1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * 455 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 456 * cannot be sent down to the driver by IP, because of a canput failure, IP 457 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 458 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 459 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 460 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 461 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 462 * the queued messages, and removes the conn from the drain list, if all 463 * messages were drained. It also qenables the next conn in the drain list to 464 * continue the drain process. 465 * 466 * In reality the drain list is not a single list, but a configurable number 467 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 468 * list. If the ip_wsrv of the next qenabled conn does not run, because the 469 * stream closes, ip_close takes responsibility to qenable the next conn in 470 * the drain list. The directly called ip_wput path always does a putq, if 471 * it cannot putnext. Thus synchronization problems are handled between 472 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 473 * functions that manipulate this drain list. Furthermore conn_drain_insert 474 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 475 * running on a queue at any time. conn_drain_tail can be simultaneously called 476 * from both ip_wsrv and ip_close. 477 * 478 * IPQOS notes: 479 * 480 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 481 * and IPQoS modules. IPPF includes hooks in IP at different control points 482 * (callout positions) which direct packets to IPQoS modules for policy 483 * processing. Policies, if present, are global. 484 * 485 * The callout positions are located in the following paths: 486 * o local_in (packets destined for this host) 487 * o local_out (packets orginating from this host ) 488 * o fwd_in (packets forwarded by this m/c - inbound) 489 * o fwd_out (packets forwarded by this m/c - outbound) 490 * Hooks at these callout points can be enabled/disabled using the ndd variable 491 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 492 * By default all the callout positions are enabled. 493 * 494 * Outbound (local_out) 495 * Hooks are placed in ip_wput_ire and ipsec_out_process. 496 * 497 * Inbound (local_in) 498 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 499 * TCP and UDP fanout routines. 500 * 501 * Forwarding (in and out) 502 * Hooks are placed in ip_rput_forward. 503 * 504 * IP Policy Framework processing (IPPF processing) 505 * Policy processing for a packet is initiated by ip_process, which ascertains 506 * that the classifier (ipgpc) is loaded and configured, failing which the 507 * packet resumes normal processing in IP. If the clasifier is present, the 508 * packet is acted upon by one or more IPQoS modules (action instances), per 509 * filters configured in ipgpc and resumes normal IP processing thereafter. 510 * An action instance can drop a packet in course of its processing. 511 * 512 * A boolean variable, ip_policy, is used in all the fanout routines that can 513 * invoke ip_process for a packet. This variable indicates if the packet should 514 * to be sent for policy processing. The variable is set to B_TRUE by default, 515 * i.e. when the routines are invoked in the normal ip procesing path for a 516 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 517 * ip_policy is set to B_FALSE for all the routines called in these two 518 * functions because, in the former case, we don't process loopback traffic 519 * currently while in the latter, the packets have already been processed in 520 * icmp_inbound. 521 * 522 * Zones notes: 523 * 524 * The partitioning rules for networking are as follows: 525 * 1) Packets coming from a zone must have a source address belonging to that 526 * zone. 527 * 2) Packets coming from a zone can only be sent on a physical interface on 528 * which the zone has an IP address. 529 * 3) Between two zones on the same machine, packet delivery is only allowed if 530 * there's a matching route for the destination and zone in the forwarding 531 * table. 532 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 533 * different zones can bind to the same port with the wildcard address 534 * (INADDR_ANY). 535 * 536 * The granularity of interface partitioning is at the logical interface level. 537 * Therefore, every zone has its own IP addresses, and incoming packets can be 538 * attributed to a zone unambiguously. A logical interface is placed into a zone 539 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 540 * structure. Rule (1) is implemented by modifying the source address selection 541 * algorithm so that the list of eligible addresses is filtered based on the 542 * sending process zone. 543 * 544 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 545 * across all zones, depending on their type. Here is the break-up: 546 * 547 * IRE type Shared/exclusive 548 * -------- ---------------- 549 * IRE_BROADCAST Exclusive 550 * IRE_DEFAULT (default routes) Shared (*) 551 * IRE_LOCAL Exclusive (x) 552 * IRE_LOOPBACK Exclusive 553 * IRE_PREFIX (net routes) Shared (*) 554 * IRE_CACHE Exclusive 555 * IRE_IF_NORESOLVER (interface routes) Exclusive 556 * IRE_IF_RESOLVER (interface routes) Exclusive 557 * IRE_HOST (host routes) Shared (*) 558 * 559 * (*) A zone can only use a default or off-subnet route if the gateway is 560 * directly reachable from the zone, that is, if the gateway's address matches 561 * one of the zone's logical interfaces. 562 * 563 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 564 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 565 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 566 * address of the zone itself (the destination). Since IRE_LOCAL is used 567 * for communication between zones, ip_wput_ire has special logic to set 568 * the right source address when sending using an IRE_LOCAL. 569 * 570 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 571 * ire_cache_lookup restricts loopback using an IRE_LOCAL 572 * between zone to the case when L2 would have conceptually looped the packet 573 * back, i.e. the loopback which is required since neither Ethernet drivers 574 * nor Ethernet hardware loops them back. This is the case when the normal 575 * routes (ignoring IREs with different zoneids) would send out the packet on 576 * the same ill as the ill with which is IRE_LOCAL is associated. 577 * 578 * Multiple zones can share a common broadcast address; typically all zones 579 * share the 255.255.255.255 address. Incoming as well as locally originated 580 * broadcast packets must be dispatched to all the zones on the broadcast 581 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 582 * since some zones may not be on the 10.16.72/24 network. To handle this, each 583 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 584 * sent to every zone that has an IRE_BROADCAST entry for the destination 585 * address on the input ill, see conn_wantpacket(). 586 * 587 * Applications in different zones can join the same multicast group address. 588 * For IPv4, group memberships are per-logical interface, so they're already 589 * inherently part of a zone. For IPv6, group memberships are per-physical 590 * interface, so we distinguish IPv6 group memberships based on group address, 591 * interface and zoneid. In both cases, received multicast packets are sent to 592 * every zone for which a group membership entry exists. On IPv6 we need to 593 * check that the target zone still has an address on the receiving physical 594 * interface; it could have been removed since the application issued the 595 * IPV6_JOIN_GROUP. 596 */ 597 598 /* 599 * Squeue Fanout flags: 600 * 0: No fanout. 601 * 1: Fanout across all squeues 602 */ 603 boolean_t ip_squeue_fanout = 0; 604 605 /* 606 * Maximum dups allowed per packet. 607 */ 608 uint_t ip_max_frag_dups = 10; 609 610 #define IS_SIMPLE_IPH(ipha) \ 611 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 612 613 /* RFC 1122 Conformance */ 614 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 615 616 #define ILL_MAX_NAMELEN LIFNAMSIZ 617 618 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 619 620 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 621 cred_t *credp, boolean_t isv6); 622 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 623 ipha_t **); 624 625 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 626 ip_stack_t *); 627 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 628 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 629 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 630 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 631 mblk_t *, int, ip_stack_t *); 632 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 633 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 634 ill_t *, zoneid_t); 635 static void icmp_options_update(ipha_t *); 636 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 637 ip_stack_t *); 638 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 639 zoneid_t zoneid, ip_stack_t *); 640 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 641 static void icmp_redirect(ill_t *, mblk_t *); 642 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 643 ip_stack_t *); 644 645 static void ip_arp_news(queue_t *, mblk_t *); 646 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 647 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 648 char *ip_dot_addr(ipaddr_t, char *); 649 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 650 int ip_close(queue_t *, int); 651 static char *ip_dot_saddr(uchar_t *, char *); 652 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 653 boolean_t, boolean_t, ill_t *, zoneid_t); 654 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 655 boolean_t, boolean_t, zoneid_t); 656 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 657 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 658 static void ip_lrput(queue_t *, mblk_t *); 659 ipaddr_t ip_net_mask(ipaddr_t); 660 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 661 ip_stack_t *); 662 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 663 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 664 char *ip_nv_lookup(nv_t *, int); 665 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 666 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 667 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 668 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 669 ipndp_t *, size_t); 670 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 671 void ip_rput(queue_t *, mblk_t *); 672 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 673 void *dummy_arg); 674 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 675 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 676 ip_stack_t *); 677 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 678 ire_t *, ip_stack_t *); 679 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 680 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 681 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 682 ip_stack_t *); 683 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 684 uint32_t *, uint16_t *); 685 int ip_snmp_get(queue_t *, mblk_t *, int); 686 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 687 mib2_ipIfStatsEntry_t *, ip_stack_t *); 688 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 689 ip_stack_t *); 690 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 691 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 704 ip_stack_t *ipst); 705 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 706 ip_stack_t *ipst); 707 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 708 ip_stack_t *ipst); 709 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 710 ip_stack_t *ipst); 711 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 712 ip_stack_t *ipst); 713 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 714 ip_stack_t *ipst); 715 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 716 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 717 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 718 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 719 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 720 static boolean_t ip_source_route_included(ipha_t *); 721 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 722 723 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 724 zoneid_t, ip_stack_t *, conn_t *); 725 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 726 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 727 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 728 zoneid_t, ip_stack_t *); 729 730 static void conn_drain_init(ip_stack_t *); 731 static void conn_drain_fini(ip_stack_t *); 732 static void conn_drain_tail(conn_t *connp, boolean_t closing); 733 734 static void conn_walk_drain(ip_stack_t *); 735 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 736 zoneid_t); 737 738 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 739 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 740 static void ip_stack_fini(netstackid_t stackid, void *arg); 741 742 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 743 zoneid_t); 744 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 745 void *dummy_arg); 746 747 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 748 749 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 750 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 751 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 752 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 753 754 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 755 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 756 caddr_t, cred_t *); 757 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 758 cred_t *, boolean_t); 759 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 760 caddr_t cp, cred_t *cr); 761 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 762 cred_t *); 763 static int ip_squeue_switch(int); 764 765 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 766 static void ip_kstat_fini(netstackid_t, kstat_t *); 767 static int ip_kstat_update(kstat_t *kp, int rw); 768 static void *icmp_kstat_init(netstackid_t); 769 static void icmp_kstat_fini(netstackid_t, kstat_t *); 770 static int icmp_kstat_update(kstat_t *kp, int rw); 771 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 772 static void ip_kstat2_fini(netstackid_t, kstat_t *); 773 774 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 775 776 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 777 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 778 779 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 780 ipha_t *, ill_t *, boolean_t, boolean_t); 781 782 static void ipobs_init(ip_stack_t *); 783 static void ipobs_fini(ip_stack_t *); 784 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 785 786 /* How long, in seconds, we allow frags to hang around. */ 787 #define IP_FRAG_TIMEOUT 15 788 789 /* 790 * Threshold which determines whether MDT should be used when 791 * generating IP fragments; payload size must be greater than 792 * this threshold for MDT to take place. 793 */ 794 #define IP_WPUT_FRAG_MDT_MIN 32768 795 796 /* Setable in /etc/system only */ 797 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 798 799 static long ip_rput_pullups; 800 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 801 802 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 803 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 804 805 int ip_debug; 806 807 #ifdef DEBUG 808 uint32_t ipsechw_debug = 0; 809 #endif 810 811 /* 812 * Multirouting/CGTP stuff 813 */ 814 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 815 816 /* 817 * XXX following really should only be in a header. Would need more 818 * header and .c clean up first. 819 */ 820 extern optdb_obj_t ip_opt_obj; 821 822 ulong_t ip_squeue_enter_unbound = 0; 823 824 /* 825 * Named Dispatch Parameter Table. 826 * All of these are alterable, within the min/max values given, at run time. 827 */ 828 static ipparam_t lcl_param_arr[] = { 829 /* min max value name */ 830 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 831 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 832 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 833 { 0, 1, 0, "ip_respond_to_timestamp"}, 834 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 835 { 0, 1, 1, "ip_send_redirects"}, 836 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 837 { 0, 10, 0, "ip_mrtdebug"}, 838 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 839 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 840 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 841 { 1, 255, 255, "ip_def_ttl" }, 842 { 0, 1, 0, "ip_forward_src_routed"}, 843 { 0, 256, 32, "ip_wroff_extra" }, 844 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 845 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 846 { 0, 1, 1, "ip_path_mtu_discovery" }, 847 { 0, 240, 30, "ip_ignore_delete_time" }, 848 { 0, 1, 0, "ip_ignore_redirect" }, 849 { 0, 1, 1, "ip_output_queue" }, 850 { 1, 254, 1, "ip_broadcast_ttl" }, 851 { 0, 99999, 100, "ip_icmp_err_interval" }, 852 { 1, 99999, 10, "ip_icmp_err_burst" }, 853 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 854 { 0, 1, 0, "ip_strict_dst_multihoming" }, 855 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 856 { 0, 1, 0, "ipsec_override_persocket_policy" }, 857 { 0, 1, 1, "icmp_accept_clear_messages" }, 858 { 0, 1, 1, "igmp_accept_clear_messages" }, 859 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 860 "ip_ndp_delay_first_probe_time"}, 861 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 862 "ip_ndp_max_unicast_solicit"}, 863 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 864 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 865 { 0, 1, 0, "ip6_forward_src_routed"}, 866 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 867 { 0, 1, 1, "ip6_send_redirects"}, 868 { 0, 1, 0, "ip6_ignore_redirect" }, 869 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 870 871 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 872 873 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 874 875 { 0, 1, 1, "pim_accept_clear_messages" }, 876 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 877 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 878 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 879 { 0, 15, 0, "ip_policy_mask" }, 880 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 881 { 0, 255, 1, "ip_multirt_ttl" }, 882 { 0, 1, 1, "ip_multidata_outbound" }, 883 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 884 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 885 { 0, 1000, 1, "ip_max_temp_defend" }, 886 { 0, 1000, 3, "ip_max_defend" }, 887 { 0, 999999, 30, "ip_defend_interval" }, 888 { 0, 3600000, 300000, "ip_dup_recovery" }, 889 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 890 { 0, 1, 1, "ip_lso_outbound" }, 891 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 892 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 893 { 68, 65535, 576, "ip_pmtu_min" }, 894 #ifdef DEBUG 895 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 896 #else 897 { 0, 0, 0, "" }, 898 #endif 899 }; 900 901 /* 902 * Extended NDP table 903 * The addresses for the first two are filled in to be ips_ip_g_forward 904 * and ips_ipv6_forward at init time. 905 */ 906 static ipndp_t lcl_ndp_arr[] = { 907 /* getf setf data name */ 908 #define IPNDP_IP_FORWARDING_OFFSET 0 909 { ip_param_generic_get, ip_forward_set, NULL, 910 "ip_forwarding" }, 911 #define IPNDP_IP6_FORWARDING_OFFSET 1 912 { ip_param_generic_get, ip_forward_set, NULL, 913 "ip6_forwarding" }, 914 { ip_ill_report, NULL, NULL, 915 "ip_ill_status" }, 916 { ip_ipif_report, NULL, NULL, 917 "ip_ipif_status" }, 918 { ip_conn_report, NULL, NULL, 919 "ip_conn_status" }, 920 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 921 "ip_rput_pullups" }, 922 { ip_srcid_report, NULL, NULL, 923 "ip_srcid_status" }, 924 { ip_param_generic_get, ip_input_proc_set, 925 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 926 { ip_param_generic_get, ip_int_set, 927 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 928 #define IPNDP_CGTP_FILTER_OFFSET 9 929 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 930 "ip_cgtp_filter" }, 931 #define IPNDP_IPMP_HOOK_OFFSET 10 932 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 933 "ip_debug" }, 934 }; 935 936 /* 937 * Table of IP ioctls encoding the various properties of the ioctl and 938 * indexed based on the last byte of the ioctl command. Occasionally there 939 * is a clash, and there is more than 1 ioctl with the same last byte. 940 * In such a case 1 ioctl is encoded in the ndx table and the remaining 941 * ioctls are encoded in the misc table. An entry in the ndx table is 942 * retrieved by indexing on the last byte of the ioctl command and comparing 943 * the ioctl command with the value in the ndx table. In the event of a 944 * mismatch the misc table is then searched sequentially for the desired 945 * ioctl command. 946 * 947 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 948 */ 949 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 950 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 961 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 962 MISC_CMD, ip_siocaddrt, NULL }, 963 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 964 MISC_CMD, ip_siocdelrt, NULL }, 965 966 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 967 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 968 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 969 IF_CMD, ip_sioctl_get_addr, NULL }, 970 971 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 972 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 973 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 974 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 975 976 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 977 IPI_PRIV | IPI_WR, 978 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 979 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 980 IPI_MODOK | IPI_GET_CMD, 981 IF_CMD, ip_sioctl_get_flags, NULL }, 982 983 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 984 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 985 986 /* copyin size cannot be coded for SIOCGIFCONF */ 987 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 988 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 989 990 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 991 IF_CMD, ip_sioctl_mtu, NULL }, 992 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 993 IF_CMD, ip_sioctl_get_mtu, NULL }, 994 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 995 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 996 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_brdaddr, NULL }, 998 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 999 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1000 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1001 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1002 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1003 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1004 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1005 IF_CMD, ip_sioctl_metric, NULL }, 1006 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1007 1008 /* See 166-168 below for extended SIOC*XARP ioctls */ 1009 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1010 ARP_CMD, ip_sioctl_arp, NULL }, 1011 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1012 ARP_CMD, ip_sioctl_arp, NULL }, 1013 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1014 ARP_CMD, ip_sioctl_arp, NULL }, 1015 1016 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 1038 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1039 MISC_CMD, if_unitsel, if_unitsel_restart }, 1040 1041 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 1060 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1061 IPI_PRIV | IPI_WR | IPI_MODOK, 1062 IF_CMD, ip_sioctl_sifname, NULL }, 1063 1064 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 1078 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1079 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1080 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1081 IF_CMD, ip_sioctl_get_muxid, NULL }, 1082 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1083 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1084 1085 /* Both if and lif variants share same func */ 1086 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1087 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1088 /* Both if and lif variants share same func */ 1089 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1090 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1091 1092 /* copyin size cannot be coded for SIOCGIFCONF */ 1093 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1094 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1095 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1114 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1115 ip_sioctl_removeif_restart }, 1116 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1117 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1118 LIF_CMD, ip_sioctl_addif, NULL }, 1119 #define SIOCLIFADDR_NDX 112 1120 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1121 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1122 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1123 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1124 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1125 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1126 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1127 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1128 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1129 IPI_PRIV | IPI_WR, 1130 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1131 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1132 IPI_GET_CMD | IPI_MODOK, 1133 LIF_CMD, ip_sioctl_get_flags, NULL }, 1134 1135 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 1138 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1139 ip_sioctl_get_lifconf, NULL }, 1140 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1141 LIF_CMD, ip_sioctl_mtu, NULL }, 1142 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1143 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1144 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1145 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1146 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1147 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1148 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1149 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1150 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1151 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1152 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1153 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1154 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_metric, NULL }, 1156 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1157 IPI_PRIV | IPI_WR | IPI_MODOK, 1158 LIF_CMD, ip_sioctl_slifname, 1159 ip_sioctl_slifname_restart }, 1160 1161 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1162 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1163 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1164 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1165 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1166 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1167 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1168 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1169 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1170 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1171 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1172 LIF_CMD, ip_sioctl_token, NULL }, 1173 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1174 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1175 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1176 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1177 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1178 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1179 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1180 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1181 1182 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1183 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1184 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1185 LIF_CMD, ip_siocdelndp_v6, NULL }, 1186 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1187 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1188 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1189 LIF_CMD, ip_siocsetndp_v6, NULL }, 1190 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1191 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1192 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1193 MISC_CMD, ip_sioctl_tonlink, NULL }, 1194 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1195 MISC_CMD, ip_sioctl_tmysite, NULL }, 1196 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), 0, 1197 TUN_CMD, ip_sioctl_tunparam, NULL }, 1198 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1199 IPI_PRIV | IPI_WR, 1200 TUN_CMD, ip_sioctl_tunparam, NULL }, 1201 1202 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1203 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1204 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1205 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1206 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1207 1208 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1209 1210 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD | 1211 IPI_WR, LIF_CMD, ip_sioctl_get_binding, NULL }, 1212 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1213 IPI_PRIV | IPI_WR, 1214 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1215 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1216 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1217 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1218 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1219 1220 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1221 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1222 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1223 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 1225 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1226 1227 /* These are handled in ip_sioctl_copyin_setup itself */ 1228 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1229 MISC_CMD, NULL, NULL }, 1230 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1231 MISC_CMD, NULL, NULL }, 1232 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1233 1234 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1235 ip_sioctl_get_lifconf, NULL }, 1236 1237 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1238 XARP_CMD, ip_sioctl_arp, NULL }, 1239 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1240 XARP_CMD, ip_sioctl_arp, NULL }, 1241 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1242 XARP_CMD, ip_sioctl_arp, NULL }, 1243 1244 /* SIOCPOPSOCKFS is not handled by IP */ 1245 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1246 1247 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1248 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1249 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1250 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1251 ip_sioctl_slifzone_restart }, 1252 /* 172-174 are SCTP ioctls and not handled by IP */ 1253 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1254 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1255 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1256 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1257 IPI_GET_CMD, LIF_CMD, 1258 ip_sioctl_get_lifusesrc, 0 }, 1259 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1260 IPI_PRIV | IPI_WR, 1261 LIF_CMD, ip_sioctl_slifusesrc, 1262 NULL }, 1263 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1264 ip_sioctl_get_lifsrcof, NULL }, 1265 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1266 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1267 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1268 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1269 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1270 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1271 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1272 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1273 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1274 /* SIOCSENABLESDP is handled by SDP */ 1275 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1276 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1277 }; 1278 1279 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1280 1281 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1282 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1283 IPI_GET_CMD, TUN_CMD, ip_sioctl_tunparam, NULL }, 1284 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1285 TUN_CMD, ip_sioctl_tunparam, NULL }, 1286 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1287 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1288 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1289 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1290 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1291 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1292 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1293 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1294 MISC_CMD, mrt_ioctl}, 1295 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1296 MISC_CMD, mrt_ioctl}, 1297 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1298 MISC_CMD, mrt_ioctl} 1299 }; 1300 1301 int ip_misc_ioctl_count = 1302 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1303 1304 int conn_drain_nthreads; /* Number of drainers reqd. */ 1305 /* Settable in /etc/system */ 1306 /* Defined in ip_ire.c */ 1307 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1308 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1309 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1310 1311 static nv_t ire_nv_arr[] = { 1312 { IRE_BROADCAST, "BROADCAST" }, 1313 { IRE_LOCAL, "LOCAL" }, 1314 { IRE_LOOPBACK, "LOOPBACK" }, 1315 { IRE_CACHE, "CACHE" }, 1316 { IRE_DEFAULT, "DEFAULT" }, 1317 { IRE_PREFIX, "PREFIX" }, 1318 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1319 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1320 { IRE_HOST, "HOST" }, 1321 { 0 } 1322 }; 1323 1324 nv_t *ire_nv_tbl = ire_nv_arr; 1325 1326 /* Simple ICMP IP Header Template */ 1327 static ipha_t icmp_ipha = { 1328 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1329 }; 1330 1331 struct module_info ip_mod_info = { 1332 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1333 IP_MOD_LOWAT 1334 }; 1335 1336 /* 1337 * Duplicate static symbols within a module confuses mdb; so we avoid the 1338 * problem by making the symbols here distinct from those in udp.c. 1339 */ 1340 1341 /* 1342 * Entry points for IP as a device and as a module. 1343 * FIXME: down the road we might want a separate module and driver qinit. 1344 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1345 */ 1346 static struct qinit iprinitv4 = { 1347 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1348 &ip_mod_info 1349 }; 1350 1351 struct qinit iprinitv6 = { 1352 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1353 &ip_mod_info 1354 }; 1355 1356 static struct qinit ipwinitv4 = { 1357 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1358 &ip_mod_info 1359 }; 1360 1361 struct qinit ipwinitv6 = { 1362 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1363 &ip_mod_info 1364 }; 1365 1366 static struct qinit iplrinit = { 1367 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1368 &ip_mod_info 1369 }; 1370 1371 static struct qinit iplwinit = { 1372 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1373 &ip_mod_info 1374 }; 1375 1376 /* For AF_INET aka /dev/ip */ 1377 struct streamtab ipinfov4 = { 1378 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1379 }; 1380 1381 /* For AF_INET6 aka /dev/ip6 */ 1382 struct streamtab ipinfov6 = { 1383 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1384 }; 1385 1386 #ifdef DEBUG 1387 static boolean_t skip_sctp_cksum = B_FALSE; 1388 #endif 1389 1390 /* 1391 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1392 * ip_rput_v6(), ip_output(), etc. If the message 1393 * block already has a M_CTL at the front of it, then simply set the zoneid 1394 * appropriately. 1395 */ 1396 mblk_t * 1397 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1398 { 1399 mblk_t *first_mp; 1400 ipsec_out_t *io; 1401 1402 ASSERT(zoneid != ALL_ZONES); 1403 if (mp->b_datap->db_type == M_CTL) { 1404 io = (ipsec_out_t *)mp->b_rptr; 1405 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1406 io->ipsec_out_zoneid = zoneid; 1407 return (mp); 1408 } 1409 1410 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1411 if (first_mp == NULL) 1412 return (NULL); 1413 io = (ipsec_out_t *)first_mp->b_rptr; 1414 /* This is not a secure packet */ 1415 io->ipsec_out_secure = B_FALSE; 1416 io->ipsec_out_zoneid = zoneid; 1417 first_mp->b_cont = mp; 1418 return (first_mp); 1419 } 1420 1421 /* 1422 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1423 */ 1424 mblk_t * 1425 ip_copymsg(mblk_t *mp) 1426 { 1427 mblk_t *nmp; 1428 ipsec_info_t *in; 1429 1430 if (mp->b_datap->db_type != M_CTL) 1431 return (copymsg(mp)); 1432 1433 in = (ipsec_info_t *)mp->b_rptr; 1434 1435 /* 1436 * Note that M_CTL is also used for delivering ICMP error messages 1437 * upstream to transport layers. 1438 */ 1439 if (in->ipsec_info_type != IPSEC_OUT && 1440 in->ipsec_info_type != IPSEC_IN) 1441 return (copymsg(mp)); 1442 1443 nmp = copymsg(mp->b_cont); 1444 1445 if (in->ipsec_info_type == IPSEC_OUT) { 1446 return (ipsec_out_tag(mp, nmp, 1447 ((ipsec_out_t *)in)->ipsec_out_ns)); 1448 } else { 1449 return (ipsec_in_tag(mp, nmp, 1450 ((ipsec_in_t *)in)->ipsec_in_ns)); 1451 } 1452 } 1453 1454 /* Generate an ICMP fragmentation needed message. */ 1455 static void 1456 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1457 ip_stack_t *ipst) 1458 { 1459 icmph_t icmph; 1460 mblk_t *first_mp; 1461 boolean_t mctl_present; 1462 1463 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1464 1465 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1466 if (mctl_present) 1467 freeb(first_mp); 1468 return; 1469 } 1470 1471 bzero(&icmph, sizeof (icmph_t)); 1472 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1473 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1474 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1475 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1476 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1477 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1478 ipst); 1479 } 1480 1481 /* 1482 * icmp_inbound deals with ICMP messages in the following ways. 1483 * 1484 * 1) It needs to send a reply back and possibly delivering it 1485 * to the "interested" upper clients. 1486 * 2) It needs to send it to the upper clients only. 1487 * 3) It needs to change some values in IP only. 1488 * 4) It needs to change some values in IP and upper layers e.g TCP. 1489 * 1490 * We need to accomodate icmp messages coming in clear until we get 1491 * everything secure from the wire. If icmp_accept_clear_messages 1492 * is zero we check with the global policy and act accordingly. If 1493 * it is non-zero, we accept the message without any checks. But 1494 * *this does not mean* that this will be delivered to the upper 1495 * clients. By accepting we might send replies back, change our MTU 1496 * value etc. but delivery to the ULP/clients depends on their policy 1497 * dispositions. 1498 * 1499 * We handle the above 4 cases in the context of IPsec in the 1500 * following way : 1501 * 1502 * 1) Send the reply back in the same way as the request came in. 1503 * If it came in encrypted, it goes out encrypted. If it came in 1504 * clear, it goes out in clear. Thus, this will prevent chosen 1505 * plain text attack. 1506 * 2) The client may or may not expect things to come in secure. 1507 * If it comes in secure, the policy constraints are checked 1508 * before delivering it to the upper layers. If it comes in 1509 * clear, ipsec_inbound_accept_clear will decide whether to 1510 * accept this in clear or not. In both the cases, if the returned 1511 * message (IP header + 8 bytes) that caused the icmp message has 1512 * AH/ESP headers, it is sent up to AH/ESP for validation before 1513 * sending up. If there are only 8 bytes of returned message, then 1514 * upper client will not be notified. 1515 * 3) Check with global policy to see whether it matches the constaints. 1516 * But this will be done only if icmp_accept_messages_in_clear is 1517 * zero. 1518 * 4) If we need to change both in IP and ULP, then the decision taken 1519 * while affecting the values in IP and while delivering up to TCP 1520 * should be the same. 1521 * 1522 * There are two cases. 1523 * 1524 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1525 * failed), we will not deliver it to the ULP, even though they 1526 * are *willing* to accept in *clear*. This is fine as our global 1527 * disposition to icmp messages asks us reject the datagram. 1528 * 1529 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1530 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1531 * to deliver it to ULP (policy failed), it can lead to 1532 * consistency problems. The cases known at this time are 1533 * ICMP_DESTINATION_UNREACHABLE messages with following code 1534 * values : 1535 * 1536 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1537 * and Upper layer rejects. Then the communication will 1538 * come to a stop. This is solved by making similar decisions 1539 * at both levels. Currently, when we are unable to deliver 1540 * to the Upper Layer (due to policy failures) while IP has 1541 * adjusted ire_max_frag, the next outbound datagram would 1542 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1543 * will be with the right level of protection. Thus the right 1544 * value will be communicated even if we are not able to 1545 * communicate when we get from the wire initially. But this 1546 * assumes there would be at least one outbound datagram after 1547 * IP has adjusted its ire_max_frag value. To make things 1548 * simpler, we accept in clear after the validation of 1549 * AH/ESP headers. 1550 * 1551 * - Other ICMP ERRORS : We may not be able to deliver it to the 1552 * upper layer depending on the level of protection the upper 1553 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1554 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1555 * should be accepted in clear when the Upper layer expects secure. 1556 * Thus the communication may get aborted by some bad ICMP 1557 * packets. 1558 * 1559 * IPQoS Notes: 1560 * The only instance when a packet is sent for processing is when there 1561 * isn't an ICMP client and if we are interested in it. 1562 * If there is a client, IPPF processing will take place in the 1563 * ip_fanout_proto routine. 1564 * 1565 * Zones notes: 1566 * The packet is only processed in the context of the specified zone: typically 1567 * only this zone will reply to an echo request, and only interested clients in 1568 * this zone will receive a copy of the packet. This means that the caller must 1569 * call icmp_inbound() for each relevant zone. 1570 */ 1571 static void 1572 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1573 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1574 ill_t *recv_ill, zoneid_t zoneid) 1575 { 1576 icmph_t *icmph; 1577 ipha_t *ipha; 1578 int iph_hdr_length; 1579 int hdr_length; 1580 boolean_t interested; 1581 uint32_t ts; 1582 uchar_t *wptr; 1583 ipif_t *ipif; 1584 mblk_t *first_mp; 1585 ipsec_in_t *ii; 1586 timestruc_t now; 1587 uint32_t ill_index; 1588 ip_stack_t *ipst; 1589 1590 ASSERT(ill != NULL); 1591 ipst = ill->ill_ipst; 1592 1593 first_mp = mp; 1594 if (mctl_present) { 1595 mp = first_mp->b_cont; 1596 ASSERT(mp != NULL); 1597 } 1598 1599 ipha = (ipha_t *)mp->b_rptr; 1600 if (ipst->ips_icmp_accept_clear_messages == 0) { 1601 first_mp = ipsec_check_global_policy(first_mp, NULL, 1602 ipha, NULL, mctl_present, ipst->ips_netstack); 1603 if (first_mp == NULL) 1604 return; 1605 } 1606 1607 /* 1608 * On a labeled system, we have to check whether the zone itself is 1609 * permitted to receive raw traffic. 1610 */ 1611 if (is_system_labeled()) { 1612 if (zoneid == ALL_ZONES) 1613 zoneid = tsol_packet_to_zoneid(mp); 1614 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1615 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1616 zoneid)); 1617 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1618 freemsg(first_mp); 1619 return; 1620 } 1621 } 1622 1623 /* 1624 * We have accepted the ICMP message. It means that we will 1625 * respond to the packet if needed. It may not be delivered 1626 * to the upper client depending on the policy constraints 1627 * and the disposition in ipsec_inbound_accept_clear. 1628 */ 1629 1630 ASSERT(ill != NULL); 1631 1632 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1633 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1634 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1635 /* Last chance to get real. */ 1636 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1637 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1638 freemsg(first_mp); 1639 return; 1640 } 1641 /* Refresh iph following the pullup. */ 1642 ipha = (ipha_t *)mp->b_rptr; 1643 } 1644 /* ICMP header checksum, including checksum field, should be zero. */ 1645 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1646 IP_CSUM(mp, iph_hdr_length, 0)) { 1647 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1648 freemsg(first_mp); 1649 return; 1650 } 1651 /* The IP header will always be a multiple of four bytes */ 1652 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1653 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1654 icmph->icmph_code)); 1655 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1656 /* We will set "interested" to "true" if we want a copy */ 1657 interested = B_FALSE; 1658 switch (icmph->icmph_type) { 1659 case ICMP_ECHO_REPLY: 1660 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1661 break; 1662 case ICMP_DEST_UNREACHABLE: 1663 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1664 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1665 interested = B_TRUE; /* Pass up to transport */ 1666 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1667 break; 1668 case ICMP_SOURCE_QUENCH: 1669 interested = B_TRUE; /* Pass up to transport */ 1670 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1671 break; 1672 case ICMP_REDIRECT: 1673 if (!ipst->ips_ip_ignore_redirect) 1674 interested = B_TRUE; 1675 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1676 break; 1677 case ICMP_ECHO_REQUEST: 1678 /* 1679 * Whether to respond to echo requests that come in as IP 1680 * broadcasts or as IP multicast is subject to debate 1681 * (what isn't?). We aim to please, you pick it. 1682 * Default is do it. 1683 */ 1684 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1685 /* unicast: always respond */ 1686 interested = B_TRUE; 1687 } else if (CLASSD(ipha->ipha_dst)) { 1688 /* multicast: respond based on tunable */ 1689 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1690 } else if (broadcast) { 1691 /* broadcast: respond based on tunable */ 1692 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1693 } 1694 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1695 break; 1696 case ICMP_ROUTER_ADVERTISEMENT: 1697 case ICMP_ROUTER_SOLICITATION: 1698 break; 1699 case ICMP_TIME_EXCEEDED: 1700 interested = B_TRUE; /* Pass up to transport */ 1701 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1702 break; 1703 case ICMP_PARAM_PROBLEM: 1704 interested = B_TRUE; /* Pass up to transport */ 1705 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1706 break; 1707 case ICMP_TIME_STAMP_REQUEST: 1708 /* Response to Time Stamp Requests is local policy. */ 1709 if (ipst->ips_ip_g_resp_to_timestamp && 1710 /* So is whether to respond if it was an IP broadcast. */ 1711 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1712 int tstamp_len = 3 * sizeof (uint32_t); 1713 1714 if (wptr + tstamp_len > mp->b_wptr) { 1715 if (!pullupmsg(mp, wptr + tstamp_len - 1716 mp->b_rptr)) { 1717 BUMP_MIB(ill->ill_ip_mib, 1718 ipIfStatsInDiscards); 1719 freemsg(first_mp); 1720 return; 1721 } 1722 /* Refresh ipha following the pullup. */ 1723 ipha = (ipha_t *)mp->b_rptr; 1724 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1725 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1726 } 1727 interested = B_TRUE; 1728 } 1729 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1730 break; 1731 case ICMP_TIME_STAMP_REPLY: 1732 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1733 break; 1734 case ICMP_INFO_REQUEST: 1735 /* Per RFC 1122 3.2.2.7, ignore this. */ 1736 case ICMP_INFO_REPLY: 1737 break; 1738 case ICMP_ADDRESS_MASK_REQUEST: 1739 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1740 !broadcast) && 1741 /* TODO m_pullup of complete header? */ 1742 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1743 interested = B_TRUE; 1744 } 1745 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1746 break; 1747 case ICMP_ADDRESS_MASK_REPLY: 1748 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1749 break; 1750 default: 1751 interested = B_TRUE; /* Pass up to transport */ 1752 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1753 break; 1754 } 1755 /* See if there is an ICMP client. */ 1756 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1757 /* If there is an ICMP client and we want one too, copy it. */ 1758 mblk_t *first_mp1; 1759 1760 if (!interested) { 1761 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1762 ip_policy, recv_ill, zoneid); 1763 return; 1764 } 1765 first_mp1 = ip_copymsg(first_mp); 1766 if (first_mp1 != NULL) { 1767 ip_fanout_proto(q, first_mp1, ill, ipha, 1768 0, mctl_present, ip_policy, recv_ill, zoneid); 1769 } 1770 } else if (!interested) { 1771 freemsg(first_mp); 1772 return; 1773 } else { 1774 /* 1775 * Initiate policy processing for this packet if ip_policy 1776 * is true. 1777 */ 1778 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1779 ill_index = ill->ill_phyint->phyint_ifindex; 1780 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1781 if (mp == NULL) { 1782 if (mctl_present) { 1783 freeb(first_mp); 1784 } 1785 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1786 return; 1787 } 1788 } 1789 } 1790 /* We want to do something with it. */ 1791 /* Check db_ref to make sure we can modify the packet. */ 1792 if (mp->b_datap->db_ref > 1) { 1793 mblk_t *first_mp1; 1794 1795 first_mp1 = ip_copymsg(first_mp); 1796 freemsg(first_mp); 1797 if (!first_mp1) { 1798 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1799 return; 1800 } 1801 first_mp = first_mp1; 1802 if (mctl_present) { 1803 mp = first_mp->b_cont; 1804 ASSERT(mp != NULL); 1805 } else { 1806 mp = first_mp; 1807 } 1808 ipha = (ipha_t *)mp->b_rptr; 1809 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1810 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1811 } 1812 switch (icmph->icmph_type) { 1813 case ICMP_ADDRESS_MASK_REQUEST: 1814 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1815 if (ipif == NULL) { 1816 freemsg(first_mp); 1817 return; 1818 } 1819 /* 1820 * outging interface must be IPv4 1821 */ 1822 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1823 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1824 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1825 ipif_refrele(ipif); 1826 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1827 break; 1828 case ICMP_ECHO_REQUEST: 1829 icmph->icmph_type = ICMP_ECHO_REPLY; 1830 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1831 break; 1832 case ICMP_TIME_STAMP_REQUEST: { 1833 uint32_t *tsp; 1834 1835 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1836 tsp = (uint32_t *)wptr; 1837 tsp++; /* Skip past 'originate time' */ 1838 /* Compute # of milliseconds since midnight */ 1839 gethrestime(&now); 1840 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1841 now.tv_nsec / (NANOSEC / MILLISEC); 1842 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1843 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1844 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1845 break; 1846 } 1847 default: 1848 ipha = (ipha_t *)&icmph[1]; 1849 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1850 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1851 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1852 freemsg(first_mp); 1853 return; 1854 } 1855 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1856 ipha = (ipha_t *)&icmph[1]; 1857 } 1858 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1859 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1860 freemsg(first_mp); 1861 return; 1862 } 1863 hdr_length = IPH_HDR_LENGTH(ipha); 1864 if (hdr_length < sizeof (ipha_t)) { 1865 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1866 freemsg(first_mp); 1867 return; 1868 } 1869 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1870 if (!pullupmsg(mp, 1871 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1872 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1873 freemsg(first_mp); 1874 return; 1875 } 1876 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1877 ipha = (ipha_t *)&icmph[1]; 1878 } 1879 switch (icmph->icmph_type) { 1880 case ICMP_REDIRECT: 1881 /* 1882 * As there is no upper client to deliver, we don't 1883 * need the first_mp any more. 1884 */ 1885 if (mctl_present) { 1886 freeb(first_mp); 1887 } 1888 icmp_redirect(ill, mp); 1889 return; 1890 case ICMP_DEST_UNREACHABLE: 1891 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1892 if (!icmp_inbound_too_big(icmph, ipha, ill, 1893 zoneid, mp, iph_hdr_length, ipst)) { 1894 freemsg(first_mp); 1895 return; 1896 } 1897 /* 1898 * icmp_inbound_too_big() may alter mp. 1899 * Resynch ipha and icmph accordingly. 1900 */ 1901 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1902 ipha = (ipha_t *)&icmph[1]; 1903 } 1904 /* FALLTHRU */ 1905 default : 1906 /* 1907 * IPQoS notes: Since we have already done IPQoS 1908 * processing we don't want to do it again in 1909 * the fanout routines called by 1910 * icmp_inbound_error_fanout, hence the last 1911 * argument, ip_policy, is B_FALSE. 1912 */ 1913 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1914 ipha, iph_hdr_length, hdr_length, mctl_present, 1915 B_FALSE, recv_ill, zoneid); 1916 } 1917 return; 1918 } 1919 /* Send out an ICMP packet */ 1920 icmph->icmph_checksum = 0; 1921 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1922 if (broadcast || CLASSD(ipha->ipha_dst)) { 1923 ipif_t *ipif_chosen; 1924 /* 1925 * Make it look like it was directed to us, so we don't look 1926 * like a fool with a broadcast or multicast source address. 1927 */ 1928 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1929 /* 1930 * Make sure that we haven't grabbed an interface that's DOWN. 1931 */ 1932 if (ipif != NULL) { 1933 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1934 ipha->ipha_src, zoneid); 1935 if (ipif_chosen != NULL) { 1936 ipif_refrele(ipif); 1937 ipif = ipif_chosen; 1938 } 1939 } 1940 if (ipif == NULL) { 1941 ip0dbg(("icmp_inbound: " 1942 "No source for broadcast/multicast:\n" 1943 "\tsrc 0x%x dst 0x%x ill %p " 1944 "ipif_lcl_addr 0x%x\n", 1945 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1946 (void *)ill, 1947 ill->ill_ipif->ipif_lcl_addr)); 1948 freemsg(first_mp); 1949 return; 1950 } 1951 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1952 ipha->ipha_dst = ipif->ipif_src_addr; 1953 ipif_refrele(ipif); 1954 } 1955 /* Reset time to live. */ 1956 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1957 { 1958 /* Swap source and destination addresses */ 1959 ipaddr_t tmp; 1960 1961 tmp = ipha->ipha_src; 1962 ipha->ipha_src = ipha->ipha_dst; 1963 ipha->ipha_dst = tmp; 1964 } 1965 ipha->ipha_ident = 0; 1966 if (!IS_SIMPLE_IPH(ipha)) 1967 icmp_options_update(ipha); 1968 1969 if (!mctl_present) { 1970 /* 1971 * This packet should go out the same way as it 1972 * came in i.e in clear. To make sure that global 1973 * policy will not be applied to this in ip_wput_ire, 1974 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 1975 */ 1976 ASSERT(first_mp == mp); 1977 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 1978 if (first_mp == NULL) { 1979 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1980 freemsg(mp); 1981 return; 1982 } 1983 ii = (ipsec_in_t *)first_mp->b_rptr; 1984 1985 /* This is not a secure packet */ 1986 ii->ipsec_in_secure = B_FALSE; 1987 first_mp->b_cont = mp; 1988 } else { 1989 ii = (ipsec_in_t *)first_mp->b_rptr; 1990 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 1991 } 1992 ii->ipsec_in_zoneid = zoneid; 1993 ASSERT(zoneid != ALL_ZONES); 1994 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 1995 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1996 return; 1997 } 1998 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1999 put(WR(q), first_mp); 2000 } 2001 2002 static ipaddr_t 2003 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2004 { 2005 conn_t *connp; 2006 connf_t *connfp; 2007 ipaddr_t nexthop_addr = INADDR_ANY; 2008 int hdr_length = IPH_HDR_LENGTH(ipha); 2009 uint16_t *up; 2010 uint32_t ports; 2011 ip_stack_t *ipst = ill->ill_ipst; 2012 2013 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2014 switch (ipha->ipha_protocol) { 2015 case IPPROTO_TCP: 2016 { 2017 tcph_t *tcph; 2018 2019 /* do a reverse lookup */ 2020 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2021 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2022 TCPS_LISTEN, ipst); 2023 break; 2024 } 2025 case IPPROTO_UDP: 2026 { 2027 uint32_t dstport, srcport; 2028 2029 ((uint16_t *)&ports)[0] = up[1]; 2030 ((uint16_t *)&ports)[1] = up[0]; 2031 2032 /* Extract ports in net byte order */ 2033 dstport = htons(ntohl(ports) & 0xFFFF); 2034 srcport = htons(ntohl(ports) >> 16); 2035 2036 connfp = &ipst->ips_ipcl_udp_fanout[ 2037 IPCL_UDP_HASH(dstport, ipst)]; 2038 mutex_enter(&connfp->connf_lock); 2039 connp = connfp->connf_head; 2040 2041 /* do a reverse lookup */ 2042 while ((connp != NULL) && 2043 (!IPCL_UDP_MATCH(connp, dstport, 2044 ipha->ipha_src, srcport, ipha->ipha_dst) || 2045 !IPCL_ZONE_MATCH(connp, zoneid))) { 2046 connp = connp->conn_next; 2047 } 2048 if (connp != NULL) 2049 CONN_INC_REF(connp); 2050 mutex_exit(&connfp->connf_lock); 2051 break; 2052 } 2053 case IPPROTO_SCTP: 2054 { 2055 in6_addr_t map_src, map_dst; 2056 2057 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2058 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2059 ((uint16_t *)&ports)[0] = up[1]; 2060 ((uint16_t *)&ports)[1] = up[0]; 2061 2062 connp = sctp_find_conn(&map_src, &map_dst, ports, 2063 zoneid, ipst->ips_netstack->netstack_sctp); 2064 if (connp == NULL) { 2065 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2066 zoneid, ports, ipha, ipst); 2067 } else { 2068 CONN_INC_REF(connp); 2069 SCTP_REFRELE(CONN2SCTP(connp)); 2070 } 2071 break; 2072 } 2073 default: 2074 { 2075 ipha_t ripha; 2076 2077 ripha.ipha_src = ipha->ipha_dst; 2078 ripha.ipha_dst = ipha->ipha_src; 2079 ripha.ipha_protocol = ipha->ipha_protocol; 2080 2081 connfp = &ipst->ips_ipcl_proto_fanout[ 2082 ipha->ipha_protocol]; 2083 mutex_enter(&connfp->connf_lock); 2084 connp = connfp->connf_head; 2085 for (connp = connfp->connf_head; connp != NULL; 2086 connp = connp->conn_next) { 2087 if (IPCL_PROTO_MATCH(connp, 2088 ipha->ipha_protocol, &ripha, ill, 2089 0, zoneid)) { 2090 CONN_INC_REF(connp); 2091 break; 2092 } 2093 } 2094 mutex_exit(&connfp->connf_lock); 2095 } 2096 } 2097 if (connp != NULL) { 2098 if (connp->conn_nexthop_set) 2099 nexthop_addr = connp->conn_nexthop_v4; 2100 CONN_DEC_REF(connp); 2101 } 2102 return (nexthop_addr); 2103 } 2104 2105 /* Table from RFC 1191 */ 2106 static int icmp_frag_size_table[] = 2107 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2108 2109 /* 2110 * Process received ICMP Packet too big. 2111 * After updating any IRE it does the fanout to any matching transport streams. 2112 * Assumes the message has been pulled up till the IP header that caused 2113 * the error. 2114 * 2115 * Returns B_FALSE on failure and B_TRUE on success. 2116 */ 2117 static boolean_t 2118 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2119 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2120 ip_stack_t *ipst) 2121 { 2122 ire_t *ire, *first_ire; 2123 int mtu, orig_mtu; 2124 int hdr_length; 2125 ipaddr_t nexthop_addr; 2126 boolean_t disable_pmtud; 2127 2128 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2129 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2130 ASSERT(ill != NULL); 2131 2132 hdr_length = IPH_HDR_LENGTH(ipha); 2133 2134 /* Drop if the original packet contained a source route */ 2135 if (ip_source_route_included(ipha)) { 2136 return (B_FALSE); 2137 } 2138 /* 2139 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2140 * header. 2141 */ 2142 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2143 mp->b_wptr) { 2144 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2145 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2146 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2147 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2148 return (B_FALSE); 2149 } 2150 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2151 ipha = (ipha_t *)&icmph[1]; 2152 } 2153 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2154 if (nexthop_addr != INADDR_ANY) { 2155 /* nexthop set */ 2156 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2157 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2158 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2159 } else { 2160 /* nexthop not set */ 2161 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2162 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2163 } 2164 2165 if (!first_ire) { 2166 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2167 ntohl(ipha->ipha_dst))); 2168 return (B_FALSE); 2169 } 2170 2171 /* Check for MTU discovery advice as described in RFC 1191 */ 2172 mtu = ntohs(icmph->icmph_du_mtu); 2173 orig_mtu = mtu; 2174 disable_pmtud = B_FALSE; 2175 2176 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2177 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2178 ire = ire->ire_next) { 2179 /* 2180 * Look for the connection to which this ICMP message is 2181 * directed. If it has the IP_NEXTHOP option set, then the 2182 * search is limited to IREs with the MATCH_IRE_PRIVATE 2183 * option. Else the search is limited to regular IREs. 2184 */ 2185 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2186 (nexthop_addr != ire->ire_gateway_addr)) || 2187 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2188 (nexthop_addr != INADDR_ANY))) 2189 continue; 2190 2191 mutex_enter(&ire->ire_lock); 2192 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2193 uint32_t length; 2194 int i; 2195 2196 /* 2197 * Use the table from RFC 1191 to figure out 2198 * the next "plateau" based on the length in 2199 * the original IP packet. 2200 */ 2201 length = ntohs(ipha->ipha_length); 2202 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2203 uint32_t, length); 2204 if (ire->ire_max_frag <= length && 2205 ire->ire_max_frag >= length - hdr_length) { 2206 /* 2207 * Handle broken BSD 4.2 systems that 2208 * return the wrong iph_length in ICMP 2209 * errors. 2210 */ 2211 length -= hdr_length; 2212 } 2213 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2214 if (length > icmp_frag_size_table[i]) 2215 break; 2216 } 2217 if (i == A_CNT(icmp_frag_size_table)) { 2218 /* Smaller than 68! */ 2219 disable_pmtud = B_TRUE; 2220 mtu = ipst->ips_ip_pmtu_min; 2221 } else { 2222 mtu = icmp_frag_size_table[i]; 2223 if (mtu < ipst->ips_ip_pmtu_min) { 2224 mtu = ipst->ips_ip_pmtu_min; 2225 disable_pmtud = B_TRUE; 2226 } 2227 } 2228 /* Fool the ULP into believing our guessed PMTU. */ 2229 icmph->icmph_du_zero = 0; 2230 icmph->icmph_du_mtu = htons(mtu); 2231 } 2232 if (disable_pmtud) 2233 ire->ire_frag_flag = 0; 2234 /* Reduce the IRE max frag value as advised. */ 2235 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2236 mutex_exit(&ire->ire_lock); 2237 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2238 ire, int, orig_mtu, int, mtu); 2239 } 2240 rw_exit(&first_ire->ire_bucket->irb_lock); 2241 ire_refrele(first_ire); 2242 return (B_TRUE); 2243 } 2244 2245 /* 2246 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2247 * calls this function. 2248 */ 2249 static mblk_t * 2250 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2251 { 2252 ipha_t *ipha; 2253 icmph_t *icmph; 2254 ipha_t *in_ipha; 2255 int length; 2256 2257 ASSERT(mp->b_datap->db_type == M_DATA); 2258 2259 /* 2260 * For Self-encapsulated packets, we added an extra IP header 2261 * without the options. Inner IP header is the one from which 2262 * the outer IP header was formed. Thus, we need to remove the 2263 * outer IP header. To do this, we pullup the whole message 2264 * and overlay whatever follows the outer IP header over the 2265 * outer IP header. 2266 */ 2267 2268 if (!pullupmsg(mp, -1)) 2269 return (NULL); 2270 2271 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2272 ipha = (ipha_t *)&icmph[1]; 2273 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2274 2275 /* 2276 * The length that we want to overlay is following the inner 2277 * IP header. Subtracting the IP header + icmp header + outer 2278 * IP header's length should give us the length that we want to 2279 * overlay. 2280 */ 2281 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2282 hdr_length; 2283 /* 2284 * Overlay whatever follows the inner header over the 2285 * outer header. 2286 */ 2287 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2288 2289 /* Set the wptr to account for the outer header */ 2290 mp->b_wptr -= hdr_length; 2291 return (mp); 2292 } 2293 2294 /* 2295 * Try to pass the ICMP message upstream in case the ULP cares. 2296 * 2297 * If the packet that caused the ICMP error is secure, we send 2298 * it to AH/ESP to make sure that the attached packet has a 2299 * valid association. ipha in the code below points to the 2300 * IP header of the packet that caused the error. 2301 * 2302 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2303 * in the context of IPsec. Normally we tell the upper layer 2304 * whenever we send the ire (including ip_bind), the IPsec header 2305 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2306 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2307 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2308 * same thing. As TCP has the IPsec options size that needs to be 2309 * adjusted, we just pass the MTU unchanged. 2310 * 2311 * IFN could have been generated locally or by some router. 2312 * 2313 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2314 * This happens because IP adjusted its value of MTU on an 2315 * earlier IFN message and could not tell the upper layer, 2316 * the new adjusted value of MTU e.g. Packet was encrypted 2317 * or there was not enough information to fanout to upper 2318 * layers. Thus on the next outbound datagram, ip_wput_ire 2319 * generates the IFN, where IPsec processing has *not* been 2320 * done. 2321 * 2322 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2323 * could have generated this. This happens because ire_max_frag 2324 * value in IP was set to a new value, while the IPsec processing 2325 * was being done and after we made the fragmentation check in 2326 * ip_wput_ire. Thus on return from IPsec processing, 2327 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2328 * and generates the IFN. As IPsec processing is over, we fanout 2329 * to AH/ESP to remove the header. 2330 * 2331 * In both these cases, ipsec_in_loopback will be set indicating 2332 * that IFN was generated locally. 2333 * 2334 * ROUTER : IFN could be secure or non-secure. 2335 * 2336 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2337 * packet in error has AH/ESP headers to validate the AH/ESP 2338 * headers. AH/ESP will verify whether there is a valid SA or 2339 * not and send it back. We will fanout again if we have more 2340 * data in the packet. 2341 * 2342 * If the packet in error does not have AH/ESP, we handle it 2343 * like any other case. 2344 * 2345 * * NON_SECURE : If the packet in error has AH/ESP headers, 2346 * we attach a dummy ipsec_in and send it up to AH/ESP 2347 * for validation. AH/ESP will verify whether there is a 2348 * valid SA or not and send it back. We will fanout again if 2349 * we have more data in the packet. 2350 * 2351 * If the packet in error does not have AH/ESP, we handle it 2352 * like any other case. 2353 */ 2354 static void 2355 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2356 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2357 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2358 zoneid_t zoneid) 2359 { 2360 uint16_t *up; /* Pointer to ports in ULP header */ 2361 uint32_t ports; /* reversed ports for fanout */ 2362 ipha_t ripha; /* With reversed addresses */ 2363 mblk_t *first_mp; 2364 ipsec_in_t *ii; 2365 tcph_t *tcph; 2366 conn_t *connp; 2367 ip_stack_t *ipst; 2368 2369 ASSERT(ill != NULL); 2370 2371 ASSERT(recv_ill != NULL); 2372 ipst = recv_ill->ill_ipst; 2373 2374 first_mp = mp; 2375 if (mctl_present) { 2376 mp = first_mp->b_cont; 2377 ASSERT(mp != NULL); 2378 2379 ii = (ipsec_in_t *)first_mp->b_rptr; 2380 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2381 } else { 2382 ii = NULL; 2383 } 2384 2385 switch (ipha->ipha_protocol) { 2386 case IPPROTO_UDP: 2387 /* 2388 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2389 * transport header. 2390 */ 2391 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2392 mp->b_wptr) { 2393 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2394 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2395 goto discard_pkt; 2396 } 2397 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2398 ipha = (ipha_t *)&icmph[1]; 2399 } 2400 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2401 2402 /* 2403 * Attempt to find a client stream based on port. 2404 * Note that we do a reverse lookup since the header is 2405 * in the form we sent it out. 2406 * The ripha header is only used for the IP_UDP_MATCH and we 2407 * only set the src and dst addresses and protocol. 2408 */ 2409 ripha.ipha_src = ipha->ipha_dst; 2410 ripha.ipha_dst = ipha->ipha_src; 2411 ripha.ipha_protocol = ipha->ipha_protocol; 2412 ((uint16_t *)&ports)[0] = up[1]; 2413 ((uint16_t *)&ports)[1] = up[0]; 2414 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2415 ntohl(ipha->ipha_src), ntohs(up[0]), 2416 ntohl(ipha->ipha_dst), ntohs(up[1]), 2417 icmph->icmph_type, icmph->icmph_code)); 2418 2419 /* Have to change db_type after any pullupmsg */ 2420 DB_TYPE(mp) = M_CTL; 2421 2422 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2423 mctl_present, ip_policy, recv_ill, zoneid); 2424 return; 2425 2426 case IPPROTO_TCP: 2427 /* 2428 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2429 * transport header. 2430 */ 2431 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2432 mp->b_wptr) { 2433 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2434 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2435 goto discard_pkt; 2436 } 2437 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2438 ipha = (ipha_t *)&icmph[1]; 2439 } 2440 /* 2441 * Find a TCP client stream for this packet. 2442 * Note that we do a reverse lookup since the header is 2443 * in the form we sent it out. 2444 */ 2445 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2446 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2447 ipst); 2448 if (connp == NULL) 2449 goto discard_pkt; 2450 2451 /* Have to change db_type after any pullupmsg */ 2452 DB_TYPE(mp) = M_CTL; 2453 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2454 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2455 return; 2456 2457 case IPPROTO_SCTP: 2458 /* 2459 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2460 * transport header. 2461 */ 2462 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2463 mp->b_wptr) { 2464 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2465 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2466 goto discard_pkt; 2467 } 2468 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2469 ipha = (ipha_t *)&icmph[1]; 2470 } 2471 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2472 /* 2473 * Find a SCTP client stream for this packet. 2474 * Note that we do a reverse lookup since the header is 2475 * in the form we sent it out. 2476 * The ripha header is only used for the matching and we 2477 * only set the src and dst addresses, protocol, and version. 2478 */ 2479 ripha.ipha_src = ipha->ipha_dst; 2480 ripha.ipha_dst = ipha->ipha_src; 2481 ripha.ipha_protocol = ipha->ipha_protocol; 2482 ripha.ipha_version_and_hdr_length = 2483 ipha->ipha_version_and_hdr_length; 2484 ((uint16_t *)&ports)[0] = up[1]; 2485 ((uint16_t *)&ports)[1] = up[0]; 2486 2487 /* Have to change db_type after any pullupmsg */ 2488 DB_TYPE(mp) = M_CTL; 2489 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2490 mctl_present, ip_policy, zoneid); 2491 return; 2492 2493 case IPPROTO_ESP: 2494 case IPPROTO_AH: { 2495 int ipsec_rc; 2496 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2497 2498 /* 2499 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2500 * We will re-use the IPSEC_IN if it is already present as 2501 * AH/ESP will not affect any fields in the IPSEC_IN for 2502 * ICMP errors. If there is no IPSEC_IN, allocate a new 2503 * one and attach it in the front. 2504 */ 2505 if (ii != NULL) { 2506 /* 2507 * ip_fanout_proto_again converts the ICMP errors 2508 * that come back from AH/ESP to M_DATA so that 2509 * if it is non-AH/ESP and we do a pullupmsg in 2510 * this function, it would work. Convert it back 2511 * to M_CTL before we send up as this is a ICMP 2512 * error. This could have been generated locally or 2513 * by some router. Validate the inner IPsec 2514 * headers. 2515 * 2516 * NOTE : ill_index is used by ip_fanout_proto_again 2517 * to locate the ill. 2518 */ 2519 ASSERT(ill != NULL); 2520 ii->ipsec_in_ill_index = 2521 ill->ill_phyint->phyint_ifindex; 2522 ii->ipsec_in_rill_index = 2523 recv_ill->ill_phyint->phyint_ifindex; 2524 DB_TYPE(first_mp->b_cont) = M_CTL; 2525 } else { 2526 /* 2527 * IPSEC_IN is not present. We attach a ipsec_in 2528 * message and send up to IPsec for validating 2529 * and removing the IPsec headers. Clear 2530 * ipsec_in_secure so that when we return 2531 * from IPsec, we don't mistakenly think that this 2532 * is a secure packet came from the network. 2533 * 2534 * NOTE : ill_index is used by ip_fanout_proto_again 2535 * to locate the ill. 2536 */ 2537 ASSERT(first_mp == mp); 2538 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2539 if (first_mp == NULL) { 2540 freemsg(mp); 2541 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2542 return; 2543 } 2544 ii = (ipsec_in_t *)first_mp->b_rptr; 2545 2546 /* This is not a secure packet */ 2547 ii->ipsec_in_secure = B_FALSE; 2548 first_mp->b_cont = mp; 2549 DB_TYPE(mp) = M_CTL; 2550 ASSERT(ill != NULL); 2551 ii->ipsec_in_ill_index = 2552 ill->ill_phyint->phyint_ifindex; 2553 ii->ipsec_in_rill_index = 2554 recv_ill->ill_phyint->phyint_ifindex; 2555 } 2556 ip2dbg(("icmp_inbound_error: ipsec\n")); 2557 2558 if (!ipsec_loaded(ipss)) { 2559 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2560 return; 2561 } 2562 2563 if (ipha->ipha_protocol == IPPROTO_ESP) 2564 ipsec_rc = ipsecesp_icmp_error(first_mp); 2565 else 2566 ipsec_rc = ipsecah_icmp_error(first_mp); 2567 if (ipsec_rc == IPSEC_STATUS_FAILED) 2568 return; 2569 2570 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2571 return; 2572 } 2573 default: 2574 /* 2575 * The ripha header is only used for the lookup and we 2576 * only set the src and dst addresses and protocol. 2577 */ 2578 ripha.ipha_src = ipha->ipha_dst; 2579 ripha.ipha_dst = ipha->ipha_src; 2580 ripha.ipha_protocol = ipha->ipha_protocol; 2581 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2582 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2583 ntohl(ipha->ipha_dst), 2584 icmph->icmph_type, icmph->icmph_code)); 2585 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2586 ipha_t *in_ipha; 2587 2588 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2589 mp->b_wptr) { 2590 if (!pullupmsg(mp, (uchar_t *)ipha + 2591 hdr_length + sizeof (ipha_t) - 2592 mp->b_rptr)) { 2593 goto discard_pkt; 2594 } 2595 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2596 ipha = (ipha_t *)&icmph[1]; 2597 } 2598 /* 2599 * Caller has verified that length has to be 2600 * at least the size of IP header. 2601 */ 2602 ASSERT(hdr_length >= sizeof (ipha_t)); 2603 /* 2604 * Check the sanity of the inner IP header like 2605 * we did for the outer header. 2606 */ 2607 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2608 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2609 goto discard_pkt; 2610 } 2611 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2612 goto discard_pkt; 2613 } 2614 /* Check for Self-encapsulated tunnels */ 2615 if (in_ipha->ipha_src == ipha->ipha_src && 2616 in_ipha->ipha_dst == ipha->ipha_dst) { 2617 2618 mp = icmp_inbound_self_encap_error(mp, 2619 iph_hdr_length, hdr_length); 2620 if (mp == NULL) 2621 goto discard_pkt; 2622 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2623 ipha = (ipha_t *)&icmph[1]; 2624 hdr_length = IPH_HDR_LENGTH(ipha); 2625 /* 2626 * The packet in error is self-encapsualted. 2627 * And we are finding it further encapsulated 2628 * which we could not have possibly generated. 2629 */ 2630 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2631 goto discard_pkt; 2632 } 2633 icmp_inbound_error_fanout(q, ill, first_mp, 2634 icmph, ipha, iph_hdr_length, hdr_length, 2635 mctl_present, ip_policy, recv_ill, zoneid); 2636 return; 2637 } 2638 } 2639 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2640 ipha->ipha_protocol == IPPROTO_IPV6) && 2641 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2642 ii != NULL && 2643 ii->ipsec_in_loopback && 2644 ii->ipsec_in_secure) { 2645 /* 2646 * For IP tunnels that get a looped-back 2647 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2648 * reported new MTU to take into account the IPsec 2649 * headers protecting this configured tunnel. 2650 * 2651 * This allows the tunnel module (tun.c) to blindly 2652 * accept the MTU reported in an ICMP "too big" 2653 * message. 2654 * 2655 * Non-looped back ICMP messages will just be 2656 * handled by the security protocols (if needed), 2657 * and the first subsequent packet will hit this 2658 * path. 2659 */ 2660 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2661 ipsec_in_extra_length(first_mp)); 2662 } 2663 /* Have to change db_type after any pullupmsg */ 2664 DB_TYPE(mp) = M_CTL; 2665 2666 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2667 ip_policy, recv_ill, zoneid); 2668 return; 2669 } 2670 /* NOTREACHED */ 2671 discard_pkt: 2672 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2673 drop_pkt:; 2674 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2675 freemsg(first_mp); 2676 } 2677 2678 /* 2679 * Common IP options parser. 2680 * 2681 * Setup routine: fill in *optp with options-parsing state, then 2682 * tail-call ipoptp_next to return the first option. 2683 */ 2684 uint8_t 2685 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2686 { 2687 uint32_t totallen; /* total length of all options */ 2688 2689 totallen = ipha->ipha_version_and_hdr_length - 2690 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2691 totallen <<= 2; 2692 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2693 optp->ipoptp_end = optp->ipoptp_next + totallen; 2694 optp->ipoptp_flags = 0; 2695 return (ipoptp_next(optp)); 2696 } 2697 2698 /* 2699 * Common IP options parser: extract next option. 2700 */ 2701 uint8_t 2702 ipoptp_next(ipoptp_t *optp) 2703 { 2704 uint8_t *end = optp->ipoptp_end; 2705 uint8_t *cur = optp->ipoptp_next; 2706 uint8_t opt, len, pointer; 2707 2708 /* 2709 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2710 * has been corrupted. 2711 */ 2712 ASSERT(cur <= end); 2713 2714 if (cur == end) 2715 return (IPOPT_EOL); 2716 2717 opt = cur[IPOPT_OPTVAL]; 2718 2719 /* 2720 * Skip any NOP options. 2721 */ 2722 while (opt == IPOPT_NOP) { 2723 cur++; 2724 if (cur == end) 2725 return (IPOPT_EOL); 2726 opt = cur[IPOPT_OPTVAL]; 2727 } 2728 2729 if (opt == IPOPT_EOL) 2730 return (IPOPT_EOL); 2731 2732 /* 2733 * Option requiring a length. 2734 */ 2735 if ((cur + 1) >= end) { 2736 optp->ipoptp_flags |= IPOPTP_ERROR; 2737 return (IPOPT_EOL); 2738 } 2739 len = cur[IPOPT_OLEN]; 2740 if (len < 2) { 2741 optp->ipoptp_flags |= IPOPTP_ERROR; 2742 return (IPOPT_EOL); 2743 } 2744 optp->ipoptp_cur = cur; 2745 optp->ipoptp_len = len; 2746 optp->ipoptp_next = cur + len; 2747 if (cur + len > end) { 2748 optp->ipoptp_flags |= IPOPTP_ERROR; 2749 return (IPOPT_EOL); 2750 } 2751 2752 /* 2753 * For the options which require a pointer field, make sure 2754 * its there, and make sure it points to either something 2755 * inside this option, or the end of the option. 2756 */ 2757 switch (opt) { 2758 case IPOPT_RR: 2759 case IPOPT_TS: 2760 case IPOPT_LSRR: 2761 case IPOPT_SSRR: 2762 if (len <= IPOPT_OFFSET) { 2763 optp->ipoptp_flags |= IPOPTP_ERROR; 2764 return (opt); 2765 } 2766 pointer = cur[IPOPT_OFFSET]; 2767 if (pointer - 1 > len) { 2768 optp->ipoptp_flags |= IPOPTP_ERROR; 2769 return (opt); 2770 } 2771 break; 2772 } 2773 2774 /* 2775 * Sanity check the pointer field based on the type of the 2776 * option. 2777 */ 2778 switch (opt) { 2779 case IPOPT_RR: 2780 case IPOPT_SSRR: 2781 case IPOPT_LSRR: 2782 if (pointer < IPOPT_MINOFF_SR) 2783 optp->ipoptp_flags |= IPOPTP_ERROR; 2784 break; 2785 case IPOPT_TS: 2786 if (pointer < IPOPT_MINOFF_IT) 2787 optp->ipoptp_flags |= IPOPTP_ERROR; 2788 /* 2789 * Note that the Internet Timestamp option also 2790 * contains two four bit fields (the Overflow field, 2791 * and the Flag field), which follow the pointer 2792 * field. We don't need to check that these fields 2793 * fall within the length of the option because this 2794 * was implicitely done above. We've checked that the 2795 * pointer value is at least IPOPT_MINOFF_IT, and that 2796 * it falls within the option. Since IPOPT_MINOFF_IT > 2797 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2798 */ 2799 ASSERT(len > IPOPT_POS_OV_FLG); 2800 break; 2801 } 2802 2803 return (opt); 2804 } 2805 2806 /* 2807 * Use the outgoing IP header to create an IP_OPTIONS option the way 2808 * it was passed down from the application. 2809 */ 2810 int 2811 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2812 { 2813 ipoptp_t opts; 2814 const uchar_t *opt; 2815 uint8_t optval; 2816 uint8_t optlen; 2817 uint32_t len = 0; 2818 uchar_t *buf1 = buf; 2819 2820 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2821 len += IP_ADDR_LEN; 2822 bzero(buf1, IP_ADDR_LEN); 2823 2824 /* 2825 * OK to cast away const here, as we don't store through the returned 2826 * opts.ipoptp_cur pointer. 2827 */ 2828 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2829 optval != IPOPT_EOL; 2830 optval = ipoptp_next(&opts)) { 2831 int off; 2832 2833 opt = opts.ipoptp_cur; 2834 optlen = opts.ipoptp_len; 2835 switch (optval) { 2836 case IPOPT_SSRR: 2837 case IPOPT_LSRR: 2838 2839 /* 2840 * Insert ipha_dst as the first entry in the source 2841 * route and move down the entries on step. 2842 * The last entry gets placed at buf1. 2843 */ 2844 buf[IPOPT_OPTVAL] = optval; 2845 buf[IPOPT_OLEN] = optlen; 2846 buf[IPOPT_OFFSET] = optlen; 2847 2848 off = optlen - IP_ADDR_LEN; 2849 if (off < 0) { 2850 /* No entries in source route */ 2851 break; 2852 } 2853 /* Last entry in source route */ 2854 bcopy(opt + off, buf1, IP_ADDR_LEN); 2855 off -= IP_ADDR_LEN; 2856 2857 while (off > 0) { 2858 bcopy(opt + off, 2859 buf + off + IP_ADDR_LEN, 2860 IP_ADDR_LEN); 2861 off -= IP_ADDR_LEN; 2862 } 2863 /* ipha_dst into first slot */ 2864 bcopy(&ipha->ipha_dst, 2865 buf + off + IP_ADDR_LEN, 2866 IP_ADDR_LEN); 2867 buf += optlen; 2868 len += optlen; 2869 break; 2870 2871 case IPOPT_COMSEC: 2872 case IPOPT_SECURITY: 2873 /* if passing up a label is not ok, then remove */ 2874 if (is_system_labeled()) 2875 break; 2876 /* FALLTHROUGH */ 2877 default: 2878 bcopy(opt, buf, optlen); 2879 buf += optlen; 2880 len += optlen; 2881 break; 2882 } 2883 } 2884 done: 2885 /* Pad the resulting options */ 2886 while (len & 0x3) { 2887 *buf++ = IPOPT_EOL; 2888 len++; 2889 } 2890 return (len); 2891 } 2892 2893 /* 2894 * Update any record route or timestamp options to include this host. 2895 * Reverse any source route option. 2896 * This routine assumes that the options are well formed i.e. that they 2897 * have already been checked. 2898 */ 2899 static void 2900 icmp_options_update(ipha_t *ipha) 2901 { 2902 ipoptp_t opts; 2903 uchar_t *opt; 2904 uint8_t optval; 2905 ipaddr_t src; /* Our local address */ 2906 ipaddr_t dst; 2907 2908 ip2dbg(("icmp_options_update\n")); 2909 src = ipha->ipha_src; 2910 dst = ipha->ipha_dst; 2911 2912 for (optval = ipoptp_first(&opts, ipha); 2913 optval != IPOPT_EOL; 2914 optval = ipoptp_next(&opts)) { 2915 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2916 opt = opts.ipoptp_cur; 2917 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2918 optval, opts.ipoptp_len)); 2919 switch (optval) { 2920 int off1, off2; 2921 case IPOPT_SSRR: 2922 case IPOPT_LSRR: 2923 /* 2924 * Reverse the source route. The first entry 2925 * should be the next to last one in the current 2926 * source route (the last entry is our address). 2927 * The last entry should be the final destination. 2928 */ 2929 off1 = IPOPT_MINOFF_SR - 1; 2930 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2931 if (off2 < 0) { 2932 /* No entries in source route */ 2933 ip1dbg(( 2934 "icmp_options_update: bad src route\n")); 2935 break; 2936 } 2937 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2938 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2939 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2940 off2 -= IP_ADDR_LEN; 2941 2942 while (off1 < off2) { 2943 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2944 bcopy((char *)opt + off2, (char *)opt + off1, 2945 IP_ADDR_LEN); 2946 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2947 off1 += IP_ADDR_LEN; 2948 off2 -= IP_ADDR_LEN; 2949 } 2950 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2951 break; 2952 } 2953 } 2954 } 2955 2956 /* 2957 * Process received ICMP Redirect messages. 2958 */ 2959 static void 2960 icmp_redirect(ill_t *ill, mblk_t *mp) 2961 { 2962 ipha_t *ipha; 2963 int iph_hdr_length; 2964 icmph_t *icmph; 2965 ipha_t *ipha_err; 2966 ire_t *ire; 2967 ire_t *prev_ire; 2968 ire_t *save_ire; 2969 ipaddr_t src, dst, gateway; 2970 iulp_t ulp_info = { 0 }; 2971 int error; 2972 ip_stack_t *ipst; 2973 2974 ASSERT(ill != NULL); 2975 ipst = ill->ill_ipst; 2976 2977 ipha = (ipha_t *)mp->b_rptr; 2978 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2979 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 2980 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 2981 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 2982 freemsg(mp); 2983 return; 2984 } 2985 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2986 ipha_err = (ipha_t *)&icmph[1]; 2987 src = ipha->ipha_src; 2988 dst = ipha_err->ipha_dst; 2989 gateway = icmph->icmph_rd_gateway; 2990 /* Make sure the new gateway is reachable somehow. */ 2991 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 2992 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2993 /* 2994 * Make sure we had a route for the dest in question and that 2995 * that route was pointing to the old gateway (the source of the 2996 * redirect packet.) 2997 */ 2998 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 2999 NULL, MATCH_IRE_GW, ipst); 3000 /* 3001 * Check that 3002 * the redirect was not from ourselves 3003 * the new gateway and the old gateway are directly reachable 3004 */ 3005 if (!prev_ire || 3006 !ire || 3007 ire->ire_type == IRE_LOCAL) { 3008 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3009 freemsg(mp); 3010 if (ire != NULL) 3011 ire_refrele(ire); 3012 if (prev_ire != NULL) 3013 ire_refrele(prev_ire); 3014 return; 3015 } 3016 3017 /* 3018 * Should we use the old ULP info to create the new gateway? From 3019 * a user's perspective, we should inherit the info so that it 3020 * is a "smooth" transition. If we do not do that, then new 3021 * connections going thru the new gateway will have no route metrics, 3022 * which is counter-intuitive to user. From a network point of 3023 * view, this may or may not make sense even though the new gateway 3024 * is still directly connected to us so the route metrics should not 3025 * change much. 3026 * 3027 * But if the old ire_uinfo is not initialized, we do another 3028 * recursive lookup on the dest using the new gateway. There may 3029 * be a route to that. If so, use it to initialize the redirect 3030 * route. 3031 */ 3032 if (prev_ire->ire_uinfo.iulp_set) { 3033 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3034 } else { 3035 ire_t *tmp_ire; 3036 ire_t *sire; 3037 3038 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3039 ALL_ZONES, 0, NULL, 3040 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3041 ipst); 3042 if (sire != NULL) { 3043 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3044 /* 3045 * If sire != NULL, ire_ftable_lookup() should not 3046 * return a NULL value. 3047 */ 3048 ASSERT(tmp_ire != NULL); 3049 ire_refrele(tmp_ire); 3050 ire_refrele(sire); 3051 } else if (tmp_ire != NULL) { 3052 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3053 sizeof (iulp_t)); 3054 ire_refrele(tmp_ire); 3055 } 3056 } 3057 if (prev_ire->ire_type == IRE_CACHE) 3058 ire_delete(prev_ire); 3059 ire_refrele(prev_ire); 3060 /* 3061 * TODO: more precise handling for cases 0, 2, 3, the latter two 3062 * require TOS routing 3063 */ 3064 switch (icmph->icmph_code) { 3065 case 0: 3066 case 1: 3067 /* TODO: TOS specificity for cases 2 and 3 */ 3068 case 2: 3069 case 3: 3070 break; 3071 default: 3072 freemsg(mp); 3073 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3074 ire_refrele(ire); 3075 return; 3076 } 3077 /* 3078 * Create a Route Association. This will allow us to remember that 3079 * someone we believe told us to use the particular gateway. 3080 */ 3081 save_ire = ire; 3082 ire = ire_create( 3083 (uchar_t *)&dst, /* dest addr */ 3084 (uchar_t *)&ip_g_all_ones, /* mask */ 3085 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3086 (uchar_t *)&gateway, /* gateway addr */ 3087 &save_ire->ire_max_frag, /* max frag */ 3088 NULL, /* no src nce */ 3089 NULL, /* no rfq */ 3090 NULL, /* no stq */ 3091 IRE_HOST, 3092 NULL, /* ipif */ 3093 0, /* cmask */ 3094 0, /* phandle */ 3095 0, /* ihandle */ 3096 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3097 &ulp_info, 3098 NULL, /* tsol_gc_t */ 3099 NULL, /* gcgrp */ 3100 ipst); 3101 3102 if (ire == NULL) { 3103 freemsg(mp); 3104 ire_refrele(save_ire); 3105 return; 3106 } 3107 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3108 ire_refrele(save_ire); 3109 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3110 3111 if (error == 0) { 3112 ire_refrele(ire); /* Held in ire_add_v4 */ 3113 /* tell routing sockets that we received a redirect */ 3114 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3115 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3116 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3117 } 3118 3119 /* 3120 * Delete any existing IRE_HOST type redirect ires for this destination. 3121 * This together with the added IRE has the effect of 3122 * modifying an existing redirect. 3123 */ 3124 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3125 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3126 if (prev_ire != NULL) { 3127 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3128 ire_delete(prev_ire); 3129 ire_refrele(prev_ire); 3130 } 3131 3132 freemsg(mp); 3133 } 3134 3135 /* 3136 * Generate an ICMP parameter problem message. 3137 */ 3138 static void 3139 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3140 ip_stack_t *ipst) 3141 { 3142 icmph_t icmph; 3143 boolean_t mctl_present; 3144 mblk_t *first_mp; 3145 3146 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3147 3148 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3149 if (mctl_present) 3150 freeb(first_mp); 3151 return; 3152 } 3153 3154 bzero(&icmph, sizeof (icmph_t)); 3155 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3156 icmph.icmph_pp_ptr = ptr; 3157 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3158 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3159 ipst); 3160 } 3161 3162 /* 3163 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3164 * the ICMP header pointed to by "stuff". (May be called as writer.) 3165 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3166 * an icmp error packet can be sent. 3167 * Assigns an appropriate source address to the packet. If ipha_dst is 3168 * one of our addresses use it for source. Otherwise pick a source based 3169 * on a route lookup back to ipha_src. 3170 * Note that ipha_src must be set here since the 3171 * packet is likely to arrive on an ill queue in ip_wput() which will 3172 * not set a source address. 3173 */ 3174 static void 3175 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3176 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3177 { 3178 ipaddr_t dst; 3179 icmph_t *icmph; 3180 ipha_t *ipha; 3181 uint_t len_needed; 3182 size_t msg_len; 3183 mblk_t *mp1; 3184 ipaddr_t src; 3185 ire_t *ire; 3186 mblk_t *ipsec_mp; 3187 ipsec_out_t *io = NULL; 3188 3189 if (mctl_present) { 3190 /* 3191 * If it is : 3192 * 3193 * 1) a IPSEC_OUT, then this is caused by outbound 3194 * datagram originating on this host. IPsec processing 3195 * may or may not have been done. Refer to comments above 3196 * icmp_inbound_error_fanout for details. 3197 * 3198 * 2) a IPSEC_IN if we are generating a icmp_message 3199 * for an incoming datagram destined for us i.e called 3200 * from ip_fanout_send_icmp. 3201 */ 3202 ipsec_info_t *in; 3203 ipsec_mp = mp; 3204 mp = ipsec_mp->b_cont; 3205 3206 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3207 ipha = (ipha_t *)mp->b_rptr; 3208 3209 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3210 in->ipsec_info_type == IPSEC_IN); 3211 3212 if (in->ipsec_info_type == IPSEC_IN) { 3213 /* 3214 * Convert the IPSEC_IN to IPSEC_OUT. 3215 */ 3216 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3217 BUMP_MIB(&ipst->ips_ip_mib, 3218 ipIfStatsOutDiscards); 3219 return; 3220 } 3221 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3222 } else { 3223 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3224 io = (ipsec_out_t *)in; 3225 /* 3226 * Clear out ipsec_out_proc_begin, so we do a fresh 3227 * ire lookup. 3228 */ 3229 io->ipsec_out_proc_begin = B_FALSE; 3230 } 3231 ASSERT(zoneid == io->ipsec_out_zoneid); 3232 ASSERT(zoneid != ALL_ZONES); 3233 } else { 3234 /* 3235 * This is in clear. The icmp message we are building 3236 * here should go out in clear. 3237 * 3238 * Pardon the convolution of it all, but it's easier to 3239 * allocate a "use cleartext" IPSEC_IN message and convert 3240 * it than it is to allocate a new one. 3241 */ 3242 ipsec_in_t *ii; 3243 ASSERT(DB_TYPE(mp) == M_DATA); 3244 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3245 if (ipsec_mp == NULL) { 3246 freemsg(mp); 3247 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3248 return; 3249 } 3250 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3251 3252 /* This is not a secure packet */ 3253 ii->ipsec_in_secure = B_FALSE; 3254 /* 3255 * For trusted extensions using a shared IP address we can 3256 * send using any zoneid. 3257 */ 3258 if (zoneid == ALL_ZONES) 3259 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3260 else 3261 ii->ipsec_in_zoneid = zoneid; 3262 ipsec_mp->b_cont = mp; 3263 ipha = (ipha_t *)mp->b_rptr; 3264 /* 3265 * Convert the IPSEC_IN to IPSEC_OUT. 3266 */ 3267 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3268 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3269 return; 3270 } 3271 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3272 } 3273 3274 /* Remember our eventual destination */ 3275 dst = ipha->ipha_src; 3276 3277 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3278 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3279 if (ire != NULL && 3280 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3281 src = ipha->ipha_dst; 3282 } else { 3283 if (ire != NULL) 3284 ire_refrele(ire); 3285 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3286 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3287 ipst); 3288 if (ire == NULL) { 3289 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3290 freemsg(ipsec_mp); 3291 return; 3292 } 3293 src = ire->ire_src_addr; 3294 } 3295 3296 if (ire != NULL) 3297 ire_refrele(ire); 3298 3299 /* 3300 * Check if we can send back more then 8 bytes in addition to 3301 * the IP header. We try to send 64 bytes of data and the internal 3302 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3303 */ 3304 len_needed = IPH_HDR_LENGTH(ipha); 3305 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3306 ipha->ipha_protocol == IPPROTO_IPV6) { 3307 3308 if (!pullupmsg(mp, -1)) { 3309 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3310 freemsg(ipsec_mp); 3311 return; 3312 } 3313 ipha = (ipha_t *)mp->b_rptr; 3314 3315 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3316 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3317 len_needed)); 3318 } else { 3319 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3320 3321 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3322 len_needed += ip_hdr_length_v6(mp, ip6h); 3323 } 3324 } 3325 len_needed += ipst->ips_ip_icmp_return; 3326 msg_len = msgdsize(mp); 3327 if (msg_len > len_needed) { 3328 (void) adjmsg(mp, len_needed - msg_len); 3329 msg_len = len_needed; 3330 } 3331 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3332 if (mp1 == NULL) { 3333 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3334 freemsg(ipsec_mp); 3335 return; 3336 } 3337 mp1->b_cont = mp; 3338 mp = mp1; 3339 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3340 ipsec_mp->b_rptr == (uint8_t *)io && 3341 io->ipsec_out_type == IPSEC_OUT); 3342 ipsec_mp->b_cont = mp; 3343 3344 /* 3345 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3346 * node generates be accepted in peace by all on-host destinations. 3347 * If we do NOT assume that all on-host destinations trust 3348 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3349 * (Look for ipsec_out_icmp_loopback). 3350 */ 3351 io->ipsec_out_icmp_loopback = B_TRUE; 3352 3353 ipha = (ipha_t *)mp->b_rptr; 3354 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3355 *ipha = icmp_ipha; 3356 ipha->ipha_src = src; 3357 ipha->ipha_dst = dst; 3358 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3359 msg_len += sizeof (icmp_ipha) + len; 3360 if (msg_len > IP_MAXPACKET) { 3361 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3362 msg_len = IP_MAXPACKET; 3363 } 3364 ipha->ipha_length = htons((uint16_t)msg_len); 3365 icmph = (icmph_t *)&ipha[1]; 3366 bcopy(stuff, icmph, len); 3367 icmph->icmph_checksum = 0; 3368 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3369 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3370 put(q, ipsec_mp); 3371 } 3372 3373 /* 3374 * Determine if an ICMP error packet can be sent given the rate limit. 3375 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3376 * in milliseconds) and a burst size. Burst size number of packets can 3377 * be sent arbitrarely closely spaced. 3378 * The state is tracked using two variables to implement an approximate 3379 * token bucket filter: 3380 * icmp_pkt_err_last - lbolt value when the last burst started 3381 * icmp_pkt_err_sent - number of packets sent in current burst 3382 */ 3383 boolean_t 3384 icmp_err_rate_limit(ip_stack_t *ipst) 3385 { 3386 clock_t now = TICK_TO_MSEC(lbolt); 3387 uint_t refilled; /* Number of packets refilled in tbf since last */ 3388 /* Guard against changes by loading into local variable */ 3389 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3390 3391 if (err_interval == 0) 3392 return (B_FALSE); 3393 3394 if (ipst->ips_icmp_pkt_err_last > now) { 3395 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3396 ipst->ips_icmp_pkt_err_last = 0; 3397 ipst->ips_icmp_pkt_err_sent = 0; 3398 } 3399 /* 3400 * If we are in a burst update the token bucket filter. 3401 * Update the "last" time to be close to "now" but make sure 3402 * we don't loose precision. 3403 */ 3404 if (ipst->ips_icmp_pkt_err_sent != 0) { 3405 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3406 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3407 ipst->ips_icmp_pkt_err_sent = 0; 3408 } else { 3409 ipst->ips_icmp_pkt_err_sent -= refilled; 3410 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3411 } 3412 } 3413 if (ipst->ips_icmp_pkt_err_sent == 0) { 3414 /* Start of new burst */ 3415 ipst->ips_icmp_pkt_err_last = now; 3416 } 3417 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3418 ipst->ips_icmp_pkt_err_sent++; 3419 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3420 ipst->ips_icmp_pkt_err_sent)); 3421 return (B_FALSE); 3422 } 3423 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3424 return (B_TRUE); 3425 } 3426 3427 /* 3428 * Check if it is ok to send an IPv4 ICMP error packet in 3429 * response to the IPv4 packet in mp. 3430 * Free the message and return null if no 3431 * ICMP error packet should be sent. 3432 */ 3433 static mblk_t * 3434 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3435 { 3436 icmph_t *icmph; 3437 ipha_t *ipha; 3438 uint_t len_needed; 3439 ire_t *src_ire; 3440 ire_t *dst_ire; 3441 3442 if (!mp) 3443 return (NULL); 3444 ipha = (ipha_t *)mp->b_rptr; 3445 if (ip_csum_hdr(ipha)) { 3446 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3447 freemsg(mp); 3448 return (NULL); 3449 } 3450 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3451 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3452 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3453 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3454 if (src_ire != NULL || dst_ire != NULL || 3455 CLASSD(ipha->ipha_dst) || 3456 CLASSD(ipha->ipha_src) || 3457 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3458 /* Note: only errors to the fragment with offset 0 */ 3459 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3460 freemsg(mp); 3461 if (src_ire != NULL) 3462 ire_refrele(src_ire); 3463 if (dst_ire != NULL) 3464 ire_refrele(dst_ire); 3465 return (NULL); 3466 } 3467 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3468 /* 3469 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3470 * errors in response to any ICMP errors. 3471 */ 3472 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3473 if (mp->b_wptr - mp->b_rptr < len_needed) { 3474 if (!pullupmsg(mp, len_needed)) { 3475 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3476 freemsg(mp); 3477 return (NULL); 3478 } 3479 ipha = (ipha_t *)mp->b_rptr; 3480 } 3481 icmph = (icmph_t *) 3482 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3483 switch (icmph->icmph_type) { 3484 case ICMP_DEST_UNREACHABLE: 3485 case ICMP_SOURCE_QUENCH: 3486 case ICMP_TIME_EXCEEDED: 3487 case ICMP_PARAM_PROBLEM: 3488 case ICMP_REDIRECT: 3489 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3490 freemsg(mp); 3491 return (NULL); 3492 default: 3493 break; 3494 } 3495 } 3496 /* 3497 * If this is a labeled system, then check to see if we're allowed to 3498 * send a response to this particular sender. If not, then just drop. 3499 */ 3500 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3501 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3502 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3503 freemsg(mp); 3504 return (NULL); 3505 } 3506 if (icmp_err_rate_limit(ipst)) { 3507 /* 3508 * Only send ICMP error packets every so often. 3509 * This should be done on a per port/source basis, 3510 * but for now this will suffice. 3511 */ 3512 freemsg(mp); 3513 return (NULL); 3514 } 3515 return (mp); 3516 } 3517 3518 /* 3519 * Generate an ICMP redirect message. 3520 */ 3521 static void 3522 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3523 { 3524 icmph_t icmph; 3525 3526 /* 3527 * We are called from ip_rput where we could 3528 * not have attached an IPSEC_IN. 3529 */ 3530 ASSERT(mp->b_datap->db_type == M_DATA); 3531 3532 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3533 return; 3534 } 3535 3536 bzero(&icmph, sizeof (icmph_t)); 3537 icmph.icmph_type = ICMP_REDIRECT; 3538 icmph.icmph_code = 1; 3539 icmph.icmph_rd_gateway = gateway; 3540 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3541 /* Redirects sent by router, and router is global zone */ 3542 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3543 } 3544 3545 /* 3546 * Generate an ICMP time exceeded message. 3547 */ 3548 void 3549 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3550 ip_stack_t *ipst) 3551 { 3552 icmph_t icmph; 3553 boolean_t mctl_present; 3554 mblk_t *first_mp; 3555 3556 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3557 3558 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3559 if (mctl_present) 3560 freeb(first_mp); 3561 return; 3562 } 3563 3564 bzero(&icmph, sizeof (icmph_t)); 3565 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3566 icmph.icmph_code = code; 3567 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3568 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3569 ipst); 3570 } 3571 3572 /* 3573 * Generate an ICMP unreachable message. 3574 */ 3575 void 3576 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3577 ip_stack_t *ipst) 3578 { 3579 icmph_t icmph; 3580 mblk_t *first_mp; 3581 boolean_t mctl_present; 3582 3583 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3584 3585 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3586 if (mctl_present) 3587 freeb(first_mp); 3588 return; 3589 } 3590 3591 bzero(&icmph, sizeof (icmph_t)); 3592 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3593 icmph.icmph_code = code; 3594 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3595 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3596 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3597 zoneid, ipst); 3598 } 3599 3600 /* 3601 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3602 * duplicate. As long as someone else holds the address, the interface will 3603 * stay down. When that conflict goes away, the interface is brought back up. 3604 * This is done so that accidental shutdowns of addresses aren't made 3605 * permanent. Your server will recover from a failure. 3606 * 3607 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3608 * user space process (dhcpagent). 3609 * 3610 * Recovery completes if ARP reports that the address is now ours (via 3611 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3612 * 3613 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3614 */ 3615 static void 3616 ipif_dup_recovery(void *arg) 3617 { 3618 ipif_t *ipif = arg; 3619 ill_t *ill = ipif->ipif_ill; 3620 mblk_t *arp_add_mp; 3621 mblk_t *arp_del_mp; 3622 ip_stack_t *ipst = ill->ill_ipst; 3623 3624 ipif->ipif_recovery_id = 0; 3625 3626 /* 3627 * No lock needed for moving or condemned check, as this is just an 3628 * optimization. 3629 */ 3630 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3631 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3632 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3633 /* No reason to try to bring this address back. */ 3634 return; 3635 } 3636 3637 /* ACE_F_UNVERIFIED restarts DAD */ 3638 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3639 goto alloc_fail; 3640 3641 if (ipif->ipif_arp_del_mp == NULL) { 3642 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3643 goto alloc_fail; 3644 ipif->ipif_arp_del_mp = arp_del_mp; 3645 } 3646 3647 putnext(ill->ill_rq, arp_add_mp); 3648 return; 3649 3650 alloc_fail: 3651 /* 3652 * On allocation failure, just restart the timer. Note that the ipif 3653 * is down here, so no other thread could be trying to start a recovery 3654 * timer. The ill_lock protects the condemned flag and the recovery 3655 * timer ID. 3656 */ 3657 freemsg(arp_add_mp); 3658 mutex_enter(&ill->ill_lock); 3659 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3660 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3661 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3662 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3663 } 3664 mutex_exit(&ill->ill_lock); 3665 } 3666 3667 /* 3668 * This is for exclusive changes due to ARP. Either tear down an interface due 3669 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3670 */ 3671 /* ARGSUSED */ 3672 static void 3673 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3674 { 3675 ill_t *ill = rq->q_ptr; 3676 arh_t *arh; 3677 ipaddr_t src; 3678 ipif_t *ipif; 3679 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3680 char hbuf[MAC_STR_LEN]; 3681 char sbuf[INET_ADDRSTRLEN]; 3682 const char *failtype; 3683 boolean_t bring_up; 3684 ip_stack_t *ipst = ill->ill_ipst; 3685 3686 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3687 case AR_CN_READY: 3688 failtype = NULL; 3689 bring_up = B_TRUE; 3690 break; 3691 case AR_CN_FAILED: 3692 failtype = "in use"; 3693 bring_up = B_FALSE; 3694 break; 3695 default: 3696 failtype = "claimed"; 3697 bring_up = B_FALSE; 3698 break; 3699 } 3700 3701 arh = (arh_t *)mp->b_cont->b_rptr; 3702 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3703 3704 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3705 sizeof (hbuf)); 3706 (void) ip_dot_addr(src, sbuf); 3707 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3708 3709 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3710 ipif->ipif_lcl_addr != src) { 3711 continue; 3712 } 3713 3714 /* 3715 * If we failed on a recovery probe, then restart the timer to 3716 * try again later. 3717 */ 3718 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3719 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3720 ill->ill_net_type == IRE_IF_RESOLVER && 3721 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3722 ipst->ips_ip_dup_recovery > 0 && 3723 ipif->ipif_recovery_id == 0) { 3724 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3725 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3726 continue; 3727 } 3728 3729 /* 3730 * If what we're trying to do has already been done, then do 3731 * nothing. 3732 */ 3733 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3734 continue; 3735 3736 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3737 3738 if (failtype == NULL) { 3739 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3740 ibuf); 3741 } else { 3742 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3743 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3744 } 3745 3746 if (bring_up) { 3747 ASSERT(ill->ill_dl_up); 3748 /* 3749 * Free up the ARP delete message so we can allocate 3750 * a fresh one through the normal path. 3751 */ 3752 freemsg(ipif->ipif_arp_del_mp); 3753 ipif->ipif_arp_del_mp = NULL; 3754 if (ipif_resolver_up(ipif, Res_act_initial) != 3755 EINPROGRESS) { 3756 ipif->ipif_addr_ready = 1; 3757 (void) ipif_up_done(ipif); 3758 ASSERT(ill->ill_move_ipif == NULL); 3759 } 3760 continue; 3761 } 3762 3763 mutex_enter(&ill->ill_lock); 3764 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3765 ipif->ipif_flags |= IPIF_DUPLICATE; 3766 ill->ill_ipif_dup_count++; 3767 mutex_exit(&ill->ill_lock); 3768 /* 3769 * Already exclusive on the ill; no need to handle deferred 3770 * processing here. 3771 */ 3772 (void) ipif_down(ipif, NULL, NULL); 3773 ipif_down_tail(ipif); 3774 mutex_enter(&ill->ill_lock); 3775 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3776 ill->ill_net_type == IRE_IF_RESOLVER && 3777 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3778 ipst->ips_ip_dup_recovery > 0) { 3779 ASSERT(ipif->ipif_recovery_id == 0); 3780 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3781 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3782 } 3783 mutex_exit(&ill->ill_lock); 3784 } 3785 freemsg(mp); 3786 } 3787 3788 /* ARGSUSED */ 3789 static void 3790 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3791 { 3792 ill_t *ill = rq->q_ptr; 3793 arh_t *arh; 3794 ipaddr_t src; 3795 ipif_t *ipif; 3796 3797 arh = (arh_t *)mp->b_cont->b_rptr; 3798 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3799 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3800 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3801 (void) ipif_resolver_up(ipif, Res_act_defend); 3802 } 3803 freemsg(mp); 3804 } 3805 3806 /* 3807 * News from ARP. ARP sends notification of interesting events down 3808 * to its clients using M_CTL messages with the interesting ARP packet 3809 * attached via b_cont. 3810 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3811 * queue as opposed to ARP sending the message to all the clients, i.e. all 3812 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3813 * table if a cache IRE is found to delete all the entries for the address in 3814 * the packet. 3815 */ 3816 static void 3817 ip_arp_news(queue_t *q, mblk_t *mp) 3818 { 3819 arcn_t *arcn; 3820 arh_t *arh; 3821 ire_t *ire = NULL; 3822 char hbuf[MAC_STR_LEN]; 3823 char sbuf[INET_ADDRSTRLEN]; 3824 ipaddr_t src; 3825 in6_addr_t v6src; 3826 boolean_t isv6 = B_FALSE; 3827 ipif_t *ipif; 3828 ill_t *ill; 3829 ip_stack_t *ipst; 3830 3831 if (CONN_Q(q)) { 3832 conn_t *connp = Q_TO_CONN(q); 3833 3834 ipst = connp->conn_netstack->netstack_ip; 3835 } else { 3836 ill_t *ill = (ill_t *)q->q_ptr; 3837 3838 ipst = ill->ill_ipst; 3839 } 3840 3841 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3842 if (q->q_next) { 3843 putnext(q, mp); 3844 } else 3845 freemsg(mp); 3846 return; 3847 } 3848 arh = (arh_t *)mp->b_cont->b_rptr; 3849 /* Is it one we are interested in? */ 3850 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3851 isv6 = B_TRUE; 3852 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3853 IPV6_ADDR_LEN); 3854 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3855 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3856 IP_ADDR_LEN); 3857 } else { 3858 freemsg(mp); 3859 return; 3860 } 3861 3862 ill = q->q_ptr; 3863 3864 arcn = (arcn_t *)mp->b_rptr; 3865 switch (arcn->arcn_code) { 3866 case AR_CN_BOGON: 3867 /* 3868 * Someone is sending ARP packets with a source protocol 3869 * address that we have published and for which we believe our 3870 * entry is authoritative and (when ill_arp_extend is set) 3871 * verified to be unique on the network. 3872 * 3873 * The ARP module internally handles the cases where the sender 3874 * is just probing (for DAD) and where the hardware address of 3875 * a non-authoritative entry has changed. Thus, these are the 3876 * real conflicts, and we have to do resolution. 3877 * 3878 * We back away quickly from the address if it's from DHCP or 3879 * otherwise temporary and hasn't been used recently (or at 3880 * all). We'd like to include "deprecated" addresses here as 3881 * well (as there's no real reason to defend something we're 3882 * discarding), but IPMP "reuses" this flag to mean something 3883 * other than the standard meaning. 3884 * 3885 * If the ARP module above is not extended (meaning that it 3886 * doesn't know how to defend the address), then we just log 3887 * the problem as we always did and continue on. It's not 3888 * right, but there's little else we can do, and those old ATM 3889 * users are going away anyway. 3890 */ 3891 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3892 hbuf, sizeof (hbuf)); 3893 (void) ip_dot_addr(src, sbuf); 3894 if (isv6) { 3895 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3896 ipst); 3897 } else { 3898 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3899 } 3900 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3901 uint32_t now; 3902 uint32_t maxage; 3903 clock_t lused; 3904 uint_t maxdefense; 3905 uint_t defs; 3906 3907 /* 3908 * First, figure out if this address hasn't been used 3909 * in a while. If it hasn't, then it's a better 3910 * candidate for abandoning. 3911 */ 3912 ipif = ire->ire_ipif; 3913 ASSERT(ipif != NULL); 3914 now = gethrestime_sec(); 3915 maxage = now - ire->ire_create_time; 3916 if (maxage > ipst->ips_ip_max_temp_idle) 3917 maxage = ipst->ips_ip_max_temp_idle; 3918 lused = drv_hztousec(ddi_get_lbolt() - 3919 ire->ire_last_used_time) / MICROSEC + 1; 3920 if (lused >= maxage && (ipif->ipif_flags & 3921 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 3922 maxdefense = ipst->ips_ip_max_temp_defend; 3923 else 3924 maxdefense = ipst->ips_ip_max_defend; 3925 3926 /* 3927 * Now figure out how many times we've defended 3928 * ourselves. Ignore defenses that happened long in 3929 * the past. 3930 */ 3931 mutex_enter(&ire->ire_lock); 3932 if ((defs = ire->ire_defense_count) > 0 && 3933 now - ire->ire_defense_time > 3934 ipst->ips_ip_defend_interval) { 3935 ire->ire_defense_count = defs = 0; 3936 } 3937 ire->ire_defense_count++; 3938 ire->ire_defense_time = now; 3939 mutex_exit(&ire->ire_lock); 3940 ill_refhold(ill); 3941 ire_refrele(ire); 3942 3943 /* 3944 * If we've defended ourselves too many times already, 3945 * then give up and tear down the interface(s) using 3946 * this address. Otherwise, defend by sending out a 3947 * gratuitous ARP. 3948 */ 3949 if (defs >= maxdefense && ill->ill_arp_extend) { 3950 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 3951 B_FALSE); 3952 } else { 3953 cmn_err(CE_WARN, 3954 "node %s is using our IP address %s on %s", 3955 hbuf, sbuf, ill->ill_name); 3956 /* 3957 * If this is an old (ATM) ARP module, then 3958 * don't try to defend the address. Remain 3959 * compatible with the old behavior. Defend 3960 * only with new ARP. 3961 */ 3962 if (ill->ill_arp_extend) { 3963 qwriter_ip(ill, q, mp, ip_arp_defend, 3964 NEW_OP, B_FALSE); 3965 } else { 3966 ill_refrele(ill); 3967 } 3968 } 3969 return; 3970 } 3971 cmn_err(CE_WARN, 3972 "proxy ARP problem? Node '%s' is using %s on %s", 3973 hbuf, sbuf, ill->ill_name); 3974 if (ire != NULL) 3975 ire_refrele(ire); 3976 break; 3977 case AR_CN_ANNOUNCE: 3978 if (isv6) { 3979 /* 3980 * For XRESOLV interfaces. 3981 * Delete the IRE cache entry and NCE for this 3982 * v6 address 3983 */ 3984 ip_ire_clookup_and_delete_v6(&v6src, ipst); 3985 /* 3986 * If v6src is a non-zero, it's a router address 3987 * as below. Do the same sort of thing to clean 3988 * out off-net IRE_CACHE entries that go through 3989 * the router. 3990 */ 3991 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3992 ire_walk_v6(ire_delete_cache_gw_v6, 3993 (char *)&v6src, ALL_ZONES, ipst); 3994 } 3995 } else { 3996 nce_hw_map_t hwm; 3997 3998 /* 3999 * ARP gives us a copy of any packet where it thinks 4000 * the address has changed, so that we can update our 4001 * caches. We're responsible for caching known answers 4002 * in the current design. We check whether the 4003 * hardware address really has changed in all of our 4004 * entries that have cached this mapping, and if so, we 4005 * blow them away. This way we will immediately pick 4006 * up the rare case of a host changing hardware 4007 * address. 4008 */ 4009 if (src == 0) 4010 break; 4011 hwm.hwm_addr = src; 4012 hwm.hwm_hwlen = arh->arh_hlen; 4013 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4014 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4015 ndp_walk_common(ipst->ips_ndp4, NULL, 4016 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4017 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4018 } 4019 break; 4020 case AR_CN_READY: 4021 /* No external v6 resolver has a contract to use this */ 4022 if (isv6) 4023 break; 4024 /* If the link is down, we'll retry this later */ 4025 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4026 break; 4027 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4028 NULL, NULL, ipst); 4029 if (ipif != NULL) { 4030 /* 4031 * If this is a duplicate recovery, then we now need to 4032 * go exclusive to bring this thing back up. 4033 */ 4034 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4035 IPIF_DUPLICATE) { 4036 ipif_refrele(ipif); 4037 ill_refhold(ill); 4038 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4039 B_FALSE); 4040 return; 4041 } 4042 /* 4043 * If this is the first notice that this address is 4044 * ready, then let the user know now. 4045 */ 4046 if ((ipif->ipif_flags & IPIF_UP) && 4047 !ipif->ipif_addr_ready) { 4048 ipif_mask_reply(ipif); 4049 ipif_up_notify(ipif); 4050 } 4051 ipif->ipif_addr_ready = 1; 4052 ipif_refrele(ipif); 4053 } 4054 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4055 if (ire != NULL) { 4056 ire->ire_defense_count = 0; 4057 ire_refrele(ire); 4058 } 4059 break; 4060 case AR_CN_FAILED: 4061 /* No external v6 resolver has a contract to use this */ 4062 if (isv6) 4063 break; 4064 ill_refhold(ill); 4065 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4066 return; 4067 } 4068 freemsg(mp); 4069 } 4070 4071 /* 4072 * Create a mblk suitable for carrying the interface index and/or source link 4073 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4074 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4075 * application. 4076 */ 4077 mblk_t * 4078 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4079 ip_stack_t *ipst) 4080 { 4081 mblk_t *mp; 4082 ip_pktinfo_t *pinfo; 4083 ipha_t *ipha; 4084 struct ether_header *pether; 4085 boolean_t ipmp_ill_held = B_FALSE; 4086 4087 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4088 if (mp == NULL) { 4089 ip1dbg(("ip_add_info: allocation failure.\n")); 4090 return (data_mp); 4091 } 4092 4093 ipha = (ipha_t *)data_mp->b_rptr; 4094 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4095 bzero(pinfo, sizeof (ip_pktinfo_t)); 4096 pinfo->ip_pkt_flags = (uchar_t)flags; 4097 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4098 4099 pether = (struct ether_header *)((char *)ipha 4100 - sizeof (struct ether_header)); 4101 4102 /* 4103 * Make sure the interface is an ethernet type, since this option 4104 * is currently supported only on this type of interface. Also make 4105 * sure we are pointing correctly above db_base. 4106 */ 4107 if ((flags & IPF_RECVSLLA) && 4108 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4109 (ill->ill_type == IFT_ETHER) && 4110 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4111 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4112 bcopy(pether->ether_shost.ether_addr_octet, 4113 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4114 } else { 4115 /* 4116 * Clear the bit. Indicate to upper layer that IP is not 4117 * sending this ancillary info. 4118 */ 4119 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4120 } 4121 4122 /* 4123 * If `ill' is in an IPMP group, use the IPMP ill to determine 4124 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4125 * IPF_RECVADDR support on test addresses is not needed.) 4126 * 4127 * Note that `ill' may already be an IPMP ill if e.g. we're 4128 * processing a packet looped back to an IPMP data address 4129 * (since those IRE_LOCALs are tied to IPMP ills). 4130 */ 4131 if (IS_UNDER_IPMP(ill)) { 4132 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4133 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4134 freemsg(mp); 4135 return (data_mp); 4136 } 4137 ipmp_ill_held = B_TRUE; 4138 } 4139 4140 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4141 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4142 if (flags & IPF_RECVADDR) { 4143 ipif_t *ipif; 4144 ire_t *ire; 4145 4146 /* 4147 * Only valid for V4 4148 */ 4149 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4150 (IPV4_VERSION << 4)); 4151 4152 ipif = ipif_get_next_ipif(NULL, ill); 4153 if (ipif != NULL) { 4154 /* 4155 * Since a decision has already been made to deliver the 4156 * packet, there is no need to test for SECATTR and 4157 * ZONEONLY. 4158 * When a multicast packet is transmitted 4159 * a cache entry is created for the multicast address. 4160 * When delivering a copy of the packet or when new 4161 * packets are received we do not want to match on the 4162 * cached entry so explicitly match on 4163 * IRE_LOCAL and IRE_LOOPBACK 4164 */ 4165 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4166 IRE_LOCAL | IRE_LOOPBACK, 4167 ipif, zoneid, NULL, 4168 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4169 if (ire == NULL) { 4170 /* 4171 * packet must have come on a different 4172 * interface. 4173 * Since a decision has already been made to 4174 * deliver the packet, there is no need to test 4175 * for SECATTR and ZONEONLY. 4176 * Only match on local and broadcast ire's. 4177 * See detailed comment above. 4178 */ 4179 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4180 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4181 NULL, MATCH_IRE_TYPE, ipst); 4182 } 4183 4184 if (ire == NULL) { 4185 /* 4186 * This is either a multicast packet or 4187 * the address has been removed since 4188 * the packet was received. 4189 * Return INADDR_ANY so that normal source 4190 * selection occurs for the response. 4191 */ 4192 4193 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4194 } else { 4195 pinfo->ip_pkt_match_addr.s_addr = 4196 ire->ire_src_addr; 4197 ire_refrele(ire); 4198 } 4199 ipif_refrele(ipif); 4200 } else { 4201 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4202 } 4203 } 4204 4205 if (ipmp_ill_held) 4206 ill_refrele(ill); 4207 4208 mp->b_datap->db_type = M_CTL; 4209 mp->b_wptr += sizeof (ip_pktinfo_t); 4210 mp->b_cont = data_mp; 4211 4212 return (mp); 4213 } 4214 4215 /* 4216 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4217 * part of the bind request. 4218 */ 4219 4220 boolean_t 4221 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4222 { 4223 ipsec_in_t *ii; 4224 4225 ASSERT(policy_mp != NULL); 4226 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4227 4228 ii = (ipsec_in_t *)policy_mp->b_rptr; 4229 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4230 4231 connp->conn_policy = ii->ipsec_in_policy; 4232 ii->ipsec_in_policy = NULL; 4233 4234 if (ii->ipsec_in_action != NULL) { 4235 if (connp->conn_latch == NULL) { 4236 connp->conn_latch = iplatch_create(); 4237 if (connp->conn_latch == NULL) 4238 return (B_FALSE); 4239 } 4240 ipsec_latch_inbound(connp->conn_latch, ii); 4241 } 4242 return (B_TRUE); 4243 } 4244 4245 static void 4246 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4247 { 4248 /* 4249 * Pass the IPsec headers size in ire_ipsec_overhead. 4250 * We can't do this in ip_bind_get_ire because the policy 4251 * may not have been inherited at that point in time and hence 4252 * conn_out_enforce_policy may not be set. 4253 */ 4254 if (ire_requested && connp->conn_out_enforce_policy && 4255 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4256 ire_t *ire = (ire_t *)mp->b_rptr; 4257 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4258 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4259 } 4260 } 4261 4262 /* 4263 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4264 * and to arrange for power-fanout assist. The ULP is identified by 4265 * adding a single byte at the end of the original bind message. 4266 * A ULP other than UDP or TCP that wishes to be recognized passes 4267 * down a bind with a zero length address. 4268 * 4269 * The binding works as follows: 4270 * - A zero byte address means just bind to the protocol. 4271 * - A four byte address is treated as a request to validate 4272 * that the address is a valid local address, appropriate for 4273 * an application to bind to. This does not affect any fanout 4274 * information in IP. 4275 * - A sizeof sin_t byte address is used to bind to only the local address 4276 * and port. 4277 * - A sizeof ipa_conn_t byte address contains complete fanout information 4278 * consisting of local and remote addresses and ports. In 4279 * this case, the addresses are both validated as appropriate 4280 * for this operation, and, if so, the information is retained 4281 * for use in the inbound fanout. 4282 * 4283 * The ULP (except in the zero-length bind) can append an 4284 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4285 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4286 * a copy of the source or destination IRE (source for local bind; 4287 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4288 * policy information contained should be copied on to the conn. 4289 * 4290 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4291 */ 4292 mblk_t * 4293 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4294 { 4295 ssize_t len; 4296 struct T_bind_req *tbr; 4297 sin_t *sin; 4298 ipa_conn_t *ac; 4299 uchar_t *ucp; 4300 mblk_t *mp1; 4301 boolean_t ire_requested; 4302 int error = 0; 4303 int protocol; 4304 ipa_conn_x_t *acx; 4305 4306 ASSERT(!connp->conn_af_isv6); 4307 connp->conn_pkt_isv6 = B_FALSE; 4308 4309 len = MBLKL(mp); 4310 if (len < (sizeof (*tbr) + 1)) { 4311 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4312 "ip_bind: bogus msg, len %ld", len); 4313 /* XXX: Need to return something better */ 4314 goto bad_addr; 4315 } 4316 /* Back up and extract the protocol identifier. */ 4317 mp->b_wptr--; 4318 protocol = *mp->b_wptr & 0xFF; 4319 tbr = (struct T_bind_req *)mp->b_rptr; 4320 /* Reset the message type in preparation for shipping it back. */ 4321 DB_TYPE(mp) = M_PCPROTO; 4322 4323 connp->conn_ulp = (uint8_t)protocol; 4324 4325 /* 4326 * Check for a zero length address. This is from a protocol that 4327 * wants to register to receive all packets of its type. 4328 */ 4329 if (tbr->ADDR_length == 0) { 4330 /* 4331 * These protocols are now intercepted in ip_bind_v6(). 4332 * Reject protocol-level binds here for now. 4333 * 4334 * For SCTP raw socket, ICMP sends down a bind with sin_t 4335 * so that the protocol type cannot be SCTP. 4336 */ 4337 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4338 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4339 goto bad_addr; 4340 } 4341 4342 /* 4343 * 4344 * The udp module never sends down a zero-length address, 4345 * and allowing this on a labeled system will break MLP 4346 * functionality. 4347 */ 4348 if (is_system_labeled() && protocol == IPPROTO_UDP) 4349 goto bad_addr; 4350 4351 if (connp->conn_mac_exempt) 4352 goto bad_addr; 4353 4354 /* No hash here really. The table is big enough. */ 4355 connp->conn_srcv6 = ipv6_all_zeros; 4356 4357 ipcl_proto_insert(connp, protocol); 4358 4359 tbr->PRIM_type = T_BIND_ACK; 4360 return (mp); 4361 } 4362 4363 /* Extract the address pointer from the message. */ 4364 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4365 tbr->ADDR_length); 4366 if (ucp == NULL) { 4367 ip1dbg(("ip_bind: no address\n")); 4368 goto bad_addr; 4369 } 4370 if (!OK_32PTR(ucp)) { 4371 ip1dbg(("ip_bind: unaligned address\n")); 4372 goto bad_addr; 4373 } 4374 /* 4375 * Check for trailing mps. 4376 */ 4377 4378 mp1 = mp->b_cont; 4379 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4380 4381 switch (tbr->ADDR_length) { 4382 default: 4383 ip1dbg(("ip_bind: bad address length %d\n", 4384 (int)tbr->ADDR_length)); 4385 goto bad_addr; 4386 4387 case IP_ADDR_LEN: 4388 /* Verification of local address only */ 4389 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4390 *(ipaddr_t *)ucp, 0, B_FALSE); 4391 break; 4392 4393 case sizeof (sin_t): 4394 sin = (sin_t *)ucp; 4395 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4396 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4397 break; 4398 4399 case sizeof (ipa_conn_t): 4400 ac = (ipa_conn_t *)ucp; 4401 /* For raw socket, the local port is not set. */ 4402 if (ac->ac_lport == 0) 4403 ac->ac_lport = connp->conn_lport; 4404 /* Always verify destination reachability. */ 4405 error = ip_bind_connected_v4(connp, &mp1, protocol, 4406 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4407 B_TRUE, B_TRUE); 4408 break; 4409 4410 case sizeof (ipa_conn_x_t): 4411 acx = (ipa_conn_x_t *)ucp; 4412 /* 4413 * Whether or not to verify destination reachability depends 4414 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4415 */ 4416 error = ip_bind_connected_v4(connp, &mp1, protocol, 4417 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4418 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4419 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4420 break; 4421 } 4422 ASSERT(error != EINPROGRESS); 4423 if (error != 0) 4424 goto bad_addr; 4425 4426 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4427 4428 /* Send it home. */ 4429 mp->b_datap->db_type = M_PCPROTO; 4430 tbr->PRIM_type = T_BIND_ACK; 4431 return (mp); 4432 4433 bad_addr: 4434 /* 4435 * If error = -1 then we generate a TBADADDR - otherwise error is 4436 * a unix errno. 4437 */ 4438 if (error > 0) 4439 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4440 else 4441 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4442 return (mp); 4443 } 4444 4445 /* 4446 * Here address is verified to be a valid local address. 4447 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4448 * address is also considered a valid local address. 4449 * In the case of a broadcast/multicast address, however, the 4450 * upper protocol is expected to reset the src address 4451 * to 0 if it sees a IRE_BROADCAST type returned so that 4452 * no packets are emitted with broadcast/multicast address as 4453 * source address (that violates hosts requirements RFC 1122) 4454 * The addresses valid for bind are: 4455 * (1) - INADDR_ANY (0) 4456 * (2) - IP address of an UP interface 4457 * (3) - IP address of a DOWN interface 4458 * (4) - valid local IP broadcast addresses. In this case 4459 * the conn will only receive packets destined to 4460 * the specified broadcast address. 4461 * (5) - a multicast address. In this case 4462 * the conn will only receive packets destined to 4463 * the specified multicast address. Note: the 4464 * application still has to issue an 4465 * IP_ADD_MEMBERSHIP socket option. 4466 * 4467 * On error, return -1 for TBADADDR otherwise pass the 4468 * errno with TSYSERR reply. 4469 * 4470 * In all the above cases, the bound address must be valid in the current zone. 4471 * When the address is loopback, multicast or broadcast, there might be many 4472 * matching IREs so bind has to look up based on the zone. 4473 * 4474 * Note: lport is in network byte order. 4475 * 4476 */ 4477 int 4478 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4479 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4480 { 4481 int error = 0; 4482 ire_t *src_ire; 4483 zoneid_t zoneid; 4484 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4485 mblk_t *mp = NULL; 4486 boolean_t ire_requested = B_FALSE; 4487 boolean_t ipsec_policy_set = B_FALSE; 4488 4489 if (mpp) 4490 mp = *mpp; 4491 4492 if (mp != NULL) { 4493 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4494 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4495 } 4496 4497 /* 4498 * If it was previously connected, conn_fully_bound would have 4499 * been set. 4500 */ 4501 connp->conn_fully_bound = B_FALSE; 4502 4503 src_ire = NULL; 4504 4505 zoneid = IPCL_ZONEID(connp); 4506 4507 if (src_addr) { 4508 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4509 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4510 /* 4511 * If an address other than 0.0.0.0 is requested, 4512 * we verify that it is a valid address for bind 4513 * Note: Following code is in if-else-if form for 4514 * readability compared to a condition check. 4515 */ 4516 /* LINTED - statement has no consequence */ 4517 if (IRE_IS_LOCAL(src_ire)) { 4518 /* 4519 * (2) Bind to address of local UP interface 4520 */ 4521 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4522 /* 4523 * (4) Bind to broadcast address 4524 * Note: permitted only from transports that 4525 * request IRE 4526 */ 4527 if (!ire_requested) 4528 error = EADDRNOTAVAIL; 4529 } else { 4530 /* 4531 * (3) Bind to address of local DOWN interface 4532 * (ipif_lookup_addr() looks up all interfaces 4533 * but we do not get here for UP interfaces 4534 * - case (2) above) 4535 */ 4536 /* LINTED - statement has no consequent */ 4537 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4538 /* The address exists */ 4539 } else if (CLASSD(src_addr)) { 4540 error = 0; 4541 if (src_ire != NULL) 4542 ire_refrele(src_ire); 4543 /* 4544 * (5) bind to multicast address. 4545 * Fake out the IRE returned to upper 4546 * layer to be a broadcast IRE. 4547 */ 4548 src_ire = ire_ctable_lookup( 4549 INADDR_BROADCAST, INADDR_ANY, 4550 IRE_BROADCAST, NULL, zoneid, NULL, 4551 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4552 ipst); 4553 if (src_ire == NULL || !ire_requested) 4554 error = EADDRNOTAVAIL; 4555 } else { 4556 /* 4557 * Not a valid address for bind 4558 */ 4559 error = EADDRNOTAVAIL; 4560 } 4561 } 4562 if (error) { 4563 /* Red Alert! Attempting to be a bogon! */ 4564 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4565 ntohl(src_addr))); 4566 goto bad_addr; 4567 } 4568 } 4569 4570 4571 /* 4572 * Allow setting new policies. For example, disconnects come 4573 * down as ipa_t bind. As we would have set conn_policy_cached 4574 * to B_TRUE before, we should set it to B_FALSE, so that policy 4575 * can change after the disconnect. 4576 */ 4577 connp->conn_policy_cached = B_FALSE; 4578 4579 /* 4580 * If not fanout_insert this was just an address verification 4581 */ 4582 if (fanout_insert) { 4583 /* 4584 * The addresses have been verified. Time to insert in 4585 * the correct fanout list. 4586 */ 4587 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4588 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4589 connp->conn_lport = lport; 4590 connp->conn_fport = 0; 4591 /* 4592 * Do we need to add a check to reject Multicast packets 4593 */ 4594 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4595 } 4596 4597 if (error == 0) { 4598 if (ire_requested) { 4599 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4600 error = -1; 4601 /* Falls through to bad_addr */ 4602 } 4603 } else if (ipsec_policy_set) { 4604 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4605 error = -1; 4606 /* Falls through to bad_addr */ 4607 } 4608 } 4609 } 4610 bad_addr: 4611 if (error != 0) { 4612 if (connp->conn_anon_port) { 4613 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4614 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4615 B_FALSE); 4616 } 4617 connp->conn_mlp_type = mlptSingle; 4618 } 4619 if (src_ire != NULL) 4620 IRE_REFRELE(src_ire); 4621 return (error); 4622 } 4623 4624 int 4625 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4626 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4627 { 4628 int error; 4629 mblk_t *mp = NULL; 4630 boolean_t ire_requested; 4631 4632 if (ire_mpp) 4633 mp = *ire_mpp; 4634 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4635 4636 ASSERT(!connp->conn_af_isv6); 4637 connp->conn_pkt_isv6 = B_FALSE; 4638 connp->conn_ulp = protocol; 4639 4640 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4641 fanout_insert); 4642 if (error == 0) { 4643 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4644 ire_requested); 4645 } else if (error < 0) { 4646 error = -TBADADDR; 4647 } 4648 return (error); 4649 } 4650 4651 /* 4652 * Verify that both the source and destination addresses 4653 * are valid. If verify_dst is false, then the destination address may be 4654 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4655 * destination reachability, while tunnels do not. 4656 * Note that we allow connect to broadcast and multicast 4657 * addresses when ire_requested is set. Thus the ULP 4658 * has to check for IRE_BROADCAST and multicast. 4659 * 4660 * Returns zero if ok. 4661 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4662 * (for use with TSYSERR reply). 4663 * 4664 * Note: lport and fport are in network byte order. 4665 */ 4666 int 4667 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4668 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4669 boolean_t fanout_insert, boolean_t verify_dst) 4670 { 4671 4672 ire_t *src_ire; 4673 ire_t *dst_ire; 4674 int error = 0; 4675 ire_t *sire = NULL; 4676 ire_t *md_dst_ire = NULL; 4677 ire_t *lso_dst_ire = NULL; 4678 ill_t *ill = NULL; 4679 zoneid_t zoneid; 4680 ipaddr_t src_addr = *src_addrp; 4681 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4682 mblk_t *mp = NULL; 4683 boolean_t ire_requested = B_FALSE; 4684 boolean_t ipsec_policy_set = B_FALSE; 4685 ts_label_t *tsl = NULL; 4686 4687 if (mpp) 4688 mp = *mpp; 4689 4690 if (mp != NULL) { 4691 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4692 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4693 tsl = MBLK_GETLABEL(mp); 4694 } 4695 4696 src_ire = dst_ire = NULL; 4697 4698 /* 4699 * If we never got a disconnect before, clear it now. 4700 */ 4701 connp->conn_fully_bound = B_FALSE; 4702 4703 zoneid = IPCL_ZONEID(connp); 4704 4705 if (CLASSD(dst_addr)) { 4706 /* Pick up an IRE_BROADCAST */ 4707 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4708 NULL, zoneid, tsl, 4709 (MATCH_IRE_RECURSIVE | 4710 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4711 MATCH_IRE_SECATTR), ipst); 4712 } else { 4713 /* 4714 * If conn_dontroute is set or if conn_nexthop_set is set, 4715 * and onlink ipif is not found set ENETUNREACH error. 4716 */ 4717 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4718 ipif_t *ipif; 4719 4720 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4721 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4722 if (ipif == NULL) { 4723 error = ENETUNREACH; 4724 goto bad_addr; 4725 } 4726 ipif_refrele(ipif); 4727 } 4728 4729 if (connp->conn_nexthop_set) { 4730 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4731 0, 0, NULL, NULL, zoneid, tsl, 4732 MATCH_IRE_SECATTR, ipst); 4733 } else { 4734 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4735 &sire, zoneid, tsl, 4736 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4737 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4738 MATCH_IRE_SECATTR), ipst); 4739 } 4740 } 4741 /* 4742 * dst_ire can't be a broadcast when not ire_requested. 4743 * We also prevent ire's with src address INADDR_ANY to 4744 * be used, which are created temporarily for 4745 * sending out packets from endpoints that have 4746 * conn_unspec_src set. If verify_dst is true, the destination must be 4747 * reachable. If verify_dst is false, the destination needn't be 4748 * reachable. 4749 * 4750 * If we match on a reject or black hole, then we've got a 4751 * local failure. May as well fail out the connect() attempt, 4752 * since it's never going to succeed. 4753 */ 4754 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4755 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4756 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4757 /* 4758 * If we're verifying destination reachability, we always want 4759 * to complain here. 4760 * 4761 * If we're not verifying destination reachability but the 4762 * destination has a route, we still want to fail on the 4763 * temporary address and broadcast address tests. 4764 */ 4765 if (verify_dst || (dst_ire != NULL)) { 4766 if (ip_debug > 2) { 4767 pr_addr_dbg("ip_bind_connected_v4:" 4768 "bad connected dst %s\n", 4769 AF_INET, &dst_addr); 4770 } 4771 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4772 error = ENETUNREACH; 4773 else 4774 error = EHOSTUNREACH; 4775 goto bad_addr; 4776 } 4777 } 4778 4779 /* 4780 * We now know that routing will allow us to reach the destination. 4781 * Check whether Trusted Solaris policy allows communication with this 4782 * host, and pretend that the destination is unreachable if not. 4783 * 4784 * This is never a problem for TCP, since that transport is known to 4785 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4786 * handling. If the remote is unreachable, it will be detected at that 4787 * point, so there's no reason to check it here. 4788 * 4789 * Note that for sendto (and other datagram-oriented friends), this 4790 * check is done as part of the data path label computation instead. 4791 * The check here is just to make non-TCP connect() report the right 4792 * error. 4793 */ 4794 if (dst_ire != NULL && is_system_labeled() && 4795 !IPCL_IS_TCP(connp) && 4796 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4797 connp->conn_mac_exempt, ipst) != 0) { 4798 error = EHOSTUNREACH; 4799 if (ip_debug > 2) { 4800 pr_addr_dbg("ip_bind_connected_v4:" 4801 " no label for dst %s\n", 4802 AF_INET, &dst_addr); 4803 } 4804 goto bad_addr; 4805 } 4806 4807 /* 4808 * If the app does a connect(), it means that it will most likely 4809 * send more than 1 packet to the destination. It makes sense 4810 * to clear the temporary flag. 4811 */ 4812 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4813 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4814 irb_t *irb = dst_ire->ire_bucket; 4815 4816 rw_enter(&irb->irb_lock, RW_WRITER); 4817 /* 4818 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4819 * the lock to guarantee irb_tmp_ire_cnt. 4820 */ 4821 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4822 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4823 irb->irb_tmp_ire_cnt--; 4824 } 4825 rw_exit(&irb->irb_lock); 4826 } 4827 4828 /* 4829 * See if we should notify ULP about LSO/MDT; we do this whether or not 4830 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4831 * eligibility tests for passive connects are handled separately 4832 * through tcp_adapt_ire(). We do this before the source address 4833 * selection, because dst_ire may change after a call to 4834 * ipif_select_source(). This is a best-effort check, as the 4835 * packet for this connection may not actually go through 4836 * dst_ire->ire_stq, and the exact IRE can only be known after 4837 * calling ip_newroute(). This is why we further check on the 4838 * IRE during LSO/Multidata packet transmission in 4839 * tcp_lsosend()/tcp_multisend(). 4840 */ 4841 if (!ipsec_policy_set && dst_ire != NULL && 4842 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4843 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4844 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4845 lso_dst_ire = dst_ire; 4846 IRE_REFHOLD(lso_dst_ire); 4847 } else if (ipst->ips_ip_multidata_outbound && 4848 ILL_MDT_CAPABLE(ill)) { 4849 md_dst_ire = dst_ire; 4850 IRE_REFHOLD(md_dst_ire); 4851 } 4852 } 4853 4854 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4855 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4856 /* 4857 * If the IRE belongs to a different zone, look for a matching 4858 * route in the forwarding table and use the source address from 4859 * that route. 4860 */ 4861 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4862 zoneid, 0, NULL, 4863 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4864 MATCH_IRE_RJ_BHOLE, ipst); 4865 if (src_ire == NULL) { 4866 error = EHOSTUNREACH; 4867 goto bad_addr; 4868 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4869 if (!(src_ire->ire_type & IRE_HOST)) 4870 error = ENETUNREACH; 4871 else 4872 error = EHOSTUNREACH; 4873 goto bad_addr; 4874 } 4875 if (src_addr == INADDR_ANY) 4876 src_addr = src_ire->ire_src_addr; 4877 ire_refrele(src_ire); 4878 src_ire = NULL; 4879 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4880 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4881 src_addr = sire->ire_src_addr; 4882 ire_refrele(dst_ire); 4883 dst_ire = sire; 4884 sire = NULL; 4885 } else { 4886 /* 4887 * Pick a source address so that a proper inbound 4888 * load spreading would happen. 4889 */ 4890 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 4891 ipif_t *src_ipif = NULL; 4892 ire_t *ipif_ire; 4893 4894 /* 4895 * Supply a local source address such that inbound 4896 * load spreading happens. 4897 * 4898 * Determine the best source address on this ill for 4899 * the destination. 4900 * 4901 * 1) For broadcast, we should return a broadcast ire 4902 * found above so that upper layers know that the 4903 * destination address is a broadcast address. 4904 * 4905 * 2) If the ipif is DEPRECATED, select a better 4906 * source address. Similarly, if the ipif is on 4907 * the IPMP meta-interface, pick a source address 4908 * at random to improve inbound load spreading. 4909 * 4910 * 3) If the outgoing interface is part of a usesrc 4911 * group, then try selecting a source address from 4912 * the usesrc ILL. 4913 */ 4914 if ((dst_ire->ire_zoneid != zoneid && 4915 dst_ire->ire_zoneid != ALL_ZONES) || 4916 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4917 (!(dst_ire->ire_type & IRE_BROADCAST) && 4918 (IS_IPMP(ire_ill) || 4919 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4920 (ire_ill->ill_usesrc_ifindex != 0)))) { 4921 /* 4922 * If the destination is reachable via a 4923 * given gateway, the selected source address 4924 * should be in the same subnet as the gateway. 4925 * Otherwise, the destination is not reachable. 4926 * 4927 * If there are no interfaces on the same subnet 4928 * as the destination, ipif_select_source gives 4929 * first non-deprecated interface which might be 4930 * on a different subnet than the gateway. 4931 * This is not desirable. Hence pass the dst_ire 4932 * source address to ipif_select_source. 4933 * It is sure that the destination is reachable 4934 * with the dst_ire source address subnet. 4935 * So passing dst_ire source address to 4936 * ipif_select_source will make sure that the 4937 * selected source will be on the same subnet 4938 * as dst_ire source address. 4939 */ 4940 ipaddr_t saddr = 4941 dst_ire->ire_ipif->ipif_src_addr; 4942 src_ipif = ipif_select_source(ire_ill, 4943 saddr, zoneid); 4944 if (src_ipif != NULL) { 4945 if (IS_VNI(src_ipif->ipif_ill)) { 4946 /* 4947 * For VNI there is no 4948 * interface route 4949 */ 4950 src_addr = 4951 src_ipif->ipif_src_addr; 4952 } else { 4953 ipif_ire = 4954 ipif_to_ire(src_ipif); 4955 if (ipif_ire != NULL) { 4956 IRE_REFRELE(dst_ire); 4957 dst_ire = ipif_ire; 4958 } 4959 src_addr = 4960 dst_ire->ire_src_addr; 4961 } 4962 ipif_refrele(src_ipif); 4963 } else { 4964 src_addr = dst_ire->ire_src_addr; 4965 } 4966 } else { 4967 src_addr = dst_ire->ire_src_addr; 4968 } 4969 } 4970 } 4971 4972 /* 4973 * We do ire_route_lookup() here (and not 4974 * interface lookup as we assert that 4975 * src_addr should only come from an 4976 * UP interface for hard binding. 4977 */ 4978 ASSERT(src_ire == NULL); 4979 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4980 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4981 /* src_ire must be a local|loopback */ 4982 if (!IRE_IS_LOCAL(src_ire)) { 4983 if (ip_debug > 2) { 4984 pr_addr_dbg("ip_bind_connected_v4: bad connected " 4985 "src %s\n", AF_INET, &src_addr); 4986 } 4987 error = EADDRNOTAVAIL; 4988 goto bad_addr; 4989 } 4990 4991 /* 4992 * If the source address is a loopback address, the 4993 * destination had best be local or multicast. 4994 * The transports that can't handle multicast will reject 4995 * those addresses. 4996 */ 4997 if (src_ire->ire_type == IRE_LOOPBACK && 4998 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4999 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5000 error = -1; 5001 goto bad_addr; 5002 } 5003 5004 /* 5005 * Allow setting new policies. For example, disconnects come 5006 * down as ipa_t bind. As we would have set conn_policy_cached 5007 * to B_TRUE before, we should set it to B_FALSE, so that policy 5008 * can change after the disconnect. 5009 */ 5010 connp->conn_policy_cached = B_FALSE; 5011 5012 /* 5013 * Set the conn addresses/ports immediately, so the IPsec policy calls 5014 * can handle their passed-in conn's. 5015 */ 5016 5017 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5018 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5019 connp->conn_lport = lport; 5020 connp->conn_fport = fport; 5021 *src_addrp = src_addr; 5022 5023 ASSERT(!(ipsec_policy_set && ire_requested)); 5024 if (ire_requested) { 5025 iulp_t *ulp_info = NULL; 5026 5027 /* 5028 * Note that sire will not be NULL if this is an off-link 5029 * connection and there is not cache for that dest yet. 5030 * 5031 * XXX Because of an existing bug, if there are multiple 5032 * default routes, the IRE returned now may not be the actual 5033 * default route used (default routes are chosen in a 5034 * round robin fashion). So if the metrics for different 5035 * default routes are different, we may return the wrong 5036 * metrics. This will not be a problem if the existing 5037 * bug is fixed. 5038 */ 5039 if (sire != NULL) { 5040 ulp_info = &(sire->ire_uinfo); 5041 } 5042 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5043 error = -1; 5044 goto bad_addr; 5045 } 5046 mp = *mpp; 5047 } else if (ipsec_policy_set) { 5048 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5049 error = -1; 5050 goto bad_addr; 5051 } 5052 } 5053 5054 /* 5055 * Cache IPsec policy in this conn. If we have per-socket policy, 5056 * we'll cache that. If we don't, we'll inherit global policy. 5057 * 5058 * We can't insert until the conn reflects the policy. Note that 5059 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5060 * connections where we don't have a policy. This is to prevent 5061 * global policy lookups in the inbound path. 5062 * 5063 * If we insert before we set conn_policy_cached, 5064 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5065 * because global policy cound be non-empty. We normally call 5066 * ipsec_check_policy() for conn_policy_cached connections only if 5067 * ipc_in_enforce_policy is set. But in this case, 5068 * conn_policy_cached can get set anytime since we made the 5069 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5070 * called, which will make the above assumption false. Thus, we 5071 * need to insert after we set conn_policy_cached. 5072 */ 5073 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5074 goto bad_addr; 5075 5076 if (fanout_insert) { 5077 /* 5078 * The addresses have been verified. Time to insert in 5079 * the correct fanout list. 5080 */ 5081 error = ipcl_conn_insert(connp, protocol, src_addr, 5082 dst_addr, connp->conn_ports); 5083 } 5084 5085 if (error == 0) { 5086 connp->conn_fully_bound = B_TRUE; 5087 /* 5088 * Our initial checks for LSO/MDT have passed; the IRE is not 5089 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5090 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5091 * ip_xxinfo_return(), which performs further checks 5092 * against them and upon success, returns the LSO/MDT info 5093 * mblk which we will attach to the bind acknowledgment. 5094 */ 5095 if (lso_dst_ire != NULL) { 5096 mblk_t *lsoinfo_mp; 5097 5098 ASSERT(ill->ill_lso_capab != NULL); 5099 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5100 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5101 if (mp == NULL) { 5102 *mpp = lsoinfo_mp; 5103 } else { 5104 linkb(mp, lsoinfo_mp); 5105 } 5106 } 5107 } else if (md_dst_ire != NULL) { 5108 mblk_t *mdinfo_mp; 5109 5110 ASSERT(ill->ill_mdt_capab != NULL); 5111 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5112 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5113 if (mp == NULL) { 5114 *mpp = mdinfo_mp; 5115 } else { 5116 linkb(mp, mdinfo_mp); 5117 } 5118 } 5119 } 5120 } 5121 bad_addr: 5122 if (ipsec_policy_set) { 5123 ASSERT(mp != NULL); 5124 freeb(mp); 5125 /* 5126 * As of now assume that nothing else accompanies 5127 * IPSEC_POLICY_SET. 5128 */ 5129 *mpp = NULL; 5130 } 5131 if (src_ire != NULL) 5132 IRE_REFRELE(src_ire); 5133 if (dst_ire != NULL) 5134 IRE_REFRELE(dst_ire); 5135 if (sire != NULL) 5136 IRE_REFRELE(sire); 5137 if (md_dst_ire != NULL) 5138 IRE_REFRELE(md_dst_ire); 5139 if (lso_dst_ire != NULL) 5140 IRE_REFRELE(lso_dst_ire); 5141 return (error); 5142 } 5143 5144 int 5145 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5146 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5147 boolean_t fanout_insert, boolean_t verify_dst) 5148 { 5149 int error; 5150 mblk_t *mp = NULL; 5151 boolean_t ire_requested; 5152 5153 if (ire_mpp) 5154 mp = *ire_mpp; 5155 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5156 5157 ASSERT(!connp->conn_af_isv6); 5158 connp->conn_pkt_isv6 = B_FALSE; 5159 connp->conn_ulp = protocol; 5160 5161 /* For raw socket, the local port is not set. */ 5162 if (lport == 0) 5163 lport = connp->conn_lport; 5164 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5165 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst); 5166 if (error == 0) { 5167 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5168 ire_requested); 5169 } else if (error < 0) { 5170 error = -TBADADDR; 5171 } 5172 return (error); 5173 } 5174 5175 /* 5176 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5177 * Prefers dst_ire over src_ire. 5178 */ 5179 static boolean_t 5180 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5181 { 5182 mblk_t *mp = *mpp; 5183 ire_t *ret_ire; 5184 5185 ASSERT(mp != NULL); 5186 5187 if (ire != NULL) { 5188 /* 5189 * mp initialized above to IRE_DB_REQ_TYPE 5190 * appended mblk. Its <upper protocol>'s 5191 * job to make sure there is room. 5192 */ 5193 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5194 return (B_FALSE); 5195 5196 mp->b_datap->db_type = IRE_DB_TYPE; 5197 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5198 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5199 ret_ire = (ire_t *)mp->b_rptr; 5200 /* 5201 * Pass the latest setting of the ip_path_mtu_discovery and 5202 * copy the ulp info if any. 5203 */ 5204 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5205 IPH_DF : 0; 5206 if (ulp_info != NULL) { 5207 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5208 sizeof (iulp_t)); 5209 } 5210 ret_ire->ire_mp = mp; 5211 } else { 5212 /* 5213 * No IRE was found. Remove IRE mblk. 5214 */ 5215 *mpp = mp->b_cont; 5216 freeb(mp); 5217 } 5218 return (B_TRUE); 5219 } 5220 5221 /* 5222 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5223 * the final piece where we don't. Return a pointer to the first mblk in the 5224 * result, and update the pointer to the next mblk to chew on. If anything 5225 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5226 * NULL pointer. 5227 */ 5228 mblk_t * 5229 ip_carve_mp(mblk_t **mpp, ssize_t len) 5230 { 5231 mblk_t *mp0; 5232 mblk_t *mp1; 5233 mblk_t *mp2; 5234 5235 if (!len || !mpp || !(mp0 = *mpp)) 5236 return (NULL); 5237 /* If we aren't going to consume the first mblk, we need a dup. */ 5238 if (mp0->b_wptr - mp0->b_rptr > len) { 5239 mp1 = dupb(mp0); 5240 if (mp1) { 5241 /* Partition the data between the two mblks. */ 5242 mp1->b_wptr = mp1->b_rptr + len; 5243 mp0->b_rptr = mp1->b_wptr; 5244 /* 5245 * after adjustments if mblk not consumed is now 5246 * unaligned, try to align it. If this fails free 5247 * all messages and let upper layer recover. 5248 */ 5249 if (!OK_32PTR(mp0->b_rptr)) { 5250 if (!pullupmsg(mp0, -1)) { 5251 freemsg(mp0); 5252 freemsg(mp1); 5253 *mpp = NULL; 5254 return (NULL); 5255 } 5256 } 5257 } 5258 return (mp1); 5259 } 5260 /* Eat through as many mblks as we need to get len bytes. */ 5261 len -= mp0->b_wptr - mp0->b_rptr; 5262 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5263 if (mp2->b_wptr - mp2->b_rptr > len) { 5264 /* 5265 * We won't consume the entire last mblk. Like 5266 * above, dup and partition it. 5267 */ 5268 mp1->b_cont = dupb(mp2); 5269 mp1 = mp1->b_cont; 5270 if (!mp1) { 5271 /* 5272 * Trouble. Rather than go to a lot of 5273 * trouble to clean up, we free the messages. 5274 * This won't be any worse than losing it on 5275 * the wire. 5276 */ 5277 freemsg(mp0); 5278 freemsg(mp2); 5279 *mpp = NULL; 5280 return (NULL); 5281 } 5282 mp1->b_wptr = mp1->b_rptr + len; 5283 mp2->b_rptr = mp1->b_wptr; 5284 /* 5285 * after adjustments if mblk not consumed is now 5286 * unaligned, try to align it. If this fails free 5287 * all messages and let upper layer recover. 5288 */ 5289 if (!OK_32PTR(mp2->b_rptr)) { 5290 if (!pullupmsg(mp2, -1)) { 5291 freemsg(mp0); 5292 freemsg(mp2); 5293 *mpp = NULL; 5294 return (NULL); 5295 } 5296 } 5297 *mpp = mp2; 5298 return (mp0); 5299 } 5300 /* Decrement len by the amount we just got. */ 5301 len -= mp2->b_wptr - mp2->b_rptr; 5302 } 5303 /* 5304 * len should be reduced to zero now. If not our caller has 5305 * screwed up. 5306 */ 5307 if (len) { 5308 /* Shouldn't happen! */ 5309 freemsg(mp0); 5310 *mpp = NULL; 5311 return (NULL); 5312 } 5313 /* 5314 * We consumed up to exactly the end of an mblk. Detach the part 5315 * we are returning from the rest of the chain. 5316 */ 5317 mp1->b_cont = NULL; 5318 *mpp = mp2; 5319 return (mp0); 5320 } 5321 5322 /* The ill stream is being unplumbed. Called from ip_close */ 5323 int 5324 ip_modclose(ill_t *ill) 5325 { 5326 boolean_t success; 5327 ipsq_t *ipsq; 5328 ipif_t *ipif; 5329 queue_t *q = ill->ill_rq; 5330 ip_stack_t *ipst = ill->ill_ipst; 5331 5332 /* 5333 * The punlink prior to this may have initiated a capability 5334 * negotiation. But ipsq_enter will block until that finishes or 5335 * times out. 5336 */ 5337 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5338 5339 /* 5340 * Open/close/push/pop is guaranteed to be single threaded 5341 * per stream by STREAMS. FS guarantees that all references 5342 * from top are gone before close is called. So there can't 5343 * be another close thread that has set CONDEMNED on this ill. 5344 * and cause ipsq_enter to return failure. 5345 */ 5346 ASSERT(success); 5347 ipsq = ill->ill_phyint->phyint_ipsq; 5348 5349 /* 5350 * Mark it condemned. No new reference will be made to this ill. 5351 * Lookup functions will return an error. Threads that try to 5352 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5353 * that the refcnt will drop down to zero. 5354 */ 5355 mutex_enter(&ill->ill_lock); 5356 ill->ill_state_flags |= ILL_CONDEMNED; 5357 for (ipif = ill->ill_ipif; ipif != NULL; 5358 ipif = ipif->ipif_next) { 5359 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5360 } 5361 /* 5362 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5363 * returns error if ILL_CONDEMNED is set 5364 */ 5365 cv_broadcast(&ill->ill_cv); 5366 mutex_exit(&ill->ill_lock); 5367 5368 /* 5369 * Send all the deferred DLPI messages downstream which came in 5370 * during the small window right before ipsq_enter(). We do this 5371 * without waiting for the ACKs because all the ACKs for M_PROTO 5372 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5373 */ 5374 ill_dlpi_send_deferred(ill); 5375 5376 /* 5377 * Shut down fragmentation reassembly. 5378 * ill_frag_timer won't start a timer again. 5379 * Now cancel any existing timer 5380 */ 5381 (void) untimeout(ill->ill_frag_timer_id); 5382 (void) ill_frag_timeout(ill, 0); 5383 5384 /* 5385 * Call ill_delete to bring down the ipifs, ilms and ill on 5386 * this ill. Then wait for the refcnts to drop to zero. 5387 * ill_is_freeable checks whether the ill is really quiescent. 5388 * Then make sure that threads that are waiting to enter the 5389 * ipsq have seen the error returned by ipsq_enter and have 5390 * gone away. Then we call ill_delete_tail which does the 5391 * DL_UNBIND_REQ with the driver and then qprocsoff. 5392 */ 5393 ill_delete(ill); 5394 mutex_enter(&ill->ill_lock); 5395 while (!ill_is_freeable(ill)) 5396 cv_wait(&ill->ill_cv, &ill->ill_lock); 5397 while (ill->ill_waiters) 5398 cv_wait(&ill->ill_cv, &ill->ill_lock); 5399 5400 mutex_exit(&ill->ill_lock); 5401 5402 /* 5403 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5404 * it held until the end of the function since the cleanup 5405 * below needs to be able to use the ip_stack_t. 5406 */ 5407 netstack_hold(ipst->ips_netstack); 5408 5409 /* qprocsoff is done via ill_delete_tail */ 5410 ill_delete_tail(ill); 5411 ASSERT(ill->ill_ipst == NULL); 5412 5413 /* 5414 * Walk through all upper (conn) streams and qenable 5415 * those that have queued data. 5416 * close synchronization needs this to 5417 * be done to ensure that all upper layers blocked 5418 * due to flow control to the closing device 5419 * get unblocked. 5420 */ 5421 ip1dbg(("ip_wsrv: walking\n")); 5422 conn_walk_drain(ipst); 5423 5424 mutex_enter(&ipst->ips_ip_mi_lock); 5425 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5426 mutex_exit(&ipst->ips_ip_mi_lock); 5427 5428 /* 5429 * credp could be null if the open didn't succeed and ip_modopen 5430 * itself calls ip_close. 5431 */ 5432 if (ill->ill_credp != NULL) 5433 crfree(ill->ill_credp); 5434 5435 /* 5436 * Now we are done with the module close pieces that 5437 * need the netstack_t. 5438 */ 5439 netstack_rele(ipst->ips_netstack); 5440 5441 mi_close_free((IDP)ill); 5442 q->q_ptr = WR(q)->q_ptr = NULL; 5443 5444 ipsq_exit(ipsq); 5445 5446 return (0); 5447 } 5448 5449 /* 5450 * This is called as part of close() for IP, UDP, ICMP, and RTS 5451 * in order to quiesce the conn. 5452 */ 5453 void 5454 ip_quiesce_conn(conn_t *connp) 5455 { 5456 boolean_t drain_cleanup_reqd = B_FALSE; 5457 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5458 boolean_t ilg_cleanup_reqd = B_FALSE; 5459 ip_stack_t *ipst; 5460 5461 ASSERT(!IPCL_IS_TCP(connp)); 5462 ipst = connp->conn_netstack->netstack_ip; 5463 5464 /* 5465 * Mark the conn as closing, and this conn must not be 5466 * inserted in future into any list. Eg. conn_drain_insert(), 5467 * won't insert this conn into the conn_drain_list. 5468 * Similarly ill_pending_mp_add() will not add any mp to 5469 * the pending mp list, after this conn has started closing. 5470 * 5471 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5472 * cannot get set henceforth. 5473 */ 5474 mutex_enter(&connp->conn_lock); 5475 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5476 connp->conn_state_flags |= CONN_CLOSING; 5477 if (connp->conn_idl != NULL) 5478 drain_cleanup_reqd = B_TRUE; 5479 if (connp->conn_oper_pending_ill != NULL) 5480 conn_ioctl_cleanup_reqd = B_TRUE; 5481 if (connp->conn_dhcpinit_ill != NULL) { 5482 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5483 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5484 connp->conn_dhcpinit_ill = NULL; 5485 } 5486 if (connp->conn_ilg_inuse != 0) 5487 ilg_cleanup_reqd = B_TRUE; 5488 mutex_exit(&connp->conn_lock); 5489 5490 if (conn_ioctl_cleanup_reqd) 5491 conn_ioctl_cleanup(connp); 5492 5493 if (is_system_labeled() && connp->conn_anon_port) { 5494 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5495 connp->conn_mlp_type, connp->conn_ulp, 5496 ntohs(connp->conn_lport), B_FALSE); 5497 connp->conn_anon_port = 0; 5498 } 5499 connp->conn_mlp_type = mlptSingle; 5500 5501 /* 5502 * Remove this conn from any fanout list it is on. 5503 * and then wait for any threads currently operating 5504 * on this endpoint to finish 5505 */ 5506 ipcl_hash_remove(connp); 5507 5508 /* 5509 * Remove this conn from the drain list, and do 5510 * any other cleanup that may be required. 5511 * (Only non-tcp streams may have a non-null conn_idl. 5512 * TCP streams are never flow controlled, and 5513 * conn_idl will be null) 5514 */ 5515 if (drain_cleanup_reqd) 5516 conn_drain_tail(connp, B_TRUE); 5517 5518 if (connp == ipst->ips_ip_g_mrouter) 5519 (void) ip_mrouter_done(NULL, ipst); 5520 5521 if (ilg_cleanup_reqd) 5522 ilg_delete_all(connp); 5523 5524 conn_delete_ire(connp, NULL); 5525 5526 /* 5527 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5528 * callers from write side can't be there now because close 5529 * is in progress. The only other caller is ipcl_walk 5530 * which checks for the condemned flag. 5531 */ 5532 mutex_enter(&connp->conn_lock); 5533 connp->conn_state_flags |= CONN_CONDEMNED; 5534 while (connp->conn_ref != 1) 5535 cv_wait(&connp->conn_cv, &connp->conn_lock); 5536 connp->conn_state_flags |= CONN_QUIESCED; 5537 mutex_exit(&connp->conn_lock); 5538 } 5539 5540 /* ARGSUSED */ 5541 int 5542 ip_close(queue_t *q, int flags) 5543 { 5544 conn_t *connp; 5545 5546 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5547 5548 /* 5549 * Call the appropriate delete routine depending on whether this is 5550 * a module or device. 5551 */ 5552 if (WR(q)->q_next != NULL) { 5553 /* This is a module close */ 5554 return (ip_modclose((ill_t *)q->q_ptr)); 5555 } 5556 5557 connp = q->q_ptr; 5558 ip_quiesce_conn(connp); 5559 5560 qprocsoff(q); 5561 5562 /* 5563 * Now we are truly single threaded on this stream, and can 5564 * delete the things hanging off the connp, and finally the connp. 5565 * We removed this connp from the fanout list, it cannot be 5566 * accessed thru the fanouts, and we already waited for the 5567 * conn_ref to drop to 0. We are already in close, so 5568 * there cannot be any other thread from the top. qprocsoff 5569 * has completed, and service has completed or won't run in 5570 * future. 5571 */ 5572 ASSERT(connp->conn_ref == 1); 5573 5574 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5575 5576 connp->conn_ref--; 5577 ipcl_conn_destroy(connp); 5578 5579 q->q_ptr = WR(q)->q_ptr = NULL; 5580 return (0); 5581 } 5582 5583 /* 5584 * Wapper around putnext() so that ip_rts_request can merely use 5585 * conn_recv. 5586 */ 5587 /*ARGSUSED2*/ 5588 static void 5589 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5590 { 5591 conn_t *connp = (conn_t *)arg1; 5592 5593 putnext(connp->conn_rq, mp); 5594 } 5595 5596 /* 5597 * Called when the module is about to be unloaded 5598 */ 5599 void 5600 ip_ddi_destroy(void) 5601 { 5602 tnet_fini(); 5603 5604 icmp_ddi_g_destroy(); 5605 rts_ddi_g_destroy(); 5606 udp_ddi_g_destroy(); 5607 sctp_ddi_g_destroy(); 5608 tcp_ddi_g_destroy(); 5609 ipsec_policy_g_destroy(); 5610 ipcl_g_destroy(); 5611 ip_net_g_destroy(); 5612 ip_ire_g_fini(); 5613 inet_minor_destroy(ip_minor_arena_sa); 5614 #if defined(_LP64) 5615 inet_minor_destroy(ip_minor_arena_la); 5616 #endif 5617 5618 #ifdef DEBUG 5619 list_destroy(&ip_thread_list); 5620 rw_destroy(&ip_thread_rwlock); 5621 tsd_destroy(&ip_thread_data); 5622 #endif 5623 5624 netstack_unregister(NS_IP); 5625 } 5626 5627 /* 5628 * First step in cleanup. 5629 */ 5630 /* ARGSUSED */ 5631 static void 5632 ip_stack_shutdown(netstackid_t stackid, void *arg) 5633 { 5634 ip_stack_t *ipst = (ip_stack_t *)arg; 5635 5636 #ifdef NS_DEBUG 5637 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5638 #endif 5639 5640 /* Get rid of loopback interfaces and their IREs */ 5641 ip_loopback_cleanup(ipst); 5642 5643 /* 5644 * The *_hook_shutdown()s start the process of notifying any 5645 * consumers that things are going away.... nothing is destroyed. 5646 */ 5647 ipv4_hook_shutdown(ipst); 5648 ipv6_hook_shutdown(ipst); 5649 5650 mutex_enter(&ipst->ips_capab_taskq_lock); 5651 ipst->ips_capab_taskq_quit = B_TRUE; 5652 cv_signal(&ipst->ips_capab_taskq_cv); 5653 mutex_exit(&ipst->ips_capab_taskq_lock); 5654 5655 mutex_enter(&ipst->ips_mrt_lock); 5656 ipst->ips_mrt_flags |= IP_MRT_STOP; 5657 cv_signal(&ipst->ips_mrt_cv); 5658 mutex_exit(&ipst->ips_mrt_lock); 5659 } 5660 5661 /* 5662 * Free the IP stack instance. 5663 */ 5664 static void 5665 ip_stack_fini(netstackid_t stackid, void *arg) 5666 { 5667 ip_stack_t *ipst = (ip_stack_t *)arg; 5668 int ret; 5669 5670 #ifdef NS_DEBUG 5671 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5672 #endif 5673 /* 5674 * At this point, all of the notifications that the events and 5675 * protocols are going away have been run, meaning that we can 5676 * now set about starting to clean things up. 5677 */ 5678 ipv4_hook_destroy(ipst); 5679 ipv6_hook_destroy(ipst); 5680 ip_net_destroy(ipst); 5681 5682 mutex_destroy(&ipst->ips_capab_taskq_lock); 5683 cv_destroy(&ipst->ips_capab_taskq_cv); 5684 list_destroy(&ipst->ips_capab_taskq_list); 5685 5686 mutex_enter(&ipst->ips_mrt_lock); 5687 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5688 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5689 mutex_destroy(&ipst->ips_mrt_lock); 5690 cv_destroy(&ipst->ips_mrt_cv); 5691 cv_destroy(&ipst->ips_mrt_done_cv); 5692 5693 ipmp_destroy(ipst); 5694 rw_destroy(&ipst->ips_srcid_lock); 5695 5696 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5697 ipst->ips_ip_mibkp = NULL; 5698 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5699 ipst->ips_icmp_mibkp = NULL; 5700 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5701 ipst->ips_ip_kstat = NULL; 5702 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5703 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5704 ipst->ips_ip6_kstat = NULL; 5705 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5706 5707 nd_free(&ipst->ips_ip_g_nd); 5708 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5709 ipst->ips_param_arr = NULL; 5710 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5711 ipst->ips_ndp_arr = NULL; 5712 5713 ip_mrouter_stack_destroy(ipst); 5714 5715 mutex_destroy(&ipst->ips_ip_mi_lock); 5716 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5717 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5718 rw_destroy(&ipst->ips_ip_g_nd_lock); 5719 5720 ret = untimeout(ipst->ips_igmp_timeout_id); 5721 if (ret == -1) { 5722 ASSERT(ipst->ips_igmp_timeout_id == 0); 5723 } else { 5724 ASSERT(ipst->ips_igmp_timeout_id != 0); 5725 ipst->ips_igmp_timeout_id = 0; 5726 } 5727 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5728 if (ret == -1) { 5729 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5730 } else { 5731 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5732 ipst->ips_igmp_slowtimeout_id = 0; 5733 } 5734 ret = untimeout(ipst->ips_mld_timeout_id); 5735 if (ret == -1) { 5736 ASSERT(ipst->ips_mld_timeout_id == 0); 5737 } else { 5738 ASSERT(ipst->ips_mld_timeout_id != 0); 5739 ipst->ips_mld_timeout_id = 0; 5740 } 5741 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5742 if (ret == -1) { 5743 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5744 } else { 5745 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5746 ipst->ips_mld_slowtimeout_id = 0; 5747 } 5748 ret = untimeout(ipst->ips_ip_ire_expire_id); 5749 if (ret == -1) { 5750 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5751 } else { 5752 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5753 ipst->ips_ip_ire_expire_id = 0; 5754 } 5755 5756 mutex_destroy(&ipst->ips_igmp_timer_lock); 5757 mutex_destroy(&ipst->ips_mld_timer_lock); 5758 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5759 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5760 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5761 rw_destroy(&ipst->ips_ill_g_lock); 5762 5763 ipobs_fini(ipst); 5764 ip_ire_fini(ipst); 5765 ip6_asp_free(ipst); 5766 conn_drain_fini(ipst); 5767 ipcl_destroy(ipst); 5768 5769 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5770 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5771 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5772 ipst->ips_ndp4 = NULL; 5773 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5774 ipst->ips_ndp6 = NULL; 5775 5776 if (ipst->ips_loopback_ksp != NULL) { 5777 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5778 ipst->ips_loopback_ksp = NULL; 5779 } 5780 5781 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5782 ipst->ips_phyint_g_list = NULL; 5783 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5784 ipst->ips_ill_g_heads = NULL; 5785 5786 ldi_ident_release(ipst->ips_ldi_ident); 5787 kmem_free(ipst, sizeof (*ipst)); 5788 } 5789 5790 /* 5791 * This function is called from the TSD destructor, and is used to debug 5792 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5793 * details. 5794 */ 5795 static void 5796 ip_thread_exit(void *phash) 5797 { 5798 th_hash_t *thh = phash; 5799 5800 rw_enter(&ip_thread_rwlock, RW_WRITER); 5801 list_remove(&ip_thread_list, thh); 5802 rw_exit(&ip_thread_rwlock); 5803 mod_hash_destroy_hash(thh->thh_hash); 5804 kmem_free(thh, sizeof (*thh)); 5805 } 5806 5807 /* 5808 * Called when the IP kernel module is loaded into the kernel 5809 */ 5810 void 5811 ip_ddi_init(void) 5812 { 5813 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5814 5815 /* 5816 * For IP and TCP the minor numbers should start from 2 since we have 4 5817 * initial devices: ip, ip6, tcp, tcp6. 5818 */ 5819 /* 5820 * If this is a 64-bit kernel, then create two separate arenas - 5821 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5822 * other for socket apps in the range 2^^18 through 2^^32-1. 5823 */ 5824 ip_minor_arena_la = NULL; 5825 ip_minor_arena_sa = NULL; 5826 #if defined(_LP64) 5827 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5828 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5829 cmn_err(CE_PANIC, 5830 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5831 } 5832 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5833 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5834 cmn_err(CE_PANIC, 5835 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5836 } 5837 #else 5838 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5839 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5840 cmn_err(CE_PANIC, 5841 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5842 } 5843 #endif 5844 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5845 5846 ipcl_g_init(); 5847 ip_ire_g_init(); 5848 ip_net_g_init(); 5849 5850 #ifdef DEBUG 5851 tsd_create(&ip_thread_data, ip_thread_exit); 5852 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5853 list_create(&ip_thread_list, sizeof (th_hash_t), 5854 offsetof(th_hash_t, thh_link)); 5855 #endif 5856 5857 /* 5858 * We want to be informed each time a stack is created or 5859 * destroyed in the kernel, so we can maintain the 5860 * set of udp_stack_t's. 5861 */ 5862 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5863 ip_stack_fini); 5864 5865 ipsec_policy_g_init(); 5866 tcp_ddi_g_init(); 5867 sctp_ddi_g_init(); 5868 5869 tnet_init(); 5870 5871 udp_ddi_g_init(); 5872 rts_ddi_g_init(); 5873 icmp_ddi_g_init(); 5874 } 5875 5876 /* 5877 * Initialize the IP stack instance. 5878 */ 5879 static void * 5880 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5881 { 5882 ip_stack_t *ipst; 5883 ipparam_t *pa; 5884 ipndp_t *na; 5885 major_t major; 5886 5887 #ifdef NS_DEBUG 5888 printf("ip_stack_init(stack %d)\n", stackid); 5889 #endif 5890 5891 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5892 ipst->ips_netstack = ns; 5893 5894 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5895 KM_SLEEP); 5896 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5897 KM_SLEEP); 5898 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5899 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5900 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5901 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5902 5903 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5904 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5905 ipst->ips_igmp_deferred_next = INFINITY; 5906 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5907 ipst->ips_mld_deferred_next = INFINITY; 5908 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5909 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5910 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5911 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5912 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5913 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5914 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5915 5916 ipcl_init(ipst); 5917 ip_ire_init(ipst); 5918 ip6_asp_init(ipst); 5919 ipif_init(ipst); 5920 conn_drain_init(ipst); 5921 ip_mrouter_stack_init(ipst); 5922 5923 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5924 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5925 5926 ipst->ips_ip_multirt_log_interval = 1000; 5927 5928 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5929 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5930 ipst->ips_ill_index = 1; 5931 5932 ipst->ips_saved_ip_g_forward = -1; 5933 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5934 5935 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5936 ipst->ips_param_arr = pa; 5937 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5938 5939 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5940 ipst->ips_ndp_arr = na; 5941 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5942 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5943 (caddr_t)&ipst->ips_ip_g_forward; 5944 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5945 (caddr_t)&ipst->ips_ipv6_forward; 5946 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5947 "ip_cgtp_filter") == 0); 5948 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5949 (caddr_t)&ipst->ips_ip_cgtp_filter; 5950 5951 (void) ip_param_register(&ipst->ips_ip_g_nd, 5952 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5953 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5954 5955 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5956 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5957 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5958 ipst->ips_ip6_kstat = 5959 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 5960 5961 ipst->ips_ip_src_id = 1; 5962 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 5963 5964 ipobs_init(ipst); 5965 ip_net_init(ipst, ns); 5966 ipv4_hook_init(ipst); 5967 ipv6_hook_init(ipst); 5968 ipmp_init(ipst); 5969 5970 /* 5971 * Create the taskq dispatcher thread and initialize related stuff. 5972 */ 5973 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 5974 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 5975 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 5976 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 5977 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 5978 offsetof(mblk_t, b_next)); 5979 5980 /* 5981 * Create the mcast_restart_timers_thread() worker thread. 5982 */ 5983 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 5984 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 5985 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 5986 ipst->ips_mrt_thread = thread_create(NULL, 0, 5987 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 5988 5989 major = mod_name_to_major(INET_NAME); 5990 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 5991 return (ipst); 5992 } 5993 5994 /* 5995 * Allocate and initialize a DLPI template of the specified length. (May be 5996 * called as writer.) 5997 */ 5998 mblk_t * 5999 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6000 { 6001 mblk_t *mp; 6002 6003 mp = allocb(len, BPRI_MED); 6004 if (!mp) 6005 return (NULL); 6006 6007 /* 6008 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6009 * of which we don't seem to use) are sent with M_PCPROTO, and 6010 * that other DLPI are M_PROTO. 6011 */ 6012 if (prim == DL_INFO_REQ) { 6013 mp->b_datap->db_type = M_PCPROTO; 6014 } else { 6015 mp->b_datap->db_type = M_PROTO; 6016 } 6017 6018 mp->b_wptr = mp->b_rptr + len; 6019 bzero(mp->b_rptr, len); 6020 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6021 return (mp); 6022 } 6023 6024 /* 6025 * Allocate and initialize a DLPI notification. (May be called as writer.) 6026 */ 6027 mblk_t * 6028 ip_dlnotify_alloc(uint_t notification, uint_t data) 6029 { 6030 dl_notify_ind_t *notifyp; 6031 mblk_t *mp; 6032 6033 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6034 return (NULL); 6035 6036 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6037 notifyp->dl_notification = notification; 6038 notifyp->dl_data = data; 6039 return (mp); 6040 } 6041 6042 /* 6043 * Debug formatting routine. Returns a character string representation of the 6044 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6045 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6046 * 6047 * Once the ndd table-printing interfaces are removed, this can be changed to 6048 * standard dotted-decimal form. 6049 */ 6050 char * 6051 ip_dot_addr(ipaddr_t addr, char *buf) 6052 { 6053 uint8_t *ap = (uint8_t *)&addr; 6054 6055 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6056 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6057 return (buf); 6058 } 6059 6060 /* 6061 * Write the given MAC address as a printable string in the usual colon- 6062 * separated format. 6063 */ 6064 const char * 6065 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6066 { 6067 char *bp; 6068 6069 if (alen == 0 || buflen < 4) 6070 return ("?"); 6071 bp = buf; 6072 for (;;) { 6073 /* 6074 * If there are more MAC address bytes available, but we won't 6075 * have any room to print them, then add "..." to the string 6076 * instead. See below for the 'magic number' explanation. 6077 */ 6078 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6079 (void) strcpy(bp, "..."); 6080 break; 6081 } 6082 (void) sprintf(bp, "%02x", *addr++); 6083 bp += 2; 6084 if (--alen == 0) 6085 break; 6086 *bp++ = ':'; 6087 buflen -= 3; 6088 /* 6089 * At this point, based on the first 'if' statement above, 6090 * either alen == 1 and buflen >= 3, or alen > 1 and 6091 * buflen >= 4. The first case leaves room for the final "xx" 6092 * number and trailing NUL byte. The second leaves room for at 6093 * least "...". Thus the apparently 'magic' numbers chosen for 6094 * that statement. 6095 */ 6096 } 6097 return (buf); 6098 } 6099 6100 /* 6101 * Send an ICMP error after patching up the packet appropriately. Returns 6102 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6103 */ 6104 static boolean_t 6105 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6106 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6107 zoneid_t zoneid, ip_stack_t *ipst) 6108 { 6109 ipha_t *ipha; 6110 mblk_t *first_mp; 6111 boolean_t secure; 6112 unsigned char db_type; 6113 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6114 6115 first_mp = mp; 6116 if (mctl_present) { 6117 mp = mp->b_cont; 6118 secure = ipsec_in_is_secure(first_mp); 6119 ASSERT(mp != NULL); 6120 } else { 6121 /* 6122 * If this is an ICMP error being reported - which goes 6123 * up as M_CTLs, we need to convert them to M_DATA till 6124 * we finish checking with global policy because 6125 * ipsec_check_global_policy() assumes M_DATA as clear 6126 * and M_CTL as secure. 6127 */ 6128 db_type = DB_TYPE(mp); 6129 DB_TYPE(mp) = M_DATA; 6130 secure = B_FALSE; 6131 } 6132 /* 6133 * We are generating an icmp error for some inbound packet. 6134 * Called from all ip_fanout_(udp, tcp, proto) functions. 6135 * Before we generate an error, check with global policy 6136 * to see whether this is allowed to enter the system. As 6137 * there is no "conn", we are checking with global policy. 6138 */ 6139 ipha = (ipha_t *)mp->b_rptr; 6140 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6141 first_mp = ipsec_check_global_policy(first_mp, NULL, 6142 ipha, NULL, mctl_present, ipst->ips_netstack); 6143 if (first_mp == NULL) 6144 return (B_FALSE); 6145 } 6146 6147 if (!mctl_present) 6148 DB_TYPE(mp) = db_type; 6149 6150 if (flags & IP_FF_SEND_ICMP) { 6151 if (flags & IP_FF_HDR_COMPLETE) { 6152 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6153 freemsg(first_mp); 6154 return (B_TRUE); 6155 } 6156 } 6157 if (flags & IP_FF_CKSUM) { 6158 /* 6159 * Have to correct checksum since 6160 * the packet might have been 6161 * fragmented and the reassembly code in ip_rput 6162 * does not restore the IP checksum. 6163 */ 6164 ipha->ipha_hdr_checksum = 0; 6165 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6166 } 6167 switch (icmp_type) { 6168 case ICMP_DEST_UNREACHABLE: 6169 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6170 ipst); 6171 break; 6172 default: 6173 freemsg(first_mp); 6174 break; 6175 } 6176 } else { 6177 freemsg(first_mp); 6178 return (B_FALSE); 6179 } 6180 6181 return (B_TRUE); 6182 } 6183 6184 /* 6185 * Used to send an ICMP error message when a packet is received for 6186 * a protocol that is not supported. The mblk passed as argument 6187 * is consumed by this function. 6188 */ 6189 void 6190 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6191 ip_stack_t *ipst) 6192 { 6193 mblk_t *mp; 6194 ipha_t *ipha; 6195 ill_t *ill; 6196 ipsec_in_t *ii; 6197 6198 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6199 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6200 6201 mp = ipsec_mp->b_cont; 6202 ipsec_mp->b_cont = NULL; 6203 ipha = (ipha_t *)mp->b_rptr; 6204 /* Get ill from index in ipsec_in_t. */ 6205 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6206 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6207 ipst); 6208 if (ill != NULL) { 6209 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6210 if (ip_fanout_send_icmp(q, mp, flags, 6211 ICMP_DEST_UNREACHABLE, 6212 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6213 BUMP_MIB(ill->ill_ip_mib, 6214 ipIfStatsInUnknownProtos); 6215 } 6216 } else { 6217 if (ip_fanout_send_icmp_v6(q, mp, flags, 6218 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6219 0, B_FALSE, zoneid, ipst)) { 6220 BUMP_MIB(ill->ill_ip_mib, 6221 ipIfStatsInUnknownProtos); 6222 } 6223 } 6224 ill_refrele(ill); 6225 } else { /* re-link for the freemsg() below. */ 6226 ipsec_mp->b_cont = mp; 6227 } 6228 6229 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6230 freemsg(ipsec_mp); 6231 } 6232 6233 /* 6234 * See if the inbound datagram has had IPsec processing applied to it. 6235 */ 6236 boolean_t 6237 ipsec_in_is_secure(mblk_t *ipsec_mp) 6238 { 6239 ipsec_in_t *ii; 6240 6241 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6242 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6243 6244 if (ii->ipsec_in_loopback) { 6245 return (ii->ipsec_in_secure); 6246 } else { 6247 return (ii->ipsec_in_ah_sa != NULL || 6248 ii->ipsec_in_esp_sa != NULL || 6249 ii->ipsec_in_decaps); 6250 } 6251 } 6252 6253 /* 6254 * Handle protocols with which IP is less intimate. There 6255 * can be more than one stream bound to a particular 6256 * protocol. When this is the case, normally each one gets a copy 6257 * of any incoming packets. 6258 * 6259 * IPsec NOTE : 6260 * 6261 * Don't allow a secure packet going up a non-secure connection. 6262 * We don't allow this because 6263 * 6264 * 1) Reply might go out in clear which will be dropped at 6265 * the sending side. 6266 * 2) If the reply goes out in clear it will give the 6267 * adversary enough information for getting the key in 6268 * most of the cases. 6269 * 6270 * Moreover getting a secure packet when we expect clear 6271 * implies that SA's were added without checking for 6272 * policy on both ends. This should not happen once ISAKMP 6273 * is used to negotiate SAs as SAs will be added only after 6274 * verifying the policy. 6275 * 6276 * NOTE : If the packet was tunneled and not multicast we only send 6277 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6278 * back to delivering packets to AF_INET6 raw sockets. 6279 * 6280 * IPQoS Notes: 6281 * Once we have determined the client, invoke IPPF processing. 6282 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6283 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6284 * ip_policy will be false. 6285 * 6286 * Zones notes: 6287 * Currently only applications in the global zone can create raw sockets for 6288 * protocols other than ICMP. So unlike the broadcast / multicast case of 6289 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6290 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6291 */ 6292 static void 6293 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6294 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6295 zoneid_t zoneid) 6296 { 6297 queue_t *rq; 6298 mblk_t *mp1, *first_mp1; 6299 uint_t protocol = ipha->ipha_protocol; 6300 ipaddr_t dst; 6301 boolean_t one_only; 6302 mblk_t *first_mp = mp; 6303 boolean_t secure; 6304 uint32_t ill_index; 6305 conn_t *connp, *first_connp, *next_connp; 6306 connf_t *connfp; 6307 boolean_t shared_addr; 6308 mib2_ipIfStatsEntry_t *mibptr; 6309 ip_stack_t *ipst = recv_ill->ill_ipst; 6310 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6311 6312 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6313 if (mctl_present) { 6314 mp = first_mp->b_cont; 6315 secure = ipsec_in_is_secure(first_mp); 6316 ASSERT(mp != NULL); 6317 } else { 6318 secure = B_FALSE; 6319 } 6320 dst = ipha->ipha_dst; 6321 /* 6322 * If the packet was tunneled and not multicast we only send to it 6323 * the first match. 6324 */ 6325 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6326 !CLASSD(dst)); 6327 6328 shared_addr = (zoneid == ALL_ZONES); 6329 if (shared_addr) { 6330 /* 6331 * We don't allow multilevel ports for raw IP, so no need to 6332 * check for that here. 6333 */ 6334 zoneid = tsol_packet_to_zoneid(mp); 6335 } 6336 6337 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6338 mutex_enter(&connfp->connf_lock); 6339 connp = connfp->connf_head; 6340 for (connp = connfp->connf_head; connp != NULL; 6341 connp = connp->conn_next) { 6342 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6343 zoneid) && 6344 (!is_system_labeled() || 6345 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6346 connp))) { 6347 break; 6348 } 6349 } 6350 6351 if (connp == NULL) { 6352 /* 6353 * No one bound to these addresses. Is 6354 * there a client that wants all 6355 * unclaimed datagrams? 6356 */ 6357 mutex_exit(&connfp->connf_lock); 6358 /* 6359 * Check for IPPROTO_ENCAP... 6360 */ 6361 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6362 /* 6363 * If an IPsec mblk is here on a multicast 6364 * tunnel (using ip_mroute stuff), check policy here, 6365 * THEN ship off to ip_mroute_decap(). 6366 * 6367 * BTW, If I match a configured IP-in-IP 6368 * tunnel, this path will not be reached, and 6369 * ip_mroute_decap will never be called. 6370 */ 6371 first_mp = ipsec_check_global_policy(first_mp, connp, 6372 ipha, NULL, mctl_present, ipst->ips_netstack); 6373 if (first_mp != NULL) { 6374 if (mctl_present) 6375 freeb(first_mp); 6376 ip_mroute_decap(q, mp, ill); 6377 } /* Else we already freed everything! */ 6378 } else { 6379 /* 6380 * Otherwise send an ICMP protocol unreachable. 6381 */ 6382 if (ip_fanout_send_icmp(q, first_mp, flags, 6383 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6384 mctl_present, zoneid, ipst)) { 6385 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6386 } 6387 } 6388 return; 6389 } 6390 6391 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6392 6393 CONN_INC_REF(connp); 6394 first_connp = connp; 6395 6396 /* 6397 * Only send message to one tunnel driver by immediately 6398 * terminating the loop. 6399 */ 6400 connp = one_only ? NULL : connp->conn_next; 6401 6402 for (;;) { 6403 while (connp != NULL) { 6404 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6405 flags, zoneid) && 6406 (!is_system_labeled() || 6407 tsol_receive_local(mp, &dst, IPV4_VERSION, 6408 shared_addr, connp))) 6409 break; 6410 connp = connp->conn_next; 6411 } 6412 6413 /* 6414 * Copy the packet. 6415 */ 6416 if (connp == NULL || 6417 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6418 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6419 /* 6420 * No more interested clients or memory 6421 * allocation failed 6422 */ 6423 connp = first_connp; 6424 break; 6425 } 6426 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6427 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6428 CONN_INC_REF(connp); 6429 mutex_exit(&connfp->connf_lock); 6430 rq = connp->conn_rq; 6431 6432 /* 6433 * Check flow control 6434 */ 6435 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6436 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6437 if (flags & IP_FF_RAWIP) { 6438 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6439 } else { 6440 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6441 } 6442 6443 freemsg(first_mp1); 6444 } else { 6445 /* 6446 * Don't enforce here if we're an actual tunnel - 6447 * let "tun" do it instead. 6448 */ 6449 if (!IPCL_IS_IPTUN(connp) && 6450 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6451 secure)) { 6452 first_mp1 = ipsec_check_inbound_policy 6453 (first_mp1, connp, ipha, NULL, 6454 mctl_present); 6455 } 6456 if (first_mp1 != NULL) { 6457 int in_flags = 0; 6458 /* 6459 * ip_fanout_proto also gets called from 6460 * icmp_inbound_error_fanout, in which case 6461 * the msg type is M_CTL. Don't add info 6462 * in this case for the time being. In future 6463 * when there is a need for knowing the 6464 * inbound iface index for ICMP error msgs, 6465 * then this can be changed. 6466 */ 6467 if (connp->conn_recvif) 6468 in_flags = IPF_RECVIF; 6469 /* 6470 * The ULP may support IP_RECVPKTINFO for both 6471 * IP v4 and v6 so pass the appropriate argument 6472 * based on conn IP version. 6473 */ 6474 if (connp->conn_ip_recvpktinfo) { 6475 if (connp->conn_af_isv6) { 6476 /* 6477 * V6 only needs index 6478 */ 6479 in_flags |= IPF_RECVIF; 6480 } else { 6481 /* 6482 * V4 needs index + 6483 * matching address. 6484 */ 6485 in_flags |= IPF_RECVADDR; 6486 } 6487 } 6488 if ((in_flags != 0) && 6489 (mp->b_datap->db_type != M_CTL)) { 6490 /* 6491 * the actual data will be 6492 * contained in b_cont upon 6493 * successful return of the 6494 * following call else 6495 * original mblk is returned 6496 */ 6497 ASSERT(recv_ill != NULL); 6498 mp1 = ip_add_info(mp1, recv_ill, 6499 in_flags, IPCL_ZONEID(connp), ipst); 6500 } 6501 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6502 if (mctl_present) 6503 freeb(first_mp1); 6504 (connp->conn_recv)(connp, mp1, NULL); 6505 } 6506 } 6507 mutex_enter(&connfp->connf_lock); 6508 /* Follow the next pointer before releasing the conn. */ 6509 next_connp = connp->conn_next; 6510 CONN_DEC_REF(connp); 6511 connp = next_connp; 6512 } 6513 6514 /* Last one. Send it upstream. */ 6515 mutex_exit(&connfp->connf_lock); 6516 6517 /* 6518 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6519 * will be set to false. 6520 */ 6521 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6522 ill_index = ill->ill_phyint->phyint_ifindex; 6523 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6524 if (mp == NULL) { 6525 CONN_DEC_REF(connp); 6526 if (mctl_present) { 6527 freeb(first_mp); 6528 } 6529 return; 6530 } 6531 } 6532 6533 rq = connp->conn_rq; 6534 /* 6535 * Check flow control 6536 */ 6537 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6538 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6539 if (flags & IP_FF_RAWIP) { 6540 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6541 } else { 6542 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6543 } 6544 6545 freemsg(first_mp); 6546 } else { 6547 if (IPCL_IS_IPTUN(connp)) { 6548 /* 6549 * Tunneled packet. We enforce policy in the tunnel 6550 * module itself. 6551 * 6552 * Send the WHOLE packet up (incl. IPSEC_IN) without 6553 * a policy check. 6554 * FIXME to use conn_recv for tun later. 6555 */ 6556 putnext(rq, first_mp); 6557 CONN_DEC_REF(connp); 6558 return; 6559 } 6560 6561 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6562 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6563 ipha, NULL, mctl_present); 6564 } 6565 6566 if (first_mp != NULL) { 6567 int in_flags = 0; 6568 6569 /* 6570 * ip_fanout_proto also gets called 6571 * from icmp_inbound_error_fanout, in 6572 * which case the msg type is M_CTL. 6573 * Don't add info in this case for time 6574 * being. In future when there is a 6575 * need for knowing the inbound iface 6576 * index for ICMP error msgs, then this 6577 * can be changed 6578 */ 6579 if (connp->conn_recvif) 6580 in_flags = IPF_RECVIF; 6581 if (connp->conn_ip_recvpktinfo) { 6582 if (connp->conn_af_isv6) { 6583 /* 6584 * V6 only needs index 6585 */ 6586 in_flags |= IPF_RECVIF; 6587 } else { 6588 /* 6589 * V4 needs index + 6590 * matching address. 6591 */ 6592 in_flags |= IPF_RECVADDR; 6593 } 6594 } 6595 if ((in_flags != 0) && 6596 (mp->b_datap->db_type != M_CTL)) { 6597 6598 /* 6599 * the actual data will be contained in 6600 * b_cont upon successful return 6601 * of the following call else original 6602 * mblk is returned 6603 */ 6604 ASSERT(recv_ill != NULL); 6605 mp = ip_add_info(mp, recv_ill, 6606 in_flags, IPCL_ZONEID(connp), ipst); 6607 } 6608 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6609 (connp->conn_recv)(connp, mp, NULL); 6610 if (mctl_present) 6611 freeb(first_mp); 6612 } 6613 } 6614 CONN_DEC_REF(connp); 6615 } 6616 6617 /* 6618 * Fanout for TCP packets 6619 * The caller puts <fport, lport> in the ports parameter. 6620 * 6621 * IPQoS Notes 6622 * Before sending it to the client, invoke IPPF processing. 6623 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6624 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6625 * ip_policy is false. 6626 */ 6627 static void 6628 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6629 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6630 { 6631 mblk_t *first_mp; 6632 boolean_t secure; 6633 uint32_t ill_index; 6634 int ip_hdr_len; 6635 tcph_t *tcph; 6636 boolean_t syn_present = B_FALSE; 6637 conn_t *connp; 6638 ip_stack_t *ipst = recv_ill->ill_ipst; 6639 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6640 6641 ASSERT(recv_ill != NULL); 6642 6643 first_mp = mp; 6644 if (mctl_present) { 6645 ASSERT(first_mp->b_datap->db_type == M_CTL); 6646 mp = first_mp->b_cont; 6647 secure = ipsec_in_is_secure(first_mp); 6648 ASSERT(mp != NULL); 6649 } else { 6650 secure = B_FALSE; 6651 } 6652 6653 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6654 6655 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6656 zoneid, ipst)) == NULL) { 6657 /* 6658 * No connected connection or listener. Send a 6659 * TH_RST via tcp_xmit_listeners_reset. 6660 */ 6661 6662 /* Initiate IPPf processing, if needed. */ 6663 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6664 uint32_t ill_index; 6665 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6666 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6667 if (first_mp == NULL) 6668 return; 6669 } 6670 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6671 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6672 zoneid)); 6673 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6674 ipst->ips_netstack->netstack_tcp, NULL); 6675 return; 6676 } 6677 6678 /* 6679 * Allocate the SYN for the TCP connection here itself 6680 */ 6681 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6682 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6683 if (IPCL_IS_TCP(connp)) { 6684 squeue_t *sqp; 6685 6686 /* 6687 * For fused tcp loopback, assign the eager's 6688 * squeue to be that of the active connect's. 6689 * Note that we don't check for IP_FF_LOOPBACK 6690 * here since this routine gets called only 6691 * for loopback (unlike the IPv6 counterpart). 6692 */ 6693 ASSERT(Q_TO_CONN(q) != NULL); 6694 if (do_tcp_fusion && 6695 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6696 !secure && 6697 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6698 IPCL_IS_TCP(Q_TO_CONN(q))) { 6699 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6700 sqp = Q_TO_CONN(q)->conn_sqp; 6701 } else { 6702 sqp = IP_SQUEUE_GET(lbolt); 6703 } 6704 6705 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6706 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6707 syn_present = B_TRUE; 6708 } 6709 } 6710 6711 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6712 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6713 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6714 if ((flags & TH_RST) || (flags & TH_URG)) { 6715 CONN_DEC_REF(connp); 6716 freemsg(first_mp); 6717 return; 6718 } 6719 if (flags & TH_ACK) { 6720 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6721 ipst->ips_netstack->netstack_tcp, connp); 6722 CONN_DEC_REF(connp); 6723 return; 6724 } 6725 6726 CONN_DEC_REF(connp); 6727 freemsg(first_mp); 6728 return; 6729 } 6730 6731 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6732 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6733 NULL, mctl_present); 6734 if (first_mp == NULL) { 6735 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6736 CONN_DEC_REF(connp); 6737 return; 6738 } 6739 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6740 ASSERT(syn_present); 6741 if (mctl_present) { 6742 ASSERT(first_mp != mp); 6743 first_mp->b_datap->db_struioflag |= 6744 STRUIO_POLICY; 6745 } else { 6746 ASSERT(first_mp == mp); 6747 mp->b_datap->db_struioflag &= 6748 ~STRUIO_EAGER; 6749 mp->b_datap->db_struioflag |= 6750 STRUIO_POLICY; 6751 } 6752 } else { 6753 /* 6754 * Discard first_mp early since we're dealing with a 6755 * fully-connected conn_t and tcp doesn't do policy in 6756 * this case. 6757 */ 6758 if (mctl_present) { 6759 freeb(first_mp); 6760 mctl_present = B_FALSE; 6761 } 6762 first_mp = mp; 6763 } 6764 } 6765 6766 /* 6767 * Initiate policy processing here if needed. If we get here from 6768 * icmp_inbound_error_fanout, ip_policy is false. 6769 */ 6770 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6771 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6772 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6773 if (mp == NULL) { 6774 CONN_DEC_REF(connp); 6775 if (mctl_present) 6776 freeb(first_mp); 6777 return; 6778 } else if (mctl_present) { 6779 ASSERT(first_mp != mp); 6780 first_mp->b_cont = mp; 6781 } else { 6782 first_mp = mp; 6783 } 6784 } 6785 6786 6787 6788 /* Handle socket options. */ 6789 if (!syn_present && 6790 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6791 /* Add header */ 6792 ASSERT(recv_ill != NULL); 6793 /* 6794 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6795 * IPF_RECVIF. 6796 */ 6797 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6798 ipst); 6799 if (mp == NULL) { 6800 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6801 CONN_DEC_REF(connp); 6802 if (mctl_present) 6803 freeb(first_mp); 6804 return; 6805 } else if (mctl_present) { 6806 /* 6807 * ip_add_info might return a new mp. 6808 */ 6809 ASSERT(first_mp != mp); 6810 first_mp->b_cont = mp; 6811 } else { 6812 first_mp = mp; 6813 } 6814 } 6815 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6816 if (IPCL_IS_TCP(connp)) { 6817 /* do not drain, certain use cases can blow the stack */ 6818 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6819 connp, ip_squeue_flag, SQTAG_IP_FANOUT_TCP); 6820 } else { 6821 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6822 (connp->conn_recv)(connp, first_mp, NULL); 6823 CONN_DEC_REF(connp); 6824 } 6825 } 6826 6827 /* 6828 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6829 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6830 * is not consumed. 6831 * 6832 * One of four things can happen, all of which affect the passed-in mblk: 6833 * 6834 * 1.) ICMP messages that go through here just get returned TRUE. 6835 * 6836 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6837 * 6838 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6839 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6840 * 6841 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6842 */ 6843 static boolean_t 6844 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6845 ipsec_stack_t *ipss) 6846 { 6847 int shift, plen, iph_len; 6848 ipha_t *ipha; 6849 udpha_t *udpha; 6850 uint32_t *spi; 6851 uint32_t esp_ports; 6852 uint8_t *orptr; 6853 boolean_t free_ire; 6854 6855 if (DB_TYPE(mp) == M_CTL) { 6856 /* 6857 * ICMP message with UDP inside. Don't bother stripping, just 6858 * send it up. 6859 * 6860 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6861 * to ignore errors set by ICMP anyway ('cause they might be 6862 * forged), but that's the app's decision, not ours. 6863 */ 6864 6865 /* Bunch of reality checks for DEBUG kernels... */ 6866 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6867 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6868 6869 return (B_TRUE); 6870 } 6871 6872 ipha = (ipha_t *)mp->b_rptr; 6873 iph_len = IPH_HDR_LENGTH(ipha); 6874 plen = ntohs(ipha->ipha_length); 6875 6876 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6877 /* 6878 * Most likely a keepalive for the benefit of an intervening 6879 * NAT. These aren't for us, per se, so drop it. 6880 * 6881 * RFC 3947/8 doesn't say for sure what to do for 2-3 6882 * byte packets (keepalives are 1-byte), but we'll drop them 6883 * also. 6884 */ 6885 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6886 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6887 return (B_FALSE); 6888 } 6889 6890 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6891 /* might as well pull it all up - it might be ESP. */ 6892 if (!pullupmsg(mp, -1)) { 6893 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6894 DROPPER(ipss, ipds_esp_nomem), 6895 &ipss->ipsec_dropper); 6896 return (B_FALSE); 6897 } 6898 6899 ipha = (ipha_t *)mp->b_rptr; 6900 } 6901 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6902 if (*spi == 0) { 6903 /* UDP packet - remove 0-spi. */ 6904 shift = sizeof (uint32_t); 6905 } else { 6906 /* ESP-in-UDP packet - reduce to ESP. */ 6907 ipha->ipha_protocol = IPPROTO_ESP; 6908 shift = sizeof (udpha_t); 6909 } 6910 6911 /* Fix IP header */ 6912 ipha->ipha_length = htons(plen - shift); 6913 ipha->ipha_hdr_checksum = 0; 6914 6915 orptr = mp->b_rptr; 6916 mp->b_rptr += shift; 6917 6918 udpha = (udpha_t *)(orptr + iph_len); 6919 if (*spi == 0) { 6920 ASSERT((uint8_t *)ipha == orptr); 6921 udpha->uha_length = htons(plen - shift - iph_len); 6922 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6923 esp_ports = 0; 6924 } else { 6925 esp_ports = *((uint32_t *)udpha); 6926 ASSERT(esp_ports != 0); 6927 } 6928 ovbcopy(orptr, orptr + shift, iph_len); 6929 if (esp_ports != 0) /* Punt up for ESP processing. */ { 6930 ipha = (ipha_t *)(orptr + shift); 6931 6932 free_ire = (ire == NULL); 6933 if (free_ire) { 6934 /* Re-acquire ire. */ 6935 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6936 ipss->ipsec_netstack->netstack_ip); 6937 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6938 if (ire != NULL) 6939 ire_refrele(ire); 6940 /* 6941 * Do a regular freemsg(), as this is an IP 6942 * error (no local route) not an IPsec one. 6943 */ 6944 freemsg(mp); 6945 } 6946 } 6947 6948 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 6949 if (free_ire) 6950 ire_refrele(ire); 6951 } 6952 6953 return (esp_ports == 0); 6954 } 6955 6956 /* 6957 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6958 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6959 * Caller is responsible for dropping references to the conn, and freeing 6960 * first_mp. 6961 * 6962 * IPQoS Notes 6963 * Before sending it to the client, invoke IPPF processing. Policy processing 6964 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6965 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6966 * ip_wput_local, ip_policy is false. 6967 */ 6968 static void 6969 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6970 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6971 boolean_t ip_policy) 6972 { 6973 boolean_t mctl_present = (first_mp != NULL); 6974 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6975 uint32_t ill_index; 6976 ip_stack_t *ipst = recv_ill->ill_ipst; 6977 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6978 6979 ASSERT(ill != NULL); 6980 6981 if (mctl_present) 6982 first_mp->b_cont = mp; 6983 else 6984 first_mp = mp; 6985 6986 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6987 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 6988 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6989 freemsg(first_mp); 6990 return; 6991 } 6992 6993 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6994 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6995 NULL, mctl_present); 6996 /* Freed by ipsec_check_inbound_policy(). */ 6997 if (first_mp == NULL) { 6998 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6999 return; 7000 } 7001 } 7002 if (mctl_present) 7003 freeb(first_mp); 7004 7005 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7006 if (connp->conn_udp->udp_nat_t_endpoint) { 7007 if (mctl_present) { 7008 /* mctl_present *shouldn't* happen. */ 7009 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7010 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7011 &ipss->ipsec_dropper); 7012 return; 7013 } 7014 7015 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7016 return; 7017 } 7018 7019 /* Handle options. */ 7020 if (connp->conn_recvif) 7021 in_flags = IPF_RECVIF; 7022 /* 7023 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7024 * passed to ip_add_info is based on IP version of connp. 7025 */ 7026 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7027 if (connp->conn_af_isv6) { 7028 /* 7029 * V6 only needs index 7030 */ 7031 in_flags |= IPF_RECVIF; 7032 } else { 7033 /* 7034 * V4 needs index + matching address. 7035 */ 7036 in_flags |= IPF_RECVADDR; 7037 } 7038 } 7039 7040 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7041 in_flags |= IPF_RECVSLLA; 7042 7043 /* 7044 * Initiate IPPF processing here, if needed. Note first_mp won't be 7045 * freed if the packet is dropped. The caller will do so. 7046 */ 7047 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7048 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7049 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7050 if (mp == NULL) { 7051 return; 7052 } 7053 } 7054 if ((in_flags != 0) && 7055 (mp->b_datap->db_type != M_CTL)) { 7056 /* 7057 * The actual data will be contained in b_cont 7058 * upon successful return of the following call 7059 * else original mblk is returned 7060 */ 7061 ASSERT(recv_ill != NULL); 7062 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7063 ipst); 7064 } 7065 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7066 /* Send it upstream */ 7067 (connp->conn_recv)(connp, mp, NULL); 7068 } 7069 7070 /* 7071 * Fanout for UDP packets. 7072 * The caller puts <fport, lport> in the ports parameter. 7073 * 7074 * If SO_REUSEADDR is set all multicast and broadcast packets 7075 * will be delivered to all streams bound to the same port. 7076 * 7077 * Zones notes: 7078 * Multicast and broadcast packets will be distributed to streams in all zones. 7079 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7080 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7081 * packets. To maintain this behavior with multiple zones, the conns are grouped 7082 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7083 * each zone. If unset, all the following conns in the same zone are skipped. 7084 */ 7085 static void 7086 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7087 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7088 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7089 { 7090 uint32_t dstport, srcport; 7091 ipaddr_t dst; 7092 mblk_t *first_mp; 7093 boolean_t secure; 7094 in6_addr_t v6src; 7095 conn_t *connp; 7096 connf_t *connfp; 7097 conn_t *first_connp; 7098 conn_t *next_connp; 7099 mblk_t *mp1, *first_mp1; 7100 ipaddr_t src; 7101 zoneid_t last_zoneid; 7102 boolean_t reuseaddr; 7103 boolean_t shared_addr; 7104 boolean_t unlabeled; 7105 ip_stack_t *ipst; 7106 7107 ASSERT(recv_ill != NULL); 7108 ipst = recv_ill->ill_ipst; 7109 7110 first_mp = mp; 7111 if (mctl_present) { 7112 mp = first_mp->b_cont; 7113 first_mp->b_cont = NULL; 7114 secure = ipsec_in_is_secure(first_mp); 7115 ASSERT(mp != NULL); 7116 } else { 7117 first_mp = NULL; 7118 secure = B_FALSE; 7119 } 7120 7121 /* Extract ports in net byte order */ 7122 dstport = htons(ntohl(ports) & 0xFFFF); 7123 srcport = htons(ntohl(ports) >> 16); 7124 dst = ipha->ipha_dst; 7125 src = ipha->ipha_src; 7126 7127 unlabeled = B_FALSE; 7128 if (is_system_labeled()) 7129 /* Cred cannot be null on IPv4 */ 7130 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7131 TSLF_UNLABELED) != 0; 7132 shared_addr = (zoneid == ALL_ZONES); 7133 if (shared_addr) { 7134 /* 7135 * No need to handle exclusive-stack zones since ALL_ZONES 7136 * only applies to the shared stack. 7137 */ 7138 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7139 /* 7140 * If no shared MLP is found, tsol_mlp_findzone returns 7141 * ALL_ZONES. In that case, we assume it's SLP, and 7142 * search for the zone based on the packet label. 7143 * 7144 * If there is such a zone, we prefer to find a 7145 * connection in it. Otherwise, we look for a 7146 * MAC-exempt connection in any zone whose label 7147 * dominates the default label on the packet. 7148 */ 7149 if (zoneid == ALL_ZONES) 7150 zoneid = tsol_packet_to_zoneid(mp); 7151 else 7152 unlabeled = B_FALSE; 7153 } 7154 7155 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7156 mutex_enter(&connfp->connf_lock); 7157 connp = connfp->connf_head; 7158 if (!broadcast && !CLASSD(dst)) { 7159 /* 7160 * Not broadcast or multicast. Send to the one (first) 7161 * client we find. No need to check conn_wantpacket() 7162 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7163 * IPv4 unicast packets. 7164 */ 7165 while ((connp != NULL) && 7166 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7167 (!IPCL_ZONE_MATCH(connp, zoneid) && 7168 !(unlabeled && connp->conn_mac_exempt)))) { 7169 /* 7170 * We keep searching since the conn did not match, 7171 * or its zone did not match and it is not either 7172 * an allzones conn or a mac exempt conn (if the 7173 * sender is unlabeled.) 7174 */ 7175 connp = connp->conn_next; 7176 } 7177 7178 if (connp == NULL || 7179 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7180 goto notfound; 7181 7182 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7183 7184 if (is_system_labeled() && 7185 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7186 connp)) 7187 goto notfound; 7188 7189 CONN_INC_REF(connp); 7190 mutex_exit(&connfp->connf_lock); 7191 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7192 flags, recv_ill, ip_policy); 7193 IP_STAT(ipst, ip_udp_fannorm); 7194 CONN_DEC_REF(connp); 7195 return; 7196 } 7197 7198 /* 7199 * Broadcast and multicast case 7200 * 7201 * Need to check conn_wantpacket(). 7202 * If SO_REUSEADDR has been set on the first we send the 7203 * packet to all clients that have joined the group and 7204 * match the port. 7205 */ 7206 7207 while (connp != NULL) { 7208 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7209 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7210 (!is_system_labeled() || 7211 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7212 connp))) 7213 break; 7214 connp = connp->conn_next; 7215 } 7216 7217 if (connp == NULL || 7218 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7219 goto notfound; 7220 7221 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7222 7223 first_connp = connp; 7224 /* 7225 * When SO_REUSEADDR is not set, send the packet only to the first 7226 * matching connection in its zone by keeping track of the zoneid. 7227 */ 7228 reuseaddr = first_connp->conn_reuseaddr; 7229 last_zoneid = first_connp->conn_zoneid; 7230 7231 CONN_INC_REF(connp); 7232 connp = connp->conn_next; 7233 for (;;) { 7234 while (connp != NULL) { 7235 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7236 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7237 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7238 (!is_system_labeled() || 7239 tsol_receive_local(mp, &dst, IPV4_VERSION, 7240 shared_addr, connp))) 7241 break; 7242 connp = connp->conn_next; 7243 } 7244 /* 7245 * Just copy the data part alone. The mctl part is 7246 * needed just for verifying policy and it is never 7247 * sent up. 7248 */ 7249 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7250 ((mp1 = copymsg(mp)) == NULL))) { 7251 /* 7252 * No more interested clients or memory 7253 * allocation failed 7254 */ 7255 connp = first_connp; 7256 break; 7257 } 7258 if (connp->conn_zoneid != last_zoneid) { 7259 /* 7260 * Update the zoneid so that the packet isn't sent to 7261 * any more conns in the same zone unless SO_REUSEADDR 7262 * is set. 7263 */ 7264 reuseaddr = connp->conn_reuseaddr; 7265 last_zoneid = connp->conn_zoneid; 7266 } 7267 if (first_mp != NULL) { 7268 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7269 ipsec_info_type == IPSEC_IN); 7270 first_mp1 = ipsec_in_tag(first_mp, NULL, 7271 ipst->ips_netstack); 7272 if (first_mp1 == NULL) { 7273 freemsg(mp1); 7274 connp = first_connp; 7275 break; 7276 } 7277 } else { 7278 first_mp1 = NULL; 7279 } 7280 CONN_INC_REF(connp); 7281 mutex_exit(&connfp->connf_lock); 7282 /* 7283 * IPQoS notes: We don't send the packet for policy 7284 * processing here, will do it for the last one (below). 7285 * i.e. we do it per-packet now, but if we do policy 7286 * processing per-conn, then we would need to do it 7287 * here too. 7288 */ 7289 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7290 ipha, flags, recv_ill, B_FALSE); 7291 mutex_enter(&connfp->connf_lock); 7292 /* Follow the next pointer before releasing the conn. */ 7293 next_connp = connp->conn_next; 7294 IP_STAT(ipst, ip_udp_fanmb); 7295 CONN_DEC_REF(connp); 7296 connp = next_connp; 7297 } 7298 7299 /* Last one. Send it upstream. */ 7300 mutex_exit(&connfp->connf_lock); 7301 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7302 recv_ill, ip_policy); 7303 IP_STAT(ipst, ip_udp_fanmb); 7304 CONN_DEC_REF(connp); 7305 return; 7306 7307 notfound: 7308 7309 mutex_exit(&connfp->connf_lock); 7310 IP_STAT(ipst, ip_udp_fanothers); 7311 /* 7312 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7313 * have already been matched above, since they live in the IPv4 7314 * fanout tables. This implies we only need to 7315 * check for IPv6 in6addr_any endpoints here. 7316 * Thus we compare using ipv6_all_zeros instead of the destination 7317 * address, except for the multicast group membership lookup which 7318 * uses the IPv4 destination. 7319 */ 7320 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7321 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7322 mutex_enter(&connfp->connf_lock); 7323 connp = connfp->connf_head; 7324 if (!broadcast && !CLASSD(dst)) { 7325 while (connp != NULL) { 7326 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7327 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7328 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7329 !connp->conn_ipv6_v6only) 7330 break; 7331 connp = connp->conn_next; 7332 } 7333 7334 if (connp != NULL && is_system_labeled() && 7335 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7336 connp)) 7337 connp = NULL; 7338 7339 if (connp == NULL || 7340 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7341 /* 7342 * No one bound to this port. Is 7343 * there a client that wants all 7344 * unclaimed datagrams? 7345 */ 7346 mutex_exit(&connfp->connf_lock); 7347 7348 if (mctl_present) 7349 first_mp->b_cont = mp; 7350 else 7351 first_mp = mp; 7352 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7353 connf_head != NULL) { 7354 ip_fanout_proto(q, first_mp, ill, ipha, 7355 flags | IP_FF_RAWIP, mctl_present, 7356 ip_policy, recv_ill, zoneid); 7357 } else { 7358 if (ip_fanout_send_icmp(q, first_mp, flags, 7359 ICMP_DEST_UNREACHABLE, 7360 ICMP_PORT_UNREACHABLE, 7361 mctl_present, zoneid, ipst)) { 7362 BUMP_MIB(ill->ill_ip_mib, 7363 udpIfStatsNoPorts); 7364 } 7365 } 7366 return; 7367 } 7368 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7369 7370 CONN_INC_REF(connp); 7371 mutex_exit(&connfp->connf_lock); 7372 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7373 flags, recv_ill, ip_policy); 7374 CONN_DEC_REF(connp); 7375 return; 7376 } 7377 /* 7378 * IPv4 multicast packet being delivered to an AF_INET6 7379 * in6addr_any endpoint. 7380 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7381 * and not conn_wantpacket_v6() since any multicast membership is 7382 * for an IPv4-mapped multicast address. 7383 * The packet is sent to all clients in all zones that have joined the 7384 * group and match the port. 7385 */ 7386 while (connp != NULL) { 7387 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7388 srcport, v6src) && 7389 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7390 (!is_system_labeled() || 7391 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7392 connp))) 7393 break; 7394 connp = connp->conn_next; 7395 } 7396 7397 if (connp == NULL || 7398 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7399 /* 7400 * No one bound to this port. Is 7401 * there a client that wants all 7402 * unclaimed datagrams? 7403 */ 7404 mutex_exit(&connfp->connf_lock); 7405 7406 if (mctl_present) 7407 first_mp->b_cont = mp; 7408 else 7409 first_mp = mp; 7410 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7411 NULL) { 7412 ip_fanout_proto(q, first_mp, ill, ipha, 7413 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7414 recv_ill, zoneid); 7415 } else { 7416 /* 7417 * We used to attempt to send an icmp error here, but 7418 * since this is known to be a multicast packet 7419 * and we don't send icmp errors in response to 7420 * multicast, just drop the packet and give up sooner. 7421 */ 7422 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7423 freemsg(first_mp); 7424 } 7425 return; 7426 } 7427 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7428 7429 first_connp = connp; 7430 7431 CONN_INC_REF(connp); 7432 connp = connp->conn_next; 7433 for (;;) { 7434 while (connp != NULL) { 7435 if (IPCL_UDP_MATCH_V6(connp, dstport, 7436 ipv6_all_zeros, srcport, v6src) && 7437 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7438 (!is_system_labeled() || 7439 tsol_receive_local(mp, &dst, IPV4_VERSION, 7440 shared_addr, connp))) 7441 break; 7442 connp = connp->conn_next; 7443 } 7444 /* 7445 * Just copy the data part alone. The mctl part is 7446 * needed just for verifying policy and it is never 7447 * sent up. 7448 */ 7449 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7450 ((mp1 = copymsg(mp)) == NULL))) { 7451 /* 7452 * No more intested clients or memory 7453 * allocation failed 7454 */ 7455 connp = first_connp; 7456 break; 7457 } 7458 if (first_mp != NULL) { 7459 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7460 ipsec_info_type == IPSEC_IN); 7461 first_mp1 = ipsec_in_tag(first_mp, NULL, 7462 ipst->ips_netstack); 7463 if (first_mp1 == NULL) { 7464 freemsg(mp1); 7465 connp = first_connp; 7466 break; 7467 } 7468 } else { 7469 first_mp1 = NULL; 7470 } 7471 CONN_INC_REF(connp); 7472 mutex_exit(&connfp->connf_lock); 7473 /* 7474 * IPQoS notes: We don't send the packet for policy 7475 * processing here, will do it for the last one (below). 7476 * i.e. we do it per-packet now, but if we do policy 7477 * processing per-conn, then we would need to do it 7478 * here too. 7479 */ 7480 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7481 ipha, flags, recv_ill, B_FALSE); 7482 mutex_enter(&connfp->connf_lock); 7483 /* Follow the next pointer before releasing the conn. */ 7484 next_connp = connp->conn_next; 7485 CONN_DEC_REF(connp); 7486 connp = next_connp; 7487 } 7488 7489 /* Last one. Send it upstream. */ 7490 mutex_exit(&connfp->connf_lock); 7491 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7492 recv_ill, ip_policy); 7493 CONN_DEC_REF(connp); 7494 } 7495 7496 /* 7497 * Complete the ip_wput header so that it 7498 * is possible to generate ICMP 7499 * errors. 7500 */ 7501 int 7502 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7503 { 7504 ire_t *ire; 7505 7506 if (ipha->ipha_src == INADDR_ANY) { 7507 ire = ire_lookup_local(zoneid, ipst); 7508 if (ire == NULL) { 7509 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7510 return (1); 7511 } 7512 ipha->ipha_src = ire->ire_addr; 7513 ire_refrele(ire); 7514 } 7515 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7516 ipha->ipha_hdr_checksum = 0; 7517 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7518 return (0); 7519 } 7520 7521 /* 7522 * Nobody should be sending 7523 * packets up this stream 7524 */ 7525 static void 7526 ip_lrput(queue_t *q, mblk_t *mp) 7527 { 7528 mblk_t *mp1; 7529 7530 switch (mp->b_datap->db_type) { 7531 case M_FLUSH: 7532 /* Turn around */ 7533 if (*mp->b_rptr & FLUSHW) { 7534 *mp->b_rptr &= ~FLUSHR; 7535 qreply(q, mp); 7536 return; 7537 } 7538 break; 7539 } 7540 /* Could receive messages that passed through ar_rput */ 7541 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7542 mp1->b_prev = mp1->b_next = NULL; 7543 freemsg(mp); 7544 } 7545 7546 /* Nobody should be sending packets down this stream */ 7547 /* ARGSUSED */ 7548 void 7549 ip_lwput(queue_t *q, mblk_t *mp) 7550 { 7551 freemsg(mp); 7552 } 7553 7554 /* 7555 * Move the first hop in any source route to ipha_dst and remove that part of 7556 * the source route. Called by other protocols. Errors in option formatting 7557 * are ignored - will be handled by ip_wput_options Return the final 7558 * destination (either ipha_dst or the last entry in a source route.) 7559 */ 7560 ipaddr_t 7561 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7562 { 7563 ipoptp_t opts; 7564 uchar_t *opt; 7565 uint8_t optval; 7566 uint8_t optlen; 7567 ipaddr_t dst; 7568 int i; 7569 ire_t *ire; 7570 ip_stack_t *ipst = ns->netstack_ip; 7571 7572 ip2dbg(("ip_massage_options\n")); 7573 dst = ipha->ipha_dst; 7574 for (optval = ipoptp_first(&opts, ipha); 7575 optval != IPOPT_EOL; 7576 optval = ipoptp_next(&opts)) { 7577 opt = opts.ipoptp_cur; 7578 switch (optval) { 7579 uint8_t off; 7580 case IPOPT_SSRR: 7581 case IPOPT_LSRR: 7582 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7583 ip1dbg(("ip_massage_options: bad src route\n")); 7584 break; 7585 } 7586 optlen = opts.ipoptp_len; 7587 off = opt[IPOPT_OFFSET]; 7588 off--; 7589 redo_srr: 7590 if (optlen < IP_ADDR_LEN || 7591 off > optlen - IP_ADDR_LEN) { 7592 /* End of source route */ 7593 ip1dbg(("ip_massage_options: end of SR\n")); 7594 break; 7595 } 7596 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7597 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7598 ntohl(dst))); 7599 /* 7600 * Check if our address is present more than 7601 * once as consecutive hops in source route. 7602 * XXX verify per-interface ip_forwarding 7603 * for source route? 7604 */ 7605 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7606 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7607 if (ire != NULL) { 7608 ire_refrele(ire); 7609 off += IP_ADDR_LEN; 7610 goto redo_srr; 7611 } 7612 if (dst == htonl(INADDR_LOOPBACK)) { 7613 ip1dbg(("ip_massage_options: loopback addr in " 7614 "source route!\n")); 7615 break; 7616 } 7617 /* 7618 * Update ipha_dst to be the first hop and remove the 7619 * first hop from the source route (by overwriting 7620 * part of the option with NOP options). 7621 */ 7622 ipha->ipha_dst = dst; 7623 /* Put the last entry in dst */ 7624 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7625 3; 7626 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7627 7628 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7629 ntohl(dst))); 7630 /* Move down and overwrite */ 7631 opt[IP_ADDR_LEN] = opt[0]; 7632 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7633 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7634 for (i = 0; i < IP_ADDR_LEN; i++) 7635 opt[i] = IPOPT_NOP; 7636 break; 7637 } 7638 } 7639 return (dst); 7640 } 7641 7642 /* 7643 * Return the network mask 7644 * associated with the specified address. 7645 */ 7646 ipaddr_t 7647 ip_net_mask(ipaddr_t addr) 7648 { 7649 uchar_t *up = (uchar_t *)&addr; 7650 ipaddr_t mask = 0; 7651 uchar_t *maskp = (uchar_t *)&mask; 7652 7653 #if defined(__i386) || defined(__amd64) 7654 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7655 #endif 7656 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7657 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7658 #endif 7659 if (CLASSD(addr)) { 7660 maskp[0] = 0xF0; 7661 return (mask); 7662 } 7663 7664 /* We assume Class E default netmask to be 32 */ 7665 if (CLASSE(addr)) 7666 return (0xffffffffU); 7667 7668 if (addr == 0) 7669 return (0); 7670 maskp[0] = 0xFF; 7671 if ((up[0] & 0x80) == 0) 7672 return (mask); 7673 7674 maskp[1] = 0xFF; 7675 if ((up[0] & 0xC0) == 0x80) 7676 return (mask); 7677 7678 maskp[2] = 0xFF; 7679 if ((up[0] & 0xE0) == 0xC0) 7680 return (mask); 7681 7682 /* Otherwise return no mask */ 7683 return ((ipaddr_t)0); 7684 } 7685 7686 /* 7687 * Helper ill lookup function used by IPsec. 7688 */ 7689 ill_t * 7690 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7691 { 7692 ill_t *ret_ill; 7693 7694 ASSERT(ifindex != 0); 7695 7696 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7697 ipst); 7698 if (ret_ill == NULL) { 7699 if (isv6) { 7700 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7701 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7702 ifindex)); 7703 } else { 7704 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7705 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7706 ifindex)); 7707 } 7708 freemsg(first_mp); 7709 return (NULL); 7710 } 7711 return (ret_ill); 7712 } 7713 7714 /* 7715 * IPv4 - 7716 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7717 * out a packet to a destination address for which we do not have specific 7718 * (or sufficient) routing information. 7719 * 7720 * NOTE : These are the scopes of some of the variables that point at IRE, 7721 * which needs to be followed while making any future modifications 7722 * to avoid memory leaks. 7723 * 7724 * - ire and sire are the entries looked up initially by 7725 * ire_ftable_lookup. 7726 * - ipif_ire is used to hold the interface ire associated with 7727 * the new cache ire. But it's scope is limited, so we always REFRELE 7728 * it before branching out to error paths. 7729 * - save_ire is initialized before ire_create, so that ire returned 7730 * by ire_create will not over-write the ire. We REFRELE save_ire 7731 * before breaking out of the switch. 7732 * 7733 * Thus on failures, we have to REFRELE only ire and sire, if they 7734 * are not NULL. 7735 */ 7736 void 7737 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7738 zoneid_t zoneid, ip_stack_t *ipst) 7739 { 7740 areq_t *areq; 7741 ipaddr_t gw = 0; 7742 ire_t *ire = NULL; 7743 mblk_t *res_mp; 7744 ipaddr_t *addrp; 7745 ipaddr_t nexthop_addr; 7746 ipif_t *src_ipif = NULL; 7747 ill_t *dst_ill = NULL; 7748 ipha_t *ipha; 7749 ire_t *sire = NULL; 7750 mblk_t *first_mp; 7751 ire_t *save_ire; 7752 ushort_t ire_marks = 0; 7753 boolean_t mctl_present; 7754 ipsec_out_t *io; 7755 mblk_t *saved_mp; 7756 ire_t *first_sire = NULL; 7757 mblk_t *copy_mp = NULL; 7758 mblk_t *xmit_mp = NULL; 7759 ipaddr_t save_dst; 7760 uint32_t multirt_flags = 7761 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7762 boolean_t multirt_is_resolvable; 7763 boolean_t multirt_resolve_next; 7764 boolean_t unspec_src; 7765 boolean_t ip_nexthop = B_FALSE; 7766 tsol_ire_gw_secattr_t *attrp = NULL; 7767 tsol_gcgrp_t *gcgrp = NULL; 7768 tsol_gcgrp_addr_t ga; 7769 7770 if (ip_debug > 2) { 7771 /* ip1dbg */ 7772 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7773 } 7774 7775 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7776 if (mctl_present) { 7777 io = (ipsec_out_t *)first_mp->b_rptr; 7778 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7779 ASSERT(zoneid == io->ipsec_out_zoneid); 7780 ASSERT(zoneid != ALL_ZONES); 7781 } 7782 7783 ipha = (ipha_t *)mp->b_rptr; 7784 7785 /* All multicast lookups come through ip_newroute_ipif() */ 7786 if (CLASSD(dst)) { 7787 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7788 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7789 freemsg(first_mp); 7790 return; 7791 } 7792 7793 if (mctl_present && io->ipsec_out_ip_nexthop) { 7794 ip_nexthop = B_TRUE; 7795 nexthop_addr = io->ipsec_out_nexthop_addr; 7796 } 7797 /* 7798 * If this IRE is created for forwarding or it is not for 7799 * traffic for congestion controlled protocols, mark it as temporary. 7800 */ 7801 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7802 ire_marks |= IRE_MARK_TEMPORARY; 7803 7804 /* 7805 * Get what we can from ire_ftable_lookup which will follow an IRE 7806 * chain until it gets the most specific information available. 7807 * For example, we know that there is no IRE_CACHE for this dest, 7808 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7809 * ire_ftable_lookup will look up the gateway, etc. 7810 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7811 * to the destination, of equal netmask length in the forward table, 7812 * will be recursively explored. If no information is available 7813 * for the final gateway of that route, we force the returned ire 7814 * to be equal to sire using MATCH_IRE_PARENT. 7815 * At least, in this case we have a starting point (in the buckets) 7816 * to look for other routes to the destination in the forward table. 7817 * This is actually used only for multirouting, where a list 7818 * of routes has to be processed in sequence. 7819 * 7820 * In the process of coming up with the most specific information, 7821 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7822 * for the gateway (i.e., one for which the ire_nce->nce_state is 7823 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7824 * Two caveats when handling incomplete ire's in ip_newroute: 7825 * - we should be careful when accessing its ire_nce (specifically 7826 * the nce_res_mp) ast it might change underneath our feet, and, 7827 * - not all legacy code path callers are prepared to handle 7828 * incomplete ire's, so we should not create/add incomplete 7829 * ire_cache entries here. (See discussion about temporary solution 7830 * further below). 7831 * 7832 * In order to minimize packet dropping, and to preserve existing 7833 * behavior, we treat this case as if there were no IRE_CACHE for the 7834 * gateway, and instead use the IF_RESOLVER ire to send out 7835 * another request to ARP (this is achieved by passing the 7836 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7837 * arp response comes back in ip_wput_nondata, we will create 7838 * a per-dst ire_cache that has an ND_COMPLETE ire. 7839 * 7840 * Note that this is a temporary solution; the correct solution is 7841 * to create an incomplete per-dst ire_cache entry, and send the 7842 * packet out when the gw's nce is resolved. In order to achieve this, 7843 * all packet processing must have been completed prior to calling 7844 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7845 * to be modified to accomodate this solution. 7846 */ 7847 if (ip_nexthop) { 7848 /* 7849 * The first time we come here, we look for an IRE_INTERFACE 7850 * entry for the specified nexthop, set the dst to be the 7851 * nexthop address and create an IRE_CACHE entry for the 7852 * nexthop. The next time around, we are able to find an 7853 * IRE_CACHE entry for the nexthop, set the gateway to be the 7854 * nexthop address and create an IRE_CACHE entry for the 7855 * destination address via the specified nexthop. 7856 */ 7857 ire = ire_cache_lookup(nexthop_addr, zoneid, 7858 MBLK_GETLABEL(mp), ipst); 7859 if (ire != NULL) { 7860 gw = nexthop_addr; 7861 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7862 } else { 7863 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7864 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7865 MBLK_GETLABEL(mp), 7866 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7867 ipst); 7868 if (ire != NULL) { 7869 dst = nexthop_addr; 7870 } 7871 } 7872 } else { 7873 ire = ire_ftable_lookup(dst, 0, 0, 0, 7874 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7875 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7876 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7877 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7878 ipst); 7879 } 7880 7881 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7882 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7883 7884 /* 7885 * This loop is run only once in most cases. 7886 * We loop to resolve further routes only when the destination 7887 * can be reached through multiple RTF_MULTIRT-flagged ires. 7888 */ 7889 do { 7890 /* Clear the previous iteration's values */ 7891 if (src_ipif != NULL) { 7892 ipif_refrele(src_ipif); 7893 src_ipif = NULL; 7894 } 7895 if (dst_ill != NULL) { 7896 ill_refrele(dst_ill); 7897 dst_ill = NULL; 7898 } 7899 7900 multirt_resolve_next = B_FALSE; 7901 /* 7902 * We check if packets have to be multirouted. 7903 * In this case, given the current <ire, sire> couple, 7904 * we look for the next suitable <ire, sire>. 7905 * This check is done in ire_multirt_lookup(), 7906 * which applies various criteria to find the next route 7907 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7908 * unchanged if it detects it has not been tried yet. 7909 */ 7910 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7911 ip3dbg(("ip_newroute: starting next_resolution " 7912 "with first_mp %p, tag %d\n", 7913 (void *)first_mp, 7914 MULTIRT_DEBUG_TAGGED(first_mp))); 7915 7916 ASSERT(sire != NULL); 7917 multirt_is_resolvable = 7918 ire_multirt_lookup(&ire, &sire, multirt_flags, 7919 MBLK_GETLABEL(mp), ipst); 7920 7921 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7922 "ire %p, sire %p\n", 7923 multirt_is_resolvable, 7924 (void *)ire, (void *)sire)); 7925 7926 if (!multirt_is_resolvable) { 7927 /* 7928 * No more multirt route to resolve; give up 7929 * (all routes resolved or no more 7930 * resolvable routes). 7931 */ 7932 if (ire != NULL) { 7933 ire_refrele(ire); 7934 ire = NULL; 7935 } 7936 } else { 7937 ASSERT(sire != NULL); 7938 ASSERT(ire != NULL); 7939 /* 7940 * We simply use first_sire as a flag that 7941 * indicates if a resolvable multirt route 7942 * has already been found. 7943 * If it is not the case, we may have to send 7944 * an ICMP error to report that the 7945 * destination is unreachable. 7946 * We do not IRE_REFHOLD first_sire. 7947 */ 7948 if (first_sire == NULL) { 7949 first_sire = sire; 7950 } 7951 } 7952 } 7953 if (ire == NULL) { 7954 if (ip_debug > 3) { 7955 /* ip2dbg */ 7956 pr_addr_dbg("ip_newroute: " 7957 "can't resolve %s\n", AF_INET, &dst); 7958 } 7959 ip3dbg(("ip_newroute: " 7960 "ire %p, sire %p, first_sire %p\n", 7961 (void *)ire, (void *)sire, (void *)first_sire)); 7962 7963 if (sire != NULL) { 7964 ire_refrele(sire); 7965 sire = NULL; 7966 } 7967 7968 if (first_sire != NULL) { 7969 /* 7970 * At least one multirt route has been found 7971 * in the same call to ip_newroute(); 7972 * there is no need to report an ICMP error. 7973 * first_sire was not IRE_REFHOLDed. 7974 */ 7975 MULTIRT_DEBUG_UNTAG(first_mp); 7976 freemsg(first_mp); 7977 return; 7978 } 7979 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7980 RTA_DST, ipst); 7981 goto icmp_err_ret; 7982 } 7983 7984 /* 7985 * Verify that the returned IRE does not have either 7986 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7987 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7988 */ 7989 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7990 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7991 goto icmp_err_ret; 7992 } 7993 /* 7994 * Increment the ire_ob_pkt_count field for ire if it is an 7995 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7996 * increment the same for the parent IRE, sire, if it is some 7997 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 7998 */ 7999 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8000 UPDATE_OB_PKT_COUNT(ire); 8001 ire->ire_last_used_time = lbolt; 8002 } 8003 8004 if (sire != NULL) { 8005 gw = sire->ire_gateway_addr; 8006 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8007 IRE_INTERFACE)) == 0); 8008 UPDATE_OB_PKT_COUNT(sire); 8009 sire->ire_last_used_time = lbolt; 8010 } 8011 /* 8012 * We have a route to reach the destination. Find the 8013 * appropriate ill, then get a source address using 8014 * ipif_select_source(). 8015 * 8016 * If we are here trying to create an IRE_CACHE for an offlink 8017 * destination and have an IRE_CACHE entry for VNI, then use 8018 * ire_stq instead since VNI's queue is a black hole. 8019 */ 8020 if ((ire->ire_type == IRE_CACHE) && 8021 IS_VNI(ire->ire_ipif->ipif_ill)) { 8022 dst_ill = ire->ire_stq->q_ptr; 8023 ill_refhold(dst_ill); 8024 } else { 8025 ill_t *ill = ire->ire_ipif->ipif_ill; 8026 8027 if (IS_IPMP(ill)) { 8028 dst_ill = 8029 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8030 } else { 8031 dst_ill = ill; 8032 ill_refhold(dst_ill); 8033 } 8034 } 8035 8036 if (dst_ill == NULL) { 8037 if (ip_debug > 2) { 8038 pr_addr_dbg("ip_newroute: no dst " 8039 "ill for dst %s\n", AF_INET, &dst); 8040 } 8041 goto icmp_err_ret; 8042 } 8043 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8044 8045 /* 8046 * Pick the best source address from dst_ill. 8047 * 8048 * 1) Try to pick the source address from the destination 8049 * route. Clustering assumes that when we have multiple 8050 * prefixes hosted on an interface, the prefix of the 8051 * source address matches the prefix of the destination 8052 * route. We do this only if the address is not 8053 * DEPRECATED. 8054 * 8055 * 2) If the conn is in a different zone than the ire, we 8056 * need to pick a source address from the right zone. 8057 */ 8058 ASSERT(src_ipif == NULL); 8059 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8060 /* 8061 * The RTF_SETSRC flag is set in the parent ire (sire). 8062 * Check that the ipif matching the requested source 8063 * address still exists. 8064 */ 8065 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8066 zoneid, NULL, NULL, NULL, NULL, ipst); 8067 } 8068 8069 unspec_src = (connp != NULL && connp->conn_unspec_src); 8070 8071 if (src_ipif == NULL && 8072 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8073 ire_marks |= IRE_MARK_USESRC_CHECK; 8074 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8075 IS_IPMP(ire->ire_ipif->ipif_ill) || 8076 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8077 (connp != NULL && ire->ire_zoneid != zoneid && 8078 ire->ire_zoneid != ALL_ZONES) || 8079 (dst_ill->ill_usesrc_ifindex != 0)) { 8080 /* 8081 * If the destination is reachable via a 8082 * given gateway, the selected source address 8083 * should be in the same subnet as the gateway. 8084 * Otherwise, the destination is not reachable. 8085 * 8086 * If there are no interfaces on the same subnet 8087 * as the destination, ipif_select_source gives 8088 * first non-deprecated interface which might be 8089 * on a different subnet than the gateway. 8090 * This is not desirable. Hence pass the dst_ire 8091 * source address to ipif_select_source. 8092 * It is sure that the destination is reachable 8093 * with the dst_ire source address subnet. 8094 * So passing dst_ire source address to 8095 * ipif_select_source will make sure that the 8096 * selected source will be on the same subnet 8097 * as dst_ire source address. 8098 */ 8099 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8100 8101 src_ipif = ipif_select_source(dst_ill, saddr, 8102 zoneid); 8103 if (src_ipif == NULL) { 8104 if (ip_debug > 2) { 8105 pr_addr_dbg("ip_newroute: " 8106 "no src for dst %s ", 8107 AF_INET, &dst); 8108 printf("on interface %s\n", 8109 dst_ill->ill_name); 8110 } 8111 goto icmp_err_ret; 8112 } 8113 } else { 8114 src_ipif = ire->ire_ipif; 8115 ASSERT(src_ipif != NULL); 8116 /* hold src_ipif for uniformity */ 8117 ipif_refhold(src_ipif); 8118 } 8119 } 8120 8121 /* 8122 * Assign a source address while we have the conn. 8123 * We can't have ip_wput_ire pick a source address when the 8124 * packet returns from arp since we need to look at 8125 * conn_unspec_src and conn_zoneid, and we lose the conn when 8126 * going through arp. 8127 * 8128 * NOTE : ip_newroute_v6 does not have this piece of code as 8129 * it uses ip6i to store this information. 8130 */ 8131 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8132 ipha->ipha_src = src_ipif->ipif_src_addr; 8133 8134 if (ip_debug > 3) { 8135 /* ip2dbg */ 8136 pr_addr_dbg("ip_newroute: first hop %s\n", 8137 AF_INET, &gw); 8138 } 8139 ip2dbg(("\tire type %s (%d)\n", 8140 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8141 8142 /* 8143 * The TTL of multirouted packets is bounded by the 8144 * ip_multirt_ttl ndd variable. 8145 */ 8146 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8147 /* Force TTL of multirouted packets */ 8148 if ((ipst->ips_ip_multirt_ttl > 0) && 8149 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8150 ip2dbg(("ip_newroute: forcing multirt TTL " 8151 "to %d (was %d), dst 0x%08x\n", 8152 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8153 ntohl(sire->ire_addr))); 8154 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8155 } 8156 } 8157 /* 8158 * At this point in ip_newroute(), ire is either the 8159 * IRE_CACHE of the next-hop gateway for an off-subnet 8160 * destination or an IRE_INTERFACE type that should be used 8161 * to resolve an on-subnet destination or an on-subnet 8162 * next-hop gateway. 8163 * 8164 * In the IRE_CACHE case, we have the following : 8165 * 8166 * 1) src_ipif - used for getting a source address. 8167 * 8168 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8169 * means packets using this IRE_CACHE will go out on 8170 * dst_ill. 8171 * 8172 * 3) The IRE sire will point to the prefix that is the 8173 * longest matching route for the destination. These 8174 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8175 * 8176 * The newly created IRE_CACHE entry for the off-subnet 8177 * destination is tied to both the prefix route and the 8178 * interface route used to resolve the next-hop gateway 8179 * via the ire_phandle and ire_ihandle fields, 8180 * respectively. 8181 * 8182 * In the IRE_INTERFACE case, we have the following : 8183 * 8184 * 1) src_ipif - used for getting a source address. 8185 * 8186 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8187 * means packets using the IRE_CACHE that we will build 8188 * here will go out on dst_ill. 8189 * 8190 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8191 * to be created will only be tied to the IRE_INTERFACE 8192 * that was derived from the ire_ihandle field. 8193 * 8194 * If sire is non-NULL, it means the destination is 8195 * off-link and we will first create the IRE_CACHE for the 8196 * gateway. Next time through ip_newroute, we will create 8197 * the IRE_CACHE for the final destination as described 8198 * above. 8199 * 8200 * In both cases, after the current resolution has been 8201 * completed (or possibly initialised, in the IRE_INTERFACE 8202 * case), the loop may be re-entered to attempt the resolution 8203 * of another RTF_MULTIRT route. 8204 * 8205 * When an IRE_CACHE entry for the off-subnet destination is 8206 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8207 * for further processing in emission loops. 8208 */ 8209 save_ire = ire; 8210 switch (ire->ire_type) { 8211 case IRE_CACHE: { 8212 ire_t *ipif_ire; 8213 8214 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8215 if (gw == 0) 8216 gw = ire->ire_gateway_addr; 8217 /* 8218 * We need 3 ire's to create a new cache ire for an 8219 * off-link destination from the cache ire of the 8220 * gateway. 8221 * 8222 * 1. The prefix ire 'sire' (Note that this does 8223 * not apply to the conn_nexthop_set case) 8224 * 2. The cache ire of the gateway 'ire' 8225 * 3. The interface ire 'ipif_ire' 8226 * 8227 * We have (1) and (2). We lookup (3) below. 8228 * 8229 * If there is no interface route to the gateway, 8230 * it is a race condition, where we found the cache 8231 * but the interface route has been deleted. 8232 */ 8233 if (ip_nexthop) { 8234 ipif_ire = ire_ihandle_lookup_onlink(ire); 8235 } else { 8236 ipif_ire = 8237 ire_ihandle_lookup_offlink(ire, sire); 8238 } 8239 if (ipif_ire == NULL) { 8240 ip1dbg(("ip_newroute: " 8241 "ire_ihandle_lookup_offlink failed\n")); 8242 goto icmp_err_ret; 8243 } 8244 8245 /* 8246 * Check cached gateway IRE for any security 8247 * attributes; if found, associate the gateway 8248 * credentials group to the destination IRE. 8249 */ 8250 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8251 mutex_enter(&attrp->igsa_lock); 8252 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8253 GCGRP_REFHOLD(gcgrp); 8254 mutex_exit(&attrp->igsa_lock); 8255 } 8256 8257 /* 8258 * XXX For the source of the resolver mp, 8259 * we are using the same DL_UNITDATA_REQ 8260 * (from save_ire->ire_nce->nce_res_mp) 8261 * though the save_ire is not pointing at the same ill. 8262 * This is incorrect. We need to send it up to the 8263 * resolver to get the right res_mp. For ethernets 8264 * this may be okay (ill_type == DL_ETHER). 8265 */ 8266 8267 ire = ire_create( 8268 (uchar_t *)&dst, /* dest address */ 8269 (uchar_t *)&ip_g_all_ones, /* mask */ 8270 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8271 (uchar_t *)&gw, /* gateway address */ 8272 &save_ire->ire_max_frag, 8273 save_ire->ire_nce, /* src nce */ 8274 dst_ill->ill_rq, /* recv-from queue */ 8275 dst_ill->ill_wq, /* send-to queue */ 8276 IRE_CACHE, /* IRE type */ 8277 src_ipif, 8278 (sire != NULL) ? 8279 sire->ire_mask : 0, /* Parent mask */ 8280 (sire != NULL) ? 8281 sire->ire_phandle : 0, /* Parent handle */ 8282 ipif_ire->ire_ihandle, /* Interface handle */ 8283 (sire != NULL) ? (sire->ire_flags & 8284 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8285 (sire != NULL) ? 8286 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8287 NULL, 8288 gcgrp, 8289 ipst); 8290 8291 if (ire == NULL) { 8292 if (gcgrp != NULL) { 8293 GCGRP_REFRELE(gcgrp); 8294 gcgrp = NULL; 8295 } 8296 ire_refrele(ipif_ire); 8297 ire_refrele(save_ire); 8298 break; 8299 } 8300 8301 /* reference now held by IRE */ 8302 gcgrp = NULL; 8303 8304 ire->ire_marks |= ire_marks; 8305 8306 /* 8307 * Prevent sire and ipif_ire from getting deleted. 8308 * The newly created ire is tied to both of them via 8309 * the phandle and ihandle respectively. 8310 */ 8311 if (sire != NULL) { 8312 IRB_REFHOLD(sire->ire_bucket); 8313 /* Has it been removed already ? */ 8314 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8315 IRB_REFRELE(sire->ire_bucket); 8316 ire_refrele(ipif_ire); 8317 ire_refrele(save_ire); 8318 break; 8319 } 8320 } 8321 8322 IRB_REFHOLD(ipif_ire->ire_bucket); 8323 /* Has it been removed already ? */ 8324 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8325 IRB_REFRELE(ipif_ire->ire_bucket); 8326 if (sire != NULL) 8327 IRB_REFRELE(sire->ire_bucket); 8328 ire_refrele(ipif_ire); 8329 ire_refrele(save_ire); 8330 break; 8331 } 8332 8333 xmit_mp = first_mp; 8334 /* 8335 * In the case of multirouting, a copy 8336 * of the packet is done before its sending. 8337 * The copy is used to attempt another 8338 * route resolution, in a next loop. 8339 */ 8340 if (ire->ire_flags & RTF_MULTIRT) { 8341 copy_mp = copymsg(first_mp); 8342 if (copy_mp != NULL) { 8343 xmit_mp = copy_mp; 8344 MULTIRT_DEBUG_TAG(first_mp); 8345 } 8346 } 8347 8348 ire_add_then_send(q, ire, xmit_mp); 8349 ire_refrele(save_ire); 8350 8351 /* Assert that sire is not deleted yet. */ 8352 if (sire != NULL) { 8353 ASSERT(sire->ire_ptpn != NULL); 8354 IRB_REFRELE(sire->ire_bucket); 8355 } 8356 8357 /* Assert that ipif_ire is not deleted yet. */ 8358 ASSERT(ipif_ire->ire_ptpn != NULL); 8359 IRB_REFRELE(ipif_ire->ire_bucket); 8360 ire_refrele(ipif_ire); 8361 8362 /* 8363 * If copy_mp is not NULL, multirouting was 8364 * requested. We loop to initiate a next 8365 * route resolution attempt, starting from sire. 8366 */ 8367 if (copy_mp != NULL) { 8368 /* 8369 * Search for the next unresolved 8370 * multirt route. 8371 */ 8372 copy_mp = NULL; 8373 ipif_ire = NULL; 8374 ire = NULL; 8375 multirt_resolve_next = B_TRUE; 8376 continue; 8377 } 8378 if (sire != NULL) 8379 ire_refrele(sire); 8380 ipif_refrele(src_ipif); 8381 ill_refrele(dst_ill); 8382 return; 8383 } 8384 case IRE_IF_NORESOLVER: { 8385 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8386 dst_ill->ill_resolver_mp == NULL) { 8387 ip1dbg(("ip_newroute: dst_ill %p " 8388 "for IRE_IF_NORESOLVER ire %p has " 8389 "no ill_resolver_mp\n", 8390 (void *)dst_ill, (void *)ire)); 8391 break; 8392 } 8393 8394 /* 8395 * TSol note: We are creating the ire cache for the 8396 * destination 'dst'. If 'dst' is offlink, going 8397 * through the first hop 'gw', the security attributes 8398 * of 'dst' must be set to point to the gateway 8399 * credentials of gateway 'gw'. If 'dst' is onlink, it 8400 * is possible that 'dst' is a potential gateway that is 8401 * referenced by some route that has some security 8402 * attributes. Thus in the former case, we need to do a 8403 * gcgrp_lookup of 'gw' while in the latter case we 8404 * need to do gcgrp_lookup of 'dst' itself. 8405 */ 8406 ga.ga_af = AF_INET; 8407 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8408 &ga.ga_addr); 8409 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8410 8411 ire = ire_create( 8412 (uchar_t *)&dst, /* dest address */ 8413 (uchar_t *)&ip_g_all_ones, /* mask */ 8414 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8415 (uchar_t *)&gw, /* gateway address */ 8416 &save_ire->ire_max_frag, 8417 NULL, /* no src nce */ 8418 dst_ill->ill_rq, /* recv-from queue */ 8419 dst_ill->ill_wq, /* send-to queue */ 8420 IRE_CACHE, 8421 src_ipif, 8422 save_ire->ire_mask, /* Parent mask */ 8423 (sire != NULL) ? /* Parent handle */ 8424 sire->ire_phandle : 0, 8425 save_ire->ire_ihandle, /* Interface handle */ 8426 (sire != NULL) ? sire->ire_flags & 8427 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8428 &(save_ire->ire_uinfo), 8429 NULL, 8430 gcgrp, 8431 ipst); 8432 8433 if (ire == NULL) { 8434 if (gcgrp != NULL) { 8435 GCGRP_REFRELE(gcgrp); 8436 gcgrp = NULL; 8437 } 8438 ire_refrele(save_ire); 8439 break; 8440 } 8441 8442 /* reference now held by IRE */ 8443 gcgrp = NULL; 8444 8445 ire->ire_marks |= ire_marks; 8446 8447 /* Prevent save_ire from getting deleted */ 8448 IRB_REFHOLD(save_ire->ire_bucket); 8449 /* Has it been removed already ? */ 8450 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8451 IRB_REFRELE(save_ire->ire_bucket); 8452 ire_refrele(save_ire); 8453 break; 8454 } 8455 8456 /* 8457 * In the case of multirouting, a copy 8458 * of the packet is made before it is sent. 8459 * The copy is used in the next 8460 * loop to attempt another resolution. 8461 */ 8462 xmit_mp = first_mp; 8463 if ((sire != NULL) && 8464 (sire->ire_flags & RTF_MULTIRT)) { 8465 copy_mp = copymsg(first_mp); 8466 if (copy_mp != NULL) { 8467 xmit_mp = copy_mp; 8468 MULTIRT_DEBUG_TAG(first_mp); 8469 } 8470 } 8471 ire_add_then_send(q, ire, xmit_mp); 8472 8473 /* Assert that it is not deleted yet. */ 8474 ASSERT(save_ire->ire_ptpn != NULL); 8475 IRB_REFRELE(save_ire->ire_bucket); 8476 ire_refrele(save_ire); 8477 8478 if (copy_mp != NULL) { 8479 /* 8480 * If we found a (no)resolver, we ignore any 8481 * trailing top priority IRE_CACHE in further 8482 * loops. This ensures that we do not omit any 8483 * (no)resolver. 8484 * This IRE_CACHE, if any, will be processed 8485 * by another thread entering ip_newroute(). 8486 * IRE_CACHE entries, if any, will be processed 8487 * by another thread entering ip_newroute(), 8488 * (upon resolver response, for instance). 8489 * This aims to force parallel multirt 8490 * resolutions as soon as a packet must be sent. 8491 * In the best case, after the tx of only one 8492 * packet, all reachable routes are resolved. 8493 * Otherwise, the resolution of all RTF_MULTIRT 8494 * routes would require several emissions. 8495 */ 8496 multirt_flags &= ~MULTIRT_CACHEGW; 8497 8498 /* 8499 * Search for the next unresolved multirt 8500 * route. 8501 */ 8502 copy_mp = NULL; 8503 save_ire = NULL; 8504 ire = NULL; 8505 multirt_resolve_next = B_TRUE; 8506 continue; 8507 } 8508 8509 /* 8510 * Don't need sire anymore 8511 */ 8512 if (sire != NULL) 8513 ire_refrele(sire); 8514 8515 ipif_refrele(src_ipif); 8516 ill_refrele(dst_ill); 8517 return; 8518 } 8519 case IRE_IF_RESOLVER: 8520 /* 8521 * We can't build an IRE_CACHE yet, but at least we 8522 * found a resolver that can help. 8523 */ 8524 res_mp = dst_ill->ill_resolver_mp; 8525 if (!OK_RESOLVER_MP(res_mp)) 8526 break; 8527 8528 /* 8529 * To be at this point in the code with a non-zero gw 8530 * means that dst is reachable through a gateway that 8531 * we have never resolved. By changing dst to the gw 8532 * addr we resolve the gateway first. 8533 * When ire_add_then_send() tries to put the IP dg 8534 * to dst, it will reenter ip_newroute() at which 8535 * time we will find the IRE_CACHE for the gw and 8536 * create another IRE_CACHE in case IRE_CACHE above. 8537 */ 8538 if (gw != INADDR_ANY) { 8539 /* 8540 * The source ipif that was determined above was 8541 * relative to the destination address, not the 8542 * gateway's. If src_ipif was not taken out of 8543 * the IRE_IF_RESOLVER entry, we'll need to call 8544 * ipif_select_source() again. 8545 */ 8546 if (src_ipif != ire->ire_ipif) { 8547 ipif_refrele(src_ipif); 8548 src_ipif = ipif_select_source(dst_ill, 8549 gw, zoneid); 8550 if (src_ipif == NULL) { 8551 if (ip_debug > 2) { 8552 pr_addr_dbg( 8553 "ip_newroute: no " 8554 "src for gw %s ", 8555 AF_INET, &gw); 8556 printf("on " 8557 "interface %s\n", 8558 dst_ill->ill_name); 8559 } 8560 goto icmp_err_ret; 8561 } 8562 } 8563 save_dst = dst; 8564 dst = gw; 8565 gw = INADDR_ANY; 8566 } 8567 8568 /* 8569 * We obtain a partial IRE_CACHE which we will pass 8570 * along with the resolver query. When the response 8571 * comes back it will be there ready for us to add. 8572 * The ire_max_frag is atomically set under the 8573 * irebucket lock in ire_add_v[46]. 8574 */ 8575 8576 ire = ire_create_mp( 8577 (uchar_t *)&dst, /* dest address */ 8578 (uchar_t *)&ip_g_all_ones, /* mask */ 8579 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8580 (uchar_t *)&gw, /* gateway address */ 8581 NULL, /* ire_max_frag */ 8582 NULL, /* no src nce */ 8583 dst_ill->ill_rq, /* recv-from queue */ 8584 dst_ill->ill_wq, /* send-to queue */ 8585 IRE_CACHE, 8586 src_ipif, /* Interface ipif */ 8587 save_ire->ire_mask, /* Parent mask */ 8588 0, 8589 save_ire->ire_ihandle, /* Interface handle */ 8590 0, /* flags if any */ 8591 &(save_ire->ire_uinfo), 8592 NULL, 8593 NULL, 8594 ipst); 8595 8596 if (ire == NULL) { 8597 ire_refrele(save_ire); 8598 break; 8599 } 8600 8601 if ((sire != NULL) && 8602 (sire->ire_flags & RTF_MULTIRT)) { 8603 copy_mp = copymsg(first_mp); 8604 if (copy_mp != NULL) 8605 MULTIRT_DEBUG_TAG(copy_mp); 8606 } 8607 8608 ire->ire_marks |= ire_marks; 8609 8610 /* 8611 * Construct message chain for the resolver 8612 * of the form: 8613 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8614 * Packet could contain a IPSEC_OUT mp. 8615 * 8616 * NOTE : ire will be added later when the response 8617 * comes back from ARP. If the response does not 8618 * come back, ARP frees the packet. For this reason, 8619 * we can't REFHOLD the bucket of save_ire to prevent 8620 * deletions. We may not be able to REFRELE the bucket 8621 * if the response never comes back. Thus, before 8622 * adding the ire, ire_add_v4 will make sure that the 8623 * interface route does not get deleted. This is the 8624 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8625 * where we can always prevent deletions because of 8626 * the synchronous nature of adding IRES i.e 8627 * ire_add_then_send is called after creating the IRE. 8628 */ 8629 ASSERT(ire->ire_mp != NULL); 8630 ire->ire_mp->b_cont = first_mp; 8631 /* Have saved_mp handy, for cleanup if canput fails */ 8632 saved_mp = mp; 8633 mp = copyb(res_mp); 8634 if (mp == NULL) { 8635 /* Prepare for cleanup */ 8636 mp = saved_mp; /* pkt */ 8637 ire_delete(ire); /* ire_mp */ 8638 ire = NULL; 8639 ire_refrele(save_ire); 8640 if (copy_mp != NULL) { 8641 MULTIRT_DEBUG_UNTAG(copy_mp); 8642 freemsg(copy_mp); 8643 copy_mp = NULL; 8644 } 8645 break; 8646 } 8647 linkb(mp, ire->ire_mp); 8648 8649 /* 8650 * Fill in the source and dest addrs for the resolver. 8651 * NOTE: this depends on memory layouts imposed by 8652 * ill_init(). 8653 */ 8654 areq = (areq_t *)mp->b_rptr; 8655 addrp = (ipaddr_t *)((char *)areq + 8656 areq->areq_sender_addr_offset); 8657 *addrp = save_ire->ire_src_addr; 8658 8659 ire_refrele(save_ire); 8660 addrp = (ipaddr_t *)((char *)areq + 8661 areq->areq_target_addr_offset); 8662 *addrp = dst; 8663 /* Up to the resolver. */ 8664 if (canputnext(dst_ill->ill_rq) && 8665 !(dst_ill->ill_arp_closing)) { 8666 putnext(dst_ill->ill_rq, mp); 8667 ire = NULL; 8668 if (copy_mp != NULL) { 8669 /* 8670 * If we found a resolver, we ignore 8671 * any trailing top priority IRE_CACHE 8672 * in the further loops. This ensures 8673 * that we do not omit any resolver. 8674 * IRE_CACHE entries, if any, will be 8675 * processed next time we enter 8676 * ip_newroute(). 8677 */ 8678 multirt_flags &= ~MULTIRT_CACHEGW; 8679 /* 8680 * Search for the next unresolved 8681 * multirt route. 8682 */ 8683 first_mp = copy_mp; 8684 copy_mp = NULL; 8685 /* Prepare the next resolution loop. */ 8686 mp = first_mp; 8687 EXTRACT_PKT_MP(mp, first_mp, 8688 mctl_present); 8689 if (mctl_present) 8690 io = (ipsec_out_t *) 8691 first_mp->b_rptr; 8692 ipha = (ipha_t *)mp->b_rptr; 8693 8694 ASSERT(sire != NULL); 8695 8696 dst = save_dst; 8697 multirt_resolve_next = B_TRUE; 8698 continue; 8699 } 8700 8701 if (sire != NULL) 8702 ire_refrele(sire); 8703 8704 /* 8705 * The response will come back in ip_wput 8706 * with db_type IRE_DB_TYPE. 8707 */ 8708 ipif_refrele(src_ipif); 8709 ill_refrele(dst_ill); 8710 return; 8711 } else { 8712 /* Prepare for cleanup */ 8713 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8714 mp); 8715 mp->b_cont = NULL; 8716 freeb(mp); /* areq */ 8717 /* 8718 * this is an ire that is not added to the 8719 * cache. ire_freemblk will handle the release 8720 * of any resources associated with the ire. 8721 */ 8722 ire_delete(ire); /* ire_mp */ 8723 mp = saved_mp; /* pkt */ 8724 ire = NULL; 8725 if (copy_mp != NULL) { 8726 MULTIRT_DEBUG_UNTAG(copy_mp); 8727 freemsg(copy_mp); 8728 copy_mp = NULL; 8729 } 8730 break; 8731 } 8732 default: 8733 break; 8734 } 8735 } while (multirt_resolve_next); 8736 8737 ip1dbg(("ip_newroute: dropped\n")); 8738 /* Did this packet originate externally? */ 8739 if (mp->b_prev) { 8740 mp->b_next = NULL; 8741 mp->b_prev = NULL; 8742 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8743 } else { 8744 if (dst_ill != NULL) { 8745 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8746 } else { 8747 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8748 } 8749 } 8750 ASSERT(copy_mp == NULL); 8751 MULTIRT_DEBUG_UNTAG(first_mp); 8752 freemsg(first_mp); 8753 if (ire != NULL) 8754 ire_refrele(ire); 8755 if (sire != NULL) 8756 ire_refrele(sire); 8757 if (src_ipif != NULL) 8758 ipif_refrele(src_ipif); 8759 if (dst_ill != NULL) 8760 ill_refrele(dst_ill); 8761 return; 8762 8763 icmp_err_ret: 8764 ip1dbg(("ip_newroute: no route\n")); 8765 if (src_ipif != NULL) 8766 ipif_refrele(src_ipif); 8767 if (dst_ill != NULL) 8768 ill_refrele(dst_ill); 8769 if (sire != NULL) 8770 ire_refrele(sire); 8771 /* Did this packet originate externally? */ 8772 if (mp->b_prev) { 8773 mp->b_next = NULL; 8774 mp->b_prev = NULL; 8775 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8776 q = WR(q); 8777 } else { 8778 /* 8779 * There is no outgoing ill, so just increment the 8780 * system MIB. 8781 */ 8782 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8783 /* 8784 * Since ip_wput() isn't close to finished, we fill 8785 * in enough of the header for credible error reporting. 8786 */ 8787 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8788 /* Failed */ 8789 MULTIRT_DEBUG_UNTAG(first_mp); 8790 freemsg(first_mp); 8791 if (ire != NULL) 8792 ire_refrele(ire); 8793 return; 8794 } 8795 } 8796 8797 /* 8798 * At this point we will have ire only if RTF_BLACKHOLE 8799 * or RTF_REJECT flags are set on the IRE. It will not 8800 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8801 */ 8802 if (ire != NULL) { 8803 if (ire->ire_flags & RTF_BLACKHOLE) { 8804 ire_refrele(ire); 8805 MULTIRT_DEBUG_UNTAG(first_mp); 8806 freemsg(first_mp); 8807 return; 8808 } 8809 ire_refrele(ire); 8810 } 8811 if (ip_source_routed(ipha, ipst)) { 8812 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8813 zoneid, ipst); 8814 return; 8815 } 8816 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8817 } 8818 8819 ip_opt_info_t zero_info; 8820 8821 /* 8822 * IPv4 - 8823 * ip_newroute_ipif is called by ip_wput_multicast and 8824 * ip_rput_forward_multicast whenever we need to send 8825 * out a packet to a destination address for which we do not have specific 8826 * routing information. It is used when the packet will be sent out 8827 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8828 * socket option is set or icmp error message wants to go out on a particular 8829 * interface for a unicast packet. 8830 * 8831 * In most cases, the destination address is resolved thanks to the ipif 8832 * intrinsic resolver. However, there are some cases where the call to 8833 * ip_newroute_ipif must take into account the potential presence of 8834 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8835 * that uses the interface. This is specified through flags, 8836 * which can be a combination of: 8837 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8838 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8839 * and flags. Additionally, the packet source address has to be set to 8840 * the specified address. The caller is thus expected to set this flag 8841 * if the packet has no specific source address yet. 8842 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8843 * flag, the resulting ire will inherit the flag. All unresolved routes 8844 * to the destination must be explored in the same call to 8845 * ip_newroute_ipif(). 8846 */ 8847 static void 8848 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8849 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8850 { 8851 areq_t *areq; 8852 ire_t *ire = NULL; 8853 mblk_t *res_mp; 8854 ipaddr_t *addrp; 8855 mblk_t *first_mp; 8856 ire_t *save_ire = NULL; 8857 ipif_t *src_ipif = NULL; 8858 ushort_t ire_marks = 0; 8859 ill_t *dst_ill = NULL; 8860 ipha_t *ipha; 8861 mblk_t *saved_mp; 8862 ire_t *fire = NULL; 8863 mblk_t *copy_mp = NULL; 8864 boolean_t multirt_resolve_next; 8865 boolean_t unspec_src; 8866 ipaddr_t ipha_dst; 8867 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 8868 8869 /* 8870 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8871 * here for uniformity 8872 */ 8873 ipif_refhold(ipif); 8874 8875 /* 8876 * This loop is run only once in most cases. 8877 * We loop to resolve further routes only when the destination 8878 * can be reached through multiple RTF_MULTIRT-flagged ires. 8879 */ 8880 do { 8881 if (dst_ill != NULL) { 8882 ill_refrele(dst_ill); 8883 dst_ill = NULL; 8884 } 8885 if (src_ipif != NULL) { 8886 ipif_refrele(src_ipif); 8887 src_ipif = NULL; 8888 } 8889 multirt_resolve_next = B_FALSE; 8890 8891 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8892 ipif->ipif_ill->ill_name)); 8893 8894 first_mp = mp; 8895 if (DB_TYPE(mp) == M_CTL) 8896 mp = mp->b_cont; 8897 ipha = (ipha_t *)mp->b_rptr; 8898 8899 /* 8900 * Save the packet destination address, we may need it after 8901 * the packet has been consumed. 8902 */ 8903 ipha_dst = ipha->ipha_dst; 8904 8905 /* 8906 * If the interface is a pt-pt interface we look for an 8907 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8908 * local_address and the pt-pt destination address. Otherwise 8909 * we just match the local address. 8910 * NOTE: dst could be different than ipha->ipha_dst in case 8911 * of sending igmp multicast packets over a point-to-point 8912 * connection. 8913 * Thus we must be careful enough to check ipha_dst to be a 8914 * multicast address, otherwise it will take xmit_if path for 8915 * multicast packets resulting into kernel stack overflow by 8916 * repeated calls to ip_newroute_ipif from ire_send(). 8917 */ 8918 if (CLASSD(ipha_dst) && 8919 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8920 goto err_ret; 8921 } 8922 8923 /* 8924 * We check if an IRE_OFFSUBNET for the addr that goes through 8925 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8926 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8927 * propagate its flags to the new ire. 8928 */ 8929 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8930 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8931 ip2dbg(("ip_newroute_ipif: " 8932 "ipif_lookup_multi_ire(" 8933 "ipif %p, dst %08x) = fire %p\n", 8934 (void *)ipif, ntohl(dst), (void *)fire)); 8935 } 8936 8937 /* 8938 * Note: While we pick a dst_ill we are really only 8939 * interested in the ill for load spreading. The source 8940 * ipif is determined by source address selection below. 8941 */ 8942 if (IS_IPMP(ipif->ipif_ill)) { 8943 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 8944 8945 if (CLASSD(ipha_dst)) 8946 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 8947 else 8948 dst_ill = ipmp_illgrp_hold_next_ill(illg); 8949 } else { 8950 dst_ill = ipif->ipif_ill; 8951 ill_refhold(dst_ill); 8952 } 8953 8954 if (dst_ill == NULL) { 8955 if (ip_debug > 2) { 8956 pr_addr_dbg("ip_newroute_ipif: no dst ill " 8957 "for dst %s\n", AF_INET, &dst); 8958 } 8959 goto err_ret; 8960 } 8961 8962 /* 8963 * Pick a source address preferring non-deprecated ones. 8964 * Unlike ip_newroute, we don't do any source address 8965 * selection here since for multicast it really does not help 8966 * in inbound load spreading as in the unicast case. 8967 */ 8968 if ((flags & RTF_SETSRC) && (fire != NULL) && 8969 (fire->ire_flags & RTF_SETSRC)) { 8970 /* 8971 * As requested by flags, an IRE_OFFSUBNET was looked up 8972 * on that interface. This ire has RTF_SETSRC flag, so 8973 * the source address of the packet must be changed. 8974 * Check that the ipif matching the requested source 8975 * address still exists. 8976 */ 8977 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8978 zoneid, NULL, NULL, NULL, NULL, ipst); 8979 } 8980 8981 unspec_src = (connp != NULL && connp->conn_unspec_src); 8982 8983 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 8984 (IS_IPMP(ipif->ipif_ill) || 8985 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 8986 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 8987 (connp != NULL && ipif->ipif_zoneid != zoneid && 8988 ipif->ipif_zoneid != ALL_ZONES)) && 8989 (src_ipif == NULL) && 8990 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8991 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8992 if (src_ipif == NULL) { 8993 if (ip_debug > 2) { 8994 /* ip1dbg */ 8995 pr_addr_dbg("ip_newroute_ipif: " 8996 "no src for dst %s", 8997 AF_INET, &dst); 8998 } 8999 ip1dbg((" on interface %s\n", 9000 dst_ill->ill_name)); 9001 goto err_ret; 9002 } 9003 ipif_refrele(ipif); 9004 ipif = src_ipif; 9005 ipif_refhold(ipif); 9006 } 9007 if (src_ipif == NULL) { 9008 src_ipif = ipif; 9009 ipif_refhold(src_ipif); 9010 } 9011 9012 /* 9013 * Assign a source address while we have the conn. 9014 * We can't have ip_wput_ire pick a source address when the 9015 * packet returns from arp since conn_unspec_src might be set 9016 * and we lose the conn when going through arp. 9017 */ 9018 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9019 ipha->ipha_src = src_ipif->ipif_src_addr; 9020 9021 /* 9022 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9023 * that the outgoing interface does not have an interface ire. 9024 */ 9025 if (CLASSD(ipha_dst) && (connp == NULL || 9026 connp->conn_outgoing_ill == NULL) && 9027 infop->ip_opt_ill_index == 0) { 9028 /* ipif_to_ire returns an held ire */ 9029 ire = ipif_to_ire(ipif); 9030 if (ire == NULL) 9031 goto err_ret; 9032 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9033 goto err_ret; 9034 save_ire = ire; 9035 9036 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9037 "flags %04x\n", 9038 (void *)ire, (void *)ipif, flags)); 9039 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9040 (fire->ire_flags & RTF_MULTIRT)) { 9041 /* 9042 * As requested by flags, an IRE_OFFSUBNET was 9043 * looked up on that interface. This ire has 9044 * RTF_MULTIRT flag, so the resolution loop will 9045 * be re-entered to resolve additional routes on 9046 * other interfaces. For that purpose, a copy of 9047 * the packet is performed at this point. 9048 */ 9049 fire->ire_last_used_time = lbolt; 9050 copy_mp = copymsg(first_mp); 9051 if (copy_mp) { 9052 MULTIRT_DEBUG_TAG(copy_mp); 9053 } 9054 } 9055 if ((flags & RTF_SETSRC) && (fire != NULL) && 9056 (fire->ire_flags & RTF_SETSRC)) { 9057 /* 9058 * As requested by flags, an IRE_OFFSUBET was 9059 * looked up on that interface. This ire has 9060 * RTF_SETSRC flag, so the source address of the 9061 * packet must be changed. 9062 */ 9063 ipha->ipha_src = fire->ire_src_addr; 9064 } 9065 } else { 9066 /* 9067 * The only ways we can come here are: 9068 * 1) IP_BOUND_IF socket option is set 9069 * 2) SO_DONTROUTE socket option is set 9070 * 3) IP_PKTINFO option is passed in as ancillary data. 9071 * In all cases, the new ire will not be added 9072 * into cache table. 9073 */ 9074 ASSERT(connp == NULL || connp->conn_dontroute || 9075 connp->conn_outgoing_ill != NULL || 9076 infop->ip_opt_ill_index != 0); 9077 ire_marks |= IRE_MARK_NOADD; 9078 } 9079 9080 switch (ipif->ipif_net_type) { 9081 case IRE_IF_NORESOLVER: { 9082 /* We have what we need to build an IRE_CACHE. */ 9083 9084 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9085 (dst_ill->ill_resolver_mp == NULL)) { 9086 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9087 "for IRE_IF_NORESOLVER ire %p has " 9088 "no ill_resolver_mp\n", 9089 (void *)dst_ill, (void *)ire)); 9090 break; 9091 } 9092 9093 /* 9094 * The new ire inherits the IRE_OFFSUBNET flags 9095 * and source address, if this was requested. 9096 */ 9097 ire = ire_create( 9098 (uchar_t *)&dst, /* dest address */ 9099 (uchar_t *)&ip_g_all_ones, /* mask */ 9100 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9101 NULL, /* gateway address */ 9102 &ipif->ipif_mtu, 9103 NULL, /* no src nce */ 9104 dst_ill->ill_rq, /* recv-from queue */ 9105 dst_ill->ill_wq, /* send-to queue */ 9106 IRE_CACHE, 9107 src_ipif, 9108 (save_ire != NULL ? save_ire->ire_mask : 0), 9109 (fire != NULL) ? /* Parent handle */ 9110 fire->ire_phandle : 0, 9111 (save_ire != NULL) ? /* Interface handle */ 9112 save_ire->ire_ihandle : 0, 9113 (fire != NULL) ? 9114 (fire->ire_flags & 9115 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9116 (save_ire == NULL ? &ire_uinfo_null : 9117 &save_ire->ire_uinfo), 9118 NULL, 9119 NULL, 9120 ipst); 9121 9122 if (ire == NULL) { 9123 if (save_ire != NULL) 9124 ire_refrele(save_ire); 9125 break; 9126 } 9127 9128 ire->ire_marks |= ire_marks; 9129 9130 /* 9131 * If IRE_MARK_NOADD is set then we need to convert 9132 * the max_fragp to a useable value now. This is 9133 * normally done in ire_add_v[46]. We also need to 9134 * associate the ire with an nce (normally would be 9135 * done in ip_wput_nondata()). 9136 * 9137 * Note that IRE_MARK_NOADD packets created here 9138 * do not have a non-null ire_mp pointer. The null 9139 * value of ire_bucket indicates that they were 9140 * never added. 9141 */ 9142 if (ire->ire_marks & IRE_MARK_NOADD) { 9143 uint_t max_frag; 9144 9145 max_frag = *ire->ire_max_fragp; 9146 ire->ire_max_fragp = NULL; 9147 ire->ire_max_frag = max_frag; 9148 9149 if ((ire->ire_nce = ndp_lookup_v4( 9150 ire_to_ill(ire), 9151 (ire->ire_gateway_addr != INADDR_ANY ? 9152 &ire->ire_gateway_addr : &ire->ire_addr), 9153 B_FALSE)) == NULL) { 9154 if (save_ire != NULL) 9155 ire_refrele(save_ire); 9156 break; 9157 } 9158 ASSERT(ire->ire_nce->nce_state == 9159 ND_REACHABLE); 9160 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9161 } 9162 9163 /* Prevent save_ire from getting deleted */ 9164 if (save_ire != NULL) { 9165 IRB_REFHOLD(save_ire->ire_bucket); 9166 /* Has it been removed already ? */ 9167 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9168 IRB_REFRELE(save_ire->ire_bucket); 9169 ire_refrele(save_ire); 9170 break; 9171 } 9172 } 9173 9174 ire_add_then_send(q, ire, first_mp); 9175 9176 /* Assert that save_ire is not deleted yet. */ 9177 if (save_ire != NULL) { 9178 ASSERT(save_ire->ire_ptpn != NULL); 9179 IRB_REFRELE(save_ire->ire_bucket); 9180 ire_refrele(save_ire); 9181 save_ire = NULL; 9182 } 9183 if (fire != NULL) { 9184 ire_refrele(fire); 9185 fire = NULL; 9186 } 9187 9188 /* 9189 * the resolution loop is re-entered if this 9190 * was requested through flags and if we 9191 * actually are in a multirouting case. 9192 */ 9193 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9194 boolean_t need_resolve = 9195 ire_multirt_need_resolve(ipha_dst, 9196 MBLK_GETLABEL(copy_mp), ipst); 9197 if (!need_resolve) { 9198 MULTIRT_DEBUG_UNTAG(copy_mp); 9199 freemsg(copy_mp); 9200 copy_mp = NULL; 9201 } else { 9202 /* 9203 * ipif_lookup_group() calls 9204 * ire_lookup_multi() that uses 9205 * ire_ftable_lookup() to find 9206 * an IRE_INTERFACE for the group. 9207 * In the multirt case, 9208 * ire_lookup_multi() then invokes 9209 * ire_multirt_lookup() to find 9210 * the next resolvable ire. 9211 * As a result, we obtain an new 9212 * interface, derived from the 9213 * next ire. 9214 */ 9215 ipif_refrele(ipif); 9216 ipif = ipif_lookup_group(ipha_dst, 9217 zoneid, ipst); 9218 ip2dbg(("ip_newroute_ipif: " 9219 "multirt dst %08x, ipif %p\n", 9220 htonl(dst), (void *)ipif)); 9221 if (ipif != NULL) { 9222 mp = copy_mp; 9223 copy_mp = NULL; 9224 multirt_resolve_next = B_TRUE; 9225 continue; 9226 } else { 9227 freemsg(copy_mp); 9228 } 9229 } 9230 } 9231 if (ipif != NULL) 9232 ipif_refrele(ipif); 9233 ill_refrele(dst_ill); 9234 ipif_refrele(src_ipif); 9235 return; 9236 } 9237 case IRE_IF_RESOLVER: 9238 /* 9239 * We can't build an IRE_CACHE yet, but at least 9240 * we found a resolver that can help. 9241 */ 9242 res_mp = dst_ill->ill_resolver_mp; 9243 if (!OK_RESOLVER_MP(res_mp)) 9244 break; 9245 9246 /* 9247 * We obtain a partial IRE_CACHE which we will pass 9248 * along with the resolver query. When the response 9249 * comes back it will be there ready for us to add. 9250 * The new ire inherits the IRE_OFFSUBNET flags 9251 * and source address, if this was requested. 9252 * The ire_max_frag is atomically set under the 9253 * irebucket lock in ire_add_v[46]. Only in the 9254 * case of IRE_MARK_NOADD, we set it here itself. 9255 */ 9256 ire = ire_create_mp( 9257 (uchar_t *)&dst, /* dest address */ 9258 (uchar_t *)&ip_g_all_ones, /* mask */ 9259 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9260 NULL, /* gateway address */ 9261 (ire_marks & IRE_MARK_NOADD) ? 9262 ipif->ipif_mtu : 0, /* max_frag */ 9263 NULL, /* no src nce */ 9264 dst_ill->ill_rq, /* recv-from queue */ 9265 dst_ill->ill_wq, /* send-to queue */ 9266 IRE_CACHE, 9267 src_ipif, 9268 (save_ire != NULL ? save_ire->ire_mask : 0), 9269 (fire != NULL) ? /* Parent handle */ 9270 fire->ire_phandle : 0, 9271 (save_ire != NULL) ? /* Interface handle */ 9272 save_ire->ire_ihandle : 0, 9273 (fire != NULL) ? /* flags if any */ 9274 (fire->ire_flags & 9275 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9276 (save_ire == NULL ? &ire_uinfo_null : 9277 &save_ire->ire_uinfo), 9278 NULL, 9279 NULL, 9280 ipst); 9281 9282 if (save_ire != NULL) { 9283 ire_refrele(save_ire); 9284 save_ire = NULL; 9285 } 9286 if (ire == NULL) 9287 break; 9288 9289 ire->ire_marks |= ire_marks; 9290 /* 9291 * Construct message chain for the resolver of the 9292 * form: 9293 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9294 * 9295 * NOTE : ire will be added later when the response 9296 * comes back from ARP. If the response does not 9297 * come back, ARP frees the packet. For this reason, 9298 * we can't REFHOLD the bucket of save_ire to prevent 9299 * deletions. We may not be able to REFRELE the 9300 * bucket if the response never comes back. 9301 * Thus, before adding the ire, ire_add_v4 will make 9302 * sure that the interface route does not get deleted. 9303 * This is the only case unlike ip_newroute_v6, 9304 * ip_newroute_ipif_v6 where we can always prevent 9305 * deletions because ire_add_then_send is called after 9306 * creating the IRE. 9307 * If IRE_MARK_NOADD is set, then ire_add_then_send 9308 * does not add this IRE into the IRE CACHE. 9309 */ 9310 ASSERT(ire->ire_mp != NULL); 9311 ire->ire_mp->b_cont = first_mp; 9312 /* Have saved_mp handy, for cleanup if canput fails */ 9313 saved_mp = mp; 9314 mp = copyb(res_mp); 9315 if (mp == NULL) { 9316 /* Prepare for cleanup */ 9317 mp = saved_mp; /* pkt */ 9318 ire_delete(ire); /* ire_mp */ 9319 ire = NULL; 9320 if (copy_mp != NULL) { 9321 MULTIRT_DEBUG_UNTAG(copy_mp); 9322 freemsg(copy_mp); 9323 copy_mp = NULL; 9324 } 9325 break; 9326 } 9327 linkb(mp, ire->ire_mp); 9328 9329 /* 9330 * Fill in the source and dest addrs for the resolver. 9331 * NOTE: this depends on memory layouts imposed by 9332 * ill_init(). There are corner cases above where we 9333 * might've created the IRE with an INADDR_ANY source 9334 * address (e.g., if the zeroth ipif on an underlying 9335 * ill in an IPMP group is 0.0.0.0, but another ipif 9336 * on the ill has a usable test address). If so, tell 9337 * ARP to use ipha_src as its sender address. 9338 */ 9339 areq = (areq_t *)mp->b_rptr; 9340 addrp = (ipaddr_t *)((char *)areq + 9341 areq->areq_sender_addr_offset); 9342 if (ire->ire_src_addr != INADDR_ANY) 9343 *addrp = ire->ire_src_addr; 9344 else 9345 *addrp = ipha->ipha_src; 9346 addrp = (ipaddr_t *)((char *)areq + 9347 areq->areq_target_addr_offset); 9348 *addrp = dst; 9349 /* Up to the resolver. */ 9350 if (canputnext(dst_ill->ill_rq) && 9351 !(dst_ill->ill_arp_closing)) { 9352 putnext(dst_ill->ill_rq, mp); 9353 /* 9354 * The response will come back in ip_wput 9355 * with db_type IRE_DB_TYPE. 9356 */ 9357 } else { 9358 mp->b_cont = NULL; 9359 freeb(mp); /* areq */ 9360 ire_delete(ire); /* ire_mp */ 9361 saved_mp->b_next = NULL; 9362 saved_mp->b_prev = NULL; 9363 freemsg(first_mp); /* pkt */ 9364 ip2dbg(("ip_newroute_ipif: dropped\n")); 9365 } 9366 9367 if (fire != NULL) { 9368 ire_refrele(fire); 9369 fire = NULL; 9370 } 9371 9372 9373 /* 9374 * The resolution loop is re-entered if this was 9375 * requested through flags and we actually are 9376 * in a multirouting case. 9377 */ 9378 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9379 boolean_t need_resolve = 9380 ire_multirt_need_resolve(ipha_dst, 9381 MBLK_GETLABEL(copy_mp), ipst); 9382 if (!need_resolve) { 9383 MULTIRT_DEBUG_UNTAG(copy_mp); 9384 freemsg(copy_mp); 9385 copy_mp = NULL; 9386 } else { 9387 /* 9388 * ipif_lookup_group() calls 9389 * ire_lookup_multi() that uses 9390 * ire_ftable_lookup() to find 9391 * an IRE_INTERFACE for the group. 9392 * In the multirt case, 9393 * ire_lookup_multi() then invokes 9394 * ire_multirt_lookup() to find 9395 * the next resolvable ire. 9396 * As a result, we obtain an new 9397 * interface, derived from the 9398 * next ire. 9399 */ 9400 ipif_refrele(ipif); 9401 ipif = ipif_lookup_group(ipha_dst, 9402 zoneid, ipst); 9403 if (ipif != NULL) { 9404 mp = copy_mp; 9405 copy_mp = NULL; 9406 multirt_resolve_next = B_TRUE; 9407 continue; 9408 } else { 9409 freemsg(copy_mp); 9410 } 9411 } 9412 } 9413 if (ipif != NULL) 9414 ipif_refrele(ipif); 9415 ill_refrele(dst_ill); 9416 ipif_refrele(src_ipif); 9417 return; 9418 default: 9419 break; 9420 } 9421 } while (multirt_resolve_next); 9422 9423 err_ret: 9424 ip2dbg(("ip_newroute_ipif: dropped\n")); 9425 if (fire != NULL) 9426 ire_refrele(fire); 9427 ipif_refrele(ipif); 9428 /* Did this packet originate externally? */ 9429 if (dst_ill != NULL) 9430 ill_refrele(dst_ill); 9431 if (src_ipif != NULL) 9432 ipif_refrele(src_ipif); 9433 if (mp->b_prev || mp->b_next) { 9434 mp->b_next = NULL; 9435 mp->b_prev = NULL; 9436 } else { 9437 /* 9438 * Since ip_wput() isn't close to finished, we fill 9439 * in enough of the header for credible error reporting. 9440 */ 9441 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9442 /* Failed */ 9443 freemsg(first_mp); 9444 if (ire != NULL) 9445 ire_refrele(ire); 9446 return; 9447 } 9448 } 9449 /* 9450 * At this point we will have ire only if RTF_BLACKHOLE 9451 * or RTF_REJECT flags are set on the IRE. It will not 9452 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9453 */ 9454 if (ire != NULL) { 9455 if (ire->ire_flags & RTF_BLACKHOLE) { 9456 ire_refrele(ire); 9457 freemsg(first_mp); 9458 return; 9459 } 9460 ire_refrele(ire); 9461 } 9462 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9463 } 9464 9465 /* Name/Value Table Lookup Routine */ 9466 char * 9467 ip_nv_lookup(nv_t *nv, int value) 9468 { 9469 if (!nv) 9470 return (NULL); 9471 for (; nv->nv_name; nv++) { 9472 if (nv->nv_value == value) 9473 return (nv->nv_name); 9474 } 9475 return ("unknown"); 9476 } 9477 9478 /* 9479 * This is a module open, i.e. this is a control stream for access 9480 * to a DLPI device. We allocate an ill_t as the instance data in 9481 * this case. 9482 */ 9483 int 9484 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9485 { 9486 ill_t *ill; 9487 int err; 9488 zoneid_t zoneid; 9489 netstack_t *ns; 9490 ip_stack_t *ipst; 9491 9492 /* 9493 * Prevent unprivileged processes from pushing IP so that 9494 * they can't send raw IP. 9495 */ 9496 if (secpolicy_net_rawaccess(credp) != 0) 9497 return (EPERM); 9498 9499 ns = netstack_find_by_cred(credp); 9500 ASSERT(ns != NULL); 9501 ipst = ns->netstack_ip; 9502 ASSERT(ipst != NULL); 9503 9504 /* 9505 * For exclusive stacks we set the zoneid to zero 9506 * to make IP operate as if in the global zone. 9507 */ 9508 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9509 zoneid = GLOBAL_ZONEID; 9510 else 9511 zoneid = crgetzoneid(credp); 9512 9513 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9514 q->q_ptr = WR(q)->q_ptr = ill; 9515 ill->ill_ipst = ipst; 9516 ill->ill_zoneid = zoneid; 9517 9518 /* 9519 * ill_init initializes the ill fields and then sends down 9520 * down a DL_INFO_REQ after calling qprocson. 9521 */ 9522 err = ill_init(q, ill); 9523 if (err != 0) { 9524 mi_free(ill); 9525 netstack_rele(ipst->ips_netstack); 9526 q->q_ptr = NULL; 9527 WR(q)->q_ptr = NULL; 9528 return (err); 9529 } 9530 9531 /* ill_init initializes the ipsq marking this thread as writer */ 9532 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9533 /* Wait for the DL_INFO_ACK */ 9534 mutex_enter(&ill->ill_lock); 9535 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9536 /* 9537 * Return value of 0 indicates a pending signal. 9538 */ 9539 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9540 if (err == 0) { 9541 mutex_exit(&ill->ill_lock); 9542 (void) ip_close(q, 0); 9543 return (EINTR); 9544 } 9545 } 9546 mutex_exit(&ill->ill_lock); 9547 9548 /* 9549 * ip_rput_other could have set an error in ill_error on 9550 * receipt of M_ERROR. 9551 */ 9552 9553 err = ill->ill_error; 9554 if (err != 0) { 9555 (void) ip_close(q, 0); 9556 return (err); 9557 } 9558 9559 ill->ill_credp = credp; 9560 crhold(credp); 9561 9562 mutex_enter(&ipst->ips_ip_mi_lock); 9563 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9564 credp); 9565 mutex_exit(&ipst->ips_ip_mi_lock); 9566 if (err) { 9567 (void) ip_close(q, 0); 9568 return (err); 9569 } 9570 return (0); 9571 } 9572 9573 /* For /dev/ip aka AF_INET open */ 9574 int 9575 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9576 { 9577 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9578 } 9579 9580 /* For /dev/ip6 aka AF_INET6 open */ 9581 int 9582 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9583 { 9584 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9585 } 9586 9587 /* IP open routine. */ 9588 int 9589 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9590 boolean_t isv6) 9591 { 9592 conn_t *connp; 9593 major_t maj; 9594 zoneid_t zoneid; 9595 netstack_t *ns; 9596 ip_stack_t *ipst; 9597 9598 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9599 9600 /* Allow reopen. */ 9601 if (q->q_ptr != NULL) 9602 return (0); 9603 9604 if (sflag & MODOPEN) { 9605 /* This is a module open */ 9606 return (ip_modopen(q, devp, flag, sflag, credp)); 9607 } 9608 9609 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9610 /* 9611 * Non streams based socket looking for a stream 9612 * to access IP 9613 */ 9614 return (ip_helper_stream_setup(q, devp, flag, sflag, 9615 credp, isv6)); 9616 } 9617 9618 ns = netstack_find_by_cred(credp); 9619 ASSERT(ns != NULL); 9620 ipst = ns->netstack_ip; 9621 ASSERT(ipst != NULL); 9622 9623 /* 9624 * For exclusive stacks we set the zoneid to zero 9625 * to make IP operate as if in the global zone. 9626 */ 9627 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9628 zoneid = GLOBAL_ZONEID; 9629 else 9630 zoneid = crgetzoneid(credp); 9631 9632 /* 9633 * We are opening as a device. This is an IP client stream, and we 9634 * allocate an conn_t as the instance data. 9635 */ 9636 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9637 9638 /* 9639 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9640 * done by netstack_find_by_cred() 9641 */ 9642 netstack_rele(ipst->ips_netstack); 9643 9644 connp->conn_zoneid = zoneid; 9645 connp->conn_sqp = NULL; 9646 connp->conn_initial_sqp = NULL; 9647 connp->conn_final_sqp = NULL; 9648 9649 connp->conn_upq = q; 9650 q->q_ptr = WR(q)->q_ptr = connp; 9651 9652 if (flag & SO_SOCKSTR) 9653 connp->conn_flags |= IPCL_SOCKET; 9654 9655 /* Minor tells us which /dev entry was opened */ 9656 if (isv6) { 9657 connp->conn_flags |= IPCL_ISV6; 9658 connp->conn_af_isv6 = B_TRUE; 9659 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9660 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9661 } else { 9662 connp->conn_af_isv6 = B_FALSE; 9663 connp->conn_pkt_isv6 = B_FALSE; 9664 } 9665 9666 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9667 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9668 connp->conn_minor_arena = ip_minor_arena_la; 9669 } else { 9670 /* 9671 * Either minor numbers in the large arena were exhausted 9672 * or a non socket application is doing the open. 9673 * Try to allocate from the small arena. 9674 */ 9675 if ((connp->conn_dev = 9676 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9677 /* CONN_DEC_REF takes care of netstack_rele() */ 9678 q->q_ptr = WR(q)->q_ptr = NULL; 9679 CONN_DEC_REF(connp); 9680 return (EBUSY); 9681 } 9682 connp->conn_minor_arena = ip_minor_arena_sa; 9683 } 9684 9685 maj = getemajor(*devp); 9686 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9687 9688 /* 9689 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9690 */ 9691 connp->conn_cred = credp; 9692 9693 /* 9694 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9695 */ 9696 connp->conn_recv = ip_conn_input; 9697 9698 crhold(connp->conn_cred); 9699 9700 /* 9701 * If the caller has the process-wide flag set, then default to MAC 9702 * exempt mode. This allows read-down to unlabeled hosts. 9703 */ 9704 if (getpflags(NET_MAC_AWARE, credp) != 0) 9705 connp->conn_mac_exempt = B_TRUE; 9706 9707 connp->conn_rq = q; 9708 connp->conn_wq = WR(q); 9709 9710 /* Non-zero default values */ 9711 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9712 9713 /* 9714 * Make the conn globally visible to walkers 9715 */ 9716 ASSERT(connp->conn_ref == 1); 9717 mutex_enter(&connp->conn_lock); 9718 connp->conn_state_flags &= ~CONN_INCIPIENT; 9719 mutex_exit(&connp->conn_lock); 9720 9721 qprocson(q); 9722 9723 return (0); 9724 } 9725 9726 /* 9727 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9728 * Note that there is no race since either ip_output function works - it 9729 * is just an optimization to enter the best ip_output routine directly. 9730 */ 9731 void 9732 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9733 ip_stack_t *ipst) 9734 { 9735 if (isv6) { 9736 if (bump_mib) { 9737 BUMP_MIB(&ipst->ips_ip6_mib, 9738 ipIfStatsOutSwitchIPVersion); 9739 } 9740 connp->conn_send = ip_output_v6; 9741 connp->conn_pkt_isv6 = B_TRUE; 9742 } else { 9743 if (bump_mib) { 9744 BUMP_MIB(&ipst->ips_ip_mib, 9745 ipIfStatsOutSwitchIPVersion); 9746 } 9747 connp->conn_send = ip_output; 9748 connp->conn_pkt_isv6 = B_FALSE; 9749 } 9750 9751 } 9752 9753 /* 9754 * See if IPsec needs loading because of the options in mp. 9755 */ 9756 static boolean_t 9757 ipsec_opt_present(mblk_t *mp) 9758 { 9759 uint8_t *optcp, *next_optcp, *opt_endcp; 9760 struct opthdr *opt; 9761 struct T_opthdr *topt; 9762 int opthdr_len; 9763 t_uscalar_t optname, optlevel; 9764 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9765 ipsec_req_t *ipsr; 9766 9767 /* 9768 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9769 * return TRUE. 9770 */ 9771 9772 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9773 opt_endcp = optcp + tor->OPT_length; 9774 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9775 opthdr_len = sizeof (struct T_opthdr); 9776 } else { /* O_OPTMGMT_REQ */ 9777 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9778 opthdr_len = sizeof (struct opthdr); 9779 } 9780 for (; optcp < opt_endcp; optcp = next_optcp) { 9781 if (optcp + opthdr_len > opt_endcp) 9782 return (B_FALSE); /* Not enough option header. */ 9783 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9784 topt = (struct T_opthdr *)optcp; 9785 optlevel = topt->level; 9786 optname = topt->name; 9787 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9788 } else { 9789 opt = (struct opthdr *)optcp; 9790 optlevel = opt->level; 9791 optname = opt->name; 9792 next_optcp = optcp + opthdr_len + 9793 _TPI_ALIGN_OPT(opt->len); 9794 } 9795 if ((next_optcp < optcp) || /* wraparound pointer space */ 9796 ((next_optcp >= opt_endcp) && /* last option bad len */ 9797 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9798 return (B_FALSE); /* bad option buffer */ 9799 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9800 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9801 /* 9802 * Check to see if it's an all-bypass or all-zeroes 9803 * IPsec request. Don't bother loading IPsec if 9804 * the socket doesn't want to use it. (A good example 9805 * is a bypass request.) 9806 * 9807 * Basically, if any of the non-NEVER bits are set, 9808 * load IPsec. 9809 */ 9810 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9811 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9812 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9813 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9814 != 0) 9815 return (B_TRUE); 9816 } 9817 } 9818 return (B_FALSE); 9819 } 9820 9821 /* 9822 * If conn is is waiting for ipsec to finish loading, kick it. 9823 */ 9824 /* ARGSUSED */ 9825 static void 9826 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9827 { 9828 t_scalar_t optreq_prim; 9829 mblk_t *mp; 9830 cred_t *cr; 9831 int err = 0; 9832 9833 /* 9834 * This function is called, after ipsec loading is complete. 9835 * Since IP checks exclusively and atomically (i.e it prevents 9836 * ipsec load from completing until ip_optcom_req completes) 9837 * whether ipsec load is complete, there cannot be a race with IP 9838 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9839 */ 9840 mutex_enter(&connp->conn_lock); 9841 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9842 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9843 mp = connp->conn_ipsec_opt_mp; 9844 connp->conn_ipsec_opt_mp = NULL; 9845 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9846 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9847 mutex_exit(&connp->conn_lock); 9848 9849 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9850 9851 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9852 if (optreq_prim == T_OPTMGMT_REQ) { 9853 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9854 &ip_opt_obj, B_FALSE); 9855 } else { 9856 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9857 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9858 &ip_opt_obj, B_FALSE); 9859 } 9860 if (err != EINPROGRESS) 9861 CONN_OPER_PENDING_DONE(connp); 9862 return; 9863 } 9864 mutex_exit(&connp->conn_lock); 9865 } 9866 9867 /* 9868 * Called from the ipsec_loader thread, outside any perimeter, to tell 9869 * ip qenable any of the queues waiting for the ipsec loader to 9870 * complete. 9871 */ 9872 void 9873 ip_ipsec_load_complete(ipsec_stack_t *ipss) 9874 { 9875 netstack_t *ns = ipss->ipsec_netstack; 9876 9877 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 9878 } 9879 9880 /* 9881 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9882 * determines the grp on which it has to become exclusive, queues the mp 9883 * and IPSQ draining restarts the optmgmt 9884 */ 9885 static boolean_t 9886 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9887 { 9888 conn_t *connp = Q_TO_CONN(q); 9889 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 9890 9891 /* 9892 * Take IPsec requests and treat them special. 9893 */ 9894 if (ipsec_opt_present(mp)) { 9895 /* First check if IPsec is loaded. */ 9896 mutex_enter(&ipss->ipsec_loader_lock); 9897 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 9898 mutex_exit(&ipss->ipsec_loader_lock); 9899 return (B_FALSE); 9900 } 9901 mutex_enter(&connp->conn_lock); 9902 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9903 9904 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9905 connp->conn_ipsec_opt_mp = mp; 9906 mutex_exit(&connp->conn_lock); 9907 mutex_exit(&ipss->ipsec_loader_lock); 9908 9909 ipsec_loader_loadnow(ipss); 9910 return (B_TRUE); 9911 } 9912 return (B_FALSE); 9913 } 9914 9915 /* 9916 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9917 * all of them are copied to the conn_t. If the req is "zero", the policy is 9918 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9919 * fields. 9920 * We keep only the latest setting of the policy and thus policy setting 9921 * is not incremental/cumulative. 9922 * 9923 * Requests to set policies with multiple alternative actions will 9924 * go through a different API. 9925 */ 9926 int 9927 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9928 { 9929 uint_t ah_req = 0; 9930 uint_t esp_req = 0; 9931 uint_t se_req = 0; 9932 ipsec_selkey_t sel; 9933 ipsec_act_t *actp = NULL; 9934 uint_t nact; 9935 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9936 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9937 ipsec_policy_root_t *pr; 9938 ipsec_policy_head_t *ph; 9939 int fam; 9940 boolean_t is_pol_reset; 9941 int error = 0; 9942 netstack_t *ns = connp->conn_netstack; 9943 ip_stack_t *ipst = ns->netstack_ip; 9944 ipsec_stack_t *ipss = ns->netstack_ipsec; 9945 9946 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9947 9948 /* 9949 * The IP_SEC_OPT option does not allow variable length parameters, 9950 * hence a request cannot be NULL. 9951 */ 9952 if (req == NULL) 9953 return (EINVAL); 9954 9955 ah_req = req->ipsr_ah_req; 9956 esp_req = req->ipsr_esp_req; 9957 se_req = req->ipsr_self_encap_req; 9958 9959 /* Don't allow setting self-encap without one or more of AH/ESP. */ 9960 if (se_req != 0 && esp_req == 0 && ah_req == 0) 9961 return (EINVAL); 9962 9963 /* 9964 * Are we dealing with a request to reset the policy (i.e. 9965 * zero requests). 9966 */ 9967 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9968 (esp_req & REQ_MASK) == 0 && 9969 (se_req & REQ_MASK) == 0); 9970 9971 if (!is_pol_reset) { 9972 /* 9973 * If we couldn't load IPsec, fail with "protocol 9974 * not supported". 9975 * IPsec may not have been loaded for a request with zero 9976 * policies, so we don't fail in this case. 9977 */ 9978 mutex_enter(&ipss->ipsec_loader_lock); 9979 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 9980 mutex_exit(&ipss->ipsec_loader_lock); 9981 return (EPROTONOSUPPORT); 9982 } 9983 mutex_exit(&ipss->ipsec_loader_lock); 9984 9985 /* 9986 * Test for valid requests. Invalid algorithms 9987 * need to be tested by IPsec code because new 9988 * algorithms can be added dynamically. 9989 */ 9990 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9991 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9992 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 9993 return (EINVAL); 9994 } 9995 9996 /* 9997 * Only privileged users can issue these 9998 * requests. 9999 */ 10000 if (((ah_req & IPSEC_PREF_NEVER) || 10001 (esp_req & IPSEC_PREF_NEVER) || 10002 (se_req & IPSEC_PREF_NEVER)) && 10003 secpolicy_ip_config(cr, B_FALSE) != 0) { 10004 return (EPERM); 10005 } 10006 10007 /* 10008 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10009 * are mutually exclusive. 10010 */ 10011 if (((ah_req & REQ_MASK) == REQ_MASK) || 10012 ((esp_req & REQ_MASK) == REQ_MASK) || 10013 ((se_req & REQ_MASK) == REQ_MASK)) { 10014 /* Both of them are set */ 10015 return (EINVAL); 10016 } 10017 } 10018 10019 mutex_enter(&connp->conn_lock); 10020 10021 /* 10022 * If we have already cached policies in ip_bind_connected*(), don't 10023 * let them change now. We cache policies for connections 10024 * whose src,dst [addr, port] is known. 10025 */ 10026 if (connp->conn_policy_cached) { 10027 mutex_exit(&connp->conn_lock); 10028 return (EINVAL); 10029 } 10030 10031 /* 10032 * We have a zero policies, reset the connection policy if already 10033 * set. This will cause the connection to inherit the 10034 * global policy, if any. 10035 */ 10036 if (is_pol_reset) { 10037 if (connp->conn_policy != NULL) { 10038 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10039 connp->conn_policy = NULL; 10040 } 10041 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10042 connp->conn_in_enforce_policy = B_FALSE; 10043 connp->conn_out_enforce_policy = B_FALSE; 10044 mutex_exit(&connp->conn_lock); 10045 return (0); 10046 } 10047 10048 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10049 ipst->ips_netstack); 10050 if (ph == NULL) 10051 goto enomem; 10052 10053 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10054 if (actp == NULL) 10055 goto enomem; 10056 10057 /* 10058 * Always allocate IPv4 policy entries, since they can also 10059 * apply to ipv6 sockets being used in ipv4-compat mode. 10060 */ 10061 bzero(&sel, sizeof (sel)); 10062 sel.ipsl_valid = IPSL_IPV4; 10063 10064 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10065 ipst->ips_netstack); 10066 if (pin4 == NULL) 10067 goto enomem; 10068 10069 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10070 ipst->ips_netstack); 10071 if (pout4 == NULL) 10072 goto enomem; 10073 10074 if (connp->conn_af_isv6) { 10075 /* 10076 * We're looking at a v6 socket, also allocate the 10077 * v6-specific entries... 10078 */ 10079 sel.ipsl_valid = IPSL_IPV6; 10080 pin6 = ipsec_policy_create(&sel, actp, nact, 10081 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10082 if (pin6 == NULL) 10083 goto enomem; 10084 10085 pout6 = ipsec_policy_create(&sel, actp, nact, 10086 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10087 if (pout6 == NULL) 10088 goto enomem; 10089 10090 /* 10091 * .. and file them away in the right place. 10092 */ 10093 fam = IPSEC_AF_V6; 10094 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10095 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10096 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10097 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10098 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10099 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10100 } 10101 10102 ipsec_actvec_free(actp, nact); 10103 10104 /* 10105 * File the v4 policies. 10106 */ 10107 fam = IPSEC_AF_V4; 10108 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10109 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10110 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10111 10112 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10113 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10114 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10115 10116 /* 10117 * If the requests need security, set enforce_policy. 10118 * If the requests are IPSEC_PREF_NEVER, one should 10119 * still set conn_out_enforce_policy so that an ipsec_out 10120 * gets attached in ip_wput. This is needed so that 10121 * for connections that we don't cache policy in ip_bind, 10122 * if global policy matches in ip_wput_attach_policy, we 10123 * don't wrongly inherit global policy. Similarly, we need 10124 * to set conn_in_enforce_policy also so that we don't verify 10125 * policy wrongly. 10126 */ 10127 if ((ah_req & REQ_MASK) != 0 || 10128 (esp_req & REQ_MASK) != 0 || 10129 (se_req & REQ_MASK) != 0) { 10130 connp->conn_in_enforce_policy = B_TRUE; 10131 connp->conn_out_enforce_policy = B_TRUE; 10132 connp->conn_flags |= IPCL_CHECK_POLICY; 10133 } 10134 10135 mutex_exit(&connp->conn_lock); 10136 return (error); 10137 #undef REQ_MASK 10138 10139 /* 10140 * Common memory-allocation-failure exit path. 10141 */ 10142 enomem: 10143 mutex_exit(&connp->conn_lock); 10144 if (actp != NULL) 10145 ipsec_actvec_free(actp, nact); 10146 if (pin4 != NULL) 10147 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10148 if (pout4 != NULL) 10149 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10150 if (pin6 != NULL) 10151 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10152 if (pout6 != NULL) 10153 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10154 return (ENOMEM); 10155 } 10156 10157 /* 10158 * Only for options that pass in an IP addr. Currently only V4 options 10159 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10160 * So this function assumes level is IPPROTO_IP 10161 */ 10162 int 10163 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10164 mblk_t *first_mp) 10165 { 10166 ipif_t *ipif = NULL; 10167 int error; 10168 ill_t *ill; 10169 int zoneid; 10170 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10171 10172 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10173 10174 if (addr != INADDR_ANY || checkonly) { 10175 ASSERT(connp != NULL); 10176 zoneid = IPCL_ZONEID(connp); 10177 if (option == IP_NEXTHOP) { 10178 ipif = ipif_lookup_onlink_addr(addr, 10179 connp->conn_zoneid, ipst); 10180 } else { 10181 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10182 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10183 &error, ipst); 10184 } 10185 if (ipif == NULL) { 10186 if (error == EINPROGRESS) 10187 return (error); 10188 if ((option == IP_MULTICAST_IF) || 10189 (option == IP_NEXTHOP)) 10190 return (EHOSTUNREACH); 10191 else 10192 return (EINVAL); 10193 } else if (checkonly) { 10194 if (option == IP_MULTICAST_IF) { 10195 ill = ipif->ipif_ill; 10196 /* not supported by the virtual network iface */ 10197 if (IS_VNI(ill)) { 10198 ipif_refrele(ipif); 10199 return (EINVAL); 10200 } 10201 } 10202 ipif_refrele(ipif); 10203 return (0); 10204 } 10205 ill = ipif->ipif_ill; 10206 mutex_enter(&connp->conn_lock); 10207 mutex_enter(&ill->ill_lock); 10208 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10209 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10210 mutex_exit(&ill->ill_lock); 10211 mutex_exit(&connp->conn_lock); 10212 ipif_refrele(ipif); 10213 return (option == IP_MULTICAST_IF ? 10214 EHOSTUNREACH : EINVAL); 10215 } 10216 } else { 10217 mutex_enter(&connp->conn_lock); 10218 } 10219 10220 /* None of the options below are supported on the VNI */ 10221 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10222 mutex_exit(&ill->ill_lock); 10223 mutex_exit(&connp->conn_lock); 10224 ipif_refrele(ipif); 10225 return (EINVAL); 10226 } 10227 10228 switch (option) { 10229 case IP_MULTICAST_IF: 10230 connp->conn_multicast_ipif = ipif; 10231 break; 10232 case IP_NEXTHOP: 10233 connp->conn_nexthop_v4 = addr; 10234 connp->conn_nexthop_set = B_TRUE; 10235 break; 10236 } 10237 10238 if (ipif != NULL) { 10239 mutex_exit(&ill->ill_lock); 10240 mutex_exit(&connp->conn_lock); 10241 ipif_refrele(ipif); 10242 return (0); 10243 } 10244 mutex_exit(&connp->conn_lock); 10245 /* We succeded in cleared the option */ 10246 return (0); 10247 } 10248 10249 /* 10250 * For options that pass in an ifindex specifying the ill. V6 options always 10251 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10252 */ 10253 int 10254 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10255 int level, int option, mblk_t *first_mp) 10256 { 10257 ill_t *ill = NULL; 10258 int error = 0; 10259 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10260 10261 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10262 if (ifindex != 0) { 10263 ASSERT(connp != NULL); 10264 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10265 first_mp, ip_restart_optmgmt, &error, ipst); 10266 if (ill != NULL) { 10267 if (checkonly) { 10268 /* not supported by the virtual network iface */ 10269 if (IS_VNI(ill)) { 10270 ill_refrele(ill); 10271 return (EINVAL); 10272 } 10273 ill_refrele(ill); 10274 return (0); 10275 } 10276 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10277 0, NULL)) { 10278 ill_refrele(ill); 10279 ill = NULL; 10280 mutex_enter(&connp->conn_lock); 10281 goto setit; 10282 } 10283 mutex_enter(&connp->conn_lock); 10284 mutex_enter(&ill->ill_lock); 10285 if (ill->ill_state_flags & ILL_CONDEMNED) { 10286 mutex_exit(&ill->ill_lock); 10287 mutex_exit(&connp->conn_lock); 10288 ill_refrele(ill); 10289 ill = NULL; 10290 mutex_enter(&connp->conn_lock); 10291 } 10292 goto setit; 10293 } else if (error == EINPROGRESS) { 10294 return (error); 10295 } else { 10296 error = 0; 10297 } 10298 } 10299 mutex_enter(&connp->conn_lock); 10300 setit: 10301 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10302 10303 /* 10304 * The options below assume that the ILL (if any) transmits and/or 10305 * receives traffic. Neither of which is true for the virtual network 10306 * interface, so fail setting these on a VNI. 10307 */ 10308 if (IS_VNI(ill)) { 10309 ASSERT(ill != NULL); 10310 mutex_exit(&ill->ill_lock); 10311 mutex_exit(&connp->conn_lock); 10312 ill_refrele(ill); 10313 return (EINVAL); 10314 } 10315 10316 if (level == IPPROTO_IP) { 10317 switch (option) { 10318 case IP_BOUND_IF: 10319 connp->conn_incoming_ill = ill; 10320 connp->conn_outgoing_ill = ill; 10321 break; 10322 10323 case IP_MULTICAST_IF: 10324 /* 10325 * This option is an internal special. The socket 10326 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10327 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10328 * specifies an ifindex and we try first on V6 ill's. 10329 * If we don't find one, we they try using on v4 ill's 10330 * intenally and we come here. 10331 */ 10332 if (!checkonly && ill != NULL) { 10333 ipif_t *ipif; 10334 ipif = ill->ill_ipif; 10335 10336 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10337 mutex_exit(&ill->ill_lock); 10338 mutex_exit(&connp->conn_lock); 10339 ill_refrele(ill); 10340 ill = NULL; 10341 mutex_enter(&connp->conn_lock); 10342 } else { 10343 connp->conn_multicast_ipif = ipif; 10344 } 10345 } 10346 break; 10347 10348 case IP_DHCPINIT_IF: 10349 if (connp->conn_dhcpinit_ill != NULL) { 10350 /* 10351 * We've locked the conn so conn_cleanup_ill() 10352 * cannot clear conn_dhcpinit_ill -- so it's 10353 * safe to access the ill. 10354 */ 10355 ill_t *oill = connp->conn_dhcpinit_ill; 10356 10357 ASSERT(oill->ill_dhcpinit != 0); 10358 atomic_dec_32(&oill->ill_dhcpinit); 10359 connp->conn_dhcpinit_ill = NULL; 10360 } 10361 10362 if (ill != NULL) { 10363 connp->conn_dhcpinit_ill = ill; 10364 atomic_inc_32(&ill->ill_dhcpinit); 10365 } 10366 break; 10367 } 10368 } else { 10369 switch (option) { 10370 case IPV6_BOUND_IF: 10371 connp->conn_incoming_ill = ill; 10372 connp->conn_outgoing_ill = ill; 10373 break; 10374 10375 case IPV6_MULTICAST_IF: 10376 /* 10377 * Set conn_multicast_ill to be the IPv6 ill. 10378 * Set conn_multicast_ipif to be an IPv4 ipif 10379 * for ifindex to make IPv4 mapped addresses 10380 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10381 * Even if no IPv6 ill exists for the ifindex 10382 * we need to check for an IPv4 ifindex in order 10383 * for this to work with mapped addresses. In that 10384 * case only set conn_multicast_ipif. 10385 */ 10386 if (!checkonly) { 10387 if (ifindex == 0) { 10388 connp->conn_multicast_ill = NULL; 10389 connp->conn_multicast_ipif = NULL; 10390 } else if (ill != NULL) { 10391 connp->conn_multicast_ill = ill; 10392 } 10393 } 10394 break; 10395 } 10396 } 10397 10398 if (ill != NULL) { 10399 mutex_exit(&ill->ill_lock); 10400 mutex_exit(&connp->conn_lock); 10401 ill_refrele(ill); 10402 return (0); 10403 } 10404 mutex_exit(&connp->conn_lock); 10405 /* 10406 * We succeeded in clearing the option (ifindex == 0) or failed to 10407 * locate the ill and could not set the option (ifindex != 0) 10408 */ 10409 return (ifindex == 0 ? 0 : EINVAL); 10410 } 10411 10412 /* This routine sets socket options. */ 10413 /* ARGSUSED */ 10414 int 10415 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10416 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10417 void *dummy, cred_t *cr, mblk_t *first_mp) 10418 { 10419 int *i1 = (int *)invalp; 10420 conn_t *connp = Q_TO_CONN(q); 10421 int error = 0; 10422 boolean_t checkonly; 10423 ire_t *ire; 10424 boolean_t found; 10425 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10426 10427 switch (optset_context) { 10428 10429 case SETFN_OPTCOM_CHECKONLY: 10430 checkonly = B_TRUE; 10431 /* 10432 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10433 * inlen != 0 implies value supplied and 10434 * we have to "pretend" to set it. 10435 * inlen == 0 implies that there is no 10436 * value part in T_CHECK request and just validation 10437 * done elsewhere should be enough, we just return here. 10438 */ 10439 if (inlen == 0) { 10440 *outlenp = 0; 10441 return (0); 10442 } 10443 break; 10444 case SETFN_OPTCOM_NEGOTIATE: 10445 case SETFN_UD_NEGOTIATE: 10446 case SETFN_CONN_NEGOTIATE: 10447 checkonly = B_FALSE; 10448 break; 10449 default: 10450 /* 10451 * We should never get here 10452 */ 10453 *outlenp = 0; 10454 return (EINVAL); 10455 } 10456 10457 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10458 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10459 10460 /* 10461 * For fixed length options, no sanity check 10462 * of passed in length is done. It is assumed *_optcom_req() 10463 * routines do the right thing. 10464 */ 10465 10466 switch (level) { 10467 case SOL_SOCKET: 10468 /* 10469 * conn_lock protects the bitfields, and is used to 10470 * set the fields atomically. 10471 */ 10472 switch (name) { 10473 case SO_BROADCAST: 10474 if (!checkonly) { 10475 /* TODO: use value someplace? */ 10476 mutex_enter(&connp->conn_lock); 10477 connp->conn_broadcast = *i1 ? 1 : 0; 10478 mutex_exit(&connp->conn_lock); 10479 } 10480 break; /* goto sizeof (int) option return */ 10481 case SO_USELOOPBACK: 10482 if (!checkonly) { 10483 /* TODO: use value someplace? */ 10484 mutex_enter(&connp->conn_lock); 10485 connp->conn_loopback = *i1 ? 1 : 0; 10486 mutex_exit(&connp->conn_lock); 10487 } 10488 break; /* goto sizeof (int) option return */ 10489 case SO_DONTROUTE: 10490 if (!checkonly) { 10491 mutex_enter(&connp->conn_lock); 10492 connp->conn_dontroute = *i1 ? 1 : 0; 10493 mutex_exit(&connp->conn_lock); 10494 } 10495 break; /* goto sizeof (int) option return */ 10496 case SO_REUSEADDR: 10497 if (!checkonly) { 10498 mutex_enter(&connp->conn_lock); 10499 connp->conn_reuseaddr = *i1 ? 1 : 0; 10500 mutex_exit(&connp->conn_lock); 10501 } 10502 break; /* goto sizeof (int) option return */ 10503 case SO_PROTOTYPE: 10504 if (!checkonly) { 10505 mutex_enter(&connp->conn_lock); 10506 connp->conn_proto = *i1; 10507 mutex_exit(&connp->conn_lock); 10508 } 10509 break; /* goto sizeof (int) option return */ 10510 case SO_ALLZONES: 10511 if (!checkonly) { 10512 mutex_enter(&connp->conn_lock); 10513 if (IPCL_IS_BOUND(connp)) { 10514 mutex_exit(&connp->conn_lock); 10515 return (EINVAL); 10516 } 10517 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10518 mutex_exit(&connp->conn_lock); 10519 } 10520 break; /* goto sizeof (int) option return */ 10521 case SO_ANON_MLP: 10522 if (!checkonly) { 10523 mutex_enter(&connp->conn_lock); 10524 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10525 mutex_exit(&connp->conn_lock); 10526 } 10527 break; /* goto sizeof (int) option return */ 10528 case SO_MAC_EXEMPT: 10529 if (secpolicy_net_mac_aware(cr) != 0 || 10530 IPCL_IS_BOUND(connp)) 10531 return (EACCES); 10532 if (!checkonly) { 10533 mutex_enter(&connp->conn_lock); 10534 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10535 mutex_exit(&connp->conn_lock); 10536 } 10537 break; /* goto sizeof (int) option return */ 10538 default: 10539 /* 10540 * "soft" error (negative) 10541 * option not handled at this level 10542 * Note: Do not modify *outlenp 10543 */ 10544 return (-EINVAL); 10545 } 10546 break; 10547 case IPPROTO_IP: 10548 switch (name) { 10549 case IP_NEXTHOP: 10550 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10551 return (EPERM); 10552 /* FALLTHRU */ 10553 case IP_MULTICAST_IF: { 10554 ipaddr_t addr = *i1; 10555 10556 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10557 first_mp); 10558 if (error != 0) 10559 return (error); 10560 break; /* goto sizeof (int) option return */ 10561 } 10562 10563 case IP_MULTICAST_TTL: 10564 /* Recorded in transport above IP */ 10565 *outvalp = *invalp; 10566 *outlenp = sizeof (uchar_t); 10567 return (0); 10568 case IP_MULTICAST_LOOP: 10569 if (!checkonly) { 10570 mutex_enter(&connp->conn_lock); 10571 connp->conn_multicast_loop = *invalp ? 1 : 0; 10572 mutex_exit(&connp->conn_lock); 10573 } 10574 *outvalp = *invalp; 10575 *outlenp = sizeof (uchar_t); 10576 return (0); 10577 case IP_ADD_MEMBERSHIP: 10578 case MCAST_JOIN_GROUP: 10579 case IP_DROP_MEMBERSHIP: 10580 case MCAST_LEAVE_GROUP: { 10581 struct ip_mreq *mreqp; 10582 struct group_req *greqp; 10583 ire_t *ire; 10584 boolean_t done = B_FALSE; 10585 ipaddr_t group, ifaddr; 10586 struct sockaddr_in *sin; 10587 uint32_t *ifindexp; 10588 boolean_t mcast_opt = B_TRUE; 10589 mcast_record_t fmode; 10590 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10591 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10592 10593 switch (name) { 10594 case IP_ADD_MEMBERSHIP: 10595 mcast_opt = B_FALSE; 10596 /* FALLTHRU */ 10597 case MCAST_JOIN_GROUP: 10598 fmode = MODE_IS_EXCLUDE; 10599 optfn = ip_opt_add_group; 10600 break; 10601 10602 case IP_DROP_MEMBERSHIP: 10603 mcast_opt = B_FALSE; 10604 /* FALLTHRU */ 10605 case MCAST_LEAVE_GROUP: 10606 fmode = MODE_IS_INCLUDE; 10607 optfn = ip_opt_delete_group; 10608 break; 10609 } 10610 10611 if (mcast_opt) { 10612 greqp = (struct group_req *)i1; 10613 sin = (struct sockaddr_in *)&greqp->gr_group; 10614 if (sin->sin_family != AF_INET) { 10615 *outlenp = 0; 10616 return (ENOPROTOOPT); 10617 } 10618 group = (ipaddr_t)sin->sin_addr.s_addr; 10619 ifaddr = INADDR_ANY; 10620 ifindexp = &greqp->gr_interface; 10621 } else { 10622 mreqp = (struct ip_mreq *)i1; 10623 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10624 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10625 ifindexp = NULL; 10626 } 10627 10628 /* 10629 * In the multirouting case, we need to replicate 10630 * the request on all interfaces that will take part 10631 * in replication. We do so because multirouting is 10632 * reflective, thus we will probably receive multi- 10633 * casts on those interfaces. 10634 * The ip_multirt_apply_membership() succeeds if the 10635 * operation succeeds on at least one interface. 10636 */ 10637 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10638 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10639 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10640 if (ire != NULL) { 10641 if (ire->ire_flags & RTF_MULTIRT) { 10642 error = ip_multirt_apply_membership( 10643 optfn, ire, connp, checkonly, group, 10644 fmode, INADDR_ANY, first_mp); 10645 done = B_TRUE; 10646 } 10647 ire_refrele(ire); 10648 } 10649 if (!done) { 10650 error = optfn(connp, checkonly, group, ifaddr, 10651 ifindexp, fmode, INADDR_ANY, first_mp); 10652 } 10653 if (error) { 10654 /* 10655 * EINPROGRESS is a soft error, needs retry 10656 * so don't make *outlenp zero. 10657 */ 10658 if (error != EINPROGRESS) 10659 *outlenp = 0; 10660 return (error); 10661 } 10662 /* OK return - copy input buffer into output buffer */ 10663 if (invalp != outvalp) { 10664 /* don't trust bcopy for identical src/dst */ 10665 bcopy(invalp, outvalp, inlen); 10666 } 10667 *outlenp = inlen; 10668 return (0); 10669 } 10670 case IP_BLOCK_SOURCE: 10671 case IP_UNBLOCK_SOURCE: 10672 case IP_ADD_SOURCE_MEMBERSHIP: 10673 case IP_DROP_SOURCE_MEMBERSHIP: 10674 case MCAST_BLOCK_SOURCE: 10675 case MCAST_UNBLOCK_SOURCE: 10676 case MCAST_JOIN_SOURCE_GROUP: 10677 case MCAST_LEAVE_SOURCE_GROUP: { 10678 struct ip_mreq_source *imreqp; 10679 struct group_source_req *gsreqp; 10680 in_addr_t grp, src, ifaddr = INADDR_ANY; 10681 uint32_t ifindex = 0; 10682 mcast_record_t fmode; 10683 struct sockaddr_in *sin; 10684 ire_t *ire; 10685 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10686 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10687 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10688 10689 switch (name) { 10690 case IP_BLOCK_SOURCE: 10691 mcast_opt = B_FALSE; 10692 /* FALLTHRU */ 10693 case MCAST_BLOCK_SOURCE: 10694 fmode = MODE_IS_EXCLUDE; 10695 optfn = ip_opt_add_group; 10696 break; 10697 10698 case IP_UNBLOCK_SOURCE: 10699 mcast_opt = B_FALSE; 10700 /* FALLTHRU */ 10701 case MCAST_UNBLOCK_SOURCE: 10702 fmode = MODE_IS_EXCLUDE; 10703 optfn = ip_opt_delete_group; 10704 break; 10705 10706 case IP_ADD_SOURCE_MEMBERSHIP: 10707 mcast_opt = B_FALSE; 10708 /* FALLTHRU */ 10709 case MCAST_JOIN_SOURCE_GROUP: 10710 fmode = MODE_IS_INCLUDE; 10711 optfn = ip_opt_add_group; 10712 break; 10713 10714 case IP_DROP_SOURCE_MEMBERSHIP: 10715 mcast_opt = B_FALSE; 10716 /* FALLTHRU */ 10717 case MCAST_LEAVE_SOURCE_GROUP: 10718 fmode = MODE_IS_INCLUDE; 10719 optfn = ip_opt_delete_group; 10720 break; 10721 } 10722 10723 if (mcast_opt) { 10724 gsreqp = (struct group_source_req *)i1; 10725 if (gsreqp->gsr_group.ss_family != AF_INET) { 10726 *outlenp = 0; 10727 return (ENOPROTOOPT); 10728 } 10729 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10730 grp = (ipaddr_t)sin->sin_addr.s_addr; 10731 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10732 src = (ipaddr_t)sin->sin_addr.s_addr; 10733 ifindex = gsreqp->gsr_interface; 10734 } else { 10735 imreqp = (struct ip_mreq_source *)i1; 10736 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10737 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10738 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10739 } 10740 10741 /* 10742 * In the multirouting case, we need to replicate 10743 * the request as noted in the mcast cases above. 10744 */ 10745 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10746 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10747 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10748 if (ire != NULL) { 10749 if (ire->ire_flags & RTF_MULTIRT) { 10750 error = ip_multirt_apply_membership( 10751 optfn, ire, connp, checkonly, grp, 10752 fmode, src, first_mp); 10753 done = B_TRUE; 10754 } 10755 ire_refrele(ire); 10756 } 10757 if (!done) { 10758 error = optfn(connp, checkonly, grp, ifaddr, 10759 &ifindex, fmode, src, first_mp); 10760 } 10761 if (error != 0) { 10762 /* 10763 * EINPROGRESS is a soft error, needs retry 10764 * so don't make *outlenp zero. 10765 */ 10766 if (error != EINPROGRESS) 10767 *outlenp = 0; 10768 return (error); 10769 } 10770 /* OK return - copy input buffer into output buffer */ 10771 if (invalp != outvalp) { 10772 bcopy(invalp, outvalp, inlen); 10773 } 10774 *outlenp = inlen; 10775 return (0); 10776 } 10777 case IP_SEC_OPT: 10778 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10779 if (error != 0) { 10780 *outlenp = 0; 10781 return (error); 10782 } 10783 break; 10784 case IP_HDRINCL: 10785 case IP_OPTIONS: 10786 case T_IP_OPTIONS: 10787 case IP_TOS: 10788 case T_IP_TOS: 10789 case IP_TTL: 10790 case IP_RECVDSTADDR: 10791 case IP_RECVOPTS: 10792 /* OK return - copy input buffer into output buffer */ 10793 if (invalp != outvalp) { 10794 /* don't trust bcopy for identical src/dst */ 10795 bcopy(invalp, outvalp, inlen); 10796 } 10797 *outlenp = inlen; 10798 return (0); 10799 case IP_RECVIF: 10800 /* Retrieve the inbound interface index */ 10801 if (!checkonly) { 10802 mutex_enter(&connp->conn_lock); 10803 connp->conn_recvif = *i1 ? 1 : 0; 10804 mutex_exit(&connp->conn_lock); 10805 } 10806 break; /* goto sizeof (int) option return */ 10807 case IP_RECVPKTINFO: 10808 if (!checkonly) { 10809 mutex_enter(&connp->conn_lock); 10810 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10811 mutex_exit(&connp->conn_lock); 10812 } 10813 break; /* goto sizeof (int) option return */ 10814 case IP_RECVSLLA: 10815 /* Retrieve the source link layer address */ 10816 if (!checkonly) { 10817 mutex_enter(&connp->conn_lock); 10818 connp->conn_recvslla = *i1 ? 1 : 0; 10819 mutex_exit(&connp->conn_lock); 10820 } 10821 break; /* goto sizeof (int) option return */ 10822 case MRT_INIT: 10823 case MRT_DONE: 10824 case MRT_ADD_VIF: 10825 case MRT_DEL_VIF: 10826 case MRT_ADD_MFC: 10827 case MRT_DEL_MFC: 10828 case MRT_ASSERT: 10829 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 10830 *outlenp = 0; 10831 return (error); 10832 } 10833 error = ip_mrouter_set((int)name, q, checkonly, 10834 (uchar_t *)invalp, inlen, first_mp); 10835 if (error) { 10836 *outlenp = 0; 10837 return (error); 10838 } 10839 /* OK return - copy input buffer into output buffer */ 10840 if (invalp != outvalp) { 10841 /* don't trust bcopy for identical src/dst */ 10842 bcopy(invalp, outvalp, inlen); 10843 } 10844 *outlenp = inlen; 10845 return (0); 10846 case IP_BOUND_IF: 10847 case IP_DHCPINIT_IF: 10848 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10849 level, name, first_mp); 10850 if (error != 0) 10851 return (error); 10852 break; /* goto sizeof (int) option return */ 10853 10854 case IP_UNSPEC_SRC: 10855 /* Allow sending with a zero source address */ 10856 if (!checkonly) { 10857 mutex_enter(&connp->conn_lock); 10858 connp->conn_unspec_src = *i1 ? 1 : 0; 10859 mutex_exit(&connp->conn_lock); 10860 } 10861 break; /* goto sizeof (int) option return */ 10862 default: 10863 /* 10864 * "soft" error (negative) 10865 * option not handled at this level 10866 * Note: Do not modify *outlenp 10867 */ 10868 return (-EINVAL); 10869 } 10870 break; 10871 case IPPROTO_IPV6: 10872 switch (name) { 10873 case IPV6_BOUND_IF: 10874 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10875 level, name, first_mp); 10876 if (error != 0) 10877 return (error); 10878 break; /* goto sizeof (int) option return */ 10879 10880 case IPV6_MULTICAST_IF: 10881 /* 10882 * The only possible errors are EINPROGRESS and 10883 * EINVAL. EINPROGRESS will be restarted and is not 10884 * a hard error. We call this option on both V4 and V6 10885 * If both return EINVAL, then this call returns 10886 * EINVAL. If at least one of them succeeds we 10887 * return success. 10888 */ 10889 found = B_FALSE; 10890 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10891 level, name, first_mp); 10892 if (error == EINPROGRESS) 10893 return (error); 10894 if (error == 0) 10895 found = B_TRUE; 10896 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10897 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10898 if (error == 0) 10899 found = B_TRUE; 10900 if (!found) 10901 return (error); 10902 break; /* goto sizeof (int) option return */ 10903 10904 case IPV6_MULTICAST_HOPS: 10905 /* Recorded in transport above IP */ 10906 break; /* goto sizeof (int) option return */ 10907 case IPV6_MULTICAST_LOOP: 10908 if (!checkonly) { 10909 mutex_enter(&connp->conn_lock); 10910 connp->conn_multicast_loop = *i1; 10911 mutex_exit(&connp->conn_lock); 10912 } 10913 break; /* goto sizeof (int) option return */ 10914 case IPV6_JOIN_GROUP: 10915 case MCAST_JOIN_GROUP: 10916 case IPV6_LEAVE_GROUP: 10917 case MCAST_LEAVE_GROUP: { 10918 struct ipv6_mreq *ip_mreqp; 10919 struct group_req *greqp; 10920 ire_t *ire; 10921 boolean_t done = B_FALSE; 10922 in6_addr_t groupv6; 10923 uint32_t ifindex; 10924 boolean_t mcast_opt = B_TRUE; 10925 mcast_record_t fmode; 10926 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10927 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10928 10929 switch (name) { 10930 case IPV6_JOIN_GROUP: 10931 mcast_opt = B_FALSE; 10932 /* FALLTHRU */ 10933 case MCAST_JOIN_GROUP: 10934 fmode = MODE_IS_EXCLUDE; 10935 optfn = ip_opt_add_group_v6; 10936 break; 10937 10938 case IPV6_LEAVE_GROUP: 10939 mcast_opt = B_FALSE; 10940 /* FALLTHRU */ 10941 case MCAST_LEAVE_GROUP: 10942 fmode = MODE_IS_INCLUDE; 10943 optfn = ip_opt_delete_group_v6; 10944 break; 10945 } 10946 10947 if (mcast_opt) { 10948 struct sockaddr_in *sin; 10949 struct sockaddr_in6 *sin6; 10950 greqp = (struct group_req *)i1; 10951 if (greqp->gr_group.ss_family == AF_INET) { 10952 sin = (struct sockaddr_in *) 10953 &(greqp->gr_group); 10954 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 10955 &groupv6); 10956 } else { 10957 sin6 = (struct sockaddr_in6 *) 10958 &(greqp->gr_group); 10959 groupv6 = sin6->sin6_addr; 10960 } 10961 ifindex = greqp->gr_interface; 10962 } else { 10963 ip_mreqp = (struct ipv6_mreq *)i1; 10964 groupv6 = ip_mreqp->ipv6mr_multiaddr; 10965 ifindex = ip_mreqp->ipv6mr_interface; 10966 } 10967 /* 10968 * In the multirouting case, we need to replicate 10969 * the request on all interfaces that will take part 10970 * in replication. We do so because multirouting is 10971 * reflective, thus we will probably receive multi- 10972 * casts on those interfaces. 10973 * The ip_multirt_apply_membership_v6() succeeds if 10974 * the operation succeeds on at least one interface. 10975 */ 10976 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 10977 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10978 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10979 if (ire != NULL) { 10980 if (ire->ire_flags & RTF_MULTIRT) { 10981 error = ip_multirt_apply_membership_v6( 10982 optfn, ire, connp, checkonly, 10983 &groupv6, fmode, &ipv6_all_zeros, 10984 first_mp); 10985 done = B_TRUE; 10986 } 10987 ire_refrele(ire); 10988 } 10989 if (!done) { 10990 error = optfn(connp, checkonly, &groupv6, 10991 ifindex, fmode, &ipv6_all_zeros, first_mp); 10992 } 10993 if (error) { 10994 /* 10995 * EINPROGRESS is a soft error, needs retry 10996 * so don't make *outlenp zero. 10997 */ 10998 if (error != EINPROGRESS) 10999 *outlenp = 0; 11000 return (error); 11001 } 11002 /* OK return - copy input buffer into output buffer */ 11003 if (invalp != outvalp) { 11004 /* don't trust bcopy for identical src/dst */ 11005 bcopy(invalp, outvalp, inlen); 11006 } 11007 *outlenp = inlen; 11008 return (0); 11009 } 11010 case MCAST_BLOCK_SOURCE: 11011 case MCAST_UNBLOCK_SOURCE: 11012 case MCAST_JOIN_SOURCE_GROUP: 11013 case MCAST_LEAVE_SOURCE_GROUP: { 11014 struct group_source_req *gsreqp; 11015 in6_addr_t v6grp, v6src; 11016 uint32_t ifindex; 11017 mcast_record_t fmode; 11018 ire_t *ire; 11019 boolean_t done = B_FALSE; 11020 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11021 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11022 11023 switch (name) { 11024 case MCAST_BLOCK_SOURCE: 11025 fmode = MODE_IS_EXCLUDE; 11026 optfn = ip_opt_add_group_v6; 11027 break; 11028 case MCAST_UNBLOCK_SOURCE: 11029 fmode = MODE_IS_EXCLUDE; 11030 optfn = ip_opt_delete_group_v6; 11031 break; 11032 case MCAST_JOIN_SOURCE_GROUP: 11033 fmode = MODE_IS_INCLUDE; 11034 optfn = ip_opt_add_group_v6; 11035 break; 11036 case MCAST_LEAVE_SOURCE_GROUP: 11037 fmode = MODE_IS_INCLUDE; 11038 optfn = ip_opt_delete_group_v6; 11039 break; 11040 } 11041 11042 gsreqp = (struct group_source_req *)i1; 11043 ifindex = gsreqp->gsr_interface; 11044 if (gsreqp->gsr_group.ss_family == AF_INET) { 11045 struct sockaddr_in *s; 11046 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11047 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11048 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11049 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11050 } else { 11051 struct sockaddr_in6 *s6; 11052 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11053 v6grp = s6->sin6_addr; 11054 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11055 v6src = s6->sin6_addr; 11056 } 11057 11058 /* 11059 * In the multirouting case, we need to replicate 11060 * the request as noted in the mcast cases above. 11061 */ 11062 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11063 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11064 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11065 if (ire != NULL) { 11066 if (ire->ire_flags & RTF_MULTIRT) { 11067 error = ip_multirt_apply_membership_v6( 11068 optfn, ire, connp, checkonly, 11069 &v6grp, fmode, &v6src, first_mp); 11070 done = B_TRUE; 11071 } 11072 ire_refrele(ire); 11073 } 11074 if (!done) { 11075 error = optfn(connp, checkonly, &v6grp, 11076 ifindex, fmode, &v6src, first_mp); 11077 } 11078 if (error != 0) { 11079 /* 11080 * EINPROGRESS is a soft error, needs retry 11081 * so don't make *outlenp zero. 11082 */ 11083 if (error != EINPROGRESS) 11084 *outlenp = 0; 11085 return (error); 11086 } 11087 /* OK return - copy input buffer into output buffer */ 11088 if (invalp != outvalp) { 11089 bcopy(invalp, outvalp, inlen); 11090 } 11091 *outlenp = inlen; 11092 return (0); 11093 } 11094 case IPV6_UNICAST_HOPS: 11095 /* Recorded in transport above IP */ 11096 break; /* goto sizeof (int) option return */ 11097 case IPV6_UNSPEC_SRC: 11098 /* Allow sending with a zero source address */ 11099 if (!checkonly) { 11100 mutex_enter(&connp->conn_lock); 11101 connp->conn_unspec_src = *i1 ? 1 : 0; 11102 mutex_exit(&connp->conn_lock); 11103 } 11104 break; /* goto sizeof (int) option return */ 11105 case IPV6_RECVPKTINFO: 11106 if (!checkonly) { 11107 mutex_enter(&connp->conn_lock); 11108 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11109 mutex_exit(&connp->conn_lock); 11110 } 11111 break; /* goto sizeof (int) option return */ 11112 case IPV6_RECVTCLASS: 11113 if (!checkonly) { 11114 if (*i1 < 0 || *i1 > 1) { 11115 return (EINVAL); 11116 } 11117 mutex_enter(&connp->conn_lock); 11118 connp->conn_ipv6_recvtclass = *i1; 11119 mutex_exit(&connp->conn_lock); 11120 } 11121 break; 11122 case IPV6_RECVPATHMTU: 11123 if (!checkonly) { 11124 if (*i1 < 0 || *i1 > 1) { 11125 return (EINVAL); 11126 } 11127 mutex_enter(&connp->conn_lock); 11128 connp->conn_ipv6_recvpathmtu = *i1; 11129 mutex_exit(&connp->conn_lock); 11130 } 11131 break; 11132 case IPV6_RECVHOPLIMIT: 11133 if (!checkonly) { 11134 mutex_enter(&connp->conn_lock); 11135 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11136 mutex_exit(&connp->conn_lock); 11137 } 11138 break; /* goto sizeof (int) option return */ 11139 case IPV6_RECVHOPOPTS: 11140 if (!checkonly) { 11141 mutex_enter(&connp->conn_lock); 11142 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11143 mutex_exit(&connp->conn_lock); 11144 } 11145 break; /* goto sizeof (int) option return */ 11146 case IPV6_RECVDSTOPTS: 11147 if (!checkonly) { 11148 mutex_enter(&connp->conn_lock); 11149 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11150 mutex_exit(&connp->conn_lock); 11151 } 11152 break; /* goto sizeof (int) option return */ 11153 case IPV6_RECVRTHDR: 11154 if (!checkonly) { 11155 mutex_enter(&connp->conn_lock); 11156 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11157 mutex_exit(&connp->conn_lock); 11158 } 11159 break; /* goto sizeof (int) option return */ 11160 case IPV6_RECVRTHDRDSTOPTS: 11161 if (!checkonly) { 11162 mutex_enter(&connp->conn_lock); 11163 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11164 mutex_exit(&connp->conn_lock); 11165 } 11166 break; /* goto sizeof (int) option return */ 11167 case IPV6_PKTINFO: 11168 if (inlen == 0) 11169 return (-EINVAL); /* clearing option */ 11170 error = ip6_set_pktinfo(cr, connp, 11171 (struct in6_pktinfo *)invalp, first_mp); 11172 if (error != 0) 11173 *outlenp = 0; 11174 else 11175 *outlenp = inlen; 11176 return (error); 11177 case IPV6_NEXTHOP: { 11178 struct sockaddr_in6 *sin6; 11179 11180 /* Verify that the nexthop is reachable */ 11181 if (inlen == 0) 11182 return (-EINVAL); /* clearing option */ 11183 11184 sin6 = (struct sockaddr_in6 *)invalp; 11185 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11186 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11187 NULL, MATCH_IRE_DEFAULT, ipst); 11188 11189 if (ire == NULL) { 11190 *outlenp = 0; 11191 return (EHOSTUNREACH); 11192 } 11193 ire_refrele(ire); 11194 return (-EINVAL); 11195 } 11196 case IPV6_SEC_OPT: 11197 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11198 if (error != 0) { 11199 *outlenp = 0; 11200 return (error); 11201 } 11202 break; 11203 case IPV6_SRC_PREFERENCES: { 11204 /* 11205 * This is implemented strictly in the ip module 11206 * (here and in tcp_opt_*() to accomodate tcp 11207 * sockets). Modules above ip pass this option 11208 * down here since ip is the only one that needs to 11209 * be aware of source address preferences. 11210 * 11211 * This socket option only affects connected 11212 * sockets that haven't already bound to a specific 11213 * IPv6 address. In other words, sockets that 11214 * don't call bind() with an address other than the 11215 * unspecified address and that call connect(). 11216 * ip_bind_connected_v6() passes these preferences 11217 * to the ipif_select_source_v6() function. 11218 */ 11219 if (inlen != sizeof (uint32_t)) 11220 return (EINVAL); 11221 error = ip6_set_src_preferences(connp, 11222 *(uint32_t *)invalp); 11223 if (error != 0) { 11224 *outlenp = 0; 11225 return (error); 11226 } else { 11227 *outlenp = sizeof (uint32_t); 11228 } 11229 break; 11230 } 11231 case IPV6_V6ONLY: 11232 if (*i1 < 0 || *i1 > 1) { 11233 return (EINVAL); 11234 } 11235 mutex_enter(&connp->conn_lock); 11236 connp->conn_ipv6_v6only = *i1; 11237 mutex_exit(&connp->conn_lock); 11238 break; 11239 default: 11240 return (-EINVAL); 11241 } 11242 break; 11243 default: 11244 /* 11245 * "soft" error (negative) 11246 * option not handled at this level 11247 * Note: Do not modify *outlenp 11248 */ 11249 return (-EINVAL); 11250 } 11251 /* 11252 * Common case of return from an option that is sizeof (int) 11253 */ 11254 *(int *)outvalp = *i1; 11255 *outlenp = sizeof (int); 11256 return (0); 11257 } 11258 11259 /* 11260 * This routine gets default values of certain options whose default 11261 * values are maintained by protocol specific code 11262 */ 11263 /* ARGSUSED */ 11264 int 11265 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11266 { 11267 int *i1 = (int *)ptr; 11268 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11269 11270 switch (level) { 11271 case IPPROTO_IP: 11272 switch (name) { 11273 case IP_MULTICAST_TTL: 11274 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11275 return (sizeof (uchar_t)); 11276 case IP_MULTICAST_LOOP: 11277 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11278 return (sizeof (uchar_t)); 11279 default: 11280 return (-1); 11281 } 11282 case IPPROTO_IPV6: 11283 switch (name) { 11284 case IPV6_UNICAST_HOPS: 11285 *i1 = ipst->ips_ipv6_def_hops; 11286 return (sizeof (int)); 11287 case IPV6_MULTICAST_HOPS: 11288 *i1 = IP_DEFAULT_MULTICAST_TTL; 11289 return (sizeof (int)); 11290 case IPV6_MULTICAST_LOOP: 11291 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11292 return (sizeof (int)); 11293 case IPV6_V6ONLY: 11294 *i1 = 1; 11295 return (sizeof (int)); 11296 default: 11297 return (-1); 11298 } 11299 default: 11300 return (-1); 11301 } 11302 /* NOTREACHED */ 11303 } 11304 11305 /* 11306 * Given a destination address and a pointer to where to put the information 11307 * this routine fills in the mtuinfo. 11308 */ 11309 int 11310 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11311 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11312 { 11313 ire_t *ire; 11314 ip_stack_t *ipst = ns->netstack_ip; 11315 11316 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11317 return (-1); 11318 11319 bzero(mtuinfo, sizeof (*mtuinfo)); 11320 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11321 mtuinfo->ip6m_addr.sin6_port = port; 11322 mtuinfo->ip6m_addr.sin6_addr = *in6; 11323 11324 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11325 if (ire != NULL) { 11326 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11327 ire_refrele(ire); 11328 } else { 11329 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11330 } 11331 return (sizeof (struct ip6_mtuinfo)); 11332 } 11333 11334 /* 11335 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11336 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11337 * isn't. This doesn't matter as the error checking is done properly for the 11338 * other MRT options coming in through ip_opt_set. 11339 */ 11340 int 11341 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11342 { 11343 conn_t *connp = Q_TO_CONN(q); 11344 ipsec_req_t *req = (ipsec_req_t *)ptr; 11345 11346 switch (level) { 11347 case IPPROTO_IP: 11348 switch (name) { 11349 case MRT_VERSION: 11350 case MRT_ASSERT: 11351 (void) ip_mrouter_get(name, q, ptr); 11352 return (sizeof (int)); 11353 case IP_SEC_OPT: 11354 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11355 case IP_NEXTHOP: 11356 if (connp->conn_nexthop_set) { 11357 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11358 return (sizeof (ipaddr_t)); 11359 } else 11360 return (0); 11361 case IP_RECVPKTINFO: 11362 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11363 return (sizeof (int)); 11364 default: 11365 break; 11366 } 11367 break; 11368 case IPPROTO_IPV6: 11369 switch (name) { 11370 case IPV6_SEC_OPT: 11371 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11372 case IPV6_SRC_PREFERENCES: { 11373 return (ip6_get_src_preferences(connp, 11374 (uint32_t *)ptr)); 11375 } 11376 case IPV6_V6ONLY: 11377 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11378 return (sizeof (int)); 11379 case IPV6_PATHMTU: 11380 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11381 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11382 default: 11383 break; 11384 } 11385 break; 11386 default: 11387 break; 11388 } 11389 return (-1); 11390 } 11391 /* Named Dispatch routine to get a current value out of our parameter table. */ 11392 /* ARGSUSED */ 11393 static int 11394 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11395 { 11396 ipparam_t *ippa = (ipparam_t *)cp; 11397 11398 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11399 return (0); 11400 } 11401 11402 /* ARGSUSED */ 11403 static int 11404 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11405 { 11406 11407 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11408 return (0); 11409 } 11410 11411 /* 11412 * Set ip{,6}_forwarding values. This means walking through all of the 11413 * ill's and toggling their forwarding values. 11414 */ 11415 /* ARGSUSED */ 11416 static int 11417 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11418 { 11419 long new_value; 11420 int *forwarding_value = (int *)cp; 11421 ill_t *ill; 11422 boolean_t isv6; 11423 ill_walk_context_t ctx; 11424 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11425 11426 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11427 11428 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11429 new_value < 0 || new_value > 1) { 11430 return (EINVAL); 11431 } 11432 11433 *forwarding_value = new_value; 11434 11435 /* 11436 * Regardless of the current value of ip_forwarding, set all per-ill 11437 * values of ip_forwarding to the value being set. 11438 * 11439 * Bring all the ill's up to date with the new global value. 11440 */ 11441 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11442 11443 if (isv6) 11444 ill = ILL_START_WALK_V6(&ctx, ipst); 11445 else 11446 ill = ILL_START_WALK_V4(&ctx, ipst); 11447 11448 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11449 (void) ill_forward_set(ill, new_value != 0); 11450 11451 rw_exit(&ipst->ips_ill_g_lock); 11452 return (0); 11453 } 11454 11455 /* 11456 * Walk through the param array specified registering each element with the 11457 * Named Dispatch handler. This is called only during init. So it is ok 11458 * not to acquire any locks 11459 */ 11460 static boolean_t 11461 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11462 ipndp_t *ipnd, size_t ipnd_cnt) 11463 { 11464 for (; ippa_cnt-- > 0; ippa++) { 11465 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11466 if (!nd_load(ndp, ippa->ip_param_name, 11467 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11468 nd_free(ndp); 11469 return (B_FALSE); 11470 } 11471 } 11472 } 11473 11474 for (; ipnd_cnt-- > 0; ipnd++) { 11475 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11476 if (!nd_load(ndp, ipnd->ip_ndp_name, 11477 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11478 ipnd->ip_ndp_data)) { 11479 nd_free(ndp); 11480 return (B_FALSE); 11481 } 11482 } 11483 } 11484 11485 return (B_TRUE); 11486 } 11487 11488 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11489 /* ARGSUSED */ 11490 static int 11491 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11492 { 11493 long new_value; 11494 ipparam_t *ippa = (ipparam_t *)cp; 11495 11496 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11497 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11498 return (EINVAL); 11499 } 11500 ippa->ip_param_value = new_value; 11501 return (0); 11502 } 11503 11504 /* 11505 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11506 * When an ipf is passed here for the first time, if 11507 * we already have in-order fragments on the queue, we convert from the fast- 11508 * path reassembly scheme to the hard-case scheme. From then on, additional 11509 * fragments are reassembled here. We keep track of the start and end offsets 11510 * of each piece, and the number of holes in the chain. When the hole count 11511 * goes to zero, we are done! 11512 * 11513 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11514 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11515 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11516 * after the call to ip_reassemble(). 11517 */ 11518 int 11519 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11520 size_t msg_len) 11521 { 11522 uint_t end; 11523 mblk_t *next_mp; 11524 mblk_t *mp1; 11525 uint_t offset; 11526 boolean_t incr_dups = B_TRUE; 11527 boolean_t offset_zero_seen = B_FALSE; 11528 boolean_t pkt_boundary_checked = B_FALSE; 11529 11530 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11531 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11532 11533 /* Add in byte count */ 11534 ipf->ipf_count += msg_len; 11535 if (ipf->ipf_end) { 11536 /* 11537 * We were part way through in-order reassembly, but now there 11538 * is a hole. We walk through messages already queued, and 11539 * mark them for hard case reassembly. We know that up till 11540 * now they were in order starting from offset zero. 11541 */ 11542 offset = 0; 11543 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11544 IP_REASS_SET_START(mp1, offset); 11545 if (offset == 0) { 11546 ASSERT(ipf->ipf_nf_hdr_len != 0); 11547 offset = -ipf->ipf_nf_hdr_len; 11548 } 11549 offset += mp1->b_wptr - mp1->b_rptr; 11550 IP_REASS_SET_END(mp1, offset); 11551 } 11552 /* One hole at the end. */ 11553 ipf->ipf_hole_cnt = 1; 11554 /* Brand it as a hard case, forever. */ 11555 ipf->ipf_end = 0; 11556 } 11557 /* Walk through all the new pieces. */ 11558 do { 11559 end = start + (mp->b_wptr - mp->b_rptr); 11560 /* 11561 * If start is 0, decrease 'end' only for the first mblk of 11562 * the fragment. Otherwise 'end' can get wrong value in the 11563 * second pass of the loop if first mblk is exactly the 11564 * size of ipf_nf_hdr_len. 11565 */ 11566 if (start == 0 && !offset_zero_seen) { 11567 /* First segment */ 11568 ASSERT(ipf->ipf_nf_hdr_len != 0); 11569 end -= ipf->ipf_nf_hdr_len; 11570 offset_zero_seen = B_TRUE; 11571 } 11572 next_mp = mp->b_cont; 11573 /* 11574 * We are checking to see if there is any interesing data 11575 * to process. If there isn't and the mblk isn't the 11576 * one which carries the unfragmentable header then we 11577 * drop it. It's possible to have just the unfragmentable 11578 * header come through without any data. That needs to be 11579 * saved. 11580 * 11581 * If the assert at the top of this function holds then the 11582 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11583 * is infrequently traveled enough that the test is left in 11584 * to protect against future code changes which break that 11585 * invariant. 11586 */ 11587 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11588 /* Empty. Blast it. */ 11589 IP_REASS_SET_START(mp, 0); 11590 IP_REASS_SET_END(mp, 0); 11591 /* 11592 * If the ipf points to the mblk we are about to free, 11593 * update ipf to point to the next mblk (or NULL 11594 * if none). 11595 */ 11596 if (ipf->ipf_mp->b_cont == mp) 11597 ipf->ipf_mp->b_cont = next_mp; 11598 freeb(mp); 11599 continue; 11600 } 11601 mp->b_cont = NULL; 11602 IP_REASS_SET_START(mp, start); 11603 IP_REASS_SET_END(mp, end); 11604 if (!ipf->ipf_tail_mp) { 11605 ipf->ipf_tail_mp = mp; 11606 ipf->ipf_mp->b_cont = mp; 11607 if (start == 0 || !more) { 11608 ipf->ipf_hole_cnt = 1; 11609 /* 11610 * if the first fragment comes in more than one 11611 * mblk, this loop will be executed for each 11612 * mblk. Need to adjust hole count so exiting 11613 * this routine will leave hole count at 1. 11614 */ 11615 if (next_mp) 11616 ipf->ipf_hole_cnt++; 11617 } else 11618 ipf->ipf_hole_cnt = 2; 11619 continue; 11620 } else if (ipf->ipf_last_frag_seen && !more && 11621 !pkt_boundary_checked) { 11622 /* 11623 * We check datagram boundary only if this fragment 11624 * claims to be the last fragment and we have seen a 11625 * last fragment in the past too. We do this only 11626 * once for a given fragment. 11627 * 11628 * start cannot be 0 here as fragments with start=0 11629 * and MF=0 gets handled as a complete packet. These 11630 * fragments should not reach here. 11631 */ 11632 11633 if (start + msgdsize(mp) != 11634 IP_REASS_END(ipf->ipf_tail_mp)) { 11635 /* 11636 * We have two fragments both of which claim 11637 * to be the last fragment but gives conflicting 11638 * information about the whole datagram size. 11639 * Something fishy is going on. Drop the 11640 * fragment and free up the reassembly list. 11641 */ 11642 return (IP_REASS_FAILED); 11643 } 11644 11645 /* 11646 * We shouldn't come to this code block again for this 11647 * particular fragment. 11648 */ 11649 pkt_boundary_checked = B_TRUE; 11650 } 11651 11652 /* New stuff at or beyond tail? */ 11653 offset = IP_REASS_END(ipf->ipf_tail_mp); 11654 if (start >= offset) { 11655 if (ipf->ipf_last_frag_seen) { 11656 /* current fragment is beyond last fragment */ 11657 return (IP_REASS_FAILED); 11658 } 11659 /* Link it on end. */ 11660 ipf->ipf_tail_mp->b_cont = mp; 11661 ipf->ipf_tail_mp = mp; 11662 if (more) { 11663 if (start != offset) 11664 ipf->ipf_hole_cnt++; 11665 } else if (start == offset && next_mp == NULL) 11666 ipf->ipf_hole_cnt--; 11667 continue; 11668 } 11669 mp1 = ipf->ipf_mp->b_cont; 11670 offset = IP_REASS_START(mp1); 11671 /* New stuff at the front? */ 11672 if (start < offset) { 11673 if (start == 0) { 11674 if (end >= offset) { 11675 /* Nailed the hole at the begining. */ 11676 ipf->ipf_hole_cnt--; 11677 } 11678 } else if (end < offset) { 11679 /* 11680 * A hole, stuff, and a hole where there used 11681 * to be just a hole. 11682 */ 11683 ipf->ipf_hole_cnt++; 11684 } 11685 mp->b_cont = mp1; 11686 /* Check for overlap. */ 11687 while (end > offset) { 11688 if (end < IP_REASS_END(mp1)) { 11689 mp->b_wptr -= end - offset; 11690 IP_REASS_SET_END(mp, offset); 11691 BUMP_MIB(ill->ill_ip_mib, 11692 ipIfStatsReasmPartDups); 11693 break; 11694 } 11695 /* Did we cover another hole? */ 11696 if ((mp1->b_cont && 11697 IP_REASS_END(mp1) != 11698 IP_REASS_START(mp1->b_cont) && 11699 end >= IP_REASS_START(mp1->b_cont)) || 11700 (!ipf->ipf_last_frag_seen && !more)) { 11701 ipf->ipf_hole_cnt--; 11702 } 11703 /* Clip out mp1. */ 11704 if ((mp->b_cont = mp1->b_cont) == NULL) { 11705 /* 11706 * After clipping out mp1, this guy 11707 * is now hanging off the end. 11708 */ 11709 ipf->ipf_tail_mp = mp; 11710 } 11711 IP_REASS_SET_START(mp1, 0); 11712 IP_REASS_SET_END(mp1, 0); 11713 /* Subtract byte count */ 11714 ipf->ipf_count -= mp1->b_datap->db_lim - 11715 mp1->b_datap->db_base; 11716 freeb(mp1); 11717 BUMP_MIB(ill->ill_ip_mib, 11718 ipIfStatsReasmPartDups); 11719 mp1 = mp->b_cont; 11720 if (!mp1) 11721 break; 11722 offset = IP_REASS_START(mp1); 11723 } 11724 ipf->ipf_mp->b_cont = mp; 11725 continue; 11726 } 11727 /* 11728 * The new piece starts somewhere between the start of the head 11729 * and before the end of the tail. 11730 */ 11731 for (; mp1; mp1 = mp1->b_cont) { 11732 offset = IP_REASS_END(mp1); 11733 if (start < offset) { 11734 if (end <= offset) { 11735 /* Nothing new. */ 11736 IP_REASS_SET_START(mp, 0); 11737 IP_REASS_SET_END(mp, 0); 11738 /* Subtract byte count */ 11739 ipf->ipf_count -= mp->b_datap->db_lim - 11740 mp->b_datap->db_base; 11741 if (incr_dups) { 11742 ipf->ipf_num_dups++; 11743 incr_dups = B_FALSE; 11744 } 11745 freeb(mp); 11746 BUMP_MIB(ill->ill_ip_mib, 11747 ipIfStatsReasmDuplicates); 11748 break; 11749 } 11750 /* 11751 * Trim redundant stuff off beginning of new 11752 * piece. 11753 */ 11754 IP_REASS_SET_START(mp, offset); 11755 mp->b_rptr += offset - start; 11756 BUMP_MIB(ill->ill_ip_mib, 11757 ipIfStatsReasmPartDups); 11758 start = offset; 11759 if (!mp1->b_cont) { 11760 /* 11761 * After trimming, this guy is now 11762 * hanging off the end. 11763 */ 11764 mp1->b_cont = mp; 11765 ipf->ipf_tail_mp = mp; 11766 if (!more) { 11767 ipf->ipf_hole_cnt--; 11768 } 11769 break; 11770 } 11771 } 11772 if (start >= IP_REASS_START(mp1->b_cont)) 11773 continue; 11774 /* Fill a hole */ 11775 if (start > offset) 11776 ipf->ipf_hole_cnt++; 11777 mp->b_cont = mp1->b_cont; 11778 mp1->b_cont = mp; 11779 mp1 = mp->b_cont; 11780 offset = IP_REASS_START(mp1); 11781 if (end >= offset) { 11782 ipf->ipf_hole_cnt--; 11783 /* Check for overlap. */ 11784 while (end > offset) { 11785 if (end < IP_REASS_END(mp1)) { 11786 mp->b_wptr -= end - offset; 11787 IP_REASS_SET_END(mp, offset); 11788 /* 11789 * TODO we might bump 11790 * this up twice if there is 11791 * overlap at both ends. 11792 */ 11793 BUMP_MIB(ill->ill_ip_mib, 11794 ipIfStatsReasmPartDups); 11795 break; 11796 } 11797 /* Did we cover another hole? */ 11798 if ((mp1->b_cont && 11799 IP_REASS_END(mp1) 11800 != IP_REASS_START(mp1->b_cont) && 11801 end >= 11802 IP_REASS_START(mp1->b_cont)) || 11803 (!ipf->ipf_last_frag_seen && 11804 !more)) { 11805 ipf->ipf_hole_cnt--; 11806 } 11807 /* Clip out mp1. */ 11808 if ((mp->b_cont = mp1->b_cont) == 11809 NULL) { 11810 /* 11811 * After clipping out mp1, 11812 * this guy is now hanging 11813 * off the end. 11814 */ 11815 ipf->ipf_tail_mp = mp; 11816 } 11817 IP_REASS_SET_START(mp1, 0); 11818 IP_REASS_SET_END(mp1, 0); 11819 /* Subtract byte count */ 11820 ipf->ipf_count -= 11821 mp1->b_datap->db_lim - 11822 mp1->b_datap->db_base; 11823 freeb(mp1); 11824 BUMP_MIB(ill->ill_ip_mib, 11825 ipIfStatsReasmPartDups); 11826 mp1 = mp->b_cont; 11827 if (!mp1) 11828 break; 11829 offset = IP_REASS_START(mp1); 11830 } 11831 } 11832 break; 11833 } 11834 } while (start = end, mp = next_mp); 11835 11836 /* Fragment just processed could be the last one. Remember this fact */ 11837 if (!more) 11838 ipf->ipf_last_frag_seen = B_TRUE; 11839 11840 /* Still got holes? */ 11841 if (ipf->ipf_hole_cnt) 11842 return (IP_REASS_PARTIAL); 11843 /* Clean up overloaded fields to avoid upstream disasters. */ 11844 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11845 IP_REASS_SET_START(mp1, 0); 11846 IP_REASS_SET_END(mp1, 0); 11847 } 11848 return (IP_REASS_COMPLETE); 11849 } 11850 11851 /* 11852 * ipsec processing for the fast path, used for input UDP Packets 11853 * Returns true if ready for passup to UDP. 11854 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 11855 * was an ESP-in-UDP packet, etc.). 11856 */ 11857 static boolean_t 11858 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11859 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 11860 { 11861 uint32_t ill_index; 11862 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11863 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 11864 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 11865 udp_t *udp = connp->conn_udp; 11866 11867 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11868 /* The ill_index of the incoming ILL */ 11869 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11870 11871 /* pass packet up to the transport */ 11872 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 11873 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11874 NULL, mctl_present); 11875 if (*first_mpp == NULL) { 11876 return (B_FALSE); 11877 } 11878 } 11879 11880 /* Initiate IPPF processing for fastpath UDP */ 11881 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 11882 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11883 if (*mpp == NULL) { 11884 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11885 "deferred/dropped during IPPF processing\n")); 11886 return (B_FALSE); 11887 } 11888 } 11889 /* 11890 * Remove 0-spi if it's 0, or move everything behind 11891 * the UDP header over it and forward to ESP via 11892 * ip_proto_input(). 11893 */ 11894 if (udp->udp_nat_t_endpoint) { 11895 if (mctl_present) { 11896 /* mctl_present *shouldn't* happen. */ 11897 ip_drop_packet(*first_mpp, B_TRUE, NULL, 11898 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 11899 &ipss->ipsec_dropper); 11900 *first_mpp = NULL; 11901 return (B_FALSE); 11902 } 11903 11904 /* "ill" is "recv_ill" in actuality. */ 11905 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 11906 return (B_FALSE); 11907 11908 /* Else continue like a normal UDP packet. */ 11909 } 11910 11911 /* 11912 * We make the checks as below since we are in the fast path 11913 * and want to minimize the number of checks if the IP_RECVIF and/or 11914 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11915 */ 11916 if (connp->conn_recvif || connp->conn_recvslla || 11917 connp->conn_ip_recvpktinfo) { 11918 if (connp->conn_recvif) { 11919 in_flags = IPF_RECVIF; 11920 } 11921 /* 11922 * UDP supports IP_RECVPKTINFO option for both v4 and v6 11923 * so the flag passed to ip_add_info is based on IP version 11924 * of connp. 11925 */ 11926 if (connp->conn_ip_recvpktinfo) { 11927 if (connp->conn_af_isv6) { 11928 /* 11929 * V6 only needs index 11930 */ 11931 in_flags |= IPF_RECVIF; 11932 } else { 11933 /* 11934 * V4 needs index + matching address. 11935 */ 11936 in_flags |= IPF_RECVADDR; 11937 } 11938 } 11939 if (connp->conn_recvslla) { 11940 in_flags |= IPF_RECVSLLA; 11941 } 11942 /* 11943 * since in_flags are being set ill will be 11944 * referenced in ip_add_info, so it better not 11945 * be NULL. 11946 */ 11947 /* 11948 * the actual data will be contained in b_cont 11949 * upon successful return of the following call. 11950 * If the call fails then the original mblk is 11951 * returned. 11952 */ 11953 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 11954 ipst); 11955 } 11956 11957 return (B_TRUE); 11958 } 11959 11960 /* 11961 * Fragmentation reassembly. Each ILL has a hash table for 11962 * queuing packets undergoing reassembly for all IPIFs 11963 * associated with the ILL. The hash is based on the packet 11964 * IP ident field. The ILL frag hash table was allocated 11965 * as a timer block at the time the ILL was created. Whenever 11966 * there is anything on the reassembly queue, the timer will 11967 * be running. Returns B_TRUE if successful else B_FALSE; 11968 * frees mp on failure. 11969 */ 11970 static boolean_t 11971 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 11972 uint32_t *cksum_val, uint16_t *cksum_flags) 11973 { 11974 uint32_t frag_offset_flags; 11975 mblk_t *mp = *mpp; 11976 mblk_t *t_mp; 11977 ipaddr_t dst; 11978 uint8_t proto = ipha->ipha_protocol; 11979 uint32_t sum_val; 11980 uint16_t sum_flags; 11981 ipf_t *ipf; 11982 ipf_t **ipfp; 11983 ipfb_t *ipfb; 11984 uint16_t ident; 11985 uint32_t offset; 11986 ipaddr_t src; 11987 uint_t hdr_length; 11988 uint32_t end; 11989 mblk_t *mp1; 11990 mblk_t *tail_mp; 11991 size_t count; 11992 size_t msg_len; 11993 uint8_t ecn_info = 0; 11994 uint32_t packet_size; 11995 boolean_t pruned = B_FALSE; 11996 ip_stack_t *ipst = ill->ill_ipst; 11997 11998 if (cksum_val != NULL) 11999 *cksum_val = 0; 12000 if (cksum_flags != NULL) 12001 *cksum_flags = 0; 12002 12003 /* 12004 * Drop the fragmented as early as possible, if 12005 * we don't have resource(s) to re-assemble. 12006 */ 12007 if (ipst->ips_ip_reass_queue_bytes == 0) { 12008 freemsg(mp); 12009 return (B_FALSE); 12010 } 12011 12012 /* Check for fragmentation offset; return if there's none */ 12013 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12014 (IPH_MF | IPH_OFFSET)) == 0) 12015 return (B_TRUE); 12016 12017 /* 12018 * We utilize hardware computed checksum info only for UDP since 12019 * IP fragmentation is a normal occurrence for the protocol. In 12020 * addition, checksum offload support for IP fragments carrying 12021 * UDP payload is commonly implemented across network adapters. 12022 */ 12023 ASSERT(recv_ill != NULL); 12024 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12025 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12026 mblk_t *mp1 = mp->b_cont; 12027 int32_t len; 12028 12029 /* Record checksum information from the packet */ 12030 sum_val = (uint32_t)DB_CKSUM16(mp); 12031 sum_flags = DB_CKSUMFLAGS(mp); 12032 12033 /* IP payload offset from beginning of mblk */ 12034 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12035 12036 if ((sum_flags & HCK_PARTIALCKSUM) && 12037 (mp1 == NULL || mp1->b_cont == NULL) && 12038 offset >= DB_CKSUMSTART(mp) && 12039 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12040 uint32_t adj; 12041 /* 12042 * Partial checksum has been calculated by hardware 12043 * and attached to the packet; in addition, any 12044 * prepended extraneous data is even byte aligned. 12045 * If any such data exists, we adjust the checksum; 12046 * this would also handle any postpended data. 12047 */ 12048 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12049 mp, mp1, len, adj); 12050 12051 /* One's complement subtract extraneous checksum */ 12052 if (adj >= sum_val) 12053 sum_val = ~(adj - sum_val) & 0xFFFF; 12054 else 12055 sum_val -= adj; 12056 } 12057 } else { 12058 sum_val = 0; 12059 sum_flags = 0; 12060 } 12061 12062 /* Clear hardware checksumming flag */ 12063 DB_CKSUMFLAGS(mp) = 0; 12064 12065 ident = ipha->ipha_ident; 12066 offset = (frag_offset_flags << 3) & 0xFFFF; 12067 src = ipha->ipha_src; 12068 dst = ipha->ipha_dst; 12069 hdr_length = IPH_HDR_LENGTH(ipha); 12070 end = ntohs(ipha->ipha_length) - hdr_length; 12071 12072 /* If end == 0 then we have a packet with no data, so just free it */ 12073 if (end == 0) { 12074 freemsg(mp); 12075 return (B_FALSE); 12076 } 12077 12078 /* Record the ECN field info. */ 12079 ecn_info = (ipha->ipha_type_of_service & 0x3); 12080 if (offset != 0) { 12081 /* 12082 * If this isn't the first piece, strip the header, and 12083 * add the offset to the end value. 12084 */ 12085 mp->b_rptr += hdr_length; 12086 end += offset; 12087 } 12088 12089 msg_len = MBLKSIZE(mp); 12090 tail_mp = mp; 12091 while (tail_mp->b_cont != NULL) { 12092 tail_mp = tail_mp->b_cont; 12093 msg_len += MBLKSIZE(tail_mp); 12094 } 12095 12096 /* If the reassembly list for this ILL will get too big, prune it */ 12097 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12098 ipst->ips_ip_reass_queue_bytes) { 12099 ill_frag_prune(ill, 12100 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12101 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12102 pruned = B_TRUE; 12103 } 12104 12105 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12106 mutex_enter(&ipfb->ipfb_lock); 12107 12108 ipfp = &ipfb->ipfb_ipf; 12109 /* Try to find an existing fragment queue for this packet. */ 12110 for (;;) { 12111 ipf = ipfp[0]; 12112 if (ipf != NULL) { 12113 /* 12114 * It has to match on ident and src/dst address. 12115 */ 12116 if (ipf->ipf_ident == ident && 12117 ipf->ipf_src == src && 12118 ipf->ipf_dst == dst && 12119 ipf->ipf_protocol == proto) { 12120 /* 12121 * If we have received too many 12122 * duplicate fragments for this packet 12123 * free it. 12124 */ 12125 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12126 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12127 freemsg(mp); 12128 mutex_exit(&ipfb->ipfb_lock); 12129 return (B_FALSE); 12130 } 12131 /* Found it. */ 12132 break; 12133 } 12134 ipfp = &ipf->ipf_hash_next; 12135 continue; 12136 } 12137 12138 /* 12139 * If we pruned the list, do we want to store this new 12140 * fragment?. We apply an optimization here based on the 12141 * fact that most fragments will be received in order. 12142 * So if the offset of this incoming fragment is zero, 12143 * it is the first fragment of a new packet. We will 12144 * keep it. Otherwise drop the fragment, as we have 12145 * probably pruned the packet already (since the 12146 * packet cannot be found). 12147 */ 12148 if (pruned && offset != 0) { 12149 mutex_exit(&ipfb->ipfb_lock); 12150 freemsg(mp); 12151 return (B_FALSE); 12152 } 12153 12154 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12155 /* 12156 * Too many fragmented packets in this hash 12157 * bucket. Free the oldest. 12158 */ 12159 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12160 } 12161 12162 /* New guy. Allocate a frag message. */ 12163 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12164 if (mp1 == NULL) { 12165 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12166 freemsg(mp); 12167 reass_done: 12168 mutex_exit(&ipfb->ipfb_lock); 12169 return (B_FALSE); 12170 } 12171 12172 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12173 mp1->b_cont = mp; 12174 12175 /* Initialize the fragment header. */ 12176 ipf = (ipf_t *)mp1->b_rptr; 12177 ipf->ipf_mp = mp1; 12178 ipf->ipf_ptphn = ipfp; 12179 ipfp[0] = ipf; 12180 ipf->ipf_hash_next = NULL; 12181 ipf->ipf_ident = ident; 12182 ipf->ipf_protocol = proto; 12183 ipf->ipf_src = src; 12184 ipf->ipf_dst = dst; 12185 ipf->ipf_nf_hdr_len = 0; 12186 /* Record reassembly start time. */ 12187 ipf->ipf_timestamp = gethrestime_sec(); 12188 /* Record ipf generation and account for frag header */ 12189 ipf->ipf_gen = ill->ill_ipf_gen++; 12190 ipf->ipf_count = MBLKSIZE(mp1); 12191 ipf->ipf_last_frag_seen = B_FALSE; 12192 ipf->ipf_ecn = ecn_info; 12193 ipf->ipf_num_dups = 0; 12194 ipfb->ipfb_frag_pkts++; 12195 ipf->ipf_checksum = 0; 12196 ipf->ipf_checksum_flags = 0; 12197 12198 /* Store checksum value in fragment header */ 12199 if (sum_flags != 0) { 12200 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12201 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12202 ipf->ipf_checksum = sum_val; 12203 ipf->ipf_checksum_flags = sum_flags; 12204 } 12205 12206 /* 12207 * We handle reassembly two ways. In the easy case, 12208 * where all the fragments show up in order, we do 12209 * minimal bookkeeping, and just clip new pieces on 12210 * the end. If we ever see a hole, then we go off 12211 * to ip_reassemble which has to mark the pieces and 12212 * keep track of the number of holes, etc. Obviously, 12213 * the point of having both mechanisms is so we can 12214 * handle the easy case as efficiently as possible. 12215 */ 12216 if (offset == 0) { 12217 /* Easy case, in-order reassembly so far. */ 12218 ipf->ipf_count += msg_len; 12219 ipf->ipf_tail_mp = tail_mp; 12220 /* 12221 * Keep track of next expected offset in 12222 * ipf_end. 12223 */ 12224 ipf->ipf_end = end; 12225 ipf->ipf_nf_hdr_len = hdr_length; 12226 } else { 12227 /* Hard case, hole at the beginning. */ 12228 ipf->ipf_tail_mp = NULL; 12229 /* 12230 * ipf_end == 0 means that we have given up 12231 * on easy reassembly. 12232 */ 12233 ipf->ipf_end = 0; 12234 12235 /* Forget checksum offload from now on */ 12236 ipf->ipf_checksum_flags = 0; 12237 12238 /* 12239 * ipf_hole_cnt is set by ip_reassemble. 12240 * ipf_count is updated by ip_reassemble. 12241 * No need to check for return value here 12242 * as we don't expect reassembly to complete 12243 * or fail for the first fragment itself. 12244 */ 12245 (void) ip_reassemble(mp, ipf, 12246 (frag_offset_flags & IPH_OFFSET) << 3, 12247 (frag_offset_flags & IPH_MF), ill, msg_len); 12248 } 12249 /* Update per ipfb and ill byte counts */ 12250 ipfb->ipfb_count += ipf->ipf_count; 12251 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12252 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12253 /* If the frag timer wasn't already going, start it. */ 12254 mutex_enter(&ill->ill_lock); 12255 ill_frag_timer_start(ill); 12256 mutex_exit(&ill->ill_lock); 12257 goto reass_done; 12258 } 12259 12260 /* 12261 * If the packet's flag has changed (it could be coming up 12262 * from an interface different than the previous, therefore 12263 * possibly different checksum capability), then forget about 12264 * any stored checksum states. Otherwise add the value to 12265 * the existing one stored in the fragment header. 12266 */ 12267 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12268 sum_val += ipf->ipf_checksum; 12269 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12270 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12271 ipf->ipf_checksum = sum_val; 12272 } else if (ipf->ipf_checksum_flags != 0) { 12273 /* Forget checksum offload from now on */ 12274 ipf->ipf_checksum_flags = 0; 12275 } 12276 12277 /* 12278 * We have a new piece of a datagram which is already being 12279 * reassembled. Update the ECN info if all IP fragments 12280 * are ECN capable. If there is one which is not, clear 12281 * all the info. If there is at least one which has CE 12282 * code point, IP needs to report that up to transport. 12283 */ 12284 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12285 if (ecn_info == IPH_ECN_CE) 12286 ipf->ipf_ecn = IPH_ECN_CE; 12287 } else { 12288 ipf->ipf_ecn = IPH_ECN_NECT; 12289 } 12290 if (offset && ipf->ipf_end == offset) { 12291 /* The new fragment fits at the end */ 12292 ipf->ipf_tail_mp->b_cont = mp; 12293 /* Update the byte count */ 12294 ipf->ipf_count += msg_len; 12295 /* Update per ipfb and ill byte counts */ 12296 ipfb->ipfb_count += msg_len; 12297 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12298 atomic_add_32(&ill->ill_frag_count, msg_len); 12299 if (frag_offset_flags & IPH_MF) { 12300 /* More to come. */ 12301 ipf->ipf_end = end; 12302 ipf->ipf_tail_mp = tail_mp; 12303 goto reass_done; 12304 } 12305 } else { 12306 /* Go do the hard cases. */ 12307 int ret; 12308 12309 if (offset == 0) 12310 ipf->ipf_nf_hdr_len = hdr_length; 12311 12312 /* Save current byte count */ 12313 count = ipf->ipf_count; 12314 ret = ip_reassemble(mp, ipf, 12315 (frag_offset_flags & IPH_OFFSET) << 3, 12316 (frag_offset_flags & IPH_MF), ill, msg_len); 12317 /* Count of bytes added and subtracted (freeb()ed) */ 12318 count = ipf->ipf_count - count; 12319 if (count) { 12320 /* Update per ipfb and ill byte counts */ 12321 ipfb->ipfb_count += count; 12322 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12323 atomic_add_32(&ill->ill_frag_count, count); 12324 } 12325 if (ret == IP_REASS_PARTIAL) { 12326 goto reass_done; 12327 } else if (ret == IP_REASS_FAILED) { 12328 /* Reassembly failed. Free up all resources */ 12329 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12330 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12331 IP_REASS_SET_START(t_mp, 0); 12332 IP_REASS_SET_END(t_mp, 0); 12333 } 12334 freemsg(mp); 12335 goto reass_done; 12336 } 12337 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12338 } 12339 /* 12340 * We have completed reassembly. Unhook the frag header from 12341 * the reassembly list. 12342 * 12343 * Before we free the frag header, record the ECN info 12344 * to report back to the transport. 12345 */ 12346 ecn_info = ipf->ipf_ecn; 12347 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12348 ipfp = ipf->ipf_ptphn; 12349 12350 /* We need to supply these to caller */ 12351 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12352 sum_val = ipf->ipf_checksum; 12353 else 12354 sum_val = 0; 12355 12356 mp1 = ipf->ipf_mp; 12357 count = ipf->ipf_count; 12358 ipf = ipf->ipf_hash_next; 12359 if (ipf != NULL) 12360 ipf->ipf_ptphn = ipfp; 12361 ipfp[0] = ipf; 12362 atomic_add_32(&ill->ill_frag_count, -count); 12363 ASSERT(ipfb->ipfb_count >= count); 12364 ipfb->ipfb_count -= count; 12365 ipfb->ipfb_frag_pkts--; 12366 mutex_exit(&ipfb->ipfb_lock); 12367 /* Ditch the frag header. */ 12368 mp = mp1->b_cont; 12369 12370 freeb(mp1); 12371 12372 /* Restore original IP length in header. */ 12373 packet_size = (uint32_t)msgdsize(mp); 12374 if (packet_size > IP_MAXPACKET) { 12375 freemsg(mp); 12376 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12377 return (B_FALSE); 12378 } 12379 12380 if (DB_REF(mp) > 1) { 12381 mblk_t *mp2 = copymsg(mp); 12382 12383 freemsg(mp); 12384 if (mp2 == NULL) { 12385 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12386 return (B_FALSE); 12387 } 12388 mp = mp2; 12389 } 12390 ipha = (ipha_t *)mp->b_rptr; 12391 12392 ipha->ipha_length = htons((uint16_t)packet_size); 12393 /* We're now complete, zip the frag state */ 12394 ipha->ipha_fragment_offset_and_flags = 0; 12395 /* Record the ECN info. */ 12396 ipha->ipha_type_of_service &= 0xFC; 12397 ipha->ipha_type_of_service |= ecn_info; 12398 *mpp = mp; 12399 12400 /* Reassembly is successful; return checksum information if needed */ 12401 if (cksum_val != NULL) 12402 *cksum_val = sum_val; 12403 if (cksum_flags != NULL) 12404 *cksum_flags = sum_flags; 12405 12406 return (B_TRUE); 12407 } 12408 12409 /* 12410 * Perform ip header check sum update local options. 12411 * return B_TRUE if all is well, else return B_FALSE and release 12412 * the mp. caller is responsible for decrementing ire ref cnt. 12413 */ 12414 static boolean_t 12415 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12416 ip_stack_t *ipst) 12417 { 12418 mblk_t *first_mp; 12419 boolean_t mctl_present; 12420 uint16_t sum; 12421 12422 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12423 /* 12424 * Don't do the checksum if it has gone through AH/ESP 12425 * processing. 12426 */ 12427 if (!mctl_present) { 12428 sum = ip_csum_hdr(ipha); 12429 if (sum != 0) { 12430 if (ill != NULL) { 12431 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12432 } else { 12433 BUMP_MIB(&ipst->ips_ip_mib, 12434 ipIfStatsInCksumErrs); 12435 } 12436 freemsg(first_mp); 12437 return (B_FALSE); 12438 } 12439 } 12440 12441 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12442 if (mctl_present) 12443 freeb(first_mp); 12444 return (B_FALSE); 12445 } 12446 12447 return (B_TRUE); 12448 } 12449 12450 /* 12451 * All udp packet are delivered to the local host via this routine. 12452 */ 12453 void 12454 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12455 ill_t *recv_ill) 12456 { 12457 uint32_t sum; 12458 uint32_t u1; 12459 boolean_t mctl_present; 12460 conn_t *connp; 12461 mblk_t *first_mp; 12462 uint16_t *up; 12463 ill_t *ill = (ill_t *)q->q_ptr; 12464 uint16_t reass_hck_flags = 0; 12465 ip_stack_t *ipst; 12466 12467 ASSERT(recv_ill != NULL); 12468 ipst = recv_ill->ill_ipst; 12469 12470 #define rptr ((uchar_t *)ipha) 12471 12472 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12473 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12474 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12475 ASSERT(ill != NULL); 12476 12477 /* 12478 * FAST PATH for udp packets 12479 */ 12480 12481 /* u1 is # words of IP options */ 12482 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12483 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12484 12485 /* IP options present */ 12486 if (u1 != 0) 12487 goto ipoptions; 12488 12489 /* Check the IP header checksum. */ 12490 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12491 /* Clear the IP header h/w cksum flag */ 12492 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12493 } else if (!mctl_present) { 12494 /* 12495 * Don't verify header checksum if this packet is coming 12496 * back from AH/ESP as we already did it. 12497 */ 12498 #define uph ((uint16_t *)ipha) 12499 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12500 uph[6] + uph[7] + uph[8] + uph[9]; 12501 #undef uph 12502 /* finish doing IP checksum */ 12503 sum = (sum & 0xFFFF) + (sum >> 16); 12504 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12505 if (sum != 0 && sum != 0xFFFF) { 12506 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12507 freemsg(first_mp); 12508 return; 12509 } 12510 } 12511 12512 /* 12513 * Count for SNMP of inbound packets for ire. 12514 * if mctl is present this might be a secure packet and 12515 * has already been counted for in ip_proto_input(). 12516 */ 12517 if (!mctl_present) { 12518 UPDATE_IB_PKT_COUNT(ire); 12519 ire->ire_last_used_time = lbolt; 12520 } 12521 12522 /* packet part of fragmented IP packet? */ 12523 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12524 if (u1 & (IPH_MF | IPH_OFFSET)) { 12525 goto fragmented; 12526 } 12527 12528 /* u1 = IP header length (20 bytes) */ 12529 u1 = IP_SIMPLE_HDR_LENGTH; 12530 12531 /* packet does not contain complete IP & UDP headers */ 12532 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12533 goto udppullup; 12534 12535 /* up points to UDP header */ 12536 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12537 #define iphs ((uint16_t *)ipha) 12538 12539 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12540 if (up[3] != 0) { 12541 mblk_t *mp1 = mp->b_cont; 12542 boolean_t cksum_err; 12543 uint16_t hck_flags = 0; 12544 12545 /* Pseudo-header checksum */ 12546 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12547 iphs[9] + up[2]; 12548 12549 /* 12550 * Revert to software checksum calculation if the interface 12551 * isn't capable of checksum offload or if IPsec is present. 12552 */ 12553 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12554 hck_flags = DB_CKSUMFLAGS(mp); 12555 12556 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12557 IP_STAT(ipst, ip_in_sw_cksum); 12558 12559 IP_CKSUM_RECV(hck_flags, u1, 12560 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12561 (int32_t)((uchar_t *)up - rptr), 12562 mp, mp1, cksum_err); 12563 12564 if (cksum_err) { 12565 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12566 if (hck_flags & HCK_FULLCKSUM) 12567 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12568 else if (hck_flags & HCK_PARTIALCKSUM) 12569 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12570 else 12571 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12572 12573 freemsg(first_mp); 12574 return; 12575 } 12576 } 12577 12578 /* Non-fragmented broadcast or multicast packet? */ 12579 if (ire->ire_type == IRE_BROADCAST) 12580 goto udpslowpath; 12581 12582 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12583 ire->ire_zoneid, ipst)) != NULL) { 12584 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12585 IP_STAT(ipst, ip_udp_fast_path); 12586 12587 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12588 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12589 freemsg(mp); 12590 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12591 } else { 12592 if (!mctl_present) { 12593 BUMP_MIB(ill->ill_ip_mib, 12594 ipIfStatsHCInDelivers); 12595 } 12596 /* 12597 * mp and first_mp can change. 12598 */ 12599 if (ip_udp_check(q, connp, recv_ill, 12600 ipha, &mp, &first_mp, mctl_present, ire)) { 12601 /* Send it upstream */ 12602 (connp->conn_recv)(connp, mp, NULL); 12603 } 12604 } 12605 /* 12606 * freeb() cannot deal with null mblk being passed 12607 * in and first_mp can be set to null in the call 12608 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12609 */ 12610 if (mctl_present && first_mp != NULL) { 12611 freeb(first_mp); 12612 } 12613 CONN_DEC_REF(connp); 12614 return; 12615 } 12616 12617 /* 12618 * if we got here we know the packet is not fragmented and 12619 * has no options. The classifier could not find a conn_t and 12620 * most likely its an icmp packet so send it through slow path. 12621 */ 12622 12623 goto udpslowpath; 12624 12625 ipoptions: 12626 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12627 goto slow_done; 12628 } 12629 12630 UPDATE_IB_PKT_COUNT(ire); 12631 ire->ire_last_used_time = lbolt; 12632 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12633 if (u1 & (IPH_MF | IPH_OFFSET)) { 12634 fragmented: 12635 /* 12636 * "sum" and "reass_hck_flags" are non-zero if the 12637 * reassembled packet has a valid hardware computed 12638 * checksum information associated with it. 12639 */ 12640 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12641 &reass_hck_flags)) { 12642 goto slow_done; 12643 } 12644 12645 /* 12646 * Make sure that first_mp points back to mp as 12647 * the mp we came in with could have changed in 12648 * ip_rput_fragment(). 12649 */ 12650 ASSERT(!mctl_present); 12651 ipha = (ipha_t *)mp->b_rptr; 12652 first_mp = mp; 12653 } 12654 12655 /* Now we have a complete datagram, destined for this machine. */ 12656 u1 = IPH_HDR_LENGTH(ipha); 12657 /* Pull up the UDP header, if necessary. */ 12658 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12659 udppullup: 12660 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12661 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12662 freemsg(first_mp); 12663 goto slow_done; 12664 } 12665 ipha = (ipha_t *)mp->b_rptr; 12666 } 12667 12668 /* 12669 * Validate the checksum for the reassembled packet; for the 12670 * pullup case we calculate the payload checksum in software. 12671 */ 12672 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12673 if (up[3] != 0) { 12674 boolean_t cksum_err; 12675 12676 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12677 IP_STAT(ipst, ip_in_sw_cksum); 12678 12679 IP_CKSUM_RECV_REASS(reass_hck_flags, 12680 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12681 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12682 iphs[9] + up[2], sum, cksum_err); 12683 12684 if (cksum_err) { 12685 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12686 12687 if (reass_hck_flags & HCK_FULLCKSUM) 12688 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12689 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12690 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12691 else 12692 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12693 12694 freemsg(first_mp); 12695 goto slow_done; 12696 } 12697 } 12698 udpslowpath: 12699 12700 /* Clear hardware checksum flag to be safe */ 12701 DB_CKSUMFLAGS(mp) = 0; 12702 12703 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12704 (ire->ire_type == IRE_BROADCAST), 12705 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12706 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12707 12708 slow_done: 12709 IP_STAT(ipst, ip_udp_slow_path); 12710 return; 12711 12712 #undef iphs 12713 #undef rptr 12714 } 12715 12716 /* ARGSUSED */ 12717 static mblk_t * 12718 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12719 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12720 ill_rx_ring_t *ill_ring) 12721 { 12722 conn_t *connp; 12723 uint32_t sum; 12724 uint32_t u1; 12725 uint16_t *up; 12726 int offset; 12727 ssize_t len; 12728 mblk_t *mp1; 12729 boolean_t syn_present = B_FALSE; 12730 tcph_t *tcph; 12731 uint_t tcph_flags; 12732 uint_t ip_hdr_len; 12733 ill_t *ill = (ill_t *)q->q_ptr; 12734 zoneid_t zoneid = ire->ire_zoneid; 12735 boolean_t cksum_err; 12736 uint16_t hck_flags = 0; 12737 ip_stack_t *ipst = recv_ill->ill_ipst; 12738 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12739 12740 #define rptr ((uchar_t *)ipha) 12741 12742 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12743 ASSERT(ill != NULL); 12744 12745 /* 12746 * FAST PATH for tcp packets 12747 */ 12748 12749 /* u1 is # words of IP options */ 12750 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12751 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12752 12753 /* IP options present */ 12754 if (u1) { 12755 goto ipoptions; 12756 } else if (!mctl_present) { 12757 /* Check the IP header checksum. */ 12758 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12759 /* Clear the IP header h/w cksum flag */ 12760 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12761 } else if (!mctl_present) { 12762 /* 12763 * Don't verify header checksum if this packet 12764 * is coming back from AH/ESP as we already did it. 12765 */ 12766 #define uph ((uint16_t *)ipha) 12767 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12768 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12769 #undef uph 12770 /* finish doing IP checksum */ 12771 sum = (sum & 0xFFFF) + (sum >> 16); 12772 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12773 if (sum != 0 && sum != 0xFFFF) { 12774 BUMP_MIB(ill->ill_ip_mib, 12775 ipIfStatsInCksumErrs); 12776 goto error; 12777 } 12778 } 12779 } 12780 12781 if (!mctl_present) { 12782 UPDATE_IB_PKT_COUNT(ire); 12783 ire->ire_last_used_time = lbolt; 12784 } 12785 12786 /* packet part of fragmented IP packet? */ 12787 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12788 if (u1 & (IPH_MF | IPH_OFFSET)) { 12789 goto fragmented; 12790 } 12791 12792 /* u1 = IP header length (20 bytes) */ 12793 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12794 12795 /* does packet contain IP+TCP headers? */ 12796 len = mp->b_wptr - rptr; 12797 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12798 IP_STAT(ipst, ip_tcppullup); 12799 goto tcppullup; 12800 } 12801 12802 /* TCP options present? */ 12803 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12804 12805 /* 12806 * If options need to be pulled up, then goto tcpoptions. 12807 * otherwise we are still in the fast path 12808 */ 12809 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12810 IP_STAT(ipst, ip_tcpoptions); 12811 goto tcpoptions; 12812 } 12813 12814 /* multiple mblks of tcp data? */ 12815 if ((mp1 = mp->b_cont) != NULL) { 12816 /* more then two? */ 12817 if (mp1->b_cont != NULL) { 12818 IP_STAT(ipst, ip_multipkttcp); 12819 goto multipkttcp; 12820 } 12821 len += mp1->b_wptr - mp1->b_rptr; 12822 } 12823 12824 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12825 12826 /* part of pseudo checksum */ 12827 12828 /* TCP datagram length */ 12829 u1 = len - IP_SIMPLE_HDR_LENGTH; 12830 12831 #define iphs ((uint16_t *)ipha) 12832 12833 #ifdef _BIG_ENDIAN 12834 u1 += IPPROTO_TCP; 12835 #else 12836 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12837 #endif 12838 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12839 12840 /* 12841 * Revert to software checksum calculation if the interface 12842 * isn't capable of checksum offload or if IPsec is present. 12843 */ 12844 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12845 hck_flags = DB_CKSUMFLAGS(mp); 12846 12847 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12848 IP_STAT(ipst, ip_in_sw_cksum); 12849 12850 IP_CKSUM_RECV(hck_flags, u1, 12851 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12852 (int32_t)((uchar_t *)up - rptr), 12853 mp, mp1, cksum_err); 12854 12855 if (cksum_err) { 12856 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 12857 12858 if (hck_flags & HCK_FULLCKSUM) 12859 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 12860 else if (hck_flags & HCK_PARTIALCKSUM) 12861 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 12862 else 12863 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 12864 12865 goto error; 12866 } 12867 12868 try_again: 12869 12870 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 12871 zoneid, ipst)) == NULL) { 12872 /* Send the TH_RST */ 12873 goto no_conn; 12874 } 12875 12876 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12877 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 12878 12879 /* 12880 * TCP FAST PATH for AF_INET socket. 12881 * 12882 * TCP fast path to avoid extra work. An AF_INET socket type 12883 * does not have facility to receive extra information via 12884 * ip_process or ip_add_info. Also, when the connection was 12885 * established, we made a check if this connection is impacted 12886 * by any global IPsec policy or per connection policy (a 12887 * policy that comes in effect later will not apply to this 12888 * connection). Since all this can be determined at the 12889 * connection establishment time, a quick check of flags 12890 * can avoid extra work. 12891 */ 12892 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12893 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12894 ASSERT(first_mp == mp); 12895 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12896 if (tcph_flags != (TH_SYN | TH_ACK)) { 12897 SET_SQUEUE(mp, tcp_rput_data, connp); 12898 return (mp); 12899 } 12900 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 12901 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 12902 SET_SQUEUE(mp, tcp_input, connp); 12903 return (mp); 12904 } 12905 12906 if (tcph_flags == TH_SYN) { 12907 if (IPCL_IS_TCP(connp)) { 12908 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12909 DB_CKSUMSTART(mp) = 12910 (intptr_t)ip_squeue_get(ill_ring); 12911 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12912 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 12913 BUMP_MIB(ill->ill_ip_mib, 12914 ipIfStatsHCInDelivers); 12915 SET_SQUEUE(mp, connp->conn_recv, connp); 12916 return (mp); 12917 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12918 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 12919 BUMP_MIB(ill->ill_ip_mib, 12920 ipIfStatsHCInDelivers); 12921 ip_squeue_enter_unbound++; 12922 SET_SQUEUE(mp, tcp_conn_request_unbound, 12923 connp); 12924 return (mp); 12925 } 12926 syn_present = B_TRUE; 12927 } 12928 } 12929 12930 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12931 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12932 12933 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12934 /* No need to send this packet to TCP */ 12935 if ((flags & TH_RST) || (flags & TH_URG)) { 12936 CONN_DEC_REF(connp); 12937 freemsg(first_mp); 12938 return (NULL); 12939 } 12940 if (flags & TH_ACK) { 12941 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 12942 ipst->ips_netstack->netstack_tcp, connp); 12943 CONN_DEC_REF(connp); 12944 return (NULL); 12945 } 12946 12947 CONN_DEC_REF(connp); 12948 freemsg(first_mp); 12949 return (NULL); 12950 } 12951 12952 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12953 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12954 ipha, NULL, mctl_present); 12955 if (first_mp == NULL) { 12956 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12957 CONN_DEC_REF(connp); 12958 return (NULL); 12959 } 12960 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12961 ASSERT(syn_present); 12962 if (mctl_present) { 12963 ASSERT(first_mp != mp); 12964 first_mp->b_datap->db_struioflag |= 12965 STRUIO_POLICY; 12966 } else { 12967 ASSERT(first_mp == mp); 12968 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12969 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12970 } 12971 } else { 12972 /* 12973 * Discard first_mp early since we're dealing with a 12974 * fully-connected conn_t and tcp doesn't do policy in 12975 * this case. 12976 */ 12977 if (mctl_present) { 12978 freeb(first_mp); 12979 mctl_present = B_FALSE; 12980 } 12981 first_mp = mp; 12982 } 12983 } 12984 12985 /* Initiate IPPF processing for fastpath */ 12986 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12987 uint32_t ill_index; 12988 12989 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12990 ip_process(IPP_LOCAL_IN, &mp, ill_index); 12991 if (mp == NULL) { 12992 ip2dbg(("ip_input_ipsec_process: TCP pkt " 12993 "deferred/dropped during IPPF processing\n")); 12994 CONN_DEC_REF(connp); 12995 if (mctl_present) 12996 freeb(first_mp); 12997 return (NULL); 12998 } else if (mctl_present) { 12999 /* 13000 * ip_process might return a new mp. 13001 */ 13002 ASSERT(first_mp != mp); 13003 first_mp->b_cont = mp; 13004 } else { 13005 first_mp = mp; 13006 } 13007 13008 } 13009 13010 if (!syn_present && connp->conn_ip_recvpktinfo) { 13011 /* 13012 * TCP does not support IP_RECVPKTINFO for v4 so lets 13013 * make sure IPF_RECVIF is passed to ip_add_info. 13014 */ 13015 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13016 IPCL_ZONEID(connp), ipst); 13017 if (mp == NULL) { 13018 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13019 CONN_DEC_REF(connp); 13020 if (mctl_present) 13021 freeb(first_mp); 13022 return (NULL); 13023 } else if (mctl_present) { 13024 /* 13025 * ip_add_info might return a new mp. 13026 */ 13027 ASSERT(first_mp != mp); 13028 first_mp->b_cont = mp; 13029 } else { 13030 first_mp = mp; 13031 } 13032 } 13033 13034 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13035 if (IPCL_IS_TCP(connp)) { 13036 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13037 return (first_mp); 13038 } else { 13039 /* SOCK_RAW, IPPROTO_TCP case */ 13040 (connp->conn_recv)(connp, first_mp, NULL); 13041 CONN_DEC_REF(connp); 13042 return (NULL); 13043 } 13044 13045 no_conn: 13046 /* Initiate IPPf processing, if needed. */ 13047 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13048 uint32_t ill_index; 13049 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13050 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13051 if (first_mp == NULL) { 13052 return (NULL); 13053 } 13054 } 13055 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13056 13057 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13058 ipst->ips_netstack->netstack_tcp, NULL); 13059 return (NULL); 13060 ipoptions: 13061 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13062 goto slow_done; 13063 } 13064 13065 UPDATE_IB_PKT_COUNT(ire); 13066 ire->ire_last_used_time = lbolt; 13067 13068 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13069 if (u1 & (IPH_MF | IPH_OFFSET)) { 13070 fragmented: 13071 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13072 if (mctl_present) 13073 freeb(first_mp); 13074 goto slow_done; 13075 } 13076 /* 13077 * Make sure that first_mp points back to mp as 13078 * the mp we came in with could have changed in 13079 * ip_rput_fragment(). 13080 */ 13081 ASSERT(!mctl_present); 13082 ipha = (ipha_t *)mp->b_rptr; 13083 first_mp = mp; 13084 } 13085 13086 /* Now we have a complete datagram, destined for this machine. */ 13087 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13088 13089 len = mp->b_wptr - mp->b_rptr; 13090 /* Pull up a minimal TCP header, if necessary. */ 13091 if (len < (u1 + 20)) { 13092 tcppullup: 13093 if (!pullupmsg(mp, u1 + 20)) { 13094 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13095 goto error; 13096 } 13097 ipha = (ipha_t *)mp->b_rptr; 13098 len = mp->b_wptr - mp->b_rptr; 13099 } 13100 13101 /* 13102 * Extract the offset field from the TCP header. As usual, we 13103 * try to help the compiler more than the reader. 13104 */ 13105 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13106 if (offset != 5) { 13107 tcpoptions: 13108 if (offset < 5) { 13109 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13110 goto error; 13111 } 13112 /* 13113 * There must be TCP options. 13114 * Make sure we can grab them. 13115 */ 13116 offset <<= 2; 13117 offset += u1; 13118 if (len < offset) { 13119 if (!pullupmsg(mp, offset)) { 13120 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13121 goto error; 13122 } 13123 ipha = (ipha_t *)mp->b_rptr; 13124 len = mp->b_wptr - rptr; 13125 } 13126 } 13127 13128 /* Get the total packet length in len, including headers. */ 13129 if (mp->b_cont) { 13130 multipkttcp: 13131 len = msgdsize(mp); 13132 } 13133 13134 /* 13135 * Check the TCP checksum by pulling together the pseudo- 13136 * header checksum, and passing it to ip_csum to be added in 13137 * with the TCP datagram. 13138 * 13139 * Since we are not using the hwcksum if available we must 13140 * clear the flag. We may come here via tcppullup or tcpoptions. 13141 * If either of these fails along the way the mblk is freed. 13142 * If this logic ever changes and mblk is reused to say send 13143 * ICMP's back, then this flag may need to be cleared in 13144 * other places as well. 13145 */ 13146 DB_CKSUMFLAGS(mp) = 0; 13147 13148 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13149 13150 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13151 #ifdef _BIG_ENDIAN 13152 u1 += IPPROTO_TCP; 13153 #else 13154 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13155 #endif 13156 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13157 /* 13158 * Not M_DATA mblk or its a dup, so do the checksum now. 13159 */ 13160 IP_STAT(ipst, ip_in_sw_cksum); 13161 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13162 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13163 goto error; 13164 } 13165 13166 IP_STAT(ipst, ip_tcp_slow_path); 13167 goto try_again; 13168 #undef iphs 13169 #undef rptr 13170 13171 error: 13172 freemsg(first_mp); 13173 slow_done: 13174 return (NULL); 13175 } 13176 13177 /* ARGSUSED */ 13178 static void 13179 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13180 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13181 { 13182 conn_t *connp; 13183 uint32_t sum; 13184 uint32_t u1; 13185 ssize_t len; 13186 sctp_hdr_t *sctph; 13187 zoneid_t zoneid = ire->ire_zoneid; 13188 uint32_t pktsum; 13189 uint32_t calcsum; 13190 uint32_t ports; 13191 in6_addr_t map_src, map_dst; 13192 ill_t *ill = (ill_t *)q->q_ptr; 13193 ip_stack_t *ipst; 13194 sctp_stack_t *sctps; 13195 boolean_t sctp_csum_err = B_FALSE; 13196 13197 ASSERT(recv_ill != NULL); 13198 ipst = recv_ill->ill_ipst; 13199 sctps = ipst->ips_netstack->netstack_sctp; 13200 13201 #define rptr ((uchar_t *)ipha) 13202 13203 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13204 ASSERT(ill != NULL); 13205 13206 /* u1 is # words of IP options */ 13207 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13208 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13209 13210 /* IP options present */ 13211 if (u1 > 0) { 13212 goto ipoptions; 13213 } else { 13214 /* Check the IP header checksum. */ 13215 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13216 !mctl_present) { 13217 #define uph ((uint16_t *)ipha) 13218 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13219 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13220 #undef uph 13221 /* finish doing IP checksum */ 13222 sum = (sum & 0xFFFF) + (sum >> 16); 13223 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13224 /* 13225 * Don't verify header checksum if this packet 13226 * is coming back from AH/ESP as we already did it. 13227 */ 13228 if (sum != 0 && sum != 0xFFFF) { 13229 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13230 goto error; 13231 } 13232 } 13233 /* 13234 * Since there is no SCTP h/w cksum support yet, just 13235 * clear the flag. 13236 */ 13237 DB_CKSUMFLAGS(mp) = 0; 13238 } 13239 13240 /* 13241 * Don't verify header checksum if this packet is coming 13242 * back from AH/ESP as we already did it. 13243 */ 13244 if (!mctl_present) { 13245 UPDATE_IB_PKT_COUNT(ire); 13246 ire->ire_last_used_time = lbolt; 13247 } 13248 13249 /* packet part of fragmented IP packet? */ 13250 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13251 if (u1 & (IPH_MF | IPH_OFFSET)) 13252 goto fragmented; 13253 13254 /* u1 = IP header length (20 bytes) */ 13255 u1 = IP_SIMPLE_HDR_LENGTH; 13256 13257 find_sctp_client: 13258 /* Pullup if we don't have the sctp common header. */ 13259 len = MBLKL(mp); 13260 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13261 if (mp->b_cont == NULL || 13262 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13263 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13264 goto error; 13265 } 13266 ipha = (ipha_t *)mp->b_rptr; 13267 len = MBLKL(mp); 13268 } 13269 13270 sctph = (sctp_hdr_t *)(rptr + u1); 13271 #ifdef DEBUG 13272 if (!skip_sctp_cksum) { 13273 #endif 13274 pktsum = sctph->sh_chksum; 13275 sctph->sh_chksum = 0; 13276 calcsum = sctp_cksum(mp, u1); 13277 sctph->sh_chksum = pktsum; 13278 if (calcsum != pktsum) 13279 sctp_csum_err = B_TRUE; 13280 #ifdef DEBUG /* skip_sctp_cksum */ 13281 } 13282 #endif 13283 /* get the ports */ 13284 ports = *(uint32_t *)&sctph->sh_sport; 13285 13286 IRE_REFRELE(ire); 13287 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13288 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13289 if (sctp_csum_err) { 13290 /* 13291 * No potential sctp checksum errors go to the Sun 13292 * sctp stack however they might be Adler-32 summed 13293 * packets a userland stack bound to a raw IP socket 13294 * could reasonably use. Note though that Adler-32 is 13295 * a long deprecated algorithm and customer sctp 13296 * networks should eventually migrate to CRC-32 at 13297 * which time this facility should be removed. 13298 */ 13299 flags |= IP_FF_SCTP_CSUM_ERR; 13300 goto no_conn; 13301 } 13302 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13303 sctps)) == NULL) { 13304 /* Check for raw socket or OOTB handling */ 13305 goto no_conn; 13306 } 13307 13308 /* Found a client; up it goes */ 13309 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13310 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13311 return; 13312 13313 no_conn: 13314 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13315 ports, mctl_present, flags, B_TRUE, zoneid); 13316 return; 13317 13318 ipoptions: 13319 DB_CKSUMFLAGS(mp) = 0; 13320 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13321 goto slow_done; 13322 13323 UPDATE_IB_PKT_COUNT(ire); 13324 ire->ire_last_used_time = lbolt; 13325 13326 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13327 if (u1 & (IPH_MF | IPH_OFFSET)) { 13328 fragmented: 13329 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13330 goto slow_done; 13331 /* 13332 * Make sure that first_mp points back to mp as 13333 * the mp we came in with could have changed in 13334 * ip_rput_fragment(). 13335 */ 13336 ASSERT(!mctl_present); 13337 ipha = (ipha_t *)mp->b_rptr; 13338 first_mp = mp; 13339 } 13340 13341 /* Now we have a complete datagram, destined for this machine. */ 13342 u1 = IPH_HDR_LENGTH(ipha); 13343 goto find_sctp_client; 13344 #undef iphs 13345 #undef rptr 13346 13347 error: 13348 freemsg(first_mp); 13349 slow_done: 13350 IRE_REFRELE(ire); 13351 } 13352 13353 #define VER_BITS 0xF0 13354 #define VERSION_6 0x60 13355 13356 static boolean_t 13357 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13358 ipaddr_t *dstp, ip_stack_t *ipst) 13359 { 13360 uint_t opt_len; 13361 ipha_t *ipha; 13362 ssize_t len; 13363 uint_t pkt_len; 13364 13365 ASSERT(ill != NULL); 13366 IP_STAT(ipst, ip_ipoptions); 13367 ipha = *iphapp; 13368 13369 #define rptr ((uchar_t *)ipha) 13370 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13371 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13372 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13373 freemsg(mp); 13374 return (B_FALSE); 13375 } 13376 13377 /* multiple mblk or too short */ 13378 pkt_len = ntohs(ipha->ipha_length); 13379 13380 /* Get the number of words of IP options in the IP header. */ 13381 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13382 if (opt_len) { 13383 /* IP Options present! Validate and process. */ 13384 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13385 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13386 goto done; 13387 } 13388 /* 13389 * Recompute complete header length and make sure we 13390 * have access to all of it. 13391 */ 13392 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13393 if (len > (mp->b_wptr - rptr)) { 13394 if (len > pkt_len) { 13395 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13396 goto done; 13397 } 13398 if (!pullupmsg(mp, len)) { 13399 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13400 goto done; 13401 } 13402 ipha = (ipha_t *)mp->b_rptr; 13403 } 13404 /* 13405 * Go off to ip_rput_options which returns the next hop 13406 * destination address, which may have been affected 13407 * by source routing. 13408 */ 13409 IP_STAT(ipst, ip_opt); 13410 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13411 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13412 return (B_FALSE); 13413 } 13414 } 13415 *iphapp = ipha; 13416 return (B_TRUE); 13417 done: 13418 /* clear b_prev - used by ip_mroute_decap */ 13419 mp->b_prev = NULL; 13420 freemsg(mp); 13421 return (B_FALSE); 13422 #undef rptr 13423 } 13424 13425 /* 13426 * Deal with the fact that there is no ire for the destination. 13427 */ 13428 static ire_t * 13429 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13430 { 13431 ipha_t *ipha; 13432 ill_t *ill; 13433 ire_t *ire; 13434 ip_stack_t *ipst; 13435 enum ire_forward_action ret_action; 13436 13437 ipha = (ipha_t *)mp->b_rptr; 13438 ill = (ill_t *)q->q_ptr; 13439 13440 ASSERT(ill != NULL); 13441 ipst = ill->ill_ipst; 13442 13443 /* 13444 * No IRE for this destination, so it can't be for us. 13445 * Unless we are forwarding, drop the packet. 13446 * We have to let source routed packets through 13447 * since we don't yet know if they are 'ping -l' 13448 * packets i.e. if they will go out over the 13449 * same interface as they came in on. 13450 */ 13451 if (ll_multicast) { 13452 freemsg(mp); 13453 return (NULL); 13454 } 13455 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13456 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13457 freemsg(mp); 13458 return (NULL); 13459 } 13460 13461 /* 13462 * Mark this packet as having originated externally. 13463 * 13464 * For non-forwarding code path, ire_send later double 13465 * checks this interface to see if it is still exists 13466 * post-ARP resolution. 13467 * 13468 * Also, IPQOS uses this to differentiate between 13469 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13470 * QOS packet processing in ip_wput_attach_llhdr(). 13471 * The QoS module can mark the b_band for a fastpath message 13472 * or the dl_priority field in a unitdata_req header for 13473 * CoS marking. This info can only be found in 13474 * ip_wput_attach_llhdr(). 13475 */ 13476 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13477 /* 13478 * Clear the indication that this may have a hardware checksum 13479 * as we are not using it 13480 */ 13481 DB_CKSUMFLAGS(mp) = 0; 13482 13483 ire = ire_forward(dst, &ret_action, NULL, NULL, 13484 MBLK_GETLABEL(mp), ipst); 13485 13486 if (ire == NULL && ret_action == Forward_check_multirt) { 13487 /* Let ip_newroute handle CGTP */ 13488 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13489 return (NULL); 13490 } 13491 13492 if (ire != NULL) 13493 return (ire); 13494 13495 mp->b_prev = mp->b_next = 0; 13496 13497 if (ret_action == Forward_blackhole) { 13498 freemsg(mp); 13499 return (NULL); 13500 } 13501 /* send icmp unreachable */ 13502 q = WR(q); 13503 /* Sent by forwarding path, and router is global zone */ 13504 if (ip_source_routed(ipha, ipst)) { 13505 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13506 GLOBAL_ZONEID, ipst); 13507 } else { 13508 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13509 ipst); 13510 } 13511 13512 return (NULL); 13513 13514 } 13515 13516 /* 13517 * check ip header length and align it. 13518 */ 13519 static boolean_t 13520 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13521 { 13522 ssize_t len; 13523 ill_t *ill; 13524 ipha_t *ipha; 13525 13526 len = MBLKL(mp); 13527 13528 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13529 ill = (ill_t *)q->q_ptr; 13530 13531 if (!OK_32PTR(mp->b_rptr)) 13532 IP_STAT(ipst, ip_notaligned1); 13533 else 13534 IP_STAT(ipst, ip_notaligned2); 13535 /* Guard against bogus device drivers */ 13536 if (len < 0) { 13537 /* clear b_prev - used by ip_mroute_decap */ 13538 mp->b_prev = NULL; 13539 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13540 freemsg(mp); 13541 return (B_FALSE); 13542 } 13543 13544 if (ip_rput_pullups++ == 0) { 13545 ipha = (ipha_t *)mp->b_rptr; 13546 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13547 "ip_check_and_align_header: %s forced us to " 13548 " pullup pkt, hdr len %ld, hdr addr %p", 13549 ill->ill_name, len, (void *)ipha); 13550 } 13551 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13552 /* clear b_prev - used by ip_mroute_decap */ 13553 mp->b_prev = NULL; 13554 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13555 freemsg(mp); 13556 return (B_FALSE); 13557 } 13558 } 13559 return (B_TRUE); 13560 } 13561 13562 /* 13563 * Handle the situation where a packet came in on `ill' but matched an IRE 13564 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13565 * for interface statistics. 13566 */ 13567 ire_t * 13568 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13569 { 13570 ire_t *new_ire; 13571 ill_t *ire_ill; 13572 uint_t ifindex; 13573 ip_stack_t *ipst = ill->ill_ipst; 13574 boolean_t strict_check = B_FALSE; 13575 13576 /* 13577 * IPMP common case: if IRE and ILL are in the same group, there's no 13578 * issue (e.g. packet received on an underlying interface matched an 13579 * IRE_LOCAL on its associated group interface). 13580 */ 13581 if (ire->ire_rfq != NULL && 13582 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13583 return (ire); 13584 } 13585 13586 /* 13587 * Do another ire lookup here, using the ingress ill, to see if the 13588 * interface is in a usesrc group. 13589 * As long as the ills belong to the same group, we don't consider 13590 * them to be arriving on the wrong interface. Thus, if the switch 13591 * is doing inbound load spreading, we won't drop packets when the 13592 * ip*_strict_dst_multihoming switch is on. 13593 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13594 * where the local address may not be unique. In this case we were 13595 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13596 * actually returned. The new lookup, which is more specific, should 13597 * only find the IRE_LOCAL associated with the ingress ill if one 13598 * exists. 13599 */ 13600 13601 if (ire->ire_ipversion == IPV4_VERSION) { 13602 if (ipst->ips_ip_strict_dst_multihoming) 13603 strict_check = B_TRUE; 13604 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13605 ill->ill_ipif, ALL_ZONES, NULL, 13606 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13607 } else { 13608 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13609 if (ipst->ips_ipv6_strict_dst_multihoming) 13610 strict_check = B_TRUE; 13611 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13612 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13613 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13614 } 13615 /* 13616 * If the same ire that was returned in ip_input() is found then this 13617 * is an indication that usesrc groups are in use. The packet 13618 * arrived on a different ill in the group than the one associated with 13619 * the destination address. If a different ire was found then the same 13620 * IP address must be hosted on multiple ills. This is possible with 13621 * unnumbered point2point interfaces. We switch to use this new ire in 13622 * order to have accurate interface statistics. 13623 */ 13624 if (new_ire != NULL) { 13625 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13626 ire_refrele(ire); 13627 ire = new_ire; 13628 } else { 13629 ire_refrele(new_ire); 13630 } 13631 return (ire); 13632 } else if ((ire->ire_rfq == NULL) && 13633 (ire->ire_ipversion == IPV4_VERSION)) { 13634 /* 13635 * The best match could have been the original ire which 13636 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13637 * the strict multihoming checks are irrelevant as we consider 13638 * local addresses hosted on lo0 to be interface agnostic. We 13639 * only expect a null ire_rfq on IREs which are associated with 13640 * lo0 hence we can return now. 13641 */ 13642 return (ire); 13643 } 13644 13645 /* 13646 * Chase pointers once and store locally. 13647 */ 13648 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13649 (ill_t *)(ire->ire_rfq->q_ptr); 13650 ifindex = ill->ill_usesrc_ifindex; 13651 13652 /* 13653 * Check if it's a legal address on the 'usesrc' interface. 13654 */ 13655 if ((ifindex != 0) && (ire_ill != NULL) && 13656 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13657 return (ire); 13658 } 13659 13660 /* 13661 * If the ip*_strict_dst_multihoming switch is on then we can 13662 * only accept this packet if the interface is marked as routing. 13663 */ 13664 if (!(strict_check)) 13665 return (ire); 13666 13667 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13668 ILLF_ROUTER) != 0) { 13669 return (ire); 13670 } 13671 13672 ire_refrele(ire); 13673 return (NULL); 13674 } 13675 13676 /* 13677 * 13678 * This is the fast forward path. If we are here, we dont need to 13679 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13680 * needed to find the nexthop in this case is much simpler 13681 */ 13682 ire_t * 13683 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13684 { 13685 ipha_t *ipha; 13686 ire_t *src_ire; 13687 ill_t *stq_ill; 13688 uint_t hlen; 13689 uint_t pkt_len; 13690 uint32_t sum; 13691 queue_t *dev_q; 13692 ip_stack_t *ipst = ill->ill_ipst; 13693 mblk_t *fpmp; 13694 enum ire_forward_action ret_action; 13695 13696 ipha = (ipha_t *)mp->b_rptr; 13697 13698 if (ire != NULL && 13699 ire->ire_zoneid != GLOBAL_ZONEID && 13700 ire->ire_zoneid != ALL_ZONES) { 13701 /* 13702 * Should only use IREs that are visible to the global 13703 * zone for forwarding. 13704 */ 13705 ire_refrele(ire); 13706 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13707 /* 13708 * ire_cache_lookup() can return ire of IRE_LOCAL in 13709 * transient cases. In such case, just drop the packet 13710 */ 13711 if (ire->ire_type != IRE_CACHE) 13712 goto drop; 13713 } 13714 13715 /* 13716 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13717 * The loopback address check for both src and dst has already 13718 * been checked in ip_input 13719 */ 13720 13721 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13722 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13723 goto drop; 13724 } 13725 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13726 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13727 13728 if (src_ire != NULL) { 13729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13730 ire_refrele(src_ire); 13731 goto drop; 13732 } 13733 13734 /* No ire cache of nexthop. So first create one */ 13735 if (ire == NULL) { 13736 13737 ire = ire_forward_simple(dst, &ret_action, ipst); 13738 13739 /* 13740 * We only come to ip_fast_forward if ip_cgtp_filter 13741 * is not set. So ire_forward() should not return with 13742 * Forward_check_multirt as the next action. 13743 */ 13744 ASSERT(ret_action != Forward_check_multirt); 13745 if (ire == NULL) { 13746 /* An attempt was made to forward the packet */ 13747 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13748 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13749 mp->b_prev = mp->b_next = 0; 13750 /* send icmp unreachable */ 13751 /* Sent by forwarding path, and router is global zone */ 13752 if (ret_action == Forward_ret_icmp_err) { 13753 if (ip_source_routed(ipha, ipst)) { 13754 icmp_unreachable(ill->ill_wq, mp, 13755 ICMP_SOURCE_ROUTE_FAILED, 13756 GLOBAL_ZONEID, ipst); 13757 } else { 13758 icmp_unreachable(ill->ill_wq, mp, 13759 ICMP_HOST_UNREACHABLE, 13760 GLOBAL_ZONEID, ipst); 13761 } 13762 } else { 13763 freemsg(mp); 13764 } 13765 return (NULL); 13766 } 13767 } 13768 13769 /* 13770 * Forwarding fastpath exception case: 13771 * If any of the following are true, we take the slowpath: 13772 * o forwarding is not enabled 13773 * o incoming and outgoing interface are the same, or in the same 13774 * IPMP group. 13775 * o corresponding ire is in incomplete state 13776 * o packet needs fragmentation 13777 * o ARP cache is not resolved 13778 * 13779 * The codeflow from here on is thus: 13780 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13781 */ 13782 pkt_len = ntohs(ipha->ipha_length); 13783 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13784 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13785 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13786 (ire->ire_nce == NULL) || 13787 (pkt_len > ire->ire_max_frag) || 13788 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13789 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13790 ipha->ipha_ttl <= 1) { 13791 ip_rput_process_forward(ill->ill_rq, mp, ire, 13792 ipha, ill, B_FALSE, B_TRUE); 13793 return (ire); 13794 } 13795 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13796 13797 DTRACE_PROBE4(ip4__forwarding__start, 13798 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13799 13800 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13801 ipst->ips_ipv4firewall_forwarding, 13802 ill, stq_ill, ipha, mp, mp, 0, ipst); 13803 13804 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13805 13806 if (mp == NULL) 13807 goto drop; 13808 13809 mp->b_datap->db_struioun.cksum.flags = 0; 13810 /* Adjust the checksum to reflect the ttl decrement. */ 13811 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13812 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13813 ipha->ipha_ttl--; 13814 13815 /* 13816 * Write the link layer header. We can do this safely here, 13817 * because we have already tested to make sure that the IP 13818 * policy is not set, and that we have a fast path destination 13819 * header. 13820 */ 13821 mp->b_rptr -= hlen; 13822 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13823 13824 UPDATE_IB_PKT_COUNT(ire); 13825 ire->ire_last_used_time = lbolt; 13826 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13827 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13828 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 13829 13830 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 13831 dev_q = ire->ire_stq->q_next; 13832 if (DEV_Q_FLOW_BLOCKED(dev_q)) 13833 goto indiscard; 13834 } 13835 13836 DTRACE_PROBE4(ip4__physical__out__start, 13837 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13838 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13839 ipst->ips_ipv4firewall_physical_out, 13840 NULL, stq_ill, ipha, mp, mp, 0, ipst); 13841 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 13842 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 13843 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 13844 ip6_t *, NULL, int, 0); 13845 13846 if (mp != NULL) { 13847 if (ipst->ips_ipobs_enabled) { 13848 zoneid_t szone; 13849 13850 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 13851 ipst, ALL_ZONES); 13852 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 13853 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 13854 } 13855 13856 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC); 13857 } 13858 return (ire); 13859 13860 indiscard: 13861 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13862 drop: 13863 if (mp != NULL) 13864 freemsg(mp); 13865 return (ire); 13866 13867 } 13868 13869 /* 13870 * This function is called in the forwarding slowpath, when 13871 * either the ire lacks the link-layer address, or the packet needs 13872 * further processing(eg. fragmentation), before transmission. 13873 */ 13874 13875 static void 13876 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13877 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 13878 { 13879 queue_t *dev_q; 13880 ire_t *src_ire; 13881 ip_stack_t *ipst = ill->ill_ipst; 13882 boolean_t same_illgrp = B_FALSE; 13883 13884 ASSERT(ire->ire_stq != NULL); 13885 13886 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13887 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13888 13889 /* 13890 * If the caller of this function is ip_fast_forward() skip the 13891 * next three checks as it does not apply. 13892 */ 13893 if (from_ip_fast_forward) 13894 goto skip; 13895 13896 if (ll_multicast != 0) { 13897 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13898 goto drop_pkt; 13899 } 13900 13901 /* 13902 * check if ipha_src is a broadcast address. Note that this 13903 * check is redundant when we get here from ip_fast_forward() 13904 * which has already done this check. However, since we can 13905 * also get here from ip_rput_process_broadcast() or, for 13906 * for the slow path through ip_fast_forward(), we perform 13907 * the check again for code-reusability 13908 */ 13909 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13910 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13911 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 13912 if (src_ire != NULL) 13913 ire_refrele(src_ire); 13914 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13915 ip2dbg(("ip_rput_process_forward: Received packet with" 13916 " bad src/dst address on %s\n", ill->ill_name)); 13917 goto drop_pkt; 13918 } 13919 13920 /* 13921 * Check if we want to forward this one at this time. 13922 * We allow source routed packets on a host provided that 13923 * they go out the same ill or illgrp as they came in on. 13924 * 13925 * XXX To be quicker, we may wish to not chase pointers to 13926 * get the ILLF_ROUTER flag and instead store the 13927 * forwarding policy in the ire. An unfortunate 13928 * side-effect of that would be requiring an ire flush 13929 * whenever the ILLF_ROUTER flag changes. 13930 */ 13931 skip: 13932 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 13933 13934 if (((ill->ill_flags & 13935 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 13936 !(ip_source_routed(ipha, ipst) && 13937 (ire->ire_rfq == q || same_illgrp))) { 13938 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13939 if (ip_source_routed(ipha, ipst)) { 13940 q = WR(q); 13941 /* 13942 * Clear the indication that this may have 13943 * hardware checksum as we are not using it. 13944 */ 13945 DB_CKSUMFLAGS(mp) = 0; 13946 /* Sent by forwarding path, and router is global zone */ 13947 icmp_unreachable(q, mp, 13948 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 13949 return; 13950 } 13951 goto drop_pkt; 13952 } 13953 13954 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13955 13956 /* Packet is being forwarded. Turning off hwcksum flag. */ 13957 DB_CKSUMFLAGS(mp) = 0; 13958 if (ipst->ips_ip_g_send_redirects) { 13959 /* 13960 * Check whether the incoming interface and outgoing 13961 * interface is part of the same group. If so, 13962 * send redirects. 13963 * 13964 * Check the source address to see if it originated 13965 * on the same logical subnet it is going back out on. 13966 * If so, we should be able to send it a redirect. 13967 * Avoid sending a redirect if the destination 13968 * is directly connected (i.e., ipha_dst is the same 13969 * as ire_gateway_addr or the ire_addr of the 13970 * nexthop IRE_CACHE ), or if the packet was source 13971 * routed out this interface. 13972 */ 13973 ipaddr_t src, nhop; 13974 mblk_t *mp1; 13975 ire_t *nhop_ire = NULL; 13976 13977 /* 13978 * Check whether ire_rfq and q are from the same ill or illgrp. 13979 * If so, send redirects. 13980 */ 13981 if ((ire->ire_rfq == q || same_illgrp) && 13982 !ip_source_routed(ipha, ipst)) { 13983 13984 nhop = (ire->ire_gateway_addr != 0 ? 13985 ire->ire_gateway_addr : ire->ire_addr); 13986 13987 if (ipha->ipha_dst == nhop) { 13988 /* 13989 * We avoid sending a redirect if the 13990 * destination is directly connected 13991 * because it is possible that multiple 13992 * IP subnets may have been configured on 13993 * the link, and the source may not 13994 * be on the same subnet as ip destination, 13995 * even though they are on the same 13996 * physical link. 13997 */ 13998 goto sendit; 13999 } 14000 14001 src = ipha->ipha_src; 14002 14003 /* 14004 * We look up the interface ire for the nexthop, 14005 * to see if ipha_src is in the same subnet 14006 * as the nexthop. 14007 * 14008 * Note that, if, in the future, IRE_CACHE entries 14009 * are obsoleted, this lookup will not be needed, 14010 * as the ire passed to this function will be the 14011 * same as the nhop_ire computed below. 14012 */ 14013 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14014 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14015 0, NULL, MATCH_IRE_TYPE, ipst); 14016 14017 if (nhop_ire != NULL) { 14018 if ((src & nhop_ire->ire_mask) == 14019 (nhop & nhop_ire->ire_mask)) { 14020 /* 14021 * The source is directly connected. 14022 * Just copy the ip header (which is 14023 * in the first mblk) 14024 */ 14025 mp1 = copyb(mp); 14026 if (mp1 != NULL) { 14027 icmp_send_redirect(WR(q), mp1, 14028 nhop, ipst); 14029 } 14030 } 14031 ire_refrele(nhop_ire); 14032 } 14033 } 14034 } 14035 sendit: 14036 dev_q = ire->ire_stq->q_next; 14037 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14038 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14039 freemsg(mp); 14040 return; 14041 } 14042 14043 ip_rput_forward(ire, ipha, mp, ill); 14044 return; 14045 14046 drop_pkt: 14047 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14048 freemsg(mp); 14049 } 14050 14051 ire_t * 14052 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14053 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14054 { 14055 queue_t *q; 14056 uint16_t hcksumflags; 14057 ip_stack_t *ipst = ill->ill_ipst; 14058 14059 q = *qp; 14060 14061 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14062 14063 /* 14064 * Clear the indication that this may have hardware 14065 * checksum as we are not using it for forwarding. 14066 */ 14067 hcksumflags = DB_CKSUMFLAGS(mp); 14068 DB_CKSUMFLAGS(mp) = 0; 14069 14070 /* 14071 * Directed broadcast forwarding: if the packet came in over a 14072 * different interface then it is routed out over we can forward it. 14073 */ 14074 if (ipha->ipha_protocol == IPPROTO_TCP) { 14075 ire_refrele(ire); 14076 freemsg(mp); 14077 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14078 return (NULL); 14079 } 14080 /* 14081 * For multicast we have set dst to be INADDR_BROADCAST 14082 * for delivering to all STREAMS. 14083 */ 14084 if (!CLASSD(ipha->ipha_dst)) { 14085 ire_t *new_ire; 14086 ipif_t *ipif; 14087 14088 ipif = ipif_get_next_ipif(NULL, ill); 14089 if (ipif == NULL) { 14090 discard: ire_refrele(ire); 14091 freemsg(mp); 14092 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14093 return (NULL); 14094 } 14095 new_ire = ire_ctable_lookup(dst, 0, 0, 14096 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14097 ipif_refrele(ipif); 14098 14099 if (new_ire != NULL) { 14100 /* 14101 * If the matching IRE_BROADCAST is part of an IPMP 14102 * group, then drop the packet unless our ill has been 14103 * nominated to receive for the group. 14104 */ 14105 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14106 new_ire->ire_rfq != q) { 14107 ire_refrele(new_ire); 14108 goto discard; 14109 } 14110 14111 /* 14112 * In the special case of multirouted broadcast 14113 * packets, we unconditionally need to "gateway" 14114 * them to the appropriate interface here. 14115 * In the normal case, this cannot happen, because 14116 * there is no broadcast IRE tagged with the 14117 * RTF_MULTIRT flag. 14118 */ 14119 if (new_ire->ire_flags & RTF_MULTIRT) { 14120 ire_refrele(new_ire); 14121 if (ire->ire_rfq != NULL) { 14122 q = ire->ire_rfq; 14123 *qp = q; 14124 } 14125 } else { 14126 ire_refrele(ire); 14127 ire = new_ire; 14128 } 14129 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14130 if (!ipst->ips_ip_g_forward_directed_bcast) { 14131 /* 14132 * Free the message if 14133 * ip_g_forward_directed_bcast is turned 14134 * off for non-local broadcast. 14135 */ 14136 ire_refrele(ire); 14137 freemsg(mp); 14138 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14139 return (NULL); 14140 } 14141 } else { 14142 /* 14143 * This CGTP packet successfully passed the 14144 * CGTP filter, but the related CGTP 14145 * broadcast IRE has not been found, 14146 * meaning that the redundant ipif is 14147 * probably down. However, if we discarded 14148 * this packet, its duplicate would be 14149 * filtered out by the CGTP filter so none 14150 * of them would get through. So we keep 14151 * going with this one. 14152 */ 14153 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14154 if (ire->ire_rfq != NULL) { 14155 q = ire->ire_rfq; 14156 *qp = q; 14157 } 14158 } 14159 } 14160 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14161 /* 14162 * Verify that there are not more then one 14163 * IRE_BROADCAST with this broadcast address which 14164 * has ire_stq set. 14165 * TODO: simplify, loop over all IRE's 14166 */ 14167 ire_t *ire1; 14168 int num_stq = 0; 14169 mblk_t *mp1; 14170 14171 /* Find the first one with ire_stq set */ 14172 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14173 for (ire1 = ire; ire1 && 14174 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14175 ire1 = ire1->ire_next) 14176 ; 14177 if (ire1) { 14178 ire_refrele(ire); 14179 ire = ire1; 14180 IRE_REFHOLD(ire); 14181 } 14182 14183 /* Check if there are additional ones with stq set */ 14184 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14185 if (ire->ire_addr != ire1->ire_addr) 14186 break; 14187 if (ire1->ire_stq) { 14188 num_stq++; 14189 break; 14190 } 14191 } 14192 rw_exit(&ire->ire_bucket->irb_lock); 14193 if (num_stq == 1 && ire->ire_stq != NULL) { 14194 ip1dbg(("ip_rput_process_broadcast: directed " 14195 "broadcast to 0x%x\n", 14196 ntohl(ire->ire_addr))); 14197 mp1 = copymsg(mp); 14198 if (mp1) { 14199 switch (ipha->ipha_protocol) { 14200 case IPPROTO_UDP: 14201 ip_udp_input(q, mp1, ipha, ire, ill); 14202 break; 14203 default: 14204 ip_proto_input(q, mp1, ipha, ire, ill, 14205 0); 14206 break; 14207 } 14208 } 14209 /* 14210 * Adjust ttl to 2 (1+1 - the forward engine 14211 * will decrement it by one. 14212 */ 14213 if (ip_csum_hdr(ipha)) { 14214 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14215 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14216 freemsg(mp); 14217 ire_refrele(ire); 14218 return (NULL); 14219 } 14220 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14221 ipha->ipha_hdr_checksum = 0; 14222 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14223 ip_rput_process_forward(q, mp, ire, ipha, 14224 ill, ll_multicast, B_FALSE); 14225 ire_refrele(ire); 14226 return (NULL); 14227 } 14228 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14229 ntohl(ire->ire_addr))); 14230 } 14231 14232 14233 /* Restore any hardware checksum flags */ 14234 DB_CKSUMFLAGS(mp) = hcksumflags; 14235 return (ire); 14236 } 14237 14238 /* ARGSUSED */ 14239 static boolean_t 14240 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14241 int *ll_multicast, ipaddr_t *dstp) 14242 { 14243 ip_stack_t *ipst = ill->ill_ipst; 14244 14245 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14246 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14247 ntohs(ipha->ipha_length)); 14248 14249 /* 14250 * So that we don't end up with dups, only one ill an IPMP group is 14251 * nominated to receive multicast traffic. 14252 */ 14253 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14254 goto drop_pkt; 14255 14256 /* 14257 * Forward packets only if we have joined the allmulti 14258 * group on this interface. 14259 */ 14260 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14261 int retval; 14262 14263 /* 14264 * Clear the indication that this may have hardware 14265 * checksum as we are not using it. 14266 */ 14267 DB_CKSUMFLAGS(mp) = 0; 14268 retval = ip_mforward(ill, ipha, mp); 14269 /* ip_mforward updates mib variables if needed */ 14270 /* clear b_prev - used by ip_mroute_decap */ 14271 mp->b_prev = NULL; 14272 14273 switch (retval) { 14274 case 0: 14275 /* 14276 * pkt is okay and arrived on phyint. 14277 * 14278 * If we are running as a multicast router 14279 * we need to see all IGMP and/or PIM packets. 14280 */ 14281 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14282 (ipha->ipha_protocol == IPPROTO_PIM)) { 14283 goto done; 14284 } 14285 break; 14286 case -1: 14287 /* pkt is mal-formed, toss it */ 14288 goto drop_pkt; 14289 case 1: 14290 /* pkt is okay and arrived on a tunnel */ 14291 /* 14292 * If we are running a multicast router 14293 * we need to see all igmp packets. 14294 */ 14295 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14296 *dstp = INADDR_BROADCAST; 14297 *ll_multicast = 1; 14298 return (B_FALSE); 14299 } 14300 14301 goto drop_pkt; 14302 } 14303 } 14304 14305 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14306 /* 14307 * This might just be caused by the fact that 14308 * multiple IP Multicast addresses map to the same 14309 * link layer multicast - no need to increment counter! 14310 */ 14311 freemsg(mp); 14312 return (B_TRUE); 14313 } 14314 done: 14315 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14316 /* 14317 * This assumes the we deliver to all streams for multicast 14318 * and broadcast packets. 14319 */ 14320 *dstp = INADDR_BROADCAST; 14321 *ll_multicast = 1; 14322 return (B_FALSE); 14323 drop_pkt: 14324 ip2dbg(("ip_rput: drop pkt\n")); 14325 freemsg(mp); 14326 return (B_TRUE); 14327 } 14328 14329 /* 14330 * This function is used to both return an indication of whether or not 14331 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14332 * and in doing so, determine whether or not it is broadcast vs multicast. 14333 * For it to be a broadcast packet, we must have the appropriate mblk_t 14334 * hanging off the ill_t. If this is either not present or doesn't match 14335 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14336 * to be multicast. Thus NICs that have no broadcast address (or no 14337 * capability for one, such as point to point links) cannot return as 14338 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14339 * the return values simplifies the current use of the return value of this 14340 * function, which is to pass through the multicast/broadcast characteristic 14341 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14342 * changing the return value to some other symbol demands the appropriate 14343 * "translation" when hpe_flags is set prior to calling hook_run() for 14344 * packet events. 14345 */ 14346 int 14347 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14348 { 14349 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14350 mblk_t *bmp; 14351 14352 if (ind->dl_group_address) { 14353 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14354 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14355 MBLKL(mb) && 14356 (bmp = ill->ill_bcast_mp) != NULL) { 14357 dl_unitdata_req_t *dlur; 14358 uint8_t *bphys_addr; 14359 14360 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14361 if (ill->ill_sap_length < 0) 14362 bphys_addr = (uchar_t *)dlur + 14363 dlur->dl_dest_addr_offset; 14364 else 14365 bphys_addr = (uchar_t *)dlur + 14366 dlur->dl_dest_addr_offset + 14367 ill->ill_sap_length; 14368 14369 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14370 bphys_addr, ind->dl_dest_addr_length) == 0) { 14371 return (HPE_BROADCAST); 14372 } 14373 return (HPE_MULTICAST); 14374 } 14375 return (HPE_MULTICAST); 14376 } 14377 return (0); 14378 } 14379 14380 static boolean_t 14381 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14382 int *ll_multicast, mblk_t **mpp) 14383 { 14384 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14385 boolean_t must_copy = B_FALSE; 14386 struct iocblk *iocp; 14387 ipha_t *ipha; 14388 ip_stack_t *ipst = ill->ill_ipst; 14389 14390 #define rptr ((uchar_t *)ipha) 14391 14392 first_mp = *first_mpp; 14393 mp = *mpp; 14394 14395 ASSERT(first_mp == mp); 14396 14397 /* 14398 * if db_ref > 1 then copymsg and free original. Packet may be 14399 * changed and do not want other entity who has a reference to this 14400 * message to trip over the changes. This is a blind change because 14401 * trying to catch all places that might change packet is too 14402 * difficult (since it may be a module above this one) 14403 * 14404 * This corresponds to the non-fast path case. We walk down the full 14405 * chain in this case, and check the db_ref count of all the dblks, 14406 * and do a copymsg if required. It is possible that the db_ref counts 14407 * of the data blocks in the mblk chain can be different. 14408 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14409 * count of 1, followed by a M_DATA block with a ref count of 2, if 14410 * 'snoop' is running. 14411 */ 14412 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14413 if (mp1->b_datap->db_ref > 1) { 14414 must_copy = B_TRUE; 14415 break; 14416 } 14417 } 14418 14419 if (must_copy) { 14420 mp1 = copymsg(mp); 14421 if (mp1 == NULL) { 14422 for (mp1 = mp; mp1 != NULL; 14423 mp1 = mp1->b_cont) { 14424 mp1->b_next = NULL; 14425 mp1->b_prev = NULL; 14426 } 14427 freemsg(mp); 14428 if (ill != NULL) { 14429 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14430 } else { 14431 BUMP_MIB(&ipst->ips_ip_mib, 14432 ipIfStatsInDiscards); 14433 } 14434 return (B_TRUE); 14435 } 14436 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14437 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14438 /* Copy b_prev - used by ip_mroute_decap */ 14439 to_mp->b_prev = from_mp->b_prev; 14440 from_mp->b_prev = NULL; 14441 } 14442 *first_mpp = first_mp = mp1; 14443 freemsg(mp); 14444 mp = mp1; 14445 *mpp = mp1; 14446 } 14447 14448 ipha = (ipha_t *)mp->b_rptr; 14449 14450 /* 14451 * previous code has a case for M_DATA. 14452 * We want to check how that happens. 14453 */ 14454 ASSERT(first_mp->b_datap->db_type != M_DATA); 14455 switch (first_mp->b_datap->db_type) { 14456 case M_PROTO: 14457 case M_PCPROTO: 14458 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14459 DL_UNITDATA_IND) { 14460 /* Go handle anything other than data elsewhere. */ 14461 ip_rput_dlpi(q, mp); 14462 return (B_TRUE); 14463 } 14464 14465 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14466 /* Ditch the DLPI header. */ 14467 mp1 = mp->b_cont; 14468 ASSERT(first_mp == mp); 14469 *first_mpp = mp1; 14470 freeb(mp); 14471 *mpp = mp1; 14472 return (B_FALSE); 14473 case M_IOCACK: 14474 ip1dbg(("got iocack ")); 14475 iocp = (struct iocblk *)mp->b_rptr; 14476 switch (iocp->ioc_cmd) { 14477 case DL_IOC_HDR_INFO: 14478 ill = (ill_t *)q->q_ptr; 14479 ill_fastpath_ack(ill, mp); 14480 return (B_TRUE); 14481 case SIOCSTUNPARAM: 14482 case OSIOCSTUNPARAM: 14483 /* Go through qwriter_ip */ 14484 break; 14485 case SIOCGTUNPARAM: 14486 case OSIOCGTUNPARAM: 14487 ip_rput_other(NULL, q, mp, NULL); 14488 return (B_TRUE); 14489 default: 14490 putnext(q, mp); 14491 return (B_TRUE); 14492 } 14493 /* FALLTHRU */ 14494 case M_ERROR: 14495 case M_HANGUP: 14496 /* 14497 * Since this is on the ill stream we unconditionally 14498 * bump up the refcount 14499 */ 14500 ill_refhold(ill); 14501 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14502 return (B_TRUE); 14503 case M_CTL: 14504 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14505 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14506 IPHADA_M_CTL)) { 14507 /* 14508 * It's an IPsec accelerated packet. 14509 * Make sure that the ill from which we received the 14510 * packet has enabled IPsec hardware acceleration. 14511 */ 14512 if (!(ill->ill_capabilities & 14513 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14514 /* IPsec kstats: bean counter */ 14515 freemsg(mp); 14516 return (B_TRUE); 14517 } 14518 14519 /* 14520 * Make mp point to the mblk following the M_CTL, 14521 * then process according to type of mp. 14522 * After this processing, first_mp will point to 14523 * the data-attributes and mp to the pkt following 14524 * the M_CTL. 14525 */ 14526 mp = first_mp->b_cont; 14527 if (mp == NULL) { 14528 freemsg(first_mp); 14529 return (B_TRUE); 14530 } 14531 /* 14532 * A Hardware Accelerated packet can only be M_DATA 14533 * ESP or AH packet. 14534 */ 14535 if (mp->b_datap->db_type != M_DATA) { 14536 /* non-M_DATA IPsec accelerated packet */ 14537 IPSECHW_DEBUG(IPSECHW_PKT, 14538 ("non-M_DATA IPsec accelerated pkt\n")); 14539 freemsg(first_mp); 14540 return (B_TRUE); 14541 } 14542 ipha = (ipha_t *)mp->b_rptr; 14543 if (ipha->ipha_protocol != IPPROTO_AH && 14544 ipha->ipha_protocol != IPPROTO_ESP) { 14545 IPSECHW_DEBUG(IPSECHW_PKT, 14546 ("non-M_DATA IPsec accelerated pkt\n")); 14547 freemsg(first_mp); 14548 return (B_TRUE); 14549 } 14550 *mpp = mp; 14551 return (B_FALSE); 14552 } 14553 putnext(q, mp); 14554 return (B_TRUE); 14555 case M_IOCNAK: 14556 ip1dbg(("got iocnak ")); 14557 iocp = (struct iocblk *)mp->b_rptr; 14558 switch (iocp->ioc_cmd) { 14559 case SIOCSTUNPARAM: 14560 case OSIOCSTUNPARAM: 14561 /* 14562 * Since this is on the ill stream we unconditionally 14563 * bump up the refcount 14564 */ 14565 ill_refhold(ill); 14566 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14567 return (B_TRUE); 14568 case DL_IOC_HDR_INFO: 14569 case SIOCGTUNPARAM: 14570 case OSIOCGTUNPARAM: 14571 ip_rput_other(NULL, q, mp, NULL); 14572 return (B_TRUE); 14573 default: 14574 break; 14575 } 14576 /* FALLTHRU */ 14577 default: 14578 putnext(q, mp); 14579 return (B_TRUE); 14580 } 14581 } 14582 14583 /* Read side put procedure. Packets coming from the wire arrive here. */ 14584 void 14585 ip_rput(queue_t *q, mblk_t *mp) 14586 { 14587 ill_t *ill; 14588 union DL_primitives *dl; 14589 14590 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14591 14592 ill = (ill_t *)q->q_ptr; 14593 14594 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14595 /* 14596 * If things are opening or closing, only accept high-priority 14597 * DLPI messages. (On open ill->ill_ipif has not yet been 14598 * created; on close, things hanging off the ill may have been 14599 * freed already.) 14600 */ 14601 dl = (union DL_primitives *)mp->b_rptr; 14602 if (DB_TYPE(mp) != M_PCPROTO || 14603 dl->dl_primitive == DL_UNITDATA_IND) { 14604 /* 14605 * SIOC[GS]TUNPARAM ioctls can come here. 14606 */ 14607 inet_freemsg(mp); 14608 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14609 "ip_rput_end: q %p (%S)", q, "uninit"); 14610 return; 14611 } 14612 } 14613 14614 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14615 "ip_rput_end: q %p (%S)", q, "end"); 14616 14617 ip_input(ill, NULL, mp, NULL); 14618 } 14619 14620 static mblk_t * 14621 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14622 { 14623 mblk_t *mp1; 14624 boolean_t adjusted = B_FALSE; 14625 ip_stack_t *ipst = ill->ill_ipst; 14626 14627 IP_STAT(ipst, ip_db_ref); 14628 /* 14629 * The IP_RECVSLLA option depends on having the 14630 * link layer header. First check that: 14631 * a> the underlying device is of type ether, 14632 * since this option is currently supported only 14633 * over ethernet. 14634 * b> there is enough room to copy over the link 14635 * layer header. 14636 * 14637 * Once the checks are done, adjust rptr so that 14638 * the link layer header will be copied via 14639 * copymsg. Note that, IFT_ETHER may be returned 14640 * by some non-ethernet drivers but in this case 14641 * the second check will fail. 14642 */ 14643 if (ill->ill_type == IFT_ETHER && 14644 (mp->b_rptr - mp->b_datap->db_base) >= 14645 sizeof (struct ether_header)) { 14646 mp->b_rptr -= sizeof (struct ether_header); 14647 adjusted = B_TRUE; 14648 } 14649 mp1 = copymsg(mp); 14650 14651 if (mp1 == NULL) { 14652 mp->b_next = NULL; 14653 /* clear b_prev - used by ip_mroute_decap */ 14654 mp->b_prev = NULL; 14655 freemsg(mp); 14656 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14657 return (NULL); 14658 } 14659 14660 if (adjusted) { 14661 /* 14662 * Copy is done. Restore the pointer in 14663 * the _new_ mblk 14664 */ 14665 mp1->b_rptr += sizeof (struct ether_header); 14666 } 14667 14668 /* Copy b_prev - used by ip_mroute_decap */ 14669 mp1->b_prev = mp->b_prev; 14670 mp->b_prev = NULL; 14671 14672 /* preserve the hardware checksum flags and data, if present */ 14673 if (DB_CKSUMFLAGS(mp) != 0) { 14674 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14675 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14676 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14677 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14678 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14679 } 14680 14681 freemsg(mp); 14682 return (mp1); 14683 } 14684 14685 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14686 if (tail != NULL) \ 14687 tail->b_next = mp; \ 14688 else \ 14689 head = mp; \ 14690 tail = mp; \ 14691 cnt++; \ 14692 } 14693 14694 /* 14695 * Direct read side procedure capable of dealing with chains. GLDv3 based 14696 * drivers call this function directly with mblk chains while STREAMS 14697 * read side procedure ip_rput() calls this for single packet with ip_ring 14698 * set to NULL to process one packet at a time. 14699 * 14700 * The ill will always be valid if this function is called directly from 14701 * the driver. 14702 * 14703 * If ip_input() is called from GLDv3: 14704 * 14705 * - This must be a non-VLAN IP stream. 14706 * - 'mp' is either an untagged or a special priority-tagged packet. 14707 * - Any VLAN tag that was in the MAC header has been stripped. 14708 * 14709 * If the IP header in packet is not 32-bit aligned, every message in the 14710 * chain will be aligned before further operations. This is required on SPARC 14711 * platform. 14712 */ 14713 /* ARGSUSED */ 14714 void 14715 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14716 struct mac_header_info_s *mhip) 14717 { 14718 ipaddr_t dst = NULL; 14719 ipaddr_t prev_dst; 14720 ire_t *ire = NULL; 14721 ipha_t *ipha; 14722 uint_t pkt_len; 14723 ssize_t len; 14724 uint_t opt_len; 14725 int ll_multicast; 14726 int cgtp_flt_pkt; 14727 queue_t *q = ill->ill_rq; 14728 squeue_t *curr_sqp = NULL; 14729 mblk_t *head = NULL; 14730 mblk_t *tail = NULL; 14731 mblk_t *first_mp; 14732 int cnt = 0; 14733 ip_stack_t *ipst = ill->ill_ipst; 14734 mblk_t *mp; 14735 mblk_t *dmp; 14736 uint8_t tag; 14737 14738 ASSERT(mp_chain != NULL); 14739 ASSERT(ill != NULL); 14740 14741 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14742 14743 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14744 14745 #define rptr ((uchar_t *)ipha) 14746 14747 while (mp_chain != NULL) { 14748 mp = mp_chain; 14749 mp_chain = mp_chain->b_next; 14750 mp->b_next = NULL; 14751 ll_multicast = 0; 14752 14753 /* 14754 * We do ire caching from one iteration to 14755 * another. In the event the packet chain contains 14756 * all packets from the same dst, this caching saves 14757 * an ire_cache_lookup for each of the succeeding 14758 * packets in a packet chain. 14759 */ 14760 prev_dst = dst; 14761 14762 /* 14763 * if db_ref > 1 then copymsg and free original. Packet 14764 * may be changed and we do not want the other entity 14765 * who has a reference to this message to trip over the 14766 * changes. This is a blind change because trying to 14767 * catch all places that might change the packet is too 14768 * difficult. 14769 * 14770 * This corresponds to the fast path case, where we have 14771 * a chain of M_DATA mblks. We check the db_ref count 14772 * of only the 1st data block in the mblk chain. There 14773 * doesn't seem to be a reason why a device driver would 14774 * send up data with varying db_ref counts in the mblk 14775 * chain. In any case the Fast path is a private 14776 * interface, and our drivers don't do such a thing. 14777 * Given the above assumption, there is no need to walk 14778 * down the entire mblk chain (which could have a 14779 * potential performance problem) 14780 * 14781 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14782 * to here because of exclusive ip stacks and vnics. 14783 * Packets transmitted from exclusive stack over vnic 14784 * can have db_ref > 1 and when it gets looped back to 14785 * another vnic in a different zone, you have ip_input() 14786 * getting dblks with db_ref > 1. So if someone 14787 * complains of TCP performance under this scenario, 14788 * take a serious look here on the impact of copymsg(). 14789 */ 14790 14791 if (DB_REF(mp) > 1) { 14792 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14793 continue; 14794 } 14795 14796 /* 14797 * Check and align the IP header. 14798 */ 14799 first_mp = mp; 14800 if (DB_TYPE(mp) == M_DATA) { 14801 dmp = mp; 14802 } else if (DB_TYPE(mp) == M_PROTO && 14803 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14804 dmp = mp->b_cont; 14805 } else { 14806 dmp = NULL; 14807 } 14808 if (dmp != NULL) { 14809 /* 14810 * IP header ptr not aligned? 14811 * OR IP header not complete in first mblk 14812 */ 14813 if (!OK_32PTR(dmp->b_rptr) || 14814 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14815 if (!ip_check_and_align_header(q, dmp, ipst)) 14816 continue; 14817 } 14818 } 14819 14820 /* 14821 * ip_input fast path 14822 */ 14823 14824 /* mblk type is not M_DATA */ 14825 if (DB_TYPE(mp) != M_DATA) { 14826 if (ip_rput_process_notdata(q, &first_mp, ill, 14827 &ll_multicast, &mp)) 14828 continue; 14829 14830 /* 14831 * The only way we can get here is if we had a 14832 * packet that was either a DL_UNITDATA_IND or 14833 * an M_CTL for an IPsec accelerated packet. 14834 * 14835 * In either case, the first_mp will point to 14836 * the leading M_PROTO or M_CTL. 14837 */ 14838 ASSERT(first_mp != NULL); 14839 } else if (mhip != NULL) { 14840 /* 14841 * ll_multicast is set here so that it is ready 14842 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 14843 * manipulates ll_multicast in the same fashion when 14844 * called from ip_rput_process_notdata. 14845 */ 14846 switch (mhip->mhi_dsttype) { 14847 case MAC_ADDRTYPE_MULTICAST : 14848 ll_multicast = HPE_MULTICAST; 14849 break; 14850 case MAC_ADDRTYPE_BROADCAST : 14851 ll_multicast = HPE_BROADCAST; 14852 break; 14853 default : 14854 break; 14855 } 14856 } 14857 14858 /* Only M_DATA can come here and it is always aligned */ 14859 ASSERT(DB_TYPE(mp) == M_DATA); 14860 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14861 14862 ipha = (ipha_t *)mp->b_rptr; 14863 len = mp->b_wptr - rptr; 14864 pkt_len = ntohs(ipha->ipha_length); 14865 14866 /* 14867 * We must count all incoming packets, even if they end 14868 * up being dropped later on. 14869 */ 14870 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14871 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14872 14873 /* multiple mblk or too short */ 14874 len -= pkt_len; 14875 if (len != 0) { 14876 /* 14877 * Make sure we have data length consistent 14878 * with the IP header. 14879 */ 14880 if (mp->b_cont == NULL) { 14881 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14882 BUMP_MIB(ill->ill_ip_mib, 14883 ipIfStatsInHdrErrors); 14884 ip2dbg(("ip_input: drop pkt\n")); 14885 freemsg(mp); 14886 continue; 14887 } 14888 mp->b_wptr = rptr + pkt_len; 14889 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14890 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14891 BUMP_MIB(ill->ill_ip_mib, 14892 ipIfStatsInHdrErrors); 14893 ip2dbg(("ip_input: drop pkt\n")); 14894 freemsg(mp); 14895 continue; 14896 } 14897 (void) adjmsg(mp, -len); 14898 IP_STAT(ipst, ip_multimblk3); 14899 } 14900 } 14901 14902 /* Obtain the dst of the current packet */ 14903 dst = ipha->ipha_dst; 14904 14905 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 14906 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 14907 ipha, ip6_t *, NULL, int, 0); 14908 14909 /* 14910 * The following test for loopback is faster than 14911 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 14912 * operations. 14913 * Note that these addresses are always in network byte order 14914 */ 14915 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 14916 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 14917 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14918 freemsg(mp); 14919 continue; 14920 } 14921 14922 /* 14923 * The event for packets being received from a 'physical' 14924 * interface is placed after validation of the source and/or 14925 * destination address as being local so that packets can be 14926 * redirected to loopback addresses using ipnat. 14927 */ 14928 DTRACE_PROBE4(ip4__physical__in__start, 14929 ill_t *, ill, ill_t *, NULL, 14930 ipha_t *, ipha, mblk_t *, first_mp); 14931 14932 FW_HOOKS(ipst->ips_ip4_physical_in_event, 14933 ipst->ips_ipv4firewall_physical_in, 14934 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 14935 14936 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14937 14938 if (first_mp == NULL) { 14939 continue; 14940 } 14941 dst = ipha->ipha_dst; 14942 /* 14943 * Attach any necessary label information to 14944 * this packet 14945 */ 14946 if (is_system_labeled() && 14947 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14948 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14949 freemsg(mp); 14950 continue; 14951 } 14952 14953 if (ipst->ips_ipobs_enabled) { 14954 zoneid_t dzone; 14955 14956 /* 14957 * On the inbound path the src zone will be unknown as 14958 * this packet has come from the wire. 14959 */ 14960 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 14961 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 14962 ill, IPV4_VERSION, 0, ipst); 14963 } 14964 14965 /* 14966 * Reuse the cached ire only if the ipha_dst of the previous 14967 * packet is the same as the current packet AND it is not 14968 * INADDR_ANY. 14969 */ 14970 if (!(dst == prev_dst && dst != INADDR_ANY) && 14971 (ire != NULL)) { 14972 ire_refrele(ire); 14973 ire = NULL; 14974 } 14975 14976 opt_len = ipha->ipha_version_and_hdr_length - 14977 IP_SIMPLE_HDR_VERSION; 14978 14979 /* 14980 * Check to see if we can take the fastpath. 14981 * That is possible if the following conditions are met 14982 * o Tsol disabled 14983 * o CGTP disabled 14984 * o ipp_action_count is 0 14985 * o no options in the packet 14986 * o not a RSVP packet 14987 * o not a multicast packet 14988 * o ill not in IP_DHCPINIT_IF mode 14989 */ 14990 if (!is_system_labeled() && 14991 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 14992 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14993 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 14994 if (ire == NULL) 14995 ire = ire_cache_lookup_simple(dst, ipst); 14996 /* 14997 * Unless forwarding is enabled, dont call 14998 * ip_fast_forward(). Incoming packet is for forwarding 14999 */ 15000 if ((ill->ill_flags & ILLF_ROUTER) && 15001 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15002 ire = ip_fast_forward(ire, dst, ill, mp); 15003 continue; 15004 } 15005 /* incoming packet is for local consumption */ 15006 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15007 goto local; 15008 } 15009 15010 /* 15011 * Disable ire caching for anything more complex 15012 * than the simple fast path case we checked for above. 15013 */ 15014 if (ire != NULL) { 15015 ire_refrele(ire); 15016 ire = NULL; 15017 } 15018 15019 /* 15020 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15021 * server to unicast DHCP packets to a DHCP client using the 15022 * IP address it is offering to the client. This can be 15023 * disabled through the "broadcast bit", but not all DHCP 15024 * servers honor that bit. Therefore, to interoperate with as 15025 * many DHCP servers as possible, the DHCP client allows the 15026 * server to unicast, but we treat those packets as broadcast 15027 * here. Note that we don't rewrite the packet itself since 15028 * (a) that would mess up the checksums and (b) the DHCP 15029 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15030 * hand it the packet regardless. 15031 */ 15032 if (ill->ill_dhcpinit != 0 && 15033 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15034 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15035 udpha_t *udpha; 15036 15037 /* 15038 * Reload ipha since pullupmsg() can change b_rptr. 15039 */ 15040 ipha = (ipha_t *)mp->b_rptr; 15041 udpha = (udpha_t *)&ipha[1]; 15042 15043 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15044 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15045 mblk_t *, mp); 15046 dst = INADDR_BROADCAST; 15047 } 15048 } 15049 15050 /* Full-blown slow path */ 15051 if (opt_len != 0) { 15052 if (len != 0) 15053 IP_STAT(ipst, ip_multimblk4); 15054 else 15055 IP_STAT(ipst, ip_ipoptions); 15056 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15057 &dst, ipst)) 15058 continue; 15059 } 15060 15061 /* 15062 * Invoke the CGTP (multirouting) filtering module to process 15063 * the incoming packet. Packets identified as duplicates 15064 * must be discarded. Filtering is active only if the 15065 * the ip_cgtp_filter ndd variable is non-zero. 15066 */ 15067 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15068 if (ipst->ips_ip_cgtp_filter && 15069 ipst->ips_ip_cgtp_filter_ops != NULL) { 15070 netstackid_t stackid; 15071 15072 stackid = ipst->ips_netstack->netstack_stackid; 15073 cgtp_flt_pkt = 15074 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15075 ill->ill_phyint->phyint_ifindex, mp); 15076 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15077 freemsg(first_mp); 15078 continue; 15079 } 15080 } 15081 15082 /* 15083 * If rsvpd is running, let RSVP daemon handle its processing 15084 * and forwarding of RSVP multicast/unicast packets. 15085 * If rsvpd is not running but mrouted is running, RSVP 15086 * multicast packets are forwarded as multicast traffic 15087 * and RSVP unicast packets are forwarded by unicast router. 15088 * If neither rsvpd nor mrouted is running, RSVP multicast 15089 * packets are not forwarded, but the unicast packets are 15090 * forwarded like unicast traffic. 15091 */ 15092 if (ipha->ipha_protocol == IPPROTO_RSVP && 15093 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15094 NULL) { 15095 /* RSVP packet and rsvpd running. Treat as ours */ 15096 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15097 /* 15098 * This assumes that we deliver to all streams for 15099 * multicast and broadcast packets. 15100 * We have to force ll_multicast to 1 to handle the 15101 * M_DATA messages passed in from ip_mroute_decap. 15102 */ 15103 dst = INADDR_BROADCAST; 15104 ll_multicast = 1; 15105 } else if (CLASSD(dst)) { 15106 /* packet is multicast */ 15107 mp->b_next = NULL; 15108 if (ip_rput_process_multicast(q, mp, ill, ipha, 15109 &ll_multicast, &dst)) 15110 continue; 15111 } 15112 15113 if (ire == NULL) { 15114 ire = ire_cache_lookup(dst, ALL_ZONES, 15115 MBLK_GETLABEL(mp), ipst); 15116 } 15117 15118 if (ire != NULL && ire->ire_stq != NULL && 15119 ire->ire_zoneid != GLOBAL_ZONEID && 15120 ire->ire_zoneid != ALL_ZONES) { 15121 /* 15122 * Should only use IREs that are visible from the 15123 * global zone for forwarding. 15124 */ 15125 ire_refrele(ire); 15126 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15127 MBLK_GETLABEL(mp), ipst); 15128 } 15129 15130 if (ire == NULL) { 15131 /* 15132 * No IRE for this destination, so it can't be for us. 15133 * Unless we are forwarding, drop the packet. 15134 * We have to let source routed packets through 15135 * since we don't yet know if they are 'ping -l' 15136 * packets i.e. if they will go out over the 15137 * same interface as they came in on. 15138 */ 15139 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15140 if (ire == NULL) 15141 continue; 15142 } 15143 15144 /* 15145 * Broadcast IRE may indicate either broadcast or 15146 * multicast packet 15147 */ 15148 if (ire->ire_type == IRE_BROADCAST) { 15149 /* 15150 * Skip broadcast checks if packet is UDP multicast; 15151 * we'd rather not enter ip_rput_process_broadcast() 15152 * unless the packet is broadcast for real, since 15153 * that routine is a no-op for multicast. 15154 */ 15155 if (ipha->ipha_protocol != IPPROTO_UDP || 15156 !CLASSD(ipha->ipha_dst)) { 15157 ire = ip_rput_process_broadcast(&q, mp, 15158 ire, ipha, ill, dst, cgtp_flt_pkt, 15159 ll_multicast); 15160 if (ire == NULL) 15161 continue; 15162 } 15163 } else if (ire->ire_stq != NULL) { 15164 /* fowarding? */ 15165 ip_rput_process_forward(q, mp, ire, ipha, ill, 15166 ll_multicast, B_FALSE); 15167 /* ip_rput_process_forward consumed the packet */ 15168 continue; 15169 } 15170 15171 local: 15172 /* 15173 * If the queue in the ire is different to the ingress queue 15174 * then we need to check to see if we can accept the packet. 15175 * Note that for multicast packets and broadcast packets sent 15176 * to a broadcast address which is shared between multiple 15177 * interfaces we should not do this since we just got a random 15178 * broadcast ire. 15179 */ 15180 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15181 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15182 if (ire == NULL) { 15183 /* Drop packet */ 15184 BUMP_MIB(ill->ill_ip_mib, 15185 ipIfStatsForwProhibits); 15186 freemsg(mp); 15187 continue; 15188 } 15189 if (ire->ire_rfq != NULL) 15190 q = ire->ire_rfq; 15191 } 15192 15193 switch (ipha->ipha_protocol) { 15194 case IPPROTO_TCP: 15195 ASSERT(first_mp == mp); 15196 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15197 mp, 0, q, ip_ring)) != NULL) { 15198 if (curr_sqp == NULL) { 15199 curr_sqp = GET_SQUEUE(mp); 15200 ASSERT(cnt == 0); 15201 cnt++; 15202 head = tail = mp; 15203 } else if (curr_sqp == GET_SQUEUE(mp)) { 15204 ASSERT(tail != NULL); 15205 cnt++; 15206 tail->b_next = mp; 15207 tail = mp; 15208 } else { 15209 /* 15210 * A different squeue. Send the 15211 * chain for the previous squeue on 15212 * its way. This shouldn't happen 15213 * often unless interrupt binding 15214 * changes. 15215 */ 15216 IP_STAT(ipst, ip_input_multi_squeue); 15217 SQUEUE_ENTER(curr_sqp, head, 15218 tail, cnt, SQ_PROCESS, tag); 15219 curr_sqp = GET_SQUEUE(mp); 15220 head = mp; 15221 tail = mp; 15222 cnt = 1; 15223 } 15224 } 15225 continue; 15226 case IPPROTO_UDP: 15227 ASSERT(first_mp == mp); 15228 ip_udp_input(q, mp, ipha, ire, ill); 15229 continue; 15230 case IPPROTO_SCTP: 15231 ASSERT(first_mp == mp); 15232 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15233 q, dst); 15234 /* ire has been released by ip_sctp_input */ 15235 ire = NULL; 15236 continue; 15237 default: 15238 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15239 continue; 15240 } 15241 } 15242 15243 if (ire != NULL) 15244 ire_refrele(ire); 15245 15246 if (head != NULL) 15247 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15248 15249 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15250 "ip_input_end: q %p (%S)", q, "end"); 15251 #undef rptr 15252 } 15253 15254 /* 15255 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15256 * a chain of packets in the poll mode. The packets have gone through the 15257 * data link processing but not IP processing. For performance and latency 15258 * reasons, the squeue wants to process the chain in line instead of feeding 15259 * it back via ip_input path. 15260 * 15261 * So this is a light weight function which checks to see if the packets 15262 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15263 * but we still do the paranoid check) meant for local machine and we don't 15264 * have labels etc enabled. Packets that meet the criterion are returned to 15265 * the squeue and processed inline while the rest go via ip_input path. 15266 */ 15267 /*ARGSUSED*/ 15268 mblk_t * 15269 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15270 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15271 { 15272 mblk_t *mp; 15273 ipaddr_t dst = NULL; 15274 ipaddr_t prev_dst; 15275 ire_t *ire = NULL; 15276 ipha_t *ipha; 15277 uint_t pkt_len; 15278 ssize_t len; 15279 uint_t opt_len; 15280 queue_t *q = ill->ill_rq; 15281 squeue_t *curr_sqp; 15282 mblk_t *ahead = NULL; /* Accepted head */ 15283 mblk_t *atail = NULL; /* Accepted tail */ 15284 uint_t acnt = 0; /* Accepted count */ 15285 mblk_t *utail = NULL; /* Unaccepted head */ 15286 mblk_t *uhead = NULL; /* Unaccepted tail */ 15287 uint_t ucnt = 0; /* Unaccepted cnt */ 15288 ip_stack_t *ipst = ill->ill_ipst; 15289 15290 *cnt = 0; 15291 15292 ASSERT(ill != NULL); 15293 ASSERT(ip_ring != NULL); 15294 15295 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15296 15297 #define rptr ((uchar_t *)ipha) 15298 15299 while (mp_chain != NULL) { 15300 mp = mp_chain; 15301 mp_chain = mp_chain->b_next; 15302 mp->b_next = NULL; 15303 15304 /* 15305 * We do ire caching from one iteration to 15306 * another. In the event the packet chain contains 15307 * all packets from the same dst, this caching saves 15308 * an ire_cache_lookup for each of the succeeding 15309 * packets in a packet chain. 15310 */ 15311 prev_dst = dst; 15312 15313 ipha = (ipha_t *)mp->b_rptr; 15314 len = mp->b_wptr - rptr; 15315 15316 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15317 15318 /* 15319 * If it is a non TCP packet, or doesn't have H/W cksum, 15320 * or doesn't have min len, reject. 15321 */ 15322 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15323 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15324 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15325 continue; 15326 } 15327 15328 pkt_len = ntohs(ipha->ipha_length); 15329 if (len != pkt_len) { 15330 if (len > pkt_len) { 15331 mp->b_wptr = rptr + pkt_len; 15332 } else { 15333 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15334 continue; 15335 } 15336 } 15337 15338 opt_len = ipha->ipha_version_and_hdr_length - 15339 IP_SIMPLE_HDR_VERSION; 15340 dst = ipha->ipha_dst; 15341 15342 /* IP version bad or there are IP options */ 15343 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15344 mp, &ipha, &dst, ipst))) 15345 continue; 15346 15347 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15348 (ipst->ips_ip_cgtp_filter && 15349 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15350 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15351 continue; 15352 } 15353 15354 /* 15355 * Reuse the cached ire only if the ipha_dst of the previous 15356 * packet is the same as the current packet AND it is not 15357 * INADDR_ANY. 15358 */ 15359 if (!(dst == prev_dst && dst != INADDR_ANY) && 15360 (ire != NULL)) { 15361 ire_refrele(ire); 15362 ire = NULL; 15363 } 15364 15365 if (ire == NULL) 15366 ire = ire_cache_lookup_simple(dst, ipst); 15367 15368 /* 15369 * Unless forwarding is enabled, dont call 15370 * ip_fast_forward(). Incoming packet is for forwarding 15371 */ 15372 if ((ill->ill_flags & ILLF_ROUTER) && 15373 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15374 15375 DTRACE_PROBE4(ip4__physical__in__start, 15376 ill_t *, ill, ill_t *, NULL, 15377 ipha_t *, ipha, mblk_t *, mp); 15378 15379 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15380 ipst->ips_ipv4firewall_physical_in, 15381 ill, NULL, ipha, mp, mp, 0, ipst); 15382 15383 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15384 15385 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15386 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15387 pkt_len); 15388 15389 ire = ip_fast_forward(ire, dst, ill, mp); 15390 continue; 15391 } 15392 15393 /* incoming packet is for local consumption */ 15394 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15395 goto local_accept; 15396 15397 /* 15398 * Disable ire caching for anything more complex 15399 * than the simple fast path case we checked for above. 15400 */ 15401 if (ire != NULL) { 15402 ire_refrele(ire); 15403 ire = NULL; 15404 } 15405 15406 ire = ire_cache_lookup(dst, ALL_ZONES, MBLK_GETLABEL(mp), 15407 ipst); 15408 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15409 ire->ire_stq != NULL) { 15410 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15411 if (ire != NULL) { 15412 ire_refrele(ire); 15413 ire = NULL; 15414 } 15415 continue; 15416 } 15417 15418 local_accept: 15419 15420 if (ire->ire_rfq != q) { 15421 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15422 if (ire != NULL) { 15423 ire_refrele(ire); 15424 ire = NULL; 15425 } 15426 continue; 15427 } 15428 15429 /* 15430 * The event for packets being received from a 'physical' 15431 * interface is placed after validation of the source and/or 15432 * destination address as being local so that packets can be 15433 * redirected to loopback addresses using ipnat. 15434 */ 15435 DTRACE_PROBE4(ip4__physical__in__start, 15436 ill_t *, ill, ill_t *, NULL, 15437 ipha_t *, ipha, mblk_t *, mp); 15438 15439 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15440 ipst->ips_ipv4firewall_physical_in, 15441 ill, NULL, ipha, mp, mp, 0, ipst); 15442 15443 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15444 15445 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15446 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15447 15448 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15449 0, q, ip_ring)) != NULL) { 15450 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15451 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15452 } else { 15453 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15454 SQ_FILL, SQTAG_IP_INPUT); 15455 } 15456 } 15457 } 15458 15459 if (ire != NULL) 15460 ire_refrele(ire); 15461 15462 if (uhead != NULL) 15463 ip_input(ill, ip_ring, uhead, NULL); 15464 15465 if (ahead != NULL) { 15466 *last = atail; 15467 *cnt = acnt; 15468 return (ahead); 15469 } 15470 15471 return (NULL); 15472 #undef rptr 15473 } 15474 15475 static void 15476 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15477 t_uscalar_t err) 15478 { 15479 if (dl_err == DL_SYSERR) { 15480 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15481 "%s: %s failed: DL_SYSERR (errno %u)\n", 15482 ill->ill_name, dl_primstr(prim), err); 15483 return; 15484 } 15485 15486 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15487 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15488 dl_errstr(dl_err)); 15489 } 15490 15491 /* 15492 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15493 * than DL_UNITDATA_IND messages. If we need to process this message 15494 * exclusively, we call qwriter_ip, in which case we also need to call 15495 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15496 */ 15497 void 15498 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15499 { 15500 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15501 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15502 ill_t *ill = q->q_ptr; 15503 t_uscalar_t prim = dloa->dl_primitive; 15504 t_uscalar_t reqprim = DL_PRIM_INVAL; 15505 15506 ip1dbg(("ip_rput_dlpi")); 15507 15508 /* 15509 * If we received an ACK but didn't send a request for it, then it 15510 * can't be part of any pending operation; discard up-front. 15511 */ 15512 switch (prim) { 15513 case DL_ERROR_ACK: 15514 reqprim = dlea->dl_error_primitive; 15515 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15516 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15517 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15518 dlea->dl_unix_errno)); 15519 break; 15520 case DL_OK_ACK: 15521 reqprim = dloa->dl_correct_primitive; 15522 break; 15523 case DL_INFO_ACK: 15524 reqprim = DL_INFO_REQ; 15525 break; 15526 case DL_BIND_ACK: 15527 reqprim = DL_BIND_REQ; 15528 break; 15529 case DL_PHYS_ADDR_ACK: 15530 reqprim = DL_PHYS_ADDR_REQ; 15531 break; 15532 case DL_NOTIFY_ACK: 15533 reqprim = DL_NOTIFY_REQ; 15534 break; 15535 case DL_CONTROL_ACK: 15536 reqprim = DL_CONTROL_REQ; 15537 break; 15538 case DL_CAPABILITY_ACK: 15539 reqprim = DL_CAPABILITY_REQ; 15540 break; 15541 } 15542 15543 if (prim != DL_NOTIFY_IND) { 15544 if (reqprim == DL_PRIM_INVAL || 15545 !ill_dlpi_pending(ill, reqprim)) { 15546 /* Not a DLPI message we support or expected */ 15547 freemsg(mp); 15548 return; 15549 } 15550 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15551 dl_primstr(reqprim))); 15552 } 15553 15554 switch (reqprim) { 15555 case DL_UNBIND_REQ: 15556 /* 15557 * NOTE: we mark the unbind as complete even if we got a 15558 * DL_ERROR_ACK, since there's not much else we can do. 15559 */ 15560 mutex_enter(&ill->ill_lock); 15561 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15562 cv_signal(&ill->ill_cv); 15563 mutex_exit(&ill->ill_lock); 15564 break; 15565 15566 case DL_ENABMULTI_REQ: 15567 if (prim == DL_OK_ACK) { 15568 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15569 ill->ill_dlpi_multicast_state = IDS_OK; 15570 } 15571 break; 15572 } 15573 15574 /* 15575 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15576 * need to become writer to continue to process it. Because an 15577 * exclusive operation doesn't complete until replies to all queued 15578 * DLPI messages have been received, we know we're in the middle of an 15579 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15580 * 15581 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15582 * Since this is on the ill stream we unconditionally bump up the 15583 * refcount without doing ILL_CAN_LOOKUP(). 15584 */ 15585 ill_refhold(ill); 15586 if (prim == DL_NOTIFY_IND) 15587 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15588 else 15589 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15590 } 15591 15592 /* 15593 * Handling of DLPI messages that require exclusive access to the ipsq. 15594 * 15595 * Need to do ill_pending_mp_release on ioctl completion, which could 15596 * happen here. (along with mi_copy_done) 15597 */ 15598 /* ARGSUSED */ 15599 static void 15600 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15601 { 15602 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15603 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15604 int err = 0; 15605 ill_t *ill; 15606 ipif_t *ipif = NULL; 15607 mblk_t *mp1 = NULL; 15608 conn_t *connp = NULL; 15609 t_uscalar_t paddrreq; 15610 mblk_t *mp_hw; 15611 boolean_t success; 15612 boolean_t ioctl_aborted = B_FALSE; 15613 boolean_t log = B_TRUE; 15614 ip_stack_t *ipst; 15615 15616 ip1dbg(("ip_rput_dlpi_writer ..")); 15617 ill = (ill_t *)q->q_ptr; 15618 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15619 ASSERT(IAM_WRITER_ILL(ill)); 15620 15621 ipst = ill->ill_ipst; 15622 15623 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15624 /* 15625 * The current ioctl could have been aborted by the user and a new 15626 * ioctl to bring up another ill could have started. We could still 15627 * get a response from the driver later. 15628 */ 15629 if (ipif != NULL && ipif->ipif_ill != ill) 15630 ioctl_aborted = B_TRUE; 15631 15632 switch (dloa->dl_primitive) { 15633 case DL_ERROR_ACK: 15634 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15635 dl_primstr(dlea->dl_error_primitive))); 15636 15637 switch (dlea->dl_error_primitive) { 15638 case DL_DISABMULTI_REQ: 15639 if (!ill->ill_isv6) 15640 ipsq_current_finish(ipsq); 15641 ill_dlpi_done(ill, dlea->dl_error_primitive); 15642 break; 15643 case DL_PROMISCON_REQ: 15644 case DL_PROMISCOFF_REQ: 15645 case DL_UNBIND_REQ: 15646 case DL_ATTACH_REQ: 15647 case DL_INFO_REQ: 15648 ill_dlpi_done(ill, dlea->dl_error_primitive); 15649 break; 15650 case DL_NOTIFY_REQ: 15651 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15652 log = B_FALSE; 15653 break; 15654 case DL_PHYS_ADDR_REQ: 15655 /* 15656 * For IPv6 only, there are two additional 15657 * phys_addr_req's sent to the driver to get the 15658 * IPv6 token and lla. This allows IP to acquire 15659 * the hardware address format for a given interface 15660 * without having built in knowledge of the hardware 15661 * address. ill_phys_addr_pend keeps track of the last 15662 * DL_PAR sent so we know which response we are 15663 * dealing with. ill_dlpi_done will update 15664 * ill_phys_addr_pend when it sends the next req. 15665 * We don't complete the IOCTL until all three DL_PARs 15666 * have been attempted, so set *_len to 0 and break. 15667 */ 15668 paddrreq = ill->ill_phys_addr_pend; 15669 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15670 if (paddrreq == DL_IPV6_TOKEN) { 15671 ill->ill_token_length = 0; 15672 log = B_FALSE; 15673 break; 15674 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15675 ill->ill_nd_lla_len = 0; 15676 log = B_FALSE; 15677 break; 15678 } 15679 /* 15680 * Something went wrong with the DL_PHYS_ADDR_REQ. 15681 * We presumably have an IOCTL hanging out waiting 15682 * for completion. Find it and complete the IOCTL 15683 * with the error noted. 15684 * However, ill_dl_phys was called on an ill queue 15685 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15686 * set. But the ioctl is known to be pending on ill_wq. 15687 */ 15688 if (!ill->ill_ifname_pending) 15689 break; 15690 ill->ill_ifname_pending = 0; 15691 if (!ioctl_aborted) 15692 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15693 if (mp1 != NULL) { 15694 /* 15695 * This operation (SIOCSLIFNAME) must have 15696 * happened on the ill. Assert there is no conn 15697 */ 15698 ASSERT(connp == NULL); 15699 q = ill->ill_wq; 15700 } 15701 break; 15702 case DL_BIND_REQ: 15703 ill_dlpi_done(ill, DL_BIND_REQ); 15704 if (ill->ill_ifname_pending) 15705 break; 15706 /* 15707 * Something went wrong with the bind. We presumably 15708 * have an IOCTL hanging out waiting for completion. 15709 * Find it, take down the interface that was coming 15710 * up, and complete the IOCTL with the error noted. 15711 */ 15712 if (!ioctl_aborted) 15713 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15714 if (mp1 != NULL) { 15715 /* 15716 * This operation (SIOCSLIFFLAGS) must have 15717 * happened from a conn. 15718 */ 15719 ASSERT(connp != NULL); 15720 q = CONNP_TO_WQ(connp); 15721 (void) ipif_down(ipif, NULL, NULL); 15722 /* error is set below the switch */ 15723 } 15724 break; 15725 case DL_ENABMULTI_REQ: 15726 if (!ill->ill_isv6) 15727 ipsq_current_finish(ipsq); 15728 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15729 15730 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15731 ill->ill_dlpi_multicast_state = IDS_FAILED; 15732 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15733 ipif_t *ipif; 15734 15735 printf("ip: joining multicasts failed (%d)" 15736 " on %s - will use link layer " 15737 "broadcasts for multicast\n", 15738 dlea->dl_errno, ill->ill_name); 15739 15740 /* 15741 * Set up the multicast mapping alone. 15742 * writer, so ok to access ill->ill_ipif 15743 * without any lock. 15744 */ 15745 ipif = ill->ill_ipif; 15746 mutex_enter(&ill->ill_phyint->phyint_lock); 15747 ill->ill_phyint->phyint_flags |= 15748 PHYI_MULTI_BCAST; 15749 mutex_exit(&ill->ill_phyint->phyint_lock); 15750 15751 if (!ill->ill_isv6) { 15752 (void) ipif_arp_setup_multicast(ipif, 15753 NULL); 15754 } else { 15755 (void) ipif_ndp_setup_multicast(ipif, 15756 NULL); 15757 } 15758 } 15759 freemsg(mp); /* Don't want to pass this up */ 15760 return; 15761 case DL_CONTROL_REQ: 15762 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15763 "DL_CONTROL_REQ\n")); 15764 ill_dlpi_done(ill, dlea->dl_error_primitive); 15765 freemsg(mp); 15766 return; 15767 case DL_CAPABILITY_REQ: 15768 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15769 "DL_CAPABILITY REQ\n")); 15770 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15771 ill->ill_dlpi_capab_state = IDCS_FAILED; 15772 ill_capability_done(ill); 15773 freemsg(mp); 15774 return; 15775 } 15776 /* 15777 * Note the error for IOCTL completion (mp1 is set when 15778 * ready to complete ioctl). If ill_ifname_pending_err is 15779 * set, an error occured during plumbing (ill_ifname_pending), 15780 * so we want to report that error. 15781 * 15782 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15783 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15784 * expected to get errack'd if the driver doesn't support 15785 * these flags (e.g. ethernet). log will be set to B_FALSE 15786 * if these error conditions are encountered. 15787 */ 15788 if (mp1 != NULL) { 15789 if (ill->ill_ifname_pending_err != 0) { 15790 err = ill->ill_ifname_pending_err; 15791 ill->ill_ifname_pending_err = 0; 15792 } else { 15793 err = dlea->dl_unix_errno ? 15794 dlea->dl_unix_errno : ENXIO; 15795 } 15796 /* 15797 * If we're plumbing an interface and an error hasn't already 15798 * been saved, set ill_ifname_pending_err to the error passed 15799 * up. Ignore the error if log is B_FALSE (see comment above). 15800 */ 15801 } else if (log && ill->ill_ifname_pending && 15802 ill->ill_ifname_pending_err == 0) { 15803 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15804 dlea->dl_unix_errno : ENXIO; 15805 } 15806 15807 if (log) 15808 ip_dlpi_error(ill, dlea->dl_error_primitive, 15809 dlea->dl_errno, dlea->dl_unix_errno); 15810 break; 15811 case DL_CAPABILITY_ACK: 15812 ill_capability_ack(ill, mp); 15813 /* 15814 * The message has been handed off to ill_capability_ack 15815 * and must not be freed below 15816 */ 15817 mp = NULL; 15818 break; 15819 15820 case DL_CONTROL_ACK: 15821 /* We treat all of these as "fire and forget" */ 15822 ill_dlpi_done(ill, DL_CONTROL_REQ); 15823 break; 15824 case DL_INFO_ACK: 15825 /* Call a routine to handle this one. */ 15826 ill_dlpi_done(ill, DL_INFO_REQ); 15827 ip_ll_subnet_defaults(ill, mp); 15828 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15829 return; 15830 case DL_BIND_ACK: 15831 /* 15832 * We should have an IOCTL waiting on this unless 15833 * sent by ill_dl_phys, in which case just return 15834 */ 15835 ill_dlpi_done(ill, DL_BIND_REQ); 15836 if (ill->ill_ifname_pending) 15837 break; 15838 15839 if (!ioctl_aborted) 15840 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15841 if (mp1 == NULL) 15842 break; 15843 /* 15844 * Because mp1 was added by ill_dl_up(), and it always 15845 * passes a valid connp, connp must be valid here. 15846 */ 15847 ASSERT(connp != NULL); 15848 q = CONNP_TO_WQ(connp); 15849 15850 /* 15851 * We are exclusive. So nothing can change even after 15852 * we get the pending mp. If need be we can put it back 15853 * and restart, as in calling ipif_arp_up() below. 15854 */ 15855 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15856 15857 mutex_enter(&ill->ill_lock); 15858 ill->ill_dl_up = 1; 15859 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 15860 mutex_exit(&ill->ill_lock); 15861 15862 /* 15863 * Now bring up the resolver; when that is complete, we'll 15864 * create IREs. Note that we intentionally mirror what 15865 * ipif_up() would have done, because we got here by way of 15866 * ill_dl_up(), which stopped ipif_up()'s processing. 15867 */ 15868 if (ill->ill_isv6) { 15869 if (ill->ill_flags & ILLF_XRESOLV) { 15870 mutex_enter(&connp->conn_lock); 15871 mutex_enter(&ill->ill_lock); 15872 success = ipsq_pending_mp_add(connp, ipif, q, 15873 mp1, 0); 15874 mutex_exit(&ill->ill_lock); 15875 mutex_exit(&connp->conn_lock); 15876 if (success) { 15877 err = ipif_resolver_up(ipif, 15878 Res_act_initial); 15879 if (err == EINPROGRESS) { 15880 freemsg(mp); 15881 return; 15882 } 15883 ASSERT(err != 0); 15884 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15885 ASSERT(mp1 != NULL); 15886 } else { 15887 /* conn has started closing */ 15888 err = EINTR; 15889 } 15890 } else { /* Non XRESOLV interface */ 15891 (void) ipif_resolver_up(ipif, Res_act_initial); 15892 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 15893 err = ipif_up_done_v6(ipif); 15894 } 15895 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15896 /* 15897 * ARP and other v4 external resolvers. 15898 * Leave the pending mblk intact so that 15899 * the ioctl completes in ip_rput(). 15900 */ 15901 mutex_enter(&connp->conn_lock); 15902 mutex_enter(&ill->ill_lock); 15903 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15904 mutex_exit(&ill->ill_lock); 15905 mutex_exit(&connp->conn_lock); 15906 if (success) { 15907 err = ipif_resolver_up(ipif, Res_act_initial); 15908 if (err == EINPROGRESS) { 15909 freemsg(mp); 15910 return; 15911 } 15912 ASSERT(err != 0); 15913 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15914 } else { 15915 /* The conn has started closing */ 15916 err = EINTR; 15917 } 15918 } else { 15919 /* 15920 * This one is complete. Reply to pending ioctl. 15921 */ 15922 (void) ipif_resolver_up(ipif, Res_act_initial); 15923 err = ipif_up_done(ipif); 15924 } 15925 15926 if ((err == 0) && (ill->ill_up_ipifs)) { 15927 err = ill_up_ipifs(ill, q, mp1); 15928 if (err == EINPROGRESS) { 15929 freemsg(mp); 15930 return; 15931 } 15932 } 15933 15934 /* 15935 * If we have a moved ipif to bring up, and everything has 15936 * succeeded to this point, bring it up on the IPMP ill. 15937 * Otherwise, leave it down -- the admin can try to bring it 15938 * up by hand if need be. 15939 */ 15940 if (ill->ill_move_ipif != NULL) { 15941 if (err != 0) { 15942 ill->ill_move_ipif = NULL; 15943 } else { 15944 ipif = ill->ill_move_ipif; 15945 ill->ill_move_ipif = NULL; 15946 err = ipif_up(ipif, q, mp1); 15947 if (err == EINPROGRESS) { 15948 freemsg(mp); 15949 return; 15950 } 15951 } 15952 } 15953 break; 15954 15955 case DL_NOTIFY_IND: { 15956 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15957 ire_t *ire; 15958 uint_t orig_mtu; 15959 boolean_t need_ire_walk_v4 = B_FALSE; 15960 boolean_t need_ire_walk_v6 = B_FALSE; 15961 15962 switch (notify->dl_notification) { 15963 case DL_NOTE_PHYS_ADDR: 15964 err = ill_set_phys_addr(ill, mp); 15965 break; 15966 15967 case DL_NOTE_FASTPATH_FLUSH: 15968 ill_fastpath_flush(ill); 15969 break; 15970 15971 case DL_NOTE_SDU_SIZE: 15972 /* 15973 * Change the MTU size of the interface, of all 15974 * attached ipif's, and of all relevant ire's. The 15975 * new value's a uint32_t at notify->dl_data. 15976 * Mtu change Vs. new ire creation - protocol below. 15977 * 15978 * a Mark the ipif as IPIF_CHANGING. 15979 * b Set the new mtu in the ipif. 15980 * c Change the ire_max_frag on all affected ires 15981 * d Unmark the IPIF_CHANGING 15982 * 15983 * To see how the protocol works, assume an interface 15984 * route is also being added simultaneously by 15985 * ip_rt_add and let 'ipif' be the ipif referenced by 15986 * the ire. If the ire is created before step a, 15987 * it will be cleaned up by step c. If the ire is 15988 * created after step d, it will see the new value of 15989 * ipif_mtu. Any attempt to create the ire between 15990 * steps a to d will fail because of the IPIF_CHANGING 15991 * flag. Note that ire_create() is passed a pointer to 15992 * the ipif_mtu, and not the value. During ire_add 15993 * under the bucket lock, the ire_max_frag of the 15994 * new ire being created is set from the ipif/ire from 15995 * which it is being derived. 15996 */ 15997 mutex_enter(&ill->ill_lock); 15998 15999 orig_mtu = ill->ill_max_mtu; 16000 ill->ill_max_frag = (uint_t)notify->dl_data; 16001 ill->ill_max_mtu = (uint_t)notify->dl_data; 16002 16003 /* 16004 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16005 * clamp ill_max_mtu at it. 16006 */ 16007 if (ill->ill_user_mtu != 0 && 16008 ill->ill_user_mtu < ill->ill_max_mtu) 16009 ill->ill_max_mtu = ill->ill_user_mtu; 16010 16011 /* 16012 * If the MTU is unchanged, we're done. 16013 */ 16014 if (orig_mtu == ill->ill_max_mtu) { 16015 mutex_exit(&ill->ill_lock); 16016 break; 16017 } 16018 16019 if (ill->ill_isv6) { 16020 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16021 ill->ill_max_mtu = IPV6_MIN_MTU; 16022 } else { 16023 if (ill->ill_max_mtu < IP_MIN_MTU) 16024 ill->ill_max_mtu = IP_MIN_MTU; 16025 } 16026 for (ipif = ill->ill_ipif; ipif != NULL; 16027 ipif = ipif->ipif_next) { 16028 /* 16029 * Don't override the mtu if the user 16030 * has explicitly set it. 16031 */ 16032 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16033 continue; 16034 ipif->ipif_mtu = (uint_t)notify->dl_data; 16035 if (ipif->ipif_isv6) 16036 ire = ipif_to_ire_v6(ipif); 16037 else 16038 ire = ipif_to_ire(ipif); 16039 if (ire != NULL) { 16040 ire->ire_max_frag = ipif->ipif_mtu; 16041 ire_refrele(ire); 16042 } 16043 if (ipif->ipif_flags & IPIF_UP) { 16044 if (ill->ill_isv6) 16045 need_ire_walk_v6 = B_TRUE; 16046 else 16047 need_ire_walk_v4 = B_TRUE; 16048 } 16049 } 16050 mutex_exit(&ill->ill_lock); 16051 if (need_ire_walk_v4) 16052 ire_walk_v4(ill_mtu_change, (char *)ill, 16053 ALL_ZONES, ipst); 16054 if (need_ire_walk_v6) 16055 ire_walk_v6(ill_mtu_change, (char *)ill, 16056 ALL_ZONES, ipst); 16057 16058 /* 16059 * Refresh IPMP meta-interface MTU if necessary. 16060 */ 16061 if (IS_UNDER_IPMP(ill)) 16062 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16063 break; 16064 16065 case DL_NOTE_LINK_UP: 16066 case DL_NOTE_LINK_DOWN: { 16067 /* 16068 * We are writer. ill / phyint / ipsq assocs stable. 16069 * The RUNNING flag reflects the state of the link. 16070 */ 16071 phyint_t *phyint = ill->ill_phyint; 16072 uint64_t new_phyint_flags; 16073 boolean_t changed = B_FALSE; 16074 boolean_t went_up; 16075 16076 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16077 mutex_enter(&phyint->phyint_lock); 16078 16079 new_phyint_flags = went_up ? 16080 phyint->phyint_flags | PHYI_RUNNING : 16081 phyint->phyint_flags & ~PHYI_RUNNING; 16082 16083 if (IS_IPMP(ill)) { 16084 new_phyint_flags = went_up ? 16085 new_phyint_flags & ~PHYI_FAILED : 16086 new_phyint_flags | PHYI_FAILED; 16087 } 16088 16089 if (new_phyint_flags != phyint->phyint_flags) { 16090 phyint->phyint_flags = new_phyint_flags; 16091 changed = B_TRUE; 16092 } 16093 mutex_exit(&phyint->phyint_lock); 16094 /* 16095 * ill_restart_dad handles the DAD restart and routing 16096 * socket notification logic. 16097 */ 16098 if (changed) { 16099 ill_restart_dad(phyint->phyint_illv4, went_up); 16100 ill_restart_dad(phyint->phyint_illv6, went_up); 16101 } 16102 break; 16103 } 16104 case DL_NOTE_PROMISC_ON_PHYS: 16105 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16106 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16107 mutex_enter(&ill->ill_lock); 16108 ill->ill_promisc_on_phys = B_TRUE; 16109 mutex_exit(&ill->ill_lock); 16110 break; 16111 case DL_NOTE_PROMISC_OFF_PHYS: 16112 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16113 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16114 mutex_enter(&ill->ill_lock); 16115 ill->ill_promisc_on_phys = B_FALSE; 16116 mutex_exit(&ill->ill_lock); 16117 break; 16118 case DL_NOTE_CAPAB_RENEG: 16119 /* 16120 * Something changed on the driver side. 16121 * It wants us to renegotiate the capabilities 16122 * on this ill. One possible cause is the aggregation 16123 * interface under us where a port got added or 16124 * went away. 16125 * 16126 * If the capability negotiation is already done 16127 * or is in progress, reset the capabilities and 16128 * mark the ill's ill_capab_reneg to be B_TRUE, 16129 * so that when the ack comes back, we can start 16130 * the renegotiation process. 16131 * 16132 * Note that if ill_capab_reneg is already B_TRUE 16133 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16134 * the capability resetting request has been sent 16135 * and the renegotiation has not been started yet; 16136 * nothing needs to be done in this case. 16137 */ 16138 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16139 ill_capability_reset(ill, B_TRUE); 16140 ipsq_current_finish(ipsq); 16141 break; 16142 default: 16143 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16144 "type 0x%x for DL_NOTIFY_IND\n", 16145 notify->dl_notification)); 16146 break; 16147 } 16148 16149 /* 16150 * As this is an asynchronous operation, we 16151 * should not call ill_dlpi_done 16152 */ 16153 break; 16154 } 16155 case DL_NOTIFY_ACK: { 16156 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16157 16158 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16159 ill->ill_note_link = 1; 16160 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16161 break; 16162 } 16163 case DL_PHYS_ADDR_ACK: { 16164 /* 16165 * As part of plumbing the interface via SIOCSLIFNAME, 16166 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16167 * whose answers we receive here. As each answer is received, 16168 * we call ill_dlpi_done() to dispatch the next request as 16169 * we're processing the current one. Once all answers have 16170 * been received, we use ipsq_pending_mp_get() to dequeue the 16171 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16172 * is invoked from an ill queue, conn_oper_pending_ill is not 16173 * available, but we know the ioctl is pending on ill_wq.) 16174 */ 16175 uint_t paddrlen, paddroff; 16176 16177 paddrreq = ill->ill_phys_addr_pend; 16178 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16179 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16180 16181 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16182 if (paddrreq == DL_IPV6_TOKEN) { 16183 /* 16184 * bcopy to low-order bits of ill_token 16185 * 16186 * XXX Temporary hack - currently, all known tokens 16187 * are 64 bits, so I'll cheat for the moment. 16188 */ 16189 bcopy(mp->b_rptr + paddroff, 16190 &ill->ill_token.s6_addr32[2], paddrlen); 16191 ill->ill_token_length = paddrlen; 16192 break; 16193 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16194 ASSERT(ill->ill_nd_lla_mp == NULL); 16195 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16196 mp = NULL; 16197 break; 16198 } 16199 16200 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16201 ASSERT(ill->ill_phys_addr_mp == NULL); 16202 if (!ill->ill_ifname_pending) 16203 break; 16204 ill->ill_ifname_pending = 0; 16205 if (!ioctl_aborted) 16206 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16207 if (mp1 != NULL) { 16208 ASSERT(connp == NULL); 16209 q = ill->ill_wq; 16210 } 16211 /* 16212 * If any error acks received during the plumbing sequence, 16213 * ill_ifname_pending_err will be set. Break out and send up 16214 * the error to the pending ioctl. 16215 */ 16216 if (ill->ill_ifname_pending_err != 0) { 16217 err = ill->ill_ifname_pending_err; 16218 ill->ill_ifname_pending_err = 0; 16219 break; 16220 } 16221 16222 ill->ill_phys_addr_mp = mp; 16223 ill->ill_phys_addr = mp->b_rptr + paddroff; 16224 mp = NULL; 16225 16226 /* 16227 * If paddrlen is zero, the DLPI provider doesn't support 16228 * physical addresses. The other two tests were historical 16229 * workarounds for bugs in our former PPP implementation, but 16230 * now other things have grown dependencies on them -- e.g., 16231 * the tun module specifies a dl_addr_length of zero in its 16232 * DL_BIND_ACK, but then specifies an incorrect value in its 16233 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16234 * but only after careful testing ensures that all dependent 16235 * broken DLPI providers have been fixed. 16236 */ 16237 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16238 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16239 ill->ill_phys_addr = NULL; 16240 } else if (paddrlen != ill->ill_phys_addr_length) { 16241 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16242 paddrlen, ill->ill_phys_addr_length)); 16243 err = EINVAL; 16244 break; 16245 } 16246 16247 if (ill->ill_nd_lla_mp == NULL) { 16248 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16249 err = ENOMEM; 16250 break; 16251 } 16252 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16253 } 16254 16255 /* 16256 * Set the interface token. If the zeroth interface address 16257 * is unspecified, then set it to the link local address. 16258 */ 16259 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16260 (void) ill_setdefaulttoken(ill); 16261 16262 ASSERT(ill->ill_ipif->ipif_id == 0); 16263 if (ipif != NULL && 16264 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16265 (void) ipif_setlinklocal(ipif); 16266 } 16267 break; 16268 } 16269 case DL_OK_ACK: 16270 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16271 dl_primstr((int)dloa->dl_correct_primitive), 16272 dloa->dl_correct_primitive)); 16273 switch (dloa->dl_correct_primitive) { 16274 case DL_ENABMULTI_REQ: 16275 case DL_DISABMULTI_REQ: 16276 if (!ill->ill_isv6) 16277 ipsq_current_finish(ipsq); 16278 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16279 break; 16280 case DL_PROMISCON_REQ: 16281 case DL_PROMISCOFF_REQ: 16282 case DL_UNBIND_REQ: 16283 case DL_ATTACH_REQ: 16284 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16285 break; 16286 } 16287 break; 16288 default: 16289 break; 16290 } 16291 16292 freemsg(mp); 16293 if (mp1 == NULL) 16294 return; 16295 16296 /* 16297 * The operation must complete without EINPROGRESS since 16298 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16299 * the operation will be stuck forever inside the IPSQ. 16300 */ 16301 ASSERT(err != EINPROGRESS); 16302 16303 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16304 case 0: 16305 ipsq_current_finish(ipsq); 16306 break; 16307 16308 case SIOCSLIFNAME: 16309 case IF_UNITSEL: { 16310 ill_t *ill_other = ILL_OTHER(ill); 16311 16312 /* 16313 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16314 * ill has a peer which is in an IPMP group, then place ill 16315 * into the same group. One catch: although ifconfig plumbs 16316 * the appropriate IPMP meta-interface prior to plumbing this 16317 * ill, it is possible for multiple ifconfig applications to 16318 * race (or for another application to adjust plumbing), in 16319 * which case the IPMP meta-interface we need will be missing. 16320 * If so, kick the phyint out of the group. 16321 */ 16322 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16323 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16324 ipmp_illgrp_t *illg; 16325 16326 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16327 if (illg == NULL) 16328 ipmp_phyint_leave_grp(ill->ill_phyint); 16329 else 16330 ipmp_ill_join_illgrp(ill, illg); 16331 } 16332 16333 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16334 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16335 else 16336 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16337 break; 16338 } 16339 case SIOCLIFADDIF: 16340 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16341 break; 16342 16343 default: 16344 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16345 break; 16346 } 16347 } 16348 16349 /* 16350 * ip_rput_other is called by ip_rput to handle messages modifying the global 16351 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16352 */ 16353 /* ARGSUSED */ 16354 void 16355 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16356 { 16357 ill_t *ill = q->q_ptr; 16358 struct iocblk *iocp; 16359 mblk_t *mp1; 16360 conn_t *connp = NULL; 16361 16362 ip1dbg(("ip_rput_other ")); 16363 if (ipsq != NULL) { 16364 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16365 ASSERT(ipsq->ipsq_xop == 16366 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16367 } 16368 16369 switch (mp->b_datap->db_type) { 16370 case M_ERROR: 16371 case M_HANGUP: 16372 /* 16373 * The device has a problem. We force the ILL down. It can 16374 * be brought up again manually using SIOCSIFFLAGS (via 16375 * ifconfig or equivalent). 16376 */ 16377 ASSERT(ipsq != NULL); 16378 if (mp->b_rptr < mp->b_wptr) 16379 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16380 if (ill->ill_error == 0) 16381 ill->ill_error = ENXIO; 16382 if (!ill_down_start(q, mp)) 16383 return; 16384 ipif_all_down_tail(ipsq, q, mp, NULL); 16385 break; 16386 case M_IOCACK: 16387 iocp = (struct iocblk *)mp->b_rptr; 16388 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16389 switch (iocp->ioc_cmd) { 16390 case SIOCSTUNPARAM: 16391 case OSIOCSTUNPARAM: 16392 ASSERT(ipsq != NULL); 16393 /* 16394 * Finish socket ioctl passed through to tun. 16395 * We should have an IOCTL waiting on this. 16396 */ 16397 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16398 if (ill->ill_isv6) { 16399 struct iftun_req *ta; 16400 16401 /* 16402 * if a source or destination is 16403 * being set, try and set the link 16404 * local address for the tunnel 16405 */ 16406 ta = (struct iftun_req *)mp->b_cont-> 16407 b_cont->b_rptr; 16408 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16409 ipif_set_tun_llink(ill, ta); 16410 } 16411 16412 } 16413 if (mp1 != NULL) { 16414 /* 16415 * Now copy back the b_next/b_prev used by 16416 * mi code for the mi_copy* functions. 16417 * See ip_sioctl_tunparam() for the reason. 16418 * Also protect against missing b_cont. 16419 */ 16420 if (mp->b_cont != NULL) { 16421 mp->b_cont->b_next = 16422 mp1->b_cont->b_next; 16423 mp->b_cont->b_prev = 16424 mp1->b_cont->b_prev; 16425 } 16426 inet_freemsg(mp1); 16427 ASSERT(connp != NULL); 16428 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16429 iocp->ioc_error, NO_COPYOUT, ipsq); 16430 } else { 16431 ASSERT(connp == NULL); 16432 putnext(q, mp); 16433 } 16434 break; 16435 case SIOCGTUNPARAM: 16436 case OSIOCGTUNPARAM: 16437 /* 16438 * This is really M_IOCDATA from the tunnel driver. 16439 * convert back and complete the ioctl. 16440 * We should have an IOCTL waiting on this. 16441 */ 16442 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16443 if (mp1) { 16444 /* 16445 * Now copy back the b_next/b_prev used by 16446 * mi code for the mi_copy* functions. 16447 * See ip_sioctl_tunparam() for the reason. 16448 * Also protect against missing b_cont. 16449 */ 16450 if (mp->b_cont != NULL) { 16451 mp->b_cont->b_next = 16452 mp1->b_cont->b_next; 16453 mp->b_cont->b_prev = 16454 mp1->b_cont->b_prev; 16455 } 16456 inet_freemsg(mp1); 16457 if (iocp->ioc_error == 0) 16458 mp->b_datap->db_type = M_IOCDATA; 16459 ASSERT(connp != NULL); 16460 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16461 iocp->ioc_error, COPYOUT, NULL); 16462 } else { 16463 ASSERT(connp == NULL); 16464 putnext(q, mp); 16465 } 16466 break; 16467 default: 16468 break; 16469 } 16470 break; 16471 case M_IOCNAK: 16472 iocp = (struct iocblk *)mp->b_rptr; 16473 16474 switch (iocp->ioc_cmd) { 16475 int mode; 16476 16477 case DL_IOC_HDR_INFO: 16478 /* 16479 * If this was the first attempt, turn off the 16480 * fastpath probing. 16481 */ 16482 mutex_enter(&ill->ill_lock); 16483 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16484 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16485 mutex_exit(&ill->ill_lock); 16486 ill_fastpath_nack(ill); 16487 ip1dbg(("ip_rput: DLPI fastpath off on " 16488 "interface %s\n", 16489 ill->ill_name)); 16490 } else { 16491 mutex_exit(&ill->ill_lock); 16492 } 16493 freemsg(mp); 16494 break; 16495 case SIOCSTUNPARAM: 16496 case OSIOCSTUNPARAM: 16497 ASSERT(ipsq != NULL); 16498 /* 16499 * Finish socket ioctl passed through to tun 16500 * We should have an IOCTL waiting on this. 16501 */ 16502 /* FALLTHRU */ 16503 case SIOCGTUNPARAM: 16504 case OSIOCGTUNPARAM: 16505 /* 16506 * This is really M_IOCDATA from the tunnel driver. 16507 * convert back and complete the ioctl. 16508 * We should have an IOCTL waiting on this. 16509 */ 16510 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16511 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16512 mp1 = ill_pending_mp_get(ill, &connp, 16513 iocp->ioc_id); 16514 mode = COPYOUT; 16515 ipsq = NULL; 16516 } else { 16517 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16518 mode = NO_COPYOUT; 16519 } 16520 if (mp1 != NULL) { 16521 /* 16522 * Now copy back the b_next/b_prev used by 16523 * mi code for the mi_copy* functions. 16524 * See ip_sioctl_tunparam() for the reason. 16525 * Also protect against missing b_cont. 16526 */ 16527 if (mp->b_cont != NULL) { 16528 mp->b_cont->b_next = 16529 mp1->b_cont->b_next; 16530 mp->b_cont->b_prev = 16531 mp1->b_cont->b_prev; 16532 } 16533 inet_freemsg(mp1); 16534 if (iocp->ioc_error == 0) 16535 iocp->ioc_error = EINVAL; 16536 ASSERT(connp != NULL); 16537 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16538 iocp->ioc_error, mode, ipsq); 16539 } else { 16540 ASSERT(connp == NULL); 16541 putnext(q, mp); 16542 } 16543 break; 16544 default: 16545 break; 16546 } 16547 default: 16548 break; 16549 } 16550 } 16551 16552 /* 16553 * NOTE : This function does not ire_refrele the ire argument passed in. 16554 * 16555 * IPQoS notes 16556 * IP policy is invoked twice for a forwarded packet, once on the read side 16557 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16558 * enabled. An additional parameter, in_ill, has been added for this purpose. 16559 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16560 * because ip_mroute drops this information. 16561 * 16562 */ 16563 void 16564 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16565 { 16566 uint32_t old_pkt_len; 16567 uint32_t pkt_len; 16568 queue_t *q; 16569 uint32_t sum; 16570 #define rptr ((uchar_t *)ipha) 16571 uint32_t max_frag; 16572 uint32_t ill_index; 16573 ill_t *out_ill; 16574 mib2_ipIfStatsEntry_t *mibptr; 16575 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16576 16577 /* Get the ill_index of the incoming ILL */ 16578 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16579 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16580 16581 /* Initiate Read side IPPF processing */ 16582 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16583 ip_process(IPP_FWD_IN, &mp, ill_index); 16584 if (mp == NULL) { 16585 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16586 "during IPPF processing\n")); 16587 return; 16588 } 16589 } 16590 16591 /* Adjust the checksum to reflect the ttl decrement. */ 16592 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16593 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16594 16595 if (ipha->ipha_ttl-- <= 1) { 16596 if (ip_csum_hdr(ipha)) { 16597 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16598 goto drop_pkt; 16599 } 16600 /* 16601 * Note: ire_stq this will be NULL for multicast 16602 * datagrams using the long path through arp (the IRE 16603 * is not an IRE_CACHE). This should not cause 16604 * problems since we don't generate ICMP errors for 16605 * multicast packets. 16606 */ 16607 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16608 q = ire->ire_stq; 16609 if (q != NULL) { 16610 /* Sent by forwarding path, and router is global zone */ 16611 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16612 GLOBAL_ZONEID, ipst); 16613 } else 16614 freemsg(mp); 16615 return; 16616 } 16617 16618 /* 16619 * Don't forward if the interface is down 16620 */ 16621 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16622 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16623 ip2dbg(("ip_rput_forward:interface is down\n")); 16624 goto drop_pkt; 16625 } 16626 16627 /* Get the ill_index of the outgoing ILL */ 16628 out_ill = ire_to_ill(ire); 16629 ill_index = out_ill->ill_phyint->phyint_ifindex; 16630 16631 DTRACE_PROBE4(ip4__forwarding__start, 16632 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16633 16634 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16635 ipst->ips_ipv4firewall_forwarding, 16636 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16637 16638 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16639 16640 if (mp == NULL) 16641 return; 16642 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16643 16644 if (is_system_labeled()) { 16645 mblk_t *mp1; 16646 16647 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16648 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16649 goto drop_pkt; 16650 } 16651 /* Size may have changed */ 16652 mp = mp1; 16653 ipha = (ipha_t *)mp->b_rptr; 16654 pkt_len = ntohs(ipha->ipha_length); 16655 } 16656 16657 /* Check if there are options to update */ 16658 if (!IS_SIMPLE_IPH(ipha)) { 16659 if (ip_csum_hdr(ipha)) { 16660 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16661 goto drop_pkt; 16662 } 16663 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16664 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16665 return; 16666 } 16667 16668 ipha->ipha_hdr_checksum = 0; 16669 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16670 } 16671 max_frag = ire->ire_max_frag; 16672 if (pkt_len > max_frag) { 16673 /* 16674 * It needs fragging on its way out. We haven't 16675 * verified the header checksum yet. Since we 16676 * are going to put a surely good checksum in the 16677 * outgoing header, we have to make sure that it 16678 * was good coming in. 16679 */ 16680 if (ip_csum_hdr(ipha)) { 16681 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16682 goto drop_pkt; 16683 } 16684 /* Initiate Write side IPPF processing */ 16685 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16686 ip_process(IPP_FWD_OUT, &mp, ill_index); 16687 if (mp == NULL) { 16688 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16689 " during IPPF processing\n")); 16690 return; 16691 } 16692 } 16693 /* 16694 * Handle labeled packet resizing. 16695 * 16696 * If we have added a label, inform ip_wput_frag() of its 16697 * effect on the MTU for ICMP messages. 16698 */ 16699 if (pkt_len > old_pkt_len) { 16700 uint32_t secopt_size; 16701 16702 secopt_size = pkt_len - old_pkt_len; 16703 if (secopt_size < max_frag) 16704 max_frag -= secopt_size; 16705 } 16706 16707 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16708 GLOBAL_ZONEID, ipst, NULL); 16709 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16710 return; 16711 } 16712 16713 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16714 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16715 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16716 ipst->ips_ipv4firewall_physical_out, 16717 NULL, out_ill, ipha, mp, mp, 0, ipst); 16718 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16719 if (mp == NULL) 16720 return; 16721 16722 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16723 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16724 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16725 /* ip_xmit_v4 always consumes the packet */ 16726 return; 16727 16728 drop_pkt:; 16729 ip1dbg(("ip_rput_forward: drop pkt\n")); 16730 freemsg(mp); 16731 #undef rptr 16732 } 16733 16734 void 16735 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16736 { 16737 ire_t *ire; 16738 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16739 16740 ASSERT(!ipif->ipif_isv6); 16741 /* 16742 * Find an IRE which matches the destination and the outgoing 16743 * queue in the cache table. All we need is an IRE_CACHE which 16744 * is pointing at ipif->ipif_ill. 16745 */ 16746 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16747 dst = ipif->ipif_pp_dst_addr; 16748 16749 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16750 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16751 if (ire == NULL) { 16752 /* 16753 * Mark this packet to make it be delivered to 16754 * ip_rput_forward after the new ire has been 16755 * created. 16756 */ 16757 mp->b_prev = NULL; 16758 mp->b_next = mp; 16759 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16760 NULL, 0, GLOBAL_ZONEID, &zero_info); 16761 } else { 16762 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16763 IRE_REFRELE(ire); 16764 } 16765 } 16766 16767 /* Update any source route, record route or timestamp options */ 16768 static int 16769 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16770 { 16771 ipoptp_t opts; 16772 uchar_t *opt; 16773 uint8_t optval; 16774 uint8_t optlen; 16775 ipaddr_t dst; 16776 uint32_t ts; 16777 ire_t *dst_ire = NULL; 16778 ire_t *tmp_ire = NULL; 16779 timestruc_t now; 16780 16781 ip2dbg(("ip_rput_forward_options\n")); 16782 dst = ipha->ipha_dst; 16783 for (optval = ipoptp_first(&opts, ipha); 16784 optval != IPOPT_EOL; 16785 optval = ipoptp_next(&opts)) { 16786 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16787 opt = opts.ipoptp_cur; 16788 optlen = opts.ipoptp_len; 16789 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16790 optval, opts.ipoptp_len)); 16791 switch (optval) { 16792 uint32_t off; 16793 case IPOPT_SSRR: 16794 case IPOPT_LSRR: 16795 /* Check if adminstratively disabled */ 16796 if (!ipst->ips_ip_forward_src_routed) { 16797 if (ire->ire_stq != NULL) { 16798 /* 16799 * Sent by forwarding path, and router 16800 * is global zone 16801 */ 16802 icmp_unreachable(ire->ire_stq, mp, 16803 ICMP_SOURCE_ROUTE_FAILED, 16804 GLOBAL_ZONEID, ipst); 16805 } else { 16806 ip0dbg(("ip_rput_forward_options: " 16807 "unable to send unreach\n")); 16808 freemsg(mp); 16809 } 16810 return (-1); 16811 } 16812 16813 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16814 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16815 if (dst_ire == NULL) { 16816 /* 16817 * Must be partial since ip_rput_options 16818 * checked for strict. 16819 */ 16820 break; 16821 } 16822 off = opt[IPOPT_OFFSET]; 16823 off--; 16824 redo_srr: 16825 if (optlen < IP_ADDR_LEN || 16826 off > optlen - IP_ADDR_LEN) { 16827 /* End of source route */ 16828 ip1dbg(( 16829 "ip_rput_forward_options: end of SR\n")); 16830 ire_refrele(dst_ire); 16831 break; 16832 } 16833 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16834 bcopy(&ire->ire_src_addr, (char *)opt + off, 16835 IP_ADDR_LEN); 16836 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16837 ntohl(dst))); 16838 16839 /* 16840 * Check if our address is present more than 16841 * once as consecutive hops in source route. 16842 */ 16843 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16844 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16845 if (tmp_ire != NULL) { 16846 ire_refrele(tmp_ire); 16847 off += IP_ADDR_LEN; 16848 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16849 goto redo_srr; 16850 } 16851 ipha->ipha_dst = dst; 16852 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16853 ire_refrele(dst_ire); 16854 break; 16855 case IPOPT_RR: 16856 off = opt[IPOPT_OFFSET]; 16857 off--; 16858 if (optlen < IP_ADDR_LEN || 16859 off > optlen - IP_ADDR_LEN) { 16860 /* No more room - ignore */ 16861 ip1dbg(( 16862 "ip_rput_forward_options: end of RR\n")); 16863 break; 16864 } 16865 bcopy(&ire->ire_src_addr, (char *)opt + off, 16866 IP_ADDR_LEN); 16867 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16868 break; 16869 case IPOPT_TS: 16870 /* Insert timestamp if there is room */ 16871 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16872 case IPOPT_TS_TSONLY: 16873 off = IPOPT_TS_TIMELEN; 16874 break; 16875 case IPOPT_TS_PRESPEC: 16876 case IPOPT_TS_PRESPEC_RFC791: 16877 /* Verify that the address matched */ 16878 off = opt[IPOPT_OFFSET] - 1; 16879 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16880 dst_ire = ire_ctable_lookup(dst, 0, 16881 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16882 MATCH_IRE_TYPE, ipst); 16883 if (dst_ire == NULL) { 16884 /* Not for us */ 16885 break; 16886 } 16887 ire_refrele(dst_ire); 16888 /* FALLTHRU */ 16889 case IPOPT_TS_TSANDADDR: 16890 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16891 break; 16892 default: 16893 /* 16894 * ip_*put_options should have already 16895 * dropped this packet. 16896 */ 16897 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16898 "unknown IT - bug in ip_rput_options?\n"); 16899 return (0); /* Keep "lint" happy */ 16900 } 16901 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16902 /* Increase overflow counter */ 16903 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16904 opt[IPOPT_POS_OV_FLG] = 16905 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16906 (off << 4)); 16907 break; 16908 } 16909 off = opt[IPOPT_OFFSET] - 1; 16910 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16911 case IPOPT_TS_PRESPEC: 16912 case IPOPT_TS_PRESPEC_RFC791: 16913 case IPOPT_TS_TSANDADDR: 16914 bcopy(&ire->ire_src_addr, 16915 (char *)opt + off, IP_ADDR_LEN); 16916 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16917 /* FALLTHRU */ 16918 case IPOPT_TS_TSONLY: 16919 off = opt[IPOPT_OFFSET] - 1; 16920 /* Compute # of milliseconds since midnight */ 16921 gethrestime(&now); 16922 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16923 now.tv_nsec / (NANOSEC / MILLISEC); 16924 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16925 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16926 break; 16927 } 16928 break; 16929 } 16930 } 16931 return (0); 16932 } 16933 16934 /* 16935 * This is called after processing at least one of AH/ESP headers. 16936 * 16937 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16938 * the actual, physical interface on which the packet was received, 16939 * but, when ip_strict_dst_multihoming is set to 1, could be the 16940 * interface which had the ipha_dst configured when the packet went 16941 * through ip_rput. The ill_index corresponding to the recv_ill 16942 * is saved in ipsec_in_rill_index 16943 * 16944 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16945 * cannot assume "ire" points to valid data for any IPv6 cases. 16946 */ 16947 void 16948 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16949 { 16950 mblk_t *mp; 16951 ipaddr_t dst; 16952 in6_addr_t *v6dstp; 16953 ipha_t *ipha; 16954 ip6_t *ip6h; 16955 ipsec_in_t *ii; 16956 boolean_t ill_need_rele = B_FALSE; 16957 boolean_t rill_need_rele = B_FALSE; 16958 boolean_t ire_need_rele = B_FALSE; 16959 netstack_t *ns; 16960 ip_stack_t *ipst; 16961 16962 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16963 ASSERT(ii->ipsec_in_ill_index != 0); 16964 ns = ii->ipsec_in_ns; 16965 ASSERT(ii->ipsec_in_ns != NULL); 16966 ipst = ns->netstack_ip; 16967 16968 mp = ipsec_mp->b_cont; 16969 ASSERT(mp != NULL); 16970 16971 16972 if (ill == NULL) { 16973 ASSERT(recv_ill == NULL); 16974 /* 16975 * We need to get the original queue on which ip_rput_local 16976 * or ip_rput_data_v6 was called. 16977 */ 16978 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16979 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16980 ill_need_rele = B_TRUE; 16981 16982 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16983 recv_ill = ill_lookup_on_ifindex( 16984 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16985 NULL, NULL, NULL, NULL, ipst); 16986 rill_need_rele = B_TRUE; 16987 } else { 16988 recv_ill = ill; 16989 } 16990 16991 if ((ill == NULL) || (recv_ill == NULL)) { 16992 ip0dbg(("ip_fanout_proto_again: interface " 16993 "disappeared\n")); 16994 if (ill != NULL) 16995 ill_refrele(ill); 16996 if (recv_ill != NULL) 16997 ill_refrele(recv_ill); 16998 freemsg(ipsec_mp); 16999 return; 17000 } 17001 } 17002 17003 ASSERT(ill != NULL && recv_ill != NULL); 17004 17005 if (mp->b_datap->db_type == M_CTL) { 17006 /* 17007 * AH/ESP is returning the ICMP message after 17008 * removing their headers. Fanout again till 17009 * it gets to the right protocol. 17010 */ 17011 if (ii->ipsec_in_v4) { 17012 icmph_t *icmph; 17013 int iph_hdr_length; 17014 int hdr_length; 17015 17016 ipha = (ipha_t *)mp->b_rptr; 17017 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17018 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17019 ipha = (ipha_t *)&icmph[1]; 17020 hdr_length = IPH_HDR_LENGTH(ipha); 17021 /* 17022 * icmp_inbound_error_fanout may need to do pullupmsg. 17023 * Reset the type to M_DATA. 17024 */ 17025 mp->b_datap->db_type = M_DATA; 17026 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17027 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17028 B_FALSE, ill, ii->ipsec_in_zoneid); 17029 } else { 17030 icmp6_t *icmp6; 17031 int hdr_length; 17032 17033 ip6h = (ip6_t *)mp->b_rptr; 17034 /* Don't call hdr_length_v6() unless you have to. */ 17035 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17036 hdr_length = ip_hdr_length_v6(mp, ip6h); 17037 else 17038 hdr_length = IPV6_HDR_LEN; 17039 17040 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17041 /* 17042 * icmp_inbound_error_fanout_v6 may need to do 17043 * pullupmsg. Reset the type to M_DATA. 17044 */ 17045 mp->b_datap->db_type = M_DATA; 17046 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17047 ip6h, icmp6, ill, recv_ill, B_TRUE, 17048 ii->ipsec_in_zoneid); 17049 } 17050 if (ill_need_rele) 17051 ill_refrele(ill); 17052 if (rill_need_rele) 17053 ill_refrele(recv_ill); 17054 return; 17055 } 17056 17057 if (ii->ipsec_in_v4) { 17058 ipha = (ipha_t *)mp->b_rptr; 17059 dst = ipha->ipha_dst; 17060 if (CLASSD(dst)) { 17061 /* 17062 * Multicast has to be delivered to all streams. 17063 */ 17064 dst = INADDR_BROADCAST; 17065 } 17066 17067 if (ire == NULL) { 17068 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17069 MBLK_GETLABEL(mp), ipst); 17070 if (ire == NULL) { 17071 if (ill_need_rele) 17072 ill_refrele(ill); 17073 if (rill_need_rele) 17074 ill_refrele(recv_ill); 17075 ip1dbg(("ip_fanout_proto_again: " 17076 "IRE not found")); 17077 freemsg(ipsec_mp); 17078 return; 17079 } 17080 ire_need_rele = B_TRUE; 17081 } 17082 17083 switch (ipha->ipha_protocol) { 17084 case IPPROTO_UDP: 17085 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17086 recv_ill); 17087 if (ire_need_rele) 17088 ire_refrele(ire); 17089 break; 17090 case IPPROTO_TCP: 17091 if (!ire_need_rele) 17092 IRE_REFHOLD(ire); 17093 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17094 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17095 IRE_REFRELE(ire); 17096 if (mp != NULL) { 17097 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17098 mp, 1, SQ_PROCESS, 17099 SQTAG_IP_PROTO_AGAIN); 17100 } 17101 break; 17102 case IPPROTO_SCTP: 17103 if (!ire_need_rele) 17104 IRE_REFHOLD(ire); 17105 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17106 ipsec_mp, 0, ill->ill_rq, dst); 17107 break; 17108 default: 17109 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17110 recv_ill, 0); 17111 if (ire_need_rele) 17112 ire_refrele(ire); 17113 break; 17114 } 17115 } else { 17116 uint32_t rput_flags = 0; 17117 17118 ip6h = (ip6_t *)mp->b_rptr; 17119 v6dstp = &ip6h->ip6_dst; 17120 /* 17121 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17122 * address. 17123 * 17124 * Currently, we don't store that state in the IPSEC_IN 17125 * message, and we may need to. 17126 */ 17127 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17128 IP6_IN_LLMCAST : 0); 17129 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17130 NULL, NULL); 17131 } 17132 if (ill_need_rele) 17133 ill_refrele(ill); 17134 if (rill_need_rele) 17135 ill_refrele(recv_ill); 17136 } 17137 17138 /* 17139 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17140 * returns 'true' if there are still fragments left on the queue, in 17141 * which case we restart the timer. 17142 */ 17143 void 17144 ill_frag_timer(void *arg) 17145 { 17146 ill_t *ill = (ill_t *)arg; 17147 boolean_t frag_pending; 17148 ip_stack_t *ipst = ill->ill_ipst; 17149 17150 mutex_enter(&ill->ill_lock); 17151 ASSERT(!ill->ill_fragtimer_executing); 17152 if (ill->ill_state_flags & ILL_CONDEMNED) { 17153 ill->ill_frag_timer_id = 0; 17154 mutex_exit(&ill->ill_lock); 17155 return; 17156 } 17157 ill->ill_fragtimer_executing = 1; 17158 mutex_exit(&ill->ill_lock); 17159 17160 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17161 17162 /* 17163 * Restart the timer, if we have fragments pending or if someone 17164 * wanted us to be scheduled again. 17165 */ 17166 mutex_enter(&ill->ill_lock); 17167 ill->ill_fragtimer_executing = 0; 17168 ill->ill_frag_timer_id = 0; 17169 if (frag_pending || ill->ill_fragtimer_needrestart) 17170 ill_frag_timer_start(ill); 17171 mutex_exit(&ill->ill_lock); 17172 } 17173 17174 void 17175 ill_frag_timer_start(ill_t *ill) 17176 { 17177 ip_stack_t *ipst = ill->ill_ipst; 17178 17179 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17180 17181 /* If the ill is closing or opening don't proceed */ 17182 if (ill->ill_state_flags & ILL_CONDEMNED) 17183 return; 17184 17185 if (ill->ill_fragtimer_executing) { 17186 /* 17187 * ill_frag_timer is currently executing. Just record the 17188 * the fact that we want the timer to be restarted. 17189 * ill_frag_timer will post a timeout before it returns, 17190 * ensuring it will be called again. 17191 */ 17192 ill->ill_fragtimer_needrestart = 1; 17193 return; 17194 } 17195 17196 if (ill->ill_frag_timer_id == 0) { 17197 /* 17198 * The timer is neither running nor is the timeout handler 17199 * executing. Post a timeout so that ill_frag_timer will be 17200 * called 17201 */ 17202 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17203 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17204 ill->ill_fragtimer_needrestart = 0; 17205 } 17206 } 17207 17208 /* 17209 * This routine is needed for loopback when forwarding multicasts. 17210 * 17211 * IPQoS Notes: 17212 * IPPF processing is done in fanout routines. 17213 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17214 * processing for IPsec packets is done when it comes back in clear. 17215 * NOTE : The callers of this function need to do the ire_refrele for the 17216 * ire that is being passed in. 17217 */ 17218 void 17219 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17220 ill_t *recv_ill, uint32_t esp_udp_ports) 17221 { 17222 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17223 ill_t *ill = (ill_t *)q->q_ptr; 17224 uint32_t sum; 17225 uint32_t u1; 17226 uint32_t u2; 17227 int hdr_length; 17228 boolean_t mctl_present; 17229 mblk_t *first_mp = mp; 17230 mblk_t *hada_mp = NULL; 17231 ipha_t *inner_ipha; 17232 ip_stack_t *ipst; 17233 17234 ASSERT(recv_ill != NULL); 17235 ipst = recv_ill->ill_ipst; 17236 17237 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17238 "ip_rput_locl_start: q %p", q); 17239 17240 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17241 ASSERT(ill != NULL); 17242 17243 17244 #define rptr ((uchar_t *)ipha) 17245 #define iphs ((uint16_t *)ipha) 17246 17247 /* 17248 * no UDP or TCP packet should come here anymore. 17249 */ 17250 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17251 ipha->ipha_protocol != IPPROTO_UDP); 17252 17253 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17254 if (mctl_present && 17255 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17256 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17257 17258 /* 17259 * It's an IPsec accelerated packet. 17260 * Keep a pointer to the data attributes around until 17261 * we allocate the ipsec_info_t. 17262 */ 17263 IPSECHW_DEBUG(IPSECHW_PKT, 17264 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17265 hada_mp = first_mp; 17266 hada_mp->b_cont = NULL; 17267 /* 17268 * Since it is accelerated, it comes directly from 17269 * the ill and the data attributes is followed by 17270 * the packet data. 17271 */ 17272 ASSERT(mp->b_datap->db_type != M_CTL); 17273 first_mp = mp; 17274 mctl_present = B_FALSE; 17275 } 17276 17277 /* 17278 * IF M_CTL is not present, then ipsec_in_is_secure 17279 * should return B_TRUE. There is a case where loopback 17280 * packets has an M_CTL in the front with all the 17281 * IPsec options set to IPSEC_PREF_NEVER - which means 17282 * ipsec_in_is_secure will return B_FALSE. As loopback 17283 * packets never comes here, it is safe to ASSERT the 17284 * following. 17285 */ 17286 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17287 17288 /* 17289 * Also, we should never have an mctl_present if this is an 17290 * ESP-in-UDP packet. 17291 */ 17292 ASSERT(!mctl_present || !esp_in_udp_packet); 17293 17294 17295 /* u1 is # words of IP options */ 17296 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17297 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17298 17299 /* 17300 * Don't verify header checksum if we just removed UDP header or 17301 * packet is coming back from AH/ESP. 17302 */ 17303 if (!esp_in_udp_packet && !mctl_present) { 17304 if (u1) { 17305 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17306 if (hada_mp != NULL) 17307 freemsg(hada_mp); 17308 return; 17309 } 17310 } else { 17311 /* Check the IP header checksum. */ 17312 #define uph ((uint16_t *)ipha) 17313 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17314 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17315 #undef uph 17316 /* finish doing IP checksum */ 17317 sum = (sum & 0xFFFF) + (sum >> 16); 17318 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17319 if (sum && sum != 0xFFFF) { 17320 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17321 goto drop_pkt; 17322 } 17323 } 17324 } 17325 17326 /* 17327 * Count for SNMP of inbound packets for ire. As ip_proto_input 17328 * might be called more than once for secure packets, count only 17329 * the first time. 17330 */ 17331 if (!mctl_present) { 17332 UPDATE_IB_PKT_COUNT(ire); 17333 ire->ire_last_used_time = lbolt; 17334 } 17335 17336 /* Check for fragmentation offset. */ 17337 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17338 u1 = u2 & (IPH_MF | IPH_OFFSET); 17339 if (u1) { 17340 /* 17341 * We re-assemble fragments before we do the AH/ESP 17342 * processing. Thus, M_CTL should not be present 17343 * while we are re-assembling. 17344 */ 17345 ASSERT(!mctl_present); 17346 ASSERT(first_mp == mp); 17347 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17348 return; 17349 17350 /* 17351 * Make sure that first_mp points back to mp as 17352 * the mp we came in with could have changed in 17353 * ip_rput_fragment(). 17354 */ 17355 ipha = (ipha_t *)mp->b_rptr; 17356 first_mp = mp; 17357 } 17358 17359 /* 17360 * Clear hardware checksumming flag as it is currently only 17361 * used by TCP and UDP. 17362 */ 17363 DB_CKSUMFLAGS(mp) = 0; 17364 17365 /* Now we have a complete datagram, destined for this machine. */ 17366 u1 = IPH_HDR_LENGTH(ipha); 17367 switch (ipha->ipha_protocol) { 17368 case IPPROTO_ICMP: { 17369 ire_t *ire_zone; 17370 ilm_t *ilm; 17371 mblk_t *mp1; 17372 zoneid_t last_zoneid; 17373 ilm_walker_t ilw; 17374 17375 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17376 ASSERT(ire->ire_type == IRE_BROADCAST); 17377 17378 /* 17379 * In the multicast case, applications may have joined 17380 * the group from different zones, so we need to deliver 17381 * the packet to each of them. Loop through the 17382 * multicast memberships structures (ilm) on the receive 17383 * ill and send a copy of the packet up each matching 17384 * one. However, we don't do this for multicasts sent on 17385 * the loopback interface (PHYI_LOOPBACK flag set) as 17386 * they must stay in the sender's zone. 17387 * 17388 * ilm_add_v6() ensures that ilms in the same zone are 17389 * contiguous in the ill_ilm list. We use this property 17390 * to avoid sending duplicates needed when two 17391 * applications in the same zone join the same group on 17392 * different logical interfaces: we ignore the ilm if 17393 * its zoneid is the same as the last matching one. 17394 * In addition, the sending of the packet for 17395 * ire_zoneid is delayed until all of the other ilms 17396 * have been exhausted. 17397 */ 17398 last_zoneid = -1; 17399 ilm = ilm_walker_start(&ilw, recv_ill); 17400 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17401 if (ipha->ipha_dst != ilm->ilm_addr || 17402 ilm->ilm_zoneid == last_zoneid || 17403 ilm->ilm_zoneid == ire->ire_zoneid || 17404 ilm->ilm_zoneid == ALL_ZONES || 17405 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17406 continue; 17407 mp1 = ip_copymsg(first_mp); 17408 if (mp1 == NULL) 17409 continue; 17410 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17411 0, sum, mctl_present, B_TRUE, 17412 recv_ill, ilm->ilm_zoneid); 17413 last_zoneid = ilm->ilm_zoneid; 17414 } 17415 ilm_walker_finish(&ilw); 17416 } else if (ire->ire_type == IRE_BROADCAST) { 17417 /* 17418 * In the broadcast case, there may be many zones 17419 * which need a copy of the packet delivered to them. 17420 * There is one IRE_BROADCAST per broadcast address 17421 * and per zone; we walk those using a helper function. 17422 * In addition, the sending of the packet for ire is 17423 * delayed until all of the other ires have been 17424 * processed. 17425 */ 17426 IRB_REFHOLD(ire->ire_bucket); 17427 ire_zone = NULL; 17428 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17429 ire)) != NULL) { 17430 mp1 = ip_copymsg(first_mp); 17431 if (mp1 == NULL) 17432 continue; 17433 17434 UPDATE_IB_PKT_COUNT(ire_zone); 17435 ire_zone->ire_last_used_time = lbolt; 17436 icmp_inbound(q, mp1, B_TRUE, ill, 17437 0, sum, mctl_present, B_TRUE, 17438 recv_ill, ire_zone->ire_zoneid); 17439 } 17440 IRB_REFRELE(ire->ire_bucket); 17441 } 17442 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17443 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17444 ire->ire_zoneid); 17445 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17446 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17447 return; 17448 } 17449 case IPPROTO_IGMP: 17450 /* 17451 * If we are not willing to accept IGMP packets in clear, 17452 * then check with global policy. 17453 */ 17454 if (ipst->ips_igmp_accept_clear_messages == 0) { 17455 first_mp = ipsec_check_global_policy(first_mp, NULL, 17456 ipha, NULL, mctl_present, ipst->ips_netstack); 17457 if (first_mp == NULL) 17458 return; 17459 } 17460 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17461 freemsg(first_mp); 17462 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17463 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17464 return; 17465 } 17466 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17467 /* Bad packet - discarded by igmp_input */ 17468 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17469 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17470 if (mctl_present) 17471 freeb(first_mp); 17472 return; 17473 } 17474 /* 17475 * igmp_input() may have returned the pulled up message. 17476 * So first_mp and ipha need to be reinitialized. 17477 */ 17478 ipha = (ipha_t *)mp->b_rptr; 17479 if (mctl_present) 17480 first_mp->b_cont = mp; 17481 else 17482 first_mp = mp; 17483 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17484 connf_head != NULL) { 17485 /* No user-level listener for IGMP packets */ 17486 goto drop_pkt; 17487 } 17488 /* deliver to local raw users */ 17489 break; 17490 case IPPROTO_PIM: 17491 /* 17492 * If we are not willing to accept PIM packets in clear, 17493 * then check with global policy. 17494 */ 17495 if (ipst->ips_pim_accept_clear_messages == 0) { 17496 first_mp = ipsec_check_global_policy(first_mp, NULL, 17497 ipha, NULL, mctl_present, ipst->ips_netstack); 17498 if (first_mp == NULL) 17499 return; 17500 } 17501 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17502 freemsg(first_mp); 17503 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17504 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17505 return; 17506 } 17507 if (pim_input(q, mp, ill) != 0) { 17508 /* Bad packet - discarded by pim_input */ 17509 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17510 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17511 if (mctl_present) 17512 freeb(first_mp); 17513 return; 17514 } 17515 17516 /* 17517 * pim_input() may have pulled up the message so ipha needs to 17518 * be reinitialized. 17519 */ 17520 ipha = (ipha_t *)mp->b_rptr; 17521 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17522 connf_head != NULL) { 17523 /* No user-level listener for PIM packets */ 17524 goto drop_pkt; 17525 } 17526 /* deliver to local raw users */ 17527 break; 17528 case IPPROTO_ENCAP: 17529 /* 17530 * Handle self-encapsulated packets (IP-in-IP where 17531 * the inner addresses == the outer addresses). 17532 */ 17533 hdr_length = IPH_HDR_LENGTH(ipha); 17534 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17535 mp->b_wptr) { 17536 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17537 sizeof (ipha_t) - mp->b_rptr)) { 17538 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17539 freemsg(first_mp); 17540 return; 17541 } 17542 ipha = (ipha_t *)mp->b_rptr; 17543 } 17544 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17545 /* 17546 * Check the sanity of the inner IP header. 17547 */ 17548 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17549 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17550 freemsg(first_mp); 17551 return; 17552 } 17553 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17554 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17555 freemsg(first_mp); 17556 return; 17557 } 17558 if (inner_ipha->ipha_src == ipha->ipha_src && 17559 inner_ipha->ipha_dst == ipha->ipha_dst) { 17560 ipsec_in_t *ii; 17561 17562 /* 17563 * Self-encapsulated tunnel packet. Remove 17564 * the outer IP header and fanout again. 17565 * We also need to make sure that the inner 17566 * header is pulled up until options. 17567 */ 17568 mp->b_rptr = (uchar_t *)inner_ipha; 17569 ipha = inner_ipha; 17570 hdr_length = IPH_HDR_LENGTH(ipha); 17571 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17572 if (!pullupmsg(mp, (uchar_t *)ipha + 17573 + hdr_length - mp->b_rptr)) { 17574 freemsg(first_mp); 17575 return; 17576 } 17577 ipha = (ipha_t *)mp->b_rptr; 17578 } 17579 if (hdr_length > sizeof (ipha_t)) { 17580 /* We got options on the inner packet. */ 17581 ipaddr_t dst = ipha->ipha_dst; 17582 17583 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17584 -1) { 17585 /* Bad options! */ 17586 return; 17587 } 17588 if (dst != ipha->ipha_dst) { 17589 /* 17590 * Someone put a source-route in 17591 * the inside header of a self- 17592 * encapsulated packet. Drop it 17593 * with extreme prejudice and let 17594 * the sender know. 17595 */ 17596 icmp_unreachable(q, first_mp, 17597 ICMP_SOURCE_ROUTE_FAILED, 17598 recv_ill->ill_zoneid, ipst); 17599 return; 17600 } 17601 } 17602 if (!mctl_present) { 17603 ASSERT(first_mp == mp); 17604 /* 17605 * This means that somebody is sending 17606 * Self-encapsualted packets without AH/ESP. 17607 * If AH/ESP was present, we would have already 17608 * allocated the first_mp. 17609 * 17610 * Send this packet to find a tunnel endpoint. 17611 * if I can't find one, an ICMP 17612 * PROTOCOL_UNREACHABLE will get sent. 17613 */ 17614 goto fanout; 17615 } 17616 /* 17617 * We generally store the ill_index if we need to 17618 * do IPsec processing as we lose the ill queue when 17619 * we come back. But in this case, we never should 17620 * have to store the ill_index here as it should have 17621 * been stored previously when we processed the 17622 * AH/ESP header in this routine or for non-ipsec 17623 * cases, we still have the queue. But for some bad 17624 * packets from the wire, we can get to IPsec after 17625 * this and we better store the index for that case. 17626 */ 17627 ill = (ill_t *)q->q_ptr; 17628 ii = (ipsec_in_t *)first_mp->b_rptr; 17629 ii->ipsec_in_ill_index = 17630 ill->ill_phyint->phyint_ifindex; 17631 ii->ipsec_in_rill_index = 17632 recv_ill->ill_phyint->phyint_ifindex; 17633 if (ii->ipsec_in_decaps) { 17634 /* 17635 * This packet is self-encapsulated multiple 17636 * times. We don't want to recurse infinitely. 17637 * To keep it simple, drop the packet. 17638 */ 17639 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17640 freemsg(first_mp); 17641 return; 17642 } 17643 ii->ipsec_in_decaps = B_TRUE; 17644 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17645 ire); 17646 return; 17647 } 17648 break; 17649 case IPPROTO_AH: 17650 case IPPROTO_ESP: { 17651 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17652 17653 /* 17654 * Fast path for AH/ESP. If this is the first time 17655 * we are sending a datagram to AH/ESP, allocate 17656 * a IPSEC_IN message and prepend it. Otherwise, 17657 * just fanout. 17658 */ 17659 17660 int ipsec_rc; 17661 ipsec_in_t *ii; 17662 netstack_t *ns = ipst->ips_netstack; 17663 17664 IP_STAT(ipst, ipsec_proto_ahesp); 17665 if (!mctl_present) { 17666 ASSERT(first_mp == mp); 17667 first_mp = ipsec_in_alloc(B_TRUE, ns); 17668 if (first_mp == NULL) { 17669 ip1dbg(("ip_proto_input: IPSEC_IN " 17670 "allocation failure.\n")); 17671 freemsg(hada_mp); /* okay ifnull */ 17672 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17673 freemsg(mp); 17674 return; 17675 } 17676 /* 17677 * Store the ill_index so that when we come back 17678 * from IPsec we ride on the same queue. 17679 */ 17680 ill = (ill_t *)q->q_ptr; 17681 ii = (ipsec_in_t *)first_mp->b_rptr; 17682 ii->ipsec_in_ill_index = 17683 ill->ill_phyint->phyint_ifindex; 17684 ii->ipsec_in_rill_index = 17685 recv_ill->ill_phyint->phyint_ifindex; 17686 first_mp->b_cont = mp; 17687 /* 17688 * Cache hardware acceleration info. 17689 */ 17690 if (hada_mp != NULL) { 17691 IPSECHW_DEBUG(IPSECHW_PKT, 17692 ("ip_rput_local: caching data attr.\n")); 17693 ii->ipsec_in_accelerated = B_TRUE; 17694 ii->ipsec_in_da = hada_mp; 17695 hada_mp = NULL; 17696 } 17697 } else { 17698 ii = (ipsec_in_t *)first_mp->b_rptr; 17699 } 17700 17701 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17702 17703 if (!ipsec_loaded(ipss)) { 17704 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17705 ire->ire_zoneid, ipst); 17706 return; 17707 } 17708 17709 ns = ipst->ips_netstack; 17710 /* select inbound SA and have IPsec process the pkt */ 17711 if (ipha->ipha_protocol == IPPROTO_ESP) { 17712 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17713 boolean_t esp_in_udp_sa; 17714 if (esph == NULL) 17715 return; 17716 ASSERT(ii->ipsec_in_esp_sa != NULL); 17717 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17718 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17719 IPSA_F_NATT) != 0); 17720 /* 17721 * The following is a fancy, but quick, way of saying: 17722 * ESP-in-UDP SA and Raw ESP packet --> drop 17723 * OR 17724 * ESP SA and ESP-in-UDP packet --> drop 17725 */ 17726 if (esp_in_udp_sa != esp_in_udp_packet) { 17727 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17728 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17729 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17730 &ns->netstack_ipsec->ipsec_dropper); 17731 return; 17732 } 17733 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17734 first_mp, esph); 17735 } else { 17736 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17737 if (ah == NULL) 17738 return; 17739 ASSERT(ii->ipsec_in_ah_sa != NULL); 17740 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17741 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17742 first_mp, ah); 17743 } 17744 17745 switch (ipsec_rc) { 17746 case IPSEC_STATUS_SUCCESS: 17747 break; 17748 case IPSEC_STATUS_FAILED: 17749 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17750 /* FALLTHRU */ 17751 case IPSEC_STATUS_PENDING: 17752 return; 17753 } 17754 /* we're done with IPsec processing, send it up */ 17755 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17756 return; 17757 } 17758 default: 17759 break; 17760 } 17761 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17762 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17763 ire->ire_zoneid)); 17764 goto drop_pkt; 17765 } 17766 /* 17767 * Handle protocols with which IP is less intimate. There 17768 * can be more than one stream bound to a particular 17769 * protocol. When this is the case, each one gets a copy 17770 * of any incoming packets. 17771 */ 17772 fanout: 17773 ip_fanout_proto(q, first_mp, ill, ipha, 17774 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17775 B_TRUE, recv_ill, ire->ire_zoneid); 17776 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17777 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17778 return; 17779 17780 drop_pkt: 17781 freemsg(first_mp); 17782 if (hada_mp != NULL) 17783 freeb(hada_mp); 17784 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17785 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17786 #undef rptr 17787 #undef iphs 17788 17789 } 17790 17791 /* 17792 * Update any source route, record route or timestamp options. 17793 * Check that we are at end of strict source route. 17794 * The options have already been checked for sanity in ip_rput_options(). 17795 */ 17796 static boolean_t 17797 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17798 ip_stack_t *ipst) 17799 { 17800 ipoptp_t opts; 17801 uchar_t *opt; 17802 uint8_t optval; 17803 uint8_t optlen; 17804 ipaddr_t dst; 17805 uint32_t ts; 17806 ire_t *dst_ire; 17807 timestruc_t now; 17808 zoneid_t zoneid; 17809 ill_t *ill; 17810 17811 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17812 17813 ip2dbg(("ip_rput_local_options\n")); 17814 17815 for (optval = ipoptp_first(&opts, ipha); 17816 optval != IPOPT_EOL; 17817 optval = ipoptp_next(&opts)) { 17818 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17819 opt = opts.ipoptp_cur; 17820 optlen = opts.ipoptp_len; 17821 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17822 optval, optlen)); 17823 switch (optval) { 17824 uint32_t off; 17825 case IPOPT_SSRR: 17826 case IPOPT_LSRR: 17827 off = opt[IPOPT_OFFSET]; 17828 off--; 17829 if (optlen < IP_ADDR_LEN || 17830 off > optlen - IP_ADDR_LEN) { 17831 /* End of source route */ 17832 ip1dbg(("ip_rput_local_options: end of SR\n")); 17833 break; 17834 } 17835 /* 17836 * This will only happen if two consecutive entries 17837 * in the source route contains our address or if 17838 * it is a packet with a loose source route which 17839 * reaches us before consuming the whole source route 17840 */ 17841 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17842 if (optval == IPOPT_SSRR) { 17843 goto bad_src_route; 17844 } 17845 /* 17846 * Hack: instead of dropping the packet truncate the 17847 * source route to what has been used by filling the 17848 * rest with IPOPT_NOP. 17849 */ 17850 opt[IPOPT_OLEN] = (uint8_t)off; 17851 while (off < optlen) { 17852 opt[off++] = IPOPT_NOP; 17853 } 17854 break; 17855 case IPOPT_RR: 17856 off = opt[IPOPT_OFFSET]; 17857 off--; 17858 if (optlen < IP_ADDR_LEN || 17859 off > optlen - IP_ADDR_LEN) { 17860 /* No more room - ignore */ 17861 ip1dbg(( 17862 "ip_rput_local_options: end of RR\n")); 17863 break; 17864 } 17865 bcopy(&ire->ire_src_addr, (char *)opt + off, 17866 IP_ADDR_LEN); 17867 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17868 break; 17869 case IPOPT_TS: 17870 /* Insert timestamp if there is romm */ 17871 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17872 case IPOPT_TS_TSONLY: 17873 off = IPOPT_TS_TIMELEN; 17874 break; 17875 case IPOPT_TS_PRESPEC: 17876 case IPOPT_TS_PRESPEC_RFC791: 17877 /* Verify that the address matched */ 17878 off = opt[IPOPT_OFFSET] - 1; 17879 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17880 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17881 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17882 ipst); 17883 if (dst_ire == NULL) { 17884 /* Not for us */ 17885 break; 17886 } 17887 ire_refrele(dst_ire); 17888 /* FALLTHRU */ 17889 case IPOPT_TS_TSANDADDR: 17890 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17891 break; 17892 default: 17893 /* 17894 * ip_*put_options should have already 17895 * dropped this packet. 17896 */ 17897 cmn_err(CE_PANIC, "ip_rput_local_options: " 17898 "unknown IT - bug in ip_rput_options?\n"); 17899 return (B_TRUE); /* Keep "lint" happy */ 17900 } 17901 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17902 /* Increase overflow counter */ 17903 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17904 opt[IPOPT_POS_OV_FLG] = 17905 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17906 (off << 4)); 17907 break; 17908 } 17909 off = opt[IPOPT_OFFSET] - 1; 17910 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17911 case IPOPT_TS_PRESPEC: 17912 case IPOPT_TS_PRESPEC_RFC791: 17913 case IPOPT_TS_TSANDADDR: 17914 bcopy(&ire->ire_src_addr, (char *)opt + off, 17915 IP_ADDR_LEN); 17916 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17917 /* FALLTHRU */ 17918 case IPOPT_TS_TSONLY: 17919 off = opt[IPOPT_OFFSET] - 1; 17920 /* Compute # of milliseconds since midnight */ 17921 gethrestime(&now); 17922 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17923 now.tv_nsec / (NANOSEC / MILLISEC); 17924 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17925 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17926 break; 17927 } 17928 break; 17929 } 17930 } 17931 return (B_TRUE); 17932 17933 bad_src_route: 17934 q = WR(q); 17935 if (q->q_next != NULL) 17936 ill = q->q_ptr; 17937 else 17938 ill = NULL; 17939 17940 /* make sure we clear any indication of a hardware checksum */ 17941 DB_CKSUMFLAGS(mp) = 0; 17942 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17943 if (zoneid == ALL_ZONES) 17944 freemsg(mp); 17945 else 17946 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17947 return (B_FALSE); 17948 17949 } 17950 17951 /* 17952 * Process IP options in an inbound packet. If an option affects the 17953 * effective destination address, return the next hop address via dstp. 17954 * Returns -1 if something fails in which case an ICMP error has been sent 17955 * and mp freed. 17956 */ 17957 static int 17958 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17959 ip_stack_t *ipst) 17960 { 17961 ipoptp_t opts; 17962 uchar_t *opt; 17963 uint8_t optval; 17964 uint8_t optlen; 17965 ipaddr_t dst; 17966 intptr_t code = 0; 17967 ire_t *ire = NULL; 17968 zoneid_t zoneid; 17969 ill_t *ill; 17970 17971 ip2dbg(("ip_rput_options\n")); 17972 dst = ipha->ipha_dst; 17973 for (optval = ipoptp_first(&opts, ipha); 17974 optval != IPOPT_EOL; 17975 optval = ipoptp_next(&opts)) { 17976 opt = opts.ipoptp_cur; 17977 optlen = opts.ipoptp_len; 17978 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17979 optval, optlen)); 17980 /* 17981 * Note: we need to verify the checksum before we 17982 * modify anything thus this routine only extracts the next 17983 * hop dst from any source route. 17984 */ 17985 switch (optval) { 17986 uint32_t off; 17987 case IPOPT_SSRR: 17988 case IPOPT_LSRR: 17989 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17990 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17991 if (ire == NULL) { 17992 if (optval == IPOPT_SSRR) { 17993 ip1dbg(("ip_rput_options: not next" 17994 " strict source route 0x%x\n", 17995 ntohl(dst))); 17996 code = (char *)&ipha->ipha_dst - 17997 (char *)ipha; 17998 goto param_prob; /* RouterReq's */ 17999 } 18000 ip2dbg(("ip_rput_options: " 18001 "not next source route 0x%x\n", 18002 ntohl(dst))); 18003 break; 18004 } 18005 ire_refrele(ire); 18006 18007 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18008 ip1dbg(( 18009 "ip_rput_options: bad option offset\n")); 18010 code = (char *)&opt[IPOPT_OLEN] - 18011 (char *)ipha; 18012 goto param_prob; 18013 } 18014 off = opt[IPOPT_OFFSET]; 18015 off--; 18016 redo_srr: 18017 if (optlen < IP_ADDR_LEN || 18018 off > optlen - IP_ADDR_LEN) { 18019 /* End of source route */ 18020 ip1dbg(("ip_rput_options: end of SR\n")); 18021 break; 18022 } 18023 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18024 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18025 ntohl(dst))); 18026 18027 /* 18028 * Check if our address is present more than 18029 * once as consecutive hops in source route. 18030 * XXX verify per-interface ip_forwarding 18031 * for source route? 18032 */ 18033 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18034 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18035 18036 if (ire != NULL) { 18037 ire_refrele(ire); 18038 off += IP_ADDR_LEN; 18039 goto redo_srr; 18040 } 18041 18042 if (dst == htonl(INADDR_LOOPBACK)) { 18043 ip1dbg(("ip_rput_options: loopback addr in " 18044 "source route!\n")); 18045 goto bad_src_route; 18046 } 18047 /* 18048 * For strict: verify that dst is directly 18049 * reachable. 18050 */ 18051 if (optval == IPOPT_SSRR) { 18052 ire = ire_ftable_lookup(dst, 0, 0, 18053 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18054 MBLK_GETLABEL(mp), 18055 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18056 if (ire == NULL) { 18057 ip1dbg(("ip_rput_options: SSRR not " 18058 "directly reachable: 0x%x\n", 18059 ntohl(dst))); 18060 goto bad_src_route; 18061 } 18062 ire_refrele(ire); 18063 } 18064 /* 18065 * Defer update of the offset and the record route 18066 * until the packet is forwarded. 18067 */ 18068 break; 18069 case IPOPT_RR: 18070 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18071 ip1dbg(( 18072 "ip_rput_options: bad option offset\n")); 18073 code = (char *)&opt[IPOPT_OLEN] - 18074 (char *)ipha; 18075 goto param_prob; 18076 } 18077 break; 18078 case IPOPT_TS: 18079 /* 18080 * Verify that length >= 5 and that there is either 18081 * room for another timestamp or that the overflow 18082 * counter is not maxed out. 18083 */ 18084 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18085 if (optlen < IPOPT_MINLEN_IT) { 18086 goto param_prob; 18087 } 18088 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18089 ip1dbg(( 18090 "ip_rput_options: bad option offset\n")); 18091 code = (char *)&opt[IPOPT_OFFSET] - 18092 (char *)ipha; 18093 goto param_prob; 18094 } 18095 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18096 case IPOPT_TS_TSONLY: 18097 off = IPOPT_TS_TIMELEN; 18098 break; 18099 case IPOPT_TS_TSANDADDR: 18100 case IPOPT_TS_PRESPEC: 18101 case IPOPT_TS_PRESPEC_RFC791: 18102 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18103 break; 18104 default: 18105 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18106 (char *)ipha; 18107 goto param_prob; 18108 } 18109 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18110 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18111 /* 18112 * No room and the overflow counter is 15 18113 * already. 18114 */ 18115 goto param_prob; 18116 } 18117 break; 18118 } 18119 } 18120 18121 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18122 *dstp = dst; 18123 return (0); 18124 } 18125 18126 ip1dbg(("ip_rput_options: error processing IP options.")); 18127 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18128 18129 param_prob: 18130 q = WR(q); 18131 if (q->q_next != NULL) 18132 ill = q->q_ptr; 18133 else 18134 ill = NULL; 18135 18136 /* make sure we clear any indication of a hardware checksum */ 18137 DB_CKSUMFLAGS(mp) = 0; 18138 /* Don't know whether this is for non-global or global/forwarding */ 18139 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18140 if (zoneid == ALL_ZONES) 18141 freemsg(mp); 18142 else 18143 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18144 return (-1); 18145 18146 bad_src_route: 18147 q = WR(q); 18148 if (q->q_next != NULL) 18149 ill = q->q_ptr; 18150 else 18151 ill = NULL; 18152 18153 /* make sure we clear any indication of a hardware checksum */ 18154 DB_CKSUMFLAGS(mp) = 0; 18155 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18156 if (zoneid == ALL_ZONES) 18157 freemsg(mp); 18158 else 18159 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18160 return (-1); 18161 } 18162 18163 /* 18164 * IP & ICMP info in >=14 msg's ... 18165 * - ip fixed part (mib2_ip_t) 18166 * - icmp fixed part (mib2_icmp_t) 18167 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18168 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18169 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18170 * - ipRouteAttributeTable (ip 102) labeled routes 18171 * - ip multicast membership (ip_member_t) 18172 * - ip multicast source filtering (ip_grpsrc_t) 18173 * - igmp fixed part (struct igmpstat) 18174 * - multicast routing stats (struct mrtstat) 18175 * - multicast routing vifs (array of struct vifctl) 18176 * - multicast routing routes (array of struct mfcctl) 18177 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18178 * One per ill plus one generic 18179 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18180 * One per ill plus one generic 18181 * - ipv6RouteEntry all IPv6 IREs 18182 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18183 * - ipv6NetToMediaEntry all Neighbor Cache entries 18184 * - ipv6AddrEntry all IPv6 ipifs 18185 * - ipv6 multicast membership (ipv6_member_t) 18186 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18187 * 18188 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18189 * 18190 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18191 * already filled in by the caller. 18192 * Return value of 0 indicates that no messages were sent and caller 18193 * should free mpctl. 18194 */ 18195 int 18196 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18197 { 18198 ip_stack_t *ipst; 18199 sctp_stack_t *sctps; 18200 18201 if (q->q_next != NULL) { 18202 ipst = ILLQ_TO_IPST(q); 18203 } else { 18204 ipst = CONNQ_TO_IPST(q); 18205 } 18206 ASSERT(ipst != NULL); 18207 sctps = ipst->ips_netstack->netstack_sctp; 18208 18209 if (mpctl == NULL || mpctl->b_cont == NULL) { 18210 return (0); 18211 } 18212 18213 /* 18214 * For the purposes of the (broken) packet shell use 18215 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18216 * to make TCP and UDP appear first in the list of mib items. 18217 * TBD: We could expand this and use it in netstat so that 18218 * the kernel doesn't have to produce large tables (connections, 18219 * routes, etc) when netstat only wants the statistics or a particular 18220 * table. 18221 */ 18222 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18223 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18224 return (1); 18225 } 18226 } 18227 18228 if (level != MIB2_TCP) { 18229 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18230 return (1); 18231 } 18232 } 18233 18234 if (level != MIB2_UDP) { 18235 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18236 return (1); 18237 } 18238 } 18239 18240 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18241 ipst)) == NULL) { 18242 return (1); 18243 } 18244 18245 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18246 return (1); 18247 } 18248 18249 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18250 return (1); 18251 } 18252 18253 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18254 return (1); 18255 } 18256 18257 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18258 return (1); 18259 } 18260 18261 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18262 return (1); 18263 } 18264 18265 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18266 return (1); 18267 } 18268 18269 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18270 return (1); 18271 } 18272 18273 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18274 return (1); 18275 } 18276 18277 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18278 return (1); 18279 } 18280 18281 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18282 return (1); 18283 } 18284 18285 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18286 return (1); 18287 } 18288 18289 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18290 return (1); 18291 } 18292 18293 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18294 return (1); 18295 } 18296 18297 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18298 if (mpctl == NULL) 18299 return (1); 18300 18301 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18302 if (mpctl == NULL) 18303 return (1); 18304 18305 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18306 return (1); 18307 } 18308 freemsg(mpctl); 18309 return (1); 18310 } 18311 18312 18313 /* Get global (legacy) IPv4 statistics */ 18314 static mblk_t * 18315 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18316 ip_stack_t *ipst) 18317 { 18318 mib2_ip_t old_ip_mib; 18319 struct opthdr *optp; 18320 mblk_t *mp2ctl; 18321 18322 /* 18323 * make a copy of the original message 18324 */ 18325 mp2ctl = copymsg(mpctl); 18326 18327 /* fixed length IP structure... */ 18328 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18329 optp->level = MIB2_IP; 18330 optp->name = 0; 18331 SET_MIB(old_ip_mib.ipForwarding, 18332 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18333 SET_MIB(old_ip_mib.ipDefaultTTL, 18334 (uint32_t)ipst->ips_ip_def_ttl); 18335 SET_MIB(old_ip_mib.ipReasmTimeout, 18336 ipst->ips_ip_g_frag_timeout); 18337 SET_MIB(old_ip_mib.ipAddrEntrySize, 18338 sizeof (mib2_ipAddrEntry_t)); 18339 SET_MIB(old_ip_mib.ipRouteEntrySize, 18340 sizeof (mib2_ipRouteEntry_t)); 18341 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18342 sizeof (mib2_ipNetToMediaEntry_t)); 18343 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18344 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18345 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18346 sizeof (mib2_ipAttributeEntry_t)); 18347 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18348 18349 /* 18350 * Grab the statistics from the new IP MIB 18351 */ 18352 SET_MIB(old_ip_mib.ipInReceives, 18353 (uint32_t)ipmib->ipIfStatsHCInReceives); 18354 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18355 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18356 SET_MIB(old_ip_mib.ipForwDatagrams, 18357 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18358 SET_MIB(old_ip_mib.ipInUnknownProtos, 18359 ipmib->ipIfStatsInUnknownProtos); 18360 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18361 SET_MIB(old_ip_mib.ipInDelivers, 18362 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18363 SET_MIB(old_ip_mib.ipOutRequests, 18364 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18365 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18366 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18367 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18368 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18369 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18370 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18371 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18372 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18373 18374 /* ipRoutingDiscards is not being used */ 18375 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18376 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18377 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18378 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18379 SET_MIB(old_ip_mib.ipReasmDuplicates, 18380 ipmib->ipIfStatsReasmDuplicates); 18381 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18382 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18383 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18384 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18385 SET_MIB(old_ip_mib.rawipInOverflows, 18386 ipmib->rawipIfStatsInOverflows); 18387 18388 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18389 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18390 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18391 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18392 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18393 ipmib->ipIfStatsOutSwitchIPVersion); 18394 18395 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18396 (int)sizeof (old_ip_mib))) { 18397 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18398 (uint_t)sizeof (old_ip_mib))); 18399 } 18400 18401 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18402 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18403 (int)optp->level, (int)optp->name, (int)optp->len)); 18404 qreply(q, mpctl); 18405 return (mp2ctl); 18406 } 18407 18408 /* Per interface IPv4 statistics */ 18409 static mblk_t * 18410 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18411 { 18412 struct opthdr *optp; 18413 mblk_t *mp2ctl; 18414 ill_t *ill; 18415 ill_walk_context_t ctx; 18416 mblk_t *mp_tail = NULL; 18417 mib2_ipIfStatsEntry_t global_ip_mib; 18418 18419 /* 18420 * Make a copy of the original message 18421 */ 18422 mp2ctl = copymsg(mpctl); 18423 18424 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18425 optp->level = MIB2_IP; 18426 optp->name = MIB2_IP_TRAFFIC_STATS; 18427 /* Include "unknown interface" ip_mib */ 18428 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18429 ipst->ips_ip_mib.ipIfStatsIfIndex = 18430 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18431 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18432 (ipst->ips_ip_g_forward ? 1 : 2)); 18433 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18434 (uint32_t)ipst->ips_ip_def_ttl); 18435 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18436 sizeof (mib2_ipIfStatsEntry_t)); 18437 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18438 sizeof (mib2_ipAddrEntry_t)); 18439 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18440 sizeof (mib2_ipRouteEntry_t)); 18441 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18442 sizeof (mib2_ipNetToMediaEntry_t)); 18443 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18444 sizeof (ip_member_t)); 18445 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18446 sizeof (ip_grpsrc_t)); 18447 18448 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18449 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18450 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18451 "failed to allocate %u bytes\n", 18452 (uint_t)sizeof (ipst->ips_ip_mib))); 18453 } 18454 18455 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18456 18457 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18458 ill = ILL_START_WALK_V4(&ctx, ipst); 18459 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18460 ill->ill_ip_mib->ipIfStatsIfIndex = 18461 ill->ill_phyint->phyint_ifindex; 18462 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18463 (ipst->ips_ip_g_forward ? 1 : 2)); 18464 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18465 (uint32_t)ipst->ips_ip_def_ttl); 18466 18467 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18468 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18469 (char *)ill->ill_ip_mib, 18470 (int)sizeof (*ill->ill_ip_mib))) { 18471 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18472 "failed to allocate %u bytes\n", 18473 (uint_t)sizeof (*ill->ill_ip_mib))); 18474 } 18475 } 18476 rw_exit(&ipst->ips_ill_g_lock); 18477 18478 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18479 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18480 "level %d, name %d, len %d\n", 18481 (int)optp->level, (int)optp->name, (int)optp->len)); 18482 qreply(q, mpctl); 18483 18484 if (mp2ctl == NULL) 18485 return (NULL); 18486 18487 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18488 } 18489 18490 /* Global IPv4 ICMP statistics */ 18491 static mblk_t * 18492 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18493 { 18494 struct opthdr *optp; 18495 mblk_t *mp2ctl; 18496 18497 /* 18498 * Make a copy of the original message 18499 */ 18500 mp2ctl = copymsg(mpctl); 18501 18502 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18503 optp->level = MIB2_ICMP; 18504 optp->name = 0; 18505 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18506 (int)sizeof (ipst->ips_icmp_mib))) { 18507 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18508 (uint_t)sizeof (ipst->ips_icmp_mib))); 18509 } 18510 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18511 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18512 (int)optp->level, (int)optp->name, (int)optp->len)); 18513 qreply(q, mpctl); 18514 return (mp2ctl); 18515 } 18516 18517 /* Global IPv4 IGMP statistics */ 18518 static mblk_t * 18519 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18520 { 18521 struct opthdr *optp; 18522 mblk_t *mp2ctl; 18523 18524 /* 18525 * make a copy of the original message 18526 */ 18527 mp2ctl = copymsg(mpctl); 18528 18529 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18530 optp->level = EXPER_IGMP; 18531 optp->name = 0; 18532 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18533 (int)sizeof (ipst->ips_igmpstat))) { 18534 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18535 (uint_t)sizeof (ipst->ips_igmpstat))); 18536 } 18537 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18538 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18539 (int)optp->level, (int)optp->name, (int)optp->len)); 18540 qreply(q, mpctl); 18541 return (mp2ctl); 18542 } 18543 18544 /* Global IPv4 Multicast Routing statistics */ 18545 static mblk_t * 18546 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18547 { 18548 struct opthdr *optp; 18549 mblk_t *mp2ctl; 18550 18551 /* 18552 * make a copy of the original message 18553 */ 18554 mp2ctl = copymsg(mpctl); 18555 18556 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18557 optp->level = EXPER_DVMRP; 18558 optp->name = 0; 18559 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18560 ip0dbg(("ip_mroute_stats: failed\n")); 18561 } 18562 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18563 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18564 (int)optp->level, (int)optp->name, (int)optp->len)); 18565 qreply(q, mpctl); 18566 return (mp2ctl); 18567 } 18568 18569 /* IPv4 address information */ 18570 static mblk_t * 18571 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18572 { 18573 struct opthdr *optp; 18574 mblk_t *mp2ctl; 18575 mblk_t *mp_tail = NULL; 18576 ill_t *ill; 18577 ipif_t *ipif; 18578 uint_t bitval; 18579 mib2_ipAddrEntry_t mae; 18580 zoneid_t zoneid; 18581 ill_walk_context_t ctx; 18582 18583 /* 18584 * make a copy of the original message 18585 */ 18586 mp2ctl = copymsg(mpctl); 18587 18588 /* ipAddrEntryTable */ 18589 18590 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18591 optp->level = MIB2_IP; 18592 optp->name = MIB2_IP_ADDR; 18593 zoneid = Q_TO_CONN(q)->conn_zoneid; 18594 18595 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18596 ill = ILL_START_WALK_V4(&ctx, ipst); 18597 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18598 for (ipif = ill->ill_ipif; ipif != NULL; 18599 ipif = ipif->ipif_next) { 18600 if (ipif->ipif_zoneid != zoneid && 18601 ipif->ipif_zoneid != ALL_ZONES) 18602 continue; 18603 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18604 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18605 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18606 18607 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18608 OCTET_LENGTH); 18609 mae.ipAdEntIfIndex.o_length = 18610 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18611 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18612 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18613 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18614 mae.ipAdEntInfo.ae_subnet_len = 18615 ip_mask_to_plen(ipif->ipif_net_mask); 18616 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18617 for (bitval = 1; 18618 bitval && 18619 !(bitval & ipif->ipif_brd_addr); 18620 bitval <<= 1) 18621 noop; 18622 mae.ipAdEntBcastAddr = bitval; 18623 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18624 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18625 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18626 mae.ipAdEntInfo.ae_broadcast_addr = 18627 ipif->ipif_brd_addr; 18628 mae.ipAdEntInfo.ae_pp_dst_addr = 18629 ipif->ipif_pp_dst_addr; 18630 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18631 ill->ill_flags | ill->ill_phyint->phyint_flags; 18632 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18633 18634 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18635 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18636 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18637 "allocate %u bytes\n", 18638 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18639 } 18640 } 18641 } 18642 rw_exit(&ipst->ips_ill_g_lock); 18643 18644 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18645 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18646 (int)optp->level, (int)optp->name, (int)optp->len)); 18647 qreply(q, mpctl); 18648 return (mp2ctl); 18649 } 18650 18651 /* IPv6 address information */ 18652 static mblk_t * 18653 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18654 { 18655 struct opthdr *optp; 18656 mblk_t *mp2ctl; 18657 mblk_t *mp_tail = NULL; 18658 ill_t *ill; 18659 ipif_t *ipif; 18660 mib2_ipv6AddrEntry_t mae6; 18661 zoneid_t zoneid; 18662 ill_walk_context_t ctx; 18663 18664 /* 18665 * make a copy of the original message 18666 */ 18667 mp2ctl = copymsg(mpctl); 18668 18669 /* ipv6AddrEntryTable */ 18670 18671 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18672 optp->level = MIB2_IP6; 18673 optp->name = MIB2_IP6_ADDR; 18674 zoneid = Q_TO_CONN(q)->conn_zoneid; 18675 18676 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18677 ill = ILL_START_WALK_V6(&ctx, ipst); 18678 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18679 for (ipif = ill->ill_ipif; ipif != NULL; 18680 ipif = ipif->ipif_next) { 18681 if (ipif->ipif_zoneid != zoneid && 18682 ipif->ipif_zoneid != ALL_ZONES) 18683 continue; 18684 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18685 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18686 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18687 18688 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18689 OCTET_LENGTH); 18690 mae6.ipv6AddrIfIndex.o_length = 18691 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18692 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18693 mae6.ipv6AddrPfxLength = 18694 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18695 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18696 mae6.ipv6AddrInfo.ae_subnet_len = 18697 mae6.ipv6AddrPfxLength; 18698 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18699 18700 /* Type: stateless(1), stateful(2), unknown(3) */ 18701 if (ipif->ipif_flags & IPIF_ADDRCONF) 18702 mae6.ipv6AddrType = 1; 18703 else 18704 mae6.ipv6AddrType = 2; 18705 /* Anycast: true(1), false(2) */ 18706 if (ipif->ipif_flags & IPIF_ANYCAST) 18707 mae6.ipv6AddrAnycastFlag = 1; 18708 else 18709 mae6.ipv6AddrAnycastFlag = 2; 18710 18711 /* 18712 * Address status: preferred(1), deprecated(2), 18713 * invalid(3), inaccessible(4), unknown(5) 18714 */ 18715 if (ipif->ipif_flags & IPIF_NOLOCAL) 18716 mae6.ipv6AddrStatus = 3; 18717 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18718 mae6.ipv6AddrStatus = 2; 18719 else 18720 mae6.ipv6AddrStatus = 1; 18721 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18722 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18723 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18724 ipif->ipif_v6pp_dst_addr; 18725 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18726 ill->ill_flags | ill->ill_phyint->phyint_flags; 18727 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18728 mae6.ipv6AddrIdentifier = ill->ill_token; 18729 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18730 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18731 mae6.ipv6AddrRetransmitTime = 18732 ill->ill_reachable_retrans_time; 18733 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18734 (char *)&mae6, 18735 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18736 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18737 "allocate %u bytes\n", 18738 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18739 } 18740 } 18741 } 18742 rw_exit(&ipst->ips_ill_g_lock); 18743 18744 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18745 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18746 (int)optp->level, (int)optp->name, (int)optp->len)); 18747 qreply(q, mpctl); 18748 return (mp2ctl); 18749 } 18750 18751 /* IPv4 multicast group membership. */ 18752 static mblk_t * 18753 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18754 { 18755 struct opthdr *optp; 18756 mblk_t *mp2ctl; 18757 ill_t *ill; 18758 ipif_t *ipif; 18759 ilm_t *ilm; 18760 ip_member_t ipm; 18761 mblk_t *mp_tail = NULL; 18762 ill_walk_context_t ctx; 18763 zoneid_t zoneid; 18764 ilm_walker_t ilw; 18765 18766 /* 18767 * make a copy of the original message 18768 */ 18769 mp2ctl = copymsg(mpctl); 18770 zoneid = Q_TO_CONN(q)->conn_zoneid; 18771 18772 /* ipGroupMember table */ 18773 optp = (struct opthdr *)&mpctl->b_rptr[ 18774 sizeof (struct T_optmgmt_ack)]; 18775 optp->level = MIB2_IP; 18776 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18777 18778 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18779 ill = ILL_START_WALK_V4(&ctx, ipst); 18780 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18781 if (IS_UNDER_IPMP(ill)) 18782 continue; 18783 18784 ilm = ilm_walker_start(&ilw, ill); 18785 for (ipif = ill->ill_ipif; ipif != NULL; 18786 ipif = ipif->ipif_next) { 18787 if (ipif->ipif_zoneid != zoneid && 18788 ipif->ipif_zoneid != ALL_ZONES) 18789 continue; /* not this zone */ 18790 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18791 OCTET_LENGTH); 18792 ipm.ipGroupMemberIfIndex.o_length = 18793 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18794 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18795 ASSERT(ilm->ilm_ipif != NULL); 18796 ASSERT(ilm->ilm_ill == NULL); 18797 if (ilm->ilm_ipif != ipif) 18798 continue; 18799 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18800 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18801 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18802 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18803 (char *)&ipm, (int)sizeof (ipm))) { 18804 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18805 "failed to allocate %u bytes\n", 18806 (uint_t)sizeof (ipm))); 18807 } 18808 } 18809 } 18810 ilm_walker_finish(&ilw); 18811 } 18812 rw_exit(&ipst->ips_ill_g_lock); 18813 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18814 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18815 (int)optp->level, (int)optp->name, (int)optp->len)); 18816 qreply(q, mpctl); 18817 return (mp2ctl); 18818 } 18819 18820 /* IPv6 multicast group membership. */ 18821 static mblk_t * 18822 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18823 { 18824 struct opthdr *optp; 18825 mblk_t *mp2ctl; 18826 ill_t *ill; 18827 ilm_t *ilm; 18828 ipv6_member_t ipm6; 18829 mblk_t *mp_tail = NULL; 18830 ill_walk_context_t ctx; 18831 zoneid_t zoneid; 18832 ilm_walker_t ilw; 18833 18834 /* 18835 * make a copy of the original message 18836 */ 18837 mp2ctl = copymsg(mpctl); 18838 zoneid = Q_TO_CONN(q)->conn_zoneid; 18839 18840 /* ip6GroupMember table */ 18841 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18842 optp->level = MIB2_IP6; 18843 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18844 18845 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18846 ill = ILL_START_WALK_V6(&ctx, ipst); 18847 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18848 if (IS_UNDER_IPMP(ill)) 18849 continue; 18850 18851 ilm = ilm_walker_start(&ilw, ill); 18852 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18853 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18854 ASSERT(ilm->ilm_ipif == NULL); 18855 ASSERT(ilm->ilm_ill != NULL); 18856 if (ilm->ilm_zoneid != zoneid) 18857 continue; /* not this zone */ 18858 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18859 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18860 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18861 if (!snmp_append_data2(mpctl->b_cont, 18862 &mp_tail, 18863 (char *)&ipm6, (int)sizeof (ipm6))) { 18864 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18865 "failed to allocate %u bytes\n", 18866 (uint_t)sizeof (ipm6))); 18867 } 18868 } 18869 ilm_walker_finish(&ilw); 18870 } 18871 rw_exit(&ipst->ips_ill_g_lock); 18872 18873 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18874 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18875 (int)optp->level, (int)optp->name, (int)optp->len)); 18876 qreply(q, mpctl); 18877 return (mp2ctl); 18878 } 18879 18880 /* IP multicast filtered sources */ 18881 static mblk_t * 18882 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18883 { 18884 struct opthdr *optp; 18885 mblk_t *mp2ctl; 18886 ill_t *ill; 18887 ipif_t *ipif; 18888 ilm_t *ilm; 18889 ip_grpsrc_t ips; 18890 mblk_t *mp_tail = NULL; 18891 ill_walk_context_t ctx; 18892 zoneid_t zoneid; 18893 int i; 18894 slist_t *sl; 18895 ilm_walker_t ilw; 18896 18897 /* 18898 * make a copy of the original message 18899 */ 18900 mp2ctl = copymsg(mpctl); 18901 zoneid = Q_TO_CONN(q)->conn_zoneid; 18902 18903 /* ipGroupSource table */ 18904 optp = (struct opthdr *)&mpctl->b_rptr[ 18905 sizeof (struct T_optmgmt_ack)]; 18906 optp->level = MIB2_IP; 18907 optp->name = EXPER_IP_GROUP_SOURCES; 18908 18909 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18910 ill = ILL_START_WALK_V4(&ctx, ipst); 18911 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18912 if (IS_UNDER_IPMP(ill)) 18913 continue; 18914 18915 ilm = ilm_walker_start(&ilw, ill); 18916 for (ipif = ill->ill_ipif; ipif != NULL; 18917 ipif = ipif->ipif_next) { 18918 if (ipif->ipif_zoneid != zoneid) 18919 continue; /* not this zone */ 18920 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18921 OCTET_LENGTH); 18922 ips.ipGroupSourceIfIndex.o_length = 18923 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18924 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18925 ASSERT(ilm->ilm_ipif != NULL); 18926 ASSERT(ilm->ilm_ill == NULL); 18927 sl = ilm->ilm_filter; 18928 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18929 continue; 18930 ips.ipGroupSourceGroup = ilm->ilm_addr; 18931 for (i = 0; i < sl->sl_numsrc; i++) { 18932 if (!IN6_IS_ADDR_V4MAPPED( 18933 &sl->sl_addr[i])) 18934 continue; 18935 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18936 ips.ipGroupSourceAddress); 18937 if (snmp_append_data2(mpctl->b_cont, 18938 &mp_tail, (char *)&ips, 18939 (int)sizeof (ips)) == 0) { 18940 ip1dbg(("ip_snmp_get_mib2_" 18941 "ip_group_src: failed to " 18942 "allocate %u bytes\n", 18943 (uint_t)sizeof (ips))); 18944 } 18945 } 18946 } 18947 } 18948 ilm_walker_finish(&ilw); 18949 } 18950 rw_exit(&ipst->ips_ill_g_lock); 18951 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18952 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18953 (int)optp->level, (int)optp->name, (int)optp->len)); 18954 qreply(q, mpctl); 18955 return (mp2ctl); 18956 } 18957 18958 /* IPv6 multicast filtered sources. */ 18959 static mblk_t * 18960 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18961 { 18962 struct opthdr *optp; 18963 mblk_t *mp2ctl; 18964 ill_t *ill; 18965 ilm_t *ilm; 18966 ipv6_grpsrc_t ips6; 18967 mblk_t *mp_tail = NULL; 18968 ill_walk_context_t ctx; 18969 zoneid_t zoneid; 18970 int i; 18971 slist_t *sl; 18972 ilm_walker_t ilw; 18973 18974 /* 18975 * make a copy of the original message 18976 */ 18977 mp2ctl = copymsg(mpctl); 18978 zoneid = Q_TO_CONN(q)->conn_zoneid; 18979 18980 /* ip6GroupMember table */ 18981 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18982 optp->level = MIB2_IP6; 18983 optp->name = EXPER_IP6_GROUP_SOURCES; 18984 18985 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18986 ill = ILL_START_WALK_V6(&ctx, ipst); 18987 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18988 if (IS_UNDER_IPMP(ill)) 18989 continue; 18990 18991 ilm = ilm_walker_start(&ilw, ill); 18992 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18993 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18994 ASSERT(ilm->ilm_ipif == NULL); 18995 ASSERT(ilm->ilm_ill != NULL); 18996 sl = ilm->ilm_filter; 18997 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18998 continue; 18999 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19000 for (i = 0; i < sl->sl_numsrc; i++) { 19001 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19002 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19003 (char *)&ips6, (int)sizeof (ips6))) { 19004 ip1dbg(("ip_snmp_get_mib2_ip6_" 19005 "group_src: failed to allocate " 19006 "%u bytes\n", 19007 (uint_t)sizeof (ips6))); 19008 } 19009 } 19010 } 19011 ilm_walker_finish(&ilw); 19012 } 19013 rw_exit(&ipst->ips_ill_g_lock); 19014 19015 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19016 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19017 (int)optp->level, (int)optp->name, (int)optp->len)); 19018 qreply(q, mpctl); 19019 return (mp2ctl); 19020 } 19021 19022 /* Multicast routing virtual interface table. */ 19023 static mblk_t * 19024 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19025 { 19026 struct opthdr *optp; 19027 mblk_t *mp2ctl; 19028 19029 /* 19030 * make a copy of the original message 19031 */ 19032 mp2ctl = copymsg(mpctl); 19033 19034 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19035 optp->level = EXPER_DVMRP; 19036 optp->name = EXPER_DVMRP_VIF; 19037 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19038 ip0dbg(("ip_mroute_vif: failed\n")); 19039 } 19040 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19041 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19042 (int)optp->level, (int)optp->name, (int)optp->len)); 19043 qreply(q, mpctl); 19044 return (mp2ctl); 19045 } 19046 19047 /* Multicast routing table. */ 19048 static mblk_t * 19049 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19050 { 19051 struct opthdr *optp; 19052 mblk_t *mp2ctl; 19053 19054 /* 19055 * make a copy of the original message 19056 */ 19057 mp2ctl = copymsg(mpctl); 19058 19059 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19060 optp->level = EXPER_DVMRP; 19061 optp->name = EXPER_DVMRP_MRT; 19062 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19063 ip0dbg(("ip_mroute_mrt: failed\n")); 19064 } 19065 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19066 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19067 (int)optp->level, (int)optp->name, (int)optp->len)); 19068 qreply(q, mpctl); 19069 return (mp2ctl); 19070 } 19071 19072 /* 19073 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19074 * in one IRE walk. 19075 */ 19076 static mblk_t * 19077 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19078 ip_stack_t *ipst) 19079 { 19080 struct opthdr *optp; 19081 mblk_t *mp2ctl; /* Returned */ 19082 mblk_t *mp3ctl; /* nettomedia */ 19083 mblk_t *mp4ctl; /* routeattrs */ 19084 iproutedata_t ird; 19085 zoneid_t zoneid; 19086 19087 /* 19088 * make copies of the original message 19089 * - mp2ctl is returned unchanged to the caller for his use 19090 * - mpctl is sent upstream as ipRouteEntryTable 19091 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19092 * - mp4ctl is sent upstream as ipRouteAttributeTable 19093 */ 19094 mp2ctl = copymsg(mpctl); 19095 mp3ctl = copymsg(mpctl); 19096 mp4ctl = copymsg(mpctl); 19097 if (mp3ctl == NULL || mp4ctl == NULL) { 19098 freemsg(mp4ctl); 19099 freemsg(mp3ctl); 19100 freemsg(mp2ctl); 19101 freemsg(mpctl); 19102 return (NULL); 19103 } 19104 19105 bzero(&ird, sizeof (ird)); 19106 19107 ird.ird_route.lp_head = mpctl->b_cont; 19108 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19109 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19110 /* 19111 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19112 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19113 * intended a temporary solution until a proper MIB API is provided 19114 * that provides complete filtering/caller-opt-in. 19115 */ 19116 if (level == EXPER_IP_AND_TESTHIDDEN) 19117 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19118 19119 zoneid = Q_TO_CONN(q)->conn_zoneid; 19120 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19121 19122 /* ipRouteEntryTable in mpctl */ 19123 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19124 optp->level = MIB2_IP; 19125 optp->name = MIB2_IP_ROUTE; 19126 optp->len = msgdsize(ird.ird_route.lp_head); 19127 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19128 (int)optp->level, (int)optp->name, (int)optp->len)); 19129 qreply(q, mpctl); 19130 19131 /* ipNetToMediaEntryTable in mp3ctl */ 19132 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19133 optp->level = MIB2_IP; 19134 optp->name = MIB2_IP_MEDIA; 19135 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19136 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19137 (int)optp->level, (int)optp->name, (int)optp->len)); 19138 qreply(q, mp3ctl); 19139 19140 /* ipRouteAttributeTable in mp4ctl */ 19141 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19142 optp->level = MIB2_IP; 19143 optp->name = EXPER_IP_RTATTR; 19144 optp->len = msgdsize(ird.ird_attrs.lp_head); 19145 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19146 (int)optp->level, (int)optp->name, (int)optp->len)); 19147 if (optp->len == 0) 19148 freemsg(mp4ctl); 19149 else 19150 qreply(q, mp4ctl); 19151 19152 return (mp2ctl); 19153 } 19154 19155 /* 19156 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19157 * ipv6NetToMediaEntryTable in an NDP walk. 19158 */ 19159 static mblk_t * 19160 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19161 ip_stack_t *ipst) 19162 { 19163 struct opthdr *optp; 19164 mblk_t *mp2ctl; /* Returned */ 19165 mblk_t *mp3ctl; /* nettomedia */ 19166 mblk_t *mp4ctl; /* routeattrs */ 19167 iproutedata_t ird; 19168 zoneid_t zoneid; 19169 19170 /* 19171 * make copies of the original message 19172 * - mp2ctl is returned unchanged to the caller for his use 19173 * - mpctl is sent upstream as ipv6RouteEntryTable 19174 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19175 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19176 */ 19177 mp2ctl = copymsg(mpctl); 19178 mp3ctl = copymsg(mpctl); 19179 mp4ctl = copymsg(mpctl); 19180 if (mp3ctl == NULL || mp4ctl == NULL) { 19181 freemsg(mp4ctl); 19182 freemsg(mp3ctl); 19183 freemsg(mp2ctl); 19184 freemsg(mpctl); 19185 return (NULL); 19186 } 19187 19188 bzero(&ird, sizeof (ird)); 19189 19190 ird.ird_route.lp_head = mpctl->b_cont; 19191 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19192 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19193 /* 19194 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19195 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19196 * intended a temporary solution until a proper MIB API is provided 19197 * that provides complete filtering/caller-opt-in. 19198 */ 19199 if (level == EXPER_IP_AND_TESTHIDDEN) 19200 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19201 19202 zoneid = Q_TO_CONN(q)->conn_zoneid; 19203 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19204 19205 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19206 optp->level = MIB2_IP6; 19207 optp->name = MIB2_IP6_ROUTE; 19208 optp->len = msgdsize(ird.ird_route.lp_head); 19209 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19210 (int)optp->level, (int)optp->name, (int)optp->len)); 19211 qreply(q, mpctl); 19212 19213 /* ipv6NetToMediaEntryTable in mp3ctl */ 19214 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19215 19216 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19217 optp->level = MIB2_IP6; 19218 optp->name = MIB2_IP6_MEDIA; 19219 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19220 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19221 (int)optp->level, (int)optp->name, (int)optp->len)); 19222 qreply(q, mp3ctl); 19223 19224 /* ipv6RouteAttributeTable in mp4ctl */ 19225 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19226 optp->level = MIB2_IP6; 19227 optp->name = EXPER_IP_RTATTR; 19228 optp->len = msgdsize(ird.ird_attrs.lp_head); 19229 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19230 (int)optp->level, (int)optp->name, (int)optp->len)); 19231 if (optp->len == 0) 19232 freemsg(mp4ctl); 19233 else 19234 qreply(q, mp4ctl); 19235 19236 return (mp2ctl); 19237 } 19238 19239 /* 19240 * IPv6 mib: One per ill 19241 */ 19242 static mblk_t * 19243 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19244 { 19245 struct opthdr *optp; 19246 mblk_t *mp2ctl; 19247 ill_t *ill; 19248 ill_walk_context_t ctx; 19249 mblk_t *mp_tail = NULL; 19250 19251 /* 19252 * Make a copy of the original message 19253 */ 19254 mp2ctl = copymsg(mpctl); 19255 19256 /* fixed length IPv6 structure ... */ 19257 19258 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19259 optp->level = MIB2_IP6; 19260 optp->name = 0; 19261 /* Include "unknown interface" ip6_mib */ 19262 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19263 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19264 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19265 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19266 ipst->ips_ipv6_forward ? 1 : 2); 19267 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19268 ipst->ips_ipv6_def_hops); 19269 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19270 sizeof (mib2_ipIfStatsEntry_t)); 19271 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19272 sizeof (mib2_ipv6AddrEntry_t)); 19273 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19274 sizeof (mib2_ipv6RouteEntry_t)); 19275 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19276 sizeof (mib2_ipv6NetToMediaEntry_t)); 19277 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19278 sizeof (ipv6_member_t)); 19279 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19280 sizeof (ipv6_grpsrc_t)); 19281 19282 /* 19283 * Synchronize 64- and 32-bit counters 19284 */ 19285 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19286 ipIfStatsHCInReceives); 19287 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19288 ipIfStatsHCInDelivers); 19289 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19290 ipIfStatsHCOutRequests); 19291 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19292 ipIfStatsHCOutForwDatagrams); 19293 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19294 ipIfStatsHCOutMcastPkts); 19295 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19296 ipIfStatsHCInMcastPkts); 19297 19298 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19299 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19300 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19301 (uint_t)sizeof (ipst->ips_ip6_mib))); 19302 } 19303 19304 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19305 ill = ILL_START_WALK_V6(&ctx, ipst); 19306 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19307 ill->ill_ip_mib->ipIfStatsIfIndex = 19308 ill->ill_phyint->phyint_ifindex; 19309 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19310 ipst->ips_ipv6_forward ? 1 : 2); 19311 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19312 ill->ill_max_hops); 19313 19314 /* 19315 * Synchronize 64- and 32-bit counters 19316 */ 19317 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19318 ipIfStatsHCInReceives); 19319 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19320 ipIfStatsHCInDelivers); 19321 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19322 ipIfStatsHCOutRequests); 19323 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19324 ipIfStatsHCOutForwDatagrams); 19325 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19326 ipIfStatsHCOutMcastPkts); 19327 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19328 ipIfStatsHCInMcastPkts); 19329 19330 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19331 (char *)ill->ill_ip_mib, 19332 (int)sizeof (*ill->ill_ip_mib))) { 19333 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19334 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19335 } 19336 } 19337 rw_exit(&ipst->ips_ill_g_lock); 19338 19339 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19340 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19341 (int)optp->level, (int)optp->name, (int)optp->len)); 19342 qreply(q, mpctl); 19343 return (mp2ctl); 19344 } 19345 19346 /* 19347 * ICMPv6 mib: One per ill 19348 */ 19349 static mblk_t * 19350 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19351 { 19352 struct opthdr *optp; 19353 mblk_t *mp2ctl; 19354 ill_t *ill; 19355 ill_walk_context_t ctx; 19356 mblk_t *mp_tail = NULL; 19357 /* 19358 * Make a copy of the original message 19359 */ 19360 mp2ctl = copymsg(mpctl); 19361 19362 /* fixed length ICMPv6 structure ... */ 19363 19364 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19365 optp->level = MIB2_ICMP6; 19366 optp->name = 0; 19367 /* Include "unknown interface" icmp6_mib */ 19368 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19369 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19370 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19371 sizeof (mib2_ipv6IfIcmpEntry_t); 19372 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19373 (char *)&ipst->ips_icmp6_mib, 19374 (int)sizeof (ipst->ips_icmp6_mib))) { 19375 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19376 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19377 } 19378 19379 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19380 ill = ILL_START_WALK_V6(&ctx, ipst); 19381 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19382 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19383 ill->ill_phyint->phyint_ifindex; 19384 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19385 (char *)ill->ill_icmp6_mib, 19386 (int)sizeof (*ill->ill_icmp6_mib))) { 19387 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19388 "%u bytes\n", 19389 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19390 } 19391 } 19392 rw_exit(&ipst->ips_ill_g_lock); 19393 19394 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19395 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19396 (int)optp->level, (int)optp->name, (int)optp->len)); 19397 qreply(q, mpctl); 19398 return (mp2ctl); 19399 } 19400 19401 /* 19402 * ire_walk routine to create both ipRouteEntryTable and 19403 * ipRouteAttributeTable in one IRE walk 19404 */ 19405 static void 19406 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19407 { 19408 ill_t *ill; 19409 ipif_t *ipif; 19410 mib2_ipRouteEntry_t *re; 19411 mib2_ipAttributeEntry_t *iae, *iaeptr; 19412 ipaddr_t gw_addr; 19413 tsol_ire_gw_secattr_t *attrp; 19414 tsol_gc_t *gc = NULL; 19415 tsol_gcgrp_t *gcgrp = NULL; 19416 uint_t sacnt = 0; 19417 int i; 19418 19419 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19420 19421 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19422 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19423 return; 19424 } 19425 19426 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19427 return; 19428 19429 if ((attrp = ire->ire_gw_secattr) != NULL) { 19430 mutex_enter(&attrp->igsa_lock); 19431 if ((gc = attrp->igsa_gc) != NULL) { 19432 gcgrp = gc->gc_grp; 19433 ASSERT(gcgrp != NULL); 19434 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19435 sacnt = 1; 19436 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19437 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19438 gc = gcgrp->gcgrp_head; 19439 sacnt = gcgrp->gcgrp_count; 19440 } 19441 mutex_exit(&attrp->igsa_lock); 19442 19443 /* do nothing if there's no gc to report */ 19444 if (gc == NULL) { 19445 ASSERT(sacnt == 0); 19446 if (gcgrp != NULL) { 19447 /* we might as well drop the lock now */ 19448 rw_exit(&gcgrp->gcgrp_rwlock); 19449 gcgrp = NULL; 19450 } 19451 attrp = NULL; 19452 } 19453 19454 ASSERT(gc == NULL || (gcgrp != NULL && 19455 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19456 } 19457 ASSERT(sacnt == 0 || gc != NULL); 19458 19459 if (sacnt != 0 && 19460 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19461 kmem_free(re, sizeof (*re)); 19462 rw_exit(&gcgrp->gcgrp_rwlock); 19463 return; 19464 } 19465 19466 /* 19467 * Return all IRE types for route table... let caller pick and choose 19468 */ 19469 re->ipRouteDest = ire->ire_addr; 19470 ipif = ire->ire_ipif; 19471 re->ipRouteIfIndex.o_length = 0; 19472 if (ire->ire_type == IRE_CACHE) { 19473 ill = (ill_t *)ire->ire_stq->q_ptr; 19474 re->ipRouteIfIndex.o_length = 19475 ill->ill_name_length == 0 ? 0 : 19476 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19477 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19478 re->ipRouteIfIndex.o_length); 19479 } else if (ipif != NULL) { 19480 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19481 re->ipRouteIfIndex.o_length = 19482 mi_strlen(re->ipRouteIfIndex.o_bytes); 19483 } 19484 re->ipRouteMetric1 = -1; 19485 re->ipRouteMetric2 = -1; 19486 re->ipRouteMetric3 = -1; 19487 re->ipRouteMetric4 = -1; 19488 19489 gw_addr = ire->ire_gateway_addr; 19490 19491 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19492 re->ipRouteNextHop = ire->ire_src_addr; 19493 else 19494 re->ipRouteNextHop = gw_addr; 19495 /* indirect(4), direct(3), or invalid(2) */ 19496 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19497 re->ipRouteType = 2; 19498 else 19499 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19500 re->ipRouteProto = -1; 19501 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19502 re->ipRouteMask = ire->ire_mask; 19503 re->ipRouteMetric5 = -1; 19504 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19505 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19506 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19507 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19508 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19509 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19510 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19511 re->ipRouteInfo.re_flags = ire->ire_flags; 19512 19513 if (ire->ire_flags & RTF_DYNAMIC) { 19514 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19515 } else { 19516 re->ipRouteInfo.re_ire_type = ire->ire_type; 19517 } 19518 19519 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19520 (char *)re, (int)sizeof (*re))) { 19521 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19522 (uint_t)sizeof (*re))); 19523 } 19524 19525 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19526 iaeptr->iae_routeidx = ird->ird_idx; 19527 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19528 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19529 } 19530 19531 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19532 (char *)iae, sacnt * sizeof (*iae))) { 19533 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19534 (unsigned)(sacnt * sizeof (*iae)))); 19535 } 19536 19537 /* bump route index for next pass */ 19538 ird->ird_idx++; 19539 19540 kmem_free(re, sizeof (*re)); 19541 if (sacnt != 0) 19542 kmem_free(iae, sacnt * sizeof (*iae)); 19543 19544 if (gcgrp != NULL) 19545 rw_exit(&gcgrp->gcgrp_rwlock); 19546 } 19547 19548 /* 19549 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19550 */ 19551 static void 19552 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19553 { 19554 ill_t *ill; 19555 ipif_t *ipif; 19556 mib2_ipv6RouteEntry_t *re; 19557 mib2_ipAttributeEntry_t *iae, *iaeptr; 19558 in6_addr_t gw_addr_v6; 19559 tsol_ire_gw_secattr_t *attrp; 19560 tsol_gc_t *gc = NULL; 19561 tsol_gcgrp_t *gcgrp = NULL; 19562 uint_t sacnt = 0; 19563 int i; 19564 19565 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19566 19567 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19568 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19569 return; 19570 } 19571 19572 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19573 return; 19574 19575 if ((attrp = ire->ire_gw_secattr) != NULL) { 19576 mutex_enter(&attrp->igsa_lock); 19577 if ((gc = attrp->igsa_gc) != NULL) { 19578 gcgrp = gc->gc_grp; 19579 ASSERT(gcgrp != NULL); 19580 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19581 sacnt = 1; 19582 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19583 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19584 gc = gcgrp->gcgrp_head; 19585 sacnt = gcgrp->gcgrp_count; 19586 } 19587 mutex_exit(&attrp->igsa_lock); 19588 19589 /* do nothing if there's no gc to report */ 19590 if (gc == NULL) { 19591 ASSERT(sacnt == 0); 19592 if (gcgrp != NULL) { 19593 /* we might as well drop the lock now */ 19594 rw_exit(&gcgrp->gcgrp_rwlock); 19595 gcgrp = NULL; 19596 } 19597 attrp = NULL; 19598 } 19599 19600 ASSERT(gc == NULL || (gcgrp != NULL && 19601 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19602 } 19603 ASSERT(sacnt == 0 || gc != NULL); 19604 19605 if (sacnt != 0 && 19606 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19607 kmem_free(re, sizeof (*re)); 19608 rw_exit(&gcgrp->gcgrp_rwlock); 19609 return; 19610 } 19611 19612 /* 19613 * Return all IRE types for route table... let caller pick and choose 19614 */ 19615 re->ipv6RouteDest = ire->ire_addr_v6; 19616 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19617 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19618 re->ipv6RouteIfIndex.o_length = 0; 19619 ipif = ire->ire_ipif; 19620 if (ire->ire_type == IRE_CACHE) { 19621 ill = (ill_t *)ire->ire_stq->q_ptr; 19622 re->ipv6RouteIfIndex.o_length = 19623 ill->ill_name_length == 0 ? 0 : 19624 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19625 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19626 re->ipv6RouteIfIndex.o_length); 19627 } else if (ipif != NULL) { 19628 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19629 re->ipv6RouteIfIndex.o_length = 19630 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19631 } 19632 19633 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19634 19635 mutex_enter(&ire->ire_lock); 19636 gw_addr_v6 = ire->ire_gateway_addr_v6; 19637 mutex_exit(&ire->ire_lock); 19638 19639 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19640 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19641 else 19642 re->ipv6RouteNextHop = gw_addr_v6; 19643 19644 /* remote(4), local(3), or discard(2) */ 19645 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19646 re->ipv6RouteType = 2; 19647 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19648 re->ipv6RouteType = 3; 19649 else 19650 re->ipv6RouteType = 4; 19651 19652 re->ipv6RouteProtocol = -1; 19653 re->ipv6RoutePolicy = 0; 19654 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19655 re->ipv6RouteNextHopRDI = 0; 19656 re->ipv6RouteWeight = 0; 19657 re->ipv6RouteMetric = 0; 19658 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19659 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19660 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19661 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19662 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19663 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19664 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19665 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19666 19667 if (ire->ire_flags & RTF_DYNAMIC) { 19668 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19669 } else { 19670 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19671 } 19672 19673 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19674 (char *)re, (int)sizeof (*re))) { 19675 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19676 (uint_t)sizeof (*re))); 19677 } 19678 19679 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19680 iaeptr->iae_routeidx = ird->ird_idx; 19681 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19682 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19683 } 19684 19685 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19686 (char *)iae, sacnt * sizeof (*iae))) { 19687 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19688 (unsigned)(sacnt * sizeof (*iae)))); 19689 } 19690 19691 /* bump route index for next pass */ 19692 ird->ird_idx++; 19693 19694 kmem_free(re, sizeof (*re)); 19695 if (sacnt != 0) 19696 kmem_free(iae, sacnt * sizeof (*iae)); 19697 19698 if (gcgrp != NULL) 19699 rw_exit(&gcgrp->gcgrp_rwlock); 19700 } 19701 19702 /* 19703 * ndp_walk routine to create ipv6NetToMediaEntryTable 19704 */ 19705 static int 19706 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19707 { 19708 ill_t *ill; 19709 mib2_ipv6NetToMediaEntry_t ntme; 19710 dl_unitdata_req_t *dl; 19711 19712 ill = nce->nce_ill; 19713 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19714 return (0); 19715 19716 /* 19717 * Neighbor cache entry attached to IRE with on-link 19718 * destination. 19719 */ 19720 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19721 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19722 if ((ill->ill_flags & ILLF_XRESOLV) && 19723 (nce->nce_res_mp != NULL)) { 19724 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19725 ntme.ipv6NetToMediaPhysAddress.o_length = 19726 dl->dl_dest_addr_length; 19727 } else { 19728 ntme.ipv6NetToMediaPhysAddress.o_length = 19729 ill->ill_phys_addr_length; 19730 } 19731 if (nce->nce_res_mp != NULL) { 19732 bcopy((char *)nce->nce_res_mp->b_rptr + 19733 NCE_LL_ADDR_OFFSET(ill), 19734 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19735 ntme.ipv6NetToMediaPhysAddress.o_length); 19736 } else { 19737 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19738 ill->ill_phys_addr_length); 19739 } 19740 /* 19741 * Note: Returns ND_* states. Should be: 19742 * reachable(1), stale(2), delay(3), probe(4), 19743 * invalid(5), unknown(6) 19744 */ 19745 ntme.ipv6NetToMediaState = nce->nce_state; 19746 ntme.ipv6NetToMediaLastUpdated = 0; 19747 19748 /* other(1), dynamic(2), static(3), local(4) */ 19749 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19750 ntme.ipv6NetToMediaType = 4; 19751 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19752 ntme.ipv6NetToMediaType = 1; 19753 } else { 19754 ntme.ipv6NetToMediaType = 2; 19755 } 19756 19757 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19758 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19759 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19760 (uint_t)sizeof (ntme))); 19761 } 19762 return (0); 19763 } 19764 19765 /* 19766 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19767 */ 19768 /* ARGSUSED */ 19769 int 19770 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19771 { 19772 switch (level) { 19773 case MIB2_IP: 19774 case MIB2_ICMP: 19775 switch (name) { 19776 default: 19777 break; 19778 } 19779 return (1); 19780 default: 19781 return (1); 19782 } 19783 } 19784 19785 /* 19786 * When there exists both a 64- and 32-bit counter of a particular type 19787 * (i.e., InReceives), only the 64-bit counters are added. 19788 */ 19789 void 19790 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19791 { 19792 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19793 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19794 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19795 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19796 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19797 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19798 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19799 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19800 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19801 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19802 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19803 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19804 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19805 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19806 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19807 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19808 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19809 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19810 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19811 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19812 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19813 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19814 o2->ipIfStatsInWrongIPVersion); 19815 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19816 o2->ipIfStatsInWrongIPVersion); 19817 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19818 o2->ipIfStatsOutSwitchIPVersion); 19819 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19820 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19821 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19822 o2->ipIfStatsHCInForwDatagrams); 19823 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19824 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19825 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19826 o2->ipIfStatsHCOutForwDatagrams); 19827 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19828 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19829 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19830 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19831 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19832 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19833 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19834 o2->ipIfStatsHCOutMcastOctets); 19835 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19836 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19837 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19838 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19839 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19840 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19841 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19842 } 19843 19844 void 19845 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19846 { 19847 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19848 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19849 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19850 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19851 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19852 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19853 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19854 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19855 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19856 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19857 o2->ipv6IfIcmpInRouterSolicits); 19858 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19859 o2->ipv6IfIcmpInRouterAdvertisements); 19860 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19861 o2->ipv6IfIcmpInNeighborSolicits); 19862 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19863 o2->ipv6IfIcmpInNeighborAdvertisements); 19864 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19865 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19866 o2->ipv6IfIcmpInGroupMembQueries); 19867 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19868 o2->ipv6IfIcmpInGroupMembResponses); 19869 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19870 o2->ipv6IfIcmpInGroupMembReductions); 19871 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19872 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19873 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19874 o2->ipv6IfIcmpOutDestUnreachs); 19875 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19876 o2->ipv6IfIcmpOutAdminProhibs); 19877 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19878 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19879 o2->ipv6IfIcmpOutParmProblems); 19880 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19881 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19882 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19883 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19884 o2->ipv6IfIcmpOutRouterSolicits); 19885 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19886 o2->ipv6IfIcmpOutRouterAdvertisements); 19887 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19888 o2->ipv6IfIcmpOutNeighborSolicits); 19889 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19890 o2->ipv6IfIcmpOutNeighborAdvertisements); 19891 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19892 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19893 o2->ipv6IfIcmpOutGroupMembQueries); 19894 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19895 o2->ipv6IfIcmpOutGroupMembResponses); 19896 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19897 o2->ipv6IfIcmpOutGroupMembReductions); 19898 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19899 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19900 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19901 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19902 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19903 o2->ipv6IfIcmpInBadNeighborSolicitations); 19904 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19905 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19906 o2->ipv6IfIcmpInGroupMembTotal); 19907 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19908 o2->ipv6IfIcmpInGroupMembBadQueries); 19909 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19910 o2->ipv6IfIcmpInGroupMembBadReports); 19911 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19912 o2->ipv6IfIcmpInGroupMembOurReports); 19913 } 19914 19915 /* 19916 * Called before the options are updated to check if this packet will 19917 * be source routed from here. 19918 * This routine assumes that the options are well formed i.e. that they 19919 * have already been checked. 19920 */ 19921 static boolean_t 19922 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19923 { 19924 ipoptp_t opts; 19925 uchar_t *opt; 19926 uint8_t optval; 19927 uint8_t optlen; 19928 ipaddr_t dst; 19929 ire_t *ire; 19930 19931 if (IS_SIMPLE_IPH(ipha)) { 19932 ip2dbg(("not source routed\n")); 19933 return (B_FALSE); 19934 } 19935 dst = ipha->ipha_dst; 19936 for (optval = ipoptp_first(&opts, ipha); 19937 optval != IPOPT_EOL; 19938 optval = ipoptp_next(&opts)) { 19939 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19940 opt = opts.ipoptp_cur; 19941 optlen = opts.ipoptp_len; 19942 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19943 optval, optlen)); 19944 switch (optval) { 19945 uint32_t off; 19946 case IPOPT_SSRR: 19947 case IPOPT_LSRR: 19948 /* 19949 * If dst is one of our addresses and there are some 19950 * entries left in the source route return (true). 19951 */ 19952 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19953 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19954 if (ire == NULL) { 19955 ip2dbg(("ip_source_routed: not next" 19956 " source route 0x%x\n", 19957 ntohl(dst))); 19958 return (B_FALSE); 19959 } 19960 ire_refrele(ire); 19961 off = opt[IPOPT_OFFSET]; 19962 off--; 19963 if (optlen < IP_ADDR_LEN || 19964 off > optlen - IP_ADDR_LEN) { 19965 /* End of source route */ 19966 ip1dbg(("ip_source_routed: end of SR\n")); 19967 return (B_FALSE); 19968 } 19969 return (B_TRUE); 19970 } 19971 } 19972 ip2dbg(("not source routed\n")); 19973 return (B_FALSE); 19974 } 19975 19976 /* 19977 * Check if the packet contains any source route. 19978 */ 19979 static boolean_t 19980 ip_source_route_included(ipha_t *ipha) 19981 { 19982 ipoptp_t opts; 19983 uint8_t optval; 19984 19985 if (IS_SIMPLE_IPH(ipha)) 19986 return (B_FALSE); 19987 for (optval = ipoptp_first(&opts, ipha); 19988 optval != IPOPT_EOL; 19989 optval = ipoptp_next(&opts)) { 19990 switch (optval) { 19991 case IPOPT_SSRR: 19992 case IPOPT_LSRR: 19993 return (B_TRUE); 19994 } 19995 } 19996 return (B_FALSE); 19997 } 19998 19999 /* 20000 * Called when the IRE expiration timer fires. 20001 */ 20002 void 20003 ip_trash_timer_expire(void *args) 20004 { 20005 int flush_flag = 0; 20006 ire_expire_arg_t iea; 20007 ip_stack_t *ipst = (ip_stack_t *)args; 20008 20009 iea.iea_ipst = ipst; /* No netstack_hold */ 20010 20011 /* 20012 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20013 * This lock makes sure that a new invocation of this function 20014 * that occurs due to an almost immediate timer firing will not 20015 * progress beyond this point until the current invocation is done 20016 */ 20017 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20018 ipst->ips_ip_ire_expire_id = 0; 20019 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20020 20021 /* Periodic timer */ 20022 if (ipst->ips_ip_ire_arp_time_elapsed >= 20023 ipst->ips_ip_ire_arp_interval) { 20024 /* 20025 * Remove all IRE_CACHE entries since they might 20026 * contain arp information. 20027 */ 20028 flush_flag |= FLUSH_ARP_TIME; 20029 ipst->ips_ip_ire_arp_time_elapsed = 0; 20030 IP_STAT(ipst, ip_ire_arp_timer_expired); 20031 } 20032 if (ipst->ips_ip_ire_rd_time_elapsed >= 20033 ipst->ips_ip_ire_redir_interval) { 20034 /* Remove all redirects */ 20035 flush_flag |= FLUSH_REDIRECT_TIME; 20036 ipst->ips_ip_ire_rd_time_elapsed = 0; 20037 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20038 } 20039 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20040 ipst->ips_ip_ire_pathmtu_interval) { 20041 /* Increase path mtu */ 20042 flush_flag |= FLUSH_MTU_TIME; 20043 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20044 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20045 } 20046 20047 /* 20048 * Optimize for the case when there are no redirects in the 20049 * ftable, that is, no need to walk the ftable in that case. 20050 */ 20051 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20052 iea.iea_flush_flag = flush_flag; 20053 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20054 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20055 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20056 NULL, ALL_ZONES, ipst); 20057 } 20058 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20059 ipst->ips_ip_redirect_cnt > 0) { 20060 iea.iea_flush_flag = flush_flag; 20061 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20062 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20063 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20064 } 20065 if (flush_flag & FLUSH_MTU_TIME) { 20066 /* 20067 * Walk all IPv6 IRE's and update them 20068 * Note that ARP and redirect timers are not 20069 * needed since NUD handles stale entries. 20070 */ 20071 flush_flag = FLUSH_MTU_TIME; 20072 iea.iea_flush_flag = flush_flag; 20073 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20074 ALL_ZONES, ipst); 20075 } 20076 20077 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20078 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20079 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20080 20081 /* 20082 * Hold the lock to serialize timeout calls and prevent 20083 * stale values in ip_ire_expire_id. Otherwise it is possible 20084 * for the timer to fire and a new invocation of this function 20085 * to start before the return value of timeout has been stored 20086 * in ip_ire_expire_id by the current invocation. 20087 */ 20088 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20089 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20090 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20091 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20092 } 20093 20094 /* 20095 * Called by the memory allocator subsystem directly, when the system 20096 * is running low on memory. 20097 */ 20098 /* ARGSUSED */ 20099 void 20100 ip_trash_ire_reclaim(void *args) 20101 { 20102 netstack_handle_t nh; 20103 netstack_t *ns; 20104 20105 netstack_next_init(&nh); 20106 while ((ns = netstack_next(&nh)) != NULL) { 20107 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20108 netstack_rele(ns); 20109 } 20110 netstack_next_fini(&nh); 20111 } 20112 20113 static void 20114 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20115 { 20116 ire_cache_count_t icc; 20117 ire_cache_reclaim_t icr; 20118 ncc_cache_count_t ncc; 20119 nce_cache_reclaim_t ncr; 20120 uint_t delete_cnt; 20121 /* 20122 * Memory reclaim call back. 20123 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20124 * Then, with a target of freeing 1/Nth of IRE_CACHE 20125 * entries, determine what fraction to free for 20126 * each category of IRE_CACHE entries giving absolute priority 20127 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20128 * entry will be freed unless all offlink entries are freed). 20129 */ 20130 icc.icc_total = 0; 20131 icc.icc_unused = 0; 20132 icc.icc_offlink = 0; 20133 icc.icc_pmtu = 0; 20134 icc.icc_onlink = 0; 20135 ire_walk(ire_cache_count, (char *)&icc, ipst); 20136 20137 /* 20138 * Free NCEs for IPv6 like the onlink ires. 20139 */ 20140 ncc.ncc_total = 0; 20141 ncc.ncc_host = 0; 20142 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20143 20144 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20145 icc.icc_pmtu + icc.icc_onlink); 20146 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20147 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20148 if (delete_cnt == 0) 20149 return; 20150 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20151 /* Always delete all unused offlink entries */ 20152 icr.icr_ipst = ipst; 20153 icr.icr_unused = 1; 20154 if (delete_cnt <= icc.icc_unused) { 20155 /* 20156 * Only need to free unused entries. In other words, 20157 * there are enough unused entries to free to meet our 20158 * target number of freed ire cache entries. 20159 */ 20160 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20161 ncr.ncr_host = 0; 20162 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20163 /* 20164 * Only need to free unused entries, plus a fraction of offlink 20165 * entries. It follows from the first if statement that 20166 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20167 */ 20168 delete_cnt -= icc.icc_unused; 20169 /* Round up # deleted by truncating fraction */ 20170 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20171 icr.icr_pmtu = icr.icr_onlink = 0; 20172 ncr.ncr_host = 0; 20173 } else if (delete_cnt <= 20174 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20175 /* 20176 * Free all unused and offlink entries, plus a fraction of 20177 * pmtu entries. It follows from the previous if statement 20178 * that icc_pmtu is non-zero, and that 20179 * delete_cnt != icc_unused + icc_offlink. 20180 */ 20181 icr.icr_offlink = 1; 20182 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20183 /* Round up # deleted by truncating fraction */ 20184 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20185 icr.icr_onlink = 0; 20186 ncr.ncr_host = 0; 20187 } else { 20188 /* 20189 * Free all unused, offlink, and pmtu entries, plus a fraction 20190 * of onlink entries. If we're here, then we know that 20191 * icc_onlink is non-zero, and that 20192 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20193 */ 20194 icr.icr_offlink = icr.icr_pmtu = 1; 20195 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20196 icc.icc_pmtu; 20197 /* Round up # deleted by truncating fraction */ 20198 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20199 /* Using the same delete fraction as for onlink IREs */ 20200 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20201 } 20202 #ifdef DEBUG 20203 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20204 "fractions %d/%d/%d/%d\n", 20205 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20206 icc.icc_unused, icc.icc_offlink, 20207 icc.icc_pmtu, icc.icc_onlink, 20208 icr.icr_unused, icr.icr_offlink, 20209 icr.icr_pmtu, icr.icr_onlink)); 20210 #endif 20211 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20212 if (ncr.ncr_host != 0) 20213 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20214 (uchar_t *)&ncr, ipst); 20215 #ifdef DEBUG 20216 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20217 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20218 ire_walk(ire_cache_count, (char *)&icc, ipst); 20219 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20220 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20221 icc.icc_pmtu, icc.icc_onlink)); 20222 #endif 20223 } 20224 20225 /* 20226 * ip_unbind is called when a copy of an unbind request is received from the 20227 * upper level protocol. We remove this conn from any fanout hash list it is 20228 * on, and zero out the bind information. No reply is expected up above. 20229 */ 20230 void 20231 ip_unbind(conn_t *connp) 20232 { 20233 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20234 20235 if (is_system_labeled() && connp->conn_anon_port) { 20236 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20237 connp->conn_mlp_type, connp->conn_ulp, 20238 ntohs(connp->conn_lport), B_FALSE); 20239 connp->conn_anon_port = 0; 20240 } 20241 connp->conn_mlp_type = mlptSingle; 20242 20243 ipcl_hash_remove(connp); 20244 20245 } 20246 20247 /* 20248 * Write side put procedure. Outbound data, IOCTLs, responses from 20249 * resolvers, etc, come down through here. 20250 * 20251 * arg2 is always a queue_t *. 20252 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20253 * the zoneid. 20254 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20255 */ 20256 void 20257 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20258 { 20259 ip_output_options(arg, mp, arg2, caller, &zero_info); 20260 } 20261 20262 void 20263 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20264 ip_opt_info_t *infop) 20265 { 20266 conn_t *connp = NULL; 20267 queue_t *q = (queue_t *)arg2; 20268 ipha_t *ipha; 20269 #define rptr ((uchar_t *)ipha) 20270 ire_t *ire = NULL; 20271 ire_t *sctp_ire = NULL; 20272 uint32_t v_hlen_tos_len; 20273 ipaddr_t dst; 20274 mblk_t *first_mp = NULL; 20275 boolean_t mctl_present; 20276 ipsec_out_t *io; 20277 int match_flags; 20278 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20279 ipif_t *dst_ipif; 20280 boolean_t multirt_need_resolve = B_FALSE; 20281 mblk_t *copy_mp = NULL; 20282 int err; 20283 zoneid_t zoneid; 20284 boolean_t need_decref = B_FALSE; 20285 boolean_t ignore_dontroute = B_FALSE; 20286 boolean_t ignore_nexthop = B_FALSE; 20287 boolean_t ip_nexthop = B_FALSE; 20288 ipaddr_t nexthop_addr; 20289 ip_stack_t *ipst; 20290 20291 #ifdef _BIG_ENDIAN 20292 #define V_HLEN (v_hlen_tos_len >> 24) 20293 #else 20294 #define V_HLEN (v_hlen_tos_len & 0xFF) 20295 #endif 20296 20297 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20298 "ip_wput_start: q %p", q); 20299 20300 /* 20301 * ip_wput fast path 20302 */ 20303 20304 /* is packet from ARP ? */ 20305 if (q->q_next != NULL) { 20306 zoneid = (zoneid_t)(uintptr_t)arg; 20307 goto qnext; 20308 } 20309 20310 connp = (conn_t *)arg; 20311 ASSERT(connp != NULL); 20312 zoneid = connp->conn_zoneid; 20313 ipst = connp->conn_netstack->netstack_ip; 20314 ASSERT(ipst != NULL); 20315 20316 /* is queue flow controlled? */ 20317 if ((q->q_first != NULL || connp->conn_draining) && 20318 (caller == IP_WPUT)) { 20319 ASSERT(!need_decref); 20320 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20321 (void) putq(q, mp); 20322 return; 20323 } 20324 20325 /* Multidata transmit? */ 20326 if (DB_TYPE(mp) == M_MULTIDATA) { 20327 /* 20328 * We should never get here, since all Multidata messages 20329 * originating from tcp should have been directed over to 20330 * tcp_multisend() in the first place. 20331 */ 20332 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20333 freemsg(mp); 20334 return; 20335 } else if (DB_TYPE(mp) != M_DATA) 20336 goto notdata; 20337 20338 if (mp->b_flag & MSGHASREF) { 20339 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20340 mp->b_flag &= ~MSGHASREF; 20341 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20342 need_decref = B_TRUE; 20343 } 20344 ipha = (ipha_t *)mp->b_rptr; 20345 20346 /* is IP header non-aligned or mblk smaller than basic IP header */ 20347 #ifndef SAFETY_BEFORE_SPEED 20348 if (!OK_32PTR(rptr) || 20349 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20350 goto hdrtoosmall; 20351 #endif 20352 20353 ASSERT(OK_32PTR(ipha)); 20354 20355 /* 20356 * This function assumes that mp points to an IPv4 packet. If it's the 20357 * wrong version, we'll catch it again in ip_output_v6. 20358 * 20359 * Note that this is *only* locally-generated output here, and never 20360 * forwarded data, and that we need to deal only with transports that 20361 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20362 * label.) 20363 */ 20364 if (is_system_labeled() && 20365 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20366 !connp->conn_ulp_labeled) { 20367 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20368 connp->conn_mac_exempt, ipst); 20369 ipha = (ipha_t *)mp->b_rptr; 20370 if (err != 0) { 20371 first_mp = mp; 20372 if (err == EINVAL) 20373 goto icmp_parameter_problem; 20374 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20375 goto discard_pkt; 20376 } 20377 } 20378 20379 ASSERT(infop != NULL); 20380 20381 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20382 /* 20383 * IP_PKTINFO ancillary option is present. 20384 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20385 * allows using address of any zone as the source address. 20386 */ 20387 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20388 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20389 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20390 if (ire == NULL) 20391 goto drop_pkt; 20392 ire_refrele(ire); 20393 ire = NULL; 20394 } 20395 20396 /* 20397 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20398 */ 20399 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20400 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20401 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20402 20403 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20404 goto drop_pkt; 20405 /* 20406 * check that there is an ipif belonging 20407 * to our zone. IPCL_ZONEID is not used because 20408 * IP_ALLZONES option is valid only when the ill is 20409 * accessible from all zones i.e has a valid ipif in 20410 * all zones. 20411 */ 20412 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20413 goto drop_pkt; 20414 } 20415 } 20416 20417 /* 20418 * If there is a policy, try to attach an ipsec_out in 20419 * the front. At the end, first_mp either points to a 20420 * M_DATA message or IPSEC_OUT message linked to a 20421 * M_DATA message. We have to do it now as we might 20422 * lose the "conn" if we go through ip_newroute. 20423 */ 20424 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20425 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20426 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20427 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20428 if (need_decref) 20429 CONN_DEC_REF(connp); 20430 return; 20431 } else { 20432 ASSERT(mp->b_datap->db_type == M_CTL); 20433 first_mp = mp; 20434 mp = mp->b_cont; 20435 mctl_present = B_TRUE; 20436 } 20437 } else { 20438 first_mp = mp; 20439 mctl_present = B_FALSE; 20440 } 20441 20442 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20443 20444 /* is wrong version or IP options present */ 20445 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20446 goto version_hdrlen_check; 20447 dst = ipha->ipha_dst; 20448 20449 /* If IP_BOUND_IF has been set, use that ill. */ 20450 if (connp->conn_outgoing_ill != NULL) { 20451 xmit_ill = conn_get_held_ill(connp, 20452 &connp->conn_outgoing_ill, &err); 20453 if (err == ILL_LOOKUP_FAILED) 20454 goto drop_pkt; 20455 20456 goto send_from_ill; 20457 } 20458 20459 /* is packet multicast? */ 20460 if (CLASSD(dst)) 20461 goto multicast; 20462 20463 /* 20464 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20465 * takes precedence over conn_dontroute and conn_nexthop_set 20466 */ 20467 if (xmit_ill != NULL) 20468 goto send_from_ill; 20469 20470 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20471 /* 20472 * If the destination is a broadcast, local, or loopback 20473 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20474 * standard path. 20475 */ 20476 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20477 if ((ire == NULL) || (ire->ire_type & 20478 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20479 if (ire != NULL) { 20480 ire_refrele(ire); 20481 /* No more access to ire */ 20482 ire = NULL; 20483 } 20484 /* 20485 * bypass routing checks and go directly to interface. 20486 */ 20487 if (connp->conn_dontroute) 20488 goto dontroute; 20489 20490 ASSERT(connp->conn_nexthop_set); 20491 ip_nexthop = B_TRUE; 20492 nexthop_addr = connp->conn_nexthop_v4; 20493 goto send_from_ill; 20494 } 20495 20496 /* Must be a broadcast, a loopback or a local ire */ 20497 ire_refrele(ire); 20498 /* No more access to ire */ 20499 ire = NULL; 20500 } 20501 20502 /* 20503 * We cache IRE_CACHEs to avoid lookups. We don't do 20504 * this for the tcp global queue and listen end point 20505 * as it does not really have a real destination to 20506 * talk to. This is also true for SCTP. 20507 */ 20508 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20509 !connp->conn_fully_bound) { 20510 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20511 if (ire == NULL) 20512 goto noirefound; 20513 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20514 "ip_wput_end: q %p (%S)", q, "end"); 20515 20516 /* 20517 * Check if the ire has the RTF_MULTIRT flag, inherited 20518 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20519 */ 20520 if (ire->ire_flags & RTF_MULTIRT) { 20521 20522 /* 20523 * Force the TTL of multirouted packets if required. 20524 * The TTL of such packets is bounded by the 20525 * ip_multirt_ttl ndd variable. 20526 */ 20527 if ((ipst->ips_ip_multirt_ttl > 0) && 20528 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20529 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20530 "(was %d), dst 0x%08x\n", 20531 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20532 ntohl(ire->ire_addr))); 20533 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20534 } 20535 /* 20536 * We look at this point if there are pending 20537 * unresolved routes. ire_multirt_resolvable() 20538 * checks in O(n) that all IRE_OFFSUBNET ire 20539 * entries for the packet's destination and 20540 * flagged RTF_MULTIRT are currently resolved. 20541 * If some remain unresolved, we make a copy 20542 * of the current message. It will be used 20543 * to initiate additional route resolutions. 20544 */ 20545 multirt_need_resolve = 20546 ire_multirt_need_resolve(ire->ire_addr, 20547 MBLK_GETLABEL(first_mp), ipst); 20548 ip2dbg(("ip_wput[TCP]: ire %p, " 20549 "multirt_need_resolve %d, first_mp %p\n", 20550 (void *)ire, multirt_need_resolve, 20551 (void *)first_mp)); 20552 if (multirt_need_resolve) { 20553 copy_mp = copymsg(first_mp); 20554 if (copy_mp != NULL) { 20555 MULTIRT_DEBUG_TAG(copy_mp); 20556 } 20557 } 20558 } 20559 20560 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20561 20562 /* 20563 * Try to resolve another multiroute if 20564 * ire_multirt_need_resolve() deemed it necessary. 20565 */ 20566 if (copy_mp != NULL) 20567 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20568 if (need_decref) 20569 CONN_DEC_REF(connp); 20570 return; 20571 } 20572 20573 /* 20574 * Access to conn_ire_cache. (protected by conn_lock) 20575 * 20576 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20577 * the ire bucket lock here to check for CONDEMNED as it is okay to 20578 * send a packet or two with the IRE_CACHE that is going away. 20579 * Access to the ire requires an ire refhold on the ire prior to 20580 * its use since an interface unplumb thread may delete the cached 20581 * ire and release the refhold at any time. 20582 * 20583 * Caching an ire in the conn_ire_cache 20584 * 20585 * o Caching an ire pointer in the conn requires a strict check for 20586 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20587 * ires before cleaning up the conns. So the caching of an ire pointer 20588 * in the conn is done after making sure under the bucket lock that the 20589 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20590 * caching an ire after the unplumb thread has cleaned up the conn. 20591 * If the conn does not send a packet subsequently the unplumb thread 20592 * will be hanging waiting for the ire count to drop to zero. 20593 * 20594 * o We also need to atomically test for a null conn_ire_cache and 20595 * set the conn_ire_cache under the the protection of the conn_lock 20596 * to avoid races among concurrent threads trying to simultaneously 20597 * cache an ire in the conn_ire_cache. 20598 */ 20599 mutex_enter(&connp->conn_lock); 20600 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20601 20602 if (ire != NULL && ire->ire_addr == dst && 20603 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20604 20605 IRE_REFHOLD(ire); 20606 mutex_exit(&connp->conn_lock); 20607 20608 } else { 20609 boolean_t cached = B_FALSE; 20610 connp->conn_ire_cache = NULL; 20611 mutex_exit(&connp->conn_lock); 20612 /* Release the old ire */ 20613 if (ire != NULL && sctp_ire == NULL) 20614 IRE_REFRELE_NOTR(ire); 20615 20616 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20617 if (ire == NULL) 20618 goto noirefound; 20619 IRE_REFHOLD_NOTR(ire); 20620 20621 mutex_enter(&connp->conn_lock); 20622 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20623 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20624 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20625 if (connp->conn_ulp == IPPROTO_TCP) 20626 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20627 connp->conn_ire_cache = ire; 20628 cached = B_TRUE; 20629 } 20630 rw_exit(&ire->ire_bucket->irb_lock); 20631 } 20632 mutex_exit(&connp->conn_lock); 20633 20634 /* 20635 * We can continue to use the ire but since it was 20636 * not cached, we should drop the extra reference. 20637 */ 20638 if (!cached) 20639 IRE_REFRELE_NOTR(ire); 20640 } 20641 20642 20643 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20644 "ip_wput_end: q %p (%S)", q, "end"); 20645 20646 /* 20647 * Check if the ire has the RTF_MULTIRT flag, inherited 20648 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20649 */ 20650 if (ire->ire_flags & RTF_MULTIRT) { 20651 20652 /* 20653 * Force the TTL of multirouted packets if required. 20654 * The TTL of such packets is bounded by the 20655 * ip_multirt_ttl ndd variable. 20656 */ 20657 if ((ipst->ips_ip_multirt_ttl > 0) && 20658 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20659 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20660 "(was %d), dst 0x%08x\n", 20661 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20662 ntohl(ire->ire_addr))); 20663 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20664 } 20665 20666 /* 20667 * At this point, we check to see if there are any pending 20668 * unresolved routes. ire_multirt_resolvable() 20669 * checks in O(n) that all IRE_OFFSUBNET ire 20670 * entries for the packet's destination and 20671 * flagged RTF_MULTIRT are currently resolved. 20672 * If some remain unresolved, we make a copy 20673 * of the current message. It will be used 20674 * to initiate additional route resolutions. 20675 */ 20676 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20677 MBLK_GETLABEL(first_mp), ipst); 20678 ip2dbg(("ip_wput[not TCP]: ire %p, " 20679 "multirt_need_resolve %d, first_mp %p\n", 20680 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20681 if (multirt_need_resolve) { 20682 copy_mp = copymsg(first_mp); 20683 if (copy_mp != NULL) { 20684 MULTIRT_DEBUG_TAG(copy_mp); 20685 } 20686 } 20687 } 20688 20689 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20690 20691 /* 20692 * Try to resolve another multiroute if 20693 * ire_multirt_resolvable() deemed it necessary 20694 */ 20695 if (copy_mp != NULL) 20696 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20697 if (need_decref) 20698 CONN_DEC_REF(connp); 20699 return; 20700 20701 qnext: 20702 /* 20703 * Upper Level Protocols pass down complete IP datagrams 20704 * as M_DATA messages. Everything else is a sideshow. 20705 * 20706 * 1) We could be re-entering ip_wput because of ip_neworute 20707 * in which case we could have a IPSEC_OUT message. We 20708 * need to pass through ip_wput like other datagrams and 20709 * hence cannot branch to ip_wput_nondata. 20710 * 20711 * 2) ARP, AH, ESP, and other clients who are on the module 20712 * instance of IP stream, give us something to deal with. 20713 * We will handle AH and ESP here and rest in ip_wput_nondata. 20714 * 20715 * 3) ICMP replies also could come here. 20716 */ 20717 ipst = ILLQ_TO_IPST(q); 20718 20719 if (DB_TYPE(mp) != M_DATA) { 20720 notdata: 20721 if (DB_TYPE(mp) == M_CTL) { 20722 /* 20723 * M_CTL messages are used by ARP, AH and ESP to 20724 * communicate with IP. We deal with IPSEC_IN and 20725 * IPSEC_OUT here. ip_wput_nondata handles other 20726 * cases. 20727 */ 20728 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20729 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20730 first_mp = mp->b_cont; 20731 first_mp->b_flag &= ~MSGHASREF; 20732 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20733 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20734 CONN_DEC_REF(connp); 20735 connp = NULL; 20736 } 20737 if (ii->ipsec_info_type == IPSEC_IN) { 20738 /* 20739 * Either this message goes back to 20740 * IPsec for further processing or to 20741 * ULP after policy checks. 20742 */ 20743 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20744 return; 20745 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20746 io = (ipsec_out_t *)ii; 20747 if (io->ipsec_out_proc_begin) { 20748 /* 20749 * IPsec processing has already started. 20750 * Complete it. 20751 * IPQoS notes: We don't care what is 20752 * in ipsec_out_ill_index since this 20753 * won't be processed for IPQoS policies 20754 * in ipsec_out_process. 20755 */ 20756 ipsec_out_process(q, mp, NULL, 20757 io->ipsec_out_ill_index); 20758 return; 20759 } else { 20760 connp = (q->q_next != NULL) ? 20761 NULL : Q_TO_CONN(q); 20762 first_mp = mp; 20763 mp = mp->b_cont; 20764 mctl_present = B_TRUE; 20765 } 20766 zoneid = io->ipsec_out_zoneid; 20767 ASSERT(zoneid != ALL_ZONES); 20768 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20769 /* 20770 * It's an IPsec control message requesting 20771 * an SADB update to be sent to the IPsec 20772 * hardware acceleration capable ills. 20773 */ 20774 ipsec_ctl_t *ipsec_ctl = 20775 (ipsec_ctl_t *)mp->b_rptr; 20776 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20777 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20778 mblk_t *cmp = mp->b_cont; 20779 20780 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20781 ASSERT(cmp != NULL); 20782 20783 freeb(mp); 20784 ill_ipsec_capab_send_all(satype, cmp, sa, 20785 ipst->ips_netstack); 20786 return; 20787 } else { 20788 /* 20789 * This must be ARP or special TSOL signaling. 20790 */ 20791 ip_wput_nondata(NULL, q, mp, NULL); 20792 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20793 "ip_wput_end: q %p (%S)", q, "nondata"); 20794 return; 20795 } 20796 } else { 20797 /* 20798 * This must be non-(ARP/AH/ESP) messages. 20799 */ 20800 ASSERT(!need_decref); 20801 ip_wput_nondata(NULL, q, mp, NULL); 20802 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20803 "ip_wput_end: q %p (%S)", q, "nondata"); 20804 return; 20805 } 20806 } else { 20807 first_mp = mp; 20808 mctl_present = B_FALSE; 20809 } 20810 20811 ASSERT(first_mp != NULL); 20812 20813 if (mctl_present) { 20814 io = (ipsec_out_t *)first_mp->b_rptr; 20815 if (io->ipsec_out_ip_nexthop) { 20816 /* 20817 * We may have lost the conn context if we are 20818 * coming here from ip_newroute(). Copy the 20819 * nexthop information. 20820 */ 20821 ip_nexthop = B_TRUE; 20822 nexthop_addr = io->ipsec_out_nexthop_addr; 20823 20824 ipha = (ipha_t *)mp->b_rptr; 20825 dst = ipha->ipha_dst; 20826 goto send_from_ill; 20827 } 20828 } 20829 20830 ASSERT(xmit_ill == NULL); 20831 20832 /* We have a complete IP datagram heading outbound. */ 20833 ipha = (ipha_t *)mp->b_rptr; 20834 20835 #ifndef SPEED_BEFORE_SAFETY 20836 /* 20837 * Make sure we have a full-word aligned message and that at least 20838 * a simple IP header is accessible in the first message. If not, 20839 * try a pullup. For labeled systems we need to always take this 20840 * path as M_CTLs are "notdata" but have trailing data to process. 20841 */ 20842 if (!OK_32PTR(rptr) || 20843 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20844 hdrtoosmall: 20845 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20846 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20847 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20848 if (first_mp == NULL) 20849 first_mp = mp; 20850 goto discard_pkt; 20851 } 20852 20853 /* This function assumes that mp points to an IPv4 packet. */ 20854 if (is_system_labeled() && q->q_next == NULL && 20855 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20856 !connp->conn_ulp_labeled) { 20857 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20858 connp->conn_mac_exempt, ipst); 20859 ipha = (ipha_t *)mp->b_rptr; 20860 if (first_mp != NULL) 20861 first_mp->b_cont = mp; 20862 if (err != 0) { 20863 if (first_mp == NULL) 20864 first_mp = mp; 20865 if (err == EINVAL) 20866 goto icmp_parameter_problem; 20867 ip2dbg(("ip_wput: label check failed (%d)\n", 20868 err)); 20869 goto discard_pkt; 20870 } 20871 } 20872 20873 ipha = (ipha_t *)mp->b_rptr; 20874 if (first_mp == NULL) { 20875 ASSERT(xmit_ill == NULL); 20876 /* 20877 * If we got here because of "goto hdrtoosmall" 20878 * We need to attach a IPSEC_OUT. 20879 */ 20880 if (connp->conn_out_enforce_policy) { 20881 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20882 NULL, ipha->ipha_protocol, 20883 ipst->ips_netstack)) == NULL)) { 20884 BUMP_MIB(&ipst->ips_ip_mib, 20885 ipIfStatsOutDiscards); 20886 if (need_decref) 20887 CONN_DEC_REF(connp); 20888 return; 20889 } else { 20890 ASSERT(mp->b_datap->db_type == M_CTL); 20891 first_mp = mp; 20892 mp = mp->b_cont; 20893 mctl_present = B_TRUE; 20894 } 20895 } else { 20896 first_mp = mp; 20897 mctl_present = B_FALSE; 20898 } 20899 } 20900 } 20901 #endif 20902 20903 /* Most of the code below is written for speed, not readability */ 20904 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20905 20906 /* 20907 * If ip_newroute() fails, we're going to need a full 20908 * header for the icmp wraparound. 20909 */ 20910 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20911 uint_t v_hlen; 20912 version_hdrlen_check: 20913 ASSERT(first_mp != NULL); 20914 v_hlen = V_HLEN; 20915 /* 20916 * siphon off IPv6 packets coming down from transport 20917 * layer modules here. 20918 * Note: high-order bit carries NUD reachability confirmation 20919 */ 20920 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20921 /* 20922 * FIXME: assume that callers of ip_output* call 20923 * the right version? 20924 */ 20925 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20926 ASSERT(xmit_ill == NULL); 20927 if (need_decref) 20928 mp->b_flag |= MSGHASREF; 20929 (void) ip_output_v6(arg, first_mp, arg2, caller); 20930 return; 20931 } 20932 20933 if ((v_hlen >> 4) != IP_VERSION) { 20934 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20935 "ip_wput_end: q %p (%S)", q, "badvers"); 20936 goto discard_pkt; 20937 } 20938 /* 20939 * Is the header length at least 20 bytes? 20940 * 20941 * Are there enough bytes accessible in the header? If 20942 * not, try a pullup. 20943 */ 20944 v_hlen &= 0xF; 20945 v_hlen <<= 2; 20946 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20947 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20948 "ip_wput_end: q %p (%S)", q, "badlen"); 20949 goto discard_pkt; 20950 } 20951 if (v_hlen > (mp->b_wptr - rptr)) { 20952 if (!pullupmsg(mp, v_hlen)) { 20953 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20954 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20955 goto discard_pkt; 20956 } 20957 ipha = (ipha_t *)mp->b_rptr; 20958 } 20959 /* 20960 * Move first entry from any source route into ipha_dst and 20961 * verify the options 20962 */ 20963 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20964 zoneid, ipst)) { 20965 ASSERT(xmit_ill == NULL); 20966 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20967 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20968 "ip_wput_end: q %p (%S)", q, "badopts"); 20969 if (need_decref) 20970 CONN_DEC_REF(connp); 20971 return; 20972 } 20973 } 20974 dst = ipha->ipha_dst; 20975 20976 /* 20977 * Try to get an IRE_CACHE for the destination address. If we can't, 20978 * we have to run the packet through ip_newroute which will take 20979 * the appropriate action to arrange for an IRE_CACHE, such as querying 20980 * a resolver, or assigning a default gateway, etc. 20981 */ 20982 if (CLASSD(dst)) { 20983 ipif_t *ipif; 20984 uint32_t setsrc = 0; 20985 20986 multicast: 20987 ASSERT(first_mp != NULL); 20988 ip2dbg(("ip_wput: CLASSD\n")); 20989 if (connp == NULL) { 20990 /* 20991 * Use the first good ipif on the ill. 20992 * XXX Should this ever happen? (Appears 20993 * to show up with just ppp and no ethernet due 20994 * to in.rdisc.) 20995 * However, ire_send should be able to 20996 * call ip_wput_ire directly. 20997 * 20998 * XXX Also, this can happen for ICMP and other packets 20999 * with multicast source addresses. Perhaps we should 21000 * fix things so that we drop the packet in question, 21001 * but for now, just run with it. 21002 */ 21003 ill_t *ill = (ill_t *)q->q_ptr; 21004 21005 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21006 if (ipif == NULL) { 21007 if (need_decref) 21008 CONN_DEC_REF(connp); 21009 freemsg(first_mp); 21010 return; 21011 } 21012 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21013 ntohl(dst), ill->ill_name)); 21014 } else { 21015 /* 21016 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21017 * and IP_MULTICAST_IF. The block comment above this 21018 * function explains the locking mechanism used here. 21019 */ 21020 if (xmit_ill == NULL) { 21021 xmit_ill = conn_get_held_ill(connp, 21022 &connp->conn_outgoing_ill, &err); 21023 if (err == ILL_LOOKUP_FAILED) { 21024 ip1dbg(("ip_wput: No ill for " 21025 "IP_BOUND_IF\n")); 21026 BUMP_MIB(&ipst->ips_ip_mib, 21027 ipIfStatsOutNoRoutes); 21028 goto drop_pkt; 21029 } 21030 } 21031 21032 if (xmit_ill == NULL) { 21033 ipif = conn_get_held_ipif(connp, 21034 &connp->conn_multicast_ipif, &err); 21035 if (err == IPIF_LOOKUP_FAILED) { 21036 ip1dbg(("ip_wput: No ipif for " 21037 "multicast\n")); 21038 BUMP_MIB(&ipst->ips_ip_mib, 21039 ipIfStatsOutNoRoutes); 21040 goto drop_pkt; 21041 } 21042 } 21043 if (xmit_ill != NULL) { 21044 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21045 if (ipif == NULL) { 21046 ip1dbg(("ip_wput: No ipif for " 21047 "xmit_ill\n")); 21048 BUMP_MIB(&ipst->ips_ip_mib, 21049 ipIfStatsOutNoRoutes); 21050 goto drop_pkt; 21051 } 21052 } else if (ipif == NULL || ipif->ipif_isv6) { 21053 /* 21054 * We must do this ipif determination here 21055 * else we could pass through ip_newroute 21056 * and come back here without the conn context. 21057 * 21058 * Note: we do late binding i.e. we bind to 21059 * the interface when the first packet is sent. 21060 * For performance reasons we do not rebind on 21061 * each packet but keep the binding until the 21062 * next IP_MULTICAST_IF option. 21063 * 21064 * conn_multicast_{ipif,ill} are shared between 21065 * IPv4 and IPv6 and AF_INET6 sockets can 21066 * send both IPv4 and IPv6 packets. Hence 21067 * we have to check that "isv6" matches above. 21068 */ 21069 if (ipif != NULL) 21070 ipif_refrele(ipif); 21071 ipif = ipif_lookup_group(dst, zoneid, ipst); 21072 if (ipif == NULL) { 21073 ip1dbg(("ip_wput: No ipif for " 21074 "multicast\n")); 21075 BUMP_MIB(&ipst->ips_ip_mib, 21076 ipIfStatsOutNoRoutes); 21077 goto drop_pkt; 21078 } 21079 err = conn_set_held_ipif(connp, 21080 &connp->conn_multicast_ipif, ipif); 21081 if (err == IPIF_LOOKUP_FAILED) { 21082 ipif_refrele(ipif); 21083 ip1dbg(("ip_wput: No ipif for " 21084 "multicast\n")); 21085 BUMP_MIB(&ipst->ips_ip_mib, 21086 ipIfStatsOutNoRoutes); 21087 goto drop_pkt; 21088 } 21089 } 21090 } 21091 ASSERT(!ipif->ipif_isv6); 21092 /* 21093 * As we may lose the conn by the time we reach ip_wput_ire, 21094 * we copy conn_multicast_loop and conn_dontroute on to an 21095 * ipsec_out. In case if this datagram goes out secure, 21096 * we need the ill_index also. Copy that also into the 21097 * ipsec_out. 21098 */ 21099 if (mctl_present) { 21100 io = (ipsec_out_t *)first_mp->b_rptr; 21101 ASSERT(first_mp->b_datap->db_type == M_CTL); 21102 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21103 } else { 21104 ASSERT(mp == first_mp); 21105 if ((first_mp = allocb(sizeof (ipsec_info_t), 21106 BPRI_HI)) == NULL) { 21107 ipif_refrele(ipif); 21108 first_mp = mp; 21109 goto discard_pkt; 21110 } 21111 first_mp->b_datap->db_type = M_CTL; 21112 first_mp->b_wptr += sizeof (ipsec_info_t); 21113 /* ipsec_out_secure is B_FALSE now */ 21114 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21115 io = (ipsec_out_t *)first_mp->b_rptr; 21116 io->ipsec_out_type = IPSEC_OUT; 21117 io->ipsec_out_len = sizeof (ipsec_out_t); 21118 io->ipsec_out_use_global_policy = B_TRUE; 21119 io->ipsec_out_ns = ipst->ips_netstack; 21120 first_mp->b_cont = mp; 21121 mctl_present = B_TRUE; 21122 } 21123 21124 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21125 io->ipsec_out_ill_index = 21126 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21127 21128 if (connp != NULL) { 21129 io->ipsec_out_multicast_loop = 21130 connp->conn_multicast_loop; 21131 io->ipsec_out_dontroute = connp->conn_dontroute; 21132 io->ipsec_out_zoneid = connp->conn_zoneid; 21133 } 21134 /* 21135 * If the application uses IP_MULTICAST_IF with 21136 * different logical addresses of the same ILL, we 21137 * need to make sure that the soruce address of 21138 * the packet matches the logical IP address used 21139 * in the option. We do it by initializing ipha_src 21140 * here. This should keep IPsec also happy as 21141 * when we return from IPsec processing, we don't 21142 * have to worry about getting the right address on 21143 * the packet. Thus it is sufficient to look for 21144 * IRE_CACHE using MATCH_IRE_ILL rathen than 21145 * MATCH_IRE_IPIF. 21146 * 21147 * NOTE : We need to do it for non-secure case also as 21148 * this might go out secure if there is a global policy 21149 * match in ip_wput_ire. 21150 * 21151 * As we do not have the ire yet, it is possible that 21152 * we set the source address here and then later discover 21153 * that the ire implies the source address to be assigned 21154 * through the RTF_SETSRC flag. 21155 * In that case, the setsrc variable will remind us 21156 * that overwritting the source address by the one 21157 * of the RTF_SETSRC-flagged ire is allowed. 21158 */ 21159 if (ipha->ipha_src == INADDR_ANY && 21160 (connp == NULL || !connp->conn_unspec_src)) { 21161 ipha->ipha_src = ipif->ipif_src_addr; 21162 setsrc = RTF_SETSRC; 21163 } 21164 /* 21165 * Find an IRE which matches the destination and the outgoing 21166 * queue (i.e. the outgoing interface.) 21167 * For loopback use a unicast IP address for 21168 * the ire lookup. 21169 */ 21170 if (IS_LOOPBACK(ipif->ipif_ill)) 21171 dst = ipif->ipif_lcl_addr; 21172 21173 /* 21174 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21175 * We don't need to lookup ire in ctable as the packet 21176 * needs to be sent to the destination through the specified 21177 * ill irrespective of ires in the cache table. 21178 */ 21179 ire = NULL; 21180 if (xmit_ill == NULL) { 21181 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21182 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21183 } 21184 21185 if (ire == NULL) { 21186 /* 21187 * Multicast loopback and multicast forwarding is 21188 * done in ip_wput_ire. 21189 * 21190 * Mark this packet to make it be delivered to 21191 * ip_wput_ire after the new ire has been 21192 * created. 21193 * 21194 * The call to ip_newroute_ipif takes into account 21195 * the setsrc reminder. In any case, we take care 21196 * of the RTF_MULTIRT flag. 21197 */ 21198 mp->b_prev = mp->b_next = NULL; 21199 if (xmit_ill == NULL || 21200 xmit_ill->ill_ipif_up_count > 0) { 21201 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21202 setsrc | RTF_MULTIRT, zoneid, infop); 21203 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21204 "ip_wput_end: q %p (%S)", q, "noire"); 21205 } else { 21206 freemsg(first_mp); 21207 } 21208 ipif_refrele(ipif); 21209 if (xmit_ill != NULL) 21210 ill_refrele(xmit_ill); 21211 if (need_decref) 21212 CONN_DEC_REF(connp); 21213 return; 21214 } 21215 21216 ipif_refrele(ipif); 21217 ipif = NULL; 21218 ASSERT(xmit_ill == NULL); 21219 21220 /* 21221 * Honor the RTF_SETSRC flag for multicast packets, 21222 * if allowed by the setsrc reminder. 21223 */ 21224 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21225 ipha->ipha_src = ire->ire_src_addr; 21226 } 21227 21228 /* 21229 * Unconditionally force the TTL to 1 for 21230 * multirouted multicast packets: 21231 * multirouted multicast should not cross 21232 * multicast routers. 21233 */ 21234 if (ire->ire_flags & RTF_MULTIRT) { 21235 if (ipha->ipha_ttl > 1) { 21236 ip2dbg(("ip_wput: forcing multicast " 21237 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21238 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21239 ipha->ipha_ttl = 1; 21240 } 21241 } 21242 } else { 21243 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21244 if ((ire != NULL) && (ire->ire_type & 21245 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21246 ignore_dontroute = B_TRUE; 21247 ignore_nexthop = B_TRUE; 21248 } 21249 if (ire != NULL) { 21250 ire_refrele(ire); 21251 ire = NULL; 21252 } 21253 /* 21254 * Guard against coming in from arp in which case conn is NULL. 21255 * Also guard against non M_DATA with dontroute set but 21256 * destined to local, loopback or broadcast addresses. 21257 */ 21258 if (connp != NULL && connp->conn_dontroute && 21259 !ignore_dontroute) { 21260 dontroute: 21261 /* 21262 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21263 * routing protocols from seeing false direct 21264 * connectivity. 21265 */ 21266 ipha->ipha_ttl = 1; 21267 /* If suitable ipif not found, drop packet */ 21268 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21269 if (dst_ipif == NULL) { 21270 noroute: 21271 ip1dbg(("ip_wput: no route for dst using" 21272 " SO_DONTROUTE\n")); 21273 BUMP_MIB(&ipst->ips_ip_mib, 21274 ipIfStatsOutNoRoutes); 21275 mp->b_prev = mp->b_next = NULL; 21276 if (first_mp == NULL) 21277 first_mp = mp; 21278 goto drop_pkt; 21279 } else { 21280 /* 21281 * If suitable ipif has been found, set 21282 * xmit_ill to the corresponding 21283 * ipif_ill because we'll be using the 21284 * send_from_ill logic below. 21285 */ 21286 ASSERT(xmit_ill == NULL); 21287 xmit_ill = dst_ipif->ipif_ill; 21288 mutex_enter(&xmit_ill->ill_lock); 21289 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21290 mutex_exit(&xmit_ill->ill_lock); 21291 xmit_ill = NULL; 21292 ipif_refrele(dst_ipif); 21293 goto noroute; 21294 } 21295 ill_refhold_locked(xmit_ill); 21296 mutex_exit(&xmit_ill->ill_lock); 21297 ipif_refrele(dst_ipif); 21298 } 21299 } 21300 21301 send_from_ill: 21302 if (xmit_ill != NULL) { 21303 ipif_t *ipif; 21304 21305 /* 21306 * Mark this packet as originated locally 21307 */ 21308 mp->b_prev = mp->b_next = NULL; 21309 21310 /* 21311 * Could be SO_DONTROUTE case also. 21312 * Verify that at least one ipif is up on the ill. 21313 */ 21314 if (xmit_ill->ill_ipif_up_count == 0) { 21315 ip1dbg(("ip_output: xmit_ill %s is down\n", 21316 xmit_ill->ill_name)); 21317 goto drop_pkt; 21318 } 21319 21320 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21321 if (ipif == NULL) { 21322 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21323 xmit_ill->ill_name)); 21324 goto drop_pkt; 21325 } 21326 21327 match_flags = 0; 21328 if (IS_UNDER_IPMP(xmit_ill)) 21329 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21330 21331 /* 21332 * Look for a ire that is part of the group, 21333 * if found use it else call ip_newroute_ipif. 21334 * IPCL_ZONEID is not used for matching because 21335 * IP_ALLZONES option is valid only when the 21336 * ill is accessible from all zones i.e has a 21337 * valid ipif in all zones. 21338 */ 21339 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21340 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21341 MBLK_GETLABEL(mp), match_flags, ipst); 21342 /* 21343 * If an ire exists use it or else create 21344 * an ire but don't add it to the cache. 21345 * Adding an ire may cause issues with 21346 * asymmetric routing. 21347 * In case of multiroute always act as if 21348 * ire does not exist. 21349 */ 21350 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21351 if (ire != NULL) 21352 ire_refrele(ire); 21353 ip_newroute_ipif(q, first_mp, ipif, 21354 dst, connp, 0, zoneid, infop); 21355 ipif_refrele(ipif); 21356 ip1dbg(("ip_output: xmit_ill via %s\n", 21357 xmit_ill->ill_name)); 21358 ill_refrele(xmit_ill); 21359 if (need_decref) 21360 CONN_DEC_REF(connp); 21361 return; 21362 } 21363 ipif_refrele(ipif); 21364 } else if (ip_nexthop || (connp != NULL && 21365 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21366 if (!ip_nexthop) { 21367 ip_nexthop = B_TRUE; 21368 nexthop_addr = connp->conn_nexthop_v4; 21369 } 21370 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21371 MATCH_IRE_GW; 21372 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21373 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21374 } else { 21375 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21376 ipst); 21377 } 21378 if (!ire) { 21379 if (ip_nexthop && !ignore_nexthop) { 21380 if (mctl_present) { 21381 io = (ipsec_out_t *)first_mp->b_rptr; 21382 ASSERT(first_mp->b_datap->db_type == 21383 M_CTL); 21384 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21385 } else { 21386 ASSERT(mp == first_mp); 21387 first_mp = allocb( 21388 sizeof (ipsec_info_t), BPRI_HI); 21389 if (first_mp == NULL) { 21390 first_mp = mp; 21391 goto discard_pkt; 21392 } 21393 first_mp->b_datap->db_type = M_CTL; 21394 first_mp->b_wptr += 21395 sizeof (ipsec_info_t); 21396 /* ipsec_out_secure is B_FALSE now */ 21397 bzero(first_mp->b_rptr, 21398 sizeof (ipsec_info_t)); 21399 io = (ipsec_out_t *)first_mp->b_rptr; 21400 io->ipsec_out_type = IPSEC_OUT; 21401 io->ipsec_out_len = 21402 sizeof (ipsec_out_t); 21403 io->ipsec_out_use_global_policy = 21404 B_TRUE; 21405 io->ipsec_out_ns = ipst->ips_netstack; 21406 first_mp->b_cont = mp; 21407 mctl_present = B_TRUE; 21408 } 21409 io->ipsec_out_ip_nexthop = ip_nexthop; 21410 io->ipsec_out_nexthop_addr = nexthop_addr; 21411 } 21412 noirefound: 21413 /* 21414 * Mark this packet as having originated on 21415 * this machine. This will be noted in 21416 * ire_add_then_send, which needs to know 21417 * whether to run it back through ip_wput or 21418 * ip_rput following successful resolution. 21419 */ 21420 mp->b_prev = NULL; 21421 mp->b_next = NULL; 21422 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21423 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21424 "ip_wput_end: q %p (%S)", q, "newroute"); 21425 if (xmit_ill != NULL) 21426 ill_refrele(xmit_ill); 21427 if (need_decref) 21428 CONN_DEC_REF(connp); 21429 return; 21430 } 21431 } 21432 21433 /* We now know where we are going with it. */ 21434 21435 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21436 "ip_wput_end: q %p (%S)", q, "end"); 21437 21438 /* 21439 * Check if the ire has the RTF_MULTIRT flag, inherited 21440 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21441 */ 21442 if (ire->ire_flags & RTF_MULTIRT) { 21443 /* 21444 * Force the TTL of multirouted packets if required. 21445 * The TTL of such packets is bounded by the 21446 * ip_multirt_ttl ndd variable. 21447 */ 21448 if ((ipst->ips_ip_multirt_ttl > 0) && 21449 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21450 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21451 "(was %d), dst 0x%08x\n", 21452 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21453 ntohl(ire->ire_addr))); 21454 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21455 } 21456 /* 21457 * At this point, we check to see if there are any pending 21458 * unresolved routes. ire_multirt_resolvable() 21459 * checks in O(n) that all IRE_OFFSUBNET ire 21460 * entries for the packet's destination and 21461 * flagged RTF_MULTIRT are currently resolved. 21462 * If some remain unresolved, we make a copy 21463 * of the current message. It will be used 21464 * to initiate additional route resolutions. 21465 */ 21466 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21467 MBLK_GETLABEL(first_mp), ipst); 21468 ip2dbg(("ip_wput[noirefound]: ire %p, " 21469 "multirt_need_resolve %d, first_mp %p\n", 21470 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21471 if (multirt_need_resolve) { 21472 copy_mp = copymsg(first_mp); 21473 if (copy_mp != NULL) { 21474 MULTIRT_DEBUG_TAG(copy_mp); 21475 } 21476 } 21477 } 21478 21479 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21480 /* 21481 * Try to resolve another multiroute if 21482 * ire_multirt_resolvable() deemed it necessary. 21483 * At this point, we need to distinguish 21484 * multicasts from other packets. For multicasts, 21485 * we call ip_newroute_ipif() and request that both 21486 * multirouting and setsrc flags are checked. 21487 */ 21488 if (copy_mp != NULL) { 21489 if (CLASSD(dst)) { 21490 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21491 if (ipif) { 21492 ASSERT(infop->ip_opt_ill_index == 0); 21493 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21494 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21495 ipif_refrele(ipif); 21496 } else { 21497 MULTIRT_DEBUG_UNTAG(copy_mp); 21498 freemsg(copy_mp); 21499 copy_mp = NULL; 21500 } 21501 } else { 21502 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21503 } 21504 } 21505 if (xmit_ill != NULL) 21506 ill_refrele(xmit_ill); 21507 if (need_decref) 21508 CONN_DEC_REF(connp); 21509 return; 21510 21511 icmp_parameter_problem: 21512 /* could not have originated externally */ 21513 ASSERT(mp->b_prev == NULL); 21514 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21515 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21516 /* it's the IP header length that's in trouble */ 21517 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21518 first_mp = NULL; 21519 } 21520 21521 discard_pkt: 21522 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21523 drop_pkt: 21524 ip1dbg(("ip_wput: dropped packet\n")); 21525 if (ire != NULL) 21526 ire_refrele(ire); 21527 if (need_decref) 21528 CONN_DEC_REF(connp); 21529 freemsg(first_mp); 21530 if (xmit_ill != NULL) 21531 ill_refrele(xmit_ill); 21532 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21533 "ip_wput_end: q %p (%S)", q, "droppkt"); 21534 } 21535 21536 /* 21537 * If this is a conn_t queue, then we pass in the conn. This includes the 21538 * zoneid. 21539 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21540 * in which case we use the global zoneid since those are all part of 21541 * the global zone. 21542 */ 21543 void 21544 ip_wput(queue_t *q, mblk_t *mp) 21545 { 21546 if (CONN_Q(q)) 21547 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21548 else 21549 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21550 } 21551 21552 /* 21553 * 21554 * The following rules must be observed when accessing any ipif or ill 21555 * that has been cached in the conn. Typically conn_outgoing_ill, 21556 * conn_multicast_ipif and conn_multicast_ill. 21557 * 21558 * Access: The ipif or ill pointed to from the conn can be accessed under 21559 * the protection of the conn_lock or after it has been refheld under the 21560 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21561 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21562 * The reason for this is that a concurrent unplumb could actually be 21563 * cleaning up these cached pointers by walking the conns and might have 21564 * finished cleaning up the conn in question. The macros check that an 21565 * unplumb has not yet started on the ipif or ill. 21566 * 21567 * Caching: An ipif or ill pointer may be cached in the conn only after 21568 * making sure that an unplumb has not started. So the caching is done 21569 * while holding both the conn_lock and the ill_lock and after using the 21570 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21571 * flag before starting the cleanup of conns. 21572 * 21573 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21574 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21575 * or a reference to the ipif or a reference to an ire that references the 21576 * ipif. An ipif only changes its ill when migrating from an underlying ill 21577 * to an IPMP ill in ipif_up(). 21578 */ 21579 ipif_t * 21580 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21581 { 21582 ipif_t *ipif; 21583 ill_t *ill; 21584 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21585 21586 *err = 0; 21587 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21588 mutex_enter(&connp->conn_lock); 21589 ipif = *ipifp; 21590 if (ipif != NULL) { 21591 ill = ipif->ipif_ill; 21592 mutex_enter(&ill->ill_lock); 21593 if (IPIF_CAN_LOOKUP(ipif)) { 21594 ipif_refhold_locked(ipif); 21595 mutex_exit(&ill->ill_lock); 21596 mutex_exit(&connp->conn_lock); 21597 rw_exit(&ipst->ips_ill_g_lock); 21598 return (ipif); 21599 } else { 21600 *err = IPIF_LOOKUP_FAILED; 21601 } 21602 mutex_exit(&ill->ill_lock); 21603 } 21604 mutex_exit(&connp->conn_lock); 21605 rw_exit(&ipst->ips_ill_g_lock); 21606 return (NULL); 21607 } 21608 21609 ill_t * 21610 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21611 { 21612 ill_t *ill; 21613 21614 *err = 0; 21615 mutex_enter(&connp->conn_lock); 21616 ill = *illp; 21617 if (ill != NULL) { 21618 mutex_enter(&ill->ill_lock); 21619 if (ILL_CAN_LOOKUP(ill)) { 21620 ill_refhold_locked(ill); 21621 mutex_exit(&ill->ill_lock); 21622 mutex_exit(&connp->conn_lock); 21623 return (ill); 21624 } else { 21625 *err = ILL_LOOKUP_FAILED; 21626 } 21627 mutex_exit(&ill->ill_lock); 21628 } 21629 mutex_exit(&connp->conn_lock); 21630 return (NULL); 21631 } 21632 21633 static int 21634 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21635 { 21636 ill_t *ill; 21637 21638 ill = ipif->ipif_ill; 21639 mutex_enter(&connp->conn_lock); 21640 mutex_enter(&ill->ill_lock); 21641 if (IPIF_CAN_LOOKUP(ipif)) { 21642 *ipifp = ipif; 21643 mutex_exit(&ill->ill_lock); 21644 mutex_exit(&connp->conn_lock); 21645 return (0); 21646 } 21647 mutex_exit(&ill->ill_lock); 21648 mutex_exit(&connp->conn_lock); 21649 return (IPIF_LOOKUP_FAILED); 21650 } 21651 21652 /* 21653 * This is called if the outbound datagram needs fragmentation. 21654 * 21655 * NOTE : This function does not ire_refrele the ire argument passed in. 21656 */ 21657 static void 21658 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21659 ip_stack_t *ipst, conn_t *connp) 21660 { 21661 ipha_t *ipha; 21662 mblk_t *mp; 21663 uint32_t v_hlen_tos_len; 21664 uint32_t max_frag; 21665 uint32_t frag_flag; 21666 boolean_t dont_use; 21667 21668 if (ipsec_mp->b_datap->db_type == M_CTL) { 21669 mp = ipsec_mp->b_cont; 21670 } else { 21671 mp = ipsec_mp; 21672 } 21673 21674 ipha = (ipha_t *)mp->b_rptr; 21675 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21676 21677 #ifdef _BIG_ENDIAN 21678 #define V_HLEN (v_hlen_tos_len >> 24) 21679 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21680 #else 21681 #define V_HLEN (v_hlen_tos_len & 0xFF) 21682 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21683 #endif 21684 21685 #ifndef SPEED_BEFORE_SAFETY 21686 /* 21687 * Check that ipha_length is consistent with 21688 * the mblk length 21689 */ 21690 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21691 ip0dbg(("Packet length mismatch: %d, %ld\n", 21692 LENGTH, msgdsize(mp))); 21693 freemsg(ipsec_mp); 21694 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21695 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21696 "packet length mismatch"); 21697 return; 21698 } 21699 #endif 21700 /* 21701 * Don't use frag_flag if pre-built packet or source 21702 * routed or if multicast (since multicast packets do not solicit 21703 * ICMP "packet too big" messages). Get the values of 21704 * max_frag and frag_flag atomically by acquiring the 21705 * ire_lock. 21706 */ 21707 mutex_enter(&ire->ire_lock); 21708 max_frag = ire->ire_max_frag; 21709 frag_flag = ire->ire_frag_flag; 21710 mutex_exit(&ire->ire_lock); 21711 21712 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21713 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21714 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21715 21716 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21717 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21718 } 21719 21720 /* 21721 * Used for deciding the MSS size for the upper layer. Thus 21722 * we need to check the outbound policy values in the conn. 21723 */ 21724 int 21725 conn_ipsec_length(conn_t *connp) 21726 { 21727 ipsec_latch_t *ipl; 21728 21729 ipl = connp->conn_latch; 21730 if (ipl == NULL) 21731 return (0); 21732 21733 if (ipl->ipl_out_policy == NULL) 21734 return (0); 21735 21736 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21737 } 21738 21739 /* 21740 * Returns an estimate of the IPsec headers size. This is used if 21741 * we don't want to call into IPsec to get the exact size. 21742 */ 21743 int 21744 ipsec_out_extra_length(mblk_t *ipsec_mp) 21745 { 21746 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21747 ipsec_action_t *a; 21748 21749 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21750 if (!io->ipsec_out_secure) 21751 return (0); 21752 21753 a = io->ipsec_out_act; 21754 21755 if (a == NULL) { 21756 ASSERT(io->ipsec_out_policy != NULL); 21757 a = io->ipsec_out_policy->ipsp_act; 21758 } 21759 ASSERT(a != NULL); 21760 21761 return (a->ipa_ovhd); 21762 } 21763 21764 /* 21765 * Returns an estimate of the IPsec headers size. This is used if 21766 * we don't want to call into IPsec to get the exact size. 21767 */ 21768 int 21769 ipsec_in_extra_length(mblk_t *ipsec_mp) 21770 { 21771 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21772 ipsec_action_t *a; 21773 21774 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21775 21776 a = ii->ipsec_in_action; 21777 return (a == NULL ? 0 : a->ipa_ovhd); 21778 } 21779 21780 /* 21781 * If there are any source route options, return the true final 21782 * destination. Otherwise, return the destination. 21783 */ 21784 ipaddr_t 21785 ip_get_dst(ipha_t *ipha) 21786 { 21787 ipoptp_t opts; 21788 uchar_t *opt; 21789 uint8_t optval; 21790 uint8_t optlen; 21791 ipaddr_t dst; 21792 uint32_t off; 21793 21794 dst = ipha->ipha_dst; 21795 21796 if (IS_SIMPLE_IPH(ipha)) 21797 return (dst); 21798 21799 for (optval = ipoptp_first(&opts, ipha); 21800 optval != IPOPT_EOL; 21801 optval = ipoptp_next(&opts)) { 21802 opt = opts.ipoptp_cur; 21803 optlen = opts.ipoptp_len; 21804 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21805 switch (optval) { 21806 case IPOPT_SSRR: 21807 case IPOPT_LSRR: 21808 off = opt[IPOPT_OFFSET]; 21809 /* 21810 * If one of the conditions is true, it means 21811 * end of options and dst already has the right 21812 * value. 21813 */ 21814 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21815 off = optlen - IP_ADDR_LEN; 21816 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21817 } 21818 return (dst); 21819 default: 21820 break; 21821 } 21822 } 21823 21824 return (dst); 21825 } 21826 21827 mblk_t * 21828 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21829 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21830 { 21831 ipsec_out_t *io; 21832 mblk_t *first_mp; 21833 boolean_t policy_present; 21834 ip_stack_t *ipst; 21835 ipsec_stack_t *ipss; 21836 21837 ASSERT(ire != NULL); 21838 ipst = ire->ire_ipst; 21839 ipss = ipst->ips_netstack->netstack_ipsec; 21840 21841 first_mp = mp; 21842 if (mp->b_datap->db_type == M_CTL) { 21843 io = (ipsec_out_t *)first_mp->b_rptr; 21844 /* 21845 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21846 * 21847 * 1) There is per-socket policy (including cached global 21848 * policy) or a policy on the IP-in-IP tunnel. 21849 * 2) There is no per-socket policy, but it is 21850 * a multicast packet that needs to go out 21851 * on a specific interface. This is the case 21852 * where (ip_wput and ip_wput_multicast) attaches 21853 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21854 * 21855 * In case (2) we check with global policy to 21856 * see if there is a match and set the ill_index 21857 * appropriately so that we can lookup the ire 21858 * properly in ip_wput_ipsec_out. 21859 */ 21860 21861 /* 21862 * ipsec_out_use_global_policy is set to B_FALSE 21863 * in ipsec_in_to_out(). Refer to that function for 21864 * details. 21865 */ 21866 if ((io->ipsec_out_latch == NULL) && 21867 (io->ipsec_out_use_global_policy)) { 21868 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21869 ire, connp, unspec_src, zoneid)); 21870 } 21871 if (!io->ipsec_out_secure) { 21872 /* 21873 * If this is not a secure packet, drop 21874 * the IPSEC_OUT mp and treat it as a clear 21875 * packet. This happens when we are sending 21876 * a ICMP reply back to a clear packet. See 21877 * ipsec_in_to_out() for details. 21878 */ 21879 mp = first_mp->b_cont; 21880 freeb(first_mp); 21881 } 21882 return (mp); 21883 } 21884 /* 21885 * See whether we need to attach a global policy here. We 21886 * don't depend on the conn (as it could be null) for deciding 21887 * what policy this datagram should go through because it 21888 * should have happened in ip_wput if there was some 21889 * policy. This normally happens for connections which are not 21890 * fully bound preventing us from caching policies in 21891 * ip_bind. Packets coming from the TCP listener/global queue 21892 * - which are non-hard_bound - could also be affected by 21893 * applying policy here. 21894 * 21895 * If this packet is coming from tcp global queue or listener, 21896 * we will be applying policy here. This may not be *right* 21897 * if these packets are coming from the detached connection as 21898 * it could have gone in clear before. This happens only if a 21899 * TCP connection started when there is no policy and somebody 21900 * added policy before it became detached. Thus packets of the 21901 * detached connection could go out secure and the other end 21902 * would drop it because it will be expecting in clear. The 21903 * converse is not true i.e if somebody starts a TCP 21904 * connection and deletes the policy, all the packets will 21905 * still go out with the policy that existed before deleting 21906 * because ip_unbind sends up policy information which is used 21907 * by TCP on subsequent ip_wputs. The right solution is to fix 21908 * TCP to attach a dummy IPSEC_OUT and set 21909 * ipsec_out_use_global_policy to B_FALSE. As this might 21910 * affect performance for normal cases, we are not doing it. 21911 * Thus, set policy before starting any TCP connections. 21912 * 21913 * NOTE - We might apply policy even for a hard bound connection 21914 * - for which we cached policy in ip_bind - if somebody added 21915 * global policy after we inherited the policy in ip_bind. 21916 * This means that the packets that were going out in clear 21917 * previously would start going secure and hence get dropped 21918 * on the other side. To fix this, TCP attaches a dummy 21919 * ipsec_out and make sure that we don't apply global policy. 21920 */ 21921 if (ipha != NULL) 21922 policy_present = ipss->ipsec_outbound_v4_policy_present; 21923 else 21924 policy_present = ipss->ipsec_outbound_v6_policy_present; 21925 if (!policy_present) 21926 return (mp); 21927 21928 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21929 zoneid)); 21930 } 21931 21932 /* 21933 * This function does the ire_refrele of the ire passed in as the 21934 * argument. As this function looks up more ires i.e broadcast ires, 21935 * it needs to REFRELE them. Currently, for simplicity we don't 21936 * differentiate the one passed in and looked up here. We always 21937 * REFRELE. 21938 * IPQoS Notes: 21939 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21940 * IPsec packets are done in ipsec_out_process. 21941 */ 21942 void 21943 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21944 zoneid_t zoneid) 21945 { 21946 ipha_t *ipha; 21947 #define rptr ((uchar_t *)ipha) 21948 queue_t *stq; 21949 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21950 uint32_t v_hlen_tos_len; 21951 uint32_t ttl_protocol; 21952 ipaddr_t src; 21953 ipaddr_t dst; 21954 uint32_t cksum; 21955 ipaddr_t orig_src; 21956 ire_t *ire1; 21957 mblk_t *next_mp; 21958 uint_t hlen; 21959 uint16_t *up; 21960 uint32_t max_frag = ire->ire_max_frag; 21961 ill_t *ill = ire_to_ill(ire); 21962 int clusterwide; 21963 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21964 int ipsec_len; 21965 mblk_t *first_mp; 21966 ipsec_out_t *io; 21967 boolean_t conn_dontroute; /* conn value for multicast */ 21968 boolean_t conn_multicast_loop; /* conn value for multicast */ 21969 boolean_t multicast_forward; /* Should we forward ? */ 21970 boolean_t unspec_src; 21971 ill_t *conn_outgoing_ill = NULL; 21972 ill_t *ire_ill; 21973 ill_t *ire1_ill; 21974 ill_t *out_ill; 21975 uint32_t ill_index = 0; 21976 boolean_t multirt_send = B_FALSE; 21977 int err; 21978 ipxmit_state_t pktxmit_state; 21979 ip_stack_t *ipst = ire->ire_ipst; 21980 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21981 21982 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21983 "ip_wput_ire_start: q %p", q); 21984 21985 multicast_forward = B_FALSE; 21986 unspec_src = (connp != NULL && connp->conn_unspec_src); 21987 21988 if (ire->ire_flags & RTF_MULTIRT) { 21989 /* 21990 * Multirouting case. The bucket where ire is stored 21991 * probably holds other RTF_MULTIRT flagged ire 21992 * to the destination. In this call to ip_wput_ire, 21993 * we attempt to send the packet through all 21994 * those ires. Thus, we first ensure that ire is the 21995 * first RTF_MULTIRT ire in the bucket, 21996 * before walking the ire list. 21997 */ 21998 ire_t *first_ire; 21999 irb_t *irb = ire->ire_bucket; 22000 ASSERT(irb != NULL); 22001 22002 /* Make sure we do not omit any multiroute ire. */ 22003 IRB_REFHOLD(irb); 22004 for (first_ire = irb->irb_ire; 22005 first_ire != NULL; 22006 first_ire = first_ire->ire_next) { 22007 if ((first_ire->ire_flags & RTF_MULTIRT) && 22008 (first_ire->ire_addr == ire->ire_addr) && 22009 !(first_ire->ire_marks & 22010 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22011 break; 22012 } 22013 22014 if ((first_ire != NULL) && (first_ire != ire)) { 22015 IRE_REFHOLD(first_ire); 22016 ire_refrele(ire); 22017 ire = first_ire; 22018 ill = ire_to_ill(ire); 22019 } 22020 IRB_REFRELE(irb); 22021 } 22022 22023 /* 22024 * conn_outgoing_ill variable is used only in the broadcast loop. 22025 * for performance we don't grab the mutexs in the fastpath 22026 */ 22027 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22028 connp->conn_outgoing_ill != NULL) { 22029 conn_outgoing_ill = conn_get_held_ill(connp, 22030 &connp->conn_outgoing_ill, &err); 22031 if (err == ILL_LOOKUP_FAILED) { 22032 ire_refrele(ire); 22033 freemsg(mp); 22034 return; 22035 } 22036 } 22037 22038 if (mp->b_datap->db_type != M_CTL) { 22039 ipha = (ipha_t *)mp->b_rptr; 22040 } else { 22041 io = (ipsec_out_t *)mp->b_rptr; 22042 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22043 ASSERT(zoneid == io->ipsec_out_zoneid); 22044 ASSERT(zoneid != ALL_ZONES); 22045 ipha = (ipha_t *)mp->b_cont->b_rptr; 22046 dst = ipha->ipha_dst; 22047 /* 22048 * For the multicast case, ipsec_out carries conn_dontroute and 22049 * conn_multicast_loop as conn may not be available here. We 22050 * need this for multicast loopback and forwarding which is done 22051 * later in the code. 22052 */ 22053 if (CLASSD(dst)) { 22054 conn_dontroute = io->ipsec_out_dontroute; 22055 conn_multicast_loop = io->ipsec_out_multicast_loop; 22056 /* 22057 * If conn_dontroute is not set or conn_multicast_loop 22058 * is set, we need to do forwarding/loopback. For 22059 * datagrams from ip_wput_multicast, conn_dontroute is 22060 * set to B_TRUE and conn_multicast_loop is set to 22061 * B_FALSE so that we neither do forwarding nor 22062 * loopback. 22063 */ 22064 if (!conn_dontroute || conn_multicast_loop) 22065 multicast_forward = B_TRUE; 22066 } 22067 } 22068 22069 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22070 ire->ire_zoneid != ALL_ZONES) { 22071 /* 22072 * When a zone sends a packet to another zone, we try to deliver 22073 * the packet under the same conditions as if the destination 22074 * was a real node on the network. To do so, we look for a 22075 * matching route in the forwarding table. 22076 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22077 * ip_newroute() does. 22078 * Note that IRE_LOCAL are special, since they are used 22079 * when the zoneid doesn't match in some cases. This means that 22080 * we need to handle ipha_src differently since ire_src_addr 22081 * belongs to the receiving zone instead of the sending zone. 22082 * When ip_restrict_interzone_loopback is set, then 22083 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22084 * for loopback between zones when the logical "Ethernet" would 22085 * have looped them back. 22086 */ 22087 ire_t *src_ire; 22088 22089 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22090 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22091 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22092 if (src_ire != NULL && 22093 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22094 (!ipst->ips_ip_restrict_interzone_loopback || 22095 ire_local_same_lan(ire, src_ire))) { 22096 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22097 ipha->ipha_src = src_ire->ire_src_addr; 22098 ire_refrele(src_ire); 22099 } else { 22100 ire_refrele(ire); 22101 if (conn_outgoing_ill != NULL) 22102 ill_refrele(conn_outgoing_ill); 22103 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22104 if (src_ire != NULL) { 22105 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22106 ire_refrele(src_ire); 22107 freemsg(mp); 22108 return; 22109 } 22110 ire_refrele(src_ire); 22111 } 22112 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22113 /* Failed */ 22114 freemsg(mp); 22115 return; 22116 } 22117 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22118 ipst); 22119 return; 22120 } 22121 } 22122 22123 if (mp->b_datap->db_type == M_CTL || 22124 ipss->ipsec_outbound_v4_policy_present) { 22125 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22126 unspec_src, zoneid); 22127 if (mp == NULL) { 22128 ire_refrele(ire); 22129 if (conn_outgoing_ill != NULL) 22130 ill_refrele(conn_outgoing_ill); 22131 return; 22132 } 22133 /* 22134 * Trusted Extensions supports all-zones interfaces, so 22135 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22136 * the global zone. 22137 */ 22138 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22139 io = (ipsec_out_t *)mp->b_rptr; 22140 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22141 zoneid = io->ipsec_out_zoneid; 22142 } 22143 } 22144 22145 first_mp = mp; 22146 ipsec_len = 0; 22147 22148 if (first_mp->b_datap->db_type == M_CTL) { 22149 io = (ipsec_out_t *)first_mp->b_rptr; 22150 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22151 mp = first_mp->b_cont; 22152 ipsec_len = ipsec_out_extra_length(first_mp); 22153 ASSERT(ipsec_len >= 0); 22154 /* We already picked up the zoneid from the M_CTL above */ 22155 ASSERT(zoneid == io->ipsec_out_zoneid); 22156 ASSERT(zoneid != ALL_ZONES); 22157 22158 /* 22159 * Drop M_CTL here if IPsec processing is not needed. 22160 * (Non-IPsec use of M_CTL extracted any information it 22161 * needed above). 22162 */ 22163 if (ipsec_len == 0) { 22164 freeb(first_mp); 22165 first_mp = mp; 22166 } 22167 } 22168 22169 /* 22170 * Fast path for ip_wput_ire 22171 */ 22172 22173 ipha = (ipha_t *)mp->b_rptr; 22174 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22175 dst = ipha->ipha_dst; 22176 22177 /* 22178 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22179 * if the socket is a SOCK_RAW type. The transport checksum should 22180 * be provided in the pre-built packet, so we don't need to compute it. 22181 * Also, other application set flags, like DF, should not be altered. 22182 * Other transport MUST pass down zero. 22183 */ 22184 ip_hdr_included = ipha->ipha_ident; 22185 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22186 22187 if (CLASSD(dst)) { 22188 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22189 ntohl(dst), 22190 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22191 ntohl(ire->ire_addr))); 22192 } 22193 22194 /* Macros to extract header fields from data already in registers */ 22195 #ifdef _BIG_ENDIAN 22196 #define V_HLEN (v_hlen_tos_len >> 24) 22197 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22198 #define PROTO (ttl_protocol & 0xFF) 22199 #else 22200 #define V_HLEN (v_hlen_tos_len & 0xFF) 22201 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22202 #define PROTO (ttl_protocol >> 8) 22203 #endif 22204 22205 22206 orig_src = src = ipha->ipha_src; 22207 /* (The loop back to "another" is explained down below.) */ 22208 another:; 22209 /* 22210 * Assign an ident value for this packet. We assign idents on 22211 * a per destination basis out of the IRE. There could be 22212 * other threads targeting the same destination, so we have to 22213 * arrange for a atomic increment. Note that we use a 32-bit 22214 * atomic add because it has better performance than its 22215 * 16-bit sibling. 22216 * 22217 * If running in cluster mode and if the source address 22218 * belongs to a replicated service then vector through 22219 * cl_inet_ipident vector to allocate ip identifier 22220 * NOTE: This is a contract private interface with the 22221 * clustering group. 22222 */ 22223 clusterwide = 0; 22224 if (cl_inet_ipident) { 22225 ASSERT(cl_inet_isclusterwide); 22226 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22227 22228 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22229 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22230 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22231 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22232 (uint8_t *)(uintptr_t)dst, NULL); 22233 clusterwide = 1; 22234 } 22235 } 22236 if (!clusterwide) { 22237 ipha->ipha_ident = 22238 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22239 } 22240 22241 #ifndef _BIG_ENDIAN 22242 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22243 #endif 22244 22245 /* 22246 * Set source address unless sent on an ill or conn_unspec_src is set. 22247 * This is needed to obey conn_unspec_src when packets go through 22248 * ip_newroute + arp. 22249 * Assumes ip_newroute{,_multi} sets the source address as well. 22250 */ 22251 if (src == INADDR_ANY && !unspec_src) { 22252 /* 22253 * Assign the appropriate source address from the IRE if none 22254 * was specified. 22255 */ 22256 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22257 22258 src = ire->ire_src_addr; 22259 if (connp == NULL) { 22260 ip1dbg(("ip_wput_ire: no connp and no src " 22261 "address for dst 0x%x, using src 0x%x\n", 22262 ntohl(dst), 22263 ntohl(src))); 22264 } 22265 ipha->ipha_src = src; 22266 } 22267 stq = ire->ire_stq; 22268 22269 /* 22270 * We only allow ire chains for broadcasts since there will 22271 * be multiple IRE_CACHE entries for the same multicast 22272 * address (one per ipif). 22273 */ 22274 next_mp = NULL; 22275 22276 /* broadcast packet */ 22277 if (ire->ire_type == IRE_BROADCAST) 22278 goto broadcast; 22279 22280 /* loopback ? */ 22281 if (stq == NULL) 22282 goto nullstq; 22283 22284 /* The ill_index for outbound ILL */ 22285 ill_index = Q_TO_INDEX(stq); 22286 22287 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22288 ttl_protocol = ((uint16_t *)ipha)[4]; 22289 22290 /* pseudo checksum (do it in parts for IP header checksum) */ 22291 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22292 22293 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22294 queue_t *dev_q = stq->q_next; 22295 22296 /* flow controlled */ 22297 if (DEV_Q_FLOW_BLOCKED(dev_q)) 22298 goto blocked; 22299 22300 if ((PROTO == IPPROTO_UDP) && 22301 (ip_hdr_included != IP_HDR_INCLUDED)) { 22302 hlen = (V_HLEN & 0xF) << 2; 22303 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22304 if (*up != 0) { 22305 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22306 hlen, LENGTH, max_frag, ipsec_len, cksum); 22307 /* Software checksum? */ 22308 if (DB_CKSUMFLAGS(mp) == 0) { 22309 IP_STAT(ipst, ip_out_sw_cksum); 22310 IP_STAT_UPDATE(ipst, 22311 ip_udp_out_sw_cksum_bytes, 22312 LENGTH - hlen); 22313 } 22314 } 22315 } 22316 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22317 hlen = (V_HLEN & 0xF) << 2; 22318 if (PROTO == IPPROTO_TCP) { 22319 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22320 /* 22321 * The packet header is processed once and for all, even 22322 * in the multirouting case. We disable hardware 22323 * checksum if the packet is multirouted, as it will be 22324 * replicated via several interfaces, and not all of 22325 * them may have this capability. 22326 */ 22327 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22328 LENGTH, max_frag, ipsec_len, cksum); 22329 /* Software checksum? */ 22330 if (DB_CKSUMFLAGS(mp) == 0) { 22331 IP_STAT(ipst, ip_out_sw_cksum); 22332 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22333 LENGTH - hlen); 22334 } 22335 } else { 22336 sctp_hdr_t *sctph; 22337 22338 ASSERT(PROTO == IPPROTO_SCTP); 22339 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22340 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22341 /* 22342 * Zero out the checksum field to ensure proper 22343 * checksum calculation. 22344 */ 22345 sctph->sh_chksum = 0; 22346 #ifdef DEBUG 22347 if (!skip_sctp_cksum) 22348 #endif 22349 sctph->sh_chksum = sctp_cksum(mp, hlen); 22350 } 22351 } 22352 22353 /* 22354 * If this is a multicast packet and originated from ip_wput 22355 * we need to do loopback and forwarding checks. If it comes 22356 * from ip_wput_multicast, we SHOULD not do this. 22357 */ 22358 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22359 22360 /* checksum */ 22361 cksum += ttl_protocol; 22362 22363 /* fragment the packet */ 22364 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22365 goto fragmentit; 22366 /* 22367 * Don't use frag_flag if packet is pre-built or source 22368 * routed or if multicast (since multicast packets do 22369 * not solicit ICMP "packet too big" messages). 22370 */ 22371 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22372 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22373 !ip_source_route_included(ipha)) && 22374 !CLASSD(ipha->ipha_dst)) 22375 ipha->ipha_fragment_offset_and_flags |= 22376 htons(ire->ire_frag_flag); 22377 22378 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22379 /* calculate IP header checksum */ 22380 cksum += ipha->ipha_ident; 22381 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22382 cksum += ipha->ipha_fragment_offset_and_flags; 22383 22384 /* IP options present */ 22385 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22386 if (hlen) 22387 goto checksumoptions; 22388 22389 /* calculate hdr checksum */ 22390 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22391 cksum = ~(cksum + (cksum >> 16)); 22392 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22393 } 22394 if (ipsec_len != 0) { 22395 /* 22396 * We will do the rest of the processing after 22397 * we come back from IPsec in ip_wput_ipsec_out(). 22398 */ 22399 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22400 22401 io = (ipsec_out_t *)first_mp->b_rptr; 22402 io->ipsec_out_ill_index = 22403 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22404 ipsec_out_process(q, first_mp, ire, 0); 22405 ire_refrele(ire); 22406 if (conn_outgoing_ill != NULL) 22407 ill_refrele(conn_outgoing_ill); 22408 return; 22409 } 22410 22411 /* 22412 * In most cases, the emission loop below is entered only 22413 * once. Only in the case where the ire holds the 22414 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22415 * flagged ires in the bucket, and send the packet 22416 * through all crossed RTF_MULTIRT routes. 22417 */ 22418 if (ire->ire_flags & RTF_MULTIRT) { 22419 multirt_send = B_TRUE; 22420 } 22421 do { 22422 if (multirt_send) { 22423 irb_t *irb; 22424 /* 22425 * We are in a multiple send case, need to get 22426 * the next ire and make a duplicate of the packet. 22427 * ire1 holds here the next ire to process in the 22428 * bucket. If multirouting is expected, 22429 * any non-RTF_MULTIRT ire that has the 22430 * right destination address is ignored. 22431 */ 22432 irb = ire->ire_bucket; 22433 ASSERT(irb != NULL); 22434 22435 IRB_REFHOLD(irb); 22436 for (ire1 = ire->ire_next; 22437 ire1 != NULL; 22438 ire1 = ire1->ire_next) { 22439 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22440 continue; 22441 if (ire1->ire_addr != ire->ire_addr) 22442 continue; 22443 if (ire1->ire_marks & 22444 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22445 continue; 22446 22447 /* Got one */ 22448 IRE_REFHOLD(ire1); 22449 break; 22450 } 22451 IRB_REFRELE(irb); 22452 22453 if (ire1 != NULL) { 22454 next_mp = copyb(mp); 22455 if ((next_mp == NULL) || 22456 ((mp->b_cont != NULL) && 22457 ((next_mp->b_cont = 22458 dupmsg(mp->b_cont)) == NULL))) { 22459 freemsg(next_mp); 22460 next_mp = NULL; 22461 ire_refrele(ire1); 22462 ire1 = NULL; 22463 } 22464 } 22465 22466 /* Last multiroute ire; don't loop anymore. */ 22467 if (ire1 == NULL) { 22468 multirt_send = B_FALSE; 22469 } 22470 } 22471 22472 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22473 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22474 mblk_t *, mp); 22475 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22476 ipst->ips_ipv4firewall_physical_out, 22477 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22478 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22479 22480 if (mp == NULL) 22481 goto release_ire_and_ill; 22482 22483 if (ipst->ips_ipobs_enabled) { 22484 zoneid_t szone; 22485 22486 /* 22487 * On the outbound path the destination zone will be 22488 * unknown as we're sending this packet out on the 22489 * wire. 22490 */ 22491 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22492 ALL_ZONES); 22493 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22494 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22495 } 22496 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22497 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22498 22499 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22500 22501 if ((pktxmit_state == SEND_FAILED) || 22502 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22503 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22504 "- packet dropped\n")); 22505 release_ire_and_ill: 22506 ire_refrele(ire); 22507 if (next_mp != NULL) { 22508 freemsg(next_mp); 22509 ire_refrele(ire1); 22510 } 22511 if (conn_outgoing_ill != NULL) 22512 ill_refrele(conn_outgoing_ill); 22513 return; 22514 } 22515 22516 if (CLASSD(dst)) { 22517 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22518 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22519 LENGTH); 22520 } 22521 22522 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22523 "ip_wput_ire_end: q %p (%S)", 22524 q, "last copy out"); 22525 IRE_REFRELE(ire); 22526 22527 if (multirt_send) { 22528 ASSERT(ire1); 22529 /* 22530 * Proceed with the next RTF_MULTIRT ire, 22531 * Also set up the send-to queue accordingly. 22532 */ 22533 ire = ire1; 22534 ire1 = NULL; 22535 stq = ire->ire_stq; 22536 mp = next_mp; 22537 next_mp = NULL; 22538 ipha = (ipha_t *)mp->b_rptr; 22539 ill_index = Q_TO_INDEX(stq); 22540 ill = (ill_t *)stq->q_ptr; 22541 } 22542 } while (multirt_send); 22543 if (conn_outgoing_ill != NULL) 22544 ill_refrele(conn_outgoing_ill); 22545 return; 22546 22547 /* 22548 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22549 */ 22550 broadcast: 22551 { 22552 /* 22553 * To avoid broadcast storms, we usually set the TTL to 1 for 22554 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22555 * can be overridden stack-wide through the ip_broadcast_ttl 22556 * ndd tunable, or on a per-connection basis through the 22557 * IP_BROADCAST_TTL socket option. 22558 * 22559 * In the event that we are replying to incoming ICMP packets, 22560 * connp could be NULL. 22561 */ 22562 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22563 if (connp != NULL) { 22564 if (connp->conn_dontroute) 22565 ipha->ipha_ttl = 1; 22566 else if (connp->conn_broadcast_ttl != 0) 22567 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22568 } 22569 22570 /* 22571 * Note that we are not doing a IRB_REFHOLD here. 22572 * Actually we don't care if the list changes i.e 22573 * if somebody deletes an IRE from the list while 22574 * we drop the lock, the next time we come around 22575 * ire_next will be NULL and hence we won't send 22576 * out multiple copies which is fine. 22577 */ 22578 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22579 ire1 = ire->ire_next; 22580 if (conn_outgoing_ill != NULL) { 22581 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22582 ASSERT(ire1 == ire->ire_next); 22583 if (ire1 != NULL && ire1->ire_addr == dst) { 22584 ire_refrele(ire); 22585 ire = ire1; 22586 IRE_REFHOLD(ire); 22587 ire1 = ire->ire_next; 22588 continue; 22589 } 22590 rw_exit(&ire->ire_bucket->irb_lock); 22591 /* Did not find a matching ill */ 22592 ip1dbg(("ip_wput_ire: broadcast with no " 22593 "matching IP_BOUND_IF ill %s dst %x\n", 22594 conn_outgoing_ill->ill_name, dst)); 22595 freemsg(first_mp); 22596 if (ire != NULL) 22597 ire_refrele(ire); 22598 ill_refrele(conn_outgoing_ill); 22599 return; 22600 } 22601 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22602 /* 22603 * If the next IRE has the same address and is not one 22604 * of the two copies that we need to send, try to see 22605 * whether this copy should be sent at all. This 22606 * assumes that we insert loopbacks first and then 22607 * non-loopbacks. This is acheived by inserting the 22608 * loopback always before non-loopback. 22609 * This is used to send a single copy of a broadcast 22610 * packet out all physical interfaces that have an 22611 * matching IRE_BROADCAST while also looping 22612 * back one copy (to ip_wput_local) for each 22613 * matching physical interface. However, we avoid 22614 * sending packets out different logical that match by 22615 * having ipif_up/ipif_down supress duplicate 22616 * IRE_BROADCASTS. 22617 * 22618 * This feature is currently used to get broadcasts 22619 * sent to multiple interfaces, when the broadcast 22620 * address being used applies to multiple interfaces. 22621 * For example, a whole net broadcast will be 22622 * replicated on every connected subnet of 22623 * the target net. 22624 * 22625 * Each zone has its own set of IRE_BROADCASTs, so that 22626 * we're able to distribute inbound packets to multiple 22627 * zones who share a broadcast address. We avoid looping 22628 * back outbound packets in different zones but on the 22629 * same ill, as the application would see duplicates. 22630 * 22631 * This logic assumes that ire_add_v4() groups the 22632 * IRE_BROADCAST entries so that those with the same 22633 * ire_addr are kept together. 22634 */ 22635 ire_ill = ire->ire_ipif->ipif_ill; 22636 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22637 while (ire1 != NULL && ire1->ire_addr == dst) { 22638 ire1_ill = ire1->ire_ipif->ipif_ill; 22639 if (ire1_ill != ire_ill) 22640 break; 22641 ire1 = ire1->ire_next; 22642 } 22643 } 22644 } 22645 ASSERT(multirt_send == B_FALSE); 22646 if (ire1 != NULL && ire1->ire_addr == dst) { 22647 if ((ire->ire_flags & RTF_MULTIRT) && 22648 (ire1->ire_flags & RTF_MULTIRT)) { 22649 /* 22650 * We are in the multirouting case. 22651 * The message must be sent at least 22652 * on both ires. These ires have been 22653 * inserted AFTER the standard ones 22654 * in ip_rt_add(). There are thus no 22655 * other ire entries for the destination 22656 * address in the rest of the bucket 22657 * that do not have the RTF_MULTIRT 22658 * flag. We don't process a copy 22659 * of the message here. This will be 22660 * done in the final sending loop. 22661 */ 22662 multirt_send = B_TRUE; 22663 } else { 22664 next_mp = ip_copymsg(first_mp); 22665 if (next_mp != NULL) 22666 IRE_REFHOLD(ire1); 22667 } 22668 } 22669 rw_exit(&ire->ire_bucket->irb_lock); 22670 } 22671 22672 if (stq) { 22673 /* 22674 * A non-NULL send-to queue means this packet is going 22675 * out of this machine. 22676 */ 22677 out_ill = (ill_t *)stq->q_ptr; 22678 22679 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22680 ttl_protocol = ((uint16_t *)ipha)[4]; 22681 /* 22682 * We accumulate the pseudo header checksum in cksum. 22683 * This is pretty hairy code, so watch close. One 22684 * thing to keep in mind is that UDP and TCP have 22685 * stored their respective datagram lengths in their 22686 * checksum fields. This lines things up real nice. 22687 */ 22688 cksum = (dst >> 16) + (dst & 0xFFFF) + 22689 (src >> 16) + (src & 0xFFFF); 22690 /* 22691 * We assume the udp checksum field contains the 22692 * length, so to compute the pseudo header checksum, 22693 * all we need is the protocol number and src/dst. 22694 */ 22695 /* Provide the checksums for UDP and TCP. */ 22696 if ((PROTO == IPPROTO_TCP) && 22697 (ip_hdr_included != IP_HDR_INCLUDED)) { 22698 /* hlen gets the number of uchar_ts in the IP header */ 22699 hlen = (V_HLEN & 0xF) << 2; 22700 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22701 IP_STAT(ipst, ip_out_sw_cksum); 22702 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22703 LENGTH - hlen); 22704 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22705 } else if (PROTO == IPPROTO_SCTP && 22706 (ip_hdr_included != IP_HDR_INCLUDED)) { 22707 sctp_hdr_t *sctph; 22708 22709 hlen = (V_HLEN & 0xF) << 2; 22710 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22711 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22712 sctph->sh_chksum = 0; 22713 #ifdef DEBUG 22714 if (!skip_sctp_cksum) 22715 #endif 22716 sctph->sh_chksum = sctp_cksum(mp, hlen); 22717 } else { 22718 queue_t *dev_q = stq->q_next; 22719 22720 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 22721 blocked: 22722 ipha->ipha_ident = ip_hdr_included; 22723 /* 22724 * If we don't have a conn to apply 22725 * backpressure, free the message. 22726 * In the ire_send path, we don't know 22727 * the position to requeue the packet. Rather 22728 * than reorder packets, we just drop this 22729 * packet. 22730 */ 22731 if (ipst->ips_ip_output_queue && 22732 connp != NULL && 22733 caller != IRE_SEND) { 22734 if (caller == IP_WSRV) { 22735 connp->conn_did_putbq = 1; 22736 (void) putbq(connp->conn_wq, 22737 first_mp); 22738 conn_drain_insert(connp); 22739 /* 22740 * This is the service thread, 22741 * and the queue is already 22742 * noenabled. The check for 22743 * canput and the putbq is not 22744 * atomic. So we need to check 22745 * again. 22746 */ 22747 if (canput(stq->q_next)) 22748 connp->conn_did_putbq 22749 = 0; 22750 IP_STAT(ipst, ip_conn_flputbq); 22751 } else { 22752 /* 22753 * We are not the service proc. 22754 * ip_wsrv will be scheduled or 22755 * is already running. 22756 */ 22757 22758 (void) putq(connp->conn_wq, 22759 first_mp); 22760 } 22761 } else { 22762 out_ill = (ill_t *)stq->q_ptr; 22763 BUMP_MIB(out_ill->ill_ip_mib, 22764 ipIfStatsOutDiscards); 22765 freemsg(first_mp); 22766 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22767 "ip_wput_ire_end: q %p (%S)", 22768 q, "discard"); 22769 } 22770 ire_refrele(ire); 22771 if (next_mp) { 22772 ire_refrele(ire1); 22773 freemsg(next_mp); 22774 } 22775 if (conn_outgoing_ill != NULL) 22776 ill_refrele(conn_outgoing_ill); 22777 return; 22778 } 22779 if ((PROTO == IPPROTO_UDP) && 22780 (ip_hdr_included != IP_HDR_INCLUDED)) { 22781 /* 22782 * hlen gets the number of uchar_ts in the 22783 * IP header 22784 */ 22785 hlen = (V_HLEN & 0xF) << 2; 22786 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22787 max_frag = ire->ire_max_frag; 22788 if (*up != 0) { 22789 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22790 up, PROTO, hlen, LENGTH, max_frag, 22791 ipsec_len, cksum); 22792 /* Software checksum? */ 22793 if (DB_CKSUMFLAGS(mp) == 0) { 22794 IP_STAT(ipst, ip_out_sw_cksum); 22795 IP_STAT_UPDATE(ipst, 22796 ip_udp_out_sw_cksum_bytes, 22797 LENGTH - hlen); 22798 } 22799 } 22800 } 22801 } 22802 /* 22803 * Need to do this even when fragmenting. The local 22804 * loopback can be done without computing checksums 22805 * but forwarding out other interface must be done 22806 * after the IP checksum (and ULP checksums) have been 22807 * computed. 22808 * 22809 * NOTE : multicast_forward is set only if this packet 22810 * originated from ip_wput. For packets originating from 22811 * ip_wput_multicast, it is not set. 22812 */ 22813 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22814 multi_loopback: 22815 ip2dbg(("ip_wput: multicast, loop %d\n", 22816 conn_multicast_loop)); 22817 22818 /* Forget header checksum offload */ 22819 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22820 22821 /* 22822 * Local loopback of multicasts? Check the 22823 * ill. 22824 * 22825 * Note that the loopback function will not come 22826 * in through ip_rput - it will only do the 22827 * client fanout thus we need to do an mforward 22828 * as well. The is different from the BSD 22829 * logic. 22830 */ 22831 if (ill != NULL) { 22832 if (ilm_lookup_ill(ill, ipha->ipha_dst, 22833 ALL_ZONES) != NULL) { 22834 /* 22835 * Pass along the virtual output q. 22836 * ip_wput_local() will distribute the 22837 * packet to all the matching zones, 22838 * except the sending zone when 22839 * IP_MULTICAST_LOOP is false. 22840 */ 22841 ip_multicast_loopback(q, ill, first_mp, 22842 conn_multicast_loop ? 0 : 22843 IP_FF_NO_MCAST_LOOP, zoneid); 22844 } 22845 } 22846 if (ipha->ipha_ttl == 0) { 22847 /* 22848 * 0 => only to this host i.e. we are 22849 * done. We are also done if this was the 22850 * loopback interface since it is sufficient 22851 * to loopback one copy of a multicast packet. 22852 */ 22853 freemsg(first_mp); 22854 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22855 "ip_wput_ire_end: q %p (%S)", 22856 q, "loopback"); 22857 ire_refrele(ire); 22858 if (conn_outgoing_ill != NULL) 22859 ill_refrele(conn_outgoing_ill); 22860 return; 22861 } 22862 /* 22863 * ILLF_MULTICAST is checked in ip_newroute 22864 * i.e. we don't need to check it here since 22865 * all IRE_CACHEs come from ip_newroute. 22866 * For multicast traffic, SO_DONTROUTE is interpreted 22867 * to mean only send the packet out the interface 22868 * (optionally specified with IP_MULTICAST_IF) 22869 * and do not forward it out additional interfaces. 22870 * RSVP and the rsvp daemon is an example of a 22871 * protocol and user level process that 22872 * handles it's own routing. Hence, it uses the 22873 * SO_DONTROUTE option to accomplish this. 22874 */ 22875 22876 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22877 ill != NULL) { 22878 /* Unconditionally redo the checksum */ 22879 ipha->ipha_hdr_checksum = 0; 22880 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22881 22882 /* 22883 * If this needs to go out secure, we need 22884 * to wait till we finish the IPsec 22885 * processing. 22886 */ 22887 if (ipsec_len == 0 && 22888 ip_mforward(ill, ipha, mp)) { 22889 freemsg(first_mp); 22890 ip1dbg(("ip_wput: mforward failed\n")); 22891 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22892 "ip_wput_ire_end: q %p (%S)", 22893 q, "mforward failed"); 22894 ire_refrele(ire); 22895 if (conn_outgoing_ill != NULL) 22896 ill_refrele(conn_outgoing_ill); 22897 return; 22898 } 22899 } 22900 } 22901 max_frag = ire->ire_max_frag; 22902 cksum += ttl_protocol; 22903 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22904 /* No fragmentation required for this one. */ 22905 /* 22906 * Don't use frag_flag if packet is pre-built or source 22907 * routed or if multicast (since multicast packets do 22908 * not solicit ICMP "packet too big" messages). 22909 */ 22910 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22911 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22912 !ip_source_route_included(ipha)) && 22913 !CLASSD(ipha->ipha_dst)) 22914 ipha->ipha_fragment_offset_and_flags |= 22915 htons(ire->ire_frag_flag); 22916 22917 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22918 /* Complete the IP header checksum. */ 22919 cksum += ipha->ipha_ident; 22920 cksum += (v_hlen_tos_len >> 16)+ 22921 (v_hlen_tos_len & 0xFFFF); 22922 cksum += ipha->ipha_fragment_offset_and_flags; 22923 hlen = (V_HLEN & 0xF) - 22924 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22925 if (hlen) { 22926 checksumoptions: 22927 /* 22928 * Account for the IP Options in the IP 22929 * header checksum. 22930 */ 22931 up = (uint16_t *)(rptr+ 22932 IP_SIMPLE_HDR_LENGTH); 22933 do { 22934 cksum += up[0]; 22935 cksum += up[1]; 22936 up += 2; 22937 } while (--hlen); 22938 } 22939 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22940 cksum = ~(cksum + (cksum >> 16)); 22941 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22942 } 22943 if (ipsec_len != 0) { 22944 ipsec_out_process(q, first_mp, ire, ill_index); 22945 if (!next_mp) { 22946 ire_refrele(ire); 22947 if (conn_outgoing_ill != NULL) 22948 ill_refrele(conn_outgoing_ill); 22949 return; 22950 } 22951 goto next; 22952 } 22953 22954 /* 22955 * multirt_send has already been handled 22956 * for broadcast, but not yet for multicast 22957 * or IP options. 22958 */ 22959 if (next_mp == NULL) { 22960 if (ire->ire_flags & RTF_MULTIRT) { 22961 multirt_send = B_TRUE; 22962 } 22963 } 22964 22965 /* 22966 * In most cases, the emission loop below is 22967 * entered only once. Only in the case where 22968 * the ire holds the RTF_MULTIRT flag, do we loop 22969 * to process all RTF_MULTIRT ires in the bucket, 22970 * and send the packet through all crossed 22971 * RTF_MULTIRT routes. 22972 */ 22973 do { 22974 if (multirt_send) { 22975 irb_t *irb; 22976 22977 irb = ire->ire_bucket; 22978 ASSERT(irb != NULL); 22979 /* 22980 * We are in a multiple send case, 22981 * need to get the next IRE and make 22982 * a duplicate of the packet. 22983 */ 22984 IRB_REFHOLD(irb); 22985 for (ire1 = ire->ire_next; 22986 ire1 != NULL; 22987 ire1 = ire1->ire_next) { 22988 if (!(ire1->ire_flags & 22989 RTF_MULTIRT)) 22990 continue; 22991 22992 if (ire1->ire_addr != 22993 ire->ire_addr) 22994 continue; 22995 22996 if (ire1->ire_marks & 22997 (IRE_MARK_CONDEMNED | 22998 IRE_MARK_TESTHIDDEN)) 22999 continue; 23000 23001 /* Got one */ 23002 IRE_REFHOLD(ire1); 23003 break; 23004 } 23005 IRB_REFRELE(irb); 23006 23007 if (ire1 != NULL) { 23008 next_mp = copyb(mp); 23009 if ((next_mp == NULL) || 23010 ((mp->b_cont != NULL) && 23011 ((next_mp->b_cont = 23012 dupmsg(mp->b_cont)) 23013 == NULL))) { 23014 freemsg(next_mp); 23015 next_mp = NULL; 23016 ire_refrele(ire1); 23017 ire1 = NULL; 23018 } 23019 } 23020 23021 /* 23022 * Last multiroute ire; don't loop 23023 * anymore. The emission is over 23024 * and next_mp is NULL. 23025 */ 23026 if (ire1 == NULL) { 23027 multirt_send = B_FALSE; 23028 } 23029 } 23030 23031 out_ill = ire_to_ill(ire); 23032 DTRACE_PROBE4(ip4__physical__out__start, 23033 ill_t *, NULL, 23034 ill_t *, out_ill, 23035 ipha_t *, ipha, mblk_t *, mp); 23036 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23037 ipst->ips_ipv4firewall_physical_out, 23038 NULL, out_ill, ipha, mp, mp, 0, ipst); 23039 DTRACE_PROBE1(ip4__physical__out__end, 23040 mblk_t *, mp); 23041 if (mp == NULL) 23042 goto release_ire_and_ill_2; 23043 23044 ASSERT(ipsec_len == 0); 23045 mp->b_prev = 23046 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23047 DTRACE_PROBE2(ip__xmit__2, 23048 mblk_t *, mp, ire_t *, ire); 23049 pktxmit_state = ip_xmit_v4(mp, ire, 23050 NULL, B_TRUE, connp); 23051 if ((pktxmit_state == SEND_FAILED) || 23052 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23053 release_ire_and_ill_2: 23054 if (next_mp) { 23055 freemsg(next_mp); 23056 ire_refrele(ire1); 23057 } 23058 ire_refrele(ire); 23059 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23060 "ip_wput_ire_end: q %p (%S)", 23061 q, "discard MDATA"); 23062 if (conn_outgoing_ill != NULL) 23063 ill_refrele(conn_outgoing_ill); 23064 return; 23065 } 23066 23067 if (CLASSD(dst)) { 23068 BUMP_MIB(out_ill->ill_ip_mib, 23069 ipIfStatsHCOutMcastPkts); 23070 UPDATE_MIB(out_ill->ill_ip_mib, 23071 ipIfStatsHCOutMcastOctets, 23072 LENGTH); 23073 } else if (ire->ire_type == IRE_BROADCAST) { 23074 BUMP_MIB(out_ill->ill_ip_mib, 23075 ipIfStatsHCOutBcastPkts); 23076 } 23077 23078 if (multirt_send) { 23079 /* 23080 * We are in a multiple send case, 23081 * need to re-enter the sending loop 23082 * using the next ire. 23083 */ 23084 ire_refrele(ire); 23085 ire = ire1; 23086 stq = ire->ire_stq; 23087 mp = next_mp; 23088 next_mp = NULL; 23089 ipha = (ipha_t *)mp->b_rptr; 23090 ill_index = Q_TO_INDEX(stq); 23091 } 23092 } while (multirt_send); 23093 23094 if (!next_mp) { 23095 /* 23096 * Last copy going out (the ultra-common 23097 * case). Note that we intentionally replicate 23098 * the putnext rather than calling it before 23099 * the next_mp check in hopes of a little 23100 * tail-call action out of the compiler. 23101 */ 23102 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23103 "ip_wput_ire_end: q %p (%S)", 23104 q, "last copy out(1)"); 23105 ire_refrele(ire); 23106 if (conn_outgoing_ill != NULL) 23107 ill_refrele(conn_outgoing_ill); 23108 return; 23109 } 23110 /* More copies going out below. */ 23111 } else { 23112 int offset; 23113 fragmentit: 23114 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23115 /* 23116 * If this would generate a icmp_frag_needed message, 23117 * we need to handle it before we do the IPsec 23118 * processing. Otherwise, we need to strip the IPsec 23119 * headers before we send up the message to the ULPs 23120 * which becomes messy and difficult. 23121 */ 23122 if (ipsec_len != 0) { 23123 if ((max_frag < (unsigned int)(LENGTH + 23124 ipsec_len)) && (offset & IPH_DF)) { 23125 out_ill = (ill_t *)stq->q_ptr; 23126 BUMP_MIB(out_ill->ill_ip_mib, 23127 ipIfStatsOutFragFails); 23128 BUMP_MIB(out_ill->ill_ip_mib, 23129 ipIfStatsOutFragReqds); 23130 ipha->ipha_hdr_checksum = 0; 23131 ipha->ipha_hdr_checksum = 23132 (uint16_t)ip_csum_hdr(ipha); 23133 icmp_frag_needed(ire->ire_stq, first_mp, 23134 max_frag, zoneid, ipst); 23135 if (!next_mp) { 23136 ire_refrele(ire); 23137 if (conn_outgoing_ill != NULL) { 23138 ill_refrele( 23139 conn_outgoing_ill); 23140 } 23141 return; 23142 } 23143 } else { 23144 /* 23145 * This won't cause a icmp_frag_needed 23146 * message. to be generated. Send it on 23147 * the wire. Note that this could still 23148 * cause fragmentation and all we 23149 * do is the generation of the message 23150 * to the ULP if needed before IPsec. 23151 */ 23152 if (!next_mp) { 23153 ipsec_out_process(q, first_mp, 23154 ire, ill_index); 23155 TRACE_2(TR_FAC_IP, 23156 TR_IP_WPUT_IRE_END, 23157 "ip_wput_ire_end: q %p " 23158 "(%S)", q, 23159 "last ipsec_out_process"); 23160 ire_refrele(ire); 23161 if (conn_outgoing_ill != NULL) { 23162 ill_refrele( 23163 conn_outgoing_ill); 23164 } 23165 return; 23166 } 23167 ipsec_out_process(q, first_mp, 23168 ire, ill_index); 23169 } 23170 } else { 23171 /* 23172 * Initiate IPPF processing. For 23173 * fragmentable packets we finish 23174 * all QOS packet processing before 23175 * calling: 23176 * ip_wput_ire_fragmentit->ip_wput_frag 23177 */ 23178 23179 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23180 ip_process(IPP_LOCAL_OUT, &mp, 23181 ill_index); 23182 if (mp == NULL) { 23183 out_ill = (ill_t *)stq->q_ptr; 23184 BUMP_MIB(out_ill->ill_ip_mib, 23185 ipIfStatsOutDiscards); 23186 if (next_mp != NULL) { 23187 freemsg(next_mp); 23188 ire_refrele(ire1); 23189 } 23190 ire_refrele(ire); 23191 TRACE_2(TR_FAC_IP, 23192 TR_IP_WPUT_IRE_END, 23193 "ip_wput_ire: q %p (%S)", 23194 q, "discard MDATA"); 23195 if (conn_outgoing_ill != NULL) { 23196 ill_refrele( 23197 conn_outgoing_ill); 23198 } 23199 return; 23200 } 23201 } 23202 if (!next_mp) { 23203 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23204 "ip_wput_ire_end: q %p (%S)", 23205 q, "last fragmentation"); 23206 ip_wput_ire_fragmentit(mp, ire, 23207 zoneid, ipst, connp); 23208 ire_refrele(ire); 23209 if (conn_outgoing_ill != NULL) 23210 ill_refrele(conn_outgoing_ill); 23211 return; 23212 } 23213 ip_wput_ire_fragmentit(mp, ire, 23214 zoneid, ipst, connp); 23215 } 23216 } 23217 } else { 23218 nullstq: 23219 /* A NULL stq means the destination address is local. */ 23220 UPDATE_OB_PKT_COUNT(ire); 23221 ire->ire_last_used_time = lbolt; 23222 ASSERT(ire->ire_ipif != NULL); 23223 if (!next_mp) { 23224 /* 23225 * Is there an "in" and "out" for traffic local 23226 * to a host (loopback)? The code in Solaris doesn't 23227 * explicitly draw a line in its code for in vs out, 23228 * so we've had to draw a line in the sand: ip_wput_ire 23229 * is considered to be the "output" side and 23230 * ip_wput_local to be the "input" side. 23231 */ 23232 out_ill = ire_to_ill(ire); 23233 23234 /* 23235 * DTrace this as ip:::send. A blocked packet will 23236 * fire the send probe, but not the receive probe. 23237 */ 23238 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23239 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23240 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23241 23242 DTRACE_PROBE4(ip4__loopback__out__start, 23243 ill_t *, NULL, ill_t *, out_ill, 23244 ipha_t *, ipha, mblk_t *, first_mp); 23245 23246 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23247 ipst->ips_ipv4firewall_loopback_out, 23248 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23249 23250 DTRACE_PROBE1(ip4__loopback__out_end, 23251 mblk_t *, first_mp); 23252 23253 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23254 "ip_wput_ire_end: q %p (%S)", 23255 q, "local address"); 23256 23257 if (first_mp != NULL) 23258 ip_wput_local(q, out_ill, ipha, 23259 first_mp, ire, 0, ire->ire_zoneid); 23260 ire_refrele(ire); 23261 if (conn_outgoing_ill != NULL) 23262 ill_refrele(conn_outgoing_ill); 23263 return; 23264 } 23265 23266 out_ill = ire_to_ill(ire); 23267 23268 /* 23269 * DTrace this as ip:::send. A blocked packet will fire the 23270 * send probe, but not the receive probe. 23271 */ 23272 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23273 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23274 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23275 23276 DTRACE_PROBE4(ip4__loopback__out__start, 23277 ill_t *, NULL, ill_t *, out_ill, 23278 ipha_t *, ipha, mblk_t *, first_mp); 23279 23280 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23281 ipst->ips_ipv4firewall_loopback_out, 23282 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23283 23284 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23285 23286 if (first_mp != NULL) 23287 ip_wput_local(q, out_ill, ipha, 23288 first_mp, ire, 0, ire->ire_zoneid); 23289 } 23290 next: 23291 /* 23292 * More copies going out to additional interfaces. 23293 * ire1 has already been held. We don't need the 23294 * "ire" anymore. 23295 */ 23296 ire_refrele(ire); 23297 ire = ire1; 23298 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23299 mp = next_mp; 23300 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23301 ill = ire_to_ill(ire); 23302 first_mp = mp; 23303 if (ipsec_len != 0) { 23304 ASSERT(first_mp->b_datap->db_type == M_CTL); 23305 mp = mp->b_cont; 23306 } 23307 dst = ire->ire_addr; 23308 ipha = (ipha_t *)mp->b_rptr; 23309 /* 23310 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23311 * Restore ipha_ident "no checksum" flag. 23312 */ 23313 src = orig_src; 23314 ipha->ipha_ident = ip_hdr_included; 23315 goto another; 23316 23317 #undef rptr 23318 #undef Q_TO_INDEX 23319 } 23320 23321 /* 23322 * Routine to allocate a message that is used to notify the ULP about MDT. 23323 * The caller may provide a pointer to the link-layer MDT capabilities, 23324 * or NULL if MDT is to be disabled on the stream. 23325 */ 23326 mblk_t * 23327 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23328 { 23329 mblk_t *mp; 23330 ip_mdt_info_t *mdti; 23331 ill_mdt_capab_t *idst; 23332 23333 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23334 DB_TYPE(mp) = M_CTL; 23335 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23336 mdti = (ip_mdt_info_t *)mp->b_rptr; 23337 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23338 idst = &(mdti->mdt_capab); 23339 23340 /* 23341 * If the caller provides us with the capability, copy 23342 * it over into our notification message; otherwise 23343 * we zero out the capability portion. 23344 */ 23345 if (isrc != NULL) 23346 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23347 else 23348 bzero((caddr_t)idst, sizeof (*idst)); 23349 } 23350 return (mp); 23351 } 23352 23353 /* 23354 * Routine which determines whether MDT can be enabled on the destination 23355 * IRE and IPC combination, and if so, allocates and returns the MDT 23356 * notification mblk that may be used by ULP. We also check if we need to 23357 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23358 * MDT usage in the past have been lifted. This gets called during IP 23359 * and ULP binding. 23360 */ 23361 mblk_t * 23362 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23363 ill_mdt_capab_t *mdt_cap) 23364 { 23365 mblk_t *mp; 23366 boolean_t rc = B_FALSE; 23367 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23368 23369 ASSERT(dst_ire != NULL); 23370 ASSERT(connp != NULL); 23371 ASSERT(mdt_cap != NULL); 23372 23373 /* 23374 * Currently, we only support simple TCP/{IPv4,IPv6} with 23375 * Multidata, which is handled in tcp_multisend(). This 23376 * is the reason why we do all these checks here, to ensure 23377 * that we don't enable Multidata for the cases which we 23378 * can't handle at the moment. 23379 */ 23380 do { 23381 /* Only do TCP at the moment */ 23382 if (connp->conn_ulp != IPPROTO_TCP) 23383 break; 23384 23385 /* 23386 * IPsec outbound policy present? Note that we get here 23387 * after calling ipsec_conn_cache_policy() where the global 23388 * policy checking is performed. conn_latch will be 23389 * non-NULL as long as there's a policy defined, 23390 * i.e. conn_out_enforce_policy may be NULL in such case 23391 * when the connection is non-secure, and hence we check 23392 * further if the latch refers to an outbound policy. 23393 */ 23394 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23395 break; 23396 23397 /* CGTP (multiroute) is enabled? */ 23398 if (dst_ire->ire_flags & RTF_MULTIRT) 23399 break; 23400 23401 /* Outbound IPQoS enabled? */ 23402 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23403 /* 23404 * In this case, we disable MDT for this and all 23405 * future connections going over the interface. 23406 */ 23407 mdt_cap->ill_mdt_on = 0; 23408 break; 23409 } 23410 23411 /* socket option(s) present? */ 23412 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23413 break; 23414 23415 rc = B_TRUE; 23416 /* CONSTCOND */ 23417 } while (0); 23418 23419 /* Remember the result */ 23420 connp->conn_mdt_ok = rc; 23421 23422 if (!rc) 23423 return (NULL); 23424 else if (!mdt_cap->ill_mdt_on) { 23425 /* 23426 * If MDT has been previously turned off in the past, and we 23427 * currently can do MDT (due to IPQoS policy removal, etc.) 23428 * then enable it for this interface. 23429 */ 23430 mdt_cap->ill_mdt_on = 1; 23431 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23432 "interface %s\n", ill_name)); 23433 } 23434 23435 /* Allocate the MDT info mblk */ 23436 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23437 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23438 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23439 return (NULL); 23440 } 23441 return (mp); 23442 } 23443 23444 /* 23445 * Routine to allocate a message that is used to notify the ULP about LSO. 23446 * The caller may provide a pointer to the link-layer LSO capabilities, 23447 * or NULL if LSO is to be disabled on the stream. 23448 */ 23449 mblk_t * 23450 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23451 { 23452 mblk_t *mp; 23453 ip_lso_info_t *lsoi; 23454 ill_lso_capab_t *idst; 23455 23456 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23457 DB_TYPE(mp) = M_CTL; 23458 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23459 lsoi = (ip_lso_info_t *)mp->b_rptr; 23460 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23461 idst = &(lsoi->lso_capab); 23462 23463 /* 23464 * If the caller provides us with the capability, copy 23465 * it over into our notification message; otherwise 23466 * we zero out the capability portion. 23467 */ 23468 if (isrc != NULL) 23469 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23470 else 23471 bzero((caddr_t)idst, sizeof (*idst)); 23472 } 23473 return (mp); 23474 } 23475 23476 /* 23477 * Routine which determines whether LSO can be enabled on the destination 23478 * IRE and IPC combination, and if so, allocates and returns the LSO 23479 * notification mblk that may be used by ULP. We also check if we need to 23480 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23481 * LSO usage in the past have been lifted. This gets called during IP 23482 * and ULP binding. 23483 */ 23484 mblk_t * 23485 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23486 ill_lso_capab_t *lso_cap) 23487 { 23488 mblk_t *mp; 23489 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23490 23491 ASSERT(dst_ire != NULL); 23492 ASSERT(connp != NULL); 23493 ASSERT(lso_cap != NULL); 23494 23495 connp->conn_lso_ok = B_TRUE; 23496 23497 if ((connp->conn_ulp != IPPROTO_TCP) || 23498 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23499 (dst_ire->ire_flags & RTF_MULTIRT) || 23500 !CONN_IS_LSO_MD_FASTPATH(connp) || 23501 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23502 connp->conn_lso_ok = B_FALSE; 23503 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23504 /* 23505 * Disable LSO for this and all future connections going 23506 * over the interface. 23507 */ 23508 lso_cap->ill_lso_on = 0; 23509 } 23510 } 23511 23512 if (!connp->conn_lso_ok) 23513 return (NULL); 23514 else if (!lso_cap->ill_lso_on) { 23515 /* 23516 * If LSO has been previously turned off in the past, and we 23517 * currently can do LSO (due to IPQoS policy removal, etc.) 23518 * then enable it for this interface. 23519 */ 23520 lso_cap->ill_lso_on = 1; 23521 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23522 ill_name)); 23523 } 23524 23525 /* Allocate the LSO info mblk */ 23526 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23527 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23528 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23529 23530 return (mp); 23531 } 23532 23533 /* 23534 * Create destination address attribute, and fill it with the physical 23535 * destination address and SAP taken from the template DL_UNITDATA_REQ 23536 * message block. 23537 */ 23538 boolean_t 23539 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23540 { 23541 dl_unitdata_req_t *dlurp; 23542 pattr_t *pa; 23543 pattrinfo_t pa_info; 23544 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23545 uint_t das_len, das_off; 23546 23547 ASSERT(dlmp != NULL); 23548 23549 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23550 das_len = dlurp->dl_dest_addr_length; 23551 das_off = dlurp->dl_dest_addr_offset; 23552 23553 pa_info.type = PATTR_DSTADDRSAP; 23554 pa_info.len = sizeof (**das) + das_len - 1; 23555 23556 /* create and associate the attribute */ 23557 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23558 if (pa != NULL) { 23559 ASSERT(*das != NULL); 23560 (*das)->addr_is_group = 0; 23561 (*das)->addr_len = (uint8_t)das_len; 23562 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23563 } 23564 23565 return (pa != NULL); 23566 } 23567 23568 /* 23569 * Create hardware checksum attribute and fill it with the values passed. 23570 */ 23571 boolean_t 23572 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23573 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23574 { 23575 pattr_t *pa; 23576 pattrinfo_t pa_info; 23577 23578 ASSERT(mmd != NULL); 23579 23580 pa_info.type = PATTR_HCKSUM; 23581 pa_info.len = sizeof (pattr_hcksum_t); 23582 23583 /* create and associate the attribute */ 23584 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23585 if (pa != NULL) { 23586 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23587 23588 hck->hcksum_start_offset = start_offset; 23589 hck->hcksum_stuff_offset = stuff_offset; 23590 hck->hcksum_end_offset = end_offset; 23591 hck->hcksum_flags = flags; 23592 } 23593 return (pa != NULL); 23594 } 23595 23596 /* 23597 * Create zerocopy attribute and fill it with the specified flags 23598 */ 23599 boolean_t 23600 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23601 { 23602 pattr_t *pa; 23603 pattrinfo_t pa_info; 23604 23605 ASSERT(mmd != NULL); 23606 pa_info.type = PATTR_ZCOPY; 23607 pa_info.len = sizeof (pattr_zcopy_t); 23608 23609 /* create and associate the attribute */ 23610 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23611 if (pa != NULL) { 23612 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23613 23614 zcopy->zcopy_flags = flags; 23615 } 23616 return (pa != NULL); 23617 } 23618 23619 /* 23620 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23621 * block chain. We could rewrite to handle arbitrary message block chains but 23622 * that would make the code complicated and slow. Right now there three 23623 * restrictions: 23624 * 23625 * 1. The first message block must contain the complete IP header and 23626 * at least 1 byte of payload data. 23627 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23628 * so that we can use a single Multidata message. 23629 * 3. No frag must be distributed over two or more message blocks so 23630 * that we don't need more than two packet descriptors per frag. 23631 * 23632 * The above restrictions allow us to support userland applications (which 23633 * will send down a single message block) and NFS over UDP (which will 23634 * send down a chain of at most three message blocks). 23635 * 23636 * We also don't use MDT for payloads with less than or equal to 23637 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23638 */ 23639 boolean_t 23640 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23641 { 23642 int blocks; 23643 ssize_t total, missing, size; 23644 23645 ASSERT(mp != NULL); 23646 ASSERT(hdr_len > 0); 23647 23648 size = MBLKL(mp) - hdr_len; 23649 if (size <= 0) 23650 return (B_FALSE); 23651 23652 /* The first mblk contains the header and some payload. */ 23653 blocks = 1; 23654 total = size; 23655 size %= len; 23656 missing = (size == 0) ? 0 : (len - size); 23657 mp = mp->b_cont; 23658 23659 while (mp != NULL) { 23660 /* 23661 * Give up if we encounter a zero length message block. 23662 * In practice, this should rarely happen and therefore 23663 * not worth the trouble of freeing and re-linking the 23664 * mblk from the chain to handle such case. 23665 */ 23666 if ((size = MBLKL(mp)) == 0) 23667 return (B_FALSE); 23668 23669 /* Too many payload buffers for a single Multidata message? */ 23670 if (++blocks > MULTIDATA_MAX_PBUFS) 23671 return (B_FALSE); 23672 23673 total += size; 23674 /* Is a frag distributed over two or more message blocks? */ 23675 if (missing > size) 23676 return (B_FALSE); 23677 size -= missing; 23678 23679 size %= len; 23680 missing = (size == 0) ? 0 : (len - size); 23681 23682 mp = mp->b_cont; 23683 } 23684 23685 return (total > ip_wput_frag_mdt_min); 23686 } 23687 23688 /* 23689 * Outbound IPv4 fragmentation routine using MDT. 23690 */ 23691 static void 23692 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23693 uint32_t frag_flag, int offset) 23694 { 23695 ipha_t *ipha_orig; 23696 int i1, ip_data_end; 23697 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23698 mblk_t *hdr_mp, *md_mp = NULL; 23699 unsigned char *hdr_ptr, *pld_ptr; 23700 multidata_t *mmd; 23701 ip_pdescinfo_t pdi; 23702 ill_t *ill; 23703 ip_stack_t *ipst = ire->ire_ipst; 23704 23705 ASSERT(DB_TYPE(mp) == M_DATA); 23706 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23707 23708 ill = ire_to_ill(ire); 23709 ASSERT(ill != NULL); 23710 23711 ipha_orig = (ipha_t *)mp->b_rptr; 23712 mp->b_rptr += sizeof (ipha_t); 23713 23714 /* Calculate how many packets we will send out */ 23715 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23716 pkts = (i1 + len - 1) / len; 23717 ASSERT(pkts > 1); 23718 23719 /* Allocate a message block which will hold all the IP Headers. */ 23720 wroff = ipst->ips_ip_wroff_extra; 23721 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23722 23723 i1 = pkts * hdr_chunk_len; 23724 /* 23725 * Create the header buffer, Multidata and destination address 23726 * and SAP attribute that should be associated with it. 23727 */ 23728 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23729 ((hdr_mp->b_wptr += i1), 23730 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23731 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23732 freemsg(mp); 23733 if (md_mp == NULL) { 23734 freemsg(hdr_mp); 23735 } else { 23736 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23737 freemsg(md_mp); 23738 } 23739 IP_STAT(ipst, ip_frag_mdt_allocfail); 23740 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23741 return; 23742 } 23743 IP_STAT(ipst, ip_frag_mdt_allocd); 23744 23745 /* 23746 * Add a payload buffer to the Multidata; this operation must not 23747 * fail, or otherwise our logic in this routine is broken. There 23748 * is no memory allocation done by the routine, so any returned 23749 * failure simply tells us that we've done something wrong. 23750 * 23751 * A failure tells us that either we're adding the same payload 23752 * buffer more than once, or we're trying to add more buffers than 23753 * allowed. None of the above cases should happen, and we panic 23754 * because either there's horrible heap corruption, and/or 23755 * programming mistake. 23756 */ 23757 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23758 goto pbuf_panic; 23759 23760 hdr_ptr = hdr_mp->b_rptr; 23761 pld_ptr = mp->b_rptr; 23762 23763 /* Establish the ending byte offset, based on the starting offset. */ 23764 offset <<= 3; 23765 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23766 IP_SIMPLE_HDR_LENGTH; 23767 23768 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23769 23770 while (pld_ptr < mp->b_wptr) { 23771 ipha_t *ipha; 23772 uint16_t offset_and_flags; 23773 uint16_t ip_len; 23774 int error; 23775 23776 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23777 ipha = (ipha_t *)(hdr_ptr + wroff); 23778 ASSERT(OK_32PTR(ipha)); 23779 *ipha = *ipha_orig; 23780 23781 if (ip_data_end - offset > len) { 23782 offset_and_flags = IPH_MF; 23783 } else { 23784 /* 23785 * Last frag. Set len to the length of this last piece. 23786 */ 23787 len = ip_data_end - offset; 23788 /* A frag of a frag might have IPH_MF non-zero */ 23789 offset_and_flags = 23790 ntohs(ipha->ipha_fragment_offset_and_flags) & 23791 IPH_MF; 23792 } 23793 offset_and_flags |= (uint16_t)(offset >> 3); 23794 offset_and_flags |= (uint16_t)frag_flag; 23795 /* Store the offset and flags in the IP header. */ 23796 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23797 23798 /* Store the length in the IP header. */ 23799 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23800 ipha->ipha_length = htons(ip_len); 23801 23802 /* 23803 * Set the IP header checksum. Note that mp is just 23804 * the header, so this is easy to pass to ip_csum. 23805 */ 23806 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23807 23808 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 23809 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 23810 NULL, int, 0); 23811 23812 /* 23813 * Record offset and size of header and data of the next packet 23814 * in the multidata message. 23815 */ 23816 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23817 PDESC_PLD_INIT(&pdi); 23818 i1 = MIN(mp->b_wptr - pld_ptr, len); 23819 ASSERT(i1 > 0); 23820 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23821 if (i1 == len) { 23822 pld_ptr += len; 23823 } else { 23824 i1 = len - i1; 23825 mp = mp->b_cont; 23826 ASSERT(mp != NULL); 23827 ASSERT(MBLKL(mp) >= i1); 23828 /* 23829 * Attach the next payload message block to the 23830 * multidata message. 23831 */ 23832 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23833 goto pbuf_panic; 23834 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23835 pld_ptr = mp->b_rptr + i1; 23836 } 23837 23838 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23839 KM_NOSLEEP)) == NULL) { 23840 /* 23841 * Any failure other than ENOMEM indicates that we 23842 * have passed in invalid pdesc info or parameters 23843 * to mmd_addpdesc, which must not happen. 23844 * 23845 * EINVAL is a result of failure on boundary checks 23846 * against the pdesc info contents. It should not 23847 * happen, and we panic because either there's 23848 * horrible heap corruption, and/or programming 23849 * mistake. 23850 */ 23851 if (error != ENOMEM) { 23852 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23853 "pdesc logic error detected for " 23854 "mmd %p pinfo %p (%d)\n", 23855 (void *)mmd, (void *)&pdi, error); 23856 /* NOTREACHED */ 23857 } 23858 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23859 /* Free unattached payload message blocks as well */ 23860 md_mp->b_cont = mp->b_cont; 23861 goto free_mmd; 23862 } 23863 23864 /* Advance fragment offset. */ 23865 offset += len; 23866 23867 /* Advance to location for next header in the buffer. */ 23868 hdr_ptr += hdr_chunk_len; 23869 23870 /* Did we reach the next payload message block? */ 23871 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23872 mp = mp->b_cont; 23873 /* 23874 * Attach the next message block with payload 23875 * data to the multidata message. 23876 */ 23877 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23878 goto pbuf_panic; 23879 pld_ptr = mp->b_rptr; 23880 } 23881 } 23882 23883 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23884 ASSERT(mp->b_wptr == pld_ptr); 23885 23886 /* Update IP statistics */ 23887 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23888 23889 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23890 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23891 23892 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23893 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23894 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23895 23896 if (pkt_type == OB_PKT) { 23897 ire->ire_ob_pkt_count += pkts; 23898 if (ire->ire_ipif != NULL) 23899 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23900 } else { 23901 /* The type is IB_PKT in the forwarding path. */ 23902 ire->ire_ib_pkt_count += pkts; 23903 ASSERT(!IRE_IS_LOCAL(ire)); 23904 if (ire->ire_type & IRE_BROADCAST) { 23905 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23906 } else { 23907 UPDATE_MIB(ill->ill_ip_mib, 23908 ipIfStatsHCOutForwDatagrams, pkts); 23909 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23910 } 23911 } 23912 ire->ire_last_used_time = lbolt; 23913 /* Send it down */ 23914 putnext(ire->ire_stq, md_mp); 23915 return; 23916 23917 pbuf_panic: 23918 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23919 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23920 pbuf_idx); 23921 /* NOTREACHED */ 23922 } 23923 23924 /* 23925 * Outbound IP fragmentation routine. 23926 * 23927 * NOTE : This routine does not ire_refrele the ire that is passed in 23928 * as the argument. 23929 */ 23930 static void 23931 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23932 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 23933 { 23934 int i1; 23935 mblk_t *ll_hdr_mp; 23936 int ll_hdr_len; 23937 int hdr_len; 23938 mblk_t *hdr_mp; 23939 ipha_t *ipha; 23940 int ip_data_end; 23941 int len; 23942 mblk_t *mp = mp_orig, *mp1; 23943 int offset; 23944 queue_t *q; 23945 uint32_t v_hlen_tos_len; 23946 mblk_t *first_mp; 23947 boolean_t mctl_present; 23948 ill_t *ill; 23949 ill_t *out_ill; 23950 mblk_t *xmit_mp; 23951 mblk_t *carve_mp; 23952 ire_t *ire1 = NULL; 23953 ire_t *save_ire = NULL; 23954 mblk_t *next_mp = NULL; 23955 boolean_t last_frag = B_FALSE; 23956 boolean_t multirt_send = B_FALSE; 23957 ire_t *first_ire = NULL; 23958 irb_t *irb = NULL; 23959 mib2_ipIfStatsEntry_t *mibptr = NULL; 23960 23961 ill = ire_to_ill(ire); 23962 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 23963 23964 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 23965 23966 if (max_frag == 0) { 23967 ip1dbg(("ip_wput_frag: ire frag size is 0" 23968 " - dropping packet\n")); 23969 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23970 freemsg(mp); 23971 return; 23972 } 23973 23974 /* 23975 * IPsec does not allow hw accelerated packets to be fragmented 23976 * This check is made in ip_wput_ipsec_out prior to coming here 23977 * via ip_wput_ire_fragmentit. 23978 * 23979 * If at this point we have an ire whose ARP request has not 23980 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23981 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23982 * This packet and all fragmentable packets for this ire will 23983 * continue to get dropped while ire_nce->nce_state remains in 23984 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23985 * ND_REACHABLE, all subsquent large packets for this ire will 23986 * get fragemented and sent out by this function. 23987 */ 23988 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23989 /* If nce_state is ND_INITIAL, trigger ARP query */ 23990 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 23991 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23992 " - dropping packet\n")); 23993 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23994 freemsg(mp); 23995 return; 23996 } 23997 23998 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23999 "ip_wput_frag_start:"); 24000 24001 if (mp->b_datap->db_type == M_CTL) { 24002 first_mp = mp; 24003 mp_orig = mp = mp->b_cont; 24004 mctl_present = B_TRUE; 24005 } else { 24006 first_mp = mp; 24007 mctl_present = B_FALSE; 24008 } 24009 24010 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24011 ipha = (ipha_t *)mp->b_rptr; 24012 24013 /* 24014 * If the Don't Fragment flag is on, generate an ICMP destination 24015 * unreachable, fragmentation needed. 24016 */ 24017 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24018 if (offset & IPH_DF) { 24019 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24020 if (is_system_labeled()) { 24021 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24022 ire->ire_max_frag - max_frag, AF_INET); 24023 } 24024 /* 24025 * Need to compute hdr checksum if called from ip_wput_ire. 24026 * Note that ip_rput_forward verifies the checksum before 24027 * calling this routine so in that case this is a noop. 24028 */ 24029 ipha->ipha_hdr_checksum = 0; 24030 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24031 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24032 ipst); 24033 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24034 "ip_wput_frag_end:(%S)", 24035 "don't fragment"); 24036 return; 24037 } 24038 /* 24039 * Labeled systems adjust max_frag if they add a label 24040 * to send the correct path mtu. We need the real mtu since we 24041 * are fragmenting the packet after label adjustment. 24042 */ 24043 if (is_system_labeled()) 24044 max_frag = ire->ire_max_frag; 24045 if (mctl_present) 24046 freeb(first_mp); 24047 /* 24048 * Establish the starting offset. May not be zero if we are fragging 24049 * a fragment that is being forwarded. 24050 */ 24051 offset = offset & IPH_OFFSET; 24052 24053 /* TODO why is this test needed? */ 24054 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24055 if (((max_frag - LENGTH) & ~7) < 8) { 24056 /* TODO: notify ulp somehow */ 24057 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24058 freemsg(mp); 24059 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24060 "ip_wput_frag_end:(%S)", 24061 "len < 8"); 24062 return; 24063 } 24064 24065 hdr_len = (V_HLEN & 0xF) << 2; 24066 24067 ipha->ipha_hdr_checksum = 0; 24068 24069 /* 24070 * Establish the number of bytes maximum per frag, after putting 24071 * in the header. 24072 */ 24073 len = (max_frag - hdr_len) & ~7; 24074 24075 /* Check if we can use MDT to send out the frags. */ 24076 ASSERT(!IRE_IS_LOCAL(ire)); 24077 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24078 ipst->ips_ip_multidata_outbound && 24079 !(ire->ire_flags & RTF_MULTIRT) && 24080 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24081 ill != NULL && ILL_MDT_CAPABLE(ill) && 24082 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24083 ASSERT(ill->ill_mdt_capab != NULL); 24084 if (!ill->ill_mdt_capab->ill_mdt_on) { 24085 /* 24086 * If MDT has been previously turned off in the past, 24087 * and we currently can do MDT (due to IPQoS policy 24088 * removal, etc.) then enable it for this interface. 24089 */ 24090 ill->ill_mdt_capab->ill_mdt_on = 1; 24091 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24092 ill->ill_name)); 24093 } 24094 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24095 offset); 24096 return; 24097 } 24098 24099 /* Get a copy of the header for the trailing frags */ 24100 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24101 if (!hdr_mp) { 24102 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24103 freemsg(mp); 24104 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24105 "ip_wput_frag_end:(%S)", 24106 "couldn't copy hdr"); 24107 return; 24108 } 24109 if (DB_CRED(mp) != NULL) 24110 mblk_setcred(hdr_mp, DB_CRED(mp)); 24111 24112 /* Store the starting offset, with the MoreFrags flag. */ 24113 i1 = offset | IPH_MF | frag_flag; 24114 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24115 24116 /* Establish the ending byte offset, based on the starting offset. */ 24117 offset <<= 3; 24118 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24119 24120 /* Store the length of the first fragment in the IP header. */ 24121 i1 = len + hdr_len; 24122 ASSERT(i1 <= IP_MAXPACKET); 24123 ipha->ipha_length = htons((uint16_t)i1); 24124 24125 /* 24126 * Compute the IP header checksum for the first frag. We have to 24127 * watch out that we stop at the end of the header. 24128 */ 24129 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24130 24131 /* 24132 * Now carve off the first frag. Note that this will include the 24133 * original IP header. 24134 */ 24135 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24136 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24137 freeb(hdr_mp); 24138 freemsg(mp_orig); 24139 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24140 "ip_wput_frag_end:(%S)", 24141 "couldn't carve first"); 24142 return; 24143 } 24144 24145 /* 24146 * Multirouting case. Each fragment is replicated 24147 * via all non-condemned RTF_MULTIRT routes 24148 * currently resolved. 24149 * We ensure that first_ire is the first RTF_MULTIRT 24150 * ire in the bucket. 24151 */ 24152 if (ire->ire_flags & RTF_MULTIRT) { 24153 irb = ire->ire_bucket; 24154 ASSERT(irb != NULL); 24155 24156 multirt_send = B_TRUE; 24157 24158 /* Make sure we do not omit any multiroute ire. */ 24159 IRB_REFHOLD(irb); 24160 for (first_ire = irb->irb_ire; 24161 first_ire != NULL; 24162 first_ire = first_ire->ire_next) { 24163 if ((first_ire->ire_flags & RTF_MULTIRT) && 24164 (first_ire->ire_addr == ire->ire_addr) && 24165 !(first_ire->ire_marks & 24166 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24167 break; 24168 } 24169 24170 if (first_ire != NULL) { 24171 if (first_ire != ire) { 24172 IRE_REFHOLD(first_ire); 24173 /* 24174 * Do not release the ire passed in 24175 * as the argument. 24176 */ 24177 ire = first_ire; 24178 } else { 24179 first_ire = NULL; 24180 } 24181 } 24182 IRB_REFRELE(irb); 24183 24184 /* 24185 * Save the first ire; we will need to restore it 24186 * for the trailing frags. 24187 * We REFHOLD save_ire, as each iterated ire will be 24188 * REFRELEd. 24189 */ 24190 save_ire = ire; 24191 IRE_REFHOLD(save_ire); 24192 } 24193 24194 /* 24195 * First fragment emission loop. 24196 * In most cases, the emission loop below is entered only 24197 * once. Only in the case where the ire holds the RTF_MULTIRT 24198 * flag, do we loop to process all RTF_MULTIRT ires in the 24199 * bucket, and send the fragment through all crossed 24200 * RTF_MULTIRT routes. 24201 */ 24202 do { 24203 if (ire->ire_flags & RTF_MULTIRT) { 24204 /* 24205 * We are in a multiple send case, need to get 24206 * the next ire and make a copy of the packet. 24207 * ire1 holds here the next ire to process in the 24208 * bucket. If multirouting is expected, 24209 * any non-RTF_MULTIRT ire that has the 24210 * right destination address is ignored. 24211 * 24212 * We have to take into account the MTU of 24213 * each walked ire. max_frag is set by the 24214 * the caller and generally refers to 24215 * the primary ire entry. Here we ensure that 24216 * no route with a lower MTU will be used, as 24217 * fragments are carved once for all ires, 24218 * then replicated. 24219 */ 24220 ASSERT(irb != NULL); 24221 IRB_REFHOLD(irb); 24222 for (ire1 = ire->ire_next; 24223 ire1 != NULL; 24224 ire1 = ire1->ire_next) { 24225 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24226 continue; 24227 if (ire1->ire_addr != ire->ire_addr) 24228 continue; 24229 if (ire1->ire_marks & 24230 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24231 continue; 24232 /* 24233 * Ensure we do not exceed the MTU 24234 * of the next route. 24235 */ 24236 if (ire1->ire_max_frag < max_frag) { 24237 ip_multirt_bad_mtu(ire1, max_frag); 24238 continue; 24239 } 24240 24241 /* Got one. */ 24242 IRE_REFHOLD(ire1); 24243 break; 24244 } 24245 IRB_REFRELE(irb); 24246 24247 if (ire1 != NULL) { 24248 next_mp = copyb(mp); 24249 if ((next_mp == NULL) || 24250 ((mp->b_cont != NULL) && 24251 ((next_mp->b_cont = 24252 dupmsg(mp->b_cont)) == NULL))) { 24253 freemsg(next_mp); 24254 next_mp = NULL; 24255 ire_refrele(ire1); 24256 ire1 = NULL; 24257 } 24258 } 24259 24260 /* Last multiroute ire; don't loop anymore. */ 24261 if (ire1 == NULL) { 24262 multirt_send = B_FALSE; 24263 } 24264 } 24265 24266 ll_hdr_len = 0; 24267 LOCK_IRE_FP_MP(ire); 24268 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24269 if (ll_hdr_mp != NULL) { 24270 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24271 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24272 } else { 24273 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24274 } 24275 24276 /* If there is a transmit header, get a copy for this frag. */ 24277 /* 24278 * TODO: should check db_ref before calling ip_carve_mp since 24279 * it might give us a dup. 24280 */ 24281 if (!ll_hdr_mp) { 24282 /* No xmit header. */ 24283 xmit_mp = mp; 24284 24285 /* We have a link-layer header that can fit in our mblk. */ 24286 } else if (mp->b_datap->db_ref == 1 && 24287 ll_hdr_len != 0 && 24288 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24289 /* M_DATA fastpath */ 24290 mp->b_rptr -= ll_hdr_len; 24291 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24292 xmit_mp = mp; 24293 24294 /* Corner case if copyb has failed */ 24295 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24296 UNLOCK_IRE_FP_MP(ire); 24297 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24298 freeb(hdr_mp); 24299 freemsg(mp); 24300 freemsg(mp_orig); 24301 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24302 "ip_wput_frag_end:(%S)", 24303 "discard"); 24304 24305 if (multirt_send) { 24306 ASSERT(ire1); 24307 ASSERT(next_mp); 24308 24309 freemsg(next_mp); 24310 ire_refrele(ire1); 24311 } 24312 if (save_ire != NULL) 24313 IRE_REFRELE(save_ire); 24314 24315 if (first_ire != NULL) 24316 ire_refrele(first_ire); 24317 return; 24318 24319 /* 24320 * Case of res_mp OR the fastpath mp can't fit 24321 * in the mblk 24322 */ 24323 } else { 24324 xmit_mp->b_cont = mp; 24325 if (DB_CRED(mp) != NULL) 24326 mblk_setcred(xmit_mp, DB_CRED(mp)); 24327 /* 24328 * Get priority marking, if any. 24329 * We propagate the CoS marking from the 24330 * original packet that went to QoS processing 24331 * in ip_wput_ire to the newly carved mp. 24332 */ 24333 if (DB_TYPE(xmit_mp) == M_DATA) 24334 xmit_mp->b_band = mp->b_band; 24335 } 24336 UNLOCK_IRE_FP_MP(ire); 24337 24338 q = ire->ire_stq; 24339 out_ill = (ill_t *)q->q_ptr; 24340 24341 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24342 24343 DTRACE_PROBE4(ip4__physical__out__start, 24344 ill_t *, NULL, ill_t *, out_ill, 24345 ipha_t *, ipha, mblk_t *, xmit_mp); 24346 24347 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24348 ipst->ips_ipv4firewall_physical_out, 24349 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24350 24351 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24352 24353 if (xmit_mp != NULL) { 24354 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24355 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24356 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24357 24358 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0); 24359 24360 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24361 UPDATE_MIB(out_ill->ill_ip_mib, 24362 ipIfStatsHCOutOctets, i1); 24363 24364 if (pkt_type != OB_PKT) { 24365 /* 24366 * Update the packet count and MIB stats 24367 * of trailing RTF_MULTIRT ires. 24368 */ 24369 UPDATE_OB_PKT_COUNT(ire); 24370 BUMP_MIB(out_ill->ill_ip_mib, 24371 ipIfStatsOutFragReqds); 24372 } 24373 } 24374 24375 if (multirt_send) { 24376 /* 24377 * We are in a multiple send case; look for 24378 * the next ire and re-enter the loop. 24379 */ 24380 ASSERT(ire1); 24381 ASSERT(next_mp); 24382 /* REFRELE the current ire before looping */ 24383 ire_refrele(ire); 24384 ire = ire1; 24385 ire1 = NULL; 24386 mp = next_mp; 24387 next_mp = NULL; 24388 } 24389 } while (multirt_send); 24390 24391 ASSERT(ire1 == NULL); 24392 24393 /* Restore the original ire; we need it for the trailing frags */ 24394 if (save_ire != NULL) { 24395 /* REFRELE the last iterated ire */ 24396 ire_refrele(ire); 24397 /* save_ire has been REFHOLDed */ 24398 ire = save_ire; 24399 save_ire = NULL; 24400 q = ire->ire_stq; 24401 } 24402 24403 if (pkt_type == OB_PKT) { 24404 UPDATE_OB_PKT_COUNT(ire); 24405 } else { 24406 out_ill = (ill_t *)q->q_ptr; 24407 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24408 UPDATE_IB_PKT_COUNT(ire); 24409 } 24410 24411 /* Advance the offset to the second frag starting point. */ 24412 offset += len; 24413 /* 24414 * Update hdr_len from the copied header - there might be less options 24415 * in the later fragments. 24416 */ 24417 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24418 /* Loop until done. */ 24419 for (;;) { 24420 uint16_t offset_and_flags; 24421 uint16_t ip_len; 24422 24423 if (ip_data_end - offset > len) { 24424 /* 24425 * Carve off the appropriate amount from the original 24426 * datagram. 24427 */ 24428 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24429 mp = NULL; 24430 break; 24431 } 24432 /* 24433 * More frags after this one. Get another copy 24434 * of the header. 24435 */ 24436 if (carve_mp->b_datap->db_ref == 1 && 24437 hdr_mp->b_wptr - hdr_mp->b_rptr < 24438 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24439 /* Inline IP header */ 24440 carve_mp->b_rptr -= hdr_mp->b_wptr - 24441 hdr_mp->b_rptr; 24442 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24443 hdr_mp->b_wptr - hdr_mp->b_rptr); 24444 mp = carve_mp; 24445 } else { 24446 if (!(mp = copyb(hdr_mp))) { 24447 freemsg(carve_mp); 24448 break; 24449 } 24450 /* Get priority marking, if any. */ 24451 mp->b_band = carve_mp->b_band; 24452 mp->b_cont = carve_mp; 24453 } 24454 ipha = (ipha_t *)mp->b_rptr; 24455 offset_and_flags = IPH_MF; 24456 } else { 24457 /* 24458 * Last frag. Consume the header. Set len to 24459 * the length of this last piece. 24460 */ 24461 len = ip_data_end - offset; 24462 24463 /* 24464 * Carve off the appropriate amount from the original 24465 * datagram. 24466 */ 24467 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24468 mp = NULL; 24469 break; 24470 } 24471 if (carve_mp->b_datap->db_ref == 1 && 24472 hdr_mp->b_wptr - hdr_mp->b_rptr < 24473 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24474 /* Inline IP header */ 24475 carve_mp->b_rptr -= hdr_mp->b_wptr - 24476 hdr_mp->b_rptr; 24477 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24478 hdr_mp->b_wptr - hdr_mp->b_rptr); 24479 mp = carve_mp; 24480 freeb(hdr_mp); 24481 hdr_mp = mp; 24482 } else { 24483 mp = hdr_mp; 24484 /* Get priority marking, if any. */ 24485 mp->b_band = carve_mp->b_band; 24486 mp->b_cont = carve_mp; 24487 } 24488 ipha = (ipha_t *)mp->b_rptr; 24489 /* A frag of a frag might have IPH_MF non-zero */ 24490 offset_and_flags = 24491 ntohs(ipha->ipha_fragment_offset_and_flags) & 24492 IPH_MF; 24493 } 24494 offset_and_flags |= (uint16_t)(offset >> 3); 24495 offset_and_flags |= (uint16_t)frag_flag; 24496 /* Store the offset and flags in the IP header. */ 24497 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24498 24499 /* Store the length in the IP header. */ 24500 ip_len = (uint16_t)(len + hdr_len); 24501 ipha->ipha_length = htons(ip_len); 24502 24503 /* 24504 * Set the IP header checksum. Note that mp is just 24505 * the header, so this is easy to pass to ip_csum. 24506 */ 24507 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24508 24509 /* Attach a transmit header, if any, and ship it. */ 24510 if (pkt_type == OB_PKT) { 24511 UPDATE_OB_PKT_COUNT(ire); 24512 } else { 24513 out_ill = (ill_t *)q->q_ptr; 24514 BUMP_MIB(out_ill->ill_ip_mib, 24515 ipIfStatsHCOutForwDatagrams); 24516 UPDATE_IB_PKT_COUNT(ire); 24517 } 24518 24519 if (ire->ire_flags & RTF_MULTIRT) { 24520 irb = ire->ire_bucket; 24521 ASSERT(irb != NULL); 24522 24523 multirt_send = B_TRUE; 24524 24525 /* 24526 * Save the original ire; we will need to restore it 24527 * for the tailing frags. 24528 */ 24529 save_ire = ire; 24530 IRE_REFHOLD(save_ire); 24531 } 24532 /* 24533 * Emission loop for this fragment, similar 24534 * to what is done for the first fragment. 24535 */ 24536 do { 24537 if (multirt_send) { 24538 /* 24539 * We are in a multiple send case, need to get 24540 * the next ire and make a copy of the packet. 24541 */ 24542 ASSERT(irb != NULL); 24543 IRB_REFHOLD(irb); 24544 for (ire1 = ire->ire_next; 24545 ire1 != NULL; 24546 ire1 = ire1->ire_next) { 24547 if (!(ire1->ire_flags & RTF_MULTIRT)) 24548 continue; 24549 if (ire1->ire_addr != ire->ire_addr) 24550 continue; 24551 if (ire1->ire_marks & 24552 (IRE_MARK_CONDEMNED | 24553 IRE_MARK_TESTHIDDEN)) 24554 continue; 24555 /* 24556 * Ensure we do not exceed the MTU 24557 * of the next route. 24558 */ 24559 if (ire1->ire_max_frag < max_frag) { 24560 ip_multirt_bad_mtu(ire1, 24561 max_frag); 24562 continue; 24563 } 24564 24565 /* Got one. */ 24566 IRE_REFHOLD(ire1); 24567 break; 24568 } 24569 IRB_REFRELE(irb); 24570 24571 if (ire1 != NULL) { 24572 next_mp = copyb(mp); 24573 if ((next_mp == NULL) || 24574 ((mp->b_cont != NULL) && 24575 ((next_mp->b_cont = 24576 dupmsg(mp->b_cont)) == NULL))) { 24577 freemsg(next_mp); 24578 next_mp = NULL; 24579 ire_refrele(ire1); 24580 ire1 = NULL; 24581 } 24582 } 24583 24584 /* Last multiroute ire; don't loop anymore. */ 24585 if (ire1 == NULL) { 24586 multirt_send = B_FALSE; 24587 } 24588 } 24589 24590 /* Update transmit header */ 24591 ll_hdr_len = 0; 24592 LOCK_IRE_FP_MP(ire); 24593 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24594 if (ll_hdr_mp != NULL) { 24595 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24596 ll_hdr_len = MBLKL(ll_hdr_mp); 24597 } else { 24598 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24599 } 24600 24601 if (!ll_hdr_mp) { 24602 xmit_mp = mp; 24603 24604 /* 24605 * We have link-layer header that can fit in 24606 * our mblk. 24607 */ 24608 } else if (mp->b_datap->db_ref == 1 && 24609 ll_hdr_len != 0 && 24610 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24611 /* M_DATA fastpath */ 24612 mp->b_rptr -= ll_hdr_len; 24613 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24614 ll_hdr_len); 24615 xmit_mp = mp; 24616 24617 /* 24618 * Case of res_mp OR the fastpath mp can't fit 24619 * in the mblk 24620 */ 24621 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24622 xmit_mp->b_cont = mp; 24623 if (DB_CRED(mp) != NULL) 24624 mblk_setcred(xmit_mp, DB_CRED(mp)); 24625 /* Get priority marking, if any. */ 24626 if (DB_TYPE(xmit_mp) == M_DATA) 24627 xmit_mp->b_band = mp->b_band; 24628 24629 /* Corner case if copyb failed */ 24630 } else { 24631 /* 24632 * Exit both the replication and 24633 * fragmentation loops. 24634 */ 24635 UNLOCK_IRE_FP_MP(ire); 24636 goto drop_pkt; 24637 } 24638 UNLOCK_IRE_FP_MP(ire); 24639 24640 mp1 = mp; 24641 out_ill = (ill_t *)q->q_ptr; 24642 24643 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24644 24645 DTRACE_PROBE4(ip4__physical__out__start, 24646 ill_t *, NULL, ill_t *, out_ill, 24647 ipha_t *, ipha, mblk_t *, xmit_mp); 24648 24649 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24650 ipst->ips_ipv4firewall_physical_out, 24651 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24652 24653 DTRACE_PROBE1(ip4__physical__out__end, 24654 mblk_t *, xmit_mp); 24655 24656 if (mp != mp1 && hdr_mp == mp1) 24657 hdr_mp = mp; 24658 if (mp != mp1 && mp_orig == mp1) 24659 mp_orig = mp; 24660 24661 if (xmit_mp != NULL) { 24662 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24663 NULL, void_ip_t *, ipha, 24664 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24665 ipha, ip6_t *, NULL, int, 0); 24666 24667 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0); 24668 24669 BUMP_MIB(out_ill->ill_ip_mib, 24670 ipIfStatsHCOutTransmits); 24671 UPDATE_MIB(out_ill->ill_ip_mib, 24672 ipIfStatsHCOutOctets, ip_len); 24673 24674 if (pkt_type != OB_PKT) { 24675 /* 24676 * Update the packet count of trailing 24677 * RTF_MULTIRT ires. 24678 */ 24679 UPDATE_OB_PKT_COUNT(ire); 24680 } 24681 } 24682 24683 /* All done if we just consumed the hdr_mp. */ 24684 if (mp == hdr_mp) { 24685 last_frag = B_TRUE; 24686 BUMP_MIB(out_ill->ill_ip_mib, 24687 ipIfStatsOutFragOKs); 24688 } 24689 24690 if (multirt_send) { 24691 /* 24692 * We are in a multiple send case; look for 24693 * the next ire and re-enter the loop. 24694 */ 24695 ASSERT(ire1); 24696 ASSERT(next_mp); 24697 /* REFRELE the current ire before looping */ 24698 ire_refrele(ire); 24699 ire = ire1; 24700 ire1 = NULL; 24701 q = ire->ire_stq; 24702 mp = next_mp; 24703 next_mp = NULL; 24704 } 24705 } while (multirt_send); 24706 /* 24707 * Restore the original ire; we need it for the 24708 * trailing frags 24709 */ 24710 if (save_ire != NULL) { 24711 ASSERT(ire1 == NULL); 24712 /* REFRELE the last iterated ire */ 24713 ire_refrele(ire); 24714 /* save_ire has been REFHOLDed */ 24715 ire = save_ire; 24716 q = ire->ire_stq; 24717 save_ire = NULL; 24718 } 24719 24720 if (last_frag) { 24721 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24722 "ip_wput_frag_end:(%S)", 24723 "consumed hdr_mp"); 24724 24725 if (first_ire != NULL) 24726 ire_refrele(first_ire); 24727 return; 24728 } 24729 /* Otherwise, advance and loop. */ 24730 offset += len; 24731 } 24732 24733 drop_pkt: 24734 /* Clean up following allocation failure. */ 24735 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24736 freemsg(mp); 24737 if (mp != hdr_mp) 24738 freeb(hdr_mp); 24739 if (mp != mp_orig) 24740 freemsg(mp_orig); 24741 24742 if (save_ire != NULL) 24743 IRE_REFRELE(save_ire); 24744 if (first_ire != NULL) 24745 ire_refrele(first_ire); 24746 24747 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24748 "ip_wput_frag_end:(%S)", 24749 "end--alloc failure"); 24750 } 24751 24752 /* 24753 * Copy the header plus those options which have the copy bit set 24754 */ 24755 static mblk_t * 24756 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24757 { 24758 mblk_t *mp; 24759 uchar_t *up; 24760 24761 /* 24762 * Quick check if we need to look for options without the copy bit 24763 * set 24764 */ 24765 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24766 if (!mp) 24767 return (mp); 24768 mp->b_rptr += ipst->ips_ip_wroff_extra; 24769 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24770 bcopy(rptr, mp->b_rptr, hdr_len); 24771 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24772 return (mp); 24773 } 24774 up = mp->b_rptr; 24775 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24776 up += IP_SIMPLE_HDR_LENGTH; 24777 rptr += IP_SIMPLE_HDR_LENGTH; 24778 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24779 while (hdr_len > 0) { 24780 uint32_t optval; 24781 uint32_t optlen; 24782 24783 optval = *rptr; 24784 if (optval == IPOPT_EOL) 24785 break; 24786 if (optval == IPOPT_NOP) 24787 optlen = 1; 24788 else 24789 optlen = rptr[1]; 24790 if (optval & IPOPT_COPY) { 24791 bcopy(rptr, up, optlen); 24792 up += optlen; 24793 } 24794 rptr += optlen; 24795 hdr_len -= optlen; 24796 } 24797 /* 24798 * Make sure that we drop an even number of words by filling 24799 * with EOL to the next word boundary. 24800 */ 24801 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24802 hdr_len & 0x3; hdr_len++) 24803 *up++ = IPOPT_EOL; 24804 mp->b_wptr = up; 24805 /* Update header length */ 24806 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24807 return (mp); 24808 } 24809 24810 /* 24811 * Delivery to local recipients including fanout to multiple recipients. 24812 * Does not do checksumming of UDP/TCP. 24813 * Note: q should be the read side queue for either the ill or conn. 24814 * Note: rq should be the read side q for the lower (ill) stream. 24815 * We don't send packets to IPPF processing, thus the last argument 24816 * to all the fanout calls are B_FALSE. 24817 */ 24818 void 24819 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24820 int fanout_flags, zoneid_t zoneid) 24821 { 24822 uint32_t protocol; 24823 mblk_t *first_mp; 24824 boolean_t mctl_present; 24825 int ire_type; 24826 #define rptr ((uchar_t *)ipha) 24827 ip_stack_t *ipst = ill->ill_ipst; 24828 24829 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24830 "ip_wput_local_start: q %p", q); 24831 24832 if (ire != NULL) { 24833 ire_type = ire->ire_type; 24834 } else { 24835 /* 24836 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24837 * packet is not multicast, we can't tell the ire type. 24838 */ 24839 ASSERT(CLASSD(ipha->ipha_dst)); 24840 ire_type = IRE_BROADCAST; 24841 } 24842 24843 first_mp = mp; 24844 if (first_mp->b_datap->db_type == M_CTL) { 24845 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24846 if (!io->ipsec_out_secure) { 24847 /* 24848 * This ipsec_out_t was allocated in ip_wput 24849 * for multicast packets to store the ill_index. 24850 * As this is being delivered locally, we don't 24851 * need this anymore. 24852 */ 24853 mp = first_mp->b_cont; 24854 freeb(first_mp); 24855 first_mp = mp; 24856 mctl_present = B_FALSE; 24857 } else { 24858 /* 24859 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24860 * security properties for the looped-back packet. 24861 */ 24862 mctl_present = B_TRUE; 24863 mp = first_mp->b_cont; 24864 ASSERT(mp != NULL); 24865 ipsec_out_to_in(first_mp); 24866 } 24867 } else { 24868 mctl_present = B_FALSE; 24869 } 24870 24871 DTRACE_PROBE4(ip4__loopback__in__start, 24872 ill_t *, ill, ill_t *, NULL, 24873 ipha_t *, ipha, mblk_t *, first_mp); 24874 24875 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24876 ipst->ips_ipv4firewall_loopback_in, 24877 ill, NULL, ipha, first_mp, mp, 0, ipst); 24878 24879 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24880 24881 if (first_mp == NULL) 24882 return; 24883 24884 if (ipst->ips_ipobs_enabled) { 24885 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 24886 zoneid_t stackzoneid = netstackid_to_zoneid( 24887 ipst->ips_netstack->netstack_stackid); 24888 24889 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 24890 /* 24891 * 127.0.0.1 is special, as we cannot lookup its zoneid by 24892 * address. Restrict the lookup below to the destination zone. 24893 */ 24894 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 24895 lookup_zoneid = zoneid; 24896 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 24897 lookup_zoneid); 24898 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 24899 IPV4_VERSION, 0, ipst); 24900 } 24901 24902 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 24903 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 24904 int, 1); 24905 24906 ipst->ips_loopback_packets++; 24907 24908 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24909 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24910 if (!IS_SIMPLE_IPH(ipha)) { 24911 ip_wput_local_options(ipha, ipst); 24912 } 24913 24914 protocol = ipha->ipha_protocol; 24915 switch (protocol) { 24916 case IPPROTO_ICMP: { 24917 ire_t *ire_zone; 24918 ilm_t *ilm; 24919 mblk_t *mp1; 24920 zoneid_t last_zoneid; 24921 ilm_walker_t ilw; 24922 24923 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24924 ASSERT(ire_type == IRE_BROADCAST); 24925 /* 24926 * In the multicast case, applications may have joined 24927 * the group from different zones, so we need to deliver 24928 * the packet to each of them. Loop through the 24929 * multicast memberships structures (ilm) on the receive 24930 * ill and send a copy of the packet up each matching 24931 * one. However, we don't do this for multicasts sent on 24932 * the loopback interface (PHYI_LOOPBACK flag set) as 24933 * they must stay in the sender's zone. 24934 * 24935 * ilm_add_v6() ensures that ilms in the same zone are 24936 * contiguous in the ill_ilm list. We use this property 24937 * to avoid sending duplicates needed when two 24938 * applications in the same zone join the same group on 24939 * different logical interfaces: we ignore the ilm if 24940 * it's zoneid is the same as the last matching one. 24941 * In addition, the sending of the packet for 24942 * ire_zoneid is delayed until all of the other ilms 24943 * have been exhausted. 24944 */ 24945 last_zoneid = -1; 24946 ilm = ilm_walker_start(&ilw, ill); 24947 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 24948 if (ipha->ipha_dst != ilm->ilm_addr || 24949 ilm->ilm_zoneid == last_zoneid || 24950 ilm->ilm_zoneid == zoneid || 24951 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24952 continue; 24953 mp1 = ip_copymsg(first_mp); 24954 if (mp1 == NULL) 24955 continue; 24956 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 24957 0, 0, mctl_present, B_FALSE, ill, 24958 ilm->ilm_zoneid); 24959 last_zoneid = ilm->ilm_zoneid; 24960 } 24961 ilm_walker_finish(&ilw); 24962 /* 24963 * Loopback case: the sending endpoint has 24964 * IP_MULTICAST_LOOP disabled, therefore we don't 24965 * dispatch the multicast packet to the sending zone. 24966 */ 24967 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24968 freemsg(first_mp); 24969 return; 24970 } 24971 } else if (ire_type == IRE_BROADCAST) { 24972 /* 24973 * In the broadcast case, there may be many zones 24974 * which need a copy of the packet delivered to them. 24975 * There is one IRE_BROADCAST per broadcast address 24976 * and per zone; we walk those using a helper function. 24977 * In addition, the sending of the packet for zoneid is 24978 * delayed until all of the other ires have been 24979 * processed. 24980 */ 24981 IRB_REFHOLD(ire->ire_bucket); 24982 ire_zone = NULL; 24983 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 24984 ire)) != NULL) { 24985 mp1 = ip_copymsg(first_mp); 24986 if (mp1 == NULL) 24987 continue; 24988 24989 UPDATE_IB_PKT_COUNT(ire_zone); 24990 ire_zone->ire_last_used_time = lbolt; 24991 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24992 mctl_present, B_FALSE, ill, 24993 ire_zone->ire_zoneid); 24994 } 24995 IRB_REFRELE(ire->ire_bucket); 24996 } 24997 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 24998 0, mctl_present, B_FALSE, ill, zoneid); 24999 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25000 "ip_wput_local_end: q %p (%S)", 25001 q, "icmp"); 25002 return; 25003 } 25004 case IPPROTO_IGMP: 25005 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25006 /* Bad packet - discarded by igmp_input */ 25007 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25008 "ip_wput_local_end: q %p (%S)", 25009 q, "igmp_input--bad packet"); 25010 if (mctl_present) 25011 freeb(first_mp); 25012 return; 25013 } 25014 /* 25015 * igmp_input() may have returned the pulled up message. 25016 * So first_mp and ipha need to be reinitialized. 25017 */ 25018 ipha = (ipha_t *)mp->b_rptr; 25019 if (mctl_present) 25020 first_mp->b_cont = mp; 25021 else 25022 first_mp = mp; 25023 /* deliver to local raw users */ 25024 break; 25025 case IPPROTO_ENCAP: 25026 /* 25027 * This case is covered by either ip_fanout_proto, or by 25028 * the above security processing for self-tunneled packets. 25029 */ 25030 break; 25031 case IPPROTO_UDP: { 25032 uint16_t *up; 25033 uint32_t ports; 25034 25035 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25036 UDP_PORTS_OFFSET); 25037 /* Force a 'valid' checksum. */ 25038 up[3] = 0; 25039 25040 ports = *(uint32_t *)up; 25041 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25042 (ire_type == IRE_BROADCAST), 25043 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25044 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25045 ill, zoneid); 25046 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25047 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25048 return; 25049 } 25050 case IPPROTO_TCP: { 25051 25052 /* 25053 * For TCP, discard broadcast packets. 25054 */ 25055 if ((ushort_t)ire_type == IRE_BROADCAST) { 25056 freemsg(first_mp); 25057 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25058 ip2dbg(("ip_wput_local: discard broadcast\n")); 25059 return; 25060 } 25061 25062 if (mp->b_datap->db_type == M_DATA) { 25063 /* 25064 * M_DATA mblk, so init mblk (chain) for no struio(). 25065 */ 25066 mblk_t *mp1 = mp; 25067 25068 do { 25069 mp1->b_datap->db_struioflag = 0; 25070 } while ((mp1 = mp1->b_cont) != NULL); 25071 } 25072 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25073 <= mp->b_wptr); 25074 ip_fanout_tcp(q, first_mp, ill, ipha, 25075 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25076 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25077 mctl_present, B_FALSE, zoneid); 25078 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25079 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25080 return; 25081 } 25082 case IPPROTO_SCTP: 25083 { 25084 uint32_t ports; 25085 25086 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25087 ip_fanout_sctp(first_mp, ill, ipha, ports, 25088 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25089 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25090 return; 25091 } 25092 25093 default: 25094 break; 25095 } 25096 /* 25097 * Find a client for some other protocol. We give 25098 * copies to multiple clients, if more than one is 25099 * bound. 25100 */ 25101 ip_fanout_proto(q, first_mp, ill, ipha, 25102 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25103 mctl_present, B_FALSE, ill, zoneid); 25104 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25105 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25106 #undef rptr 25107 } 25108 25109 /* 25110 * Update any source route, record route, or timestamp options. 25111 * Check that we are at end of strict source route. 25112 * The options have been sanity checked by ip_wput_options(). 25113 */ 25114 static void 25115 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25116 { 25117 ipoptp_t opts; 25118 uchar_t *opt; 25119 uint8_t optval; 25120 uint8_t optlen; 25121 ipaddr_t dst; 25122 uint32_t ts; 25123 ire_t *ire; 25124 timestruc_t now; 25125 25126 ip2dbg(("ip_wput_local_options\n")); 25127 for (optval = ipoptp_first(&opts, ipha); 25128 optval != IPOPT_EOL; 25129 optval = ipoptp_next(&opts)) { 25130 opt = opts.ipoptp_cur; 25131 optlen = opts.ipoptp_len; 25132 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25133 switch (optval) { 25134 uint32_t off; 25135 case IPOPT_SSRR: 25136 case IPOPT_LSRR: 25137 off = opt[IPOPT_OFFSET]; 25138 off--; 25139 if (optlen < IP_ADDR_LEN || 25140 off > optlen - IP_ADDR_LEN) { 25141 /* End of source route */ 25142 break; 25143 } 25144 /* 25145 * This will only happen if two consecutive entries 25146 * in the source route contains our address or if 25147 * it is a packet with a loose source route which 25148 * reaches us before consuming the whole source route 25149 */ 25150 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25151 if (optval == IPOPT_SSRR) { 25152 return; 25153 } 25154 /* 25155 * Hack: instead of dropping the packet truncate the 25156 * source route to what has been used by filling the 25157 * rest with IPOPT_NOP. 25158 */ 25159 opt[IPOPT_OLEN] = (uint8_t)off; 25160 while (off < optlen) { 25161 opt[off++] = IPOPT_NOP; 25162 } 25163 break; 25164 case IPOPT_RR: 25165 off = opt[IPOPT_OFFSET]; 25166 off--; 25167 if (optlen < IP_ADDR_LEN || 25168 off > optlen - IP_ADDR_LEN) { 25169 /* No more room - ignore */ 25170 ip1dbg(( 25171 "ip_wput_forward_options: end of RR\n")); 25172 break; 25173 } 25174 dst = htonl(INADDR_LOOPBACK); 25175 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25176 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25177 break; 25178 case IPOPT_TS: 25179 /* Insert timestamp if there is romm */ 25180 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25181 case IPOPT_TS_TSONLY: 25182 off = IPOPT_TS_TIMELEN; 25183 break; 25184 case IPOPT_TS_PRESPEC: 25185 case IPOPT_TS_PRESPEC_RFC791: 25186 /* Verify that the address matched */ 25187 off = opt[IPOPT_OFFSET] - 1; 25188 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25189 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25190 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25191 ipst); 25192 if (ire == NULL) { 25193 /* Not for us */ 25194 break; 25195 } 25196 ire_refrele(ire); 25197 /* FALLTHRU */ 25198 case IPOPT_TS_TSANDADDR: 25199 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25200 break; 25201 default: 25202 /* 25203 * ip_*put_options should have already 25204 * dropped this packet. 25205 */ 25206 cmn_err(CE_PANIC, "ip_wput_local_options: " 25207 "unknown IT - bug in ip_wput_options?\n"); 25208 return; /* Keep "lint" happy */ 25209 } 25210 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25211 /* Increase overflow counter */ 25212 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25213 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25214 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25215 (off << 4); 25216 break; 25217 } 25218 off = opt[IPOPT_OFFSET] - 1; 25219 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25220 case IPOPT_TS_PRESPEC: 25221 case IPOPT_TS_PRESPEC_RFC791: 25222 case IPOPT_TS_TSANDADDR: 25223 dst = htonl(INADDR_LOOPBACK); 25224 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25225 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25226 /* FALLTHRU */ 25227 case IPOPT_TS_TSONLY: 25228 off = opt[IPOPT_OFFSET] - 1; 25229 /* Compute # of milliseconds since midnight */ 25230 gethrestime(&now); 25231 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25232 now.tv_nsec / (NANOSEC / MILLISEC); 25233 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25234 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25235 break; 25236 } 25237 break; 25238 } 25239 } 25240 } 25241 25242 /* 25243 * Send out a multicast packet on interface ipif. 25244 * The sender does not have an conn. 25245 * Caller verifies that this isn't a PHYI_LOOPBACK. 25246 */ 25247 void 25248 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25249 { 25250 ipha_t *ipha; 25251 ire_t *ire; 25252 ipaddr_t dst; 25253 mblk_t *first_mp; 25254 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25255 25256 /* igmp_sendpkt always allocates a ipsec_out_t */ 25257 ASSERT(mp->b_datap->db_type == M_CTL); 25258 ASSERT(!ipif->ipif_isv6); 25259 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25260 25261 first_mp = mp; 25262 mp = first_mp->b_cont; 25263 ASSERT(mp->b_datap->db_type == M_DATA); 25264 ipha = (ipha_t *)mp->b_rptr; 25265 25266 /* 25267 * Find an IRE which matches the destination and the outgoing 25268 * queue (i.e. the outgoing interface.) 25269 */ 25270 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25271 dst = ipif->ipif_pp_dst_addr; 25272 else 25273 dst = ipha->ipha_dst; 25274 /* 25275 * The source address has already been initialized by the 25276 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25277 * be sufficient rather than MATCH_IRE_IPIF. 25278 * 25279 * This function is used for sending IGMP packets. For IPMP, 25280 * we sidestep IGMP snooping issues by sending all multicast 25281 * traffic on a single interface in the IPMP group. 25282 */ 25283 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25284 MATCH_IRE_ILL, ipst); 25285 if (!ire) { 25286 /* 25287 * Mark this packet to make it be delivered to 25288 * ip_wput_ire after the new ire has been 25289 * created. 25290 */ 25291 mp->b_prev = NULL; 25292 mp->b_next = NULL; 25293 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25294 zoneid, &zero_info); 25295 return; 25296 } 25297 25298 /* 25299 * Honor the RTF_SETSRC flag; this is the only case 25300 * where we force this addr whatever the current src addr is, 25301 * because this address is set by igmp_sendpkt(), and 25302 * cannot be specified by any user. 25303 */ 25304 if (ire->ire_flags & RTF_SETSRC) { 25305 ipha->ipha_src = ire->ire_src_addr; 25306 } 25307 25308 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25309 } 25310 25311 /* 25312 * NOTE : This function does not ire_refrele the ire argument passed in. 25313 * 25314 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25315 * failure. The nce_fp_mp can vanish any time in the case of 25316 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25317 * the ire_lock to access the nce_fp_mp in this case. 25318 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25319 * prepending a fastpath message IPQoS processing must precede it, we also set 25320 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25321 * (IPQoS might have set the b_band for CoS marking). 25322 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25323 * must follow it so that IPQoS can mark the dl_priority field for CoS 25324 * marking, if needed. 25325 */ 25326 static mblk_t * 25327 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25328 uint32_t ill_index, ipha_t **iphap) 25329 { 25330 uint_t hlen; 25331 ipha_t *ipha; 25332 mblk_t *mp1; 25333 boolean_t qos_done = B_FALSE; 25334 uchar_t *ll_hdr; 25335 ip_stack_t *ipst = ire->ire_ipst; 25336 25337 #define rptr ((uchar_t *)ipha) 25338 25339 ipha = (ipha_t *)mp->b_rptr; 25340 hlen = 0; 25341 LOCK_IRE_FP_MP(ire); 25342 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25343 ASSERT(DB_TYPE(mp1) == M_DATA); 25344 /* Initiate IPPF processing */ 25345 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25346 UNLOCK_IRE_FP_MP(ire); 25347 ip_process(proc, &mp, ill_index); 25348 if (mp == NULL) 25349 return (NULL); 25350 25351 ipha = (ipha_t *)mp->b_rptr; 25352 LOCK_IRE_FP_MP(ire); 25353 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25354 qos_done = B_TRUE; 25355 goto no_fp_mp; 25356 } 25357 ASSERT(DB_TYPE(mp1) == M_DATA); 25358 } 25359 hlen = MBLKL(mp1); 25360 /* 25361 * Check if we have enough room to prepend fastpath 25362 * header 25363 */ 25364 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25365 ll_hdr = rptr - hlen; 25366 bcopy(mp1->b_rptr, ll_hdr, hlen); 25367 /* 25368 * Set the b_rptr to the start of the link layer 25369 * header 25370 */ 25371 mp->b_rptr = ll_hdr; 25372 mp1 = mp; 25373 } else { 25374 mp1 = copyb(mp1); 25375 if (mp1 == NULL) 25376 goto unlock_err; 25377 mp1->b_band = mp->b_band; 25378 mp1->b_cont = mp; 25379 /* 25380 * certain system generated traffic may not 25381 * have cred/label in ip header block. This 25382 * is true even for a labeled system. But for 25383 * labeled traffic, inherit the label in the 25384 * new header. 25385 */ 25386 if (DB_CRED(mp) != NULL) 25387 mblk_setcred(mp1, DB_CRED(mp)); 25388 /* 25389 * XXX disable ICK_VALID and compute checksum 25390 * here; can happen if nce_fp_mp changes and 25391 * it can't be copied now due to insufficient 25392 * space. (unlikely, fp mp can change, but it 25393 * does not increase in length) 25394 */ 25395 } 25396 UNLOCK_IRE_FP_MP(ire); 25397 } else { 25398 no_fp_mp: 25399 mp1 = copyb(ire->ire_nce->nce_res_mp); 25400 if (mp1 == NULL) { 25401 unlock_err: 25402 UNLOCK_IRE_FP_MP(ire); 25403 freemsg(mp); 25404 return (NULL); 25405 } 25406 UNLOCK_IRE_FP_MP(ire); 25407 mp1->b_cont = mp; 25408 /* 25409 * certain system generated traffic may not 25410 * have cred/label in ip header block. This 25411 * is true even for a labeled system. But for 25412 * labeled traffic, inherit the label in the 25413 * new header. 25414 */ 25415 if (DB_CRED(mp) != NULL) 25416 mblk_setcred(mp1, DB_CRED(mp)); 25417 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25418 ip_process(proc, &mp1, ill_index); 25419 if (mp1 == NULL) 25420 return (NULL); 25421 25422 if (mp1->b_cont == NULL) 25423 ipha = NULL; 25424 else 25425 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25426 } 25427 } 25428 25429 *iphap = ipha; 25430 return (mp1); 25431 #undef rptr 25432 } 25433 25434 /* 25435 * Finish the outbound IPsec processing for an IPv6 packet. This function 25436 * is called from ipsec_out_process() if the IPsec packet was processed 25437 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25438 * asynchronously. 25439 */ 25440 void 25441 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25442 ire_t *ire_arg) 25443 { 25444 in6_addr_t *v6dstp; 25445 ire_t *ire; 25446 mblk_t *mp; 25447 ip6_t *ip6h1; 25448 uint_t ill_index; 25449 ipsec_out_t *io; 25450 boolean_t hwaccel; 25451 uint32_t flags = IP6_NO_IPPOLICY; 25452 int match_flags; 25453 zoneid_t zoneid; 25454 boolean_t ill_need_rele = B_FALSE; 25455 boolean_t ire_need_rele = B_FALSE; 25456 ip_stack_t *ipst; 25457 25458 mp = ipsec_mp->b_cont; 25459 ip6h1 = (ip6_t *)mp->b_rptr; 25460 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25461 ASSERT(io->ipsec_out_ns != NULL); 25462 ipst = io->ipsec_out_ns->netstack_ip; 25463 ill_index = io->ipsec_out_ill_index; 25464 if (io->ipsec_out_reachable) { 25465 flags |= IPV6_REACHABILITY_CONFIRMATION; 25466 } 25467 hwaccel = io->ipsec_out_accelerated; 25468 zoneid = io->ipsec_out_zoneid; 25469 ASSERT(zoneid != ALL_ZONES); 25470 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25471 /* Multicast addresses should have non-zero ill_index. */ 25472 v6dstp = &ip6h->ip6_dst; 25473 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25474 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25475 25476 if (ill == NULL && ill_index != 0) { 25477 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25478 /* Failure case frees things for us. */ 25479 if (ill == NULL) 25480 return; 25481 25482 ill_need_rele = B_TRUE; 25483 } 25484 ASSERT(mp != NULL); 25485 25486 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25487 boolean_t unspec_src; 25488 ipif_t *ipif; 25489 25490 /* 25491 * Use the ill_index to get the right ill. 25492 */ 25493 unspec_src = io->ipsec_out_unspec_src; 25494 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25495 if (ipif == NULL) { 25496 if (ill_need_rele) 25497 ill_refrele(ill); 25498 freemsg(ipsec_mp); 25499 return; 25500 } 25501 25502 if (ire_arg != NULL) { 25503 ire = ire_arg; 25504 } else { 25505 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25506 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25507 ire_need_rele = B_TRUE; 25508 } 25509 if (ire != NULL) { 25510 ipif_refrele(ipif); 25511 /* 25512 * XXX Do the multicast forwarding now, as the IPsec 25513 * processing has been done. 25514 */ 25515 goto send; 25516 } 25517 25518 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25519 mp->b_prev = NULL; 25520 mp->b_next = NULL; 25521 25522 /* 25523 * If the IPsec packet was processed asynchronously, 25524 * drop it now. 25525 */ 25526 if (q == NULL) { 25527 if (ill_need_rele) 25528 ill_refrele(ill); 25529 freemsg(ipsec_mp); 25530 return; 25531 } 25532 25533 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25534 unspec_src, zoneid); 25535 ipif_refrele(ipif); 25536 } else { 25537 if (ire_arg != NULL) { 25538 ire = ire_arg; 25539 } else { 25540 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25541 ire_need_rele = B_TRUE; 25542 } 25543 if (ire != NULL) 25544 goto send; 25545 /* 25546 * ire disappeared underneath. 25547 * 25548 * What we need to do here is the ip_newroute 25549 * logic to get the ire without doing the IPsec 25550 * processing. Follow the same old path. But this 25551 * time, ip_wput or ire_add_then_send will call us 25552 * directly as all the IPsec operations are done. 25553 */ 25554 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25555 mp->b_prev = NULL; 25556 mp->b_next = NULL; 25557 25558 /* 25559 * If the IPsec packet was processed asynchronously, 25560 * drop it now. 25561 */ 25562 if (q == NULL) { 25563 if (ill_need_rele) 25564 ill_refrele(ill); 25565 freemsg(ipsec_mp); 25566 return; 25567 } 25568 25569 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25570 zoneid, ipst); 25571 } 25572 if (ill != NULL && ill_need_rele) 25573 ill_refrele(ill); 25574 return; 25575 send: 25576 if (ill != NULL && ill_need_rele) 25577 ill_refrele(ill); 25578 25579 /* Local delivery */ 25580 if (ire->ire_stq == NULL) { 25581 ill_t *out_ill; 25582 ASSERT(q != NULL); 25583 25584 /* PFHooks: LOOPBACK_OUT */ 25585 out_ill = ire_to_ill(ire); 25586 25587 /* 25588 * DTrace this as ip:::send. A blocked packet will fire the 25589 * send probe, but not the receive probe. 25590 */ 25591 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25592 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25593 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25594 25595 DTRACE_PROBE4(ip6__loopback__out__start, 25596 ill_t *, NULL, ill_t *, out_ill, 25597 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25598 25599 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25600 ipst->ips_ipv6firewall_loopback_out, 25601 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25602 25603 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25604 25605 if (ipsec_mp != NULL) { 25606 ip_wput_local_v6(RD(q), out_ill, 25607 ip6h, ipsec_mp, ire, 0, zoneid); 25608 } 25609 if (ire_need_rele) 25610 ire_refrele(ire); 25611 return; 25612 } 25613 /* 25614 * Everything is done. Send it out on the wire. 25615 * We force the insertion of a fragment header using the 25616 * IPH_FRAG_HDR flag in two cases: 25617 * - after reception of an ICMPv6 "packet too big" message 25618 * with a MTU < 1280 (cf. RFC 2460 section 5) 25619 * - for multirouted IPv6 packets, so that the receiver can 25620 * discard duplicates according to their fragment identifier 25621 */ 25622 /* XXX fix flow control problems. */ 25623 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25624 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25625 if (hwaccel) { 25626 /* 25627 * hardware acceleration does not handle these 25628 * "slow path" cases. 25629 */ 25630 /* IPsec KSTATS: should bump bean counter here. */ 25631 if (ire_need_rele) 25632 ire_refrele(ire); 25633 freemsg(ipsec_mp); 25634 return; 25635 } 25636 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25637 (mp->b_cont ? msgdsize(mp) : 25638 mp->b_wptr - (uchar_t *)ip6h)) { 25639 /* IPsec KSTATS: should bump bean counter here. */ 25640 ip0dbg(("Packet length mismatch: %d, %ld\n", 25641 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25642 msgdsize(mp))); 25643 if (ire_need_rele) 25644 ire_refrele(ire); 25645 freemsg(ipsec_mp); 25646 return; 25647 } 25648 ASSERT(mp->b_prev == NULL); 25649 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25650 ntohs(ip6h->ip6_plen) + 25651 IPV6_HDR_LEN, ire->ire_max_frag)); 25652 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25653 ire->ire_max_frag); 25654 } else { 25655 UPDATE_OB_PKT_COUNT(ire); 25656 ire->ire_last_used_time = lbolt; 25657 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25658 } 25659 if (ire_need_rele) 25660 ire_refrele(ire); 25661 freeb(ipsec_mp); 25662 } 25663 25664 void 25665 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25666 { 25667 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25668 da_ipsec_t *hada; /* data attributes */ 25669 ill_t *ill = (ill_t *)q->q_ptr; 25670 25671 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25672 25673 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25674 /* IPsec KSTATS: Bump lose counter here! */ 25675 freemsg(mp); 25676 return; 25677 } 25678 25679 /* 25680 * It's an IPsec packet that must be 25681 * accelerated by the Provider, and the 25682 * outbound ill is IPsec acceleration capable. 25683 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25684 * to the ill. 25685 * IPsec KSTATS: should bump packet counter here. 25686 */ 25687 25688 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25689 if (hada_mp == NULL) { 25690 /* IPsec KSTATS: should bump packet counter here. */ 25691 freemsg(mp); 25692 return; 25693 } 25694 25695 hada_mp->b_datap->db_type = M_CTL; 25696 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25697 hada_mp->b_cont = mp; 25698 25699 hada = (da_ipsec_t *)hada_mp->b_rptr; 25700 bzero(hada, sizeof (da_ipsec_t)); 25701 hada->da_type = IPHADA_M_CTL; 25702 25703 putnext(q, hada_mp); 25704 } 25705 25706 /* 25707 * Finish the outbound IPsec processing. This function is called from 25708 * ipsec_out_process() if the IPsec packet was processed 25709 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25710 * asynchronously. 25711 */ 25712 void 25713 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25714 ire_t *ire_arg) 25715 { 25716 uint32_t v_hlen_tos_len; 25717 ipaddr_t dst; 25718 ipif_t *ipif = NULL; 25719 ire_t *ire; 25720 ire_t *ire1 = NULL; 25721 mblk_t *next_mp = NULL; 25722 uint32_t max_frag; 25723 boolean_t multirt_send = B_FALSE; 25724 mblk_t *mp; 25725 ipha_t *ipha1; 25726 uint_t ill_index; 25727 ipsec_out_t *io; 25728 int match_flags; 25729 irb_t *irb = NULL; 25730 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25731 zoneid_t zoneid; 25732 ipxmit_state_t pktxmit_state; 25733 ip_stack_t *ipst; 25734 25735 #ifdef _BIG_ENDIAN 25736 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25737 #else 25738 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25739 #endif 25740 25741 mp = ipsec_mp->b_cont; 25742 ipha1 = (ipha_t *)mp->b_rptr; 25743 ASSERT(mp != NULL); 25744 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25745 dst = ipha->ipha_dst; 25746 25747 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25748 ill_index = io->ipsec_out_ill_index; 25749 zoneid = io->ipsec_out_zoneid; 25750 ASSERT(zoneid != ALL_ZONES); 25751 ipst = io->ipsec_out_ns->netstack_ip; 25752 ASSERT(io->ipsec_out_ns != NULL); 25753 25754 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25755 if (ill == NULL && ill_index != 0) { 25756 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25757 /* Failure case frees things for us. */ 25758 if (ill == NULL) 25759 return; 25760 25761 ill_need_rele = B_TRUE; 25762 } 25763 25764 if (CLASSD(dst)) { 25765 boolean_t conn_dontroute; 25766 /* 25767 * Use the ill_index to get the right ipif. 25768 */ 25769 conn_dontroute = io->ipsec_out_dontroute; 25770 if (ill_index == 0) 25771 ipif = ipif_lookup_group(dst, zoneid, ipst); 25772 else 25773 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25774 if (ipif == NULL) { 25775 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25776 " multicast\n")); 25777 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25778 freemsg(ipsec_mp); 25779 goto done; 25780 } 25781 /* 25782 * ipha_src has already been intialized with the 25783 * value of the ipif in ip_wput. All we need now is 25784 * an ire to send this downstream. 25785 */ 25786 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25787 MBLK_GETLABEL(mp), match_flags, ipst); 25788 if (ire != NULL) { 25789 ill_t *ill1; 25790 /* 25791 * Do the multicast forwarding now, as the IPsec 25792 * processing has been done. 25793 */ 25794 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25795 (ill1 = ire_to_ill(ire))) { 25796 if (ip_mforward(ill1, ipha, mp)) { 25797 freemsg(ipsec_mp); 25798 ip1dbg(("ip_wput_ipsec_out: mforward " 25799 "failed\n")); 25800 ire_refrele(ire); 25801 goto done; 25802 } 25803 } 25804 goto send; 25805 } 25806 25807 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25808 mp->b_prev = NULL; 25809 mp->b_next = NULL; 25810 25811 /* 25812 * If the IPsec packet was processed asynchronously, 25813 * drop it now. 25814 */ 25815 if (q == NULL) { 25816 freemsg(ipsec_mp); 25817 goto done; 25818 } 25819 25820 /* 25821 * We may be using a wrong ipif to create the ire. 25822 * But it is okay as the source address is assigned 25823 * for the packet already. Next outbound packet would 25824 * create the IRE with the right IPIF in ip_wput. 25825 * 25826 * Also handle RTF_MULTIRT routes. 25827 */ 25828 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25829 zoneid, &zero_info); 25830 } else { 25831 if (ire_arg != NULL) { 25832 ire = ire_arg; 25833 ire_need_rele = B_FALSE; 25834 } else { 25835 ire = ire_cache_lookup(dst, zoneid, 25836 MBLK_GETLABEL(mp), ipst); 25837 } 25838 if (ire != NULL) { 25839 goto send; 25840 } 25841 25842 /* 25843 * ire disappeared underneath. 25844 * 25845 * What we need to do here is the ip_newroute 25846 * logic to get the ire without doing the IPsec 25847 * processing. Follow the same old path. But this 25848 * time, ip_wput or ire_add_then_put will call us 25849 * directly as all the IPsec operations are done. 25850 */ 25851 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25852 mp->b_prev = NULL; 25853 mp->b_next = NULL; 25854 25855 /* 25856 * If the IPsec packet was processed asynchronously, 25857 * drop it now. 25858 */ 25859 if (q == NULL) { 25860 freemsg(ipsec_mp); 25861 goto done; 25862 } 25863 25864 /* 25865 * Since we're going through ip_newroute() again, we 25866 * need to make sure we don't: 25867 * 25868 * 1.) Trigger the ASSERT() with the ipha_ident 25869 * overloading. 25870 * 2.) Redo transport-layer checksumming, since we've 25871 * already done all that to get this far. 25872 * 25873 * The easiest way not do either of the above is to set 25874 * the ipha_ident field to IP_HDR_INCLUDED. 25875 */ 25876 ipha->ipha_ident = IP_HDR_INCLUDED; 25877 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25878 zoneid, ipst); 25879 } 25880 goto done; 25881 send: 25882 if (ire->ire_stq == NULL) { 25883 ill_t *out_ill; 25884 /* 25885 * Loopbacks go through ip_wput_local except for one case. 25886 * We come here if we generate a icmp_frag_needed message 25887 * after IPsec processing is over. When this function calls 25888 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25889 * icmp_frag_needed. The message generated comes back here 25890 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25891 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25892 * source address as it is usually set in ip_wput_ire. As 25893 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25894 * and we end up here. We can't enter ip_wput_ire once the 25895 * IPsec processing is over and hence we need to do it here. 25896 */ 25897 ASSERT(q != NULL); 25898 UPDATE_OB_PKT_COUNT(ire); 25899 ire->ire_last_used_time = lbolt; 25900 if (ipha->ipha_src == 0) 25901 ipha->ipha_src = ire->ire_src_addr; 25902 25903 /* PFHooks: LOOPBACK_OUT */ 25904 out_ill = ire_to_ill(ire); 25905 25906 /* 25907 * DTrace this as ip:::send. A blocked packet will fire the 25908 * send probe, but not the receive probe. 25909 */ 25910 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25911 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 25912 ipha_t *, ipha, ip6_t *, NULL, int, 1); 25913 25914 DTRACE_PROBE4(ip4__loopback__out__start, 25915 ill_t *, NULL, ill_t *, out_ill, 25916 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25917 25918 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25919 ipst->ips_ipv4firewall_loopback_out, 25920 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 25921 25922 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25923 25924 if (ipsec_mp != NULL) 25925 ip_wput_local(RD(q), out_ill, 25926 ipha, ipsec_mp, ire, 0, zoneid); 25927 if (ire_need_rele) 25928 ire_refrele(ire); 25929 goto done; 25930 } 25931 25932 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25933 /* 25934 * We are through with IPsec processing. 25935 * Fragment this and send it on the wire. 25936 */ 25937 if (io->ipsec_out_accelerated) { 25938 /* 25939 * The packet has been accelerated but must 25940 * be fragmented. This should not happen 25941 * since AH and ESP must not accelerate 25942 * packets that need fragmentation, however 25943 * the configuration could have changed 25944 * since the AH or ESP processing. 25945 * Drop packet. 25946 * IPsec KSTATS: bump bean counter here. 25947 */ 25948 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25949 "fragmented accelerated packet!\n")); 25950 freemsg(ipsec_mp); 25951 } else { 25952 ip_wput_ire_fragmentit(ipsec_mp, ire, 25953 zoneid, ipst, NULL); 25954 } 25955 if (ire_need_rele) 25956 ire_refrele(ire); 25957 goto done; 25958 } 25959 25960 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25961 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25962 (void *)ire->ire_ipif, (void *)ipif)); 25963 25964 /* 25965 * Multiroute the secured packet. 25966 */ 25967 if (ire->ire_flags & RTF_MULTIRT) { 25968 ire_t *first_ire; 25969 irb = ire->ire_bucket; 25970 ASSERT(irb != NULL); 25971 /* 25972 * This ire has been looked up as the one that 25973 * goes through the given ipif; 25974 * make sure we do not omit any other multiroute ire 25975 * that may be present in the bucket before this one. 25976 */ 25977 IRB_REFHOLD(irb); 25978 for (first_ire = irb->irb_ire; 25979 first_ire != NULL; 25980 first_ire = first_ire->ire_next) { 25981 if ((first_ire->ire_flags & RTF_MULTIRT) && 25982 (first_ire->ire_addr == ire->ire_addr) && 25983 !(first_ire->ire_marks & 25984 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 25985 break; 25986 } 25987 25988 if ((first_ire != NULL) && (first_ire != ire)) { 25989 /* 25990 * Don't change the ire if the packet must 25991 * be fragmented if sent via this new one. 25992 */ 25993 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 25994 IRE_REFHOLD(first_ire); 25995 if (ire_need_rele) 25996 ire_refrele(ire); 25997 else 25998 ire_need_rele = B_TRUE; 25999 ire = first_ire; 26000 } 26001 } 26002 IRB_REFRELE(irb); 26003 26004 multirt_send = B_TRUE; 26005 max_frag = ire->ire_max_frag; 26006 } 26007 26008 /* 26009 * In most cases, the emission loop below is entered only once. 26010 * Only in the case where the ire holds the RTF_MULTIRT 26011 * flag, we loop to process all RTF_MULTIRT ires in the 26012 * bucket, and send the packet through all crossed 26013 * RTF_MULTIRT routes. 26014 */ 26015 do { 26016 if (multirt_send) { 26017 /* 26018 * ire1 holds here the next ire to process in the 26019 * bucket. If multirouting is expected, 26020 * any non-RTF_MULTIRT ire that has the 26021 * right destination address is ignored. 26022 */ 26023 ASSERT(irb != NULL); 26024 IRB_REFHOLD(irb); 26025 for (ire1 = ire->ire_next; 26026 ire1 != NULL; 26027 ire1 = ire1->ire_next) { 26028 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26029 continue; 26030 if (ire1->ire_addr != ire->ire_addr) 26031 continue; 26032 if (ire1->ire_marks & 26033 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26034 continue; 26035 /* No loopback here */ 26036 if (ire1->ire_stq == NULL) 26037 continue; 26038 /* 26039 * Ensure we do not exceed the MTU 26040 * of the next route. 26041 */ 26042 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26043 ip_multirt_bad_mtu(ire1, max_frag); 26044 continue; 26045 } 26046 26047 IRE_REFHOLD(ire1); 26048 break; 26049 } 26050 IRB_REFRELE(irb); 26051 if (ire1 != NULL) { 26052 /* 26053 * We are in a multiple send case, need to 26054 * make a copy of the packet. 26055 */ 26056 next_mp = copymsg(ipsec_mp); 26057 if (next_mp == NULL) { 26058 ire_refrele(ire1); 26059 ire1 = NULL; 26060 } 26061 } 26062 } 26063 /* 26064 * Everything is done. Send it out on the wire 26065 * 26066 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26067 * either send it on the wire or, in the case of 26068 * HW acceleration, call ipsec_hw_putnext. 26069 */ 26070 if (ire->ire_nce && 26071 ire->ire_nce->nce_state != ND_REACHABLE) { 26072 DTRACE_PROBE2(ip__wput__ipsec__bail, 26073 (ire_t *), ire, (mblk_t *), ipsec_mp); 26074 /* 26075 * If ire's link-layer is unresolved (this 26076 * would only happen if the incomplete ire 26077 * was added to cachetable via forwarding path) 26078 * don't bother going to ip_xmit_v4. Just drop the 26079 * packet. 26080 * There is a slight risk here, in that, if we 26081 * have the forwarding path create an incomplete 26082 * IRE, then until the IRE is completed, any 26083 * transmitted IPsec packets will be dropped 26084 * instead of being queued waiting for resolution. 26085 * 26086 * But the likelihood of a forwarding packet and a wput 26087 * packet sending to the same dst at the same time 26088 * and there not yet be an ARP entry for it is small. 26089 * Furthermore, if this actually happens, it might 26090 * be likely that wput would generate multiple 26091 * packets (and forwarding would also have a train 26092 * of packets) for that destination. If this is 26093 * the case, some of them would have been dropped 26094 * anyway, since ARP only queues a few packets while 26095 * waiting for resolution 26096 * 26097 * NOTE: We should really call ip_xmit_v4, 26098 * and let it queue the packet and send the 26099 * ARP query and have ARP come back thus: 26100 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26101 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26102 * hw accel work. But it's too complex to get 26103 * the IPsec hw acceleration approach to fit 26104 * well with ip_xmit_v4 doing ARP without 26105 * doing IPsec simplification. For now, we just 26106 * poke ip_xmit_v4 to trigger the arp resolve, so 26107 * that we can continue with the send on the next 26108 * attempt. 26109 * 26110 * XXX THis should be revisited, when 26111 * the IPsec/IP interaction is cleaned up 26112 */ 26113 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26114 " - dropping packet\n")); 26115 freemsg(ipsec_mp); 26116 /* 26117 * Call ip_xmit_v4() to trigger ARP query 26118 * in case the nce_state is ND_INITIAL 26119 */ 26120 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26121 goto drop_pkt; 26122 } 26123 26124 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26125 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26126 mblk_t *, ipsec_mp); 26127 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26128 ipst->ips_ipv4firewall_physical_out, NULL, 26129 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26130 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26131 if (ipsec_mp == NULL) 26132 goto drop_pkt; 26133 26134 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26135 pktxmit_state = ip_xmit_v4(mp, ire, 26136 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26137 26138 if ((pktxmit_state == SEND_FAILED) || 26139 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26140 26141 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26142 drop_pkt: 26143 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26144 ipIfStatsOutDiscards); 26145 if (ire_need_rele) 26146 ire_refrele(ire); 26147 if (ire1 != NULL) { 26148 ire_refrele(ire1); 26149 freemsg(next_mp); 26150 } 26151 goto done; 26152 } 26153 26154 freeb(ipsec_mp); 26155 if (ire_need_rele) 26156 ire_refrele(ire); 26157 26158 if (ire1 != NULL) { 26159 ire = ire1; 26160 ire_need_rele = B_TRUE; 26161 ASSERT(next_mp); 26162 ipsec_mp = next_mp; 26163 mp = ipsec_mp->b_cont; 26164 ire1 = NULL; 26165 next_mp = NULL; 26166 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26167 } else { 26168 multirt_send = B_FALSE; 26169 } 26170 } while (multirt_send); 26171 done: 26172 if (ill != NULL && ill_need_rele) 26173 ill_refrele(ill); 26174 if (ipif != NULL) 26175 ipif_refrele(ipif); 26176 } 26177 26178 /* 26179 * Get the ill corresponding to the specified ire, and compare its 26180 * capabilities with the protocol and algorithms specified by the 26181 * the SA obtained from ipsec_out. If they match, annotate the 26182 * ipsec_out structure to indicate that the packet needs acceleration. 26183 * 26184 * 26185 * A packet is eligible for outbound hardware acceleration if the 26186 * following conditions are satisfied: 26187 * 26188 * 1. the packet will not be fragmented 26189 * 2. the provider supports the algorithm 26190 * 3. there is no pending control message being exchanged 26191 * 4. snoop is not attached 26192 * 5. the destination address is not a broadcast or multicast address. 26193 * 26194 * Rationale: 26195 * - Hardware drivers do not support fragmentation with 26196 * the current interface. 26197 * - snoop, multicast, and broadcast may result in exposure of 26198 * a cleartext datagram. 26199 * We check all five of these conditions here. 26200 * 26201 * XXX would like to nuke "ire_t *" parameter here; problem is that 26202 * IRE is only way to figure out if a v4 address is a broadcast and 26203 * thus ineligible for acceleration... 26204 */ 26205 static void 26206 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26207 { 26208 ipsec_out_t *io; 26209 mblk_t *data_mp; 26210 uint_t plen, overhead; 26211 ip_stack_t *ipst; 26212 26213 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26214 return; 26215 26216 if (ill == NULL) 26217 return; 26218 ipst = ill->ill_ipst; 26219 /* 26220 * Destination address is a broadcast or multicast. Punt. 26221 */ 26222 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26223 IRE_LOCAL))) 26224 return; 26225 26226 data_mp = ipsec_mp->b_cont; 26227 26228 if (ill->ill_isv6) { 26229 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26230 26231 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26232 return; 26233 26234 plen = ip6h->ip6_plen; 26235 } else { 26236 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26237 26238 if (CLASSD(ipha->ipha_dst)) 26239 return; 26240 26241 plen = ipha->ipha_length; 26242 } 26243 /* 26244 * Is there a pending DLPI control message being exchanged 26245 * between IP/IPsec and the DLS Provider? If there is, it 26246 * could be a SADB update, and the state of the DLS Provider 26247 * SADB might not be in sync with the SADB maintained by 26248 * IPsec. To avoid dropping packets or using the wrong keying 26249 * material, we do not accelerate this packet. 26250 */ 26251 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26252 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26253 "ill_dlpi_pending! don't accelerate packet\n")); 26254 return; 26255 } 26256 26257 /* 26258 * Is the Provider in promiscous mode? If it does, we don't 26259 * accelerate the packet since it will bounce back up to the 26260 * listeners in the clear. 26261 */ 26262 if (ill->ill_promisc_on_phys) { 26263 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26264 "ill in promiscous mode, don't accelerate packet\n")); 26265 return; 26266 } 26267 26268 /* 26269 * Will the packet require fragmentation? 26270 */ 26271 26272 /* 26273 * IPsec ESP note: this is a pessimistic estimate, but the same 26274 * as is used elsewhere. 26275 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26276 * + 2-byte trailer 26277 */ 26278 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26279 IPSEC_BASE_ESP_HDR_SIZE(sa); 26280 26281 if ((plen + overhead) > ill->ill_max_mtu) 26282 return; 26283 26284 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26285 26286 /* 26287 * Can the ill accelerate this IPsec protocol and algorithm 26288 * specified by the SA? 26289 */ 26290 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26291 ill->ill_isv6, sa, ipst->ips_netstack)) { 26292 return; 26293 } 26294 26295 /* 26296 * Tell AH or ESP that the outbound ill is capable of 26297 * accelerating this packet. 26298 */ 26299 io->ipsec_out_is_capab_ill = B_TRUE; 26300 } 26301 26302 /* 26303 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26304 * 26305 * If this function returns B_TRUE, the requested SA's have been filled 26306 * into the ipsec_out_*_sa pointers. 26307 * 26308 * If the function returns B_FALSE, the packet has been "consumed", most 26309 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26310 * 26311 * The SA references created by the protocol-specific "select" 26312 * function will be released when the ipsec_mp is freed, thanks to the 26313 * ipsec_out_free destructor -- see spd.c. 26314 */ 26315 static boolean_t 26316 ipsec_out_select_sa(mblk_t *ipsec_mp) 26317 { 26318 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26319 ipsec_out_t *io; 26320 ipsec_policy_t *pp; 26321 ipsec_action_t *ap; 26322 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26323 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26324 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26325 26326 if (!io->ipsec_out_secure) { 26327 /* 26328 * We came here by mistake. 26329 * Don't bother with ipsec processing 26330 * We should "discourage" this path in the future. 26331 */ 26332 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26333 return (B_FALSE); 26334 } 26335 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26336 ASSERT((io->ipsec_out_policy != NULL) || 26337 (io->ipsec_out_act != NULL)); 26338 26339 ASSERT(io->ipsec_out_failed == B_FALSE); 26340 26341 /* 26342 * IPsec processing has started. 26343 */ 26344 io->ipsec_out_proc_begin = B_TRUE; 26345 ap = io->ipsec_out_act; 26346 if (ap == NULL) { 26347 pp = io->ipsec_out_policy; 26348 ASSERT(pp != NULL); 26349 ap = pp->ipsp_act; 26350 ASSERT(ap != NULL); 26351 } 26352 26353 /* 26354 * We have an action. now, let's select SA's. 26355 * (In the future, we can cache this in the conn_t..) 26356 */ 26357 if (ap->ipa_want_esp) { 26358 if (io->ipsec_out_esp_sa == NULL) { 26359 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26360 IPPROTO_ESP); 26361 } 26362 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26363 } 26364 26365 if (ap->ipa_want_ah) { 26366 if (io->ipsec_out_ah_sa == NULL) { 26367 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26368 IPPROTO_AH); 26369 } 26370 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26371 /* 26372 * The ESP and AH processing order needs to be preserved 26373 * when both protocols are required (ESP should be applied 26374 * before AH for an outbound packet). Force an ESP ACQUIRE 26375 * when both ESP and AH are required, and an AH ACQUIRE 26376 * is needed. 26377 */ 26378 if (ap->ipa_want_esp && need_ah_acquire) 26379 need_esp_acquire = B_TRUE; 26380 } 26381 26382 /* 26383 * Send an ACQUIRE (extended, regular, or both) if we need one. 26384 * Release SAs that got referenced, but will not be used until we 26385 * acquire _all_ of the SAs we need. 26386 */ 26387 if (need_ah_acquire || need_esp_acquire) { 26388 if (io->ipsec_out_ah_sa != NULL) { 26389 IPSA_REFRELE(io->ipsec_out_ah_sa); 26390 io->ipsec_out_ah_sa = NULL; 26391 } 26392 if (io->ipsec_out_esp_sa != NULL) { 26393 IPSA_REFRELE(io->ipsec_out_esp_sa); 26394 io->ipsec_out_esp_sa = NULL; 26395 } 26396 26397 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26398 return (B_FALSE); 26399 } 26400 26401 return (B_TRUE); 26402 } 26403 26404 /* 26405 * Process an IPSEC_OUT message and see what you can 26406 * do with it. 26407 * IPQoS Notes: 26408 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26409 * IPsec. 26410 * XXX would like to nuke ire_t. 26411 * XXX ill_index better be "real" 26412 */ 26413 void 26414 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26415 { 26416 ipsec_out_t *io; 26417 ipsec_policy_t *pp; 26418 ipsec_action_t *ap; 26419 ipha_t *ipha; 26420 ip6_t *ip6h; 26421 mblk_t *mp; 26422 ill_t *ill; 26423 zoneid_t zoneid; 26424 ipsec_status_t ipsec_rc; 26425 boolean_t ill_need_rele = B_FALSE; 26426 ip_stack_t *ipst; 26427 ipsec_stack_t *ipss; 26428 26429 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26430 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26431 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26432 ipst = io->ipsec_out_ns->netstack_ip; 26433 mp = ipsec_mp->b_cont; 26434 26435 /* 26436 * Initiate IPPF processing. We do it here to account for packets 26437 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26438 * We can check for ipsec_out_proc_begin even for such packets, as 26439 * they will always be false (asserted below). 26440 */ 26441 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26442 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26443 io->ipsec_out_ill_index : ill_index); 26444 if (mp == NULL) { 26445 ip2dbg(("ipsec_out_process: packet dropped "\ 26446 "during IPPF processing\n")); 26447 freeb(ipsec_mp); 26448 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26449 return; 26450 } 26451 } 26452 26453 if (!io->ipsec_out_secure) { 26454 /* 26455 * We came here by mistake. 26456 * Don't bother with ipsec processing 26457 * Should "discourage" this path in the future. 26458 */ 26459 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26460 goto done; 26461 } 26462 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26463 ASSERT((io->ipsec_out_policy != NULL) || 26464 (io->ipsec_out_act != NULL)); 26465 ASSERT(io->ipsec_out_failed == B_FALSE); 26466 26467 ipss = ipst->ips_netstack->netstack_ipsec; 26468 if (!ipsec_loaded(ipss)) { 26469 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26470 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26471 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26472 } else { 26473 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26474 } 26475 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26476 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26477 &ipss->ipsec_dropper); 26478 return; 26479 } 26480 26481 /* 26482 * IPsec processing has started. 26483 */ 26484 io->ipsec_out_proc_begin = B_TRUE; 26485 ap = io->ipsec_out_act; 26486 if (ap == NULL) { 26487 pp = io->ipsec_out_policy; 26488 ASSERT(pp != NULL); 26489 ap = pp->ipsp_act; 26490 ASSERT(ap != NULL); 26491 } 26492 26493 /* 26494 * Save the outbound ill index. When the packet comes back 26495 * from IPsec, we make sure the ill hasn't changed or disappeared 26496 * before sending it the accelerated packet. 26497 */ 26498 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26499 ill = ire_to_ill(ire); 26500 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26501 } 26502 26503 /* 26504 * The order of processing is first insert a IP header if needed. 26505 * Then insert the ESP header and then the AH header. 26506 */ 26507 if ((io->ipsec_out_se_done == B_FALSE) && 26508 (ap->ipa_want_se)) { 26509 /* 26510 * First get the outer IP header before sending 26511 * it to ESP. 26512 */ 26513 ipha_t *oipha, *iipha; 26514 mblk_t *outer_mp, *inner_mp; 26515 26516 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26517 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26518 "ipsec_out_process: " 26519 "Self-Encapsulation failed: Out of memory\n"); 26520 freemsg(ipsec_mp); 26521 if (ill != NULL) { 26522 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26523 } else { 26524 BUMP_MIB(&ipst->ips_ip_mib, 26525 ipIfStatsOutDiscards); 26526 } 26527 return; 26528 } 26529 inner_mp = ipsec_mp->b_cont; 26530 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26531 oipha = (ipha_t *)outer_mp->b_rptr; 26532 iipha = (ipha_t *)inner_mp->b_rptr; 26533 *oipha = *iipha; 26534 outer_mp->b_wptr += sizeof (ipha_t); 26535 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26536 sizeof (ipha_t)); 26537 oipha->ipha_protocol = IPPROTO_ENCAP; 26538 oipha->ipha_version_and_hdr_length = 26539 IP_SIMPLE_HDR_VERSION; 26540 oipha->ipha_hdr_checksum = 0; 26541 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26542 outer_mp->b_cont = inner_mp; 26543 ipsec_mp->b_cont = outer_mp; 26544 26545 io->ipsec_out_se_done = B_TRUE; 26546 io->ipsec_out_tunnel = B_TRUE; 26547 } 26548 26549 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26550 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26551 !ipsec_out_select_sa(ipsec_mp)) 26552 return; 26553 26554 /* 26555 * By now, we know what SA's to use. Toss over to ESP & AH 26556 * to do the heavy lifting. 26557 */ 26558 zoneid = io->ipsec_out_zoneid; 26559 ASSERT(zoneid != ALL_ZONES); 26560 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26561 ASSERT(io->ipsec_out_esp_sa != NULL); 26562 io->ipsec_out_esp_done = B_TRUE; 26563 /* 26564 * Note that since hw accel can only apply one transform, 26565 * not two, we skip hw accel for ESP if we also have AH 26566 * This is an design limitation of the interface 26567 * which should be revisited. 26568 */ 26569 ASSERT(ire != NULL); 26570 if (io->ipsec_out_ah_sa == NULL) { 26571 ill = (ill_t *)ire->ire_stq->q_ptr; 26572 ipsec_out_is_accelerated(ipsec_mp, 26573 io->ipsec_out_esp_sa, ill, ire); 26574 } 26575 26576 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26577 switch (ipsec_rc) { 26578 case IPSEC_STATUS_SUCCESS: 26579 break; 26580 case IPSEC_STATUS_FAILED: 26581 if (ill != NULL) { 26582 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26583 } else { 26584 BUMP_MIB(&ipst->ips_ip_mib, 26585 ipIfStatsOutDiscards); 26586 } 26587 /* FALLTHRU */ 26588 case IPSEC_STATUS_PENDING: 26589 return; 26590 } 26591 } 26592 26593 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26594 ASSERT(io->ipsec_out_ah_sa != NULL); 26595 io->ipsec_out_ah_done = B_TRUE; 26596 if (ire == NULL) { 26597 int idx = io->ipsec_out_capab_ill_index; 26598 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26599 NULL, NULL, NULL, NULL, ipst); 26600 ill_need_rele = B_TRUE; 26601 } else { 26602 ill = (ill_t *)ire->ire_stq->q_ptr; 26603 } 26604 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26605 ire); 26606 26607 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26608 switch (ipsec_rc) { 26609 case IPSEC_STATUS_SUCCESS: 26610 break; 26611 case IPSEC_STATUS_FAILED: 26612 if (ill != NULL) { 26613 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26614 } else { 26615 BUMP_MIB(&ipst->ips_ip_mib, 26616 ipIfStatsOutDiscards); 26617 } 26618 /* FALLTHRU */ 26619 case IPSEC_STATUS_PENDING: 26620 if (ill != NULL && ill_need_rele) 26621 ill_refrele(ill); 26622 return; 26623 } 26624 } 26625 /* 26626 * We are done with IPsec processing. Send it over the wire. 26627 */ 26628 done: 26629 mp = ipsec_mp->b_cont; 26630 ipha = (ipha_t *)mp->b_rptr; 26631 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26632 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26633 ire); 26634 } else { 26635 ip6h = (ip6_t *)ipha; 26636 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26637 ire); 26638 } 26639 if (ill != NULL && ill_need_rele) 26640 ill_refrele(ill); 26641 } 26642 26643 /* ARGSUSED */ 26644 void 26645 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26646 { 26647 opt_restart_t *or; 26648 int err; 26649 conn_t *connp; 26650 26651 ASSERT(CONN_Q(q)); 26652 connp = Q_TO_CONN(q); 26653 26654 ASSERT(first_mp->b_datap->db_type == M_CTL); 26655 or = (opt_restart_t *)first_mp->b_rptr; 26656 /* 26657 * We don't need to pass any credentials here since this is just 26658 * a restart. The credentials are passed in when svr4_optcom_req 26659 * is called the first time (from ip_wput_nondata). 26660 */ 26661 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26662 err = svr4_optcom_req(q, first_mp, NULL, 26663 &ip_opt_obj, B_FALSE); 26664 } else { 26665 ASSERT(or->or_type == T_OPTMGMT_REQ); 26666 err = tpi_optcom_req(q, first_mp, NULL, 26667 &ip_opt_obj, B_FALSE); 26668 } 26669 if (err != EINPROGRESS) { 26670 /* operation is done */ 26671 CONN_OPER_PENDING_DONE(connp); 26672 } 26673 } 26674 26675 /* 26676 * ioctls that go through a down/up sequence may need to wait for the down 26677 * to complete. This involves waiting for the ire and ipif refcnts to go down 26678 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26679 */ 26680 /* ARGSUSED */ 26681 void 26682 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26683 { 26684 struct iocblk *iocp; 26685 mblk_t *mp1; 26686 ip_ioctl_cmd_t *ipip; 26687 int err; 26688 sin_t *sin; 26689 struct lifreq *lifr; 26690 struct ifreq *ifr; 26691 26692 iocp = (struct iocblk *)mp->b_rptr; 26693 ASSERT(ipsq != NULL); 26694 /* Existence of mp1 verified in ip_wput_nondata */ 26695 mp1 = mp->b_cont->b_cont; 26696 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26697 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26698 /* 26699 * Special case where ipx_current_ipif is not set: 26700 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26701 * We are here as were not able to complete the operation in 26702 * ipif_set_values because we could not become exclusive on 26703 * the new ipsq. 26704 */ 26705 ill_t *ill = q->q_ptr; 26706 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26707 } 26708 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26709 26710 if (ipip->ipi_cmd_type == IF_CMD) { 26711 /* This a old style SIOC[GS]IF* command */ 26712 ifr = (struct ifreq *)mp1->b_rptr; 26713 sin = (sin_t *)&ifr->ifr_addr; 26714 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26715 /* This a new style SIOC[GS]LIF* command */ 26716 lifr = (struct lifreq *)mp1->b_rptr; 26717 sin = (sin_t *)&lifr->lifr_addr; 26718 } else { 26719 sin = NULL; 26720 } 26721 26722 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26723 q, mp, ipip, mp1->b_rptr); 26724 26725 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26726 } 26727 26728 /* 26729 * ioctl processing 26730 * 26731 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26732 * the ioctl command in the ioctl tables, determines the copyin data size 26733 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26734 * 26735 * ioctl processing then continues when the M_IOCDATA makes its way down to 26736 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26737 * associated 'conn' is refheld till the end of the ioctl and the general 26738 * ioctl processing function ip_process_ioctl() is called to extract the 26739 * arguments and process the ioctl. To simplify extraction, ioctl commands 26740 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26741 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26742 * is used to extract the ioctl's arguments. 26743 * 26744 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26745 * so goes thru the serialization primitive ipsq_try_enter. Then the 26746 * appropriate function to handle the ioctl is called based on the entry in 26747 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26748 * which also refreleases the 'conn' that was refheld at the start of the 26749 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26750 * 26751 * Many exclusive ioctls go thru an internal down up sequence as part of 26752 * the operation. For example an attempt to change the IP address of an 26753 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26754 * does all the cleanup such as deleting all ires that use this address. 26755 * Then we need to wait till all references to the interface go away. 26756 */ 26757 void 26758 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26759 { 26760 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26761 ip_ioctl_cmd_t *ipip = arg; 26762 ip_extract_func_t *extract_funcp; 26763 cmd_info_t ci; 26764 int err; 26765 boolean_t entered_ipsq = B_FALSE; 26766 26767 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26768 26769 if (ipip == NULL) 26770 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26771 26772 /* 26773 * SIOCLIFADDIF needs to go thru a special path since the 26774 * ill may not exist yet. This happens in the case of lo0 26775 * which is created using this ioctl. 26776 */ 26777 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26778 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26779 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26780 return; 26781 } 26782 26783 ci.ci_ipif = NULL; 26784 if (ipip->ipi_cmd_type == MISC_CMD) { 26785 /* 26786 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26787 */ 26788 if (ipip->ipi_cmd == IF_UNITSEL) { 26789 /* ioctl comes down the ill */ 26790 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26791 ipif_refhold(ci.ci_ipif); 26792 } 26793 err = 0; 26794 ci.ci_sin = NULL; 26795 ci.ci_sin6 = NULL; 26796 ci.ci_lifr = NULL; 26797 } else { 26798 switch (ipip->ipi_cmd_type) { 26799 case IF_CMD: 26800 case LIF_CMD: 26801 extract_funcp = ip_extract_lifreq; 26802 break; 26803 26804 case ARP_CMD: 26805 case XARP_CMD: 26806 extract_funcp = ip_extract_arpreq; 26807 break; 26808 26809 case TUN_CMD: 26810 extract_funcp = ip_extract_tunreq; 26811 break; 26812 26813 case MSFILT_CMD: 26814 extract_funcp = ip_extract_msfilter; 26815 break; 26816 26817 default: 26818 ASSERT(0); 26819 } 26820 26821 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26822 if (err != 0) { 26823 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26824 return; 26825 } 26826 26827 /* 26828 * All of the extraction functions return a refheld ipif. 26829 */ 26830 ASSERT(ci.ci_ipif != NULL); 26831 } 26832 26833 if (!(ipip->ipi_flags & IPI_WR)) { 26834 /* 26835 * A return value of EINPROGRESS means the ioctl is 26836 * either queued and waiting for some reason or has 26837 * already completed. 26838 */ 26839 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26840 ci.ci_lifr); 26841 if (ci.ci_ipif != NULL) 26842 ipif_refrele(ci.ci_ipif); 26843 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26844 return; 26845 } 26846 26847 ASSERT(ci.ci_ipif != NULL); 26848 26849 /* 26850 * If ipsq is non-NULL, we are already being called exclusively. 26851 */ 26852 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26853 if (ipsq == NULL) { 26854 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 26855 NEW_OP, B_TRUE); 26856 if (ipsq == NULL) { 26857 ipif_refrele(ci.ci_ipif); 26858 return; 26859 } 26860 entered_ipsq = B_TRUE; 26861 } 26862 26863 /* 26864 * Release the ipif so that ipif_down and friends that wait for 26865 * references to go away are not misled about the current ipif_refcnt 26866 * values. We are writer so we can access the ipif even after releasing 26867 * the ipif. 26868 */ 26869 ipif_refrele(ci.ci_ipif); 26870 26871 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26872 26873 /* 26874 * For most set ioctls that come here, this serves as a single point 26875 * where we set the IPIF_CHANGING flag. This ensures that there won't 26876 * be any new references to the ipif. This helps functions that go 26877 * through this path and end up trying to wait for the refcnts 26878 * associated with the ipif to go down to zero. The exception is 26879 * SIOCSLIFREMOVEIF, which sets IPIF_CONDEMNED internally after 26880 * identifying the right ipif to operate on. 26881 */ 26882 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26883 if (ipip->ipi_cmd != SIOCLIFREMOVEIF) 26884 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26885 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26886 26887 /* 26888 * A return value of EINPROGRESS means the ioctl is 26889 * either queued and waiting for some reason or has 26890 * already completed. 26891 */ 26892 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26893 26894 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26895 26896 if (entered_ipsq) 26897 ipsq_exit(ipsq); 26898 } 26899 26900 /* 26901 * Complete the ioctl. Typically ioctls use the mi package and need to 26902 * do mi_copyout/mi_copy_done. 26903 */ 26904 void 26905 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26906 { 26907 conn_t *connp = NULL; 26908 26909 if (err == EINPROGRESS) 26910 return; 26911 26912 if (CONN_Q(q)) { 26913 connp = Q_TO_CONN(q); 26914 ASSERT(connp->conn_ref >= 2); 26915 } 26916 26917 switch (mode) { 26918 case COPYOUT: 26919 if (err == 0) 26920 mi_copyout(q, mp); 26921 else 26922 mi_copy_done(q, mp, err); 26923 break; 26924 26925 case NO_COPYOUT: 26926 mi_copy_done(q, mp, err); 26927 break; 26928 26929 default: 26930 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 26931 break; 26932 } 26933 26934 /* 26935 * The refhold placed at the start of the ioctl is released here. 26936 */ 26937 if (connp != NULL) 26938 CONN_OPER_PENDING_DONE(connp); 26939 26940 if (ipsq != NULL) 26941 ipsq_current_finish(ipsq); 26942 } 26943 26944 /* Called from ip_wput for all non data messages */ 26945 /* ARGSUSED */ 26946 void 26947 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26948 { 26949 mblk_t *mp1; 26950 ire_t *ire, *fake_ire; 26951 ill_t *ill; 26952 struct iocblk *iocp; 26953 ip_ioctl_cmd_t *ipip; 26954 cred_t *cr; 26955 conn_t *connp; 26956 int err; 26957 nce_t *nce; 26958 ipif_t *ipif; 26959 ip_stack_t *ipst; 26960 char *proto_str; 26961 26962 if (CONN_Q(q)) { 26963 connp = Q_TO_CONN(q); 26964 ipst = connp->conn_netstack->netstack_ip; 26965 } else { 26966 connp = NULL; 26967 ipst = ILLQ_TO_IPST(q); 26968 } 26969 26970 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26971 26972 switch (DB_TYPE(mp)) { 26973 case M_IOCTL: 26974 /* 26975 * IOCTL processing begins in ip_sioctl_copyin_setup which 26976 * will arrange to copy in associated control structures. 26977 */ 26978 ip_sioctl_copyin_setup(q, mp); 26979 return; 26980 case M_IOCDATA: 26981 /* 26982 * Ensure that this is associated with one of our trans- 26983 * parent ioctls. If it's not ours, discard it if we're 26984 * running as a driver, or pass it on if we're a module. 26985 */ 26986 iocp = (struct iocblk *)mp->b_rptr; 26987 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26988 if (ipip == NULL) { 26989 if (q->q_next == NULL) { 26990 goto nak; 26991 } else { 26992 putnext(q, mp); 26993 } 26994 return; 26995 } 26996 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 26997 /* 26998 * the ioctl is one we recognise, but is not 26999 * consumed by IP as a module, pass M_IOCDATA 27000 * for processing downstream, but only for 27001 * common Streams ioctls. 27002 */ 27003 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27004 putnext(q, mp); 27005 return; 27006 } else { 27007 goto nak; 27008 } 27009 } 27010 27011 /* IOCTL continuation following copyin or copyout. */ 27012 if (mi_copy_state(q, mp, NULL) == -1) { 27013 /* 27014 * The copy operation failed. mi_copy_state already 27015 * cleaned up, so we're out of here. 27016 */ 27017 return; 27018 } 27019 /* 27020 * If we just completed a copy in, we become writer and 27021 * continue processing in ip_sioctl_copyin_done. If it 27022 * was a copy out, we call mi_copyout again. If there is 27023 * nothing more to copy out, it will complete the IOCTL. 27024 */ 27025 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27026 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27027 mi_copy_done(q, mp, EPROTO); 27028 return; 27029 } 27030 /* 27031 * Check for cases that need more copying. A return 27032 * value of 0 means a second copyin has been started, 27033 * so we return; a return value of 1 means no more 27034 * copying is needed, so we continue. 27035 */ 27036 if (ipip->ipi_cmd_type == MSFILT_CMD && 27037 MI_COPY_COUNT(mp) == 1) { 27038 if (ip_copyin_msfilter(q, mp) == 0) 27039 return; 27040 } 27041 /* 27042 * Refhold the conn, till the ioctl completes. This is 27043 * needed in case the ioctl ends up in the pending mp 27044 * list. Every mp in the ill_pending_mp list and 27045 * the ipx_pending_mp must have a refhold on the conn 27046 * to resume processing. The refhold is released when 27047 * the ioctl completes. (normally or abnormally) 27048 * In all cases ip_ioctl_finish is called to finish 27049 * the ioctl. 27050 */ 27051 if (connp != NULL) { 27052 /* This is not a reentry */ 27053 ASSERT(ipsq == NULL); 27054 CONN_INC_REF(connp); 27055 } else { 27056 if (!(ipip->ipi_flags & IPI_MODOK)) { 27057 mi_copy_done(q, mp, EINVAL); 27058 return; 27059 } 27060 } 27061 27062 ip_process_ioctl(ipsq, q, mp, ipip); 27063 27064 } else { 27065 mi_copyout(q, mp); 27066 } 27067 return; 27068 nak: 27069 iocp->ioc_error = EINVAL; 27070 mp->b_datap->db_type = M_IOCNAK; 27071 iocp->ioc_count = 0; 27072 qreply(q, mp); 27073 return; 27074 27075 case M_IOCNAK: 27076 /* 27077 * The only way we could get here is if a resolver didn't like 27078 * an IOCTL we sent it. This shouldn't happen. 27079 */ 27080 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27081 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27082 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27083 freemsg(mp); 27084 return; 27085 case M_IOCACK: 27086 /* /dev/ip shouldn't see this */ 27087 if (CONN_Q(q)) 27088 goto nak; 27089 27090 /* 27091 * Finish socket ioctls passed through to ARP. We use the 27092 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27093 * we need to become writer before calling ip_sioctl_iocack(). 27094 * Note that qwriter_ip() will release the refhold, and that a 27095 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27096 * ill stream. 27097 */ 27098 iocp = (struct iocblk *)mp->b_rptr; 27099 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27100 ip_sioctl_iocack(NULL, q, mp, NULL); 27101 return; 27102 } 27103 27104 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27105 iocp->ioc_cmd == AR_ENTRY_ADD); 27106 ill = q->q_ptr; 27107 ill_refhold(ill); 27108 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27109 return; 27110 case M_FLUSH: 27111 if (*mp->b_rptr & FLUSHW) 27112 flushq(q, FLUSHALL); 27113 if (q->q_next) { 27114 putnext(q, mp); 27115 return; 27116 } 27117 if (*mp->b_rptr & FLUSHR) { 27118 *mp->b_rptr &= ~FLUSHW; 27119 qreply(q, mp); 27120 return; 27121 } 27122 freemsg(mp); 27123 return; 27124 case IRE_DB_REQ_TYPE: 27125 if (connp == NULL) { 27126 proto_str = "IRE_DB_REQ_TYPE"; 27127 goto protonak; 27128 } 27129 /* An Upper Level Protocol wants a copy of an IRE. */ 27130 ip_ire_req(q, mp); 27131 return; 27132 case M_CTL: 27133 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27134 break; 27135 27136 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27137 TUN_HELLO) { 27138 ASSERT(connp != NULL); 27139 connp->conn_flags |= IPCL_IPTUN; 27140 freeb(mp); 27141 return; 27142 } 27143 27144 /* M_CTL messages are used by ARP to tell us things. */ 27145 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27146 break; 27147 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27148 case AR_ENTRY_SQUERY: 27149 ip_wput_ctl(q, mp); 27150 return; 27151 case AR_CLIENT_NOTIFY: 27152 ip_arp_news(q, mp); 27153 return; 27154 case AR_DLPIOP_DONE: 27155 ASSERT(q->q_next != NULL); 27156 ill = (ill_t *)q->q_ptr; 27157 /* qwriter_ip releases the refhold */ 27158 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27159 ill_refhold(ill); 27160 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27161 return; 27162 case AR_ARP_CLOSING: 27163 /* 27164 * ARP (above us) is closing. If no ARP bringup is 27165 * currently pending, ack the message so that ARP 27166 * can complete its close. Also mark ill_arp_closing 27167 * so that new ARP bringups will fail. If any 27168 * ARP bringup is currently in progress, we will 27169 * ack this when the current ARP bringup completes. 27170 */ 27171 ASSERT(q->q_next != NULL); 27172 ill = (ill_t *)q->q_ptr; 27173 mutex_enter(&ill->ill_lock); 27174 ill->ill_arp_closing = 1; 27175 if (!ill->ill_arp_bringup_pending) { 27176 mutex_exit(&ill->ill_lock); 27177 qreply(q, mp); 27178 } else { 27179 mutex_exit(&ill->ill_lock); 27180 freemsg(mp); 27181 } 27182 return; 27183 case AR_ARP_EXTEND: 27184 /* 27185 * The ARP module above us is capable of duplicate 27186 * address detection. Old ATM drivers will not send 27187 * this message. 27188 */ 27189 ASSERT(q->q_next != NULL); 27190 ill = (ill_t *)q->q_ptr; 27191 ill->ill_arp_extend = B_TRUE; 27192 freemsg(mp); 27193 return; 27194 default: 27195 break; 27196 } 27197 break; 27198 case M_PROTO: 27199 case M_PCPROTO: 27200 /* 27201 * The only PROTO messages we expect are copies of option 27202 * negotiation acknowledgements, AH and ESP bind requests 27203 * are also expected. 27204 */ 27205 switch (((union T_primitives *)mp->b_rptr)->type) { 27206 case O_T_BIND_REQ: 27207 case T_BIND_REQ: { 27208 /* Request can get queued in bind */ 27209 if (connp == NULL) { 27210 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27211 goto protonak; 27212 } 27213 /* 27214 * The transports except SCTP call ip_bind_{v4,v6}() 27215 * directly instead of a a putnext. SCTP doesn't 27216 * generate any T_BIND_REQ since it has its own 27217 * fanout data structures. However, ESP and AH 27218 * come in for regular binds; all other cases are 27219 * bind retries. 27220 */ 27221 ASSERT(!IPCL_IS_SCTP(connp)); 27222 27223 /* Don't increment refcnt if this is a re-entry */ 27224 if (ipsq == NULL) 27225 CONN_INC_REF(connp); 27226 27227 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27228 connp, NULL) : ip_bind_v4(q, mp, connp); 27229 ASSERT(mp != NULL); 27230 27231 ASSERT(!IPCL_IS_TCP(connp)); 27232 ASSERT(!IPCL_IS_UDP(connp)); 27233 ASSERT(!IPCL_IS_RAWIP(connp)); 27234 27235 /* The case of AH and ESP */ 27236 qreply(q, mp); 27237 CONN_OPER_PENDING_DONE(connp); 27238 return; 27239 } 27240 case T_SVR4_OPTMGMT_REQ: 27241 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27242 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27243 27244 if (connp == NULL) { 27245 proto_str = "T_SVR4_OPTMGMT_REQ"; 27246 goto protonak; 27247 } 27248 27249 if (!snmpcom_req(q, mp, ip_snmp_set, 27250 ip_snmp_get, cr)) { 27251 /* 27252 * Call svr4_optcom_req so that it can 27253 * generate the ack. We don't come here 27254 * if this operation is being restarted. 27255 * ip_restart_optmgmt will drop the conn ref. 27256 * In the case of ipsec option after the ipsec 27257 * load is complete conn_restart_ipsec_waiter 27258 * drops the conn ref. 27259 */ 27260 ASSERT(ipsq == NULL); 27261 CONN_INC_REF(connp); 27262 if (ip_check_for_ipsec_opt(q, mp)) 27263 return; 27264 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27265 B_FALSE); 27266 if (err != EINPROGRESS) { 27267 /* Operation is done */ 27268 CONN_OPER_PENDING_DONE(connp); 27269 } 27270 } 27271 return; 27272 case T_OPTMGMT_REQ: 27273 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27274 /* 27275 * Note: No snmpcom_req support through new 27276 * T_OPTMGMT_REQ. 27277 * Call tpi_optcom_req so that it can 27278 * generate the ack. 27279 */ 27280 if (connp == NULL) { 27281 proto_str = "T_OPTMGMT_REQ"; 27282 goto protonak; 27283 } 27284 27285 ASSERT(ipsq == NULL); 27286 /* 27287 * We don't come here for restart. ip_restart_optmgmt 27288 * will drop the conn ref. In the case of ipsec option 27289 * after the ipsec load is complete 27290 * conn_restart_ipsec_waiter drops the conn ref. 27291 */ 27292 CONN_INC_REF(connp); 27293 if (ip_check_for_ipsec_opt(q, mp)) 27294 return; 27295 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27296 if (err != EINPROGRESS) { 27297 /* Operation is done */ 27298 CONN_OPER_PENDING_DONE(connp); 27299 } 27300 return; 27301 case T_UNBIND_REQ: 27302 if (connp == NULL) { 27303 proto_str = "T_UNBIND_REQ"; 27304 goto protonak; 27305 } 27306 ip_unbind(Q_TO_CONN(q)); 27307 mp = mi_tpi_ok_ack_alloc(mp); 27308 qreply(q, mp); 27309 return; 27310 default: 27311 /* 27312 * Have to drop any DLPI messages coming down from 27313 * arp (such as an info_req which would cause ip 27314 * to receive an extra info_ack if it was passed 27315 * through. 27316 */ 27317 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27318 (int)*(uint_t *)mp->b_rptr)); 27319 freemsg(mp); 27320 return; 27321 } 27322 /* NOTREACHED */ 27323 case IRE_DB_TYPE: { 27324 nce_t *nce; 27325 ill_t *ill; 27326 in6_addr_t gw_addr_v6; 27327 27328 27329 /* 27330 * This is a response back from a resolver. It 27331 * consists of a message chain containing: 27332 * IRE_MBLK-->LL_HDR_MBLK->pkt 27333 * The IRE_MBLK is the one we allocated in ip_newroute. 27334 * The LL_HDR_MBLK is the DLPI header to use to get 27335 * the attached packet, and subsequent ones for the 27336 * same destination, transmitted. 27337 */ 27338 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27339 break; 27340 /* 27341 * First, check to make sure the resolution succeeded. 27342 * If it failed, the second mblk will be empty. 27343 * If it is, free the chain, dropping the packet. 27344 * (We must ire_delete the ire; that frees the ire mblk) 27345 * We're doing this now to support PVCs for ATM; it's 27346 * a partial xresolv implementation. When we fully implement 27347 * xresolv interfaces, instead of freeing everything here 27348 * we'll initiate neighbor discovery. 27349 * 27350 * For v4 (ARP and other external resolvers) the resolver 27351 * frees the message, so no check is needed. This check 27352 * is required, though, for a full xresolve implementation. 27353 * Including this code here now both shows how external 27354 * resolvers can NACK a resolution request using an 27355 * existing design that has no specific provisions for NACKs, 27356 * and also takes into account that the current non-ARP 27357 * external resolver has been coded to use this method of 27358 * NACKing for all IPv6 (xresolv) cases, 27359 * whether our xresolv implementation is complete or not. 27360 * 27361 */ 27362 ire = (ire_t *)mp->b_rptr; 27363 ill = ire_to_ill(ire); 27364 mp1 = mp->b_cont; /* dl_unitdata_req */ 27365 if (mp1->b_rptr == mp1->b_wptr) { 27366 if (ire->ire_ipversion == IPV6_VERSION) { 27367 /* 27368 * XRESOLV interface. 27369 */ 27370 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27371 mutex_enter(&ire->ire_lock); 27372 gw_addr_v6 = ire->ire_gateway_addr_v6; 27373 mutex_exit(&ire->ire_lock); 27374 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27375 nce = ndp_lookup_v6(ill, B_FALSE, 27376 &ire->ire_addr_v6, B_FALSE); 27377 } else { 27378 nce = ndp_lookup_v6(ill, B_FALSE, 27379 &gw_addr_v6, B_FALSE); 27380 } 27381 if (nce != NULL) { 27382 nce_resolv_failed(nce); 27383 ndp_delete(nce); 27384 NCE_REFRELE(nce); 27385 } 27386 } 27387 mp->b_cont = NULL; 27388 freemsg(mp1); /* frees the pkt as well */ 27389 ASSERT(ire->ire_nce == NULL); 27390 ire_delete((ire_t *)mp->b_rptr); 27391 return; 27392 } 27393 27394 /* 27395 * Split them into IRE_MBLK and pkt and feed it into 27396 * ire_add_then_send. Then in ire_add_then_send 27397 * the IRE will be added, and then the packet will be 27398 * run back through ip_wput. This time it will make 27399 * it to the wire. 27400 */ 27401 mp->b_cont = NULL; 27402 mp = mp1->b_cont; /* now, mp points to pkt */ 27403 mp1->b_cont = NULL; 27404 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27405 if (ire->ire_ipversion == IPV6_VERSION) { 27406 /* 27407 * XRESOLV interface. Find the nce and put a copy 27408 * of the dl_unitdata_req in nce_res_mp 27409 */ 27410 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27411 mutex_enter(&ire->ire_lock); 27412 gw_addr_v6 = ire->ire_gateway_addr_v6; 27413 mutex_exit(&ire->ire_lock); 27414 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27415 nce = ndp_lookup_v6(ill, B_FALSE, 27416 &ire->ire_addr_v6, B_FALSE); 27417 } else { 27418 nce = ndp_lookup_v6(ill, B_FALSE, 27419 &gw_addr_v6, B_FALSE); 27420 } 27421 if (nce != NULL) { 27422 /* 27423 * We have to protect nce_res_mp here 27424 * from being accessed by other threads 27425 * while we change the mblk pointer. 27426 * Other functions will also lock the nce when 27427 * accessing nce_res_mp. 27428 * 27429 * The reason we change the mblk pointer 27430 * here rather than copying the resolved address 27431 * into the template is that, unlike with 27432 * ethernet, we have no guarantee that the 27433 * resolved address length will be 27434 * smaller than or equal to the lla length 27435 * with which the template was allocated, 27436 * (for ethernet, they're equal) 27437 * so we have to use the actual resolved 27438 * address mblk - which holds the real 27439 * dl_unitdata_req with the resolved address. 27440 * 27441 * Doing this is the same behavior as was 27442 * previously used in the v4 ARP case. 27443 */ 27444 mutex_enter(&nce->nce_lock); 27445 if (nce->nce_res_mp != NULL) 27446 freemsg(nce->nce_res_mp); 27447 nce->nce_res_mp = mp1; 27448 mutex_exit(&nce->nce_lock); 27449 /* 27450 * We do a fastpath probe here because 27451 * we have resolved the address without 27452 * using Neighbor Discovery. 27453 * In the non-XRESOLV v6 case, the fastpath 27454 * probe is done right after neighbor 27455 * discovery completes. 27456 */ 27457 if (nce->nce_res_mp != NULL) { 27458 int res; 27459 nce_fastpath_list_add(nce); 27460 res = ill_fastpath_probe(ill, 27461 nce->nce_res_mp); 27462 if (res != 0 && res != EAGAIN) 27463 nce_fastpath_list_delete(nce); 27464 } 27465 27466 ire_add_then_send(q, ire, mp); 27467 /* 27468 * Now we have to clean out any packets 27469 * that may have been queued on the nce 27470 * while it was waiting for address resolution 27471 * to complete. 27472 */ 27473 mutex_enter(&nce->nce_lock); 27474 mp1 = nce->nce_qd_mp; 27475 nce->nce_qd_mp = NULL; 27476 mutex_exit(&nce->nce_lock); 27477 while (mp1 != NULL) { 27478 mblk_t *nxt_mp; 27479 queue_t *fwdq = NULL; 27480 ill_t *inbound_ill; 27481 uint_t ifindex; 27482 27483 nxt_mp = mp1->b_next; 27484 mp1->b_next = NULL; 27485 /* 27486 * Retrieve ifindex stored in 27487 * ip_rput_data_v6() 27488 */ 27489 ifindex = 27490 (uint_t)(uintptr_t)mp1->b_prev; 27491 inbound_ill = 27492 ill_lookup_on_ifindex(ifindex, 27493 B_TRUE, NULL, NULL, NULL, 27494 NULL, ipst); 27495 mp1->b_prev = NULL; 27496 if (inbound_ill != NULL) 27497 fwdq = inbound_ill->ill_rq; 27498 27499 if (fwdq != NULL) { 27500 put(fwdq, mp1); 27501 ill_refrele(inbound_ill); 27502 } else 27503 put(WR(ill->ill_rq), mp1); 27504 mp1 = nxt_mp; 27505 } 27506 NCE_REFRELE(nce); 27507 } else { /* nce is NULL; clean up */ 27508 ire_delete(ire); 27509 freemsg(mp); 27510 freemsg(mp1); 27511 return; 27512 } 27513 } else { 27514 nce_t *arpce; 27515 /* 27516 * Link layer resolution succeeded. Recompute the 27517 * ire_nce. 27518 */ 27519 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27520 if ((arpce = ndp_lookup_v4(ill, 27521 (ire->ire_gateway_addr != INADDR_ANY ? 27522 &ire->ire_gateway_addr : &ire->ire_addr), 27523 B_FALSE)) == NULL) { 27524 freeb(ire->ire_mp); 27525 freeb(mp1); 27526 freemsg(mp); 27527 return; 27528 } 27529 mutex_enter(&arpce->nce_lock); 27530 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27531 if (arpce->nce_state == ND_REACHABLE) { 27532 /* 27533 * Someone resolved this before us; 27534 * cleanup the res_mp. Since ire has 27535 * not been added yet, the call to ire_add_v4 27536 * from ire_add_then_send (when a dup is 27537 * detected) will clean up the ire. 27538 */ 27539 freeb(mp1); 27540 } else { 27541 ASSERT(arpce->nce_res_mp == NULL); 27542 arpce->nce_res_mp = mp1; 27543 arpce->nce_state = ND_REACHABLE; 27544 } 27545 mutex_exit(&arpce->nce_lock); 27546 if (ire->ire_marks & IRE_MARK_NOADD) { 27547 /* 27548 * this ire will not be added to the ire 27549 * cache table, so we can set the ire_nce 27550 * here, as there are no atomicity constraints. 27551 */ 27552 ire->ire_nce = arpce; 27553 /* 27554 * We are associating this nce with the ire 27555 * so change the nce ref taken in 27556 * ndp_lookup_v4() from 27557 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27558 */ 27559 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27560 } else { 27561 NCE_REFRELE(arpce); 27562 } 27563 ire_add_then_send(q, ire, mp); 27564 } 27565 return; /* All is well, the packet has been sent. */ 27566 } 27567 case IRE_ARPRESOLVE_TYPE: { 27568 27569 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27570 break; 27571 mp1 = mp->b_cont; /* dl_unitdata_req */ 27572 mp->b_cont = NULL; 27573 /* 27574 * First, check to make sure the resolution succeeded. 27575 * If it failed, the second mblk will be empty. 27576 */ 27577 if (mp1->b_rptr == mp1->b_wptr) { 27578 /* cleanup the incomplete ire, free queued packets */ 27579 freemsg(mp); /* fake ire */ 27580 freeb(mp1); /* dl_unitdata response */ 27581 return; 27582 } 27583 27584 /* 27585 * Update any incomplete nce_t found. We search the ctable 27586 * and find the nce from the ire->ire_nce because we need 27587 * to pass the ire to ip_xmit_v4 later, and can find both 27588 * ire and nce in one lookup. 27589 */ 27590 fake_ire = (ire_t *)mp->b_rptr; 27591 27592 /* 27593 * By the time we come back here from ARP the logical outgoing 27594 * interface of the incomplete ire we added in ire_forward() 27595 * could have disappeared, causing the incomplete ire to also 27596 * disappear. So we need to retreive the proper ipif for the 27597 * ire before looking in ctable. In the case of IPMP, the 27598 * ipif may be on the IPMP ill, so look it up based on the 27599 * ire_ipif_ifindex we stashed back in ire_init_common(). 27600 * Then, we can verify that ire_ipif_seqid still exists. 27601 */ 27602 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27603 NULL, NULL, NULL, NULL, ipst); 27604 if (ill == NULL) { 27605 ip1dbg(("ill for incomplete ire vanished\n")); 27606 freemsg(mp); /* fake ire */ 27607 freeb(mp1); /* dl_unitdata response */ 27608 return; 27609 } 27610 27611 /* Get the outgoing ipif */ 27612 mutex_enter(&ill->ill_lock); 27613 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27614 if (ipif == NULL) { 27615 mutex_exit(&ill->ill_lock); 27616 ill_refrele(ill); 27617 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27618 freemsg(mp); /* fake_ire */ 27619 freeb(mp1); /* dl_unitdata response */ 27620 return; 27621 } 27622 27623 ipif_refhold_locked(ipif); 27624 mutex_exit(&ill->ill_lock); 27625 ill_refrele(ill); 27626 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27627 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27628 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27629 ipif_refrele(ipif); 27630 if (ire == NULL) { 27631 /* 27632 * no ire was found; check if there is an nce 27633 * for this lookup; if it has no ire's pointing at it 27634 * cleanup. 27635 */ 27636 if ((nce = ndp_lookup_v4(q->q_ptr, 27637 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27638 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27639 B_FALSE)) != NULL) { 27640 /* 27641 * cleanup: 27642 * We check for refcnt 2 (one for the nce 27643 * hash list + 1 for the ref taken by 27644 * ndp_lookup_v4) to check that there are 27645 * no ire's pointing at the nce. 27646 */ 27647 if (nce->nce_refcnt == 2) 27648 ndp_delete(nce); 27649 NCE_REFRELE(nce); 27650 } 27651 freeb(mp1); /* dl_unitdata response */ 27652 freemsg(mp); /* fake ire */ 27653 return; 27654 } 27655 27656 nce = ire->ire_nce; 27657 DTRACE_PROBE2(ire__arpresolve__type, 27658 ire_t *, ire, nce_t *, nce); 27659 ASSERT(nce->nce_state != ND_INITIAL); 27660 mutex_enter(&nce->nce_lock); 27661 nce->nce_last = TICK_TO_MSEC(lbolt64); 27662 if (nce->nce_state == ND_REACHABLE) { 27663 /* 27664 * Someone resolved this before us; 27665 * our response is not needed any more. 27666 */ 27667 mutex_exit(&nce->nce_lock); 27668 freeb(mp1); /* dl_unitdata response */ 27669 } else { 27670 ASSERT(nce->nce_res_mp == NULL); 27671 nce->nce_res_mp = mp1; 27672 nce->nce_state = ND_REACHABLE; 27673 mutex_exit(&nce->nce_lock); 27674 nce_fastpath(nce); 27675 } 27676 /* 27677 * The cached nce_t has been updated to be reachable; 27678 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27679 */ 27680 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27681 freemsg(mp); 27682 /* 27683 * send out queued packets. 27684 */ 27685 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27686 27687 IRE_REFRELE(ire); 27688 return; 27689 } 27690 default: 27691 break; 27692 } 27693 if (q->q_next) { 27694 putnext(q, mp); 27695 } else 27696 freemsg(mp); 27697 return; 27698 27699 protonak: 27700 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27701 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27702 qreply(q, mp); 27703 } 27704 27705 /* 27706 * Process IP options in an outbound packet. Modify the destination if there 27707 * is a source route option. 27708 * Returns non-zero if something fails in which case an ICMP error has been 27709 * sent and mp freed. 27710 */ 27711 static int 27712 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27713 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27714 { 27715 ipoptp_t opts; 27716 uchar_t *opt; 27717 uint8_t optval; 27718 uint8_t optlen; 27719 ipaddr_t dst; 27720 intptr_t code = 0; 27721 mblk_t *mp; 27722 ire_t *ire = NULL; 27723 27724 ip2dbg(("ip_wput_options\n")); 27725 mp = ipsec_mp; 27726 if (mctl_present) { 27727 mp = ipsec_mp->b_cont; 27728 } 27729 27730 dst = ipha->ipha_dst; 27731 for (optval = ipoptp_first(&opts, ipha); 27732 optval != IPOPT_EOL; 27733 optval = ipoptp_next(&opts)) { 27734 opt = opts.ipoptp_cur; 27735 optlen = opts.ipoptp_len; 27736 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27737 optval, optlen)); 27738 switch (optval) { 27739 uint32_t off; 27740 case IPOPT_SSRR: 27741 case IPOPT_LSRR: 27742 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27743 ip1dbg(( 27744 "ip_wput_options: bad option offset\n")); 27745 code = (char *)&opt[IPOPT_OLEN] - 27746 (char *)ipha; 27747 goto param_prob; 27748 } 27749 off = opt[IPOPT_OFFSET]; 27750 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27751 ntohl(dst))); 27752 /* 27753 * For strict: verify that dst is directly 27754 * reachable. 27755 */ 27756 if (optval == IPOPT_SSRR) { 27757 ire = ire_ftable_lookup(dst, 0, 0, 27758 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27759 MBLK_GETLABEL(mp), 27760 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27761 if (ire == NULL) { 27762 ip1dbg(("ip_wput_options: SSRR not" 27763 " directly reachable: 0x%x\n", 27764 ntohl(dst))); 27765 goto bad_src_route; 27766 } 27767 ire_refrele(ire); 27768 } 27769 break; 27770 case IPOPT_RR: 27771 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27772 ip1dbg(( 27773 "ip_wput_options: bad option offset\n")); 27774 code = (char *)&opt[IPOPT_OLEN] - 27775 (char *)ipha; 27776 goto param_prob; 27777 } 27778 break; 27779 case IPOPT_TS: 27780 /* 27781 * Verify that length >=5 and that there is either 27782 * room for another timestamp or that the overflow 27783 * counter is not maxed out. 27784 */ 27785 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27786 if (optlen < IPOPT_MINLEN_IT) { 27787 goto param_prob; 27788 } 27789 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27790 ip1dbg(( 27791 "ip_wput_options: bad option offset\n")); 27792 code = (char *)&opt[IPOPT_OFFSET] - 27793 (char *)ipha; 27794 goto param_prob; 27795 } 27796 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27797 case IPOPT_TS_TSONLY: 27798 off = IPOPT_TS_TIMELEN; 27799 break; 27800 case IPOPT_TS_TSANDADDR: 27801 case IPOPT_TS_PRESPEC: 27802 case IPOPT_TS_PRESPEC_RFC791: 27803 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27804 break; 27805 default: 27806 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27807 (char *)ipha; 27808 goto param_prob; 27809 } 27810 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27811 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27812 /* 27813 * No room and the overflow counter is 15 27814 * already. 27815 */ 27816 goto param_prob; 27817 } 27818 break; 27819 } 27820 } 27821 27822 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27823 return (0); 27824 27825 ip1dbg(("ip_wput_options: error processing IP options.")); 27826 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27827 27828 param_prob: 27829 /* 27830 * Since ip_wput() isn't close to finished, we fill 27831 * in enough of the header for credible error reporting. 27832 */ 27833 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27834 /* Failed */ 27835 freemsg(ipsec_mp); 27836 return (-1); 27837 } 27838 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27839 return (-1); 27840 27841 bad_src_route: 27842 /* 27843 * Since ip_wput() isn't close to finished, we fill 27844 * in enough of the header for credible error reporting. 27845 */ 27846 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27847 /* Failed */ 27848 freemsg(ipsec_mp); 27849 return (-1); 27850 } 27851 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27852 return (-1); 27853 } 27854 27855 /* 27856 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27857 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27858 * thru /etc/system. 27859 */ 27860 #define CONN_MAXDRAINCNT 64 27861 27862 static void 27863 conn_drain_init(ip_stack_t *ipst) 27864 { 27865 int i; 27866 27867 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27868 27869 if ((ipst->ips_conn_drain_list_cnt == 0) || 27870 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27871 /* 27872 * Default value of the number of drainers is the 27873 * number of cpus, subject to maximum of 8 drainers. 27874 */ 27875 if (boot_max_ncpus != -1) 27876 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27877 else 27878 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27879 } 27880 27881 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27882 sizeof (idl_t), KM_SLEEP); 27883 27884 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 27885 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 27886 MUTEX_DEFAULT, NULL); 27887 } 27888 } 27889 27890 static void 27891 conn_drain_fini(ip_stack_t *ipst) 27892 { 27893 int i; 27894 27895 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 27896 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 27897 kmem_free(ipst->ips_conn_drain_list, 27898 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 27899 ipst->ips_conn_drain_list = NULL; 27900 } 27901 27902 /* 27903 * Note: For an overview of how flowcontrol is handled in IP please see the 27904 * IP Flowcontrol notes at the top of this file. 27905 * 27906 * Flow control has blocked us from proceeding. Insert the given conn in one 27907 * of the conn drain lists. These conn wq's will be qenabled later on when 27908 * STREAMS flow control does a backenable. conn_walk_drain will enable 27909 * the first conn in each of these drain lists. Each of these qenabled conns 27910 * in turn enables the next in the list, after it runs, or when it closes, 27911 * thus sustaining the drain process. 27912 * 27913 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 27914 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 27915 * running at any time, on a given conn, since there can be only 1 service proc 27916 * running on a queue at any time. 27917 */ 27918 void 27919 conn_drain_insert(conn_t *connp) 27920 { 27921 idl_t *idl; 27922 uint_t index; 27923 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 27924 27925 mutex_enter(&connp->conn_lock); 27926 if (connp->conn_state_flags & CONN_CLOSING) { 27927 /* 27928 * The conn is closing as a result of which CONN_CLOSING 27929 * is set. Return. 27930 */ 27931 mutex_exit(&connp->conn_lock); 27932 return; 27933 } else if (connp->conn_idl == NULL) { 27934 /* 27935 * Assign the next drain list round robin. We dont' use 27936 * a lock, and thus it may not be strictly round robin. 27937 * Atomicity of load/stores is enough to make sure that 27938 * conn_drain_list_index is always within bounds. 27939 */ 27940 index = ipst->ips_conn_drain_list_index; 27941 ASSERT(index < ipst->ips_conn_drain_list_cnt); 27942 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 27943 index++; 27944 if (index == ipst->ips_conn_drain_list_cnt) 27945 index = 0; 27946 ipst->ips_conn_drain_list_index = index; 27947 } 27948 mutex_exit(&connp->conn_lock); 27949 27950 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27951 if ((connp->conn_drain_prev != NULL) || 27952 (connp->conn_state_flags & CONN_CLOSING)) { 27953 /* 27954 * The conn is already in the drain list, OR 27955 * the conn is closing. We need to check again for 27956 * the closing case again since close can happen 27957 * after we drop the conn_lock, and before we 27958 * acquire the CONN_DRAIN_LIST_LOCK. 27959 */ 27960 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27961 return; 27962 } else { 27963 idl = connp->conn_idl; 27964 } 27965 27966 /* 27967 * The conn is not in the drain list. Insert it at the 27968 * tail of the drain list. The drain list is circular 27969 * and doubly linked. idl_conn points to the 1st element 27970 * in the list. 27971 */ 27972 if (idl->idl_conn == NULL) { 27973 idl->idl_conn = connp; 27974 connp->conn_drain_next = connp; 27975 connp->conn_drain_prev = connp; 27976 } else { 27977 conn_t *head = idl->idl_conn; 27978 27979 connp->conn_drain_next = head; 27980 connp->conn_drain_prev = head->conn_drain_prev; 27981 head->conn_drain_prev->conn_drain_next = connp; 27982 head->conn_drain_prev = connp; 27983 } 27984 /* 27985 * For non streams based sockets assert flow control. 27986 */ 27987 if (IPCL_IS_NONSTR(connp)) { 27988 (*connp->conn_upcalls->su_txq_full) 27989 (connp->conn_upper_handle, B_TRUE); 27990 } 27991 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27992 } 27993 27994 /* 27995 * This conn is closing, and we are called from ip_close. OR 27996 * This conn has been serviced by ip_wsrv, and we need to do the tail 27997 * processing. 27998 * If this conn is part of the drain list, we may need to sustain the drain 27999 * process by qenabling the next conn in the drain list. We may also need to 28000 * remove this conn from the list, if it is done. 28001 */ 28002 static void 28003 conn_drain_tail(conn_t *connp, boolean_t closing) 28004 { 28005 idl_t *idl; 28006 28007 /* 28008 * connp->conn_idl is stable at this point, and no lock is needed 28009 * to check it. If we are called from ip_close, close has already 28010 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28011 * called us only because conn_idl is non-null. If we are called thru 28012 * service, conn_idl could be null, but it cannot change because 28013 * service is single-threaded per queue, and there cannot be another 28014 * instance of service trying to call conn_drain_insert on this conn 28015 * now. 28016 */ 28017 ASSERT(!closing || (connp->conn_idl != NULL)); 28018 28019 /* 28020 * If connp->conn_idl is null, the conn has not been inserted into any 28021 * drain list even once since creation of the conn. Just return. 28022 */ 28023 if (connp->conn_idl == NULL) 28024 return; 28025 28026 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28027 28028 if (connp->conn_drain_prev == NULL) { 28029 /* This conn is currently not in the drain list. */ 28030 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28031 return; 28032 } 28033 idl = connp->conn_idl; 28034 if (idl->idl_conn_draining == connp) { 28035 /* 28036 * This conn is the current drainer. If this is the last conn 28037 * in the drain list, we need to do more checks, in the 'if' 28038 * below. Otherwwise we need to just qenable the next conn, 28039 * to sustain the draining, and is handled in the 'else' 28040 * below. 28041 */ 28042 if (connp->conn_drain_next == idl->idl_conn) { 28043 /* 28044 * This conn is the last in this list. This round 28045 * of draining is complete. If idl_repeat is set, 28046 * it means another flow enabling has happened from 28047 * the driver/streams and we need to another round 28048 * of draining. 28049 * If there are more than 2 conns in the drain list, 28050 * do a left rotate by 1, so that all conns except the 28051 * conn at the head move towards the head by 1, and the 28052 * the conn at the head goes to the tail. This attempts 28053 * a more even share for all queues that are being 28054 * drained. 28055 */ 28056 if ((connp->conn_drain_next != connp) && 28057 (idl->idl_conn->conn_drain_next != connp)) { 28058 idl->idl_conn = idl->idl_conn->conn_drain_next; 28059 } 28060 if (idl->idl_repeat) { 28061 qenable(idl->idl_conn->conn_wq); 28062 idl->idl_conn_draining = idl->idl_conn; 28063 idl->idl_repeat = 0; 28064 } else { 28065 idl->idl_conn_draining = NULL; 28066 } 28067 } else { 28068 /* 28069 * If the next queue that we are now qenable'ing, 28070 * is closing, it will remove itself from this list 28071 * and qenable the subsequent queue in ip_close(). 28072 * Serialization is acheived thru idl_lock. 28073 */ 28074 qenable(connp->conn_drain_next->conn_wq); 28075 idl->idl_conn_draining = connp->conn_drain_next; 28076 } 28077 } 28078 if (!connp->conn_did_putbq || closing) { 28079 /* 28080 * Remove ourself from the drain list, if we did not do 28081 * a putbq, or if the conn is closing. 28082 * Note: It is possible that q->q_first is non-null. It means 28083 * that these messages landed after we did a enableok() in 28084 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28085 * service them. 28086 */ 28087 if (connp->conn_drain_next == connp) { 28088 /* Singleton in the list */ 28089 ASSERT(connp->conn_drain_prev == connp); 28090 idl->idl_conn = NULL; 28091 idl->idl_conn_draining = NULL; 28092 } else { 28093 connp->conn_drain_prev->conn_drain_next = 28094 connp->conn_drain_next; 28095 connp->conn_drain_next->conn_drain_prev = 28096 connp->conn_drain_prev; 28097 if (idl->idl_conn == connp) 28098 idl->idl_conn = connp->conn_drain_next; 28099 ASSERT(idl->idl_conn_draining != connp); 28100 28101 } 28102 connp->conn_drain_next = NULL; 28103 connp->conn_drain_prev = NULL; 28104 28105 /* 28106 * For non streams based sockets open up flow control. 28107 */ 28108 if (IPCL_IS_NONSTR(connp)) { 28109 (*connp->conn_upcalls->su_txq_full) 28110 (connp->conn_upper_handle, B_FALSE); 28111 } 28112 } 28113 28114 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28115 } 28116 28117 /* 28118 * Write service routine. Shared perimeter entry point. 28119 * ip_wsrv can be called in any of the following ways. 28120 * 1. The device queue's messages has fallen below the low water mark 28121 * and STREAMS has backenabled the ill_wq. We walk thru all the 28122 * the drain lists and backenable the first conn in each list. 28123 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28124 * qenabled non-tcp upper layers. We start dequeing messages and call 28125 * ip_wput for each message. 28126 */ 28127 28128 void 28129 ip_wsrv(queue_t *q) 28130 { 28131 conn_t *connp; 28132 ill_t *ill; 28133 mblk_t *mp; 28134 28135 if (q->q_next) { 28136 ill = (ill_t *)q->q_ptr; 28137 if (ill->ill_state_flags == 0) { 28138 /* 28139 * The device flow control has opened up. 28140 * Walk through conn drain lists and qenable the 28141 * first conn in each list. This makes sense only 28142 * if the stream is fully plumbed and setup. 28143 * Hence the if check above. 28144 */ 28145 ip1dbg(("ip_wsrv: walking\n")); 28146 conn_walk_drain(ill->ill_ipst); 28147 } 28148 return; 28149 } 28150 28151 connp = Q_TO_CONN(q); 28152 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28153 28154 /* 28155 * 1. Set conn_draining flag to signal that service is active. 28156 * 28157 * 2. ip_output determines whether it has been called from service, 28158 * based on the last parameter. If it is IP_WSRV it concludes it 28159 * has been called from service. 28160 * 28161 * 3. Message ordering is preserved by the following logic. 28162 * i. A directly called ip_output (i.e. not thru service) will queue 28163 * the message at the tail, if conn_draining is set (i.e. service 28164 * is running) or if q->q_first is non-null. 28165 * 28166 * ii. If ip_output is called from service, and if ip_output cannot 28167 * putnext due to flow control, it does a putbq. 28168 * 28169 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28170 * (causing an infinite loop). 28171 */ 28172 ASSERT(!connp->conn_did_putbq); 28173 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28174 connp->conn_draining = 1; 28175 noenable(q); 28176 while ((mp = getq(q)) != NULL) { 28177 ASSERT(CONN_Q(q)); 28178 28179 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28180 if (connp->conn_did_putbq) { 28181 /* ip_wput did a putbq */ 28182 break; 28183 } 28184 } 28185 /* 28186 * At this point, a thread coming down from top, calling 28187 * ip_wput, may end up queueing the message. We have not yet 28188 * enabled the queue, so ip_wsrv won't be called again. 28189 * To avoid this race, check q->q_first again (in the loop) 28190 * If the other thread queued the message before we call 28191 * enableok(), we will catch it in the q->q_first check. 28192 * If the other thread queues the message after we call 28193 * enableok(), ip_wsrv will be called again by STREAMS. 28194 */ 28195 connp->conn_draining = 0; 28196 enableok(q); 28197 28198 } 28199 28200 /* Enable the next conn for draining */ 28201 conn_drain_tail(connp, B_FALSE); 28202 28203 connp->conn_did_putbq = 0; 28204 } 28205 28206 /* 28207 * Callback to disable flow control in IP. 28208 * 28209 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28210 * is enabled. 28211 * 28212 * When MAC_TX() is not able to send any more packets, dld sets its queue 28213 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28214 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28215 * function and wakes up corresponding mac worker threads, which in turn 28216 * calls this callback function, and disables flow control. 28217 */ 28218 /* ARGSUSED */ 28219 void 28220 ill_flow_enable(void *ill, ip_mac_tx_cookie_t cookie) 28221 { 28222 qenable(((ill_t *)ill)->ill_wq); 28223 } 28224 28225 /* 28226 * Walk the list of all conn's calling the function provided with the 28227 * specified argument for each. Note that this only walks conn's that 28228 * have been bound. 28229 * Applies to both IPv4 and IPv6. 28230 */ 28231 static void 28232 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28233 { 28234 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28235 ipst->ips_ipcl_udp_fanout_size, 28236 func, arg, zoneid); 28237 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28238 ipst->ips_ipcl_conn_fanout_size, 28239 func, arg, zoneid); 28240 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28241 ipst->ips_ipcl_bind_fanout_size, 28242 func, arg, zoneid); 28243 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28244 IPPROTO_MAX, func, arg, zoneid); 28245 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28246 IPPROTO_MAX, func, arg, zoneid); 28247 } 28248 28249 /* 28250 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28251 * of conns that need to be drained, check if drain is already in progress. 28252 * If so set the idl_repeat bit, indicating that the last conn in the list 28253 * needs to reinitiate the drain once again, for the list. If drain is not 28254 * in progress for the list, initiate the draining, by qenabling the 1st 28255 * conn in the list. The drain is self-sustaining, each qenabled conn will 28256 * in turn qenable the next conn, when it is done/blocked/closing. 28257 */ 28258 static void 28259 conn_walk_drain(ip_stack_t *ipst) 28260 { 28261 int i; 28262 idl_t *idl; 28263 28264 IP_STAT(ipst, ip_conn_walk_drain); 28265 28266 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28267 idl = &ipst->ips_conn_drain_list[i]; 28268 mutex_enter(&idl->idl_lock); 28269 if (idl->idl_conn == NULL) { 28270 mutex_exit(&idl->idl_lock); 28271 continue; 28272 } 28273 /* 28274 * If this list is not being drained currently by 28275 * an ip_wsrv thread, start the process. 28276 */ 28277 if (idl->idl_conn_draining == NULL) { 28278 ASSERT(idl->idl_repeat == 0); 28279 qenable(idl->idl_conn->conn_wq); 28280 idl->idl_conn_draining = idl->idl_conn; 28281 } else { 28282 idl->idl_repeat = 1; 28283 } 28284 mutex_exit(&idl->idl_lock); 28285 } 28286 } 28287 28288 /* 28289 * Walk an conn hash table of `count' buckets, calling func for each entry. 28290 */ 28291 static void 28292 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28293 zoneid_t zoneid) 28294 { 28295 conn_t *connp; 28296 28297 while (count-- > 0) { 28298 mutex_enter(&connfp->connf_lock); 28299 for (connp = connfp->connf_head; connp != NULL; 28300 connp = connp->conn_next) { 28301 if (zoneid == GLOBAL_ZONEID || 28302 zoneid == connp->conn_zoneid) { 28303 CONN_INC_REF(connp); 28304 mutex_exit(&connfp->connf_lock); 28305 (*func)(connp, arg); 28306 mutex_enter(&connfp->connf_lock); 28307 CONN_DEC_REF(connp); 28308 } 28309 } 28310 mutex_exit(&connfp->connf_lock); 28311 connfp++; 28312 } 28313 } 28314 28315 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28316 static void 28317 conn_report1(conn_t *connp, void *mp) 28318 { 28319 char buf1[INET6_ADDRSTRLEN]; 28320 char buf2[INET6_ADDRSTRLEN]; 28321 uint_t print_len, buf_len; 28322 28323 ASSERT(connp != NULL); 28324 28325 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28326 if (buf_len <= 0) 28327 return; 28328 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28329 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28330 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28331 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28332 "%5d %s/%05d %s/%05d\n", 28333 (void *)connp, (void *)CONNP_TO_RQ(connp), 28334 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28335 buf1, connp->conn_lport, 28336 buf2, connp->conn_fport); 28337 if (print_len < buf_len) { 28338 ((mblk_t *)mp)->b_wptr += print_len; 28339 } else { 28340 ((mblk_t *)mp)->b_wptr += buf_len; 28341 } 28342 } 28343 28344 /* 28345 * Named Dispatch routine to produce a formatted report on all conns 28346 * that are listed in one of the fanout tables. 28347 * This report is accessed by using the ndd utility to "get" ND variable 28348 * "ip_conn_status". 28349 */ 28350 /* ARGSUSED */ 28351 static int 28352 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28353 { 28354 conn_t *connp = Q_TO_CONN(q); 28355 28356 (void) mi_mpprintf(mp, 28357 "CONN " MI_COL_HDRPAD_STR 28358 "rfq " MI_COL_HDRPAD_STR 28359 "stq " MI_COL_HDRPAD_STR 28360 " zone local remote"); 28361 28362 /* 28363 * Because of the ndd constraint, at most we can have 64K buffer 28364 * to put in all conn info. So to be more efficient, just 28365 * allocate a 64K buffer here, assuming we need that large buffer. 28366 * This should be OK as only privileged processes can do ndd /dev/ip. 28367 */ 28368 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28369 /* The following may work even if we cannot get a large buf. */ 28370 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28371 return (0); 28372 } 28373 28374 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28375 connp->conn_netstack->netstack_ip); 28376 return (0); 28377 } 28378 28379 /* 28380 * Determine if the ill and multicast aspects of that packets 28381 * "matches" the conn. 28382 */ 28383 boolean_t 28384 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28385 zoneid_t zoneid) 28386 { 28387 ill_t *bound_ill; 28388 boolean_t found; 28389 ipif_t *ipif; 28390 ire_t *ire; 28391 ipaddr_t dst, src; 28392 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28393 28394 dst = ipha->ipha_dst; 28395 src = ipha->ipha_src; 28396 28397 /* 28398 * conn_incoming_ill is set by IP_BOUND_IF which limits 28399 * unicast, broadcast and multicast reception to 28400 * conn_incoming_ill. conn_wantpacket itself is called 28401 * only for BROADCAST and multicast. 28402 */ 28403 bound_ill = connp->conn_incoming_ill; 28404 if (bound_ill != NULL) { 28405 if (IS_IPMP(bound_ill)) { 28406 if (bound_ill->ill_grp != ill->ill_grp) 28407 return (B_FALSE); 28408 } else { 28409 if (bound_ill != ill) 28410 return (B_FALSE); 28411 } 28412 } 28413 28414 if (!CLASSD(dst)) { 28415 if (IPCL_ZONE_MATCH(connp, zoneid)) 28416 return (B_TRUE); 28417 /* 28418 * The conn is in a different zone; we need to check that this 28419 * broadcast address is configured in the application's zone. 28420 */ 28421 ipif = ipif_get_next_ipif(NULL, ill); 28422 if (ipif == NULL) 28423 return (B_FALSE); 28424 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28425 connp->conn_zoneid, NULL, 28426 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28427 ipif_refrele(ipif); 28428 if (ire != NULL) { 28429 ire_refrele(ire); 28430 return (B_TRUE); 28431 } else { 28432 return (B_FALSE); 28433 } 28434 } 28435 28436 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28437 connp->conn_zoneid == zoneid) { 28438 /* 28439 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28440 * disabled, therefore we don't dispatch the multicast packet to 28441 * the sending zone. 28442 */ 28443 return (B_FALSE); 28444 } 28445 28446 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28447 /* 28448 * Multicast packet on the loopback interface: we only match 28449 * conns who joined the group in the specified zone. 28450 */ 28451 return (B_FALSE); 28452 } 28453 28454 if (connp->conn_multi_router) { 28455 /* multicast packet and multicast router socket: send up */ 28456 return (B_TRUE); 28457 } 28458 28459 mutex_enter(&connp->conn_lock); 28460 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28461 mutex_exit(&connp->conn_lock); 28462 return (found); 28463 } 28464 28465 /* 28466 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28467 */ 28468 /* ARGSUSED */ 28469 static void 28470 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28471 { 28472 ill_t *ill = (ill_t *)q->q_ptr; 28473 mblk_t *mp1, *mp2; 28474 ipif_t *ipif; 28475 int err = 0; 28476 conn_t *connp = NULL; 28477 ipsq_t *ipsq; 28478 arc_t *arc; 28479 28480 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28481 28482 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28483 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28484 28485 ASSERT(IAM_WRITER_ILL(ill)); 28486 mp2 = mp->b_cont; 28487 mp->b_cont = NULL; 28488 28489 /* 28490 * We have now received the arp bringup completion message 28491 * from ARP. Mark the arp bringup as done. Also if the arp 28492 * stream has already started closing, send up the AR_ARP_CLOSING 28493 * ack now since ARP is waiting in close for this ack. 28494 */ 28495 mutex_enter(&ill->ill_lock); 28496 ill->ill_arp_bringup_pending = 0; 28497 if (ill->ill_arp_closing) { 28498 mutex_exit(&ill->ill_lock); 28499 /* Let's reuse the mp for sending the ack */ 28500 arc = (arc_t *)mp->b_rptr; 28501 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28502 arc->arc_cmd = AR_ARP_CLOSING; 28503 qreply(q, mp); 28504 } else { 28505 mutex_exit(&ill->ill_lock); 28506 freeb(mp); 28507 } 28508 28509 ipsq = ill->ill_phyint->phyint_ipsq; 28510 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28511 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28512 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28513 if (mp1 == NULL) { 28514 /* bringup was aborted by the user */ 28515 freemsg(mp2); 28516 return; 28517 } 28518 28519 /* 28520 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28521 * must have an associated conn_t. Otherwise, we're bringing this 28522 * interface back up as part of handling an asynchronous event (e.g., 28523 * physical address change). 28524 */ 28525 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28526 ASSERT(connp != NULL); 28527 q = CONNP_TO_WQ(connp); 28528 } else { 28529 ASSERT(connp == NULL); 28530 q = ill->ill_rq; 28531 } 28532 28533 /* 28534 * If the DL_BIND_REQ fails, it is noted 28535 * in arc_name_offset. 28536 */ 28537 err = *((int *)mp2->b_rptr); 28538 if (err == 0) { 28539 if (ipif->ipif_isv6) { 28540 if ((err = ipif_up_done_v6(ipif)) != 0) 28541 ip0dbg(("ip_arp_done: init failed\n")); 28542 } else { 28543 if ((err = ipif_up_done(ipif)) != 0) 28544 ip0dbg(("ip_arp_done: init failed\n")); 28545 } 28546 } else { 28547 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28548 } 28549 28550 freemsg(mp2); 28551 28552 if ((err == 0) && (ill->ill_up_ipifs)) { 28553 err = ill_up_ipifs(ill, q, mp1); 28554 if (err == EINPROGRESS) 28555 return; 28556 } 28557 28558 /* 28559 * If we have a moved ipif to bring up, and everything has succeeded 28560 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28561 * down -- the admin can try to bring it up by hand if need be. 28562 */ 28563 if (ill->ill_move_ipif != NULL) { 28564 ipif = ill->ill_move_ipif; 28565 ill->ill_move_ipif = NULL; 28566 if (err == 0) { 28567 err = ipif_up(ipif, q, mp1); 28568 if (err == EINPROGRESS) 28569 return; 28570 } 28571 } 28572 28573 /* 28574 * The operation must complete without EINPROGRESS since 28575 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28576 * operation will be stuck forever in the ipsq. 28577 */ 28578 ASSERT(err != EINPROGRESS); 28579 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28580 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28581 else 28582 ipsq_current_finish(ipsq); 28583 } 28584 28585 /* Allocate the private structure */ 28586 static int 28587 ip_priv_alloc(void **bufp) 28588 { 28589 void *buf; 28590 28591 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28592 return (ENOMEM); 28593 28594 *bufp = buf; 28595 return (0); 28596 } 28597 28598 /* Function to delete the private structure */ 28599 void 28600 ip_priv_free(void *buf) 28601 { 28602 ASSERT(buf != NULL); 28603 kmem_free(buf, sizeof (ip_priv_t)); 28604 } 28605 28606 /* 28607 * The entry point for IPPF processing. 28608 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28609 * routine just returns. 28610 * 28611 * When called, ip_process generates an ipp_packet_t structure 28612 * which holds the state information for this packet and invokes the 28613 * the classifier (via ipp_packet_process). The classification, depending on 28614 * configured filters, results in a list of actions for this packet. Invoking 28615 * an action may cause the packet to be dropped, in which case the resulting 28616 * mblk (*mpp) is NULL. proc indicates the callout position for 28617 * this packet and ill_index is the interface this packet on or will leave 28618 * on (inbound and outbound resp.). 28619 */ 28620 void 28621 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28622 { 28623 mblk_t *mp; 28624 ip_priv_t *priv; 28625 ipp_action_id_t aid; 28626 int rc = 0; 28627 ipp_packet_t *pp; 28628 #define IP_CLASS "ip" 28629 28630 /* If the classifier is not loaded, return */ 28631 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28632 return; 28633 } 28634 28635 mp = *mpp; 28636 ASSERT(mp != NULL); 28637 28638 /* Allocate the packet structure */ 28639 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28640 if (rc != 0) { 28641 *mpp = NULL; 28642 freemsg(mp); 28643 return; 28644 } 28645 28646 /* Allocate the private structure */ 28647 rc = ip_priv_alloc((void **)&priv); 28648 if (rc != 0) { 28649 *mpp = NULL; 28650 freemsg(mp); 28651 ipp_packet_free(pp); 28652 return; 28653 } 28654 priv->proc = proc; 28655 priv->ill_index = ill_index; 28656 ipp_packet_set_private(pp, priv, ip_priv_free); 28657 ipp_packet_set_data(pp, mp); 28658 28659 /* Invoke the classifier */ 28660 rc = ipp_packet_process(&pp); 28661 if (pp != NULL) { 28662 mp = ipp_packet_get_data(pp); 28663 ipp_packet_free(pp); 28664 if (rc != 0) { 28665 freemsg(mp); 28666 *mpp = NULL; 28667 } 28668 } else { 28669 *mpp = NULL; 28670 } 28671 #undef IP_CLASS 28672 } 28673 28674 /* 28675 * Propagate a multicast group membership operation (add/drop) on 28676 * all the interfaces crossed by the related multirt routes. 28677 * The call is considered successful if the operation succeeds 28678 * on at least one interface. 28679 */ 28680 static int 28681 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28682 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28683 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28684 mblk_t *first_mp) 28685 { 28686 ire_t *ire_gw; 28687 irb_t *irb; 28688 int error = 0; 28689 opt_restart_t *or; 28690 ip_stack_t *ipst = ire->ire_ipst; 28691 28692 irb = ire->ire_bucket; 28693 ASSERT(irb != NULL); 28694 28695 ASSERT(DB_TYPE(first_mp) == M_CTL); 28696 28697 or = (opt_restart_t *)first_mp->b_rptr; 28698 IRB_REFHOLD(irb); 28699 for (; ire != NULL; ire = ire->ire_next) { 28700 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28701 continue; 28702 if (ire->ire_addr != group) 28703 continue; 28704 28705 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28706 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28707 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28708 /* No resolver exists for the gateway; skip this ire. */ 28709 if (ire_gw == NULL) 28710 continue; 28711 28712 /* 28713 * This function can return EINPROGRESS. If so the operation 28714 * will be restarted from ip_restart_optmgmt which will 28715 * call ip_opt_set and option processing will restart for 28716 * this option. So we may end up calling 'fn' more than once. 28717 * This requires that 'fn' is idempotent except for the 28718 * return value. The operation is considered a success if 28719 * it succeeds at least once on any one interface. 28720 */ 28721 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28722 NULL, fmode, src, first_mp); 28723 if (error == 0) 28724 or->or_private = CGTP_MCAST_SUCCESS; 28725 28726 if (ip_debug > 0) { 28727 ulong_t off; 28728 char *ksym; 28729 ksym = kobj_getsymname((uintptr_t)fn, &off); 28730 ip2dbg(("ip_multirt_apply_membership: " 28731 "called %s, multirt group 0x%08x via itf 0x%08x, " 28732 "error %d [success %u]\n", 28733 ksym ? ksym : "?", 28734 ntohl(group), ntohl(ire_gw->ire_src_addr), 28735 error, or->or_private)); 28736 } 28737 28738 ire_refrele(ire_gw); 28739 if (error == EINPROGRESS) { 28740 IRB_REFRELE(irb); 28741 return (error); 28742 } 28743 } 28744 IRB_REFRELE(irb); 28745 /* 28746 * Consider the call as successful if we succeeded on at least 28747 * one interface. Otherwise, return the last encountered error. 28748 */ 28749 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28750 } 28751 28752 /* 28753 * Issue a warning regarding a route crossing an interface with an 28754 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28755 * amount of time is logged. 28756 */ 28757 static void 28758 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28759 { 28760 hrtime_t current = gethrtime(); 28761 char buf[INET_ADDRSTRLEN]; 28762 ip_stack_t *ipst = ire->ire_ipst; 28763 28764 /* Convert interval in ms to hrtime in ns */ 28765 if (ipst->ips_multirt_bad_mtu_last_time + 28766 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28767 current) { 28768 cmn_err(CE_WARN, "ip: ignoring multiroute " 28769 "to %s, incorrect MTU %u (expected %u)\n", 28770 ip_dot_addr(ire->ire_addr, buf), 28771 ire->ire_max_frag, max_frag); 28772 28773 ipst->ips_multirt_bad_mtu_last_time = current; 28774 } 28775 } 28776 28777 28778 /* 28779 * Get the CGTP (multirouting) filtering status. 28780 * If 0, the CGTP hooks are transparent. 28781 */ 28782 /* ARGSUSED */ 28783 static int 28784 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28785 { 28786 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28787 28788 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28789 return (0); 28790 } 28791 28792 28793 /* 28794 * Set the CGTP (multirouting) filtering status. 28795 * If the status is changed from active to transparent 28796 * or from transparent to active, forward the new status 28797 * to the filtering module (if loaded). 28798 */ 28799 /* ARGSUSED */ 28800 static int 28801 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28802 cred_t *ioc_cr) 28803 { 28804 long new_value; 28805 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28806 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28807 28808 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28809 return (EPERM); 28810 28811 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28812 new_value < 0 || new_value > 1) { 28813 return (EINVAL); 28814 } 28815 28816 if ((!*ip_cgtp_filter_value) && new_value) { 28817 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28818 ipst->ips_ip_cgtp_filter_ops == NULL ? 28819 " (module not loaded)" : ""); 28820 } 28821 if (*ip_cgtp_filter_value && (!new_value)) { 28822 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28823 ipst->ips_ip_cgtp_filter_ops == NULL ? 28824 " (module not loaded)" : ""); 28825 } 28826 28827 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28828 int res; 28829 netstackid_t stackid; 28830 28831 stackid = ipst->ips_netstack->netstack_stackid; 28832 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28833 new_value); 28834 if (res) 28835 return (res); 28836 } 28837 28838 *ip_cgtp_filter_value = (boolean_t)new_value; 28839 28840 return (0); 28841 } 28842 28843 28844 /* 28845 * Return the expected CGTP hooks version number. 28846 */ 28847 int 28848 ip_cgtp_filter_supported(void) 28849 { 28850 return (ip_cgtp_filter_rev); 28851 } 28852 28853 28854 /* 28855 * CGTP hooks can be registered by invoking this function. 28856 * Checks that the version number matches. 28857 */ 28858 int 28859 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28860 { 28861 netstack_t *ns; 28862 ip_stack_t *ipst; 28863 28864 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28865 return (ENOTSUP); 28866 28867 ns = netstack_find_by_stackid(stackid); 28868 if (ns == NULL) 28869 return (EINVAL); 28870 ipst = ns->netstack_ip; 28871 ASSERT(ipst != NULL); 28872 28873 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28874 netstack_rele(ns); 28875 return (EALREADY); 28876 } 28877 28878 ipst->ips_ip_cgtp_filter_ops = ops; 28879 netstack_rele(ns); 28880 return (0); 28881 } 28882 28883 /* 28884 * CGTP hooks can be unregistered by invoking this function. 28885 * Returns ENXIO if there was no registration. 28886 * Returns EBUSY if the ndd variable has not been turned off. 28887 */ 28888 int 28889 ip_cgtp_filter_unregister(netstackid_t stackid) 28890 { 28891 netstack_t *ns; 28892 ip_stack_t *ipst; 28893 28894 ns = netstack_find_by_stackid(stackid); 28895 if (ns == NULL) 28896 return (EINVAL); 28897 ipst = ns->netstack_ip; 28898 ASSERT(ipst != NULL); 28899 28900 if (ipst->ips_ip_cgtp_filter) { 28901 netstack_rele(ns); 28902 return (EBUSY); 28903 } 28904 28905 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28906 netstack_rele(ns); 28907 return (ENXIO); 28908 } 28909 ipst->ips_ip_cgtp_filter_ops = NULL; 28910 netstack_rele(ns); 28911 return (0); 28912 } 28913 28914 /* 28915 * Check whether there is a CGTP filter registration. 28916 * Returns non-zero if there is a registration, otherwise returns zero. 28917 * Note: returns zero if bad stackid. 28918 */ 28919 int 28920 ip_cgtp_filter_is_registered(netstackid_t stackid) 28921 { 28922 netstack_t *ns; 28923 ip_stack_t *ipst; 28924 int ret; 28925 28926 ns = netstack_find_by_stackid(stackid); 28927 if (ns == NULL) 28928 return (0); 28929 ipst = ns->netstack_ip; 28930 ASSERT(ipst != NULL); 28931 28932 if (ipst->ips_ip_cgtp_filter_ops != NULL) 28933 ret = 1; 28934 else 28935 ret = 0; 28936 28937 netstack_rele(ns); 28938 return (ret); 28939 } 28940 28941 static int 28942 ip_squeue_switch(int val) 28943 { 28944 int rval = SQ_FILL; 28945 28946 switch (val) { 28947 case IP_SQUEUE_ENTER_NODRAIN: 28948 rval = SQ_NODRAIN; 28949 break; 28950 case IP_SQUEUE_ENTER: 28951 rval = SQ_PROCESS; 28952 break; 28953 default: 28954 break; 28955 } 28956 return (rval); 28957 } 28958 28959 /* ARGSUSED */ 28960 static int 28961 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28962 caddr_t addr, cred_t *cr) 28963 { 28964 int *v = (int *)addr; 28965 long new_value; 28966 28967 if (secpolicy_net_config(cr, B_FALSE) != 0) 28968 return (EPERM); 28969 28970 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28971 return (EINVAL); 28972 28973 ip_squeue_flag = ip_squeue_switch(new_value); 28974 *v = new_value; 28975 return (0); 28976 } 28977 28978 /* 28979 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 28980 * ip_debug. 28981 */ 28982 /* ARGSUSED */ 28983 static int 28984 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28985 caddr_t addr, cred_t *cr) 28986 { 28987 int *v = (int *)addr; 28988 long new_value; 28989 28990 if (secpolicy_net_config(cr, B_FALSE) != 0) 28991 return (EPERM); 28992 28993 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28994 return (EINVAL); 28995 28996 *v = new_value; 28997 return (0); 28998 } 28999 29000 static void * 29001 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29002 { 29003 kstat_t *ksp; 29004 29005 ip_stat_t template = { 29006 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29007 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29008 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29009 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29010 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29011 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29012 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29013 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29014 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29015 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29016 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29017 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29018 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29019 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29020 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29021 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29022 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29023 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29024 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29025 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29026 { "ip_opt", KSTAT_DATA_UINT64 }, 29027 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29028 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29029 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29030 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29031 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29032 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29033 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29034 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29035 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29036 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29037 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29038 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29039 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29040 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29041 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29042 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29043 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29044 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29045 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29046 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29047 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29048 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29049 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29050 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29051 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29052 }; 29053 29054 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29055 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29056 KSTAT_FLAG_VIRTUAL, stackid); 29057 29058 if (ksp == NULL) 29059 return (NULL); 29060 29061 bcopy(&template, ip_statisticsp, sizeof (template)); 29062 ksp->ks_data = (void *)ip_statisticsp; 29063 ksp->ks_private = (void *)(uintptr_t)stackid; 29064 29065 kstat_install(ksp); 29066 return (ksp); 29067 } 29068 29069 static void 29070 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29071 { 29072 if (ksp != NULL) { 29073 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29074 kstat_delete_netstack(ksp, stackid); 29075 } 29076 } 29077 29078 static void * 29079 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29080 { 29081 kstat_t *ksp; 29082 29083 ip_named_kstat_t template = { 29084 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29085 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29086 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29087 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29088 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29089 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29090 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29091 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29092 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29093 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29094 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29095 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29096 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29097 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29098 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29099 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29100 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29101 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29102 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29103 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29104 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29105 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29106 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29107 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29108 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29109 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29110 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29111 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29112 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29113 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29114 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29115 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29116 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29117 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29118 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29119 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29120 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29121 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29122 }; 29123 29124 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29125 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29126 if (ksp == NULL || ksp->ks_data == NULL) 29127 return (NULL); 29128 29129 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29130 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29131 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29132 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29133 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29134 29135 template.netToMediaEntrySize.value.i32 = 29136 sizeof (mib2_ipNetToMediaEntry_t); 29137 29138 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29139 29140 bcopy(&template, ksp->ks_data, sizeof (template)); 29141 ksp->ks_update = ip_kstat_update; 29142 ksp->ks_private = (void *)(uintptr_t)stackid; 29143 29144 kstat_install(ksp); 29145 return (ksp); 29146 } 29147 29148 static void 29149 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29150 { 29151 if (ksp != NULL) { 29152 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29153 kstat_delete_netstack(ksp, stackid); 29154 } 29155 } 29156 29157 static int 29158 ip_kstat_update(kstat_t *kp, int rw) 29159 { 29160 ip_named_kstat_t *ipkp; 29161 mib2_ipIfStatsEntry_t ipmib; 29162 ill_walk_context_t ctx; 29163 ill_t *ill; 29164 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29165 netstack_t *ns; 29166 ip_stack_t *ipst; 29167 29168 if (kp == NULL || kp->ks_data == NULL) 29169 return (EIO); 29170 29171 if (rw == KSTAT_WRITE) 29172 return (EACCES); 29173 29174 ns = netstack_find_by_stackid(stackid); 29175 if (ns == NULL) 29176 return (-1); 29177 ipst = ns->netstack_ip; 29178 if (ipst == NULL) { 29179 netstack_rele(ns); 29180 return (-1); 29181 } 29182 ipkp = (ip_named_kstat_t *)kp->ks_data; 29183 29184 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29185 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29186 ill = ILL_START_WALK_V4(&ctx, ipst); 29187 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29188 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29189 rw_exit(&ipst->ips_ill_g_lock); 29190 29191 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29192 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29193 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29194 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29195 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29196 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29197 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29198 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29199 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29200 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29201 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29202 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29203 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29204 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29205 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29206 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29207 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29208 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29209 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29210 29211 ipkp->routingDiscards.value.ui32 = 0; 29212 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29213 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29214 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29215 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29216 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29217 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29218 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29219 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29220 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29221 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29222 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29223 29224 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29225 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29226 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29227 29228 netstack_rele(ns); 29229 29230 return (0); 29231 } 29232 29233 static void * 29234 icmp_kstat_init(netstackid_t stackid) 29235 { 29236 kstat_t *ksp; 29237 29238 icmp_named_kstat_t template = { 29239 { "inMsgs", KSTAT_DATA_UINT32 }, 29240 { "inErrors", KSTAT_DATA_UINT32 }, 29241 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29242 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29243 { "inParmProbs", KSTAT_DATA_UINT32 }, 29244 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29245 { "inRedirects", KSTAT_DATA_UINT32 }, 29246 { "inEchos", KSTAT_DATA_UINT32 }, 29247 { "inEchoReps", KSTAT_DATA_UINT32 }, 29248 { "inTimestamps", KSTAT_DATA_UINT32 }, 29249 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29250 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29251 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29252 { "outMsgs", KSTAT_DATA_UINT32 }, 29253 { "outErrors", KSTAT_DATA_UINT32 }, 29254 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29255 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29256 { "outParmProbs", KSTAT_DATA_UINT32 }, 29257 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29258 { "outRedirects", KSTAT_DATA_UINT32 }, 29259 { "outEchos", KSTAT_DATA_UINT32 }, 29260 { "outEchoReps", KSTAT_DATA_UINT32 }, 29261 { "outTimestamps", KSTAT_DATA_UINT32 }, 29262 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29263 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29264 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29265 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29266 { "inUnknowns", KSTAT_DATA_UINT32 }, 29267 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29268 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29269 { "outDrops", KSTAT_DATA_UINT32 }, 29270 { "inOverFlows", KSTAT_DATA_UINT32 }, 29271 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29272 }; 29273 29274 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29275 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29276 if (ksp == NULL || ksp->ks_data == NULL) 29277 return (NULL); 29278 29279 bcopy(&template, ksp->ks_data, sizeof (template)); 29280 29281 ksp->ks_update = icmp_kstat_update; 29282 ksp->ks_private = (void *)(uintptr_t)stackid; 29283 29284 kstat_install(ksp); 29285 return (ksp); 29286 } 29287 29288 static void 29289 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29290 { 29291 if (ksp != NULL) { 29292 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29293 kstat_delete_netstack(ksp, stackid); 29294 } 29295 } 29296 29297 static int 29298 icmp_kstat_update(kstat_t *kp, int rw) 29299 { 29300 icmp_named_kstat_t *icmpkp; 29301 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29302 netstack_t *ns; 29303 ip_stack_t *ipst; 29304 29305 if ((kp == NULL) || (kp->ks_data == NULL)) 29306 return (EIO); 29307 29308 if (rw == KSTAT_WRITE) 29309 return (EACCES); 29310 29311 ns = netstack_find_by_stackid(stackid); 29312 if (ns == NULL) 29313 return (-1); 29314 ipst = ns->netstack_ip; 29315 if (ipst == NULL) { 29316 netstack_rele(ns); 29317 return (-1); 29318 } 29319 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29320 29321 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29322 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29323 icmpkp->inDestUnreachs.value.ui32 = 29324 ipst->ips_icmp_mib.icmpInDestUnreachs; 29325 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29326 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29327 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29328 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29329 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29330 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29331 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29332 icmpkp->inTimestampReps.value.ui32 = 29333 ipst->ips_icmp_mib.icmpInTimestampReps; 29334 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29335 icmpkp->inAddrMaskReps.value.ui32 = 29336 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29337 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29338 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29339 icmpkp->outDestUnreachs.value.ui32 = 29340 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29341 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29342 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29343 icmpkp->outSrcQuenchs.value.ui32 = 29344 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29345 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29346 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29347 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29348 icmpkp->outTimestamps.value.ui32 = 29349 ipst->ips_icmp_mib.icmpOutTimestamps; 29350 icmpkp->outTimestampReps.value.ui32 = 29351 ipst->ips_icmp_mib.icmpOutTimestampReps; 29352 icmpkp->outAddrMasks.value.ui32 = 29353 ipst->ips_icmp_mib.icmpOutAddrMasks; 29354 icmpkp->outAddrMaskReps.value.ui32 = 29355 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29356 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29357 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29358 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29359 icmpkp->outFragNeeded.value.ui32 = 29360 ipst->ips_icmp_mib.icmpOutFragNeeded; 29361 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29362 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29363 icmpkp->inBadRedirects.value.ui32 = 29364 ipst->ips_icmp_mib.icmpInBadRedirects; 29365 29366 netstack_rele(ns); 29367 return (0); 29368 } 29369 29370 /* 29371 * This is the fanout function for raw socket opened for SCTP. Note 29372 * that it is called after SCTP checks that there is no socket which 29373 * wants a packet. Then before SCTP handles this out of the blue packet, 29374 * this function is called to see if there is any raw socket for SCTP. 29375 * If there is and it is bound to the correct address, the packet will 29376 * be sent to that socket. Note that only one raw socket can be bound to 29377 * a port. This is assured in ipcl_sctp_hash_insert(); 29378 */ 29379 void 29380 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29381 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29382 zoneid_t zoneid) 29383 { 29384 conn_t *connp; 29385 queue_t *rq; 29386 mblk_t *first_mp; 29387 boolean_t secure; 29388 ip6_t *ip6h; 29389 ip_stack_t *ipst = recv_ill->ill_ipst; 29390 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29391 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29392 boolean_t sctp_csum_err = B_FALSE; 29393 29394 if (flags & IP_FF_SCTP_CSUM_ERR) { 29395 sctp_csum_err = B_TRUE; 29396 flags &= ~IP_FF_SCTP_CSUM_ERR; 29397 } 29398 29399 first_mp = mp; 29400 if (mctl_present) { 29401 mp = first_mp->b_cont; 29402 secure = ipsec_in_is_secure(first_mp); 29403 ASSERT(mp != NULL); 29404 } else { 29405 secure = B_FALSE; 29406 } 29407 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29408 29409 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29410 if (connp == NULL) { 29411 /* 29412 * Although raw sctp is not summed, OOB chunks must be. 29413 * Drop the packet here if the sctp checksum failed. 29414 */ 29415 if (sctp_csum_err) { 29416 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29417 freemsg(first_mp); 29418 return; 29419 } 29420 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29421 return; 29422 } 29423 rq = connp->conn_rq; 29424 if (!canputnext(rq)) { 29425 CONN_DEC_REF(connp); 29426 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29427 freemsg(first_mp); 29428 return; 29429 } 29430 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29431 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29432 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29433 (isv4 ? ipha : NULL), ip6h, mctl_present); 29434 if (first_mp == NULL) { 29435 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29436 CONN_DEC_REF(connp); 29437 return; 29438 } 29439 } 29440 /* 29441 * We probably should not send M_CTL message up to 29442 * raw socket. 29443 */ 29444 if (mctl_present) 29445 freeb(first_mp); 29446 29447 /* Initiate IPPF processing here if needed. */ 29448 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29449 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29450 ip_process(IPP_LOCAL_IN, &mp, 29451 recv_ill->ill_phyint->phyint_ifindex); 29452 if (mp == NULL) { 29453 CONN_DEC_REF(connp); 29454 return; 29455 } 29456 } 29457 29458 if (connp->conn_recvif || connp->conn_recvslla || 29459 ((connp->conn_ip_recvpktinfo || 29460 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29461 (flags & IP_FF_IPINFO))) { 29462 int in_flags = 0; 29463 29464 /* 29465 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29466 * IPF_RECVIF. 29467 */ 29468 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29469 in_flags = IPF_RECVIF; 29470 } 29471 if (connp->conn_recvslla) { 29472 in_flags |= IPF_RECVSLLA; 29473 } 29474 if (isv4) { 29475 mp = ip_add_info(mp, recv_ill, in_flags, 29476 IPCL_ZONEID(connp), ipst); 29477 } else { 29478 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29479 if (mp == NULL) { 29480 BUMP_MIB(recv_ill->ill_ip_mib, 29481 ipIfStatsInDiscards); 29482 CONN_DEC_REF(connp); 29483 return; 29484 } 29485 } 29486 } 29487 29488 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29489 /* 29490 * We are sending the IPSEC_IN message also up. Refer 29491 * to comments above this function. 29492 * This is the SOCK_RAW, IPPROTO_SCTP case. 29493 */ 29494 (connp->conn_recv)(connp, mp, NULL); 29495 CONN_DEC_REF(connp); 29496 } 29497 29498 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29499 { \ 29500 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29501 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29502 } 29503 /* 29504 * This function should be called only if all packet processing 29505 * including fragmentation is complete. Callers of this function 29506 * must set mp->b_prev to one of these values: 29507 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29508 * prior to handing over the mp as first argument to this function. 29509 * 29510 * If the ire passed by caller is incomplete, this function 29511 * queues the packet and if necessary, sends ARP request and bails. 29512 * If the ire passed is fully resolved, we simply prepend 29513 * the link-layer header to the packet, do ipsec hw acceleration 29514 * work if necessary, and send the packet out on the wire. 29515 * 29516 * NOTE: IPsec will only call this function with fully resolved 29517 * ires if hw acceleration is involved. 29518 * TODO list : 29519 * a Handle M_MULTIDATA so that 29520 * tcp_multisend->tcp_multisend_data can 29521 * call ip_xmit_v4 directly 29522 * b Handle post-ARP work for fragments so that 29523 * ip_wput_frag can call this function. 29524 */ 29525 ipxmit_state_t 29526 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29527 boolean_t flow_ctl_enabled, conn_t *connp) 29528 { 29529 nce_t *arpce; 29530 ipha_t *ipha; 29531 queue_t *q; 29532 int ill_index; 29533 mblk_t *nxt_mp, *first_mp; 29534 boolean_t xmit_drop = B_FALSE; 29535 ip_proc_t proc; 29536 ill_t *out_ill; 29537 int pkt_len; 29538 29539 arpce = ire->ire_nce; 29540 ASSERT(arpce != NULL); 29541 29542 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29543 29544 mutex_enter(&arpce->nce_lock); 29545 switch (arpce->nce_state) { 29546 case ND_REACHABLE: 29547 /* If there are other queued packets, queue this packet */ 29548 if (arpce->nce_qd_mp != NULL) { 29549 if (mp != NULL) 29550 nce_queue_mp_common(arpce, mp, B_FALSE); 29551 mp = arpce->nce_qd_mp; 29552 } 29553 arpce->nce_qd_mp = NULL; 29554 mutex_exit(&arpce->nce_lock); 29555 29556 /* 29557 * Flush the queue. In the common case, where the 29558 * ARP is already resolved, it will go through the 29559 * while loop only once. 29560 */ 29561 while (mp != NULL) { 29562 29563 nxt_mp = mp->b_next; 29564 mp->b_next = NULL; 29565 ASSERT(mp->b_datap->db_type != M_CTL); 29566 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29567 /* 29568 * This info is needed for IPQOS to do COS marking 29569 * in ip_wput_attach_llhdr->ip_process. 29570 */ 29571 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29572 mp->b_prev = NULL; 29573 29574 /* set up ill index for outbound qos processing */ 29575 out_ill = ire_to_ill(ire); 29576 ill_index = out_ill->ill_phyint->phyint_ifindex; 29577 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29578 ill_index, &ipha); 29579 if (first_mp == NULL) { 29580 xmit_drop = B_TRUE; 29581 BUMP_MIB(out_ill->ill_ip_mib, 29582 ipIfStatsOutDiscards); 29583 goto next_mp; 29584 } 29585 29586 /* non-ipsec hw accel case */ 29587 if (io == NULL || !io->ipsec_out_accelerated) { 29588 /* send it */ 29589 q = ire->ire_stq; 29590 if (proc == IPP_FWD_OUT) { 29591 UPDATE_IB_PKT_COUNT(ire); 29592 } else { 29593 UPDATE_OB_PKT_COUNT(ire); 29594 } 29595 ire->ire_last_used_time = lbolt; 29596 29597 if (flow_ctl_enabled || canputnext(q)) { 29598 if (proc == IPP_FWD_OUT) { 29599 29600 BUMP_MIB(out_ill->ill_ip_mib, 29601 ipIfStatsHCOutForwDatagrams); 29602 29603 } 29604 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29605 pkt_len); 29606 29607 DTRACE_IP7(send, mblk_t *, first_mp, 29608 conn_t *, NULL, void_ip_t *, ipha, 29609 __dtrace_ipsr_ill_t *, out_ill, 29610 ipha_t *, ipha, ip6_t *, NULL, int, 29611 0); 29612 29613 ILL_SEND_TX(out_ill, 29614 ire, connp, first_mp, 0); 29615 } else { 29616 BUMP_MIB(out_ill->ill_ip_mib, 29617 ipIfStatsOutDiscards); 29618 xmit_drop = B_TRUE; 29619 freemsg(first_mp); 29620 } 29621 } else { 29622 /* 29623 * Safety Pup says: make sure this 29624 * is going to the right interface! 29625 */ 29626 ill_t *ill1 = 29627 (ill_t *)ire->ire_stq->q_ptr; 29628 int ifindex = 29629 ill1->ill_phyint->phyint_ifindex; 29630 if (ifindex != 29631 io->ipsec_out_capab_ill_index) { 29632 xmit_drop = B_TRUE; 29633 freemsg(mp); 29634 } else { 29635 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29636 pkt_len); 29637 29638 DTRACE_IP7(send, mblk_t *, first_mp, 29639 conn_t *, NULL, void_ip_t *, ipha, 29640 __dtrace_ipsr_ill_t *, ill1, 29641 ipha_t *, ipha, ip6_t *, NULL, 29642 int, 0); 29643 29644 ipsec_hw_putnext(ire->ire_stq, mp); 29645 } 29646 } 29647 next_mp: 29648 mp = nxt_mp; 29649 } /* while (mp != NULL) */ 29650 if (xmit_drop) 29651 return (SEND_FAILED); 29652 else 29653 return (SEND_PASSED); 29654 29655 case ND_INITIAL: 29656 case ND_INCOMPLETE: 29657 29658 /* 29659 * While we do send off packets to dests that 29660 * use fully-resolved CGTP routes, we do not 29661 * handle unresolved CGTP routes. 29662 */ 29663 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29664 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29665 29666 if (mp != NULL) { 29667 /* queue the packet */ 29668 nce_queue_mp_common(arpce, mp, B_FALSE); 29669 } 29670 29671 if (arpce->nce_state == ND_INCOMPLETE) { 29672 mutex_exit(&arpce->nce_lock); 29673 DTRACE_PROBE3(ip__xmit__incomplete, 29674 (ire_t *), ire, (mblk_t *), mp, 29675 (ipsec_out_t *), io); 29676 return (LOOKUP_IN_PROGRESS); 29677 } 29678 29679 arpce->nce_state = ND_INCOMPLETE; 29680 mutex_exit(&arpce->nce_lock); 29681 29682 /* 29683 * Note that ire_add() (called from ire_forward()) 29684 * holds a ref on the ire until ARP is completed. 29685 */ 29686 ire_arpresolve(ire); 29687 return (LOOKUP_IN_PROGRESS); 29688 default: 29689 ASSERT(0); 29690 mutex_exit(&arpce->nce_lock); 29691 return (LLHDR_RESLV_FAILED); 29692 } 29693 } 29694 29695 #undef UPDATE_IP_MIB_OB_COUNTERS 29696 29697 /* 29698 * Return B_TRUE if the buffers differ in length or content. 29699 * This is used for comparing extension header buffers. 29700 * Note that an extension header would be declared different 29701 * even if all that changed was the next header value in that header i.e. 29702 * what really changed is the next extension header. 29703 */ 29704 boolean_t 29705 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29706 uint_t blen) 29707 { 29708 if (!b_valid) 29709 blen = 0; 29710 29711 if (alen != blen) 29712 return (B_TRUE); 29713 if (alen == 0) 29714 return (B_FALSE); /* Both zero length */ 29715 return (bcmp(abuf, bbuf, alen)); 29716 } 29717 29718 /* 29719 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29720 * Return B_FALSE if memory allocation fails - don't change any state! 29721 */ 29722 boolean_t 29723 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29724 const void *src, uint_t srclen) 29725 { 29726 void *dst; 29727 29728 if (!src_valid) 29729 srclen = 0; 29730 29731 ASSERT(*dstlenp == 0); 29732 if (src != NULL && srclen != 0) { 29733 dst = mi_alloc(srclen, BPRI_MED); 29734 if (dst == NULL) 29735 return (B_FALSE); 29736 } else { 29737 dst = NULL; 29738 } 29739 if (*dstp != NULL) 29740 mi_free(*dstp); 29741 *dstp = dst; 29742 *dstlenp = dst == NULL ? 0 : srclen; 29743 return (B_TRUE); 29744 } 29745 29746 /* 29747 * Replace what is in *dst, *dstlen with the source. 29748 * Assumes ip_allocbuf has already been called. 29749 */ 29750 void 29751 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29752 const void *src, uint_t srclen) 29753 { 29754 if (!src_valid) 29755 srclen = 0; 29756 29757 ASSERT(*dstlenp == srclen); 29758 if (src != NULL && srclen != 0) 29759 bcopy(src, *dstp, srclen); 29760 } 29761 29762 /* 29763 * Free the storage pointed to by the members of an ip6_pkt_t. 29764 */ 29765 void 29766 ip6_pkt_free(ip6_pkt_t *ipp) 29767 { 29768 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29769 29770 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29771 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29772 ipp->ipp_hopopts = NULL; 29773 ipp->ipp_hopoptslen = 0; 29774 } 29775 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29776 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29777 ipp->ipp_rtdstopts = NULL; 29778 ipp->ipp_rtdstoptslen = 0; 29779 } 29780 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29781 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29782 ipp->ipp_dstopts = NULL; 29783 ipp->ipp_dstoptslen = 0; 29784 } 29785 if (ipp->ipp_fields & IPPF_RTHDR) { 29786 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29787 ipp->ipp_rthdr = NULL; 29788 ipp->ipp_rthdrlen = 0; 29789 } 29790 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29791 IPPF_RTHDR); 29792 } 29793 29794 zoneid_t 29795 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 29796 zoneid_t lookup_zoneid) 29797 { 29798 ire_t *ire; 29799 int ire_flags = MATCH_IRE_TYPE; 29800 zoneid_t zoneid = ALL_ZONES; 29801 29802 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29803 return (ALL_ZONES); 29804 29805 if (lookup_zoneid != ALL_ZONES) 29806 ire_flags |= MATCH_IRE_ZONEONLY; 29807 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 29808 lookup_zoneid, NULL, ire_flags, ipst); 29809 if (ire != NULL) { 29810 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29811 ire_refrele(ire); 29812 } 29813 return (zoneid); 29814 } 29815 29816 zoneid_t 29817 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 29818 ip_stack_t *ipst, zoneid_t lookup_zoneid) 29819 { 29820 ire_t *ire; 29821 int ire_flags = MATCH_IRE_TYPE; 29822 zoneid_t zoneid = ALL_ZONES; 29823 ipif_t *ipif_arg = NULL; 29824 29825 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29826 return (ALL_ZONES); 29827 29828 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 29829 ire_flags |= MATCH_IRE_ILL; 29830 ipif_arg = ill->ill_ipif; 29831 } 29832 if (lookup_zoneid != ALL_ZONES) 29833 ire_flags |= MATCH_IRE_ZONEONLY; 29834 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 29835 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 29836 if (ire != NULL) { 29837 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29838 ire_refrele(ire); 29839 } 29840 return (zoneid); 29841 } 29842 29843 /* 29844 * IP obserability hook support functions. 29845 */ 29846 29847 static void 29848 ipobs_init(ip_stack_t *ipst) 29849 { 29850 ipst->ips_ipobs_enabled = B_FALSE; 29851 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 29852 offsetof(ipobs_cb_t, ipobs_cbnext)); 29853 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 29854 ipst->ips_ipobs_cb_nwalkers = 0; 29855 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 29856 } 29857 29858 static void 29859 ipobs_fini(ip_stack_t *ipst) 29860 { 29861 ipobs_cb_t *cb; 29862 29863 mutex_enter(&ipst->ips_ipobs_cb_lock); 29864 while (ipst->ips_ipobs_cb_nwalkers != 0) 29865 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 29866 29867 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 29868 list_remove(&ipst->ips_ipobs_cb_list, cb); 29869 kmem_free(cb, sizeof (*cb)); 29870 } 29871 list_destroy(&ipst->ips_ipobs_cb_list); 29872 mutex_exit(&ipst->ips_ipobs_cb_lock); 29873 mutex_destroy(&ipst->ips_ipobs_cb_lock); 29874 cv_destroy(&ipst->ips_ipobs_cb_cv); 29875 } 29876 29877 void 29878 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 29879 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 29880 { 29881 mblk_t *mp2; 29882 ipobs_cb_t *ipobs_cb; 29883 ipobs_hook_data_t *ihd; 29884 uint64_t grifindex = 0; 29885 29886 ASSERT(DB_TYPE(mp) == M_DATA); 29887 29888 if (IS_UNDER_IPMP(ill)) 29889 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 29890 29891 mutex_enter(&ipst->ips_ipobs_cb_lock); 29892 ipst->ips_ipobs_cb_nwalkers++; 29893 mutex_exit(&ipst->ips_ipobs_cb_lock); 29894 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 29895 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 29896 mp2 = allocb(sizeof (ipobs_hook_data_t), BPRI_HI); 29897 if (mp2 != NULL) { 29898 ihd = (ipobs_hook_data_t *)mp2->b_rptr; 29899 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 29900 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 29901 freemsg(mp2); 29902 continue; 29903 } 29904 ihd->ihd_mp->b_rptr += hlen; 29905 ihd->ihd_htype = htype; 29906 ihd->ihd_ipver = ipver; 29907 ihd->ihd_zsrc = zsrc; 29908 ihd->ihd_zdst = zdst; 29909 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 29910 ihd->ihd_grifindex = grifindex; 29911 ihd->ihd_stack = ipst->ips_netstack; 29912 mp2->b_wptr += sizeof (*ihd); 29913 ipobs_cb->ipobs_cbfunc(mp2); 29914 } 29915 } 29916 mutex_enter(&ipst->ips_ipobs_cb_lock); 29917 ipst->ips_ipobs_cb_nwalkers--; 29918 if (ipst->ips_ipobs_cb_nwalkers == 0) 29919 cv_broadcast(&ipst->ips_ipobs_cb_cv); 29920 mutex_exit(&ipst->ips_ipobs_cb_lock); 29921 } 29922 29923 void 29924 ipobs_register_hook(netstack_t *ns, pfv_t func) 29925 { 29926 ipobs_cb_t *cb; 29927 ip_stack_t *ipst = ns->netstack_ip; 29928 29929 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 29930 29931 mutex_enter(&ipst->ips_ipobs_cb_lock); 29932 while (ipst->ips_ipobs_cb_nwalkers != 0) 29933 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 29934 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 29935 29936 cb->ipobs_cbfunc = func; 29937 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 29938 ipst->ips_ipobs_enabled = B_TRUE; 29939 mutex_exit(&ipst->ips_ipobs_cb_lock); 29940 } 29941 29942 void 29943 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 29944 { 29945 ipobs_cb_t *curcb; 29946 ip_stack_t *ipst = ns->netstack_ip; 29947 29948 mutex_enter(&ipst->ips_ipobs_cb_lock); 29949 while (ipst->ips_ipobs_cb_nwalkers != 0) 29950 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 29951 29952 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 29953 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 29954 if (func == curcb->ipobs_cbfunc) { 29955 list_remove(&ipst->ips_ipobs_cb_list, curcb); 29956 kmem_free(curcb, sizeof (*curcb)); 29957 break; 29958 } 29959 } 29960 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 29961 ipst->ips_ipobs_enabled = B_FALSE; 29962 mutex_exit(&ipst->ips_ipobs_cb_lock); 29963 } 29964