1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 64 #include <inet/common.h> 65 #include <inet/mi.h> 66 #include <inet/mib2.h> 67 #include <inet/nd.h> 68 #include <inet/arp.h> 69 #include <inet/snmpcom.h> 70 #include <inet/kstatcom.h> 71 72 #include <netinet/igmp_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet/sctp.h> 76 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip6_asp.h> 81 #include <inet/tcp.h> 82 #include <inet/tcp_impl.h> 83 #include <inet/ip_multi.h> 84 #include <inet/ip_if.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_ftable.h> 87 #include <inet/ip_rts.h> 88 #include <inet/optcom.h> 89 #include <inet/ip_ndp.h> 90 #include <inet/ip_listutils.h> 91 #include <netinet/igmp.h> 92 #include <netinet/ip_mroute.h> 93 #include <inet/ipp_common.h> 94 95 #include <net/pfkeyv2.h> 96 #include <inet/ipsec_info.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <sys/iphada.h> 100 #include <inet/tun.h> 101 #include <inet/ipdrop.h> 102 103 #include <sys/ethernet.h> 104 #include <net/if_types.h> 105 #include <sys/cpuvar.h> 106 107 #include <ipp/ipp.h> 108 #include <ipp/ipp_impl.h> 109 #include <ipp/ipgpc/ipgpc.h> 110 111 #include <sys/multidata.h> 112 #include <sys/pattr.h> 113 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 119 #include <sys/tsol/label.h> 120 #include <sys/tsol/tnet.h> 121 122 #include <rpc/pmap_prot.h> 123 124 /* 125 * Values for squeue switch: 126 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 127 * IP_SQUEUE_ENTER: squeue_enter 128 * IP_SQUEUE_FILL: squeue_fill 129 */ 130 int ip_squeue_enter = 2; 131 squeue_func_t ip_input_proc; 132 /* 133 * IP statistics. 134 */ 135 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 136 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 typedef struct ip_stat { 140 kstat_named_t ipsec_fanout_proto; 141 kstat_named_t ip_udp_fannorm; 142 kstat_named_t ip_udp_fanmb; 143 kstat_named_t ip_udp_fanothers; 144 kstat_named_t ip_udp_fast_path; 145 kstat_named_t ip_udp_slow_path; 146 kstat_named_t ip_udp_input_err; 147 kstat_named_t ip_tcppullup; 148 kstat_named_t ip_tcpoptions; 149 kstat_named_t ip_multipkttcp; 150 kstat_named_t ip_tcp_fast_path; 151 kstat_named_t ip_tcp_slow_path; 152 kstat_named_t ip_tcp_input_error; 153 kstat_named_t ip_db_ref; 154 kstat_named_t ip_notaligned1; 155 kstat_named_t ip_notaligned2; 156 kstat_named_t ip_multimblk3; 157 kstat_named_t ip_multimblk4; 158 kstat_named_t ip_ipoptions; 159 kstat_named_t ip_classify_fail; 160 kstat_named_t ip_opt; 161 kstat_named_t ip_udp_rput_local; 162 kstat_named_t ipsec_proto_ahesp; 163 kstat_named_t ip_conn_flputbq; 164 kstat_named_t ip_conn_walk_drain; 165 kstat_named_t ip_out_sw_cksum; 166 kstat_named_t ip_in_sw_cksum; 167 kstat_named_t ip_trash_ire_reclaim_calls; 168 kstat_named_t ip_trash_ire_reclaim_success; 169 kstat_named_t ip_ire_arp_timer_expired; 170 kstat_named_t ip_ire_redirect_timer_expired; 171 kstat_named_t ip_ire_pmtu_timer_expired; 172 kstat_named_t ip_input_multi_squeue; 173 kstat_named_t ip_tcp_in_full_hw_cksum_err; 174 kstat_named_t ip_tcp_in_part_hw_cksum_err; 175 kstat_named_t ip_tcp_in_sw_cksum_err; 176 kstat_named_t ip_tcp_out_sw_cksum_bytes; 177 kstat_named_t ip_udp_in_full_hw_cksum_err; 178 kstat_named_t ip_udp_in_part_hw_cksum_err; 179 kstat_named_t ip_udp_in_sw_cksum_err; 180 kstat_named_t ip_udp_out_sw_cksum_bytes; 181 kstat_named_t ip_frag_mdt_pkt_out; 182 kstat_named_t ip_frag_mdt_discarded; 183 kstat_named_t ip_frag_mdt_allocfail; 184 kstat_named_t ip_frag_mdt_addpdescfail; 185 kstat_named_t ip_frag_mdt_allocd; 186 } ip_stat_t; 187 188 static ip_stat_t ip_statistics = { 189 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 190 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 191 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 192 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 193 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 194 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 195 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 196 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 197 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 198 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 199 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 200 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 201 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 202 { "ip_db_ref", KSTAT_DATA_UINT64 }, 203 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 204 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 205 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 206 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 207 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 208 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 209 { "ip_opt", KSTAT_DATA_UINT64 }, 210 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 211 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 212 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 213 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 214 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 215 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 216 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 217 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 218 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 219 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 220 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 221 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 222 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 223 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 224 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 225 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 226 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 229 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 230 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 231 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 232 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 234 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 235 }; 236 237 static kstat_t *ip_kstat; 238 239 #define TCP6 "tcp6" 240 #define TCP "tcp" 241 #define SCTP "sctp" 242 #define SCTP6 "sctp6" 243 244 major_t TCP6_MAJ; 245 major_t TCP_MAJ; 246 major_t SCTP_MAJ; 247 major_t SCTP6_MAJ; 248 249 int ip_poll_normal_ms = 100; 250 int ip_poll_normal_ticks = 0; 251 252 /* 253 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 254 */ 255 256 struct listptr_s { 257 mblk_t *lp_head; /* pointer to the head of the list */ 258 mblk_t *lp_tail; /* pointer to the tail of the list */ 259 }; 260 261 typedef struct listptr_s listptr_t; 262 263 /* 264 * This is used by ip_snmp_get_mib2_ip_route_media and 265 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 266 */ 267 typedef struct iproutedata_s { 268 uint_t ird_idx; 269 listptr_t ird_route; /* ipRouteEntryTable */ 270 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 271 listptr_t ird_attrs; /* ipRouteAttributeTable */ 272 } iproutedata_t; 273 274 /* 275 * Cluster specific hooks. These should be NULL when booted as a non-cluster 276 */ 277 278 /* 279 * Hook functions to enable cluster networking 280 * On non-clustered systems these vectors must always be NULL. 281 * 282 * Hook function to Check ip specified ip address is a shared ip address 283 * in the cluster 284 * 285 */ 286 int (*cl_inet_isclusterwide)(uint8_t protocol, 287 sa_family_t addr_family, uint8_t *laddrp) = NULL; 288 289 /* 290 * Hook function to generate cluster wide ip fragment identifier 291 */ 292 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 293 uint8_t *laddrp, uint8_t *faddrp) = NULL; 294 295 /* 296 * Synchronization notes: 297 * 298 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 299 * MT level protection given by STREAMS. IP uses a combination of its own 300 * internal serialization mechanism and standard Solaris locking techniques. 301 * The internal serialization is per phyint (no IPMP) or per IPMP group. 302 * This is used to serialize plumbing operations, IPMP operations, certain 303 * multicast operations, most set ioctls, igmp/mld timers etc. 304 * 305 * Plumbing is a long sequence of operations involving message 306 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 307 * involved in plumbing operations. A natural model is to serialize these 308 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 309 * parallel without any interference. But various set ioctls on hme0 are best 310 * serialized. However if the system uses IPMP, the operations are easier if 311 * they are serialized on a per IPMP group basis since IPMP operations 312 * happen across ill's of a group. Thus the lowest common denominator is to 313 * serialize most set ioctls, multicast join/leave operations, IPMP operations 314 * igmp/mld timer operations, and processing of DLPI control messages received 315 * from drivers on a per IPMP group basis. If the system does not employ 316 * IPMP the serialization is on a per phyint basis. This serialization is 317 * provided by the ipsq_t and primitives operating on this. Details can 318 * be found in ip_if.c above the core primitives operating on ipsq_t. 319 * 320 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 321 * Simiarly lookup of an ire by a thread also returns a refheld ire. 322 * In addition ipif's and ill's referenced by the ire are also indirectly 323 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 324 * the ipif's address or netmask change as long as an ipif is refheld 325 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 326 * address of an ipif has to go through the ipsq_t. This ensures that only 327 * 1 such exclusive operation proceeds at any time on the ipif. It then 328 * deletes all ires associated with this ipif, and waits for all refcnts 329 * associated with this ipif to come down to zero. The address is changed 330 * only after the ipif has been quiesced. Then the ipif is brought up again. 331 * More details are described above the comment in ip_sioctl_flags. 332 * 333 * Packet processing is based mostly on IREs and are fully multi-threaded 334 * using standard Solaris MT techniques. 335 * 336 * There are explicit locks in IP to handle: 337 * - The ip_g_head list maintained by mi_open_link() and friends. 338 * 339 * - The reassembly data structures (one lock per hash bucket) 340 * 341 * - conn_lock is meant to protect conn_t fields. The fields actually 342 * protected by conn_lock are documented in the conn_t definition. 343 * 344 * - ire_lock to protect some of the fields of the ire, IRE tables 345 * (one lock per hash bucket). Refer to ip_ire.c for details. 346 * 347 * - ndp_g_lock and nce_lock for protecting NCEs. 348 * 349 * - ill_lock protects fields of the ill and ipif. Details in ip.h 350 * 351 * - ill_g_lock: This is a global reader/writer lock. Protects the following 352 * * The AVL tree based global multi list of all ills. 353 * * The linked list of all ipifs of an ill 354 * * The <ill-ipsq> mapping 355 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 356 * * The illgroup list threaded by ill_group_next. 357 * * <ill-phyint> association 358 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 359 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 360 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 361 * will all have to hold the ill_g_lock as writer for the actual duration 362 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 363 * may be found in the IPMP section. 364 * 365 * - ill_lock: This is a per ill mutex. 366 * It protects some members of the ill and is documented below. 367 * It also protects the <ill-ipsq> mapping 368 * It also protects the illgroup list threaded by ill_group_next. 369 * It also protects the <ill-phyint> assoc. 370 * It also protects the list of ipifs hanging off the ill. 371 * 372 * - ipsq_lock: This is a per ipsq_t mutex lock. 373 * This protects all the other members of the ipsq struct except 374 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 375 * 376 * - illgrp_lock: This is a per ill_group mutex lock. 377 * The only thing it protects is the illgrp_ill_schednext member of ill_group 378 * which dictates which is the next ill in an ill_group that is to be chosen 379 * for sending outgoing packets, through creation of an IRE_CACHE that 380 * references this ill. 381 * 382 * - phyint_lock: This is a per phyint mutex lock. Protects just the 383 * phyint_flags 384 * 385 * - ip_g_nd_lock: This is a global reader/writer lock. 386 * Any call to nd_load to load a new parameter to the ND table must hold the 387 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 388 * as reader. 389 * 390 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 391 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 392 * uniqueness check also done atomically. 393 * 394 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 395 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 396 * as a writer when adding or deleting elements from these lists, and 397 * as a reader when walking these lists to send a SADB update to the 398 * IPsec capable ills. 399 * 400 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 401 * group list linked by ill_usesrc_grp_next. It also protects the 402 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 403 * group is being added or deleted. This lock is taken as a reader when 404 * walking the list/group(eg: to get the number of members in a usesrc group). 405 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 406 * field is changing state i.e from NULL to non-NULL or vice-versa. For 407 * example, it is not necessary to take this lock in the initial portion 408 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 409 * ip_sioctl_flags since the these operations are executed exclusively and 410 * that ensures that the "usesrc group state" cannot change. The "usesrc 411 * group state" change can happen only in the latter part of 412 * ip_sioctl_slifusesrc and in ill_delete. 413 * 414 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 415 * 416 * To change the <ill-phyint> association, the ill_g_lock must be held 417 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 418 * must be held. 419 * 420 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 421 * and the ill_lock of the ill in question must be held. 422 * 423 * To change the <ill-illgroup> association the ill_g_lock must be held as 424 * writer and the ill_lock of the ill in question must be held. 425 * 426 * To add or delete an ipif from the list of ipifs hanging off the ill, 427 * ill_g_lock (writer) and ill_lock must be held and the thread must be 428 * a writer on the associated ipsq,. 429 * 430 * To add or delete an ill to the system, the ill_g_lock must be held as 431 * writer and the thread must be a writer on the associated ipsq. 432 * 433 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 434 * must be a writer on the associated ipsq. 435 * 436 * Lock hierarchy 437 * 438 * Some lock hierarchy scenarios are listed below. 439 * 440 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 441 * ill_g_lock -> illgrp_lock -> ill_lock 442 * ill_g_lock -> ill_lock(s) -> phyint_lock 443 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 444 * ill_g_lock -> ip_addr_avail_lock 445 * conn_lock -> irb_lock -> ill_lock -> ire_lock 446 * ill_g_lock -> ip_g_nd_lock 447 * 448 * When more than 1 ill lock is needed to be held, all ill lock addresses 449 * are sorted on address and locked starting from highest addressed lock 450 * downward. 451 * 452 * Mobile-IP scenarios 453 * 454 * irb_lock -> ill_lock -> ire_mrtun_lock 455 * irb_lock -> ill_lock -> ire_srcif_table_lock 456 * 457 * IPsec scenarios 458 * 459 * ipsa_lock -> ill_g_lock -> ill_lock 460 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 461 * ipsec_capab_ills_lock -> ipsa_lock 462 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 463 * 464 * Trusted Solaris scenarios 465 * 466 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 467 * igsa_lock -> gcdb_lock 468 * gcgrp_rwlock -> ire_lock 469 * gcgrp_rwlock -> gcdb_lock 470 * 471 * 472 * Routing/forwarding table locking notes: 473 * 474 * Lock acquisition order: Radix tree lock, irb_lock. 475 * Requirements: 476 * i. Walker must not hold any locks during the walker callback. 477 * ii Walker must not see a truncated tree during the walk because of any node 478 * deletion. 479 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 480 * in many places in the code to walk the irb list. Thus even if all the 481 * ires in a bucket have been deleted, we still can't free the radix node 482 * until the ires have actually been inactive'd (freed). 483 * 484 * Tree traversal - Need to hold the global tree lock in read mode. 485 * Before dropping the global tree lock, need to either increment the ire_refcnt 486 * to ensure that the radix node can't be deleted. 487 * 488 * Tree add - Need to hold the global tree lock in write mode to add a 489 * radix node. To prevent the node from being deleted, increment the 490 * irb_refcnt, after the node is added to the tree. The ire itself is 491 * added later while holding the irb_lock, but not the tree lock. 492 * 493 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 494 * All associated ires must be inactive (i.e. freed), and irb_refcnt 495 * must be zero. 496 * 497 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 498 * global tree lock (read mode) for traversal. 499 * 500 * IPSEC notes : 501 * 502 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 503 * in front of the actual packet. For outbound datagrams, the M_CTL 504 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 505 * information used by the IPSEC code for applying the right level of 506 * protection. The information initialized by IP in the ipsec_out_t 507 * is determined by the per-socket policy or global policy in the system. 508 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 509 * ipsec_info.h) which starts out with nothing in it. It gets filled 510 * with the right information if it goes through the AH/ESP code, which 511 * happens if the incoming packet is secure. The information initialized 512 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 513 * the policy requirements needed by per-socket policy or global policy 514 * is met or not. 515 * 516 * If there is both per-socket policy (set using setsockopt) and there 517 * is also global policy match for the 5 tuples of the socket, 518 * ipsec_override_policy() makes the decision of which one to use. 519 * 520 * For fully connected sockets i.e dst, src [addr, port] is known, 521 * conn_policy_cached is set indicating that policy has been cached. 522 * conn_in_enforce_policy may or may not be set depending on whether 523 * there is a global policy match or per-socket policy match. 524 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 525 * Once the right policy is set on the conn_t, policy cannot change for 526 * this socket. This makes life simpler for TCP (UDP ?) where 527 * re-transmissions go out with the same policy. For symmetry, policy 528 * is cached for fully connected UDP sockets also. Thus if policy is cached, 529 * it also implies that policy is latched i.e policy cannot change 530 * on these sockets. As we have the right policy on the conn, we don't 531 * have to lookup global policy for every outbound and inbound datagram 532 * and thus serving as an optimization. Note that a global policy change 533 * does not affect fully connected sockets if they have policy. If fully 534 * connected sockets did not have any policy associated with it, global 535 * policy change may affect them. 536 * 537 * IP Flow control notes: 538 * 539 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 540 * cannot be sent down to the driver by IP, because of a canput failure, IP 541 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 542 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 543 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 544 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 545 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 546 * the queued messages, and removes the conn from the drain list, if all 547 * messages were drained. It also qenables the next conn in the drain list to 548 * continue the drain process. 549 * 550 * In reality the drain list is not a single list, but a configurable number 551 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 552 * list. If the ip_wsrv of the next qenabled conn does not run, because the 553 * stream closes, ip_close takes responsibility to qenable the next conn in 554 * the drain list. The directly called ip_wput path always does a putq, if 555 * it cannot putnext. Thus synchronization problems are handled between 556 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 557 * functions that manipulate this drain list. Furthermore conn_drain_insert 558 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 559 * running on a queue at any time. conn_drain_tail can be simultaneously called 560 * from both ip_wsrv and ip_close. 561 * 562 * IPQOS notes: 563 * 564 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 565 * and IPQoS modules. IPPF includes hooks in IP at different control points 566 * (callout positions) which direct packets to IPQoS modules for policy 567 * processing. Policies, if present, are global. 568 * 569 * The callout positions are located in the following paths: 570 * o local_in (packets destined for this host) 571 * o local_out (packets orginating from this host ) 572 * o fwd_in (packets forwarded by this m/c - inbound) 573 * o fwd_out (packets forwarded by this m/c - outbound) 574 * Hooks at these callout points can be enabled/disabled using the ndd variable 575 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 576 * By default all the callout positions are enabled. 577 * 578 * Outbound (local_out) 579 * Hooks are placed in ip_wput_ire and ipsec_out_process. 580 * 581 * Inbound (local_in) 582 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 583 * TCP and UDP fanout routines. 584 * 585 * Forwarding (in and out) 586 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 587 * 588 * IP Policy Framework processing (IPPF processing) 589 * Policy processing for a packet is initiated by ip_process, which ascertains 590 * that the classifier (ipgpc) is loaded and configured, failing which the 591 * packet resumes normal processing in IP. If the clasifier is present, the 592 * packet is acted upon by one or more IPQoS modules (action instances), per 593 * filters configured in ipgpc and resumes normal IP processing thereafter. 594 * An action instance can drop a packet in course of its processing. 595 * 596 * A boolean variable, ip_policy, is used in all the fanout routines that can 597 * invoke ip_process for a packet. This variable indicates if the packet should 598 * to be sent for policy processing. The variable is set to B_TRUE by default, 599 * i.e. when the routines are invoked in the normal ip procesing path for a 600 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 601 * ip_policy is set to B_FALSE for all the routines called in these two 602 * functions because, in the former case, we don't process loopback traffic 603 * currently while in the latter, the packets have already been processed in 604 * icmp_inbound. 605 * 606 * Zones notes: 607 * 608 * The partitioning rules for networking are as follows: 609 * 1) Packets coming from a zone must have a source address belonging to that 610 * zone. 611 * 2) Packets coming from a zone can only be sent on a physical interface on 612 * which the zone has an IP address. 613 * 3) Between two zones on the same machine, packet delivery is only allowed if 614 * there's a matching route for the destination and zone in the forwarding 615 * table. 616 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 617 * different zones can bind to the same port with the wildcard address 618 * (INADDR_ANY). 619 * 620 * The granularity of interface partitioning is at the logical interface level. 621 * Therefore, every zone has its own IP addresses, and incoming packets can be 622 * attributed to a zone unambiguously. A logical interface is placed into a zone 623 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 624 * structure. Rule (1) is implemented by modifying the source address selection 625 * algorithm so that the list of eligible addresses is filtered based on the 626 * sending process zone. 627 * 628 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 629 * across all zones, depending on their type. Here is the break-up: 630 * 631 * IRE type Shared/exclusive 632 * -------- ---------------- 633 * IRE_BROADCAST Exclusive 634 * IRE_DEFAULT (default routes) Shared (*) 635 * IRE_LOCAL Exclusive 636 * IRE_LOOPBACK Exclusive 637 * IRE_PREFIX (net routes) Shared (*) 638 * IRE_CACHE Exclusive 639 * IRE_IF_NORESOLVER (interface routes) Exclusive 640 * IRE_IF_RESOLVER (interface routes) Exclusive 641 * IRE_HOST (host routes) Shared (*) 642 * 643 * (*) A zone can only use a default or off-subnet route if the gateway is 644 * directly reachable from the zone, that is, if the gateway's address matches 645 * one of the zone's logical interfaces. 646 * 647 * Multiple zones can share a common broadcast address; typically all zones 648 * share the 255.255.255.255 address. Incoming as well as locally originated 649 * broadcast packets must be dispatched to all the zones on the broadcast 650 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 651 * since some zones may not be on the 10.16.72/24 network. To handle this, each 652 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 653 * sent to every zone that has an IRE_BROADCAST entry for the destination 654 * address on the input ill, see conn_wantpacket(). 655 * 656 * Applications in different zones can join the same multicast group address. 657 * For IPv4, group memberships are per-logical interface, so they're already 658 * inherently part of a zone. For IPv6, group memberships are per-physical 659 * interface, so we distinguish IPv6 group memberships based on group address, 660 * interface and zoneid. In both cases, received multicast packets are sent to 661 * every zone for which a group membership entry exists. On IPv6 we need to 662 * check that the target zone still has an address on the receiving physical 663 * interface; it could have been removed since the application issued the 664 * IPV6_JOIN_GROUP. 665 */ 666 667 /* 668 * Squeue Fanout flags: 669 * 0: No fanout. 670 * 1: Fanout across all squeues 671 */ 672 boolean_t ip_squeue_fanout = 0; 673 674 /* 675 * Maximum dups allowed per packet. 676 */ 677 uint_t ip_max_frag_dups = 10; 678 679 #define IS_SIMPLE_IPH(ipha) \ 680 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 681 682 /* RFC1122 Conformance */ 683 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 684 685 #define ILL_MAX_NAMELEN LIFNAMSIZ 686 687 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 688 689 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 690 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 691 692 static void icmp_frag_needed(queue_t *, mblk_t *, int); 693 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 694 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 695 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 696 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 697 mblk_t *, int); 698 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 699 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 700 ill_t *, zoneid_t); 701 static void icmp_options_update(ipha_t *); 702 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 703 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 704 static mblk_t *icmp_pkt_err_ok(mblk_t *); 705 static void icmp_redirect(mblk_t *); 706 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 707 708 static void ip_arp_news(queue_t *, mblk_t *); 709 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 710 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 711 char *ip_dot_addr(ipaddr_t, char *); 712 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 713 int ip_close(queue_t *, int); 714 static char *ip_dot_saddr(uchar_t *, char *); 715 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 716 boolean_t, boolean_t, ill_t *, zoneid_t); 717 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 718 boolean_t, boolean_t, zoneid_t); 719 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 720 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 721 static void ip_lrput(queue_t *, mblk_t *); 722 ipaddr_t ip_massage_options(ipha_t *); 723 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 724 ipaddr_t ip_net_mask(ipaddr_t); 725 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 726 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 727 conn_t *, uint32_t); 728 char *ip_nv_lookup(nv_t *, int); 729 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 730 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 731 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 732 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 733 size_t); 734 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 735 void ip_rput(queue_t *, mblk_t *); 736 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 737 void *dummy_arg); 738 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 739 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 740 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 741 ire_t *); 742 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 743 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 744 uint16_t *); 745 int ip_snmp_get(queue_t *, mblk_t *); 746 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 747 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 748 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 749 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 750 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 751 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 752 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 753 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 754 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 755 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 756 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 757 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 758 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 759 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 760 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 761 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 762 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 763 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 764 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 765 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 766 static boolean_t ip_source_routed(ipha_t *); 767 static boolean_t ip_source_route_included(ipha_t *); 768 769 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 770 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 771 static void ip_wput_local_options(ipha_t *); 772 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 773 zoneid_t); 774 775 static void conn_drain_init(void); 776 static void conn_drain_fini(void); 777 static void conn_drain_tail(conn_t *connp, boolean_t closing); 778 779 static void conn_walk_drain(void); 780 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 781 zoneid_t); 782 783 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 784 zoneid_t); 785 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 786 void *dummy_arg); 787 788 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 789 790 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 791 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 792 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 793 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 794 795 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 796 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 797 caddr_t, cred_t *); 798 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 799 caddr_t cp, cred_t *cr); 800 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 801 cred_t *); 802 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 803 caddr_t cp, cred_t *cr); 804 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 805 cred_t *); 806 static squeue_func_t ip_squeue_switch(int); 807 808 static void ip_kstat_init(void); 809 static void ip_kstat_fini(void); 810 static int ip_kstat_update(kstat_t *kp, int rw); 811 static void icmp_kstat_init(void); 812 static void icmp_kstat_fini(void); 813 static int icmp_kstat_update(kstat_t *kp, int rw); 814 815 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 816 817 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 818 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 819 820 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 821 822 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 823 ipha_t *, ill_t *, boolean_t); 824 825 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 826 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 827 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 828 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 829 830 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 831 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 832 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 833 834 /* How long, in seconds, we allow frags to hang around. */ 835 #define IP_FRAG_TIMEOUT 60 836 837 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 838 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 839 840 /* 841 * Threshold which determines whether MDT should be used when 842 * generating IP fragments; payload size must be greater than 843 * this threshold for MDT to take place. 844 */ 845 #define IP_WPUT_FRAG_MDT_MIN 32768 846 847 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 848 849 /* Protected by ip_mi_lock */ 850 static void *ip_g_head; /* Instance Data List Head */ 851 kmutex_t ip_mi_lock; /* Lock for list of instances */ 852 853 /* Only modified during _init and _fini thus no locking is needed. */ 854 caddr_t ip_g_nd; /* Named Dispatch List Head */ 855 856 857 static long ip_rput_pullups; 858 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 859 860 vmem_t *ip_minor_arena; 861 862 /* 863 * MIB-2 stuff for SNMP (both IP and ICMP) 864 */ 865 mib2_ip_t ip_mib; 866 mib2_icmp_t icmp_mib; 867 868 #ifdef DEBUG 869 uint32_t ipsechw_debug = 0; 870 #endif 871 872 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 873 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 874 875 uint_t loopback_packets = 0; 876 877 /* 878 * Multirouting/CGTP stuff 879 */ 880 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 881 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 882 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 883 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 884 hrtime_t ip_multirt_log_interval = 1000; 885 /* Time since last warning issued. */ 886 static hrtime_t multirt_bad_mtu_last_time = 0; 887 888 kmutex_t ip_trash_timer_lock; 889 krwlock_t ip_g_nd_lock; 890 891 /* 892 * XXX following really should only be in a header. Would need more 893 * header and .c clean up first. 894 */ 895 extern optdb_obj_t ip_opt_obj; 896 897 ulong_t ip_squeue_enter_unbound = 0; 898 899 /* 900 * Named Dispatch Parameter Table. 901 * All of these are alterable, within the min/max values given, at run time. 902 */ 903 static ipparam_t lcl_param_arr[] = { 904 /* min max value name */ 905 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 906 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 907 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 908 { 0, 1, 0, "ip_respond_to_timestamp"}, 909 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 910 { 0, 1, 1, "ip_send_redirects"}, 911 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 912 { 0, 10, 0, "ip_debug"}, 913 { 0, 10, 0, "ip_mrtdebug"}, 914 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 915 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 916 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 917 { 1, 255, 255, "ip_def_ttl" }, 918 { 0, 1, 0, "ip_forward_src_routed"}, 919 { 0, 256, 32, "ip_wroff_extra" }, 920 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 921 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 922 { 0, 1, 1, "ip_path_mtu_discovery" }, 923 { 0, 240, 30, "ip_ignore_delete_time" }, 924 { 0, 1, 0, "ip_ignore_redirect" }, 925 { 0, 1, 1, "ip_output_queue" }, 926 { 1, 254, 1, "ip_broadcast_ttl" }, 927 { 0, 99999, 100, "ip_icmp_err_interval" }, 928 { 1, 99999, 10, "ip_icmp_err_burst" }, 929 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 930 { 0, 1, 0, "ip_strict_dst_multihoming" }, 931 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 932 { 0, 1, 0, "ipsec_override_persocket_policy" }, 933 { 0, 1, 1, "icmp_accept_clear_messages" }, 934 { 0, 1, 1, "igmp_accept_clear_messages" }, 935 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 936 "ip_ndp_delay_first_probe_time"}, 937 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 938 "ip_ndp_max_unicast_solicit"}, 939 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 940 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 941 { 0, 1, 0, "ip6_forward_src_routed"}, 942 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 943 { 0, 1, 1, "ip6_send_redirects"}, 944 { 0, 1, 0, "ip6_ignore_redirect" }, 945 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 946 947 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 948 949 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 950 951 { 0, 1, 1, "pim_accept_clear_messages" }, 952 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 953 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 954 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 955 { 0, 15, 0, "ip_policy_mask" }, 956 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 957 { 0, 255, 1, "ip_multirt_ttl" }, 958 { 0, 1, 1, "ip_multidata_outbound" }, 959 #ifdef DEBUG 960 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 961 #endif 962 }; 963 964 ipparam_t *ip_param_arr = lcl_param_arr; 965 966 /* Extended NDP table */ 967 static ipndp_t lcl_ndp_arr[] = { 968 /* getf setf data name */ 969 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 970 "ip_forwarding" }, 971 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 972 "ip6_forwarding" }, 973 { ip_ill_report, NULL, NULL, 974 "ip_ill_status" }, 975 { ip_ipif_report, NULL, NULL, 976 "ip_ipif_status" }, 977 { ip_ire_report, NULL, NULL, 978 "ipv4_ire_status" }, 979 { ip_ire_report_mrtun, NULL, NULL, 980 "ipv4_mrtun_ire_status" }, 981 { ip_ire_report_srcif, NULL, NULL, 982 "ipv4_srcif_ire_status" }, 983 { ip_ire_report_v6, NULL, NULL, 984 "ipv6_ire_status" }, 985 { ip_conn_report, NULL, NULL, 986 "ip_conn_status" }, 987 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 988 "ip_rput_pullups" }, 989 { ndp_report, NULL, NULL, 990 "ip_ndp_cache_report" }, 991 { ip_srcid_report, NULL, NULL, 992 "ip_srcid_status" }, 993 { ip_param_generic_get, ip_squeue_profile_set, 994 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 995 { ip_param_generic_get, ip_squeue_bind_set, 996 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 997 { ip_param_generic_get, ip_input_proc_set, 998 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 999 { ip_param_generic_get, ip_int_set, 1000 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1001 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 1002 "ip_cgtp_filter" }, 1003 { ip_param_generic_get, ip_int_set, 1004 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 1005 }; 1006 1007 /* 1008 * ip_g_forward controls IP forwarding. It takes two values: 1009 * 0: IP_FORWARD_NEVER Don't forward packets ever. 1010 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 1011 * 1012 * RFC1122 says there must be a configuration switch to control forwarding, 1013 * but that the default MUST be to not forward packets ever. Implicit 1014 * control based on configuration of multiple interfaces MUST NOT be 1015 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 1016 * and, in fact, it was the default. That capability is now provided in the 1017 * /etc/rc2.d/S69inet script. 1018 */ 1019 int ip_g_forward = IP_FORWARD_DEFAULT; 1020 1021 /* It also has an IPv6 counterpart. */ 1022 1023 int ipv6_forward = IP_FORWARD_DEFAULT; 1024 1025 /* Following line is external, and in ip.h. Normally marked with * *. */ 1026 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 1027 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 1028 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 1029 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 1030 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 1031 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 1032 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 1033 #define ip_debug ip_param_arr[7].ip_param_value /* */ 1034 #define ip_mrtdebug ip_param_arr[8].ip_param_value /* */ 1035 #define ip_timer_interval ip_param_arr[9].ip_param_value /* */ 1036 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value /* */ 1037 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 1038 #define ip_def_ttl ip_param_arr[12].ip_param_value 1039 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 1040 #define ip_wroff_extra ip_param_arr[14].ip_param_value 1041 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 1042 #define ip_icmp_return ip_param_arr[16].ip_param_value 1043 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value /* */ 1044 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value /* */ 1045 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 1046 #define ip_output_queue ip_param_arr[20].ip_param_value 1047 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 1048 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 1049 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 1050 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 1051 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 1052 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 1053 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value /* */ 1054 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 1055 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 1056 1057 /* IPv6 configuration knobs */ 1058 #define delay_first_probe_time ip_param_arr[30].ip_param_value 1059 #define max_unicast_solicit ip_param_arr[31].ip_param_value 1060 #define ipv6_def_hops ip_param_arr[32].ip_param_value 1061 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 1062 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 1063 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 1064 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 1065 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 1066 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 1067 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 1068 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 1069 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 1070 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 1071 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 1072 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 1073 #define ip_policy_mask ip_param_arr[45].ip_param_value 1074 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 1075 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 1076 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 1077 #ifdef DEBUG 1078 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 1079 #else 1080 #define ipv6_drop_inbound_icmpv6 0 1081 #endif 1082 1083 1084 /* 1085 * Table of IP ioctls encoding the various properties of the ioctl and 1086 * indexed based on the last byte of the ioctl command. Occasionally there 1087 * is a clash, and there is more than 1 ioctl with the same last byte. 1088 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1089 * ioctls are encoded in the misc table. An entry in the ndx table is 1090 * retrieved by indexing on the last byte of the ioctl command and comparing 1091 * the ioctl command with the value in the ndx table. In the event of a 1092 * mismatch the misc table is then searched sequentially for the desired 1093 * ioctl command. 1094 * 1095 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1096 */ 1097 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1098 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 1109 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1110 MISC_CMD, ip_siocaddrt, NULL }, 1111 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1112 MISC_CMD, ip_siocdelrt, NULL }, 1113 1114 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1115 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1116 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1117 IF_CMD, ip_sioctl_get_addr, NULL }, 1118 1119 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1120 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1121 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1122 IPI_GET_CMD | IPI_REPL, 1123 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1124 1125 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1126 IPI_PRIV | IPI_WR | IPI_REPL, 1127 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1128 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1129 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1130 IF_CMD, ip_sioctl_get_flags, NULL }, 1131 1132 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 1135 /* copyin size cannot be coded for SIOCGIFCONF */ 1136 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1137 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1138 1139 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1140 IF_CMD, ip_sioctl_mtu, NULL }, 1141 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1142 IF_CMD, ip_sioctl_get_mtu, NULL }, 1143 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1144 IPI_GET_CMD | IPI_REPL, 1145 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1146 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1147 IF_CMD, ip_sioctl_brdaddr, NULL }, 1148 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1149 IPI_GET_CMD | IPI_REPL, 1150 IF_CMD, ip_sioctl_get_netmask, NULL }, 1151 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1152 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1153 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1154 IPI_GET_CMD | IPI_REPL, 1155 IF_CMD, ip_sioctl_get_metric, NULL }, 1156 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1157 IF_CMD, ip_sioctl_metric, NULL }, 1158 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1159 1160 /* See 166-168 below for extended SIOC*XARP ioctls */ 1161 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1162 MISC_CMD, ip_sioctl_arp, NULL }, 1163 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1164 MISC_CMD, ip_sioctl_arp, NULL }, 1165 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1166 MISC_CMD, ip_sioctl_arp, NULL }, 1167 1168 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 1190 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1191 MISC_CMD, if_unitsel, if_unitsel_restart }, 1192 1193 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1201 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1202 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1203 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1204 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1205 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1206 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1207 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1208 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1209 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1210 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 1212 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1213 IPI_PRIV | IPI_WR | IPI_MODOK, 1214 IF_CMD, ip_sioctl_sifname, NULL }, 1215 1216 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1217 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1218 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1219 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1220 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1221 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1222 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1223 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1226 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1227 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 1230 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1231 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1232 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1233 IF_CMD, ip_sioctl_get_muxid, NULL }, 1234 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1235 IPI_PRIV | IPI_WR | IPI_REPL, 1236 IF_CMD, ip_sioctl_muxid, NULL }, 1237 1238 /* Both if and lif variants share same func */ 1239 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1240 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1241 /* Both if and lif variants share same func */ 1242 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1243 IPI_PRIV | IPI_WR | IPI_REPL, 1244 IF_CMD, ip_sioctl_slifindex, NULL }, 1245 1246 /* copyin size cannot be coded for SIOCGIFCONF */ 1247 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1248 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1249 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1250 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1251 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1252 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1253 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1254 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1255 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1256 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1257 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1258 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1259 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1260 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1261 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1262 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1263 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1264 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1265 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1266 1267 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1268 IPI_PRIV | IPI_WR | IPI_REPL, 1269 LIF_CMD, ip_sioctl_removeif, 1270 ip_sioctl_removeif_restart }, 1271 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1272 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1273 LIF_CMD, ip_sioctl_addif, NULL }, 1274 #define SIOCLIFADDR_NDX 112 1275 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1276 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1277 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1278 IPI_GET_CMD | IPI_REPL, 1279 LIF_CMD, ip_sioctl_get_addr, NULL }, 1280 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1281 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1282 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1283 IPI_GET_CMD | IPI_REPL, 1284 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1285 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1286 IPI_PRIV | IPI_WR | IPI_REPL, 1287 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1288 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1289 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1290 LIF_CMD, ip_sioctl_get_flags, NULL }, 1291 1292 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1293 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1294 1295 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1296 ip_sioctl_get_lifconf, NULL }, 1297 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1298 LIF_CMD, ip_sioctl_mtu, NULL }, 1299 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1300 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1301 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1302 IPI_GET_CMD | IPI_REPL, 1303 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1304 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1305 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1306 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1307 IPI_GET_CMD | IPI_REPL, 1308 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1309 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1310 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1311 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1312 IPI_GET_CMD | IPI_REPL, 1313 LIF_CMD, ip_sioctl_get_metric, NULL }, 1314 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1315 LIF_CMD, ip_sioctl_metric, NULL }, 1316 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1317 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1318 LIF_CMD, ip_sioctl_slifname, 1319 ip_sioctl_slifname_restart }, 1320 1321 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1322 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1323 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1324 IPI_GET_CMD | IPI_REPL, 1325 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1326 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1327 IPI_PRIV | IPI_WR | IPI_REPL, 1328 LIF_CMD, ip_sioctl_muxid, NULL }, 1329 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1330 IPI_GET_CMD | IPI_REPL, 1331 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1332 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1333 IPI_PRIV | IPI_WR | IPI_REPL, 1334 LIF_CMD, ip_sioctl_slifindex, 0 }, 1335 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1336 LIF_CMD, ip_sioctl_token, NULL }, 1337 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1338 IPI_GET_CMD | IPI_REPL, 1339 LIF_CMD, ip_sioctl_get_token, NULL }, 1340 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1341 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1342 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1343 IPI_GET_CMD | IPI_REPL, 1344 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1345 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1346 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1347 1348 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1349 IPI_GET_CMD | IPI_REPL, 1350 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1351 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1352 LIF_CMD, ip_siocdelndp_v6, NULL }, 1353 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1354 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1355 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1356 LIF_CMD, ip_siocsetndp_v6, NULL }, 1357 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1358 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1359 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1360 MISC_CMD, ip_sioctl_tonlink, NULL }, 1361 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1362 MISC_CMD, ip_sioctl_tmysite, NULL }, 1363 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1364 TUN_CMD, ip_sioctl_tunparam, NULL }, 1365 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1366 IPI_PRIV | IPI_WR, 1367 TUN_CMD, ip_sioctl_tunparam, NULL }, 1368 1369 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1370 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1371 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1372 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1373 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1374 1375 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1376 IPI_PRIV | IPI_WR | IPI_REPL, 1377 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1378 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1379 IPI_PRIV | IPI_WR | IPI_REPL, 1380 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1381 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1382 IPI_PRIV | IPI_WR, 1383 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1384 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1385 IPI_GET_CMD | IPI_REPL, 1386 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1387 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1388 IPI_GET_CMD | IPI_REPL, 1389 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1390 1391 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1392 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1393 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1394 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1395 1396 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1397 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1398 1399 /* These are handled in ip_sioctl_copyin_setup itself */ 1400 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1401 MISC_CMD, NULL, NULL }, 1402 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1403 MISC_CMD, NULL, NULL }, 1404 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1405 1406 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1407 ip_sioctl_get_lifconf, NULL }, 1408 1409 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1410 MISC_CMD, ip_sioctl_xarp, NULL }, 1411 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1412 MISC_CMD, ip_sioctl_xarp, NULL }, 1413 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1414 MISC_CMD, ip_sioctl_xarp, NULL }, 1415 1416 /* SIOCPOPSOCKFS is not handled by IP */ 1417 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1418 1419 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1420 IPI_GET_CMD | IPI_REPL, 1421 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1422 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1423 IPI_PRIV | IPI_WR | IPI_REPL, 1424 LIF_CMD, ip_sioctl_slifzone, 1425 ip_sioctl_slifzone_restart }, 1426 /* 172-174 are SCTP ioctls and not handled by IP */ 1427 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1428 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1429 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1430 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1431 IPI_GET_CMD, LIF_CMD, 1432 ip_sioctl_get_lifusesrc, 0 }, 1433 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1434 IPI_PRIV | IPI_WR, 1435 LIF_CMD, ip_sioctl_slifusesrc, 1436 NULL }, 1437 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1438 ip_sioctl_get_lifsrcof, NULL }, 1439 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1440 MISC_CMD, ip_sioctl_msfilter, NULL }, 1441 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1442 MISC_CMD, ip_sioctl_msfilter, NULL }, 1443 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1444 MISC_CMD, ip_sioctl_msfilter, NULL }, 1445 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1446 MISC_CMD, ip_sioctl_msfilter, NULL }, 1447 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1448 ip_sioctl_set_ipmpfailback, NULL } 1449 }; 1450 1451 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1452 1453 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1454 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1455 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1456 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1457 TUN_CMD, ip_sioctl_tunparam, NULL }, 1458 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1459 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1460 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1461 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1462 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1463 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1464 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1465 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1466 MISC_CMD, mrt_ioctl}, 1467 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1468 MISC_CMD, mrt_ioctl}, 1469 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1470 MISC_CMD, mrt_ioctl} 1471 }; 1472 1473 int ip_misc_ioctl_count = 1474 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1475 1476 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1477 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1478 static int conn_drain_list_index; /* Next drain_list to be used */ 1479 int conn_drain_nthreads; /* Number of drainers reqd. */ 1480 /* Settable in /etc/system */ 1481 uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 1482 1483 /* Defined in ip_ire.c */ 1484 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1485 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1486 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1487 1488 static nv_t ire_nv_arr[] = { 1489 { IRE_BROADCAST, "BROADCAST" }, 1490 { IRE_LOCAL, "LOCAL" }, 1491 { IRE_LOOPBACK, "LOOPBACK" }, 1492 { IRE_CACHE, "CACHE" }, 1493 { IRE_DEFAULT, "DEFAULT" }, 1494 { IRE_PREFIX, "PREFIX" }, 1495 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1496 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1497 { IRE_HOST, "HOST" }, 1498 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1499 { 0 } 1500 }; 1501 1502 nv_t *ire_nv_tbl = ire_nv_arr; 1503 1504 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1505 extern krwlock_t ipsec_capab_ills_lock; 1506 1507 /* Packet dropper for IP IPsec processing failures */ 1508 ipdropper_t ip_dropper; 1509 1510 /* Simple ICMP IP Header Template */ 1511 static ipha_t icmp_ipha = { 1512 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1513 }; 1514 1515 struct module_info ip_mod_info = { 1516 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1517 }; 1518 1519 static struct qinit rinit = { 1520 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1521 &ip_mod_info 1522 }; 1523 1524 static struct qinit winit = { 1525 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1526 &ip_mod_info 1527 }; 1528 1529 static struct qinit lrinit = { 1530 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1531 &ip_mod_info 1532 }; 1533 1534 static struct qinit lwinit = { 1535 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1536 &ip_mod_info 1537 }; 1538 1539 struct streamtab ipinfo = { 1540 &rinit, &winit, &lrinit, &lwinit 1541 }; 1542 1543 #ifdef DEBUG 1544 static boolean_t skip_sctp_cksum = B_FALSE; 1545 #endif 1546 /* 1547 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1548 */ 1549 mblk_t * 1550 ip_copymsg(mblk_t *mp) 1551 { 1552 mblk_t *nmp; 1553 ipsec_info_t *in; 1554 1555 if (mp->b_datap->db_type != M_CTL) 1556 return (copymsg(mp)); 1557 1558 in = (ipsec_info_t *)mp->b_rptr; 1559 1560 /* 1561 * Note that M_CTL is also used for delivering ICMP error messages 1562 * upstream to transport layers. 1563 */ 1564 if (in->ipsec_info_type != IPSEC_OUT && 1565 in->ipsec_info_type != IPSEC_IN) 1566 return (copymsg(mp)); 1567 1568 nmp = copymsg(mp->b_cont); 1569 1570 if (in->ipsec_info_type == IPSEC_OUT) 1571 return (ipsec_out_tag(mp, nmp)); 1572 else 1573 return (ipsec_in_tag(mp, nmp)); 1574 } 1575 1576 /* Generate an ICMP fragmentation needed message. */ 1577 static void 1578 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1579 { 1580 icmph_t icmph; 1581 mblk_t *first_mp; 1582 boolean_t mctl_present; 1583 1584 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1585 1586 if (!(mp = icmp_pkt_err_ok(mp))) { 1587 if (mctl_present) 1588 freeb(first_mp); 1589 return; 1590 } 1591 1592 bzero(&icmph, sizeof (icmph_t)); 1593 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1594 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1595 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1596 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1597 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1598 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1599 } 1600 1601 /* 1602 * icmp_inbound deals with ICMP messages in the following ways. 1603 * 1604 * 1) It needs to send a reply back and possibly delivering it 1605 * to the "interested" upper clients. 1606 * 2) It needs to send it to the upper clients only. 1607 * 3) It needs to change some values in IP only. 1608 * 4) It needs to change some values in IP and upper layers e.g TCP. 1609 * 1610 * We need to accomodate icmp messages coming in clear until we get 1611 * everything secure from the wire. If icmp_accept_clear_messages 1612 * is zero we check with the global policy and act accordingly. If 1613 * it is non-zero, we accept the message without any checks. But 1614 * *this does not mean* that this will be delivered to the upper 1615 * clients. By accepting we might send replies back, change our MTU 1616 * value etc. but delivery to the ULP/clients depends on their policy 1617 * dispositions. 1618 * 1619 * We handle the above 4 cases in the context of IPSEC in the 1620 * following way : 1621 * 1622 * 1) Send the reply back in the same way as the request came in. 1623 * If it came in encrypted, it goes out encrypted. If it came in 1624 * clear, it goes out in clear. Thus, this will prevent chosen 1625 * plain text attack. 1626 * 2) The client may or may not expect things to come in secure. 1627 * If it comes in secure, the policy constraints are checked 1628 * before delivering it to the upper layers. If it comes in 1629 * clear, ipsec_inbound_accept_clear will decide whether to 1630 * accept this in clear or not. In both the cases, if the returned 1631 * message (IP header + 8 bytes) that caused the icmp message has 1632 * AH/ESP headers, it is sent up to AH/ESP for validation before 1633 * sending up. If there are only 8 bytes of returned message, then 1634 * upper client will not be notified. 1635 * 3) Check with global policy to see whether it matches the constaints. 1636 * But this will be done only if icmp_accept_messages_in_clear is 1637 * zero. 1638 * 4) If we need to change both in IP and ULP, then the decision taken 1639 * while affecting the values in IP and while delivering up to TCP 1640 * should be the same. 1641 * 1642 * There are two cases. 1643 * 1644 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1645 * failed), we will not deliver it to the ULP, even though they 1646 * are *willing* to accept in *clear*. This is fine as our global 1647 * disposition to icmp messages asks us reject the datagram. 1648 * 1649 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1650 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1651 * to deliver it to ULP (policy failed), it can lead to 1652 * consistency problems. The cases known at this time are 1653 * ICMP_DESTINATION_UNREACHABLE messages with following code 1654 * values : 1655 * 1656 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1657 * and Upper layer rejects. Then the communication will 1658 * come to a stop. This is solved by making similar decisions 1659 * at both levels. Currently, when we are unable to deliver 1660 * to the Upper Layer (due to policy failures) while IP has 1661 * adjusted ire_max_frag, the next outbound datagram would 1662 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1663 * will be with the right level of protection. Thus the right 1664 * value will be communicated even if we are not able to 1665 * communicate when we get from the wire initially. But this 1666 * assumes there would be at least one outbound datagram after 1667 * IP has adjusted its ire_max_frag value. To make things 1668 * simpler, we accept in clear after the validation of 1669 * AH/ESP headers. 1670 * 1671 * - Other ICMP ERRORS : We may not be able to deliver it to the 1672 * upper layer depending on the level of protection the upper 1673 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1674 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1675 * should be accepted in clear when the Upper layer expects secure. 1676 * Thus the communication may get aborted by some bad ICMP 1677 * packets. 1678 * 1679 * IPQoS Notes: 1680 * The only instance when a packet is sent for processing is when there 1681 * isn't an ICMP client and if we are interested in it. 1682 * If there is a client, IPPF processing will take place in the 1683 * ip_fanout_proto routine. 1684 * 1685 * Zones notes: 1686 * The packet is only processed in the context of the specified zone: typically 1687 * only this zone will reply to an echo request, and only interested clients in 1688 * this zone will receive a copy of the packet. This means that the caller must 1689 * call icmp_inbound() for each relevant zone. 1690 */ 1691 static void 1692 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1693 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1694 ill_t *recv_ill, zoneid_t zoneid) 1695 { 1696 icmph_t *icmph; 1697 ipha_t *ipha; 1698 int iph_hdr_length; 1699 int hdr_length; 1700 boolean_t interested; 1701 uint32_t ts; 1702 uchar_t *wptr; 1703 ipif_t *ipif; 1704 mblk_t *first_mp; 1705 ipsec_in_t *ii; 1706 ire_t *src_ire; 1707 boolean_t onlink; 1708 timestruc_t now; 1709 uint32_t ill_index; 1710 1711 ASSERT(ill != NULL); 1712 1713 first_mp = mp; 1714 if (mctl_present) { 1715 mp = first_mp->b_cont; 1716 ASSERT(mp != NULL); 1717 } 1718 1719 ipha = (ipha_t *)mp->b_rptr; 1720 if (icmp_accept_clear_messages == 0) { 1721 first_mp = ipsec_check_global_policy(first_mp, NULL, 1722 ipha, NULL, mctl_present); 1723 if (first_mp == NULL) 1724 return; 1725 } 1726 1727 /* 1728 * On a labeled system, we have to check whether the zone itself is 1729 * permitted to receive raw traffic. 1730 */ 1731 if (is_system_labeled()) { 1732 if (zoneid == ALL_ZONES) 1733 zoneid = tsol_packet_to_zoneid(mp); 1734 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1735 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1736 zoneid)); 1737 BUMP_MIB(&icmp_mib, icmpInErrors); 1738 freemsg(first_mp); 1739 return; 1740 } 1741 } 1742 1743 /* 1744 * We have accepted the ICMP message. It means that we will 1745 * respond to the packet if needed. It may not be delivered 1746 * to the upper client depending on the policy constraints 1747 * and the disposition in ipsec_inbound_accept_clear. 1748 */ 1749 1750 ASSERT(ill != NULL); 1751 1752 BUMP_MIB(&icmp_mib, icmpInMsgs); 1753 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1754 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1755 /* Last chance to get real. */ 1756 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1757 BUMP_MIB(&icmp_mib, icmpInErrors); 1758 freemsg(first_mp); 1759 return; 1760 } 1761 /* Refresh iph following the pullup. */ 1762 ipha = (ipha_t *)mp->b_rptr; 1763 } 1764 /* ICMP header checksum, including checksum field, should be zero. */ 1765 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1766 IP_CSUM(mp, iph_hdr_length, 0)) { 1767 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1768 freemsg(first_mp); 1769 return; 1770 } 1771 /* The IP header will always be a multiple of four bytes */ 1772 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1773 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1774 icmph->icmph_code)); 1775 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1776 /* We will set "interested" to "true" if we want a copy */ 1777 interested = B_FALSE; 1778 switch (icmph->icmph_type) { 1779 case ICMP_ECHO_REPLY: 1780 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1781 break; 1782 case ICMP_DEST_UNREACHABLE: 1783 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1784 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1785 interested = B_TRUE; /* Pass up to transport */ 1786 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1787 break; 1788 case ICMP_SOURCE_QUENCH: 1789 interested = B_TRUE; /* Pass up to transport */ 1790 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1791 break; 1792 case ICMP_REDIRECT: 1793 if (!ip_ignore_redirect) 1794 interested = B_TRUE; 1795 BUMP_MIB(&icmp_mib, icmpInRedirects); 1796 break; 1797 case ICMP_ECHO_REQUEST: 1798 /* 1799 * Whether to respond to echo requests that come in as IP 1800 * broadcasts or as IP multicast is subject to debate 1801 * (what isn't?). We aim to please, you pick it. 1802 * Default is do it. 1803 */ 1804 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1805 /* unicast: always respond */ 1806 interested = B_TRUE; 1807 } else if (CLASSD(ipha->ipha_dst)) { 1808 /* multicast: respond based on tunable */ 1809 interested = ip_g_resp_to_echo_mcast; 1810 } else if (broadcast) { 1811 /* broadcast: respond based on tunable */ 1812 interested = ip_g_resp_to_echo_bcast; 1813 } 1814 BUMP_MIB(&icmp_mib, icmpInEchos); 1815 break; 1816 case ICMP_ROUTER_ADVERTISEMENT: 1817 case ICMP_ROUTER_SOLICITATION: 1818 break; 1819 case ICMP_TIME_EXCEEDED: 1820 interested = B_TRUE; /* Pass up to transport */ 1821 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1822 break; 1823 case ICMP_PARAM_PROBLEM: 1824 interested = B_TRUE; /* Pass up to transport */ 1825 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1826 break; 1827 case ICMP_TIME_STAMP_REQUEST: 1828 /* Response to Time Stamp Requests is local policy. */ 1829 if (ip_g_resp_to_timestamp && 1830 /* So is whether to respond if it was an IP broadcast. */ 1831 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1832 int tstamp_len = 3 * sizeof (uint32_t); 1833 1834 if (wptr + tstamp_len > mp->b_wptr) { 1835 if (!pullupmsg(mp, wptr + tstamp_len - 1836 mp->b_rptr)) { 1837 BUMP_MIB(&ip_mib, ipInDiscards); 1838 freemsg(first_mp); 1839 return; 1840 } 1841 /* Refresh ipha following the pullup. */ 1842 ipha = (ipha_t *)mp->b_rptr; 1843 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1844 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1845 } 1846 interested = B_TRUE; 1847 } 1848 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1849 break; 1850 case ICMP_TIME_STAMP_REPLY: 1851 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1852 break; 1853 case ICMP_INFO_REQUEST: 1854 /* Per RFC 1122 3.2.2.7, ignore this. */ 1855 case ICMP_INFO_REPLY: 1856 break; 1857 case ICMP_ADDRESS_MASK_REQUEST: 1858 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1859 /* TODO m_pullup of complete header? */ 1860 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1861 interested = B_TRUE; 1862 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1863 break; 1864 case ICMP_ADDRESS_MASK_REPLY: 1865 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1866 break; 1867 default: 1868 interested = B_TRUE; /* Pass up to transport */ 1869 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1870 break; 1871 } 1872 /* See if there is an ICMP client. */ 1873 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1874 /* If there is an ICMP client and we want one too, copy it. */ 1875 mblk_t *first_mp1; 1876 1877 if (!interested) { 1878 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1879 ip_policy, recv_ill, zoneid); 1880 return; 1881 } 1882 first_mp1 = ip_copymsg(first_mp); 1883 if (first_mp1 != NULL) { 1884 ip_fanout_proto(q, first_mp1, ill, ipha, 1885 0, mctl_present, ip_policy, recv_ill, zoneid); 1886 } 1887 } else if (!interested) { 1888 freemsg(first_mp); 1889 return; 1890 } else { 1891 /* 1892 * Initiate policy processing for this packet if ip_policy 1893 * is true. 1894 */ 1895 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1896 ill_index = ill->ill_phyint->phyint_ifindex; 1897 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1898 if (mp == NULL) { 1899 if (mctl_present) { 1900 freeb(first_mp); 1901 } 1902 BUMP_MIB(&icmp_mib, icmpInErrors); 1903 return; 1904 } 1905 } 1906 } 1907 /* We want to do something with it. */ 1908 /* Check db_ref to make sure we can modify the packet. */ 1909 if (mp->b_datap->db_ref > 1) { 1910 mblk_t *first_mp1; 1911 1912 first_mp1 = ip_copymsg(first_mp); 1913 freemsg(first_mp); 1914 if (!first_mp1) { 1915 BUMP_MIB(&icmp_mib, icmpOutDrops); 1916 return; 1917 } 1918 first_mp = first_mp1; 1919 if (mctl_present) { 1920 mp = first_mp->b_cont; 1921 ASSERT(mp != NULL); 1922 } else { 1923 mp = first_mp; 1924 } 1925 ipha = (ipha_t *)mp->b_rptr; 1926 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1927 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1928 } 1929 switch (icmph->icmph_type) { 1930 case ICMP_ADDRESS_MASK_REQUEST: 1931 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1932 if (ipif == NULL) { 1933 freemsg(first_mp); 1934 return; 1935 } 1936 /* 1937 * outging interface must be IPv4 1938 */ 1939 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1940 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1941 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1942 ipif_refrele(ipif); 1943 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1944 break; 1945 case ICMP_ECHO_REQUEST: 1946 icmph->icmph_type = ICMP_ECHO_REPLY; 1947 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1948 break; 1949 case ICMP_TIME_STAMP_REQUEST: { 1950 uint32_t *tsp; 1951 1952 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1953 tsp = (uint32_t *)wptr; 1954 tsp++; /* Skip past 'originate time' */ 1955 /* Compute # of milliseconds since midnight */ 1956 gethrestime(&now); 1957 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1958 now.tv_nsec / (NANOSEC / MILLISEC); 1959 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1960 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1961 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1962 break; 1963 } 1964 default: 1965 ipha = (ipha_t *)&icmph[1]; 1966 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1967 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1968 BUMP_MIB(&ip_mib, ipInDiscards); 1969 freemsg(first_mp); 1970 return; 1971 } 1972 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1973 ipha = (ipha_t *)&icmph[1]; 1974 } 1975 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1976 BUMP_MIB(&ip_mib, ipInDiscards); 1977 freemsg(first_mp); 1978 return; 1979 } 1980 hdr_length = IPH_HDR_LENGTH(ipha); 1981 if (hdr_length < sizeof (ipha_t)) { 1982 BUMP_MIB(&ip_mib, ipInDiscards); 1983 freemsg(first_mp); 1984 return; 1985 } 1986 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1987 if (!pullupmsg(mp, 1988 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1989 BUMP_MIB(&ip_mib, ipInDiscards); 1990 freemsg(first_mp); 1991 return; 1992 } 1993 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1994 ipha = (ipha_t *)&icmph[1]; 1995 } 1996 switch (icmph->icmph_type) { 1997 case ICMP_REDIRECT: 1998 /* 1999 * As there is no upper client to deliver, we don't 2000 * need the first_mp any more. 2001 */ 2002 if (mctl_present) { 2003 freeb(first_mp); 2004 } 2005 icmp_redirect(mp); 2006 return; 2007 case ICMP_DEST_UNREACHABLE: 2008 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 2009 if (!icmp_inbound_too_big(icmph, ipha, ill, 2010 zoneid, mp, iph_hdr_length)) { 2011 freemsg(first_mp); 2012 return; 2013 } 2014 /* 2015 * icmp_inbound_too_big() may alter mp. 2016 * Resynch ipha and icmph accordingly. 2017 */ 2018 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2019 ipha = (ipha_t *)&icmph[1]; 2020 } 2021 /* FALLTHRU */ 2022 default : 2023 /* 2024 * IPQoS notes: Since we have already done IPQoS 2025 * processing we don't want to do it again in 2026 * the fanout routines called by 2027 * icmp_inbound_error_fanout, hence the last 2028 * argument, ip_policy, is B_FALSE. 2029 */ 2030 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2031 ipha, iph_hdr_length, hdr_length, mctl_present, 2032 B_FALSE, recv_ill, zoneid); 2033 } 2034 return; 2035 } 2036 /* Send out an ICMP packet */ 2037 icmph->icmph_checksum = 0; 2038 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2039 if (icmph->icmph_checksum == 0) 2040 icmph->icmph_checksum = 0xFFFF; 2041 if (broadcast || CLASSD(ipha->ipha_dst)) { 2042 ipif_t *ipif_chosen; 2043 /* 2044 * Make it look like it was directed to us, so we don't look 2045 * like a fool with a broadcast or multicast source address. 2046 */ 2047 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2048 /* 2049 * Make sure that we haven't grabbed an interface that's DOWN. 2050 */ 2051 if (ipif != NULL) { 2052 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2053 ipha->ipha_src, zoneid); 2054 if (ipif_chosen != NULL) { 2055 ipif_refrele(ipif); 2056 ipif = ipif_chosen; 2057 } 2058 } 2059 if (ipif == NULL) { 2060 ip0dbg(("icmp_inbound: " 2061 "No source for broadcast/multicast:\n" 2062 "\tsrc 0x%x dst 0x%x ill %p " 2063 "ipif_lcl_addr 0x%x\n", 2064 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2065 (void *)ill, 2066 ill->ill_ipif->ipif_lcl_addr)); 2067 freemsg(first_mp); 2068 return; 2069 } 2070 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2071 ipha->ipha_dst = ipif->ipif_src_addr; 2072 ipif_refrele(ipif); 2073 } 2074 /* Reset time to live. */ 2075 ipha->ipha_ttl = ip_def_ttl; 2076 { 2077 /* Swap source and destination addresses */ 2078 ipaddr_t tmp; 2079 2080 tmp = ipha->ipha_src; 2081 ipha->ipha_src = ipha->ipha_dst; 2082 ipha->ipha_dst = tmp; 2083 } 2084 ipha->ipha_ident = 0; 2085 if (!IS_SIMPLE_IPH(ipha)) 2086 icmp_options_update(ipha); 2087 2088 /* 2089 * ICMP echo replies should go out on the same interface 2090 * the request came on as probes used by in.mpathd for detecting 2091 * NIC failures are ECHO packets. We turn-off load spreading 2092 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2093 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2094 * function. This is in turn handled by ip_wput and ip_newroute 2095 * to make sure that the packet goes out on the interface it came 2096 * in on. If we don't turnoff load spreading, the packets might get 2097 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2098 * to go out and in.mpathd would wrongly detect a failure or 2099 * mis-detect a NIC failure for link failure. As load spreading 2100 * can happen only if ill_group is not NULL, we do only for 2101 * that case and this does not affect the normal case. 2102 * 2103 * We turn off load spreading only on echo packets that came from 2104 * on-link hosts. If the interface route has been deleted, this will 2105 * not be enforced as we can't do much. For off-link hosts, as the 2106 * default routes in IPv4 does not typically have an ire_ipif 2107 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2108 * Moreover, expecting a default route through this interface may 2109 * not be correct. We use ipha_dst because of the swap above. 2110 */ 2111 onlink = B_FALSE; 2112 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2113 /* 2114 * First, we need to make sure that it is not one of our 2115 * local addresses. If we set onlink when it is one of 2116 * our local addresses, we will end up creating IRE_CACHES 2117 * for one of our local addresses. Then, we will never 2118 * accept packets for them afterwards. 2119 */ 2120 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2121 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2122 if (src_ire == NULL) { 2123 ipif = ipif_get_next_ipif(NULL, ill); 2124 if (ipif == NULL) { 2125 BUMP_MIB(&ip_mib, ipInDiscards); 2126 freemsg(mp); 2127 return; 2128 } 2129 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2130 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2131 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2132 ipif_refrele(ipif); 2133 if (src_ire != NULL) { 2134 onlink = B_TRUE; 2135 ire_refrele(src_ire); 2136 } 2137 } else { 2138 ire_refrele(src_ire); 2139 } 2140 } 2141 if (!mctl_present) { 2142 /* 2143 * This packet should go out the same way as it 2144 * came in i.e in clear. To make sure that global 2145 * policy will not be applied to this in ip_wput_ire, 2146 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2147 */ 2148 ASSERT(first_mp == mp); 2149 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2150 BUMP_MIB(&ip_mib, ipInDiscards); 2151 freemsg(mp); 2152 return; 2153 } 2154 ii = (ipsec_in_t *)first_mp->b_rptr; 2155 2156 /* This is not a secure packet */ 2157 ii->ipsec_in_secure = B_FALSE; 2158 if (onlink) { 2159 ii->ipsec_in_attach_if = B_TRUE; 2160 ii->ipsec_in_ill_index = 2161 ill->ill_phyint->phyint_ifindex; 2162 ii->ipsec_in_rill_index = 2163 recv_ill->ill_phyint->phyint_ifindex; 2164 } 2165 first_mp->b_cont = mp; 2166 } else if (onlink) { 2167 ii = (ipsec_in_t *)first_mp->b_rptr; 2168 ii->ipsec_in_attach_if = B_TRUE; 2169 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2170 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2171 } else { 2172 ii = (ipsec_in_t *)first_mp->b_rptr; 2173 } 2174 ii->ipsec_in_zoneid = zoneid; 2175 ASSERT(zoneid != ALL_ZONES); 2176 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2177 BUMP_MIB(&ip_mib, ipInDiscards); 2178 return; 2179 } 2180 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2181 put(WR(q), first_mp); 2182 } 2183 2184 static ipaddr_t 2185 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2186 { 2187 conn_t *connp; 2188 connf_t *connfp; 2189 ipaddr_t nexthop_addr = INADDR_ANY; 2190 int hdr_length = IPH_HDR_LENGTH(ipha); 2191 uint16_t *up; 2192 uint32_t ports; 2193 2194 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2195 switch (ipha->ipha_protocol) { 2196 case IPPROTO_TCP: 2197 { 2198 tcph_t *tcph; 2199 2200 /* do a reverse lookup */ 2201 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2202 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2203 TCPS_LISTEN); 2204 break; 2205 } 2206 case IPPROTO_UDP: 2207 { 2208 uint32_t dstport, srcport; 2209 2210 ((uint16_t *)&ports)[0] = up[1]; 2211 ((uint16_t *)&ports)[1] = up[0]; 2212 2213 /* Extract ports in net byte order */ 2214 dstport = htons(ntohl(ports) & 0xFFFF); 2215 srcport = htons(ntohl(ports) >> 16); 2216 2217 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2218 mutex_enter(&connfp->connf_lock); 2219 connp = connfp->connf_head; 2220 2221 /* do a reverse lookup */ 2222 while ((connp != NULL) && 2223 (!IPCL_UDP_MATCH(connp, dstport, 2224 ipha->ipha_src, srcport, ipha->ipha_dst) || 2225 connp->conn_zoneid != zoneid)) { 2226 connp = connp->conn_next; 2227 } 2228 if (connp != NULL) 2229 CONN_INC_REF(connp); 2230 mutex_exit(&connfp->connf_lock); 2231 break; 2232 } 2233 case IPPROTO_SCTP: 2234 { 2235 in6_addr_t map_src, map_dst; 2236 2237 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2238 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2239 ((uint16_t *)&ports)[0] = up[1]; 2240 ((uint16_t *)&ports)[1] = up[0]; 2241 2242 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2243 0, zoneid)) == NULL) { 2244 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2245 zoneid, ports, ipha); 2246 } else { 2247 CONN_INC_REF(connp); 2248 SCTP_REFRELE(CONN2SCTP(connp)); 2249 } 2250 break; 2251 } 2252 default: 2253 { 2254 ipha_t ripha; 2255 2256 ripha.ipha_src = ipha->ipha_dst; 2257 ripha.ipha_dst = ipha->ipha_src; 2258 ripha.ipha_protocol = ipha->ipha_protocol; 2259 2260 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2261 mutex_enter(&connfp->connf_lock); 2262 connp = connfp->connf_head; 2263 for (connp = connfp->connf_head; connp != NULL; 2264 connp = connp->conn_next) { 2265 if (IPCL_PROTO_MATCH(connp, 2266 ipha->ipha_protocol, &ripha, ill, 2267 0, zoneid)) { 2268 CONN_INC_REF(connp); 2269 break; 2270 } 2271 } 2272 mutex_exit(&connfp->connf_lock); 2273 } 2274 } 2275 if (connp != NULL) { 2276 if (connp->conn_nexthop_set) 2277 nexthop_addr = connp->conn_nexthop_v4; 2278 CONN_DEC_REF(connp); 2279 } 2280 return (nexthop_addr); 2281 } 2282 2283 /* Table from RFC 1191 */ 2284 static int icmp_frag_size_table[] = 2285 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2286 2287 /* 2288 * Process received ICMP Packet too big. 2289 * After updating any IRE it does the fanout to any matching transport streams. 2290 * Assumes the message has been pulled up till the IP header that caused 2291 * the error. 2292 * 2293 * Returns B_FALSE on failure and B_TRUE on success. 2294 */ 2295 static boolean_t 2296 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2297 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2298 { 2299 ire_t *ire, *first_ire; 2300 int mtu; 2301 int hdr_length; 2302 ipaddr_t nexthop_addr; 2303 2304 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2305 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2306 2307 hdr_length = IPH_HDR_LENGTH(ipha); 2308 2309 /* Drop if the original packet contained a source route */ 2310 if (ip_source_route_included(ipha)) { 2311 return (B_FALSE); 2312 } 2313 /* 2314 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2315 * header. 2316 */ 2317 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2318 mp->b_wptr) { 2319 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2320 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2321 BUMP_MIB(&ip_mib, ipInDiscards); 2322 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2323 return (B_FALSE); 2324 } 2325 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2326 ipha = (ipha_t *)&icmph[1]; 2327 } 2328 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2329 if (nexthop_addr != INADDR_ANY) { 2330 /* nexthop set */ 2331 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2332 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2333 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2334 } else { 2335 /* nexthop not set */ 2336 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2337 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2338 } 2339 2340 if (!first_ire) { 2341 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2342 ntohl(ipha->ipha_dst))); 2343 return (B_FALSE); 2344 } 2345 /* Check for MTU discovery advice as described in RFC 1191 */ 2346 mtu = ntohs(icmph->icmph_du_mtu); 2347 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2348 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2349 ire = ire->ire_next) { 2350 /* 2351 * Look for the connection to which this ICMP message is 2352 * directed. If it has the IP_NEXTHOP option set, then the 2353 * search is limited to IREs with the MATCH_IRE_PRIVATE 2354 * option. Else the search is limited to regular IREs. 2355 */ 2356 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2357 (nexthop_addr != ire->ire_gateway_addr)) || 2358 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2359 (nexthop_addr != INADDR_ANY))) 2360 continue; 2361 2362 mutex_enter(&ire->ire_lock); 2363 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2364 /* Reduce the IRE max frag value as advised. */ 2365 ip1dbg(("Received mtu from router: %d (was %d)\n", 2366 mtu, ire->ire_max_frag)); 2367 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2368 } else { 2369 uint32_t length; 2370 int i; 2371 2372 /* 2373 * Use the table from RFC 1191 to figure out 2374 * the next "plateau" based on the length in 2375 * the original IP packet. 2376 */ 2377 length = ntohs(ipha->ipha_length); 2378 if (ire->ire_max_frag <= length && 2379 ire->ire_max_frag >= length - hdr_length) { 2380 /* 2381 * Handle broken BSD 4.2 systems that 2382 * return the wrong iph_length in ICMP 2383 * errors. 2384 */ 2385 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2386 length, ire->ire_max_frag)); 2387 length -= hdr_length; 2388 } 2389 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2390 if (length > icmp_frag_size_table[i]) 2391 break; 2392 } 2393 if (i == A_CNT(icmp_frag_size_table)) { 2394 /* Smaller than 68! */ 2395 ip1dbg(("Too big for packet size %d\n", 2396 length)); 2397 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2398 ire->ire_frag_flag = 0; 2399 } else { 2400 mtu = icmp_frag_size_table[i]; 2401 ip1dbg(("Calculated mtu %d, packet size %d, " 2402 "before %d", mtu, length, 2403 ire->ire_max_frag)); 2404 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2405 ip1dbg((", after %d\n", ire->ire_max_frag)); 2406 } 2407 /* Record the new max frag size for the ULP. */ 2408 icmph->icmph_du_zero = 0; 2409 icmph->icmph_du_mtu = 2410 htons((uint16_t)ire->ire_max_frag); 2411 } 2412 mutex_exit(&ire->ire_lock); 2413 } 2414 rw_exit(&first_ire->ire_bucket->irb_lock); 2415 ire_refrele(first_ire); 2416 return (B_TRUE); 2417 } 2418 2419 /* 2420 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2421 * calls this function. 2422 */ 2423 static mblk_t * 2424 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2425 { 2426 ipha_t *ipha; 2427 icmph_t *icmph; 2428 ipha_t *in_ipha; 2429 int length; 2430 2431 ASSERT(mp->b_datap->db_type == M_DATA); 2432 2433 /* 2434 * For Self-encapsulated packets, we added an extra IP header 2435 * without the options. Inner IP header is the one from which 2436 * the outer IP header was formed. Thus, we need to remove the 2437 * outer IP header. To do this, we pullup the whole message 2438 * and overlay whatever follows the outer IP header over the 2439 * outer IP header. 2440 */ 2441 2442 if (!pullupmsg(mp, -1)) { 2443 BUMP_MIB(&ip_mib, ipInDiscards); 2444 return (NULL); 2445 } 2446 2447 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2448 ipha = (ipha_t *)&icmph[1]; 2449 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2450 2451 /* 2452 * The length that we want to overlay is following the inner 2453 * IP header. Subtracting the IP header + icmp header + outer 2454 * IP header's length should give us the length that we want to 2455 * overlay. 2456 */ 2457 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2458 hdr_length; 2459 /* 2460 * Overlay whatever follows the inner header over the 2461 * outer header. 2462 */ 2463 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2464 2465 /* Set the wptr to account for the outer header */ 2466 mp->b_wptr -= hdr_length; 2467 return (mp); 2468 } 2469 2470 /* 2471 * Try to pass the ICMP message upstream in case the ULP cares. 2472 * 2473 * If the packet that caused the ICMP error is secure, we send 2474 * it to AH/ESP to make sure that the attached packet has a 2475 * valid association. ipha in the code below points to the 2476 * IP header of the packet that caused the error. 2477 * 2478 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2479 * in the context of IPSEC. Normally we tell the upper layer 2480 * whenever we send the ire (including ip_bind), the IPSEC header 2481 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2482 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2483 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2484 * same thing. As TCP has the IPSEC options size that needs to be 2485 * adjusted, we just pass the MTU unchanged. 2486 * 2487 * IFN could have been generated locally or by some router. 2488 * 2489 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2490 * This happens because IP adjusted its value of MTU on an 2491 * earlier IFN message and could not tell the upper layer, 2492 * the new adjusted value of MTU e.g. Packet was encrypted 2493 * or there was not enough information to fanout to upper 2494 * layers. Thus on the next outbound datagram, ip_wput_ire 2495 * generates the IFN, where IPSEC processing has *not* been 2496 * done. 2497 * 2498 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2499 * could have generated this. This happens because ire_max_frag 2500 * value in IP was set to a new value, while the IPSEC processing 2501 * was being done and after we made the fragmentation check in 2502 * ip_wput_ire. Thus on return from IPSEC processing, 2503 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2504 * and generates the IFN. As IPSEC processing is over, we fanout 2505 * to AH/ESP to remove the header. 2506 * 2507 * In both these cases, ipsec_in_loopback will be set indicating 2508 * that IFN was generated locally. 2509 * 2510 * ROUTER : IFN could be secure or non-secure. 2511 * 2512 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2513 * packet in error has AH/ESP headers to validate the AH/ESP 2514 * headers. AH/ESP will verify whether there is a valid SA or 2515 * not and send it back. We will fanout again if we have more 2516 * data in the packet. 2517 * 2518 * If the packet in error does not have AH/ESP, we handle it 2519 * like any other case. 2520 * 2521 * * NON_SECURE : If the packet in error has AH/ESP headers, 2522 * we attach a dummy ipsec_in and send it up to AH/ESP 2523 * for validation. AH/ESP will verify whether there is a 2524 * valid SA or not and send it back. We will fanout again if 2525 * we have more data in the packet. 2526 * 2527 * If the packet in error does not have AH/ESP, we handle it 2528 * like any other case. 2529 */ 2530 static void 2531 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2532 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2533 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2534 zoneid_t zoneid) 2535 { 2536 uint16_t *up; /* Pointer to ports in ULP header */ 2537 uint32_t ports; /* reversed ports for fanout */ 2538 ipha_t ripha; /* With reversed addresses */ 2539 mblk_t *first_mp; 2540 ipsec_in_t *ii; 2541 tcph_t *tcph; 2542 conn_t *connp; 2543 2544 first_mp = mp; 2545 if (mctl_present) { 2546 mp = first_mp->b_cont; 2547 ASSERT(mp != NULL); 2548 2549 ii = (ipsec_in_t *)first_mp->b_rptr; 2550 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2551 } else { 2552 ii = NULL; 2553 } 2554 2555 switch (ipha->ipha_protocol) { 2556 case IPPROTO_UDP: 2557 /* 2558 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2559 * transport header. 2560 */ 2561 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2562 mp->b_wptr) { 2563 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2564 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2565 BUMP_MIB(&ip_mib, ipInDiscards); 2566 goto drop_pkt; 2567 } 2568 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2569 ipha = (ipha_t *)&icmph[1]; 2570 } 2571 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2572 2573 /* 2574 * Attempt to find a client stream based on port. 2575 * Note that we do a reverse lookup since the header is 2576 * in the form we sent it out. 2577 * The ripha header is only used for the IP_UDP_MATCH and we 2578 * only set the src and dst addresses and protocol. 2579 */ 2580 ripha.ipha_src = ipha->ipha_dst; 2581 ripha.ipha_dst = ipha->ipha_src; 2582 ripha.ipha_protocol = ipha->ipha_protocol; 2583 ((uint16_t *)&ports)[0] = up[1]; 2584 ((uint16_t *)&ports)[1] = up[0]; 2585 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2586 ntohl(ipha->ipha_src), ntohs(up[0]), 2587 ntohl(ipha->ipha_dst), ntohs(up[1]), 2588 icmph->icmph_type, icmph->icmph_code)); 2589 2590 /* Have to change db_type after any pullupmsg */ 2591 DB_TYPE(mp) = M_CTL; 2592 2593 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2594 mctl_present, ip_policy, recv_ill, zoneid); 2595 return; 2596 2597 case IPPROTO_TCP: 2598 /* 2599 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2600 * transport header. 2601 */ 2602 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2603 mp->b_wptr) { 2604 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2605 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2606 BUMP_MIB(&ip_mib, ipInDiscards); 2607 goto drop_pkt; 2608 } 2609 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2610 ipha = (ipha_t *)&icmph[1]; 2611 } 2612 /* 2613 * Find a TCP client stream for this packet. 2614 * Note that we do a reverse lookup since the header is 2615 * in the form we sent it out. 2616 */ 2617 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2618 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2619 if (connp == NULL) { 2620 BUMP_MIB(&ip_mib, ipInDiscards); 2621 goto drop_pkt; 2622 } 2623 2624 /* Have to change db_type after any pullupmsg */ 2625 DB_TYPE(mp) = M_CTL; 2626 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2627 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2628 return; 2629 2630 case IPPROTO_SCTP: 2631 /* 2632 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2633 * transport header. 2634 */ 2635 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2636 mp->b_wptr) { 2637 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2638 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2639 BUMP_MIB(&ip_mib, ipInDiscards); 2640 goto drop_pkt; 2641 } 2642 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2643 ipha = (ipha_t *)&icmph[1]; 2644 } 2645 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2646 /* 2647 * Find a SCTP client stream for this packet. 2648 * Note that we do a reverse lookup since the header is 2649 * in the form we sent it out. 2650 * The ripha header is only used for the matching and we 2651 * only set the src and dst addresses, protocol, and version. 2652 */ 2653 ripha.ipha_src = ipha->ipha_dst; 2654 ripha.ipha_dst = ipha->ipha_src; 2655 ripha.ipha_protocol = ipha->ipha_protocol; 2656 ripha.ipha_version_and_hdr_length = 2657 ipha->ipha_version_and_hdr_length; 2658 ((uint16_t *)&ports)[0] = up[1]; 2659 ((uint16_t *)&ports)[1] = up[0]; 2660 2661 /* Have to change db_type after any pullupmsg */ 2662 DB_TYPE(mp) = M_CTL; 2663 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2664 mctl_present, ip_policy, 0, zoneid); 2665 return; 2666 2667 case IPPROTO_ESP: 2668 case IPPROTO_AH: { 2669 int ipsec_rc; 2670 2671 /* 2672 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2673 * We will re-use the IPSEC_IN if it is already present as 2674 * AH/ESP will not affect any fields in the IPSEC_IN for 2675 * ICMP errors. If there is no IPSEC_IN, allocate a new 2676 * one and attach it in the front. 2677 */ 2678 if (ii != NULL) { 2679 /* 2680 * ip_fanout_proto_again converts the ICMP errors 2681 * that come back from AH/ESP to M_DATA so that 2682 * if it is non-AH/ESP and we do a pullupmsg in 2683 * this function, it would work. Convert it back 2684 * to M_CTL before we send up as this is a ICMP 2685 * error. This could have been generated locally or 2686 * by some router. Validate the inner IPSEC 2687 * headers. 2688 * 2689 * NOTE : ill_index is used by ip_fanout_proto_again 2690 * to locate the ill. 2691 */ 2692 ASSERT(ill != NULL); 2693 ii->ipsec_in_ill_index = 2694 ill->ill_phyint->phyint_ifindex; 2695 ii->ipsec_in_rill_index = 2696 recv_ill->ill_phyint->phyint_ifindex; 2697 DB_TYPE(first_mp->b_cont) = M_CTL; 2698 } else { 2699 /* 2700 * IPSEC_IN is not present. We attach a ipsec_in 2701 * message and send up to IPSEC for validating 2702 * and removing the IPSEC headers. Clear 2703 * ipsec_in_secure so that when we return 2704 * from IPSEC, we don't mistakenly think that this 2705 * is a secure packet came from the network. 2706 * 2707 * NOTE : ill_index is used by ip_fanout_proto_again 2708 * to locate the ill. 2709 */ 2710 ASSERT(first_mp == mp); 2711 first_mp = ipsec_in_alloc(B_TRUE); 2712 if (first_mp == NULL) { 2713 freemsg(mp); 2714 BUMP_MIB(&ip_mib, ipInDiscards); 2715 return; 2716 } 2717 ii = (ipsec_in_t *)first_mp->b_rptr; 2718 2719 /* This is not a secure packet */ 2720 ii->ipsec_in_secure = B_FALSE; 2721 first_mp->b_cont = mp; 2722 DB_TYPE(mp) = M_CTL; 2723 ASSERT(ill != NULL); 2724 ii->ipsec_in_ill_index = 2725 ill->ill_phyint->phyint_ifindex; 2726 ii->ipsec_in_rill_index = 2727 recv_ill->ill_phyint->phyint_ifindex; 2728 } 2729 ip2dbg(("icmp_inbound_error: ipsec\n")); 2730 2731 if (!ipsec_loaded()) { 2732 ip_proto_not_sup(q, first_mp, 0, zoneid); 2733 return; 2734 } 2735 2736 if (ipha->ipha_protocol == IPPROTO_ESP) 2737 ipsec_rc = ipsecesp_icmp_error(first_mp); 2738 else 2739 ipsec_rc = ipsecah_icmp_error(first_mp); 2740 if (ipsec_rc == IPSEC_STATUS_FAILED) 2741 return; 2742 2743 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2744 return; 2745 } 2746 default: 2747 /* 2748 * The ripha header is only used for the lookup and we 2749 * only set the src and dst addresses and protocol. 2750 */ 2751 ripha.ipha_src = ipha->ipha_dst; 2752 ripha.ipha_dst = ipha->ipha_src; 2753 ripha.ipha_protocol = ipha->ipha_protocol; 2754 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2755 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2756 ntohl(ipha->ipha_dst), 2757 icmph->icmph_type, icmph->icmph_code)); 2758 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2759 ipha_t *in_ipha; 2760 2761 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2762 mp->b_wptr) { 2763 if (!pullupmsg(mp, (uchar_t *)ipha + 2764 hdr_length + sizeof (ipha_t) - 2765 mp->b_rptr)) { 2766 2767 BUMP_MIB(&ip_mib, ipInDiscards); 2768 goto drop_pkt; 2769 } 2770 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2771 ipha = (ipha_t *)&icmph[1]; 2772 } 2773 /* 2774 * Caller has verified that length has to be 2775 * at least the size of IP header. 2776 */ 2777 ASSERT(hdr_length >= sizeof (ipha_t)); 2778 /* 2779 * Check the sanity of the inner IP header like 2780 * we did for the outer header. 2781 */ 2782 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2783 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2784 BUMP_MIB(&ip_mib, ipInDiscards); 2785 goto drop_pkt; 2786 } 2787 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2788 BUMP_MIB(&ip_mib, ipInDiscards); 2789 goto drop_pkt; 2790 } 2791 /* Check for Self-encapsulated tunnels */ 2792 if (in_ipha->ipha_src == ipha->ipha_src && 2793 in_ipha->ipha_dst == ipha->ipha_dst) { 2794 2795 mp = icmp_inbound_self_encap_error(mp, 2796 iph_hdr_length, hdr_length); 2797 if (mp == NULL) 2798 goto drop_pkt; 2799 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2800 ipha = (ipha_t *)&icmph[1]; 2801 hdr_length = IPH_HDR_LENGTH(ipha); 2802 /* 2803 * The packet in error is self-encapsualted. 2804 * And we are finding it further encapsulated 2805 * which we could not have possibly generated. 2806 */ 2807 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2808 BUMP_MIB(&ip_mib, ipInDiscards); 2809 goto drop_pkt; 2810 } 2811 icmp_inbound_error_fanout(q, ill, first_mp, 2812 icmph, ipha, iph_hdr_length, hdr_length, 2813 mctl_present, ip_policy, recv_ill, zoneid); 2814 return; 2815 } 2816 } 2817 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2818 ipha->ipha_protocol == IPPROTO_IPV6) && 2819 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2820 ii != NULL && 2821 ii->ipsec_in_loopback && 2822 ii->ipsec_in_secure) { 2823 /* 2824 * For IP tunnels that get a looped-back 2825 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2826 * reported new MTU to take into account the IPsec 2827 * headers protecting this configured tunnel. 2828 * 2829 * This allows the tunnel module (tun.c) to blindly 2830 * accept the MTU reported in an ICMP "too big" 2831 * message. 2832 * 2833 * Non-looped back ICMP messages will just be 2834 * handled by the security protocols (if needed), 2835 * and the first subsequent packet will hit this 2836 * path. 2837 */ 2838 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2839 ipsec_in_extra_length(first_mp)); 2840 } 2841 /* Have to change db_type after any pullupmsg */ 2842 DB_TYPE(mp) = M_CTL; 2843 2844 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2845 ip_policy, recv_ill, zoneid); 2846 return; 2847 } 2848 /* NOTREACHED */ 2849 drop_pkt:; 2850 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2851 freemsg(first_mp); 2852 } 2853 2854 /* 2855 * Common IP options parser. 2856 * 2857 * Setup routine: fill in *optp with options-parsing state, then 2858 * tail-call ipoptp_next to return the first option. 2859 */ 2860 uint8_t 2861 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2862 { 2863 uint32_t totallen; /* total length of all options */ 2864 2865 totallen = ipha->ipha_version_and_hdr_length - 2866 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2867 totallen <<= 2; 2868 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2869 optp->ipoptp_end = optp->ipoptp_next + totallen; 2870 optp->ipoptp_flags = 0; 2871 return (ipoptp_next(optp)); 2872 } 2873 2874 /* 2875 * Common IP options parser: extract next option. 2876 */ 2877 uint8_t 2878 ipoptp_next(ipoptp_t *optp) 2879 { 2880 uint8_t *end = optp->ipoptp_end; 2881 uint8_t *cur = optp->ipoptp_next; 2882 uint8_t opt, len, pointer; 2883 2884 /* 2885 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2886 * has been corrupted. 2887 */ 2888 ASSERT(cur <= end); 2889 2890 if (cur == end) 2891 return (IPOPT_EOL); 2892 2893 opt = cur[IPOPT_OPTVAL]; 2894 2895 /* 2896 * Skip any NOP options. 2897 */ 2898 while (opt == IPOPT_NOP) { 2899 cur++; 2900 if (cur == end) 2901 return (IPOPT_EOL); 2902 opt = cur[IPOPT_OPTVAL]; 2903 } 2904 2905 if (opt == IPOPT_EOL) 2906 return (IPOPT_EOL); 2907 2908 /* 2909 * Option requiring a length. 2910 */ 2911 if ((cur + 1) >= end) { 2912 optp->ipoptp_flags |= IPOPTP_ERROR; 2913 return (IPOPT_EOL); 2914 } 2915 len = cur[IPOPT_OLEN]; 2916 if (len < 2) { 2917 optp->ipoptp_flags |= IPOPTP_ERROR; 2918 return (IPOPT_EOL); 2919 } 2920 optp->ipoptp_cur = cur; 2921 optp->ipoptp_len = len; 2922 optp->ipoptp_next = cur + len; 2923 if (cur + len > end) { 2924 optp->ipoptp_flags |= IPOPTP_ERROR; 2925 return (IPOPT_EOL); 2926 } 2927 2928 /* 2929 * For the options which require a pointer field, make sure 2930 * its there, and make sure it points to either something 2931 * inside this option, or the end of the option. 2932 */ 2933 switch (opt) { 2934 case IPOPT_RR: 2935 case IPOPT_TS: 2936 case IPOPT_LSRR: 2937 case IPOPT_SSRR: 2938 if (len <= IPOPT_OFFSET) { 2939 optp->ipoptp_flags |= IPOPTP_ERROR; 2940 return (opt); 2941 } 2942 pointer = cur[IPOPT_OFFSET]; 2943 if (pointer - 1 > len) { 2944 optp->ipoptp_flags |= IPOPTP_ERROR; 2945 return (opt); 2946 } 2947 break; 2948 } 2949 2950 /* 2951 * Sanity check the pointer field based on the type of the 2952 * option. 2953 */ 2954 switch (opt) { 2955 case IPOPT_RR: 2956 case IPOPT_SSRR: 2957 case IPOPT_LSRR: 2958 if (pointer < IPOPT_MINOFF_SR) 2959 optp->ipoptp_flags |= IPOPTP_ERROR; 2960 break; 2961 case IPOPT_TS: 2962 if (pointer < IPOPT_MINOFF_IT) 2963 optp->ipoptp_flags |= IPOPTP_ERROR; 2964 /* 2965 * Note that the Internet Timestamp option also 2966 * contains two four bit fields (the Overflow field, 2967 * and the Flag field), which follow the pointer 2968 * field. We don't need to check that these fields 2969 * fall within the length of the option because this 2970 * was implicitely done above. We've checked that the 2971 * pointer value is at least IPOPT_MINOFF_IT, and that 2972 * it falls within the option. Since IPOPT_MINOFF_IT > 2973 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2974 */ 2975 ASSERT(len > IPOPT_POS_OV_FLG); 2976 break; 2977 } 2978 2979 return (opt); 2980 } 2981 2982 /* 2983 * Use the outgoing IP header to create an IP_OPTIONS option the way 2984 * it was passed down from the application. 2985 */ 2986 int 2987 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2988 { 2989 ipoptp_t opts; 2990 const uchar_t *opt; 2991 uint8_t optval; 2992 uint8_t optlen; 2993 uint32_t len = 0; 2994 uchar_t *buf1 = buf; 2995 2996 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2997 len += IP_ADDR_LEN; 2998 bzero(buf1, IP_ADDR_LEN); 2999 3000 /* 3001 * OK to cast away const here, as we don't store through the returned 3002 * opts.ipoptp_cur pointer. 3003 */ 3004 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 3005 optval != IPOPT_EOL; 3006 optval = ipoptp_next(&opts)) { 3007 int off; 3008 3009 opt = opts.ipoptp_cur; 3010 optlen = opts.ipoptp_len; 3011 switch (optval) { 3012 case IPOPT_SSRR: 3013 case IPOPT_LSRR: 3014 3015 /* 3016 * Insert ipha_dst as the first entry in the source 3017 * route and move down the entries on step. 3018 * The last entry gets placed at buf1. 3019 */ 3020 buf[IPOPT_OPTVAL] = optval; 3021 buf[IPOPT_OLEN] = optlen; 3022 buf[IPOPT_OFFSET] = optlen; 3023 3024 off = optlen - IP_ADDR_LEN; 3025 if (off < 0) { 3026 /* No entries in source route */ 3027 break; 3028 } 3029 /* Last entry in source route */ 3030 bcopy(opt + off, buf1, IP_ADDR_LEN); 3031 off -= IP_ADDR_LEN; 3032 3033 while (off > 0) { 3034 bcopy(opt + off, 3035 buf + off + IP_ADDR_LEN, 3036 IP_ADDR_LEN); 3037 off -= IP_ADDR_LEN; 3038 } 3039 /* ipha_dst into first slot */ 3040 bcopy(&ipha->ipha_dst, 3041 buf + off + IP_ADDR_LEN, 3042 IP_ADDR_LEN); 3043 buf += optlen; 3044 len += optlen; 3045 break; 3046 3047 case IPOPT_COMSEC: 3048 case IPOPT_SECURITY: 3049 /* if passing up a label is not ok, then remove */ 3050 if (is_system_labeled()) 3051 break; 3052 /* FALLTHROUGH */ 3053 default: 3054 bcopy(opt, buf, optlen); 3055 buf += optlen; 3056 len += optlen; 3057 break; 3058 } 3059 } 3060 done: 3061 /* Pad the resulting options */ 3062 while (len & 0x3) { 3063 *buf++ = IPOPT_EOL; 3064 len++; 3065 } 3066 return (len); 3067 } 3068 3069 /* 3070 * Update any record route or timestamp options to include this host. 3071 * Reverse any source route option. 3072 * This routine assumes that the options are well formed i.e. that they 3073 * have already been checked. 3074 */ 3075 static void 3076 icmp_options_update(ipha_t *ipha) 3077 { 3078 ipoptp_t opts; 3079 uchar_t *opt; 3080 uint8_t optval; 3081 ipaddr_t src; /* Our local address */ 3082 ipaddr_t dst; 3083 3084 ip2dbg(("icmp_options_update\n")); 3085 src = ipha->ipha_src; 3086 dst = ipha->ipha_dst; 3087 3088 for (optval = ipoptp_first(&opts, ipha); 3089 optval != IPOPT_EOL; 3090 optval = ipoptp_next(&opts)) { 3091 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3092 opt = opts.ipoptp_cur; 3093 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3094 optval, opts.ipoptp_len)); 3095 switch (optval) { 3096 int off1, off2; 3097 case IPOPT_SSRR: 3098 case IPOPT_LSRR: 3099 /* 3100 * Reverse the source route. The first entry 3101 * should be the next to last one in the current 3102 * source route (the last entry is our address). 3103 * The last entry should be the final destination. 3104 */ 3105 off1 = IPOPT_MINOFF_SR - 1; 3106 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3107 if (off2 < 0) { 3108 /* No entries in source route */ 3109 ip1dbg(( 3110 "icmp_options_update: bad src route\n")); 3111 break; 3112 } 3113 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3114 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3115 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3116 off2 -= IP_ADDR_LEN; 3117 3118 while (off1 < off2) { 3119 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3120 bcopy((char *)opt + off2, (char *)opt + off1, 3121 IP_ADDR_LEN); 3122 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3123 off1 += IP_ADDR_LEN; 3124 off2 -= IP_ADDR_LEN; 3125 } 3126 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3127 break; 3128 } 3129 } 3130 } 3131 3132 /* 3133 * Process received ICMP Redirect messages. 3134 */ 3135 /* ARGSUSED */ 3136 static void 3137 icmp_redirect(mblk_t *mp) 3138 { 3139 ipha_t *ipha; 3140 int iph_hdr_length; 3141 icmph_t *icmph; 3142 ipha_t *ipha_err; 3143 ire_t *ire; 3144 ire_t *prev_ire; 3145 ire_t *save_ire; 3146 ipaddr_t src, dst, gateway; 3147 iulp_t ulp_info = { 0 }; 3148 int error; 3149 3150 ipha = (ipha_t *)mp->b_rptr; 3151 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3152 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3153 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3154 BUMP_MIB(&icmp_mib, icmpInErrors); 3155 freemsg(mp); 3156 return; 3157 } 3158 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3159 ipha_err = (ipha_t *)&icmph[1]; 3160 src = ipha->ipha_src; 3161 dst = ipha_err->ipha_dst; 3162 gateway = icmph->icmph_rd_gateway; 3163 /* Make sure the new gateway is reachable somehow. */ 3164 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3165 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3166 /* 3167 * Make sure we had a route for the dest in question and that 3168 * that route was pointing to the old gateway (the source of the 3169 * redirect packet.) 3170 */ 3171 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3172 NULL, MATCH_IRE_GW); 3173 /* 3174 * Check that 3175 * the redirect was not from ourselves 3176 * the new gateway and the old gateway are directly reachable 3177 */ 3178 if (!prev_ire || 3179 !ire || 3180 ire->ire_type == IRE_LOCAL) { 3181 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3182 freemsg(mp); 3183 if (ire != NULL) 3184 ire_refrele(ire); 3185 if (prev_ire != NULL) 3186 ire_refrele(prev_ire); 3187 return; 3188 } 3189 3190 /* 3191 * Should we use the old ULP info to create the new gateway? From 3192 * a user's perspective, we should inherit the info so that it 3193 * is a "smooth" transition. If we do not do that, then new 3194 * connections going thru the new gateway will have no route metrics, 3195 * which is counter-intuitive to user. From a network point of 3196 * view, this may or may not make sense even though the new gateway 3197 * is still directly connected to us so the route metrics should not 3198 * change much. 3199 * 3200 * But if the old ire_uinfo is not initialized, we do another 3201 * recursive lookup on the dest using the new gateway. There may 3202 * be a route to that. If so, use it to initialize the redirect 3203 * route. 3204 */ 3205 if (prev_ire->ire_uinfo.iulp_set) { 3206 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3207 } else { 3208 ire_t *tmp_ire; 3209 ire_t *sire; 3210 3211 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3212 ALL_ZONES, 0, NULL, 3213 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3214 if (sire != NULL) { 3215 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3216 /* 3217 * If sire != NULL, ire_ftable_lookup() should not 3218 * return a NULL value. 3219 */ 3220 ASSERT(tmp_ire != NULL); 3221 ire_refrele(tmp_ire); 3222 ire_refrele(sire); 3223 } else if (tmp_ire != NULL) { 3224 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3225 sizeof (iulp_t)); 3226 ire_refrele(tmp_ire); 3227 } 3228 } 3229 if (prev_ire->ire_type == IRE_CACHE) 3230 ire_delete(prev_ire); 3231 ire_refrele(prev_ire); 3232 /* 3233 * TODO: more precise handling for cases 0, 2, 3, the latter two 3234 * require TOS routing 3235 */ 3236 switch (icmph->icmph_code) { 3237 case 0: 3238 case 1: 3239 /* TODO: TOS specificity for cases 2 and 3 */ 3240 case 2: 3241 case 3: 3242 break; 3243 default: 3244 freemsg(mp); 3245 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3246 ire_refrele(ire); 3247 return; 3248 } 3249 /* 3250 * Create a Route Association. This will allow us to remember that 3251 * someone we believe told us to use the particular gateway. 3252 */ 3253 save_ire = ire; 3254 ire = ire_create( 3255 (uchar_t *)&dst, /* dest addr */ 3256 (uchar_t *)&ip_g_all_ones, /* mask */ 3257 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3258 (uchar_t *)&gateway, /* gateway addr */ 3259 NULL, /* no in_srcaddr */ 3260 &save_ire->ire_max_frag, /* max frag */ 3261 NULL, /* Fast Path header */ 3262 NULL, /* no rfq */ 3263 NULL, /* no stq */ 3264 IRE_HOST_REDIRECT, 3265 NULL, 3266 NULL, 3267 NULL, 3268 0, 3269 0, 3270 0, 3271 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3272 &ulp_info, 3273 NULL, 3274 NULL); 3275 3276 if (ire == NULL) { 3277 freemsg(mp); 3278 ire_refrele(save_ire); 3279 return; 3280 } 3281 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3282 ire_refrele(save_ire); 3283 atomic_inc_32(&ip_redirect_cnt); 3284 3285 if (error == 0) { 3286 ire_refrele(ire); /* Held in ire_add_v4 */ 3287 /* tell routing sockets that we received a redirect */ 3288 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3289 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3290 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3291 } 3292 3293 /* 3294 * Delete any existing IRE_HOST_REDIRECT for this destination. 3295 * This together with the added IRE has the effect of 3296 * modifying an existing redirect. 3297 */ 3298 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 3299 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3300 if (prev_ire) { 3301 ire_delete(prev_ire); 3302 ire_refrele(prev_ire); 3303 } 3304 3305 freemsg(mp); 3306 } 3307 3308 /* 3309 * Generate an ICMP parameter problem message. 3310 */ 3311 static void 3312 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 3313 { 3314 icmph_t icmph; 3315 boolean_t mctl_present; 3316 mblk_t *first_mp; 3317 3318 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3319 3320 if (!(mp = icmp_pkt_err_ok(mp))) { 3321 if (mctl_present) 3322 freeb(first_mp); 3323 return; 3324 } 3325 3326 bzero(&icmph, sizeof (icmph_t)); 3327 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3328 icmph.icmph_pp_ptr = ptr; 3329 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3330 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3331 } 3332 3333 /* 3334 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3335 * the ICMP header pointed to by "stuff". (May be called as writer.) 3336 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3337 * an icmp error packet can be sent. 3338 * Assigns an appropriate source address to the packet. If ipha_dst is 3339 * one of our addresses use it for source. Otherwise pick a source based 3340 * on a route lookup back to ipha_src. 3341 * Note that ipha_src must be set here since the 3342 * packet is likely to arrive on an ill queue in ip_wput() which will 3343 * not set a source address. 3344 */ 3345 static void 3346 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3347 boolean_t mctl_present) 3348 { 3349 ipaddr_t dst; 3350 icmph_t *icmph; 3351 ipha_t *ipha; 3352 uint_t len_needed; 3353 size_t msg_len; 3354 mblk_t *mp1; 3355 ipaddr_t src; 3356 ire_t *ire; 3357 mblk_t *ipsec_mp; 3358 ipsec_out_t *io = NULL; 3359 boolean_t xmit_if_on = B_FALSE; 3360 zoneid_t zoneid; 3361 3362 if (mctl_present) { 3363 /* 3364 * If it is : 3365 * 3366 * 1) a IPSEC_OUT, then this is caused by outbound 3367 * datagram originating on this host. IPSEC processing 3368 * may or may not have been done. Refer to comments above 3369 * icmp_inbound_error_fanout for details. 3370 * 3371 * 2) a IPSEC_IN if we are generating a icmp_message 3372 * for an incoming datagram destined for us i.e called 3373 * from ip_fanout_send_icmp. 3374 */ 3375 ipsec_info_t *in; 3376 ipsec_mp = mp; 3377 mp = ipsec_mp->b_cont; 3378 3379 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3380 ipha = (ipha_t *)mp->b_rptr; 3381 3382 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3383 in->ipsec_info_type == IPSEC_IN); 3384 3385 if (in->ipsec_info_type == IPSEC_IN) { 3386 /* 3387 * Convert the IPSEC_IN to IPSEC_OUT. 3388 */ 3389 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3390 BUMP_MIB(&ip_mib, ipOutDiscards); 3391 return; 3392 } 3393 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3394 } else { 3395 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3396 io = (ipsec_out_t *)in; 3397 if (io->ipsec_out_xmit_if) 3398 xmit_if_on = B_TRUE; 3399 /* 3400 * Clear out ipsec_out_proc_begin, so we do a fresh 3401 * ire lookup. 3402 */ 3403 io->ipsec_out_proc_begin = B_FALSE; 3404 } 3405 zoneid = io->ipsec_out_zoneid; 3406 ASSERT(zoneid != ALL_ZONES); 3407 } else { 3408 /* 3409 * This is in clear. The icmp message we are building 3410 * here should go out in clear. 3411 * 3412 * Pardon the convolution of it all, but it's easier to 3413 * allocate a "use cleartext" IPSEC_IN message and convert 3414 * it than it is to allocate a new one. 3415 */ 3416 ipsec_in_t *ii; 3417 ASSERT(DB_TYPE(mp) == M_DATA); 3418 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3419 freemsg(mp); 3420 BUMP_MIB(&ip_mib, ipOutDiscards); 3421 return; 3422 } 3423 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3424 3425 /* This is not a secure packet */ 3426 ii->ipsec_in_secure = B_FALSE; 3427 if (CONN_Q(q)) { 3428 zoneid = Q_TO_CONN(q)->conn_zoneid; 3429 } else { 3430 zoneid = GLOBAL_ZONEID; 3431 } 3432 ii->ipsec_in_zoneid = zoneid; 3433 ASSERT(zoneid != ALL_ZONES); 3434 ipsec_mp->b_cont = mp; 3435 ipha = (ipha_t *)mp->b_rptr; 3436 /* 3437 * Convert the IPSEC_IN to IPSEC_OUT. 3438 */ 3439 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3440 BUMP_MIB(&ip_mib, ipOutDiscards); 3441 return; 3442 } 3443 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3444 } 3445 3446 /* Remember our eventual destination */ 3447 dst = ipha->ipha_src; 3448 3449 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3450 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3451 if (ire != NULL && 3452 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3453 src = ipha->ipha_dst; 3454 } else if (!xmit_if_on) { 3455 if (ire != NULL) 3456 ire_refrele(ire); 3457 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3458 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3459 if (ire == NULL) { 3460 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3461 freemsg(ipsec_mp); 3462 return; 3463 } 3464 src = ire->ire_src_addr; 3465 } else { 3466 ipif_t *ipif = NULL; 3467 ill_t *ill; 3468 /* 3469 * This must be an ICMP error coming from 3470 * ip_mrtun_forward(). The src addr should 3471 * be equal to the IP-addr of the outgoing 3472 * interface. 3473 */ 3474 if (io == NULL) { 3475 /* This is not a IPSEC_OUT type control msg */ 3476 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3477 freemsg(ipsec_mp); 3478 return; 3479 } 3480 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3481 NULL, NULL, NULL, NULL); 3482 if (ill != NULL) { 3483 ipif = ipif_get_next_ipif(NULL, ill); 3484 ill_refrele(ill); 3485 } 3486 if (ipif == NULL) { 3487 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3488 freemsg(ipsec_mp); 3489 return; 3490 } 3491 src = ipif->ipif_src_addr; 3492 ipif_refrele(ipif); 3493 } 3494 3495 if (ire != NULL) 3496 ire_refrele(ire); 3497 3498 /* 3499 * Check if we can send back more then 8 bytes in addition 3500 * to the IP header. We will include as much as 64 bytes. 3501 */ 3502 len_needed = IPH_HDR_LENGTH(ipha); 3503 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3504 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3505 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3506 } 3507 len_needed += ip_icmp_return; 3508 msg_len = msgdsize(mp); 3509 if (msg_len > len_needed) { 3510 (void) adjmsg(mp, len_needed - msg_len); 3511 msg_len = len_needed; 3512 } 3513 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3514 if (mp1 == NULL) { 3515 BUMP_MIB(&icmp_mib, icmpOutErrors); 3516 freemsg(ipsec_mp); 3517 return; 3518 } 3519 /* 3520 * On an unlabeled system, dblks don't necessarily have creds. 3521 */ 3522 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3523 if (DB_CRED(mp) != NULL) 3524 mblk_setcred(mp1, DB_CRED(mp)); 3525 mp1->b_cont = mp; 3526 mp = mp1; 3527 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3528 ipsec_mp->b_rptr == (uint8_t *)io && 3529 io->ipsec_out_type == IPSEC_OUT); 3530 ipsec_mp->b_cont = mp; 3531 3532 /* 3533 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3534 * node generates be accepted in peace by all on-host destinations. 3535 * If we do NOT assume that all on-host destinations trust 3536 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3537 * (Look for ipsec_out_icmp_loopback). 3538 */ 3539 io->ipsec_out_icmp_loopback = B_TRUE; 3540 3541 ipha = (ipha_t *)mp->b_rptr; 3542 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3543 *ipha = icmp_ipha; 3544 ipha->ipha_src = src; 3545 ipha->ipha_dst = dst; 3546 ipha->ipha_ttl = ip_def_ttl; 3547 msg_len += sizeof (icmp_ipha) + len; 3548 if (msg_len > IP_MAXPACKET) { 3549 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3550 msg_len = IP_MAXPACKET; 3551 } 3552 ipha->ipha_length = htons((uint16_t)msg_len); 3553 icmph = (icmph_t *)&ipha[1]; 3554 bcopy(stuff, icmph, len); 3555 icmph->icmph_checksum = 0; 3556 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3557 if (icmph->icmph_checksum == 0) 3558 icmph->icmph_checksum = 0xFFFF; 3559 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3560 put(q, ipsec_mp); 3561 } 3562 3563 /* 3564 * Determine if an ICMP error packet can be sent given the rate limit. 3565 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3566 * in milliseconds) and a burst size. Burst size number of packets can 3567 * be sent arbitrarely closely spaced. 3568 * The state is tracked using two variables to implement an approximate 3569 * token bucket filter: 3570 * icmp_pkt_err_last - lbolt value when the last burst started 3571 * icmp_pkt_err_sent - number of packets sent in current burst 3572 */ 3573 boolean_t 3574 icmp_err_rate_limit(void) 3575 { 3576 clock_t now = TICK_TO_MSEC(lbolt); 3577 uint_t refilled; /* Number of packets refilled in tbf since last */ 3578 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3579 3580 if (err_interval == 0) 3581 return (B_FALSE); 3582 3583 if (icmp_pkt_err_last > now) { 3584 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3585 icmp_pkt_err_last = 0; 3586 icmp_pkt_err_sent = 0; 3587 } 3588 /* 3589 * If we are in a burst update the token bucket filter. 3590 * Update the "last" time to be close to "now" but make sure 3591 * we don't loose precision. 3592 */ 3593 if (icmp_pkt_err_sent != 0) { 3594 refilled = (now - icmp_pkt_err_last)/err_interval; 3595 if (refilled > icmp_pkt_err_sent) { 3596 icmp_pkt_err_sent = 0; 3597 } else { 3598 icmp_pkt_err_sent -= refilled; 3599 icmp_pkt_err_last += refilled * err_interval; 3600 } 3601 } 3602 if (icmp_pkt_err_sent == 0) { 3603 /* Start of new burst */ 3604 icmp_pkt_err_last = now; 3605 } 3606 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3607 icmp_pkt_err_sent++; 3608 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3609 icmp_pkt_err_sent)); 3610 return (B_FALSE); 3611 } 3612 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3613 return (B_TRUE); 3614 } 3615 3616 /* 3617 * Check if it is ok to send an IPv4 ICMP error packet in 3618 * response to the IPv4 packet in mp. 3619 * Free the message and return null if no 3620 * ICMP error packet should be sent. 3621 */ 3622 static mblk_t * 3623 icmp_pkt_err_ok(mblk_t *mp) 3624 { 3625 icmph_t *icmph; 3626 ipha_t *ipha; 3627 uint_t len_needed; 3628 ire_t *src_ire; 3629 ire_t *dst_ire; 3630 3631 if (!mp) 3632 return (NULL); 3633 ipha = (ipha_t *)mp->b_rptr; 3634 if (ip_csum_hdr(ipha)) { 3635 BUMP_MIB(&ip_mib, ipInCksumErrs); 3636 freemsg(mp); 3637 return (NULL); 3638 } 3639 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3640 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3641 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3642 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3643 if (src_ire != NULL || dst_ire != NULL || 3644 CLASSD(ipha->ipha_dst) || 3645 CLASSD(ipha->ipha_src) || 3646 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3647 /* Note: only errors to the fragment with offset 0 */ 3648 BUMP_MIB(&icmp_mib, icmpOutDrops); 3649 freemsg(mp); 3650 if (src_ire != NULL) 3651 ire_refrele(src_ire); 3652 if (dst_ire != NULL) 3653 ire_refrele(dst_ire); 3654 return (NULL); 3655 } 3656 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3657 /* 3658 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3659 * errors in response to any ICMP errors. 3660 */ 3661 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3662 if (mp->b_wptr - mp->b_rptr < len_needed) { 3663 if (!pullupmsg(mp, len_needed)) { 3664 BUMP_MIB(&icmp_mib, icmpInErrors); 3665 freemsg(mp); 3666 return (NULL); 3667 } 3668 ipha = (ipha_t *)mp->b_rptr; 3669 } 3670 icmph = (icmph_t *) 3671 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3672 switch (icmph->icmph_type) { 3673 case ICMP_DEST_UNREACHABLE: 3674 case ICMP_SOURCE_QUENCH: 3675 case ICMP_TIME_EXCEEDED: 3676 case ICMP_PARAM_PROBLEM: 3677 case ICMP_REDIRECT: 3678 BUMP_MIB(&icmp_mib, icmpOutDrops); 3679 freemsg(mp); 3680 return (NULL); 3681 default: 3682 break; 3683 } 3684 } 3685 /* 3686 * If this is a labeled system, then check to see if we're allowed to 3687 * send a response to this particular sender. If not, then just drop. 3688 */ 3689 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3690 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3691 BUMP_MIB(&icmp_mib, icmpOutDrops); 3692 freemsg(mp); 3693 return (NULL); 3694 } 3695 if (icmp_err_rate_limit()) { 3696 /* 3697 * Only send ICMP error packets every so often. 3698 * This should be done on a per port/source basis, 3699 * but for now this will suffice. 3700 */ 3701 freemsg(mp); 3702 return (NULL); 3703 } 3704 return (mp); 3705 } 3706 3707 /* 3708 * Generate an ICMP redirect message. 3709 */ 3710 static void 3711 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3712 { 3713 icmph_t icmph; 3714 3715 /* 3716 * We are called from ip_rput where we could 3717 * not have attached an IPSEC_IN. 3718 */ 3719 ASSERT(mp->b_datap->db_type == M_DATA); 3720 3721 if (!(mp = icmp_pkt_err_ok(mp))) { 3722 return; 3723 } 3724 3725 bzero(&icmph, sizeof (icmph_t)); 3726 icmph.icmph_type = ICMP_REDIRECT; 3727 icmph.icmph_code = 1; 3728 icmph.icmph_rd_gateway = gateway; 3729 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3730 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3731 } 3732 3733 /* 3734 * Generate an ICMP time exceeded message. 3735 */ 3736 void 3737 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3738 { 3739 icmph_t icmph; 3740 boolean_t mctl_present; 3741 mblk_t *first_mp; 3742 3743 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3744 3745 if (!(mp = icmp_pkt_err_ok(mp))) { 3746 if (mctl_present) 3747 freeb(first_mp); 3748 return; 3749 } 3750 3751 bzero(&icmph, sizeof (icmph_t)); 3752 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3753 icmph.icmph_code = code; 3754 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3755 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3756 } 3757 3758 /* 3759 * Generate an ICMP unreachable message. 3760 */ 3761 void 3762 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3763 { 3764 icmph_t icmph; 3765 mblk_t *first_mp; 3766 boolean_t mctl_present; 3767 3768 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3769 3770 if (!(mp = icmp_pkt_err_ok(mp))) { 3771 if (mctl_present) 3772 freeb(first_mp); 3773 return; 3774 } 3775 3776 bzero(&icmph, sizeof (icmph_t)); 3777 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3778 icmph.icmph_code = code; 3779 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3780 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3781 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3782 } 3783 3784 /* 3785 * News from ARP. ARP sends notification of interesting events down 3786 * to its clients using M_CTL messages with the interesting ARP packet 3787 * attached via b_cont. 3788 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3789 * queue as opposed to ARP sending the message to all the clients, i.e. all 3790 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3791 * table if a cache IRE is found to delete all the entries for the address in 3792 * the packet. 3793 */ 3794 static void 3795 ip_arp_news(queue_t *q, mblk_t *mp) 3796 { 3797 arcn_t *arcn; 3798 arh_t *arh; 3799 char *cp1; 3800 uchar_t *cp2; 3801 ire_t *ire = NULL; 3802 int i1; 3803 char hbuf[128]; 3804 char sbuf[16]; 3805 ipaddr_t src; 3806 in6_addr_t v6src; 3807 boolean_t isv6 = B_FALSE; 3808 3809 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3810 if (q->q_next) { 3811 putnext(q, mp); 3812 } else 3813 freemsg(mp); 3814 return; 3815 } 3816 arh = (arh_t *)mp->b_cont->b_rptr; 3817 /* Is it one we are interested in? */ 3818 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3819 isv6 = B_TRUE; 3820 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3821 IPV6_ADDR_LEN); 3822 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3823 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3824 IP_ADDR_LEN); 3825 } else { 3826 freemsg(mp); 3827 return; 3828 } 3829 3830 arcn = (arcn_t *)mp->b_rptr; 3831 switch (arcn->arcn_code) { 3832 case AR_CN_BOGON: 3833 /* 3834 * Someone is sending ARP packets with a source protocol 3835 * address which we have published. Either they are 3836 * pretending to be us, or we have been asked to proxy 3837 * for a machine that can do fine for itself, or two 3838 * different machines are providing proxy service for the 3839 * same protocol address, or something. We try and do 3840 * something appropriate here. 3841 */ 3842 cp2 = (uchar_t *)&arh[1]; 3843 cp1 = hbuf; 3844 *cp1 = '\0'; 3845 for (i1 = arh->arh_hlen; i1--; cp1 += 3) 3846 (void) sprintf(cp1, "%02x:", *cp2++ & 0xff); 3847 if (cp1 != hbuf) 3848 cp1[-1] = '\0'; 3849 (void) ip_dot_addr(src, sbuf); 3850 if (isv6) 3851 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 3852 else 3853 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 3854 3855 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3856 cmn_err(CE_WARN, 3857 "IP: Hardware address '%s' trying" 3858 " to be our address %s!", 3859 hbuf, sbuf); 3860 } else { 3861 cmn_err(CE_WARN, 3862 "IP: Proxy ARP problem? " 3863 "Hardware address '%s' thinks it is %s", 3864 hbuf, sbuf); 3865 } 3866 if (ire != NULL) 3867 ire_refrele(ire); 3868 break; 3869 case AR_CN_ANNOUNCE: 3870 if (isv6) { 3871 /* 3872 * For XRESOLV interfaces. 3873 * Delete the IRE cache entry and NCE for this 3874 * v6 address 3875 */ 3876 ip_ire_clookup_and_delete_v6(&v6src); 3877 /* 3878 * If v6src is a non-zero, it's a router address 3879 * as below. Do the same sort of thing to clean 3880 * out off-net IRE_CACHE entries that go through 3881 * the router. 3882 */ 3883 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3884 ire_walk_v6(ire_delete_cache_gw_v6, 3885 (char *)&v6src, ALL_ZONES); 3886 } 3887 break; 3888 } 3889 /* 3890 * ARP gives us a copy of any broadcast packet with identical 3891 * sender and receiver protocol address, in 3892 * case we want to intuit something from it. Such a packet 3893 * usually means that a machine has just come up on the net. 3894 * If we have an IRE_CACHE, we blow it away. This way we will 3895 * immediately pick up the rare case of a host changing 3896 * hardware address. ip_ire_clookup_and_delete achieves this. 3897 * 3898 * The address in "src" may be an entry for a router. 3899 * (Default router, or non-default router.) If 3900 * that's true, then any off-net IRE_CACHE entries 3901 * that go through the router with address "src" 3902 * must be clobbered. Use ire_walk to achieve this 3903 * goal. 3904 * 3905 * It should be possible to determine if the address 3906 * in src is or is not for a router. This way, 3907 * the ire_walk() isn't called all of the time here. 3908 * Do not pass 'src' value of 0 to ire_delete_cache_gw, 3909 * as it would remove all IRE_CACHE entries for onlink 3910 * destinations. All onlink destinations have 3911 * ire_gateway_addr == 0. 3912 * 3913 * 3914 * The ip_ire_clookup_and_delete() call deletes 3915 * the nce and all relevant ire cache entries that 3916 * are associated with that nce. 3917 * The ire_walk_v4->ire_delete_cache_gw() call 3918 * will delete the appropriate redirect ires. 3919 */ 3920 if ((ip_ire_clookup_and_delete(src, NULL) || 3921 (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL, 3922 0, NULL, MATCH_IRE_DSTONLY)) != NULL) && src != 0) { 3923 ire_walk_v4(ire_delete_cache_gw, (char *)&src, 3924 ALL_ZONES); 3925 } 3926 /* From ire_ftable_lookup */ 3927 if (ire != NULL) 3928 ire_refrele(ire); 3929 break; 3930 default: 3931 if (ire != NULL) 3932 ire_refrele(ire); 3933 break; 3934 } 3935 freemsg(mp); 3936 } 3937 3938 /* 3939 * Create a mblk suitable for carrying the interface index and/or source link 3940 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 3941 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 3942 * application. 3943 */ 3944 mblk_t * 3945 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 3946 { 3947 mblk_t *mp; 3948 in_pktinfo_t *pinfo; 3949 ipha_t *ipha; 3950 struct ether_header *pether; 3951 3952 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 3953 if (mp == NULL) { 3954 ip1dbg(("ip_add_info: allocation failure.\n")); 3955 return (data_mp); 3956 } 3957 3958 ipha = (ipha_t *)data_mp->b_rptr; 3959 pinfo = (in_pktinfo_t *)mp->b_rptr; 3960 bzero(pinfo, sizeof (in_pktinfo_t)); 3961 pinfo->in_pkt_flags = (uchar_t)flags; 3962 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 3963 3964 if (flags & IPF_RECVIF) 3965 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 3966 3967 pether = (struct ether_header *)((char *)ipha 3968 - sizeof (struct ether_header)); 3969 /* 3970 * Make sure the interface is an ethernet type, since this option 3971 * is currently supported only on this type of interface. Also make 3972 * sure we are pointing correctly above db_base. 3973 */ 3974 3975 if ((flags & IPF_RECVSLLA) && 3976 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 3977 (ill->ill_type == IFT_ETHER) && 3978 (ill->ill_net_type == IRE_IF_RESOLVER)) { 3979 3980 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 3981 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 3982 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 3983 } else { 3984 /* 3985 * Clear the bit. Indicate to upper layer that IP is not 3986 * sending this ancillary info. 3987 */ 3988 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 3989 } 3990 3991 mp->b_datap->db_type = M_CTL; 3992 mp->b_wptr += sizeof (in_pktinfo_t); 3993 mp->b_cont = data_mp; 3994 3995 return (mp); 3996 } 3997 3998 /* 3999 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4000 * part of the bind request. 4001 */ 4002 4003 boolean_t 4004 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4005 { 4006 ipsec_in_t *ii; 4007 4008 ASSERT(policy_mp != NULL); 4009 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4010 4011 ii = (ipsec_in_t *)policy_mp->b_rptr; 4012 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4013 4014 connp->conn_policy = ii->ipsec_in_policy; 4015 ii->ipsec_in_policy = NULL; 4016 4017 if (ii->ipsec_in_action != NULL) { 4018 if (connp->conn_latch == NULL) { 4019 connp->conn_latch = iplatch_create(); 4020 if (connp->conn_latch == NULL) 4021 return (B_FALSE); 4022 } 4023 ipsec_latch_inbound(connp->conn_latch, ii); 4024 } 4025 return (B_TRUE); 4026 } 4027 4028 /* 4029 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4030 * and to arrange for power-fanout assist. The ULP is identified by 4031 * adding a single byte at the end of the original bind message. 4032 * A ULP other than UDP or TCP that wishes to be recognized passes 4033 * down a bind with a zero length address. 4034 * 4035 * The binding works as follows: 4036 * - A zero byte address means just bind to the protocol. 4037 * - A four byte address is treated as a request to validate 4038 * that the address is a valid local address, appropriate for 4039 * an application to bind to. This does not affect any fanout 4040 * information in IP. 4041 * - A sizeof sin_t byte address is used to bind to only the local address 4042 * and port. 4043 * - A sizeof ipa_conn_t byte address contains complete fanout information 4044 * consisting of local and remote addresses and ports. In 4045 * this case, the addresses are both validated as appropriate 4046 * for this operation, and, if so, the information is retained 4047 * for use in the inbound fanout. 4048 * 4049 * The ULP (except in the zero-length bind) can append an 4050 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4051 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4052 * a copy of the source or destination IRE (source for local bind; 4053 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4054 * policy information contained should be copied on to the conn. 4055 * 4056 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4057 */ 4058 mblk_t * 4059 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4060 { 4061 ssize_t len; 4062 struct T_bind_req *tbr; 4063 sin_t *sin; 4064 ipa_conn_t *ac; 4065 uchar_t *ucp; 4066 mblk_t *mp1; 4067 boolean_t ire_requested; 4068 boolean_t ipsec_policy_set = B_FALSE; 4069 int error = 0; 4070 int protocol; 4071 ipa_conn_x_t *acx; 4072 4073 ASSERT(!connp->conn_af_isv6); 4074 connp->conn_pkt_isv6 = B_FALSE; 4075 4076 len = MBLKL(mp); 4077 if (len < (sizeof (*tbr) + 1)) { 4078 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4079 "ip_bind: bogus msg, len %ld", len); 4080 /* XXX: Need to return something better */ 4081 goto bad_addr; 4082 } 4083 /* Back up and extract the protocol identifier. */ 4084 mp->b_wptr--; 4085 protocol = *mp->b_wptr & 0xFF; 4086 tbr = (struct T_bind_req *)mp->b_rptr; 4087 /* Reset the message type in preparation for shipping it back. */ 4088 DB_TYPE(mp) = M_PCPROTO; 4089 4090 connp->conn_ulp = (uint8_t)protocol; 4091 4092 /* 4093 * Check for a zero length address. This is from a protocol that 4094 * wants to register to receive all packets of its type. 4095 */ 4096 if (tbr->ADDR_length == 0) { 4097 /* 4098 * These protocols are now intercepted in ip_bind_v6(). 4099 * Reject protocol-level binds here for now. 4100 * 4101 * For SCTP raw socket, ICMP sends down a bind with sin_t 4102 * so that the protocol type cannot be SCTP. 4103 */ 4104 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4105 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4106 goto bad_addr; 4107 } 4108 4109 /* 4110 * 4111 * The udp module never sends down a zero-length address, 4112 * and allowing this on a labeled system will break MLP 4113 * functionality. 4114 */ 4115 if (is_system_labeled() && protocol == IPPROTO_UDP) 4116 goto bad_addr; 4117 4118 if (connp->conn_mac_exempt) 4119 goto bad_addr; 4120 4121 /* No hash here really. The table is big enough. */ 4122 connp->conn_srcv6 = ipv6_all_zeros; 4123 4124 ipcl_proto_insert(connp, protocol); 4125 4126 tbr->PRIM_type = T_BIND_ACK; 4127 return (mp); 4128 } 4129 4130 /* Extract the address pointer from the message. */ 4131 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4132 tbr->ADDR_length); 4133 if (ucp == NULL) { 4134 ip1dbg(("ip_bind: no address\n")); 4135 goto bad_addr; 4136 } 4137 if (!OK_32PTR(ucp)) { 4138 ip1dbg(("ip_bind: unaligned address\n")); 4139 goto bad_addr; 4140 } 4141 /* 4142 * Check for trailing mps. 4143 */ 4144 4145 mp1 = mp->b_cont; 4146 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4147 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4148 4149 switch (tbr->ADDR_length) { 4150 default: 4151 ip1dbg(("ip_bind: bad address length %d\n", 4152 (int)tbr->ADDR_length)); 4153 goto bad_addr; 4154 4155 case IP_ADDR_LEN: 4156 /* Verification of local address only */ 4157 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4158 ire_requested, ipsec_policy_set, B_FALSE); 4159 break; 4160 4161 case sizeof (sin_t): 4162 sin = (sin_t *)ucp; 4163 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4164 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4165 if (protocol == IPPROTO_TCP) 4166 connp->conn_recv = tcp_conn_request; 4167 break; 4168 4169 case sizeof (ipa_conn_t): 4170 ac = (ipa_conn_t *)ucp; 4171 /* For raw socket, the local port is not set. */ 4172 if (ac->ac_lport == 0) 4173 ac->ac_lport = connp->conn_lport; 4174 /* Always verify destination reachability. */ 4175 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4176 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4177 ipsec_policy_set, B_TRUE, B_TRUE); 4178 if (protocol == IPPROTO_TCP) 4179 connp->conn_recv = tcp_input; 4180 break; 4181 4182 case sizeof (ipa_conn_x_t): 4183 acx = (ipa_conn_x_t *)ucp; 4184 /* 4185 * Whether or not to verify destination reachability depends 4186 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4187 */ 4188 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4189 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4190 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4191 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4192 if (protocol == IPPROTO_TCP) 4193 connp->conn_recv = tcp_input; 4194 break; 4195 } 4196 if (error == EINPROGRESS) 4197 return (NULL); 4198 else if (error != 0) 4199 goto bad_addr; 4200 /* 4201 * Pass the IPSEC headers size in ire_ipsec_overhead. 4202 * We can't do this in ip_bind_insert_ire because the policy 4203 * may not have been inherited at that point in time and hence 4204 * conn_out_enforce_policy may not be set. 4205 */ 4206 mp1 = mp->b_cont; 4207 if (ire_requested && connp->conn_out_enforce_policy && 4208 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4209 ire_t *ire = (ire_t *)mp1->b_rptr; 4210 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4211 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4212 } 4213 4214 /* Send it home. */ 4215 mp->b_datap->db_type = M_PCPROTO; 4216 tbr->PRIM_type = T_BIND_ACK; 4217 return (mp); 4218 4219 bad_addr: 4220 /* 4221 * If error = -1 then we generate a TBADADDR - otherwise error is 4222 * a unix errno. 4223 */ 4224 if (error > 0) 4225 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4226 else 4227 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4228 return (mp); 4229 } 4230 4231 /* 4232 * Here address is verified to be a valid local address. 4233 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4234 * address is also considered a valid local address. 4235 * In the case of a broadcast/multicast address, however, the 4236 * upper protocol is expected to reset the src address 4237 * to 0 if it sees a IRE_BROADCAST type returned so that 4238 * no packets are emitted with broadcast/multicast address as 4239 * source address (that violates hosts requirements RFC1122) 4240 * The addresses valid for bind are: 4241 * (1) - INADDR_ANY (0) 4242 * (2) - IP address of an UP interface 4243 * (3) - IP address of a DOWN interface 4244 * (4) - valid local IP broadcast addresses. In this case 4245 * the conn will only receive packets destined to 4246 * the specified broadcast address. 4247 * (5) - a multicast address. In this case 4248 * the conn will only receive packets destined to 4249 * the specified multicast address. Note: the 4250 * application still has to issue an 4251 * IP_ADD_MEMBERSHIP socket option. 4252 * 4253 * On error, return -1 for TBADADDR otherwise pass the 4254 * errno with TSYSERR reply. 4255 * 4256 * In all the above cases, the bound address must be valid in the current zone. 4257 * When the address is loopback, multicast or broadcast, there might be many 4258 * matching IREs so bind has to look up based on the zone. 4259 * 4260 * Note: lport is in network byte order. 4261 */ 4262 int 4263 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4264 boolean_t ire_requested, boolean_t ipsec_policy_set, 4265 boolean_t fanout_insert) 4266 { 4267 int error = 0; 4268 ire_t *src_ire; 4269 mblk_t *policy_mp; 4270 ipif_t *ipif; 4271 zoneid_t zoneid; 4272 4273 if (ipsec_policy_set) { 4274 policy_mp = mp->b_cont; 4275 } 4276 4277 /* 4278 * If it was previously connected, conn_fully_bound would have 4279 * been set. 4280 */ 4281 connp->conn_fully_bound = B_FALSE; 4282 4283 src_ire = NULL; 4284 ipif = NULL; 4285 4286 zoneid = IPCL_ZONEID(connp); 4287 4288 if (src_addr) { 4289 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4290 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4291 /* 4292 * If an address other than 0.0.0.0 is requested, 4293 * we verify that it is a valid address for bind 4294 * Note: Following code is in if-else-if form for 4295 * readability compared to a condition check. 4296 */ 4297 /* LINTED - statement has no consequent */ 4298 if (IRE_IS_LOCAL(src_ire)) { 4299 /* 4300 * (2) Bind to address of local UP interface 4301 */ 4302 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4303 /* 4304 * (4) Bind to broadcast address 4305 * Note: permitted only from transports that 4306 * request IRE 4307 */ 4308 if (!ire_requested) 4309 error = EADDRNOTAVAIL; 4310 } else { 4311 /* 4312 * (3) Bind to address of local DOWN interface 4313 * (ipif_lookup_addr() looks up all interfaces 4314 * but we do not get here for UP interfaces 4315 * - case (2) above) 4316 * We put the protocol byte back into the mblk 4317 * since we may come back via ip_wput_nondata() 4318 * later with this mblk if ipif_lookup_addr chooses 4319 * to defer processing. 4320 */ 4321 *mp->b_wptr++ = (char)connp->conn_ulp; 4322 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4323 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4324 &error)) != NULL) { 4325 ipif_refrele(ipif); 4326 } else if (error == EINPROGRESS) { 4327 if (src_ire != NULL) 4328 ire_refrele(src_ire); 4329 return (EINPROGRESS); 4330 } else if (CLASSD(src_addr)) { 4331 error = 0; 4332 if (src_ire != NULL) 4333 ire_refrele(src_ire); 4334 /* 4335 * (5) bind to multicast address. 4336 * Fake out the IRE returned to upper 4337 * layer to be a broadcast IRE. 4338 */ 4339 src_ire = ire_ctable_lookup( 4340 INADDR_BROADCAST, INADDR_ANY, 4341 IRE_BROADCAST, NULL, zoneid, NULL, 4342 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4343 if (src_ire == NULL || !ire_requested) 4344 error = EADDRNOTAVAIL; 4345 } else { 4346 /* 4347 * Not a valid address for bind 4348 */ 4349 error = EADDRNOTAVAIL; 4350 } 4351 /* 4352 * Just to keep it consistent with the processing in 4353 * ip_bind_v4() 4354 */ 4355 mp->b_wptr--; 4356 } 4357 if (error) { 4358 /* Red Alert! Attempting to be a bogon! */ 4359 ip1dbg(("ip_bind: bad src address 0x%x\n", 4360 ntohl(src_addr))); 4361 goto bad_addr; 4362 } 4363 } 4364 4365 /* 4366 * Allow setting new policies. For example, disconnects come 4367 * down as ipa_t bind. As we would have set conn_policy_cached 4368 * to B_TRUE before, we should set it to B_FALSE, so that policy 4369 * can change after the disconnect. 4370 */ 4371 connp->conn_policy_cached = B_FALSE; 4372 4373 /* 4374 * If not fanout_insert this was just an address verification 4375 */ 4376 if (fanout_insert) { 4377 /* 4378 * The addresses have been verified. Time to insert in 4379 * the correct fanout list. 4380 */ 4381 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4382 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4383 connp->conn_lport = lport; 4384 connp->conn_fport = 0; 4385 /* 4386 * Do we need to add a check to reject Multicast packets 4387 */ 4388 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4389 } 4390 4391 if (error == 0) { 4392 if (ire_requested) { 4393 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4394 error = -1; 4395 /* Falls through to bad_addr */ 4396 } 4397 } else if (ipsec_policy_set) { 4398 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4399 error = -1; 4400 /* Falls through to bad_addr */ 4401 } 4402 } 4403 } 4404 bad_addr: 4405 if (error != 0) { 4406 if (connp->conn_anon_port) { 4407 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4408 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4409 B_FALSE); 4410 } 4411 connp->conn_mlp_type = mlptSingle; 4412 } 4413 if (src_ire != NULL) 4414 IRE_REFRELE(src_ire); 4415 if (ipsec_policy_set) { 4416 ASSERT(policy_mp == mp->b_cont); 4417 ASSERT(policy_mp != NULL); 4418 freeb(policy_mp); 4419 /* 4420 * As of now assume that nothing else accompanies 4421 * IPSEC_POLICY_SET. 4422 */ 4423 mp->b_cont = NULL; 4424 } 4425 return (error); 4426 } 4427 4428 /* 4429 * Verify that both the source and destination addresses 4430 * are valid. If verify_dst is false, then the destination address may be 4431 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4432 * destination reachability, while tunnels do not. 4433 * Note that we allow connect to broadcast and multicast 4434 * addresses when ire_requested is set. Thus the ULP 4435 * has to check for IRE_BROADCAST and multicast. 4436 * 4437 * Returns zero if ok. 4438 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4439 * (for use with TSYSERR reply). 4440 * 4441 * Note: lport and fport are in network byte order. 4442 */ 4443 int 4444 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4445 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4446 boolean_t ire_requested, boolean_t ipsec_policy_set, 4447 boolean_t fanout_insert, boolean_t verify_dst) 4448 { 4449 ire_t *src_ire; 4450 ire_t *dst_ire; 4451 int error = 0; 4452 int protocol; 4453 mblk_t *policy_mp; 4454 ire_t *sire = NULL; 4455 ire_t *md_dst_ire = NULL; 4456 ill_t *md_ill = NULL; 4457 zoneid_t zoneid; 4458 ipaddr_t src_addr = *src_addrp; 4459 4460 src_ire = dst_ire = NULL; 4461 protocol = *mp->b_wptr & 0xFF; 4462 4463 /* 4464 * If we never got a disconnect before, clear it now. 4465 */ 4466 connp->conn_fully_bound = B_FALSE; 4467 4468 if (ipsec_policy_set) { 4469 policy_mp = mp->b_cont; 4470 } 4471 4472 zoneid = IPCL_ZONEID(connp); 4473 4474 if (CLASSD(dst_addr)) { 4475 /* Pick up an IRE_BROADCAST */ 4476 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4477 NULL, zoneid, MBLK_GETLABEL(mp), 4478 (MATCH_IRE_RECURSIVE | 4479 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4480 MATCH_IRE_SECATTR)); 4481 } else { 4482 /* 4483 * If conn_dontroute is set or if conn_nexthop_set is set, 4484 * and onlink ipif is not found set ENETUNREACH error. 4485 */ 4486 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4487 ipif_t *ipif; 4488 4489 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4490 dst_addr : connp->conn_nexthop_v4, zoneid); 4491 if (ipif == NULL) { 4492 error = ENETUNREACH; 4493 goto bad_addr; 4494 } 4495 ipif_refrele(ipif); 4496 } 4497 4498 if (connp->conn_nexthop_set) { 4499 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4500 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4501 MATCH_IRE_SECATTR); 4502 } else { 4503 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4504 &sire, zoneid, MBLK_GETLABEL(mp), 4505 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4506 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4507 MATCH_IRE_SECATTR)); 4508 } 4509 } 4510 /* 4511 * dst_ire can't be a broadcast when not ire_requested. 4512 * We also prevent ire's with src address INADDR_ANY to 4513 * be used, which are created temporarily for 4514 * sending out packets from endpoints that have 4515 * conn_unspec_src set. If verify_dst is true, the destination must be 4516 * reachable. If verify_dst is false, the destination needn't be 4517 * reachable. 4518 * 4519 * If we match on a reject or black hole, then we've got a 4520 * local failure. May as well fail out the connect() attempt, 4521 * since it's never going to succeed. 4522 */ 4523 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4524 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4525 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4526 /* 4527 * If we're verifying destination reachability, we always want 4528 * to complain here. 4529 * 4530 * If we're not verifying destination reachability but the 4531 * destination has a route, we still want to fail on the 4532 * temporary address and broadcast address tests. 4533 */ 4534 if (verify_dst || (dst_ire != NULL)) { 4535 if (ip_debug > 2) { 4536 pr_addr_dbg("ip_bind_connected: bad connected " 4537 "dst %s\n", AF_INET, &dst_addr); 4538 } 4539 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4540 error = ENETUNREACH; 4541 else 4542 error = EHOSTUNREACH; 4543 goto bad_addr; 4544 } 4545 } 4546 4547 /* 4548 * We now know that routing will allow us to reach the destination. 4549 * Check whether Trusted Solaris policy allows communication with this 4550 * host, and pretend that the destination is unreachable if not. 4551 * 4552 * This is never a problem for TCP, since that transport is known to 4553 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4554 * handling. If the remote is unreachable, it will be detected at that 4555 * point, so there's no reason to check it here. 4556 * 4557 * Note that for sendto (and other datagram-oriented friends), this 4558 * check is done as part of the data path label computation instead. 4559 * The check here is just to make non-TCP connect() report the right 4560 * error. 4561 */ 4562 if (dst_ire != NULL && is_system_labeled() && 4563 !IPCL_IS_TCP(connp) && 4564 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4565 connp->conn_mac_exempt) != 0) { 4566 error = EHOSTUNREACH; 4567 if (ip_debug > 2) { 4568 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4569 AF_INET, &dst_addr); 4570 } 4571 goto bad_addr; 4572 } 4573 4574 /* 4575 * If the app does a connect(), it means that it will most likely 4576 * send more than 1 packet to the destination. It makes sense 4577 * to clear the temporary flag. 4578 */ 4579 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4580 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4581 irb_t *irb = dst_ire->ire_bucket; 4582 4583 rw_enter(&irb->irb_lock, RW_WRITER); 4584 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4585 irb->irb_tmp_ire_cnt--; 4586 rw_exit(&irb->irb_lock); 4587 } 4588 4589 /* 4590 * See if we should notify ULP about MDT; we do this whether or not 4591 * ire_requested is TRUE, in order to handle active connects; MDT 4592 * eligibility tests for passive connects are handled separately 4593 * through tcp_adapt_ire(). We do this before the source address 4594 * selection, because dst_ire may change after a call to 4595 * ipif_select_source(). This is a best-effort check, as the 4596 * packet for this connection may not actually go through 4597 * dst_ire->ire_stq, and the exact IRE can only be known after 4598 * calling ip_newroute(). This is why we further check on the 4599 * IRE during Multidata packet transmission in tcp_multisend(). 4600 */ 4601 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4602 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4603 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4604 ILL_MDT_CAPABLE(md_ill)) { 4605 md_dst_ire = dst_ire; 4606 IRE_REFHOLD(md_dst_ire); 4607 } 4608 4609 if (dst_ire != NULL && 4610 dst_ire->ire_type == IRE_LOCAL && 4611 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4612 /* 4613 * If the IRE belongs to a different zone, look for a matching 4614 * route in the forwarding table and use the source address from 4615 * that route. 4616 */ 4617 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4618 zoneid, 0, NULL, 4619 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4620 MATCH_IRE_RJ_BHOLE); 4621 if (src_ire == NULL) { 4622 error = EHOSTUNREACH; 4623 goto bad_addr; 4624 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4625 if (!(src_ire->ire_type & IRE_HOST)) 4626 error = ENETUNREACH; 4627 else 4628 error = EHOSTUNREACH; 4629 goto bad_addr; 4630 } 4631 if (src_addr == INADDR_ANY) 4632 src_addr = src_ire->ire_src_addr; 4633 ire_refrele(src_ire); 4634 src_ire = NULL; 4635 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4636 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4637 src_addr = sire->ire_src_addr; 4638 ire_refrele(dst_ire); 4639 dst_ire = sire; 4640 sire = NULL; 4641 } else { 4642 /* 4643 * Pick a source address so that a proper inbound 4644 * load spreading would happen. 4645 */ 4646 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4647 ipif_t *src_ipif = NULL; 4648 ire_t *ipif_ire; 4649 4650 /* 4651 * Supply a local source address such that inbound 4652 * load spreading happens. 4653 * 4654 * Determine the best source address on this ill for 4655 * the destination. 4656 * 4657 * 1) For broadcast, we should return a broadcast ire 4658 * found above so that upper layers know that the 4659 * destination address is a broadcast address. 4660 * 4661 * 2) If this is part of a group, select a better 4662 * source address so that better inbound load 4663 * balancing happens. Do the same if the ipif 4664 * is DEPRECATED. 4665 * 4666 * 3) If the outgoing interface is part of a usesrc 4667 * group, then try selecting a source address from 4668 * the usesrc ILL. 4669 */ 4670 if ((dst_ire->ire_zoneid != zoneid && 4671 dst_ire->ire_zoneid != ALL_ZONES) || 4672 (!(dst_ire->ire_type & IRE_BROADCAST) && 4673 ((dst_ill->ill_group != NULL) || 4674 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4675 (dst_ill->ill_usesrc_ifindex != 0)))) { 4676 /* 4677 * If the destination is reachable via a 4678 * given gateway, the selected source address 4679 * should be in the same subnet as the gateway. 4680 * Otherwise, the destination is not reachable. 4681 * 4682 * If there are no interfaces on the same subnet 4683 * as the destination, ipif_select_source gives 4684 * first non-deprecated interface which might be 4685 * on a different subnet than the gateway. 4686 * This is not desirable. Hence pass the dst_ire 4687 * source address to ipif_select_source. 4688 * It is sure that the destination is reachable 4689 * with the dst_ire source address subnet. 4690 * So passing dst_ire source address to 4691 * ipif_select_source will make sure that the 4692 * selected source will be on the same subnet 4693 * as dst_ire source address. 4694 */ 4695 ipaddr_t saddr = 4696 dst_ire->ire_ipif->ipif_src_addr; 4697 src_ipif = ipif_select_source(dst_ill, 4698 saddr, zoneid); 4699 if (src_ipif != NULL) { 4700 if (IS_VNI(src_ipif->ipif_ill)) { 4701 /* 4702 * For VNI there is no 4703 * interface route 4704 */ 4705 src_addr = 4706 src_ipif->ipif_src_addr; 4707 } else { 4708 ipif_ire = 4709 ipif_to_ire(src_ipif); 4710 if (ipif_ire != NULL) { 4711 IRE_REFRELE(dst_ire); 4712 dst_ire = ipif_ire; 4713 } 4714 src_addr = 4715 dst_ire->ire_src_addr; 4716 } 4717 ipif_refrele(src_ipif); 4718 } else { 4719 src_addr = dst_ire->ire_src_addr; 4720 } 4721 } else { 4722 src_addr = dst_ire->ire_src_addr; 4723 } 4724 } 4725 } 4726 4727 /* 4728 * We do ire_route_lookup() here (and not 4729 * interface lookup as we assert that 4730 * src_addr should only come from an 4731 * UP interface for hard binding. 4732 */ 4733 ASSERT(src_ire == NULL); 4734 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4735 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4736 /* src_ire must be a local|loopback */ 4737 if (!IRE_IS_LOCAL(src_ire)) { 4738 if (ip_debug > 2) { 4739 pr_addr_dbg("ip_bind_connected: bad connected " 4740 "src %s\n", AF_INET, &src_addr); 4741 } 4742 error = EADDRNOTAVAIL; 4743 goto bad_addr; 4744 } 4745 4746 /* 4747 * If the source address is a loopback address, the 4748 * destination had best be local or multicast. 4749 * The transports that can't handle multicast will reject 4750 * those addresses. 4751 */ 4752 if (src_ire->ire_type == IRE_LOOPBACK && 4753 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4754 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 4755 error = -1; 4756 goto bad_addr; 4757 } 4758 4759 /* 4760 * Allow setting new policies. For example, disconnects come 4761 * down as ipa_t bind. As we would have set conn_policy_cached 4762 * to B_TRUE before, we should set it to B_FALSE, so that policy 4763 * can change after the disconnect. 4764 */ 4765 connp->conn_policy_cached = B_FALSE; 4766 4767 /* 4768 * Set the conn addresses/ports immediately, so the IPsec policy calls 4769 * can handle their passed-in conn's. 4770 */ 4771 4772 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4773 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 4774 connp->conn_lport = lport; 4775 connp->conn_fport = fport; 4776 *src_addrp = src_addr; 4777 4778 ASSERT(!(ipsec_policy_set && ire_requested)); 4779 if (ire_requested) { 4780 iulp_t *ulp_info = NULL; 4781 4782 /* 4783 * Note that sire will not be NULL if this is an off-link 4784 * connection and there is not cache for that dest yet. 4785 * 4786 * XXX Because of an existing bug, if there are multiple 4787 * default routes, the IRE returned now may not be the actual 4788 * default route used (default routes are chosen in a 4789 * round robin fashion). So if the metrics for different 4790 * default routes are different, we may return the wrong 4791 * metrics. This will not be a problem if the existing 4792 * bug is fixed. 4793 */ 4794 if (sire != NULL) { 4795 ulp_info = &(sire->ire_uinfo); 4796 } 4797 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 4798 error = -1; 4799 goto bad_addr; 4800 } 4801 } else if (ipsec_policy_set) { 4802 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4803 error = -1; 4804 goto bad_addr; 4805 } 4806 } 4807 4808 /* 4809 * Cache IPsec policy in this conn. If we have per-socket policy, 4810 * we'll cache that. If we don't, we'll inherit global policy. 4811 * 4812 * We can't insert until the conn reflects the policy. Note that 4813 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 4814 * connections where we don't have a policy. This is to prevent 4815 * global policy lookups in the inbound path. 4816 * 4817 * If we insert before we set conn_policy_cached, 4818 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 4819 * because global policy cound be non-empty. We normally call 4820 * ipsec_check_policy() for conn_policy_cached connections only if 4821 * ipc_in_enforce_policy is set. But in this case, 4822 * conn_policy_cached can get set anytime since we made the 4823 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 4824 * called, which will make the above assumption false. Thus, we 4825 * need to insert after we set conn_policy_cached. 4826 */ 4827 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 4828 goto bad_addr; 4829 4830 if (fanout_insert) { 4831 /* 4832 * The addresses have been verified. Time to insert in 4833 * the correct fanout list. 4834 */ 4835 error = ipcl_conn_insert(connp, protocol, src_addr, 4836 dst_addr, connp->conn_ports); 4837 } 4838 4839 if (error == 0) { 4840 connp->conn_fully_bound = B_TRUE; 4841 /* 4842 * Our initial checks for MDT have passed; the IRE is not 4843 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 4844 * be supporting MDT. Pass the IRE, IPC and ILL into 4845 * ip_mdinfo_return(), which performs further checks 4846 * against them and upon success, returns the MDT info 4847 * mblk which we will attach to the bind acknowledgment. 4848 */ 4849 if (md_dst_ire != NULL) { 4850 mblk_t *mdinfo_mp; 4851 4852 ASSERT(md_ill != NULL); 4853 ASSERT(md_ill->ill_mdt_capab != NULL); 4854 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 4855 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 4856 linkb(mp, mdinfo_mp); 4857 } 4858 } 4859 bad_addr: 4860 if (ipsec_policy_set) { 4861 ASSERT(policy_mp == mp->b_cont); 4862 ASSERT(policy_mp != NULL); 4863 freeb(policy_mp); 4864 /* 4865 * As of now assume that nothing else accompanies 4866 * IPSEC_POLICY_SET. 4867 */ 4868 mp->b_cont = NULL; 4869 } 4870 if (src_ire != NULL) 4871 IRE_REFRELE(src_ire); 4872 if (dst_ire != NULL) 4873 IRE_REFRELE(dst_ire); 4874 if (sire != NULL) 4875 IRE_REFRELE(sire); 4876 if (md_dst_ire != NULL) 4877 IRE_REFRELE(md_dst_ire); 4878 return (error); 4879 } 4880 4881 /* 4882 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 4883 * Prefers dst_ire over src_ire. 4884 */ 4885 static boolean_t 4886 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 4887 { 4888 mblk_t *mp1; 4889 ire_t *ret_ire = NULL; 4890 4891 mp1 = mp->b_cont; 4892 ASSERT(mp1 != NULL); 4893 4894 if (ire != NULL) { 4895 /* 4896 * mp1 initialized above to IRE_DB_REQ_TYPE 4897 * appended mblk. Its <upper protocol>'s 4898 * job to make sure there is room. 4899 */ 4900 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 4901 return (0); 4902 4903 mp1->b_datap->db_type = IRE_DB_TYPE; 4904 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 4905 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 4906 ret_ire = (ire_t *)mp1->b_rptr; 4907 /* 4908 * Pass the latest setting of the ip_path_mtu_discovery and 4909 * copy the ulp info if any. 4910 */ 4911 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 4912 IPH_DF : 0; 4913 if (ulp_info != NULL) { 4914 bcopy(ulp_info, &(ret_ire->ire_uinfo), 4915 sizeof (iulp_t)); 4916 } 4917 ret_ire->ire_mp = mp1; 4918 } else { 4919 /* 4920 * No IRE was found. Remove IRE mblk. 4921 */ 4922 mp->b_cont = mp1->b_cont; 4923 freeb(mp1); 4924 } 4925 4926 return (1); 4927 } 4928 4929 /* 4930 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4931 * the final piece where we don't. Return a pointer to the first mblk in the 4932 * result, and update the pointer to the next mblk to chew on. If anything 4933 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4934 * NULL pointer. 4935 */ 4936 mblk_t * 4937 ip_carve_mp(mblk_t **mpp, ssize_t len) 4938 { 4939 mblk_t *mp0; 4940 mblk_t *mp1; 4941 mblk_t *mp2; 4942 4943 if (!len || !mpp || !(mp0 = *mpp)) 4944 return (NULL); 4945 /* If we aren't going to consume the first mblk, we need a dup. */ 4946 if (mp0->b_wptr - mp0->b_rptr > len) { 4947 mp1 = dupb(mp0); 4948 if (mp1) { 4949 /* Partition the data between the two mblks. */ 4950 mp1->b_wptr = mp1->b_rptr + len; 4951 mp0->b_rptr = mp1->b_wptr; 4952 /* 4953 * after adjustments if mblk not consumed is now 4954 * unaligned, try to align it. If this fails free 4955 * all messages and let upper layer recover. 4956 */ 4957 if (!OK_32PTR(mp0->b_rptr)) { 4958 if (!pullupmsg(mp0, -1)) { 4959 freemsg(mp0); 4960 freemsg(mp1); 4961 *mpp = NULL; 4962 return (NULL); 4963 } 4964 } 4965 } 4966 return (mp1); 4967 } 4968 /* Eat through as many mblks as we need to get len bytes. */ 4969 len -= mp0->b_wptr - mp0->b_rptr; 4970 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4971 if (mp2->b_wptr - mp2->b_rptr > len) { 4972 /* 4973 * We won't consume the entire last mblk. Like 4974 * above, dup and partition it. 4975 */ 4976 mp1->b_cont = dupb(mp2); 4977 mp1 = mp1->b_cont; 4978 if (!mp1) { 4979 /* 4980 * Trouble. Rather than go to a lot of 4981 * trouble to clean up, we free the messages. 4982 * This won't be any worse than losing it on 4983 * the wire. 4984 */ 4985 freemsg(mp0); 4986 freemsg(mp2); 4987 *mpp = NULL; 4988 return (NULL); 4989 } 4990 mp1->b_wptr = mp1->b_rptr + len; 4991 mp2->b_rptr = mp1->b_wptr; 4992 /* 4993 * after adjustments if mblk not consumed is now 4994 * unaligned, try to align it. If this fails free 4995 * all messages and let upper layer recover. 4996 */ 4997 if (!OK_32PTR(mp2->b_rptr)) { 4998 if (!pullupmsg(mp2, -1)) { 4999 freemsg(mp0); 5000 freemsg(mp2); 5001 *mpp = NULL; 5002 return (NULL); 5003 } 5004 } 5005 *mpp = mp2; 5006 return (mp0); 5007 } 5008 /* Decrement len by the amount we just got. */ 5009 len -= mp2->b_wptr - mp2->b_rptr; 5010 } 5011 /* 5012 * len should be reduced to zero now. If not our caller has 5013 * screwed up. 5014 */ 5015 if (len) { 5016 /* Shouldn't happen! */ 5017 freemsg(mp0); 5018 *mpp = NULL; 5019 return (NULL); 5020 } 5021 /* 5022 * We consumed up to exactly the end of an mblk. Detach the part 5023 * we are returning from the rest of the chain. 5024 */ 5025 mp1->b_cont = NULL; 5026 *mpp = mp2; 5027 return (mp0); 5028 } 5029 5030 /* The ill stream is being unplumbed. Called from ip_close */ 5031 int 5032 ip_modclose(ill_t *ill) 5033 { 5034 5035 boolean_t success; 5036 ipsq_t *ipsq; 5037 ipif_t *ipif; 5038 queue_t *q = ill->ill_rq; 5039 5040 /* 5041 * Forcibly enter the ipsq after some delay. This is to take 5042 * care of the case when some ioctl does not complete because 5043 * we sent a control message to the driver and it did not 5044 * send us a reply. We want to be able to at least unplumb 5045 * and replumb rather than force the user to reboot the system. 5046 */ 5047 success = ipsq_enter(ill, B_FALSE); 5048 5049 /* 5050 * Open/close/push/pop is guaranteed to be single threaded 5051 * per stream by STREAMS. FS guarantees that all references 5052 * from top are gone before close is called. So there can't 5053 * be another close thread that has set CONDEMNED on this ill. 5054 * and cause ipsq_enter to return failure. 5055 */ 5056 ASSERT(success); 5057 ipsq = ill->ill_phyint->phyint_ipsq; 5058 5059 /* 5060 * Mark it condemned. No new reference will be made to this ill. 5061 * Lookup functions will return an error. Threads that try to 5062 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5063 * that the refcnt will drop down to zero. 5064 */ 5065 mutex_enter(&ill->ill_lock); 5066 ill->ill_state_flags |= ILL_CONDEMNED; 5067 for (ipif = ill->ill_ipif; ipif != NULL; 5068 ipif = ipif->ipif_next) { 5069 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5070 } 5071 /* 5072 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5073 * returns error if ILL_CONDEMNED is set 5074 */ 5075 cv_broadcast(&ill->ill_cv); 5076 mutex_exit(&ill->ill_lock); 5077 5078 /* 5079 * Shut down fragmentation reassembly. 5080 * ill_frag_timer won't start a timer again. 5081 * Now cancel any existing timer 5082 */ 5083 (void) untimeout(ill->ill_frag_timer_id); 5084 (void) ill_frag_timeout(ill, 0); 5085 5086 /* 5087 * If MOVE was in progress, clear the 5088 * move_in_progress fields also. 5089 */ 5090 if (ill->ill_move_in_progress) { 5091 ILL_CLEAR_MOVE(ill); 5092 } 5093 5094 /* 5095 * Call ill_delete to bring down the ipifs, ilms and ill on 5096 * this ill. Then wait for the refcnts to drop to zero. 5097 * ill_is_quiescent checks whether the ill is really quiescent. 5098 * Then make sure that threads that are waiting to enter the 5099 * ipsq have seen the error returned by ipsq_enter and have 5100 * gone away. Then we call ill_delete_tail which does the 5101 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5102 */ 5103 ill_delete(ill); 5104 mutex_enter(&ill->ill_lock); 5105 while (!ill_is_quiescent(ill)) 5106 cv_wait(&ill->ill_cv, &ill->ill_lock); 5107 while (ill->ill_waiters) 5108 cv_wait(&ill->ill_cv, &ill->ill_lock); 5109 5110 mutex_exit(&ill->ill_lock); 5111 5112 /* qprocsoff is called in ill_delete_tail */ 5113 ill_delete_tail(ill); 5114 5115 /* 5116 * Walk through all upper (conn) streams and qenable 5117 * those that have queued data. 5118 * close synchronization needs this to 5119 * be done to ensure that all upper layers blocked 5120 * due to flow control to the closing device 5121 * get unblocked. 5122 */ 5123 ip1dbg(("ip_wsrv: walking\n")); 5124 conn_walk_drain(); 5125 5126 mutex_enter(&ip_mi_lock); 5127 mi_close_unlink(&ip_g_head, (IDP)ill); 5128 mutex_exit(&ip_mi_lock); 5129 5130 /* 5131 * credp could be null if the open didn't succeed and ip_modopen 5132 * itself calls ip_close. 5133 */ 5134 if (ill->ill_credp != NULL) 5135 crfree(ill->ill_credp); 5136 5137 mi_close_free((IDP)ill); 5138 q->q_ptr = WR(q)->q_ptr = NULL; 5139 5140 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5141 5142 return (0); 5143 } 5144 5145 /* 5146 * This is called as part of close() for both IP and UDP 5147 * in order to quiesce the conn. 5148 */ 5149 void 5150 ip_quiesce_conn(conn_t *connp) 5151 { 5152 boolean_t drain_cleanup_reqd = B_FALSE; 5153 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5154 boolean_t ilg_cleanup_reqd = B_FALSE; 5155 5156 ASSERT(!IPCL_IS_TCP(connp)); 5157 5158 /* 5159 * Mark the conn as closing, and this conn must not be 5160 * inserted in future into any list. Eg. conn_drain_insert(), 5161 * won't insert this conn into the conn_drain_list. 5162 * Similarly ill_pending_mp_add() will not add any mp to 5163 * the pending mp list, after this conn has started closing. 5164 * 5165 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5166 * cannot get set henceforth. 5167 */ 5168 mutex_enter(&connp->conn_lock); 5169 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5170 connp->conn_state_flags |= CONN_CLOSING; 5171 if (connp->conn_idl != NULL) 5172 drain_cleanup_reqd = B_TRUE; 5173 if (connp->conn_oper_pending_ill != NULL) 5174 conn_ioctl_cleanup_reqd = B_TRUE; 5175 if (connp->conn_ilg_inuse != 0) 5176 ilg_cleanup_reqd = B_TRUE; 5177 mutex_exit(&connp->conn_lock); 5178 5179 if (IPCL_IS_UDP(connp)) 5180 udp_quiesce_conn(connp); 5181 5182 if (conn_ioctl_cleanup_reqd) 5183 conn_ioctl_cleanup(connp); 5184 5185 if (is_system_labeled() && connp->conn_anon_port) { 5186 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5187 connp->conn_mlp_type, connp->conn_ulp, 5188 ntohs(connp->conn_lport), B_FALSE); 5189 connp->conn_anon_port = 0; 5190 } 5191 connp->conn_mlp_type = mlptSingle; 5192 5193 /* 5194 * Remove this conn from any fanout list it is on. 5195 * and then wait for any threads currently operating 5196 * on this endpoint to finish 5197 */ 5198 ipcl_hash_remove(connp); 5199 5200 /* 5201 * Remove this conn from the drain list, and do 5202 * any other cleanup that may be required. 5203 * (Only non-tcp streams may have a non-null conn_idl. 5204 * TCP streams are never flow controlled, and 5205 * conn_idl will be null) 5206 */ 5207 if (drain_cleanup_reqd) 5208 conn_drain_tail(connp, B_TRUE); 5209 5210 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5211 (void) ip_mrouter_done(NULL); 5212 5213 if (ilg_cleanup_reqd) 5214 ilg_delete_all(connp); 5215 5216 conn_delete_ire(connp, NULL); 5217 5218 /* 5219 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5220 * callers from write side can't be there now because close 5221 * is in progress. The only other caller is ipcl_walk 5222 * which checks for the condemned flag. 5223 */ 5224 mutex_enter(&connp->conn_lock); 5225 connp->conn_state_flags |= CONN_CONDEMNED; 5226 while (connp->conn_ref != 1) 5227 cv_wait(&connp->conn_cv, &connp->conn_lock); 5228 connp->conn_state_flags |= CONN_QUIESCED; 5229 mutex_exit(&connp->conn_lock); 5230 } 5231 5232 /* ARGSUSED */ 5233 int 5234 ip_close(queue_t *q, int flags) 5235 { 5236 conn_t *connp; 5237 5238 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5239 5240 /* 5241 * Call the appropriate delete routine depending on whether this is 5242 * a module or device. 5243 */ 5244 if (WR(q)->q_next != NULL) { 5245 /* This is a module close */ 5246 return (ip_modclose((ill_t *)q->q_ptr)); 5247 } 5248 5249 connp = q->q_ptr; 5250 ip_quiesce_conn(connp); 5251 5252 qprocsoff(q); 5253 5254 /* 5255 * Now we are truly single threaded on this stream, and can 5256 * delete the things hanging off the connp, and finally the connp. 5257 * We removed this connp from the fanout list, it cannot be 5258 * accessed thru the fanouts, and we already waited for the 5259 * conn_ref to drop to 0. We are already in close, so 5260 * there cannot be any other thread from the top. qprocsoff 5261 * has completed, and service has completed or won't run in 5262 * future. 5263 */ 5264 ASSERT(connp->conn_ref == 1); 5265 5266 /* 5267 * A conn which was previously marked as IPCL_UDP cannot 5268 * retain the flag because it would have been cleared by 5269 * udp_close(). 5270 */ 5271 ASSERT(!IPCL_IS_UDP(connp)); 5272 5273 if (connp->conn_latch != NULL) { 5274 IPLATCH_REFRELE(connp->conn_latch); 5275 connp->conn_latch = NULL; 5276 } 5277 if (connp->conn_policy != NULL) { 5278 IPPH_REFRELE(connp->conn_policy); 5279 connp->conn_policy = NULL; 5280 } 5281 if (connp->conn_ipsec_opt_mp != NULL) { 5282 freemsg(connp->conn_ipsec_opt_mp); 5283 connp->conn_ipsec_opt_mp = NULL; 5284 } 5285 5286 inet_minor_free(ip_minor_arena, connp->conn_dev); 5287 5288 connp->conn_ref--; 5289 ipcl_conn_destroy(connp); 5290 5291 q->q_ptr = WR(q)->q_ptr = NULL; 5292 return (0); 5293 } 5294 5295 int 5296 ip_snmpmod_close(queue_t *q) 5297 { 5298 conn_t *connp = Q_TO_CONN(q); 5299 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5300 5301 qprocsoff(q); 5302 5303 if (connp->conn_flags & IPCL_UDPMOD) 5304 udp_close_free(connp); 5305 5306 if (connp->conn_cred != NULL) { 5307 crfree(connp->conn_cred); 5308 connp->conn_cred = NULL; 5309 } 5310 CONN_DEC_REF(connp); 5311 q->q_ptr = WR(q)->q_ptr = NULL; 5312 return (0); 5313 } 5314 5315 /* 5316 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5317 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5318 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5319 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5320 * queues as we never enqueue messages there and we don't handle any ioctls. 5321 * Everything else is freed. 5322 */ 5323 void 5324 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5325 { 5326 conn_t *connp = q->q_ptr; 5327 pfi_t setfn; 5328 pfi_t getfn; 5329 5330 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5331 5332 switch (DB_TYPE(mp)) { 5333 case M_PROTO: 5334 case M_PCPROTO: 5335 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5336 ((((union T_primitives *)mp->b_rptr)->type == 5337 T_SVR4_OPTMGMT_REQ) || 5338 (((union T_primitives *)mp->b_rptr)->type == 5339 T_OPTMGMT_REQ))) { 5340 /* 5341 * This is the only TPI primitive supported. Its 5342 * handling does not require tcp_t, but it does require 5343 * conn_t to check permissions. 5344 */ 5345 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5346 5347 if (connp->conn_flags & IPCL_TCPMOD) { 5348 setfn = tcp_snmp_set; 5349 getfn = tcp_snmp_get; 5350 } else { 5351 setfn = udp_snmp_set; 5352 getfn = udp_snmp_get; 5353 } 5354 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5355 freemsg(mp); 5356 return; 5357 } 5358 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5359 != NULL) 5360 qreply(q, mp); 5361 break; 5362 case M_FLUSH: 5363 case M_IOCTL: 5364 putnext(q, mp); 5365 break; 5366 default: 5367 freemsg(mp); 5368 break; 5369 } 5370 } 5371 5372 /* Return the IP checksum for the IP header at "iph". */ 5373 uint16_t 5374 ip_csum_hdr(ipha_t *ipha) 5375 { 5376 uint16_t *uph; 5377 uint32_t sum; 5378 int opt_len; 5379 5380 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5381 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5382 uph = (uint16_t *)ipha; 5383 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5384 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5385 if (opt_len > 0) { 5386 do { 5387 sum += uph[10]; 5388 sum += uph[11]; 5389 uph += 2; 5390 } while (--opt_len); 5391 } 5392 sum = (sum & 0xFFFF) + (sum >> 16); 5393 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5394 if (sum == 0xffff) 5395 sum = 0; 5396 return ((uint16_t)sum); 5397 } 5398 5399 void 5400 ip_ddi_destroy(void) 5401 { 5402 tnet_fini(); 5403 tcp_ddi_destroy(); 5404 sctp_ddi_destroy(); 5405 ipsec_loader_destroy(); 5406 ipsec_policy_destroy(); 5407 ipsec_kstat_destroy(); 5408 nd_free(&ip_g_nd); 5409 mutex_destroy(&igmp_timer_lock); 5410 mutex_destroy(&mld_timer_lock); 5411 mutex_destroy(&igmp_slowtimeout_lock); 5412 mutex_destroy(&mld_slowtimeout_lock); 5413 mutex_destroy(&ip_mi_lock); 5414 mutex_destroy(&rts_clients.connf_lock); 5415 ip_ire_fini(); 5416 ip6_asp_free(); 5417 conn_drain_fini(); 5418 ipcl_destroy(); 5419 inet_minor_destroy(ip_minor_arena); 5420 icmp_kstat_fini(); 5421 ip_kstat_fini(); 5422 rw_destroy(&ipsec_capab_ills_lock); 5423 rw_destroy(&ill_g_usesrc_lock); 5424 ip_drop_unregister(&ip_dropper); 5425 } 5426 5427 5428 void 5429 ip_ddi_init(void) 5430 { 5431 TCP6_MAJ = ddi_name_to_major(TCP6); 5432 TCP_MAJ = ddi_name_to_major(TCP); 5433 SCTP_MAJ = ddi_name_to_major(SCTP); 5434 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5435 5436 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5437 5438 /* IP's IPsec code calls the packet dropper */ 5439 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5440 5441 if (!ip_g_nd) { 5442 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5443 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5444 nd_free(&ip_g_nd); 5445 } 5446 } 5447 5448 ipsec_loader_init(); 5449 ipsec_policy_init(); 5450 ipsec_kstat_init(); 5451 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5452 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5453 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5454 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5455 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5456 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5457 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5458 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5459 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5460 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5461 5462 /* 5463 * For IP and TCP the minor numbers should start from 2 since we have 4 5464 * initial devices: ip, ip6, tcp, tcp6. 5465 */ 5466 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5467 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5468 cmn_err(CE_PANIC, 5469 "ip_ddi_init: ip_minor_arena creation failed\n"); 5470 } 5471 5472 ipcl_init(); 5473 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5474 ip_ire_init(); 5475 ip6_asp_init(); 5476 ipif_init(); 5477 conn_drain_init(); 5478 tcp_ddi_init(); 5479 sctp_ddi_init(); 5480 5481 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5482 5483 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5484 "net", KSTAT_TYPE_NAMED, 5485 sizeof (ip_statistics) / sizeof (kstat_named_t), 5486 KSTAT_FLAG_VIRTUAL)) != NULL) { 5487 ip_kstat->ks_data = &ip_statistics; 5488 kstat_install(ip_kstat); 5489 } 5490 ip_kstat_init(); 5491 ip6_kstat_init(); 5492 icmp_kstat_init(); 5493 ipsec_loader_start(); 5494 tnet_init(); 5495 } 5496 5497 /* 5498 * Allocate and initialize a DLPI template of the specified length. (May be 5499 * called as writer.) 5500 */ 5501 mblk_t * 5502 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5503 { 5504 mblk_t *mp; 5505 5506 mp = allocb(len, BPRI_MED); 5507 if (!mp) 5508 return (NULL); 5509 5510 /* 5511 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5512 * of which we don't seem to use) are sent with M_PCPROTO, and 5513 * that other DLPI are M_PROTO. 5514 */ 5515 if (prim == DL_INFO_REQ) { 5516 mp->b_datap->db_type = M_PCPROTO; 5517 } else { 5518 mp->b_datap->db_type = M_PROTO; 5519 } 5520 5521 mp->b_wptr = mp->b_rptr + len; 5522 bzero(mp->b_rptr, len); 5523 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5524 return (mp); 5525 } 5526 5527 const char * 5528 dlpi_prim_str(int prim) 5529 { 5530 switch (prim) { 5531 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5532 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5533 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5534 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5535 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5536 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5537 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5538 case DL_OK_ACK: return ("DL_OK_ACK"); 5539 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5540 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5541 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5542 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5543 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5544 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5545 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5546 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5547 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5548 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5549 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5550 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5551 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5552 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5553 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5554 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5555 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5556 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5557 default: return ("<unknown primitive>"); 5558 } 5559 } 5560 5561 const char * 5562 dlpi_err_str(int err) 5563 { 5564 switch (err) { 5565 case DL_ACCESS: return ("DL_ACCESS"); 5566 case DL_BADADDR: return ("DL_BADADDR"); 5567 case DL_BADCORR: return ("DL_BADCORR"); 5568 case DL_BADDATA: return ("DL_BADDATA"); 5569 case DL_BADPPA: return ("DL_BADPPA"); 5570 case DL_BADPRIM: return ("DL_BADPRIM"); 5571 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5572 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5573 case DL_BADSAP: return ("DL_BADSAP"); 5574 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5575 case DL_BOUND: return ("DL_BOUND"); 5576 case DL_INITFAILED: return ("DL_INITFAILED"); 5577 case DL_NOADDR: return ("DL_NOADDR"); 5578 case DL_NOTINIT: return ("DL_NOTINIT"); 5579 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5580 case DL_SYSERR: return ("DL_SYSERR"); 5581 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5582 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5583 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5584 case DL_TOOMANY: return ("DL_TOOMANY"); 5585 case DL_NOTENAB: return ("DL_NOTENAB"); 5586 case DL_BUSY: return ("DL_BUSY"); 5587 case DL_NOAUTO: return ("DL_NOAUTO"); 5588 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5589 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5590 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5591 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5592 case DL_PENDING: return ("DL_PENDING"); 5593 default: return ("<unknown error>"); 5594 } 5595 } 5596 5597 /* 5598 * Debug formatting routine. Returns a character string representation of the 5599 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5600 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5601 */ 5602 char * 5603 ip_dot_addr(ipaddr_t addr, char *buf) 5604 { 5605 return (ip_dot_saddr((uchar_t *)&addr, buf)); 5606 } 5607 5608 /* 5609 * Debug formatting routine. Returns a character string representation of the 5610 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5611 * as a pointer. The "xxx" parts including left zero padding so the final 5612 * string will fit easily in tables. It would be nice to take a padding 5613 * length argument instead. 5614 */ 5615 static char * 5616 ip_dot_saddr(uchar_t *addr, char *buf) 5617 { 5618 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5619 addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF); 5620 return (buf); 5621 } 5622 5623 /* 5624 * Send an ICMP error after patching up the packet appropriately. Returns 5625 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5626 */ 5627 static boolean_t 5628 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5629 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5630 { 5631 ipha_t *ipha; 5632 mblk_t *first_mp; 5633 boolean_t secure; 5634 unsigned char db_type; 5635 5636 first_mp = mp; 5637 if (mctl_present) { 5638 mp = mp->b_cont; 5639 secure = ipsec_in_is_secure(first_mp); 5640 ASSERT(mp != NULL); 5641 } else { 5642 /* 5643 * If this is an ICMP error being reported - which goes 5644 * up as M_CTLs, we need to convert them to M_DATA till 5645 * we finish checking with global policy because 5646 * ipsec_check_global_policy() assumes M_DATA as clear 5647 * and M_CTL as secure. 5648 */ 5649 db_type = DB_TYPE(mp); 5650 DB_TYPE(mp) = M_DATA; 5651 secure = B_FALSE; 5652 } 5653 /* 5654 * We are generating an icmp error for some inbound packet. 5655 * Called from all ip_fanout_(udp, tcp, proto) functions. 5656 * Before we generate an error, check with global policy 5657 * to see whether this is allowed to enter the system. As 5658 * there is no "conn", we are checking with global policy. 5659 */ 5660 ipha = (ipha_t *)mp->b_rptr; 5661 if (secure || ipsec_inbound_v4_policy_present) { 5662 first_mp = ipsec_check_global_policy(first_mp, NULL, 5663 ipha, NULL, mctl_present); 5664 if (first_mp == NULL) 5665 return (B_FALSE); 5666 } 5667 5668 if (!mctl_present) 5669 DB_TYPE(mp) = db_type; 5670 5671 if (flags & IP_FF_SEND_ICMP) { 5672 if (flags & IP_FF_HDR_COMPLETE) { 5673 if (ip_hdr_complete(ipha, zoneid)) { 5674 freemsg(first_mp); 5675 return (B_TRUE); 5676 } 5677 } 5678 if (flags & IP_FF_CKSUM) { 5679 /* 5680 * Have to correct checksum since 5681 * the packet might have been 5682 * fragmented and the reassembly code in ip_rput 5683 * does not restore the IP checksum. 5684 */ 5685 ipha->ipha_hdr_checksum = 0; 5686 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5687 } 5688 switch (icmp_type) { 5689 case ICMP_DEST_UNREACHABLE: 5690 icmp_unreachable(WR(q), first_mp, icmp_code); 5691 break; 5692 default: 5693 freemsg(first_mp); 5694 break; 5695 } 5696 } else { 5697 freemsg(first_mp); 5698 return (B_FALSE); 5699 } 5700 5701 return (B_TRUE); 5702 } 5703 5704 /* 5705 * Used to send an ICMP error message when a packet is received for 5706 * a protocol that is not supported. The mblk passed as argument 5707 * is consumed by this function. 5708 */ 5709 void 5710 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5711 { 5712 mblk_t *mp; 5713 ipha_t *ipha; 5714 ill_t *ill; 5715 ipsec_in_t *ii; 5716 5717 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5718 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5719 5720 mp = ipsec_mp->b_cont; 5721 ipsec_mp->b_cont = NULL; 5722 ipha = (ipha_t *)mp->b_rptr; 5723 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5724 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 5725 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 5726 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5727 } 5728 } else { 5729 /* Get ill from index in ipsec_in_t. */ 5730 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 5731 B_TRUE, NULL, NULL, NULL, NULL); 5732 if (ill != NULL) { 5733 if (ip_fanout_send_icmp_v6(q, mp, flags, 5734 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 5735 0, B_FALSE, zoneid)) { 5736 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 5737 } 5738 5739 ill_refrele(ill); 5740 } else { /* re-link for the freemsg() below. */ 5741 ipsec_mp->b_cont = mp; 5742 } 5743 } 5744 5745 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 5746 freemsg(ipsec_mp); 5747 } 5748 5749 /* 5750 * See if the inbound datagram has had IPsec processing applied to it. 5751 */ 5752 boolean_t 5753 ipsec_in_is_secure(mblk_t *ipsec_mp) 5754 { 5755 ipsec_in_t *ii; 5756 5757 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5758 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5759 5760 if (ii->ipsec_in_loopback) { 5761 return (ii->ipsec_in_secure); 5762 } else { 5763 return (ii->ipsec_in_ah_sa != NULL || 5764 ii->ipsec_in_esp_sa != NULL || 5765 ii->ipsec_in_decaps); 5766 } 5767 } 5768 5769 /* 5770 * Handle protocols with which IP is less intimate. There 5771 * can be more than one stream bound to a particular 5772 * protocol. When this is the case, normally each one gets a copy 5773 * of any incoming packets. 5774 * 5775 * IPSEC NOTE : 5776 * 5777 * Don't allow a secure packet going up a non-secure connection. 5778 * We don't allow this because 5779 * 5780 * 1) Reply might go out in clear which will be dropped at 5781 * the sending side. 5782 * 2) If the reply goes out in clear it will give the 5783 * adversary enough information for getting the key in 5784 * most of the cases. 5785 * 5786 * Moreover getting a secure packet when we expect clear 5787 * implies that SA's were added without checking for 5788 * policy on both ends. This should not happen once ISAKMP 5789 * is used to negotiate SAs as SAs will be added only after 5790 * verifying the policy. 5791 * 5792 * NOTE : If the packet was tunneled and not multicast we only send 5793 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 5794 * back to delivering packets to AF_INET6 raw sockets. 5795 * 5796 * IPQoS Notes: 5797 * Once we have determined the client, invoke IPPF processing. 5798 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5799 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5800 * ip_policy will be false. 5801 * 5802 * Zones notes: 5803 * Currently only applications in the global zone can create raw sockets for 5804 * protocols other than ICMP. So unlike the broadcast / multicast case of 5805 * ip_fanout_udp(), we only send a copy of the packet to streams in the 5806 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 5807 */ 5808 static void 5809 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 5810 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 5811 zoneid_t zoneid) 5812 { 5813 queue_t *rq; 5814 mblk_t *mp1, *first_mp1; 5815 uint_t protocol = ipha->ipha_protocol; 5816 ipaddr_t dst; 5817 boolean_t one_only; 5818 mblk_t *first_mp = mp; 5819 boolean_t secure; 5820 uint32_t ill_index; 5821 conn_t *connp, *first_connp, *next_connp; 5822 connf_t *connfp; 5823 boolean_t shared_addr; 5824 5825 if (mctl_present) { 5826 mp = first_mp->b_cont; 5827 secure = ipsec_in_is_secure(first_mp); 5828 ASSERT(mp != NULL); 5829 } else { 5830 secure = B_FALSE; 5831 } 5832 dst = ipha->ipha_dst; 5833 /* 5834 * If the packet was tunneled and not multicast we only send to it 5835 * the first match. 5836 */ 5837 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 5838 !CLASSD(dst)); 5839 5840 shared_addr = (zoneid == ALL_ZONES); 5841 if (shared_addr) { 5842 /* 5843 * We don't allow multilevel ports for raw IP, so no need to 5844 * check for that here. 5845 */ 5846 zoneid = tsol_packet_to_zoneid(mp); 5847 } 5848 5849 connfp = &ipcl_proto_fanout[protocol]; 5850 mutex_enter(&connfp->connf_lock); 5851 connp = connfp->connf_head; 5852 for (connp = connfp->connf_head; connp != NULL; 5853 connp = connp->conn_next) { 5854 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 5855 zoneid) && 5856 (!is_system_labeled() || 5857 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 5858 connp))) 5859 break; 5860 } 5861 5862 if (connp == NULL || connp->conn_upq == NULL) { 5863 /* 5864 * No one bound to these addresses. Is 5865 * there a client that wants all 5866 * unclaimed datagrams? 5867 */ 5868 mutex_exit(&connfp->connf_lock); 5869 /* 5870 * Check for IPPROTO_ENCAP... 5871 */ 5872 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 5873 /* 5874 * XXX If an IPsec mblk is here on a multicast 5875 * tunnel (using ip_mroute stuff), what should 5876 * I do? 5877 * 5878 * For now, just free the IPsec mblk before 5879 * passing it up to the multicast routing 5880 * stuff. 5881 * 5882 * BTW, If I match a configured IP-in-IP 5883 * tunnel, ip_mroute_decap will never be 5884 * called. 5885 */ 5886 if (mp != first_mp) 5887 freeb(first_mp); 5888 ip_mroute_decap(q, mp); 5889 } else { 5890 /* 5891 * Otherwise send an ICMP protocol unreachable. 5892 */ 5893 if (ip_fanout_send_icmp(q, first_mp, flags, 5894 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 5895 mctl_present, zoneid)) { 5896 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5897 } 5898 } 5899 return; 5900 } 5901 CONN_INC_REF(connp); 5902 first_connp = connp; 5903 5904 /* 5905 * Only send message to one tunnel driver by immediately 5906 * terminating the loop. 5907 */ 5908 connp = one_only ? NULL : connp->conn_next; 5909 5910 for (;;) { 5911 while (connp != NULL) { 5912 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 5913 flags, zoneid) && 5914 (!is_system_labeled() || 5915 tsol_receive_local(mp, &dst, IPV4_VERSION, 5916 shared_addr, connp))) 5917 break; 5918 connp = connp->conn_next; 5919 } 5920 5921 /* 5922 * Copy the packet. 5923 */ 5924 if (connp == NULL || connp->conn_upq == NULL || 5925 (((first_mp1 = dupmsg(first_mp)) == NULL) && 5926 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 5927 /* 5928 * No more interested clients or memory 5929 * allocation failed 5930 */ 5931 connp = first_connp; 5932 break; 5933 } 5934 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 5935 CONN_INC_REF(connp); 5936 mutex_exit(&connfp->connf_lock); 5937 rq = connp->conn_rq; 5938 if (!canputnext(rq)) { 5939 if (flags & IP_FF_RAWIP) { 5940 BUMP_MIB(&ip_mib, rawipInOverflows); 5941 } else { 5942 BUMP_MIB(&icmp_mib, icmpInOverflows); 5943 } 5944 5945 freemsg(first_mp1); 5946 } else { 5947 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5948 first_mp1 = ipsec_check_inbound_policy 5949 (first_mp1, connp, ipha, NULL, 5950 mctl_present); 5951 } 5952 if (first_mp1 != NULL) { 5953 /* 5954 * ip_fanout_proto also gets called from 5955 * icmp_inbound_error_fanout, in which case 5956 * the msg type is M_CTL. Don't add info 5957 * in this case for the time being. In future 5958 * when there is a need for knowing the 5959 * inbound iface index for ICMP error msgs, 5960 * then this can be changed. 5961 */ 5962 if ((connp->conn_recvif != 0) && 5963 (mp->b_datap->db_type != M_CTL)) { 5964 /* 5965 * the actual data will be 5966 * contained in b_cont upon 5967 * successful return of the 5968 * following call else 5969 * original mblk is returned 5970 */ 5971 ASSERT(recv_ill != NULL); 5972 mp1 = ip_add_info(mp1, recv_ill, 5973 IPF_RECVIF); 5974 } 5975 BUMP_MIB(&ip_mib, ipInDelivers); 5976 if (mctl_present) 5977 freeb(first_mp1); 5978 putnext(rq, mp1); 5979 } 5980 } 5981 mutex_enter(&connfp->connf_lock); 5982 /* Follow the next pointer before releasing the conn. */ 5983 next_connp = connp->conn_next; 5984 CONN_DEC_REF(connp); 5985 connp = next_connp; 5986 } 5987 5988 /* Last one. Send it upstream. */ 5989 mutex_exit(&connfp->connf_lock); 5990 5991 /* 5992 * If this packet is coming from icmp_inbound_error_fanout ip_policy 5993 * will be set to false. 5994 */ 5995 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5996 ill_index = ill->ill_phyint->phyint_ifindex; 5997 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5998 if (mp == NULL) { 5999 CONN_DEC_REF(connp); 6000 if (mctl_present) { 6001 freeb(first_mp); 6002 } 6003 return; 6004 } 6005 } 6006 6007 rq = connp->conn_rq; 6008 if (!canputnext(rq)) { 6009 if (flags & IP_FF_RAWIP) { 6010 BUMP_MIB(&ip_mib, rawipInOverflows); 6011 } else { 6012 BUMP_MIB(&icmp_mib, icmpInOverflows); 6013 } 6014 6015 freemsg(first_mp); 6016 } else { 6017 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6018 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6019 ipha, NULL, mctl_present); 6020 } 6021 if (first_mp != NULL) { 6022 /* 6023 * ip_fanout_proto also gets called 6024 * from icmp_inbound_error_fanout, in 6025 * which case the msg type is M_CTL. 6026 * Don't add info in this case for time 6027 * being. In future when there is a 6028 * need for knowing the inbound iface 6029 * index for ICMP error msgs, then this 6030 * can be changed 6031 */ 6032 if ((connp->conn_recvif != 0) && 6033 (mp->b_datap->db_type != M_CTL)) { 6034 /* 6035 * the actual data will be contained in 6036 * b_cont upon successful return 6037 * of the following call else original 6038 * mblk is returned 6039 */ 6040 ASSERT(recv_ill != NULL); 6041 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6042 } 6043 BUMP_MIB(&ip_mib, ipInDelivers); 6044 putnext(rq, mp); 6045 if (mctl_present) 6046 freeb(first_mp); 6047 } 6048 } 6049 CONN_DEC_REF(connp); 6050 } 6051 6052 /* 6053 * Fanout for TCP packets 6054 * The caller puts <fport, lport> in the ports parameter. 6055 * 6056 * IPQoS Notes 6057 * Before sending it to the client, invoke IPPF processing. 6058 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6059 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6060 * ip_policy is false. 6061 */ 6062 static void 6063 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6064 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6065 { 6066 mblk_t *first_mp; 6067 boolean_t secure; 6068 uint32_t ill_index; 6069 int ip_hdr_len; 6070 tcph_t *tcph; 6071 boolean_t syn_present = B_FALSE; 6072 conn_t *connp; 6073 6074 first_mp = mp; 6075 if (mctl_present) { 6076 ASSERT(first_mp->b_datap->db_type == M_CTL); 6077 mp = first_mp->b_cont; 6078 secure = ipsec_in_is_secure(first_mp); 6079 ASSERT(mp != NULL); 6080 } else { 6081 secure = B_FALSE; 6082 } 6083 6084 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6085 6086 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6087 NULL) { 6088 /* 6089 * No connected connection or listener. Send a 6090 * TH_RST via tcp_xmit_listeners_reset. 6091 */ 6092 6093 /* Initiate IPPf processing, if needed. */ 6094 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6095 uint32_t ill_index; 6096 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6097 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6098 if (first_mp == NULL) 6099 return; 6100 } 6101 BUMP_MIB(&ip_mib, ipInDelivers); 6102 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6103 zoneid)); 6104 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 6105 return; 6106 } 6107 6108 /* 6109 * Allocate the SYN for the TCP connection here itself 6110 */ 6111 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6112 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6113 if (IPCL_IS_TCP(connp)) { 6114 squeue_t *sqp; 6115 6116 /* 6117 * For fused tcp loopback, assign the eager's 6118 * squeue to be that of the active connect's. 6119 * Note that we don't check for IP_FF_LOOPBACK 6120 * here since this routine gets called only 6121 * for loopback (unlike the IPv6 counterpart). 6122 */ 6123 ASSERT(Q_TO_CONN(q) != NULL); 6124 if (do_tcp_fusion && 6125 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6126 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6127 IPCL_IS_TCP(Q_TO_CONN(q))) { 6128 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6129 sqp = Q_TO_CONN(q)->conn_sqp; 6130 } else { 6131 sqp = IP_SQUEUE_GET(lbolt); 6132 } 6133 6134 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6135 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6136 syn_present = B_TRUE; 6137 } 6138 } 6139 6140 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6141 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6142 if ((flags & TH_RST) || (flags & TH_URG)) { 6143 CONN_DEC_REF(connp); 6144 freemsg(first_mp); 6145 return; 6146 } 6147 if (flags & TH_ACK) { 6148 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 6149 CONN_DEC_REF(connp); 6150 return; 6151 } 6152 6153 CONN_DEC_REF(connp); 6154 freemsg(first_mp); 6155 return; 6156 } 6157 6158 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6159 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6160 NULL, mctl_present); 6161 if (first_mp == NULL) { 6162 CONN_DEC_REF(connp); 6163 return; 6164 } 6165 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6166 ASSERT(syn_present); 6167 if (mctl_present) { 6168 ASSERT(first_mp != mp); 6169 first_mp->b_datap->db_struioflag |= 6170 STRUIO_POLICY; 6171 } else { 6172 ASSERT(first_mp == mp); 6173 mp->b_datap->db_struioflag &= 6174 ~STRUIO_EAGER; 6175 mp->b_datap->db_struioflag |= 6176 STRUIO_POLICY; 6177 } 6178 } else { 6179 /* 6180 * Discard first_mp early since we're dealing with a 6181 * fully-connected conn_t and tcp doesn't do policy in 6182 * this case. 6183 */ 6184 if (mctl_present) { 6185 freeb(first_mp); 6186 mctl_present = B_FALSE; 6187 } 6188 first_mp = mp; 6189 } 6190 } 6191 6192 /* 6193 * Initiate policy processing here if needed. If we get here from 6194 * icmp_inbound_error_fanout, ip_policy is false. 6195 */ 6196 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6197 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6198 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6199 if (mp == NULL) { 6200 CONN_DEC_REF(connp); 6201 if (mctl_present) 6202 freeb(first_mp); 6203 return; 6204 } else if (mctl_present) { 6205 ASSERT(first_mp != mp); 6206 first_mp->b_cont = mp; 6207 } else { 6208 first_mp = mp; 6209 } 6210 } 6211 6212 6213 6214 /* Handle IPv6 socket options. */ 6215 if (!syn_present && 6216 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6217 /* Add header */ 6218 ASSERT(recv_ill != NULL); 6219 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6220 if (mp == NULL) { 6221 CONN_DEC_REF(connp); 6222 if (mctl_present) 6223 freeb(first_mp); 6224 return; 6225 } else if (mctl_present) { 6226 /* 6227 * ip_add_info might return a new mp. 6228 */ 6229 ASSERT(first_mp != mp); 6230 first_mp->b_cont = mp; 6231 } else { 6232 first_mp = mp; 6233 } 6234 } 6235 6236 BUMP_MIB(&ip_mib, ipInDelivers); 6237 if (IPCL_IS_TCP(connp)) { 6238 (*ip_input_proc)(connp->conn_sqp, first_mp, 6239 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6240 } else { 6241 putnext(connp->conn_rq, first_mp); 6242 CONN_DEC_REF(connp); 6243 } 6244 } 6245 6246 /* 6247 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6248 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6249 * Caller is responsible for dropping references to the conn, and freeing 6250 * first_mp. 6251 * 6252 * IPQoS Notes 6253 * Before sending it to the client, invoke IPPF processing. Policy processing 6254 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6255 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6256 * ip_wput_local, ip_policy is false. 6257 */ 6258 static void 6259 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6260 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6261 boolean_t ip_policy) 6262 { 6263 boolean_t mctl_present = (first_mp != NULL); 6264 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6265 uint32_t ill_index; 6266 6267 if (mctl_present) 6268 first_mp->b_cont = mp; 6269 else 6270 first_mp = mp; 6271 6272 if (CONN_UDP_FLOWCTLD(connp)) { 6273 BUMP_MIB(&ip_mib, udpInOverflows); 6274 freemsg(first_mp); 6275 return; 6276 } 6277 6278 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6279 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6280 NULL, mctl_present); 6281 if (first_mp == NULL) 6282 return; /* Freed by ipsec_check_inbound_policy(). */ 6283 } 6284 if (mctl_present) 6285 freeb(first_mp); 6286 6287 if (connp->conn_recvif) 6288 in_flags = IPF_RECVIF; 6289 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6290 in_flags |= IPF_RECVSLLA; 6291 6292 /* Handle IPv6 options. */ 6293 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6294 in_flags |= IPF_RECVIF; 6295 6296 /* 6297 * Initiate IPPF processing here, if needed. Note first_mp won't be 6298 * freed if the packet is dropped. The caller will do so. 6299 */ 6300 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6301 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6302 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6303 if (mp == NULL) { 6304 return; 6305 } 6306 } 6307 if ((in_flags != 0) && 6308 (mp->b_datap->db_type != M_CTL)) { 6309 /* 6310 * The actual data will be contained in b_cont 6311 * upon successful return of the following call 6312 * else original mblk is returned 6313 */ 6314 ASSERT(recv_ill != NULL); 6315 mp = ip_add_info(mp, recv_ill, in_flags); 6316 } 6317 BUMP_MIB(&ip_mib, ipInDelivers); 6318 6319 /* Send it upstream */ 6320 CONN_UDP_RECV(connp, mp); 6321 } 6322 6323 /* 6324 * Fanout for UDP packets. 6325 * The caller puts <fport, lport> in the ports parameter. 6326 * 6327 * If SO_REUSEADDR is set all multicast and broadcast packets 6328 * will be delivered to all streams bound to the same port. 6329 * 6330 * Zones notes: 6331 * Multicast and broadcast packets will be distributed to streams in all zones. 6332 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6333 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6334 * packets. To maintain this behavior with multiple zones, the conns are grouped 6335 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6336 * each zone. If unset, all the following conns in the same zone are skipped. 6337 */ 6338 static void 6339 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6340 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6341 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6342 { 6343 uint32_t dstport, srcport; 6344 ipaddr_t dst; 6345 mblk_t *first_mp; 6346 boolean_t secure; 6347 in6_addr_t v6src; 6348 conn_t *connp; 6349 connf_t *connfp; 6350 conn_t *first_connp; 6351 conn_t *next_connp; 6352 mblk_t *mp1, *first_mp1; 6353 ipaddr_t src; 6354 zoneid_t last_zoneid; 6355 boolean_t reuseaddr; 6356 boolean_t shared_addr; 6357 6358 first_mp = mp; 6359 if (mctl_present) { 6360 mp = first_mp->b_cont; 6361 first_mp->b_cont = NULL; 6362 secure = ipsec_in_is_secure(first_mp); 6363 ASSERT(mp != NULL); 6364 } else { 6365 first_mp = NULL; 6366 secure = B_FALSE; 6367 } 6368 6369 /* Extract ports in net byte order */ 6370 dstport = htons(ntohl(ports) & 0xFFFF); 6371 srcport = htons(ntohl(ports) >> 16); 6372 dst = ipha->ipha_dst; 6373 src = ipha->ipha_src; 6374 6375 shared_addr = (zoneid == ALL_ZONES); 6376 if (shared_addr) { 6377 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6378 if (zoneid == ALL_ZONES) 6379 zoneid = tsol_packet_to_zoneid(mp); 6380 } 6381 6382 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6383 mutex_enter(&connfp->connf_lock); 6384 connp = connfp->connf_head; 6385 if (!broadcast && !CLASSD(dst)) { 6386 /* 6387 * Not broadcast or multicast. Send to the one (first) 6388 * client we find. No need to check conn_wantpacket() 6389 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6390 * IPv4 unicast packets. 6391 */ 6392 while ((connp != NULL) && 6393 (!IPCL_UDP_MATCH(connp, dstport, dst, 6394 srcport, src) || 6395 (connp->conn_zoneid != zoneid && !connp->conn_allzones))) { 6396 connp = connp->conn_next; 6397 } 6398 6399 if (connp == NULL || connp->conn_upq == NULL) 6400 goto notfound; 6401 6402 if (is_system_labeled() && 6403 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6404 connp)) 6405 goto notfound; 6406 6407 CONN_INC_REF(connp); 6408 mutex_exit(&connfp->connf_lock); 6409 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6410 recv_ill, ip_policy); 6411 IP_STAT(ip_udp_fannorm); 6412 CONN_DEC_REF(connp); 6413 return; 6414 } 6415 6416 /* 6417 * Broadcast and multicast case 6418 * 6419 * Need to check conn_wantpacket(). 6420 * If SO_REUSEADDR has been set on the first we send the 6421 * packet to all clients that have joined the group and 6422 * match the port. 6423 */ 6424 6425 while (connp != NULL) { 6426 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6427 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6428 (!is_system_labeled() || 6429 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6430 connp))) 6431 break; 6432 connp = connp->conn_next; 6433 } 6434 6435 if (connp == NULL || connp->conn_upq == NULL) 6436 goto notfound; 6437 6438 first_connp = connp; 6439 /* 6440 * When SO_REUSEADDR is not set, send the packet only to the first 6441 * matching connection in its zone by keeping track of the zoneid. 6442 */ 6443 reuseaddr = first_connp->conn_reuseaddr; 6444 last_zoneid = first_connp->conn_zoneid; 6445 6446 CONN_INC_REF(connp); 6447 connp = connp->conn_next; 6448 for (;;) { 6449 while (connp != NULL) { 6450 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6451 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6452 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6453 (!is_system_labeled() || 6454 tsol_receive_local(mp, &dst, IPV4_VERSION, 6455 shared_addr, connp))) 6456 break; 6457 connp = connp->conn_next; 6458 } 6459 /* 6460 * Just copy the data part alone. The mctl part is 6461 * needed just for verifying policy and it is never 6462 * sent up. 6463 */ 6464 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6465 ((mp1 = copymsg(mp)) == NULL))) { 6466 /* 6467 * No more interested clients or memory 6468 * allocation failed 6469 */ 6470 connp = first_connp; 6471 break; 6472 } 6473 if (connp->conn_zoneid != last_zoneid) { 6474 /* 6475 * Update the zoneid so that the packet isn't sent to 6476 * any more conns in the same zone unless SO_REUSEADDR 6477 * is set. 6478 */ 6479 reuseaddr = connp->conn_reuseaddr; 6480 last_zoneid = connp->conn_zoneid; 6481 } 6482 if (first_mp != NULL) { 6483 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6484 ipsec_info_type == IPSEC_IN); 6485 first_mp1 = ipsec_in_tag(first_mp, NULL); 6486 if (first_mp1 == NULL) { 6487 freemsg(mp1); 6488 connp = first_connp; 6489 break; 6490 } 6491 } else { 6492 first_mp1 = NULL; 6493 } 6494 CONN_INC_REF(connp); 6495 mutex_exit(&connfp->connf_lock); 6496 /* 6497 * IPQoS notes: We don't send the packet for policy 6498 * processing here, will do it for the last one (below). 6499 * i.e. we do it per-packet now, but if we do policy 6500 * processing per-conn, then we would need to do it 6501 * here too. 6502 */ 6503 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6504 ipha, flags, recv_ill, B_FALSE); 6505 mutex_enter(&connfp->connf_lock); 6506 /* Follow the next pointer before releasing the conn. */ 6507 next_connp = connp->conn_next; 6508 IP_STAT(ip_udp_fanmb); 6509 CONN_DEC_REF(connp); 6510 connp = next_connp; 6511 } 6512 6513 /* Last one. Send it upstream. */ 6514 mutex_exit(&connfp->connf_lock); 6515 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6516 ip_policy); 6517 IP_STAT(ip_udp_fanmb); 6518 CONN_DEC_REF(connp); 6519 return; 6520 6521 notfound: 6522 6523 mutex_exit(&connfp->connf_lock); 6524 IP_STAT(ip_udp_fanothers); 6525 /* 6526 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6527 * have already been matched above, since they live in the IPv4 6528 * fanout tables. This implies we only need to 6529 * check for IPv6 in6addr_any endpoints here. 6530 * Thus we compare using ipv6_all_zeros instead of the destination 6531 * address, except for the multicast group membership lookup which 6532 * uses the IPv4 destination. 6533 */ 6534 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6535 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6536 mutex_enter(&connfp->connf_lock); 6537 connp = connfp->connf_head; 6538 if (!broadcast && !CLASSD(dst)) { 6539 while (connp != NULL) { 6540 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6541 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6542 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6543 !connp->conn_ipv6_v6only) 6544 break; 6545 connp = connp->conn_next; 6546 } 6547 6548 if (connp != NULL && is_system_labeled() && 6549 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6550 connp)) 6551 connp = NULL; 6552 6553 if (connp == NULL || connp->conn_upq == NULL) { 6554 /* 6555 * No one bound to this port. Is 6556 * there a client that wants all 6557 * unclaimed datagrams? 6558 */ 6559 mutex_exit(&connfp->connf_lock); 6560 6561 if (mctl_present) 6562 first_mp->b_cont = mp; 6563 else 6564 first_mp = mp; 6565 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6566 ip_fanout_proto(q, first_mp, ill, ipha, 6567 flags | IP_FF_RAWIP, mctl_present, 6568 ip_policy, recv_ill, zoneid); 6569 } else { 6570 if (ip_fanout_send_icmp(q, first_mp, flags, 6571 ICMP_DEST_UNREACHABLE, 6572 ICMP_PORT_UNREACHABLE, 6573 mctl_present, zoneid)) { 6574 BUMP_MIB(&ip_mib, udpNoPorts); 6575 } 6576 } 6577 return; 6578 } 6579 6580 CONN_INC_REF(connp); 6581 mutex_exit(&connfp->connf_lock); 6582 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6583 recv_ill, ip_policy); 6584 CONN_DEC_REF(connp); 6585 return; 6586 } 6587 /* 6588 * IPv4 multicast packet being delivered to an AF_INET6 6589 * in6addr_any endpoint. 6590 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6591 * and not conn_wantpacket_v6() since any multicast membership is 6592 * for an IPv4-mapped multicast address. 6593 * The packet is sent to all clients in all zones that have joined the 6594 * group and match the port. 6595 */ 6596 while (connp != NULL) { 6597 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6598 srcport, v6src) && 6599 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6600 (!is_system_labeled() || 6601 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6602 connp))) 6603 break; 6604 connp = connp->conn_next; 6605 } 6606 6607 if (connp == NULL || connp->conn_upq == NULL) { 6608 /* 6609 * No one bound to this port. Is 6610 * there a client that wants all 6611 * unclaimed datagrams? 6612 */ 6613 mutex_exit(&connfp->connf_lock); 6614 6615 if (mctl_present) 6616 first_mp->b_cont = mp; 6617 else 6618 first_mp = mp; 6619 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6620 ip_fanout_proto(q, first_mp, ill, ipha, 6621 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6622 recv_ill, zoneid); 6623 } else { 6624 /* 6625 * We used to attempt to send an icmp error here, but 6626 * since this is known to be a multicast packet 6627 * and we don't send icmp errors in response to 6628 * multicast, just drop the packet and give up sooner. 6629 */ 6630 BUMP_MIB(&ip_mib, udpNoPorts); 6631 freemsg(first_mp); 6632 } 6633 return; 6634 } 6635 6636 first_connp = connp; 6637 6638 CONN_INC_REF(connp); 6639 connp = connp->conn_next; 6640 for (;;) { 6641 while (connp != NULL) { 6642 if (IPCL_UDP_MATCH_V6(connp, dstport, 6643 ipv6_all_zeros, srcport, v6src) && 6644 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6645 (!is_system_labeled() || 6646 tsol_receive_local(mp, &dst, IPV4_VERSION, 6647 shared_addr, connp))) 6648 break; 6649 connp = connp->conn_next; 6650 } 6651 /* 6652 * Just copy the data part alone. The mctl part is 6653 * needed just for verifying policy and it is never 6654 * sent up. 6655 */ 6656 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6657 ((mp1 = copymsg(mp)) == NULL))) { 6658 /* 6659 * No more intested clients or memory 6660 * allocation failed 6661 */ 6662 connp = first_connp; 6663 break; 6664 } 6665 if (first_mp != NULL) { 6666 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6667 ipsec_info_type == IPSEC_IN); 6668 first_mp1 = ipsec_in_tag(first_mp, NULL); 6669 if (first_mp1 == NULL) { 6670 freemsg(mp1); 6671 connp = first_connp; 6672 break; 6673 } 6674 } else { 6675 first_mp1 = NULL; 6676 } 6677 CONN_INC_REF(connp); 6678 mutex_exit(&connfp->connf_lock); 6679 /* 6680 * IPQoS notes: We don't send the packet for policy 6681 * processing here, will do it for the last one (below). 6682 * i.e. we do it per-packet now, but if we do policy 6683 * processing per-conn, then we would need to do it 6684 * here too. 6685 */ 6686 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6687 ipha, flags, recv_ill, B_FALSE); 6688 mutex_enter(&connfp->connf_lock); 6689 /* Follow the next pointer before releasing the conn. */ 6690 next_connp = connp->conn_next; 6691 CONN_DEC_REF(connp); 6692 connp = next_connp; 6693 } 6694 6695 /* Last one. Send it upstream. */ 6696 mutex_exit(&connfp->connf_lock); 6697 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6698 ip_policy); 6699 CONN_DEC_REF(connp); 6700 } 6701 6702 /* 6703 * Complete the ip_wput header so that it 6704 * is possible to generate ICMP 6705 * errors. 6706 */ 6707 int 6708 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6709 { 6710 ire_t *ire; 6711 6712 if (ipha->ipha_src == INADDR_ANY) { 6713 ire = ire_lookup_local(zoneid); 6714 if (ire == NULL) { 6715 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6716 return (1); 6717 } 6718 ipha->ipha_src = ire->ire_addr; 6719 ire_refrele(ire); 6720 } 6721 ipha->ipha_ttl = ip_def_ttl; 6722 ipha->ipha_hdr_checksum = 0; 6723 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6724 return (0); 6725 } 6726 6727 /* 6728 * Nobody should be sending 6729 * packets up this stream 6730 */ 6731 static void 6732 ip_lrput(queue_t *q, mblk_t *mp) 6733 { 6734 mblk_t *mp1; 6735 6736 switch (mp->b_datap->db_type) { 6737 case M_FLUSH: 6738 /* Turn around */ 6739 if (*mp->b_rptr & FLUSHW) { 6740 *mp->b_rptr &= ~FLUSHR; 6741 qreply(q, mp); 6742 return; 6743 } 6744 break; 6745 } 6746 /* Could receive messages that passed through ar_rput */ 6747 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 6748 mp1->b_prev = mp1->b_next = NULL; 6749 freemsg(mp); 6750 } 6751 6752 /* Nobody should be sending packets down this stream */ 6753 /* ARGSUSED */ 6754 void 6755 ip_lwput(queue_t *q, mblk_t *mp) 6756 { 6757 freemsg(mp); 6758 } 6759 6760 /* 6761 * Move the first hop in any source route to ipha_dst and remove that part of 6762 * the source route. Called by other protocols. Errors in option formatting 6763 * are ignored - will be handled by ip_wput_options Return the final 6764 * destination (either ipha_dst or the last entry in a source route.) 6765 */ 6766 ipaddr_t 6767 ip_massage_options(ipha_t *ipha) 6768 { 6769 ipoptp_t opts; 6770 uchar_t *opt; 6771 uint8_t optval; 6772 uint8_t optlen; 6773 ipaddr_t dst; 6774 int i; 6775 ire_t *ire; 6776 6777 ip2dbg(("ip_massage_options\n")); 6778 dst = ipha->ipha_dst; 6779 for (optval = ipoptp_first(&opts, ipha); 6780 optval != IPOPT_EOL; 6781 optval = ipoptp_next(&opts)) { 6782 opt = opts.ipoptp_cur; 6783 switch (optval) { 6784 uint8_t off; 6785 case IPOPT_SSRR: 6786 case IPOPT_LSRR: 6787 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 6788 ip1dbg(("ip_massage_options: bad src route\n")); 6789 break; 6790 } 6791 optlen = opts.ipoptp_len; 6792 off = opt[IPOPT_OFFSET]; 6793 off--; 6794 redo_srr: 6795 if (optlen < IP_ADDR_LEN || 6796 off > optlen - IP_ADDR_LEN) { 6797 /* End of source route */ 6798 ip1dbg(("ip_massage_options: end of SR\n")); 6799 break; 6800 } 6801 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 6802 ip1dbg(("ip_massage_options: next hop 0x%x\n", 6803 ntohl(dst))); 6804 /* 6805 * Check if our address is present more than 6806 * once as consecutive hops in source route. 6807 * XXX verify per-interface ip_forwarding 6808 * for source route? 6809 */ 6810 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 6811 ALL_ZONES, NULL, MATCH_IRE_TYPE); 6812 if (ire != NULL) { 6813 ire_refrele(ire); 6814 off += IP_ADDR_LEN; 6815 goto redo_srr; 6816 } 6817 if (dst == htonl(INADDR_LOOPBACK)) { 6818 ip1dbg(("ip_massage_options: loopback addr in " 6819 "source route!\n")); 6820 break; 6821 } 6822 /* 6823 * Update ipha_dst to be the first hop and remove the 6824 * first hop from the source route (by overwriting 6825 * part of the option with NOP options). 6826 */ 6827 ipha->ipha_dst = dst; 6828 /* Put the last entry in dst */ 6829 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 6830 3; 6831 bcopy(&opt[off], &dst, IP_ADDR_LEN); 6832 6833 ip1dbg(("ip_massage_options: last hop 0x%x\n", 6834 ntohl(dst))); 6835 /* Move down and overwrite */ 6836 opt[IP_ADDR_LEN] = opt[0]; 6837 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 6838 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 6839 for (i = 0; i < IP_ADDR_LEN; i++) 6840 opt[i] = IPOPT_NOP; 6841 break; 6842 } 6843 } 6844 return (dst); 6845 } 6846 6847 /* 6848 * This function's job is to forward data to the reverse tunnel (FA->HA) 6849 * after doing a few checks. It is assumed that the incoming interface 6850 * of the packet is always different than the outgoing interface and the 6851 * ire_type of the found ire has to be a non-resolver type. 6852 * 6853 * IPQoS notes 6854 * IP policy is invoked twice for a forwarded packet, once on the read side 6855 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 6856 * enabled. 6857 */ 6858 static void 6859 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 6860 { 6861 ipha_t *ipha; 6862 queue_t *q; 6863 uint32_t pkt_len; 6864 #define rptr ((uchar_t *)ipha) 6865 uint32_t sum; 6866 uint32_t max_frag; 6867 mblk_t *first_mp; 6868 uint32_t ill_index; 6869 ipxmit_state_t pktxmit_state; 6870 6871 ASSERT(ire != NULL); 6872 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 6873 ASSERT(ire->ire_stq != NULL); 6874 6875 /* Initiate read side IPPF processing */ 6876 if (IPP_ENABLED(IPP_FWD_IN)) { 6877 ill_index = in_ill->ill_phyint->phyint_ifindex; 6878 ip_process(IPP_FWD_IN, &mp, ill_index); 6879 if (mp == NULL) { 6880 ip2dbg(("ip_mrtun_forward: inbound pkt " 6881 "dropped during IPPF processing\n")); 6882 return; 6883 } 6884 } 6885 6886 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 6887 ILLF_ROUTER) == 0) || 6888 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 6889 BUMP_MIB(&ip_mib, ipForwProhibits); 6890 ip0dbg(("ip_mrtun_forward: Can't forward :" 6891 "forwarding is not turned on\n")); 6892 goto drop_pkt; 6893 } 6894 6895 /* 6896 * Don't forward if the interface is down 6897 */ 6898 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 6899 BUMP_MIB(&ip_mib, ipInDiscards); 6900 goto drop_pkt; 6901 } 6902 6903 ipha = (ipha_t *)mp->b_rptr; 6904 pkt_len = ntohs(ipha->ipha_length); 6905 /* Adjust the checksum to reflect the ttl decrement. */ 6906 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 6907 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 6908 if (ipha->ipha_ttl-- <= 1) { 6909 if (ip_csum_hdr(ipha)) { 6910 BUMP_MIB(&ip_mib, ipInCksumErrs); 6911 goto drop_pkt; 6912 } 6913 q = ire->ire_stq; 6914 if ((first_mp = allocb(sizeof (ipsec_info_t), 6915 BPRI_HI)) == NULL) { 6916 goto drop_pkt; 6917 } 6918 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6919 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 6920 6921 return; 6922 } 6923 6924 /* Get the ill_index of the ILL */ 6925 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 6926 6927 /* 6928 * ip_mrtun_forward is only used by foreign agent to reverse 6929 * tunnel the incoming packet. So it does not do any option 6930 * processing for source routing. 6931 */ 6932 max_frag = ire->ire_max_frag; 6933 if (pkt_len > max_frag) { 6934 /* 6935 * It needs fragging on its way out. We haven't 6936 * verified the header checksum yet. Since we 6937 * are going to put a surely good checksum in the 6938 * outgoing header, we have to make sure that it 6939 * was good coming in. 6940 */ 6941 if (ip_csum_hdr(ipha)) { 6942 BUMP_MIB(&ip_mib, ipInCksumErrs); 6943 goto drop_pkt; 6944 } 6945 6946 /* Initiate write side IPPF processing */ 6947 if (IPP_ENABLED(IPP_FWD_OUT)) { 6948 ip_process(IPP_FWD_OUT, &mp, ill_index); 6949 if (mp == NULL) { 6950 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 6951 "dropped/deferred during ip policy "\ 6952 "processing\n")); 6953 return; 6954 } 6955 } 6956 if ((first_mp = allocb(sizeof (ipsec_info_t), 6957 BPRI_HI)) == NULL) { 6958 goto drop_pkt; 6959 } 6960 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6961 mp = first_mp; 6962 6963 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 6964 return; 6965 } 6966 6967 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 6968 6969 ASSERT(ire->ire_ipif != NULL); 6970 6971 /* Now send the packet to the tunnel interface */ 6972 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 6973 q = ire->ire_stq; 6974 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 6975 if ((pktxmit_state == SEND_FAILED) || 6976 (pktxmit_state == LLHDR_RESLV_FAILED)) { 6977 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 6978 q->q_ptr)); 6979 } 6980 6981 return; 6982 6983 drop_pkt:; 6984 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 6985 freemsg(mp); 6986 #undef rptr 6987 } 6988 6989 /* 6990 * Fills the ipsec_out_t data structure with appropriate fields and 6991 * prepends it to mp which contains the IP hdr + data that was meant 6992 * to be forwarded. Please note that ipsec_out_info data structure 6993 * is used here to communicate the outgoing ill path at ip_wput() 6994 * for the ICMP error packet. This has nothing to do with ipsec IP 6995 * security. ipsec_out_t is really used to pass the info to the module 6996 * IP where this information cannot be extracted from conn. 6997 * This functions is called by ip_mrtun_forward(). 6998 */ 6999 void 7000 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7001 { 7002 ipsec_out_t *io; 7003 7004 ASSERT(xmit_ill != NULL); 7005 first_mp->b_datap->db_type = M_CTL; 7006 first_mp->b_wptr += sizeof (ipsec_info_t); 7007 /* 7008 * This is to pass info to ip_wput in absence of conn. 7009 * ipsec_out_secure will be B_FALSE because of this. 7010 * Thus ipsec_out_secure being B_FALSE indicates that 7011 * this is not IPSEC security related information. 7012 */ 7013 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7014 io = (ipsec_out_t *)first_mp->b_rptr; 7015 io->ipsec_out_type = IPSEC_OUT; 7016 io->ipsec_out_len = sizeof (ipsec_out_t); 7017 first_mp->b_cont = mp; 7018 io->ipsec_out_ill_index = 7019 xmit_ill->ill_phyint->phyint_ifindex; 7020 io->ipsec_out_xmit_if = B_TRUE; 7021 } 7022 7023 /* 7024 * Return the network mask 7025 * associated with the specified address. 7026 */ 7027 ipaddr_t 7028 ip_net_mask(ipaddr_t addr) 7029 { 7030 uchar_t *up = (uchar_t *)&addr; 7031 ipaddr_t mask = 0; 7032 uchar_t *maskp = (uchar_t *)&mask; 7033 7034 #if defined(__i386) || defined(__amd64) 7035 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7036 #endif 7037 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7038 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7039 #endif 7040 if (CLASSD(addr)) { 7041 maskp[0] = 0xF0; 7042 return (mask); 7043 } 7044 if (addr == 0) 7045 return (0); 7046 maskp[0] = 0xFF; 7047 if ((up[0] & 0x80) == 0) 7048 return (mask); 7049 7050 maskp[1] = 0xFF; 7051 if ((up[0] & 0xC0) == 0x80) 7052 return (mask); 7053 7054 maskp[2] = 0xFF; 7055 if ((up[0] & 0xE0) == 0xC0) 7056 return (mask); 7057 7058 /* Must be experimental or multicast, indicate as much */ 7059 return ((ipaddr_t)0); 7060 } 7061 7062 /* 7063 * Select an ill for the packet by considering load spreading across 7064 * a different ill in the group if dst_ill is part of some group. 7065 */ 7066 ill_t * 7067 ip_newroute_get_dst_ill(ill_t *dst_ill) 7068 { 7069 ill_t *ill; 7070 7071 /* 7072 * We schedule irrespective of whether the source address is 7073 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7074 */ 7075 ill = illgrp_scheduler(dst_ill); 7076 if (ill == NULL) 7077 return (NULL); 7078 7079 /* 7080 * For groups with names ip_sioctl_groupname ensures that all 7081 * ills are of same type. For groups without names, ifgrp_insert 7082 * ensures this. 7083 */ 7084 ASSERT(dst_ill->ill_type == ill->ill_type); 7085 7086 return (ill); 7087 } 7088 7089 /* 7090 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7091 */ 7092 ill_t * 7093 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7094 { 7095 ill_t *ret_ill; 7096 7097 ASSERT(ifindex != 0); 7098 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7099 if (ret_ill == NULL || 7100 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7101 if (isv6) { 7102 if (ill != NULL) { 7103 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7104 } else { 7105 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7106 } 7107 ip1dbg(("ip_grab_attach_ill (IPv6): " 7108 "bad ifindex %d.\n", ifindex)); 7109 } else { 7110 BUMP_MIB(&ip_mib, ipOutDiscards); 7111 ip1dbg(("ip_grab_attach_ill (IPv4): " 7112 "bad ifindex %d.\n", ifindex)); 7113 } 7114 if (ret_ill != NULL) 7115 ill_refrele(ret_ill); 7116 freemsg(first_mp); 7117 return (NULL); 7118 } 7119 7120 return (ret_ill); 7121 } 7122 7123 /* 7124 * IPv4 - 7125 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7126 * out a packet to a destination address for which we do not have specific 7127 * (or sufficient) routing information. 7128 * 7129 * NOTE : These are the scopes of some of the variables that point at IRE, 7130 * which needs to be followed while making any future modifications 7131 * to avoid memory leaks. 7132 * 7133 * - ire and sire are the entries looked up initially by 7134 * ire_ftable_lookup. 7135 * - ipif_ire is used to hold the interface ire associated with 7136 * the new cache ire. But it's scope is limited, so we always REFRELE 7137 * it before branching out to error paths. 7138 * - save_ire is initialized before ire_create, so that ire returned 7139 * by ire_create will not over-write the ire. We REFRELE save_ire 7140 * before breaking out of the switch. 7141 * 7142 * Thus on failures, we have to REFRELE only ire and sire, if they 7143 * are not NULL. 7144 */ 7145 void 7146 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 7147 { 7148 areq_t *areq; 7149 ipaddr_t gw = 0; 7150 ire_t *ire = NULL; 7151 mblk_t *res_mp; 7152 ipaddr_t *addrp; 7153 ipaddr_t nexthop_addr; 7154 ipif_t *src_ipif = NULL; 7155 ill_t *dst_ill = NULL; 7156 ipha_t *ipha; 7157 ire_t *sire = NULL; 7158 mblk_t *first_mp; 7159 ire_t *save_ire; 7160 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7161 ushort_t ire_marks = 0; 7162 boolean_t mctl_present; 7163 ipsec_out_t *io; 7164 mblk_t *saved_mp; 7165 ire_t *first_sire = NULL; 7166 mblk_t *copy_mp = NULL; 7167 mblk_t *xmit_mp = NULL; 7168 ipaddr_t save_dst; 7169 uint32_t multirt_flags = 7170 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7171 boolean_t multirt_is_resolvable; 7172 boolean_t multirt_resolve_next; 7173 boolean_t do_attach_ill = B_FALSE; 7174 boolean_t ip_nexthop = B_FALSE; 7175 zoneid_t zoneid; 7176 tsol_ire_gw_secattr_t *attrp = NULL; 7177 tsol_gcgrp_t *gcgrp = NULL; 7178 tsol_gcgrp_addr_t ga; 7179 7180 if (ip_debug > 2) { 7181 /* ip1dbg */ 7182 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7183 } 7184 7185 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7186 if (mctl_present) { 7187 io = (ipsec_out_t *)first_mp->b_rptr; 7188 zoneid = io->ipsec_out_zoneid; 7189 ASSERT(zoneid != ALL_ZONES); 7190 } else if (connp != NULL) { 7191 zoneid = connp->conn_zoneid; 7192 } else { 7193 zoneid = GLOBAL_ZONEID; 7194 } 7195 7196 ipha = (ipha_t *)mp->b_rptr; 7197 7198 /* All multicast lookups come through ip_newroute_ipif() */ 7199 if (CLASSD(dst)) { 7200 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7201 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7202 freemsg(first_mp); 7203 return; 7204 } 7205 7206 if (mctl_present && io->ipsec_out_attach_if) { 7207 /* ip_grab_attach_ill returns a held ill */ 7208 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7209 io->ipsec_out_ill_index, B_FALSE); 7210 7211 /* Failure case frees things for us. */ 7212 if (attach_ill == NULL) 7213 return; 7214 7215 /* 7216 * Check if we need an ire that will not be 7217 * looked up by anybody else i.e. HIDDEN. 7218 */ 7219 if (ill_is_probeonly(attach_ill)) 7220 ire_marks = IRE_MARK_HIDDEN; 7221 } 7222 if (mctl_present && io->ipsec_out_ip_nexthop) { 7223 ip_nexthop = B_TRUE; 7224 nexthop_addr = io->ipsec_out_nexthop_addr; 7225 } 7226 /* 7227 * If this IRE is created for forwarding or it is not for 7228 * traffic for congestion controlled protocols, mark it as temporary. 7229 */ 7230 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7231 ire_marks |= IRE_MARK_TEMPORARY; 7232 7233 /* 7234 * Get what we can from ire_ftable_lookup which will follow an IRE 7235 * chain until it gets the most specific information available. 7236 * For example, we know that there is no IRE_CACHE for this dest, 7237 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7238 * ire_ftable_lookup will look up the gateway, etc. 7239 * Check if in_ill != NULL. If it is true, the packet must be 7240 * from an incoming interface where RTA_SRCIFP is set. 7241 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7242 * to the destination, of equal netmask length in the forward table, 7243 * will be recursively explored. If no information is available 7244 * for the final gateway of that route, we force the returned ire 7245 * to be equal to sire using MATCH_IRE_PARENT. 7246 * At least, in this case we have a starting point (in the buckets) 7247 * to look for other routes to the destination in the forward table. 7248 * This is actually used only for multirouting, where a list 7249 * of routes has to be processed in sequence. 7250 * 7251 * In the process of coming up with the most specific information, 7252 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7253 * for the gateway (i.e., one for which the ire_nce->nce_state is 7254 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7255 * Two caveats when handling incomplete ire's in ip_newroute: 7256 * - we should be careful when accessing its ire_nce (specifically 7257 * the nce_res_mp) ast it might change underneath our feet, and, 7258 * - not all legacy code path callers are prepared to handle 7259 * incomplete ire's, so we should not create/add incomplete 7260 * ire_cache entries here. (See discussion about temporary solution 7261 * further below). 7262 * 7263 * In order to minimize packet dropping, and to preserve existing 7264 * behavior, we treat this case as if there were no IRE_CACHE for the 7265 * gateway, and instead use the IF_RESOLVER ire to send out 7266 * another request to ARP (this is achieved by passing the 7267 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7268 * arp response comes back in ip_wput_nondata, we will create 7269 * a per-dst ire_cache that has an ND_COMPLETE ire. 7270 * 7271 * Note that this is a temporary solution; the correct solution is 7272 * to create an incomplete per-dst ire_cache entry, and send the 7273 * packet out when the gw's nce is resolved. In order to achieve this, 7274 * all packet processing must have been completed prior to calling 7275 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7276 * to be modified to accomodate this solution. 7277 */ 7278 if (in_ill != NULL) { 7279 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7280 in_ill, MATCH_IRE_TYPE); 7281 } else if (ip_nexthop) { 7282 /* 7283 * The first time we come here, we look for an IRE_INTERFACE 7284 * entry for the specified nexthop, set the dst to be the 7285 * nexthop address and create an IRE_CACHE entry for the 7286 * nexthop. The next time around, we are able to find an 7287 * IRE_CACHE entry for the nexthop, set the gateway to be the 7288 * nexthop address and create an IRE_CACHE entry for the 7289 * destination address via the specified nexthop. 7290 */ 7291 ire = ire_cache_lookup(nexthop_addr, zoneid, 7292 MBLK_GETLABEL(mp)); 7293 if (ire != NULL) { 7294 gw = nexthop_addr; 7295 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7296 } else { 7297 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7298 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7299 MBLK_GETLABEL(mp), 7300 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7301 if (ire != NULL) { 7302 dst = nexthop_addr; 7303 } 7304 } 7305 } else if (attach_ill == NULL) { 7306 ire = ire_ftable_lookup(dst, 0, 0, 0, 7307 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7308 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7309 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7310 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE); 7311 } else { 7312 /* 7313 * attach_ill is set only for communicating with 7314 * on-link hosts. So, don't look for DEFAULT. 7315 */ 7316 ipif_t *attach_ipif; 7317 7318 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7319 if (attach_ipif == NULL) { 7320 ill_refrele(attach_ill); 7321 goto icmp_err_ret; 7322 } 7323 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7324 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7325 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7326 MATCH_IRE_SECATTR); 7327 ipif_refrele(attach_ipif); 7328 } 7329 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7330 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7331 7332 /* 7333 * This loop is run only once in most cases. 7334 * We loop to resolve further routes only when the destination 7335 * can be reached through multiple RTF_MULTIRT-flagged ires. 7336 */ 7337 do { 7338 /* Clear the previous iteration's values */ 7339 if (src_ipif != NULL) { 7340 ipif_refrele(src_ipif); 7341 src_ipif = NULL; 7342 } 7343 if (dst_ill != NULL) { 7344 ill_refrele(dst_ill); 7345 dst_ill = NULL; 7346 } 7347 7348 multirt_resolve_next = B_FALSE; 7349 /* 7350 * We check if packets have to be multirouted. 7351 * In this case, given the current <ire, sire> couple, 7352 * we look for the next suitable <ire, sire>. 7353 * This check is done in ire_multirt_lookup(), 7354 * which applies various criteria to find the next route 7355 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7356 * unchanged if it detects it has not been tried yet. 7357 */ 7358 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7359 ip3dbg(("ip_newroute: starting next_resolution " 7360 "with first_mp %p, tag %d\n", 7361 (void *)first_mp, 7362 MULTIRT_DEBUG_TAGGED(first_mp))); 7363 7364 ASSERT(sire != NULL); 7365 multirt_is_resolvable = 7366 ire_multirt_lookup(&ire, &sire, multirt_flags, 7367 MBLK_GETLABEL(mp)); 7368 7369 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7370 "ire %p, sire %p\n", 7371 multirt_is_resolvable, 7372 (void *)ire, (void *)sire)); 7373 7374 if (!multirt_is_resolvable) { 7375 /* 7376 * No more multirt route to resolve; give up 7377 * (all routes resolved or no more 7378 * resolvable routes). 7379 */ 7380 if (ire != NULL) { 7381 ire_refrele(ire); 7382 ire = NULL; 7383 } 7384 } else { 7385 ASSERT(sire != NULL); 7386 ASSERT(ire != NULL); 7387 /* 7388 * We simply use first_sire as a flag that 7389 * indicates if a resolvable multirt route 7390 * has already been found. 7391 * If it is not the case, we may have to send 7392 * an ICMP error to report that the 7393 * destination is unreachable. 7394 * We do not IRE_REFHOLD first_sire. 7395 */ 7396 if (first_sire == NULL) { 7397 first_sire = sire; 7398 } 7399 } 7400 } 7401 if (ire == NULL) { 7402 if (ip_debug > 3) { 7403 /* ip2dbg */ 7404 pr_addr_dbg("ip_newroute: " 7405 "can't resolve %s\n", AF_INET, &dst); 7406 } 7407 ip3dbg(("ip_newroute: " 7408 "ire %p, sire %p, first_sire %p\n", 7409 (void *)ire, (void *)sire, (void *)first_sire)); 7410 7411 if (sire != NULL) { 7412 ire_refrele(sire); 7413 sire = NULL; 7414 } 7415 7416 if (first_sire != NULL) { 7417 /* 7418 * At least one multirt route has been found 7419 * in the same call to ip_newroute(); 7420 * there is no need to report an ICMP error. 7421 * first_sire was not IRE_REFHOLDed. 7422 */ 7423 MULTIRT_DEBUG_UNTAG(first_mp); 7424 freemsg(first_mp); 7425 return; 7426 } 7427 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7428 RTA_DST); 7429 if (attach_ill != NULL) 7430 ill_refrele(attach_ill); 7431 goto icmp_err_ret; 7432 } 7433 7434 /* 7435 * When RTA_SRCIFP is used to add a route, then an interface 7436 * route is added in the source interface's routing table. 7437 * If the outgoing interface of this route is of type 7438 * IRE_IF_RESOLVER, then upon creation of the ire, 7439 * ire_nce->nce_res_mp is set to NULL. 7440 * Later, when this route is first used for forwarding 7441 * a packet, ip_newroute() is called 7442 * to resolve the hardware address of the outgoing ipif. 7443 * We do not come here for IRE_IF_NORESOLVER entries in the 7444 * source interface based table. We only come here if the 7445 * outgoing interface is a resolver interface and we don't 7446 * have the ire_nce->nce_res_mp information yet. 7447 * If in_ill is not null that means it is called from 7448 * ip_rput. 7449 */ 7450 7451 ASSERT(ire->ire_in_ill == NULL || 7452 (ire->ire_type == IRE_IF_RESOLVER && 7453 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 7454 7455 /* 7456 * Verify that the returned IRE does not have either 7457 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7458 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7459 */ 7460 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7461 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7462 if (attach_ill != NULL) 7463 ill_refrele(attach_ill); 7464 goto icmp_err_ret; 7465 } 7466 /* 7467 * Increment the ire_ob_pkt_count field for ire if it is an 7468 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7469 * increment the same for the parent IRE, sire, if it is some 7470 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7471 * and HOST_REDIRECT). 7472 */ 7473 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7474 UPDATE_OB_PKT_COUNT(ire); 7475 ire->ire_last_used_time = lbolt; 7476 } 7477 7478 if (sire != NULL) { 7479 gw = sire->ire_gateway_addr; 7480 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7481 IRE_INTERFACE)) == 0); 7482 UPDATE_OB_PKT_COUNT(sire); 7483 sire->ire_last_used_time = lbolt; 7484 } 7485 /* 7486 * We have a route to reach the destination. 7487 * 7488 * 1) If the interface is part of ill group, try to get a new 7489 * ill taking load spreading into account. 7490 * 7491 * 2) After selecting the ill, get a source address that 7492 * might create good inbound load spreading. 7493 * ipif_select_source does this for us. 7494 * 7495 * If the application specified the ill (ifindex), we still 7496 * load spread. Only if the packets needs to go out 7497 * specifically on a given ill e.g. binding to 7498 * IPIF_NOFAILOVER address, then we don't try to use a 7499 * different ill for load spreading. 7500 */ 7501 if (attach_ill == NULL) { 7502 /* 7503 * Don't perform outbound load spreading in the 7504 * case of an RTF_MULTIRT route, as we actually 7505 * typically want to replicate outgoing packets 7506 * through particular interfaces. 7507 */ 7508 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7509 dst_ill = ire->ire_ipif->ipif_ill; 7510 /* for uniformity */ 7511 ill_refhold(dst_ill); 7512 } else { 7513 /* 7514 * If we are here trying to create an IRE_CACHE 7515 * for an offlink destination and have the 7516 * IRE_CACHE for the next hop and the latter is 7517 * using virtual IP source address selection i.e 7518 * it's ire->ire_ipif is pointing to a virtual 7519 * network interface (vni) then 7520 * ip_newroute_get_dst_ll() will return the vni 7521 * interface as the dst_ill. Since the vni is 7522 * virtual i.e not associated with any physical 7523 * interface, it cannot be the dst_ill, hence 7524 * in such a case call ip_newroute_get_dst_ll() 7525 * with the stq_ill instead of the ire_ipif ILL. 7526 * The function returns a refheld ill. 7527 */ 7528 if ((ire->ire_type == IRE_CACHE) && 7529 IS_VNI(ire->ire_ipif->ipif_ill)) 7530 dst_ill = ip_newroute_get_dst_ill( 7531 ire->ire_stq->q_ptr); 7532 else 7533 dst_ill = ip_newroute_get_dst_ill( 7534 ire->ire_ipif->ipif_ill); 7535 } 7536 if (dst_ill == NULL) { 7537 if (ip_debug > 2) { 7538 pr_addr_dbg("ip_newroute: " 7539 "no dst ill for dst" 7540 " %s\n", AF_INET, &dst); 7541 } 7542 goto icmp_err_ret; 7543 } 7544 } else { 7545 dst_ill = ire->ire_ipif->ipif_ill; 7546 /* for uniformity */ 7547 ill_refhold(dst_ill); 7548 /* 7549 * We should have found a route matching ill as we 7550 * called ire_ftable_lookup with MATCH_IRE_ILL. 7551 * Rather than asserting, when there is a mismatch, 7552 * we just drop the packet. 7553 */ 7554 if (dst_ill != attach_ill) { 7555 ip0dbg(("ip_newroute: Packet dropped as " 7556 "IPIF_NOFAILOVER ill is %s, " 7557 "ire->ire_ipif->ipif_ill is %s\n", 7558 attach_ill->ill_name, 7559 dst_ill->ill_name)); 7560 ill_refrele(attach_ill); 7561 goto icmp_err_ret; 7562 } 7563 } 7564 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7565 if (attach_ill != NULL) { 7566 ill_refrele(attach_ill); 7567 attach_ill = NULL; 7568 do_attach_ill = B_TRUE; 7569 } 7570 ASSERT(dst_ill != NULL); 7571 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7572 7573 /* 7574 * Pick the best source address from dst_ill. 7575 * 7576 * 1) If it is part of a multipathing group, we would 7577 * like to spread the inbound packets across different 7578 * interfaces. ipif_select_source picks a random source 7579 * across the different ills in the group. 7580 * 7581 * 2) If it is not part of a multipathing group, we try 7582 * to pick the source address from the destination 7583 * route. Clustering assumes that when we have multiple 7584 * prefixes hosted on an interface, the prefix of the 7585 * source address matches the prefix of the destination 7586 * route. We do this only if the address is not 7587 * DEPRECATED. 7588 * 7589 * 3) If the conn is in a different zone than the ire, we 7590 * need to pick a source address from the right zone. 7591 * 7592 * NOTE : If we hit case (1) above, the prefix of the source 7593 * address picked may not match the prefix of the 7594 * destination routes prefix as ipif_select_source 7595 * does not look at "dst" while picking a source 7596 * address. 7597 * If we want the same behavior as (2), we will need 7598 * to change the behavior of ipif_select_source. 7599 */ 7600 ASSERT(src_ipif == NULL); 7601 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7602 /* 7603 * The RTF_SETSRC flag is set in the parent ire (sire). 7604 * Check that the ipif matching the requested source 7605 * address still exists. 7606 */ 7607 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7608 zoneid, NULL, NULL, NULL, NULL); 7609 } 7610 if (src_ipif == NULL) { 7611 ire_marks |= IRE_MARK_USESRC_CHECK; 7612 if ((dst_ill->ill_group != NULL) || 7613 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 7614 (connp != NULL && ire->ire_zoneid != zoneid && 7615 ire->ire_zoneid != ALL_ZONES) || 7616 (dst_ill->ill_usesrc_ifindex != 0)) { 7617 /* 7618 * If the destination is reachable via a 7619 * given gateway, the selected source address 7620 * should be in the same subnet as the gateway. 7621 * Otherwise, the destination is not reachable. 7622 * 7623 * If there are no interfaces on the same subnet 7624 * as the destination, ipif_select_source gives 7625 * first non-deprecated interface which might be 7626 * on a different subnet than the gateway. 7627 * This is not desirable. Hence pass the dst_ire 7628 * source address to ipif_select_source. 7629 * It is sure that the destination is reachable 7630 * with the dst_ire source address subnet. 7631 * So passing dst_ire source address to 7632 * ipif_select_source will make sure that the 7633 * selected source will be on the same subnet 7634 * as dst_ire source address. 7635 */ 7636 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 7637 src_ipif = ipif_select_source(dst_ill, saddr, 7638 zoneid); 7639 if (src_ipif == NULL) { 7640 if (ip_debug > 2) { 7641 pr_addr_dbg("ip_newroute: " 7642 "no src for dst %s ", 7643 AF_INET, &dst); 7644 printf("through interface %s\n", 7645 dst_ill->ill_name); 7646 } 7647 goto icmp_err_ret; 7648 } 7649 } else { 7650 src_ipif = ire->ire_ipif; 7651 ASSERT(src_ipif != NULL); 7652 /* hold src_ipif for uniformity */ 7653 ipif_refhold(src_ipif); 7654 } 7655 } 7656 7657 /* 7658 * Assign a source address while we have the conn. 7659 * We can't have ip_wput_ire pick a source address when the 7660 * packet returns from arp since we need to look at 7661 * conn_unspec_src and conn_zoneid, and we lose the conn when 7662 * going through arp. 7663 * 7664 * NOTE : ip_newroute_v6 does not have this piece of code as 7665 * it uses ip6i to store this information. 7666 */ 7667 if (ipha->ipha_src == INADDR_ANY && 7668 (connp == NULL || !connp->conn_unspec_src)) { 7669 ipha->ipha_src = src_ipif->ipif_src_addr; 7670 } 7671 if (ip_debug > 3) { 7672 /* ip2dbg */ 7673 pr_addr_dbg("ip_newroute: first hop %s\n", 7674 AF_INET, &gw); 7675 } 7676 ip2dbg(("\tire type %s (%d)\n", 7677 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7678 7679 /* 7680 * The TTL of multirouted packets is bounded by the 7681 * ip_multirt_ttl ndd variable. 7682 */ 7683 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7684 /* Force TTL of multirouted packets */ 7685 if ((ip_multirt_ttl > 0) && 7686 (ipha->ipha_ttl > ip_multirt_ttl)) { 7687 ip2dbg(("ip_newroute: forcing multirt TTL " 7688 "to %d (was %d), dst 0x%08x\n", 7689 ip_multirt_ttl, ipha->ipha_ttl, 7690 ntohl(sire->ire_addr))); 7691 ipha->ipha_ttl = ip_multirt_ttl; 7692 } 7693 } 7694 /* 7695 * At this point in ip_newroute(), ire is either the 7696 * IRE_CACHE of the next-hop gateway for an off-subnet 7697 * destination or an IRE_INTERFACE type that should be used 7698 * to resolve an on-subnet destination or an on-subnet 7699 * next-hop gateway. 7700 * 7701 * In the IRE_CACHE case, we have the following : 7702 * 7703 * 1) src_ipif - used for getting a source address. 7704 * 7705 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7706 * means packets using this IRE_CACHE will go out on 7707 * dst_ill. 7708 * 7709 * 3) The IRE sire will point to the prefix that is the 7710 * longest matching route for the destination. These 7711 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7712 * and IRE_HOST_REDIRECT. 7713 * 7714 * The newly created IRE_CACHE entry for the off-subnet 7715 * destination is tied to both the prefix route and the 7716 * interface route used to resolve the next-hop gateway 7717 * via the ire_phandle and ire_ihandle fields, 7718 * respectively. 7719 * 7720 * In the IRE_INTERFACE case, we have the following : 7721 * 7722 * 1) src_ipif - used for getting a source address. 7723 * 7724 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7725 * means packets using the IRE_CACHE that we will build 7726 * here will go out on dst_ill. 7727 * 7728 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 7729 * to be created will only be tied to the IRE_INTERFACE 7730 * that was derived from the ire_ihandle field. 7731 * 7732 * If sire is non-NULL, it means the destination is 7733 * off-link and we will first create the IRE_CACHE for the 7734 * gateway. Next time through ip_newroute, we will create 7735 * the IRE_CACHE for the final destination as described 7736 * above. 7737 * 7738 * In both cases, after the current resolution has been 7739 * completed (or possibly initialised, in the IRE_INTERFACE 7740 * case), the loop may be re-entered to attempt the resolution 7741 * of another RTF_MULTIRT route. 7742 * 7743 * When an IRE_CACHE entry for the off-subnet destination is 7744 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 7745 * for further processing in emission loops. 7746 */ 7747 save_ire = ire; 7748 switch (ire->ire_type) { 7749 case IRE_CACHE: { 7750 ire_t *ipif_ire; 7751 mblk_t *ire_fp_mp; 7752 7753 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 7754 if (gw == 0) 7755 gw = ire->ire_gateway_addr; 7756 /* 7757 * We need 3 ire's to create a new cache ire for an 7758 * off-link destination from the cache ire of the 7759 * gateway. 7760 * 7761 * 1. The prefix ire 'sire' (Note that this does 7762 * not apply to the conn_nexthop_set case) 7763 * 2. The cache ire of the gateway 'ire' 7764 * 3. The interface ire 'ipif_ire' 7765 * 7766 * We have (1) and (2). We lookup (3) below. 7767 * 7768 * If there is no interface route to the gateway, 7769 * it is a race condition, where we found the cache 7770 * but the interface route has been deleted. 7771 */ 7772 if (ip_nexthop) { 7773 ipif_ire = ire_ihandle_lookup_onlink(ire); 7774 } else { 7775 ipif_ire = 7776 ire_ihandle_lookup_offlink(ire, sire); 7777 } 7778 if (ipif_ire == NULL) { 7779 ip1dbg(("ip_newroute: " 7780 "ire_ihandle_lookup_offlink failed\n")); 7781 goto icmp_err_ret; 7782 } 7783 /* 7784 * XXX We are using the same res_mp 7785 * (DL_UNITDATA_REQ) though the save_ire is not 7786 * pointing at the same ill. 7787 * This is incorrect. We need to send it up to the 7788 * resolver to get the right res_mp. For ethernets 7789 * this may be okay (ill_type == DL_ETHER). 7790 */ 7791 res_mp = save_ire->ire_nce->nce_res_mp; 7792 ire_fp_mp = NULL; 7793 /* 7794 * save_ire's nce_fp_mp can't change since it is 7795 * not an IRE_MIPRTUN or IRE_BROADCAST 7796 * LOCK_IRE_FP_MP does not do any useful work in 7797 * the case of IRE_CACHE. So we don't use it below. 7798 */ 7799 if (save_ire->ire_stq == dst_ill->ill_wq) 7800 ire_fp_mp = save_ire->ire_nce->nce_fp_mp; 7801 7802 /* 7803 * Check cached gateway IRE for any security 7804 * attributes; if found, associate the gateway 7805 * credentials group to the destination IRE. 7806 */ 7807 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 7808 mutex_enter(&attrp->igsa_lock); 7809 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 7810 GCGRP_REFHOLD(gcgrp); 7811 mutex_exit(&attrp->igsa_lock); 7812 } 7813 7814 ire = ire_create( 7815 (uchar_t *)&dst, /* dest address */ 7816 (uchar_t *)&ip_g_all_ones, /* mask */ 7817 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7818 (uchar_t *)&gw, /* gateway address */ 7819 NULL, 7820 &save_ire->ire_max_frag, 7821 ire_fp_mp, /* Fast Path header */ 7822 dst_ill->ill_rq, /* recv-from queue */ 7823 dst_ill->ill_wq, /* send-to queue */ 7824 IRE_CACHE, /* IRE type */ 7825 res_mp, 7826 src_ipif, 7827 in_ill, /* incoming ill */ 7828 (sire != NULL) ? 7829 sire->ire_mask : 0, /* Parent mask */ 7830 (sire != NULL) ? 7831 sire->ire_phandle : 0, /* Parent handle */ 7832 ipif_ire->ire_ihandle, /* Interface handle */ 7833 (sire != NULL) ? (sire->ire_flags & 7834 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 7835 (sire != NULL) ? 7836 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 7837 NULL, 7838 gcgrp); 7839 7840 if (ire == NULL) { 7841 if (gcgrp != NULL) { 7842 GCGRP_REFRELE(gcgrp); 7843 gcgrp = NULL; 7844 } 7845 ire_refrele(ipif_ire); 7846 ire_refrele(save_ire); 7847 break; 7848 } 7849 7850 /* reference now held by IRE */ 7851 gcgrp = NULL; 7852 7853 ire->ire_marks |= ire_marks; 7854 7855 /* 7856 * Prevent sire and ipif_ire from getting deleted. 7857 * The newly created ire is tied to both of them via 7858 * the phandle and ihandle respectively. 7859 */ 7860 if (sire != NULL) { 7861 IRB_REFHOLD(sire->ire_bucket); 7862 /* Has it been removed already ? */ 7863 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 7864 IRB_REFRELE(sire->ire_bucket); 7865 ire_refrele(ipif_ire); 7866 ire_refrele(save_ire); 7867 break; 7868 } 7869 } 7870 7871 IRB_REFHOLD(ipif_ire->ire_bucket); 7872 /* Has it been removed already ? */ 7873 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 7874 IRB_REFRELE(ipif_ire->ire_bucket); 7875 if (sire != NULL) 7876 IRB_REFRELE(sire->ire_bucket); 7877 ire_refrele(ipif_ire); 7878 ire_refrele(save_ire); 7879 break; 7880 } 7881 7882 xmit_mp = first_mp; 7883 /* 7884 * In the case of multirouting, a copy 7885 * of the packet is done before its sending. 7886 * The copy is used to attempt another 7887 * route resolution, in a next loop. 7888 */ 7889 if (ire->ire_flags & RTF_MULTIRT) { 7890 copy_mp = copymsg(first_mp); 7891 if (copy_mp != NULL) { 7892 xmit_mp = copy_mp; 7893 MULTIRT_DEBUG_TAG(first_mp); 7894 } 7895 } 7896 ire_add_then_send(q, ire, xmit_mp); 7897 ire_refrele(save_ire); 7898 7899 /* Assert that sire is not deleted yet. */ 7900 if (sire != NULL) { 7901 ASSERT(sire->ire_ptpn != NULL); 7902 IRB_REFRELE(sire->ire_bucket); 7903 } 7904 7905 /* Assert that ipif_ire is not deleted yet. */ 7906 ASSERT(ipif_ire->ire_ptpn != NULL); 7907 IRB_REFRELE(ipif_ire->ire_bucket); 7908 ire_refrele(ipif_ire); 7909 7910 /* 7911 * If copy_mp is not NULL, multirouting was 7912 * requested. We loop to initiate a next 7913 * route resolution attempt, starting from sire. 7914 */ 7915 if (copy_mp != NULL) { 7916 /* 7917 * Search for the next unresolved 7918 * multirt route. 7919 */ 7920 copy_mp = NULL; 7921 ipif_ire = NULL; 7922 ire = NULL; 7923 multirt_resolve_next = B_TRUE; 7924 continue; 7925 } 7926 if (sire != NULL) 7927 ire_refrele(sire); 7928 ipif_refrele(src_ipif); 7929 ill_refrele(dst_ill); 7930 return; 7931 } 7932 case IRE_IF_NORESOLVER: { 7933 /* 7934 * We have what we need to build an IRE_CACHE. 7935 * 7936 * Create a new res_mp with the IP gateway address 7937 * in destination address in the DLPI hdr if the 7938 * physical length is exactly 4 bytes. 7939 */ 7940 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7941 uchar_t *addr; 7942 7943 if (gw) 7944 addr = (uchar_t *)&gw; 7945 else 7946 addr = (uchar_t *)&dst; 7947 7948 res_mp = ill_dlur_gen(addr, 7949 dst_ill->ill_phys_addr_length, 7950 dst_ill->ill_sap, 7951 dst_ill->ill_sap_length); 7952 7953 if (res_mp == NULL) { 7954 ip1dbg(("ip_newroute: res_mp NULL\n")); 7955 break; 7956 } 7957 } else { 7958 res_mp = NULL; 7959 } 7960 7961 /* 7962 * TSol note: We are creating the ire cache for the 7963 * destination 'dst'. If 'dst' is offlink, going 7964 * through the first hop 'gw', the security attributes 7965 * of 'dst' must be set to point to the gateway 7966 * credentials of gateway 'gw'. If 'dst' is onlink, it 7967 * is possible that 'dst' is a potential gateway that is 7968 * referenced by some route that has some security 7969 * attributes. Thus in the former case, we need to do a 7970 * gcgrp_lookup of 'gw' while in the latter case we 7971 * need to do gcgrp_lookup of 'dst' itself. 7972 */ 7973 ga.ga_af = AF_INET; 7974 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 7975 &ga.ga_addr); 7976 gcgrp = gcgrp_lookup(&ga, B_FALSE); 7977 7978 ire = ire_create( 7979 (uchar_t *)&dst, /* dest address */ 7980 (uchar_t *)&ip_g_all_ones, /* mask */ 7981 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7982 (uchar_t *)&gw, /* gateway address */ 7983 NULL, 7984 &save_ire->ire_max_frag, 7985 NULL, /* Fast Path header */ 7986 dst_ill->ill_rq, /* recv-from queue */ 7987 dst_ill->ill_wq, /* send-to queue */ 7988 IRE_CACHE, 7989 res_mp, 7990 src_ipif, 7991 in_ill, /* Incoming ill */ 7992 save_ire->ire_mask, /* Parent mask */ 7993 (sire != NULL) ? /* Parent handle */ 7994 sire->ire_phandle : 0, 7995 save_ire->ire_ihandle, /* Interface handle */ 7996 (sire != NULL) ? sire->ire_flags & 7997 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 7998 &(save_ire->ire_uinfo), 7999 NULL, 8000 gcgrp); 8001 8002 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8003 freeb(res_mp); 8004 8005 if (ire == NULL) { 8006 if (gcgrp != NULL) { 8007 GCGRP_REFRELE(gcgrp); 8008 gcgrp = NULL; 8009 } 8010 ire_refrele(save_ire); 8011 break; 8012 } 8013 8014 /* reference now held by IRE */ 8015 gcgrp = NULL; 8016 8017 ire->ire_marks |= ire_marks; 8018 8019 /* Prevent save_ire from getting deleted */ 8020 IRB_REFHOLD(save_ire->ire_bucket); 8021 /* Has it been removed already ? */ 8022 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8023 IRB_REFRELE(save_ire->ire_bucket); 8024 ire_refrele(save_ire); 8025 break; 8026 } 8027 8028 /* 8029 * In the case of multirouting, a copy 8030 * of the packet is made before it is sent. 8031 * The copy is used in the next 8032 * loop to attempt another resolution. 8033 */ 8034 xmit_mp = first_mp; 8035 if ((sire != NULL) && 8036 (sire->ire_flags & RTF_MULTIRT)) { 8037 copy_mp = copymsg(first_mp); 8038 if (copy_mp != NULL) { 8039 xmit_mp = copy_mp; 8040 MULTIRT_DEBUG_TAG(first_mp); 8041 } 8042 } 8043 ire_add_then_send(q, ire, xmit_mp); 8044 8045 /* Assert that it is not deleted yet. */ 8046 ASSERT(save_ire->ire_ptpn != NULL); 8047 IRB_REFRELE(save_ire->ire_bucket); 8048 ire_refrele(save_ire); 8049 8050 if (copy_mp != NULL) { 8051 /* 8052 * If we found a (no)resolver, we ignore any 8053 * trailing top priority IRE_CACHE in further 8054 * loops. This ensures that we do not omit any 8055 * (no)resolver. 8056 * This IRE_CACHE, if any, will be processed 8057 * by another thread entering ip_newroute(). 8058 * IRE_CACHE entries, if any, will be processed 8059 * by another thread entering ip_newroute(), 8060 * (upon resolver response, for instance). 8061 * This aims to force parallel multirt 8062 * resolutions as soon as a packet must be sent. 8063 * In the best case, after the tx of only one 8064 * packet, all reachable routes are resolved. 8065 * Otherwise, the resolution of all RTF_MULTIRT 8066 * routes would require several emissions. 8067 */ 8068 multirt_flags &= ~MULTIRT_CACHEGW; 8069 8070 /* 8071 * Search for the next unresolved multirt 8072 * route. 8073 */ 8074 copy_mp = NULL; 8075 save_ire = NULL; 8076 ire = NULL; 8077 multirt_resolve_next = B_TRUE; 8078 continue; 8079 } 8080 8081 /* 8082 * Don't need sire anymore 8083 */ 8084 if (sire != NULL) 8085 ire_refrele(sire); 8086 8087 ipif_refrele(src_ipif); 8088 ill_refrele(dst_ill); 8089 return; 8090 } 8091 case IRE_IF_RESOLVER: 8092 /* 8093 * We can't build an IRE_CACHE yet, but at least we 8094 * found a resolver that can help. 8095 */ 8096 res_mp = dst_ill->ill_resolver_mp; 8097 if (!OK_RESOLVER_MP(res_mp)) 8098 break; 8099 8100 /* 8101 * To be at this point in the code with a non-zero gw 8102 * means that dst is reachable through a gateway that 8103 * we have never resolved. By changing dst to the gw 8104 * addr we resolve the gateway first. 8105 * When ire_add_then_send() tries to put the IP dg 8106 * to dst, it will reenter ip_newroute() at which 8107 * time we will find the IRE_CACHE for the gw and 8108 * create another IRE_CACHE in case IRE_CACHE above. 8109 */ 8110 if (gw != INADDR_ANY) { 8111 /* 8112 * The source ipif that was determined above was 8113 * relative to the destination address, not the 8114 * gateway's. If src_ipif was not taken out of 8115 * the IRE_IF_RESOLVER entry, we'll need to call 8116 * ipif_select_source() again. 8117 */ 8118 if (src_ipif != ire->ire_ipif) { 8119 ipif_refrele(src_ipif); 8120 src_ipif = ipif_select_source(dst_ill, 8121 gw, zoneid); 8122 if (src_ipif == NULL) { 8123 if (ip_debug > 2) { 8124 pr_addr_dbg( 8125 "ip_newroute: no " 8126 "src for gw %s ", 8127 AF_INET, &gw); 8128 printf("through " 8129 "interface %s\n", 8130 dst_ill->ill_name); 8131 } 8132 goto icmp_err_ret; 8133 } 8134 } 8135 save_dst = dst; 8136 dst = gw; 8137 gw = INADDR_ANY; 8138 } 8139 8140 /* 8141 * We obtain a partial IRE_CACHE which we will pass 8142 * along with the resolver query. When the response 8143 * comes back it will be there ready for us to add. 8144 * The ire_max_frag is atomically set under the 8145 * irebucket lock in ire_add_v[46]. 8146 */ 8147 8148 ire = ire_create_mp( 8149 (uchar_t *)&dst, /* dest address */ 8150 (uchar_t *)&ip_g_all_ones, /* mask */ 8151 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8152 (uchar_t *)&gw, /* gateway address */ 8153 NULL, /* no in_src_addr */ 8154 NULL, /* ire_max_frag */ 8155 NULL, /* Fast Path header */ 8156 dst_ill->ill_rq, /* recv-from queue */ 8157 dst_ill->ill_wq, /* send-to queue */ 8158 IRE_CACHE, 8159 NULL, 8160 src_ipif, /* Interface ipif */ 8161 in_ill, /* Incoming ILL */ 8162 save_ire->ire_mask, /* Parent mask */ 8163 0, 8164 save_ire->ire_ihandle, /* Interface handle */ 8165 0, /* flags if any */ 8166 &(save_ire->ire_uinfo), 8167 NULL, 8168 NULL); 8169 8170 if (ire == NULL) { 8171 ire_refrele(save_ire); 8172 break; 8173 } 8174 8175 if ((sire != NULL) && 8176 (sire->ire_flags & RTF_MULTIRT)) { 8177 copy_mp = copymsg(first_mp); 8178 if (copy_mp != NULL) 8179 MULTIRT_DEBUG_TAG(copy_mp); 8180 } 8181 8182 ire->ire_marks |= ire_marks; 8183 8184 /* 8185 * Construct message chain for the resolver 8186 * of the form: 8187 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8188 * Packet could contain a IPSEC_OUT mp. 8189 * 8190 * NOTE : ire will be added later when the response 8191 * comes back from ARP. If the response does not 8192 * come back, ARP frees the packet. For this reason, 8193 * we can't REFHOLD the bucket of save_ire to prevent 8194 * deletions. We may not be able to REFRELE the bucket 8195 * if the response never comes back. Thus, before 8196 * adding the ire, ire_add_v4 will make sure that the 8197 * interface route does not get deleted. This is the 8198 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8199 * where we can always prevent deletions because of 8200 * the synchronous nature of adding IRES i.e 8201 * ire_add_then_send is called after creating the IRE. 8202 */ 8203 ASSERT(ire->ire_mp != NULL); 8204 ire->ire_mp->b_cont = first_mp; 8205 /* Have saved_mp handy, for cleanup if canput fails */ 8206 saved_mp = mp; 8207 mp = copyb(res_mp); 8208 ASSERT(mp != NULL); 8209 linkb(mp, ire->ire_mp); 8210 8211 8212 /* 8213 * Fill in the source and dest addrs for the resolver. 8214 * NOTE: this depends on memory layouts imposed by 8215 * ill_init(). 8216 */ 8217 areq = (areq_t *)mp->b_rptr; 8218 addrp = (ipaddr_t *)((char *)areq + 8219 areq->areq_sender_addr_offset); 8220 if (do_attach_ill) { 8221 /* 8222 * This is bind to no failover case. 8223 * arp packet also must go out on attach_ill. 8224 */ 8225 ASSERT(ipha->ipha_src != NULL); 8226 *addrp = ipha->ipha_src; 8227 } else { 8228 *addrp = save_ire->ire_src_addr; 8229 } 8230 8231 ire_refrele(save_ire); 8232 addrp = (ipaddr_t *)((char *)areq + 8233 areq->areq_target_addr_offset); 8234 *addrp = dst; 8235 /* Up to the resolver. */ 8236 if (canputnext(dst_ill->ill_rq) && 8237 !(dst_ill->ill_arp_closing)) { 8238 putnext(dst_ill->ill_rq, mp); 8239 ire = NULL; 8240 if (copy_mp != NULL) { 8241 /* 8242 * If we found a resolver, we ignore 8243 * any trailing top priority IRE_CACHE 8244 * in the further loops. This ensures 8245 * that we do not omit any resolver. 8246 * IRE_CACHE entries, if any, will be 8247 * processed next time we enter 8248 * ip_newroute(). 8249 */ 8250 multirt_flags &= ~MULTIRT_CACHEGW; 8251 /* 8252 * Search for the next unresolved 8253 * multirt route. 8254 */ 8255 first_mp = copy_mp; 8256 copy_mp = NULL; 8257 /* Prepare the next resolution loop. */ 8258 mp = first_mp; 8259 EXTRACT_PKT_MP(mp, first_mp, 8260 mctl_present); 8261 if (mctl_present) 8262 io = (ipsec_out_t *) 8263 first_mp->b_rptr; 8264 ipha = (ipha_t *)mp->b_rptr; 8265 8266 ASSERT(sire != NULL); 8267 8268 dst = save_dst; 8269 multirt_resolve_next = B_TRUE; 8270 continue; 8271 } 8272 8273 if (sire != NULL) 8274 ire_refrele(sire); 8275 8276 /* 8277 * The response will come back in ip_wput 8278 * with db_type IRE_DB_TYPE. 8279 */ 8280 ipif_refrele(src_ipif); 8281 ill_refrele(dst_ill); 8282 return; 8283 } else { 8284 /* Prepare for cleanup */ 8285 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8286 mp); 8287 mp->b_cont = NULL; 8288 freeb(mp); /* areq */ 8289 /* 8290 * this is an ire that is not added to the 8291 * cache. ire_freemblk will handle the release 8292 * of any resources associated with the ire. 8293 */ 8294 ire_delete(ire); /* ire_mp */ 8295 mp = saved_mp; /* pkt */ 8296 ire = NULL; 8297 if (copy_mp != NULL) { 8298 MULTIRT_DEBUG_UNTAG(copy_mp); 8299 freemsg(copy_mp); 8300 copy_mp = NULL; 8301 } 8302 break; 8303 } 8304 default: 8305 break; 8306 } 8307 } while (multirt_resolve_next); 8308 8309 ip1dbg(("ip_newroute: dropped\n")); 8310 /* Did this packet originate externally? */ 8311 if (mp->b_prev) { 8312 mp->b_next = NULL; 8313 mp->b_prev = NULL; 8314 BUMP_MIB(&ip_mib, ipInDiscards); 8315 } else { 8316 BUMP_MIB(&ip_mib, ipOutDiscards); 8317 } 8318 ASSERT(copy_mp == NULL); 8319 MULTIRT_DEBUG_UNTAG(first_mp); 8320 freemsg(first_mp); 8321 if (ire != NULL) 8322 ire_refrele(ire); 8323 if (sire != NULL) 8324 ire_refrele(sire); 8325 if (src_ipif != NULL) 8326 ipif_refrele(src_ipif); 8327 if (dst_ill != NULL) 8328 ill_refrele(dst_ill); 8329 return; 8330 8331 icmp_err_ret: 8332 ip1dbg(("ip_newroute: no route\n")); 8333 if (src_ipif != NULL) 8334 ipif_refrele(src_ipif); 8335 if (dst_ill != NULL) 8336 ill_refrele(dst_ill); 8337 if (sire != NULL) 8338 ire_refrele(sire); 8339 /* Did this packet originate externally? */ 8340 if (mp->b_prev) { 8341 mp->b_next = NULL; 8342 mp->b_prev = NULL; 8343 /* XXX ipInNoRoutes */ 8344 q = WR(q); 8345 } else { 8346 /* 8347 * Since ip_wput() isn't close to finished, we fill 8348 * in enough of the header for credible error reporting. 8349 */ 8350 if (ip_hdr_complete(ipha, zoneid)) { 8351 /* Failed */ 8352 MULTIRT_DEBUG_UNTAG(first_mp); 8353 freemsg(first_mp); 8354 if (ire != NULL) 8355 ire_refrele(ire); 8356 return; 8357 } 8358 } 8359 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8360 8361 /* 8362 * At this point we will have ire only if RTF_BLACKHOLE 8363 * or RTF_REJECT flags are set on the IRE. It will not 8364 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8365 */ 8366 if (ire != NULL) { 8367 if (ire->ire_flags & RTF_BLACKHOLE) { 8368 ire_refrele(ire); 8369 MULTIRT_DEBUG_UNTAG(first_mp); 8370 freemsg(first_mp); 8371 return; 8372 } 8373 ire_refrele(ire); 8374 } 8375 if (ip_source_routed(ipha)) { 8376 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 8377 return; 8378 } 8379 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8380 } 8381 8382 /* 8383 * IPv4 - 8384 * ip_newroute_ipif is called by ip_wput_multicast and 8385 * ip_rput_forward_multicast whenever we need to send 8386 * out a packet to a destination address for which we do not have specific 8387 * routing information. It is used when the packet will be sent out 8388 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8389 * socket option is set or icmp error message wants to go out on a particular 8390 * interface for a unicast packet. 8391 * 8392 * In most cases, the destination address is resolved thanks to the ipif 8393 * intrinsic resolver. However, there are some cases where the call to 8394 * ip_newroute_ipif must take into account the potential presence of 8395 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8396 * that uses the interface. This is specified through flags, 8397 * which can be a combination of: 8398 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8399 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8400 * and flags. Additionally, the packet source address has to be set to 8401 * the specified address. The caller is thus expected to set this flag 8402 * if the packet has no specific source address yet. 8403 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8404 * flag, the resulting ire will inherit the flag. All unresolved routes 8405 * to the destination must be explored in the same call to 8406 * ip_newroute_ipif(). 8407 */ 8408 static void 8409 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8410 conn_t *connp, uint32_t flags) 8411 { 8412 areq_t *areq; 8413 ire_t *ire = NULL; 8414 mblk_t *res_mp; 8415 ipaddr_t *addrp; 8416 mblk_t *first_mp; 8417 ire_t *save_ire = NULL; 8418 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8419 ipif_t *src_ipif = NULL; 8420 ushort_t ire_marks = 0; 8421 ill_t *dst_ill = NULL; 8422 boolean_t mctl_present; 8423 ipsec_out_t *io; 8424 ipha_t *ipha; 8425 int ihandle = 0; 8426 mblk_t *saved_mp; 8427 ire_t *fire = NULL; 8428 mblk_t *copy_mp = NULL; 8429 boolean_t multirt_resolve_next; 8430 ipaddr_t ipha_dst; 8431 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 8432 8433 /* 8434 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8435 * here for uniformity 8436 */ 8437 ipif_refhold(ipif); 8438 8439 /* 8440 * This loop is run only once in most cases. 8441 * We loop to resolve further routes only when the destination 8442 * can be reached through multiple RTF_MULTIRT-flagged ires. 8443 */ 8444 do { 8445 if (dst_ill != NULL) { 8446 ill_refrele(dst_ill); 8447 dst_ill = NULL; 8448 } 8449 if (src_ipif != NULL) { 8450 ipif_refrele(src_ipif); 8451 src_ipif = NULL; 8452 } 8453 multirt_resolve_next = B_FALSE; 8454 8455 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8456 ipif->ipif_ill->ill_name)); 8457 8458 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8459 if (mctl_present) 8460 io = (ipsec_out_t *)first_mp->b_rptr; 8461 8462 ipha = (ipha_t *)mp->b_rptr; 8463 8464 /* 8465 * Save the packet destination address, we may need it after 8466 * the packet has been consumed. 8467 */ 8468 ipha_dst = ipha->ipha_dst; 8469 8470 /* 8471 * If the interface is a pt-pt interface we look for an 8472 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8473 * local_address and the pt-pt destination address. Otherwise 8474 * we just match the local address. 8475 * NOTE: dst could be different than ipha->ipha_dst in case 8476 * of sending igmp multicast packets over a point-to-point 8477 * connection. 8478 * Thus we must be careful enough to check ipha_dst to be a 8479 * multicast address, otherwise it will take xmit_if path for 8480 * multicast packets resulting into kernel stack overflow by 8481 * repeated calls to ip_newroute_ipif from ire_send(). 8482 */ 8483 if (CLASSD(ipha_dst) && 8484 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8485 goto err_ret; 8486 } 8487 8488 /* 8489 * We check if an IRE_OFFSUBNET for the addr that goes through 8490 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8491 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8492 * propagate its flags to the new ire. 8493 */ 8494 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8495 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8496 ip2dbg(("ip_newroute_ipif: " 8497 "ipif_lookup_multi_ire(" 8498 "ipif %p, dst %08x) = fire %p\n", 8499 (void *)ipif, ntohl(dst), (void *)fire)); 8500 } 8501 8502 if (mctl_present && io->ipsec_out_attach_if) { 8503 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8504 io->ipsec_out_ill_index, B_FALSE); 8505 8506 /* Failure case frees things for us. */ 8507 if (attach_ill == NULL) { 8508 ipif_refrele(ipif); 8509 if (fire != NULL) 8510 ire_refrele(fire); 8511 return; 8512 } 8513 8514 /* 8515 * Check if we need an ire that will not be 8516 * looked up by anybody else i.e. HIDDEN. 8517 */ 8518 if (ill_is_probeonly(attach_ill)) { 8519 ire_marks = IRE_MARK_HIDDEN; 8520 } 8521 /* 8522 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8523 * case. 8524 */ 8525 dst_ill = ipif->ipif_ill; 8526 /* attach_ill has been refheld by ip_grab_attach_ill */ 8527 ASSERT(dst_ill == attach_ill); 8528 } else { 8529 /* 8530 * If this is set by IP_XMIT_IF, then make sure that 8531 * ipif is pointing to the same ill as the IP_XMIT_IF 8532 * specified ill. 8533 */ 8534 ASSERT((connp == NULL) || 8535 (connp->conn_xmit_if_ill == NULL) || 8536 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8537 /* 8538 * If the interface belongs to an interface group, 8539 * make sure the next possible interface in the group 8540 * is used. This encourages load spreading among 8541 * peers in an interface group. 8542 * Note: load spreading is disabled for RTF_MULTIRT 8543 * routes. 8544 */ 8545 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8546 (fire->ire_flags & RTF_MULTIRT)) { 8547 /* 8548 * Don't perform outbound load spreading 8549 * in the case of an RTF_MULTIRT issued route, 8550 * we actually typically want to replicate 8551 * outgoing packets through particular 8552 * interfaces. 8553 */ 8554 dst_ill = ipif->ipif_ill; 8555 ill_refhold(dst_ill); 8556 } else { 8557 dst_ill = ip_newroute_get_dst_ill( 8558 ipif->ipif_ill); 8559 } 8560 if (dst_ill == NULL) { 8561 if (ip_debug > 2) { 8562 pr_addr_dbg("ip_newroute_ipif: " 8563 "no dst ill for dst %s\n", 8564 AF_INET, &dst); 8565 } 8566 goto err_ret; 8567 } 8568 } 8569 8570 /* 8571 * Pick a source address preferring non-deprecated ones. 8572 * Unlike ip_newroute, we don't do any source address 8573 * selection here since for multicast it really does not help 8574 * in inbound load spreading as in the unicast case. 8575 */ 8576 if ((flags & RTF_SETSRC) && (fire != NULL) && 8577 (fire->ire_flags & RTF_SETSRC)) { 8578 /* 8579 * As requested by flags, an IRE_OFFSUBNET was looked up 8580 * on that interface. This ire has RTF_SETSRC flag, so 8581 * the source address of the packet must be changed. 8582 * Check that the ipif matching the requested source 8583 * address still exists. 8584 */ 8585 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8586 zoneid, NULL, NULL, NULL, NULL); 8587 } 8588 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 8589 (connp != NULL && ipif->ipif_zoneid != zoneid && 8590 ipif->ipif_zoneid != ALL_ZONES)) && 8591 (src_ipif == NULL)) { 8592 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8593 if (src_ipif == NULL) { 8594 if (ip_debug > 2) { 8595 /* ip1dbg */ 8596 pr_addr_dbg("ip_newroute_ipif: " 8597 "no src for dst %s", 8598 AF_INET, &dst); 8599 } 8600 ip1dbg((" through interface %s\n", 8601 dst_ill->ill_name)); 8602 goto err_ret; 8603 } 8604 ipif_refrele(ipif); 8605 ipif = src_ipif; 8606 ipif_refhold(ipif); 8607 } 8608 if (src_ipif == NULL) { 8609 src_ipif = ipif; 8610 ipif_refhold(src_ipif); 8611 } 8612 8613 /* 8614 * Assign a source address while we have the conn. 8615 * We can't have ip_wput_ire pick a source address when the 8616 * packet returns from arp since conn_unspec_src might be set 8617 * and we loose the conn when going through arp. 8618 */ 8619 if (ipha->ipha_src == INADDR_ANY && 8620 (connp == NULL || !connp->conn_unspec_src)) { 8621 ipha->ipha_src = src_ipif->ipif_src_addr; 8622 } 8623 8624 /* 8625 * In case of IP_XMIT_IF, it is possible that the outgoing 8626 * interface does not have an interface ire. 8627 * Example: Thousands of mobileip PPP interfaces to mobile 8628 * nodes. We don't want to create interface ires because 8629 * packets from other mobile nodes must not take the route 8630 * via interface ires to the visiting mobile node without 8631 * going through the home agent, in absence of mobileip 8632 * route optimization. 8633 */ 8634 if (CLASSD(ipha_dst) && (connp == NULL || 8635 connp->conn_xmit_if_ill == NULL)) { 8636 /* ipif_to_ire returns an held ire */ 8637 ire = ipif_to_ire(ipif); 8638 if (ire == NULL) 8639 goto err_ret; 8640 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 8641 goto err_ret; 8642 /* 8643 * ihandle is needed when the ire is added to 8644 * cache table. 8645 */ 8646 save_ire = ire; 8647 ihandle = save_ire->ire_ihandle; 8648 8649 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 8650 "flags %04x\n", 8651 (void *)ire, (void *)ipif, flags)); 8652 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8653 (fire->ire_flags & RTF_MULTIRT)) { 8654 /* 8655 * As requested by flags, an IRE_OFFSUBNET was 8656 * looked up on that interface. This ire has 8657 * RTF_MULTIRT flag, so the resolution loop will 8658 * be re-entered to resolve additional routes on 8659 * other interfaces. For that purpose, a copy of 8660 * the packet is performed at this point. 8661 */ 8662 fire->ire_last_used_time = lbolt; 8663 copy_mp = copymsg(first_mp); 8664 if (copy_mp) { 8665 MULTIRT_DEBUG_TAG(copy_mp); 8666 } 8667 } 8668 if ((flags & RTF_SETSRC) && (fire != NULL) && 8669 (fire->ire_flags & RTF_SETSRC)) { 8670 /* 8671 * As requested by flags, an IRE_OFFSUBET was 8672 * looked up on that interface. This ire has 8673 * RTF_SETSRC flag, so the source address of the 8674 * packet must be changed. 8675 */ 8676 ipha->ipha_src = fire->ire_src_addr; 8677 } 8678 } else { 8679 ASSERT((connp == NULL) || 8680 (connp->conn_xmit_if_ill != NULL) || 8681 (connp->conn_dontroute)); 8682 /* 8683 * The only ways we can come here are: 8684 * 1) IP_XMIT_IF socket option is set 8685 * 2) ICMP error message generated from 8686 * ip_mrtun_forward() routine and it needs 8687 * to go through the specified ill. 8688 * 3) SO_DONTROUTE socket option is set 8689 * In all cases, the new ire will not be added 8690 * into cache table. 8691 */ 8692 ire_marks |= IRE_MARK_NOADD; 8693 } 8694 8695 switch (ipif->ipif_net_type) { 8696 case IRE_IF_NORESOLVER: { 8697 /* We have what we need to build an IRE_CACHE. */ 8698 mblk_t *res_mp; 8699 8700 /* 8701 * Create a new res_mp with the 8702 * IP gateway address as destination address in the 8703 * DLPI hdr if the physical length is exactly 4 bytes. 8704 */ 8705 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8706 res_mp = ill_dlur_gen((uchar_t *)&dst, 8707 dst_ill->ill_phys_addr_length, 8708 dst_ill->ill_sap, 8709 dst_ill->ill_sap_length); 8710 } else { 8711 /* use the value set in ip_ll_subnet_defaults */ 8712 res_mp = ill_dlur_gen(NULL, 8713 dst_ill->ill_phys_addr_length, 8714 dst_ill->ill_sap, 8715 dst_ill->ill_sap_length); 8716 } 8717 8718 if (res_mp == NULL) 8719 break; 8720 /* 8721 * The new ire inherits the IRE_OFFSUBNET flags 8722 * and source address, if this was requested. 8723 */ 8724 ire = ire_create( 8725 (uchar_t *)&dst, /* dest address */ 8726 (uchar_t *)&ip_g_all_ones, /* mask */ 8727 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8728 NULL, /* gateway address */ 8729 NULL, 8730 &ipif->ipif_mtu, 8731 NULL, /* Fast Path header */ 8732 dst_ill->ill_rq, /* recv-from queue */ 8733 dst_ill->ill_wq, /* send-to queue */ 8734 IRE_CACHE, 8735 res_mp, 8736 src_ipif, 8737 NULL, 8738 (save_ire != NULL ? save_ire->ire_mask : 0), 8739 (fire != NULL) ? /* Parent handle */ 8740 fire->ire_phandle : 0, 8741 ihandle, /* Interface handle */ 8742 (fire != NULL) ? 8743 (fire->ire_flags & 8744 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8745 (save_ire == NULL ? &ire_uinfo_null : 8746 &save_ire->ire_uinfo), 8747 NULL, 8748 NULL); 8749 8750 freeb(res_mp); 8751 8752 if (ire == NULL) { 8753 if (save_ire != NULL) 8754 ire_refrele(save_ire); 8755 break; 8756 } 8757 8758 ire->ire_marks |= ire_marks; 8759 8760 /* 8761 * If IRE_MARK_NOADD is set then we need to convert 8762 * the max_fragp to a useable value now. This is 8763 * normally done in ire_add_v[46]. We also need to 8764 * associate the ire with an nce (normally would be 8765 * done in ip_wput_nondata()). 8766 * 8767 * Note that IRE_MARK_NOADD packets created here 8768 * do not have a non-null ire_mp pointer. The null 8769 * value of ire_bucket indicates that they were 8770 * never added. 8771 */ 8772 if (ire->ire_marks & IRE_MARK_NOADD) { 8773 uint_t max_frag; 8774 8775 max_frag = *ire->ire_max_fragp; 8776 ire->ire_max_fragp = NULL; 8777 ire->ire_max_frag = max_frag; 8778 8779 if ((ire->ire_nce = ndp_lookup_v4( 8780 ire_to_ill(ire), 8781 (ire->ire_gateway_addr != INADDR_ANY ? 8782 &ire->ire_gateway_addr : &ire->ire_addr), 8783 B_FALSE)) == NULL) { 8784 if (save_ire != NULL) 8785 ire_refrele(save_ire); 8786 break; 8787 } 8788 ASSERT(ire->ire_nce->nce_state == 8789 ND_REACHABLE); 8790 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 8791 } 8792 8793 /* Prevent save_ire from getting deleted */ 8794 if (save_ire != NULL) { 8795 IRB_REFHOLD(save_ire->ire_bucket); 8796 /* Has it been removed already ? */ 8797 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8798 IRB_REFRELE(save_ire->ire_bucket); 8799 ire_refrele(save_ire); 8800 break; 8801 } 8802 } 8803 8804 ire_add_then_send(q, ire, first_mp); 8805 8806 /* Assert that save_ire is not deleted yet. */ 8807 if (save_ire != NULL) { 8808 ASSERT(save_ire->ire_ptpn != NULL); 8809 IRB_REFRELE(save_ire->ire_bucket); 8810 ire_refrele(save_ire); 8811 save_ire = NULL; 8812 } 8813 if (fire != NULL) { 8814 ire_refrele(fire); 8815 fire = NULL; 8816 } 8817 8818 /* 8819 * the resolution loop is re-entered if this 8820 * was requested through flags and if we 8821 * actually are in a multirouting case. 8822 */ 8823 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8824 boolean_t need_resolve = 8825 ire_multirt_need_resolve(ipha_dst, 8826 MBLK_GETLABEL(copy_mp)); 8827 if (!need_resolve) { 8828 MULTIRT_DEBUG_UNTAG(copy_mp); 8829 freemsg(copy_mp); 8830 copy_mp = NULL; 8831 } else { 8832 /* 8833 * ipif_lookup_group() calls 8834 * ire_lookup_multi() that uses 8835 * ire_ftable_lookup() to find 8836 * an IRE_INTERFACE for the group. 8837 * In the multirt case, 8838 * ire_lookup_multi() then invokes 8839 * ire_multirt_lookup() to find 8840 * the next resolvable ire. 8841 * As a result, we obtain an new 8842 * interface, derived from the 8843 * next ire. 8844 */ 8845 ipif_refrele(ipif); 8846 ipif = ipif_lookup_group(ipha_dst, 8847 zoneid); 8848 ip2dbg(("ip_newroute_ipif: " 8849 "multirt dst %08x, ipif %p\n", 8850 htonl(dst), (void *)ipif)); 8851 if (ipif != NULL) { 8852 mp = copy_mp; 8853 copy_mp = NULL; 8854 multirt_resolve_next = B_TRUE; 8855 continue; 8856 } else { 8857 freemsg(copy_mp); 8858 } 8859 } 8860 } 8861 if (ipif != NULL) 8862 ipif_refrele(ipif); 8863 ill_refrele(dst_ill); 8864 ipif_refrele(src_ipif); 8865 return; 8866 } 8867 case IRE_IF_RESOLVER: 8868 /* 8869 * We can't build an IRE_CACHE yet, but at least 8870 * we found a resolver that can help. 8871 */ 8872 res_mp = dst_ill->ill_resolver_mp; 8873 if (!OK_RESOLVER_MP(res_mp)) 8874 break; 8875 8876 /* 8877 * We obtain a partial IRE_CACHE which we will pass 8878 * along with the resolver query. When the response 8879 * comes back it will be there ready for us to add. 8880 * The new ire inherits the IRE_OFFSUBNET flags 8881 * and source address, if this was requested. 8882 * The ire_max_frag is atomically set under the 8883 * irebucket lock in ire_add_v[46]. Only in the 8884 * case of IRE_MARK_NOADD, we set it here itself. 8885 */ 8886 ire = ire_create_mp( 8887 (uchar_t *)&dst, /* dest address */ 8888 (uchar_t *)&ip_g_all_ones, /* mask */ 8889 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8890 NULL, /* gateway address */ 8891 NULL, /* no in_src_addr */ 8892 (ire_marks & IRE_MARK_NOADD) ? 8893 ipif->ipif_mtu : 0, /* max_frag */ 8894 NULL, /* Fast path header */ 8895 dst_ill->ill_rq, /* recv-from queue */ 8896 dst_ill->ill_wq, /* send-to queue */ 8897 IRE_CACHE, 8898 NULL, /* let ire_nce_init figure res_mp out */ 8899 src_ipif, 8900 NULL, 8901 (save_ire != NULL ? save_ire->ire_mask : 0), 8902 (fire != NULL) ? /* Parent handle */ 8903 fire->ire_phandle : 0, 8904 ihandle, /* Interface handle */ 8905 (fire != NULL) ? /* flags if any */ 8906 (fire->ire_flags & 8907 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8908 (save_ire == NULL ? &ire_uinfo_null : 8909 &save_ire->ire_uinfo), 8910 NULL, 8911 NULL); 8912 8913 if (save_ire != NULL) { 8914 ire_refrele(save_ire); 8915 save_ire = NULL; 8916 } 8917 if (ire == NULL) 8918 break; 8919 8920 ire->ire_marks |= ire_marks; 8921 /* 8922 * Construct message chain for the resolver of the 8923 * form: 8924 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8925 * 8926 * NOTE : ire will be added later when the response 8927 * comes back from ARP. If the response does not 8928 * come back, ARP frees the packet. For this reason, 8929 * we can't REFHOLD the bucket of save_ire to prevent 8930 * deletions. We may not be able to REFRELE the 8931 * bucket if the response never comes back. 8932 * Thus, before adding the ire, ire_add_v4 will make 8933 * sure that the interface route does not get deleted. 8934 * This is the only case unlike ip_newroute_v6, 8935 * ip_newroute_ipif_v6 where we can always prevent 8936 * deletions because ire_add_then_send is called after 8937 * creating the IRE. 8938 * If IRE_MARK_NOADD is set, then ire_add_then_send 8939 * does not add this IRE into the IRE CACHE. 8940 */ 8941 ASSERT(ire->ire_mp != NULL); 8942 ire->ire_mp->b_cont = first_mp; 8943 /* Have saved_mp handy, for cleanup if canput fails */ 8944 saved_mp = mp; 8945 mp = copyb(res_mp); 8946 ASSERT(mp != NULL); 8947 linkb(mp, ire->ire_mp); 8948 8949 /* 8950 * Fill in the source and dest addrs for the resolver. 8951 * NOTE: this depends on memory layouts imposed by 8952 * ill_init(). 8953 */ 8954 areq = (areq_t *)mp->b_rptr; 8955 addrp = (ipaddr_t *)((char *)areq + 8956 areq->areq_sender_addr_offset); 8957 *addrp = ire->ire_src_addr; 8958 addrp = (ipaddr_t *)((char *)areq + 8959 areq->areq_target_addr_offset); 8960 *addrp = dst; 8961 /* Up to the resolver. */ 8962 if (canputnext(dst_ill->ill_rq) && 8963 !(dst_ill->ill_arp_closing)) { 8964 putnext(dst_ill->ill_rq, mp); 8965 /* 8966 * The response will come back in ip_wput 8967 * with db_type IRE_DB_TYPE. 8968 */ 8969 } else { 8970 mp->b_cont = NULL; 8971 freeb(mp); /* areq */ 8972 ire_delete(ire); /* ire_mp */ 8973 saved_mp->b_next = NULL; 8974 saved_mp->b_prev = NULL; 8975 freemsg(first_mp); /* pkt */ 8976 ip2dbg(("ip_newroute_ipif: dropped\n")); 8977 } 8978 8979 if (fire != NULL) { 8980 ire_refrele(fire); 8981 fire = NULL; 8982 } 8983 8984 8985 /* 8986 * The resolution loop is re-entered if this was 8987 * requested through flags and we actually are 8988 * in a multirouting case. 8989 */ 8990 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8991 boolean_t need_resolve = 8992 ire_multirt_need_resolve(ipha_dst, 8993 MBLK_GETLABEL(copy_mp)); 8994 if (!need_resolve) { 8995 MULTIRT_DEBUG_UNTAG(copy_mp); 8996 freemsg(copy_mp); 8997 copy_mp = NULL; 8998 } else { 8999 /* 9000 * ipif_lookup_group() calls 9001 * ire_lookup_multi() that uses 9002 * ire_ftable_lookup() to find 9003 * an IRE_INTERFACE for the group. 9004 * In the multirt case, 9005 * ire_lookup_multi() then invokes 9006 * ire_multirt_lookup() to find 9007 * the next resolvable ire. 9008 * As a result, we obtain an new 9009 * interface, derived from the 9010 * next ire. 9011 */ 9012 ipif_refrele(ipif); 9013 ipif = ipif_lookup_group(ipha_dst, 9014 zoneid); 9015 if (ipif != NULL) { 9016 mp = copy_mp; 9017 copy_mp = NULL; 9018 multirt_resolve_next = B_TRUE; 9019 continue; 9020 } else { 9021 freemsg(copy_mp); 9022 } 9023 } 9024 } 9025 if (ipif != NULL) 9026 ipif_refrele(ipif); 9027 ill_refrele(dst_ill); 9028 ipif_refrele(src_ipif); 9029 return; 9030 default: 9031 break; 9032 } 9033 } while (multirt_resolve_next); 9034 9035 err_ret: 9036 ip2dbg(("ip_newroute_ipif: dropped\n")); 9037 if (fire != NULL) 9038 ire_refrele(fire); 9039 ipif_refrele(ipif); 9040 /* Did this packet originate externally? */ 9041 if (dst_ill != NULL) 9042 ill_refrele(dst_ill); 9043 if (src_ipif != NULL) 9044 ipif_refrele(src_ipif); 9045 if (mp->b_prev || mp->b_next) { 9046 mp->b_next = NULL; 9047 mp->b_prev = NULL; 9048 } else { 9049 /* 9050 * Since ip_wput() isn't close to finished, we fill 9051 * in enough of the header for credible error reporting. 9052 */ 9053 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 9054 /* Failed */ 9055 freemsg(first_mp); 9056 if (ire != NULL) 9057 ire_refrele(ire); 9058 return; 9059 } 9060 } 9061 /* 9062 * At this point we will have ire only if RTF_BLACKHOLE 9063 * or RTF_REJECT flags are set on the IRE. It will not 9064 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9065 */ 9066 if (ire != NULL) { 9067 if (ire->ire_flags & RTF_BLACKHOLE) { 9068 ire_refrele(ire); 9069 freemsg(first_mp); 9070 return; 9071 } 9072 ire_refrele(ire); 9073 } 9074 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 9075 } 9076 9077 /* Name/Value Table Lookup Routine */ 9078 char * 9079 ip_nv_lookup(nv_t *nv, int value) 9080 { 9081 if (!nv) 9082 return (NULL); 9083 for (; nv->nv_name; nv++) { 9084 if (nv->nv_value == value) 9085 return (nv->nv_name); 9086 } 9087 return ("unknown"); 9088 } 9089 9090 /* 9091 * one day it can be patched to 1 from /etc/system for machines that have few 9092 * fast network interfaces feeding multiple cpus. 9093 */ 9094 int ill_stream_putlocks = 0; 9095 9096 /* 9097 * This is a module open, i.e. this is a control stream for access 9098 * to a DLPI device. We allocate an ill_t as the instance data in 9099 * this case. 9100 */ 9101 int 9102 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9103 { 9104 uint32_t mem_cnt; 9105 uint32_t cpu_cnt; 9106 uint32_t min_cnt; 9107 pgcnt_t mem_avail; 9108 ill_t *ill; 9109 int err; 9110 9111 /* 9112 * Prevent unprivileged processes from pushing IP so that 9113 * they can't send raw IP. 9114 */ 9115 if (secpolicy_net_rawaccess(credp) != 0) 9116 return (EPERM); 9117 9118 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9119 q->q_ptr = WR(q)->q_ptr = ill; 9120 9121 /* 9122 * ill_init initializes the ill fields and then sends down 9123 * down a DL_INFO_REQ after calling qprocson. 9124 */ 9125 err = ill_init(q, ill); 9126 if (err != 0) { 9127 mi_free(ill); 9128 q->q_ptr = NULL; 9129 WR(q)->q_ptr = NULL; 9130 return (err); 9131 } 9132 9133 /* ill_init initializes the ipsq marking this thread as writer */ 9134 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9135 /* Wait for the DL_INFO_ACK */ 9136 mutex_enter(&ill->ill_lock); 9137 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9138 /* 9139 * Return value of 0 indicates a pending signal. 9140 */ 9141 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9142 if (err == 0) { 9143 mutex_exit(&ill->ill_lock); 9144 (void) ip_close(q, 0); 9145 return (EINTR); 9146 } 9147 } 9148 mutex_exit(&ill->ill_lock); 9149 9150 /* 9151 * ip_rput_other could have set an error in ill_error on 9152 * receipt of M_ERROR. 9153 */ 9154 9155 err = ill->ill_error; 9156 if (err != 0) { 9157 (void) ip_close(q, 0); 9158 return (err); 9159 } 9160 9161 /* 9162 * ip_ire_max_bucket_cnt is sized below based on the memory 9163 * size and the cpu speed of the machine. This is upper 9164 * bounded by the compile time value of ip_ire_max_bucket_cnt 9165 * and is lower bounded by the compile time value of 9166 * ip_ire_min_bucket_cnt. Similar logic applies to 9167 * ip6_ire_max_bucket_cnt. 9168 */ 9169 mem_avail = kmem_avail(); 9170 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9171 ip_cache_table_size / sizeof (ire_t); 9172 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9173 9174 min_cnt = MIN(cpu_cnt, mem_cnt); 9175 if (min_cnt < ip_ire_min_bucket_cnt) 9176 min_cnt = ip_ire_min_bucket_cnt; 9177 if (ip_ire_max_bucket_cnt > min_cnt) { 9178 ip_ire_max_bucket_cnt = min_cnt; 9179 } 9180 9181 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9182 ip6_cache_table_size / sizeof (ire_t); 9183 min_cnt = MIN(cpu_cnt, mem_cnt); 9184 if (min_cnt < ip6_ire_min_bucket_cnt) 9185 min_cnt = ip6_ire_min_bucket_cnt; 9186 if (ip6_ire_max_bucket_cnt > min_cnt) { 9187 ip6_ire_max_bucket_cnt = min_cnt; 9188 } 9189 9190 ill->ill_credp = credp; 9191 crhold(credp); 9192 9193 mutex_enter(&ip_mi_lock); 9194 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9195 mutex_exit(&ip_mi_lock); 9196 if (err) { 9197 (void) ip_close(q, 0); 9198 return (err); 9199 } 9200 return (0); 9201 } 9202 9203 /* IP open routine. */ 9204 int 9205 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9206 { 9207 conn_t *connp; 9208 major_t maj; 9209 9210 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9211 9212 /* Allow reopen. */ 9213 if (q->q_ptr != NULL) 9214 return (0); 9215 9216 if (sflag & MODOPEN) { 9217 /* This is a module open */ 9218 return (ip_modopen(q, devp, flag, sflag, credp)); 9219 } 9220 9221 /* 9222 * We are opening as a device. This is an IP client stream, and we 9223 * allocate an conn_t as the instance data. 9224 */ 9225 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9226 connp->conn_upq = q; 9227 q->q_ptr = WR(q)->q_ptr = connp; 9228 9229 if (flag & SO_SOCKSTR) 9230 connp->conn_flags |= IPCL_SOCKET; 9231 9232 /* Minor tells us which /dev entry was opened */ 9233 if (geteminor(*devp) == IPV6_MINOR) { 9234 connp->conn_flags |= IPCL_ISV6; 9235 connp->conn_af_isv6 = B_TRUE; 9236 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9237 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9238 } else { 9239 connp->conn_af_isv6 = B_FALSE; 9240 connp->conn_pkt_isv6 = B_FALSE; 9241 } 9242 9243 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9244 q->q_ptr = WR(q)->q_ptr = NULL; 9245 CONN_DEC_REF(connp); 9246 return (EBUSY); 9247 } 9248 9249 maj = getemajor(*devp); 9250 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9251 9252 /* 9253 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9254 */ 9255 connp->conn_cred = credp; 9256 crhold(connp->conn_cred); 9257 9258 /* 9259 * If the caller has the process-wide flag set, then default to MAC 9260 * exempt mode. This allows read-down to unlabeled hosts. 9261 */ 9262 if (getpflags(NET_MAC_AWARE, credp) != 0) 9263 connp->conn_mac_exempt = B_TRUE; 9264 9265 connp->conn_zoneid = getzoneid(); 9266 9267 /* 9268 * This should only happen for ndd, netstat, raw socket or other SCTP 9269 * administrative ops. In these cases, we just need a normal conn_t 9270 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9271 * an error will be returned. 9272 */ 9273 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9274 connp->conn_rq = q; 9275 connp->conn_wq = WR(q); 9276 } else { 9277 connp->conn_ulp = IPPROTO_SCTP; 9278 connp->conn_rq = connp->conn_wq = NULL; 9279 } 9280 /* Non-zero default values */ 9281 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9282 9283 /* 9284 * Make the conn globally visible to walkers 9285 */ 9286 mutex_enter(&connp->conn_lock); 9287 connp->conn_state_flags &= ~CONN_INCIPIENT; 9288 mutex_exit(&connp->conn_lock); 9289 ASSERT(connp->conn_ref == 1); 9290 9291 qprocson(q); 9292 9293 return (0); 9294 } 9295 9296 /* 9297 * Change q_qinfo based on the value of isv6. 9298 * This can not called on an ill queue. 9299 * Note that there is no race since either q_qinfo works for conn queues - it 9300 * is just an optimization to enter the best wput routine directly. 9301 */ 9302 void 9303 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9304 { 9305 ASSERT(q->q_flag & QREADR); 9306 ASSERT(WR(q)->q_next == NULL); 9307 ASSERT(q->q_ptr != NULL); 9308 9309 if (minor == IPV6_MINOR) { 9310 if (bump_mib) 9311 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9312 q->q_qinfo = &rinit_ipv6; 9313 WR(q)->q_qinfo = &winit_ipv6; 9314 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9315 } else { 9316 if (bump_mib) 9317 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9318 q->q_qinfo = &rinit; 9319 WR(q)->q_qinfo = &winit; 9320 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9321 } 9322 9323 } 9324 9325 /* 9326 * See if IPsec needs loading because of the options in mp. 9327 */ 9328 static boolean_t 9329 ipsec_opt_present(mblk_t *mp) 9330 { 9331 uint8_t *optcp, *next_optcp, *opt_endcp; 9332 struct opthdr *opt; 9333 struct T_opthdr *topt; 9334 int opthdr_len; 9335 t_uscalar_t optname, optlevel; 9336 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9337 ipsec_req_t *ipsr; 9338 9339 /* 9340 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9341 * return TRUE. 9342 */ 9343 9344 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9345 opt_endcp = optcp + tor->OPT_length; 9346 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9347 opthdr_len = sizeof (struct T_opthdr); 9348 } else { /* O_OPTMGMT_REQ */ 9349 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9350 opthdr_len = sizeof (struct opthdr); 9351 } 9352 for (; optcp < opt_endcp; optcp = next_optcp) { 9353 if (optcp + opthdr_len > opt_endcp) 9354 return (B_FALSE); /* Not enough option header. */ 9355 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9356 topt = (struct T_opthdr *)optcp; 9357 optlevel = topt->level; 9358 optname = topt->name; 9359 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9360 } else { 9361 opt = (struct opthdr *)optcp; 9362 optlevel = opt->level; 9363 optname = opt->name; 9364 next_optcp = optcp + opthdr_len + 9365 _TPI_ALIGN_OPT(opt->len); 9366 } 9367 if ((next_optcp < optcp) || /* wraparound pointer space */ 9368 ((next_optcp >= opt_endcp) && /* last option bad len */ 9369 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9370 return (B_FALSE); /* bad option buffer */ 9371 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9372 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9373 /* 9374 * Check to see if it's an all-bypass or all-zeroes 9375 * IPsec request. Don't bother loading IPsec if 9376 * the socket doesn't want to use it. (A good example 9377 * is a bypass request.) 9378 * 9379 * Basically, if any of the non-NEVER bits are set, 9380 * load IPsec. 9381 */ 9382 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9383 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9384 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9385 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9386 != 0) 9387 return (B_TRUE); 9388 } 9389 } 9390 return (B_FALSE); 9391 } 9392 9393 /* 9394 * If conn is is waiting for ipsec to finish loading, kick it. 9395 */ 9396 /* ARGSUSED */ 9397 static void 9398 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9399 { 9400 t_scalar_t optreq_prim; 9401 mblk_t *mp; 9402 cred_t *cr; 9403 int err = 0; 9404 9405 /* 9406 * This function is called, after ipsec loading is complete. 9407 * Since IP checks exclusively and atomically (i.e it prevents 9408 * ipsec load from completing until ip_optcom_req completes) 9409 * whether ipsec load is complete, there cannot be a race with IP 9410 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9411 */ 9412 mutex_enter(&connp->conn_lock); 9413 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9414 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9415 mp = connp->conn_ipsec_opt_mp; 9416 connp->conn_ipsec_opt_mp = NULL; 9417 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9418 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9419 mutex_exit(&connp->conn_lock); 9420 9421 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9422 9423 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9424 if (optreq_prim == T_OPTMGMT_REQ) { 9425 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9426 &ip_opt_obj); 9427 } else { 9428 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9429 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9430 &ip_opt_obj); 9431 } 9432 if (err != EINPROGRESS) 9433 CONN_OPER_PENDING_DONE(connp); 9434 return; 9435 } 9436 mutex_exit(&connp->conn_lock); 9437 } 9438 9439 /* 9440 * Called from the ipsec_loader thread, outside any perimeter, to tell 9441 * ip qenable any of the queues waiting for the ipsec loader to 9442 * complete. 9443 * 9444 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9445 * are done with this lock held, so it's guaranteed that none of the 9446 * links will change along the way. 9447 */ 9448 void 9449 ip_ipsec_load_complete() 9450 { 9451 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9452 } 9453 9454 /* 9455 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9456 * determines the grp on which it has to become exclusive, queues the mp 9457 * and sq draining restarts the optmgmt 9458 */ 9459 static boolean_t 9460 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9461 { 9462 conn_t *connp; 9463 9464 /* 9465 * Take IPsec requests and treat them special. 9466 */ 9467 if (ipsec_opt_present(mp)) { 9468 /* First check if IPsec is loaded. */ 9469 mutex_enter(&ipsec_loader_lock); 9470 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9471 mutex_exit(&ipsec_loader_lock); 9472 return (B_FALSE); 9473 } 9474 connp = Q_TO_CONN(q); 9475 mutex_enter(&connp->conn_lock); 9476 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9477 9478 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9479 connp->conn_ipsec_opt_mp = mp; 9480 mutex_exit(&connp->conn_lock); 9481 mutex_exit(&ipsec_loader_lock); 9482 9483 ipsec_loader_loadnow(); 9484 return (B_TRUE); 9485 } 9486 return (B_FALSE); 9487 } 9488 9489 /* 9490 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9491 * all of them are copied to the conn_t. If the req is "zero", the policy is 9492 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9493 * fields. 9494 * We keep only the latest setting of the policy and thus policy setting 9495 * is not incremental/cumulative. 9496 * 9497 * Requests to set policies with multiple alternative actions will 9498 * go through a different API. 9499 */ 9500 int 9501 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9502 { 9503 uint_t ah_req = 0; 9504 uint_t esp_req = 0; 9505 uint_t se_req = 0; 9506 ipsec_selkey_t sel; 9507 ipsec_act_t *actp = NULL; 9508 uint_t nact; 9509 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9510 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9511 ipsec_policy_root_t *pr; 9512 ipsec_policy_head_t *ph; 9513 int fam; 9514 boolean_t is_pol_reset; 9515 int error = 0; 9516 9517 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9518 9519 /* 9520 * The IP_SEC_OPT option does not allow variable length parameters, 9521 * hence a request cannot be NULL. 9522 */ 9523 if (req == NULL) 9524 return (EINVAL); 9525 9526 ah_req = req->ipsr_ah_req; 9527 esp_req = req->ipsr_esp_req; 9528 se_req = req->ipsr_self_encap_req; 9529 9530 /* 9531 * Are we dealing with a request to reset the policy (i.e. 9532 * zero requests). 9533 */ 9534 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9535 (esp_req & REQ_MASK) == 0 && 9536 (se_req & REQ_MASK) == 0); 9537 9538 if (!is_pol_reset) { 9539 /* 9540 * If we couldn't load IPsec, fail with "protocol 9541 * not supported". 9542 * IPsec may not have been loaded for a request with zero 9543 * policies, so we don't fail in this case. 9544 */ 9545 mutex_enter(&ipsec_loader_lock); 9546 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 9547 mutex_exit(&ipsec_loader_lock); 9548 return (EPROTONOSUPPORT); 9549 } 9550 mutex_exit(&ipsec_loader_lock); 9551 9552 /* 9553 * Test for valid requests. Invalid algorithms 9554 * need to be tested by IPSEC code because new 9555 * algorithms can be added dynamically. 9556 */ 9557 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9558 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9559 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 9560 return (EINVAL); 9561 } 9562 9563 /* 9564 * Only privileged users can issue these 9565 * requests. 9566 */ 9567 if (((ah_req & IPSEC_PREF_NEVER) || 9568 (esp_req & IPSEC_PREF_NEVER) || 9569 (se_req & IPSEC_PREF_NEVER)) && 9570 secpolicy_net_config(cr, B_FALSE) != 0) { 9571 return (EPERM); 9572 } 9573 9574 /* 9575 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 9576 * are mutually exclusive. 9577 */ 9578 if (((ah_req & REQ_MASK) == REQ_MASK) || 9579 ((esp_req & REQ_MASK) == REQ_MASK) || 9580 ((se_req & REQ_MASK) == REQ_MASK)) { 9581 /* Both of them are set */ 9582 return (EINVAL); 9583 } 9584 } 9585 9586 mutex_enter(&connp->conn_lock); 9587 9588 /* 9589 * If we have already cached policies in ip_bind_connected*(), don't 9590 * let them change now. We cache policies for connections 9591 * whose src,dst [addr, port] is known. The exception to this is 9592 * tunnels. Tunnels are allowed to change policies after having 9593 * become fully bound. 9594 */ 9595 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 9596 mutex_exit(&connp->conn_lock); 9597 return (EINVAL); 9598 } 9599 9600 /* 9601 * We have a zero policies, reset the connection policy if already 9602 * set. This will cause the connection to inherit the 9603 * global policy, if any. 9604 */ 9605 if (is_pol_reset) { 9606 if (connp->conn_policy != NULL) { 9607 IPPH_REFRELE(connp->conn_policy); 9608 connp->conn_policy = NULL; 9609 } 9610 connp->conn_flags &= ~IPCL_CHECK_POLICY; 9611 connp->conn_in_enforce_policy = B_FALSE; 9612 connp->conn_out_enforce_policy = B_FALSE; 9613 mutex_exit(&connp->conn_lock); 9614 return (0); 9615 } 9616 9617 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 9618 if (ph == NULL) 9619 goto enomem; 9620 9621 ipsec_actvec_from_req(req, &actp, &nact); 9622 if (actp == NULL) 9623 goto enomem; 9624 9625 /* 9626 * Always allocate IPv4 policy entries, since they can also 9627 * apply to ipv6 sockets being used in ipv4-compat mode. 9628 */ 9629 bzero(&sel, sizeof (sel)); 9630 sel.ipsl_valid = IPSL_IPV4; 9631 9632 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9633 if (pin4 == NULL) 9634 goto enomem; 9635 9636 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9637 if (pout4 == NULL) 9638 goto enomem; 9639 9640 if (connp->conn_pkt_isv6) { 9641 /* 9642 * We're looking at a v6 socket, also allocate the 9643 * v6-specific entries... 9644 */ 9645 sel.ipsl_valid = IPSL_IPV6; 9646 pin6 = ipsec_policy_create(&sel, actp, nact, 9647 IPSEC_PRIO_SOCKET); 9648 if (pin6 == NULL) 9649 goto enomem; 9650 9651 pout6 = ipsec_policy_create(&sel, actp, nact, 9652 IPSEC_PRIO_SOCKET); 9653 if (pout6 == NULL) 9654 goto enomem; 9655 9656 /* 9657 * .. and file them away in the right place. 9658 */ 9659 fam = IPSEC_AF_V6; 9660 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9661 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 9662 ipsec_insert_always(&ph->iph_rulebyid, pin6); 9663 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9664 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 9665 ipsec_insert_always(&ph->iph_rulebyid, pout6); 9666 } 9667 9668 ipsec_actvec_free(actp, nact); 9669 9670 /* 9671 * File the v4 policies. 9672 */ 9673 fam = IPSEC_AF_V4; 9674 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9675 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 9676 ipsec_insert_always(&ph->iph_rulebyid, pin4); 9677 9678 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9679 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 9680 ipsec_insert_always(&ph->iph_rulebyid, pout4); 9681 9682 /* 9683 * If the requests need security, set enforce_policy. 9684 * If the requests are IPSEC_PREF_NEVER, one should 9685 * still set conn_out_enforce_policy so that an ipsec_out 9686 * gets attached in ip_wput. This is needed so that 9687 * for connections that we don't cache policy in ip_bind, 9688 * if global policy matches in ip_wput_attach_policy, we 9689 * don't wrongly inherit global policy. Similarly, we need 9690 * to set conn_in_enforce_policy also so that we don't verify 9691 * policy wrongly. 9692 */ 9693 if ((ah_req & REQ_MASK) != 0 || 9694 (esp_req & REQ_MASK) != 0 || 9695 (se_req & REQ_MASK) != 0) { 9696 connp->conn_in_enforce_policy = B_TRUE; 9697 connp->conn_out_enforce_policy = B_TRUE; 9698 connp->conn_flags |= IPCL_CHECK_POLICY; 9699 } 9700 9701 /* 9702 * Tunnels are allowed to set policy after having been fully bound. 9703 * If that's the case, cache policy here. 9704 */ 9705 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 9706 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 9707 9708 mutex_exit(&connp->conn_lock); 9709 return (error); 9710 #undef REQ_MASK 9711 9712 /* 9713 * Common memory-allocation-failure exit path. 9714 */ 9715 enomem: 9716 mutex_exit(&connp->conn_lock); 9717 if (actp != NULL) 9718 ipsec_actvec_free(actp, nact); 9719 if (pin4 != NULL) 9720 IPPOL_REFRELE(pin4); 9721 if (pout4 != NULL) 9722 IPPOL_REFRELE(pout4); 9723 if (pin6 != NULL) 9724 IPPOL_REFRELE(pin6); 9725 if (pout6 != NULL) 9726 IPPOL_REFRELE(pout6); 9727 return (ENOMEM); 9728 } 9729 9730 /* 9731 * Only for options that pass in an IP addr. Currently only V4 options 9732 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 9733 * So this function assumes level is IPPROTO_IP 9734 */ 9735 int 9736 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 9737 mblk_t *first_mp) 9738 { 9739 ipif_t *ipif = NULL; 9740 int error; 9741 ill_t *ill; 9742 int zoneid; 9743 9744 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 9745 9746 if (addr != INADDR_ANY || checkonly) { 9747 ASSERT(connp != NULL); 9748 zoneid = IPCL_ZONEID(connp); 9749 if (option == IP_NEXTHOP) { 9750 ipif = ipif_lookup_onlink_addr(addr, zoneid); 9751 } else { 9752 ipif = ipif_lookup_addr(addr, NULL, zoneid, 9753 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 9754 &error); 9755 } 9756 if (ipif == NULL) { 9757 if (error == EINPROGRESS) 9758 return (error); 9759 else if ((option == IP_MULTICAST_IF) || 9760 (option == IP_NEXTHOP)) 9761 return (EHOSTUNREACH); 9762 else 9763 return (EINVAL); 9764 } else if (checkonly) { 9765 if (option == IP_MULTICAST_IF) { 9766 ill = ipif->ipif_ill; 9767 /* not supported by the virtual network iface */ 9768 if (IS_VNI(ill)) { 9769 ipif_refrele(ipif); 9770 return (EINVAL); 9771 } 9772 } 9773 ipif_refrele(ipif); 9774 return (0); 9775 } 9776 ill = ipif->ipif_ill; 9777 mutex_enter(&connp->conn_lock); 9778 mutex_enter(&ill->ill_lock); 9779 if ((ill->ill_state_flags & ILL_CONDEMNED) || 9780 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 9781 mutex_exit(&ill->ill_lock); 9782 mutex_exit(&connp->conn_lock); 9783 ipif_refrele(ipif); 9784 return (option == IP_MULTICAST_IF ? 9785 EHOSTUNREACH : EINVAL); 9786 } 9787 } else { 9788 mutex_enter(&connp->conn_lock); 9789 } 9790 9791 /* None of the options below are supported on the VNI */ 9792 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 9793 mutex_exit(&ill->ill_lock); 9794 mutex_exit(&connp->conn_lock); 9795 ipif_refrele(ipif); 9796 return (EINVAL); 9797 } 9798 9799 switch (option) { 9800 case IP_DONTFAILOVER_IF: 9801 /* 9802 * This option is used by in.mpathd to ensure 9803 * that IPMP probe packets only go out on the 9804 * test interfaces. in.mpathd sets this option 9805 * on the non-failover interfaces. 9806 * For backward compatibility, this option 9807 * implicitly sets IP_MULTICAST_IF, as used 9808 * be done in bind(), so that ip_wput gets 9809 * this ipif to send mcast packets. 9810 */ 9811 if (ipif != NULL) { 9812 ASSERT(addr != INADDR_ANY); 9813 connp->conn_nofailover_ill = ipif->ipif_ill; 9814 connp->conn_multicast_ipif = ipif; 9815 } else { 9816 ASSERT(addr == INADDR_ANY); 9817 connp->conn_nofailover_ill = NULL; 9818 connp->conn_multicast_ipif = NULL; 9819 } 9820 break; 9821 9822 case IP_MULTICAST_IF: 9823 connp->conn_multicast_ipif = ipif; 9824 break; 9825 case IP_NEXTHOP: 9826 connp->conn_nexthop_v4 = addr; 9827 connp->conn_nexthop_set = B_TRUE; 9828 break; 9829 } 9830 9831 if (ipif != NULL) { 9832 mutex_exit(&ill->ill_lock); 9833 mutex_exit(&connp->conn_lock); 9834 ipif_refrele(ipif); 9835 return (0); 9836 } 9837 mutex_exit(&connp->conn_lock); 9838 /* We succeded in cleared the option */ 9839 return (0); 9840 } 9841 9842 /* 9843 * For options that pass in an ifindex specifying the ill. V6 options always 9844 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 9845 */ 9846 int 9847 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 9848 int level, int option, mblk_t *first_mp) 9849 { 9850 ill_t *ill = NULL; 9851 int error = 0; 9852 9853 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 9854 if (ifindex != 0) { 9855 ASSERT(connp != NULL); 9856 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 9857 first_mp, ip_restart_optmgmt, &error); 9858 if (ill != NULL) { 9859 if (checkonly) { 9860 /* not supported by the virtual network iface */ 9861 if (IS_VNI(ill)) { 9862 ill_refrele(ill); 9863 return (EINVAL); 9864 } 9865 ill_refrele(ill); 9866 return (0); 9867 } 9868 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 9869 0, NULL)) { 9870 ill_refrele(ill); 9871 ill = NULL; 9872 mutex_enter(&connp->conn_lock); 9873 goto setit; 9874 } 9875 mutex_enter(&connp->conn_lock); 9876 mutex_enter(&ill->ill_lock); 9877 if (ill->ill_state_flags & ILL_CONDEMNED) { 9878 mutex_exit(&ill->ill_lock); 9879 mutex_exit(&connp->conn_lock); 9880 ill_refrele(ill); 9881 ill = NULL; 9882 mutex_enter(&connp->conn_lock); 9883 } 9884 goto setit; 9885 } else if (error == EINPROGRESS) { 9886 return (error); 9887 } else { 9888 error = 0; 9889 } 9890 } 9891 mutex_enter(&connp->conn_lock); 9892 setit: 9893 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 9894 9895 /* 9896 * The options below assume that the ILL (if any) transmits and/or 9897 * receives traffic. Neither of which is true for the virtual network 9898 * interface, so fail setting these on a VNI. 9899 */ 9900 if (IS_VNI(ill)) { 9901 ASSERT(ill != NULL); 9902 mutex_exit(&ill->ill_lock); 9903 mutex_exit(&connp->conn_lock); 9904 ill_refrele(ill); 9905 return (EINVAL); 9906 } 9907 9908 if (level == IPPROTO_IP) { 9909 switch (option) { 9910 case IP_BOUND_IF: 9911 connp->conn_incoming_ill = ill; 9912 connp->conn_outgoing_ill = ill; 9913 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9914 0 : ifindex; 9915 break; 9916 9917 case IP_XMIT_IF: 9918 /* 9919 * Similar to IP_BOUND_IF, but this only 9920 * determines the outgoing interface for 9921 * unicast packets. Also no IRE_CACHE entry 9922 * is added for the destination of the 9923 * outgoing packets. This feature is needed 9924 * for mobile IP. 9925 */ 9926 connp->conn_xmit_if_ill = ill; 9927 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 9928 0 : ifindex; 9929 break; 9930 9931 case IP_MULTICAST_IF: 9932 /* 9933 * This option is an internal special. The socket 9934 * level IP_MULTICAST_IF specifies an 'ipaddr' and 9935 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 9936 * specifies an ifindex and we try first on V6 ill's. 9937 * If we don't find one, we they try using on v4 ill's 9938 * intenally and we come here. 9939 */ 9940 if (!checkonly && ill != NULL) { 9941 ipif_t *ipif; 9942 ipif = ill->ill_ipif; 9943 9944 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 9945 mutex_exit(&ill->ill_lock); 9946 mutex_exit(&connp->conn_lock); 9947 ill_refrele(ill); 9948 ill = NULL; 9949 mutex_enter(&connp->conn_lock); 9950 } else { 9951 connp->conn_multicast_ipif = ipif; 9952 } 9953 } 9954 break; 9955 } 9956 } else { 9957 switch (option) { 9958 case IPV6_BOUND_IF: 9959 connp->conn_incoming_ill = ill; 9960 connp->conn_outgoing_ill = ill; 9961 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9962 0 : ifindex; 9963 break; 9964 9965 case IPV6_BOUND_PIF: 9966 /* 9967 * Limit all transmit to this ill. 9968 * Unlike IPV6_BOUND_IF, using this option 9969 * prevents load spreading and failover from 9970 * happening when the interface is part of the 9971 * group. That's why we don't need to remember 9972 * the ifindex in orig_bound_ifindex as in 9973 * IPV6_BOUND_IF. 9974 */ 9975 connp->conn_outgoing_pill = ill; 9976 break; 9977 9978 case IPV6_DONTFAILOVER_IF: 9979 /* 9980 * This option is used by in.mpathd to ensure 9981 * that IPMP probe packets only go out on the 9982 * test interfaces. in.mpathd sets this option 9983 * on the non-failover interfaces. 9984 */ 9985 connp->conn_nofailover_ill = ill; 9986 /* 9987 * For backward compatibility, this option 9988 * implicitly sets ip_multicast_ill as used in 9989 * IP_MULTICAST_IF so that ip_wput gets 9990 * this ipif to send mcast packets. 9991 */ 9992 connp->conn_multicast_ill = ill; 9993 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 9994 0 : ifindex; 9995 break; 9996 9997 case IPV6_MULTICAST_IF: 9998 /* 9999 * Set conn_multicast_ill to be the IPv6 ill. 10000 * Set conn_multicast_ipif to be an IPv4 ipif 10001 * for ifindex to make IPv4 mapped addresses 10002 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10003 * Even if no IPv6 ill exists for the ifindex 10004 * we need to check for an IPv4 ifindex in order 10005 * for this to work with mapped addresses. In that 10006 * case only set conn_multicast_ipif. 10007 */ 10008 if (!checkonly) { 10009 if (ifindex == 0) { 10010 connp->conn_multicast_ill = NULL; 10011 connp->conn_orig_multicast_ifindex = 0; 10012 connp->conn_multicast_ipif = NULL; 10013 } else if (ill != NULL) { 10014 connp->conn_multicast_ill = ill; 10015 connp->conn_orig_multicast_ifindex = 10016 ifindex; 10017 } 10018 } 10019 break; 10020 } 10021 } 10022 10023 if (ill != NULL) { 10024 mutex_exit(&ill->ill_lock); 10025 mutex_exit(&connp->conn_lock); 10026 ill_refrele(ill); 10027 return (0); 10028 } 10029 mutex_exit(&connp->conn_lock); 10030 /* 10031 * We succeeded in clearing the option (ifindex == 0) or failed to 10032 * locate the ill and could not set the option (ifindex != 0) 10033 */ 10034 return (ifindex == 0 ? 0 : EINVAL); 10035 } 10036 10037 /* This routine sets socket options. */ 10038 /* ARGSUSED */ 10039 int 10040 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10041 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10042 void *dummy, cred_t *cr, mblk_t *first_mp) 10043 { 10044 int *i1 = (int *)invalp; 10045 conn_t *connp = Q_TO_CONN(q); 10046 int error = 0; 10047 boolean_t checkonly; 10048 ire_t *ire; 10049 boolean_t found; 10050 10051 switch (optset_context) { 10052 10053 case SETFN_OPTCOM_CHECKONLY: 10054 checkonly = B_TRUE; 10055 /* 10056 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10057 * inlen != 0 implies value supplied and 10058 * we have to "pretend" to set it. 10059 * inlen == 0 implies that there is no 10060 * value part in T_CHECK request and just validation 10061 * done elsewhere should be enough, we just return here. 10062 */ 10063 if (inlen == 0) { 10064 *outlenp = 0; 10065 return (0); 10066 } 10067 break; 10068 case SETFN_OPTCOM_NEGOTIATE: 10069 case SETFN_UD_NEGOTIATE: 10070 case SETFN_CONN_NEGOTIATE: 10071 checkonly = B_FALSE; 10072 break; 10073 default: 10074 /* 10075 * We should never get here 10076 */ 10077 *outlenp = 0; 10078 return (EINVAL); 10079 } 10080 10081 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10082 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10083 10084 /* 10085 * For fixed length options, no sanity check 10086 * of passed in length is done. It is assumed *_optcom_req() 10087 * routines do the right thing. 10088 */ 10089 10090 switch (level) { 10091 case SOL_SOCKET: 10092 /* 10093 * conn_lock protects the bitfields, and is used to 10094 * set the fields atomically. 10095 */ 10096 switch (name) { 10097 case SO_BROADCAST: 10098 if (!checkonly) { 10099 /* TODO: use value someplace? */ 10100 mutex_enter(&connp->conn_lock); 10101 connp->conn_broadcast = *i1 ? 1 : 0; 10102 mutex_exit(&connp->conn_lock); 10103 } 10104 break; /* goto sizeof (int) option return */ 10105 case SO_USELOOPBACK: 10106 if (!checkonly) { 10107 /* TODO: use value someplace? */ 10108 mutex_enter(&connp->conn_lock); 10109 connp->conn_loopback = *i1 ? 1 : 0; 10110 mutex_exit(&connp->conn_lock); 10111 } 10112 break; /* goto sizeof (int) option return */ 10113 case SO_DONTROUTE: 10114 if (!checkonly) { 10115 mutex_enter(&connp->conn_lock); 10116 connp->conn_dontroute = *i1 ? 1 : 0; 10117 mutex_exit(&connp->conn_lock); 10118 } 10119 break; /* goto sizeof (int) option return */ 10120 case SO_REUSEADDR: 10121 if (!checkonly) { 10122 mutex_enter(&connp->conn_lock); 10123 connp->conn_reuseaddr = *i1 ? 1 : 0; 10124 mutex_exit(&connp->conn_lock); 10125 } 10126 break; /* goto sizeof (int) option return */ 10127 case SO_PROTOTYPE: 10128 if (!checkonly) { 10129 mutex_enter(&connp->conn_lock); 10130 connp->conn_proto = *i1; 10131 mutex_exit(&connp->conn_lock); 10132 } 10133 break; /* goto sizeof (int) option return */ 10134 case SO_ALLZONES: 10135 if (!checkonly) { 10136 mutex_enter(&connp->conn_lock); 10137 if (IPCL_IS_BOUND(connp)) { 10138 mutex_exit(&connp->conn_lock); 10139 return (EINVAL); 10140 } 10141 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10142 mutex_exit(&connp->conn_lock); 10143 } 10144 break; /* goto sizeof (int) option return */ 10145 case SO_ANON_MLP: 10146 if (!checkonly) { 10147 mutex_enter(&connp->conn_lock); 10148 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10149 mutex_exit(&connp->conn_lock); 10150 } 10151 break; /* goto sizeof (int) option return */ 10152 case SO_MAC_EXEMPT: 10153 if (secpolicy_net_mac_aware(cr) != 0 || 10154 IPCL_IS_BOUND(connp)) 10155 return (EACCES); 10156 if (!checkonly) { 10157 mutex_enter(&connp->conn_lock); 10158 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10159 mutex_exit(&connp->conn_lock); 10160 } 10161 break; /* goto sizeof (int) option return */ 10162 default: 10163 /* 10164 * "soft" error (negative) 10165 * option not handled at this level 10166 * Note: Do not modify *outlenp 10167 */ 10168 return (-EINVAL); 10169 } 10170 break; 10171 case IPPROTO_IP: 10172 switch (name) { 10173 case IP_NEXTHOP: 10174 if (secpolicy_net_config(cr, B_FALSE) != 0) 10175 return (EPERM); 10176 /* FALLTHRU */ 10177 case IP_MULTICAST_IF: 10178 case IP_DONTFAILOVER_IF: { 10179 ipaddr_t addr = *i1; 10180 10181 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10182 first_mp); 10183 if (error != 0) 10184 return (error); 10185 break; /* goto sizeof (int) option return */ 10186 } 10187 10188 case IP_MULTICAST_TTL: 10189 /* Recorded in transport above IP */ 10190 *outvalp = *invalp; 10191 *outlenp = sizeof (uchar_t); 10192 return (0); 10193 case IP_MULTICAST_LOOP: 10194 if (!checkonly) { 10195 mutex_enter(&connp->conn_lock); 10196 connp->conn_multicast_loop = *invalp ? 1 : 0; 10197 mutex_exit(&connp->conn_lock); 10198 } 10199 *outvalp = *invalp; 10200 *outlenp = sizeof (uchar_t); 10201 return (0); 10202 case IP_ADD_MEMBERSHIP: 10203 case MCAST_JOIN_GROUP: 10204 case IP_DROP_MEMBERSHIP: 10205 case MCAST_LEAVE_GROUP: { 10206 struct ip_mreq *mreqp; 10207 struct group_req *greqp; 10208 ire_t *ire; 10209 boolean_t done = B_FALSE; 10210 ipaddr_t group, ifaddr; 10211 struct sockaddr_in *sin; 10212 uint32_t *ifindexp; 10213 boolean_t mcast_opt = B_TRUE; 10214 mcast_record_t fmode; 10215 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10216 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10217 10218 switch (name) { 10219 case IP_ADD_MEMBERSHIP: 10220 mcast_opt = B_FALSE; 10221 /* FALLTHRU */ 10222 case MCAST_JOIN_GROUP: 10223 fmode = MODE_IS_EXCLUDE; 10224 optfn = ip_opt_add_group; 10225 break; 10226 10227 case IP_DROP_MEMBERSHIP: 10228 mcast_opt = B_FALSE; 10229 /* FALLTHRU */ 10230 case MCAST_LEAVE_GROUP: 10231 fmode = MODE_IS_INCLUDE; 10232 optfn = ip_opt_delete_group; 10233 break; 10234 } 10235 10236 if (mcast_opt) { 10237 greqp = (struct group_req *)i1; 10238 sin = (struct sockaddr_in *)&greqp->gr_group; 10239 if (sin->sin_family != AF_INET) { 10240 *outlenp = 0; 10241 return (ENOPROTOOPT); 10242 } 10243 group = (ipaddr_t)sin->sin_addr.s_addr; 10244 ifaddr = INADDR_ANY; 10245 ifindexp = &greqp->gr_interface; 10246 } else { 10247 mreqp = (struct ip_mreq *)i1; 10248 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10249 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10250 ifindexp = NULL; 10251 } 10252 10253 /* 10254 * In the multirouting case, we need to replicate 10255 * the request on all interfaces that will take part 10256 * in replication. We do so because multirouting is 10257 * reflective, thus we will probably receive multi- 10258 * casts on those interfaces. 10259 * The ip_multirt_apply_membership() succeeds if the 10260 * operation succeeds on at least one interface. 10261 */ 10262 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10263 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10264 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10265 if (ire != NULL) { 10266 if (ire->ire_flags & RTF_MULTIRT) { 10267 error = ip_multirt_apply_membership( 10268 optfn, ire, connp, checkonly, group, 10269 fmode, INADDR_ANY, first_mp); 10270 done = B_TRUE; 10271 } 10272 ire_refrele(ire); 10273 } 10274 if (!done) { 10275 error = optfn(connp, checkonly, group, ifaddr, 10276 ifindexp, fmode, INADDR_ANY, first_mp); 10277 } 10278 if (error) { 10279 /* 10280 * EINPROGRESS is a soft error, needs retry 10281 * so don't make *outlenp zero. 10282 */ 10283 if (error != EINPROGRESS) 10284 *outlenp = 0; 10285 return (error); 10286 } 10287 /* OK return - copy input buffer into output buffer */ 10288 if (invalp != outvalp) { 10289 /* don't trust bcopy for identical src/dst */ 10290 bcopy(invalp, outvalp, inlen); 10291 } 10292 *outlenp = inlen; 10293 return (0); 10294 } 10295 case IP_BLOCK_SOURCE: 10296 case IP_UNBLOCK_SOURCE: 10297 case IP_ADD_SOURCE_MEMBERSHIP: 10298 case IP_DROP_SOURCE_MEMBERSHIP: 10299 case MCAST_BLOCK_SOURCE: 10300 case MCAST_UNBLOCK_SOURCE: 10301 case MCAST_JOIN_SOURCE_GROUP: 10302 case MCAST_LEAVE_SOURCE_GROUP: { 10303 struct ip_mreq_source *imreqp; 10304 struct group_source_req *gsreqp; 10305 in_addr_t grp, src, ifaddr = INADDR_ANY; 10306 uint32_t ifindex = 0; 10307 mcast_record_t fmode; 10308 struct sockaddr_in *sin; 10309 ire_t *ire; 10310 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10311 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10312 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10313 10314 switch (name) { 10315 case IP_BLOCK_SOURCE: 10316 mcast_opt = B_FALSE; 10317 /* FALLTHRU */ 10318 case MCAST_BLOCK_SOURCE: 10319 fmode = MODE_IS_EXCLUDE; 10320 optfn = ip_opt_add_group; 10321 break; 10322 10323 case IP_UNBLOCK_SOURCE: 10324 mcast_opt = B_FALSE; 10325 /* FALLTHRU */ 10326 case MCAST_UNBLOCK_SOURCE: 10327 fmode = MODE_IS_EXCLUDE; 10328 optfn = ip_opt_delete_group; 10329 break; 10330 10331 case IP_ADD_SOURCE_MEMBERSHIP: 10332 mcast_opt = B_FALSE; 10333 /* FALLTHRU */ 10334 case MCAST_JOIN_SOURCE_GROUP: 10335 fmode = MODE_IS_INCLUDE; 10336 optfn = ip_opt_add_group; 10337 break; 10338 10339 case IP_DROP_SOURCE_MEMBERSHIP: 10340 mcast_opt = B_FALSE; 10341 /* FALLTHRU */ 10342 case MCAST_LEAVE_SOURCE_GROUP: 10343 fmode = MODE_IS_INCLUDE; 10344 optfn = ip_opt_delete_group; 10345 break; 10346 } 10347 10348 if (mcast_opt) { 10349 gsreqp = (struct group_source_req *)i1; 10350 if (gsreqp->gsr_group.ss_family != AF_INET) { 10351 *outlenp = 0; 10352 return (ENOPROTOOPT); 10353 } 10354 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10355 grp = (ipaddr_t)sin->sin_addr.s_addr; 10356 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10357 src = (ipaddr_t)sin->sin_addr.s_addr; 10358 ifindex = gsreqp->gsr_interface; 10359 } else { 10360 imreqp = (struct ip_mreq_source *)i1; 10361 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10362 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10363 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10364 } 10365 10366 /* 10367 * In the multirouting case, we need to replicate 10368 * the request as noted in the mcast cases above. 10369 */ 10370 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10371 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10372 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10373 if (ire != NULL) { 10374 if (ire->ire_flags & RTF_MULTIRT) { 10375 error = ip_multirt_apply_membership( 10376 optfn, ire, connp, checkonly, grp, 10377 fmode, src, first_mp); 10378 done = B_TRUE; 10379 } 10380 ire_refrele(ire); 10381 } 10382 if (!done) { 10383 error = optfn(connp, checkonly, grp, ifaddr, 10384 &ifindex, fmode, src, first_mp); 10385 } 10386 if (error != 0) { 10387 /* 10388 * EINPROGRESS is a soft error, needs retry 10389 * so don't make *outlenp zero. 10390 */ 10391 if (error != EINPROGRESS) 10392 *outlenp = 0; 10393 return (error); 10394 } 10395 /* OK return - copy input buffer into output buffer */ 10396 if (invalp != outvalp) { 10397 bcopy(invalp, outvalp, inlen); 10398 } 10399 *outlenp = inlen; 10400 return (0); 10401 } 10402 case IP_SEC_OPT: 10403 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10404 if (error != 0) { 10405 *outlenp = 0; 10406 return (error); 10407 } 10408 break; 10409 case IP_HDRINCL: 10410 case IP_OPTIONS: 10411 case T_IP_OPTIONS: 10412 case IP_TOS: 10413 case T_IP_TOS: 10414 case IP_TTL: 10415 case IP_RECVDSTADDR: 10416 case IP_RECVOPTS: 10417 /* OK return - copy input buffer into output buffer */ 10418 if (invalp != outvalp) { 10419 /* don't trust bcopy for identical src/dst */ 10420 bcopy(invalp, outvalp, inlen); 10421 } 10422 *outlenp = inlen; 10423 return (0); 10424 case IP_RECVIF: 10425 /* Retrieve the inbound interface index */ 10426 if (!checkonly) { 10427 mutex_enter(&connp->conn_lock); 10428 connp->conn_recvif = *i1 ? 1 : 0; 10429 mutex_exit(&connp->conn_lock); 10430 } 10431 break; /* goto sizeof (int) option return */ 10432 case IP_RECVSLLA: 10433 /* Retrieve the source link layer address */ 10434 if (!checkonly) { 10435 mutex_enter(&connp->conn_lock); 10436 connp->conn_recvslla = *i1 ? 1 : 0; 10437 mutex_exit(&connp->conn_lock); 10438 } 10439 break; /* goto sizeof (int) option return */ 10440 case MRT_INIT: 10441 case MRT_DONE: 10442 case MRT_ADD_VIF: 10443 case MRT_DEL_VIF: 10444 case MRT_ADD_MFC: 10445 case MRT_DEL_MFC: 10446 case MRT_ASSERT: 10447 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10448 *outlenp = 0; 10449 return (error); 10450 } 10451 error = ip_mrouter_set((int)name, q, checkonly, 10452 (uchar_t *)invalp, inlen, first_mp); 10453 if (error) { 10454 *outlenp = 0; 10455 return (error); 10456 } 10457 /* OK return - copy input buffer into output buffer */ 10458 if (invalp != outvalp) { 10459 /* don't trust bcopy for identical src/dst */ 10460 bcopy(invalp, outvalp, inlen); 10461 } 10462 *outlenp = inlen; 10463 return (0); 10464 case IP_BOUND_IF: 10465 case IP_XMIT_IF: 10466 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10467 level, name, first_mp); 10468 if (error != 0) 10469 return (error); 10470 break; /* goto sizeof (int) option return */ 10471 10472 case IP_UNSPEC_SRC: 10473 /* Allow sending with a zero source address */ 10474 if (!checkonly) { 10475 mutex_enter(&connp->conn_lock); 10476 connp->conn_unspec_src = *i1 ? 1 : 0; 10477 mutex_exit(&connp->conn_lock); 10478 } 10479 break; /* goto sizeof (int) option return */ 10480 default: 10481 /* 10482 * "soft" error (negative) 10483 * option not handled at this level 10484 * Note: Do not modify *outlenp 10485 */ 10486 return (-EINVAL); 10487 } 10488 break; 10489 case IPPROTO_IPV6: 10490 switch (name) { 10491 case IPV6_BOUND_IF: 10492 case IPV6_BOUND_PIF: 10493 case IPV6_DONTFAILOVER_IF: 10494 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10495 level, name, first_mp); 10496 if (error != 0) 10497 return (error); 10498 break; /* goto sizeof (int) option return */ 10499 10500 case IPV6_MULTICAST_IF: 10501 /* 10502 * The only possible errors are EINPROGRESS and 10503 * EINVAL. EINPROGRESS will be restarted and is not 10504 * a hard error. We call this option on both V4 and V6 10505 * If both return EINVAL, then this call returns 10506 * EINVAL. If at least one of them succeeds we 10507 * return success. 10508 */ 10509 found = B_FALSE; 10510 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10511 level, name, first_mp); 10512 if (error == EINPROGRESS) 10513 return (error); 10514 if (error == 0) 10515 found = B_TRUE; 10516 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10517 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10518 if (error == 0) 10519 found = B_TRUE; 10520 if (!found) 10521 return (error); 10522 break; /* goto sizeof (int) option return */ 10523 10524 case IPV6_MULTICAST_HOPS: 10525 /* Recorded in transport above IP */ 10526 break; /* goto sizeof (int) option return */ 10527 case IPV6_MULTICAST_LOOP: 10528 if (!checkonly) { 10529 mutex_enter(&connp->conn_lock); 10530 connp->conn_multicast_loop = *i1; 10531 mutex_exit(&connp->conn_lock); 10532 } 10533 break; /* goto sizeof (int) option return */ 10534 case IPV6_JOIN_GROUP: 10535 case MCAST_JOIN_GROUP: 10536 case IPV6_LEAVE_GROUP: 10537 case MCAST_LEAVE_GROUP: { 10538 struct ipv6_mreq *ip_mreqp; 10539 struct group_req *greqp; 10540 ire_t *ire; 10541 boolean_t done = B_FALSE; 10542 in6_addr_t groupv6; 10543 uint32_t ifindex; 10544 boolean_t mcast_opt = B_TRUE; 10545 mcast_record_t fmode; 10546 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10547 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10548 10549 switch (name) { 10550 case IPV6_JOIN_GROUP: 10551 mcast_opt = B_FALSE; 10552 /* FALLTHRU */ 10553 case MCAST_JOIN_GROUP: 10554 fmode = MODE_IS_EXCLUDE; 10555 optfn = ip_opt_add_group_v6; 10556 break; 10557 10558 case IPV6_LEAVE_GROUP: 10559 mcast_opt = B_FALSE; 10560 /* FALLTHRU */ 10561 case MCAST_LEAVE_GROUP: 10562 fmode = MODE_IS_INCLUDE; 10563 optfn = ip_opt_delete_group_v6; 10564 break; 10565 } 10566 10567 if (mcast_opt) { 10568 struct sockaddr_in *sin; 10569 struct sockaddr_in6 *sin6; 10570 greqp = (struct group_req *)i1; 10571 if (greqp->gr_group.ss_family == AF_INET) { 10572 sin = (struct sockaddr_in *) 10573 &(greqp->gr_group); 10574 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 10575 &groupv6); 10576 } else { 10577 sin6 = (struct sockaddr_in6 *) 10578 &(greqp->gr_group); 10579 groupv6 = sin6->sin6_addr; 10580 } 10581 ifindex = greqp->gr_interface; 10582 } else { 10583 ip_mreqp = (struct ipv6_mreq *)i1; 10584 groupv6 = ip_mreqp->ipv6mr_multiaddr; 10585 ifindex = ip_mreqp->ipv6mr_interface; 10586 } 10587 /* 10588 * In the multirouting case, we need to replicate 10589 * the request on all interfaces that will take part 10590 * in replication. We do so because multirouting is 10591 * reflective, thus we will probably receive multi- 10592 * casts on those interfaces. 10593 * The ip_multirt_apply_membership_v6() succeeds if 10594 * the operation succeeds on at least one interface. 10595 */ 10596 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 10597 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10598 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10599 if (ire != NULL) { 10600 if (ire->ire_flags & RTF_MULTIRT) { 10601 error = ip_multirt_apply_membership_v6( 10602 optfn, ire, connp, checkonly, 10603 &groupv6, fmode, &ipv6_all_zeros, 10604 first_mp); 10605 done = B_TRUE; 10606 } 10607 ire_refrele(ire); 10608 } 10609 if (!done) { 10610 error = optfn(connp, checkonly, &groupv6, 10611 ifindex, fmode, &ipv6_all_zeros, first_mp); 10612 } 10613 if (error) { 10614 /* 10615 * EINPROGRESS is a soft error, needs retry 10616 * so don't make *outlenp zero. 10617 */ 10618 if (error != EINPROGRESS) 10619 *outlenp = 0; 10620 return (error); 10621 } 10622 /* OK return - copy input buffer into output buffer */ 10623 if (invalp != outvalp) { 10624 /* don't trust bcopy for identical src/dst */ 10625 bcopy(invalp, outvalp, inlen); 10626 } 10627 *outlenp = inlen; 10628 return (0); 10629 } 10630 case MCAST_BLOCK_SOURCE: 10631 case MCAST_UNBLOCK_SOURCE: 10632 case MCAST_JOIN_SOURCE_GROUP: 10633 case MCAST_LEAVE_SOURCE_GROUP: { 10634 struct group_source_req *gsreqp; 10635 in6_addr_t v6grp, v6src; 10636 uint32_t ifindex; 10637 mcast_record_t fmode; 10638 ire_t *ire; 10639 boolean_t done = B_FALSE; 10640 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10641 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10642 10643 switch (name) { 10644 case MCAST_BLOCK_SOURCE: 10645 fmode = MODE_IS_EXCLUDE; 10646 optfn = ip_opt_add_group_v6; 10647 break; 10648 case MCAST_UNBLOCK_SOURCE: 10649 fmode = MODE_IS_EXCLUDE; 10650 optfn = ip_opt_delete_group_v6; 10651 break; 10652 case MCAST_JOIN_SOURCE_GROUP: 10653 fmode = MODE_IS_INCLUDE; 10654 optfn = ip_opt_add_group_v6; 10655 break; 10656 case MCAST_LEAVE_SOURCE_GROUP: 10657 fmode = MODE_IS_INCLUDE; 10658 optfn = ip_opt_delete_group_v6; 10659 break; 10660 } 10661 10662 gsreqp = (struct group_source_req *)i1; 10663 ifindex = gsreqp->gsr_interface; 10664 if (gsreqp->gsr_group.ss_family == AF_INET) { 10665 struct sockaddr_in *s; 10666 s = (struct sockaddr_in *)&gsreqp->gsr_group; 10667 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 10668 s = (struct sockaddr_in *)&gsreqp->gsr_source; 10669 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 10670 } else { 10671 struct sockaddr_in6 *s6; 10672 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 10673 v6grp = s6->sin6_addr; 10674 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 10675 v6src = s6->sin6_addr; 10676 } 10677 10678 /* 10679 * In the multirouting case, we need to replicate 10680 * the request as noted in the mcast cases above. 10681 */ 10682 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 10683 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10684 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10685 if (ire != NULL) { 10686 if (ire->ire_flags & RTF_MULTIRT) { 10687 error = ip_multirt_apply_membership_v6( 10688 optfn, ire, connp, checkonly, 10689 &v6grp, fmode, &v6src, first_mp); 10690 done = B_TRUE; 10691 } 10692 ire_refrele(ire); 10693 } 10694 if (!done) { 10695 error = optfn(connp, checkonly, &v6grp, 10696 ifindex, fmode, &v6src, first_mp); 10697 } 10698 if (error != 0) { 10699 /* 10700 * EINPROGRESS is a soft error, needs retry 10701 * so don't make *outlenp zero. 10702 */ 10703 if (error != EINPROGRESS) 10704 *outlenp = 0; 10705 return (error); 10706 } 10707 /* OK return - copy input buffer into output buffer */ 10708 if (invalp != outvalp) { 10709 bcopy(invalp, outvalp, inlen); 10710 } 10711 *outlenp = inlen; 10712 return (0); 10713 } 10714 case IPV6_UNICAST_HOPS: 10715 /* Recorded in transport above IP */ 10716 break; /* goto sizeof (int) option return */ 10717 case IPV6_UNSPEC_SRC: 10718 /* Allow sending with a zero source address */ 10719 if (!checkonly) { 10720 mutex_enter(&connp->conn_lock); 10721 connp->conn_unspec_src = *i1 ? 1 : 0; 10722 mutex_exit(&connp->conn_lock); 10723 } 10724 break; /* goto sizeof (int) option return */ 10725 case IPV6_RECVPKTINFO: 10726 if (!checkonly) { 10727 mutex_enter(&connp->conn_lock); 10728 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 10729 mutex_exit(&connp->conn_lock); 10730 } 10731 break; /* goto sizeof (int) option return */ 10732 case IPV6_RECVTCLASS: 10733 if (!checkonly) { 10734 if (*i1 < 0 || *i1 > 1) { 10735 return (EINVAL); 10736 } 10737 mutex_enter(&connp->conn_lock); 10738 connp->conn_ipv6_recvtclass = *i1; 10739 mutex_exit(&connp->conn_lock); 10740 } 10741 break; 10742 case IPV6_RECVPATHMTU: 10743 if (!checkonly) { 10744 if (*i1 < 0 || *i1 > 1) { 10745 return (EINVAL); 10746 } 10747 mutex_enter(&connp->conn_lock); 10748 connp->conn_ipv6_recvpathmtu = *i1; 10749 mutex_exit(&connp->conn_lock); 10750 } 10751 break; 10752 case IPV6_RECVHOPLIMIT: 10753 if (!checkonly) { 10754 mutex_enter(&connp->conn_lock); 10755 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 10756 mutex_exit(&connp->conn_lock); 10757 } 10758 break; /* goto sizeof (int) option return */ 10759 case IPV6_RECVHOPOPTS: 10760 if (!checkonly) { 10761 mutex_enter(&connp->conn_lock); 10762 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 10763 mutex_exit(&connp->conn_lock); 10764 } 10765 break; /* goto sizeof (int) option return */ 10766 case IPV6_RECVDSTOPTS: 10767 if (!checkonly) { 10768 mutex_enter(&connp->conn_lock); 10769 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 10770 mutex_exit(&connp->conn_lock); 10771 } 10772 break; /* goto sizeof (int) option return */ 10773 case IPV6_RECVRTHDR: 10774 if (!checkonly) { 10775 mutex_enter(&connp->conn_lock); 10776 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 10777 mutex_exit(&connp->conn_lock); 10778 } 10779 break; /* goto sizeof (int) option return */ 10780 case IPV6_RECVRTHDRDSTOPTS: 10781 if (!checkonly) { 10782 mutex_enter(&connp->conn_lock); 10783 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 10784 mutex_exit(&connp->conn_lock); 10785 } 10786 break; /* goto sizeof (int) option return */ 10787 case IPV6_PKTINFO: 10788 if (inlen == 0) 10789 return (-EINVAL); /* clearing option */ 10790 error = ip6_set_pktinfo(cr, connp, 10791 (struct in6_pktinfo *)invalp, first_mp); 10792 if (error != 0) 10793 *outlenp = 0; 10794 else 10795 *outlenp = inlen; 10796 return (error); 10797 case IPV6_NEXTHOP: { 10798 struct sockaddr_in6 *sin6; 10799 10800 /* Verify that the nexthop is reachable */ 10801 if (inlen == 0) 10802 return (-EINVAL); /* clearing option */ 10803 10804 sin6 = (struct sockaddr_in6 *)invalp; 10805 ire = ire_route_lookup_v6(&sin6->sin6_addr, 10806 0, 0, 0, NULL, NULL, connp->conn_zoneid, 10807 NULL, MATCH_IRE_DEFAULT); 10808 10809 if (ire == NULL) { 10810 *outlenp = 0; 10811 return (EHOSTUNREACH); 10812 } 10813 ire_refrele(ire); 10814 return (-EINVAL); 10815 } 10816 case IPV6_SEC_OPT: 10817 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10818 if (error != 0) { 10819 *outlenp = 0; 10820 return (error); 10821 } 10822 break; 10823 case IPV6_SRC_PREFERENCES: { 10824 /* 10825 * This is implemented strictly in the ip module 10826 * (here and in tcp_opt_*() to accomodate tcp 10827 * sockets). Modules above ip pass this option 10828 * down here since ip is the only one that needs to 10829 * be aware of source address preferences. 10830 * 10831 * This socket option only affects connected 10832 * sockets that haven't already bound to a specific 10833 * IPv6 address. In other words, sockets that 10834 * don't call bind() with an address other than the 10835 * unspecified address and that call connect(). 10836 * ip_bind_connected_v6() passes these preferences 10837 * to the ipif_select_source_v6() function. 10838 */ 10839 if (inlen != sizeof (uint32_t)) 10840 return (EINVAL); 10841 error = ip6_set_src_preferences(connp, 10842 *(uint32_t *)invalp); 10843 if (error != 0) { 10844 *outlenp = 0; 10845 return (error); 10846 } else { 10847 *outlenp = sizeof (uint32_t); 10848 } 10849 break; 10850 } 10851 case IPV6_V6ONLY: 10852 if (*i1 < 0 || *i1 > 1) { 10853 return (EINVAL); 10854 } 10855 mutex_enter(&connp->conn_lock); 10856 connp->conn_ipv6_v6only = *i1; 10857 mutex_exit(&connp->conn_lock); 10858 break; 10859 default: 10860 return (-EINVAL); 10861 } 10862 break; 10863 default: 10864 /* 10865 * "soft" error (negative) 10866 * option not handled at this level 10867 * Note: Do not modify *outlenp 10868 */ 10869 return (-EINVAL); 10870 } 10871 /* 10872 * Common case of return from an option that is sizeof (int) 10873 */ 10874 *(int *)outvalp = *i1; 10875 *outlenp = sizeof (int); 10876 return (0); 10877 } 10878 10879 /* 10880 * This routine gets default values of certain options whose default 10881 * values are maintained by protocol specific code 10882 */ 10883 /* ARGSUSED */ 10884 int 10885 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 10886 { 10887 int *i1 = (int *)ptr; 10888 10889 switch (level) { 10890 case IPPROTO_IP: 10891 switch (name) { 10892 case IP_MULTICAST_TTL: 10893 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 10894 return (sizeof (uchar_t)); 10895 case IP_MULTICAST_LOOP: 10896 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 10897 return (sizeof (uchar_t)); 10898 default: 10899 return (-1); 10900 } 10901 case IPPROTO_IPV6: 10902 switch (name) { 10903 case IPV6_UNICAST_HOPS: 10904 *i1 = ipv6_def_hops; 10905 return (sizeof (int)); 10906 case IPV6_MULTICAST_HOPS: 10907 *i1 = IP_DEFAULT_MULTICAST_TTL; 10908 return (sizeof (int)); 10909 case IPV6_MULTICAST_LOOP: 10910 *i1 = IP_DEFAULT_MULTICAST_LOOP; 10911 return (sizeof (int)); 10912 case IPV6_V6ONLY: 10913 *i1 = 1; 10914 return (sizeof (int)); 10915 default: 10916 return (-1); 10917 } 10918 default: 10919 return (-1); 10920 } 10921 /* NOTREACHED */ 10922 } 10923 10924 /* 10925 * Given a destination address and a pointer to where to put the information 10926 * this routine fills in the mtuinfo. 10927 */ 10928 int 10929 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 10930 struct ip6_mtuinfo *mtuinfo) 10931 { 10932 ire_t *ire; 10933 10934 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 10935 return (-1); 10936 10937 bzero(mtuinfo, sizeof (*mtuinfo)); 10938 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 10939 mtuinfo->ip6m_addr.sin6_port = port; 10940 mtuinfo->ip6m_addr.sin6_addr = *in6; 10941 10942 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 10943 if (ire != NULL) { 10944 mtuinfo->ip6m_mtu = ire->ire_max_frag; 10945 ire_refrele(ire); 10946 } else { 10947 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 10948 } 10949 return (sizeof (struct ip6_mtuinfo)); 10950 } 10951 10952 /* 10953 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 10954 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 10955 * isn't. This doesn't matter as the error checking is done properly for the 10956 * other MRT options coming in through ip_opt_set. 10957 */ 10958 int 10959 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10960 { 10961 conn_t *connp = Q_TO_CONN(q); 10962 ipsec_req_t *req = (ipsec_req_t *)ptr; 10963 10964 switch (level) { 10965 case IPPROTO_IP: 10966 switch (name) { 10967 case MRT_VERSION: 10968 case MRT_ASSERT: 10969 (void) ip_mrouter_get(name, q, ptr); 10970 return (sizeof (int)); 10971 case IP_SEC_OPT: 10972 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 10973 case IP_NEXTHOP: 10974 if (connp->conn_nexthop_set) { 10975 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 10976 return (sizeof (ipaddr_t)); 10977 } else 10978 return (0); 10979 default: 10980 break; 10981 } 10982 break; 10983 case IPPROTO_IPV6: 10984 switch (name) { 10985 case IPV6_SEC_OPT: 10986 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 10987 case IPV6_SRC_PREFERENCES: { 10988 return (ip6_get_src_preferences(connp, 10989 (uint32_t *)ptr)); 10990 } 10991 case IPV6_V6ONLY: 10992 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 10993 return (sizeof (int)); 10994 case IPV6_PATHMTU: 10995 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 10996 (struct ip6_mtuinfo *)ptr)); 10997 default: 10998 break; 10999 } 11000 break; 11001 default: 11002 break; 11003 } 11004 return (-1); 11005 } 11006 11007 /* Named Dispatch routine to get a current value out of our parameter table. */ 11008 /* ARGSUSED */ 11009 static int 11010 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11011 { 11012 ipparam_t *ippa = (ipparam_t *)cp; 11013 11014 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11015 return (0); 11016 } 11017 11018 /* ARGSUSED */ 11019 static int 11020 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11021 { 11022 11023 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11024 return (0); 11025 } 11026 11027 /* 11028 * Set ip{,6}_forwarding values. This means walking through all of the 11029 * ill's and toggling their forwarding values. 11030 */ 11031 /* ARGSUSED */ 11032 static int 11033 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11034 { 11035 long new_value; 11036 int *forwarding_value = (int *)cp; 11037 ill_t *walker; 11038 boolean_t isv6 = (forwarding_value == &ipv6_forward); 11039 ill_walk_context_t ctx; 11040 11041 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11042 new_value < 0 || new_value > 1) { 11043 return (EINVAL); 11044 } 11045 11046 *forwarding_value = new_value; 11047 11048 /* 11049 * Regardless of the current value of ip_forwarding, set all per-ill 11050 * values of ip_forwarding to the value being set. 11051 * 11052 * Bring all the ill's up to date with the new global value. 11053 */ 11054 rw_enter(&ill_g_lock, RW_READER); 11055 11056 if (isv6) 11057 walker = ILL_START_WALK_V6(&ctx); 11058 else 11059 walker = ILL_START_WALK_V4(&ctx); 11060 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11061 (void) ill_forward_set(q, mp, (new_value != 0), 11062 (caddr_t)walker); 11063 } 11064 rw_exit(&ill_g_lock); 11065 11066 return (0); 11067 } 11068 11069 /* 11070 * Walk through the param array specified registering each element with the 11071 * Named Dispatch handler. This is called only during init. So it is ok 11072 * not to acquire any locks 11073 */ 11074 static boolean_t 11075 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11076 ipndp_t *ipnd, size_t ipnd_cnt) 11077 { 11078 for (; ippa_cnt-- > 0; ippa++) { 11079 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11080 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11081 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11082 nd_free(&ip_g_nd); 11083 return (B_FALSE); 11084 } 11085 } 11086 } 11087 11088 for (; ipnd_cnt-- > 0; ipnd++) { 11089 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11090 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11091 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11092 ipnd->ip_ndp_data)) { 11093 nd_free(&ip_g_nd); 11094 return (B_FALSE); 11095 } 11096 } 11097 } 11098 11099 return (B_TRUE); 11100 } 11101 11102 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11103 /* ARGSUSED */ 11104 static int 11105 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11106 { 11107 long new_value; 11108 ipparam_t *ippa = (ipparam_t *)cp; 11109 11110 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11111 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11112 return (EINVAL); 11113 } 11114 ippa->ip_param_value = new_value; 11115 return (0); 11116 } 11117 11118 /* 11119 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11120 * When an ipf is passed here for the first time, if 11121 * we already have in-order fragments on the queue, we convert from the fast- 11122 * path reassembly scheme to the hard-case scheme. From then on, additional 11123 * fragments are reassembled here. We keep track of the start and end offsets 11124 * of each piece, and the number of holes in the chain. When the hole count 11125 * goes to zero, we are done! 11126 * 11127 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11128 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11129 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11130 * after the call to ip_reassemble(). 11131 */ 11132 int 11133 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11134 size_t msg_len) 11135 { 11136 uint_t end; 11137 mblk_t *next_mp; 11138 mblk_t *mp1; 11139 uint_t offset; 11140 boolean_t incr_dups = B_TRUE; 11141 boolean_t offset_zero_seen = B_FALSE; 11142 boolean_t pkt_boundary_checked = B_FALSE; 11143 11144 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11145 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11146 11147 /* Add in byte count */ 11148 ipf->ipf_count += msg_len; 11149 if (ipf->ipf_end) { 11150 /* 11151 * We were part way through in-order reassembly, but now there 11152 * is a hole. We walk through messages already queued, and 11153 * mark them for hard case reassembly. We know that up till 11154 * now they were in order starting from offset zero. 11155 */ 11156 offset = 0; 11157 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11158 IP_REASS_SET_START(mp1, offset); 11159 if (offset == 0) { 11160 ASSERT(ipf->ipf_nf_hdr_len != 0); 11161 offset = -ipf->ipf_nf_hdr_len; 11162 } 11163 offset += mp1->b_wptr - mp1->b_rptr; 11164 IP_REASS_SET_END(mp1, offset); 11165 } 11166 /* One hole at the end. */ 11167 ipf->ipf_hole_cnt = 1; 11168 /* Brand it as a hard case, forever. */ 11169 ipf->ipf_end = 0; 11170 } 11171 /* Walk through all the new pieces. */ 11172 do { 11173 end = start + (mp->b_wptr - mp->b_rptr); 11174 /* 11175 * If start is 0, decrease 'end' only for the first mblk of 11176 * the fragment. Otherwise 'end' can get wrong value in the 11177 * second pass of the loop if first mblk is exactly the 11178 * size of ipf_nf_hdr_len. 11179 */ 11180 if (start == 0 && !offset_zero_seen) { 11181 /* First segment */ 11182 ASSERT(ipf->ipf_nf_hdr_len != 0); 11183 end -= ipf->ipf_nf_hdr_len; 11184 offset_zero_seen = B_TRUE; 11185 } 11186 next_mp = mp->b_cont; 11187 /* 11188 * We are checking to see if there is any interesing data 11189 * to process. If there isn't and the mblk isn't the 11190 * one which carries the unfragmentable header then we 11191 * drop it. It's possible to have just the unfragmentable 11192 * header come through without any data. That needs to be 11193 * saved. 11194 * 11195 * If the assert at the top of this function holds then the 11196 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11197 * is infrequently traveled enough that the test is left in 11198 * to protect against future code changes which break that 11199 * invariant. 11200 */ 11201 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11202 /* Empty. Blast it. */ 11203 IP_REASS_SET_START(mp, 0); 11204 IP_REASS_SET_END(mp, 0); 11205 /* 11206 * If the ipf points to the mblk we are about to free, 11207 * update ipf to point to the next mblk (or NULL 11208 * if none). 11209 */ 11210 if (ipf->ipf_mp->b_cont == mp) 11211 ipf->ipf_mp->b_cont = next_mp; 11212 freeb(mp); 11213 continue; 11214 } 11215 mp->b_cont = NULL; 11216 IP_REASS_SET_START(mp, start); 11217 IP_REASS_SET_END(mp, end); 11218 if (!ipf->ipf_tail_mp) { 11219 ipf->ipf_tail_mp = mp; 11220 ipf->ipf_mp->b_cont = mp; 11221 if (start == 0 || !more) { 11222 ipf->ipf_hole_cnt = 1; 11223 /* 11224 * if the first fragment comes in more than one 11225 * mblk, this loop will be executed for each 11226 * mblk. Need to adjust hole count so exiting 11227 * this routine will leave hole count at 1. 11228 */ 11229 if (next_mp) 11230 ipf->ipf_hole_cnt++; 11231 } else 11232 ipf->ipf_hole_cnt = 2; 11233 continue; 11234 } else if (ipf->ipf_last_frag_seen && !more && 11235 !pkt_boundary_checked) { 11236 /* 11237 * We check datagram boundary only if this fragment 11238 * claims to be the last fragment and we have seen a 11239 * last fragment in the past too. We do this only 11240 * once for a given fragment. 11241 * 11242 * start cannot be 0 here as fragments with start=0 11243 * and MF=0 gets handled as a complete packet. These 11244 * fragments should not reach here. 11245 */ 11246 11247 if (start + msgdsize(mp) != 11248 IP_REASS_END(ipf->ipf_tail_mp)) { 11249 /* 11250 * We have two fragments both of which claim 11251 * to be the last fragment but gives conflicting 11252 * information about the whole datagram size. 11253 * Something fishy is going on. Drop the 11254 * fragment and free up the reassembly list. 11255 */ 11256 return (IP_REASS_FAILED); 11257 } 11258 11259 /* 11260 * We shouldn't come to this code block again for this 11261 * particular fragment. 11262 */ 11263 pkt_boundary_checked = B_TRUE; 11264 } 11265 11266 /* New stuff at or beyond tail? */ 11267 offset = IP_REASS_END(ipf->ipf_tail_mp); 11268 if (start >= offset) { 11269 if (ipf->ipf_last_frag_seen) { 11270 /* current fragment is beyond last fragment */ 11271 return (IP_REASS_FAILED); 11272 } 11273 /* Link it on end. */ 11274 ipf->ipf_tail_mp->b_cont = mp; 11275 ipf->ipf_tail_mp = mp; 11276 if (more) { 11277 if (start != offset) 11278 ipf->ipf_hole_cnt++; 11279 } else if (start == offset && next_mp == NULL) 11280 ipf->ipf_hole_cnt--; 11281 continue; 11282 } 11283 mp1 = ipf->ipf_mp->b_cont; 11284 offset = IP_REASS_START(mp1); 11285 /* New stuff at the front? */ 11286 if (start < offset) { 11287 if (start == 0) { 11288 if (end >= offset) { 11289 /* Nailed the hole at the begining. */ 11290 ipf->ipf_hole_cnt--; 11291 } 11292 } else if (end < offset) { 11293 /* 11294 * A hole, stuff, and a hole where there used 11295 * to be just a hole. 11296 */ 11297 ipf->ipf_hole_cnt++; 11298 } 11299 mp->b_cont = mp1; 11300 /* Check for overlap. */ 11301 while (end > offset) { 11302 if (end < IP_REASS_END(mp1)) { 11303 mp->b_wptr -= end - offset; 11304 IP_REASS_SET_END(mp, offset); 11305 if (ill->ill_isv6) { 11306 BUMP_MIB(ill->ill_ip6_mib, 11307 ipv6ReasmPartDups); 11308 } else { 11309 BUMP_MIB(&ip_mib, 11310 ipReasmPartDups); 11311 } 11312 break; 11313 } 11314 /* Did we cover another hole? */ 11315 if ((mp1->b_cont && 11316 IP_REASS_END(mp1) != 11317 IP_REASS_START(mp1->b_cont) && 11318 end >= IP_REASS_START(mp1->b_cont)) || 11319 (!ipf->ipf_last_frag_seen && !more)) { 11320 ipf->ipf_hole_cnt--; 11321 } 11322 /* Clip out mp1. */ 11323 if ((mp->b_cont = mp1->b_cont) == NULL) { 11324 /* 11325 * After clipping out mp1, this guy 11326 * is now hanging off the end. 11327 */ 11328 ipf->ipf_tail_mp = mp; 11329 } 11330 IP_REASS_SET_START(mp1, 0); 11331 IP_REASS_SET_END(mp1, 0); 11332 /* Subtract byte count */ 11333 ipf->ipf_count -= mp1->b_datap->db_lim - 11334 mp1->b_datap->db_base; 11335 freeb(mp1); 11336 if (ill->ill_isv6) { 11337 BUMP_MIB(ill->ill_ip6_mib, 11338 ipv6ReasmPartDups); 11339 } else { 11340 BUMP_MIB(&ip_mib, ipReasmPartDups); 11341 } 11342 mp1 = mp->b_cont; 11343 if (!mp1) 11344 break; 11345 offset = IP_REASS_START(mp1); 11346 } 11347 ipf->ipf_mp->b_cont = mp; 11348 continue; 11349 } 11350 /* 11351 * The new piece starts somewhere between the start of the head 11352 * and before the end of the tail. 11353 */ 11354 for (; mp1; mp1 = mp1->b_cont) { 11355 offset = IP_REASS_END(mp1); 11356 if (start < offset) { 11357 if (end <= offset) { 11358 /* Nothing new. */ 11359 IP_REASS_SET_START(mp, 0); 11360 IP_REASS_SET_END(mp, 0); 11361 /* Subtract byte count */ 11362 ipf->ipf_count -= mp->b_datap->db_lim - 11363 mp->b_datap->db_base; 11364 if (incr_dups) { 11365 ipf->ipf_num_dups++; 11366 incr_dups = B_FALSE; 11367 } 11368 freeb(mp); 11369 if (ill->ill_isv6) { 11370 BUMP_MIB(ill->ill_ip6_mib, 11371 ipv6ReasmDuplicates); 11372 } else { 11373 BUMP_MIB(&ip_mib, 11374 ipReasmDuplicates); 11375 } 11376 break; 11377 } 11378 /* 11379 * Trim redundant stuff off beginning of new 11380 * piece. 11381 */ 11382 IP_REASS_SET_START(mp, offset); 11383 mp->b_rptr += offset - start; 11384 if (ill->ill_isv6) { 11385 BUMP_MIB(ill->ill_ip6_mib, 11386 ipv6ReasmPartDups); 11387 } else { 11388 BUMP_MIB(&ip_mib, ipReasmPartDups); 11389 } 11390 start = offset; 11391 if (!mp1->b_cont) { 11392 /* 11393 * After trimming, this guy is now 11394 * hanging off the end. 11395 */ 11396 mp1->b_cont = mp; 11397 ipf->ipf_tail_mp = mp; 11398 if (!more) { 11399 ipf->ipf_hole_cnt--; 11400 } 11401 break; 11402 } 11403 } 11404 if (start >= IP_REASS_START(mp1->b_cont)) 11405 continue; 11406 /* Fill a hole */ 11407 if (start > offset) 11408 ipf->ipf_hole_cnt++; 11409 mp->b_cont = mp1->b_cont; 11410 mp1->b_cont = mp; 11411 mp1 = mp->b_cont; 11412 offset = IP_REASS_START(mp1); 11413 if (end >= offset) { 11414 ipf->ipf_hole_cnt--; 11415 /* Check for overlap. */ 11416 while (end > offset) { 11417 if (end < IP_REASS_END(mp1)) { 11418 mp->b_wptr -= end - offset; 11419 IP_REASS_SET_END(mp, offset); 11420 /* 11421 * TODO we might bump 11422 * this up twice if there is 11423 * overlap at both ends. 11424 */ 11425 if (ill->ill_isv6) { 11426 BUMP_MIB( 11427 ill->ill_ip6_mib, 11428 ipv6ReasmPartDups); 11429 } else { 11430 BUMP_MIB(&ip_mib, 11431 ipReasmPartDups); 11432 } 11433 break; 11434 } 11435 /* Did we cover another hole? */ 11436 if ((mp1->b_cont && 11437 IP_REASS_END(mp1) 11438 != IP_REASS_START(mp1->b_cont) && 11439 end >= 11440 IP_REASS_START(mp1->b_cont)) || 11441 (!ipf->ipf_last_frag_seen && 11442 !more)) { 11443 ipf->ipf_hole_cnt--; 11444 } 11445 /* Clip out mp1. */ 11446 if ((mp->b_cont = mp1->b_cont) == 11447 NULL) { 11448 /* 11449 * After clipping out mp1, 11450 * this guy is now hanging 11451 * off the end. 11452 */ 11453 ipf->ipf_tail_mp = mp; 11454 } 11455 IP_REASS_SET_START(mp1, 0); 11456 IP_REASS_SET_END(mp1, 0); 11457 /* Subtract byte count */ 11458 ipf->ipf_count -= 11459 mp1->b_datap->db_lim - 11460 mp1->b_datap->db_base; 11461 freeb(mp1); 11462 if (ill->ill_isv6) { 11463 BUMP_MIB(ill->ill_ip6_mib, 11464 ipv6ReasmPartDups); 11465 } else { 11466 BUMP_MIB(&ip_mib, 11467 ipReasmPartDups); 11468 } 11469 mp1 = mp->b_cont; 11470 if (!mp1) 11471 break; 11472 offset = IP_REASS_START(mp1); 11473 } 11474 } 11475 break; 11476 } 11477 } while (start = end, mp = next_mp); 11478 11479 /* Fragment just processed could be the last one. Remember this fact */ 11480 if (!more) 11481 ipf->ipf_last_frag_seen = B_TRUE; 11482 11483 /* Still got holes? */ 11484 if (ipf->ipf_hole_cnt) 11485 return (IP_REASS_PARTIAL); 11486 /* Clean up overloaded fields to avoid upstream disasters. */ 11487 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11488 IP_REASS_SET_START(mp1, 0); 11489 IP_REASS_SET_END(mp1, 0); 11490 } 11491 return (IP_REASS_COMPLETE); 11492 } 11493 11494 /* 11495 * ipsec processing for the fast path, used for input UDP Packets 11496 */ 11497 static boolean_t 11498 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11499 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11500 { 11501 uint32_t ill_index; 11502 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11503 11504 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11505 /* The ill_index of the incoming ILL */ 11506 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11507 11508 /* pass packet up to the transport */ 11509 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11510 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11511 NULL, mctl_present); 11512 if (*first_mpp == NULL) { 11513 return (B_FALSE); 11514 } 11515 } 11516 11517 /* Initiate IPPF processing for fastpath UDP */ 11518 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11519 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11520 if (*mpp == NULL) { 11521 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11522 "deferred/dropped during IPPF processing\n")); 11523 return (B_FALSE); 11524 } 11525 } 11526 /* 11527 * We make the checks as below since we are in the fast path 11528 * and want to minimize the number of checks if the IP_RECVIF and/or 11529 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11530 */ 11531 if (connp->conn_recvif || connp->conn_recvslla || 11532 connp->conn_ipv6_recvpktinfo) { 11533 if (connp->conn_recvif || 11534 connp->conn_ipv6_recvpktinfo) { 11535 in_flags = IPF_RECVIF; 11536 } 11537 if (connp->conn_recvslla) { 11538 in_flags |= IPF_RECVSLLA; 11539 } 11540 /* 11541 * since in_flags are being set ill will be 11542 * referenced in ip_add_info, so it better not 11543 * be NULL. 11544 */ 11545 /* 11546 * the actual data will be contained in b_cont 11547 * upon successful return of the following call. 11548 * If the call fails then the original mblk is 11549 * returned. 11550 */ 11551 *mpp = ip_add_info(*mpp, ill, in_flags); 11552 } 11553 11554 return (B_TRUE); 11555 } 11556 11557 /* 11558 * Fragmentation reassembly. Each ILL has a hash table for 11559 * queuing packets undergoing reassembly for all IPIFs 11560 * associated with the ILL. The hash is based on the packet 11561 * IP ident field. The ILL frag hash table was allocated 11562 * as a timer block at the time the ILL was created. Whenever 11563 * there is anything on the reassembly queue, the timer will 11564 * be running. Returns B_TRUE if successful else B_FALSE; 11565 * frees mp on failure. 11566 */ 11567 static boolean_t 11568 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 11569 uint32_t *cksum_val, uint16_t *cksum_flags) 11570 { 11571 uint32_t frag_offset_flags; 11572 ill_t *ill = (ill_t *)q->q_ptr; 11573 mblk_t *mp = *mpp; 11574 mblk_t *t_mp; 11575 ipaddr_t dst; 11576 uint8_t proto = ipha->ipha_protocol; 11577 uint32_t sum_val; 11578 uint16_t sum_flags; 11579 ipf_t *ipf; 11580 ipf_t **ipfp; 11581 ipfb_t *ipfb; 11582 uint16_t ident; 11583 uint32_t offset; 11584 ipaddr_t src; 11585 uint_t hdr_length; 11586 uint32_t end; 11587 mblk_t *mp1; 11588 mblk_t *tail_mp; 11589 size_t count; 11590 size_t msg_len; 11591 uint8_t ecn_info = 0; 11592 uint32_t packet_size; 11593 boolean_t pruned = B_FALSE; 11594 11595 if (cksum_val != NULL) 11596 *cksum_val = 0; 11597 if (cksum_flags != NULL) 11598 *cksum_flags = 0; 11599 11600 /* 11601 * Drop the fragmented as early as possible, if 11602 * we don't have resource(s) to re-assemble. 11603 */ 11604 if (ip_reass_queue_bytes == 0) { 11605 freemsg(mp); 11606 return (B_FALSE); 11607 } 11608 11609 /* Check for fragmentation offset; return if there's none */ 11610 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 11611 (IPH_MF | IPH_OFFSET)) == 0) 11612 return (B_TRUE); 11613 11614 /* 11615 * We utilize hardware computed checksum info only for UDP since 11616 * IP fragmentation is a normal occurence for the protocol. In 11617 * addition, checksum offload support for IP fragments carrying 11618 * UDP payload is commonly implemented across network adapters. 11619 */ 11620 ASSERT(ill != NULL); 11621 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 11622 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 11623 mblk_t *mp1 = mp->b_cont; 11624 int32_t len; 11625 11626 /* Record checksum information from the packet */ 11627 sum_val = (uint32_t)DB_CKSUM16(mp); 11628 sum_flags = DB_CKSUMFLAGS(mp); 11629 11630 /* IP payload offset from beginning of mblk */ 11631 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 11632 11633 if ((sum_flags & HCK_PARTIALCKSUM) && 11634 (mp1 == NULL || mp1->b_cont == NULL) && 11635 offset >= DB_CKSUMSTART(mp) && 11636 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 11637 uint32_t adj; 11638 /* 11639 * Partial checksum has been calculated by hardware 11640 * and attached to the packet; in addition, any 11641 * prepended extraneous data is even byte aligned. 11642 * If any such data exists, we adjust the checksum; 11643 * this would also handle any postpended data. 11644 */ 11645 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 11646 mp, mp1, len, adj); 11647 11648 /* One's complement subtract extraneous checksum */ 11649 if (adj >= sum_val) 11650 sum_val = ~(adj - sum_val) & 0xFFFF; 11651 else 11652 sum_val -= adj; 11653 } 11654 } else { 11655 sum_val = 0; 11656 sum_flags = 0; 11657 } 11658 11659 /* Clear hardware checksumming flag */ 11660 DB_CKSUMFLAGS(mp) = 0; 11661 11662 ident = ipha->ipha_ident; 11663 offset = (frag_offset_flags << 3) & 0xFFFF; 11664 src = ipha->ipha_src; 11665 dst = ipha->ipha_dst; 11666 hdr_length = IPH_HDR_LENGTH(ipha); 11667 end = ntohs(ipha->ipha_length) - hdr_length; 11668 11669 /* If end == 0 then we have a packet with no data, so just free it */ 11670 if (end == 0) { 11671 freemsg(mp); 11672 return (B_FALSE); 11673 } 11674 11675 /* Record the ECN field info. */ 11676 ecn_info = (ipha->ipha_type_of_service & 0x3); 11677 if (offset != 0) { 11678 /* 11679 * If this isn't the first piece, strip the header, and 11680 * add the offset to the end value. 11681 */ 11682 mp->b_rptr += hdr_length; 11683 end += offset; 11684 } 11685 11686 msg_len = MBLKSIZE(mp); 11687 tail_mp = mp; 11688 while (tail_mp->b_cont != NULL) { 11689 tail_mp = tail_mp->b_cont; 11690 msg_len += MBLKSIZE(tail_mp); 11691 } 11692 11693 /* If the reassembly list for this ILL will get too big, prune it */ 11694 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 11695 ip_reass_queue_bytes) { 11696 ill_frag_prune(ill, 11697 (ip_reass_queue_bytes < msg_len) ? 0 : 11698 (ip_reass_queue_bytes - msg_len)); 11699 pruned = B_TRUE; 11700 } 11701 11702 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 11703 mutex_enter(&ipfb->ipfb_lock); 11704 11705 ipfp = &ipfb->ipfb_ipf; 11706 /* Try to find an existing fragment queue for this packet. */ 11707 for (;;) { 11708 ipf = ipfp[0]; 11709 if (ipf != NULL) { 11710 /* 11711 * It has to match on ident and src/dst address. 11712 */ 11713 if (ipf->ipf_ident == ident && 11714 ipf->ipf_src == src && 11715 ipf->ipf_dst == dst && 11716 ipf->ipf_protocol == proto) { 11717 /* 11718 * If we have received too many 11719 * duplicate fragments for this packet 11720 * free it. 11721 */ 11722 if (ipf->ipf_num_dups > ip_max_frag_dups) { 11723 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11724 freemsg(mp); 11725 mutex_exit(&ipfb->ipfb_lock); 11726 return (B_FALSE); 11727 } 11728 /* Found it. */ 11729 break; 11730 } 11731 ipfp = &ipf->ipf_hash_next; 11732 continue; 11733 } 11734 11735 /* 11736 * If we pruned the list, do we want to store this new 11737 * fragment?. We apply an optimization here based on the 11738 * fact that most fragments will be received in order. 11739 * So if the offset of this incoming fragment is zero, 11740 * it is the first fragment of a new packet. We will 11741 * keep it. Otherwise drop the fragment, as we have 11742 * probably pruned the packet already (since the 11743 * packet cannot be found). 11744 */ 11745 if (pruned && offset != 0) { 11746 mutex_exit(&ipfb->ipfb_lock); 11747 freemsg(mp); 11748 return (B_FALSE); 11749 } 11750 11751 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 11752 /* 11753 * Too many fragmented packets in this hash 11754 * bucket. Free the oldest. 11755 */ 11756 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 11757 } 11758 11759 /* New guy. Allocate a frag message. */ 11760 mp1 = allocb(sizeof (*ipf), BPRI_MED); 11761 if (mp1 == NULL) { 11762 BUMP_MIB(&ip_mib, ipInDiscards); 11763 freemsg(mp); 11764 reass_done: 11765 mutex_exit(&ipfb->ipfb_lock); 11766 return (B_FALSE); 11767 } 11768 11769 11770 BUMP_MIB(&ip_mib, ipReasmReqds); 11771 mp1->b_cont = mp; 11772 11773 /* Initialize the fragment header. */ 11774 ipf = (ipf_t *)mp1->b_rptr; 11775 ipf->ipf_mp = mp1; 11776 ipf->ipf_ptphn = ipfp; 11777 ipfp[0] = ipf; 11778 ipf->ipf_hash_next = NULL; 11779 ipf->ipf_ident = ident; 11780 ipf->ipf_protocol = proto; 11781 ipf->ipf_src = src; 11782 ipf->ipf_dst = dst; 11783 ipf->ipf_nf_hdr_len = 0; 11784 /* Record reassembly start time. */ 11785 ipf->ipf_timestamp = gethrestime_sec(); 11786 /* Record ipf generation and account for frag header */ 11787 ipf->ipf_gen = ill->ill_ipf_gen++; 11788 ipf->ipf_count = MBLKSIZE(mp1); 11789 ipf->ipf_last_frag_seen = B_FALSE; 11790 ipf->ipf_ecn = ecn_info; 11791 ipf->ipf_num_dups = 0; 11792 ipfb->ipfb_frag_pkts++; 11793 ipf->ipf_checksum = 0; 11794 ipf->ipf_checksum_flags = 0; 11795 11796 /* Store checksum value in fragment header */ 11797 if (sum_flags != 0) { 11798 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11799 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11800 ipf->ipf_checksum = sum_val; 11801 ipf->ipf_checksum_flags = sum_flags; 11802 } 11803 11804 /* 11805 * We handle reassembly two ways. In the easy case, 11806 * where all the fragments show up in order, we do 11807 * minimal bookkeeping, and just clip new pieces on 11808 * the end. If we ever see a hole, then we go off 11809 * to ip_reassemble which has to mark the pieces and 11810 * keep track of the number of holes, etc. Obviously, 11811 * the point of having both mechanisms is so we can 11812 * handle the easy case as efficiently as possible. 11813 */ 11814 if (offset == 0) { 11815 /* Easy case, in-order reassembly so far. */ 11816 ipf->ipf_count += msg_len; 11817 ipf->ipf_tail_mp = tail_mp; 11818 /* 11819 * Keep track of next expected offset in 11820 * ipf_end. 11821 */ 11822 ipf->ipf_end = end; 11823 ipf->ipf_nf_hdr_len = hdr_length; 11824 } else { 11825 /* Hard case, hole at the beginning. */ 11826 ipf->ipf_tail_mp = NULL; 11827 /* 11828 * ipf_end == 0 means that we have given up 11829 * on easy reassembly. 11830 */ 11831 ipf->ipf_end = 0; 11832 11833 /* Forget checksum offload from now on */ 11834 ipf->ipf_checksum_flags = 0; 11835 11836 /* 11837 * ipf_hole_cnt is set by ip_reassemble. 11838 * ipf_count is updated by ip_reassemble. 11839 * No need to check for return value here 11840 * as we don't expect reassembly to complete 11841 * or fail for the first fragment itself. 11842 */ 11843 (void) ip_reassemble(mp, ipf, 11844 (frag_offset_flags & IPH_OFFSET) << 3, 11845 (frag_offset_flags & IPH_MF), ill, msg_len); 11846 } 11847 /* Update per ipfb and ill byte counts */ 11848 ipfb->ipfb_count += ipf->ipf_count; 11849 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11850 ill->ill_frag_count += ipf->ipf_count; 11851 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11852 /* If the frag timer wasn't already going, start it. */ 11853 mutex_enter(&ill->ill_lock); 11854 ill_frag_timer_start(ill); 11855 mutex_exit(&ill->ill_lock); 11856 goto reass_done; 11857 } 11858 11859 /* 11860 * If the packet's flag has changed (it could be coming up 11861 * from an interface different than the previous, therefore 11862 * possibly different checksum capability), then forget about 11863 * any stored checksum states. Otherwise add the value to 11864 * the existing one stored in the fragment header. 11865 */ 11866 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 11867 sum_val += ipf->ipf_checksum; 11868 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11869 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11870 ipf->ipf_checksum = sum_val; 11871 } else if (ipf->ipf_checksum_flags != 0) { 11872 /* Forget checksum offload from now on */ 11873 ipf->ipf_checksum_flags = 0; 11874 } 11875 11876 /* 11877 * We have a new piece of a datagram which is already being 11878 * reassembled. Update the ECN info if all IP fragments 11879 * are ECN capable. If there is one which is not, clear 11880 * all the info. If there is at least one which has CE 11881 * code point, IP needs to report that up to transport. 11882 */ 11883 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 11884 if (ecn_info == IPH_ECN_CE) 11885 ipf->ipf_ecn = IPH_ECN_CE; 11886 } else { 11887 ipf->ipf_ecn = IPH_ECN_NECT; 11888 } 11889 if (offset && ipf->ipf_end == offset) { 11890 /* The new fragment fits at the end */ 11891 ipf->ipf_tail_mp->b_cont = mp; 11892 /* Update the byte count */ 11893 ipf->ipf_count += msg_len; 11894 /* Update per ipfb and ill byte counts */ 11895 ipfb->ipfb_count += msg_len; 11896 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11897 ill->ill_frag_count += msg_len; 11898 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11899 if (frag_offset_flags & IPH_MF) { 11900 /* More to come. */ 11901 ipf->ipf_end = end; 11902 ipf->ipf_tail_mp = tail_mp; 11903 goto reass_done; 11904 } 11905 } else { 11906 /* Go do the hard cases. */ 11907 int ret; 11908 11909 if (offset == 0) 11910 ipf->ipf_nf_hdr_len = hdr_length; 11911 11912 /* Save current byte count */ 11913 count = ipf->ipf_count; 11914 ret = ip_reassemble(mp, ipf, 11915 (frag_offset_flags & IPH_OFFSET) << 3, 11916 (frag_offset_flags & IPH_MF), ill, msg_len); 11917 /* Count of bytes added and subtracted (freeb()ed) */ 11918 count = ipf->ipf_count - count; 11919 if (count) { 11920 /* Update per ipfb and ill byte counts */ 11921 ipfb->ipfb_count += count; 11922 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11923 ill->ill_frag_count += count; 11924 ASSERT(ill->ill_frag_count > 0); 11925 } 11926 if (ret == IP_REASS_PARTIAL) { 11927 goto reass_done; 11928 } else if (ret == IP_REASS_FAILED) { 11929 /* Reassembly failed. Free up all resources */ 11930 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11931 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 11932 IP_REASS_SET_START(t_mp, 0); 11933 IP_REASS_SET_END(t_mp, 0); 11934 } 11935 freemsg(mp); 11936 goto reass_done; 11937 } 11938 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 11939 } 11940 /* 11941 * We have completed reassembly. Unhook the frag header from 11942 * the reassembly list. 11943 * 11944 * Before we free the frag header, record the ECN info 11945 * to report back to the transport. 11946 */ 11947 ecn_info = ipf->ipf_ecn; 11948 BUMP_MIB(&ip_mib, ipReasmOKs); 11949 ipfp = ipf->ipf_ptphn; 11950 11951 /* We need to supply these to caller */ 11952 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 11953 sum_val = ipf->ipf_checksum; 11954 else 11955 sum_val = 0; 11956 11957 mp1 = ipf->ipf_mp; 11958 count = ipf->ipf_count; 11959 ipf = ipf->ipf_hash_next; 11960 if (ipf != NULL) 11961 ipf->ipf_ptphn = ipfp; 11962 ipfp[0] = ipf; 11963 ill->ill_frag_count -= count; 11964 ASSERT(ipfb->ipfb_count >= count); 11965 ipfb->ipfb_count -= count; 11966 ipfb->ipfb_frag_pkts--; 11967 mutex_exit(&ipfb->ipfb_lock); 11968 /* Ditch the frag header. */ 11969 mp = mp1->b_cont; 11970 11971 freeb(mp1); 11972 11973 /* Restore original IP length in header. */ 11974 packet_size = (uint32_t)msgdsize(mp); 11975 if (packet_size > IP_MAXPACKET) { 11976 freemsg(mp); 11977 BUMP_MIB(&ip_mib, ipInHdrErrors); 11978 return (B_FALSE); 11979 } 11980 11981 if (DB_REF(mp) > 1) { 11982 mblk_t *mp2 = copymsg(mp); 11983 11984 freemsg(mp); 11985 if (mp2 == NULL) { 11986 BUMP_MIB(&ip_mib, ipInDiscards); 11987 return (B_FALSE); 11988 } 11989 mp = mp2; 11990 } 11991 ipha = (ipha_t *)mp->b_rptr; 11992 11993 ipha->ipha_length = htons((uint16_t)packet_size); 11994 /* We're now complete, zip the frag state */ 11995 ipha->ipha_fragment_offset_and_flags = 0; 11996 /* Record the ECN info. */ 11997 ipha->ipha_type_of_service &= 0xFC; 11998 ipha->ipha_type_of_service |= ecn_info; 11999 *mpp = mp; 12000 12001 /* Reassembly is successful; return checksum information if needed */ 12002 if (cksum_val != NULL) 12003 *cksum_val = sum_val; 12004 if (cksum_flags != NULL) 12005 *cksum_flags = sum_flags; 12006 12007 return (B_TRUE); 12008 } 12009 12010 /* 12011 * Perform ip header check sum update local options. 12012 * return B_TRUE if all is well, else return B_FALSE and release 12013 * the mp. caller is responsible for decrementing ire ref cnt. 12014 */ 12015 static boolean_t 12016 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 12017 { 12018 mblk_t *first_mp; 12019 boolean_t mctl_present; 12020 uint16_t sum; 12021 12022 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12023 /* 12024 * Don't do the checksum if it has gone through AH/ESP 12025 * processing. 12026 */ 12027 if (!mctl_present) { 12028 sum = ip_csum_hdr(ipha); 12029 if (sum != 0) { 12030 BUMP_MIB(&ip_mib, ipInCksumErrs); 12031 freemsg(first_mp); 12032 return (B_FALSE); 12033 } 12034 } 12035 12036 if (!ip_rput_local_options(q, mp, ipha, ire)) { 12037 if (mctl_present) 12038 freeb(first_mp); 12039 return (B_FALSE); 12040 } 12041 12042 return (B_TRUE); 12043 } 12044 12045 /* 12046 * All udp packet are delivered to the local host via this routine. 12047 */ 12048 void 12049 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12050 ill_t *recv_ill) 12051 { 12052 uint32_t sum; 12053 uint32_t u1; 12054 boolean_t mctl_present; 12055 conn_t *connp; 12056 mblk_t *first_mp; 12057 uint16_t *up; 12058 ill_t *ill = (ill_t *)q->q_ptr; 12059 uint16_t reass_hck_flags = 0; 12060 12061 #define rptr ((uchar_t *)ipha) 12062 12063 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12064 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12065 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12066 12067 /* 12068 * FAST PATH for udp packets 12069 */ 12070 12071 /* u1 is # words of IP options */ 12072 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12073 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12074 12075 /* IP options present */ 12076 if (u1 != 0) 12077 goto ipoptions; 12078 12079 /* Check the IP header checksum. */ 12080 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12081 /* Clear the IP header h/w cksum flag */ 12082 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12083 } else { 12084 #define uph ((uint16_t *)ipha) 12085 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12086 uph[6] + uph[7] + uph[8] + uph[9]; 12087 #undef uph 12088 /* finish doing IP checksum */ 12089 sum = (sum & 0xFFFF) + (sum >> 16); 12090 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12091 /* 12092 * Don't verify header checksum if this packet is coming 12093 * back from AH/ESP as we already did it. 12094 */ 12095 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12096 BUMP_MIB(&ip_mib, ipInCksumErrs); 12097 freemsg(first_mp); 12098 return; 12099 } 12100 } 12101 12102 /* 12103 * Count for SNMP of inbound packets for ire. 12104 * if mctl is present this might be a secure packet and 12105 * has already been counted for in ip_proto_input(). 12106 */ 12107 if (!mctl_present) { 12108 UPDATE_IB_PKT_COUNT(ire); 12109 ire->ire_last_used_time = lbolt; 12110 } 12111 12112 /* packet part of fragmented IP packet? */ 12113 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12114 if (u1 & (IPH_MF | IPH_OFFSET)) { 12115 goto fragmented; 12116 } 12117 12118 /* u1 = IP header length (20 bytes) */ 12119 u1 = IP_SIMPLE_HDR_LENGTH; 12120 12121 /* packet does not contain complete IP & UDP headers */ 12122 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12123 goto udppullup; 12124 12125 /* up points to UDP header */ 12126 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12127 #define iphs ((uint16_t *)ipha) 12128 12129 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12130 if (up[3] != 0) { 12131 mblk_t *mp1 = mp->b_cont; 12132 boolean_t cksum_err; 12133 uint16_t hck_flags = 0; 12134 12135 /* Pseudo-header checksum */ 12136 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12137 iphs[9] + up[2]; 12138 12139 /* 12140 * Revert to software checksum calculation if the interface 12141 * isn't capable of checksum offload or if IPsec is present. 12142 */ 12143 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12144 hck_flags = DB_CKSUMFLAGS(mp); 12145 12146 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12147 IP_STAT(ip_in_sw_cksum); 12148 12149 IP_CKSUM_RECV(hck_flags, u1, 12150 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12151 (int32_t)((uchar_t *)up - rptr), 12152 mp, mp1, cksum_err); 12153 12154 if (cksum_err) { 12155 BUMP_MIB(&ip_mib, udpInCksumErrs); 12156 12157 if (hck_flags & HCK_FULLCKSUM) 12158 IP_STAT(ip_udp_in_full_hw_cksum_err); 12159 else if (hck_flags & HCK_PARTIALCKSUM) 12160 IP_STAT(ip_udp_in_part_hw_cksum_err); 12161 else 12162 IP_STAT(ip_udp_in_sw_cksum_err); 12163 12164 freemsg(first_mp); 12165 return; 12166 } 12167 } 12168 12169 /* Non-fragmented broadcast or multicast packet? */ 12170 if (ire->ire_type == IRE_BROADCAST) 12171 goto udpslowpath; 12172 12173 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12174 ire->ire_zoneid)) != NULL) { 12175 ASSERT(connp->conn_upq != NULL); 12176 IP_STAT(ip_udp_fast_path); 12177 12178 if (CONN_UDP_FLOWCTLD(connp)) { 12179 freemsg(mp); 12180 BUMP_MIB(&ip_mib, udpInOverflows); 12181 } else { 12182 if (!mctl_present) { 12183 BUMP_MIB(&ip_mib, ipInDelivers); 12184 } 12185 /* 12186 * mp and first_mp can change. 12187 */ 12188 if (ip_udp_check(q, connp, recv_ill, 12189 ipha, &mp, &first_mp, mctl_present)) { 12190 /* Send it upstream */ 12191 CONN_UDP_RECV(connp, mp); 12192 } 12193 } 12194 /* 12195 * freeb() cannot deal with null mblk being passed 12196 * in and first_mp can be set to null in the call 12197 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12198 */ 12199 if (mctl_present && first_mp != NULL) { 12200 freeb(first_mp); 12201 } 12202 CONN_DEC_REF(connp); 12203 return; 12204 } 12205 12206 /* 12207 * if we got here we know the packet is not fragmented and 12208 * has no options. The classifier could not find a conn_t and 12209 * most likely its an icmp packet so send it through slow path. 12210 */ 12211 12212 goto udpslowpath; 12213 12214 ipoptions: 12215 if (!ip_options_cksum(q, mp, ipha, ire)) { 12216 goto slow_done; 12217 } 12218 12219 UPDATE_IB_PKT_COUNT(ire); 12220 ire->ire_last_used_time = lbolt; 12221 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12222 if (u1 & (IPH_MF | IPH_OFFSET)) { 12223 fragmented: 12224 /* 12225 * "sum" and "reass_hck_flags" are non-zero if the 12226 * reassembled packet has a valid hardware computed 12227 * checksum information associated with it. 12228 */ 12229 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12230 goto slow_done; 12231 /* 12232 * Make sure that first_mp points back to mp as 12233 * the mp we came in with could have changed in 12234 * ip_rput_fragment(). 12235 */ 12236 ASSERT(!mctl_present); 12237 ipha = (ipha_t *)mp->b_rptr; 12238 first_mp = mp; 12239 } 12240 12241 /* Now we have a complete datagram, destined for this machine. */ 12242 u1 = IPH_HDR_LENGTH(ipha); 12243 /* Pull up the UDP header, if necessary. */ 12244 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12245 udppullup: 12246 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12247 BUMP_MIB(&ip_mib, ipInDiscards); 12248 freemsg(first_mp); 12249 goto slow_done; 12250 } 12251 ipha = (ipha_t *)mp->b_rptr; 12252 } 12253 12254 /* 12255 * Validate the checksum for the reassembled packet; for the 12256 * pullup case we calculate the payload checksum in software. 12257 */ 12258 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12259 if (up[3] != 0) { 12260 boolean_t cksum_err; 12261 12262 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12263 IP_STAT(ip_in_sw_cksum); 12264 12265 IP_CKSUM_RECV_REASS(reass_hck_flags, 12266 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12267 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12268 iphs[9] + up[2], sum, cksum_err); 12269 12270 if (cksum_err) { 12271 BUMP_MIB(&ip_mib, udpInCksumErrs); 12272 12273 if (reass_hck_flags & HCK_FULLCKSUM) 12274 IP_STAT(ip_udp_in_full_hw_cksum_err); 12275 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12276 IP_STAT(ip_udp_in_part_hw_cksum_err); 12277 else 12278 IP_STAT(ip_udp_in_sw_cksum_err); 12279 12280 freemsg(first_mp); 12281 goto slow_done; 12282 } 12283 } 12284 udpslowpath: 12285 12286 /* Clear hardware checksum flag to be safe */ 12287 DB_CKSUMFLAGS(mp) = 0; 12288 12289 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12290 (ire->ire_type == IRE_BROADCAST), 12291 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12292 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12293 12294 slow_done: 12295 IP_STAT(ip_udp_slow_path); 12296 return; 12297 12298 #undef iphs 12299 #undef rptr 12300 } 12301 12302 /* ARGSUSED */ 12303 static mblk_t * 12304 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12305 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12306 ill_rx_ring_t *ill_ring) 12307 { 12308 conn_t *connp; 12309 uint32_t sum; 12310 uint32_t u1; 12311 uint16_t *up; 12312 int offset; 12313 ssize_t len; 12314 mblk_t *mp1; 12315 boolean_t syn_present = B_FALSE; 12316 tcph_t *tcph; 12317 uint_t ip_hdr_len; 12318 ill_t *ill = (ill_t *)q->q_ptr; 12319 zoneid_t zoneid = ire->ire_zoneid; 12320 boolean_t cksum_err; 12321 uint16_t hck_flags = 0; 12322 12323 #define rptr ((uchar_t *)ipha) 12324 12325 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12326 12327 /* 12328 * FAST PATH for tcp packets 12329 */ 12330 12331 /* u1 is # words of IP options */ 12332 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12333 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12334 12335 /* IP options present */ 12336 if (u1) { 12337 goto ipoptions; 12338 } else { 12339 /* Check the IP header checksum. */ 12340 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12341 /* Clear the IP header h/w cksum flag */ 12342 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12343 } else { 12344 #define uph ((uint16_t *)ipha) 12345 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12346 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12347 #undef uph 12348 /* finish doing IP checksum */ 12349 sum = (sum & 0xFFFF) + (sum >> 16); 12350 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12351 /* 12352 * Don't verify header checksum if this packet 12353 * is coming back from AH/ESP as we already did it. 12354 */ 12355 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12356 BUMP_MIB(&ip_mib, ipInCksumErrs); 12357 goto error; 12358 } 12359 } 12360 } 12361 12362 if (!mctl_present) { 12363 UPDATE_IB_PKT_COUNT(ire); 12364 ire->ire_last_used_time = lbolt; 12365 } 12366 12367 /* packet part of fragmented IP packet? */ 12368 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12369 if (u1 & (IPH_MF | IPH_OFFSET)) { 12370 goto fragmented; 12371 } 12372 12373 /* u1 = IP header length (20 bytes) */ 12374 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12375 12376 /* does packet contain IP+TCP headers? */ 12377 len = mp->b_wptr - rptr; 12378 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12379 IP_STAT(ip_tcppullup); 12380 goto tcppullup; 12381 } 12382 12383 /* TCP options present? */ 12384 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12385 12386 /* 12387 * If options need to be pulled up, then goto tcpoptions. 12388 * otherwise we are still in the fast path 12389 */ 12390 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12391 IP_STAT(ip_tcpoptions); 12392 goto tcpoptions; 12393 } 12394 12395 /* multiple mblks of tcp data? */ 12396 if ((mp1 = mp->b_cont) != NULL) { 12397 /* more then two? */ 12398 if (mp1->b_cont != NULL) { 12399 IP_STAT(ip_multipkttcp); 12400 goto multipkttcp; 12401 } 12402 len += mp1->b_wptr - mp1->b_rptr; 12403 } 12404 12405 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12406 12407 /* part of pseudo checksum */ 12408 12409 /* TCP datagram length */ 12410 u1 = len - IP_SIMPLE_HDR_LENGTH; 12411 12412 #define iphs ((uint16_t *)ipha) 12413 12414 #ifdef _BIG_ENDIAN 12415 u1 += IPPROTO_TCP; 12416 #else 12417 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12418 #endif 12419 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12420 12421 /* 12422 * Revert to software checksum calculation if the interface 12423 * isn't capable of checksum offload or if IPsec is present. 12424 */ 12425 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12426 hck_flags = DB_CKSUMFLAGS(mp); 12427 12428 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12429 IP_STAT(ip_in_sw_cksum); 12430 12431 IP_CKSUM_RECV(hck_flags, u1, 12432 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12433 (int32_t)((uchar_t *)up - rptr), 12434 mp, mp1, cksum_err); 12435 12436 if (cksum_err) { 12437 BUMP_MIB(&ip_mib, tcpInErrs); 12438 12439 if (hck_flags & HCK_FULLCKSUM) 12440 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12441 else if (hck_flags & HCK_PARTIALCKSUM) 12442 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12443 else 12444 IP_STAT(ip_tcp_in_sw_cksum_err); 12445 12446 goto error; 12447 } 12448 12449 try_again: 12450 12451 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12452 NULL) { 12453 /* Send the TH_RST */ 12454 goto no_conn; 12455 } 12456 12457 /* 12458 * TCP FAST PATH for AF_INET socket. 12459 * 12460 * TCP fast path to avoid extra work. An AF_INET socket type 12461 * does not have facility to receive extra information via 12462 * ip_process or ip_add_info. Also, when the connection was 12463 * established, we made a check if this connection is impacted 12464 * by any global IPSec policy or per connection policy (a 12465 * policy that comes in effect later will not apply to this 12466 * connection). Since all this can be determined at the 12467 * connection establishment time, a quick check of flags 12468 * can avoid extra work. 12469 */ 12470 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12471 !IPP_ENABLED(IPP_LOCAL_IN)) { 12472 ASSERT(first_mp == mp); 12473 SET_SQUEUE(mp, tcp_rput_data, connp); 12474 return (mp); 12475 } 12476 12477 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12478 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12479 if (IPCL_IS_TCP(connp)) { 12480 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12481 DB_CKSUMSTART(mp) = 12482 (intptr_t)ip_squeue_get(ill_ring); 12483 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12484 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12485 SET_SQUEUE(mp, connp->conn_recv, connp); 12486 return (mp); 12487 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12488 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12489 ip_squeue_enter_unbound++; 12490 SET_SQUEUE(mp, tcp_conn_request_unbound, 12491 connp); 12492 return (mp); 12493 } 12494 syn_present = B_TRUE; 12495 } 12496 12497 } 12498 12499 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12500 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12501 12502 /* No need to send this packet to TCP */ 12503 if ((flags & TH_RST) || (flags & TH_URG)) { 12504 CONN_DEC_REF(connp); 12505 freemsg(first_mp); 12506 return (NULL); 12507 } 12508 if (flags & TH_ACK) { 12509 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 12510 CONN_DEC_REF(connp); 12511 return (NULL); 12512 } 12513 12514 CONN_DEC_REF(connp); 12515 freemsg(first_mp); 12516 return (NULL); 12517 } 12518 12519 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12520 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12521 ipha, NULL, mctl_present); 12522 if (first_mp == NULL) { 12523 CONN_DEC_REF(connp); 12524 return (NULL); 12525 } 12526 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12527 ASSERT(syn_present); 12528 if (mctl_present) { 12529 ASSERT(first_mp != mp); 12530 first_mp->b_datap->db_struioflag |= 12531 STRUIO_POLICY; 12532 } else { 12533 ASSERT(first_mp == mp); 12534 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12535 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12536 } 12537 } else { 12538 /* 12539 * Discard first_mp early since we're dealing with a 12540 * fully-connected conn_t and tcp doesn't do policy in 12541 * this case. 12542 */ 12543 if (mctl_present) { 12544 freeb(first_mp); 12545 mctl_present = B_FALSE; 12546 } 12547 first_mp = mp; 12548 } 12549 } 12550 12551 /* Initiate IPPF processing for fastpath */ 12552 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12553 uint32_t ill_index; 12554 12555 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12556 ip_process(IPP_LOCAL_IN, &mp, ill_index); 12557 if (mp == NULL) { 12558 ip2dbg(("ip_input_ipsec_process: TCP pkt " 12559 "deferred/dropped during IPPF processing\n")); 12560 CONN_DEC_REF(connp); 12561 if (mctl_present) 12562 freeb(first_mp); 12563 return (NULL); 12564 } else if (mctl_present) { 12565 /* 12566 * ip_process might return a new mp. 12567 */ 12568 ASSERT(first_mp != mp); 12569 first_mp->b_cont = mp; 12570 } else { 12571 first_mp = mp; 12572 } 12573 12574 } 12575 12576 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 12577 mp = ip_add_info(mp, recv_ill, flags); 12578 if (mp == NULL) { 12579 CONN_DEC_REF(connp); 12580 if (mctl_present) 12581 freeb(first_mp); 12582 return (NULL); 12583 } else if (mctl_present) { 12584 /* 12585 * ip_add_info might return a new mp. 12586 */ 12587 ASSERT(first_mp != mp); 12588 first_mp->b_cont = mp; 12589 } else { 12590 first_mp = mp; 12591 } 12592 } 12593 12594 if (IPCL_IS_TCP(connp)) { 12595 SET_SQUEUE(first_mp, connp->conn_recv, connp); 12596 return (first_mp); 12597 } else { 12598 putnext(connp->conn_rq, first_mp); 12599 CONN_DEC_REF(connp); 12600 return (NULL); 12601 } 12602 12603 no_conn: 12604 /* Initiate IPPf processing, if needed. */ 12605 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12606 uint32_t ill_index; 12607 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12608 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 12609 if (first_mp == NULL) { 12610 return (NULL); 12611 } 12612 } 12613 BUMP_MIB(&ip_mib, ipInDelivers); 12614 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 12615 return (NULL); 12616 ipoptions: 12617 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 12618 goto slow_done; 12619 } 12620 12621 UPDATE_IB_PKT_COUNT(ire); 12622 ire->ire_last_used_time = lbolt; 12623 12624 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12625 if (u1 & (IPH_MF | IPH_OFFSET)) { 12626 fragmented: 12627 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 12628 if (mctl_present) 12629 freeb(first_mp); 12630 goto slow_done; 12631 } 12632 /* 12633 * Make sure that first_mp points back to mp as 12634 * the mp we came in with could have changed in 12635 * ip_rput_fragment(). 12636 */ 12637 ASSERT(!mctl_present); 12638 ipha = (ipha_t *)mp->b_rptr; 12639 first_mp = mp; 12640 } 12641 12642 /* Now we have a complete datagram, destined for this machine. */ 12643 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 12644 12645 len = mp->b_wptr - mp->b_rptr; 12646 /* Pull up a minimal TCP header, if necessary. */ 12647 if (len < (u1 + 20)) { 12648 tcppullup: 12649 if (!pullupmsg(mp, u1 + 20)) { 12650 BUMP_MIB(&ip_mib, ipInDiscards); 12651 goto error; 12652 } 12653 ipha = (ipha_t *)mp->b_rptr; 12654 len = mp->b_wptr - mp->b_rptr; 12655 } 12656 12657 /* 12658 * Extract the offset field from the TCP header. As usual, we 12659 * try to help the compiler more than the reader. 12660 */ 12661 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 12662 if (offset != 5) { 12663 tcpoptions: 12664 if (offset < 5) { 12665 BUMP_MIB(&ip_mib, ipInDiscards); 12666 goto error; 12667 } 12668 /* 12669 * There must be TCP options. 12670 * Make sure we can grab them. 12671 */ 12672 offset <<= 2; 12673 offset += u1; 12674 if (len < offset) { 12675 if (!pullupmsg(mp, offset)) { 12676 BUMP_MIB(&ip_mib, ipInDiscards); 12677 goto error; 12678 } 12679 ipha = (ipha_t *)mp->b_rptr; 12680 len = mp->b_wptr - rptr; 12681 } 12682 } 12683 12684 /* Get the total packet length in len, including headers. */ 12685 if (mp->b_cont) { 12686 multipkttcp: 12687 len = msgdsize(mp); 12688 } 12689 12690 /* 12691 * Check the TCP checksum by pulling together the pseudo- 12692 * header checksum, and passing it to ip_csum to be added in 12693 * with the TCP datagram. 12694 * 12695 * Since we are not using the hwcksum if available we must 12696 * clear the flag. We may come here via tcppullup or tcpoptions. 12697 * If either of these fails along the way the mblk is freed. 12698 * If this logic ever changes and mblk is reused to say send 12699 * ICMP's back, then this flag may need to be cleared in 12700 * other places as well. 12701 */ 12702 DB_CKSUMFLAGS(mp) = 0; 12703 12704 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 12705 12706 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 12707 #ifdef _BIG_ENDIAN 12708 u1 += IPPROTO_TCP; 12709 #else 12710 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12711 #endif 12712 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12713 /* 12714 * Not M_DATA mblk or its a dup, so do the checksum now. 12715 */ 12716 IP_STAT(ip_in_sw_cksum); 12717 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 12718 BUMP_MIB(&ip_mib, tcpInErrs); 12719 goto error; 12720 } 12721 12722 IP_STAT(ip_tcp_slow_path); 12723 goto try_again; 12724 #undef iphs 12725 #undef rptr 12726 12727 error: 12728 freemsg(first_mp); 12729 slow_done: 12730 return (NULL); 12731 } 12732 12733 /* ARGSUSED */ 12734 static void 12735 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12736 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 12737 { 12738 conn_t *connp; 12739 uint32_t sum; 12740 uint32_t u1; 12741 ssize_t len; 12742 sctp_hdr_t *sctph; 12743 zoneid_t zoneid = ire->ire_zoneid; 12744 uint32_t pktsum; 12745 uint32_t calcsum; 12746 uint32_t ports; 12747 uint_t ipif_seqid; 12748 in6_addr_t map_src, map_dst; 12749 ill_t *ill = (ill_t *)q->q_ptr; 12750 12751 #define rptr ((uchar_t *)ipha) 12752 12753 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 12754 12755 /* u1 is # words of IP options */ 12756 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12757 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12758 12759 /* IP options present */ 12760 if (u1 > 0) { 12761 goto ipoptions; 12762 } else { 12763 /* Check the IP header checksum. */ 12764 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12765 #define uph ((uint16_t *)ipha) 12766 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12767 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12768 #undef uph 12769 /* finish doing IP checksum */ 12770 sum = (sum & 0xFFFF) + (sum >> 16); 12771 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12772 /* 12773 * Don't verify header checksum if this packet 12774 * is coming back from AH/ESP as we already did it. 12775 */ 12776 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12777 BUMP_MIB(&ip_mib, ipInCksumErrs); 12778 goto error; 12779 } 12780 } 12781 /* 12782 * Since there is no SCTP h/w cksum support yet, just 12783 * clear the flag. 12784 */ 12785 DB_CKSUMFLAGS(mp) = 0; 12786 } 12787 12788 /* 12789 * Don't verify header checksum if this packet is coming 12790 * back from AH/ESP as we already did it. 12791 */ 12792 if (!mctl_present) { 12793 UPDATE_IB_PKT_COUNT(ire); 12794 ire->ire_last_used_time = lbolt; 12795 } 12796 12797 /* packet part of fragmented IP packet? */ 12798 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12799 if (u1 & (IPH_MF | IPH_OFFSET)) 12800 goto fragmented; 12801 12802 /* u1 = IP header length (20 bytes) */ 12803 u1 = IP_SIMPLE_HDR_LENGTH; 12804 12805 find_sctp_client: 12806 /* Pullup if we don't have the sctp common header. */ 12807 len = MBLKL(mp); 12808 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 12809 if (mp->b_cont == NULL || 12810 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 12811 BUMP_MIB(&ip_mib, ipInDiscards); 12812 goto error; 12813 } 12814 ipha = (ipha_t *)mp->b_rptr; 12815 len = MBLKL(mp); 12816 } 12817 12818 sctph = (sctp_hdr_t *)(rptr + u1); 12819 #ifdef DEBUG 12820 if (!skip_sctp_cksum) { 12821 #endif 12822 pktsum = sctph->sh_chksum; 12823 sctph->sh_chksum = 0; 12824 calcsum = sctp_cksum(mp, u1); 12825 if (calcsum != pktsum) { 12826 BUMP_MIB(&sctp_mib, sctpChecksumError); 12827 goto error; 12828 } 12829 sctph->sh_chksum = pktsum; 12830 #ifdef DEBUG /* skip_sctp_cksum */ 12831 } 12832 #endif 12833 /* get the ports */ 12834 ports = *(uint32_t *)&sctph->sh_sport; 12835 12836 ipif_seqid = ire->ire_ipif->ipif_seqid; 12837 IRE_REFRELE(ire); 12838 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 12839 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 12840 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 12841 mp)) == NULL) { 12842 /* Check for raw socket or OOTB handling */ 12843 goto no_conn; 12844 } 12845 12846 /* Found a client; up it goes */ 12847 BUMP_MIB(&ip_mib, ipInDelivers); 12848 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 12849 return; 12850 12851 no_conn: 12852 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 12853 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 12854 return; 12855 12856 ipoptions: 12857 DB_CKSUMFLAGS(mp) = 0; 12858 if (!ip_options_cksum(q, first_mp, ipha, ire)) 12859 goto slow_done; 12860 12861 UPDATE_IB_PKT_COUNT(ire); 12862 ire->ire_last_used_time = lbolt; 12863 12864 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12865 if (u1 & (IPH_MF | IPH_OFFSET)) { 12866 fragmented: 12867 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 12868 goto slow_done; 12869 /* 12870 * Make sure that first_mp points back to mp as 12871 * the mp we came in with could have changed in 12872 * ip_rput_fragment(). 12873 */ 12874 ASSERT(!mctl_present); 12875 ipha = (ipha_t *)mp->b_rptr; 12876 first_mp = mp; 12877 } 12878 12879 /* Now we have a complete datagram, destined for this machine. */ 12880 u1 = IPH_HDR_LENGTH(ipha); 12881 goto find_sctp_client; 12882 #undef iphs 12883 #undef rptr 12884 12885 error: 12886 freemsg(first_mp); 12887 slow_done: 12888 IRE_REFRELE(ire); 12889 } 12890 12891 #define VER_BITS 0xF0 12892 #define VERSION_6 0x60 12893 12894 static boolean_t 12895 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 12896 ipaddr_t *dstp) 12897 { 12898 uint_t opt_len; 12899 ipha_t *ipha; 12900 ssize_t len; 12901 uint_t pkt_len; 12902 12903 IP_STAT(ip_ipoptions); 12904 ipha = *iphapp; 12905 12906 #define rptr ((uchar_t *)ipha) 12907 /* Assume no IPv6 packets arrive over the IPv4 queue */ 12908 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 12909 BUMP_MIB(&ip_mib, ipInIPv6); 12910 freemsg(mp); 12911 return (B_FALSE); 12912 } 12913 12914 /* multiple mblk or too short */ 12915 pkt_len = ntohs(ipha->ipha_length); 12916 12917 /* Get the number of words of IP options in the IP header. */ 12918 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 12919 if (opt_len) { 12920 /* IP Options present! Validate and process. */ 12921 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 12922 BUMP_MIB(&ip_mib, ipInHdrErrors); 12923 goto done; 12924 } 12925 /* 12926 * Recompute complete header length and make sure we 12927 * have access to all of it. 12928 */ 12929 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 12930 if (len > (mp->b_wptr - rptr)) { 12931 if (len > pkt_len) { 12932 BUMP_MIB(&ip_mib, ipInHdrErrors); 12933 goto done; 12934 } 12935 if (!pullupmsg(mp, len)) { 12936 BUMP_MIB(&ip_mib, ipInDiscards); 12937 goto done; 12938 } 12939 ipha = (ipha_t *)mp->b_rptr; 12940 } 12941 /* 12942 * Go off to ip_rput_options which returns the next hop 12943 * destination address, which may have been affected 12944 * by source routing. 12945 */ 12946 IP_STAT(ip_opt); 12947 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 12948 return (B_FALSE); 12949 } 12950 } 12951 *iphapp = ipha; 12952 return (B_TRUE); 12953 done: 12954 /* clear b_prev - used by ip_mroute_decap */ 12955 mp->b_prev = NULL; 12956 freemsg(mp); 12957 return (B_FALSE); 12958 #undef rptr 12959 } 12960 12961 /* 12962 * Deal with the fact that there is no ire for the destination. 12963 * The incoming ill (in_ill) is passed in to ip_newroute only 12964 * in the case of packets coming from mobile ip forward tunnel. 12965 * It must be null otherwise. 12966 */ 12967 static ire_t * 12968 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 12969 ipaddr_t dst) 12970 { 12971 ipha_t *ipha; 12972 ill_t *ill; 12973 ire_t *ire; 12974 boolean_t check_multirt = B_FALSE; 12975 12976 ipha = (ipha_t *)mp->b_rptr; 12977 ill = (ill_t *)q->q_ptr; 12978 12979 ASSERT(ill != NULL); 12980 /* 12981 * No IRE for this destination, so it can't be for us. 12982 * Unless we are forwarding, drop the packet. 12983 * We have to let source routed packets through 12984 * since we don't yet know if they are 'ping -l' 12985 * packets i.e. if they will go out over the 12986 * same interface as they came in on. 12987 */ 12988 if (ll_multicast) { 12989 freemsg(mp); 12990 return (NULL); 12991 } 12992 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 12993 BUMP_MIB(&ip_mib, ipForwProhibits); 12994 freemsg(mp); 12995 return (NULL); 12996 } 12997 12998 /* 12999 * Mark this packet as having originated externally. 13000 * 13001 * For non-forwarding code path, ire_send later double 13002 * checks this interface to see if it is still exists 13003 * post-ARP resolution. 13004 * 13005 * Also, IPQOS uses this to differentiate between 13006 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13007 * QOS packet processing in ip_wput_attach_llhdr(). 13008 * The QoS module can mark the b_band for a fastpath message 13009 * or the dl_priority field in a unitdata_req header for 13010 * CoS marking. This info can only be found in 13011 * ip_wput_attach_llhdr(). 13012 */ 13013 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13014 /* 13015 * Clear the indication that this may have a hardware checksum 13016 * as we are not using it 13017 */ 13018 DB_CKSUMFLAGS(mp) = 0; 13019 13020 if (in_ill != NULL) { 13021 /* 13022 * Now hand the packet to ip_newroute. 13023 */ 13024 ip_newroute(q, mp, dst, in_ill, NULL); 13025 return (NULL); 13026 } 13027 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13028 MBLK_GETLABEL(mp)); 13029 13030 if (ire == NULL && check_multirt) { 13031 /* Let ip_newroute handle CGTP */ 13032 ip_newroute(q, mp, dst, in_ill, NULL); 13033 return (NULL); 13034 } 13035 13036 if (ire != NULL) 13037 return (ire); 13038 13039 mp->b_prev = mp->b_next = 0; 13040 /* send icmp unreachable */ 13041 q = WR(q); 13042 if (ip_source_routed(ipha)) 13043 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 13044 else 13045 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 13046 13047 return (NULL); 13048 13049 } 13050 13051 /* 13052 * check ip header length and align it. 13053 */ 13054 static boolean_t 13055 ip_check_and_align_header(queue_t *q, mblk_t *mp) 13056 { 13057 ssize_t len; 13058 ill_t *ill; 13059 ipha_t *ipha; 13060 13061 len = MBLKL(mp); 13062 13063 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13064 if (!OK_32PTR(mp->b_rptr)) 13065 IP_STAT(ip_notaligned1); 13066 else 13067 IP_STAT(ip_notaligned2); 13068 /* Guard against bogus device drivers */ 13069 if (len < 0) { 13070 /* clear b_prev - used by ip_mroute_decap */ 13071 mp->b_prev = NULL; 13072 BUMP_MIB(&ip_mib, ipInHdrErrors); 13073 freemsg(mp); 13074 return (B_FALSE); 13075 } 13076 13077 if (ip_rput_pullups++ == 0) { 13078 ill = (ill_t *)q->q_ptr; 13079 ipha = (ipha_t *)mp->b_rptr; 13080 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13081 "ip_check_and_align_header: %s forced us to " 13082 " pullup pkt, hdr len %ld, hdr addr %p", 13083 ill->ill_name, len, ipha); 13084 } 13085 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13086 /* clear b_prev - used by ip_mroute_decap */ 13087 mp->b_prev = NULL; 13088 BUMP_MIB(&ip_mib, ipInDiscards); 13089 freemsg(mp); 13090 return (B_FALSE); 13091 } 13092 } 13093 return (B_TRUE); 13094 } 13095 13096 static boolean_t 13097 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 13098 { 13099 ill_group_t *ill_group; 13100 ill_group_t *ire_group; 13101 queue_t *q; 13102 ill_t *ire_ill; 13103 uint_t ill_ifindex; 13104 13105 q = *qp; 13106 /* 13107 * We need to check to make sure the packet came in 13108 * on the queue associated with the destination IRE. 13109 * Note that for multicast packets and broadcast packets sent to 13110 * a broadcast address which is shared between multiple interfaces 13111 * we should not do this since we just got a random broadcast ire. 13112 */ 13113 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13114 boolean_t check_multi = B_TRUE; 13115 13116 /* 13117 * This packet came in on an interface other than the 13118 * one associated with the destination address. 13119 * "Gateway" it to the appropriate interface here. 13120 * As long as the ills belong to the same group, 13121 * we don't consider them to arriving on the wrong 13122 * interface. Thus, when the switch is doing inbound 13123 * load spreading, we won't drop packets when we 13124 * are doing strict multihoming checks. Note, the 13125 * same holds true for 'usesrc groups' where the 13126 * destination address may belong to another interface 13127 * to allow multipathing to happen 13128 */ 13129 ill_group = ill->ill_group; 13130 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13131 ill_ifindex = ill->ill_usesrc_ifindex; 13132 ire_group = ire_ill->ill_group; 13133 13134 /* 13135 * If it's part of the same IPMP group, or if it's a legal 13136 * address on the 'usesrc' interface, then bypass strict 13137 * checks. 13138 */ 13139 if (ill_group != NULL && ill_group == ire_group) { 13140 check_multi = B_FALSE; 13141 } else if (ill_ifindex != 0 && 13142 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13143 check_multi = B_FALSE; 13144 } 13145 13146 if (check_multi && 13147 ip_strict_dst_multihoming && 13148 ((ill->ill_flags & 13149 ire->ire_ipif->ipif_ill->ill_flags & 13150 ILLF_ROUTER) == 0)) { 13151 /* Drop packet */ 13152 BUMP_MIB(&ip_mib, ipForwProhibits); 13153 freemsg(mp); 13154 return (B_TRUE); 13155 } 13156 13157 /* 13158 * Change the queue (for non-virtual destination network 13159 * interfaces) and ip_rput_local will be called with the right 13160 * queue 13161 */ 13162 q = ire->ire_rfq; 13163 } 13164 /* Must be broadcast. We'll take it. */ 13165 *qp = q; 13166 return (B_FALSE); 13167 } 13168 13169 #define SEND_PKT(ire, mp) \ 13170 { \ 13171 UPDATE_IB_PKT_COUNT(ire); \ 13172 (ire)->ire_last_used_time = lbolt; \ 13173 BUMP_MIB(&ip_mib, ipForwDatagrams); \ 13174 putnext((ire)->ire_stq, mp); \ 13175 } 13176 13177 ire_t * 13178 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13179 { 13180 ipha_t *ipha; 13181 ipaddr_t ip_dst, ip_src; 13182 ire_t *src_ire; 13183 ill_t *stq_ill; 13184 uint_t hlen; 13185 uint32_t sum; 13186 queue_t *dev_q; 13187 boolean_t check_multirt = B_FALSE; 13188 13189 13190 ipha = (ipha_t *)mp->b_rptr; 13191 13192 /* 13193 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13194 * The loopback address check for both src and dst has already 13195 * been checked in ip_input 13196 */ 13197 ip_dst = ntohl(dst); 13198 ip_src = ntohl(ipha->ipha_src); 13199 13200 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13201 IN_CLASSD(ip_src)) { 13202 BUMP_MIB(&ip_mib, ipForwProhibits); 13203 goto drop; 13204 } 13205 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13206 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13207 13208 if (src_ire != NULL) { 13209 BUMP_MIB(&ip_mib, ipForwProhibits); 13210 goto drop; 13211 } 13212 13213 /* No ire cache of nexthop. So first create one */ 13214 if (ire == NULL) { 13215 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL); 13216 /* 13217 * We only come to ip_fast_forward if ip_cgtp_filter is 13218 * is not set. So upon return from ire_forward 13219 * check_multirt should remain as false. 13220 */ 13221 ASSERT(!check_multirt); 13222 if (ire == NULL) { 13223 BUMP_MIB(&ip_mib, ipInDiscards); 13224 mp->b_prev = mp->b_next = 0; 13225 /* send icmp unreachable */ 13226 if (ip_source_routed(ipha)) { 13227 icmp_unreachable(ill->ill_wq, mp, 13228 ICMP_SOURCE_ROUTE_FAILED); 13229 } else { 13230 icmp_unreachable(ill->ill_wq, mp, 13231 ICMP_HOST_UNREACHABLE); 13232 } 13233 return (ire); 13234 } 13235 } 13236 13237 /* 13238 * Forwarding fastpath exception case: 13239 * If either of the follwoing case is true, we take 13240 * the slowpath 13241 * o forwarding is not enabled 13242 * o IPMP is enabled 13243 * o corresponding ire is in incomplete state 13244 * o packet needs fragmentation 13245 * 13246 * The codeflow from here on is thus: 13247 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13248 */ 13249 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13250 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13251 !(ill->ill_flags & ILLF_ROUTER) || SAME_IPMP_GROUP(ill, stq_ill) || 13252 (ire->ire_nce == NULL) || 13253 (ire->ire_nce->nce_state != ND_REACHABLE) || 13254 (ntohs(ipha->ipha_length) > ire->ire_max_frag) || 13255 ipha->ipha_ttl <= 1) { 13256 ip_rput_process_forward(ill->ill_rq, mp, ire, 13257 ipha, ill, B_FALSE); 13258 return (ire); 13259 } 13260 13261 mp->b_datap->db_struioun.cksum.flags = 0; 13262 /* Adjust the checksum to reflect the ttl decrement. */ 13263 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13264 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13265 ipha->ipha_ttl--; 13266 13267 dev_q = ire->ire_stq->q_next; 13268 if ((dev_q->q_next != NULL || 13269 dev_q->q_first != NULL) && !canput(dev_q)) { 13270 goto indiscard; 13271 } 13272 13273 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13274 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13275 13276 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13277 mp = ip_wput_attach_llhdr(mp, ire, 0, 0); 13278 if (mp != NULL) { 13279 SEND_PKT(ire, mp); 13280 return (ire); 13281 } 13282 } 13283 13284 indiscard: 13285 BUMP_MIB(&ip_mib, ipInDiscards); 13286 drop: 13287 if (mp != NULL) 13288 freemsg(mp); 13289 if (src_ire != NULL) 13290 ire_refrele(src_ire); 13291 return (ire); 13292 13293 } 13294 13295 /* 13296 * This function is called in the forwarding slowpath, when 13297 * either the ire lacks the link-layer address, or the packet needs 13298 * further processing(eg. fragmentation), before transmission. 13299 */ 13300 static void 13301 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13302 ill_t *ill, boolean_t ll_multicast) 13303 { 13304 ill_group_t *ill_group; 13305 ill_group_t *ire_group; 13306 queue_t *dev_q; 13307 ire_t *src_ire; 13308 13309 ASSERT(ire->ire_stq != NULL); 13310 13311 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13312 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13313 13314 if (ll_multicast != 0) 13315 goto drop_pkt; 13316 13317 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13318 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13319 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 13320 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 13321 if (src_ire != NULL) 13322 ire_refrele(src_ire); 13323 BUMP_MIB(&ip_mib, ipForwProhibits); 13324 ip2dbg(("ip_rput_process_forward: Received packet with" 13325 " bad src/dst address on %s\n", ill->ill_name)); 13326 } 13327 13328 ill_group = ill->ill_group; 13329 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13330 /* 13331 * Check if we want to forward this one at this time. 13332 * We allow source routed packets on a host provided that 13333 * they go out the same interface or same interface group 13334 * as they came in on. 13335 * 13336 * XXX To be quicker, we may wish to not chase pointers to 13337 * get the ILLF_ROUTER flag and instead store the 13338 * forwarding policy in the ire. An unfortunate 13339 * side-effect of that would be requiring an ire flush 13340 * whenever the ILLF_ROUTER flag changes. 13341 */ 13342 if (((ill->ill_flags & 13343 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13344 ILLF_ROUTER) == 0) && 13345 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13346 (ill_group != NULL && ill_group == ire_group)))) { 13347 BUMP_MIB(&ip_mib, ipForwProhibits); 13348 if (ip_source_routed(ipha)) { 13349 q = WR(q); 13350 /* 13351 * Clear the indication that this may have 13352 * hardware checksum as we are not using it. 13353 */ 13354 DB_CKSUMFLAGS(mp) = 0; 13355 icmp_unreachable(q, mp, 13356 ICMP_SOURCE_ROUTE_FAILED); 13357 return; 13358 } 13359 goto drop_pkt; 13360 } 13361 13362 /* Packet is being forwarded. Turning off hwcksum flag. */ 13363 DB_CKSUMFLAGS(mp) = 0; 13364 if (ip_g_send_redirects) { 13365 /* 13366 * Check whether the incoming interface and outgoing 13367 * interface is part of the same group. If so, 13368 * send redirects. 13369 * 13370 * Check the source address to see if it originated 13371 * on the same logical subnet it is going back out on. 13372 * If so, we should be able to send it a redirect. 13373 * Avoid sending a redirect if the destination 13374 * is directly connected (gw_addr == 0), 13375 * or if the packet was source routed out this 13376 * interface. 13377 */ 13378 ipaddr_t src; 13379 mblk_t *mp1; 13380 ire_t *src_ire = NULL; 13381 13382 /* 13383 * Check whether ire_rfq and q are from the same ill 13384 * or if they are not same, they at least belong 13385 * to the same group. If so, send redirects. 13386 */ 13387 if ((ire->ire_rfq == q || 13388 (ill_group != NULL && ill_group == ire_group)) && 13389 (ire->ire_gateway_addr != 0) && 13390 !ip_source_routed(ipha)) { 13391 13392 src = ipha->ipha_src; 13393 src_ire = ire_ftable_lookup(src, 0, 0, 13394 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 13395 0, NULL, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 13396 13397 if (src_ire != NULL) { 13398 /* 13399 * The source is directly connected. 13400 * Just copy the ip header (which is 13401 * in the first mblk) 13402 */ 13403 mp1 = copyb(mp); 13404 if (mp1 != NULL) { 13405 icmp_send_redirect(WR(q), mp1, 13406 ire->ire_gateway_addr); 13407 } 13408 ire_refrele(src_ire); 13409 } 13410 } 13411 } 13412 13413 dev_q = ire->ire_stq->q_next; 13414 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13415 BUMP_MIB(&ip_mib, ipInDiscards); 13416 freemsg(mp); 13417 return; 13418 } 13419 13420 ip_rput_forward(ire, ipha, mp, ill); 13421 return; 13422 13423 drop_pkt: 13424 ip2dbg(("ip_rput_forward: drop pkt\n")); 13425 freemsg(mp); 13426 } 13427 13428 ire_t * 13429 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13430 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13431 { 13432 queue_t *q; 13433 uint16_t hcksumflags; 13434 13435 q = *qp; 13436 13437 /* 13438 * Clear the indication that this may have hardware 13439 * checksum as we are not using it for forwarding. 13440 */ 13441 hcksumflags = DB_CKSUMFLAGS(mp); 13442 DB_CKSUMFLAGS(mp) = 0; 13443 13444 /* 13445 * Directed broadcast forwarding: if the packet came in over a 13446 * different interface then it is routed out over we can forward it. 13447 */ 13448 if (ipha->ipha_protocol == IPPROTO_TCP) { 13449 ire_refrele(ire); 13450 freemsg(mp); 13451 BUMP_MIB(&ip_mib, ipInDiscards); 13452 return (NULL); 13453 } 13454 /* 13455 * For multicast we have set dst to be INADDR_BROADCAST 13456 * for delivering to all STREAMS. IRE_MARK_NORECV is really 13457 * only for broadcast packets. 13458 */ 13459 if (!CLASSD(ipha->ipha_dst)) { 13460 ire_t *new_ire; 13461 ipif_t *ipif; 13462 /* 13463 * For ill groups, as the switch duplicates broadcasts 13464 * across all the ports, we need to filter out and 13465 * send up only one copy. There is one copy for every 13466 * broadcast address on each ill. Thus, we look for a 13467 * specific IRE on this ill and look at IRE_MARK_NORECV 13468 * later to see whether this ill is eligible to receive 13469 * them or not. ill_nominate_bcast_rcv() nominates only 13470 * one set of IREs for receiving. 13471 */ 13472 13473 ipif = ipif_get_next_ipif(NULL, ill); 13474 if (ipif == NULL) { 13475 ire_refrele(ire); 13476 freemsg(mp); 13477 BUMP_MIB(&ip_mib, ipInDiscards); 13478 return (NULL); 13479 } 13480 new_ire = ire_ctable_lookup(dst, 0, 0, 13481 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 13482 ipif_refrele(ipif); 13483 13484 if (new_ire != NULL) { 13485 if (new_ire->ire_marks & IRE_MARK_NORECV) { 13486 ire_refrele(ire); 13487 ire_refrele(new_ire); 13488 freemsg(mp); 13489 BUMP_MIB(&ip_mib, ipInDiscards); 13490 return (NULL); 13491 } 13492 /* 13493 * In the special case of multirouted broadcast 13494 * packets, we unconditionally need to "gateway" 13495 * them to the appropriate interface here. 13496 * In the normal case, this cannot happen, because 13497 * there is no broadcast IRE tagged with the 13498 * RTF_MULTIRT flag. 13499 */ 13500 if (new_ire->ire_flags & RTF_MULTIRT) { 13501 ire_refrele(new_ire); 13502 if (ire->ire_rfq != NULL) { 13503 q = ire->ire_rfq; 13504 *qp = q; 13505 } 13506 } else { 13507 ire_refrele(ire); 13508 ire = new_ire; 13509 } 13510 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 13511 if (!ip_g_forward_directed_bcast) { 13512 /* 13513 * Free the message if 13514 * ip_g_forward_directed_bcast is turned 13515 * off for non-local broadcast. 13516 */ 13517 ire_refrele(ire); 13518 freemsg(mp); 13519 BUMP_MIB(&ip_mib, ipInDiscards); 13520 return (NULL); 13521 } 13522 } else { 13523 /* 13524 * This CGTP packet successfully passed the 13525 * CGTP filter, but the related CGTP 13526 * broadcast IRE has not been found, 13527 * meaning that the redundant ipif is 13528 * probably down. However, if we discarded 13529 * this packet, its duplicate would be 13530 * filtered out by the CGTP filter so none 13531 * of them would get through. So we keep 13532 * going with this one. 13533 */ 13534 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 13535 if (ire->ire_rfq != NULL) { 13536 q = ire->ire_rfq; 13537 *qp = q; 13538 } 13539 } 13540 } 13541 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 13542 /* 13543 * Verify that there are not more then one 13544 * IRE_BROADCAST with this broadcast address which 13545 * has ire_stq set. 13546 * TODO: simplify, loop over all IRE's 13547 */ 13548 ire_t *ire1; 13549 int num_stq = 0; 13550 mblk_t *mp1; 13551 13552 /* Find the first one with ire_stq set */ 13553 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 13554 for (ire1 = ire; ire1 && 13555 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 13556 ire1 = ire1->ire_next) 13557 ; 13558 if (ire1) { 13559 ire_refrele(ire); 13560 ire = ire1; 13561 IRE_REFHOLD(ire); 13562 } 13563 13564 /* Check if there are additional ones with stq set */ 13565 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 13566 if (ire->ire_addr != ire1->ire_addr) 13567 break; 13568 if (ire1->ire_stq) { 13569 num_stq++; 13570 break; 13571 } 13572 } 13573 rw_exit(&ire->ire_bucket->irb_lock); 13574 if (num_stq == 1 && ire->ire_stq != NULL) { 13575 ip1dbg(("ip_rput_process_broadcast: directed " 13576 "broadcast to 0x%x\n", 13577 ntohl(ire->ire_addr))); 13578 mp1 = copymsg(mp); 13579 if (mp1) { 13580 switch (ipha->ipha_protocol) { 13581 case IPPROTO_UDP: 13582 ip_udp_input(q, mp1, ipha, ire, ill); 13583 break; 13584 default: 13585 ip_proto_input(q, mp1, ipha, ire, ill); 13586 break; 13587 } 13588 } 13589 /* 13590 * Adjust ttl to 2 (1+1 - the forward engine 13591 * will decrement it by one. 13592 */ 13593 if (ip_csum_hdr(ipha)) { 13594 BUMP_MIB(&ip_mib, ipInCksumErrs); 13595 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 13596 freemsg(mp); 13597 ire_refrele(ire); 13598 return (NULL); 13599 } 13600 ipha->ipha_ttl = ip_broadcast_ttl + 1; 13601 ipha->ipha_hdr_checksum = 0; 13602 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 13603 ip_rput_process_forward(q, mp, ire, ipha, 13604 ill, ll_multicast); 13605 ire_refrele(ire); 13606 return (NULL); 13607 } 13608 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 13609 ntohl(ire->ire_addr))); 13610 } 13611 13612 13613 /* Restore any hardware checksum flags */ 13614 DB_CKSUMFLAGS(mp) = hcksumflags; 13615 return (ire); 13616 } 13617 13618 /* ARGSUSED */ 13619 static boolean_t 13620 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 13621 int *ll_multicast, ipaddr_t *dstp) 13622 { 13623 /* 13624 * Forward packets only if we have joined the allmulti 13625 * group on this interface. 13626 */ 13627 if (ip_g_mrouter && ill->ill_join_allmulti) { 13628 int retval; 13629 13630 /* 13631 * Clear the indication that this may have hardware 13632 * checksum as we are not using it. 13633 */ 13634 DB_CKSUMFLAGS(mp) = 0; 13635 retval = ip_mforward(ill, ipha, mp); 13636 /* ip_mforward updates mib variables if needed */ 13637 /* clear b_prev - used by ip_mroute_decap */ 13638 mp->b_prev = NULL; 13639 13640 switch (retval) { 13641 case 0: 13642 /* 13643 * pkt is okay and arrived on phyint. 13644 * 13645 * If we are running as a multicast router 13646 * we need to see all IGMP and/or PIM packets. 13647 */ 13648 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 13649 (ipha->ipha_protocol == IPPROTO_PIM)) { 13650 goto done; 13651 } 13652 break; 13653 case -1: 13654 /* pkt is mal-formed, toss it */ 13655 goto drop_pkt; 13656 case 1: 13657 /* pkt is okay and arrived on a tunnel */ 13658 /* 13659 * If we are running a multicast router 13660 * we need to see all igmp packets. 13661 */ 13662 if (ipha->ipha_protocol == IPPROTO_IGMP) { 13663 *dstp = INADDR_BROADCAST; 13664 *ll_multicast = 1; 13665 return (B_FALSE); 13666 } 13667 13668 goto drop_pkt; 13669 } 13670 } 13671 13672 ILM_WALKER_HOLD(ill); 13673 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 13674 /* 13675 * This might just be caused by the fact that 13676 * multiple IP Multicast addresses map to the same 13677 * link layer multicast - no need to increment counter! 13678 */ 13679 ILM_WALKER_RELE(ill); 13680 freemsg(mp); 13681 return (B_TRUE); 13682 } 13683 ILM_WALKER_RELE(ill); 13684 done: 13685 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 13686 /* 13687 * This assumes the we deliver to all streams for multicast 13688 * and broadcast packets. 13689 */ 13690 *dstp = INADDR_BROADCAST; 13691 *ll_multicast = 1; 13692 return (B_FALSE); 13693 drop_pkt: 13694 ip2dbg(("ip_rput: drop pkt\n")); 13695 freemsg(mp); 13696 return (B_TRUE); 13697 } 13698 13699 static boolean_t 13700 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 13701 int *ll_multicast, mblk_t **mpp) 13702 { 13703 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 13704 boolean_t must_copy = B_FALSE; 13705 struct iocblk *iocp; 13706 ipha_t *ipha; 13707 13708 #define rptr ((uchar_t *)ipha) 13709 13710 first_mp = *first_mpp; 13711 mp = *mpp; 13712 13713 ASSERT(first_mp == mp); 13714 13715 /* 13716 * if db_ref > 1 then copymsg and free original. Packet may be 13717 * changed and do not want other entity who has a reference to this 13718 * message to trip over the changes. This is a blind change because 13719 * trying to catch all places that might change packet is too 13720 * difficult (since it may be a module above this one) 13721 * 13722 * This corresponds to the non-fast path case. We walk down the full 13723 * chain in this case, and check the db_ref count of all the dblks, 13724 * and do a copymsg if required. It is possible that the db_ref counts 13725 * of the data blocks in the mblk chain can be different. 13726 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 13727 * count of 1, followed by a M_DATA block with a ref count of 2, if 13728 * 'snoop' is running. 13729 */ 13730 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 13731 if (mp1->b_datap->db_ref > 1) { 13732 must_copy = B_TRUE; 13733 break; 13734 } 13735 } 13736 13737 if (must_copy) { 13738 mp1 = copymsg(mp); 13739 if (mp1 == NULL) { 13740 for (mp1 = mp; mp1 != NULL; 13741 mp1 = mp1->b_cont) { 13742 mp1->b_next = NULL; 13743 mp1->b_prev = NULL; 13744 } 13745 freemsg(mp); 13746 BUMP_MIB(&ip_mib, ipInDiscards); 13747 return (B_TRUE); 13748 } 13749 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 13750 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 13751 /* Copy b_prev - used by ip_mroute_decap */ 13752 to_mp->b_prev = from_mp->b_prev; 13753 from_mp->b_prev = NULL; 13754 } 13755 *first_mpp = first_mp = mp1; 13756 freemsg(mp); 13757 mp = mp1; 13758 *mpp = mp1; 13759 } 13760 13761 ipha = (ipha_t *)mp->b_rptr; 13762 13763 /* 13764 * previous code has a case for M_DATA. 13765 * We want to check how that happens. 13766 */ 13767 ASSERT(first_mp->b_datap->db_type != M_DATA); 13768 switch (first_mp->b_datap->db_type) { 13769 case M_PROTO: 13770 case M_PCPROTO: 13771 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 13772 DL_UNITDATA_IND) { 13773 /* Go handle anything other than data elsewhere. */ 13774 ip_rput_dlpi(q, mp); 13775 return (B_TRUE); 13776 } 13777 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 13778 /* Ditch the DLPI header. */ 13779 mp1 = mp->b_cont; 13780 ASSERT(first_mp == mp); 13781 *first_mpp = mp1; 13782 freeb(mp); 13783 *mpp = mp1; 13784 return (B_FALSE); 13785 case M_IOCACK: 13786 ip1dbg(("got iocack ")); 13787 iocp = (struct iocblk *)mp->b_rptr; 13788 switch (iocp->ioc_cmd) { 13789 case DL_IOC_HDR_INFO: 13790 ill = (ill_t *)q->q_ptr; 13791 ill_fastpath_ack(ill, mp); 13792 return (B_TRUE); 13793 case SIOCSTUNPARAM: 13794 case OSIOCSTUNPARAM: 13795 /* Go through qwriter_ip */ 13796 break; 13797 case SIOCGTUNPARAM: 13798 case OSIOCGTUNPARAM: 13799 ip_rput_other(NULL, q, mp, NULL); 13800 return (B_TRUE); 13801 default: 13802 putnext(q, mp); 13803 return (B_TRUE); 13804 } 13805 /* FALLTHRU */ 13806 case M_ERROR: 13807 case M_HANGUP: 13808 /* 13809 * Since this is on the ill stream we unconditionally 13810 * bump up the refcount 13811 */ 13812 ill_refhold(ill); 13813 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 13814 B_FALSE); 13815 return (B_TRUE); 13816 case M_CTL: 13817 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 13818 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 13819 IPHADA_M_CTL)) { 13820 /* 13821 * It's an IPsec accelerated packet. 13822 * Make sure that the ill from which we received the 13823 * packet has enabled IPsec hardware acceleration. 13824 */ 13825 if (!(ill->ill_capabilities & 13826 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 13827 /* IPsec kstats: bean counter */ 13828 freemsg(mp); 13829 return (B_TRUE); 13830 } 13831 13832 /* 13833 * Make mp point to the mblk following the M_CTL, 13834 * then process according to type of mp. 13835 * After this processing, first_mp will point to 13836 * the data-attributes and mp to the pkt following 13837 * the M_CTL. 13838 */ 13839 mp = first_mp->b_cont; 13840 if (mp == NULL) { 13841 freemsg(first_mp); 13842 return (B_TRUE); 13843 } 13844 /* 13845 * A Hardware Accelerated packet can only be M_DATA 13846 * ESP or AH packet. 13847 */ 13848 if (mp->b_datap->db_type != M_DATA) { 13849 /* non-M_DATA IPsec accelerated packet */ 13850 IPSECHW_DEBUG(IPSECHW_PKT, 13851 ("non-M_DATA IPsec accelerated pkt\n")); 13852 freemsg(first_mp); 13853 return (B_TRUE); 13854 } 13855 ipha = (ipha_t *)mp->b_rptr; 13856 if (ipha->ipha_protocol != IPPROTO_AH && 13857 ipha->ipha_protocol != IPPROTO_ESP) { 13858 IPSECHW_DEBUG(IPSECHW_PKT, 13859 ("non-M_DATA IPsec accelerated pkt\n")); 13860 freemsg(first_mp); 13861 return (B_TRUE); 13862 } 13863 *mpp = mp; 13864 return (B_FALSE); 13865 } 13866 putnext(q, mp); 13867 return (B_TRUE); 13868 case M_FLUSH: 13869 if (*mp->b_rptr & FLUSHW) { 13870 *mp->b_rptr &= ~FLUSHR; 13871 qreply(q, mp); 13872 return (B_TRUE); 13873 } 13874 freemsg(mp); 13875 return (B_TRUE); 13876 case M_IOCNAK: 13877 ip1dbg(("got iocnak ")); 13878 iocp = (struct iocblk *)mp->b_rptr; 13879 switch (iocp->ioc_cmd) { 13880 case DL_IOC_HDR_INFO: 13881 case SIOCSTUNPARAM: 13882 case OSIOCSTUNPARAM: 13883 /* 13884 * Since this is on the ill stream we unconditionally 13885 * bump up the refcount 13886 */ 13887 ill_refhold(ill); 13888 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 13889 CUR_OP, B_FALSE); 13890 return (B_TRUE); 13891 case SIOCGTUNPARAM: 13892 case OSIOCGTUNPARAM: 13893 ip_rput_other(NULL, q, mp, NULL); 13894 return (B_TRUE); 13895 default: 13896 break; 13897 } 13898 /* FALLTHRU */ 13899 default: 13900 putnext(q, mp); 13901 return (B_TRUE); 13902 } 13903 } 13904 13905 /* Read side put procedure. Packets coming from the wire arrive here. */ 13906 void 13907 ip_rput(queue_t *q, mblk_t *mp) 13908 { 13909 ill_t *ill; 13910 mblk_t *dmp = NULL; 13911 13912 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 13913 13914 ill = (ill_t *)q->q_ptr; 13915 13916 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 13917 union DL_primitives *dl; 13918 13919 /* 13920 * Things are opening or closing. Only accept DLPI control 13921 * messages. In the open case, the ill->ill_ipif has not yet 13922 * been created. In the close case, things hanging off the 13923 * ill could have been freed already. In either case it 13924 * may not be safe to proceed further. 13925 */ 13926 13927 dl = (union DL_primitives *)mp->b_rptr; 13928 if ((mp->b_datap->db_type != M_PCPROTO) || 13929 (dl->dl_primitive == DL_UNITDATA_IND)) { 13930 /* 13931 * Also SIOC[GS]TUN* ioctls can come here. 13932 */ 13933 inet_freemsg(mp); 13934 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13935 "ip_input_end: q %p (%S)", q, "uninit"); 13936 return; 13937 } 13938 } 13939 13940 /* 13941 * if db_ref > 1 then copymsg and free original. Packet may be 13942 * changed and we do not want the other entity who has a reference to 13943 * this message to trip over the changes. This is a blind change because 13944 * trying to catch all places that might change the packet is too 13945 * difficult. 13946 * 13947 * This corresponds to the fast path case, where we have a chain of 13948 * M_DATA mblks. We check the db_ref count of only the 1st data block 13949 * in the mblk chain. There doesn't seem to be a reason why a device 13950 * driver would send up data with varying db_ref counts in the mblk 13951 * chain. In any case the Fast path is a private interface, and our 13952 * drivers don't do such a thing. Given the above assumption, there is 13953 * no need to walk down the entire mblk chain (which could have a 13954 * potential performance problem) 13955 */ 13956 if (mp->b_datap->db_ref > 1) { 13957 mblk_t *mp1; 13958 boolean_t adjusted = B_FALSE; 13959 IP_STAT(ip_db_ref); 13960 13961 /* 13962 * The IP_RECVSLLA option depends on having the link layer 13963 * header. First check that: 13964 * a> the underlying device is of type ether, since this 13965 * option is currently supported only over ethernet. 13966 * b> there is enough room to copy over the link layer header. 13967 * 13968 * Once the checks are done, adjust rptr so that the link layer 13969 * header will be copied via copymsg. Note that, IFT_ETHER may 13970 * be returned by some non-ethernet drivers but in this case the 13971 * second check will fail. 13972 */ 13973 if (ill->ill_type == IFT_ETHER && 13974 (mp->b_rptr - mp->b_datap->db_base) >= 13975 sizeof (struct ether_header)) { 13976 mp->b_rptr -= sizeof (struct ether_header); 13977 adjusted = B_TRUE; 13978 } 13979 mp1 = copymsg(mp); 13980 if (mp1 == NULL) { 13981 mp->b_next = NULL; 13982 /* clear b_prev - used by ip_mroute_decap */ 13983 mp->b_prev = NULL; 13984 freemsg(mp); 13985 BUMP_MIB(&ip_mib, ipInDiscards); 13986 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13987 "ip_rput_end: q %p (%S)", q, "copymsg"); 13988 return; 13989 } 13990 if (adjusted) { 13991 /* 13992 * Copy is done. Restore the pointer in the _new_ mblk 13993 */ 13994 mp1->b_rptr += sizeof (struct ether_header); 13995 } 13996 /* Copy b_prev - used by ip_mroute_decap */ 13997 mp1->b_prev = mp->b_prev; 13998 mp->b_prev = NULL; 13999 freemsg(mp); 14000 mp = mp1; 14001 } 14002 if (DB_TYPE(mp) == M_DATA) { 14003 dmp = mp; 14004 } else if (DB_TYPE(mp) == M_PROTO && 14005 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14006 dmp = mp->b_cont; 14007 } 14008 if (dmp != NULL) { 14009 /* 14010 * IP header ptr not aligned? 14011 * OR IP header not complete in first mblk 14012 */ 14013 if (!OK_32PTR(dmp->b_rptr) || 14014 (dmp->b_wptr - dmp->b_rptr) < IP_SIMPLE_HDR_LENGTH) { 14015 if (!ip_check_and_align_header(q, dmp)) 14016 return; 14017 } 14018 } 14019 14020 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14021 "ip_rput_end: q %p (%S)", q, "end"); 14022 14023 ip_input(ill, NULL, mp, 0); 14024 } 14025 14026 /* 14027 * Direct read side procedure capable of dealing with chains. GLDv3 based 14028 * drivers call this function directly with mblk chains while STREAMS 14029 * read side procedure ip_rput() calls this for single packet with ip_ring 14030 * set to NULL to process one packet at a time. 14031 * 14032 * The ill will always be valid if this function is called directly from 14033 * the driver. 14034 */ 14035 /* ARGSUSED */ 14036 void 14037 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 14038 { 14039 ipaddr_t dst = NULL; 14040 ipaddr_t prev_dst; 14041 ire_t *ire = NULL; 14042 ipha_t *ipha; 14043 uint_t pkt_len; 14044 ssize_t len; 14045 uint_t opt_len; 14046 int ll_multicast; 14047 int cgtp_flt_pkt; 14048 queue_t *q = ill->ill_rq; 14049 squeue_t *curr_sqp = NULL; 14050 mblk_t *head = NULL; 14051 mblk_t *tail = NULL; 14052 mblk_t *first_mp; 14053 mblk_t *mp; 14054 int cnt = 0; 14055 14056 ASSERT(mp_chain != NULL); 14057 ASSERT(ill != NULL); 14058 14059 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14060 14061 #define rptr ((uchar_t *)ipha) 14062 14063 while (mp_chain != NULL) { 14064 first_mp = mp = mp_chain; 14065 mp_chain = mp_chain->b_next; 14066 mp->b_next = NULL; 14067 ll_multicast = 0; 14068 14069 /* 14070 * We do ire caching from one iteration to 14071 * another. In the event the packet chain contains 14072 * all packets from the same dst, this caching saves 14073 * an ire_cache_lookup for each of the succeeding 14074 * packets in a packet chain. 14075 */ 14076 prev_dst = dst; 14077 14078 /* 14079 * ip_input fast path 14080 */ 14081 14082 /* mblk type is not M_DATA */ 14083 if (mp->b_datap->db_type != M_DATA) { 14084 if (ip_rput_process_notdata(q, &first_mp, ill, 14085 &ll_multicast, &mp)) 14086 continue; 14087 } 14088 14089 /* Make sure its an M_DATA and that its aligned */ 14090 ASSERT(mp->b_datap->db_type == M_DATA); 14091 ASSERT(mp->b_datap->db_ref == 1 && OK_32PTR(mp->b_rptr)); 14092 14093 ipha = (ipha_t *)mp->b_rptr; 14094 len = mp->b_wptr - rptr; 14095 14096 BUMP_MIB(&ip_mib, ipInReceives); 14097 14098 14099 /* multiple mblk or too short */ 14100 pkt_len = ntohs(ipha->ipha_length); 14101 len -= pkt_len; 14102 if (len != 0) { 14103 /* 14104 * Make sure we have data length consistent 14105 * with the IP header. 14106 */ 14107 if (mp->b_cont == NULL) { 14108 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14109 BUMP_MIB(&ip_mib, ipInHdrErrors); 14110 ip2dbg(("ip_input: drop pkt\n")); 14111 freemsg(mp); 14112 continue; 14113 } 14114 mp->b_wptr = rptr + pkt_len; 14115 } else if (len += msgdsize(mp->b_cont)) { 14116 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14117 BUMP_MIB(&ip_mib, ipInHdrErrors); 14118 ip2dbg(("ip_input: drop pkt\n")); 14119 freemsg(mp); 14120 continue; 14121 } 14122 (void) adjmsg(mp, -len); 14123 IP_STAT(ip_multimblk3); 14124 } 14125 } 14126 14127 /* Obtain the dst of the current packet */ 14128 dst = ipha->ipha_dst; 14129 14130 if (IP_LOOPBACK_ADDR(dst) || 14131 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14132 BUMP_MIB(&ip_mib, ipInAddrErrors); 14133 cmn_err(CE_CONT, "dst %X src %X\n", 14134 dst, ipha->ipha_src); 14135 freemsg(mp); 14136 continue; 14137 } 14138 14139 /* 14140 * Attach any necessary label information to 14141 * this packet 14142 */ 14143 if (is_system_labeled() && 14144 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14145 BUMP_MIB(&ip_mib, ipInDiscards); 14146 freemsg(mp); 14147 continue; 14148 } 14149 14150 /* 14151 * Reuse the cached ire only if the ipha_dst of the previous 14152 * packet is the same as the current packet AND it is not 14153 * INADDR_ANY. 14154 */ 14155 if (!(dst == prev_dst && dst != INADDR_ANY) && 14156 (ire != NULL)) { 14157 ire_refrele(ire); 14158 ire = NULL; 14159 } 14160 opt_len = ipha->ipha_version_and_hdr_length - 14161 IP_SIMPLE_HDR_VERSION; 14162 14163 /* 14164 * Check to see if we can take the fastpath. 14165 * That is possible if the following conditions are met 14166 * o Tsol disabled 14167 * o CGTP disabled 14168 * o ipp_action_count is 0 14169 * o Mobile IP not running 14170 * o no options in the packet 14171 * o not a RSVP packet 14172 * o not a multicast packet 14173 */ 14174 if (!is_system_labeled() && 14175 !ip_cgtp_filter && ipp_action_count == 0 && 14176 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 14177 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14178 !ll_multicast && !CLASSD(dst)) { 14179 if (ire == NULL) 14180 ire = ire_cache_lookup(dst, ALL_ZONES, NULL); 14181 14182 /* incoming packet is for forwarding */ 14183 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14184 ire = ip_fast_forward(ire, dst, ill, mp); 14185 continue; 14186 } 14187 /* incoming packet is for local consumption */ 14188 if (ire->ire_type & IRE_LOCAL) 14189 goto local; 14190 } 14191 14192 /* 14193 * Disable ire caching for anything more complex 14194 * than the simple fast path case we checked for above. 14195 */ 14196 if (ire != NULL) { 14197 ire_refrele(ire); 14198 ire = NULL; 14199 } 14200 14201 /* Full-blown slow path */ 14202 if (opt_len != 0) { 14203 if (len != 0) 14204 IP_STAT(ip_multimblk4); 14205 else 14206 IP_STAT(ip_ipoptions); 14207 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 14208 continue; 14209 } 14210 14211 /* 14212 * Invoke the CGTP (multirouting) filtering module to process 14213 * the incoming packet. Packets identified as duplicates 14214 * must be discarded. Filtering is active only if the 14215 * the ip_cgtp_filter ndd variable is non-zero. 14216 */ 14217 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 14218 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 14219 cgtp_flt_pkt = 14220 ip_cgtp_filter_ops->cfo_filter(q, mp); 14221 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 14222 freemsg(first_mp); 14223 continue; 14224 } 14225 } 14226 14227 /* 14228 * If rsvpd is running, let RSVP daemon handle its processing 14229 * and forwarding of RSVP multicast/unicast packets. 14230 * If rsvpd is not running but mrouted is running, RSVP 14231 * multicast packets are forwarded as multicast traffic 14232 * and RSVP unicast packets are forwarded by unicast router. 14233 * If neither rsvpd nor mrouted is running, RSVP multicast 14234 * packets are not forwarded, but the unicast packets are 14235 * forwarded like unicast traffic. 14236 */ 14237 if (ipha->ipha_protocol == IPPROTO_RSVP && 14238 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 14239 /* RSVP packet and rsvpd running. Treat as ours */ 14240 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 14241 /* 14242 * This assumes that we deliver to all streams for 14243 * multicast and broadcast packets. 14244 * We have to force ll_multicast to 1 to handle the 14245 * M_DATA messages passed in from ip_mroute_decap. 14246 */ 14247 dst = INADDR_BROADCAST; 14248 ll_multicast = 1; 14249 } else if (CLASSD(dst)) { 14250 /* packet is multicast */ 14251 mp->b_next = NULL; 14252 if (ip_rput_process_multicast(q, mp, ill, ipha, 14253 &ll_multicast, &dst)) 14254 continue; 14255 } 14256 14257 14258 /* 14259 * Check if the packet is coming from the Mobile IP 14260 * forward tunnel interface 14261 */ 14262 if (ill->ill_srcif_refcnt > 0) { 14263 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 14264 NULL, ill, MATCH_IRE_TYPE); 14265 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 14266 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 14267 14268 /* We need to resolve the link layer info */ 14269 ire_refrele(ire); 14270 ire = NULL; 14271 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 14272 ll_multicast, dst); 14273 continue; 14274 } 14275 } 14276 14277 if (ire == NULL) { 14278 ire = ire_cache_lookup(dst, ALL_ZONES, 14279 MBLK_GETLABEL(mp)); 14280 } 14281 14282 /* 14283 * If mipagent is running and reverse tunnel is created as per 14284 * mobile node request, then any packet coming through the 14285 * incoming interface from the mobile-node, should be reverse 14286 * tunneled to it's home agent except those that are destined 14287 * to foreign agent only. 14288 * This needs source address based ire lookup. The routing 14289 * entries for source address based lookup are only created by 14290 * mipagent program only when a reverse tunnel is created. 14291 * Reference : RFC2002, RFC2344 14292 */ 14293 if (ill->ill_mrtun_refcnt > 0) { 14294 ipaddr_t srcaddr; 14295 ire_t *tmp_ire; 14296 14297 tmp_ire = ire; /* Save, we might need it later */ 14298 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14299 ire->ire_type != IRE_BROADCAST)) { 14300 srcaddr = ipha->ipha_src; 14301 ire = ire_mrtun_lookup(srcaddr, ill); 14302 if (ire != NULL) { 14303 /* 14304 * Should not be getting iphada packet 14305 * here. we should only get those for 14306 * IRE_LOCAL traffic, excluded above. 14307 * Fail-safe (drop packet) in the event 14308 * hardware is misbehaving. 14309 */ 14310 if (first_mp != mp) { 14311 /* IPsec KSTATS: beancount me */ 14312 freemsg(first_mp); 14313 } else { 14314 /* 14315 * This packet must be forwarded 14316 * to Reverse Tunnel 14317 */ 14318 ip_mrtun_forward(ire, ill, mp); 14319 } 14320 ire_refrele(ire); 14321 ire = NULL; 14322 if (tmp_ire != NULL) { 14323 ire_refrele(tmp_ire); 14324 tmp_ire = NULL; 14325 } 14326 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14327 "ip_input_end: q %p (%S)", 14328 q, "uninit"); 14329 continue; 14330 } 14331 } 14332 /* 14333 * If this packet is from a non-mobilenode or a 14334 * mobile-node which does not request reverse 14335 * tunnel service 14336 */ 14337 ire = tmp_ire; 14338 } 14339 14340 14341 /* 14342 * If we reach here that means the incoming packet satisfies 14343 * one of the following conditions: 14344 * - packet is from a mobile node which does not request 14345 * reverse tunnel 14346 * - packet is from a non-mobile node, which is the most 14347 * common case 14348 * - packet is from a reverse tunnel enabled mobile node 14349 * and destined to foreign agent only 14350 */ 14351 14352 if (ire == NULL) { 14353 /* 14354 * No IRE for this destination, so it can't be for us. 14355 * Unless we are forwarding, drop the packet. 14356 * We have to let source routed packets through 14357 * since we don't yet know if they are 'ping -l' 14358 * packets i.e. if they will go out over the 14359 * same interface as they came in on. 14360 */ 14361 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14362 if (ire == NULL) 14363 continue; 14364 } 14365 14366 /* 14367 * Broadcast IRE may indicate either broadcast or 14368 * multicast packet 14369 */ 14370 if (ire->ire_type == IRE_BROADCAST) { 14371 /* 14372 * Skip broadcast checks if packet is UDP multicast; 14373 * we'd rather not enter ip_rput_process_broadcast() 14374 * unless the packet is broadcast for real, since 14375 * that routine is a no-op for multicast. 14376 */ 14377 if (ipha->ipha_protocol != IPPROTO_UDP || 14378 !CLASSD(ipha->ipha_dst)) { 14379 ire = ip_rput_process_broadcast(&q, mp, 14380 ire, ipha, ill, dst, cgtp_flt_pkt, 14381 ll_multicast); 14382 if (ire == NULL) 14383 continue; 14384 } 14385 } else if (ire->ire_stq != NULL) { 14386 /* fowarding? */ 14387 ip_rput_process_forward(q, mp, ire, ipha, ill, 14388 ll_multicast); 14389 /* ip_rput_process_forward consumed the packet */ 14390 continue; 14391 } 14392 14393 local: 14394 /* packet not for us */ 14395 if (ire->ire_rfq != q) { 14396 if (ip_rput_notforus(&q, mp, ire, ill)) 14397 continue; 14398 } 14399 14400 switch (ipha->ipha_protocol) { 14401 case IPPROTO_TCP: 14402 ASSERT(first_mp == mp); 14403 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14404 mp, 0, q, ip_ring)) != NULL) { 14405 if (curr_sqp == NULL) { 14406 curr_sqp = GET_SQUEUE(mp); 14407 ASSERT(cnt == 0); 14408 cnt++; 14409 head = tail = mp; 14410 } else if (curr_sqp == GET_SQUEUE(mp)) { 14411 ASSERT(tail != NULL); 14412 cnt++; 14413 tail->b_next = mp; 14414 tail = mp; 14415 } else { 14416 /* 14417 * A different squeue. Send the 14418 * chain for the previous squeue on 14419 * its way. This shouldn't happen 14420 * often unless interrupt binding 14421 * changes. 14422 */ 14423 IP_STAT(ip_input_multi_squeue); 14424 squeue_enter_chain(curr_sqp, head, 14425 tail, cnt, SQTAG_IP_INPUT); 14426 curr_sqp = GET_SQUEUE(mp); 14427 head = mp; 14428 tail = mp; 14429 cnt = 1; 14430 } 14431 } 14432 continue; 14433 case IPPROTO_UDP: 14434 ASSERT(first_mp == mp); 14435 ip_udp_input(q, mp, ipha, ire, ill); 14436 continue; 14437 case IPPROTO_SCTP: 14438 ASSERT(first_mp == mp); 14439 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 14440 q, dst); 14441 /* ire has been released by ip_sctp_input */ 14442 ire = NULL; 14443 continue; 14444 default: 14445 ip_proto_input(q, first_mp, ipha, ire, ill); 14446 continue; 14447 } 14448 } 14449 14450 if (ire != NULL) 14451 ire_refrele(ire); 14452 14453 if (head != NULL) 14454 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 14455 14456 /* 14457 * This code is there just to make netperf/ttcp look good. 14458 * 14459 * Its possible that after being in polling mode (and having cleared 14460 * the backlog), squeues have turned the interrupt frequency higher 14461 * to improve latency at the expense of more CPU utilization (less 14462 * packets per interrupts or more number of interrupts). Workloads 14463 * like ttcp/netperf do manage to tickle polling once in a while 14464 * but for the remaining time, stay in higher interrupt mode since 14465 * their packet arrival rate is pretty uniform and this shows up 14466 * as higher CPU utilization. Since people care about CPU utilization 14467 * while running netperf/ttcp, turn the interrupt frequency back to 14468 * normal/default if polling has not been used in ip_poll_normal_ticks. 14469 */ 14470 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 14471 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 14472 ip_ring->rr_poll_state &= ~ILL_POLLING; 14473 ip_ring->rr_blank(ip_ring->rr_handle, 14474 ip_ring->rr_normal_blank_time, 14475 ip_ring->rr_normal_pkt_cnt); 14476 } 14477 } 14478 14479 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14480 "ip_input_end: q %p (%S)", q, "end"); 14481 #undef rptr 14482 } 14483 14484 static void 14485 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 14486 t_uscalar_t err) 14487 { 14488 if (dl_err == DL_SYSERR) { 14489 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14490 "%s: %s failed: DL_SYSERR (errno %u)\n", 14491 ill->ill_name, dlpi_prim_str(prim), err); 14492 return; 14493 } 14494 14495 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14496 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 14497 dlpi_err_str(dl_err)); 14498 } 14499 14500 /* 14501 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 14502 * than DL_UNITDATA_IND messages. If we need to process this message 14503 * exclusively, we call qwriter_ip, in which case we also need to call 14504 * ill_refhold before that, since qwriter_ip does an ill_refrele. 14505 */ 14506 void 14507 ip_rput_dlpi(queue_t *q, mblk_t *mp) 14508 { 14509 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14510 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14511 ill_t *ill; 14512 14513 ip1dbg(("ip_rput_dlpi")); 14514 ill = (ill_t *)q->q_ptr; 14515 switch (dloa->dl_primitive) { 14516 case DL_ERROR_ACK: 14517 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 14518 "%s (0x%x), unix %u\n", ill->ill_name, 14519 dlpi_prim_str(dlea->dl_error_primitive), 14520 dlea->dl_error_primitive, 14521 dlpi_err_str(dlea->dl_errno), 14522 dlea->dl_errno, 14523 dlea->dl_unix_errno)); 14524 switch (dlea->dl_error_primitive) { 14525 case DL_UNBIND_REQ: 14526 mutex_enter(&ill->ill_lock); 14527 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14528 cv_signal(&ill->ill_cv); 14529 mutex_exit(&ill->ill_lock); 14530 /* FALLTHRU */ 14531 case DL_NOTIFY_REQ: 14532 case DL_ATTACH_REQ: 14533 case DL_DETACH_REQ: 14534 case DL_INFO_REQ: 14535 case DL_BIND_REQ: 14536 case DL_ENABMULTI_REQ: 14537 case DL_PHYS_ADDR_REQ: 14538 case DL_CAPABILITY_REQ: 14539 case DL_CONTROL_REQ: 14540 /* 14541 * Refhold the ill to match qwriter_ip which does a 14542 * refrele. Since this is on the ill stream we 14543 * unconditionally bump up the refcount without 14544 * checking for ILL_CAN_LOOKUP 14545 */ 14546 ill_refhold(ill); 14547 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14548 CUR_OP, B_FALSE); 14549 return; 14550 case DL_DISABMULTI_REQ: 14551 freemsg(mp); /* Don't want to pass this up */ 14552 return; 14553 default: 14554 break; 14555 } 14556 ip_dlpi_error(ill, dlea->dl_error_primitive, 14557 dlea->dl_errno, dlea->dl_unix_errno); 14558 freemsg(mp); 14559 return; 14560 case DL_INFO_ACK: 14561 case DL_BIND_ACK: 14562 case DL_PHYS_ADDR_ACK: 14563 case DL_NOTIFY_ACK: 14564 case DL_CAPABILITY_ACK: 14565 case DL_CONTROL_ACK: 14566 /* 14567 * Refhold the ill to match qwriter_ip which does a refrele 14568 * Since this is on the ill stream we unconditionally 14569 * bump up the refcount without doing ILL_CAN_LOOKUP. 14570 */ 14571 ill_refhold(ill); 14572 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14573 CUR_OP, B_FALSE); 14574 return; 14575 case DL_NOTIFY_IND: 14576 ill_refhold(ill); 14577 /* 14578 * The DL_NOTIFY_IND is an asynchronous message that has no 14579 * relation to the current ioctl in progress (if any). Hence we 14580 * pass in NEW_OP in this case. 14581 */ 14582 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14583 NEW_OP, B_FALSE); 14584 return; 14585 case DL_OK_ACK: 14586 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 14587 dlpi_prim_str((int)dloa->dl_correct_primitive))); 14588 switch (dloa->dl_correct_primitive) { 14589 case DL_UNBIND_REQ: 14590 mutex_enter(&ill->ill_lock); 14591 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14592 cv_signal(&ill->ill_cv); 14593 mutex_exit(&ill->ill_lock); 14594 /* FALLTHRU */ 14595 case DL_ATTACH_REQ: 14596 case DL_DETACH_REQ: 14597 /* 14598 * Refhold the ill to match qwriter_ip which does a 14599 * refrele. Since this is on the ill stream we 14600 * unconditionally bump up the refcount 14601 */ 14602 ill_refhold(ill); 14603 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14604 CUR_OP, B_FALSE); 14605 return; 14606 case DL_ENABMULTI_REQ: 14607 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 14608 ill->ill_dlpi_multicast_state = IDMS_OK; 14609 break; 14610 14611 } 14612 break; 14613 default: 14614 break; 14615 } 14616 freemsg(mp); 14617 } 14618 14619 /* 14620 * Handling of DLPI messages that require exclusive access to the ipsq. 14621 * 14622 * Need to do ill_pending_mp_release on ioctl completion, which could 14623 * happen here. (along with mi_copy_done) 14624 */ 14625 /* ARGSUSED */ 14626 static void 14627 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14628 { 14629 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14630 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14631 int err = 0; 14632 ill_t *ill; 14633 ipif_t *ipif = NULL; 14634 mblk_t *mp1 = NULL; 14635 conn_t *connp = NULL; 14636 t_uscalar_t physaddr_req; 14637 mblk_t *mp_hw; 14638 union DL_primitives *dlp; 14639 boolean_t success; 14640 boolean_t ioctl_aborted = B_FALSE; 14641 boolean_t log = B_TRUE; 14642 14643 ip1dbg(("ip_rput_dlpi_writer ..")); 14644 ill = (ill_t *)q->q_ptr; 14645 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14646 14647 ASSERT(IAM_WRITER_ILL(ill)); 14648 14649 /* 14650 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 14651 * both are null or non-null. However we can assert that only 14652 * after grabbing the ipsq_lock. So we don't make any assertion 14653 * here and in other places in the code. 14654 */ 14655 ipif = ipsq->ipsq_pending_ipif; 14656 /* 14657 * The current ioctl could have been aborted by the user and a new 14658 * ioctl to bring up another ill could have started. We could still 14659 * get a response from the driver later. 14660 */ 14661 if (ipif != NULL && ipif->ipif_ill != ill) 14662 ioctl_aborted = B_TRUE; 14663 14664 switch (dloa->dl_primitive) { 14665 case DL_ERROR_ACK: 14666 switch (dlea->dl_error_primitive) { 14667 case DL_UNBIND_REQ: 14668 case DL_ATTACH_REQ: 14669 case DL_DETACH_REQ: 14670 case DL_INFO_REQ: 14671 ill_dlpi_done(ill, dlea->dl_error_primitive); 14672 break; 14673 case DL_NOTIFY_REQ: 14674 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14675 log = B_FALSE; 14676 break; 14677 case DL_PHYS_ADDR_REQ: 14678 /* 14679 * For IPv6 only, there are two additional 14680 * phys_addr_req's sent to the driver to get the 14681 * IPv6 token and lla. This allows IP to acquire 14682 * the hardware address format for a given interface 14683 * without having built in knowledge of the hardware 14684 * address. ill_phys_addr_pend keeps track of the last 14685 * DL_PAR sent so we know which response we are 14686 * dealing with. ill_dlpi_done will update 14687 * ill_phys_addr_pend when it sends the next req. 14688 * We don't complete the IOCTL until all three DL_PARs 14689 * have been attempted, so set *_len to 0 and break. 14690 */ 14691 physaddr_req = ill->ill_phys_addr_pend; 14692 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14693 if (physaddr_req == DL_IPV6_TOKEN) { 14694 ill->ill_token_length = 0; 14695 log = B_FALSE; 14696 break; 14697 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14698 ill->ill_nd_lla_len = 0; 14699 log = B_FALSE; 14700 break; 14701 } 14702 /* 14703 * Something went wrong with the DL_PHYS_ADDR_REQ. 14704 * We presumably have an IOCTL hanging out waiting 14705 * for completion. Find it and complete the IOCTL 14706 * with the error noted. 14707 * However, ill_dl_phys was called on an ill queue 14708 * (from SIOCSLIFNAME), thus conn_pending_ill is not 14709 * set. But the ioctl is known to be pending on ill_wq. 14710 */ 14711 if (!ill->ill_ifname_pending) 14712 break; 14713 ill->ill_ifname_pending = 0; 14714 if (!ioctl_aborted) 14715 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14716 if (mp1 != NULL) { 14717 /* 14718 * This operation (SIOCSLIFNAME) must have 14719 * happened on the ill. Assert there is no conn 14720 */ 14721 ASSERT(connp == NULL); 14722 q = ill->ill_wq; 14723 } 14724 break; 14725 case DL_BIND_REQ: 14726 ill_dlpi_done(ill, DL_BIND_REQ); 14727 if (ill->ill_ifname_pending) 14728 break; 14729 /* 14730 * Something went wrong with the bind. We presumably 14731 * have an IOCTL hanging out waiting for completion. 14732 * Find it, take down the interface that was coming 14733 * up, and complete the IOCTL with the error noted. 14734 */ 14735 if (!ioctl_aborted) 14736 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14737 if (mp1 != NULL) { 14738 /* 14739 * This operation (SIOCSLIFFLAGS) must have 14740 * happened from a conn. 14741 */ 14742 ASSERT(connp != NULL); 14743 q = CONNP_TO_WQ(connp); 14744 if (ill->ill_move_in_progress) { 14745 ILL_CLEAR_MOVE(ill); 14746 } 14747 (void) ipif_down(ipif, NULL, NULL); 14748 /* error is set below the switch */ 14749 } 14750 break; 14751 case DL_ENABMULTI_REQ: 14752 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 14753 14754 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 14755 ill->ill_dlpi_multicast_state = IDMS_FAILED; 14756 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 14757 ipif_t *ipif; 14758 14759 log = B_FALSE; 14760 printf("ip: joining multicasts failed (%d)" 14761 " on %s - will use link layer " 14762 "broadcasts for multicast\n", 14763 dlea->dl_errno, ill->ill_name); 14764 14765 /* 14766 * Set up the multicast mapping alone. 14767 * writer, so ok to access ill->ill_ipif 14768 * without any lock. 14769 */ 14770 ipif = ill->ill_ipif; 14771 mutex_enter(&ill->ill_phyint->phyint_lock); 14772 ill->ill_phyint->phyint_flags |= 14773 PHYI_MULTI_BCAST; 14774 mutex_exit(&ill->ill_phyint->phyint_lock); 14775 14776 if (!ill->ill_isv6) { 14777 (void) ipif_arp_setup_multicast(ipif, 14778 NULL); 14779 } else { 14780 (void) ipif_ndp_setup_multicast(ipif, 14781 NULL); 14782 } 14783 } 14784 freemsg(mp); /* Don't want to pass this up */ 14785 return; 14786 case DL_CAPABILITY_REQ: 14787 case DL_CONTROL_REQ: 14788 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 14789 "DL_CAPABILITY/CONTROL REQ\n")); 14790 ill_dlpi_done(ill, dlea->dl_error_primitive); 14791 ill->ill_capab_state = IDMS_FAILED; 14792 freemsg(mp); 14793 return; 14794 } 14795 /* 14796 * Note the error for IOCTL completion (mp1 is set when 14797 * ready to complete ioctl). If ill_ifname_pending_err is 14798 * set, an error occured during plumbing (ill_ifname_pending), 14799 * so we want to report that error. 14800 * 14801 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 14802 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 14803 * expected to get errack'd if the driver doesn't support 14804 * these flags (e.g. ethernet). log will be set to B_FALSE 14805 * if these error conditions are encountered. 14806 */ 14807 if (mp1 != NULL) { 14808 if (ill->ill_ifname_pending_err != 0) { 14809 err = ill->ill_ifname_pending_err; 14810 ill->ill_ifname_pending_err = 0; 14811 } else { 14812 err = dlea->dl_unix_errno ? 14813 dlea->dl_unix_errno : ENXIO; 14814 } 14815 /* 14816 * If we're plumbing an interface and an error hasn't already 14817 * been saved, set ill_ifname_pending_err to the error passed 14818 * up. Ignore the error if log is B_FALSE (see comment above). 14819 */ 14820 } else if (log && ill->ill_ifname_pending && 14821 ill->ill_ifname_pending_err == 0) { 14822 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 14823 dlea->dl_unix_errno : ENXIO; 14824 } 14825 14826 if (log) 14827 ip_dlpi_error(ill, dlea->dl_error_primitive, 14828 dlea->dl_errno, dlea->dl_unix_errno); 14829 break; 14830 case DL_CAPABILITY_ACK: { 14831 boolean_t reneg_flag = B_FALSE; 14832 /* Call a routine to handle this one. */ 14833 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14834 /* 14835 * Check if the ACK is due to renegotiation case since we 14836 * will need to send a new CAPABILITY_REQ later. 14837 */ 14838 if (ill->ill_capab_state == IDMS_RENEG) { 14839 /* This is the ack for a renogiation case */ 14840 reneg_flag = B_TRUE; 14841 ill->ill_capab_state = IDMS_UNKNOWN; 14842 } 14843 ill_capability_ack(ill, mp); 14844 if (reneg_flag) 14845 ill_capability_probe(ill); 14846 break; 14847 } 14848 case DL_CONTROL_ACK: 14849 /* We treat all of these as "fire and forget" */ 14850 ill_dlpi_done(ill, DL_CONTROL_REQ); 14851 break; 14852 case DL_INFO_ACK: 14853 /* Call a routine to handle this one. */ 14854 ill_dlpi_done(ill, DL_INFO_REQ); 14855 ip_ll_subnet_defaults(ill, mp); 14856 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 14857 return; 14858 case DL_BIND_ACK: 14859 /* 14860 * We should have an IOCTL waiting on this unless 14861 * sent by ill_dl_phys, in which case just return 14862 */ 14863 ill_dlpi_done(ill, DL_BIND_REQ); 14864 if (ill->ill_ifname_pending) 14865 break; 14866 14867 if (!ioctl_aborted) 14868 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14869 if (mp1 == NULL) 14870 break; 14871 ASSERT(connp != NULL); 14872 q = CONNP_TO_WQ(connp); 14873 14874 /* 14875 * We are exclusive. So nothing can change even after 14876 * we get the pending mp. If need be we can put it back 14877 * and restart, as in calling ipif_arp_up() below. 14878 */ 14879 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 14880 14881 mutex_enter(&ill->ill_lock); 14882 ill->ill_dl_up = 1; 14883 mutex_exit(&ill->ill_lock); 14884 14885 /* 14886 * Now bring up the resolver, when that is 14887 * done we'll create IREs and we are done. 14888 */ 14889 if (ill->ill_isv6) { 14890 /* 14891 * v6 interfaces. 14892 * Unlike ARP which has to do another bind 14893 * and attach, once we get here we are 14894 * done withh NDP. Except in the case of 14895 * ILLF_XRESOLV, in which case we send an 14896 * AR_INTERFACE_UP to the external resolver. 14897 * If all goes well, the ioctl will complete 14898 * in ip_rput(). If there's an error, we 14899 * complete it here. 14900 */ 14901 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 14902 B_FALSE); 14903 if (err == 0) { 14904 if (ill->ill_flags & ILLF_XRESOLV) { 14905 mutex_enter(&connp->conn_lock); 14906 mutex_enter(&ill->ill_lock); 14907 success = ipsq_pending_mp_add( 14908 connp, ipif, q, mp1, 0); 14909 mutex_exit(&ill->ill_lock); 14910 mutex_exit(&connp->conn_lock); 14911 if (success) { 14912 err = ipif_resolver_up(ipif, 14913 B_FALSE); 14914 if (err == EINPROGRESS) { 14915 freemsg(mp); 14916 return; 14917 } 14918 ASSERT(err != 0); 14919 mp1 = ipsq_pending_mp_get(ipsq, 14920 &connp); 14921 ASSERT(mp1 != NULL); 14922 } else { 14923 /* conn has started closing */ 14924 err = EINTR; 14925 } 14926 } else { /* Non XRESOLV interface */ 14927 err = ipif_up_done_v6(ipif); 14928 } 14929 } 14930 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 14931 /* 14932 * ARP and other v4 external resolvers. 14933 * Leave the pending mblk intact so that 14934 * the ioctl completes in ip_rput(). 14935 */ 14936 mutex_enter(&connp->conn_lock); 14937 mutex_enter(&ill->ill_lock); 14938 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 14939 mutex_exit(&ill->ill_lock); 14940 mutex_exit(&connp->conn_lock); 14941 if (success) { 14942 err = ipif_resolver_up(ipif, B_FALSE); 14943 if (err == EINPROGRESS) { 14944 freemsg(mp); 14945 return; 14946 } 14947 ASSERT(err != 0); 14948 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14949 } else { 14950 /* The conn has started closing */ 14951 err = EINTR; 14952 } 14953 } else { 14954 /* 14955 * This one is complete. Reply to pending ioctl. 14956 */ 14957 err = ipif_up_done(ipif); 14958 } 14959 14960 if ((err == 0) && (ill->ill_up_ipifs)) { 14961 err = ill_up_ipifs(ill, q, mp1); 14962 if (err == EINPROGRESS) { 14963 freemsg(mp); 14964 return; 14965 } 14966 } 14967 14968 if (ill->ill_up_ipifs) { 14969 ill_group_cleanup(ill); 14970 } 14971 14972 break; 14973 case DL_NOTIFY_IND: { 14974 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 14975 ire_t *ire; 14976 boolean_t need_ire_walk_v4 = B_FALSE; 14977 boolean_t need_ire_walk_v6 = B_FALSE; 14978 14979 /* 14980 * Change the address everywhere we need to. 14981 * What we're getting here is a link-level addr or phys addr. 14982 * The new addr is at notify + notify->dl_addr_offset 14983 * The address length is notify->dl_addr_length; 14984 */ 14985 switch (notify->dl_notification) { 14986 case DL_NOTE_PHYS_ADDR: 14987 mp_hw = copyb(mp); 14988 if (mp_hw == NULL) { 14989 err = ENOMEM; 14990 break; 14991 } 14992 dlp = (union DL_primitives *)mp_hw->b_rptr; 14993 /* 14994 * We currently don't support changing 14995 * the token via DL_NOTIFY_IND. 14996 * When we do support it, we have to consider 14997 * what the implications are with respect to 14998 * the token and the link local address. 14999 */ 15000 mutex_enter(&ill->ill_lock); 15001 if (dlp->notify_ind.dl_data == 15002 DL_IPV6_LINK_LAYER_ADDR) { 15003 if (ill->ill_nd_lla_mp != NULL) 15004 freemsg(ill->ill_nd_lla_mp); 15005 ill->ill_nd_lla_mp = mp_hw; 15006 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15007 dlp->notify_ind.dl_addr_offset; 15008 ill->ill_nd_lla_len = 15009 dlp->notify_ind.dl_addr_length - 15010 ABS(ill->ill_sap_length); 15011 mutex_exit(&ill->ill_lock); 15012 break; 15013 } else if (dlp->notify_ind.dl_data == 15014 DL_CURR_PHYS_ADDR) { 15015 if (ill->ill_phys_addr_mp != NULL) 15016 freemsg(ill->ill_phys_addr_mp); 15017 ill->ill_phys_addr_mp = mp_hw; 15018 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15019 dlp->notify_ind.dl_addr_offset; 15020 ill->ill_phys_addr_length = 15021 dlp->notify_ind.dl_addr_length - 15022 ABS(ill->ill_sap_length); 15023 if (ill->ill_isv6 && 15024 !(ill->ill_flags & ILLF_XRESOLV)) { 15025 if (ill->ill_nd_lla_mp != NULL) 15026 freemsg(ill->ill_nd_lla_mp); 15027 ill->ill_nd_lla_mp = copyb(mp_hw); 15028 ill->ill_nd_lla = (uchar_t *) 15029 ill->ill_nd_lla_mp->b_rptr + 15030 dlp->notify_ind.dl_addr_offset; 15031 ill->ill_nd_lla_len = 15032 ill->ill_phys_addr_length; 15033 } 15034 } 15035 mutex_exit(&ill->ill_lock); 15036 /* 15037 * Send out gratuitous arp request for our new 15038 * hardware address. 15039 */ 15040 for (ipif = ill->ill_ipif; ipif != NULL; 15041 ipif = ipif->ipif_next) { 15042 if (!(ipif->ipif_flags & IPIF_UP)) 15043 continue; 15044 if (ill->ill_isv6) { 15045 ipif_ndp_down(ipif); 15046 /* 15047 * Set B_TRUE to enable 15048 * ipif_ndp_up() to send out 15049 * unsolicited advertisements. 15050 */ 15051 err = ipif_ndp_up(ipif, 15052 &ipif->ipif_v6lcl_addr, 15053 B_TRUE); 15054 if (err) { 15055 ip1dbg(( 15056 "ip_rput_dlpi_writer: " 15057 "Failed to update ndp " 15058 "err %d\n", err)); 15059 } 15060 } else { 15061 /* 15062 * IPv4 ARP case 15063 * 15064 * Set B_TRUE, as we only want 15065 * ipif_resolver_up to send an 15066 * AR_ENTRY_ADD request up to 15067 * ARP. 15068 */ 15069 err = ipif_resolver_up(ipif, 15070 B_TRUE); 15071 if (err) { 15072 ip1dbg(( 15073 "ip_rput_dlpi_writer: " 15074 "Failed to update arp " 15075 "err %d\n", err)); 15076 } 15077 } 15078 } 15079 /* 15080 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 15081 * case so that all old fastpath information can be 15082 * purged from IRE caches. 15083 */ 15084 /* FALLTHRU */ 15085 case DL_NOTE_FASTPATH_FLUSH: 15086 /* 15087 * Any fastpath probe sent henceforth will get the 15088 * new fp mp. So we first delete any ires that are 15089 * waiting for the fastpath. Then walk all ires and 15090 * delete the ire or delete the fp mp. In the case of 15091 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 15092 * recreate the ire's without going through a complex 15093 * ipif up/down dance. So we don't delete the ire 15094 * itself, but just the nce_fp_mp for these 2 ire's 15095 * In the case of the other ire's we delete the ire's 15096 * themselves. Access to nce_fp_mp is completely 15097 * protected by ire_lock for IRE_MIPRTUN and 15098 * IRE_BROADCAST. Deleting the ire is preferable in the 15099 * other cases for performance. 15100 */ 15101 if (ill->ill_isv6) { 15102 nce_fastpath_list_dispatch(ill, NULL, NULL); 15103 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 15104 NULL); 15105 } else { 15106 ire_fastpath_list_dispatch(ill, NULL, NULL); 15107 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 15108 IRE_CACHE | IRE_BROADCAST, 15109 ire_fastpath_flush, NULL, ill); 15110 mutex_enter(&ire_mrtun_lock); 15111 if (ire_mrtun_count != 0) { 15112 mutex_exit(&ire_mrtun_lock); 15113 ire_walk_ill_mrtun(MATCH_IRE_WQ, 15114 IRE_MIPRTUN, ire_fastpath_flush, 15115 NULL, ill); 15116 } else { 15117 mutex_exit(&ire_mrtun_lock); 15118 } 15119 } 15120 break; 15121 case DL_NOTE_SDU_SIZE: 15122 /* 15123 * Change the MTU size of the interface, of all 15124 * attached ipif's, and of all relevant ire's. The 15125 * new value's a uint32_t at notify->dl_data. 15126 * Mtu change Vs. new ire creation - protocol below. 15127 * 15128 * a Mark the ipif as IPIF_CHANGING. 15129 * b Set the new mtu in the ipif. 15130 * c Change the ire_max_frag on all affected ires 15131 * d Unmark the IPIF_CHANGING 15132 * 15133 * To see how the protocol works, assume an interface 15134 * route is also being added simultaneously by 15135 * ip_rt_add and let 'ipif' be the ipif referenced by 15136 * the ire. If the ire is created before step a, 15137 * it will be cleaned up by step c. If the ire is 15138 * created after step d, it will see the new value of 15139 * ipif_mtu. Any attempt to create the ire between 15140 * steps a to d will fail because of the IPIF_CHANGING 15141 * flag. Note that ire_create() is passed a pointer to 15142 * the ipif_mtu, and not the value. During ire_add 15143 * under the bucket lock, the ire_max_frag of the 15144 * new ire being created is set from the ipif/ire from 15145 * which it is being derived. 15146 */ 15147 mutex_enter(&ill->ill_lock); 15148 ill->ill_max_frag = (uint_t)notify->dl_data; 15149 15150 /* 15151 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15152 * leave it alone 15153 */ 15154 if (ill->ill_mtu_userspecified) { 15155 mutex_exit(&ill->ill_lock); 15156 break; 15157 } 15158 ill->ill_max_mtu = ill->ill_max_frag; 15159 if (ill->ill_isv6) { 15160 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15161 ill->ill_max_mtu = IPV6_MIN_MTU; 15162 } else { 15163 if (ill->ill_max_mtu < IP_MIN_MTU) 15164 ill->ill_max_mtu = IP_MIN_MTU; 15165 } 15166 for (ipif = ill->ill_ipif; ipif != NULL; 15167 ipif = ipif->ipif_next) { 15168 /* 15169 * Don't override the mtu if the user 15170 * has explicitly set it. 15171 */ 15172 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15173 continue; 15174 ipif->ipif_mtu = (uint_t)notify->dl_data; 15175 if (ipif->ipif_isv6) 15176 ire = ipif_to_ire_v6(ipif); 15177 else 15178 ire = ipif_to_ire(ipif); 15179 if (ire != NULL) { 15180 ire->ire_max_frag = ipif->ipif_mtu; 15181 ire_refrele(ire); 15182 } 15183 if (ipif->ipif_flags & IPIF_UP) { 15184 if (ill->ill_isv6) 15185 need_ire_walk_v6 = B_TRUE; 15186 else 15187 need_ire_walk_v4 = B_TRUE; 15188 } 15189 } 15190 mutex_exit(&ill->ill_lock); 15191 if (need_ire_walk_v4) 15192 ire_walk_v4(ill_mtu_change, (char *)ill, 15193 ALL_ZONES); 15194 if (need_ire_walk_v6) 15195 ire_walk_v6(ill_mtu_change, (char *)ill, 15196 ALL_ZONES); 15197 break; 15198 case DL_NOTE_LINK_UP: 15199 case DL_NOTE_LINK_DOWN: { 15200 /* 15201 * We are writer. ill / phyint / ipsq assocs stable. 15202 * The RUNNING flag reflects the state of the link. 15203 */ 15204 phyint_t *phyint = ill->ill_phyint; 15205 uint64_t new_phyint_flags; 15206 boolean_t changed = B_FALSE; 15207 15208 mutex_enter(&phyint->phyint_lock); 15209 new_phyint_flags = 15210 (notify->dl_notification == DL_NOTE_LINK_UP) ? 15211 phyint->phyint_flags | PHYI_RUNNING : 15212 phyint->phyint_flags & ~PHYI_RUNNING; 15213 if (new_phyint_flags != phyint->phyint_flags) { 15214 phyint->phyint_flags = new_phyint_flags; 15215 changed = B_TRUE; 15216 } 15217 mutex_exit(&phyint->phyint_lock); 15218 /* 15219 * If the flags have changed, send a message to 15220 * the routing socket. 15221 */ 15222 if (changed) { 15223 if (phyint->phyint_illv4 != NULL) { 15224 ip_rts_ifmsg( 15225 phyint->phyint_illv4->ill_ipif); 15226 } 15227 if (phyint->phyint_illv6 != NULL) { 15228 ip_rts_ifmsg( 15229 phyint->phyint_illv6->ill_ipif); 15230 } 15231 } 15232 break; 15233 } 15234 case DL_NOTE_PROMISC_ON_PHYS: 15235 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15236 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15237 mutex_enter(&ill->ill_lock); 15238 ill->ill_promisc_on_phys = B_TRUE; 15239 mutex_exit(&ill->ill_lock); 15240 break; 15241 case DL_NOTE_PROMISC_OFF_PHYS: 15242 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15243 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15244 mutex_enter(&ill->ill_lock); 15245 ill->ill_promisc_on_phys = B_FALSE; 15246 mutex_exit(&ill->ill_lock); 15247 break; 15248 case DL_NOTE_CAPAB_RENEG: 15249 /* 15250 * Something changed on the driver side. 15251 * It wants us to renegotiate the capabilities 15252 * on this ill. The most likely cause is the 15253 * aggregation interface under us where a 15254 * port got added or went away. 15255 * 15256 * We reset the capabilities and set the 15257 * state to IDMS_RENG so that when the ack 15258 * comes back, we can start the 15259 * renegotiation process. 15260 */ 15261 ill_capability_reset(ill); 15262 ill->ill_capab_state = IDMS_RENEG; 15263 break; 15264 default: 15265 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15266 "type 0x%x for DL_NOTIFY_IND\n", 15267 notify->dl_notification)); 15268 break; 15269 } 15270 15271 /* 15272 * As this is an asynchronous operation, we 15273 * should not call ill_dlpi_done 15274 */ 15275 break; 15276 } 15277 case DL_NOTIFY_ACK: 15278 /* 15279 * Don't really need to check for what notifications 15280 * are supported; we'll process what gets sent upstream, 15281 * and we know it'll be something we support changing 15282 * based on our DL_NOTIFY_REQ. 15283 */ 15284 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15285 break; 15286 case DL_PHYS_ADDR_ACK: { 15287 /* 15288 * We should have an IOCTL waiting on this when request 15289 * sent by ill_dl_phys. 15290 * However, ill_dl_phys was called on an ill queue (from 15291 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 15292 * ioctl is known to be pending on ill_wq. 15293 * There are two additional phys_addr_req's sent to the 15294 * driver to get the token and lla. ill_phys_addr_pend 15295 * keeps track of the last one sent so we know which 15296 * response we are dealing with. ill_dlpi_done will 15297 * update ill_phys_addr_pend when it sends the next req. 15298 * We don't complete the IOCTL until all three DL_PARs 15299 * have been attempted. 15300 * 15301 * We don't need any lock to update ill_nd_lla* fields, 15302 * since the ill is not yet up, We grab the lock just 15303 * for uniformity with other code that accesses ill_nd_lla. 15304 */ 15305 physaddr_req = ill->ill_phys_addr_pend; 15306 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15307 if (physaddr_req == DL_IPV6_TOKEN || 15308 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15309 if (physaddr_req == DL_IPV6_TOKEN) { 15310 /* 15311 * bcopy to low-order bits of ill_token 15312 * 15313 * XXX Temporary hack - currently, 15314 * all known tokens are 64 bits, 15315 * so I'll cheat for the moment. 15316 */ 15317 dlp = (union DL_primitives *)mp->b_rptr; 15318 15319 mutex_enter(&ill->ill_lock); 15320 bcopy((uchar_t *)(mp->b_rptr + 15321 dlp->physaddr_ack.dl_addr_offset), 15322 (void *)&ill->ill_token.s6_addr32[2], 15323 dlp->physaddr_ack.dl_addr_length); 15324 ill->ill_token_length = 15325 dlp->physaddr_ack.dl_addr_length; 15326 mutex_exit(&ill->ill_lock); 15327 } else { 15328 ASSERT(ill->ill_nd_lla_mp == NULL); 15329 mp_hw = copyb(mp); 15330 if (mp_hw == NULL) { 15331 err = ENOMEM; 15332 break; 15333 } 15334 dlp = (union DL_primitives *)mp_hw->b_rptr; 15335 mutex_enter(&ill->ill_lock); 15336 ill->ill_nd_lla_mp = mp_hw; 15337 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15338 dlp->physaddr_ack.dl_addr_offset; 15339 ill->ill_nd_lla_len = 15340 dlp->physaddr_ack.dl_addr_length; 15341 mutex_exit(&ill->ill_lock); 15342 } 15343 break; 15344 } 15345 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15346 ASSERT(ill->ill_phys_addr_mp == NULL); 15347 if (!ill->ill_ifname_pending) 15348 break; 15349 ill->ill_ifname_pending = 0; 15350 if (!ioctl_aborted) 15351 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15352 if (mp1 != NULL) { 15353 ASSERT(connp == NULL); 15354 q = ill->ill_wq; 15355 } 15356 /* 15357 * If any error acks received during the plumbing sequence, 15358 * ill_ifname_pending_err will be set. Break out and send up 15359 * the error to the pending ioctl. 15360 */ 15361 if (ill->ill_ifname_pending_err != 0) { 15362 err = ill->ill_ifname_pending_err; 15363 ill->ill_ifname_pending_err = 0; 15364 break; 15365 } 15366 /* 15367 * Get the interface token. If the zeroth interface 15368 * address is zero then set the address to the link local 15369 * address 15370 */ 15371 mp_hw = copyb(mp); 15372 if (mp_hw == NULL) { 15373 err = ENOMEM; 15374 break; 15375 } 15376 dlp = (union DL_primitives *)mp_hw->b_rptr; 15377 ill->ill_phys_addr_mp = mp_hw; 15378 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15379 dlp->physaddr_ack.dl_addr_offset; 15380 if (dlp->physaddr_ack.dl_addr_length == 0 || 15381 ill->ill_phys_addr_length == 0 || 15382 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15383 /* 15384 * Compatibility: atun driver returns a length of 0. 15385 * ipdptp has an ill_phys_addr_length of zero(from 15386 * DL_BIND_ACK) but a non-zero length here. 15387 * ipd has an ill_phys_addr_length of 4(from 15388 * DL_BIND_ACK) but a non-zero length here. 15389 */ 15390 ill->ill_phys_addr = NULL; 15391 } else if (dlp->physaddr_ack.dl_addr_length != 15392 ill->ill_phys_addr_length) { 15393 ip0dbg(("DL_PHYS_ADDR_ACK: " 15394 "Address length mismatch %d %d\n", 15395 dlp->physaddr_ack.dl_addr_length, 15396 ill->ill_phys_addr_length)); 15397 err = EINVAL; 15398 break; 15399 } 15400 mutex_enter(&ill->ill_lock); 15401 if (ill->ill_nd_lla_mp == NULL) { 15402 ill->ill_nd_lla_mp = copyb(mp_hw); 15403 if (ill->ill_nd_lla_mp == NULL) { 15404 err = ENOMEM; 15405 mutex_exit(&ill->ill_lock); 15406 break; 15407 } 15408 ill->ill_nd_lla = 15409 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 15410 dlp->physaddr_ack.dl_addr_offset; 15411 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 15412 } 15413 mutex_exit(&ill->ill_lock); 15414 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15415 (void) ill_setdefaulttoken(ill); 15416 15417 /* 15418 * If the ill zero interface has a zero address assign 15419 * it the proper link local address. 15420 */ 15421 ASSERT(ill->ill_ipif->ipif_id == 0); 15422 if (ipif != NULL && 15423 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15424 (void) ipif_setlinklocal(ipif); 15425 break; 15426 } 15427 case DL_OK_ACK: 15428 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15429 dlpi_prim_str((int)dloa->dl_correct_primitive), 15430 dloa->dl_correct_primitive)); 15431 switch (dloa->dl_correct_primitive) { 15432 case DL_UNBIND_REQ: 15433 case DL_ATTACH_REQ: 15434 case DL_DETACH_REQ: 15435 ill_dlpi_done(ill, dloa->dl_correct_primitive); 15436 break; 15437 } 15438 break; 15439 default: 15440 break; 15441 } 15442 15443 freemsg(mp); 15444 if (mp1) { 15445 struct iocblk *iocp; 15446 int mode; 15447 15448 /* 15449 * Complete the waiting IOCTL. For SIOCLIFADDIF or 15450 * SIOCSLIFNAME do a copyout. 15451 */ 15452 iocp = (struct iocblk *)mp1->b_rptr; 15453 15454 if (iocp->ioc_cmd == SIOCLIFADDIF || 15455 iocp->ioc_cmd == SIOCSLIFNAME) 15456 mode = COPYOUT; 15457 else 15458 mode = NO_COPYOUT; 15459 /* 15460 * The ioctl must complete now without EINPROGRESS 15461 * since ipsq_pending_mp_get has removed the ioctl mblk 15462 * from ipsq_pending_mp. Otherwise the ioctl will be 15463 * stuck for ever in the ipsq. 15464 */ 15465 ASSERT(err != EINPROGRESS); 15466 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 15467 15468 } 15469 } 15470 15471 /* 15472 * ip_rput_other is called by ip_rput to handle messages modifying the global 15473 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 15474 */ 15475 /* ARGSUSED */ 15476 void 15477 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15478 { 15479 ill_t *ill; 15480 struct iocblk *iocp; 15481 mblk_t *mp1; 15482 conn_t *connp = NULL; 15483 15484 ip1dbg(("ip_rput_other ")); 15485 ill = (ill_t *)q->q_ptr; 15486 /* 15487 * This routine is not a writer in the case of SIOCGTUNPARAM 15488 * in which case ipsq is NULL. 15489 */ 15490 if (ipsq != NULL) { 15491 ASSERT(IAM_WRITER_IPSQ(ipsq)); 15492 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15493 } 15494 15495 switch (mp->b_datap->db_type) { 15496 case M_ERROR: 15497 case M_HANGUP: 15498 /* 15499 * The device has a problem. We force the ILL down. It can 15500 * be brought up again manually using SIOCSIFFLAGS (via 15501 * ifconfig or equivalent). 15502 */ 15503 ASSERT(ipsq != NULL); 15504 if (mp->b_rptr < mp->b_wptr) 15505 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 15506 if (ill->ill_error == 0) 15507 ill->ill_error = ENXIO; 15508 if (!ill_down_start(q, mp)) 15509 return; 15510 ipif_all_down_tail(ipsq, q, mp, NULL); 15511 break; 15512 case M_IOCACK: 15513 iocp = (struct iocblk *)mp->b_rptr; 15514 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 15515 switch (iocp->ioc_cmd) { 15516 case SIOCSTUNPARAM: 15517 case OSIOCSTUNPARAM: 15518 ASSERT(ipsq != NULL); 15519 /* 15520 * Finish socket ioctl passed through to tun. 15521 * We should have an IOCTL waiting on this. 15522 */ 15523 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15524 if (ill->ill_isv6) { 15525 struct iftun_req *ta; 15526 15527 /* 15528 * if a source or destination is 15529 * being set, try and set the link 15530 * local address for the tunnel 15531 */ 15532 ta = (struct iftun_req *)mp->b_cont-> 15533 b_cont->b_rptr; 15534 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 15535 ipif_set_tun_llink(ill, ta); 15536 } 15537 15538 } 15539 if (mp1 != NULL) { 15540 /* 15541 * Now copy back the b_next/b_prev used by 15542 * mi code for the mi_copy* functions. 15543 * See ip_sioctl_tunparam() for the reason. 15544 * Also protect against missing b_cont. 15545 */ 15546 if (mp->b_cont != NULL) { 15547 mp->b_cont->b_next = 15548 mp1->b_cont->b_next; 15549 mp->b_cont->b_prev = 15550 mp1->b_cont->b_prev; 15551 } 15552 inet_freemsg(mp1); 15553 ASSERT(ipsq->ipsq_current_ipif != NULL); 15554 ASSERT(connp != NULL); 15555 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15556 iocp->ioc_error, NO_COPYOUT, 15557 ipsq->ipsq_current_ipif, ipsq); 15558 } else { 15559 ASSERT(connp == NULL); 15560 putnext(q, mp); 15561 } 15562 break; 15563 case SIOCGTUNPARAM: 15564 case OSIOCGTUNPARAM: 15565 /* 15566 * This is really M_IOCDATA from the tunnel driver. 15567 * convert back and complete the ioctl. 15568 * We should have an IOCTL waiting on this. 15569 */ 15570 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 15571 if (mp1) { 15572 /* 15573 * Now copy back the b_next/b_prev used by 15574 * mi code for the mi_copy* functions. 15575 * See ip_sioctl_tunparam() for the reason. 15576 * Also protect against missing b_cont. 15577 */ 15578 if (mp->b_cont != NULL) { 15579 mp->b_cont->b_next = 15580 mp1->b_cont->b_next; 15581 mp->b_cont->b_prev = 15582 mp1->b_cont->b_prev; 15583 } 15584 inet_freemsg(mp1); 15585 if (iocp->ioc_error == 0) 15586 mp->b_datap->db_type = M_IOCDATA; 15587 ASSERT(connp != NULL); 15588 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15589 iocp->ioc_error, COPYOUT, NULL, NULL); 15590 } else { 15591 ASSERT(connp == NULL); 15592 putnext(q, mp); 15593 } 15594 break; 15595 default: 15596 break; 15597 } 15598 break; 15599 case M_IOCNAK: 15600 iocp = (struct iocblk *)mp->b_rptr; 15601 15602 switch (iocp->ioc_cmd) { 15603 int mode; 15604 ipif_t *ipif; 15605 15606 case DL_IOC_HDR_INFO: 15607 /* 15608 * If this was the first attempt turn of the 15609 * fastpath probing. 15610 */ 15611 mutex_enter(&ill->ill_lock); 15612 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 15613 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 15614 mutex_exit(&ill->ill_lock); 15615 ill_fastpath_nack(ill); 15616 ip1dbg(("ip_rput: DLPI fastpath off on " 15617 "interface %s\n", 15618 ill->ill_name)); 15619 } else { 15620 mutex_exit(&ill->ill_lock); 15621 } 15622 freemsg(mp); 15623 break; 15624 case SIOCSTUNPARAM: 15625 case OSIOCSTUNPARAM: 15626 ASSERT(ipsq != NULL); 15627 /* 15628 * Finish socket ioctl passed through to tun 15629 * We should have an IOCTL waiting on this. 15630 */ 15631 /* FALLTHRU */ 15632 case SIOCGTUNPARAM: 15633 case OSIOCGTUNPARAM: 15634 /* 15635 * This is really M_IOCDATA from the tunnel driver. 15636 * convert back and complete the ioctl. 15637 * We should have an IOCTL waiting on this. 15638 */ 15639 if (iocp->ioc_cmd == SIOCGTUNPARAM || 15640 iocp->ioc_cmd == OSIOCGTUNPARAM) { 15641 mp1 = ill_pending_mp_get(ill, &connp, 15642 iocp->ioc_id); 15643 mode = COPYOUT; 15644 ipsq = NULL; 15645 ipif = NULL; 15646 } else { 15647 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15648 mode = NO_COPYOUT; 15649 ASSERT(ipsq->ipsq_current_ipif != NULL); 15650 ipif = ipsq->ipsq_current_ipif; 15651 } 15652 if (mp1 != NULL) { 15653 /* 15654 * Now copy back the b_next/b_prev used by 15655 * mi code for the mi_copy* functions. 15656 * See ip_sioctl_tunparam() for the reason. 15657 * Also protect against missing b_cont. 15658 */ 15659 if (mp->b_cont != NULL) { 15660 mp->b_cont->b_next = 15661 mp1->b_cont->b_next; 15662 mp->b_cont->b_prev = 15663 mp1->b_cont->b_prev; 15664 } 15665 inet_freemsg(mp1); 15666 if (iocp->ioc_error == 0) 15667 iocp->ioc_error = EINVAL; 15668 ASSERT(connp != NULL); 15669 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15670 iocp->ioc_error, mode, ipif, ipsq); 15671 } else { 15672 ASSERT(connp == NULL); 15673 putnext(q, mp); 15674 } 15675 break; 15676 default: 15677 break; 15678 } 15679 default: 15680 break; 15681 } 15682 } 15683 15684 /* 15685 * NOTE : This function does not ire_refrele the ire argument passed in. 15686 * 15687 * IPQoS notes 15688 * IP policy is invoked twice for a forwarded packet, once on the read side 15689 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 15690 * enabled. An additional parameter, in_ill, has been added for this purpose. 15691 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 15692 * because ip_mroute drops this information. 15693 * 15694 */ 15695 void 15696 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 15697 { 15698 uint32_t pkt_len; 15699 queue_t *q; 15700 uint32_t sum; 15701 #define rptr ((uchar_t *)ipha) 15702 uint32_t max_frag; 15703 uint32_t ill_index; 15704 15705 /* Get the ill_index of the incoming ILL */ 15706 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 15707 15708 /* Initiate Read side IPPF processing */ 15709 if (IPP_ENABLED(IPP_FWD_IN)) { 15710 ip_process(IPP_FWD_IN, &mp, ill_index); 15711 if (mp == NULL) { 15712 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 15713 "during IPPF processing\n")); 15714 return; 15715 } 15716 } 15717 15718 pkt_len = ntohs(ipha->ipha_length); 15719 15720 /* Adjust the checksum to reflect the ttl decrement. */ 15721 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 15722 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 15723 15724 if (ipha->ipha_ttl-- <= 1) { 15725 if (ip_csum_hdr(ipha)) { 15726 BUMP_MIB(&ip_mib, ipInCksumErrs); 15727 goto drop_pkt; 15728 } 15729 /* 15730 * Note: ire_stq this will be NULL for multicast 15731 * datagrams using the long path through arp (the IRE 15732 * is not an IRE_CACHE). This should not cause 15733 * problems since we don't generate ICMP errors for 15734 * multicast packets. 15735 */ 15736 q = ire->ire_stq; 15737 if (q) 15738 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 15739 else 15740 freemsg(mp); 15741 return; 15742 } 15743 15744 /* 15745 * Don't forward if the interface is down 15746 */ 15747 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 15748 BUMP_MIB(&ip_mib, ipInDiscards); 15749 ip2dbg(("ip_rput_forward:interface is down\n")); 15750 goto drop_pkt; 15751 } 15752 15753 /* Get the ill_index of the outgoing ILL */ 15754 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 15755 15756 if (is_system_labeled()) { 15757 mblk_t *mp1; 15758 15759 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 15760 BUMP_MIB(&ip_mib, ipForwProhibits); 15761 goto drop_pkt; 15762 } 15763 /* Size may have changed */ 15764 mp = mp1; 15765 ipha = (ipha_t *)mp->b_rptr; 15766 pkt_len = ntohs(ipha->ipha_length); 15767 } 15768 15769 /* Check if there are options to update */ 15770 if (!IS_SIMPLE_IPH(ipha)) { 15771 if (ip_csum_hdr(ipha)) { 15772 BUMP_MIB(&ip_mib, ipInCksumErrs); 15773 goto drop_pkt; 15774 } 15775 if (ip_rput_forward_options(mp, ipha, ire)) { 15776 return; 15777 } 15778 15779 ipha->ipha_hdr_checksum = 0; 15780 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 15781 } 15782 max_frag = ire->ire_max_frag; 15783 if (pkt_len > max_frag) { 15784 /* 15785 * It needs fragging on its way out. We haven't 15786 * verified the header checksum yet. Since we 15787 * are going to put a surely good checksum in the 15788 * outgoing header, we have to make sure that it 15789 * was good coming in. 15790 */ 15791 if (ip_csum_hdr(ipha)) { 15792 BUMP_MIB(&ip_mib, ipInCksumErrs); 15793 goto drop_pkt; 15794 } 15795 /* Initiate Write side IPPF processing */ 15796 if (IPP_ENABLED(IPP_FWD_OUT)) { 15797 ip_process(IPP_FWD_OUT, &mp, ill_index); 15798 if (mp == NULL) { 15799 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 15800 " during IPPF processing\n")); 15801 return; 15802 } 15803 } 15804 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 15805 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 15806 return; 15807 } 15808 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 15809 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 15810 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 15811 /* ip_xmit_v4 always consumes the packet */ 15812 return; 15813 15814 drop_pkt:; 15815 ip1dbg(("ip_rput_forward: drop pkt\n")); 15816 freemsg(mp); 15817 #undef rptr 15818 } 15819 15820 void 15821 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 15822 { 15823 ire_t *ire; 15824 15825 ASSERT(!ipif->ipif_isv6); 15826 /* 15827 * Find an IRE which matches the destination and the outgoing 15828 * queue in the cache table. All we need is an IRE_CACHE which 15829 * is pointing at ipif->ipif_ill. If it is part of some ill group, 15830 * then it is enough to have some IRE_CACHE in the group. 15831 */ 15832 if (ipif->ipif_flags & IPIF_POINTOPOINT) 15833 dst = ipif->ipif_pp_dst_addr; 15834 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 15835 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 15836 if (ire == NULL) { 15837 /* 15838 * Mark this packet to make it be delivered to 15839 * ip_rput_forward after the new ire has been 15840 * created. 15841 */ 15842 mp->b_prev = NULL; 15843 mp->b_next = mp; 15844 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 15845 NULL, 0); 15846 } else { 15847 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 15848 IRE_REFRELE(ire); 15849 } 15850 } 15851 15852 /* Update any source route, record route or timestamp options */ 15853 static int 15854 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 15855 { 15856 ipoptp_t opts; 15857 uchar_t *opt; 15858 uint8_t optval; 15859 uint8_t optlen; 15860 ipaddr_t dst; 15861 uint32_t ts; 15862 ire_t *dst_ire = NULL; 15863 ire_t *tmp_ire = NULL; 15864 timestruc_t now; 15865 15866 ip2dbg(("ip_rput_forward_options\n")); 15867 dst = ipha->ipha_dst; 15868 for (optval = ipoptp_first(&opts, ipha); 15869 optval != IPOPT_EOL; 15870 optval = ipoptp_next(&opts)) { 15871 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15872 opt = opts.ipoptp_cur; 15873 optlen = opts.ipoptp_len; 15874 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 15875 optval, opts.ipoptp_len)); 15876 switch (optval) { 15877 uint32_t off; 15878 case IPOPT_SSRR: 15879 case IPOPT_LSRR: 15880 /* Check if adminstratively disabled */ 15881 if (!ip_forward_src_routed) { 15882 BUMP_MIB(&ip_mib, ipForwProhibits); 15883 if (ire->ire_stq) 15884 icmp_unreachable(ire->ire_stq, mp, 15885 ICMP_SOURCE_ROUTE_FAILED); 15886 else { 15887 ip0dbg(("ip_rput_forward_options: " 15888 "unable to send unreach\n")); 15889 freemsg(mp); 15890 } 15891 return (-1); 15892 } 15893 15894 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15895 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 15896 if (dst_ire == NULL) { 15897 /* 15898 * Must be partial since ip_rput_options 15899 * checked for strict. 15900 */ 15901 break; 15902 } 15903 off = opt[IPOPT_OFFSET]; 15904 off--; 15905 redo_srr: 15906 if (optlen < IP_ADDR_LEN || 15907 off > optlen - IP_ADDR_LEN) { 15908 /* End of source route */ 15909 ip1dbg(( 15910 "ip_rput_forward_options: end of SR\n")); 15911 ire_refrele(dst_ire); 15912 break; 15913 } 15914 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15915 bcopy(&ire->ire_src_addr, (char *)opt + off, 15916 IP_ADDR_LEN); 15917 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 15918 ntohl(dst))); 15919 15920 /* 15921 * Check if our address is present more than 15922 * once as consecutive hops in source route. 15923 */ 15924 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15925 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 15926 if (tmp_ire != NULL) { 15927 ire_refrele(tmp_ire); 15928 off += IP_ADDR_LEN; 15929 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15930 goto redo_srr; 15931 } 15932 ipha->ipha_dst = dst; 15933 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15934 ire_refrele(dst_ire); 15935 break; 15936 case IPOPT_RR: 15937 off = opt[IPOPT_OFFSET]; 15938 off--; 15939 if (optlen < IP_ADDR_LEN || 15940 off > optlen - IP_ADDR_LEN) { 15941 /* No more room - ignore */ 15942 ip1dbg(( 15943 "ip_rput_forward_options: end of RR\n")); 15944 break; 15945 } 15946 bcopy(&ire->ire_src_addr, (char *)opt + off, 15947 IP_ADDR_LEN); 15948 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15949 break; 15950 case IPOPT_TS: 15951 /* Insert timestamp if there is room */ 15952 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15953 case IPOPT_TS_TSONLY: 15954 off = IPOPT_TS_TIMELEN; 15955 break; 15956 case IPOPT_TS_PRESPEC: 15957 case IPOPT_TS_PRESPEC_RFC791: 15958 /* Verify that the address matched */ 15959 off = opt[IPOPT_OFFSET] - 1; 15960 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15961 dst_ire = ire_ctable_lookup(dst, 0, 15962 IRE_LOCAL, NULL, ALL_ZONES, NULL, 15963 MATCH_IRE_TYPE); 15964 15965 if (dst_ire == NULL) { 15966 /* Not for us */ 15967 break; 15968 } 15969 ire_refrele(dst_ire); 15970 /* FALLTHRU */ 15971 case IPOPT_TS_TSANDADDR: 15972 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15973 break; 15974 default: 15975 /* 15976 * ip_*put_options should have already 15977 * dropped this packet. 15978 */ 15979 cmn_err(CE_PANIC, "ip_rput_forward_options: " 15980 "unknown IT - bug in ip_rput_options?\n"); 15981 return (0); /* Keep "lint" happy */ 15982 } 15983 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15984 /* Increase overflow counter */ 15985 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15986 opt[IPOPT_POS_OV_FLG] = 15987 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15988 (off << 4)); 15989 break; 15990 } 15991 off = opt[IPOPT_OFFSET] - 1; 15992 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15993 case IPOPT_TS_PRESPEC: 15994 case IPOPT_TS_PRESPEC_RFC791: 15995 case IPOPT_TS_TSANDADDR: 15996 bcopy(&ire->ire_src_addr, 15997 (char *)opt + off, IP_ADDR_LEN); 15998 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15999 /* FALLTHRU */ 16000 case IPOPT_TS_TSONLY: 16001 off = opt[IPOPT_OFFSET] - 1; 16002 /* Compute # of milliseconds since midnight */ 16003 gethrestime(&now); 16004 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16005 now.tv_nsec / (NANOSEC / MILLISEC); 16006 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16007 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16008 break; 16009 } 16010 break; 16011 } 16012 } 16013 return (0); 16014 } 16015 16016 /* 16017 * This is called after processing at least one of AH/ESP headers. 16018 * 16019 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16020 * the actual, physical interface on which the packet was received, 16021 * but, when ip_strict_dst_multihoming is set to 1, could be the 16022 * interface which had the ipha_dst configured when the packet went 16023 * through ip_rput. The ill_index corresponding to the recv_ill 16024 * is saved in ipsec_in_rill_index 16025 */ 16026 void 16027 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16028 { 16029 mblk_t *mp; 16030 ipaddr_t dst; 16031 in6_addr_t *v6dstp; 16032 ipha_t *ipha; 16033 ip6_t *ip6h; 16034 ipsec_in_t *ii; 16035 boolean_t ill_need_rele = B_FALSE; 16036 boolean_t rill_need_rele = B_FALSE; 16037 boolean_t ire_need_rele = B_FALSE; 16038 16039 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16040 ASSERT(ii->ipsec_in_ill_index != 0); 16041 16042 mp = ipsec_mp->b_cont; 16043 ASSERT(mp != NULL); 16044 16045 16046 if (ill == NULL) { 16047 ASSERT(recv_ill == NULL); 16048 /* 16049 * We need to get the original queue on which ip_rput_local 16050 * or ip_rput_data_v6 was called. 16051 */ 16052 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16053 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 16054 ill_need_rele = B_TRUE; 16055 16056 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16057 recv_ill = ill_lookup_on_ifindex( 16058 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16059 NULL, NULL, NULL, NULL); 16060 rill_need_rele = B_TRUE; 16061 } else { 16062 recv_ill = ill; 16063 } 16064 16065 if ((ill == NULL) || (recv_ill == NULL)) { 16066 ip0dbg(("ip_fanout_proto_again: interface " 16067 "disappeared\n")); 16068 if (ill != NULL) 16069 ill_refrele(ill); 16070 if (recv_ill != NULL) 16071 ill_refrele(recv_ill); 16072 freemsg(ipsec_mp); 16073 return; 16074 } 16075 } 16076 16077 ASSERT(ill != NULL && recv_ill != NULL); 16078 16079 if (mp->b_datap->db_type == M_CTL) { 16080 /* 16081 * AH/ESP is returning the ICMP message after 16082 * removing their headers. Fanout again till 16083 * it gets to the right protocol. 16084 */ 16085 if (ii->ipsec_in_v4) { 16086 icmph_t *icmph; 16087 int iph_hdr_length; 16088 int hdr_length; 16089 16090 ipha = (ipha_t *)mp->b_rptr; 16091 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16092 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16093 ipha = (ipha_t *)&icmph[1]; 16094 hdr_length = IPH_HDR_LENGTH(ipha); 16095 /* 16096 * icmp_inbound_error_fanout may need to do pullupmsg. 16097 * Reset the type to M_DATA. 16098 */ 16099 mp->b_datap->db_type = M_DATA; 16100 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16101 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16102 B_FALSE, ill, ii->ipsec_in_zoneid); 16103 } else { 16104 icmp6_t *icmp6; 16105 int hdr_length; 16106 16107 ip6h = (ip6_t *)mp->b_rptr; 16108 /* Don't call hdr_length_v6() unless you have to. */ 16109 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16110 hdr_length = ip_hdr_length_v6(mp, ip6h); 16111 else 16112 hdr_length = IPV6_HDR_LEN; 16113 16114 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16115 /* 16116 * icmp_inbound_error_fanout_v6 may need to do 16117 * pullupmsg. Reset the type to M_DATA. 16118 */ 16119 mp->b_datap->db_type = M_DATA; 16120 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16121 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16122 } 16123 if (ill_need_rele) 16124 ill_refrele(ill); 16125 if (rill_need_rele) 16126 ill_refrele(recv_ill); 16127 return; 16128 } 16129 16130 if (ii->ipsec_in_v4) { 16131 ipha = (ipha_t *)mp->b_rptr; 16132 dst = ipha->ipha_dst; 16133 if (CLASSD(dst)) { 16134 /* 16135 * Multicast has to be delivered to all streams. 16136 */ 16137 dst = INADDR_BROADCAST; 16138 } 16139 16140 if (ire == NULL) { 16141 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16142 MBLK_GETLABEL(mp)); 16143 if (ire == NULL) { 16144 if (ill_need_rele) 16145 ill_refrele(ill); 16146 if (rill_need_rele) 16147 ill_refrele(recv_ill); 16148 ip1dbg(("ip_fanout_proto_again: " 16149 "IRE not found")); 16150 freemsg(ipsec_mp); 16151 return; 16152 } 16153 ire_need_rele = B_TRUE; 16154 } 16155 16156 switch (ipha->ipha_protocol) { 16157 case IPPROTO_UDP: 16158 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16159 recv_ill); 16160 if (ire_need_rele) 16161 ire_refrele(ire); 16162 break; 16163 case IPPROTO_TCP: 16164 if (!ire_need_rele) 16165 IRE_REFHOLD(ire); 16166 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16167 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16168 IRE_REFRELE(ire); 16169 if (mp != NULL) 16170 squeue_enter_chain(GET_SQUEUE(mp), mp, 16171 mp, 1, SQTAG_IP_PROTO_AGAIN); 16172 break; 16173 case IPPROTO_SCTP: 16174 if (!ire_need_rele) 16175 IRE_REFHOLD(ire); 16176 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16177 ipsec_mp, 0, ill->ill_rq, dst); 16178 break; 16179 default: 16180 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16181 recv_ill); 16182 if (ire_need_rele) 16183 ire_refrele(ire); 16184 break; 16185 } 16186 } else { 16187 uint32_t rput_flags = 0; 16188 16189 ip6h = (ip6_t *)mp->b_rptr; 16190 v6dstp = &ip6h->ip6_dst; 16191 /* 16192 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16193 * address. 16194 * 16195 * Currently, we don't store that state in the IPSEC_IN 16196 * message, and we may need to. 16197 */ 16198 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16199 IP6_IN_LLMCAST : 0); 16200 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16201 NULL); 16202 } 16203 if (ill_need_rele) 16204 ill_refrele(ill); 16205 if (rill_need_rele) 16206 ill_refrele(recv_ill); 16207 } 16208 16209 /* 16210 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16211 * returns 'true' if there are still fragments left on the queue, in 16212 * which case we restart the timer. 16213 */ 16214 void 16215 ill_frag_timer(void *arg) 16216 { 16217 ill_t *ill = (ill_t *)arg; 16218 boolean_t frag_pending; 16219 16220 mutex_enter(&ill->ill_lock); 16221 ASSERT(!ill->ill_fragtimer_executing); 16222 if (ill->ill_state_flags & ILL_CONDEMNED) { 16223 ill->ill_frag_timer_id = 0; 16224 mutex_exit(&ill->ill_lock); 16225 return; 16226 } 16227 ill->ill_fragtimer_executing = 1; 16228 mutex_exit(&ill->ill_lock); 16229 16230 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 16231 16232 /* 16233 * Restart the timer, if we have fragments pending or if someone 16234 * wanted us to be scheduled again. 16235 */ 16236 mutex_enter(&ill->ill_lock); 16237 ill->ill_fragtimer_executing = 0; 16238 ill->ill_frag_timer_id = 0; 16239 if (frag_pending || ill->ill_fragtimer_needrestart) 16240 ill_frag_timer_start(ill); 16241 mutex_exit(&ill->ill_lock); 16242 } 16243 16244 void 16245 ill_frag_timer_start(ill_t *ill) 16246 { 16247 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16248 16249 /* If the ill is closing or opening don't proceed */ 16250 if (ill->ill_state_flags & ILL_CONDEMNED) 16251 return; 16252 16253 if (ill->ill_fragtimer_executing) { 16254 /* 16255 * ill_frag_timer is currently executing. Just record the 16256 * the fact that we want the timer to be restarted. 16257 * ill_frag_timer will post a timeout before it returns, 16258 * ensuring it will be called again. 16259 */ 16260 ill->ill_fragtimer_needrestart = 1; 16261 return; 16262 } 16263 16264 if (ill->ill_frag_timer_id == 0) { 16265 /* 16266 * The timer is neither running nor is the timeout handler 16267 * executing. Post a timeout so that ill_frag_timer will be 16268 * called 16269 */ 16270 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16271 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 16272 ill->ill_fragtimer_needrestart = 0; 16273 } 16274 } 16275 16276 /* 16277 * This routine is needed for loopback when forwarding multicasts. 16278 * 16279 * IPQoS Notes: 16280 * IPPF processing is done in fanout routines. 16281 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16282 * processing for IPSec packets is done when it comes back in clear. 16283 * NOTE : The callers of this function need to do the ire_refrele for the 16284 * ire that is being passed in. 16285 */ 16286 void 16287 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16288 ill_t *recv_ill) 16289 { 16290 ill_t *ill = (ill_t *)q->q_ptr; 16291 uint32_t sum; 16292 uint32_t u1; 16293 uint32_t u2; 16294 int hdr_length; 16295 boolean_t mctl_present; 16296 mblk_t *first_mp = mp; 16297 mblk_t *hada_mp = NULL; 16298 ipha_t *inner_ipha; 16299 16300 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16301 "ip_rput_locl_start: q %p", q); 16302 16303 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16304 16305 16306 #define rptr ((uchar_t *)ipha) 16307 #define iphs ((uint16_t *)ipha) 16308 16309 /* 16310 * no UDP or TCP packet should come here anymore. 16311 */ 16312 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16313 (ipha->ipha_protocol != IPPROTO_UDP)); 16314 16315 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16316 if (mctl_present && 16317 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16318 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16319 16320 /* 16321 * It's an IPsec accelerated packet. 16322 * Keep a pointer to the data attributes around until 16323 * we allocate the ipsec_info_t. 16324 */ 16325 IPSECHW_DEBUG(IPSECHW_PKT, 16326 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16327 hada_mp = first_mp; 16328 hada_mp->b_cont = NULL; 16329 /* 16330 * Since it is accelerated, it comes directly from 16331 * the ill and the data attributes is followed by 16332 * the packet data. 16333 */ 16334 ASSERT(mp->b_datap->db_type != M_CTL); 16335 first_mp = mp; 16336 mctl_present = B_FALSE; 16337 } 16338 16339 /* 16340 * IF M_CTL is not present, then ipsec_in_is_secure 16341 * should return B_TRUE. There is a case where loopback 16342 * packets has an M_CTL in the front with all the 16343 * IPSEC options set to IPSEC_PREF_NEVER - which means 16344 * ipsec_in_is_secure will return B_FALSE. As loopback 16345 * packets never comes here, it is safe to ASSERT the 16346 * following. 16347 */ 16348 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16349 16350 16351 /* u1 is # words of IP options */ 16352 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16353 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16354 16355 if (u1) { 16356 if (!ip_options_cksum(q, mp, ipha, ire)) { 16357 if (hada_mp != NULL) 16358 freemsg(hada_mp); 16359 return; 16360 } 16361 } else { 16362 /* Check the IP header checksum. */ 16363 #define uph ((uint16_t *)ipha) 16364 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16365 uph[6] + uph[7] + uph[8] + uph[9]; 16366 #undef uph 16367 /* finish doing IP checksum */ 16368 sum = (sum & 0xFFFF) + (sum >> 16); 16369 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16370 /* 16371 * Don't verify header checksum if this packet is coming 16372 * back from AH/ESP as we already did it. 16373 */ 16374 if (!mctl_present && (sum && sum != 0xFFFF)) { 16375 BUMP_MIB(&ip_mib, ipInCksumErrs); 16376 goto drop_pkt; 16377 } 16378 } 16379 16380 /* 16381 * Count for SNMP of inbound packets for ire. As ip_proto_input 16382 * might be called more than once for secure packets, count only 16383 * the first time. 16384 */ 16385 if (!mctl_present) { 16386 UPDATE_IB_PKT_COUNT(ire); 16387 ire->ire_last_used_time = lbolt; 16388 } 16389 16390 /* Check for fragmentation offset. */ 16391 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16392 u1 = u2 & (IPH_MF | IPH_OFFSET); 16393 if (u1) { 16394 /* 16395 * We re-assemble fragments before we do the AH/ESP 16396 * processing. Thus, M_CTL should not be present 16397 * while we are re-assembling. 16398 */ 16399 ASSERT(!mctl_present); 16400 ASSERT(first_mp == mp); 16401 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 16402 return; 16403 } 16404 /* 16405 * Make sure that first_mp points back to mp as 16406 * the mp we came in with could have changed in 16407 * ip_rput_fragment(). 16408 */ 16409 ipha = (ipha_t *)mp->b_rptr; 16410 first_mp = mp; 16411 } 16412 16413 /* 16414 * Clear hardware checksumming flag as it is currently only 16415 * used by TCP and UDP. 16416 */ 16417 DB_CKSUMFLAGS(mp) = 0; 16418 16419 /* Now we have a complete datagram, destined for this machine. */ 16420 u1 = IPH_HDR_LENGTH(ipha); 16421 switch (ipha->ipha_protocol) { 16422 case IPPROTO_ICMP: { 16423 ire_t *ire_zone; 16424 ilm_t *ilm; 16425 mblk_t *mp1; 16426 zoneid_t last_zoneid; 16427 16428 if (CLASSD(ipha->ipha_dst) && 16429 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 16430 ASSERT(ire->ire_type == IRE_BROADCAST); 16431 /* 16432 * In the multicast case, applications may have joined 16433 * the group from different zones, so we need to deliver 16434 * the packet to each of them. Loop through the 16435 * multicast memberships structures (ilm) on the receive 16436 * ill and send a copy of the packet up each matching 16437 * one. However, we don't do this for multicasts sent on 16438 * the loopback interface (PHYI_LOOPBACK flag set) as 16439 * they must stay in the sender's zone. 16440 * 16441 * ilm_add_v6() ensures that ilms in the same zone are 16442 * contiguous in the ill_ilm list. We use this property 16443 * to avoid sending duplicates needed when two 16444 * applications in the same zone join the same group on 16445 * different logical interfaces: we ignore the ilm if 16446 * its zoneid is the same as the last matching one. 16447 * In addition, the sending of the packet for 16448 * ire_zoneid is delayed until all of the other ilms 16449 * have been exhausted. 16450 */ 16451 last_zoneid = -1; 16452 ILM_WALKER_HOLD(recv_ill); 16453 for (ilm = recv_ill->ill_ilm; ilm != NULL; 16454 ilm = ilm->ilm_next) { 16455 if ((ilm->ilm_flags & ILM_DELETED) || 16456 ipha->ipha_dst != ilm->ilm_addr || 16457 ilm->ilm_zoneid == last_zoneid || 16458 ilm->ilm_zoneid == ire->ire_zoneid || 16459 ilm->ilm_zoneid == ALL_ZONES || 16460 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 16461 continue; 16462 mp1 = ip_copymsg(first_mp); 16463 if (mp1 == NULL) 16464 continue; 16465 icmp_inbound(q, mp1, B_TRUE, ill, 16466 0, sum, mctl_present, B_TRUE, 16467 recv_ill, ilm->ilm_zoneid); 16468 last_zoneid = ilm->ilm_zoneid; 16469 } 16470 ILM_WALKER_RELE(recv_ill); 16471 } else if (ire->ire_type == IRE_BROADCAST) { 16472 /* 16473 * In the broadcast case, there may be many zones 16474 * which need a copy of the packet delivered to them. 16475 * There is one IRE_BROADCAST per broadcast address 16476 * and per zone; we walk those using a helper function. 16477 * In addition, the sending of the packet for ire is 16478 * delayed until all of the other ires have been 16479 * processed. 16480 */ 16481 IRB_REFHOLD(ire->ire_bucket); 16482 ire_zone = NULL; 16483 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 16484 ire)) != NULL) { 16485 mp1 = ip_copymsg(first_mp); 16486 if (mp1 == NULL) 16487 continue; 16488 16489 UPDATE_IB_PKT_COUNT(ire_zone); 16490 ire_zone->ire_last_used_time = lbolt; 16491 icmp_inbound(q, mp1, B_TRUE, ill, 16492 0, sum, mctl_present, B_TRUE, 16493 recv_ill, ire_zone->ire_zoneid); 16494 } 16495 IRB_REFRELE(ire->ire_bucket); 16496 } 16497 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 16498 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 16499 ire->ire_zoneid); 16500 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16501 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 16502 return; 16503 } 16504 case IPPROTO_IGMP: 16505 /* 16506 * If we are not willing to accept IGMP packets in clear, 16507 * then check with global policy. 16508 */ 16509 if (igmp_accept_clear_messages == 0) { 16510 first_mp = ipsec_check_global_policy(first_mp, NULL, 16511 ipha, NULL, mctl_present); 16512 if (first_mp == NULL) 16513 return; 16514 } 16515 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16516 freemsg(first_mp); 16517 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 16518 BUMP_MIB(&ip_mib, ipInDiscards); 16519 return; 16520 } 16521 if (igmp_input(q, mp, ill)) { 16522 /* Bad packet - discarded by igmp_input */ 16523 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16524 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 16525 if (mctl_present) 16526 freeb(first_mp); 16527 return; 16528 } 16529 /* 16530 * igmp_input() may have pulled up the message so ipha needs to 16531 * be reinitialized. 16532 */ 16533 ipha = (ipha_t *)mp->b_rptr; 16534 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16535 /* No user-level listener for IGMP packets */ 16536 goto drop_pkt; 16537 } 16538 /* deliver to local raw users */ 16539 break; 16540 case IPPROTO_PIM: 16541 /* 16542 * If we are not willing to accept PIM packets in clear, 16543 * then check with global policy. 16544 */ 16545 if (pim_accept_clear_messages == 0) { 16546 first_mp = ipsec_check_global_policy(first_mp, NULL, 16547 ipha, NULL, mctl_present); 16548 if (first_mp == NULL) 16549 return; 16550 } 16551 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16552 freemsg(first_mp); 16553 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 16554 BUMP_MIB(&ip_mib, ipInDiscards); 16555 return; 16556 } 16557 if (pim_input(q, mp) != 0) { 16558 /* Bad packet - discarded by pim_input */ 16559 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16560 "ip_rput_locl_end: q %p (%S)", q, "pim"); 16561 if (mctl_present) 16562 freeb(first_mp); 16563 return; 16564 } 16565 16566 /* 16567 * pim_input() may have pulled up the message so ipha needs to 16568 * be reinitialized. 16569 */ 16570 ipha = (ipha_t *)mp->b_rptr; 16571 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16572 /* No user-level listener for PIM packets */ 16573 goto drop_pkt; 16574 } 16575 /* deliver to local raw users */ 16576 break; 16577 case IPPROTO_ENCAP: 16578 /* 16579 * Handle self-encapsulated packets (IP-in-IP where 16580 * the inner addresses == the outer addresses). 16581 */ 16582 hdr_length = IPH_HDR_LENGTH(ipha); 16583 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 16584 mp->b_wptr) { 16585 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 16586 sizeof (ipha_t) - mp->b_rptr)) { 16587 BUMP_MIB(&ip_mib, ipInDiscards); 16588 freemsg(first_mp); 16589 return; 16590 } 16591 ipha = (ipha_t *)mp->b_rptr; 16592 } 16593 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 16594 /* 16595 * Check the sanity of the inner IP header. 16596 */ 16597 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 16598 BUMP_MIB(&ip_mib, ipInDiscards); 16599 freemsg(first_mp); 16600 return; 16601 } 16602 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 16603 BUMP_MIB(&ip_mib, ipInDiscards); 16604 freemsg(first_mp); 16605 return; 16606 } 16607 if (inner_ipha->ipha_src == ipha->ipha_src && 16608 inner_ipha->ipha_dst == ipha->ipha_dst) { 16609 ipsec_in_t *ii; 16610 16611 /* 16612 * Self-encapsulated tunnel packet. Remove 16613 * the outer IP header and fanout again. 16614 * We also need to make sure that the inner 16615 * header is pulled up until options. 16616 */ 16617 mp->b_rptr = (uchar_t *)inner_ipha; 16618 ipha = inner_ipha; 16619 hdr_length = IPH_HDR_LENGTH(ipha); 16620 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 16621 if (!pullupmsg(mp, (uchar_t *)ipha + 16622 + hdr_length - mp->b_rptr)) { 16623 freemsg(first_mp); 16624 return; 16625 } 16626 ipha = (ipha_t *)mp->b_rptr; 16627 } 16628 if (!mctl_present) { 16629 ASSERT(first_mp == mp); 16630 /* 16631 * This means that somebody is sending 16632 * Self-encapsualted packets without AH/ESP. 16633 * If AH/ESP was present, we would have already 16634 * allocated the first_mp. 16635 */ 16636 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 16637 NULL) { 16638 ip1dbg(("ip_proto_input: IPSEC_IN " 16639 "allocation failure.\n")); 16640 BUMP_MIB(&ip_mib, ipInDiscards); 16641 freemsg(mp); 16642 return; 16643 } 16644 first_mp->b_cont = mp; 16645 } 16646 /* 16647 * We generally store the ill_index if we need to 16648 * do IPSEC processing as we lose the ill queue when 16649 * we come back. But in this case, we never should 16650 * have to store the ill_index here as it should have 16651 * been stored previously when we processed the 16652 * AH/ESP header in this routine or for non-ipsec 16653 * cases, we still have the queue. But for some bad 16654 * packets from the wire, we can get to IPSEC after 16655 * this and we better store the index for that case. 16656 */ 16657 ill = (ill_t *)q->q_ptr; 16658 ii = (ipsec_in_t *)first_mp->b_rptr; 16659 ii->ipsec_in_ill_index = 16660 ill->ill_phyint->phyint_ifindex; 16661 ii->ipsec_in_rill_index = 16662 recv_ill->ill_phyint->phyint_ifindex; 16663 if (ii->ipsec_in_decaps) { 16664 /* 16665 * This packet is self-encapsulated multiple 16666 * times. We don't want to recurse infinitely. 16667 * To keep it simple, drop the packet. 16668 */ 16669 BUMP_MIB(&ip_mib, ipInDiscards); 16670 freemsg(first_mp); 16671 return; 16672 } 16673 ii->ipsec_in_decaps = B_TRUE; 16674 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 16675 return; 16676 } 16677 break; 16678 case IPPROTO_AH: 16679 case IPPROTO_ESP: { 16680 /* 16681 * Fast path for AH/ESP. If this is the first time 16682 * we are sending a datagram to AH/ESP, allocate 16683 * a IPSEC_IN message and prepend it. Otherwise, 16684 * just fanout. 16685 */ 16686 16687 int ipsec_rc; 16688 ipsec_in_t *ii; 16689 16690 IP_STAT(ipsec_proto_ahesp); 16691 if (!mctl_present) { 16692 ASSERT(first_mp == mp); 16693 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 16694 ip1dbg(("ip_proto_input: IPSEC_IN " 16695 "allocation failure.\n")); 16696 freemsg(hada_mp); /* okay ifnull */ 16697 BUMP_MIB(&ip_mib, ipInDiscards); 16698 freemsg(mp); 16699 return; 16700 } 16701 /* 16702 * Store the ill_index so that when we come back 16703 * from IPSEC we ride on the same queue. 16704 */ 16705 ill = (ill_t *)q->q_ptr; 16706 ii = (ipsec_in_t *)first_mp->b_rptr; 16707 ii->ipsec_in_ill_index = 16708 ill->ill_phyint->phyint_ifindex; 16709 ii->ipsec_in_rill_index = 16710 recv_ill->ill_phyint->phyint_ifindex; 16711 first_mp->b_cont = mp; 16712 /* 16713 * Cache hardware acceleration info. 16714 */ 16715 if (hada_mp != NULL) { 16716 IPSECHW_DEBUG(IPSECHW_PKT, 16717 ("ip_rput_local: caching data attr.\n")); 16718 ii->ipsec_in_accelerated = B_TRUE; 16719 ii->ipsec_in_da = hada_mp; 16720 hada_mp = NULL; 16721 } 16722 } else { 16723 ii = (ipsec_in_t *)first_mp->b_rptr; 16724 } 16725 16726 if (!ipsec_loaded()) { 16727 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 16728 ire->ire_zoneid); 16729 return; 16730 } 16731 16732 /* select inbound SA and have IPsec process the pkt */ 16733 if (ipha->ipha_protocol == IPPROTO_ESP) { 16734 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 16735 if (esph == NULL) 16736 return; 16737 ASSERT(ii->ipsec_in_esp_sa != NULL); 16738 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 16739 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 16740 first_mp, esph); 16741 } else { 16742 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 16743 if (ah == NULL) 16744 return; 16745 ASSERT(ii->ipsec_in_ah_sa != NULL); 16746 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 16747 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 16748 first_mp, ah); 16749 } 16750 16751 switch (ipsec_rc) { 16752 case IPSEC_STATUS_SUCCESS: 16753 break; 16754 case IPSEC_STATUS_FAILED: 16755 BUMP_MIB(&ip_mib, ipInDiscards); 16756 /* FALLTHRU */ 16757 case IPSEC_STATUS_PENDING: 16758 return; 16759 } 16760 /* we're done with IPsec processing, send it up */ 16761 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 16762 return; 16763 } 16764 default: 16765 break; 16766 } 16767 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 16768 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 16769 ire->ire_zoneid)); 16770 goto drop_pkt; 16771 } 16772 /* 16773 * Handle protocols with which IP is less intimate. There 16774 * can be more than one stream bound to a particular 16775 * protocol. When this is the case, each one gets a copy 16776 * of any incoming packets. 16777 */ 16778 ip_fanout_proto(q, first_mp, ill, ipha, 16779 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 16780 B_TRUE, recv_ill, ire->ire_zoneid); 16781 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16782 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 16783 return; 16784 16785 drop_pkt: 16786 freemsg(first_mp); 16787 if (hada_mp != NULL) 16788 freeb(hada_mp); 16789 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16790 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 16791 #undef rptr 16792 #undef iphs 16793 16794 } 16795 16796 /* 16797 * Update any source route, record route or timestamp options. 16798 * Check that we are at end of strict source route. 16799 * The options have already been checked for sanity in ip_rput_options(). 16800 */ 16801 static boolean_t 16802 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 16803 { 16804 ipoptp_t opts; 16805 uchar_t *opt; 16806 uint8_t optval; 16807 uint8_t optlen; 16808 ipaddr_t dst; 16809 uint32_t ts; 16810 ire_t *dst_ire; 16811 timestruc_t now; 16812 16813 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16814 16815 ip2dbg(("ip_rput_local_options\n")); 16816 16817 for (optval = ipoptp_first(&opts, ipha); 16818 optval != IPOPT_EOL; 16819 optval = ipoptp_next(&opts)) { 16820 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16821 opt = opts.ipoptp_cur; 16822 optlen = opts.ipoptp_len; 16823 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 16824 optval, optlen)); 16825 switch (optval) { 16826 uint32_t off; 16827 case IPOPT_SSRR: 16828 case IPOPT_LSRR: 16829 off = opt[IPOPT_OFFSET]; 16830 off--; 16831 if (optlen < IP_ADDR_LEN || 16832 off > optlen - IP_ADDR_LEN) { 16833 /* End of source route */ 16834 ip1dbg(("ip_rput_local_options: end of SR\n")); 16835 break; 16836 } 16837 /* 16838 * This will only happen if two consecutive entries 16839 * in the source route contains our address or if 16840 * it is a packet with a loose source route which 16841 * reaches us before consuming the whole source route 16842 */ 16843 ip1dbg(("ip_rput_local_options: not end of SR\n")); 16844 if (optval == IPOPT_SSRR) { 16845 goto bad_src_route; 16846 } 16847 /* 16848 * Hack: instead of dropping the packet truncate the 16849 * source route to what has been used by filling the 16850 * rest with IPOPT_NOP. 16851 */ 16852 opt[IPOPT_OLEN] = (uint8_t)off; 16853 while (off < optlen) { 16854 opt[off++] = IPOPT_NOP; 16855 } 16856 break; 16857 case IPOPT_RR: 16858 off = opt[IPOPT_OFFSET]; 16859 off--; 16860 if (optlen < IP_ADDR_LEN || 16861 off > optlen - IP_ADDR_LEN) { 16862 /* No more room - ignore */ 16863 ip1dbg(( 16864 "ip_rput_local_options: end of RR\n")); 16865 break; 16866 } 16867 bcopy(&ire->ire_src_addr, (char *)opt + off, 16868 IP_ADDR_LEN); 16869 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16870 break; 16871 case IPOPT_TS: 16872 /* Insert timestamp if there is romm */ 16873 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16874 case IPOPT_TS_TSONLY: 16875 off = IPOPT_TS_TIMELEN; 16876 break; 16877 case IPOPT_TS_PRESPEC: 16878 case IPOPT_TS_PRESPEC_RFC791: 16879 /* Verify that the address matched */ 16880 off = opt[IPOPT_OFFSET] - 1; 16881 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16882 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16883 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16884 if (dst_ire == NULL) { 16885 /* Not for us */ 16886 break; 16887 } 16888 ire_refrele(dst_ire); 16889 /* FALLTHRU */ 16890 case IPOPT_TS_TSANDADDR: 16891 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16892 break; 16893 default: 16894 /* 16895 * ip_*put_options should have already 16896 * dropped this packet. 16897 */ 16898 cmn_err(CE_PANIC, "ip_rput_local_options: " 16899 "unknown IT - bug in ip_rput_options?\n"); 16900 return (B_TRUE); /* Keep "lint" happy */ 16901 } 16902 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16903 /* Increase overflow counter */ 16904 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16905 opt[IPOPT_POS_OV_FLG] = 16906 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16907 (off << 4)); 16908 break; 16909 } 16910 off = opt[IPOPT_OFFSET] - 1; 16911 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16912 case IPOPT_TS_PRESPEC: 16913 case IPOPT_TS_PRESPEC_RFC791: 16914 case IPOPT_TS_TSANDADDR: 16915 bcopy(&ire->ire_src_addr, (char *)opt + off, 16916 IP_ADDR_LEN); 16917 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16918 /* FALLTHRU */ 16919 case IPOPT_TS_TSONLY: 16920 off = opt[IPOPT_OFFSET] - 1; 16921 /* Compute # of milliseconds since midnight */ 16922 gethrestime(&now); 16923 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16924 now.tv_nsec / (NANOSEC / MILLISEC); 16925 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16926 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16927 break; 16928 } 16929 break; 16930 } 16931 } 16932 return (B_TRUE); 16933 16934 bad_src_route: 16935 q = WR(q); 16936 /* make sure we clear any indication of a hardware checksum */ 16937 DB_CKSUMFLAGS(mp) = 0; 16938 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16939 return (B_FALSE); 16940 16941 } 16942 16943 /* 16944 * Process IP options in an inbound packet. If an option affects the 16945 * effective destination address, return the next hop address via dstp. 16946 * Returns -1 if something fails in which case an ICMP error has been sent 16947 * and mp freed. 16948 */ 16949 static int 16950 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 16951 { 16952 ipoptp_t opts; 16953 uchar_t *opt; 16954 uint8_t optval; 16955 uint8_t optlen; 16956 ipaddr_t dst; 16957 intptr_t code = 0; 16958 ire_t *ire = NULL; 16959 16960 ip2dbg(("ip_rput_options\n")); 16961 dst = ipha->ipha_dst; 16962 for (optval = ipoptp_first(&opts, ipha); 16963 optval != IPOPT_EOL; 16964 optval = ipoptp_next(&opts)) { 16965 opt = opts.ipoptp_cur; 16966 optlen = opts.ipoptp_len; 16967 ip2dbg(("ip_rput_options: opt %d, len %d\n", 16968 optval, optlen)); 16969 /* 16970 * Note: we need to verify the checksum before we 16971 * modify anything thus this routine only extracts the next 16972 * hop dst from any source route. 16973 */ 16974 switch (optval) { 16975 uint32_t off; 16976 case IPOPT_SSRR: 16977 case IPOPT_LSRR: 16978 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16979 ALL_ZONES, NULL, MATCH_IRE_TYPE); 16980 if (ire == NULL) { 16981 if (optval == IPOPT_SSRR) { 16982 ip1dbg(("ip_rput_options: not next" 16983 " strict source route 0x%x\n", 16984 ntohl(dst))); 16985 code = (char *)&ipha->ipha_dst - 16986 (char *)ipha; 16987 goto param_prob; /* RouterReq's */ 16988 } 16989 ip2dbg(("ip_rput_options: " 16990 "not next source route 0x%x\n", 16991 ntohl(dst))); 16992 break; 16993 } 16994 ire_refrele(ire); 16995 16996 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16997 ip1dbg(( 16998 "ip_rput_options: bad option offset\n")); 16999 code = (char *)&opt[IPOPT_OLEN] - 17000 (char *)ipha; 17001 goto param_prob; 17002 } 17003 off = opt[IPOPT_OFFSET]; 17004 off--; 17005 redo_srr: 17006 if (optlen < IP_ADDR_LEN || 17007 off > optlen - IP_ADDR_LEN) { 17008 /* End of source route */ 17009 ip1dbg(("ip_rput_options: end of SR\n")); 17010 break; 17011 } 17012 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17013 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17014 ntohl(dst))); 17015 17016 /* 17017 * Check if our address is present more than 17018 * once as consecutive hops in source route. 17019 * XXX verify per-interface ip_forwarding 17020 * for source route? 17021 */ 17022 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17023 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17024 17025 if (ire != NULL) { 17026 ire_refrele(ire); 17027 off += IP_ADDR_LEN; 17028 goto redo_srr; 17029 } 17030 17031 if (dst == htonl(INADDR_LOOPBACK)) { 17032 ip1dbg(("ip_rput_options: loopback addr in " 17033 "source route!\n")); 17034 goto bad_src_route; 17035 } 17036 /* 17037 * For strict: verify that dst is directly 17038 * reachable. 17039 */ 17040 if (optval == IPOPT_SSRR) { 17041 ire = ire_ftable_lookup(dst, 0, 0, 17042 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17043 MBLK_GETLABEL(mp), 17044 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 17045 if (ire == NULL) { 17046 ip1dbg(("ip_rput_options: SSRR not " 17047 "directly reachable: 0x%x\n", 17048 ntohl(dst))); 17049 goto bad_src_route; 17050 } 17051 ire_refrele(ire); 17052 } 17053 /* 17054 * Defer update of the offset and the record route 17055 * until the packet is forwarded. 17056 */ 17057 break; 17058 case IPOPT_RR: 17059 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17060 ip1dbg(( 17061 "ip_rput_options: bad option offset\n")); 17062 code = (char *)&opt[IPOPT_OLEN] - 17063 (char *)ipha; 17064 goto param_prob; 17065 } 17066 break; 17067 case IPOPT_TS: 17068 /* 17069 * Verify that length >= 5 and that there is either 17070 * room for another timestamp or that the overflow 17071 * counter is not maxed out. 17072 */ 17073 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17074 if (optlen < IPOPT_MINLEN_IT) { 17075 goto param_prob; 17076 } 17077 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17078 ip1dbg(( 17079 "ip_rput_options: bad option offset\n")); 17080 code = (char *)&opt[IPOPT_OFFSET] - 17081 (char *)ipha; 17082 goto param_prob; 17083 } 17084 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17085 case IPOPT_TS_TSONLY: 17086 off = IPOPT_TS_TIMELEN; 17087 break; 17088 case IPOPT_TS_TSANDADDR: 17089 case IPOPT_TS_PRESPEC: 17090 case IPOPT_TS_PRESPEC_RFC791: 17091 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17092 break; 17093 default: 17094 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17095 (char *)ipha; 17096 goto param_prob; 17097 } 17098 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17099 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17100 /* 17101 * No room and the overflow counter is 15 17102 * already. 17103 */ 17104 goto param_prob; 17105 } 17106 break; 17107 } 17108 } 17109 17110 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17111 *dstp = dst; 17112 return (0); 17113 } 17114 17115 ip1dbg(("ip_rput_options: error processing IP options.")); 17116 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17117 17118 param_prob: 17119 q = WR(q); 17120 /* make sure we clear any indication of a hardware checksum */ 17121 DB_CKSUMFLAGS(mp) = 0; 17122 icmp_param_problem(q, mp, (uint8_t)code); 17123 return (-1); 17124 17125 bad_src_route: 17126 q = WR(q); 17127 /* make sure we clear any indication of a hardware checksum */ 17128 DB_CKSUMFLAGS(mp) = 0; 17129 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 17130 return (-1); 17131 } 17132 17133 /* 17134 * IP & ICMP info in >=14 msg's ... 17135 * - ip fixed part (mib2_ip_t) 17136 * - icmp fixed part (mib2_icmp_t) 17137 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17138 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17139 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 17140 * - ipRouteAttributeTable (ip 102) labeled routes 17141 * - ip multicast membership (ip_member_t) 17142 * - ip multicast source filtering (ip_grpsrc_t) 17143 * - igmp fixed part (struct igmpstat) 17144 * - multicast routing stats (struct mrtstat) 17145 * - multicast routing vifs (array of struct vifctl) 17146 * - multicast routing routes (array of struct mfcctl) 17147 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17148 * One per ill plus one generic 17149 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17150 * One per ill plus one generic 17151 * - ipv6RouteEntry all IPv6 IREs 17152 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17153 * - ipv6NetToMediaEntry all Neighbor Cache entries 17154 * - ipv6AddrEntry all IPv6 ipifs 17155 * - ipv6 multicast membership (ipv6_member_t) 17156 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17157 * 17158 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 17159 * already present. 17160 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17161 * already filled in by the caller. 17162 * Return value of 0 indicates that no messages were sent and caller 17163 * should free mpctl. 17164 */ 17165 int 17166 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17167 { 17168 17169 if (mpctl == NULL || mpctl->b_cont == NULL) { 17170 return (0); 17171 } 17172 17173 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 17174 return (1); 17175 } 17176 17177 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 17178 return (1); 17179 } 17180 17181 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 17182 return (1); 17183 } 17184 17185 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 17186 return (1); 17187 } 17188 17189 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 17190 return (1); 17191 } 17192 17193 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 17194 return (1); 17195 } 17196 17197 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 17198 return (1); 17199 } 17200 17201 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 17202 return (1); 17203 } 17204 17205 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 17206 return (1); 17207 } 17208 17209 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 17210 return (1); 17211 } 17212 17213 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 17214 return (1); 17215 } 17216 17217 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 17218 return (1); 17219 } 17220 17221 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 17222 return (1); 17223 } 17224 17225 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 17226 return (1); 17227 } 17228 17229 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 17230 return (1); 17231 } 17232 17233 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 17234 return (1); 17235 } 17236 17237 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 17238 return (1); 17239 } 17240 freemsg(mpctl); 17241 return (1); 17242 } 17243 17244 17245 /* Get global IPv4 statistics */ 17246 static mblk_t * 17247 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 17248 { 17249 struct opthdr *optp; 17250 mblk_t *mp2ctl; 17251 17252 /* 17253 * make a copy of the original message 17254 */ 17255 mp2ctl = copymsg(mpctl); 17256 17257 /* fixed length IP structure... */ 17258 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17259 optp->level = MIB2_IP; 17260 optp->name = 0; 17261 SET_MIB(ip_mib.ipForwarding, 17262 (WE_ARE_FORWARDING ? 1 : 2)); 17263 SET_MIB(ip_mib.ipDefaultTTL, 17264 (uint32_t)ip_def_ttl); 17265 SET_MIB(ip_mib.ipReasmTimeout, 17266 ip_g_frag_timeout); 17267 SET_MIB(ip_mib.ipAddrEntrySize, 17268 sizeof (mib2_ipAddrEntry_t)); 17269 SET_MIB(ip_mib.ipRouteEntrySize, 17270 sizeof (mib2_ipRouteEntry_t)); 17271 SET_MIB(ip_mib.ipNetToMediaEntrySize, 17272 sizeof (mib2_ipNetToMediaEntry_t)); 17273 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 17274 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 17275 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 17276 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 17277 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 17278 (int)sizeof (ip_mib))) { 17279 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 17280 (uint_t)sizeof (ip_mib))); 17281 } 17282 17283 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17284 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 17285 (int)optp->level, (int)optp->name, (int)optp->len)); 17286 qreply(q, mpctl); 17287 return (mp2ctl); 17288 } 17289 17290 /* Global IPv4 ICMP statistics */ 17291 static mblk_t * 17292 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 17293 { 17294 struct opthdr *optp; 17295 mblk_t *mp2ctl; 17296 17297 /* 17298 * Make a copy of the original message 17299 */ 17300 mp2ctl = copymsg(mpctl); 17301 17302 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17303 optp->level = MIB2_ICMP; 17304 optp->name = 0; 17305 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17306 (int)sizeof (icmp_mib))) { 17307 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17308 (uint_t)sizeof (icmp_mib))); 17309 } 17310 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17311 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17312 (int)optp->level, (int)optp->name, (int)optp->len)); 17313 qreply(q, mpctl); 17314 return (mp2ctl); 17315 } 17316 17317 /* Global IPv4 IGMP statistics */ 17318 static mblk_t * 17319 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17320 { 17321 struct opthdr *optp; 17322 mblk_t *mp2ctl; 17323 17324 /* 17325 * make a copy of the original message 17326 */ 17327 mp2ctl = copymsg(mpctl); 17328 17329 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17330 optp->level = EXPER_IGMP; 17331 optp->name = 0; 17332 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 17333 (int)sizeof (igmpstat))) { 17334 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 17335 (uint_t)sizeof (igmpstat))); 17336 } 17337 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17338 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 17339 (int)optp->level, (int)optp->name, (int)optp->len)); 17340 qreply(q, mpctl); 17341 return (mp2ctl); 17342 } 17343 17344 /* Global IPv4 Multicast Routing statistics */ 17345 static mblk_t * 17346 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 17347 { 17348 struct opthdr *optp; 17349 mblk_t *mp2ctl; 17350 17351 /* 17352 * make a copy of the original message 17353 */ 17354 mp2ctl = copymsg(mpctl); 17355 17356 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17357 optp->level = EXPER_DVMRP; 17358 optp->name = 0; 17359 if (!ip_mroute_stats(mpctl->b_cont)) { 17360 ip0dbg(("ip_mroute_stats: failed\n")); 17361 } 17362 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17363 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 17364 (int)optp->level, (int)optp->name, (int)optp->len)); 17365 qreply(q, mpctl); 17366 return (mp2ctl); 17367 } 17368 17369 /* IPv4 address information */ 17370 static mblk_t * 17371 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 17372 { 17373 struct opthdr *optp; 17374 mblk_t *mp2ctl; 17375 mblk_t *mp_tail = NULL; 17376 ill_t *ill; 17377 ipif_t *ipif; 17378 uint_t bitval; 17379 mib2_ipAddrEntry_t mae; 17380 zoneid_t zoneid; 17381 ill_walk_context_t ctx; 17382 17383 /* 17384 * make a copy of the original message 17385 */ 17386 mp2ctl = copymsg(mpctl); 17387 17388 /* ipAddrEntryTable */ 17389 17390 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17391 optp->level = MIB2_IP; 17392 optp->name = MIB2_IP_ADDR; 17393 zoneid = Q_TO_CONN(q)->conn_zoneid; 17394 17395 rw_enter(&ill_g_lock, RW_READER); 17396 ill = ILL_START_WALK_V4(&ctx); 17397 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17398 for (ipif = ill->ill_ipif; ipif != NULL; 17399 ipif = ipif->ipif_next) { 17400 if (ipif->ipif_zoneid != zoneid && 17401 ipif->ipif_zoneid != ALL_ZONES) 17402 continue; 17403 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17404 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17405 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17406 17407 (void) ipif_get_name(ipif, 17408 mae.ipAdEntIfIndex.o_bytes, 17409 OCTET_LENGTH); 17410 mae.ipAdEntIfIndex.o_length = 17411 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 17412 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 17413 mae.ipAdEntNetMask = ipif->ipif_net_mask; 17414 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 17415 mae.ipAdEntInfo.ae_subnet_len = 17416 ip_mask_to_plen(ipif->ipif_net_mask); 17417 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 17418 for (bitval = 1; 17419 bitval && 17420 !(bitval & ipif->ipif_brd_addr); 17421 bitval <<= 1) 17422 noop; 17423 mae.ipAdEntBcastAddr = bitval; 17424 mae.ipAdEntReasmMaxSize = 65535; 17425 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 17426 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 17427 mae.ipAdEntInfo.ae_broadcast_addr = 17428 ipif->ipif_brd_addr; 17429 mae.ipAdEntInfo.ae_pp_dst_addr = 17430 ipif->ipif_pp_dst_addr; 17431 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 17432 ill->ill_flags | ill->ill_phyint->phyint_flags; 17433 17434 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17435 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 17436 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 17437 "allocate %u bytes\n", 17438 (uint_t)sizeof (mib2_ipAddrEntry_t))); 17439 } 17440 } 17441 } 17442 rw_exit(&ill_g_lock); 17443 17444 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17445 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 17446 (int)optp->level, (int)optp->name, (int)optp->len)); 17447 qreply(q, mpctl); 17448 return (mp2ctl); 17449 } 17450 17451 /* IPv6 address information */ 17452 static mblk_t * 17453 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 17454 { 17455 struct opthdr *optp; 17456 mblk_t *mp2ctl; 17457 mblk_t *mp_tail = NULL; 17458 ill_t *ill; 17459 ipif_t *ipif; 17460 mib2_ipv6AddrEntry_t mae6; 17461 zoneid_t zoneid; 17462 ill_walk_context_t ctx; 17463 17464 /* 17465 * make a copy of the original message 17466 */ 17467 mp2ctl = copymsg(mpctl); 17468 17469 /* ipv6AddrEntryTable */ 17470 17471 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17472 optp->level = MIB2_IP6; 17473 optp->name = MIB2_IP6_ADDR; 17474 zoneid = Q_TO_CONN(q)->conn_zoneid; 17475 17476 rw_enter(&ill_g_lock, RW_READER); 17477 ill = ILL_START_WALK_V6(&ctx); 17478 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17479 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 17480 if (ipif->ipif_zoneid != zoneid && 17481 ipif->ipif_zoneid != ALL_ZONES) 17482 continue; 17483 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17484 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17485 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17486 17487 (void) ipif_get_name(ipif, 17488 mae6.ipv6AddrIfIndex.o_bytes, 17489 OCTET_LENGTH); 17490 mae6.ipv6AddrIfIndex.o_length = 17491 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 17492 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 17493 mae6.ipv6AddrPfxLength = 17494 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 17495 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 17496 mae6.ipv6AddrInfo.ae_subnet_len = 17497 mae6.ipv6AddrPfxLength; 17498 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 17499 17500 /* Type: stateless(1), stateful(2), unknown(3) */ 17501 if (ipif->ipif_flags & IPIF_ADDRCONF) 17502 mae6.ipv6AddrType = 1; 17503 else 17504 mae6.ipv6AddrType = 2; 17505 /* Anycast: true(1), false(2) */ 17506 if (ipif->ipif_flags & IPIF_ANYCAST) 17507 mae6.ipv6AddrAnycastFlag = 1; 17508 else 17509 mae6.ipv6AddrAnycastFlag = 2; 17510 17511 /* 17512 * Address status: preferred(1), deprecated(2), 17513 * invalid(3), inaccessible(4), unknown(5) 17514 */ 17515 if (ipif->ipif_flags & IPIF_NOLOCAL) 17516 mae6.ipv6AddrStatus = 3; 17517 else if (ipif->ipif_flags & IPIF_DEPRECATED) 17518 mae6.ipv6AddrStatus = 2; 17519 else 17520 mae6.ipv6AddrStatus = 1; 17521 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 17522 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 17523 mae6.ipv6AddrInfo.ae_pp_dst_addr = 17524 ipif->ipif_v6pp_dst_addr; 17525 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 17526 ill->ill_flags | ill->ill_phyint->phyint_flags; 17527 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17528 (char *)&mae6, 17529 (int)sizeof (mib2_ipv6AddrEntry_t))) { 17530 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 17531 "allocate %u bytes\n", 17532 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 17533 } 17534 } 17535 } 17536 rw_exit(&ill_g_lock); 17537 17538 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17539 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 17540 (int)optp->level, (int)optp->name, (int)optp->len)); 17541 qreply(q, mpctl); 17542 return (mp2ctl); 17543 } 17544 17545 /* IPv4 multicast group membership. */ 17546 static mblk_t * 17547 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 17548 { 17549 struct opthdr *optp; 17550 mblk_t *mp2ctl; 17551 ill_t *ill; 17552 ipif_t *ipif; 17553 ilm_t *ilm; 17554 ip_member_t ipm; 17555 mblk_t *mp_tail = NULL; 17556 ill_walk_context_t ctx; 17557 zoneid_t zoneid; 17558 17559 /* 17560 * make a copy of the original message 17561 */ 17562 mp2ctl = copymsg(mpctl); 17563 zoneid = Q_TO_CONN(q)->conn_zoneid; 17564 17565 /* ipGroupMember table */ 17566 optp = (struct opthdr *)&mpctl->b_rptr[ 17567 sizeof (struct T_optmgmt_ack)]; 17568 optp->level = MIB2_IP; 17569 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 17570 17571 rw_enter(&ill_g_lock, RW_READER); 17572 ill = ILL_START_WALK_V4(&ctx); 17573 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17574 ILM_WALKER_HOLD(ill); 17575 for (ipif = ill->ill_ipif; ipif != NULL; 17576 ipif = ipif->ipif_next) { 17577 if (ipif->ipif_zoneid != zoneid && 17578 ipif->ipif_zoneid != ALL_ZONES) 17579 continue; /* not this zone */ 17580 (void) ipif_get_name(ipif, 17581 ipm.ipGroupMemberIfIndex.o_bytes, 17582 OCTET_LENGTH); 17583 ipm.ipGroupMemberIfIndex.o_length = 17584 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 17585 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17586 ASSERT(ilm->ilm_ipif != NULL); 17587 ASSERT(ilm->ilm_ill == NULL); 17588 if (ilm->ilm_ipif != ipif) 17589 continue; 17590 ipm.ipGroupMemberAddress = ilm->ilm_addr; 17591 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 17592 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 17593 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17594 (char *)&ipm, (int)sizeof (ipm))) { 17595 ip1dbg(("ip_snmp_get_mib2_ip_group: " 17596 "failed to allocate %u bytes\n", 17597 (uint_t)sizeof (ipm))); 17598 } 17599 } 17600 } 17601 ILM_WALKER_RELE(ill); 17602 } 17603 rw_exit(&ill_g_lock); 17604 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17605 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17606 (int)optp->level, (int)optp->name, (int)optp->len)); 17607 qreply(q, mpctl); 17608 return (mp2ctl); 17609 } 17610 17611 /* IPv6 multicast group membership. */ 17612 static mblk_t * 17613 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 17614 { 17615 struct opthdr *optp; 17616 mblk_t *mp2ctl; 17617 ill_t *ill; 17618 ilm_t *ilm; 17619 ipv6_member_t ipm6; 17620 mblk_t *mp_tail = NULL; 17621 ill_walk_context_t ctx; 17622 zoneid_t zoneid; 17623 17624 /* 17625 * make a copy of the original message 17626 */ 17627 mp2ctl = copymsg(mpctl); 17628 zoneid = Q_TO_CONN(q)->conn_zoneid; 17629 17630 /* ip6GroupMember table */ 17631 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17632 optp->level = MIB2_IP6; 17633 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 17634 17635 rw_enter(&ill_g_lock, RW_READER); 17636 ill = ILL_START_WALK_V6(&ctx); 17637 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17638 ILM_WALKER_HOLD(ill); 17639 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 17640 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17641 ASSERT(ilm->ilm_ipif == NULL); 17642 ASSERT(ilm->ilm_ill != NULL); 17643 if (ilm->ilm_zoneid != zoneid) 17644 continue; /* not this zone */ 17645 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 17646 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 17647 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 17648 if (!snmp_append_data2(mpctl->b_cont, 17649 &mp_tail, 17650 (char *)&ipm6, (int)sizeof (ipm6))) { 17651 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 17652 "failed to allocate %u bytes\n", 17653 (uint_t)sizeof (ipm6))); 17654 } 17655 } 17656 ILM_WALKER_RELE(ill); 17657 } 17658 rw_exit(&ill_g_lock); 17659 17660 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17661 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17662 (int)optp->level, (int)optp->name, (int)optp->len)); 17663 qreply(q, mpctl); 17664 return (mp2ctl); 17665 } 17666 17667 /* IP multicast filtered sources */ 17668 static mblk_t * 17669 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 17670 { 17671 struct opthdr *optp; 17672 mblk_t *mp2ctl; 17673 ill_t *ill; 17674 ipif_t *ipif; 17675 ilm_t *ilm; 17676 ip_grpsrc_t ips; 17677 mblk_t *mp_tail = NULL; 17678 ill_walk_context_t ctx; 17679 zoneid_t zoneid; 17680 int i; 17681 slist_t *sl; 17682 17683 /* 17684 * make a copy of the original message 17685 */ 17686 mp2ctl = copymsg(mpctl); 17687 zoneid = Q_TO_CONN(q)->conn_zoneid; 17688 17689 /* ipGroupSource table */ 17690 optp = (struct opthdr *)&mpctl->b_rptr[ 17691 sizeof (struct T_optmgmt_ack)]; 17692 optp->level = MIB2_IP; 17693 optp->name = EXPER_IP_GROUP_SOURCES; 17694 17695 rw_enter(&ill_g_lock, RW_READER); 17696 ill = ILL_START_WALK_V4(&ctx); 17697 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17698 ILM_WALKER_HOLD(ill); 17699 for (ipif = ill->ill_ipif; ipif != NULL; 17700 ipif = ipif->ipif_next) { 17701 if (ipif->ipif_zoneid != zoneid) 17702 continue; /* not this zone */ 17703 (void) ipif_get_name(ipif, 17704 ips.ipGroupSourceIfIndex.o_bytes, 17705 OCTET_LENGTH); 17706 ips.ipGroupSourceIfIndex.o_length = 17707 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 17708 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17709 ASSERT(ilm->ilm_ipif != NULL); 17710 ASSERT(ilm->ilm_ill == NULL); 17711 sl = ilm->ilm_filter; 17712 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 17713 continue; 17714 ips.ipGroupSourceGroup = ilm->ilm_addr; 17715 for (i = 0; i < sl->sl_numsrc; i++) { 17716 if (!IN6_IS_ADDR_V4MAPPED( 17717 &sl->sl_addr[i])) 17718 continue; 17719 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 17720 ips.ipGroupSourceAddress); 17721 if (snmp_append_data2(mpctl->b_cont, 17722 &mp_tail, (char *)&ips, 17723 (int)sizeof (ips)) == 0) { 17724 ip1dbg(("ip_snmp_get_mib2_" 17725 "ip_group_src: failed to " 17726 "allocate %u bytes\n", 17727 (uint_t)sizeof (ips))); 17728 } 17729 } 17730 } 17731 } 17732 ILM_WALKER_RELE(ill); 17733 } 17734 rw_exit(&ill_g_lock); 17735 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17736 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17737 (int)optp->level, (int)optp->name, (int)optp->len)); 17738 qreply(q, mpctl); 17739 return (mp2ctl); 17740 } 17741 17742 /* IPv6 multicast filtered sources. */ 17743 static mblk_t * 17744 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 17745 { 17746 struct opthdr *optp; 17747 mblk_t *mp2ctl; 17748 ill_t *ill; 17749 ilm_t *ilm; 17750 ipv6_grpsrc_t ips6; 17751 mblk_t *mp_tail = NULL; 17752 ill_walk_context_t ctx; 17753 zoneid_t zoneid; 17754 int i; 17755 slist_t *sl; 17756 17757 /* 17758 * make a copy of the original message 17759 */ 17760 mp2ctl = copymsg(mpctl); 17761 zoneid = Q_TO_CONN(q)->conn_zoneid; 17762 17763 /* ip6GroupMember table */ 17764 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17765 optp->level = MIB2_IP6; 17766 optp->name = EXPER_IP6_GROUP_SOURCES; 17767 17768 rw_enter(&ill_g_lock, RW_READER); 17769 ill = ILL_START_WALK_V6(&ctx); 17770 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17771 ILM_WALKER_HOLD(ill); 17772 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 17773 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17774 ASSERT(ilm->ilm_ipif == NULL); 17775 ASSERT(ilm->ilm_ill != NULL); 17776 sl = ilm->ilm_filter; 17777 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 17778 continue; 17779 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 17780 for (i = 0; i < sl->sl_numsrc; i++) { 17781 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 17782 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17783 (char *)&ips6, (int)sizeof (ips6))) { 17784 ip1dbg(("ip_snmp_get_mib2_ip6_" 17785 "group_src: failed to allocate " 17786 "%u bytes\n", 17787 (uint_t)sizeof (ips6))); 17788 } 17789 } 17790 } 17791 ILM_WALKER_RELE(ill); 17792 } 17793 rw_exit(&ill_g_lock); 17794 17795 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17796 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17797 (int)optp->level, (int)optp->name, (int)optp->len)); 17798 qreply(q, mpctl); 17799 return (mp2ctl); 17800 } 17801 17802 /* Multicast routing virtual interface table. */ 17803 static mblk_t * 17804 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 17805 { 17806 struct opthdr *optp; 17807 mblk_t *mp2ctl; 17808 17809 /* 17810 * make a copy of the original message 17811 */ 17812 mp2ctl = copymsg(mpctl); 17813 17814 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17815 optp->level = EXPER_DVMRP; 17816 optp->name = EXPER_DVMRP_VIF; 17817 if (!ip_mroute_vif(mpctl->b_cont)) { 17818 ip0dbg(("ip_mroute_vif: failed\n")); 17819 } 17820 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17821 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 17822 (int)optp->level, (int)optp->name, (int)optp->len)); 17823 qreply(q, mpctl); 17824 return (mp2ctl); 17825 } 17826 17827 /* Multicast routing table. */ 17828 static mblk_t * 17829 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 17830 { 17831 struct opthdr *optp; 17832 mblk_t *mp2ctl; 17833 17834 /* 17835 * make a copy of the original message 17836 */ 17837 mp2ctl = copymsg(mpctl); 17838 17839 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17840 optp->level = EXPER_DVMRP; 17841 optp->name = EXPER_DVMRP_MRT; 17842 if (!ip_mroute_mrt(mpctl->b_cont)) { 17843 ip0dbg(("ip_mroute_mrt: failed\n")); 17844 } 17845 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17846 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 17847 (int)optp->level, (int)optp->name, (int)optp->len)); 17848 qreply(q, mpctl); 17849 return (mp2ctl); 17850 } 17851 17852 /* 17853 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 17854 * in one IRE walk. 17855 */ 17856 static mblk_t * 17857 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 17858 { 17859 struct opthdr *optp; 17860 mblk_t *mp2ctl; /* Returned */ 17861 mblk_t *mp3ctl; /* nettomedia */ 17862 mblk_t *mp4ctl; /* routeattrs */ 17863 iproutedata_t ird; 17864 zoneid_t zoneid; 17865 17866 /* 17867 * make copies of the original message 17868 * - mp2ctl is returned unchanged to the caller for his use 17869 * - mpctl is sent upstream as ipRouteEntryTable 17870 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 17871 * - mp4ctl is sent upstream as ipRouteAttributeTable 17872 */ 17873 mp2ctl = copymsg(mpctl); 17874 mp3ctl = copymsg(mpctl); 17875 mp4ctl = copymsg(mpctl); 17876 if (mp3ctl == NULL || mp4ctl == NULL) { 17877 freemsg(mp4ctl); 17878 freemsg(mp3ctl); 17879 freemsg(mp2ctl); 17880 freemsg(mpctl); 17881 return (NULL); 17882 } 17883 17884 bzero(&ird, sizeof (ird)); 17885 17886 ird.ird_route.lp_head = mpctl->b_cont; 17887 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 17888 ird.ird_attrs.lp_head = mp4ctl->b_cont; 17889 17890 zoneid = Q_TO_CONN(q)->conn_zoneid; 17891 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 17892 if (zoneid == GLOBAL_ZONEID) { 17893 /* 17894 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 17895 * the sys_net_config privilege, it can only run in the global 17896 * zone, so we don't display these IREs in the other zones. 17897 */ 17898 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 17899 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 17900 } 17901 17902 /* ipRouteEntryTable in mpctl */ 17903 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17904 optp->level = MIB2_IP; 17905 optp->name = MIB2_IP_ROUTE; 17906 optp->len = msgdsize(ird.ird_route.lp_head); 17907 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17908 (int)optp->level, (int)optp->name, (int)optp->len)); 17909 qreply(q, mpctl); 17910 17911 /* ipNetToMediaEntryTable in mp3ctl */ 17912 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17913 optp->level = MIB2_IP; 17914 optp->name = MIB2_IP_MEDIA; 17915 optp->len = msgdsize(ird.ird_netmedia.lp_head); 17916 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17917 (int)optp->level, (int)optp->name, (int)optp->len)); 17918 qreply(q, mp3ctl); 17919 17920 /* ipRouteAttributeTable in mp4ctl */ 17921 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17922 optp->level = MIB2_IP; 17923 optp->name = EXPER_IP_RTATTR; 17924 optp->len = msgdsize(ird.ird_attrs.lp_head); 17925 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17926 (int)optp->level, (int)optp->name, (int)optp->len)); 17927 if (optp->len == 0) 17928 freemsg(mp4ctl); 17929 else 17930 qreply(q, mp4ctl); 17931 17932 return (mp2ctl); 17933 } 17934 17935 /* 17936 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 17937 * ipv6NetToMediaEntryTable in an NDP walk. 17938 */ 17939 static mblk_t * 17940 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 17941 { 17942 struct opthdr *optp; 17943 mblk_t *mp2ctl; /* Returned */ 17944 mblk_t *mp3ctl; /* nettomedia */ 17945 mblk_t *mp4ctl; /* routeattrs */ 17946 iproutedata_t ird; 17947 zoneid_t zoneid; 17948 17949 /* 17950 * make copies of the original message 17951 * - mp2ctl is returned unchanged to the caller for his use 17952 * - mpctl is sent upstream as ipv6RouteEntryTable 17953 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 17954 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 17955 */ 17956 mp2ctl = copymsg(mpctl); 17957 mp3ctl = copymsg(mpctl); 17958 mp4ctl = copymsg(mpctl); 17959 if (mp3ctl == NULL || mp4ctl == NULL) { 17960 freemsg(mp4ctl); 17961 freemsg(mp3ctl); 17962 freemsg(mp2ctl); 17963 freemsg(mpctl); 17964 return (NULL); 17965 } 17966 17967 bzero(&ird, sizeof (ird)); 17968 17969 ird.ird_route.lp_head = mpctl->b_cont; 17970 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 17971 ird.ird_attrs.lp_head = mp4ctl->b_cont; 17972 17973 zoneid = Q_TO_CONN(q)->conn_zoneid; 17974 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 17975 17976 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17977 optp->level = MIB2_IP6; 17978 optp->name = MIB2_IP6_ROUTE; 17979 optp->len = msgdsize(ird.ird_route.lp_head); 17980 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17981 (int)optp->level, (int)optp->name, (int)optp->len)); 17982 qreply(q, mpctl); 17983 17984 /* ipv6NetToMediaEntryTable in mp3ctl */ 17985 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 17986 17987 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17988 optp->level = MIB2_IP6; 17989 optp->name = MIB2_IP6_MEDIA; 17990 optp->len = msgdsize(ird.ird_netmedia.lp_head); 17991 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17992 (int)optp->level, (int)optp->name, (int)optp->len)); 17993 qreply(q, mp3ctl); 17994 17995 /* ipv6RouteAttributeTable in mp4ctl */ 17996 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17997 optp->level = MIB2_IP6; 17998 optp->name = EXPER_IP_RTATTR; 17999 optp->len = msgdsize(ird.ird_attrs.lp_head); 18000 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18001 (int)optp->level, (int)optp->name, (int)optp->len)); 18002 if (optp->len == 0) 18003 freemsg(mp4ctl); 18004 else 18005 qreply(q, mp4ctl); 18006 18007 return (mp2ctl); 18008 } 18009 18010 /* 18011 * ICMPv6 mib: One per ill 18012 */ 18013 static mblk_t * 18014 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 18015 { 18016 struct opthdr *optp; 18017 mblk_t *mp2ctl; 18018 ill_t *ill; 18019 ill_walk_context_t ctx; 18020 mblk_t *mp_tail = NULL; 18021 18022 /* 18023 * Make a copy of the original message 18024 */ 18025 mp2ctl = copymsg(mpctl); 18026 18027 /* fixed length IPv6 structure ... */ 18028 18029 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18030 optp->level = MIB2_IP6; 18031 optp->name = 0; 18032 /* Include "unknown interface" ip6_mib */ 18033 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 18034 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 18035 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 18036 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 18037 sizeof (mib2_ipv6IfStatsEntry_t)); 18038 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 18039 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 18040 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 18041 sizeof (mib2_ipv6NetToMediaEntry_t)); 18042 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 18043 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 18044 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 18045 (int)sizeof (ip6_mib))) { 18046 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18047 (uint_t)sizeof (ip6_mib))); 18048 } 18049 18050 rw_enter(&ill_g_lock, RW_READER); 18051 ill = ILL_START_WALK_V6(&ctx); 18052 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18053 ill->ill_ip6_mib->ipv6IfIndex = 18054 ill->ill_phyint->phyint_ifindex; 18055 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 18056 ipv6_forward ? 1 : 2); 18057 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 18058 ill->ill_max_hops); 18059 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 18060 sizeof (mib2_ipv6IfStatsEntry_t)); 18061 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 18062 sizeof (mib2_ipv6AddrEntry_t)); 18063 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 18064 sizeof (mib2_ipv6RouteEntry_t)); 18065 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 18066 sizeof (mib2_ipv6NetToMediaEntry_t)); 18067 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 18068 sizeof (ipv6_member_t)); 18069 18070 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18071 (char *)ill->ill_ip6_mib, 18072 (int)sizeof (*ill->ill_ip6_mib))) { 18073 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18074 "%u bytes\n", 18075 (uint_t)sizeof (*ill->ill_ip6_mib))); 18076 } 18077 } 18078 rw_exit(&ill_g_lock); 18079 18080 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18081 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18082 (int)optp->level, (int)optp->name, (int)optp->len)); 18083 qreply(q, mpctl); 18084 return (mp2ctl); 18085 } 18086 18087 /* 18088 * ICMPv6 mib: One per ill 18089 */ 18090 static mblk_t * 18091 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 18092 { 18093 struct opthdr *optp; 18094 mblk_t *mp2ctl; 18095 ill_t *ill; 18096 ill_walk_context_t ctx; 18097 mblk_t *mp_tail = NULL; 18098 /* 18099 * Make a copy of the original message 18100 */ 18101 mp2ctl = copymsg(mpctl); 18102 18103 /* fixed length ICMPv6 structure ... */ 18104 18105 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18106 optp->level = MIB2_ICMP6; 18107 optp->name = 0; 18108 /* Include "unknown interface" icmp6_mib */ 18109 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 18110 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 18111 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 18112 (int)sizeof (icmp6_mib))) { 18113 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18114 (uint_t)sizeof (icmp6_mib))); 18115 } 18116 18117 rw_enter(&ill_g_lock, RW_READER); 18118 ill = ILL_START_WALK_V6(&ctx); 18119 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18120 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18121 ill->ill_phyint->phyint_ifindex; 18122 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 18123 sizeof (mib2_ipv6IfIcmpEntry_t); 18124 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18125 (char *)ill->ill_icmp6_mib, 18126 (int)sizeof (*ill->ill_icmp6_mib))) { 18127 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 18128 "%u bytes\n", 18129 (uint_t)sizeof (*ill->ill_icmp6_mib))); 18130 } 18131 } 18132 rw_exit(&ill_g_lock); 18133 18134 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18135 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 18136 (int)optp->level, (int)optp->name, (int)optp->len)); 18137 qreply(q, mpctl); 18138 return (mp2ctl); 18139 } 18140 18141 /* 18142 * ire_walk routine to create both ipRouteEntryTable and 18143 * ipNetToMediaEntryTable in one IRE walk 18144 */ 18145 static void 18146 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 18147 { 18148 ill_t *ill; 18149 ipif_t *ipif; 18150 mblk_t *llmp; 18151 dl_unitdata_req_t *dlup; 18152 mib2_ipRouteEntry_t *re; 18153 mib2_ipNetToMediaEntry_t ntme; 18154 mib2_ipAttributeEntry_t *iae, *iaeptr; 18155 ipaddr_t gw_addr; 18156 tsol_ire_gw_secattr_t *attrp; 18157 tsol_gc_t *gc = NULL; 18158 tsol_gcgrp_t *gcgrp = NULL; 18159 uint_t sacnt = 0; 18160 int i; 18161 18162 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18163 18164 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18165 return; 18166 18167 if ((attrp = ire->ire_gw_secattr) != NULL) { 18168 mutex_enter(&attrp->igsa_lock); 18169 if ((gc = attrp->igsa_gc) != NULL) { 18170 gcgrp = gc->gc_grp; 18171 ASSERT(gcgrp != NULL); 18172 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18173 sacnt = 1; 18174 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18175 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18176 gc = gcgrp->gcgrp_head; 18177 sacnt = gcgrp->gcgrp_count; 18178 } 18179 mutex_exit(&attrp->igsa_lock); 18180 18181 /* do nothing if there's no gc to report */ 18182 if (gc == NULL) { 18183 ASSERT(sacnt == 0); 18184 if (gcgrp != NULL) { 18185 /* we might as well drop the lock now */ 18186 rw_exit(&gcgrp->gcgrp_rwlock); 18187 gcgrp = NULL; 18188 } 18189 attrp = NULL; 18190 } 18191 18192 ASSERT(gc == NULL || (gcgrp != NULL && 18193 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18194 } 18195 ASSERT(sacnt == 0 || gc != NULL); 18196 18197 if (sacnt != 0 && 18198 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18199 kmem_free(re, sizeof (*re)); 18200 rw_exit(&gcgrp->gcgrp_rwlock); 18201 return; 18202 } 18203 18204 /* 18205 * Return all IRE types for route table... let caller pick and choose 18206 */ 18207 re->ipRouteDest = ire->ire_addr; 18208 ipif = ire->ire_ipif; 18209 re->ipRouteIfIndex.o_length = 0; 18210 if (ire->ire_type == IRE_CACHE) { 18211 ill = (ill_t *)ire->ire_stq->q_ptr; 18212 re->ipRouteIfIndex.o_length = 18213 ill->ill_name_length == 0 ? 0 : 18214 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18215 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 18216 re->ipRouteIfIndex.o_length); 18217 } else if (ipif != NULL) { 18218 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 18219 OCTET_LENGTH); 18220 re->ipRouteIfIndex.o_length = 18221 mi_strlen(re->ipRouteIfIndex.o_bytes); 18222 } 18223 re->ipRouteMetric1 = -1; 18224 re->ipRouteMetric2 = -1; 18225 re->ipRouteMetric3 = -1; 18226 re->ipRouteMetric4 = -1; 18227 18228 gw_addr = ire->ire_gateway_addr; 18229 18230 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 18231 re->ipRouteNextHop = ire->ire_src_addr; 18232 else 18233 re->ipRouteNextHop = gw_addr; 18234 /* indirect(4), direct(3), or invalid(2) */ 18235 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18236 re->ipRouteType = 2; 18237 else 18238 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 18239 re->ipRouteProto = -1; 18240 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 18241 re->ipRouteMask = ire->ire_mask; 18242 re->ipRouteMetric5 = -1; 18243 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 18244 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 18245 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18246 if (ire->ire_nce && 18247 ire->ire_nce->nce_state == ND_REACHABLE) 18248 llmp = ire->ire_nce->nce_res_mp; 18249 else 18250 llmp = NULL; 18251 re->ipRouteInfo.re_ref = ire->ire_refcnt; 18252 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 18253 re->ipRouteInfo.re_ire_type = ire->ire_type; 18254 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18255 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18256 re->ipRouteInfo.re_flags = ire->ire_flags; 18257 re->ipRouteInfo.re_in_ill.o_length = 0; 18258 if (ire->ire_in_ill != NULL) { 18259 re->ipRouteInfo.re_in_ill.o_length = 18260 ire->ire_in_ill->ill_name_length == 0 ? 0 : 18261 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 18262 bcopy(ire->ire_in_ill->ill_name, 18263 re->ipRouteInfo.re_in_ill.o_bytes, 18264 re->ipRouteInfo.re_in_ill.o_length); 18265 } 18266 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 18267 18268 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18269 (char *)re, (int)sizeof (*re))) { 18270 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18271 (uint_t)sizeof (*re))); 18272 } 18273 18274 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18275 iaeptr->iae_routeidx = ird->ird_idx; 18276 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18277 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18278 } 18279 18280 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18281 (char *)iae, sacnt * sizeof (*iae))) { 18282 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18283 (unsigned)(sacnt * sizeof (*iae)))); 18284 } 18285 18286 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 18287 goto done; 18288 /* 18289 * only IRE_CACHE entries that are for a directly connected subnet 18290 * get appended to net -> phys addr table 18291 * (others in arp) 18292 */ 18293 ntme.ipNetToMediaIfIndex.o_length = 0; 18294 ill = ire_to_ill(ire); 18295 ASSERT(ill != NULL); 18296 ntme.ipNetToMediaIfIndex.o_length = 18297 ill->ill_name_length == 0 ? 0 : 18298 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18299 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 18300 ntme.ipNetToMediaIfIndex.o_length); 18301 18302 ntme.ipNetToMediaPhysAddress.o_length = 0; 18303 if (llmp) { 18304 uchar_t *addr; 18305 18306 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 18307 /* Remove sap from address */ 18308 if (ill->ill_sap_length < 0) 18309 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 18310 else 18311 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 18312 ill->ill_sap_length; 18313 18314 ntme.ipNetToMediaPhysAddress.o_length = 18315 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 18316 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 18317 ntme.ipNetToMediaPhysAddress.o_length); 18318 } 18319 ntme.ipNetToMediaNetAddress = ire->ire_addr; 18320 /* assume dynamic (may be changed in arp) */ 18321 ntme.ipNetToMediaType = 3; 18322 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 18323 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 18324 ntme.ipNetToMediaInfo.ntm_mask.o_length); 18325 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 18326 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18327 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18328 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18329 (uint_t)sizeof (ntme))); 18330 } 18331 done: 18332 /* bump route index for next pass */ 18333 ird->ird_idx++; 18334 18335 kmem_free(re, sizeof (*re)); 18336 if (sacnt != 0) 18337 kmem_free(iae, sacnt * sizeof (*iae)); 18338 18339 if (gcgrp != NULL) 18340 rw_exit(&gcgrp->gcgrp_rwlock); 18341 } 18342 18343 /* 18344 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18345 */ 18346 static void 18347 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18348 { 18349 ill_t *ill; 18350 ipif_t *ipif; 18351 mib2_ipv6RouteEntry_t *re; 18352 mib2_ipAttributeEntry_t *iae, *iaeptr; 18353 in6_addr_t gw_addr_v6; 18354 tsol_ire_gw_secattr_t *attrp; 18355 tsol_gc_t *gc = NULL; 18356 tsol_gcgrp_t *gcgrp = NULL; 18357 uint_t sacnt = 0; 18358 int i; 18359 18360 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18361 18362 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18363 return; 18364 18365 if ((attrp = ire->ire_gw_secattr) != NULL) { 18366 mutex_enter(&attrp->igsa_lock); 18367 if ((gc = attrp->igsa_gc) != NULL) { 18368 gcgrp = gc->gc_grp; 18369 ASSERT(gcgrp != NULL); 18370 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18371 sacnt = 1; 18372 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18373 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18374 gc = gcgrp->gcgrp_head; 18375 sacnt = gcgrp->gcgrp_count; 18376 } 18377 mutex_exit(&attrp->igsa_lock); 18378 18379 /* do nothing if there's no gc to report */ 18380 if (gc == NULL) { 18381 ASSERT(sacnt == 0); 18382 if (gcgrp != NULL) { 18383 /* we might as well drop the lock now */ 18384 rw_exit(&gcgrp->gcgrp_rwlock); 18385 gcgrp = NULL; 18386 } 18387 attrp = NULL; 18388 } 18389 18390 ASSERT(gc == NULL || (gcgrp != NULL && 18391 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18392 } 18393 ASSERT(sacnt == 0 || gc != NULL); 18394 18395 if (sacnt != 0 && 18396 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18397 kmem_free(re, sizeof (*re)); 18398 rw_exit(&gcgrp->gcgrp_rwlock); 18399 return; 18400 } 18401 18402 /* 18403 * Return all IRE types for route table... let caller pick and choose 18404 */ 18405 re->ipv6RouteDest = ire->ire_addr_v6; 18406 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 18407 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 18408 re->ipv6RouteIfIndex.o_length = 0; 18409 ipif = ire->ire_ipif; 18410 if (ire->ire_type == IRE_CACHE) { 18411 ill = (ill_t *)ire->ire_stq->q_ptr; 18412 re->ipv6RouteIfIndex.o_length = 18413 ill->ill_name_length == 0 ? 0 : 18414 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18415 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 18416 re->ipv6RouteIfIndex.o_length); 18417 } else if (ipif != NULL) { 18418 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 18419 OCTET_LENGTH); 18420 re->ipv6RouteIfIndex.o_length = 18421 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 18422 } 18423 18424 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18425 18426 mutex_enter(&ire->ire_lock); 18427 gw_addr_v6 = ire->ire_gateway_addr_v6; 18428 mutex_exit(&ire->ire_lock); 18429 18430 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 18431 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 18432 else 18433 re->ipv6RouteNextHop = gw_addr_v6; 18434 18435 /* remote(4), local(3), or discard(2) */ 18436 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18437 re->ipv6RouteType = 2; 18438 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 18439 re->ipv6RouteType = 3; 18440 else 18441 re->ipv6RouteType = 4; 18442 18443 re->ipv6RouteProtocol = -1; 18444 re->ipv6RoutePolicy = 0; 18445 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 18446 re->ipv6RouteNextHopRDI = 0; 18447 re->ipv6RouteWeight = 0; 18448 re->ipv6RouteMetric = 0; 18449 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 18450 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 18451 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18452 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 18453 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 18454 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18455 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18456 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 18457 re->ipv6RouteInfo.re_flags = ire->ire_flags; 18458 18459 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18460 (char *)re, (int)sizeof (*re))) { 18461 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18462 (uint_t)sizeof (*re))); 18463 } 18464 18465 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18466 iaeptr->iae_routeidx = ird->ird_idx; 18467 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18468 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18469 } 18470 18471 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18472 (char *)iae, sacnt * sizeof (*iae))) { 18473 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18474 (unsigned)(sacnt * sizeof (*iae)))); 18475 } 18476 18477 /* bump route index for next pass */ 18478 ird->ird_idx++; 18479 18480 kmem_free(re, sizeof (*re)); 18481 if (sacnt != 0) 18482 kmem_free(iae, sacnt * sizeof (*iae)); 18483 18484 if (gcgrp != NULL) 18485 rw_exit(&gcgrp->gcgrp_rwlock); 18486 } 18487 18488 /* 18489 * ndp_walk routine to create ipv6NetToMediaEntryTable 18490 */ 18491 static int 18492 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 18493 { 18494 ill_t *ill; 18495 mib2_ipv6NetToMediaEntry_t ntme; 18496 dl_unitdata_req_t *dl; 18497 18498 ill = nce->nce_ill; 18499 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 18500 return (0); 18501 18502 /* 18503 * Neighbor cache entry attached to IRE with on-link 18504 * destination. 18505 */ 18506 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 18507 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 18508 if ((ill->ill_flags & ILLF_XRESOLV) && 18509 (nce->nce_res_mp != NULL)) { 18510 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 18511 ntme.ipv6NetToMediaPhysAddress.o_length = 18512 dl->dl_dest_addr_length; 18513 } else { 18514 ntme.ipv6NetToMediaPhysAddress.o_length = 18515 ill->ill_phys_addr_length; 18516 } 18517 if (nce->nce_res_mp != NULL) { 18518 bcopy((char *)nce->nce_res_mp->b_rptr + 18519 NCE_LL_ADDR_OFFSET(ill), 18520 ntme.ipv6NetToMediaPhysAddress.o_bytes, 18521 ntme.ipv6NetToMediaPhysAddress.o_length); 18522 } else { 18523 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 18524 ill->ill_phys_addr_length); 18525 } 18526 /* 18527 * Note: Returns ND_* states. Should be: 18528 * reachable(1), stale(2), delay(3), probe(4), 18529 * invalid(5), unknown(6) 18530 */ 18531 ntme.ipv6NetToMediaState = nce->nce_state; 18532 ntme.ipv6NetToMediaLastUpdated = 0; 18533 18534 /* other(1), dynamic(2), static(3), local(4) */ 18535 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 18536 ntme.ipv6NetToMediaType = 4; 18537 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 18538 ntme.ipv6NetToMediaType = 1; 18539 } else { 18540 ntme.ipv6NetToMediaType = 2; 18541 } 18542 18543 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18544 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18545 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 18546 (uint_t)sizeof (ntme))); 18547 } 18548 return (0); 18549 } 18550 18551 /* 18552 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 18553 */ 18554 /* ARGSUSED */ 18555 int 18556 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 18557 { 18558 switch (level) { 18559 case MIB2_IP: 18560 case MIB2_ICMP: 18561 switch (name) { 18562 default: 18563 break; 18564 } 18565 return (1); 18566 default: 18567 return (1); 18568 } 18569 } 18570 18571 /* 18572 * Called before the options are updated to check if this packet will 18573 * be source routed from here. 18574 * This routine assumes that the options are well formed i.e. that they 18575 * have already been checked. 18576 */ 18577 static boolean_t 18578 ip_source_routed(ipha_t *ipha) 18579 { 18580 ipoptp_t opts; 18581 uchar_t *opt; 18582 uint8_t optval; 18583 uint8_t optlen; 18584 ipaddr_t dst; 18585 ire_t *ire; 18586 18587 if (IS_SIMPLE_IPH(ipha)) { 18588 ip2dbg(("not source routed\n")); 18589 return (B_FALSE); 18590 } 18591 dst = ipha->ipha_dst; 18592 for (optval = ipoptp_first(&opts, ipha); 18593 optval != IPOPT_EOL; 18594 optval = ipoptp_next(&opts)) { 18595 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18596 opt = opts.ipoptp_cur; 18597 optlen = opts.ipoptp_len; 18598 ip2dbg(("ip_source_routed: opt %d, len %d\n", 18599 optval, optlen)); 18600 switch (optval) { 18601 uint32_t off; 18602 case IPOPT_SSRR: 18603 case IPOPT_LSRR: 18604 /* 18605 * If dst is one of our addresses and there are some 18606 * entries left in the source route return (true). 18607 */ 18608 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18609 ALL_ZONES, NULL, MATCH_IRE_TYPE); 18610 if (ire == NULL) { 18611 ip2dbg(("ip_source_routed: not next" 18612 " source route 0x%x\n", 18613 ntohl(dst))); 18614 return (B_FALSE); 18615 } 18616 ire_refrele(ire); 18617 off = opt[IPOPT_OFFSET]; 18618 off--; 18619 if (optlen < IP_ADDR_LEN || 18620 off > optlen - IP_ADDR_LEN) { 18621 /* End of source route */ 18622 ip1dbg(("ip_source_routed: end of SR\n")); 18623 return (B_FALSE); 18624 } 18625 return (B_TRUE); 18626 } 18627 } 18628 ip2dbg(("not source routed\n")); 18629 return (B_FALSE); 18630 } 18631 18632 /* 18633 * Check if the packet contains any source route. 18634 */ 18635 static boolean_t 18636 ip_source_route_included(ipha_t *ipha) 18637 { 18638 ipoptp_t opts; 18639 uint8_t optval; 18640 18641 if (IS_SIMPLE_IPH(ipha)) 18642 return (B_FALSE); 18643 for (optval = ipoptp_first(&opts, ipha); 18644 optval != IPOPT_EOL; 18645 optval = ipoptp_next(&opts)) { 18646 switch (optval) { 18647 case IPOPT_SSRR: 18648 case IPOPT_LSRR: 18649 return (B_TRUE); 18650 } 18651 } 18652 return (B_FALSE); 18653 } 18654 18655 /* 18656 * Called when the IRE expiration timer fires. 18657 */ 18658 /* ARGSUSED */ 18659 void 18660 ip_trash_timer_expire(void *args) 18661 { 18662 int flush_flag = 0; 18663 18664 /* 18665 * ip_ire_expire_id is protected by ip_trash_timer_lock. 18666 * This lock makes sure that a new invocation of this function 18667 * that occurs due to an almost immediate timer firing will not 18668 * progress beyond this point until the current invocation is done 18669 */ 18670 mutex_enter(&ip_trash_timer_lock); 18671 ip_ire_expire_id = 0; 18672 mutex_exit(&ip_trash_timer_lock); 18673 18674 /* Periodic timer */ 18675 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 18676 /* 18677 * Remove all IRE_CACHE entries since they might 18678 * contain arp information. 18679 */ 18680 flush_flag |= FLUSH_ARP_TIME; 18681 ip_ire_arp_time_elapsed = 0; 18682 IP_STAT(ip_ire_arp_timer_expired); 18683 } 18684 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 18685 /* Remove all redirects */ 18686 flush_flag |= FLUSH_REDIRECT_TIME; 18687 ip_ire_rd_time_elapsed = 0; 18688 IP_STAT(ip_ire_redirect_timer_expired); 18689 } 18690 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 18691 /* Increase path mtu */ 18692 flush_flag |= FLUSH_MTU_TIME; 18693 ip_ire_pmtu_time_elapsed = 0; 18694 IP_STAT(ip_ire_pmtu_timer_expired); 18695 } 18696 18697 /* 18698 * Optimize for the case when there are no redirects in the 18699 * ftable, that is, no need to walk the ftable in that case. 18700 */ 18701 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 18702 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 18703 (char *)(uintptr_t)flush_flag, IP_MASK_TABLE_SIZE, 0, NULL, 18704 ip_cache_table_size, ip_cache_table, NULL, ALL_ZONES); 18705 } 18706 if ((flush_flag & FLUSH_REDIRECT_TIME) && ip_redirect_cnt > 0) { 18707 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 18708 ire_expire, (char *)(uintptr_t)flush_flag, 18709 IP_MASK_TABLE_SIZE, 0, NULL, 0, NULL, NULL, ALL_ZONES); 18710 } 18711 if (flush_flag & FLUSH_MTU_TIME) { 18712 /* 18713 * Walk all IPv6 IRE's and update them 18714 * Note that ARP and redirect timers are not 18715 * needed since NUD handles stale entries. 18716 */ 18717 flush_flag = FLUSH_MTU_TIME; 18718 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 18719 ALL_ZONES); 18720 } 18721 18722 ip_ire_arp_time_elapsed += ip_timer_interval; 18723 ip_ire_rd_time_elapsed += ip_timer_interval; 18724 ip_ire_pmtu_time_elapsed += ip_timer_interval; 18725 18726 /* 18727 * Hold the lock to serialize timeout calls and prevent 18728 * stale values in ip_ire_expire_id. Otherwise it is possible 18729 * for the timer to fire and a new invocation of this function 18730 * to start before the return value of timeout has been stored 18731 * in ip_ire_expire_id by the current invocation. 18732 */ 18733 mutex_enter(&ip_trash_timer_lock); 18734 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 18735 MSEC_TO_TICK(ip_timer_interval)); 18736 mutex_exit(&ip_trash_timer_lock); 18737 } 18738 18739 /* 18740 * Called by the memory allocator subsystem directly, when the system 18741 * is running low on memory. 18742 */ 18743 /* ARGSUSED */ 18744 void 18745 ip_trash_ire_reclaim(void *args) 18746 { 18747 ire_cache_count_t icc; 18748 ire_cache_reclaim_t icr; 18749 ncc_cache_count_t ncc; 18750 nce_cache_reclaim_t ncr; 18751 uint_t delete_cnt; 18752 /* 18753 * Memory reclaim call back. 18754 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 18755 * Then, with a target of freeing 1/Nth of IRE_CACHE 18756 * entries, determine what fraction to free for 18757 * each category of IRE_CACHE entries giving absolute priority 18758 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 18759 * entry will be freed unless all offlink entries are freed). 18760 */ 18761 icc.icc_total = 0; 18762 icc.icc_unused = 0; 18763 icc.icc_offlink = 0; 18764 icc.icc_pmtu = 0; 18765 icc.icc_onlink = 0; 18766 ire_walk(ire_cache_count, (char *)&icc); 18767 18768 /* 18769 * Free NCEs for IPv6 like the onlink ires. 18770 */ 18771 ncc.ncc_total = 0; 18772 ncc.ncc_host = 0; 18773 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 18774 18775 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 18776 icc.icc_pmtu + icc.icc_onlink); 18777 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 18778 IP_STAT(ip_trash_ire_reclaim_calls); 18779 if (delete_cnt == 0) 18780 return; 18781 IP_STAT(ip_trash_ire_reclaim_success); 18782 /* Always delete all unused offlink entries */ 18783 icr.icr_unused = 1; 18784 if (delete_cnt <= icc.icc_unused) { 18785 /* 18786 * Only need to free unused entries. In other words, 18787 * there are enough unused entries to free to meet our 18788 * target number of freed ire cache entries. 18789 */ 18790 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 18791 ncr.ncr_host = 0; 18792 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 18793 /* 18794 * Only need to free unused entries, plus a fraction of offlink 18795 * entries. It follows from the first if statement that 18796 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 18797 */ 18798 delete_cnt -= icc.icc_unused; 18799 /* Round up # deleted by truncating fraction */ 18800 icr.icr_offlink = icc.icc_offlink / delete_cnt; 18801 icr.icr_pmtu = icr.icr_onlink = 0; 18802 ncr.ncr_host = 0; 18803 } else if (delete_cnt <= 18804 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 18805 /* 18806 * Free all unused and offlink entries, plus a fraction of 18807 * pmtu entries. It follows from the previous if statement 18808 * that icc_pmtu is non-zero, and that 18809 * delete_cnt != icc_unused + icc_offlink. 18810 */ 18811 icr.icr_offlink = 1; 18812 delete_cnt -= icc.icc_unused + icc.icc_offlink; 18813 /* Round up # deleted by truncating fraction */ 18814 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 18815 icr.icr_onlink = 0; 18816 ncr.ncr_host = 0; 18817 } else { 18818 /* 18819 * Free all unused, offlink, and pmtu entries, plus a fraction 18820 * of onlink entries. If we're here, then we know that 18821 * icc_onlink is non-zero, and that 18822 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 18823 */ 18824 icr.icr_offlink = icr.icr_pmtu = 1; 18825 delete_cnt -= icc.icc_unused + icc.icc_offlink + 18826 icc.icc_pmtu; 18827 /* Round up # deleted by truncating fraction */ 18828 icr.icr_onlink = icc.icc_onlink / delete_cnt; 18829 /* Using the same delete fraction as for onlink IREs */ 18830 ncr.ncr_host = ncc.ncc_host / delete_cnt; 18831 } 18832 #ifdef DEBUG 18833 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 18834 "fractions %d/%d/%d/%d\n", 18835 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 18836 icc.icc_unused, icc.icc_offlink, 18837 icc.icc_pmtu, icc.icc_onlink, 18838 icr.icr_unused, icr.icr_offlink, 18839 icr.icr_pmtu, icr.icr_onlink)); 18840 #endif 18841 ire_walk(ire_cache_reclaim, (char *)&icr); 18842 if (ncr.ncr_host != 0) 18843 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 18844 (uchar_t *)&ncr); 18845 #ifdef DEBUG 18846 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 18847 icc.icc_pmtu = 0; icc.icc_onlink = 0; 18848 ire_walk(ire_cache_count, (char *)&icc); 18849 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 18850 icc.icc_total, icc.icc_unused, icc.icc_offlink, 18851 icc.icc_pmtu, icc.icc_onlink)); 18852 #endif 18853 } 18854 18855 /* 18856 * ip_unbind is called when a copy of an unbind request is received from the 18857 * upper level protocol. We remove this conn from any fanout hash list it is 18858 * on, and zero out the bind information. No reply is expected up above. 18859 */ 18860 mblk_t * 18861 ip_unbind(queue_t *q, mblk_t *mp) 18862 { 18863 conn_t *connp = Q_TO_CONN(q); 18864 18865 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 18866 18867 if (is_system_labeled() && connp->conn_anon_port) { 18868 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 18869 connp->conn_mlp_type, connp->conn_ulp, 18870 ntohs(connp->conn_lport), B_FALSE); 18871 connp->conn_anon_port = 0; 18872 } 18873 connp->conn_mlp_type = mlptSingle; 18874 18875 ipcl_hash_remove(connp); 18876 18877 ASSERT(mp->b_cont == NULL); 18878 /* 18879 * Convert mp into a T_OK_ACK 18880 */ 18881 mp = mi_tpi_ok_ack_alloc(mp); 18882 18883 /* 18884 * should not happen in practice... T_OK_ACK is smaller than the 18885 * original message. 18886 */ 18887 if (mp == NULL) 18888 return (NULL); 18889 18890 /* 18891 * Don't bzero the ports if its TCP since TCP still needs the 18892 * lport to remove it from its own bind hash. TCP will do the 18893 * cleanup. 18894 */ 18895 if (!IPCL_IS_TCP(connp)) 18896 bzero(&connp->u_port, sizeof (connp->u_port)); 18897 18898 return (mp); 18899 } 18900 18901 /* 18902 * Write side put procedure. Outbound data, IOCTLs, responses from 18903 * resolvers, etc, come down through here. 18904 */ 18905 void 18906 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 18907 { 18908 conn_t *connp = NULL; 18909 queue_t *q = (queue_t *)arg2; 18910 ipha_t *ipha; 18911 #define rptr ((uchar_t *)ipha) 18912 ire_t *ire = NULL; 18913 ire_t *sctp_ire = NULL; 18914 uint32_t v_hlen_tos_len; 18915 ipaddr_t dst; 18916 mblk_t *first_mp = NULL; 18917 boolean_t mctl_present; 18918 ipsec_out_t *io; 18919 int match_flags; 18920 ill_t *attach_ill = NULL; 18921 /* Bind to IPIF_NOFAILOVER ill etc. */ 18922 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 18923 ipif_t *dst_ipif; 18924 boolean_t multirt_need_resolve = B_FALSE; 18925 mblk_t *copy_mp = NULL; 18926 int err; 18927 zoneid_t zoneid; 18928 int adjust; 18929 uint16_t iplen; 18930 boolean_t need_decref = B_FALSE; 18931 boolean_t ignore_dontroute = B_FALSE; 18932 boolean_t ignore_nexthop = B_FALSE; 18933 boolean_t ip_nexthop = B_FALSE; 18934 ipaddr_t nexthop_addr; 18935 18936 #ifdef _BIG_ENDIAN 18937 #define V_HLEN (v_hlen_tos_len >> 24) 18938 #else 18939 #define V_HLEN (v_hlen_tos_len & 0xFF) 18940 #endif 18941 18942 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 18943 "ip_wput_start: q %p", q); 18944 18945 /* 18946 * ip_wput fast path 18947 */ 18948 18949 /* is packet from ARP ? */ 18950 if (q->q_next != NULL) 18951 goto qnext; 18952 18953 connp = (conn_t *)arg; 18954 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 18955 18956 /* is queue flow controlled? */ 18957 if ((q->q_first != NULL || connp->conn_draining) && 18958 (caller == IP_WPUT)) { 18959 ASSERT(!need_decref); 18960 (void) putq(q, mp); 18961 return; 18962 } 18963 18964 /* Multidata transmit? */ 18965 if (DB_TYPE(mp) == M_MULTIDATA) { 18966 /* 18967 * We should never get here, since all Multidata messages 18968 * originating from tcp should have been directed over to 18969 * tcp_multisend() in the first place. 18970 */ 18971 BUMP_MIB(&ip_mib, ipOutDiscards); 18972 freemsg(mp); 18973 return; 18974 } else if (DB_TYPE(mp) != M_DATA) 18975 goto notdata; 18976 18977 if (mp->b_flag & MSGHASREF) { 18978 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 18979 mp->b_flag &= ~MSGHASREF; 18980 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 18981 need_decref = B_TRUE; 18982 } 18983 ipha = (ipha_t *)mp->b_rptr; 18984 18985 /* is IP header non-aligned or mblk smaller than basic IP header */ 18986 #ifndef SAFETY_BEFORE_SPEED 18987 if (!OK_32PTR(rptr) || 18988 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 18989 goto hdrtoosmall; 18990 #endif 18991 18992 ASSERT(OK_32PTR(ipha)); 18993 18994 /* 18995 * This function assumes that mp points to an IPv4 packet. If it's the 18996 * wrong version, we'll catch it again in ip_output_v6. 18997 * 18998 * Note that this is *only* locally-generated output here, and never 18999 * forwarded data, and that we need to deal only with transports that 19000 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19001 * label.) 19002 */ 19003 if (is_system_labeled() && 19004 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19005 !connp->conn_ulp_labeled) { 19006 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19007 connp->conn_mac_exempt); 19008 ipha = (ipha_t *)mp->b_rptr; 19009 if (err != 0) { 19010 first_mp = mp; 19011 if (err == EINVAL) 19012 goto icmp_parameter_problem; 19013 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19014 goto drop_pkt; 19015 } 19016 iplen = ntohs(ipha->ipha_length) + adjust; 19017 ipha->ipha_length = htons(iplen); 19018 } 19019 19020 /* 19021 * If there is a policy, try to attach an ipsec_out in 19022 * the front. At the end, first_mp either points to a 19023 * M_DATA message or IPSEC_OUT message linked to a 19024 * M_DATA message. We have to do it now as we might 19025 * lose the "conn" if we go through ip_newroute. 19026 */ 19027 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 19028 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 19029 ipha->ipha_protocol)) == NULL)) { 19030 if (need_decref) 19031 CONN_DEC_REF(connp); 19032 return; 19033 } else { 19034 ASSERT(mp->b_datap->db_type == M_CTL); 19035 first_mp = mp; 19036 mp = mp->b_cont; 19037 mctl_present = B_TRUE; 19038 } 19039 } else { 19040 first_mp = mp; 19041 mctl_present = B_FALSE; 19042 } 19043 19044 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19045 19046 /* is wrong version or IP options present */ 19047 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 19048 goto version_hdrlen_check; 19049 dst = ipha->ipha_dst; 19050 19051 if (connp->conn_nofailover_ill != NULL) { 19052 attach_ill = conn_get_held_ill(connp, 19053 &connp->conn_nofailover_ill, &err); 19054 if (err == ILL_LOOKUP_FAILED) { 19055 if (need_decref) 19056 CONN_DEC_REF(connp); 19057 freemsg(first_mp); 19058 return; 19059 } 19060 } 19061 19062 /* is packet multicast? */ 19063 if (CLASSD(dst)) 19064 goto multicast; 19065 19066 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 19067 (connp->conn_nexthop_set)) { 19068 /* 19069 * If the destination is a broadcast or a loopback 19070 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 19071 * through the standard path. But in the case of local 19072 * destination only SO_DONTROUTE and IP_NEXTHOP go through 19073 * the standard path not IP_XMIT_IF. 19074 */ 19075 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19076 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 19077 (ire->ire_type != IRE_LOOPBACK))) { 19078 if ((connp->conn_dontroute || 19079 connp->conn_nexthop_set) && (ire != NULL) && 19080 (ire->ire_type == IRE_LOCAL)) 19081 goto standard_path; 19082 19083 if (ire != NULL) { 19084 ire_refrele(ire); 19085 /* No more access to ire */ 19086 ire = NULL; 19087 } 19088 /* 19089 * bypass routing checks and go directly to 19090 * interface. 19091 */ 19092 if (connp->conn_dontroute) { 19093 goto dontroute; 19094 } else if (connp->conn_nexthop_set) { 19095 ip_nexthop = B_TRUE; 19096 nexthop_addr = connp->conn_nexthop_v4; 19097 goto send_from_ill; 19098 } 19099 19100 /* 19101 * If IP_XMIT_IF socket option is set, 19102 * then we allow unicast and multicast 19103 * packets to go through the ill. It is 19104 * quite possible that the destination 19105 * is not in the ire cache table and we 19106 * do not want to go to ip_newroute() 19107 * instead we call ip_newroute_ipif. 19108 */ 19109 xmit_ill = conn_get_held_ill(connp, 19110 &connp->conn_xmit_if_ill, &err); 19111 if (err == ILL_LOOKUP_FAILED) { 19112 if (attach_ill != NULL) 19113 ill_refrele(attach_ill); 19114 if (need_decref) 19115 CONN_DEC_REF(connp); 19116 freemsg(first_mp); 19117 return; 19118 } 19119 goto send_from_ill; 19120 } 19121 standard_path: 19122 /* Must be a broadcast, a loopback or a local ire */ 19123 if (ire != NULL) { 19124 ire_refrele(ire); 19125 /* No more access to ire */ 19126 ire = NULL; 19127 } 19128 } 19129 19130 if (attach_ill != NULL) 19131 goto send_from_ill; 19132 19133 /* 19134 * We cache IRE_CACHEs to avoid lookups. We don't do 19135 * this for the tcp global queue and listen end point 19136 * as it does not really have a real destination to 19137 * talk to. This is also true for SCTP. 19138 */ 19139 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 19140 !connp->conn_fully_bound) { 19141 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19142 if (ire == NULL) 19143 goto noirefound; 19144 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19145 "ip_wput_end: q %p (%S)", q, "end"); 19146 19147 /* 19148 * Check if the ire has the RTF_MULTIRT flag, inherited 19149 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19150 */ 19151 if (ire->ire_flags & RTF_MULTIRT) { 19152 19153 /* 19154 * Force the TTL of multirouted packets if required. 19155 * The TTL of such packets is bounded by the 19156 * ip_multirt_ttl ndd variable. 19157 */ 19158 if ((ip_multirt_ttl > 0) && 19159 (ipha->ipha_ttl > ip_multirt_ttl)) { 19160 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19161 "(was %d), dst 0x%08x\n", 19162 ip_multirt_ttl, ipha->ipha_ttl, 19163 ntohl(ire->ire_addr))); 19164 ipha->ipha_ttl = ip_multirt_ttl; 19165 } 19166 /* 19167 * We look at this point if there are pending 19168 * unresolved routes. ire_multirt_resolvable() 19169 * checks in O(n) that all IRE_OFFSUBNET ire 19170 * entries for the packet's destination and 19171 * flagged RTF_MULTIRT are currently resolved. 19172 * If some remain unresolved, we make a copy 19173 * of the current message. It will be used 19174 * to initiate additional route resolutions. 19175 */ 19176 multirt_need_resolve = 19177 ire_multirt_need_resolve(ire->ire_addr, 19178 MBLK_GETLABEL(first_mp)); 19179 ip2dbg(("ip_wput[TCP]: ire %p, " 19180 "multirt_need_resolve %d, first_mp %p\n", 19181 (void *)ire, multirt_need_resolve, 19182 (void *)first_mp)); 19183 if (multirt_need_resolve) { 19184 copy_mp = copymsg(first_mp); 19185 if (copy_mp != NULL) { 19186 MULTIRT_DEBUG_TAG(copy_mp); 19187 } 19188 } 19189 } 19190 19191 ip_wput_ire(q, first_mp, ire, connp, caller); 19192 19193 /* 19194 * Try to resolve another multiroute if 19195 * ire_multirt_need_resolve() deemed it necessary. 19196 */ 19197 if (copy_mp != NULL) { 19198 ip_newroute(q, copy_mp, dst, NULL, connp); 19199 } 19200 if (need_decref) 19201 CONN_DEC_REF(connp); 19202 return; 19203 } 19204 19205 /* 19206 * Access to conn_ire_cache. (protected by conn_lock) 19207 * 19208 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 19209 * the ire bucket lock here to check for CONDEMNED as it is okay to 19210 * send a packet or two with the IRE_CACHE that is going away. 19211 * Access to the ire requires an ire refhold on the ire prior to 19212 * its use since an interface unplumb thread may delete the cached 19213 * ire and release the refhold at any time. 19214 * 19215 * Caching an ire in the conn_ire_cache 19216 * 19217 * o Caching an ire pointer in the conn requires a strict check for 19218 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 19219 * ires before cleaning up the conns. So the caching of an ire pointer 19220 * in the conn is done after making sure under the bucket lock that the 19221 * ire has not yet been marked CONDEMNED. Otherwise we will end up 19222 * caching an ire after the unplumb thread has cleaned up the conn. 19223 * If the conn does not send a packet subsequently the unplumb thread 19224 * will be hanging waiting for the ire count to drop to zero. 19225 * 19226 * o We also need to atomically test for a null conn_ire_cache and 19227 * set the conn_ire_cache under the the protection of the conn_lock 19228 * to avoid races among concurrent threads trying to simultaneously 19229 * cache an ire in the conn_ire_cache. 19230 */ 19231 mutex_enter(&connp->conn_lock); 19232 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 19233 19234 if (ire != NULL && ire->ire_addr == dst && 19235 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19236 19237 IRE_REFHOLD(ire); 19238 mutex_exit(&connp->conn_lock); 19239 19240 } else { 19241 boolean_t cached = B_FALSE; 19242 connp->conn_ire_cache = NULL; 19243 mutex_exit(&connp->conn_lock); 19244 /* Release the old ire */ 19245 if (ire != NULL && sctp_ire == NULL) 19246 IRE_REFRELE_NOTR(ire); 19247 19248 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19249 if (ire == NULL) 19250 goto noirefound; 19251 IRE_REFHOLD_NOTR(ire); 19252 19253 mutex_enter(&connp->conn_lock); 19254 if (!(connp->conn_state_flags & CONN_CLOSING) && 19255 connp->conn_ire_cache == NULL) { 19256 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19257 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19258 connp->conn_ire_cache = ire; 19259 cached = B_TRUE; 19260 } 19261 rw_exit(&ire->ire_bucket->irb_lock); 19262 } 19263 mutex_exit(&connp->conn_lock); 19264 19265 /* 19266 * We can continue to use the ire but since it was 19267 * not cached, we should drop the extra reference. 19268 */ 19269 if (!cached) 19270 IRE_REFRELE_NOTR(ire); 19271 } 19272 19273 19274 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19275 "ip_wput_end: q %p (%S)", q, "end"); 19276 19277 /* 19278 * Check if the ire has the RTF_MULTIRT flag, inherited 19279 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19280 */ 19281 if (ire->ire_flags & RTF_MULTIRT) { 19282 19283 /* 19284 * Force the TTL of multirouted packets if required. 19285 * The TTL of such packets is bounded by the 19286 * ip_multirt_ttl ndd variable. 19287 */ 19288 if ((ip_multirt_ttl > 0) && 19289 (ipha->ipha_ttl > ip_multirt_ttl)) { 19290 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19291 "(was %d), dst 0x%08x\n", 19292 ip_multirt_ttl, ipha->ipha_ttl, 19293 ntohl(ire->ire_addr))); 19294 ipha->ipha_ttl = ip_multirt_ttl; 19295 } 19296 19297 /* 19298 * At this point, we check to see if there are any pending 19299 * unresolved routes. ire_multirt_resolvable() 19300 * checks in O(n) that all IRE_OFFSUBNET ire 19301 * entries for the packet's destination and 19302 * flagged RTF_MULTIRT are currently resolved. 19303 * If some remain unresolved, we make a copy 19304 * of the current message. It will be used 19305 * to initiate additional route resolutions. 19306 */ 19307 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19308 MBLK_GETLABEL(first_mp)); 19309 ip2dbg(("ip_wput[not TCP]: ire %p, " 19310 "multirt_need_resolve %d, first_mp %p\n", 19311 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19312 if (multirt_need_resolve) { 19313 copy_mp = copymsg(first_mp); 19314 if (copy_mp != NULL) { 19315 MULTIRT_DEBUG_TAG(copy_mp); 19316 } 19317 } 19318 } 19319 19320 ip_wput_ire(q, first_mp, ire, connp, caller); 19321 19322 /* 19323 * Try to resolve another multiroute if 19324 * ire_multirt_resolvable() deemed it necessary 19325 */ 19326 if (copy_mp != NULL) { 19327 ip_newroute(q, copy_mp, dst, NULL, connp); 19328 } 19329 if (need_decref) 19330 CONN_DEC_REF(connp); 19331 return; 19332 19333 qnext: 19334 /* 19335 * Upper Level Protocols pass down complete IP datagrams 19336 * as M_DATA messages. Everything else is a sideshow. 19337 * 19338 * 1) We could be re-entering ip_wput because of ip_neworute 19339 * in which case we could have a IPSEC_OUT message. We 19340 * need to pass through ip_wput like other datagrams and 19341 * hence cannot branch to ip_wput_nondata. 19342 * 19343 * 2) ARP, AH, ESP, and other clients who are on the module 19344 * instance of IP stream, give us something to deal with. 19345 * We will handle AH and ESP here and rest in ip_wput_nondata. 19346 * 19347 * 3) ICMP replies also could come here. 19348 */ 19349 if (DB_TYPE(mp) != M_DATA) { 19350 notdata: 19351 if (DB_TYPE(mp) == M_CTL) { 19352 /* 19353 * M_CTL messages are used by ARP, AH and ESP to 19354 * communicate with IP. We deal with IPSEC_IN and 19355 * IPSEC_OUT here. ip_wput_nondata handles other 19356 * cases. 19357 */ 19358 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 19359 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 19360 first_mp = mp->b_cont; 19361 first_mp->b_flag &= ~MSGHASREF; 19362 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19363 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 19364 CONN_DEC_REF(connp); 19365 connp = NULL; 19366 } 19367 if (ii->ipsec_info_type == IPSEC_IN) { 19368 /* 19369 * Either this message goes back to 19370 * IPSEC for further processing or to 19371 * ULP after policy checks. 19372 */ 19373 ip_fanout_proto_again(mp, NULL, NULL, NULL); 19374 return; 19375 } else if (ii->ipsec_info_type == IPSEC_OUT) { 19376 io = (ipsec_out_t *)ii; 19377 if (io->ipsec_out_proc_begin) { 19378 /* 19379 * IPSEC processing has already started. 19380 * Complete it. 19381 * IPQoS notes: We don't care what is 19382 * in ipsec_out_ill_index since this 19383 * won't be processed for IPQoS policies 19384 * in ipsec_out_process. 19385 */ 19386 ipsec_out_process(q, mp, NULL, 19387 io->ipsec_out_ill_index); 19388 return; 19389 } else { 19390 connp = (q->q_next != NULL) ? 19391 NULL : Q_TO_CONN(q); 19392 first_mp = mp; 19393 mp = mp->b_cont; 19394 mctl_present = B_TRUE; 19395 } 19396 zoneid = io->ipsec_out_zoneid; 19397 ASSERT(zoneid != ALL_ZONES); 19398 } else if (ii->ipsec_info_type == IPSEC_CTL) { 19399 /* 19400 * It's an IPsec control message requesting 19401 * an SADB update to be sent to the IPsec 19402 * hardware acceleration capable ills. 19403 */ 19404 ipsec_ctl_t *ipsec_ctl = 19405 (ipsec_ctl_t *)mp->b_rptr; 19406 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 19407 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 19408 mblk_t *cmp = mp->b_cont; 19409 19410 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 19411 ASSERT(cmp != NULL); 19412 19413 freeb(mp); 19414 ill_ipsec_capab_send_all(satype, cmp, sa); 19415 return; 19416 } else { 19417 /* 19418 * This must be ARP or special TSOL signaling. 19419 */ 19420 ip_wput_nondata(NULL, q, mp, NULL); 19421 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19422 "ip_wput_end: q %p (%S)", q, "nondata"); 19423 return; 19424 } 19425 } else { 19426 /* 19427 * This must be non-(ARP/AH/ESP) messages. 19428 */ 19429 ASSERT(!need_decref); 19430 ip_wput_nondata(NULL, q, mp, NULL); 19431 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19432 "ip_wput_end: q %p (%S)", q, "nondata"); 19433 return; 19434 } 19435 } else { 19436 first_mp = mp; 19437 mctl_present = B_FALSE; 19438 } 19439 19440 ASSERT(first_mp != NULL); 19441 /* 19442 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 19443 * to make sure that this packet goes out on the same interface it 19444 * came in. We handle that here. 19445 */ 19446 if (mctl_present) { 19447 uint_t ifindex; 19448 19449 io = (ipsec_out_t *)first_mp->b_rptr; 19450 if (io->ipsec_out_attach_if || 19451 io->ipsec_out_xmit_if || 19452 io->ipsec_out_ip_nexthop) { 19453 ill_t *ill; 19454 19455 /* 19456 * We may have lost the conn context if we are 19457 * coming here from ip_newroute(). Copy the 19458 * nexthop information. 19459 */ 19460 if (io->ipsec_out_ip_nexthop) { 19461 ip_nexthop = B_TRUE; 19462 nexthop_addr = io->ipsec_out_nexthop_addr; 19463 19464 ipha = (ipha_t *)mp->b_rptr; 19465 dst = ipha->ipha_dst; 19466 goto send_from_ill; 19467 } else { 19468 ASSERT(io->ipsec_out_ill_index != 0); 19469 ifindex = io->ipsec_out_ill_index; 19470 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 19471 NULL, NULL, NULL, NULL); 19472 /* 19473 * ipsec_out_xmit_if bit is used to tell 19474 * ip_wput to use the ill to send outgoing data 19475 * as we have no conn when data comes from ICMP 19476 * error msg routines. Currently this feature is 19477 * only used by ip_mrtun_forward routine. 19478 */ 19479 if (io->ipsec_out_xmit_if) { 19480 xmit_ill = ill; 19481 if (xmit_ill == NULL) { 19482 ip1dbg(("ip_output:bad ifindex " 19483 "for xmit_ill %d\n", 19484 ifindex)); 19485 freemsg(first_mp); 19486 BUMP_MIB(&ip_mib, 19487 ipOutDiscards); 19488 ASSERT(!need_decref); 19489 return; 19490 } 19491 /* Free up the ipsec_out_t mblk */ 19492 ASSERT(first_mp->b_cont == mp); 19493 first_mp->b_cont = NULL; 19494 freeb(first_mp); 19495 /* Just send the IP header+ICMP+data */ 19496 first_mp = mp; 19497 ipha = (ipha_t *)mp->b_rptr; 19498 dst = ipha->ipha_dst; 19499 goto send_from_ill; 19500 } else { 19501 attach_ill = ill; 19502 } 19503 19504 if (attach_ill == NULL) { 19505 ASSERT(xmit_ill == NULL); 19506 ip1dbg(("ip_output: bad ifindex for " 19507 "(BIND TO IPIF_NOFAILOVER) %d\n", 19508 ifindex)); 19509 freemsg(first_mp); 19510 BUMP_MIB(&ip_mib, ipOutDiscards); 19511 ASSERT(!need_decref); 19512 return; 19513 } 19514 } 19515 } 19516 } 19517 19518 ASSERT(xmit_ill == NULL); 19519 19520 /* We have a complete IP datagram heading outbound. */ 19521 ipha = (ipha_t *)mp->b_rptr; 19522 19523 #ifndef SPEED_BEFORE_SAFETY 19524 /* 19525 * Make sure we have a full-word aligned message and that at least 19526 * a simple IP header is accessible in the first message. If not, 19527 * try a pullup. 19528 */ 19529 if (!OK_32PTR(rptr) || 19530 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 19531 hdrtoosmall: 19532 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 19533 BUMP_MIB(&ip_mib, ipOutDiscards); 19534 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19535 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 19536 if (first_mp == NULL) 19537 first_mp = mp; 19538 goto drop_pkt; 19539 } 19540 19541 /* This function assumes that mp points to an IPv4 packet. */ 19542 if (is_system_labeled() && q->q_next == NULL && 19543 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 19544 !connp->conn_ulp_labeled) { 19545 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 19546 &adjust, connp->conn_mac_exempt); 19547 ipha = (ipha_t *)mp->b_rptr; 19548 if (first_mp != NULL) 19549 first_mp->b_cont = mp; 19550 if (err != 0) { 19551 if (first_mp == NULL) 19552 first_mp = mp; 19553 if (err == EINVAL) 19554 goto icmp_parameter_problem; 19555 ip2dbg(("ip_wput: label check failed (%d)\n", 19556 err)); 19557 goto drop_pkt; 19558 } 19559 iplen = ntohs(ipha->ipha_length) + adjust; 19560 ipha->ipha_length = htons(iplen); 19561 } 19562 19563 ipha = (ipha_t *)mp->b_rptr; 19564 if (first_mp == NULL) { 19565 ASSERT(attach_ill == NULL && xmit_ill == NULL); 19566 /* 19567 * If we got here because of "goto hdrtoosmall" 19568 * We need to attach a IPSEC_OUT. 19569 */ 19570 if (connp->conn_out_enforce_policy) { 19571 if (((mp = ipsec_attach_ipsec_out(mp, connp, 19572 NULL, ipha->ipha_protocol)) == NULL)) { 19573 if (need_decref) 19574 CONN_DEC_REF(connp); 19575 return; 19576 } else { 19577 ASSERT(mp->b_datap->db_type == M_CTL); 19578 first_mp = mp; 19579 mp = mp->b_cont; 19580 mctl_present = B_TRUE; 19581 } 19582 } else { 19583 first_mp = mp; 19584 mctl_present = B_FALSE; 19585 } 19586 } 19587 } 19588 #endif 19589 19590 /* Most of the code below is written for speed, not readability */ 19591 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19592 19593 /* 19594 * If ip_newroute() fails, we're going to need a full 19595 * header for the icmp wraparound. 19596 */ 19597 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 19598 uint_t v_hlen; 19599 version_hdrlen_check: 19600 ASSERT(first_mp != NULL); 19601 v_hlen = V_HLEN; 19602 /* 19603 * siphon off IPv6 packets coming down from transport 19604 * layer modules here. 19605 * Note: high-order bit carries NUD reachability confirmation 19606 */ 19607 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 19608 /* 19609 * XXX implement a IPv4 and IPv6 packet counter per 19610 * conn and switch when ratio exceeds e.g. 10:1 19611 */ 19612 #ifdef notyet 19613 if (q->q_next == NULL) /* Avoid ill queue */ 19614 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 19615 #endif 19616 BUMP_MIB(&ip_mib, ipOutIPv6); 19617 ASSERT(xmit_ill == NULL); 19618 if (attach_ill != NULL) 19619 ill_refrele(attach_ill); 19620 if (need_decref) 19621 mp->b_flag |= MSGHASREF; 19622 (void) ip_output_v6(connp, first_mp, q, caller); 19623 return; 19624 } 19625 19626 if ((v_hlen >> 4) != IP_VERSION) { 19627 BUMP_MIB(&ip_mib, ipOutDiscards); 19628 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19629 "ip_wput_end: q %p (%S)", q, "badvers"); 19630 goto drop_pkt; 19631 } 19632 /* 19633 * Is the header length at least 20 bytes? 19634 * 19635 * Are there enough bytes accessible in the header? If 19636 * not, try a pullup. 19637 */ 19638 v_hlen &= 0xF; 19639 v_hlen <<= 2; 19640 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 19641 BUMP_MIB(&ip_mib, ipOutDiscards); 19642 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19643 "ip_wput_end: q %p (%S)", q, "badlen"); 19644 goto drop_pkt; 19645 } 19646 if (v_hlen > (mp->b_wptr - rptr)) { 19647 if (!pullupmsg(mp, v_hlen)) { 19648 BUMP_MIB(&ip_mib, ipOutDiscards); 19649 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19650 "ip_wput_end: q %p (%S)", q, "badpullup2"); 19651 goto drop_pkt; 19652 } 19653 ipha = (ipha_t *)mp->b_rptr; 19654 } 19655 /* 19656 * Move first entry from any source route into ipha_dst and 19657 * verify the options 19658 */ 19659 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 19660 ASSERT(xmit_ill == NULL); 19661 if (attach_ill != NULL) 19662 ill_refrele(attach_ill); 19663 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19664 "ip_wput_end: q %p (%S)", q, "badopts"); 19665 if (need_decref) 19666 CONN_DEC_REF(connp); 19667 return; 19668 } 19669 } 19670 dst = ipha->ipha_dst; 19671 19672 /* 19673 * Try to get an IRE_CACHE for the destination address. If we can't, 19674 * we have to run the packet through ip_newroute which will take 19675 * the appropriate action to arrange for an IRE_CACHE, such as querying 19676 * a resolver, or assigning a default gateway, etc. 19677 */ 19678 if (CLASSD(dst)) { 19679 ipif_t *ipif; 19680 uint32_t setsrc = 0; 19681 19682 multicast: 19683 ASSERT(first_mp != NULL); 19684 ASSERT(xmit_ill == NULL); 19685 ip2dbg(("ip_wput: CLASSD\n")); 19686 if (connp == NULL) { 19687 /* 19688 * Use the first good ipif on the ill. 19689 * XXX Should this ever happen? (Appears 19690 * to show up with just ppp and no ethernet due 19691 * to in.rdisc.) 19692 * However, ire_send should be able to 19693 * call ip_wput_ire directly. 19694 * 19695 * XXX Also, this can happen for ICMP and other packets 19696 * with multicast source addresses. Perhaps we should 19697 * fix things so that we drop the packet in question, 19698 * but for now, just run with it. 19699 */ 19700 ill_t *ill = (ill_t *)q->q_ptr; 19701 19702 /* 19703 * Don't honor attach_if for this case. If ill 19704 * is part of the group, ipif could belong to 19705 * any ill and we cannot maintain attach_ill 19706 * and ipif_ill same anymore and the assert 19707 * below would fail. 19708 */ 19709 if (mctl_present) { 19710 io->ipsec_out_ill_index = 0; 19711 io->ipsec_out_attach_if = B_FALSE; 19712 ASSERT(attach_ill != NULL); 19713 ill_refrele(attach_ill); 19714 attach_ill = NULL; 19715 } 19716 19717 ASSERT(attach_ill == NULL); 19718 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 19719 if (ipif == NULL) { 19720 if (need_decref) 19721 CONN_DEC_REF(connp); 19722 freemsg(first_mp); 19723 return; 19724 } 19725 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 19726 ntohl(dst), ill->ill_name)); 19727 } else { 19728 /* 19729 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 19730 * IP_XMIT_IF is honoured. 19731 * Block comment above this function explains the 19732 * locking mechanism used here 19733 */ 19734 xmit_ill = conn_get_held_ill(connp, 19735 &connp->conn_xmit_if_ill, &err); 19736 if (err == ILL_LOOKUP_FAILED) { 19737 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 19738 goto drop_pkt; 19739 } 19740 if (xmit_ill == NULL) { 19741 ipif = conn_get_held_ipif(connp, 19742 &connp->conn_multicast_ipif, &err); 19743 if (err == IPIF_LOOKUP_FAILED) { 19744 ip1dbg(("ip_wput: No ipif for " 19745 "multicast\n")); 19746 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19747 goto drop_pkt; 19748 } 19749 } 19750 if (xmit_ill != NULL) { 19751 ipif = ipif_get_next_ipif(NULL, xmit_ill); 19752 if (ipif == NULL) { 19753 ip1dbg(("ip_wput: No ipif for " 19754 "IP_XMIT_IF\n")); 19755 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19756 goto drop_pkt; 19757 } 19758 } else if (ipif == NULL || ipif->ipif_isv6) { 19759 /* 19760 * We must do this ipif determination here 19761 * else we could pass through ip_newroute 19762 * and come back here without the conn context. 19763 * 19764 * Note: we do late binding i.e. we bind to 19765 * the interface when the first packet is sent. 19766 * For performance reasons we do not rebind on 19767 * each packet but keep the binding until the 19768 * next IP_MULTICAST_IF option. 19769 * 19770 * conn_multicast_{ipif,ill} are shared between 19771 * IPv4 and IPv6 and AF_INET6 sockets can 19772 * send both IPv4 and IPv6 packets. Hence 19773 * we have to check that "isv6" matches above. 19774 */ 19775 if (ipif != NULL) 19776 ipif_refrele(ipif); 19777 ipif = ipif_lookup_group(dst, zoneid); 19778 if (ipif == NULL) { 19779 ip1dbg(("ip_wput: No ipif for " 19780 "multicast\n")); 19781 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19782 goto drop_pkt; 19783 } 19784 err = conn_set_held_ipif(connp, 19785 &connp->conn_multicast_ipif, ipif); 19786 if (err == IPIF_LOOKUP_FAILED) { 19787 ipif_refrele(ipif); 19788 ip1dbg(("ip_wput: No ipif for " 19789 "multicast\n")); 19790 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19791 goto drop_pkt; 19792 } 19793 } 19794 } 19795 ASSERT(!ipif->ipif_isv6); 19796 /* 19797 * As we may lose the conn by the time we reach ip_wput_ire, 19798 * we copy conn_multicast_loop and conn_dontroute on to an 19799 * ipsec_out. In case if this datagram goes out secure, 19800 * we need the ill_index also. Copy that also into the 19801 * ipsec_out. 19802 */ 19803 if (mctl_present) { 19804 io = (ipsec_out_t *)first_mp->b_rptr; 19805 ASSERT(first_mp->b_datap->db_type == M_CTL); 19806 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19807 } else { 19808 ASSERT(mp == first_mp); 19809 if ((first_mp = allocb(sizeof (ipsec_info_t), 19810 BPRI_HI)) == NULL) { 19811 ipif_refrele(ipif); 19812 first_mp = mp; 19813 goto drop_pkt; 19814 } 19815 first_mp->b_datap->db_type = M_CTL; 19816 first_mp->b_wptr += sizeof (ipsec_info_t); 19817 /* ipsec_out_secure is B_FALSE now */ 19818 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 19819 io = (ipsec_out_t *)first_mp->b_rptr; 19820 io->ipsec_out_type = IPSEC_OUT; 19821 io->ipsec_out_len = sizeof (ipsec_out_t); 19822 io->ipsec_out_use_global_policy = B_TRUE; 19823 first_mp->b_cont = mp; 19824 mctl_present = B_TRUE; 19825 } 19826 if (attach_ill != NULL) { 19827 ASSERT(attach_ill == ipif->ipif_ill); 19828 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 19829 19830 /* 19831 * Check if we need an ire that will not be 19832 * looked up by anybody else i.e. HIDDEN. 19833 */ 19834 if (ill_is_probeonly(attach_ill)) { 19835 match_flags |= MATCH_IRE_MARK_HIDDEN; 19836 } 19837 io->ipsec_out_ill_index = 19838 attach_ill->ill_phyint->phyint_ifindex; 19839 io->ipsec_out_attach_if = B_TRUE; 19840 } else { 19841 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 19842 io->ipsec_out_ill_index = 19843 ipif->ipif_ill->ill_phyint->phyint_ifindex; 19844 } 19845 if (connp != NULL) { 19846 io->ipsec_out_multicast_loop = 19847 connp->conn_multicast_loop; 19848 io->ipsec_out_dontroute = connp->conn_dontroute; 19849 io->ipsec_out_zoneid = connp->conn_zoneid; 19850 } 19851 /* 19852 * If the application uses IP_MULTICAST_IF with 19853 * different logical addresses of the same ILL, we 19854 * need to make sure that the soruce address of 19855 * the packet matches the logical IP address used 19856 * in the option. We do it by initializing ipha_src 19857 * here. This should keep IPSEC also happy as 19858 * when we return from IPSEC processing, we don't 19859 * have to worry about getting the right address on 19860 * the packet. Thus it is sufficient to look for 19861 * IRE_CACHE using MATCH_IRE_ILL rathen than 19862 * MATCH_IRE_IPIF. 19863 * 19864 * NOTE : We need to do it for non-secure case also as 19865 * this might go out secure if there is a global policy 19866 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 19867 * address, the source should be initialized already and 19868 * hence we won't be initializing here. 19869 * 19870 * As we do not have the ire yet, it is possible that 19871 * we set the source address here and then later discover 19872 * that the ire implies the source address to be assigned 19873 * through the RTF_SETSRC flag. 19874 * In that case, the setsrc variable will remind us 19875 * that overwritting the source address by the one 19876 * of the RTF_SETSRC-flagged ire is allowed. 19877 */ 19878 if (ipha->ipha_src == INADDR_ANY && 19879 (connp == NULL || !connp->conn_unspec_src)) { 19880 ipha->ipha_src = ipif->ipif_src_addr; 19881 setsrc = RTF_SETSRC; 19882 } 19883 /* 19884 * Find an IRE which matches the destination and the outgoing 19885 * queue (i.e. the outgoing interface.) 19886 * For loopback use a unicast IP address for 19887 * the ire lookup. 19888 */ 19889 if (ipif->ipif_ill->ill_phyint->phyint_flags & 19890 PHYI_LOOPBACK) { 19891 dst = ipif->ipif_lcl_addr; 19892 } 19893 /* 19894 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 19895 * We don't need to lookup ire in ctable as the packet 19896 * needs to be sent to the destination through the specified 19897 * ill irrespective of ires in the cache table. 19898 */ 19899 ire = NULL; 19900 if (xmit_ill == NULL) { 19901 ire = ire_ctable_lookup(dst, 0, 0, ipif, 19902 zoneid, MBLK_GETLABEL(mp), match_flags); 19903 } 19904 19905 /* 19906 * refrele attach_ill as its not needed anymore. 19907 */ 19908 if (attach_ill != NULL) { 19909 ill_refrele(attach_ill); 19910 attach_ill = NULL; 19911 } 19912 19913 if (ire == NULL) { 19914 /* 19915 * Multicast loopback and multicast forwarding is 19916 * done in ip_wput_ire. 19917 * 19918 * Mark this packet to make it be delivered to 19919 * ip_wput_ire after the new ire has been 19920 * created. 19921 * 19922 * The call to ip_newroute_ipif takes into account 19923 * the setsrc reminder. In any case, we take care 19924 * of the RTF_MULTIRT flag. 19925 */ 19926 mp->b_prev = mp->b_next = NULL; 19927 if (xmit_ill == NULL || 19928 xmit_ill->ill_ipif_up_count > 0) { 19929 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 19930 setsrc | RTF_MULTIRT); 19931 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19932 "ip_wput_end: q %p (%S)", q, "noire"); 19933 } else { 19934 freemsg(first_mp); 19935 } 19936 ipif_refrele(ipif); 19937 if (xmit_ill != NULL) 19938 ill_refrele(xmit_ill); 19939 if (need_decref) 19940 CONN_DEC_REF(connp); 19941 return; 19942 } 19943 19944 ipif_refrele(ipif); 19945 ipif = NULL; 19946 ASSERT(xmit_ill == NULL); 19947 19948 /* 19949 * Honor the RTF_SETSRC flag for multicast packets, 19950 * if allowed by the setsrc reminder. 19951 */ 19952 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 19953 ipha->ipha_src = ire->ire_src_addr; 19954 } 19955 19956 /* 19957 * Unconditionally force the TTL to 1 for 19958 * multirouted multicast packets: 19959 * multirouted multicast should not cross 19960 * multicast routers. 19961 */ 19962 if (ire->ire_flags & RTF_MULTIRT) { 19963 if (ipha->ipha_ttl > 1) { 19964 ip2dbg(("ip_wput: forcing multicast " 19965 "multirt TTL to 1 (was %d), dst 0x%08x\n", 19966 ipha->ipha_ttl, ntohl(ire->ire_addr))); 19967 ipha->ipha_ttl = 1; 19968 } 19969 } 19970 } else { 19971 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19972 if ((ire != NULL) && (ire->ire_type & 19973 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 19974 ignore_dontroute = B_TRUE; 19975 ignore_nexthop = B_TRUE; 19976 } 19977 if (ire != NULL) { 19978 ire_refrele(ire); 19979 ire = NULL; 19980 } 19981 /* 19982 * Guard against coming in from arp in which case conn is NULL. 19983 * Also guard against non M_DATA with dontroute set but 19984 * destined to local, loopback or broadcast addresses. 19985 */ 19986 if (connp != NULL && connp->conn_dontroute && 19987 !ignore_dontroute) { 19988 dontroute: 19989 /* 19990 * Set TTL to 1 if SO_DONTROUTE is set to prevent 19991 * routing protocols from seeing false direct 19992 * connectivity. 19993 */ 19994 ipha->ipha_ttl = 1; 19995 /* 19996 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 19997 * along with SO_DONTROUTE, higher precedence is 19998 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 19999 */ 20000 if (connp->conn_xmit_if_ill == NULL) { 20001 /* If suitable ipif not found, drop packet */ 20002 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 20003 if (dst_ipif == NULL) { 20004 ip1dbg(("ip_wput: no route for " 20005 "dst using SO_DONTROUTE\n")); 20006 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20007 mp->b_prev = mp->b_next = NULL; 20008 if (first_mp == NULL) 20009 first_mp = mp; 20010 goto drop_pkt; 20011 } else { 20012 /* 20013 * If suitable ipif has been found, set 20014 * xmit_ill to the corresponding 20015 * ipif_ill because we'll be following 20016 * the IP_XMIT_IF logic. 20017 */ 20018 ASSERT(xmit_ill == NULL); 20019 xmit_ill = dst_ipif->ipif_ill; 20020 mutex_enter(&xmit_ill->ill_lock); 20021 if (!ILL_CAN_LOOKUP(xmit_ill)) { 20022 mutex_exit(&xmit_ill->ill_lock); 20023 xmit_ill = NULL; 20024 ipif_refrele(dst_ipif); 20025 ip1dbg(("ip_wput: no route for" 20026 " dst using" 20027 " SO_DONTROUTE\n")); 20028 BUMP_MIB(&ip_mib, 20029 ipOutNoRoutes); 20030 mp->b_prev = mp->b_next = NULL; 20031 if (first_mp == NULL) 20032 first_mp = mp; 20033 goto drop_pkt; 20034 } 20035 ill_refhold_locked(xmit_ill); 20036 mutex_exit(&xmit_ill->ill_lock); 20037 ipif_refrele(dst_ipif); 20038 } 20039 } 20040 20041 } 20042 /* 20043 * If we are bound to IPIF_NOFAILOVER address, look for 20044 * an IRE_CACHE matching the ill. 20045 */ 20046 send_from_ill: 20047 if (attach_ill != NULL) { 20048 ipif_t *attach_ipif; 20049 20050 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20051 20052 /* 20053 * Check if we need an ire that will not be 20054 * looked up by anybody else i.e. HIDDEN. 20055 */ 20056 if (ill_is_probeonly(attach_ill)) { 20057 match_flags |= MATCH_IRE_MARK_HIDDEN; 20058 } 20059 20060 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 20061 if (attach_ipif == NULL) { 20062 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 20063 goto drop_pkt; 20064 } 20065 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 20066 zoneid, MBLK_GETLABEL(mp), match_flags); 20067 ipif_refrele(attach_ipif); 20068 } else if (xmit_ill != NULL || (connp != NULL && 20069 connp->conn_xmit_if_ill != NULL)) { 20070 /* 20071 * Mark this packet as originated locally 20072 */ 20073 mp->b_prev = mp->b_next = NULL; 20074 /* 20075 * xmit_ill could be NULL if SO_DONTROUTE 20076 * is also set. 20077 */ 20078 if (xmit_ill == NULL) { 20079 xmit_ill = conn_get_held_ill(connp, 20080 &connp->conn_xmit_if_ill, &err); 20081 if (err == ILL_LOOKUP_FAILED) { 20082 if (need_decref) 20083 CONN_DEC_REF(connp); 20084 freemsg(first_mp); 20085 return; 20086 } 20087 if (xmit_ill == NULL) { 20088 if (connp->conn_dontroute) 20089 goto dontroute; 20090 goto send_from_ill; 20091 } 20092 } 20093 /* 20094 * could be SO_DONTROUTE case also. 20095 * check at least one interface is UP as 20096 * spcified by this ILL, and then call 20097 * ip_newroute_ipif() 20098 */ 20099 if (xmit_ill->ill_ipif_up_count > 0) { 20100 ipif_t *ipif; 20101 20102 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20103 if (ipif != NULL) { 20104 ip_newroute_ipif(q, first_mp, ipif, 20105 dst, connp, 0); 20106 ipif_refrele(ipif); 20107 ip1dbg(("ip_wput: ip_unicast_if\n")); 20108 } 20109 } else { 20110 freemsg(first_mp); 20111 } 20112 ill_refrele(xmit_ill); 20113 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20114 "ip_wput_end: q %p (%S)", q, "unicast_if"); 20115 if (need_decref) 20116 CONN_DEC_REF(connp); 20117 return; 20118 } else if (ip_nexthop || (connp != NULL && 20119 (connp->conn_nexthop_set)) && !ignore_nexthop) { 20120 if (!ip_nexthop) { 20121 ip_nexthop = B_TRUE; 20122 nexthop_addr = connp->conn_nexthop_v4; 20123 } 20124 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 20125 MATCH_IRE_GW; 20126 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 20127 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 20128 } else { 20129 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20130 } 20131 if (!ire) { 20132 /* 20133 * Make sure we don't load spread if this 20134 * is IPIF_NOFAILOVER case. 20135 */ 20136 if ((attach_ill != NULL) || 20137 (ip_nexthop && !ignore_nexthop)) { 20138 if (mctl_present) { 20139 io = (ipsec_out_t *)first_mp->b_rptr; 20140 ASSERT(first_mp->b_datap->db_type == 20141 M_CTL); 20142 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20143 } else { 20144 ASSERT(mp == first_mp); 20145 first_mp = allocb( 20146 sizeof (ipsec_info_t), BPRI_HI); 20147 if (first_mp == NULL) { 20148 first_mp = mp; 20149 goto drop_pkt; 20150 } 20151 first_mp->b_datap->db_type = M_CTL; 20152 first_mp->b_wptr += 20153 sizeof (ipsec_info_t); 20154 /* ipsec_out_secure is B_FALSE now */ 20155 bzero(first_mp->b_rptr, 20156 sizeof (ipsec_info_t)); 20157 io = (ipsec_out_t *)first_mp->b_rptr; 20158 io->ipsec_out_type = IPSEC_OUT; 20159 io->ipsec_out_len = 20160 sizeof (ipsec_out_t); 20161 io->ipsec_out_use_global_policy = 20162 B_TRUE; 20163 first_mp->b_cont = mp; 20164 mctl_present = B_TRUE; 20165 } 20166 if (attach_ill != NULL) { 20167 io->ipsec_out_ill_index = attach_ill-> 20168 ill_phyint->phyint_ifindex; 20169 io->ipsec_out_attach_if = B_TRUE; 20170 } else { 20171 io->ipsec_out_ip_nexthop = ip_nexthop; 20172 io->ipsec_out_nexthop_addr = 20173 nexthop_addr; 20174 } 20175 } 20176 noirefound: 20177 /* 20178 * Mark this packet as having originated on 20179 * this machine. This will be noted in 20180 * ire_add_then_send, which needs to know 20181 * whether to run it back through ip_wput or 20182 * ip_rput following successful resolution. 20183 */ 20184 mp->b_prev = NULL; 20185 mp->b_next = NULL; 20186 ip_newroute(q, first_mp, dst, NULL, connp); 20187 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20188 "ip_wput_end: q %p (%S)", q, "newroute"); 20189 if (attach_ill != NULL) 20190 ill_refrele(attach_ill); 20191 if (xmit_ill != NULL) 20192 ill_refrele(xmit_ill); 20193 if (need_decref) 20194 CONN_DEC_REF(connp); 20195 return; 20196 } 20197 } 20198 20199 /* We now know where we are going with it. */ 20200 20201 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20202 "ip_wput_end: q %p (%S)", q, "end"); 20203 20204 /* 20205 * Check if the ire has the RTF_MULTIRT flag, inherited 20206 * from an IRE_OFFSUBNET ire entry in ip_newroute. 20207 */ 20208 if (ire->ire_flags & RTF_MULTIRT) { 20209 /* 20210 * Force the TTL of multirouted packets if required. 20211 * The TTL of such packets is bounded by the 20212 * ip_multirt_ttl ndd variable. 20213 */ 20214 if ((ip_multirt_ttl > 0) && 20215 (ipha->ipha_ttl > ip_multirt_ttl)) { 20216 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20217 "(was %d), dst 0x%08x\n", 20218 ip_multirt_ttl, ipha->ipha_ttl, 20219 ntohl(ire->ire_addr))); 20220 ipha->ipha_ttl = ip_multirt_ttl; 20221 } 20222 /* 20223 * At this point, we check to see if there are any pending 20224 * unresolved routes. ire_multirt_resolvable() 20225 * checks in O(n) that all IRE_OFFSUBNET ire 20226 * entries for the packet's destination and 20227 * flagged RTF_MULTIRT are currently resolved. 20228 * If some remain unresolved, we make a copy 20229 * of the current message. It will be used 20230 * to initiate additional route resolutions. 20231 */ 20232 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20233 MBLK_GETLABEL(first_mp)); 20234 ip2dbg(("ip_wput[noirefound]: ire %p, " 20235 "multirt_need_resolve %d, first_mp %p\n", 20236 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20237 if (multirt_need_resolve) { 20238 copy_mp = copymsg(first_mp); 20239 if (copy_mp != NULL) { 20240 MULTIRT_DEBUG_TAG(copy_mp); 20241 } 20242 } 20243 } 20244 20245 ip_wput_ire(q, first_mp, ire, connp, caller); 20246 /* 20247 * Try to resolve another multiroute if 20248 * ire_multirt_resolvable() deemed it necessary. 20249 * At this point, we need to distinguish 20250 * multicasts from other packets. For multicasts, 20251 * we call ip_newroute_ipif() and request that both 20252 * multirouting and setsrc flags are checked. 20253 */ 20254 if (copy_mp != NULL) { 20255 if (CLASSD(dst)) { 20256 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 20257 if (ipif) { 20258 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 20259 RTF_SETSRC | RTF_MULTIRT); 20260 ipif_refrele(ipif); 20261 } else { 20262 MULTIRT_DEBUG_UNTAG(copy_mp); 20263 freemsg(copy_mp); 20264 copy_mp = NULL; 20265 } 20266 } else { 20267 ip_newroute(q, copy_mp, dst, NULL, connp); 20268 } 20269 } 20270 if (attach_ill != NULL) 20271 ill_refrele(attach_ill); 20272 if (xmit_ill != NULL) 20273 ill_refrele(xmit_ill); 20274 if (need_decref) 20275 CONN_DEC_REF(connp); 20276 return; 20277 20278 icmp_parameter_problem: 20279 /* could not have originated externally */ 20280 ASSERT(mp->b_prev == NULL); 20281 if (ip_hdr_complete(ipha, zoneid) == 0) { 20282 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20283 /* it's the IP header length that's in trouble */ 20284 icmp_param_problem(q, first_mp, 0); 20285 first_mp = NULL; 20286 } 20287 20288 drop_pkt: 20289 ip1dbg(("ip_wput: dropped packet\n")); 20290 if (ire != NULL) 20291 ire_refrele(ire); 20292 if (need_decref) 20293 CONN_DEC_REF(connp); 20294 freemsg(first_mp); 20295 if (attach_ill != NULL) 20296 ill_refrele(attach_ill); 20297 if (xmit_ill != NULL) 20298 ill_refrele(xmit_ill); 20299 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20300 "ip_wput_end: q %p (%S)", q, "droppkt"); 20301 } 20302 20303 void 20304 ip_wput(queue_t *q, mblk_t *mp) 20305 { 20306 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 20307 } 20308 20309 /* 20310 * 20311 * The following rules must be observed when accessing any ipif or ill 20312 * that has been cached in the conn. Typically conn_nofailover_ill, 20313 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 20314 * 20315 * Access: The ipif or ill pointed to from the conn can be accessed under 20316 * the protection of the conn_lock or after it has been refheld under the 20317 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 20318 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 20319 * The reason for this is that a concurrent unplumb could actually be 20320 * cleaning up these cached pointers by walking the conns and might have 20321 * finished cleaning up the conn in question. The macros check that an 20322 * unplumb has not yet started on the ipif or ill. 20323 * 20324 * Caching: An ipif or ill pointer may be cached in the conn only after 20325 * making sure that an unplumb has not started. So the caching is done 20326 * while holding both the conn_lock and the ill_lock and after using the 20327 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20328 * flag before starting the cleanup of conns. 20329 * 20330 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20331 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20332 * or a reference to the ipif or a reference to an ire that references the 20333 * ipif. An ipif does not change its ill except for failover/failback. Since 20334 * failover/failback happens only after bringing down the ipif and making sure 20335 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20336 * the above holds. 20337 */ 20338 ipif_t * 20339 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20340 { 20341 ipif_t *ipif; 20342 ill_t *ill; 20343 20344 *err = 0; 20345 rw_enter(&ill_g_lock, RW_READER); 20346 mutex_enter(&connp->conn_lock); 20347 ipif = *ipifp; 20348 if (ipif != NULL) { 20349 ill = ipif->ipif_ill; 20350 mutex_enter(&ill->ill_lock); 20351 if (IPIF_CAN_LOOKUP(ipif)) { 20352 ipif_refhold_locked(ipif); 20353 mutex_exit(&ill->ill_lock); 20354 mutex_exit(&connp->conn_lock); 20355 rw_exit(&ill_g_lock); 20356 return (ipif); 20357 } else { 20358 *err = IPIF_LOOKUP_FAILED; 20359 } 20360 mutex_exit(&ill->ill_lock); 20361 } 20362 mutex_exit(&connp->conn_lock); 20363 rw_exit(&ill_g_lock); 20364 return (NULL); 20365 } 20366 20367 ill_t * 20368 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 20369 { 20370 ill_t *ill; 20371 20372 *err = 0; 20373 mutex_enter(&connp->conn_lock); 20374 ill = *illp; 20375 if (ill != NULL) { 20376 mutex_enter(&ill->ill_lock); 20377 if (ILL_CAN_LOOKUP(ill)) { 20378 ill_refhold_locked(ill); 20379 mutex_exit(&ill->ill_lock); 20380 mutex_exit(&connp->conn_lock); 20381 return (ill); 20382 } else { 20383 *err = ILL_LOOKUP_FAILED; 20384 } 20385 mutex_exit(&ill->ill_lock); 20386 } 20387 mutex_exit(&connp->conn_lock); 20388 return (NULL); 20389 } 20390 20391 static int 20392 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 20393 { 20394 ill_t *ill; 20395 20396 ill = ipif->ipif_ill; 20397 mutex_enter(&connp->conn_lock); 20398 mutex_enter(&ill->ill_lock); 20399 if (IPIF_CAN_LOOKUP(ipif)) { 20400 *ipifp = ipif; 20401 mutex_exit(&ill->ill_lock); 20402 mutex_exit(&connp->conn_lock); 20403 return (0); 20404 } 20405 mutex_exit(&ill->ill_lock); 20406 mutex_exit(&connp->conn_lock); 20407 return (IPIF_LOOKUP_FAILED); 20408 } 20409 20410 /* 20411 * This is called if the outbound datagram needs fragmentation. 20412 * 20413 * NOTE : This function does not ire_refrele the ire argument passed in. 20414 */ 20415 static void 20416 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 20417 { 20418 ipha_t *ipha; 20419 mblk_t *mp; 20420 uint32_t v_hlen_tos_len; 20421 uint32_t max_frag; 20422 uint32_t frag_flag; 20423 boolean_t dont_use; 20424 20425 if (ipsec_mp->b_datap->db_type == M_CTL) { 20426 mp = ipsec_mp->b_cont; 20427 } else { 20428 mp = ipsec_mp; 20429 } 20430 20431 ipha = (ipha_t *)mp->b_rptr; 20432 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20433 20434 #ifdef _BIG_ENDIAN 20435 #define V_HLEN (v_hlen_tos_len >> 24) 20436 #define LENGTH (v_hlen_tos_len & 0xFFFF) 20437 #else 20438 #define V_HLEN (v_hlen_tos_len & 0xFF) 20439 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 20440 #endif 20441 20442 #ifndef SPEED_BEFORE_SAFETY 20443 /* 20444 * Check that ipha_length is consistent with 20445 * the mblk length 20446 */ 20447 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 20448 ip0dbg(("Packet length mismatch: %d, %ld\n", 20449 LENGTH, msgdsize(mp))); 20450 freemsg(ipsec_mp); 20451 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20452 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 20453 "packet length mismatch"); 20454 return; 20455 } 20456 #endif 20457 /* 20458 * Don't use frag_flag if pre-built packet or source 20459 * routed or if multicast (since multicast packets do not solicit 20460 * ICMP "packet too big" messages). Get the values of 20461 * max_frag and frag_flag atomically by acquiring the 20462 * ire_lock. 20463 */ 20464 mutex_enter(&ire->ire_lock); 20465 max_frag = ire->ire_max_frag; 20466 frag_flag = ire->ire_frag_flag; 20467 mutex_exit(&ire->ire_lock); 20468 20469 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 20470 (V_HLEN != IP_SIMPLE_HDR_VERSION && 20471 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 20472 20473 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 20474 (dont_use ? 0 : frag_flag)); 20475 } 20476 20477 /* 20478 * Used for deciding the MSS size for the upper layer. Thus 20479 * we need to check the outbound policy values in the conn. 20480 */ 20481 int 20482 conn_ipsec_length(conn_t *connp) 20483 { 20484 ipsec_latch_t *ipl; 20485 20486 ipl = connp->conn_latch; 20487 if (ipl == NULL) 20488 return (0); 20489 20490 if (ipl->ipl_out_policy == NULL) 20491 return (0); 20492 20493 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 20494 } 20495 20496 /* 20497 * Returns an estimate of the IPSEC headers size. This is used if 20498 * we don't want to call into IPSEC to get the exact size. 20499 */ 20500 int 20501 ipsec_out_extra_length(mblk_t *ipsec_mp) 20502 { 20503 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 20504 ipsec_action_t *a; 20505 20506 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20507 if (!io->ipsec_out_secure) 20508 return (0); 20509 20510 a = io->ipsec_out_act; 20511 20512 if (a == NULL) { 20513 ASSERT(io->ipsec_out_policy != NULL); 20514 a = io->ipsec_out_policy->ipsp_act; 20515 } 20516 ASSERT(a != NULL); 20517 20518 return (a->ipa_ovhd); 20519 } 20520 20521 /* 20522 * Returns an estimate of the IPSEC headers size. This is used if 20523 * we don't want to call into IPSEC to get the exact size. 20524 */ 20525 int 20526 ipsec_in_extra_length(mblk_t *ipsec_mp) 20527 { 20528 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 20529 ipsec_action_t *a; 20530 20531 ASSERT(ii->ipsec_in_type == IPSEC_IN); 20532 20533 a = ii->ipsec_in_action; 20534 return (a == NULL ? 0 : a->ipa_ovhd); 20535 } 20536 20537 /* 20538 * If there are any source route options, return the true final 20539 * destination. Otherwise, return the destination. 20540 */ 20541 ipaddr_t 20542 ip_get_dst(ipha_t *ipha) 20543 { 20544 ipoptp_t opts; 20545 uchar_t *opt; 20546 uint8_t optval; 20547 uint8_t optlen; 20548 ipaddr_t dst; 20549 uint32_t off; 20550 20551 dst = ipha->ipha_dst; 20552 20553 if (IS_SIMPLE_IPH(ipha)) 20554 return (dst); 20555 20556 for (optval = ipoptp_first(&opts, ipha); 20557 optval != IPOPT_EOL; 20558 optval = ipoptp_next(&opts)) { 20559 opt = opts.ipoptp_cur; 20560 optlen = opts.ipoptp_len; 20561 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20562 switch (optval) { 20563 case IPOPT_SSRR: 20564 case IPOPT_LSRR: 20565 off = opt[IPOPT_OFFSET]; 20566 /* 20567 * If one of the conditions is true, it means 20568 * end of options and dst already has the right 20569 * value. 20570 */ 20571 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 20572 off = optlen - IP_ADDR_LEN; 20573 bcopy(&opt[off], &dst, IP_ADDR_LEN); 20574 } 20575 return (dst); 20576 default: 20577 break; 20578 } 20579 } 20580 20581 return (dst); 20582 } 20583 20584 mblk_t * 20585 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 20586 conn_t *connp, boolean_t unspec_src) 20587 { 20588 ipsec_out_t *io; 20589 mblk_t *first_mp; 20590 boolean_t policy_present; 20591 20592 first_mp = mp; 20593 if (mp->b_datap->db_type == M_CTL) { 20594 io = (ipsec_out_t *)first_mp->b_rptr; 20595 /* 20596 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 20597 * 20598 * 1) There is per-socket policy (including cached global 20599 * policy). 20600 * 2) There is no per-socket policy, but it is 20601 * a multicast packet that needs to go out 20602 * on a specific interface. This is the case 20603 * where (ip_wput and ip_wput_multicast) attaches 20604 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 20605 * 20606 * In case (2) we check with global policy to 20607 * see if there is a match and set the ill_index 20608 * appropriately so that we can lookup the ire 20609 * properly in ip_wput_ipsec_out. 20610 */ 20611 20612 /* 20613 * ipsec_out_use_global_policy is set to B_FALSE 20614 * in ipsec_in_to_out(). Refer to that function for 20615 * details. 20616 */ 20617 if ((io->ipsec_out_latch == NULL) && 20618 (io->ipsec_out_use_global_policy)) { 20619 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 20620 ire, connp, unspec_src)); 20621 } 20622 if (!io->ipsec_out_secure) { 20623 /* 20624 * If this is not a secure packet, drop 20625 * the IPSEC_OUT mp and treat it as a clear 20626 * packet. This happens when we are sending 20627 * a ICMP reply back to a clear packet. See 20628 * ipsec_in_to_out() for details. 20629 */ 20630 mp = first_mp->b_cont; 20631 freeb(first_mp); 20632 } 20633 return (mp); 20634 } 20635 /* 20636 * See whether we need to attach a global policy here. We 20637 * don't depend on the conn (as it could be null) for deciding 20638 * what policy this datagram should go through because it 20639 * should have happened in ip_wput if there was some 20640 * policy. This normally happens for connections which are not 20641 * fully bound preventing us from caching policies in 20642 * ip_bind. Packets coming from the TCP listener/global queue 20643 * - which are non-hard_bound - could also be affected by 20644 * applying policy here. 20645 * 20646 * If this packet is coming from tcp global queue or listener, 20647 * we will be applying policy here. This may not be *right* 20648 * if these packets are coming from the detached connection as 20649 * it could have gone in clear before. This happens only if a 20650 * TCP connection started when there is no policy and somebody 20651 * added policy before it became detached. Thus packets of the 20652 * detached connection could go out secure and the other end 20653 * would drop it because it will be expecting in clear. The 20654 * converse is not true i.e if somebody starts a TCP 20655 * connection and deletes the policy, all the packets will 20656 * still go out with the policy that existed before deleting 20657 * because ip_unbind sends up policy information which is used 20658 * by TCP on subsequent ip_wputs. The right solution is to fix 20659 * TCP to attach a dummy IPSEC_OUT and set 20660 * ipsec_out_use_global_policy to B_FALSE. As this might 20661 * affect performance for normal cases, we are not doing it. 20662 * Thus, set policy before starting any TCP connections. 20663 * 20664 * NOTE - We might apply policy even for a hard bound connection 20665 * - for which we cached policy in ip_bind - if somebody added 20666 * global policy after we inherited the policy in ip_bind. 20667 * This means that the packets that were going out in clear 20668 * previously would start going secure and hence get dropped 20669 * on the other side. To fix this, TCP attaches a dummy 20670 * ipsec_out and make sure that we don't apply global policy. 20671 */ 20672 if (ipha != NULL) 20673 policy_present = ipsec_outbound_v4_policy_present; 20674 else 20675 policy_present = ipsec_outbound_v6_policy_present; 20676 if (!policy_present) 20677 return (mp); 20678 20679 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 20680 } 20681 20682 ire_t * 20683 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 20684 { 20685 ipaddr_t addr; 20686 ire_t *save_ire; 20687 irb_t *irb; 20688 ill_group_t *illgrp; 20689 int err; 20690 20691 save_ire = ire; 20692 addr = ire->ire_addr; 20693 20694 ASSERT(ire->ire_type == IRE_BROADCAST); 20695 20696 illgrp = connp->conn_outgoing_ill->ill_group; 20697 if (illgrp == NULL) { 20698 *conn_outgoing_ill = conn_get_held_ill(connp, 20699 &connp->conn_outgoing_ill, &err); 20700 if (err == ILL_LOOKUP_FAILED) { 20701 ire_refrele(save_ire); 20702 return (NULL); 20703 } 20704 return (save_ire); 20705 } 20706 /* 20707 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 20708 * If it is part of the group, we need to send on the ire 20709 * that has been cleared of IRE_MARK_NORECV and that belongs 20710 * to this group. This is okay as IP_BOUND_IF really means 20711 * any ill in the group. We depend on the fact that the 20712 * first ire in the group is always cleared of IRE_MARK_NORECV 20713 * if such an ire exists. This is possible only if you have 20714 * at least one ill in the group that has not failed. 20715 * 20716 * First get to the ire that matches the address and group. 20717 * 20718 * We don't look for an ire with a matching zoneid because a given zone 20719 * won't always have broadcast ires on all ills in the group. 20720 */ 20721 irb = ire->ire_bucket; 20722 rw_enter(&irb->irb_lock, RW_READER); 20723 if (ire->ire_marks & IRE_MARK_NORECV) { 20724 /* 20725 * If the current zone only has an ire broadcast for this 20726 * address marked NORECV, the ire we want is ahead in the 20727 * bucket, so we look it up deliberately ignoring the zoneid. 20728 */ 20729 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 20730 if (ire->ire_addr != addr) 20731 continue; 20732 /* skip over deleted ires */ 20733 if (ire->ire_marks & IRE_MARK_CONDEMNED) 20734 continue; 20735 } 20736 } 20737 while (ire != NULL) { 20738 /* 20739 * If a new interface is coming up, we could end up 20740 * seeing the loopback ire and the non-loopback ire 20741 * may not have been added yet. So check for ire_stq 20742 */ 20743 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 20744 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 20745 break; 20746 } 20747 ire = ire->ire_next; 20748 } 20749 if (ire != NULL && ire->ire_addr == addr && 20750 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 20751 IRE_REFHOLD(ire); 20752 rw_exit(&irb->irb_lock); 20753 ire_refrele(save_ire); 20754 *conn_outgoing_ill = ire_to_ill(ire); 20755 /* 20756 * Refhold the ill to make the conn_outgoing_ill 20757 * independent of the ire. ip_wput_ire goes in a loop 20758 * and may refrele the ire. Since we have an ire at this 20759 * point we don't need to use ILL_CAN_LOOKUP on the ill. 20760 */ 20761 ill_refhold(*conn_outgoing_ill); 20762 return (ire); 20763 } 20764 rw_exit(&irb->irb_lock); 20765 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 20766 /* 20767 * If we can't find a suitable ire, return the original ire. 20768 */ 20769 return (save_ire); 20770 } 20771 20772 /* 20773 * This function does the ire_refrele of the ire passed in as the 20774 * argument. As this function looks up more ires i.e broadcast ires, 20775 * it needs to REFRELE them. Currently, for simplicity we don't 20776 * differentiate the one passed in and looked up here. We always 20777 * REFRELE. 20778 * IPQoS Notes: 20779 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 20780 * IPSec packets are done in ipsec_out_process. 20781 * 20782 */ 20783 void 20784 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 20785 { 20786 ipha_t *ipha; 20787 #define rptr ((uchar_t *)ipha) 20788 queue_t *stq; 20789 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 20790 uint32_t v_hlen_tos_len; 20791 uint32_t ttl_protocol; 20792 ipaddr_t src; 20793 ipaddr_t dst; 20794 uint32_t cksum; 20795 ipaddr_t orig_src; 20796 ire_t *ire1; 20797 mblk_t *next_mp; 20798 uint_t hlen; 20799 uint16_t *up; 20800 uint32_t max_frag = ire->ire_max_frag; 20801 ill_t *ill = ire_to_ill(ire); 20802 int clusterwide; 20803 uint16_t ip_hdr_included; /* IP header included by ULP? */ 20804 int ipsec_len; 20805 mblk_t *first_mp; 20806 ipsec_out_t *io; 20807 boolean_t conn_dontroute; /* conn value for multicast */ 20808 boolean_t conn_multicast_loop; /* conn value for multicast */ 20809 boolean_t multicast_forward; /* Should we forward ? */ 20810 boolean_t unspec_src; 20811 ill_t *conn_outgoing_ill = NULL; 20812 ill_t *ire_ill; 20813 ill_t *ire1_ill; 20814 uint32_t ill_index = 0; 20815 boolean_t multirt_send = B_FALSE; 20816 int err; 20817 zoneid_t zoneid; 20818 ipxmit_state_t pktxmit_state; 20819 20820 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 20821 "ip_wput_ire_start: q %p", q); 20822 20823 multicast_forward = B_FALSE; 20824 unspec_src = (connp != NULL && connp->conn_unspec_src); 20825 20826 if (ire->ire_flags & RTF_MULTIRT) { 20827 /* 20828 * Multirouting case. The bucket where ire is stored 20829 * probably holds other RTF_MULTIRT flagged ire 20830 * to the destination. In this call to ip_wput_ire, 20831 * we attempt to send the packet through all 20832 * those ires. Thus, we first ensure that ire is the 20833 * first RTF_MULTIRT ire in the bucket, 20834 * before walking the ire list. 20835 */ 20836 ire_t *first_ire; 20837 irb_t *irb = ire->ire_bucket; 20838 ASSERT(irb != NULL); 20839 20840 /* Make sure we do not omit any multiroute ire. */ 20841 IRB_REFHOLD(irb); 20842 for (first_ire = irb->irb_ire; 20843 first_ire != NULL; 20844 first_ire = first_ire->ire_next) { 20845 if ((first_ire->ire_flags & RTF_MULTIRT) && 20846 (first_ire->ire_addr == ire->ire_addr) && 20847 !(first_ire->ire_marks & 20848 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 20849 break; 20850 } 20851 20852 if ((first_ire != NULL) && (first_ire != ire)) { 20853 IRE_REFHOLD(first_ire); 20854 ire_refrele(ire); 20855 ire = first_ire; 20856 ill = ire_to_ill(ire); 20857 } 20858 IRB_REFRELE(irb); 20859 } 20860 20861 /* 20862 * conn_outgoing_ill is used only in the broadcast loop. 20863 * for performance we don't grab the mutexs in the fastpath 20864 */ 20865 if ((connp != NULL) && 20866 (connp->conn_xmit_if_ill == NULL) && 20867 (ire->ire_type == IRE_BROADCAST) && 20868 ((connp->conn_nofailover_ill != NULL) || 20869 (connp->conn_outgoing_ill != NULL))) { 20870 /* 20871 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 20872 * option. So, see if this endpoint is bound to a 20873 * IPIF_NOFAILOVER address. If so, honor it. This implies 20874 * that if the interface is failed, we will still send 20875 * the packet on the same ill which is what we want. 20876 */ 20877 conn_outgoing_ill = conn_get_held_ill(connp, 20878 &connp->conn_nofailover_ill, &err); 20879 if (err == ILL_LOOKUP_FAILED) { 20880 ire_refrele(ire); 20881 freemsg(mp); 20882 return; 20883 } 20884 if (conn_outgoing_ill == NULL) { 20885 /* 20886 * Choose a good ill in the group to send the 20887 * packets on. 20888 */ 20889 ire = conn_set_outgoing_ill(connp, ire, 20890 &conn_outgoing_ill); 20891 if (ire == NULL) { 20892 freemsg(mp); 20893 return; 20894 } 20895 } 20896 } 20897 20898 if (mp->b_datap->db_type != M_CTL) { 20899 ipha = (ipha_t *)mp->b_rptr; 20900 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 20901 } else { 20902 io = (ipsec_out_t *)mp->b_rptr; 20903 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20904 zoneid = io->ipsec_out_zoneid; 20905 ASSERT(zoneid != ALL_ZONES); 20906 ipha = (ipha_t *)mp->b_cont->b_rptr; 20907 dst = ipha->ipha_dst; 20908 /* 20909 * For the multicast case, ipsec_out carries conn_dontroute and 20910 * conn_multicast_loop as conn may not be available here. We 20911 * need this for multicast loopback and forwarding which is done 20912 * later in the code. 20913 */ 20914 if (CLASSD(dst)) { 20915 conn_dontroute = io->ipsec_out_dontroute; 20916 conn_multicast_loop = io->ipsec_out_multicast_loop; 20917 /* 20918 * If conn_dontroute is not set or conn_multicast_loop 20919 * is set, we need to do forwarding/loopback. For 20920 * datagrams from ip_wput_multicast, conn_dontroute is 20921 * set to B_TRUE and conn_multicast_loop is set to 20922 * B_FALSE so that we neither do forwarding nor 20923 * loopback. 20924 */ 20925 if (!conn_dontroute || conn_multicast_loop) 20926 multicast_forward = B_TRUE; 20927 } 20928 } 20929 20930 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 20931 ire->ire_zoneid != ALL_ZONES) { 20932 /* 20933 * When a zone sends a packet to another zone, we try to deliver 20934 * the packet under the same conditions as if the destination 20935 * was a real node on the network. To do so, we look for a 20936 * matching route in the forwarding table. 20937 * RTF_REJECT and RTF_BLACKHOLE are handled just like 20938 * ip_newroute() does. 20939 */ 20940 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 20941 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 20942 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 20943 if (src_ire != NULL && 20944 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 20945 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 20946 ipha->ipha_src = src_ire->ire_src_addr; 20947 ire_refrele(src_ire); 20948 } else { 20949 ire_refrele(ire); 20950 if (conn_outgoing_ill != NULL) 20951 ill_refrele(conn_outgoing_ill); 20952 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20953 if (src_ire != NULL) { 20954 if (src_ire->ire_flags & RTF_BLACKHOLE) { 20955 ire_refrele(src_ire); 20956 freemsg(mp); 20957 return; 20958 } 20959 ire_refrele(src_ire); 20960 } 20961 if (ip_hdr_complete(ipha, zoneid)) { 20962 /* Failed */ 20963 freemsg(mp); 20964 return; 20965 } 20966 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 20967 return; 20968 } 20969 } 20970 20971 if (mp->b_datap->db_type == M_CTL || 20972 ipsec_outbound_v4_policy_present) { 20973 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 20974 unspec_src); 20975 if (mp == NULL) { 20976 ire_refrele(ire); 20977 if (conn_outgoing_ill != NULL) 20978 ill_refrele(conn_outgoing_ill); 20979 return; 20980 } 20981 } 20982 20983 first_mp = mp; 20984 ipsec_len = 0; 20985 20986 if (first_mp->b_datap->db_type == M_CTL) { 20987 io = (ipsec_out_t *)first_mp->b_rptr; 20988 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20989 mp = first_mp->b_cont; 20990 ipsec_len = ipsec_out_extra_length(first_mp); 20991 ASSERT(ipsec_len >= 0); 20992 zoneid = io->ipsec_out_zoneid; 20993 ASSERT(zoneid != ALL_ZONES); 20994 20995 /* 20996 * Drop M_CTL here if IPsec processing is not needed. 20997 * (Non-IPsec use of M_CTL extracted any information it 20998 * needed above). 20999 */ 21000 if (ipsec_len == 0) { 21001 freeb(first_mp); 21002 first_mp = mp; 21003 } 21004 } 21005 21006 /* 21007 * Fast path for ip_wput_ire 21008 */ 21009 21010 ipha = (ipha_t *)mp->b_rptr; 21011 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21012 dst = ipha->ipha_dst; 21013 21014 /* 21015 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 21016 * if the socket is a SOCK_RAW type. The transport checksum should 21017 * be provided in the pre-built packet, so we don't need to compute it. 21018 * Also, other application set flags, like DF, should not be altered. 21019 * Other transport MUST pass down zero. 21020 */ 21021 ip_hdr_included = ipha->ipha_ident; 21022 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21023 21024 if (CLASSD(dst)) { 21025 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 21026 ntohl(dst), 21027 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 21028 ntohl(ire->ire_addr))); 21029 } 21030 21031 /* Macros to extract header fields from data already in registers */ 21032 #ifdef _BIG_ENDIAN 21033 #define V_HLEN (v_hlen_tos_len >> 24) 21034 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21035 #define PROTO (ttl_protocol & 0xFF) 21036 #else 21037 #define V_HLEN (v_hlen_tos_len & 0xFF) 21038 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21039 #define PROTO (ttl_protocol >> 8) 21040 #endif 21041 21042 21043 orig_src = src = ipha->ipha_src; 21044 /* (The loop back to "another" is explained down below.) */ 21045 another:; 21046 /* 21047 * Assign an ident value for this packet. We assign idents on 21048 * a per destination basis out of the IRE. There could be 21049 * other threads targeting the same destination, so we have to 21050 * arrange for a atomic increment. Note that we use a 32-bit 21051 * atomic add because it has better performance than its 21052 * 16-bit sibling. 21053 * 21054 * If running in cluster mode and if the source address 21055 * belongs to a replicated service then vector through 21056 * cl_inet_ipident vector to allocate ip identifier 21057 * NOTE: This is a contract private interface with the 21058 * clustering group. 21059 */ 21060 clusterwide = 0; 21061 if (cl_inet_ipident) { 21062 ASSERT(cl_inet_isclusterwide); 21063 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 21064 AF_INET, (uint8_t *)(uintptr_t)src)) { 21065 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 21066 AF_INET, (uint8_t *)(uintptr_t)src, 21067 (uint8_t *)(uintptr_t)dst); 21068 clusterwide = 1; 21069 } 21070 } 21071 if (!clusterwide) { 21072 ipha->ipha_ident = 21073 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 21074 } 21075 21076 #ifndef _BIG_ENDIAN 21077 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21078 #endif 21079 21080 /* 21081 * Set source address unless sent on an ill or conn_unspec_src is set. 21082 * This is needed to obey conn_unspec_src when packets go through 21083 * ip_newroute + arp. 21084 * Assumes ip_newroute{,_multi} sets the source address as well. 21085 */ 21086 if (src == INADDR_ANY && !unspec_src) { 21087 /* 21088 * Assign the appropriate source address from the IRE if none 21089 * was specified. 21090 */ 21091 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21092 21093 /* 21094 * With IP multipathing, broadcast packets are sent on the ire 21095 * that has been cleared of IRE_MARK_NORECV and that belongs to 21096 * the group. However, this ire might not be in the same zone so 21097 * we can't always use its source address. We look for a 21098 * broadcast ire in the same group and in the right zone. 21099 */ 21100 if (ire->ire_type == IRE_BROADCAST && 21101 ire->ire_zoneid != zoneid) { 21102 ire_t *src_ire = ire_ctable_lookup(dst, 0, 21103 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 21104 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 21105 if (src_ire != NULL) { 21106 src = src_ire->ire_src_addr; 21107 ire_refrele(src_ire); 21108 } else { 21109 ire_refrele(ire); 21110 if (conn_outgoing_ill != NULL) 21111 ill_refrele(conn_outgoing_ill); 21112 freemsg(first_mp); 21113 BUMP_MIB(&ip_mib, ipOutDiscards); 21114 return; 21115 } 21116 } else { 21117 src = ire->ire_src_addr; 21118 } 21119 21120 if (connp == NULL) { 21121 ip1dbg(("ip_wput_ire: no connp and no src " 21122 "address for dst 0x%x, using src 0x%x\n", 21123 ntohl(dst), 21124 ntohl(src))); 21125 } 21126 ipha->ipha_src = src; 21127 } 21128 stq = ire->ire_stq; 21129 21130 /* 21131 * We only allow ire chains for broadcasts since there will 21132 * be multiple IRE_CACHE entries for the same multicast 21133 * address (one per ipif). 21134 */ 21135 next_mp = NULL; 21136 21137 /* broadcast packet */ 21138 if (ire->ire_type == IRE_BROADCAST) 21139 goto broadcast; 21140 21141 /* loopback ? */ 21142 if (stq == NULL) 21143 goto nullstq; 21144 21145 /* The ill_index for outbound ILL */ 21146 ill_index = Q_TO_INDEX(stq); 21147 21148 BUMP_MIB(&ip_mib, ipOutRequests); 21149 ttl_protocol = ((uint16_t *)ipha)[4]; 21150 21151 /* pseudo checksum (do it in parts for IP header checksum) */ 21152 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21153 21154 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 21155 queue_t *dev_q = stq->q_next; 21156 21157 /* flow controlled */ 21158 if ((dev_q->q_next || dev_q->q_first) && 21159 !canput(dev_q)) 21160 goto blocked; 21161 if ((PROTO == IPPROTO_UDP) && 21162 (ip_hdr_included != IP_HDR_INCLUDED)) { 21163 hlen = (V_HLEN & 0xF) << 2; 21164 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21165 if (*up != 0) { 21166 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 21167 hlen, LENGTH, max_frag, ipsec_len, cksum); 21168 /* Software checksum? */ 21169 if (DB_CKSUMFLAGS(mp) == 0) { 21170 IP_STAT(ip_out_sw_cksum); 21171 IP_STAT_UPDATE( 21172 ip_udp_out_sw_cksum_bytes, 21173 LENGTH - hlen); 21174 } 21175 } 21176 } 21177 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 21178 hlen = (V_HLEN & 0xF) << 2; 21179 if (PROTO == IPPROTO_TCP) { 21180 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21181 /* 21182 * The packet header is processed once and for all, even 21183 * in the multirouting case. We disable hardware 21184 * checksum if the packet is multirouted, as it will be 21185 * replicated via several interfaces, and not all of 21186 * them may have this capability. 21187 */ 21188 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 21189 LENGTH, max_frag, ipsec_len, cksum); 21190 /* Software checksum? */ 21191 if (DB_CKSUMFLAGS(mp) == 0) { 21192 IP_STAT(ip_out_sw_cksum); 21193 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21194 LENGTH - hlen); 21195 } 21196 } else { 21197 sctp_hdr_t *sctph; 21198 21199 ASSERT(PROTO == IPPROTO_SCTP); 21200 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21201 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21202 /* 21203 * Zero out the checksum field to ensure proper 21204 * checksum calculation. 21205 */ 21206 sctph->sh_chksum = 0; 21207 #ifdef DEBUG 21208 if (!skip_sctp_cksum) 21209 #endif 21210 sctph->sh_chksum = sctp_cksum(mp, hlen); 21211 } 21212 } 21213 21214 /* 21215 * If this is a multicast packet and originated from ip_wput 21216 * we need to do loopback and forwarding checks. If it comes 21217 * from ip_wput_multicast, we SHOULD not do this. 21218 */ 21219 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 21220 21221 /* checksum */ 21222 cksum += ttl_protocol; 21223 21224 /* fragment the packet */ 21225 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 21226 goto fragmentit; 21227 /* 21228 * Don't use frag_flag if packet is pre-built or source 21229 * routed or if multicast (since multicast packets do 21230 * not solicit ICMP "packet too big" messages). 21231 */ 21232 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21233 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21234 !ip_source_route_included(ipha)) && 21235 !CLASSD(ipha->ipha_dst)) 21236 ipha->ipha_fragment_offset_and_flags |= 21237 htons(ire->ire_frag_flag); 21238 21239 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21240 /* calculate IP header checksum */ 21241 cksum += ipha->ipha_ident; 21242 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 21243 cksum += ipha->ipha_fragment_offset_and_flags; 21244 21245 /* IP options present */ 21246 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21247 if (hlen) 21248 goto checksumoptions; 21249 21250 /* calculate hdr checksum */ 21251 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21252 cksum = ~(cksum + (cksum >> 16)); 21253 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21254 } 21255 if (ipsec_len != 0) { 21256 /* 21257 * We will do the rest of the processing after 21258 * we come back from IPSEC in ip_wput_ipsec_out(). 21259 */ 21260 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 21261 21262 io = (ipsec_out_t *)first_mp->b_rptr; 21263 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 21264 ill_phyint->phyint_ifindex; 21265 21266 ipsec_out_process(q, first_mp, ire, ill_index); 21267 ire_refrele(ire); 21268 if (conn_outgoing_ill != NULL) 21269 ill_refrele(conn_outgoing_ill); 21270 return; 21271 } 21272 21273 /* 21274 * In most cases, the emission loop below is entered only 21275 * once. Only in the case where the ire holds the 21276 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 21277 * flagged ires in the bucket, and send the packet 21278 * through all crossed RTF_MULTIRT routes. 21279 */ 21280 if (ire->ire_flags & RTF_MULTIRT) { 21281 multirt_send = B_TRUE; 21282 } 21283 do { 21284 if (multirt_send) { 21285 irb_t *irb; 21286 /* 21287 * We are in a multiple send case, need to get 21288 * the next ire and make a duplicate of the packet. 21289 * ire1 holds here the next ire to process in the 21290 * bucket. If multirouting is expected, 21291 * any non-RTF_MULTIRT ire that has the 21292 * right destination address is ignored. 21293 */ 21294 irb = ire->ire_bucket; 21295 ASSERT(irb != NULL); 21296 21297 IRB_REFHOLD(irb); 21298 for (ire1 = ire->ire_next; 21299 ire1 != NULL; 21300 ire1 = ire1->ire_next) { 21301 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21302 continue; 21303 if (ire1->ire_addr != ire->ire_addr) 21304 continue; 21305 if (ire1->ire_marks & 21306 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21307 continue; 21308 21309 /* Got one */ 21310 IRE_REFHOLD(ire1); 21311 break; 21312 } 21313 IRB_REFRELE(irb); 21314 21315 if (ire1 != NULL) { 21316 next_mp = copyb(mp); 21317 if ((next_mp == NULL) || 21318 ((mp->b_cont != NULL) && 21319 ((next_mp->b_cont = 21320 dupmsg(mp->b_cont)) == NULL))) { 21321 freemsg(next_mp); 21322 next_mp = NULL; 21323 ire_refrele(ire1); 21324 ire1 = NULL; 21325 } 21326 } 21327 21328 /* Last multiroute ire; don't loop anymore. */ 21329 if (ire1 == NULL) { 21330 multirt_send = B_FALSE; 21331 } 21332 } 21333 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 21334 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 21335 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 21336 if ((pktxmit_state == SEND_FAILED) || 21337 (pktxmit_state == LLHDR_RESLV_FAILED)) { 21338 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 21339 "- packet dropped\n")); 21340 ire_refrele(ire); 21341 if (next_mp != NULL) { 21342 freemsg(next_mp); 21343 ire_refrele(ire1); 21344 } 21345 if (conn_outgoing_ill != NULL) 21346 ill_refrele(conn_outgoing_ill); 21347 return; 21348 } 21349 21350 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21351 "ip_wput_ire_end: q %p (%S)", 21352 q, "last copy out"); 21353 IRE_REFRELE(ire); 21354 21355 if (multirt_send) { 21356 ASSERT(ire1); 21357 /* 21358 * Proceed with the next RTF_MULTIRT ire, 21359 * Also set up the send-to queue accordingly. 21360 */ 21361 ire = ire1; 21362 ire1 = NULL; 21363 stq = ire->ire_stq; 21364 mp = next_mp; 21365 next_mp = NULL; 21366 ipha = (ipha_t *)mp->b_rptr; 21367 ill_index = Q_TO_INDEX(stq); 21368 } 21369 } while (multirt_send); 21370 if (conn_outgoing_ill != NULL) 21371 ill_refrele(conn_outgoing_ill); 21372 return; 21373 21374 /* 21375 * ire->ire_type == IRE_BROADCAST (minimize diffs) 21376 */ 21377 broadcast: 21378 { 21379 /* 21380 * Avoid broadcast storms by setting the ttl to 1 21381 * for broadcasts. This parameter can be set 21382 * via ndd, so make sure that for the SO_DONTROUTE 21383 * case that ipha_ttl is always set to 1. 21384 * In the event that we are replying to incoming 21385 * ICMP packets, conn could be NULL. 21386 */ 21387 if ((connp != NULL) && connp->conn_dontroute) 21388 ipha->ipha_ttl = 1; 21389 else 21390 ipha->ipha_ttl = ip_broadcast_ttl; 21391 21392 /* 21393 * Note that we are not doing a IRB_REFHOLD here. 21394 * Actually we don't care if the list changes i.e 21395 * if somebody deletes an IRE from the list while 21396 * we drop the lock, the next time we come around 21397 * ire_next will be NULL and hence we won't send 21398 * out multiple copies which is fine. 21399 */ 21400 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 21401 ire1 = ire->ire_next; 21402 if (conn_outgoing_ill != NULL) { 21403 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 21404 ASSERT(ire1 == ire->ire_next); 21405 if (ire1 != NULL && ire1->ire_addr == dst) { 21406 ire_refrele(ire); 21407 ire = ire1; 21408 IRE_REFHOLD(ire); 21409 ire1 = ire->ire_next; 21410 continue; 21411 } 21412 rw_exit(&ire->ire_bucket->irb_lock); 21413 /* Did not find a matching ill */ 21414 ip1dbg(("ip_wput_ire: broadcast with no " 21415 "matching IP_BOUND_IF ill %s\n", 21416 conn_outgoing_ill->ill_name)); 21417 freemsg(first_mp); 21418 if (ire != NULL) 21419 ire_refrele(ire); 21420 ill_refrele(conn_outgoing_ill); 21421 return; 21422 } 21423 } else if (ire1 != NULL && ire1->ire_addr == dst) { 21424 /* 21425 * If the next IRE has the same address and is not one 21426 * of the two copies that we need to send, try to see 21427 * whether this copy should be sent at all. This 21428 * assumes that we insert loopbacks first and then 21429 * non-loopbacks. This is acheived by inserting the 21430 * loopback always before non-loopback. 21431 * This is used to send a single copy of a broadcast 21432 * packet out all physical interfaces that have an 21433 * matching IRE_BROADCAST while also looping 21434 * back one copy (to ip_wput_local) for each 21435 * matching physical interface. However, we avoid 21436 * sending packets out different logical that match by 21437 * having ipif_up/ipif_down supress duplicate 21438 * IRE_BROADCASTS. 21439 * 21440 * This feature is currently used to get broadcasts 21441 * sent to multiple interfaces, when the broadcast 21442 * address being used applies to multiple interfaces. 21443 * For example, a whole net broadcast will be 21444 * replicated on every connected subnet of 21445 * the target net. 21446 * 21447 * Each zone has its own set of IRE_BROADCASTs, so that 21448 * we're able to distribute inbound packets to multiple 21449 * zones who share a broadcast address. We avoid looping 21450 * back outbound packets in different zones but on the 21451 * same ill, as the application would see duplicates. 21452 * 21453 * If the interfaces are part of the same group, 21454 * we would want to send only one copy out for 21455 * whole group. 21456 * 21457 * This logic assumes that ire_add_v4() groups the 21458 * IRE_BROADCAST entries so that those with the same 21459 * ire_addr and ill_group are kept together. 21460 */ 21461 ire_ill = ire->ire_ipif->ipif_ill; 21462 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 21463 if (ire_ill->ill_group != NULL && 21464 (ire->ire_marks & IRE_MARK_NORECV)) { 21465 /* 21466 * If the current zone only has an ire 21467 * broadcast for this address marked 21468 * NORECV, the ire we want is ahead in 21469 * the bucket, so we look it up 21470 * deliberately ignoring the zoneid. 21471 */ 21472 for (ire1 = ire->ire_bucket->irb_ire; 21473 ire1 != NULL; 21474 ire1 = ire1->ire_next) { 21475 ire1_ill = 21476 ire1->ire_ipif->ipif_ill; 21477 if (ire1->ire_addr != dst) 21478 continue; 21479 /* skip over the current ire */ 21480 if (ire1 == ire) 21481 continue; 21482 /* skip over deleted ires */ 21483 if (ire1->ire_marks & 21484 IRE_MARK_CONDEMNED) 21485 continue; 21486 /* 21487 * non-loopback ire in our 21488 * group: use it for the next 21489 * pass in the loop 21490 */ 21491 if (ire1->ire_stq != NULL && 21492 ire1_ill->ill_group == 21493 ire_ill->ill_group) 21494 break; 21495 } 21496 } 21497 } else { 21498 while (ire1 != NULL && ire1->ire_addr == dst) { 21499 ire1_ill = ire1->ire_ipif->ipif_ill; 21500 /* 21501 * We can have two broadcast ires on the 21502 * same ill in different zones; here 21503 * we'll send a copy of the packet on 21504 * each ill and the fanout code will 21505 * call conn_wantpacket() to check that 21506 * the zone has the broadcast address 21507 * configured on the ill. If the two 21508 * ires are in the same group we only 21509 * send one copy up. 21510 */ 21511 if (ire1_ill != ire_ill && 21512 (ire1_ill->ill_group == NULL || 21513 ire_ill->ill_group == NULL || 21514 ire1_ill->ill_group != 21515 ire_ill->ill_group)) { 21516 break; 21517 } 21518 ire1 = ire1->ire_next; 21519 } 21520 } 21521 } 21522 ASSERT(multirt_send == B_FALSE); 21523 if (ire1 != NULL && ire1->ire_addr == dst) { 21524 if ((ire->ire_flags & RTF_MULTIRT) && 21525 (ire1->ire_flags & RTF_MULTIRT)) { 21526 /* 21527 * We are in the multirouting case. 21528 * The message must be sent at least 21529 * on both ires. These ires have been 21530 * inserted AFTER the standard ones 21531 * in ip_rt_add(). There are thus no 21532 * other ire entries for the destination 21533 * address in the rest of the bucket 21534 * that do not have the RTF_MULTIRT 21535 * flag. We don't process a copy 21536 * of the message here. This will be 21537 * done in the final sending loop. 21538 */ 21539 multirt_send = B_TRUE; 21540 } else { 21541 next_mp = ip_copymsg(first_mp); 21542 if (next_mp != NULL) 21543 IRE_REFHOLD(ire1); 21544 } 21545 } 21546 rw_exit(&ire->ire_bucket->irb_lock); 21547 } 21548 21549 if (stq) { 21550 /* 21551 * A non-NULL send-to queue means this packet is going 21552 * out of this machine. 21553 */ 21554 21555 BUMP_MIB(&ip_mib, ipOutRequests); 21556 ttl_protocol = ((uint16_t *)ipha)[4]; 21557 /* 21558 * We accumulate the pseudo header checksum in cksum. 21559 * This is pretty hairy code, so watch close. One 21560 * thing to keep in mind is that UDP and TCP have 21561 * stored their respective datagram lengths in their 21562 * checksum fields. This lines things up real nice. 21563 */ 21564 cksum = (dst >> 16) + (dst & 0xFFFF) + 21565 (src >> 16) + (src & 0xFFFF); 21566 /* 21567 * We assume the udp checksum field contains the 21568 * length, so to compute the pseudo header checksum, 21569 * all we need is the protocol number and src/dst. 21570 */ 21571 /* Provide the checksums for UDP and TCP. */ 21572 if ((PROTO == IPPROTO_TCP) && 21573 (ip_hdr_included != IP_HDR_INCLUDED)) { 21574 /* hlen gets the number of uchar_ts in the IP header */ 21575 hlen = (V_HLEN & 0xF) << 2; 21576 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21577 IP_STAT(ip_out_sw_cksum); 21578 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21579 LENGTH - hlen); 21580 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 21581 if (*up == 0) 21582 *up = 0xFFFF; 21583 } else if (PROTO == IPPROTO_SCTP && 21584 (ip_hdr_included != IP_HDR_INCLUDED)) { 21585 sctp_hdr_t *sctph; 21586 21587 hlen = (V_HLEN & 0xF) << 2; 21588 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21589 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21590 sctph->sh_chksum = 0; 21591 #ifdef DEBUG 21592 if (!skip_sctp_cksum) 21593 #endif 21594 sctph->sh_chksum = sctp_cksum(mp, hlen); 21595 } else { 21596 queue_t *dev_q = stq->q_next; 21597 21598 if ((dev_q->q_next || dev_q->q_first) && 21599 !canput(dev_q)) { 21600 blocked: 21601 ipha->ipha_ident = ip_hdr_included; 21602 /* 21603 * If we don't have a conn to apply 21604 * backpressure, free the message. 21605 * In the ire_send path, we don't know 21606 * the position to requeue the packet. Rather 21607 * than reorder packets, we just drop this 21608 * packet. 21609 */ 21610 if (ip_output_queue && connp != NULL && 21611 caller != IRE_SEND) { 21612 if (caller == IP_WSRV) { 21613 connp->conn_did_putbq = 1; 21614 (void) putbq(connp->conn_wq, 21615 first_mp); 21616 conn_drain_insert(connp); 21617 /* 21618 * This is the service thread, 21619 * and the queue is already 21620 * noenabled. The check for 21621 * canput and the putbq is not 21622 * atomic. So we need to check 21623 * again. 21624 */ 21625 if (canput(stq->q_next)) 21626 connp->conn_did_putbq 21627 = 0; 21628 IP_STAT(ip_conn_flputbq); 21629 } else { 21630 /* 21631 * We are not the service proc. 21632 * ip_wsrv will be scheduled or 21633 * is already running. 21634 */ 21635 (void) putq(connp->conn_wq, 21636 first_mp); 21637 } 21638 } else { 21639 BUMP_MIB(&ip_mib, ipOutDiscards); 21640 freemsg(first_mp); 21641 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21642 "ip_wput_ire_end: q %p (%S)", 21643 q, "discard"); 21644 } 21645 ire_refrele(ire); 21646 if (next_mp) { 21647 ire_refrele(ire1); 21648 freemsg(next_mp); 21649 } 21650 if (conn_outgoing_ill != NULL) 21651 ill_refrele(conn_outgoing_ill); 21652 return; 21653 } 21654 if ((PROTO == IPPROTO_UDP) && 21655 (ip_hdr_included != IP_HDR_INCLUDED)) { 21656 /* 21657 * hlen gets the number of uchar_ts in the 21658 * IP header 21659 */ 21660 hlen = (V_HLEN & 0xF) << 2; 21661 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21662 max_frag = ire->ire_max_frag; 21663 if (*up != 0) { 21664 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 21665 up, PROTO, hlen, LENGTH, max_frag, 21666 ipsec_len, cksum); 21667 /* Software checksum? */ 21668 if (DB_CKSUMFLAGS(mp) == 0) { 21669 IP_STAT(ip_out_sw_cksum); 21670 IP_STAT_UPDATE( 21671 ip_udp_out_sw_cksum_bytes, 21672 LENGTH - hlen); 21673 } 21674 } 21675 } 21676 } 21677 /* 21678 * Need to do this even when fragmenting. The local 21679 * loopback can be done without computing checksums 21680 * but forwarding out other interface must be done 21681 * after the IP checksum (and ULP checksums) have been 21682 * computed. 21683 * 21684 * NOTE : multicast_forward is set only if this packet 21685 * originated from ip_wput. For packets originating from 21686 * ip_wput_multicast, it is not set. 21687 */ 21688 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 21689 multi_loopback: 21690 ip2dbg(("ip_wput: multicast, loop %d\n", 21691 conn_multicast_loop)); 21692 21693 /* Forget header checksum offload */ 21694 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 21695 21696 /* 21697 * Local loopback of multicasts? Check the 21698 * ill. 21699 * 21700 * Note that the loopback function will not come 21701 * in through ip_rput - it will only do the 21702 * client fanout thus we need to do an mforward 21703 * as well. The is different from the BSD 21704 * logic. 21705 */ 21706 if (ill != NULL) { 21707 ilm_t *ilm; 21708 21709 ILM_WALKER_HOLD(ill); 21710 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 21711 ALL_ZONES); 21712 ILM_WALKER_RELE(ill); 21713 if (ilm != NULL) { 21714 /* 21715 * Pass along the virtual output q. 21716 * ip_wput_local() will distribute the 21717 * packet to all the matching zones, 21718 * except the sending zone when 21719 * IP_MULTICAST_LOOP is false. 21720 */ 21721 ip_multicast_loopback(q, ill, first_mp, 21722 conn_multicast_loop ? 0 : 21723 IP_FF_NO_MCAST_LOOP, zoneid); 21724 } 21725 } 21726 if (ipha->ipha_ttl == 0) { 21727 /* 21728 * 0 => only to this host i.e. we are 21729 * done. We are also done if this was the 21730 * loopback interface since it is sufficient 21731 * to loopback one copy of a multicast packet. 21732 */ 21733 freemsg(first_mp); 21734 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21735 "ip_wput_ire_end: q %p (%S)", 21736 q, "loopback"); 21737 ire_refrele(ire); 21738 if (conn_outgoing_ill != NULL) 21739 ill_refrele(conn_outgoing_ill); 21740 return; 21741 } 21742 /* 21743 * ILLF_MULTICAST is checked in ip_newroute 21744 * i.e. we don't need to check it here since 21745 * all IRE_CACHEs come from ip_newroute. 21746 * For multicast traffic, SO_DONTROUTE is interpreted 21747 * to mean only send the packet out the interface 21748 * (optionally specified with IP_MULTICAST_IF) 21749 * and do not forward it out additional interfaces. 21750 * RSVP and the rsvp daemon is an example of a 21751 * protocol and user level process that 21752 * handles it's own routing. Hence, it uses the 21753 * SO_DONTROUTE option to accomplish this. 21754 */ 21755 21756 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 21757 /* Unconditionally redo the checksum */ 21758 ipha->ipha_hdr_checksum = 0; 21759 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21760 21761 /* 21762 * If this needs to go out secure, we need 21763 * to wait till we finish the IPSEC 21764 * processing. 21765 */ 21766 if (ipsec_len == 0 && 21767 ip_mforward(ill, ipha, mp)) { 21768 freemsg(first_mp); 21769 ip1dbg(("ip_wput: mforward failed\n")); 21770 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21771 "ip_wput_ire_end: q %p (%S)", 21772 q, "mforward failed"); 21773 ire_refrele(ire); 21774 if (conn_outgoing_ill != NULL) 21775 ill_refrele(conn_outgoing_ill); 21776 return; 21777 } 21778 } 21779 } 21780 max_frag = ire->ire_max_frag; 21781 cksum += ttl_protocol; 21782 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 21783 /* No fragmentation required for this one. */ 21784 /* 21785 * Don't use frag_flag if packet is pre-built or source 21786 * routed or if multicast (since multicast packets do 21787 * not solicit ICMP "packet too big" messages). 21788 */ 21789 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21790 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21791 !ip_source_route_included(ipha)) && 21792 !CLASSD(ipha->ipha_dst)) 21793 ipha->ipha_fragment_offset_and_flags |= 21794 htons(ire->ire_frag_flag); 21795 21796 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21797 /* Complete the IP header checksum. */ 21798 cksum += ipha->ipha_ident; 21799 cksum += (v_hlen_tos_len >> 16)+ 21800 (v_hlen_tos_len & 0xFFFF); 21801 cksum += ipha->ipha_fragment_offset_and_flags; 21802 hlen = (V_HLEN & 0xF) - 21803 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21804 if (hlen) { 21805 checksumoptions: 21806 /* 21807 * Account for the IP Options in the IP 21808 * header checksum. 21809 */ 21810 up = (uint16_t *)(rptr+ 21811 IP_SIMPLE_HDR_LENGTH); 21812 do { 21813 cksum += up[0]; 21814 cksum += up[1]; 21815 up += 2; 21816 } while (--hlen); 21817 } 21818 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21819 cksum = ~(cksum + (cksum >> 16)); 21820 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21821 } 21822 if (ipsec_len != 0) { 21823 ipsec_out_process(q, first_mp, ire, ill_index); 21824 if (!next_mp) { 21825 ire_refrele(ire); 21826 if (conn_outgoing_ill != NULL) 21827 ill_refrele(conn_outgoing_ill); 21828 return; 21829 } 21830 goto next; 21831 } 21832 21833 /* 21834 * multirt_send has already been handled 21835 * for broadcast, but not yet for multicast 21836 * or IP options. 21837 */ 21838 if (next_mp == NULL) { 21839 if (ire->ire_flags & RTF_MULTIRT) { 21840 multirt_send = B_TRUE; 21841 } 21842 } 21843 21844 /* 21845 * In most cases, the emission loop below is 21846 * entered only once. Only in the case where 21847 * the ire holds the RTF_MULTIRT flag, do we loop 21848 * to process all RTF_MULTIRT ires in the bucket, 21849 * and send the packet through all crossed 21850 * RTF_MULTIRT routes. 21851 */ 21852 do { 21853 if (multirt_send) { 21854 irb_t *irb; 21855 21856 irb = ire->ire_bucket; 21857 ASSERT(irb != NULL); 21858 /* 21859 * We are in a multiple send case, 21860 * need to get the next IRE and make 21861 * a duplicate of the packet. 21862 */ 21863 IRB_REFHOLD(irb); 21864 for (ire1 = ire->ire_next; 21865 ire1 != NULL; 21866 ire1 = ire1->ire_next) { 21867 if (!(ire1->ire_flags & 21868 RTF_MULTIRT)) 21869 continue; 21870 if (ire1->ire_addr != 21871 ire->ire_addr) 21872 continue; 21873 if (ire1->ire_marks & 21874 (IRE_MARK_CONDEMNED| 21875 IRE_MARK_HIDDEN)) 21876 continue; 21877 21878 /* Got one */ 21879 IRE_REFHOLD(ire1); 21880 break; 21881 } 21882 IRB_REFRELE(irb); 21883 21884 if (ire1 != NULL) { 21885 next_mp = copyb(mp); 21886 if ((next_mp == NULL) || 21887 ((mp->b_cont != NULL) && 21888 ((next_mp->b_cont = 21889 dupmsg(mp->b_cont)) 21890 == NULL))) { 21891 freemsg(next_mp); 21892 next_mp = NULL; 21893 ire_refrele(ire1); 21894 ire1 = NULL; 21895 } 21896 } 21897 21898 /* 21899 * Last multiroute ire; don't loop 21900 * anymore. The emission is over 21901 * and next_mp is NULL. 21902 */ 21903 if (ire1 == NULL) { 21904 multirt_send = B_FALSE; 21905 } 21906 } 21907 21908 ASSERT(ipsec_len == 0); 21909 mp->b_prev = 21910 SET_BPREV_FLAG(IPP_LOCAL_OUT); 21911 DTRACE_PROBE2(ip__xmit__2, 21912 mblk_t *, mp, ire_t *, ire); 21913 pktxmit_state = ip_xmit_v4(mp, ire, 21914 NULL, B_TRUE); 21915 if ((pktxmit_state == SEND_FAILED) || 21916 (pktxmit_state == LLHDR_RESLV_FAILED)) { 21917 if (next_mp) { 21918 freemsg(next_mp); 21919 ire_refrele(ire1); 21920 } 21921 ire_refrele(ire); 21922 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21923 "ip_wput_ire_end: q %p (%S)", 21924 q, "discard MDATA"); 21925 if (conn_outgoing_ill != NULL) 21926 ill_refrele(conn_outgoing_ill); 21927 return; 21928 } 21929 21930 if (multirt_send) { 21931 /* 21932 * We are in a multiple send case, 21933 * need to re-enter the sending loop 21934 * using the next ire. 21935 */ 21936 ire_refrele(ire); 21937 ire = ire1; 21938 stq = ire->ire_stq; 21939 mp = next_mp; 21940 next_mp = NULL; 21941 ipha = (ipha_t *)mp->b_rptr; 21942 ill_index = Q_TO_INDEX(stq); 21943 } 21944 } while (multirt_send); 21945 21946 if (!next_mp) { 21947 /* 21948 * Last copy going out (the ultra-common 21949 * case). Note that we intentionally replicate 21950 * the putnext rather than calling it before 21951 * the next_mp check in hopes of a little 21952 * tail-call action out of the compiler. 21953 */ 21954 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21955 "ip_wput_ire_end: q %p (%S)", 21956 q, "last copy out(1)"); 21957 ire_refrele(ire); 21958 if (conn_outgoing_ill != NULL) 21959 ill_refrele(conn_outgoing_ill); 21960 return; 21961 } 21962 /* More copies going out below. */ 21963 } else { 21964 int offset; 21965 fragmentit: 21966 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 21967 /* 21968 * If this would generate a icmp_frag_needed message, 21969 * we need to handle it before we do the IPSEC 21970 * processing. Otherwise, we need to strip the IPSEC 21971 * headers before we send up the message to the ULPs 21972 * which becomes messy and difficult. 21973 */ 21974 if (ipsec_len != 0) { 21975 if ((max_frag < (unsigned int)(LENGTH + 21976 ipsec_len)) && (offset & IPH_DF)) { 21977 21978 BUMP_MIB(&ip_mib, ipFragFails); 21979 ipha->ipha_hdr_checksum = 0; 21980 ipha->ipha_hdr_checksum = 21981 (uint16_t)ip_csum_hdr(ipha); 21982 icmp_frag_needed(ire->ire_stq, first_mp, 21983 max_frag); 21984 if (!next_mp) { 21985 ire_refrele(ire); 21986 if (conn_outgoing_ill != NULL) { 21987 ill_refrele( 21988 conn_outgoing_ill); 21989 } 21990 return; 21991 } 21992 } else { 21993 /* 21994 * This won't cause a icmp_frag_needed 21995 * message. to be gnerated. Send it on 21996 * the wire. Note that this could still 21997 * cause fragmentation and all we 21998 * do is the generation of the message 21999 * to the ULP if needed before IPSEC. 22000 */ 22001 if (!next_mp) { 22002 ipsec_out_process(q, first_mp, 22003 ire, ill_index); 22004 TRACE_2(TR_FAC_IP, 22005 TR_IP_WPUT_IRE_END, 22006 "ip_wput_ire_end: q %p " 22007 "(%S)", q, 22008 "last ipsec_out_process"); 22009 ire_refrele(ire); 22010 if (conn_outgoing_ill != NULL) { 22011 ill_refrele( 22012 conn_outgoing_ill); 22013 } 22014 return; 22015 } 22016 ipsec_out_process(q, first_mp, 22017 ire, ill_index); 22018 } 22019 } else { 22020 /* 22021 * Initiate IPPF processing. For 22022 * fragmentable packets we finish 22023 * all QOS packet processing before 22024 * calling: 22025 * ip_wput_ire_fragmentit->ip_wput_frag 22026 */ 22027 22028 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22029 ip_process(IPP_LOCAL_OUT, &mp, 22030 ill_index); 22031 if (mp == NULL) { 22032 BUMP_MIB(&ip_mib, 22033 ipOutDiscards); 22034 if (next_mp != NULL) { 22035 freemsg(next_mp); 22036 ire_refrele(ire1); 22037 } 22038 ire_refrele(ire); 22039 TRACE_2(TR_FAC_IP, 22040 TR_IP_WPUT_IRE_END, 22041 "ip_wput_ire: q %p (%S)", 22042 q, "discard MDATA"); 22043 if (conn_outgoing_ill != NULL) { 22044 ill_refrele( 22045 conn_outgoing_ill); 22046 } 22047 return; 22048 } 22049 } 22050 if (!next_mp) { 22051 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22052 "ip_wput_ire_end: q %p (%S)", 22053 q, "last fragmentation"); 22054 ip_wput_ire_fragmentit(mp, ire); 22055 ire_refrele(ire); 22056 if (conn_outgoing_ill != NULL) 22057 ill_refrele(conn_outgoing_ill); 22058 return; 22059 } 22060 ip_wput_ire_fragmentit(mp, ire); 22061 } 22062 } 22063 } else { 22064 nullstq: 22065 /* A NULL stq means the destination address is local. */ 22066 UPDATE_OB_PKT_COUNT(ire); 22067 ire->ire_last_used_time = lbolt; 22068 ASSERT(ire->ire_ipif != NULL); 22069 if (!next_mp) { 22070 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22071 "ip_wput_ire_end: q %p (%S)", 22072 q, "local address"); 22073 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 22074 first_mp, ire, 0, ire->ire_zoneid); 22075 ire_refrele(ire); 22076 if (conn_outgoing_ill != NULL) 22077 ill_refrele(conn_outgoing_ill); 22078 return; 22079 } 22080 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 22081 ire, 0, ire->ire_zoneid); 22082 } 22083 next: 22084 /* 22085 * More copies going out to additional interfaces. 22086 * ire1 has already been held. We don't need the 22087 * "ire" anymore. 22088 */ 22089 ire_refrele(ire); 22090 ire = ire1; 22091 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 22092 mp = next_mp; 22093 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22094 ill = ire_to_ill(ire); 22095 first_mp = mp; 22096 if (ipsec_len != 0) { 22097 ASSERT(first_mp->b_datap->db_type == M_CTL); 22098 mp = mp->b_cont; 22099 } 22100 dst = ire->ire_addr; 22101 ipha = (ipha_t *)mp->b_rptr; 22102 /* 22103 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 22104 * Restore ipha_ident "no checksum" flag. 22105 */ 22106 src = orig_src; 22107 ipha->ipha_ident = ip_hdr_included; 22108 goto another; 22109 22110 #undef rptr 22111 #undef Q_TO_INDEX 22112 } 22113 22114 /* 22115 * Routine to allocate a message that is used to notify the ULP about MDT. 22116 * The caller may provide a pointer to the link-layer MDT capabilities, 22117 * or NULL if MDT is to be disabled on the stream. 22118 */ 22119 mblk_t * 22120 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 22121 { 22122 mblk_t *mp; 22123 ip_mdt_info_t *mdti; 22124 ill_mdt_capab_t *idst; 22125 22126 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 22127 DB_TYPE(mp) = M_CTL; 22128 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 22129 mdti = (ip_mdt_info_t *)mp->b_rptr; 22130 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 22131 idst = &(mdti->mdt_capab); 22132 22133 /* 22134 * If the caller provides us with the capability, copy 22135 * it over into our notification message; otherwise 22136 * we zero out the capability portion. 22137 */ 22138 if (isrc != NULL) 22139 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 22140 else 22141 bzero((caddr_t)idst, sizeof (*idst)); 22142 } 22143 return (mp); 22144 } 22145 22146 /* 22147 * Routine which determines whether MDT can be enabled on the destination 22148 * IRE and IPC combination, and if so, allocates and returns the MDT 22149 * notification mblk that may be used by ULP. We also check if we need to 22150 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 22151 * MDT usage in the past have been lifted. This gets called during IP 22152 * and ULP binding. 22153 */ 22154 mblk_t * 22155 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 22156 ill_mdt_capab_t *mdt_cap) 22157 { 22158 mblk_t *mp; 22159 boolean_t rc = B_FALSE; 22160 22161 ASSERT(dst_ire != NULL); 22162 ASSERT(connp != NULL); 22163 ASSERT(mdt_cap != NULL); 22164 22165 /* 22166 * Currently, we only support simple TCP/{IPv4,IPv6} with 22167 * Multidata, which is handled in tcp_multisend(). This 22168 * is the reason why we do all these checks here, to ensure 22169 * that we don't enable Multidata for the cases which we 22170 * can't handle at the moment. 22171 */ 22172 do { 22173 /* Only do TCP at the moment */ 22174 if (connp->conn_ulp != IPPROTO_TCP) 22175 break; 22176 22177 /* 22178 * IPSEC outbound policy present? Note that we get here 22179 * after calling ipsec_conn_cache_policy() where the global 22180 * policy checking is performed. conn_latch will be 22181 * non-NULL as long as there's a policy defined, 22182 * i.e. conn_out_enforce_policy may be NULL in such case 22183 * when the connection is non-secure, and hence we check 22184 * further if the latch refers to an outbound policy. 22185 */ 22186 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 22187 break; 22188 22189 /* CGTP (multiroute) is enabled? */ 22190 if (dst_ire->ire_flags & RTF_MULTIRT) 22191 break; 22192 22193 /* Outbound IPQoS enabled? */ 22194 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22195 /* 22196 * In this case, we disable MDT for this and all 22197 * future connections going over the interface. 22198 */ 22199 mdt_cap->ill_mdt_on = 0; 22200 break; 22201 } 22202 22203 /* socket option(s) present? */ 22204 if (!CONN_IS_MD_FASTPATH(connp)) 22205 break; 22206 22207 rc = B_TRUE; 22208 /* CONSTCOND */ 22209 } while (0); 22210 22211 /* Remember the result */ 22212 connp->conn_mdt_ok = rc; 22213 22214 if (!rc) 22215 return (NULL); 22216 else if (!mdt_cap->ill_mdt_on) { 22217 /* 22218 * If MDT has been previously turned off in the past, and we 22219 * currently can do MDT (due to IPQoS policy removal, etc.) 22220 * then enable it for this interface. 22221 */ 22222 mdt_cap->ill_mdt_on = 1; 22223 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 22224 "interface %s\n", ill_name)); 22225 } 22226 22227 /* Allocate the MDT info mblk */ 22228 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 22229 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 22230 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 22231 return (NULL); 22232 } 22233 return (mp); 22234 } 22235 22236 /* 22237 * Create destination address attribute, and fill it with the physical 22238 * destination address and SAP taken from the template DL_UNITDATA_REQ 22239 * message block. 22240 */ 22241 boolean_t 22242 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 22243 { 22244 dl_unitdata_req_t *dlurp; 22245 pattr_t *pa; 22246 pattrinfo_t pa_info; 22247 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 22248 uint_t das_len, das_off; 22249 22250 ASSERT(dlmp != NULL); 22251 22252 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 22253 das_len = dlurp->dl_dest_addr_length; 22254 das_off = dlurp->dl_dest_addr_offset; 22255 22256 pa_info.type = PATTR_DSTADDRSAP; 22257 pa_info.len = sizeof (**das) + das_len - 1; 22258 22259 /* create and associate the attribute */ 22260 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22261 if (pa != NULL) { 22262 ASSERT(*das != NULL); 22263 (*das)->addr_is_group = 0; 22264 (*das)->addr_len = (uint8_t)das_len; 22265 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 22266 } 22267 22268 return (pa != NULL); 22269 } 22270 22271 /* 22272 * Create hardware checksum attribute and fill it with the values passed. 22273 */ 22274 boolean_t 22275 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 22276 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 22277 { 22278 pattr_t *pa; 22279 pattrinfo_t pa_info; 22280 22281 ASSERT(mmd != NULL); 22282 22283 pa_info.type = PATTR_HCKSUM; 22284 pa_info.len = sizeof (pattr_hcksum_t); 22285 22286 /* create and associate the attribute */ 22287 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22288 if (pa != NULL) { 22289 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 22290 22291 hck->hcksum_start_offset = start_offset; 22292 hck->hcksum_stuff_offset = stuff_offset; 22293 hck->hcksum_end_offset = end_offset; 22294 hck->hcksum_flags = flags; 22295 } 22296 return (pa != NULL); 22297 } 22298 22299 /* 22300 * Create zerocopy attribute and fill it with the specified flags 22301 */ 22302 boolean_t 22303 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 22304 { 22305 pattr_t *pa; 22306 pattrinfo_t pa_info; 22307 22308 ASSERT(mmd != NULL); 22309 pa_info.type = PATTR_ZCOPY; 22310 pa_info.len = sizeof (pattr_zcopy_t); 22311 22312 /* create and associate the attribute */ 22313 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22314 if (pa != NULL) { 22315 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 22316 22317 zcopy->zcopy_flags = flags; 22318 } 22319 return (pa != NULL); 22320 } 22321 22322 /* 22323 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 22324 * block chain. We could rewrite to handle arbitrary message block chains but 22325 * that would make the code complicated and slow. Right now there three 22326 * restrictions: 22327 * 22328 * 1. The first message block must contain the complete IP header and 22329 * at least 1 byte of payload data. 22330 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 22331 * so that we can use a single Multidata message. 22332 * 3. No frag must be distributed over two or more message blocks so 22333 * that we don't need more than two packet descriptors per frag. 22334 * 22335 * The above restrictions allow us to support userland applications (which 22336 * will send down a single message block) and NFS over UDP (which will 22337 * send down a chain of at most three message blocks). 22338 * 22339 * We also don't use MDT for payloads with less than or equal to 22340 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 22341 */ 22342 boolean_t 22343 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 22344 { 22345 int blocks; 22346 ssize_t total, missing, size; 22347 22348 ASSERT(mp != NULL); 22349 ASSERT(hdr_len > 0); 22350 22351 size = MBLKL(mp) - hdr_len; 22352 if (size <= 0) 22353 return (B_FALSE); 22354 22355 /* The first mblk contains the header and some payload. */ 22356 blocks = 1; 22357 total = size; 22358 size %= len; 22359 missing = (size == 0) ? 0 : (len - size); 22360 mp = mp->b_cont; 22361 22362 while (mp != NULL) { 22363 /* 22364 * Give up if we encounter a zero length message block. 22365 * In practice, this should rarely happen and therefore 22366 * not worth the trouble of freeing and re-linking the 22367 * mblk from the chain to handle such case. 22368 */ 22369 if ((size = MBLKL(mp)) == 0) 22370 return (B_FALSE); 22371 22372 /* Too many payload buffers for a single Multidata message? */ 22373 if (++blocks > MULTIDATA_MAX_PBUFS) 22374 return (B_FALSE); 22375 22376 total += size; 22377 /* Is a frag distributed over two or more message blocks? */ 22378 if (missing > size) 22379 return (B_FALSE); 22380 size -= missing; 22381 22382 size %= len; 22383 missing = (size == 0) ? 0 : (len - size); 22384 22385 mp = mp->b_cont; 22386 } 22387 22388 return (total > ip_wput_frag_mdt_min); 22389 } 22390 22391 /* 22392 * Outbound IPv4 fragmentation routine using MDT. 22393 */ 22394 static void 22395 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 22396 uint32_t frag_flag, int offset) 22397 { 22398 ipha_t *ipha_orig; 22399 int i1, ip_data_end; 22400 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 22401 mblk_t *hdr_mp, *md_mp = NULL; 22402 unsigned char *hdr_ptr, *pld_ptr; 22403 multidata_t *mmd; 22404 ip_pdescinfo_t pdi; 22405 22406 ASSERT(DB_TYPE(mp) == M_DATA); 22407 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 22408 22409 ipha_orig = (ipha_t *)mp->b_rptr; 22410 mp->b_rptr += sizeof (ipha_t); 22411 22412 /* Calculate how many packets we will send out */ 22413 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 22414 pkts = (i1 + len - 1) / len; 22415 ASSERT(pkts > 1); 22416 22417 /* Allocate a message block which will hold all the IP Headers. */ 22418 wroff = ip_wroff_extra; 22419 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 22420 22421 i1 = pkts * hdr_chunk_len; 22422 /* 22423 * Create the header buffer, Multidata and destination address 22424 * and SAP attribute that should be associated with it. 22425 */ 22426 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 22427 ((hdr_mp->b_wptr += i1), 22428 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 22429 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 22430 freemsg(mp); 22431 if (md_mp == NULL) { 22432 freemsg(hdr_mp); 22433 } else { 22434 free_mmd: IP_STAT(ip_frag_mdt_discarded); 22435 freemsg(md_mp); 22436 } 22437 IP_STAT(ip_frag_mdt_allocfail); 22438 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 22439 return; 22440 } 22441 IP_STAT(ip_frag_mdt_allocd); 22442 22443 /* 22444 * Add a payload buffer to the Multidata; this operation must not 22445 * fail, or otherwise our logic in this routine is broken. There 22446 * is no memory allocation done by the routine, so any returned 22447 * failure simply tells us that we've done something wrong. 22448 * 22449 * A failure tells us that either we're adding the same payload 22450 * buffer more than once, or we're trying to add more buffers than 22451 * allowed. None of the above cases should happen, and we panic 22452 * because either there's horrible heap corruption, and/or 22453 * programming mistake. 22454 */ 22455 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22456 goto pbuf_panic; 22457 22458 hdr_ptr = hdr_mp->b_rptr; 22459 pld_ptr = mp->b_rptr; 22460 22461 /* Establish the ending byte offset, based on the starting offset. */ 22462 offset <<= 3; 22463 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 22464 IP_SIMPLE_HDR_LENGTH; 22465 22466 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 22467 22468 while (pld_ptr < mp->b_wptr) { 22469 ipha_t *ipha; 22470 uint16_t offset_and_flags; 22471 uint16_t ip_len; 22472 int error; 22473 22474 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 22475 ipha = (ipha_t *)(hdr_ptr + wroff); 22476 ASSERT(OK_32PTR(ipha)); 22477 *ipha = *ipha_orig; 22478 22479 if (ip_data_end - offset > len) { 22480 offset_and_flags = IPH_MF; 22481 } else { 22482 /* 22483 * Last frag. Set len to the length of this last piece. 22484 */ 22485 len = ip_data_end - offset; 22486 /* A frag of a frag might have IPH_MF non-zero */ 22487 offset_and_flags = 22488 ntohs(ipha->ipha_fragment_offset_and_flags) & 22489 IPH_MF; 22490 } 22491 offset_and_flags |= (uint16_t)(offset >> 3); 22492 offset_and_flags |= (uint16_t)frag_flag; 22493 /* Store the offset and flags in the IP header. */ 22494 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 22495 22496 /* Store the length in the IP header. */ 22497 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 22498 ipha->ipha_length = htons(ip_len); 22499 22500 /* 22501 * Set the IP header checksum. Note that mp is just 22502 * the header, so this is easy to pass to ip_csum. 22503 */ 22504 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22505 22506 /* 22507 * Record offset and size of header and data of the next packet 22508 * in the multidata message. 22509 */ 22510 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 22511 PDESC_PLD_INIT(&pdi); 22512 i1 = MIN(mp->b_wptr - pld_ptr, len); 22513 ASSERT(i1 > 0); 22514 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 22515 if (i1 == len) { 22516 pld_ptr += len; 22517 } else { 22518 i1 = len - i1; 22519 mp = mp->b_cont; 22520 ASSERT(mp != NULL); 22521 ASSERT(MBLKL(mp) >= i1); 22522 /* 22523 * Attach the next payload message block to the 22524 * multidata message. 22525 */ 22526 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22527 goto pbuf_panic; 22528 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 22529 pld_ptr = mp->b_rptr + i1; 22530 } 22531 22532 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 22533 KM_NOSLEEP)) == NULL) { 22534 /* 22535 * Any failure other than ENOMEM indicates that we 22536 * have passed in invalid pdesc info or parameters 22537 * to mmd_addpdesc, which must not happen. 22538 * 22539 * EINVAL is a result of failure on boundary checks 22540 * against the pdesc info contents. It should not 22541 * happen, and we panic because either there's 22542 * horrible heap corruption, and/or programming 22543 * mistake. 22544 */ 22545 if (error != ENOMEM) { 22546 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 22547 "pdesc logic error detected for " 22548 "mmd %p pinfo %p (%d)\n", 22549 (void *)mmd, (void *)&pdi, error); 22550 /* NOTREACHED */ 22551 } 22552 IP_STAT(ip_frag_mdt_addpdescfail); 22553 /* Free unattached payload message blocks as well */ 22554 md_mp->b_cont = mp->b_cont; 22555 goto free_mmd; 22556 } 22557 22558 /* Advance fragment offset. */ 22559 offset += len; 22560 22561 /* Advance to location for next header in the buffer. */ 22562 hdr_ptr += hdr_chunk_len; 22563 22564 /* Did we reach the next payload message block? */ 22565 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 22566 mp = mp->b_cont; 22567 /* 22568 * Attach the next message block with payload 22569 * data to the multidata message. 22570 */ 22571 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22572 goto pbuf_panic; 22573 pld_ptr = mp->b_rptr; 22574 } 22575 } 22576 22577 ASSERT(hdr_mp->b_wptr == hdr_ptr); 22578 ASSERT(mp->b_wptr == pld_ptr); 22579 22580 /* Update IP statistics */ 22581 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 22582 BUMP_MIB(&ip_mib, ipFragOKs); 22583 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 22584 22585 if (pkt_type == OB_PKT) { 22586 ire->ire_ob_pkt_count += pkts; 22587 if (ire->ire_ipif != NULL) 22588 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 22589 } else { 22590 /* 22591 * The type is IB_PKT in the forwarding path and in 22592 * the mobile IP case when the packet is being reverse- 22593 * tunneled to the home agent. 22594 */ 22595 ire->ire_ib_pkt_count += pkts; 22596 ASSERT(!IRE_IS_LOCAL(ire)); 22597 if (ire->ire_type & IRE_BROADCAST) 22598 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 22599 else 22600 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 22601 } 22602 ire->ire_last_used_time = lbolt; 22603 /* Send it down */ 22604 putnext(ire->ire_stq, md_mp); 22605 return; 22606 22607 pbuf_panic: 22608 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 22609 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 22610 pbuf_idx); 22611 /* NOTREACHED */ 22612 } 22613 22614 /* 22615 * Outbound IP fragmentation routine. 22616 * 22617 * NOTE : This routine does not ire_refrele the ire that is passed in 22618 * as the argument. 22619 */ 22620 static void 22621 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 22622 uint32_t frag_flag) 22623 { 22624 int i1; 22625 mblk_t *ll_hdr_mp; 22626 int ll_hdr_len; 22627 int hdr_len; 22628 mblk_t *hdr_mp; 22629 ipha_t *ipha; 22630 int ip_data_end; 22631 int len; 22632 mblk_t *mp = mp_orig; 22633 int offset; 22634 queue_t *q; 22635 uint32_t v_hlen_tos_len; 22636 mblk_t *first_mp; 22637 boolean_t mctl_present; 22638 ill_t *ill; 22639 mblk_t *xmit_mp; 22640 mblk_t *carve_mp; 22641 ire_t *ire1 = NULL; 22642 ire_t *save_ire = NULL; 22643 mblk_t *next_mp = NULL; 22644 boolean_t last_frag = B_FALSE; 22645 boolean_t multirt_send = B_FALSE; 22646 ire_t *first_ire = NULL; 22647 irb_t *irb = NULL; 22648 22649 /* 22650 * IPSEC does not allow hw accelerated packets to be fragmented 22651 * This check is made in ip_wput_ipsec_out prior to coming here 22652 * via ip_wput_ire_fragmentit. 22653 * 22654 * If at this point we have an ire whose ARP request has not 22655 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 22656 * sending of ARP query and change ire's state to ND_INCOMPLETE. 22657 * This packet and all fragmentable packets for this ire will 22658 * continue to get dropped while ire_nce->nce_state remains in 22659 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 22660 * ND_REACHABLE, all subsquent large packets for this ire will 22661 * get fragemented and sent out by this function. 22662 */ 22663 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 22664 /* If nce_state is ND_INITIAL, trigger ARP query */ 22665 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 22666 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 22667 " - dropping packet\n")); 22668 BUMP_MIB(&ip_mib, ipFragFails); 22669 freemsg(mp); 22670 return; 22671 } 22672 22673 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 22674 "ip_wput_frag_start:"); 22675 22676 if (mp->b_datap->db_type == M_CTL) { 22677 first_mp = mp; 22678 mp_orig = mp = mp->b_cont; 22679 mctl_present = B_TRUE; 22680 } else { 22681 first_mp = mp; 22682 mctl_present = B_FALSE; 22683 } 22684 22685 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 22686 ipha = (ipha_t *)mp->b_rptr; 22687 22688 /* 22689 * If the Don't Fragment flag is on, generate an ICMP destination 22690 * unreachable, fragmentation needed. 22691 */ 22692 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22693 if (offset & IPH_DF) { 22694 BUMP_MIB(&ip_mib, ipFragFails); 22695 /* 22696 * Need to compute hdr checksum if called from ip_wput_ire. 22697 * Note that ip_rput_forward verifies the checksum before 22698 * calling this routine so in that case this is a noop. 22699 */ 22700 ipha->ipha_hdr_checksum = 0; 22701 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22702 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 22703 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22704 "ip_wput_frag_end:(%S)", 22705 "don't fragment"); 22706 return; 22707 } 22708 if (mctl_present) 22709 freeb(first_mp); 22710 /* 22711 * Establish the starting offset. May not be zero if we are fragging 22712 * a fragment that is being forwarded. 22713 */ 22714 offset = offset & IPH_OFFSET; 22715 22716 /* TODO why is this test needed? */ 22717 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22718 if (((max_frag - LENGTH) & ~7) < 8) { 22719 /* TODO: notify ulp somehow */ 22720 BUMP_MIB(&ip_mib, ipFragFails); 22721 freemsg(mp); 22722 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22723 "ip_wput_frag_end:(%S)", 22724 "len < 8"); 22725 return; 22726 } 22727 22728 hdr_len = (V_HLEN & 0xF) << 2; 22729 22730 ipha->ipha_hdr_checksum = 0; 22731 22732 /* 22733 * Establish the number of bytes maximum per frag, after putting 22734 * in the header. 22735 */ 22736 len = (max_frag - hdr_len) & ~7; 22737 22738 /* Check if we can use MDT to send out the frags. */ 22739 ASSERT(!IRE_IS_LOCAL(ire)); 22740 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 22741 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 22742 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 22743 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 22744 ASSERT(ill->ill_mdt_capab != NULL); 22745 if (!ill->ill_mdt_capab->ill_mdt_on) { 22746 /* 22747 * If MDT has been previously turned off in the past, 22748 * and we currently can do MDT (due to IPQoS policy 22749 * removal, etc.) then enable it for this interface. 22750 */ 22751 ill->ill_mdt_capab->ill_mdt_on = 1; 22752 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 22753 ill->ill_name)); 22754 } 22755 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 22756 offset); 22757 return; 22758 } 22759 22760 /* Get a copy of the header for the trailing frags */ 22761 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 22762 if (!hdr_mp) { 22763 BUMP_MIB(&ip_mib, ipOutDiscards); 22764 freemsg(mp); 22765 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22766 "ip_wput_frag_end:(%S)", 22767 "couldn't copy hdr"); 22768 return; 22769 } 22770 if (DB_CRED(mp) != NULL) 22771 mblk_setcred(hdr_mp, DB_CRED(mp)); 22772 22773 /* Store the starting offset, with the MoreFrags flag. */ 22774 i1 = offset | IPH_MF | frag_flag; 22775 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 22776 22777 /* Establish the ending byte offset, based on the starting offset. */ 22778 offset <<= 3; 22779 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 22780 22781 /* Store the length of the first fragment in the IP header. */ 22782 i1 = len + hdr_len; 22783 ASSERT(i1 <= IP_MAXPACKET); 22784 ipha->ipha_length = htons((uint16_t)i1); 22785 22786 /* 22787 * Compute the IP header checksum for the first frag. We have to 22788 * watch out that we stop at the end of the header. 22789 */ 22790 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22791 22792 /* 22793 * Now carve off the first frag. Note that this will include the 22794 * original IP header. 22795 */ 22796 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 22797 BUMP_MIB(&ip_mib, ipOutDiscards); 22798 freeb(hdr_mp); 22799 freemsg(mp_orig); 22800 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22801 "ip_wput_frag_end:(%S)", 22802 "couldn't carve first"); 22803 return; 22804 } 22805 22806 /* 22807 * Multirouting case. Each fragment is replicated 22808 * via all non-condemned RTF_MULTIRT routes 22809 * currently resolved. 22810 * We ensure that first_ire is the first RTF_MULTIRT 22811 * ire in the bucket. 22812 */ 22813 if (ire->ire_flags & RTF_MULTIRT) { 22814 irb = ire->ire_bucket; 22815 ASSERT(irb != NULL); 22816 22817 multirt_send = B_TRUE; 22818 22819 /* Make sure we do not omit any multiroute ire. */ 22820 IRB_REFHOLD(irb); 22821 for (first_ire = irb->irb_ire; 22822 first_ire != NULL; 22823 first_ire = first_ire->ire_next) { 22824 if ((first_ire->ire_flags & RTF_MULTIRT) && 22825 (first_ire->ire_addr == ire->ire_addr) && 22826 !(first_ire->ire_marks & 22827 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22828 break; 22829 } 22830 22831 if (first_ire != NULL) { 22832 if (first_ire != ire) { 22833 IRE_REFHOLD(first_ire); 22834 /* 22835 * Do not release the ire passed in 22836 * as the argument. 22837 */ 22838 ire = first_ire; 22839 } else { 22840 first_ire = NULL; 22841 } 22842 } 22843 IRB_REFRELE(irb); 22844 22845 /* 22846 * Save the first ire; we will need to restore it 22847 * for the trailing frags. 22848 * We REFHOLD save_ire, as each iterated ire will be 22849 * REFRELEd. 22850 */ 22851 save_ire = ire; 22852 IRE_REFHOLD(save_ire); 22853 } 22854 22855 /* 22856 * First fragment emission loop. 22857 * In most cases, the emission loop below is entered only 22858 * once. Only in the case where the ire holds the RTF_MULTIRT 22859 * flag, do we loop to process all RTF_MULTIRT ires in the 22860 * bucket, and send the fragment through all crossed 22861 * RTF_MULTIRT routes. 22862 */ 22863 do { 22864 if (ire->ire_flags & RTF_MULTIRT) { 22865 /* 22866 * We are in a multiple send case, need to get 22867 * the next ire and make a copy of the packet. 22868 * ire1 holds here the next ire to process in the 22869 * bucket. If multirouting is expected, 22870 * any non-RTF_MULTIRT ire that has the 22871 * right destination address is ignored. 22872 * 22873 * We have to take into account the MTU of 22874 * each walked ire. max_frag is set by the 22875 * the caller and generally refers to 22876 * the primary ire entry. Here we ensure that 22877 * no route with a lower MTU will be used, as 22878 * fragments are carved once for all ires, 22879 * then replicated. 22880 */ 22881 ASSERT(irb != NULL); 22882 IRB_REFHOLD(irb); 22883 for (ire1 = ire->ire_next; 22884 ire1 != NULL; 22885 ire1 = ire1->ire_next) { 22886 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22887 continue; 22888 if (ire1->ire_addr != ire->ire_addr) 22889 continue; 22890 if (ire1->ire_marks & 22891 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22892 continue; 22893 /* 22894 * Ensure we do not exceed the MTU 22895 * of the next route. 22896 */ 22897 if (ire1->ire_max_frag < max_frag) { 22898 ip_multirt_bad_mtu(ire1, max_frag); 22899 continue; 22900 } 22901 22902 /* Got one. */ 22903 IRE_REFHOLD(ire1); 22904 break; 22905 } 22906 IRB_REFRELE(irb); 22907 22908 if (ire1 != NULL) { 22909 next_mp = copyb(mp); 22910 if ((next_mp == NULL) || 22911 ((mp->b_cont != NULL) && 22912 ((next_mp->b_cont = 22913 dupmsg(mp->b_cont)) == NULL))) { 22914 freemsg(next_mp); 22915 next_mp = NULL; 22916 ire_refrele(ire1); 22917 ire1 = NULL; 22918 } 22919 } 22920 22921 /* Last multiroute ire; don't loop anymore. */ 22922 if (ire1 == NULL) { 22923 multirt_send = B_FALSE; 22924 } 22925 } 22926 22927 ll_hdr_len = 0; 22928 LOCK_IRE_FP_MP(ire); 22929 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 22930 if (ll_hdr_mp != NULL) { 22931 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 22932 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 22933 } else { 22934 ll_hdr_mp = ire->ire_nce->nce_res_mp; 22935 } 22936 22937 /* If there is a transmit header, get a copy for this frag. */ 22938 /* 22939 * TODO: should check db_ref before calling ip_carve_mp since 22940 * it might give us a dup. 22941 */ 22942 if (!ll_hdr_mp) { 22943 /* No xmit header. */ 22944 xmit_mp = mp; 22945 22946 /* We have a link-layer header that can fit in our mblk. */ 22947 } else if (mp->b_datap->db_ref == 1 && 22948 ll_hdr_len != 0 && 22949 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 22950 /* M_DATA fastpath */ 22951 mp->b_rptr -= ll_hdr_len; 22952 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 22953 xmit_mp = mp; 22954 22955 /* Corner case if copyb has failed */ 22956 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 22957 UNLOCK_IRE_FP_MP(ire); 22958 BUMP_MIB(&ip_mib, ipOutDiscards); 22959 freeb(hdr_mp); 22960 freemsg(mp); 22961 freemsg(mp_orig); 22962 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22963 "ip_wput_frag_end:(%S)", 22964 "discard"); 22965 22966 if (multirt_send) { 22967 ASSERT(ire1); 22968 ASSERT(next_mp); 22969 22970 freemsg(next_mp); 22971 ire_refrele(ire1); 22972 } 22973 if (save_ire != NULL) 22974 IRE_REFRELE(save_ire); 22975 22976 if (first_ire != NULL) 22977 ire_refrele(first_ire); 22978 return; 22979 22980 /* 22981 * Case of res_mp OR the fastpath mp can't fit 22982 * in the mblk 22983 */ 22984 } else { 22985 xmit_mp->b_cont = mp; 22986 if (DB_CRED(mp) != NULL) 22987 mblk_setcred(xmit_mp, DB_CRED(mp)); 22988 /* 22989 * Get priority marking, if any. 22990 * We propagate the CoS marking from the 22991 * original packet that went to QoS processing 22992 * in ip_wput_ire to the newly carved mp. 22993 */ 22994 if (DB_TYPE(xmit_mp) == M_DATA) 22995 xmit_mp->b_band = mp->b_band; 22996 } 22997 UNLOCK_IRE_FP_MP(ire); 22998 q = ire->ire_stq; 22999 BUMP_MIB(&ip_mib, ipFragCreates); 23000 putnext(q, xmit_mp); 23001 if (pkt_type != OB_PKT) { 23002 /* 23003 * Update the packet count of trailing 23004 * RTF_MULTIRT ires. 23005 */ 23006 UPDATE_OB_PKT_COUNT(ire); 23007 } 23008 23009 if (multirt_send) { 23010 /* 23011 * We are in a multiple send case; look for 23012 * the next ire and re-enter the loop. 23013 */ 23014 ASSERT(ire1); 23015 ASSERT(next_mp); 23016 /* REFRELE the current ire before looping */ 23017 ire_refrele(ire); 23018 ire = ire1; 23019 ire1 = NULL; 23020 mp = next_mp; 23021 next_mp = NULL; 23022 } 23023 } while (multirt_send); 23024 23025 ASSERT(ire1 == NULL); 23026 23027 /* Restore the original ire; we need it for the trailing frags */ 23028 if (save_ire != NULL) { 23029 /* REFRELE the last iterated ire */ 23030 ire_refrele(ire); 23031 /* save_ire has been REFHOLDed */ 23032 ire = save_ire; 23033 save_ire = NULL; 23034 q = ire->ire_stq; 23035 } 23036 23037 if (pkt_type == OB_PKT) { 23038 UPDATE_OB_PKT_COUNT(ire); 23039 } else { 23040 UPDATE_IB_PKT_COUNT(ire); 23041 } 23042 23043 /* Advance the offset to the second frag starting point. */ 23044 offset += len; 23045 /* 23046 * Update hdr_len from the copied header - there might be less options 23047 * in the later fragments. 23048 */ 23049 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 23050 /* Loop until done. */ 23051 for (;;) { 23052 uint16_t offset_and_flags; 23053 uint16_t ip_len; 23054 23055 if (ip_data_end - offset > len) { 23056 /* 23057 * Carve off the appropriate amount from the original 23058 * datagram. 23059 */ 23060 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23061 mp = NULL; 23062 break; 23063 } 23064 /* 23065 * More frags after this one. Get another copy 23066 * of the header. 23067 */ 23068 if (carve_mp->b_datap->db_ref == 1 && 23069 hdr_mp->b_wptr - hdr_mp->b_rptr < 23070 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23071 /* Inline IP header */ 23072 carve_mp->b_rptr -= hdr_mp->b_wptr - 23073 hdr_mp->b_rptr; 23074 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23075 hdr_mp->b_wptr - hdr_mp->b_rptr); 23076 mp = carve_mp; 23077 } else { 23078 if (!(mp = copyb(hdr_mp))) { 23079 freemsg(carve_mp); 23080 break; 23081 } 23082 /* Get priority marking, if any. */ 23083 mp->b_band = carve_mp->b_band; 23084 mp->b_cont = carve_mp; 23085 } 23086 ipha = (ipha_t *)mp->b_rptr; 23087 offset_and_flags = IPH_MF; 23088 } else { 23089 /* 23090 * Last frag. Consume the header. Set len to 23091 * the length of this last piece. 23092 */ 23093 len = ip_data_end - offset; 23094 23095 /* 23096 * Carve off the appropriate amount from the original 23097 * datagram. 23098 */ 23099 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23100 mp = NULL; 23101 break; 23102 } 23103 if (carve_mp->b_datap->db_ref == 1 && 23104 hdr_mp->b_wptr - hdr_mp->b_rptr < 23105 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23106 /* Inline IP header */ 23107 carve_mp->b_rptr -= hdr_mp->b_wptr - 23108 hdr_mp->b_rptr; 23109 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23110 hdr_mp->b_wptr - hdr_mp->b_rptr); 23111 mp = carve_mp; 23112 freeb(hdr_mp); 23113 hdr_mp = mp; 23114 } else { 23115 mp = hdr_mp; 23116 /* Get priority marking, if any. */ 23117 mp->b_band = carve_mp->b_band; 23118 mp->b_cont = carve_mp; 23119 } 23120 ipha = (ipha_t *)mp->b_rptr; 23121 /* A frag of a frag might have IPH_MF non-zero */ 23122 offset_and_flags = 23123 ntohs(ipha->ipha_fragment_offset_and_flags) & 23124 IPH_MF; 23125 } 23126 offset_and_flags |= (uint16_t)(offset >> 3); 23127 offset_and_flags |= (uint16_t)frag_flag; 23128 /* Store the offset and flags in the IP header. */ 23129 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23130 23131 /* Store the length in the IP header. */ 23132 ip_len = (uint16_t)(len + hdr_len); 23133 ipha->ipha_length = htons(ip_len); 23134 23135 /* 23136 * Set the IP header checksum. Note that mp is just 23137 * the header, so this is easy to pass to ip_csum. 23138 */ 23139 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23140 23141 /* Attach a transmit header, if any, and ship it. */ 23142 if (pkt_type == OB_PKT) { 23143 UPDATE_OB_PKT_COUNT(ire); 23144 } else { 23145 UPDATE_IB_PKT_COUNT(ire); 23146 } 23147 23148 if (ire->ire_flags & RTF_MULTIRT) { 23149 irb = ire->ire_bucket; 23150 ASSERT(irb != NULL); 23151 23152 multirt_send = B_TRUE; 23153 23154 /* 23155 * Save the original ire; we will need to restore it 23156 * for the tailing frags. 23157 */ 23158 save_ire = ire; 23159 IRE_REFHOLD(save_ire); 23160 } 23161 /* 23162 * Emission loop for this fragment, similar 23163 * to what is done for the first fragment. 23164 */ 23165 do { 23166 if (multirt_send) { 23167 /* 23168 * We are in a multiple send case, need to get 23169 * the next ire and make a copy of the packet. 23170 */ 23171 ASSERT(irb != NULL); 23172 IRB_REFHOLD(irb); 23173 for (ire1 = ire->ire_next; 23174 ire1 != NULL; 23175 ire1 = ire1->ire_next) { 23176 if (!(ire1->ire_flags & RTF_MULTIRT)) 23177 continue; 23178 if (ire1->ire_addr != ire->ire_addr) 23179 continue; 23180 if (ire1->ire_marks & 23181 (IRE_MARK_CONDEMNED| 23182 IRE_MARK_HIDDEN)) 23183 continue; 23184 /* 23185 * Ensure we do not exceed the MTU 23186 * of the next route. 23187 */ 23188 if (ire1->ire_max_frag < max_frag) { 23189 ip_multirt_bad_mtu(ire1, 23190 max_frag); 23191 continue; 23192 } 23193 23194 /* Got one. */ 23195 IRE_REFHOLD(ire1); 23196 break; 23197 } 23198 IRB_REFRELE(irb); 23199 23200 if (ire1 != NULL) { 23201 next_mp = copyb(mp); 23202 if ((next_mp == NULL) || 23203 ((mp->b_cont != NULL) && 23204 ((next_mp->b_cont = 23205 dupmsg(mp->b_cont)) == NULL))) { 23206 freemsg(next_mp); 23207 next_mp = NULL; 23208 ire_refrele(ire1); 23209 ire1 = NULL; 23210 } 23211 } 23212 23213 /* Last multiroute ire; don't loop anymore. */ 23214 if (ire1 == NULL) { 23215 multirt_send = B_FALSE; 23216 } 23217 } 23218 23219 /* Update transmit header */ 23220 ll_hdr_len = 0; 23221 LOCK_IRE_FP_MP(ire); 23222 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23223 if (ll_hdr_mp != NULL) { 23224 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23225 ll_hdr_len = MBLKL(ll_hdr_mp); 23226 } else { 23227 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23228 } 23229 23230 if (!ll_hdr_mp) { 23231 xmit_mp = mp; 23232 23233 /* 23234 * We have link-layer header that can fit in 23235 * our mblk. 23236 */ 23237 } else if (mp->b_datap->db_ref == 1 && 23238 ll_hdr_len != 0 && 23239 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23240 /* M_DATA fastpath */ 23241 mp->b_rptr -= ll_hdr_len; 23242 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 23243 ll_hdr_len); 23244 xmit_mp = mp; 23245 23246 /* 23247 * Case of res_mp OR the fastpath mp can't fit 23248 * in the mblk 23249 */ 23250 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 23251 xmit_mp->b_cont = mp; 23252 if (DB_CRED(mp) != NULL) 23253 mblk_setcred(xmit_mp, DB_CRED(mp)); 23254 /* Get priority marking, if any. */ 23255 if (DB_TYPE(xmit_mp) == M_DATA) 23256 xmit_mp->b_band = mp->b_band; 23257 23258 /* Corner case if copyb failed */ 23259 } else { 23260 /* 23261 * Exit both the replication and 23262 * fragmentation loops. 23263 */ 23264 UNLOCK_IRE_FP_MP(ire); 23265 goto drop_pkt; 23266 } 23267 UNLOCK_IRE_FP_MP(ire); 23268 BUMP_MIB(&ip_mib, ipFragCreates); 23269 putnext(q, xmit_mp); 23270 23271 if (pkt_type != OB_PKT) { 23272 /* 23273 * Update the packet count of trailing 23274 * RTF_MULTIRT ires. 23275 */ 23276 UPDATE_OB_PKT_COUNT(ire); 23277 } 23278 23279 /* All done if we just consumed the hdr_mp. */ 23280 if (mp == hdr_mp) { 23281 last_frag = B_TRUE; 23282 } 23283 23284 if (multirt_send) { 23285 /* 23286 * We are in a multiple send case; look for 23287 * the next ire and re-enter the loop. 23288 */ 23289 ASSERT(ire1); 23290 ASSERT(next_mp); 23291 /* REFRELE the current ire before looping */ 23292 ire_refrele(ire); 23293 ire = ire1; 23294 ire1 = NULL; 23295 q = ire->ire_stq; 23296 mp = next_mp; 23297 next_mp = NULL; 23298 } 23299 } while (multirt_send); 23300 /* 23301 * Restore the original ire; we need it for the 23302 * trailing frags 23303 */ 23304 if (save_ire != NULL) { 23305 ASSERT(ire1 == NULL); 23306 /* REFRELE the last iterated ire */ 23307 ire_refrele(ire); 23308 /* save_ire has been REFHOLDed */ 23309 ire = save_ire; 23310 q = ire->ire_stq; 23311 save_ire = NULL; 23312 } 23313 23314 if (last_frag) { 23315 BUMP_MIB(&ip_mib, ipFragOKs); 23316 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23317 "ip_wput_frag_end:(%S)", 23318 "consumed hdr_mp"); 23319 23320 if (first_ire != NULL) 23321 ire_refrele(first_ire); 23322 return; 23323 } 23324 /* Otherwise, advance and loop. */ 23325 offset += len; 23326 } 23327 23328 drop_pkt: 23329 /* Clean up following allocation failure. */ 23330 BUMP_MIB(&ip_mib, ipOutDiscards); 23331 freemsg(mp); 23332 if (mp != hdr_mp) 23333 freeb(hdr_mp); 23334 if (mp != mp_orig) 23335 freemsg(mp_orig); 23336 23337 if (save_ire != NULL) 23338 IRE_REFRELE(save_ire); 23339 if (first_ire != NULL) 23340 ire_refrele(first_ire); 23341 23342 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23343 "ip_wput_frag_end:(%S)", 23344 "end--alloc failure"); 23345 } 23346 23347 /* 23348 * Copy the header plus those options which have the copy bit set 23349 */ 23350 static mblk_t * 23351 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 23352 { 23353 mblk_t *mp; 23354 uchar_t *up; 23355 23356 /* 23357 * Quick check if we need to look for options without the copy bit 23358 * set 23359 */ 23360 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 23361 if (!mp) 23362 return (mp); 23363 mp->b_rptr += ip_wroff_extra; 23364 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 23365 bcopy(rptr, mp->b_rptr, hdr_len); 23366 mp->b_wptr += hdr_len + ip_wroff_extra; 23367 return (mp); 23368 } 23369 up = mp->b_rptr; 23370 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 23371 up += IP_SIMPLE_HDR_LENGTH; 23372 rptr += IP_SIMPLE_HDR_LENGTH; 23373 hdr_len -= IP_SIMPLE_HDR_LENGTH; 23374 while (hdr_len > 0) { 23375 uint32_t optval; 23376 uint32_t optlen; 23377 23378 optval = *rptr; 23379 if (optval == IPOPT_EOL) 23380 break; 23381 if (optval == IPOPT_NOP) 23382 optlen = 1; 23383 else 23384 optlen = rptr[1]; 23385 if (optval & IPOPT_COPY) { 23386 bcopy(rptr, up, optlen); 23387 up += optlen; 23388 } 23389 rptr += optlen; 23390 hdr_len -= optlen; 23391 } 23392 /* 23393 * Make sure that we drop an even number of words by filling 23394 * with EOL to the next word boundary. 23395 */ 23396 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 23397 hdr_len & 0x3; hdr_len++) 23398 *up++ = IPOPT_EOL; 23399 mp->b_wptr = up; 23400 /* Update header length */ 23401 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 23402 return (mp); 23403 } 23404 23405 /* 23406 * Delivery to local recipients including fanout to multiple recipients. 23407 * Does not do checksumming of UDP/TCP. 23408 * Note: q should be the read side queue for either the ill or conn. 23409 * Note: rq should be the read side q for the lower (ill) stream. 23410 * We don't send packets to IPPF processing, thus the last argument 23411 * to all the fanout calls are B_FALSE. 23412 */ 23413 void 23414 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 23415 int fanout_flags, zoneid_t zoneid) 23416 { 23417 uint32_t protocol; 23418 mblk_t *first_mp; 23419 boolean_t mctl_present; 23420 int ire_type; 23421 #define rptr ((uchar_t *)ipha) 23422 23423 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 23424 "ip_wput_local_start: q %p", q); 23425 23426 if (ire != NULL) { 23427 ire_type = ire->ire_type; 23428 } else { 23429 /* 23430 * Only ip_multicast_loopback() calls us with a NULL ire. If the 23431 * packet is not multicast, we can't tell the ire type. 23432 */ 23433 ASSERT(CLASSD(ipha->ipha_dst)); 23434 ire_type = IRE_BROADCAST; 23435 } 23436 23437 first_mp = mp; 23438 if (first_mp->b_datap->db_type == M_CTL) { 23439 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 23440 if (!io->ipsec_out_secure) { 23441 /* 23442 * This ipsec_out_t was allocated in ip_wput 23443 * for multicast packets to store the ill_index. 23444 * As this is being delivered locally, we don't 23445 * need this anymore. 23446 */ 23447 mp = first_mp->b_cont; 23448 freeb(first_mp); 23449 first_mp = mp; 23450 mctl_present = B_FALSE; 23451 } else { 23452 mctl_present = B_TRUE; 23453 mp = first_mp->b_cont; 23454 ASSERT(mp != NULL); 23455 ipsec_out_to_in(first_mp); 23456 } 23457 } else { 23458 mctl_present = B_FALSE; 23459 } 23460 23461 loopback_packets++; 23462 23463 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 23464 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 23465 if (!IS_SIMPLE_IPH(ipha)) { 23466 ip_wput_local_options(ipha); 23467 } 23468 23469 protocol = ipha->ipha_protocol; 23470 switch (protocol) { 23471 case IPPROTO_ICMP: { 23472 ire_t *ire_zone; 23473 ilm_t *ilm; 23474 mblk_t *mp1; 23475 zoneid_t last_zoneid; 23476 23477 if (CLASSD(ipha->ipha_dst) && 23478 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 23479 ASSERT(ire_type == IRE_BROADCAST); 23480 /* 23481 * In the multicast case, applications may have joined 23482 * the group from different zones, so we need to deliver 23483 * the packet to each of them. Loop through the 23484 * multicast memberships structures (ilm) on the receive 23485 * ill and send a copy of the packet up each matching 23486 * one. However, we don't do this for multicasts sent on 23487 * the loopback interface (PHYI_LOOPBACK flag set) as 23488 * they must stay in the sender's zone. 23489 * 23490 * ilm_add_v6() ensures that ilms in the same zone are 23491 * contiguous in the ill_ilm list. We use this property 23492 * to avoid sending duplicates needed when two 23493 * applications in the same zone join the same group on 23494 * different logical interfaces: we ignore the ilm if 23495 * it's zoneid is the same as the last matching one. 23496 * In addition, the sending of the packet for 23497 * ire_zoneid is delayed until all of the other ilms 23498 * have been exhausted. 23499 */ 23500 last_zoneid = -1; 23501 ILM_WALKER_HOLD(ill); 23502 for (ilm = ill->ill_ilm; ilm != NULL; 23503 ilm = ilm->ilm_next) { 23504 if ((ilm->ilm_flags & ILM_DELETED) || 23505 ipha->ipha_dst != ilm->ilm_addr || 23506 ilm->ilm_zoneid == last_zoneid || 23507 ilm->ilm_zoneid == zoneid || 23508 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 23509 continue; 23510 mp1 = ip_copymsg(first_mp); 23511 if (mp1 == NULL) 23512 continue; 23513 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23514 mctl_present, B_FALSE, ill, 23515 ilm->ilm_zoneid); 23516 last_zoneid = ilm->ilm_zoneid; 23517 } 23518 ILM_WALKER_RELE(ill); 23519 /* 23520 * Loopback case: the sending endpoint has 23521 * IP_MULTICAST_LOOP disabled, therefore we don't 23522 * dispatch the multicast packet to the sending zone. 23523 */ 23524 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 23525 freemsg(first_mp); 23526 return; 23527 } 23528 } else if (ire_type == IRE_BROADCAST) { 23529 /* 23530 * In the broadcast case, there may be many zones 23531 * which need a copy of the packet delivered to them. 23532 * There is one IRE_BROADCAST per broadcast address 23533 * and per zone; we walk those using a helper function. 23534 * In addition, the sending of the packet for zoneid is 23535 * delayed until all of the other ires have been 23536 * processed. 23537 */ 23538 IRB_REFHOLD(ire->ire_bucket); 23539 ire_zone = NULL; 23540 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 23541 ire)) != NULL) { 23542 mp1 = ip_copymsg(first_mp); 23543 if (mp1 == NULL) 23544 continue; 23545 23546 UPDATE_IB_PKT_COUNT(ire_zone); 23547 ire_zone->ire_last_used_time = lbolt; 23548 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23549 mctl_present, B_FALSE, ill, 23550 ire_zone->ire_zoneid); 23551 } 23552 IRB_REFRELE(ire->ire_bucket); 23553 } 23554 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 23555 0, mctl_present, B_FALSE, ill, zoneid); 23556 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23557 "ip_wput_local_end: q %p (%S)", 23558 q, "icmp"); 23559 return; 23560 } 23561 case IPPROTO_IGMP: 23562 if (igmp_input(q, mp, ill)) { 23563 /* Bad packet - discarded by igmp_input */ 23564 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23565 "ip_wput_local_end: q %p (%S)", 23566 q, "igmp_input--bad packet"); 23567 if (mctl_present) 23568 freeb(first_mp); 23569 return; 23570 } 23571 /* 23572 * igmp_input() may have pulled up the message so ipha needs to 23573 * be reinitialized. 23574 */ 23575 ipha = (ipha_t *)mp->b_rptr; 23576 /* deliver to local raw users */ 23577 break; 23578 case IPPROTO_ENCAP: 23579 /* 23580 * This case is covered by either ip_fanout_proto, or by 23581 * the above security processing for self-tunneled packets. 23582 */ 23583 break; 23584 case IPPROTO_UDP: { 23585 uint16_t *up; 23586 uint32_t ports; 23587 23588 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 23589 UDP_PORTS_OFFSET); 23590 /* Force a 'valid' checksum. */ 23591 up[3] = 0; 23592 23593 ports = *(uint32_t *)up; 23594 ip_fanout_udp(q, first_mp, ill, ipha, ports, 23595 (ire_type == IRE_BROADCAST), 23596 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23597 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 23598 ill, zoneid); 23599 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23600 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 23601 return; 23602 } 23603 case IPPROTO_TCP: { 23604 23605 /* 23606 * For TCP, discard broadcast packets. 23607 */ 23608 if ((ushort_t)ire_type == IRE_BROADCAST) { 23609 freemsg(first_mp); 23610 BUMP_MIB(&ip_mib, ipInDiscards); 23611 ip2dbg(("ip_wput_local: discard broadcast\n")); 23612 return; 23613 } 23614 23615 if (mp->b_datap->db_type == M_DATA) { 23616 /* 23617 * M_DATA mblk, so init mblk (chain) for no struio(). 23618 */ 23619 mblk_t *mp1 = mp; 23620 23621 do 23622 mp1->b_datap->db_struioflag = 0; 23623 while ((mp1 = mp1->b_cont) != NULL); 23624 } 23625 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 23626 <= mp->b_wptr); 23627 ip_fanout_tcp(q, first_mp, ill, ipha, 23628 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23629 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 23630 mctl_present, B_FALSE, zoneid); 23631 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23632 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 23633 return; 23634 } 23635 case IPPROTO_SCTP: 23636 { 23637 uint32_t ports; 23638 23639 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 23640 ip_fanout_sctp(first_mp, ill, ipha, ports, 23641 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23642 IP_FF_IP6INFO, 23643 mctl_present, B_FALSE, 0, zoneid); 23644 return; 23645 } 23646 23647 default: 23648 break; 23649 } 23650 /* 23651 * Find a client for some other protocol. We give 23652 * copies to multiple clients, if more than one is 23653 * bound. 23654 */ 23655 ip_fanout_proto(q, first_mp, ill, ipha, 23656 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 23657 mctl_present, B_FALSE, ill, zoneid); 23658 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23659 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 23660 #undef rptr 23661 } 23662 23663 /* 23664 * Update any source route, record route, or timestamp options. 23665 * Check that we are at end of strict source route. 23666 * The options have been sanity checked by ip_wput_options(). 23667 */ 23668 static void 23669 ip_wput_local_options(ipha_t *ipha) 23670 { 23671 ipoptp_t opts; 23672 uchar_t *opt; 23673 uint8_t optval; 23674 uint8_t optlen; 23675 ipaddr_t dst; 23676 uint32_t ts; 23677 ire_t *ire; 23678 timestruc_t now; 23679 23680 ip2dbg(("ip_wput_local_options\n")); 23681 for (optval = ipoptp_first(&opts, ipha); 23682 optval != IPOPT_EOL; 23683 optval = ipoptp_next(&opts)) { 23684 opt = opts.ipoptp_cur; 23685 optlen = opts.ipoptp_len; 23686 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 23687 switch (optval) { 23688 uint32_t off; 23689 case IPOPT_SSRR: 23690 case IPOPT_LSRR: 23691 off = opt[IPOPT_OFFSET]; 23692 off--; 23693 if (optlen < IP_ADDR_LEN || 23694 off > optlen - IP_ADDR_LEN) { 23695 /* End of source route */ 23696 break; 23697 } 23698 /* 23699 * This will only happen if two consecutive entries 23700 * in the source route contains our address or if 23701 * it is a packet with a loose source route which 23702 * reaches us before consuming the whole source route 23703 */ 23704 ip1dbg(("ip_wput_local_options: not end of SR\n")); 23705 if (optval == IPOPT_SSRR) { 23706 return; 23707 } 23708 /* 23709 * Hack: instead of dropping the packet truncate the 23710 * source route to what has been used by filling the 23711 * rest with IPOPT_NOP. 23712 */ 23713 opt[IPOPT_OLEN] = (uint8_t)off; 23714 while (off < optlen) { 23715 opt[off++] = IPOPT_NOP; 23716 } 23717 break; 23718 case IPOPT_RR: 23719 off = opt[IPOPT_OFFSET]; 23720 off--; 23721 if (optlen < IP_ADDR_LEN || 23722 off > optlen - IP_ADDR_LEN) { 23723 /* No more room - ignore */ 23724 ip1dbg(( 23725 "ip_wput_forward_options: end of RR\n")); 23726 break; 23727 } 23728 dst = htonl(INADDR_LOOPBACK); 23729 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 23730 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 23731 break; 23732 case IPOPT_TS: 23733 /* Insert timestamp if there is romm */ 23734 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 23735 case IPOPT_TS_TSONLY: 23736 off = IPOPT_TS_TIMELEN; 23737 break; 23738 case IPOPT_TS_PRESPEC: 23739 case IPOPT_TS_PRESPEC_RFC791: 23740 /* Verify that the address matched */ 23741 off = opt[IPOPT_OFFSET] - 1; 23742 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 23743 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 23744 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23745 if (ire == NULL) { 23746 /* Not for us */ 23747 break; 23748 } 23749 ire_refrele(ire); 23750 /* FALLTHRU */ 23751 case IPOPT_TS_TSANDADDR: 23752 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 23753 break; 23754 default: 23755 /* 23756 * ip_*put_options should have already 23757 * dropped this packet. 23758 */ 23759 cmn_err(CE_PANIC, "ip_wput_local_options: " 23760 "unknown IT - bug in ip_wput_options?\n"); 23761 return; /* Keep "lint" happy */ 23762 } 23763 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 23764 /* Increase overflow counter */ 23765 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 23766 opt[IPOPT_POS_OV_FLG] = (uint8_t) 23767 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 23768 (off << 4); 23769 break; 23770 } 23771 off = opt[IPOPT_OFFSET] - 1; 23772 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 23773 case IPOPT_TS_PRESPEC: 23774 case IPOPT_TS_PRESPEC_RFC791: 23775 case IPOPT_TS_TSANDADDR: 23776 dst = htonl(INADDR_LOOPBACK); 23777 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 23778 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 23779 /* FALLTHRU */ 23780 case IPOPT_TS_TSONLY: 23781 off = opt[IPOPT_OFFSET] - 1; 23782 /* Compute # of milliseconds since midnight */ 23783 gethrestime(&now); 23784 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 23785 now.tv_nsec / (NANOSEC / MILLISEC); 23786 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 23787 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 23788 break; 23789 } 23790 break; 23791 } 23792 } 23793 } 23794 23795 /* 23796 * Send out a multicast packet on interface ipif. 23797 * The sender does not have an conn. 23798 * Caller verifies that this isn't a PHYI_LOOPBACK. 23799 */ 23800 void 23801 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 23802 { 23803 ipha_t *ipha; 23804 ire_t *ire; 23805 ipaddr_t dst; 23806 mblk_t *first_mp; 23807 23808 /* igmp_sendpkt always allocates a ipsec_out_t */ 23809 ASSERT(mp->b_datap->db_type == M_CTL); 23810 ASSERT(!ipif->ipif_isv6); 23811 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 23812 23813 first_mp = mp; 23814 mp = first_mp->b_cont; 23815 ASSERT(mp->b_datap->db_type == M_DATA); 23816 ipha = (ipha_t *)mp->b_rptr; 23817 23818 /* 23819 * Find an IRE which matches the destination and the outgoing 23820 * queue (i.e. the outgoing interface.) 23821 */ 23822 if (ipif->ipif_flags & IPIF_POINTOPOINT) 23823 dst = ipif->ipif_pp_dst_addr; 23824 else 23825 dst = ipha->ipha_dst; 23826 /* 23827 * The source address has already been initialized by the 23828 * caller and hence matching on ILL (MATCH_IRE_ILL) would 23829 * be sufficient rather than MATCH_IRE_IPIF. 23830 * 23831 * This function is used for sending IGMP packets. We need 23832 * to make sure that we send the packet out of the interface 23833 * (ipif->ipif_ill) where we joined the group. This is to 23834 * prevent from switches doing IGMP snooping to send us multicast 23835 * packets for a given group on the interface we have joined. 23836 * If we can't find an ire, igmp_sendpkt has already initialized 23837 * ipsec_out_attach_if so that this will not be load spread in 23838 * ip_newroute_ipif. 23839 */ 23840 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, NULL, 23841 MATCH_IRE_ILL); 23842 if (!ire) { 23843 /* 23844 * Mark this packet to make it be delivered to 23845 * ip_wput_ire after the new ire has been 23846 * created. 23847 */ 23848 mp->b_prev = NULL; 23849 mp->b_next = NULL; 23850 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 23851 return; 23852 } 23853 23854 /* 23855 * Honor the RTF_SETSRC flag; this is the only case 23856 * where we force this addr whatever the current src addr is, 23857 * because this address is set by igmp_sendpkt(), and 23858 * cannot be specified by any user. 23859 */ 23860 if (ire->ire_flags & RTF_SETSRC) { 23861 ipha->ipha_src = ire->ire_src_addr; 23862 } 23863 23864 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 23865 } 23866 23867 /* 23868 * NOTE : This function does not ire_refrele the ire argument passed in. 23869 * 23870 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 23871 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 23872 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 23873 * the ire_lock to access the nce_fp_mp in this case. 23874 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 23875 * prepending a fastpath message IPQoS processing must precede it, we also set 23876 * the b_band of the fastpath message to that of the mblk returned by IPQoS 23877 * (IPQoS might have set the b_band for CoS marking). 23878 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 23879 * must follow it so that IPQoS can mark the dl_priority field for CoS 23880 * marking, if needed. 23881 */ 23882 static mblk_t * 23883 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 23884 { 23885 uint_t hlen; 23886 ipha_t *ipha; 23887 mblk_t *mp1; 23888 boolean_t qos_done = B_FALSE; 23889 uchar_t *ll_hdr; 23890 23891 #define rptr ((uchar_t *)ipha) 23892 23893 ipha = (ipha_t *)mp->b_rptr; 23894 hlen = 0; 23895 LOCK_IRE_FP_MP(ire); 23896 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 23897 ASSERT(DB_TYPE(mp1) == M_DATA); 23898 /* Initiate IPPF processing */ 23899 if ((proc != 0) && IPP_ENABLED(proc)) { 23900 UNLOCK_IRE_FP_MP(ire); 23901 ip_process(proc, &mp, ill_index); 23902 if (mp == NULL) 23903 return (NULL); 23904 23905 ipha = (ipha_t *)mp->b_rptr; 23906 LOCK_IRE_FP_MP(ire); 23907 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 23908 qos_done = B_TRUE; 23909 goto no_fp_mp; 23910 } 23911 ASSERT(DB_TYPE(mp1) == M_DATA); 23912 } 23913 hlen = MBLKL(mp1); 23914 /* 23915 * Check if we have enough room to prepend fastpath 23916 * header 23917 */ 23918 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 23919 ll_hdr = rptr - hlen; 23920 bcopy(mp1->b_rptr, ll_hdr, hlen); 23921 /* 23922 * Set the b_rptr to the start of the link layer 23923 * header 23924 */ 23925 mp->b_rptr = ll_hdr; 23926 mp1 = mp; 23927 } else { 23928 mp1 = copyb(mp1); 23929 if (mp1 == NULL) 23930 goto unlock_err; 23931 mp1->b_band = mp->b_band; 23932 mp1->b_cont = mp; 23933 /* 23934 * certain system generated traffic may not 23935 * have cred/label in ip header block. This 23936 * is true even for a labeled system. But for 23937 * labeled traffic, inherit the label in the 23938 * new header. 23939 */ 23940 if (DB_CRED(mp) != NULL) 23941 mblk_setcred(mp1, DB_CRED(mp)); 23942 /* 23943 * XXX disable ICK_VALID and compute checksum 23944 * here; can happen if nce_fp_mp changes and 23945 * it can't be copied now due to insufficient 23946 * space. (unlikely, fp mp can change, but it 23947 * does not increase in length) 23948 */ 23949 } 23950 UNLOCK_IRE_FP_MP(ire); 23951 } else { 23952 no_fp_mp: 23953 mp1 = copyb(ire->ire_nce->nce_res_mp); 23954 if (mp1 == NULL) { 23955 unlock_err: 23956 UNLOCK_IRE_FP_MP(ire); 23957 freemsg(mp); 23958 return (NULL); 23959 } 23960 UNLOCK_IRE_FP_MP(ire); 23961 mp1->b_cont = mp; 23962 /* 23963 * certain system generated traffic may not 23964 * have cred/label in ip header block. This 23965 * is true even for a labeled system. But for 23966 * labeled traffic, inherit the label in the 23967 * new header. 23968 */ 23969 if (DB_CRED(mp) != NULL) 23970 mblk_setcred(mp1, DB_CRED(mp)); 23971 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 23972 ip_process(proc, &mp1, ill_index); 23973 if (mp1 == NULL) 23974 return (NULL); 23975 } 23976 } 23977 return (mp1); 23978 #undef rptr 23979 } 23980 23981 /* 23982 * Finish the outbound IPsec processing for an IPv6 packet. This function 23983 * is called from ipsec_out_process() if the IPsec packet was processed 23984 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 23985 * asynchronously. 23986 */ 23987 void 23988 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 23989 ire_t *ire_arg) 23990 { 23991 in6_addr_t *v6dstp; 23992 ire_t *ire; 23993 mblk_t *mp; 23994 uint_t ill_index; 23995 ipsec_out_t *io; 23996 boolean_t attach_if, hwaccel; 23997 uint32_t flags = IP6_NO_IPPOLICY; 23998 int match_flags; 23999 zoneid_t zoneid; 24000 boolean_t ill_need_rele = B_FALSE; 24001 boolean_t ire_need_rele = B_FALSE; 24002 24003 mp = ipsec_mp->b_cont; 24004 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24005 ill_index = io->ipsec_out_ill_index; 24006 if (io->ipsec_out_reachable) { 24007 flags |= IPV6_REACHABILITY_CONFIRMATION; 24008 } 24009 attach_if = io->ipsec_out_attach_if; 24010 hwaccel = io->ipsec_out_accelerated; 24011 zoneid = io->ipsec_out_zoneid; 24012 ASSERT(zoneid != ALL_ZONES); 24013 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24014 /* Multicast addresses should have non-zero ill_index. */ 24015 v6dstp = &ip6h->ip6_dst; 24016 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 24017 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 24018 ASSERT(!attach_if || ill_index != 0); 24019 if (ill_index != 0) { 24020 if (ill == NULL) { 24021 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 24022 B_TRUE); 24023 24024 /* Failure case frees things for us. */ 24025 if (ill == NULL) 24026 return; 24027 24028 ill_need_rele = B_TRUE; 24029 } 24030 /* 24031 * If this packet needs to go out on a particular interface 24032 * honor it. 24033 */ 24034 if (attach_if) { 24035 match_flags = MATCH_IRE_ILL; 24036 24037 /* 24038 * Check if we need an ire that will not be 24039 * looked up by anybody else i.e. HIDDEN. 24040 */ 24041 if (ill_is_probeonly(ill)) { 24042 match_flags |= MATCH_IRE_MARK_HIDDEN; 24043 } 24044 } 24045 } 24046 ASSERT(mp != NULL); 24047 24048 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 24049 boolean_t unspec_src; 24050 ipif_t *ipif; 24051 24052 /* 24053 * Use the ill_index to get the right ill. 24054 */ 24055 unspec_src = io->ipsec_out_unspec_src; 24056 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24057 if (ipif == NULL) { 24058 if (ill_need_rele) 24059 ill_refrele(ill); 24060 freemsg(ipsec_mp); 24061 return; 24062 } 24063 24064 if (ire_arg != NULL) { 24065 ire = ire_arg; 24066 } else { 24067 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24068 zoneid, MBLK_GETLABEL(mp), match_flags); 24069 ire_need_rele = B_TRUE; 24070 } 24071 if (ire != NULL) { 24072 ipif_refrele(ipif); 24073 /* 24074 * XXX Do the multicast forwarding now, as the IPSEC 24075 * processing has been done. 24076 */ 24077 goto send; 24078 } 24079 24080 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 24081 mp->b_prev = NULL; 24082 mp->b_next = NULL; 24083 24084 /* 24085 * If the IPsec packet was processed asynchronously, 24086 * drop it now. 24087 */ 24088 if (q == NULL) { 24089 if (ill_need_rele) 24090 ill_refrele(ill); 24091 freemsg(ipsec_mp); 24092 return; 24093 } 24094 24095 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 24096 unspec_src, zoneid); 24097 ipif_refrele(ipif); 24098 } else { 24099 if (attach_if) { 24100 ipif_t *ipif; 24101 24102 ipif = ipif_get_next_ipif(NULL, ill); 24103 if (ipif == NULL) { 24104 if (ill_need_rele) 24105 ill_refrele(ill); 24106 freemsg(ipsec_mp); 24107 return; 24108 } 24109 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24110 zoneid, MBLK_GETLABEL(mp), match_flags); 24111 ire_need_rele = B_TRUE; 24112 ipif_refrele(ipif); 24113 } else { 24114 if (ire_arg != NULL) { 24115 ire = ire_arg; 24116 } else { 24117 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 24118 ire_need_rele = B_TRUE; 24119 } 24120 } 24121 if (ire != NULL) 24122 goto send; 24123 /* 24124 * ire disappeared underneath. 24125 * 24126 * What we need to do here is the ip_newroute 24127 * logic to get the ire without doing the IPSEC 24128 * processing. Follow the same old path. But this 24129 * time, ip_wput or ire_add_then_send will call us 24130 * directly as all the IPSEC operations are done. 24131 */ 24132 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 24133 mp->b_prev = NULL; 24134 mp->b_next = NULL; 24135 24136 /* 24137 * If the IPsec packet was processed asynchronously, 24138 * drop it now. 24139 */ 24140 if (q == NULL) { 24141 if (ill_need_rele) 24142 ill_refrele(ill); 24143 freemsg(ipsec_mp); 24144 return; 24145 } 24146 24147 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 24148 zoneid); 24149 } 24150 if (ill != NULL && ill_need_rele) 24151 ill_refrele(ill); 24152 return; 24153 send: 24154 if (ill != NULL && ill_need_rele) 24155 ill_refrele(ill); 24156 24157 /* Local delivery */ 24158 if (ire->ire_stq == NULL) { 24159 ASSERT(q != NULL); 24160 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 24161 ire, 0); 24162 if (ire_need_rele) 24163 ire_refrele(ire); 24164 return; 24165 } 24166 /* 24167 * Everything is done. Send it out on the wire. 24168 * We force the insertion of a fragment header using the 24169 * IPH_FRAG_HDR flag in two cases: 24170 * - after reception of an ICMPv6 "packet too big" message 24171 * with a MTU < 1280 (cf. RFC 2460 section 5) 24172 * - for multirouted IPv6 packets, so that the receiver can 24173 * discard duplicates according to their fragment identifier 24174 */ 24175 /* XXX fix flow control problems. */ 24176 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 24177 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 24178 if (hwaccel) { 24179 /* 24180 * hardware acceleration does not handle these 24181 * "slow path" cases. 24182 */ 24183 /* IPsec KSTATS: should bump bean counter here. */ 24184 if (ire_need_rele) 24185 ire_refrele(ire); 24186 freemsg(ipsec_mp); 24187 return; 24188 } 24189 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 24190 (mp->b_cont ? msgdsize(mp) : 24191 mp->b_wptr - (uchar_t *)ip6h)) { 24192 /* IPsec KSTATS: should bump bean counter here. */ 24193 ip0dbg(("Packet length mismatch: %d, %ld\n", 24194 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 24195 msgdsize(mp))); 24196 if (ire_need_rele) 24197 ire_refrele(ire); 24198 freemsg(ipsec_mp); 24199 return; 24200 } 24201 ASSERT(mp->b_prev == NULL); 24202 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 24203 ntohs(ip6h->ip6_plen) + 24204 IPV6_HDR_LEN, ire->ire_max_frag)); 24205 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 24206 ire->ire_max_frag); 24207 } else { 24208 UPDATE_OB_PKT_COUNT(ire); 24209 ire->ire_last_used_time = lbolt; 24210 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 24211 } 24212 if (ire_need_rele) 24213 ire_refrele(ire); 24214 freeb(ipsec_mp); 24215 } 24216 24217 void 24218 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 24219 { 24220 mblk_t *hada_mp; /* attributes M_CTL mblk */ 24221 da_ipsec_t *hada; /* data attributes */ 24222 ill_t *ill = (ill_t *)q->q_ptr; 24223 24224 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 24225 24226 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 24227 /* IPsec KSTATS: Bump lose counter here! */ 24228 freemsg(mp); 24229 return; 24230 } 24231 24232 /* 24233 * It's an IPsec packet that must be 24234 * accelerated by the Provider, and the 24235 * outbound ill is IPsec acceleration capable. 24236 * Prepends the mblk with an IPHADA_M_CTL, and ship it 24237 * to the ill. 24238 * IPsec KSTATS: should bump packet counter here. 24239 */ 24240 24241 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 24242 if (hada_mp == NULL) { 24243 /* IPsec KSTATS: should bump packet counter here. */ 24244 freemsg(mp); 24245 return; 24246 } 24247 24248 hada_mp->b_datap->db_type = M_CTL; 24249 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 24250 hada_mp->b_cont = mp; 24251 24252 hada = (da_ipsec_t *)hada_mp->b_rptr; 24253 bzero(hada, sizeof (da_ipsec_t)); 24254 hada->da_type = IPHADA_M_CTL; 24255 24256 putnext(q, hada_mp); 24257 } 24258 24259 /* 24260 * Finish the outbound IPsec processing. This function is called from 24261 * ipsec_out_process() if the IPsec packet was processed 24262 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24263 * asynchronously. 24264 */ 24265 void 24266 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 24267 ire_t *ire_arg) 24268 { 24269 uint32_t v_hlen_tos_len; 24270 ipaddr_t dst; 24271 ipif_t *ipif = NULL; 24272 ire_t *ire; 24273 ire_t *ire1 = NULL; 24274 mblk_t *next_mp = NULL; 24275 uint32_t max_frag; 24276 boolean_t multirt_send = B_FALSE; 24277 mblk_t *mp; 24278 mblk_t *mp1; 24279 uint_t ill_index; 24280 ipsec_out_t *io; 24281 boolean_t attach_if; 24282 int match_flags, offset; 24283 irb_t *irb = NULL; 24284 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 24285 zoneid_t zoneid; 24286 uint32_t cksum; 24287 uint16_t *up; 24288 ipxmit_state_t pktxmit_state; 24289 #ifdef _BIG_ENDIAN 24290 #define LENGTH (v_hlen_tos_len & 0xFFFF) 24291 #else 24292 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 24293 #endif 24294 24295 mp = ipsec_mp->b_cont; 24296 ASSERT(mp != NULL); 24297 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24298 dst = ipha->ipha_dst; 24299 24300 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24301 ill_index = io->ipsec_out_ill_index; 24302 attach_if = io->ipsec_out_attach_if; 24303 zoneid = io->ipsec_out_zoneid; 24304 ASSERT(zoneid != ALL_ZONES); 24305 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24306 if (ill_index != 0) { 24307 if (ill == NULL) { 24308 ill = ip_grab_attach_ill(NULL, ipsec_mp, 24309 ill_index, B_FALSE); 24310 24311 /* Failure case frees things for us. */ 24312 if (ill == NULL) 24313 return; 24314 24315 ill_need_rele = B_TRUE; 24316 } 24317 /* 24318 * If this packet needs to go out on a particular interface 24319 * honor it. 24320 */ 24321 if (attach_if) { 24322 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 24323 24324 /* 24325 * Check if we need an ire that will not be 24326 * looked up by anybody else i.e. HIDDEN. 24327 */ 24328 if (ill_is_probeonly(ill)) { 24329 match_flags |= MATCH_IRE_MARK_HIDDEN; 24330 } 24331 } 24332 } 24333 24334 if (CLASSD(dst)) { 24335 boolean_t conn_dontroute; 24336 /* 24337 * Use the ill_index to get the right ipif. 24338 */ 24339 conn_dontroute = io->ipsec_out_dontroute; 24340 if (ill_index == 0) 24341 ipif = ipif_lookup_group(dst, zoneid); 24342 else 24343 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24344 if (ipif == NULL) { 24345 ip1dbg(("ip_wput_ipsec_out: No ipif for" 24346 " multicast\n")); 24347 BUMP_MIB(&ip_mib, ipOutNoRoutes); 24348 freemsg(ipsec_mp); 24349 goto done; 24350 } 24351 /* 24352 * ipha_src has already been intialized with the 24353 * value of the ipif in ip_wput. All we need now is 24354 * an ire to send this downstream. 24355 */ 24356 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 24357 MBLK_GETLABEL(mp), match_flags); 24358 if (ire != NULL) { 24359 ill_t *ill1; 24360 /* 24361 * Do the multicast forwarding now, as the IPSEC 24362 * processing has been done. 24363 */ 24364 if (ip_g_mrouter && !conn_dontroute && 24365 (ill1 = ire_to_ill(ire))) { 24366 if (ip_mforward(ill1, ipha, mp)) { 24367 freemsg(ipsec_mp); 24368 ip1dbg(("ip_wput_ipsec_out: mforward " 24369 "failed\n")); 24370 ire_refrele(ire); 24371 goto done; 24372 } 24373 } 24374 goto send; 24375 } 24376 24377 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 24378 mp->b_prev = NULL; 24379 mp->b_next = NULL; 24380 24381 /* 24382 * If the IPsec packet was processed asynchronously, 24383 * drop it now. 24384 */ 24385 if (q == NULL) { 24386 freemsg(ipsec_mp); 24387 goto done; 24388 } 24389 24390 /* 24391 * We may be using a wrong ipif to create the ire. 24392 * But it is okay as the source address is assigned 24393 * for the packet already. Next outbound packet would 24394 * create the IRE with the right IPIF in ip_wput. 24395 * 24396 * Also handle RTF_MULTIRT routes. 24397 */ 24398 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 24399 } else { 24400 if (attach_if) { 24401 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 24402 zoneid, MBLK_GETLABEL(mp), match_flags); 24403 } else { 24404 if (ire_arg != NULL) { 24405 ire = ire_arg; 24406 ire_need_rele = B_FALSE; 24407 } else { 24408 ire = ire_cache_lookup(dst, zoneid, 24409 MBLK_GETLABEL(mp)); 24410 } 24411 } 24412 if (ire != NULL) { 24413 goto send; 24414 } 24415 24416 /* 24417 * ire disappeared underneath. 24418 * 24419 * What we need to do here is the ip_newroute 24420 * logic to get the ire without doing the IPSEC 24421 * processing. Follow the same old path. But this 24422 * time, ip_wput or ire_add_then_put will call us 24423 * directly as all the IPSEC operations are done. 24424 */ 24425 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 24426 mp->b_prev = NULL; 24427 mp->b_next = NULL; 24428 24429 /* 24430 * If the IPsec packet was processed asynchronously, 24431 * drop it now. 24432 */ 24433 if (q == NULL) { 24434 freemsg(ipsec_mp); 24435 goto done; 24436 } 24437 24438 /* 24439 * Since we're going through ip_newroute() again, we 24440 * need to make sure we don't: 24441 * 24442 * 1.) Trigger the ASSERT() with the ipha_ident 24443 * overloading. 24444 * 2.) Redo transport-layer checksumming, since we've 24445 * already done all that to get this far. 24446 * 24447 * The easiest way not do either of the above is to set 24448 * the ipha_ident field to IP_HDR_INCLUDED. 24449 */ 24450 ipha->ipha_ident = IP_HDR_INCLUDED; 24451 ip_newroute(q, ipsec_mp, dst, NULL, 24452 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 24453 } 24454 goto done; 24455 send: 24456 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 24457 /* 24458 * ESP NAT-Traversal packet. 24459 * 24460 * Just do software checksum for now. 24461 */ 24462 24463 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 24464 IP_STAT(ip_out_sw_cksum); 24465 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 24466 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 24467 #define iphs ((uint16_t *)ipha) 24468 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 24469 iphs[9] + ntohs(htons(ipha->ipha_length) - 24470 IP_SIMPLE_HDR_LENGTH); 24471 #undef iphs 24472 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 24473 cksum = 0xFFFF; 24474 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 24475 if (mp1->b_wptr - mp1->b_rptr >= 24476 offset + sizeof (uint16_t)) { 24477 up = (uint16_t *)(mp1->b_rptr + offset); 24478 *up = cksum; 24479 break; /* out of for loop */ 24480 } else { 24481 offset -= (mp->b_wptr - mp->b_rptr); 24482 } 24483 } /* Otherwise, just keep the all-zero checksum. */ 24484 24485 if (ire->ire_stq == NULL) { 24486 /* 24487 * Loopbacks go through ip_wput_local except for one case. 24488 * We come here if we generate a icmp_frag_needed message 24489 * after IPSEC processing is over. When this function calls 24490 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 24491 * icmp_frag_needed. The message generated comes back here 24492 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 24493 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 24494 * source address as it is usually set in ip_wput_ire. As 24495 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 24496 * and we end up here. We can't enter ip_wput_ire once the 24497 * IPSEC processing is over and hence we need to do it here. 24498 */ 24499 ASSERT(q != NULL); 24500 UPDATE_OB_PKT_COUNT(ire); 24501 ire->ire_last_used_time = lbolt; 24502 if (ipha->ipha_src == 0) 24503 ipha->ipha_src = ire->ire_src_addr; 24504 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 24505 ire, 0, zoneid); 24506 if (ire_need_rele) 24507 ire_refrele(ire); 24508 goto done; 24509 } 24510 24511 if (ire->ire_max_frag < (unsigned int)LENGTH) { 24512 /* 24513 * We are through with IPSEC processing. 24514 * Fragment this and send it on the wire. 24515 */ 24516 if (io->ipsec_out_accelerated) { 24517 /* 24518 * The packet has been accelerated but must 24519 * be fragmented. This should not happen 24520 * since AH and ESP must not accelerate 24521 * packets that need fragmentation, however 24522 * the configuration could have changed 24523 * since the AH or ESP processing. 24524 * Drop packet. 24525 * IPsec KSTATS: bump bean counter here. 24526 */ 24527 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 24528 "fragmented accelerated packet!\n")); 24529 freemsg(ipsec_mp); 24530 } else { 24531 ip_wput_ire_fragmentit(ipsec_mp, ire); 24532 } 24533 if (ire_need_rele) 24534 ire_refrele(ire); 24535 goto done; 24536 } 24537 24538 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 24539 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 24540 (void *)ire->ire_ipif, (void *)ipif)); 24541 24542 /* 24543 * Multiroute the secured packet, unless IPsec really 24544 * requires the packet to go out only through a particular 24545 * interface. 24546 */ 24547 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 24548 ire_t *first_ire; 24549 irb = ire->ire_bucket; 24550 ASSERT(irb != NULL); 24551 /* 24552 * This ire has been looked up as the one that 24553 * goes through the given ipif; 24554 * make sure we do not omit any other multiroute ire 24555 * that may be present in the bucket before this one. 24556 */ 24557 IRB_REFHOLD(irb); 24558 for (first_ire = irb->irb_ire; 24559 first_ire != NULL; 24560 first_ire = first_ire->ire_next) { 24561 if ((first_ire->ire_flags & RTF_MULTIRT) && 24562 (first_ire->ire_addr == ire->ire_addr) && 24563 !(first_ire->ire_marks & 24564 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24565 break; 24566 } 24567 24568 if ((first_ire != NULL) && (first_ire != ire)) { 24569 /* 24570 * Don't change the ire if the packet must 24571 * be fragmented if sent via this new one. 24572 */ 24573 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 24574 IRE_REFHOLD(first_ire); 24575 if (ire_need_rele) 24576 ire_refrele(ire); 24577 else 24578 ire_need_rele = B_TRUE; 24579 ire = first_ire; 24580 } 24581 } 24582 IRB_REFRELE(irb); 24583 24584 multirt_send = B_TRUE; 24585 max_frag = ire->ire_max_frag; 24586 } else { 24587 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 24588 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 24589 "flag, attach_if %d\n", attach_if)); 24590 } 24591 } 24592 24593 /* 24594 * In most cases, the emission loop below is entered only once. 24595 * Only in the case where the ire holds the RTF_MULTIRT 24596 * flag, we loop to process all RTF_MULTIRT ires in the 24597 * bucket, and send the packet through all crossed 24598 * RTF_MULTIRT routes. 24599 */ 24600 do { 24601 if (multirt_send) { 24602 /* 24603 * ire1 holds here the next ire to process in the 24604 * bucket. If multirouting is expected, 24605 * any non-RTF_MULTIRT ire that has the 24606 * right destination address is ignored. 24607 */ 24608 ASSERT(irb != NULL); 24609 IRB_REFHOLD(irb); 24610 for (ire1 = ire->ire_next; 24611 ire1 != NULL; 24612 ire1 = ire1->ire_next) { 24613 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24614 continue; 24615 if (ire1->ire_addr != ire->ire_addr) 24616 continue; 24617 if (ire1->ire_marks & 24618 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24619 continue; 24620 /* No loopback here */ 24621 if (ire1->ire_stq == NULL) 24622 continue; 24623 /* 24624 * Ensure we do not exceed the MTU 24625 * of the next route. 24626 */ 24627 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 24628 ip_multirt_bad_mtu(ire1, max_frag); 24629 continue; 24630 } 24631 24632 IRE_REFHOLD(ire1); 24633 break; 24634 } 24635 IRB_REFRELE(irb); 24636 if (ire1 != NULL) { 24637 /* 24638 * We are in a multiple send case, need to 24639 * make a copy of the packet. 24640 */ 24641 next_mp = copymsg(ipsec_mp); 24642 if (next_mp == NULL) { 24643 ire_refrele(ire1); 24644 ire1 = NULL; 24645 } 24646 } 24647 } 24648 /* 24649 * Everything is done. Send it out on the wire 24650 * 24651 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 24652 * either send it on the wire or, in the case of 24653 * HW acceleration, call ipsec_hw_putnext. 24654 */ 24655 if (ire->ire_nce && 24656 ire->ire_nce->nce_state != ND_REACHABLE) { 24657 DTRACE_PROBE2(ip__wput__ipsec__bail, 24658 (ire_t *), ire, (mblk_t *), ipsec_mp); 24659 /* 24660 * If ire's link-layer is unresolved (this 24661 * would only happen if the incomplete ire 24662 * was added to cachetable via forwarding path) 24663 * don't bother going to ip_xmit_v4. Just drop the 24664 * packet. 24665 * There is a slight risk here, in that, if we 24666 * have the forwarding path create an incomplete 24667 * IRE, then until the IRE is completed, any 24668 * transmitted IPSEC packets will be dropped 24669 * instead of being queued waiting for resolution. 24670 * 24671 * But the likelihood of a forwarding packet and a wput 24672 * packet sending to the same dst at the same time 24673 * and there not yet be an ARP entry for it is small. 24674 * Furthermore, if this actually happens, it might 24675 * be likely that wput would generate multiple 24676 * packets (and forwarding would also have a train 24677 * of packets) for that destination. If this is 24678 * the case, some of them would have been dropped 24679 * anyway, since ARP only queues a few packets while 24680 * waiting for resolution 24681 * 24682 * NOTE: We should really call ip_xmit_v4, 24683 * and let it queue the packet and send the 24684 * ARP query and have ARP come back thus: 24685 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 24686 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 24687 * hw accel work. But it's too complex to get 24688 * the IPsec hw acceleration approach to fit 24689 * well with ip_xmit_v4 doing ARP without 24690 * doing IPSEC simplification. For now, we just 24691 * poke ip_xmit_v4 to trigger the arp resolve, so 24692 * that we can continue with the send on the next 24693 * attempt. 24694 * 24695 * XXX THis should be revisited, when 24696 * the IPsec/IP interaction is cleaned up 24697 */ 24698 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 24699 " - dropping packet\n")); 24700 freemsg(ipsec_mp); 24701 /* 24702 * Call ip_xmit_v4() to trigger ARP query 24703 * in case the nce_state is ND_INITIAL 24704 */ 24705 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24706 goto drop_pkt; 24707 } 24708 24709 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 24710 pktxmit_state = ip_xmit_v4(mp, ire, 24711 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 24712 24713 if ((pktxmit_state == SEND_FAILED) || 24714 (pktxmit_state == LLHDR_RESLV_FAILED)) { 24715 24716 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 24717 drop_pkt: 24718 BUMP_MIB(&ip_mib, ipOutDiscards); 24719 if (ire_need_rele) 24720 ire_refrele(ire); 24721 if (ire1 != NULL) { 24722 ire_refrele(ire1); 24723 freemsg(next_mp); 24724 } 24725 goto done; 24726 } 24727 24728 freeb(ipsec_mp); 24729 if (ire_need_rele) 24730 ire_refrele(ire); 24731 24732 if (ire1 != NULL) { 24733 ire = ire1; 24734 ire_need_rele = B_TRUE; 24735 ASSERT(next_mp); 24736 ipsec_mp = next_mp; 24737 mp = ipsec_mp->b_cont; 24738 ire1 = NULL; 24739 next_mp = NULL; 24740 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24741 } else { 24742 multirt_send = B_FALSE; 24743 } 24744 } while (multirt_send); 24745 done: 24746 if (ill != NULL && ill_need_rele) 24747 ill_refrele(ill); 24748 if (ipif != NULL) 24749 ipif_refrele(ipif); 24750 } 24751 24752 /* 24753 * Get the ill corresponding to the specified ire, and compare its 24754 * capabilities with the protocol and algorithms specified by the 24755 * the SA obtained from ipsec_out. If they match, annotate the 24756 * ipsec_out structure to indicate that the packet needs acceleration. 24757 * 24758 * 24759 * A packet is eligible for outbound hardware acceleration if the 24760 * following conditions are satisfied: 24761 * 24762 * 1. the packet will not be fragmented 24763 * 2. the provider supports the algorithm 24764 * 3. there is no pending control message being exchanged 24765 * 4. snoop is not attached 24766 * 5. the destination address is not a broadcast or multicast address. 24767 * 24768 * Rationale: 24769 * - Hardware drivers do not support fragmentation with 24770 * the current interface. 24771 * - snoop, multicast, and broadcast may result in exposure of 24772 * a cleartext datagram. 24773 * We check all five of these conditions here. 24774 * 24775 * XXX would like to nuke "ire_t *" parameter here; problem is that 24776 * IRE is only way to figure out if a v4 address is a broadcast and 24777 * thus ineligible for acceleration... 24778 */ 24779 static void 24780 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 24781 { 24782 ipsec_out_t *io; 24783 mblk_t *data_mp; 24784 uint_t plen, overhead; 24785 24786 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 24787 return; 24788 24789 if (ill == NULL) 24790 return; 24791 24792 /* 24793 * Destination address is a broadcast or multicast. Punt. 24794 */ 24795 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 24796 IRE_LOCAL))) 24797 return; 24798 24799 data_mp = ipsec_mp->b_cont; 24800 24801 if (ill->ill_isv6) { 24802 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 24803 24804 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 24805 return; 24806 24807 plen = ip6h->ip6_plen; 24808 } else { 24809 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 24810 24811 if (CLASSD(ipha->ipha_dst)) 24812 return; 24813 24814 plen = ipha->ipha_length; 24815 } 24816 /* 24817 * Is there a pending DLPI control message being exchanged 24818 * between IP/IPsec and the DLS Provider? If there is, it 24819 * could be a SADB update, and the state of the DLS Provider 24820 * SADB might not be in sync with the SADB maintained by 24821 * IPsec. To avoid dropping packets or using the wrong keying 24822 * material, we do not accelerate this packet. 24823 */ 24824 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 24825 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 24826 "ill_dlpi_pending! don't accelerate packet\n")); 24827 return; 24828 } 24829 24830 /* 24831 * Is the Provider in promiscous mode? If it does, we don't 24832 * accelerate the packet since it will bounce back up to the 24833 * listeners in the clear. 24834 */ 24835 if (ill->ill_promisc_on_phys) { 24836 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 24837 "ill in promiscous mode, don't accelerate packet\n")); 24838 return; 24839 } 24840 24841 /* 24842 * Will the packet require fragmentation? 24843 */ 24844 24845 /* 24846 * IPsec ESP note: this is a pessimistic estimate, but the same 24847 * as is used elsewhere. 24848 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 24849 * + 2-byte trailer 24850 */ 24851 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 24852 IPSEC_BASE_ESP_HDR_SIZE(sa); 24853 24854 if ((plen + overhead) > ill->ill_max_mtu) 24855 return; 24856 24857 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24858 24859 /* 24860 * Can the ill accelerate this IPsec protocol and algorithm 24861 * specified by the SA? 24862 */ 24863 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 24864 ill->ill_isv6, sa)) { 24865 return; 24866 } 24867 24868 /* 24869 * Tell AH or ESP that the outbound ill is capable of 24870 * accelerating this packet. 24871 */ 24872 io->ipsec_out_is_capab_ill = B_TRUE; 24873 } 24874 24875 /* 24876 * Select which AH & ESP SA's to use (if any) for the outbound packet. 24877 * 24878 * If this function returns B_TRUE, the requested SA's have been filled 24879 * into the ipsec_out_*_sa pointers. 24880 * 24881 * If the function returns B_FALSE, the packet has been "consumed", most 24882 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 24883 * 24884 * The SA references created by the protocol-specific "select" 24885 * function will be released when the ipsec_mp is freed, thanks to the 24886 * ipsec_out_free destructor -- see spd.c. 24887 */ 24888 static boolean_t 24889 ipsec_out_select_sa(mblk_t *ipsec_mp) 24890 { 24891 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 24892 ipsec_out_t *io; 24893 ipsec_policy_t *pp; 24894 ipsec_action_t *ap; 24895 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24896 ASSERT(io->ipsec_out_type == IPSEC_OUT); 24897 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 24898 24899 if (!io->ipsec_out_secure) { 24900 /* 24901 * We came here by mistake. 24902 * Don't bother with ipsec processing 24903 * We should "discourage" this path in the future. 24904 */ 24905 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 24906 return (B_FALSE); 24907 } 24908 ASSERT(io->ipsec_out_need_policy == B_FALSE); 24909 ASSERT((io->ipsec_out_policy != NULL) || 24910 (io->ipsec_out_act != NULL)); 24911 24912 ASSERT(io->ipsec_out_failed == B_FALSE); 24913 24914 /* 24915 * IPSEC processing has started. 24916 */ 24917 io->ipsec_out_proc_begin = B_TRUE; 24918 ap = io->ipsec_out_act; 24919 if (ap == NULL) { 24920 pp = io->ipsec_out_policy; 24921 ASSERT(pp != NULL); 24922 ap = pp->ipsp_act; 24923 ASSERT(ap != NULL); 24924 } 24925 24926 /* 24927 * We have an action. now, let's select SA's. 24928 * (In the future, we can cache this in the conn_t..) 24929 */ 24930 if (ap->ipa_want_esp) { 24931 if (io->ipsec_out_esp_sa == NULL) { 24932 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 24933 IPPROTO_ESP); 24934 } 24935 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 24936 } 24937 24938 if (ap->ipa_want_ah) { 24939 if (io->ipsec_out_ah_sa == NULL) { 24940 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 24941 IPPROTO_AH); 24942 } 24943 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 24944 /* 24945 * The ESP and AH processing order needs to be preserved 24946 * when both protocols are required (ESP should be applied 24947 * before AH for an outbound packet). Force an ESP ACQUIRE 24948 * when both ESP and AH are required, and an AH ACQUIRE 24949 * is needed. 24950 */ 24951 if (ap->ipa_want_esp && need_ah_acquire) 24952 need_esp_acquire = B_TRUE; 24953 } 24954 24955 /* 24956 * Send an ACQUIRE (extended, regular, or both) if we need one. 24957 * Release SAs that got referenced, but will not be used until we 24958 * acquire _all_ of the SAs we need. 24959 */ 24960 if (need_ah_acquire || need_esp_acquire) { 24961 if (io->ipsec_out_ah_sa != NULL) { 24962 IPSA_REFRELE(io->ipsec_out_ah_sa); 24963 io->ipsec_out_ah_sa = NULL; 24964 } 24965 if (io->ipsec_out_esp_sa != NULL) { 24966 IPSA_REFRELE(io->ipsec_out_esp_sa); 24967 io->ipsec_out_esp_sa = NULL; 24968 } 24969 24970 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 24971 return (B_FALSE); 24972 } 24973 24974 return (B_TRUE); 24975 } 24976 24977 /* 24978 * Process an IPSEC_OUT message and see what you can 24979 * do with it. 24980 * IPQoS Notes: 24981 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 24982 * IPSec. 24983 * XXX would like to nuke ire_t. 24984 * XXX ill_index better be "real" 24985 */ 24986 void 24987 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 24988 { 24989 ipsec_out_t *io; 24990 ipsec_policy_t *pp; 24991 ipsec_action_t *ap; 24992 ipha_t *ipha; 24993 ip6_t *ip6h; 24994 mblk_t *mp; 24995 ill_t *ill; 24996 zoneid_t zoneid; 24997 ipsec_status_t ipsec_rc; 24998 boolean_t ill_need_rele = B_FALSE; 24999 25000 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25001 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25002 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25003 mp = ipsec_mp->b_cont; 25004 25005 /* 25006 * Initiate IPPF processing. We do it here to account for packets 25007 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 25008 * We can check for ipsec_out_proc_begin even for such packets, as 25009 * they will always be false (asserted below). 25010 */ 25011 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 25012 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 25013 io->ipsec_out_ill_index : ill_index); 25014 if (mp == NULL) { 25015 ip2dbg(("ipsec_out_process: packet dropped "\ 25016 "during IPPF processing\n")); 25017 freeb(ipsec_mp); 25018 BUMP_MIB(&ip_mib, ipOutDiscards); 25019 return; 25020 } 25021 } 25022 25023 if (!io->ipsec_out_secure) { 25024 /* 25025 * We came here by mistake. 25026 * Don't bother with ipsec processing 25027 * Should "discourage" this path in the future. 25028 */ 25029 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25030 goto done; 25031 } 25032 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25033 ASSERT((io->ipsec_out_policy != NULL) || 25034 (io->ipsec_out_act != NULL)); 25035 ASSERT(io->ipsec_out_failed == B_FALSE); 25036 25037 if (!ipsec_loaded()) { 25038 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 25039 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25040 BUMP_MIB(&ip_mib, ipOutDiscards); 25041 } else { 25042 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 25043 } 25044 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 25045 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 25046 return; 25047 } 25048 25049 /* 25050 * IPSEC processing has started. 25051 */ 25052 io->ipsec_out_proc_begin = B_TRUE; 25053 ap = io->ipsec_out_act; 25054 if (ap == NULL) { 25055 pp = io->ipsec_out_policy; 25056 ASSERT(pp != NULL); 25057 ap = pp->ipsp_act; 25058 ASSERT(ap != NULL); 25059 } 25060 25061 /* 25062 * Save the outbound ill index. When the packet comes back 25063 * from IPsec, we make sure the ill hasn't changed or disappeared 25064 * before sending it the accelerated packet. 25065 */ 25066 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 25067 int ifindex; 25068 ill = ire_to_ill(ire); 25069 ifindex = ill->ill_phyint->phyint_ifindex; 25070 io->ipsec_out_capab_ill_index = ifindex; 25071 } 25072 25073 /* 25074 * The order of processing is first insert a IP header if needed. 25075 * Then insert the ESP header and then the AH header. 25076 */ 25077 if ((io->ipsec_out_se_done == B_FALSE) && 25078 (ap->ipa_want_se)) { 25079 /* 25080 * First get the outer IP header before sending 25081 * it to ESP. 25082 */ 25083 ipha_t *oipha, *iipha; 25084 mblk_t *outer_mp, *inner_mp; 25085 25086 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 25087 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 25088 "ipsec_out_process: " 25089 "Self-Encapsulation failed: Out of memory\n"); 25090 freemsg(ipsec_mp); 25091 BUMP_MIB(&ip_mib, ipOutDiscards); 25092 return; 25093 } 25094 inner_mp = ipsec_mp->b_cont; 25095 ASSERT(inner_mp->b_datap->db_type == M_DATA); 25096 oipha = (ipha_t *)outer_mp->b_rptr; 25097 iipha = (ipha_t *)inner_mp->b_rptr; 25098 *oipha = *iipha; 25099 outer_mp->b_wptr += sizeof (ipha_t); 25100 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 25101 sizeof (ipha_t)); 25102 oipha->ipha_protocol = IPPROTO_ENCAP; 25103 oipha->ipha_version_and_hdr_length = 25104 IP_SIMPLE_HDR_VERSION; 25105 oipha->ipha_hdr_checksum = 0; 25106 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 25107 outer_mp->b_cont = inner_mp; 25108 ipsec_mp->b_cont = outer_mp; 25109 25110 io->ipsec_out_se_done = B_TRUE; 25111 io->ipsec_out_encaps = B_TRUE; 25112 } 25113 25114 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 25115 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 25116 !ipsec_out_select_sa(ipsec_mp)) 25117 return; 25118 25119 /* 25120 * By now, we know what SA's to use. Toss over to ESP & AH 25121 * to do the heavy lifting. 25122 */ 25123 zoneid = io->ipsec_out_zoneid; 25124 ASSERT(zoneid != ALL_ZONES); 25125 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 25126 ASSERT(io->ipsec_out_esp_sa != NULL); 25127 io->ipsec_out_esp_done = B_TRUE; 25128 /* 25129 * Note that since hw accel can only apply one transform, 25130 * not two, we skip hw accel for ESP if we also have AH 25131 * This is an design limitation of the interface 25132 * which should be revisited. 25133 */ 25134 ASSERT(ire != NULL); 25135 if (io->ipsec_out_ah_sa == NULL) { 25136 ill = (ill_t *)ire->ire_stq->q_ptr; 25137 ipsec_out_is_accelerated(ipsec_mp, 25138 io->ipsec_out_esp_sa, ill, ire); 25139 } 25140 25141 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 25142 switch (ipsec_rc) { 25143 case IPSEC_STATUS_SUCCESS: 25144 break; 25145 case IPSEC_STATUS_FAILED: 25146 BUMP_MIB(&ip_mib, ipOutDiscards); 25147 /* FALLTHRU */ 25148 case IPSEC_STATUS_PENDING: 25149 return; 25150 } 25151 } 25152 25153 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 25154 ASSERT(io->ipsec_out_ah_sa != NULL); 25155 io->ipsec_out_ah_done = B_TRUE; 25156 if (ire == NULL) { 25157 int idx = io->ipsec_out_capab_ill_index; 25158 ill = ill_lookup_on_ifindex(idx, B_FALSE, 25159 NULL, NULL, NULL, NULL); 25160 ill_need_rele = B_TRUE; 25161 } else { 25162 ill = (ill_t *)ire->ire_stq->q_ptr; 25163 } 25164 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 25165 ire); 25166 25167 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 25168 switch (ipsec_rc) { 25169 case IPSEC_STATUS_SUCCESS: 25170 break; 25171 case IPSEC_STATUS_FAILED: 25172 BUMP_MIB(&ip_mib, ipOutDiscards); 25173 /* FALLTHRU */ 25174 case IPSEC_STATUS_PENDING: 25175 if (ill != NULL && ill_need_rele) 25176 ill_refrele(ill); 25177 return; 25178 } 25179 } 25180 /* 25181 * We are done with IPSEC processing. Send it over 25182 * the wire. 25183 */ 25184 done: 25185 mp = ipsec_mp->b_cont; 25186 ipha = (ipha_t *)mp->b_rptr; 25187 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25188 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 25189 } else { 25190 ip6h = (ip6_t *)ipha; 25191 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 25192 } 25193 if (ill != NULL && ill_need_rele) 25194 ill_refrele(ill); 25195 } 25196 25197 /* ARGSUSED */ 25198 void 25199 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 25200 { 25201 opt_restart_t *or; 25202 int err; 25203 conn_t *connp; 25204 25205 ASSERT(CONN_Q(q)); 25206 connp = Q_TO_CONN(q); 25207 25208 ASSERT(first_mp->b_datap->db_type == M_CTL); 25209 or = (opt_restart_t *)first_mp->b_rptr; 25210 /* 25211 * We don't need to pass any credentials here since this is just 25212 * a restart. The credentials are passed in when svr4_optcom_req 25213 * is called the first time (from ip_wput_nondata). 25214 */ 25215 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 25216 err = svr4_optcom_req(q, first_mp, NULL, 25217 &ip_opt_obj); 25218 } else { 25219 ASSERT(or->or_type == T_OPTMGMT_REQ); 25220 err = tpi_optcom_req(q, first_mp, NULL, 25221 &ip_opt_obj); 25222 } 25223 if (err != EINPROGRESS) { 25224 /* operation is done */ 25225 CONN_OPER_PENDING_DONE(connp); 25226 } 25227 } 25228 25229 /* 25230 * ioctls that go through a down/up sequence may need to wait for the down 25231 * to complete. This involves waiting for the ire and ipif refcnts to go down 25232 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 25233 */ 25234 /* ARGSUSED */ 25235 void 25236 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 25237 { 25238 struct iocblk *iocp; 25239 mblk_t *mp1; 25240 ipif_t *ipif; 25241 ip_ioctl_cmd_t *ipip; 25242 int err; 25243 sin_t *sin; 25244 struct lifreq *lifr; 25245 struct ifreq *ifr; 25246 25247 iocp = (struct iocblk *)mp->b_rptr; 25248 ASSERT(ipsq != NULL); 25249 /* Existence of mp1 verified in ip_wput_nondata */ 25250 mp1 = mp->b_cont->b_cont; 25251 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25252 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 25253 ill_t *ill; 25254 /* 25255 * Special case where ipsq_current_ipif may not be set. 25256 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 25257 * ill could also have become part of a ipmp group in the 25258 * process, we are here as were not able to complete the 25259 * operation in ipif_set_values because we could not become 25260 * exclusive on the new ipsq, In such a case ipsq_current_ipif 25261 * will not be set so we need to set it. 25262 */ 25263 ill = (ill_t *)q->q_ptr; 25264 ipsq->ipsq_current_ipif = ill->ill_ipif; 25265 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25266 } 25267 25268 ipif = ipsq->ipsq_current_ipif; 25269 ASSERT(ipif != NULL); 25270 if (ipip->ipi_cmd_type == IF_CMD) { 25271 /* This a old style SIOC[GS]IF* command */ 25272 ifr = (struct ifreq *)mp1->b_rptr; 25273 sin = (sin_t *)&ifr->ifr_addr; 25274 } else if (ipip->ipi_cmd_type == LIF_CMD) { 25275 /* This a new style SIOC[GS]LIF* command */ 25276 lifr = (struct lifreq *)mp1->b_rptr; 25277 sin = (sin_t *)&lifr->lifr_addr; 25278 } else { 25279 sin = NULL; 25280 } 25281 25282 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 25283 (void *)mp1->b_rptr); 25284 25285 /* SIOCLIFREMOVEIF could have removed the ipif */ 25286 ip_ioctl_finish(q, mp, err, 25287 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25288 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 25289 } 25290 25291 /* 25292 * ioctl processing 25293 * 25294 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 25295 * the ioctl command in the ioctl tables and determines the copyin data size 25296 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 25297 * size. 25298 * 25299 * ioctl processing then continues when the M_IOCDATA makes its way down. 25300 * Now the ioctl is looked up again in the ioctl table, and its properties are 25301 * extracted. The associated 'conn' is then refheld till the end of the ioctl 25302 * and the general ioctl processing function ip_process_ioctl is called. 25303 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 25304 * so goes thru the serialization primitive ipsq_try_enter. Then the 25305 * appropriate function to handle the ioctl is called based on the entry in 25306 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 25307 * which also refreleases the 'conn' that was refheld at the start of the 25308 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 25309 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 25310 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 25311 * 25312 * Many exclusive ioctls go thru an internal down up sequence as part of 25313 * the operation. For example an attempt to change the IP address of an 25314 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 25315 * does all the cleanup such as deleting all ires that use this address. 25316 * Then we need to wait till all references to the interface go away. 25317 */ 25318 void 25319 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 25320 { 25321 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 25322 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 25323 cmd_info_t ci; 25324 int err; 25325 boolean_t entered_ipsq = B_FALSE; 25326 25327 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 25328 25329 if (ipip == NULL) 25330 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25331 25332 /* 25333 * SIOCLIFADDIF needs to go thru a special path since the 25334 * ill may not exist yet. This happens in the case of lo0 25335 * which is created using this ioctl. 25336 */ 25337 if (ipip->ipi_cmd == SIOCLIFADDIF) { 25338 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 25339 ip_ioctl_finish(q, mp, err, 25340 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25341 NULL, NULL); 25342 return; 25343 } 25344 25345 ci.ci_ipif = NULL; 25346 switch (ipip->ipi_cmd_type) { 25347 case IF_CMD: 25348 case LIF_CMD: 25349 /* 25350 * ioctls that pass in a [l]ifreq appear here. 25351 * ip_extract_lifreq_cmn returns a refheld ipif in 25352 * ci.ci_ipif 25353 */ 25354 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 25355 ipip->ipi_flags, &ci, ip_process_ioctl); 25356 if (err != 0) { 25357 ip_ioctl_finish(q, mp, err, 25358 ipip->ipi_flags & IPI_GET_CMD ? 25359 COPYOUT : NO_COPYOUT, NULL, NULL); 25360 return; 25361 } 25362 ASSERT(ci.ci_ipif != NULL); 25363 break; 25364 25365 case TUN_CMD: 25366 /* 25367 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 25368 * a refheld ipif in ci.ci_ipif 25369 */ 25370 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 25371 if (err != 0) { 25372 ip_ioctl_finish(q, mp, err, 25373 ipip->ipi_flags & IPI_GET_CMD ? 25374 COPYOUT : NO_COPYOUT, NULL, NULL); 25375 return; 25376 } 25377 ASSERT(ci.ci_ipif != NULL); 25378 break; 25379 25380 case MISC_CMD: 25381 /* 25382 * ioctls that neither pass in [l]ifreq or iftun_req come here 25383 * For eg. SIOCGLIFCONF will appear here. 25384 */ 25385 switch (ipip->ipi_cmd) { 25386 case IF_UNITSEL: 25387 /* ioctl comes down the ill */ 25388 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 25389 ipif_refhold(ci.ci_ipif); 25390 break; 25391 case SIOCGMSFILTER: 25392 case SIOCSMSFILTER: 25393 case SIOCGIPMSFILTER: 25394 case SIOCSIPMSFILTER: 25395 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 25396 ip_process_ioctl); 25397 if (err != 0) { 25398 ip_ioctl_finish(q, mp, err, 25399 ipip->ipi_flags & IPI_GET_CMD ? 25400 COPYOUT : NO_COPYOUT, NULL, NULL); 25401 return; 25402 } 25403 break; 25404 } 25405 err = 0; 25406 ci.ci_sin = NULL; 25407 ci.ci_sin6 = NULL; 25408 ci.ci_lifr = NULL; 25409 break; 25410 } 25411 25412 /* 25413 * If ipsq is non-null, we are already being called exclusively 25414 */ 25415 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 25416 if (!(ipip->ipi_flags & IPI_WR)) { 25417 /* 25418 * A return value of EINPROGRESS means the ioctl is 25419 * either queued and waiting for some reason or has 25420 * already completed. 25421 */ 25422 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25423 ci.ci_lifr); 25424 if (ci.ci_ipif != NULL) 25425 ipif_refrele(ci.ci_ipif); 25426 ip_ioctl_finish(q, mp, err, 25427 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25428 NULL, NULL); 25429 return; 25430 } 25431 25432 ASSERT(ci.ci_ipif != NULL); 25433 25434 if (ipsq == NULL) { 25435 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 25436 ip_process_ioctl, NEW_OP, B_TRUE); 25437 entered_ipsq = B_TRUE; 25438 } 25439 /* 25440 * Release the ipif so that ipif_down and friends that wait for 25441 * references to go away are not misled about the current ipif_refcnt 25442 * values. We are writer so we can access the ipif even after releasing 25443 * the ipif. 25444 */ 25445 ipif_refrele(ci.ci_ipif); 25446 if (ipsq == NULL) 25447 return; 25448 25449 mutex_enter(&ipsq->ipsq_lock); 25450 ASSERT(ipsq->ipsq_current_ipif == NULL); 25451 ipsq->ipsq_current_ipif = ci.ci_ipif; 25452 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25453 mutex_exit(&ipsq->ipsq_lock); 25454 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 25455 /* 25456 * For most set ioctls that come here, this serves as a single point 25457 * where we set the IPIF_CHANGING flag. This ensures that there won't 25458 * be any new references to the ipif. This helps functions that go 25459 * through this path and end up trying to wait for the refcnts 25460 * associated with the ipif to go down to zero. Some exceptions are 25461 * Failover, Failback, and Groupname commands that operate on more than 25462 * just the ci.ci_ipif. These commands internally determine the 25463 * set of ipif's they operate on and set and clear the IPIF_CHANGING 25464 * flags on that set. Another exception is the Removeif command that 25465 * sets the IPIF_CONDEMNED flag internally after identifying the right 25466 * ipif to operate on. 25467 */ 25468 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 25469 ipip->ipi_cmd != SIOCLIFFAILOVER && 25470 ipip->ipi_cmd != SIOCLIFFAILBACK && 25471 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 25472 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 25473 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 25474 25475 /* 25476 * A return value of EINPROGRESS means the ioctl is 25477 * either queued and waiting for some reason or has 25478 * already completed. 25479 */ 25480 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25481 ci.ci_lifr); 25482 25483 /* SIOCLIFREMOVEIF could have removed the ipif */ 25484 ip_ioctl_finish(q, mp, err, 25485 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25486 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 25487 25488 if (entered_ipsq) 25489 ipsq_exit(ipsq, B_TRUE, B_TRUE); 25490 } 25491 25492 /* 25493 * Complete the ioctl. Typically ioctls use the mi package and need to 25494 * do mi_copyout/mi_copy_done. 25495 */ 25496 void 25497 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 25498 ipif_t *ipif, ipsq_t *ipsq) 25499 { 25500 conn_t *connp = NULL; 25501 25502 if (err == EINPROGRESS) 25503 return; 25504 25505 if (CONN_Q(q)) { 25506 connp = Q_TO_CONN(q); 25507 ASSERT(connp->conn_ref >= 2); 25508 } 25509 25510 switch (mode) { 25511 case COPYOUT: 25512 if (err == 0) 25513 mi_copyout(q, mp); 25514 else 25515 mi_copy_done(q, mp, err); 25516 break; 25517 25518 case NO_COPYOUT: 25519 mi_copy_done(q, mp, err); 25520 break; 25521 25522 default: 25523 /* An ioctl aborted through a conn close would take this path */ 25524 break; 25525 } 25526 25527 /* 25528 * The refhold placed at the start of the ioctl is released here. 25529 */ 25530 if (connp != NULL) 25531 CONN_OPER_PENDING_DONE(connp); 25532 25533 /* 25534 * If the ioctl were an exclusive ioctl it would have set 25535 * IPIF_CHANGING at the start of the ioctl which is undone here. 25536 */ 25537 if (ipif != NULL) { 25538 mutex_enter(&(ipif)->ipif_ill->ill_lock); 25539 ipif->ipif_state_flags &= ~IPIF_CHANGING; 25540 mutex_exit(&(ipif)->ipif_ill->ill_lock); 25541 } 25542 25543 /* 25544 * Clear the current ipif in the ipsq at the completion of the ioctl. 25545 * Note that a non-null ipsq_current_ipif prevents new ioctls from 25546 * entering the ipsq 25547 */ 25548 if (ipsq != NULL) { 25549 mutex_enter(&ipsq->ipsq_lock); 25550 ipsq->ipsq_current_ipif = NULL; 25551 mutex_exit(&ipsq->ipsq_lock); 25552 } 25553 } 25554 25555 /* 25556 * This is called from ip_wput_nondata to resume a deferred TCP bind. 25557 */ 25558 /* ARGSUSED */ 25559 void 25560 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 25561 { 25562 conn_t *connp = arg; 25563 tcp_t *tcp; 25564 25565 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 25566 tcp = connp->conn_tcp; 25567 25568 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 25569 freemsg(mp); 25570 else 25571 tcp_rput_other(tcp, mp); 25572 CONN_OPER_PENDING_DONE(connp); 25573 } 25574 25575 /* Called from ip_wput for all non data messages */ 25576 /* ARGSUSED */ 25577 void 25578 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 25579 { 25580 mblk_t *mp1; 25581 ire_t *ire, *fake_ire; 25582 ill_t *ill; 25583 struct iocblk *iocp; 25584 ip_ioctl_cmd_t *ipip; 25585 cred_t *cr; 25586 conn_t *connp = NULL; 25587 int cmd, err; 25588 nce_t *nce; 25589 ipif_t *ipif; 25590 25591 if (CONN_Q(q)) 25592 connp = Q_TO_CONN(q); 25593 25594 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 25595 25596 /* Check if it is a queue to /dev/sctp. */ 25597 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 25598 connp->conn_rq == NULL) { 25599 sctp_wput(q, mp); 25600 return; 25601 } 25602 25603 switch (DB_TYPE(mp)) { 25604 case M_IOCTL: 25605 /* 25606 * IOCTL processing begins in ip_sioctl_copyin_setup which 25607 * will arrange to copy in associated control structures. 25608 */ 25609 ip_sioctl_copyin_setup(q, mp); 25610 return; 25611 case M_IOCDATA: 25612 /* 25613 * Ensure that this is associated with one of our trans- 25614 * parent ioctls. If it's not ours, discard it if we're 25615 * running as a driver, or pass it on if we're a module. 25616 */ 25617 iocp = (struct iocblk *)mp->b_rptr; 25618 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25619 if (ipip == NULL) { 25620 if (q->q_next == NULL) { 25621 goto nak; 25622 } else { 25623 putnext(q, mp); 25624 } 25625 return; 25626 } else if ((q->q_next != NULL) && 25627 !(ipip->ipi_flags & IPI_MODOK)) { 25628 /* 25629 * the ioctl is one we recognise, but is not 25630 * consumed by IP as a module, pass M_IOCDATA 25631 * for processing downstream, but only for 25632 * common Streams ioctls. 25633 */ 25634 if (ipip->ipi_flags & IPI_PASS_DOWN) { 25635 putnext(q, mp); 25636 return; 25637 } else { 25638 goto nak; 25639 } 25640 } 25641 25642 /* IOCTL continuation following copyin or copyout. */ 25643 if (mi_copy_state(q, mp, NULL) == -1) { 25644 /* 25645 * The copy operation failed. mi_copy_state already 25646 * cleaned up, so we're out of here. 25647 */ 25648 return; 25649 } 25650 /* 25651 * If we just completed a copy in, we become writer and 25652 * continue processing in ip_sioctl_copyin_done. If it 25653 * was a copy out, we call mi_copyout again. If there is 25654 * nothing more to copy out, it will complete the IOCTL. 25655 */ 25656 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 25657 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 25658 mi_copy_done(q, mp, EPROTO); 25659 return; 25660 } 25661 /* 25662 * Check for cases that need more copying. A return 25663 * value of 0 means a second copyin has been started, 25664 * so we return; a return value of 1 means no more 25665 * copying is needed, so we continue. 25666 */ 25667 cmd = iocp->ioc_cmd; 25668 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 25669 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 25670 MI_COPY_COUNT(mp) == 1) { 25671 if (ip_copyin_msfilter(q, mp) == 0) 25672 return; 25673 } 25674 /* 25675 * Refhold the conn, till the ioctl completes. This is 25676 * needed in case the ioctl ends up in the pending mp 25677 * list. Every mp in the ill_pending_mp list and 25678 * the ipsq_pending_mp must have a refhold on the conn 25679 * to resume processing. The refhold is released when 25680 * the ioctl completes. (normally or abnormally) 25681 * In all cases ip_ioctl_finish is called to finish 25682 * the ioctl. 25683 */ 25684 if (connp != NULL) { 25685 /* This is not a reentry */ 25686 ASSERT(ipsq == NULL); 25687 CONN_INC_REF(connp); 25688 } else { 25689 if (!(ipip->ipi_flags & IPI_MODOK)) { 25690 mi_copy_done(q, mp, EINVAL); 25691 return; 25692 } 25693 } 25694 25695 ip_process_ioctl(ipsq, q, mp, ipip); 25696 25697 } else { 25698 mi_copyout(q, mp); 25699 } 25700 return; 25701 nak: 25702 iocp->ioc_error = EINVAL; 25703 mp->b_datap->db_type = M_IOCNAK; 25704 iocp->ioc_count = 0; 25705 qreply(q, mp); 25706 return; 25707 25708 case M_IOCNAK: 25709 /* 25710 * The only way we could get here is if a resolver didn't like 25711 * an IOCTL we sent it. This shouldn't happen. 25712 */ 25713 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 25714 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 25715 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 25716 freemsg(mp); 25717 return; 25718 case M_IOCACK: 25719 /* Finish socket ioctls passed through to ARP. */ 25720 ip_sioctl_iocack(q, mp); 25721 return; 25722 case M_FLUSH: 25723 if (*mp->b_rptr & FLUSHW) 25724 flushq(q, FLUSHALL); 25725 if (q->q_next) { 25726 /* 25727 * M_FLUSH is sent up to IP by some drivers during 25728 * unbind. ip_rput has already replied to it. We are 25729 * here for the M_FLUSH that we originated in IP 25730 * before sending the unbind request to the driver. 25731 * Just free it as we don't queue packets in IP 25732 * on the write side of the device instance. 25733 */ 25734 freemsg(mp); 25735 return; 25736 } 25737 if (*mp->b_rptr & FLUSHR) { 25738 *mp->b_rptr &= ~FLUSHW; 25739 qreply(q, mp); 25740 return; 25741 } 25742 freemsg(mp); 25743 return; 25744 case IRE_DB_REQ_TYPE: 25745 /* An Upper Level Protocol wants a copy of an IRE. */ 25746 ip_ire_req(q, mp); 25747 return; 25748 case M_CTL: 25749 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 25750 break; 25751 25752 if (connp != NULL && *(uint32_t *)mp->b_rptr == 25753 IP_ULP_OUT_LABELED) { 25754 out_labeled_t *olp; 25755 25756 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 25757 break; 25758 olp = (out_labeled_t *)mp->b_rptr; 25759 connp->conn_ulp_labeled = olp->out_qnext == q; 25760 freemsg(mp); 25761 return; 25762 } 25763 25764 /* M_CTL messages are used by ARP to tell us things. */ 25765 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 25766 break; 25767 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 25768 case AR_ENTRY_SQUERY: 25769 ip_wput_ctl(q, mp); 25770 return; 25771 case AR_CLIENT_NOTIFY: 25772 ip_arp_news(q, mp); 25773 return; 25774 case AR_DLPIOP_DONE: 25775 ASSERT(q->q_next != NULL); 25776 ill = (ill_t *)q->q_ptr; 25777 /* qwriter_ip releases the refhold */ 25778 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 25779 ill_refhold(ill); 25780 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 25781 CUR_OP, B_FALSE); 25782 return; 25783 case AR_ARP_CLOSING: 25784 /* 25785 * ARP (above us) is closing. If no ARP bringup is 25786 * currently pending, ack the message so that ARP 25787 * can complete its close. Also mark ill_arp_closing 25788 * so that new ARP bringups will fail. If any 25789 * ARP bringup is currently in progress, we will 25790 * ack this when the current ARP bringup completes. 25791 */ 25792 ASSERT(q->q_next != NULL); 25793 ill = (ill_t *)q->q_ptr; 25794 mutex_enter(&ill->ill_lock); 25795 ill->ill_arp_closing = 1; 25796 if (!ill->ill_arp_bringup_pending) { 25797 mutex_exit(&ill->ill_lock); 25798 qreply(q, mp); 25799 } else { 25800 mutex_exit(&ill->ill_lock); 25801 freemsg(mp); 25802 } 25803 return; 25804 default: 25805 break; 25806 } 25807 break; 25808 case M_PROTO: 25809 case M_PCPROTO: 25810 /* 25811 * The only PROTO messages we expect are ULP binds and 25812 * copies of option negotiation acknowledgements. 25813 */ 25814 switch (((union T_primitives *)mp->b_rptr)->type) { 25815 case O_T_BIND_REQ: 25816 case T_BIND_REQ: { 25817 /* Request can get queued in bind */ 25818 ASSERT(connp != NULL); 25819 /* 25820 * Both TCP and UDP call ip_bind_{v4,v6}() directly 25821 * instead of going through this path. We only get 25822 * here in the following cases: 25823 * 25824 * a. Bind retries, where ipsq is non-NULL. 25825 * b. T_BIND_REQ is issued from non TCP/UDP 25826 * transport, e.g. icmp for raw socket, 25827 * in which case ipsq will be NULL. 25828 */ 25829 ASSERT(ipsq != NULL || 25830 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 25831 25832 /* Don't increment refcnt if this is a re-entry */ 25833 if (ipsq == NULL) 25834 CONN_INC_REF(connp); 25835 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 25836 connp, NULL) : ip_bind_v4(q, mp, connp); 25837 if (mp == NULL) 25838 return; 25839 if (IPCL_IS_TCP(connp)) { 25840 /* 25841 * In the case of TCP endpoint we 25842 * come here only for bind retries 25843 */ 25844 ASSERT(ipsq != NULL); 25845 CONN_INC_REF(connp); 25846 squeue_fill(connp->conn_sqp, mp, 25847 ip_resume_tcp_bind, connp, 25848 SQTAG_BIND_RETRY); 25849 return; 25850 } else if (IPCL_IS_UDP(connp)) { 25851 /* 25852 * In the case of UDP endpoint we 25853 * come here only for bind retries 25854 */ 25855 ASSERT(ipsq != NULL); 25856 udp_resume_bind(connp, mp); 25857 return; 25858 } 25859 qreply(q, mp); 25860 CONN_OPER_PENDING_DONE(connp); 25861 return; 25862 } 25863 case T_SVR4_OPTMGMT_REQ: 25864 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 25865 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 25866 25867 ASSERT(connp != NULL); 25868 if (!snmpcom_req(q, mp, ip_snmp_set, 25869 ip_snmp_get, cr)) { 25870 /* 25871 * Call svr4_optcom_req so that it can 25872 * generate the ack. We don't come here 25873 * if this operation is being restarted. 25874 * ip_restart_optmgmt will drop the conn ref. 25875 * In the case of ipsec option after the ipsec 25876 * load is complete conn_restart_ipsec_waiter 25877 * drops the conn ref. 25878 */ 25879 ASSERT(ipsq == NULL); 25880 CONN_INC_REF(connp); 25881 if (ip_check_for_ipsec_opt(q, mp)) 25882 return; 25883 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 25884 if (err != EINPROGRESS) { 25885 /* Operation is done */ 25886 CONN_OPER_PENDING_DONE(connp); 25887 } 25888 } 25889 return; 25890 case T_OPTMGMT_REQ: 25891 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 25892 /* 25893 * Note: No snmpcom_req support through new 25894 * T_OPTMGMT_REQ. 25895 * Call tpi_optcom_req so that it can 25896 * generate the ack. 25897 */ 25898 ASSERT(connp != NULL); 25899 ASSERT(ipsq == NULL); 25900 /* 25901 * We don't come here for restart. ip_restart_optmgmt 25902 * will drop the conn ref. In the case of ipsec option 25903 * after the ipsec load is complete 25904 * conn_restart_ipsec_waiter drops the conn ref. 25905 */ 25906 CONN_INC_REF(connp); 25907 if (ip_check_for_ipsec_opt(q, mp)) 25908 return; 25909 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 25910 if (err != EINPROGRESS) { 25911 /* Operation is done */ 25912 CONN_OPER_PENDING_DONE(connp); 25913 } 25914 return; 25915 case T_UNBIND_REQ: 25916 mp = ip_unbind(q, mp); 25917 qreply(q, mp); 25918 return; 25919 default: 25920 /* 25921 * Have to drop any DLPI messages coming down from 25922 * arp (such as an info_req which would cause ip 25923 * to receive an extra info_ack if it was passed 25924 * through. 25925 */ 25926 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 25927 (int)*(uint_t *)mp->b_rptr)); 25928 freemsg(mp); 25929 return; 25930 } 25931 /* NOTREACHED */ 25932 case IRE_DB_TYPE: { 25933 nce_t *nce; 25934 ill_t *ill; 25935 in6_addr_t gw_addr_v6; 25936 25937 25938 /* 25939 * This is a response back from a resolver. It 25940 * consists of a message chain containing: 25941 * IRE_MBLK-->LL_HDR_MBLK->pkt 25942 * The IRE_MBLK is the one we allocated in ip_newroute. 25943 * The LL_HDR_MBLK is the DLPI header to use to get 25944 * the attached packet, and subsequent ones for the 25945 * same destination, transmitted. 25946 */ 25947 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 25948 break; 25949 /* 25950 * First, check to make sure the resolution succeeded. 25951 * If it failed, the second mblk will be empty. 25952 * If it is, free the chain, dropping the packet. 25953 * (We must ire_delete the ire; that frees the ire mblk) 25954 * We're doing this now to support PVCs for ATM; it's 25955 * a partial xresolv implementation. When we fully implement 25956 * xresolv interfaces, instead of freeing everything here 25957 * we'll initiate neighbor discovery. 25958 * 25959 * For v4 (ARP and other external resolvers) the resolver 25960 * frees the message, so no check is needed. This check 25961 * is required, though, for a full xresolve implementation. 25962 * Including this code here now both shows how external 25963 * resolvers can NACK a resolution request using an 25964 * existing design that has no specific provisions for NACKs, 25965 * and also takes into account that the current non-ARP 25966 * external resolver has been coded to use this method of 25967 * NACKing for all IPv6 (xresolv) cases, 25968 * whether our xresolv implementation is complete or not. 25969 * 25970 */ 25971 ire = (ire_t *)mp->b_rptr; 25972 ill = ire_to_ill(ire); 25973 mp1 = mp->b_cont; /* dl_unitdata_req */ 25974 if (mp1->b_rptr == mp1->b_wptr) { 25975 if (ire->ire_ipversion == IPV6_VERSION) { 25976 /* 25977 * XRESOLV interface. 25978 */ 25979 ASSERT(ill->ill_flags & ILLF_XRESOLV); 25980 mutex_enter(&ire->ire_lock); 25981 gw_addr_v6 = ire->ire_gateway_addr_v6; 25982 mutex_exit(&ire->ire_lock); 25983 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 25984 nce = ndp_lookup_v6(ill, 25985 &ire->ire_addr_v6, B_FALSE); 25986 } else { 25987 nce = ndp_lookup_v6(ill, &gw_addr_v6, 25988 B_FALSE); 25989 } 25990 if (nce != NULL) { 25991 nce_resolv_failed(nce); 25992 ndp_delete(nce); 25993 NCE_REFRELE(nce); 25994 } 25995 } 25996 mp->b_cont = NULL; 25997 freemsg(mp1); /* frees the pkt as well */ 25998 ASSERT(ire->ire_nce == NULL); 25999 ire_delete((ire_t *)mp->b_rptr); 26000 return; 26001 } 26002 26003 /* 26004 * Split them into IRE_MBLK and pkt and feed it into 26005 * ire_add_then_send. Then in ire_add_then_send 26006 * the IRE will be added, and then the packet will be 26007 * run back through ip_wput. This time it will make 26008 * it to the wire. 26009 */ 26010 mp->b_cont = NULL; 26011 mp = mp1->b_cont; /* now, mp points to pkt */ 26012 mp1->b_cont = NULL; 26013 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 26014 if (ire->ire_ipversion == IPV6_VERSION) { 26015 /* 26016 * XRESOLV interface. Find the nce and put a copy 26017 * of the dl_unitdata_req in nce_res_mp 26018 */ 26019 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26020 mutex_enter(&ire->ire_lock); 26021 gw_addr_v6 = ire->ire_gateway_addr_v6; 26022 mutex_exit(&ire->ire_lock); 26023 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26024 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 26025 B_FALSE); 26026 } else { 26027 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 26028 } 26029 if (nce != NULL) { 26030 /* 26031 * We have to protect nce_res_mp here 26032 * from being accessed by other threads 26033 * while we change the mblk pointer. 26034 * Other functions will also lock the nce when 26035 * accessing nce_res_mp. 26036 * 26037 * The reason we change the mblk pointer 26038 * here rather than copying the resolved address 26039 * into the template is that, unlike with 26040 * ethernet, we have no guarantee that the 26041 * resolved address length will be 26042 * smaller than or equal to the lla length 26043 * with which the template was allocated, 26044 * (for ethernet, they're equal) 26045 * so we have to use the actual resolved 26046 * address mblk - which holds the real 26047 * dl_unitdata_req with the resolved address. 26048 * 26049 * Doing this is the same behavior as was 26050 * previously used in the v4 ARP case. 26051 */ 26052 mutex_enter(&nce->nce_lock); 26053 if (nce->nce_res_mp != NULL) 26054 freemsg(nce->nce_res_mp); 26055 nce->nce_res_mp = mp1; 26056 mutex_exit(&nce->nce_lock); 26057 /* 26058 * We do a fastpath probe here because 26059 * we have resolved the address without 26060 * using Neighbor Discovery. 26061 * In the non-XRESOLV v6 case, the fastpath 26062 * probe is done right after neighbor 26063 * discovery completes. 26064 */ 26065 if (nce->nce_res_mp != NULL) { 26066 int res; 26067 nce_fastpath_list_add(nce); 26068 res = ill_fastpath_probe(ill, 26069 nce->nce_res_mp); 26070 if (res != 0 && res != EAGAIN) 26071 nce_fastpath_list_delete(nce); 26072 } 26073 26074 ire_add_then_send(q, ire, mp); 26075 /* 26076 * Now we have to clean out any packets 26077 * that may have been queued on the nce 26078 * while it was waiting for address resolution 26079 * to complete. 26080 */ 26081 mutex_enter(&nce->nce_lock); 26082 mp1 = nce->nce_qd_mp; 26083 nce->nce_qd_mp = NULL; 26084 mutex_exit(&nce->nce_lock); 26085 while (mp1 != NULL) { 26086 mblk_t *nxt_mp; 26087 queue_t *fwdq = NULL; 26088 ill_t *inbound_ill; 26089 uint_t ifindex; 26090 26091 nxt_mp = mp1->b_next; 26092 mp1->b_next = NULL; 26093 /* 26094 * Retrieve ifindex stored in 26095 * ip_rput_data_v6() 26096 */ 26097 ifindex = 26098 (uint_t)(uintptr_t)mp1->b_prev; 26099 inbound_ill = 26100 ill_lookup_on_ifindex(ifindex, 26101 B_TRUE, NULL, NULL, NULL, 26102 NULL); 26103 mp1->b_prev = NULL; 26104 if (inbound_ill != NULL) 26105 fwdq = inbound_ill->ill_rq; 26106 26107 if (fwdq != NULL) { 26108 put(fwdq, mp1); 26109 ill_refrele(inbound_ill); 26110 } else 26111 put(WR(ill->ill_rq), mp1); 26112 mp1 = nxt_mp; 26113 } 26114 NCE_REFRELE(nce); 26115 } else { /* nce is NULL; clean up */ 26116 ire_delete(ire); 26117 freemsg(mp); 26118 freemsg(mp1); 26119 return; 26120 } 26121 } else { 26122 nce_t *arpce; 26123 /* 26124 * Link layer resolution succeeded. Recompute the 26125 * ire_nce. 26126 */ 26127 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 26128 if ((arpce = ndp_lookup_v4(ill, 26129 (ire->ire_gateway_addr != INADDR_ANY ? 26130 &ire->ire_gateway_addr : &ire->ire_addr), 26131 B_FALSE)) == NULL) { 26132 freeb(ire->ire_mp); 26133 freeb(mp1); 26134 freemsg(mp); 26135 return; 26136 } 26137 mutex_enter(&arpce->nce_lock); 26138 arpce->nce_last = TICK_TO_MSEC(lbolt64); 26139 if (arpce->nce_state == ND_REACHABLE) { 26140 /* 26141 * Someone resolved this before us; 26142 * cleanup the res_mp. Since ire has 26143 * not been added yet, the call to ire_add_v4 26144 * from ire_add_then_send (when a dup is 26145 * detected) will clean up the ire. 26146 */ 26147 freeb(mp1); 26148 } else { 26149 if (arpce->nce_res_mp != NULL) 26150 freemsg(arpce->nce_res_mp); 26151 arpce->nce_res_mp = mp1; 26152 arpce->nce_state = ND_REACHABLE; 26153 } 26154 mutex_exit(&arpce->nce_lock); 26155 if (ire->ire_marks & IRE_MARK_NOADD) { 26156 /* 26157 * this ire will not be added to the ire 26158 * cache table, so we can set the ire_nce 26159 * here, as there are no atomicity constraints. 26160 */ 26161 ire->ire_nce = arpce; 26162 /* 26163 * We are associating this nce with the ire 26164 * so change the nce ref taken in 26165 * ndp_lookup_v4() from 26166 * NCE_REFHOLD to NCE_REFHOLD_NOTR 26167 */ 26168 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 26169 } else { 26170 NCE_REFRELE(arpce); 26171 } 26172 ire_add_then_send(q, ire, mp); 26173 } 26174 return; /* All is well, the packet has been sent. */ 26175 } 26176 case IRE_ARPRESOLVE_TYPE: { 26177 26178 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 26179 break; 26180 mp1 = mp->b_cont; /* dl_unitdata_req */ 26181 mp->b_cont = NULL; 26182 /* 26183 * First, check to make sure the resolution succeeded. 26184 * If it failed, the second mblk will be empty. 26185 */ 26186 if (mp1->b_rptr == mp1->b_wptr) { 26187 /* cleanup the incomplete ire, free queued packets */ 26188 freemsg(mp); /* fake ire */ 26189 freeb(mp1); /* dl_unitdata response */ 26190 return; 26191 } 26192 26193 /* 26194 * update any incomplete nce_t found. we lookup the ctable 26195 * and find the nce from the ire->ire_nce because we need 26196 * to pass the ire to ip_xmit_v4 later, and can find both 26197 * ire and nce in one lookup from the ctable. 26198 */ 26199 fake_ire = (ire_t *)mp->b_rptr; 26200 /* 26201 * By the time we come back here from ARP 26202 * the logical outgoing interface of the incomplete ire 26203 * we added in ire_forward could have disappeared, 26204 * causing the incomplete ire to also have 26205 * dissapeared. So we need to retreive the 26206 * proper ipif for the ire before looking 26207 * in ctable; do the ctablelookup based on ire_ipif_seqid 26208 */ 26209 ill = q->q_ptr; 26210 26211 /* Get the outgoing ipif */ 26212 mutex_enter(&ill->ill_lock); 26213 if (ill->ill_state_flags & ILL_CONDEMNED) { 26214 mutex_exit(&ill->ill_lock); 26215 freemsg(mp); /* fake ire */ 26216 freeb(mp1); /* dl_unitdata response */ 26217 return; 26218 } 26219 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 26220 26221 if (ipif == NULL) { 26222 mutex_exit(&ill->ill_lock); 26223 ip1dbg(("logical intrf to incomplete ire vanished\n")); 26224 freemsg(mp); 26225 freeb(mp1); 26226 return; 26227 } 26228 ipif_refhold_locked(ipif); 26229 mutex_exit(&ill->ill_lock); 26230 ire = ire_ctable_lookup(fake_ire->ire_addr, 26231 fake_ire->ire_gateway_addr, IRE_CACHE, 26232 ipif, fake_ire->ire_zoneid, NULL, 26233 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY)); 26234 ipif_refrele(ipif); 26235 if (ire == NULL) { 26236 /* 26237 * no ire was found; check if there is an nce 26238 * for this lookup; if it has no ire's pointing at it 26239 * cleanup. 26240 */ 26241 if ((nce = ndp_lookup_v4(ill, 26242 (fake_ire->ire_gateway_addr != INADDR_ANY ? 26243 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 26244 B_FALSE)) != NULL) { 26245 /* 26246 * cleanup: just reset nce. 26247 * We check for refcnt 2 (one for the nce 26248 * hash list + 1 for the ref taken by 26249 * ndp_lookup_v4) to ensure that there are 26250 * no ire's pointing at the nce. 26251 */ 26252 if (nce->nce_refcnt == 2) { 26253 nce = nce_reinit(nce); 26254 } 26255 if (nce != NULL) 26256 NCE_REFRELE(nce); 26257 } 26258 freeb(mp1); /* dl_unitdata response */ 26259 freemsg(mp); /* fake ire */ 26260 return; 26261 } 26262 nce = ire->ire_nce; 26263 DTRACE_PROBE2(ire__arpresolve__type, 26264 ire_t *, ire, nce_t *, nce); 26265 ASSERT(nce->nce_state != ND_INITIAL); 26266 mutex_enter(&nce->nce_lock); 26267 nce->nce_last = TICK_TO_MSEC(lbolt64); 26268 if (nce->nce_state == ND_REACHABLE) { 26269 /* 26270 * Someone resolved this before us; 26271 * our response is not needed any more. 26272 */ 26273 mutex_exit(&nce->nce_lock); 26274 freeb(mp1); /* dl_unitdata response */ 26275 } else { 26276 if (nce->nce_res_mp != NULL) { 26277 freemsg(nce->nce_res_mp); 26278 /* existing dl_unitdata template */ 26279 } 26280 nce->nce_res_mp = mp1; 26281 nce->nce_state = ND_REACHABLE; 26282 mutex_exit(&nce->nce_lock); 26283 ire_fastpath(ire); 26284 } 26285 /* 26286 * The cached nce_t has been updated to be reachable; 26287 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 26288 */ 26289 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 26290 freemsg(mp); 26291 /* 26292 * send out queued packets. 26293 */ 26294 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26295 26296 IRE_REFRELE(ire); 26297 return; 26298 } 26299 default: 26300 break; 26301 } 26302 if (q->q_next) { 26303 putnext(q, mp); 26304 } else 26305 freemsg(mp); 26306 } 26307 26308 /* 26309 * Process IP options in an outbound packet. Modify the destination if there 26310 * is a source route option. 26311 * Returns non-zero if something fails in which case an ICMP error has been 26312 * sent and mp freed. 26313 */ 26314 static int 26315 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 26316 boolean_t mctl_present, zoneid_t zoneid) 26317 { 26318 ipoptp_t opts; 26319 uchar_t *opt; 26320 uint8_t optval; 26321 uint8_t optlen; 26322 ipaddr_t dst; 26323 intptr_t code = 0; 26324 mblk_t *mp; 26325 ire_t *ire = NULL; 26326 26327 ip2dbg(("ip_wput_options\n")); 26328 mp = ipsec_mp; 26329 if (mctl_present) { 26330 mp = ipsec_mp->b_cont; 26331 } 26332 26333 dst = ipha->ipha_dst; 26334 for (optval = ipoptp_first(&opts, ipha); 26335 optval != IPOPT_EOL; 26336 optval = ipoptp_next(&opts)) { 26337 opt = opts.ipoptp_cur; 26338 optlen = opts.ipoptp_len; 26339 ip2dbg(("ip_wput_options: opt %d, len %d\n", 26340 optval, optlen)); 26341 switch (optval) { 26342 uint32_t off; 26343 case IPOPT_SSRR: 26344 case IPOPT_LSRR: 26345 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26346 ip1dbg(( 26347 "ip_wput_options: bad option offset\n")); 26348 code = (char *)&opt[IPOPT_OLEN] - 26349 (char *)ipha; 26350 goto param_prob; 26351 } 26352 off = opt[IPOPT_OFFSET]; 26353 ip1dbg(("ip_wput_options: next hop 0x%x\n", 26354 ntohl(dst))); 26355 /* 26356 * For strict: verify that dst is directly 26357 * reachable. 26358 */ 26359 if (optval == IPOPT_SSRR) { 26360 ire = ire_ftable_lookup(dst, 0, 0, 26361 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 26362 MBLK_GETLABEL(mp), 26363 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 26364 if (ire == NULL) { 26365 ip1dbg(("ip_wput_options: SSRR not" 26366 " directly reachable: 0x%x\n", 26367 ntohl(dst))); 26368 goto bad_src_route; 26369 } 26370 ire_refrele(ire); 26371 } 26372 break; 26373 case IPOPT_RR: 26374 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26375 ip1dbg(( 26376 "ip_wput_options: bad option offset\n")); 26377 code = (char *)&opt[IPOPT_OLEN] - 26378 (char *)ipha; 26379 goto param_prob; 26380 } 26381 break; 26382 case IPOPT_TS: 26383 /* 26384 * Verify that length >=5 and that there is either 26385 * room for another timestamp or that the overflow 26386 * counter is not maxed out. 26387 */ 26388 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 26389 if (optlen < IPOPT_MINLEN_IT) { 26390 goto param_prob; 26391 } 26392 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26393 ip1dbg(( 26394 "ip_wput_options: bad option offset\n")); 26395 code = (char *)&opt[IPOPT_OFFSET] - 26396 (char *)ipha; 26397 goto param_prob; 26398 } 26399 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 26400 case IPOPT_TS_TSONLY: 26401 off = IPOPT_TS_TIMELEN; 26402 break; 26403 case IPOPT_TS_TSANDADDR: 26404 case IPOPT_TS_PRESPEC: 26405 case IPOPT_TS_PRESPEC_RFC791: 26406 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 26407 break; 26408 default: 26409 code = (char *)&opt[IPOPT_POS_OV_FLG] - 26410 (char *)ipha; 26411 goto param_prob; 26412 } 26413 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 26414 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 26415 /* 26416 * No room and the overflow counter is 15 26417 * already. 26418 */ 26419 goto param_prob; 26420 } 26421 break; 26422 } 26423 } 26424 26425 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 26426 return (0); 26427 26428 ip1dbg(("ip_wput_options: error processing IP options.")); 26429 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 26430 26431 param_prob: 26432 /* 26433 * Since ip_wput() isn't close to finished, we fill 26434 * in enough of the header for credible error reporting. 26435 */ 26436 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 26437 /* Failed */ 26438 freemsg(ipsec_mp); 26439 return (-1); 26440 } 26441 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 26442 return (-1); 26443 26444 bad_src_route: 26445 /* 26446 * Since ip_wput() isn't close to finished, we fill 26447 * in enough of the header for credible error reporting. 26448 */ 26449 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 26450 /* Failed */ 26451 freemsg(ipsec_mp); 26452 return (-1); 26453 } 26454 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 26455 return (-1); 26456 } 26457 26458 /* 26459 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 26460 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 26461 * thru /etc/system. 26462 */ 26463 #define CONN_MAXDRAINCNT 64 26464 26465 static void 26466 conn_drain_init(void) 26467 { 26468 int i; 26469 26470 conn_drain_list_cnt = conn_drain_nthreads; 26471 26472 if ((conn_drain_list_cnt == 0) || 26473 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 26474 /* 26475 * Default value of the number of drainers is the 26476 * number of cpus, subject to maximum of 8 drainers. 26477 */ 26478 if (boot_max_ncpus != -1) 26479 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 26480 else 26481 conn_drain_list_cnt = MIN(max_ncpus, 8); 26482 } 26483 26484 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 26485 KM_SLEEP); 26486 26487 for (i = 0; i < conn_drain_list_cnt; i++) { 26488 mutex_init(&conn_drain_list[i].idl_lock, NULL, 26489 MUTEX_DEFAULT, NULL); 26490 } 26491 } 26492 26493 static void 26494 conn_drain_fini(void) 26495 { 26496 int i; 26497 26498 for (i = 0; i < conn_drain_list_cnt; i++) 26499 mutex_destroy(&conn_drain_list[i].idl_lock); 26500 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 26501 conn_drain_list = NULL; 26502 } 26503 26504 /* 26505 * Note: For an overview of how flowcontrol is handled in IP please see the 26506 * IP Flowcontrol notes at the top of this file. 26507 * 26508 * Flow control has blocked us from proceeding. Insert the given conn in one 26509 * of the conn drain lists. These conn wq's will be qenabled later on when 26510 * STREAMS flow control does a backenable. conn_walk_drain will enable 26511 * the first conn in each of these drain lists. Each of these qenabled conns 26512 * in turn enables the next in the list, after it runs, or when it closes, 26513 * thus sustaining the drain process. 26514 * 26515 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 26516 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 26517 * running at any time, on a given conn, since there can be only 1 service proc 26518 * running on a queue at any time. 26519 */ 26520 void 26521 conn_drain_insert(conn_t *connp) 26522 { 26523 idl_t *idl; 26524 uint_t index; 26525 26526 mutex_enter(&connp->conn_lock); 26527 if (connp->conn_state_flags & CONN_CLOSING) { 26528 /* 26529 * The conn is closing as a result of which CONN_CLOSING 26530 * is set. Return. 26531 */ 26532 mutex_exit(&connp->conn_lock); 26533 return; 26534 } else if (connp->conn_idl == NULL) { 26535 /* 26536 * Assign the next drain list round robin. We dont' use 26537 * a lock, and thus it may not be strictly round robin. 26538 * Atomicity of load/stores is enough to make sure that 26539 * conn_drain_list_index is always within bounds. 26540 */ 26541 index = conn_drain_list_index; 26542 ASSERT(index < conn_drain_list_cnt); 26543 connp->conn_idl = &conn_drain_list[index]; 26544 index++; 26545 if (index == conn_drain_list_cnt) 26546 index = 0; 26547 conn_drain_list_index = index; 26548 } 26549 mutex_exit(&connp->conn_lock); 26550 26551 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 26552 if ((connp->conn_drain_prev != NULL) || 26553 (connp->conn_state_flags & CONN_CLOSING)) { 26554 /* 26555 * The conn is already in the drain list, OR 26556 * the conn is closing. We need to check again for 26557 * the closing case again since close can happen 26558 * after we drop the conn_lock, and before we 26559 * acquire the CONN_DRAIN_LIST_LOCK. 26560 */ 26561 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26562 return; 26563 } else { 26564 idl = connp->conn_idl; 26565 } 26566 26567 /* 26568 * The conn is not in the drain list. Insert it at the 26569 * tail of the drain list. The drain list is circular 26570 * and doubly linked. idl_conn points to the 1st element 26571 * in the list. 26572 */ 26573 if (idl->idl_conn == NULL) { 26574 idl->idl_conn = connp; 26575 connp->conn_drain_next = connp; 26576 connp->conn_drain_prev = connp; 26577 } else { 26578 conn_t *head = idl->idl_conn; 26579 26580 connp->conn_drain_next = head; 26581 connp->conn_drain_prev = head->conn_drain_prev; 26582 head->conn_drain_prev->conn_drain_next = connp; 26583 head->conn_drain_prev = connp; 26584 } 26585 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26586 } 26587 26588 /* 26589 * This conn is closing, and we are called from ip_close. OR 26590 * This conn has been serviced by ip_wsrv, and we need to do the tail 26591 * processing. 26592 * If this conn is part of the drain list, we may need to sustain the drain 26593 * process by qenabling the next conn in the drain list. We may also need to 26594 * remove this conn from the list, if it is done. 26595 */ 26596 static void 26597 conn_drain_tail(conn_t *connp, boolean_t closing) 26598 { 26599 idl_t *idl; 26600 26601 /* 26602 * connp->conn_idl is stable at this point, and no lock is needed 26603 * to check it. If we are called from ip_close, close has already 26604 * set CONN_CLOSING, thus freezing the value of conn_idl, and 26605 * called us only because conn_idl is non-null. If we are called thru 26606 * service, conn_idl could be null, but it cannot change because 26607 * service is single-threaded per queue, and there cannot be another 26608 * instance of service trying to call conn_drain_insert on this conn 26609 * now. 26610 */ 26611 ASSERT(!closing || (connp->conn_idl != NULL)); 26612 26613 /* 26614 * If connp->conn_idl is null, the conn has not been inserted into any 26615 * drain list even once since creation of the conn. Just return. 26616 */ 26617 if (connp->conn_idl == NULL) 26618 return; 26619 26620 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 26621 26622 if (connp->conn_drain_prev == NULL) { 26623 /* This conn is currently not in the drain list. */ 26624 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26625 return; 26626 } 26627 idl = connp->conn_idl; 26628 if (idl->idl_conn_draining == connp) { 26629 /* 26630 * This conn is the current drainer. If this is the last conn 26631 * in the drain list, we need to do more checks, in the 'if' 26632 * below. Otherwwise we need to just qenable the next conn, 26633 * to sustain the draining, and is handled in the 'else' 26634 * below. 26635 */ 26636 if (connp->conn_drain_next == idl->idl_conn) { 26637 /* 26638 * This conn is the last in this list. This round 26639 * of draining is complete. If idl_repeat is set, 26640 * it means another flow enabling has happened from 26641 * the driver/streams and we need to another round 26642 * of draining. 26643 * If there are more than 2 conns in the drain list, 26644 * do a left rotate by 1, so that all conns except the 26645 * conn at the head move towards the head by 1, and the 26646 * the conn at the head goes to the tail. This attempts 26647 * a more even share for all queues that are being 26648 * drained. 26649 */ 26650 if ((connp->conn_drain_next != connp) && 26651 (idl->idl_conn->conn_drain_next != connp)) { 26652 idl->idl_conn = idl->idl_conn->conn_drain_next; 26653 } 26654 if (idl->idl_repeat) { 26655 qenable(idl->idl_conn->conn_wq); 26656 idl->idl_conn_draining = idl->idl_conn; 26657 idl->idl_repeat = 0; 26658 } else { 26659 idl->idl_conn_draining = NULL; 26660 } 26661 } else { 26662 /* 26663 * If the next queue that we are now qenable'ing, 26664 * is closing, it will remove itself from this list 26665 * and qenable the subsequent queue in ip_close(). 26666 * Serialization is acheived thru idl_lock. 26667 */ 26668 qenable(connp->conn_drain_next->conn_wq); 26669 idl->idl_conn_draining = connp->conn_drain_next; 26670 } 26671 } 26672 if (!connp->conn_did_putbq || closing) { 26673 /* 26674 * Remove ourself from the drain list, if we did not do 26675 * a putbq, or if the conn is closing. 26676 * Note: It is possible that q->q_first is non-null. It means 26677 * that these messages landed after we did a enableok() in 26678 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 26679 * service them. 26680 */ 26681 if (connp->conn_drain_next == connp) { 26682 /* Singleton in the list */ 26683 ASSERT(connp->conn_drain_prev == connp); 26684 idl->idl_conn = NULL; 26685 idl->idl_conn_draining = NULL; 26686 } else { 26687 connp->conn_drain_prev->conn_drain_next = 26688 connp->conn_drain_next; 26689 connp->conn_drain_next->conn_drain_prev = 26690 connp->conn_drain_prev; 26691 if (idl->idl_conn == connp) 26692 idl->idl_conn = connp->conn_drain_next; 26693 ASSERT(idl->idl_conn_draining != connp); 26694 26695 } 26696 connp->conn_drain_next = NULL; 26697 connp->conn_drain_prev = NULL; 26698 } 26699 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26700 } 26701 26702 /* 26703 * Write service routine. Shared perimeter entry point. 26704 * ip_wsrv can be called in any of the following ways. 26705 * 1. The device queue's messages has fallen below the low water mark 26706 * and STREAMS has backenabled the ill_wq. We walk thru all the 26707 * the drain lists and backenable the first conn in each list. 26708 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 26709 * qenabled non-tcp upper layers. We start dequeing messages and call 26710 * ip_wput for each message. 26711 */ 26712 26713 void 26714 ip_wsrv(queue_t *q) 26715 { 26716 conn_t *connp; 26717 ill_t *ill; 26718 mblk_t *mp; 26719 26720 if (q->q_next) { 26721 ill = (ill_t *)q->q_ptr; 26722 if (ill->ill_state_flags == 0) { 26723 /* 26724 * The device flow control has opened up. 26725 * Walk through conn drain lists and qenable the 26726 * first conn in each list. This makes sense only 26727 * if the stream is fully plumbed and setup. 26728 * Hence the if check above. 26729 */ 26730 ip1dbg(("ip_wsrv: walking\n")); 26731 conn_walk_drain(); 26732 } 26733 return; 26734 } 26735 26736 connp = Q_TO_CONN(q); 26737 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 26738 26739 /* 26740 * 1. Set conn_draining flag to signal that service is active. 26741 * 26742 * 2. ip_output determines whether it has been called from service, 26743 * based on the last parameter. If it is IP_WSRV it concludes it 26744 * has been called from service. 26745 * 26746 * 3. Message ordering is preserved by the following logic. 26747 * i. A directly called ip_output (i.e. not thru service) will queue 26748 * the message at the tail, if conn_draining is set (i.e. service 26749 * is running) or if q->q_first is non-null. 26750 * 26751 * ii. If ip_output is called from service, and if ip_output cannot 26752 * putnext due to flow control, it does a putbq. 26753 * 26754 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 26755 * (causing an infinite loop). 26756 */ 26757 ASSERT(!connp->conn_did_putbq); 26758 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 26759 connp->conn_draining = 1; 26760 noenable(q); 26761 while ((mp = getq(q)) != NULL) { 26762 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 26763 if (connp->conn_did_putbq) { 26764 /* ip_wput did a putbq */ 26765 break; 26766 } 26767 } 26768 /* 26769 * At this point, a thread coming down from top, calling 26770 * ip_wput, may end up queueing the message. We have not yet 26771 * enabled the queue, so ip_wsrv won't be called again. 26772 * To avoid this race, check q->q_first again (in the loop) 26773 * If the other thread queued the message before we call 26774 * enableok(), we will catch it in the q->q_first check. 26775 * If the other thread queues the message after we call 26776 * enableok(), ip_wsrv will be called again by STREAMS. 26777 */ 26778 connp->conn_draining = 0; 26779 enableok(q); 26780 } 26781 26782 /* Enable the next conn for draining */ 26783 conn_drain_tail(connp, B_FALSE); 26784 26785 connp->conn_did_putbq = 0; 26786 } 26787 26788 /* 26789 * Walk the list of all conn's calling the function provided with the 26790 * specified argument for each. Note that this only walks conn's that 26791 * have been bound. 26792 * Applies to both IPv4 and IPv6. 26793 */ 26794 static void 26795 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 26796 { 26797 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 26798 func, arg, zoneid); 26799 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 26800 func, arg, zoneid); 26801 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 26802 func, arg, zoneid); 26803 conn_walk_fanout_table(ipcl_proto_fanout, 26804 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 26805 conn_walk_fanout_table(ipcl_proto_fanout_v6, 26806 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 26807 } 26808 26809 /* 26810 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 26811 * of conns that need to be drained, check if drain is already in progress. 26812 * If so set the idl_repeat bit, indicating that the last conn in the list 26813 * needs to reinitiate the drain once again, for the list. If drain is not 26814 * in progress for the list, initiate the draining, by qenabling the 1st 26815 * conn in the list. The drain is self-sustaining, each qenabled conn will 26816 * in turn qenable the next conn, when it is done/blocked/closing. 26817 */ 26818 static void 26819 conn_walk_drain(void) 26820 { 26821 int i; 26822 idl_t *idl; 26823 26824 IP_STAT(ip_conn_walk_drain); 26825 26826 for (i = 0; i < conn_drain_list_cnt; i++) { 26827 idl = &conn_drain_list[i]; 26828 mutex_enter(&idl->idl_lock); 26829 if (idl->idl_conn == NULL) { 26830 mutex_exit(&idl->idl_lock); 26831 continue; 26832 } 26833 /* 26834 * If this list is not being drained currently by 26835 * an ip_wsrv thread, start the process. 26836 */ 26837 if (idl->idl_conn_draining == NULL) { 26838 ASSERT(idl->idl_repeat == 0); 26839 qenable(idl->idl_conn->conn_wq); 26840 idl->idl_conn_draining = idl->idl_conn; 26841 } else { 26842 idl->idl_repeat = 1; 26843 } 26844 mutex_exit(&idl->idl_lock); 26845 } 26846 } 26847 26848 /* 26849 * Walk an conn hash table of `count' buckets, calling func for each entry. 26850 */ 26851 static void 26852 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 26853 zoneid_t zoneid) 26854 { 26855 conn_t *connp; 26856 26857 while (count-- > 0) { 26858 mutex_enter(&connfp->connf_lock); 26859 for (connp = connfp->connf_head; connp != NULL; 26860 connp = connp->conn_next) { 26861 if (zoneid == GLOBAL_ZONEID || 26862 zoneid == connp->conn_zoneid) { 26863 CONN_INC_REF(connp); 26864 mutex_exit(&connfp->connf_lock); 26865 (*func)(connp, arg); 26866 mutex_enter(&connfp->connf_lock); 26867 CONN_DEC_REF(connp); 26868 } 26869 } 26870 mutex_exit(&connfp->connf_lock); 26871 connfp++; 26872 } 26873 } 26874 26875 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 26876 static void 26877 conn_report1(conn_t *connp, void *mp) 26878 { 26879 char buf1[INET6_ADDRSTRLEN]; 26880 char buf2[INET6_ADDRSTRLEN]; 26881 uint_t print_len, buf_len; 26882 26883 ASSERT(connp != NULL); 26884 26885 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 26886 if (buf_len <= 0) 26887 return; 26888 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 26889 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 26890 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 26891 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 26892 "%5d %s/%05d %s/%05d\n", 26893 (void *)connp, (void *)CONNP_TO_RQ(connp), 26894 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 26895 buf1, connp->conn_lport, 26896 buf2, connp->conn_fport); 26897 if (print_len < buf_len) { 26898 ((mblk_t *)mp)->b_wptr += print_len; 26899 } else { 26900 ((mblk_t *)mp)->b_wptr += buf_len; 26901 } 26902 } 26903 26904 /* 26905 * Named Dispatch routine to produce a formatted report on all conns 26906 * that are listed in one of the fanout tables. 26907 * This report is accessed by using the ndd utility to "get" ND variable 26908 * "ip_conn_status". 26909 */ 26910 /* ARGSUSED */ 26911 static int 26912 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 26913 { 26914 (void) mi_mpprintf(mp, 26915 "CONN " MI_COL_HDRPAD_STR 26916 "rfq " MI_COL_HDRPAD_STR 26917 "stq " MI_COL_HDRPAD_STR 26918 " zone local remote"); 26919 26920 /* 26921 * Because of the ndd constraint, at most we can have 64K buffer 26922 * to put in all conn info. So to be more efficient, just 26923 * allocate a 64K buffer here, assuming we need that large buffer. 26924 * This should be OK as only privileged processes can do ndd /dev/ip. 26925 */ 26926 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 26927 /* The following may work even if we cannot get a large buf. */ 26928 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 26929 return (0); 26930 } 26931 26932 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 26933 return (0); 26934 } 26935 26936 /* 26937 * Determine if the ill and multicast aspects of that packets 26938 * "matches" the conn. 26939 */ 26940 boolean_t 26941 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 26942 zoneid_t zoneid) 26943 { 26944 ill_t *in_ill; 26945 boolean_t found; 26946 ipif_t *ipif; 26947 ire_t *ire; 26948 ipaddr_t dst, src; 26949 26950 dst = ipha->ipha_dst; 26951 src = ipha->ipha_src; 26952 26953 /* 26954 * conn_incoming_ill is set by IP_BOUND_IF which limits 26955 * unicast, broadcast and multicast reception to 26956 * conn_incoming_ill. conn_wantpacket itself is called 26957 * only for BROADCAST and multicast. 26958 * 26959 * 1) ip_rput supresses duplicate broadcasts if the ill 26960 * is part of a group. Hence, we should be receiving 26961 * just one copy of broadcast for the whole group. 26962 * Thus, if it is part of the group the packet could 26963 * come on any ill of the group and hence we need a 26964 * match on the group. Otherwise, match on ill should 26965 * be sufficient. 26966 * 26967 * 2) ip_rput does not suppress duplicate multicast packets. 26968 * If there are two interfaces in a ill group and we have 26969 * 2 applications (conns) joined a multicast group G on 26970 * both the interfaces, ilm_lookup_ill filter in ip_rput 26971 * will give us two packets because we join G on both the 26972 * interfaces rather than nominating just one interface 26973 * for receiving multicast like broadcast above. So, 26974 * we have to call ilg_lookup_ill to filter out duplicate 26975 * copies, if ill is part of a group. 26976 */ 26977 in_ill = connp->conn_incoming_ill; 26978 if (in_ill != NULL) { 26979 if (in_ill->ill_group == NULL) { 26980 if (in_ill != ill) 26981 return (B_FALSE); 26982 } else if (in_ill->ill_group != ill->ill_group) { 26983 return (B_FALSE); 26984 } 26985 } 26986 26987 if (!CLASSD(dst)) { 26988 if (IPCL_ZONE_MATCH(connp, zoneid)) 26989 return (B_TRUE); 26990 /* 26991 * The conn is in a different zone; we need to check that this 26992 * broadcast address is configured in the application's zone and 26993 * on one ill in the group. 26994 */ 26995 ipif = ipif_get_next_ipif(NULL, ill); 26996 if (ipif == NULL) 26997 return (B_FALSE); 26998 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 26999 connp->conn_zoneid, NULL, 27000 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 27001 ipif_refrele(ipif); 27002 if (ire != NULL) { 27003 ire_refrele(ire); 27004 return (B_TRUE); 27005 } else { 27006 return (B_FALSE); 27007 } 27008 } 27009 27010 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 27011 connp->conn_zoneid == zoneid) { 27012 /* 27013 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 27014 * disabled, therefore we don't dispatch the multicast packet to 27015 * the sending zone. 27016 */ 27017 return (B_FALSE); 27018 } 27019 27020 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 27021 connp->conn_zoneid != zoneid) { 27022 /* 27023 * Multicast packet on the loopback interface: we only match 27024 * conns who joined the group in the specified zone. 27025 */ 27026 return (B_FALSE); 27027 } 27028 27029 if (connp->conn_multi_router) { 27030 /* multicast packet and multicast router socket: send up */ 27031 return (B_TRUE); 27032 } 27033 27034 mutex_enter(&connp->conn_lock); 27035 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 27036 mutex_exit(&connp->conn_lock); 27037 return (found); 27038 } 27039 27040 /* 27041 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 27042 */ 27043 /* ARGSUSED */ 27044 static void 27045 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 27046 { 27047 ill_t *ill = (ill_t *)q->q_ptr; 27048 mblk_t *mp1, *mp2; 27049 ipif_t *ipif; 27050 int err = 0; 27051 conn_t *connp = NULL; 27052 ipsq_t *ipsq; 27053 arc_t *arc; 27054 27055 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 27056 27057 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 27058 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 27059 27060 ASSERT(IAM_WRITER_ILL(ill)); 27061 mp2 = mp->b_cont; 27062 mp->b_cont = NULL; 27063 27064 /* 27065 * We have now received the arp bringup completion message 27066 * from ARP. Mark the arp bringup as done. Also if the arp 27067 * stream has already started closing, send up the AR_ARP_CLOSING 27068 * ack now since ARP is waiting in close for this ack. 27069 */ 27070 mutex_enter(&ill->ill_lock); 27071 ill->ill_arp_bringup_pending = 0; 27072 if (ill->ill_arp_closing) { 27073 mutex_exit(&ill->ill_lock); 27074 /* Let's reuse the mp for sending the ack */ 27075 arc = (arc_t *)mp->b_rptr; 27076 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 27077 arc->arc_cmd = AR_ARP_CLOSING; 27078 qreply(q, mp); 27079 } else { 27080 mutex_exit(&ill->ill_lock); 27081 freeb(mp); 27082 } 27083 27084 /* We should have an IOCTL waiting on this. */ 27085 ipsq = ill->ill_phyint->phyint_ipsq; 27086 ipif = ipsq->ipsq_pending_ipif; 27087 mp1 = ipsq_pending_mp_get(ipsq, &connp); 27088 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 27089 if (mp1 == NULL) { 27090 /* bringup was aborted by the user */ 27091 freemsg(mp2); 27092 return; 27093 } 27094 ASSERT(connp != NULL); 27095 q = CONNP_TO_WQ(connp); 27096 /* 27097 * If the DL_BIND_REQ fails, it is noted 27098 * in arc_name_offset. 27099 */ 27100 err = *((int *)mp2->b_rptr); 27101 if (err == 0) { 27102 if (ipif->ipif_isv6) { 27103 if ((err = ipif_up_done_v6(ipif)) != 0) 27104 ip0dbg(("ip_arp_done: init failed\n")); 27105 } else { 27106 if ((err = ipif_up_done(ipif)) != 0) 27107 ip0dbg(("ip_arp_done: init failed\n")); 27108 } 27109 } else { 27110 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 27111 } 27112 27113 freemsg(mp2); 27114 27115 if ((err == 0) && (ill->ill_up_ipifs)) { 27116 err = ill_up_ipifs(ill, q, mp1); 27117 if (err == EINPROGRESS) 27118 return; 27119 } 27120 27121 if (ill->ill_up_ipifs) { 27122 ill_group_cleanup(ill); 27123 } 27124 27125 /* 27126 * The ioctl must complete now without EINPROGRESS 27127 * since ipsq_pending_mp_get has removed the ioctl mblk 27128 * from ipsq_pending_mp. Otherwise the ioctl will be 27129 * stuck for ever in the ipsq. 27130 */ 27131 ASSERT(err != EINPROGRESS); 27132 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 27133 } 27134 27135 /* Allocate the private structure */ 27136 static int 27137 ip_priv_alloc(void **bufp) 27138 { 27139 void *buf; 27140 27141 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 27142 return (ENOMEM); 27143 27144 *bufp = buf; 27145 return (0); 27146 } 27147 27148 /* Function to delete the private structure */ 27149 void 27150 ip_priv_free(void *buf) 27151 { 27152 ASSERT(buf != NULL); 27153 kmem_free(buf, sizeof (ip_priv_t)); 27154 } 27155 27156 /* 27157 * The entry point for IPPF processing. 27158 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 27159 * routine just returns. 27160 * 27161 * When called, ip_process generates an ipp_packet_t structure 27162 * which holds the state information for this packet and invokes the 27163 * the classifier (via ipp_packet_process). The classification, depending on 27164 * configured filters, results in a list of actions for this packet. Invoking 27165 * an action may cause the packet to be dropped, in which case the resulting 27166 * mblk (*mpp) is NULL. proc indicates the callout position for 27167 * this packet and ill_index is the interface this packet on or will leave 27168 * on (inbound and outbound resp.). 27169 */ 27170 void 27171 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 27172 { 27173 mblk_t *mp; 27174 ip_priv_t *priv; 27175 ipp_action_id_t aid; 27176 int rc = 0; 27177 ipp_packet_t *pp; 27178 #define IP_CLASS "ip" 27179 27180 /* If the classifier is not loaded, return */ 27181 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 27182 return; 27183 } 27184 27185 mp = *mpp; 27186 ASSERT(mp != NULL); 27187 27188 /* Allocate the packet structure */ 27189 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 27190 if (rc != 0) { 27191 *mpp = NULL; 27192 freemsg(mp); 27193 return; 27194 } 27195 27196 /* Allocate the private structure */ 27197 rc = ip_priv_alloc((void **)&priv); 27198 if (rc != 0) { 27199 *mpp = NULL; 27200 freemsg(mp); 27201 ipp_packet_free(pp); 27202 return; 27203 } 27204 priv->proc = proc; 27205 priv->ill_index = ill_index; 27206 ipp_packet_set_private(pp, priv, ip_priv_free); 27207 ipp_packet_set_data(pp, mp); 27208 27209 /* Invoke the classifier */ 27210 rc = ipp_packet_process(&pp); 27211 if (pp != NULL) { 27212 mp = ipp_packet_get_data(pp); 27213 ipp_packet_free(pp); 27214 if (rc != 0) { 27215 freemsg(mp); 27216 *mpp = NULL; 27217 } 27218 } else { 27219 *mpp = NULL; 27220 } 27221 #undef IP_CLASS 27222 } 27223 27224 /* 27225 * Propagate a multicast group membership operation (add/drop) on 27226 * all the interfaces crossed by the related multirt routes. 27227 * The call is considered successful if the operation succeeds 27228 * on at least one interface. 27229 */ 27230 static int 27231 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 27232 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 27233 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 27234 mblk_t *first_mp) 27235 { 27236 ire_t *ire_gw; 27237 irb_t *irb; 27238 int error = 0; 27239 opt_restart_t *or; 27240 27241 irb = ire->ire_bucket; 27242 ASSERT(irb != NULL); 27243 27244 ASSERT(DB_TYPE(first_mp) == M_CTL); 27245 27246 or = (opt_restart_t *)first_mp->b_rptr; 27247 IRB_REFHOLD(irb); 27248 for (; ire != NULL; ire = ire->ire_next) { 27249 if ((ire->ire_flags & RTF_MULTIRT) == 0) 27250 continue; 27251 if (ire->ire_addr != group) 27252 continue; 27253 27254 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 27255 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 27256 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 27257 /* No resolver exists for the gateway; skip this ire. */ 27258 if (ire_gw == NULL) 27259 continue; 27260 27261 /* 27262 * This function can return EINPROGRESS. If so the operation 27263 * will be restarted from ip_restart_optmgmt which will 27264 * call ip_opt_set and option processing will restart for 27265 * this option. So we may end up calling 'fn' more than once. 27266 * This requires that 'fn' is idempotent except for the 27267 * return value. The operation is considered a success if 27268 * it succeeds at least once on any one interface. 27269 */ 27270 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 27271 NULL, fmode, src, first_mp); 27272 if (error == 0) 27273 or->or_private = CGTP_MCAST_SUCCESS; 27274 27275 if (ip_debug > 0) { 27276 ulong_t off; 27277 char *ksym; 27278 ksym = kobj_getsymname((uintptr_t)fn, &off); 27279 ip2dbg(("ip_multirt_apply_membership: " 27280 "called %s, multirt group 0x%08x via itf 0x%08x, " 27281 "error %d [success %u]\n", 27282 ksym ? ksym : "?", 27283 ntohl(group), ntohl(ire_gw->ire_src_addr), 27284 error, or->or_private)); 27285 } 27286 27287 ire_refrele(ire_gw); 27288 if (error == EINPROGRESS) { 27289 IRB_REFRELE(irb); 27290 return (error); 27291 } 27292 } 27293 IRB_REFRELE(irb); 27294 /* 27295 * Consider the call as successful if we succeeded on at least 27296 * one interface. Otherwise, return the last encountered error. 27297 */ 27298 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 27299 } 27300 27301 27302 /* 27303 * Issue a warning regarding a route crossing an interface with an 27304 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 27305 * amount of time is logged. 27306 */ 27307 static void 27308 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 27309 { 27310 hrtime_t current = gethrtime(); 27311 char buf[16]; 27312 27313 /* Convert interval in ms to hrtime in ns */ 27314 if (multirt_bad_mtu_last_time + 27315 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 27316 current) { 27317 cmn_err(CE_WARN, "ip: ignoring multiroute " 27318 "to %s, incorrect MTU %u (expected %u)\n", 27319 ip_dot_addr(ire->ire_addr, buf), 27320 ire->ire_max_frag, max_frag); 27321 27322 multirt_bad_mtu_last_time = current; 27323 } 27324 } 27325 27326 27327 /* 27328 * Get the CGTP (multirouting) filtering status. 27329 * If 0, the CGTP hooks are transparent. 27330 */ 27331 /* ARGSUSED */ 27332 static int 27333 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 27334 { 27335 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 27336 27337 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 27338 return (0); 27339 } 27340 27341 27342 /* 27343 * Set the CGTP (multirouting) filtering status. 27344 * If the status is changed from active to transparent 27345 * or from transparent to active, forward the new status 27346 * to the filtering module (if loaded). 27347 */ 27348 /* ARGSUSED */ 27349 static int 27350 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 27351 cred_t *ioc_cr) 27352 { 27353 long new_value; 27354 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 27355 27356 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 27357 new_value < 0 || new_value > 1) { 27358 return (EINVAL); 27359 } 27360 27361 /* 27362 * Do not enable CGTP filtering - thus preventing the hooks 27363 * from being invoked - if the version number of the 27364 * filtering module hooks does not match. 27365 */ 27366 if ((ip_cgtp_filter_ops != NULL) && 27367 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 27368 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 27369 "(module hooks version %d, expecting %d)\n", 27370 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 27371 return (ENOTSUP); 27372 } 27373 27374 if ((!*ip_cgtp_filter_value) && new_value) { 27375 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 27376 ip_cgtp_filter_ops == NULL ? 27377 " (module not loaded)" : ""); 27378 } 27379 if (*ip_cgtp_filter_value && (!new_value)) { 27380 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 27381 ip_cgtp_filter_ops == NULL ? 27382 " (module not loaded)" : ""); 27383 } 27384 27385 if (ip_cgtp_filter_ops != NULL) { 27386 int res; 27387 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 27388 return (res); 27389 } 27390 } 27391 27392 *ip_cgtp_filter_value = (boolean_t)new_value; 27393 27394 return (0); 27395 } 27396 27397 27398 /* 27399 * Return the expected CGTP hooks version number. 27400 */ 27401 int 27402 ip_cgtp_filter_supported(void) 27403 { 27404 return (ip_cgtp_filter_rev); 27405 } 27406 27407 27408 /* 27409 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 27410 * or by invoking this function. In the first case, the version number 27411 * of the registered structure is checked at hooks activation time 27412 * in ip_cgtp_filter_set(). 27413 */ 27414 int 27415 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 27416 { 27417 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 27418 return (ENOTSUP); 27419 27420 ip_cgtp_filter_ops = ops; 27421 return (0); 27422 } 27423 27424 static squeue_func_t 27425 ip_squeue_switch(int val) 27426 { 27427 squeue_func_t rval = squeue_fill; 27428 27429 switch (val) { 27430 case IP_SQUEUE_ENTER_NODRAIN: 27431 rval = squeue_enter_nodrain; 27432 break; 27433 case IP_SQUEUE_ENTER: 27434 rval = squeue_enter; 27435 break; 27436 default: 27437 break; 27438 } 27439 return (rval); 27440 } 27441 27442 /* ARGSUSED */ 27443 static int 27444 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 27445 caddr_t addr, cred_t *cr) 27446 { 27447 int *v = (int *)addr; 27448 long new_value; 27449 27450 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 27451 return (EINVAL); 27452 27453 ip_input_proc = ip_squeue_switch(new_value); 27454 *v = new_value; 27455 return (0); 27456 } 27457 27458 /* ARGSUSED */ 27459 static int 27460 ip_int_set(queue_t *q, mblk_t *mp, char *value, 27461 caddr_t addr, cred_t *cr) 27462 { 27463 int *v = (int *)addr; 27464 long new_value; 27465 27466 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 27467 return (EINVAL); 27468 27469 *v = new_value; 27470 return (0); 27471 } 27472 27473 static void 27474 ip_kstat_init(void) 27475 { 27476 ip_named_kstat_t template = { 27477 { "forwarding", KSTAT_DATA_UINT32, 0 }, 27478 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 27479 { "inReceives", KSTAT_DATA_UINT32, 0 }, 27480 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 27481 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 27482 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 27483 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 27484 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 27485 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 27486 { "outRequests", KSTAT_DATA_UINT32, 0 }, 27487 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 27488 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 27489 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 27490 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 27491 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 27492 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 27493 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 27494 { "fragFails", KSTAT_DATA_UINT32, 0 }, 27495 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 27496 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 27497 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 27498 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 27499 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 27500 { "inErrs", KSTAT_DATA_UINT32, 0 }, 27501 { "noPorts", KSTAT_DATA_UINT32, 0 }, 27502 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 27503 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 27504 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 27505 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 27506 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 27507 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 27508 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 27509 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 27510 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 27511 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 27512 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 27513 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 27514 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 27515 }; 27516 27517 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 27518 NUM_OF_FIELDS(ip_named_kstat_t), 27519 0); 27520 if (!ip_mibkp) 27521 return; 27522 27523 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 27524 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 27525 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 27526 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 27527 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 27528 27529 template.netToMediaEntrySize.value.i32 = 27530 sizeof (mib2_ipNetToMediaEntry_t); 27531 27532 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 27533 27534 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 27535 27536 ip_mibkp->ks_update = ip_kstat_update; 27537 27538 kstat_install(ip_mibkp); 27539 } 27540 27541 static void 27542 ip_kstat_fini(void) 27543 { 27544 27545 if (ip_mibkp != NULL) { 27546 kstat_delete(ip_mibkp); 27547 ip_mibkp = NULL; 27548 } 27549 } 27550 27551 static int 27552 ip_kstat_update(kstat_t *kp, int rw) 27553 { 27554 ip_named_kstat_t *ipkp; 27555 27556 if (!kp || !kp->ks_data) 27557 return (EIO); 27558 27559 if (rw == KSTAT_WRITE) 27560 return (EACCES); 27561 27562 ipkp = (ip_named_kstat_t *)kp->ks_data; 27563 27564 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 27565 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 27566 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 27567 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 27568 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 27569 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 27570 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 27571 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 27572 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 27573 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 27574 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 27575 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 27576 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 27577 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 27578 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 27579 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 27580 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 27581 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 27582 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 27583 27584 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 27585 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 27586 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 27587 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 27588 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 27589 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 27590 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 27591 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 27592 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 27593 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 27594 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 27595 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 27596 27597 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 27598 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 27599 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 27600 27601 return (0); 27602 } 27603 27604 static void 27605 icmp_kstat_init(void) 27606 { 27607 icmp_named_kstat_t template = { 27608 { "inMsgs", KSTAT_DATA_UINT32 }, 27609 { "inErrors", KSTAT_DATA_UINT32 }, 27610 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 27611 { "inTimeExcds", KSTAT_DATA_UINT32 }, 27612 { "inParmProbs", KSTAT_DATA_UINT32 }, 27613 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 27614 { "inRedirects", KSTAT_DATA_UINT32 }, 27615 { "inEchos", KSTAT_DATA_UINT32 }, 27616 { "inEchoReps", KSTAT_DATA_UINT32 }, 27617 { "inTimestamps", KSTAT_DATA_UINT32 }, 27618 { "inTimestampReps", KSTAT_DATA_UINT32 }, 27619 { "inAddrMasks", KSTAT_DATA_UINT32 }, 27620 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 27621 { "outMsgs", KSTAT_DATA_UINT32 }, 27622 { "outErrors", KSTAT_DATA_UINT32 }, 27623 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 27624 { "outTimeExcds", KSTAT_DATA_UINT32 }, 27625 { "outParmProbs", KSTAT_DATA_UINT32 }, 27626 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 27627 { "outRedirects", KSTAT_DATA_UINT32 }, 27628 { "outEchos", KSTAT_DATA_UINT32 }, 27629 { "outEchoReps", KSTAT_DATA_UINT32 }, 27630 { "outTimestamps", KSTAT_DATA_UINT32 }, 27631 { "outTimestampReps", KSTAT_DATA_UINT32 }, 27632 { "outAddrMasks", KSTAT_DATA_UINT32 }, 27633 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 27634 { "inChksumErrs", KSTAT_DATA_UINT32 }, 27635 { "inUnknowns", KSTAT_DATA_UINT32 }, 27636 { "inFragNeeded", KSTAT_DATA_UINT32 }, 27637 { "outFragNeeded", KSTAT_DATA_UINT32 }, 27638 { "outDrops", KSTAT_DATA_UINT32 }, 27639 { "inOverFlows", KSTAT_DATA_UINT32 }, 27640 { "inBadRedirects", KSTAT_DATA_UINT32 }, 27641 }; 27642 27643 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 27644 NUM_OF_FIELDS(icmp_named_kstat_t), 27645 0); 27646 if (icmp_mibkp == NULL) 27647 return; 27648 27649 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 27650 27651 icmp_mibkp->ks_update = icmp_kstat_update; 27652 27653 kstat_install(icmp_mibkp); 27654 } 27655 27656 static void 27657 icmp_kstat_fini(void) 27658 { 27659 27660 if (icmp_mibkp != NULL) { 27661 kstat_delete(icmp_mibkp); 27662 icmp_mibkp = NULL; 27663 } 27664 } 27665 27666 static int 27667 icmp_kstat_update(kstat_t *kp, int rw) 27668 { 27669 icmp_named_kstat_t *icmpkp; 27670 27671 if ((kp == NULL) || (kp->ks_data == NULL)) 27672 return (EIO); 27673 27674 if (rw == KSTAT_WRITE) 27675 return (EACCES); 27676 27677 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 27678 27679 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 27680 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 27681 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 27682 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 27683 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 27684 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 27685 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 27686 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 27687 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 27688 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 27689 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 27690 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 27691 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 27692 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 27693 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 27694 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 27695 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 27696 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 27697 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 27698 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 27699 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 27700 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 27701 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 27702 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 27703 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 27704 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 27705 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 27706 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 27707 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 27708 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 27709 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 27710 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 27711 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 27712 27713 return (0); 27714 } 27715 27716 /* 27717 * This is the fanout function for raw socket opened for SCTP. Note 27718 * that it is called after SCTP checks that there is no socket which 27719 * wants a packet. Then before SCTP handles this out of the blue packet, 27720 * this function is called to see if there is any raw socket for SCTP. 27721 * If there is and it is bound to the correct address, the packet will 27722 * be sent to that socket. Note that only one raw socket can be bound to 27723 * a port. This is assured in ipcl_sctp_hash_insert(); 27724 */ 27725 void 27726 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 27727 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 27728 uint_t ipif_seqid, zoneid_t zoneid) 27729 { 27730 conn_t *connp; 27731 queue_t *rq; 27732 mblk_t *first_mp; 27733 boolean_t secure; 27734 ip6_t *ip6h; 27735 27736 first_mp = mp; 27737 if (mctl_present) { 27738 mp = first_mp->b_cont; 27739 secure = ipsec_in_is_secure(first_mp); 27740 ASSERT(mp != NULL); 27741 } else { 27742 secure = B_FALSE; 27743 } 27744 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 27745 27746 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 27747 if (connp == NULL) { 27748 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 27749 mctl_present); 27750 return; 27751 } 27752 rq = connp->conn_rq; 27753 if (!canputnext(rq)) { 27754 CONN_DEC_REF(connp); 27755 BUMP_MIB(&ip_mib, rawipInOverflows); 27756 freemsg(first_mp); 27757 return; 27758 } 27759 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 27760 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 27761 first_mp = ipsec_check_inbound_policy(first_mp, connp, 27762 (isv4 ? ipha : NULL), ip6h, mctl_present); 27763 if (first_mp == NULL) { 27764 CONN_DEC_REF(connp); 27765 return; 27766 } 27767 } 27768 /* 27769 * We probably should not send M_CTL message up to 27770 * raw socket. 27771 */ 27772 if (mctl_present) 27773 freeb(first_mp); 27774 27775 /* Initiate IPPF processing here if needed. */ 27776 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 27777 (!isv4 && IP6_IN_IPP(flags))) { 27778 ip_process(IPP_LOCAL_IN, &mp, 27779 recv_ill->ill_phyint->phyint_ifindex); 27780 if (mp == NULL) { 27781 CONN_DEC_REF(connp); 27782 return; 27783 } 27784 } 27785 27786 if (connp->conn_recvif || connp->conn_recvslla || 27787 ((connp->conn_ipv6_recvpktinfo || 27788 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 27789 (flags & IP_FF_IP6INFO))) { 27790 int in_flags = 0; 27791 27792 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 27793 in_flags = IPF_RECVIF; 27794 } 27795 if (connp->conn_recvslla) { 27796 in_flags |= IPF_RECVSLLA; 27797 } 27798 if (isv4) { 27799 mp = ip_add_info(mp, recv_ill, in_flags); 27800 } else { 27801 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 27802 if (mp == NULL) { 27803 CONN_DEC_REF(connp); 27804 return; 27805 } 27806 } 27807 } 27808 27809 BUMP_MIB(&ip_mib, ipInDelivers); 27810 /* 27811 * We are sending the IPSEC_IN message also up. Refer 27812 * to comments above this function. 27813 */ 27814 putnext(rq, mp); 27815 CONN_DEC_REF(connp); 27816 } 27817 27818 /* 27819 * This function should be called only if all packet processing 27820 * including fragmentation is complete. Callers of this function 27821 * must set mp->b_prev to one of these values: 27822 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 27823 * prior to handing over the mp as first argument to this function. 27824 * 27825 * If the ire passed by caller is incomplete, this function 27826 * queues the packet and if necessary, sends ARP request and bails. 27827 * If the ire passed is fully resolved, we simply prepend 27828 * the link-layer header to the packet, do ipsec hw acceleration 27829 * work if necessary, and send the packet out on the wire. 27830 * 27831 * NOTE: IPSEC will only call this function with fully resolved 27832 * ires if hw acceleration is involved. 27833 * TODO list : 27834 * a Handle M_MULTIDATA so that 27835 * tcp_multisend->tcp_multisend_data can 27836 * call ip_xmit_v4 directly 27837 * b Handle post-ARP work for fragments so that 27838 * ip_wput_frag can call this function. 27839 */ 27840 ipxmit_state_t 27841 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 27842 { 27843 nce_t *arpce; 27844 queue_t *q; 27845 int ill_index; 27846 mblk_t *nxt_mp; 27847 boolean_t xmit_drop = B_FALSE; 27848 ip_proc_t proc; 27849 27850 arpce = ire->ire_nce; 27851 ASSERT(arpce != NULL); 27852 27853 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 27854 27855 mutex_enter(&arpce->nce_lock); 27856 switch (arpce->nce_state) { 27857 case ND_REACHABLE: 27858 /* If there are other queued packets, queue this packet */ 27859 if (arpce->nce_qd_mp != NULL) { 27860 if (mp != NULL) 27861 nce_queue_mp_common(arpce, mp, B_FALSE); 27862 mp = arpce->nce_qd_mp; 27863 } 27864 arpce->nce_qd_mp = NULL; 27865 mutex_exit(&arpce->nce_lock); 27866 27867 /* 27868 * Flush the queue. In the common case, where the 27869 * ARP is already resolved, it will go through the 27870 * while loop only once. 27871 */ 27872 while (mp != NULL) { 27873 27874 nxt_mp = mp->b_next; 27875 mp->b_next = NULL; 27876 /* 27877 * This info is needed for IPQOS to do COS marking 27878 * in ip_wput_attach_llhdr->ip_process. 27879 */ 27880 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 27881 mp->b_prev = NULL; 27882 27883 /* set up ill index for outbound qos processing */ 27884 ill_index = 27885 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 27886 mp = ip_wput_attach_llhdr(mp, ire, proc, ill_index); 27887 if (mp == NULL) { 27888 xmit_drop = B_TRUE; 27889 if (proc == IPP_FWD_OUT) { 27890 BUMP_MIB(&ip_mib, ipInDiscards); 27891 } else { 27892 BUMP_MIB(&ip_mib, ipOutDiscards); 27893 } 27894 goto next_mp; 27895 } 27896 /* non-ipsec hw accel case */ 27897 if (io == NULL || !io->ipsec_out_accelerated) { 27898 /* send it */ 27899 q = ire->ire_stq; 27900 if (proc == IPP_FWD_OUT) { 27901 UPDATE_IB_PKT_COUNT(ire); 27902 } else { 27903 UPDATE_OB_PKT_COUNT(ire); 27904 } 27905 ire->ire_last_used_time = lbolt; 27906 27907 if (flow_ctl_enabled) { 27908 /* 27909 * We are here from ip_wout_ire 27910 * which has already done canput 27911 * check and has enabled flow 27912 * control, so skip the canputnext 27913 * check. 27914 */ 27915 putnext(q, mp); 27916 goto next_mp; 27917 } 27918 if (canputnext(q)) { 27919 if (proc == IPP_FWD_OUT) { 27920 BUMP_MIB(&ip_mib, 27921 ipForwDatagrams); 27922 } 27923 putnext(q, mp); 27924 } else { 27925 BUMP_MIB(&ip_mib, 27926 ipOutDiscards); 27927 xmit_drop = B_TRUE; 27928 freemsg(mp); 27929 } 27930 } else { 27931 /* 27932 * Safety Pup says: make sure this 27933 * is going to the right interface! 27934 */ 27935 ill_t *ill1 = 27936 (ill_t *)ire->ire_stq->q_ptr; 27937 int ifindex = 27938 ill1->ill_phyint->phyint_ifindex; 27939 if (ifindex != 27940 io->ipsec_out_capab_ill_index) { 27941 xmit_drop = B_TRUE; 27942 freemsg(mp); 27943 } else { 27944 ipsec_hw_putnext(ire->ire_stq, 27945 mp); 27946 } 27947 } 27948 next_mp: 27949 mp = nxt_mp; 27950 } /* while (mp != NULL) */ 27951 if (xmit_drop) 27952 return (SEND_FAILED); 27953 else 27954 return (SEND_PASSED); 27955 27956 case ND_INITIAL: 27957 case ND_INCOMPLETE: 27958 27959 /* 27960 * While we do send off packets to dests that 27961 * use fully-resolved CGTP routes, we do not 27962 * handle unresolved CGTP routes. 27963 */ 27964 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 27965 ASSERT(io == NULL || !io->ipsec_out_accelerated); 27966 27967 if (mp != NULL) { 27968 /* queue the packet */ 27969 nce_queue_mp_common(arpce, mp, B_FALSE); 27970 } 27971 27972 if (arpce->nce_state == ND_INCOMPLETE) { 27973 mutex_exit(&arpce->nce_lock); 27974 DTRACE_PROBE3(ip__xmit__incomplete, 27975 (ire_t *), ire, (mblk_t *), mp, 27976 (ipsec_out_t *), io); 27977 return (LOOKUP_IN_PROGRESS); 27978 } 27979 27980 arpce->nce_state = ND_INCOMPLETE; 27981 mutex_exit(&arpce->nce_lock); 27982 /* 27983 * Note that ire_add() (called from ire_forward()) 27984 * holds a ref on the ire until ARP is completed. 27985 */ 27986 27987 ire_arpresolve(ire, ire->ire_ipif->ipif_ill); 27988 return (LOOKUP_IN_PROGRESS); 27989 default: 27990 ASSERT(0); 27991 mutex_exit(&arpce->nce_lock); 27992 return (LLHDR_RESLV_FAILED); 27993 } 27994 } 27995 27996 /* 27997 * Return B_TRUE if the buffers differ in length or content. 27998 * This is used for comparing extension header buffers. 27999 * Note that an extension header would be declared different 28000 * even if all that changed was the next header value in that header i.e. 28001 * what really changed is the next extension header. 28002 */ 28003 boolean_t 28004 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 28005 uint_t blen) 28006 { 28007 if (!b_valid) 28008 blen = 0; 28009 28010 if (alen != blen) 28011 return (B_TRUE); 28012 if (alen == 0) 28013 return (B_FALSE); /* Both zero length */ 28014 return (bcmp(abuf, bbuf, alen)); 28015 } 28016 28017 /* 28018 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 28019 * Return B_FALSE if memory allocation fails - don't change any state! 28020 */ 28021 boolean_t 28022 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28023 const void *src, uint_t srclen) 28024 { 28025 void *dst; 28026 28027 if (!src_valid) 28028 srclen = 0; 28029 28030 ASSERT(*dstlenp == 0); 28031 if (src != NULL && srclen != 0) { 28032 dst = mi_alloc(srclen, BPRI_MED); 28033 if (dst == NULL) 28034 return (B_FALSE); 28035 } else { 28036 dst = NULL; 28037 } 28038 if (*dstp != NULL) 28039 mi_free(*dstp); 28040 *dstp = dst; 28041 *dstlenp = dst == NULL ? 0 : srclen; 28042 return (B_TRUE); 28043 } 28044 28045 /* 28046 * Replace what is in *dst, *dstlen with the source. 28047 * Assumes ip_allocbuf has already been called. 28048 */ 28049 void 28050 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28051 const void *src, uint_t srclen) 28052 { 28053 if (!src_valid) 28054 srclen = 0; 28055 28056 ASSERT(*dstlenp == srclen); 28057 if (src != NULL && srclen != 0) 28058 bcopy(src, *dstp, srclen); 28059 } 28060 28061 /* 28062 * Free the storage pointed to by the members of an ip6_pkt_t. 28063 */ 28064 void 28065 ip6_pkt_free(ip6_pkt_t *ipp) 28066 { 28067 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 28068 28069 if (ipp->ipp_fields & IPPF_HOPOPTS) { 28070 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 28071 ipp->ipp_hopopts = NULL; 28072 ipp->ipp_hopoptslen = 0; 28073 } 28074 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 28075 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 28076 ipp->ipp_rtdstopts = NULL; 28077 ipp->ipp_rtdstoptslen = 0; 28078 } 28079 if (ipp->ipp_fields & IPPF_DSTOPTS) { 28080 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 28081 ipp->ipp_dstopts = NULL; 28082 ipp->ipp_dstoptslen = 0; 28083 } 28084 if (ipp->ipp_fields & IPPF_RTHDR) { 28085 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 28086 ipp->ipp_rthdr = NULL; 28087 ipp->ipp_rthdrlen = 0; 28088 } 28089 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 28090 IPPF_RTHDR); 28091 } 28092