch out that we stop at the end of the header. 24319 */ 24320 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24321 24322 /* 24323 * Now carve off the first frag. Note that this will include the 24324 * original IP header. 24325 */ 24326 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24327 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24328 freeb(hdr_mp); 24329 freemsg(mp_orig); 24330 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24331 "ip_wput_frag_end:(%S)", 24332 "couldn't carve first"); 24333 return; 24334 } 24335 24336 /* 24337 * Multirouting case. Each fragment is replicated 24338 * via all non-condemned RTF_MULTIRT routes 24339 * currently resolved. 24340 * We ensure that first_ire is the first RTF_MULTIRT 24341 * ire in the bucket. 24342 */ 24343 if (ire->ire_flags & RTF_MULTIRT) { 24344 irb = ire->ire_bucket; 24345 ASSERT(irb != NULL); 24346 24347 multirt_send = B_TRUE; 24348 24349 /* Make sure we do not omit any multiroute ire. */ 24350 IRB_REFHOLD(irb); 24351 for (first_ire = irb->irb_ire; 24352 first_ire != NULL; 24353 first_ire = first_ire->ire_next) { 24354 if ((first_ire->ire_flags & RTF_MULTIRT) && 24355 (first_ire->ire_addr == ire->ire_addr) && 24356 !(first_ire->ire_marks & 24357 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24358 break; 24359 } 24360 } 24361 24362 if (first_ire != NULL) { 24363 if (first_ire != ire) { 24364 IRE_REFHOLD(first_ire); 24365 /* 24366 * Do not release the ire passed in 24367 * as the argument. 24368 */ 24369 ire = first_ire; 24370 } else { 24371 first_ire = NULL; 24372 } 24373 } 24374 IRB_REFRELE(irb); 24375 24376 /* 24377 * Save the first ire; we will need to restore it 24378 * for the trailing frags. 24379 * We REFHOLD save_ire, as each iterated ire will be 24380 * REFRELEd. 24381 */ 24382 save_ire = ire; 24383 IRE_REFHOLD(save_ire); 24384 } 24385 24386 /* 24387 * First fragment emission loop. 24388 * In most cases, the emission loop below is entered only 24389 * once. Only in the case where the ire holds the RTF_MULTIRT 24390 * flag, do we loop to process all RTF_MULTIRT ires in the 24391 * bucket, and send the fragment through all crossed 24392 * RTF_MULTIRT routes. 24393 */ 24394 do { 24395 if (ire->ire_flags & RTF_MULTIRT) { 24396 /* 24397 * We are in a multiple send case, need to get 24398 * the next ire and make a copy of the packet. 24399 * ire1 holds here the next ire to process in the 24400 * bucket. If multirouting is expected, 24401 * any non-RTF_MULTIRT ire that has the 24402 * right destination address is ignored. 24403 * 24404 * We have to take into account the MTU of 24405 * each walked ire. max_frag is set by the 24406 * the caller and generally refers to 24407 * the primary ire entry. Here we ensure that 24408 * no route with a lower MTU will be used, as 24409 * fragments are carved once for all ires, 24410 * then replicated. 24411 */ 24412 ASSERT(irb != NULL); 24413 IRB_REFHOLD(irb); 24414 for (ire1 = ire->ire_next; 24415 ire1 != NULL; 24416 ire1 = ire1->ire_next) { 24417 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24418 continue; 24419 if (ire1->ire_addr != ire->ire_addr) 24420 continue; 24421 if (ire1->ire_marks & 24422 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24423 continue; 24424 /* 24425 * Ensure we do not exceed the MTU 24426 * of the next route. 24427 */ 24428 if (ire1->ire_max_frag < max_frag) { 24429 ip_multirt_bad_mtu(ire1, max_frag); 24430 continue; 24431 } 24432 24433 /* Got one. */ 24434 IRE_REFHOLD(ire1); 24435 break; 24436 } 24437 IRB_REFRELE(irb); 24438 24439 if (ire1 != NULL) { 24440 next_mp = copyb(mp); 24441 if ((next_mp == NULL) || 24442 ((mp->b_cont != NULL) && 24443 ((next_mp->b_cont = 24444 dupmsg(mp->b_cont)) == NULL))) { 24445 freemsg(next_mp); 24446 next_mp = NULL; 24447 ire_refrele(ire1); 24448 ire1 = NULL; 24449 } 24450 } 24451 24452 /* Last multiroute ire; don't loop anymore. */ 24453 if (ire1 == NULL) { 24454 multirt_send = B_FALSE; 24455 } 24456 } 24457 24458 ll_hdr_len = 0; 24459 LOCK_IRE_FP_MP(ire); 24460 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24461 if (ll_hdr_mp != NULL) { 24462 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24463 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24464 } else { 24465 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24466 } 24467 24468 /* If there is a transmit header, get a copy for this frag. */ 24469 /* 24470 * TODO: should check db_ref before calling ip_carve_mp since 24471 * it might give us a dup. 24472 */ 24473 if (!ll_hdr_mp) { 24474 /* No xmit header. */ 24475 xmit_mp = mp; 24476 24477 /* We have a link-layer header that can fit in our mblk. */ 24478 } else if (mp->b_datap->db_ref == 1 && 24479 ll_hdr_len != 0 && 24480 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24481 /* M_DATA fastpath */ 24482 mp->b_rptr -= ll_hdr_len; 24483 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24484 xmit_mp = mp; 24485 24486 /* Corner case if copyb has failed */ 24487 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24488 UNLOCK_IRE_FP_MP(ire); 24489 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24490 freeb(hdr_mp); 24491 freemsg(mp); 24492 freemsg(mp_orig); 24493 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24494 "ip_wput_frag_end:(%S)", 24495 "discard"); 24496 24497 if (multirt_send) { 24498 ASSERT(ire1); 24499 ASSERT(next_mp); 24500 24501 freemsg(next_mp); 24502 ire_refrele(ire1); 24503 } 24504 if (save_ire != NULL) 24505 IRE_REFRELE(save_ire); 24506 24507 if (first_ire != NULL) 24508 ire_refrele(first_ire); 24509 return; 24510 24511 /* 24512 * Case of res_mp OR the fastpath mp can't fit 24513 * in the mblk 24514 */ 24515 } else { 24516 xmit_mp->b_cont = mp; 24517 if (DB_CRED(mp) != NULL) 24518 mblk_setcred(xmit_mp, DB_CRED(mp)); 24519 /* 24520 * Get priority marking, if any. 24521 * We propagate the CoS marking from the 24522 * original packet that went to QoS processing 24523 * in ip_wput_ire to the newly carved mp. 24524 */ 24525 if (DB_TYPE(xmit_mp) == M_DATA) 24526 xmit_mp->b_band = mp->b_band; 24527 } 24528 UNLOCK_IRE_FP_MP(ire); 24529 24530 q = ire->ire_stq; 24531 out_ill = (ill_t *)q->q_ptr; 24532 24533 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24534 24535 DTRACE_PROBE4(ip4__physical__out__start, 24536 ill_t *, NULL, ill_t *, out_ill, 24537 ipha_t *, ipha, mblk_t *, xmit_mp); 24538 24539 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24540 ipst->ips_ipv4firewall_physical_out, 24541 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24542 24543 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24544 24545 if (xmit_mp != NULL) { 24546 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24547 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24548 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24549 24550 putnext(q, xmit_mp); 24551 24552 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24553 UPDATE_MIB(out_ill->ill_ip_mib, 24554 ipIfStatsHCOutOctets, i1); 24555 24556 if (pkt_type != OB_PKT) { 24557 /* 24558 * Update the packet count and MIB stats 24559 * of trailing RTF_MULTIRT ires. 24560 */ 24561 UPDATE_OB_PKT_COUNT(ire); 24562 BUMP_MIB(out_ill->ill_ip_mib, 24563 ipIfStatsOutFragReqds); 24564 } 24565 } 24566 24567 if (multirt_send) { 24568 /* 24569 * We are in a multiple send case; look for 24570 * the next ire and re-enter the loop. 24571 */ 24572 ASSERT(ire1); 24573 ASSERT(next_mp); 24574 /* REFRELE the current ire before looping */ 24575 ire_refrele(ire); 24576 ire = ire1; 24577 ire1 = NULL; 24578 mp = next_mp; 24579 next_mp = NULL; 24580 } 24581 } while (multirt_send); 24582 24583 ASSERT(ire1 == NULL); 24584 24585 /* Restore the original ire; we need it for the trailing frags */ 24586 if (save_ire != NULL) { 24587 /* REFRELE the last iterated ire */ 24588 ire_refrele(ire); 24589 /* save_ire has been REFHOLDed */ 24590 ire = save_ire; 24591 save_ire = NULL; 24592 q = ire->ire_stq; 24593 } 24594 24595 if (pkt_type == OB_PKT) { 24596 UPDATE_OB_PKT_COUNT(ire); 24597 } else { 24598 out_ill = (ill_t *)q->q_ptr; 24599 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24600 UPDATE_IB_PKT_COUNT(ire); 24601 } 24602 24603 /* Advance the offset to the second frag starting point. */ 24604 offset += len; 24605 /* 24606 * Update hdr_len from the copied header - there might be less options 24607 * in the later fragments. 24608 */ 24609 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24610 /* Loop until done. */ 24611 for (;;) { 24612 uint16_t offset_and_flags; 24613 uint16_t ip_len; 24614 24615 if (ip_data_end - offset > len) { 24616 /* 24617 * Carve off the appropriate amount from the original 24618 * datagram. 24619 */ 24620 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24621 mp = NULL; 24622 break; 24623 } 24624 /* 24625 * More frags after this one. Get another copy 24626 * of the header. 24627 */ 24628 if (carve_mp->b_datap->db_ref == 1 && 24629 hdr_mp->b_wptr - hdr_mp->b_rptr < 24630 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24631 /* Inline IP header */ 24632 carve_mp->b_rptr -= hdr_mp->b_wptr - 24633 hdr_mp->b_rptr; 24634 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24635 hdr_mp->b_wptr - hdr_mp->b_rptr); 24636 mp = carve_mp; 24637 } else { 24638 if (!(mp = copyb(hdr_mp))) { 24639 freemsg(carve_mp); 24640 break; 24641 } 24642 /* Get priority marking, if any. */ 24643 mp->b_band = carve_mp->b_band; 24644 mp->b_cont = carve_mp; 24645 } 24646 ipha = (ipha_t *)mp->b_rptr; 24647 offset_and_flags = IPH_MF; 24648 } else { 24649 /* 24650 * Last frag. Consume the header. Set len to 24651 * the length of this last piece. 24652 */ 24653 len = ip_data_end - offset; 24654 24655 /* 24656 * Carve off the appropriate amount from the original 24657 * datagram. 24658 */ 24659 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24660 mp = NULL; 24661 break; 24662 } 24663 if (carve_mp->b_datap->db_ref == 1 && 24664 hdr_mp->b_wptr - hdr_mp->b_rptr < 24665 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24666 /* Inline IP header */ 24667 carve_mp->b_rptr -= hdr_mp->b_wptr - 24668 hdr_mp->b_rptr; 24669 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24670 hdr_mp->b_wptr - hdr_mp->b_rptr); 24671 mp = carve_mp; 24672 freeb(hdr_mp); 24673 hdr_mp = mp; 24674 } else { 24675 mp = hdr_mp; 24676 /* Get priority marking, if any. */ 24677 mp->b_band = carve_mp->b_band; 24678 mp->b_cont = carve_mp; 24679 } 24680 ipha = (ipha_t *)mp->b_rptr; 24681 /* A frag of a frag might have IPH_MF non-zero */ 24682 offset_and_flags = 24683 ntohs(ipha->ipha_fragment_offset_and_flags) & 24684 IPH_MF; 24685 } 24686 offset_and_flags |= (uint16_t)(offset >> 3); 24687 offset_and_flags |= (uint16_t)frag_flag; 24688 /* Store the offset and flags in the IP header. */ 24689 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24690 24691 /* Store the length in the IP header. */ 24692 ip_len = (uint16_t)(len + hdr_len); 24693 ipha->ipha_length = htons(ip_len); 24694 24695 /* 24696 * Set the IP header checksum. Note that mp is just 24697 * the header, so this is easy to pass to ip_csum. 24698 */ 24699 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24700 24701 /* Attach a transmit header, if any, and ship it. */ 24702 if (pkt_type == OB_PKT) { 24703 UPDATE_OB_PKT_COUNT(ire); 24704 } else { 24705 out_ill = (ill_t *)q->q_ptr; 24706 BUMP_MIB(out_ill->ill_ip_mib, 24707 ipIfStatsHCOutForwDatagrams); 24708 UPDATE_IB_PKT_COUNT(ire); 24709 } 24710 24711 if (ire->ire_flags & RTF_MULTIRT) { 24712 irb = ire->ire_bucket; 24713 ASSERT(irb != NULL); 24714 24715 multirt_send = B_TRUE; 24716 24717 /* 24718 * Save the original ire; we will need to restore it 24719 * for the tailing frags. 24720 */ 24721 save_ire = ire; 24722 IRE_REFHOLD(save_ire); 24723 } 24724 /* 24725 * Emission loop for this fragment, similar 24726 * to what is done for the first fragment. 24727 */ 24728 do { 24729 if (multirt_send) { 24730 /* 24731 * We are in a multiple send case, need to get 24732 * the next ire and make a copy of the packet. 24733 */ 24734 ASSERT(irb != NULL); 24735 IRB_REFHOLD(irb); 24736 for (ire1 = ire->ire_next; 24737 ire1 != NULL; 24738 ire1 = ire1->ire_next) { 24739 if (!(ire1->ire_flags & RTF_MULTIRT)) 24740 continue; 24741 if (ire1->ire_addr != ire->ire_addr) 24742 continue; 24743 if (ire1->ire_marks & 24744 (IRE_MARK_CONDEMNED| 24745 IRE_MARK_HIDDEN)) { 24746 continue; 24747 } 24748 /* 24749 * Ensure we do not exceed the MTU 24750 * of the next route. 24751 */ 24752 if (ire1->ire_max_frag < max_frag) { 24753 ip_multirt_bad_mtu(ire1, 24754 max_frag); 24755 continue; 24756 } 24757 24758 /* Got one. */ 24759 IRE_REFHOLD(ire1); 24760 break; 24761 } 24762 IRB_REFRELE(irb); 24763 24764 if (ire1 != NULL) { 24765 next_mp = copyb(mp); 24766 if ((next_mp == NULL) || 24767 ((mp->b_cont != NULL) && 24768 ((next_mp->b_cont = 24769 dupmsg(mp->b_cont)) == NULL))) { 24770 freemsg(next_mp); 24771 next_mp = NULL; 24772 ire_refrele(ire1); 24773 ire1 = NULL; 24774 } 24775 } 24776 24777 /* Last multiroute ire; don't loop anymore. */ 24778 if (ire1 == NULL) { 24779 multirt_send = B_FALSE; 24780 } 24781 } 24782 24783 /* Update transmit header */ 24784 ll_hdr_len = 0; 24785 LOCK_IRE_FP_MP(ire); 24786 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24787 if (ll_hdr_mp != NULL) { 24788 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24789 ll_hdr_len = MBLKL(ll_hdr_mp); 24790 } else { 24791 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24792 } 24793 24794 if (!ll_hdr_mp) { 24795 xmit_mp = mp; 24796 24797 /* 24798 * We have link-layer header that can fit in 24799 * our mblk. 24800 */ 24801 } else if (mp->b_datap->db_ref == 1 && 24802 ll_hdr_len != 0 && 24803 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24804 /* M_DATA fastpath */ 24805 mp->b_rptr -= ll_hdr_len; 24806 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24807 ll_hdr_len); 24808 xmit_mp = mp; 24809 24810 /* 24811 * Case of res_mp OR the fastpath mp can't fit 24812 * in the mblk 24813 */ 24814 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24815 xmit_mp->b_cont = mp; 24816 if (DB_CRED(mp) != NULL) 24817 mblk_setcred(xmit_mp, DB_CRED(mp)); 24818 /* Get priority marking, if any. */ 24819 if (DB_TYPE(xmit_mp) == M_DATA) 24820 xmit_mp->b_band = mp->b_band; 24821 24822 /* Corner case if copyb failed */ 24823 } else { 24824 /* 24825 * Exit both the replication and 24826 * fragmentation loops. 24827 */ 24828 UNLOCK_IRE_FP_MP(ire); 24829 goto drop_pkt; 24830 } 24831 UNLOCK_IRE_FP_MP(ire); 24832 24833 mp1 = mp; 24834 out_ill = (ill_t *)q->q_ptr; 24835 24836 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24837 24838 DTRACE_PROBE4(ip4__physical__out__start, 24839 ill_t *, NULL, ill_t *, out_ill, 24840 ipha_t *, ipha, mblk_t *, xmit_mp); 24841 24842 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24843 ipst->ips_ipv4firewall_physical_out, 24844 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24845 24846 DTRACE_PROBE1(ip4__physical__out__end, 24847 mblk_t *, xmit_mp); 24848 24849 if (mp != mp1 && hdr_mp == mp1) 24850 hdr_mp = mp; 24851 if (mp != mp1 && mp_orig == mp1) 24852 mp_orig = mp; 24853 24854 if (xmit_mp != NULL) { 24855 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24856 NULL, void_ip_t *, ipha, 24857 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24858 ipha, ip6_t *, NULL, int, 0); 24859 24860 putnext(q, xmit_mp); 24861 24862 BUMP_MIB(out_ill->ill_ip_mib, 24863 ipIfStatsHCOutTransmits); 24864 UPDATE_MIB(out_ill->ill_ip_mib, 24865 ipIfStatsHCOutOctets, ip_len); 24866 24867 if (pkt_type != OB_PKT) { 24868 /* 24869 * Update the packet count of trailing 24870 * RTF_MULTIRT ires. 24871 */ 24872 UPDATE_OB_PKT_COUNT(ire); 24873 } 24874 } 24875 24876 /* All done if we just consumed the hdr_mp. */ 24877 if (mp == hdr_mp) { 24878 last_frag = B_TRUE; 24879 BUMP_MIB(out_ill->ill_ip_mib, 24880 ipIfStatsOutFragOKs); 24881 } 24882 24883 if (multirt_send) { 24884 /* 24885 * We are in a multiple send case; look for 24886 * the next ire and re-enter the loop. 24887 */ 24888 ASSERT(ire1); 24889 ASSERT(next_mp); 24890 /* REFRELE the current ire before looping */ 24891 ire_refrele(ire); 24892 ire = ire1; 24893 ire1 = NULL; 24894 q = ire->ire_stq; 24895 mp = next_mp; 24896 next_mp = NULL; 24897 } 24898 } while (multirt_send); 24899 /* 24900 * Restore the original ire; we need it for the 24901 * trailing frags 24902 */ 24903 if (save_ire != NULL) { 24904 ASSERT(ire1 == NULL); 24905 /* REFRELE the last iterated ire */ 24906 ire_refrele(ire); 24907 /* save_ire has been REFHOLDed */ 24908 ire = save_ire; 24909 q = ire->ire_stq; 24910 save_ire = NULL; 24911 } 24912 24913 if (last_frag) { 24914 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24915 "ip_wput_frag_end:(%S)", 24916 "consumed hdr_mp"); 24917 24918 if (first_ire != NULL) 24919 ire_refrele(first_ire); 24920 return; 24921 } 24922 /* Otherwise, advance and loop. */ 24923 offset += len; 24924 } 24925 24926 drop_pkt: 24927 /* Clean up following allocation failure. */ 24928 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24929 freemsg(mp); 24930 if (mp != hdr_mp) 24931 freeb(hdr_mp); 24932 if (mp != mp_orig) 24933 freemsg(mp_orig); 24934 24935 if (save_ire != NULL) 24936 IRE_REFRELE(save_ire); 24937 if (first_ire != NULL) 24938 ire_refrele(first_ire); 24939 24940 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24941 "ip_wput_frag_end:(%S)", 24942 "end--alloc failure"); 24943 } 24944 24945 /* 24946 * Copy the header plus those options which have the copy bit set 24947 */ 24948 static mblk_t * 24949 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24950 { 24951 mblk_t *mp; 24952 uchar_t *up; 24953 24954 /* 24955 * Quick check if we need to look for options without the copy bit 24956 * set 24957 */ 24958 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24959 if (!mp) 24960 return (mp); 24961 mp->b_rptr += ipst->ips_ip_wroff_extra; 24962 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24963 bcopy(rptr, mp->b_rptr, hdr_len); 24964 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24965 return (mp); 24966 } 24967 up = mp->b_rptr; 24968 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24969 up += IP_SIMPLE_HDR_LENGTH; 24970 rptr += IP_SIMPLE_HDR_LENGTH; 24971 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24972 while (hdr_len > 0) { 24973 uint32_t optval; 24974 uint32_t optlen; 24975 24976 optval = *rptr; 24977 if (optval == IPOPT_EOL) 24978 break; 24979 if (optval == IPOPT_NOP) 24980 optlen = 1; 24981 else 24982 optlen = rptr[1]; 24983 if (optval & IPOPT_COPY) { 24984 bcopy(rptr, up, optlen); 24985 up += optlen; 24986 } 24987 rptr += optlen; 24988 hdr_len -= optlen; 24989 } 24990 /* 24991 * Make sure that we drop an even number of words by filling 24992 * with EOL to the next word boundary. 24993 */ 24994 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24995 hdr_len & 0x3; hdr_len++) 24996 *up++ = IPOPT_EOL; 24997 mp->b_wptr = up; 24998 /* Update header length */ 24999 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25000 return (mp); 25001 } 25002 25003 /* 25004 * Delivery to local recipients including fanout to multiple recipients. 25005 * Does not do checksumming of UDP/TCP. 25006 * Note: q should be the read side queue for either the ill or conn. 25007 * Note: rq should be the read side q for the lower (ill) stream. 25008 * We don't send packets to IPPF processing, thus the last argument 25009 * to all the fanout calls are B_FALSE. 25010 */ 25011 void 25012 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25013 int fanout_flags, zoneid_t zoneid) 25014 { 25015 uint32_t protocol; 25016 mblk_t *first_mp; 25017 boolean_t mctl_present; 25018 int ire_type; 25019 #define rptr ((uchar_t *)ipha) 25020 ip_stack_t *ipst = ill->ill_ipst; 25021 25022 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25023 "ip_wput_local_start: q %p", q); 25024 25025 if (ire != NULL) { 25026 ire_type = ire->ire_type; 25027 } else { 25028 /* 25029 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25030 * packet is not multicast, we can't tell the ire type. 25031 */ 25032 ASSERT(CLASSD(ipha->ipha_dst)); 25033 ire_type = IRE_BROADCAST; 25034 } 25035 25036 first_mp = mp; 25037 if (first_mp->b_datap->db_type == M_CTL) { 25038 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25039 if (!io->ipsec_out_secure) { 25040 /* 25041 * This ipsec_out_t was allocated in ip_wput 25042 * for multicast packets to store the ill_index. 25043 * As this is being delivered locally, we don't 25044 * need this anymore. 25045 */ 25046 mp = first_mp->b_cont; 25047 freeb(first_mp); 25048 first_mp = mp; 25049 mctl_present = B_FALSE; 25050 } else { 25051 /* 25052 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25053 * security properties for the looped-back packet. 25054 */ 25055 mctl_present = B_TRUE; 25056 mp = first_mp->b_cont; 25057 ASSERT(mp != NULL); 25058 ipsec_out_to_in(first_mp); 25059 } 25060 } else { 25061 mctl_present = B_FALSE; 25062 } 25063 25064 DTRACE_PROBE4(ip4__loopback__in__start, 25065 ill_t *, ill, ill_t *, NULL, 25066 ipha_t *, ipha, mblk_t *, first_mp); 25067 25068 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25069 ipst->ips_ipv4firewall_loopback_in, 25070 ill, NULL, ipha, first_mp, mp, 0, ipst); 25071 25072 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25073 25074 if (first_mp == NULL) 25075 return; 25076 25077 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25078 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25079 int, 1); 25080 25081 ipst->ips_loopback_packets++; 25082 25083 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25084 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25085 if (!IS_SIMPLE_IPH(ipha)) { 25086 ip_wput_local_options(ipha, ipst); 25087 } 25088 25089 protocol = ipha->ipha_protocol; 25090 switch (protocol) { 25091 case IPPROTO_ICMP: { 25092 ire_t *ire_zone; 25093 ilm_t *ilm; 25094 mblk_t *mp1; 25095 zoneid_t last_zoneid; 25096 25097 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25098 ASSERT(ire_type == IRE_BROADCAST); 25099 /* 25100 * In the multicast case, applications may have joined 25101 * the group from different zones, so we need to deliver 25102 * the packet to each of them. Loop through the 25103 * multicast memberships structures (ilm) on the receive 25104 * ill and send a copy of the packet up each matching 25105 * one. However, we don't do this for multicasts sent on 25106 * the loopback interface (PHYI_LOOPBACK flag set) as 25107 * they must stay in the sender's zone. 25108 * 25109 * ilm_add_v6() ensures that ilms in the same zone are 25110 * contiguous in the ill_ilm list. We use this property 25111 * to avoid sending duplicates needed when two 25112 * applications in the same zone join the same group on 25113 * different logical interfaces: we ignore the ilm if 25114 * it's zoneid is the same as the last matching one. 25115 * In addition, the sending of the packet for 25116 * ire_zoneid is delayed until all of the other ilms 25117 * have been exhausted. 25118 */ 25119 last_zoneid = -1; 25120 ILM_WALKER_HOLD(ill); 25121 for (ilm = ill->ill_ilm; ilm != NULL; 25122 ilm = ilm->ilm_next) { 25123 if ((ilm->ilm_flags & ILM_DELETED) || 25124 ipha->ipha_dst != ilm->ilm_addr || 25125 ilm->ilm_zoneid == last_zoneid || 25126 ilm->ilm_zoneid == zoneid || 25127 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25128 continue; 25129 mp1 = ip_copymsg(first_mp); 25130 if (mp1 == NULL) 25131 continue; 25132 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25133 mctl_present, B_FALSE, ill, 25134 ilm->ilm_zoneid); 25135 last_zoneid = ilm->ilm_zoneid; 25136 } 25137 ILM_WALKER_RELE(ill); 25138 /* 25139 * Loopback case: the sending endpoint has 25140 * IP_MULTICAST_LOOP disabled, therefore we don't 25141 * dispatch the multicast packet to the sending zone. 25142 */ 25143 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25144 freemsg(first_mp); 25145 return; 25146 } 25147 } else if (ire_type == IRE_BROADCAST) { 25148 /* 25149 * In the broadcast case, there may be many zones 25150 * which need a copy of the packet delivered to them. 25151 * There is one IRE_BROADCAST per broadcast address 25152 * and per zone; we walk those using a helper function. 25153 * In addition, the sending of the packet for zoneid is 25154 * delayed until all of the other ires have been 25155 * processed. 25156 */ 25157 IRB_REFHOLD(ire->ire_bucket); 25158 ire_zone = NULL; 25159 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25160 ire)) != NULL) { 25161 mp1 = ip_copymsg(first_mp); 25162 if (mp1 == NULL) 25163 continue; 25164 25165 UPDATE_IB_PKT_COUNT(ire_zone); 25166 ire_zone->ire_last_used_time = lbolt; 25167 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25168 mctl_present, B_FALSE, ill, 25169 ire_zone->ire_zoneid); 25170 } 25171 IRB_REFRELE(ire->ire_bucket); 25172 } 25173 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25174 0, mctl_present, B_FALSE, ill, zoneid); 25175 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25176 "ip_wput_local_end: q %p (%S)", 25177 q, "icmp"); 25178 return; 25179 } 25180 case IPPROTO_IGMP: 25181 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25182 /* Bad packet - discarded by igmp_input */ 25183 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25184 "ip_wput_local_end: q %p (%S)", 25185 q, "igmp_input--bad packet"); 25186 if (mctl_present) 25187 freeb(first_mp); 25188 return; 25189 } 25190 /* 25191 * igmp_input() may have returned the pulled up message. 25192 * So first_mp and ipha need to be reinitialized. 25193 */ 25194 ipha = (ipha_t *)mp->b_rptr; 25195 if (mctl_present) 25196 first_mp->b_cont = mp; 25197 else 25198 first_mp = mp; 25199 /* deliver to local raw users */ 25200 break; 25201 case IPPROTO_ENCAP: 25202 /* 25203 * This case is covered by either ip_fanout_proto, or by 25204 * the above security processing for self-tunneled packets. 25205 */ 25206 break; 25207 case IPPROTO_UDP: { 25208 uint16_t *up; 25209 uint32_t ports; 25210 25211 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25212 UDP_PORTS_OFFSET); 25213 /* Force a 'valid' checksum. */ 25214 up[3] = 0; 25215 25216 ports = *(uint32_t *)up; 25217 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25218 (ire_type == IRE_BROADCAST), 25219 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25220 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25221 ill, zoneid); 25222 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25223 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25224 return; 25225 } 25226 case IPPROTO_TCP: { 25227 25228 /* 25229 * For TCP, discard broadcast packets. 25230 */ 25231 if ((ushort_t)ire_type == IRE_BROADCAST) { 25232 freemsg(first_mp); 25233 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25234 ip2dbg(("ip_wput_local: discard broadcast\n")); 25235 return; 25236 } 25237 25238 if (mp->b_datap->db_type == M_DATA) { 25239 /* 25240 * M_DATA mblk, so init mblk (chain) for no struio(). 25241 */ 25242 mblk_t *mp1 = mp; 25243 25244 do { 25245 mp1->b_datap->db_struioflag = 0; 25246 } while ((mp1 = mp1->b_cont) != NULL); 25247 } 25248 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25249 <= mp->b_wptr); 25250 ip_fanout_tcp(q, first_mp, ill, ipha, 25251 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25252 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25253 mctl_present, B_FALSE, zoneid); 25254 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25255 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25256 return; 25257 } 25258 case IPPROTO_SCTP: 25259 { 25260 uint32_t ports; 25261 25262 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25263 ip_fanout_sctp(first_mp, ill, ipha, ports, 25264 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25265 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25266 return; 25267 } 25268 25269 default: 25270 break; 25271 } 25272 /* 25273 * Find a client for some other protocol. We give 25274 * copies to multiple clients, if more than one is 25275 * bound. 25276 */ 25277 ip_fanout_proto(q, first_mp, ill, ipha, 25278 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25279 mctl_present, B_FALSE, ill, zoneid); 25280 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25281 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25282 #undef rptr 25283 } 25284 25285 /* 25286 * Update any source route, record route, or timestamp options. 25287 * Check that we are at end of strict source route. 25288 * The options have been sanity checked by ip_wput_options(). 25289 */ 25290 static void 25291 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25292 { 25293 ipoptp_t opts; 25294 uchar_t *opt; 25295 uint8_t optval; 25296 uint8_t optlen; 25297 ipaddr_t dst; 25298 uint32_t ts; 25299 ire_t *ire; 25300 timestruc_t now; 25301 25302 ip2dbg(("ip_wput_local_options\n")); 25303 for (optval = ipoptp_first(&opts, ipha); 25304 optval != IPOPT_EOL; 25305 optval = ipoptp_next(&opts)) { 25306 opt = opts.ipoptp_cur; 25307 optlen = opts.ipoptp_len; 25308 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25309 switch (optval) { 25310 uint32_t off; 25311 case IPOPT_SSRR: 25312 case IPOPT_LSRR: 25313 off = opt[IPOPT_OFFSET]; 25314 off--; 25315 if (optlen < IP_ADDR_LEN || 25316 off > optlen - IP_ADDR_LEN) { 25317 /* End of source route */ 25318 break; 25319 } 25320 /* 25321 * This will only happen if two consecutive entries 25322 * in the source route contains our address or if 25323 * it is a packet with a loose source route which 25324 * reaches us before consuming the whole source route 25325 */ 25326 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25327 if (optval == IPOPT_SSRR) { 25328 return; 25329 } 25330 /* 25331 * Hack: instead of dropping the packet truncate the 25332 * source route to what has been used by filling the 25333 * rest with IPOPT_NOP. 25334 */ 25335 opt[IPOPT_OLEN] = (uint8_t)off; 25336 while (off < optlen) { 25337 opt[off++] = IPOPT_NOP; 25338 } 25339 break; 25340 case IPOPT_RR: 25341 off = opt[IPOPT_OFFSET]; 25342 off--; 25343 if (optlen < IP_ADDR_LEN || 25344 off > optlen - IP_ADDR_LEN) { 25345 /* No more room - ignore */ 25346 ip1dbg(( 25347 "ip_wput_forward_options: end of RR\n")); 25348 break; 25349 } 25350 dst = htonl(INADDR_LOOPBACK); 25351 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25352 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25353 break; 25354 case IPOPT_TS: 25355 /* Insert timestamp if there is romm */ 25356 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25357 case IPOPT_TS_TSONLY: 25358 off = IPOPT_TS_TIMELEN; 25359 break; 25360 case IPOPT_TS_PRESPEC: 25361 case IPOPT_TS_PRESPEC_RFC791: 25362 /* Verify that the address matched */ 25363 off = opt[IPOPT_OFFSET] - 1; 25364 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25365 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25366 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25367 ipst); 25368 if (ire == NULL) { 25369 /* Not for us */ 25370 break; 25371 } 25372 ire_refrele(ire); 25373 /* FALLTHRU */ 25374 case IPOPT_TS_TSANDADDR: 25375 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25376 break; 25377 default: 25378 /* 25379 * ip_*put_options should have already 25380 * dropped this packet. 25381 */ 25382 cmn_err(CE_PANIC, "ip_wput_local_options: " 25383 "unknown IT - bug in ip_wput_options?\n"); 25384 return; /* Keep "lint" happy */ 25385 } 25386 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25387 /* Increase overflow counter */ 25388 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25389 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25390 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25391 (off << 4); 25392 break; 25393 } 25394 off = opt[IPOPT_OFFSET] - 1; 25395 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25396 case IPOPT_TS_PRESPEC: 25397 case IPOPT_TS_PRESPEC_RFC791: 25398 case IPOPT_TS_TSANDADDR: 25399 dst = htonl(INADDR_LOOPBACK); 25400 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25401 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25402 /* FALLTHRU */ 25403 case IPOPT_TS_TSONLY: 25404 off = opt[IPOPT_OFFSET] - 1; 25405 /* Compute # of milliseconds since midnight */ 25406 gethrestime(&now); 25407 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25408 now.tv_nsec / (NANOSEC / MILLISEC); 25409 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25410 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25411 break; 25412 } 25413 break; 25414 } 25415 } 25416 } 25417 25418 /* 25419 * Send out a multicast packet on interface ipif. 25420 * The sender does not have an conn. 25421 * Caller verifies that this isn't a PHYI_LOOPBACK. 25422 */ 25423 void 25424 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25425 { 25426 ipha_t *ipha; 25427 ire_t *ire; 25428 ipaddr_t dst; 25429 mblk_t *first_mp; 25430 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25431 25432 /* igmp_sendpkt always allocates a ipsec_out_t */ 25433 ASSERT(mp->b_datap->db_type == M_CTL); 25434 ASSERT(!ipif->ipif_isv6); 25435 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25436 25437 first_mp = mp; 25438 mp = first_mp->b_cont; 25439 ASSERT(mp->b_datap->db_type == M_DATA); 25440 ipha = (ipha_t *)mp->b_rptr; 25441 25442 /* 25443 * Find an IRE which matches the destination and the outgoing 25444 * queue (i.e. the outgoing interface.) 25445 */ 25446 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25447 dst = ipif->ipif_pp_dst_addr; 25448 else 25449 dst = ipha->ipha_dst; 25450 /* 25451 * The source address has already been initialized by the 25452 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25453 * be sufficient rather than MATCH_IRE_IPIF. 25454 * 25455 * This function is used for sending IGMP packets. We need 25456 * to make sure that we send the packet out of the interface 25457 * (ipif->ipif_ill) where we joined the group. This is to 25458 * prevent from switches doing IGMP snooping to send us multicast 25459 * packets for a given group on the interface we have joined. 25460 * If we can't find an ire, igmp_sendpkt has already initialized 25461 * ipsec_out_attach_if so that this will not be load spread in 25462 * ip_newroute_ipif. 25463 */ 25464 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25465 MATCH_IRE_ILL, ipst); 25466 if (!ire) { 25467 /* 25468 * Mark this packet to make it be delivered to 25469 * ip_wput_ire after the new ire has been 25470 * created. 25471 */ 25472 mp->b_prev = NULL; 25473 mp->b_next = NULL; 25474 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25475 zoneid, &zero_info); 25476 return; 25477 } 25478 25479 /* 25480 * Honor the RTF_SETSRC flag; this is the only case 25481 * where we force this addr whatever the current src addr is, 25482 * because this address is set by igmp_sendpkt(), and 25483 * cannot be specified by any user. 25484 */ 25485 if (ire->ire_flags & RTF_SETSRC) { 25486 ipha->ipha_src = ire->ire_src_addr; 25487 } 25488 25489 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25490 } 25491 25492 /* 25493 * NOTE : This function does not ire_refrele the ire argument passed in. 25494 * 25495 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25496 * failure. The nce_fp_mp can vanish any time in the case of 25497 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25498 * the ire_lock to access the nce_fp_mp in this case. 25499 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25500 * prepending a fastpath message IPQoS processing must precede it, we also set 25501 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25502 * (IPQoS might have set the b_band for CoS marking). 25503 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25504 * must follow it so that IPQoS can mark the dl_priority field for CoS 25505 * marking, if needed. 25506 */ 25507 static mblk_t * 25508 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25509 uint32_t ill_index, ipha_t **iphap) 25510 { 25511 uint_t hlen; 25512 ipha_t *ipha; 25513 mblk_t *mp1; 25514 boolean_t qos_done = B_FALSE; 25515 uchar_t *ll_hdr; 25516 ip_stack_t *ipst = ire->ire_ipst; 25517 25518 #define rptr ((uchar_t *)ipha) 25519 25520 ipha = (ipha_t *)mp->b_rptr; 25521 hlen = 0; 25522 LOCK_IRE_FP_MP(ire); 25523 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25524 ASSERT(DB_TYPE(mp1) == M_DATA); 25525 /* Initiate IPPF processing */ 25526 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25527 UNLOCK_IRE_FP_MP(ire); 25528 ip_process(proc, &mp, ill_index); 25529 if (mp == NULL) 25530 return (NULL); 25531 25532 ipha = (ipha_t *)mp->b_rptr; 25533 LOCK_IRE_FP_MP(ire); 25534 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25535 qos_done = B_TRUE; 25536 goto no_fp_mp; 25537 } 25538 ASSERT(DB_TYPE(mp1) == M_DATA); 25539 } 25540 hlen = MBLKL(mp1); 25541 /* 25542 * Check if we have enough room to prepend fastpath 25543 * header 25544 */ 25545 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25546 ll_hdr = rptr - hlen; 25547 bcopy(mp1->b_rptr, ll_hdr, hlen); 25548 /* 25549 * Set the b_rptr to the start of the link layer 25550 * header 25551 */ 25552 mp->b_rptr = ll_hdr; 25553 mp1 = mp; 25554 } else { 25555 mp1 = copyb(mp1); 25556 if (mp1 == NULL) 25557 goto unlock_err; 25558 mp1->b_band = mp->b_band; 25559 mp1->b_cont = mp; 25560 /* 25561 * certain system generated traffic may not 25562 * have cred/label in ip header block. This 25563 * is true even for a labeled system. But for 25564 * labeled traffic, inherit the label in the 25565 * new header. 25566 */ 25567 if (DB_CRED(mp) != NULL) 25568 mblk_setcred(mp1, DB_CRED(mp)); 25569 /* 25570 * XXX disable ICK_VALID and compute checksum 25571 * here; can happen if nce_fp_mp changes and 25572 * it can't be copied now due to insufficient 25573 * space. (unlikely, fp mp can change, but it 25574 * does not increase in length) 25575 */ 25576 } 25577 UNLOCK_IRE_FP_MP(ire); 25578 } else { 25579 no_fp_mp: 25580 mp1 = copyb(ire->ire_nce->nce_res_mp); 25581 if (mp1 == NULL) { 25582 unlock_err: 25583 UNLOCK_IRE_FP_MP(ire); 25584 freemsg(mp); 25585 return (NULL); 25586 } 25587 UNLOCK_IRE_FP_MP(ire); 25588 mp1->b_cont = mp; 25589 /* 25590 * certain system generated traffic may not 25591 * have cred/label in ip header block. This 25592 * is true even for a labeled system. But for 25593 * labeled traffic, inherit the label in the 25594 * new header. 25595 */ 25596 if (DB_CRED(mp) != NULL) 25597 mblk_setcred(mp1, DB_CRED(mp)); 25598 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25599 ip_process(proc, &mp1, ill_index); 25600 if (mp1 == NULL) 25601 return (NULL); 25602 25603 if (mp1->b_cont == NULL) 25604 ipha = NULL; 25605 else 25606 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25607 } 25608 } 25609 25610 *iphap = ipha; 25611 return (mp1); 25612 #undef rptr 25613 } 25614 25615 /* 25616 * Finish the outbound IPsec processing for an IPv6 packet. This function 25617 * is called from ipsec_out_process() if the IPsec packet was processed 25618 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25619 * asynchronously. 25620 */ 25621 void 25622 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25623 ire_t *ire_arg) 25624 { 25625 in6_addr_t *v6dstp; 25626 ire_t *ire; 25627 mblk_t *mp; 25628 ip6_t *ip6h1; 25629 uint_t ill_index; 25630 ipsec_out_t *io; 25631 boolean_t attach_if, hwaccel; 25632 uint32_t flags = IP6_NO_IPPOLICY; 25633 int match_flags; 25634 zoneid_t zoneid; 25635 boolean_t ill_need_rele = B_FALSE; 25636 boolean_t ire_need_rele = B_FALSE; 25637 ip_stack_t *ipst; 25638 25639 mp = ipsec_mp->b_cont; 25640 ip6h1 = (ip6_t *)mp->b_rptr; 25641 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25642 ASSERT(io->ipsec_out_ns != NULL); 25643 ipst = io->ipsec_out_ns->netstack_ip; 25644 ill_index = io->ipsec_out_ill_index; 25645 if (io->ipsec_out_reachable) { 25646 flags |= IPV6_REACHABILITY_CONFIRMATION; 25647 } 25648 attach_if = io->ipsec_out_attach_if; 25649 hwaccel = io->ipsec_out_accelerated; 25650 zoneid = io->ipsec_out_zoneid; 25651 ASSERT(zoneid != ALL_ZONES); 25652 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25653 /* Multicast addresses should have non-zero ill_index. */ 25654 v6dstp = &ip6h->ip6_dst; 25655 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25656 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25657 ASSERT(!attach_if || ill_index != 0); 25658 if (ill_index != 0) { 25659 if (ill == NULL) { 25660 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25661 B_TRUE, ipst); 25662 25663 /* Failure case frees things for us. */ 25664 if (ill == NULL) 25665 return; 25666 25667 ill_need_rele = B_TRUE; 25668 } 25669 /* 25670 * If this packet needs to go out on a particular interface 25671 * honor it. 25672 */ 25673 if (attach_if) { 25674 match_flags = MATCH_IRE_ILL; 25675 25676 /* 25677 * Check if we need an ire that will not be 25678 * looked up by anybody else i.e. HIDDEN. 25679 */ 25680 if (ill_is_probeonly(ill)) { 25681 match_flags |= MATCH_IRE_MARK_HIDDEN; 25682 } 25683 } 25684 } 25685 ASSERT(mp != NULL); 25686 25687 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25688 boolean_t unspec_src; 25689 ipif_t *ipif; 25690 25691 /* 25692 * Use the ill_index to get the right ill. 25693 */ 25694 unspec_src = io->ipsec_out_unspec_src; 25695 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25696 if (ipif == NULL) { 25697 if (ill_need_rele) 25698 ill_refrele(ill); 25699 freemsg(ipsec_mp); 25700 return; 25701 } 25702 25703 if (ire_arg != NULL) { 25704 ire = ire_arg; 25705 } else { 25706 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25707 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25708 ire_need_rele = B_TRUE; 25709 } 25710 if (ire != NULL) { 25711 ipif_refrele(ipif); 25712 /* 25713 * XXX Do the multicast forwarding now, as the IPsec 25714 * processing has been done. 25715 */ 25716 goto send; 25717 } 25718 25719 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25720 mp->b_prev = NULL; 25721 mp->b_next = NULL; 25722 25723 /* 25724 * If the IPsec packet was processed asynchronously, 25725 * drop it now. 25726 */ 25727 if (q == NULL) { 25728 if (ill_need_rele) 25729 ill_refrele(ill); 25730 freemsg(ipsec_mp); 25731 return; 25732 } 25733 25734 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25735 unspec_src, zoneid); 25736 ipif_refrele(ipif); 25737 } else { 25738 if (attach_if) { 25739 ipif_t *ipif; 25740 25741 ipif = ipif_get_next_ipif(NULL, ill); 25742 if (ipif == NULL) { 25743 if (ill_need_rele) 25744 ill_refrele(ill); 25745 freemsg(ipsec_mp); 25746 return; 25747 } 25748 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25749 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25750 ire_need_rele = B_TRUE; 25751 ipif_refrele(ipif); 25752 } else { 25753 if (ire_arg != NULL) { 25754 ire = ire_arg; 25755 } else { 25756 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25757 ipst); 25758 ire_need_rele = B_TRUE; 25759 } 25760 } 25761 if (ire != NULL) 25762 goto send; 25763 /* 25764 * ire disappeared underneath. 25765 * 25766 * What we need to do here is the ip_newroute 25767 * logic to get the ire without doing the IPsec 25768 * processing. Follow the same old path. But this 25769 * time, ip_wput or ire_add_then_send will call us 25770 * directly as all the IPsec operations are done. 25771 */ 25772 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25773 mp->b_prev = NULL; 25774 mp->b_next = NULL; 25775 25776 /* 25777 * If the IPsec packet was processed asynchronously, 25778 * drop it now. 25779 */ 25780 if (q == NULL) { 25781 if (ill_need_rele) 25782 ill_refrele(ill); 25783 freemsg(ipsec_mp); 25784 return; 25785 } 25786 25787 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25788 zoneid, ipst); 25789 } 25790 if (ill != NULL && ill_need_rele) 25791 ill_refrele(ill); 25792 return; 25793 send: 25794 if (ill != NULL && ill_need_rele) 25795 ill_refrele(ill); 25796 25797 /* Local delivery */ 25798 if (ire->ire_stq == NULL) { 25799 ill_t *out_ill; 25800 ASSERT(q != NULL); 25801 25802 /* PFHooks: LOOPBACK_OUT */ 25803 out_ill = ire_to_ill(ire); 25804 25805 /* 25806 * DTrace this as ip:::send. A blocked packet will fire the 25807 * send probe, but not the receive probe. 25808 */ 25809 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25810 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25811 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25812 25813 DTRACE_PROBE4(ip6__loopback__out__start, 25814 ill_t *, NULL, ill_t *, out_ill, 25815 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25816 25817 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25818 ipst->ips_ipv6firewall_loopback_out, 25819 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25820 25821 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25822 25823 if (ipsec_mp != NULL) 25824 ip_wput_local_v6(RD(q), out_ill, 25825 ip6h, ipsec_mp, ire, 0); 25826 if (ire_need_rele) 25827 ire_refrele(ire); 25828 return; 25829 } 25830 /* 25831 * Everything is done. Send it out on the wire. 25832 * We force the insertion of a fragment header using the 25833 * IPH_FRAG_HDR flag in two cases: 25834 * - after reception of an ICMPv6 "packet too big" message 25835 * with a MTU < 1280 (cf. RFC 2460 section 5) 25836 * - for multirouted IPv6 packets, so that the receiver can 25837 * discard duplicates according to their fragment identifier 25838 */ 25839 /* XXX fix flow control problems. */ 25840 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25841 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25842 if (hwaccel) { 25843 /* 25844 * hardware acceleration does not handle these 25845 * "slow path" cases. 25846 */ 25847 /* IPsec KSTATS: should bump bean counter here. */ 25848 if (ire_need_rele) 25849 ire_refrele(ire); 25850 freemsg(ipsec_mp); 25851 return; 25852 } 25853 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25854 (mp->b_cont ? msgdsize(mp) : 25855 mp->b_wptr - (uchar_t *)ip6h)) { 25856 /* IPsec KSTATS: should bump bean counter here. */ 25857 ip0dbg(("Packet length mismatch: %d, %ld\n", 25858 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25859 msgdsize(mp))); 25860 if (ire_need_rele) 25861 ire_refrele(ire); 25862 freemsg(ipsec_mp); 25863 return; 25864 } 25865 ASSERT(mp->b_prev == NULL); 25866 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25867 ntohs(ip6h->ip6_plen) + 25868 IPV6_HDR_LEN, ire->ire_max_frag)); 25869 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25870 ire->ire_max_frag); 25871 } else { 25872 UPDATE_OB_PKT_COUNT(ire); 25873 ire->ire_last_used_time = lbolt; 25874 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25875 } 25876 if (ire_need_rele) 25877 ire_refrele(ire); 25878 freeb(ipsec_mp); 25879 } 25880 25881 void 25882 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25883 { 25884 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25885 da_ipsec_t *hada; /* data attributes */ 25886 ill_t *ill = (ill_t *)q->q_ptr; 25887 25888 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25889 25890 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25891 /* IPsec KSTATS: Bump lose counter here! */ 25892 freemsg(mp); 25893 return; 25894 } 25895 25896 /* 25897 * It's an IPsec packet that must be 25898 * accelerated by the Provider, and the 25899 * outbound ill is IPsec acceleration capable. 25900 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25901 * to the ill. 25902 * IPsec KSTATS: should bump packet counter here. 25903 */ 25904 25905 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25906 if (hada_mp == NULL) { 25907 /* IPsec KSTATS: should bump packet counter here. */ 25908 freemsg(mp); 25909 return; 25910 } 25911 25912 hada_mp->b_datap->db_type = M_CTL; 25913 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25914 hada_mp->b_cont = mp; 25915 25916 hada = (da_ipsec_t *)hada_mp->b_rptr; 25917 bzero(hada, sizeof (da_ipsec_t)); 25918 hada->da_type = IPHADA_M_CTL; 25919 25920 putnext(q, hada_mp); 25921 } 25922 25923 /* 25924 * Finish the outbound IPsec processing. This function is called from 25925 * ipsec_out_process() if the IPsec packet was processed 25926 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25927 * asynchronously. 25928 */ 25929 void 25930 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25931 ire_t *ire_arg) 25932 { 25933 uint32_t v_hlen_tos_len; 25934 ipaddr_t dst; 25935 ipif_t *ipif = NULL; 25936 ire_t *ire; 25937 ire_t *ire1 = NULL; 25938 mblk_t *next_mp = NULL; 25939 uint32_t max_frag; 25940 boolean_t multirt_send = B_FALSE; 25941 mblk_t *mp; 25942 ipha_t *ipha1; 25943 uint_t ill_index; 25944 ipsec_out_t *io; 25945 boolean_t attach_if; 25946 int match_flags; 25947 irb_t *irb = NULL; 25948 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25949 zoneid_t zoneid; 25950 ipxmit_state_t pktxmit_state; 25951 ip_stack_t *ipst; 25952 25953 #ifdef _BIG_ENDIAN 25954 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25955 #else 25956 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25957 #endif 25958 25959 mp = ipsec_mp->b_cont; 25960 ipha1 = (ipha_t *)mp->b_rptr; 25961 ASSERT(mp != NULL); 25962 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25963 dst = ipha->ipha_dst; 25964 25965 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25966 ill_index = io->ipsec_out_ill_index; 25967 attach_if = io->ipsec_out_attach_if; 25968 zoneid = io->ipsec_out_zoneid; 25969 ASSERT(zoneid != ALL_ZONES); 25970 ipst = io->ipsec_out_ns->netstack_ip; 25971 ASSERT(io->ipsec_out_ns != NULL); 25972 25973 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25974 if (ill_index != 0) { 25975 if (ill == NULL) { 25976 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25977 ill_index, B_FALSE, ipst); 25978 25979 /* Failure case frees things for us. */ 25980 if (ill == NULL) 25981 return; 25982 25983 ill_need_rele = B_TRUE; 25984 } 25985 /* 25986 * If this packet needs to go out on a particular interface 25987 * honor it. 25988 */ 25989 if (attach_if) { 25990 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25991 25992 /* 25993 * Check if we need an ire that will not be 25994 * looked up by anybody else i.e. HIDDEN. 25995 */ 25996 if (ill_is_probeonly(ill)) { 25997 match_flags |= MATCH_IRE_MARK_HIDDEN; 25998 } 25999 } 26000 } 26001 26002 if (CLASSD(dst)) { 26003 boolean_t conn_dontroute; 26004 /* 26005 * Use the ill_index to get the right ipif. 26006 */ 26007 conn_dontroute = io->ipsec_out_dontroute; 26008 if (ill_index == 0) 26009 ipif = ipif_lookup_group(dst, zoneid, ipst); 26010 else 26011 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26012 if (ipif == NULL) { 26013 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26014 " multicast\n")); 26015 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26016 freemsg(ipsec_mp); 26017 goto done; 26018 } 26019 /* 26020 * ipha_src has already been intialized with the 26021 * value of the ipif in ip_wput. All we need now is 26022 * an ire to send this downstream. 26023 */ 26024 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26025 MBLK_GETLABEL(mp), match_flags, ipst); 26026 if (ire != NULL) { 26027 ill_t *ill1; 26028 /* 26029 * Do the multicast forwarding now, as the IPsec 26030 * processing has been done. 26031 */ 26032 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26033 (ill1 = ire_to_ill(ire))) { 26034 if (ip_mforward(ill1, ipha, mp)) { 26035 freemsg(ipsec_mp); 26036 ip1dbg(("ip_wput_ipsec_out: mforward " 26037 "failed\n")); 26038 ire_refrele(ire); 26039 goto done; 26040 } 26041 } 26042 goto send; 26043 } 26044 26045 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26046 mp->b_prev = NULL; 26047 mp->b_next = NULL; 26048 26049 /* 26050 * If the IPsec packet was processed asynchronously, 26051 * drop it now. 26052 */ 26053 if (q == NULL) { 26054 freemsg(ipsec_mp); 26055 goto done; 26056 } 26057 26058 /* 26059 * We may be using a wrong ipif to create the ire. 26060 * But it is okay as the source address is assigned 26061 * for the packet already. Next outbound packet would 26062 * create the IRE with the right IPIF in ip_wput. 26063 * 26064 * Also handle RTF_MULTIRT routes. 26065 */ 26066 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26067 zoneid, &zero_info); 26068 } else { 26069 if (attach_if) { 26070 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26071 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26072 } else { 26073 if (ire_arg != NULL) { 26074 ire = ire_arg; 26075 ire_need_rele = B_FALSE; 26076 } else { 26077 ire = ire_cache_lookup(dst, zoneid, 26078 MBLK_GETLABEL(mp), ipst); 26079 } 26080 } 26081 if (ire != NULL) { 26082 goto send; 26083 } 26084 26085 /* 26086 * ire disappeared underneath. 26087 * 26088 * What we need to do here is the ip_newroute 26089 * logic to get the ire without doing the IPsec 26090 * processing. Follow the same old path. But this 26091 * time, ip_wput or ire_add_then_put will call us 26092 * directly as all the IPsec operations are done. 26093 */ 26094 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26095 mp->b_prev = NULL; 26096 mp->b_next = NULL; 26097 26098 /* 26099 * If the IPsec packet was processed asynchronously, 26100 * drop it now. 26101 */ 26102 if (q == NULL) { 26103 freemsg(ipsec_mp); 26104 goto done; 26105 } 26106 26107 /* 26108 * Since we're going through ip_newroute() again, we 26109 * need to make sure we don't: 26110 * 26111 * 1.) Trigger the ASSERT() with the ipha_ident 26112 * overloading. 26113 * 2.) Redo transport-layer checksumming, since we've 26114 * already done all that to get this far. 26115 * 26116 * The easiest way not do either of the above is to set 26117 * the ipha_ident field to IP_HDR_INCLUDED. 26118 */ 26119 ipha->ipha_ident = IP_HDR_INCLUDED; 26120 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26121 zoneid, ipst); 26122 } 26123 goto done; 26124 send: 26125 if (ire->ire_stq == NULL) { 26126 ill_t *out_ill; 26127 /* 26128 * Loopbacks go through ip_wput_local except for one case. 26129 * We come here if we generate a icmp_frag_needed message 26130 * after IPsec processing is over. When this function calls 26131 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26132 * icmp_frag_needed. The message generated comes back here 26133 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26134 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26135 * source address as it is usually set in ip_wput_ire. As 26136 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26137 * and we end up here. We can't enter ip_wput_ire once the 26138 * IPsec processing is over and hence we need to do it here. 26139 */ 26140 ASSERT(q != NULL); 26141 UPDATE_OB_PKT_COUNT(ire); 26142 ire->ire_last_used_time = lbolt; 26143 if (ipha->ipha_src == 0) 26144 ipha->ipha_src = ire->ire_src_addr; 26145 26146 /* PFHooks: LOOPBACK_OUT */ 26147 out_ill = ire_to_ill(ire); 26148 26149 /* 26150 * DTrace this as ip:::send. A blocked packet will fire the 26151 * send probe, but not the receive probe. 26152 */ 26153 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26154 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26155 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26156 26157 DTRACE_PROBE4(ip4__loopback__out__start, 26158 ill_t *, NULL, ill_t *, out_ill, 26159 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26160 26161 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26162 ipst->ips_ipv4firewall_loopback_out, 26163 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26164 26165 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26166 26167 if (ipsec_mp != NULL) 26168 ip_wput_local(RD(q), out_ill, 26169 ipha, ipsec_mp, ire, 0, zoneid); 26170 if (ire_need_rele) 26171 ire_refrele(ire); 26172 goto done; 26173 } 26174 26175 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26176 /* 26177 * We are through with IPsec processing. 26178 * Fragment this and send it on the wire. 26179 */ 26180 if (io->ipsec_out_accelerated) { 26181 /* 26182 * The packet has been accelerated but must 26183 * be fragmented. This should not happen 26184 * since AH and ESP must not accelerate 26185 * packets that need fragmentation, however 26186 * the configuration could have changed 26187 * since the AH or ESP processing. 26188 * Drop packet. 26189 * IPsec KSTATS: bump bean counter here. 26190 */ 26191 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26192 "fragmented accelerated packet!\n")); 26193 freemsg(ipsec_mp); 26194 } else { 26195 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26196 } 26197 if (ire_need_rele) 26198 ire_refrele(ire); 26199 goto done; 26200 } 26201 26202 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26203 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26204 (void *)ire->ire_ipif, (void *)ipif)); 26205 26206 /* 26207 * Multiroute the secured packet, unless IPsec really 26208 * requires the packet to go out only through a particular 26209 * interface. 26210 */ 26211 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26212 ire_t *first_ire; 26213 irb = ire->ire_bucket; 26214 ASSERT(irb != NULL); 26215 /* 26216 * This ire has been looked up as the one that 26217 * goes through the given ipif; 26218 * make sure we do not omit any other multiroute ire 26219 * that may be present in the bucket before this one. 26220 */ 26221 IRB_REFHOLD(irb); 26222 for (first_ire = irb->irb_ire; 26223 first_ire != NULL; 26224 first_ire = first_ire->ire_next) { 26225 if ((first_ire->ire_flags & RTF_MULTIRT) && 26226 (first_ire->ire_addr == ire->ire_addr) && 26227 !(first_ire->ire_marks & 26228 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26229 break; 26230 } 26231 } 26232 26233 if ((first_ire != NULL) && (first_ire != ire)) { 26234 /* 26235 * Don't change the ire if the packet must 26236 * be fragmented if sent via this new one. 26237 */ 26238 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26239 IRE_REFHOLD(first_ire); 26240 if (ire_need_rele) 26241 ire_refrele(ire); 26242 else 26243 ire_need_rele = B_TRUE; 26244 ire = first_ire; 26245 } 26246 } 26247 IRB_REFRELE(irb); 26248 26249 multirt_send = B_TRUE; 26250 max_frag = ire->ire_max_frag; 26251 } else { 26252 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26253 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26254 "flag, attach_if %d\n", attach_if)); 26255 } 26256 } 26257 26258 /* 26259 * In most cases, the emission loop below is entered only once. 26260 * Only in the case where the ire holds the RTF_MULTIRT 26261 * flag, we loop to process all RTF_MULTIRT ires in the 26262 * bucket, and send the packet through all crossed 26263 * RTF_MULTIRT routes. 26264 */ 26265 do { 26266 if (multirt_send) { 26267 /* 26268 * ire1 holds here the next ire to process in the 26269 * bucket. If multirouting is expected, 26270 * any non-RTF_MULTIRT ire that has the 26271 * right destination address is ignored. 26272 */ 26273 ASSERT(irb != NULL); 26274 IRB_REFHOLD(irb); 26275 for (ire1 = ire->ire_next; 26276 ire1 != NULL; 26277 ire1 = ire1->ire_next) { 26278 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26279 continue; 26280 if (ire1->ire_addr != ire->ire_addr) 26281 continue; 26282 if (ire1->ire_marks & 26283 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26284 continue; 26285 /* No loopback here */ 26286 if (ire1->ire_stq == NULL) 26287 continue; 26288 /* 26289 * Ensure we do not exceed the MTU 26290 * of the next route. 26291 */ 26292 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26293 ip_multirt_bad_mtu(ire1, max_frag); 26294 continue; 26295 } 26296 26297 IRE_REFHOLD(ire1); 26298 break; 26299 } 26300 IRB_REFRELE(irb); 26301 if (ire1 != NULL) { 26302 /* 26303 * We are in a multiple send case, need to 26304 * make a copy of the packet. 26305 */ 26306 next_mp = copymsg(ipsec_mp); 26307 if (next_mp == NULL) { 26308 ire_refrele(ire1); 26309 ire1 = NULL; 26310 } 26311 } 26312 } 26313 /* 26314 * Everything is done. Send it out on the wire 26315 * 26316 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26317 * either send it on the wire or, in the case of 26318 * HW acceleration, call ipsec_hw_putnext. 26319 */ 26320 if (ire->ire_nce && 26321 ire->ire_nce->nce_state != ND_REACHABLE) { 26322 DTRACE_PROBE2(ip__wput__ipsec__bail, 26323 (ire_t *), ire, (mblk_t *), ipsec_mp); 26324 /* 26325 * If ire's link-layer is unresolved (this 26326 * would only happen if the incomplete ire 26327 * was added to cachetable via forwarding path) 26328 * don't bother going to ip_xmit_v4. Just drop the 26329 * packet. 26330 * There is a slight risk here, in that, if we 26331 * have the forwarding path create an incomplete 26332 * IRE, then until the IRE is completed, any 26333 * transmitted IPsec packets will be dropped 26334 * instead of being queued waiting for resolution. 26335 * 26336 * But the likelihood of a forwarding packet and a wput 26337 * packet sending to the same dst at the same time 26338 * and there not yet be an ARP entry for it is small. 26339 * Furthermore, if this actually happens, it might 26340 * be likely that wput would generate multiple 26341 * packets (and forwarding would also have a train 26342 * of packets) for that destination. If this is 26343 * the case, some of them would have been dropped 26344 * anyway, since ARP only queues a few packets while 26345 * waiting for resolution 26346 * 26347 * NOTE: We should really call ip_xmit_v4, 26348 * and let it queue the packet and send the 26349 * ARP query and have ARP come back thus: 26350 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26351 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26352 * hw accel work. But it's too complex to get 26353 * the IPsec hw acceleration approach to fit 26354 * well with ip_xmit_v4 doing ARP without 26355 * doing IPsec simplification. For now, we just 26356 * poke ip_xmit_v4 to trigger the arp resolve, so 26357 * that we can continue with the send on the next 26358 * attempt. 26359 * 26360 * XXX THis should be revisited, when 26361 * the IPsec/IP interaction is cleaned up 26362 */ 26363 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26364 " - dropping packet\n")); 26365 freemsg(ipsec_mp); 26366 /* 26367 * Call ip_xmit_v4() to trigger ARP query 26368 * in case the nce_state is ND_INITIAL 26369 */ 26370 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26371 goto drop_pkt; 26372 } 26373 26374 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26375 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26376 mblk_t *, ipsec_mp); 26377 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26378 ipst->ips_ipv4firewall_physical_out, NULL, 26379 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26380 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26381 if (ipsec_mp == NULL) 26382 goto drop_pkt; 26383 26384 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26385 pktxmit_state = ip_xmit_v4(mp, ire, 26386 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26387 26388 if ((pktxmit_state == SEND_FAILED) || 26389 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26390 26391 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26392 drop_pkt: 26393 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26394 ipIfStatsOutDiscards); 26395 if (ire_need_rele) 26396 ire_refrele(ire); 26397 if (ire1 != NULL) { 26398 ire_refrele(ire1); 26399 freemsg(next_mp); 26400 } 26401 goto done; 26402 } 26403 26404 freeb(ipsec_mp); 26405 if (ire_need_rele) 26406 ire_refrele(ire); 26407 26408 if (ire1 != NULL) { 26409 ire = ire1; 26410 ire_need_rele = B_TRUE; 26411 ASSERT(next_mp); 26412 ipsec_mp = next_mp; 26413 mp = ipsec_mp->b_cont; 26414 ire1 = NULL; 26415 next_mp = NULL; 26416 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26417 } else { 26418 multirt_send = B_FALSE; 26419 } 26420 } while (multirt_send); 26421 done: 26422 if (ill != NULL && ill_need_rele) 26423 ill_refrele(ill); 26424 if (ipif != NULL) 26425 ipif_refrele(ipif); 26426 } 26427 26428 /* 26429 * Get the ill corresponding to the specified ire, and compare its 26430 * capabilities with the protocol and algorithms specified by the 26431 * the SA obtained from ipsec_out. If they match, annotate the 26432 * ipsec_out structure to indicate that the packet needs acceleration. 26433 * 26434 * 26435 * A packet is eligible for outbound hardware acceleration if the 26436 * following conditions are satisfied: 26437 * 26438 * 1. the packet will not be fragmented 26439 * 2. the provider supports the algorithm 26440 * 3. there is no pending control message being exchanged 26441 * 4. snoop is not attached 26442 * 5. the destination address is not a broadcast or multicast address. 26443 * 26444 * Rationale: 26445 * - Hardware drivers do not support fragmentation with 26446 * the current interface. 26447 * - snoop, multicast, and broadcast may result in exposure of 26448 * a cleartext datagram. 26449 * We check all five of these conditions here. 26450 * 26451 * XXX would like to nuke "ire_t *" parameter here; problem is that 26452 * IRE is only way to figure out if a v4 address is a broadcast and 26453 * thus ineligible for acceleration... 26454 */ 26455 static void 26456 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26457 { 26458 ipsec_out_t *io; 26459 mblk_t *data_mp; 26460 uint_t plen, overhead; 26461 ip_stack_t *ipst; 26462 26463 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26464 return; 26465 26466 if (ill == NULL) 26467 return; 26468 ipst = ill->ill_ipst; 26469 /* 26470 * Destination address is a broadcast or multicast. Punt. 26471 */ 26472 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26473 IRE_LOCAL))) 26474 return; 26475 26476 data_mp = ipsec_mp->b_cont; 26477 26478 if (ill->ill_isv6) { 26479 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26480 26481 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26482 return; 26483 26484 plen = ip6h->ip6_plen; 26485 } else { 26486 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26487 26488 if (CLASSD(ipha->ipha_dst)) 26489 return; 26490 26491 plen = ipha->ipha_length; 26492 } 26493 /* 26494 * Is there a pending DLPI control message being exchanged 26495 * between IP/IPsec and the DLS Provider? If there is, it 26496 * could be a SADB update, and the state of the DLS Provider 26497 * SADB might not be in sync with the SADB maintained by 26498 * IPsec. To avoid dropping packets or using the wrong keying 26499 * material, we do not accelerate this packet. 26500 */ 26501 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26502 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26503 "ill_dlpi_pending! don't accelerate packet\n")); 26504 return; 26505 } 26506 26507 /* 26508 * Is the Provider in promiscous mode? If it does, we don't 26509 * accelerate the packet since it will bounce back up to the 26510 * listeners in the clear. 26511 */ 26512 if (ill->ill_promisc_on_phys) { 26513 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26514 "ill in promiscous mode, don't accelerate packet\n")); 26515 return; 26516 } 26517 26518 /* 26519 * Will the packet require fragmentation? 26520 */ 26521 26522 /* 26523 * IPsec ESP note: this is a pessimistic estimate, but the same 26524 * as is used elsewhere. 26525 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26526 * + 2-byte trailer 26527 */ 26528 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26529 IPSEC_BASE_ESP_HDR_SIZE(sa); 26530 26531 if ((plen + overhead) > ill->ill_max_mtu) 26532 return; 26533 26534 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26535 26536 /* 26537 * Can the ill accelerate this IPsec protocol and algorithm 26538 * specified by the SA? 26539 */ 26540 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26541 ill->ill_isv6, sa, ipst->ips_netstack)) { 26542 return; 26543 } 26544 26545 /* 26546 * Tell AH or ESP that the outbound ill is capable of 26547 * accelerating this packet. 26548 */ 26549 io->ipsec_out_is_capab_ill = B_TRUE; 26550 } 26551 26552 /* 26553 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26554 * 26555 * If this function returns B_TRUE, the requested SA's have been filled 26556 * into the ipsec_out_*_sa pointers. 26557 * 26558 * If the function returns B_FALSE, the packet has been "consumed", most 26559 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26560 * 26561 * The SA references created by the protocol-specific "select" 26562 * function will be released when the ipsec_mp is freed, thanks to the 26563 * ipsec_out_free destructor -- see spd.c. 26564 */ 26565 static boolean_t 26566 ipsec_out_select_sa(mblk_t *ipsec_mp) 26567 { 26568 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26569 ipsec_out_t *io; 26570 ipsec_policy_t *pp; 26571 ipsec_action_t *ap; 26572 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26573 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26574 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26575 26576 if (!io->ipsec_out_secure) { 26577 /* 26578 * We came here by mistake. 26579 * Don't bother with ipsec processing 26580 * We should "discourage" this path in the future. 26581 */ 26582 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26583 return (B_FALSE); 26584 } 26585 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26586 ASSERT((io->ipsec_out_policy != NULL) || 26587 (io->ipsec_out_act != NULL)); 26588 26589 ASSERT(io->ipsec_out_failed == B_FALSE); 26590 26591 /* 26592 * IPsec processing has started. 26593 */ 26594 io->ipsec_out_proc_begin = B_TRUE; 26595 ap = io->ipsec_out_act; 26596 if (ap == NULL) { 26597 pp = io->ipsec_out_policy; 26598 ASSERT(pp != NULL); 26599 ap = pp->ipsp_act; 26600 ASSERT(ap != NULL); 26601 } 26602 26603 /* 26604 * We have an action. now, let's select SA's. 26605 * (In the future, we can cache this in the conn_t..) 26606 */ 26607 if (ap->ipa_want_esp) { 26608 if (io->ipsec_out_esp_sa == NULL) { 26609 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26610 IPPROTO_ESP); 26611 } 26612 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26613 } 26614 26615 if (ap->ipa_want_ah) { 26616 if (io->ipsec_out_ah_sa == NULL) { 26617 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26618 IPPROTO_AH); 26619 } 26620 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26621 /* 26622 * The ESP and AH processing order needs to be preserved 26623 * when both protocols are required (ESP should be applied 26624 * before AH for an outbound packet). Force an ESP ACQUIRE 26625 * when both ESP and AH are required, and an AH ACQUIRE 26626 * is needed. 26627 */ 26628 if (ap->ipa_want_esp && need_ah_acquire) 26629 need_esp_acquire = B_TRUE; 26630 } 26631 26632 /* 26633 * Send an ACQUIRE (extended, regular, or both) if we need one. 26634 * Release SAs that got referenced, but will not be used until we 26635 * acquire _all_ of the SAs we need. 26636 */ 26637 if (need_ah_acquire || need_esp_acquire) { 26638 if (io->ipsec_out_ah_sa != NULL) { 26639 IPSA_REFRELE(io->ipsec_out_ah_sa); 26640 io->ipsec_out_ah_sa = NULL; 26641 } 26642 if (io->ipsec_out_esp_sa != NULL) { 26643 IPSA_REFRELE(io->ipsec_out_esp_sa); 26644 io->ipsec_out_esp_sa = NULL; 26645 } 26646 26647 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26648 return (B_FALSE); 26649 } 26650 26651 return (B_TRUE); 26652 } 26653 26654 /* 26655 * Process an IPSEC_OUT message and see what you can 26656 * do with it. 26657 * IPQoS Notes: 26658 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26659 * IPsec. 26660 * XXX would like to nuke ire_t. 26661 * XXX ill_index better be "real" 26662 */ 26663 void 26664 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26665 { 26666 ipsec_out_t *io; 26667 ipsec_policy_t *pp; 26668 ipsec_action_t *ap; 26669 ipha_t *ipha; 26670 ip6_t *ip6h; 26671 mblk_t *mp; 26672 ill_t *ill; 26673 zoneid_t zoneid; 26674 ipsec_status_t ipsec_rc; 26675 boolean_t ill_need_rele = B_FALSE; 26676 ip_stack_t *ipst; 26677 ipsec_stack_t *ipss; 26678 26679 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26680 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26681 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26682 ipst = io->ipsec_out_ns->netstack_ip; 26683 mp = ipsec_mp->b_cont; 26684 26685 /* 26686 * Initiate IPPF processing. We do it here to account for packets 26687 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26688 * We can check for ipsec_out_proc_begin even for such packets, as 26689 * they will always be false (asserted below). 26690 */ 26691 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26692 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26693 io->ipsec_out_ill_index : ill_index); 26694 if (mp == NULL) { 26695 ip2dbg(("ipsec_out_process: packet dropped "\ 26696 "during IPPF processing\n")); 26697 freeb(ipsec_mp); 26698 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26699 return; 26700 } 26701 } 26702 26703 if (!io->ipsec_out_secure) { 26704 /* 26705 * We came here by mistake. 26706 * Don't bother with ipsec processing 26707 * Should "discourage" this path in the future. 26708 */ 26709 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26710 goto done; 26711 } 26712 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26713 ASSERT((io->ipsec_out_policy != NULL) || 26714 (io->ipsec_out_act != NULL)); 26715 ASSERT(io->ipsec_out_failed == B_FALSE); 26716 26717 ipss = ipst->ips_netstack->netstack_ipsec; 26718 if (!ipsec_loaded(ipss)) { 26719 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26720 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26721 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26722 } else { 26723 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26724 } 26725 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26726 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26727 &ipss->ipsec_dropper); 26728 return; 26729 } 26730 26731 /* 26732 * IPsec processing has started. 26733 */ 26734 io->ipsec_out_proc_begin = B_TRUE; 26735 ap = io->ipsec_out_act; 26736 if (ap == NULL) { 26737 pp = io->ipsec_out_policy; 26738 ASSERT(pp != NULL); 26739 ap = pp->ipsp_act; 26740 ASSERT(ap != NULL); 26741 } 26742 26743 /* 26744 * Save the outbound ill index. When the packet comes back 26745 * from IPsec, we make sure the ill hasn't changed or disappeared 26746 * before sending it the accelerated packet. 26747 */ 26748 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26749 int ifindex; 26750 ill = ire_to_ill(ire); 26751 ifindex = ill->ill_phyint->phyint_ifindex; 26752 io->ipsec_out_capab_ill_index = ifindex; 26753 } 26754 26755 /* 26756 * The order of processing is first insert a IP header if needed. 26757 * Then insert the ESP header and then the AH header. 26758 */ 26759 if ((io->ipsec_out_se_done == B_FALSE) && 26760 (ap->ipa_want_se)) { 26761 /* 26762 * First get the outer IP header before sending 26763 * it to ESP. 26764 */ 26765 ipha_t *oipha, *iipha; 26766 mblk_t *outer_mp, *inner_mp; 26767 26768 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26769 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26770 "ipsec_out_process: " 26771 "Self-Encapsulation failed: Out of memory\n"); 26772 freemsg(ipsec_mp); 26773 if (ill != NULL) { 26774 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26775 } else { 26776 BUMP_MIB(&ipst->ips_ip_mib, 26777 ipIfStatsOutDiscards); 26778 } 26779 return; 26780 } 26781 inner_mp = ipsec_mp->b_cont; 26782 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26783 oipha = (ipha_t *)outer_mp->b_rptr; 26784 iipha = (ipha_t *)inner_mp->b_rptr; 26785 *oipha = *iipha; 26786 outer_mp->b_wptr += sizeof (ipha_t); 26787 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26788 sizeof (ipha_t)); 26789 oipha->ipha_protocol = IPPROTO_ENCAP; 26790 oipha->ipha_version_and_hdr_length = 26791 IP_SIMPLE_HDR_VERSION; 26792 oipha->ipha_hdr_checksum = 0; 26793 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26794 outer_mp->b_cont = inner_mp; 26795 ipsec_mp->b_cont = outer_mp; 26796 26797 io->ipsec_out_se_done = B_TRUE; 26798 io->ipsec_out_tunnel = B_TRUE; 26799 } 26800 26801 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26802 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26803 !ipsec_out_select_sa(ipsec_mp)) 26804 return; 26805 26806 /* 26807 * By now, we know what SA's to use. Toss over to ESP & AH 26808 * to do the heavy lifting. 26809 */ 26810 zoneid = io->ipsec_out_zoneid; 26811 ASSERT(zoneid != ALL_ZONES); 26812 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26813 ASSERT(io->ipsec_out_esp_sa != NULL); 26814 io->ipsec_out_esp_done = B_TRUE; 26815 /* 26816 * Note that since hw accel can only apply one transform, 26817 * not two, we skip hw accel for ESP if we also have AH 26818 * This is an design limitation of the interface 26819 * which should be revisited. 26820 */ 26821 ASSERT(ire != NULL); 26822 if (io->ipsec_out_ah_sa == NULL) { 26823 ill = (ill_t *)ire->ire_stq->q_ptr; 26824 ipsec_out_is_accelerated(ipsec_mp, 26825 io->ipsec_out_esp_sa, ill, ire); 26826 } 26827 26828 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26829 switch (ipsec_rc) { 26830 case IPSEC_STATUS_SUCCESS: 26831 break; 26832 case IPSEC_STATUS_FAILED: 26833 if (ill != NULL) { 26834 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26835 } else { 26836 BUMP_MIB(&ipst->ips_ip_mib, 26837 ipIfStatsOutDiscards); 26838 } 26839 /* FALLTHRU */ 26840 case IPSEC_STATUS_PENDING: 26841 return; 26842 } 26843 } 26844 26845 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26846 ASSERT(io->ipsec_out_ah_sa != NULL); 26847 io->ipsec_out_ah_done = B_TRUE; 26848 if (ire == NULL) { 26849 int idx = io->ipsec_out_capab_ill_index; 26850 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26851 NULL, NULL, NULL, NULL, ipst); 26852 ill_need_rele = B_TRUE; 26853 } else { 26854 ill = (ill_t *)ire->ire_stq->q_ptr; 26855 } 26856 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26857 ire); 26858 26859 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26860 switch (ipsec_rc) { 26861 case IPSEC_STATUS_SUCCESS: 26862 break; 26863 case IPSEC_STATUS_FAILED: 26864 if (ill != NULL) { 26865 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26866 } else { 26867 BUMP_MIB(&ipst->ips_ip_mib, 26868 ipIfStatsOutDiscards); 26869 } 26870 /* FALLTHRU */ 26871 case IPSEC_STATUS_PENDING: 26872 if (ill != NULL && ill_need_rele) 26873 ill_refrele(ill); 26874 return; 26875 } 26876 } 26877 /* 26878 * We are done with IPsec processing. Send it over 26879 * the wire. 26880 */ 26881 done: 26882 mp = ipsec_mp->b_cont; 26883 ipha = (ipha_t *)mp->b_rptr; 26884 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26885 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26886 } else { 26887 ip6h = (ip6_t *)ipha; 26888 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26889 } 26890 if (ill != NULL && ill_need_rele) 26891 ill_refrele(ill); 26892 } 26893 26894 /* ARGSUSED */ 26895 void 26896 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26897 { 26898 opt_restart_t *or; 26899 int err; 26900 conn_t *connp; 26901 26902 ASSERT(CONN_Q(q)); 26903 connp = Q_TO_CONN(q); 26904 26905 ASSERT(first_mp->b_datap->db_type == M_CTL); 26906 or = (opt_restart_t *)first_mp->b_rptr; 26907 /* 26908 * We don't need to pass any credentials here since this is just 26909 * a restart. The credentials are passed in when svr4_optcom_req 26910 * is called the first time (from ip_wput_nondata). 26911 */ 26912 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26913 err = svr4_optcom_req(q, first_mp, NULL, 26914 &ip_opt_obj, B_FALSE); 26915 } else { 26916 ASSERT(or->or_type == T_OPTMGMT_REQ); 26917 err = tpi_optcom_req(q, first_mp, NULL, 26918 &ip_opt_obj, B_FALSE); 26919 } 26920 if (err != EINPROGRESS) { 26921 /* operation is done */ 26922 CONN_OPER_PENDING_DONE(connp); 26923 } 26924 } 26925 26926 /* 26927 * ioctls that go through a down/up sequence may need to wait for the down 26928 * to complete. This involves waiting for the ire and ipif refcnts to go down 26929 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26930 */ 26931 /* ARGSUSED */ 26932 void 26933 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26934 { 26935 struct iocblk *iocp; 26936 mblk_t *mp1; 26937 ip_ioctl_cmd_t *ipip; 26938 int err; 26939 sin_t *sin; 26940 struct lifreq *lifr; 26941 struct ifreq *ifr; 26942 26943 iocp = (struct iocblk *)mp->b_rptr; 26944 ASSERT(ipsq != NULL); 26945 /* Existence of mp1 verified in ip_wput_nondata */ 26946 mp1 = mp->b_cont->b_cont; 26947 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26948 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26949 /* 26950 * Special case where ipsq_current_ipif is not set: 26951 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26952 * ill could also have become part of a ipmp group in the 26953 * process, we are here as were not able to complete the 26954 * operation in ipif_set_values because we could not become 26955 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26956 * will not be set so we need to set it. 26957 */ 26958 ill_t *ill = q->q_ptr; 26959 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26960 } 26961 ASSERT(ipsq->ipsq_current_ipif != NULL); 26962 26963 if (ipip->ipi_cmd_type == IF_CMD) { 26964 /* This a old style SIOC[GS]IF* command */ 26965 ifr = (struct ifreq *)mp1->b_rptr; 26966 sin = (sin_t *)&ifr->ifr_addr; 26967 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26968 /* This a new style SIOC[GS]LIF* command */ 26969 lifr = (struct lifreq *)mp1->b_rptr; 26970 sin = (sin_t *)&lifr->lifr_addr; 26971 } else { 26972 sin = NULL; 26973 } 26974 26975 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26976 ipip, mp1->b_rptr); 26977 26978 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26979 } 26980 26981 /* 26982 * ioctl processing 26983 * 26984 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26985 * the ioctl command in the ioctl tables, determines the copyin data size 26986 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26987 * 26988 * ioctl processing then continues when the M_IOCDATA makes its way down to 26989 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26990 * associated 'conn' is refheld till the end of the ioctl and the general 26991 * ioctl processing function ip_process_ioctl() is called to extract the 26992 * arguments and process the ioctl. To simplify extraction, ioctl commands 26993 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26994 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26995 * is used to extract the ioctl's arguments. 26996 * 26997 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26998 * so goes thru the serialization primitive ipsq_try_enter. Then the 26999 * appropriate function to handle the ioctl is called based on the entry in 27000 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27001 * which also refreleases the 'conn' that was refheld at the start of the 27002 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27003 * 27004 * Many exclusive ioctls go thru an internal down up sequence as part of 27005 * the operation. For example an attempt to change the IP address of an 27006 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27007 * does all the cleanup such as deleting all ires that use this address. 27008 * Then we need to wait till all references to the interface go away. 27009 */ 27010 void 27011 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27012 { 27013 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27014 ip_ioctl_cmd_t *ipip = arg; 27015 ip_extract_func_t *extract_funcp; 27016 cmd_info_t ci; 27017 int err; 27018 boolean_t entered_ipsq = B_FALSE; 27019 27020 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27021 27022 if (ipip == NULL) 27023 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27024 27025 /* 27026 * SIOCLIFADDIF needs to go thru a special path since the 27027 * ill may not exist yet. This happens in the case of lo0 27028 * which is created using this ioctl. 27029 */ 27030 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27031 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27032 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27033 return; 27034 } 27035 27036 ci.ci_ipif = NULL; 27037 if (ipip->ipi_cmd_type == MISC_CMD) { 27038 /* 27039 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27040 */ 27041 if (ipip->ipi_cmd == IF_UNITSEL) { 27042 /* ioctl comes down the ill */ 27043 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27044 ipif_refhold(ci.ci_ipif); 27045 } 27046 err = 0; 27047 ci.ci_sin = NULL; 27048 ci.ci_sin6 = NULL; 27049 ci.ci_lifr = NULL; 27050 } else { 27051 switch (ipip->ipi_cmd_type) { 27052 case IF_CMD: 27053 case LIF_CMD: 27054 extract_funcp = ip_extract_lifreq; 27055 break; 27056 27057 case ARP_CMD: 27058 case XARP_CMD: 27059 extract_funcp = ip_extract_arpreq; 27060 break; 27061 27062 case TUN_CMD: 27063 extract_funcp = ip_extract_tunreq; 27064 break; 27065 27066 case MSFILT_CMD: 27067 extract_funcp = ip_extract_msfilter; 27068 break; 27069 27070 default: 27071 ASSERT(0); 27072 } 27073 27074 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27075 if (err != 0) { 27076 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27077 return; 27078 } 27079 27080 /* 27081 * All of the extraction functions return a refheld ipif. 27082 */ 27083 ASSERT(ci.ci_ipif != NULL); 27084 } 27085 27086 /* 27087 * If ipsq is non-null, we are already being called exclusively 27088 */ 27089 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27090 if (!(ipip->ipi_flags & IPI_WR)) { 27091 /* 27092 * A return value of EINPROGRESS means the ioctl is 27093 * either queued and waiting for some reason or has 27094 * already completed. 27095 */ 27096 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27097 ci.ci_lifr); 27098 if (ci.ci_ipif != NULL) 27099 ipif_refrele(ci.ci_ipif); 27100 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27101 return; 27102 } 27103 27104 ASSERT(ci.ci_ipif != NULL); 27105 27106 if (ipsq == NULL) { 27107 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27108 ip_process_ioctl, NEW_OP, B_TRUE); 27109 entered_ipsq = B_TRUE; 27110 } 27111 /* 27112 * Release the ipif so that ipif_down and friends that wait for 27113 * references to go away are not misled about the current ipif_refcnt 27114 * values. We are writer so we can access the ipif even after releasing 27115 * the ipif. 27116 */ 27117 ipif_refrele(ci.ci_ipif); 27118 if (ipsq == NULL) 27119 return; 27120 27121 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27122 27123 /* 27124 * For most set ioctls that come here, this serves as a single point 27125 * where we set the IPIF_CHANGING flag. This ensures that there won't 27126 * be any new references to the ipif. This helps functions that go 27127 * through this path and end up trying to wait for the refcnts 27128 * associated with the ipif to go down to zero. Some exceptions are 27129 * Failover, Failback, and Groupname commands that operate on more than 27130 * just the ci.ci_ipif. These commands internally determine the 27131 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27132 * flags on that set. Another exception is the Removeif command that 27133 * sets the IPIF_CONDEMNED flag internally after identifying the right 27134 * ipif to operate on. 27135 */ 27136 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27137 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27138 ipip->ipi_cmd != SIOCLIFFAILOVER && 27139 ipip->ipi_cmd != SIOCLIFFAILBACK && 27140 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27141 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27142 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27143 27144 /* 27145 * A return value of EINPROGRESS means the ioctl is 27146 * either queued and waiting for some reason or has 27147 * already completed. 27148 */ 27149 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27150 27151 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27152 27153 if (entered_ipsq) 27154 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27155 } 27156 27157 /* 27158 * Complete the ioctl. Typically ioctls use the mi package and need to 27159 * do mi_copyout/mi_copy_done. 27160 */ 27161 void 27162 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27163 { 27164 conn_t *connp = NULL; 27165 27166 if (err == EINPROGRESS) 27167 return; 27168 27169 if (CONN_Q(q)) { 27170 connp = Q_TO_CONN(q); 27171 ASSERT(connp->conn_ref >= 2); 27172 } 27173 27174 switch (mode) { 27175 case COPYOUT: 27176 if (err == 0) 27177 mi_copyout(q, mp); 27178 else 27179 mi_copy_done(q, mp, err); 27180 break; 27181 27182 case NO_COPYOUT: 27183 mi_copy_done(q, mp, err); 27184 break; 27185 27186 default: 27187 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27188 break; 27189 } 27190 27191 /* 27192 * The refhold placed at the start of the ioctl is released here. 27193 */ 27194 if (connp != NULL) 27195 CONN_OPER_PENDING_DONE(connp); 27196 27197 if (ipsq != NULL) 27198 ipsq_current_finish(ipsq); 27199 } 27200 27201 /* 27202 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27203 */ 27204 /* ARGSUSED */ 27205 void 27206 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27207 { 27208 conn_t *connp = arg; 27209 tcp_t *tcp; 27210 27211 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27212 tcp = connp->conn_tcp; 27213 27214 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27215 freemsg(mp); 27216 else 27217 tcp_rput_other(tcp, mp); 27218 CONN_OPER_PENDING_DONE(connp); 27219 } 27220 27221 /* Called from ip_wput for all non data messages */ 27222 /* ARGSUSED */ 27223 void 27224 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27225 { 27226 mblk_t *mp1; 27227 ire_t *ire, *fake_ire; 27228 ill_t *ill; 27229 struct iocblk *iocp; 27230 ip_ioctl_cmd_t *ipip; 27231 cred_t *cr; 27232 conn_t *connp; 27233 int err; 27234 nce_t *nce; 27235 ipif_t *ipif; 27236 ip_stack_t *ipst; 27237 char *proto_str; 27238 27239 if (CONN_Q(q)) { 27240 connp = Q_TO_CONN(q); 27241 ipst = connp->conn_netstack->netstack_ip; 27242 } else { 27243 connp = NULL; 27244 ipst = ILLQ_TO_IPST(q); 27245 } 27246 27247 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27248 27249 switch (DB_TYPE(mp)) { 27250 case M_IOCTL: 27251 /* 27252 * IOCTL processing begins in ip_sioctl_copyin_setup which 27253 * will arrange to copy in associated control structures. 27254 */ 27255 ip_sioctl_copyin_setup(q, mp); 27256 return; 27257 case M_IOCDATA: 27258 /* 27259 * Ensure that this is associated with one of our trans- 27260 * parent ioctls. If it's not ours, discard it if we're 27261 * running as a driver, or pass it on if we're a module. 27262 */ 27263 iocp = (struct iocblk *)mp->b_rptr; 27264 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27265 if (ipip == NULL) { 27266 if (q->q_next == NULL) { 27267 goto nak; 27268 } else { 27269 putnext(q, mp); 27270 } 27271 return; 27272 } 27273 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27274 /* 27275 * the ioctl is one we recognise, but is not 27276 * consumed by IP as a module, pass M_IOCDATA 27277 * for processing downstream, but only for 27278 * common Streams ioctls. 27279 */ 27280 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27281 putnext(q, mp); 27282 return; 27283 } else { 27284 goto nak; 27285 } 27286 } 27287 27288 /* IOCTL continuation following copyin or copyout. */ 27289 if (mi_copy_state(q, mp, NULL) == -1) { 27290 /* 27291 * The copy operation failed. mi_copy_state already 27292 * cleaned up, so we're out of here. 27293 */ 27294 return; 27295 } 27296 /* 27297 * If we just completed a copy in, we become writer and 27298 * continue processing in ip_sioctl_copyin_done. If it 27299 * was a copy out, we call mi_copyout again. If there is 27300 * nothing more to copy out, it will complete the IOCTL. 27301 */ 27302 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27303 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27304 mi_copy_done(q, mp, EPROTO); 27305 return; 27306 } 27307 /* 27308 * Check for cases that need more copying. A return 27309 * value of 0 means a second copyin has been started, 27310 * so we return; a return value of 1 means no more 27311 * copying is needed, so we continue. 27312 */ 27313 if (ipip->ipi_cmd_type == MSFILT_CMD && 27314 MI_COPY_COUNT(mp) == 1) { 27315 if (ip_copyin_msfilter(q, mp) == 0) 27316 return; 27317 } 27318 /* 27319 * Refhold the conn, till the ioctl completes. This is 27320 * needed in case the ioctl ends up in the pending mp 27321 * list. Every mp in the ill_pending_mp list and 27322 * the ipsq_pending_mp must have a refhold on the conn 27323 * to resume processing. The refhold is released when 27324 * the ioctl completes. (normally or abnormally) 27325 * In all cases ip_ioctl_finish is called to finish 27326 * the ioctl. 27327 */ 27328 if (connp != NULL) { 27329 /* This is not a reentry */ 27330 ASSERT(ipsq == NULL); 27331 CONN_INC_REF(connp); 27332 } else { 27333 if (!(ipip->ipi_flags & IPI_MODOK)) { 27334 mi_copy_done(q, mp, EINVAL); 27335 return; 27336 } 27337 } 27338 27339 ip_process_ioctl(ipsq, q, mp, ipip); 27340 27341 } else { 27342 mi_copyout(q, mp); 27343 } 27344 return; 27345 nak: 27346 iocp->ioc_error = EINVAL; 27347 mp->b_datap->db_type = M_IOCNAK; 27348 iocp->ioc_count = 0; 27349 qreply(q, mp); 27350 return; 27351 27352 case M_IOCNAK: 27353 /* 27354 * The only way we could get here is if a resolver didn't like 27355 * an IOCTL we sent it. This shouldn't happen. 27356 */ 27357 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27358 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27359 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27360 freemsg(mp); 27361 return; 27362 case M_IOCACK: 27363 /* /dev/ip shouldn't see this */ 27364 if (CONN_Q(q)) 27365 goto nak; 27366 27367 /* Finish socket ioctls passed through to ARP. */ 27368 ip_sioctl_iocack(q, mp); 27369 return; 27370 case M_FLUSH: 27371 if (*mp->b_rptr & FLUSHW) 27372 flushq(q, FLUSHALL); 27373 if (q->q_next) { 27374 putnext(q, mp); 27375 return; 27376 } 27377 if (*mp->b_rptr & FLUSHR) { 27378 *mp->b_rptr &= ~FLUSHW; 27379 qreply(q, mp); 27380 return; 27381 } 27382 freemsg(mp); 27383 return; 27384 case IRE_DB_REQ_TYPE: 27385 if (connp == NULL) { 27386 proto_str = "IRE_DB_REQ_TYPE"; 27387 goto protonak; 27388 } 27389 /* An Upper Level Protocol wants a copy of an IRE. */ 27390 ip_ire_req(q, mp); 27391 return; 27392 case M_CTL: 27393 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27394 break; 27395 27396 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27397 TUN_HELLO) { 27398 ASSERT(connp != NULL); 27399 connp->conn_flags |= IPCL_IPTUN; 27400 freeb(mp); 27401 return; 27402 } 27403 27404 /* M_CTL messages are used by ARP to tell us things. */ 27405 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27406 break; 27407 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27408 case AR_ENTRY_SQUERY: 27409 ip_wput_ctl(q, mp); 27410 return; 27411 case AR_CLIENT_NOTIFY: 27412 ip_arp_news(q, mp); 27413 return; 27414 case AR_DLPIOP_DONE: 27415 ASSERT(q->q_next != NULL); 27416 ill = (ill_t *)q->q_ptr; 27417 /* qwriter_ip releases the refhold */ 27418 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27419 ill_refhold(ill); 27420 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27421 return; 27422 case AR_ARP_CLOSING: 27423 /* 27424 * ARP (above us) is closing. If no ARP bringup is 27425 * currently pending, ack the message so that ARP 27426 * can complete its close. Also mark ill_arp_closing 27427 * so that new ARP bringups will fail. If any 27428 * ARP bringup is currently in progress, we will 27429 * ack this when the current ARP bringup completes. 27430 */ 27431 ASSERT(q->q_next != NULL); 27432 ill = (ill_t *)q->q_ptr; 27433 mutex_enter(&ill->ill_lock); 27434 ill->ill_arp_closing = 1; 27435 if (!ill->ill_arp_bringup_pending) { 27436 mutex_exit(&ill->ill_lock); 27437 qreply(q, mp); 27438 } else { 27439 mutex_exit(&ill->ill_lock); 27440 freemsg(mp); 27441 } 27442 return; 27443 case AR_ARP_EXTEND: 27444 /* 27445 * The ARP module above us is capable of duplicate 27446 * address detection. Old ATM drivers will not send 27447 * this message. 27448 */ 27449 ASSERT(q->q_next != NULL); 27450 ill = (ill_t *)q->q_ptr; 27451 ill->ill_arp_extend = B_TRUE; 27452 freemsg(mp); 27453 return; 27454 default: 27455 break; 27456 } 27457 break; 27458 case M_PROTO: 27459 case M_PCPROTO: 27460 /* 27461 * The only PROTO messages we expect are ULP binds and 27462 * copies of option negotiation acknowledgements. 27463 */ 27464 switch (((union T_primitives *)mp->b_rptr)->type) { 27465 case O_T_BIND_REQ: 27466 case T_BIND_REQ: { 27467 /* Request can get queued in bind */ 27468 if (connp == NULL) { 27469 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27470 goto protonak; 27471 } 27472 /* 27473 * The transports except SCTP call ip_bind_{v4,v6}() 27474 * directly instead of a a putnext. SCTP doesn't 27475 * generate any T_BIND_REQ since it has its own 27476 * fanout data structures. However, ESP and AH 27477 * come in for regular binds; all other cases are 27478 * bind retries. 27479 */ 27480 ASSERT(!IPCL_IS_SCTP(connp)); 27481 27482 /* Don't increment refcnt if this is a re-entry */ 27483 if (ipsq == NULL) 27484 CONN_INC_REF(connp); 27485 27486 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27487 connp, NULL) : ip_bind_v4(q, mp, connp); 27488 if (mp == NULL) 27489 return; 27490 if (IPCL_IS_TCP(connp)) { 27491 /* 27492 * In the case of TCP endpoint we 27493 * come here only for bind retries 27494 */ 27495 ASSERT(ipsq != NULL); 27496 CONN_INC_REF(connp); 27497 squeue_fill(connp->conn_sqp, mp, 27498 ip_resume_tcp_bind, connp, 27499 SQTAG_BIND_RETRY); 27500 } else if (IPCL_IS_UDP(connp)) { 27501 /* 27502 * In the case of UDP endpoint we 27503 * come here only for bind retries 27504 */ 27505 ASSERT(ipsq != NULL); 27506 udp_resume_bind(connp, mp); 27507 } else if (IPCL_IS_RAWIP(connp)) { 27508 /* 27509 * In the case of RAWIP endpoint we 27510 * come here only for bind retries 27511 */ 27512 ASSERT(ipsq != NULL); 27513 rawip_resume_bind(connp, mp); 27514 } else { 27515 /* The case of AH and ESP */ 27516 qreply(q, mp); 27517 CONN_OPER_PENDING_DONE(connp); 27518 } 27519 return; 27520 } 27521 case T_SVR4_OPTMGMT_REQ: 27522 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27523 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27524 27525 if (connp == NULL) { 27526 proto_str = "T_SVR4_OPTMGMT_REQ"; 27527 goto protonak; 27528 } 27529 27530 if (!snmpcom_req(q, mp, ip_snmp_set, 27531 ip_snmp_get, cr)) { 27532 /* 27533 * Call svr4_optcom_req so that it can 27534 * generate the ack. We don't come here 27535 * if this operation is being restarted. 27536 * ip_restart_optmgmt will drop the conn ref. 27537 * In the case of ipsec option after the ipsec 27538 * load is complete conn_restart_ipsec_waiter 27539 * drops the conn ref. 27540 */ 27541 ASSERT(ipsq == NULL); 27542 CONN_INC_REF(connp); 27543 if (ip_check_for_ipsec_opt(q, mp)) 27544 return; 27545 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27546 B_FALSE); 27547 if (err != EINPROGRESS) { 27548 /* Operation is done */ 27549 CONN_OPER_PENDING_DONE(connp); 27550 } 27551 } 27552 return; 27553 case T_OPTMGMT_REQ: 27554 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27555 /* 27556 * Note: No snmpcom_req support through new 27557 * T_OPTMGMT_REQ. 27558 * Call tpi_optcom_req so that it can 27559 * generate the ack. 27560 */ 27561 if (connp == NULL) { 27562 proto_str = "T_OPTMGMT_REQ"; 27563 goto protonak; 27564 } 27565 27566 ASSERT(ipsq == NULL); 27567 /* 27568 * We don't come here for restart. ip_restart_optmgmt 27569 * will drop the conn ref. In the case of ipsec option 27570 * after the ipsec load is complete 27571 * conn_restart_ipsec_waiter drops the conn ref. 27572 */ 27573 CONN_INC_REF(connp); 27574 if (ip_check_for_ipsec_opt(q, mp)) 27575 return; 27576 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27577 if (err != EINPROGRESS) { 27578 /* Operation is done */ 27579 CONN_OPER_PENDING_DONE(connp); 27580 } 27581 return; 27582 case T_UNBIND_REQ: 27583 if (connp == NULL) { 27584 proto_str = "T_UNBIND_REQ"; 27585 goto protonak; 27586 } 27587 mp = ip_unbind(q, mp); 27588 qreply(q, mp); 27589 return; 27590 default: 27591 /* 27592 * Have to drop any DLPI messages coming down from 27593 * arp (such as an info_req which would cause ip 27594 * to receive an extra info_ack if it was passed 27595 * through. 27596 */ 27597 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27598 (int)*(uint_t *)mp->b_rptr)); 27599 freemsg(mp); 27600 return; 27601 } 27602 /* NOTREACHED */ 27603 case IRE_DB_TYPE: { 27604 nce_t *nce; 27605 ill_t *ill; 27606 in6_addr_t gw_addr_v6; 27607 27608 27609 /* 27610 * This is a response back from a resolver. It 27611 * consists of a message chain containing: 27612 * IRE_MBLK-->LL_HDR_MBLK->pkt 27613 * The IRE_MBLK is the one we allocated in ip_newroute. 27614 * The LL_HDR_MBLK is the DLPI header to use to get 27615 * the attached packet, and subsequent ones for the 27616 * same destination, transmitted. 27617 */ 27618 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27619 break; 27620 /* 27621 * First, check to make sure the resolution succeeded. 27622 * If it failed, the second mblk will be empty. 27623 * If it is, free the chain, dropping the packet. 27624 * (We must ire_delete the ire; that frees the ire mblk) 27625 * We're doing this now to support PVCs for ATM; it's 27626 * a partial xresolv implementation. When we fully implement 27627 * xresolv interfaces, instead of freeing everything here 27628 * we'll initiate neighbor discovery. 27629 * 27630 * For v4 (ARP and other external resolvers) the resolver 27631 * frees the message, so no check is needed. This check 27632 * is required, though, for a full xresolve implementation. 27633 * Including this code here now both shows how external 27634 * resolvers can NACK a resolution request using an 27635 * existing design that has no specific provisions for NACKs, 27636 * and also takes into account that the current non-ARP 27637 * external resolver has been coded to use this method of 27638 * NACKing for all IPv6 (xresolv) cases, 27639 * whether our xresolv implementation is complete or not. 27640 * 27641 */ 27642 ire = (ire_t *)mp->b_rptr; 27643 ill = ire_to_ill(ire); 27644 mp1 = mp->b_cont; /* dl_unitdata_req */ 27645 if (mp1->b_rptr == mp1->b_wptr) { 27646 if (ire->ire_ipversion == IPV6_VERSION) { 27647 /* 27648 * XRESOLV interface. 27649 */ 27650 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27651 mutex_enter(&ire->ire_lock); 27652 gw_addr_v6 = ire->ire_gateway_addr_v6; 27653 mutex_exit(&ire->ire_lock); 27654 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27655 nce = ndp_lookup_v6(ill, 27656 &ire->ire_addr_v6, B_FALSE); 27657 } else { 27658 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27659 B_FALSE); 27660 } 27661 if (nce != NULL) { 27662 nce_resolv_failed(nce); 27663 ndp_delete(nce); 27664 NCE_REFRELE(nce); 27665 } 27666 } 27667 mp->b_cont = NULL; 27668 freemsg(mp1); /* frees the pkt as well */ 27669 ASSERT(ire->ire_nce == NULL); 27670 ire_delete((ire_t *)mp->b_rptr); 27671 return; 27672 } 27673 27674 /* 27675 * Split them into IRE_MBLK and pkt and feed it into 27676 * ire_add_then_send. Then in ire_add_then_send 27677 * the IRE will be added, and then the packet will be 27678 * run back through ip_wput. This time it will make 27679 * it to the wire. 27680 */ 27681 mp->b_cont = NULL; 27682 mp = mp1->b_cont; /* now, mp points to pkt */ 27683 mp1->b_cont = NULL; 27684 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27685 if (ire->ire_ipversion == IPV6_VERSION) { 27686 /* 27687 * XRESOLV interface. Find the nce and put a copy 27688 * of the dl_unitdata_req in nce_res_mp 27689 */ 27690 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27691 mutex_enter(&ire->ire_lock); 27692 gw_addr_v6 = ire->ire_gateway_addr_v6; 27693 mutex_exit(&ire->ire_lock); 27694 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27695 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27696 B_FALSE); 27697 } else { 27698 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27699 } 27700 if (nce != NULL) { 27701 /* 27702 * We have to protect nce_res_mp here 27703 * from being accessed by other threads 27704 * while we change the mblk pointer. 27705 * Other functions will also lock the nce when 27706 * accessing nce_res_mp. 27707 * 27708 * The reason we change the mblk pointer 27709 * here rather than copying the resolved address 27710 * into the template is that, unlike with 27711 * ethernet, we have no guarantee that the 27712 * resolved address length will be 27713 * smaller than or equal to the lla length 27714 * with which the template was allocated, 27715 * (for ethernet, they're equal) 27716 * so we have to use the actual resolved 27717 * address mblk - which holds the real 27718 * dl_unitdata_req with the resolved address. 27719 * 27720 * Doing this is the same behavior as was 27721 * previously used in the v4 ARP case. 27722 */ 27723 mutex_enter(&nce->nce_lock); 27724 if (nce->nce_res_mp != NULL) 27725 freemsg(nce->nce_res_mp); 27726 nce->nce_res_mp = mp1; 27727 mutex_exit(&nce->nce_lock); 27728 /* 27729 * We do a fastpath probe here because 27730 * we have resolved the address without 27731 * using Neighbor Discovery. 27732 * In the non-XRESOLV v6 case, the fastpath 27733 * probe is done right after neighbor 27734 * discovery completes. 27735 */ 27736 if (nce->nce_res_mp != NULL) { 27737 int res; 27738 nce_fastpath_list_add(nce); 27739 res = ill_fastpath_probe(ill, 27740 nce->nce_res_mp); 27741 if (res != 0 && res != EAGAIN) 27742 nce_fastpath_list_delete(nce); 27743 } 27744 27745 ire_add_then_send(q, ire, mp); 27746 /* 27747 * Now we have to clean out any packets 27748 * that may have been queued on the nce 27749 * while it was waiting for address resolution 27750 * to complete. 27751 */ 27752 mutex_enter(&nce->nce_lock); 27753 mp1 = nce->nce_qd_mp; 27754 nce->nce_qd_mp = NULL; 27755 mutex_exit(&nce->nce_lock); 27756 while (mp1 != NULL) { 27757 mblk_t *nxt_mp; 27758 queue_t *fwdq = NULL; 27759 ill_t *inbound_ill; 27760 uint_t ifindex; 27761 27762 nxt_mp = mp1->b_next; 27763 mp1->b_next = NULL; 27764 /* 27765 * Retrieve ifindex stored in 27766 * ip_rput_data_v6() 27767 */ 27768 ifindex = 27769 (uint_t)(uintptr_t)mp1->b_prev; 27770 inbound_ill = 27771 ill_lookup_on_ifindex(ifindex, 27772 B_TRUE, NULL, NULL, NULL, 27773 NULL, ipst); 27774 mp1->b_prev = NULL; 27775 if (inbound_ill != NULL) 27776 fwdq = inbound_ill->ill_rq; 27777 27778 if (fwdq != NULL) { 27779 put(fwdq, mp1); 27780 ill_refrele(inbound_ill); 27781 } else 27782 put(WR(ill->ill_rq), mp1); 27783 mp1 = nxt_mp; 27784 } 27785 NCE_REFRELE(nce); 27786 } else { /* nce is NULL; clean up */ 27787 ire_delete(ire); 27788 freemsg(mp); 27789 freemsg(mp1); 27790 return; 27791 } 27792 } else { 27793 nce_t *arpce; 27794 /* 27795 * Link layer resolution succeeded. Recompute the 27796 * ire_nce. 27797 */ 27798 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27799 if ((arpce = ndp_lookup_v4(ill, 27800 (ire->ire_gateway_addr != INADDR_ANY ? 27801 &ire->ire_gateway_addr : &ire->ire_addr), 27802 B_FALSE)) == NULL) { 27803 freeb(ire->ire_mp); 27804 freeb(mp1); 27805 freemsg(mp); 27806 return; 27807 } 27808 mutex_enter(&arpce->nce_lock); 27809 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27810 if (arpce->nce_state == ND_REACHABLE) { 27811 /* 27812 * Someone resolved this before us; 27813 * cleanup the res_mp. Since ire has 27814 * not been added yet, the call to ire_add_v4 27815 * from ire_add_then_send (when a dup is 27816 * detected) will clean up the ire. 27817 */ 27818 freeb(mp1); 27819 } else { 27820 ASSERT(arpce->nce_res_mp == NULL); 27821 arpce->nce_res_mp = mp1; 27822 arpce->nce_state = ND_REACHABLE; 27823 } 27824 mutex_exit(&arpce->nce_lock); 27825 if (ire->ire_marks & IRE_MARK_NOADD) { 27826 /* 27827 * this ire will not be added to the ire 27828 * cache table, so we can set the ire_nce 27829 * here, as there are no atomicity constraints. 27830 */ 27831 ire->ire_nce = arpce; 27832 /* 27833 * We are associating this nce with the ire 27834 * so change the nce ref taken in 27835 * ndp_lookup_v4() from 27836 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27837 */ 27838 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27839 } else { 27840 NCE_REFRELE(arpce); 27841 } 27842 ire_add_then_send(q, ire, mp); 27843 } 27844 return; /* All is well, the packet has been sent. */ 27845 } 27846 case IRE_ARPRESOLVE_TYPE: { 27847 27848 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27849 break; 27850 mp1 = mp->b_cont; /* dl_unitdata_req */ 27851 mp->b_cont = NULL; 27852 /* 27853 * First, check to make sure the resolution succeeded. 27854 * If it failed, the second mblk will be empty. 27855 */ 27856 if (mp1->b_rptr == mp1->b_wptr) { 27857 /* cleanup the incomplete ire, free queued packets */ 27858 freemsg(mp); /* fake ire */ 27859 freeb(mp1); /* dl_unitdata response */ 27860 return; 27861 } 27862 27863 /* 27864 * update any incomplete nce_t found. we lookup the ctable 27865 * and find the nce from the ire->ire_nce because we need 27866 * to pass the ire to ip_xmit_v4 later, and can find both 27867 * ire and nce in one lookup from the ctable. 27868 */ 27869 fake_ire = (ire_t *)mp->b_rptr; 27870 /* 27871 * By the time we come back here from ARP 27872 * the logical outgoing interface of the incomplete ire 27873 * we added in ire_forward could have disappeared, 27874 * causing the incomplete ire to also have 27875 * dissapeared. So we need to retreive the 27876 * proper ipif for the ire before looking 27877 * in ctable; do the ctablelookup based on ire_ipif_seqid 27878 */ 27879 ill = q->q_ptr; 27880 27881 /* Get the outgoing ipif */ 27882 mutex_enter(&ill->ill_lock); 27883 if (ill->ill_state_flags & ILL_CONDEMNED) { 27884 mutex_exit(&ill->ill_lock); 27885 freemsg(mp); /* fake ire */ 27886 freeb(mp1); /* dl_unitdata response */ 27887 return; 27888 } 27889 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27890 27891 if (ipif == NULL) { 27892 mutex_exit(&ill->ill_lock); 27893 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27894 freemsg(mp); 27895 freeb(mp1); 27896 return; 27897 } 27898 ipif_refhold_locked(ipif); 27899 mutex_exit(&ill->ill_lock); 27900 ire = ire_ctable_lookup(fake_ire->ire_addr, 27901 fake_ire->ire_gateway_addr, IRE_CACHE, 27902 ipif, fake_ire->ire_zoneid, NULL, 27903 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY| 27904 MATCH_IRE_TYPE), ipst); 27905 ipif_refrele(ipif); 27906 if (ire == NULL) { 27907 /* 27908 * no ire was found; check if there is an nce 27909 * for this lookup; if it has no ire's pointing at it 27910 * cleanup. 27911 */ 27912 if ((nce = ndp_lookup_v4(ill, 27913 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27914 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27915 B_FALSE)) != NULL) { 27916 /* 27917 * cleanup: 27918 * We check for refcnt 2 (one for the nce 27919 * hash list + 1 for the ref taken by 27920 * ndp_lookup_v4) to check that there are 27921 * no ire's pointing at the nce. 27922 */ 27923 if (nce->nce_refcnt == 2) 27924 ndp_delete(nce); 27925 NCE_REFRELE(nce); 27926 } 27927 freeb(mp1); /* dl_unitdata response */ 27928 freemsg(mp); /* fake ire */ 27929 return; 27930 } 27931 nce = ire->ire_nce; 27932 DTRACE_PROBE2(ire__arpresolve__type, 27933 ire_t *, ire, nce_t *, nce); 27934 ASSERT(nce->nce_state != ND_INITIAL); 27935 mutex_enter(&nce->nce_lock); 27936 nce->nce_last = TICK_TO_MSEC(lbolt64); 27937 if (nce->nce_state == ND_REACHABLE) { 27938 /* 27939 * Someone resolved this before us; 27940 * our response is not needed any more. 27941 */ 27942 mutex_exit(&nce->nce_lock); 27943 freeb(mp1); /* dl_unitdata response */ 27944 } else { 27945 ASSERT(nce->nce_res_mp == NULL); 27946 nce->nce_res_mp = mp1; 27947 nce->nce_state = ND_REACHABLE; 27948 mutex_exit(&nce->nce_lock); 27949 nce_fastpath(nce); 27950 } 27951 /* 27952 * The cached nce_t has been updated to be reachable; 27953 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27954 */ 27955 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27956 freemsg(mp); 27957 /* 27958 * send out queued packets. 27959 */ 27960 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27961 27962 IRE_REFRELE(ire); 27963 return; 27964 } 27965 default: 27966 break; 27967 } 27968 if (q->q_next) { 27969 putnext(q, mp); 27970 } else 27971 freemsg(mp); 27972 return; 27973 27974 protonak: 27975 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27976 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27977 qreply(q, mp); 27978 } 27979 27980 /* 27981 * Process IP options in an outbound packet. Modify the destination if there 27982 * is a source route option. 27983 * Returns non-zero if something fails in which case an ICMP error has been 27984 * sent and mp freed. 27985 */ 27986 static int 27987 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27988 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27989 { 27990 ipoptp_t opts; 27991 uchar_t *opt; 27992 uint8_t optval; 27993 uint8_t optlen; 27994 ipaddr_t dst; 27995 intptr_t code = 0; 27996 mblk_t *mp; 27997 ire_t *ire = NULL; 27998 27999 ip2dbg(("ip_wput_options\n")); 28000 mp = ipsec_mp; 28001 if (mctl_present) { 28002 mp = ipsec_mp->b_cont; 28003 } 28004 28005 dst = ipha->ipha_dst; 28006 for (optval = ipoptp_first(&opts, ipha); 28007 optval != IPOPT_EOL; 28008 optval = ipoptp_next(&opts)) { 28009 opt = opts.ipoptp_cur; 28010 optlen = opts.ipoptp_len; 28011 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28012 optval, optlen)); 28013 switch (optval) { 28014 uint32_t off; 28015 case IPOPT_SSRR: 28016 case IPOPT_LSRR: 28017 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28018 ip1dbg(( 28019 "ip_wput_options: bad option offset\n")); 28020 code = (char *)&opt[IPOPT_OLEN] - 28021 (char *)ipha; 28022 goto param_prob; 28023 } 28024 off = opt[IPOPT_OFFSET]; 28025 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28026 ntohl(dst))); 28027 /* 28028 * For strict: verify that dst is directly 28029 * reachable. 28030 */ 28031 if (optval == IPOPT_SSRR) { 28032 ire = ire_ftable_lookup(dst, 0, 0, 28033 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28034 MBLK_GETLABEL(mp), 28035 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28036 if (ire == NULL) { 28037 ip1dbg(("ip_wput_options: SSRR not" 28038 " directly reachable: 0x%x\n", 28039 ntohl(dst))); 28040 goto bad_src_route; 28041 } 28042 ire_refrele(ire); 28043 } 28044 break; 28045 case IPOPT_RR: 28046 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28047 ip1dbg(( 28048 "ip_wput_options: bad option offset\n")); 28049 code = (char *)&opt[IPOPT_OLEN] - 28050 (char *)ipha; 28051 goto param_prob; 28052 } 28053 break; 28054 case IPOPT_TS: 28055 /* 28056 * Verify that length >=5 and that there is either 28057 * room for another timestamp or that the overflow 28058 * counter is not maxed out. 28059 */ 28060 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28061 if (optlen < IPOPT_MINLEN_IT) { 28062 goto param_prob; 28063 } 28064 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28065 ip1dbg(( 28066 "ip_wput_options: bad option offset\n")); 28067 code = (char *)&opt[IPOPT_OFFSET] - 28068 (char *)ipha; 28069 goto param_prob; 28070 } 28071 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28072 case IPOPT_TS_TSONLY: 28073 off = IPOPT_TS_TIMELEN; 28074 break; 28075 case IPOPT_TS_TSANDADDR: 28076 case IPOPT_TS_PRESPEC: 28077 case IPOPT_TS_PRESPEC_RFC791: 28078 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28079 break; 28080 default: 28081 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28082 (char *)ipha; 28083 goto param_prob; 28084 } 28085 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28086 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28087 /* 28088 * No room and the overflow counter is 15 28089 * already. 28090 */ 28091 goto param_prob; 28092 } 28093 break; 28094 } 28095 } 28096 28097 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28098 return (0); 28099 28100 ip1dbg(("ip_wput_options: error processing IP options.")); 28101 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28102 28103 param_prob: 28104 /* 28105 * Since ip_wput() isn't close to finished, we fill 28106 * in enough of the header for credible error reporting. 28107 */ 28108 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28109 /* Failed */ 28110 freemsg(ipsec_mp); 28111 return (-1); 28112 } 28113 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28114 return (-1); 28115 28116 bad_src_route: 28117 /* 28118 * Since ip_wput() isn't close to finished, we fill 28119 * in enough of the header for credible error reporting. 28120 */ 28121 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28122 /* Failed */ 28123 freemsg(ipsec_mp); 28124 return (-1); 28125 } 28126 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28127 return (-1); 28128 } 28129 28130 /* 28131 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28132 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28133 * thru /etc/system. 28134 */ 28135 #define CONN_MAXDRAINCNT 64 28136 28137 static void 28138 conn_drain_init(ip_stack_t *ipst) 28139 { 28140 int i; 28141 28142 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28143 28144 if ((ipst->ips_conn_drain_list_cnt == 0) || 28145 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28146 /* 28147 * Default value of the number of drainers is the 28148 * number of cpus, subject to maximum of 8 drainers. 28149 */ 28150 if (boot_max_ncpus != -1) 28151 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28152 else 28153 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28154 } 28155 28156 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28157 sizeof (idl_t), KM_SLEEP); 28158 28159 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28160 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28161 MUTEX_DEFAULT, NULL); 28162 } 28163 } 28164 28165 static void 28166 conn_drain_fini(ip_stack_t *ipst) 28167 { 28168 int i; 28169 28170 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28171 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28172 kmem_free(ipst->ips_conn_drain_list, 28173 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28174 ipst->ips_conn_drain_list = NULL; 28175 } 28176 28177 /* 28178 * Note: For an overview of how flowcontrol is handled in IP please see the 28179 * IP Flowcontrol notes at the top of this file. 28180 * 28181 * Flow control has blocked us from proceeding. Insert the given conn in one 28182 * of the conn drain lists. These conn wq's will be qenabled later on when 28183 * STREAMS flow control does a backenable. conn_walk_drain will enable 28184 * the first conn in each of these drain lists. Each of these qenabled conns 28185 * in turn enables the next in the list, after it runs, or when it closes, 28186 * thus sustaining the drain process. 28187 * 28188 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28189 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28190 * running at any time, on a given conn, since there can be only 1 service proc 28191 * running on a queue at any time. 28192 */ 28193 void 28194 conn_drain_insert(conn_t *connp) 28195 { 28196 idl_t *idl; 28197 uint_t index; 28198 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28199 28200 mutex_enter(&connp->conn_lock); 28201 if (connp->conn_state_flags & CONN_CLOSING) { 28202 /* 28203 * The conn is closing as a result of which CONN_CLOSING 28204 * is set. Return. 28205 */ 28206 mutex_exit(&connp->conn_lock); 28207 return; 28208 } else if (connp->conn_idl == NULL) { 28209 /* 28210 * Assign the next drain list round robin. We dont' use 28211 * a lock, and thus it may not be strictly round robin. 28212 * Atomicity of load/stores is enough to make sure that 28213 * conn_drain_list_index is always within bounds. 28214 */ 28215 index = ipst->ips_conn_drain_list_index; 28216 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28217 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28218 index++; 28219 if (index == ipst->ips_conn_drain_list_cnt) 28220 index = 0; 28221 ipst->ips_conn_drain_list_index = index; 28222 } 28223 mutex_exit(&connp->conn_lock); 28224 28225 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28226 if ((connp->conn_drain_prev != NULL) || 28227 (connp->conn_state_flags & CONN_CLOSING)) { 28228 /* 28229 * The conn is already in the drain list, OR 28230 * the conn is closing. We need to check again for 28231 * the closing case again since close can happen 28232 * after we drop the conn_lock, and before we 28233 * acquire the CONN_DRAIN_LIST_LOCK. 28234 */ 28235 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28236 return; 28237 } else { 28238 idl = connp->conn_idl; 28239 } 28240 28241 /* 28242 * The conn is not in the drain list. Insert it at the 28243 * tail of the drain list. The drain list is circular 28244 * and doubly linked. idl_conn points to the 1st element 28245 * in the list. 28246 */ 28247 if (idl->idl_conn == NULL) { 28248 idl->idl_conn = connp; 28249 connp->conn_drain_next = connp; 28250 connp->conn_drain_prev = connp; 28251 } else { 28252 conn_t *head = idl->idl_conn; 28253 28254 connp->conn_drain_next = head; 28255 connp->conn_drain_prev = head->conn_drain_prev; 28256 head->conn_drain_prev->conn_drain_next = connp; 28257 head->conn_drain_prev = connp; 28258 } 28259 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28260 } 28261 28262 /* 28263 * This conn is closing, and we are called from ip_close. OR 28264 * This conn has been serviced by ip_wsrv, and we need to do the tail 28265 * processing. 28266 * If this conn is part of the drain list, we may need to sustain the drain 28267 * process by qenabling the next conn in the drain list. We may also need to 28268 * remove this conn from the list, if it is done. 28269 */ 28270 static void 28271 conn_drain_tail(conn_t *connp, boolean_t closing) 28272 { 28273 idl_t *idl; 28274 28275 /* 28276 * connp->conn_idl is stable at this point, and no lock is needed 28277 * to check it. If we are called from ip_close, close has already 28278 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28279 * called us only because conn_idl is non-null. If we are called thru 28280 * service, conn_idl could be null, but it cannot change because 28281 * service is single-threaded per queue, and there cannot be another 28282 * instance of service trying to call conn_drain_insert on this conn 28283 * now. 28284 */ 28285 ASSERT(!closing || (connp->conn_idl != NULL)); 28286 28287 /* 28288 * If connp->conn_idl is null, the conn has not been inserted into any 28289 * drain list even once since creation of the conn. Just return. 28290 */ 28291 if (connp->conn_idl == NULL) 28292 return; 28293 28294 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28295 28296 if (connp->conn_drain_prev == NULL) { 28297 /* This conn is currently not in the drain list. */ 28298 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28299 return; 28300 } 28301 idl = connp->conn_idl; 28302 if (idl->idl_conn_draining == connp) { 28303 /* 28304 * This conn is the current drainer. If this is the last conn 28305 * in the drain list, we need to do more checks, in the 'if' 28306 * below. Otherwwise we need to just qenable the next conn, 28307 * to sustain the draining, and is handled in the 'else' 28308 * below. 28309 */ 28310 if (connp->conn_drain_next == idl->idl_conn) { 28311 /* 28312 * This conn is the last in this list. This round 28313 * of draining is complete. If idl_repeat is set, 28314 * it means another flow enabling has happened from 28315 * the driver/streams and we need to another round 28316 * of draining. 28317 * If there are more than 2 conns in the drain list, 28318 * do a left rotate by 1, so that all conns except the 28319 * conn at the head move towards the head by 1, and the 28320 * the conn at the head goes to the tail. This attempts 28321 * a more even share for all queues that are being 28322 * drained. 28323 */ 28324 if ((connp->conn_drain_next != connp) && 28325 (idl->idl_conn->conn_drain_next != connp)) { 28326 idl->idl_conn = idl->idl_conn->conn_drain_next; 28327 } 28328 if (idl->idl_repeat) { 28329 qenable(idl->idl_conn->conn_wq); 28330 idl->idl_conn_draining = idl->idl_conn; 28331 idl->idl_repeat = 0; 28332 } else { 28333 idl->idl_conn_draining = NULL; 28334 } 28335 } else { 28336 /* 28337 * If the next queue that we are now qenable'ing, 28338 * is closing, it will remove itself from this list 28339 * and qenable the subsequent queue in ip_close(). 28340 * Serialization is acheived thru idl_lock. 28341 */ 28342 qenable(connp->conn_drain_next->conn_wq); 28343 idl->idl_conn_draining = connp->conn_drain_next; 28344 } 28345 } 28346 if (!connp->conn_did_putbq || closing) { 28347 /* 28348 * Remove ourself from the drain list, if we did not do 28349 * a putbq, or if the conn is closing. 28350 * Note: It is possible that q->q_first is non-null. It means 28351 * that these messages landed after we did a enableok() in 28352 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28353 * service them. 28354 */ 28355 if (connp->conn_drain_next == connp) { 28356 /* Singleton in the list */ 28357 ASSERT(connp->conn_drain_prev == connp); 28358 idl->idl_conn = NULL; 28359 idl->idl_conn_draining = NULL; 28360 } else { 28361 connp->conn_drain_prev->conn_drain_next = 28362 connp->conn_drain_next; 28363 connp->conn_drain_next->conn_drain_prev = 28364 connp->conn_drain_prev; 28365 if (idl->idl_conn == connp) 28366 idl->idl_conn = connp->conn_drain_next; 28367 ASSERT(idl->idl_conn_draining != connp); 28368 28369 } 28370 connp->conn_drain_next = NULL; 28371 connp->conn_drain_prev = NULL; 28372 } 28373 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28374 } 28375 28376 /* 28377 * Write service routine. Shared perimeter entry point. 28378 * ip_wsrv can be called in any of the following ways. 28379 * 1. The device queue's messages has fallen below the low water mark 28380 * and STREAMS has backenabled the ill_wq. We walk thru all the 28381 * the drain lists and backenable the first conn in each list. 28382 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28383 * qenabled non-tcp upper layers. We start dequeing messages and call 28384 * ip_wput for each message. 28385 */ 28386 28387 void 28388 ip_wsrv(queue_t *q) 28389 { 28390 conn_t *connp; 28391 ill_t *ill; 28392 mblk_t *mp; 28393 28394 if (q->q_next) { 28395 ill = (ill_t *)q->q_ptr; 28396 if (ill->ill_state_flags == 0) { 28397 /* 28398 * The device flow control has opened up. 28399 * Walk through conn drain lists and qenable the 28400 * first conn in each list. This makes sense only 28401 * if the stream is fully plumbed and setup. 28402 * Hence the if check above. 28403 */ 28404 ip1dbg(("ip_wsrv: walking\n")); 28405 conn_walk_drain(ill->ill_ipst); 28406 } 28407 return; 28408 } 28409 28410 connp = Q_TO_CONN(q); 28411 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28412 28413 /* 28414 * 1. Set conn_draining flag to signal that service is active. 28415 * 28416 * 2. ip_output determines whether it has been called from service, 28417 * based on the last parameter. If it is IP_WSRV it concludes it 28418 * has been called from service. 28419 * 28420 * 3. Message ordering is preserved by the following logic. 28421 * i. A directly called ip_output (i.e. not thru service) will queue 28422 * the message at the tail, if conn_draining is set (i.e. service 28423 * is running) or if q->q_first is non-null. 28424 * 28425 * ii. If ip_output is called from service, and if ip_output cannot 28426 * putnext due to flow control, it does a putbq. 28427 * 28428 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28429 * (causing an infinite loop). 28430 */ 28431 ASSERT(!connp->conn_did_putbq); 28432 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28433 connp->conn_draining = 1; 28434 noenable(q); 28435 while ((mp = getq(q)) != NULL) { 28436 ASSERT(CONN_Q(q)); 28437 28438 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28439 if (connp->conn_did_putbq) { 28440 /* ip_wput did a putbq */ 28441 break; 28442 } 28443 } 28444 /* 28445 * At this point, a thread coming down from top, calling 28446 * ip_wput, may end up queueing the message. We have not yet 28447 * enabled the queue, so ip_wsrv won't be called again. 28448 * To avoid this race, check q->q_first again (in the loop) 28449 * If the other thread queued the message before we call 28450 * enableok(), we will catch it in the q->q_first check. 28451 * If the other thread queues the message after we call 28452 * enableok(), ip_wsrv will be called again by STREAMS. 28453 */ 28454 connp->conn_draining = 0; 28455 enableok(q); 28456 } 28457 28458 /* Enable the next conn for draining */ 28459 conn_drain_tail(connp, B_FALSE); 28460 28461 connp->conn_did_putbq = 0; 28462 } 28463 28464 /* 28465 * Walk the list of all conn's calling the function provided with the 28466 * specified argument for each. Note that this only walks conn's that 28467 * have been bound. 28468 * Applies to both IPv4 and IPv6. 28469 */ 28470 static void 28471 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28472 { 28473 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28474 ipst->ips_ipcl_udp_fanout_size, 28475 func, arg, zoneid); 28476 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28477 ipst->ips_ipcl_conn_fanout_size, 28478 func, arg, zoneid); 28479 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28480 ipst->ips_ipcl_bind_fanout_size, 28481 func, arg, zoneid); 28482 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28483 IPPROTO_MAX, func, arg, zoneid); 28484 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28485 IPPROTO_MAX, func, arg, zoneid); 28486 } 28487 28488 /* 28489 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28490 * of conns that need to be drained, check if drain is already in progress. 28491 * If so set the idl_repeat bit, indicating that the last conn in the list 28492 * needs to reinitiate the drain once again, for the list. If drain is not 28493 * in progress for the list, initiate the draining, by qenabling the 1st 28494 * conn in the list. The drain is self-sustaining, each qenabled conn will 28495 * in turn qenable the next conn, when it is done/blocked/closing. 28496 */ 28497 static void 28498 conn_walk_drain(ip_stack_t *ipst) 28499 { 28500 int i; 28501 idl_t *idl; 28502 28503 IP_STAT(ipst, ip_conn_walk_drain); 28504 28505 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28506 idl = &ipst->ips_conn_drain_list[i]; 28507 mutex_enter(&idl->idl_lock); 28508 if (idl->idl_conn == NULL) { 28509 mutex_exit(&idl->idl_lock); 28510 continue; 28511 } 28512 /* 28513 * If this list is not being drained currently by 28514 * an ip_wsrv thread, start the process. 28515 */ 28516 if (idl->idl_conn_draining == NULL) { 28517 ASSERT(idl->idl_repeat == 0); 28518 qenable(idl->idl_conn->conn_wq); 28519 idl->idl_conn_draining = idl->idl_conn; 28520 } else { 28521 idl->idl_repeat = 1; 28522 } 28523 mutex_exit(&idl->idl_lock); 28524 } 28525 } 28526 28527 /* 28528 * Walk an conn hash table of `count' buckets, calling func for each entry. 28529 */ 28530 static void 28531 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28532 zoneid_t zoneid) 28533 { 28534 conn_t *connp; 28535 28536 while (count-- > 0) { 28537 mutex_enter(&connfp->connf_lock); 28538 for (connp = connfp->connf_head; connp != NULL; 28539 connp = connp->conn_next) { 28540 if (zoneid == GLOBAL_ZONEID || 28541 zoneid == connp->conn_zoneid) { 28542 CONN_INC_REF(connp); 28543 mutex_exit(&connfp->connf_lock); 28544 (*func)(connp, arg); 28545 mutex_enter(&connfp->connf_lock); 28546 CONN_DEC_REF(connp); 28547 } 28548 } 28549 mutex_exit(&connfp->connf_lock); 28550 connfp++; 28551 } 28552 } 28553 28554 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28555 static void 28556 conn_report1(conn_t *connp, void *mp) 28557 { 28558 char buf1[INET6_ADDRSTRLEN]; 28559 char buf2[INET6_ADDRSTRLEN]; 28560 uint_t print_len, buf_len; 28561 28562 ASSERT(connp != NULL); 28563 28564 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28565 if (buf_len <= 0) 28566 return; 28567 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28568 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28569 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28570 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28571 "%5d %s/%05d %s/%05d\n", 28572 (void *)connp, (void *)CONNP_TO_RQ(connp), 28573 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28574 buf1, connp->conn_lport, 28575 buf2, connp->conn_fport); 28576 if (print_len < buf_len) { 28577 ((mblk_t *)mp)->b_wptr += print_len; 28578 } else { 28579 ((mblk_t *)mp)->b_wptr += buf_len; 28580 } 28581 } 28582 28583 /* 28584 * Named Dispatch routine to produce a formatted report on all conns 28585 * that are listed in one of the fanout tables. 28586 * This report is accessed by using the ndd utility to "get" ND variable 28587 * "ip_conn_status". 28588 */ 28589 /* ARGSUSED */ 28590 static int 28591 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28592 { 28593 conn_t *connp = Q_TO_CONN(q); 28594 28595 (void) mi_mpprintf(mp, 28596 "CONN " MI_COL_HDRPAD_STR 28597 "rfq " MI_COL_HDRPAD_STR 28598 "stq " MI_COL_HDRPAD_STR 28599 " zone local remote"); 28600 28601 /* 28602 * Because of the ndd constraint, at most we can have 64K buffer 28603 * to put in all conn info. So to be more efficient, just 28604 * allocate a 64K buffer here, assuming we need that large buffer. 28605 * This should be OK as only privileged processes can do ndd /dev/ip. 28606 */ 28607 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28608 /* The following may work even if we cannot get a large buf. */ 28609 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28610 return (0); 28611 } 28612 28613 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28614 connp->conn_netstack->netstack_ip); 28615 return (0); 28616 } 28617 28618 /* 28619 * Determine if the ill and multicast aspects of that packets 28620 * "matches" the conn. 28621 */ 28622 boolean_t 28623 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28624 zoneid_t zoneid) 28625 { 28626 ill_t *in_ill; 28627 boolean_t found; 28628 ipif_t *ipif; 28629 ire_t *ire; 28630 ipaddr_t dst, src; 28631 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28632 28633 dst = ipha->ipha_dst; 28634 src = ipha->ipha_src; 28635 28636 /* 28637 * conn_incoming_ill is set by IP_BOUND_IF which limits 28638 * unicast, broadcast and multicast reception to 28639 * conn_incoming_ill. conn_wantpacket itself is called 28640 * only for BROADCAST and multicast. 28641 * 28642 * 1) ip_rput supresses duplicate broadcasts if the ill 28643 * is part of a group. Hence, we should be receiving 28644 * just one copy of broadcast for the whole group. 28645 * Thus, if it is part of the group the packet could 28646 * come on any ill of the group and hence we need a 28647 * match on the group. Otherwise, match on ill should 28648 * be sufficient. 28649 * 28650 * 2) ip_rput does not suppress duplicate multicast packets. 28651 * If there are two interfaces in a ill group and we have 28652 * 2 applications (conns) joined a multicast group G on 28653 * both the interfaces, ilm_lookup_ill filter in ip_rput 28654 * will give us two packets because we join G on both the 28655 * interfaces rather than nominating just one interface 28656 * for receiving multicast like broadcast above. So, 28657 * we have to call ilg_lookup_ill to filter out duplicate 28658 * copies, if ill is part of a group. 28659 */ 28660 in_ill = connp->conn_incoming_ill; 28661 if (in_ill != NULL) { 28662 if (in_ill->ill_group == NULL) { 28663 if (in_ill != ill) 28664 return (B_FALSE); 28665 } else if (in_ill->ill_group != ill->ill_group) { 28666 return (B_FALSE); 28667 } 28668 } 28669 28670 if (!CLASSD(dst)) { 28671 if (IPCL_ZONE_MATCH(connp, zoneid)) 28672 return (B_TRUE); 28673 /* 28674 * The conn is in a different zone; we need to check that this 28675 * broadcast address is configured in the application's zone and 28676 * on one ill in the group. 28677 */ 28678 ipif = ipif_get_next_ipif(NULL, ill); 28679 if (ipif == NULL) 28680 return (B_FALSE); 28681 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28682 connp->conn_zoneid, NULL, 28683 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28684 ipif_refrele(ipif); 28685 if (ire != NULL) { 28686 ire_refrele(ire); 28687 return (B_TRUE); 28688 } else { 28689 return (B_FALSE); 28690 } 28691 } 28692 28693 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28694 connp->conn_zoneid == zoneid) { 28695 /* 28696 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28697 * disabled, therefore we don't dispatch the multicast packet to 28698 * the sending zone. 28699 */ 28700 return (B_FALSE); 28701 } 28702 28703 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28704 /* 28705 * Multicast packet on the loopback interface: we only match 28706 * conns who joined the group in the specified zone. 28707 */ 28708 return (B_FALSE); 28709 } 28710 28711 if (connp->conn_multi_router) { 28712 /* multicast packet and multicast router socket: send up */ 28713 return (B_TRUE); 28714 } 28715 28716 mutex_enter(&connp->conn_lock); 28717 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28718 mutex_exit(&connp->conn_lock); 28719 return (found); 28720 } 28721 28722 /* 28723 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28724 */ 28725 /* ARGSUSED */ 28726 static void 28727 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28728 { 28729 ill_t *ill = (ill_t *)q->q_ptr; 28730 mblk_t *mp1, *mp2; 28731 ipif_t *ipif; 28732 int err = 0; 28733 conn_t *connp = NULL; 28734 ipsq_t *ipsq; 28735 arc_t *arc; 28736 28737 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28738 28739 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28740 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28741 28742 ASSERT(IAM_WRITER_ILL(ill)); 28743 mp2 = mp->b_cont; 28744 mp->b_cont = NULL; 28745 28746 /* 28747 * We have now received the arp bringup completion message 28748 * from ARP. Mark the arp bringup as done. Also if the arp 28749 * stream has already started closing, send up the AR_ARP_CLOSING 28750 * ack now since ARP is waiting in close for this ack. 28751 */ 28752 mutex_enter(&ill->ill_lock); 28753 ill->ill_arp_bringup_pending = 0; 28754 if (ill->ill_arp_closing) { 28755 mutex_exit(&ill->ill_lock); 28756 /* Let's reuse the mp for sending the ack */ 28757 arc = (arc_t *)mp->b_rptr; 28758 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28759 arc->arc_cmd = AR_ARP_CLOSING; 28760 qreply(q, mp); 28761 } else { 28762 mutex_exit(&ill->ill_lock); 28763 freeb(mp); 28764 } 28765 28766 ipsq = ill->ill_phyint->phyint_ipsq; 28767 ipif = ipsq->ipsq_pending_ipif; 28768 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28769 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28770 if (mp1 == NULL) { 28771 /* bringup was aborted by the user */ 28772 freemsg(mp2); 28773 return; 28774 } 28775 28776 /* 28777 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28778 * must have an associated conn_t. Otherwise, we're bringing this 28779 * interface back up as part of handling an asynchronous event (e.g., 28780 * physical address change). 28781 */ 28782 if (ipsq->ipsq_current_ioctl != 0) { 28783 ASSERT(connp != NULL); 28784 q = CONNP_TO_WQ(connp); 28785 } else { 28786 ASSERT(connp == NULL); 28787 q = ill->ill_rq; 28788 } 28789 28790 /* 28791 * If the DL_BIND_REQ fails, it is noted 28792 * in arc_name_offset. 28793 */ 28794 err = *((int *)mp2->b_rptr); 28795 if (err == 0) { 28796 if (ipif->ipif_isv6) { 28797 if ((err = ipif_up_done_v6(ipif)) != 0) 28798 ip0dbg(("ip_arp_done: init failed\n")); 28799 } else { 28800 if ((err = ipif_up_done(ipif)) != 0) 28801 ip0dbg(("ip_arp_done: init failed\n")); 28802 } 28803 } else { 28804 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28805 } 28806 28807 freemsg(mp2); 28808 28809 if ((err == 0) && (ill->ill_up_ipifs)) { 28810 err = ill_up_ipifs(ill, q, mp1); 28811 if (err == EINPROGRESS) 28812 return; 28813 } 28814 28815 if (ill->ill_up_ipifs) 28816 ill_group_cleanup(ill); 28817 28818 /* 28819 * The operation must complete without EINPROGRESS since 28820 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28821 * Otherwise, the operation will be stuck forever in the ipsq. 28822 */ 28823 ASSERT(err != EINPROGRESS); 28824 if (ipsq->ipsq_current_ioctl != 0) 28825 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28826 else 28827 ipsq_current_finish(ipsq); 28828 } 28829 28830 /* Allocate the private structure */ 28831 static int 28832 ip_priv_alloc(void **bufp) 28833 { 28834 void *buf; 28835 28836 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28837 return (ENOMEM); 28838 28839 *bufp = buf; 28840 return (0); 28841 } 28842 28843 /* Function to delete the private structure */ 28844 void 28845 ip_priv_free(void *buf) 28846 { 28847 ASSERT(buf != NULL); 28848 kmem_free(buf, sizeof (ip_priv_t)); 28849 } 28850 28851 /* 28852 * The entry point for IPPF processing. 28853 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28854 * routine just returns. 28855 * 28856 * When called, ip_process generates an ipp_packet_t structure 28857 * which holds the state information for this packet and invokes the 28858 * the classifier (via ipp_packet_process). The classification, depending on 28859 * configured filters, results in a list of actions for this packet. Invoking 28860 * an action may cause the packet to be dropped, in which case the resulting 28861 * mblk (*mpp) is NULL. proc indicates the callout position for 28862 * this packet and ill_index is the interface this packet on or will leave 28863 * on (inbound and outbound resp.). 28864 */ 28865 void 28866 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28867 { 28868 mblk_t *mp; 28869 ip_priv_t *priv; 28870 ipp_action_id_t aid; 28871 int rc = 0; 28872 ipp_packet_t *pp; 28873 #define IP_CLASS "ip" 28874 28875 /* If the classifier is not loaded, return */ 28876 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28877 return; 28878 } 28879 28880 mp = *mpp; 28881 ASSERT(mp != NULL); 28882 28883 /* Allocate the packet structure */ 28884 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28885 if (rc != 0) { 28886 *mpp = NULL; 28887 freemsg(mp); 28888 return; 28889 } 28890 28891 /* Allocate the private structure */ 28892 rc = ip_priv_alloc((void **)&priv); 28893 if (rc != 0) { 28894 *mpp = NULL; 28895 freemsg(mp); 28896 ipp_packet_free(pp); 28897 return; 28898 } 28899 priv->proc = proc; 28900 priv->ill_index = ill_index; 28901 ipp_packet_set_private(pp, priv, ip_priv_free); 28902 ipp_packet_set_data(pp, mp); 28903 28904 /* Invoke the classifier */ 28905 rc = ipp_packet_process(&pp); 28906 if (pp != NULL) { 28907 mp = ipp_packet_get_data(pp); 28908 ipp_packet_free(pp); 28909 if (rc != 0) { 28910 freemsg(mp); 28911 *mpp = NULL; 28912 } 28913 } else { 28914 *mpp = NULL; 28915 } 28916 #undef IP_CLASS 28917 } 28918 28919 /* 28920 * Propagate a multicast group membership operation (add/drop) on 28921 * all the interfaces crossed by the related multirt routes. 28922 * The call is considered successful if the operation succeeds 28923 * on at least one interface. 28924 */ 28925 static int 28926 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28927 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28928 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28929 mblk_t *first_mp) 28930 { 28931 ire_t *ire_gw; 28932 irb_t *irb; 28933 int error = 0; 28934 opt_restart_t *or; 28935 ip_stack_t *ipst = ire->ire_ipst; 28936 28937 irb = ire->ire_bucket; 28938 ASSERT(irb != NULL); 28939 28940 ASSERT(DB_TYPE(first_mp) == M_CTL); 28941 28942 or = (opt_restart_t *)first_mp->b_rptr; 28943 IRB_REFHOLD(irb); 28944 for (; ire != NULL; ire = ire->ire_next) { 28945 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28946 continue; 28947 if (ire->ire_addr != group) 28948 continue; 28949 28950 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28951 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28952 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28953 /* No resolver exists for the gateway; skip this ire. */ 28954 if (ire_gw == NULL) 28955 continue; 28956 28957 /* 28958 * This function can return EINPROGRESS. If so the operation 28959 * will be restarted from ip_restart_optmgmt which will 28960 * call ip_opt_set and option processing will restart for 28961 * this option. So we may end up calling 'fn' more than once. 28962 * This requires that 'fn' is idempotent except for the 28963 * return value. The operation is considered a success if 28964 * it succeeds at least once on any one interface. 28965 */ 28966 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28967 NULL, fmode, src, first_mp); 28968 if (error == 0) 28969 or->or_private = CGTP_MCAST_SUCCESS; 28970 28971 if (ip_debug > 0) { 28972 ulong_t off; 28973 char *ksym; 28974 ksym = kobj_getsymname((uintptr_t)fn, &off); 28975 ip2dbg(("ip_multirt_apply_membership: " 28976 "called %s, multirt group 0x%08x via itf 0x%08x, " 28977 "error %d [success %u]\n", 28978 ksym ? ksym : "?", 28979 ntohl(group), ntohl(ire_gw->ire_src_addr), 28980 error, or->or_private)); 28981 } 28982 28983 ire_refrele(ire_gw); 28984 if (error == EINPROGRESS) { 28985 IRB_REFRELE(irb); 28986 return (error); 28987 } 28988 } 28989 IRB_REFRELE(irb); 28990 /* 28991 * Consider the call as successful if we succeeded on at least 28992 * one interface. Otherwise, return the last encountered error. 28993 */ 28994 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28995 } 28996 28997 28998 /* 28999 * Issue a warning regarding a route crossing an interface with an 29000 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29001 * amount of time is logged. 29002 */ 29003 static void 29004 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29005 { 29006 hrtime_t current = gethrtime(); 29007 char buf[INET_ADDRSTRLEN]; 29008 ip_stack_t *ipst = ire->ire_ipst; 29009 29010 /* Convert interval in ms to hrtime in ns */ 29011 if (ipst->ips_multirt_bad_mtu_last_time + 29012 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29013 current) { 29014 cmn_err(CE_WARN, "ip: ignoring multiroute " 29015 "to %s, incorrect MTU %u (expected %u)\n", 29016 ip_dot_addr(ire->ire_addr, buf), 29017 ire->ire_max_frag, max_frag); 29018 29019 ipst->ips_multirt_bad_mtu_last_time = current; 29020 } 29021 } 29022 29023 29024 /* 29025 * Get the CGTP (multirouting) filtering status. 29026 * If 0, the CGTP hooks are transparent. 29027 */ 29028 /* ARGSUSED */ 29029 static int 29030 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29031 { 29032 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29033 29034 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29035 return (0); 29036 } 29037 29038 29039 /* 29040 * Set the CGTP (multirouting) filtering status. 29041 * If the status is changed from active to transparent 29042 * or from transparent to active, forward the new status 29043 * to the filtering module (if loaded). 29044 */ 29045 /* ARGSUSED */ 29046 static int 29047 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29048 cred_t *ioc_cr) 29049 { 29050 long new_value; 29051 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29052 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29053 29054 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29055 return (EPERM); 29056 29057 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29058 new_value < 0 || new_value > 1) { 29059 return (EINVAL); 29060 } 29061 29062 if ((!*ip_cgtp_filter_value) && new_value) { 29063 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29064 ipst->ips_ip_cgtp_filter_ops == NULL ? 29065 " (module not loaded)" : ""); 29066 } 29067 if (*ip_cgtp_filter_value && (!new_value)) { 29068 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29069 ipst->ips_ip_cgtp_filter_ops == NULL ? 29070 " (module not loaded)" : ""); 29071 } 29072 29073 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29074 int res; 29075 netstackid_t stackid; 29076 29077 stackid = ipst->ips_netstack->netstack_stackid; 29078 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29079 new_value); 29080 if (res) 29081 return (res); 29082 } 29083 29084 *ip_cgtp_filter_value = (boolean_t)new_value; 29085 29086 return (0); 29087 } 29088 29089 29090 /* 29091 * Return the expected CGTP hooks version number. 29092 */ 29093 int 29094 ip_cgtp_filter_supported(void) 29095 { 29096 return (ip_cgtp_filter_rev); 29097 } 29098 29099 29100 /* 29101 * CGTP hooks can be registered by invoking this function. 29102 * Checks that the version number matches. 29103 */ 29104 int 29105 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29106 { 29107 netstack_t *ns; 29108 ip_stack_t *ipst; 29109 29110 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29111 return (ENOTSUP); 29112 29113 ns = netstack_find_by_stackid(stackid); 29114 if (ns == NULL) 29115 return (EINVAL); 29116 ipst = ns->netstack_ip; 29117 ASSERT(ipst != NULL); 29118 29119 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29120 netstack_rele(ns); 29121 return (EALREADY); 29122 } 29123 29124 ipst->ips_ip_cgtp_filter_ops = ops; 29125 netstack_rele(ns); 29126 return (0); 29127 } 29128 29129 /* 29130 * CGTP hooks can be unregistered by invoking this function. 29131 * Returns ENXIO if there was no registration. 29132 * Returns EBUSY if the ndd variable has not been turned off. 29133 */ 29134 int 29135 ip_cgtp_filter_unregister(netstackid_t stackid) 29136 { 29137 netstack_t *ns; 29138 ip_stack_t *ipst; 29139 29140 ns = netstack_find_by_stackid(stackid); 29141 if (ns == NULL) 29142 return (EINVAL); 29143 ipst = ns->netstack_ip; 29144 ASSERT(ipst != NULL); 29145 29146 if (ipst->ips_ip_cgtp_filter) { 29147 netstack_rele(ns); 29148 return (EBUSY); 29149 } 29150 29151 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29152 netstack_rele(ns); 29153 return (ENXIO); 29154 } 29155 ipst->ips_ip_cgtp_filter_ops = NULL; 29156 netstack_rele(ns); 29157 return (0); 29158 } 29159 29160 /* 29161 * Check whether there is a CGTP filter registration. 29162 * Returns non-zero if there is a registration, otherwise returns zero. 29163 * Note: returns zero if bad stackid. 29164 */ 29165 int 29166 ip_cgtp_filter_is_registered(netstackid_t stackid) 29167 { 29168 netstack_t *ns; 29169 ip_stack_t *ipst; 29170 int ret; 29171 29172 ns = netstack_find_by_stackid(stackid); 29173 if (ns == NULL) 29174 return (0); 29175 ipst = ns->netstack_ip; 29176 ASSERT(ipst != NULL); 29177 29178 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29179 ret = 1; 29180 else 29181 ret = 0; 29182 29183 netstack_rele(ns); 29184 return (ret); 29185 } 29186 29187 static squeue_func_t 29188 ip_squeue_switch(int val) 29189 { 29190 squeue_func_t rval = squeue_fill; 29191 29192 switch (val) { 29193 case IP_SQUEUE_ENTER_NODRAIN: 29194 rval = squeue_enter_nodrain; 29195 break; 29196 case IP_SQUEUE_ENTER: 29197 rval = squeue_enter; 29198 break; 29199 default: 29200 break; 29201 } 29202 return (rval); 29203 } 29204 29205 /* ARGSUSED */ 29206 static int 29207 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29208 caddr_t addr, cred_t *cr) 29209 { 29210 int *v = (int *)addr; 29211 long new_value; 29212 29213 if (secpolicy_net_config(cr, B_FALSE) != 0) 29214 return (EPERM); 29215 29216 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29217 return (EINVAL); 29218 29219 ip_input_proc = ip_squeue_switch(new_value); 29220 *v = new_value; 29221 return (0); 29222 } 29223 29224 /* 29225 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29226 * ip_debug. 29227 */ 29228 /* ARGSUSED */ 29229 static int 29230 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29231 caddr_t addr, cred_t *cr) 29232 { 29233 int *v = (int *)addr; 29234 long new_value; 29235 29236 if (secpolicy_net_config(cr, B_FALSE) != 0) 29237 return (EPERM); 29238 29239 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29240 return (EINVAL); 29241 29242 *v = new_value; 29243 return (0); 29244 } 29245 29246 /* 29247 * Handle changes to ipmp_hook_emulation ndd variable. 29248 * Need to update phyint_hook_ifindex. 29249 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29250 */ 29251 static void 29252 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29253 { 29254 phyint_t *phyi; 29255 phyint_t *phyi_tmp; 29256 char *groupname; 29257 int namelen; 29258 ill_t *ill; 29259 boolean_t new_group; 29260 29261 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29262 /* 29263 * Group indicies are stored in the phyint - a common structure 29264 * to both IPv4 and IPv6. 29265 */ 29266 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29267 for (; phyi != NULL; 29268 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29269 phyi, AVL_AFTER)) { 29270 /* Ignore the ones that do not have a group */ 29271 if (phyi->phyint_groupname_len == 0) 29272 continue; 29273 29274 /* 29275 * Look for other phyint in group. 29276 * Clear name/namelen so the lookup doesn't find ourselves. 29277 */ 29278 namelen = phyi->phyint_groupname_len; 29279 groupname = phyi->phyint_groupname; 29280 phyi->phyint_groupname_len = 0; 29281 phyi->phyint_groupname = NULL; 29282 29283 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29284 /* Restore */ 29285 phyi->phyint_groupname_len = namelen; 29286 phyi->phyint_groupname = groupname; 29287 29288 new_group = B_FALSE; 29289 if (ipst->ips_ipmp_hook_emulation) { 29290 /* 29291 * If the group already exists and has already 29292 * been assigned a group ifindex, we use the existing 29293 * group_ifindex, otherwise we pick a new group_ifindex 29294 * here. 29295 */ 29296 if (phyi_tmp != NULL && 29297 phyi_tmp->phyint_group_ifindex != 0) { 29298 phyi->phyint_group_ifindex = 29299 phyi_tmp->phyint_group_ifindex; 29300 } else { 29301 /* XXX We need a recovery strategy here. */ 29302 if (!ip_assign_ifindex( 29303 &phyi->phyint_group_ifindex, ipst)) 29304 cmn_err(CE_PANIC, 29305 "ip_assign_ifindex() failed"); 29306 new_group = B_TRUE; 29307 } 29308 } else { 29309 phyi->phyint_group_ifindex = 0; 29310 } 29311 if (ipst->ips_ipmp_hook_emulation) 29312 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29313 else 29314 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29315 29316 /* 29317 * For IP Filter to find out the relationship between 29318 * names and interface indicies, we need to generate 29319 * a NE_PLUMB event when a new group can appear. 29320 * We always generate events when a new interface appears 29321 * (even when ipmp_hook_emulation is set) so there 29322 * is no need to generate NE_PLUMB events when 29323 * ipmp_hook_emulation is turned off. 29324 * And since it isn't critical for IP Filter to get 29325 * the NE_UNPLUMB events we skip those here. 29326 */ 29327 if (new_group) { 29328 /* 29329 * First phyint in group - generate group PLUMB event. 29330 * Since we are not running inside the ipsq we do 29331 * the dispatch immediately. 29332 */ 29333 if (phyi->phyint_illv4 != NULL) 29334 ill = phyi->phyint_illv4; 29335 else 29336 ill = phyi->phyint_illv6; 29337 29338 if (ill != NULL) { 29339 mutex_enter(&ill->ill_lock); 29340 ill_nic_info_plumb(ill, B_TRUE); 29341 ill_nic_info_dispatch(ill); 29342 mutex_exit(&ill->ill_lock); 29343 } 29344 } 29345 } 29346 rw_exit(&ipst->ips_ill_g_lock); 29347 } 29348 29349 /* ARGSUSED */ 29350 static int 29351 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29352 caddr_t addr, cred_t *cr) 29353 { 29354 int *v = (int *)addr; 29355 long new_value; 29356 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29357 29358 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29359 return (EINVAL); 29360 29361 if (*v != new_value) { 29362 *v = new_value; 29363 ipmp_hook_emulation_changed(ipst); 29364 } 29365 return (0); 29366 } 29367 29368 static void * 29369 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29370 { 29371 kstat_t *ksp; 29372 29373 ip_stat_t template = { 29374 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29375 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29376 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29377 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29378 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29379 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29380 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29381 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29382 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29383 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29384 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29385 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29386 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29387 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29388 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29389 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29390 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29391 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29392 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29393 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29394 { "ip_opt", KSTAT_DATA_UINT64 }, 29395 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29396 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29397 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29398 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29399 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29400 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29401 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29402 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29403 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29404 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29405 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29406 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29407 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29408 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29409 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29410 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29411 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29412 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29413 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29414 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29415 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29416 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29417 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29418 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29419 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29420 }; 29421 29422 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29423 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29424 KSTAT_FLAG_VIRTUAL, stackid); 29425 29426 if (ksp == NULL) 29427 return (NULL); 29428 29429 bcopy(&template, ip_statisticsp, sizeof (template)); 29430 ksp->ks_data = (void *)ip_statisticsp; 29431 ksp->ks_private = (void *)(uintptr_t)stackid; 29432 29433 kstat_install(ksp); 29434 return (ksp); 29435 } 29436 29437 static void 29438 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29439 { 29440 if (ksp != NULL) { 29441 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29442 kstat_delete_netstack(ksp, stackid); 29443 } 29444 } 29445 29446 static void * 29447 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29448 { 29449 kstat_t *ksp; 29450 29451 ip_named_kstat_t template = { 29452 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29453 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29454 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29455 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29456 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29457 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29458 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29459 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29460 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29461 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29462 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29463 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29464 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29465 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29466 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29467 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29468 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29469 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29470 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29471 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29472 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29473 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29474 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29475 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29476 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29477 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29478 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29479 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29480 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29481 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29482 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29483 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29484 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29485 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29486 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29487 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29488 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29489 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29490 }; 29491 29492 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29493 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29494 if (ksp == NULL || ksp->ks_data == NULL) 29495 return (NULL); 29496 29497 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29498 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29499 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29500 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29501 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29502 29503 template.netToMediaEntrySize.value.i32 = 29504 sizeof (mib2_ipNetToMediaEntry_t); 29505 29506 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29507 29508 bcopy(&template, ksp->ks_data, sizeof (template)); 29509 ksp->ks_update = ip_kstat_update; 29510 ksp->ks_private = (void *)(uintptr_t)stackid; 29511 29512 kstat_install(ksp); 29513 return (ksp); 29514 } 29515 29516 static void 29517 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29518 { 29519 if (ksp != NULL) { 29520 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29521 kstat_delete_netstack(ksp, stackid); 29522 } 29523 } 29524 29525 static int 29526 ip_kstat_update(kstat_t *kp, int rw) 29527 { 29528 ip_named_kstat_t *ipkp; 29529 mib2_ipIfStatsEntry_t ipmib; 29530 ill_walk_context_t ctx; 29531 ill_t *ill; 29532 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29533 netstack_t *ns; 29534 ip_stack_t *ipst; 29535 29536 if (kp == NULL || kp->ks_data == NULL) 29537 return (EIO); 29538 29539 if (rw == KSTAT_WRITE) 29540 return (EACCES); 29541 29542 ns = netstack_find_by_stackid(stackid); 29543 if (ns == NULL) 29544 return (-1); 29545 ipst = ns->netstack_ip; 29546 if (ipst == NULL) { 29547 netstack_rele(ns); 29548 return (-1); 29549 } 29550 ipkp = (ip_named_kstat_t *)kp->ks_data; 29551 29552 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29553 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29554 ill = ILL_START_WALK_V4(&ctx, ipst); 29555 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29556 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29557 rw_exit(&ipst->ips_ill_g_lock); 29558 29559 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29560 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29561 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29562 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29563 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29564 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29565 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29566 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29567 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29568 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29569 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29570 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29571 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29572 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29573 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29574 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29575 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29576 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29577 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29578 29579 ipkp->routingDiscards.value.ui32 = 0; 29580 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29581 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29582 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29583 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29584 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29585 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29586 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29587 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29588 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29589 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29590 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29591 29592 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29593 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29594 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29595 29596 netstack_rele(ns); 29597 29598 return (0); 29599 } 29600 29601 static void * 29602 icmp_kstat_init(netstackid_t stackid) 29603 { 29604 kstat_t *ksp; 29605 29606 icmp_named_kstat_t template = { 29607 { "inMsgs", KSTAT_DATA_UINT32 }, 29608 { "inErrors", KSTAT_DATA_UINT32 }, 29609 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29610 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29611 { "inParmProbs", KSTAT_DATA_UINT32 }, 29612 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29613 { "inRedirects", KSTAT_DATA_UINT32 }, 29614 { "inEchos", KSTAT_DATA_UINT32 }, 29615 { "inEchoReps", KSTAT_DATA_UINT32 }, 29616 { "inTimestamps", KSTAT_DATA_UINT32 }, 29617 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29618 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29619 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29620 { "outMsgs", KSTAT_DATA_UINT32 }, 29621 { "outErrors", KSTAT_DATA_UINT32 }, 29622 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29623 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29624 { "outParmProbs", KSTAT_DATA_UINT32 }, 29625 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29626 { "outRedirects", KSTAT_DATA_UINT32 }, 29627 { "outEchos", KSTAT_DATA_UINT32 }, 29628 { "outEchoReps", KSTAT_DATA_UINT32 }, 29629 { "outTimestamps", KSTAT_DATA_UINT32 }, 29630 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29631 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29632 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29633 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29634 { "inUnknowns", KSTAT_DATA_UINT32 }, 29635 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29636 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29637 { "outDrops", KSTAT_DATA_UINT32 }, 29638 { "inOverFlows", KSTAT_DATA_UINT32 }, 29639 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29640 }; 29641 29642 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29643 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29644 if (ksp == NULL || ksp->ks_data == NULL) 29645 return (NULL); 29646 29647 bcopy(&template, ksp->ks_data, sizeof (template)); 29648 29649 ksp->ks_update = icmp_kstat_update; 29650 ksp->ks_private = (void *)(uintptr_t)stackid; 29651 29652 kstat_install(ksp); 29653 return (ksp); 29654 } 29655 29656 static void 29657 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29658 { 29659 if (ksp != NULL) { 29660 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29661 kstat_delete_netstack(ksp, stackid); 29662 } 29663 } 29664 29665 static int 29666 icmp_kstat_update(kstat_t *kp, int rw) 29667 { 29668 icmp_named_kstat_t *icmpkp; 29669 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29670 netstack_t *ns; 29671 ip_stack_t *ipst; 29672 29673 if ((kp == NULL) || (kp->ks_data == NULL)) 29674 return (EIO); 29675 29676 if (rw == KSTAT_WRITE) 29677 return (EACCES); 29678 29679 ns = netstack_find_by_stackid(stackid); 29680 if (ns == NULL) 29681 return (-1); 29682 ipst = ns->netstack_ip; 29683 if (ipst == NULL) { 29684 netstack_rele(ns); 29685 return (-1); 29686 } 29687 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29688 29689 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29690 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29691 icmpkp->inDestUnreachs.value.ui32 = 29692 ipst->ips_icmp_mib.icmpInDestUnreachs; 29693 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29694 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29695 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29696 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29697 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29698 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29699 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29700 icmpkp->inTimestampReps.value.ui32 = 29701 ipst->ips_icmp_mib.icmpInTimestampReps; 29702 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29703 icmpkp->inAddrMaskReps.value.ui32 = 29704 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29705 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29706 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29707 icmpkp->outDestUnreachs.value.ui32 = 29708 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29709 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29710 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29711 icmpkp->outSrcQuenchs.value.ui32 = 29712 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29713 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29714 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29715 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29716 icmpkp->outTimestamps.value.ui32 = 29717 ipst->ips_icmp_mib.icmpOutTimestamps; 29718 icmpkp->outTimestampReps.value.ui32 = 29719 ipst->ips_icmp_mib.icmpOutTimestampReps; 29720 icmpkp->outAddrMasks.value.ui32 = 29721 ipst->ips_icmp_mib.icmpOutAddrMasks; 29722 icmpkp->outAddrMaskReps.value.ui32 = 29723 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29724 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29725 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29726 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29727 icmpkp->outFragNeeded.value.ui32 = 29728 ipst->ips_icmp_mib.icmpOutFragNeeded; 29729 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29730 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29731 icmpkp->inBadRedirects.value.ui32 = 29732 ipst->ips_icmp_mib.icmpInBadRedirects; 29733 29734 netstack_rele(ns); 29735 return (0); 29736 } 29737 29738 /* 29739 * This is the fanout function for raw socket opened for SCTP. Note 29740 * that it is called after SCTP checks that there is no socket which 29741 * wants a packet. Then before SCTP handles this out of the blue packet, 29742 * this function is called to see if there is any raw socket for SCTP. 29743 * If there is and it is bound to the correct address, the packet will 29744 * be sent to that socket. Note that only one raw socket can be bound to 29745 * a port. This is assured in ipcl_sctp_hash_insert(); 29746 */ 29747 void 29748 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29749 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29750 zoneid_t zoneid) 29751 { 29752 conn_t *connp; 29753 queue_t *rq; 29754 mblk_t *first_mp; 29755 boolean_t secure; 29756 ip6_t *ip6h; 29757 ip_stack_t *ipst = recv_ill->ill_ipst; 29758 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29759 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29760 boolean_t sctp_csum_err = B_FALSE; 29761 29762 if (flags & IP_FF_SCTP_CSUM_ERR) { 29763 sctp_csum_err = B_TRUE; 29764 flags &= ~IP_FF_SCTP_CSUM_ERR; 29765 } 29766 29767 first_mp = mp; 29768 if (mctl_present) { 29769 mp = first_mp->b_cont; 29770 secure = ipsec_in_is_secure(first_mp); 29771 ASSERT(mp != NULL); 29772 } else { 29773 secure = B_FALSE; 29774 } 29775 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29776 29777 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29778 if (connp == NULL) { 29779 /* 29780 * Although raw sctp is not summed, OOB chunks must be. 29781 * Drop the packet here if the sctp checksum failed. 29782 */ 29783 if (sctp_csum_err) { 29784 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29785 freemsg(first_mp); 29786 return; 29787 } 29788 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29789 return; 29790 } 29791 rq = connp->conn_rq; 29792 if (!canputnext(rq)) { 29793 CONN_DEC_REF(connp); 29794 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29795 freemsg(first_mp); 29796 return; 29797 } 29798 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29799 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29800 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29801 (isv4 ? ipha : NULL), ip6h, mctl_present); 29802 if (first_mp == NULL) { 29803 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29804 CONN_DEC_REF(connp); 29805 return; 29806 } 29807 } 29808 /* 29809 * We probably should not send M_CTL message up to 29810 * raw socket. 29811 */ 29812 if (mctl_present) 29813 freeb(first_mp); 29814 29815 /* Initiate IPPF processing here if needed. */ 29816 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29817 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29818 ip_process(IPP_LOCAL_IN, &mp, 29819 recv_ill->ill_phyint->phyint_ifindex); 29820 if (mp == NULL) { 29821 CONN_DEC_REF(connp); 29822 return; 29823 } 29824 } 29825 29826 if (connp->conn_recvif || connp->conn_recvslla || 29827 ((connp->conn_ip_recvpktinfo || 29828 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29829 (flags & IP_FF_IPINFO))) { 29830 int in_flags = 0; 29831 29832 /* 29833 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29834 * IPF_RECVIF. 29835 */ 29836 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29837 in_flags = IPF_RECVIF; 29838 } 29839 if (connp->conn_recvslla) { 29840 in_flags |= IPF_RECVSLLA; 29841 } 29842 if (isv4) { 29843 mp = ip_add_info(mp, recv_ill, in_flags, 29844 IPCL_ZONEID(connp), ipst); 29845 } else { 29846 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29847 if (mp == NULL) { 29848 BUMP_MIB(recv_ill->ill_ip_mib, 29849 ipIfStatsInDiscards); 29850 CONN_DEC_REF(connp); 29851 return; 29852 } 29853 } 29854 } 29855 29856 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29857 /* 29858 * We are sending the IPSEC_IN message also up. Refer 29859 * to comments above this function. 29860 * This is the SOCK_RAW, IPPROTO_SCTP case. 29861 */ 29862 (connp->conn_recv)(connp, mp, NULL); 29863 CONN_DEC_REF(connp); 29864 } 29865 29866 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29867 { \ 29868 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29869 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29870 } 29871 /* 29872 * This function should be called only if all packet processing 29873 * including fragmentation is complete. Callers of this function 29874 * must set mp->b_prev to one of these values: 29875 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29876 * prior to handing over the mp as first argument to this function. 29877 * 29878 * If the ire passed by caller is incomplete, this function 29879 * queues the packet and if necessary, sends ARP request and bails. 29880 * If the ire passed is fully resolved, we simply prepend 29881 * the link-layer header to the packet, do ipsec hw acceleration 29882 * work if necessary, and send the packet out on the wire. 29883 * 29884 * NOTE: IPsec will only call this function with fully resolved 29885 * ires if hw acceleration is involved. 29886 * TODO list : 29887 * a Handle M_MULTIDATA so that 29888 * tcp_multisend->tcp_multisend_data can 29889 * call ip_xmit_v4 directly 29890 * b Handle post-ARP work for fragments so that 29891 * ip_wput_frag can call this function. 29892 */ 29893 ipxmit_state_t 29894 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29895 { 29896 nce_t *arpce; 29897 ipha_t *ipha; 29898 queue_t *q; 29899 int ill_index; 29900 mblk_t *nxt_mp, *first_mp; 29901 boolean_t xmit_drop = B_FALSE; 29902 ip_proc_t proc; 29903 ill_t *out_ill; 29904 int pkt_len; 29905 29906 arpce = ire->ire_nce; 29907 ASSERT(arpce != NULL); 29908 29909 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29910 29911 mutex_enter(&arpce->nce_lock); 29912 switch (arpce->nce_state) { 29913 case ND_REACHABLE: 29914 /* If there are other queued packets, queue this packet */ 29915 if (arpce->nce_qd_mp != NULL) { 29916 if (mp != NULL) 29917 nce_queue_mp_common(arpce, mp, B_FALSE); 29918 mp = arpce->nce_qd_mp; 29919 } 29920 arpce->nce_qd_mp = NULL; 29921 mutex_exit(&arpce->nce_lock); 29922 29923 /* 29924 * Flush the queue. In the common case, where the 29925 * ARP is already resolved, it will go through the 29926 * while loop only once. 29927 */ 29928 while (mp != NULL) { 29929 29930 nxt_mp = mp->b_next; 29931 mp->b_next = NULL; 29932 ASSERT(mp->b_datap->db_type != M_CTL); 29933 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29934 /* 29935 * This info is needed for IPQOS to do COS marking 29936 * in ip_wput_attach_llhdr->ip_process. 29937 */ 29938 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29939 mp->b_prev = NULL; 29940 29941 /* set up ill index for outbound qos processing */ 29942 out_ill = ire_to_ill(ire); 29943 ill_index = out_ill->ill_phyint->phyint_ifindex; 29944 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29945 ill_index, &ipha); 29946 if (first_mp == NULL) { 29947 xmit_drop = B_TRUE; 29948 BUMP_MIB(out_ill->ill_ip_mib, 29949 ipIfStatsOutDiscards); 29950 goto next_mp; 29951 } 29952 29953 /* non-ipsec hw accel case */ 29954 if (io == NULL || !io->ipsec_out_accelerated) { 29955 /* send it */ 29956 q = ire->ire_stq; 29957 if (proc == IPP_FWD_OUT) { 29958 UPDATE_IB_PKT_COUNT(ire); 29959 } else { 29960 UPDATE_OB_PKT_COUNT(ire); 29961 } 29962 ire->ire_last_used_time = lbolt; 29963 29964 if (flow_ctl_enabled || canputnext(q)) { 29965 if (proc == IPP_FWD_OUT) { 29966 29967 BUMP_MIB(out_ill->ill_ip_mib, 29968 ipIfStatsHCOutForwDatagrams); 29969 29970 } 29971 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29972 pkt_len); 29973 29974 DTRACE_IP7(send, mblk_t *, first_mp, 29975 conn_t *, NULL, void_ip_t *, ipha, 29976 __dtrace_ipsr_ill_t *, out_ill, 29977 ipha_t *, ipha, ip6_t *, NULL, int, 29978 0); 29979 29980 putnext(q, first_mp); 29981 } else { 29982 BUMP_MIB(out_ill->ill_ip_mib, 29983 ipIfStatsOutDiscards); 29984 xmit_drop = B_TRUE; 29985 freemsg(first_mp); 29986 } 29987 } else { 29988 /* 29989 * Safety Pup says: make sure this 29990 * is going to the right interface! 29991 */ 29992 ill_t *ill1 = 29993 (ill_t *)ire->ire_stq->q_ptr; 29994 int ifindex = 29995 ill1->ill_phyint->phyint_ifindex; 29996 if (ifindex != 29997 io->ipsec_out_capab_ill_index) { 29998 xmit_drop = B_TRUE; 29999 freemsg(mp); 30000 } else { 30001 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30002 pkt_len); 30003 30004 DTRACE_IP7(send, mblk_t *, first_mp, 30005 conn_t *, NULL, void_ip_t *, ipha, 30006 __dtrace_ipsr_ill_t *, ill1, 30007 ipha_t *, ipha, ip6_t *, NULL, 30008 int, 0); 30009 30010 ipsec_hw_putnext(ire->ire_stq, mp); 30011 } 30012 } 30013 next_mp: 30014 mp = nxt_mp; 30015 } /* while (mp != NULL) */ 30016 if (xmit_drop) 30017 return (SEND_FAILED); 30018 else 30019 return (SEND_PASSED); 30020 30021 case ND_INITIAL: 30022 case ND_INCOMPLETE: 30023 30024 /* 30025 * While we do send off packets to dests that 30026 * use fully-resolved CGTP routes, we do not 30027 * handle unresolved CGTP routes. 30028 */ 30029 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30030 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30031 30032 if (mp != NULL) { 30033 /* queue the packet */ 30034 nce_queue_mp_common(arpce, mp, B_FALSE); 30035 } 30036 30037 if (arpce->nce_state == ND_INCOMPLETE) { 30038 mutex_exit(&arpce->nce_lock); 30039 DTRACE_PROBE3(ip__xmit__incomplete, 30040 (ire_t *), ire, (mblk_t *), mp, 30041 (ipsec_out_t *), io); 30042 return (LOOKUP_IN_PROGRESS); 30043 } 30044 30045 arpce->nce_state = ND_INCOMPLETE; 30046 mutex_exit(&arpce->nce_lock); 30047 /* 30048 * Note that ire_add() (called from ire_forward()) 30049 * holds a ref on the ire until ARP is completed. 30050 */ 30051 30052 ire_arpresolve(ire, ire_to_ill(ire)); 30053 return (LOOKUP_IN_PROGRESS); 30054 default: 30055 ASSERT(0); 30056 mutex_exit(&arpce->nce_lock); 30057 return (LLHDR_RESLV_FAILED); 30058 } 30059 } 30060 30061 #undef UPDATE_IP_MIB_OB_COUNTERS 30062 30063 /* 30064 * Return B_TRUE if the buffers differ in length or content. 30065 * This is used for comparing extension header buffers. 30066 * Note that an extension header would be declared different 30067 * even if all that changed was the next header value in that header i.e. 30068 * what really changed is the next extension header. 30069 */ 30070 boolean_t 30071 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30072 uint_t blen) 30073 { 30074 if (!b_valid) 30075 blen = 0; 30076 30077 if (alen != blen) 30078 return (B_TRUE); 30079 if (alen == 0) 30080 return (B_FALSE); /* Both zero length */ 30081 return (bcmp(abuf, bbuf, alen)); 30082 } 30083 30084 /* 30085 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30086 * Return B_FALSE if memory allocation fails - don't change any state! 30087 */ 30088 boolean_t 30089 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30090 const void *src, uint_t srclen) 30091 { 30092 void *dst; 30093 30094 if (!src_valid) 30095 srclen = 0; 30096 30097 ASSERT(*dstlenp == 0); 30098 if (src != NULL && srclen != 0) { 30099 dst = mi_alloc(srclen, BPRI_MED); 30100 if (dst == NULL) 30101 return (B_FALSE); 30102 } else { 30103 dst = NULL; 30104 } 30105 if (*dstp != NULL) 30106 mi_free(*dstp); 30107 *dstp = dst; 30108 *dstlenp = dst == NULL ? 0 : srclen; 30109 return (B_TRUE); 30110 } 30111 30112 /* 30113 * Replace what is in *dst, *dstlen with the source. 30114 * Assumes ip_allocbuf has already been called. 30115 */ 30116 void 30117 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30118 const void *src, uint_t srclen) 30119 { 30120 if (!src_valid) 30121 srclen = 0; 30122 30123 ASSERT(*dstlenp == srclen); 30124 if (src != NULL && srclen != 0) 30125 bcopy(src, *dstp, srclen); 30126 } 30127 30128 /* 30129 * Free the storage pointed to by the members of an ip6_pkt_t. 30130 */ 30131 void 30132 ip6_pkt_free(ip6_pkt_t *ipp) 30133 { 30134 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30135 30136 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30137 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30138 ipp->ipp_hopopts = NULL; 30139 ipp->ipp_hopoptslen = 0; 30140 } 30141 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30142 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30143 ipp->ipp_rtdstopts = NULL; 30144 ipp->ipp_rtdstoptslen = 0; 30145 } 30146 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30147 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30148 ipp->ipp_dstopts = NULL; 30149 ipp->ipp_dstoptslen = 0; 30150 } 30151 if (ipp->ipp_fields & IPPF_RTHDR) { 30152 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30153 ipp->ipp_rthdr = NULL; 30154 ipp->ipp_rthdrlen = 0; 30155 } 30156 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30157 IPPF_RTHDR); 30158 } 30159