1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/kobj.h> 45 #include <sys/modctl.h> 46 #include <sys/atomic.h> 47 #include <sys/policy.h> 48 #include <sys/priv.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 #include <sys/sunddi.h> 123 124 #include <sys/tsol/label.h> 125 #include <sys/tsol/tnet.h> 126 127 #include <rpc/pmap_prot.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 132 * IP_SQUEUE_ENTER: squeue_enter 133 * IP_SQUEUE_FILL: squeue_fill 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 squeue_func_t ip_input_proc; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Hook function to generate cluster wide SPI. 201 */ 202 void (*cl_inet_getspi)(uint8_t, uint8_t *, size_t) = NULL; 203 204 /* 205 * Hook function to verify if the SPI is already utlized. 206 */ 207 208 int (*cl_inet_checkspi)(uint8_t, uint32_t) = NULL; 209 210 /* 211 * Hook function to delete the SPI from the cluster wide repository. 212 */ 213 214 void (*cl_inet_deletespi)(uint8_t, uint32_t) = NULL; 215 216 /* 217 * Hook function to inform the cluster when packet received on an IDLE SA 218 */ 219 220 void (*cl_inet_idlesa)(uint8_t, uint32_t, sa_family_t, in6_addr_t, 221 in6_addr_t) = NULL; 222 223 /* 224 * Synchronization notes: 225 * 226 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 227 * MT level protection given by STREAMS. IP uses a combination of its own 228 * internal serialization mechanism and standard Solaris locking techniques. 229 * The internal serialization is per phyint (no IPMP) or per IPMP group. 230 * This is used to serialize plumbing operations, IPMP operations, certain 231 * multicast operations, most set ioctls, igmp/mld timers etc. 232 * 233 * Plumbing is a long sequence of operations involving message 234 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 235 * involved in plumbing operations. A natural model is to serialize these 236 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 237 * parallel without any interference. But various set ioctls on hme0 are best 238 * serialized. However if the system uses IPMP, the operations are easier if 239 * they are serialized on a per IPMP group basis since IPMP operations 240 * happen across ill's of a group. Thus the lowest common denominator is to 241 * serialize most set ioctls, multicast join/leave operations, IPMP operations 242 * igmp/mld timer operations, and processing of DLPI control messages received 243 * from drivers on a per IPMP group basis. If the system does not employ 244 * IPMP the serialization is on a per phyint basis. This serialization is 245 * provided by the ipsq_t and primitives operating on this. Details can 246 * be found in ip_if.c above the core primitives operating on ipsq_t. 247 * 248 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 249 * Simiarly lookup of an ire by a thread also returns a refheld ire. 250 * In addition ipif's and ill's referenced by the ire are also indirectly 251 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 252 * the ipif's address or netmask change as long as an ipif is refheld 253 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 254 * address of an ipif has to go through the ipsq_t. This ensures that only 255 * 1 such exclusive operation proceeds at any time on the ipif. It then 256 * deletes all ires associated with this ipif, and waits for all refcnts 257 * associated with this ipif to come down to zero. The address is changed 258 * only after the ipif has been quiesced. Then the ipif is brought up again. 259 * More details are described above the comment in ip_sioctl_flags. 260 * 261 * Packet processing is based mostly on IREs and are fully multi-threaded 262 * using standard Solaris MT techniques. 263 * 264 * There are explicit locks in IP to handle: 265 * - The ip_g_head list maintained by mi_open_link() and friends. 266 * 267 * - The reassembly data structures (one lock per hash bucket) 268 * 269 * - conn_lock is meant to protect conn_t fields. The fields actually 270 * protected by conn_lock are documented in the conn_t definition. 271 * 272 * - ire_lock to protect some of the fields of the ire, IRE tables 273 * (one lock per hash bucket). Refer to ip_ire.c for details. 274 * 275 * - ndp_g_lock and nce_lock for protecting NCEs. 276 * 277 * - ill_lock protects fields of the ill and ipif. Details in ip.h 278 * 279 * - ill_g_lock: This is a global reader/writer lock. Protects the following 280 * * The AVL tree based global multi list of all ills. 281 * * The linked list of all ipifs of an ill 282 * * The <ill-ipsq> mapping 283 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 284 * * The illgroup list threaded by ill_group_next. 285 * * <ill-phyint> association 286 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 287 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 288 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 289 * will all have to hold the ill_g_lock as writer for the actual duration 290 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 291 * may be found in the IPMP section. 292 * 293 * - ill_lock: This is a per ill mutex. 294 * It protects some members of the ill and is documented below. 295 * It also protects the <ill-ipsq> mapping 296 * It also protects the illgroup list threaded by ill_group_next. 297 * It also protects the <ill-phyint> assoc. 298 * It also protects the list of ipifs hanging off the ill. 299 * 300 * - ipsq_lock: This is a per ipsq_t mutex lock. 301 * This protects all the other members of the ipsq struct except 302 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 303 * 304 * - illgrp_lock: This is a per ill_group mutex lock. 305 * The only thing it protects is the illgrp_ill_schednext member of ill_group 306 * which dictates which is the next ill in an ill_group that is to be chosen 307 * for sending outgoing packets, through creation of an IRE_CACHE that 308 * references this ill. 309 * 310 * - phyint_lock: This is a per phyint mutex lock. Protects just the 311 * phyint_flags 312 * 313 * - ip_g_nd_lock: This is a global reader/writer lock. 314 * Any call to nd_load to load a new parameter to the ND table must hold the 315 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 316 * as reader. 317 * 318 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 319 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 320 * uniqueness check also done atomically. 321 * 322 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 323 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 324 * as a writer when adding or deleting elements from these lists, and 325 * as a reader when walking these lists to send a SADB update to the 326 * IPsec capable ills. 327 * 328 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 329 * group list linked by ill_usesrc_grp_next. It also protects the 330 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 331 * group is being added or deleted. This lock is taken as a reader when 332 * walking the list/group(eg: to get the number of members in a usesrc group). 333 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 334 * field is changing state i.e from NULL to non-NULL or vice-versa. For 335 * example, it is not necessary to take this lock in the initial portion 336 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 337 * ip_sioctl_flags since the these operations are executed exclusively and 338 * that ensures that the "usesrc group state" cannot change. The "usesrc 339 * group state" change can happen only in the latter part of 340 * ip_sioctl_slifusesrc and in ill_delete. 341 * 342 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 343 * 344 * To change the <ill-phyint> association, the ill_g_lock must be held 345 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 346 * must be held. 347 * 348 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 349 * and the ill_lock of the ill in question must be held. 350 * 351 * To change the <ill-illgroup> association the ill_g_lock must be held as 352 * writer and the ill_lock of the ill in question must be held. 353 * 354 * To add or delete an ipif from the list of ipifs hanging off the ill, 355 * ill_g_lock (writer) and ill_lock must be held and the thread must be 356 * a writer on the associated ipsq,. 357 * 358 * To add or delete an ill to the system, the ill_g_lock must be held as 359 * writer and the thread must be a writer on the associated ipsq. 360 * 361 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 362 * must be a writer on the associated ipsq. 363 * 364 * Lock hierarchy 365 * 366 * Some lock hierarchy scenarios are listed below. 367 * 368 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 369 * ill_g_lock -> illgrp_lock -> ill_lock 370 * ill_g_lock -> ill_lock(s) -> phyint_lock 371 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 372 * ill_g_lock -> ip_addr_avail_lock 373 * conn_lock -> irb_lock -> ill_lock -> ire_lock 374 * ill_g_lock -> ip_g_nd_lock 375 * 376 * When more than 1 ill lock is needed to be held, all ill lock addresses 377 * are sorted on address and locked starting from highest addressed lock 378 * downward. 379 * 380 * IPsec scenarios 381 * 382 * ipsa_lock -> ill_g_lock -> ill_lock 383 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 384 * ipsec_capab_ills_lock -> ipsa_lock 385 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 386 * 387 * Trusted Solaris scenarios 388 * 389 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 390 * igsa_lock -> gcdb_lock 391 * gcgrp_rwlock -> ire_lock 392 * gcgrp_rwlock -> gcdb_lock 393 * 394 * 395 * Routing/forwarding table locking notes: 396 * 397 * Lock acquisition order: Radix tree lock, irb_lock. 398 * Requirements: 399 * i. Walker must not hold any locks during the walker callback. 400 * ii Walker must not see a truncated tree during the walk because of any node 401 * deletion. 402 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 403 * in many places in the code to walk the irb list. Thus even if all the 404 * ires in a bucket have been deleted, we still can't free the radix node 405 * until the ires have actually been inactive'd (freed). 406 * 407 * Tree traversal - Need to hold the global tree lock in read mode. 408 * Before dropping the global tree lock, need to either increment the ire_refcnt 409 * to ensure that the radix node can't be deleted. 410 * 411 * Tree add - Need to hold the global tree lock in write mode to add a 412 * radix node. To prevent the node from being deleted, increment the 413 * irb_refcnt, after the node is added to the tree. The ire itself is 414 * added later while holding the irb_lock, but not the tree lock. 415 * 416 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 417 * All associated ires must be inactive (i.e. freed), and irb_refcnt 418 * must be zero. 419 * 420 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 421 * global tree lock (read mode) for traversal. 422 * 423 * IPsec notes : 424 * 425 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 426 * in front of the actual packet. For outbound datagrams, the M_CTL 427 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 428 * information used by the IPsec code for applying the right level of 429 * protection. The information initialized by IP in the ipsec_out_t 430 * is determined by the per-socket policy or global policy in the system. 431 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 432 * ipsec_info.h) which starts out with nothing in it. It gets filled 433 * with the right information if it goes through the AH/ESP code, which 434 * happens if the incoming packet is secure. The information initialized 435 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 436 * the policy requirements needed by per-socket policy or global policy 437 * is met or not. 438 * 439 * If there is both per-socket policy (set using setsockopt) and there 440 * is also global policy match for the 5 tuples of the socket, 441 * ipsec_override_policy() makes the decision of which one to use. 442 * 443 * For fully connected sockets i.e dst, src [addr, port] is known, 444 * conn_policy_cached is set indicating that policy has been cached. 445 * conn_in_enforce_policy may or may not be set depending on whether 446 * there is a global policy match or per-socket policy match. 447 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 448 * Once the right policy is set on the conn_t, policy cannot change for 449 * this socket. This makes life simpler for TCP (UDP ?) where 450 * re-transmissions go out with the same policy. For symmetry, policy 451 * is cached for fully connected UDP sockets also. Thus if policy is cached, 452 * it also implies that policy is latched i.e policy cannot change 453 * on these sockets. As we have the right policy on the conn, we don't 454 * have to lookup global policy for every outbound and inbound datagram 455 * and thus serving as an optimization. Note that a global policy change 456 * does not affect fully connected sockets if they have policy. If fully 457 * connected sockets did not have any policy associated with it, global 458 * policy change may affect them. 459 * 460 * IP Flow control notes: 461 * 462 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 463 * cannot be sent down to the driver by IP, because of a canput failure, IP 464 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 465 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 466 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 467 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 468 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 469 * the queued messages, and removes the conn from the drain list, if all 470 * messages were drained. It also qenables the next conn in the drain list to 471 * continue the drain process. 472 * 473 * In reality the drain list is not a single list, but a configurable number 474 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 475 * list. If the ip_wsrv of the next qenabled conn does not run, because the 476 * stream closes, ip_close takes responsibility to qenable the next conn in 477 * the drain list. The directly called ip_wput path always does a putq, if 478 * it cannot putnext. Thus synchronization problems are handled between 479 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 480 * functions that manipulate this drain list. Furthermore conn_drain_insert 481 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 482 * running on a queue at any time. conn_drain_tail can be simultaneously called 483 * from both ip_wsrv and ip_close. 484 * 485 * IPQOS notes: 486 * 487 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 488 * and IPQoS modules. IPPF includes hooks in IP at different control points 489 * (callout positions) which direct packets to IPQoS modules for policy 490 * processing. Policies, if present, are global. 491 * 492 * The callout positions are located in the following paths: 493 * o local_in (packets destined for this host) 494 * o local_out (packets orginating from this host ) 495 * o fwd_in (packets forwarded by this m/c - inbound) 496 * o fwd_out (packets forwarded by this m/c - outbound) 497 * Hooks at these callout points can be enabled/disabled using the ndd variable 498 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 499 * By default all the callout positions are enabled. 500 * 501 * Outbound (local_out) 502 * Hooks are placed in ip_wput_ire and ipsec_out_process. 503 * 504 * Inbound (local_in) 505 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 506 * TCP and UDP fanout routines. 507 * 508 * Forwarding (in and out) 509 * Hooks are placed in ip_rput_forward. 510 * 511 * IP Policy Framework processing (IPPF processing) 512 * Policy processing for a packet is initiated by ip_process, which ascertains 513 * that the classifier (ipgpc) is loaded and configured, failing which the 514 * packet resumes normal processing in IP. If the clasifier is present, the 515 * packet is acted upon by one or more IPQoS modules (action instances), per 516 * filters configured in ipgpc and resumes normal IP processing thereafter. 517 * An action instance can drop a packet in course of its processing. 518 * 519 * A boolean variable, ip_policy, is used in all the fanout routines that can 520 * invoke ip_process for a packet. This variable indicates if the packet should 521 * to be sent for policy processing. The variable is set to B_TRUE by default, 522 * i.e. when the routines are invoked in the normal ip procesing path for a 523 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 524 * ip_policy is set to B_FALSE for all the routines called in these two 525 * functions because, in the former case, we don't process loopback traffic 526 * currently while in the latter, the packets have already been processed in 527 * icmp_inbound. 528 * 529 * Zones notes: 530 * 531 * The partitioning rules for networking are as follows: 532 * 1) Packets coming from a zone must have a source address belonging to that 533 * zone. 534 * 2) Packets coming from a zone can only be sent on a physical interface on 535 * which the zone has an IP address. 536 * 3) Between two zones on the same machine, packet delivery is only allowed if 537 * there's a matching route for the destination and zone in the forwarding 538 * table. 539 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 540 * different zones can bind to the same port with the wildcard address 541 * (INADDR_ANY). 542 * 543 * The granularity of interface partitioning is at the logical interface level. 544 * Therefore, every zone has its own IP addresses, and incoming packets can be 545 * attributed to a zone unambiguously. A logical interface is placed into a zone 546 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 547 * structure. Rule (1) is implemented by modifying the source address selection 548 * algorithm so that the list of eligible addresses is filtered based on the 549 * sending process zone. 550 * 551 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 552 * across all zones, depending on their type. Here is the break-up: 553 * 554 * IRE type Shared/exclusive 555 * -------- ---------------- 556 * IRE_BROADCAST Exclusive 557 * IRE_DEFAULT (default routes) Shared (*) 558 * IRE_LOCAL Exclusive (x) 559 * IRE_LOOPBACK Exclusive 560 * IRE_PREFIX (net routes) Shared (*) 561 * IRE_CACHE Exclusive 562 * IRE_IF_NORESOLVER (interface routes) Exclusive 563 * IRE_IF_RESOLVER (interface routes) Exclusive 564 * IRE_HOST (host routes) Shared (*) 565 * 566 * (*) A zone can only use a default or off-subnet route if the gateway is 567 * directly reachable from the zone, that is, if the gateway's address matches 568 * one of the zone's logical interfaces. 569 * 570 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 571 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 572 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 573 * address of the zone itself (the destination). Since IRE_LOCAL is used 574 * for communication between zones, ip_wput_ire has special logic to set 575 * the right source address when sending using an IRE_LOCAL. 576 * 577 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 578 * ire_cache_lookup restricts loopback using an IRE_LOCAL 579 * between zone to the case when L2 would have conceptually looped the packet 580 * back, i.e. the loopback which is required since neither Ethernet drivers 581 * nor Ethernet hardware loops them back. This is the case when the normal 582 * routes (ignoring IREs with different zoneids) would send out the packet on 583 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 584 * associated. 585 * 586 * Multiple zones can share a common broadcast address; typically all zones 587 * share the 255.255.255.255 address. Incoming as well as locally originated 588 * broadcast packets must be dispatched to all the zones on the broadcast 589 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 590 * since some zones may not be on the 10.16.72/24 network. To handle this, each 591 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 592 * sent to every zone that has an IRE_BROADCAST entry for the destination 593 * address on the input ill, see conn_wantpacket(). 594 * 595 * Applications in different zones can join the same multicast group address. 596 * For IPv4, group memberships are per-logical interface, so they're already 597 * inherently part of a zone. For IPv6, group memberships are per-physical 598 * interface, so we distinguish IPv6 group memberships based on group address, 599 * interface and zoneid. In both cases, received multicast packets are sent to 600 * every zone for which a group membership entry exists. On IPv6 we need to 601 * check that the target zone still has an address on the receiving physical 602 * interface; it could have been removed since the application issued the 603 * IPV6_JOIN_GROUP. 604 */ 605 606 /* 607 * Squeue Fanout flags: 608 * 0: No fanout. 609 * 1: Fanout across all squeues 610 */ 611 boolean_t ip_squeue_fanout = 0; 612 613 /* 614 * Maximum dups allowed per packet. 615 */ 616 uint_t ip_max_frag_dups = 10; 617 618 #define IS_SIMPLE_IPH(ipha) \ 619 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 620 621 /* RFC1122 Conformance */ 622 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 623 624 #define ILL_MAX_NAMELEN LIFNAMSIZ 625 626 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 627 628 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 629 cred_t *credp, boolean_t isv6); 630 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 631 ipha_t **); 632 633 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 634 ip_stack_t *); 635 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 636 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 637 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 638 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 639 mblk_t *, int, ip_stack_t *); 640 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 641 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 642 ill_t *, zoneid_t); 643 static void icmp_options_update(ipha_t *); 644 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 645 ip_stack_t *); 646 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 647 zoneid_t zoneid, ip_stack_t *); 648 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 649 static void icmp_redirect(ill_t *, mblk_t *); 650 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 651 ip_stack_t *); 652 653 static void ip_arp_news(queue_t *, mblk_t *); 654 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 655 ip_stack_t *); 656 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 657 char *ip_dot_addr(ipaddr_t, char *); 658 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 659 int ip_close(queue_t *, int); 660 static char *ip_dot_saddr(uchar_t *, char *); 661 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 662 boolean_t, boolean_t, ill_t *, zoneid_t); 663 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 664 boolean_t, boolean_t, zoneid_t); 665 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 666 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 667 static void ip_lrput(queue_t *, mblk_t *); 668 ipaddr_t ip_net_mask(ipaddr_t); 669 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 670 ip_stack_t *); 671 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 672 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 673 char *ip_nv_lookup(nv_t *, int); 674 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 675 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 676 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 677 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 678 ipndp_t *, size_t); 679 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 680 void ip_rput(queue_t *, mblk_t *); 681 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 682 void *dummy_arg); 683 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 684 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 685 ip_stack_t *); 686 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 687 ire_t *, ip_stack_t *); 688 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 689 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 690 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 691 ip_stack_t *); 692 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 693 uint16_t *); 694 int ip_snmp_get(queue_t *, mblk_t *, int); 695 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 696 mib2_ipIfStatsEntry_t *, ip_stack_t *); 697 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 698 ip_stack_t *); 699 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 700 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 704 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 705 ip_stack_t *ipst); 706 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 707 ip_stack_t *ipst); 708 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 709 ip_stack_t *ipst); 710 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 711 ip_stack_t *ipst); 712 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 713 ip_stack_t *ipst); 714 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 715 ip_stack_t *ipst); 716 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 717 ip_stack_t *ipst); 718 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 719 ip_stack_t *ipst); 720 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 721 ip_stack_t *ipst); 722 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 723 ip_stack_t *ipst); 724 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 725 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 726 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 727 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 728 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 729 static boolean_t ip_source_route_included(ipha_t *); 730 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 731 732 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 733 zoneid_t, ip_stack_t *); 734 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 735 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 736 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 737 zoneid_t, ip_stack_t *); 738 739 static void conn_drain_init(ip_stack_t *); 740 static void conn_drain_fini(ip_stack_t *); 741 static void conn_drain_tail(conn_t *connp, boolean_t closing); 742 743 static void conn_walk_drain(ip_stack_t *); 744 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 745 zoneid_t); 746 747 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 748 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 749 static void ip_stack_fini(netstackid_t stackid, void *arg); 750 751 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 752 zoneid_t); 753 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 754 void *dummy_arg); 755 756 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 758 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 759 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 760 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 761 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 762 763 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 764 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 765 caddr_t, cred_t *); 766 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 767 caddr_t cp, cred_t *cr); 768 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 769 cred_t *); 770 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 771 caddr_t cp, cred_t *cr); 772 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 773 cred_t *); 774 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 775 cred_t *); 776 static squeue_func_t ip_squeue_switch(int); 777 778 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 779 static void ip_kstat_fini(netstackid_t, kstat_t *); 780 static int ip_kstat_update(kstat_t *kp, int rw); 781 static void *icmp_kstat_init(netstackid_t); 782 static void icmp_kstat_fini(netstackid_t, kstat_t *); 783 static int icmp_kstat_update(kstat_t *kp, int rw); 784 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 785 static void ip_kstat2_fini(netstackid_t, kstat_t *); 786 787 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 788 789 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 790 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 791 792 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 793 ipha_t *, ill_t *, boolean_t); 794 795 static void ipobs_init(ip_stack_t *); 796 static void ipobs_fini(ip_stack_t *); 797 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 798 799 /* How long, in seconds, we allow frags to hang around. */ 800 #define IP_FRAG_TIMEOUT 15 801 802 /* 803 * Threshold which determines whether MDT should be used when 804 * generating IP fragments; payload size must be greater than 805 * this threshold for MDT to take place. 806 */ 807 #define IP_WPUT_FRAG_MDT_MIN 32768 808 809 /* Setable in /etc/system only */ 810 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 811 812 static long ip_rput_pullups; 813 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 814 815 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 816 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 817 818 int ip_debug; 819 820 #ifdef DEBUG 821 uint32_t ipsechw_debug = 0; 822 #endif 823 824 /* 825 * Multirouting/CGTP stuff 826 */ 827 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 828 829 /* 830 * XXX following really should only be in a header. Would need more 831 * header and .c clean up first. 832 */ 833 extern optdb_obj_t ip_opt_obj; 834 835 ulong_t ip_squeue_enter_unbound = 0; 836 837 /* 838 * Named Dispatch Parameter Table. 839 * All of these are alterable, within the min/max values given, at run time. 840 */ 841 static ipparam_t lcl_param_arr[] = { 842 /* min max value name */ 843 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 844 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 845 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 846 { 0, 1, 0, "ip_respond_to_timestamp"}, 847 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 848 { 0, 1, 1, "ip_send_redirects"}, 849 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 850 { 0, 10, 0, "ip_mrtdebug"}, 851 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 852 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 853 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 854 { 1, 255, 255, "ip_def_ttl" }, 855 { 0, 1, 0, "ip_forward_src_routed"}, 856 { 0, 256, 32, "ip_wroff_extra" }, 857 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 858 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 859 { 0, 1, 1, "ip_path_mtu_discovery" }, 860 { 0, 240, 30, "ip_ignore_delete_time" }, 861 { 0, 1, 0, "ip_ignore_redirect" }, 862 { 0, 1, 1, "ip_output_queue" }, 863 { 1, 254, 1, "ip_broadcast_ttl" }, 864 { 0, 99999, 100, "ip_icmp_err_interval" }, 865 { 1, 99999, 10, "ip_icmp_err_burst" }, 866 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 867 { 0, 1, 0, "ip_strict_dst_multihoming" }, 868 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 869 { 0, 1, 0, "ipsec_override_persocket_policy" }, 870 { 0, 1, 1, "icmp_accept_clear_messages" }, 871 { 0, 1, 1, "igmp_accept_clear_messages" }, 872 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 873 "ip_ndp_delay_first_probe_time"}, 874 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 875 "ip_ndp_max_unicast_solicit"}, 876 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 877 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 878 { 0, 1, 0, "ip6_forward_src_routed"}, 879 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 880 { 0, 1, 1, "ip6_send_redirects"}, 881 { 0, 1, 0, "ip6_ignore_redirect" }, 882 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 883 884 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 885 886 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 887 888 { 0, 1, 1, "pim_accept_clear_messages" }, 889 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 890 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 891 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 892 { 0, 15, 0, "ip_policy_mask" }, 893 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 894 { 0, 255, 1, "ip_multirt_ttl" }, 895 { 0, 1, 1, "ip_multidata_outbound" }, 896 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 897 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 898 { 0, 1000, 1, "ip_max_temp_defend" }, 899 { 0, 1000, 3, "ip_max_defend" }, 900 { 0, 999999, 30, "ip_defend_interval" }, 901 { 0, 3600000, 300000, "ip_dup_recovery" }, 902 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 903 { 0, 1, 1, "ip_lso_outbound" }, 904 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 905 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 906 { 68, 65535, 576, "ip_pmtu_min" }, 907 #ifdef DEBUG 908 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 909 #else 910 { 0, 0, 0, "" }, 911 #endif 912 }; 913 914 /* 915 * Extended NDP table 916 * The addresses for the first two are filled in to be ips_ip_g_forward 917 * and ips_ipv6_forward at init time. 918 */ 919 static ipndp_t lcl_ndp_arr[] = { 920 /* getf setf data name */ 921 #define IPNDP_IP_FORWARDING_OFFSET 0 922 { ip_param_generic_get, ip_forward_set, NULL, 923 "ip_forwarding" }, 924 #define IPNDP_IP6_FORWARDING_OFFSET 1 925 { ip_param_generic_get, ip_forward_set, NULL, 926 "ip6_forwarding" }, 927 { ip_ill_report, NULL, NULL, 928 "ip_ill_status" }, 929 { ip_ipif_report, NULL, NULL, 930 "ip_ipif_status" }, 931 { ip_conn_report, NULL, NULL, 932 "ip_conn_status" }, 933 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 934 "ip_rput_pullups" }, 935 { ip_srcid_report, NULL, NULL, 936 "ip_srcid_status" }, 937 { ip_param_generic_get, ip_squeue_profile_set, 938 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 939 { ip_param_generic_get, ip_squeue_bind_set, 940 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 941 { ip_param_generic_get, ip_input_proc_set, 942 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 943 { ip_param_generic_get, ip_int_set, 944 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 945 #define IPNDP_CGTP_FILTER_OFFSET 11 946 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 947 "ip_cgtp_filter" }, 948 { ip_param_generic_get, ip_int_set, 949 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 950 #define IPNDP_IPMP_HOOK_OFFSET 13 951 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 952 "ipmp_hook_emulation" }, 953 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 954 "ip_debug" }, 955 }; 956 957 /* 958 * Table of IP ioctls encoding the various properties of the ioctl and 959 * indexed based on the last byte of the ioctl command. Occasionally there 960 * is a clash, and there is more than 1 ioctl with the same last byte. 961 * In such a case 1 ioctl is encoded in the ndx table and the remaining 962 * ioctls are encoded in the misc table. An entry in the ndx table is 963 * retrieved by indexing on the last byte of the ioctl command and comparing 964 * the ioctl command with the value in the ndx table. In the event of a 965 * mismatch the misc table is then searched sequentially for the desired 966 * ioctl command. 967 * 968 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 969 */ 970 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 971 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 972 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 973 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 974 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 975 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 976 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 977 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 978 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 979 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 980 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 981 982 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 983 MISC_CMD, ip_siocaddrt, NULL }, 984 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 985 MISC_CMD, ip_siocdelrt, NULL }, 986 987 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 988 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 989 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 990 IF_CMD, ip_sioctl_get_addr, NULL }, 991 992 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 993 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 994 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 995 IPI_GET_CMD | IPI_REPL, 996 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 997 998 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 999 IPI_PRIV | IPI_WR | IPI_REPL, 1000 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1001 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1002 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1003 IF_CMD, ip_sioctl_get_flags, NULL }, 1004 1005 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1006 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1007 1008 /* copyin size cannot be coded for SIOCGIFCONF */ 1009 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1010 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1011 1012 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1013 IF_CMD, ip_sioctl_mtu, NULL }, 1014 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1015 IF_CMD, ip_sioctl_get_mtu, NULL }, 1016 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1017 IPI_GET_CMD | IPI_REPL, 1018 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1019 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1020 IF_CMD, ip_sioctl_brdaddr, NULL }, 1021 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1022 IPI_GET_CMD | IPI_REPL, 1023 IF_CMD, ip_sioctl_get_netmask, NULL }, 1024 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1025 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1026 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1027 IPI_GET_CMD | IPI_REPL, 1028 IF_CMD, ip_sioctl_get_metric, NULL }, 1029 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1030 IF_CMD, ip_sioctl_metric, NULL }, 1031 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 1033 /* See 166-168 below for extended SIOC*XARP ioctls */ 1034 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1035 ARP_CMD, ip_sioctl_arp, NULL }, 1036 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1037 ARP_CMD, ip_sioctl_arp, NULL }, 1038 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1039 ARP_CMD, ip_sioctl_arp, NULL }, 1040 1041 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 1063 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1064 MISC_CMD, if_unitsel, if_unitsel_restart }, 1065 1066 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 1085 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1086 IPI_PRIV | IPI_WR | IPI_MODOK, 1087 IF_CMD, ip_sioctl_sifname, NULL }, 1088 1089 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1090 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1091 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 1103 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1104 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1105 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1106 IF_CMD, ip_sioctl_get_muxid, NULL }, 1107 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1108 IPI_PRIV | IPI_WR | IPI_REPL, 1109 IF_CMD, ip_sioctl_muxid, NULL }, 1110 1111 /* Both if and lif variants share same func */ 1112 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1113 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1114 /* Both if and lif variants share same func */ 1115 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1116 IPI_PRIV | IPI_WR | IPI_REPL, 1117 IF_CMD, ip_sioctl_slifindex, NULL }, 1118 1119 /* copyin size cannot be coded for SIOCGIFCONF */ 1120 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1121 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1122 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1135 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 1140 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1141 IPI_PRIV | IPI_WR | IPI_REPL, 1142 LIF_CMD, ip_sioctl_removeif, 1143 ip_sioctl_removeif_restart }, 1144 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1145 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1146 LIF_CMD, ip_sioctl_addif, NULL }, 1147 #define SIOCLIFADDR_NDX 112 1148 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1149 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1150 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1151 IPI_GET_CMD | IPI_REPL, 1152 LIF_CMD, ip_sioctl_get_addr, NULL }, 1153 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1154 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1155 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1156 IPI_GET_CMD | IPI_REPL, 1157 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1158 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1159 IPI_PRIV | IPI_WR | IPI_REPL, 1160 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1161 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1162 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1163 LIF_CMD, ip_sioctl_get_flags, NULL }, 1164 1165 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 1168 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1169 ip_sioctl_get_lifconf, NULL }, 1170 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1171 LIF_CMD, ip_sioctl_mtu, NULL }, 1172 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1173 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1174 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1175 IPI_GET_CMD | IPI_REPL, 1176 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1177 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1178 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1179 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1180 IPI_GET_CMD | IPI_REPL, 1181 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1182 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1183 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1184 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1185 IPI_GET_CMD | IPI_REPL, 1186 LIF_CMD, ip_sioctl_get_metric, NULL }, 1187 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1188 LIF_CMD, ip_sioctl_metric, NULL }, 1189 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1190 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1191 LIF_CMD, ip_sioctl_slifname, 1192 ip_sioctl_slifname_restart }, 1193 1194 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1195 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1196 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1197 IPI_GET_CMD | IPI_REPL, 1198 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1199 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1200 IPI_PRIV | IPI_WR | IPI_REPL, 1201 LIF_CMD, ip_sioctl_muxid, NULL }, 1202 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1203 IPI_GET_CMD | IPI_REPL, 1204 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1205 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1206 IPI_PRIV | IPI_WR | IPI_REPL, 1207 LIF_CMD, ip_sioctl_slifindex, 0 }, 1208 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1209 LIF_CMD, ip_sioctl_token, NULL }, 1210 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1211 IPI_GET_CMD | IPI_REPL, 1212 LIF_CMD, ip_sioctl_get_token, NULL }, 1213 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1214 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1215 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1216 IPI_GET_CMD | IPI_REPL, 1217 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1218 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1219 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1220 1221 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1222 IPI_GET_CMD | IPI_REPL, 1223 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1224 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1225 LIF_CMD, ip_siocdelndp_v6, NULL }, 1226 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1227 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1228 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1229 LIF_CMD, ip_siocsetndp_v6, NULL }, 1230 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1231 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1232 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1233 MISC_CMD, ip_sioctl_tonlink, NULL }, 1234 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1235 MISC_CMD, ip_sioctl_tmysite, NULL }, 1236 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1237 TUN_CMD, ip_sioctl_tunparam, NULL }, 1238 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1239 IPI_PRIV | IPI_WR, 1240 TUN_CMD, ip_sioctl_tunparam, NULL }, 1241 1242 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1243 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1244 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1245 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1246 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1247 1248 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1249 IPI_PRIV | IPI_WR | IPI_REPL, 1250 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1251 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1252 IPI_PRIV | IPI_WR | IPI_REPL, 1253 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1254 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1255 IPI_PRIV | IPI_WR | IPI_REPL, 1256 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1257 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1258 IPI_GET_CMD | IPI_REPL, 1259 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1260 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1261 IPI_GET_CMD | IPI_REPL, 1262 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1263 1264 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1265 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1266 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1267 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1268 1269 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1270 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1271 1272 /* These are handled in ip_sioctl_copyin_setup itself */ 1273 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1274 MISC_CMD, NULL, NULL }, 1275 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1276 MISC_CMD, NULL, NULL }, 1277 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1278 1279 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1280 ip_sioctl_get_lifconf, NULL }, 1281 1282 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1283 XARP_CMD, ip_sioctl_arp, NULL }, 1284 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1285 XARP_CMD, ip_sioctl_arp, NULL }, 1286 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1287 XARP_CMD, ip_sioctl_arp, NULL }, 1288 1289 /* SIOCPOPSOCKFS is not handled by IP */ 1290 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1291 1292 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1293 IPI_GET_CMD | IPI_REPL, 1294 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1295 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1296 IPI_PRIV | IPI_WR | IPI_REPL, 1297 LIF_CMD, ip_sioctl_slifzone, 1298 ip_sioctl_slifzone_restart }, 1299 /* 172-174 are SCTP ioctls and not handled by IP */ 1300 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1301 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1302 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1303 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1304 IPI_GET_CMD, LIF_CMD, 1305 ip_sioctl_get_lifusesrc, 0 }, 1306 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1307 IPI_PRIV | IPI_WR, 1308 LIF_CMD, ip_sioctl_slifusesrc, 1309 NULL }, 1310 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1311 ip_sioctl_get_lifsrcof, NULL }, 1312 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1313 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1314 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1315 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1316 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1317 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1318 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1319 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1320 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1321 ip_sioctl_set_ipmpfailback, NULL }, 1322 /* SIOCSENABLESDP is handled by SDP */ 1323 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1324 }; 1325 1326 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1327 1328 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1329 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1330 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1331 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1332 TUN_CMD, ip_sioctl_tunparam, NULL }, 1333 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1334 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1335 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1336 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1337 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1338 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1339 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1340 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1341 MISC_CMD, mrt_ioctl}, 1342 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1343 MISC_CMD, mrt_ioctl}, 1344 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1345 MISC_CMD, mrt_ioctl} 1346 }; 1347 1348 int ip_misc_ioctl_count = 1349 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1350 1351 int conn_drain_nthreads; /* Number of drainers reqd. */ 1352 /* Settable in /etc/system */ 1353 /* Defined in ip_ire.c */ 1354 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1355 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1356 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1357 1358 static nv_t ire_nv_arr[] = { 1359 { IRE_BROADCAST, "BROADCAST" }, 1360 { IRE_LOCAL, "LOCAL" }, 1361 { IRE_LOOPBACK, "LOOPBACK" }, 1362 { IRE_CACHE, "CACHE" }, 1363 { IRE_DEFAULT, "DEFAULT" }, 1364 { IRE_PREFIX, "PREFIX" }, 1365 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1366 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1367 { IRE_HOST, "HOST" }, 1368 { 0 } 1369 }; 1370 1371 nv_t *ire_nv_tbl = ire_nv_arr; 1372 1373 /* Simple ICMP IP Header Template */ 1374 static ipha_t icmp_ipha = { 1375 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1376 }; 1377 1378 struct module_info ip_mod_info = { 1379 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1380 }; 1381 1382 /* 1383 * Duplicate static symbols within a module confuses mdb; so we avoid the 1384 * problem by making the symbols here distinct from those in udp.c. 1385 */ 1386 1387 /* 1388 * Entry points for IP as a device and as a module. 1389 * FIXME: down the road we might want a separate module and driver qinit. 1390 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1391 */ 1392 static struct qinit iprinitv4 = { 1393 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1394 &ip_mod_info 1395 }; 1396 1397 struct qinit iprinitv6 = { 1398 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1399 &ip_mod_info 1400 }; 1401 1402 static struct qinit ipwinitv4 = { 1403 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1404 &ip_mod_info 1405 }; 1406 1407 struct qinit ipwinitv6 = { 1408 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1409 &ip_mod_info 1410 }; 1411 1412 static struct qinit iplrinit = { 1413 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1414 &ip_mod_info 1415 }; 1416 1417 static struct qinit iplwinit = { 1418 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1419 &ip_mod_info 1420 }; 1421 1422 /* For AF_INET aka /dev/ip */ 1423 struct streamtab ipinfov4 = { 1424 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1425 }; 1426 1427 /* For AF_INET6 aka /dev/ip6 */ 1428 struct streamtab ipinfov6 = { 1429 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1430 }; 1431 1432 #ifdef DEBUG 1433 static boolean_t skip_sctp_cksum = B_FALSE; 1434 #endif 1435 1436 /* 1437 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1438 * ip_rput_v6(), ip_output(), etc. If the message 1439 * block already has a M_CTL at the front of it, then simply set the zoneid 1440 * appropriately. 1441 */ 1442 mblk_t * 1443 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1444 { 1445 mblk_t *first_mp; 1446 ipsec_out_t *io; 1447 1448 ASSERT(zoneid != ALL_ZONES); 1449 if (mp->b_datap->db_type == M_CTL) { 1450 io = (ipsec_out_t *)mp->b_rptr; 1451 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1452 io->ipsec_out_zoneid = zoneid; 1453 return (mp); 1454 } 1455 1456 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1457 if (first_mp == NULL) 1458 return (NULL); 1459 io = (ipsec_out_t *)first_mp->b_rptr; 1460 /* This is not a secure packet */ 1461 io->ipsec_out_secure = B_FALSE; 1462 io->ipsec_out_zoneid = zoneid; 1463 first_mp->b_cont = mp; 1464 return (first_mp); 1465 } 1466 1467 /* 1468 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1469 */ 1470 mblk_t * 1471 ip_copymsg(mblk_t *mp) 1472 { 1473 mblk_t *nmp; 1474 ipsec_info_t *in; 1475 1476 if (mp->b_datap->db_type != M_CTL) 1477 return (copymsg(mp)); 1478 1479 in = (ipsec_info_t *)mp->b_rptr; 1480 1481 /* 1482 * Note that M_CTL is also used for delivering ICMP error messages 1483 * upstream to transport layers. 1484 */ 1485 if (in->ipsec_info_type != IPSEC_OUT && 1486 in->ipsec_info_type != IPSEC_IN) 1487 return (copymsg(mp)); 1488 1489 nmp = copymsg(mp->b_cont); 1490 1491 if (in->ipsec_info_type == IPSEC_OUT) { 1492 return (ipsec_out_tag(mp, nmp, 1493 ((ipsec_out_t *)in)->ipsec_out_ns)); 1494 } else { 1495 return (ipsec_in_tag(mp, nmp, 1496 ((ipsec_in_t *)in)->ipsec_in_ns)); 1497 } 1498 } 1499 1500 /* Generate an ICMP fragmentation needed message. */ 1501 static void 1502 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1503 ip_stack_t *ipst) 1504 { 1505 icmph_t icmph; 1506 mblk_t *first_mp; 1507 boolean_t mctl_present; 1508 1509 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1510 1511 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1512 if (mctl_present) 1513 freeb(first_mp); 1514 return; 1515 } 1516 1517 bzero(&icmph, sizeof (icmph_t)); 1518 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1519 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1520 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1521 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1522 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1523 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1524 ipst); 1525 } 1526 1527 /* 1528 * icmp_inbound deals with ICMP messages in the following ways. 1529 * 1530 * 1) It needs to send a reply back and possibly delivering it 1531 * to the "interested" upper clients. 1532 * 2) It needs to send it to the upper clients only. 1533 * 3) It needs to change some values in IP only. 1534 * 4) It needs to change some values in IP and upper layers e.g TCP. 1535 * 1536 * We need to accomodate icmp messages coming in clear until we get 1537 * everything secure from the wire. If icmp_accept_clear_messages 1538 * is zero we check with the global policy and act accordingly. If 1539 * it is non-zero, we accept the message without any checks. But 1540 * *this does not mean* that this will be delivered to the upper 1541 * clients. By accepting we might send replies back, change our MTU 1542 * value etc. but delivery to the ULP/clients depends on their policy 1543 * dispositions. 1544 * 1545 * We handle the above 4 cases in the context of IPsec in the 1546 * following way : 1547 * 1548 * 1) Send the reply back in the same way as the request came in. 1549 * If it came in encrypted, it goes out encrypted. If it came in 1550 * clear, it goes out in clear. Thus, this will prevent chosen 1551 * plain text attack. 1552 * 2) The client may or may not expect things to come in secure. 1553 * If it comes in secure, the policy constraints are checked 1554 * before delivering it to the upper layers. If it comes in 1555 * clear, ipsec_inbound_accept_clear will decide whether to 1556 * accept this in clear or not. In both the cases, if the returned 1557 * message (IP header + 8 bytes) that caused the icmp message has 1558 * AH/ESP headers, it is sent up to AH/ESP for validation before 1559 * sending up. If there are only 8 bytes of returned message, then 1560 * upper client will not be notified. 1561 * 3) Check with global policy to see whether it matches the constaints. 1562 * But this will be done only if icmp_accept_messages_in_clear is 1563 * zero. 1564 * 4) If we need to change both in IP and ULP, then the decision taken 1565 * while affecting the values in IP and while delivering up to TCP 1566 * should be the same. 1567 * 1568 * There are two cases. 1569 * 1570 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1571 * failed), we will not deliver it to the ULP, even though they 1572 * are *willing* to accept in *clear*. This is fine as our global 1573 * disposition to icmp messages asks us reject the datagram. 1574 * 1575 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1576 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1577 * to deliver it to ULP (policy failed), it can lead to 1578 * consistency problems. The cases known at this time are 1579 * ICMP_DESTINATION_UNREACHABLE messages with following code 1580 * values : 1581 * 1582 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1583 * and Upper layer rejects. Then the communication will 1584 * come to a stop. This is solved by making similar decisions 1585 * at both levels. Currently, when we are unable to deliver 1586 * to the Upper Layer (due to policy failures) while IP has 1587 * adjusted ire_max_frag, the next outbound datagram would 1588 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1589 * will be with the right level of protection. Thus the right 1590 * value will be communicated even if we are not able to 1591 * communicate when we get from the wire initially. But this 1592 * assumes there would be at least one outbound datagram after 1593 * IP has adjusted its ire_max_frag value. To make things 1594 * simpler, we accept in clear after the validation of 1595 * AH/ESP headers. 1596 * 1597 * - Other ICMP ERRORS : We may not be able to deliver it to the 1598 * upper layer depending on the level of protection the upper 1599 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1600 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1601 * should be accepted in clear when the Upper layer expects secure. 1602 * Thus the communication may get aborted by some bad ICMP 1603 * packets. 1604 * 1605 * IPQoS Notes: 1606 * The only instance when a packet is sent for processing is when there 1607 * isn't an ICMP client and if we are interested in it. 1608 * If there is a client, IPPF processing will take place in the 1609 * ip_fanout_proto routine. 1610 * 1611 * Zones notes: 1612 * The packet is only processed in the context of the specified zone: typically 1613 * only this zone will reply to an echo request, and only interested clients in 1614 * this zone will receive a copy of the packet. This means that the caller must 1615 * call icmp_inbound() for each relevant zone. 1616 */ 1617 static void 1618 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1619 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1620 ill_t *recv_ill, zoneid_t zoneid) 1621 { 1622 icmph_t *icmph; 1623 ipha_t *ipha; 1624 int iph_hdr_length; 1625 int hdr_length; 1626 boolean_t interested; 1627 uint32_t ts; 1628 uchar_t *wptr; 1629 ipif_t *ipif; 1630 mblk_t *first_mp; 1631 ipsec_in_t *ii; 1632 ire_t *src_ire; 1633 boolean_t onlink; 1634 timestruc_t now; 1635 uint32_t ill_index; 1636 ip_stack_t *ipst; 1637 1638 ASSERT(ill != NULL); 1639 ipst = ill->ill_ipst; 1640 1641 first_mp = mp; 1642 if (mctl_present) { 1643 mp = first_mp->b_cont; 1644 ASSERT(mp != NULL); 1645 } 1646 1647 ipha = (ipha_t *)mp->b_rptr; 1648 if (ipst->ips_icmp_accept_clear_messages == 0) { 1649 first_mp = ipsec_check_global_policy(first_mp, NULL, 1650 ipha, NULL, mctl_present, ipst->ips_netstack); 1651 if (first_mp == NULL) 1652 return; 1653 } 1654 1655 /* 1656 * On a labeled system, we have to check whether the zone itself is 1657 * permitted to receive raw traffic. 1658 */ 1659 if (is_system_labeled()) { 1660 if (zoneid == ALL_ZONES) 1661 zoneid = tsol_packet_to_zoneid(mp); 1662 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1663 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1664 zoneid)); 1665 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1666 freemsg(first_mp); 1667 return; 1668 } 1669 } 1670 1671 /* 1672 * We have accepted the ICMP message. It means that we will 1673 * respond to the packet if needed. It may not be delivered 1674 * to the upper client depending on the policy constraints 1675 * and the disposition in ipsec_inbound_accept_clear. 1676 */ 1677 1678 ASSERT(ill != NULL); 1679 1680 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1681 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1682 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1683 /* Last chance to get real. */ 1684 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1685 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1686 freemsg(first_mp); 1687 return; 1688 } 1689 /* Refresh iph following the pullup. */ 1690 ipha = (ipha_t *)mp->b_rptr; 1691 } 1692 /* ICMP header checksum, including checksum field, should be zero. */ 1693 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1694 IP_CSUM(mp, iph_hdr_length, 0)) { 1695 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1696 freemsg(first_mp); 1697 return; 1698 } 1699 /* The IP header will always be a multiple of four bytes */ 1700 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1701 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1702 icmph->icmph_code)); 1703 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1704 /* We will set "interested" to "true" if we want a copy */ 1705 interested = B_FALSE; 1706 switch (icmph->icmph_type) { 1707 case ICMP_ECHO_REPLY: 1708 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1709 break; 1710 case ICMP_DEST_UNREACHABLE: 1711 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1712 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1713 interested = B_TRUE; /* Pass up to transport */ 1714 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1715 break; 1716 case ICMP_SOURCE_QUENCH: 1717 interested = B_TRUE; /* Pass up to transport */ 1718 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1719 break; 1720 case ICMP_REDIRECT: 1721 if (!ipst->ips_ip_ignore_redirect) 1722 interested = B_TRUE; 1723 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1724 break; 1725 case ICMP_ECHO_REQUEST: 1726 /* 1727 * Whether to respond to echo requests that come in as IP 1728 * broadcasts or as IP multicast is subject to debate 1729 * (what isn't?). We aim to please, you pick it. 1730 * Default is do it. 1731 */ 1732 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1733 /* unicast: always respond */ 1734 interested = B_TRUE; 1735 } else if (CLASSD(ipha->ipha_dst)) { 1736 /* multicast: respond based on tunable */ 1737 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1738 } else if (broadcast) { 1739 /* broadcast: respond based on tunable */ 1740 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1741 } 1742 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1743 break; 1744 case ICMP_ROUTER_ADVERTISEMENT: 1745 case ICMP_ROUTER_SOLICITATION: 1746 break; 1747 case ICMP_TIME_EXCEEDED: 1748 interested = B_TRUE; /* Pass up to transport */ 1749 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1750 break; 1751 case ICMP_PARAM_PROBLEM: 1752 interested = B_TRUE; /* Pass up to transport */ 1753 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1754 break; 1755 case ICMP_TIME_STAMP_REQUEST: 1756 /* Response to Time Stamp Requests is local policy. */ 1757 if (ipst->ips_ip_g_resp_to_timestamp && 1758 /* So is whether to respond if it was an IP broadcast. */ 1759 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1760 int tstamp_len = 3 * sizeof (uint32_t); 1761 1762 if (wptr + tstamp_len > mp->b_wptr) { 1763 if (!pullupmsg(mp, wptr + tstamp_len - 1764 mp->b_rptr)) { 1765 BUMP_MIB(ill->ill_ip_mib, 1766 ipIfStatsInDiscards); 1767 freemsg(first_mp); 1768 return; 1769 } 1770 /* Refresh ipha following the pullup. */ 1771 ipha = (ipha_t *)mp->b_rptr; 1772 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1773 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1774 } 1775 interested = B_TRUE; 1776 } 1777 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1778 break; 1779 case ICMP_TIME_STAMP_REPLY: 1780 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1781 break; 1782 case ICMP_INFO_REQUEST: 1783 /* Per RFC 1122 3.2.2.7, ignore this. */ 1784 case ICMP_INFO_REPLY: 1785 break; 1786 case ICMP_ADDRESS_MASK_REQUEST: 1787 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1788 !broadcast) && 1789 /* TODO m_pullup of complete header? */ 1790 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1791 interested = B_TRUE; 1792 } 1793 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1794 break; 1795 case ICMP_ADDRESS_MASK_REPLY: 1796 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1797 break; 1798 default: 1799 interested = B_TRUE; /* Pass up to transport */ 1800 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1801 break; 1802 } 1803 /* See if there is an ICMP client. */ 1804 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1805 /* If there is an ICMP client and we want one too, copy it. */ 1806 mblk_t *first_mp1; 1807 1808 if (!interested) { 1809 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1810 ip_policy, recv_ill, zoneid); 1811 return; 1812 } 1813 first_mp1 = ip_copymsg(first_mp); 1814 if (first_mp1 != NULL) { 1815 ip_fanout_proto(q, first_mp1, ill, ipha, 1816 0, mctl_present, ip_policy, recv_ill, zoneid); 1817 } 1818 } else if (!interested) { 1819 freemsg(first_mp); 1820 return; 1821 } else { 1822 /* 1823 * Initiate policy processing for this packet if ip_policy 1824 * is true. 1825 */ 1826 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1827 ill_index = ill->ill_phyint->phyint_ifindex; 1828 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1829 if (mp == NULL) { 1830 if (mctl_present) { 1831 freeb(first_mp); 1832 } 1833 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1834 return; 1835 } 1836 } 1837 } 1838 /* We want to do something with it. */ 1839 /* Check db_ref to make sure we can modify the packet. */ 1840 if (mp->b_datap->db_ref > 1) { 1841 mblk_t *first_mp1; 1842 1843 first_mp1 = ip_copymsg(first_mp); 1844 freemsg(first_mp); 1845 if (!first_mp1) { 1846 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1847 return; 1848 } 1849 first_mp = first_mp1; 1850 if (mctl_present) { 1851 mp = first_mp->b_cont; 1852 ASSERT(mp != NULL); 1853 } else { 1854 mp = first_mp; 1855 } 1856 ipha = (ipha_t *)mp->b_rptr; 1857 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1858 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1859 } 1860 switch (icmph->icmph_type) { 1861 case ICMP_ADDRESS_MASK_REQUEST: 1862 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1863 if (ipif == NULL) { 1864 freemsg(first_mp); 1865 return; 1866 } 1867 /* 1868 * outging interface must be IPv4 1869 */ 1870 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1871 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1872 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1873 ipif_refrele(ipif); 1874 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1875 break; 1876 case ICMP_ECHO_REQUEST: 1877 icmph->icmph_type = ICMP_ECHO_REPLY; 1878 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1879 break; 1880 case ICMP_TIME_STAMP_REQUEST: { 1881 uint32_t *tsp; 1882 1883 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1884 tsp = (uint32_t *)wptr; 1885 tsp++; /* Skip past 'originate time' */ 1886 /* Compute # of milliseconds since midnight */ 1887 gethrestime(&now); 1888 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1889 now.tv_nsec / (NANOSEC / MILLISEC); 1890 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1891 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1892 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1893 break; 1894 } 1895 default: 1896 ipha = (ipha_t *)&icmph[1]; 1897 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1898 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1899 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1900 freemsg(first_mp); 1901 return; 1902 } 1903 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1904 ipha = (ipha_t *)&icmph[1]; 1905 } 1906 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1907 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1908 freemsg(first_mp); 1909 return; 1910 } 1911 hdr_length = IPH_HDR_LENGTH(ipha); 1912 if (hdr_length < sizeof (ipha_t)) { 1913 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1914 freemsg(first_mp); 1915 return; 1916 } 1917 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1918 if (!pullupmsg(mp, 1919 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1920 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1921 freemsg(first_mp); 1922 return; 1923 } 1924 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1925 ipha = (ipha_t *)&icmph[1]; 1926 } 1927 switch (icmph->icmph_type) { 1928 case ICMP_REDIRECT: 1929 /* 1930 * As there is no upper client to deliver, we don't 1931 * need the first_mp any more. 1932 */ 1933 if (mctl_present) { 1934 freeb(first_mp); 1935 } 1936 icmp_redirect(ill, mp); 1937 return; 1938 case ICMP_DEST_UNREACHABLE: 1939 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1940 if (!icmp_inbound_too_big(icmph, ipha, ill, 1941 zoneid, mp, iph_hdr_length, ipst)) { 1942 freemsg(first_mp); 1943 return; 1944 } 1945 /* 1946 * icmp_inbound_too_big() may alter mp. 1947 * Resynch ipha and icmph accordingly. 1948 */ 1949 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1950 ipha = (ipha_t *)&icmph[1]; 1951 } 1952 /* FALLTHRU */ 1953 default : 1954 /* 1955 * IPQoS notes: Since we have already done IPQoS 1956 * processing we don't want to do it again in 1957 * the fanout routines called by 1958 * icmp_inbound_error_fanout, hence the last 1959 * argument, ip_policy, is B_FALSE. 1960 */ 1961 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1962 ipha, iph_hdr_length, hdr_length, mctl_present, 1963 B_FALSE, recv_ill, zoneid); 1964 } 1965 return; 1966 } 1967 /* Send out an ICMP packet */ 1968 icmph->icmph_checksum = 0; 1969 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1970 if (broadcast || CLASSD(ipha->ipha_dst)) { 1971 ipif_t *ipif_chosen; 1972 /* 1973 * Make it look like it was directed to us, so we don't look 1974 * like a fool with a broadcast or multicast source address. 1975 */ 1976 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1977 /* 1978 * Make sure that we haven't grabbed an interface that's DOWN. 1979 */ 1980 if (ipif != NULL) { 1981 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1982 ipha->ipha_src, zoneid); 1983 if (ipif_chosen != NULL) { 1984 ipif_refrele(ipif); 1985 ipif = ipif_chosen; 1986 } 1987 } 1988 if (ipif == NULL) { 1989 ip0dbg(("icmp_inbound: " 1990 "No source for broadcast/multicast:\n" 1991 "\tsrc 0x%x dst 0x%x ill %p " 1992 "ipif_lcl_addr 0x%x\n", 1993 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1994 (void *)ill, 1995 ill->ill_ipif->ipif_lcl_addr)); 1996 freemsg(first_mp); 1997 return; 1998 } 1999 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2000 ipha->ipha_dst = ipif->ipif_src_addr; 2001 ipif_refrele(ipif); 2002 } 2003 /* Reset time to live. */ 2004 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2005 { 2006 /* Swap source and destination addresses */ 2007 ipaddr_t tmp; 2008 2009 tmp = ipha->ipha_src; 2010 ipha->ipha_src = ipha->ipha_dst; 2011 ipha->ipha_dst = tmp; 2012 } 2013 ipha->ipha_ident = 0; 2014 if (!IS_SIMPLE_IPH(ipha)) 2015 icmp_options_update(ipha); 2016 2017 /* 2018 * ICMP echo replies should go out on the same interface 2019 * the request came on as probes used by in.mpathd for detecting 2020 * NIC failures are ECHO packets. We turn-off load spreading 2021 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2022 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2023 * function. This is in turn handled by ip_wput and ip_newroute 2024 * to make sure that the packet goes out on the interface it came 2025 * in on. If we don't turnoff load spreading, the packets might get 2026 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2027 * to go out and in.mpathd would wrongly detect a failure or 2028 * mis-detect a NIC failure for link failure. As load spreading 2029 * can happen only if ill_group is not NULL, we do only for 2030 * that case and this does not affect the normal case. 2031 * 2032 * We turn off load spreading only on echo packets that came from 2033 * on-link hosts. If the interface route has been deleted, this will 2034 * not be enforced as we can't do much. For off-link hosts, as the 2035 * default routes in IPv4 does not typically have an ire_ipif 2036 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2037 * Moreover, expecting a default route through this interface may 2038 * not be correct. We use ipha_dst because of the swap above. 2039 */ 2040 onlink = B_FALSE; 2041 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2042 /* 2043 * First, we need to make sure that it is not one of our 2044 * local addresses. If we set onlink when it is one of 2045 * our local addresses, we will end up creating IRE_CACHES 2046 * for one of our local addresses. Then, we will never 2047 * accept packets for them afterwards. 2048 */ 2049 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2050 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2051 if (src_ire == NULL) { 2052 ipif = ipif_get_next_ipif(NULL, ill); 2053 if (ipif == NULL) { 2054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2055 freemsg(mp); 2056 return; 2057 } 2058 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2059 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2060 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2061 ipif_refrele(ipif); 2062 if (src_ire != NULL) { 2063 onlink = B_TRUE; 2064 ire_refrele(src_ire); 2065 } 2066 } else { 2067 ire_refrele(src_ire); 2068 } 2069 } 2070 if (!mctl_present) { 2071 /* 2072 * This packet should go out the same way as it 2073 * came in i.e in clear. To make sure that global 2074 * policy will not be applied to this in ip_wput_ire, 2075 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2076 */ 2077 ASSERT(first_mp == mp); 2078 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2079 if (first_mp == NULL) { 2080 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2081 freemsg(mp); 2082 return; 2083 } 2084 ii = (ipsec_in_t *)first_mp->b_rptr; 2085 2086 /* This is not a secure packet */ 2087 ii->ipsec_in_secure = B_FALSE; 2088 if (onlink) { 2089 ii->ipsec_in_attach_if = B_TRUE; 2090 ii->ipsec_in_ill_index = 2091 ill->ill_phyint->phyint_ifindex; 2092 ii->ipsec_in_rill_index = 2093 recv_ill->ill_phyint->phyint_ifindex; 2094 } 2095 first_mp->b_cont = mp; 2096 } else if (onlink) { 2097 ii = (ipsec_in_t *)first_mp->b_rptr; 2098 ii->ipsec_in_attach_if = B_TRUE; 2099 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2100 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2101 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2102 } else { 2103 ii = (ipsec_in_t *)first_mp->b_rptr; 2104 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2105 } 2106 ii->ipsec_in_zoneid = zoneid; 2107 ASSERT(zoneid != ALL_ZONES); 2108 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2109 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2110 return; 2111 } 2112 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2113 put(WR(q), first_mp); 2114 } 2115 2116 static ipaddr_t 2117 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2118 { 2119 conn_t *connp; 2120 connf_t *connfp; 2121 ipaddr_t nexthop_addr = INADDR_ANY; 2122 int hdr_length = IPH_HDR_LENGTH(ipha); 2123 uint16_t *up; 2124 uint32_t ports; 2125 ip_stack_t *ipst = ill->ill_ipst; 2126 2127 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2128 switch (ipha->ipha_protocol) { 2129 case IPPROTO_TCP: 2130 { 2131 tcph_t *tcph; 2132 2133 /* do a reverse lookup */ 2134 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2135 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2136 TCPS_LISTEN, ipst); 2137 break; 2138 } 2139 case IPPROTO_UDP: 2140 { 2141 uint32_t dstport, srcport; 2142 2143 ((uint16_t *)&ports)[0] = up[1]; 2144 ((uint16_t *)&ports)[1] = up[0]; 2145 2146 /* Extract ports in net byte order */ 2147 dstport = htons(ntohl(ports) & 0xFFFF); 2148 srcport = htons(ntohl(ports) >> 16); 2149 2150 connfp = &ipst->ips_ipcl_udp_fanout[ 2151 IPCL_UDP_HASH(dstport, ipst)]; 2152 mutex_enter(&connfp->connf_lock); 2153 connp = connfp->connf_head; 2154 2155 /* do a reverse lookup */ 2156 while ((connp != NULL) && 2157 (!IPCL_UDP_MATCH(connp, dstport, 2158 ipha->ipha_src, srcport, ipha->ipha_dst) || 2159 !IPCL_ZONE_MATCH(connp, zoneid))) { 2160 connp = connp->conn_next; 2161 } 2162 if (connp != NULL) 2163 CONN_INC_REF(connp); 2164 mutex_exit(&connfp->connf_lock); 2165 break; 2166 } 2167 case IPPROTO_SCTP: 2168 { 2169 in6_addr_t map_src, map_dst; 2170 2171 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2172 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2173 ((uint16_t *)&ports)[0] = up[1]; 2174 ((uint16_t *)&ports)[1] = up[0]; 2175 2176 connp = sctp_find_conn(&map_src, &map_dst, ports, 2177 zoneid, ipst->ips_netstack->netstack_sctp); 2178 if (connp == NULL) { 2179 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2180 zoneid, ports, ipha, ipst); 2181 } else { 2182 CONN_INC_REF(connp); 2183 SCTP_REFRELE(CONN2SCTP(connp)); 2184 } 2185 break; 2186 } 2187 default: 2188 { 2189 ipha_t ripha; 2190 2191 ripha.ipha_src = ipha->ipha_dst; 2192 ripha.ipha_dst = ipha->ipha_src; 2193 ripha.ipha_protocol = ipha->ipha_protocol; 2194 2195 connfp = &ipst->ips_ipcl_proto_fanout[ 2196 ipha->ipha_protocol]; 2197 mutex_enter(&connfp->connf_lock); 2198 connp = connfp->connf_head; 2199 for (connp = connfp->connf_head; connp != NULL; 2200 connp = connp->conn_next) { 2201 if (IPCL_PROTO_MATCH(connp, 2202 ipha->ipha_protocol, &ripha, ill, 2203 0, zoneid)) { 2204 CONN_INC_REF(connp); 2205 break; 2206 } 2207 } 2208 mutex_exit(&connfp->connf_lock); 2209 } 2210 } 2211 if (connp != NULL) { 2212 if (connp->conn_nexthop_set) 2213 nexthop_addr = connp->conn_nexthop_v4; 2214 CONN_DEC_REF(connp); 2215 } 2216 return (nexthop_addr); 2217 } 2218 2219 /* Table from RFC 1191 */ 2220 static int icmp_frag_size_table[] = 2221 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2222 2223 /* 2224 * Process received ICMP Packet too big. 2225 * After updating any IRE it does the fanout to any matching transport streams. 2226 * Assumes the message has been pulled up till the IP header that caused 2227 * the error. 2228 * 2229 * Returns B_FALSE on failure and B_TRUE on success. 2230 */ 2231 static boolean_t 2232 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2233 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2234 ip_stack_t *ipst) 2235 { 2236 ire_t *ire, *first_ire; 2237 int mtu, orig_mtu; 2238 int hdr_length; 2239 ipaddr_t nexthop_addr; 2240 boolean_t disable_pmtud; 2241 2242 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2243 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2244 ASSERT(ill != NULL); 2245 2246 hdr_length = IPH_HDR_LENGTH(ipha); 2247 2248 /* Drop if the original packet contained a source route */ 2249 if (ip_source_route_included(ipha)) { 2250 return (B_FALSE); 2251 } 2252 /* 2253 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2254 * header. 2255 */ 2256 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2257 mp->b_wptr) { 2258 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2259 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2260 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2261 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2262 return (B_FALSE); 2263 } 2264 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2265 ipha = (ipha_t *)&icmph[1]; 2266 } 2267 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2268 if (nexthop_addr != INADDR_ANY) { 2269 /* nexthop set */ 2270 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2271 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2272 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2273 } else { 2274 /* nexthop not set */ 2275 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2276 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2277 } 2278 2279 if (!first_ire) { 2280 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2281 ntohl(ipha->ipha_dst))); 2282 return (B_FALSE); 2283 } 2284 2285 /* Check for MTU discovery advice as described in RFC 1191 */ 2286 mtu = ntohs(icmph->icmph_du_mtu); 2287 orig_mtu = mtu; 2288 disable_pmtud = B_FALSE; 2289 2290 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2291 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2292 ire = ire->ire_next) { 2293 /* 2294 * Look for the connection to which this ICMP message is 2295 * directed. If it has the IP_NEXTHOP option set, then the 2296 * search is limited to IREs with the MATCH_IRE_PRIVATE 2297 * option. Else the search is limited to regular IREs. 2298 */ 2299 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2300 (nexthop_addr != ire->ire_gateway_addr)) || 2301 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2302 (nexthop_addr != INADDR_ANY))) 2303 continue; 2304 2305 mutex_enter(&ire->ire_lock); 2306 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2307 uint32_t length; 2308 int i; 2309 2310 /* 2311 * Use the table from RFC 1191 to figure out 2312 * the next "plateau" based on the length in 2313 * the original IP packet. 2314 */ 2315 length = ntohs(ipha->ipha_length); 2316 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2317 uint32_t, length); 2318 if (ire->ire_max_frag <= length && 2319 ire->ire_max_frag >= length - hdr_length) { 2320 /* 2321 * Handle broken BSD 4.2 systems that 2322 * return the wrong iph_length in ICMP 2323 * errors. 2324 */ 2325 length -= hdr_length; 2326 } 2327 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2328 if (length > icmp_frag_size_table[i]) 2329 break; 2330 } 2331 if (i == A_CNT(icmp_frag_size_table)) { 2332 /* Smaller than 68! */ 2333 disable_pmtud = B_TRUE; 2334 mtu = ipst->ips_ip_pmtu_min; 2335 } else { 2336 mtu = icmp_frag_size_table[i]; 2337 if (mtu < ipst->ips_ip_pmtu_min) { 2338 mtu = ipst->ips_ip_pmtu_min; 2339 disable_pmtud = B_TRUE; 2340 } 2341 } 2342 /* Fool the ULP into believing our guessed PMTU. */ 2343 icmph->icmph_du_zero = 0; 2344 icmph->icmph_du_mtu = htons(mtu); 2345 } 2346 if (disable_pmtud) 2347 ire->ire_frag_flag = 0; 2348 /* Reduce the IRE max frag value as advised. */ 2349 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2350 mutex_exit(&ire->ire_lock); 2351 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2352 ire, int, orig_mtu, int, mtu); 2353 } 2354 rw_exit(&first_ire->ire_bucket->irb_lock); 2355 ire_refrele(first_ire); 2356 return (B_TRUE); 2357 } 2358 2359 /* 2360 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2361 * calls this function. 2362 */ 2363 static mblk_t * 2364 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2365 { 2366 ipha_t *ipha; 2367 icmph_t *icmph; 2368 ipha_t *in_ipha; 2369 int length; 2370 2371 ASSERT(mp->b_datap->db_type == M_DATA); 2372 2373 /* 2374 * For Self-encapsulated packets, we added an extra IP header 2375 * without the options. Inner IP header is the one from which 2376 * the outer IP header was formed. Thus, we need to remove the 2377 * outer IP header. To do this, we pullup the whole message 2378 * and overlay whatever follows the outer IP header over the 2379 * outer IP header. 2380 */ 2381 2382 if (!pullupmsg(mp, -1)) 2383 return (NULL); 2384 2385 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2386 ipha = (ipha_t *)&icmph[1]; 2387 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2388 2389 /* 2390 * The length that we want to overlay is following the inner 2391 * IP header. Subtracting the IP header + icmp header + outer 2392 * IP header's length should give us the length that we want to 2393 * overlay. 2394 */ 2395 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2396 hdr_length; 2397 /* 2398 * Overlay whatever follows the inner header over the 2399 * outer header. 2400 */ 2401 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2402 2403 /* Set the wptr to account for the outer header */ 2404 mp->b_wptr -= hdr_length; 2405 return (mp); 2406 } 2407 2408 /* 2409 * Try to pass the ICMP message upstream in case the ULP cares. 2410 * 2411 * If the packet that caused the ICMP error is secure, we send 2412 * it to AH/ESP to make sure that the attached packet has a 2413 * valid association. ipha in the code below points to the 2414 * IP header of the packet that caused the error. 2415 * 2416 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2417 * in the context of IPsec. Normally we tell the upper layer 2418 * whenever we send the ire (including ip_bind), the IPsec header 2419 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2420 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2421 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2422 * same thing. As TCP has the IPsec options size that needs to be 2423 * adjusted, we just pass the MTU unchanged. 2424 * 2425 * IFN could have been generated locally or by some router. 2426 * 2427 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2428 * This happens because IP adjusted its value of MTU on an 2429 * earlier IFN message and could not tell the upper layer, 2430 * the new adjusted value of MTU e.g. Packet was encrypted 2431 * or there was not enough information to fanout to upper 2432 * layers. Thus on the next outbound datagram, ip_wput_ire 2433 * generates the IFN, where IPsec processing has *not* been 2434 * done. 2435 * 2436 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2437 * could have generated this. This happens because ire_max_frag 2438 * value in IP was set to a new value, while the IPsec processing 2439 * was being done and after we made the fragmentation check in 2440 * ip_wput_ire. Thus on return from IPsec processing, 2441 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2442 * and generates the IFN. As IPsec processing is over, we fanout 2443 * to AH/ESP to remove the header. 2444 * 2445 * In both these cases, ipsec_in_loopback will be set indicating 2446 * that IFN was generated locally. 2447 * 2448 * ROUTER : IFN could be secure or non-secure. 2449 * 2450 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2451 * packet in error has AH/ESP headers to validate the AH/ESP 2452 * headers. AH/ESP will verify whether there is a valid SA or 2453 * not and send it back. We will fanout again if we have more 2454 * data in the packet. 2455 * 2456 * If the packet in error does not have AH/ESP, we handle it 2457 * like any other case. 2458 * 2459 * * NON_SECURE : If the packet in error has AH/ESP headers, 2460 * we attach a dummy ipsec_in and send it up to AH/ESP 2461 * for validation. AH/ESP will verify whether there is a 2462 * valid SA or not and send it back. We will fanout again if 2463 * we have more data in the packet. 2464 * 2465 * If the packet in error does not have AH/ESP, we handle it 2466 * like any other case. 2467 */ 2468 static void 2469 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2470 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2471 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2472 zoneid_t zoneid) 2473 { 2474 uint16_t *up; /* Pointer to ports in ULP header */ 2475 uint32_t ports; /* reversed ports for fanout */ 2476 ipha_t ripha; /* With reversed addresses */ 2477 mblk_t *first_mp; 2478 ipsec_in_t *ii; 2479 tcph_t *tcph; 2480 conn_t *connp; 2481 ip_stack_t *ipst; 2482 2483 ASSERT(ill != NULL); 2484 2485 ASSERT(recv_ill != NULL); 2486 ipst = recv_ill->ill_ipst; 2487 2488 first_mp = mp; 2489 if (mctl_present) { 2490 mp = first_mp->b_cont; 2491 ASSERT(mp != NULL); 2492 2493 ii = (ipsec_in_t *)first_mp->b_rptr; 2494 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2495 } else { 2496 ii = NULL; 2497 } 2498 2499 switch (ipha->ipha_protocol) { 2500 case IPPROTO_UDP: 2501 /* 2502 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2503 * transport header. 2504 */ 2505 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2506 mp->b_wptr) { 2507 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2508 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2509 goto discard_pkt; 2510 } 2511 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2512 ipha = (ipha_t *)&icmph[1]; 2513 } 2514 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2515 2516 /* 2517 * Attempt to find a client stream based on port. 2518 * Note that we do a reverse lookup since the header is 2519 * in the form we sent it out. 2520 * The ripha header is only used for the IP_UDP_MATCH and we 2521 * only set the src and dst addresses and protocol. 2522 */ 2523 ripha.ipha_src = ipha->ipha_dst; 2524 ripha.ipha_dst = ipha->ipha_src; 2525 ripha.ipha_protocol = ipha->ipha_protocol; 2526 ((uint16_t *)&ports)[0] = up[1]; 2527 ((uint16_t *)&ports)[1] = up[0]; 2528 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2529 ntohl(ipha->ipha_src), ntohs(up[0]), 2530 ntohl(ipha->ipha_dst), ntohs(up[1]), 2531 icmph->icmph_type, icmph->icmph_code)); 2532 2533 /* Have to change db_type after any pullupmsg */ 2534 DB_TYPE(mp) = M_CTL; 2535 2536 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2537 mctl_present, ip_policy, recv_ill, zoneid); 2538 return; 2539 2540 case IPPROTO_TCP: 2541 /* 2542 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2543 * transport header. 2544 */ 2545 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2546 mp->b_wptr) { 2547 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2548 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2549 goto discard_pkt; 2550 } 2551 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2552 ipha = (ipha_t *)&icmph[1]; 2553 } 2554 /* 2555 * Find a TCP client stream for this packet. 2556 * Note that we do a reverse lookup since the header is 2557 * in the form we sent it out. 2558 */ 2559 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2560 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2561 ipst); 2562 if (connp == NULL) 2563 goto discard_pkt; 2564 2565 /* Have to change db_type after any pullupmsg */ 2566 DB_TYPE(mp) = M_CTL; 2567 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2568 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2569 return; 2570 2571 case IPPROTO_SCTP: 2572 /* 2573 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2574 * transport header. 2575 */ 2576 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2577 mp->b_wptr) { 2578 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2579 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2580 goto discard_pkt; 2581 } 2582 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2583 ipha = (ipha_t *)&icmph[1]; 2584 } 2585 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2586 /* 2587 * Find a SCTP client stream for this packet. 2588 * Note that we do a reverse lookup since the header is 2589 * in the form we sent it out. 2590 * The ripha header is only used for the matching and we 2591 * only set the src and dst addresses, protocol, and version. 2592 */ 2593 ripha.ipha_src = ipha->ipha_dst; 2594 ripha.ipha_dst = ipha->ipha_src; 2595 ripha.ipha_protocol = ipha->ipha_protocol; 2596 ripha.ipha_version_and_hdr_length = 2597 ipha->ipha_version_and_hdr_length; 2598 ((uint16_t *)&ports)[0] = up[1]; 2599 ((uint16_t *)&ports)[1] = up[0]; 2600 2601 /* Have to change db_type after any pullupmsg */ 2602 DB_TYPE(mp) = M_CTL; 2603 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2604 mctl_present, ip_policy, zoneid); 2605 return; 2606 2607 case IPPROTO_ESP: 2608 case IPPROTO_AH: { 2609 int ipsec_rc; 2610 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2611 2612 /* 2613 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2614 * We will re-use the IPSEC_IN if it is already present as 2615 * AH/ESP will not affect any fields in the IPSEC_IN for 2616 * ICMP errors. If there is no IPSEC_IN, allocate a new 2617 * one and attach it in the front. 2618 */ 2619 if (ii != NULL) { 2620 /* 2621 * ip_fanout_proto_again converts the ICMP errors 2622 * that come back from AH/ESP to M_DATA so that 2623 * if it is non-AH/ESP and we do a pullupmsg in 2624 * this function, it would work. Convert it back 2625 * to M_CTL before we send up as this is a ICMP 2626 * error. This could have been generated locally or 2627 * by some router. Validate the inner IPsec 2628 * headers. 2629 * 2630 * NOTE : ill_index is used by ip_fanout_proto_again 2631 * to locate the ill. 2632 */ 2633 ASSERT(ill != NULL); 2634 ii->ipsec_in_ill_index = 2635 ill->ill_phyint->phyint_ifindex; 2636 ii->ipsec_in_rill_index = 2637 recv_ill->ill_phyint->phyint_ifindex; 2638 DB_TYPE(first_mp->b_cont) = M_CTL; 2639 } else { 2640 /* 2641 * IPSEC_IN is not present. We attach a ipsec_in 2642 * message and send up to IPsec for validating 2643 * and removing the IPsec headers. Clear 2644 * ipsec_in_secure so that when we return 2645 * from IPsec, we don't mistakenly think that this 2646 * is a secure packet came from the network. 2647 * 2648 * NOTE : ill_index is used by ip_fanout_proto_again 2649 * to locate the ill. 2650 */ 2651 ASSERT(first_mp == mp); 2652 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2653 if (first_mp == NULL) { 2654 freemsg(mp); 2655 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2656 return; 2657 } 2658 ii = (ipsec_in_t *)first_mp->b_rptr; 2659 2660 /* This is not a secure packet */ 2661 ii->ipsec_in_secure = B_FALSE; 2662 first_mp->b_cont = mp; 2663 DB_TYPE(mp) = M_CTL; 2664 ASSERT(ill != NULL); 2665 ii->ipsec_in_ill_index = 2666 ill->ill_phyint->phyint_ifindex; 2667 ii->ipsec_in_rill_index = 2668 recv_ill->ill_phyint->phyint_ifindex; 2669 } 2670 ip2dbg(("icmp_inbound_error: ipsec\n")); 2671 2672 if (!ipsec_loaded(ipss)) { 2673 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2674 return; 2675 } 2676 2677 if (ipha->ipha_protocol == IPPROTO_ESP) 2678 ipsec_rc = ipsecesp_icmp_error(first_mp); 2679 else 2680 ipsec_rc = ipsecah_icmp_error(first_mp); 2681 if (ipsec_rc == IPSEC_STATUS_FAILED) 2682 return; 2683 2684 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2685 return; 2686 } 2687 default: 2688 /* 2689 * The ripha header is only used for the lookup and we 2690 * only set the src and dst addresses and protocol. 2691 */ 2692 ripha.ipha_src = ipha->ipha_dst; 2693 ripha.ipha_dst = ipha->ipha_src; 2694 ripha.ipha_protocol = ipha->ipha_protocol; 2695 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2696 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2697 ntohl(ipha->ipha_dst), 2698 icmph->icmph_type, icmph->icmph_code)); 2699 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2700 ipha_t *in_ipha; 2701 2702 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2703 mp->b_wptr) { 2704 if (!pullupmsg(mp, (uchar_t *)ipha + 2705 hdr_length + sizeof (ipha_t) - 2706 mp->b_rptr)) { 2707 goto discard_pkt; 2708 } 2709 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2710 ipha = (ipha_t *)&icmph[1]; 2711 } 2712 /* 2713 * Caller has verified that length has to be 2714 * at least the size of IP header. 2715 */ 2716 ASSERT(hdr_length >= sizeof (ipha_t)); 2717 /* 2718 * Check the sanity of the inner IP header like 2719 * we did for the outer header. 2720 */ 2721 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2722 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2723 goto discard_pkt; 2724 } 2725 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2726 goto discard_pkt; 2727 } 2728 /* Check for Self-encapsulated tunnels */ 2729 if (in_ipha->ipha_src == ipha->ipha_src && 2730 in_ipha->ipha_dst == ipha->ipha_dst) { 2731 2732 mp = icmp_inbound_self_encap_error(mp, 2733 iph_hdr_length, hdr_length); 2734 if (mp == NULL) 2735 goto discard_pkt; 2736 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2737 ipha = (ipha_t *)&icmph[1]; 2738 hdr_length = IPH_HDR_LENGTH(ipha); 2739 /* 2740 * The packet in error is self-encapsualted. 2741 * And we are finding it further encapsulated 2742 * which we could not have possibly generated. 2743 */ 2744 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2745 goto discard_pkt; 2746 } 2747 icmp_inbound_error_fanout(q, ill, first_mp, 2748 icmph, ipha, iph_hdr_length, hdr_length, 2749 mctl_present, ip_policy, recv_ill, zoneid); 2750 return; 2751 } 2752 } 2753 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2754 ipha->ipha_protocol == IPPROTO_IPV6) && 2755 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2756 ii != NULL && 2757 ii->ipsec_in_loopback && 2758 ii->ipsec_in_secure) { 2759 /* 2760 * For IP tunnels that get a looped-back 2761 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2762 * reported new MTU to take into account the IPsec 2763 * headers protecting this configured tunnel. 2764 * 2765 * This allows the tunnel module (tun.c) to blindly 2766 * accept the MTU reported in an ICMP "too big" 2767 * message. 2768 * 2769 * Non-looped back ICMP messages will just be 2770 * handled by the security protocols (if needed), 2771 * and the first subsequent packet will hit this 2772 * path. 2773 */ 2774 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2775 ipsec_in_extra_length(first_mp)); 2776 } 2777 /* Have to change db_type after any pullupmsg */ 2778 DB_TYPE(mp) = M_CTL; 2779 2780 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2781 ip_policy, recv_ill, zoneid); 2782 return; 2783 } 2784 /* NOTREACHED */ 2785 discard_pkt: 2786 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2787 drop_pkt:; 2788 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2789 freemsg(first_mp); 2790 } 2791 2792 /* 2793 * Common IP options parser. 2794 * 2795 * Setup routine: fill in *optp with options-parsing state, then 2796 * tail-call ipoptp_next to return the first option. 2797 */ 2798 uint8_t 2799 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2800 { 2801 uint32_t totallen; /* total length of all options */ 2802 2803 totallen = ipha->ipha_version_and_hdr_length - 2804 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2805 totallen <<= 2; 2806 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2807 optp->ipoptp_end = optp->ipoptp_next + totallen; 2808 optp->ipoptp_flags = 0; 2809 return (ipoptp_next(optp)); 2810 } 2811 2812 /* 2813 * Common IP options parser: extract next option. 2814 */ 2815 uint8_t 2816 ipoptp_next(ipoptp_t *optp) 2817 { 2818 uint8_t *end = optp->ipoptp_end; 2819 uint8_t *cur = optp->ipoptp_next; 2820 uint8_t opt, len, pointer; 2821 2822 /* 2823 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2824 * has been corrupted. 2825 */ 2826 ASSERT(cur <= end); 2827 2828 if (cur == end) 2829 return (IPOPT_EOL); 2830 2831 opt = cur[IPOPT_OPTVAL]; 2832 2833 /* 2834 * Skip any NOP options. 2835 */ 2836 while (opt == IPOPT_NOP) { 2837 cur++; 2838 if (cur == end) 2839 return (IPOPT_EOL); 2840 opt = cur[IPOPT_OPTVAL]; 2841 } 2842 2843 if (opt == IPOPT_EOL) 2844 return (IPOPT_EOL); 2845 2846 /* 2847 * Option requiring a length. 2848 */ 2849 if ((cur + 1) >= end) { 2850 optp->ipoptp_flags |= IPOPTP_ERROR; 2851 return (IPOPT_EOL); 2852 } 2853 len = cur[IPOPT_OLEN]; 2854 if (len < 2) { 2855 optp->ipoptp_flags |= IPOPTP_ERROR; 2856 return (IPOPT_EOL); 2857 } 2858 optp->ipoptp_cur = cur; 2859 optp->ipoptp_len = len; 2860 optp->ipoptp_next = cur + len; 2861 if (cur + len > end) { 2862 optp->ipoptp_flags |= IPOPTP_ERROR; 2863 return (IPOPT_EOL); 2864 } 2865 2866 /* 2867 * For the options which require a pointer field, make sure 2868 * its there, and make sure it points to either something 2869 * inside this option, or the end of the option. 2870 */ 2871 switch (opt) { 2872 case IPOPT_RR: 2873 case IPOPT_TS: 2874 case IPOPT_LSRR: 2875 case IPOPT_SSRR: 2876 if (len <= IPOPT_OFFSET) { 2877 optp->ipoptp_flags |= IPOPTP_ERROR; 2878 return (opt); 2879 } 2880 pointer = cur[IPOPT_OFFSET]; 2881 if (pointer - 1 > len) { 2882 optp->ipoptp_flags |= IPOPTP_ERROR; 2883 return (opt); 2884 } 2885 break; 2886 } 2887 2888 /* 2889 * Sanity check the pointer field based on the type of the 2890 * option. 2891 */ 2892 switch (opt) { 2893 case IPOPT_RR: 2894 case IPOPT_SSRR: 2895 case IPOPT_LSRR: 2896 if (pointer < IPOPT_MINOFF_SR) 2897 optp->ipoptp_flags |= IPOPTP_ERROR; 2898 break; 2899 case IPOPT_TS: 2900 if (pointer < IPOPT_MINOFF_IT) 2901 optp->ipoptp_flags |= IPOPTP_ERROR; 2902 /* 2903 * Note that the Internet Timestamp option also 2904 * contains two four bit fields (the Overflow field, 2905 * and the Flag field), which follow the pointer 2906 * field. We don't need to check that these fields 2907 * fall within the length of the option because this 2908 * was implicitely done above. We've checked that the 2909 * pointer value is at least IPOPT_MINOFF_IT, and that 2910 * it falls within the option. Since IPOPT_MINOFF_IT > 2911 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2912 */ 2913 ASSERT(len > IPOPT_POS_OV_FLG); 2914 break; 2915 } 2916 2917 return (opt); 2918 } 2919 2920 /* 2921 * Use the outgoing IP header to create an IP_OPTIONS option the way 2922 * it was passed down from the application. 2923 */ 2924 int 2925 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2926 { 2927 ipoptp_t opts; 2928 const uchar_t *opt; 2929 uint8_t optval; 2930 uint8_t optlen; 2931 uint32_t len = 0; 2932 uchar_t *buf1 = buf; 2933 2934 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2935 len += IP_ADDR_LEN; 2936 bzero(buf1, IP_ADDR_LEN); 2937 2938 /* 2939 * OK to cast away const here, as we don't store through the returned 2940 * opts.ipoptp_cur pointer. 2941 */ 2942 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2943 optval != IPOPT_EOL; 2944 optval = ipoptp_next(&opts)) { 2945 int off; 2946 2947 opt = opts.ipoptp_cur; 2948 optlen = opts.ipoptp_len; 2949 switch (optval) { 2950 case IPOPT_SSRR: 2951 case IPOPT_LSRR: 2952 2953 /* 2954 * Insert ipha_dst as the first entry in the source 2955 * route and move down the entries on step. 2956 * The last entry gets placed at buf1. 2957 */ 2958 buf[IPOPT_OPTVAL] = optval; 2959 buf[IPOPT_OLEN] = optlen; 2960 buf[IPOPT_OFFSET] = optlen; 2961 2962 off = optlen - IP_ADDR_LEN; 2963 if (off < 0) { 2964 /* No entries in source route */ 2965 break; 2966 } 2967 /* Last entry in source route */ 2968 bcopy(opt + off, buf1, IP_ADDR_LEN); 2969 off -= IP_ADDR_LEN; 2970 2971 while (off > 0) { 2972 bcopy(opt + off, 2973 buf + off + IP_ADDR_LEN, 2974 IP_ADDR_LEN); 2975 off -= IP_ADDR_LEN; 2976 } 2977 /* ipha_dst into first slot */ 2978 bcopy(&ipha->ipha_dst, 2979 buf + off + IP_ADDR_LEN, 2980 IP_ADDR_LEN); 2981 buf += optlen; 2982 len += optlen; 2983 break; 2984 2985 case IPOPT_COMSEC: 2986 case IPOPT_SECURITY: 2987 /* if passing up a label is not ok, then remove */ 2988 if (is_system_labeled()) 2989 break; 2990 /* FALLTHROUGH */ 2991 default: 2992 bcopy(opt, buf, optlen); 2993 buf += optlen; 2994 len += optlen; 2995 break; 2996 } 2997 } 2998 done: 2999 /* Pad the resulting options */ 3000 while (len & 0x3) { 3001 *buf++ = IPOPT_EOL; 3002 len++; 3003 } 3004 return (len); 3005 } 3006 3007 /* 3008 * Update any record route or timestamp options to include this host. 3009 * Reverse any source route option. 3010 * This routine assumes that the options are well formed i.e. that they 3011 * have already been checked. 3012 */ 3013 static void 3014 icmp_options_update(ipha_t *ipha) 3015 { 3016 ipoptp_t opts; 3017 uchar_t *opt; 3018 uint8_t optval; 3019 ipaddr_t src; /* Our local address */ 3020 ipaddr_t dst; 3021 3022 ip2dbg(("icmp_options_update\n")); 3023 src = ipha->ipha_src; 3024 dst = ipha->ipha_dst; 3025 3026 for (optval = ipoptp_first(&opts, ipha); 3027 optval != IPOPT_EOL; 3028 optval = ipoptp_next(&opts)) { 3029 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3030 opt = opts.ipoptp_cur; 3031 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3032 optval, opts.ipoptp_len)); 3033 switch (optval) { 3034 int off1, off2; 3035 case IPOPT_SSRR: 3036 case IPOPT_LSRR: 3037 /* 3038 * Reverse the source route. The first entry 3039 * should be the next to last one in the current 3040 * source route (the last entry is our address). 3041 * The last entry should be the final destination. 3042 */ 3043 off1 = IPOPT_MINOFF_SR - 1; 3044 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3045 if (off2 < 0) { 3046 /* No entries in source route */ 3047 ip1dbg(( 3048 "icmp_options_update: bad src route\n")); 3049 break; 3050 } 3051 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3052 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3053 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3054 off2 -= IP_ADDR_LEN; 3055 3056 while (off1 < off2) { 3057 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3058 bcopy((char *)opt + off2, (char *)opt + off1, 3059 IP_ADDR_LEN); 3060 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3061 off1 += IP_ADDR_LEN; 3062 off2 -= IP_ADDR_LEN; 3063 } 3064 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3065 break; 3066 } 3067 } 3068 } 3069 3070 /* 3071 * Process received ICMP Redirect messages. 3072 */ 3073 static void 3074 icmp_redirect(ill_t *ill, mblk_t *mp) 3075 { 3076 ipha_t *ipha; 3077 int iph_hdr_length; 3078 icmph_t *icmph; 3079 ipha_t *ipha_err; 3080 ire_t *ire; 3081 ire_t *prev_ire; 3082 ire_t *save_ire; 3083 ipaddr_t src, dst, gateway; 3084 iulp_t ulp_info = { 0 }; 3085 int error; 3086 ip_stack_t *ipst; 3087 3088 ASSERT(ill != NULL); 3089 ipst = ill->ill_ipst; 3090 3091 ipha = (ipha_t *)mp->b_rptr; 3092 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3093 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3094 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3095 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3096 freemsg(mp); 3097 return; 3098 } 3099 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3100 ipha_err = (ipha_t *)&icmph[1]; 3101 src = ipha->ipha_src; 3102 dst = ipha_err->ipha_dst; 3103 gateway = icmph->icmph_rd_gateway; 3104 /* Make sure the new gateway is reachable somehow. */ 3105 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3106 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3107 /* 3108 * Make sure we had a route for the dest in question and that 3109 * that route was pointing to the old gateway (the source of the 3110 * redirect packet.) 3111 */ 3112 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3113 NULL, MATCH_IRE_GW, ipst); 3114 /* 3115 * Check that 3116 * the redirect was not from ourselves 3117 * the new gateway and the old gateway are directly reachable 3118 */ 3119 if (!prev_ire || 3120 !ire || 3121 ire->ire_type == IRE_LOCAL) { 3122 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3123 freemsg(mp); 3124 if (ire != NULL) 3125 ire_refrele(ire); 3126 if (prev_ire != NULL) 3127 ire_refrele(prev_ire); 3128 return; 3129 } 3130 3131 /* 3132 * Should we use the old ULP info to create the new gateway? From 3133 * a user's perspective, we should inherit the info so that it 3134 * is a "smooth" transition. If we do not do that, then new 3135 * connections going thru the new gateway will have no route metrics, 3136 * which is counter-intuitive to user. From a network point of 3137 * view, this may or may not make sense even though the new gateway 3138 * is still directly connected to us so the route metrics should not 3139 * change much. 3140 * 3141 * But if the old ire_uinfo is not initialized, we do another 3142 * recursive lookup on the dest using the new gateway. There may 3143 * be a route to that. If so, use it to initialize the redirect 3144 * route. 3145 */ 3146 if (prev_ire->ire_uinfo.iulp_set) { 3147 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3148 } else { 3149 ire_t *tmp_ire; 3150 ire_t *sire; 3151 3152 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3153 ALL_ZONES, 0, NULL, 3154 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3155 ipst); 3156 if (sire != NULL) { 3157 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3158 /* 3159 * If sire != NULL, ire_ftable_lookup() should not 3160 * return a NULL value. 3161 */ 3162 ASSERT(tmp_ire != NULL); 3163 ire_refrele(tmp_ire); 3164 ire_refrele(sire); 3165 } else if (tmp_ire != NULL) { 3166 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3167 sizeof (iulp_t)); 3168 ire_refrele(tmp_ire); 3169 } 3170 } 3171 if (prev_ire->ire_type == IRE_CACHE) 3172 ire_delete(prev_ire); 3173 ire_refrele(prev_ire); 3174 /* 3175 * TODO: more precise handling for cases 0, 2, 3, the latter two 3176 * require TOS routing 3177 */ 3178 switch (icmph->icmph_code) { 3179 case 0: 3180 case 1: 3181 /* TODO: TOS specificity for cases 2 and 3 */ 3182 case 2: 3183 case 3: 3184 break; 3185 default: 3186 freemsg(mp); 3187 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3188 ire_refrele(ire); 3189 return; 3190 } 3191 /* 3192 * Create a Route Association. This will allow us to remember that 3193 * someone we believe told us to use the particular gateway. 3194 */ 3195 save_ire = ire; 3196 ire = ire_create( 3197 (uchar_t *)&dst, /* dest addr */ 3198 (uchar_t *)&ip_g_all_ones, /* mask */ 3199 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3200 (uchar_t *)&gateway, /* gateway addr */ 3201 &save_ire->ire_max_frag, /* max frag */ 3202 NULL, /* no src nce */ 3203 NULL, /* no rfq */ 3204 NULL, /* no stq */ 3205 IRE_HOST, 3206 NULL, /* ipif */ 3207 0, /* cmask */ 3208 0, /* phandle */ 3209 0, /* ihandle */ 3210 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3211 &ulp_info, 3212 NULL, /* tsol_gc_t */ 3213 NULL, /* gcgrp */ 3214 ipst); 3215 3216 if (ire == NULL) { 3217 freemsg(mp); 3218 ire_refrele(save_ire); 3219 return; 3220 } 3221 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3222 ire_refrele(save_ire); 3223 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3224 3225 if (error == 0) { 3226 ire_refrele(ire); /* Held in ire_add_v4 */ 3227 /* tell routing sockets that we received a redirect */ 3228 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3229 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3230 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3231 } 3232 3233 /* 3234 * Delete any existing IRE_HOST type redirect ires for this destination. 3235 * This together with the added IRE has the effect of 3236 * modifying an existing redirect. 3237 */ 3238 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3239 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3240 if (prev_ire != NULL) { 3241 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3242 ire_delete(prev_ire); 3243 ire_refrele(prev_ire); 3244 } 3245 3246 freemsg(mp); 3247 } 3248 3249 /* 3250 * Generate an ICMP parameter problem message. 3251 */ 3252 static void 3253 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3254 ip_stack_t *ipst) 3255 { 3256 icmph_t icmph; 3257 boolean_t mctl_present; 3258 mblk_t *first_mp; 3259 3260 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3261 3262 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3263 if (mctl_present) 3264 freeb(first_mp); 3265 return; 3266 } 3267 3268 bzero(&icmph, sizeof (icmph_t)); 3269 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3270 icmph.icmph_pp_ptr = ptr; 3271 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3272 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3273 ipst); 3274 } 3275 3276 /* 3277 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3278 * the ICMP header pointed to by "stuff". (May be called as writer.) 3279 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3280 * an icmp error packet can be sent. 3281 * Assigns an appropriate source address to the packet. If ipha_dst is 3282 * one of our addresses use it for source. Otherwise pick a source based 3283 * on a route lookup back to ipha_src. 3284 * Note that ipha_src must be set here since the 3285 * packet is likely to arrive on an ill queue in ip_wput() which will 3286 * not set a source address. 3287 */ 3288 static void 3289 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3290 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3291 { 3292 ipaddr_t dst; 3293 icmph_t *icmph; 3294 ipha_t *ipha; 3295 uint_t len_needed; 3296 size_t msg_len; 3297 mblk_t *mp1; 3298 ipaddr_t src; 3299 ire_t *ire; 3300 mblk_t *ipsec_mp; 3301 ipsec_out_t *io = NULL; 3302 3303 if (mctl_present) { 3304 /* 3305 * If it is : 3306 * 3307 * 1) a IPSEC_OUT, then this is caused by outbound 3308 * datagram originating on this host. IPsec processing 3309 * may or may not have been done. Refer to comments above 3310 * icmp_inbound_error_fanout for details. 3311 * 3312 * 2) a IPSEC_IN if we are generating a icmp_message 3313 * for an incoming datagram destined for us i.e called 3314 * from ip_fanout_send_icmp. 3315 */ 3316 ipsec_info_t *in; 3317 ipsec_mp = mp; 3318 mp = ipsec_mp->b_cont; 3319 3320 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3321 ipha = (ipha_t *)mp->b_rptr; 3322 3323 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3324 in->ipsec_info_type == IPSEC_IN); 3325 3326 if (in->ipsec_info_type == IPSEC_IN) { 3327 /* 3328 * Convert the IPSEC_IN to IPSEC_OUT. 3329 */ 3330 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3331 BUMP_MIB(&ipst->ips_ip_mib, 3332 ipIfStatsOutDiscards); 3333 return; 3334 } 3335 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3336 } else { 3337 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3338 io = (ipsec_out_t *)in; 3339 /* 3340 * Clear out ipsec_out_proc_begin, so we do a fresh 3341 * ire lookup. 3342 */ 3343 io->ipsec_out_proc_begin = B_FALSE; 3344 } 3345 ASSERT(zoneid == io->ipsec_out_zoneid); 3346 ASSERT(zoneid != ALL_ZONES); 3347 } else { 3348 /* 3349 * This is in clear. The icmp message we are building 3350 * here should go out in clear. 3351 * 3352 * Pardon the convolution of it all, but it's easier to 3353 * allocate a "use cleartext" IPSEC_IN message and convert 3354 * it than it is to allocate a new one. 3355 */ 3356 ipsec_in_t *ii; 3357 ASSERT(DB_TYPE(mp) == M_DATA); 3358 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3359 if (ipsec_mp == NULL) { 3360 freemsg(mp); 3361 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3362 return; 3363 } 3364 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3365 3366 /* This is not a secure packet */ 3367 ii->ipsec_in_secure = B_FALSE; 3368 /* 3369 * For trusted extensions using a shared IP address we can 3370 * send using any zoneid. 3371 */ 3372 if (zoneid == ALL_ZONES) 3373 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3374 else 3375 ii->ipsec_in_zoneid = zoneid; 3376 ipsec_mp->b_cont = mp; 3377 ipha = (ipha_t *)mp->b_rptr; 3378 /* 3379 * Convert the IPSEC_IN to IPSEC_OUT. 3380 */ 3381 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3382 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3383 return; 3384 } 3385 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3386 } 3387 3388 /* Remember our eventual destination */ 3389 dst = ipha->ipha_src; 3390 3391 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3392 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3393 if (ire != NULL && 3394 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3395 src = ipha->ipha_dst; 3396 } else { 3397 if (ire != NULL) 3398 ire_refrele(ire); 3399 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3400 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3401 ipst); 3402 if (ire == NULL) { 3403 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3404 freemsg(ipsec_mp); 3405 return; 3406 } 3407 src = ire->ire_src_addr; 3408 } 3409 3410 if (ire != NULL) 3411 ire_refrele(ire); 3412 3413 /* 3414 * Check if we can send back more then 8 bytes in addition to 3415 * the IP header. We try to send 64 bytes of data and the internal 3416 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3417 */ 3418 len_needed = IPH_HDR_LENGTH(ipha); 3419 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3420 ipha->ipha_protocol == IPPROTO_IPV6) { 3421 3422 if (!pullupmsg(mp, -1)) { 3423 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3424 freemsg(ipsec_mp); 3425 return; 3426 } 3427 ipha = (ipha_t *)mp->b_rptr; 3428 3429 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3430 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3431 len_needed)); 3432 } else { 3433 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3434 3435 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3436 len_needed += ip_hdr_length_v6(mp, ip6h); 3437 } 3438 } 3439 len_needed += ipst->ips_ip_icmp_return; 3440 msg_len = msgdsize(mp); 3441 if (msg_len > len_needed) { 3442 (void) adjmsg(mp, len_needed - msg_len); 3443 msg_len = len_needed; 3444 } 3445 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3446 if (mp1 == NULL) { 3447 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3448 freemsg(ipsec_mp); 3449 return; 3450 } 3451 mp1->b_cont = mp; 3452 mp = mp1; 3453 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3454 ipsec_mp->b_rptr == (uint8_t *)io && 3455 io->ipsec_out_type == IPSEC_OUT); 3456 ipsec_mp->b_cont = mp; 3457 3458 /* 3459 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3460 * node generates be accepted in peace by all on-host destinations. 3461 * If we do NOT assume that all on-host destinations trust 3462 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3463 * (Look for ipsec_out_icmp_loopback). 3464 */ 3465 io->ipsec_out_icmp_loopback = B_TRUE; 3466 3467 ipha = (ipha_t *)mp->b_rptr; 3468 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3469 *ipha = icmp_ipha; 3470 ipha->ipha_src = src; 3471 ipha->ipha_dst = dst; 3472 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3473 msg_len += sizeof (icmp_ipha) + len; 3474 if (msg_len > IP_MAXPACKET) { 3475 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3476 msg_len = IP_MAXPACKET; 3477 } 3478 ipha->ipha_length = htons((uint16_t)msg_len); 3479 icmph = (icmph_t *)&ipha[1]; 3480 bcopy(stuff, icmph, len); 3481 icmph->icmph_checksum = 0; 3482 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3483 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3484 put(q, ipsec_mp); 3485 } 3486 3487 /* 3488 * Determine if an ICMP error packet can be sent given the rate limit. 3489 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3490 * in milliseconds) and a burst size. Burst size number of packets can 3491 * be sent arbitrarely closely spaced. 3492 * The state is tracked using two variables to implement an approximate 3493 * token bucket filter: 3494 * icmp_pkt_err_last - lbolt value when the last burst started 3495 * icmp_pkt_err_sent - number of packets sent in current burst 3496 */ 3497 boolean_t 3498 icmp_err_rate_limit(ip_stack_t *ipst) 3499 { 3500 clock_t now = TICK_TO_MSEC(lbolt); 3501 uint_t refilled; /* Number of packets refilled in tbf since last */ 3502 /* Guard against changes by loading into local variable */ 3503 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3504 3505 if (err_interval == 0) 3506 return (B_FALSE); 3507 3508 if (ipst->ips_icmp_pkt_err_last > now) { 3509 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3510 ipst->ips_icmp_pkt_err_last = 0; 3511 ipst->ips_icmp_pkt_err_sent = 0; 3512 } 3513 /* 3514 * If we are in a burst update the token bucket filter. 3515 * Update the "last" time to be close to "now" but make sure 3516 * we don't loose precision. 3517 */ 3518 if (ipst->ips_icmp_pkt_err_sent != 0) { 3519 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3520 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3521 ipst->ips_icmp_pkt_err_sent = 0; 3522 } else { 3523 ipst->ips_icmp_pkt_err_sent -= refilled; 3524 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3525 } 3526 } 3527 if (ipst->ips_icmp_pkt_err_sent == 0) { 3528 /* Start of new burst */ 3529 ipst->ips_icmp_pkt_err_last = now; 3530 } 3531 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3532 ipst->ips_icmp_pkt_err_sent++; 3533 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3534 ipst->ips_icmp_pkt_err_sent)); 3535 return (B_FALSE); 3536 } 3537 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3538 return (B_TRUE); 3539 } 3540 3541 /* 3542 * Check if it is ok to send an IPv4 ICMP error packet in 3543 * response to the IPv4 packet in mp. 3544 * Free the message and return null if no 3545 * ICMP error packet should be sent. 3546 */ 3547 static mblk_t * 3548 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3549 { 3550 icmph_t *icmph; 3551 ipha_t *ipha; 3552 uint_t len_needed; 3553 ire_t *src_ire; 3554 ire_t *dst_ire; 3555 3556 if (!mp) 3557 return (NULL); 3558 ipha = (ipha_t *)mp->b_rptr; 3559 if (ip_csum_hdr(ipha)) { 3560 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3561 freemsg(mp); 3562 return (NULL); 3563 } 3564 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3565 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3566 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3567 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3568 if (src_ire != NULL || dst_ire != NULL || 3569 CLASSD(ipha->ipha_dst) || 3570 CLASSD(ipha->ipha_src) || 3571 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3572 /* Note: only errors to the fragment with offset 0 */ 3573 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3574 freemsg(mp); 3575 if (src_ire != NULL) 3576 ire_refrele(src_ire); 3577 if (dst_ire != NULL) 3578 ire_refrele(dst_ire); 3579 return (NULL); 3580 } 3581 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3582 /* 3583 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3584 * errors in response to any ICMP errors. 3585 */ 3586 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3587 if (mp->b_wptr - mp->b_rptr < len_needed) { 3588 if (!pullupmsg(mp, len_needed)) { 3589 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3590 freemsg(mp); 3591 return (NULL); 3592 } 3593 ipha = (ipha_t *)mp->b_rptr; 3594 } 3595 icmph = (icmph_t *) 3596 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3597 switch (icmph->icmph_type) { 3598 case ICMP_DEST_UNREACHABLE: 3599 case ICMP_SOURCE_QUENCH: 3600 case ICMP_TIME_EXCEEDED: 3601 case ICMP_PARAM_PROBLEM: 3602 case ICMP_REDIRECT: 3603 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3604 freemsg(mp); 3605 return (NULL); 3606 default: 3607 break; 3608 } 3609 } 3610 /* 3611 * If this is a labeled system, then check to see if we're allowed to 3612 * send a response to this particular sender. If not, then just drop. 3613 */ 3614 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3615 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3616 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3617 freemsg(mp); 3618 return (NULL); 3619 } 3620 if (icmp_err_rate_limit(ipst)) { 3621 /* 3622 * Only send ICMP error packets every so often. 3623 * This should be done on a per port/source basis, 3624 * but for now this will suffice. 3625 */ 3626 freemsg(mp); 3627 return (NULL); 3628 } 3629 return (mp); 3630 } 3631 3632 /* 3633 * Generate an ICMP redirect message. 3634 */ 3635 static void 3636 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3637 { 3638 icmph_t icmph; 3639 3640 /* 3641 * We are called from ip_rput where we could 3642 * not have attached an IPSEC_IN. 3643 */ 3644 ASSERT(mp->b_datap->db_type == M_DATA); 3645 3646 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3647 return; 3648 } 3649 3650 bzero(&icmph, sizeof (icmph_t)); 3651 icmph.icmph_type = ICMP_REDIRECT; 3652 icmph.icmph_code = 1; 3653 icmph.icmph_rd_gateway = gateway; 3654 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3655 /* Redirects sent by router, and router is global zone */ 3656 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3657 } 3658 3659 /* 3660 * Generate an ICMP time exceeded message. 3661 */ 3662 void 3663 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3664 ip_stack_t *ipst) 3665 { 3666 icmph_t icmph; 3667 boolean_t mctl_present; 3668 mblk_t *first_mp; 3669 3670 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3671 3672 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3673 if (mctl_present) 3674 freeb(first_mp); 3675 return; 3676 } 3677 3678 bzero(&icmph, sizeof (icmph_t)); 3679 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3680 icmph.icmph_code = code; 3681 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3682 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3683 ipst); 3684 } 3685 3686 /* 3687 * Generate an ICMP unreachable message. 3688 */ 3689 void 3690 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3691 ip_stack_t *ipst) 3692 { 3693 icmph_t icmph; 3694 mblk_t *first_mp; 3695 boolean_t mctl_present; 3696 3697 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3698 3699 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3700 if (mctl_present) 3701 freeb(first_mp); 3702 return; 3703 } 3704 3705 bzero(&icmph, sizeof (icmph_t)); 3706 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3707 icmph.icmph_code = code; 3708 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3709 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3710 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3711 zoneid, ipst); 3712 } 3713 3714 /* 3715 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3716 * duplicate. As long as someone else holds the address, the interface will 3717 * stay down. When that conflict goes away, the interface is brought back up. 3718 * This is done so that accidental shutdowns of addresses aren't made 3719 * permanent. Your server will recover from a failure. 3720 * 3721 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3722 * user space process (dhcpagent). 3723 * 3724 * Recovery completes if ARP reports that the address is now ours (via 3725 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3726 * 3727 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3728 */ 3729 static void 3730 ipif_dup_recovery(void *arg) 3731 { 3732 ipif_t *ipif = arg; 3733 ill_t *ill = ipif->ipif_ill; 3734 mblk_t *arp_add_mp; 3735 mblk_t *arp_del_mp; 3736 area_t *area; 3737 ip_stack_t *ipst = ill->ill_ipst; 3738 3739 ipif->ipif_recovery_id = 0; 3740 3741 /* 3742 * No lock needed for moving or condemned check, as this is just an 3743 * optimization. 3744 */ 3745 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3746 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3747 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3748 /* No reason to try to bring this address back. */ 3749 return; 3750 } 3751 3752 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3753 goto alloc_fail; 3754 3755 if (ipif->ipif_arp_del_mp == NULL) { 3756 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3757 goto alloc_fail; 3758 ipif->ipif_arp_del_mp = arp_del_mp; 3759 } 3760 3761 /* Setting the 'unverified' flag restarts DAD */ 3762 area = (area_t *)arp_add_mp->b_rptr; 3763 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3764 ACE_F_UNVERIFIED; 3765 putnext(ill->ill_rq, arp_add_mp); 3766 return; 3767 3768 alloc_fail: 3769 /* 3770 * On allocation failure, just restart the timer. Note that the ipif 3771 * is down here, so no other thread could be trying to start a recovery 3772 * timer. The ill_lock protects the condemned flag and the recovery 3773 * timer ID. 3774 */ 3775 freemsg(arp_add_mp); 3776 mutex_enter(&ill->ill_lock); 3777 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3778 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3779 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3780 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3781 } 3782 mutex_exit(&ill->ill_lock); 3783 } 3784 3785 /* 3786 * This is for exclusive changes due to ARP. Either tear down an interface due 3787 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3788 */ 3789 /* ARGSUSED */ 3790 static void 3791 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3792 { 3793 ill_t *ill = rq->q_ptr; 3794 arh_t *arh; 3795 ipaddr_t src; 3796 ipif_t *ipif; 3797 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3798 char hbuf[MAC_STR_LEN]; 3799 char sbuf[INET_ADDRSTRLEN]; 3800 const char *failtype; 3801 boolean_t bring_up; 3802 ip_stack_t *ipst = ill->ill_ipst; 3803 3804 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3805 case AR_CN_READY: 3806 failtype = NULL; 3807 bring_up = B_TRUE; 3808 break; 3809 case AR_CN_FAILED: 3810 failtype = "in use"; 3811 bring_up = B_FALSE; 3812 break; 3813 default: 3814 failtype = "claimed"; 3815 bring_up = B_FALSE; 3816 break; 3817 } 3818 3819 arh = (arh_t *)mp->b_cont->b_rptr; 3820 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3821 3822 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3823 sizeof (hbuf)); 3824 (void) ip_dot_addr(src, sbuf); 3825 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3826 3827 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3828 ipif->ipif_lcl_addr != src) { 3829 continue; 3830 } 3831 3832 /* 3833 * If we failed on a recovery probe, then restart the timer to 3834 * try again later. 3835 */ 3836 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3837 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3838 ill->ill_net_type == IRE_IF_RESOLVER && 3839 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3840 ipst->ips_ip_dup_recovery > 0 && 3841 ipif->ipif_recovery_id == 0) { 3842 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3843 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3844 continue; 3845 } 3846 3847 /* 3848 * If what we're trying to do has already been done, then do 3849 * nothing. 3850 */ 3851 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3852 continue; 3853 3854 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3855 3856 if (failtype == NULL) { 3857 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3858 ibuf); 3859 } else { 3860 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3861 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3862 } 3863 3864 if (bring_up) { 3865 ASSERT(ill->ill_dl_up); 3866 /* 3867 * Free up the ARP delete message so we can allocate 3868 * a fresh one through the normal path. 3869 */ 3870 freemsg(ipif->ipif_arp_del_mp); 3871 ipif->ipif_arp_del_mp = NULL; 3872 if (ipif_resolver_up(ipif, Res_act_initial) != 3873 EINPROGRESS) { 3874 ipif->ipif_addr_ready = 1; 3875 (void) ipif_up_done(ipif); 3876 } 3877 continue; 3878 } 3879 3880 mutex_enter(&ill->ill_lock); 3881 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3882 ipif->ipif_flags |= IPIF_DUPLICATE; 3883 ill->ill_ipif_dup_count++; 3884 mutex_exit(&ill->ill_lock); 3885 /* 3886 * Already exclusive on the ill; no need to handle deferred 3887 * processing here. 3888 */ 3889 (void) ipif_down(ipif, NULL, NULL); 3890 ipif_down_tail(ipif); 3891 mutex_enter(&ill->ill_lock); 3892 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3893 ill->ill_net_type == IRE_IF_RESOLVER && 3894 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3895 ipst->ips_ip_dup_recovery > 0) { 3896 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3897 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3898 } 3899 mutex_exit(&ill->ill_lock); 3900 } 3901 freemsg(mp); 3902 } 3903 3904 /* ARGSUSED */ 3905 static void 3906 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3907 { 3908 ill_t *ill = rq->q_ptr; 3909 arh_t *arh; 3910 ipaddr_t src; 3911 ipif_t *ipif; 3912 3913 arh = (arh_t *)mp->b_cont->b_rptr; 3914 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3915 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3916 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3917 (void) ipif_resolver_up(ipif, Res_act_defend); 3918 } 3919 freemsg(mp); 3920 } 3921 3922 /* 3923 * News from ARP. ARP sends notification of interesting events down 3924 * to its clients using M_CTL messages with the interesting ARP packet 3925 * attached via b_cont. 3926 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3927 * queue as opposed to ARP sending the message to all the clients, i.e. all 3928 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3929 * table if a cache IRE is found to delete all the entries for the address in 3930 * the packet. 3931 */ 3932 static void 3933 ip_arp_news(queue_t *q, mblk_t *mp) 3934 { 3935 arcn_t *arcn; 3936 arh_t *arh; 3937 ire_t *ire = NULL; 3938 char hbuf[MAC_STR_LEN]; 3939 char sbuf[INET_ADDRSTRLEN]; 3940 ipaddr_t src; 3941 in6_addr_t v6src; 3942 boolean_t isv6 = B_FALSE; 3943 ipif_t *ipif; 3944 ill_t *ill; 3945 ip_stack_t *ipst; 3946 3947 if (CONN_Q(q)) { 3948 conn_t *connp = Q_TO_CONN(q); 3949 3950 ipst = connp->conn_netstack->netstack_ip; 3951 } else { 3952 ill_t *ill = (ill_t *)q->q_ptr; 3953 3954 ipst = ill->ill_ipst; 3955 } 3956 3957 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3958 if (q->q_next) { 3959 putnext(q, mp); 3960 } else 3961 freemsg(mp); 3962 return; 3963 } 3964 arh = (arh_t *)mp->b_cont->b_rptr; 3965 /* Is it one we are interested in? */ 3966 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3967 isv6 = B_TRUE; 3968 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3969 IPV6_ADDR_LEN); 3970 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3971 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3972 IP_ADDR_LEN); 3973 } else { 3974 freemsg(mp); 3975 return; 3976 } 3977 3978 ill = q->q_ptr; 3979 3980 arcn = (arcn_t *)mp->b_rptr; 3981 switch (arcn->arcn_code) { 3982 case AR_CN_BOGON: 3983 /* 3984 * Someone is sending ARP packets with a source protocol 3985 * address that we have published and for which we believe our 3986 * entry is authoritative and (when ill_arp_extend is set) 3987 * verified to be unique on the network. 3988 * 3989 * The ARP module internally handles the cases where the sender 3990 * is just probing (for DAD) and where the hardware address of 3991 * a non-authoritative entry has changed. Thus, these are the 3992 * real conflicts, and we have to do resolution. 3993 * 3994 * We back away quickly from the address if it's from DHCP or 3995 * otherwise temporary and hasn't been used recently (or at 3996 * all). We'd like to include "deprecated" addresses here as 3997 * well (as there's no real reason to defend something we're 3998 * discarding), but IPMP "reuses" this flag to mean something 3999 * other than the standard meaning. 4000 * 4001 * If the ARP module above is not extended (meaning that it 4002 * doesn't know how to defend the address), then we just log 4003 * the problem as we always did and continue on. It's not 4004 * right, but there's little else we can do, and those old ATM 4005 * users are going away anyway. 4006 */ 4007 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4008 hbuf, sizeof (hbuf)); 4009 (void) ip_dot_addr(src, sbuf); 4010 if (isv6) { 4011 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4012 ipst); 4013 } else { 4014 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4015 } 4016 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4017 uint32_t now; 4018 uint32_t maxage; 4019 clock_t lused; 4020 uint_t maxdefense; 4021 uint_t defs; 4022 4023 /* 4024 * First, figure out if this address hasn't been used 4025 * in a while. If it hasn't, then it's a better 4026 * candidate for abandoning. 4027 */ 4028 ipif = ire->ire_ipif; 4029 ASSERT(ipif != NULL); 4030 now = gethrestime_sec(); 4031 maxage = now - ire->ire_create_time; 4032 if (maxage > ipst->ips_ip_max_temp_idle) 4033 maxage = ipst->ips_ip_max_temp_idle; 4034 lused = drv_hztousec(ddi_get_lbolt() - 4035 ire->ire_last_used_time) / MICROSEC + 1; 4036 if (lused >= maxage && (ipif->ipif_flags & 4037 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4038 maxdefense = ipst->ips_ip_max_temp_defend; 4039 else 4040 maxdefense = ipst->ips_ip_max_defend; 4041 4042 /* 4043 * Now figure out how many times we've defended 4044 * ourselves. Ignore defenses that happened long in 4045 * the past. 4046 */ 4047 mutex_enter(&ire->ire_lock); 4048 if ((defs = ire->ire_defense_count) > 0 && 4049 now - ire->ire_defense_time > 4050 ipst->ips_ip_defend_interval) { 4051 ire->ire_defense_count = defs = 0; 4052 } 4053 ire->ire_defense_count++; 4054 ire->ire_defense_time = now; 4055 mutex_exit(&ire->ire_lock); 4056 ill_refhold(ill); 4057 ire_refrele(ire); 4058 4059 /* 4060 * If we've defended ourselves too many times already, 4061 * then give up and tear down the interface(s) using 4062 * this address. Otherwise, defend by sending out a 4063 * gratuitous ARP. 4064 */ 4065 if (defs >= maxdefense && ill->ill_arp_extend) { 4066 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4067 B_FALSE); 4068 } else { 4069 cmn_err(CE_WARN, 4070 "node %s is using our IP address %s on %s", 4071 hbuf, sbuf, ill->ill_name); 4072 /* 4073 * If this is an old (ATM) ARP module, then 4074 * don't try to defend the address. Remain 4075 * compatible with the old behavior. Defend 4076 * only with new ARP. 4077 */ 4078 if (ill->ill_arp_extend) { 4079 qwriter_ip(ill, q, mp, ip_arp_defend, 4080 NEW_OP, B_FALSE); 4081 } else { 4082 ill_refrele(ill); 4083 } 4084 } 4085 return; 4086 } 4087 cmn_err(CE_WARN, 4088 "proxy ARP problem? Node '%s' is using %s on %s", 4089 hbuf, sbuf, ill->ill_name); 4090 if (ire != NULL) 4091 ire_refrele(ire); 4092 break; 4093 case AR_CN_ANNOUNCE: 4094 if (isv6) { 4095 /* 4096 * For XRESOLV interfaces. 4097 * Delete the IRE cache entry and NCE for this 4098 * v6 address 4099 */ 4100 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4101 /* 4102 * If v6src is a non-zero, it's a router address 4103 * as below. Do the same sort of thing to clean 4104 * out off-net IRE_CACHE entries that go through 4105 * the router. 4106 */ 4107 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4108 ire_walk_v6(ire_delete_cache_gw_v6, 4109 (char *)&v6src, ALL_ZONES, ipst); 4110 } 4111 } else { 4112 nce_hw_map_t hwm; 4113 4114 /* 4115 * ARP gives us a copy of any packet where it thinks 4116 * the address has changed, so that we can update our 4117 * caches. We're responsible for caching known answers 4118 * in the current design. We check whether the 4119 * hardware address really has changed in all of our 4120 * entries that have cached this mapping, and if so, we 4121 * blow them away. This way we will immediately pick 4122 * up the rare case of a host changing hardware 4123 * address. 4124 */ 4125 if (src == 0) 4126 break; 4127 hwm.hwm_addr = src; 4128 hwm.hwm_hwlen = arh->arh_hlen; 4129 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4130 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4131 ndp_walk_common(ipst->ips_ndp4, NULL, 4132 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4133 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4134 } 4135 break; 4136 case AR_CN_READY: 4137 /* No external v6 resolver has a contract to use this */ 4138 if (isv6) 4139 break; 4140 /* If the link is down, we'll retry this later */ 4141 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4142 break; 4143 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4144 NULL, NULL, ipst); 4145 if (ipif != NULL) { 4146 /* 4147 * If this is a duplicate recovery, then we now need to 4148 * go exclusive to bring this thing back up. 4149 */ 4150 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4151 IPIF_DUPLICATE) { 4152 ipif_refrele(ipif); 4153 ill_refhold(ill); 4154 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4155 B_FALSE); 4156 return; 4157 } 4158 /* 4159 * If this is the first notice that this address is 4160 * ready, then let the user know now. 4161 */ 4162 if ((ipif->ipif_flags & IPIF_UP) && 4163 !ipif->ipif_addr_ready) { 4164 ipif_mask_reply(ipif); 4165 ipif_up_notify(ipif); 4166 } 4167 ipif->ipif_addr_ready = 1; 4168 ipif_refrele(ipif); 4169 } 4170 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4171 if (ire != NULL) { 4172 ire->ire_defense_count = 0; 4173 ire_refrele(ire); 4174 } 4175 break; 4176 case AR_CN_FAILED: 4177 /* No external v6 resolver has a contract to use this */ 4178 if (isv6) 4179 break; 4180 ill_refhold(ill); 4181 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4182 return; 4183 } 4184 freemsg(mp); 4185 } 4186 4187 /* 4188 * Create a mblk suitable for carrying the interface index and/or source link 4189 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4190 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4191 * application. 4192 */ 4193 mblk_t * 4194 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4195 ip_stack_t *ipst) 4196 { 4197 mblk_t *mp; 4198 ip_pktinfo_t *pinfo; 4199 ipha_t *ipha; 4200 struct ether_header *pether; 4201 4202 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4203 if (mp == NULL) { 4204 ip1dbg(("ip_add_info: allocation failure.\n")); 4205 return (data_mp); 4206 } 4207 4208 ipha = (ipha_t *)data_mp->b_rptr; 4209 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4210 bzero(pinfo, sizeof (ip_pktinfo_t)); 4211 pinfo->ip_pkt_flags = (uchar_t)flags; 4212 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4213 4214 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4215 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4216 if (flags & IPF_RECVADDR) { 4217 ipif_t *ipif; 4218 ire_t *ire; 4219 4220 /* 4221 * Only valid for V4 4222 */ 4223 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4224 (IPV4_VERSION << 4)); 4225 4226 ipif = ipif_get_next_ipif(NULL, ill); 4227 if (ipif != NULL) { 4228 /* 4229 * Since a decision has already been made to deliver the 4230 * packet, there is no need to test for SECATTR and 4231 * ZONEONLY. 4232 * When a multicast packet is transmitted 4233 * a cache entry is created for the multicast address. 4234 * When delivering a copy of the packet or when new 4235 * packets are received we do not want to match on the 4236 * cached entry so explicitly match on 4237 * IRE_LOCAL and IRE_LOOPBACK 4238 */ 4239 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4240 IRE_LOCAL | IRE_LOOPBACK, 4241 ipif, zoneid, NULL, 4242 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4243 if (ire == NULL) { 4244 /* 4245 * packet must have come on a different 4246 * interface. 4247 * Since a decision has already been made to 4248 * deliver the packet, there is no need to test 4249 * for SECATTR and ZONEONLY. 4250 * Only match on local and broadcast ire's. 4251 * See detailed comment above. 4252 */ 4253 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4254 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4255 NULL, MATCH_IRE_TYPE, ipst); 4256 } 4257 4258 if (ire == NULL) { 4259 /* 4260 * This is either a multicast packet or 4261 * the address has been removed since 4262 * the packet was received. 4263 * Return INADDR_ANY so that normal source 4264 * selection occurs for the response. 4265 */ 4266 4267 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4268 } else { 4269 pinfo->ip_pkt_match_addr.s_addr = 4270 ire->ire_src_addr; 4271 ire_refrele(ire); 4272 } 4273 ipif_refrele(ipif); 4274 } else { 4275 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4276 } 4277 } 4278 4279 pether = (struct ether_header *)((char *)ipha 4280 - sizeof (struct ether_header)); 4281 /* 4282 * Make sure the interface is an ethernet type, since this option 4283 * is currently supported only on this type of interface. Also make 4284 * sure we are pointing correctly above db_base. 4285 */ 4286 4287 if ((flags & IPF_RECVSLLA) && 4288 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4289 (ill->ill_type == IFT_ETHER) && 4290 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4291 4292 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4293 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4294 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4295 } else { 4296 /* 4297 * Clear the bit. Indicate to upper layer that IP is not 4298 * sending this ancillary info. 4299 */ 4300 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4301 } 4302 4303 mp->b_datap->db_type = M_CTL; 4304 mp->b_wptr += sizeof (ip_pktinfo_t); 4305 mp->b_cont = data_mp; 4306 4307 return (mp); 4308 } 4309 4310 /* 4311 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4312 * part of the bind request. 4313 */ 4314 4315 boolean_t 4316 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4317 { 4318 ipsec_in_t *ii; 4319 4320 ASSERT(policy_mp != NULL); 4321 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4322 4323 ii = (ipsec_in_t *)policy_mp->b_rptr; 4324 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4325 4326 connp->conn_policy = ii->ipsec_in_policy; 4327 ii->ipsec_in_policy = NULL; 4328 4329 if (ii->ipsec_in_action != NULL) { 4330 if (connp->conn_latch == NULL) { 4331 connp->conn_latch = iplatch_create(); 4332 if (connp->conn_latch == NULL) 4333 return (B_FALSE); 4334 } 4335 ipsec_latch_inbound(connp->conn_latch, ii); 4336 } 4337 return (B_TRUE); 4338 } 4339 4340 /* 4341 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4342 * and to arrange for power-fanout assist. The ULP is identified by 4343 * adding a single byte at the end of the original bind message. 4344 * A ULP other than UDP or TCP that wishes to be recognized passes 4345 * down a bind with a zero length address. 4346 * 4347 * The binding works as follows: 4348 * - A zero byte address means just bind to the protocol. 4349 * - A four byte address is treated as a request to validate 4350 * that the address is a valid local address, appropriate for 4351 * an application to bind to. This does not affect any fanout 4352 * information in IP. 4353 * - A sizeof sin_t byte address is used to bind to only the local address 4354 * and port. 4355 * - A sizeof ipa_conn_t byte address contains complete fanout information 4356 * consisting of local and remote addresses and ports. In 4357 * this case, the addresses are both validated as appropriate 4358 * for this operation, and, if so, the information is retained 4359 * for use in the inbound fanout. 4360 * 4361 * The ULP (except in the zero-length bind) can append an 4362 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4363 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4364 * a copy of the source or destination IRE (source for local bind; 4365 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4366 * policy information contained should be copied on to the conn. 4367 * 4368 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4369 */ 4370 mblk_t * 4371 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4372 { 4373 ssize_t len; 4374 struct T_bind_req *tbr; 4375 sin_t *sin; 4376 ipa_conn_t *ac; 4377 uchar_t *ucp; 4378 mblk_t *mp1; 4379 boolean_t ire_requested; 4380 boolean_t ipsec_policy_set = B_FALSE; 4381 int error = 0; 4382 int protocol; 4383 ipa_conn_x_t *acx; 4384 4385 ASSERT(!connp->conn_af_isv6); 4386 connp->conn_pkt_isv6 = B_FALSE; 4387 4388 len = MBLKL(mp); 4389 if (len < (sizeof (*tbr) + 1)) { 4390 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4391 "ip_bind: bogus msg, len %ld", len); 4392 /* XXX: Need to return something better */ 4393 goto bad_addr; 4394 } 4395 /* Back up and extract the protocol identifier. */ 4396 mp->b_wptr--; 4397 protocol = *mp->b_wptr & 0xFF; 4398 tbr = (struct T_bind_req *)mp->b_rptr; 4399 /* Reset the message type in preparation for shipping it back. */ 4400 DB_TYPE(mp) = M_PCPROTO; 4401 4402 connp->conn_ulp = (uint8_t)protocol; 4403 4404 /* 4405 * Check for a zero length address. This is from a protocol that 4406 * wants to register to receive all packets of its type. 4407 */ 4408 if (tbr->ADDR_length == 0) { 4409 /* 4410 * These protocols are now intercepted in ip_bind_v6(). 4411 * Reject protocol-level binds here for now. 4412 * 4413 * For SCTP raw socket, ICMP sends down a bind with sin_t 4414 * so that the protocol type cannot be SCTP. 4415 */ 4416 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4417 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4418 goto bad_addr; 4419 } 4420 4421 /* 4422 * 4423 * The udp module never sends down a zero-length address, 4424 * and allowing this on a labeled system will break MLP 4425 * functionality. 4426 */ 4427 if (is_system_labeled() && protocol == IPPROTO_UDP) 4428 goto bad_addr; 4429 4430 if (connp->conn_mac_exempt) 4431 goto bad_addr; 4432 4433 /* No hash here really. The table is big enough. */ 4434 connp->conn_srcv6 = ipv6_all_zeros; 4435 4436 ipcl_proto_insert(connp, protocol); 4437 4438 tbr->PRIM_type = T_BIND_ACK; 4439 return (mp); 4440 } 4441 4442 /* Extract the address pointer from the message. */ 4443 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4444 tbr->ADDR_length); 4445 if (ucp == NULL) { 4446 ip1dbg(("ip_bind: no address\n")); 4447 goto bad_addr; 4448 } 4449 if (!OK_32PTR(ucp)) { 4450 ip1dbg(("ip_bind: unaligned address\n")); 4451 goto bad_addr; 4452 } 4453 /* 4454 * Check for trailing mps. 4455 */ 4456 4457 mp1 = mp->b_cont; 4458 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4459 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4460 4461 switch (tbr->ADDR_length) { 4462 default: 4463 ip1dbg(("ip_bind: bad address length %d\n", 4464 (int)tbr->ADDR_length)); 4465 goto bad_addr; 4466 4467 case IP_ADDR_LEN: 4468 /* Verification of local address only */ 4469 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4470 ire_requested, ipsec_policy_set, B_FALSE); 4471 break; 4472 4473 case sizeof (sin_t): 4474 sin = (sin_t *)ucp; 4475 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4476 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4477 break; 4478 4479 case sizeof (ipa_conn_t): 4480 ac = (ipa_conn_t *)ucp; 4481 /* For raw socket, the local port is not set. */ 4482 if (ac->ac_lport == 0) 4483 ac->ac_lport = connp->conn_lport; 4484 /* Always verify destination reachability. */ 4485 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4486 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4487 ipsec_policy_set, B_TRUE, B_TRUE); 4488 break; 4489 4490 case sizeof (ipa_conn_x_t): 4491 acx = (ipa_conn_x_t *)ucp; 4492 /* 4493 * Whether or not to verify destination reachability depends 4494 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4495 */ 4496 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4497 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4498 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4499 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4500 break; 4501 } 4502 if (error == EINPROGRESS) 4503 return (NULL); 4504 else if (error != 0) 4505 goto bad_addr; 4506 /* 4507 * Pass the IPsec headers size in ire_ipsec_overhead. 4508 * We can't do this in ip_bind_insert_ire because the policy 4509 * may not have been inherited at that point in time and hence 4510 * conn_out_enforce_policy may not be set. 4511 */ 4512 mp1 = mp->b_cont; 4513 if (ire_requested && connp->conn_out_enforce_policy && 4514 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4515 ire_t *ire = (ire_t *)mp1->b_rptr; 4516 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4517 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4518 } 4519 4520 /* Send it home. */ 4521 mp->b_datap->db_type = M_PCPROTO; 4522 tbr->PRIM_type = T_BIND_ACK; 4523 return (mp); 4524 4525 bad_addr: 4526 /* 4527 * If error = -1 then we generate a TBADADDR - otherwise error is 4528 * a unix errno. 4529 */ 4530 if (error > 0) 4531 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4532 else 4533 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4534 return (mp); 4535 } 4536 4537 /* 4538 * Here address is verified to be a valid local address. 4539 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4540 * address is also considered a valid local address. 4541 * In the case of a broadcast/multicast address, however, the 4542 * upper protocol is expected to reset the src address 4543 * to 0 if it sees a IRE_BROADCAST type returned so that 4544 * no packets are emitted with broadcast/multicast address as 4545 * source address (that violates hosts requirements RFC1122) 4546 * The addresses valid for bind are: 4547 * (1) - INADDR_ANY (0) 4548 * (2) - IP address of an UP interface 4549 * (3) - IP address of a DOWN interface 4550 * (4) - valid local IP broadcast addresses. In this case 4551 * the conn will only receive packets destined to 4552 * the specified broadcast address. 4553 * (5) - a multicast address. In this case 4554 * the conn will only receive packets destined to 4555 * the specified multicast address. Note: the 4556 * application still has to issue an 4557 * IP_ADD_MEMBERSHIP socket option. 4558 * 4559 * On error, return -1 for TBADADDR otherwise pass the 4560 * errno with TSYSERR reply. 4561 * 4562 * In all the above cases, the bound address must be valid in the current zone. 4563 * When the address is loopback, multicast or broadcast, there might be many 4564 * matching IREs so bind has to look up based on the zone. 4565 * 4566 * Note: lport is in network byte order. 4567 */ 4568 int 4569 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4570 boolean_t ire_requested, boolean_t ipsec_policy_set, 4571 boolean_t fanout_insert) 4572 { 4573 int error = 0; 4574 ire_t *src_ire; 4575 mblk_t *policy_mp; 4576 ipif_t *ipif; 4577 zoneid_t zoneid; 4578 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4579 4580 if (ipsec_policy_set) { 4581 policy_mp = mp->b_cont; 4582 } 4583 4584 /* 4585 * If it was previously connected, conn_fully_bound would have 4586 * been set. 4587 */ 4588 connp->conn_fully_bound = B_FALSE; 4589 4590 src_ire = NULL; 4591 ipif = NULL; 4592 4593 zoneid = IPCL_ZONEID(connp); 4594 4595 if (src_addr) { 4596 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4597 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4598 /* 4599 * If an address other than 0.0.0.0 is requested, 4600 * we verify that it is a valid address for bind 4601 * Note: Following code is in if-else-if form for 4602 * readability compared to a condition check. 4603 */ 4604 /* LINTED - statement has no consequent */ 4605 if (IRE_IS_LOCAL(src_ire)) { 4606 /* 4607 * (2) Bind to address of local UP interface 4608 */ 4609 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4610 /* 4611 * (4) Bind to broadcast address 4612 * Note: permitted only from transports that 4613 * request IRE 4614 */ 4615 if (!ire_requested) 4616 error = EADDRNOTAVAIL; 4617 } else { 4618 /* 4619 * (3) Bind to address of local DOWN interface 4620 * (ipif_lookup_addr() looks up all interfaces 4621 * but we do not get here for UP interfaces 4622 * - case (2) above) 4623 * We put the protocol byte back into the mblk 4624 * since we may come back via ip_wput_nondata() 4625 * later with this mblk if ipif_lookup_addr chooses 4626 * to defer processing. 4627 */ 4628 *mp->b_wptr++ = (char)connp->conn_ulp; 4629 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4630 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4631 &error, ipst)) != NULL) { 4632 ipif_refrele(ipif); 4633 } else if (error == EINPROGRESS) { 4634 if (src_ire != NULL) 4635 ire_refrele(src_ire); 4636 return (EINPROGRESS); 4637 } else if (CLASSD(src_addr)) { 4638 error = 0; 4639 if (src_ire != NULL) 4640 ire_refrele(src_ire); 4641 /* 4642 * (5) bind to multicast address. 4643 * Fake out the IRE returned to upper 4644 * layer to be a broadcast IRE. 4645 */ 4646 src_ire = ire_ctable_lookup( 4647 INADDR_BROADCAST, INADDR_ANY, 4648 IRE_BROADCAST, NULL, zoneid, NULL, 4649 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4650 ipst); 4651 if (src_ire == NULL || !ire_requested) 4652 error = EADDRNOTAVAIL; 4653 } else { 4654 /* 4655 * Not a valid address for bind 4656 */ 4657 error = EADDRNOTAVAIL; 4658 } 4659 /* 4660 * Just to keep it consistent with the processing in 4661 * ip_bind_v4() 4662 */ 4663 mp->b_wptr--; 4664 } 4665 if (error) { 4666 /* Red Alert! Attempting to be a bogon! */ 4667 ip1dbg(("ip_bind: bad src address 0x%x\n", 4668 ntohl(src_addr))); 4669 goto bad_addr; 4670 } 4671 } 4672 4673 /* 4674 * Allow setting new policies. For example, disconnects come 4675 * down as ipa_t bind. As we would have set conn_policy_cached 4676 * to B_TRUE before, we should set it to B_FALSE, so that policy 4677 * can change after the disconnect. 4678 */ 4679 connp->conn_policy_cached = B_FALSE; 4680 4681 /* 4682 * If not fanout_insert this was just an address verification 4683 */ 4684 if (fanout_insert) { 4685 /* 4686 * The addresses have been verified. Time to insert in 4687 * the correct fanout list. 4688 */ 4689 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4690 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4691 connp->conn_lport = lport; 4692 connp->conn_fport = 0; 4693 /* 4694 * Do we need to add a check to reject Multicast packets 4695 */ 4696 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4697 } 4698 4699 if (error == 0) { 4700 if (ire_requested) { 4701 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4702 error = -1; 4703 /* Falls through to bad_addr */ 4704 } 4705 } else if (ipsec_policy_set) { 4706 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4707 error = -1; 4708 /* Falls through to bad_addr */ 4709 } 4710 } 4711 } 4712 bad_addr: 4713 if (error != 0) { 4714 if (connp->conn_anon_port) { 4715 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4716 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4717 B_FALSE); 4718 } 4719 connp->conn_mlp_type = mlptSingle; 4720 } 4721 if (src_ire != NULL) 4722 IRE_REFRELE(src_ire); 4723 if (ipsec_policy_set) { 4724 ASSERT(policy_mp == mp->b_cont); 4725 ASSERT(policy_mp != NULL); 4726 freeb(policy_mp); 4727 /* 4728 * As of now assume that nothing else accompanies 4729 * IPSEC_POLICY_SET. 4730 */ 4731 mp->b_cont = NULL; 4732 } 4733 return (error); 4734 } 4735 4736 /* 4737 * Verify that both the source and destination addresses 4738 * are valid. If verify_dst is false, then the destination address may be 4739 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4740 * destination reachability, while tunnels do not. 4741 * Note that we allow connect to broadcast and multicast 4742 * addresses when ire_requested is set. Thus the ULP 4743 * has to check for IRE_BROADCAST and multicast. 4744 * 4745 * Returns zero if ok. 4746 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4747 * (for use with TSYSERR reply). 4748 * 4749 * Note: lport and fport are in network byte order. 4750 */ 4751 int 4752 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4753 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4754 boolean_t ire_requested, boolean_t ipsec_policy_set, 4755 boolean_t fanout_insert, boolean_t verify_dst) 4756 { 4757 ire_t *src_ire; 4758 ire_t *dst_ire; 4759 int error = 0; 4760 int protocol; 4761 mblk_t *policy_mp; 4762 ire_t *sire = NULL; 4763 ire_t *md_dst_ire = NULL; 4764 ire_t *lso_dst_ire = NULL; 4765 ill_t *ill = NULL; 4766 zoneid_t zoneid; 4767 ipaddr_t src_addr = *src_addrp; 4768 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4769 4770 src_ire = dst_ire = NULL; 4771 protocol = *mp->b_wptr & 0xFF; 4772 4773 /* 4774 * If we never got a disconnect before, clear it now. 4775 */ 4776 connp->conn_fully_bound = B_FALSE; 4777 4778 if (ipsec_policy_set) { 4779 policy_mp = mp->b_cont; 4780 } 4781 4782 zoneid = IPCL_ZONEID(connp); 4783 4784 if (CLASSD(dst_addr)) { 4785 /* Pick up an IRE_BROADCAST */ 4786 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4787 NULL, zoneid, MBLK_GETLABEL(mp), 4788 (MATCH_IRE_RECURSIVE | 4789 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4790 MATCH_IRE_SECATTR), ipst); 4791 } else { 4792 /* 4793 * If conn_dontroute is set or if conn_nexthop_set is set, 4794 * and onlink ipif is not found set ENETUNREACH error. 4795 */ 4796 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4797 ipif_t *ipif; 4798 4799 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4800 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4801 if (ipif == NULL) { 4802 error = ENETUNREACH; 4803 goto bad_addr; 4804 } 4805 ipif_refrele(ipif); 4806 } 4807 4808 if (connp->conn_nexthop_set) { 4809 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4810 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4811 MATCH_IRE_SECATTR, ipst); 4812 } else { 4813 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4814 &sire, zoneid, MBLK_GETLABEL(mp), 4815 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4816 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4817 MATCH_IRE_SECATTR), ipst); 4818 } 4819 } 4820 /* 4821 * dst_ire can't be a broadcast when not ire_requested. 4822 * We also prevent ire's with src address INADDR_ANY to 4823 * be used, which are created temporarily for 4824 * sending out packets from endpoints that have 4825 * conn_unspec_src set. If verify_dst is true, the destination must be 4826 * reachable. If verify_dst is false, the destination needn't be 4827 * reachable. 4828 * 4829 * If we match on a reject or black hole, then we've got a 4830 * local failure. May as well fail out the connect() attempt, 4831 * since it's never going to succeed. 4832 */ 4833 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4834 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4835 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4836 /* 4837 * If we're verifying destination reachability, we always want 4838 * to complain here. 4839 * 4840 * If we're not verifying destination reachability but the 4841 * destination has a route, we still want to fail on the 4842 * temporary address and broadcast address tests. 4843 */ 4844 if (verify_dst || (dst_ire != NULL)) { 4845 if (ip_debug > 2) { 4846 pr_addr_dbg("ip_bind_connected: bad connected " 4847 "dst %s\n", AF_INET, &dst_addr); 4848 } 4849 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4850 error = ENETUNREACH; 4851 else 4852 error = EHOSTUNREACH; 4853 goto bad_addr; 4854 } 4855 } 4856 4857 /* 4858 * We now know that routing will allow us to reach the destination. 4859 * Check whether Trusted Solaris policy allows communication with this 4860 * host, and pretend that the destination is unreachable if not. 4861 * 4862 * This is never a problem for TCP, since that transport is known to 4863 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4864 * handling. If the remote is unreachable, it will be detected at that 4865 * point, so there's no reason to check it here. 4866 * 4867 * Note that for sendto (and other datagram-oriented friends), this 4868 * check is done as part of the data path label computation instead. 4869 * The check here is just to make non-TCP connect() report the right 4870 * error. 4871 */ 4872 if (dst_ire != NULL && is_system_labeled() && 4873 !IPCL_IS_TCP(connp) && 4874 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4875 connp->conn_mac_exempt, ipst) != 0) { 4876 error = EHOSTUNREACH; 4877 if (ip_debug > 2) { 4878 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4879 AF_INET, &dst_addr); 4880 } 4881 goto bad_addr; 4882 } 4883 4884 /* 4885 * If the app does a connect(), it means that it will most likely 4886 * send more than 1 packet to the destination. It makes sense 4887 * to clear the temporary flag. 4888 */ 4889 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4890 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4891 irb_t *irb = dst_ire->ire_bucket; 4892 4893 rw_enter(&irb->irb_lock, RW_WRITER); 4894 /* 4895 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4896 * the lock to guarantee irb_tmp_ire_cnt. 4897 */ 4898 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4899 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4900 irb->irb_tmp_ire_cnt--; 4901 } 4902 rw_exit(&irb->irb_lock); 4903 } 4904 4905 /* 4906 * See if we should notify ULP about LSO/MDT; we do this whether or not 4907 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4908 * eligibility tests for passive connects are handled separately 4909 * through tcp_adapt_ire(). We do this before the source address 4910 * selection, because dst_ire may change after a call to 4911 * ipif_select_source(). This is a best-effort check, as the 4912 * packet for this connection may not actually go through 4913 * dst_ire->ire_stq, and the exact IRE can only be known after 4914 * calling ip_newroute(). This is why we further check on the 4915 * IRE during LSO/Multidata packet transmission in 4916 * tcp_lsosend()/tcp_multisend(). 4917 */ 4918 if (!ipsec_policy_set && dst_ire != NULL && 4919 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4920 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4921 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4922 lso_dst_ire = dst_ire; 4923 IRE_REFHOLD(lso_dst_ire); 4924 } else if (ipst->ips_ip_multidata_outbound && 4925 ILL_MDT_CAPABLE(ill)) { 4926 md_dst_ire = dst_ire; 4927 IRE_REFHOLD(md_dst_ire); 4928 } 4929 } 4930 4931 if (dst_ire != NULL && 4932 dst_ire->ire_type == IRE_LOCAL && 4933 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4934 /* 4935 * If the IRE belongs to a different zone, look for a matching 4936 * route in the forwarding table and use the source address from 4937 * that route. 4938 */ 4939 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4940 zoneid, 0, NULL, 4941 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4942 MATCH_IRE_RJ_BHOLE, ipst); 4943 if (src_ire == NULL) { 4944 error = EHOSTUNREACH; 4945 goto bad_addr; 4946 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4947 if (!(src_ire->ire_type & IRE_HOST)) 4948 error = ENETUNREACH; 4949 else 4950 error = EHOSTUNREACH; 4951 goto bad_addr; 4952 } 4953 if (src_addr == INADDR_ANY) 4954 src_addr = src_ire->ire_src_addr; 4955 ire_refrele(src_ire); 4956 src_ire = NULL; 4957 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4958 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4959 src_addr = sire->ire_src_addr; 4960 ire_refrele(dst_ire); 4961 dst_ire = sire; 4962 sire = NULL; 4963 } else { 4964 /* 4965 * Pick a source address so that a proper inbound 4966 * load spreading would happen. 4967 */ 4968 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4969 ipif_t *src_ipif = NULL; 4970 ire_t *ipif_ire; 4971 4972 /* 4973 * Supply a local source address such that inbound 4974 * load spreading happens. 4975 * 4976 * Determine the best source address on this ill for 4977 * the destination. 4978 * 4979 * 1) For broadcast, we should return a broadcast ire 4980 * found above so that upper layers know that the 4981 * destination address is a broadcast address. 4982 * 4983 * 2) If this is part of a group, select a better 4984 * source address so that better inbound load 4985 * balancing happens. Do the same if the ipif 4986 * is DEPRECATED. 4987 * 4988 * 3) If the outgoing interface is part of a usesrc 4989 * group, then try selecting a source address from 4990 * the usesrc ILL. 4991 */ 4992 if ((dst_ire->ire_zoneid != zoneid && 4993 dst_ire->ire_zoneid != ALL_ZONES) || 4994 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4995 (!(dst_ire->ire_type & IRE_BROADCAST) && 4996 ((dst_ill->ill_group != NULL) || 4997 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4998 (dst_ill->ill_usesrc_ifindex != 0)))) { 4999 /* 5000 * If the destination is reachable via a 5001 * given gateway, the selected source address 5002 * should be in the same subnet as the gateway. 5003 * Otherwise, the destination is not reachable. 5004 * 5005 * If there are no interfaces on the same subnet 5006 * as the destination, ipif_select_source gives 5007 * first non-deprecated interface which might be 5008 * on a different subnet than the gateway. 5009 * This is not desirable. Hence pass the dst_ire 5010 * source address to ipif_select_source. 5011 * It is sure that the destination is reachable 5012 * with the dst_ire source address subnet. 5013 * So passing dst_ire source address to 5014 * ipif_select_source will make sure that the 5015 * selected source will be on the same subnet 5016 * as dst_ire source address. 5017 */ 5018 ipaddr_t saddr = 5019 dst_ire->ire_ipif->ipif_src_addr; 5020 src_ipif = ipif_select_source(dst_ill, 5021 saddr, zoneid); 5022 if (src_ipif != NULL) { 5023 if (IS_VNI(src_ipif->ipif_ill)) { 5024 /* 5025 * For VNI there is no 5026 * interface route 5027 */ 5028 src_addr = 5029 src_ipif->ipif_src_addr; 5030 } else { 5031 ipif_ire = 5032 ipif_to_ire(src_ipif); 5033 if (ipif_ire != NULL) { 5034 IRE_REFRELE(dst_ire); 5035 dst_ire = ipif_ire; 5036 } 5037 src_addr = 5038 dst_ire->ire_src_addr; 5039 } 5040 ipif_refrele(src_ipif); 5041 } else { 5042 src_addr = dst_ire->ire_src_addr; 5043 } 5044 } else { 5045 src_addr = dst_ire->ire_src_addr; 5046 } 5047 } 5048 } 5049 5050 /* 5051 * We do ire_route_lookup() here (and not 5052 * interface lookup as we assert that 5053 * src_addr should only come from an 5054 * UP interface for hard binding. 5055 */ 5056 ASSERT(src_ire == NULL); 5057 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5058 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5059 /* src_ire must be a local|loopback */ 5060 if (!IRE_IS_LOCAL(src_ire)) { 5061 if (ip_debug > 2) { 5062 pr_addr_dbg("ip_bind_connected: bad connected " 5063 "src %s\n", AF_INET, &src_addr); 5064 } 5065 error = EADDRNOTAVAIL; 5066 goto bad_addr; 5067 } 5068 5069 /* 5070 * If the source address is a loopback address, the 5071 * destination had best be local or multicast. 5072 * The transports that can't handle multicast will reject 5073 * those addresses. 5074 */ 5075 if (src_ire->ire_type == IRE_LOOPBACK && 5076 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5077 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5078 error = -1; 5079 goto bad_addr; 5080 } 5081 5082 /* 5083 * Allow setting new policies. For example, disconnects come 5084 * down as ipa_t bind. As we would have set conn_policy_cached 5085 * to B_TRUE before, we should set it to B_FALSE, so that policy 5086 * can change after the disconnect. 5087 */ 5088 connp->conn_policy_cached = B_FALSE; 5089 5090 /* 5091 * Set the conn addresses/ports immediately, so the IPsec policy calls 5092 * can handle their passed-in conn's. 5093 */ 5094 5095 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5096 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5097 connp->conn_lport = lport; 5098 connp->conn_fport = fport; 5099 *src_addrp = src_addr; 5100 5101 ASSERT(!(ipsec_policy_set && ire_requested)); 5102 if (ire_requested) { 5103 iulp_t *ulp_info = NULL; 5104 5105 /* 5106 * Note that sire will not be NULL if this is an off-link 5107 * connection and there is not cache for that dest yet. 5108 * 5109 * XXX Because of an existing bug, if there are multiple 5110 * default routes, the IRE returned now may not be the actual 5111 * default route used (default routes are chosen in a 5112 * round robin fashion). So if the metrics for different 5113 * default routes are different, we may return the wrong 5114 * metrics. This will not be a problem if the existing 5115 * bug is fixed. 5116 */ 5117 if (sire != NULL) { 5118 ulp_info = &(sire->ire_uinfo); 5119 } 5120 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5121 error = -1; 5122 goto bad_addr; 5123 } 5124 } else if (ipsec_policy_set) { 5125 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5126 error = -1; 5127 goto bad_addr; 5128 } 5129 } 5130 5131 /* 5132 * Cache IPsec policy in this conn. If we have per-socket policy, 5133 * we'll cache that. If we don't, we'll inherit global policy. 5134 * 5135 * We can't insert until the conn reflects the policy. Note that 5136 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5137 * connections where we don't have a policy. This is to prevent 5138 * global policy lookups in the inbound path. 5139 * 5140 * If we insert before we set conn_policy_cached, 5141 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5142 * because global policy cound be non-empty. We normally call 5143 * ipsec_check_policy() for conn_policy_cached connections only if 5144 * ipc_in_enforce_policy is set. But in this case, 5145 * conn_policy_cached can get set anytime since we made the 5146 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5147 * called, which will make the above assumption false. Thus, we 5148 * need to insert after we set conn_policy_cached. 5149 */ 5150 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5151 goto bad_addr; 5152 5153 if (fanout_insert) { 5154 /* 5155 * The addresses have been verified. Time to insert in 5156 * the correct fanout list. 5157 */ 5158 error = ipcl_conn_insert(connp, protocol, src_addr, 5159 dst_addr, connp->conn_ports); 5160 } 5161 5162 if (error == 0) { 5163 connp->conn_fully_bound = B_TRUE; 5164 /* 5165 * Our initial checks for LSO/MDT have passed; the IRE is not 5166 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5167 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5168 * ip_xxinfo_return(), which performs further checks 5169 * against them and upon success, returns the LSO/MDT info 5170 * mblk which we will attach to the bind acknowledgment. 5171 */ 5172 if (lso_dst_ire != NULL) { 5173 mblk_t *lsoinfo_mp; 5174 5175 ASSERT(ill->ill_lso_capab != NULL); 5176 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5177 ill->ill_name, ill->ill_lso_capab)) != NULL) 5178 linkb(mp, lsoinfo_mp); 5179 } else if (md_dst_ire != NULL) { 5180 mblk_t *mdinfo_mp; 5181 5182 ASSERT(ill->ill_mdt_capab != NULL); 5183 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5184 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5185 linkb(mp, mdinfo_mp); 5186 } 5187 } 5188 bad_addr: 5189 if (ipsec_policy_set) { 5190 ASSERT(policy_mp == mp->b_cont); 5191 ASSERT(policy_mp != NULL); 5192 freeb(policy_mp); 5193 /* 5194 * As of now assume that nothing else accompanies 5195 * IPSEC_POLICY_SET. 5196 */ 5197 mp->b_cont = NULL; 5198 } 5199 if (src_ire != NULL) 5200 IRE_REFRELE(src_ire); 5201 if (dst_ire != NULL) 5202 IRE_REFRELE(dst_ire); 5203 if (sire != NULL) 5204 IRE_REFRELE(sire); 5205 if (md_dst_ire != NULL) 5206 IRE_REFRELE(md_dst_ire); 5207 if (lso_dst_ire != NULL) 5208 IRE_REFRELE(lso_dst_ire); 5209 return (error); 5210 } 5211 5212 /* 5213 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5214 * Prefers dst_ire over src_ire. 5215 */ 5216 static boolean_t 5217 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5218 { 5219 mblk_t *mp1; 5220 ire_t *ret_ire = NULL; 5221 5222 mp1 = mp->b_cont; 5223 ASSERT(mp1 != NULL); 5224 5225 if (ire != NULL) { 5226 /* 5227 * mp1 initialized above to IRE_DB_REQ_TYPE 5228 * appended mblk. Its <upper protocol>'s 5229 * job to make sure there is room. 5230 */ 5231 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5232 return (0); 5233 5234 mp1->b_datap->db_type = IRE_DB_TYPE; 5235 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5236 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5237 ret_ire = (ire_t *)mp1->b_rptr; 5238 /* 5239 * Pass the latest setting of the ip_path_mtu_discovery and 5240 * copy the ulp info if any. 5241 */ 5242 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5243 IPH_DF : 0; 5244 if (ulp_info != NULL) { 5245 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5246 sizeof (iulp_t)); 5247 } 5248 ret_ire->ire_mp = mp1; 5249 } else { 5250 /* 5251 * No IRE was found. Remove IRE mblk. 5252 */ 5253 mp->b_cont = mp1->b_cont; 5254 freeb(mp1); 5255 } 5256 5257 return (1); 5258 } 5259 5260 /* 5261 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5262 * the final piece where we don't. Return a pointer to the first mblk in the 5263 * result, and update the pointer to the next mblk to chew on. If anything 5264 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5265 * NULL pointer. 5266 */ 5267 mblk_t * 5268 ip_carve_mp(mblk_t **mpp, ssize_t len) 5269 { 5270 mblk_t *mp0; 5271 mblk_t *mp1; 5272 mblk_t *mp2; 5273 5274 if (!len || !mpp || !(mp0 = *mpp)) 5275 return (NULL); 5276 /* If we aren't going to consume the first mblk, we need a dup. */ 5277 if (mp0->b_wptr - mp0->b_rptr > len) { 5278 mp1 = dupb(mp0); 5279 if (mp1) { 5280 /* Partition the data between the two mblks. */ 5281 mp1->b_wptr = mp1->b_rptr + len; 5282 mp0->b_rptr = mp1->b_wptr; 5283 /* 5284 * after adjustments if mblk not consumed is now 5285 * unaligned, try to align it. If this fails free 5286 * all messages and let upper layer recover. 5287 */ 5288 if (!OK_32PTR(mp0->b_rptr)) { 5289 if (!pullupmsg(mp0, -1)) { 5290 freemsg(mp0); 5291 freemsg(mp1); 5292 *mpp = NULL; 5293 return (NULL); 5294 } 5295 } 5296 } 5297 return (mp1); 5298 } 5299 /* Eat through as many mblks as we need to get len bytes. */ 5300 len -= mp0->b_wptr - mp0->b_rptr; 5301 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5302 if (mp2->b_wptr - mp2->b_rptr > len) { 5303 /* 5304 * We won't consume the entire last mblk. Like 5305 * above, dup and partition it. 5306 */ 5307 mp1->b_cont = dupb(mp2); 5308 mp1 = mp1->b_cont; 5309 if (!mp1) { 5310 /* 5311 * Trouble. Rather than go to a lot of 5312 * trouble to clean up, we free the messages. 5313 * This won't be any worse than losing it on 5314 * the wire. 5315 */ 5316 freemsg(mp0); 5317 freemsg(mp2); 5318 *mpp = NULL; 5319 return (NULL); 5320 } 5321 mp1->b_wptr = mp1->b_rptr + len; 5322 mp2->b_rptr = mp1->b_wptr; 5323 /* 5324 * after adjustments if mblk not consumed is now 5325 * unaligned, try to align it. If this fails free 5326 * all messages and let upper layer recover. 5327 */ 5328 if (!OK_32PTR(mp2->b_rptr)) { 5329 if (!pullupmsg(mp2, -1)) { 5330 freemsg(mp0); 5331 freemsg(mp2); 5332 *mpp = NULL; 5333 return (NULL); 5334 } 5335 } 5336 *mpp = mp2; 5337 return (mp0); 5338 } 5339 /* Decrement len by the amount we just got. */ 5340 len -= mp2->b_wptr - mp2->b_rptr; 5341 } 5342 /* 5343 * len should be reduced to zero now. If not our caller has 5344 * screwed up. 5345 */ 5346 if (len) { 5347 /* Shouldn't happen! */ 5348 freemsg(mp0); 5349 *mpp = NULL; 5350 return (NULL); 5351 } 5352 /* 5353 * We consumed up to exactly the end of an mblk. Detach the part 5354 * we are returning from the rest of the chain. 5355 */ 5356 mp1->b_cont = NULL; 5357 *mpp = mp2; 5358 return (mp0); 5359 } 5360 5361 /* The ill stream is being unplumbed. Called from ip_close */ 5362 int 5363 ip_modclose(ill_t *ill) 5364 { 5365 boolean_t success; 5366 ipsq_t *ipsq; 5367 ipif_t *ipif; 5368 queue_t *q = ill->ill_rq; 5369 ip_stack_t *ipst = ill->ill_ipst; 5370 clock_t timeout; 5371 5372 /* 5373 * Wait for the ACKs of all deferred control messages to be processed. 5374 * In particular, we wait for a potential capability reset initiated 5375 * in ip_sioctl_plink() to complete before proceeding. 5376 * 5377 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5378 * in case the driver never replies. 5379 */ 5380 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5381 mutex_enter(&ill->ill_lock); 5382 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5383 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5384 /* Timeout */ 5385 break; 5386 } 5387 } 5388 mutex_exit(&ill->ill_lock); 5389 5390 /* 5391 * Forcibly enter the ipsq after some delay. This is to take 5392 * care of the case when some ioctl does not complete because 5393 * we sent a control message to the driver and it did not 5394 * send us a reply. We want to be able to at least unplumb 5395 * and replumb rather than force the user to reboot the system. 5396 */ 5397 success = ipsq_enter(ill, B_FALSE); 5398 5399 /* 5400 * Open/close/push/pop is guaranteed to be single threaded 5401 * per stream by STREAMS. FS guarantees that all references 5402 * from top are gone before close is called. So there can't 5403 * be another close thread that has set CONDEMNED on this ill. 5404 * and cause ipsq_enter to return failure. 5405 */ 5406 ASSERT(success); 5407 ipsq = ill->ill_phyint->phyint_ipsq; 5408 5409 /* 5410 * Mark it condemned. No new reference will be made to this ill. 5411 * Lookup functions will return an error. Threads that try to 5412 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5413 * that the refcnt will drop down to zero. 5414 */ 5415 mutex_enter(&ill->ill_lock); 5416 ill->ill_state_flags |= ILL_CONDEMNED; 5417 for (ipif = ill->ill_ipif; ipif != NULL; 5418 ipif = ipif->ipif_next) { 5419 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5420 } 5421 /* 5422 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5423 * returns error if ILL_CONDEMNED is set 5424 */ 5425 cv_broadcast(&ill->ill_cv); 5426 mutex_exit(&ill->ill_lock); 5427 5428 /* 5429 * Send all the deferred DLPI messages downstream which came in 5430 * during the small window right before ipsq_enter(). We do this 5431 * without waiting for the ACKs because all the ACKs for M_PROTO 5432 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5433 */ 5434 ill_dlpi_send_deferred(ill); 5435 5436 /* 5437 * Shut down fragmentation reassembly. 5438 * ill_frag_timer won't start a timer again. 5439 * Now cancel any existing timer 5440 */ 5441 (void) untimeout(ill->ill_frag_timer_id); 5442 (void) ill_frag_timeout(ill, 0); 5443 5444 /* 5445 * If MOVE was in progress, clear the 5446 * move_in_progress fields also. 5447 */ 5448 if (ill->ill_move_in_progress) { 5449 ILL_CLEAR_MOVE(ill); 5450 } 5451 5452 /* 5453 * Call ill_delete to bring down the ipifs, ilms and ill on 5454 * this ill. Then wait for the refcnts to drop to zero. 5455 * ill_is_freeable checks whether the ill is really quiescent. 5456 * Then make sure that threads that are waiting to enter the 5457 * ipsq have seen the error returned by ipsq_enter and have 5458 * gone away. Then we call ill_delete_tail which does the 5459 * DL_UNBIND_REQ with the driver and then qprocsoff. 5460 */ 5461 ill_delete(ill); 5462 mutex_enter(&ill->ill_lock); 5463 while (!ill_is_freeable(ill)) 5464 cv_wait(&ill->ill_cv, &ill->ill_lock); 5465 while (ill->ill_waiters) 5466 cv_wait(&ill->ill_cv, &ill->ill_lock); 5467 5468 mutex_exit(&ill->ill_lock); 5469 5470 /* 5471 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5472 * it held until the end of the function since the cleanup 5473 * below needs to be able to use the ip_stack_t. 5474 */ 5475 netstack_hold(ipst->ips_netstack); 5476 5477 /* qprocsoff is called in ill_delete_tail */ 5478 ill_delete_tail(ill); 5479 ASSERT(ill->ill_ipst == NULL); 5480 5481 /* 5482 * Walk through all upper (conn) streams and qenable 5483 * those that have queued data. 5484 * close synchronization needs this to 5485 * be done to ensure that all upper layers blocked 5486 * due to flow control to the closing device 5487 * get unblocked. 5488 */ 5489 ip1dbg(("ip_wsrv: walking\n")); 5490 conn_walk_drain(ipst); 5491 5492 mutex_enter(&ipst->ips_ip_mi_lock); 5493 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5494 mutex_exit(&ipst->ips_ip_mi_lock); 5495 5496 /* 5497 * credp could be null if the open didn't succeed and ip_modopen 5498 * itself calls ip_close. 5499 */ 5500 if (ill->ill_credp != NULL) 5501 crfree(ill->ill_credp); 5502 5503 /* 5504 * Now we are done with the module close pieces that 5505 * need the netstack_t. 5506 */ 5507 netstack_rele(ipst->ips_netstack); 5508 5509 mi_close_free((IDP)ill); 5510 q->q_ptr = WR(q)->q_ptr = NULL; 5511 5512 ipsq_exit(ipsq); 5513 5514 return (0); 5515 } 5516 5517 /* 5518 * This is called as part of close() for IP, UDP, ICMP, and RTS 5519 * in order to quiesce the conn. 5520 */ 5521 void 5522 ip_quiesce_conn(conn_t *connp) 5523 { 5524 boolean_t drain_cleanup_reqd = B_FALSE; 5525 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5526 boolean_t ilg_cleanup_reqd = B_FALSE; 5527 ip_stack_t *ipst; 5528 5529 ASSERT(!IPCL_IS_TCP(connp)); 5530 ipst = connp->conn_netstack->netstack_ip; 5531 5532 /* 5533 * Mark the conn as closing, and this conn must not be 5534 * inserted in future into any list. Eg. conn_drain_insert(), 5535 * won't insert this conn into the conn_drain_list. 5536 * Similarly ill_pending_mp_add() will not add any mp to 5537 * the pending mp list, after this conn has started closing. 5538 * 5539 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5540 * cannot get set henceforth. 5541 */ 5542 mutex_enter(&connp->conn_lock); 5543 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5544 connp->conn_state_flags |= CONN_CLOSING; 5545 if (connp->conn_idl != NULL) 5546 drain_cleanup_reqd = B_TRUE; 5547 if (connp->conn_oper_pending_ill != NULL) 5548 conn_ioctl_cleanup_reqd = B_TRUE; 5549 if (connp->conn_dhcpinit_ill != NULL) { 5550 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5551 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5552 connp->conn_dhcpinit_ill = NULL; 5553 } 5554 if (connp->conn_ilg_inuse != 0) 5555 ilg_cleanup_reqd = B_TRUE; 5556 mutex_exit(&connp->conn_lock); 5557 5558 if (conn_ioctl_cleanup_reqd) 5559 conn_ioctl_cleanup(connp); 5560 5561 if (is_system_labeled() && connp->conn_anon_port) { 5562 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5563 connp->conn_mlp_type, connp->conn_ulp, 5564 ntohs(connp->conn_lport), B_FALSE); 5565 connp->conn_anon_port = 0; 5566 } 5567 connp->conn_mlp_type = mlptSingle; 5568 5569 /* 5570 * Remove this conn from any fanout list it is on. 5571 * and then wait for any threads currently operating 5572 * on this endpoint to finish 5573 */ 5574 ipcl_hash_remove(connp); 5575 5576 /* 5577 * Remove this conn from the drain list, and do 5578 * any other cleanup that may be required. 5579 * (Only non-tcp streams may have a non-null conn_idl. 5580 * TCP streams are never flow controlled, and 5581 * conn_idl will be null) 5582 */ 5583 if (drain_cleanup_reqd) 5584 conn_drain_tail(connp, B_TRUE); 5585 5586 if (connp == ipst->ips_ip_g_mrouter) 5587 (void) ip_mrouter_done(NULL, ipst); 5588 5589 if (ilg_cleanup_reqd) 5590 ilg_delete_all(connp); 5591 5592 conn_delete_ire(connp, NULL); 5593 5594 /* 5595 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5596 * callers from write side can't be there now because close 5597 * is in progress. The only other caller is ipcl_walk 5598 * which checks for the condemned flag. 5599 */ 5600 mutex_enter(&connp->conn_lock); 5601 connp->conn_state_flags |= CONN_CONDEMNED; 5602 while (connp->conn_ref != 1) 5603 cv_wait(&connp->conn_cv, &connp->conn_lock); 5604 connp->conn_state_flags |= CONN_QUIESCED; 5605 mutex_exit(&connp->conn_lock); 5606 } 5607 5608 /* ARGSUSED */ 5609 int 5610 ip_close(queue_t *q, int flags) 5611 { 5612 conn_t *connp; 5613 5614 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5615 5616 /* 5617 * Call the appropriate delete routine depending on whether this is 5618 * a module or device. 5619 */ 5620 if (WR(q)->q_next != NULL) { 5621 /* This is a module close */ 5622 return (ip_modclose((ill_t *)q->q_ptr)); 5623 } 5624 5625 connp = q->q_ptr; 5626 ip_quiesce_conn(connp); 5627 5628 qprocsoff(q); 5629 5630 /* 5631 * Now we are truly single threaded on this stream, and can 5632 * delete the things hanging off the connp, and finally the connp. 5633 * We removed this connp from the fanout list, it cannot be 5634 * accessed thru the fanouts, and we already waited for the 5635 * conn_ref to drop to 0. We are already in close, so 5636 * there cannot be any other thread from the top. qprocsoff 5637 * has completed, and service has completed or won't run in 5638 * future. 5639 */ 5640 ASSERT(connp->conn_ref == 1); 5641 5642 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5643 5644 connp->conn_ref--; 5645 ipcl_conn_destroy(connp); 5646 5647 q->q_ptr = WR(q)->q_ptr = NULL; 5648 return (0); 5649 } 5650 5651 /* 5652 * Wapper around putnext() so that ip_rts_request can merely use 5653 * conn_recv. 5654 */ 5655 /*ARGSUSED2*/ 5656 static void 5657 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5658 { 5659 conn_t *connp = (conn_t *)arg1; 5660 5661 putnext(connp->conn_rq, mp); 5662 } 5663 5664 /* Return the IP checksum for the IP header at "iph". */ 5665 uint16_t 5666 ip_csum_hdr(ipha_t *ipha) 5667 { 5668 uint16_t *uph; 5669 uint32_t sum; 5670 int opt_len; 5671 5672 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5673 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5674 uph = (uint16_t *)ipha; 5675 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5676 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5677 if (opt_len > 0) { 5678 do { 5679 sum += uph[10]; 5680 sum += uph[11]; 5681 uph += 2; 5682 } while (--opt_len); 5683 } 5684 sum = (sum & 0xFFFF) + (sum >> 16); 5685 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5686 if (sum == 0xffff) 5687 sum = 0; 5688 return ((uint16_t)sum); 5689 } 5690 5691 /* 5692 * Called when the module is about to be unloaded 5693 */ 5694 void 5695 ip_ddi_destroy(void) 5696 { 5697 tnet_fini(); 5698 5699 icmp_ddi_destroy(); 5700 rts_ddi_destroy(); 5701 udp_ddi_destroy(); 5702 sctp_ddi_g_destroy(); 5703 tcp_ddi_g_destroy(); 5704 ipsec_policy_g_destroy(); 5705 ipcl_g_destroy(); 5706 ip_net_g_destroy(); 5707 ip_ire_g_fini(); 5708 inet_minor_destroy(ip_minor_arena_sa); 5709 #if defined(_LP64) 5710 inet_minor_destroy(ip_minor_arena_la); 5711 #endif 5712 5713 #ifdef DEBUG 5714 list_destroy(&ip_thread_list); 5715 rw_destroy(&ip_thread_rwlock); 5716 tsd_destroy(&ip_thread_data); 5717 #endif 5718 5719 netstack_unregister(NS_IP); 5720 } 5721 5722 /* 5723 * First step in cleanup. 5724 */ 5725 /* ARGSUSED */ 5726 static void 5727 ip_stack_shutdown(netstackid_t stackid, void *arg) 5728 { 5729 ip_stack_t *ipst = (ip_stack_t *)arg; 5730 5731 #ifdef NS_DEBUG 5732 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5733 #endif 5734 5735 /* Get rid of loopback interfaces and their IREs */ 5736 ip_loopback_cleanup(ipst); 5737 5738 /* 5739 * The *_hook_shutdown()s start the process of notifying any 5740 * consumers that things are going away.... nothing is destroyed. 5741 */ 5742 ipv4_hook_shutdown(ipst); 5743 ipv6_hook_shutdown(ipst); 5744 } 5745 5746 /* 5747 * Free the IP stack instance. 5748 */ 5749 static void 5750 ip_stack_fini(netstackid_t stackid, void *arg) 5751 { 5752 ip_stack_t *ipst = (ip_stack_t *)arg; 5753 int ret; 5754 5755 /* 5756 * At this point, all of the notifications that the events and 5757 * protocols are going away have been run, meaning that we can 5758 * now set about starting to clean things up. 5759 */ 5760 ipv4_hook_destroy(ipst); 5761 ipv6_hook_destroy(ipst); 5762 ip_net_destroy(ipst); 5763 5764 #ifdef NS_DEBUG 5765 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5766 #endif 5767 rw_destroy(&ipst->ips_srcid_lock); 5768 5769 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5770 ipst->ips_ip_mibkp = NULL; 5771 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5772 ipst->ips_icmp_mibkp = NULL; 5773 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5774 ipst->ips_ip_kstat = NULL; 5775 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5776 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5777 ipst->ips_ip6_kstat = NULL; 5778 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5779 5780 nd_free(&ipst->ips_ip_g_nd); 5781 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5782 ipst->ips_param_arr = NULL; 5783 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5784 ipst->ips_ndp_arr = NULL; 5785 5786 ip_mrouter_stack_destroy(ipst); 5787 5788 mutex_destroy(&ipst->ips_ip_mi_lock); 5789 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5790 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5791 rw_destroy(&ipst->ips_ip_g_nd_lock); 5792 5793 ret = untimeout(ipst->ips_igmp_timeout_id); 5794 if (ret == -1) { 5795 ASSERT(ipst->ips_igmp_timeout_id == 0); 5796 } else { 5797 ASSERT(ipst->ips_igmp_timeout_id != 0); 5798 ipst->ips_igmp_timeout_id = 0; 5799 } 5800 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5801 if (ret == -1) { 5802 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5803 } else { 5804 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5805 ipst->ips_igmp_slowtimeout_id = 0; 5806 } 5807 ret = untimeout(ipst->ips_mld_timeout_id); 5808 if (ret == -1) { 5809 ASSERT(ipst->ips_mld_timeout_id == 0); 5810 } else { 5811 ASSERT(ipst->ips_mld_timeout_id != 0); 5812 ipst->ips_mld_timeout_id = 0; 5813 } 5814 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5815 if (ret == -1) { 5816 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5817 } else { 5818 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5819 ipst->ips_mld_slowtimeout_id = 0; 5820 } 5821 ret = untimeout(ipst->ips_ip_ire_expire_id); 5822 if (ret == -1) { 5823 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5824 } else { 5825 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5826 ipst->ips_ip_ire_expire_id = 0; 5827 } 5828 5829 mutex_destroy(&ipst->ips_igmp_timer_lock); 5830 mutex_destroy(&ipst->ips_mld_timer_lock); 5831 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5832 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5833 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5834 rw_destroy(&ipst->ips_ill_g_lock); 5835 5836 ipobs_fini(ipst); 5837 ip_ire_fini(ipst); 5838 ip6_asp_free(ipst); 5839 conn_drain_fini(ipst); 5840 ipcl_destroy(ipst); 5841 5842 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5843 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5844 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5845 ipst->ips_ndp4 = NULL; 5846 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5847 ipst->ips_ndp6 = NULL; 5848 5849 if (ipst->ips_loopback_ksp != NULL) { 5850 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5851 ipst->ips_loopback_ksp = NULL; 5852 } 5853 5854 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5855 ipst->ips_phyint_g_list = NULL; 5856 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5857 ipst->ips_ill_g_heads = NULL; 5858 5859 kmem_free(ipst, sizeof (*ipst)); 5860 } 5861 5862 /* 5863 * This function is called from the TSD destructor, and is used to debug 5864 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5865 * details. 5866 */ 5867 static void 5868 ip_thread_exit(void *phash) 5869 { 5870 th_hash_t *thh = phash; 5871 5872 rw_enter(&ip_thread_rwlock, RW_WRITER); 5873 list_remove(&ip_thread_list, thh); 5874 rw_exit(&ip_thread_rwlock); 5875 mod_hash_destroy_hash(thh->thh_hash); 5876 kmem_free(thh, sizeof (*thh)); 5877 } 5878 5879 /* 5880 * Called when the IP kernel module is loaded into the kernel 5881 */ 5882 void 5883 ip_ddi_init(void) 5884 { 5885 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5886 5887 /* 5888 * For IP and TCP the minor numbers should start from 2 since we have 4 5889 * initial devices: ip, ip6, tcp, tcp6. 5890 */ 5891 /* 5892 * If this is a 64-bit kernel, then create two separate arenas - 5893 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5894 * other for socket apps in the range 2^^18 through 2^^32-1. 5895 */ 5896 ip_minor_arena_la = NULL; 5897 ip_minor_arena_sa = NULL; 5898 #if defined(_LP64) 5899 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5900 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5901 cmn_err(CE_PANIC, 5902 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5903 } 5904 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5905 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5906 cmn_err(CE_PANIC, 5907 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5908 } 5909 #else 5910 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5911 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5912 cmn_err(CE_PANIC, 5913 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5914 } 5915 #endif 5916 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5917 5918 ipcl_g_init(); 5919 ip_ire_g_init(); 5920 ip_net_g_init(); 5921 5922 #ifdef DEBUG 5923 tsd_create(&ip_thread_data, ip_thread_exit); 5924 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5925 list_create(&ip_thread_list, sizeof (th_hash_t), 5926 offsetof(th_hash_t, thh_link)); 5927 #endif 5928 5929 /* 5930 * We want to be informed each time a stack is created or 5931 * destroyed in the kernel, so we can maintain the 5932 * set of udp_stack_t's. 5933 */ 5934 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5935 ip_stack_fini); 5936 5937 ipsec_policy_g_init(); 5938 tcp_ddi_g_init(); 5939 sctp_ddi_g_init(); 5940 5941 tnet_init(); 5942 5943 udp_ddi_init(); 5944 rts_ddi_init(); 5945 icmp_ddi_init(); 5946 } 5947 5948 /* 5949 * Initialize the IP stack instance. 5950 */ 5951 static void * 5952 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5953 { 5954 ip_stack_t *ipst; 5955 ipparam_t *pa; 5956 ipndp_t *na; 5957 5958 #ifdef NS_DEBUG 5959 printf("ip_stack_init(stack %d)\n", stackid); 5960 #endif 5961 5962 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5963 ipst->ips_netstack = ns; 5964 5965 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5966 KM_SLEEP); 5967 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5968 KM_SLEEP); 5969 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5970 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5971 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5972 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5973 5974 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5975 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5976 ipst->ips_igmp_deferred_next = INFINITY; 5977 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5978 ipst->ips_mld_deferred_next = INFINITY; 5979 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5980 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5981 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5982 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5983 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5984 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5985 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5986 5987 ipcl_init(ipst); 5988 ip_ire_init(ipst); 5989 ip6_asp_init(ipst); 5990 ipif_init(ipst); 5991 conn_drain_init(ipst); 5992 ip_mrouter_stack_init(ipst); 5993 5994 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5995 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5996 5997 ipst->ips_ip_multirt_log_interval = 1000; 5998 5999 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6000 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6001 ipst->ips_ill_index = 1; 6002 6003 ipst->ips_saved_ip_g_forward = -1; 6004 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6005 6006 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6007 ipst->ips_param_arr = pa; 6008 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6009 6010 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6011 ipst->ips_ndp_arr = na; 6012 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6013 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6014 (caddr_t)&ipst->ips_ip_g_forward; 6015 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6016 (caddr_t)&ipst->ips_ipv6_forward; 6017 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6018 "ip_cgtp_filter") == 0); 6019 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6020 (caddr_t)&ipst->ips_ip_cgtp_filter; 6021 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6022 "ipmp_hook_emulation") == 0); 6023 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6024 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6025 6026 (void) ip_param_register(&ipst->ips_ip_g_nd, 6027 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6028 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6029 6030 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6031 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6032 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6033 ipst->ips_ip6_kstat = 6034 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6035 6036 ipst->ips_ipmp_enable_failback = B_TRUE; 6037 6038 ipst->ips_ip_src_id = 1; 6039 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6040 6041 ipobs_init(ipst); 6042 ip_net_init(ipst, ns); 6043 ipv4_hook_init(ipst); 6044 ipv6_hook_init(ipst); 6045 6046 return (ipst); 6047 } 6048 6049 /* 6050 * Allocate and initialize a DLPI template of the specified length. (May be 6051 * called as writer.) 6052 */ 6053 mblk_t * 6054 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6055 { 6056 mblk_t *mp; 6057 6058 mp = allocb(len, BPRI_MED); 6059 if (!mp) 6060 return (NULL); 6061 6062 /* 6063 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6064 * of which we don't seem to use) are sent with M_PCPROTO, and 6065 * that other DLPI are M_PROTO. 6066 */ 6067 if (prim == DL_INFO_REQ) { 6068 mp->b_datap->db_type = M_PCPROTO; 6069 } else { 6070 mp->b_datap->db_type = M_PROTO; 6071 } 6072 6073 mp->b_wptr = mp->b_rptr + len; 6074 bzero(mp->b_rptr, len); 6075 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6076 return (mp); 6077 } 6078 6079 /* 6080 * Debug formatting routine. Returns a character string representation of the 6081 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6082 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6083 * 6084 * Once the ndd table-printing interfaces are removed, this can be changed to 6085 * standard dotted-decimal form. 6086 */ 6087 char * 6088 ip_dot_addr(ipaddr_t addr, char *buf) 6089 { 6090 uint8_t *ap = (uint8_t *)&addr; 6091 6092 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6093 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6094 return (buf); 6095 } 6096 6097 /* 6098 * Write the given MAC address as a printable string in the usual colon- 6099 * separated format. 6100 */ 6101 const char * 6102 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6103 { 6104 char *bp; 6105 6106 if (alen == 0 || buflen < 4) 6107 return ("?"); 6108 bp = buf; 6109 for (;;) { 6110 /* 6111 * If there are more MAC address bytes available, but we won't 6112 * have any room to print them, then add "..." to the string 6113 * instead. See below for the 'magic number' explanation. 6114 */ 6115 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6116 (void) strcpy(bp, "..."); 6117 break; 6118 } 6119 (void) sprintf(bp, "%02x", *addr++); 6120 bp += 2; 6121 if (--alen == 0) 6122 break; 6123 *bp++ = ':'; 6124 buflen -= 3; 6125 /* 6126 * At this point, based on the first 'if' statement above, 6127 * either alen == 1 and buflen >= 3, or alen > 1 and 6128 * buflen >= 4. The first case leaves room for the final "xx" 6129 * number and trailing NUL byte. The second leaves room for at 6130 * least "...". Thus the apparently 'magic' numbers chosen for 6131 * that statement. 6132 */ 6133 } 6134 return (buf); 6135 } 6136 6137 /* 6138 * Send an ICMP error after patching up the packet appropriately. Returns 6139 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6140 */ 6141 static boolean_t 6142 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6143 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6144 zoneid_t zoneid, ip_stack_t *ipst) 6145 { 6146 ipha_t *ipha; 6147 mblk_t *first_mp; 6148 boolean_t secure; 6149 unsigned char db_type; 6150 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6151 6152 first_mp = mp; 6153 if (mctl_present) { 6154 mp = mp->b_cont; 6155 secure = ipsec_in_is_secure(first_mp); 6156 ASSERT(mp != NULL); 6157 } else { 6158 /* 6159 * If this is an ICMP error being reported - which goes 6160 * up as M_CTLs, we need to convert them to M_DATA till 6161 * we finish checking with global policy because 6162 * ipsec_check_global_policy() assumes M_DATA as clear 6163 * and M_CTL as secure. 6164 */ 6165 db_type = DB_TYPE(mp); 6166 DB_TYPE(mp) = M_DATA; 6167 secure = B_FALSE; 6168 } 6169 /* 6170 * We are generating an icmp error for some inbound packet. 6171 * Called from all ip_fanout_(udp, tcp, proto) functions. 6172 * Before we generate an error, check with global policy 6173 * to see whether this is allowed to enter the system. As 6174 * there is no "conn", we are checking with global policy. 6175 */ 6176 ipha = (ipha_t *)mp->b_rptr; 6177 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6178 first_mp = ipsec_check_global_policy(first_mp, NULL, 6179 ipha, NULL, mctl_present, ipst->ips_netstack); 6180 if (first_mp == NULL) 6181 return (B_FALSE); 6182 } 6183 6184 if (!mctl_present) 6185 DB_TYPE(mp) = db_type; 6186 6187 if (flags & IP_FF_SEND_ICMP) { 6188 if (flags & IP_FF_HDR_COMPLETE) { 6189 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6190 freemsg(first_mp); 6191 return (B_TRUE); 6192 } 6193 } 6194 if (flags & IP_FF_CKSUM) { 6195 /* 6196 * Have to correct checksum since 6197 * the packet might have been 6198 * fragmented and the reassembly code in ip_rput 6199 * does not restore the IP checksum. 6200 */ 6201 ipha->ipha_hdr_checksum = 0; 6202 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6203 } 6204 switch (icmp_type) { 6205 case ICMP_DEST_UNREACHABLE: 6206 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6207 ipst); 6208 break; 6209 default: 6210 freemsg(first_mp); 6211 break; 6212 } 6213 } else { 6214 freemsg(first_mp); 6215 return (B_FALSE); 6216 } 6217 6218 return (B_TRUE); 6219 } 6220 6221 /* 6222 * Used to send an ICMP error message when a packet is received for 6223 * a protocol that is not supported. The mblk passed as argument 6224 * is consumed by this function. 6225 */ 6226 void 6227 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6228 ip_stack_t *ipst) 6229 { 6230 mblk_t *mp; 6231 ipha_t *ipha; 6232 ill_t *ill; 6233 ipsec_in_t *ii; 6234 6235 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6236 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6237 6238 mp = ipsec_mp->b_cont; 6239 ipsec_mp->b_cont = NULL; 6240 ipha = (ipha_t *)mp->b_rptr; 6241 /* Get ill from index in ipsec_in_t. */ 6242 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6243 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6244 ipst); 6245 if (ill != NULL) { 6246 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6247 if (ip_fanout_send_icmp(q, mp, flags, 6248 ICMP_DEST_UNREACHABLE, 6249 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6250 BUMP_MIB(ill->ill_ip_mib, 6251 ipIfStatsInUnknownProtos); 6252 } 6253 } else { 6254 if (ip_fanout_send_icmp_v6(q, mp, flags, 6255 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6256 0, B_FALSE, zoneid, ipst)) { 6257 BUMP_MIB(ill->ill_ip_mib, 6258 ipIfStatsInUnknownProtos); 6259 } 6260 } 6261 ill_refrele(ill); 6262 } else { /* re-link for the freemsg() below. */ 6263 ipsec_mp->b_cont = mp; 6264 } 6265 6266 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6267 freemsg(ipsec_mp); 6268 } 6269 6270 /* 6271 * See if the inbound datagram has had IPsec processing applied to it. 6272 */ 6273 boolean_t 6274 ipsec_in_is_secure(mblk_t *ipsec_mp) 6275 { 6276 ipsec_in_t *ii; 6277 6278 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6279 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6280 6281 if (ii->ipsec_in_loopback) { 6282 return (ii->ipsec_in_secure); 6283 } else { 6284 return (ii->ipsec_in_ah_sa != NULL || 6285 ii->ipsec_in_esp_sa != NULL || 6286 ii->ipsec_in_decaps); 6287 } 6288 } 6289 6290 /* 6291 * Handle protocols with which IP is less intimate. There 6292 * can be more than one stream bound to a particular 6293 * protocol. When this is the case, normally each one gets a copy 6294 * of any incoming packets. 6295 * 6296 * IPsec NOTE : 6297 * 6298 * Don't allow a secure packet going up a non-secure connection. 6299 * We don't allow this because 6300 * 6301 * 1) Reply might go out in clear which will be dropped at 6302 * the sending side. 6303 * 2) If the reply goes out in clear it will give the 6304 * adversary enough information for getting the key in 6305 * most of the cases. 6306 * 6307 * Moreover getting a secure packet when we expect clear 6308 * implies that SA's were added without checking for 6309 * policy on both ends. This should not happen once ISAKMP 6310 * is used to negotiate SAs as SAs will be added only after 6311 * verifying the policy. 6312 * 6313 * NOTE : If the packet was tunneled and not multicast we only send 6314 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6315 * back to delivering packets to AF_INET6 raw sockets. 6316 * 6317 * IPQoS Notes: 6318 * Once we have determined the client, invoke IPPF processing. 6319 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6320 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6321 * ip_policy will be false. 6322 * 6323 * Zones notes: 6324 * Currently only applications in the global zone can create raw sockets for 6325 * protocols other than ICMP. So unlike the broadcast / multicast case of 6326 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6327 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6328 */ 6329 static void 6330 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6331 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6332 zoneid_t zoneid) 6333 { 6334 queue_t *rq; 6335 mblk_t *mp1, *first_mp1; 6336 uint_t protocol = ipha->ipha_protocol; 6337 ipaddr_t dst; 6338 boolean_t one_only; 6339 mblk_t *first_mp = mp; 6340 boolean_t secure; 6341 uint32_t ill_index; 6342 conn_t *connp, *first_connp, *next_connp; 6343 connf_t *connfp; 6344 boolean_t shared_addr; 6345 mib2_ipIfStatsEntry_t *mibptr; 6346 ip_stack_t *ipst = recv_ill->ill_ipst; 6347 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6348 6349 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6350 if (mctl_present) { 6351 mp = first_mp->b_cont; 6352 secure = ipsec_in_is_secure(first_mp); 6353 ASSERT(mp != NULL); 6354 } else { 6355 secure = B_FALSE; 6356 } 6357 dst = ipha->ipha_dst; 6358 /* 6359 * If the packet was tunneled and not multicast we only send to it 6360 * the first match. 6361 */ 6362 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6363 !CLASSD(dst)); 6364 6365 shared_addr = (zoneid == ALL_ZONES); 6366 if (shared_addr) { 6367 /* 6368 * We don't allow multilevel ports for raw IP, so no need to 6369 * check for that here. 6370 */ 6371 zoneid = tsol_packet_to_zoneid(mp); 6372 } 6373 6374 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6375 mutex_enter(&connfp->connf_lock); 6376 connp = connfp->connf_head; 6377 for (connp = connfp->connf_head; connp != NULL; 6378 connp = connp->conn_next) { 6379 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6380 zoneid) && 6381 (!is_system_labeled() || 6382 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6383 connp))) { 6384 break; 6385 } 6386 } 6387 6388 if (connp == NULL || connp->conn_upq == NULL) { 6389 /* 6390 * No one bound to these addresses. Is 6391 * there a client that wants all 6392 * unclaimed datagrams? 6393 */ 6394 mutex_exit(&connfp->connf_lock); 6395 /* 6396 * Check for IPPROTO_ENCAP... 6397 */ 6398 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6399 /* 6400 * If an IPsec mblk is here on a multicast 6401 * tunnel (using ip_mroute stuff), check policy here, 6402 * THEN ship off to ip_mroute_decap(). 6403 * 6404 * BTW, If I match a configured IP-in-IP 6405 * tunnel, this path will not be reached, and 6406 * ip_mroute_decap will never be called. 6407 */ 6408 first_mp = ipsec_check_global_policy(first_mp, connp, 6409 ipha, NULL, mctl_present, ipst->ips_netstack); 6410 if (first_mp != NULL) { 6411 if (mctl_present) 6412 freeb(first_mp); 6413 ip_mroute_decap(q, mp, ill); 6414 } /* Else we already freed everything! */ 6415 } else { 6416 /* 6417 * Otherwise send an ICMP protocol unreachable. 6418 */ 6419 if (ip_fanout_send_icmp(q, first_mp, flags, 6420 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6421 mctl_present, zoneid, ipst)) { 6422 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6423 } 6424 } 6425 return; 6426 } 6427 CONN_INC_REF(connp); 6428 first_connp = connp; 6429 6430 /* 6431 * Only send message to one tunnel driver by immediately 6432 * terminating the loop. 6433 */ 6434 connp = one_only ? NULL : connp->conn_next; 6435 6436 for (;;) { 6437 while (connp != NULL) { 6438 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6439 flags, zoneid) && 6440 (!is_system_labeled() || 6441 tsol_receive_local(mp, &dst, IPV4_VERSION, 6442 shared_addr, connp))) 6443 break; 6444 connp = connp->conn_next; 6445 } 6446 6447 /* 6448 * Copy the packet. 6449 */ 6450 if (connp == NULL || connp->conn_upq == NULL || 6451 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6452 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6453 /* 6454 * No more interested clients or memory 6455 * allocation failed 6456 */ 6457 connp = first_connp; 6458 break; 6459 } 6460 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6461 CONN_INC_REF(connp); 6462 mutex_exit(&connfp->connf_lock); 6463 rq = connp->conn_rq; 6464 if (!canputnext(rq)) { 6465 if (flags & IP_FF_RAWIP) { 6466 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6467 } else { 6468 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6469 } 6470 6471 freemsg(first_mp1); 6472 } else { 6473 /* 6474 * Don't enforce here if we're an actual tunnel - 6475 * let "tun" do it instead. 6476 */ 6477 if (!IPCL_IS_IPTUN(connp) && 6478 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6479 secure)) { 6480 first_mp1 = ipsec_check_inbound_policy 6481 (first_mp1, connp, ipha, NULL, 6482 mctl_present); 6483 } 6484 if (first_mp1 != NULL) { 6485 int in_flags = 0; 6486 /* 6487 * ip_fanout_proto also gets called from 6488 * icmp_inbound_error_fanout, in which case 6489 * the msg type is M_CTL. Don't add info 6490 * in this case for the time being. In future 6491 * when there is a need for knowing the 6492 * inbound iface index for ICMP error msgs, 6493 * then this can be changed. 6494 */ 6495 if (connp->conn_recvif) 6496 in_flags = IPF_RECVIF; 6497 /* 6498 * The ULP may support IP_RECVPKTINFO for both 6499 * IP v4 and v6 so pass the appropriate argument 6500 * based on conn IP version. 6501 */ 6502 if (connp->conn_ip_recvpktinfo) { 6503 if (connp->conn_af_isv6) { 6504 /* 6505 * V6 only needs index 6506 */ 6507 in_flags |= IPF_RECVIF; 6508 } else { 6509 /* 6510 * V4 needs index + 6511 * matching address. 6512 */ 6513 in_flags |= IPF_RECVADDR; 6514 } 6515 } 6516 if ((in_flags != 0) && 6517 (mp->b_datap->db_type != M_CTL)) { 6518 /* 6519 * the actual data will be 6520 * contained in b_cont upon 6521 * successful return of the 6522 * following call else 6523 * original mblk is returned 6524 */ 6525 ASSERT(recv_ill != NULL); 6526 mp1 = ip_add_info(mp1, recv_ill, 6527 in_flags, IPCL_ZONEID(connp), ipst); 6528 } 6529 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6530 if (mctl_present) 6531 freeb(first_mp1); 6532 (connp->conn_recv)(connp, mp1, NULL); 6533 } 6534 } 6535 mutex_enter(&connfp->connf_lock); 6536 /* Follow the next pointer before releasing the conn. */ 6537 next_connp = connp->conn_next; 6538 CONN_DEC_REF(connp); 6539 connp = next_connp; 6540 } 6541 6542 /* Last one. Send it upstream. */ 6543 mutex_exit(&connfp->connf_lock); 6544 6545 /* 6546 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6547 * will be set to false. 6548 */ 6549 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6550 ill_index = ill->ill_phyint->phyint_ifindex; 6551 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6552 if (mp == NULL) { 6553 CONN_DEC_REF(connp); 6554 if (mctl_present) { 6555 freeb(first_mp); 6556 } 6557 return; 6558 } 6559 } 6560 6561 rq = connp->conn_rq; 6562 if (!canputnext(rq)) { 6563 if (flags & IP_FF_RAWIP) { 6564 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6565 } else { 6566 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6567 } 6568 6569 freemsg(first_mp); 6570 } else { 6571 if (IPCL_IS_IPTUN(connp)) { 6572 /* 6573 * Tunneled packet. We enforce policy in the tunnel 6574 * module itself. 6575 * 6576 * Send the WHOLE packet up (incl. IPSEC_IN) without 6577 * a policy check. 6578 * FIXME to use conn_recv for tun later. 6579 */ 6580 putnext(rq, first_mp); 6581 CONN_DEC_REF(connp); 6582 return; 6583 } 6584 6585 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6586 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6587 ipha, NULL, mctl_present); 6588 } 6589 6590 if (first_mp != NULL) { 6591 int in_flags = 0; 6592 6593 /* 6594 * ip_fanout_proto also gets called 6595 * from icmp_inbound_error_fanout, in 6596 * which case the msg type is M_CTL. 6597 * Don't add info in this case for time 6598 * being. In future when there is a 6599 * need for knowing the inbound iface 6600 * index for ICMP error msgs, then this 6601 * can be changed 6602 */ 6603 if (connp->conn_recvif) 6604 in_flags = IPF_RECVIF; 6605 if (connp->conn_ip_recvpktinfo) { 6606 if (connp->conn_af_isv6) { 6607 /* 6608 * V6 only needs index 6609 */ 6610 in_flags |= IPF_RECVIF; 6611 } else { 6612 /* 6613 * V4 needs index + 6614 * matching address. 6615 */ 6616 in_flags |= IPF_RECVADDR; 6617 } 6618 } 6619 if ((in_flags != 0) && 6620 (mp->b_datap->db_type != M_CTL)) { 6621 6622 /* 6623 * the actual data will be contained in 6624 * b_cont upon successful return 6625 * of the following call else original 6626 * mblk is returned 6627 */ 6628 ASSERT(recv_ill != NULL); 6629 mp = ip_add_info(mp, recv_ill, 6630 in_flags, IPCL_ZONEID(connp), ipst); 6631 } 6632 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6633 (connp->conn_recv)(connp, mp, NULL); 6634 if (mctl_present) 6635 freeb(first_mp); 6636 } 6637 } 6638 CONN_DEC_REF(connp); 6639 } 6640 6641 /* 6642 * Fanout for TCP packets 6643 * The caller puts <fport, lport> in the ports parameter. 6644 * 6645 * IPQoS Notes 6646 * Before sending it to the client, invoke IPPF processing. 6647 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6648 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6649 * ip_policy is false. 6650 */ 6651 static void 6652 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6653 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6654 { 6655 mblk_t *first_mp; 6656 boolean_t secure; 6657 uint32_t ill_index; 6658 int ip_hdr_len; 6659 tcph_t *tcph; 6660 boolean_t syn_present = B_FALSE; 6661 conn_t *connp; 6662 ip_stack_t *ipst = recv_ill->ill_ipst; 6663 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6664 6665 ASSERT(recv_ill != NULL); 6666 6667 first_mp = mp; 6668 if (mctl_present) { 6669 ASSERT(first_mp->b_datap->db_type == M_CTL); 6670 mp = first_mp->b_cont; 6671 secure = ipsec_in_is_secure(first_mp); 6672 ASSERT(mp != NULL); 6673 } else { 6674 secure = B_FALSE; 6675 } 6676 6677 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6678 6679 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6680 zoneid, ipst)) == NULL) { 6681 /* 6682 * No connected connection or listener. Send a 6683 * TH_RST via tcp_xmit_listeners_reset. 6684 */ 6685 6686 /* Initiate IPPf processing, if needed. */ 6687 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6688 uint32_t ill_index; 6689 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6690 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6691 if (first_mp == NULL) 6692 return; 6693 } 6694 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6695 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6696 zoneid)); 6697 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6698 ipst->ips_netstack->netstack_tcp, NULL); 6699 return; 6700 } 6701 6702 /* 6703 * Allocate the SYN for the TCP connection here itself 6704 */ 6705 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6706 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6707 if (IPCL_IS_TCP(connp)) { 6708 squeue_t *sqp; 6709 6710 /* 6711 * For fused tcp loopback, assign the eager's 6712 * squeue to be that of the active connect's. 6713 * Note that we don't check for IP_FF_LOOPBACK 6714 * here since this routine gets called only 6715 * for loopback (unlike the IPv6 counterpart). 6716 */ 6717 ASSERT(Q_TO_CONN(q) != NULL); 6718 if (do_tcp_fusion && 6719 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6720 !secure && 6721 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6722 IPCL_IS_TCP(Q_TO_CONN(q))) { 6723 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6724 sqp = Q_TO_CONN(q)->conn_sqp; 6725 } else { 6726 sqp = IP_SQUEUE_GET(lbolt); 6727 } 6728 6729 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6730 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6731 syn_present = B_TRUE; 6732 } 6733 } 6734 6735 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6736 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6737 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6738 if ((flags & TH_RST) || (flags & TH_URG)) { 6739 CONN_DEC_REF(connp); 6740 freemsg(first_mp); 6741 return; 6742 } 6743 if (flags & TH_ACK) { 6744 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6745 ipst->ips_netstack->netstack_tcp, connp); 6746 CONN_DEC_REF(connp); 6747 return; 6748 } 6749 6750 CONN_DEC_REF(connp); 6751 freemsg(first_mp); 6752 return; 6753 } 6754 6755 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6756 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6757 NULL, mctl_present); 6758 if (first_mp == NULL) { 6759 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6760 CONN_DEC_REF(connp); 6761 return; 6762 } 6763 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6764 ASSERT(syn_present); 6765 if (mctl_present) { 6766 ASSERT(first_mp != mp); 6767 first_mp->b_datap->db_struioflag |= 6768 STRUIO_POLICY; 6769 } else { 6770 ASSERT(first_mp == mp); 6771 mp->b_datap->db_struioflag &= 6772 ~STRUIO_EAGER; 6773 mp->b_datap->db_struioflag |= 6774 STRUIO_POLICY; 6775 } 6776 } else { 6777 /* 6778 * Discard first_mp early since we're dealing with a 6779 * fully-connected conn_t and tcp doesn't do policy in 6780 * this case. 6781 */ 6782 if (mctl_present) { 6783 freeb(first_mp); 6784 mctl_present = B_FALSE; 6785 } 6786 first_mp = mp; 6787 } 6788 } 6789 6790 /* 6791 * Initiate policy processing here if needed. If we get here from 6792 * icmp_inbound_error_fanout, ip_policy is false. 6793 */ 6794 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6795 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6796 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6797 if (mp == NULL) { 6798 CONN_DEC_REF(connp); 6799 if (mctl_present) 6800 freeb(first_mp); 6801 return; 6802 } else if (mctl_present) { 6803 ASSERT(first_mp != mp); 6804 first_mp->b_cont = mp; 6805 } else { 6806 first_mp = mp; 6807 } 6808 } 6809 6810 6811 6812 /* Handle socket options. */ 6813 if (!syn_present && 6814 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6815 /* Add header */ 6816 ASSERT(recv_ill != NULL); 6817 /* 6818 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6819 * IPF_RECVIF. 6820 */ 6821 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6822 ipst); 6823 if (mp == NULL) { 6824 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6825 CONN_DEC_REF(connp); 6826 if (mctl_present) 6827 freeb(first_mp); 6828 return; 6829 } else if (mctl_present) { 6830 /* 6831 * ip_add_info might return a new mp. 6832 */ 6833 ASSERT(first_mp != mp); 6834 first_mp->b_cont = mp; 6835 } else { 6836 first_mp = mp; 6837 } 6838 } 6839 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6840 if (IPCL_IS_TCP(connp)) { 6841 /* do not drain, certain use cases can blow the stack */ 6842 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6843 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6844 } else { 6845 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6846 (connp->conn_recv)(connp, first_mp, NULL); 6847 CONN_DEC_REF(connp); 6848 } 6849 } 6850 6851 /* 6852 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6853 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6854 * is not consumed. 6855 * 6856 * One of four things can happen, all of which affect the passed-in mblk: 6857 * 6858 * 1.) ICMP messages that go through here just get returned TRUE. 6859 * 6860 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6861 * 6862 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6863 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6864 * 6865 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6866 */ 6867 static boolean_t 6868 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6869 ipsec_stack_t *ipss) 6870 { 6871 int shift, plen, iph_len; 6872 ipha_t *ipha; 6873 udpha_t *udpha; 6874 uint32_t *spi; 6875 uint32_t esp_ports; 6876 uint8_t *orptr; 6877 boolean_t free_ire; 6878 6879 if (DB_TYPE(mp) == M_CTL) { 6880 /* 6881 * ICMP message with UDP inside. Don't bother stripping, just 6882 * send it up. 6883 * 6884 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6885 * to ignore errors set by ICMP anyway ('cause they might be 6886 * forged), but that's the app's decision, not ours. 6887 */ 6888 6889 /* Bunch of reality checks for DEBUG kernels... */ 6890 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6891 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6892 6893 return (B_TRUE); 6894 } 6895 6896 ipha = (ipha_t *)mp->b_rptr; 6897 iph_len = IPH_HDR_LENGTH(ipha); 6898 plen = ntohs(ipha->ipha_length); 6899 6900 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6901 /* 6902 * Most likely a keepalive for the benefit of an intervening 6903 * NAT. These aren't for us, per se, so drop it. 6904 * 6905 * RFC 3947/8 doesn't say for sure what to do for 2-3 6906 * byte packets (keepalives are 1-byte), but we'll drop them 6907 * also. 6908 */ 6909 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6910 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6911 return (B_FALSE); 6912 } 6913 6914 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6915 /* might as well pull it all up - it might be ESP. */ 6916 if (!pullupmsg(mp, -1)) { 6917 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6918 DROPPER(ipss, ipds_esp_nomem), 6919 &ipss->ipsec_dropper); 6920 return (B_FALSE); 6921 } 6922 6923 ipha = (ipha_t *)mp->b_rptr; 6924 } 6925 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6926 if (*spi == 0) { 6927 /* UDP packet - remove 0-spi. */ 6928 shift = sizeof (uint32_t); 6929 } else { 6930 /* ESP-in-UDP packet - reduce to ESP. */ 6931 ipha->ipha_protocol = IPPROTO_ESP; 6932 shift = sizeof (udpha_t); 6933 } 6934 6935 /* Fix IP header */ 6936 ipha->ipha_length = htons(plen - shift); 6937 ipha->ipha_hdr_checksum = 0; 6938 6939 orptr = mp->b_rptr; 6940 mp->b_rptr += shift; 6941 6942 udpha = (udpha_t *)(orptr + iph_len); 6943 if (*spi == 0) { 6944 ASSERT((uint8_t *)ipha == orptr); 6945 udpha->uha_length = htons(plen - shift - iph_len); 6946 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6947 esp_ports = 0; 6948 } else { 6949 esp_ports = *((uint32_t *)udpha); 6950 ASSERT(esp_ports != 0); 6951 } 6952 ovbcopy(orptr, orptr + shift, iph_len); 6953 if (esp_ports != 0) /* Punt up for ESP processing. */ { 6954 ipha = (ipha_t *)(orptr + shift); 6955 6956 free_ire = (ire == NULL); 6957 if (free_ire) { 6958 /* Re-acquire ire. */ 6959 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6960 ipss->ipsec_netstack->netstack_ip); 6961 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6962 if (ire != NULL) 6963 ire_refrele(ire); 6964 /* 6965 * Do a regular freemsg(), as this is an IP 6966 * error (no local route) not an IPsec one. 6967 */ 6968 freemsg(mp); 6969 } 6970 } 6971 6972 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 6973 if (free_ire) 6974 ire_refrele(ire); 6975 } 6976 6977 return (esp_ports == 0); 6978 } 6979 6980 /* 6981 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6982 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6983 * Caller is responsible for dropping references to the conn, and freeing 6984 * first_mp. 6985 * 6986 * IPQoS Notes 6987 * Before sending it to the client, invoke IPPF processing. Policy processing 6988 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6989 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6990 * ip_wput_local, ip_policy is false. 6991 */ 6992 static void 6993 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6994 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6995 boolean_t ip_policy) 6996 { 6997 boolean_t mctl_present = (first_mp != NULL); 6998 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6999 uint32_t ill_index; 7000 ip_stack_t *ipst = recv_ill->ill_ipst; 7001 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7002 7003 ASSERT(ill != NULL); 7004 7005 if (mctl_present) 7006 first_mp->b_cont = mp; 7007 else 7008 first_mp = mp; 7009 7010 if (CONN_UDP_FLOWCTLD(connp)) { 7011 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7012 freemsg(first_mp); 7013 return; 7014 } 7015 7016 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7017 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7018 NULL, mctl_present); 7019 if (first_mp == NULL) { 7020 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7021 return; /* Freed by ipsec_check_inbound_policy(). */ 7022 } 7023 } 7024 if (mctl_present) 7025 freeb(first_mp); 7026 7027 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7028 if (connp->conn_udp->udp_nat_t_endpoint) { 7029 if (mctl_present) { 7030 /* mctl_present *shouldn't* happen. */ 7031 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7032 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7033 &ipss->ipsec_dropper); 7034 return; 7035 } 7036 7037 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7038 return; 7039 } 7040 7041 /* Handle options. */ 7042 if (connp->conn_recvif) 7043 in_flags = IPF_RECVIF; 7044 /* 7045 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7046 * passed to ip_add_info is based on IP version of connp. 7047 */ 7048 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7049 if (connp->conn_af_isv6) { 7050 /* 7051 * V6 only needs index 7052 */ 7053 in_flags |= IPF_RECVIF; 7054 } else { 7055 /* 7056 * V4 needs index + matching address. 7057 */ 7058 in_flags |= IPF_RECVADDR; 7059 } 7060 } 7061 7062 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7063 in_flags |= IPF_RECVSLLA; 7064 7065 /* 7066 * Initiate IPPF processing here, if needed. Note first_mp won't be 7067 * freed if the packet is dropped. The caller will do so. 7068 */ 7069 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7070 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7071 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7072 if (mp == NULL) { 7073 return; 7074 } 7075 } 7076 if ((in_flags != 0) && 7077 (mp->b_datap->db_type != M_CTL)) { 7078 /* 7079 * The actual data will be contained in b_cont 7080 * upon successful return of the following call 7081 * else original mblk is returned 7082 */ 7083 ASSERT(recv_ill != NULL); 7084 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7085 ipst); 7086 } 7087 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7088 /* Send it upstream */ 7089 (connp->conn_recv)(connp, mp, NULL); 7090 } 7091 7092 /* 7093 * Fanout for UDP packets. 7094 * The caller puts <fport, lport> in the ports parameter. 7095 * 7096 * If SO_REUSEADDR is set all multicast and broadcast packets 7097 * will be delivered to all streams bound to the same port. 7098 * 7099 * Zones notes: 7100 * Multicast and broadcast packets will be distributed to streams in all zones. 7101 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7102 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7103 * packets. To maintain this behavior with multiple zones, the conns are grouped 7104 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7105 * each zone. If unset, all the following conns in the same zone are skipped. 7106 */ 7107 static void 7108 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7109 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7110 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7111 { 7112 uint32_t dstport, srcport; 7113 ipaddr_t dst; 7114 mblk_t *first_mp; 7115 boolean_t secure; 7116 in6_addr_t v6src; 7117 conn_t *connp; 7118 connf_t *connfp; 7119 conn_t *first_connp; 7120 conn_t *next_connp; 7121 mblk_t *mp1, *first_mp1; 7122 ipaddr_t src; 7123 zoneid_t last_zoneid; 7124 boolean_t reuseaddr; 7125 boolean_t shared_addr; 7126 boolean_t unlabeled; 7127 ip_stack_t *ipst; 7128 7129 ASSERT(recv_ill != NULL); 7130 ipst = recv_ill->ill_ipst; 7131 7132 first_mp = mp; 7133 if (mctl_present) { 7134 mp = first_mp->b_cont; 7135 first_mp->b_cont = NULL; 7136 secure = ipsec_in_is_secure(first_mp); 7137 ASSERT(mp != NULL); 7138 } else { 7139 first_mp = NULL; 7140 secure = B_FALSE; 7141 } 7142 7143 /* Extract ports in net byte order */ 7144 dstport = htons(ntohl(ports) & 0xFFFF); 7145 srcport = htons(ntohl(ports) >> 16); 7146 dst = ipha->ipha_dst; 7147 src = ipha->ipha_src; 7148 7149 unlabeled = B_FALSE; 7150 if (is_system_labeled()) 7151 /* Cred cannot be null on IPv4 */ 7152 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7153 TSLF_UNLABELED) != 0; 7154 shared_addr = (zoneid == ALL_ZONES); 7155 if (shared_addr) { 7156 /* 7157 * No need to handle exclusive-stack zones since ALL_ZONES 7158 * only applies to the shared stack. 7159 */ 7160 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7161 /* 7162 * If no shared MLP is found, tsol_mlp_findzone returns 7163 * ALL_ZONES. In that case, we assume it's SLP, and 7164 * search for the zone based on the packet label. 7165 * 7166 * If there is such a zone, we prefer to find a 7167 * connection in it. Otherwise, we look for a 7168 * MAC-exempt connection in any zone whose label 7169 * dominates the default label on the packet. 7170 */ 7171 if (zoneid == ALL_ZONES) 7172 zoneid = tsol_packet_to_zoneid(mp); 7173 else 7174 unlabeled = B_FALSE; 7175 } 7176 7177 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7178 mutex_enter(&connfp->connf_lock); 7179 connp = connfp->connf_head; 7180 if (!broadcast && !CLASSD(dst)) { 7181 /* 7182 * Not broadcast or multicast. Send to the one (first) 7183 * client we find. No need to check conn_wantpacket() 7184 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7185 * IPv4 unicast packets. 7186 */ 7187 while ((connp != NULL) && 7188 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7189 (!IPCL_ZONE_MATCH(connp, zoneid) && 7190 !(unlabeled && connp->conn_mac_exempt)))) { 7191 /* 7192 * We keep searching since the conn did not match, 7193 * or its zone did not match and it is not either 7194 * an allzones conn or a mac exempt conn (if the 7195 * sender is unlabeled.) 7196 */ 7197 connp = connp->conn_next; 7198 } 7199 7200 if (connp == NULL || connp->conn_upq == NULL) 7201 goto notfound; 7202 7203 if (is_system_labeled() && 7204 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7205 connp)) 7206 goto notfound; 7207 7208 CONN_INC_REF(connp); 7209 mutex_exit(&connfp->connf_lock); 7210 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7211 flags, recv_ill, ip_policy); 7212 IP_STAT(ipst, ip_udp_fannorm); 7213 CONN_DEC_REF(connp); 7214 return; 7215 } 7216 7217 /* 7218 * Broadcast and multicast case 7219 * 7220 * Need to check conn_wantpacket(). 7221 * If SO_REUSEADDR has been set on the first we send the 7222 * packet to all clients that have joined the group and 7223 * match the port. 7224 */ 7225 7226 while (connp != NULL) { 7227 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7228 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7229 (!is_system_labeled() || 7230 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7231 connp))) 7232 break; 7233 connp = connp->conn_next; 7234 } 7235 7236 if (connp == NULL || connp->conn_upq == NULL) 7237 goto notfound; 7238 7239 first_connp = connp; 7240 /* 7241 * When SO_REUSEADDR is not set, send the packet only to the first 7242 * matching connection in its zone by keeping track of the zoneid. 7243 */ 7244 reuseaddr = first_connp->conn_reuseaddr; 7245 last_zoneid = first_connp->conn_zoneid; 7246 7247 CONN_INC_REF(connp); 7248 connp = connp->conn_next; 7249 for (;;) { 7250 while (connp != NULL) { 7251 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7252 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7253 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7254 (!is_system_labeled() || 7255 tsol_receive_local(mp, &dst, IPV4_VERSION, 7256 shared_addr, connp))) 7257 break; 7258 connp = connp->conn_next; 7259 } 7260 /* 7261 * Just copy the data part alone. The mctl part is 7262 * needed just for verifying policy and it is never 7263 * sent up. 7264 */ 7265 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7266 ((mp1 = copymsg(mp)) == NULL))) { 7267 /* 7268 * No more interested clients or memory 7269 * allocation failed 7270 */ 7271 connp = first_connp; 7272 break; 7273 } 7274 if (connp->conn_zoneid != last_zoneid) { 7275 /* 7276 * Update the zoneid so that the packet isn't sent to 7277 * any more conns in the same zone unless SO_REUSEADDR 7278 * is set. 7279 */ 7280 reuseaddr = connp->conn_reuseaddr; 7281 last_zoneid = connp->conn_zoneid; 7282 } 7283 if (first_mp != NULL) { 7284 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7285 ipsec_info_type == IPSEC_IN); 7286 first_mp1 = ipsec_in_tag(first_mp, NULL, 7287 ipst->ips_netstack); 7288 if (first_mp1 == NULL) { 7289 freemsg(mp1); 7290 connp = first_connp; 7291 break; 7292 } 7293 } else { 7294 first_mp1 = NULL; 7295 } 7296 CONN_INC_REF(connp); 7297 mutex_exit(&connfp->connf_lock); 7298 /* 7299 * IPQoS notes: We don't send the packet for policy 7300 * processing here, will do it for the last one (below). 7301 * i.e. we do it per-packet now, but if we do policy 7302 * processing per-conn, then we would need to do it 7303 * here too. 7304 */ 7305 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7306 ipha, flags, recv_ill, B_FALSE); 7307 mutex_enter(&connfp->connf_lock); 7308 /* Follow the next pointer before releasing the conn. */ 7309 next_connp = connp->conn_next; 7310 IP_STAT(ipst, ip_udp_fanmb); 7311 CONN_DEC_REF(connp); 7312 connp = next_connp; 7313 } 7314 7315 /* Last one. Send it upstream. */ 7316 mutex_exit(&connfp->connf_lock); 7317 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7318 recv_ill, ip_policy); 7319 IP_STAT(ipst, ip_udp_fanmb); 7320 CONN_DEC_REF(connp); 7321 return; 7322 7323 notfound: 7324 7325 mutex_exit(&connfp->connf_lock); 7326 IP_STAT(ipst, ip_udp_fanothers); 7327 /* 7328 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7329 * have already been matched above, since they live in the IPv4 7330 * fanout tables. This implies we only need to 7331 * check for IPv6 in6addr_any endpoints here. 7332 * Thus we compare using ipv6_all_zeros instead of the destination 7333 * address, except for the multicast group membership lookup which 7334 * uses the IPv4 destination. 7335 */ 7336 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7337 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7338 mutex_enter(&connfp->connf_lock); 7339 connp = connfp->connf_head; 7340 if (!broadcast && !CLASSD(dst)) { 7341 while (connp != NULL) { 7342 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7343 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7344 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7345 !connp->conn_ipv6_v6only) 7346 break; 7347 connp = connp->conn_next; 7348 } 7349 7350 if (connp != NULL && is_system_labeled() && 7351 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7352 connp)) 7353 connp = NULL; 7354 7355 if (connp == NULL || connp->conn_upq == NULL) { 7356 /* 7357 * No one bound to this port. Is 7358 * there a client that wants all 7359 * unclaimed datagrams? 7360 */ 7361 mutex_exit(&connfp->connf_lock); 7362 7363 if (mctl_present) 7364 first_mp->b_cont = mp; 7365 else 7366 first_mp = mp; 7367 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7368 connf_head != NULL) { 7369 ip_fanout_proto(q, first_mp, ill, ipha, 7370 flags | IP_FF_RAWIP, mctl_present, 7371 ip_policy, recv_ill, zoneid); 7372 } else { 7373 if (ip_fanout_send_icmp(q, first_mp, flags, 7374 ICMP_DEST_UNREACHABLE, 7375 ICMP_PORT_UNREACHABLE, 7376 mctl_present, zoneid, ipst)) { 7377 BUMP_MIB(ill->ill_ip_mib, 7378 udpIfStatsNoPorts); 7379 } 7380 } 7381 return; 7382 } 7383 7384 CONN_INC_REF(connp); 7385 mutex_exit(&connfp->connf_lock); 7386 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7387 flags, recv_ill, ip_policy); 7388 CONN_DEC_REF(connp); 7389 return; 7390 } 7391 /* 7392 * IPv4 multicast packet being delivered to an AF_INET6 7393 * in6addr_any endpoint. 7394 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7395 * and not conn_wantpacket_v6() since any multicast membership is 7396 * for an IPv4-mapped multicast address. 7397 * The packet is sent to all clients in all zones that have joined the 7398 * group and match the port. 7399 */ 7400 while (connp != NULL) { 7401 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7402 srcport, v6src) && 7403 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7404 (!is_system_labeled() || 7405 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7406 connp))) 7407 break; 7408 connp = connp->conn_next; 7409 } 7410 7411 if (connp == NULL || connp->conn_upq == NULL) { 7412 /* 7413 * No one bound to this port. Is 7414 * there a client that wants all 7415 * unclaimed datagrams? 7416 */ 7417 mutex_exit(&connfp->connf_lock); 7418 7419 if (mctl_present) 7420 first_mp->b_cont = mp; 7421 else 7422 first_mp = mp; 7423 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7424 NULL) { 7425 ip_fanout_proto(q, first_mp, ill, ipha, 7426 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7427 recv_ill, zoneid); 7428 } else { 7429 /* 7430 * We used to attempt to send an icmp error here, but 7431 * since this is known to be a multicast packet 7432 * and we don't send icmp errors in response to 7433 * multicast, just drop the packet and give up sooner. 7434 */ 7435 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7436 freemsg(first_mp); 7437 } 7438 return; 7439 } 7440 7441 first_connp = connp; 7442 7443 CONN_INC_REF(connp); 7444 connp = connp->conn_next; 7445 for (;;) { 7446 while (connp != NULL) { 7447 if (IPCL_UDP_MATCH_V6(connp, dstport, 7448 ipv6_all_zeros, srcport, v6src) && 7449 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7450 (!is_system_labeled() || 7451 tsol_receive_local(mp, &dst, IPV4_VERSION, 7452 shared_addr, connp))) 7453 break; 7454 connp = connp->conn_next; 7455 } 7456 /* 7457 * Just copy the data part alone. The mctl part is 7458 * needed just for verifying policy and it is never 7459 * sent up. 7460 */ 7461 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7462 ((mp1 = copymsg(mp)) == NULL))) { 7463 /* 7464 * No more intested clients or memory 7465 * allocation failed 7466 */ 7467 connp = first_connp; 7468 break; 7469 } 7470 if (first_mp != NULL) { 7471 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7472 ipsec_info_type == IPSEC_IN); 7473 first_mp1 = ipsec_in_tag(first_mp, NULL, 7474 ipst->ips_netstack); 7475 if (first_mp1 == NULL) { 7476 freemsg(mp1); 7477 connp = first_connp; 7478 break; 7479 } 7480 } else { 7481 first_mp1 = NULL; 7482 } 7483 CONN_INC_REF(connp); 7484 mutex_exit(&connfp->connf_lock); 7485 /* 7486 * IPQoS notes: We don't send the packet for policy 7487 * processing here, will do it for the last one (below). 7488 * i.e. we do it per-packet now, but if we do policy 7489 * processing per-conn, then we would need to do it 7490 * here too. 7491 */ 7492 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7493 ipha, flags, recv_ill, B_FALSE); 7494 mutex_enter(&connfp->connf_lock); 7495 /* Follow the next pointer before releasing the conn. */ 7496 next_connp = connp->conn_next; 7497 CONN_DEC_REF(connp); 7498 connp = next_connp; 7499 } 7500 7501 /* Last one. Send it upstream. */ 7502 mutex_exit(&connfp->connf_lock); 7503 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7504 recv_ill, ip_policy); 7505 CONN_DEC_REF(connp); 7506 } 7507 7508 /* 7509 * Complete the ip_wput header so that it 7510 * is possible to generate ICMP 7511 * errors. 7512 */ 7513 int 7514 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7515 { 7516 ire_t *ire; 7517 7518 if (ipha->ipha_src == INADDR_ANY) { 7519 ire = ire_lookup_local(zoneid, ipst); 7520 if (ire == NULL) { 7521 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7522 return (1); 7523 } 7524 ipha->ipha_src = ire->ire_addr; 7525 ire_refrele(ire); 7526 } 7527 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7528 ipha->ipha_hdr_checksum = 0; 7529 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7530 return (0); 7531 } 7532 7533 /* 7534 * Nobody should be sending 7535 * packets up this stream 7536 */ 7537 static void 7538 ip_lrput(queue_t *q, mblk_t *mp) 7539 { 7540 mblk_t *mp1; 7541 7542 switch (mp->b_datap->db_type) { 7543 case M_FLUSH: 7544 /* Turn around */ 7545 if (*mp->b_rptr & FLUSHW) { 7546 *mp->b_rptr &= ~FLUSHR; 7547 qreply(q, mp); 7548 return; 7549 } 7550 break; 7551 } 7552 /* Could receive messages that passed through ar_rput */ 7553 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7554 mp1->b_prev = mp1->b_next = NULL; 7555 freemsg(mp); 7556 } 7557 7558 /* Nobody should be sending packets down this stream */ 7559 /* ARGSUSED */ 7560 void 7561 ip_lwput(queue_t *q, mblk_t *mp) 7562 { 7563 freemsg(mp); 7564 } 7565 7566 /* 7567 * Move the first hop in any source route to ipha_dst and remove that part of 7568 * the source route. Called by other protocols. Errors in option formatting 7569 * are ignored - will be handled by ip_wput_options Return the final 7570 * destination (either ipha_dst or the last entry in a source route.) 7571 */ 7572 ipaddr_t 7573 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7574 { 7575 ipoptp_t opts; 7576 uchar_t *opt; 7577 uint8_t optval; 7578 uint8_t optlen; 7579 ipaddr_t dst; 7580 int i; 7581 ire_t *ire; 7582 ip_stack_t *ipst = ns->netstack_ip; 7583 7584 ip2dbg(("ip_massage_options\n")); 7585 dst = ipha->ipha_dst; 7586 for (optval = ipoptp_first(&opts, ipha); 7587 optval != IPOPT_EOL; 7588 optval = ipoptp_next(&opts)) { 7589 opt = opts.ipoptp_cur; 7590 switch (optval) { 7591 uint8_t off; 7592 case IPOPT_SSRR: 7593 case IPOPT_LSRR: 7594 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7595 ip1dbg(("ip_massage_options: bad src route\n")); 7596 break; 7597 } 7598 optlen = opts.ipoptp_len; 7599 off = opt[IPOPT_OFFSET]; 7600 off--; 7601 redo_srr: 7602 if (optlen < IP_ADDR_LEN || 7603 off > optlen - IP_ADDR_LEN) { 7604 /* End of source route */ 7605 ip1dbg(("ip_massage_options: end of SR\n")); 7606 break; 7607 } 7608 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7609 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7610 ntohl(dst))); 7611 /* 7612 * Check if our address is present more than 7613 * once as consecutive hops in source route. 7614 * XXX verify per-interface ip_forwarding 7615 * for source route? 7616 */ 7617 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7618 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7619 if (ire != NULL) { 7620 ire_refrele(ire); 7621 off += IP_ADDR_LEN; 7622 goto redo_srr; 7623 } 7624 if (dst == htonl(INADDR_LOOPBACK)) { 7625 ip1dbg(("ip_massage_options: loopback addr in " 7626 "source route!\n")); 7627 break; 7628 } 7629 /* 7630 * Update ipha_dst to be the first hop and remove the 7631 * first hop from the source route (by overwriting 7632 * part of the option with NOP options). 7633 */ 7634 ipha->ipha_dst = dst; 7635 /* Put the last entry in dst */ 7636 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7637 3; 7638 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7639 7640 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7641 ntohl(dst))); 7642 /* Move down and overwrite */ 7643 opt[IP_ADDR_LEN] = opt[0]; 7644 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7645 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7646 for (i = 0; i < IP_ADDR_LEN; i++) 7647 opt[i] = IPOPT_NOP; 7648 break; 7649 } 7650 } 7651 return (dst); 7652 } 7653 7654 /* 7655 * Return the network mask 7656 * associated with the specified address. 7657 */ 7658 ipaddr_t 7659 ip_net_mask(ipaddr_t addr) 7660 { 7661 uchar_t *up = (uchar_t *)&addr; 7662 ipaddr_t mask = 0; 7663 uchar_t *maskp = (uchar_t *)&mask; 7664 7665 #if defined(__i386) || defined(__amd64) 7666 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7667 #endif 7668 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7669 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7670 #endif 7671 if (CLASSD(addr)) { 7672 maskp[0] = 0xF0; 7673 return (mask); 7674 } 7675 7676 /* We assume Class E default netmask to be 32 */ 7677 if (CLASSE(addr)) 7678 return (0xffffffffU); 7679 7680 if (addr == 0) 7681 return (0); 7682 maskp[0] = 0xFF; 7683 if ((up[0] & 0x80) == 0) 7684 return (mask); 7685 7686 maskp[1] = 0xFF; 7687 if ((up[0] & 0xC0) == 0x80) 7688 return (mask); 7689 7690 maskp[2] = 0xFF; 7691 if ((up[0] & 0xE0) == 0xC0) 7692 return (mask); 7693 7694 /* Otherwise return no mask */ 7695 return ((ipaddr_t)0); 7696 } 7697 7698 /* 7699 * Select an ill for the packet by considering load spreading across 7700 * a different ill in the group if dst_ill is part of some group. 7701 */ 7702 ill_t * 7703 ip_newroute_get_dst_ill(ill_t *dst_ill) 7704 { 7705 ill_t *ill; 7706 7707 /* 7708 * We schedule irrespective of whether the source address is 7709 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7710 */ 7711 ill = illgrp_scheduler(dst_ill); 7712 if (ill == NULL) 7713 return (NULL); 7714 7715 /* 7716 * For groups with names ip_sioctl_groupname ensures that all 7717 * ills are of same type. For groups without names, ifgrp_insert 7718 * ensures this. 7719 */ 7720 ASSERT(dst_ill->ill_type == ill->ill_type); 7721 7722 return (ill); 7723 } 7724 7725 /* 7726 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7727 */ 7728 ill_t * 7729 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7730 ip_stack_t *ipst) 7731 { 7732 ill_t *ret_ill; 7733 7734 ASSERT(ifindex != 0); 7735 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7736 ipst); 7737 if (ret_ill == NULL || 7738 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7739 if (isv6) { 7740 if (ill != NULL) { 7741 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7742 } else { 7743 BUMP_MIB(&ipst->ips_ip6_mib, 7744 ipIfStatsOutDiscards); 7745 } 7746 ip1dbg(("ip_grab_attach_ill (IPv6): " 7747 "bad ifindex %d.\n", ifindex)); 7748 } else { 7749 if (ill != NULL) { 7750 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7751 } else { 7752 BUMP_MIB(&ipst->ips_ip_mib, 7753 ipIfStatsOutDiscards); 7754 } 7755 ip1dbg(("ip_grab_attach_ill (IPv4): " 7756 "bad ifindex %d.\n", ifindex)); 7757 } 7758 if (ret_ill != NULL) 7759 ill_refrele(ret_ill); 7760 freemsg(first_mp); 7761 return (NULL); 7762 } 7763 7764 return (ret_ill); 7765 } 7766 7767 /* 7768 * IPv4 - 7769 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7770 * out a packet to a destination address for which we do not have specific 7771 * (or sufficient) routing information. 7772 * 7773 * NOTE : These are the scopes of some of the variables that point at IRE, 7774 * which needs to be followed while making any future modifications 7775 * to avoid memory leaks. 7776 * 7777 * - ire and sire are the entries looked up initially by 7778 * ire_ftable_lookup. 7779 * - ipif_ire is used to hold the interface ire associated with 7780 * the new cache ire. But it's scope is limited, so we always REFRELE 7781 * it before branching out to error paths. 7782 * - save_ire is initialized before ire_create, so that ire returned 7783 * by ire_create will not over-write the ire. We REFRELE save_ire 7784 * before breaking out of the switch. 7785 * 7786 * Thus on failures, we have to REFRELE only ire and sire, if they 7787 * are not NULL. 7788 */ 7789 void 7790 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7791 zoneid_t zoneid, ip_stack_t *ipst) 7792 { 7793 areq_t *areq; 7794 ipaddr_t gw = 0; 7795 ire_t *ire = NULL; 7796 mblk_t *res_mp; 7797 ipaddr_t *addrp; 7798 ipaddr_t nexthop_addr; 7799 ipif_t *src_ipif = NULL; 7800 ill_t *dst_ill = NULL; 7801 ipha_t *ipha; 7802 ire_t *sire = NULL; 7803 mblk_t *first_mp; 7804 ire_t *save_ire; 7805 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7806 ushort_t ire_marks = 0; 7807 boolean_t mctl_present; 7808 ipsec_out_t *io; 7809 mblk_t *saved_mp; 7810 ire_t *first_sire = NULL; 7811 mblk_t *copy_mp = NULL; 7812 mblk_t *xmit_mp = NULL; 7813 ipaddr_t save_dst; 7814 uint32_t multirt_flags = 7815 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7816 boolean_t multirt_is_resolvable; 7817 boolean_t multirt_resolve_next; 7818 boolean_t unspec_src; 7819 boolean_t do_attach_ill = B_FALSE; 7820 boolean_t ip_nexthop = B_FALSE; 7821 tsol_ire_gw_secattr_t *attrp = NULL; 7822 tsol_gcgrp_t *gcgrp = NULL; 7823 tsol_gcgrp_addr_t ga; 7824 7825 if (ip_debug > 2) { 7826 /* ip1dbg */ 7827 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7828 } 7829 7830 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7831 if (mctl_present) { 7832 io = (ipsec_out_t *)first_mp->b_rptr; 7833 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7834 ASSERT(zoneid == io->ipsec_out_zoneid); 7835 ASSERT(zoneid != ALL_ZONES); 7836 } 7837 7838 ipha = (ipha_t *)mp->b_rptr; 7839 7840 /* All multicast lookups come through ip_newroute_ipif() */ 7841 if (CLASSD(dst)) { 7842 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7843 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7844 freemsg(first_mp); 7845 return; 7846 } 7847 7848 if (mctl_present && io->ipsec_out_attach_if) { 7849 /* ip_grab_attach_ill returns a held ill */ 7850 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7851 io->ipsec_out_ill_index, B_FALSE, ipst); 7852 7853 /* Failure case frees things for us. */ 7854 if (attach_ill == NULL) 7855 return; 7856 7857 /* 7858 * Check if we need an ire that will not be 7859 * looked up by anybody else i.e. HIDDEN. 7860 */ 7861 if (ill_is_probeonly(attach_ill)) 7862 ire_marks = IRE_MARK_HIDDEN; 7863 } 7864 if (mctl_present && io->ipsec_out_ip_nexthop) { 7865 ip_nexthop = B_TRUE; 7866 nexthop_addr = io->ipsec_out_nexthop_addr; 7867 } 7868 /* 7869 * If this IRE is created for forwarding or it is not for 7870 * traffic for congestion controlled protocols, mark it as temporary. 7871 */ 7872 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7873 ire_marks |= IRE_MARK_TEMPORARY; 7874 7875 /* 7876 * Get what we can from ire_ftable_lookup which will follow an IRE 7877 * chain until it gets the most specific information available. 7878 * For example, we know that there is no IRE_CACHE for this dest, 7879 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7880 * ire_ftable_lookup will look up the gateway, etc. 7881 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7882 * to the destination, of equal netmask length in the forward table, 7883 * will be recursively explored. If no information is available 7884 * for the final gateway of that route, we force the returned ire 7885 * to be equal to sire using MATCH_IRE_PARENT. 7886 * At least, in this case we have a starting point (in the buckets) 7887 * to look for other routes to the destination in the forward table. 7888 * This is actually used only for multirouting, where a list 7889 * of routes has to be processed in sequence. 7890 * 7891 * In the process of coming up with the most specific information, 7892 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7893 * for the gateway (i.e., one for which the ire_nce->nce_state is 7894 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7895 * Two caveats when handling incomplete ire's in ip_newroute: 7896 * - we should be careful when accessing its ire_nce (specifically 7897 * the nce_res_mp) ast it might change underneath our feet, and, 7898 * - not all legacy code path callers are prepared to handle 7899 * incomplete ire's, so we should not create/add incomplete 7900 * ire_cache entries here. (See discussion about temporary solution 7901 * further below). 7902 * 7903 * In order to minimize packet dropping, and to preserve existing 7904 * behavior, we treat this case as if there were no IRE_CACHE for the 7905 * gateway, and instead use the IF_RESOLVER ire to send out 7906 * another request to ARP (this is achieved by passing the 7907 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7908 * arp response comes back in ip_wput_nondata, we will create 7909 * a per-dst ire_cache that has an ND_COMPLETE ire. 7910 * 7911 * Note that this is a temporary solution; the correct solution is 7912 * to create an incomplete per-dst ire_cache entry, and send the 7913 * packet out when the gw's nce is resolved. In order to achieve this, 7914 * all packet processing must have been completed prior to calling 7915 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7916 * to be modified to accomodate this solution. 7917 */ 7918 if (ip_nexthop) { 7919 /* 7920 * The first time we come here, we look for an IRE_INTERFACE 7921 * entry for the specified nexthop, set the dst to be the 7922 * nexthop address and create an IRE_CACHE entry for the 7923 * nexthop. The next time around, we are able to find an 7924 * IRE_CACHE entry for the nexthop, set the gateway to be the 7925 * nexthop address and create an IRE_CACHE entry for the 7926 * destination address via the specified nexthop. 7927 */ 7928 ire = ire_cache_lookup(nexthop_addr, zoneid, 7929 MBLK_GETLABEL(mp), ipst); 7930 if (ire != NULL) { 7931 gw = nexthop_addr; 7932 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7933 } else { 7934 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7935 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7936 MBLK_GETLABEL(mp), 7937 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7938 ipst); 7939 if (ire != NULL) { 7940 dst = nexthop_addr; 7941 } 7942 } 7943 } else if (attach_ill == NULL) { 7944 ire = ire_ftable_lookup(dst, 0, 0, 0, 7945 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7946 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7947 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7948 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7949 ipst); 7950 } else { 7951 /* 7952 * attach_ill is set only for communicating with 7953 * on-link hosts. So, don't look for DEFAULT. 7954 */ 7955 ipif_t *attach_ipif; 7956 7957 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7958 if (attach_ipif == NULL) { 7959 ill_refrele(attach_ill); 7960 goto icmp_err_ret; 7961 } 7962 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7963 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7964 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7965 MATCH_IRE_SECATTR, ipst); 7966 ipif_refrele(attach_ipif); 7967 } 7968 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7969 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7970 7971 /* 7972 * This loop is run only once in most cases. 7973 * We loop to resolve further routes only when the destination 7974 * can be reached through multiple RTF_MULTIRT-flagged ires. 7975 */ 7976 do { 7977 /* Clear the previous iteration's values */ 7978 if (src_ipif != NULL) { 7979 ipif_refrele(src_ipif); 7980 src_ipif = NULL; 7981 } 7982 if (dst_ill != NULL) { 7983 ill_refrele(dst_ill); 7984 dst_ill = NULL; 7985 } 7986 7987 multirt_resolve_next = B_FALSE; 7988 /* 7989 * We check if packets have to be multirouted. 7990 * In this case, given the current <ire, sire> couple, 7991 * we look for the next suitable <ire, sire>. 7992 * This check is done in ire_multirt_lookup(), 7993 * which applies various criteria to find the next route 7994 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7995 * unchanged if it detects it has not been tried yet. 7996 */ 7997 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7998 ip3dbg(("ip_newroute: starting next_resolution " 7999 "with first_mp %p, tag %d\n", 8000 (void *)first_mp, 8001 MULTIRT_DEBUG_TAGGED(first_mp))); 8002 8003 ASSERT(sire != NULL); 8004 multirt_is_resolvable = 8005 ire_multirt_lookup(&ire, &sire, multirt_flags, 8006 MBLK_GETLABEL(mp), ipst); 8007 8008 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8009 "ire %p, sire %p\n", 8010 multirt_is_resolvable, 8011 (void *)ire, (void *)sire)); 8012 8013 if (!multirt_is_resolvable) { 8014 /* 8015 * No more multirt route to resolve; give up 8016 * (all routes resolved or no more 8017 * resolvable routes). 8018 */ 8019 if (ire != NULL) { 8020 ire_refrele(ire); 8021 ire = NULL; 8022 } 8023 } else { 8024 ASSERT(sire != NULL); 8025 ASSERT(ire != NULL); 8026 /* 8027 * We simply use first_sire as a flag that 8028 * indicates if a resolvable multirt route 8029 * has already been found. 8030 * If it is not the case, we may have to send 8031 * an ICMP error to report that the 8032 * destination is unreachable. 8033 * We do not IRE_REFHOLD first_sire. 8034 */ 8035 if (first_sire == NULL) { 8036 first_sire = sire; 8037 } 8038 } 8039 } 8040 if (ire == NULL) { 8041 if (ip_debug > 3) { 8042 /* ip2dbg */ 8043 pr_addr_dbg("ip_newroute: " 8044 "can't resolve %s\n", AF_INET, &dst); 8045 } 8046 ip3dbg(("ip_newroute: " 8047 "ire %p, sire %p, first_sire %p\n", 8048 (void *)ire, (void *)sire, (void *)first_sire)); 8049 8050 if (sire != NULL) { 8051 ire_refrele(sire); 8052 sire = NULL; 8053 } 8054 8055 if (first_sire != NULL) { 8056 /* 8057 * At least one multirt route has been found 8058 * in the same call to ip_newroute(); 8059 * there is no need to report an ICMP error. 8060 * first_sire was not IRE_REFHOLDed. 8061 */ 8062 MULTIRT_DEBUG_UNTAG(first_mp); 8063 freemsg(first_mp); 8064 return; 8065 } 8066 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8067 RTA_DST, ipst); 8068 if (attach_ill != NULL) 8069 ill_refrele(attach_ill); 8070 goto icmp_err_ret; 8071 } 8072 8073 /* 8074 * Verify that the returned IRE does not have either 8075 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8076 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8077 */ 8078 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8079 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8080 if (attach_ill != NULL) 8081 ill_refrele(attach_ill); 8082 goto icmp_err_ret; 8083 } 8084 /* 8085 * Increment the ire_ob_pkt_count field for ire if it is an 8086 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8087 * increment the same for the parent IRE, sire, if it is some 8088 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8089 */ 8090 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8091 UPDATE_OB_PKT_COUNT(ire); 8092 ire->ire_last_used_time = lbolt; 8093 } 8094 8095 if (sire != NULL) { 8096 gw = sire->ire_gateway_addr; 8097 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8098 IRE_INTERFACE)) == 0); 8099 UPDATE_OB_PKT_COUNT(sire); 8100 sire->ire_last_used_time = lbolt; 8101 } 8102 /* 8103 * We have a route to reach the destination. 8104 * 8105 * 1) If the interface is part of ill group, try to get a new 8106 * ill taking load spreading into account. 8107 * 8108 * 2) After selecting the ill, get a source address that 8109 * might create good inbound load spreading. 8110 * ipif_select_source does this for us. 8111 * 8112 * If the application specified the ill (ifindex), we still 8113 * load spread. Only if the packets needs to go out 8114 * specifically on a given ill e.g. binding to 8115 * IPIF_NOFAILOVER address, then we don't try to use a 8116 * different ill for load spreading. 8117 */ 8118 if (attach_ill == NULL) { 8119 /* 8120 * Don't perform outbound load spreading in the 8121 * case of an RTF_MULTIRT route, as we actually 8122 * typically want to replicate outgoing packets 8123 * through particular interfaces. 8124 */ 8125 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8126 dst_ill = ire->ire_ipif->ipif_ill; 8127 /* for uniformity */ 8128 ill_refhold(dst_ill); 8129 } else { 8130 /* 8131 * If we are here trying to create an IRE_CACHE 8132 * for an offlink destination and have the 8133 * IRE_CACHE for the next hop and the latter is 8134 * using virtual IP source address selection i.e 8135 * it's ire->ire_ipif is pointing to a virtual 8136 * network interface (vni) then 8137 * ip_newroute_get_dst_ll() will return the vni 8138 * interface as the dst_ill. Since the vni is 8139 * virtual i.e not associated with any physical 8140 * interface, it cannot be the dst_ill, hence 8141 * in such a case call ip_newroute_get_dst_ll() 8142 * with the stq_ill instead of the ire_ipif ILL. 8143 * The function returns a refheld ill. 8144 */ 8145 if ((ire->ire_type == IRE_CACHE) && 8146 IS_VNI(ire->ire_ipif->ipif_ill)) 8147 dst_ill = ip_newroute_get_dst_ill( 8148 ire->ire_stq->q_ptr); 8149 else 8150 dst_ill = ip_newroute_get_dst_ill( 8151 ire->ire_ipif->ipif_ill); 8152 } 8153 if (dst_ill == NULL) { 8154 if (ip_debug > 2) { 8155 pr_addr_dbg("ip_newroute: " 8156 "no dst ill for dst" 8157 " %s\n", AF_INET, &dst); 8158 } 8159 goto icmp_err_ret; 8160 } 8161 } else { 8162 dst_ill = ire->ire_ipif->ipif_ill; 8163 /* for uniformity */ 8164 ill_refhold(dst_ill); 8165 /* 8166 * We should have found a route matching ill as we 8167 * called ire_ftable_lookup with MATCH_IRE_ILL. 8168 * Rather than asserting, when there is a mismatch, 8169 * we just drop the packet. 8170 */ 8171 if (dst_ill != attach_ill) { 8172 ip0dbg(("ip_newroute: Packet dropped as " 8173 "IPIF_NOFAILOVER ill is %s, " 8174 "ire->ire_ipif->ipif_ill is %s\n", 8175 attach_ill->ill_name, 8176 dst_ill->ill_name)); 8177 ill_refrele(attach_ill); 8178 goto icmp_err_ret; 8179 } 8180 } 8181 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8182 if (attach_ill != NULL) { 8183 ill_refrele(attach_ill); 8184 attach_ill = NULL; 8185 do_attach_ill = B_TRUE; 8186 } 8187 ASSERT(dst_ill != NULL); 8188 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8189 8190 /* 8191 * Pick the best source address from dst_ill. 8192 * 8193 * 1) If it is part of a multipathing group, we would 8194 * like to spread the inbound packets across different 8195 * interfaces. ipif_select_source picks a random source 8196 * across the different ills in the group. 8197 * 8198 * 2) If it is not part of a multipathing group, we try 8199 * to pick the source address from the destination 8200 * route. Clustering assumes that when we have multiple 8201 * prefixes hosted on an interface, the prefix of the 8202 * source address matches the prefix of the destination 8203 * route. We do this only if the address is not 8204 * DEPRECATED. 8205 * 8206 * 3) If the conn is in a different zone than the ire, we 8207 * need to pick a source address from the right zone. 8208 * 8209 * NOTE : If we hit case (1) above, the prefix of the source 8210 * address picked may not match the prefix of the 8211 * destination routes prefix as ipif_select_source 8212 * does not look at "dst" while picking a source 8213 * address. 8214 * If we want the same behavior as (2), we will need 8215 * to change the behavior of ipif_select_source. 8216 */ 8217 ASSERT(src_ipif == NULL); 8218 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8219 /* 8220 * The RTF_SETSRC flag is set in the parent ire (sire). 8221 * Check that the ipif matching the requested source 8222 * address still exists. 8223 */ 8224 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8225 zoneid, NULL, NULL, NULL, NULL, ipst); 8226 } 8227 8228 unspec_src = (connp != NULL && connp->conn_unspec_src); 8229 8230 if (src_ipif == NULL && 8231 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8232 ire_marks |= IRE_MARK_USESRC_CHECK; 8233 if ((dst_ill->ill_group != NULL) || 8234 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8235 (connp != NULL && ire->ire_zoneid != zoneid && 8236 ire->ire_zoneid != ALL_ZONES) || 8237 (dst_ill->ill_usesrc_ifindex != 0)) { 8238 /* 8239 * If the destination is reachable via a 8240 * given gateway, the selected source address 8241 * should be in the same subnet as the gateway. 8242 * Otherwise, the destination is not reachable. 8243 * 8244 * If there are no interfaces on the same subnet 8245 * as the destination, ipif_select_source gives 8246 * first non-deprecated interface which might be 8247 * on a different subnet than the gateway. 8248 * This is not desirable. Hence pass the dst_ire 8249 * source address to ipif_select_source. 8250 * It is sure that the destination is reachable 8251 * with the dst_ire source address subnet. 8252 * So passing dst_ire source address to 8253 * ipif_select_source will make sure that the 8254 * selected source will be on the same subnet 8255 * as dst_ire source address. 8256 */ 8257 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8258 src_ipif = ipif_select_source(dst_ill, saddr, 8259 zoneid); 8260 if (src_ipif == NULL) { 8261 if (ip_debug > 2) { 8262 pr_addr_dbg("ip_newroute: " 8263 "no src for dst %s ", 8264 AF_INET, &dst); 8265 printf("through interface %s\n", 8266 dst_ill->ill_name); 8267 } 8268 goto icmp_err_ret; 8269 } 8270 } else { 8271 src_ipif = ire->ire_ipif; 8272 ASSERT(src_ipif != NULL); 8273 /* hold src_ipif for uniformity */ 8274 ipif_refhold(src_ipif); 8275 } 8276 } 8277 8278 /* 8279 * Assign a source address while we have the conn. 8280 * We can't have ip_wput_ire pick a source address when the 8281 * packet returns from arp since we need to look at 8282 * conn_unspec_src and conn_zoneid, and we lose the conn when 8283 * going through arp. 8284 * 8285 * NOTE : ip_newroute_v6 does not have this piece of code as 8286 * it uses ip6i to store this information. 8287 */ 8288 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8289 ipha->ipha_src = src_ipif->ipif_src_addr; 8290 8291 if (ip_debug > 3) { 8292 /* ip2dbg */ 8293 pr_addr_dbg("ip_newroute: first hop %s\n", 8294 AF_INET, &gw); 8295 } 8296 ip2dbg(("\tire type %s (%d)\n", 8297 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8298 8299 /* 8300 * The TTL of multirouted packets is bounded by the 8301 * ip_multirt_ttl ndd variable. 8302 */ 8303 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8304 /* Force TTL of multirouted packets */ 8305 if ((ipst->ips_ip_multirt_ttl > 0) && 8306 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8307 ip2dbg(("ip_newroute: forcing multirt TTL " 8308 "to %d (was %d), dst 0x%08x\n", 8309 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8310 ntohl(sire->ire_addr))); 8311 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8312 } 8313 } 8314 /* 8315 * At this point in ip_newroute(), ire is either the 8316 * IRE_CACHE of the next-hop gateway for an off-subnet 8317 * destination or an IRE_INTERFACE type that should be used 8318 * to resolve an on-subnet destination or an on-subnet 8319 * next-hop gateway. 8320 * 8321 * In the IRE_CACHE case, we have the following : 8322 * 8323 * 1) src_ipif - used for getting a source address. 8324 * 8325 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8326 * means packets using this IRE_CACHE will go out on 8327 * dst_ill. 8328 * 8329 * 3) The IRE sire will point to the prefix that is the 8330 * longest matching route for the destination. These 8331 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8332 * 8333 * The newly created IRE_CACHE entry for the off-subnet 8334 * destination is tied to both the prefix route and the 8335 * interface route used to resolve the next-hop gateway 8336 * via the ire_phandle and ire_ihandle fields, 8337 * respectively. 8338 * 8339 * In the IRE_INTERFACE case, we have the following : 8340 * 8341 * 1) src_ipif - used for getting a source address. 8342 * 8343 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8344 * means packets using the IRE_CACHE that we will build 8345 * here will go out on dst_ill. 8346 * 8347 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8348 * to be created will only be tied to the IRE_INTERFACE 8349 * that was derived from the ire_ihandle field. 8350 * 8351 * If sire is non-NULL, it means the destination is 8352 * off-link and we will first create the IRE_CACHE for the 8353 * gateway. Next time through ip_newroute, we will create 8354 * the IRE_CACHE for the final destination as described 8355 * above. 8356 * 8357 * In both cases, after the current resolution has been 8358 * completed (or possibly initialised, in the IRE_INTERFACE 8359 * case), the loop may be re-entered to attempt the resolution 8360 * of another RTF_MULTIRT route. 8361 * 8362 * When an IRE_CACHE entry for the off-subnet destination is 8363 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8364 * for further processing in emission loops. 8365 */ 8366 save_ire = ire; 8367 switch (ire->ire_type) { 8368 case IRE_CACHE: { 8369 ire_t *ipif_ire; 8370 8371 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8372 if (gw == 0) 8373 gw = ire->ire_gateway_addr; 8374 /* 8375 * We need 3 ire's to create a new cache ire for an 8376 * off-link destination from the cache ire of the 8377 * gateway. 8378 * 8379 * 1. The prefix ire 'sire' (Note that this does 8380 * not apply to the conn_nexthop_set case) 8381 * 2. The cache ire of the gateway 'ire' 8382 * 3. The interface ire 'ipif_ire' 8383 * 8384 * We have (1) and (2). We lookup (3) below. 8385 * 8386 * If there is no interface route to the gateway, 8387 * it is a race condition, where we found the cache 8388 * but the interface route has been deleted. 8389 */ 8390 if (ip_nexthop) { 8391 ipif_ire = ire_ihandle_lookup_onlink(ire); 8392 } else { 8393 ipif_ire = 8394 ire_ihandle_lookup_offlink(ire, sire); 8395 } 8396 if (ipif_ire == NULL) { 8397 ip1dbg(("ip_newroute: " 8398 "ire_ihandle_lookup_offlink failed\n")); 8399 goto icmp_err_ret; 8400 } 8401 8402 /* 8403 * Check cached gateway IRE for any security 8404 * attributes; if found, associate the gateway 8405 * credentials group to the destination IRE. 8406 */ 8407 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8408 mutex_enter(&attrp->igsa_lock); 8409 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8410 GCGRP_REFHOLD(gcgrp); 8411 mutex_exit(&attrp->igsa_lock); 8412 } 8413 8414 /* 8415 * XXX For the source of the resolver mp, 8416 * we are using the same DL_UNITDATA_REQ 8417 * (from save_ire->ire_nce->nce_res_mp) 8418 * though the save_ire is not pointing at the same ill. 8419 * This is incorrect. We need to send it up to the 8420 * resolver to get the right res_mp. For ethernets 8421 * this may be okay (ill_type == DL_ETHER). 8422 */ 8423 8424 ire = ire_create( 8425 (uchar_t *)&dst, /* dest address */ 8426 (uchar_t *)&ip_g_all_ones, /* mask */ 8427 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8428 (uchar_t *)&gw, /* gateway address */ 8429 &save_ire->ire_max_frag, 8430 save_ire->ire_nce, /* src nce */ 8431 dst_ill->ill_rq, /* recv-from queue */ 8432 dst_ill->ill_wq, /* send-to queue */ 8433 IRE_CACHE, /* IRE type */ 8434 src_ipif, 8435 (sire != NULL) ? 8436 sire->ire_mask : 0, /* Parent mask */ 8437 (sire != NULL) ? 8438 sire->ire_phandle : 0, /* Parent handle */ 8439 ipif_ire->ire_ihandle, /* Interface handle */ 8440 (sire != NULL) ? (sire->ire_flags & 8441 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8442 (sire != NULL) ? 8443 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8444 NULL, 8445 gcgrp, 8446 ipst); 8447 8448 if (ire == NULL) { 8449 if (gcgrp != NULL) { 8450 GCGRP_REFRELE(gcgrp); 8451 gcgrp = NULL; 8452 } 8453 ire_refrele(ipif_ire); 8454 ire_refrele(save_ire); 8455 break; 8456 } 8457 8458 /* reference now held by IRE */ 8459 gcgrp = NULL; 8460 8461 ire->ire_marks |= ire_marks; 8462 8463 /* 8464 * Prevent sire and ipif_ire from getting deleted. 8465 * The newly created ire is tied to both of them via 8466 * the phandle and ihandle respectively. 8467 */ 8468 if (sire != NULL) { 8469 IRB_REFHOLD(sire->ire_bucket); 8470 /* Has it been removed already ? */ 8471 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8472 IRB_REFRELE(sire->ire_bucket); 8473 ire_refrele(ipif_ire); 8474 ire_refrele(save_ire); 8475 break; 8476 } 8477 } 8478 8479 IRB_REFHOLD(ipif_ire->ire_bucket); 8480 /* Has it been removed already ? */ 8481 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8482 IRB_REFRELE(ipif_ire->ire_bucket); 8483 if (sire != NULL) 8484 IRB_REFRELE(sire->ire_bucket); 8485 ire_refrele(ipif_ire); 8486 ire_refrele(save_ire); 8487 break; 8488 } 8489 8490 xmit_mp = first_mp; 8491 /* 8492 * In the case of multirouting, a copy 8493 * of the packet is done before its sending. 8494 * The copy is used to attempt another 8495 * route resolution, in a next loop. 8496 */ 8497 if (ire->ire_flags & RTF_MULTIRT) { 8498 copy_mp = copymsg(first_mp); 8499 if (copy_mp != NULL) { 8500 xmit_mp = copy_mp; 8501 MULTIRT_DEBUG_TAG(first_mp); 8502 } 8503 } 8504 ire_add_then_send(q, ire, xmit_mp); 8505 ire_refrele(save_ire); 8506 8507 /* Assert that sire is not deleted yet. */ 8508 if (sire != NULL) { 8509 ASSERT(sire->ire_ptpn != NULL); 8510 IRB_REFRELE(sire->ire_bucket); 8511 } 8512 8513 /* Assert that ipif_ire is not deleted yet. */ 8514 ASSERT(ipif_ire->ire_ptpn != NULL); 8515 IRB_REFRELE(ipif_ire->ire_bucket); 8516 ire_refrele(ipif_ire); 8517 8518 /* 8519 * If copy_mp is not NULL, multirouting was 8520 * requested. We loop to initiate a next 8521 * route resolution attempt, starting from sire. 8522 */ 8523 if (copy_mp != NULL) { 8524 /* 8525 * Search for the next unresolved 8526 * multirt route. 8527 */ 8528 copy_mp = NULL; 8529 ipif_ire = NULL; 8530 ire = NULL; 8531 multirt_resolve_next = B_TRUE; 8532 continue; 8533 } 8534 if (sire != NULL) 8535 ire_refrele(sire); 8536 ipif_refrele(src_ipif); 8537 ill_refrele(dst_ill); 8538 return; 8539 } 8540 case IRE_IF_NORESOLVER: { 8541 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8542 dst_ill->ill_resolver_mp == NULL) { 8543 ip1dbg(("ip_newroute: dst_ill %p " 8544 "for IRE_IF_NORESOLVER ire %p has " 8545 "no ill_resolver_mp\n", 8546 (void *)dst_ill, (void *)ire)); 8547 break; 8548 } 8549 8550 /* 8551 * TSol note: We are creating the ire cache for the 8552 * destination 'dst'. If 'dst' is offlink, going 8553 * through the first hop 'gw', the security attributes 8554 * of 'dst' must be set to point to the gateway 8555 * credentials of gateway 'gw'. If 'dst' is onlink, it 8556 * is possible that 'dst' is a potential gateway that is 8557 * referenced by some route that has some security 8558 * attributes. Thus in the former case, we need to do a 8559 * gcgrp_lookup of 'gw' while in the latter case we 8560 * need to do gcgrp_lookup of 'dst' itself. 8561 */ 8562 ga.ga_af = AF_INET; 8563 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8564 &ga.ga_addr); 8565 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8566 8567 ire = ire_create( 8568 (uchar_t *)&dst, /* dest address */ 8569 (uchar_t *)&ip_g_all_ones, /* mask */ 8570 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8571 (uchar_t *)&gw, /* gateway address */ 8572 &save_ire->ire_max_frag, 8573 NULL, /* no src nce */ 8574 dst_ill->ill_rq, /* recv-from queue */ 8575 dst_ill->ill_wq, /* send-to queue */ 8576 IRE_CACHE, 8577 src_ipif, 8578 save_ire->ire_mask, /* Parent mask */ 8579 (sire != NULL) ? /* Parent handle */ 8580 sire->ire_phandle : 0, 8581 save_ire->ire_ihandle, /* Interface handle */ 8582 (sire != NULL) ? sire->ire_flags & 8583 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8584 &(save_ire->ire_uinfo), 8585 NULL, 8586 gcgrp, 8587 ipst); 8588 8589 if (ire == NULL) { 8590 if (gcgrp != NULL) { 8591 GCGRP_REFRELE(gcgrp); 8592 gcgrp = NULL; 8593 } 8594 ire_refrele(save_ire); 8595 break; 8596 } 8597 8598 /* reference now held by IRE */ 8599 gcgrp = NULL; 8600 8601 ire->ire_marks |= ire_marks; 8602 8603 /* Prevent save_ire from getting deleted */ 8604 IRB_REFHOLD(save_ire->ire_bucket); 8605 /* Has it been removed already ? */ 8606 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8607 IRB_REFRELE(save_ire->ire_bucket); 8608 ire_refrele(save_ire); 8609 break; 8610 } 8611 8612 /* 8613 * In the case of multirouting, a copy 8614 * of the packet is made before it is sent. 8615 * The copy is used in the next 8616 * loop to attempt another resolution. 8617 */ 8618 xmit_mp = first_mp; 8619 if ((sire != NULL) && 8620 (sire->ire_flags & RTF_MULTIRT)) { 8621 copy_mp = copymsg(first_mp); 8622 if (copy_mp != NULL) { 8623 xmit_mp = copy_mp; 8624 MULTIRT_DEBUG_TAG(first_mp); 8625 } 8626 } 8627 ire_add_then_send(q, ire, xmit_mp); 8628 8629 /* Assert that it is not deleted yet. */ 8630 ASSERT(save_ire->ire_ptpn != NULL); 8631 IRB_REFRELE(save_ire->ire_bucket); 8632 ire_refrele(save_ire); 8633 8634 if (copy_mp != NULL) { 8635 /* 8636 * If we found a (no)resolver, we ignore any 8637 * trailing top priority IRE_CACHE in further 8638 * loops. This ensures that we do not omit any 8639 * (no)resolver. 8640 * This IRE_CACHE, if any, will be processed 8641 * by another thread entering ip_newroute(). 8642 * IRE_CACHE entries, if any, will be processed 8643 * by another thread entering ip_newroute(), 8644 * (upon resolver response, for instance). 8645 * This aims to force parallel multirt 8646 * resolutions as soon as a packet must be sent. 8647 * In the best case, after the tx of only one 8648 * packet, all reachable routes are resolved. 8649 * Otherwise, the resolution of all RTF_MULTIRT 8650 * routes would require several emissions. 8651 */ 8652 multirt_flags &= ~MULTIRT_CACHEGW; 8653 8654 /* 8655 * Search for the next unresolved multirt 8656 * route. 8657 */ 8658 copy_mp = NULL; 8659 save_ire = NULL; 8660 ire = NULL; 8661 multirt_resolve_next = B_TRUE; 8662 continue; 8663 } 8664 8665 /* 8666 * Don't need sire anymore 8667 */ 8668 if (sire != NULL) 8669 ire_refrele(sire); 8670 8671 ipif_refrele(src_ipif); 8672 ill_refrele(dst_ill); 8673 return; 8674 } 8675 case IRE_IF_RESOLVER: 8676 /* 8677 * We can't build an IRE_CACHE yet, but at least we 8678 * found a resolver that can help. 8679 */ 8680 res_mp = dst_ill->ill_resolver_mp; 8681 if (!OK_RESOLVER_MP(res_mp)) 8682 break; 8683 8684 /* 8685 * To be at this point in the code with a non-zero gw 8686 * means that dst is reachable through a gateway that 8687 * we have never resolved. By changing dst to the gw 8688 * addr we resolve the gateway first. 8689 * When ire_add_then_send() tries to put the IP dg 8690 * to dst, it will reenter ip_newroute() at which 8691 * time we will find the IRE_CACHE for the gw and 8692 * create another IRE_CACHE in case IRE_CACHE above. 8693 */ 8694 if (gw != INADDR_ANY) { 8695 /* 8696 * The source ipif that was determined above was 8697 * relative to the destination address, not the 8698 * gateway's. If src_ipif was not taken out of 8699 * the IRE_IF_RESOLVER entry, we'll need to call 8700 * ipif_select_source() again. 8701 */ 8702 if (src_ipif != ire->ire_ipif) { 8703 ipif_refrele(src_ipif); 8704 src_ipif = ipif_select_source(dst_ill, 8705 gw, zoneid); 8706 if (src_ipif == NULL) { 8707 if (ip_debug > 2) { 8708 pr_addr_dbg( 8709 "ip_newroute: no " 8710 "src for gw %s ", 8711 AF_INET, &gw); 8712 printf("through " 8713 "interface %s\n", 8714 dst_ill->ill_name); 8715 } 8716 goto icmp_err_ret; 8717 } 8718 } 8719 save_dst = dst; 8720 dst = gw; 8721 gw = INADDR_ANY; 8722 } 8723 8724 /* 8725 * We obtain a partial IRE_CACHE which we will pass 8726 * along with the resolver query. When the response 8727 * comes back it will be there ready for us to add. 8728 * The ire_max_frag is atomically set under the 8729 * irebucket lock in ire_add_v[46]. 8730 */ 8731 8732 ire = ire_create_mp( 8733 (uchar_t *)&dst, /* dest address */ 8734 (uchar_t *)&ip_g_all_ones, /* mask */ 8735 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8736 (uchar_t *)&gw, /* gateway address */ 8737 NULL, /* ire_max_frag */ 8738 NULL, /* no src nce */ 8739 dst_ill->ill_rq, /* recv-from queue */ 8740 dst_ill->ill_wq, /* send-to queue */ 8741 IRE_CACHE, 8742 src_ipif, /* Interface ipif */ 8743 save_ire->ire_mask, /* Parent mask */ 8744 0, 8745 save_ire->ire_ihandle, /* Interface handle */ 8746 0, /* flags if any */ 8747 &(save_ire->ire_uinfo), 8748 NULL, 8749 NULL, 8750 ipst); 8751 8752 if (ire == NULL) { 8753 ire_refrele(save_ire); 8754 break; 8755 } 8756 8757 if ((sire != NULL) && 8758 (sire->ire_flags & RTF_MULTIRT)) { 8759 copy_mp = copymsg(first_mp); 8760 if (copy_mp != NULL) 8761 MULTIRT_DEBUG_TAG(copy_mp); 8762 } 8763 8764 ire->ire_marks |= ire_marks; 8765 8766 /* 8767 * Construct message chain for the resolver 8768 * of the form: 8769 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8770 * Packet could contain a IPSEC_OUT mp. 8771 * 8772 * NOTE : ire will be added later when the response 8773 * comes back from ARP. If the response does not 8774 * come back, ARP frees the packet. For this reason, 8775 * we can't REFHOLD the bucket of save_ire to prevent 8776 * deletions. We may not be able to REFRELE the bucket 8777 * if the response never comes back. Thus, before 8778 * adding the ire, ire_add_v4 will make sure that the 8779 * interface route does not get deleted. This is the 8780 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8781 * where we can always prevent deletions because of 8782 * the synchronous nature of adding IRES i.e 8783 * ire_add_then_send is called after creating the IRE. 8784 */ 8785 ASSERT(ire->ire_mp != NULL); 8786 ire->ire_mp->b_cont = first_mp; 8787 /* Have saved_mp handy, for cleanup if canput fails */ 8788 saved_mp = mp; 8789 mp = copyb(res_mp); 8790 if (mp == NULL) { 8791 /* Prepare for cleanup */ 8792 mp = saved_mp; /* pkt */ 8793 ire_delete(ire); /* ire_mp */ 8794 ire = NULL; 8795 ire_refrele(save_ire); 8796 if (copy_mp != NULL) { 8797 MULTIRT_DEBUG_UNTAG(copy_mp); 8798 freemsg(copy_mp); 8799 copy_mp = NULL; 8800 } 8801 break; 8802 } 8803 linkb(mp, ire->ire_mp); 8804 8805 /* 8806 * Fill in the source and dest addrs for the resolver. 8807 * NOTE: this depends on memory layouts imposed by 8808 * ill_init(). 8809 */ 8810 areq = (areq_t *)mp->b_rptr; 8811 addrp = (ipaddr_t *)((char *)areq + 8812 areq->areq_sender_addr_offset); 8813 if (do_attach_ill) { 8814 /* 8815 * This is bind to no failover case. 8816 * arp packet also must go out on attach_ill. 8817 */ 8818 ASSERT(ipha->ipha_src != NULL); 8819 *addrp = ipha->ipha_src; 8820 } else { 8821 *addrp = save_ire->ire_src_addr; 8822 } 8823 8824 ire_refrele(save_ire); 8825 addrp = (ipaddr_t *)((char *)areq + 8826 areq->areq_target_addr_offset); 8827 *addrp = dst; 8828 /* Up to the resolver. */ 8829 if (canputnext(dst_ill->ill_rq) && 8830 !(dst_ill->ill_arp_closing)) { 8831 putnext(dst_ill->ill_rq, mp); 8832 ire = NULL; 8833 if (copy_mp != NULL) { 8834 /* 8835 * If we found a resolver, we ignore 8836 * any trailing top priority IRE_CACHE 8837 * in the further loops. This ensures 8838 * that we do not omit any resolver. 8839 * IRE_CACHE entries, if any, will be 8840 * processed next time we enter 8841 * ip_newroute(). 8842 */ 8843 multirt_flags &= ~MULTIRT_CACHEGW; 8844 /* 8845 * Search for the next unresolved 8846 * multirt route. 8847 */ 8848 first_mp = copy_mp; 8849 copy_mp = NULL; 8850 /* Prepare the next resolution loop. */ 8851 mp = first_mp; 8852 EXTRACT_PKT_MP(mp, first_mp, 8853 mctl_present); 8854 if (mctl_present) 8855 io = (ipsec_out_t *) 8856 first_mp->b_rptr; 8857 ipha = (ipha_t *)mp->b_rptr; 8858 8859 ASSERT(sire != NULL); 8860 8861 dst = save_dst; 8862 multirt_resolve_next = B_TRUE; 8863 continue; 8864 } 8865 8866 if (sire != NULL) 8867 ire_refrele(sire); 8868 8869 /* 8870 * The response will come back in ip_wput 8871 * with db_type IRE_DB_TYPE. 8872 */ 8873 ipif_refrele(src_ipif); 8874 ill_refrele(dst_ill); 8875 return; 8876 } else { 8877 /* Prepare for cleanup */ 8878 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8879 mp); 8880 mp->b_cont = NULL; 8881 freeb(mp); /* areq */ 8882 /* 8883 * this is an ire that is not added to the 8884 * cache. ire_freemblk will handle the release 8885 * of any resources associated with the ire. 8886 */ 8887 ire_delete(ire); /* ire_mp */ 8888 mp = saved_mp; /* pkt */ 8889 ire = NULL; 8890 if (copy_mp != NULL) { 8891 MULTIRT_DEBUG_UNTAG(copy_mp); 8892 freemsg(copy_mp); 8893 copy_mp = NULL; 8894 } 8895 break; 8896 } 8897 default: 8898 break; 8899 } 8900 } while (multirt_resolve_next); 8901 8902 ip1dbg(("ip_newroute: dropped\n")); 8903 /* Did this packet originate externally? */ 8904 if (mp->b_prev) { 8905 mp->b_next = NULL; 8906 mp->b_prev = NULL; 8907 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8908 } else { 8909 if (dst_ill != NULL) { 8910 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8911 } else { 8912 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8913 } 8914 } 8915 ASSERT(copy_mp == NULL); 8916 MULTIRT_DEBUG_UNTAG(first_mp); 8917 freemsg(first_mp); 8918 if (ire != NULL) 8919 ire_refrele(ire); 8920 if (sire != NULL) 8921 ire_refrele(sire); 8922 if (src_ipif != NULL) 8923 ipif_refrele(src_ipif); 8924 if (dst_ill != NULL) 8925 ill_refrele(dst_ill); 8926 return; 8927 8928 icmp_err_ret: 8929 ip1dbg(("ip_newroute: no route\n")); 8930 if (src_ipif != NULL) 8931 ipif_refrele(src_ipif); 8932 if (dst_ill != NULL) 8933 ill_refrele(dst_ill); 8934 if (sire != NULL) 8935 ire_refrele(sire); 8936 /* Did this packet originate externally? */ 8937 if (mp->b_prev) { 8938 mp->b_next = NULL; 8939 mp->b_prev = NULL; 8940 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8941 q = WR(q); 8942 } else { 8943 /* 8944 * There is no outgoing ill, so just increment the 8945 * system MIB. 8946 */ 8947 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8948 /* 8949 * Since ip_wput() isn't close to finished, we fill 8950 * in enough of the header for credible error reporting. 8951 */ 8952 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8953 /* Failed */ 8954 MULTIRT_DEBUG_UNTAG(first_mp); 8955 freemsg(first_mp); 8956 if (ire != NULL) 8957 ire_refrele(ire); 8958 return; 8959 } 8960 } 8961 8962 /* 8963 * At this point we will have ire only if RTF_BLACKHOLE 8964 * or RTF_REJECT flags are set on the IRE. It will not 8965 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8966 */ 8967 if (ire != NULL) { 8968 if (ire->ire_flags & RTF_BLACKHOLE) { 8969 ire_refrele(ire); 8970 MULTIRT_DEBUG_UNTAG(first_mp); 8971 freemsg(first_mp); 8972 return; 8973 } 8974 ire_refrele(ire); 8975 } 8976 if (ip_source_routed(ipha, ipst)) { 8977 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8978 zoneid, ipst); 8979 return; 8980 } 8981 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8982 } 8983 8984 ip_opt_info_t zero_info; 8985 8986 /* 8987 * IPv4 - 8988 * ip_newroute_ipif is called by ip_wput_multicast and 8989 * ip_rput_forward_multicast whenever we need to send 8990 * out a packet to a destination address for which we do not have specific 8991 * routing information. It is used when the packet will be sent out 8992 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8993 * socket option is set or icmp error message wants to go out on a particular 8994 * interface for a unicast packet. 8995 * 8996 * In most cases, the destination address is resolved thanks to the ipif 8997 * intrinsic resolver. However, there are some cases where the call to 8998 * ip_newroute_ipif must take into account the potential presence of 8999 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9000 * that uses the interface. This is specified through flags, 9001 * which can be a combination of: 9002 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9003 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9004 * and flags. Additionally, the packet source address has to be set to 9005 * the specified address. The caller is thus expected to set this flag 9006 * if the packet has no specific source address yet. 9007 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9008 * flag, the resulting ire will inherit the flag. All unresolved routes 9009 * to the destination must be explored in the same call to 9010 * ip_newroute_ipif(). 9011 */ 9012 static void 9013 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9014 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9015 { 9016 areq_t *areq; 9017 ire_t *ire = NULL; 9018 mblk_t *res_mp; 9019 ipaddr_t *addrp; 9020 mblk_t *first_mp; 9021 ire_t *save_ire = NULL; 9022 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9023 ipif_t *src_ipif = NULL; 9024 ushort_t ire_marks = 0; 9025 ill_t *dst_ill = NULL; 9026 boolean_t mctl_present; 9027 ipsec_out_t *io; 9028 ipha_t *ipha; 9029 int ihandle = 0; 9030 mblk_t *saved_mp; 9031 ire_t *fire = NULL; 9032 mblk_t *copy_mp = NULL; 9033 boolean_t multirt_resolve_next; 9034 boolean_t unspec_src; 9035 ipaddr_t ipha_dst; 9036 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9037 9038 /* 9039 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9040 * here for uniformity 9041 */ 9042 ipif_refhold(ipif); 9043 9044 /* 9045 * This loop is run only once in most cases. 9046 * We loop to resolve further routes only when the destination 9047 * can be reached through multiple RTF_MULTIRT-flagged ires. 9048 */ 9049 do { 9050 if (dst_ill != NULL) { 9051 ill_refrele(dst_ill); 9052 dst_ill = NULL; 9053 } 9054 if (src_ipif != NULL) { 9055 ipif_refrele(src_ipif); 9056 src_ipif = NULL; 9057 } 9058 multirt_resolve_next = B_FALSE; 9059 9060 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9061 ipif->ipif_ill->ill_name)); 9062 9063 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9064 if (mctl_present) 9065 io = (ipsec_out_t *)first_mp->b_rptr; 9066 9067 ipha = (ipha_t *)mp->b_rptr; 9068 9069 /* 9070 * Save the packet destination address, we may need it after 9071 * the packet has been consumed. 9072 */ 9073 ipha_dst = ipha->ipha_dst; 9074 9075 /* 9076 * If the interface is a pt-pt interface we look for an 9077 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9078 * local_address and the pt-pt destination address. Otherwise 9079 * we just match the local address. 9080 * NOTE: dst could be different than ipha->ipha_dst in case 9081 * of sending igmp multicast packets over a point-to-point 9082 * connection. 9083 * Thus we must be careful enough to check ipha_dst to be a 9084 * multicast address, otherwise it will take xmit_if path for 9085 * multicast packets resulting into kernel stack overflow by 9086 * repeated calls to ip_newroute_ipif from ire_send(). 9087 */ 9088 if (CLASSD(ipha_dst) && 9089 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9090 goto err_ret; 9091 } 9092 9093 /* 9094 * We check if an IRE_OFFSUBNET for the addr that goes through 9095 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9096 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9097 * propagate its flags to the new ire. 9098 */ 9099 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9100 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9101 ip2dbg(("ip_newroute_ipif: " 9102 "ipif_lookup_multi_ire(" 9103 "ipif %p, dst %08x) = fire %p\n", 9104 (void *)ipif, ntohl(dst), (void *)fire)); 9105 } 9106 9107 if (mctl_present && io->ipsec_out_attach_if) { 9108 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9109 io->ipsec_out_ill_index, B_FALSE, ipst); 9110 9111 /* Failure case frees things for us. */ 9112 if (attach_ill == NULL) { 9113 ipif_refrele(ipif); 9114 if (fire != NULL) 9115 ire_refrele(fire); 9116 return; 9117 } 9118 9119 /* 9120 * Check if we need an ire that will not be 9121 * looked up by anybody else i.e. HIDDEN. 9122 */ 9123 if (ill_is_probeonly(attach_ill)) { 9124 ire_marks = IRE_MARK_HIDDEN; 9125 } 9126 /* 9127 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9128 * case. 9129 */ 9130 dst_ill = ipif->ipif_ill; 9131 /* attach_ill has been refheld by ip_grab_attach_ill */ 9132 ASSERT(dst_ill == attach_ill); 9133 } else { 9134 /* 9135 * If the interface belongs to an interface group, 9136 * make sure the next possible interface in the group 9137 * is used. This encourages load spreading among 9138 * peers in an interface group. 9139 * Note: load spreading is disabled for RTF_MULTIRT 9140 * routes. 9141 */ 9142 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9143 (fire->ire_flags & RTF_MULTIRT)) { 9144 /* 9145 * Don't perform outbound load spreading 9146 * in the case of an RTF_MULTIRT issued route, 9147 * we actually typically want to replicate 9148 * outgoing packets through particular 9149 * interfaces. 9150 */ 9151 dst_ill = ipif->ipif_ill; 9152 ill_refhold(dst_ill); 9153 } else { 9154 dst_ill = ip_newroute_get_dst_ill( 9155 ipif->ipif_ill); 9156 } 9157 if (dst_ill == NULL) { 9158 if (ip_debug > 2) { 9159 pr_addr_dbg("ip_newroute_ipif: " 9160 "no dst ill for dst %s\n", 9161 AF_INET, &dst); 9162 } 9163 goto err_ret; 9164 } 9165 } 9166 9167 /* 9168 * Pick a source address preferring non-deprecated ones. 9169 * Unlike ip_newroute, we don't do any source address 9170 * selection here since for multicast it really does not help 9171 * in inbound load spreading as in the unicast case. 9172 */ 9173 if ((flags & RTF_SETSRC) && (fire != NULL) && 9174 (fire->ire_flags & RTF_SETSRC)) { 9175 /* 9176 * As requested by flags, an IRE_OFFSUBNET was looked up 9177 * on that interface. This ire has RTF_SETSRC flag, so 9178 * the source address of the packet must be changed. 9179 * Check that the ipif matching the requested source 9180 * address still exists. 9181 */ 9182 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9183 zoneid, NULL, NULL, NULL, NULL, ipst); 9184 } 9185 9186 unspec_src = (connp != NULL && connp->conn_unspec_src); 9187 9188 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9189 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9190 (connp != NULL && ipif->ipif_zoneid != zoneid && 9191 ipif->ipif_zoneid != ALL_ZONES)) && 9192 (src_ipif == NULL) && 9193 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9194 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9195 if (src_ipif == NULL) { 9196 if (ip_debug > 2) { 9197 /* ip1dbg */ 9198 pr_addr_dbg("ip_newroute_ipif: " 9199 "no src for dst %s", 9200 AF_INET, &dst); 9201 } 9202 ip1dbg((" through interface %s\n", 9203 dst_ill->ill_name)); 9204 goto err_ret; 9205 } 9206 ipif_refrele(ipif); 9207 ipif = src_ipif; 9208 ipif_refhold(ipif); 9209 } 9210 if (src_ipif == NULL) { 9211 src_ipif = ipif; 9212 ipif_refhold(src_ipif); 9213 } 9214 9215 /* 9216 * Assign a source address while we have the conn. 9217 * We can't have ip_wput_ire pick a source address when the 9218 * packet returns from arp since conn_unspec_src might be set 9219 * and we lose the conn when going through arp. 9220 */ 9221 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9222 ipha->ipha_src = src_ipif->ipif_src_addr; 9223 9224 /* 9225 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9226 * that the outgoing interface does not have an interface ire. 9227 */ 9228 if (CLASSD(ipha_dst) && (connp == NULL || 9229 connp->conn_outgoing_ill == NULL) && 9230 infop->ip_opt_ill_index == 0) { 9231 /* ipif_to_ire returns an held ire */ 9232 ire = ipif_to_ire(ipif); 9233 if (ire == NULL) 9234 goto err_ret; 9235 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9236 goto err_ret; 9237 /* 9238 * ihandle is needed when the ire is added to 9239 * cache table. 9240 */ 9241 save_ire = ire; 9242 ihandle = save_ire->ire_ihandle; 9243 9244 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9245 "flags %04x\n", 9246 (void *)ire, (void *)ipif, flags)); 9247 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9248 (fire->ire_flags & RTF_MULTIRT)) { 9249 /* 9250 * As requested by flags, an IRE_OFFSUBNET was 9251 * looked up on that interface. This ire has 9252 * RTF_MULTIRT flag, so the resolution loop will 9253 * be re-entered to resolve additional routes on 9254 * other interfaces. For that purpose, a copy of 9255 * the packet is performed at this point. 9256 */ 9257 fire->ire_last_used_time = lbolt; 9258 copy_mp = copymsg(first_mp); 9259 if (copy_mp) { 9260 MULTIRT_DEBUG_TAG(copy_mp); 9261 } 9262 } 9263 if ((flags & RTF_SETSRC) && (fire != NULL) && 9264 (fire->ire_flags & RTF_SETSRC)) { 9265 /* 9266 * As requested by flags, an IRE_OFFSUBET was 9267 * looked up on that interface. This ire has 9268 * RTF_SETSRC flag, so the source address of the 9269 * packet must be changed. 9270 */ 9271 ipha->ipha_src = fire->ire_src_addr; 9272 } 9273 } else { 9274 ASSERT((connp == NULL) || 9275 (connp->conn_outgoing_ill != NULL) || 9276 (connp->conn_dontroute) || 9277 infop->ip_opt_ill_index != 0); 9278 /* 9279 * The only ways we can come here are: 9280 * 1) IP_BOUND_IF socket option is set 9281 * 2) SO_DONTROUTE socket option is set 9282 * 3) IP_PKTINFO option is passed in as ancillary data. 9283 * In all cases, the new ire will not be added 9284 * into cache table. 9285 */ 9286 ire_marks |= IRE_MARK_NOADD; 9287 } 9288 9289 switch (ipif->ipif_net_type) { 9290 case IRE_IF_NORESOLVER: { 9291 /* We have what we need to build an IRE_CACHE. */ 9292 9293 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9294 (dst_ill->ill_resolver_mp == NULL)) { 9295 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9296 "for IRE_IF_NORESOLVER ire %p has " 9297 "no ill_resolver_mp\n", 9298 (void *)dst_ill, (void *)ire)); 9299 break; 9300 } 9301 9302 /* 9303 * The new ire inherits the IRE_OFFSUBNET flags 9304 * and source address, if this was requested. 9305 */ 9306 ire = ire_create( 9307 (uchar_t *)&dst, /* dest address */ 9308 (uchar_t *)&ip_g_all_ones, /* mask */ 9309 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9310 NULL, /* gateway address */ 9311 &ipif->ipif_mtu, 9312 NULL, /* no src nce */ 9313 dst_ill->ill_rq, /* recv-from queue */ 9314 dst_ill->ill_wq, /* send-to queue */ 9315 IRE_CACHE, 9316 src_ipif, 9317 (save_ire != NULL ? save_ire->ire_mask : 0), 9318 (fire != NULL) ? /* Parent handle */ 9319 fire->ire_phandle : 0, 9320 ihandle, /* Interface handle */ 9321 (fire != NULL) ? 9322 (fire->ire_flags & 9323 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9324 (save_ire == NULL ? &ire_uinfo_null : 9325 &save_ire->ire_uinfo), 9326 NULL, 9327 NULL, 9328 ipst); 9329 9330 if (ire == NULL) { 9331 if (save_ire != NULL) 9332 ire_refrele(save_ire); 9333 break; 9334 } 9335 9336 ire->ire_marks |= ire_marks; 9337 9338 /* 9339 * If IRE_MARK_NOADD is set then we need to convert 9340 * the max_fragp to a useable value now. This is 9341 * normally done in ire_add_v[46]. We also need to 9342 * associate the ire with an nce (normally would be 9343 * done in ip_wput_nondata()). 9344 * 9345 * Note that IRE_MARK_NOADD packets created here 9346 * do not have a non-null ire_mp pointer. The null 9347 * value of ire_bucket indicates that they were 9348 * never added. 9349 */ 9350 if (ire->ire_marks & IRE_MARK_NOADD) { 9351 uint_t max_frag; 9352 9353 max_frag = *ire->ire_max_fragp; 9354 ire->ire_max_fragp = NULL; 9355 ire->ire_max_frag = max_frag; 9356 9357 if ((ire->ire_nce = ndp_lookup_v4( 9358 ire_to_ill(ire), 9359 (ire->ire_gateway_addr != INADDR_ANY ? 9360 &ire->ire_gateway_addr : &ire->ire_addr), 9361 B_FALSE)) == NULL) { 9362 if (save_ire != NULL) 9363 ire_refrele(save_ire); 9364 break; 9365 } 9366 ASSERT(ire->ire_nce->nce_state == 9367 ND_REACHABLE); 9368 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9369 } 9370 9371 /* Prevent save_ire from getting deleted */ 9372 if (save_ire != NULL) { 9373 IRB_REFHOLD(save_ire->ire_bucket); 9374 /* Has it been removed already ? */ 9375 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9376 IRB_REFRELE(save_ire->ire_bucket); 9377 ire_refrele(save_ire); 9378 break; 9379 } 9380 } 9381 9382 ire_add_then_send(q, ire, first_mp); 9383 9384 /* Assert that save_ire is not deleted yet. */ 9385 if (save_ire != NULL) { 9386 ASSERT(save_ire->ire_ptpn != NULL); 9387 IRB_REFRELE(save_ire->ire_bucket); 9388 ire_refrele(save_ire); 9389 save_ire = NULL; 9390 } 9391 if (fire != NULL) { 9392 ire_refrele(fire); 9393 fire = NULL; 9394 } 9395 9396 /* 9397 * the resolution loop is re-entered if this 9398 * was requested through flags and if we 9399 * actually are in a multirouting case. 9400 */ 9401 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9402 boolean_t need_resolve = 9403 ire_multirt_need_resolve(ipha_dst, 9404 MBLK_GETLABEL(copy_mp), ipst); 9405 if (!need_resolve) { 9406 MULTIRT_DEBUG_UNTAG(copy_mp); 9407 freemsg(copy_mp); 9408 copy_mp = NULL; 9409 } else { 9410 /* 9411 * ipif_lookup_group() calls 9412 * ire_lookup_multi() that uses 9413 * ire_ftable_lookup() to find 9414 * an IRE_INTERFACE for the group. 9415 * In the multirt case, 9416 * ire_lookup_multi() then invokes 9417 * ire_multirt_lookup() to find 9418 * the next resolvable ire. 9419 * As a result, we obtain an new 9420 * interface, derived from the 9421 * next ire. 9422 */ 9423 ipif_refrele(ipif); 9424 ipif = ipif_lookup_group(ipha_dst, 9425 zoneid, ipst); 9426 ip2dbg(("ip_newroute_ipif: " 9427 "multirt dst %08x, ipif %p\n", 9428 htonl(dst), (void *)ipif)); 9429 if (ipif != NULL) { 9430 mp = copy_mp; 9431 copy_mp = NULL; 9432 multirt_resolve_next = B_TRUE; 9433 continue; 9434 } else { 9435 freemsg(copy_mp); 9436 } 9437 } 9438 } 9439 if (ipif != NULL) 9440 ipif_refrele(ipif); 9441 ill_refrele(dst_ill); 9442 ipif_refrele(src_ipif); 9443 return; 9444 } 9445 case IRE_IF_RESOLVER: 9446 /* 9447 * We can't build an IRE_CACHE yet, but at least 9448 * we found a resolver that can help. 9449 */ 9450 res_mp = dst_ill->ill_resolver_mp; 9451 if (!OK_RESOLVER_MP(res_mp)) 9452 break; 9453 9454 /* 9455 * We obtain a partial IRE_CACHE which we will pass 9456 * along with the resolver query. When the response 9457 * comes back it will be there ready for us to add. 9458 * The new ire inherits the IRE_OFFSUBNET flags 9459 * and source address, if this was requested. 9460 * The ire_max_frag is atomically set under the 9461 * irebucket lock in ire_add_v[46]. Only in the 9462 * case of IRE_MARK_NOADD, we set it here itself. 9463 */ 9464 ire = ire_create_mp( 9465 (uchar_t *)&dst, /* dest address */ 9466 (uchar_t *)&ip_g_all_ones, /* mask */ 9467 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9468 NULL, /* gateway address */ 9469 (ire_marks & IRE_MARK_NOADD) ? 9470 ipif->ipif_mtu : 0, /* max_frag */ 9471 NULL, /* no src nce */ 9472 dst_ill->ill_rq, /* recv-from queue */ 9473 dst_ill->ill_wq, /* send-to queue */ 9474 IRE_CACHE, 9475 src_ipif, 9476 (save_ire != NULL ? save_ire->ire_mask : 0), 9477 (fire != NULL) ? /* Parent handle */ 9478 fire->ire_phandle : 0, 9479 ihandle, /* Interface handle */ 9480 (fire != NULL) ? /* flags if any */ 9481 (fire->ire_flags & 9482 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9483 (save_ire == NULL ? &ire_uinfo_null : 9484 &save_ire->ire_uinfo), 9485 NULL, 9486 NULL, 9487 ipst); 9488 9489 if (save_ire != NULL) { 9490 ire_refrele(save_ire); 9491 save_ire = NULL; 9492 } 9493 if (ire == NULL) 9494 break; 9495 9496 ire->ire_marks |= ire_marks; 9497 /* 9498 * Construct message chain for the resolver of the 9499 * form: 9500 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9501 * 9502 * NOTE : ire will be added later when the response 9503 * comes back from ARP. If the response does not 9504 * come back, ARP frees the packet. For this reason, 9505 * we can't REFHOLD the bucket of save_ire to prevent 9506 * deletions. We may not be able to REFRELE the 9507 * bucket if the response never comes back. 9508 * Thus, before adding the ire, ire_add_v4 will make 9509 * sure that the interface route does not get deleted. 9510 * This is the only case unlike ip_newroute_v6, 9511 * ip_newroute_ipif_v6 where we can always prevent 9512 * deletions because ire_add_then_send is called after 9513 * creating the IRE. 9514 * If IRE_MARK_NOADD is set, then ire_add_then_send 9515 * does not add this IRE into the IRE CACHE. 9516 */ 9517 ASSERT(ire->ire_mp != NULL); 9518 ire->ire_mp->b_cont = first_mp; 9519 /* Have saved_mp handy, for cleanup if canput fails */ 9520 saved_mp = mp; 9521 mp = copyb(res_mp); 9522 if (mp == NULL) { 9523 /* Prepare for cleanup */ 9524 mp = saved_mp; /* pkt */ 9525 ire_delete(ire); /* ire_mp */ 9526 ire = NULL; 9527 if (copy_mp != NULL) { 9528 MULTIRT_DEBUG_UNTAG(copy_mp); 9529 freemsg(copy_mp); 9530 copy_mp = NULL; 9531 } 9532 break; 9533 } 9534 linkb(mp, ire->ire_mp); 9535 9536 /* 9537 * Fill in the source and dest addrs for the resolver. 9538 * NOTE: this depends on memory layouts imposed by 9539 * ill_init(). 9540 */ 9541 areq = (areq_t *)mp->b_rptr; 9542 addrp = (ipaddr_t *)((char *)areq + 9543 areq->areq_sender_addr_offset); 9544 *addrp = ire->ire_src_addr; 9545 addrp = (ipaddr_t *)((char *)areq + 9546 areq->areq_target_addr_offset); 9547 *addrp = dst; 9548 /* Up to the resolver. */ 9549 if (canputnext(dst_ill->ill_rq) && 9550 !(dst_ill->ill_arp_closing)) { 9551 putnext(dst_ill->ill_rq, mp); 9552 /* 9553 * The response will come back in ip_wput 9554 * with db_type IRE_DB_TYPE. 9555 */ 9556 } else { 9557 mp->b_cont = NULL; 9558 freeb(mp); /* areq */ 9559 ire_delete(ire); /* ire_mp */ 9560 saved_mp->b_next = NULL; 9561 saved_mp->b_prev = NULL; 9562 freemsg(first_mp); /* pkt */ 9563 ip2dbg(("ip_newroute_ipif: dropped\n")); 9564 } 9565 9566 if (fire != NULL) { 9567 ire_refrele(fire); 9568 fire = NULL; 9569 } 9570 9571 9572 /* 9573 * The resolution loop is re-entered if this was 9574 * requested through flags and we actually are 9575 * in a multirouting case. 9576 */ 9577 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9578 boolean_t need_resolve = 9579 ire_multirt_need_resolve(ipha_dst, 9580 MBLK_GETLABEL(copy_mp), ipst); 9581 if (!need_resolve) { 9582 MULTIRT_DEBUG_UNTAG(copy_mp); 9583 freemsg(copy_mp); 9584 copy_mp = NULL; 9585 } else { 9586 /* 9587 * ipif_lookup_group() calls 9588 * ire_lookup_multi() that uses 9589 * ire_ftable_lookup() to find 9590 * an IRE_INTERFACE for the group. 9591 * In the multirt case, 9592 * ire_lookup_multi() then invokes 9593 * ire_multirt_lookup() to find 9594 * the next resolvable ire. 9595 * As a result, we obtain an new 9596 * interface, derived from the 9597 * next ire. 9598 */ 9599 ipif_refrele(ipif); 9600 ipif = ipif_lookup_group(ipha_dst, 9601 zoneid, ipst); 9602 if (ipif != NULL) { 9603 mp = copy_mp; 9604 copy_mp = NULL; 9605 multirt_resolve_next = B_TRUE; 9606 continue; 9607 } else { 9608 freemsg(copy_mp); 9609 } 9610 } 9611 } 9612 if (ipif != NULL) 9613 ipif_refrele(ipif); 9614 ill_refrele(dst_ill); 9615 ipif_refrele(src_ipif); 9616 return; 9617 default: 9618 break; 9619 } 9620 } while (multirt_resolve_next); 9621 9622 err_ret: 9623 ip2dbg(("ip_newroute_ipif: dropped\n")); 9624 if (fire != NULL) 9625 ire_refrele(fire); 9626 ipif_refrele(ipif); 9627 /* Did this packet originate externally? */ 9628 if (dst_ill != NULL) 9629 ill_refrele(dst_ill); 9630 if (src_ipif != NULL) 9631 ipif_refrele(src_ipif); 9632 if (mp->b_prev || mp->b_next) { 9633 mp->b_next = NULL; 9634 mp->b_prev = NULL; 9635 } else { 9636 /* 9637 * Since ip_wput() isn't close to finished, we fill 9638 * in enough of the header for credible error reporting. 9639 */ 9640 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9641 /* Failed */ 9642 freemsg(first_mp); 9643 if (ire != NULL) 9644 ire_refrele(ire); 9645 return; 9646 } 9647 } 9648 /* 9649 * At this point we will have ire only if RTF_BLACKHOLE 9650 * or RTF_REJECT flags are set on the IRE. It will not 9651 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9652 */ 9653 if (ire != NULL) { 9654 if (ire->ire_flags & RTF_BLACKHOLE) { 9655 ire_refrele(ire); 9656 freemsg(first_mp); 9657 return; 9658 } 9659 ire_refrele(ire); 9660 } 9661 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9662 } 9663 9664 /* Name/Value Table Lookup Routine */ 9665 char * 9666 ip_nv_lookup(nv_t *nv, int value) 9667 { 9668 if (!nv) 9669 return (NULL); 9670 for (; nv->nv_name; nv++) { 9671 if (nv->nv_value == value) 9672 return (nv->nv_name); 9673 } 9674 return ("unknown"); 9675 } 9676 9677 /* 9678 * This is a module open, i.e. this is a control stream for access 9679 * to a DLPI device. We allocate an ill_t as the instance data in 9680 * this case. 9681 */ 9682 int 9683 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9684 { 9685 ill_t *ill; 9686 int err; 9687 zoneid_t zoneid; 9688 netstack_t *ns; 9689 ip_stack_t *ipst; 9690 9691 /* 9692 * Prevent unprivileged processes from pushing IP so that 9693 * they can't send raw IP. 9694 */ 9695 if (secpolicy_net_rawaccess(credp) != 0) 9696 return (EPERM); 9697 9698 ns = netstack_find_by_cred(credp); 9699 ASSERT(ns != NULL); 9700 ipst = ns->netstack_ip; 9701 ASSERT(ipst != NULL); 9702 9703 /* 9704 * For exclusive stacks we set the zoneid to zero 9705 * to make IP operate as if in the global zone. 9706 */ 9707 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9708 zoneid = GLOBAL_ZONEID; 9709 else 9710 zoneid = crgetzoneid(credp); 9711 9712 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9713 q->q_ptr = WR(q)->q_ptr = ill; 9714 ill->ill_ipst = ipst; 9715 ill->ill_zoneid = zoneid; 9716 9717 /* 9718 * ill_init initializes the ill fields and then sends down 9719 * down a DL_INFO_REQ after calling qprocson. 9720 */ 9721 err = ill_init(q, ill); 9722 if (err != 0) { 9723 mi_free(ill); 9724 netstack_rele(ipst->ips_netstack); 9725 q->q_ptr = NULL; 9726 WR(q)->q_ptr = NULL; 9727 return (err); 9728 } 9729 9730 /* ill_init initializes the ipsq marking this thread as writer */ 9731 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9732 /* Wait for the DL_INFO_ACK */ 9733 mutex_enter(&ill->ill_lock); 9734 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9735 /* 9736 * Return value of 0 indicates a pending signal. 9737 */ 9738 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9739 if (err == 0) { 9740 mutex_exit(&ill->ill_lock); 9741 (void) ip_close(q, 0); 9742 return (EINTR); 9743 } 9744 } 9745 mutex_exit(&ill->ill_lock); 9746 9747 /* 9748 * ip_rput_other could have set an error in ill_error on 9749 * receipt of M_ERROR. 9750 */ 9751 9752 err = ill->ill_error; 9753 if (err != 0) { 9754 (void) ip_close(q, 0); 9755 return (err); 9756 } 9757 9758 ill->ill_credp = credp; 9759 crhold(credp); 9760 9761 mutex_enter(&ipst->ips_ip_mi_lock); 9762 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9763 credp); 9764 mutex_exit(&ipst->ips_ip_mi_lock); 9765 if (err) { 9766 (void) ip_close(q, 0); 9767 return (err); 9768 } 9769 return (0); 9770 } 9771 9772 /* For /dev/ip aka AF_INET open */ 9773 int 9774 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9775 { 9776 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9777 } 9778 9779 /* For /dev/ip6 aka AF_INET6 open */ 9780 int 9781 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9782 { 9783 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9784 } 9785 9786 /* IP open routine. */ 9787 int 9788 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9789 boolean_t isv6) 9790 { 9791 conn_t *connp; 9792 major_t maj; 9793 zoneid_t zoneid; 9794 netstack_t *ns; 9795 ip_stack_t *ipst; 9796 9797 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9798 9799 /* Allow reopen. */ 9800 if (q->q_ptr != NULL) 9801 return (0); 9802 9803 if (sflag & MODOPEN) { 9804 /* This is a module open */ 9805 return (ip_modopen(q, devp, flag, sflag, credp)); 9806 } 9807 9808 ns = netstack_find_by_cred(credp); 9809 ASSERT(ns != NULL); 9810 ipst = ns->netstack_ip; 9811 ASSERT(ipst != NULL); 9812 9813 /* 9814 * For exclusive stacks we set the zoneid to zero 9815 * to make IP operate as if in the global zone. 9816 */ 9817 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9818 zoneid = GLOBAL_ZONEID; 9819 else 9820 zoneid = crgetzoneid(credp); 9821 9822 /* 9823 * We are opening as a device. This is an IP client stream, and we 9824 * allocate an conn_t as the instance data. 9825 */ 9826 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9827 9828 /* 9829 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9830 * done by netstack_find_by_cred() 9831 */ 9832 netstack_rele(ipst->ips_netstack); 9833 9834 connp->conn_zoneid = zoneid; 9835 9836 connp->conn_upq = q; 9837 q->q_ptr = WR(q)->q_ptr = connp; 9838 9839 if (flag & SO_SOCKSTR) 9840 connp->conn_flags |= IPCL_SOCKET; 9841 9842 /* Minor tells us which /dev entry was opened */ 9843 if (isv6) { 9844 connp->conn_flags |= IPCL_ISV6; 9845 connp->conn_af_isv6 = B_TRUE; 9846 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9847 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9848 } else { 9849 connp->conn_af_isv6 = B_FALSE; 9850 connp->conn_pkt_isv6 = B_FALSE; 9851 } 9852 9853 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9854 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9855 connp->conn_minor_arena = ip_minor_arena_la; 9856 } else { 9857 /* 9858 * Either minor numbers in the large arena were exhausted 9859 * or a non socket application is doing the open. 9860 * Try to allocate from the small arena. 9861 */ 9862 if ((connp->conn_dev = 9863 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9864 /* CONN_DEC_REF takes care of netstack_rele() */ 9865 q->q_ptr = WR(q)->q_ptr = NULL; 9866 CONN_DEC_REF(connp); 9867 return (EBUSY); 9868 } 9869 connp->conn_minor_arena = ip_minor_arena_sa; 9870 } 9871 9872 maj = getemajor(*devp); 9873 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9874 9875 /* 9876 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9877 */ 9878 connp->conn_cred = credp; 9879 9880 /* 9881 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9882 */ 9883 connp->conn_recv = ip_conn_input; 9884 9885 crhold(connp->conn_cred); 9886 9887 /* 9888 * If the caller has the process-wide flag set, then default to MAC 9889 * exempt mode. This allows read-down to unlabeled hosts. 9890 */ 9891 if (getpflags(NET_MAC_AWARE, credp) != 0) 9892 connp->conn_mac_exempt = B_TRUE; 9893 9894 connp->conn_rq = q; 9895 connp->conn_wq = WR(q); 9896 9897 /* Non-zero default values */ 9898 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9899 9900 /* 9901 * Make the conn globally visible to walkers 9902 */ 9903 ASSERT(connp->conn_ref == 1); 9904 mutex_enter(&connp->conn_lock); 9905 connp->conn_state_flags &= ~CONN_INCIPIENT; 9906 mutex_exit(&connp->conn_lock); 9907 9908 qprocson(q); 9909 9910 return (0); 9911 } 9912 9913 /* 9914 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9915 * Note that there is no race since either ip_output function works - it 9916 * is just an optimization to enter the best ip_output routine directly. 9917 */ 9918 void 9919 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9920 ip_stack_t *ipst) 9921 { 9922 if (isv6) { 9923 if (bump_mib) { 9924 BUMP_MIB(&ipst->ips_ip6_mib, 9925 ipIfStatsOutSwitchIPVersion); 9926 } 9927 connp->conn_send = ip_output_v6; 9928 connp->conn_pkt_isv6 = B_TRUE; 9929 } else { 9930 if (bump_mib) { 9931 BUMP_MIB(&ipst->ips_ip_mib, 9932 ipIfStatsOutSwitchIPVersion); 9933 } 9934 connp->conn_send = ip_output; 9935 connp->conn_pkt_isv6 = B_FALSE; 9936 } 9937 9938 } 9939 9940 /* 9941 * See if IPsec needs loading because of the options in mp. 9942 */ 9943 static boolean_t 9944 ipsec_opt_present(mblk_t *mp) 9945 { 9946 uint8_t *optcp, *next_optcp, *opt_endcp; 9947 struct opthdr *opt; 9948 struct T_opthdr *topt; 9949 int opthdr_len; 9950 t_uscalar_t optname, optlevel; 9951 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9952 ipsec_req_t *ipsr; 9953 9954 /* 9955 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9956 * return TRUE. 9957 */ 9958 9959 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9960 opt_endcp = optcp + tor->OPT_length; 9961 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9962 opthdr_len = sizeof (struct T_opthdr); 9963 } else { /* O_OPTMGMT_REQ */ 9964 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9965 opthdr_len = sizeof (struct opthdr); 9966 } 9967 for (; optcp < opt_endcp; optcp = next_optcp) { 9968 if (optcp + opthdr_len > opt_endcp) 9969 return (B_FALSE); /* Not enough option header. */ 9970 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9971 topt = (struct T_opthdr *)optcp; 9972 optlevel = topt->level; 9973 optname = topt->name; 9974 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9975 } else { 9976 opt = (struct opthdr *)optcp; 9977 optlevel = opt->level; 9978 optname = opt->name; 9979 next_optcp = optcp + opthdr_len + 9980 _TPI_ALIGN_OPT(opt->len); 9981 } 9982 if ((next_optcp < optcp) || /* wraparound pointer space */ 9983 ((next_optcp >= opt_endcp) && /* last option bad len */ 9984 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9985 return (B_FALSE); /* bad option buffer */ 9986 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9987 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9988 /* 9989 * Check to see if it's an all-bypass or all-zeroes 9990 * IPsec request. Don't bother loading IPsec if 9991 * the socket doesn't want to use it. (A good example 9992 * is a bypass request.) 9993 * 9994 * Basically, if any of the non-NEVER bits are set, 9995 * load IPsec. 9996 */ 9997 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9998 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9999 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10000 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10001 != 0) 10002 return (B_TRUE); 10003 } 10004 } 10005 return (B_FALSE); 10006 } 10007 10008 /* 10009 * If conn is is waiting for ipsec to finish loading, kick it. 10010 */ 10011 /* ARGSUSED */ 10012 static void 10013 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10014 { 10015 t_scalar_t optreq_prim; 10016 mblk_t *mp; 10017 cred_t *cr; 10018 int err = 0; 10019 10020 /* 10021 * This function is called, after ipsec loading is complete. 10022 * Since IP checks exclusively and atomically (i.e it prevents 10023 * ipsec load from completing until ip_optcom_req completes) 10024 * whether ipsec load is complete, there cannot be a race with IP 10025 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10026 */ 10027 mutex_enter(&connp->conn_lock); 10028 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10029 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10030 mp = connp->conn_ipsec_opt_mp; 10031 connp->conn_ipsec_opt_mp = NULL; 10032 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10033 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10034 mutex_exit(&connp->conn_lock); 10035 10036 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10037 10038 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10039 if (optreq_prim == T_OPTMGMT_REQ) { 10040 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10041 &ip_opt_obj, B_FALSE); 10042 } else { 10043 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10044 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10045 &ip_opt_obj, B_FALSE); 10046 } 10047 if (err != EINPROGRESS) 10048 CONN_OPER_PENDING_DONE(connp); 10049 return; 10050 } 10051 mutex_exit(&connp->conn_lock); 10052 } 10053 10054 /* 10055 * Called from the ipsec_loader thread, outside any perimeter, to tell 10056 * ip qenable any of the queues waiting for the ipsec loader to 10057 * complete. 10058 */ 10059 void 10060 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10061 { 10062 netstack_t *ns = ipss->ipsec_netstack; 10063 10064 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10065 } 10066 10067 /* 10068 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10069 * determines the grp on which it has to become exclusive, queues the mp 10070 * and sq draining restarts the optmgmt 10071 */ 10072 static boolean_t 10073 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10074 { 10075 conn_t *connp = Q_TO_CONN(q); 10076 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10077 10078 /* 10079 * Take IPsec requests and treat them special. 10080 */ 10081 if (ipsec_opt_present(mp)) { 10082 /* First check if IPsec is loaded. */ 10083 mutex_enter(&ipss->ipsec_loader_lock); 10084 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10085 mutex_exit(&ipss->ipsec_loader_lock); 10086 return (B_FALSE); 10087 } 10088 mutex_enter(&connp->conn_lock); 10089 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10090 10091 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10092 connp->conn_ipsec_opt_mp = mp; 10093 mutex_exit(&connp->conn_lock); 10094 mutex_exit(&ipss->ipsec_loader_lock); 10095 10096 ipsec_loader_loadnow(ipss); 10097 return (B_TRUE); 10098 } 10099 return (B_FALSE); 10100 } 10101 10102 /* 10103 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10104 * all of them are copied to the conn_t. If the req is "zero", the policy is 10105 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10106 * fields. 10107 * We keep only the latest setting of the policy and thus policy setting 10108 * is not incremental/cumulative. 10109 * 10110 * Requests to set policies with multiple alternative actions will 10111 * go through a different API. 10112 */ 10113 int 10114 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10115 { 10116 uint_t ah_req = 0; 10117 uint_t esp_req = 0; 10118 uint_t se_req = 0; 10119 ipsec_selkey_t sel; 10120 ipsec_act_t *actp = NULL; 10121 uint_t nact; 10122 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10123 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10124 ipsec_policy_root_t *pr; 10125 ipsec_policy_head_t *ph; 10126 int fam; 10127 boolean_t is_pol_reset; 10128 int error = 0; 10129 netstack_t *ns = connp->conn_netstack; 10130 ip_stack_t *ipst = ns->netstack_ip; 10131 ipsec_stack_t *ipss = ns->netstack_ipsec; 10132 10133 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10134 10135 /* 10136 * The IP_SEC_OPT option does not allow variable length parameters, 10137 * hence a request cannot be NULL. 10138 */ 10139 if (req == NULL) 10140 return (EINVAL); 10141 10142 ah_req = req->ipsr_ah_req; 10143 esp_req = req->ipsr_esp_req; 10144 se_req = req->ipsr_self_encap_req; 10145 10146 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10147 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10148 return (EINVAL); 10149 10150 /* 10151 * Are we dealing with a request to reset the policy (i.e. 10152 * zero requests). 10153 */ 10154 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10155 (esp_req & REQ_MASK) == 0 && 10156 (se_req & REQ_MASK) == 0); 10157 10158 if (!is_pol_reset) { 10159 /* 10160 * If we couldn't load IPsec, fail with "protocol 10161 * not supported". 10162 * IPsec may not have been loaded for a request with zero 10163 * policies, so we don't fail in this case. 10164 */ 10165 mutex_enter(&ipss->ipsec_loader_lock); 10166 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10167 mutex_exit(&ipss->ipsec_loader_lock); 10168 return (EPROTONOSUPPORT); 10169 } 10170 mutex_exit(&ipss->ipsec_loader_lock); 10171 10172 /* 10173 * Test for valid requests. Invalid algorithms 10174 * need to be tested by IPsec code because new 10175 * algorithms can be added dynamically. 10176 */ 10177 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10178 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10179 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10180 return (EINVAL); 10181 } 10182 10183 /* 10184 * Only privileged users can issue these 10185 * requests. 10186 */ 10187 if (((ah_req & IPSEC_PREF_NEVER) || 10188 (esp_req & IPSEC_PREF_NEVER) || 10189 (se_req & IPSEC_PREF_NEVER)) && 10190 secpolicy_ip_config(cr, B_FALSE) != 0) { 10191 return (EPERM); 10192 } 10193 10194 /* 10195 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10196 * are mutually exclusive. 10197 */ 10198 if (((ah_req & REQ_MASK) == REQ_MASK) || 10199 ((esp_req & REQ_MASK) == REQ_MASK) || 10200 ((se_req & REQ_MASK) == REQ_MASK)) { 10201 /* Both of them are set */ 10202 return (EINVAL); 10203 } 10204 } 10205 10206 mutex_enter(&connp->conn_lock); 10207 10208 /* 10209 * If we have already cached policies in ip_bind_connected*(), don't 10210 * let them change now. We cache policies for connections 10211 * whose src,dst [addr, port] is known. 10212 */ 10213 if (connp->conn_policy_cached) { 10214 mutex_exit(&connp->conn_lock); 10215 return (EINVAL); 10216 } 10217 10218 /* 10219 * We have a zero policies, reset the connection policy if already 10220 * set. This will cause the connection to inherit the 10221 * global policy, if any. 10222 */ 10223 if (is_pol_reset) { 10224 if (connp->conn_policy != NULL) { 10225 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10226 connp->conn_policy = NULL; 10227 } 10228 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10229 connp->conn_in_enforce_policy = B_FALSE; 10230 connp->conn_out_enforce_policy = B_FALSE; 10231 mutex_exit(&connp->conn_lock); 10232 return (0); 10233 } 10234 10235 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10236 ipst->ips_netstack); 10237 if (ph == NULL) 10238 goto enomem; 10239 10240 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10241 if (actp == NULL) 10242 goto enomem; 10243 10244 /* 10245 * Always allocate IPv4 policy entries, since they can also 10246 * apply to ipv6 sockets being used in ipv4-compat mode. 10247 */ 10248 bzero(&sel, sizeof (sel)); 10249 sel.ipsl_valid = IPSL_IPV4; 10250 10251 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10252 ipst->ips_netstack); 10253 if (pin4 == NULL) 10254 goto enomem; 10255 10256 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10257 ipst->ips_netstack); 10258 if (pout4 == NULL) 10259 goto enomem; 10260 10261 if (connp->conn_af_isv6) { 10262 /* 10263 * We're looking at a v6 socket, also allocate the 10264 * v6-specific entries... 10265 */ 10266 sel.ipsl_valid = IPSL_IPV6; 10267 pin6 = ipsec_policy_create(&sel, actp, nact, 10268 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10269 if (pin6 == NULL) 10270 goto enomem; 10271 10272 pout6 = ipsec_policy_create(&sel, actp, nact, 10273 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10274 if (pout6 == NULL) 10275 goto enomem; 10276 10277 /* 10278 * .. and file them away in the right place. 10279 */ 10280 fam = IPSEC_AF_V6; 10281 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10282 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10283 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10284 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10285 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10286 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10287 } 10288 10289 ipsec_actvec_free(actp, nact); 10290 10291 /* 10292 * File the v4 policies. 10293 */ 10294 fam = IPSEC_AF_V4; 10295 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10296 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10297 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10298 10299 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10300 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10301 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10302 10303 /* 10304 * If the requests need security, set enforce_policy. 10305 * If the requests are IPSEC_PREF_NEVER, one should 10306 * still set conn_out_enforce_policy so that an ipsec_out 10307 * gets attached in ip_wput. This is needed so that 10308 * for connections that we don't cache policy in ip_bind, 10309 * if global policy matches in ip_wput_attach_policy, we 10310 * don't wrongly inherit global policy. Similarly, we need 10311 * to set conn_in_enforce_policy also so that we don't verify 10312 * policy wrongly. 10313 */ 10314 if ((ah_req & REQ_MASK) != 0 || 10315 (esp_req & REQ_MASK) != 0 || 10316 (se_req & REQ_MASK) != 0) { 10317 connp->conn_in_enforce_policy = B_TRUE; 10318 connp->conn_out_enforce_policy = B_TRUE; 10319 connp->conn_flags |= IPCL_CHECK_POLICY; 10320 } 10321 10322 mutex_exit(&connp->conn_lock); 10323 return (error); 10324 #undef REQ_MASK 10325 10326 /* 10327 * Common memory-allocation-failure exit path. 10328 */ 10329 enomem: 10330 mutex_exit(&connp->conn_lock); 10331 if (actp != NULL) 10332 ipsec_actvec_free(actp, nact); 10333 if (pin4 != NULL) 10334 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10335 if (pout4 != NULL) 10336 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10337 if (pin6 != NULL) 10338 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10339 if (pout6 != NULL) 10340 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10341 return (ENOMEM); 10342 } 10343 10344 /* 10345 * Only for options that pass in an IP addr. Currently only V4 options 10346 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10347 * So this function assumes level is IPPROTO_IP 10348 */ 10349 int 10350 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10351 mblk_t *first_mp) 10352 { 10353 ipif_t *ipif = NULL; 10354 int error; 10355 ill_t *ill; 10356 int zoneid; 10357 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10358 10359 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10360 10361 if (addr != INADDR_ANY || checkonly) { 10362 ASSERT(connp != NULL); 10363 zoneid = IPCL_ZONEID(connp); 10364 if (option == IP_NEXTHOP) { 10365 ipif = ipif_lookup_onlink_addr(addr, 10366 connp->conn_zoneid, ipst); 10367 } else { 10368 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10369 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10370 &error, ipst); 10371 } 10372 if (ipif == NULL) { 10373 if (error == EINPROGRESS) 10374 return (error); 10375 else if ((option == IP_MULTICAST_IF) || 10376 (option == IP_NEXTHOP)) 10377 return (EHOSTUNREACH); 10378 else 10379 return (EINVAL); 10380 } else if (checkonly) { 10381 if (option == IP_MULTICAST_IF) { 10382 ill = ipif->ipif_ill; 10383 /* not supported by the virtual network iface */ 10384 if (IS_VNI(ill)) { 10385 ipif_refrele(ipif); 10386 return (EINVAL); 10387 } 10388 } 10389 ipif_refrele(ipif); 10390 return (0); 10391 } 10392 ill = ipif->ipif_ill; 10393 mutex_enter(&connp->conn_lock); 10394 mutex_enter(&ill->ill_lock); 10395 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10396 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10397 mutex_exit(&ill->ill_lock); 10398 mutex_exit(&connp->conn_lock); 10399 ipif_refrele(ipif); 10400 return (option == IP_MULTICAST_IF ? 10401 EHOSTUNREACH : EINVAL); 10402 } 10403 } else { 10404 mutex_enter(&connp->conn_lock); 10405 } 10406 10407 /* None of the options below are supported on the VNI */ 10408 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10409 mutex_exit(&ill->ill_lock); 10410 mutex_exit(&connp->conn_lock); 10411 ipif_refrele(ipif); 10412 return (EINVAL); 10413 } 10414 10415 switch (option) { 10416 case IP_DONTFAILOVER_IF: 10417 /* 10418 * This option is used by in.mpathd to ensure 10419 * that IPMP probe packets only go out on the 10420 * test interfaces. in.mpathd sets this option 10421 * on the non-failover interfaces. 10422 * For backward compatibility, this option 10423 * implicitly sets IP_MULTICAST_IF, as used 10424 * be done in bind(), so that ip_wput gets 10425 * this ipif to send mcast packets. 10426 */ 10427 if (ipif != NULL) { 10428 ASSERT(addr != INADDR_ANY); 10429 connp->conn_nofailover_ill = ipif->ipif_ill; 10430 connp->conn_multicast_ipif = ipif; 10431 } else { 10432 ASSERT(addr == INADDR_ANY); 10433 connp->conn_nofailover_ill = NULL; 10434 connp->conn_multicast_ipif = NULL; 10435 } 10436 break; 10437 10438 case IP_MULTICAST_IF: 10439 connp->conn_multicast_ipif = ipif; 10440 break; 10441 case IP_NEXTHOP: 10442 connp->conn_nexthop_v4 = addr; 10443 connp->conn_nexthop_set = B_TRUE; 10444 break; 10445 } 10446 10447 if (ipif != NULL) { 10448 mutex_exit(&ill->ill_lock); 10449 mutex_exit(&connp->conn_lock); 10450 ipif_refrele(ipif); 10451 return (0); 10452 } 10453 mutex_exit(&connp->conn_lock); 10454 /* We succeded in cleared the option */ 10455 return (0); 10456 } 10457 10458 /* 10459 * For options that pass in an ifindex specifying the ill. V6 options always 10460 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10461 */ 10462 int 10463 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10464 int level, int option, mblk_t *first_mp) 10465 { 10466 ill_t *ill = NULL; 10467 int error = 0; 10468 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10469 10470 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10471 if (ifindex != 0) { 10472 ASSERT(connp != NULL); 10473 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10474 first_mp, ip_restart_optmgmt, &error, ipst); 10475 if (ill != NULL) { 10476 if (checkonly) { 10477 /* not supported by the virtual network iface */ 10478 if (IS_VNI(ill)) { 10479 ill_refrele(ill); 10480 return (EINVAL); 10481 } 10482 ill_refrele(ill); 10483 return (0); 10484 } 10485 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10486 0, NULL)) { 10487 ill_refrele(ill); 10488 ill = NULL; 10489 mutex_enter(&connp->conn_lock); 10490 goto setit; 10491 } 10492 mutex_enter(&connp->conn_lock); 10493 mutex_enter(&ill->ill_lock); 10494 if (ill->ill_state_flags & ILL_CONDEMNED) { 10495 mutex_exit(&ill->ill_lock); 10496 mutex_exit(&connp->conn_lock); 10497 ill_refrele(ill); 10498 ill = NULL; 10499 mutex_enter(&connp->conn_lock); 10500 } 10501 goto setit; 10502 } else if (error == EINPROGRESS) { 10503 return (error); 10504 } else { 10505 error = 0; 10506 } 10507 } 10508 mutex_enter(&connp->conn_lock); 10509 setit: 10510 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10511 10512 /* 10513 * The options below assume that the ILL (if any) transmits and/or 10514 * receives traffic. Neither of which is true for the virtual network 10515 * interface, so fail setting these on a VNI. 10516 */ 10517 if (IS_VNI(ill)) { 10518 ASSERT(ill != NULL); 10519 mutex_exit(&ill->ill_lock); 10520 mutex_exit(&connp->conn_lock); 10521 ill_refrele(ill); 10522 return (EINVAL); 10523 } 10524 10525 if (level == IPPROTO_IP) { 10526 switch (option) { 10527 case IP_BOUND_IF: 10528 connp->conn_incoming_ill = ill; 10529 connp->conn_outgoing_ill = ill; 10530 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10531 0 : ifindex; 10532 break; 10533 10534 case IP_MULTICAST_IF: 10535 /* 10536 * This option is an internal special. The socket 10537 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10538 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10539 * specifies an ifindex and we try first on V6 ill's. 10540 * If we don't find one, we they try using on v4 ill's 10541 * intenally and we come here. 10542 */ 10543 if (!checkonly && ill != NULL) { 10544 ipif_t *ipif; 10545 ipif = ill->ill_ipif; 10546 10547 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10548 mutex_exit(&ill->ill_lock); 10549 mutex_exit(&connp->conn_lock); 10550 ill_refrele(ill); 10551 ill = NULL; 10552 mutex_enter(&connp->conn_lock); 10553 } else { 10554 connp->conn_multicast_ipif = ipif; 10555 } 10556 } 10557 break; 10558 10559 case IP_DHCPINIT_IF: 10560 if (connp->conn_dhcpinit_ill != NULL) { 10561 /* 10562 * We've locked the conn so conn_cleanup_ill() 10563 * cannot clear conn_dhcpinit_ill -- so it's 10564 * safe to access the ill. 10565 */ 10566 ill_t *oill = connp->conn_dhcpinit_ill; 10567 10568 ASSERT(oill->ill_dhcpinit != 0); 10569 atomic_dec_32(&oill->ill_dhcpinit); 10570 connp->conn_dhcpinit_ill = NULL; 10571 } 10572 10573 if (ill != NULL) { 10574 connp->conn_dhcpinit_ill = ill; 10575 atomic_inc_32(&ill->ill_dhcpinit); 10576 } 10577 break; 10578 } 10579 } else { 10580 switch (option) { 10581 case IPV6_BOUND_IF: 10582 connp->conn_incoming_ill = ill; 10583 connp->conn_outgoing_ill = ill; 10584 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10585 0 : ifindex; 10586 break; 10587 10588 case IPV6_BOUND_PIF: 10589 /* 10590 * Limit all transmit to this ill. 10591 * Unlike IPV6_BOUND_IF, using this option 10592 * prevents load spreading and failover from 10593 * happening when the interface is part of the 10594 * group. That's why we don't need to remember 10595 * the ifindex in orig_bound_ifindex as in 10596 * IPV6_BOUND_IF. 10597 */ 10598 connp->conn_outgoing_pill = ill; 10599 break; 10600 10601 case IPV6_DONTFAILOVER_IF: 10602 /* 10603 * This option is used by in.mpathd to ensure 10604 * that IPMP probe packets only go out on the 10605 * test interfaces. in.mpathd sets this option 10606 * on the non-failover interfaces. 10607 */ 10608 connp->conn_nofailover_ill = ill; 10609 /* 10610 * For backward compatibility, this option 10611 * implicitly sets ip_multicast_ill as used in 10612 * IPV6_MULTICAST_IF so that ip_wput gets 10613 * this ill to send mcast packets. 10614 */ 10615 connp->conn_multicast_ill = ill; 10616 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10617 0 : ifindex; 10618 break; 10619 10620 case IPV6_MULTICAST_IF: 10621 /* 10622 * Set conn_multicast_ill to be the IPv6 ill. 10623 * Set conn_multicast_ipif to be an IPv4 ipif 10624 * for ifindex to make IPv4 mapped addresses 10625 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10626 * Even if no IPv6 ill exists for the ifindex 10627 * we need to check for an IPv4 ifindex in order 10628 * for this to work with mapped addresses. In that 10629 * case only set conn_multicast_ipif. 10630 */ 10631 if (!checkonly) { 10632 if (ifindex == 0) { 10633 connp->conn_multicast_ill = NULL; 10634 connp->conn_orig_multicast_ifindex = 0; 10635 connp->conn_multicast_ipif = NULL; 10636 } else if (ill != NULL) { 10637 connp->conn_multicast_ill = ill; 10638 connp->conn_orig_multicast_ifindex = 10639 ifindex; 10640 } 10641 } 10642 break; 10643 } 10644 } 10645 10646 if (ill != NULL) { 10647 mutex_exit(&ill->ill_lock); 10648 mutex_exit(&connp->conn_lock); 10649 ill_refrele(ill); 10650 return (0); 10651 } 10652 mutex_exit(&connp->conn_lock); 10653 /* 10654 * We succeeded in clearing the option (ifindex == 0) or failed to 10655 * locate the ill and could not set the option (ifindex != 0) 10656 */ 10657 return (ifindex == 0 ? 0 : EINVAL); 10658 } 10659 10660 /* This routine sets socket options. */ 10661 /* ARGSUSED */ 10662 int 10663 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10664 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10665 void *dummy, cred_t *cr, mblk_t *first_mp) 10666 { 10667 int *i1 = (int *)invalp; 10668 conn_t *connp = Q_TO_CONN(q); 10669 int error = 0; 10670 boolean_t checkonly; 10671 ire_t *ire; 10672 boolean_t found; 10673 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10674 10675 switch (optset_context) { 10676 10677 case SETFN_OPTCOM_CHECKONLY: 10678 checkonly = B_TRUE; 10679 /* 10680 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10681 * inlen != 0 implies value supplied and 10682 * we have to "pretend" to set it. 10683 * inlen == 0 implies that there is no 10684 * value part in T_CHECK request and just validation 10685 * done elsewhere should be enough, we just return here. 10686 */ 10687 if (inlen == 0) { 10688 *outlenp = 0; 10689 return (0); 10690 } 10691 break; 10692 case SETFN_OPTCOM_NEGOTIATE: 10693 case SETFN_UD_NEGOTIATE: 10694 case SETFN_CONN_NEGOTIATE: 10695 checkonly = B_FALSE; 10696 break; 10697 default: 10698 /* 10699 * We should never get here 10700 */ 10701 *outlenp = 0; 10702 return (EINVAL); 10703 } 10704 10705 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10706 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10707 10708 /* 10709 * For fixed length options, no sanity check 10710 * of passed in length is done. It is assumed *_optcom_req() 10711 * routines do the right thing. 10712 */ 10713 10714 switch (level) { 10715 case SOL_SOCKET: 10716 /* 10717 * conn_lock protects the bitfields, and is used to 10718 * set the fields atomically. 10719 */ 10720 switch (name) { 10721 case SO_BROADCAST: 10722 if (!checkonly) { 10723 /* TODO: use value someplace? */ 10724 mutex_enter(&connp->conn_lock); 10725 connp->conn_broadcast = *i1 ? 1 : 0; 10726 mutex_exit(&connp->conn_lock); 10727 } 10728 break; /* goto sizeof (int) option return */ 10729 case SO_USELOOPBACK: 10730 if (!checkonly) { 10731 /* TODO: use value someplace? */ 10732 mutex_enter(&connp->conn_lock); 10733 connp->conn_loopback = *i1 ? 1 : 0; 10734 mutex_exit(&connp->conn_lock); 10735 } 10736 break; /* goto sizeof (int) option return */ 10737 case SO_DONTROUTE: 10738 if (!checkonly) { 10739 mutex_enter(&connp->conn_lock); 10740 connp->conn_dontroute = *i1 ? 1 : 0; 10741 mutex_exit(&connp->conn_lock); 10742 } 10743 break; /* goto sizeof (int) option return */ 10744 case SO_REUSEADDR: 10745 if (!checkonly) { 10746 mutex_enter(&connp->conn_lock); 10747 connp->conn_reuseaddr = *i1 ? 1 : 0; 10748 mutex_exit(&connp->conn_lock); 10749 } 10750 break; /* goto sizeof (int) option return */ 10751 case SO_PROTOTYPE: 10752 if (!checkonly) { 10753 mutex_enter(&connp->conn_lock); 10754 connp->conn_proto = *i1; 10755 mutex_exit(&connp->conn_lock); 10756 } 10757 break; /* goto sizeof (int) option return */ 10758 case SO_ALLZONES: 10759 if (!checkonly) { 10760 mutex_enter(&connp->conn_lock); 10761 if (IPCL_IS_BOUND(connp)) { 10762 mutex_exit(&connp->conn_lock); 10763 return (EINVAL); 10764 } 10765 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10766 mutex_exit(&connp->conn_lock); 10767 } 10768 break; /* goto sizeof (int) option return */ 10769 case SO_ANON_MLP: 10770 if (!checkonly) { 10771 mutex_enter(&connp->conn_lock); 10772 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10773 mutex_exit(&connp->conn_lock); 10774 } 10775 break; /* goto sizeof (int) option return */ 10776 case SO_MAC_EXEMPT: 10777 if (secpolicy_net_mac_aware(cr) != 0 || 10778 IPCL_IS_BOUND(connp)) 10779 return (EACCES); 10780 if (!checkonly) { 10781 mutex_enter(&connp->conn_lock); 10782 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10783 mutex_exit(&connp->conn_lock); 10784 } 10785 break; /* goto sizeof (int) option return */ 10786 default: 10787 /* 10788 * "soft" error (negative) 10789 * option not handled at this level 10790 * Note: Do not modify *outlenp 10791 */ 10792 return (-EINVAL); 10793 } 10794 break; 10795 case IPPROTO_IP: 10796 switch (name) { 10797 case IP_NEXTHOP: 10798 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10799 return (EPERM); 10800 /* FALLTHRU */ 10801 case IP_MULTICAST_IF: 10802 case IP_DONTFAILOVER_IF: { 10803 ipaddr_t addr = *i1; 10804 10805 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10806 first_mp); 10807 if (error != 0) 10808 return (error); 10809 break; /* goto sizeof (int) option return */ 10810 } 10811 10812 case IP_MULTICAST_TTL: 10813 /* Recorded in transport above IP */ 10814 *outvalp = *invalp; 10815 *outlenp = sizeof (uchar_t); 10816 return (0); 10817 case IP_MULTICAST_LOOP: 10818 if (!checkonly) { 10819 mutex_enter(&connp->conn_lock); 10820 connp->conn_multicast_loop = *invalp ? 1 : 0; 10821 mutex_exit(&connp->conn_lock); 10822 } 10823 *outvalp = *invalp; 10824 *outlenp = sizeof (uchar_t); 10825 return (0); 10826 case IP_ADD_MEMBERSHIP: 10827 case MCAST_JOIN_GROUP: 10828 case IP_DROP_MEMBERSHIP: 10829 case MCAST_LEAVE_GROUP: { 10830 struct ip_mreq *mreqp; 10831 struct group_req *greqp; 10832 ire_t *ire; 10833 boolean_t done = B_FALSE; 10834 ipaddr_t group, ifaddr; 10835 struct sockaddr_in *sin; 10836 uint32_t *ifindexp; 10837 boolean_t mcast_opt = B_TRUE; 10838 mcast_record_t fmode; 10839 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10840 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10841 10842 switch (name) { 10843 case IP_ADD_MEMBERSHIP: 10844 mcast_opt = B_FALSE; 10845 /* FALLTHRU */ 10846 case MCAST_JOIN_GROUP: 10847 fmode = MODE_IS_EXCLUDE; 10848 optfn = ip_opt_add_group; 10849 break; 10850 10851 case IP_DROP_MEMBERSHIP: 10852 mcast_opt = B_FALSE; 10853 /* FALLTHRU */ 10854 case MCAST_LEAVE_GROUP: 10855 fmode = MODE_IS_INCLUDE; 10856 optfn = ip_opt_delete_group; 10857 break; 10858 } 10859 10860 if (mcast_opt) { 10861 greqp = (struct group_req *)i1; 10862 sin = (struct sockaddr_in *)&greqp->gr_group; 10863 if (sin->sin_family != AF_INET) { 10864 *outlenp = 0; 10865 return (ENOPROTOOPT); 10866 } 10867 group = (ipaddr_t)sin->sin_addr.s_addr; 10868 ifaddr = INADDR_ANY; 10869 ifindexp = &greqp->gr_interface; 10870 } else { 10871 mreqp = (struct ip_mreq *)i1; 10872 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10873 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10874 ifindexp = NULL; 10875 } 10876 10877 /* 10878 * In the multirouting case, we need to replicate 10879 * the request on all interfaces that will take part 10880 * in replication. We do so because multirouting is 10881 * reflective, thus we will probably receive multi- 10882 * casts on those interfaces. 10883 * The ip_multirt_apply_membership() succeeds if the 10884 * operation succeeds on at least one interface. 10885 */ 10886 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10887 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10888 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10889 if (ire != NULL) { 10890 if (ire->ire_flags & RTF_MULTIRT) { 10891 error = ip_multirt_apply_membership( 10892 optfn, ire, connp, checkonly, group, 10893 fmode, INADDR_ANY, first_mp); 10894 done = B_TRUE; 10895 } 10896 ire_refrele(ire); 10897 } 10898 if (!done) { 10899 error = optfn(connp, checkonly, group, ifaddr, 10900 ifindexp, fmode, INADDR_ANY, first_mp); 10901 } 10902 if (error) { 10903 /* 10904 * EINPROGRESS is a soft error, needs retry 10905 * so don't make *outlenp zero. 10906 */ 10907 if (error != EINPROGRESS) 10908 *outlenp = 0; 10909 return (error); 10910 } 10911 /* OK return - copy input buffer into output buffer */ 10912 if (invalp != outvalp) { 10913 /* don't trust bcopy for identical src/dst */ 10914 bcopy(invalp, outvalp, inlen); 10915 } 10916 *outlenp = inlen; 10917 return (0); 10918 } 10919 case IP_BLOCK_SOURCE: 10920 case IP_UNBLOCK_SOURCE: 10921 case IP_ADD_SOURCE_MEMBERSHIP: 10922 case IP_DROP_SOURCE_MEMBERSHIP: 10923 case MCAST_BLOCK_SOURCE: 10924 case MCAST_UNBLOCK_SOURCE: 10925 case MCAST_JOIN_SOURCE_GROUP: 10926 case MCAST_LEAVE_SOURCE_GROUP: { 10927 struct ip_mreq_source *imreqp; 10928 struct group_source_req *gsreqp; 10929 in_addr_t grp, src, ifaddr = INADDR_ANY; 10930 uint32_t ifindex = 0; 10931 mcast_record_t fmode; 10932 struct sockaddr_in *sin; 10933 ire_t *ire; 10934 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10935 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10936 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10937 10938 switch (name) { 10939 case IP_BLOCK_SOURCE: 10940 mcast_opt = B_FALSE; 10941 /* FALLTHRU */ 10942 case MCAST_BLOCK_SOURCE: 10943 fmode = MODE_IS_EXCLUDE; 10944 optfn = ip_opt_add_group; 10945 break; 10946 10947 case IP_UNBLOCK_SOURCE: 10948 mcast_opt = B_FALSE; 10949 /* FALLTHRU */ 10950 case MCAST_UNBLOCK_SOURCE: 10951 fmode = MODE_IS_EXCLUDE; 10952 optfn = ip_opt_delete_group; 10953 break; 10954 10955 case IP_ADD_SOURCE_MEMBERSHIP: 10956 mcast_opt = B_FALSE; 10957 /* FALLTHRU */ 10958 case MCAST_JOIN_SOURCE_GROUP: 10959 fmode = MODE_IS_INCLUDE; 10960 optfn = ip_opt_add_group; 10961 break; 10962 10963 case IP_DROP_SOURCE_MEMBERSHIP: 10964 mcast_opt = B_FALSE; 10965 /* FALLTHRU */ 10966 case MCAST_LEAVE_SOURCE_GROUP: 10967 fmode = MODE_IS_INCLUDE; 10968 optfn = ip_opt_delete_group; 10969 break; 10970 } 10971 10972 if (mcast_opt) { 10973 gsreqp = (struct group_source_req *)i1; 10974 if (gsreqp->gsr_group.ss_family != AF_INET) { 10975 *outlenp = 0; 10976 return (ENOPROTOOPT); 10977 } 10978 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10979 grp = (ipaddr_t)sin->sin_addr.s_addr; 10980 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10981 src = (ipaddr_t)sin->sin_addr.s_addr; 10982 ifindex = gsreqp->gsr_interface; 10983 } else { 10984 imreqp = (struct ip_mreq_source *)i1; 10985 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10986 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10987 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10988 } 10989 10990 /* 10991 * In the multirouting case, we need to replicate 10992 * the request as noted in the mcast cases above. 10993 */ 10994 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10995 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10996 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10997 if (ire != NULL) { 10998 if (ire->ire_flags & RTF_MULTIRT) { 10999 error = ip_multirt_apply_membership( 11000 optfn, ire, connp, checkonly, grp, 11001 fmode, src, first_mp); 11002 done = B_TRUE; 11003 } 11004 ire_refrele(ire); 11005 } 11006 if (!done) { 11007 error = optfn(connp, checkonly, grp, ifaddr, 11008 &ifindex, fmode, src, first_mp); 11009 } 11010 if (error != 0) { 11011 /* 11012 * EINPROGRESS is a soft error, needs retry 11013 * so don't make *outlenp zero. 11014 */ 11015 if (error != EINPROGRESS) 11016 *outlenp = 0; 11017 return (error); 11018 } 11019 /* OK return - copy input buffer into output buffer */ 11020 if (invalp != outvalp) { 11021 bcopy(invalp, outvalp, inlen); 11022 } 11023 *outlenp = inlen; 11024 return (0); 11025 } 11026 case IP_SEC_OPT: 11027 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11028 if (error != 0) { 11029 *outlenp = 0; 11030 return (error); 11031 } 11032 break; 11033 case IP_HDRINCL: 11034 case IP_OPTIONS: 11035 case T_IP_OPTIONS: 11036 case IP_TOS: 11037 case T_IP_TOS: 11038 case IP_TTL: 11039 case IP_RECVDSTADDR: 11040 case IP_RECVOPTS: 11041 /* OK return - copy input buffer into output buffer */ 11042 if (invalp != outvalp) { 11043 /* don't trust bcopy for identical src/dst */ 11044 bcopy(invalp, outvalp, inlen); 11045 } 11046 *outlenp = inlen; 11047 return (0); 11048 case IP_RECVIF: 11049 /* Retrieve the inbound interface index */ 11050 if (!checkonly) { 11051 mutex_enter(&connp->conn_lock); 11052 connp->conn_recvif = *i1 ? 1 : 0; 11053 mutex_exit(&connp->conn_lock); 11054 } 11055 break; /* goto sizeof (int) option return */ 11056 case IP_RECVPKTINFO: 11057 if (!checkonly) { 11058 mutex_enter(&connp->conn_lock); 11059 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11060 mutex_exit(&connp->conn_lock); 11061 } 11062 break; /* goto sizeof (int) option return */ 11063 case IP_RECVSLLA: 11064 /* Retrieve the source link layer address */ 11065 if (!checkonly) { 11066 mutex_enter(&connp->conn_lock); 11067 connp->conn_recvslla = *i1 ? 1 : 0; 11068 mutex_exit(&connp->conn_lock); 11069 } 11070 break; /* goto sizeof (int) option return */ 11071 case MRT_INIT: 11072 case MRT_DONE: 11073 case MRT_ADD_VIF: 11074 case MRT_DEL_VIF: 11075 case MRT_ADD_MFC: 11076 case MRT_DEL_MFC: 11077 case MRT_ASSERT: 11078 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11079 *outlenp = 0; 11080 return (error); 11081 } 11082 error = ip_mrouter_set((int)name, q, checkonly, 11083 (uchar_t *)invalp, inlen, first_mp); 11084 if (error) { 11085 *outlenp = 0; 11086 return (error); 11087 } 11088 /* OK return - copy input buffer into output buffer */ 11089 if (invalp != outvalp) { 11090 /* don't trust bcopy for identical src/dst */ 11091 bcopy(invalp, outvalp, inlen); 11092 } 11093 *outlenp = inlen; 11094 return (0); 11095 case IP_BOUND_IF: 11096 case IP_DHCPINIT_IF: 11097 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11098 level, name, first_mp); 11099 if (error != 0) 11100 return (error); 11101 break; /* goto sizeof (int) option return */ 11102 11103 case IP_UNSPEC_SRC: 11104 /* Allow sending with a zero source address */ 11105 if (!checkonly) { 11106 mutex_enter(&connp->conn_lock); 11107 connp->conn_unspec_src = *i1 ? 1 : 0; 11108 mutex_exit(&connp->conn_lock); 11109 } 11110 break; /* goto sizeof (int) option return */ 11111 default: 11112 /* 11113 * "soft" error (negative) 11114 * option not handled at this level 11115 * Note: Do not modify *outlenp 11116 */ 11117 return (-EINVAL); 11118 } 11119 break; 11120 case IPPROTO_IPV6: 11121 switch (name) { 11122 case IPV6_BOUND_IF: 11123 case IPV6_BOUND_PIF: 11124 case IPV6_DONTFAILOVER_IF: 11125 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11126 level, name, first_mp); 11127 if (error != 0) 11128 return (error); 11129 break; /* goto sizeof (int) option return */ 11130 11131 case IPV6_MULTICAST_IF: 11132 /* 11133 * The only possible errors are EINPROGRESS and 11134 * EINVAL. EINPROGRESS will be restarted and is not 11135 * a hard error. We call this option on both V4 and V6 11136 * If both return EINVAL, then this call returns 11137 * EINVAL. If at least one of them succeeds we 11138 * return success. 11139 */ 11140 found = B_FALSE; 11141 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11142 level, name, first_mp); 11143 if (error == EINPROGRESS) 11144 return (error); 11145 if (error == 0) 11146 found = B_TRUE; 11147 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11148 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11149 if (error == 0) 11150 found = B_TRUE; 11151 if (!found) 11152 return (error); 11153 break; /* goto sizeof (int) option return */ 11154 11155 case IPV6_MULTICAST_HOPS: 11156 /* Recorded in transport above IP */ 11157 break; /* goto sizeof (int) option return */ 11158 case IPV6_MULTICAST_LOOP: 11159 if (!checkonly) { 11160 mutex_enter(&connp->conn_lock); 11161 connp->conn_multicast_loop = *i1; 11162 mutex_exit(&connp->conn_lock); 11163 } 11164 break; /* goto sizeof (int) option return */ 11165 case IPV6_JOIN_GROUP: 11166 case MCAST_JOIN_GROUP: 11167 case IPV6_LEAVE_GROUP: 11168 case MCAST_LEAVE_GROUP: { 11169 struct ipv6_mreq *ip_mreqp; 11170 struct group_req *greqp; 11171 ire_t *ire; 11172 boolean_t done = B_FALSE; 11173 in6_addr_t groupv6; 11174 uint32_t ifindex; 11175 boolean_t mcast_opt = B_TRUE; 11176 mcast_record_t fmode; 11177 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11178 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11179 11180 switch (name) { 11181 case IPV6_JOIN_GROUP: 11182 mcast_opt = B_FALSE; 11183 /* FALLTHRU */ 11184 case MCAST_JOIN_GROUP: 11185 fmode = MODE_IS_EXCLUDE; 11186 optfn = ip_opt_add_group_v6; 11187 break; 11188 11189 case IPV6_LEAVE_GROUP: 11190 mcast_opt = B_FALSE; 11191 /* FALLTHRU */ 11192 case MCAST_LEAVE_GROUP: 11193 fmode = MODE_IS_INCLUDE; 11194 optfn = ip_opt_delete_group_v6; 11195 break; 11196 } 11197 11198 if (mcast_opt) { 11199 struct sockaddr_in *sin; 11200 struct sockaddr_in6 *sin6; 11201 greqp = (struct group_req *)i1; 11202 if (greqp->gr_group.ss_family == AF_INET) { 11203 sin = (struct sockaddr_in *) 11204 &(greqp->gr_group); 11205 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11206 &groupv6); 11207 } else { 11208 sin6 = (struct sockaddr_in6 *) 11209 &(greqp->gr_group); 11210 groupv6 = sin6->sin6_addr; 11211 } 11212 ifindex = greqp->gr_interface; 11213 } else { 11214 ip_mreqp = (struct ipv6_mreq *)i1; 11215 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11216 ifindex = ip_mreqp->ipv6mr_interface; 11217 } 11218 /* 11219 * In the multirouting case, we need to replicate 11220 * the request on all interfaces that will take part 11221 * in replication. We do so because multirouting is 11222 * reflective, thus we will probably receive multi- 11223 * casts on those interfaces. 11224 * The ip_multirt_apply_membership_v6() succeeds if 11225 * the operation succeeds on at least one interface. 11226 */ 11227 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11228 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11229 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11230 if (ire != NULL) { 11231 if (ire->ire_flags & RTF_MULTIRT) { 11232 error = ip_multirt_apply_membership_v6( 11233 optfn, ire, connp, checkonly, 11234 &groupv6, fmode, &ipv6_all_zeros, 11235 first_mp); 11236 done = B_TRUE; 11237 } 11238 ire_refrele(ire); 11239 } 11240 if (!done) { 11241 error = optfn(connp, checkonly, &groupv6, 11242 ifindex, fmode, &ipv6_all_zeros, first_mp); 11243 } 11244 if (error) { 11245 /* 11246 * EINPROGRESS is a soft error, needs retry 11247 * so don't make *outlenp zero. 11248 */ 11249 if (error != EINPROGRESS) 11250 *outlenp = 0; 11251 return (error); 11252 } 11253 /* OK return - copy input buffer into output buffer */ 11254 if (invalp != outvalp) { 11255 /* don't trust bcopy for identical src/dst */ 11256 bcopy(invalp, outvalp, inlen); 11257 } 11258 *outlenp = inlen; 11259 return (0); 11260 } 11261 case MCAST_BLOCK_SOURCE: 11262 case MCAST_UNBLOCK_SOURCE: 11263 case MCAST_JOIN_SOURCE_GROUP: 11264 case MCAST_LEAVE_SOURCE_GROUP: { 11265 struct group_source_req *gsreqp; 11266 in6_addr_t v6grp, v6src; 11267 uint32_t ifindex; 11268 mcast_record_t fmode; 11269 ire_t *ire; 11270 boolean_t done = B_FALSE; 11271 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11272 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11273 11274 switch (name) { 11275 case MCAST_BLOCK_SOURCE: 11276 fmode = MODE_IS_EXCLUDE; 11277 optfn = ip_opt_add_group_v6; 11278 break; 11279 case MCAST_UNBLOCK_SOURCE: 11280 fmode = MODE_IS_EXCLUDE; 11281 optfn = ip_opt_delete_group_v6; 11282 break; 11283 case MCAST_JOIN_SOURCE_GROUP: 11284 fmode = MODE_IS_INCLUDE; 11285 optfn = ip_opt_add_group_v6; 11286 break; 11287 case MCAST_LEAVE_SOURCE_GROUP: 11288 fmode = MODE_IS_INCLUDE; 11289 optfn = ip_opt_delete_group_v6; 11290 break; 11291 } 11292 11293 gsreqp = (struct group_source_req *)i1; 11294 ifindex = gsreqp->gsr_interface; 11295 if (gsreqp->gsr_group.ss_family == AF_INET) { 11296 struct sockaddr_in *s; 11297 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11298 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11299 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11300 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11301 } else { 11302 struct sockaddr_in6 *s6; 11303 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11304 v6grp = s6->sin6_addr; 11305 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11306 v6src = s6->sin6_addr; 11307 } 11308 11309 /* 11310 * In the multirouting case, we need to replicate 11311 * the request as noted in the mcast cases above. 11312 */ 11313 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11314 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11315 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11316 if (ire != NULL) { 11317 if (ire->ire_flags & RTF_MULTIRT) { 11318 error = ip_multirt_apply_membership_v6( 11319 optfn, ire, connp, checkonly, 11320 &v6grp, fmode, &v6src, first_mp); 11321 done = B_TRUE; 11322 } 11323 ire_refrele(ire); 11324 } 11325 if (!done) { 11326 error = optfn(connp, checkonly, &v6grp, 11327 ifindex, fmode, &v6src, first_mp); 11328 } 11329 if (error != 0) { 11330 /* 11331 * EINPROGRESS is a soft error, needs retry 11332 * so don't make *outlenp zero. 11333 */ 11334 if (error != EINPROGRESS) 11335 *outlenp = 0; 11336 return (error); 11337 } 11338 /* OK return - copy input buffer into output buffer */ 11339 if (invalp != outvalp) { 11340 bcopy(invalp, outvalp, inlen); 11341 } 11342 *outlenp = inlen; 11343 return (0); 11344 } 11345 case IPV6_UNICAST_HOPS: 11346 /* Recorded in transport above IP */ 11347 break; /* goto sizeof (int) option return */ 11348 case IPV6_UNSPEC_SRC: 11349 /* Allow sending with a zero source address */ 11350 if (!checkonly) { 11351 mutex_enter(&connp->conn_lock); 11352 connp->conn_unspec_src = *i1 ? 1 : 0; 11353 mutex_exit(&connp->conn_lock); 11354 } 11355 break; /* goto sizeof (int) option return */ 11356 case IPV6_RECVPKTINFO: 11357 if (!checkonly) { 11358 mutex_enter(&connp->conn_lock); 11359 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11360 mutex_exit(&connp->conn_lock); 11361 } 11362 break; /* goto sizeof (int) option return */ 11363 case IPV6_RECVTCLASS: 11364 if (!checkonly) { 11365 if (*i1 < 0 || *i1 > 1) { 11366 return (EINVAL); 11367 } 11368 mutex_enter(&connp->conn_lock); 11369 connp->conn_ipv6_recvtclass = *i1; 11370 mutex_exit(&connp->conn_lock); 11371 } 11372 break; 11373 case IPV6_RECVPATHMTU: 11374 if (!checkonly) { 11375 if (*i1 < 0 || *i1 > 1) { 11376 return (EINVAL); 11377 } 11378 mutex_enter(&connp->conn_lock); 11379 connp->conn_ipv6_recvpathmtu = *i1; 11380 mutex_exit(&connp->conn_lock); 11381 } 11382 break; 11383 case IPV6_RECVHOPLIMIT: 11384 if (!checkonly) { 11385 mutex_enter(&connp->conn_lock); 11386 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11387 mutex_exit(&connp->conn_lock); 11388 } 11389 break; /* goto sizeof (int) option return */ 11390 case IPV6_RECVHOPOPTS: 11391 if (!checkonly) { 11392 mutex_enter(&connp->conn_lock); 11393 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11394 mutex_exit(&connp->conn_lock); 11395 } 11396 break; /* goto sizeof (int) option return */ 11397 case IPV6_RECVDSTOPTS: 11398 if (!checkonly) { 11399 mutex_enter(&connp->conn_lock); 11400 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11401 mutex_exit(&connp->conn_lock); 11402 } 11403 break; /* goto sizeof (int) option return */ 11404 case IPV6_RECVRTHDR: 11405 if (!checkonly) { 11406 mutex_enter(&connp->conn_lock); 11407 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11408 mutex_exit(&connp->conn_lock); 11409 } 11410 break; /* goto sizeof (int) option return */ 11411 case IPV6_RECVRTHDRDSTOPTS: 11412 if (!checkonly) { 11413 mutex_enter(&connp->conn_lock); 11414 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11415 mutex_exit(&connp->conn_lock); 11416 } 11417 break; /* goto sizeof (int) option return */ 11418 case IPV6_PKTINFO: 11419 if (inlen == 0) 11420 return (-EINVAL); /* clearing option */ 11421 error = ip6_set_pktinfo(cr, connp, 11422 (struct in6_pktinfo *)invalp, first_mp); 11423 if (error != 0) 11424 *outlenp = 0; 11425 else 11426 *outlenp = inlen; 11427 return (error); 11428 case IPV6_NEXTHOP: { 11429 struct sockaddr_in6 *sin6; 11430 11431 /* Verify that the nexthop is reachable */ 11432 if (inlen == 0) 11433 return (-EINVAL); /* clearing option */ 11434 11435 sin6 = (struct sockaddr_in6 *)invalp; 11436 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11437 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11438 NULL, MATCH_IRE_DEFAULT, ipst); 11439 11440 if (ire == NULL) { 11441 *outlenp = 0; 11442 return (EHOSTUNREACH); 11443 } 11444 ire_refrele(ire); 11445 return (-EINVAL); 11446 } 11447 case IPV6_SEC_OPT: 11448 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11449 if (error != 0) { 11450 *outlenp = 0; 11451 return (error); 11452 } 11453 break; 11454 case IPV6_SRC_PREFERENCES: { 11455 /* 11456 * This is implemented strictly in the ip module 11457 * (here and in tcp_opt_*() to accomodate tcp 11458 * sockets). Modules above ip pass this option 11459 * down here since ip is the only one that needs to 11460 * be aware of source address preferences. 11461 * 11462 * This socket option only affects connected 11463 * sockets that haven't already bound to a specific 11464 * IPv6 address. In other words, sockets that 11465 * don't call bind() with an address other than the 11466 * unspecified address and that call connect(). 11467 * ip_bind_connected_v6() passes these preferences 11468 * to the ipif_select_source_v6() function. 11469 */ 11470 if (inlen != sizeof (uint32_t)) 11471 return (EINVAL); 11472 error = ip6_set_src_preferences(connp, 11473 *(uint32_t *)invalp); 11474 if (error != 0) { 11475 *outlenp = 0; 11476 return (error); 11477 } else { 11478 *outlenp = sizeof (uint32_t); 11479 } 11480 break; 11481 } 11482 case IPV6_V6ONLY: 11483 if (*i1 < 0 || *i1 > 1) { 11484 return (EINVAL); 11485 } 11486 mutex_enter(&connp->conn_lock); 11487 connp->conn_ipv6_v6only = *i1; 11488 mutex_exit(&connp->conn_lock); 11489 break; 11490 default: 11491 return (-EINVAL); 11492 } 11493 break; 11494 default: 11495 /* 11496 * "soft" error (negative) 11497 * option not handled at this level 11498 * Note: Do not modify *outlenp 11499 */ 11500 return (-EINVAL); 11501 } 11502 /* 11503 * Common case of return from an option that is sizeof (int) 11504 */ 11505 *(int *)outvalp = *i1; 11506 *outlenp = sizeof (int); 11507 return (0); 11508 } 11509 11510 /* 11511 * This routine gets default values of certain options whose default 11512 * values are maintained by protocol specific code 11513 */ 11514 /* ARGSUSED */ 11515 int 11516 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11517 { 11518 int *i1 = (int *)ptr; 11519 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11520 11521 switch (level) { 11522 case IPPROTO_IP: 11523 switch (name) { 11524 case IP_MULTICAST_TTL: 11525 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11526 return (sizeof (uchar_t)); 11527 case IP_MULTICAST_LOOP: 11528 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11529 return (sizeof (uchar_t)); 11530 default: 11531 return (-1); 11532 } 11533 case IPPROTO_IPV6: 11534 switch (name) { 11535 case IPV6_UNICAST_HOPS: 11536 *i1 = ipst->ips_ipv6_def_hops; 11537 return (sizeof (int)); 11538 case IPV6_MULTICAST_HOPS: 11539 *i1 = IP_DEFAULT_MULTICAST_TTL; 11540 return (sizeof (int)); 11541 case IPV6_MULTICAST_LOOP: 11542 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11543 return (sizeof (int)); 11544 case IPV6_V6ONLY: 11545 *i1 = 1; 11546 return (sizeof (int)); 11547 default: 11548 return (-1); 11549 } 11550 default: 11551 return (-1); 11552 } 11553 /* NOTREACHED */ 11554 } 11555 11556 /* 11557 * Given a destination address and a pointer to where to put the information 11558 * this routine fills in the mtuinfo. 11559 */ 11560 int 11561 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11562 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11563 { 11564 ire_t *ire; 11565 ip_stack_t *ipst = ns->netstack_ip; 11566 11567 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11568 return (-1); 11569 11570 bzero(mtuinfo, sizeof (*mtuinfo)); 11571 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11572 mtuinfo->ip6m_addr.sin6_port = port; 11573 mtuinfo->ip6m_addr.sin6_addr = *in6; 11574 11575 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11576 if (ire != NULL) { 11577 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11578 ire_refrele(ire); 11579 } else { 11580 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11581 } 11582 return (sizeof (struct ip6_mtuinfo)); 11583 } 11584 11585 /* 11586 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11587 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11588 * isn't. This doesn't matter as the error checking is done properly for the 11589 * other MRT options coming in through ip_opt_set. 11590 */ 11591 int 11592 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11593 { 11594 conn_t *connp = Q_TO_CONN(q); 11595 ipsec_req_t *req = (ipsec_req_t *)ptr; 11596 11597 switch (level) { 11598 case IPPROTO_IP: 11599 switch (name) { 11600 case MRT_VERSION: 11601 case MRT_ASSERT: 11602 (void) ip_mrouter_get(name, q, ptr); 11603 return (sizeof (int)); 11604 case IP_SEC_OPT: 11605 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11606 case IP_NEXTHOP: 11607 if (connp->conn_nexthop_set) { 11608 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11609 return (sizeof (ipaddr_t)); 11610 } else 11611 return (0); 11612 case IP_RECVPKTINFO: 11613 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11614 return (sizeof (int)); 11615 default: 11616 break; 11617 } 11618 break; 11619 case IPPROTO_IPV6: 11620 switch (name) { 11621 case IPV6_SEC_OPT: 11622 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11623 case IPV6_SRC_PREFERENCES: { 11624 return (ip6_get_src_preferences(connp, 11625 (uint32_t *)ptr)); 11626 } 11627 case IPV6_V6ONLY: 11628 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11629 return (sizeof (int)); 11630 case IPV6_PATHMTU: 11631 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11632 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11633 default: 11634 break; 11635 } 11636 break; 11637 default: 11638 break; 11639 } 11640 return (-1); 11641 } 11642 11643 /* Named Dispatch routine to get a current value out of our parameter table. */ 11644 /* ARGSUSED */ 11645 static int 11646 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11647 { 11648 ipparam_t *ippa = (ipparam_t *)cp; 11649 11650 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11651 return (0); 11652 } 11653 11654 /* ARGSUSED */ 11655 static int 11656 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11657 { 11658 11659 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11660 return (0); 11661 } 11662 11663 /* 11664 * Set ip{,6}_forwarding values. This means walking through all of the 11665 * ill's and toggling their forwarding values. 11666 */ 11667 /* ARGSUSED */ 11668 static int 11669 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11670 { 11671 long new_value; 11672 int *forwarding_value = (int *)cp; 11673 ill_t *ill; 11674 boolean_t isv6; 11675 ill_walk_context_t ctx; 11676 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11677 11678 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11679 11680 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11681 new_value < 0 || new_value > 1) { 11682 return (EINVAL); 11683 } 11684 11685 *forwarding_value = new_value; 11686 11687 /* 11688 * Regardless of the current value of ip_forwarding, set all per-ill 11689 * values of ip_forwarding to the value being set. 11690 * 11691 * Bring all the ill's up to date with the new global value. 11692 */ 11693 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11694 11695 if (isv6) 11696 ill = ILL_START_WALK_V6(&ctx, ipst); 11697 else 11698 ill = ILL_START_WALK_V4(&ctx, ipst); 11699 11700 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11701 (void) ill_forward_set(ill, new_value != 0); 11702 11703 rw_exit(&ipst->ips_ill_g_lock); 11704 return (0); 11705 } 11706 11707 /* 11708 * Walk through the param array specified registering each element with the 11709 * Named Dispatch handler. This is called only during init. So it is ok 11710 * not to acquire any locks 11711 */ 11712 static boolean_t 11713 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11714 ipndp_t *ipnd, size_t ipnd_cnt) 11715 { 11716 for (; ippa_cnt-- > 0; ippa++) { 11717 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11718 if (!nd_load(ndp, ippa->ip_param_name, 11719 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11720 nd_free(ndp); 11721 return (B_FALSE); 11722 } 11723 } 11724 } 11725 11726 for (; ipnd_cnt-- > 0; ipnd++) { 11727 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11728 if (!nd_load(ndp, ipnd->ip_ndp_name, 11729 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11730 ipnd->ip_ndp_data)) { 11731 nd_free(ndp); 11732 return (B_FALSE); 11733 } 11734 } 11735 } 11736 11737 return (B_TRUE); 11738 } 11739 11740 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11741 /* ARGSUSED */ 11742 static int 11743 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11744 { 11745 long new_value; 11746 ipparam_t *ippa = (ipparam_t *)cp; 11747 11748 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11749 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11750 return (EINVAL); 11751 } 11752 ippa->ip_param_value = new_value; 11753 return (0); 11754 } 11755 11756 /* 11757 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11758 * When an ipf is passed here for the first time, if 11759 * we already have in-order fragments on the queue, we convert from the fast- 11760 * path reassembly scheme to the hard-case scheme. From then on, additional 11761 * fragments are reassembled here. We keep track of the start and end offsets 11762 * of each piece, and the number of holes in the chain. When the hole count 11763 * goes to zero, we are done! 11764 * 11765 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11766 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11767 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11768 * after the call to ip_reassemble(). 11769 */ 11770 int 11771 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11772 size_t msg_len) 11773 { 11774 uint_t end; 11775 mblk_t *next_mp; 11776 mblk_t *mp1; 11777 uint_t offset; 11778 boolean_t incr_dups = B_TRUE; 11779 boolean_t offset_zero_seen = B_FALSE; 11780 boolean_t pkt_boundary_checked = B_FALSE; 11781 11782 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11783 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11784 11785 /* Add in byte count */ 11786 ipf->ipf_count += msg_len; 11787 if (ipf->ipf_end) { 11788 /* 11789 * We were part way through in-order reassembly, but now there 11790 * is a hole. We walk through messages already queued, and 11791 * mark them for hard case reassembly. We know that up till 11792 * now they were in order starting from offset zero. 11793 */ 11794 offset = 0; 11795 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11796 IP_REASS_SET_START(mp1, offset); 11797 if (offset == 0) { 11798 ASSERT(ipf->ipf_nf_hdr_len != 0); 11799 offset = -ipf->ipf_nf_hdr_len; 11800 } 11801 offset += mp1->b_wptr - mp1->b_rptr; 11802 IP_REASS_SET_END(mp1, offset); 11803 } 11804 /* One hole at the end. */ 11805 ipf->ipf_hole_cnt = 1; 11806 /* Brand it as a hard case, forever. */ 11807 ipf->ipf_end = 0; 11808 } 11809 /* Walk through all the new pieces. */ 11810 do { 11811 end = start + (mp->b_wptr - mp->b_rptr); 11812 /* 11813 * If start is 0, decrease 'end' only for the first mblk of 11814 * the fragment. Otherwise 'end' can get wrong value in the 11815 * second pass of the loop if first mblk is exactly the 11816 * size of ipf_nf_hdr_len. 11817 */ 11818 if (start == 0 && !offset_zero_seen) { 11819 /* First segment */ 11820 ASSERT(ipf->ipf_nf_hdr_len != 0); 11821 end -= ipf->ipf_nf_hdr_len; 11822 offset_zero_seen = B_TRUE; 11823 } 11824 next_mp = mp->b_cont; 11825 /* 11826 * We are checking to see if there is any interesing data 11827 * to process. If there isn't and the mblk isn't the 11828 * one which carries the unfragmentable header then we 11829 * drop it. It's possible to have just the unfragmentable 11830 * header come through without any data. That needs to be 11831 * saved. 11832 * 11833 * If the assert at the top of this function holds then the 11834 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11835 * is infrequently traveled enough that the test is left in 11836 * to protect against future code changes which break that 11837 * invariant. 11838 */ 11839 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11840 /* Empty. Blast it. */ 11841 IP_REASS_SET_START(mp, 0); 11842 IP_REASS_SET_END(mp, 0); 11843 /* 11844 * If the ipf points to the mblk we are about to free, 11845 * update ipf to point to the next mblk (or NULL 11846 * if none). 11847 */ 11848 if (ipf->ipf_mp->b_cont == mp) 11849 ipf->ipf_mp->b_cont = next_mp; 11850 freeb(mp); 11851 continue; 11852 } 11853 mp->b_cont = NULL; 11854 IP_REASS_SET_START(mp, start); 11855 IP_REASS_SET_END(mp, end); 11856 if (!ipf->ipf_tail_mp) { 11857 ipf->ipf_tail_mp = mp; 11858 ipf->ipf_mp->b_cont = mp; 11859 if (start == 0 || !more) { 11860 ipf->ipf_hole_cnt = 1; 11861 /* 11862 * if the first fragment comes in more than one 11863 * mblk, this loop will be executed for each 11864 * mblk. Need to adjust hole count so exiting 11865 * this routine will leave hole count at 1. 11866 */ 11867 if (next_mp) 11868 ipf->ipf_hole_cnt++; 11869 } else 11870 ipf->ipf_hole_cnt = 2; 11871 continue; 11872 } else if (ipf->ipf_last_frag_seen && !more && 11873 !pkt_boundary_checked) { 11874 /* 11875 * We check datagram boundary only if this fragment 11876 * claims to be the last fragment and we have seen a 11877 * last fragment in the past too. We do this only 11878 * once for a given fragment. 11879 * 11880 * start cannot be 0 here as fragments with start=0 11881 * and MF=0 gets handled as a complete packet. These 11882 * fragments should not reach here. 11883 */ 11884 11885 if (start + msgdsize(mp) != 11886 IP_REASS_END(ipf->ipf_tail_mp)) { 11887 /* 11888 * We have two fragments both of which claim 11889 * to be the last fragment but gives conflicting 11890 * information about the whole datagram size. 11891 * Something fishy is going on. Drop the 11892 * fragment and free up the reassembly list. 11893 */ 11894 return (IP_REASS_FAILED); 11895 } 11896 11897 /* 11898 * We shouldn't come to this code block again for this 11899 * particular fragment. 11900 */ 11901 pkt_boundary_checked = B_TRUE; 11902 } 11903 11904 /* New stuff at or beyond tail? */ 11905 offset = IP_REASS_END(ipf->ipf_tail_mp); 11906 if (start >= offset) { 11907 if (ipf->ipf_last_frag_seen) { 11908 /* current fragment is beyond last fragment */ 11909 return (IP_REASS_FAILED); 11910 } 11911 /* Link it on end. */ 11912 ipf->ipf_tail_mp->b_cont = mp; 11913 ipf->ipf_tail_mp = mp; 11914 if (more) { 11915 if (start != offset) 11916 ipf->ipf_hole_cnt++; 11917 } else if (start == offset && next_mp == NULL) 11918 ipf->ipf_hole_cnt--; 11919 continue; 11920 } 11921 mp1 = ipf->ipf_mp->b_cont; 11922 offset = IP_REASS_START(mp1); 11923 /* New stuff at the front? */ 11924 if (start < offset) { 11925 if (start == 0) { 11926 if (end >= offset) { 11927 /* Nailed the hole at the begining. */ 11928 ipf->ipf_hole_cnt--; 11929 } 11930 } else if (end < offset) { 11931 /* 11932 * A hole, stuff, and a hole where there used 11933 * to be just a hole. 11934 */ 11935 ipf->ipf_hole_cnt++; 11936 } 11937 mp->b_cont = mp1; 11938 /* Check for overlap. */ 11939 while (end > offset) { 11940 if (end < IP_REASS_END(mp1)) { 11941 mp->b_wptr -= end - offset; 11942 IP_REASS_SET_END(mp, offset); 11943 BUMP_MIB(ill->ill_ip_mib, 11944 ipIfStatsReasmPartDups); 11945 break; 11946 } 11947 /* Did we cover another hole? */ 11948 if ((mp1->b_cont && 11949 IP_REASS_END(mp1) != 11950 IP_REASS_START(mp1->b_cont) && 11951 end >= IP_REASS_START(mp1->b_cont)) || 11952 (!ipf->ipf_last_frag_seen && !more)) { 11953 ipf->ipf_hole_cnt--; 11954 } 11955 /* Clip out mp1. */ 11956 if ((mp->b_cont = mp1->b_cont) == NULL) { 11957 /* 11958 * After clipping out mp1, this guy 11959 * is now hanging off the end. 11960 */ 11961 ipf->ipf_tail_mp = mp; 11962 } 11963 IP_REASS_SET_START(mp1, 0); 11964 IP_REASS_SET_END(mp1, 0); 11965 /* Subtract byte count */ 11966 ipf->ipf_count -= mp1->b_datap->db_lim - 11967 mp1->b_datap->db_base; 11968 freeb(mp1); 11969 BUMP_MIB(ill->ill_ip_mib, 11970 ipIfStatsReasmPartDups); 11971 mp1 = mp->b_cont; 11972 if (!mp1) 11973 break; 11974 offset = IP_REASS_START(mp1); 11975 } 11976 ipf->ipf_mp->b_cont = mp; 11977 continue; 11978 } 11979 /* 11980 * The new piece starts somewhere between the start of the head 11981 * and before the end of the tail. 11982 */ 11983 for (; mp1; mp1 = mp1->b_cont) { 11984 offset = IP_REASS_END(mp1); 11985 if (start < offset) { 11986 if (end <= offset) { 11987 /* Nothing new. */ 11988 IP_REASS_SET_START(mp, 0); 11989 IP_REASS_SET_END(mp, 0); 11990 /* Subtract byte count */ 11991 ipf->ipf_count -= mp->b_datap->db_lim - 11992 mp->b_datap->db_base; 11993 if (incr_dups) { 11994 ipf->ipf_num_dups++; 11995 incr_dups = B_FALSE; 11996 } 11997 freeb(mp); 11998 BUMP_MIB(ill->ill_ip_mib, 11999 ipIfStatsReasmDuplicates); 12000 break; 12001 } 12002 /* 12003 * Trim redundant stuff off beginning of new 12004 * piece. 12005 */ 12006 IP_REASS_SET_START(mp, offset); 12007 mp->b_rptr += offset - start; 12008 BUMP_MIB(ill->ill_ip_mib, 12009 ipIfStatsReasmPartDups); 12010 start = offset; 12011 if (!mp1->b_cont) { 12012 /* 12013 * After trimming, this guy is now 12014 * hanging off the end. 12015 */ 12016 mp1->b_cont = mp; 12017 ipf->ipf_tail_mp = mp; 12018 if (!more) { 12019 ipf->ipf_hole_cnt--; 12020 } 12021 break; 12022 } 12023 } 12024 if (start >= IP_REASS_START(mp1->b_cont)) 12025 continue; 12026 /* Fill a hole */ 12027 if (start > offset) 12028 ipf->ipf_hole_cnt++; 12029 mp->b_cont = mp1->b_cont; 12030 mp1->b_cont = mp; 12031 mp1 = mp->b_cont; 12032 offset = IP_REASS_START(mp1); 12033 if (end >= offset) { 12034 ipf->ipf_hole_cnt--; 12035 /* Check for overlap. */ 12036 while (end > offset) { 12037 if (end < IP_REASS_END(mp1)) { 12038 mp->b_wptr -= end - offset; 12039 IP_REASS_SET_END(mp, offset); 12040 /* 12041 * TODO we might bump 12042 * this up twice if there is 12043 * overlap at both ends. 12044 */ 12045 BUMP_MIB(ill->ill_ip_mib, 12046 ipIfStatsReasmPartDups); 12047 break; 12048 } 12049 /* Did we cover another hole? */ 12050 if ((mp1->b_cont && 12051 IP_REASS_END(mp1) 12052 != IP_REASS_START(mp1->b_cont) && 12053 end >= 12054 IP_REASS_START(mp1->b_cont)) || 12055 (!ipf->ipf_last_frag_seen && 12056 !more)) { 12057 ipf->ipf_hole_cnt--; 12058 } 12059 /* Clip out mp1. */ 12060 if ((mp->b_cont = mp1->b_cont) == 12061 NULL) { 12062 /* 12063 * After clipping out mp1, 12064 * this guy is now hanging 12065 * off the end. 12066 */ 12067 ipf->ipf_tail_mp = mp; 12068 } 12069 IP_REASS_SET_START(mp1, 0); 12070 IP_REASS_SET_END(mp1, 0); 12071 /* Subtract byte count */ 12072 ipf->ipf_count -= 12073 mp1->b_datap->db_lim - 12074 mp1->b_datap->db_base; 12075 freeb(mp1); 12076 BUMP_MIB(ill->ill_ip_mib, 12077 ipIfStatsReasmPartDups); 12078 mp1 = mp->b_cont; 12079 if (!mp1) 12080 break; 12081 offset = IP_REASS_START(mp1); 12082 } 12083 } 12084 break; 12085 } 12086 } while (start = end, mp = next_mp); 12087 12088 /* Fragment just processed could be the last one. Remember this fact */ 12089 if (!more) 12090 ipf->ipf_last_frag_seen = B_TRUE; 12091 12092 /* Still got holes? */ 12093 if (ipf->ipf_hole_cnt) 12094 return (IP_REASS_PARTIAL); 12095 /* Clean up overloaded fields to avoid upstream disasters. */ 12096 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12097 IP_REASS_SET_START(mp1, 0); 12098 IP_REASS_SET_END(mp1, 0); 12099 } 12100 return (IP_REASS_COMPLETE); 12101 } 12102 12103 /* 12104 * ipsec processing for the fast path, used for input UDP Packets 12105 * Returns true if ready for passup to UDP. 12106 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12107 * was an ESP-in-UDP packet, etc.). 12108 */ 12109 static boolean_t 12110 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12111 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12112 { 12113 uint32_t ill_index; 12114 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12115 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12116 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12117 udp_t *udp = connp->conn_udp; 12118 12119 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12120 /* The ill_index of the incoming ILL */ 12121 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12122 12123 /* pass packet up to the transport */ 12124 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12125 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12126 NULL, mctl_present); 12127 if (*first_mpp == NULL) { 12128 return (B_FALSE); 12129 } 12130 } 12131 12132 /* Initiate IPPF processing for fastpath UDP */ 12133 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12134 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12135 if (*mpp == NULL) { 12136 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12137 "deferred/dropped during IPPF processing\n")); 12138 return (B_FALSE); 12139 } 12140 } 12141 /* 12142 * Remove 0-spi if it's 0, or move everything behind 12143 * the UDP header over it and forward to ESP via 12144 * ip_proto_input(). 12145 */ 12146 if (udp->udp_nat_t_endpoint) { 12147 if (mctl_present) { 12148 /* mctl_present *shouldn't* happen. */ 12149 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12150 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12151 &ipss->ipsec_dropper); 12152 *first_mpp = NULL; 12153 return (B_FALSE); 12154 } 12155 12156 /* "ill" is "recv_ill" in actuality. */ 12157 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12158 return (B_FALSE); 12159 12160 /* Else continue like a normal UDP packet. */ 12161 } 12162 12163 /* 12164 * We make the checks as below since we are in the fast path 12165 * and want to minimize the number of checks if the IP_RECVIF and/or 12166 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12167 */ 12168 if (connp->conn_recvif || connp->conn_recvslla || 12169 connp->conn_ip_recvpktinfo) { 12170 if (connp->conn_recvif) { 12171 in_flags = IPF_RECVIF; 12172 } 12173 /* 12174 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12175 * so the flag passed to ip_add_info is based on IP version 12176 * of connp. 12177 */ 12178 if (connp->conn_ip_recvpktinfo) { 12179 if (connp->conn_af_isv6) { 12180 /* 12181 * V6 only needs index 12182 */ 12183 in_flags |= IPF_RECVIF; 12184 } else { 12185 /* 12186 * V4 needs index + matching address. 12187 */ 12188 in_flags |= IPF_RECVADDR; 12189 } 12190 } 12191 if (connp->conn_recvslla) { 12192 in_flags |= IPF_RECVSLLA; 12193 } 12194 /* 12195 * since in_flags are being set ill will be 12196 * referenced in ip_add_info, so it better not 12197 * be NULL. 12198 */ 12199 /* 12200 * the actual data will be contained in b_cont 12201 * upon successful return of the following call. 12202 * If the call fails then the original mblk is 12203 * returned. 12204 */ 12205 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12206 ipst); 12207 } 12208 12209 return (B_TRUE); 12210 } 12211 12212 /* 12213 * Fragmentation reassembly. Each ILL has a hash table for 12214 * queuing packets undergoing reassembly for all IPIFs 12215 * associated with the ILL. The hash is based on the packet 12216 * IP ident field. The ILL frag hash table was allocated 12217 * as a timer block at the time the ILL was created. Whenever 12218 * there is anything on the reassembly queue, the timer will 12219 * be running. Returns B_TRUE if successful else B_FALSE; 12220 * frees mp on failure. 12221 */ 12222 static boolean_t 12223 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12224 uint32_t *cksum_val, uint16_t *cksum_flags) 12225 { 12226 uint32_t frag_offset_flags; 12227 ill_t *ill = (ill_t *)q->q_ptr; 12228 mblk_t *mp = *mpp; 12229 mblk_t *t_mp; 12230 ipaddr_t dst; 12231 uint8_t proto = ipha->ipha_protocol; 12232 uint32_t sum_val; 12233 uint16_t sum_flags; 12234 ipf_t *ipf; 12235 ipf_t **ipfp; 12236 ipfb_t *ipfb; 12237 uint16_t ident; 12238 uint32_t offset; 12239 ipaddr_t src; 12240 uint_t hdr_length; 12241 uint32_t end; 12242 mblk_t *mp1; 12243 mblk_t *tail_mp; 12244 size_t count; 12245 size_t msg_len; 12246 uint8_t ecn_info = 0; 12247 uint32_t packet_size; 12248 boolean_t pruned = B_FALSE; 12249 ip_stack_t *ipst = ill->ill_ipst; 12250 12251 if (cksum_val != NULL) 12252 *cksum_val = 0; 12253 if (cksum_flags != NULL) 12254 *cksum_flags = 0; 12255 12256 /* 12257 * Drop the fragmented as early as possible, if 12258 * we don't have resource(s) to re-assemble. 12259 */ 12260 if (ipst->ips_ip_reass_queue_bytes == 0) { 12261 freemsg(mp); 12262 return (B_FALSE); 12263 } 12264 12265 /* Check for fragmentation offset; return if there's none */ 12266 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12267 (IPH_MF | IPH_OFFSET)) == 0) 12268 return (B_TRUE); 12269 12270 /* 12271 * We utilize hardware computed checksum info only for UDP since 12272 * IP fragmentation is a normal occurence for the protocol. In 12273 * addition, checksum offload support for IP fragments carrying 12274 * UDP payload is commonly implemented across network adapters. 12275 */ 12276 ASSERT(ill != NULL); 12277 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12278 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12279 mblk_t *mp1 = mp->b_cont; 12280 int32_t len; 12281 12282 /* Record checksum information from the packet */ 12283 sum_val = (uint32_t)DB_CKSUM16(mp); 12284 sum_flags = DB_CKSUMFLAGS(mp); 12285 12286 /* IP payload offset from beginning of mblk */ 12287 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12288 12289 if ((sum_flags & HCK_PARTIALCKSUM) && 12290 (mp1 == NULL || mp1->b_cont == NULL) && 12291 offset >= DB_CKSUMSTART(mp) && 12292 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12293 uint32_t adj; 12294 /* 12295 * Partial checksum has been calculated by hardware 12296 * and attached to the packet; in addition, any 12297 * prepended extraneous data is even byte aligned. 12298 * If any such data exists, we adjust the checksum; 12299 * this would also handle any postpended data. 12300 */ 12301 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12302 mp, mp1, len, adj); 12303 12304 /* One's complement subtract extraneous checksum */ 12305 if (adj >= sum_val) 12306 sum_val = ~(adj - sum_val) & 0xFFFF; 12307 else 12308 sum_val -= adj; 12309 } 12310 } else { 12311 sum_val = 0; 12312 sum_flags = 0; 12313 } 12314 12315 /* Clear hardware checksumming flag */ 12316 DB_CKSUMFLAGS(mp) = 0; 12317 12318 ident = ipha->ipha_ident; 12319 offset = (frag_offset_flags << 3) & 0xFFFF; 12320 src = ipha->ipha_src; 12321 dst = ipha->ipha_dst; 12322 hdr_length = IPH_HDR_LENGTH(ipha); 12323 end = ntohs(ipha->ipha_length) - hdr_length; 12324 12325 /* If end == 0 then we have a packet with no data, so just free it */ 12326 if (end == 0) { 12327 freemsg(mp); 12328 return (B_FALSE); 12329 } 12330 12331 /* Record the ECN field info. */ 12332 ecn_info = (ipha->ipha_type_of_service & 0x3); 12333 if (offset != 0) { 12334 /* 12335 * If this isn't the first piece, strip the header, and 12336 * add the offset to the end value. 12337 */ 12338 mp->b_rptr += hdr_length; 12339 end += offset; 12340 } 12341 12342 msg_len = MBLKSIZE(mp); 12343 tail_mp = mp; 12344 while (tail_mp->b_cont != NULL) { 12345 tail_mp = tail_mp->b_cont; 12346 msg_len += MBLKSIZE(tail_mp); 12347 } 12348 12349 /* If the reassembly list for this ILL will get too big, prune it */ 12350 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12351 ipst->ips_ip_reass_queue_bytes) { 12352 ill_frag_prune(ill, 12353 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12354 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12355 pruned = B_TRUE; 12356 } 12357 12358 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12359 mutex_enter(&ipfb->ipfb_lock); 12360 12361 ipfp = &ipfb->ipfb_ipf; 12362 /* Try to find an existing fragment queue for this packet. */ 12363 for (;;) { 12364 ipf = ipfp[0]; 12365 if (ipf != NULL) { 12366 /* 12367 * It has to match on ident and src/dst address. 12368 */ 12369 if (ipf->ipf_ident == ident && 12370 ipf->ipf_src == src && 12371 ipf->ipf_dst == dst && 12372 ipf->ipf_protocol == proto) { 12373 /* 12374 * If we have received too many 12375 * duplicate fragments for this packet 12376 * free it. 12377 */ 12378 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12379 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12380 freemsg(mp); 12381 mutex_exit(&ipfb->ipfb_lock); 12382 return (B_FALSE); 12383 } 12384 /* Found it. */ 12385 break; 12386 } 12387 ipfp = &ipf->ipf_hash_next; 12388 continue; 12389 } 12390 12391 /* 12392 * If we pruned the list, do we want to store this new 12393 * fragment?. We apply an optimization here based on the 12394 * fact that most fragments will be received in order. 12395 * So if the offset of this incoming fragment is zero, 12396 * it is the first fragment of a new packet. We will 12397 * keep it. Otherwise drop the fragment, as we have 12398 * probably pruned the packet already (since the 12399 * packet cannot be found). 12400 */ 12401 if (pruned && offset != 0) { 12402 mutex_exit(&ipfb->ipfb_lock); 12403 freemsg(mp); 12404 return (B_FALSE); 12405 } 12406 12407 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12408 /* 12409 * Too many fragmented packets in this hash 12410 * bucket. Free the oldest. 12411 */ 12412 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12413 } 12414 12415 /* New guy. Allocate a frag message. */ 12416 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12417 if (mp1 == NULL) { 12418 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12419 freemsg(mp); 12420 reass_done: 12421 mutex_exit(&ipfb->ipfb_lock); 12422 return (B_FALSE); 12423 } 12424 12425 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12426 mp1->b_cont = mp; 12427 12428 /* Initialize the fragment header. */ 12429 ipf = (ipf_t *)mp1->b_rptr; 12430 ipf->ipf_mp = mp1; 12431 ipf->ipf_ptphn = ipfp; 12432 ipfp[0] = ipf; 12433 ipf->ipf_hash_next = NULL; 12434 ipf->ipf_ident = ident; 12435 ipf->ipf_protocol = proto; 12436 ipf->ipf_src = src; 12437 ipf->ipf_dst = dst; 12438 ipf->ipf_nf_hdr_len = 0; 12439 /* Record reassembly start time. */ 12440 ipf->ipf_timestamp = gethrestime_sec(); 12441 /* Record ipf generation and account for frag header */ 12442 ipf->ipf_gen = ill->ill_ipf_gen++; 12443 ipf->ipf_count = MBLKSIZE(mp1); 12444 ipf->ipf_last_frag_seen = B_FALSE; 12445 ipf->ipf_ecn = ecn_info; 12446 ipf->ipf_num_dups = 0; 12447 ipfb->ipfb_frag_pkts++; 12448 ipf->ipf_checksum = 0; 12449 ipf->ipf_checksum_flags = 0; 12450 12451 /* Store checksum value in fragment header */ 12452 if (sum_flags != 0) { 12453 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12454 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12455 ipf->ipf_checksum = sum_val; 12456 ipf->ipf_checksum_flags = sum_flags; 12457 } 12458 12459 /* 12460 * We handle reassembly two ways. In the easy case, 12461 * where all the fragments show up in order, we do 12462 * minimal bookkeeping, and just clip new pieces on 12463 * the end. If we ever see a hole, then we go off 12464 * to ip_reassemble which has to mark the pieces and 12465 * keep track of the number of holes, etc. Obviously, 12466 * the point of having both mechanisms is so we can 12467 * handle the easy case as efficiently as possible. 12468 */ 12469 if (offset == 0) { 12470 /* Easy case, in-order reassembly so far. */ 12471 ipf->ipf_count += msg_len; 12472 ipf->ipf_tail_mp = tail_mp; 12473 /* 12474 * Keep track of next expected offset in 12475 * ipf_end. 12476 */ 12477 ipf->ipf_end = end; 12478 ipf->ipf_nf_hdr_len = hdr_length; 12479 } else { 12480 /* Hard case, hole at the beginning. */ 12481 ipf->ipf_tail_mp = NULL; 12482 /* 12483 * ipf_end == 0 means that we have given up 12484 * on easy reassembly. 12485 */ 12486 ipf->ipf_end = 0; 12487 12488 /* Forget checksum offload from now on */ 12489 ipf->ipf_checksum_flags = 0; 12490 12491 /* 12492 * ipf_hole_cnt is set by ip_reassemble. 12493 * ipf_count is updated by ip_reassemble. 12494 * No need to check for return value here 12495 * as we don't expect reassembly to complete 12496 * or fail for the first fragment itself. 12497 */ 12498 (void) ip_reassemble(mp, ipf, 12499 (frag_offset_flags & IPH_OFFSET) << 3, 12500 (frag_offset_flags & IPH_MF), ill, msg_len); 12501 } 12502 /* Update per ipfb and ill byte counts */ 12503 ipfb->ipfb_count += ipf->ipf_count; 12504 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12505 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12506 /* If the frag timer wasn't already going, start it. */ 12507 mutex_enter(&ill->ill_lock); 12508 ill_frag_timer_start(ill); 12509 mutex_exit(&ill->ill_lock); 12510 goto reass_done; 12511 } 12512 12513 /* 12514 * If the packet's flag has changed (it could be coming up 12515 * from an interface different than the previous, therefore 12516 * possibly different checksum capability), then forget about 12517 * any stored checksum states. Otherwise add the value to 12518 * the existing one stored in the fragment header. 12519 */ 12520 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12521 sum_val += ipf->ipf_checksum; 12522 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12523 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12524 ipf->ipf_checksum = sum_val; 12525 } else if (ipf->ipf_checksum_flags != 0) { 12526 /* Forget checksum offload from now on */ 12527 ipf->ipf_checksum_flags = 0; 12528 } 12529 12530 /* 12531 * We have a new piece of a datagram which is already being 12532 * reassembled. Update the ECN info if all IP fragments 12533 * are ECN capable. If there is one which is not, clear 12534 * all the info. If there is at least one which has CE 12535 * code point, IP needs to report that up to transport. 12536 */ 12537 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12538 if (ecn_info == IPH_ECN_CE) 12539 ipf->ipf_ecn = IPH_ECN_CE; 12540 } else { 12541 ipf->ipf_ecn = IPH_ECN_NECT; 12542 } 12543 if (offset && ipf->ipf_end == offset) { 12544 /* The new fragment fits at the end */ 12545 ipf->ipf_tail_mp->b_cont = mp; 12546 /* Update the byte count */ 12547 ipf->ipf_count += msg_len; 12548 /* Update per ipfb and ill byte counts */ 12549 ipfb->ipfb_count += msg_len; 12550 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12551 atomic_add_32(&ill->ill_frag_count, msg_len); 12552 if (frag_offset_flags & IPH_MF) { 12553 /* More to come. */ 12554 ipf->ipf_end = end; 12555 ipf->ipf_tail_mp = tail_mp; 12556 goto reass_done; 12557 } 12558 } else { 12559 /* Go do the hard cases. */ 12560 int ret; 12561 12562 if (offset == 0) 12563 ipf->ipf_nf_hdr_len = hdr_length; 12564 12565 /* Save current byte count */ 12566 count = ipf->ipf_count; 12567 ret = ip_reassemble(mp, ipf, 12568 (frag_offset_flags & IPH_OFFSET) << 3, 12569 (frag_offset_flags & IPH_MF), ill, msg_len); 12570 /* Count of bytes added and subtracted (freeb()ed) */ 12571 count = ipf->ipf_count - count; 12572 if (count) { 12573 /* Update per ipfb and ill byte counts */ 12574 ipfb->ipfb_count += count; 12575 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12576 atomic_add_32(&ill->ill_frag_count, count); 12577 } 12578 if (ret == IP_REASS_PARTIAL) { 12579 goto reass_done; 12580 } else if (ret == IP_REASS_FAILED) { 12581 /* Reassembly failed. Free up all resources */ 12582 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12583 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12584 IP_REASS_SET_START(t_mp, 0); 12585 IP_REASS_SET_END(t_mp, 0); 12586 } 12587 freemsg(mp); 12588 goto reass_done; 12589 } 12590 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12591 } 12592 /* 12593 * We have completed reassembly. Unhook the frag header from 12594 * the reassembly list. 12595 * 12596 * Before we free the frag header, record the ECN info 12597 * to report back to the transport. 12598 */ 12599 ecn_info = ipf->ipf_ecn; 12600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12601 ipfp = ipf->ipf_ptphn; 12602 12603 /* We need to supply these to caller */ 12604 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12605 sum_val = ipf->ipf_checksum; 12606 else 12607 sum_val = 0; 12608 12609 mp1 = ipf->ipf_mp; 12610 count = ipf->ipf_count; 12611 ipf = ipf->ipf_hash_next; 12612 if (ipf != NULL) 12613 ipf->ipf_ptphn = ipfp; 12614 ipfp[0] = ipf; 12615 atomic_add_32(&ill->ill_frag_count, -count); 12616 ASSERT(ipfb->ipfb_count >= count); 12617 ipfb->ipfb_count -= count; 12618 ipfb->ipfb_frag_pkts--; 12619 mutex_exit(&ipfb->ipfb_lock); 12620 /* Ditch the frag header. */ 12621 mp = mp1->b_cont; 12622 12623 freeb(mp1); 12624 12625 /* Restore original IP length in header. */ 12626 packet_size = (uint32_t)msgdsize(mp); 12627 if (packet_size > IP_MAXPACKET) { 12628 freemsg(mp); 12629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12630 return (B_FALSE); 12631 } 12632 12633 if (DB_REF(mp) > 1) { 12634 mblk_t *mp2 = copymsg(mp); 12635 12636 freemsg(mp); 12637 if (mp2 == NULL) { 12638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12639 return (B_FALSE); 12640 } 12641 mp = mp2; 12642 } 12643 ipha = (ipha_t *)mp->b_rptr; 12644 12645 ipha->ipha_length = htons((uint16_t)packet_size); 12646 /* We're now complete, zip the frag state */ 12647 ipha->ipha_fragment_offset_and_flags = 0; 12648 /* Record the ECN info. */ 12649 ipha->ipha_type_of_service &= 0xFC; 12650 ipha->ipha_type_of_service |= ecn_info; 12651 *mpp = mp; 12652 12653 /* Reassembly is successful; return checksum information if needed */ 12654 if (cksum_val != NULL) 12655 *cksum_val = sum_val; 12656 if (cksum_flags != NULL) 12657 *cksum_flags = sum_flags; 12658 12659 return (B_TRUE); 12660 } 12661 12662 /* 12663 * Perform ip header check sum update local options. 12664 * return B_TRUE if all is well, else return B_FALSE and release 12665 * the mp. caller is responsible for decrementing ire ref cnt. 12666 */ 12667 static boolean_t 12668 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12669 ip_stack_t *ipst) 12670 { 12671 mblk_t *first_mp; 12672 boolean_t mctl_present; 12673 uint16_t sum; 12674 12675 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12676 /* 12677 * Don't do the checksum if it has gone through AH/ESP 12678 * processing. 12679 */ 12680 if (!mctl_present) { 12681 sum = ip_csum_hdr(ipha); 12682 if (sum != 0) { 12683 if (ill != NULL) { 12684 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12685 } else { 12686 BUMP_MIB(&ipst->ips_ip_mib, 12687 ipIfStatsInCksumErrs); 12688 } 12689 freemsg(first_mp); 12690 return (B_FALSE); 12691 } 12692 } 12693 12694 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12695 if (mctl_present) 12696 freeb(first_mp); 12697 return (B_FALSE); 12698 } 12699 12700 return (B_TRUE); 12701 } 12702 12703 /* 12704 * All udp packet are delivered to the local host via this routine. 12705 */ 12706 void 12707 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12708 ill_t *recv_ill) 12709 { 12710 uint32_t sum; 12711 uint32_t u1; 12712 boolean_t mctl_present; 12713 conn_t *connp; 12714 mblk_t *first_mp; 12715 uint16_t *up; 12716 ill_t *ill = (ill_t *)q->q_ptr; 12717 uint16_t reass_hck_flags = 0; 12718 ip_stack_t *ipst; 12719 12720 ASSERT(recv_ill != NULL); 12721 ipst = recv_ill->ill_ipst; 12722 12723 #define rptr ((uchar_t *)ipha) 12724 12725 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12726 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12727 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12728 ASSERT(ill != NULL); 12729 12730 /* 12731 * FAST PATH for udp packets 12732 */ 12733 12734 /* u1 is # words of IP options */ 12735 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12736 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12737 12738 /* IP options present */ 12739 if (u1 != 0) 12740 goto ipoptions; 12741 12742 /* Check the IP header checksum. */ 12743 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12744 /* Clear the IP header h/w cksum flag */ 12745 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12746 } else if (!mctl_present) { 12747 /* 12748 * Don't verify header checksum if this packet is coming 12749 * back from AH/ESP as we already did it. 12750 */ 12751 #define uph ((uint16_t *)ipha) 12752 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12753 uph[6] + uph[7] + uph[8] + uph[9]; 12754 #undef uph 12755 /* finish doing IP checksum */ 12756 sum = (sum & 0xFFFF) + (sum >> 16); 12757 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12758 if (sum != 0 && sum != 0xFFFF) { 12759 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12760 freemsg(first_mp); 12761 return; 12762 } 12763 } 12764 12765 /* 12766 * Count for SNMP of inbound packets for ire. 12767 * if mctl is present this might be a secure packet and 12768 * has already been counted for in ip_proto_input(). 12769 */ 12770 if (!mctl_present) { 12771 UPDATE_IB_PKT_COUNT(ire); 12772 ire->ire_last_used_time = lbolt; 12773 } 12774 12775 /* packet part of fragmented IP packet? */ 12776 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12777 if (u1 & (IPH_MF | IPH_OFFSET)) { 12778 goto fragmented; 12779 } 12780 12781 /* u1 = IP header length (20 bytes) */ 12782 u1 = IP_SIMPLE_HDR_LENGTH; 12783 12784 /* packet does not contain complete IP & UDP headers */ 12785 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12786 goto udppullup; 12787 12788 /* up points to UDP header */ 12789 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12790 #define iphs ((uint16_t *)ipha) 12791 12792 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12793 if (up[3] != 0) { 12794 mblk_t *mp1 = mp->b_cont; 12795 boolean_t cksum_err; 12796 uint16_t hck_flags = 0; 12797 12798 /* Pseudo-header checksum */ 12799 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12800 iphs[9] + up[2]; 12801 12802 /* 12803 * Revert to software checksum calculation if the interface 12804 * isn't capable of checksum offload or if IPsec is present. 12805 */ 12806 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12807 hck_flags = DB_CKSUMFLAGS(mp); 12808 12809 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12810 IP_STAT(ipst, ip_in_sw_cksum); 12811 12812 IP_CKSUM_RECV(hck_flags, u1, 12813 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12814 (int32_t)((uchar_t *)up - rptr), 12815 mp, mp1, cksum_err); 12816 12817 if (cksum_err) { 12818 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12819 if (hck_flags & HCK_FULLCKSUM) 12820 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12821 else if (hck_flags & HCK_PARTIALCKSUM) 12822 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12823 else 12824 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12825 12826 freemsg(first_mp); 12827 return; 12828 } 12829 } 12830 12831 /* Non-fragmented broadcast or multicast packet? */ 12832 if (ire->ire_type == IRE_BROADCAST) 12833 goto udpslowpath; 12834 12835 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12836 ire->ire_zoneid, ipst)) != NULL) { 12837 ASSERT(connp->conn_upq != NULL); 12838 IP_STAT(ipst, ip_udp_fast_path); 12839 12840 if (CONN_UDP_FLOWCTLD(connp)) { 12841 freemsg(mp); 12842 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12843 } else { 12844 if (!mctl_present) { 12845 BUMP_MIB(ill->ill_ip_mib, 12846 ipIfStatsHCInDelivers); 12847 } 12848 /* 12849 * mp and first_mp can change. 12850 */ 12851 if (ip_udp_check(q, connp, recv_ill, 12852 ipha, &mp, &first_mp, mctl_present, ire)) { 12853 /* Send it upstream */ 12854 (connp->conn_recv)(connp, mp, NULL); 12855 } 12856 } 12857 /* 12858 * freeb() cannot deal with null mblk being passed 12859 * in and first_mp can be set to null in the call 12860 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12861 */ 12862 if (mctl_present && first_mp != NULL) { 12863 freeb(first_mp); 12864 } 12865 CONN_DEC_REF(connp); 12866 return; 12867 } 12868 12869 /* 12870 * if we got here we know the packet is not fragmented and 12871 * has no options. The classifier could not find a conn_t and 12872 * most likely its an icmp packet so send it through slow path. 12873 */ 12874 12875 goto udpslowpath; 12876 12877 ipoptions: 12878 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12879 goto slow_done; 12880 } 12881 12882 UPDATE_IB_PKT_COUNT(ire); 12883 ire->ire_last_used_time = lbolt; 12884 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12885 if (u1 & (IPH_MF | IPH_OFFSET)) { 12886 fragmented: 12887 /* 12888 * "sum" and "reass_hck_flags" are non-zero if the 12889 * reassembled packet has a valid hardware computed 12890 * checksum information associated with it. 12891 */ 12892 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12893 goto slow_done; 12894 /* 12895 * Make sure that first_mp points back to mp as 12896 * the mp we came in with could have changed in 12897 * ip_rput_fragment(). 12898 */ 12899 ASSERT(!mctl_present); 12900 ipha = (ipha_t *)mp->b_rptr; 12901 first_mp = mp; 12902 } 12903 12904 /* Now we have a complete datagram, destined for this machine. */ 12905 u1 = IPH_HDR_LENGTH(ipha); 12906 /* Pull up the UDP header, if necessary. */ 12907 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12908 udppullup: 12909 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12910 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12911 freemsg(first_mp); 12912 goto slow_done; 12913 } 12914 ipha = (ipha_t *)mp->b_rptr; 12915 } 12916 12917 /* 12918 * Validate the checksum for the reassembled packet; for the 12919 * pullup case we calculate the payload checksum in software. 12920 */ 12921 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12922 if (up[3] != 0) { 12923 boolean_t cksum_err; 12924 12925 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12926 IP_STAT(ipst, ip_in_sw_cksum); 12927 12928 IP_CKSUM_RECV_REASS(reass_hck_flags, 12929 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12930 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12931 iphs[9] + up[2], sum, cksum_err); 12932 12933 if (cksum_err) { 12934 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12935 12936 if (reass_hck_flags & HCK_FULLCKSUM) 12937 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12938 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12939 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12940 else 12941 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12942 12943 freemsg(first_mp); 12944 goto slow_done; 12945 } 12946 } 12947 udpslowpath: 12948 12949 /* Clear hardware checksum flag to be safe */ 12950 DB_CKSUMFLAGS(mp) = 0; 12951 12952 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12953 (ire->ire_type == IRE_BROADCAST), 12954 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12955 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12956 12957 slow_done: 12958 IP_STAT(ipst, ip_udp_slow_path); 12959 return; 12960 12961 #undef iphs 12962 #undef rptr 12963 } 12964 12965 /* ARGSUSED */ 12966 static mblk_t * 12967 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12968 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12969 ill_rx_ring_t *ill_ring) 12970 { 12971 conn_t *connp; 12972 uint32_t sum; 12973 uint32_t u1; 12974 uint16_t *up; 12975 int offset; 12976 ssize_t len; 12977 mblk_t *mp1; 12978 boolean_t syn_present = B_FALSE; 12979 tcph_t *tcph; 12980 uint_t ip_hdr_len; 12981 ill_t *ill = (ill_t *)q->q_ptr; 12982 zoneid_t zoneid = ire->ire_zoneid; 12983 boolean_t cksum_err; 12984 uint16_t hck_flags = 0; 12985 ip_stack_t *ipst = recv_ill->ill_ipst; 12986 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12987 12988 #define rptr ((uchar_t *)ipha) 12989 12990 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12991 ASSERT(ill != NULL); 12992 12993 /* 12994 * FAST PATH for tcp packets 12995 */ 12996 12997 /* u1 is # words of IP options */ 12998 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12999 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13000 13001 /* IP options present */ 13002 if (u1) { 13003 goto ipoptions; 13004 } else if (!mctl_present) { 13005 /* Check the IP header checksum. */ 13006 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13007 /* Clear the IP header h/w cksum flag */ 13008 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13009 } else if (!mctl_present) { 13010 /* 13011 * Don't verify header checksum if this packet 13012 * is coming back from AH/ESP as we already did it. 13013 */ 13014 #define uph ((uint16_t *)ipha) 13015 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13016 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13017 #undef uph 13018 /* finish doing IP checksum */ 13019 sum = (sum & 0xFFFF) + (sum >> 16); 13020 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13021 if (sum != 0 && sum != 0xFFFF) { 13022 BUMP_MIB(ill->ill_ip_mib, 13023 ipIfStatsInCksumErrs); 13024 goto error; 13025 } 13026 } 13027 } 13028 13029 if (!mctl_present) { 13030 UPDATE_IB_PKT_COUNT(ire); 13031 ire->ire_last_used_time = lbolt; 13032 } 13033 13034 /* packet part of fragmented IP packet? */ 13035 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13036 if (u1 & (IPH_MF | IPH_OFFSET)) { 13037 goto fragmented; 13038 } 13039 13040 /* u1 = IP header length (20 bytes) */ 13041 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13042 13043 /* does packet contain IP+TCP headers? */ 13044 len = mp->b_wptr - rptr; 13045 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13046 IP_STAT(ipst, ip_tcppullup); 13047 goto tcppullup; 13048 } 13049 13050 /* TCP options present? */ 13051 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13052 13053 /* 13054 * If options need to be pulled up, then goto tcpoptions. 13055 * otherwise we are still in the fast path 13056 */ 13057 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13058 IP_STAT(ipst, ip_tcpoptions); 13059 goto tcpoptions; 13060 } 13061 13062 /* multiple mblks of tcp data? */ 13063 if ((mp1 = mp->b_cont) != NULL) { 13064 /* more then two? */ 13065 if (mp1->b_cont != NULL) { 13066 IP_STAT(ipst, ip_multipkttcp); 13067 goto multipkttcp; 13068 } 13069 len += mp1->b_wptr - mp1->b_rptr; 13070 } 13071 13072 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13073 13074 /* part of pseudo checksum */ 13075 13076 /* TCP datagram length */ 13077 u1 = len - IP_SIMPLE_HDR_LENGTH; 13078 13079 #define iphs ((uint16_t *)ipha) 13080 13081 #ifdef _BIG_ENDIAN 13082 u1 += IPPROTO_TCP; 13083 #else 13084 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13085 #endif 13086 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13087 13088 /* 13089 * Revert to software checksum calculation if the interface 13090 * isn't capable of checksum offload or if IPsec is present. 13091 */ 13092 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13093 hck_flags = DB_CKSUMFLAGS(mp); 13094 13095 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13096 IP_STAT(ipst, ip_in_sw_cksum); 13097 13098 IP_CKSUM_RECV(hck_flags, u1, 13099 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13100 (int32_t)((uchar_t *)up - rptr), 13101 mp, mp1, cksum_err); 13102 13103 if (cksum_err) { 13104 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13105 13106 if (hck_flags & HCK_FULLCKSUM) 13107 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13108 else if (hck_flags & HCK_PARTIALCKSUM) 13109 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13110 else 13111 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13112 13113 goto error; 13114 } 13115 13116 try_again: 13117 13118 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13119 zoneid, ipst)) == NULL) { 13120 /* Send the TH_RST */ 13121 goto no_conn; 13122 } 13123 13124 /* 13125 * TCP FAST PATH for AF_INET socket. 13126 * 13127 * TCP fast path to avoid extra work. An AF_INET socket type 13128 * does not have facility to receive extra information via 13129 * ip_process or ip_add_info. Also, when the connection was 13130 * established, we made a check if this connection is impacted 13131 * by any global IPsec policy or per connection policy (a 13132 * policy that comes in effect later will not apply to this 13133 * connection). Since all this can be determined at the 13134 * connection establishment time, a quick check of flags 13135 * can avoid extra work. 13136 */ 13137 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13138 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13139 ASSERT(first_mp == mp); 13140 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13141 SET_SQUEUE(mp, tcp_rput_data, connp); 13142 return (mp); 13143 } 13144 13145 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13146 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13147 if (IPCL_IS_TCP(connp)) { 13148 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13149 DB_CKSUMSTART(mp) = 13150 (intptr_t)ip_squeue_get(ill_ring); 13151 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13152 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13153 BUMP_MIB(ill->ill_ip_mib, 13154 ipIfStatsHCInDelivers); 13155 SET_SQUEUE(mp, connp->conn_recv, connp); 13156 return (mp); 13157 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13158 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13159 BUMP_MIB(ill->ill_ip_mib, 13160 ipIfStatsHCInDelivers); 13161 ip_squeue_enter_unbound++; 13162 SET_SQUEUE(mp, tcp_conn_request_unbound, 13163 connp); 13164 return (mp); 13165 } 13166 syn_present = B_TRUE; 13167 } 13168 13169 } 13170 13171 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13172 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13173 13174 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13175 /* No need to send this packet to TCP */ 13176 if ((flags & TH_RST) || (flags & TH_URG)) { 13177 CONN_DEC_REF(connp); 13178 freemsg(first_mp); 13179 return (NULL); 13180 } 13181 if (flags & TH_ACK) { 13182 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13183 ipst->ips_netstack->netstack_tcp, connp); 13184 CONN_DEC_REF(connp); 13185 return (NULL); 13186 } 13187 13188 CONN_DEC_REF(connp); 13189 freemsg(first_mp); 13190 return (NULL); 13191 } 13192 13193 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13194 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13195 ipha, NULL, mctl_present); 13196 if (first_mp == NULL) { 13197 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13198 CONN_DEC_REF(connp); 13199 return (NULL); 13200 } 13201 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13202 ASSERT(syn_present); 13203 if (mctl_present) { 13204 ASSERT(first_mp != mp); 13205 first_mp->b_datap->db_struioflag |= 13206 STRUIO_POLICY; 13207 } else { 13208 ASSERT(first_mp == mp); 13209 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13210 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13211 } 13212 } else { 13213 /* 13214 * Discard first_mp early since we're dealing with a 13215 * fully-connected conn_t and tcp doesn't do policy in 13216 * this case. 13217 */ 13218 if (mctl_present) { 13219 freeb(first_mp); 13220 mctl_present = B_FALSE; 13221 } 13222 first_mp = mp; 13223 } 13224 } 13225 13226 /* Initiate IPPF processing for fastpath */ 13227 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13228 uint32_t ill_index; 13229 13230 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13231 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13232 if (mp == NULL) { 13233 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13234 "deferred/dropped during IPPF processing\n")); 13235 CONN_DEC_REF(connp); 13236 if (mctl_present) 13237 freeb(first_mp); 13238 return (NULL); 13239 } else if (mctl_present) { 13240 /* 13241 * ip_process might return a new mp. 13242 */ 13243 ASSERT(first_mp != mp); 13244 first_mp->b_cont = mp; 13245 } else { 13246 first_mp = mp; 13247 } 13248 13249 } 13250 13251 if (!syn_present && connp->conn_ip_recvpktinfo) { 13252 /* 13253 * TCP does not support IP_RECVPKTINFO for v4 so lets 13254 * make sure IPF_RECVIF is passed to ip_add_info. 13255 */ 13256 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13257 IPCL_ZONEID(connp), ipst); 13258 if (mp == NULL) { 13259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13260 CONN_DEC_REF(connp); 13261 if (mctl_present) 13262 freeb(first_mp); 13263 return (NULL); 13264 } else if (mctl_present) { 13265 /* 13266 * ip_add_info might return a new mp. 13267 */ 13268 ASSERT(first_mp != mp); 13269 first_mp->b_cont = mp; 13270 } else { 13271 first_mp = mp; 13272 } 13273 } 13274 13275 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13276 if (IPCL_IS_TCP(connp)) { 13277 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13278 return (first_mp); 13279 } else { 13280 /* SOCK_RAW, IPPROTO_TCP case */ 13281 (connp->conn_recv)(connp, first_mp, NULL); 13282 CONN_DEC_REF(connp); 13283 return (NULL); 13284 } 13285 13286 no_conn: 13287 /* Initiate IPPf processing, if needed. */ 13288 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13289 uint32_t ill_index; 13290 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13291 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13292 if (first_mp == NULL) { 13293 return (NULL); 13294 } 13295 } 13296 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13297 13298 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13299 ipst->ips_netstack->netstack_tcp, NULL); 13300 return (NULL); 13301 ipoptions: 13302 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13303 goto slow_done; 13304 } 13305 13306 UPDATE_IB_PKT_COUNT(ire); 13307 ire->ire_last_used_time = lbolt; 13308 13309 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13310 if (u1 & (IPH_MF | IPH_OFFSET)) { 13311 fragmented: 13312 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13313 if (mctl_present) 13314 freeb(first_mp); 13315 goto slow_done; 13316 } 13317 /* 13318 * Make sure that first_mp points back to mp as 13319 * the mp we came in with could have changed in 13320 * ip_rput_fragment(). 13321 */ 13322 ASSERT(!mctl_present); 13323 ipha = (ipha_t *)mp->b_rptr; 13324 first_mp = mp; 13325 } 13326 13327 /* Now we have a complete datagram, destined for this machine. */ 13328 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13329 13330 len = mp->b_wptr - mp->b_rptr; 13331 /* Pull up a minimal TCP header, if necessary. */ 13332 if (len < (u1 + 20)) { 13333 tcppullup: 13334 if (!pullupmsg(mp, u1 + 20)) { 13335 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13336 goto error; 13337 } 13338 ipha = (ipha_t *)mp->b_rptr; 13339 len = mp->b_wptr - mp->b_rptr; 13340 } 13341 13342 /* 13343 * Extract the offset field from the TCP header. As usual, we 13344 * try to help the compiler more than the reader. 13345 */ 13346 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13347 if (offset != 5) { 13348 tcpoptions: 13349 if (offset < 5) { 13350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13351 goto error; 13352 } 13353 /* 13354 * There must be TCP options. 13355 * Make sure we can grab them. 13356 */ 13357 offset <<= 2; 13358 offset += u1; 13359 if (len < offset) { 13360 if (!pullupmsg(mp, offset)) { 13361 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13362 goto error; 13363 } 13364 ipha = (ipha_t *)mp->b_rptr; 13365 len = mp->b_wptr - rptr; 13366 } 13367 } 13368 13369 /* Get the total packet length in len, including headers. */ 13370 if (mp->b_cont) { 13371 multipkttcp: 13372 len = msgdsize(mp); 13373 } 13374 13375 /* 13376 * Check the TCP checksum by pulling together the pseudo- 13377 * header checksum, and passing it to ip_csum to be added in 13378 * with the TCP datagram. 13379 * 13380 * Since we are not using the hwcksum if available we must 13381 * clear the flag. We may come here via tcppullup or tcpoptions. 13382 * If either of these fails along the way the mblk is freed. 13383 * If this logic ever changes and mblk is reused to say send 13384 * ICMP's back, then this flag may need to be cleared in 13385 * other places as well. 13386 */ 13387 DB_CKSUMFLAGS(mp) = 0; 13388 13389 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13390 13391 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13392 #ifdef _BIG_ENDIAN 13393 u1 += IPPROTO_TCP; 13394 #else 13395 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13396 #endif 13397 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13398 /* 13399 * Not M_DATA mblk or its a dup, so do the checksum now. 13400 */ 13401 IP_STAT(ipst, ip_in_sw_cksum); 13402 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13403 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13404 goto error; 13405 } 13406 13407 IP_STAT(ipst, ip_tcp_slow_path); 13408 goto try_again; 13409 #undef iphs 13410 #undef rptr 13411 13412 error: 13413 freemsg(first_mp); 13414 slow_done: 13415 return (NULL); 13416 } 13417 13418 /* ARGSUSED */ 13419 static void 13420 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13421 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13422 { 13423 conn_t *connp; 13424 uint32_t sum; 13425 uint32_t u1; 13426 ssize_t len; 13427 sctp_hdr_t *sctph; 13428 zoneid_t zoneid = ire->ire_zoneid; 13429 uint32_t pktsum; 13430 uint32_t calcsum; 13431 uint32_t ports; 13432 in6_addr_t map_src, map_dst; 13433 ill_t *ill = (ill_t *)q->q_ptr; 13434 ip_stack_t *ipst; 13435 sctp_stack_t *sctps; 13436 boolean_t sctp_csum_err = B_FALSE; 13437 13438 ASSERT(recv_ill != NULL); 13439 ipst = recv_ill->ill_ipst; 13440 sctps = ipst->ips_netstack->netstack_sctp; 13441 13442 #define rptr ((uchar_t *)ipha) 13443 13444 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13445 ASSERT(ill != NULL); 13446 13447 /* u1 is # words of IP options */ 13448 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13449 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13450 13451 /* IP options present */ 13452 if (u1 > 0) { 13453 goto ipoptions; 13454 } else { 13455 /* Check the IP header checksum. */ 13456 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13457 !mctl_present) { 13458 #define uph ((uint16_t *)ipha) 13459 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13460 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13461 #undef uph 13462 /* finish doing IP checksum */ 13463 sum = (sum & 0xFFFF) + (sum >> 16); 13464 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13465 /* 13466 * Don't verify header checksum if this packet 13467 * is coming back from AH/ESP as we already did it. 13468 */ 13469 if (sum != 0 && sum != 0xFFFF) { 13470 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13471 goto error; 13472 } 13473 } 13474 /* 13475 * Since there is no SCTP h/w cksum support yet, just 13476 * clear the flag. 13477 */ 13478 DB_CKSUMFLAGS(mp) = 0; 13479 } 13480 13481 /* 13482 * Don't verify header checksum if this packet is coming 13483 * back from AH/ESP as we already did it. 13484 */ 13485 if (!mctl_present) { 13486 UPDATE_IB_PKT_COUNT(ire); 13487 ire->ire_last_used_time = lbolt; 13488 } 13489 13490 /* packet part of fragmented IP packet? */ 13491 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13492 if (u1 & (IPH_MF | IPH_OFFSET)) 13493 goto fragmented; 13494 13495 /* u1 = IP header length (20 bytes) */ 13496 u1 = IP_SIMPLE_HDR_LENGTH; 13497 13498 find_sctp_client: 13499 /* Pullup if we don't have the sctp common header. */ 13500 len = MBLKL(mp); 13501 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13502 if (mp->b_cont == NULL || 13503 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13504 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13505 goto error; 13506 } 13507 ipha = (ipha_t *)mp->b_rptr; 13508 len = MBLKL(mp); 13509 } 13510 13511 sctph = (sctp_hdr_t *)(rptr + u1); 13512 #ifdef DEBUG 13513 if (!skip_sctp_cksum) { 13514 #endif 13515 pktsum = sctph->sh_chksum; 13516 sctph->sh_chksum = 0; 13517 calcsum = sctp_cksum(mp, u1); 13518 sctph->sh_chksum = pktsum; 13519 if (calcsum != pktsum) 13520 sctp_csum_err = B_TRUE; 13521 #ifdef DEBUG /* skip_sctp_cksum */ 13522 } 13523 #endif 13524 /* get the ports */ 13525 ports = *(uint32_t *)&sctph->sh_sport; 13526 13527 IRE_REFRELE(ire); 13528 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13529 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13530 if (sctp_csum_err) { 13531 /* 13532 * No potential sctp checksum errors go to the Sun 13533 * sctp stack however they might be Adler-32 summed 13534 * packets a userland stack bound to a raw IP socket 13535 * could reasonably use. Note though that Adler-32 is 13536 * a long deprecated algorithm and customer sctp 13537 * networks should eventually migrate to CRC-32 at 13538 * which time this facility should be removed. 13539 */ 13540 flags |= IP_FF_SCTP_CSUM_ERR; 13541 goto no_conn; 13542 } 13543 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13544 sctps)) == NULL) { 13545 /* Check for raw socket or OOTB handling */ 13546 goto no_conn; 13547 } 13548 13549 /* Found a client; up it goes */ 13550 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13551 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13552 return; 13553 13554 no_conn: 13555 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13556 ports, mctl_present, flags, B_TRUE, zoneid); 13557 return; 13558 13559 ipoptions: 13560 DB_CKSUMFLAGS(mp) = 0; 13561 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13562 goto slow_done; 13563 13564 UPDATE_IB_PKT_COUNT(ire); 13565 ire->ire_last_used_time = lbolt; 13566 13567 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13568 if (u1 & (IPH_MF | IPH_OFFSET)) { 13569 fragmented: 13570 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13571 goto slow_done; 13572 /* 13573 * Make sure that first_mp points back to mp as 13574 * the mp we came in with could have changed in 13575 * ip_rput_fragment(). 13576 */ 13577 ASSERT(!mctl_present); 13578 ipha = (ipha_t *)mp->b_rptr; 13579 first_mp = mp; 13580 } 13581 13582 /* Now we have a complete datagram, destined for this machine. */ 13583 u1 = IPH_HDR_LENGTH(ipha); 13584 goto find_sctp_client; 13585 #undef iphs 13586 #undef rptr 13587 13588 error: 13589 freemsg(first_mp); 13590 slow_done: 13591 IRE_REFRELE(ire); 13592 } 13593 13594 #define VER_BITS 0xF0 13595 #define VERSION_6 0x60 13596 13597 static boolean_t 13598 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13599 ipaddr_t *dstp, ip_stack_t *ipst) 13600 { 13601 uint_t opt_len; 13602 ipha_t *ipha; 13603 ssize_t len; 13604 uint_t pkt_len; 13605 13606 ASSERT(ill != NULL); 13607 IP_STAT(ipst, ip_ipoptions); 13608 ipha = *iphapp; 13609 13610 #define rptr ((uchar_t *)ipha) 13611 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13612 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13613 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13614 freemsg(mp); 13615 return (B_FALSE); 13616 } 13617 13618 /* multiple mblk or too short */ 13619 pkt_len = ntohs(ipha->ipha_length); 13620 13621 /* Get the number of words of IP options in the IP header. */ 13622 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13623 if (opt_len) { 13624 /* IP Options present! Validate and process. */ 13625 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13627 goto done; 13628 } 13629 /* 13630 * Recompute complete header length and make sure we 13631 * have access to all of it. 13632 */ 13633 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13634 if (len > (mp->b_wptr - rptr)) { 13635 if (len > pkt_len) { 13636 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13637 goto done; 13638 } 13639 if (!pullupmsg(mp, len)) { 13640 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13641 goto done; 13642 } 13643 ipha = (ipha_t *)mp->b_rptr; 13644 } 13645 /* 13646 * Go off to ip_rput_options which returns the next hop 13647 * destination address, which may have been affected 13648 * by source routing. 13649 */ 13650 IP_STAT(ipst, ip_opt); 13651 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13653 return (B_FALSE); 13654 } 13655 } 13656 *iphapp = ipha; 13657 return (B_TRUE); 13658 done: 13659 /* clear b_prev - used by ip_mroute_decap */ 13660 mp->b_prev = NULL; 13661 freemsg(mp); 13662 return (B_FALSE); 13663 #undef rptr 13664 } 13665 13666 /* 13667 * Deal with the fact that there is no ire for the destination. 13668 */ 13669 static ire_t * 13670 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13671 { 13672 ipha_t *ipha; 13673 ill_t *ill; 13674 ire_t *ire; 13675 ip_stack_t *ipst; 13676 enum ire_forward_action ret_action; 13677 13678 ipha = (ipha_t *)mp->b_rptr; 13679 ill = (ill_t *)q->q_ptr; 13680 13681 ASSERT(ill != NULL); 13682 ipst = ill->ill_ipst; 13683 13684 /* 13685 * No IRE for this destination, so it can't be for us. 13686 * Unless we are forwarding, drop the packet. 13687 * We have to let source routed packets through 13688 * since we don't yet know if they are 'ping -l' 13689 * packets i.e. if they will go out over the 13690 * same interface as they came in on. 13691 */ 13692 if (ll_multicast) { 13693 freemsg(mp); 13694 return (NULL); 13695 } 13696 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13697 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13698 freemsg(mp); 13699 return (NULL); 13700 } 13701 13702 /* 13703 * Mark this packet as having originated externally. 13704 * 13705 * For non-forwarding code path, ire_send later double 13706 * checks this interface to see if it is still exists 13707 * post-ARP resolution. 13708 * 13709 * Also, IPQOS uses this to differentiate between 13710 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13711 * QOS packet processing in ip_wput_attach_llhdr(). 13712 * The QoS module can mark the b_band for a fastpath message 13713 * or the dl_priority field in a unitdata_req header for 13714 * CoS marking. This info can only be found in 13715 * ip_wput_attach_llhdr(). 13716 */ 13717 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13718 /* 13719 * Clear the indication that this may have a hardware checksum 13720 * as we are not using it 13721 */ 13722 DB_CKSUMFLAGS(mp) = 0; 13723 13724 ire = ire_forward(dst, &ret_action, NULL, NULL, 13725 MBLK_GETLABEL(mp), ipst); 13726 13727 if (ire == NULL && ret_action == Forward_check_multirt) { 13728 /* Let ip_newroute handle CGTP */ 13729 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13730 return (NULL); 13731 } 13732 13733 if (ire != NULL) 13734 return (ire); 13735 13736 mp->b_prev = mp->b_next = 0; 13737 13738 if (ret_action == Forward_blackhole) { 13739 freemsg(mp); 13740 return (NULL); 13741 } 13742 /* send icmp unreachable */ 13743 q = WR(q); 13744 /* Sent by forwarding path, and router is global zone */ 13745 if (ip_source_routed(ipha, ipst)) { 13746 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13747 GLOBAL_ZONEID, ipst); 13748 } else { 13749 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13750 ipst); 13751 } 13752 13753 return (NULL); 13754 13755 } 13756 13757 /* 13758 * check ip header length and align it. 13759 */ 13760 static boolean_t 13761 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13762 { 13763 ssize_t len; 13764 ill_t *ill; 13765 ipha_t *ipha; 13766 13767 len = MBLKL(mp); 13768 13769 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13770 ill = (ill_t *)q->q_ptr; 13771 13772 if (!OK_32PTR(mp->b_rptr)) 13773 IP_STAT(ipst, ip_notaligned1); 13774 else 13775 IP_STAT(ipst, ip_notaligned2); 13776 /* Guard against bogus device drivers */ 13777 if (len < 0) { 13778 /* clear b_prev - used by ip_mroute_decap */ 13779 mp->b_prev = NULL; 13780 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13781 freemsg(mp); 13782 return (B_FALSE); 13783 } 13784 13785 if (ip_rput_pullups++ == 0) { 13786 ipha = (ipha_t *)mp->b_rptr; 13787 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13788 "ip_check_and_align_header: %s forced us to " 13789 " pullup pkt, hdr len %ld, hdr addr %p", 13790 ill->ill_name, len, (void *)ipha); 13791 } 13792 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13793 /* clear b_prev - used by ip_mroute_decap */ 13794 mp->b_prev = NULL; 13795 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13796 freemsg(mp); 13797 return (B_FALSE); 13798 } 13799 } 13800 return (B_TRUE); 13801 } 13802 13803 ire_t * 13804 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13805 { 13806 ire_t *new_ire; 13807 ill_t *ire_ill; 13808 uint_t ifindex; 13809 ip_stack_t *ipst = ill->ill_ipst; 13810 boolean_t strict_check = B_FALSE; 13811 13812 /* 13813 * This packet came in on an interface other than the one associated 13814 * with the first ire we found for the destination address. We do 13815 * another ire lookup here, using the ingress ill, to see if the 13816 * interface is in an interface group. 13817 * As long as the ills belong to the same group, we don't consider 13818 * them to be arriving on the wrong interface. Thus, if the switch 13819 * is doing inbound load spreading, we won't drop packets when the 13820 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13821 * for 'usesrc groups' where the destination address may belong to 13822 * another interface to allow multipathing to happen. 13823 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13824 * where the local address may not be unique. In this case we were 13825 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13826 * actually returned. The new lookup, which is more specific, should 13827 * only find the IRE_LOCAL associated with the ingress ill if one 13828 * exists. 13829 */ 13830 13831 if (ire->ire_ipversion == IPV4_VERSION) { 13832 if (ipst->ips_ip_strict_dst_multihoming) 13833 strict_check = B_TRUE; 13834 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13835 ill->ill_ipif, ALL_ZONES, NULL, 13836 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13837 } else { 13838 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13839 if (ipst->ips_ipv6_strict_dst_multihoming) 13840 strict_check = B_TRUE; 13841 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13842 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13843 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13844 } 13845 /* 13846 * If the same ire that was returned in ip_input() is found then this 13847 * is an indication that interface groups are in use. The packet 13848 * arrived on a different ill in the group than the one associated with 13849 * the destination address. If a different ire was found then the same 13850 * IP address must be hosted on multiple ills. This is possible with 13851 * unnumbered point2point interfaces. We switch to use this new ire in 13852 * order to have accurate interface statistics. 13853 */ 13854 if (new_ire != NULL) { 13855 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13856 ire_refrele(ire); 13857 ire = new_ire; 13858 } else { 13859 ire_refrele(new_ire); 13860 } 13861 return (ire); 13862 } else if ((ire->ire_rfq == NULL) && 13863 (ire->ire_ipversion == IPV4_VERSION)) { 13864 /* 13865 * The best match could have been the original ire which 13866 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13867 * the strict multihoming checks are irrelevant as we consider 13868 * local addresses hosted on lo0 to be interface agnostic. We 13869 * only expect a null ire_rfq on IREs which are associated with 13870 * lo0 hence we can return now. 13871 */ 13872 return (ire); 13873 } 13874 13875 /* 13876 * Chase pointers once and store locally. 13877 */ 13878 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13879 (ill_t *)(ire->ire_rfq->q_ptr); 13880 ifindex = ill->ill_usesrc_ifindex; 13881 13882 /* 13883 * Check if it's a legal address on the 'usesrc' interface. 13884 */ 13885 if ((ifindex != 0) && (ire_ill != NULL) && 13886 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13887 return (ire); 13888 } 13889 13890 /* 13891 * If the ip*_strict_dst_multihoming switch is on then we can 13892 * only accept this packet if the interface is marked as routing. 13893 */ 13894 if (!(strict_check)) 13895 return (ire); 13896 13897 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13898 ILLF_ROUTER) != 0) { 13899 return (ire); 13900 } 13901 13902 ire_refrele(ire); 13903 return (NULL); 13904 } 13905 13906 ire_t * 13907 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13908 { 13909 ipha_t *ipha; 13910 ire_t *src_ire; 13911 ill_t *stq_ill; 13912 uint_t hlen; 13913 uint_t pkt_len; 13914 uint32_t sum; 13915 queue_t *dev_q; 13916 ip_stack_t *ipst = ill->ill_ipst; 13917 mblk_t *fpmp; 13918 enum ire_forward_action ret_action; 13919 13920 ipha = (ipha_t *)mp->b_rptr; 13921 13922 if (ire != NULL && 13923 ire->ire_zoneid != GLOBAL_ZONEID && 13924 ire->ire_zoneid != ALL_ZONES) { 13925 /* 13926 * Should only use IREs that are visible to the global 13927 * zone for forwarding. 13928 */ 13929 ire_refrele(ire); 13930 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13931 } 13932 13933 /* 13934 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13935 * The loopback address check for both src and dst has already 13936 * been checked in ip_input 13937 */ 13938 13939 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13940 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13941 goto drop; 13942 } 13943 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13944 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13945 13946 if (src_ire != NULL) { 13947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13948 ire_refrele(src_ire); 13949 goto drop; 13950 } 13951 13952 /* No ire cache of nexthop. So first create one */ 13953 if (ire == NULL) { 13954 13955 ire = ire_forward(dst, &ret_action, NULL, NULL, 13956 NULL, ipst); 13957 /* 13958 * We only come to ip_fast_forward if ip_cgtp_filter 13959 * is not set. So ire_forward() should not return with 13960 * Forward_check_multirt as the next action. 13961 */ 13962 ASSERT(ret_action != Forward_check_multirt); 13963 if (ire == NULL) { 13964 /* An attempt was made to forward the packet */ 13965 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13966 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13967 mp->b_prev = mp->b_next = 0; 13968 /* send icmp unreachable */ 13969 /* Sent by forwarding path, and router is global zone */ 13970 if (ret_action == Forward_ret_icmp_err) { 13971 if (ip_source_routed(ipha, ipst)) { 13972 icmp_unreachable(ill->ill_wq, mp, 13973 ICMP_SOURCE_ROUTE_FAILED, 13974 GLOBAL_ZONEID, ipst); 13975 } else { 13976 icmp_unreachable(ill->ill_wq, mp, 13977 ICMP_HOST_UNREACHABLE, 13978 GLOBAL_ZONEID, ipst); 13979 } 13980 } else { 13981 freemsg(mp); 13982 } 13983 return (NULL); 13984 } 13985 } 13986 13987 /* 13988 * Forwarding fastpath exception case: 13989 * If either of the follwoing case is true, we take 13990 * the slowpath 13991 * o forwarding is not enabled 13992 * o incoming and outgoing interface are the same, or the same 13993 * IPMP group 13994 * o corresponding ire is in incomplete state 13995 * o packet needs fragmentation 13996 * o ARP cache is not resolved 13997 * 13998 * The codeflow from here on is thus: 13999 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14000 */ 14001 pkt_len = ntohs(ipha->ipha_length); 14002 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14003 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14004 !(ill->ill_flags & ILLF_ROUTER) || 14005 (ill == stq_ill) || 14006 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14007 (ire->ire_nce == NULL) || 14008 (pkt_len > ire->ire_max_frag) || 14009 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 14010 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 14011 ipha->ipha_ttl <= 1) { 14012 ip_rput_process_forward(ill->ill_rq, mp, ire, 14013 ipha, ill, B_FALSE); 14014 return (ire); 14015 } 14016 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14017 14018 DTRACE_PROBE4(ip4__forwarding__start, 14019 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14020 14021 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14022 ipst->ips_ipv4firewall_forwarding, 14023 ill, stq_ill, ipha, mp, mp, 0, ipst); 14024 14025 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14026 14027 if (mp == NULL) 14028 goto drop; 14029 14030 mp->b_datap->db_struioun.cksum.flags = 0; 14031 /* Adjust the checksum to reflect the ttl decrement. */ 14032 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14033 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14034 ipha->ipha_ttl--; 14035 14036 /* 14037 * Write the link layer header. We can do this safely here, 14038 * because we have already tested to make sure that the IP 14039 * policy is not set, and that we have a fast path destination 14040 * header. 14041 */ 14042 mp->b_rptr -= hlen; 14043 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14044 14045 UPDATE_IB_PKT_COUNT(ire); 14046 ire->ire_last_used_time = lbolt; 14047 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14048 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14049 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14050 14051 dev_q = ire->ire_stq->q_next; 14052 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 14053 !canputnext(ire->ire_stq)) { 14054 goto indiscard; 14055 } 14056 if (ILL_DLS_CAPABLE(stq_ill)) { 14057 /* 14058 * Send the packet directly to DLD, where it 14059 * may be queued depending on the availability 14060 * of transmit resources at the media layer. 14061 */ 14062 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst, hlen); 14063 } else { 14064 DTRACE_PROBE4(ip4__physical__out__start, 14065 ill_t *, NULL, ill_t *, stq_ill, 14066 ipha_t *, ipha, mblk_t *, mp); 14067 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14068 ipst->ips_ipv4firewall_physical_out, 14069 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14070 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14071 if (mp == NULL) 14072 goto drop; 14073 14074 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14075 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14076 ip6_t *, NULL, int, 0); 14077 14078 putnext(ire->ire_stq, mp); 14079 } 14080 return (ire); 14081 14082 indiscard: 14083 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14084 drop: 14085 if (mp != NULL) 14086 freemsg(mp); 14087 return (ire); 14088 14089 } 14090 14091 /* 14092 * This function is called in the forwarding slowpath, when 14093 * either the ire lacks the link-layer address, or the packet needs 14094 * further processing(eg. fragmentation), before transmission. 14095 */ 14096 14097 static void 14098 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14099 ill_t *ill, boolean_t ll_multicast) 14100 { 14101 ill_group_t *ill_group; 14102 ill_group_t *ire_group; 14103 queue_t *dev_q; 14104 ire_t *src_ire; 14105 ip_stack_t *ipst = ill->ill_ipst; 14106 14107 ASSERT(ire->ire_stq != NULL); 14108 14109 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14110 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14111 14112 if (ll_multicast != 0) { 14113 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14114 goto drop_pkt; 14115 } 14116 14117 /* 14118 * check if ipha_src is a broadcast address. Note that this 14119 * check is redundant when we get here from ip_fast_forward() 14120 * which has already done this check. However, since we can 14121 * also get here from ip_rput_process_broadcast() or, for 14122 * for the slow path through ip_fast_forward(), we perform 14123 * the check again for code-reusability 14124 */ 14125 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14126 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14127 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14128 if (src_ire != NULL) 14129 ire_refrele(src_ire); 14130 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14131 ip2dbg(("ip_rput_process_forward: Received packet with" 14132 " bad src/dst address on %s\n", ill->ill_name)); 14133 goto drop_pkt; 14134 } 14135 14136 ill_group = ill->ill_group; 14137 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14138 /* 14139 * Check if we want to forward this one at this time. 14140 * We allow source routed packets on a host provided that 14141 * they go out the same interface or same interface group 14142 * as they came in on. 14143 * 14144 * XXX To be quicker, we may wish to not chase pointers to 14145 * get the ILLF_ROUTER flag and instead store the 14146 * forwarding policy in the ire. An unfortunate 14147 * side-effect of that would be requiring an ire flush 14148 * whenever the ILLF_ROUTER flag changes. 14149 */ 14150 if (((ill->ill_flags & 14151 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14152 ILLF_ROUTER) == 0) && 14153 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14154 (ill_group != NULL && ill_group == ire_group)))) { 14155 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14156 if (ip_source_routed(ipha, ipst)) { 14157 q = WR(q); 14158 /* 14159 * Clear the indication that this may have 14160 * hardware checksum as we are not using it. 14161 */ 14162 DB_CKSUMFLAGS(mp) = 0; 14163 /* Sent by forwarding path, and router is global zone */ 14164 icmp_unreachable(q, mp, 14165 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14166 return; 14167 } 14168 goto drop_pkt; 14169 } 14170 14171 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14172 14173 /* Packet is being forwarded. Turning off hwcksum flag. */ 14174 DB_CKSUMFLAGS(mp) = 0; 14175 if (ipst->ips_ip_g_send_redirects) { 14176 /* 14177 * Check whether the incoming interface and outgoing 14178 * interface is part of the same group. If so, 14179 * send redirects. 14180 * 14181 * Check the source address to see if it originated 14182 * on the same logical subnet it is going back out on. 14183 * If so, we should be able to send it a redirect. 14184 * Avoid sending a redirect if the destination 14185 * is directly connected (i.e., ipha_dst is the same 14186 * as ire_gateway_addr or the ire_addr of the 14187 * nexthop IRE_CACHE ), or if the packet was source 14188 * routed out this interface. 14189 */ 14190 ipaddr_t src, nhop; 14191 mblk_t *mp1; 14192 ire_t *nhop_ire = NULL; 14193 14194 /* 14195 * Check whether ire_rfq and q are from the same ill 14196 * or if they are not same, they at least belong 14197 * to the same group. If so, send redirects. 14198 */ 14199 if ((ire->ire_rfq == q || 14200 (ill_group != NULL && ill_group == ire_group)) && 14201 !ip_source_routed(ipha, ipst)) { 14202 14203 nhop = (ire->ire_gateway_addr != 0 ? 14204 ire->ire_gateway_addr : ire->ire_addr); 14205 14206 if (ipha->ipha_dst == nhop) { 14207 /* 14208 * We avoid sending a redirect if the 14209 * destination is directly connected 14210 * because it is possible that multiple 14211 * IP subnets may have been configured on 14212 * the link, and the source may not 14213 * be on the same subnet as ip destination, 14214 * even though they are on the same 14215 * physical link. 14216 */ 14217 goto sendit; 14218 } 14219 14220 src = ipha->ipha_src; 14221 14222 /* 14223 * We look up the interface ire for the nexthop, 14224 * to see if ipha_src is in the same subnet 14225 * as the nexthop. 14226 * 14227 * Note that, if, in the future, IRE_CACHE entries 14228 * are obsoleted, this lookup will not be needed, 14229 * as the ire passed to this function will be the 14230 * same as the nhop_ire computed below. 14231 */ 14232 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14233 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14234 0, NULL, MATCH_IRE_TYPE, ipst); 14235 14236 if (nhop_ire != NULL) { 14237 if ((src & nhop_ire->ire_mask) == 14238 (nhop & nhop_ire->ire_mask)) { 14239 /* 14240 * The source is directly connected. 14241 * Just copy the ip header (which is 14242 * in the first mblk) 14243 */ 14244 mp1 = copyb(mp); 14245 if (mp1 != NULL) { 14246 icmp_send_redirect(WR(q), mp1, 14247 nhop, ipst); 14248 } 14249 } 14250 ire_refrele(nhop_ire); 14251 } 14252 } 14253 } 14254 sendit: 14255 dev_q = ire->ire_stq->q_next; 14256 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14257 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14258 freemsg(mp); 14259 return; 14260 } 14261 14262 ip_rput_forward(ire, ipha, mp, ill); 14263 return; 14264 14265 drop_pkt: 14266 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14267 freemsg(mp); 14268 } 14269 14270 ire_t * 14271 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14272 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14273 { 14274 queue_t *q; 14275 uint16_t hcksumflags; 14276 ip_stack_t *ipst = ill->ill_ipst; 14277 14278 q = *qp; 14279 14280 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14281 14282 /* 14283 * Clear the indication that this may have hardware 14284 * checksum as we are not using it for forwarding. 14285 */ 14286 hcksumflags = DB_CKSUMFLAGS(mp); 14287 DB_CKSUMFLAGS(mp) = 0; 14288 14289 /* 14290 * Directed broadcast forwarding: if the packet came in over a 14291 * different interface then it is routed out over we can forward it. 14292 */ 14293 if (ipha->ipha_protocol == IPPROTO_TCP) { 14294 ire_refrele(ire); 14295 freemsg(mp); 14296 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14297 return (NULL); 14298 } 14299 /* 14300 * For multicast we have set dst to be INADDR_BROADCAST 14301 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14302 * only for broadcast packets. 14303 */ 14304 if (!CLASSD(ipha->ipha_dst)) { 14305 ire_t *new_ire; 14306 ipif_t *ipif; 14307 /* 14308 * For ill groups, as the switch duplicates broadcasts 14309 * across all the ports, we need to filter out and 14310 * send up only one copy. There is one copy for every 14311 * broadcast address on each ill. Thus, we look for a 14312 * specific IRE on this ill and look at IRE_MARK_NORECV 14313 * later to see whether this ill is eligible to receive 14314 * them or not. ill_nominate_bcast_rcv() nominates only 14315 * one set of IREs for receiving. 14316 */ 14317 14318 ipif = ipif_get_next_ipif(NULL, ill); 14319 if (ipif == NULL) { 14320 ire_refrele(ire); 14321 freemsg(mp); 14322 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14323 return (NULL); 14324 } 14325 new_ire = ire_ctable_lookup(dst, 0, 0, 14326 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14327 ipif_refrele(ipif); 14328 14329 if (new_ire != NULL) { 14330 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14331 ire_refrele(ire); 14332 ire_refrele(new_ire); 14333 freemsg(mp); 14334 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14335 return (NULL); 14336 } 14337 /* 14338 * In the special case of multirouted broadcast 14339 * packets, we unconditionally need to "gateway" 14340 * them to the appropriate interface here. 14341 * In the normal case, this cannot happen, because 14342 * there is no broadcast IRE tagged with the 14343 * RTF_MULTIRT flag. 14344 */ 14345 if (new_ire->ire_flags & RTF_MULTIRT) { 14346 ire_refrele(new_ire); 14347 if (ire->ire_rfq != NULL) { 14348 q = ire->ire_rfq; 14349 *qp = q; 14350 } 14351 } else { 14352 ire_refrele(ire); 14353 ire = new_ire; 14354 } 14355 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14356 if (!ipst->ips_ip_g_forward_directed_bcast) { 14357 /* 14358 * Free the message if 14359 * ip_g_forward_directed_bcast is turned 14360 * off for non-local broadcast. 14361 */ 14362 ire_refrele(ire); 14363 freemsg(mp); 14364 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14365 return (NULL); 14366 } 14367 } else { 14368 /* 14369 * This CGTP packet successfully passed the 14370 * CGTP filter, but the related CGTP 14371 * broadcast IRE has not been found, 14372 * meaning that the redundant ipif is 14373 * probably down. However, if we discarded 14374 * this packet, its duplicate would be 14375 * filtered out by the CGTP filter so none 14376 * of them would get through. So we keep 14377 * going with this one. 14378 */ 14379 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14380 if (ire->ire_rfq != NULL) { 14381 q = ire->ire_rfq; 14382 *qp = q; 14383 } 14384 } 14385 } 14386 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14387 /* 14388 * Verify that there are not more then one 14389 * IRE_BROADCAST with this broadcast address which 14390 * has ire_stq set. 14391 * TODO: simplify, loop over all IRE's 14392 */ 14393 ire_t *ire1; 14394 int num_stq = 0; 14395 mblk_t *mp1; 14396 14397 /* Find the first one with ire_stq set */ 14398 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14399 for (ire1 = ire; ire1 && 14400 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14401 ire1 = ire1->ire_next) 14402 ; 14403 if (ire1) { 14404 ire_refrele(ire); 14405 ire = ire1; 14406 IRE_REFHOLD(ire); 14407 } 14408 14409 /* Check if there are additional ones with stq set */ 14410 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14411 if (ire->ire_addr != ire1->ire_addr) 14412 break; 14413 if (ire1->ire_stq) { 14414 num_stq++; 14415 break; 14416 } 14417 } 14418 rw_exit(&ire->ire_bucket->irb_lock); 14419 if (num_stq == 1 && ire->ire_stq != NULL) { 14420 ip1dbg(("ip_rput_process_broadcast: directed " 14421 "broadcast to 0x%x\n", 14422 ntohl(ire->ire_addr))); 14423 mp1 = copymsg(mp); 14424 if (mp1) { 14425 switch (ipha->ipha_protocol) { 14426 case IPPROTO_UDP: 14427 ip_udp_input(q, mp1, ipha, ire, ill); 14428 break; 14429 default: 14430 ip_proto_input(q, mp1, ipha, ire, ill, 14431 0); 14432 break; 14433 } 14434 } 14435 /* 14436 * Adjust ttl to 2 (1+1 - the forward engine 14437 * will decrement it by one. 14438 */ 14439 if (ip_csum_hdr(ipha)) { 14440 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14441 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14442 freemsg(mp); 14443 ire_refrele(ire); 14444 return (NULL); 14445 } 14446 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14447 ipha->ipha_hdr_checksum = 0; 14448 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14449 ip_rput_process_forward(q, mp, ire, ipha, 14450 ill, ll_multicast); 14451 ire_refrele(ire); 14452 return (NULL); 14453 } 14454 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14455 ntohl(ire->ire_addr))); 14456 } 14457 14458 14459 /* Restore any hardware checksum flags */ 14460 DB_CKSUMFLAGS(mp) = hcksumflags; 14461 return (ire); 14462 } 14463 14464 /* ARGSUSED */ 14465 static boolean_t 14466 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14467 int *ll_multicast, ipaddr_t *dstp) 14468 { 14469 ip_stack_t *ipst = ill->ill_ipst; 14470 14471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14472 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14473 ntohs(ipha->ipha_length)); 14474 14475 /* 14476 * Forward packets only if we have joined the allmulti 14477 * group on this interface. 14478 */ 14479 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14480 int retval; 14481 14482 /* 14483 * Clear the indication that this may have hardware 14484 * checksum as we are not using it. 14485 */ 14486 DB_CKSUMFLAGS(mp) = 0; 14487 retval = ip_mforward(ill, ipha, mp); 14488 /* ip_mforward updates mib variables if needed */ 14489 /* clear b_prev - used by ip_mroute_decap */ 14490 mp->b_prev = NULL; 14491 14492 switch (retval) { 14493 case 0: 14494 /* 14495 * pkt is okay and arrived on phyint. 14496 * 14497 * If we are running as a multicast router 14498 * we need to see all IGMP and/or PIM packets. 14499 */ 14500 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14501 (ipha->ipha_protocol == IPPROTO_PIM)) { 14502 goto done; 14503 } 14504 break; 14505 case -1: 14506 /* pkt is mal-formed, toss it */ 14507 goto drop_pkt; 14508 case 1: 14509 /* pkt is okay and arrived on a tunnel */ 14510 /* 14511 * If we are running a multicast router 14512 * we need to see all igmp packets. 14513 */ 14514 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14515 *dstp = INADDR_BROADCAST; 14516 *ll_multicast = 1; 14517 return (B_FALSE); 14518 } 14519 14520 goto drop_pkt; 14521 } 14522 } 14523 14524 ILM_WALKER_HOLD(ill); 14525 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14526 /* 14527 * This might just be caused by the fact that 14528 * multiple IP Multicast addresses map to the same 14529 * link layer multicast - no need to increment counter! 14530 */ 14531 ILM_WALKER_RELE(ill); 14532 freemsg(mp); 14533 return (B_TRUE); 14534 } 14535 ILM_WALKER_RELE(ill); 14536 done: 14537 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14538 /* 14539 * This assumes the we deliver to all streams for multicast 14540 * and broadcast packets. 14541 */ 14542 *dstp = INADDR_BROADCAST; 14543 *ll_multicast = 1; 14544 return (B_FALSE); 14545 drop_pkt: 14546 ip2dbg(("ip_rput: drop pkt\n")); 14547 freemsg(mp); 14548 return (B_TRUE); 14549 } 14550 14551 /* 14552 * This function is used to both return an indication of whether or not 14553 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14554 * and in doing so, determine whether or not it is broadcast vs multicast. 14555 * For it to be a broadcast packet, we must have the appropriate mblk_t 14556 * hanging off the ill_t. If this is either not present or doesn't match 14557 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14558 * to be multicast. Thus NICs that have no broadcast address (or no 14559 * capability for one, such as point to point links) cannot return as 14560 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14561 * the return values simplifies the current use of the return value of this 14562 * function, which is to pass through the multicast/broadcast characteristic 14563 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14564 * changing the return value to some other symbol demands the appropriate 14565 * "translation" when hpe_flags is set prior to calling hook_run() for 14566 * packet events. 14567 */ 14568 int 14569 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14570 { 14571 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14572 mblk_t *bmp; 14573 14574 if (ind->dl_group_address) { 14575 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14576 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14577 MBLKL(mb) && 14578 (bmp = ill->ill_bcast_mp) != NULL) { 14579 dl_unitdata_req_t *dlur; 14580 uint8_t *bphys_addr; 14581 14582 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14583 if (ill->ill_sap_length < 0) 14584 bphys_addr = (uchar_t *)dlur + 14585 dlur->dl_dest_addr_offset; 14586 else 14587 bphys_addr = (uchar_t *)dlur + 14588 dlur->dl_dest_addr_offset + 14589 ill->ill_sap_length; 14590 14591 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14592 bphys_addr, ind->dl_dest_addr_length) == 0) { 14593 return (HPE_BROADCAST); 14594 } 14595 return (HPE_MULTICAST); 14596 } 14597 return (HPE_MULTICAST); 14598 } 14599 return (0); 14600 } 14601 14602 static boolean_t 14603 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14604 int *ll_multicast, mblk_t **mpp) 14605 { 14606 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14607 boolean_t must_copy = B_FALSE; 14608 struct iocblk *iocp; 14609 ipha_t *ipha; 14610 ip_stack_t *ipst = ill->ill_ipst; 14611 14612 #define rptr ((uchar_t *)ipha) 14613 14614 first_mp = *first_mpp; 14615 mp = *mpp; 14616 14617 ASSERT(first_mp == mp); 14618 14619 /* 14620 * if db_ref > 1 then copymsg and free original. Packet may be 14621 * changed and do not want other entity who has a reference to this 14622 * message to trip over the changes. This is a blind change because 14623 * trying to catch all places that might change packet is too 14624 * difficult (since it may be a module above this one) 14625 * 14626 * This corresponds to the non-fast path case. We walk down the full 14627 * chain in this case, and check the db_ref count of all the dblks, 14628 * and do a copymsg if required. It is possible that the db_ref counts 14629 * of the data blocks in the mblk chain can be different. 14630 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14631 * count of 1, followed by a M_DATA block with a ref count of 2, if 14632 * 'snoop' is running. 14633 */ 14634 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14635 if (mp1->b_datap->db_ref > 1) { 14636 must_copy = B_TRUE; 14637 break; 14638 } 14639 } 14640 14641 if (must_copy) { 14642 mp1 = copymsg(mp); 14643 if (mp1 == NULL) { 14644 for (mp1 = mp; mp1 != NULL; 14645 mp1 = mp1->b_cont) { 14646 mp1->b_next = NULL; 14647 mp1->b_prev = NULL; 14648 } 14649 freemsg(mp); 14650 if (ill != NULL) { 14651 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14652 } else { 14653 BUMP_MIB(&ipst->ips_ip_mib, 14654 ipIfStatsInDiscards); 14655 } 14656 return (B_TRUE); 14657 } 14658 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14659 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14660 /* Copy b_prev - used by ip_mroute_decap */ 14661 to_mp->b_prev = from_mp->b_prev; 14662 from_mp->b_prev = NULL; 14663 } 14664 *first_mpp = first_mp = mp1; 14665 freemsg(mp); 14666 mp = mp1; 14667 *mpp = mp1; 14668 } 14669 14670 ipha = (ipha_t *)mp->b_rptr; 14671 14672 /* 14673 * previous code has a case for M_DATA. 14674 * We want to check how that happens. 14675 */ 14676 ASSERT(first_mp->b_datap->db_type != M_DATA); 14677 switch (first_mp->b_datap->db_type) { 14678 case M_PROTO: 14679 case M_PCPROTO: 14680 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14681 DL_UNITDATA_IND) { 14682 /* Go handle anything other than data elsewhere. */ 14683 ip_rput_dlpi(q, mp); 14684 return (B_TRUE); 14685 } 14686 14687 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14688 /* Ditch the DLPI header. */ 14689 mp1 = mp->b_cont; 14690 ASSERT(first_mp == mp); 14691 *first_mpp = mp1; 14692 freeb(mp); 14693 *mpp = mp1; 14694 return (B_FALSE); 14695 case M_IOCACK: 14696 ip1dbg(("got iocack ")); 14697 iocp = (struct iocblk *)mp->b_rptr; 14698 switch (iocp->ioc_cmd) { 14699 case DL_IOC_HDR_INFO: 14700 ill = (ill_t *)q->q_ptr; 14701 ill_fastpath_ack(ill, mp); 14702 return (B_TRUE); 14703 case SIOCSTUNPARAM: 14704 case OSIOCSTUNPARAM: 14705 /* Go through qwriter_ip */ 14706 break; 14707 case SIOCGTUNPARAM: 14708 case OSIOCGTUNPARAM: 14709 ip_rput_other(NULL, q, mp, NULL); 14710 return (B_TRUE); 14711 default: 14712 putnext(q, mp); 14713 return (B_TRUE); 14714 } 14715 /* FALLTHRU */ 14716 case M_ERROR: 14717 case M_HANGUP: 14718 /* 14719 * Since this is on the ill stream we unconditionally 14720 * bump up the refcount 14721 */ 14722 ill_refhold(ill); 14723 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14724 return (B_TRUE); 14725 case M_CTL: 14726 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14727 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14728 IPHADA_M_CTL)) { 14729 /* 14730 * It's an IPsec accelerated packet. 14731 * Make sure that the ill from which we received the 14732 * packet has enabled IPsec hardware acceleration. 14733 */ 14734 if (!(ill->ill_capabilities & 14735 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14736 /* IPsec kstats: bean counter */ 14737 freemsg(mp); 14738 return (B_TRUE); 14739 } 14740 14741 /* 14742 * Make mp point to the mblk following the M_CTL, 14743 * then process according to type of mp. 14744 * After this processing, first_mp will point to 14745 * the data-attributes and mp to the pkt following 14746 * the M_CTL. 14747 */ 14748 mp = first_mp->b_cont; 14749 if (mp == NULL) { 14750 freemsg(first_mp); 14751 return (B_TRUE); 14752 } 14753 /* 14754 * A Hardware Accelerated packet can only be M_DATA 14755 * ESP or AH packet. 14756 */ 14757 if (mp->b_datap->db_type != M_DATA) { 14758 /* non-M_DATA IPsec accelerated packet */ 14759 IPSECHW_DEBUG(IPSECHW_PKT, 14760 ("non-M_DATA IPsec accelerated pkt\n")); 14761 freemsg(first_mp); 14762 return (B_TRUE); 14763 } 14764 ipha = (ipha_t *)mp->b_rptr; 14765 if (ipha->ipha_protocol != IPPROTO_AH && 14766 ipha->ipha_protocol != IPPROTO_ESP) { 14767 IPSECHW_DEBUG(IPSECHW_PKT, 14768 ("non-M_DATA IPsec accelerated pkt\n")); 14769 freemsg(first_mp); 14770 return (B_TRUE); 14771 } 14772 *mpp = mp; 14773 return (B_FALSE); 14774 } 14775 putnext(q, mp); 14776 return (B_TRUE); 14777 case M_IOCNAK: 14778 ip1dbg(("got iocnak ")); 14779 iocp = (struct iocblk *)mp->b_rptr; 14780 switch (iocp->ioc_cmd) { 14781 case SIOCSTUNPARAM: 14782 case OSIOCSTUNPARAM: 14783 /* 14784 * Since this is on the ill stream we unconditionally 14785 * bump up the refcount 14786 */ 14787 ill_refhold(ill); 14788 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14789 return (B_TRUE); 14790 case DL_IOC_HDR_INFO: 14791 case SIOCGTUNPARAM: 14792 case OSIOCGTUNPARAM: 14793 ip_rput_other(NULL, q, mp, NULL); 14794 return (B_TRUE); 14795 default: 14796 break; 14797 } 14798 /* FALLTHRU */ 14799 default: 14800 putnext(q, mp); 14801 return (B_TRUE); 14802 } 14803 } 14804 14805 /* Read side put procedure. Packets coming from the wire arrive here. */ 14806 void 14807 ip_rput(queue_t *q, mblk_t *mp) 14808 { 14809 ill_t *ill; 14810 union DL_primitives *dl; 14811 14812 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14813 14814 ill = (ill_t *)q->q_ptr; 14815 14816 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14817 /* 14818 * If things are opening or closing, only accept high-priority 14819 * DLPI messages. (On open ill->ill_ipif has not yet been 14820 * created; on close, things hanging off the ill may have been 14821 * freed already.) 14822 */ 14823 dl = (union DL_primitives *)mp->b_rptr; 14824 if (DB_TYPE(mp) != M_PCPROTO || 14825 dl->dl_primitive == DL_UNITDATA_IND) { 14826 /* 14827 * SIOC[GS]TUNPARAM ioctls can come here. 14828 */ 14829 inet_freemsg(mp); 14830 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14831 "ip_rput_end: q %p (%S)", q, "uninit"); 14832 return; 14833 } 14834 } 14835 14836 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14837 "ip_rput_end: q %p (%S)", q, "end"); 14838 14839 ip_input(ill, NULL, mp, NULL); 14840 } 14841 14842 static mblk_t * 14843 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14844 { 14845 mblk_t *mp1; 14846 boolean_t adjusted = B_FALSE; 14847 ip_stack_t *ipst = ill->ill_ipst; 14848 14849 IP_STAT(ipst, ip_db_ref); 14850 /* 14851 * The IP_RECVSLLA option depends on having the 14852 * link layer header. First check that: 14853 * a> the underlying device is of type ether, 14854 * since this option is currently supported only 14855 * over ethernet. 14856 * b> there is enough room to copy over the link 14857 * layer header. 14858 * 14859 * Once the checks are done, adjust rptr so that 14860 * the link layer header will be copied via 14861 * copymsg. Note that, IFT_ETHER may be returned 14862 * by some non-ethernet drivers but in this case 14863 * the second check will fail. 14864 */ 14865 if (ill->ill_type == IFT_ETHER && 14866 (mp->b_rptr - mp->b_datap->db_base) >= 14867 sizeof (struct ether_header)) { 14868 mp->b_rptr -= sizeof (struct ether_header); 14869 adjusted = B_TRUE; 14870 } 14871 mp1 = copymsg(mp); 14872 14873 if (mp1 == NULL) { 14874 mp->b_next = NULL; 14875 /* clear b_prev - used by ip_mroute_decap */ 14876 mp->b_prev = NULL; 14877 freemsg(mp); 14878 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14879 return (NULL); 14880 } 14881 14882 if (adjusted) { 14883 /* 14884 * Copy is done. Restore the pointer in 14885 * the _new_ mblk 14886 */ 14887 mp1->b_rptr += sizeof (struct ether_header); 14888 } 14889 14890 /* Copy b_prev - used by ip_mroute_decap */ 14891 mp1->b_prev = mp->b_prev; 14892 mp->b_prev = NULL; 14893 14894 /* preserve the hardware checksum flags and data, if present */ 14895 if (DB_CKSUMFLAGS(mp) != 0) { 14896 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14897 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14898 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14899 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14900 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14901 } 14902 14903 freemsg(mp); 14904 return (mp1); 14905 } 14906 14907 /* 14908 * Direct read side procedure capable of dealing with chains. GLDv3 based 14909 * drivers call this function directly with mblk chains while STREAMS 14910 * read side procedure ip_rput() calls this for single packet with ip_ring 14911 * set to NULL to process one packet at a time. 14912 * 14913 * The ill will always be valid if this function is called directly from 14914 * the driver. 14915 * 14916 * If ip_input() is called from GLDv3: 14917 * 14918 * - This must be a non-VLAN IP stream. 14919 * - 'mp' is either an untagged or a special priority-tagged packet. 14920 * - Any VLAN tag that was in the MAC header has been stripped. 14921 * 14922 * If the IP header in packet is not 32-bit aligned, every message in the 14923 * chain will be aligned before further operations. This is required on SPARC 14924 * platform. 14925 */ 14926 /* ARGSUSED */ 14927 void 14928 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14929 struct mac_header_info_s *mhip) 14930 { 14931 ipaddr_t dst = NULL; 14932 ipaddr_t prev_dst; 14933 ire_t *ire = NULL; 14934 ipha_t *ipha; 14935 uint_t pkt_len; 14936 ssize_t len; 14937 uint_t opt_len; 14938 int ll_multicast; 14939 int cgtp_flt_pkt; 14940 queue_t *q = ill->ill_rq; 14941 squeue_t *curr_sqp = NULL; 14942 mblk_t *head = NULL; 14943 mblk_t *tail = NULL; 14944 mblk_t *first_mp; 14945 mblk_t *mp; 14946 mblk_t *dmp; 14947 int cnt = 0; 14948 ip_stack_t *ipst = ill->ill_ipst; 14949 14950 ASSERT(mp_chain != NULL); 14951 ASSERT(ill != NULL); 14952 14953 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14954 14955 #define rptr ((uchar_t *)ipha) 14956 14957 while (mp_chain != NULL) { 14958 first_mp = mp = mp_chain; 14959 mp_chain = mp_chain->b_next; 14960 mp->b_next = NULL; 14961 ll_multicast = 0; 14962 14963 /* 14964 * We do ire caching from one iteration to 14965 * another. In the event the packet chain contains 14966 * all packets from the same dst, this caching saves 14967 * an ire_cache_lookup for each of the succeeding 14968 * packets in a packet chain. 14969 */ 14970 prev_dst = dst; 14971 14972 /* 14973 * if db_ref > 1 then copymsg and free original. Packet 14974 * may be changed and we do not want the other entity 14975 * who has a reference to this message to trip over the 14976 * changes. This is a blind change because trying to 14977 * catch all places that might change the packet is too 14978 * difficult. 14979 * 14980 * This corresponds to the fast path case, where we have 14981 * a chain of M_DATA mblks. We check the db_ref count 14982 * of only the 1st data block in the mblk chain. There 14983 * doesn't seem to be a reason why a device driver would 14984 * send up data with varying db_ref counts in the mblk 14985 * chain. In any case the Fast path is a private 14986 * interface, and our drivers don't do such a thing. 14987 * Given the above assumption, there is no need to walk 14988 * down the entire mblk chain (which could have a 14989 * potential performance problem) 14990 */ 14991 14992 if (DB_REF(mp) > 1) { 14993 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14994 continue; 14995 } 14996 14997 /* 14998 * Check and align the IP header. 14999 */ 15000 first_mp = mp; 15001 if (DB_TYPE(mp) == M_DATA) { 15002 dmp = mp; 15003 } else if (DB_TYPE(mp) == M_PROTO && 15004 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15005 dmp = mp->b_cont; 15006 } else { 15007 dmp = NULL; 15008 } 15009 if (dmp != NULL) { 15010 /* 15011 * IP header ptr not aligned? 15012 * OR IP header not complete in first mblk 15013 */ 15014 if (!OK_32PTR(dmp->b_rptr) || 15015 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15016 if (!ip_check_and_align_header(q, dmp, ipst)) 15017 continue; 15018 } 15019 } 15020 15021 /* 15022 * ip_input fast path 15023 */ 15024 15025 /* mblk type is not M_DATA */ 15026 if (DB_TYPE(mp) != M_DATA) { 15027 if (ip_rput_process_notdata(q, &first_mp, ill, 15028 &ll_multicast, &mp)) 15029 continue; 15030 15031 /* 15032 * The only way we can get here is if we had a 15033 * packet that was either a DL_UNITDATA_IND or 15034 * an M_CTL for an IPsec accelerated packet. 15035 * 15036 * In either case, the first_mp will point to 15037 * the leading M_PROTO or M_CTL. 15038 */ 15039 ASSERT(first_mp != NULL); 15040 } else if (mhip != NULL) { 15041 /* 15042 * ll_multicast is set here so that it is ready 15043 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15044 * manipulates ll_multicast in the same fashion when 15045 * called from ip_rput_process_notdata. 15046 */ 15047 switch (mhip->mhi_dsttype) { 15048 case MAC_ADDRTYPE_MULTICAST : 15049 ll_multicast = HPE_MULTICAST; 15050 break; 15051 case MAC_ADDRTYPE_BROADCAST : 15052 ll_multicast = HPE_BROADCAST; 15053 break; 15054 default : 15055 break; 15056 } 15057 } 15058 15059 /* Make sure its an M_DATA and that its aligned */ 15060 ASSERT(DB_TYPE(mp) == M_DATA); 15061 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15062 15063 ipha = (ipha_t *)mp->b_rptr; 15064 len = mp->b_wptr - rptr; 15065 pkt_len = ntohs(ipha->ipha_length); 15066 15067 /* 15068 * We must count all incoming packets, even if they end 15069 * up being dropped later on. 15070 */ 15071 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15072 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15073 15074 /* multiple mblk or too short */ 15075 len -= pkt_len; 15076 if (len != 0) { 15077 /* 15078 * Make sure we have data length consistent 15079 * with the IP header. 15080 */ 15081 if (mp->b_cont == NULL) { 15082 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15083 BUMP_MIB(ill->ill_ip_mib, 15084 ipIfStatsInHdrErrors); 15085 ip2dbg(("ip_input: drop pkt\n")); 15086 freemsg(mp); 15087 continue; 15088 } 15089 mp->b_wptr = rptr + pkt_len; 15090 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15091 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15092 BUMP_MIB(ill->ill_ip_mib, 15093 ipIfStatsInHdrErrors); 15094 ip2dbg(("ip_input: drop pkt\n")); 15095 freemsg(mp); 15096 continue; 15097 } 15098 (void) adjmsg(mp, -len); 15099 IP_STAT(ipst, ip_multimblk3); 15100 } 15101 } 15102 15103 /* Obtain the dst of the current packet */ 15104 dst = ipha->ipha_dst; 15105 15106 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15107 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15108 ipha, ip6_t *, NULL, int, 0); 15109 15110 /* 15111 * The following test for loopback is faster than 15112 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15113 * operations. 15114 * Note that these addresses are always in network byte order 15115 */ 15116 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15117 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15118 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15119 freemsg(mp); 15120 continue; 15121 } 15122 15123 /* 15124 * The event for packets being received from a 'physical' 15125 * interface is placed after validation of the source and/or 15126 * destination address as being local so that packets can be 15127 * redirected to loopback addresses using ipnat. 15128 */ 15129 DTRACE_PROBE4(ip4__physical__in__start, 15130 ill_t *, ill, ill_t *, NULL, 15131 ipha_t *, ipha, mblk_t *, first_mp); 15132 15133 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15134 ipst->ips_ipv4firewall_physical_in, 15135 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15136 15137 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15138 15139 if (first_mp == NULL) { 15140 continue; 15141 } 15142 dst = ipha->ipha_dst; 15143 15144 /* 15145 * Attach any necessary label information to 15146 * this packet 15147 */ 15148 if (is_system_labeled() && 15149 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15150 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15151 freemsg(mp); 15152 continue; 15153 } 15154 15155 if (ipst->ips_ipobs_enabled) { 15156 zoneid_t dzone; 15157 15158 /* 15159 * On the inbound path the src zone will be unknown as 15160 * this packet has come from the wire. 15161 */ 15162 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15163 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15164 ill, IPV4_VERSION, 0, ipst); 15165 } 15166 15167 /* 15168 * Reuse the cached ire only if the ipha_dst of the previous 15169 * packet is the same as the current packet AND it is not 15170 * INADDR_ANY. 15171 */ 15172 if (!(dst == prev_dst && dst != INADDR_ANY) && 15173 (ire != NULL)) { 15174 ire_refrele(ire); 15175 ire = NULL; 15176 } 15177 15178 opt_len = ipha->ipha_version_and_hdr_length - 15179 IP_SIMPLE_HDR_VERSION; 15180 15181 /* 15182 * Check to see if we can take the fastpath. 15183 * That is possible if the following conditions are met 15184 * o Tsol disabled 15185 * o CGTP disabled 15186 * o ipp_action_count is 0 15187 * o no options in the packet 15188 * o not a RSVP packet 15189 * o not a multicast packet 15190 * o ill not in IP_DHCPINIT_IF mode 15191 */ 15192 if (!is_system_labeled() && 15193 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15194 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15195 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15196 if (ire == NULL) 15197 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15198 ipst); 15199 15200 /* incoming packet is for forwarding */ 15201 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15202 ire = ip_fast_forward(ire, dst, ill, mp); 15203 continue; 15204 } 15205 /* incoming packet is for local consumption */ 15206 if (ire->ire_type & IRE_LOCAL) 15207 goto local; 15208 } 15209 15210 /* 15211 * Disable ire caching for anything more complex 15212 * than the simple fast path case we checked for above. 15213 */ 15214 if (ire != NULL) { 15215 ire_refrele(ire); 15216 ire = NULL; 15217 } 15218 15219 /* 15220 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15221 * server to unicast DHCP packets to a DHCP client using the 15222 * IP address it is offering to the client. This can be 15223 * disabled through the "broadcast bit", but not all DHCP 15224 * servers honor that bit. Therefore, to interoperate with as 15225 * many DHCP servers as possible, the DHCP client allows the 15226 * server to unicast, but we treat those packets as broadcast 15227 * here. Note that we don't rewrite the packet itself since 15228 * (a) that would mess up the checksums and (b) the DHCP 15229 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15230 * hand it the packet regardless. 15231 */ 15232 if (ill->ill_dhcpinit != 0 && 15233 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15234 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15235 udpha_t *udpha; 15236 15237 /* 15238 * Reload ipha since pullupmsg() can change b_rptr. 15239 */ 15240 ipha = (ipha_t *)mp->b_rptr; 15241 udpha = (udpha_t *)&ipha[1]; 15242 15243 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15244 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15245 mblk_t *, mp); 15246 dst = INADDR_BROADCAST; 15247 } 15248 } 15249 15250 /* Full-blown slow path */ 15251 if (opt_len != 0) { 15252 if (len != 0) 15253 IP_STAT(ipst, ip_multimblk4); 15254 else 15255 IP_STAT(ipst, ip_ipoptions); 15256 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15257 &dst, ipst)) 15258 continue; 15259 } 15260 15261 /* 15262 * Invoke the CGTP (multirouting) filtering module to process 15263 * the incoming packet. Packets identified as duplicates 15264 * must be discarded. Filtering is active only if the 15265 * the ip_cgtp_filter ndd variable is non-zero. 15266 */ 15267 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15268 if (ipst->ips_ip_cgtp_filter && 15269 ipst->ips_ip_cgtp_filter_ops != NULL) { 15270 netstackid_t stackid; 15271 15272 stackid = ipst->ips_netstack->netstack_stackid; 15273 cgtp_flt_pkt = 15274 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15275 ill->ill_phyint->phyint_ifindex, mp); 15276 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15277 freemsg(first_mp); 15278 continue; 15279 } 15280 } 15281 15282 /* 15283 * If rsvpd is running, let RSVP daemon handle its processing 15284 * and forwarding of RSVP multicast/unicast packets. 15285 * If rsvpd is not running but mrouted is running, RSVP 15286 * multicast packets are forwarded as multicast traffic 15287 * and RSVP unicast packets are forwarded by unicast router. 15288 * If neither rsvpd nor mrouted is running, RSVP multicast 15289 * packets are not forwarded, but the unicast packets are 15290 * forwarded like unicast traffic. 15291 */ 15292 if (ipha->ipha_protocol == IPPROTO_RSVP && 15293 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15294 NULL) { 15295 /* RSVP packet and rsvpd running. Treat as ours */ 15296 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15297 /* 15298 * This assumes that we deliver to all streams for 15299 * multicast and broadcast packets. 15300 * We have to force ll_multicast to 1 to handle the 15301 * M_DATA messages passed in from ip_mroute_decap. 15302 */ 15303 dst = INADDR_BROADCAST; 15304 ll_multicast = 1; 15305 } else if (CLASSD(dst)) { 15306 /* packet is multicast */ 15307 mp->b_next = NULL; 15308 if (ip_rput_process_multicast(q, mp, ill, ipha, 15309 &ll_multicast, &dst)) 15310 continue; 15311 } 15312 15313 if (ire == NULL) { 15314 ire = ire_cache_lookup(dst, ALL_ZONES, 15315 MBLK_GETLABEL(mp), ipst); 15316 } 15317 15318 if (ire != NULL && ire->ire_stq != NULL && 15319 ire->ire_zoneid != GLOBAL_ZONEID && 15320 ire->ire_zoneid != ALL_ZONES) { 15321 /* 15322 * Should only use IREs that are visible from the 15323 * global zone for forwarding. 15324 */ 15325 ire_refrele(ire); 15326 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15327 MBLK_GETLABEL(mp), ipst); 15328 } 15329 15330 if (ire == NULL) { 15331 /* 15332 * No IRE for this destination, so it can't be for us. 15333 * Unless we are forwarding, drop the packet. 15334 * We have to let source routed packets through 15335 * since we don't yet know if they are 'ping -l' 15336 * packets i.e. if they will go out over the 15337 * same interface as they came in on. 15338 */ 15339 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15340 if (ire == NULL) 15341 continue; 15342 } 15343 15344 /* 15345 * Broadcast IRE may indicate either broadcast or 15346 * multicast packet 15347 */ 15348 if (ire->ire_type == IRE_BROADCAST) { 15349 /* 15350 * Skip broadcast checks if packet is UDP multicast; 15351 * we'd rather not enter ip_rput_process_broadcast() 15352 * unless the packet is broadcast for real, since 15353 * that routine is a no-op for multicast. 15354 */ 15355 if (ipha->ipha_protocol != IPPROTO_UDP || 15356 !CLASSD(ipha->ipha_dst)) { 15357 ire = ip_rput_process_broadcast(&q, mp, 15358 ire, ipha, ill, dst, cgtp_flt_pkt, 15359 ll_multicast); 15360 if (ire == NULL) 15361 continue; 15362 } 15363 } else if (ire->ire_stq != NULL) { 15364 /* fowarding? */ 15365 ip_rput_process_forward(q, mp, ire, ipha, ill, 15366 ll_multicast); 15367 /* ip_rput_process_forward consumed the packet */ 15368 continue; 15369 } 15370 15371 local: 15372 /* 15373 * If the queue in the ire is different to the ingress queue 15374 * then we need to check to see if we can accept the packet. 15375 * Note that for multicast packets and broadcast packets sent 15376 * to a broadcast address which is shared between multiple 15377 * interfaces we should not do this since we just got a random 15378 * broadcast ire. 15379 */ 15380 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15381 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15382 ill)) == NULL) { 15383 /* Drop packet */ 15384 BUMP_MIB(ill->ill_ip_mib, 15385 ipIfStatsForwProhibits); 15386 freemsg(mp); 15387 continue; 15388 } 15389 if (ire->ire_rfq != NULL) 15390 q = ire->ire_rfq; 15391 } 15392 15393 switch (ipha->ipha_protocol) { 15394 case IPPROTO_TCP: 15395 ASSERT(first_mp == mp); 15396 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15397 mp, 0, q, ip_ring)) != NULL) { 15398 if (curr_sqp == NULL) { 15399 curr_sqp = GET_SQUEUE(mp); 15400 ASSERT(cnt == 0); 15401 cnt++; 15402 head = tail = mp; 15403 } else if (curr_sqp == GET_SQUEUE(mp)) { 15404 ASSERT(tail != NULL); 15405 cnt++; 15406 tail->b_next = mp; 15407 tail = mp; 15408 } else { 15409 /* 15410 * A different squeue. Send the 15411 * chain for the previous squeue on 15412 * its way. This shouldn't happen 15413 * often unless interrupt binding 15414 * changes. 15415 */ 15416 IP_STAT(ipst, ip_input_multi_squeue); 15417 squeue_enter_chain(curr_sqp, head, 15418 tail, cnt, SQTAG_IP_INPUT); 15419 curr_sqp = GET_SQUEUE(mp); 15420 head = mp; 15421 tail = mp; 15422 cnt = 1; 15423 } 15424 } 15425 continue; 15426 case IPPROTO_UDP: 15427 ASSERT(first_mp == mp); 15428 ip_udp_input(q, mp, ipha, ire, ill); 15429 continue; 15430 case IPPROTO_SCTP: 15431 ASSERT(first_mp == mp); 15432 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15433 q, dst); 15434 /* ire has been released by ip_sctp_input */ 15435 ire = NULL; 15436 continue; 15437 default: 15438 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15439 continue; 15440 } 15441 } 15442 15443 if (ire != NULL) 15444 ire_refrele(ire); 15445 15446 if (head != NULL) 15447 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15448 15449 /* 15450 * This code is there just to make netperf/ttcp look good. 15451 * 15452 * Its possible that after being in polling mode (and having cleared 15453 * the backlog), squeues have turned the interrupt frequency higher 15454 * to improve latency at the expense of more CPU utilization (less 15455 * packets per interrupts or more number of interrupts). Workloads 15456 * like ttcp/netperf do manage to tickle polling once in a while 15457 * but for the remaining time, stay in higher interrupt mode since 15458 * their packet arrival rate is pretty uniform and this shows up 15459 * as higher CPU utilization. Since people care about CPU utilization 15460 * while running netperf/ttcp, turn the interrupt frequency back to 15461 * normal/default if polling has not been used in ip_poll_normal_ticks. 15462 */ 15463 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15464 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15465 ip_ring->rr_poll_state &= ~ILL_POLLING; 15466 ip_ring->rr_blank(ip_ring->rr_handle, 15467 ip_ring->rr_normal_blank_time, 15468 ip_ring->rr_normal_pkt_cnt); 15469 } 15470 } 15471 15472 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15473 "ip_input_end: q %p (%S)", q, "end"); 15474 #undef rptr 15475 } 15476 15477 static void 15478 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15479 t_uscalar_t err) 15480 { 15481 if (dl_err == DL_SYSERR) { 15482 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15483 "%s: %s failed: DL_SYSERR (errno %u)\n", 15484 ill->ill_name, dl_primstr(prim), err); 15485 return; 15486 } 15487 15488 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15489 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15490 dl_errstr(dl_err)); 15491 } 15492 15493 /* 15494 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15495 * than DL_UNITDATA_IND messages. If we need to process this message 15496 * exclusively, we call qwriter_ip, in which case we also need to call 15497 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15498 */ 15499 void 15500 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15501 { 15502 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15503 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15504 ill_t *ill = q->q_ptr; 15505 t_uscalar_t prim = dloa->dl_primitive; 15506 t_uscalar_t reqprim = DL_PRIM_INVAL; 15507 15508 ip1dbg(("ip_rput_dlpi")); 15509 15510 /* 15511 * If we received an ACK but didn't send a request for it, then it 15512 * can't be part of any pending operation; discard up-front. 15513 */ 15514 switch (prim) { 15515 case DL_ERROR_ACK: 15516 reqprim = dlea->dl_error_primitive; 15517 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15518 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15519 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15520 dlea->dl_unix_errno)); 15521 break; 15522 case DL_OK_ACK: 15523 reqprim = dloa->dl_correct_primitive; 15524 break; 15525 case DL_INFO_ACK: 15526 reqprim = DL_INFO_REQ; 15527 break; 15528 case DL_BIND_ACK: 15529 reqprim = DL_BIND_REQ; 15530 break; 15531 case DL_PHYS_ADDR_ACK: 15532 reqprim = DL_PHYS_ADDR_REQ; 15533 break; 15534 case DL_NOTIFY_ACK: 15535 reqprim = DL_NOTIFY_REQ; 15536 break; 15537 case DL_CONTROL_ACK: 15538 reqprim = DL_CONTROL_REQ; 15539 break; 15540 case DL_CAPABILITY_ACK: 15541 reqprim = DL_CAPABILITY_REQ; 15542 break; 15543 } 15544 15545 if (prim != DL_NOTIFY_IND) { 15546 if (reqprim == DL_PRIM_INVAL || 15547 !ill_dlpi_pending(ill, reqprim)) { 15548 /* Not a DLPI message we support or expected */ 15549 freemsg(mp); 15550 return; 15551 } 15552 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15553 dl_primstr(reqprim))); 15554 } 15555 15556 switch (reqprim) { 15557 case DL_UNBIND_REQ: 15558 /* 15559 * NOTE: we mark the unbind as complete even if we got a 15560 * DL_ERROR_ACK, since there's not much else we can do. 15561 */ 15562 mutex_enter(&ill->ill_lock); 15563 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15564 cv_signal(&ill->ill_cv); 15565 mutex_exit(&ill->ill_lock); 15566 break; 15567 15568 case DL_ENABMULTI_REQ: 15569 if (prim == DL_OK_ACK) { 15570 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15571 ill->ill_dlpi_multicast_state = IDS_OK; 15572 } 15573 break; 15574 } 15575 15576 /* 15577 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15578 * need to become writer to continue to process it. Because an 15579 * exclusive operation doesn't complete until replies to all queued 15580 * DLPI messages have been received, we know we're in the middle of an 15581 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15582 * 15583 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15584 * Since this is on the ill stream we unconditionally bump up the 15585 * refcount without doing ILL_CAN_LOOKUP(). 15586 */ 15587 ill_refhold(ill); 15588 if (prim == DL_NOTIFY_IND) 15589 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15590 else 15591 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15592 } 15593 15594 /* 15595 * Handling of DLPI messages that require exclusive access to the ipsq. 15596 * 15597 * Need to do ill_pending_mp_release on ioctl completion, which could 15598 * happen here. (along with mi_copy_done) 15599 */ 15600 /* ARGSUSED */ 15601 static void 15602 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15603 { 15604 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15605 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15606 int err = 0; 15607 ill_t *ill; 15608 ipif_t *ipif = NULL; 15609 mblk_t *mp1 = NULL; 15610 conn_t *connp = NULL; 15611 t_uscalar_t paddrreq; 15612 mblk_t *mp_hw; 15613 boolean_t success; 15614 boolean_t ioctl_aborted = B_FALSE; 15615 boolean_t log = B_TRUE; 15616 ip_stack_t *ipst; 15617 15618 ip1dbg(("ip_rput_dlpi_writer ..")); 15619 ill = (ill_t *)q->q_ptr; 15620 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15621 15622 ASSERT(IAM_WRITER_ILL(ill)); 15623 15624 ipst = ill->ill_ipst; 15625 15626 /* 15627 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15628 * both are null or non-null. However we can assert that only 15629 * after grabbing the ipsq_lock. So we don't make any assertion 15630 * here and in other places in the code. 15631 */ 15632 ipif = ipsq->ipsq_pending_ipif; 15633 /* 15634 * The current ioctl could have been aborted by the user and a new 15635 * ioctl to bring up another ill could have started. We could still 15636 * get a response from the driver later. 15637 */ 15638 if (ipif != NULL && ipif->ipif_ill != ill) 15639 ioctl_aborted = B_TRUE; 15640 15641 switch (dloa->dl_primitive) { 15642 case DL_ERROR_ACK: 15643 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15644 dl_primstr(dlea->dl_error_primitive))); 15645 15646 switch (dlea->dl_error_primitive) { 15647 case DL_DISABMULTI_REQ: 15648 if (!ill->ill_isv6) 15649 ipsq_current_finish(ipsq); 15650 ill_dlpi_done(ill, dlea->dl_error_primitive); 15651 break; 15652 case DL_PROMISCON_REQ: 15653 case DL_PROMISCOFF_REQ: 15654 case DL_UNBIND_REQ: 15655 case DL_ATTACH_REQ: 15656 case DL_INFO_REQ: 15657 ill_dlpi_done(ill, dlea->dl_error_primitive); 15658 break; 15659 case DL_NOTIFY_REQ: 15660 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15661 log = B_FALSE; 15662 break; 15663 case DL_PHYS_ADDR_REQ: 15664 /* 15665 * For IPv6 only, there are two additional 15666 * phys_addr_req's sent to the driver to get the 15667 * IPv6 token and lla. This allows IP to acquire 15668 * the hardware address format for a given interface 15669 * without having built in knowledge of the hardware 15670 * address. ill_phys_addr_pend keeps track of the last 15671 * DL_PAR sent so we know which response we are 15672 * dealing with. ill_dlpi_done will update 15673 * ill_phys_addr_pend when it sends the next req. 15674 * We don't complete the IOCTL until all three DL_PARs 15675 * have been attempted, so set *_len to 0 and break. 15676 */ 15677 paddrreq = ill->ill_phys_addr_pend; 15678 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15679 if (paddrreq == DL_IPV6_TOKEN) { 15680 ill->ill_token_length = 0; 15681 log = B_FALSE; 15682 break; 15683 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15684 ill->ill_nd_lla_len = 0; 15685 log = B_FALSE; 15686 break; 15687 } 15688 /* 15689 * Something went wrong with the DL_PHYS_ADDR_REQ. 15690 * We presumably have an IOCTL hanging out waiting 15691 * for completion. Find it and complete the IOCTL 15692 * with the error noted. 15693 * However, ill_dl_phys was called on an ill queue 15694 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15695 * set. But the ioctl is known to be pending on ill_wq. 15696 */ 15697 if (!ill->ill_ifname_pending) 15698 break; 15699 ill->ill_ifname_pending = 0; 15700 if (!ioctl_aborted) 15701 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15702 if (mp1 != NULL) { 15703 /* 15704 * This operation (SIOCSLIFNAME) must have 15705 * happened on the ill. Assert there is no conn 15706 */ 15707 ASSERT(connp == NULL); 15708 q = ill->ill_wq; 15709 } 15710 break; 15711 case DL_BIND_REQ: 15712 ill_dlpi_done(ill, DL_BIND_REQ); 15713 if (ill->ill_ifname_pending) 15714 break; 15715 /* 15716 * Something went wrong with the bind. We presumably 15717 * have an IOCTL hanging out waiting for completion. 15718 * Find it, take down the interface that was coming 15719 * up, and complete the IOCTL with the error noted. 15720 */ 15721 if (!ioctl_aborted) 15722 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15723 if (mp1 != NULL) { 15724 /* 15725 * This operation (SIOCSLIFFLAGS) must have 15726 * happened from a conn. 15727 */ 15728 ASSERT(connp != NULL); 15729 q = CONNP_TO_WQ(connp); 15730 if (ill->ill_move_in_progress) { 15731 ILL_CLEAR_MOVE(ill); 15732 } 15733 (void) ipif_down(ipif, NULL, NULL); 15734 /* error is set below the switch */ 15735 } 15736 break; 15737 case DL_ENABMULTI_REQ: 15738 if (!ill->ill_isv6) 15739 ipsq_current_finish(ipsq); 15740 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15741 15742 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15743 ill->ill_dlpi_multicast_state = IDS_FAILED; 15744 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15745 ipif_t *ipif; 15746 15747 printf("ip: joining multicasts failed (%d)" 15748 " on %s - will use link layer " 15749 "broadcasts for multicast\n", 15750 dlea->dl_errno, ill->ill_name); 15751 15752 /* 15753 * Set up the multicast mapping alone. 15754 * writer, so ok to access ill->ill_ipif 15755 * without any lock. 15756 */ 15757 ipif = ill->ill_ipif; 15758 mutex_enter(&ill->ill_phyint->phyint_lock); 15759 ill->ill_phyint->phyint_flags |= 15760 PHYI_MULTI_BCAST; 15761 mutex_exit(&ill->ill_phyint->phyint_lock); 15762 15763 if (!ill->ill_isv6) { 15764 (void) ipif_arp_setup_multicast(ipif, 15765 NULL); 15766 } else { 15767 (void) ipif_ndp_setup_multicast(ipif, 15768 NULL); 15769 } 15770 } 15771 freemsg(mp); /* Don't want to pass this up */ 15772 return; 15773 15774 case DL_CAPABILITY_REQ: 15775 case DL_CONTROL_REQ: 15776 ill_dlpi_done(ill, dlea->dl_error_primitive); 15777 ill->ill_dlpi_capab_state = IDS_FAILED; 15778 freemsg(mp); 15779 return; 15780 } 15781 /* 15782 * Note the error for IOCTL completion (mp1 is set when 15783 * ready to complete ioctl). If ill_ifname_pending_err is 15784 * set, an error occured during plumbing (ill_ifname_pending), 15785 * so we want to report that error. 15786 * 15787 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15788 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15789 * expected to get errack'd if the driver doesn't support 15790 * these flags (e.g. ethernet). log will be set to B_FALSE 15791 * if these error conditions are encountered. 15792 */ 15793 if (mp1 != NULL) { 15794 if (ill->ill_ifname_pending_err != 0) { 15795 err = ill->ill_ifname_pending_err; 15796 ill->ill_ifname_pending_err = 0; 15797 } else { 15798 err = dlea->dl_unix_errno ? 15799 dlea->dl_unix_errno : ENXIO; 15800 } 15801 /* 15802 * If we're plumbing an interface and an error hasn't already 15803 * been saved, set ill_ifname_pending_err to the error passed 15804 * up. Ignore the error if log is B_FALSE (see comment above). 15805 */ 15806 } else if (log && ill->ill_ifname_pending && 15807 ill->ill_ifname_pending_err == 0) { 15808 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15809 dlea->dl_unix_errno : ENXIO; 15810 } 15811 15812 if (log) 15813 ip_dlpi_error(ill, dlea->dl_error_primitive, 15814 dlea->dl_errno, dlea->dl_unix_errno); 15815 break; 15816 case DL_CAPABILITY_ACK: 15817 /* Call a routine to handle this one. */ 15818 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15819 ill_capability_ack(ill, mp); 15820 15821 /* 15822 * If the ack is due to renegotiation, we will need to send 15823 * a new CAPABILITY_REQ to start the renegotiation. 15824 */ 15825 if (ill->ill_capab_reneg) { 15826 ill->ill_capab_reneg = B_FALSE; 15827 ill_capability_probe(ill); 15828 } 15829 break; 15830 case DL_CONTROL_ACK: 15831 /* We treat all of these as "fire and forget" */ 15832 ill_dlpi_done(ill, DL_CONTROL_REQ); 15833 break; 15834 case DL_INFO_ACK: 15835 /* Call a routine to handle this one. */ 15836 ill_dlpi_done(ill, DL_INFO_REQ); 15837 ip_ll_subnet_defaults(ill, mp); 15838 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15839 return; 15840 case DL_BIND_ACK: 15841 /* 15842 * We should have an IOCTL waiting on this unless 15843 * sent by ill_dl_phys, in which case just return 15844 */ 15845 ill_dlpi_done(ill, DL_BIND_REQ); 15846 if (ill->ill_ifname_pending) 15847 break; 15848 15849 if (!ioctl_aborted) 15850 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15851 if (mp1 == NULL) 15852 break; 15853 /* 15854 * Because mp1 was added by ill_dl_up(), and it always 15855 * passes a valid connp, connp must be valid here. 15856 */ 15857 ASSERT(connp != NULL); 15858 q = CONNP_TO_WQ(connp); 15859 15860 /* 15861 * We are exclusive. So nothing can change even after 15862 * we get the pending mp. If need be we can put it back 15863 * and restart, as in calling ipif_arp_up() below. 15864 */ 15865 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15866 15867 mutex_enter(&ill->ill_lock); 15868 ill->ill_dl_up = 1; 15869 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 15870 mutex_exit(&ill->ill_lock); 15871 15872 /* 15873 * Now bring up the resolver; when that is complete, we'll 15874 * create IREs. Note that we intentionally mirror what 15875 * ipif_up() would have done, because we got here by way of 15876 * ill_dl_up(), which stopped ipif_up()'s processing. 15877 */ 15878 if (ill->ill_isv6) { 15879 /* 15880 * v6 interfaces. 15881 * Unlike ARP which has to do another bind 15882 * and attach, once we get here we are 15883 * done with NDP. Except in the case of 15884 * ILLF_XRESOLV, in which case we send an 15885 * AR_INTERFACE_UP to the external resolver. 15886 * If all goes well, the ioctl will complete 15887 * in ip_rput(). If there's an error, we 15888 * complete it here. 15889 */ 15890 if ((err = ipif_ndp_up(ipif)) == 0) { 15891 if (ill->ill_flags & ILLF_XRESOLV) { 15892 mutex_enter(&connp->conn_lock); 15893 mutex_enter(&ill->ill_lock); 15894 success = ipsq_pending_mp_add( 15895 connp, ipif, q, mp1, 0); 15896 mutex_exit(&ill->ill_lock); 15897 mutex_exit(&connp->conn_lock); 15898 if (success) { 15899 err = ipif_resolver_up(ipif, 15900 Res_act_initial); 15901 if (err == EINPROGRESS) { 15902 freemsg(mp); 15903 return; 15904 } 15905 ASSERT(err != 0); 15906 mp1 = ipsq_pending_mp_get(ipsq, 15907 &connp); 15908 ASSERT(mp1 != NULL); 15909 } else { 15910 /* conn has started closing */ 15911 err = EINTR; 15912 } 15913 } else { /* Non XRESOLV interface */ 15914 (void) ipif_resolver_up(ipif, 15915 Res_act_initial); 15916 err = ipif_up_done_v6(ipif); 15917 } 15918 } 15919 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15920 /* 15921 * ARP and other v4 external resolvers. 15922 * Leave the pending mblk intact so that 15923 * the ioctl completes in ip_rput(). 15924 */ 15925 mutex_enter(&connp->conn_lock); 15926 mutex_enter(&ill->ill_lock); 15927 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15928 mutex_exit(&ill->ill_lock); 15929 mutex_exit(&connp->conn_lock); 15930 if (success) { 15931 err = ipif_resolver_up(ipif, Res_act_initial); 15932 if (err == EINPROGRESS) { 15933 freemsg(mp); 15934 return; 15935 } 15936 ASSERT(err != 0); 15937 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15938 } else { 15939 /* The conn has started closing */ 15940 err = EINTR; 15941 } 15942 } else { 15943 /* 15944 * This one is complete. Reply to pending ioctl. 15945 */ 15946 (void) ipif_resolver_up(ipif, Res_act_initial); 15947 err = ipif_up_done(ipif); 15948 } 15949 15950 if ((err == 0) && (ill->ill_up_ipifs)) { 15951 err = ill_up_ipifs(ill, q, mp1); 15952 if (err == EINPROGRESS) { 15953 freemsg(mp); 15954 return; 15955 } 15956 } 15957 15958 if (ill->ill_up_ipifs) { 15959 ill_group_cleanup(ill); 15960 } 15961 15962 break; 15963 case DL_NOTIFY_IND: { 15964 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15965 ire_t *ire; 15966 boolean_t need_ire_walk_v4 = B_FALSE; 15967 boolean_t need_ire_walk_v6 = B_FALSE; 15968 15969 switch (notify->dl_notification) { 15970 case DL_NOTE_PHYS_ADDR: 15971 err = ill_set_phys_addr(ill, mp); 15972 break; 15973 15974 case DL_NOTE_FASTPATH_FLUSH: 15975 ill_fastpath_flush(ill); 15976 break; 15977 15978 case DL_NOTE_SDU_SIZE: 15979 /* 15980 * Change the MTU size of the interface, of all 15981 * attached ipif's, and of all relevant ire's. The 15982 * new value's a uint32_t at notify->dl_data. 15983 * Mtu change Vs. new ire creation - protocol below. 15984 * 15985 * a Mark the ipif as IPIF_CHANGING. 15986 * b Set the new mtu in the ipif. 15987 * c Change the ire_max_frag on all affected ires 15988 * d Unmark the IPIF_CHANGING 15989 * 15990 * To see how the protocol works, assume an interface 15991 * route is also being added simultaneously by 15992 * ip_rt_add and let 'ipif' be the ipif referenced by 15993 * the ire. If the ire is created before step a, 15994 * it will be cleaned up by step c. If the ire is 15995 * created after step d, it will see the new value of 15996 * ipif_mtu. Any attempt to create the ire between 15997 * steps a to d will fail because of the IPIF_CHANGING 15998 * flag. Note that ire_create() is passed a pointer to 15999 * the ipif_mtu, and not the value. During ire_add 16000 * under the bucket lock, the ire_max_frag of the 16001 * new ire being created is set from the ipif/ire from 16002 * which it is being derived. 16003 */ 16004 mutex_enter(&ill->ill_lock); 16005 ill->ill_max_frag = (uint_t)notify->dl_data; 16006 16007 /* 16008 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16009 * leave it alone 16010 */ 16011 if (ill->ill_mtu_userspecified) { 16012 mutex_exit(&ill->ill_lock); 16013 break; 16014 } 16015 ill->ill_max_mtu = ill->ill_max_frag; 16016 if (ill->ill_isv6) { 16017 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16018 ill->ill_max_mtu = IPV6_MIN_MTU; 16019 } else { 16020 if (ill->ill_max_mtu < IP_MIN_MTU) 16021 ill->ill_max_mtu = IP_MIN_MTU; 16022 } 16023 for (ipif = ill->ill_ipif; ipif != NULL; 16024 ipif = ipif->ipif_next) { 16025 /* 16026 * Don't override the mtu if the user 16027 * has explicitly set it. 16028 */ 16029 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16030 continue; 16031 ipif->ipif_mtu = (uint_t)notify->dl_data; 16032 if (ipif->ipif_isv6) 16033 ire = ipif_to_ire_v6(ipif); 16034 else 16035 ire = ipif_to_ire(ipif); 16036 if (ire != NULL) { 16037 ire->ire_max_frag = ipif->ipif_mtu; 16038 ire_refrele(ire); 16039 } 16040 if (ipif->ipif_flags & IPIF_UP) { 16041 if (ill->ill_isv6) 16042 need_ire_walk_v6 = B_TRUE; 16043 else 16044 need_ire_walk_v4 = B_TRUE; 16045 } 16046 } 16047 mutex_exit(&ill->ill_lock); 16048 if (need_ire_walk_v4) 16049 ire_walk_v4(ill_mtu_change, (char *)ill, 16050 ALL_ZONES, ipst); 16051 if (need_ire_walk_v6) 16052 ire_walk_v6(ill_mtu_change, (char *)ill, 16053 ALL_ZONES, ipst); 16054 break; 16055 case DL_NOTE_LINK_UP: 16056 case DL_NOTE_LINK_DOWN: { 16057 /* 16058 * We are writer. ill / phyint / ipsq assocs stable. 16059 * The RUNNING flag reflects the state of the link. 16060 */ 16061 phyint_t *phyint = ill->ill_phyint; 16062 uint64_t new_phyint_flags; 16063 boolean_t changed = B_FALSE; 16064 boolean_t went_up; 16065 16066 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16067 mutex_enter(&phyint->phyint_lock); 16068 new_phyint_flags = went_up ? 16069 phyint->phyint_flags | PHYI_RUNNING : 16070 phyint->phyint_flags & ~PHYI_RUNNING; 16071 if (new_phyint_flags != phyint->phyint_flags) { 16072 phyint->phyint_flags = new_phyint_flags; 16073 changed = B_TRUE; 16074 } 16075 mutex_exit(&phyint->phyint_lock); 16076 /* 16077 * ill_restart_dad handles the DAD restart and routing 16078 * socket notification logic. 16079 */ 16080 if (changed) { 16081 ill_restart_dad(phyint->phyint_illv4, went_up); 16082 ill_restart_dad(phyint->phyint_illv6, went_up); 16083 } 16084 break; 16085 } 16086 case DL_NOTE_PROMISC_ON_PHYS: 16087 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16088 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16089 mutex_enter(&ill->ill_lock); 16090 ill->ill_promisc_on_phys = B_TRUE; 16091 mutex_exit(&ill->ill_lock); 16092 break; 16093 case DL_NOTE_PROMISC_OFF_PHYS: 16094 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16095 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16096 mutex_enter(&ill->ill_lock); 16097 ill->ill_promisc_on_phys = B_FALSE; 16098 mutex_exit(&ill->ill_lock); 16099 break; 16100 case DL_NOTE_CAPAB_RENEG: 16101 /* 16102 * Something changed on the driver side. 16103 * It wants us to renegotiate the capabilities 16104 * on this ill. One possible cause is the aggregation 16105 * interface under us where a port got added or 16106 * went away. 16107 * 16108 * If the capability negotiation is already done 16109 * or is in progress, reset the capabilities and 16110 * mark the ill's ill_capab_reneg to be B_TRUE, 16111 * so that when the ack comes back, we can start 16112 * the renegotiation process. 16113 * 16114 * Note that if ill_capab_reneg is already B_TRUE 16115 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16116 * the capability resetting request has been sent 16117 * and the renegotiation has not been started yet; 16118 * nothing needs to be done in this case. 16119 */ 16120 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16121 ill_capability_reset(ill); 16122 ill->ill_capab_reneg = B_TRUE; 16123 } 16124 break; 16125 default: 16126 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16127 "type 0x%x for DL_NOTIFY_IND\n", 16128 notify->dl_notification)); 16129 break; 16130 } 16131 16132 /* 16133 * As this is an asynchronous operation, we 16134 * should not call ill_dlpi_done 16135 */ 16136 break; 16137 } 16138 case DL_NOTIFY_ACK: { 16139 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16140 16141 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16142 ill->ill_note_link = 1; 16143 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16144 break; 16145 } 16146 case DL_PHYS_ADDR_ACK: { 16147 /* 16148 * As part of plumbing the interface via SIOCSLIFNAME, 16149 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16150 * whose answers we receive here. As each answer is received, 16151 * we call ill_dlpi_done() to dispatch the next request as 16152 * we're processing the current one. Once all answers have 16153 * been received, we use ipsq_pending_mp_get() to dequeue the 16154 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16155 * is invoked from an ill queue, conn_oper_pending_ill is not 16156 * available, but we know the ioctl is pending on ill_wq.) 16157 */ 16158 uint_t paddrlen, paddroff; 16159 16160 paddrreq = ill->ill_phys_addr_pend; 16161 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16162 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16163 16164 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16165 if (paddrreq == DL_IPV6_TOKEN) { 16166 /* 16167 * bcopy to low-order bits of ill_token 16168 * 16169 * XXX Temporary hack - currently, all known tokens 16170 * are 64 bits, so I'll cheat for the moment. 16171 */ 16172 bcopy(mp->b_rptr + paddroff, 16173 &ill->ill_token.s6_addr32[2], paddrlen); 16174 ill->ill_token_length = paddrlen; 16175 break; 16176 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16177 ASSERT(ill->ill_nd_lla_mp == NULL); 16178 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16179 mp = NULL; 16180 break; 16181 } 16182 16183 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16184 ASSERT(ill->ill_phys_addr_mp == NULL); 16185 if (!ill->ill_ifname_pending) 16186 break; 16187 ill->ill_ifname_pending = 0; 16188 if (!ioctl_aborted) 16189 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16190 if (mp1 != NULL) { 16191 ASSERT(connp == NULL); 16192 q = ill->ill_wq; 16193 } 16194 /* 16195 * If any error acks received during the plumbing sequence, 16196 * ill_ifname_pending_err will be set. Break out and send up 16197 * the error to the pending ioctl. 16198 */ 16199 if (ill->ill_ifname_pending_err != 0) { 16200 err = ill->ill_ifname_pending_err; 16201 ill->ill_ifname_pending_err = 0; 16202 break; 16203 } 16204 16205 ill->ill_phys_addr_mp = mp; 16206 ill->ill_phys_addr = mp->b_rptr + paddroff; 16207 mp = NULL; 16208 16209 /* 16210 * If paddrlen is zero, the DLPI provider doesn't support 16211 * physical addresses. The other two tests were historical 16212 * workarounds for bugs in our former PPP implementation, but 16213 * now other things have grown dependencies on them -- e.g., 16214 * the tun module specifies a dl_addr_length of zero in its 16215 * DL_BIND_ACK, but then specifies an incorrect value in its 16216 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16217 * but only after careful testing ensures that all dependent 16218 * broken DLPI providers have been fixed. 16219 */ 16220 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16221 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16222 ill->ill_phys_addr = NULL; 16223 } else if (paddrlen != ill->ill_phys_addr_length) { 16224 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16225 paddrlen, ill->ill_phys_addr_length)); 16226 err = EINVAL; 16227 break; 16228 } 16229 16230 if (ill->ill_nd_lla_mp == NULL) { 16231 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16232 err = ENOMEM; 16233 break; 16234 } 16235 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16236 } 16237 16238 /* 16239 * Set the interface token. If the zeroth interface address 16240 * is unspecified, then set it to the link local address. 16241 */ 16242 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16243 (void) ill_setdefaulttoken(ill); 16244 16245 ASSERT(ill->ill_ipif->ipif_id == 0); 16246 if (ipif != NULL && 16247 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16248 (void) ipif_setlinklocal(ipif); 16249 } 16250 break; 16251 } 16252 case DL_OK_ACK: 16253 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16254 dl_primstr((int)dloa->dl_correct_primitive), 16255 dloa->dl_correct_primitive)); 16256 switch (dloa->dl_correct_primitive) { 16257 case DL_ENABMULTI_REQ: 16258 case DL_DISABMULTI_REQ: 16259 if (!ill->ill_isv6) 16260 ipsq_current_finish(ipsq); 16261 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16262 break; 16263 case DL_PROMISCON_REQ: 16264 case DL_PROMISCOFF_REQ: 16265 case DL_UNBIND_REQ: 16266 case DL_ATTACH_REQ: 16267 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16268 break; 16269 } 16270 break; 16271 default: 16272 break; 16273 } 16274 16275 freemsg(mp); 16276 if (mp1 != NULL) { 16277 /* 16278 * The operation must complete without EINPROGRESS 16279 * since ipsq_pending_mp_get() has removed the mblk 16280 * from ipsq_pending_mp. Otherwise, the operation 16281 * will be stuck forever in the ipsq. 16282 */ 16283 ASSERT(err != EINPROGRESS); 16284 16285 switch (ipsq->ipsq_current_ioctl) { 16286 case 0: 16287 ipsq_current_finish(ipsq); 16288 break; 16289 16290 case SIOCLIFADDIF: 16291 case SIOCSLIFNAME: 16292 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16293 break; 16294 16295 default: 16296 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16297 break; 16298 } 16299 } 16300 } 16301 16302 /* 16303 * ip_rput_other is called by ip_rput to handle messages modifying the global 16304 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16305 */ 16306 /* ARGSUSED */ 16307 void 16308 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16309 { 16310 ill_t *ill; 16311 struct iocblk *iocp; 16312 mblk_t *mp1; 16313 conn_t *connp = NULL; 16314 16315 ip1dbg(("ip_rput_other ")); 16316 ill = (ill_t *)q->q_ptr; 16317 /* 16318 * This routine is not a writer in the case of SIOCGTUNPARAM 16319 * in which case ipsq is NULL. 16320 */ 16321 if (ipsq != NULL) { 16322 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16323 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16324 } 16325 16326 switch (mp->b_datap->db_type) { 16327 case M_ERROR: 16328 case M_HANGUP: 16329 /* 16330 * The device has a problem. We force the ILL down. It can 16331 * be brought up again manually using SIOCSIFFLAGS (via 16332 * ifconfig or equivalent). 16333 */ 16334 ASSERT(ipsq != NULL); 16335 if (mp->b_rptr < mp->b_wptr) 16336 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16337 if (ill->ill_error == 0) 16338 ill->ill_error = ENXIO; 16339 if (!ill_down_start(q, mp)) 16340 return; 16341 ipif_all_down_tail(ipsq, q, mp, NULL); 16342 break; 16343 case M_IOCACK: 16344 iocp = (struct iocblk *)mp->b_rptr; 16345 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16346 switch (iocp->ioc_cmd) { 16347 case SIOCSTUNPARAM: 16348 case OSIOCSTUNPARAM: 16349 ASSERT(ipsq != NULL); 16350 /* 16351 * Finish socket ioctl passed through to tun. 16352 * We should have an IOCTL waiting on this. 16353 */ 16354 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16355 if (ill->ill_isv6) { 16356 struct iftun_req *ta; 16357 16358 /* 16359 * if a source or destination is 16360 * being set, try and set the link 16361 * local address for the tunnel 16362 */ 16363 ta = (struct iftun_req *)mp->b_cont-> 16364 b_cont->b_rptr; 16365 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16366 ipif_set_tun_llink(ill, ta); 16367 } 16368 16369 } 16370 if (mp1 != NULL) { 16371 /* 16372 * Now copy back the b_next/b_prev used by 16373 * mi code for the mi_copy* functions. 16374 * See ip_sioctl_tunparam() for the reason. 16375 * Also protect against missing b_cont. 16376 */ 16377 if (mp->b_cont != NULL) { 16378 mp->b_cont->b_next = 16379 mp1->b_cont->b_next; 16380 mp->b_cont->b_prev = 16381 mp1->b_cont->b_prev; 16382 } 16383 inet_freemsg(mp1); 16384 ASSERT(connp != NULL); 16385 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16386 iocp->ioc_error, NO_COPYOUT, ipsq); 16387 } else { 16388 ASSERT(connp == NULL); 16389 putnext(q, mp); 16390 } 16391 break; 16392 case SIOCGTUNPARAM: 16393 case OSIOCGTUNPARAM: 16394 /* 16395 * This is really M_IOCDATA from the tunnel driver. 16396 * convert back and complete the ioctl. 16397 * We should have an IOCTL waiting on this. 16398 */ 16399 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16400 if (mp1) { 16401 /* 16402 * Now copy back the b_next/b_prev used by 16403 * mi code for the mi_copy* functions. 16404 * See ip_sioctl_tunparam() for the reason. 16405 * Also protect against missing b_cont. 16406 */ 16407 if (mp->b_cont != NULL) { 16408 mp->b_cont->b_next = 16409 mp1->b_cont->b_next; 16410 mp->b_cont->b_prev = 16411 mp1->b_cont->b_prev; 16412 } 16413 inet_freemsg(mp1); 16414 if (iocp->ioc_error == 0) 16415 mp->b_datap->db_type = M_IOCDATA; 16416 ASSERT(connp != NULL); 16417 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16418 iocp->ioc_error, COPYOUT, NULL); 16419 } else { 16420 ASSERT(connp == NULL); 16421 putnext(q, mp); 16422 } 16423 break; 16424 default: 16425 break; 16426 } 16427 break; 16428 case M_IOCNAK: 16429 iocp = (struct iocblk *)mp->b_rptr; 16430 16431 switch (iocp->ioc_cmd) { 16432 int mode; 16433 16434 case DL_IOC_HDR_INFO: 16435 /* 16436 * If this was the first attempt turn of the 16437 * fastpath probing. 16438 */ 16439 mutex_enter(&ill->ill_lock); 16440 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16441 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16442 mutex_exit(&ill->ill_lock); 16443 ill_fastpath_nack(ill); 16444 ip1dbg(("ip_rput: DLPI fastpath off on " 16445 "interface %s\n", 16446 ill->ill_name)); 16447 } else { 16448 mutex_exit(&ill->ill_lock); 16449 } 16450 freemsg(mp); 16451 break; 16452 case SIOCSTUNPARAM: 16453 case OSIOCSTUNPARAM: 16454 ASSERT(ipsq != NULL); 16455 /* 16456 * Finish socket ioctl passed through to tun 16457 * We should have an IOCTL waiting on this. 16458 */ 16459 /* FALLTHRU */ 16460 case SIOCGTUNPARAM: 16461 case OSIOCGTUNPARAM: 16462 /* 16463 * This is really M_IOCDATA from the tunnel driver. 16464 * convert back and complete the ioctl. 16465 * We should have an IOCTL waiting on this. 16466 */ 16467 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16468 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16469 mp1 = ill_pending_mp_get(ill, &connp, 16470 iocp->ioc_id); 16471 mode = COPYOUT; 16472 ipsq = NULL; 16473 } else { 16474 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16475 mode = NO_COPYOUT; 16476 } 16477 if (mp1 != NULL) { 16478 /* 16479 * Now copy back the b_next/b_prev used by 16480 * mi code for the mi_copy* functions. 16481 * See ip_sioctl_tunparam() for the reason. 16482 * Also protect against missing b_cont. 16483 */ 16484 if (mp->b_cont != NULL) { 16485 mp->b_cont->b_next = 16486 mp1->b_cont->b_next; 16487 mp->b_cont->b_prev = 16488 mp1->b_cont->b_prev; 16489 } 16490 inet_freemsg(mp1); 16491 if (iocp->ioc_error == 0) 16492 iocp->ioc_error = EINVAL; 16493 ASSERT(connp != NULL); 16494 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16495 iocp->ioc_error, mode, ipsq); 16496 } else { 16497 ASSERT(connp == NULL); 16498 putnext(q, mp); 16499 } 16500 break; 16501 default: 16502 break; 16503 } 16504 default: 16505 break; 16506 } 16507 } 16508 16509 /* 16510 * NOTE : This function does not ire_refrele the ire argument passed in. 16511 * 16512 * IPQoS notes 16513 * IP policy is invoked twice for a forwarded packet, once on the read side 16514 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16515 * enabled. An additional parameter, in_ill, has been added for this purpose. 16516 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16517 * because ip_mroute drops this information. 16518 * 16519 */ 16520 void 16521 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16522 { 16523 uint32_t old_pkt_len; 16524 uint32_t pkt_len; 16525 queue_t *q; 16526 uint32_t sum; 16527 #define rptr ((uchar_t *)ipha) 16528 uint32_t max_frag; 16529 uint32_t ill_index; 16530 ill_t *out_ill; 16531 mib2_ipIfStatsEntry_t *mibptr; 16532 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16533 16534 /* Get the ill_index of the incoming ILL */ 16535 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16536 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16537 16538 /* Initiate Read side IPPF processing */ 16539 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16540 ip_process(IPP_FWD_IN, &mp, ill_index); 16541 if (mp == NULL) { 16542 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16543 "during IPPF processing\n")); 16544 return; 16545 } 16546 } 16547 16548 /* Adjust the checksum to reflect the ttl decrement. */ 16549 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16550 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16551 16552 if (ipha->ipha_ttl-- <= 1) { 16553 if (ip_csum_hdr(ipha)) { 16554 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16555 goto drop_pkt; 16556 } 16557 /* 16558 * Note: ire_stq this will be NULL for multicast 16559 * datagrams using the long path through arp (the IRE 16560 * is not an IRE_CACHE). This should not cause 16561 * problems since we don't generate ICMP errors for 16562 * multicast packets. 16563 */ 16564 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16565 q = ire->ire_stq; 16566 if (q != NULL) { 16567 /* Sent by forwarding path, and router is global zone */ 16568 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16569 GLOBAL_ZONEID, ipst); 16570 } else 16571 freemsg(mp); 16572 return; 16573 } 16574 16575 /* 16576 * Don't forward if the interface is down 16577 */ 16578 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16579 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16580 ip2dbg(("ip_rput_forward:interface is down\n")); 16581 goto drop_pkt; 16582 } 16583 16584 /* Get the ill_index of the outgoing ILL */ 16585 out_ill = ire_to_ill(ire); 16586 ill_index = out_ill->ill_phyint->phyint_ifindex; 16587 16588 DTRACE_PROBE4(ip4__forwarding__start, 16589 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16590 16591 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16592 ipst->ips_ipv4firewall_forwarding, 16593 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16594 16595 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16596 16597 if (mp == NULL) 16598 return; 16599 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16600 16601 if (is_system_labeled()) { 16602 mblk_t *mp1; 16603 16604 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16605 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16606 goto drop_pkt; 16607 } 16608 /* Size may have changed */ 16609 mp = mp1; 16610 ipha = (ipha_t *)mp->b_rptr; 16611 pkt_len = ntohs(ipha->ipha_length); 16612 } 16613 16614 /* Check if there are options to update */ 16615 if (!IS_SIMPLE_IPH(ipha)) { 16616 if (ip_csum_hdr(ipha)) { 16617 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16618 goto drop_pkt; 16619 } 16620 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16621 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16622 return; 16623 } 16624 16625 ipha->ipha_hdr_checksum = 0; 16626 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16627 } 16628 max_frag = ire->ire_max_frag; 16629 if (pkt_len > max_frag) { 16630 /* 16631 * It needs fragging on its way out. We haven't 16632 * verified the header checksum yet. Since we 16633 * are going to put a surely good checksum in the 16634 * outgoing header, we have to make sure that it 16635 * was good coming in. 16636 */ 16637 if (ip_csum_hdr(ipha)) { 16638 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16639 goto drop_pkt; 16640 } 16641 /* Initiate Write side IPPF processing */ 16642 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16643 ip_process(IPP_FWD_OUT, &mp, ill_index); 16644 if (mp == NULL) { 16645 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16646 " during IPPF processing\n")); 16647 return; 16648 } 16649 } 16650 /* 16651 * Handle labeled packet resizing. 16652 * 16653 * If we have added a label, inform ip_wput_frag() of its 16654 * effect on the MTU for ICMP messages. 16655 */ 16656 if (pkt_len > old_pkt_len) { 16657 uint32_t secopt_size; 16658 16659 secopt_size = pkt_len - old_pkt_len; 16660 if (secopt_size < max_frag) 16661 max_frag -= secopt_size; 16662 } 16663 16664 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16665 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16666 return; 16667 } 16668 16669 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16670 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16671 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16672 ipst->ips_ipv4firewall_physical_out, 16673 NULL, out_ill, ipha, mp, mp, 0, ipst); 16674 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16675 if (mp == NULL) 16676 return; 16677 16678 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16679 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16680 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16681 /* ip_xmit_v4 always consumes the packet */ 16682 return; 16683 16684 drop_pkt:; 16685 ip1dbg(("ip_rput_forward: drop pkt\n")); 16686 freemsg(mp); 16687 #undef rptr 16688 } 16689 16690 void 16691 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16692 { 16693 ire_t *ire; 16694 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16695 16696 ASSERT(!ipif->ipif_isv6); 16697 /* 16698 * Find an IRE which matches the destination and the outgoing 16699 * queue in the cache table. All we need is an IRE_CACHE which 16700 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16701 * then it is enough to have some IRE_CACHE in the group. 16702 */ 16703 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16704 dst = ipif->ipif_pp_dst_addr; 16705 16706 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16707 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16708 if (ire == NULL) { 16709 /* 16710 * Mark this packet to make it be delivered to 16711 * ip_rput_forward after the new ire has been 16712 * created. 16713 */ 16714 mp->b_prev = NULL; 16715 mp->b_next = mp; 16716 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16717 NULL, 0, GLOBAL_ZONEID, &zero_info); 16718 } else { 16719 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16720 IRE_REFRELE(ire); 16721 } 16722 } 16723 16724 /* Update any source route, record route or timestamp options */ 16725 static int 16726 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16727 { 16728 ipoptp_t opts; 16729 uchar_t *opt; 16730 uint8_t optval; 16731 uint8_t optlen; 16732 ipaddr_t dst; 16733 uint32_t ts; 16734 ire_t *dst_ire = NULL; 16735 ire_t *tmp_ire = NULL; 16736 timestruc_t now; 16737 16738 ip2dbg(("ip_rput_forward_options\n")); 16739 dst = ipha->ipha_dst; 16740 for (optval = ipoptp_first(&opts, ipha); 16741 optval != IPOPT_EOL; 16742 optval = ipoptp_next(&opts)) { 16743 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16744 opt = opts.ipoptp_cur; 16745 optlen = opts.ipoptp_len; 16746 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16747 optval, opts.ipoptp_len)); 16748 switch (optval) { 16749 uint32_t off; 16750 case IPOPT_SSRR: 16751 case IPOPT_LSRR: 16752 /* Check if adminstratively disabled */ 16753 if (!ipst->ips_ip_forward_src_routed) { 16754 if (ire->ire_stq != NULL) { 16755 /* 16756 * Sent by forwarding path, and router 16757 * is global zone 16758 */ 16759 icmp_unreachable(ire->ire_stq, mp, 16760 ICMP_SOURCE_ROUTE_FAILED, 16761 GLOBAL_ZONEID, ipst); 16762 } else { 16763 ip0dbg(("ip_rput_forward_options: " 16764 "unable to send unreach\n")); 16765 freemsg(mp); 16766 } 16767 return (-1); 16768 } 16769 16770 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16771 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16772 if (dst_ire == NULL) { 16773 /* 16774 * Must be partial since ip_rput_options 16775 * checked for strict. 16776 */ 16777 break; 16778 } 16779 off = opt[IPOPT_OFFSET]; 16780 off--; 16781 redo_srr: 16782 if (optlen < IP_ADDR_LEN || 16783 off > optlen - IP_ADDR_LEN) { 16784 /* End of source route */ 16785 ip1dbg(( 16786 "ip_rput_forward_options: end of SR\n")); 16787 ire_refrele(dst_ire); 16788 break; 16789 } 16790 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16791 bcopy(&ire->ire_src_addr, (char *)opt + off, 16792 IP_ADDR_LEN); 16793 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16794 ntohl(dst))); 16795 16796 /* 16797 * Check if our address is present more than 16798 * once as consecutive hops in source route. 16799 */ 16800 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16801 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16802 if (tmp_ire != NULL) { 16803 ire_refrele(tmp_ire); 16804 off += IP_ADDR_LEN; 16805 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16806 goto redo_srr; 16807 } 16808 ipha->ipha_dst = dst; 16809 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16810 ire_refrele(dst_ire); 16811 break; 16812 case IPOPT_RR: 16813 off = opt[IPOPT_OFFSET]; 16814 off--; 16815 if (optlen < IP_ADDR_LEN || 16816 off > optlen - IP_ADDR_LEN) { 16817 /* No more room - ignore */ 16818 ip1dbg(( 16819 "ip_rput_forward_options: end of RR\n")); 16820 break; 16821 } 16822 bcopy(&ire->ire_src_addr, (char *)opt + off, 16823 IP_ADDR_LEN); 16824 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16825 break; 16826 case IPOPT_TS: 16827 /* Insert timestamp if there is room */ 16828 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16829 case IPOPT_TS_TSONLY: 16830 off = IPOPT_TS_TIMELEN; 16831 break; 16832 case IPOPT_TS_PRESPEC: 16833 case IPOPT_TS_PRESPEC_RFC791: 16834 /* Verify that the address matched */ 16835 off = opt[IPOPT_OFFSET] - 1; 16836 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16837 dst_ire = ire_ctable_lookup(dst, 0, 16838 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16839 MATCH_IRE_TYPE, ipst); 16840 if (dst_ire == NULL) { 16841 /* Not for us */ 16842 break; 16843 } 16844 ire_refrele(dst_ire); 16845 /* FALLTHRU */ 16846 case IPOPT_TS_TSANDADDR: 16847 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16848 break; 16849 default: 16850 /* 16851 * ip_*put_options should have already 16852 * dropped this packet. 16853 */ 16854 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16855 "unknown IT - bug in ip_rput_options?\n"); 16856 return (0); /* Keep "lint" happy */ 16857 } 16858 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16859 /* Increase overflow counter */ 16860 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16861 opt[IPOPT_POS_OV_FLG] = 16862 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16863 (off << 4)); 16864 break; 16865 } 16866 off = opt[IPOPT_OFFSET] - 1; 16867 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16868 case IPOPT_TS_PRESPEC: 16869 case IPOPT_TS_PRESPEC_RFC791: 16870 case IPOPT_TS_TSANDADDR: 16871 bcopy(&ire->ire_src_addr, 16872 (char *)opt + off, IP_ADDR_LEN); 16873 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16874 /* FALLTHRU */ 16875 case IPOPT_TS_TSONLY: 16876 off = opt[IPOPT_OFFSET] - 1; 16877 /* Compute # of milliseconds since midnight */ 16878 gethrestime(&now); 16879 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16880 now.tv_nsec / (NANOSEC / MILLISEC); 16881 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16882 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16883 break; 16884 } 16885 break; 16886 } 16887 } 16888 return (0); 16889 } 16890 16891 /* 16892 * This is called after processing at least one of AH/ESP headers. 16893 * 16894 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16895 * the actual, physical interface on which the packet was received, 16896 * but, when ip_strict_dst_multihoming is set to 1, could be the 16897 * interface which had the ipha_dst configured when the packet went 16898 * through ip_rput. The ill_index corresponding to the recv_ill 16899 * is saved in ipsec_in_rill_index 16900 * 16901 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16902 * cannot assume "ire" points to valid data for any IPv6 cases. 16903 */ 16904 void 16905 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16906 { 16907 mblk_t *mp; 16908 ipaddr_t dst; 16909 in6_addr_t *v6dstp; 16910 ipha_t *ipha; 16911 ip6_t *ip6h; 16912 ipsec_in_t *ii; 16913 boolean_t ill_need_rele = B_FALSE; 16914 boolean_t rill_need_rele = B_FALSE; 16915 boolean_t ire_need_rele = B_FALSE; 16916 netstack_t *ns; 16917 ip_stack_t *ipst; 16918 16919 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16920 ASSERT(ii->ipsec_in_ill_index != 0); 16921 ns = ii->ipsec_in_ns; 16922 ASSERT(ii->ipsec_in_ns != NULL); 16923 ipst = ns->netstack_ip; 16924 16925 mp = ipsec_mp->b_cont; 16926 ASSERT(mp != NULL); 16927 16928 16929 if (ill == NULL) { 16930 ASSERT(recv_ill == NULL); 16931 /* 16932 * We need to get the original queue on which ip_rput_local 16933 * or ip_rput_data_v6 was called. 16934 */ 16935 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16936 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16937 ill_need_rele = B_TRUE; 16938 16939 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16940 recv_ill = ill_lookup_on_ifindex( 16941 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16942 NULL, NULL, NULL, NULL, ipst); 16943 rill_need_rele = B_TRUE; 16944 } else { 16945 recv_ill = ill; 16946 } 16947 16948 if ((ill == NULL) || (recv_ill == NULL)) { 16949 ip0dbg(("ip_fanout_proto_again: interface " 16950 "disappeared\n")); 16951 if (ill != NULL) 16952 ill_refrele(ill); 16953 if (recv_ill != NULL) 16954 ill_refrele(recv_ill); 16955 freemsg(ipsec_mp); 16956 return; 16957 } 16958 } 16959 16960 ASSERT(ill != NULL && recv_ill != NULL); 16961 16962 if (mp->b_datap->db_type == M_CTL) { 16963 /* 16964 * AH/ESP is returning the ICMP message after 16965 * removing their headers. Fanout again till 16966 * it gets to the right protocol. 16967 */ 16968 if (ii->ipsec_in_v4) { 16969 icmph_t *icmph; 16970 int iph_hdr_length; 16971 int hdr_length; 16972 16973 ipha = (ipha_t *)mp->b_rptr; 16974 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16975 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16976 ipha = (ipha_t *)&icmph[1]; 16977 hdr_length = IPH_HDR_LENGTH(ipha); 16978 /* 16979 * icmp_inbound_error_fanout may need to do pullupmsg. 16980 * Reset the type to M_DATA. 16981 */ 16982 mp->b_datap->db_type = M_DATA; 16983 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16984 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16985 B_FALSE, ill, ii->ipsec_in_zoneid); 16986 } else { 16987 icmp6_t *icmp6; 16988 int hdr_length; 16989 16990 ip6h = (ip6_t *)mp->b_rptr; 16991 /* Don't call hdr_length_v6() unless you have to. */ 16992 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16993 hdr_length = ip_hdr_length_v6(mp, ip6h); 16994 else 16995 hdr_length = IPV6_HDR_LEN; 16996 16997 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16998 /* 16999 * icmp_inbound_error_fanout_v6 may need to do 17000 * pullupmsg. Reset the type to M_DATA. 17001 */ 17002 mp->b_datap->db_type = M_DATA; 17003 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17004 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17005 } 17006 if (ill_need_rele) 17007 ill_refrele(ill); 17008 if (rill_need_rele) 17009 ill_refrele(recv_ill); 17010 return; 17011 } 17012 17013 if (ii->ipsec_in_v4) { 17014 ipha = (ipha_t *)mp->b_rptr; 17015 dst = ipha->ipha_dst; 17016 if (CLASSD(dst)) { 17017 /* 17018 * Multicast has to be delivered to all streams. 17019 */ 17020 dst = INADDR_BROADCAST; 17021 } 17022 17023 if (ire == NULL) { 17024 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17025 MBLK_GETLABEL(mp), ipst); 17026 if (ire == NULL) { 17027 if (ill_need_rele) 17028 ill_refrele(ill); 17029 if (rill_need_rele) 17030 ill_refrele(recv_ill); 17031 ip1dbg(("ip_fanout_proto_again: " 17032 "IRE not found")); 17033 freemsg(ipsec_mp); 17034 return; 17035 } 17036 ire_need_rele = B_TRUE; 17037 } 17038 17039 switch (ipha->ipha_protocol) { 17040 case IPPROTO_UDP: 17041 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17042 recv_ill); 17043 if (ire_need_rele) 17044 ire_refrele(ire); 17045 break; 17046 case IPPROTO_TCP: 17047 if (!ire_need_rele) 17048 IRE_REFHOLD(ire); 17049 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17050 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17051 IRE_REFRELE(ire); 17052 if (mp != NULL) 17053 squeue_enter_chain(GET_SQUEUE(mp), mp, 17054 mp, 1, SQTAG_IP_PROTO_AGAIN); 17055 break; 17056 case IPPROTO_SCTP: 17057 if (!ire_need_rele) 17058 IRE_REFHOLD(ire); 17059 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17060 ipsec_mp, 0, ill->ill_rq, dst); 17061 break; 17062 default: 17063 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17064 recv_ill, 0); 17065 if (ire_need_rele) 17066 ire_refrele(ire); 17067 break; 17068 } 17069 } else { 17070 uint32_t rput_flags = 0; 17071 17072 ip6h = (ip6_t *)mp->b_rptr; 17073 v6dstp = &ip6h->ip6_dst; 17074 /* 17075 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17076 * address. 17077 * 17078 * Currently, we don't store that state in the IPSEC_IN 17079 * message, and we may need to. 17080 */ 17081 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17082 IP6_IN_LLMCAST : 0); 17083 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17084 NULL, NULL); 17085 } 17086 if (ill_need_rele) 17087 ill_refrele(ill); 17088 if (rill_need_rele) 17089 ill_refrele(recv_ill); 17090 } 17091 17092 /* 17093 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17094 * returns 'true' if there are still fragments left on the queue, in 17095 * which case we restart the timer. 17096 */ 17097 void 17098 ill_frag_timer(void *arg) 17099 { 17100 ill_t *ill = (ill_t *)arg; 17101 boolean_t frag_pending; 17102 ip_stack_t *ipst = ill->ill_ipst; 17103 17104 mutex_enter(&ill->ill_lock); 17105 ASSERT(!ill->ill_fragtimer_executing); 17106 if (ill->ill_state_flags & ILL_CONDEMNED) { 17107 ill->ill_frag_timer_id = 0; 17108 mutex_exit(&ill->ill_lock); 17109 return; 17110 } 17111 ill->ill_fragtimer_executing = 1; 17112 mutex_exit(&ill->ill_lock); 17113 17114 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17115 17116 /* 17117 * Restart the timer, if we have fragments pending or if someone 17118 * wanted us to be scheduled again. 17119 */ 17120 mutex_enter(&ill->ill_lock); 17121 ill->ill_fragtimer_executing = 0; 17122 ill->ill_frag_timer_id = 0; 17123 if (frag_pending || ill->ill_fragtimer_needrestart) 17124 ill_frag_timer_start(ill); 17125 mutex_exit(&ill->ill_lock); 17126 } 17127 17128 void 17129 ill_frag_timer_start(ill_t *ill) 17130 { 17131 ip_stack_t *ipst = ill->ill_ipst; 17132 17133 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17134 17135 /* If the ill is closing or opening don't proceed */ 17136 if (ill->ill_state_flags & ILL_CONDEMNED) 17137 return; 17138 17139 if (ill->ill_fragtimer_executing) { 17140 /* 17141 * ill_frag_timer is currently executing. Just record the 17142 * the fact that we want the timer to be restarted. 17143 * ill_frag_timer will post a timeout before it returns, 17144 * ensuring it will be called again. 17145 */ 17146 ill->ill_fragtimer_needrestart = 1; 17147 return; 17148 } 17149 17150 if (ill->ill_frag_timer_id == 0) { 17151 /* 17152 * The timer is neither running nor is the timeout handler 17153 * executing. Post a timeout so that ill_frag_timer will be 17154 * called 17155 */ 17156 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17157 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17158 ill->ill_fragtimer_needrestart = 0; 17159 } 17160 } 17161 17162 /* 17163 * This routine is needed for loopback when forwarding multicasts. 17164 * 17165 * IPQoS Notes: 17166 * IPPF processing is done in fanout routines. 17167 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17168 * processing for IPsec packets is done when it comes back in clear. 17169 * NOTE : The callers of this function need to do the ire_refrele for the 17170 * ire that is being passed in. 17171 */ 17172 void 17173 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17174 ill_t *recv_ill, uint32_t esp_udp_ports) 17175 { 17176 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17177 ill_t *ill = (ill_t *)q->q_ptr; 17178 uint32_t sum; 17179 uint32_t u1; 17180 uint32_t u2; 17181 int hdr_length; 17182 boolean_t mctl_present; 17183 mblk_t *first_mp = mp; 17184 mblk_t *hada_mp = NULL; 17185 ipha_t *inner_ipha; 17186 ip_stack_t *ipst; 17187 17188 ASSERT(recv_ill != NULL); 17189 ipst = recv_ill->ill_ipst; 17190 17191 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17192 "ip_rput_locl_start: q %p", q); 17193 17194 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17195 ASSERT(ill != NULL); 17196 17197 17198 #define rptr ((uchar_t *)ipha) 17199 #define iphs ((uint16_t *)ipha) 17200 17201 /* 17202 * no UDP or TCP packet should come here anymore. 17203 */ 17204 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17205 ipha->ipha_protocol != IPPROTO_UDP); 17206 17207 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17208 if (mctl_present && 17209 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17210 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17211 17212 /* 17213 * It's an IPsec accelerated packet. 17214 * Keep a pointer to the data attributes around until 17215 * we allocate the ipsec_info_t. 17216 */ 17217 IPSECHW_DEBUG(IPSECHW_PKT, 17218 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17219 hada_mp = first_mp; 17220 hada_mp->b_cont = NULL; 17221 /* 17222 * Since it is accelerated, it comes directly from 17223 * the ill and the data attributes is followed by 17224 * the packet data. 17225 */ 17226 ASSERT(mp->b_datap->db_type != M_CTL); 17227 first_mp = mp; 17228 mctl_present = B_FALSE; 17229 } 17230 17231 /* 17232 * IF M_CTL is not present, then ipsec_in_is_secure 17233 * should return B_TRUE. There is a case where loopback 17234 * packets has an M_CTL in the front with all the 17235 * IPsec options set to IPSEC_PREF_NEVER - which means 17236 * ipsec_in_is_secure will return B_FALSE. As loopback 17237 * packets never comes here, it is safe to ASSERT the 17238 * following. 17239 */ 17240 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17241 17242 /* 17243 * Also, we should never have an mctl_present if this is an 17244 * ESP-in-UDP packet. 17245 */ 17246 ASSERT(!mctl_present || !esp_in_udp_packet); 17247 17248 17249 /* u1 is # words of IP options */ 17250 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17251 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17252 17253 /* 17254 * Don't verify header checksum if we just removed UDP header or 17255 * packet is coming back from AH/ESP. 17256 */ 17257 if (!esp_in_udp_packet && !mctl_present) { 17258 if (u1) { 17259 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17260 if (hada_mp != NULL) 17261 freemsg(hada_mp); 17262 return; 17263 } 17264 } else { 17265 /* Check the IP header checksum. */ 17266 #define uph ((uint16_t *)ipha) 17267 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17268 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17269 #undef uph 17270 /* finish doing IP checksum */ 17271 sum = (sum & 0xFFFF) + (sum >> 16); 17272 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17273 if (sum && sum != 0xFFFF) { 17274 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17275 goto drop_pkt; 17276 } 17277 } 17278 } 17279 17280 /* 17281 * Count for SNMP of inbound packets for ire. As ip_proto_input 17282 * might be called more than once for secure packets, count only 17283 * the first time. 17284 */ 17285 if (!mctl_present) { 17286 UPDATE_IB_PKT_COUNT(ire); 17287 ire->ire_last_used_time = lbolt; 17288 } 17289 17290 /* Check for fragmentation offset. */ 17291 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17292 u1 = u2 & (IPH_MF | IPH_OFFSET); 17293 if (u1) { 17294 /* 17295 * We re-assemble fragments before we do the AH/ESP 17296 * processing. Thus, M_CTL should not be present 17297 * while we are re-assembling. 17298 */ 17299 ASSERT(!mctl_present); 17300 ASSERT(first_mp == mp); 17301 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17302 return; 17303 } 17304 /* 17305 * Make sure that first_mp points back to mp as 17306 * the mp we came in with could have changed in 17307 * ip_rput_fragment(). 17308 */ 17309 ipha = (ipha_t *)mp->b_rptr; 17310 first_mp = mp; 17311 } 17312 17313 /* 17314 * Clear hardware checksumming flag as it is currently only 17315 * used by TCP and UDP. 17316 */ 17317 DB_CKSUMFLAGS(mp) = 0; 17318 17319 /* Now we have a complete datagram, destined for this machine. */ 17320 u1 = IPH_HDR_LENGTH(ipha); 17321 switch (ipha->ipha_protocol) { 17322 case IPPROTO_ICMP: { 17323 ire_t *ire_zone; 17324 ilm_t *ilm; 17325 mblk_t *mp1; 17326 zoneid_t last_zoneid; 17327 17328 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17329 ASSERT(ire->ire_type == IRE_BROADCAST); 17330 /* 17331 * Inactive/Failed interfaces are not supposed to 17332 * respond to the multicast packets. 17333 */ 17334 if (ill_is_probeonly(ill)) { 17335 freemsg(first_mp); 17336 return; 17337 } 17338 17339 /* 17340 * In the multicast case, applications may have joined 17341 * the group from different zones, so we need to deliver 17342 * the packet to each of them. Loop through the 17343 * multicast memberships structures (ilm) on the receive 17344 * ill and send a copy of the packet up each matching 17345 * one. However, we don't do this for multicasts sent on 17346 * the loopback interface (PHYI_LOOPBACK flag set) as 17347 * they must stay in the sender's zone. 17348 * 17349 * ilm_add_v6() ensures that ilms in the same zone are 17350 * contiguous in the ill_ilm list. We use this property 17351 * to avoid sending duplicates needed when two 17352 * applications in the same zone join the same group on 17353 * different logical interfaces: we ignore the ilm if 17354 * its zoneid is the same as the last matching one. 17355 * In addition, the sending of the packet for 17356 * ire_zoneid is delayed until all of the other ilms 17357 * have been exhausted. 17358 */ 17359 last_zoneid = -1; 17360 ILM_WALKER_HOLD(recv_ill); 17361 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17362 ilm = ilm->ilm_next) { 17363 if ((ilm->ilm_flags & ILM_DELETED) || 17364 ipha->ipha_dst != ilm->ilm_addr || 17365 ilm->ilm_zoneid == last_zoneid || 17366 ilm->ilm_zoneid == ire->ire_zoneid || 17367 ilm->ilm_zoneid == ALL_ZONES || 17368 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17369 continue; 17370 mp1 = ip_copymsg(first_mp); 17371 if (mp1 == NULL) 17372 continue; 17373 icmp_inbound(q, mp1, B_TRUE, ill, 17374 0, sum, mctl_present, B_TRUE, 17375 recv_ill, ilm->ilm_zoneid); 17376 last_zoneid = ilm->ilm_zoneid; 17377 } 17378 ILM_WALKER_RELE(recv_ill); 17379 } else if (ire->ire_type == IRE_BROADCAST) { 17380 /* 17381 * In the broadcast case, there may be many zones 17382 * which need a copy of the packet delivered to them. 17383 * There is one IRE_BROADCAST per broadcast address 17384 * and per zone; we walk those using a helper function. 17385 * In addition, the sending of the packet for ire is 17386 * delayed until all of the other ires have been 17387 * processed. 17388 */ 17389 IRB_REFHOLD(ire->ire_bucket); 17390 ire_zone = NULL; 17391 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17392 ire)) != NULL) { 17393 mp1 = ip_copymsg(first_mp); 17394 if (mp1 == NULL) 17395 continue; 17396 17397 UPDATE_IB_PKT_COUNT(ire_zone); 17398 ire_zone->ire_last_used_time = lbolt; 17399 icmp_inbound(q, mp1, B_TRUE, ill, 17400 0, sum, mctl_present, B_TRUE, 17401 recv_ill, ire_zone->ire_zoneid); 17402 } 17403 IRB_REFRELE(ire->ire_bucket); 17404 } 17405 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17406 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17407 ire->ire_zoneid); 17408 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17409 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17410 return; 17411 } 17412 case IPPROTO_IGMP: 17413 /* 17414 * If we are not willing to accept IGMP packets in clear, 17415 * then check with global policy. 17416 */ 17417 if (ipst->ips_igmp_accept_clear_messages == 0) { 17418 first_mp = ipsec_check_global_policy(first_mp, NULL, 17419 ipha, NULL, mctl_present, ipst->ips_netstack); 17420 if (first_mp == NULL) 17421 return; 17422 } 17423 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17424 freemsg(first_mp); 17425 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17426 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17427 return; 17428 } 17429 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17430 /* Bad packet - discarded by igmp_input */ 17431 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17432 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17433 if (mctl_present) 17434 freeb(first_mp); 17435 return; 17436 } 17437 /* 17438 * igmp_input() may have returned the pulled up message. 17439 * So first_mp and ipha need to be reinitialized. 17440 */ 17441 ipha = (ipha_t *)mp->b_rptr; 17442 if (mctl_present) 17443 first_mp->b_cont = mp; 17444 else 17445 first_mp = mp; 17446 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17447 connf_head != NULL) { 17448 /* No user-level listener for IGMP packets */ 17449 goto drop_pkt; 17450 } 17451 /* deliver to local raw users */ 17452 break; 17453 case IPPROTO_PIM: 17454 /* 17455 * If we are not willing to accept PIM packets in clear, 17456 * then check with global policy. 17457 */ 17458 if (ipst->ips_pim_accept_clear_messages == 0) { 17459 first_mp = ipsec_check_global_policy(first_mp, NULL, 17460 ipha, NULL, mctl_present, ipst->ips_netstack); 17461 if (first_mp == NULL) 17462 return; 17463 } 17464 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17465 freemsg(first_mp); 17466 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17467 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17468 return; 17469 } 17470 if (pim_input(q, mp, ill) != 0) { 17471 /* Bad packet - discarded by pim_input */ 17472 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17473 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17474 if (mctl_present) 17475 freeb(first_mp); 17476 return; 17477 } 17478 17479 /* 17480 * pim_input() may have pulled up the message so ipha needs to 17481 * be reinitialized. 17482 */ 17483 ipha = (ipha_t *)mp->b_rptr; 17484 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17485 connf_head != NULL) { 17486 /* No user-level listener for PIM packets */ 17487 goto drop_pkt; 17488 } 17489 /* deliver to local raw users */ 17490 break; 17491 case IPPROTO_ENCAP: 17492 /* 17493 * Handle self-encapsulated packets (IP-in-IP where 17494 * the inner addresses == the outer addresses). 17495 */ 17496 hdr_length = IPH_HDR_LENGTH(ipha); 17497 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17498 mp->b_wptr) { 17499 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17500 sizeof (ipha_t) - mp->b_rptr)) { 17501 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17502 freemsg(first_mp); 17503 return; 17504 } 17505 ipha = (ipha_t *)mp->b_rptr; 17506 } 17507 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17508 /* 17509 * Check the sanity of the inner IP header. 17510 */ 17511 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17512 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17513 freemsg(first_mp); 17514 return; 17515 } 17516 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17517 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17518 freemsg(first_mp); 17519 return; 17520 } 17521 if (inner_ipha->ipha_src == ipha->ipha_src && 17522 inner_ipha->ipha_dst == ipha->ipha_dst) { 17523 ipsec_in_t *ii; 17524 17525 /* 17526 * Self-encapsulated tunnel packet. Remove 17527 * the outer IP header and fanout again. 17528 * We also need to make sure that the inner 17529 * header is pulled up until options. 17530 */ 17531 mp->b_rptr = (uchar_t *)inner_ipha; 17532 ipha = inner_ipha; 17533 hdr_length = IPH_HDR_LENGTH(ipha); 17534 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17535 if (!pullupmsg(mp, (uchar_t *)ipha + 17536 + hdr_length - mp->b_rptr)) { 17537 freemsg(first_mp); 17538 return; 17539 } 17540 ipha = (ipha_t *)mp->b_rptr; 17541 } 17542 if (hdr_length > sizeof (ipha_t)) { 17543 /* We got options on the inner packet. */ 17544 ipaddr_t dst = ipha->ipha_dst; 17545 17546 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17547 -1) { 17548 /* Bad options! */ 17549 return; 17550 } 17551 if (dst != ipha->ipha_dst) { 17552 /* 17553 * Someone put a source-route in 17554 * the inside header of a self- 17555 * encapsulated packet. Drop it 17556 * with extreme prejudice and let 17557 * the sender know. 17558 */ 17559 icmp_unreachable(q, first_mp, 17560 ICMP_SOURCE_ROUTE_FAILED, 17561 recv_ill->ill_zoneid, ipst); 17562 return; 17563 } 17564 } 17565 if (!mctl_present) { 17566 ASSERT(first_mp == mp); 17567 /* 17568 * This means that somebody is sending 17569 * Self-encapsualted packets without AH/ESP. 17570 * If AH/ESP was present, we would have already 17571 * allocated the first_mp. 17572 * 17573 * Send this packet to find a tunnel endpoint. 17574 * if I can't find one, an ICMP 17575 * PROTOCOL_UNREACHABLE will get sent. 17576 */ 17577 goto fanout; 17578 } 17579 /* 17580 * We generally store the ill_index if we need to 17581 * do IPsec processing as we lose the ill queue when 17582 * we come back. But in this case, we never should 17583 * have to store the ill_index here as it should have 17584 * been stored previously when we processed the 17585 * AH/ESP header in this routine or for non-ipsec 17586 * cases, we still have the queue. But for some bad 17587 * packets from the wire, we can get to IPsec after 17588 * this and we better store the index for that case. 17589 */ 17590 ill = (ill_t *)q->q_ptr; 17591 ii = (ipsec_in_t *)first_mp->b_rptr; 17592 ii->ipsec_in_ill_index = 17593 ill->ill_phyint->phyint_ifindex; 17594 ii->ipsec_in_rill_index = 17595 recv_ill->ill_phyint->phyint_ifindex; 17596 if (ii->ipsec_in_decaps) { 17597 /* 17598 * This packet is self-encapsulated multiple 17599 * times. We don't want to recurse infinitely. 17600 * To keep it simple, drop the packet. 17601 */ 17602 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17603 freemsg(first_mp); 17604 return; 17605 } 17606 ii->ipsec_in_decaps = B_TRUE; 17607 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17608 ire); 17609 return; 17610 } 17611 break; 17612 case IPPROTO_AH: 17613 case IPPROTO_ESP: { 17614 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17615 17616 /* 17617 * Fast path for AH/ESP. If this is the first time 17618 * we are sending a datagram to AH/ESP, allocate 17619 * a IPSEC_IN message and prepend it. Otherwise, 17620 * just fanout. 17621 */ 17622 17623 int ipsec_rc; 17624 ipsec_in_t *ii; 17625 netstack_t *ns = ipst->ips_netstack; 17626 17627 IP_STAT(ipst, ipsec_proto_ahesp); 17628 if (!mctl_present) { 17629 ASSERT(first_mp == mp); 17630 first_mp = ipsec_in_alloc(B_TRUE, ns); 17631 if (first_mp == NULL) { 17632 ip1dbg(("ip_proto_input: IPSEC_IN " 17633 "allocation failure.\n")); 17634 freemsg(hada_mp); /* okay ifnull */ 17635 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17636 freemsg(mp); 17637 return; 17638 } 17639 /* 17640 * Store the ill_index so that when we come back 17641 * from IPsec we ride on the same queue. 17642 */ 17643 ill = (ill_t *)q->q_ptr; 17644 ii = (ipsec_in_t *)first_mp->b_rptr; 17645 ii->ipsec_in_ill_index = 17646 ill->ill_phyint->phyint_ifindex; 17647 ii->ipsec_in_rill_index = 17648 recv_ill->ill_phyint->phyint_ifindex; 17649 first_mp->b_cont = mp; 17650 /* 17651 * Cache hardware acceleration info. 17652 */ 17653 if (hada_mp != NULL) { 17654 IPSECHW_DEBUG(IPSECHW_PKT, 17655 ("ip_rput_local: caching data attr.\n")); 17656 ii->ipsec_in_accelerated = B_TRUE; 17657 ii->ipsec_in_da = hada_mp; 17658 hada_mp = NULL; 17659 } 17660 } else { 17661 ii = (ipsec_in_t *)first_mp->b_rptr; 17662 } 17663 17664 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17665 17666 if (!ipsec_loaded(ipss)) { 17667 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17668 ire->ire_zoneid, ipst); 17669 return; 17670 } 17671 17672 ns = ipst->ips_netstack; 17673 /* select inbound SA and have IPsec process the pkt */ 17674 if (ipha->ipha_protocol == IPPROTO_ESP) { 17675 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17676 boolean_t esp_in_udp_sa; 17677 if (esph == NULL) 17678 return; 17679 ASSERT(ii->ipsec_in_esp_sa != NULL); 17680 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17681 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17682 IPSA_F_NATT) != 0); 17683 /* 17684 * The following is a fancy, but quick, way of saying: 17685 * ESP-in-UDP SA and Raw ESP packet --> drop 17686 * OR 17687 * ESP SA and ESP-in-UDP packet --> drop 17688 */ 17689 if (esp_in_udp_sa != esp_in_udp_packet) { 17690 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17691 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17692 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17693 &ns->netstack_ipsec->ipsec_dropper); 17694 return; 17695 } 17696 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17697 first_mp, esph); 17698 } else { 17699 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17700 if (ah == NULL) 17701 return; 17702 ASSERT(ii->ipsec_in_ah_sa != NULL); 17703 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17704 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17705 first_mp, ah); 17706 } 17707 17708 switch (ipsec_rc) { 17709 case IPSEC_STATUS_SUCCESS: 17710 break; 17711 case IPSEC_STATUS_FAILED: 17712 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17713 /* FALLTHRU */ 17714 case IPSEC_STATUS_PENDING: 17715 return; 17716 } 17717 /* we're done with IPsec processing, send it up */ 17718 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17719 return; 17720 } 17721 default: 17722 break; 17723 } 17724 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17725 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17726 ire->ire_zoneid)); 17727 goto drop_pkt; 17728 } 17729 /* 17730 * Handle protocols with which IP is less intimate. There 17731 * can be more than one stream bound to a particular 17732 * protocol. When this is the case, each one gets a copy 17733 * of any incoming packets. 17734 */ 17735 fanout: 17736 ip_fanout_proto(q, first_mp, ill, ipha, 17737 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17738 B_TRUE, recv_ill, ire->ire_zoneid); 17739 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17740 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17741 return; 17742 17743 drop_pkt: 17744 freemsg(first_mp); 17745 if (hada_mp != NULL) 17746 freeb(hada_mp); 17747 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17748 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17749 #undef rptr 17750 #undef iphs 17751 17752 } 17753 17754 /* 17755 * Update any source route, record route or timestamp options. 17756 * Check that we are at end of strict source route. 17757 * The options have already been checked for sanity in ip_rput_options(). 17758 */ 17759 static boolean_t 17760 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17761 ip_stack_t *ipst) 17762 { 17763 ipoptp_t opts; 17764 uchar_t *opt; 17765 uint8_t optval; 17766 uint8_t optlen; 17767 ipaddr_t dst; 17768 uint32_t ts; 17769 ire_t *dst_ire; 17770 timestruc_t now; 17771 zoneid_t zoneid; 17772 ill_t *ill; 17773 17774 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17775 17776 ip2dbg(("ip_rput_local_options\n")); 17777 17778 for (optval = ipoptp_first(&opts, ipha); 17779 optval != IPOPT_EOL; 17780 optval = ipoptp_next(&opts)) { 17781 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17782 opt = opts.ipoptp_cur; 17783 optlen = opts.ipoptp_len; 17784 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17785 optval, optlen)); 17786 switch (optval) { 17787 uint32_t off; 17788 case IPOPT_SSRR: 17789 case IPOPT_LSRR: 17790 off = opt[IPOPT_OFFSET]; 17791 off--; 17792 if (optlen < IP_ADDR_LEN || 17793 off > optlen - IP_ADDR_LEN) { 17794 /* End of source route */ 17795 ip1dbg(("ip_rput_local_options: end of SR\n")); 17796 break; 17797 } 17798 /* 17799 * This will only happen if two consecutive entries 17800 * in the source route contains our address or if 17801 * it is a packet with a loose source route which 17802 * reaches us before consuming the whole source route 17803 */ 17804 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17805 if (optval == IPOPT_SSRR) { 17806 goto bad_src_route; 17807 } 17808 /* 17809 * Hack: instead of dropping the packet truncate the 17810 * source route to what has been used by filling the 17811 * rest with IPOPT_NOP. 17812 */ 17813 opt[IPOPT_OLEN] = (uint8_t)off; 17814 while (off < optlen) { 17815 opt[off++] = IPOPT_NOP; 17816 } 17817 break; 17818 case IPOPT_RR: 17819 off = opt[IPOPT_OFFSET]; 17820 off--; 17821 if (optlen < IP_ADDR_LEN || 17822 off > optlen - IP_ADDR_LEN) { 17823 /* No more room - ignore */ 17824 ip1dbg(( 17825 "ip_rput_local_options: end of RR\n")); 17826 break; 17827 } 17828 bcopy(&ire->ire_src_addr, (char *)opt + off, 17829 IP_ADDR_LEN); 17830 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17831 break; 17832 case IPOPT_TS: 17833 /* Insert timestamp if there is romm */ 17834 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17835 case IPOPT_TS_TSONLY: 17836 off = IPOPT_TS_TIMELEN; 17837 break; 17838 case IPOPT_TS_PRESPEC: 17839 case IPOPT_TS_PRESPEC_RFC791: 17840 /* Verify that the address matched */ 17841 off = opt[IPOPT_OFFSET] - 1; 17842 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17843 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17844 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17845 ipst); 17846 if (dst_ire == NULL) { 17847 /* Not for us */ 17848 break; 17849 } 17850 ire_refrele(dst_ire); 17851 /* FALLTHRU */ 17852 case IPOPT_TS_TSANDADDR: 17853 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17854 break; 17855 default: 17856 /* 17857 * ip_*put_options should have already 17858 * dropped this packet. 17859 */ 17860 cmn_err(CE_PANIC, "ip_rput_local_options: " 17861 "unknown IT - bug in ip_rput_options?\n"); 17862 return (B_TRUE); /* Keep "lint" happy */ 17863 } 17864 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17865 /* Increase overflow counter */ 17866 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17867 opt[IPOPT_POS_OV_FLG] = 17868 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17869 (off << 4)); 17870 break; 17871 } 17872 off = opt[IPOPT_OFFSET] - 1; 17873 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17874 case IPOPT_TS_PRESPEC: 17875 case IPOPT_TS_PRESPEC_RFC791: 17876 case IPOPT_TS_TSANDADDR: 17877 bcopy(&ire->ire_src_addr, (char *)opt + off, 17878 IP_ADDR_LEN); 17879 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17880 /* FALLTHRU */ 17881 case IPOPT_TS_TSONLY: 17882 off = opt[IPOPT_OFFSET] - 1; 17883 /* Compute # of milliseconds since midnight */ 17884 gethrestime(&now); 17885 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17886 now.tv_nsec / (NANOSEC / MILLISEC); 17887 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17888 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17889 break; 17890 } 17891 break; 17892 } 17893 } 17894 return (B_TRUE); 17895 17896 bad_src_route: 17897 q = WR(q); 17898 if (q->q_next != NULL) 17899 ill = q->q_ptr; 17900 else 17901 ill = NULL; 17902 17903 /* make sure we clear any indication of a hardware checksum */ 17904 DB_CKSUMFLAGS(mp) = 0; 17905 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17906 if (zoneid == ALL_ZONES) 17907 freemsg(mp); 17908 else 17909 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17910 return (B_FALSE); 17911 17912 } 17913 17914 /* 17915 * Process IP options in an inbound packet. If an option affects the 17916 * effective destination address, return the next hop address via dstp. 17917 * Returns -1 if something fails in which case an ICMP error has been sent 17918 * and mp freed. 17919 */ 17920 static int 17921 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17922 ip_stack_t *ipst) 17923 { 17924 ipoptp_t opts; 17925 uchar_t *opt; 17926 uint8_t optval; 17927 uint8_t optlen; 17928 ipaddr_t dst; 17929 intptr_t code = 0; 17930 ire_t *ire = NULL; 17931 zoneid_t zoneid; 17932 ill_t *ill; 17933 17934 ip2dbg(("ip_rput_options\n")); 17935 dst = ipha->ipha_dst; 17936 for (optval = ipoptp_first(&opts, ipha); 17937 optval != IPOPT_EOL; 17938 optval = ipoptp_next(&opts)) { 17939 opt = opts.ipoptp_cur; 17940 optlen = opts.ipoptp_len; 17941 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17942 optval, optlen)); 17943 /* 17944 * Note: we need to verify the checksum before we 17945 * modify anything thus this routine only extracts the next 17946 * hop dst from any source route. 17947 */ 17948 switch (optval) { 17949 uint32_t off; 17950 case IPOPT_SSRR: 17951 case IPOPT_LSRR: 17952 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17953 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17954 if (ire == NULL) { 17955 if (optval == IPOPT_SSRR) { 17956 ip1dbg(("ip_rput_options: not next" 17957 " strict source route 0x%x\n", 17958 ntohl(dst))); 17959 code = (char *)&ipha->ipha_dst - 17960 (char *)ipha; 17961 goto param_prob; /* RouterReq's */ 17962 } 17963 ip2dbg(("ip_rput_options: " 17964 "not next source route 0x%x\n", 17965 ntohl(dst))); 17966 break; 17967 } 17968 ire_refrele(ire); 17969 17970 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17971 ip1dbg(( 17972 "ip_rput_options: bad option offset\n")); 17973 code = (char *)&opt[IPOPT_OLEN] - 17974 (char *)ipha; 17975 goto param_prob; 17976 } 17977 off = opt[IPOPT_OFFSET]; 17978 off--; 17979 redo_srr: 17980 if (optlen < IP_ADDR_LEN || 17981 off > optlen - IP_ADDR_LEN) { 17982 /* End of source route */ 17983 ip1dbg(("ip_rput_options: end of SR\n")); 17984 break; 17985 } 17986 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17987 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17988 ntohl(dst))); 17989 17990 /* 17991 * Check if our address is present more than 17992 * once as consecutive hops in source route. 17993 * XXX verify per-interface ip_forwarding 17994 * for source route? 17995 */ 17996 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17997 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17998 17999 if (ire != NULL) { 18000 ire_refrele(ire); 18001 off += IP_ADDR_LEN; 18002 goto redo_srr; 18003 } 18004 18005 if (dst == htonl(INADDR_LOOPBACK)) { 18006 ip1dbg(("ip_rput_options: loopback addr in " 18007 "source route!\n")); 18008 goto bad_src_route; 18009 } 18010 /* 18011 * For strict: verify that dst is directly 18012 * reachable. 18013 */ 18014 if (optval == IPOPT_SSRR) { 18015 ire = ire_ftable_lookup(dst, 0, 0, 18016 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18017 MBLK_GETLABEL(mp), 18018 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18019 if (ire == NULL) { 18020 ip1dbg(("ip_rput_options: SSRR not " 18021 "directly reachable: 0x%x\n", 18022 ntohl(dst))); 18023 goto bad_src_route; 18024 } 18025 ire_refrele(ire); 18026 } 18027 /* 18028 * Defer update of the offset and the record route 18029 * until the packet is forwarded. 18030 */ 18031 break; 18032 case IPOPT_RR: 18033 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18034 ip1dbg(( 18035 "ip_rput_options: bad option offset\n")); 18036 code = (char *)&opt[IPOPT_OLEN] - 18037 (char *)ipha; 18038 goto param_prob; 18039 } 18040 break; 18041 case IPOPT_TS: 18042 /* 18043 * Verify that length >= 5 and that there is either 18044 * room for another timestamp or that the overflow 18045 * counter is not maxed out. 18046 */ 18047 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18048 if (optlen < IPOPT_MINLEN_IT) { 18049 goto param_prob; 18050 } 18051 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18052 ip1dbg(( 18053 "ip_rput_options: bad option offset\n")); 18054 code = (char *)&opt[IPOPT_OFFSET] - 18055 (char *)ipha; 18056 goto param_prob; 18057 } 18058 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18059 case IPOPT_TS_TSONLY: 18060 off = IPOPT_TS_TIMELEN; 18061 break; 18062 case IPOPT_TS_TSANDADDR: 18063 case IPOPT_TS_PRESPEC: 18064 case IPOPT_TS_PRESPEC_RFC791: 18065 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18066 break; 18067 default: 18068 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18069 (char *)ipha; 18070 goto param_prob; 18071 } 18072 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18073 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18074 /* 18075 * No room and the overflow counter is 15 18076 * already. 18077 */ 18078 goto param_prob; 18079 } 18080 break; 18081 } 18082 } 18083 18084 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18085 *dstp = dst; 18086 return (0); 18087 } 18088 18089 ip1dbg(("ip_rput_options: error processing IP options.")); 18090 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18091 18092 param_prob: 18093 q = WR(q); 18094 if (q->q_next != NULL) 18095 ill = q->q_ptr; 18096 else 18097 ill = NULL; 18098 18099 /* make sure we clear any indication of a hardware checksum */ 18100 DB_CKSUMFLAGS(mp) = 0; 18101 /* Don't know whether this is for non-global or global/forwarding */ 18102 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18103 if (zoneid == ALL_ZONES) 18104 freemsg(mp); 18105 else 18106 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18107 return (-1); 18108 18109 bad_src_route: 18110 q = WR(q); 18111 if (q->q_next != NULL) 18112 ill = q->q_ptr; 18113 else 18114 ill = NULL; 18115 18116 /* make sure we clear any indication of a hardware checksum */ 18117 DB_CKSUMFLAGS(mp) = 0; 18118 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18119 if (zoneid == ALL_ZONES) 18120 freemsg(mp); 18121 else 18122 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18123 return (-1); 18124 } 18125 18126 /* 18127 * IP & ICMP info in >=14 msg's ... 18128 * - ip fixed part (mib2_ip_t) 18129 * - icmp fixed part (mib2_icmp_t) 18130 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18131 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18132 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18133 * - ipRouteAttributeTable (ip 102) labeled routes 18134 * - ip multicast membership (ip_member_t) 18135 * - ip multicast source filtering (ip_grpsrc_t) 18136 * - igmp fixed part (struct igmpstat) 18137 * - multicast routing stats (struct mrtstat) 18138 * - multicast routing vifs (array of struct vifctl) 18139 * - multicast routing routes (array of struct mfcctl) 18140 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18141 * One per ill plus one generic 18142 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18143 * One per ill plus one generic 18144 * - ipv6RouteEntry all IPv6 IREs 18145 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18146 * - ipv6NetToMediaEntry all Neighbor Cache entries 18147 * - ipv6AddrEntry all IPv6 ipifs 18148 * - ipv6 multicast membership (ipv6_member_t) 18149 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18150 * 18151 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18152 * 18153 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18154 * already filled in by the caller. 18155 * Return value of 0 indicates that no messages were sent and caller 18156 * should free mpctl. 18157 */ 18158 int 18159 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18160 { 18161 ip_stack_t *ipst; 18162 sctp_stack_t *sctps; 18163 18164 if (q->q_next != NULL) { 18165 ipst = ILLQ_TO_IPST(q); 18166 } else { 18167 ipst = CONNQ_TO_IPST(q); 18168 } 18169 ASSERT(ipst != NULL); 18170 sctps = ipst->ips_netstack->netstack_sctp; 18171 18172 if (mpctl == NULL || mpctl->b_cont == NULL) { 18173 return (0); 18174 } 18175 18176 /* 18177 * For the purposes of the (broken) packet shell use 18178 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18179 * to make TCP and UDP appear first in the list of mib items. 18180 * TBD: We could expand this and use it in netstat so that 18181 * the kernel doesn't have to produce large tables (connections, 18182 * routes, etc) when netstat only wants the statistics or a particular 18183 * table. 18184 */ 18185 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18186 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18187 return (1); 18188 } 18189 } 18190 18191 if (level != MIB2_TCP) { 18192 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18193 return (1); 18194 } 18195 } 18196 18197 if (level != MIB2_UDP) { 18198 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18199 return (1); 18200 } 18201 } 18202 18203 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18204 ipst)) == NULL) { 18205 return (1); 18206 } 18207 18208 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18209 return (1); 18210 } 18211 18212 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18213 return (1); 18214 } 18215 18216 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18217 return (1); 18218 } 18219 18220 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18221 return (1); 18222 } 18223 18224 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18225 return (1); 18226 } 18227 18228 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18229 return (1); 18230 } 18231 18232 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18233 return (1); 18234 } 18235 18236 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18237 return (1); 18238 } 18239 18240 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18241 return (1); 18242 } 18243 18244 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18245 return (1); 18246 } 18247 18248 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18249 return (1); 18250 } 18251 18252 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18253 return (1); 18254 } 18255 18256 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18257 return (1); 18258 } 18259 18260 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18261 return (1); 18262 } 18263 18264 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18265 if (mpctl == NULL) { 18266 return (1); 18267 } 18268 18269 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18270 return (1); 18271 } 18272 freemsg(mpctl); 18273 return (1); 18274 } 18275 18276 18277 /* Get global (legacy) IPv4 statistics */ 18278 static mblk_t * 18279 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18280 ip_stack_t *ipst) 18281 { 18282 mib2_ip_t old_ip_mib; 18283 struct opthdr *optp; 18284 mblk_t *mp2ctl; 18285 18286 /* 18287 * make a copy of the original message 18288 */ 18289 mp2ctl = copymsg(mpctl); 18290 18291 /* fixed length IP structure... */ 18292 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18293 optp->level = MIB2_IP; 18294 optp->name = 0; 18295 SET_MIB(old_ip_mib.ipForwarding, 18296 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18297 SET_MIB(old_ip_mib.ipDefaultTTL, 18298 (uint32_t)ipst->ips_ip_def_ttl); 18299 SET_MIB(old_ip_mib.ipReasmTimeout, 18300 ipst->ips_ip_g_frag_timeout); 18301 SET_MIB(old_ip_mib.ipAddrEntrySize, 18302 sizeof (mib2_ipAddrEntry_t)); 18303 SET_MIB(old_ip_mib.ipRouteEntrySize, 18304 sizeof (mib2_ipRouteEntry_t)); 18305 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18306 sizeof (mib2_ipNetToMediaEntry_t)); 18307 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18308 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18309 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18310 sizeof (mib2_ipAttributeEntry_t)); 18311 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18312 18313 /* 18314 * Grab the statistics from the new IP MIB 18315 */ 18316 SET_MIB(old_ip_mib.ipInReceives, 18317 (uint32_t)ipmib->ipIfStatsHCInReceives); 18318 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18319 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18320 SET_MIB(old_ip_mib.ipForwDatagrams, 18321 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18322 SET_MIB(old_ip_mib.ipInUnknownProtos, 18323 ipmib->ipIfStatsInUnknownProtos); 18324 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18325 SET_MIB(old_ip_mib.ipInDelivers, 18326 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18327 SET_MIB(old_ip_mib.ipOutRequests, 18328 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18329 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18330 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18331 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18332 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18333 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18334 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18335 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18336 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18337 18338 /* ipRoutingDiscards is not being used */ 18339 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18340 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18341 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18342 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18343 SET_MIB(old_ip_mib.ipReasmDuplicates, 18344 ipmib->ipIfStatsReasmDuplicates); 18345 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18346 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18347 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18348 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18349 SET_MIB(old_ip_mib.rawipInOverflows, 18350 ipmib->rawipIfStatsInOverflows); 18351 18352 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18353 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18354 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18355 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18356 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18357 ipmib->ipIfStatsOutSwitchIPVersion); 18358 18359 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18360 (int)sizeof (old_ip_mib))) { 18361 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18362 (uint_t)sizeof (old_ip_mib))); 18363 } 18364 18365 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18366 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18367 (int)optp->level, (int)optp->name, (int)optp->len)); 18368 qreply(q, mpctl); 18369 return (mp2ctl); 18370 } 18371 18372 /* Per interface IPv4 statistics */ 18373 static mblk_t * 18374 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18375 { 18376 struct opthdr *optp; 18377 mblk_t *mp2ctl; 18378 ill_t *ill; 18379 ill_walk_context_t ctx; 18380 mblk_t *mp_tail = NULL; 18381 mib2_ipIfStatsEntry_t global_ip_mib; 18382 18383 /* 18384 * Make a copy of the original message 18385 */ 18386 mp2ctl = copymsg(mpctl); 18387 18388 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18389 optp->level = MIB2_IP; 18390 optp->name = MIB2_IP_TRAFFIC_STATS; 18391 /* Include "unknown interface" ip_mib */ 18392 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18393 ipst->ips_ip_mib.ipIfStatsIfIndex = 18394 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18395 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18396 (ipst->ips_ip_g_forward ? 1 : 2)); 18397 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18398 (uint32_t)ipst->ips_ip_def_ttl); 18399 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18400 sizeof (mib2_ipIfStatsEntry_t)); 18401 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18402 sizeof (mib2_ipAddrEntry_t)); 18403 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18404 sizeof (mib2_ipRouteEntry_t)); 18405 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18406 sizeof (mib2_ipNetToMediaEntry_t)); 18407 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18408 sizeof (ip_member_t)); 18409 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18410 sizeof (ip_grpsrc_t)); 18411 18412 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18413 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18414 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18415 "failed to allocate %u bytes\n", 18416 (uint_t)sizeof (ipst->ips_ip_mib))); 18417 } 18418 18419 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18420 18421 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18422 ill = ILL_START_WALK_V4(&ctx, ipst); 18423 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18424 ill->ill_ip_mib->ipIfStatsIfIndex = 18425 ill->ill_phyint->phyint_ifindex; 18426 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18427 (ipst->ips_ip_g_forward ? 1 : 2)); 18428 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18429 (uint32_t)ipst->ips_ip_def_ttl); 18430 18431 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18432 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18433 (char *)ill->ill_ip_mib, 18434 (int)sizeof (*ill->ill_ip_mib))) { 18435 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18436 "failed to allocate %u bytes\n", 18437 (uint_t)sizeof (*ill->ill_ip_mib))); 18438 } 18439 } 18440 rw_exit(&ipst->ips_ill_g_lock); 18441 18442 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18443 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18444 "level %d, name %d, len %d\n", 18445 (int)optp->level, (int)optp->name, (int)optp->len)); 18446 qreply(q, mpctl); 18447 18448 if (mp2ctl == NULL) 18449 return (NULL); 18450 18451 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18452 } 18453 18454 /* Global IPv4 ICMP statistics */ 18455 static mblk_t * 18456 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18457 { 18458 struct opthdr *optp; 18459 mblk_t *mp2ctl; 18460 18461 /* 18462 * Make a copy of the original message 18463 */ 18464 mp2ctl = copymsg(mpctl); 18465 18466 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18467 optp->level = MIB2_ICMP; 18468 optp->name = 0; 18469 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18470 (int)sizeof (ipst->ips_icmp_mib))) { 18471 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18472 (uint_t)sizeof (ipst->ips_icmp_mib))); 18473 } 18474 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18475 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18476 (int)optp->level, (int)optp->name, (int)optp->len)); 18477 qreply(q, mpctl); 18478 return (mp2ctl); 18479 } 18480 18481 /* Global IPv4 IGMP statistics */ 18482 static mblk_t * 18483 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18484 { 18485 struct opthdr *optp; 18486 mblk_t *mp2ctl; 18487 18488 /* 18489 * make a copy of the original message 18490 */ 18491 mp2ctl = copymsg(mpctl); 18492 18493 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18494 optp->level = EXPER_IGMP; 18495 optp->name = 0; 18496 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18497 (int)sizeof (ipst->ips_igmpstat))) { 18498 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18499 (uint_t)sizeof (ipst->ips_igmpstat))); 18500 } 18501 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18502 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18503 (int)optp->level, (int)optp->name, (int)optp->len)); 18504 qreply(q, mpctl); 18505 return (mp2ctl); 18506 } 18507 18508 /* Global IPv4 Multicast Routing statistics */ 18509 static mblk_t * 18510 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18511 { 18512 struct opthdr *optp; 18513 mblk_t *mp2ctl; 18514 18515 /* 18516 * make a copy of the original message 18517 */ 18518 mp2ctl = copymsg(mpctl); 18519 18520 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18521 optp->level = EXPER_DVMRP; 18522 optp->name = 0; 18523 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18524 ip0dbg(("ip_mroute_stats: failed\n")); 18525 } 18526 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18527 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18528 (int)optp->level, (int)optp->name, (int)optp->len)); 18529 qreply(q, mpctl); 18530 return (mp2ctl); 18531 } 18532 18533 /* IPv4 address information */ 18534 static mblk_t * 18535 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18536 { 18537 struct opthdr *optp; 18538 mblk_t *mp2ctl; 18539 mblk_t *mp_tail = NULL; 18540 ill_t *ill; 18541 ipif_t *ipif; 18542 uint_t bitval; 18543 mib2_ipAddrEntry_t mae; 18544 zoneid_t zoneid; 18545 ill_walk_context_t ctx; 18546 18547 /* 18548 * make a copy of the original message 18549 */ 18550 mp2ctl = copymsg(mpctl); 18551 18552 /* ipAddrEntryTable */ 18553 18554 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18555 optp->level = MIB2_IP; 18556 optp->name = MIB2_IP_ADDR; 18557 zoneid = Q_TO_CONN(q)->conn_zoneid; 18558 18559 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18560 ill = ILL_START_WALK_V4(&ctx, ipst); 18561 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18562 for (ipif = ill->ill_ipif; ipif != NULL; 18563 ipif = ipif->ipif_next) { 18564 if (ipif->ipif_zoneid != zoneid && 18565 ipif->ipif_zoneid != ALL_ZONES) 18566 continue; 18567 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18568 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18569 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18570 18571 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18572 OCTET_LENGTH); 18573 mae.ipAdEntIfIndex.o_length = 18574 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18575 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18576 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18577 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18578 mae.ipAdEntInfo.ae_subnet_len = 18579 ip_mask_to_plen(ipif->ipif_net_mask); 18580 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18581 for (bitval = 1; 18582 bitval && 18583 !(bitval & ipif->ipif_brd_addr); 18584 bitval <<= 1) 18585 noop; 18586 mae.ipAdEntBcastAddr = bitval; 18587 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18588 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18589 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18590 mae.ipAdEntInfo.ae_broadcast_addr = 18591 ipif->ipif_brd_addr; 18592 mae.ipAdEntInfo.ae_pp_dst_addr = 18593 ipif->ipif_pp_dst_addr; 18594 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18595 ill->ill_flags | ill->ill_phyint->phyint_flags; 18596 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18597 18598 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18599 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18600 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18601 "allocate %u bytes\n", 18602 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18603 } 18604 } 18605 } 18606 rw_exit(&ipst->ips_ill_g_lock); 18607 18608 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18609 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18610 (int)optp->level, (int)optp->name, (int)optp->len)); 18611 qreply(q, mpctl); 18612 return (mp2ctl); 18613 } 18614 18615 /* IPv6 address information */ 18616 static mblk_t * 18617 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18618 { 18619 struct opthdr *optp; 18620 mblk_t *mp2ctl; 18621 mblk_t *mp_tail = NULL; 18622 ill_t *ill; 18623 ipif_t *ipif; 18624 mib2_ipv6AddrEntry_t mae6; 18625 zoneid_t zoneid; 18626 ill_walk_context_t ctx; 18627 18628 /* 18629 * make a copy of the original message 18630 */ 18631 mp2ctl = copymsg(mpctl); 18632 18633 /* ipv6AddrEntryTable */ 18634 18635 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18636 optp->level = MIB2_IP6; 18637 optp->name = MIB2_IP6_ADDR; 18638 zoneid = Q_TO_CONN(q)->conn_zoneid; 18639 18640 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18641 ill = ILL_START_WALK_V6(&ctx, ipst); 18642 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18643 for (ipif = ill->ill_ipif; ipif != NULL; 18644 ipif = ipif->ipif_next) { 18645 if (ipif->ipif_zoneid != zoneid && 18646 ipif->ipif_zoneid != ALL_ZONES) 18647 continue; 18648 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18649 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18650 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18651 18652 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18653 OCTET_LENGTH); 18654 mae6.ipv6AddrIfIndex.o_length = 18655 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18656 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18657 mae6.ipv6AddrPfxLength = 18658 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18659 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18660 mae6.ipv6AddrInfo.ae_subnet_len = 18661 mae6.ipv6AddrPfxLength; 18662 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18663 18664 /* Type: stateless(1), stateful(2), unknown(3) */ 18665 if (ipif->ipif_flags & IPIF_ADDRCONF) 18666 mae6.ipv6AddrType = 1; 18667 else 18668 mae6.ipv6AddrType = 2; 18669 /* Anycast: true(1), false(2) */ 18670 if (ipif->ipif_flags & IPIF_ANYCAST) 18671 mae6.ipv6AddrAnycastFlag = 1; 18672 else 18673 mae6.ipv6AddrAnycastFlag = 2; 18674 18675 /* 18676 * Address status: preferred(1), deprecated(2), 18677 * invalid(3), inaccessible(4), unknown(5) 18678 */ 18679 if (ipif->ipif_flags & IPIF_NOLOCAL) 18680 mae6.ipv6AddrStatus = 3; 18681 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18682 mae6.ipv6AddrStatus = 2; 18683 else 18684 mae6.ipv6AddrStatus = 1; 18685 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18686 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18687 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18688 ipif->ipif_v6pp_dst_addr; 18689 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18690 ill->ill_flags | ill->ill_phyint->phyint_flags; 18691 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18692 mae6.ipv6AddrIdentifier = ill->ill_token; 18693 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18694 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18695 mae6.ipv6AddrRetransmitTime = 18696 ill->ill_reachable_retrans_time; 18697 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18698 (char *)&mae6, 18699 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18700 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18701 "allocate %u bytes\n", 18702 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18703 } 18704 } 18705 } 18706 rw_exit(&ipst->ips_ill_g_lock); 18707 18708 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18709 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18710 (int)optp->level, (int)optp->name, (int)optp->len)); 18711 qreply(q, mpctl); 18712 return (mp2ctl); 18713 } 18714 18715 /* IPv4 multicast group membership. */ 18716 static mblk_t * 18717 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18718 { 18719 struct opthdr *optp; 18720 mblk_t *mp2ctl; 18721 ill_t *ill; 18722 ipif_t *ipif; 18723 ilm_t *ilm; 18724 ip_member_t ipm; 18725 mblk_t *mp_tail = NULL; 18726 ill_walk_context_t ctx; 18727 zoneid_t zoneid; 18728 18729 /* 18730 * make a copy of the original message 18731 */ 18732 mp2ctl = copymsg(mpctl); 18733 zoneid = Q_TO_CONN(q)->conn_zoneid; 18734 18735 /* ipGroupMember table */ 18736 optp = (struct opthdr *)&mpctl->b_rptr[ 18737 sizeof (struct T_optmgmt_ack)]; 18738 optp->level = MIB2_IP; 18739 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18740 18741 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18742 ill = ILL_START_WALK_V4(&ctx, ipst); 18743 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18744 ILM_WALKER_HOLD(ill); 18745 for (ipif = ill->ill_ipif; ipif != NULL; 18746 ipif = ipif->ipif_next) { 18747 if (ipif->ipif_zoneid != zoneid && 18748 ipif->ipif_zoneid != ALL_ZONES) 18749 continue; /* not this zone */ 18750 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18751 OCTET_LENGTH); 18752 ipm.ipGroupMemberIfIndex.o_length = 18753 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18754 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18755 ASSERT(ilm->ilm_ipif != NULL); 18756 ASSERT(ilm->ilm_ill == NULL); 18757 if (ilm->ilm_ipif != ipif) 18758 continue; 18759 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18760 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18761 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18762 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18763 (char *)&ipm, (int)sizeof (ipm))) { 18764 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18765 "failed to allocate %u bytes\n", 18766 (uint_t)sizeof (ipm))); 18767 } 18768 } 18769 } 18770 ILM_WALKER_RELE(ill); 18771 } 18772 rw_exit(&ipst->ips_ill_g_lock); 18773 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18774 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18775 (int)optp->level, (int)optp->name, (int)optp->len)); 18776 qreply(q, mpctl); 18777 return (mp2ctl); 18778 } 18779 18780 /* IPv6 multicast group membership. */ 18781 static mblk_t * 18782 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18783 { 18784 struct opthdr *optp; 18785 mblk_t *mp2ctl; 18786 ill_t *ill; 18787 ilm_t *ilm; 18788 ipv6_member_t ipm6; 18789 mblk_t *mp_tail = NULL; 18790 ill_walk_context_t ctx; 18791 zoneid_t zoneid; 18792 18793 /* 18794 * make a copy of the original message 18795 */ 18796 mp2ctl = copymsg(mpctl); 18797 zoneid = Q_TO_CONN(q)->conn_zoneid; 18798 18799 /* ip6GroupMember table */ 18800 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18801 optp->level = MIB2_IP6; 18802 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18803 18804 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18805 ill = ILL_START_WALK_V6(&ctx, ipst); 18806 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18807 ILM_WALKER_HOLD(ill); 18808 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18809 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18810 ASSERT(ilm->ilm_ipif == NULL); 18811 ASSERT(ilm->ilm_ill != NULL); 18812 if (ilm->ilm_zoneid != zoneid) 18813 continue; /* not this zone */ 18814 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18815 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18816 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18817 if (!snmp_append_data2(mpctl->b_cont, 18818 &mp_tail, 18819 (char *)&ipm6, (int)sizeof (ipm6))) { 18820 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18821 "failed to allocate %u bytes\n", 18822 (uint_t)sizeof (ipm6))); 18823 } 18824 } 18825 ILM_WALKER_RELE(ill); 18826 } 18827 rw_exit(&ipst->ips_ill_g_lock); 18828 18829 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18830 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18831 (int)optp->level, (int)optp->name, (int)optp->len)); 18832 qreply(q, mpctl); 18833 return (mp2ctl); 18834 } 18835 18836 /* IP multicast filtered sources */ 18837 static mblk_t * 18838 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18839 { 18840 struct opthdr *optp; 18841 mblk_t *mp2ctl; 18842 ill_t *ill; 18843 ipif_t *ipif; 18844 ilm_t *ilm; 18845 ip_grpsrc_t ips; 18846 mblk_t *mp_tail = NULL; 18847 ill_walk_context_t ctx; 18848 zoneid_t zoneid; 18849 int i; 18850 slist_t *sl; 18851 18852 /* 18853 * make a copy of the original message 18854 */ 18855 mp2ctl = copymsg(mpctl); 18856 zoneid = Q_TO_CONN(q)->conn_zoneid; 18857 18858 /* ipGroupSource table */ 18859 optp = (struct opthdr *)&mpctl->b_rptr[ 18860 sizeof (struct T_optmgmt_ack)]; 18861 optp->level = MIB2_IP; 18862 optp->name = EXPER_IP_GROUP_SOURCES; 18863 18864 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18865 ill = ILL_START_WALK_V4(&ctx, ipst); 18866 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18867 ILM_WALKER_HOLD(ill); 18868 for (ipif = ill->ill_ipif; ipif != NULL; 18869 ipif = ipif->ipif_next) { 18870 if (ipif->ipif_zoneid != zoneid) 18871 continue; /* not this zone */ 18872 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18873 OCTET_LENGTH); 18874 ips.ipGroupSourceIfIndex.o_length = 18875 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18876 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18877 ASSERT(ilm->ilm_ipif != NULL); 18878 ASSERT(ilm->ilm_ill == NULL); 18879 sl = ilm->ilm_filter; 18880 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18881 continue; 18882 ips.ipGroupSourceGroup = ilm->ilm_addr; 18883 for (i = 0; i < sl->sl_numsrc; i++) { 18884 if (!IN6_IS_ADDR_V4MAPPED( 18885 &sl->sl_addr[i])) 18886 continue; 18887 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18888 ips.ipGroupSourceAddress); 18889 if (snmp_append_data2(mpctl->b_cont, 18890 &mp_tail, (char *)&ips, 18891 (int)sizeof (ips)) == 0) { 18892 ip1dbg(("ip_snmp_get_mib2_" 18893 "ip_group_src: failed to " 18894 "allocate %u bytes\n", 18895 (uint_t)sizeof (ips))); 18896 } 18897 } 18898 } 18899 } 18900 ILM_WALKER_RELE(ill); 18901 } 18902 rw_exit(&ipst->ips_ill_g_lock); 18903 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18904 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18905 (int)optp->level, (int)optp->name, (int)optp->len)); 18906 qreply(q, mpctl); 18907 return (mp2ctl); 18908 } 18909 18910 /* IPv6 multicast filtered sources. */ 18911 static mblk_t * 18912 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18913 { 18914 struct opthdr *optp; 18915 mblk_t *mp2ctl; 18916 ill_t *ill; 18917 ilm_t *ilm; 18918 ipv6_grpsrc_t ips6; 18919 mblk_t *mp_tail = NULL; 18920 ill_walk_context_t ctx; 18921 zoneid_t zoneid; 18922 int i; 18923 slist_t *sl; 18924 18925 /* 18926 * make a copy of the original message 18927 */ 18928 mp2ctl = copymsg(mpctl); 18929 zoneid = Q_TO_CONN(q)->conn_zoneid; 18930 18931 /* ip6GroupMember table */ 18932 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18933 optp->level = MIB2_IP6; 18934 optp->name = EXPER_IP6_GROUP_SOURCES; 18935 18936 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18937 ill = ILL_START_WALK_V6(&ctx, ipst); 18938 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18939 ILM_WALKER_HOLD(ill); 18940 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18941 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18942 ASSERT(ilm->ilm_ipif == NULL); 18943 ASSERT(ilm->ilm_ill != NULL); 18944 sl = ilm->ilm_filter; 18945 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18946 continue; 18947 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18948 for (i = 0; i < sl->sl_numsrc; i++) { 18949 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18950 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18951 (char *)&ips6, (int)sizeof (ips6))) { 18952 ip1dbg(("ip_snmp_get_mib2_ip6_" 18953 "group_src: failed to allocate " 18954 "%u bytes\n", 18955 (uint_t)sizeof (ips6))); 18956 } 18957 } 18958 } 18959 ILM_WALKER_RELE(ill); 18960 } 18961 rw_exit(&ipst->ips_ill_g_lock); 18962 18963 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18964 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18965 (int)optp->level, (int)optp->name, (int)optp->len)); 18966 qreply(q, mpctl); 18967 return (mp2ctl); 18968 } 18969 18970 /* Multicast routing virtual interface table. */ 18971 static mblk_t * 18972 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18973 { 18974 struct opthdr *optp; 18975 mblk_t *mp2ctl; 18976 18977 /* 18978 * make a copy of the original message 18979 */ 18980 mp2ctl = copymsg(mpctl); 18981 18982 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18983 optp->level = EXPER_DVMRP; 18984 optp->name = EXPER_DVMRP_VIF; 18985 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18986 ip0dbg(("ip_mroute_vif: failed\n")); 18987 } 18988 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18989 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18990 (int)optp->level, (int)optp->name, (int)optp->len)); 18991 qreply(q, mpctl); 18992 return (mp2ctl); 18993 } 18994 18995 /* Multicast routing table. */ 18996 static mblk_t * 18997 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18998 { 18999 struct opthdr *optp; 19000 mblk_t *mp2ctl; 19001 19002 /* 19003 * make a copy of the original message 19004 */ 19005 mp2ctl = copymsg(mpctl); 19006 19007 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19008 optp->level = EXPER_DVMRP; 19009 optp->name = EXPER_DVMRP_MRT; 19010 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19011 ip0dbg(("ip_mroute_mrt: failed\n")); 19012 } 19013 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19014 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19015 (int)optp->level, (int)optp->name, (int)optp->len)); 19016 qreply(q, mpctl); 19017 return (mp2ctl); 19018 } 19019 19020 /* 19021 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19022 * in one IRE walk. 19023 */ 19024 static mblk_t * 19025 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19026 { 19027 struct opthdr *optp; 19028 mblk_t *mp2ctl; /* Returned */ 19029 mblk_t *mp3ctl; /* nettomedia */ 19030 mblk_t *mp4ctl; /* routeattrs */ 19031 iproutedata_t ird; 19032 zoneid_t zoneid; 19033 19034 /* 19035 * make copies of the original message 19036 * - mp2ctl is returned unchanged to the caller for his use 19037 * - mpctl is sent upstream as ipRouteEntryTable 19038 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19039 * - mp4ctl is sent upstream as ipRouteAttributeTable 19040 */ 19041 mp2ctl = copymsg(mpctl); 19042 mp3ctl = copymsg(mpctl); 19043 mp4ctl = copymsg(mpctl); 19044 if (mp3ctl == NULL || mp4ctl == NULL) { 19045 freemsg(mp4ctl); 19046 freemsg(mp3ctl); 19047 freemsg(mp2ctl); 19048 freemsg(mpctl); 19049 return (NULL); 19050 } 19051 19052 bzero(&ird, sizeof (ird)); 19053 19054 ird.ird_route.lp_head = mpctl->b_cont; 19055 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19056 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19057 19058 zoneid = Q_TO_CONN(q)->conn_zoneid; 19059 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19060 19061 /* ipRouteEntryTable in mpctl */ 19062 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19063 optp->level = MIB2_IP; 19064 optp->name = MIB2_IP_ROUTE; 19065 optp->len = msgdsize(ird.ird_route.lp_head); 19066 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19067 (int)optp->level, (int)optp->name, (int)optp->len)); 19068 qreply(q, mpctl); 19069 19070 /* ipNetToMediaEntryTable in mp3ctl */ 19071 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19072 optp->level = MIB2_IP; 19073 optp->name = MIB2_IP_MEDIA; 19074 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19075 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19076 (int)optp->level, (int)optp->name, (int)optp->len)); 19077 qreply(q, mp3ctl); 19078 19079 /* ipRouteAttributeTable in mp4ctl */ 19080 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19081 optp->level = MIB2_IP; 19082 optp->name = EXPER_IP_RTATTR; 19083 optp->len = msgdsize(ird.ird_attrs.lp_head); 19084 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19085 (int)optp->level, (int)optp->name, (int)optp->len)); 19086 if (optp->len == 0) 19087 freemsg(mp4ctl); 19088 else 19089 qreply(q, mp4ctl); 19090 19091 return (mp2ctl); 19092 } 19093 19094 /* 19095 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19096 * ipv6NetToMediaEntryTable in an NDP walk. 19097 */ 19098 static mblk_t * 19099 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19100 { 19101 struct opthdr *optp; 19102 mblk_t *mp2ctl; /* Returned */ 19103 mblk_t *mp3ctl; /* nettomedia */ 19104 mblk_t *mp4ctl; /* routeattrs */ 19105 iproutedata_t ird; 19106 zoneid_t zoneid; 19107 19108 /* 19109 * make copies of the original message 19110 * - mp2ctl is returned unchanged to the caller for his use 19111 * - mpctl is sent upstream as ipv6RouteEntryTable 19112 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19113 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19114 */ 19115 mp2ctl = copymsg(mpctl); 19116 mp3ctl = copymsg(mpctl); 19117 mp4ctl = copymsg(mpctl); 19118 if (mp3ctl == NULL || mp4ctl == NULL) { 19119 freemsg(mp4ctl); 19120 freemsg(mp3ctl); 19121 freemsg(mp2ctl); 19122 freemsg(mpctl); 19123 return (NULL); 19124 } 19125 19126 bzero(&ird, sizeof (ird)); 19127 19128 ird.ird_route.lp_head = mpctl->b_cont; 19129 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19130 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19131 19132 zoneid = Q_TO_CONN(q)->conn_zoneid; 19133 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19134 19135 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19136 optp->level = MIB2_IP6; 19137 optp->name = MIB2_IP6_ROUTE; 19138 optp->len = msgdsize(ird.ird_route.lp_head); 19139 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19140 (int)optp->level, (int)optp->name, (int)optp->len)); 19141 qreply(q, mpctl); 19142 19143 /* ipv6NetToMediaEntryTable in mp3ctl */ 19144 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19145 19146 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19147 optp->level = MIB2_IP6; 19148 optp->name = MIB2_IP6_MEDIA; 19149 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19150 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19151 (int)optp->level, (int)optp->name, (int)optp->len)); 19152 qreply(q, mp3ctl); 19153 19154 /* ipv6RouteAttributeTable in mp4ctl */ 19155 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19156 optp->level = MIB2_IP6; 19157 optp->name = EXPER_IP_RTATTR; 19158 optp->len = msgdsize(ird.ird_attrs.lp_head); 19159 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19160 (int)optp->level, (int)optp->name, (int)optp->len)); 19161 if (optp->len == 0) 19162 freemsg(mp4ctl); 19163 else 19164 qreply(q, mp4ctl); 19165 19166 return (mp2ctl); 19167 } 19168 19169 /* 19170 * IPv6 mib: One per ill 19171 */ 19172 static mblk_t * 19173 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19174 { 19175 struct opthdr *optp; 19176 mblk_t *mp2ctl; 19177 ill_t *ill; 19178 ill_walk_context_t ctx; 19179 mblk_t *mp_tail = NULL; 19180 19181 /* 19182 * Make a copy of the original message 19183 */ 19184 mp2ctl = copymsg(mpctl); 19185 19186 /* fixed length IPv6 structure ... */ 19187 19188 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19189 optp->level = MIB2_IP6; 19190 optp->name = 0; 19191 /* Include "unknown interface" ip6_mib */ 19192 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19193 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19194 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19195 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19196 ipst->ips_ipv6_forward ? 1 : 2); 19197 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19198 ipst->ips_ipv6_def_hops); 19199 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19200 sizeof (mib2_ipIfStatsEntry_t)); 19201 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19202 sizeof (mib2_ipv6AddrEntry_t)); 19203 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19204 sizeof (mib2_ipv6RouteEntry_t)); 19205 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19206 sizeof (mib2_ipv6NetToMediaEntry_t)); 19207 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19208 sizeof (ipv6_member_t)); 19209 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19210 sizeof (ipv6_grpsrc_t)); 19211 19212 /* 19213 * Synchronize 64- and 32-bit counters 19214 */ 19215 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19216 ipIfStatsHCInReceives); 19217 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19218 ipIfStatsHCInDelivers); 19219 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19220 ipIfStatsHCOutRequests); 19221 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19222 ipIfStatsHCOutForwDatagrams); 19223 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19224 ipIfStatsHCOutMcastPkts); 19225 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19226 ipIfStatsHCInMcastPkts); 19227 19228 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19229 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19230 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19231 (uint_t)sizeof (ipst->ips_ip6_mib))); 19232 } 19233 19234 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19235 ill = ILL_START_WALK_V6(&ctx, ipst); 19236 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19237 ill->ill_ip_mib->ipIfStatsIfIndex = 19238 ill->ill_phyint->phyint_ifindex; 19239 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19240 ipst->ips_ipv6_forward ? 1 : 2); 19241 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19242 ill->ill_max_hops); 19243 19244 /* 19245 * Synchronize 64- and 32-bit counters 19246 */ 19247 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19248 ipIfStatsHCInReceives); 19249 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19250 ipIfStatsHCInDelivers); 19251 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19252 ipIfStatsHCOutRequests); 19253 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19254 ipIfStatsHCOutForwDatagrams); 19255 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19256 ipIfStatsHCOutMcastPkts); 19257 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19258 ipIfStatsHCInMcastPkts); 19259 19260 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19261 (char *)ill->ill_ip_mib, 19262 (int)sizeof (*ill->ill_ip_mib))) { 19263 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19264 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19265 } 19266 } 19267 rw_exit(&ipst->ips_ill_g_lock); 19268 19269 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19270 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19271 (int)optp->level, (int)optp->name, (int)optp->len)); 19272 qreply(q, mpctl); 19273 return (mp2ctl); 19274 } 19275 19276 /* 19277 * ICMPv6 mib: One per ill 19278 */ 19279 static mblk_t * 19280 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19281 { 19282 struct opthdr *optp; 19283 mblk_t *mp2ctl; 19284 ill_t *ill; 19285 ill_walk_context_t ctx; 19286 mblk_t *mp_tail = NULL; 19287 /* 19288 * Make a copy of the original message 19289 */ 19290 mp2ctl = copymsg(mpctl); 19291 19292 /* fixed length ICMPv6 structure ... */ 19293 19294 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19295 optp->level = MIB2_ICMP6; 19296 optp->name = 0; 19297 /* Include "unknown interface" icmp6_mib */ 19298 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19299 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19300 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19301 sizeof (mib2_ipv6IfIcmpEntry_t); 19302 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19303 (char *)&ipst->ips_icmp6_mib, 19304 (int)sizeof (ipst->ips_icmp6_mib))) { 19305 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19306 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19307 } 19308 19309 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19310 ill = ILL_START_WALK_V6(&ctx, ipst); 19311 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19312 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19313 ill->ill_phyint->phyint_ifindex; 19314 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19315 (char *)ill->ill_icmp6_mib, 19316 (int)sizeof (*ill->ill_icmp6_mib))) { 19317 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19318 "%u bytes\n", 19319 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19320 } 19321 } 19322 rw_exit(&ipst->ips_ill_g_lock); 19323 19324 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19325 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19326 (int)optp->level, (int)optp->name, (int)optp->len)); 19327 qreply(q, mpctl); 19328 return (mp2ctl); 19329 } 19330 19331 /* 19332 * ire_walk routine to create both ipRouteEntryTable and 19333 * ipRouteAttributeTable in one IRE walk 19334 */ 19335 static void 19336 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19337 { 19338 ill_t *ill; 19339 ipif_t *ipif; 19340 mib2_ipRouteEntry_t *re; 19341 mib2_ipAttributeEntry_t *iae, *iaeptr; 19342 ipaddr_t gw_addr; 19343 tsol_ire_gw_secattr_t *attrp; 19344 tsol_gc_t *gc = NULL; 19345 tsol_gcgrp_t *gcgrp = NULL; 19346 uint_t sacnt = 0; 19347 int i; 19348 19349 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19350 19351 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19352 return; 19353 19354 if ((attrp = ire->ire_gw_secattr) != NULL) { 19355 mutex_enter(&attrp->igsa_lock); 19356 if ((gc = attrp->igsa_gc) != NULL) { 19357 gcgrp = gc->gc_grp; 19358 ASSERT(gcgrp != NULL); 19359 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19360 sacnt = 1; 19361 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19362 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19363 gc = gcgrp->gcgrp_head; 19364 sacnt = gcgrp->gcgrp_count; 19365 } 19366 mutex_exit(&attrp->igsa_lock); 19367 19368 /* do nothing if there's no gc to report */ 19369 if (gc == NULL) { 19370 ASSERT(sacnt == 0); 19371 if (gcgrp != NULL) { 19372 /* we might as well drop the lock now */ 19373 rw_exit(&gcgrp->gcgrp_rwlock); 19374 gcgrp = NULL; 19375 } 19376 attrp = NULL; 19377 } 19378 19379 ASSERT(gc == NULL || (gcgrp != NULL && 19380 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19381 } 19382 ASSERT(sacnt == 0 || gc != NULL); 19383 19384 if (sacnt != 0 && 19385 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19386 kmem_free(re, sizeof (*re)); 19387 rw_exit(&gcgrp->gcgrp_rwlock); 19388 return; 19389 } 19390 19391 /* 19392 * Return all IRE types for route table... let caller pick and choose 19393 */ 19394 re->ipRouteDest = ire->ire_addr; 19395 ipif = ire->ire_ipif; 19396 re->ipRouteIfIndex.o_length = 0; 19397 if (ire->ire_type == IRE_CACHE) { 19398 ill = (ill_t *)ire->ire_stq->q_ptr; 19399 re->ipRouteIfIndex.o_length = 19400 ill->ill_name_length == 0 ? 0 : 19401 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19402 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19403 re->ipRouteIfIndex.o_length); 19404 } else if (ipif != NULL) { 19405 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19406 re->ipRouteIfIndex.o_length = 19407 mi_strlen(re->ipRouteIfIndex.o_bytes); 19408 } 19409 re->ipRouteMetric1 = -1; 19410 re->ipRouteMetric2 = -1; 19411 re->ipRouteMetric3 = -1; 19412 re->ipRouteMetric4 = -1; 19413 19414 gw_addr = ire->ire_gateway_addr; 19415 19416 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19417 re->ipRouteNextHop = ire->ire_src_addr; 19418 else 19419 re->ipRouteNextHop = gw_addr; 19420 /* indirect(4), direct(3), or invalid(2) */ 19421 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19422 re->ipRouteType = 2; 19423 else 19424 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19425 re->ipRouteProto = -1; 19426 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19427 re->ipRouteMask = ire->ire_mask; 19428 re->ipRouteMetric5 = -1; 19429 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19430 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19431 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19432 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19433 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19434 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19435 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19436 re->ipRouteInfo.re_flags = ire->ire_flags; 19437 19438 if (ire->ire_flags & RTF_DYNAMIC) { 19439 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19440 } else { 19441 re->ipRouteInfo.re_ire_type = ire->ire_type; 19442 } 19443 19444 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19445 (char *)re, (int)sizeof (*re))) { 19446 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19447 (uint_t)sizeof (*re))); 19448 } 19449 19450 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19451 iaeptr->iae_routeidx = ird->ird_idx; 19452 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19453 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19454 } 19455 19456 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19457 (char *)iae, sacnt * sizeof (*iae))) { 19458 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19459 (unsigned)(sacnt * sizeof (*iae)))); 19460 } 19461 19462 /* bump route index for next pass */ 19463 ird->ird_idx++; 19464 19465 kmem_free(re, sizeof (*re)); 19466 if (sacnt != 0) 19467 kmem_free(iae, sacnt * sizeof (*iae)); 19468 19469 if (gcgrp != NULL) 19470 rw_exit(&gcgrp->gcgrp_rwlock); 19471 } 19472 19473 /* 19474 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19475 */ 19476 static void 19477 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19478 { 19479 ill_t *ill; 19480 ipif_t *ipif; 19481 mib2_ipv6RouteEntry_t *re; 19482 mib2_ipAttributeEntry_t *iae, *iaeptr; 19483 in6_addr_t gw_addr_v6; 19484 tsol_ire_gw_secattr_t *attrp; 19485 tsol_gc_t *gc = NULL; 19486 tsol_gcgrp_t *gcgrp = NULL; 19487 uint_t sacnt = 0; 19488 int i; 19489 19490 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19491 19492 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19493 return; 19494 19495 if ((attrp = ire->ire_gw_secattr) != NULL) { 19496 mutex_enter(&attrp->igsa_lock); 19497 if ((gc = attrp->igsa_gc) != NULL) { 19498 gcgrp = gc->gc_grp; 19499 ASSERT(gcgrp != NULL); 19500 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19501 sacnt = 1; 19502 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19503 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19504 gc = gcgrp->gcgrp_head; 19505 sacnt = gcgrp->gcgrp_count; 19506 } 19507 mutex_exit(&attrp->igsa_lock); 19508 19509 /* do nothing if there's no gc to report */ 19510 if (gc == NULL) { 19511 ASSERT(sacnt == 0); 19512 if (gcgrp != NULL) { 19513 /* we might as well drop the lock now */ 19514 rw_exit(&gcgrp->gcgrp_rwlock); 19515 gcgrp = NULL; 19516 } 19517 attrp = NULL; 19518 } 19519 19520 ASSERT(gc == NULL || (gcgrp != NULL && 19521 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19522 } 19523 ASSERT(sacnt == 0 || gc != NULL); 19524 19525 if (sacnt != 0 && 19526 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19527 kmem_free(re, sizeof (*re)); 19528 rw_exit(&gcgrp->gcgrp_rwlock); 19529 return; 19530 } 19531 19532 /* 19533 * Return all IRE types for route table... let caller pick and choose 19534 */ 19535 re->ipv6RouteDest = ire->ire_addr_v6; 19536 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19537 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19538 re->ipv6RouteIfIndex.o_length = 0; 19539 ipif = ire->ire_ipif; 19540 if (ire->ire_type == IRE_CACHE) { 19541 ill = (ill_t *)ire->ire_stq->q_ptr; 19542 re->ipv6RouteIfIndex.o_length = 19543 ill->ill_name_length == 0 ? 0 : 19544 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19545 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19546 re->ipv6RouteIfIndex.o_length); 19547 } else if (ipif != NULL) { 19548 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19549 re->ipv6RouteIfIndex.o_length = 19550 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19551 } 19552 19553 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19554 19555 mutex_enter(&ire->ire_lock); 19556 gw_addr_v6 = ire->ire_gateway_addr_v6; 19557 mutex_exit(&ire->ire_lock); 19558 19559 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19560 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19561 else 19562 re->ipv6RouteNextHop = gw_addr_v6; 19563 19564 /* remote(4), local(3), or discard(2) */ 19565 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19566 re->ipv6RouteType = 2; 19567 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19568 re->ipv6RouteType = 3; 19569 else 19570 re->ipv6RouteType = 4; 19571 19572 re->ipv6RouteProtocol = -1; 19573 re->ipv6RoutePolicy = 0; 19574 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19575 re->ipv6RouteNextHopRDI = 0; 19576 re->ipv6RouteWeight = 0; 19577 re->ipv6RouteMetric = 0; 19578 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19579 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19580 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19581 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19582 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19583 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19584 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19585 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19586 19587 if (ire->ire_flags & RTF_DYNAMIC) { 19588 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19589 } else { 19590 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19591 } 19592 19593 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19594 (char *)re, (int)sizeof (*re))) { 19595 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19596 (uint_t)sizeof (*re))); 19597 } 19598 19599 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19600 iaeptr->iae_routeidx = ird->ird_idx; 19601 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19602 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19603 } 19604 19605 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19606 (char *)iae, sacnt * sizeof (*iae))) { 19607 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19608 (unsigned)(sacnt * sizeof (*iae)))); 19609 } 19610 19611 /* bump route index for next pass */ 19612 ird->ird_idx++; 19613 19614 kmem_free(re, sizeof (*re)); 19615 if (sacnt != 0) 19616 kmem_free(iae, sacnt * sizeof (*iae)); 19617 19618 if (gcgrp != NULL) 19619 rw_exit(&gcgrp->gcgrp_rwlock); 19620 } 19621 19622 /* 19623 * ndp_walk routine to create ipv6NetToMediaEntryTable 19624 */ 19625 static int 19626 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19627 { 19628 ill_t *ill; 19629 mib2_ipv6NetToMediaEntry_t ntme; 19630 dl_unitdata_req_t *dl; 19631 19632 ill = nce->nce_ill; 19633 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19634 return (0); 19635 19636 /* 19637 * Neighbor cache entry attached to IRE with on-link 19638 * destination. 19639 */ 19640 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19641 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19642 if ((ill->ill_flags & ILLF_XRESOLV) && 19643 (nce->nce_res_mp != NULL)) { 19644 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19645 ntme.ipv6NetToMediaPhysAddress.o_length = 19646 dl->dl_dest_addr_length; 19647 } else { 19648 ntme.ipv6NetToMediaPhysAddress.o_length = 19649 ill->ill_phys_addr_length; 19650 } 19651 if (nce->nce_res_mp != NULL) { 19652 bcopy((char *)nce->nce_res_mp->b_rptr + 19653 NCE_LL_ADDR_OFFSET(ill), 19654 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19655 ntme.ipv6NetToMediaPhysAddress.o_length); 19656 } else { 19657 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19658 ill->ill_phys_addr_length); 19659 } 19660 /* 19661 * Note: Returns ND_* states. Should be: 19662 * reachable(1), stale(2), delay(3), probe(4), 19663 * invalid(5), unknown(6) 19664 */ 19665 ntme.ipv6NetToMediaState = nce->nce_state; 19666 ntme.ipv6NetToMediaLastUpdated = 0; 19667 19668 /* other(1), dynamic(2), static(3), local(4) */ 19669 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19670 ntme.ipv6NetToMediaType = 4; 19671 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19672 ntme.ipv6NetToMediaType = 1; 19673 } else { 19674 ntme.ipv6NetToMediaType = 2; 19675 } 19676 19677 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19678 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19679 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19680 (uint_t)sizeof (ntme))); 19681 } 19682 return (0); 19683 } 19684 19685 /* 19686 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19687 */ 19688 /* ARGSUSED */ 19689 int 19690 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19691 { 19692 switch (level) { 19693 case MIB2_IP: 19694 case MIB2_ICMP: 19695 switch (name) { 19696 default: 19697 break; 19698 } 19699 return (1); 19700 default: 19701 return (1); 19702 } 19703 } 19704 19705 /* 19706 * When there exists both a 64- and 32-bit counter of a particular type 19707 * (i.e., InReceives), only the 64-bit counters are added. 19708 */ 19709 void 19710 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19711 { 19712 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19713 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19714 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19715 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19716 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19717 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19718 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19719 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19720 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19721 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19722 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19723 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19724 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19725 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19726 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19727 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19728 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19729 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19730 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19731 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19732 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19733 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19734 o2->ipIfStatsInWrongIPVersion); 19735 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19736 o2->ipIfStatsInWrongIPVersion); 19737 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19738 o2->ipIfStatsOutSwitchIPVersion); 19739 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19740 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19741 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19742 o2->ipIfStatsHCInForwDatagrams); 19743 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19744 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19745 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19746 o2->ipIfStatsHCOutForwDatagrams); 19747 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19748 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19749 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19750 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19751 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19752 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19753 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19754 o2->ipIfStatsHCOutMcastOctets); 19755 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19756 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19757 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19758 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19759 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19760 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19761 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19762 } 19763 19764 void 19765 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19766 { 19767 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19768 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19769 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19770 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19771 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19772 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19773 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19774 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19775 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19776 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19777 o2->ipv6IfIcmpInRouterSolicits); 19778 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19779 o2->ipv6IfIcmpInRouterAdvertisements); 19780 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19781 o2->ipv6IfIcmpInNeighborSolicits); 19782 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19783 o2->ipv6IfIcmpInNeighborAdvertisements); 19784 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19785 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19786 o2->ipv6IfIcmpInGroupMembQueries); 19787 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19788 o2->ipv6IfIcmpInGroupMembResponses); 19789 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19790 o2->ipv6IfIcmpInGroupMembReductions); 19791 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19792 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19793 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19794 o2->ipv6IfIcmpOutDestUnreachs); 19795 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19796 o2->ipv6IfIcmpOutAdminProhibs); 19797 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19798 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19799 o2->ipv6IfIcmpOutParmProblems); 19800 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19801 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19802 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19803 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19804 o2->ipv6IfIcmpOutRouterSolicits); 19805 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19806 o2->ipv6IfIcmpOutRouterAdvertisements); 19807 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19808 o2->ipv6IfIcmpOutNeighborSolicits); 19809 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19810 o2->ipv6IfIcmpOutNeighborAdvertisements); 19811 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19812 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19813 o2->ipv6IfIcmpOutGroupMembQueries); 19814 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19815 o2->ipv6IfIcmpOutGroupMembResponses); 19816 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19817 o2->ipv6IfIcmpOutGroupMembReductions); 19818 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19819 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19820 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19821 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19822 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19823 o2->ipv6IfIcmpInBadNeighborSolicitations); 19824 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19825 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19826 o2->ipv6IfIcmpInGroupMembTotal); 19827 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19828 o2->ipv6IfIcmpInGroupMembBadQueries); 19829 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19830 o2->ipv6IfIcmpInGroupMembBadReports); 19831 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19832 o2->ipv6IfIcmpInGroupMembOurReports); 19833 } 19834 19835 /* 19836 * Called before the options are updated to check if this packet will 19837 * be source routed from here. 19838 * This routine assumes that the options are well formed i.e. that they 19839 * have already been checked. 19840 */ 19841 static boolean_t 19842 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19843 { 19844 ipoptp_t opts; 19845 uchar_t *opt; 19846 uint8_t optval; 19847 uint8_t optlen; 19848 ipaddr_t dst; 19849 ire_t *ire; 19850 19851 if (IS_SIMPLE_IPH(ipha)) { 19852 ip2dbg(("not source routed\n")); 19853 return (B_FALSE); 19854 } 19855 dst = ipha->ipha_dst; 19856 for (optval = ipoptp_first(&opts, ipha); 19857 optval != IPOPT_EOL; 19858 optval = ipoptp_next(&opts)) { 19859 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19860 opt = opts.ipoptp_cur; 19861 optlen = opts.ipoptp_len; 19862 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19863 optval, optlen)); 19864 switch (optval) { 19865 uint32_t off; 19866 case IPOPT_SSRR: 19867 case IPOPT_LSRR: 19868 /* 19869 * If dst is one of our addresses and there are some 19870 * entries left in the source route return (true). 19871 */ 19872 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19873 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19874 if (ire == NULL) { 19875 ip2dbg(("ip_source_routed: not next" 19876 " source route 0x%x\n", 19877 ntohl(dst))); 19878 return (B_FALSE); 19879 } 19880 ire_refrele(ire); 19881 off = opt[IPOPT_OFFSET]; 19882 off--; 19883 if (optlen < IP_ADDR_LEN || 19884 off > optlen - IP_ADDR_LEN) { 19885 /* End of source route */ 19886 ip1dbg(("ip_source_routed: end of SR\n")); 19887 return (B_FALSE); 19888 } 19889 return (B_TRUE); 19890 } 19891 } 19892 ip2dbg(("not source routed\n")); 19893 return (B_FALSE); 19894 } 19895 19896 /* 19897 * Check if the packet contains any source route. 19898 */ 19899 static boolean_t 19900 ip_source_route_included(ipha_t *ipha) 19901 { 19902 ipoptp_t opts; 19903 uint8_t optval; 19904 19905 if (IS_SIMPLE_IPH(ipha)) 19906 return (B_FALSE); 19907 for (optval = ipoptp_first(&opts, ipha); 19908 optval != IPOPT_EOL; 19909 optval = ipoptp_next(&opts)) { 19910 switch (optval) { 19911 case IPOPT_SSRR: 19912 case IPOPT_LSRR: 19913 return (B_TRUE); 19914 } 19915 } 19916 return (B_FALSE); 19917 } 19918 19919 /* 19920 * Called when the IRE expiration timer fires. 19921 */ 19922 void 19923 ip_trash_timer_expire(void *args) 19924 { 19925 int flush_flag = 0; 19926 ire_expire_arg_t iea; 19927 ip_stack_t *ipst = (ip_stack_t *)args; 19928 19929 iea.iea_ipst = ipst; /* No netstack_hold */ 19930 19931 /* 19932 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19933 * This lock makes sure that a new invocation of this function 19934 * that occurs due to an almost immediate timer firing will not 19935 * progress beyond this point until the current invocation is done 19936 */ 19937 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19938 ipst->ips_ip_ire_expire_id = 0; 19939 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19940 19941 /* Periodic timer */ 19942 if (ipst->ips_ip_ire_arp_time_elapsed >= 19943 ipst->ips_ip_ire_arp_interval) { 19944 /* 19945 * Remove all IRE_CACHE entries since they might 19946 * contain arp information. 19947 */ 19948 flush_flag |= FLUSH_ARP_TIME; 19949 ipst->ips_ip_ire_arp_time_elapsed = 0; 19950 IP_STAT(ipst, ip_ire_arp_timer_expired); 19951 } 19952 if (ipst->ips_ip_ire_rd_time_elapsed >= 19953 ipst->ips_ip_ire_redir_interval) { 19954 /* Remove all redirects */ 19955 flush_flag |= FLUSH_REDIRECT_TIME; 19956 ipst->ips_ip_ire_rd_time_elapsed = 0; 19957 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19958 } 19959 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19960 ipst->ips_ip_ire_pathmtu_interval) { 19961 /* Increase path mtu */ 19962 flush_flag |= FLUSH_MTU_TIME; 19963 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19964 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19965 } 19966 19967 /* 19968 * Optimize for the case when there are no redirects in the 19969 * ftable, that is, no need to walk the ftable in that case. 19970 */ 19971 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19972 iea.iea_flush_flag = flush_flag; 19973 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19974 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19975 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19976 NULL, ALL_ZONES, ipst); 19977 } 19978 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19979 ipst->ips_ip_redirect_cnt > 0) { 19980 iea.iea_flush_flag = flush_flag; 19981 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19982 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19983 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19984 } 19985 if (flush_flag & FLUSH_MTU_TIME) { 19986 /* 19987 * Walk all IPv6 IRE's and update them 19988 * Note that ARP and redirect timers are not 19989 * needed since NUD handles stale entries. 19990 */ 19991 flush_flag = FLUSH_MTU_TIME; 19992 iea.iea_flush_flag = flush_flag; 19993 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19994 ALL_ZONES, ipst); 19995 } 19996 19997 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19998 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19999 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20000 20001 /* 20002 * Hold the lock to serialize timeout calls and prevent 20003 * stale values in ip_ire_expire_id. Otherwise it is possible 20004 * for the timer to fire and a new invocation of this function 20005 * to start before the return value of timeout has been stored 20006 * in ip_ire_expire_id by the current invocation. 20007 */ 20008 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20009 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20010 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20011 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20012 } 20013 20014 /* 20015 * Called by the memory allocator subsystem directly, when the system 20016 * is running low on memory. 20017 */ 20018 /* ARGSUSED */ 20019 void 20020 ip_trash_ire_reclaim(void *args) 20021 { 20022 netstack_handle_t nh; 20023 netstack_t *ns; 20024 20025 netstack_next_init(&nh); 20026 while ((ns = netstack_next(&nh)) != NULL) { 20027 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20028 netstack_rele(ns); 20029 } 20030 netstack_next_fini(&nh); 20031 } 20032 20033 static void 20034 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20035 { 20036 ire_cache_count_t icc; 20037 ire_cache_reclaim_t icr; 20038 ncc_cache_count_t ncc; 20039 nce_cache_reclaim_t ncr; 20040 uint_t delete_cnt; 20041 /* 20042 * Memory reclaim call back. 20043 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20044 * Then, with a target of freeing 1/Nth of IRE_CACHE 20045 * entries, determine what fraction to free for 20046 * each category of IRE_CACHE entries giving absolute priority 20047 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20048 * entry will be freed unless all offlink entries are freed). 20049 */ 20050 icc.icc_total = 0; 20051 icc.icc_unused = 0; 20052 icc.icc_offlink = 0; 20053 icc.icc_pmtu = 0; 20054 icc.icc_onlink = 0; 20055 ire_walk(ire_cache_count, (char *)&icc, ipst); 20056 20057 /* 20058 * Free NCEs for IPv6 like the onlink ires. 20059 */ 20060 ncc.ncc_total = 0; 20061 ncc.ncc_host = 0; 20062 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20063 20064 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20065 icc.icc_pmtu + icc.icc_onlink); 20066 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20067 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20068 if (delete_cnt == 0) 20069 return; 20070 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20071 /* Always delete all unused offlink entries */ 20072 icr.icr_ipst = ipst; 20073 icr.icr_unused = 1; 20074 if (delete_cnt <= icc.icc_unused) { 20075 /* 20076 * Only need to free unused entries. In other words, 20077 * there are enough unused entries to free to meet our 20078 * target number of freed ire cache entries. 20079 */ 20080 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20081 ncr.ncr_host = 0; 20082 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20083 /* 20084 * Only need to free unused entries, plus a fraction of offlink 20085 * entries. It follows from the first if statement that 20086 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20087 */ 20088 delete_cnt -= icc.icc_unused; 20089 /* Round up # deleted by truncating fraction */ 20090 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20091 icr.icr_pmtu = icr.icr_onlink = 0; 20092 ncr.ncr_host = 0; 20093 } else if (delete_cnt <= 20094 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20095 /* 20096 * Free all unused and offlink entries, plus a fraction of 20097 * pmtu entries. It follows from the previous if statement 20098 * that icc_pmtu is non-zero, and that 20099 * delete_cnt != icc_unused + icc_offlink. 20100 */ 20101 icr.icr_offlink = 1; 20102 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20103 /* Round up # deleted by truncating fraction */ 20104 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20105 icr.icr_onlink = 0; 20106 ncr.ncr_host = 0; 20107 } else { 20108 /* 20109 * Free all unused, offlink, and pmtu entries, plus a fraction 20110 * of onlink entries. If we're here, then we know that 20111 * icc_onlink is non-zero, and that 20112 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20113 */ 20114 icr.icr_offlink = icr.icr_pmtu = 1; 20115 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20116 icc.icc_pmtu; 20117 /* Round up # deleted by truncating fraction */ 20118 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20119 /* Using the same delete fraction as for onlink IREs */ 20120 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20121 } 20122 #ifdef DEBUG 20123 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20124 "fractions %d/%d/%d/%d\n", 20125 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20126 icc.icc_unused, icc.icc_offlink, 20127 icc.icc_pmtu, icc.icc_onlink, 20128 icr.icr_unused, icr.icr_offlink, 20129 icr.icr_pmtu, icr.icr_onlink)); 20130 #endif 20131 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20132 if (ncr.ncr_host != 0) 20133 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20134 (uchar_t *)&ncr, ipst); 20135 #ifdef DEBUG 20136 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20137 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20138 ire_walk(ire_cache_count, (char *)&icc, ipst); 20139 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20140 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20141 icc.icc_pmtu, icc.icc_onlink)); 20142 #endif 20143 } 20144 20145 /* 20146 * ip_unbind is called when a copy of an unbind request is received from the 20147 * upper level protocol. We remove this conn from any fanout hash list it is 20148 * on, and zero out the bind information. No reply is expected up above. 20149 */ 20150 mblk_t * 20151 ip_unbind(queue_t *q, mblk_t *mp) 20152 { 20153 conn_t *connp = Q_TO_CONN(q); 20154 20155 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20156 20157 if (is_system_labeled() && connp->conn_anon_port) { 20158 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20159 connp->conn_mlp_type, connp->conn_ulp, 20160 ntohs(connp->conn_lport), B_FALSE); 20161 connp->conn_anon_port = 0; 20162 } 20163 connp->conn_mlp_type = mlptSingle; 20164 20165 ipcl_hash_remove(connp); 20166 20167 ASSERT(mp->b_cont == NULL); 20168 /* 20169 * Convert mp into a T_OK_ACK 20170 */ 20171 mp = mi_tpi_ok_ack_alloc(mp); 20172 20173 /* 20174 * should not happen in practice... T_OK_ACK is smaller than the 20175 * original message. 20176 */ 20177 if (mp == NULL) 20178 return (NULL); 20179 20180 return (mp); 20181 } 20182 20183 /* 20184 * Write side put procedure. Outbound data, IOCTLs, responses from 20185 * resolvers, etc, come down through here. 20186 * 20187 * arg2 is always a queue_t *. 20188 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20189 * the zoneid. 20190 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20191 */ 20192 void 20193 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20194 { 20195 ip_output_options(arg, mp, arg2, caller, &zero_info); 20196 } 20197 20198 void 20199 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20200 ip_opt_info_t *infop) 20201 { 20202 conn_t *connp = NULL; 20203 queue_t *q = (queue_t *)arg2; 20204 ipha_t *ipha; 20205 #define rptr ((uchar_t *)ipha) 20206 ire_t *ire = NULL; 20207 ire_t *sctp_ire = NULL; 20208 uint32_t v_hlen_tos_len; 20209 ipaddr_t dst; 20210 mblk_t *first_mp = NULL; 20211 boolean_t mctl_present; 20212 ipsec_out_t *io; 20213 int match_flags; 20214 ill_t *attach_ill = NULL; 20215 /* Bind to IPIF_NOFAILOVER ill etc. */ 20216 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20217 ipif_t *dst_ipif; 20218 boolean_t multirt_need_resolve = B_FALSE; 20219 mblk_t *copy_mp = NULL; 20220 int err; 20221 zoneid_t zoneid; 20222 boolean_t need_decref = B_FALSE; 20223 boolean_t ignore_dontroute = B_FALSE; 20224 boolean_t ignore_nexthop = B_FALSE; 20225 boolean_t ip_nexthop = B_FALSE; 20226 ipaddr_t nexthop_addr; 20227 ip_stack_t *ipst; 20228 20229 #ifdef _BIG_ENDIAN 20230 #define V_HLEN (v_hlen_tos_len >> 24) 20231 #else 20232 #define V_HLEN (v_hlen_tos_len & 0xFF) 20233 #endif 20234 20235 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20236 "ip_wput_start: q %p", q); 20237 20238 /* 20239 * ip_wput fast path 20240 */ 20241 20242 /* is packet from ARP ? */ 20243 if (q->q_next != NULL) { 20244 zoneid = (zoneid_t)(uintptr_t)arg; 20245 goto qnext; 20246 } 20247 20248 connp = (conn_t *)arg; 20249 ASSERT(connp != NULL); 20250 zoneid = connp->conn_zoneid; 20251 ipst = connp->conn_netstack->netstack_ip; 20252 20253 /* is queue flow controlled? */ 20254 if ((q->q_first != NULL || connp->conn_draining) && 20255 (caller == IP_WPUT)) { 20256 ASSERT(!need_decref); 20257 (void) putq(q, mp); 20258 return; 20259 } 20260 20261 /* Multidata transmit? */ 20262 if (DB_TYPE(mp) == M_MULTIDATA) { 20263 /* 20264 * We should never get here, since all Multidata messages 20265 * originating from tcp should have been directed over to 20266 * tcp_multisend() in the first place. 20267 */ 20268 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20269 freemsg(mp); 20270 return; 20271 } else if (DB_TYPE(mp) != M_DATA) 20272 goto notdata; 20273 20274 if (mp->b_flag & MSGHASREF) { 20275 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20276 mp->b_flag &= ~MSGHASREF; 20277 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20278 need_decref = B_TRUE; 20279 } 20280 ipha = (ipha_t *)mp->b_rptr; 20281 20282 /* is IP header non-aligned or mblk smaller than basic IP header */ 20283 #ifndef SAFETY_BEFORE_SPEED 20284 if (!OK_32PTR(rptr) || 20285 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20286 goto hdrtoosmall; 20287 #endif 20288 20289 ASSERT(OK_32PTR(ipha)); 20290 20291 /* 20292 * This function assumes that mp points to an IPv4 packet. If it's the 20293 * wrong version, we'll catch it again in ip_output_v6. 20294 * 20295 * Note that this is *only* locally-generated output here, and never 20296 * forwarded data, and that we need to deal only with transports that 20297 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20298 * label.) 20299 */ 20300 if (is_system_labeled() && 20301 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20302 !connp->conn_ulp_labeled) { 20303 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20304 connp->conn_mac_exempt, ipst); 20305 ipha = (ipha_t *)mp->b_rptr; 20306 if (err != 0) { 20307 first_mp = mp; 20308 if (err == EINVAL) 20309 goto icmp_parameter_problem; 20310 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20311 goto discard_pkt; 20312 } 20313 } 20314 20315 ASSERT(infop != NULL); 20316 20317 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20318 /* 20319 * IP_PKTINFO ancillary option is present. 20320 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20321 * allows using address of any zone as the source address. 20322 */ 20323 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20324 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20325 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20326 if (ire == NULL) 20327 goto drop_pkt; 20328 ire_refrele(ire); 20329 ire = NULL; 20330 } 20331 20332 /* 20333 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20334 * passed in IP_PKTINFO. 20335 */ 20336 if (infop->ip_opt_ill_index != 0 && 20337 connp->conn_outgoing_ill == NULL && 20338 connp->conn_nofailover_ill == NULL) { 20339 20340 xmit_ill = ill_lookup_on_ifindex( 20341 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20342 ipst); 20343 20344 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20345 goto drop_pkt; 20346 /* 20347 * check that there is an ipif belonging 20348 * to our zone. IPCL_ZONEID is not used because 20349 * IP_ALLZONES option is valid only when the ill is 20350 * accessible from all zones i.e has a valid ipif in 20351 * all zones. 20352 */ 20353 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20354 goto drop_pkt; 20355 } 20356 } 20357 20358 /* 20359 * If there is a policy, try to attach an ipsec_out in 20360 * the front. At the end, first_mp either points to a 20361 * M_DATA message or IPSEC_OUT message linked to a 20362 * M_DATA message. We have to do it now as we might 20363 * lose the "conn" if we go through ip_newroute. 20364 */ 20365 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20366 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20367 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20368 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20369 if (need_decref) 20370 CONN_DEC_REF(connp); 20371 return; 20372 } else { 20373 ASSERT(mp->b_datap->db_type == M_CTL); 20374 first_mp = mp; 20375 mp = mp->b_cont; 20376 mctl_present = B_TRUE; 20377 } 20378 } else { 20379 first_mp = mp; 20380 mctl_present = B_FALSE; 20381 } 20382 20383 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20384 20385 /* is wrong version or IP options present */ 20386 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20387 goto version_hdrlen_check; 20388 dst = ipha->ipha_dst; 20389 20390 if (connp->conn_nofailover_ill != NULL) { 20391 attach_ill = conn_get_held_ill(connp, 20392 &connp->conn_nofailover_ill, &err); 20393 if (err == ILL_LOOKUP_FAILED) { 20394 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20395 if (need_decref) 20396 CONN_DEC_REF(connp); 20397 freemsg(first_mp); 20398 return; 20399 } 20400 } 20401 20402 /* If IP_BOUND_IF has been set, use that ill. */ 20403 if (connp->conn_outgoing_ill != NULL) { 20404 xmit_ill = conn_get_held_ill(connp, 20405 &connp->conn_outgoing_ill, &err); 20406 if (err == ILL_LOOKUP_FAILED) 20407 goto drop_pkt; 20408 20409 goto send_from_ill; 20410 } 20411 20412 /* is packet multicast? */ 20413 if (CLASSD(dst)) 20414 goto multicast; 20415 20416 /* 20417 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20418 * takes precedence over conn_dontroute and conn_nexthop_set 20419 */ 20420 if (xmit_ill != NULL) 20421 goto send_from_ill; 20422 20423 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20424 /* 20425 * If the destination is a broadcast, local, or loopback 20426 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20427 * standard path. 20428 */ 20429 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20430 if ((ire == NULL) || (ire->ire_type & 20431 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20432 if (ire != NULL) { 20433 ire_refrele(ire); 20434 /* No more access to ire */ 20435 ire = NULL; 20436 } 20437 /* 20438 * bypass routing checks and go directly to interface. 20439 */ 20440 if (connp->conn_dontroute) 20441 goto dontroute; 20442 20443 ASSERT(connp->conn_nexthop_set); 20444 ip_nexthop = B_TRUE; 20445 nexthop_addr = connp->conn_nexthop_v4; 20446 goto send_from_ill; 20447 } 20448 20449 /* Must be a broadcast, a loopback or a local ire */ 20450 ire_refrele(ire); 20451 /* No more access to ire */ 20452 ire = NULL; 20453 } 20454 20455 if (attach_ill != NULL) 20456 goto send_from_ill; 20457 20458 /* 20459 * We cache IRE_CACHEs to avoid lookups. We don't do 20460 * this for the tcp global queue and listen end point 20461 * as it does not really have a real destination to 20462 * talk to. This is also true for SCTP. 20463 */ 20464 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20465 !connp->conn_fully_bound) { 20466 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20467 if (ire == NULL) 20468 goto noirefound; 20469 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20470 "ip_wput_end: q %p (%S)", q, "end"); 20471 20472 /* 20473 * Check if the ire has the RTF_MULTIRT flag, inherited 20474 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20475 */ 20476 if (ire->ire_flags & RTF_MULTIRT) { 20477 20478 /* 20479 * Force the TTL of multirouted packets if required. 20480 * The TTL of such packets is bounded by the 20481 * ip_multirt_ttl ndd variable. 20482 */ 20483 if ((ipst->ips_ip_multirt_ttl > 0) && 20484 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20485 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20486 "(was %d), dst 0x%08x\n", 20487 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20488 ntohl(ire->ire_addr))); 20489 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20490 } 20491 /* 20492 * We look at this point if there are pending 20493 * unresolved routes. ire_multirt_resolvable() 20494 * checks in O(n) that all IRE_OFFSUBNET ire 20495 * entries for the packet's destination and 20496 * flagged RTF_MULTIRT are currently resolved. 20497 * If some remain unresolved, we make a copy 20498 * of the current message. It will be used 20499 * to initiate additional route resolutions. 20500 */ 20501 multirt_need_resolve = 20502 ire_multirt_need_resolve(ire->ire_addr, 20503 MBLK_GETLABEL(first_mp), ipst); 20504 ip2dbg(("ip_wput[TCP]: ire %p, " 20505 "multirt_need_resolve %d, first_mp %p\n", 20506 (void *)ire, multirt_need_resolve, 20507 (void *)first_mp)); 20508 if (multirt_need_resolve) { 20509 copy_mp = copymsg(first_mp); 20510 if (copy_mp != NULL) { 20511 MULTIRT_DEBUG_TAG(copy_mp); 20512 } 20513 } 20514 } 20515 20516 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20517 20518 /* 20519 * Try to resolve another multiroute if 20520 * ire_multirt_need_resolve() deemed it necessary. 20521 */ 20522 if (copy_mp != NULL) 20523 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20524 if (need_decref) 20525 CONN_DEC_REF(connp); 20526 return; 20527 } 20528 20529 /* 20530 * Access to conn_ire_cache. (protected by conn_lock) 20531 * 20532 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20533 * the ire bucket lock here to check for CONDEMNED as it is okay to 20534 * send a packet or two with the IRE_CACHE that is going away. 20535 * Access to the ire requires an ire refhold on the ire prior to 20536 * its use since an interface unplumb thread may delete the cached 20537 * ire and release the refhold at any time. 20538 * 20539 * Caching an ire in the conn_ire_cache 20540 * 20541 * o Caching an ire pointer in the conn requires a strict check for 20542 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20543 * ires before cleaning up the conns. So the caching of an ire pointer 20544 * in the conn is done after making sure under the bucket lock that the 20545 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20546 * caching an ire after the unplumb thread has cleaned up the conn. 20547 * If the conn does not send a packet subsequently the unplumb thread 20548 * will be hanging waiting for the ire count to drop to zero. 20549 * 20550 * o We also need to atomically test for a null conn_ire_cache and 20551 * set the conn_ire_cache under the the protection of the conn_lock 20552 * to avoid races among concurrent threads trying to simultaneously 20553 * cache an ire in the conn_ire_cache. 20554 */ 20555 mutex_enter(&connp->conn_lock); 20556 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20557 20558 if (ire != NULL && ire->ire_addr == dst && 20559 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20560 20561 IRE_REFHOLD(ire); 20562 mutex_exit(&connp->conn_lock); 20563 20564 } else { 20565 boolean_t cached = B_FALSE; 20566 connp->conn_ire_cache = NULL; 20567 mutex_exit(&connp->conn_lock); 20568 /* Release the old ire */ 20569 if (ire != NULL && sctp_ire == NULL) 20570 IRE_REFRELE_NOTR(ire); 20571 20572 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20573 if (ire == NULL) 20574 goto noirefound; 20575 IRE_REFHOLD_NOTR(ire); 20576 20577 mutex_enter(&connp->conn_lock); 20578 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20579 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20580 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20581 if (connp->conn_ulp == IPPROTO_TCP) 20582 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20583 connp->conn_ire_cache = ire; 20584 cached = B_TRUE; 20585 } 20586 rw_exit(&ire->ire_bucket->irb_lock); 20587 } 20588 mutex_exit(&connp->conn_lock); 20589 20590 /* 20591 * We can continue to use the ire but since it was 20592 * not cached, we should drop the extra reference. 20593 */ 20594 if (!cached) 20595 IRE_REFRELE_NOTR(ire); 20596 } 20597 20598 20599 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20600 "ip_wput_end: q %p (%S)", q, "end"); 20601 20602 /* 20603 * Check if the ire has the RTF_MULTIRT flag, inherited 20604 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20605 */ 20606 if (ire->ire_flags & RTF_MULTIRT) { 20607 20608 /* 20609 * Force the TTL of multirouted packets if required. 20610 * The TTL of such packets is bounded by the 20611 * ip_multirt_ttl ndd variable. 20612 */ 20613 if ((ipst->ips_ip_multirt_ttl > 0) && 20614 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20615 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20616 "(was %d), dst 0x%08x\n", 20617 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20618 ntohl(ire->ire_addr))); 20619 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20620 } 20621 20622 /* 20623 * At this point, we check to see if there are any pending 20624 * unresolved routes. ire_multirt_resolvable() 20625 * checks in O(n) that all IRE_OFFSUBNET ire 20626 * entries for the packet's destination and 20627 * flagged RTF_MULTIRT are currently resolved. 20628 * If some remain unresolved, we make a copy 20629 * of the current message. It will be used 20630 * to initiate additional route resolutions. 20631 */ 20632 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20633 MBLK_GETLABEL(first_mp), ipst); 20634 ip2dbg(("ip_wput[not TCP]: ire %p, " 20635 "multirt_need_resolve %d, first_mp %p\n", 20636 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20637 if (multirt_need_resolve) { 20638 copy_mp = copymsg(first_mp); 20639 if (copy_mp != NULL) { 20640 MULTIRT_DEBUG_TAG(copy_mp); 20641 } 20642 } 20643 } 20644 20645 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20646 20647 /* 20648 * Try to resolve another multiroute if 20649 * ire_multirt_resolvable() deemed it necessary 20650 */ 20651 if (copy_mp != NULL) 20652 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20653 if (need_decref) 20654 CONN_DEC_REF(connp); 20655 return; 20656 20657 qnext: 20658 /* 20659 * Upper Level Protocols pass down complete IP datagrams 20660 * as M_DATA messages. Everything else is a sideshow. 20661 * 20662 * 1) We could be re-entering ip_wput because of ip_neworute 20663 * in which case we could have a IPSEC_OUT message. We 20664 * need to pass through ip_wput like other datagrams and 20665 * hence cannot branch to ip_wput_nondata. 20666 * 20667 * 2) ARP, AH, ESP, and other clients who are on the module 20668 * instance of IP stream, give us something to deal with. 20669 * We will handle AH and ESP here and rest in ip_wput_nondata. 20670 * 20671 * 3) ICMP replies also could come here. 20672 */ 20673 ipst = ILLQ_TO_IPST(q); 20674 20675 if (DB_TYPE(mp) != M_DATA) { 20676 notdata: 20677 if (DB_TYPE(mp) == M_CTL) { 20678 /* 20679 * M_CTL messages are used by ARP, AH and ESP to 20680 * communicate with IP. We deal with IPSEC_IN and 20681 * IPSEC_OUT here. ip_wput_nondata handles other 20682 * cases. 20683 */ 20684 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20685 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20686 first_mp = mp->b_cont; 20687 first_mp->b_flag &= ~MSGHASREF; 20688 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20689 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20690 CONN_DEC_REF(connp); 20691 connp = NULL; 20692 } 20693 if (ii->ipsec_info_type == IPSEC_IN) { 20694 /* 20695 * Either this message goes back to 20696 * IPsec for further processing or to 20697 * ULP after policy checks. 20698 */ 20699 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20700 return; 20701 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20702 io = (ipsec_out_t *)ii; 20703 if (io->ipsec_out_proc_begin) { 20704 /* 20705 * IPsec processing has already started. 20706 * Complete it. 20707 * IPQoS notes: We don't care what is 20708 * in ipsec_out_ill_index since this 20709 * won't be processed for IPQoS policies 20710 * in ipsec_out_process. 20711 */ 20712 ipsec_out_process(q, mp, NULL, 20713 io->ipsec_out_ill_index); 20714 return; 20715 } else { 20716 connp = (q->q_next != NULL) ? 20717 NULL : Q_TO_CONN(q); 20718 first_mp = mp; 20719 mp = mp->b_cont; 20720 mctl_present = B_TRUE; 20721 } 20722 zoneid = io->ipsec_out_zoneid; 20723 ASSERT(zoneid != ALL_ZONES); 20724 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20725 /* 20726 * It's an IPsec control message requesting 20727 * an SADB update to be sent to the IPsec 20728 * hardware acceleration capable ills. 20729 */ 20730 ipsec_ctl_t *ipsec_ctl = 20731 (ipsec_ctl_t *)mp->b_rptr; 20732 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20733 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20734 mblk_t *cmp = mp->b_cont; 20735 20736 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20737 ASSERT(cmp != NULL); 20738 20739 freeb(mp); 20740 ill_ipsec_capab_send_all(satype, cmp, sa, 20741 ipst->ips_netstack); 20742 return; 20743 } else { 20744 /* 20745 * This must be ARP or special TSOL signaling. 20746 */ 20747 ip_wput_nondata(NULL, q, mp, NULL); 20748 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20749 "ip_wput_end: q %p (%S)", q, "nondata"); 20750 return; 20751 } 20752 } else { 20753 /* 20754 * This must be non-(ARP/AH/ESP) messages. 20755 */ 20756 ASSERT(!need_decref); 20757 ip_wput_nondata(NULL, q, mp, NULL); 20758 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20759 "ip_wput_end: q %p (%S)", q, "nondata"); 20760 return; 20761 } 20762 } else { 20763 first_mp = mp; 20764 mctl_present = B_FALSE; 20765 } 20766 20767 ASSERT(first_mp != NULL); 20768 /* 20769 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20770 * to make sure that this packet goes out on the same interface it 20771 * came in. We handle that here. 20772 */ 20773 if (mctl_present) { 20774 uint_t ifindex; 20775 20776 io = (ipsec_out_t *)first_mp->b_rptr; 20777 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20778 /* 20779 * We may have lost the conn context if we are 20780 * coming here from ip_newroute(). Copy the 20781 * nexthop information. 20782 */ 20783 if (io->ipsec_out_ip_nexthop) { 20784 ip_nexthop = B_TRUE; 20785 nexthop_addr = io->ipsec_out_nexthop_addr; 20786 20787 ipha = (ipha_t *)mp->b_rptr; 20788 dst = ipha->ipha_dst; 20789 goto send_from_ill; 20790 } else { 20791 ASSERT(io->ipsec_out_ill_index != 0); 20792 ifindex = io->ipsec_out_ill_index; 20793 attach_ill = ill_lookup_on_ifindex(ifindex, 20794 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20795 if (attach_ill == NULL) { 20796 ASSERT(xmit_ill == NULL); 20797 ip1dbg(("ip_output: bad ifindex for " 20798 "(BIND TO IPIF_NOFAILOVER) %d\n", 20799 ifindex)); 20800 freemsg(first_mp); 20801 BUMP_MIB(&ipst->ips_ip_mib, 20802 ipIfStatsOutDiscards); 20803 ASSERT(!need_decref); 20804 return; 20805 } 20806 } 20807 } 20808 } 20809 20810 ASSERT(xmit_ill == NULL); 20811 20812 /* We have a complete IP datagram heading outbound. */ 20813 ipha = (ipha_t *)mp->b_rptr; 20814 20815 #ifndef SPEED_BEFORE_SAFETY 20816 /* 20817 * Make sure we have a full-word aligned message and that at least 20818 * a simple IP header is accessible in the first message. If not, 20819 * try a pullup. For labeled systems we need to always take this 20820 * path as M_CTLs are "notdata" but have trailing data to process. 20821 */ 20822 if (!OK_32PTR(rptr) || 20823 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20824 hdrtoosmall: 20825 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20826 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20827 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20828 if (first_mp == NULL) 20829 first_mp = mp; 20830 goto discard_pkt; 20831 } 20832 20833 /* This function assumes that mp points to an IPv4 packet. */ 20834 if (is_system_labeled() && q->q_next == NULL && 20835 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20836 !connp->conn_ulp_labeled) { 20837 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20838 connp->conn_mac_exempt, ipst); 20839 ipha = (ipha_t *)mp->b_rptr; 20840 if (first_mp != NULL) 20841 first_mp->b_cont = mp; 20842 if (err != 0) { 20843 if (first_mp == NULL) 20844 first_mp = mp; 20845 if (err == EINVAL) 20846 goto icmp_parameter_problem; 20847 ip2dbg(("ip_wput: label check failed (%d)\n", 20848 err)); 20849 goto discard_pkt; 20850 } 20851 } 20852 20853 ipha = (ipha_t *)mp->b_rptr; 20854 if (first_mp == NULL) { 20855 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20856 /* 20857 * If we got here because of "goto hdrtoosmall" 20858 * We need to attach a IPSEC_OUT. 20859 */ 20860 if (connp->conn_out_enforce_policy) { 20861 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20862 NULL, ipha->ipha_protocol, 20863 ipst->ips_netstack)) == NULL)) { 20864 BUMP_MIB(&ipst->ips_ip_mib, 20865 ipIfStatsOutDiscards); 20866 if (need_decref) 20867 CONN_DEC_REF(connp); 20868 return; 20869 } else { 20870 ASSERT(mp->b_datap->db_type == M_CTL); 20871 first_mp = mp; 20872 mp = mp->b_cont; 20873 mctl_present = B_TRUE; 20874 } 20875 } else { 20876 first_mp = mp; 20877 mctl_present = B_FALSE; 20878 } 20879 } 20880 } 20881 #endif 20882 20883 /* Most of the code below is written for speed, not readability */ 20884 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20885 20886 /* 20887 * If ip_newroute() fails, we're going to need a full 20888 * header for the icmp wraparound. 20889 */ 20890 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20891 uint_t v_hlen; 20892 version_hdrlen_check: 20893 ASSERT(first_mp != NULL); 20894 v_hlen = V_HLEN; 20895 /* 20896 * siphon off IPv6 packets coming down from transport 20897 * layer modules here. 20898 * Note: high-order bit carries NUD reachability confirmation 20899 */ 20900 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20901 /* 20902 * FIXME: assume that callers of ip_output* call 20903 * the right version? 20904 */ 20905 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20906 ASSERT(xmit_ill == NULL); 20907 if (attach_ill != NULL) 20908 ill_refrele(attach_ill); 20909 if (need_decref) 20910 mp->b_flag |= MSGHASREF; 20911 (void) ip_output_v6(arg, first_mp, arg2, caller); 20912 return; 20913 } 20914 20915 if ((v_hlen >> 4) != IP_VERSION) { 20916 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20917 "ip_wput_end: q %p (%S)", q, "badvers"); 20918 goto discard_pkt; 20919 } 20920 /* 20921 * Is the header length at least 20 bytes? 20922 * 20923 * Are there enough bytes accessible in the header? If 20924 * not, try a pullup. 20925 */ 20926 v_hlen &= 0xF; 20927 v_hlen <<= 2; 20928 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20929 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20930 "ip_wput_end: q %p (%S)", q, "badlen"); 20931 goto discard_pkt; 20932 } 20933 if (v_hlen > (mp->b_wptr - rptr)) { 20934 if (!pullupmsg(mp, v_hlen)) { 20935 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20936 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20937 goto discard_pkt; 20938 } 20939 ipha = (ipha_t *)mp->b_rptr; 20940 } 20941 /* 20942 * Move first entry from any source route into ipha_dst and 20943 * verify the options 20944 */ 20945 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20946 zoneid, ipst)) { 20947 ASSERT(xmit_ill == NULL); 20948 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20949 if (attach_ill != NULL) 20950 ill_refrele(attach_ill); 20951 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20952 "ip_wput_end: q %p (%S)", q, "badopts"); 20953 if (need_decref) 20954 CONN_DEC_REF(connp); 20955 return; 20956 } 20957 } 20958 dst = ipha->ipha_dst; 20959 20960 /* 20961 * Try to get an IRE_CACHE for the destination address. If we can't, 20962 * we have to run the packet through ip_newroute which will take 20963 * the appropriate action to arrange for an IRE_CACHE, such as querying 20964 * a resolver, or assigning a default gateway, etc. 20965 */ 20966 if (CLASSD(dst)) { 20967 ipif_t *ipif; 20968 uint32_t setsrc = 0; 20969 20970 multicast: 20971 ASSERT(first_mp != NULL); 20972 ip2dbg(("ip_wput: CLASSD\n")); 20973 if (connp == NULL) { 20974 /* 20975 * Use the first good ipif on the ill. 20976 * XXX Should this ever happen? (Appears 20977 * to show up with just ppp and no ethernet due 20978 * to in.rdisc.) 20979 * However, ire_send should be able to 20980 * call ip_wput_ire directly. 20981 * 20982 * XXX Also, this can happen for ICMP and other packets 20983 * with multicast source addresses. Perhaps we should 20984 * fix things so that we drop the packet in question, 20985 * but for now, just run with it. 20986 */ 20987 ill_t *ill = (ill_t *)q->q_ptr; 20988 20989 /* 20990 * Don't honor attach_if for this case. If ill 20991 * is part of the group, ipif could belong to 20992 * any ill and we cannot maintain attach_ill 20993 * and ipif_ill same anymore and the assert 20994 * below would fail. 20995 */ 20996 if (mctl_present && io->ipsec_out_attach_if) { 20997 io->ipsec_out_ill_index = 0; 20998 io->ipsec_out_attach_if = B_FALSE; 20999 ASSERT(attach_ill != NULL); 21000 ill_refrele(attach_ill); 21001 attach_ill = NULL; 21002 } 21003 21004 ASSERT(attach_ill == NULL); 21005 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21006 if (ipif == NULL) { 21007 if (need_decref) 21008 CONN_DEC_REF(connp); 21009 freemsg(first_mp); 21010 return; 21011 } 21012 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21013 ntohl(dst), ill->ill_name)); 21014 } else { 21015 /* 21016 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21017 * and IP_MULTICAST_IF. The block comment above this 21018 * function explains the locking mechanism used here. 21019 */ 21020 if (xmit_ill == NULL) { 21021 xmit_ill = conn_get_held_ill(connp, 21022 &connp->conn_outgoing_ill, &err); 21023 if (err == ILL_LOOKUP_FAILED) { 21024 ip1dbg(("ip_wput: No ill for " 21025 "IP_BOUND_IF\n")); 21026 BUMP_MIB(&ipst->ips_ip_mib, 21027 ipIfStatsOutNoRoutes); 21028 goto drop_pkt; 21029 } 21030 } 21031 21032 if (xmit_ill == NULL) { 21033 ipif = conn_get_held_ipif(connp, 21034 &connp->conn_multicast_ipif, &err); 21035 if (err == IPIF_LOOKUP_FAILED) { 21036 ip1dbg(("ip_wput: No ipif for " 21037 "multicast\n")); 21038 BUMP_MIB(&ipst->ips_ip_mib, 21039 ipIfStatsOutNoRoutes); 21040 goto drop_pkt; 21041 } 21042 } 21043 if (xmit_ill != NULL) { 21044 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21045 if (ipif == NULL) { 21046 ip1dbg(("ip_wput: No ipif for " 21047 "xmit_ill\n")); 21048 BUMP_MIB(&ipst->ips_ip_mib, 21049 ipIfStatsOutNoRoutes); 21050 goto drop_pkt; 21051 } 21052 } else if (ipif == NULL || ipif->ipif_isv6) { 21053 /* 21054 * We must do this ipif determination here 21055 * else we could pass through ip_newroute 21056 * and come back here without the conn context. 21057 * 21058 * Note: we do late binding i.e. we bind to 21059 * the interface when the first packet is sent. 21060 * For performance reasons we do not rebind on 21061 * each packet but keep the binding until the 21062 * next IP_MULTICAST_IF option. 21063 * 21064 * conn_multicast_{ipif,ill} are shared between 21065 * IPv4 and IPv6 and AF_INET6 sockets can 21066 * send both IPv4 and IPv6 packets. Hence 21067 * we have to check that "isv6" matches above. 21068 */ 21069 if (ipif != NULL) 21070 ipif_refrele(ipif); 21071 ipif = ipif_lookup_group(dst, zoneid, ipst); 21072 if (ipif == NULL) { 21073 ip1dbg(("ip_wput: No ipif for " 21074 "multicast\n")); 21075 BUMP_MIB(&ipst->ips_ip_mib, 21076 ipIfStatsOutNoRoutes); 21077 goto drop_pkt; 21078 } 21079 err = conn_set_held_ipif(connp, 21080 &connp->conn_multicast_ipif, ipif); 21081 if (err == IPIF_LOOKUP_FAILED) { 21082 ipif_refrele(ipif); 21083 ip1dbg(("ip_wput: No ipif for " 21084 "multicast\n")); 21085 BUMP_MIB(&ipst->ips_ip_mib, 21086 ipIfStatsOutNoRoutes); 21087 goto drop_pkt; 21088 } 21089 } 21090 } 21091 ASSERT(!ipif->ipif_isv6); 21092 /* 21093 * As we may lose the conn by the time we reach ip_wput_ire, 21094 * we copy conn_multicast_loop and conn_dontroute on to an 21095 * ipsec_out. In case if this datagram goes out secure, 21096 * we need the ill_index also. Copy that also into the 21097 * ipsec_out. 21098 */ 21099 if (mctl_present) { 21100 io = (ipsec_out_t *)first_mp->b_rptr; 21101 ASSERT(first_mp->b_datap->db_type == M_CTL); 21102 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21103 } else { 21104 ASSERT(mp == first_mp); 21105 if ((first_mp = allocb(sizeof (ipsec_info_t), 21106 BPRI_HI)) == NULL) { 21107 ipif_refrele(ipif); 21108 first_mp = mp; 21109 goto discard_pkt; 21110 } 21111 first_mp->b_datap->db_type = M_CTL; 21112 first_mp->b_wptr += sizeof (ipsec_info_t); 21113 /* ipsec_out_secure is B_FALSE now */ 21114 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21115 io = (ipsec_out_t *)first_mp->b_rptr; 21116 io->ipsec_out_type = IPSEC_OUT; 21117 io->ipsec_out_len = sizeof (ipsec_out_t); 21118 io->ipsec_out_use_global_policy = B_TRUE; 21119 io->ipsec_out_ns = ipst->ips_netstack; 21120 first_mp->b_cont = mp; 21121 mctl_present = B_TRUE; 21122 } 21123 if (attach_ill != NULL) { 21124 ASSERT(attach_ill == ipif->ipif_ill); 21125 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21126 21127 /* 21128 * Check if we need an ire that will not be 21129 * looked up by anybody else i.e. HIDDEN. 21130 */ 21131 if (ill_is_probeonly(attach_ill)) { 21132 match_flags |= MATCH_IRE_MARK_HIDDEN; 21133 } 21134 io->ipsec_out_ill_index = 21135 attach_ill->ill_phyint->phyint_ifindex; 21136 io->ipsec_out_attach_if = B_TRUE; 21137 } else { 21138 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21139 io->ipsec_out_ill_index = 21140 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21141 } 21142 if (connp != NULL) { 21143 io->ipsec_out_multicast_loop = 21144 connp->conn_multicast_loop; 21145 io->ipsec_out_dontroute = connp->conn_dontroute; 21146 io->ipsec_out_zoneid = connp->conn_zoneid; 21147 } 21148 /* 21149 * If the application uses IP_MULTICAST_IF with 21150 * different logical addresses of the same ILL, we 21151 * need to make sure that the soruce address of 21152 * the packet matches the logical IP address used 21153 * in the option. We do it by initializing ipha_src 21154 * here. This should keep IPsec also happy as 21155 * when we return from IPsec processing, we don't 21156 * have to worry about getting the right address on 21157 * the packet. Thus it is sufficient to look for 21158 * IRE_CACHE using MATCH_IRE_ILL rathen than 21159 * MATCH_IRE_IPIF. 21160 * 21161 * NOTE : We need to do it for non-secure case also as 21162 * this might go out secure if there is a global policy 21163 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21164 * address, the source should be initialized already and 21165 * hence we won't be initializing here. 21166 * 21167 * As we do not have the ire yet, it is possible that 21168 * we set the source address here and then later discover 21169 * that the ire implies the source address to be assigned 21170 * through the RTF_SETSRC flag. 21171 * In that case, the setsrc variable will remind us 21172 * that overwritting the source address by the one 21173 * of the RTF_SETSRC-flagged ire is allowed. 21174 */ 21175 if (ipha->ipha_src == INADDR_ANY && 21176 (connp == NULL || !connp->conn_unspec_src)) { 21177 ipha->ipha_src = ipif->ipif_src_addr; 21178 setsrc = RTF_SETSRC; 21179 } 21180 /* 21181 * Find an IRE which matches the destination and the outgoing 21182 * queue (i.e. the outgoing interface.) 21183 * For loopback use a unicast IP address for 21184 * the ire lookup. 21185 */ 21186 if (IS_LOOPBACK(ipif->ipif_ill)) 21187 dst = ipif->ipif_lcl_addr; 21188 21189 /* 21190 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21191 * We don't need to lookup ire in ctable as the packet 21192 * needs to be sent to the destination through the specified 21193 * ill irrespective of ires in the cache table. 21194 */ 21195 ire = NULL; 21196 if (xmit_ill == NULL) { 21197 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21198 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21199 } 21200 21201 /* 21202 * refrele attach_ill as its not needed anymore. 21203 */ 21204 if (attach_ill != NULL) { 21205 ill_refrele(attach_ill); 21206 attach_ill = NULL; 21207 } 21208 21209 if (ire == NULL) { 21210 /* 21211 * Multicast loopback and multicast forwarding is 21212 * done in ip_wput_ire. 21213 * 21214 * Mark this packet to make it be delivered to 21215 * ip_wput_ire after the new ire has been 21216 * created. 21217 * 21218 * The call to ip_newroute_ipif takes into account 21219 * the setsrc reminder. In any case, we take care 21220 * of the RTF_MULTIRT flag. 21221 */ 21222 mp->b_prev = mp->b_next = NULL; 21223 if (xmit_ill == NULL || 21224 xmit_ill->ill_ipif_up_count > 0) { 21225 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21226 setsrc | RTF_MULTIRT, zoneid, infop); 21227 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21228 "ip_wput_end: q %p (%S)", q, "noire"); 21229 } else { 21230 freemsg(first_mp); 21231 } 21232 ipif_refrele(ipif); 21233 if (xmit_ill != NULL) 21234 ill_refrele(xmit_ill); 21235 if (need_decref) 21236 CONN_DEC_REF(connp); 21237 return; 21238 } 21239 21240 ipif_refrele(ipif); 21241 ipif = NULL; 21242 ASSERT(xmit_ill == NULL); 21243 21244 /* 21245 * Honor the RTF_SETSRC flag for multicast packets, 21246 * if allowed by the setsrc reminder. 21247 */ 21248 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21249 ipha->ipha_src = ire->ire_src_addr; 21250 } 21251 21252 /* 21253 * Unconditionally force the TTL to 1 for 21254 * multirouted multicast packets: 21255 * multirouted multicast should not cross 21256 * multicast routers. 21257 */ 21258 if (ire->ire_flags & RTF_MULTIRT) { 21259 if (ipha->ipha_ttl > 1) { 21260 ip2dbg(("ip_wput: forcing multicast " 21261 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21262 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21263 ipha->ipha_ttl = 1; 21264 } 21265 } 21266 } else { 21267 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21268 if ((ire != NULL) && (ire->ire_type & 21269 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21270 ignore_dontroute = B_TRUE; 21271 ignore_nexthop = B_TRUE; 21272 } 21273 if (ire != NULL) { 21274 ire_refrele(ire); 21275 ire = NULL; 21276 } 21277 /* 21278 * Guard against coming in from arp in which case conn is NULL. 21279 * Also guard against non M_DATA with dontroute set but 21280 * destined to local, loopback or broadcast addresses. 21281 */ 21282 if (connp != NULL && connp->conn_dontroute && 21283 !ignore_dontroute) { 21284 dontroute: 21285 /* 21286 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21287 * routing protocols from seeing false direct 21288 * connectivity. 21289 */ 21290 ipha->ipha_ttl = 1; 21291 21292 /* If suitable ipif not found, drop packet */ 21293 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21294 if (dst_ipif == NULL) { 21295 noroute: 21296 ip1dbg(("ip_wput: no route for dst using" 21297 " SO_DONTROUTE\n")); 21298 BUMP_MIB(&ipst->ips_ip_mib, 21299 ipIfStatsOutNoRoutes); 21300 mp->b_prev = mp->b_next = NULL; 21301 if (first_mp == NULL) 21302 first_mp = mp; 21303 goto drop_pkt; 21304 } else { 21305 /* 21306 * If suitable ipif has been found, set 21307 * xmit_ill to the corresponding 21308 * ipif_ill because we'll be using the 21309 * send_from_ill logic below. 21310 */ 21311 ASSERT(xmit_ill == NULL); 21312 xmit_ill = dst_ipif->ipif_ill; 21313 mutex_enter(&xmit_ill->ill_lock); 21314 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21315 mutex_exit(&xmit_ill->ill_lock); 21316 xmit_ill = NULL; 21317 ipif_refrele(dst_ipif); 21318 goto noroute; 21319 } 21320 ill_refhold_locked(xmit_ill); 21321 mutex_exit(&xmit_ill->ill_lock); 21322 ipif_refrele(dst_ipif); 21323 } 21324 } 21325 /* 21326 * If we are bound to IPIF_NOFAILOVER address, look for 21327 * an IRE_CACHE matching the ill. 21328 */ 21329 send_from_ill: 21330 if (attach_ill != NULL) { 21331 ipif_t *attach_ipif; 21332 21333 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21334 21335 /* 21336 * Check if we need an ire that will not be 21337 * looked up by anybody else i.e. HIDDEN. 21338 */ 21339 if (ill_is_probeonly(attach_ill)) { 21340 match_flags |= MATCH_IRE_MARK_HIDDEN; 21341 } 21342 21343 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21344 if (attach_ipif == NULL) { 21345 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21346 goto discard_pkt; 21347 } 21348 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21349 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21350 ipif_refrele(attach_ipif); 21351 } else if (xmit_ill != NULL) { 21352 ipif_t *ipif; 21353 21354 /* 21355 * Mark this packet as originated locally 21356 */ 21357 mp->b_prev = mp->b_next = NULL; 21358 21359 /* 21360 * Could be SO_DONTROUTE case also. 21361 * Verify that at least one ipif is up on the ill. 21362 */ 21363 if (xmit_ill->ill_ipif_up_count == 0) { 21364 ip1dbg(("ip_output: xmit_ill %s is down\n", 21365 xmit_ill->ill_name)); 21366 goto drop_pkt; 21367 } 21368 21369 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21370 if (ipif == NULL) { 21371 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21372 xmit_ill->ill_name)); 21373 goto drop_pkt; 21374 } 21375 21376 /* 21377 * Look for a ire that is part of the group, 21378 * if found use it else call ip_newroute_ipif. 21379 * IPCL_ZONEID is not used for matching because 21380 * IP_ALLZONES option is valid only when the 21381 * ill is accessible from all zones i.e has a 21382 * valid ipif in all zones. 21383 */ 21384 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21385 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21386 MBLK_GETLABEL(mp), match_flags, ipst); 21387 /* 21388 * If an ire exists use it or else create 21389 * an ire but don't add it to the cache. 21390 * Adding an ire may cause issues with 21391 * asymmetric routing. 21392 * In case of multiroute always act as if 21393 * ire does not exist. 21394 */ 21395 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21396 if (ire != NULL) 21397 ire_refrele(ire); 21398 ip_newroute_ipif(q, first_mp, ipif, 21399 dst, connp, 0, zoneid, infop); 21400 ipif_refrele(ipif); 21401 ip1dbg(("ip_output: xmit_ill via %s\n", 21402 xmit_ill->ill_name)); 21403 ill_refrele(xmit_ill); 21404 if (need_decref) 21405 CONN_DEC_REF(connp); 21406 return; 21407 } 21408 ipif_refrele(ipif); 21409 } else if (ip_nexthop || (connp != NULL && 21410 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21411 if (!ip_nexthop) { 21412 ip_nexthop = B_TRUE; 21413 nexthop_addr = connp->conn_nexthop_v4; 21414 } 21415 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21416 MATCH_IRE_GW; 21417 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21418 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21419 } else { 21420 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21421 ipst); 21422 } 21423 if (!ire) { 21424 /* 21425 * Make sure we don't load spread if this 21426 * is IPIF_NOFAILOVER case. 21427 */ 21428 if ((attach_ill != NULL) || 21429 (ip_nexthop && !ignore_nexthop)) { 21430 if (mctl_present) { 21431 io = (ipsec_out_t *)first_mp->b_rptr; 21432 ASSERT(first_mp->b_datap->db_type == 21433 M_CTL); 21434 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21435 } else { 21436 ASSERT(mp == first_mp); 21437 first_mp = allocb( 21438 sizeof (ipsec_info_t), BPRI_HI); 21439 if (first_mp == NULL) { 21440 first_mp = mp; 21441 goto discard_pkt; 21442 } 21443 first_mp->b_datap->db_type = M_CTL; 21444 first_mp->b_wptr += 21445 sizeof (ipsec_info_t); 21446 /* ipsec_out_secure is B_FALSE now */ 21447 bzero(first_mp->b_rptr, 21448 sizeof (ipsec_info_t)); 21449 io = (ipsec_out_t *)first_mp->b_rptr; 21450 io->ipsec_out_type = IPSEC_OUT; 21451 io->ipsec_out_len = 21452 sizeof (ipsec_out_t); 21453 io->ipsec_out_use_global_policy = 21454 B_TRUE; 21455 io->ipsec_out_ns = ipst->ips_netstack; 21456 first_mp->b_cont = mp; 21457 mctl_present = B_TRUE; 21458 } 21459 if (attach_ill != NULL) { 21460 io->ipsec_out_ill_index = attach_ill-> 21461 ill_phyint->phyint_ifindex; 21462 io->ipsec_out_attach_if = B_TRUE; 21463 } else { 21464 io->ipsec_out_ip_nexthop = ip_nexthop; 21465 io->ipsec_out_nexthop_addr = 21466 nexthop_addr; 21467 } 21468 } 21469 noirefound: 21470 /* 21471 * Mark this packet as having originated on 21472 * this machine. This will be noted in 21473 * ire_add_then_send, which needs to know 21474 * whether to run it back through ip_wput or 21475 * ip_rput following successful resolution. 21476 */ 21477 mp->b_prev = NULL; 21478 mp->b_next = NULL; 21479 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21480 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21481 "ip_wput_end: q %p (%S)", q, "newroute"); 21482 if (attach_ill != NULL) 21483 ill_refrele(attach_ill); 21484 if (xmit_ill != NULL) 21485 ill_refrele(xmit_ill); 21486 if (need_decref) 21487 CONN_DEC_REF(connp); 21488 return; 21489 } 21490 } 21491 21492 /* We now know where we are going with it. */ 21493 21494 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21495 "ip_wput_end: q %p (%S)", q, "end"); 21496 21497 /* 21498 * Check if the ire has the RTF_MULTIRT flag, inherited 21499 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21500 */ 21501 if (ire->ire_flags & RTF_MULTIRT) { 21502 /* 21503 * Force the TTL of multirouted packets if required. 21504 * The TTL of such packets is bounded by the 21505 * ip_multirt_ttl ndd variable. 21506 */ 21507 if ((ipst->ips_ip_multirt_ttl > 0) && 21508 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21509 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21510 "(was %d), dst 0x%08x\n", 21511 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21512 ntohl(ire->ire_addr))); 21513 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21514 } 21515 /* 21516 * At this point, we check to see if there are any pending 21517 * unresolved routes. ire_multirt_resolvable() 21518 * checks in O(n) that all IRE_OFFSUBNET ire 21519 * entries for the packet's destination and 21520 * flagged RTF_MULTIRT are currently resolved. 21521 * If some remain unresolved, we make a copy 21522 * of the current message. It will be used 21523 * to initiate additional route resolutions. 21524 */ 21525 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21526 MBLK_GETLABEL(first_mp), ipst); 21527 ip2dbg(("ip_wput[noirefound]: ire %p, " 21528 "multirt_need_resolve %d, first_mp %p\n", 21529 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21530 if (multirt_need_resolve) { 21531 copy_mp = copymsg(first_mp); 21532 if (copy_mp != NULL) { 21533 MULTIRT_DEBUG_TAG(copy_mp); 21534 } 21535 } 21536 } 21537 21538 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21539 /* 21540 * Try to resolve another multiroute if 21541 * ire_multirt_resolvable() deemed it necessary. 21542 * At this point, we need to distinguish 21543 * multicasts from other packets. For multicasts, 21544 * we call ip_newroute_ipif() and request that both 21545 * multirouting and setsrc flags are checked. 21546 */ 21547 if (copy_mp != NULL) { 21548 if (CLASSD(dst)) { 21549 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21550 if (ipif) { 21551 ASSERT(infop->ip_opt_ill_index == 0); 21552 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21553 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21554 ipif_refrele(ipif); 21555 } else { 21556 MULTIRT_DEBUG_UNTAG(copy_mp); 21557 freemsg(copy_mp); 21558 copy_mp = NULL; 21559 } 21560 } else { 21561 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21562 } 21563 } 21564 if (attach_ill != NULL) 21565 ill_refrele(attach_ill); 21566 if (xmit_ill != NULL) 21567 ill_refrele(xmit_ill); 21568 if (need_decref) 21569 CONN_DEC_REF(connp); 21570 return; 21571 21572 icmp_parameter_problem: 21573 /* could not have originated externally */ 21574 ASSERT(mp->b_prev == NULL); 21575 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21576 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21577 /* it's the IP header length that's in trouble */ 21578 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21579 first_mp = NULL; 21580 } 21581 21582 discard_pkt: 21583 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21584 drop_pkt: 21585 ip1dbg(("ip_wput: dropped packet\n")); 21586 if (ire != NULL) 21587 ire_refrele(ire); 21588 if (need_decref) 21589 CONN_DEC_REF(connp); 21590 freemsg(first_mp); 21591 if (attach_ill != NULL) 21592 ill_refrele(attach_ill); 21593 if (xmit_ill != NULL) 21594 ill_refrele(xmit_ill); 21595 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21596 "ip_wput_end: q %p (%S)", q, "droppkt"); 21597 } 21598 21599 /* 21600 * If this is a conn_t queue, then we pass in the conn. This includes the 21601 * zoneid. 21602 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21603 * in which case we use the global zoneid since those are all part of 21604 * the global zone. 21605 */ 21606 void 21607 ip_wput(queue_t *q, mblk_t *mp) 21608 { 21609 if (CONN_Q(q)) 21610 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21611 else 21612 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21613 } 21614 21615 /* 21616 * 21617 * The following rules must be observed when accessing any ipif or ill 21618 * that has been cached in the conn. Typically conn_nofailover_ill, 21619 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21620 * 21621 * Access: The ipif or ill pointed to from the conn can be accessed under 21622 * the protection of the conn_lock or after it has been refheld under the 21623 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21624 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21625 * The reason for this is that a concurrent unplumb could actually be 21626 * cleaning up these cached pointers by walking the conns and might have 21627 * finished cleaning up the conn in question. The macros check that an 21628 * unplumb has not yet started on the ipif or ill. 21629 * 21630 * Caching: An ipif or ill pointer may be cached in the conn only after 21631 * making sure that an unplumb has not started. So the caching is done 21632 * while holding both the conn_lock and the ill_lock and after using the 21633 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21634 * flag before starting the cleanup of conns. 21635 * 21636 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21637 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21638 * or a reference to the ipif or a reference to an ire that references the 21639 * ipif. An ipif does not change its ill except for failover/failback. Since 21640 * failover/failback happens only after bringing down the ipif and making sure 21641 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21642 * the above holds. 21643 */ 21644 ipif_t * 21645 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21646 { 21647 ipif_t *ipif; 21648 ill_t *ill; 21649 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21650 21651 *err = 0; 21652 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21653 mutex_enter(&connp->conn_lock); 21654 ipif = *ipifp; 21655 if (ipif != NULL) { 21656 ill = ipif->ipif_ill; 21657 mutex_enter(&ill->ill_lock); 21658 if (IPIF_CAN_LOOKUP(ipif)) { 21659 ipif_refhold_locked(ipif); 21660 mutex_exit(&ill->ill_lock); 21661 mutex_exit(&connp->conn_lock); 21662 rw_exit(&ipst->ips_ill_g_lock); 21663 return (ipif); 21664 } else { 21665 *err = IPIF_LOOKUP_FAILED; 21666 } 21667 mutex_exit(&ill->ill_lock); 21668 } 21669 mutex_exit(&connp->conn_lock); 21670 rw_exit(&ipst->ips_ill_g_lock); 21671 return (NULL); 21672 } 21673 21674 ill_t * 21675 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21676 { 21677 ill_t *ill; 21678 21679 *err = 0; 21680 mutex_enter(&connp->conn_lock); 21681 ill = *illp; 21682 if (ill != NULL) { 21683 mutex_enter(&ill->ill_lock); 21684 if (ILL_CAN_LOOKUP(ill)) { 21685 ill_refhold_locked(ill); 21686 mutex_exit(&ill->ill_lock); 21687 mutex_exit(&connp->conn_lock); 21688 return (ill); 21689 } else { 21690 *err = ILL_LOOKUP_FAILED; 21691 } 21692 mutex_exit(&ill->ill_lock); 21693 } 21694 mutex_exit(&connp->conn_lock); 21695 return (NULL); 21696 } 21697 21698 static int 21699 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21700 { 21701 ill_t *ill; 21702 21703 ill = ipif->ipif_ill; 21704 mutex_enter(&connp->conn_lock); 21705 mutex_enter(&ill->ill_lock); 21706 if (IPIF_CAN_LOOKUP(ipif)) { 21707 *ipifp = ipif; 21708 mutex_exit(&ill->ill_lock); 21709 mutex_exit(&connp->conn_lock); 21710 return (0); 21711 } 21712 mutex_exit(&ill->ill_lock); 21713 mutex_exit(&connp->conn_lock); 21714 return (IPIF_LOOKUP_FAILED); 21715 } 21716 21717 /* 21718 * This is called if the outbound datagram needs fragmentation. 21719 * 21720 * NOTE : This function does not ire_refrele the ire argument passed in. 21721 */ 21722 static void 21723 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21724 ip_stack_t *ipst) 21725 { 21726 ipha_t *ipha; 21727 mblk_t *mp; 21728 uint32_t v_hlen_tos_len; 21729 uint32_t max_frag; 21730 uint32_t frag_flag; 21731 boolean_t dont_use; 21732 21733 if (ipsec_mp->b_datap->db_type == M_CTL) { 21734 mp = ipsec_mp->b_cont; 21735 } else { 21736 mp = ipsec_mp; 21737 } 21738 21739 ipha = (ipha_t *)mp->b_rptr; 21740 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21741 21742 #ifdef _BIG_ENDIAN 21743 #define V_HLEN (v_hlen_tos_len >> 24) 21744 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21745 #else 21746 #define V_HLEN (v_hlen_tos_len & 0xFF) 21747 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21748 #endif 21749 21750 #ifndef SPEED_BEFORE_SAFETY 21751 /* 21752 * Check that ipha_length is consistent with 21753 * the mblk length 21754 */ 21755 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21756 ip0dbg(("Packet length mismatch: %d, %ld\n", 21757 LENGTH, msgdsize(mp))); 21758 freemsg(ipsec_mp); 21759 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21760 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21761 "packet length mismatch"); 21762 return; 21763 } 21764 #endif 21765 /* 21766 * Don't use frag_flag if pre-built packet or source 21767 * routed or if multicast (since multicast packets do not solicit 21768 * ICMP "packet too big" messages). Get the values of 21769 * max_frag and frag_flag atomically by acquiring the 21770 * ire_lock. 21771 */ 21772 mutex_enter(&ire->ire_lock); 21773 max_frag = ire->ire_max_frag; 21774 frag_flag = ire->ire_frag_flag; 21775 mutex_exit(&ire->ire_lock); 21776 21777 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21778 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21779 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21780 21781 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21782 (dont_use ? 0 : frag_flag), zoneid, ipst); 21783 } 21784 21785 /* 21786 * Used for deciding the MSS size for the upper layer. Thus 21787 * we need to check the outbound policy values in the conn. 21788 */ 21789 int 21790 conn_ipsec_length(conn_t *connp) 21791 { 21792 ipsec_latch_t *ipl; 21793 21794 ipl = connp->conn_latch; 21795 if (ipl == NULL) 21796 return (0); 21797 21798 if (ipl->ipl_out_policy == NULL) 21799 return (0); 21800 21801 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21802 } 21803 21804 /* 21805 * Returns an estimate of the IPsec headers size. This is used if 21806 * we don't want to call into IPsec to get the exact size. 21807 */ 21808 int 21809 ipsec_out_extra_length(mblk_t *ipsec_mp) 21810 { 21811 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21812 ipsec_action_t *a; 21813 21814 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21815 if (!io->ipsec_out_secure) 21816 return (0); 21817 21818 a = io->ipsec_out_act; 21819 21820 if (a == NULL) { 21821 ASSERT(io->ipsec_out_policy != NULL); 21822 a = io->ipsec_out_policy->ipsp_act; 21823 } 21824 ASSERT(a != NULL); 21825 21826 return (a->ipa_ovhd); 21827 } 21828 21829 /* 21830 * Returns an estimate of the IPsec headers size. This is used if 21831 * we don't want to call into IPsec to get the exact size. 21832 */ 21833 int 21834 ipsec_in_extra_length(mblk_t *ipsec_mp) 21835 { 21836 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21837 ipsec_action_t *a; 21838 21839 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21840 21841 a = ii->ipsec_in_action; 21842 return (a == NULL ? 0 : a->ipa_ovhd); 21843 } 21844 21845 /* 21846 * If there are any source route options, return the true final 21847 * destination. Otherwise, return the destination. 21848 */ 21849 ipaddr_t 21850 ip_get_dst(ipha_t *ipha) 21851 { 21852 ipoptp_t opts; 21853 uchar_t *opt; 21854 uint8_t optval; 21855 uint8_t optlen; 21856 ipaddr_t dst; 21857 uint32_t off; 21858 21859 dst = ipha->ipha_dst; 21860 21861 if (IS_SIMPLE_IPH(ipha)) 21862 return (dst); 21863 21864 for (optval = ipoptp_first(&opts, ipha); 21865 optval != IPOPT_EOL; 21866 optval = ipoptp_next(&opts)) { 21867 opt = opts.ipoptp_cur; 21868 optlen = opts.ipoptp_len; 21869 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21870 switch (optval) { 21871 case IPOPT_SSRR: 21872 case IPOPT_LSRR: 21873 off = opt[IPOPT_OFFSET]; 21874 /* 21875 * If one of the conditions is true, it means 21876 * end of options and dst already has the right 21877 * value. 21878 */ 21879 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21880 off = optlen - IP_ADDR_LEN; 21881 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21882 } 21883 return (dst); 21884 default: 21885 break; 21886 } 21887 } 21888 21889 return (dst); 21890 } 21891 21892 mblk_t * 21893 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21894 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21895 { 21896 ipsec_out_t *io; 21897 mblk_t *first_mp; 21898 boolean_t policy_present; 21899 ip_stack_t *ipst; 21900 ipsec_stack_t *ipss; 21901 21902 ASSERT(ire != NULL); 21903 ipst = ire->ire_ipst; 21904 ipss = ipst->ips_netstack->netstack_ipsec; 21905 21906 first_mp = mp; 21907 if (mp->b_datap->db_type == M_CTL) { 21908 io = (ipsec_out_t *)first_mp->b_rptr; 21909 /* 21910 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21911 * 21912 * 1) There is per-socket policy (including cached global 21913 * policy) or a policy on the IP-in-IP tunnel. 21914 * 2) There is no per-socket policy, but it is 21915 * a multicast packet that needs to go out 21916 * on a specific interface. This is the case 21917 * where (ip_wput and ip_wput_multicast) attaches 21918 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21919 * 21920 * In case (2) we check with global policy to 21921 * see if there is a match and set the ill_index 21922 * appropriately so that we can lookup the ire 21923 * properly in ip_wput_ipsec_out. 21924 */ 21925 21926 /* 21927 * ipsec_out_use_global_policy is set to B_FALSE 21928 * in ipsec_in_to_out(). Refer to that function for 21929 * details. 21930 */ 21931 if ((io->ipsec_out_latch == NULL) && 21932 (io->ipsec_out_use_global_policy)) { 21933 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21934 ire, connp, unspec_src, zoneid)); 21935 } 21936 if (!io->ipsec_out_secure) { 21937 /* 21938 * If this is not a secure packet, drop 21939 * the IPSEC_OUT mp and treat it as a clear 21940 * packet. This happens when we are sending 21941 * a ICMP reply back to a clear packet. See 21942 * ipsec_in_to_out() for details. 21943 */ 21944 mp = first_mp->b_cont; 21945 freeb(first_mp); 21946 } 21947 return (mp); 21948 } 21949 /* 21950 * See whether we need to attach a global policy here. We 21951 * don't depend on the conn (as it could be null) for deciding 21952 * what policy this datagram should go through because it 21953 * should have happened in ip_wput if there was some 21954 * policy. This normally happens for connections which are not 21955 * fully bound preventing us from caching policies in 21956 * ip_bind. Packets coming from the TCP listener/global queue 21957 * - which are non-hard_bound - could also be affected by 21958 * applying policy here. 21959 * 21960 * If this packet is coming from tcp global queue or listener, 21961 * we will be applying policy here. This may not be *right* 21962 * if these packets are coming from the detached connection as 21963 * it could have gone in clear before. This happens only if a 21964 * TCP connection started when there is no policy and somebody 21965 * added policy before it became detached. Thus packets of the 21966 * detached connection could go out secure and the other end 21967 * would drop it because it will be expecting in clear. The 21968 * converse is not true i.e if somebody starts a TCP 21969 * connection and deletes the policy, all the packets will 21970 * still go out with the policy that existed before deleting 21971 * because ip_unbind sends up policy information which is used 21972 * by TCP on subsequent ip_wputs. The right solution is to fix 21973 * TCP to attach a dummy IPSEC_OUT and set 21974 * ipsec_out_use_global_policy to B_FALSE. As this might 21975 * affect performance for normal cases, we are not doing it. 21976 * Thus, set policy before starting any TCP connections. 21977 * 21978 * NOTE - We might apply policy even for a hard bound connection 21979 * - for which we cached policy in ip_bind - if somebody added 21980 * global policy after we inherited the policy in ip_bind. 21981 * This means that the packets that were going out in clear 21982 * previously would start going secure and hence get dropped 21983 * on the other side. To fix this, TCP attaches a dummy 21984 * ipsec_out and make sure that we don't apply global policy. 21985 */ 21986 if (ipha != NULL) 21987 policy_present = ipss->ipsec_outbound_v4_policy_present; 21988 else 21989 policy_present = ipss->ipsec_outbound_v6_policy_present; 21990 if (!policy_present) 21991 return (mp); 21992 21993 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21994 zoneid)); 21995 } 21996 21997 ire_t * 21998 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21999 { 22000 ipaddr_t addr; 22001 ire_t *save_ire; 22002 irb_t *irb; 22003 ill_group_t *illgrp; 22004 int err; 22005 22006 save_ire = ire; 22007 addr = ire->ire_addr; 22008 22009 ASSERT(ire->ire_type == IRE_BROADCAST); 22010 22011 illgrp = connp->conn_outgoing_ill->ill_group; 22012 if (illgrp == NULL) { 22013 *conn_outgoing_ill = conn_get_held_ill(connp, 22014 &connp->conn_outgoing_ill, &err); 22015 if (err == ILL_LOOKUP_FAILED) { 22016 ire_refrele(save_ire); 22017 return (NULL); 22018 } 22019 return (save_ire); 22020 } 22021 /* 22022 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22023 * If it is part of the group, we need to send on the ire 22024 * that has been cleared of IRE_MARK_NORECV and that belongs 22025 * to this group. This is okay as IP_BOUND_IF really means 22026 * any ill in the group. We depend on the fact that the 22027 * first ire in the group is always cleared of IRE_MARK_NORECV 22028 * if such an ire exists. This is possible only if you have 22029 * at least one ill in the group that has not failed. 22030 * 22031 * First get to the ire that matches the address and group. 22032 * 22033 * We don't look for an ire with a matching zoneid because a given zone 22034 * won't always have broadcast ires on all ills in the group. 22035 */ 22036 irb = ire->ire_bucket; 22037 rw_enter(&irb->irb_lock, RW_READER); 22038 if (ire->ire_marks & IRE_MARK_NORECV) { 22039 /* 22040 * If the current zone only has an ire broadcast for this 22041 * address marked NORECV, the ire we want is ahead in the 22042 * bucket, so we look it up deliberately ignoring the zoneid. 22043 */ 22044 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22045 if (ire->ire_addr != addr) 22046 continue; 22047 /* skip over deleted ires */ 22048 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22049 continue; 22050 } 22051 } 22052 while (ire != NULL) { 22053 /* 22054 * If a new interface is coming up, we could end up 22055 * seeing the loopback ire and the non-loopback ire 22056 * may not have been added yet. So check for ire_stq 22057 */ 22058 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22059 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22060 break; 22061 } 22062 ire = ire->ire_next; 22063 } 22064 if (ire != NULL && ire->ire_addr == addr && 22065 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22066 IRE_REFHOLD(ire); 22067 rw_exit(&irb->irb_lock); 22068 ire_refrele(save_ire); 22069 *conn_outgoing_ill = ire_to_ill(ire); 22070 /* 22071 * Refhold the ill to make the conn_outgoing_ill 22072 * independent of the ire. ip_wput_ire goes in a loop 22073 * and may refrele the ire. Since we have an ire at this 22074 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22075 */ 22076 ill_refhold(*conn_outgoing_ill); 22077 return (ire); 22078 } 22079 rw_exit(&irb->irb_lock); 22080 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22081 /* 22082 * If we can't find a suitable ire, return the original ire. 22083 */ 22084 return (save_ire); 22085 } 22086 22087 /* 22088 * This function does the ire_refrele of the ire passed in as the 22089 * argument. As this function looks up more ires i.e broadcast ires, 22090 * it needs to REFRELE them. Currently, for simplicity we don't 22091 * differentiate the one passed in and looked up here. We always 22092 * REFRELE. 22093 * IPQoS Notes: 22094 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22095 * IPsec packets are done in ipsec_out_process. 22096 * 22097 */ 22098 void 22099 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22100 zoneid_t zoneid) 22101 { 22102 ipha_t *ipha; 22103 #define rptr ((uchar_t *)ipha) 22104 queue_t *stq; 22105 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22106 uint32_t v_hlen_tos_len; 22107 uint32_t ttl_protocol; 22108 ipaddr_t src; 22109 ipaddr_t dst; 22110 uint32_t cksum; 22111 ipaddr_t orig_src; 22112 ire_t *ire1; 22113 mblk_t *next_mp; 22114 uint_t hlen; 22115 uint16_t *up; 22116 uint32_t max_frag = ire->ire_max_frag; 22117 ill_t *ill = ire_to_ill(ire); 22118 int clusterwide; 22119 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22120 int ipsec_len; 22121 mblk_t *first_mp; 22122 ipsec_out_t *io; 22123 boolean_t conn_dontroute; /* conn value for multicast */ 22124 boolean_t conn_multicast_loop; /* conn value for multicast */ 22125 boolean_t multicast_forward; /* Should we forward ? */ 22126 boolean_t unspec_src; 22127 ill_t *conn_outgoing_ill = NULL; 22128 ill_t *ire_ill; 22129 ill_t *ire1_ill; 22130 ill_t *out_ill; 22131 uint32_t ill_index = 0; 22132 boolean_t multirt_send = B_FALSE; 22133 int err; 22134 ipxmit_state_t pktxmit_state; 22135 ip_stack_t *ipst = ire->ire_ipst; 22136 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22137 22138 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22139 "ip_wput_ire_start: q %p", q); 22140 22141 multicast_forward = B_FALSE; 22142 unspec_src = (connp != NULL && connp->conn_unspec_src); 22143 22144 if (ire->ire_flags & RTF_MULTIRT) { 22145 /* 22146 * Multirouting case. The bucket where ire is stored 22147 * probably holds other RTF_MULTIRT flagged ire 22148 * to the destination. In this call to ip_wput_ire, 22149 * we attempt to send the packet through all 22150 * those ires. Thus, we first ensure that ire is the 22151 * first RTF_MULTIRT ire in the bucket, 22152 * before walking the ire list. 22153 */ 22154 ire_t *first_ire; 22155 irb_t *irb = ire->ire_bucket; 22156 ASSERT(irb != NULL); 22157 22158 /* Make sure we do not omit any multiroute ire. */ 22159 IRB_REFHOLD(irb); 22160 for (first_ire = irb->irb_ire; 22161 first_ire != NULL; 22162 first_ire = first_ire->ire_next) { 22163 if ((first_ire->ire_flags & RTF_MULTIRT) && 22164 (first_ire->ire_addr == ire->ire_addr) && 22165 !(first_ire->ire_marks & 22166 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22167 break; 22168 } 22169 } 22170 22171 if ((first_ire != NULL) && (first_ire != ire)) { 22172 IRE_REFHOLD(first_ire); 22173 ire_refrele(ire); 22174 ire = first_ire; 22175 ill = ire_to_ill(ire); 22176 } 22177 IRB_REFRELE(irb); 22178 } 22179 22180 /* 22181 * conn_outgoing_ill variable is used only in the broadcast loop. 22182 * for performance we don't grab the mutexs in the fastpath 22183 */ 22184 if ((connp != NULL) && 22185 (ire->ire_type == IRE_BROADCAST) && 22186 ((connp->conn_nofailover_ill != NULL) || 22187 (connp->conn_outgoing_ill != NULL))) { 22188 /* 22189 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22190 * option. So, see if this endpoint is bound to a 22191 * IPIF_NOFAILOVER address. If so, honor it. This implies 22192 * that if the interface is failed, we will still send 22193 * the packet on the same ill which is what we want. 22194 */ 22195 conn_outgoing_ill = conn_get_held_ill(connp, 22196 &connp->conn_nofailover_ill, &err); 22197 if (err == ILL_LOOKUP_FAILED) { 22198 ire_refrele(ire); 22199 freemsg(mp); 22200 return; 22201 } 22202 if (conn_outgoing_ill == NULL) { 22203 /* 22204 * Choose a good ill in the group to send the 22205 * packets on. 22206 */ 22207 ire = conn_set_outgoing_ill(connp, ire, 22208 &conn_outgoing_ill); 22209 if (ire == NULL) { 22210 freemsg(mp); 22211 return; 22212 } 22213 } 22214 } 22215 22216 if (mp->b_datap->db_type != M_CTL) { 22217 ipha = (ipha_t *)mp->b_rptr; 22218 } else { 22219 io = (ipsec_out_t *)mp->b_rptr; 22220 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22221 ASSERT(zoneid == io->ipsec_out_zoneid); 22222 ASSERT(zoneid != ALL_ZONES); 22223 ipha = (ipha_t *)mp->b_cont->b_rptr; 22224 dst = ipha->ipha_dst; 22225 /* 22226 * For the multicast case, ipsec_out carries conn_dontroute and 22227 * conn_multicast_loop as conn may not be available here. We 22228 * need this for multicast loopback and forwarding which is done 22229 * later in the code. 22230 */ 22231 if (CLASSD(dst)) { 22232 conn_dontroute = io->ipsec_out_dontroute; 22233 conn_multicast_loop = io->ipsec_out_multicast_loop; 22234 /* 22235 * If conn_dontroute is not set or conn_multicast_loop 22236 * is set, we need to do forwarding/loopback. For 22237 * datagrams from ip_wput_multicast, conn_dontroute is 22238 * set to B_TRUE and conn_multicast_loop is set to 22239 * B_FALSE so that we neither do forwarding nor 22240 * loopback. 22241 */ 22242 if (!conn_dontroute || conn_multicast_loop) 22243 multicast_forward = B_TRUE; 22244 } 22245 } 22246 22247 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22248 ire->ire_zoneid != ALL_ZONES) { 22249 /* 22250 * When a zone sends a packet to another zone, we try to deliver 22251 * the packet under the same conditions as if the destination 22252 * was a real node on the network. To do so, we look for a 22253 * matching route in the forwarding table. 22254 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22255 * ip_newroute() does. 22256 * Note that IRE_LOCAL are special, since they are used 22257 * when the zoneid doesn't match in some cases. This means that 22258 * we need to handle ipha_src differently since ire_src_addr 22259 * belongs to the receiving zone instead of the sending zone. 22260 * When ip_restrict_interzone_loopback is set, then 22261 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22262 * for loopback between zones when the logical "Ethernet" would 22263 * have looped them back. 22264 */ 22265 ire_t *src_ire; 22266 22267 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22268 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22269 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22270 if (src_ire != NULL && 22271 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22272 (!ipst->ips_ip_restrict_interzone_loopback || 22273 ire_local_same_ill_group(ire, src_ire))) { 22274 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22275 ipha->ipha_src = src_ire->ire_src_addr; 22276 ire_refrele(src_ire); 22277 } else { 22278 ire_refrele(ire); 22279 if (conn_outgoing_ill != NULL) 22280 ill_refrele(conn_outgoing_ill); 22281 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22282 if (src_ire != NULL) { 22283 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22284 ire_refrele(src_ire); 22285 freemsg(mp); 22286 return; 22287 } 22288 ire_refrele(src_ire); 22289 } 22290 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22291 /* Failed */ 22292 freemsg(mp); 22293 return; 22294 } 22295 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22296 ipst); 22297 return; 22298 } 22299 } 22300 22301 if (mp->b_datap->db_type == M_CTL || 22302 ipss->ipsec_outbound_v4_policy_present) { 22303 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22304 unspec_src, zoneid); 22305 if (mp == NULL) { 22306 ire_refrele(ire); 22307 if (conn_outgoing_ill != NULL) 22308 ill_refrele(conn_outgoing_ill); 22309 return; 22310 } 22311 /* 22312 * Trusted Extensions supports all-zones interfaces, so 22313 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22314 * the global zone. 22315 */ 22316 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22317 io = (ipsec_out_t *)mp->b_rptr; 22318 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22319 zoneid = io->ipsec_out_zoneid; 22320 } 22321 } 22322 22323 first_mp = mp; 22324 ipsec_len = 0; 22325 22326 if (first_mp->b_datap->db_type == M_CTL) { 22327 io = (ipsec_out_t *)first_mp->b_rptr; 22328 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22329 mp = first_mp->b_cont; 22330 ipsec_len = ipsec_out_extra_length(first_mp); 22331 ASSERT(ipsec_len >= 0); 22332 /* We already picked up the zoneid from the M_CTL above */ 22333 ASSERT(zoneid == io->ipsec_out_zoneid); 22334 ASSERT(zoneid != ALL_ZONES); 22335 22336 /* 22337 * Drop M_CTL here if IPsec processing is not needed. 22338 * (Non-IPsec use of M_CTL extracted any information it 22339 * needed above). 22340 */ 22341 if (ipsec_len == 0) { 22342 freeb(first_mp); 22343 first_mp = mp; 22344 } 22345 } 22346 22347 /* 22348 * Fast path for ip_wput_ire 22349 */ 22350 22351 ipha = (ipha_t *)mp->b_rptr; 22352 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22353 dst = ipha->ipha_dst; 22354 22355 /* 22356 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22357 * if the socket is a SOCK_RAW type. The transport checksum should 22358 * be provided in the pre-built packet, so we don't need to compute it. 22359 * Also, other application set flags, like DF, should not be altered. 22360 * Other transport MUST pass down zero. 22361 */ 22362 ip_hdr_included = ipha->ipha_ident; 22363 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22364 22365 if (CLASSD(dst)) { 22366 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22367 ntohl(dst), 22368 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22369 ntohl(ire->ire_addr))); 22370 } 22371 22372 /* Macros to extract header fields from data already in registers */ 22373 #ifdef _BIG_ENDIAN 22374 #define V_HLEN (v_hlen_tos_len >> 24) 22375 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22376 #define PROTO (ttl_protocol & 0xFF) 22377 #else 22378 #define V_HLEN (v_hlen_tos_len & 0xFF) 22379 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22380 #define PROTO (ttl_protocol >> 8) 22381 #endif 22382 22383 22384 orig_src = src = ipha->ipha_src; 22385 /* (The loop back to "another" is explained down below.) */ 22386 another:; 22387 /* 22388 * Assign an ident value for this packet. We assign idents on 22389 * a per destination basis out of the IRE. There could be 22390 * other threads targeting the same destination, so we have to 22391 * arrange for a atomic increment. Note that we use a 32-bit 22392 * atomic add because it has better performance than its 22393 * 16-bit sibling. 22394 * 22395 * If running in cluster mode and if the source address 22396 * belongs to a replicated service then vector through 22397 * cl_inet_ipident vector to allocate ip identifier 22398 * NOTE: This is a contract private interface with the 22399 * clustering group. 22400 */ 22401 clusterwide = 0; 22402 if (cl_inet_ipident) { 22403 ASSERT(cl_inet_isclusterwide); 22404 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22405 AF_INET, (uint8_t *)(uintptr_t)src)) { 22406 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22407 AF_INET, (uint8_t *)(uintptr_t)src, 22408 (uint8_t *)(uintptr_t)dst); 22409 clusterwide = 1; 22410 } 22411 } 22412 if (!clusterwide) { 22413 ipha->ipha_ident = 22414 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22415 } 22416 22417 #ifndef _BIG_ENDIAN 22418 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22419 #endif 22420 22421 /* 22422 * Set source address unless sent on an ill or conn_unspec_src is set. 22423 * This is needed to obey conn_unspec_src when packets go through 22424 * ip_newroute + arp. 22425 * Assumes ip_newroute{,_multi} sets the source address as well. 22426 */ 22427 if (src == INADDR_ANY && !unspec_src) { 22428 /* 22429 * Assign the appropriate source address from the IRE if none 22430 * was specified. 22431 */ 22432 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22433 22434 /* 22435 * With IP multipathing, broadcast packets are sent on the ire 22436 * that has been cleared of IRE_MARK_NORECV and that belongs to 22437 * the group. However, this ire might not be in the same zone so 22438 * we can't always use its source address. We look for a 22439 * broadcast ire in the same group and in the right zone. 22440 */ 22441 if (ire->ire_type == IRE_BROADCAST && 22442 ire->ire_zoneid != zoneid) { 22443 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22444 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22445 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22446 if (src_ire != NULL) { 22447 src = src_ire->ire_src_addr; 22448 ire_refrele(src_ire); 22449 } else { 22450 ire_refrele(ire); 22451 if (conn_outgoing_ill != NULL) 22452 ill_refrele(conn_outgoing_ill); 22453 freemsg(first_mp); 22454 if (ill != NULL) { 22455 BUMP_MIB(ill->ill_ip_mib, 22456 ipIfStatsOutDiscards); 22457 } else { 22458 BUMP_MIB(&ipst->ips_ip_mib, 22459 ipIfStatsOutDiscards); 22460 } 22461 return; 22462 } 22463 } else { 22464 src = ire->ire_src_addr; 22465 } 22466 22467 if (connp == NULL) { 22468 ip1dbg(("ip_wput_ire: no connp and no src " 22469 "address for dst 0x%x, using src 0x%x\n", 22470 ntohl(dst), 22471 ntohl(src))); 22472 } 22473 ipha->ipha_src = src; 22474 } 22475 stq = ire->ire_stq; 22476 22477 /* 22478 * We only allow ire chains for broadcasts since there will 22479 * be multiple IRE_CACHE entries for the same multicast 22480 * address (one per ipif). 22481 */ 22482 next_mp = NULL; 22483 22484 /* broadcast packet */ 22485 if (ire->ire_type == IRE_BROADCAST) 22486 goto broadcast; 22487 22488 /* loopback ? */ 22489 if (stq == NULL) 22490 goto nullstq; 22491 22492 /* The ill_index for outbound ILL */ 22493 ill_index = Q_TO_INDEX(stq); 22494 22495 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22496 ttl_protocol = ((uint16_t *)ipha)[4]; 22497 22498 /* pseudo checksum (do it in parts for IP header checksum) */ 22499 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22500 22501 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22502 queue_t *dev_q = stq->q_next; 22503 22504 /* flow controlled */ 22505 if ((dev_q->q_next || dev_q->q_first) && 22506 !canput(dev_q)) 22507 goto blocked; 22508 if ((PROTO == IPPROTO_UDP) && 22509 (ip_hdr_included != IP_HDR_INCLUDED)) { 22510 hlen = (V_HLEN & 0xF) << 2; 22511 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22512 if (*up != 0) { 22513 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22514 hlen, LENGTH, max_frag, ipsec_len, cksum); 22515 /* Software checksum? */ 22516 if (DB_CKSUMFLAGS(mp) == 0) { 22517 IP_STAT(ipst, ip_out_sw_cksum); 22518 IP_STAT_UPDATE(ipst, 22519 ip_udp_out_sw_cksum_bytes, 22520 LENGTH - hlen); 22521 } 22522 } 22523 } 22524 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22525 hlen = (V_HLEN & 0xF) << 2; 22526 if (PROTO == IPPROTO_TCP) { 22527 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22528 /* 22529 * The packet header is processed once and for all, even 22530 * in the multirouting case. We disable hardware 22531 * checksum if the packet is multirouted, as it will be 22532 * replicated via several interfaces, and not all of 22533 * them may have this capability. 22534 */ 22535 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22536 LENGTH, max_frag, ipsec_len, cksum); 22537 /* Software checksum? */ 22538 if (DB_CKSUMFLAGS(mp) == 0) { 22539 IP_STAT(ipst, ip_out_sw_cksum); 22540 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22541 LENGTH - hlen); 22542 } 22543 } else { 22544 sctp_hdr_t *sctph; 22545 22546 ASSERT(PROTO == IPPROTO_SCTP); 22547 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22548 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22549 /* 22550 * Zero out the checksum field to ensure proper 22551 * checksum calculation. 22552 */ 22553 sctph->sh_chksum = 0; 22554 #ifdef DEBUG 22555 if (!skip_sctp_cksum) 22556 #endif 22557 sctph->sh_chksum = sctp_cksum(mp, hlen); 22558 } 22559 } 22560 22561 /* 22562 * If this is a multicast packet and originated from ip_wput 22563 * we need to do loopback and forwarding checks. If it comes 22564 * from ip_wput_multicast, we SHOULD not do this. 22565 */ 22566 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22567 22568 /* checksum */ 22569 cksum += ttl_protocol; 22570 22571 /* fragment the packet */ 22572 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22573 goto fragmentit; 22574 /* 22575 * Don't use frag_flag if packet is pre-built or source 22576 * routed or if multicast (since multicast packets do 22577 * not solicit ICMP "packet too big" messages). 22578 */ 22579 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22580 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22581 !ip_source_route_included(ipha)) && 22582 !CLASSD(ipha->ipha_dst)) 22583 ipha->ipha_fragment_offset_and_flags |= 22584 htons(ire->ire_frag_flag); 22585 22586 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22587 /* calculate IP header checksum */ 22588 cksum += ipha->ipha_ident; 22589 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22590 cksum += ipha->ipha_fragment_offset_and_flags; 22591 22592 /* IP options present */ 22593 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22594 if (hlen) 22595 goto checksumoptions; 22596 22597 /* calculate hdr checksum */ 22598 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22599 cksum = ~(cksum + (cksum >> 16)); 22600 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22601 } 22602 if (ipsec_len != 0) { 22603 /* 22604 * We will do the rest of the processing after 22605 * we come back from IPsec in ip_wput_ipsec_out(). 22606 */ 22607 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22608 22609 io = (ipsec_out_t *)first_mp->b_rptr; 22610 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22611 ill_phyint->phyint_ifindex; 22612 22613 ipsec_out_process(q, first_mp, ire, ill_index); 22614 ire_refrele(ire); 22615 if (conn_outgoing_ill != NULL) 22616 ill_refrele(conn_outgoing_ill); 22617 return; 22618 } 22619 22620 /* 22621 * In most cases, the emission loop below is entered only 22622 * once. Only in the case where the ire holds the 22623 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22624 * flagged ires in the bucket, and send the packet 22625 * through all crossed RTF_MULTIRT routes. 22626 */ 22627 if (ire->ire_flags & RTF_MULTIRT) { 22628 multirt_send = B_TRUE; 22629 } 22630 do { 22631 if (multirt_send) { 22632 irb_t *irb; 22633 /* 22634 * We are in a multiple send case, need to get 22635 * the next ire and make a duplicate of the packet. 22636 * ire1 holds here the next ire to process in the 22637 * bucket. If multirouting is expected, 22638 * any non-RTF_MULTIRT ire that has the 22639 * right destination address is ignored. 22640 */ 22641 irb = ire->ire_bucket; 22642 ASSERT(irb != NULL); 22643 22644 IRB_REFHOLD(irb); 22645 for (ire1 = ire->ire_next; 22646 ire1 != NULL; 22647 ire1 = ire1->ire_next) { 22648 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22649 continue; 22650 if (ire1->ire_addr != ire->ire_addr) 22651 continue; 22652 if (ire1->ire_marks & 22653 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22654 continue; 22655 22656 /* Got one */ 22657 IRE_REFHOLD(ire1); 22658 break; 22659 } 22660 IRB_REFRELE(irb); 22661 22662 if (ire1 != NULL) { 22663 next_mp = copyb(mp); 22664 if ((next_mp == NULL) || 22665 ((mp->b_cont != NULL) && 22666 ((next_mp->b_cont = 22667 dupmsg(mp->b_cont)) == NULL))) { 22668 freemsg(next_mp); 22669 next_mp = NULL; 22670 ire_refrele(ire1); 22671 ire1 = NULL; 22672 } 22673 } 22674 22675 /* Last multiroute ire; don't loop anymore. */ 22676 if (ire1 == NULL) { 22677 multirt_send = B_FALSE; 22678 } 22679 } 22680 22681 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22682 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22683 mblk_t *, mp); 22684 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22685 ipst->ips_ipv4firewall_physical_out, 22686 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22687 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22688 if (mp == NULL) 22689 goto release_ire_and_ill; 22690 22691 if (ipst->ips_ipobs_enabled) { 22692 zoneid_t szone; 22693 22694 /* 22695 * On the outbound path the destination zone will be 22696 * unknown as we're sending this packet out on the 22697 * wire. 22698 */ 22699 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22700 ALL_ZONES); 22701 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22702 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22703 } 22704 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22705 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22706 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22707 if ((pktxmit_state == SEND_FAILED) || 22708 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22709 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22710 "- packet dropped\n")); 22711 release_ire_and_ill: 22712 ire_refrele(ire); 22713 if (next_mp != NULL) { 22714 freemsg(next_mp); 22715 ire_refrele(ire1); 22716 } 22717 if (conn_outgoing_ill != NULL) 22718 ill_refrele(conn_outgoing_ill); 22719 return; 22720 } 22721 22722 if (CLASSD(dst)) { 22723 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22724 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22725 LENGTH); 22726 } 22727 22728 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22729 "ip_wput_ire_end: q %p (%S)", 22730 q, "last copy out"); 22731 IRE_REFRELE(ire); 22732 22733 if (multirt_send) { 22734 ASSERT(ire1); 22735 /* 22736 * Proceed with the next RTF_MULTIRT ire, 22737 * Also set up the send-to queue accordingly. 22738 */ 22739 ire = ire1; 22740 ire1 = NULL; 22741 stq = ire->ire_stq; 22742 mp = next_mp; 22743 next_mp = NULL; 22744 ipha = (ipha_t *)mp->b_rptr; 22745 ill_index = Q_TO_INDEX(stq); 22746 ill = (ill_t *)stq->q_ptr; 22747 } 22748 } while (multirt_send); 22749 if (conn_outgoing_ill != NULL) 22750 ill_refrele(conn_outgoing_ill); 22751 return; 22752 22753 /* 22754 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22755 */ 22756 broadcast: 22757 { 22758 /* 22759 * To avoid broadcast storms, we usually set the TTL to 1 for 22760 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22761 * can be overridden stack-wide through the ip_broadcast_ttl 22762 * ndd tunable, or on a per-connection basis through the 22763 * IP_BROADCAST_TTL socket option. 22764 * 22765 * In the event that we are replying to incoming ICMP packets, 22766 * connp could be NULL. 22767 */ 22768 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22769 if (connp != NULL) { 22770 if (connp->conn_dontroute) 22771 ipha->ipha_ttl = 1; 22772 else if (connp->conn_broadcast_ttl != 0) 22773 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22774 } 22775 22776 /* 22777 * Note that we are not doing a IRB_REFHOLD here. 22778 * Actually we don't care if the list changes i.e 22779 * if somebody deletes an IRE from the list while 22780 * we drop the lock, the next time we come around 22781 * ire_next will be NULL and hence we won't send 22782 * out multiple copies which is fine. 22783 */ 22784 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22785 ire1 = ire->ire_next; 22786 if (conn_outgoing_ill != NULL) { 22787 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22788 ASSERT(ire1 == ire->ire_next); 22789 if (ire1 != NULL && ire1->ire_addr == dst) { 22790 ire_refrele(ire); 22791 ire = ire1; 22792 IRE_REFHOLD(ire); 22793 ire1 = ire->ire_next; 22794 continue; 22795 } 22796 rw_exit(&ire->ire_bucket->irb_lock); 22797 /* Did not find a matching ill */ 22798 ip1dbg(("ip_wput_ire: broadcast with no " 22799 "matching IP_BOUND_IF ill %s dst %x\n", 22800 conn_outgoing_ill->ill_name, dst)); 22801 freemsg(first_mp); 22802 if (ire != NULL) 22803 ire_refrele(ire); 22804 ill_refrele(conn_outgoing_ill); 22805 return; 22806 } 22807 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22808 /* 22809 * If the next IRE has the same address and is not one 22810 * of the two copies that we need to send, try to see 22811 * whether this copy should be sent at all. This 22812 * assumes that we insert loopbacks first and then 22813 * non-loopbacks. This is acheived by inserting the 22814 * loopback always before non-loopback. 22815 * This is used to send a single copy of a broadcast 22816 * packet out all physical interfaces that have an 22817 * matching IRE_BROADCAST while also looping 22818 * back one copy (to ip_wput_local) for each 22819 * matching physical interface. However, we avoid 22820 * sending packets out different logical that match by 22821 * having ipif_up/ipif_down supress duplicate 22822 * IRE_BROADCASTS. 22823 * 22824 * This feature is currently used to get broadcasts 22825 * sent to multiple interfaces, when the broadcast 22826 * address being used applies to multiple interfaces. 22827 * For example, a whole net broadcast will be 22828 * replicated on every connected subnet of 22829 * the target net. 22830 * 22831 * Each zone has its own set of IRE_BROADCASTs, so that 22832 * we're able to distribute inbound packets to multiple 22833 * zones who share a broadcast address. We avoid looping 22834 * back outbound packets in different zones but on the 22835 * same ill, as the application would see duplicates. 22836 * 22837 * If the interfaces are part of the same group, 22838 * we would want to send only one copy out for 22839 * whole group. 22840 * 22841 * This logic assumes that ire_add_v4() groups the 22842 * IRE_BROADCAST entries so that those with the same 22843 * ire_addr and ill_group are kept together. 22844 */ 22845 ire_ill = ire->ire_ipif->ipif_ill; 22846 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22847 if (ire_ill->ill_group != NULL && 22848 (ire->ire_marks & IRE_MARK_NORECV)) { 22849 /* 22850 * If the current zone only has an ire 22851 * broadcast for this address marked 22852 * NORECV, the ire we want is ahead in 22853 * the bucket, so we look it up 22854 * deliberately ignoring the zoneid. 22855 */ 22856 for (ire1 = ire->ire_bucket->irb_ire; 22857 ire1 != NULL; 22858 ire1 = ire1->ire_next) { 22859 ire1_ill = 22860 ire1->ire_ipif->ipif_ill; 22861 if (ire1->ire_addr != dst) 22862 continue; 22863 /* skip over the current ire */ 22864 if (ire1 == ire) 22865 continue; 22866 /* skip over deleted ires */ 22867 if (ire1->ire_marks & 22868 IRE_MARK_CONDEMNED) 22869 continue; 22870 /* 22871 * non-loopback ire in our 22872 * group: use it for the next 22873 * pass in the loop 22874 */ 22875 if (ire1->ire_stq != NULL && 22876 ire1_ill->ill_group == 22877 ire_ill->ill_group) 22878 break; 22879 } 22880 } 22881 } else { 22882 while (ire1 != NULL && ire1->ire_addr == dst) { 22883 ire1_ill = ire1->ire_ipif->ipif_ill; 22884 /* 22885 * We can have two broadcast ires on the 22886 * same ill in different zones; here 22887 * we'll send a copy of the packet on 22888 * each ill and the fanout code will 22889 * call conn_wantpacket() to check that 22890 * the zone has the broadcast address 22891 * configured on the ill. If the two 22892 * ires are in the same group we only 22893 * send one copy up. 22894 */ 22895 if (ire1_ill != ire_ill && 22896 (ire1_ill->ill_group == NULL || 22897 ire_ill->ill_group == NULL || 22898 ire1_ill->ill_group != 22899 ire_ill->ill_group)) { 22900 break; 22901 } 22902 ire1 = ire1->ire_next; 22903 } 22904 } 22905 } 22906 ASSERT(multirt_send == B_FALSE); 22907 if (ire1 != NULL && ire1->ire_addr == dst) { 22908 if ((ire->ire_flags & RTF_MULTIRT) && 22909 (ire1->ire_flags & RTF_MULTIRT)) { 22910 /* 22911 * We are in the multirouting case. 22912 * The message must be sent at least 22913 * on both ires. These ires have been 22914 * inserted AFTER the standard ones 22915 * in ip_rt_add(). There are thus no 22916 * other ire entries for the destination 22917 * address in the rest of the bucket 22918 * that do not have the RTF_MULTIRT 22919 * flag. We don't process a copy 22920 * of the message here. This will be 22921 * done in the final sending loop. 22922 */ 22923 multirt_send = B_TRUE; 22924 } else { 22925 next_mp = ip_copymsg(first_mp); 22926 if (next_mp != NULL) 22927 IRE_REFHOLD(ire1); 22928 } 22929 } 22930 rw_exit(&ire->ire_bucket->irb_lock); 22931 } 22932 22933 if (stq) { 22934 /* 22935 * A non-NULL send-to queue means this packet is going 22936 * out of this machine. 22937 */ 22938 out_ill = (ill_t *)stq->q_ptr; 22939 22940 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22941 ttl_protocol = ((uint16_t *)ipha)[4]; 22942 /* 22943 * We accumulate the pseudo header checksum in cksum. 22944 * This is pretty hairy code, so watch close. One 22945 * thing to keep in mind is that UDP and TCP have 22946 * stored their respective datagram lengths in their 22947 * checksum fields. This lines things up real nice. 22948 */ 22949 cksum = (dst >> 16) + (dst & 0xFFFF) + 22950 (src >> 16) + (src & 0xFFFF); 22951 /* 22952 * We assume the udp checksum field contains the 22953 * length, so to compute the pseudo header checksum, 22954 * all we need is the protocol number and src/dst. 22955 */ 22956 /* Provide the checksums for UDP and TCP. */ 22957 if ((PROTO == IPPROTO_TCP) && 22958 (ip_hdr_included != IP_HDR_INCLUDED)) { 22959 /* hlen gets the number of uchar_ts in the IP header */ 22960 hlen = (V_HLEN & 0xF) << 2; 22961 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22962 IP_STAT(ipst, ip_out_sw_cksum); 22963 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22964 LENGTH - hlen); 22965 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22966 } else if (PROTO == IPPROTO_SCTP && 22967 (ip_hdr_included != IP_HDR_INCLUDED)) { 22968 sctp_hdr_t *sctph; 22969 22970 hlen = (V_HLEN & 0xF) << 2; 22971 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22972 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22973 sctph->sh_chksum = 0; 22974 #ifdef DEBUG 22975 if (!skip_sctp_cksum) 22976 #endif 22977 sctph->sh_chksum = sctp_cksum(mp, hlen); 22978 } else { 22979 queue_t *dev_q = stq->q_next; 22980 22981 if ((dev_q->q_next || dev_q->q_first) && 22982 !canput(dev_q)) { 22983 blocked: 22984 ipha->ipha_ident = ip_hdr_included; 22985 /* 22986 * If we don't have a conn to apply 22987 * backpressure, free the message. 22988 * In the ire_send path, we don't know 22989 * the position to requeue the packet. Rather 22990 * than reorder packets, we just drop this 22991 * packet. 22992 */ 22993 if (ipst->ips_ip_output_queue && 22994 connp != NULL && 22995 caller != IRE_SEND) { 22996 if (caller == IP_WSRV) { 22997 connp->conn_did_putbq = 1; 22998 (void) putbq(connp->conn_wq, 22999 first_mp); 23000 conn_drain_insert(connp); 23001 /* 23002 * This is the service thread, 23003 * and the queue is already 23004 * noenabled. The check for 23005 * canput and the putbq is not 23006 * atomic. So we need to check 23007 * again. 23008 */ 23009 if (canput(stq->q_next)) 23010 connp->conn_did_putbq 23011 = 0; 23012 IP_STAT(ipst, ip_conn_flputbq); 23013 } else { 23014 /* 23015 * We are not the service proc. 23016 * ip_wsrv will be scheduled or 23017 * is already running. 23018 */ 23019 (void) putq(connp->conn_wq, 23020 first_mp); 23021 } 23022 } else { 23023 out_ill = (ill_t *)stq->q_ptr; 23024 BUMP_MIB(out_ill->ill_ip_mib, 23025 ipIfStatsOutDiscards); 23026 freemsg(first_mp); 23027 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23028 "ip_wput_ire_end: q %p (%S)", 23029 q, "discard"); 23030 } 23031 ire_refrele(ire); 23032 if (next_mp) { 23033 ire_refrele(ire1); 23034 freemsg(next_mp); 23035 } 23036 if (conn_outgoing_ill != NULL) 23037 ill_refrele(conn_outgoing_ill); 23038 return; 23039 } 23040 if ((PROTO == IPPROTO_UDP) && 23041 (ip_hdr_included != IP_HDR_INCLUDED)) { 23042 /* 23043 * hlen gets the number of uchar_ts in the 23044 * IP header 23045 */ 23046 hlen = (V_HLEN & 0xF) << 2; 23047 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23048 max_frag = ire->ire_max_frag; 23049 if (*up != 0) { 23050 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 23051 up, PROTO, hlen, LENGTH, max_frag, 23052 ipsec_len, cksum); 23053 /* Software checksum? */ 23054 if (DB_CKSUMFLAGS(mp) == 0) { 23055 IP_STAT(ipst, ip_out_sw_cksum); 23056 IP_STAT_UPDATE(ipst, 23057 ip_udp_out_sw_cksum_bytes, 23058 LENGTH - hlen); 23059 } 23060 } 23061 } 23062 } 23063 /* 23064 * Need to do this even when fragmenting. The local 23065 * loopback can be done without computing checksums 23066 * but forwarding out other interface must be done 23067 * after the IP checksum (and ULP checksums) have been 23068 * computed. 23069 * 23070 * NOTE : multicast_forward is set only if this packet 23071 * originated from ip_wput. For packets originating from 23072 * ip_wput_multicast, it is not set. 23073 */ 23074 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23075 multi_loopback: 23076 ip2dbg(("ip_wput: multicast, loop %d\n", 23077 conn_multicast_loop)); 23078 23079 /* Forget header checksum offload */ 23080 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23081 23082 /* 23083 * Local loopback of multicasts? Check the 23084 * ill. 23085 * 23086 * Note that the loopback function will not come 23087 * in through ip_rput - it will only do the 23088 * client fanout thus we need to do an mforward 23089 * as well. The is different from the BSD 23090 * logic. 23091 */ 23092 if (ill != NULL) { 23093 ilm_t *ilm; 23094 23095 ILM_WALKER_HOLD(ill); 23096 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23097 ALL_ZONES); 23098 ILM_WALKER_RELE(ill); 23099 if (ilm != NULL) { 23100 /* 23101 * Pass along the virtual output q. 23102 * ip_wput_local() will distribute the 23103 * packet to all the matching zones, 23104 * except the sending zone when 23105 * IP_MULTICAST_LOOP is false. 23106 */ 23107 ip_multicast_loopback(q, ill, first_mp, 23108 conn_multicast_loop ? 0 : 23109 IP_FF_NO_MCAST_LOOP, zoneid); 23110 } 23111 } 23112 if (ipha->ipha_ttl == 0) { 23113 /* 23114 * 0 => only to this host i.e. we are 23115 * done. We are also done if this was the 23116 * loopback interface since it is sufficient 23117 * to loopback one copy of a multicast packet. 23118 */ 23119 freemsg(first_mp); 23120 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23121 "ip_wput_ire_end: q %p (%S)", 23122 q, "loopback"); 23123 ire_refrele(ire); 23124 if (conn_outgoing_ill != NULL) 23125 ill_refrele(conn_outgoing_ill); 23126 return; 23127 } 23128 /* 23129 * ILLF_MULTICAST is checked in ip_newroute 23130 * i.e. we don't need to check it here since 23131 * all IRE_CACHEs come from ip_newroute. 23132 * For multicast traffic, SO_DONTROUTE is interpreted 23133 * to mean only send the packet out the interface 23134 * (optionally specified with IP_MULTICAST_IF) 23135 * and do not forward it out additional interfaces. 23136 * RSVP and the rsvp daemon is an example of a 23137 * protocol and user level process that 23138 * handles it's own routing. Hence, it uses the 23139 * SO_DONTROUTE option to accomplish this. 23140 */ 23141 23142 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23143 ill != NULL) { 23144 /* Unconditionally redo the checksum */ 23145 ipha->ipha_hdr_checksum = 0; 23146 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23147 23148 /* 23149 * If this needs to go out secure, we need 23150 * to wait till we finish the IPsec 23151 * processing. 23152 */ 23153 if (ipsec_len == 0 && 23154 ip_mforward(ill, ipha, mp)) { 23155 freemsg(first_mp); 23156 ip1dbg(("ip_wput: mforward failed\n")); 23157 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23158 "ip_wput_ire_end: q %p (%S)", 23159 q, "mforward failed"); 23160 ire_refrele(ire); 23161 if (conn_outgoing_ill != NULL) 23162 ill_refrele(conn_outgoing_ill); 23163 return; 23164 } 23165 } 23166 } 23167 max_frag = ire->ire_max_frag; 23168 cksum += ttl_protocol; 23169 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23170 /* No fragmentation required for this one. */ 23171 /* 23172 * Don't use frag_flag if packet is pre-built or source 23173 * routed or if multicast (since multicast packets do 23174 * not solicit ICMP "packet too big" messages). 23175 */ 23176 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23177 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23178 !ip_source_route_included(ipha)) && 23179 !CLASSD(ipha->ipha_dst)) 23180 ipha->ipha_fragment_offset_and_flags |= 23181 htons(ire->ire_frag_flag); 23182 23183 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23184 /* Complete the IP header checksum. */ 23185 cksum += ipha->ipha_ident; 23186 cksum += (v_hlen_tos_len >> 16)+ 23187 (v_hlen_tos_len & 0xFFFF); 23188 cksum += ipha->ipha_fragment_offset_and_flags; 23189 hlen = (V_HLEN & 0xF) - 23190 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23191 if (hlen) { 23192 checksumoptions: 23193 /* 23194 * Account for the IP Options in the IP 23195 * header checksum. 23196 */ 23197 up = (uint16_t *)(rptr+ 23198 IP_SIMPLE_HDR_LENGTH); 23199 do { 23200 cksum += up[0]; 23201 cksum += up[1]; 23202 up += 2; 23203 } while (--hlen); 23204 } 23205 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23206 cksum = ~(cksum + (cksum >> 16)); 23207 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23208 } 23209 if (ipsec_len != 0) { 23210 ipsec_out_process(q, first_mp, ire, ill_index); 23211 if (!next_mp) { 23212 ire_refrele(ire); 23213 if (conn_outgoing_ill != NULL) 23214 ill_refrele(conn_outgoing_ill); 23215 return; 23216 } 23217 goto next; 23218 } 23219 23220 /* 23221 * multirt_send has already been handled 23222 * for broadcast, but not yet for multicast 23223 * or IP options. 23224 */ 23225 if (next_mp == NULL) { 23226 if (ire->ire_flags & RTF_MULTIRT) { 23227 multirt_send = B_TRUE; 23228 } 23229 } 23230 23231 /* 23232 * In most cases, the emission loop below is 23233 * entered only once. Only in the case where 23234 * the ire holds the RTF_MULTIRT flag, do we loop 23235 * to process all RTF_MULTIRT ires in the bucket, 23236 * and send the packet through all crossed 23237 * RTF_MULTIRT routes. 23238 */ 23239 do { 23240 if (multirt_send) { 23241 irb_t *irb; 23242 23243 irb = ire->ire_bucket; 23244 ASSERT(irb != NULL); 23245 /* 23246 * We are in a multiple send case, 23247 * need to get the next IRE and make 23248 * a duplicate of the packet. 23249 */ 23250 IRB_REFHOLD(irb); 23251 for (ire1 = ire->ire_next; 23252 ire1 != NULL; 23253 ire1 = ire1->ire_next) { 23254 if (!(ire1->ire_flags & 23255 RTF_MULTIRT)) { 23256 continue; 23257 } 23258 if (ire1->ire_addr != 23259 ire->ire_addr) { 23260 continue; 23261 } 23262 if (ire1->ire_marks & 23263 (IRE_MARK_CONDEMNED| 23264 IRE_MARK_HIDDEN)) { 23265 continue; 23266 } 23267 23268 /* Got one */ 23269 IRE_REFHOLD(ire1); 23270 break; 23271 } 23272 IRB_REFRELE(irb); 23273 23274 if (ire1 != NULL) { 23275 next_mp = copyb(mp); 23276 if ((next_mp == NULL) || 23277 ((mp->b_cont != NULL) && 23278 ((next_mp->b_cont = 23279 dupmsg(mp->b_cont)) 23280 == NULL))) { 23281 freemsg(next_mp); 23282 next_mp = NULL; 23283 ire_refrele(ire1); 23284 ire1 = NULL; 23285 } 23286 } 23287 23288 /* 23289 * Last multiroute ire; don't loop 23290 * anymore. The emission is over 23291 * and next_mp is NULL. 23292 */ 23293 if (ire1 == NULL) { 23294 multirt_send = B_FALSE; 23295 } 23296 } 23297 23298 out_ill = ire_to_ill(ire); 23299 DTRACE_PROBE4(ip4__physical__out__start, 23300 ill_t *, NULL, 23301 ill_t *, out_ill, 23302 ipha_t *, ipha, mblk_t *, mp); 23303 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23304 ipst->ips_ipv4firewall_physical_out, 23305 NULL, out_ill, ipha, mp, mp, 0, ipst); 23306 DTRACE_PROBE1(ip4__physical__out__end, 23307 mblk_t *, mp); 23308 if (mp == NULL) 23309 goto release_ire_and_ill_2; 23310 23311 ASSERT(ipsec_len == 0); 23312 mp->b_prev = 23313 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23314 DTRACE_PROBE2(ip__xmit__2, 23315 mblk_t *, mp, ire_t *, ire); 23316 pktxmit_state = ip_xmit_v4(mp, ire, 23317 NULL, B_TRUE); 23318 if ((pktxmit_state == SEND_FAILED) || 23319 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23320 release_ire_and_ill_2: 23321 if (next_mp) { 23322 freemsg(next_mp); 23323 ire_refrele(ire1); 23324 } 23325 ire_refrele(ire); 23326 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23327 "ip_wput_ire_end: q %p (%S)", 23328 q, "discard MDATA"); 23329 if (conn_outgoing_ill != NULL) 23330 ill_refrele(conn_outgoing_ill); 23331 return; 23332 } 23333 23334 if (CLASSD(dst)) { 23335 BUMP_MIB(out_ill->ill_ip_mib, 23336 ipIfStatsHCOutMcastPkts); 23337 UPDATE_MIB(out_ill->ill_ip_mib, 23338 ipIfStatsHCOutMcastOctets, 23339 LENGTH); 23340 } else if (ire->ire_type == IRE_BROADCAST) { 23341 BUMP_MIB(out_ill->ill_ip_mib, 23342 ipIfStatsHCOutBcastPkts); 23343 } 23344 23345 if (multirt_send) { 23346 /* 23347 * We are in a multiple send case, 23348 * need to re-enter the sending loop 23349 * using the next ire. 23350 */ 23351 ire_refrele(ire); 23352 ire = ire1; 23353 stq = ire->ire_stq; 23354 mp = next_mp; 23355 next_mp = NULL; 23356 ipha = (ipha_t *)mp->b_rptr; 23357 ill_index = Q_TO_INDEX(stq); 23358 } 23359 } while (multirt_send); 23360 23361 if (!next_mp) { 23362 /* 23363 * Last copy going out (the ultra-common 23364 * case). Note that we intentionally replicate 23365 * the putnext rather than calling it before 23366 * the next_mp check in hopes of a little 23367 * tail-call action out of the compiler. 23368 */ 23369 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23370 "ip_wput_ire_end: q %p (%S)", 23371 q, "last copy out(1)"); 23372 ire_refrele(ire); 23373 if (conn_outgoing_ill != NULL) 23374 ill_refrele(conn_outgoing_ill); 23375 return; 23376 } 23377 /* More copies going out below. */ 23378 } else { 23379 int offset; 23380 fragmentit: 23381 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23382 /* 23383 * If this would generate a icmp_frag_needed message, 23384 * we need to handle it before we do the IPsec 23385 * processing. Otherwise, we need to strip the IPsec 23386 * headers before we send up the message to the ULPs 23387 * which becomes messy and difficult. 23388 */ 23389 if (ipsec_len != 0) { 23390 if ((max_frag < (unsigned int)(LENGTH + 23391 ipsec_len)) && (offset & IPH_DF)) { 23392 out_ill = (ill_t *)stq->q_ptr; 23393 BUMP_MIB(out_ill->ill_ip_mib, 23394 ipIfStatsOutFragFails); 23395 BUMP_MIB(out_ill->ill_ip_mib, 23396 ipIfStatsOutFragReqds); 23397 ipha->ipha_hdr_checksum = 0; 23398 ipha->ipha_hdr_checksum = 23399 (uint16_t)ip_csum_hdr(ipha); 23400 icmp_frag_needed(ire->ire_stq, first_mp, 23401 max_frag, zoneid, ipst); 23402 if (!next_mp) { 23403 ire_refrele(ire); 23404 if (conn_outgoing_ill != NULL) { 23405 ill_refrele( 23406 conn_outgoing_ill); 23407 } 23408 return; 23409 } 23410 } else { 23411 /* 23412 * This won't cause a icmp_frag_needed 23413 * message. to be generated. Send it on 23414 * the wire. Note that this could still 23415 * cause fragmentation and all we 23416 * do is the generation of the message 23417 * to the ULP if needed before IPsec. 23418 */ 23419 if (!next_mp) { 23420 ipsec_out_process(q, first_mp, 23421 ire, ill_index); 23422 TRACE_2(TR_FAC_IP, 23423 TR_IP_WPUT_IRE_END, 23424 "ip_wput_ire_end: q %p " 23425 "(%S)", q, 23426 "last ipsec_out_process"); 23427 ire_refrele(ire); 23428 if (conn_outgoing_ill != NULL) { 23429 ill_refrele( 23430 conn_outgoing_ill); 23431 } 23432 return; 23433 } 23434 ipsec_out_process(q, first_mp, 23435 ire, ill_index); 23436 } 23437 } else { 23438 /* 23439 * Initiate IPPF processing. For 23440 * fragmentable packets we finish 23441 * all QOS packet processing before 23442 * calling: 23443 * ip_wput_ire_fragmentit->ip_wput_frag 23444 */ 23445 23446 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23447 ip_process(IPP_LOCAL_OUT, &mp, 23448 ill_index); 23449 if (mp == NULL) { 23450 out_ill = (ill_t *)stq->q_ptr; 23451 BUMP_MIB(out_ill->ill_ip_mib, 23452 ipIfStatsOutDiscards); 23453 if (next_mp != NULL) { 23454 freemsg(next_mp); 23455 ire_refrele(ire1); 23456 } 23457 ire_refrele(ire); 23458 TRACE_2(TR_FAC_IP, 23459 TR_IP_WPUT_IRE_END, 23460 "ip_wput_ire: q %p (%S)", 23461 q, "discard MDATA"); 23462 if (conn_outgoing_ill != NULL) { 23463 ill_refrele( 23464 conn_outgoing_ill); 23465 } 23466 return; 23467 } 23468 } 23469 if (!next_mp) { 23470 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23471 "ip_wput_ire_end: q %p (%S)", 23472 q, "last fragmentation"); 23473 ip_wput_ire_fragmentit(mp, ire, 23474 zoneid, ipst); 23475 ire_refrele(ire); 23476 if (conn_outgoing_ill != NULL) 23477 ill_refrele(conn_outgoing_ill); 23478 return; 23479 } 23480 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23481 } 23482 } 23483 } else { 23484 nullstq: 23485 /* A NULL stq means the destination address is local. */ 23486 UPDATE_OB_PKT_COUNT(ire); 23487 ire->ire_last_used_time = lbolt; 23488 ASSERT(ire->ire_ipif != NULL); 23489 if (!next_mp) { 23490 /* 23491 * Is there an "in" and "out" for traffic local 23492 * to a host (loopback)? The code in Solaris doesn't 23493 * explicitly draw a line in its code for in vs out, 23494 * so we've had to draw a line in the sand: ip_wput_ire 23495 * is considered to be the "output" side and 23496 * ip_wput_local to be the "input" side. 23497 */ 23498 out_ill = ire_to_ill(ire); 23499 23500 /* 23501 * DTrace this as ip:::send. A blocked packet will 23502 * fire the send probe, but not the receive probe. 23503 */ 23504 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23505 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23506 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23507 23508 DTRACE_PROBE4(ip4__loopback__out__start, 23509 ill_t *, NULL, ill_t *, out_ill, 23510 ipha_t *, ipha, mblk_t *, first_mp); 23511 23512 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23513 ipst->ips_ipv4firewall_loopback_out, 23514 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23515 23516 DTRACE_PROBE1(ip4__loopback__out_end, 23517 mblk_t *, first_mp); 23518 23519 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23520 "ip_wput_ire_end: q %p (%S)", 23521 q, "local address"); 23522 23523 if (first_mp != NULL) 23524 ip_wput_local(q, out_ill, ipha, 23525 first_mp, ire, 0, ire->ire_zoneid); 23526 ire_refrele(ire); 23527 if (conn_outgoing_ill != NULL) 23528 ill_refrele(conn_outgoing_ill); 23529 return; 23530 } 23531 23532 out_ill = ire_to_ill(ire); 23533 23534 /* 23535 * DTrace this as ip:::send. A blocked packet will fire the 23536 * send probe, but not the receive probe. 23537 */ 23538 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23539 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23540 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23541 23542 DTRACE_PROBE4(ip4__loopback__out__start, 23543 ill_t *, NULL, ill_t *, out_ill, 23544 ipha_t *, ipha, mblk_t *, first_mp); 23545 23546 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23547 ipst->ips_ipv4firewall_loopback_out, 23548 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23549 23550 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23551 23552 if (first_mp != NULL) 23553 ip_wput_local(q, out_ill, ipha, 23554 first_mp, ire, 0, ire->ire_zoneid); 23555 } 23556 next: 23557 /* 23558 * More copies going out to additional interfaces. 23559 * ire1 has already been held. We don't need the 23560 * "ire" anymore. 23561 */ 23562 ire_refrele(ire); 23563 ire = ire1; 23564 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23565 mp = next_mp; 23566 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23567 ill = ire_to_ill(ire); 23568 first_mp = mp; 23569 if (ipsec_len != 0) { 23570 ASSERT(first_mp->b_datap->db_type == M_CTL); 23571 mp = mp->b_cont; 23572 } 23573 dst = ire->ire_addr; 23574 ipha = (ipha_t *)mp->b_rptr; 23575 /* 23576 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23577 * Restore ipha_ident "no checksum" flag. 23578 */ 23579 src = orig_src; 23580 ipha->ipha_ident = ip_hdr_included; 23581 goto another; 23582 23583 #undef rptr 23584 #undef Q_TO_INDEX 23585 } 23586 23587 /* 23588 * Routine to allocate a message that is used to notify the ULP about MDT. 23589 * The caller may provide a pointer to the link-layer MDT capabilities, 23590 * or NULL if MDT is to be disabled on the stream. 23591 */ 23592 mblk_t * 23593 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23594 { 23595 mblk_t *mp; 23596 ip_mdt_info_t *mdti; 23597 ill_mdt_capab_t *idst; 23598 23599 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23600 DB_TYPE(mp) = M_CTL; 23601 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23602 mdti = (ip_mdt_info_t *)mp->b_rptr; 23603 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23604 idst = &(mdti->mdt_capab); 23605 23606 /* 23607 * If the caller provides us with the capability, copy 23608 * it over into our notification message; otherwise 23609 * we zero out the capability portion. 23610 */ 23611 if (isrc != NULL) 23612 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23613 else 23614 bzero((caddr_t)idst, sizeof (*idst)); 23615 } 23616 return (mp); 23617 } 23618 23619 /* 23620 * Routine which determines whether MDT can be enabled on the destination 23621 * IRE and IPC combination, and if so, allocates and returns the MDT 23622 * notification mblk that may be used by ULP. We also check if we need to 23623 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23624 * MDT usage in the past have been lifted. This gets called during IP 23625 * and ULP binding. 23626 */ 23627 mblk_t * 23628 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23629 ill_mdt_capab_t *mdt_cap) 23630 { 23631 mblk_t *mp; 23632 boolean_t rc = B_FALSE; 23633 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23634 23635 ASSERT(dst_ire != NULL); 23636 ASSERT(connp != NULL); 23637 ASSERT(mdt_cap != NULL); 23638 23639 /* 23640 * Currently, we only support simple TCP/{IPv4,IPv6} with 23641 * Multidata, which is handled in tcp_multisend(). This 23642 * is the reason why we do all these checks here, to ensure 23643 * that we don't enable Multidata for the cases which we 23644 * can't handle at the moment. 23645 */ 23646 do { 23647 /* Only do TCP at the moment */ 23648 if (connp->conn_ulp != IPPROTO_TCP) 23649 break; 23650 23651 /* 23652 * IPsec outbound policy present? Note that we get here 23653 * after calling ipsec_conn_cache_policy() where the global 23654 * policy checking is performed. conn_latch will be 23655 * non-NULL as long as there's a policy defined, 23656 * i.e. conn_out_enforce_policy may be NULL in such case 23657 * when the connection is non-secure, and hence we check 23658 * further if the latch refers to an outbound policy. 23659 */ 23660 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23661 break; 23662 23663 /* CGTP (multiroute) is enabled? */ 23664 if (dst_ire->ire_flags & RTF_MULTIRT) 23665 break; 23666 23667 /* Outbound IPQoS enabled? */ 23668 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23669 /* 23670 * In this case, we disable MDT for this and all 23671 * future connections going over the interface. 23672 */ 23673 mdt_cap->ill_mdt_on = 0; 23674 break; 23675 } 23676 23677 /* socket option(s) present? */ 23678 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23679 break; 23680 23681 rc = B_TRUE; 23682 /* CONSTCOND */ 23683 } while (0); 23684 23685 /* Remember the result */ 23686 connp->conn_mdt_ok = rc; 23687 23688 if (!rc) 23689 return (NULL); 23690 else if (!mdt_cap->ill_mdt_on) { 23691 /* 23692 * If MDT has been previously turned off in the past, and we 23693 * currently can do MDT (due to IPQoS policy removal, etc.) 23694 * then enable it for this interface. 23695 */ 23696 mdt_cap->ill_mdt_on = 1; 23697 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23698 "interface %s\n", ill_name)); 23699 } 23700 23701 /* Allocate the MDT info mblk */ 23702 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23703 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23704 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23705 return (NULL); 23706 } 23707 return (mp); 23708 } 23709 23710 /* 23711 * Routine to allocate a message that is used to notify the ULP about LSO. 23712 * The caller may provide a pointer to the link-layer LSO capabilities, 23713 * or NULL if LSO is to be disabled on the stream. 23714 */ 23715 mblk_t * 23716 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23717 { 23718 mblk_t *mp; 23719 ip_lso_info_t *lsoi; 23720 ill_lso_capab_t *idst; 23721 23722 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23723 DB_TYPE(mp) = M_CTL; 23724 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23725 lsoi = (ip_lso_info_t *)mp->b_rptr; 23726 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23727 idst = &(lsoi->lso_capab); 23728 23729 /* 23730 * If the caller provides us with the capability, copy 23731 * it over into our notification message; otherwise 23732 * we zero out the capability portion. 23733 */ 23734 if (isrc != NULL) 23735 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23736 else 23737 bzero((caddr_t)idst, sizeof (*idst)); 23738 } 23739 return (mp); 23740 } 23741 23742 /* 23743 * Routine which determines whether LSO can be enabled on the destination 23744 * IRE and IPC combination, and if so, allocates and returns the LSO 23745 * notification mblk that may be used by ULP. We also check if we need to 23746 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23747 * LSO usage in the past have been lifted. This gets called during IP 23748 * and ULP binding. 23749 */ 23750 mblk_t * 23751 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23752 ill_lso_capab_t *lso_cap) 23753 { 23754 mblk_t *mp; 23755 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23756 23757 ASSERT(dst_ire != NULL); 23758 ASSERT(connp != NULL); 23759 ASSERT(lso_cap != NULL); 23760 23761 connp->conn_lso_ok = B_TRUE; 23762 23763 if ((connp->conn_ulp != IPPROTO_TCP) || 23764 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23765 (dst_ire->ire_flags & RTF_MULTIRT) || 23766 !CONN_IS_LSO_MD_FASTPATH(connp) || 23767 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23768 connp->conn_lso_ok = B_FALSE; 23769 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23770 /* 23771 * Disable LSO for this and all future connections going 23772 * over the interface. 23773 */ 23774 lso_cap->ill_lso_on = 0; 23775 } 23776 } 23777 23778 if (!connp->conn_lso_ok) 23779 return (NULL); 23780 else if (!lso_cap->ill_lso_on) { 23781 /* 23782 * If LSO has been previously turned off in the past, and we 23783 * currently can do LSO (due to IPQoS policy removal, etc.) 23784 * then enable it for this interface. 23785 */ 23786 lso_cap->ill_lso_on = 1; 23787 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23788 ill_name)); 23789 } 23790 23791 /* Allocate the LSO info mblk */ 23792 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23793 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23794 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23795 23796 return (mp); 23797 } 23798 23799 /* 23800 * Create destination address attribute, and fill it with the physical 23801 * destination address and SAP taken from the template DL_UNITDATA_REQ 23802 * message block. 23803 */ 23804 boolean_t 23805 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23806 { 23807 dl_unitdata_req_t *dlurp; 23808 pattr_t *pa; 23809 pattrinfo_t pa_info; 23810 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23811 uint_t das_len, das_off; 23812 23813 ASSERT(dlmp != NULL); 23814 23815 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23816 das_len = dlurp->dl_dest_addr_length; 23817 das_off = dlurp->dl_dest_addr_offset; 23818 23819 pa_info.type = PATTR_DSTADDRSAP; 23820 pa_info.len = sizeof (**das) + das_len - 1; 23821 23822 /* create and associate the attribute */ 23823 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23824 if (pa != NULL) { 23825 ASSERT(*das != NULL); 23826 (*das)->addr_is_group = 0; 23827 (*das)->addr_len = (uint8_t)das_len; 23828 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23829 } 23830 23831 return (pa != NULL); 23832 } 23833 23834 /* 23835 * Create hardware checksum attribute and fill it with the values passed. 23836 */ 23837 boolean_t 23838 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23839 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23840 { 23841 pattr_t *pa; 23842 pattrinfo_t pa_info; 23843 23844 ASSERT(mmd != NULL); 23845 23846 pa_info.type = PATTR_HCKSUM; 23847 pa_info.len = sizeof (pattr_hcksum_t); 23848 23849 /* create and associate the attribute */ 23850 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23851 if (pa != NULL) { 23852 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23853 23854 hck->hcksum_start_offset = start_offset; 23855 hck->hcksum_stuff_offset = stuff_offset; 23856 hck->hcksum_end_offset = end_offset; 23857 hck->hcksum_flags = flags; 23858 } 23859 return (pa != NULL); 23860 } 23861 23862 /* 23863 * Create zerocopy attribute and fill it with the specified flags 23864 */ 23865 boolean_t 23866 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23867 { 23868 pattr_t *pa; 23869 pattrinfo_t pa_info; 23870 23871 ASSERT(mmd != NULL); 23872 pa_info.type = PATTR_ZCOPY; 23873 pa_info.len = sizeof (pattr_zcopy_t); 23874 23875 /* create and associate the attribute */ 23876 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23877 if (pa != NULL) { 23878 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23879 23880 zcopy->zcopy_flags = flags; 23881 } 23882 return (pa != NULL); 23883 } 23884 23885 /* 23886 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23887 * block chain. We could rewrite to handle arbitrary message block chains but 23888 * that would make the code complicated and slow. Right now there three 23889 * restrictions: 23890 * 23891 * 1. The first message block must contain the complete IP header and 23892 * at least 1 byte of payload data. 23893 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23894 * so that we can use a single Multidata message. 23895 * 3. No frag must be distributed over two or more message blocks so 23896 * that we don't need more than two packet descriptors per frag. 23897 * 23898 * The above restrictions allow us to support userland applications (which 23899 * will send down a single message block) and NFS over UDP (which will 23900 * send down a chain of at most three message blocks). 23901 * 23902 * We also don't use MDT for payloads with less than or equal to 23903 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23904 */ 23905 boolean_t 23906 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23907 { 23908 int blocks; 23909 ssize_t total, missing, size; 23910 23911 ASSERT(mp != NULL); 23912 ASSERT(hdr_len > 0); 23913 23914 size = MBLKL(mp) - hdr_len; 23915 if (size <= 0) 23916 return (B_FALSE); 23917 23918 /* The first mblk contains the header and some payload. */ 23919 blocks = 1; 23920 total = size; 23921 size %= len; 23922 missing = (size == 0) ? 0 : (len - size); 23923 mp = mp->b_cont; 23924 23925 while (mp != NULL) { 23926 /* 23927 * Give up if we encounter a zero length message block. 23928 * In practice, this should rarely happen and therefore 23929 * not worth the trouble of freeing and re-linking the 23930 * mblk from the chain to handle such case. 23931 */ 23932 if ((size = MBLKL(mp)) == 0) 23933 return (B_FALSE); 23934 23935 /* Too many payload buffers for a single Multidata message? */ 23936 if (++blocks > MULTIDATA_MAX_PBUFS) 23937 return (B_FALSE); 23938 23939 total += size; 23940 /* Is a frag distributed over two or more message blocks? */ 23941 if (missing > size) 23942 return (B_FALSE); 23943 size -= missing; 23944 23945 size %= len; 23946 missing = (size == 0) ? 0 : (len - size); 23947 23948 mp = mp->b_cont; 23949 } 23950 23951 return (total > ip_wput_frag_mdt_min); 23952 } 23953 23954 /* 23955 * Outbound IPv4 fragmentation routine using MDT. 23956 */ 23957 static void 23958 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23959 uint32_t frag_flag, int offset) 23960 { 23961 ipha_t *ipha_orig; 23962 int i1, ip_data_end; 23963 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23964 mblk_t *hdr_mp, *md_mp = NULL; 23965 unsigned char *hdr_ptr, *pld_ptr; 23966 multidata_t *mmd; 23967 ip_pdescinfo_t pdi; 23968 ill_t *ill; 23969 ip_stack_t *ipst = ire->ire_ipst; 23970 23971 ASSERT(DB_TYPE(mp) == M_DATA); 23972 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23973 23974 ill = ire_to_ill(ire); 23975 ASSERT(ill != NULL); 23976 23977 ipha_orig = (ipha_t *)mp->b_rptr; 23978 mp->b_rptr += sizeof (ipha_t); 23979 23980 /* Calculate how many packets we will send out */ 23981 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23982 pkts = (i1 + len - 1) / len; 23983 ASSERT(pkts > 1); 23984 23985 /* Allocate a message block which will hold all the IP Headers. */ 23986 wroff = ipst->ips_ip_wroff_extra; 23987 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23988 23989 i1 = pkts * hdr_chunk_len; 23990 /* 23991 * Create the header buffer, Multidata and destination address 23992 * and SAP attribute that should be associated with it. 23993 */ 23994 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23995 ((hdr_mp->b_wptr += i1), 23996 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23997 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23998 freemsg(mp); 23999 if (md_mp == NULL) { 24000 freemsg(hdr_mp); 24001 } else { 24002 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24003 freemsg(md_mp); 24004 } 24005 IP_STAT(ipst, ip_frag_mdt_allocfail); 24006 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24007 return; 24008 } 24009 IP_STAT(ipst, ip_frag_mdt_allocd); 24010 24011 /* 24012 * Add a payload buffer to the Multidata; this operation must not 24013 * fail, or otherwise our logic in this routine is broken. There 24014 * is no memory allocation done by the routine, so any returned 24015 * failure simply tells us that we've done something wrong. 24016 * 24017 * A failure tells us that either we're adding the same payload 24018 * buffer more than once, or we're trying to add more buffers than 24019 * allowed. None of the above cases should happen, and we panic 24020 * because either there's horrible heap corruption, and/or 24021 * programming mistake. 24022 */ 24023 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24024 goto pbuf_panic; 24025 24026 hdr_ptr = hdr_mp->b_rptr; 24027 pld_ptr = mp->b_rptr; 24028 24029 /* Establish the ending byte offset, based on the starting offset. */ 24030 offset <<= 3; 24031 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24032 IP_SIMPLE_HDR_LENGTH; 24033 24034 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24035 24036 while (pld_ptr < mp->b_wptr) { 24037 ipha_t *ipha; 24038 uint16_t offset_and_flags; 24039 uint16_t ip_len; 24040 int error; 24041 24042 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24043 ipha = (ipha_t *)(hdr_ptr + wroff); 24044 ASSERT(OK_32PTR(ipha)); 24045 *ipha = *ipha_orig; 24046 24047 if (ip_data_end - offset > len) { 24048 offset_and_flags = IPH_MF; 24049 } else { 24050 /* 24051 * Last frag. Set len to the length of this last piece. 24052 */ 24053 len = ip_data_end - offset; 24054 /* A frag of a frag might have IPH_MF non-zero */ 24055 offset_and_flags = 24056 ntohs(ipha->ipha_fragment_offset_and_flags) & 24057 IPH_MF; 24058 } 24059 offset_and_flags |= (uint16_t)(offset >> 3); 24060 offset_and_flags |= (uint16_t)frag_flag; 24061 /* Store the offset and flags in the IP header. */ 24062 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24063 24064 /* Store the length in the IP header. */ 24065 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24066 ipha->ipha_length = htons(ip_len); 24067 24068 /* 24069 * Set the IP header checksum. Note that mp is just 24070 * the header, so this is easy to pass to ip_csum. 24071 */ 24072 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24073 24074 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24075 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24076 NULL, int, 0); 24077 24078 /* 24079 * Record offset and size of header and data of the next packet 24080 * in the multidata message. 24081 */ 24082 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24083 PDESC_PLD_INIT(&pdi); 24084 i1 = MIN(mp->b_wptr - pld_ptr, len); 24085 ASSERT(i1 > 0); 24086 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24087 if (i1 == len) { 24088 pld_ptr += len; 24089 } else { 24090 i1 = len - i1; 24091 mp = mp->b_cont; 24092 ASSERT(mp != NULL); 24093 ASSERT(MBLKL(mp) >= i1); 24094 /* 24095 * Attach the next payload message block to the 24096 * multidata message. 24097 */ 24098 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24099 goto pbuf_panic; 24100 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24101 pld_ptr = mp->b_rptr + i1; 24102 } 24103 24104 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24105 KM_NOSLEEP)) == NULL) { 24106 /* 24107 * Any failure other than ENOMEM indicates that we 24108 * have passed in invalid pdesc info or parameters 24109 * to mmd_addpdesc, which must not happen. 24110 * 24111 * EINVAL is a result of failure on boundary checks 24112 * against the pdesc info contents. It should not 24113 * happen, and we panic because either there's 24114 * horrible heap corruption, and/or programming 24115 * mistake. 24116 */ 24117 if (error != ENOMEM) { 24118 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24119 "pdesc logic error detected for " 24120 "mmd %p pinfo %p (%d)\n", 24121 (void *)mmd, (void *)&pdi, error); 24122 /* NOTREACHED */ 24123 } 24124 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24125 /* Free unattached payload message blocks as well */ 24126 md_mp->b_cont = mp->b_cont; 24127 goto free_mmd; 24128 } 24129 24130 /* Advance fragment offset. */ 24131 offset += len; 24132 24133 /* Advance to location for next header in the buffer. */ 24134 hdr_ptr += hdr_chunk_len; 24135 24136 /* Did we reach the next payload message block? */ 24137 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24138 mp = mp->b_cont; 24139 /* 24140 * Attach the next message block with payload 24141 * data to the multidata message. 24142 */ 24143 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24144 goto pbuf_panic; 24145 pld_ptr = mp->b_rptr; 24146 } 24147 } 24148 24149 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24150 ASSERT(mp->b_wptr == pld_ptr); 24151 24152 /* Update IP statistics */ 24153 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24154 24155 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24156 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24157 24158 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24159 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24160 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24161 24162 if (pkt_type == OB_PKT) { 24163 ire->ire_ob_pkt_count += pkts; 24164 if (ire->ire_ipif != NULL) 24165 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24166 } else { 24167 /* The type is IB_PKT in the forwarding path. */ 24168 ire->ire_ib_pkt_count += pkts; 24169 ASSERT(!IRE_IS_LOCAL(ire)); 24170 if (ire->ire_type & IRE_BROADCAST) { 24171 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24172 } else { 24173 UPDATE_MIB(ill->ill_ip_mib, 24174 ipIfStatsHCOutForwDatagrams, pkts); 24175 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24176 } 24177 } 24178 ire->ire_last_used_time = lbolt; 24179 /* Send it down */ 24180 putnext(ire->ire_stq, md_mp); 24181 return; 24182 24183 pbuf_panic: 24184 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24185 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24186 pbuf_idx); 24187 /* NOTREACHED */ 24188 } 24189 24190 /* 24191 * Outbound IP fragmentation routine. 24192 * 24193 * NOTE : This routine does not ire_refrele the ire that is passed in 24194 * as the argument. 24195 */ 24196 static void 24197 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24198 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24199 { 24200 int i1; 24201 mblk_t *ll_hdr_mp; 24202 int ll_hdr_len; 24203 int hdr_len; 24204 mblk_t *hdr_mp; 24205 ipha_t *ipha; 24206 int ip_data_end; 24207 int len; 24208 mblk_t *mp = mp_orig, *mp1; 24209 int offset; 24210 queue_t *q; 24211 uint32_t v_hlen_tos_len; 24212 mblk_t *first_mp; 24213 boolean_t mctl_present; 24214 ill_t *ill; 24215 ill_t *out_ill; 24216 mblk_t *xmit_mp; 24217 mblk_t *carve_mp; 24218 ire_t *ire1 = NULL; 24219 ire_t *save_ire = NULL; 24220 mblk_t *next_mp = NULL; 24221 boolean_t last_frag = B_FALSE; 24222 boolean_t multirt_send = B_FALSE; 24223 ire_t *first_ire = NULL; 24224 irb_t *irb = NULL; 24225 mib2_ipIfStatsEntry_t *mibptr = NULL; 24226 24227 ill = ire_to_ill(ire); 24228 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24229 24230 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24231 24232 if (max_frag == 0) { 24233 ip1dbg(("ip_wput_frag: ire frag size is 0" 24234 " - dropping packet\n")); 24235 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24236 freemsg(mp); 24237 return; 24238 } 24239 24240 /* 24241 * IPsec does not allow hw accelerated packets to be fragmented 24242 * This check is made in ip_wput_ipsec_out prior to coming here 24243 * via ip_wput_ire_fragmentit. 24244 * 24245 * If at this point we have an ire whose ARP request has not 24246 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24247 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24248 * This packet and all fragmentable packets for this ire will 24249 * continue to get dropped while ire_nce->nce_state remains in 24250 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24251 * ND_REACHABLE, all subsquent large packets for this ire will 24252 * get fragemented and sent out by this function. 24253 */ 24254 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24255 /* If nce_state is ND_INITIAL, trigger ARP query */ 24256 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24257 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24258 " - dropping packet\n")); 24259 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24260 freemsg(mp); 24261 return; 24262 } 24263 24264 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24265 "ip_wput_frag_start:"); 24266 24267 if (mp->b_datap->db_type == M_CTL) { 24268 first_mp = mp; 24269 mp_orig = mp = mp->b_cont; 24270 mctl_present = B_TRUE; 24271 } else { 24272 first_mp = mp; 24273 mctl_present = B_FALSE; 24274 } 24275 24276 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24277 ipha = (ipha_t *)mp->b_rptr; 24278 24279 /* 24280 * If the Don't Fragment flag is on, generate an ICMP destination 24281 * unreachable, fragmentation needed. 24282 */ 24283 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24284 if (offset & IPH_DF) { 24285 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24286 if (is_system_labeled()) { 24287 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24288 ire->ire_max_frag - max_frag, AF_INET); 24289 } 24290 /* 24291 * Need to compute hdr checksum if called from ip_wput_ire. 24292 * Note that ip_rput_forward verifies the checksum before 24293 * calling this routine so in that case this is a noop. 24294 */ 24295 ipha->ipha_hdr_checksum = 0; 24296 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24297 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24298 ipst); 24299 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24300 "ip_wput_frag_end:(%S)", 24301 "don't fragment"); 24302 return; 24303 } 24304 /* 24305 * Labeled systems adjust max_frag if they add a label 24306 * to send the correct path mtu. We need the real mtu since we 24307 * are fragmenting the packet after label adjustment. 24308 */ 24309 if (is_system_labeled()) 24310 max_frag = ire->ire_max_frag; 24311 if (mctl_present) 24312 freeb(first_mp); 24313 /* 24314 * Establish the starting offset. May not be zero if we are fragging 24315 * a fragment that is being forwarded. 24316 */ 24317 offset = offset & IPH_OFFSET; 24318 24319 /* TODO why is this test needed? */ 24320 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24321 if (((max_frag - LENGTH) & ~7) < 8) { 24322 /* TODO: notify ulp somehow */ 24323 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24324 freemsg(mp); 24325 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24326 "ip_wput_frag_end:(%S)", 24327 "len < 8"); 24328 return; 24329 } 24330 24331 hdr_len = (V_HLEN & 0xF) << 2; 24332 24333 ipha->ipha_hdr_checksum = 0; 24334 24335 /* 24336 * Establish the number of bytes maximum per frag, after putting 24337 * in the header. 24338 */ 24339 len = (max_frag - hdr_len) & ~7; 24340 24341 /* Check if we can use MDT to send out the frags. */ 24342 ASSERT(!IRE_IS_LOCAL(ire)); 24343 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24344 ipst->ips_ip_multidata_outbound && 24345 !(ire->ire_flags & RTF_MULTIRT) && 24346 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24347 ill != NULL && ILL_MDT_CAPABLE(ill) && 24348 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24349 ASSERT(ill->ill_mdt_capab != NULL); 24350 if (!ill->ill_mdt_capab->ill_mdt_on) { 24351 /* 24352 * If MDT has been previously turned off in the past, 24353 * and we currently can do MDT (due to IPQoS policy 24354 * removal, etc.) then enable it for this interface. 24355 */ 24356 ill->ill_mdt_capab->ill_mdt_on = 1; 24357 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24358 ill->ill_name)); 24359 } 24360 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24361 offset); 24362 return; 24363 } 24364 24365 /* Get a copy of the header for the trailing frags */ 24366 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24367 if (!hdr_mp) { 24368 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24369 freemsg(mp); 24370 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24371 "ip_wput_frag_end:(%S)", 24372 "couldn't copy hdr"); 24373 return; 24374 } 24375 if (DB_CRED(mp) != NULL) 24376 mblk_setcred(hdr_mp, DB_CRED(mp)); 24377 24378 /* Store the starting offset, with the MoreFrags flag. */ 24379 i1 = offset | IPH_MF | frag_flag; 24380 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24381 24382 /* Establish the ending byte offset, based on the starting offset. */ 24383 offset <<= 3; 24384 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24385 24386 /* Store the length of the first fragment in the IP header. */ 24387 i1 = len + hdr_len; 24388 ASSERT(i1 <= IP_MAXPACKET); 24389 ipha->ipha_length = htons((uint16_t)i1); 24390 24391 /* 24392 * Compute the IP header checksum for the first frag. We have to 24393 * watch out that we stop at the end of the header. 24394 */ 24395 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24396 24397 /* 24398 * Now carve off the first frag. Note that this will include the 24399 * original IP header. 24400 */ 24401 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24402 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24403 freeb(hdr_mp); 24404 freemsg(mp_orig); 24405 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24406 "ip_wput_frag_end:(%S)", 24407 "couldn't carve first"); 24408 return; 24409 } 24410 24411 /* 24412 * Multirouting case. Each fragment is replicated 24413 * via all non-condemned RTF_MULTIRT routes 24414 * currently resolved. 24415 * We ensure that first_ire is the first RTF_MULTIRT 24416 * ire in the bucket. 24417 */ 24418 if (ire->ire_flags & RTF_MULTIRT) { 24419 irb = ire->ire_bucket; 24420 ASSERT(irb != NULL); 24421 24422 multirt_send = B_TRUE; 24423 24424 /* Make sure we do not omit any multiroute ire. */ 24425 IRB_REFHOLD(irb); 24426 for (first_ire = irb->irb_ire; 24427 first_ire != NULL; 24428 first_ire = first_ire->ire_next) { 24429 if ((first_ire->ire_flags & RTF_MULTIRT) && 24430 (first_ire->ire_addr == ire->ire_addr) && 24431 !(first_ire->ire_marks & 24432 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24433 break; 24434 } 24435 } 24436 24437 if (first_ire != NULL) { 24438 if (first_ire != ire) { 24439 IRE_REFHOLD(first_ire); 24440 /* 24441 * Do not release the ire passed in 24442 * as the argument. 24443 */ 24444 ire = first_ire; 24445 } else { 24446 first_ire = NULL; 24447 } 24448 } 24449 IRB_REFRELE(irb); 24450 24451 /* 24452 * Save the first ire; we will need to restore it 24453 * for the trailing frags. 24454 * We REFHOLD save_ire, as each iterated ire will be 24455 * REFRELEd. 24456 */ 24457 save_ire = ire; 24458 IRE_REFHOLD(save_ire); 24459 } 24460 24461 /* 24462 * First fragment emission loop. 24463 * In most cases, the emission loop below is entered only 24464 * once. Only in the case where the ire holds the RTF_MULTIRT 24465 * flag, do we loop to process all RTF_MULTIRT ires in the 24466 * bucket, and send the fragment through all crossed 24467 * RTF_MULTIRT routes. 24468 */ 24469 do { 24470 if (ire->ire_flags & RTF_MULTIRT) { 24471 /* 24472 * We are in a multiple send case, need to get 24473 * the next ire and make a copy of the packet. 24474 * ire1 holds here the next ire to process in the 24475 * bucket. If multirouting is expected, 24476 * any non-RTF_MULTIRT ire that has the 24477 * right destination address is ignored. 24478 * 24479 * We have to take into account the MTU of 24480 * each walked ire. max_frag is set by the 24481 * the caller and generally refers to 24482 * the primary ire entry. Here we ensure that 24483 * no route with a lower MTU will be used, as 24484 * fragments are carved once for all ires, 24485 * then replicated. 24486 */ 24487 ASSERT(irb != NULL); 24488 IRB_REFHOLD(irb); 24489 for (ire1 = ire->ire_next; 24490 ire1 != NULL; 24491 ire1 = ire1->ire_next) { 24492 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24493 continue; 24494 if (ire1->ire_addr != ire->ire_addr) 24495 continue; 24496 if (ire1->ire_marks & 24497 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24498 continue; 24499 /* 24500 * Ensure we do not exceed the MTU 24501 * of the next route. 24502 */ 24503 if (ire1->ire_max_frag < max_frag) { 24504 ip_multirt_bad_mtu(ire1, max_frag); 24505 continue; 24506 } 24507 24508 /* Got one. */ 24509 IRE_REFHOLD(ire1); 24510 break; 24511 } 24512 IRB_REFRELE(irb); 24513 24514 if (ire1 != NULL) { 24515 next_mp = copyb(mp); 24516 if ((next_mp == NULL) || 24517 ((mp->b_cont != NULL) && 24518 ((next_mp->b_cont = 24519 dupmsg(mp->b_cont)) == NULL))) { 24520 freemsg(next_mp); 24521 next_mp = NULL; 24522 ire_refrele(ire1); 24523 ire1 = NULL; 24524 } 24525 } 24526 24527 /* Last multiroute ire; don't loop anymore. */ 24528 if (ire1 == NULL) { 24529 multirt_send = B_FALSE; 24530 } 24531 } 24532 24533 ll_hdr_len = 0; 24534 LOCK_IRE_FP_MP(ire); 24535 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24536 if (ll_hdr_mp != NULL) { 24537 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24538 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24539 } else { 24540 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24541 } 24542 24543 /* If there is a transmit header, get a copy for this frag. */ 24544 /* 24545 * TODO: should check db_ref before calling ip_carve_mp since 24546 * it might give us a dup. 24547 */ 24548 if (!ll_hdr_mp) { 24549 /* No xmit header. */ 24550 xmit_mp = mp; 24551 24552 /* We have a link-layer header that can fit in our mblk. */ 24553 } else if (mp->b_datap->db_ref == 1 && 24554 ll_hdr_len != 0 && 24555 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24556 /* M_DATA fastpath */ 24557 mp->b_rptr -= ll_hdr_len; 24558 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24559 xmit_mp = mp; 24560 24561 /* Corner case if copyb has failed */ 24562 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24563 UNLOCK_IRE_FP_MP(ire); 24564 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24565 freeb(hdr_mp); 24566 freemsg(mp); 24567 freemsg(mp_orig); 24568 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24569 "ip_wput_frag_end:(%S)", 24570 "discard"); 24571 24572 if (multirt_send) { 24573 ASSERT(ire1); 24574 ASSERT(next_mp); 24575 24576 freemsg(next_mp); 24577 ire_refrele(ire1); 24578 } 24579 if (save_ire != NULL) 24580 IRE_REFRELE(save_ire); 24581 24582 if (first_ire != NULL) 24583 ire_refrele(first_ire); 24584 return; 24585 24586 /* 24587 * Case of res_mp OR the fastpath mp can't fit 24588 * in the mblk 24589 */ 24590 } else { 24591 xmit_mp->b_cont = mp; 24592 if (DB_CRED(mp) != NULL) 24593 mblk_setcred(xmit_mp, DB_CRED(mp)); 24594 /* 24595 * Get priority marking, if any. 24596 * We propagate the CoS marking from the 24597 * original packet that went to QoS processing 24598 * in ip_wput_ire to the newly carved mp. 24599 */ 24600 if (DB_TYPE(xmit_mp) == M_DATA) 24601 xmit_mp->b_band = mp->b_band; 24602 } 24603 UNLOCK_IRE_FP_MP(ire); 24604 24605 q = ire->ire_stq; 24606 out_ill = (ill_t *)q->q_ptr; 24607 24608 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24609 24610 DTRACE_PROBE4(ip4__physical__out__start, 24611 ill_t *, NULL, ill_t *, out_ill, 24612 ipha_t *, ipha, mblk_t *, xmit_mp); 24613 24614 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24615 ipst->ips_ipv4firewall_physical_out, 24616 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24617 24618 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24619 24620 if (xmit_mp != NULL) { 24621 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24622 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24623 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24624 24625 putnext(q, xmit_mp); 24626 24627 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24628 UPDATE_MIB(out_ill->ill_ip_mib, 24629 ipIfStatsHCOutOctets, i1); 24630 24631 if (pkt_type != OB_PKT) { 24632 /* 24633 * Update the packet count and MIB stats 24634 * of trailing RTF_MULTIRT ires. 24635 */ 24636 UPDATE_OB_PKT_COUNT(ire); 24637 BUMP_MIB(out_ill->ill_ip_mib, 24638 ipIfStatsOutFragReqds); 24639 } 24640 } 24641 24642 if (multirt_send) { 24643 /* 24644 * We are in a multiple send case; look for 24645 * the next ire and re-enter the loop. 24646 */ 24647 ASSERT(ire1); 24648 ASSERT(next_mp); 24649 /* REFRELE the current ire before looping */ 24650 ire_refrele(ire); 24651 ire = ire1; 24652 ire1 = NULL; 24653 mp = next_mp; 24654 next_mp = NULL; 24655 } 24656 } while (multirt_send); 24657 24658 ASSERT(ire1 == NULL); 24659 24660 /* Restore the original ire; we need it for the trailing frags */ 24661 if (save_ire != NULL) { 24662 /* REFRELE the last iterated ire */ 24663 ire_refrele(ire); 24664 /* save_ire has been REFHOLDed */ 24665 ire = save_ire; 24666 save_ire = NULL; 24667 q = ire->ire_stq; 24668 } 24669 24670 if (pkt_type == OB_PKT) { 24671 UPDATE_OB_PKT_COUNT(ire); 24672 } else { 24673 out_ill = (ill_t *)q->q_ptr; 24674 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24675 UPDATE_IB_PKT_COUNT(ire); 24676 } 24677 24678 /* Advance the offset to the second frag starting point. */ 24679 offset += len; 24680 /* 24681 * Update hdr_len from the copied header - there might be less options 24682 * in the later fragments. 24683 */ 24684 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24685 /* Loop until done. */ 24686 for (;;) { 24687 uint16_t offset_and_flags; 24688 uint16_t ip_len; 24689 24690 if (ip_data_end - offset > len) { 24691 /* 24692 * Carve off the appropriate amount from the original 24693 * datagram. 24694 */ 24695 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24696 mp = NULL; 24697 break; 24698 } 24699 /* 24700 * More frags after this one. Get another copy 24701 * of the header. 24702 */ 24703 if (carve_mp->b_datap->db_ref == 1 && 24704 hdr_mp->b_wptr - hdr_mp->b_rptr < 24705 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24706 /* Inline IP header */ 24707 carve_mp->b_rptr -= hdr_mp->b_wptr - 24708 hdr_mp->b_rptr; 24709 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24710 hdr_mp->b_wptr - hdr_mp->b_rptr); 24711 mp = carve_mp; 24712 } else { 24713 if (!(mp = copyb(hdr_mp))) { 24714 freemsg(carve_mp); 24715 break; 24716 } 24717 /* Get priority marking, if any. */ 24718 mp->b_band = carve_mp->b_band; 24719 mp->b_cont = carve_mp; 24720 } 24721 ipha = (ipha_t *)mp->b_rptr; 24722 offset_and_flags = IPH_MF; 24723 } else { 24724 /* 24725 * Last frag. Consume the header. Set len to 24726 * the length of this last piece. 24727 */ 24728 len = ip_data_end - offset; 24729 24730 /* 24731 * Carve off the appropriate amount from the original 24732 * datagram. 24733 */ 24734 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24735 mp = NULL; 24736 break; 24737 } 24738 if (carve_mp->b_datap->db_ref == 1 && 24739 hdr_mp->b_wptr - hdr_mp->b_rptr < 24740 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24741 /* Inline IP header */ 24742 carve_mp->b_rptr -= hdr_mp->b_wptr - 24743 hdr_mp->b_rptr; 24744 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24745 hdr_mp->b_wptr - hdr_mp->b_rptr); 24746 mp = carve_mp; 24747 freeb(hdr_mp); 24748 hdr_mp = mp; 24749 } else { 24750 mp = hdr_mp; 24751 /* Get priority marking, if any. */ 24752 mp->b_band = carve_mp->b_band; 24753 mp->b_cont = carve_mp; 24754 } 24755 ipha = (ipha_t *)mp->b_rptr; 24756 /* A frag of a frag might have IPH_MF non-zero */ 24757 offset_and_flags = 24758 ntohs(ipha->ipha_fragment_offset_and_flags) & 24759 IPH_MF; 24760 } 24761 offset_and_flags |= (uint16_t)(offset >> 3); 24762 offset_and_flags |= (uint16_t)frag_flag; 24763 /* Store the offset and flags in the IP header. */ 24764 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24765 24766 /* Store the length in the IP header. */ 24767 ip_len = (uint16_t)(len + hdr_len); 24768 ipha->ipha_length = htons(ip_len); 24769 24770 /* 24771 * Set the IP header checksum. Note that mp is just 24772 * the header, so this is easy to pass to ip_csum. 24773 */ 24774 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24775 24776 /* Attach a transmit header, if any, and ship it. */ 24777 if (pkt_type == OB_PKT) { 24778 UPDATE_OB_PKT_COUNT(ire); 24779 } else { 24780 out_ill = (ill_t *)q->q_ptr; 24781 BUMP_MIB(out_ill->ill_ip_mib, 24782 ipIfStatsHCOutForwDatagrams); 24783 UPDATE_IB_PKT_COUNT(ire); 24784 } 24785 24786 if (ire->ire_flags & RTF_MULTIRT) { 24787 irb = ire->ire_bucket; 24788 ASSERT(irb != NULL); 24789 24790 multirt_send = B_TRUE; 24791 24792 /* 24793 * Save the original ire; we will need to restore it 24794 * for the tailing frags. 24795 */ 24796 save_ire = ire; 24797 IRE_REFHOLD(save_ire); 24798 } 24799 /* 24800 * Emission loop for this fragment, similar 24801 * to what is done for the first fragment. 24802 */ 24803 do { 24804 if (multirt_send) { 24805 /* 24806 * We are in a multiple send case, need to get 24807 * the next ire and make a copy of the packet. 24808 */ 24809 ASSERT(irb != NULL); 24810 IRB_REFHOLD(irb); 24811 for (ire1 = ire->ire_next; 24812 ire1 != NULL; 24813 ire1 = ire1->ire_next) { 24814 if (!(ire1->ire_flags & RTF_MULTIRT)) 24815 continue; 24816 if (ire1->ire_addr != ire->ire_addr) 24817 continue; 24818 if (ire1->ire_marks & 24819 (IRE_MARK_CONDEMNED| 24820 IRE_MARK_HIDDEN)) { 24821 continue; 24822 } 24823 /* 24824 * Ensure we do not exceed the MTU 24825 * of the next route. 24826 */ 24827 if (ire1->ire_max_frag < max_frag) { 24828 ip_multirt_bad_mtu(ire1, 24829 max_frag); 24830 continue; 24831 } 24832 24833 /* Got one. */ 24834 IRE_REFHOLD(ire1); 24835 break; 24836 } 24837 IRB_REFRELE(irb); 24838 24839 if (ire1 != NULL) { 24840 next_mp = copyb(mp); 24841 if ((next_mp == NULL) || 24842 ((mp->b_cont != NULL) && 24843 ((next_mp->b_cont = 24844 dupmsg(mp->b_cont)) == NULL))) { 24845 freemsg(next_mp); 24846 next_mp = NULL; 24847 ire_refrele(ire1); 24848 ire1 = NULL; 24849 } 24850 } 24851 24852 /* Last multiroute ire; don't loop anymore. */ 24853 if (ire1 == NULL) { 24854 multirt_send = B_FALSE; 24855 } 24856 } 24857 24858 /* Update transmit header */ 24859 ll_hdr_len = 0; 24860 LOCK_IRE_FP_MP(ire); 24861 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24862 if (ll_hdr_mp != NULL) { 24863 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24864 ll_hdr_len = MBLKL(ll_hdr_mp); 24865 } else { 24866 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24867 } 24868 24869 if (!ll_hdr_mp) { 24870 xmit_mp = mp; 24871 24872 /* 24873 * We have link-layer header that can fit in 24874 * our mblk. 24875 */ 24876 } else if (mp->b_datap->db_ref == 1 && 24877 ll_hdr_len != 0 && 24878 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24879 /* M_DATA fastpath */ 24880 mp->b_rptr -= ll_hdr_len; 24881 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24882 ll_hdr_len); 24883 xmit_mp = mp; 24884 24885 /* 24886 * Case of res_mp OR the fastpath mp can't fit 24887 * in the mblk 24888 */ 24889 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24890 xmit_mp->b_cont = mp; 24891 if (DB_CRED(mp) != NULL) 24892 mblk_setcred(xmit_mp, DB_CRED(mp)); 24893 /* Get priority marking, if any. */ 24894 if (DB_TYPE(xmit_mp) == M_DATA) 24895 xmit_mp->b_band = mp->b_band; 24896 24897 /* Corner case if copyb failed */ 24898 } else { 24899 /* 24900 * Exit both the replication and 24901 * fragmentation loops. 24902 */ 24903 UNLOCK_IRE_FP_MP(ire); 24904 goto drop_pkt; 24905 } 24906 UNLOCK_IRE_FP_MP(ire); 24907 24908 mp1 = mp; 24909 out_ill = (ill_t *)q->q_ptr; 24910 24911 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24912 24913 DTRACE_PROBE4(ip4__physical__out__start, 24914 ill_t *, NULL, ill_t *, out_ill, 24915 ipha_t *, ipha, mblk_t *, xmit_mp); 24916 24917 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24918 ipst->ips_ipv4firewall_physical_out, 24919 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24920 24921 DTRACE_PROBE1(ip4__physical__out__end, 24922 mblk_t *, xmit_mp); 24923 24924 if (mp != mp1 && hdr_mp == mp1) 24925 hdr_mp = mp; 24926 if (mp != mp1 && mp_orig == mp1) 24927 mp_orig = mp; 24928 24929 if (xmit_mp != NULL) { 24930 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24931 NULL, void_ip_t *, ipha, 24932 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24933 ipha, ip6_t *, NULL, int, 0); 24934 24935 putnext(q, xmit_mp); 24936 24937 BUMP_MIB(out_ill->ill_ip_mib, 24938 ipIfStatsHCOutTransmits); 24939 UPDATE_MIB(out_ill->ill_ip_mib, 24940 ipIfStatsHCOutOctets, ip_len); 24941 24942 if (pkt_type != OB_PKT) { 24943 /* 24944 * Update the packet count of trailing 24945 * RTF_MULTIRT ires. 24946 */ 24947 UPDATE_OB_PKT_COUNT(ire); 24948 } 24949 } 24950 24951 /* All done if we just consumed the hdr_mp. */ 24952 if (mp == hdr_mp) { 24953 last_frag = B_TRUE; 24954 BUMP_MIB(out_ill->ill_ip_mib, 24955 ipIfStatsOutFragOKs); 24956 } 24957 24958 if (multirt_send) { 24959 /* 24960 * We are in a multiple send case; look for 24961 * the next ire and re-enter the loop. 24962 */ 24963 ASSERT(ire1); 24964 ASSERT(next_mp); 24965 /* REFRELE the current ire before looping */ 24966 ire_refrele(ire); 24967 ire = ire1; 24968 ire1 = NULL; 24969 q = ire->ire_stq; 24970 mp = next_mp; 24971 next_mp = NULL; 24972 } 24973 } while (multirt_send); 24974 /* 24975 * Restore the original ire; we need it for the 24976 * trailing frags 24977 */ 24978 if (save_ire != NULL) { 24979 ASSERT(ire1 == NULL); 24980 /* REFRELE the last iterated ire */ 24981 ire_refrele(ire); 24982 /* save_ire has been REFHOLDed */ 24983 ire = save_ire; 24984 q = ire->ire_stq; 24985 save_ire = NULL; 24986 } 24987 24988 if (last_frag) { 24989 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24990 "ip_wput_frag_end:(%S)", 24991 "consumed hdr_mp"); 24992 24993 if (first_ire != NULL) 24994 ire_refrele(first_ire); 24995 return; 24996 } 24997 /* Otherwise, advance and loop. */ 24998 offset += len; 24999 } 25000 25001 drop_pkt: 25002 /* Clean up following allocation failure. */ 25003 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25004 freemsg(mp); 25005 if (mp != hdr_mp) 25006 freeb(hdr_mp); 25007 if (mp != mp_orig) 25008 freemsg(mp_orig); 25009 25010 if (save_ire != NULL) 25011 IRE_REFRELE(save_ire); 25012 if (first_ire != NULL) 25013 ire_refrele(first_ire); 25014 25015 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25016 "ip_wput_frag_end:(%S)", 25017 "end--alloc failure"); 25018 } 25019 25020 /* 25021 * Copy the header plus those options which have the copy bit set 25022 */ 25023 static mblk_t * 25024 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25025 { 25026 mblk_t *mp; 25027 uchar_t *up; 25028 25029 /* 25030 * Quick check if we need to look for options without the copy bit 25031 * set 25032 */ 25033 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25034 if (!mp) 25035 return (mp); 25036 mp->b_rptr += ipst->ips_ip_wroff_extra; 25037 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25038 bcopy(rptr, mp->b_rptr, hdr_len); 25039 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25040 return (mp); 25041 } 25042 up = mp->b_rptr; 25043 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25044 up += IP_SIMPLE_HDR_LENGTH; 25045 rptr += IP_SIMPLE_HDR_LENGTH; 25046 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25047 while (hdr_len > 0) { 25048 uint32_t optval; 25049 uint32_t optlen; 25050 25051 optval = *rptr; 25052 if (optval == IPOPT_EOL) 25053 break; 25054 if (optval == IPOPT_NOP) 25055 optlen = 1; 25056 else 25057 optlen = rptr[1]; 25058 if (optval & IPOPT_COPY) { 25059 bcopy(rptr, up, optlen); 25060 up += optlen; 25061 } 25062 rptr += optlen; 25063 hdr_len -= optlen; 25064 } 25065 /* 25066 * Make sure that we drop an even number of words by filling 25067 * with EOL to the next word boundary. 25068 */ 25069 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25070 hdr_len & 0x3; hdr_len++) 25071 *up++ = IPOPT_EOL; 25072 mp->b_wptr = up; 25073 /* Update header length */ 25074 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25075 return (mp); 25076 } 25077 25078 /* 25079 * Delivery to local recipients including fanout to multiple recipients. 25080 * Does not do checksumming of UDP/TCP. 25081 * Note: q should be the read side queue for either the ill or conn. 25082 * Note: rq should be the read side q for the lower (ill) stream. 25083 * We don't send packets to IPPF processing, thus the last argument 25084 * to all the fanout calls are B_FALSE. 25085 */ 25086 void 25087 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25088 int fanout_flags, zoneid_t zoneid) 25089 { 25090 uint32_t protocol; 25091 mblk_t *first_mp; 25092 boolean_t mctl_present; 25093 int ire_type; 25094 #define rptr ((uchar_t *)ipha) 25095 ip_stack_t *ipst = ill->ill_ipst; 25096 25097 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25098 "ip_wput_local_start: q %p", q); 25099 25100 if (ire != NULL) { 25101 ire_type = ire->ire_type; 25102 } else { 25103 /* 25104 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25105 * packet is not multicast, we can't tell the ire type. 25106 */ 25107 ASSERT(CLASSD(ipha->ipha_dst)); 25108 ire_type = IRE_BROADCAST; 25109 } 25110 25111 first_mp = mp; 25112 if (first_mp->b_datap->db_type == M_CTL) { 25113 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25114 if (!io->ipsec_out_secure) { 25115 /* 25116 * This ipsec_out_t was allocated in ip_wput 25117 * for multicast packets to store the ill_index. 25118 * As this is being delivered locally, we don't 25119 * need this anymore. 25120 */ 25121 mp = first_mp->b_cont; 25122 freeb(first_mp); 25123 first_mp = mp; 25124 mctl_present = B_FALSE; 25125 } else { 25126 /* 25127 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25128 * security properties for the looped-back packet. 25129 */ 25130 mctl_present = B_TRUE; 25131 mp = first_mp->b_cont; 25132 ASSERT(mp != NULL); 25133 ipsec_out_to_in(first_mp); 25134 } 25135 } else { 25136 mctl_present = B_FALSE; 25137 } 25138 25139 DTRACE_PROBE4(ip4__loopback__in__start, 25140 ill_t *, ill, ill_t *, NULL, 25141 ipha_t *, ipha, mblk_t *, first_mp); 25142 25143 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25144 ipst->ips_ipv4firewall_loopback_in, 25145 ill, NULL, ipha, first_mp, mp, 0, ipst); 25146 25147 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25148 25149 if (first_mp == NULL) 25150 return; 25151 25152 if (ipst->ips_ipobs_enabled) { 25153 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25154 zoneid_t stackzoneid = netstackid_to_zoneid( 25155 ipst->ips_netstack->netstack_stackid); 25156 25157 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25158 /* 25159 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25160 * address. Restrict the lookup below to the destination zone. 25161 */ 25162 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25163 lookup_zoneid = zoneid; 25164 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25165 lookup_zoneid); 25166 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25167 IPV4_VERSION, 0, ipst); 25168 } 25169 25170 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25171 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25172 int, 1); 25173 25174 ipst->ips_loopback_packets++; 25175 25176 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25177 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25178 if (!IS_SIMPLE_IPH(ipha)) { 25179 ip_wput_local_options(ipha, ipst); 25180 } 25181 25182 protocol = ipha->ipha_protocol; 25183 switch (protocol) { 25184 case IPPROTO_ICMP: { 25185 ire_t *ire_zone; 25186 ilm_t *ilm; 25187 mblk_t *mp1; 25188 zoneid_t last_zoneid; 25189 25190 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25191 ASSERT(ire_type == IRE_BROADCAST); 25192 /* 25193 * In the multicast case, applications may have joined 25194 * the group from different zones, so we need to deliver 25195 * the packet to each of them. Loop through the 25196 * multicast memberships structures (ilm) on the receive 25197 * ill and send a copy of the packet up each matching 25198 * one. However, we don't do this for multicasts sent on 25199 * the loopback interface (PHYI_LOOPBACK flag set) as 25200 * they must stay in the sender's zone. 25201 * 25202 * ilm_add_v6() ensures that ilms in the same zone are 25203 * contiguous in the ill_ilm list. We use this property 25204 * to avoid sending duplicates needed when two 25205 * applications in the same zone join the same group on 25206 * different logical interfaces: we ignore the ilm if 25207 * it's zoneid is the same as the last matching one. 25208 * In addition, the sending of the packet for 25209 * ire_zoneid is delayed until all of the other ilms 25210 * have been exhausted. 25211 */ 25212 last_zoneid = -1; 25213 ILM_WALKER_HOLD(ill); 25214 for (ilm = ill->ill_ilm; ilm != NULL; 25215 ilm = ilm->ilm_next) { 25216 if ((ilm->ilm_flags & ILM_DELETED) || 25217 ipha->ipha_dst != ilm->ilm_addr || 25218 ilm->ilm_zoneid == last_zoneid || 25219 ilm->ilm_zoneid == zoneid || 25220 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25221 continue; 25222 mp1 = ip_copymsg(first_mp); 25223 if (mp1 == NULL) 25224 continue; 25225 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25226 mctl_present, B_FALSE, ill, 25227 ilm->ilm_zoneid); 25228 last_zoneid = ilm->ilm_zoneid; 25229 } 25230 ILM_WALKER_RELE(ill); 25231 /* 25232 * Loopback case: the sending endpoint has 25233 * IP_MULTICAST_LOOP disabled, therefore we don't 25234 * dispatch the multicast packet to the sending zone. 25235 */ 25236 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25237 freemsg(first_mp); 25238 return; 25239 } 25240 } else if (ire_type == IRE_BROADCAST) { 25241 /* 25242 * In the broadcast case, there may be many zones 25243 * which need a copy of the packet delivered to them. 25244 * There is one IRE_BROADCAST per broadcast address 25245 * and per zone; we walk those using a helper function. 25246 * In addition, the sending of the packet for zoneid is 25247 * delayed until all of the other ires have been 25248 * processed. 25249 */ 25250 IRB_REFHOLD(ire->ire_bucket); 25251 ire_zone = NULL; 25252 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25253 ire)) != NULL) { 25254 mp1 = ip_copymsg(first_mp); 25255 if (mp1 == NULL) 25256 continue; 25257 25258 UPDATE_IB_PKT_COUNT(ire_zone); 25259 ire_zone->ire_last_used_time = lbolt; 25260 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25261 mctl_present, B_FALSE, ill, 25262 ire_zone->ire_zoneid); 25263 } 25264 IRB_REFRELE(ire->ire_bucket); 25265 } 25266 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25267 0, mctl_present, B_FALSE, ill, zoneid); 25268 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25269 "ip_wput_local_end: q %p (%S)", 25270 q, "icmp"); 25271 return; 25272 } 25273 case IPPROTO_IGMP: 25274 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25275 /* Bad packet - discarded by igmp_input */ 25276 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25277 "ip_wput_local_end: q %p (%S)", 25278 q, "igmp_input--bad packet"); 25279 if (mctl_present) 25280 freeb(first_mp); 25281 return; 25282 } 25283 /* 25284 * igmp_input() may have returned the pulled up message. 25285 * So first_mp and ipha need to be reinitialized. 25286 */ 25287 ipha = (ipha_t *)mp->b_rptr; 25288 if (mctl_present) 25289 first_mp->b_cont = mp; 25290 else 25291 first_mp = mp; 25292 /* deliver to local raw users */ 25293 break; 25294 case IPPROTO_ENCAP: 25295 /* 25296 * This case is covered by either ip_fanout_proto, or by 25297 * the above security processing for self-tunneled packets. 25298 */ 25299 break; 25300 case IPPROTO_UDP: { 25301 uint16_t *up; 25302 uint32_t ports; 25303 25304 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25305 UDP_PORTS_OFFSET); 25306 /* Force a 'valid' checksum. */ 25307 up[3] = 0; 25308 25309 ports = *(uint32_t *)up; 25310 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25311 (ire_type == IRE_BROADCAST), 25312 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25313 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25314 ill, zoneid); 25315 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25316 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25317 return; 25318 } 25319 case IPPROTO_TCP: { 25320 25321 /* 25322 * For TCP, discard broadcast packets. 25323 */ 25324 if ((ushort_t)ire_type == IRE_BROADCAST) { 25325 freemsg(first_mp); 25326 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25327 ip2dbg(("ip_wput_local: discard broadcast\n")); 25328 return; 25329 } 25330 25331 if (mp->b_datap->db_type == M_DATA) { 25332 /* 25333 * M_DATA mblk, so init mblk (chain) for no struio(). 25334 */ 25335 mblk_t *mp1 = mp; 25336 25337 do { 25338 mp1->b_datap->db_struioflag = 0; 25339 } while ((mp1 = mp1->b_cont) != NULL); 25340 } 25341 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25342 <= mp->b_wptr); 25343 ip_fanout_tcp(q, first_mp, ill, ipha, 25344 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25345 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25346 mctl_present, B_FALSE, zoneid); 25347 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25348 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25349 return; 25350 } 25351 case IPPROTO_SCTP: 25352 { 25353 uint32_t ports; 25354 25355 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25356 ip_fanout_sctp(first_mp, ill, ipha, ports, 25357 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25358 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25359 return; 25360 } 25361 25362 default: 25363 break; 25364 } 25365 /* 25366 * Find a client for some other protocol. We give 25367 * copies to multiple clients, if more than one is 25368 * bound. 25369 */ 25370 ip_fanout_proto(q, first_mp, ill, ipha, 25371 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25372 mctl_present, B_FALSE, ill, zoneid); 25373 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25374 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25375 #undef rptr 25376 } 25377 25378 /* 25379 * Update any source route, record route, or timestamp options. 25380 * Check that we are at end of strict source route. 25381 * The options have been sanity checked by ip_wput_options(). 25382 */ 25383 static void 25384 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25385 { 25386 ipoptp_t opts; 25387 uchar_t *opt; 25388 uint8_t optval; 25389 uint8_t optlen; 25390 ipaddr_t dst; 25391 uint32_t ts; 25392 ire_t *ire; 25393 timestruc_t now; 25394 25395 ip2dbg(("ip_wput_local_options\n")); 25396 for (optval = ipoptp_first(&opts, ipha); 25397 optval != IPOPT_EOL; 25398 optval = ipoptp_next(&opts)) { 25399 opt = opts.ipoptp_cur; 25400 optlen = opts.ipoptp_len; 25401 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25402 switch (optval) { 25403 uint32_t off; 25404 case IPOPT_SSRR: 25405 case IPOPT_LSRR: 25406 off = opt[IPOPT_OFFSET]; 25407 off--; 25408 if (optlen < IP_ADDR_LEN || 25409 off > optlen - IP_ADDR_LEN) { 25410 /* End of source route */ 25411 break; 25412 } 25413 /* 25414 * This will only happen if two consecutive entries 25415 * in the source route contains our address or if 25416 * it is a packet with a loose source route which 25417 * reaches us before consuming the whole source route 25418 */ 25419 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25420 if (optval == IPOPT_SSRR) { 25421 return; 25422 } 25423 /* 25424 * Hack: instead of dropping the packet truncate the 25425 * source route to what has been used by filling the 25426 * rest with IPOPT_NOP. 25427 */ 25428 opt[IPOPT_OLEN] = (uint8_t)off; 25429 while (off < optlen) { 25430 opt[off++] = IPOPT_NOP; 25431 } 25432 break; 25433 case IPOPT_RR: 25434 off = opt[IPOPT_OFFSET]; 25435 off--; 25436 if (optlen < IP_ADDR_LEN || 25437 off > optlen - IP_ADDR_LEN) { 25438 /* No more room - ignore */ 25439 ip1dbg(( 25440 "ip_wput_forward_options: end of RR\n")); 25441 break; 25442 } 25443 dst = htonl(INADDR_LOOPBACK); 25444 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25445 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25446 break; 25447 case IPOPT_TS: 25448 /* Insert timestamp if there is romm */ 25449 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25450 case IPOPT_TS_TSONLY: 25451 off = IPOPT_TS_TIMELEN; 25452 break; 25453 case IPOPT_TS_PRESPEC: 25454 case IPOPT_TS_PRESPEC_RFC791: 25455 /* Verify that the address matched */ 25456 off = opt[IPOPT_OFFSET] - 1; 25457 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25458 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25459 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25460 ipst); 25461 if (ire == NULL) { 25462 /* Not for us */ 25463 break; 25464 } 25465 ire_refrele(ire); 25466 /* FALLTHRU */ 25467 case IPOPT_TS_TSANDADDR: 25468 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25469 break; 25470 default: 25471 /* 25472 * ip_*put_options should have already 25473 * dropped this packet. 25474 */ 25475 cmn_err(CE_PANIC, "ip_wput_local_options: " 25476 "unknown IT - bug in ip_wput_options?\n"); 25477 return; /* Keep "lint" happy */ 25478 } 25479 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25480 /* Increase overflow counter */ 25481 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25482 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25483 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25484 (off << 4); 25485 break; 25486 } 25487 off = opt[IPOPT_OFFSET] - 1; 25488 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25489 case IPOPT_TS_PRESPEC: 25490 case IPOPT_TS_PRESPEC_RFC791: 25491 case IPOPT_TS_TSANDADDR: 25492 dst = htonl(INADDR_LOOPBACK); 25493 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25494 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25495 /* FALLTHRU */ 25496 case IPOPT_TS_TSONLY: 25497 off = opt[IPOPT_OFFSET] - 1; 25498 /* Compute # of milliseconds since midnight */ 25499 gethrestime(&now); 25500 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25501 now.tv_nsec / (NANOSEC / MILLISEC); 25502 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25503 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25504 break; 25505 } 25506 break; 25507 } 25508 } 25509 } 25510 25511 /* 25512 * Send out a multicast packet on interface ipif. 25513 * The sender does not have an conn. 25514 * Caller verifies that this isn't a PHYI_LOOPBACK. 25515 */ 25516 void 25517 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25518 { 25519 ipha_t *ipha; 25520 ire_t *ire; 25521 ipaddr_t dst; 25522 mblk_t *first_mp; 25523 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25524 25525 /* igmp_sendpkt always allocates a ipsec_out_t */ 25526 ASSERT(mp->b_datap->db_type == M_CTL); 25527 ASSERT(!ipif->ipif_isv6); 25528 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25529 25530 first_mp = mp; 25531 mp = first_mp->b_cont; 25532 ASSERT(mp->b_datap->db_type == M_DATA); 25533 ipha = (ipha_t *)mp->b_rptr; 25534 25535 /* 25536 * Find an IRE which matches the destination and the outgoing 25537 * queue (i.e. the outgoing interface.) 25538 */ 25539 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25540 dst = ipif->ipif_pp_dst_addr; 25541 else 25542 dst = ipha->ipha_dst; 25543 /* 25544 * The source address has already been initialized by the 25545 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25546 * be sufficient rather than MATCH_IRE_IPIF. 25547 * 25548 * This function is used for sending IGMP packets. We need 25549 * to make sure that we send the packet out of the interface 25550 * (ipif->ipif_ill) where we joined the group. This is to 25551 * prevent from switches doing IGMP snooping to send us multicast 25552 * packets for a given group on the interface we have joined. 25553 * If we can't find an ire, igmp_sendpkt has already initialized 25554 * ipsec_out_attach_if so that this will not be load spread in 25555 * ip_newroute_ipif. 25556 */ 25557 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25558 MATCH_IRE_ILL, ipst); 25559 if (!ire) { 25560 /* 25561 * Mark this packet to make it be delivered to 25562 * ip_wput_ire after the new ire has been 25563 * created. 25564 */ 25565 mp->b_prev = NULL; 25566 mp->b_next = NULL; 25567 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25568 zoneid, &zero_info); 25569 return; 25570 } 25571 25572 /* 25573 * Honor the RTF_SETSRC flag; this is the only case 25574 * where we force this addr whatever the current src addr is, 25575 * because this address is set by igmp_sendpkt(), and 25576 * cannot be specified by any user. 25577 */ 25578 if (ire->ire_flags & RTF_SETSRC) { 25579 ipha->ipha_src = ire->ire_src_addr; 25580 } 25581 25582 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25583 } 25584 25585 /* 25586 * NOTE : This function does not ire_refrele the ire argument passed in. 25587 * 25588 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25589 * failure. The nce_fp_mp can vanish any time in the case of 25590 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25591 * the ire_lock to access the nce_fp_mp in this case. 25592 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25593 * prepending a fastpath message IPQoS processing must precede it, we also set 25594 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25595 * (IPQoS might have set the b_band for CoS marking). 25596 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25597 * must follow it so that IPQoS can mark the dl_priority field for CoS 25598 * marking, if needed. 25599 */ 25600 static mblk_t * 25601 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25602 uint32_t ill_index, ipha_t **iphap) 25603 { 25604 uint_t hlen; 25605 ipha_t *ipha; 25606 mblk_t *mp1; 25607 boolean_t qos_done = B_FALSE; 25608 uchar_t *ll_hdr; 25609 ip_stack_t *ipst = ire->ire_ipst; 25610 25611 #define rptr ((uchar_t *)ipha) 25612 25613 ipha = (ipha_t *)mp->b_rptr; 25614 hlen = 0; 25615 LOCK_IRE_FP_MP(ire); 25616 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25617 ASSERT(DB_TYPE(mp1) == M_DATA); 25618 /* Initiate IPPF processing */ 25619 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25620 UNLOCK_IRE_FP_MP(ire); 25621 ip_process(proc, &mp, ill_index); 25622 if (mp == NULL) 25623 return (NULL); 25624 25625 ipha = (ipha_t *)mp->b_rptr; 25626 LOCK_IRE_FP_MP(ire); 25627 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25628 qos_done = B_TRUE; 25629 goto no_fp_mp; 25630 } 25631 ASSERT(DB_TYPE(mp1) == M_DATA); 25632 } 25633 hlen = MBLKL(mp1); 25634 /* 25635 * Check if we have enough room to prepend fastpath 25636 * header 25637 */ 25638 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25639 ll_hdr = rptr - hlen; 25640 bcopy(mp1->b_rptr, ll_hdr, hlen); 25641 /* 25642 * Set the b_rptr to the start of the link layer 25643 * header 25644 */ 25645 mp->b_rptr = ll_hdr; 25646 mp1 = mp; 25647 } else { 25648 mp1 = copyb(mp1); 25649 if (mp1 == NULL) 25650 goto unlock_err; 25651 mp1->b_band = mp->b_band; 25652 mp1->b_cont = mp; 25653 /* 25654 * certain system generated traffic may not 25655 * have cred/label in ip header block. This 25656 * is true even for a labeled system. But for 25657 * labeled traffic, inherit the label in the 25658 * new header. 25659 */ 25660 if (DB_CRED(mp) != NULL) 25661 mblk_setcred(mp1, DB_CRED(mp)); 25662 /* 25663 * XXX disable ICK_VALID and compute checksum 25664 * here; can happen if nce_fp_mp changes and 25665 * it can't be copied now due to insufficient 25666 * space. (unlikely, fp mp can change, but it 25667 * does not increase in length) 25668 */ 25669 } 25670 UNLOCK_IRE_FP_MP(ire); 25671 } else { 25672 no_fp_mp: 25673 mp1 = copyb(ire->ire_nce->nce_res_mp); 25674 if (mp1 == NULL) { 25675 unlock_err: 25676 UNLOCK_IRE_FP_MP(ire); 25677 freemsg(mp); 25678 return (NULL); 25679 } 25680 UNLOCK_IRE_FP_MP(ire); 25681 mp1->b_cont = mp; 25682 /* 25683 * certain system generated traffic may not 25684 * have cred/label in ip header block. This 25685 * is true even for a labeled system. But for 25686 * labeled traffic, inherit the label in the 25687 * new header. 25688 */ 25689 if (DB_CRED(mp) != NULL) 25690 mblk_setcred(mp1, DB_CRED(mp)); 25691 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25692 ip_process(proc, &mp1, ill_index); 25693 if (mp1 == NULL) 25694 return (NULL); 25695 25696 if (mp1->b_cont == NULL) 25697 ipha = NULL; 25698 else 25699 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25700 } 25701 } 25702 25703 *iphap = ipha; 25704 return (mp1); 25705 #undef rptr 25706 } 25707 25708 /* 25709 * Finish the outbound IPsec processing for an IPv6 packet. This function 25710 * is called from ipsec_out_process() if the IPsec packet was processed 25711 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25712 * asynchronously. 25713 */ 25714 void 25715 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25716 ire_t *ire_arg) 25717 { 25718 in6_addr_t *v6dstp; 25719 ire_t *ire; 25720 mblk_t *mp; 25721 ip6_t *ip6h1; 25722 uint_t ill_index; 25723 ipsec_out_t *io; 25724 boolean_t attach_if, hwaccel; 25725 uint32_t flags = IP6_NO_IPPOLICY; 25726 int match_flags; 25727 zoneid_t zoneid; 25728 boolean_t ill_need_rele = B_FALSE; 25729 boolean_t ire_need_rele = B_FALSE; 25730 ip_stack_t *ipst; 25731 25732 mp = ipsec_mp->b_cont; 25733 ip6h1 = (ip6_t *)mp->b_rptr; 25734 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25735 ASSERT(io->ipsec_out_ns != NULL); 25736 ipst = io->ipsec_out_ns->netstack_ip; 25737 ill_index = io->ipsec_out_ill_index; 25738 if (io->ipsec_out_reachable) { 25739 flags |= IPV6_REACHABILITY_CONFIRMATION; 25740 } 25741 attach_if = io->ipsec_out_attach_if; 25742 hwaccel = io->ipsec_out_accelerated; 25743 zoneid = io->ipsec_out_zoneid; 25744 ASSERT(zoneid != ALL_ZONES); 25745 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25746 /* Multicast addresses should have non-zero ill_index. */ 25747 v6dstp = &ip6h->ip6_dst; 25748 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25749 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25750 ASSERT(!attach_if || ill_index != 0); 25751 if (ill_index != 0) { 25752 if (ill == NULL) { 25753 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25754 B_TRUE, ipst); 25755 25756 /* Failure case frees things for us. */ 25757 if (ill == NULL) 25758 return; 25759 25760 ill_need_rele = B_TRUE; 25761 } 25762 /* 25763 * If this packet needs to go out on a particular interface 25764 * honor it. 25765 */ 25766 if (attach_if) { 25767 match_flags = MATCH_IRE_ILL; 25768 25769 /* 25770 * Check if we need an ire that will not be 25771 * looked up by anybody else i.e. HIDDEN. 25772 */ 25773 if (ill_is_probeonly(ill)) { 25774 match_flags |= MATCH_IRE_MARK_HIDDEN; 25775 } 25776 } 25777 } 25778 ASSERT(mp != NULL); 25779 25780 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25781 boolean_t unspec_src; 25782 ipif_t *ipif; 25783 25784 /* 25785 * Use the ill_index to get the right ill. 25786 */ 25787 unspec_src = io->ipsec_out_unspec_src; 25788 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25789 if (ipif == NULL) { 25790 if (ill_need_rele) 25791 ill_refrele(ill); 25792 freemsg(ipsec_mp); 25793 return; 25794 } 25795 25796 if (ire_arg != NULL) { 25797 ire = ire_arg; 25798 } else { 25799 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25800 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25801 ire_need_rele = B_TRUE; 25802 } 25803 if (ire != NULL) { 25804 ipif_refrele(ipif); 25805 /* 25806 * XXX Do the multicast forwarding now, as the IPsec 25807 * processing has been done. 25808 */ 25809 goto send; 25810 } 25811 25812 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25813 mp->b_prev = NULL; 25814 mp->b_next = NULL; 25815 25816 /* 25817 * If the IPsec packet was processed asynchronously, 25818 * drop it now. 25819 */ 25820 if (q == NULL) { 25821 if (ill_need_rele) 25822 ill_refrele(ill); 25823 freemsg(ipsec_mp); 25824 return; 25825 } 25826 25827 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25828 unspec_src, zoneid); 25829 ipif_refrele(ipif); 25830 } else { 25831 if (attach_if) { 25832 ipif_t *ipif; 25833 25834 ipif = ipif_get_next_ipif(NULL, ill); 25835 if (ipif == NULL) { 25836 if (ill_need_rele) 25837 ill_refrele(ill); 25838 freemsg(ipsec_mp); 25839 return; 25840 } 25841 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25842 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25843 ire_need_rele = B_TRUE; 25844 ipif_refrele(ipif); 25845 } else { 25846 if (ire_arg != NULL) { 25847 ire = ire_arg; 25848 } else { 25849 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25850 ipst); 25851 ire_need_rele = B_TRUE; 25852 } 25853 } 25854 if (ire != NULL) 25855 goto send; 25856 /* 25857 * ire disappeared underneath. 25858 * 25859 * What we need to do here is the ip_newroute 25860 * logic to get the ire without doing the IPsec 25861 * processing. Follow the same old path. But this 25862 * time, ip_wput or ire_add_then_send will call us 25863 * directly as all the IPsec operations are done. 25864 */ 25865 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25866 mp->b_prev = NULL; 25867 mp->b_next = NULL; 25868 25869 /* 25870 * If the IPsec packet was processed asynchronously, 25871 * drop it now. 25872 */ 25873 if (q == NULL) { 25874 if (ill_need_rele) 25875 ill_refrele(ill); 25876 freemsg(ipsec_mp); 25877 return; 25878 } 25879 25880 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25881 zoneid, ipst); 25882 } 25883 if (ill != NULL && ill_need_rele) 25884 ill_refrele(ill); 25885 return; 25886 send: 25887 if (ill != NULL && ill_need_rele) 25888 ill_refrele(ill); 25889 25890 /* Local delivery */ 25891 if (ire->ire_stq == NULL) { 25892 ill_t *out_ill; 25893 ASSERT(q != NULL); 25894 25895 /* PFHooks: LOOPBACK_OUT */ 25896 out_ill = ire_to_ill(ire); 25897 25898 /* 25899 * DTrace this as ip:::send. A blocked packet will fire the 25900 * send probe, but not the receive probe. 25901 */ 25902 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25903 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25904 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25905 25906 DTRACE_PROBE4(ip6__loopback__out__start, 25907 ill_t *, NULL, ill_t *, out_ill, 25908 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25909 25910 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25911 ipst->ips_ipv6firewall_loopback_out, 25912 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25913 25914 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25915 25916 if (ipsec_mp != NULL) { 25917 ip_wput_local_v6(RD(q), out_ill, 25918 ip6h, ipsec_mp, ire, 0, zoneid); 25919 } 25920 if (ire_need_rele) 25921 ire_refrele(ire); 25922 return; 25923 } 25924 /* 25925 * Everything is done. Send it out on the wire. 25926 * We force the insertion of a fragment header using the 25927 * IPH_FRAG_HDR flag in two cases: 25928 * - after reception of an ICMPv6 "packet too big" message 25929 * with a MTU < 1280 (cf. RFC 2460 section 5) 25930 * - for multirouted IPv6 packets, so that the receiver can 25931 * discard duplicates according to their fragment identifier 25932 */ 25933 /* XXX fix flow control problems. */ 25934 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25935 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25936 if (hwaccel) { 25937 /* 25938 * hardware acceleration does not handle these 25939 * "slow path" cases. 25940 */ 25941 /* IPsec KSTATS: should bump bean counter here. */ 25942 if (ire_need_rele) 25943 ire_refrele(ire); 25944 freemsg(ipsec_mp); 25945 return; 25946 } 25947 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25948 (mp->b_cont ? msgdsize(mp) : 25949 mp->b_wptr - (uchar_t *)ip6h)) { 25950 /* IPsec KSTATS: should bump bean counter here. */ 25951 ip0dbg(("Packet length mismatch: %d, %ld\n", 25952 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25953 msgdsize(mp))); 25954 if (ire_need_rele) 25955 ire_refrele(ire); 25956 freemsg(ipsec_mp); 25957 return; 25958 } 25959 ASSERT(mp->b_prev == NULL); 25960 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25961 ntohs(ip6h->ip6_plen) + 25962 IPV6_HDR_LEN, ire->ire_max_frag)); 25963 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25964 ire->ire_max_frag); 25965 } else { 25966 UPDATE_OB_PKT_COUNT(ire); 25967 ire->ire_last_used_time = lbolt; 25968 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25969 } 25970 if (ire_need_rele) 25971 ire_refrele(ire); 25972 freeb(ipsec_mp); 25973 } 25974 25975 void 25976 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25977 { 25978 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25979 da_ipsec_t *hada; /* data attributes */ 25980 ill_t *ill = (ill_t *)q->q_ptr; 25981 25982 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25983 25984 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25985 /* IPsec KSTATS: Bump lose counter here! */ 25986 freemsg(mp); 25987 return; 25988 } 25989 25990 /* 25991 * It's an IPsec packet that must be 25992 * accelerated by the Provider, and the 25993 * outbound ill is IPsec acceleration capable. 25994 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25995 * to the ill. 25996 * IPsec KSTATS: should bump packet counter here. 25997 */ 25998 25999 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26000 if (hada_mp == NULL) { 26001 /* IPsec KSTATS: should bump packet counter here. */ 26002 freemsg(mp); 26003 return; 26004 } 26005 26006 hada_mp->b_datap->db_type = M_CTL; 26007 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26008 hada_mp->b_cont = mp; 26009 26010 hada = (da_ipsec_t *)hada_mp->b_rptr; 26011 bzero(hada, sizeof (da_ipsec_t)); 26012 hada->da_type = IPHADA_M_CTL; 26013 26014 putnext(q, hada_mp); 26015 } 26016 26017 /* 26018 * Finish the outbound IPsec processing. This function is called from 26019 * ipsec_out_process() if the IPsec packet was processed 26020 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26021 * asynchronously. 26022 */ 26023 void 26024 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26025 ire_t *ire_arg) 26026 { 26027 uint32_t v_hlen_tos_len; 26028 ipaddr_t dst; 26029 ipif_t *ipif = NULL; 26030 ire_t *ire; 26031 ire_t *ire1 = NULL; 26032 mblk_t *next_mp = NULL; 26033 uint32_t max_frag; 26034 boolean_t multirt_send = B_FALSE; 26035 mblk_t *mp; 26036 ipha_t *ipha1; 26037 uint_t ill_index; 26038 ipsec_out_t *io; 26039 boolean_t attach_if; 26040 int match_flags; 26041 irb_t *irb = NULL; 26042 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26043 zoneid_t zoneid; 26044 ipxmit_state_t pktxmit_state; 26045 ip_stack_t *ipst; 26046 26047 #ifdef _BIG_ENDIAN 26048 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26049 #else 26050 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26051 #endif 26052 26053 mp = ipsec_mp->b_cont; 26054 ipha1 = (ipha_t *)mp->b_rptr; 26055 ASSERT(mp != NULL); 26056 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26057 dst = ipha->ipha_dst; 26058 26059 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26060 ill_index = io->ipsec_out_ill_index; 26061 attach_if = io->ipsec_out_attach_if; 26062 zoneid = io->ipsec_out_zoneid; 26063 ASSERT(zoneid != ALL_ZONES); 26064 ipst = io->ipsec_out_ns->netstack_ip; 26065 ASSERT(io->ipsec_out_ns != NULL); 26066 26067 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26068 if (ill_index != 0) { 26069 if (ill == NULL) { 26070 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26071 ill_index, B_FALSE, ipst); 26072 26073 /* Failure case frees things for us. */ 26074 if (ill == NULL) 26075 return; 26076 26077 ill_need_rele = B_TRUE; 26078 } 26079 /* 26080 * If this packet needs to go out on a particular interface 26081 * honor it. 26082 */ 26083 if (attach_if) { 26084 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26085 26086 /* 26087 * Check if we need an ire that will not be 26088 * looked up by anybody else i.e. HIDDEN. 26089 */ 26090 if (ill_is_probeonly(ill)) { 26091 match_flags |= MATCH_IRE_MARK_HIDDEN; 26092 } 26093 } 26094 } 26095 26096 if (CLASSD(dst)) { 26097 boolean_t conn_dontroute; 26098 /* 26099 * Use the ill_index to get the right ipif. 26100 */ 26101 conn_dontroute = io->ipsec_out_dontroute; 26102 if (ill_index == 0) 26103 ipif = ipif_lookup_group(dst, zoneid, ipst); 26104 else 26105 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26106 if (ipif == NULL) { 26107 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26108 " multicast\n")); 26109 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26110 freemsg(ipsec_mp); 26111 goto done; 26112 } 26113 /* 26114 * ipha_src has already been intialized with the 26115 * value of the ipif in ip_wput. All we need now is 26116 * an ire to send this downstream. 26117 */ 26118 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26119 MBLK_GETLABEL(mp), match_flags, ipst); 26120 if (ire != NULL) { 26121 ill_t *ill1; 26122 /* 26123 * Do the multicast forwarding now, as the IPsec 26124 * processing has been done. 26125 */ 26126 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26127 (ill1 = ire_to_ill(ire))) { 26128 if (ip_mforward(ill1, ipha, mp)) { 26129 freemsg(ipsec_mp); 26130 ip1dbg(("ip_wput_ipsec_out: mforward " 26131 "failed\n")); 26132 ire_refrele(ire); 26133 goto done; 26134 } 26135 } 26136 goto send; 26137 } 26138 26139 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26140 mp->b_prev = NULL; 26141 mp->b_next = NULL; 26142 26143 /* 26144 * If the IPsec packet was processed asynchronously, 26145 * drop it now. 26146 */ 26147 if (q == NULL) { 26148 freemsg(ipsec_mp); 26149 goto done; 26150 } 26151 26152 /* 26153 * We may be using a wrong ipif to create the ire. 26154 * But it is okay as the source address is assigned 26155 * for the packet already. Next outbound packet would 26156 * create the IRE with the right IPIF in ip_wput. 26157 * 26158 * Also handle RTF_MULTIRT routes. 26159 */ 26160 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26161 zoneid, &zero_info); 26162 } else { 26163 if (attach_if) { 26164 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26165 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26166 } else { 26167 if (ire_arg != NULL) { 26168 ire = ire_arg; 26169 ire_need_rele = B_FALSE; 26170 } else { 26171 ire = ire_cache_lookup(dst, zoneid, 26172 MBLK_GETLABEL(mp), ipst); 26173 } 26174 } 26175 if (ire != NULL) { 26176 goto send; 26177 } 26178 26179 /* 26180 * ire disappeared underneath. 26181 * 26182 * What we need to do here is the ip_newroute 26183 * logic to get the ire without doing the IPsec 26184 * processing. Follow the same old path. But this 26185 * time, ip_wput or ire_add_then_put will call us 26186 * directly as all the IPsec operations are done. 26187 */ 26188 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26189 mp->b_prev = NULL; 26190 mp->b_next = NULL; 26191 26192 /* 26193 * If the IPsec packet was processed asynchronously, 26194 * drop it now. 26195 */ 26196 if (q == NULL) { 26197 freemsg(ipsec_mp); 26198 goto done; 26199 } 26200 26201 /* 26202 * Since we're going through ip_newroute() again, we 26203 * need to make sure we don't: 26204 * 26205 * 1.) Trigger the ASSERT() with the ipha_ident 26206 * overloading. 26207 * 2.) Redo transport-layer checksumming, since we've 26208 * already done all that to get this far. 26209 * 26210 * The easiest way not do either of the above is to set 26211 * the ipha_ident field to IP_HDR_INCLUDED. 26212 */ 26213 ipha->ipha_ident = IP_HDR_INCLUDED; 26214 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26215 zoneid, ipst); 26216 } 26217 goto done; 26218 send: 26219 if (ire->ire_stq == NULL) { 26220 ill_t *out_ill; 26221 /* 26222 * Loopbacks go through ip_wput_local except for one case. 26223 * We come here if we generate a icmp_frag_needed message 26224 * after IPsec processing is over. When this function calls 26225 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26226 * icmp_frag_needed. The message generated comes back here 26227 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26228 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26229 * source address as it is usually set in ip_wput_ire. As 26230 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26231 * and we end up here. We can't enter ip_wput_ire once the 26232 * IPsec processing is over and hence we need to do it here. 26233 */ 26234 ASSERT(q != NULL); 26235 UPDATE_OB_PKT_COUNT(ire); 26236 ire->ire_last_used_time = lbolt; 26237 if (ipha->ipha_src == 0) 26238 ipha->ipha_src = ire->ire_src_addr; 26239 26240 /* PFHooks: LOOPBACK_OUT */ 26241 out_ill = ire_to_ill(ire); 26242 26243 /* 26244 * DTrace this as ip:::send. A blocked packet will fire the 26245 * send probe, but not the receive probe. 26246 */ 26247 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26248 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26249 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26250 26251 DTRACE_PROBE4(ip4__loopback__out__start, 26252 ill_t *, NULL, ill_t *, out_ill, 26253 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26254 26255 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26256 ipst->ips_ipv4firewall_loopback_out, 26257 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26258 26259 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26260 26261 if (ipsec_mp != NULL) 26262 ip_wput_local(RD(q), out_ill, 26263 ipha, ipsec_mp, ire, 0, zoneid); 26264 if (ire_need_rele) 26265 ire_refrele(ire); 26266 goto done; 26267 } 26268 26269 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26270 /* 26271 * We are through with IPsec processing. 26272 * Fragment this and send it on the wire. 26273 */ 26274 if (io->ipsec_out_accelerated) { 26275 /* 26276 * The packet has been accelerated but must 26277 * be fragmented. This should not happen 26278 * since AH and ESP must not accelerate 26279 * packets that need fragmentation, however 26280 * the configuration could have changed 26281 * since the AH or ESP processing. 26282 * Drop packet. 26283 * IPsec KSTATS: bump bean counter here. 26284 */ 26285 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26286 "fragmented accelerated packet!\n")); 26287 freemsg(ipsec_mp); 26288 } else { 26289 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26290 } 26291 if (ire_need_rele) 26292 ire_refrele(ire); 26293 goto done; 26294 } 26295 26296 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26297 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26298 (void *)ire->ire_ipif, (void *)ipif)); 26299 26300 /* 26301 * Multiroute the secured packet, unless IPsec really 26302 * requires the packet to go out only through a particular 26303 * interface. 26304 */ 26305 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26306 ire_t *first_ire; 26307 irb = ire->ire_bucket; 26308 ASSERT(irb != NULL); 26309 /* 26310 * This ire has been looked up as the one that 26311 * goes through the given ipif; 26312 * make sure we do not omit any other multiroute ire 26313 * that may be present in the bucket before this one. 26314 */ 26315 IRB_REFHOLD(irb); 26316 for (first_ire = irb->irb_ire; 26317 first_ire != NULL; 26318 first_ire = first_ire->ire_next) { 26319 if ((first_ire->ire_flags & RTF_MULTIRT) && 26320 (first_ire->ire_addr == ire->ire_addr) && 26321 !(first_ire->ire_marks & 26322 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26323 break; 26324 } 26325 } 26326 26327 if ((first_ire != NULL) && (first_ire != ire)) { 26328 /* 26329 * Don't change the ire if the packet must 26330 * be fragmented if sent via this new one. 26331 */ 26332 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26333 IRE_REFHOLD(first_ire); 26334 if (ire_need_rele) 26335 ire_refrele(ire); 26336 else 26337 ire_need_rele = B_TRUE; 26338 ire = first_ire; 26339 } 26340 } 26341 IRB_REFRELE(irb); 26342 26343 multirt_send = B_TRUE; 26344 max_frag = ire->ire_max_frag; 26345 } else { 26346 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26347 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26348 "flag, attach_if %d\n", attach_if)); 26349 } 26350 } 26351 26352 /* 26353 * In most cases, the emission loop below is entered only once. 26354 * Only in the case where the ire holds the RTF_MULTIRT 26355 * flag, we loop to process all RTF_MULTIRT ires in the 26356 * bucket, and send the packet through all crossed 26357 * RTF_MULTIRT routes. 26358 */ 26359 do { 26360 if (multirt_send) { 26361 /* 26362 * ire1 holds here the next ire to process in the 26363 * bucket. If multirouting is expected, 26364 * any non-RTF_MULTIRT ire that has the 26365 * right destination address is ignored. 26366 */ 26367 ASSERT(irb != NULL); 26368 IRB_REFHOLD(irb); 26369 for (ire1 = ire->ire_next; 26370 ire1 != NULL; 26371 ire1 = ire1->ire_next) { 26372 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26373 continue; 26374 if (ire1->ire_addr != ire->ire_addr) 26375 continue; 26376 if (ire1->ire_marks & 26377 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26378 continue; 26379 /* No loopback here */ 26380 if (ire1->ire_stq == NULL) 26381 continue; 26382 /* 26383 * Ensure we do not exceed the MTU 26384 * of the next route. 26385 */ 26386 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26387 ip_multirt_bad_mtu(ire1, max_frag); 26388 continue; 26389 } 26390 26391 IRE_REFHOLD(ire1); 26392 break; 26393 } 26394 IRB_REFRELE(irb); 26395 if (ire1 != NULL) { 26396 /* 26397 * We are in a multiple send case, need to 26398 * make a copy of the packet. 26399 */ 26400 next_mp = copymsg(ipsec_mp); 26401 if (next_mp == NULL) { 26402 ire_refrele(ire1); 26403 ire1 = NULL; 26404 } 26405 } 26406 } 26407 /* 26408 * Everything is done. Send it out on the wire 26409 * 26410 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26411 * either send it on the wire or, in the case of 26412 * HW acceleration, call ipsec_hw_putnext. 26413 */ 26414 if (ire->ire_nce && 26415 ire->ire_nce->nce_state != ND_REACHABLE) { 26416 DTRACE_PROBE2(ip__wput__ipsec__bail, 26417 (ire_t *), ire, (mblk_t *), ipsec_mp); 26418 /* 26419 * If ire's link-layer is unresolved (this 26420 * would only happen if the incomplete ire 26421 * was added to cachetable via forwarding path) 26422 * don't bother going to ip_xmit_v4. Just drop the 26423 * packet. 26424 * There is a slight risk here, in that, if we 26425 * have the forwarding path create an incomplete 26426 * IRE, then until the IRE is completed, any 26427 * transmitted IPsec packets will be dropped 26428 * instead of being queued waiting for resolution. 26429 * 26430 * But the likelihood of a forwarding packet and a wput 26431 * packet sending to the same dst at the same time 26432 * and there not yet be an ARP entry for it is small. 26433 * Furthermore, if this actually happens, it might 26434 * be likely that wput would generate multiple 26435 * packets (and forwarding would also have a train 26436 * of packets) for that destination. If this is 26437 * the case, some of them would have been dropped 26438 * anyway, since ARP only queues a few packets while 26439 * waiting for resolution 26440 * 26441 * NOTE: We should really call ip_xmit_v4, 26442 * and let it queue the packet and send the 26443 * ARP query and have ARP come back thus: 26444 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26445 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26446 * hw accel work. But it's too complex to get 26447 * the IPsec hw acceleration approach to fit 26448 * well with ip_xmit_v4 doing ARP without 26449 * doing IPsec simplification. For now, we just 26450 * poke ip_xmit_v4 to trigger the arp resolve, so 26451 * that we can continue with the send on the next 26452 * attempt. 26453 * 26454 * XXX THis should be revisited, when 26455 * the IPsec/IP interaction is cleaned up 26456 */ 26457 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26458 " - dropping packet\n")); 26459 freemsg(ipsec_mp); 26460 /* 26461 * Call ip_xmit_v4() to trigger ARP query 26462 * in case the nce_state is ND_INITIAL 26463 */ 26464 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26465 goto drop_pkt; 26466 } 26467 26468 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26469 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26470 mblk_t *, ipsec_mp); 26471 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26472 ipst->ips_ipv4firewall_physical_out, NULL, 26473 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26474 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26475 if (ipsec_mp == NULL) 26476 goto drop_pkt; 26477 26478 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26479 pktxmit_state = ip_xmit_v4(mp, ire, 26480 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26481 26482 if ((pktxmit_state == SEND_FAILED) || 26483 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26484 26485 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26486 drop_pkt: 26487 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26488 ipIfStatsOutDiscards); 26489 if (ire_need_rele) 26490 ire_refrele(ire); 26491 if (ire1 != NULL) { 26492 ire_refrele(ire1); 26493 freemsg(next_mp); 26494 } 26495 goto done; 26496 } 26497 26498 freeb(ipsec_mp); 26499 if (ire_need_rele) 26500 ire_refrele(ire); 26501 26502 if (ire1 != NULL) { 26503 ire = ire1; 26504 ire_need_rele = B_TRUE; 26505 ASSERT(next_mp); 26506 ipsec_mp = next_mp; 26507 mp = ipsec_mp->b_cont; 26508 ire1 = NULL; 26509 next_mp = NULL; 26510 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26511 } else { 26512 multirt_send = B_FALSE; 26513 } 26514 } while (multirt_send); 26515 done: 26516 if (ill != NULL && ill_need_rele) 26517 ill_refrele(ill); 26518 if (ipif != NULL) 26519 ipif_refrele(ipif); 26520 } 26521 26522 /* 26523 * Get the ill corresponding to the specified ire, and compare its 26524 * capabilities with the protocol and algorithms specified by the 26525 * the SA obtained from ipsec_out. If they match, annotate the 26526 * ipsec_out structure to indicate that the packet needs acceleration. 26527 * 26528 * 26529 * A packet is eligible for outbound hardware acceleration if the 26530 * following conditions are satisfied: 26531 * 26532 * 1. the packet will not be fragmented 26533 * 2. the provider supports the algorithm 26534 * 3. there is no pending control message being exchanged 26535 * 4. snoop is not attached 26536 * 5. the destination address is not a broadcast or multicast address. 26537 * 26538 * Rationale: 26539 * - Hardware drivers do not support fragmentation with 26540 * the current interface. 26541 * - snoop, multicast, and broadcast may result in exposure of 26542 * a cleartext datagram. 26543 * We check all five of these conditions here. 26544 * 26545 * XXX would like to nuke "ire_t *" parameter here; problem is that 26546 * IRE is only way to figure out if a v4 address is a broadcast and 26547 * thus ineligible for acceleration... 26548 */ 26549 static void 26550 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26551 { 26552 ipsec_out_t *io; 26553 mblk_t *data_mp; 26554 uint_t plen, overhead; 26555 ip_stack_t *ipst; 26556 26557 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26558 return; 26559 26560 if (ill == NULL) 26561 return; 26562 ipst = ill->ill_ipst; 26563 /* 26564 * Destination address is a broadcast or multicast. Punt. 26565 */ 26566 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26567 IRE_LOCAL))) 26568 return; 26569 26570 data_mp = ipsec_mp->b_cont; 26571 26572 if (ill->ill_isv6) { 26573 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26574 26575 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26576 return; 26577 26578 plen = ip6h->ip6_plen; 26579 } else { 26580 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26581 26582 if (CLASSD(ipha->ipha_dst)) 26583 return; 26584 26585 plen = ipha->ipha_length; 26586 } 26587 /* 26588 * Is there a pending DLPI control message being exchanged 26589 * between IP/IPsec and the DLS Provider? If there is, it 26590 * could be a SADB update, and the state of the DLS Provider 26591 * SADB might not be in sync with the SADB maintained by 26592 * IPsec. To avoid dropping packets or using the wrong keying 26593 * material, we do not accelerate this packet. 26594 */ 26595 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26596 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26597 "ill_dlpi_pending! don't accelerate packet\n")); 26598 return; 26599 } 26600 26601 /* 26602 * Is the Provider in promiscous mode? If it does, we don't 26603 * accelerate the packet since it will bounce back up to the 26604 * listeners in the clear. 26605 */ 26606 if (ill->ill_promisc_on_phys) { 26607 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26608 "ill in promiscous mode, don't accelerate packet\n")); 26609 return; 26610 } 26611 26612 /* 26613 * Will the packet require fragmentation? 26614 */ 26615 26616 /* 26617 * IPsec ESP note: this is a pessimistic estimate, but the same 26618 * as is used elsewhere. 26619 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26620 * + 2-byte trailer 26621 */ 26622 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26623 IPSEC_BASE_ESP_HDR_SIZE(sa); 26624 26625 if ((plen + overhead) > ill->ill_max_mtu) 26626 return; 26627 26628 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26629 26630 /* 26631 * Can the ill accelerate this IPsec protocol and algorithm 26632 * specified by the SA? 26633 */ 26634 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26635 ill->ill_isv6, sa, ipst->ips_netstack)) { 26636 return; 26637 } 26638 26639 /* 26640 * Tell AH or ESP that the outbound ill is capable of 26641 * accelerating this packet. 26642 */ 26643 io->ipsec_out_is_capab_ill = B_TRUE; 26644 } 26645 26646 /* 26647 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26648 * 26649 * If this function returns B_TRUE, the requested SA's have been filled 26650 * into the ipsec_out_*_sa pointers. 26651 * 26652 * If the function returns B_FALSE, the packet has been "consumed", most 26653 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26654 * 26655 * The SA references created by the protocol-specific "select" 26656 * function will be released when the ipsec_mp is freed, thanks to the 26657 * ipsec_out_free destructor -- see spd.c. 26658 */ 26659 static boolean_t 26660 ipsec_out_select_sa(mblk_t *ipsec_mp) 26661 { 26662 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26663 ipsec_out_t *io; 26664 ipsec_policy_t *pp; 26665 ipsec_action_t *ap; 26666 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26667 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26668 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26669 26670 if (!io->ipsec_out_secure) { 26671 /* 26672 * We came here by mistake. 26673 * Don't bother with ipsec processing 26674 * We should "discourage" this path in the future. 26675 */ 26676 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26677 return (B_FALSE); 26678 } 26679 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26680 ASSERT((io->ipsec_out_policy != NULL) || 26681 (io->ipsec_out_act != NULL)); 26682 26683 ASSERT(io->ipsec_out_failed == B_FALSE); 26684 26685 /* 26686 * IPsec processing has started. 26687 */ 26688 io->ipsec_out_proc_begin = B_TRUE; 26689 ap = io->ipsec_out_act; 26690 if (ap == NULL) { 26691 pp = io->ipsec_out_policy; 26692 ASSERT(pp != NULL); 26693 ap = pp->ipsp_act; 26694 ASSERT(ap != NULL); 26695 } 26696 26697 /* 26698 * We have an action. now, let's select SA's. 26699 * (In the future, we can cache this in the conn_t..) 26700 */ 26701 if (ap->ipa_want_esp) { 26702 if (io->ipsec_out_esp_sa == NULL) { 26703 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26704 IPPROTO_ESP); 26705 } 26706 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26707 } 26708 26709 if (ap->ipa_want_ah) { 26710 if (io->ipsec_out_ah_sa == NULL) { 26711 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26712 IPPROTO_AH); 26713 } 26714 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26715 /* 26716 * The ESP and AH processing order needs to be preserved 26717 * when both protocols are required (ESP should be applied 26718 * before AH for an outbound packet). Force an ESP ACQUIRE 26719 * when both ESP and AH are required, and an AH ACQUIRE 26720 * is needed. 26721 */ 26722 if (ap->ipa_want_esp && need_ah_acquire) 26723 need_esp_acquire = B_TRUE; 26724 } 26725 26726 /* 26727 * Send an ACQUIRE (extended, regular, or both) if we need one. 26728 * Release SAs that got referenced, but will not be used until we 26729 * acquire _all_ of the SAs we need. 26730 */ 26731 if (need_ah_acquire || need_esp_acquire) { 26732 if (io->ipsec_out_ah_sa != NULL) { 26733 IPSA_REFRELE(io->ipsec_out_ah_sa); 26734 io->ipsec_out_ah_sa = NULL; 26735 } 26736 if (io->ipsec_out_esp_sa != NULL) { 26737 IPSA_REFRELE(io->ipsec_out_esp_sa); 26738 io->ipsec_out_esp_sa = NULL; 26739 } 26740 26741 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26742 return (B_FALSE); 26743 } 26744 26745 return (B_TRUE); 26746 } 26747 26748 /* 26749 * Process an IPSEC_OUT message and see what you can 26750 * do with it. 26751 * IPQoS Notes: 26752 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26753 * IPsec. 26754 * XXX would like to nuke ire_t. 26755 * XXX ill_index better be "real" 26756 */ 26757 void 26758 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26759 { 26760 ipsec_out_t *io; 26761 ipsec_policy_t *pp; 26762 ipsec_action_t *ap; 26763 ipha_t *ipha; 26764 ip6_t *ip6h; 26765 mblk_t *mp; 26766 ill_t *ill; 26767 zoneid_t zoneid; 26768 ipsec_status_t ipsec_rc; 26769 boolean_t ill_need_rele = B_FALSE; 26770 ip_stack_t *ipst; 26771 ipsec_stack_t *ipss; 26772 26773 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26774 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26775 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26776 ipst = io->ipsec_out_ns->netstack_ip; 26777 mp = ipsec_mp->b_cont; 26778 26779 /* 26780 * Initiate IPPF processing. We do it here to account for packets 26781 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26782 * We can check for ipsec_out_proc_begin even for such packets, as 26783 * they will always be false (asserted below). 26784 */ 26785 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26786 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26787 io->ipsec_out_ill_index : ill_index); 26788 if (mp == NULL) { 26789 ip2dbg(("ipsec_out_process: packet dropped "\ 26790 "during IPPF processing\n")); 26791 freeb(ipsec_mp); 26792 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26793 return; 26794 } 26795 } 26796 26797 if (!io->ipsec_out_secure) { 26798 /* 26799 * We came here by mistake. 26800 * Don't bother with ipsec processing 26801 * Should "discourage" this path in the future. 26802 */ 26803 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26804 goto done; 26805 } 26806 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26807 ASSERT((io->ipsec_out_policy != NULL) || 26808 (io->ipsec_out_act != NULL)); 26809 ASSERT(io->ipsec_out_failed == B_FALSE); 26810 26811 ipss = ipst->ips_netstack->netstack_ipsec; 26812 if (!ipsec_loaded(ipss)) { 26813 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26814 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26815 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26816 } else { 26817 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26818 } 26819 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26820 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26821 &ipss->ipsec_dropper); 26822 return; 26823 } 26824 26825 /* 26826 * IPsec processing has started. 26827 */ 26828 io->ipsec_out_proc_begin = B_TRUE; 26829 ap = io->ipsec_out_act; 26830 if (ap == NULL) { 26831 pp = io->ipsec_out_policy; 26832 ASSERT(pp != NULL); 26833 ap = pp->ipsp_act; 26834 ASSERT(ap != NULL); 26835 } 26836 26837 /* 26838 * Save the outbound ill index. When the packet comes back 26839 * from IPsec, we make sure the ill hasn't changed or disappeared 26840 * before sending it the accelerated packet. 26841 */ 26842 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26843 int ifindex; 26844 ill = ire_to_ill(ire); 26845 ifindex = ill->ill_phyint->phyint_ifindex; 26846 io->ipsec_out_capab_ill_index = ifindex; 26847 } 26848 26849 /* 26850 * The order of processing is first insert a IP header if needed. 26851 * Then insert the ESP header and then the AH header. 26852 */ 26853 if ((io->ipsec_out_se_done == B_FALSE) && 26854 (ap->ipa_want_se)) { 26855 /* 26856 * First get the outer IP header before sending 26857 * it to ESP. 26858 */ 26859 ipha_t *oipha, *iipha; 26860 mblk_t *outer_mp, *inner_mp; 26861 26862 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26863 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26864 "ipsec_out_process: " 26865 "Self-Encapsulation failed: Out of memory\n"); 26866 freemsg(ipsec_mp); 26867 if (ill != NULL) { 26868 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26869 } else { 26870 BUMP_MIB(&ipst->ips_ip_mib, 26871 ipIfStatsOutDiscards); 26872 } 26873 return; 26874 } 26875 inner_mp = ipsec_mp->b_cont; 26876 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26877 oipha = (ipha_t *)outer_mp->b_rptr; 26878 iipha = (ipha_t *)inner_mp->b_rptr; 26879 *oipha = *iipha; 26880 outer_mp->b_wptr += sizeof (ipha_t); 26881 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26882 sizeof (ipha_t)); 26883 oipha->ipha_protocol = IPPROTO_ENCAP; 26884 oipha->ipha_version_and_hdr_length = 26885 IP_SIMPLE_HDR_VERSION; 26886 oipha->ipha_hdr_checksum = 0; 26887 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26888 outer_mp->b_cont = inner_mp; 26889 ipsec_mp->b_cont = outer_mp; 26890 26891 io->ipsec_out_se_done = B_TRUE; 26892 io->ipsec_out_tunnel = B_TRUE; 26893 } 26894 26895 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26896 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26897 !ipsec_out_select_sa(ipsec_mp)) 26898 return; 26899 26900 /* 26901 * By now, we know what SA's to use. Toss over to ESP & AH 26902 * to do the heavy lifting. 26903 */ 26904 zoneid = io->ipsec_out_zoneid; 26905 ASSERT(zoneid != ALL_ZONES); 26906 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26907 ASSERT(io->ipsec_out_esp_sa != NULL); 26908 io->ipsec_out_esp_done = B_TRUE; 26909 /* 26910 * Note that since hw accel can only apply one transform, 26911 * not two, we skip hw accel for ESP if we also have AH 26912 * This is an design limitation of the interface 26913 * which should be revisited. 26914 */ 26915 ASSERT(ire != NULL); 26916 if (io->ipsec_out_ah_sa == NULL) { 26917 ill = (ill_t *)ire->ire_stq->q_ptr; 26918 ipsec_out_is_accelerated(ipsec_mp, 26919 io->ipsec_out_esp_sa, ill, ire); 26920 } 26921 26922 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26923 switch (ipsec_rc) { 26924 case IPSEC_STATUS_SUCCESS: 26925 break; 26926 case IPSEC_STATUS_FAILED: 26927 if (ill != NULL) { 26928 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26929 } else { 26930 BUMP_MIB(&ipst->ips_ip_mib, 26931 ipIfStatsOutDiscards); 26932 } 26933 /* FALLTHRU */ 26934 case IPSEC_STATUS_PENDING: 26935 return; 26936 } 26937 } 26938 26939 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26940 ASSERT(io->ipsec_out_ah_sa != NULL); 26941 io->ipsec_out_ah_done = B_TRUE; 26942 if (ire == NULL) { 26943 int idx = io->ipsec_out_capab_ill_index; 26944 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26945 NULL, NULL, NULL, NULL, ipst); 26946 ill_need_rele = B_TRUE; 26947 } else { 26948 ill = (ill_t *)ire->ire_stq->q_ptr; 26949 } 26950 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26951 ire); 26952 26953 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26954 switch (ipsec_rc) { 26955 case IPSEC_STATUS_SUCCESS: 26956 break; 26957 case IPSEC_STATUS_FAILED: 26958 if (ill != NULL) { 26959 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26960 } else { 26961 BUMP_MIB(&ipst->ips_ip_mib, 26962 ipIfStatsOutDiscards); 26963 } 26964 /* FALLTHRU */ 26965 case IPSEC_STATUS_PENDING: 26966 if (ill != NULL && ill_need_rele) 26967 ill_refrele(ill); 26968 return; 26969 } 26970 } 26971 /* 26972 * We are done with IPsec processing. Send it over 26973 * the wire. 26974 */ 26975 done: 26976 mp = ipsec_mp->b_cont; 26977 ipha = (ipha_t *)mp->b_rptr; 26978 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26979 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26980 } else { 26981 ip6h = (ip6_t *)ipha; 26982 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26983 } 26984 if (ill != NULL && ill_need_rele) 26985 ill_refrele(ill); 26986 } 26987 26988 /* ARGSUSED */ 26989 void 26990 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26991 { 26992 opt_restart_t *or; 26993 int err; 26994 conn_t *connp; 26995 26996 ASSERT(CONN_Q(q)); 26997 connp = Q_TO_CONN(q); 26998 26999 ASSERT(first_mp->b_datap->db_type == M_CTL); 27000 or = (opt_restart_t *)first_mp->b_rptr; 27001 /* 27002 * We don't need to pass any credentials here since this is just 27003 * a restart. The credentials are passed in when svr4_optcom_req 27004 * is called the first time (from ip_wput_nondata). 27005 */ 27006 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27007 err = svr4_optcom_req(q, first_mp, NULL, 27008 &ip_opt_obj, B_FALSE); 27009 } else { 27010 ASSERT(or->or_type == T_OPTMGMT_REQ); 27011 err = tpi_optcom_req(q, first_mp, NULL, 27012 &ip_opt_obj, B_FALSE); 27013 } 27014 if (err != EINPROGRESS) { 27015 /* operation is done */ 27016 CONN_OPER_PENDING_DONE(connp); 27017 } 27018 } 27019 27020 /* 27021 * ioctls that go through a down/up sequence may need to wait for the down 27022 * to complete. This involves waiting for the ire and ipif refcnts to go down 27023 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27024 */ 27025 /* ARGSUSED */ 27026 void 27027 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27028 { 27029 struct iocblk *iocp; 27030 mblk_t *mp1; 27031 ip_ioctl_cmd_t *ipip; 27032 int err; 27033 sin_t *sin; 27034 struct lifreq *lifr; 27035 struct ifreq *ifr; 27036 27037 iocp = (struct iocblk *)mp->b_rptr; 27038 ASSERT(ipsq != NULL); 27039 /* Existence of mp1 verified in ip_wput_nondata */ 27040 mp1 = mp->b_cont->b_cont; 27041 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27042 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27043 /* 27044 * Special case where ipsq_current_ipif is not set: 27045 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27046 * ill could also have become part of a ipmp group in the 27047 * process, we are here as were not able to complete the 27048 * operation in ipif_set_values because we could not become 27049 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27050 * will not be set so we need to set it. 27051 */ 27052 ill_t *ill = q->q_ptr; 27053 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27054 } 27055 ASSERT(ipsq->ipsq_current_ipif != NULL); 27056 27057 if (ipip->ipi_cmd_type == IF_CMD) { 27058 /* This a old style SIOC[GS]IF* command */ 27059 ifr = (struct ifreq *)mp1->b_rptr; 27060 sin = (sin_t *)&ifr->ifr_addr; 27061 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27062 /* This a new style SIOC[GS]LIF* command */ 27063 lifr = (struct lifreq *)mp1->b_rptr; 27064 sin = (sin_t *)&lifr->lifr_addr; 27065 } else { 27066 sin = NULL; 27067 } 27068 27069 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27070 ipip, mp1->b_rptr); 27071 27072 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27073 } 27074 27075 /* 27076 * ioctl processing 27077 * 27078 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 27079 * the ioctl command in the ioctl tables, determines the copyin data size 27080 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 27081 * 27082 * ioctl processing then continues when the M_IOCDATA makes its way down to 27083 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 27084 * associated 'conn' is refheld till the end of the ioctl and the general 27085 * ioctl processing function ip_process_ioctl() is called to extract the 27086 * arguments and process the ioctl. To simplify extraction, ioctl commands 27087 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 27088 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 27089 * is used to extract the ioctl's arguments. 27090 * 27091 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27092 * so goes thru the serialization primitive ipsq_try_enter. Then the 27093 * appropriate function to handle the ioctl is called based on the entry in 27094 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27095 * which also refreleases the 'conn' that was refheld at the start of the 27096 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27097 * 27098 * Many exclusive ioctls go thru an internal down up sequence as part of 27099 * the operation. For example an attempt to change the IP address of an 27100 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27101 * does all the cleanup such as deleting all ires that use this address. 27102 * Then we need to wait till all references to the interface go away. 27103 */ 27104 void 27105 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27106 { 27107 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27108 ip_ioctl_cmd_t *ipip = arg; 27109 ip_extract_func_t *extract_funcp; 27110 cmd_info_t ci; 27111 int err; 27112 27113 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27114 27115 if (ipip == NULL) 27116 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27117 27118 /* 27119 * SIOCLIFADDIF needs to go thru a special path since the 27120 * ill may not exist yet. This happens in the case of lo0 27121 * which is created using this ioctl. 27122 */ 27123 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27124 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27125 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27126 return; 27127 } 27128 27129 ci.ci_ipif = NULL; 27130 if (ipip->ipi_cmd_type == MISC_CMD) { 27131 /* 27132 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27133 */ 27134 if (ipip->ipi_cmd == IF_UNITSEL) { 27135 /* ioctl comes down the ill */ 27136 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27137 ipif_refhold(ci.ci_ipif); 27138 } 27139 err = 0; 27140 ci.ci_sin = NULL; 27141 ci.ci_sin6 = NULL; 27142 ci.ci_lifr = NULL; 27143 } else { 27144 switch (ipip->ipi_cmd_type) { 27145 case IF_CMD: 27146 case LIF_CMD: 27147 extract_funcp = ip_extract_lifreq; 27148 break; 27149 27150 case ARP_CMD: 27151 case XARP_CMD: 27152 extract_funcp = ip_extract_arpreq; 27153 break; 27154 27155 case TUN_CMD: 27156 extract_funcp = ip_extract_tunreq; 27157 break; 27158 27159 case MSFILT_CMD: 27160 extract_funcp = ip_extract_msfilter; 27161 break; 27162 27163 default: 27164 ASSERT(0); 27165 } 27166 27167 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27168 if (err != 0) { 27169 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27170 return; 27171 } 27172 27173 /* 27174 * All of the extraction functions return a refheld ipif. 27175 */ 27176 ASSERT(ci.ci_ipif != NULL); 27177 } 27178 27179 if (!(ipip->ipi_flags & IPI_WR)) { 27180 /* 27181 * A return value of EINPROGRESS means the ioctl is 27182 * either queued and waiting for some reason or has 27183 * already completed. 27184 */ 27185 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27186 ci.ci_lifr); 27187 if (ci.ci_ipif != NULL) 27188 ipif_refrele(ci.ci_ipif); 27189 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27190 return; 27191 } 27192 27193 /* 27194 * If ipsq is non-null, we are already being called exclusively on an 27195 * ill but in the case of a failover in progress it is the "from" ill, 27196 * rather than the "to" ill (which is the ill ptr passed in). 27197 * In order to ensure we are exclusive on both ILLs we rerun 27198 * ipsq_try_enter() here, ipsq's support recursive entry. 27199 */ 27200 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27201 ASSERT(ci.ci_ipif != NULL); 27202 27203 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27204 NEW_OP, B_TRUE); 27205 27206 /* 27207 * Release the ipif so that ipif_down and friends that wait for 27208 * references to go away are not misled about the current ipif_refcnt 27209 * values. We are writer so we can access the ipif even after releasing 27210 * the ipif. 27211 */ 27212 ipif_refrele(ci.ci_ipif); 27213 if (ipsq == NULL) 27214 return; 27215 27216 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27217 27218 /* 27219 * For most set ioctls that come here, this serves as a single point 27220 * where we set the IPIF_CHANGING flag. This ensures that there won't 27221 * be any new references to the ipif. This helps functions that go 27222 * through this path and end up trying to wait for the refcnts 27223 * associated with the ipif to go down to zero. Some exceptions are 27224 * Failover, Failback, and Groupname commands that operate on more than 27225 * just the ci.ci_ipif. These commands internally determine the 27226 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27227 * flags on that set. Another exception is the Removeif command that 27228 * sets the IPIF_CONDEMNED flag internally after identifying the right 27229 * ipif to operate on. 27230 */ 27231 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27232 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27233 ipip->ipi_cmd != SIOCLIFFAILOVER && 27234 ipip->ipi_cmd != SIOCLIFFAILBACK && 27235 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27236 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27237 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27238 27239 /* 27240 * A return value of EINPROGRESS means the ioctl is 27241 * either queued and waiting for some reason or has 27242 * already completed. 27243 */ 27244 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27245 27246 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27247 27248 ipsq_exit(ipsq); 27249 } 27250 27251 /* 27252 * Complete the ioctl. Typically ioctls use the mi package and need to 27253 * do mi_copyout/mi_copy_done. 27254 */ 27255 void 27256 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27257 { 27258 conn_t *connp = NULL; 27259 27260 if (err == EINPROGRESS) 27261 return; 27262 27263 if (CONN_Q(q)) { 27264 connp = Q_TO_CONN(q); 27265 ASSERT(connp->conn_ref >= 2); 27266 } 27267 27268 switch (mode) { 27269 case COPYOUT: 27270 if (err == 0) 27271 mi_copyout(q, mp); 27272 else 27273 mi_copy_done(q, mp, err); 27274 break; 27275 27276 case NO_COPYOUT: 27277 mi_copy_done(q, mp, err); 27278 break; 27279 27280 default: 27281 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27282 break; 27283 } 27284 27285 /* 27286 * The refhold placed at the start of the ioctl is released here. 27287 */ 27288 if (connp != NULL) 27289 CONN_OPER_PENDING_DONE(connp); 27290 27291 if (ipsq != NULL) 27292 ipsq_current_finish(ipsq); 27293 } 27294 27295 /* 27296 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27297 */ 27298 /* ARGSUSED */ 27299 void 27300 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27301 { 27302 conn_t *connp = arg; 27303 tcp_t *tcp; 27304 27305 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27306 tcp = connp->conn_tcp; 27307 27308 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27309 freemsg(mp); 27310 else 27311 tcp_rput_other(tcp, mp); 27312 CONN_OPER_PENDING_DONE(connp); 27313 } 27314 27315 /* Called from ip_wput for all non data messages */ 27316 /* ARGSUSED */ 27317 void 27318 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27319 { 27320 mblk_t *mp1; 27321 ire_t *ire, *fake_ire; 27322 ill_t *ill; 27323 struct iocblk *iocp; 27324 ip_ioctl_cmd_t *ipip; 27325 cred_t *cr; 27326 conn_t *connp; 27327 int err; 27328 nce_t *nce; 27329 ipif_t *ipif; 27330 ip_stack_t *ipst; 27331 char *proto_str; 27332 27333 if (CONN_Q(q)) { 27334 connp = Q_TO_CONN(q); 27335 ipst = connp->conn_netstack->netstack_ip; 27336 } else { 27337 connp = NULL; 27338 ipst = ILLQ_TO_IPST(q); 27339 } 27340 27341 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27342 27343 switch (DB_TYPE(mp)) { 27344 case M_IOCTL: 27345 /* 27346 * IOCTL processing begins in ip_sioctl_copyin_setup which 27347 * will arrange to copy in associated control structures. 27348 */ 27349 ip_sioctl_copyin_setup(q, mp); 27350 return; 27351 case M_IOCDATA: 27352 /* 27353 * Ensure that this is associated with one of our trans- 27354 * parent ioctls. If it's not ours, discard it if we're 27355 * running as a driver, or pass it on if we're a module. 27356 */ 27357 iocp = (struct iocblk *)mp->b_rptr; 27358 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27359 if (ipip == NULL) { 27360 if (q->q_next == NULL) { 27361 goto nak; 27362 } else { 27363 putnext(q, mp); 27364 } 27365 return; 27366 } 27367 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27368 /* 27369 * the ioctl is one we recognise, but is not 27370 * consumed by IP as a module, pass M_IOCDATA 27371 * for processing downstream, but only for 27372 * common Streams ioctls. 27373 */ 27374 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27375 putnext(q, mp); 27376 return; 27377 } else { 27378 goto nak; 27379 } 27380 } 27381 27382 /* IOCTL continuation following copyin or copyout. */ 27383 if (mi_copy_state(q, mp, NULL) == -1) { 27384 /* 27385 * The copy operation failed. mi_copy_state already 27386 * cleaned up, so we're out of here. 27387 */ 27388 return; 27389 } 27390 /* 27391 * If we just completed a copy in, we become writer and 27392 * continue processing in ip_sioctl_copyin_done. If it 27393 * was a copy out, we call mi_copyout again. If there is 27394 * nothing more to copy out, it will complete the IOCTL. 27395 */ 27396 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27397 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27398 mi_copy_done(q, mp, EPROTO); 27399 return; 27400 } 27401 /* 27402 * Check for cases that need more copying. A return 27403 * value of 0 means a second copyin has been started, 27404 * so we return; a return value of 1 means no more 27405 * copying is needed, so we continue. 27406 */ 27407 if (ipip->ipi_cmd_type == MSFILT_CMD && 27408 MI_COPY_COUNT(mp) == 1) { 27409 if (ip_copyin_msfilter(q, mp) == 0) 27410 return; 27411 } 27412 /* 27413 * Refhold the conn, till the ioctl completes. This is 27414 * needed in case the ioctl ends up in the pending mp 27415 * list. Every mp in the ill_pending_mp list and 27416 * the ipsq_pending_mp must have a refhold on the conn 27417 * to resume processing. The refhold is released when 27418 * the ioctl completes. (normally or abnormally) 27419 * In all cases ip_ioctl_finish is called to finish 27420 * the ioctl. 27421 */ 27422 if (connp != NULL) { 27423 /* This is not a reentry */ 27424 ASSERT(ipsq == NULL); 27425 CONN_INC_REF(connp); 27426 } else { 27427 if (!(ipip->ipi_flags & IPI_MODOK)) { 27428 mi_copy_done(q, mp, EINVAL); 27429 return; 27430 } 27431 } 27432 27433 ip_process_ioctl(ipsq, q, mp, ipip); 27434 27435 } else { 27436 mi_copyout(q, mp); 27437 } 27438 return; 27439 nak: 27440 iocp->ioc_error = EINVAL; 27441 mp->b_datap->db_type = M_IOCNAK; 27442 iocp->ioc_count = 0; 27443 qreply(q, mp); 27444 return; 27445 27446 case M_IOCNAK: 27447 /* 27448 * The only way we could get here is if a resolver didn't like 27449 * an IOCTL we sent it. This shouldn't happen. 27450 */ 27451 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27452 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27453 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27454 freemsg(mp); 27455 return; 27456 case M_IOCACK: 27457 /* /dev/ip shouldn't see this */ 27458 if (CONN_Q(q)) 27459 goto nak; 27460 27461 /* Finish socket ioctls passed through to ARP. */ 27462 ip_sioctl_iocack(q, mp); 27463 return; 27464 case M_FLUSH: 27465 if (*mp->b_rptr & FLUSHW) 27466 flushq(q, FLUSHALL); 27467 if (q->q_next) { 27468 putnext(q, mp); 27469 return; 27470 } 27471 if (*mp->b_rptr & FLUSHR) { 27472 *mp->b_rptr &= ~FLUSHW; 27473 qreply(q, mp); 27474 return; 27475 } 27476 freemsg(mp); 27477 return; 27478 case IRE_DB_REQ_TYPE: 27479 if (connp == NULL) { 27480 proto_str = "IRE_DB_REQ_TYPE"; 27481 goto protonak; 27482 } 27483 /* An Upper Level Protocol wants a copy of an IRE. */ 27484 ip_ire_req(q, mp); 27485 return; 27486 case M_CTL: 27487 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27488 break; 27489 27490 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27491 TUN_HELLO) { 27492 ASSERT(connp != NULL); 27493 connp->conn_flags |= IPCL_IPTUN; 27494 freeb(mp); 27495 return; 27496 } 27497 27498 /* M_CTL messages are used by ARP to tell us things. */ 27499 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27500 break; 27501 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27502 case AR_ENTRY_SQUERY: 27503 ip_wput_ctl(q, mp); 27504 return; 27505 case AR_CLIENT_NOTIFY: 27506 ip_arp_news(q, mp); 27507 return; 27508 case AR_DLPIOP_DONE: 27509 ASSERT(q->q_next != NULL); 27510 ill = (ill_t *)q->q_ptr; 27511 /* qwriter_ip releases the refhold */ 27512 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27513 ill_refhold(ill); 27514 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27515 return; 27516 case AR_ARP_CLOSING: 27517 /* 27518 * ARP (above us) is closing. If no ARP bringup is 27519 * currently pending, ack the message so that ARP 27520 * can complete its close. Also mark ill_arp_closing 27521 * so that new ARP bringups will fail. If any 27522 * ARP bringup is currently in progress, we will 27523 * ack this when the current ARP bringup completes. 27524 */ 27525 ASSERT(q->q_next != NULL); 27526 ill = (ill_t *)q->q_ptr; 27527 mutex_enter(&ill->ill_lock); 27528 ill->ill_arp_closing = 1; 27529 if (!ill->ill_arp_bringup_pending) { 27530 mutex_exit(&ill->ill_lock); 27531 qreply(q, mp); 27532 } else { 27533 mutex_exit(&ill->ill_lock); 27534 freemsg(mp); 27535 } 27536 return; 27537 case AR_ARP_EXTEND: 27538 /* 27539 * The ARP module above us is capable of duplicate 27540 * address detection. Old ATM drivers will not send 27541 * this message. 27542 */ 27543 ASSERT(q->q_next != NULL); 27544 ill = (ill_t *)q->q_ptr; 27545 ill->ill_arp_extend = B_TRUE; 27546 freemsg(mp); 27547 return; 27548 default: 27549 break; 27550 } 27551 break; 27552 case M_PROTO: 27553 case M_PCPROTO: 27554 /* 27555 * The only PROTO messages we expect are ULP binds and 27556 * copies of option negotiation acknowledgements. 27557 */ 27558 switch (((union T_primitives *)mp->b_rptr)->type) { 27559 case O_T_BIND_REQ: 27560 case T_BIND_REQ: { 27561 /* Request can get queued in bind */ 27562 if (connp == NULL) { 27563 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27564 goto protonak; 27565 } 27566 /* 27567 * The transports except SCTP call ip_bind_{v4,v6}() 27568 * directly instead of a a putnext. SCTP doesn't 27569 * generate any T_BIND_REQ since it has its own 27570 * fanout data structures. However, ESP and AH 27571 * come in for regular binds; all other cases are 27572 * bind retries. 27573 */ 27574 ASSERT(!IPCL_IS_SCTP(connp)); 27575 27576 /* Don't increment refcnt if this is a re-entry */ 27577 if (ipsq == NULL) 27578 CONN_INC_REF(connp); 27579 27580 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27581 connp, NULL) : ip_bind_v4(q, mp, connp); 27582 if (mp == NULL) 27583 return; 27584 if (IPCL_IS_TCP(connp)) { 27585 /* 27586 * In the case of TCP endpoint we 27587 * come here only for bind retries 27588 */ 27589 ASSERT(ipsq != NULL); 27590 CONN_INC_REF(connp); 27591 squeue_fill(connp->conn_sqp, mp, 27592 ip_resume_tcp_bind, connp, 27593 SQTAG_BIND_RETRY); 27594 } else if (IPCL_IS_UDP(connp)) { 27595 /* 27596 * In the case of UDP endpoint we 27597 * come here only for bind retries 27598 */ 27599 ASSERT(ipsq != NULL); 27600 udp_resume_bind(connp, mp); 27601 } else if (IPCL_IS_RAWIP(connp)) { 27602 /* 27603 * In the case of RAWIP endpoint we 27604 * come here only for bind retries 27605 */ 27606 ASSERT(ipsq != NULL); 27607 rawip_resume_bind(connp, mp); 27608 } else { 27609 /* The case of AH and ESP */ 27610 qreply(q, mp); 27611 CONN_OPER_PENDING_DONE(connp); 27612 } 27613 return; 27614 } 27615 case T_SVR4_OPTMGMT_REQ: 27616 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27617 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27618 27619 if (connp == NULL) { 27620 proto_str = "T_SVR4_OPTMGMT_REQ"; 27621 goto protonak; 27622 } 27623 27624 if (!snmpcom_req(q, mp, ip_snmp_set, 27625 ip_snmp_get, cr)) { 27626 /* 27627 * Call svr4_optcom_req so that it can 27628 * generate the ack. We don't come here 27629 * if this operation is being restarted. 27630 * ip_restart_optmgmt will drop the conn ref. 27631 * In the case of ipsec option after the ipsec 27632 * load is complete conn_restart_ipsec_waiter 27633 * drops the conn ref. 27634 */ 27635 ASSERT(ipsq == NULL); 27636 CONN_INC_REF(connp); 27637 if (ip_check_for_ipsec_opt(q, mp)) 27638 return; 27639 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27640 B_FALSE); 27641 if (err != EINPROGRESS) { 27642 /* Operation is done */ 27643 CONN_OPER_PENDING_DONE(connp); 27644 } 27645 } 27646 return; 27647 case T_OPTMGMT_REQ: 27648 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27649 /* 27650 * Note: No snmpcom_req support through new 27651 * T_OPTMGMT_REQ. 27652 * Call tpi_optcom_req so that it can 27653 * generate the ack. 27654 */ 27655 if (connp == NULL) { 27656 proto_str = "T_OPTMGMT_REQ"; 27657 goto protonak; 27658 } 27659 27660 ASSERT(ipsq == NULL); 27661 /* 27662 * We don't come here for restart. ip_restart_optmgmt 27663 * will drop the conn ref. In the case of ipsec option 27664 * after the ipsec load is complete 27665 * conn_restart_ipsec_waiter drops the conn ref. 27666 */ 27667 CONN_INC_REF(connp); 27668 if (ip_check_for_ipsec_opt(q, mp)) 27669 return; 27670 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27671 if (err != EINPROGRESS) { 27672 /* Operation is done */ 27673 CONN_OPER_PENDING_DONE(connp); 27674 } 27675 return; 27676 case T_UNBIND_REQ: 27677 if (connp == NULL) { 27678 proto_str = "T_UNBIND_REQ"; 27679 goto protonak; 27680 } 27681 mp = ip_unbind(q, mp); 27682 qreply(q, mp); 27683 return; 27684 default: 27685 /* 27686 * Have to drop any DLPI messages coming down from 27687 * arp (such as an info_req which would cause ip 27688 * to receive an extra info_ack if it was passed 27689 * through. 27690 */ 27691 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27692 (int)*(uint_t *)mp->b_rptr)); 27693 freemsg(mp); 27694 return; 27695 } 27696 /* NOTREACHED */ 27697 case IRE_DB_TYPE: { 27698 nce_t *nce; 27699 ill_t *ill; 27700 in6_addr_t gw_addr_v6; 27701 27702 27703 /* 27704 * This is a response back from a resolver. It 27705 * consists of a message chain containing: 27706 * IRE_MBLK-->LL_HDR_MBLK->pkt 27707 * The IRE_MBLK is the one we allocated in ip_newroute. 27708 * The LL_HDR_MBLK is the DLPI header to use to get 27709 * the attached packet, and subsequent ones for the 27710 * same destination, transmitted. 27711 */ 27712 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27713 break; 27714 /* 27715 * First, check to make sure the resolution succeeded. 27716 * If it failed, the second mblk will be empty. 27717 * If it is, free the chain, dropping the packet. 27718 * (We must ire_delete the ire; that frees the ire mblk) 27719 * We're doing this now to support PVCs for ATM; it's 27720 * a partial xresolv implementation. When we fully implement 27721 * xresolv interfaces, instead of freeing everything here 27722 * we'll initiate neighbor discovery. 27723 * 27724 * For v4 (ARP and other external resolvers) the resolver 27725 * frees the message, so no check is needed. This check 27726 * is required, though, for a full xresolve implementation. 27727 * Including this code here now both shows how external 27728 * resolvers can NACK a resolution request using an 27729 * existing design that has no specific provisions for NACKs, 27730 * and also takes into account that the current non-ARP 27731 * external resolver has been coded to use this method of 27732 * NACKing for all IPv6 (xresolv) cases, 27733 * whether our xresolv implementation is complete or not. 27734 * 27735 */ 27736 ire = (ire_t *)mp->b_rptr; 27737 ill = ire_to_ill(ire); 27738 mp1 = mp->b_cont; /* dl_unitdata_req */ 27739 if (mp1->b_rptr == mp1->b_wptr) { 27740 if (ire->ire_ipversion == IPV6_VERSION) { 27741 /* 27742 * XRESOLV interface. 27743 */ 27744 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27745 mutex_enter(&ire->ire_lock); 27746 gw_addr_v6 = ire->ire_gateway_addr_v6; 27747 mutex_exit(&ire->ire_lock); 27748 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27749 nce = ndp_lookup_v6(ill, 27750 &ire->ire_addr_v6, B_FALSE); 27751 } else { 27752 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27753 B_FALSE); 27754 } 27755 if (nce != NULL) { 27756 nce_resolv_failed(nce); 27757 ndp_delete(nce); 27758 NCE_REFRELE(nce); 27759 } 27760 } 27761 mp->b_cont = NULL; 27762 freemsg(mp1); /* frees the pkt as well */ 27763 ASSERT(ire->ire_nce == NULL); 27764 ire_delete((ire_t *)mp->b_rptr); 27765 return; 27766 } 27767 27768 /* 27769 * Split them into IRE_MBLK and pkt and feed it into 27770 * ire_add_then_send. Then in ire_add_then_send 27771 * the IRE will be added, and then the packet will be 27772 * run back through ip_wput. This time it will make 27773 * it to the wire. 27774 */ 27775 mp->b_cont = NULL; 27776 mp = mp1->b_cont; /* now, mp points to pkt */ 27777 mp1->b_cont = NULL; 27778 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27779 if (ire->ire_ipversion == IPV6_VERSION) { 27780 /* 27781 * XRESOLV interface. Find the nce and put a copy 27782 * of the dl_unitdata_req in nce_res_mp 27783 */ 27784 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27785 mutex_enter(&ire->ire_lock); 27786 gw_addr_v6 = ire->ire_gateway_addr_v6; 27787 mutex_exit(&ire->ire_lock); 27788 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27789 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27790 B_FALSE); 27791 } else { 27792 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27793 } 27794 if (nce != NULL) { 27795 /* 27796 * We have to protect nce_res_mp here 27797 * from being accessed by other threads 27798 * while we change the mblk pointer. 27799 * Other functions will also lock the nce when 27800 * accessing nce_res_mp. 27801 * 27802 * The reason we change the mblk pointer 27803 * here rather than copying the resolved address 27804 * into the template is that, unlike with 27805 * ethernet, we have no guarantee that the 27806 * resolved address length will be 27807 * smaller than or equal to the lla length 27808 * with which the template was allocated, 27809 * (for ethernet, they're equal) 27810 * so we have to use the actual resolved 27811 * address mblk - which holds the real 27812 * dl_unitdata_req with the resolved address. 27813 * 27814 * Doing this is the same behavior as was 27815 * previously used in the v4 ARP case. 27816 */ 27817 mutex_enter(&nce->nce_lock); 27818 if (nce->nce_res_mp != NULL) 27819 freemsg(nce->nce_res_mp); 27820 nce->nce_res_mp = mp1; 27821 mutex_exit(&nce->nce_lock); 27822 /* 27823 * We do a fastpath probe here because 27824 * we have resolved the address without 27825 * using Neighbor Discovery. 27826 * In the non-XRESOLV v6 case, the fastpath 27827 * probe is done right after neighbor 27828 * discovery completes. 27829 */ 27830 if (nce->nce_res_mp != NULL) { 27831 int res; 27832 nce_fastpath_list_add(nce); 27833 res = ill_fastpath_probe(ill, 27834 nce->nce_res_mp); 27835 if (res != 0 && res != EAGAIN) 27836 nce_fastpath_list_delete(nce); 27837 } 27838 27839 ire_add_then_send(q, ire, mp); 27840 /* 27841 * Now we have to clean out any packets 27842 * that may have been queued on the nce 27843 * while it was waiting for address resolution 27844 * to complete. 27845 */ 27846 mutex_enter(&nce->nce_lock); 27847 mp1 = nce->nce_qd_mp; 27848 nce->nce_qd_mp = NULL; 27849 mutex_exit(&nce->nce_lock); 27850 while (mp1 != NULL) { 27851 mblk_t *nxt_mp; 27852 queue_t *fwdq = NULL; 27853 ill_t *inbound_ill; 27854 uint_t ifindex; 27855 27856 nxt_mp = mp1->b_next; 27857 mp1->b_next = NULL; 27858 /* 27859 * Retrieve ifindex stored in 27860 * ip_rput_data_v6() 27861 */ 27862 ifindex = 27863 (uint_t)(uintptr_t)mp1->b_prev; 27864 inbound_ill = 27865 ill_lookup_on_ifindex(ifindex, 27866 B_TRUE, NULL, NULL, NULL, 27867 NULL, ipst); 27868 mp1->b_prev = NULL; 27869 if (inbound_ill != NULL) 27870 fwdq = inbound_ill->ill_rq; 27871 27872 if (fwdq != NULL) { 27873 put(fwdq, mp1); 27874 ill_refrele(inbound_ill); 27875 } else 27876 put(WR(ill->ill_rq), mp1); 27877 mp1 = nxt_mp; 27878 } 27879 NCE_REFRELE(nce); 27880 } else { /* nce is NULL; clean up */ 27881 ire_delete(ire); 27882 freemsg(mp); 27883 freemsg(mp1); 27884 return; 27885 } 27886 } else { 27887 nce_t *arpce; 27888 /* 27889 * Link layer resolution succeeded. Recompute the 27890 * ire_nce. 27891 */ 27892 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27893 if ((arpce = ndp_lookup_v4(ill, 27894 (ire->ire_gateway_addr != INADDR_ANY ? 27895 &ire->ire_gateway_addr : &ire->ire_addr), 27896 B_FALSE)) == NULL) { 27897 freeb(ire->ire_mp); 27898 freeb(mp1); 27899 freemsg(mp); 27900 return; 27901 } 27902 mutex_enter(&arpce->nce_lock); 27903 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27904 if (arpce->nce_state == ND_REACHABLE) { 27905 /* 27906 * Someone resolved this before us; 27907 * cleanup the res_mp. Since ire has 27908 * not been added yet, the call to ire_add_v4 27909 * from ire_add_then_send (when a dup is 27910 * detected) will clean up the ire. 27911 */ 27912 freeb(mp1); 27913 } else { 27914 ASSERT(arpce->nce_res_mp == NULL); 27915 arpce->nce_res_mp = mp1; 27916 arpce->nce_state = ND_REACHABLE; 27917 } 27918 mutex_exit(&arpce->nce_lock); 27919 if (ire->ire_marks & IRE_MARK_NOADD) { 27920 /* 27921 * this ire will not be added to the ire 27922 * cache table, so we can set the ire_nce 27923 * here, as there are no atomicity constraints. 27924 */ 27925 ire->ire_nce = arpce; 27926 /* 27927 * We are associating this nce with the ire 27928 * so change the nce ref taken in 27929 * ndp_lookup_v4() from 27930 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27931 */ 27932 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27933 } else { 27934 NCE_REFRELE(arpce); 27935 } 27936 ire_add_then_send(q, ire, mp); 27937 } 27938 return; /* All is well, the packet has been sent. */ 27939 } 27940 case IRE_ARPRESOLVE_TYPE: { 27941 27942 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27943 break; 27944 mp1 = mp->b_cont; /* dl_unitdata_req */ 27945 mp->b_cont = NULL; 27946 /* 27947 * First, check to make sure the resolution succeeded. 27948 * If it failed, the second mblk will be empty. 27949 */ 27950 if (mp1->b_rptr == mp1->b_wptr) { 27951 /* cleanup the incomplete ire, free queued packets */ 27952 freemsg(mp); /* fake ire */ 27953 freeb(mp1); /* dl_unitdata response */ 27954 return; 27955 } 27956 27957 /* 27958 * Update any incomplete nce_t found. We search the ctable 27959 * and find the nce from the ire->ire_nce because we need 27960 * to pass the ire to ip_xmit_v4 later, and can find both 27961 * ire and nce in one lookup. 27962 */ 27963 fake_ire = (ire_t *)mp->b_rptr; 27964 27965 /* 27966 * By the time we come back here from ARP the incomplete ire 27967 * created in ire_forward() could have been removed. We use 27968 * the parameters stored in the fake_ire to specify the real 27969 * ire as explicitly as possible. This avoids problems when 27970 * IPMP groups are configured as an ipif can 'float' 27971 * across several ill queues. We can be confident that the 27972 * the inability to find an ire is because it no longer exists. 27973 */ 27974 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27975 NULL, NULL, NULL, NULL, ipst); 27976 if (ill == NULL) { 27977 ip1dbg(("ill for incomplete ire vanished\n")); 27978 freemsg(mp); /* fake ire */ 27979 freeb(mp1); /* dl_unitdata response */ 27980 return; 27981 } 27982 27983 /* Get the outgoing ipif */ 27984 mutex_enter(&ill->ill_lock); 27985 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27986 if (ipif == NULL) { 27987 mutex_exit(&ill->ill_lock); 27988 ill_refrele(ill); 27989 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27990 freemsg(mp); /* fake_ire */ 27991 freeb(mp1); /* dl_unitdata response */ 27992 return; 27993 } 27994 27995 ipif_refhold_locked(ipif); 27996 mutex_exit(&ill->ill_lock); 27997 ill_refrele(ill); 27998 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27999 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 28000 ipst, ((ill_t *)q->q_ptr)->ill_wq); 28001 ipif_refrele(ipif); 28002 if (ire == NULL) { 28003 /* 28004 * no ire was found; check if there is an nce 28005 * for this lookup; if it has no ire's pointing at it 28006 * cleanup. 28007 */ 28008 if ((nce = ndp_lookup_v4(q->q_ptr, 28009 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28010 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28011 B_FALSE)) != NULL) { 28012 /* 28013 * cleanup: 28014 * We check for refcnt 2 (one for the nce 28015 * hash list + 1 for the ref taken by 28016 * ndp_lookup_v4) to check that there are 28017 * no ire's pointing at the nce. 28018 */ 28019 if (nce->nce_refcnt == 2) 28020 ndp_delete(nce); 28021 NCE_REFRELE(nce); 28022 } 28023 freeb(mp1); /* dl_unitdata response */ 28024 freemsg(mp); /* fake ire */ 28025 return; 28026 } 28027 nce = ire->ire_nce; 28028 DTRACE_PROBE2(ire__arpresolve__type, 28029 ire_t *, ire, nce_t *, nce); 28030 ASSERT(nce->nce_state != ND_INITIAL); 28031 mutex_enter(&nce->nce_lock); 28032 nce->nce_last = TICK_TO_MSEC(lbolt64); 28033 if (nce->nce_state == ND_REACHABLE) { 28034 /* 28035 * Someone resolved this before us; 28036 * our response is not needed any more. 28037 */ 28038 mutex_exit(&nce->nce_lock); 28039 freeb(mp1); /* dl_unitdata response */ 28040 } else { 28041 ASSERT(nce->nce_res_mp == NULL); 28042 nce->nce_res_mp = mp1; 28043 nce->nce_state = ND_REACHABLE; 28044 mutex_exit(&nce->nce_lock); 28045 nce_fastpath(nce); 28046 } 28047 /* 28048 * The cached nce_t has been updated to be reachable; 28049 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 28050 */ 28051 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28052 freemsg(mp); 28053 /* 28054 * send out queued packets. 28055 */ 28056 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 28057 28058 IRE_REFRELE(ire); 28059 return; 28060 } 28061 default: 28062 break; 28063 } 28064 if (q->q_next) { 28065 putnext(q, mp); 28066 } else 28067 freemsg(mp); 28068 return; 28069 28070 protonak: 28071 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28072 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28073 qreply(q, mp); 28074 } 28075 28076 /* 28077 * Process IP options in an outbound packet. Modify the destination if there 28078 * is a source route option. 28079 * Returns non-zero if something fails in which case an ICMP error has been 28080 * sent and mp freed. 28081 */ 28082 static int 28083 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28084 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28085 { 28086 ipoptp_t opts; 28087 uchar_t *opt; 28088 uint8_t optval; 28089 uint8_t optlen; 28090 ipaddr_t dst; 28091 intptr_t code = 0; 28092 mblk_t *mp; 28093 ire_t *ire = NULL; 28094 28095 ip2dbg(("ip_wput_options\n")); 28096 mp = ipsec_mp; 28097 if (mctl_present) { 28098 mp = ipsec_mp->b_cont; 28099 } 28100 28101 dst = ipha->ipha_dst; 28102 for (optval = ipoptp_first(&opts, ipha); 28103 optval != IPOPT_EOL; 28104 optval = ipoptp_next(&opts)) { 28105 opt = opts.ipoptp_cur; 28106 optlen = opts.ipoptp_len; 28107 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28108 optval, optlen)); 28109 switch (optval) { 28110 uint32_t off; 28111 case IPOPT_SSRR: 28112 case IPOPT_LSRR: 28113 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28114 ip1dbg(( 28115 "ip_wput_options: bad option offset\n")); 28116 code = (char *)&opt[IPOPT_OLEN] - 28117 (char *)ipha; 28118 goto param_prob; 28119 } 28120 off = opt[IPOPT_OFFSET]; 28121 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28122 ntohl(dst))); 28123 /* 28124 * For strict: verify that dst is directly 28125 * reachable. 28126 */ 28127 if (optval == IPOPT_SSRR) { 28128 ire = ire_ftable_lookup(dst, 0, 0, 28129 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28130 MBLK_GETLABEL(mp), 28131 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28132 if (ire == NULL) { 28133 ip1dbg(("ip_wput_options: SSRR not" 28134 " directly reachable: 0x%x\n", 28135 ntohl(dst))); 28136 goto bad_src_route; 28137 } 28138 ire_refrele(ire); 28139 } 28140 break; 28141 case IPOPT_RR: 28142 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28143 ip1dbg(( 28144 "ip_wput_options: bad option offset\n")); 28145 code = (char *)&opt[IPOPT_OLEN] - 28146 (char *)ipha; 28147 goto param_prob; 28148 } 28149 break; 28150 case IPOPT_TS: 28151 /* 28152 * Verify that length >=5 and that there is either 28153 * room for another timestamp or that the overflow 28154 * counter is not maxed out. 28155 */ 28156 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28157 if (optlen < IPOPT_MINLEN_IT) { 28158 goto param_prob; 28159 } 28160 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28161 ip1dbg(( 28162 "ip_wput_options: bad option offset\n")); 28163 code = (char *)&opt[IPOPT_OFFSET] - 28164 (char *)ipha; 28165 goto param_prob; 28166 } 28167 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28168 case IPOPT_TS_TSONLY: 28169 off = IPOPT_TS_TIMELEN; 28170 break; 28171 case IPOPT_TS_TSANDADDR: 28172 case IPOPT_TS_PRESPEC: 28173 case IPOPT_TS_PRESPEC_RFC791: 28174 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28175 break; 28176 default: 28177 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28178 (char *)ipha; 28179 goto param_prob; 28180 } 28181 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28182 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28183 /* 28184 * No room and the overflow counter is 15 28185 * already. 28186 */ 28187 goto param_prob; 28188 } 28189 break; 28190 } 28191 } 28192 28193 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28194 return (0); 28195 28196 ip1dbg(("ip_wput_options: error processing IP options.")); 28197 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28198 28199 param_prob: 28200 /* 28201 * Since ip_wput() isn't close to finished, we fill 28202 * in enough of the header for credible error reporting. 28203 */ 28204 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28205 /* Failed */ 28206 freemsg(ipsec_mp); 28207 return (-1); 28208 } 28209 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28210 return (-1); 28211 28212 bad_src_route: 28213 /* 28214 * Since ip_wput() isn't close to finished, we fill 28215 * in enough of the header for credible error reporting. 28216 */ 28217 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28218 /* Failed */ 28219 freemsg(ipsec_mp); 28220 return (-1); 28221 } 28222 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28223 return (-1); 28224 } 28225 28226 /* 28227 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28228 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28229 * thru /etc/system. 28230 */ 28231 #define CONN_MAXDRAINCNT 64 28232 28233 static void 28234 conn_drain_init(ip_stack_t *ipst) 28235 { 28236 int i; 28237 28238 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28239 28240 if ((ipst->ips_conn_drain_list_cnt == 0) || 28241 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28242 /* 28243 * Default value of the number of drainers is the 28244 * number of cpus, subject to maximum of 8 drainers. 28245 */ 28246 if (boot_max_ncpus != -1) 28247 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28248 else 28249 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28250 } 28251 28252 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28253 sizeof (idl_t), KM_SLEEP); 28254 28255 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28256 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28257 MUTEX_DEFAULT, NULL); 28258 } 28259 } 28260 28261 static void 28262 conn_drain_fini(ip_stack_t *ipst) 28263 { 28264 int i; 28265 28266 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28267 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28268 kmem_free(ipst->ips_conn_drain_list, 28269 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28270 ipst->ips_conn_drain_list = NULL; 28271 } 28272 28273 /* 28274 * Note: For an overview of how flowcontrol is handled in IP please see the 28275 * IP Flowcontrol notes at the top of this file. 28276 * 28277 * Flow control has blocked us from proceeding. Insert the given conn in one 28278 * of the conn drain lists. These conn wq's will be qenabled later on when 28279 * STREAMS flow control does a backenable. conn_walk_drain will enable 28280 * the first conn in each of these drain lists. Each of these qenabled conns 28281 * in turn enables the next in the list, after it runs, or when it closes, 28282 * thus sustaining the drain process. 28283 * 28284 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28285 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28286 * running at any time, on a given conn, since there can be only 1 service proc 28287 * running on a queue at any time. 28288 */ 28289 void 28290 conn_drain_insert(conn_t *connp) 28291 { 28292 idl_t *idl; 28293 uint_t index; 28294 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28295 28296 mutex_enter(&connp->conn_lock); 28297 if (connp->conn_state_flags & CONN_CLOSING) { 28298 /* 28299 * The conn is closing as a result of which CONN_CLOSING 28300 * is set. Return. 28301 */ 28302 mutex_exit(&connp->conn_lock); 28303 return; 28304 } else if (connp->conn_idl == NULL) { 28305 /* 28306 * Assign the next drain list round robin. We dont' use 28307 * a lock, and thus it may not be strictly round robin. 28308 * Atomicity of load/stores is enough to make sure that 28309 * conn_drain_list_index is always within bounds. 28310 */ 28311 index = ipst->ips_conn_drain_list_index; 28312 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28313 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28314 index++; 28315 if (index == ipst->ips_conn_drain_list_cnt) 28316 index = 0; 28317 ipst->ips_conn_drain_list_index = index; 28318 } 28319 mutex_exit(&connp->conn_lock); 28320 28321 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28322 if ((connp->conn_drain_prev != NULL) || 28323 (connp->conn_state_flags & CONN_CLOSING)) { 28324 /* 28325 * The conn is already in the drain list, OR 28326 * the conn is closing. We need to check again for 28327 * the closing case again since close can happen 28328 * after we drop the conn_lock, and before we 28329 * acquire the CONN_DRAIN_LIST_LOCK. 28330 */ 28331 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28332 return; 28333 } else { 28334 idl = connp->conn_idl; 28335 } 28336 28337 /* 28338 * The conn is not in the drain list. Insert it at the 28339 * tail of the drain list. The drain list is circular 28340 * and doubly linked. idl_conn points to the 1st element 28341 * in the list. 28342 */ 28343 if (idl->idl_conn == NULL) { 28344 idl->idl_conn = connp; 28345 connp->conn_drain_next = connp; 28346 connp->conn_drain_prev = connp; 28347 } else { 28348 conn_t *head = idl->idl_conn; 28349 28350 connp->conn_drain_next = head; 28351 connp->conn_drain_prev = head->conn_drain_prev; 28352 head->conn_drain_prev->conn_drain_next = connp; 28353 head->conn_drain_prev = connp; 28354 } 28355 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28356 } 28357 28358 /* 28359 * This conn is closing, and we are called from ip_close. OR 28360 * This conn has been serviced by ip_wsrv, and we need to do the tail 28361 * processing. 28362 * If this conn is part of the drain list, we may need to sustain the drain 28363 * process by qenabling the next conn in the drain list. We may also need to 28364 * remove this conn from the list, if it is done. 28365 */ 28366 static void 28367 conn_drain_tail(conn_t *connp, boolean_t closing) 28368 { 28369 idl_t *idl; 28370 28371 /* 28372 * connp->conn_idl is stable at this point, and no lock is needed 28373 * to check it. If we are called from ip_close, close has already 28374 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28375 * called us only because conn_idl is non-null. If we are called thru 28376 * service, conn_idl could be null, but it cannot change because 28377 * service is single-threaded per queue, and there cannot be another 28378 * instance of service trying to call conn_drain_insert on this conn 28379 * now. 28380 */ 28381 ASSERT(!closing || (connp->conn_idl != NULL)); 28382 28383 /* 28384 * If connp->conn_idl is null, the conn has not been inserted into any 28385 * drain list even once since creation of the conn. Just return. 28386 */ 28387 if (connp->conn_idl == NULL) 28388 return; 28389 28390 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28391 28392 if (connp->conn_drain_prev == NULL) { 28393 /* This conn is currently not in the drain list. */ 28394 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28395 return; 28396 } 28397 idl = connp->conn_idl; 28398 if (idl->idl_conn_draining == connp) { 28399 /* 28400 * This conn is the current drainer. If this is the last conn 28401 * in the drain list, we need to do more checks, in the 'if' 28402 * below. Otherwwise we need to just qenable the next conn, 28403 * to sustain the draining, and is handled in the 'else' 28404 * below. 28405 */ 28406 if (connp->conn_drain_next == idl->idl_conn) { 28407 /* 28408 * This conn is the last in this list. This round 28409 * of draining is complete. If idl_repeat is set, 28410 * it means another flow enabling has happened from 28411 * the driver/streams and we need to another round 28412 * of draining. 28413 * If there are more than 2 conns in the drain list, 28414 * do a left rotate by 1, so that all conns except the 28415 * conn at the head move towards the head by 1, and the 28416 * the conn at the head goes to the tail. This attempts 28417 * a more even share for all queues that are being 28418 * drained. 28419 */ 28420 if ((connp->conn_drain_next != connp) && 28421 (idl->idl_conn->conn_drain_next != connp)) { 28422 idl->idl_conn = idl->idl_conn->conn_drain_next; 28423 } 28424 if (idl->idl_repeat) { 28425 qenable(idl->idl_conn->conn_wq); 28426 idl->idl_conn_draining = idl->idl_conn; 28427 idl->idl_repeat = 0; 28428 } else { 28429 idl->idl_conn_draining = NULL; 28430 } 28431 } else { 28432 /* 28433 * If the next queue that we are now qenable'ing, 28434 * is closing, it will remove itself from this list 28435 * and qenable the subsequent queue in ip_close(). 28436 * Serialization is acheived thru idl_lock. 28437 */ 28438 qenable(connp->conn_drain_next->conn_wq); 28439 idl->idl_conn_draining = connp->conn_drain_next; 28440 } 28441 } 28442 if (!connp->conn_did_putbq || closing) { 28443 /* 28444 * Remove ourself from the drain list, if we did not do 28445 * a putbq, or if the conn is closing. 28446 * Note: It is possible that q->q_first is non-null. It means 28447 * that these messages landed after we did a enableok() in 28448 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28449 * service them. 28450 */ 28451 if (connp->conn_drain_next == connp) { 28452 /* Singleton in the list */ 28453 ASSERT(connp->conn_drain_prev == connp); 28454 idl->idl_conn = NULL; 28455 idl->idl_conn_draining = NULL; 28456 } else { 28457 connp->conn_drain_prev->conn_drain_next = 28458 connp->conn_drain_next; 28459 connp->conn_drain_next->conn_drain_prev = 28460 connp->conn_drain_prev; 28461 if (idl->idl_conn == connp) 28462 idl->idl_conn = connp->conn_drain_next; 28463 ASSERT(idl->idl_conn_draining != connp); 28464 28465 } 28466 connp->conn_drain_next = NULL; 28467 connp->conn_drain_prev = NULL; 28468 } 28469 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28470 } 28471 28472 /* 28473 * Write service routine. Shared perimeter entry point. 28474 * ip_wsrv can be called in any of the following ways. 28475 * 1. The device queue's messages has fallen below the low water mark 28476 * and STREAMS has backenabled the ill_wq. We walk thru all the 28477 * the drain lists and backenable the first conn in each list. 28478 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28479 * qenabled non-tcp upper layers. We start dequeing messages and call 28480 * ip_wput for each message. 28481 */ 28482 28483 void 28484 ip_wsrv(queue_t *q) 28485 { 28486 conn_t *connp; 28487 ill_t *ill; 28488 mblk_t *mp; 28489 28490 if (q->q_next) { 28491 ill = (ill_t *)q->q_ptr; 28492 if (ill->ill_state_flags == 0) { 28493 /* 28494 * The device flow control has opened up. 28495 * Walk through conn drain lists and qenable the 28496 * first conn in each list. This makes sense only 28497 * if the stream is fully plumbed and setup. 28498 * Hence the if check above. 28499 */ 28500 ip1dbg(("ip_wsrv: walking\n")); 28501 conn_walk_drain(ill->ill_ipst); 28502 } 28503 return; 28504 } 28505 28506 connp = Q_TO_CONN(q); 28507 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28508 28509 /* 28510 * 1. Set conn_draining flag to signal that service is active. 28511 * 28512 * 2. ip_output determines whether it has been called from service, 28513 * based on the last parameter. If it is IP_WSRV it concludes it 28514 * has been called from service. 28515 * 28516 * 3. Message ordering is preserved by the following logic. 28517 * i. A directly called ip_output (i.e. not thru service) will queue 28518 * the message at the tail, if conn_draining is set (i.e. service 28519 * is running) or if q->q_first is non-null. 28520 * 28521 * ii. If ip_output is called from service, and if ip_output cannot 28522 * putnext due to flow control, it does a putbq. 28523 * 28524 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28525 * (causing an infinite loop). 28526 */ 28527 ASSERT(!connp->conn_did_putbq); 28528 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28529 connp->conn_draining = 1; 28530 noenable(q); 28531 while ((mp = getq(q)) != NULL) { 28532 ASSERT(CONN_Q(q)); 28533 28534 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28535 if (connp->conn_did_putbq) { 28536 /* ip_wput did a putbq */ 28537 break; 28538 } 28539 } 28540 /* 28541 * At this point, a thread coming down from top, calling 28542 * ip_wput, may end up queueing the message. We have not yet 28543 * enabled the queue, so ip_wsrv won't be called again. 28544 * To avoid this race, check q->q_first again (in the loop) 28545 * If the other thread queued the message before we call 28546 * enableok(), we will catch it in the q->q_first check. 28547 * If the other thread queues the message after we call 28548 * enableok(), ip_wsrv will be called again by STREAMS. 28549 */ 28550 connp->conn_draining = 0; 28551 enableok(q); 28552 } 28553 28554 /* Enable the next conn for draining */ 28555 conn_drain_tail(connp, B_FALSE); 28556 28557 connp->conn_did_putbq = 0; 28558 } 28559 28560 /* 28561 * Walk the list of all conn's calling the function provided with the 28562 * specified argument for each. Note that this only walks conn's that 28563 * have been bound. 28564 * Applies to both IPv4 and IPv6. 28565 */ 28566 static void 28567 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28568 { 28569 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28570 ipst->ips_ipcl_udp_fanout_size, 28571 func, arg, zoneid); 28572 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28573 ipst->ips_ipcl_conn_fanout_size, 28574 func, arg, zoneid); 28575 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28576 ipst->ips_ipcl_bind_fanout_size, 28577 func, arg, zoneid); 28578 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28579 IPPROTO_MAX, func, arg, zoneid); 28580 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28581 IPPROTO_MAX, func, arg, zoneid); 28582 } 28583 28584 /* 28585 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28586 * of conns that need to be drained, check if drain is already in progress. 28587 * If so set the idl_repeat bit, indicating that the last conn in the list 28588 * needs to reinitiate the drain once again, for the list. If drain is not 28589 * in progress for the list, initiate the draining, by qenabling the 1st 28590 * conn in the list. The drain is self-sustaining, each qenabled conn will 28591 * in turn qenable the next conn, when it is done/blocked/closing. 28592 */ 28593 static void 28594 conn_walk_drain(ip_stack_t *ipst) 28595 { 28596 int i; 28597 idl_t *idl; 28598 28599 IP_STAT(ipst, ip_conn_walk_drain); 28600 28601 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28602 idl = &ipst->ips_conn_drain_list[i]; 28603 mutex_enter(&idl->idl_lock); 28604 if (idl->idl_conn == NULL) { 28605 mutex_exit(&idl->idl_lock); 28606 continue; 28607 } 28608 /* 28609 * If this list is not being drained currently by 28610 * an ip_wsrv thread, start the process. 28611 */ 28612 if (idl->idl_conn_draining == NULL) { 28613 ASSERT(idl->idl_repeat == 0); 28614 qenable(idl->idl_conn->conn_wq); 28615 idl->idl_conn_draining = idl->idl_conn; 28616 } else { 28617 idl->idl_repeat = 1; 28618 } 28619 mutex_exit(&idl->idl_lock); 28620 } 28621 } 28622 28623 /* 28624 * Walk an conn hash table of `count' buckets, calling func for each entry. 28625 */ 28626 static void 28627 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28628 zoneid_t zoneid) 28629 { 28630 conn_t *connp; 28631 28632 while (count-- > 0) { 28633 mutex_enter(&connfp->connf_lock); 28634 for (connp = connfp->connf_head; connp != NULL; 28635 connp = connp->conn_next) { 28636 if (zoneid == GLOBAL_ZONEID || 28637 zoneid == connp->conn_zoneid) { 28638 CONN_INC_REF(connp); 28639 mutex_exit(&connfp->connf_lock); 28640 (*func)(connp, arg); 28641 mutex_enter(&connfp->connf_lock); 28642 CONN_DEC_REF(connp); 28643 } 28644 } 28645 mutex_exit(&connfp->connf_lock); 28646 connfp++; 28647 } 28648 } 28649 28650 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28651 static void 28652 conn_report1(conn_t *connp, void *mp) 28653 { 28654 char buf1[INET6_ADDRSTRLEN]; 28655 char buf2[INET6_ADDRSTRLEN]; 28656 uint_t print_len, buf_len; 28657 28658 ASSERT(connp != NULL); 28659 28660 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28661 if (buf_len <= 0) 28662 return; 28663 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28664 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28665 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28666 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28667 "%5d %s/%05d %s/%05d\n", 28668 (void *)connp, (void *)CONNP_TO_RQ(connp), 28669 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28670 buf1, connp->conn_lport, 28671 buf2, connp->conn_fport); 28672 if (print_len < buf_len) { 28673 ((mblk_t *)mp)->b_wptr += print_len; 28674 } else { 28675 ((mblk_t *)mp)->b_wptr += buf_len; 28676 } 28677 } 28678 28679 /* 28680 * Named Dispatch routine to produce a formatted report on all conns 28681 * that are listed in one of the fanout tables. 28682 * This report is accessed by using the ndd utility to "get" ND variable 28683 * "ip_conn_status". 28684 */ 28685 /* ARGSUSED */ 28686 static int 28687 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28688 { 28689 conn_t *connp = Q_TO_CONN(q); 28690 28691 (void) mi_mpprintf(mp, 28692 "CONN " MI_COL_HDRPAD_STR 28693 "rfq " MI_COL_HDRPAD_STR 28694 "stq " MI_COL_HDRPAD_STR 28695 " zone local remote"); 28696 28697 /* 28698 * Because of the ndd constraint, at most we can have 64K buffer 28699 * to put in all conn info. So to be more efficient, just 28700 * allocate a 64K buffer here, assuming we need that large buffer. 28701 * This should be OK as only privileged processes can do ndd /dev/ip. 28702 */ 28703 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28704 /* The following may work even if we cannot get a large buf. */ 28705 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28706 return (0); 28707 } 28708 28709 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28710 connp->conn_netstack->netstack_ip); 28711 return (0); 28712 } 28713 28714 /* 28715 * Determine if the ill and multicast aspects of that packets 28716 * "matches" the conn. 28717 */ 28718 boolean_t 28719 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28720 zoneid_t zoneid) 28721 { 28722 ill_t *in_ill; 28723 boolean_t found; 28724 ipif_t *ipif; 28725 ire_t *ire; 28726 ipaddr_t dst, src; 28727 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28728 28729 dst = ipha->ipha_dst; 28730 src = ipha->ipha_src; 28731 28732 /* 28733 * conn_incoming_ill is set by IP_BOUND_IF which limits 28734 * unicast, broadcast and multicast reception to 28735 * conn_incoming_ill. conn_wantpacket itself is called 28736 * only for BROADCAST and multicast. 28737 * 28738 * 1) ip_rput supresses duplicate broadcasts if the ill 28739 * is part of a group. Hence, we should be receiving 28740 * just one copy of broadcast for the whole group. 28741 * Thus, if it is part of the group the packet could 28742 * come on any ill of the group and hence we need a 28743 * match on the group. Otherwise, match on ill should 28744 * be sufficient. 28745 * 28746 * 2) ip_rput does not suppress duplicate multicast packets. 28747 * If there are two interfaces in a ill group and we have 28748 * 2 applications (conns) joined a multicast group G on 28749 * both the interfaces, ilm_lookup_ill filter in ip_rput 28750 * will give us two packets because we join G on both the 28751 * interfaces rather than nominating just one interface 28752 * for receiving multicast like broadcast above. So, 28753 * we have to call ilg_lookup_ill to filter out duplicate 28754 * copies, if ill is part of a group. 28755 */ 28756 in_ill = connp->conn_incoming_ill; 28757 if (in_ill != NULL) { 28758 if (in_ill->ill_group == NULL) { 28759 if (in_ill != ill) 28760 return (B_FALSE); 28761 } else if (in_ill->ill_group != ill->ill_group) { 28762 return (B_FALSE); 28763 } 28764 } 28765 28766 if (!CLASSD(dst)) { 28767 if (IPCL_ZONE_MATCH(connp, zoneid)) 28768 return (B_TRUE); 28769 /* 28770 * The conn is in a different zone; we need to check that this 28771 * broadcast address is configured in the application's zone and 28772 * on one ill in the group. 28773 */ 28774 ipif = ipif_get_next_ipif(NULL, ill); 28775 if (ipif == NULL) 28776 return (B_FALSE); 28777 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28778 connp->conn_zoneid, NULL, 28779 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28780 ipif_refrele(ipif); 28781 if (ire != NULL) { 28782 ire_refrele(ire); 28783 return (B_TRUE); 28784 } else { 28785 return (B_FALSE); 28786 } 28787 } 28788 28789 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28790 connp->conn_zoneid == zoneid) { 28791 /* 28792 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28793 * disabled, therefore we don't dispatch the multicast packet to 28794 * the sending zone. 28795 */ 28796 return (B_FALSE); 28797 } 28798 28799 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28800 /* 28801 * Multicast packet on the loopback interface: we only match 28802 * conns who joined the group in the specified zone. 28803 */ 28804 return (B_FALSE); 28805 } 28806 28807 if (connp->conn_multi_router) { 28808 /* multicast packet and multicast router socket: send up */ 28809 return (B_TRUE); 28810 } 28811 28812 mutex_enter(&connp->conn_lock); 28813 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28814 mutex_exit(&connp->conn_lock); 28815 return (found); 28816 } 28817 28818 /* 28819 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28820 */ 28821 /* ARGSUSED */ 28822 static void 28823 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28824 { 28825 ill_t *ill = (ill_t *)q->q_ptr; 28826 mblk_t *mp1, *mp2; 28827 ipif_t *ipif; 28828 int err = 0; 28829 conn_t *connp = NULL; 28830 ipsq_t *ipsq; 28831 arc_t *arc; 28832 28833 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28834 28835 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28836 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28837 28838 ASSERT(IAM_WRITER_ILL(ill)); 28839 mp2 = mp->b_cont; 28840 mp->b_cont = NULL; 28841 28842 /* 28843 * We have now received the arp bringup completion message 28844 * from ARP. Mark the arp bringup as done. Also if the arp 28845 * stream has already started closing, send up the AR_ARP_CLOSING 28846 * ack now since ARP is waiting in close for this ack. 28847 */ 28848 mutex_enter(&ill->ill_lock); 28849 ill->ill_arp_bringup_pending = 0; 28850 if (ill->ill_arp_closing) { 28851 mutex_exit(&ill->ill_lock); 28852 /* Let's reuse the mp for sending the ack */ 28853 arc = (arc_t *)mp->b_rptr; 28854 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28855 arc->arc_cmd = AR_ARP_CLOSING; 28856 qreply(q, mp); 28857 } else { 28858 mutex_exit(&ill->ill_lock); 28859 freeb(mp); 28860 } 28861 28862 ipsq = ill->ill_phyint->phyint_ipsq; 28863 ipif = ipsq->ipsq_pending_ipif; 28864 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28865 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28866 if (mp1 == NULL) { 28867 /* bringup was aborted by the user */ 28868 freemsg(mp2); 28869 return; 28870 } 28871 28872 /* 28873 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28874 * must have an associated conn_t. Otherwise, we're bringing this 28875 * interface back up as part of handling an asynchronous event (e.g., 28876 * physical address change). 28877 */ 28878 if (ipsq->ipsq_current_ioctl != 0) { 28879 ASSERT(connp != NULL); 28880 q = CONNP_TO_WQ(connp); 28881 } else { 28882 ASSERT(connp == NULL); 28883 q = ill->ill_rq; 28884 } 28885 28886 /* 28887 * If the DL_BIND_REQ fails, it is noted 28888 * in arc_name_offset. 28889 */ 28890 err = *((int *)mp2->b_rptr); 28891 if (err == 0) { 28892 if (ipif->ipif_isv6) { 28893 if ((err = ipif_up_done_v6(ipif)) != 0) 28894 ip0dbg(("ip_arp_done: init failed\n")); 28895 } else { 28896 if ((err = ipif_up_done(ipif)) != 0) 28897 ip0dbg(("ip_arp_done: init failed\n")); 28898 } 28899 } else { 28900 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28901 } 28902 28903 freemsg(mp2); 28904 28905 if ((err == 0) && (ill->ill_up_ipifs)) { 28906 err = ill_up_ipifs(ill, q, mp1); 28907 if (err == EINPROGRESS) 28908 return; 28909 } 28910 28911 if (ill->ill_up_ipifs) 28912 ill_group_cleanup(ill); 28913 28914 /* 28915 * The operation must complete without EINPROGRESS since 28916 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28917 * Otherwise, the operation will be stuck forever in the ipsq. 28918 */ 28919 ASSERT(err != EINPROGRESS); 28920 if (ipsq->ipsq_current_ioctl != 0) 28921 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28922 else 28923 ipsq_current_finish(ipsq); 28924 } 28925 28926 /* Allocate the private structure */ 28927 static int 28928 ip_priv_alloc(void **bufp) 28929 { 28930 void *buf; 28931 28932 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28933 return (ENOMEM); 28934 28935 *bufp = buf; 28936 return (0); 28937 } 28938 28939 /* Function to delete the private structure */ 28940 void 28941 ip_priv_free(void *buf) 28942 { 28943 ASSERT(buf != NULL); 28944 kmem_free(buf, sizeof (ip_priv_t)); 28945 } 28946 28947 /* 28948 * The entry point for IPPF processing. 28949 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28950 * routine just returns. 28951 * 28952 * When called, ip_process generates an ipp_packet_t structure 28953 * which holds the state information for this packet and invokes the 28954 * the classifier (via ipp_packet_process). The classification, depending on 28955 * configured filters, results in a list of actions for this packet. Invoking 28956 * an action may cause the packet to be dropped, in which case the resulting 28957 * mblk (*mpp) is NULL. proc indicates the callout position for 28958 * this packet and ill_index is the interface this packet on or will leave 28959 * on (inbound and outbound resp.). 28960 */ 28961 void 28962 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28963 { 28964 mblk_t *mp; 28965 ip_priv_t *priv; 28966 ipp_action_id_t aid; 28967 int rc = 0; 28968 ipp_packet_t *pp; 28969 #define IP_CLASS "ip" 28970 28971 /* If the classifier is not loaded, return */ 28972 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28973 return; 28974 } 28975 28976 mp = *mpp; 28977 ASSERT(mp != NULL); 28978 28979 /* Allocate the packet structure */ 28980 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28981 if (rc != 0) { 28982 *mpp = NULL; 28983 freemsg(mp); 28984 return; 28985 } 28986 28987 /* Allocate the private structure */ 28988 rc = ip_priv_alloc((void **)&priv); 28989 if (rc != 0) { 28990 *mpp = NULL; 28991 freemsg(mp); 28992 ipp_packet_free(pp); 28993 return; 28994 } 28995 priv->proc = proc; 28996 priv->ill_index = ill_index; 28997 ipp_packet_set_private(pp, priv, ip_priv_free); 28998 ipp_packet_set_data(pp, mp); 28999 29000 /* Invoke the classifier */ 29001 rc = ipp_packet_process(&pp); 29002 if (pp != NULL) { 29003 mp = ipp_packet_get_data(pp); 29004 ipp_packet_free(pp); 29005 if (rc != 0) { 29006 freemsg(mp); 29007 *mpp = NULL; 29008 } 29009 } else { 29010 *mpp = NULL; 29011 } 29012 #undef IP_CLASS 29013 } 29014 29015 /* 29016 * Propagate a multicast group membership operation (add/drop) on 29017 * all the interfaces crossed by the related multirt routes. 29018 * The call is considered successful if the operation succeeds 29019 * on at least one interface. 29020 */ 29021 static int 29022 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29023 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29024 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29025 mblk_t *first_mp) 29026 { 29027 ire_t *ire_gw; 29028 irb_t *irb; 29029 int error = 0; 29030 opt_restart_t *or; 29031 ip_stack_t *ipst = ire->ire_ipst; 29032 29033 irb = ire->ire_bucket; 29034 ASSERT(irb != NULL); 29035 29036 ASSERT(DB_TYPE(first_mp) == M_CTL); 29037 29038 or = (opt_restart_t *)first_mp->b_rptr; 29039 IRB_REFHOLD(irb); 29040 for (; ire != NULL; ire = ire->ire_next) { 29041 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29042 continue; 29043 if (ire->ire_addr != group) 29044 continue; 29045 29046 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29047 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29048 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29049 /* No resolver exists for the gateway; skip this ire. */ 29050 if (ire_gw == NULL) 29051 continue; 29052 29053 /* 29054 * This function can return EINPROGRESS. If so the operation 29055 * will be restarted from ip_restart_optmgmt which will 29056 * call ip_opt_set and option processing will restart for 29057 * this option. So we may end up calling 'fn' more than once. 29058 * This requires that 'fn' is idempotent except for the 29059 * return value. The operation is considered a success if 29060 * it succeeds at least once on any one interface. 29061 */ 29062 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29063 NULL, fmode, src, first_mp); 29064 if (error == 0) 29065 or->or_private = CGTP_MCAST_SUCCESS; 29066 29067 if (ip_debug > 0) { 29068 ulong_t off; 29069 char *ksym; 29070 ksym = kobj_getsymname((uintptr_t)fn, &off); 29071 ip2dbg(("ip_multirt_apply_membership: " 29072 "called %s, multirt group 0x%08x via itf 0x%08x, " 29073 "error %d [success %u]\n", 29074 ksym ? ksym : "?", 29075 ntohl(group), ntohl(ire_gw->ire_src_addr), 29076 error, or->or_private)); 29077 } 29078 29079 ire_refrele(ire_gw); 29080 if (error == EINPROGRESS) { 29081 IRB_REFRELE(irb); 29082 return (error); 29083 } 29084 } 29085 IRB_REFRELE(irb); 29086 /* 29087 * Consider the call as successful if we succeeded on at least 29088 * one interface. Otherwise, return the last encountered error. 29089 */ 29090 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29091 } 29092 29093 29094 /* 29095 * Issue a warning regarding a route crossing an interface with an 29096 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29097 * amount of time is logged. 29098 */ 29099 static void 29100 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29101 { 29102 hrtime_t current = gethrtime(); 29103 char buf[INET_ADDRSTRLEN]; 29104 ip_stack_t *ipst = ire->ire_ipst; 29105 29106 /* Convert interval in ms to hrtime in ns */ 29107 if (ipst->ips_multirt_bad_mtu_last_time + 29108 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29109 current) { 29110 cmn_err(CE_WARN, "ip: ignoring multiroute " 29111 "to %s, incorrect MTU %u (expected %u)\n", 29112 ip_dot_addr(ire->ire_addr, buf), 29113 ire->ire_max_frag, max_frag); 29114 29115 ipst->ips_multirt_bad_mtu_last_time = current; 29116 } 29117 } 29118 29119 29120 /* 29121 * Get the CGTP (multirouting) filtering status. 29122 * If 0, the CGTP hooks are transparent. 29123 */ 29124 /* ARGSUSED */ 29125 static int 29126 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29127 { 29128 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29129 29130 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29131 return (0); 29132 } 29133 29134 29135 /* 29136 * Set the CGTP (multirouting) filtering status. 29137 * If the status is changed from active to transparent 29138 * or from transparent to active, forward the new status 29139 * to the filtering module (if loaded). 29140 */ 29141 /* ARGSUSED */ 29142 static int 29143 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29144 cred_t *ioc_cr) 29145 { 29146 long new_value; 29147 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29148 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29149 29150 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29151 return (EPERM); 29152 29153 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29154 new_value < 0 || new_value > 1) { 29155 return (EINVAL); 29156 } 29157 29158 if ((!*ip_cgtp_filter_value) && new_value) { 29159 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29160 ipst->ips_ip_cgtp_filter_ops == NULL ? 29161 " (module not loaded)" : ""); 29162 } 29163 if (*ip_cgtp_filter_value && (!new_value)) { 29164 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29165 ipst->ips_ip_cgtp_filter_ops == NULL ? 29166 " (module not loaded)" : ""); 29167 } 29168 29169 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29170 int res; 29171 netstackid_t stackid; 29172 29173 stackid = ipst->ips_netstack->netstack_stackid; 29174 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29175 new_value); 29176 if (res) 29177 return (res); 29178 } 29179 29180 *ip_cgtp_filter_value = (boolean_t)new_value; 29181 29182 return (0); 29183 } 29184 29185 29186 /* 29187 * Return the expected CGTP hooks version number. 29188 */ 29189 int 29190 ip_cgtp_filter_supported(void) 29191 { 29192 return (ip_cgtp_filter_rev); 29193 } 29194 29195 29196 /* 29197 * CGTP hooks can be registered by invoking this function. 29198 * Checks that the version number matches. 29199 */ 29200 int 29201 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29202 { 29203 netstack_t *ns; 29204 ip_stack_t *ipst; 29205 29206 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29207 return (ENOTSUP); 29208 29209 ns = netstack_find_by_stackid(stackid); 29210 if (ns == NULL) 29211 return (EINVAL); 29212 ipst = ns->netstack_ip; 29213 ASSERT(ipst != NULL); 29214 29215 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29216 netstack_rele(ns); 29217 return (EALREADY); 29218 } 29219 29220 ipst->ips_ip_cgtp_filter_ops = ops; 29221 netstack_rele(ns); 29222 return (0); 29223 } 29224 29225 /* 29226 * CGTP hooks can be unregistered by invoking this function. 29227 * Returns ENXIO if there was no registration. 29228 * Returns EBUSY if the ndd variable has not been turned off. 29229 */ 29230 int 29231 ip_cgtp_filter_unregister(netstackid_t stackid) 29232 { 29233 netstack_t *ns; 29234 ip_stack_t *ipst; 29235 29236 ns = netstack_find_by_stackid(stackid); 29237 if (ns == NULL) 29238 return (EINVAL); 29239 ipst = ns->netstack_ip; 29240 ASSERT(ipst != NULL); 29241 29242 if (ipst->ips_ip_cgtp_filter) { 29243 netstack_rele(ns); 29244 return (EBUSY); 29245 } 29246 29247 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29248 netstack_rele(ns); 29249 return (ENXIO); 29250 } 29251 ipst->ips_ip_cgtp_filter_ops = NULL; 29252 netstack_rele(ns); 29253 return (0); 29254 } 29255 29256 /* 29257 * Check whether there is a CGTP filter registration. 29258 * Returns non-zero if there is a registration, otherwise returns zero. 29259 * Note: returns zero if bad stackid. 29260 */ 29261 int 29262 ip_cgtp_filter_is_registered(netstackid_t stackid) 29263 { 29264 netstack_t *ns; 29265 ip_stack_t *ipst; 29266 int ret; 29267 29268 ns = netstack_find_by_stackid(stackid); 29269 if (ns == NULL) 29270 return (0); 29271 ipst = ns->netstack_ip; 29272 ASSERT(ipst != NULL); 29273 29274 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29275 ret = 1; 29276 else 29277 ret = 0; 29278 29279 netstack_rele(ns); 29280 return (ret); 29281 } 29282 29283 static squeue_func_t 29284 ip_squeue_switch(int val) 29285 { 29286 squeue_func_t rval = squeue_fill; 29287 29288 switch (val) { 29289 case IP_SQUEUE_ENTER_NODRAIN: 29290 rval = squeue_enter_nodrain; 29291 break; 29292 case IP_SQUEUE_ENTER: 29293 rval = squeue_enter; 29294 break; 29295 default: 29296 break; 29297 } 29298 return (rval); 29299 } 29300 29301 /* ARGSUSED */ 29302 static int 29303 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29304 caddr_t addr, cred_t *cr) 29305 { 29306 int *v = (int *)addr; 29307 long new_value; 29308 29309 if (secpolicy_net_config(cr, B_FALSE) != 0) 29310 return (EPERM); 29311 29312 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29313 return (EINVAL); 29314 29315 ip_input_proc = ip_squeue_switch(new_value); 29316 *v = new_value; 29317 return (0); 29318 } 29319 29320 /* 29321 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29322 * ip_debug. 29323 */ 29324 /* ARGSUSED */ 29325 static int 29326 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29327 caddr_t addr, cred_t *cr) 29328 { 29329 int *v = (int *)addr; 29330 long new_value; 29331 29332 if (secpolicy_net_config(cr, B_FALSE) != 0) 29333 return (EPERM); 29334 29335 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29336 return (EINVAL); 29337 29338 *v = new_value; 29339 return (0); 29340 } 29341 29342 /* 29343 * Handle changes to ipmp_hook_emulation ndd variable. 29344 * Need to update phyint_hook_ifindex. 29345 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29346 */ 29347 static void 29348 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29349 { 29350 phyint_t *phyi; 29351 phyint_t *phyi_tmp; 29352 char *groupname; 29353 int namelen; 29354 ill_t *ill; 29355 boolean_t new_group; 29356 29357 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29358 /* 29359 * Group indicies are stored in the phyint - a common structure 29360 * to both IPv4 and IPv6. 29361 */ 29362 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29363 for (; phyi != NULL; 29364 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29365 phyi, AVL_AFTER)) { 29366 /* Ignore the ones that do not have a group */ 29367 if (phyi->phyint_groupname_len == 0) 29368 continue; 29369 29370 /* 29371 * Look for other phyint in group. 29372 * Clear name/namelen so the lookup doesn't find ourselves. 29373 */ 29374 namelen = phyi->phyint_groupname_len; 29375 groupname = phyi->phyint_groupname; 29376 phyi->phyint_groupname_len = 0; 29377 phyi->phyint_groupname = NULL; 29378 29379 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29380 /* Restore */ 29381 phyi->phyint_groupname_len = namelen; 29382 phyi->phyint_groupname = groupname; 29383 29384 new_group = B_FALSE; 29385 if (ipst->ips_ipmp_hook_emulation) { 29386 /* 29387 * If the group already exists and has already 29388 * been assigned a group ifindex, we use the existing 29389 * group_ifindex, otherwise we pick a new group_ifindex 29390 * here. 29391 */ 29392 if (phyi_tmp != NULL && 29393 phyi_tmp->phyint_group_ifindex != 0) { 29394 phyi->phyint_group_ifindex = 29395 phyi_tmp->phyint_group_ifindex; 29396 } else { 29397 /* XXX We need a recovery strategy here. */ 29398 if (!ip_assign_ifindex( 29399 &phyi->phyint_group_ifindex, ipst)) 29400 cmn_err(CE_PANIC, 29401 "ip_assign_ifindex() failed"); 29402 new_group = B_TRUE; 29403 } 29404 } else { 29405 phyi->phyint_group_ifindex = 0; 29406 } 29407 if (ipst->ips_ipmp_hook_emulation) 29408 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29409 else 29410 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29411 29412 /* 29413 * For IP Filter to find out the relationship between 29414 * names and interface indicies, we need to generate 29415 * a NE_PLUMB event when a new group can appear. 29416 * We always generate events when a new interface appears 29417 * (even when ipmp_hook_emulation is set) so there 29418 * is no need to generate NE_PLUMB events when 29419 * ipmp_hook_emulation is turned off. 29420 * And since it isn't critical for IP Filter to get 29421 * the NE_UNPLUMB events we skip those here. 29422 */ 29423 if (new_group) { 29424 /* 29425 * First phyint in group - generate group PLUMB event. 29426 * Since we are not running inside the ipsq we do 29427 * the dispatch immediately. 29428 */ 29429 if (phyi->phyint_illv4 != NULL) 29430 ill = phyi->phyint_illv4; 29431 else 29432 ill = phyi->phyint_illv6; 29433 29434 if (ill != NULL) 29435 ill_nic_event_plumb(ill, B_TRUE); 29436 } 29437 } 29438 rw_exit(&ipst->ips_ill_g_lock); 29439 } 29440 29441 /* ARGSUSED */ 29442 static int 29443 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29444 caddr_t addr, cred_t *cr) 29445 { 29446 int *v = (int *)addr; 29447 long new_value; 29448 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29449 29450 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29451 return (EINVAL); 29452 29453 if (*v != new_value) { 29454 *v = new_value; 29455 ipmp_hook_emulation_changed(ipst); 29456 } 29457 return (0); 29458 } 29459 29460 static void * 29461 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29462 { 29463 kstat_t *ksp; 29464 29465 ip_stat_t template = { 29466 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29467 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29468 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29469 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29470 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29471 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29472 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29473 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29474 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29475 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29476 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29477 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29478 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29479 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29480 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29481 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29482 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29483 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29484 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29485 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29486 { "ip_opt", KSTAT_DATA_UINT64 }, 29487 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29488 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29489 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29490 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29491 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29492 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29493 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29494 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29495 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29496 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29497 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29498 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29499 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29500 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29501 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29502 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29503 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29504 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29505 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29506 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29507 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29508 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29509 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29510 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29511 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29512 }; 29513 29514 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29515 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29516 KSTAT_FLAG_VIRTUAL, stackid); 29517 29518 if (ksp == NULL) 29519 return (NULL); 29520 29521 bcopy(&template, ip_statisticsp, sizeof (template)); 29522 ksp->ks_data = (void *)ip_statisticsp; 29523 ksp->ks_private = (void *)(uintptr_t)stackid; 29524 29525 kstat_install(ksp); 29526 return (ksp); 29527 } 29528 29529 static void 29530 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29531 { 29532 if (ksp != NULL) { 29533 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29534 kstat_delete_netstack(ksp, stackid); 29535 } 29536 } 29537 29538 static void * 29539 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29540 { 29541 kstat_t *ksp; 29542 29543 ip_named_kstat_t template = { 29544 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29545 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29546 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29547 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29548 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29549 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29550 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29551 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29552 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29553 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29554 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29555 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29556 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29557 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29558 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29559 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29560 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29561 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29562 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29563 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29564 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29565 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29566 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29567 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29568 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29569 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29570 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29571 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29572 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29573 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29574 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29575 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29576 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29577 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29578 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29579 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29580 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29581 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29582 }; 29583 29584 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29585 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29586 if (ksp == NULL || ksp->ks_data == NULL) 29587 return (NULL); 29588 29589 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29590 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29591 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29592 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29593 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29594 29595 template.netToMediaEntrySize.value.i32 = 29596 sizeof (mib2_ipNetToMediaEntry_t); 29597 29598 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29599 29600 bcopy(&template, ksp->ks_data, sizeof (template)); 29601 ksp->ks_update = ip_kstat_update; 29602 ksp->ks_private = (void *)(uintptr_t)stackid; 29603 29604 kstat_install(ksp); 29605 return (ksp); 29606 } 29607 29608 static void 29609 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29610 { 29611 if (ksp != NULL) { 29612 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29613 kstat_delete_netstack(ksp, stackid); 29614 } 29615 } 29616 29617 static int 29618 ip_kstat_update(kstat_t *kp, int rw) 29619 { 29620 ip_named_kstat_t *ipkp; 29621 mib2_ipIfStatsEntry_t ipmib; 29622 ill_walk_context_t ctx; 29623 ill_t *ill; 29624 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29625 netstack_t *ns; 29626 ip_stack_t *ipst; 29627 29628 if (kp == NULL || kp->ks_data == NULL) 29629 return (EIO); 29630 29631 if (rw == KSTAT_WRITE) 29632 return (EACCES); 29633 29634 ns = netstack_find_by_stackid(stackid); 29635 if (ns == NULL) 29636 return (-1); 29637 ipst = ns->netstack_ip; 29638 if (ipst == NULL) { 29639 netstack_rele(ns); 29640 return (-1); 29641 } 29642 ipkp = (ip_named_kstat_t *)kp->ks_data; 29643 29644 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29645 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29646 ill = ILL_START_WALK_V4(&ctx, ipst); 29647 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29648 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29649 rw_exit(&ipst->ips_ill_g_lock); 29650 29651 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29652 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29653 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29654 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29655 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29656 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29657 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29658 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29659 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29660 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29661 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29662 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29663 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29664 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29665 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29666 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29667 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29668 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29669 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29670 29671 ipkp->routingDiscards.value.ui32 = 0; 29672 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29673 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29674 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29675 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29676 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29677 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29678 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29679 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29680 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29681 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29682 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29683 29684 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29685 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29686 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29687 29688 netstack_rele(ns); 29689 29690 return (0); 29691 } 29692 29693 static void * 29694 icmp_kstat_init(netstackid_t stackid) 29695 { 29696 kstat_t *ksp; 29697 29698 icmp_named_kstat_t template = { 29699 { "inMsgs", KSTAT_DATA_UINT32 }, 29700 { "inErrors", KSTAT_DATA_UINT32 }, 29701 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29702 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29703 { "inParmProbs", KSTAT_DATA_UINT32 }, 29704 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29705 { "inRedirects", KSTAT_DATA_UINT32 }, 29706 { "inEchos", KSTAT_DATA_UINT32 }, 29707 { "inEchoReps", KSTAT_DATA_UINT32 }, 29708 { "inTimestamps", KSTAT_DATA_UINT32 }, 29709 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29710 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29711 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29712 { "outMsgs", KSTAT_DATA_UINT32 }, 29713 { "outErrors", KSTAT_DATA_UINT32 }, 29714 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29715 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29716 { "outParmProbs", KSTAT_DATA_UINT32 }, 29717 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29718 { "outRedirects", KSTAT_DATA_UINT32 }, 29719 { "outEchos", KSTAT_DATA_UINT32 }, 29720 { "outEchoReps", KSTAT_DATA_UINT32 }, 29721 { "outTimestamps", KSTAT_DATA_UINT32 }, 29722 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29723 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29724 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29725 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29726 { "inUnknowns", KSTAT_DATA_UINT32 }, 29727 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29728 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29729 { "outDrops", KSTAT_DATA_UINT32 }, 29730 { "inOverFlows", KSTAT_DATA_UINT32 }, 29731 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29732 }; 29733 29734 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29735 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29736 if (ksp == NULL || ksp->ks_data == NULL) 29737 return (NULL); 29738 29739 bcopy(&template, ksp->ks_data, sizeof (template)); 29740 29741 ksp->ks_update = icmp_kstat_update; 29742 ksp->ks_private = (void *)(uintptr_t)stackid; 29743 29744 kstat_install(ksp); 29745 return (ksp); 29746 } 29747 29748 static void 29749 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29750 { 29751 if (ksp != NULL) { 29752 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29753 kstat_delete_netstack(ksp, stackid); 29754 } 29755 } 29756 29757 static int 29758 icmp_kstat_update(kstat_t *kp, int rw) 29759 { 29760 icmp_named_kstat_t *icmpkp; 29761 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29762 netstack_t *ns; 29763 ip_stack_t *ipst; 29764 29765 if ((kp == NULL) || (kp->ks_data == NULL)) 29766 return (EIO); 29767 29768 if (rw == KSTAT_WRITE) 29769 return (EACCES); 29770 29771 ns = netstack_find_by_stackid(stackid); 29772 if (ns == NULL) 29773 return (-1); 29774 ipst = ns->netstack_ip; 29775 if (ipst == NULL) { 29776 netstack_rele(ns); 29777 return (-1); 29778 } 29779 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29780 29781 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29782 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29783 icmpkp->inDestUnreachs.value.ui32 = 29784 ipst->ips_icmp_mib.icmpInDestUnreachs; 29785 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29786 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29787 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29788 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29789 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29790 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29791 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29792 icmpkp->inTimestampReps.value.ui32 = 29793 ipst->ips_icmp_mib.icmpInTimestampReps; 29794 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29795 icmpkp->inAddrMaskReps.value.ui32 = 29796 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29797 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29798 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29799 icmpkp->outDestUnreachs.value.ui32 = 29800 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29801 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29802 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29803 icmpkp->outSrcQuenchs.value.ui32 = 29804 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29805 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29806 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29807 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29808 icmpkp->outTimestamps.value.ui32 = 29809 ipst->ips_icmp_mib.icmpOutTimestamps; 29810 icmpkp->outTimestampReps.value.ui32 = 29811 ipst->ips_icmp_mib.icmpOutTimestampReps; 29812 icmpkp->outAddrMasks.value.ui32 = 29813 ipst->ips_icmp_mib.icmpOutAddrMasks; 29814 icmpkp->outAddrMaskReps.value.ui32 = 29815 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29816 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29817 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29818 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29819 icmpkp->outFragNeeded.value.ui32 = 29820 ipst->ips_icmp_mib.icmpOutFragNeeded; 29821 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29822 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29823 icmpkp->inBadRedirects.value.ui32 = 29824 ipst->ips_icmp_mib.icmpInBadRedirects; 29825 29826 netstack_rele(ns); 29827 return (0); 29828 } 29829 29830 /* 29831 * This is the fanout function for raw socket opened for SCTP. Note 29832 * that it is called after SCTP checks that there is no socket which 29833 * wants a packet. Then before SCTP handles this out of the blue packet, 29834 * this function is called to see if there is any raw socket for SCTP. 29835 * If there is and it is bound to the correct address, the packet will 29836 * be sent to that socket. Note that only one raw socket can be bound to 29837 * a port. This is assured in ipcl_sctp_hash_insert(); 29838 */ 29839 void 29840 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29841 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29842 zoneid_t zoneid) 29843 { 29844 conn_t *connp; 29845 queue_t *rq; 29846 mblk_t *first_mp; 29847 boolean_t secure; 29848 ip6_t *ip6h; 29849 ip_stack_t *ipst = recv_ill->ill_ipst; 29850 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29851 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29852 boolean_t sctp_csum_err = B_FALSE; 29853 29854 if (flags & IP_FF_SCTP_CSUM_ERR) { 29855 sctp_csum_err = B_TRUE; 29856 flags &= ~IP_FF_SCTP_CSUM_ERR; 29857 } 29858 29859 first_mp = mp; 29860 if (mctl_present) { 29861 mp = first_mp->b_cont; 29862 secure = ipsec_in_is_secure(first_mp); 29863 ASSERT(mp != NULL); 29864 } else { 29865 secure = B_FALSE; 29866 } 29867 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29868 29869 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29870 if (connp == NULL) { 29871 /* 29872 * Although raw sctp is not summed, OOB chunks must be. 29873 * Drop the packet here if the sctp checksum failed. 29874 */ 29875 if (sctp_csum_err) { 29876 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29877 freemsg(first_mp); 29878 return; 29879 } 29880 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29881 return; 29882 } 29883 rq = connp->conn_rq; 29884 if (!canputnext(rq)) { 29885 CONN_DEC_REF(connp); 29886 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29887 freemsg(first_mp); 29888 return; 29889 } 29890 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29891 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29892 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29893 (isv4 ? ipha : NULL), ip6h, mctl_present); 29894 if (first_mp == NULL) { 29895 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29896 CONN_DEC_REF(connp); 29897 return; 29898 } 29899 } 29900 /* 29901 * We probably should not send M_CTL message up to 29902 * raw socket. 29903 */ 29904 if (mctl_present) 29905 freeb(first_mp); 29906 29907 /* Initiate IPPF processing here if needed. */ 29908 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29909 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29910 ip_process(IPP_LOCAL_IN, &mp, 29911 recv_ill->ill_phyint->phyint_ifindex); 29912 if (mp == NULL) { 29913 CONN_DEC_REF(connp); 29914 return; 29915 } 29916 } 29917 29918 if (connp->conn_recvif || connp->conn_recvslla || 29919 ((connp->conn_ip_recvpktinfo || 29920 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29921 (flags & IP_FF_IPINFO))) { 29922 int in_flags = 0; 29923 29924 /* 29925 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29926 * IPF_RECVIF. 29927 */ 29928 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29929 in_flags = IPF_RECVIF; 29930 } 29931 if (connp->conn_recvslla) { 29932 in_flags |= IPF_RECVSLLA; 29933 } 29934 if (isv4) { 29935 mp = ip_add_info(mp, recv_ill, in_flags, 29936 IPCL_ZONEID(connp), ipst); 29937 } else { 29938 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29939 if (mp == NULL) { 29940 BUMP_MIB(recv_ill->ill_ip_mib, 29941 ipIfStatsInDiscards); 29942 CONN_DEC_REF(connp); 29943 return; 29944 } 29945 } 29946 } 29947 29948 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29949 /* 29950 * We are sending the IPSEC_IN message also up. Refer 29951 * to comments above this function. 29952 * This is the SOCK_RAW, IPPROTO_SCTP case. 29953 */ 29954 (connp->conn_recv)(connp, mp, NULL); 29955 CONN_DEC_REF(connp); 29956 } 29957 29958 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29959 { \ 29960 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29961 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29962 } 29963 /* 29964 * This function should be called only if all packet processing 29965 * including fragmentation is complete. Callers of this function 29966 * must set mp->b_prev to one of these values: 29967 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29968 * prior to handing over the mp as first argument to this function. 29969 * 29970 * If the ire passed by caller is incomplete, this function 29971 * queues the packet and if necessary, sends ARP request and bails. 29972 * If the ire passed is fully resolved, we simply prepend 29973 * the link-layer header to the packet, do ipsec hw acceleration 29974 * work if necessary, and send the packet out on the wire. 29975 * 29976 * NOTE: IPsec will only call this function with fully resolved 29977 * ires if hw acceleration is involved. 29978 * TODO list : 29979 * a Handle M_MULTIDATA so that 29980 * tcp_multisend->tcp_multisend_data can 29981 * call ip_xmit_v4 directly 29982 * b Handle post-ARP work for fragments so that 29983 * ip_wput_frag can call this function. 29984 */ 29985 ipxmit_state_t 29986 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29987 { 29988 nce_t *arpce; 29989 ipha_t *ipha; 29990 queue_t *q; 29991 int ill_index; 29992 mblk_t *nxt_mp, *first_mp; 29993 boolean_t xmit_drop = B_FALSE; 29994 ip_proc_t proc; 29995 ill_t *out_ill; 29996 int pkt_len; 29997 29998 arpce = ire->ire_nce; 29999 ASSERT(arpce != NULL); 30000 30001 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30002 30003 mutex_enter(&arpce->nce_lock); 30004 switch (arpce->nce_state) { 30005 case ND_REACHABLE: 30006 /* If there are other queued packets, queue this packet */ 30007 if (arpce->nce_qd_mp != NULL) { 30008 if (mp != NULL) 30009 nce_queue_mp_common(arpce, mp, B_FALSE); 30010 mp = arpce->nce_qd_mp; 30011 } 30012 arpce->nce_qd_mp = NULL; 30013 mutex_exit(&arpce->nce_lock); 30014 30015 /* 30016 * Flush the queue. In the common case, where the 30017 * ARP is already resolved, it will go through the 30018 * while loop only once. 30019 */ 30020 while (mp != NULL) { 30021 30022 nxt_mp = mp->b_next; 30023 mp->b_next = NULL; 30024 ASSERT(mp->b_datap->db_type != M_CTL); 30025 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30026 /* 30027 * This info is needed for IPQOS to do COS marking 30028 * in ip_wput_attach_llhdr->ip_process. 30029 */ 30030 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30031 mp->b_prev = NULL; 30032 30033 /* set up ill index for outbound qos processing */ 30034 out_ill = ire_to_ill(ire); 30035 ill_index = out_ill->ill_phyint->phyint_ifindex; 30036 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30037 ill_index, &ipha); 30038 if (first_mp == NULL) { 30039 xmit_drop = B_TRUE; 30040 BUMP_MIB(out_ill->ill_ip_mib, 30041 ipIfStatsOutDiscards); 30042 goto next_mp; 30043 } 30044 30045 /* non-ipsec hw accel case */ 30046 if (io == NULL || !io->ipsec_out_accelerated) { 30047 /* send it */ 30048 q = ire->ire_stq; 30049 if (proc == IPP_FWD_OUT) { 30050 UPDATE_IB_PKT_COUNT(ire); 30051 } else { 30052 UPDATE_OB_PKT_COUNT(ire); 30053 } 30054 ire->ire_last_used_time = lbolt; 30055 30056 if (flow_ctl_enabled || canputnext(q)) { 30057 if (proc == IPP_FWD_OUT) { 30058 30059 BUMP_MIB(out_ill->ill_ip_mib, 30060 ipIfStatsHCOutForwDatagrams); 30061 30062 } 30063 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30064 pkt_len); 30065 30066 DTRACE_IP7(send, mblk_t *, first_mp, 30067 conn_t *, NULL, void_ip_t *, ipha, 30068 __dtrace_ipsr_ill_t *, out_ill, 30069 ipha_t *, ipha, ip6_t *, NULL, int, 30070 0); 30071 30072 putnext(q, first_mp); 30073 } else { 30074 BUMP_MIB(out_ill->ill_ip_mib, 30075 ipIfStatsOutDiscards); 30076 xmit_drop = B_TRUE; 30077 freemsg(first_mp); 30078 } 30079 } else { 30080 /* 30081 * Safety Pup says: make sure this 30082 * is going to the right interface! 30083 */ 30084 ill_t *ill1 = 30085 (ill_t *)ire->ire_stq->q_ptr; 30086 int ifindex = 30087 ill1->ill_phyint->phyint_ifindex; 30088 if (ifindex != 30089 io->ipsec_out_capab_ill_index) { 30090 xmit_drop = B_TRUE; 30091 freemsg(mp); 30092 } else { 30093 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30094 pkt_len); 30095 30096 DTRACE_IP7(send, mblk_t *, first_mp, 30097 conn_t *, NULL, void_ip_t *, ipha, 30098 __dtrace_ipsr_ill_t *, ill1, 30099 ipha_t *, ipha, ip6_t *, NULL, 30100 int, 0); 30101 30102 ipsec_hw_putnext(ire->ire_stq, mp); 30103 } 30104 } 30105 next_mp: 30106 mp = nxt_mp; 30107 } /* while (mp != NULL) */ 30108 if (xmit_drop) 30109 return (SEND_FAILED); 30110 else 30111 return (SEND_PASSED); 30112 30113 case ND_INITIAL: 30114 case ND_INCOMPLETE: 30115 30116 /* 30117 * While we do send off packets to dests that 30118 * use fully-resolved CGTP routes, we do not 30119 * handle unresolved CGTP routes. 30120 */ 30121 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30122 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30123 30124 if (mp != NULL) { 30125 /* queue the packet */ 30126 nce_queue_mp_common(arpce, mp, B_FALSE); 30127 } 30128 30129 if (arpce->nce_state == ND_INCOMPLETE) { 30130 mutex_exit(&arpce->nce_lock); 30131 DTRACE_PROBE3(ip__xmit__incomplete, 30132 (ire_t *), ire, (mblk_t *), mp, 30133 (ipsec_out_t *), io); 30134 return (LOOKUP_IN_PROGRESS); 30135 } 30136 30137 arpce->nce_state = ND_INCOMPLETE; 30138 mutex_exit(&arpce->nce_lock); 30139 /* 30140 * Note that ire_add() (called from ire_forward()) 30141 * holds a ref on the ire until ARP is completed. 30142 */ 30143 30144 ire_arpresolve(ire, ire_to_ill(ire)); 30145 return (LOOKUP_IN_PROGRESS); 30146 default: 30147 ASSERT(0); 30148 mutex_exit(&arpce->nce_lock); 30149 return (LLHDR_RESLV_FAILED); 30150 } 30151 } 30152 30153 #undef UPDATE_IP_MIB_OB_COUNTERS 30154 30155 /* 30156 * Return B_TRUE if the buffers differ in length or content. 30157 * This is used for comparing extension header buffers. 30158 * Note that an extension header would be declared different 30159 * even if all that changed was the next header value in that header i.e. 30160 * what really changed is the next extension header. 30161 */ 30162 boolean_t 30163 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30164 uint_t blen) 30165 { 30166 if (!b_valid) 30167 blen = 0; 30168 30169 if (alen != blen) 30170 return (B_TRUE); 30171 if (alen == 0) 30172 return (B_FALSE); /* Both zero length */ 30173 return (bcmp(abuf, bbuf, alen)); 30174 } 30175 30176 /* 30177 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30178 * Return B_FALSE if memory allocation fails - don't change any state! 30179 */ 30180 boolean_t 30181 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30182 const void *src, uint_t srclen) 30183 { 30184 void *dst; 30185 30186 if (!src_valid) 30187 srclen = 0; 30188 30189 ASSERT(*dstlenp == 0); 30190 if (src != NULL && srclen != 0) { 30191 dst = mi_alloc(srclen, BPRI_MED); 30192 if (dst == NULL) 30193 return (B_FALSE); 30194 } else { 30195 dst = NULL; 30196 } 30197 if (*dstp != NULL) 30198 mi_free(*dstp); 30199 *dstp = dst; 30200 *dstlenp = dst == NULL ? 0 : srclen; 30201 return (B_TRUE); 30202 } 30203 30204 /* 30205 * Replace what is in *dst, *dstlen with the source. 30206 * Assumes ip_allocbuf has already been called. 30207 */ 30208 void 30209 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30210 const void *src, uint_t srclen) 30211 { 30212 if (!src_valid) 30213 srclen = 0; 30214 30215 ASSERT(*dstlenp == srclen); 30216 if (src != NULL && srclen != 0) 30217 bcopy(src, *dstp, srclen); 30218 } 30219 30220 /* 30221 * Free the storage pointed to by the members of an ip6_pkt_t. 30222 */ 30223 void 30224 ip6_pkt_free(ip6_pkt_t *ipp) 30225 { 30226 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30227 30228 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30229 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30230 ipp->ipp_hopopts = NULL; 30231 ipp->ipp_hopoptslen = 0; 30232 } 30233 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30234 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30235 ipp->ipp_rtdstopts = NULL; 30236 ipp->ipp_rtdstoptslen = 0; 30237 } 30238 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30239 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30240 ipp->ipp_dstopts = NULL; 30241 ipp->ipp_dstoptslen = 0; 30242 } 30243 if (ipp->ipp_fields & IPPF_RTHDR) { 30244 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30245 ipp->ipp_rthdr = NULL; 30246 ipp->ipp_rthdrlen = 0; 30247 } 30248 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30249 IPPF_RTHDR); 30250 } 30251 30252 zoneid_t 30253 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 30254 zoneid_t lookup_zoneid) 30255 { 30256 ire_t *ire; 30257 int ire_flags = MATCH_IRE_TYPE; 30258 zoneid_t zoneid = ALL_ZONES; 30259 30260 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30261 return (ALL_ZONES); 30262 30263 if (lookup_zoneid != ALL_ZONES) 30264 ire_flags |= MATCH_IRE_ZONEONLY; 30265 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 30266 lookup_zoneid, NULL, ire_flags, ipst); 30267 if (ire != NULL) { 30268 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30269 ire_refrele(ire); 30270 } 30271 return (zoneid); 30272 } 30273 30274 zoneid_t 30275 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 30276 ip_stack_t *ipst, zoneid_t lookup_zoneid) 30277 { 30278 ire_t *ire; 30279 int ire_flags = MATCH_IRE_TYPE; 30280 zoneid_t zoneid = ALL_ZONES; 30281 ipif_t *ipif_arg = NULL; 30282 30283 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30284 return (ALL_ZONES); 30285 30286 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 30287 ire_flags |= MATCH_IRE_ILL_GROUP; 30288 ipif_arg = ill->ill_ipif; 30289 } 30290 if (lookup_zoneid != ALL_ZONES) 30291 ire_flags |= MATCH_IRE_ZONEONLY; 30292 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 30293 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 30294 if (ire != NULL) { 30295 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30296 ire_refrele(ire); 30297 } 30298 return (zoneid); 30299 } 30300 30301 /* 30302 * IP obserability hook support functions. 30303 */ 30304 30305 static void 30306 ipobs_init(ip_stack_t *ipst) 30307 { 30308 ipst->ips_ipobs_enabled = B_FALSE; 30309 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 30310 offsetof(ipobs_cb_t, ipobs_cbnext)); 30311 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 30312 ipst->ips_ipobs_cb_nwalkers = 0; 30313 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 30314 } 30315 30316 static void 30317 ipobs_fini(ip_stack_t *ipst) 30318 { 30319 ipobs_cb_t *cb; 30320 30321 mutex_enter(&ipst->ips_ipobs_cb_lock); 30322 while (ipst->ips_ipobs_cb_nwalkers != 0) 30323 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30324 30325 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 30326 list_remove(&ipst->ips_ipobs_cb_list, cb); 30327 kmem_free(cb, sizeof (*cb)); 30328 } 30329 list_destroy(&ipst->ips_ipobs_cb_list); 30330 mutex_exit(&ipst->ips_ipobs_cb_lock); 30331 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30332 cv_destroy(&ipst->ips_ipobs_cb_cv); 30333 } 30334 30335 void 30336 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30337 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30338 { 30339 ipobs_cb_t *ipobs_cb; 30340 30341 ASSERT(DB_TYPE(mp) == M_DATA); 30342 30343 mutex_enter(&ipst->ips_ipobs_cb_lock); 30344 ipst->ips_ipobs_cb_nwalkers++; 30345 mutex_exit(&ipst->ips_ipobs_cb_lock); 30346 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30347 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30348 mblk_t *mp2 = allocb(sizeof (ipobs_hook_data_t), 30349 BPRI_HI); 30350 if (mp2 != NULL) { 30351 ipobs_hook_data_t *ihd = 30352 (ipobs_hook_data_t *)mp2->b_rptr; 30353 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30354 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30355 freemsg(mp2); 30356 continue; 30357 } 30358 ihd->ihd_mp->b_rptr += hlen; 30359 ihd->ihd_htype = htype; 30360 ihd->ihd_ipver = ipver; 30361 ihd->ihd_zsrc = zsrc; 30362 ihd->ihd_zdst = zdst; 30363 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30364 ihd->ihd_stack = ipst->ips_netstack; 30365 mp2->b_wptr += sizeof (*ihd); 30366 ipobs_cb->ipobs_cbfunc(mp2); 30367 } 30368 } 30369 mutex_enter(&ipst->ips_ipobs_cb_lock); 30370 ipst->ips_ipobs_cb_nwalkers--; 30371 if (ipst->ips_ipobs_cb_nwalkers == 0) 30372 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30373 mutex_exit(&ipst->ips_ipobs_cb_lock); 30374 } 30375 30376 void 30377 ipobs_register_hook(netstack_t *ns, pfv_t func) 30378 { 30379 ipobs_cb_t *cb; 30380 ip_stack_t *ipst = ns->netstack_ip; 30381 30382 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30383 30384 mutex_enter(&ipst->ips_ipobs_cb_lock); 30385 while (ipst->ips_ipobs_cb_nwalkers != 0) 30386 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30387 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30388 30389 cb->ipobs_cbfunc = func; 30390 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30391 ipst->ips_ipobs_enabled = B_TRUE; 30392 mutex_exit(&ipst->ips_ipobs_cb_lock); 30393 } 30394 30395 void 30396 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30397 { 30398 ipobs_cb_t *curcb; 30399 ip_stack_t *ipst = ns->netstack_ip; 30400 30401 mutex_enter(&ipst->ips_ipobs_cb_lock); 30402 while (ipst->ips_ipobs_cb_nwalkers != 0) 30403 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30404 30405 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30406 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30407 if (func == curcb->ipobs_cbfunc) { 30408 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30409 kmem_free(curcb, sizeof (*curcb)); 30410 break; 30411 } 30412 } 30413 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30414 ipst->ips_ipobs_enabled = B_FALSE; 30415 mutex_exit(&ipst->ips_ipobs_cb_lock); 30416 } 30417