1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * Mobile-IP scenarios 357 * 358 * irb_lock -> ill_lock -> ire_mrtun_lock 359 * irb_lock -> ill_lock -> ire_srcif_table_lock 360 * 361 * IPsec scenarios 362 * 363 * ipsa_lock -> ill_g_lock -> ill_lock 364 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 365 * ipsec_capab_ills_lock -> ipsa_lock 366 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 367 * 368 * Trusted Solaris scenarios 369 * 370 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 371 * igsa_lock -> gcdb_lock 372 * gcgrp_rwlock -> ire_lock 373 * gcgrp_rwlock -> gcdb_lock 374 * 375 * 376 * Routing/forwarding table locking notes: 377 * 378 * Lock acquisition order: Radix tree lock, irb_lock. 379 * Requirements: 380 * i. Walker must not hold any locks during the walker callback. 381 * ii Walker must not see a truncated tree during the walk because of any node 382 * deletion. 383 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 384 * in many places in the code to walk the irb list. Thus even if all the 385 * ires in a bucket have been deleted, we still can't free the radix node 386 * until the ires have actually been inactive'd (freed). 387 * 388 * Tree traversal - Need to hold the global tree lock in read mode. 389 * Before dropping the global tree lock, need to either increment the ire_refcnt 390 * to ensure that the radix node can't be deleted. 391 * 392 * Tree add - Need to hold the global tree lock in write mode to add a 393 * radix node. To prevent the node from being deleted, increment the 394 * irb_refcnt, after the node is added to the tree. The ire itself is 395 * added later while holding the irb_lock, but not the tree lock. 396 * 397 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 398 * All associated ires must be inactive (i.e. freed), and irb_refcnt 399 * must be zero. 400 * 401 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 402 * global tree lock (read mode) for traversal. 403 * 404 * IPSEC notes : 405 * 406 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 407 * in front of the actual packet. For outbound datagrams, the M_CTL 408 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 409 * information used by the IPSEC code for applying the right level of 410 * protection. The information initialized by IP in the ipsec_out_t 411 * is determined by the per-socket policy or global policy in the system. 412 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 413 * ipsec_info.h) which starts out with nothing in it. It gets filled 414 * with the right information if it goes through the AH/ESP code, which 415 * happens if the incoming packet is secure. The information initialized 416 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 417 * the policy requirements needed by per-socket policy or global policy 418 * is met or not. 419 * 420 * If there is both per-socket policy (set using setsockopt) and there 421 * is also global policy match for the 5 tuples of the socket, 422 * ipsec_override_policy() makes the decision of which one to use. 423 * 424 * For fully connected sockets i.e dst, src [addr, port] is known, 425 * conn_policy_cached is set indicating that policy has been cached. 426 * conn_in_enforce_policy may or may not be set depending on whether 427 * there is a global policy match or per-socket policy match. 428 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 429 * Once the right policy is set on the conn_t, policy cannot change for 430 * this socket. This makes life simpler for TCP (UDP ?) where 431 * re-transmissions go out with the same policy. For symmetry, policy 432 * is cached for fully connected UDP sockets also. Thus if policy is cached, 433 * it also implies that policy is latched i.e policy cannot change 434 * on these sockets. As we have the right policy on the conn, we don't 435 * have to lookup global policy for every outbound and inbound datagram 436 * and thus serving as an optimization. Note that a global policy change 437 * does not affect fully connected sockets if they have policy. If fully 438 * connected sockets did not have any policy associated with it, global 439 * policy change may affect them. 440 * 441 * IP Flow control notes: 442 * 443 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 444 * cannot be sent down to the driver by IP, because of a canput failure, IP 445 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 446 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 447 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 448 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 449 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 450 * the queued messages, and removes the conn from the drain list, if all 451 * messages were drained. It also qenables the next conn in the drain list to 452 * continue the drain process. 453 * 454 * In reality the drain list is not a single list, but a configurable number 455 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 456 * list. If the ip_wsrv of the next qenabled conn does not run, because the 457 * stream closes, ip_close takes responsibility to qenable the next conn in 458 * the drain list. The directly called ip_wput path always does a putq, if 459 * it cannot putnext. Thus synchronization problems are handled between 460 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 461 * functions that manipulate this drain list. Furthermore conn_drain_insert 462 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 463 * running on a queue at any time. conn_drain_tail can be simultaneously called 464 * from both ip_wsrv and ip_close. 465 * 466 * IPQOS notes: 467 * 468 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 469 * and IPQoS modules. IPPF includes hooks in IP at different control points 470 * (callout positions) which direct packets to IPQoS modules for policy 471 * processing. Policies, if present, are global. 472 * 473 * The callout positions are located in the following paths: 474 * o local_in (packets destined for this host) 475 * o local_out (packets orginating from this host ) 476 * o fwd_in (packets forwarded by this m/c - inbound) 477 * o fwd_out (packets forwarded by this m/c - outbound) 478 * Hooks at these callout points can be enabled/disabled using the ndd variable 479 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 480 * By default all the callout positions are enabled. 481 * 482 * Outbound (local_out) 483 * Hooks are placed in ip_wput_ire and ipsec_out_process. 484 * 485 * Inbound (local_in) 486 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 487 * TCP and UDP fanout routines. 488 * 489 * Forwarding (in and out) 490 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 491 * 492 * IP Policy Framework processing (IPPF processing) 493 * Policy processing for a packet is initiated by ip_process, which ascertains 494 * that the classifier (ipgpc) is loaded and configured, failing which the 495 * packet resumes normal processing in IP. If the clasifier is present, the 496 * packet is acted upon by one or more IPQoS modules (action instances), per 497 * filters configured in ipgpc and resumes normal IP processing thereafter. 498 * An action instance can drop a packet in course of its processing. 499 * 500 * A boolean variable, ip_policy, is used in all the fanout routines that can 501 * invoke ip_process for a packet. This variable indicates if the packet should 502 * to be sent for policy processing. The variable is set to B_TRUE by default, 503 * i.e. when the routines are invoked in the normal ip procesing path for a 504 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 505 * ip_policy is set to B_FALSE for all the routines called in these two 506 * functions because, in the former case, we don't process loopback traffic 507 * currently while in the latter, the packets have already been processed in 508 * icmp_inbound. 509 * 510 * Zones notes: 511 * 512 * The partitioning rules for networking are as follows: 513 * 1) Packets coming from a zone must have a source address belonging to that 514 * zone. 515 * 2) Packets coming from a zone can only be sent on a physical interface on 516 * which the zone has an IP address. 517 * 3) Between two zones on the same machine, packet delivery is only allowed if 518 * there's a matching route for the destination and zone in the forwarding 519 * table. 520 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 521 * different zones can bind to the same port with the wildcard address 522 * (INADDR_ANY). 523 * 524 * The granularity of interface partitioning is at the logical interface level. 525 * Therefore, every zone has its own IP addresses, and incoming packets can be 526 * attributed to a zone unambiguously. A logical interface is placed into a zone 527 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 528 * structure. Rule (1) is implemented by modifying the source address selection 529 * algorithm so that the list of eligible addresses is filtered based on the 530 * sending process zone. 531 * 532 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 533 * across all zones, depending on their type. Here is the break-up: 534 * 535 * IRE type Shared/exclusive 536 * -------- ---------------- 537 * IRE_BROADCAST Exclusive 538 * IRE_DEFAULT (default routes) Shared (*) 539 * IRE_LOCAL Exclusive (x) 540 * IRE_LOOPBACK Exclusive 541 * IRE_PREFIX (net routes) Shared (*) 542 * IRE_CACHE Exclusive 543 * IRE_IF_NORESOLVER (interface routes) Exclusive 544 * IRE_IF_RESOLVER (interface routes) Exclusive 545 * IRE_HOST (host routes) Shared (*) 546 * 547 * (*) A zone can only use a default or off-subnet route if the gateway is 548 * directly reachable from the zone, that is, if the gateway's address matches 549 * one of the zone's logical interfaces. 550 * 551 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 552 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 553 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 554 * address of the zone itself (the destination). Since IRE_LOCAL is used 555 * for communication between zones, ip_wput_ire has special logic to set 556 * the right source address when sending using an IRE_LOCAL. 557 * 558 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 559 * ire_cache_lookup restricts loopback using an IRE_LOCAL 560 * between zone to the case when L2 would have conceptually looped the packet 561 * back, i.e. the loopback which is required since neither Ethernet drivers 562 * nor Ethernet hardware loops them back. This is the case when the normal 563 * routes (ignoring IREs with different zoneids) would send out the packet on 564 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 565 * associated. 566 * 567 * Multiple zones can share a common broadcast address; typically all zones 568 * share the 255.255.255.255 address. Incoming as well as locally originated 569 * broadcast packets must be dispatched to all the zones on the broadcast 570 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 571 * since some zones may not be on the 10.16.72/24 network. To handle this, each 572 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 573 * sent to every zone that has an IRE_BROADCAST entry for the destination 574 * address on the input ill, see conn_wantpacket(). 575 * 576 * Applications in different zones can join the same multicast group address. 577 * For IPv4, group memberships are per-logical interface, so they're already 578 * inherently part of a zone. For IPv6, group memberships are per-physical 579 * interface, so we distinguish IPv6 group memberships based on group address, 580 * interface and zoneid. In both cases, received multicast packets are sent to 581 * every zone for which a group membership entry exists. On IPv6 we need to 582 * check that the target zone still has an address on the receiving physical 583 * interface; it could have been removed since the application issued the 584 * IPV6_JOIN_GROUP. 585 */ 586 587 /* 588 * Squeue Fanout flags: 589 * 0: No fanout. 590 * 1: Fanout across all squeues 591 */ 592 boolean_t ip_squeue_fanout = 0; 593 594 /* 595 * Maximum dups allowed per packet. 596 */ 597 uint_t ip_max_frag_dups = 10; 598 599 #define IS_SIMPLE_IPH(ipha) \ 600 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 601 602 /* RFC1122 Conformance */ 603 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 604 605 #define ILL_MAX_NAMELEN LIFNAMSIZ 606 607 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 608 609 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 610 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 611 612 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 613 ip_stack_t *); 614 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 615 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 616 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 617 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 618 mblk_t *, int, ip_stack_t *); 619 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 620 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 621 ill_t *, zoneid_t); 622 static void icmp_options_update(ipha_t *); 623 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 624 ip_stack_t *); 625 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 626 zoneid_t zoneid, ip_stack_t *); 627 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 628 static void icmp_redirect(ill_t *, mblk_t *); 629 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 630 ip_stack_t *); 631 632 static void ip_arp_news(queue_t *, mblk_t *); 633 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 634 ip_stack_t *); 635 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 636 char *ip_dot_addr(ipaddr_t, char *); 637 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 638 int ip_close(queue_t *, int); 639 static char *ip_dot_saddr(uchar_t *, char *); 640 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, ill_t *, zoneid_t); 642 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 643 boolean_t, boolean_t, zoneid_t); 644 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 645 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 646 static void ip_lrput(queue_t *, mblk_t *); 647 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 648 ipaddr_t ip_net_mask(ipaddr_t); 649 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 650 zoneid_t, ip_stack_t *); 651 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 652 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 653 char *ip_nv_lookup(nv_t *, int); 654 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 655 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 656 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 657 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 658 ipndp_t *, size_t); 659 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 660 void ip_rput(queue_t *, mblk_t *); 661 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 662 void *dummy_arg); 663 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 664 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 665 ip_stack_t *); 666 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 667 ire_t *, ip_stack_t *); 668 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 669 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 670 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 671 ip_stack_t *); 672 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 673 uint16_t *); 674 int ip_snmp_get(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 711 712 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 713 zoneid_t, ip_stack_t *); 714 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 715 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 716 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 717 zoneid_t, ip_stack_t *); 718 719 static void conn_drain_init(ip_stack_t *); 720 static void conn_drain_fini(ip_stack_t *); 721 static void conn_drain_tail(conn_t *connp, boolean_t closing); 722 723 static void conn_walk_drain(ip_stack_t *); 724 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 725 zoneid_t); 726 727 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 728 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 729 static void ip_stack_fini(netstackid_t stackid, void *arg); 730 731 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 732 zoneid_t); 733 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 734 void *dummy_arg); 735 736 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 737 738 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 739 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 740 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 741 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 742 743 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 744 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 745 caddr_t, cred_t *); 746 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 751 caddr_t cp, cred_t *cr); 752 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 753 cred_t *); 754 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 755 cred_t *); 756 static squeue_func_t ip_squeue_switch(int); 757 758 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 759 static void ip_kstat_fini(netstackid_t, kstat_t *); 760 static int ip_kstat_update(kstat_t *kp, int rw); 761 static void *icmp_kstat_init(netstackid_t); 762 static void icmp_kstat_fini(netstackid_t, kstat_t *); 763 static int icmp_kstat_update(kstat_t *kp, int rw); 764 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 765 static void ip_kstat2_fini(netstackid_t, kstat_t *); 766 767 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 768 769 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 770 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 771 772 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 773 ipha_t *, ill_t *, boolean_t); 774 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 775 776 /* How long, in seconds, we allow frags to hang around. */ 777 #define IP_FRAG_TIMEOUT 60 778 779 /* 780 * Threshold which determines whether MDT should be used when 781 * generating IP fragments; payload size must be greater than 782 * this threshold for MDT to take place. 783 */ 784 #define IP_WPUT_FRAG_MDT_MIN 32768 785 786 /* Setable in /etc/system only */ 787 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 788 789 static long ip_rput_pullups; 790 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 791 792 vmem_t *ip_minor_arena; 793 794 int ip_debug; 795 796 #ifdef DEBUG 797 uint32_t ipsechw_debug = 0; 798 #endif 799 800 /* 801 * Multirouting/CGTP stuff 802 */ 803 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 804 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 805 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 806 807 /* 808 * XXX following really should only be in a header. Would need more 809 * header and .c clean up first. 810 */ 811 extern optdb_obj_t ip_opt_obj; 812 813 ulong_t ip_squeue_enter_unbound = 0; 814 815 /* 816 * Named Dispatch Parameter Table. 817 * All of these are alterable, within the min/max values given, at run time. 818 */ 819 static ipparam_t lcl_param_arr[] = { 820 /* min max value name */ 821 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 822 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 823 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 824 { 0, 1, 0, "ip_respond_to_timestamp"}, 825 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 826 { 0, 1, 1, "ip_send_redirects"}, 827 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 828 { 0, 10, 0, "ip_debug"}, 829 { 0, 10, 0, "ip_mrtdebug"}, 830 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 831 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 832 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 833 { 1, 255, 255, "ip_def_ttl" }, 834 { 0, 1, 0, "ip_forward_src_routed"}, 835 { 0, 256, 32, "ip_wroff_extra" }, 836 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 837 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 838 { 0, 1, 1, "ip_path_mtu_discovery" }, 839 { 0, 240, 30, "ip_ignore_delete_time" }, 840 { 0, 1, 0, "ip_ignore_redirect" }, 841 { 0, 1, 1, "ip_output_queue" }, 842 { 1, 254, 1, "ip_broadcast_ttl" }, 843 { 0, 99999, 100, "ip_icmp_err_interval" }, 844 { 1, 99999, 10, "ip_icmp_err_burst" }, 845 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 846 { 0, 1, 0, "ip_strict_dst_multihoming" }, 847 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 848 { 0, 1, 0, "ipsec_override_persocket_policy" }, 849 { 0, 1, 1, "icmp_accept_clear_messages" }, 850 { 0, 1, 1, "igmp_accept_clear_messages" }, 851 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 852 "ip_ndp_delay_first_probe_time"}, 853 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 854 "ip_ndp_max_unicast_solicit"}, 855 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 856 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 857 { 0, 1, 0, "ip6_forward_src_routed"}, 858 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 859 { 0, 1, 1, "ip6_send_redirects"}, 860 { 0, 1, 0, "ip6_ignore_redirect" }, 861 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 862 863 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 864 865 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 866 867 { 0, 1, 1, "pim_accept_clear_messages" }, 868 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 869 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 870 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 871 { 0, 15, 0, "ip_policy_mask" }, 872 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 873 { 0, 255, 1, "ip_multirt_ttl" }, 874 { 0, 1, 1, "ip_multidata_outbound" }, 875 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 876 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 877 { 0, 1000, 1, "ip_max_temp_defend" }, 878 { 0, 1000, 3, "ip_max_defend" }, 879 { 0, 999999, 30, "ip_defend_interval" }, 880 { 0, 3600000, 300000, "ip_dup_recovery" }, 881 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 882 { 0, 1, 1, "ip_lso_outbound" }, 883 #ifdef DEBUG 884 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 885 #else 886 { 0, 0, 0, "" }, 887 #endif 888 }; 889 890 /* 891 * Extended NDP table 892 * The addresses for the first two are filled in to be ips_ip_g_forward 893 * and ips_ipv6_forward at init time. 894 */ 895 static ipndp_t lcl_ndp_arr[] = { 896 /* getf setf data name */ 897 #define IPNDP_IP_FORWARDING_OFFSET 0 898 { ip_param_generic_get, ip_forward_set, NULL, 899 "ip_forwarding" }, 900 #define IPNDP_IP6_FORWARDING_OFFSET 1 901 { ip_param_generic_get, ip_forward_set, NULL, 902 "ip6_forwarding" }, 903 { ip_ill_report, NULL, NULL, 904 "ip_ill_status" }, 905 { ip_ipif_report, NULL, NULL, 906 "ip_ipif_status" }, 907 { ip_ire_report, NULL, NULL, 908 "ipv4_ire_status" }, 909 { ip_ire_report_mrtun, NULL, NULL, 910 "ipv4_mrtun_ire_status" }, 911 { ip_ire_report_srcif, NULL, NULL, 912 "ipv4_srcif_ire_status" }, 913 { ip_ire_report_v6, NULL, NULL, 914 "ipv6_ire_status" }, 915 { ip_conn_report, NULL, NULL, 916 "ip_conn_status" }, 917 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 918 "ip_rput_pullups" }, 919 { ndp_report, NULL, NULL, 920 "ip_ndp_cache_report" }, 921 { ip_srcid_report, NULL, NULL, 922 "ip_srcid_status" }, 923 { ip_param_generic_get, ip_squeue_profile_set, 924 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 925 { ip_param_generic_get, ip_squeue_bind_set, 926 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 927 { ip_param_generic_get, ip_input_proc_set, 928 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 929 { ip_param_generic_get, ip_int_set, 930 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 931 #define IPNDP_CGTP_FILTER_OFFSET 16 932 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 933 "ip_cgtp_filter" }, 934 { ip_param_generic_get, ip_int_set, 935 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 936 #define IPNDP_IPMP_HOOK_OFFSET 18 937 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 938 "ipmp_hook_emulation" }, 939 }; 940 941 /* 942 * Table of IP ioctls encoding the various properties of the ioctl and 943 * indexed based on the last byte of the ioctl command. Occasionally there 944 * is a clash, and there is more than 1 ioctl with the same last byte. 945 * In such a case 1 ioctl is encoded in the ndx table and the remaining 946 * ioctls are encoded in the misc table. An entry in the ndx table is 947 * retrieved by indexing on the last byte of the ioctl command and comparing 948 * the ioctl command with the value in the ndx table. In the event of a 949 * mismatch the misc table is then searched sequentially for the desired 950 * ioctl command. 951 * 952 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 953 */ 954 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 955 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 961 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 962 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 963 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 964 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 966 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 967 MISC_CMD, ip_siocaddrt, NULL }, 968 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 969 MISC_CMD, ip_siocdelrt, NULL }, 970 971 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 972 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 973 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 974 IF_CMD, ip_sioctl_get_addr, NULL }, 975 976 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 977 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 978 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 979 IPI_GET_CMD | IPI_REPL, 980 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 981 982 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 983 IPI_PRIV | IPI_WR | IPI_REPL, 984 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 985 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 986 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 987 IF_CMD, ip_sioctl_get_flags, NULL }, 988 989 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 990 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 991 992 /* copyin size cannot be coded for SIOCGIFCONF */ 993 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 994 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 995 996 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_mtu, NULL }, 998 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 999 IF_CMD, ip_sioctl_get_mtu, NULL }, 1000 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1001 IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1003 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1004 IF_CMD, ip_sioctl_brdaddr, NULL }, 1005 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1006 IPI_GET_CMD | IPI_REPL, 1007 IF_CMD, ip_sioctl_get_netmask, NULL }, 1008 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1009 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1010 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1011 IPI_GET_CMD | IPI_REPL, 1012 IF_CMD, ip_sioctl_get_metric, NULL }, 1013 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1014 IF_CMD, ip_sioctl_metric, NULL }, 1015 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 1017 /* See 166-168 below for extended SIOC*XARP ioctls */ 1018 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1019 MISC_CMD, ip_sioctl_arp, NULL }, 1020 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1021 MISC_CMD, ip_sioctl_arp, NULL }, 1022 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1023 MISC_CMD, ip_sioctl_arp, NULL }, 1024 1025 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 1047 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1048 MISC_CMD, if_unitsel, if_unitsel_restart }, 1049 1050 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 1069 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1070 IPI_PRIV | IPI_WR | IPI_MODOK, 1071 IF_CMD, ip_sioctl_sifname, NULL }, 1072 1073 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 1087 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1088 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1089 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_muxid, NULL }, 1091 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1092 IPI_PRIV | IPI_WR | IPI_REPL, 1093 IF_CMD, ip_sioctl_muxid, NULL }, 1094 1095 /* Both if and lif variants share same func */ 1096 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1097 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1098 /* Both if and lif variants share same func */ 1099 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1100 IPI_PRIV | IPI_WR | IPI_REPL, 1101 IF_CMD, ip_sioctl_slifindex, NULL }, 1102 1103 /* copyin size cannot be coded for SIOCGIFCONF */ 1104 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1105 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1106 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 1124 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1125 IPI_PRIV | IPI_WR | IPI_REPL, 1126 LIF_CMD, ip_sioctl_removeif, 1127 ip_sioctl_removeif_restart }, 1128 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1129 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1130 LIF_CMD, ip_sioctl_addif, NULL }, 1131 #define SIOCLIFADDR_NDX 112 1132 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1133 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1134 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_addr, NULL }, 1137 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1138 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1139 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1140 IPI_GET_CMD | IPI_REPL, 1141 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1142 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1143 IPI_PRIV | IPI_WR | IPI_REPL, 1144 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1145 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1146 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1147 LIF_CMD, ip_sioctl_get_flags, NULL }, 1148 1149 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 1152 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1153 ip_sioctl_get_lifconf, NULL }, 1154 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_mtu, NULL }, 1156 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1157 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1158 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1161 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1162 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1163 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1164 IPI_GET_CMD | IPI_REPL, 1165 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1166 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1167 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1168 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1169 IPI_GET_CMD | IPI_REPL, 1170 LIF_CMD, ip_sioctl_get_metric, NULL }, 1171 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1172 LIF_CMD, ip_sioctl_metric, NULL }, 1173 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1174 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1175 LIF_CMD, ip_sioctl_slifname, 1176 ip_sioctl_slifname_restart }, 1177 1178 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1179 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1180 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1181 IPI_GET_CMD | IPI_REPL, 1182 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1183 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1184 IPI_PRIV | IPI_WR | IPI_REPL, 1185 LIF_CMD, ip_sioctl_muxid, NULL }, 1186 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1187 IPI_GET_CMD | IPI_REPL, 1188 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1189 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1190 IPI_PRIV | IPI_WR | IPI_REPL, 1191 LIF_CMD, ip_sioctl_slifindex, 0 }, 1192 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_token, NULL }, 1194 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_token, NULL }, 1197 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1198 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1199 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1200 IPI_GET_CMD | IPI_REPL, 1201 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1202 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1203 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1204 1205 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1206 IPI_GET_CMD | IPI_REPL, 1207 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1208 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1209 LIF_CMD, ip_siocdelndp_v6, NULL }, 1210 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1211 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1212 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1213 LIF_CMD, ip_siocsetndp_v6, NULL }, 1214 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1215 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1216 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1217 MISC_CMD, ip_sioctl_tonlink, NULL }, 1218 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1219 MISC_CMD, ip_sioctl_tmysite, NULL }, 1220 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1221 TUN_CMD, ip_sioctl_tunparam, NULL }, 1222 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1223 IPI_PRIV | IPI_WR, 1224 TUN_CMD, ip_sioctl_tunparam, NULL }, 1225 1226 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1227 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1228 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1229 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1230 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1231 1232 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1233 IPI_PRIV | IPI_WR | IPI_REPL, 1234 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1235 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1236 IPI_PRIV | IPI_WR | IPI_REPL, 1237 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1238 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1239 IPI_PRIV | IPI_WR, 1240 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1241 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1242 IPI_GET_CMD | IPI_REPL, 1243 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1244 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1247 1248 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1249 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1250 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1251 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1252 1253 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1255 1256 /* These are handled in ip_sioctl_copyin_setup itself */ 1257 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1258 MISC_CMD, NULL, NULL }, 1259 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1260 MISC_CMD, NULL, NULL }, 1261 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1262 1263 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1264 ip_sioctl_get_lifconf, NULL }, 1265 1266 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1267 MISC_CMD, ip_sioctl_xarp, NULL }, 1268 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1269 MISC_CMD, ip_sioctl_xarp, NULL }, 1270 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1271 MISC_CMD, ip_sioctl_xarp, NULL }, 1272 1273 /* SIOCPOPSOCKFS is not handled by IP */ 1274 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1275 1276 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1277 IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1279 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1280 IPI_PRIV | IPI_WR | IPI_REPL, 1281 LIF_CMD, ip_sioctl_slifzone, 1282 ip_sioctl_slifzone_restart }, 1283 /* 172-174 are SCTP ioctls and not handled by IP */ 1284 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1285 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1286 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1287 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1288 IPI_GET_CMD, LIF_CMD, 1289 ip_sioctl_get_lifusesrc, 0 }, 1290 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1291 IPI_PRIV | IPI_WR, 1292 LIF_CMD, ip_sioctl_slifusesrc, 1293 NULL }, 1294 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1295 ip_sioctl_get_lifsrcof, NULL }, 1296 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1297 MISC_CMD, ip_sioctl_msfilter, NULL }, 1298 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1299 MISC_CMD, ip_sioctl_msfilter, NULL }, 1300 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1301 MISC_CMD, ip_sioctl_msfilter, NULL }, 1302 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1303 MISC_CMD, ip_sioctl_msfilter, NULL }, 1304 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1305 ip_sioctl_set_ipmpfailback, NULL } 1306 }; 1307 1308 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1309 1310 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1311 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1312 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1313 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1314 TUN_CMD, ip_sioctl_tunparam, NULL }, 1315 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1317 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1318 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1319 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1320 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1321 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1322 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1323 MISC_CMD, mrt_ioctl}, 1324 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1325 MISC_CMD, mrt_ioctl}, 1326 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1327 MISC_CMD, mrt_ioctl} 1328 }; 1329 1330 int ip_misc_ioctl_count = 1331 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1332 1333 int conn_drain_nthreads; /* Number of drainers reqd. */ 1334 /* Settable in /etc/system */ 1335 /* Defined in ip_ire.c */ 1336 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1337 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1338 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1339 1340 static nv_t ire_nv_arr[] = { 1341 { IRE_BROADCAST, "BROADCAST" }, 1342 { IRE_LOCAL, "LOCAL" }, 1343 { IRE_LOOPBACK, "LOOPBACK" }, 1344 { IRE_CACHE, "CACHE" }, 1345 { IRE_DEFAULT, "DEFAULT" }, 1346 { IRE_PREFIX, "PREFIX" }, 1347 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1348 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1349 { IRE_HOST, "HOST" }, 1350 { 0 } 1351 }; 1352 1353 nv_t *ire_nv_tbl = ire_nv_arr; 1354 1355 /* Defined in ip_netinfo.c */ 1356 extern ddi_taskq_t *eventq_queue_nic; 1357 1358 /* Simple ICMP IP Header Template */ 1359 static ipha_t icmp_ipha = { 1360 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1361 }; 1362 1363 struct module_info ip_mod_info = { 1364 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1365 }; 1366 1367 /* 1368 * Duplicate static symbols within a module confuses mdb; so we avoid the 1369 * problem by making the symbols here distinct from those in udp.c. 1370 */ 1371 1372 static struct qinit iprinit = { 1373 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1374 &ip_mod_info 1375 }; 1376 1377 static struct qinit ipwinit = { 1378 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1379 &ip_mod_info 1380 }; 1381 1382 static struct qinit iplrinit = { 1383 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1384 &ip_mod_info 1385 }; 1386 1387 static struct qinit iplwinit = { 1388 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1389 &ip_mod_info 1390 }; 1391 1392 struct streamtab ipinfo = { 1393 &iprinit, &ipwinit, &iplrinit, &iplwinit 1394 }; 1395 1396 #ifdef DEBUG 1397 static boolean_t skip_sctp_cksum = B_FALSE; 1398 #endif 1399 1400 /* 1401 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1402 * ip_rput_v6(), ip_output(), etc. If the message 1403 * block already has a M_CTL at the front of it, then simply set the zoneid 1404 * appropriately. 1405 */ 1406 mblk_t * 1407 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1408 { 1409 mblk_t *first_mp; 1410 ipsec_out_t *io; 1411 1412 ASSERT(zoneid != ALL_ZONES); 1413 if (mp->b_datap->db_type == M_CTL) { 1414 io = (ipsec_out_t *)mp->b_rptr; 1415 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1416 io->ipsec_out_zoneid = zoneid; 1417 return (mp); 1418 } 1419 1420 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1421 if (first_mp == NULL) 1422 return (NULL); 1423 io = (ipsec_out_t *)first_mp->b_rptr; 1424 /* This is not a secure packet */ 1425 io->ipsec_out_secure = B_FALSE; 1426 io->ipsec_out_zoneid = zoneid; 1427 first_mp->b_cont = mp; 1428 return (first_mp); 1429 } 1430 1431 /* 1432 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1433 */ 1434 mblk_t * 1435 ip_copymsg(mblk_t *mp) 1436 { 1437 mblk_t *nmp; 1438 ipsec_info_t *in; 1439 1440 if (mp->b_datap->db_type != M_CTL) 1441 return (copymsg(mp)); 1442 1443 in = (ipsec_info_t *)mp->b_rptr; 1444 1445 /* 1446 * Note that M_CTL is also used for delivering ICMP error messages 1447 * upstream to transport layers. 1448 */ 1449 if (in->ipsec_info_type != IPSEC_OUT && 1450 in->ipsec_info_type != IPSEC_IN) 1451 return (copymsg(mp)); 1452 1453 nmp = copymsg(mp->b_cont); 1454 1455 if (in->ipsec_info_type == IPSEC_OUT) { 1456 return (ipsec_out_tag(mp, nmp, 1457 ((ipsec_out_t *)in)->ipsec_out_ns)); 1458 } else { 1459 return (ipsec_in_tag(mp, nmp, 1460 ((ipsec_in_t *)in)->ipsec_in_ns)); 1461 } 1462 } 1463 1464 /* Generate an ICMP fragmentation needed message. */ 1465 static void 1466 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1467 ip_stack_t *ipst) 1468 { 1469 icmph_t icmph; 1470 mblk_t *first_mp; 1471 boolean_t mctl_present; 1472 1473 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1474 1475 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1476 if (mctl_present) 1477 freeb(first_mp); 1478 return; 1479 } 1480 1481 bzero(&icmph, sizeof (icmph_t)); 1482 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1483 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1484 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1485 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1486 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1487 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1488 ipst); 1489 } 1490 1491 /* 1492 * icmp_inbound deals with ICMP messages in the following ways. 1493 * 1494 * 1) It needs to send a reply back and possibly delivering it 1495 * to the "interested" upper clients. 1496 * 2) It needs to send it to the upper clients only. 1497 * 3) It needs to change some values in IP only. 1498 * 4) It needs to change some values in IP and upper layers e.g TCP. 1499 * 1500 * We need to accomodate icmp messages coming in clear until we get 1501 * everything secure from the wire. If icmp_accept_clear_messages 1502 * is zero we check with the global policy and act accordingly. If 1503 * it is non-zero, we accept the message without any checks. But 1504 * *this does not mean* that this will be delivered to the upper 1505 * clients. By accepting we might send replies back, change our MTU 1506 * value etc. but delivery to the ULP/clients depends on their policy 1507 * dispositions. 1508 * 1509 * We handle the above 4 cases in the context of IPSEC in the 1510 * following way : 1511 * 1512 * 1) Send the reply back in the same way as the request came in. 1513 * If it came in encrypted, it goes out encrypted. If it came in 1514 * clear, it goes out in clear. Thus, this will prevent chosen 1515 * plain text attack. 1516 * 2) The client may or may not expect things to come in secure. 1517 * If it comes in secure, the policy constraints are checked 1518 * before delivering it to the upper layers. If it comes in 1519 * clear, ipsec_inbound_accept_clear will decide whether to 1520 * accept this in clear or not. In both the cases, if the returned 1521 * message (IP header + 8 bytes) that caused the icmp message has 1522 * AH/ESP headers, it is sent up to AH/ESP for validation before 1523 * sending up. If there are only 8 bytes of returned message, then 1524 * upper client will not be notified. 1525 * 3) Check with global policy to see whether it matches the constaints. 1526 * But this will be done only if icmp_accept_messages_in_clear is 1527 * zero. 1528 * 4) If we need to change both in IP and ULP, then the decision taken 1529 * while affecting the values in IP and while delivering up to TCP 1530 * should be the same. 1531 * 1532 * There are two cases. 1533 * 1534 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1535 * failed), we will not deliver it to the ULP, even though they 1536 * are *willing* to accept in *clear*. This is fine as our global 1537 * disposition to icmp messages asks us reject the datagram. 1538 * 1539 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1540 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1541 * to deliver it to ULP (policy failed), it can lead to 1542 * consistency problems. The cases known at this time are 1543 * ICMP_DESTINATION_UNREACHABLE messages with following code 1544 * values : 1545 * 1546 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1547 * and Upper layer rejects. Then the communication will 1548 * come to a stop. This is solved by making similar decisions 1549 * at both levels. Currently, when we are unable to deliver 1550 * to the Upper Layer (due to policy failures) while IP has 1551 * adjusted ire_max_frag, the next outbound datagram would 1552 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1553 * will be with the right level of protection. Thus the right 1554 * value will be communicated even if we are not able to 1555 * communicate when we get from the wire initially. But this 1556 * assumes there would be at least one outbound datagram after 1557 * IP has adjusted its ire_max_frag value. To make things 1558 * simpler, we accept in clear after the validation of 1559 * AH/ESP headers. 1560 * 1561 * - Other ICMP ERRORS : We may not be able to deliver it to the 1562 * upper layer depending on the level of protection the upper 1563 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1564 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1565 * should be accepted in clear when the Upper layer expects secure. 1566 * Thus the communication may get aborted by some bad ICMP 1567 * packets. 1568 * 1569 * IPQoS Notes: 1570 * The only instance when a packet is sent for processing is when there 1571 * isn't an ICMP client and if we are interested in it. 1572 * If there is a client, IPPF processing will take place in the 1573 * ip_fanout_proto routine. 1574 * 1575 * Zones notes: 1576 * The packet is only processed in the context of the specified zone: typically 1577 * only this zone will reply to an echo request, and only interested clients in 1578 * this zone will receive a copy of the packet. This means that the caller must 1579 * call icmp_inbound() for each relevant zone. 1580 */ 1581 static void 1582 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1583 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1584 ill_t *recv_ill, zoneid_t zoneid) 1585 { 1586 icmph_t *icmph; 1587 ipha_t *ipha; 1588 int iph_hdr_length; 1589 int hdr_length; 1590 boolean_t interested; 1591 uint32_t ts; 1592 uchar_t *wptr; 1593 ipif_t *ipif; 1594 mblk_t *first_mp; 1595 ipsec_in_t *ii; 1596 ire_t *src_ire; 1597 boolean_t onlink; 1598 timestruc_t now; 1599 uint32_t ill_index; 1600 ip_stack_t *ipst; 1601 1602 ASSERT(ill != NULL); 1603 ipst = ill->ill_ipst; 1604 1605 first_mp = mp; 1606 if (mctl_present) { 1607 mp = first_mp->b_cont; 1608 ASSERT(mp != NULL); 1609 } 1610 1611 ipha = (ipha_t *)mp->b_rptr; 1612 if (ipst->ips_icmp_accept_clear_messages == 0) { 1613 first_mp = ipsec_check_global_policy(first_mp, NULL, 1614 ipha, NULL, mctl_present, ipst->ips_netstack); 1615 if (first_mp == NULL) 1616 return; 1617 } 1618 1619 /* 1620 * On a labeled system, we have to check whether the zone itself is 1621 * permitted to receive raw traffic. 1622 */ 1623 if (is_system_labeled()) { 1624 if (zoneid == ALL_ZONES) 1625 zoneid = tsol_packet_to_zoneid(mp); 1626 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1627 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1628 zoneid)); 1629 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1630 freemsg(first_mp); 1631 return; 1632 } 1633 } 1634 1635 /* 1636 * We have accepted the ICMP message. It means that we will 1637 * respond to the packet if needed. It may not be delivered 1638 * to the upper client depending on the policy constraints 1639 * and the disposition in ipsec_inbound_accept_clear. 1640 */ 1641 1642 ASSERT(ill != NULL); 1643 1644 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1645 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1646 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1647 /* Last chance to get real. */ 1648 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1649 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1650 freemsg(first_mp); 1651 return; 1652 } 1653 /* Refresh iph following the pullup. */ 1654 ipha = (ipha_t *)mp->b_rptr; 1655 } 1656 /* ICMP header checksum, including checksum field, should be zero. */ 1657 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1658 IP_CSUM(mp, iph_hdr_length, 0)) { 1659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1660 freemsg(first_mp); 1661 return; 1662 } 1663 /* The IP header will always be a multiple of four bytes */ 1664 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1665 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1666 icmph->icmph_code)); 1667 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1668 /* We will set "interested" to "true" if we want a copy */ 1669 interested = B_FALSE; 1670 switch (icmph->icmph_type) { 1671 case ICMP_ECHO_REPLY: 1672 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1673 break; 1674 case ICMP_DEST_UNREACHABLE: 1675 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1676 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1677 interested = B_TRUE; /* Pass up to transport */ 1678 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1679 break; 1680 case ICMP_SOURCE_QUENCH: 1681 interested = B_TRUE; /* Pass up to transport */ 1682 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1683 break; 1684 case ICMP_REDIRECT: 1685 if (!ipst->ips_ip_ignore_redirect) 1686 interested = B_TRUE; 1687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1688 break; 1689 case ICMP_ECHO_REQUEST: 1690 /* 1691 * Whether to respond to echo requests that come in as IP 1692 * broadcasts or as IP multicast is subject to debate 1693 * (what isn't?). We aim to please, you pick it. 1694 * Default is do it. 1695 */ 1696 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1697 /* unicast: always respond */ 1698 interested = B_TRUE; 1699 } else if (CLASSD(ipha->ipha_dst)) { 1700 /* multicast: respond based on tunable */ 1701 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1702 } else if (broadcast) { 1703 /* broadcast: respond based on tunable */ 1704 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1705 } 1706 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1707 break; 1708 case ICMP_ROUTER_ADVERTISEMENT: 1709 case ICMP_ROUTER_SOLICITATION: 1710 break; 1711 case ICMP_TIME_EXCEEDED: 1712 interested = B_TRUE; /* Pass up to transport */ 1713 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1714 break; 1715 case ICMP_PARAM_PROBLEM: 1716 interested = B_TRUE; /* Pass up to transport */ 1717 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1718 break; 1719 case ICMP_TIME_STAMP_REQUEST: 1720 /* Response to Time Stamp Requests is local policy. */ 1721 if (ipst->ips_ip_g_resp_to_timestamp && 1722 /* So is whether to respond if it was an IP broadcast. */ 1723 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1724 int tstamp_len = 3 * sizeof (uint32_t); 1725 1726 if (wptr + tstamp_len > mp->b_wptr) { 1727 if (!pullupmsg(mp, wptr + tstamp_len - 1728 mp->b_rptr)) { 1729 BUMP_MIB(ill->ill_ip_mib, 1730 ipIfStatsInDiscards); 1731 freemsg(first_mp); 1732 return; 1733 } 1734 /* Refresh ipha following the pullup. */ 1735 ipha = (ipha_t *)mp->b_rptr; 1736 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1737 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1738 } 1739 interested = B_TRUE; 1740 } 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1742 break; 1743 case ICMP_TIME_STAMP_REPLY: 1744 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1745 break; 1746 case ICMP_INFO_REQUEST: 1747 /* Per RFC 1122 3.2.2.7, ignore this. */ 1748 case ICMP_INFO_REPLY: 1749 break; 1750 case ICMP_ADDRESS_MASK_REQUEST: 1751 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1752 !broadcast) && 1753 /* TODO m_pullup of complete header? */ 1754 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1755 interested = B_TRUE; 1756 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1757 break; 1758 case ICMP_ADDRESS_MASK_REPLY: 1759 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1760 break; 1761 default: 1762 interested = B_TRUE; /* Pass up to transport */ 1763 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1764 break; 1765 } 1766 /* See if there is an ICMP client. */ 1767 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1768 /* If there is an ICMP client and we want one too, copy it. */ 1769 mblk_t *first_mp1; 1770 1771 if (!interested) { 1772 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1773 ip_policy, recv_ill, zoneid); 1774 return; 1775 } 1776 first_mp1 = ip_copymsg(first_mp); 1777 if (first_mp1 != NULL) { 1778 ip_fanout_proto(q, first_mp1, ill, ipha, 1779 0, mctl_present, ip_policy, recv_ill, zoneid); 1780 } 1781 } else if (!interested) { 1782 freemsg(first_mp); 1783 return; 1784 } else { 1785 /* 1786 * Initiate policy processing for this packet if ip_policy 1787 * is true. 1788 */ 1789 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1790 ill_index = ill->ill_phyint->phyint_ifindex; 1791 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1792 if (mp == NULL) { 1793 if (mctl_present) { 1794 freeb(first_mp); 1795 } 1796 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1797 return; 1798 } 1799 } 1800 } 1801 /* We want to do something with it. */ 1802 /* Check db_ref to make sure we can modify the packet. */ 1803 if (mp->b_datap->db_ref > 1) { 1804 mblk_t *first_mp1; 1805 1806 first_mp1 = ip_copymsg(first_mp); 1807 freemsg(first_mp); 1808 if (!first_mp1) { 1809 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1810 return; 1811 } 1812 first_mp = first_mp1; 1813 if (mctl_present) { 1814 mp = first_mp->b_cont; 1815 ASSERT(mp != NULL); 1816 } else { 1817 mp = first_mp; 1818 } 1819 ipha = (ipha_t *)mp->b_rptr; 1820 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1821 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1822 } 1823 switch (icmph->icmph_type) { 1824 case ICMP_ADDRESS_MASK_REQUEST: 1825 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1826 if (ipif == NULL) { 1827 freemsg(first_mp); 1828 return; 1829 } 1830 /* 1831 * outging interface must be IPv4 1832 */ 1833 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1834 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1835 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1836 ipif_refrele(ipif); 1837 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1838 break; 1839 case ICMP_ECHO_REQUEST: 1840 icmph->icmph_type = ICMP_ECHO_REPLY; 1841 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1842 break; 1843 case ICMP_TIME_STAMP_REQUEST: { 1844 uint32_t *tsp; 1845 1846 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1847 tsp = (uint32_t *)wptr; 1848 tsp++; /* Skip past 'originate time' */ 1849 /* Compute # of milliseconds since midnight */ 1850 gethrestime(&now); 1851 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1852 now.tv_nsec / (NANOSEC / MILLISEC); 1853 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1854 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1855 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1856 break; 1857 } 1858 default: 1859 ipha = (ipha_t *)&icmph[1]; 1860 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1861 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1862 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1863 freemsg(first_mp); 1864 return; 1865 } 1866 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1867 ipha = (ipha_t *)&icmph[1]; 1868 } 1869 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1870 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1871 freemsg(first_mp); 1872 return; 1873 } 1874 hdr_length = IPH_HDR_LENGTH(ipha); 1875 if (hdr_length < sizeof (ipha_t)) { 1876 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1877 freemsg(first_mp); 1878 return; 1879 } 1880 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1881 if (!pullupmsg(mp, 1882 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1883 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1884 freemsg(first_mp); 1885 return; 1886 } 1887 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1888 ipha = (ipha_t *)&icmph[1]; 1889 } 1890 switch (icmph->icmph_type) { 1891 case ICMP_REDIRECT: 1892 /* 1893 * As there is no upper client to deliver, we don't 1894 * need the first_mp any more. 1895 */ 1896 if (mctl_present) { 1897 freeb(first_mp); 1898 } 1899 icmp_redirect(ill, mp); 1900 return; 1901 case ICMP_DEST_UNREACHABLE: 1902 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1903 if (!icmp_inbound_too_big(icmph, ipha, ill, 1904 zoneid, mp, iph_hdr_length, ipst)) { 1905 freemsg(first_mp); 1906 return; 1907 } 1908 /* 1909 * icmp_inbound_too_big() may alter mp. 1910 * Resynch ipha and icmph accordingly. 1911 */ 1912 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1913 ipha = (ipha_t *)&icmph[1]; 1914 } 1915 /* FALLTHRU */ 1916 default : 1917 /* 1918 * IPQoS notes: Since we have already done IPQoS 1919 * processing we don't want to do it again in 1920 * the fanout routines called by 1921 * icmp_inbound_error_fanout, hence the last 1922 * argument, ip_policy, is B_FALSE. 1923 */ 1924 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1925 ipha, iph_hdr_length, hdr_length, mctl_present, 1926 B_FALSE, recv_ill, zoneid); 1927 } 1928 return; 1929 } 1930 /* Send out an ICMP packet */ 1931 icmph->icmph_checksum = 0; 1932 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1933 if (broadcast || CLASSD(ipha->ipha_dst)) { 1934 ipif_t *ipif_chosen; 1935 /* 1936 * Make it look like it was directed to us, so we don't look 1937 * like a fool with a broadcast or multicast source address. 1938 */ 1939 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1940 /* 1941 * Make sure that we haven't grabbed an interface that's DOWN. 1942 */ 1943 if (ipif != NULL) { 1944 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1945 ipha->ipha_src, zoneid); 1946 if (ipif_chosen != NULL) { 1947 ipif_refrele(ipif); 1948 ipif = ipif_chosen; 1949 } 1950 } 1951 if (ipif == NULL) { 1952 ip0dbg(("icmp_inbound: " 1953 "No source for broadcast/multicast:\n" 1954 "\tsrc 0x%x dst 0x%x ill %p " 1955 "ipif_lcl_addr 0x%x\n", 1956 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1957 (void *)ill, 1958 ill->ill_ipif->ipif_lcl_addr)); 1959 freemsg(first_mp); 1960 return; 1961 } 1962 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1963 ipha->ipha_dst = ipif->ipif_src_addr; 1964 ipif_refrele(ipif); 1965 } 1966 /* Reset time to live. */ 1967 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1968 { 1969 /* Swap source and destination addresses */ 1970 ipaddr_t tmp; 1971 1972 tmp = ipha->ipha_src; 1973 ipha->ipha_src = ipha->ipha_dst; 1974 ipha->ipha_dst = tmp; 1975 } 1976 ipha->ipha_ident = 0; 1977 if (!IS_SIMPLE_IPH(ipha)) 1978 icmp_options_update(ipha); 1979 1980 /* 1981 * ICMP echo replies should go out on the same interface 1982 * the request came on as probes used by in.mpathd for detecting 1983 * NIC failures are ECHO packets. We turn-off load spreading 1984 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1985 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1986 * function. This is in turn handled by ip_wput and ip_newroute 1987 * to make sure that the packet goes out on the interface it came 1988 * in on. If we don't turnoff load spreading, the packets might get 1989 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1990 * to go out and in.mpathd would wrongly detect a failure or 1991 * mis-detect a NIC failure for link failure. As load spreading 1992 * can happen only if ill_group is not NULL, we do only for 1993 * that case and this does not affect the normal case. 1994 * 1995 * We turn off load spreading only on echo packets that came from 1996 * on-link hosts. If the interface route has been deleted, this will 1997 * not be enforced as we can't do much. For off-link hosts, as the 1998 * default routes in IPv4 does not typically have an ire_ipif 1999 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2000 * Moreover, expecting a default route through this interface may 2001 * not be correct. We use ipha_dst because of the swap above. 2002 */ 2003 onlink = B_FALSE; 2004 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2005 /* 2006 * First, we need to make sure that it is not one of our 2007 * local addresses. If we set onlink when it is one of 2008 * our local addresses, we will end up creating IRE_CACHES 2009 * for one of our local addresses. Then, we will never 2010 * accept packets for them afterwards. 2011 */ 2012 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2013 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2014 if (src_ire == NULL) { 2015 ipif = ipif_get_next_ipif(NULL, ill); 2016 if (ipif == NULL) { 2017 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2018 freemsg(mp); 2019 return; 2020 } 2021 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2022 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2023 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2024 ipif_refrele(ipif); 2025 if (src_ire != NULL) { 2026 onlink = B_TRUE; 2027 ire_refrele(src_ire); 2028 } 2029 } else { 2030 ire_refrele(src_ire); 2031 } 2032 } 2033 if (!mctl_present) { 2034 /* 2035 * This packet should go out the same way as it 2036 * came in i.e in clear. To make sure that global 2037 * policy will not be applied to this in ip_wput_ire, 2038 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2039 */ 2040 ASSERT(first_mp == mp); 2041 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2042 if (first_mp == NULL) { 2043 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2044 freemsg(mp); 2045 return; 2046 } 2047 ii = (ipsec_in_t *)first_mp->b_rptr; 2048 2049 /* This is not a secure packet */ 2050 ii->ipsec_in_secure = B_FALSE; 2051 if (onlink) { 2052 ii->ipsec_in_attach_if = B_TRUE; 2053 ii->ipsec_in_ill_index = 2054 ill->ill_phyint->phyint_ifindex; 2055 ii->ipsec_in_rill_index = 2056 recv_ill->ill_phyint->phyint_ifindex; 2057 } 2058 first_mp->b_cont = mp; 2059 } else if (onlink) { 2060 ii = (ipsec_in_t *)first_mp->b_rptr; 2061 ii->ipsec_in_attach_if = B_TRUE; 2062 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2063 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2064 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2065 } else { 2066 ii = (ipsec_in_t *)first_mp->b_rptr; 2067 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2068 } 2069 ii->ipsec_in_zoneid = zoneid; 2070 ASSERT(zoneid != ALL_ZONES); 2071 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2072 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2073 return; 2074 } 2075 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2076 put(WR(q), first_mp); 2077 } 2078 2079 static ipaddr_t 2080 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2081 { 2082 conn_t *connp; 2083 connf_t *connfp; 2084 ipaddr_t nexthop_addr = INADDR_ANY; 2085 int hdr_length = IPH_HDR_LENGTH(ipha); 2086 uint16_t *up; 2087 uint32_t ports; 2088 ip_stack_t *ipst = ill->ill_ipst; 2089 2090 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2091 switch (ipha->ipha_protocol) { 2092 case IPPROTO_TCP: 2093 { 2094 tcph_t *tcph; 2095 2096 /* do a reverse lookup */ 2097 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2098 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2099 TCPS_LISTEN, ipst); 2100 break; 2101 } 2102 case IPPROTO_UDP: 2103 { 2104 uint32_t dstport, srcport; 2105 2106 ((uint16_t *)&ports)[0] = up[1]; 2107 ((uint16_t *)&ports)[1] = up[0]; 2108 2109 /* Extract ports in net byte order */ 2110 dstport = htons(ntohl(ports) & 0xFFFF); 2111 srcport = htons(ntohl(ports) >> 16); 2112 2113 connfp = &ipst->ips_ipcl_udp_fanout[ 2114 IPCL_UDP_HASH(dstport, ipst)]; 2115 mutex_enter(&connfp->connf_lock); 2116 connp = connfp->connf_head; 2117 2118 /* do a reverse lookup */ 2119 while ((connp != NULL) && 2120 (!IPCL_UDP_MATCH(connp, dstport, 2121 ipha->ipha_src, srcport, ipha->ipha_dst) || 2122 !IPCL_ZONE_MATCH(connp, zoneid))) { 2123 connp = connp->conn_next; 2124 } 2125 if (connp != NULL) 2126 CONN_INC_REF(connp); 2127 mutex_exit(&connfp->connf_lock); 2128 break; 2129 } 2130 case IPPROTO_SCTP: 2131 { 2132 in6_addr_t map_src, map_dst; 2133 2134 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2135 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2136 ((uint16_t *)&ports)[0] = up[1]; 2137 ((uint16_t *)&ports)[1] = up[0]; 2138 2139 connp = sctp_find_conn(&map_src, &map_dst, ports, 2140 zoneid, ipst->ips_netstack->netstack_sctp); 2141 if (connp == NULL) { 2142 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2143 zoneid, ports, ipha, ipst); 2144 } else { 2145 CONN_INC_REF(connp); 2146 SCTP_REFRELE(CONN2SCTP(connp)); 2147 } 2148 break; 2149 } 2150 default: 2151 { 2152 ipha_t ripha; 2153 2154 ripha.ipha_src = ipha->ipha_dst; 2155 ripha.ipha_dst = ipha->ipha_src; 2156 ripha.ipha_protocol = ipha->ipha_protocol; 2157 2158 connfp = &ipst->ips_ipcl_proto_fanout[ 2159 ipha->ipha_protocol]; 2160 mutex_enter(&connfp->connf_lock); 2161 connp = connfp->connf_head; 2162 for (connp = connfp->connf_head; connp != NULL; 2163 connp = connp->conn_next) { 2164 if (IPCL_PROTO_MATCH(connp, 2165 ipha->ipha_protocol, &ripha, ill, 2166 0, zoneid)) { 2167 CONN_INC_REF(connp); 2168 break; 2169 } 2170 } 2171 mutex_exit(&connfp->connf_lock); 2172 } 2173 } 2174 if (connp != NULL) { 2175 if (connp->conn_nexthop_set) 2176 nexthop_addr = connp->conn_nexthop_v4; 2177 CONN_DEC_REF(connp); 2178 } 2179 return (nexthop_addr); 2180 } 2181 2182 /* Table from RFC 1191 */ 2183 static int icmp_frag_size_table[] = 2184 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2185 2186 /* 2187 * Process received ICMP Packet too big. 2188 * After updating any IRE it does the fanout to any matching transport streams. 2189 * Assumes the message has been pulled up till the IP header that caused 2190 * the error. 2191 * 2192 * Returns B_FALSE on failure and B_TRUE on success. 2193 */ 2194 static boolean_t 2195 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2196 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2197 ip_stack_t *ipst) 2198 { 2199 ire_t *ire, *first_ire; 2200 int mtu; 2201 int hdr_length; 2202 ipaddr_t nexthop_addr; 2203 2204 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2205 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2206 ASSERT(ill != NULL); 2207 2208 hdr_length = IPH_HDR_LENGTH(ipha); 2209 2210 /* Drop if the original packet contained a source route */ 2211 if (ip_source_route_included(ipha)) { 2212 return (B_FALSE); 2213 } 2214 /* 2215 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2216 * header. 2217 */ 2218 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2219 mp->b_wptr) { 2220 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2221 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2222 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2223 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2224 return (B_FALSE); 2225 } 2226 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2227 ipha = (ipha_t *)&icmph[1]; 2228 } 2229 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2230 if (nexthop_addr != INADDR_ANY) { 2231 /* nexthop set */ 2232 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2233 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2234 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2235 } else { 2236 /* nexthop not set */ 2237 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2238 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2239 } 2240 2241 if (!first_ire) { 2242 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2243 ntohl(ipha->ipha_dst))); 2244 return (B_FALSE); 2245 } 2246 /* Check for MTU discovery advice as described in RFC 1191 */ 2247 mtu = ntohs(icmph->icmph_du_mtu); 2248 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2249 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2250 ire = ire->ire_next) { 2251 /* 2252 * Look for the connection to which this ICMP message is 2253 * directed. If it has the IP_NEXTHOP option set, then the 2254 * search is limited to IREs with the MATCH_IRE_PRIVATE 2255 * option. Else the search is limited to regular IREs. 2256 */ 2257 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2258 (nexthop_addr != ire->ire_gateway_addr)) || 2259 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2260 (nexthop_addr != INADDR_ANY))) 2261 continue; 2262 2263 mutex_enter(&ire->ire_lock); 2264 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2265 /* Reduce the IRE max frag value as advised. */ 2266 ip1dbg(("Received mtu from router: %d (was %d)\n", 2267 mtu, ire->ire_max_frag)); 2268 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2269 } else { 2270 uint32_t length; 2271 int i; 2272 2273 /* 2274 * Use the table from RFC 1191 to figure out 2275 * the next "plateau" based on the length in 2276 * the original IP packet. 2277 */ 2278 length = ntohs(ipha->ipha_length); 2279 if (ire->ire_max_frag <= length && 2280 ire->ire_max_frag >= length - hdr_length) { 2281 /* 2282 * Handle broken BSD 4.2 systems that 2283 * return the wrong iph_length in ICMP 2284 * errors. 2285 */ 2286 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2287 length, ire->ire_max_frag)); 2288 length -= hdr_length; 2289 } 2290 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2291 if (length > icmp_frag_size_table[i]) 2292 break; 2293 } 2294 if (i == A_CNT(icmp_frag_size_table)) { 2295 /* Smaller than 68! */ 2296 ip1dbg(("Too big for packet size %d\n", 2297 length)); 2298 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2299 ire->ire_frag_flag = 0; 2300 } else { 2301 mtu = icmp_frag_size_table[i]; 2302 ip1dbg(("Calculated mtu %d, packet size %d, " 2303 "before %d", mtu, length, 2304 ire->ire_max_frag)); 2305 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2306 ip1dbg((", after %d\n", ire->ire_max_frag)); 2307 } 2308 /* Record the new max frag size for the ULP. */ 2309 icmph->icmph_du_zero = 0; 2310 icmph->icmph_du_mtu = 2311 htons((uint16_t)ire->ire_max_frag); 2312 } 2313 mutex_exit(&ire->ire_lock); 2314 } 2315 rw_exit(&first_ire->ire_bucket->irb_lock); 2316 ire_refrele(first_ire); 2317 return (B_TRUE); 2318 } 2319 2320 /* 2321 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2322 * calls this function. 2323 */ 2324 static mblk_t * 2325 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2326 { 2327 ipha_t *ipha; 2328 icmph_t *icmph; 2329 ipha_t *in_ipha; 2330 int length; 2331 2332 ASSERT(mp->b_datap->db_type == M_DATA); 2333 2334 /* 2335 * For Self-encapsulated packets, we added an extra IP header 2336 * without the options. Inner IP header is the one from which 2337 * the outer IP header was formed. Thus, we need to remove the 2338 * outer IP header. To do this, we pullup the whole message 2339 * and overlay whatever follows the outer IP header over the 2340 * outer IP header. 2341 */ 2342 2343 if (!pullupmsg(mp, -1)) 2344 return (NULL); 2345 2346 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2347 ipha = (ipha_t *)&icmph[1]; 2348 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2349 2350 /* 2351 * The length that we want to overlay is following the inner 2352 * IP header. Subtracting the IP header + icmp header + outer 2353 * IP header's length should give us the length that we want to 2354 * overlay. 2355 */ 2356 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2357 hdr_length; 2358 /* 2359 * Overlay whatever follows the inner header over the 2360 * outer header. 2361 */ 2362 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2363 2364 /* Set the wptr to account for the outer header */ 2365 mp->b_wptr -= hdr_length; 2366 return (mp); 2367 } 2368 2369 /* 2370 * Try to pass the ICMP message upstream in case the ULP cares. 2371 * 2372 * If the packet that caused the ICMP error is secure, we send 2373 * it to AH/ESP to make sure that the attached packet has a 2374 * valid association. ipha in the code below points to the 2375 * IP header of the packet that caused the error. 2376 * 2377 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2378 * in the context of IPSEC. Normally we tell the upper layer 2379 * whenever we send the ire (including ip_bind), the IPSEC header 2380 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2381 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2382 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2383 * same thing. As TCP has the IPSEC options size that needs to be 2384 * adjusted, we just pass the MTU unchanged. 2385 * 2386 * IFN could have been generated locally or by some router. 2387 * 2388 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2389 * This happens because IP adjusted its value of MTU on an 2390 * earlier IFN message and could not tell the upper layer, 2391 * the new adjusted value of MTU e.g. Packet was encrypted 2392 * or there was not enough information to fanout to upper 2393 * layers. Thus on the next outbound datagram, ip_wput_ire 2394 * generates the IFN, where IPSEC processing has *not* been 2395 * done. 2396 * 2397 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2398 * could have generated this. This happens because ire_max_frag 2399 * value in IP was set to a new value, while the IPSEC processing 2400 * was being done and after we made the fragmentation check in 2401 * ip_wput_ire. Thus on return from IPSEC processing, 2402 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2403 * and generates the IFN. As IPSEC processing is over, we fanout 2404 * to AH/ESP to remove the header. 2405 * 2406 * In both these cases, ipsec_in_loopback will be set indicating 2407 * that IFN was generated locally. 2408 * 2409 * ROUTER : IFN could be secure or non-secure. 2410 * 2411 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2412 * packet in error has AH/ESP headers to validate the AH/ESP 2413 * headers. AH/ESP will verify whether there is a valid SA or 2414 * not and send it back. We will fanout again if we have more 2415 * data in the packet. 2416 * 2417 * If the packet in error does not have AH/ESP, we handle it 2418 * like any other case. 2419 * 2420 * * NON_SECURE : If the packet in error has AH/ESP headers, 2421 * we attach a dummy ipsec_in and send it up to AH/ESP 2422 * for validation. AH/ESP will verify whether there is a 2423 * valid SA or not and send it back. We will fanout again if 2424 * we have more data in the packet. 2425 * 2426 * If the packet in error does not have AH/ESP, we handle it 2427 * like any other case. 2428 */ 2429 static void 2430 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2431 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2432 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2433 zoneid_t zoneid) 2434 { 2435 uint16_t *up; /* Pointer to ports in ULP header */ 2436 uint32_t ports; /* reversed ports for fanout */ 2437 ipha_t ripha; /* With reversed addresses */ 2438 mblk_t *first_mp; 2439 ipsec_in_t *ii; 2440 tcph_t *tcph; 2441 conn_t *connp; 2442 ip_stack_t *ipst; 2443 2444 ASSERT(ill != NULL); 2445 2446 ASSERT(recv_ill != NULL); 2447 ipst = recv_ill->ill_ipst; 2448 2449 first_mp = mp; 2450 if (mctl_present) { 2451 mp = first_mp->b_cont; 2452 ASSERT(mp != NULL); 2453 2454 ii = (ipsec_in_t *)first_mp->b_rptr; 2455 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2456 } else { 2457 ii = NULL; 2458 } 2459 2460 switch (ipha->ipha_protocol) { 2461 case IPPROTO_UDP: 2462 /* 2463 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2464 * transport header. 2465 */ 2466 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2467 mp->b_wptr) { 2468 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2469 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2470 goto discard_pkt; 2471 } 2472 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2473 ipha = (ipha_t *)&icmph[1]; 2474 } 2475 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2476 2477 /* 2478 * Attempt to find a client stream based on port. 2479 * Note that we do a reverse lookup since the header is 2480 * in the form we sent it out. 2481 * The ripha header is only used for the IP_UDP_MATCH and we 2482 * only set the src and dst addresses and protocol. 2483 */ 2484 ripha.ipha_src = ipha->ipha_dst; 2485 ripha.ipha_dst = ipha->ipha_src; 2486 ripha.ipha_protocol = ipha->ipha_protocol; 2487 ((uint16_t *)&ports)[0] = up[1]; 2488 ((uint16_t *)&ports)[1] = up[0]; 2489 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2490 ntohl(ipha->ipha_src), ntohs(up[0]), 2491 ntohl(ipha->ipha_dst), ntohs(up[1]), 2492 icmph->icmph_type, icmph->icmph_code)); 2493 2494 /* Have to change db_type after any pullupmsg */ 2495 DB_TYPE(mp) = M_CTL; 2496 2497 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2498 mctl_present, ip_policy, recv_ill, zoneid); 2499 return; 2500 2501 case IPPROTO_TCP: 2502 /* 2503 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2504 * transport header. 2505 */ 2506 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2507 mp->b_wptr) { 2508 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2509 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2510 goto discard_pkt; 2511 } 2512 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2513 ipha = (ipha_t *)&icmph[1]; 2514 } 2515 /* 2516 * Find a TCP client stream for this packet. 2517 * Note that we do a reverse lookup since the header is 2518 * in the form we sent it out. 2519 */ 2520 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2521 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2522 ipst); 2523 if (connp == NULL) 2524 goto discard_pkt; 2525 2526 /* Have to change db_type after any pullupmsg */ 2527 DB_TYPE(mp) = M_CTL; 2528 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2529 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2530 return; 2531 2532 case IPPROTO_SCTP: 2533 /* 2534 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2535 * transport header. 2536 */ 2537 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2538 mp->b_wptr) { 2539 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2540 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2541 goto discard_pkt; 2542 } 2543 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2544 ipha = (ipha_t *)&icmph[1]; 2545 } 2546 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2547 /* 2548 * Find a SCTP client stream for this packet. 2549 * Note that we do a reverse lookup since the header is 2550 * in the form we sent it out. 2551 * The ripha header is only used for the matching and we 2552 * only set the src and dst addresses, protocol, and version. 2553 */ 2554 ripha.ipha_src = ipha->ipha_dst; 2555 ripha.ipha_dst = ipha->ipha_src; 2556 ripha.ipha_protocol = ipha->ipha_protocol; 2557 ripha.ipha_version_and_hdr_length = 2558 ipha->ipha_version_and_hdr_length; 2559 ((uint16_t *)&ports)[0] = up[1]; 2560 ((uint16_t *)&ports)[1] = up[0]; 2561 2562 /* Have to change db_type after any pullupmsg */ 2563 DB_TYPE(mp) = M_CTL; 2564 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2565 mctl_present, ip_policy, zoneid); 2566 return; 2567 2568 case IPPROTO_ESP: 2569 case IPPROTO_AH: { 2570 int ipsec_rc; 2571 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2572 2573 /* 2574 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2575 * We will re-use the IPSEC_IN if it is already present as 2576 * AH/ESP will not affect any fields in the IPSEC_IN for 2577 * ICMP errors. If there is no IPSEC_IN, allocate a new 2578 * one and attach it in the front. 2579 */ 2580 if (ii != NULL) { 2581 /* 2582 * ip_fanout_proto_again converts the ICMP errors 2583 * that come back from AH/ESP to M_DATA so that 2584 * if it is non-AH/ESP and we do a pullupmsg in 2585 * this function, it would work. Convert it back 2586 * to M_CTL before we send up as this is a ICMP 2587 * error. This could have been generated locally or 2588 * by some router. Validate the inner IPSEC 2589 * headers. 2590 * 2591 * NOTE : ill_index is used by ip_fanout_proto_again 2592 * to locate the ill. 2593 */ 2594 ASSERT(ill != NULL); 2595 ii->ipsec_in_ill_index = 2596 ill->ill_phyint->phyint_ifindex; 2597 ii->ipsec_in_rill_index = 2598 recv_ill->ill_phyint->phyint_ifindex; 2599 DB_TYPE(first_mp->b_cont) = M_CTL; 2600 } else { 2601 /* 2602 * IPSEC_IN is not present. We attach a ipsec_in 2603 * message and send up to IPSEC for validating 2604 * and removing the IPSEC headers. Clear 2605 * ipsec_in_secure so that when we return 2606 * from IPSEC, we don't mistakenly think that this 2607 * is a secure packet came from the network. 2608 * 2609 * NOTE : ill_index is used by ip_fanout_proto_again 2610 * to locate the ill. 2611 */ 2612 ASSERT(first_mp == mp); 2613 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2614 if (first_mp == NULL) { 2615 freemsg(mp); 2616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2617 return; 2618 } 2619 ii = (ipsec_in_t *)first_mp->b_rptr; 2620 2621 /* This is not a secure packet */ 2622 ii->ipsec_in_secure = B_FALSE; 2623 first_mp->b_cont = mp; 2624 DB_TYPE(mp) = M_CTL; 2625 ASSERT(ill != NULL); 2626 ii->ipsec_in_ill_index = 2627 ill->ill_phyint->phyint_ifindex; 2628 ii->ipsec_in_rill_index = 2629 recv_ill->ill_phyint->phyint_ifindex; 2630 } 2631 ip2dbg(("icmp_inbound_error: ipsec\n")); 2632 2633 if (!ipsec_loaded(ipss)) { 2634 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2635 return; 2636 } 2637 2638 if (ipha->ipha_protocol == IPPROTO_ESP) 2639 ipsec_rc = ipsecesp_icmp_error(first_mp); 2640 else 2641 ipsec_rc = ipsecah_icmp_error(first_mp); 2642 if (ipsec_rc == IPSEC_STATUS_FAILED) 2643 return; 2644 2645 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2646 return; 2647 } 2648 default: 2649 /* 2650 * The ripha header is only used for the lookup and we 2651 * only set the src and dst addresses and protocol. 2652 */ 2653 ripha.ipha_src = ipha->ipha_dst; 2654 ripha.ipha_dst = ipha->ipha_src; 2655 ripha.ipha_protocol = ipha->ipha_protocol; 2656 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2657 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2658 ntohl(ipha->ipha_dst), 2659 icmph->icmph_type, icmph->icmph_code)); 2660 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2661 ipha_t *in_ipha; 2662 2663 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2664 mp->b_wptr) { 2665 if (!pullupmsg(mp, (uchar_t *)ipha + 2666 hdr_length + sizeof (ipha_t) - 2667 mp->b_rptr)) { 2668 goto discard_pkt; 2669 } 2670 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2671 ipha = (ipha_t *)&icmph[1]; 2672 } 2673 /* 2674 * Caller has verified that length has to be 2675 * at least the size of IP header. 2676 */ 2677 ASSERT(hdr_length >= sizeof (ipha_t)); 2678 /* 2679 * Check the sanity of the inner IP header like 2680 * we did for the outer header. 2681 */ 2682 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2683 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2684 goto discard_pkt; 2685 } 2686 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2687 goto discard_pkt; 2688 } 2689 /* Check for Self-encapsulated tunnels */ 2690 if (in_ipha->ipha_src == ipha->ipha_src && 2691 in_ipha->ipha_dst == ipha->ipha_dst) { 2692 2693 mp = icmp_inbound_self_encap_error(mp, 2694 iph_hdr_length, hdr_length); 2695 if (mp == NULL) 2696 goto discard_pkt; 2697 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2698 ipha = (ipha_t *)&icmph[1]; 2699 hdr_length = IPH_HDR_LENGTH(ipha); 2700 /* 2701 * The packet in error is self-encapsualted. 2702 * And we are finding it further encapsulated 2703 * which we could not have possibly generated. 2704 */ 2705 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2706 goto discard_pkt; 2707 } 2708 icmp_inbound_error_fanout(q, ill, first_mp, 2709 icmph, ipha, iph_hdr_length, hdr_length, 2710 mctl_present, ip_policy, recv_ill, zoneid); 2711 return; 2712 } 2713 } 2714 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2715 ipha->ipha_protocol == IPPROTO_IPV6) && 2716 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2717 ii != NULL && 2718 ii->ipsec_in_loopback && 2719 ii->ipsec_in_secure) { 2720 /* 2721 * For IP tunnels that get a looped-back 2722 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2723 * reported new MTU to take into account the IPsec 2724 * headers protecting this configured tunnel. 2725 * 2726 * This allows the tunnel module (tun.c) to blindly 2727 * accept the MTU reported in an ICMP "too big" 2728 * message. 2729 * 2730 * Non-looped back ICMP messages will just be 2731 * handled by the security protocols (if needed), 2732 * and the first subsequent packet will hit this 2733 * path. 2734 */ 2735 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2736 ipsec_in_extra_length(first_mp)); 2737 } 2738 /* Have to change db_type after any pullupmsg */ 2739 DB_TYPE(mp) = M_CTL; 2740 2741 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2742 ip_policy, recv_ill, zoneid); 2743 return; 2744 } 2745 /* NOTREACHED */ 2746 discard_pkt: 2747 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2748 drop_pkt:; 2749 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2750 freemsg(first_mp); 2751 } 2752 2753 /* 2754 * Common IP options parser. 2755 * 2756 * Setup routine: fill in *optp with options-parsing state, then 2757 * tail-call ipoptp_next to return the first option. 2758 */ 2759 uint8_t 2760 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2761 { 2762 uint32_t totallen; /* total length of all options */ 2763 2764 totallen = ipha->ipha_version_and_hdr_length - 2765 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2766 totallen <<= 2; 2767 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2768 optp->ipoptp_end = optp->ipoptp_next + totallen; 2769 optp->ipoptp_flags = 0; 2770 return (ipoptp_next(optp)); 2771 } 2772 2773 /* 2774 * Common IP options parser: extract next option. 2775 */ 2776 uint8_t 2777 ipoptp_next(ipoptp_t *optp) 2778 { 2779 uint8_t *end = optp->ipoptp_end; 2780 uint8_t *cur = optp->ipoptp_next; 2781 uint8_t opt, len, pointer; 2782 2783 /* 2784 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2785 * has been corrupted. 2786 */ 2787 ASSERT(cur <= end); 2788 2789 if (cur == end) 2790 return (IPOPT_EOL); 2791 2792 opt = cur[IPOPT_OPTVAL]; 2793 2794 /* 2795 * Skip any NOP options. 2796 */ 2797 while (opt == IPOPT_NOP) { 2798 cur++; 2799 if (cur == end) 2800 return (IPOPT_EOL); 2801 opt = cur[IPOPT_OPTVAL]; 2802 } 2803 2804 if (opt == IPOPT_EOL) 2805 return (IPOPT_EOL); 2806 2807 /* 2808 * Option requiring a length. 2809 */ 2810 if ((cur + 1) >= end) { 2811 optp->ipoptp_flags |= IPOPTP_ERROR; 2812 return (IPOPT_EOL); 2813 } 2814 len = cur[IPOPT_OLEN]; 2815 if (len < 2) { 2816 optp->ipoptp_flags |= IPOPTP_ERROR; 2817 return (IPOPT_EOL); 2818 } 2819 optp->ipoptp_cur = cur; 2820 optp->ipoptp_len = len; 2821 optp->ipoptp_next = cur + len; 2822 if (cur + len > end) { 2823 optp->ipoptp_flags |= IPOPTP_ERROR; 2824 return (IPOPT_EOL); 2825 } 2826 2827 /* 2828 * For the options which require a pointer field, make sure 2829 * its there, and make sure it points to either something 2830 * inside this option, or the end of the option. 2831 */ 2832 switch (opt) { 2833 case IPOPT_RR: 2834 case IPOPT_TS: 2835 case IPOPT_LSRR: 2836 case IPOPT_SSRR: 2837 if (len <= IPOPT_OFFSET) { 2838 optp->ipoptp_flags |= IPOPTP_ERROR; 2839 return (opt); 2840 } 2841 pointer = cur[IPOPT_OFFSET]; 2842 if (pointer - 1 > len) { 2843 optp->ipoptp_flags |= IPOPTP_ERROR; 2844 return (opt); 2845 } 2846 break; 2847 } 2848 2849 /* 2850 * Sanity check the pointer field based on the type of the 2851 * option. 2852 */ 2853 switch (opt) { 2854 case IPOPT_RR: 2855 case IPOPT_SSRR: 2856 case IPOPT_LSRR: 2857 if (pointer < IPOPT_MINOFF_SR) 2858 optp->ipoptp_flags |= IPOPTP_ERROR; 2859 break; 2860 case IPOPT_TS: 2861 if (pointer < IPOPT_MINOFF_IT) 2862 optp->ipoptp_flags |= IPOPTP_ERROR; 2863 /* 2864 * Note that the Internet Timestamp option also 2865 * contains two four bit fields (the Overflow field, 2866 * and the Flag field), which follow the pointer 2867 * field. We don't need to check that these fields 2868 * fall within the length of the option because this 2869 * was implicitely done above. We've checked that the 2870 * pointer value is at least IPOPT_MINOFF_IT, and that 2871 * it falls within the option. Since IPOPT_MINOFF_IT > 2872 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2873 */ 2874 ASSERT(len > IPOPT_POS_OV_FLG); 2875 break; 2876 } 2877 2878 return (opt); 2879 } 2880 2881 /* 2882 * Use the outgoing IP header to create an IP_OPTIONS option the way 2883 * it was passed down from the application. 2884 */ 2885 int 2886 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2887 { 2888 ipoptp_t opts; 2889 const uchar_t *opt; 2890 uint8_t optval; 2891 uint8_t optlen; 2892 uint32_t len = 0; 2893 uchar_t *buf1 = buf; 2894 2895 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2896 len += IP_ADDR_LEN; 2897 bzero(buf1, IP_ADDR_LEN); 2898 2899 /* 2900 * OK to cast away const here, as we don't store through the returned 2901 * opts.ipoptp_cur pointer. 2902 */ 2903 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2904 optval != IPOPT_EOL; 2905 optval = ipoptp_next(&opts)) { 2906 int off; 2907 2908 opt = opts.ipoptp_cur; 2909 optlen = opts.ipoptp_len; 2910 switch (optval) { 2911 case IPOPT_SSRR: 2912 case IPOPT_LSRR: 2913 2914 /* 2915 * Insert ipha_dst as the first entry in the source 2916 * route and move down the entries on step. 2917 * The last entry gets placed at buf1. 2918 */ 2919 buf[IPOPT_OPTVAL] = optval; 2920 buf[IPOPT_OLEN] = optlen; 2921 buf[IPOPT_OFFSET] = optlen; 2922 2923 off = optlen - IP_ADDR_LEN; 2924 if (off < 0) { 2925 /* No entries in source route */ 2926 break; 2927 } 2928 /* Last entry in source route */ 2929 bcopy(opt + off, buf1, IP_ADDR_LEN); 2930 off -= IP_ADDR_LEN; 2931 2932 while (off > 0) { 2933 bcopy(opt + off, 2934 buf + off + IP_ADDR_LEN, 2935 IP_ADDR_LEN); 2936 off -= IP_ADDR_LEN; 2937 } 2938 /* ipha_dst into first slot */ 2939 bcopy(&ipha->ipha_dst, 2940 buf + off + IP_ADDR_LEN, 2941 IP_ADDR_LEN); 2942 buf += optlen; 2943 len += optlen; 2944 break; 2945 2946 case IPOPT_COMSEC: 2947 case IPOPT_SECURITY: 2948 /* if passing up a label is not ok, then remove */ 2949 if (is_system_labeled()) 2950 break; 2951 /* FALLTHROUGH */ 2952 default: 2953 bcopy(opt, buf, optlen); 2954 buf += optlen; 2955 len += optlen; 2956 break; 2957 } 2958 } 2959 done: 2960 /* Pad the resulting options */ 2961 while (len & 0x3) { 2962 *buf++ = IPOPT_EOL; 2963 len++; 2964 } 2965 return (len); 2966 } 2967 2968 /* 2969 * Update any record route or timestamp options to include this host. 2970 * Reverse any source route option. 2971 * This routine assumes that the options are well formed i.e. that they 2972 * have already been checked. 2973 */ 2974 static void 2975 icmp_options_update(ipha_t *ipha) 2976 { 2977 ipoptp_t opts; 2978 uchar_t *opt; 2979 uint8_t optval; 2980 ipaddr_t src; /* Our local address */ 2981 ipaddr_t dst; 2982 2983 ip2dbg(("icmp_options_update\n")); 2984 src = ipha->ipha_src; 2985 dst = ipha->ipha_dst; 2986 2987 for (optval = ipoptp_first(&opts, ipha); 2988 optval != IPOPT_EOL; 2989 optval = ipoptp_next(&opts)) { 2990 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2991 opt = opts.ipoptp_cur; 2992 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2993 optval, opts.ipoptp_len)); 2994 switch (optval) { 2995 int off1, off2; 2996 case IPOPT_SSRR: 2997 case IPOPT_LSRR: 2998 /* 2999 * Reverse the source route. The first entry 3000 * should be the next to last one in the current 3001 * source route (the last entry is our address). 3002 * The last entry should be the final destination. 3003 */ 3004 off1 = IPOPT_MINOFF_SR - 1; 3005 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3006 if (off2 < 0) { 3007 /* No entries in source route */ 3008 ip1dbg(( 3009 "icmp_options_update: bad src route\n")); 3010 break; 3011 } 3012 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3013 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3014 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3015 off2 -= IP_ADDR_LEN; 3016 3017 while (off1 < off2) { 3018 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3019 bcopy((char *)opt + off2, (char *)opt + off1, 3020 IP_ADDR_LEN); 3021 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3022 off1 += IP_ADDR_LEN; 3023 off2 -= IP_ADDR_LEN; 3024 } 3025 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3026 break; 3027 } 3028 } 3029 } 3030 3031 /* 3032 * Process received ICMP Redirect messages. 3033 */ 3034 static void 3035 icmp_redirect(ill_t *ill, mblk_t *mp) 3036 { 3037 ipha_t *ipha; 3038 int iph_hdr_length; 3039 icmph_t *icmph; 3040 ipha_t *ipha_err; 3041 ire_t *ire; 3042 ire_t *prev_ire; 3043 ire_t *save_ire; 3044 ipaddr_t src, dst, gateway; 3045 iulp_t ulp_info = { 0 }; 3046 int error; 3047 ip_stack_t *ipst; 3048 3049 ASSERT(ill != NULL); 3050 ipst = ill->ill_ipst; 3051 3052 ipha = (ipha_t *)mp->b_rptr; 3053 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3054 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3055 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3056 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3057 freemsg(mp); 3058 return; 3059 } 3060 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3061 ipha_err = (ipha_t *)&icmph[1]; 3062 src = ipha->ipha_src; 3063 dst = ipha_err->ipha_dst; 3064 gateway = icmph->icmph_rd_gateway; 3065 /* Make sure the new gateway is reachable somehow. */ 3066 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3067 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3068 /* 3069 * Make sure we had a route for the dest in question and that 3070 * that route was pointing to the old gateway (the source of the 3071 * redirect packet.) 3072 */ 3073 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3074 NULL, MATCH_IRE_GW, ipst); 3075 /* 3076 * Check that 3077 * the redirect was not from ourselves 3078 * the new gateway and the old gateway are directly reachable 3079 */ 3080 if (!prev_ire || 3081 !ire || 3082 ire->ire_type == IRE_LOCAL) { 3083 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3084 freemsg(mp); 3085 if (ire != NULL) 3086 ire_refrele(ire); 3087 if (prev_ire != NULL) 3088 ire_refrele(prev_ire); 3089 return; 3090 } 3091 3092 /* 3093 * Should we use the old ULP info to create the new gateway? From 3094 * a user's perspective, we should inherit the info so that it 3095 * is a "smooth" transition. If we do not do that, then new 3096 * connections going thru the new gateway will have no route metrics, 3097 * which is counter-intuitive to user. From a network point of 3098 * view, this may or may not make sense even though the new gateway 3099 * is still directly connected to us so the route metrics should not 3100 * change much. 3101 * 3102 * But if the old ire_uinfo is not initialized, we do another 3103 * recursive lookup on the dest using the new gateway. There may 3104 * be a route to that. If so, use it to initialize the redirect 3105 * route. 3106 */ 3107 if (prev_ire->ire_uinfo.iulp_set) { 3108 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3109 } else { 3110 ire_t *tmp_ire; 3111 ire_t *sire; 3112 3113 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3114 ALL_ZONES, 0, NULL, 3115 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3116 ipst); 3117 if (sire != NULL) { 3118 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3119 /* 3120 * If sire != NULL, ire_ftable_lookup() should not 3121 * return a NULL value. 3122 */ 3123 ASSERT(tmp_ire != NULL); 3124 ire_refrele(tmp_ire); 3125 ire_refrele(sire); 3126 } else if (tmp_ire != NULL) { 3127 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3128 sizeof (iulp_t)); 3129 ire_refrele(tmp_ire); 3130 } 3131 } 3132 if (prev_ire->ire_type == IRE_CACHE) 3133 ire_delete(prev_ire); 3134 ire_refrele(prev_ire); 3135 /* 3136 * TODO: more precise handling for cases 0, 2, 3, the latter two 3137 * require TOS routing 3138 */ 3139 switch (icmph->icmph_code) { 3140 case 0: 3141 case 1: 3142 /* TODO: TOS specificity for cases 2 and 3 */ 3143 case 2: 3144 case 3: 3145 break; 3146 default: 3147 freemsg(mp); 3148 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3149 ire_refrele(ire); 3150 return; 3151 } 3152 /* 3153 * Create a Route Association. This will allow us to remember that 3154 * someone we believe told us to use the particular gateway. 3155 */ 3156 save_ire = ire; 3157 ire = ire_create( 3158 (uchar_t *)&dst, /* dest addr */ 3159 (uchar_t *)&ip_g_all_ones, /* mask */ 3160 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3161 (uchar_t *)&gateway, /* gateway addr */ 3162 NULL, /* no in_srcaddr */ 3163 &save_ire->ire_max_frag, /* max frag */ 3164 NULL, /* Fast Path header */ 3165 NULL, /* no rfq */ 3166 NULL, /* no stq */ 3167 IRE_HOST, 3168 NULL, 3169 NULL, 3170 NULL, 3171 0, 3172 0, 3173 0, 3174 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3175 &ulp_info, 3176 NULL, 3177 NULL, 3178 ipst); 3179 3180 if (ire == NULL) { 3181 freemsg(mp); 3182 ire_refrele(save_ire); 3183 return; 3184 } 3185 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3186 ire_refrele(save_ire); 3187 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3188 3189 if (error == 0) { 3190 ire_refrele(ire); /* Held in ire_add_v4 */ 3191 /* tell routing sockets that we received a redirect */ 3192 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3193 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3194 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3195 } 3196 3197 /* 3198 * Delete any existing IRE_HOST type redirect ires for this destination. 3199 * This together with the added IRE has the effect of 3200 * modifying an existing redirect. 3201 */ 3202 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3203 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3204 if (prev_ire != NULL) { 3205 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3206 ire_delete(prev_ire); 3207 ire_refrele(prev_ire); 3208 } 3209 3210 freemsg(mp); 3211 } 3212 3213 /* 3214 * Generate an ICMP parameter problem message. 3215 */ 3216 static void 3217 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3218 ip_stack_t *ipst) 3219 { 3220 icmph_t icmph; 3221 boolean_t mctl_present; 3222 mblk_t *first_mp; 3223 3224 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3225 3226 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3227 if (mctl_present) 3228 freeb(first_mp); 3229 return; 3230 } 3231 3232 bzero(&icmph, sizeof (icmph_t)); 3233 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3234 icmph.icmph_pp_ptr = ptr; 3235 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3236 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3237 ipst); 3238 } 3239 3240 /* 3241 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3242 * the ICMP header pointed to by "stuff". (May be called as writer.) 3243 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3244 * an icmp error packet can be sent. 3245 * Assigns an appropriate source address to the packet. If ipha_dst is 3246 * one of our addresses use it for source. Otherwise pick a source based 3247 * on a route lookup back to ipha_src. 3248 * Note that ipha_src must be set here since the 3249 * packet is likely to arrive on an ill queue in ip_wput() which will 3250 * not set a source address. 3251 */ 3252 static void 3253 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3254 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3255 { 3256 ipaddr_t dst; 3257 icmph_t *icmph; 3258 ipha_t *ipha; 3259 uint_t len_needed; 3260 size_t msg_len; 3261 mblk_t *mp1; 3262 ipaddr_t src; 3263 ire_t *ire; 3264 mblk_t *ipsec_mp; 3265 ipsec_out_t *io = NULL; 3266 boolean_t xmit_if_on = B_FALSE; 3267 3268 if (mctl_present) { 3269 /* 3270 * If it is : 3271 * 3272 * 1) a IPSEC_OUT, then this is caused by outbound 3273 * datagram originating on this host. IPSEC processing 3274 * may or may not have been done. Refer to comments above 3275 * icmp_inbound_error_fanout for details. 3276 * 3277 * 2) a IPSEC_IN if we are generating a icmp_message 3278 * for an incoming datagram destined for us i.e called 3279 * from ip_fanout_send_icmp. 3280 */ 3281 ipsec_info_t *in; 3282 ipsec_mp = mp; 3283 mp = ipsec_mp->b_cont; 3284 3285 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3286 ipha = (ipha_t *)mp->b_rptr; 3287 3288 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3289 in->ipsec_info_type == IPSEC_IN); 3290 3291 if (in->ipsec_info_type == IPSEC_IN) { 3292 /* 3293 * Convert the IPSEC_IN to IPSEC_OUT. 3294 */ 3295 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3296 BUMP_MIB(&ipst->ips_ip_mib, 3297 ipIfStatsOutDiscards); 3298 return; 3299 } 3300 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3301 } else { 3302 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3303 io = (ipsec_out_t *)in; 3304 if (io->ipsec_out_xmit_if) 3305 xmit_if_on = B_TRUE; 3306 /* 3307 * Clear out ipsec_out_proc_begin, so we do a fresh 3308 * ire lookup. 3309 */ 3310 io->ipsec_out_proc_begin = B_FALSE; 3311 } 3312 ASSERT(zoneid == io->ipsec_out_zoneid); 3313 ASSERT(zoneid != ALL_ZONES); 3314 } else { 3315 /* 3316 * This is in clear. The icmp message we are building 3317 * here should go out in clear. 3318 * 3319 * Pardon the convolution of it all, but it's easier to 3320 * allocate a "use cleartext" IPSEC_IN message and convert 3321 * it than it is to allocate a new one. 3322 */ 3323 ipsec_in_t *ii; 3324 ASSERT(DB_TYPE(mp) == M_DATA); 3325 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3326 if (ipsec_mp == NULL) { 3327 freemsg(mp); 3328 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3329 return; 3330 } 3331 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3332 3333 /* This is not a secure packet */ 3334 ii->ipsec_in_secure = B_FALSE; 3335 /* 3336 * For trusted extensions using a shared IP address we can 3337 * send using any zoneid. 3338 */ 3339 if (zoneid == ALL_ZONES) 3340 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3341 else 3342 ii->ipsec_in_zoneid = zoneid; 3343 ipsec_mp->b_cont = mp; 3344 ipha = (ipha_t *)mp->b_rptr; 3345 /* 3346 * Convert the IPSEC_IN to IPSEC_OUT. 3347 */ 3348 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3349 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3350 return; 3351 } 3352 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3353 } 3354 3355 /* Remember our eventual destination */ 3356 dst = ipha->ipha_src; 3357 3358 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3359 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3360 if (ire != NULL && 3361 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3362 src = ipha->ipha_dst; 3363 } else if (!xmit_if_on) { 3364 if (ire != NULL) 3365 ire_refrele(ire); 3366 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3367 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3368 ipst); 3369 if (ire == NULL) { 3370 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3371 freemsg(ipsec_mp); 3372 return; 3373 } 3374 src = ire->ire_src_addr; 3375 } else { 3376 ipif_t *ipif = NULL; 3377 ill_t *ill; 3378 /* 3379 * This must be an ICMP error coming from 3380 * ip_mrtun_forward(). The src addr should 3381 * be equal to the IP-addr of the outgoing 3382 * interface. 3383 */ 3384 if (io == NULL) { 3385 /* This is not a IPSEC_OUT type control msg */ 3386 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3387 freemsg(ipsec_mp); 3388 return; 3389 } 3390 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3391 NULL, NULL, NULL, NULL, ipst); 3392 if (ill != NULL) { 3393 ipif = ipif_get_next_ipif(NULL, ill); 3394 ill_refrele(ill); 3395 } 3396 if (ipif == NULL) { 3397 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3398 freemsg(ipsec_mp); 3399 return; 3400 } 3401 src = ipif->ipif_src_addr; 3402 ipif_refrele(ipif); 3403 } 3404 3405 if (ire != NULL) 3406 ire_refrele(ire); 3407 3408 /* 3409 * Check if we can send back more then 8 bytes in addition 3410 * to the IP header. We will include as much as 64 bytes. 3411 */ 3412 len_needed = IPH_HDR_LENGTH(ipha); 3413 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3414 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3415 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3416 } 3417 len_needed += ipst->ips_ip_icmp_return; 3418 msg_len = msgdsize(mp); 3419 if (msg_len > len_needed) { 3420 (void) adjmsg(mp, len_needed - msg_len); 3421 msg_len = len_needed; 3422 } 3423 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3424 if (mp1 == NULL) { 3425 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3426 freemsg(ipsec_mp); 3427 return; 3428 } 3429 /* 3430 * On an unlabeled system, dblks don't necessarily have creds. 3431 */ 3432 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3433 if (DB_CRED(mp) != NULL) 3434 mblk_setcred(mp1, DB_CRED(mp)); 3435 mp1->b_cont = mp; 3436 mp = mp1; 3437 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3438 ipsec_mp->b_rptr == (uint8_t *)io && 3439 io->ipsec_out_type == IPSEC_OUT); 3440 ipsec_mp->b_cont = mp; 3441 3442 /* 3443 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3444 * node generates be accepted in peace by all on-host destinations. 3445 * If we do NOT assume that all on-host destinations trust 3446 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3447 * (Look for ipsec_out_icmp_loopback). 3448 */ 3449 io->ipsec_out_icmp_loopback = B_TRUE; 3450 3451 ipha = (ipha_t *)mp->b_rptr; 3452 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3453 *ipha = icmp_ipha; 3454 ipha->ipha_src = src; 3455 ipha->ipha_dst = dst; 3456 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3457 msg_len += sizeof (icmp_ipha) + len; 3458 if (msg_len > IP_MAXPACKET) { 3459 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3460 msg_len = IP_MAXPACKET; 3461 } 3462 ipha->ipha_length = htons((uint16_t)msg_len); 3463 icmph = (icmph_t *)&ipha[1]; 3464 bcopy(stuff, icmph, len); 3465 icmph->icmph_checksum = 0; 3466 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3467 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3468 put(q, ipsec_mp); 3469 } 3470 3471 /* 3472 * Determine if an ICMP error packet can be sent given the rate limit. 3473 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3474 * in milliseconds) and a burst size. Burst size number of packets can 3475 * be sent arbitrarely closely spaced. 3476 * The state is tracked using two variables to implement an approximate 3477 * token bucket filter: 3478 * icmp_pkt_err_last - lbolt value when the last burst started 3479 * icmp_pkt_err_sent - number of packets sent in current burst 3480 */ 3481 boolean_t 3482 icmp_err_rate_limit(ip_stack_t *ipst) 3483 { 3484 clock_t now = TICK_TO_MSEC(lbolt); 3485 uint_t refilled; /* Number of packets refilled in tbf since last */ 3486 /* Guard against changes by loading into local variable */ 3487 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3488 3489 if (err_interval == 0) 3490 return (B_FALSE); 3491 3492 if (ipst->ips_icmp_pkt_err_last > now) { 3493 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3494 ipst->ips_icmp_pkt_err_last = 0; 3495 ipst->ips_icmp_pkt_err_sent = 0; 3496 } 3497 /* 3498 * If we are in a burst update the token bucket filter. 3499 * Update the "last" time to be close to "now" but make sure 3500 * we don't loose precision. 3501 */ 3502 if (ipst->ips_icmp_pkt_err_sent != 0) { 3503 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3504 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3505 ipst->ips_icmp_pkt_err_sent = 0; 3506 } else { 3507 ipst->ips_icmp_pkt_err_sent -= refilled; 3508 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3509 } 3510 } 3511 if (ipst->ips_icmp_pkt_err_sent == 0) { 3512 /* Start of new burst */ 3513 ipst->ips_icmp_pkt_err_last = now; 3514 } 3515 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3516 ipst->ips_icmp_pkt_err_sent++; 3517 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3518 ipst->ips_icmp_pkt_err_sent)); 3519 return (B_FALSE); 3520 } 3521 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3522 return (B_TRUE); 3523 } 3524 3525 /* 3526 * Check if it is ok to send an IPv4 ICMP error packet in 3527 * response to the IPv4 packet in mp. 3528 * Free the message and return null if no 3529 * ICMP error packet should be sent. 3530 */ 3531 static mblk_t * 3532 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3533 { 3534 icmph_t *icmph; 3535 ipha_t *ipha; 3536 uint_t len_needed; 3537 ire_t *src_ire; 3538 ire_t *dst_ire; 3539 3540 if (!mp) 3541 return (NULL); 3542 ipha = (ipha_t *)mp->b_rptr; 3543 if (ip_csum_hdr(ipha)) { 3544 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3545 freemsg(mp); 3546 return (NULL); 3547 } 3548 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3549 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3550 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3551 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3552 if (src_ire != NULL || dst_ire != NULL || 3553 CLASSD(ipha->ipha_dst) || 3554 CLASSD(ipha->ipha_src) || 3555 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3556 /* Note: only errors to the fragment with offset 0 */ 3557 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3558 freemsg(mp); 3559 if (src_ire != NULL) 3560 ire_refrele(src_ire); 3561 if (dst_ire != NULL) 3562 ire_refrele(dst_ire); 3563 return (NULL); 3564 } 3565 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3566 /* 3567 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3568 * errors in response to any ICMP errors. 3569 */ 3570 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3571 if (mp->b_wptr - mp->b_rptr < len_needed) { 3572 if (!pullupmsg(mp, len_needed)) { 3573 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3574 freemsg(mp); 3575 return (NULL); 3576 } 3577 ipha = (ipha_t *)mp->b_rptr; 3578 } 3579 icmph = (icmph_t *) 3580 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3581 switch (icmph->icmph_type) { 3582 case ICMP_DEST_UNREACHABLE: 3583 case ICMP_SOURCE_QUENCH: 3584 case ICMP_TIME_EXCEEDED: 3585 case ICMP_PARAM_PROBLEM: 3586 case ICMP_REDIRECT: 3587 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3588 freemsg(mp); 3589 return (NULL); 3590 default: 3591 break; 3592 } 3593 } 3594 /* 3595 * If this is a labeled system, then check to see if we're allowed to 3596 * send a response to this particular sender. If not, then just drop. 3597 */ 3598 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3599 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3600 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3601 freemsg(mp); 3602 return (NULL); 3603 } 3604 if (icmp_err_rate_limit(ipst)) { 3605 /* 3606 * Only send ICMP error packets every so often. 3607 * This should be done on a per port/source basis, 3608 * but for now this will suffice. 3609 */ 3610 freemsg(mp); 3611 return (NULL); 3612 } 3613 return (mp); 3614 } 3615 3616 /* 3617 * Generate an ICMP redirect message. 3618 */ 3619 static void 3620 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3621 { 3622 icmph_t icmph; 3623 3624 /* 3625 * We are called from ip_rput where we could 3626 * not have attached an IPSEC_IN. 3627 */ 3628 ASSERT(mp->b_datap->db_type == M_DATA); 3629 3630 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3631 return; 3632 } 3633 3634 bzero(&icmph, sizeof (icmph_t)); 3635 icmph.icmph_type = ICMP_REDIRECT; 3636 icmph.icmph_code = 1; 3637 icmph.icmph_rd_gateway = gateway; 3638 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3639 /* Redirects sent by router, and router is global zone */ 3640 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3641 } 3642 3643 /* 3644 * Generate an ICMP time exceeded message. 3645 */ 3646 void 3647 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3648 ip_stack_t *ipst) 3649 { 3650 icmph_t icmph; 3651 boolean_t mctl_present; 3652 mblk_t *first_mp; 3653 3654 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3655 3656 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3657 if (mctl_present) 3658 freeb(first_mp); 3659 return; 3660 } 3661 3662 bzero(&icmph, sizeof (icmph_t)); 3663 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3664 icmph.icmph_code = code; 3665 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3666 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3667 ipst); 3668 } 3669 3670 /* 3671 * Generate an ICMP unreachable message. 3672 */ 3673 void 3674 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3675 ip_stack_t *ipst) 3676 { 3677 icmph_t icmph; 3678 mblk_t *first_mp; 3679 boolean_t mctl_present; 3680 3681 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3682 3683 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3684 if (mctl_present) 3685 freeb(first_mp); 3686 return; 3687 } 3688 3689 bzero(&icmph, sizeof (icmph_t)); 3690 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3691 icmph.icmph_code = code; 3692 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3693 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3694 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3695 zoneid, ipst); 3696 } 3697 3698 /* 3699 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3700 * duplicate. As long as someone else holds the address, the interface will 3701 * stay down. When that conflict goes away, the interface is brought back up. 3702 * This is done so that accidental shutdowns of addresses aren't made 3703 * permanent. Your server will recover from a failure. 3704 * 3705 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3706 * user space process (dhcpagent). 3707 * 3708 * Recovery completes if ARP reports that the address is now ours (via 3709 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3710 * 3711 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3712 */ 3713 static void 3714 ipif_dup_recovery(void *arg) 3715 { 3716 ipif_t *ipif = arg; 3717 ill_t *ill = ipif->ipif_ill; 3718 mblk_t *arp_add_mp; 3719 mblk_t *arp_del_mp; 3720 area_t *area; 3721 ip_stack_t *ipst = ill->ill_ipst; 3722 3723 ipif->ipif_recovery_id = 0; 3724 3725 /* 3726 * No lock needed for moving or condemned check, as this is just an 3727 * optimization. 3728 */ 3729 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3730 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3731 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3732 /* No reason to try to bring this address back. */ 3733 return; 3734 } 3735 3736 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3737 goto alloc_fail; 3738 3739 if (ipif->ipif_arp_del_mp == NULL) { 3740 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3741 goto alloc_fail; 3742 ipif->ipif_arp_del_mp = arp_del_mp; 3743 } 3744 3745 /* Setting the 'unverified' flag restarts DAD */ 3746 area = (area_t *)arp_add_mp->b_rptr; 3747 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3748 ACE_F_UNVERIFIED; 3749 putnext(ill->ill_rq, arp_add_mp); 3750 return; 3751 3752 alloc_fail: 3753 /* 3754 * On allocation failure, just restart the timer. Note that the ipif 3755 * is down here, so no other thread could be trying to start a recovery 3756 * timer. The ill_lock protects the condemned flag and the recovery 3757 * timer ID. 3758 */ 3759 freemsg(arp_add_mp); 3760 mutex_enter(&ill->ill_lock); 3761 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3762 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3763 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3764 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3765 } 3766 mutex_exit(&ill->ill_lock); 3767 } 3768 3769 /* 3770 * This is for exclusive changes due to ARP. Either tear down an interface due 3771 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3772 */ 3773 /* ARGSUSED */ 3774 static void 3775 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3776 { 3777 ill_t *ill = rq->q_ptr; 3778 arh_t *arh; 3779 ipaddr_t src; 3780 ipif_t *ipif; 3781 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3782 char hbuf[MAC_STR_LEN]; 3783 char sbuf[INET_ADDRSTRLEN]; 3784 const char *failtype; 3785 boolean_t bring_up; 3786 ip_stack_t *ipst = ill->ill_ipst; 3787 3788 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3789 case AR_CN_READY: 3790 failtype = NULL; 3791 bring_up = B_TRUE; 3792 break; 3793 case AR_CN_FAILED: 3794 failtype = "in use"; 3795 bring_up = B_FALSE; 3796 break; 3797 default: 3798 failtype = "claimed"; 3799 bring_up = B_FALSE; 3800 break; 3801 } 3802 3803 arh = (arh_t *)mp->b_cont->b_rptr; 3804 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3805 3806 /* Handle failures due to probes */ 3807 if (src == 0) { 3808 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3809 IP_ADDR_LEN); 3810 } 3811 3812 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3813 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3814 sizeof (hbuf)); 3815 (void) ip_dot_addr(src, sbuf); 3816 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3817 3818 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3819 ipif->ipif_lcl_addr != src) { 3820 continue; 3821 } 3822 3823 /* 3824 * If we failed on a recovery probe, then restart the timer to 3825 * try again later. 3826 */ 3827 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3828 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3829 ill->ill_net_type == IRE_IF_RESOLVER && 3830 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3831 ipst->ips_ip_dup_recovery > 0 && 3832 ipif->ipif_recovery_id == 0) { 3833 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3834 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3835 continue; 3836 } 3837 3838 /* 3839 * If what we're trying to do has already been done, then do 3840 * nothing. 3841 */ 3842 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3843 continue; 3844 3845 if (ipif->ipif_id != 0) { 3846 (void) snprintf(ibuf + ill->ill_name_length - 1, 3847 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3848 ipif->ipif_id); 3849 } 3850 if (failtype == NULL) { 3851 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3852 ibuf); 3853 } else { 3854 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3855 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3856 } 3857 3858 if (bring_up) { 3859 ASSERT(ill->ill_dl_up); 3860 /* 3861 * Free up the ARP delete message so we can allocate 3862 * a fresh one through the normal path. 3863 */ 3864 freemsg(ipif->ipif_arp_del_mp); 3865 ipif->ipif_arp_del_mp = NULL; 3866 if (ipif_resolver_up(ipif, Res_act_initial) != 3867 EINPROGRESS) { 3868 ipif->ipif_addr_ready = 1; 3869 (void) ipif_up_done(ipif); 3870 } 3871 continue; 3872 } 3873 3874 mutex_enter(&ill->ill_lock); 3875 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3876 ipif->ipif_flags |= IPIF_DUPLICATE; 3877 ill->ill_ipif_dup_count++; 3878 mutex_exit(&ill->ill_lock); 3879 /* 3880 * Already exclusive on the ill; no need to handle deferred 3881 * processing here. 3882 */ 3883 (void) ipif_down(ipif, NULL, NULL); 3884 ipif_down_tail(ipif); 3885 mutex_enter(&ill->ill_lock); 3886 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3887 ill->ill_net_type == IRE_IF_RESOLVER && 3888 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3889 ipst->ips_ip_dup_recovery > 0) { 3890 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3891 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3892 } 3893 mutex_exit(&ill->ill_lock); 3894 } 3895 freemsg(mp); 3896 } 3897 3898 /* ARGSUSED */ 3899 static void 3900 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3901 { 3902 ill_t *ill = rq->q_ptr; 3903 arh_t *arh; 3904 ipaddr_t src; 3905 ipif_t *ipif; 3906 3907 arh = (arh_t *)mp->b_cont->b_rptr; 3908 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3909 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3910 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3911 (void) ipif_resolver_up(ipif, Res_act_defend); 3912 } 3913 freemsg(mp); 3914 } 3915 3916 /* 3917 * News from ARP. ARP sends notification of interesting events down 3918 * to its clients using M_CTL messages with the interesting ARP packet 3919 * attached via b_cont. 3920 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3921 * queue as opposed to ARP sending the message to all the clients, i.e. all 3922 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3923 * table if a cache IRE is found to delete all the entries for the address in 3924 * the packet. 3925 */ 3926 static void 3927 ip_arp_news(queue_t *q, mblk_t *mp) 3928 { 3929 arcn_t *arcn; 3930 arh_t *arh; 3931 ire_t *ire = NULL; 3932 char hbuf[MAC_STR_LEN]; 3933 char sbuf[INET_ADDRSTRLEN]; 3934 ipaddr_t src; 3935 in6_addr_t v6src; 3936 boolean_t isv6 = B_FALSE; 3937 ipif_t *ipif; 3938 ill_t *ill; 3939 ip_stack_t *ipst; 3940 3941 if (CONN_Q(q)) { 3942 conn_t *connp = Q_TO_CONN(q); 3943 3944 ipst = connp->conn_netstack->netstack_ip; 3945 } else { 3946 ill_t *ill = (ill_t *)q->q_ptr; 3947 3948 ipst = ill->ill_ipst; 3949 } 3950 3951 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3952 if (q->q_next) { 3953 putnext(q, mp); 3954 } else 3955 freemsg(mp); 3956 return; 3957 } 3958 arh = (arh_t *)mp->b_cont->b_rptr; 3959 /* Is it one we are interested in? */ 3960 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3961 isv6 = B_TRUE; 3962 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3963 IPV6_ADDR_LEN); 3964 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3965 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3966 IP_ADDR_LEN); 3967 } else { 3968 freemsg(mp); 3969 return; 3970 } 3971 3972 ill = q->q_ptr; 3973 3974 arcn = (arcn_t *)mp->b_rptr; 3975 switch (arcn->arcn_code) { 3976 case AR_CN_BOGON: 3977 /* 3978 * Someone is sending ARP packets with a source protocol 3979 * address that we have published and for which we believe our 3980 * entry is authoritative and (when ill_arp_extend is set) 3981 * verified to be unique on the network. 3982 * 3983 * The ARP module internally handles the cases where the sender 3984 * is just probing (for DAD) and where the hardware address of 3985 * a non-authoritative entry has changed. Thus, these are the 3986 * real conflicts, and we have to do resolution. 3987 * 3988 * We back away quickly from the address if it's from DHCP or 3989 * otherwise temporary and hasn't been used recently (or at 3990 * all). We'd like to include "deprecated" addresses here as 3991 * well (as there's no real reason to defend something we're 3992 * discarding), but IPMP "reuses" this flag to mean something 3993 * other than the standard meaning. 3994 * 3995 * If the ARP module above is not extended (meaning that it 3996 * doesn't know how to defend the address), then we just log 3997 * the problem as we always did and continue on. It's not 3998 * right, but there's little else we can do, and those old ATM 3999 * users are going away anyway. 4000 */ 4001 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4002 hbuf, sizeof (hbuf)); 4003 (void) ip_dot_addr(src, sbuf); 4004 if (isv6) { 4005 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4006 ipst); 4007 } else { 4008 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4009 } 4010 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4011 uint32_t now; 4012 uint32_t maxage; 4013 clock_t lused; 4014 uint_t maxdefense; 4015 uint_t defs; 4016 4017 /* 4018 * First, figure out if this address hasn't been used 4019 * in a while. If it hasn't, then it's a better 4020 * candidate for abandoning. 4021 */ 4022 ipif = ire->ire_ipif; 4023 ASSERT(ipif != NULL); 4024 now = gethrestime_sec(); 4025 maxage = now - ire->ire_create_time; 4026 if (maxage > ipst->ips_ip_max_temp_idle) 4027 maxage = ipst->ips_ip_max_temp_idle; 4028 lused = drv_hztousec(ddi_get_lbolt() - 4029 ire->ire_last_used_time) / MICROSEC + 1; 4030 if (lused >= maxage && (ipif->ipif_flags & 4031 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4032 maxdefense = ipst->ips_ip_max_temp_defend; 4033 else 4034 maxdefense = ipst->ips_ip_max_defend; 4035 4036 /* 4037 * Now figure out how many times we've defended 4038 * ourselves. Ignore defenses that happened long in 4039 * the past. 4040 */ 4041 mutex_enter(&ire->ire_lock); 4042 if ((defs = ire->ire_defense_count) > 0 && 4043 now - ire->ire_defense_time > 4044 ipst->ips_ip_defend_interval) { 4045 ire->ire_defense_count = defs = 0; 4046 } 4047 ire->ire_defense_count++; 4048 ire->ire_defense_time = now; 4049 mutex_exit(&ire->ire_lock); 4050 ill_refhold(ill); 4051 ire_refrele(ire); 4052 4053 /* 4054 * If we've defended ourselves too many times already, 4055 * then give up and tear down the interface(s) using 4056 * this address. Otherwise, defend by sending out a 4057 * gratuitous ARP. 4058 */ 4059 if (defs >= maxdefense && ill->ill_arp_extend) { 4060 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4061 B_FALSE); 4062 } else { 4063 cmn_err(CE_WARN, 4064 "node %s is using our IP address %s on %s", 4065 hbuf, sbuf, ill->ill_name); 4066 /* 4067 * If this is an old (ATM) ARP module, then 4068 * don't try to defend the address. Remain 4069 * compatible with the old behavior. Defend 4070 * only with new ARP. 4071 */ 4072 if (ill->ill_arp_extend) { 4073 qwriter_ip(ill, q, mp, ip_arp_defend, 4074 NEW_OP, B_FALSE); 4075 } else { 4076 ill_refrele(ill); 4077 } 4078 } 4079 return; 4080 } 4081 cmn_err(CE_WARN, 4082 "proxy ARP problem? Node '%s' is using %s on %s", 4083 hbuf, sbuf, ill->ill_name); 4084 if (ire != NULL) 4085 ire_refrele(ire); 4086 break; 4087 case AR_CN_ANNOUNCE: 4088 if (isv6) { 4089 /* 4090 * For XRESOLV interfaces. 4091 * Delete the IRE cache entry and NCE for this 4092 * v6 address 4093 */ 4094 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4095 /* 4096 * If v6src is a non-zero, it's a router address 4097 * as below. Do the same sort of thing to clean 4098 * out off-net IRE_CACHE entries that go through 4099 * the router. 4100 */ 4101 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4102 ire_walk_v6(ire_delete_cache_gw_v6, 4103 (char *)&v6src, ALL_ZONES, ipst); 4104 } 4105 } else { 4106 nce_hw_map_t hwm; 4107 4108 /* 4109 * ARP gives us a copy of any packet where it thinks 4110 * the address has changed, so that we can update our 4111 * caches. We're responsible for caching known answers 4112 * in the current design. We check whether the 4113 * hardware address really has changed in all of our 4114 * entries that have cached this mapping, and if so, we 4115 * blow them away. This way we will immediately pick 4116 * up the rare case of a host changing hardware 4117 * address. 4118 */ 4119 if (src == 0) 4120 break; 4121 hwm.hwm_addr = src; 4122 hwm.hwm_hwlen = arh->arh_hlen; 4123 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4124 ndp_walk_common(ipst->ips_ndp4, NULL, 4125 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4126 } 4127 break; 4128 case AR_CN_READY: 4129 /* No external v6 resolver has a contract to use this */ 4130 if (isv6) 4131 break; 4132 /* If the link is down, we'll retry this later */ 4133 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4134 break; 4135 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4136 NULL, NULL, ipst); 4137 if (ipif != NULL) { 4138 /* 4139 * If this is a duplicate recovery, then we now need to 4140 * go exclusive to bring this thing back up. 4141 */ 4142 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4143 IPIF_DUPLICATE) { 4144 ipif_refrele(ipif); 4145 ill_refhold(ill); 4146 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4147 B_FALSE); 4148 return; 4149 } 4150 /* 4151 * If this is the first notice that this address is 4152 * ready, then let the user know now. 4153 */ 4154 if ((ipif->ipif_flags & IPIF_UP) && 4155 !ipif->ipif_addr_ready) { 4156 ipif_mask_reply(ipif); 4157 ip_rts_ifmsg(ipif); 4158 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4159 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4160 } 4161 ipif->ipif_addr_ready = 1; 4162 ipif_refrele(ipif); 4163 } 4164 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4165 if (ire != NULL) { 4166 ire->ire_defense_count = 0; 4167 ire_refrele(ire); 4168 } 4169 break; 4170 case AR_CN_FAILED: 4171 /* No external v6 resolver has a contract to use this */ 4172 if (isv6) 4173 break; 4174 ill_refhold(ill); 4175 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4176 return; 4177 } 4178 freemsg(mp); 4179 } 4180 4181 /* 4182 * Create a mblk suitable for carrying the interface index and/or source link 4183 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4184 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4185 * application. 4186 */ 4187 mblk_t * 4188 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4189 ip_stack_t *ipst) 4190 { 4191 mblk_t *mp; 4192 ip_pktinfo_t *pinfo; 4193 ipha_t *ipha; 4194 struct ether_header *pether; 4195 4196 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4197 if (mp == NULL) { 4198 ip1dbg(("ip_add_info: allocation failure.\n")); 4199 return (data_mp); 4200 } 4201 4202 ipha = (ipha_t *)data_mp->b_rptr; 4203 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4204 bzero(pinfo, sizeof (ip_pktinfo_t)); 4205 pinfo->ip_pkt_flags = (uchar_t)flags; 4206 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4207 4208 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4209 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4210 if (flags & IPF_RECVADDR) { 4211 ipif_t *ipif; 4212 ire_t *ire; 4213 4214 /* 4215 * Only valid for V4 4216 */ 4217 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4218 (IPV4_VERSION << 4)); 4219 4220 ipif = ipif_get_next_ipif(NULL, ill); 4221 if (ipif != NULL) { 4222 /* 4223 * Since a decision has already been made to deliver the 4224 * packet, there is no need to test for SECATTR and 4225 * ZONEONLY. 4226 */ 4227 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, ipif, 4228 zoneid, NULL, MATCH_IRE_ILL_GROUP, ipst); 4229 if (ire == NULL) { 4230 /* 4231 * packet must have come on a different 4232 * interface. 4233 * Since a decision has already been made to 4234 * deliver the packet, there is no need to test 4235 * for SECATTR and ZONEONLY. 4236 */ 4237 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, 4238 ipif, zoneid, NULL, NULL, ipst); 4239 } 4240 4241 if (ire == NULL) { 4242 /* 4243 * This is either a multicast packet or 4244 * the address has been removed since 4245 * the packet was received. 4246 * Return INADDR_ANY so that normal source 4247 * selection occurs for the response. 4248 */ 4249 4250 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4251 } else { 4252 ASSERT(ire->ire_type != IRE_CACHE); 4253 pinfo->ip_pkt_match_addr.s_addr = 4254 ire->ire_src_addr; 4255 ire_refrele(ire); 4256 } 4257 ipif_refrele(ipif); 4258 } else { 4259 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4260 } 4261 } 4262 4263 pether = (struct ether_header *)((char *)ipha 4264 - sizeof (struct ether_header)); 4265 /* 4266 * Make sure the interface is an ethernet type, since this option 4267 * is currently supported only on this type of interface. Also make 4268 * sure we are pointing correctly above db_base. 4269 */ 4270 4271 if ((flags & IPF_RECVSLLA) && 4272 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4273 (ill->ill_type == IFT_ETHER) && 4274 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4275 4276 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4277 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4278 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4279 } else { 4280 /* 4281 * Clear the bit. Indicate to upper layer that IP is not 4282 * sending this ancillary info. 4283 */ 4284 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4285 } 4286 4287 mp->b_datap->db_type = M_CTL; 4288 mp->b_wptr += sizeof (ip_pktinfo_t); 4289 mp->b_cont = data_mp; 4290 4291 return (mp); 4292 } 4293 4294 /* 4295 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4296 * part of the bind request. 4297 */ 4298 4299 boolean_t 4300 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4301 { 4302 ipsec_in_t *ii; 4303 4304 ASSERT(policy_mp != NULL); 4305 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4306 4307 ii = (ipsec_in_t *)policy_mp->b_rptr; 4308 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4309 4310 connp->conn_policy = ii->ipsec_in_policy; 4311 ii->ipsec_in_policy = NULL; 4312 4313 if (ii->ipsec_in_action != NULL) { 4314 if (connp->conn_latch == NULL) { 4315 connp->conn_latch = iplatch_create(); 4316 if (connp->conn_latch == NULL) 4317 return (B_FALSE); 4318 } 4319 ipsec_latch_inbound(connp->conn_latch, ii); 4320 } 4321 return (B_TRUE); 4322 } 4323 4324 /* 4325 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4326 * and to arrange for power-fanout assist. The ULP is identified by 4327 * adding a single byte at the end of the original bind message. 4328 * A ULP other than UDP or TCP that wishes to be recognized passes 4329 * down a bind with a zero length address. 4330 * 4331 * The binding works as follows: 4332 * - A zero byte address means just bind to the protocol. 4333 * - A four byte address is treated as a request to validate 4334 * that the address is a valid local address, appropriate for 4335 * an application to bind to. This does not affect any fanout 4336 * information in IP. 4337 * - A sizeof sin_t byte address is used to bind to only the local address 4338 * and port. 4339 * - A sizeof ipa_conn_t byte address contains complete fanout information 4340 * consisting of local and remote addresses and ports. In 4341 * this case, the addresses are both validated as appropriate 4342 * for this operation, and, if so, the information is retained 4343 * for use in the inbound fanout. 4344 * 4345 * The ULP (except in the zero-length bind) can append an 4346 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4347 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4348 * a copy of the source or destination IRE (source for local bind; 4349 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4350 * policy information contained should be copied on to the conn. 4351 * 4352 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4353 */ 4354 mblk_t * 4355 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4356 { 4357 ssize_t len; 4358 struct T_bind_req *tbr; 4359 sin_t *sin; 4360 ipa_conn_t *ac; 4361 uchar_t *ucp; 4362 mblk_t *mp1; 4363 boolean_t ire_requested; 4364 boolean_t ipsec_policy_set = B_FALSE; 4365 int error = 0; 4366 int protocol; 4367 ipa_conn_x_t *acx; 4368 4369 ASSERT(!connp->conn_af_isv6); 4370 connp->conn_pkt_isv6 = B_FALSE; 4371 4372 len = MBLKL(mp); 4373 if (len < (sizeof (*tbr) + 1)) { 4374 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4375 "ip_bind: bogus msg, len %ld", len); 4376 /* XXX: Need to return something better */ 4377 goto bad_addr; 4378 } 4379 /* Back up and extract the protocol identifier. */ 4380 mp->b_wptr--; 4381 protocol = *mp->b_wptr & 0xFF; 4382 tbr = (struct T_bind_req *)mp->b_rptr; 4383 /* Reset the message type in preparation for shipping it back. */ 4384 DB_TYPE(mp) = M_PCPROTO; 4385 4386 connp->conn_ulp = (uint8_t)protocol; 4387 4388 /* 4389 * Check for a zero length address. This is from a protocol that 4390 * wants to register to receive all packets of its type. 4391 */ 4392 if (tbr->ADDR_length == 0) { 4393 /* 4394 * These protocols are now intercepted in ip_bind_v6(). 4395 * Reject protocol-level binds here for now. 4396 * 4397 * For SCTP raw socket, ICMP sends down a bind with sin_t 4398 * so that the protocol type cannot be SCTP. 4399 */ 4400 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4401 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4402 goto bad_addr; 4403 } 4404 4405 /* 4406 * 4407 * The udp module never sends down a zero-length address, 4408 * and allowing this on a labeled system will break MLP 4409 * functionality. 4410 */ 4411 if (is_system_labeled() && protocol == IPPROTO_UDP) 4412 goto bad_addr; 4413 4414 if (connp->conn_mac_exempt) 4415 goto bad_addr; 4416 4417 /* No hash here really. The table is big enough. */ 4418 connp->conn_srcv6 = ipv6_all_zeros; 4419 4420 ipcl_proto_insert(connp, protocol); 4421 4422 tbr->PRIM_type = T_BIND_ACK; 4423 return (mp); 4424 } 4425 4426 /* Extract the address pointer from the message. */ 4427 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4428 tbr->ADDR_length); 4429 if (ucp == NULL) { 4430 ip1dbg(("ip_bind: no address\n")); 4431 goto bad_addr; 4432 } 4433 if (!OK_32PTR(ucp)) { 4434 ip1dbg(("ip_bind: unaligned address\n")); 4435 goto bad_addr; 4436 } 4437 /* 4438 * Check for trailing mps. 4439 */ 4440 4441 mp1 = mp->b_cont; 4442 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4443 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4444 4445 switch (tbr->ADDR_length) { 4446 default: 4447 ip1dbg(("ip_bind: bad address length %d\n", 4448 (int)tbr->ADDR_length)); 4449 goto bad_addr; 4450 4451 case IP_ADDR_LEN: 4452 /* Verification of local address only */ 4453 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4454 ire_requested, ipsec_policy_set, B_FALSE); 4455 break; 4456 4457 case sizeof (sin_t): 4458 sin = (sin_t *)ucp; 4459 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4460 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4461 break; 4462 4463 case sizeof (ipa_conn_t): 4464 ac = (ipa_conn_t *)ucp; 4465 /* For raw socket, the local port is not set. */ 4466 if (ac->ac_lport == 0) 4467 ac->ac_lport = connp->conn_lport; 4468 /* Always verify destination reachability. */ 4469 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4470 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4471 ipsec_policy_set, B_TRUE, B_TRUE); 4472 break; 4473 4474 case sizeof (ipa_conn_x_t): 4475 acx = (ipa_conn_x_t *)ucp; 4476 /* 4477 * Whether or not to verify destination reachability depends 4478 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4479 */ 4480 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4481 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4482 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4483 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4484 break; 4485 } 4486 if (error == EINPROGRESS) 4487 return (NULL); 4488 else if (error != 0) 4489 goto bad_addr; 4490 /* 4491 * Pass the IPSEC headers size in ire_ipsec_overhead. 4492 * We can't do this in ip_bind_insert_ire because the policy 4493 * may not have been inherited at that point in time and hence 4494 * conn_out_enforce_policy may not be set. 4495 */ 4496 mp1 = mp->b_cont; 4497 if (ire_requested && connp->conn_out_enforce_policy && 4498 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4499 ire_t *ire = (ire_t *)mp1->b_rptr; 4500 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4501 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4502 } 4503 4504 /* Send it home. */ 4505 mp->b_datap->db_type = M_PCPROTO; 4506 tbr->PRIM_type = T_BIND_ACK; 4507 return (mp); 4508 4509 bad_addr: 4510 /* 4511 * If error = -1 then we generate a TBADADDR - otherwise error is 4512 * a unix errno. 4513 */ 4514 if (error > 0) 4515 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4516 else 4517 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4518 return (mp); 4519 } 4520 4521 /* 4522 * Here address is verified to be a valid local address. 4523 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4524 * address is also considered a valid local address. 4525 * In the case of a broadcast/multicast address, however, the 4526 * upper protocol is expected to reset the src address 4527 * to 0 if it sees a IRE_BROADCAST type returned so that 4528 * no packets are emitted with broadcast/multicast address as 4529 * source address (that violates hosts requirements RFC1122) 4530 * The addresses valid for bind are: 4531 * (1) - INADDR_ANY (0) 4532 * (2) - IP address of an UP interface 4533 * (3) - IP address of a DOWN interface 4534 * (4) - valid local IP broadcast addresses. In this case 4535 * the conn will only receive packets destined to 4536 * the specified broadcast address. 4537 * (5) - a multicast address. In this case 4538 * the conn will only receive packets destined to 4539 * the specified multicast address. Note: the 4540 * application still has to issue an 4541 * IP_ADD_MEMBERSHIP socket option. 4542 * 4543 * On error, return -1 for TBADADDR otherwise pass the 4544 * errno with TSYSERR reply. 4545 * 4546 * In all the above cases, the bound address must be valid in the current zone. 4547 * When the address is loopback, multicast or broadcast, there might be many 4548 * matching IREs so bind has to look up based on the zone. 4549 * 4550 * Note: lport is in network byte order. 4551 */ 4552 int 4553 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4554 boolean_t ire_requested, boolean_t ipsec_policy_set, 4555 boolean_t fanout_insert) 4556 { 4557 int error = 0; 4558 ire_t *src_ire; 4559 mblk_t *policy_mp; 4560 ipif_t *ipif; 4561 zoneid_t zoneid; 4562 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4563 4564 if (ipsec_policy_set) { 4565 policy_mp = mp->b_cont; 4566 } 4567 4568 /* 4569 * If it was previously connected, conn_fully_bound would have 4570 * been set. 4571 */ 4572 connp->conn_fully_bound = B_FALSE; 4573 4574 src_ire = NULL; 4575 ipif = NULL; 4576 4577 zoneid = IPCL_ZONEID(connp); 4578 4579 if (src_addr) { 4580 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4581 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4582 /* 4583 * If an address other than 0.0.0.0 is requested, 4584 * we verify that it is a valid address for bind 4585 * Note: Following code is in if-else-if form for 4586 * readability compared to a condition check. 4587 */ 4588 /* LINTED - statement has no consequent */ 4589 if (IRE_IS_LOCAL(src_ire)) { 4590 /* 4591 * (2) Bind to address of local UP interface 4592 */ 4593 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4594 /* 4595 * (4) Bind to broadcast address 4596 * Note: permitted only from transports that 4597 * request IRE 4598 */ 4599 if (!ire_requested) 4600 error = EADDRNOTAVAIL; 4601 } else { 4602 /* 4603 * (3) Bind to address of local DOWN interface 4604 * (ipif_lookup_addr() looks up all interfaces 4605 * but we do not get here for UP interfaces 4606 * - case (2) above) 4607 * We put the protocol byte back into the mblk 4608 * since we may come back via ip_wput_nondata() 4609 * later with this mblk if ipif_lookup_addr chooses 4610 * to defer processing. 4611 */ 4612 *mp->b_wptr++ = (char)connp->conn_ulp; 4613 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4614 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4615 &error, ipst)) != NULL) { 4616 ipif_refrele(ipif); 4617 } else if (error == EINPROGRESS) { 4618 if (src_ire != NULL) 4619 ire_refrele(src_ire); 4620 return (EINPROGRESS); 4621 } else if (CLASSD(src_addr)) { 4622 error = 0; 4623 if (src_ire != NULL) 4624 ire_refrele(src_ire); 4625 /* 4626 * (5) bind to multicast address. 4627 * Fake out the IRE returned to upper 4628 * layer to be a broadcast IRE. 4629 */ 4630 src_ire = ire_ctable_lookup( 4631 INADDR_BROADCAST, INADDR_ANY, 4632 IRE_BROADCAST, NULL, zoneid, NULL, 4633 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4634 ipst); 4635 if (src_ire == NULL || !ire_requested) 4636 error = EADDRNOTAVAIL; 4637 } else { 4638 /* 4639 * Not a valid address for bind 4640 */ 4641 error = EADDRNOTAVAIL; 4642 } 4643 /* 4644 * Just to keep it consistent with the processing in 4645 * ip_bind_v4() 4646 */ 4647 mp->b_wptr--; 4648 } 4649 if (error) { 4650 /* Red Alert! Attempting to be a bogon! */ 4651 ip1dbg(("ip_bind: bad src address 0x%x\n", 4652 ntohl(src_addr))); 4653 goto bad_addr; 4654 } 4655 } 4656 4657 /* 4658 * Allow setting new policies. For example, disconnects come 4659 * down as ipa_t bind. As we would have set conn_policy_cached 4660 * to B_TRUE before, we should set it to B_FALSE, so that policy 4661 * can change after the disconnect. 4662 */ 4663 connp->conn_policy_cached = B_FALSE; 4664 4665 /* 4666 * If not fanout_insert this was just an address verification 4667 */ 4668 if (fanout_insert) { 4669 /* 4670 * The addresses have been verified. Time to insert in 4671 * the correct fanout list. 4672 */ 4673 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4674 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4675 connp->conn_lport = lport; 4676 connp->conn_fport = 0; 4677 /* 4678 * Do we need to add a check to reject Multicast packets 4679 * 4680 * We need to make sure that the conn_recv is set to a non-null 4681 * value before we insert the conn into the classifier table. 4682 * This is to avoid a race with an incoming packet which does an 4683 * ipcl_classify(). 4684 */ 4685 if (*mp->b_wptr == IPPROTO_TCP) 4686 connp->conn_recv = tcp_conn_request; 4687 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4688 } 4689 4690 if (error == 0) { 4691 if (ire_requested) { 4692 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4693 error = -1; 4694 /* Falls through to bad_addr */ 4695 } 4696 } else if (ipsec_policy_set) { 4697 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4698 error = -1; 4699 /* Falls through to bad_addr */ 4700 } 4701 } 4702 } else if (connp->conn_ulp == IPPROTO_TCP) { 4703 connp->conn_recv = tcp_input; 4704 } 4705 bad_addr: 4706 if (error != 0) { 4707 if (connp->conn_anon_port) { 4708 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4709 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4710 B_FALSE); 4711 } 4712 connp->conn_mlp_type = mlptSingle; 4713 } 4714 if (src_ire != NULL) 4715 IRE_REFRELE(src_ire); 4716 if (ipsec_policy_set) { 4717 ASSERT(policy_mp == mp->b_cont); 4718 ASSERT(policy_mp != NULL); 4719 freeb(policy_mp); 4720 /* 4721 * As of now assume that nothing else accompanies 4722 * IPSEC_POLICY_SET. 4723 */ 4724 mp->b_cont = NULL; 4725 } 4726 return (error); 4727 } 4728 4729 /* 4730 * Verify that both the source and destination addresses 4731 * are valid. If verify_dst is false, then the destination address may be 4732 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4733 * destination reachability, while tunnels do not. 4734 * Note that we allow connect to broadcast and multicast 4735 * addresses when ire_requested is set. Thus the ULP 4736 * has to check for IRE_BROADCAST and multicast. 4737 * 4738 * Returns zero if ok. 4739 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4740 * (for use with TSYSERR reply). 4741 * 4742 * Note: lport and fport are in network byte order. 4743 */ 4744 int 4745 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4746 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4747 boolean_t ire_requested, boolean_t ipsec_policy_set, 4748 boolean_t fanout_insert, boolean_t verify_dst) 4749 { 4750 ire_t *src_ire; 4751 ire_t *dst_ire; 4752 int error = 0; 4753 int protocol; 4754 mblk_t *policy_mp; 4755 ire_t *sire = NULL; 4756 ire_t *md_dst_ire = NULL; 4757 ire_t *lso_dst_ire = NULL; 4758 ill_t *ill = NULL; 4759 zoneid_t zoneid; 4760 ipaddr_t src_addr = *src_addrp; 4761 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4762 4763 src_ire = dst_ire = NULL; 4764 protocol = *mp->b_wptr & 0xFF; 4765 4766 /* 4767 * If we never got a disconnect before, clear it now. 4768 */ 4769 connp->conn_fully_bound = B_FALSE; 4770 4771 if (ipsec_policy_set) { 4772 policy_mp = mp->b_cont; 4773 } 4774 4775 zoneid = IPCL_ZONEID(connp); 4776 4777 if (CLASSD(dst_addr)) { 4778 /* Pick up an IRE_BROADCAST */ 4779 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4780 NULL, zoneid, MBLK_GETLABEL(mp), 4781 (MATCH_IRE_RECURSIVE | 4782 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4783 MATCH_IRE_SECATTR), ipst); 4784 } else { 4785 /* 4786 * If conn_dontroute is set or if conn_nexthop_set is set, 4787 * and onlink ipif is not found set ENETUNREACH error. 4788 */ 4789 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4790 ipif_t *ipif; 4791 4792 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4793 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4794 if (ipif == NULL) { 4795 error = ENETUNREACH; 4796 goto bad_addr; 4797 } 4798 ipif_refrele(ipif); 4799 } 4800 4801 if (connp->conn_nexthop_set) { 4802 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4803 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4804 MATCH_IRE_SECATTR, ipst); 4805 } else { 4806 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4807 &sire, zoneid, MBLK_GETLABEL(mp), 4808 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4809 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4810 MATCH_IRE_SECATTR), ipst); 4811 } 4812 } 4813 /* 4814 * dst_ire can't be a broadcast when not ire_requested. 4815 * We also prevent ire's with src address INADDR_ANY to 4816 * be used, which are created temporarily for 4817 * sending out packets from endpoints that have 4818 * conn_unspec_src set. If verify_dst is true, the destination must be 4819 * reachable. If verify_dst is false, the destination needn't be 4820 * reachable. 4821 * 4822 * If we match on a reject or black hole, then we've got a 4823 * local failure. May as well fail out the connect() attempt, 4824 * since it's never going to succeed. 4825 */ 4826 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4827 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4828 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4829 /* 4830 * If we're verifying destination reachability, we always want 4831 * to complain here. 4832 * 4833 * If we're not verifying destination reachability but the 4834 * destination has a route, we still want to fail on the 4835 * temporary address and broadcast address tests. 4836 */ 4837 if (verify_dst || (dst_ire != NULL)) { 4838 if (ip_debug > 2) { 4839 pr_addr_dbg("ip_bind_connected: bad connected " 4840 "dst %s\n", AF_INET, &dst_addr); 4841 } 4842 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4843 error = ENETUNREACH; 4844 else 4845 error = EHOSTUNREACH; 4846 goto bad_addr; 4847 } 4848 } 4849 4850 /* 4851 * We now know that routing will allow us to reach the destination. 4852 * Check whether Trusted Solaris policy allows communication with this 4853 * host, and pretend that the destination is unreachable if not. 4854 * 4855 * This is never a problem for TCP, since that transport is known to 4856 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4857 * handling. If the remote is unreachable, it will be detected at that 4858 * point, so there's no reason to check it here. 4859 * 4860 * Note that for sendto (and other datagram-oriented friends), this 4861 * check is done as part of the data path label computation instead. 4862 * The check here is just to make non-TCP connect() report the right 4863 * error. 4864 */ 4865 if (dst_ire != NULL && is_system_labeled() && 4866 !IPCL_IS_TCP(connp) && 4867 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4868 connp->conn_mac_exempt, ipst) != 0) { 4869 error = EHOSTUNREACH; 4870 if (ip_debug > 2) { 4871 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4872 AF_INET, &dst_addr); 4873 } 4874 goto bad_addr; 4875 } 4876 4877 /* 4878 * If the app does a connect(), it means that it will most likely 4879 * send more than 1 packet to the destination. It makes sense 4880 * to clear the temporary flag. 4881 */ 4882 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4883 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4884 irb_t *irb = dst_ire->ire_bucket; 4885 4886 rw_enter(&irb->irb_lock, RW_WRITER); 4887 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4888 irb->irb_tmp_ire_cnt--; 4889 rw_exit(&irb->irb_lock); 4890 } 4891 4892 /* 4893 * See if we should notify ULP about LSO/MDT; we do this whether or not 4894 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4895 * eligibility tests for passive connects are handled separately 4896 * through tcp_adapt_ire(). We do this before the source address 4897 * selection, because dst_ire may change after a call to 4898 * ipif_select_source(). This is a best-effort check, as the 4899 * packet for this connection may not actually go through 4900 * dst_ire->ire_stq, and the exact IRE can only be known after 4901 * calling ip_newroute(). This is why we further check on the 4902 * IRE during LSO/Multidata packet transmission in 4903 * tcp_lsosend()/tcp_multisend(). 4904 */ 4905 if (!ipsec_policy_set && dst_ire != NULL && 4906 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4907 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4908 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4909 lso_dst_ire = dst_ire; 4910 IRE_REFHOLD(lso_dst_ire); 4911 } else if (ipst->ips_ip_multidata_outbound && 4912 ILL_MDT_CAPABLE(ill)) { 4913 md_dst_ire = dst_ire; 4914 IRE_REFHOLD(md_dst_ire); 4915 } 4916 } 4917 4918 if (dst_ire != NULL && 4919 dst_ire->ire_type == IRE_LOCAL && 4920 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4921 /* 4922 * If the IRE belongs to a different zone, look for a matching 4923 * route in the forwarding table and use the source address from 4924 * that route. 4925 */ 4926 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4927 zoneid, 0, NULL, 4928 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4929 MATCH_IRE_RJ_BHOLE, ipst); 4930 if (src_ire == NULL) { 4931 error = EHOSTUNREACH; 4932 goto bad_addr; 4933 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4934 if (!(src_ire->ire_type & IRE_HOST)) 4935 error = ENETUNREACH; 4936 else 4937 error = EHOSTUNREACH; 4938 goto bad_addr; 4939 } 4940 if (src_addr == INADDR_ANY) 4941 src_addr = src_ire->ire_src_addr; 4942 ire_refrele(src_ire); 4943 src_ire = NULL; 4944 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4945 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4946 src_addr = sire->ire_src_addr; 4947 ire_refrele(dst_ire); 4948 dst_ire = sire; 4949 sire = NULL; 4950 } else { 4951 /* 4952 * Pick a source address so that a proper inbound 4953 * load spreading would happen. 4954 */ 4955 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4956 ipif_t *src_ipif = NULL; 4957 ire_t *ipif_ire; 4958 4959 /* 4960 * Supply a local source address such that inbound 4961 * load spreading happens. 4962 * 4963 * Determine the best source address on this ill for 4964 * the destination. 4965 * 4966 * 1) For broadcast, we should return a broadcast ire 4967 * found above so that upper layers know that the 4968 * destination address is a broadcast address. 4969 * 4970 * 2) If this is part of a group, select a better 4971 * source address so that better inbound load 4972 * balancing happens. Do the same if the ipif 4973 * is DEPRECATED. 4974 * 4975 * 3) If the outgoing interface is part of a usesrc 4976 * group, then try selecting a source address from 4977 * the usesrc ILL. 4978 */ 4979 if ((dst_ire->ire_zoneid != zoneid && 4980 dst_ire->ire_zoneid != ALL_ZONES) || 4981 (!(dst_ire->ire_type & IRE_BROADCAST) && 4982 ((dst_ill->ill_group != NULL) || 4983 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4984 (dst_ill->ill_usesrc_ifindex != 0)))) { 4985 /* 4986 * If the destination is reachable via a 4987 * given gateway, the selected source address 4988 * should be in the same subnet as the gateway. 4989 * Otherwise, the destination is not reachable. 4990 * 4991 * If there are no interfaces on the same subnet 4992 * as the destination, ipif_select_source gives 4993 * first non-deprecated interface which might be 4994 * on a different subnet than the gateway. 4995 * This is not desirable. Hence pass the dst_ire 4996 * source address to ipif_select_source. 4997 * It is sure that the destination is reachable 4998 * with the dst_ire source address subnet. 4999 * So passing dst_ire source address to 5000 * ipif_select_source will make sure that the 5001 * selected source will be on the same subnet 5002 * as dst_ire source address. 5003 */ 5004 ipaddr_t saddr = 5005 dst_ire->ire_ipif->ipif_src_addr; 5006 src_ipif = ipif_select_source(dst_ill, 5007 saddr, zoneid); 5008 if (src_ipif != NULL) { 5009 if (IS_VNI(src_ipif->ipif_ill)) { 5010 /* 5011 * For VNI there is no 5012 * interface route 5013 */ 5014 src_addr = 5015 src_ipif->ipif_src_addr; 5016 } else { 5017 ipif_ire = 5018 ipif_to_ire(src_ipif); 5019 if (ipif_ire != NULL) { 5020 IRE_REFRELE(dst_ire); 5021 dst_ire = ipif_ire; 5022 } 5023 src_addr = 5024 dst_ire->ire_src_addr; 5025 } 5026 ipif_refrele(src_ipif); 5027 } else { 5028 src_addr = dst_ire->ire_src_addr; 5029 } 5030 } else { 5031 src_addr = dst_ire->ire_src_addr; 5032 } 5033 } 5034 } 5035 5036 /* 5037 * We do ire_route_lookup() here (and not 5038 * interface lookup as we assert that 5039 * src_addr should only come from an 5040 * UP interface for hard binding. 5041 */ 5042 ASSERT(src_ire == NULL); 5043 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5044 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5045 /* src_ire must be a local|loopback */ 5046 if (!IRE_IS_LOCAL(src_ire)) { 5047 if (ip_debug > 2) { 5048 pr_addr_dbg("ip_bind_connected: bad connected " 5049 "src %s\n", AF_INET, &src_addr); 5050 } 5051 error = EADDRNOTAVAIL; 5052 goto bad_addr; 5053 } 5054 5055 /* 5056 * If the source address is a loopback address, the 5057 * destination had best be local or multicast. 5058 * The transports that can't handle multicast will reject 5059 * those addresses. 5060 */ 5061 if (src_ire->ire_type == IRE_LOOPBACK && 5062 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5063 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5064 error = -1; 5065 goto bad_addr; 5066 } 5067 5068 /* 5069 * Allow setting new policies. For example, disconnects come 5070 * down as ipa_t bind. As we would have set conn_policy_cached 5071 * to B_TRUE before, we should set it to B_FALSE, so that policy 5072 * can change after the disconnect. 5073 */ 5074 connp->conn_policy_cached = B_FALSE; 5075 5076 /* 5077 * Set the conn addresses/ports immediately, so the IPsec policy calls 5078 * can handle their passed-in conn's. 5079 */ 5080 5081 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5082 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5083 connp->conn_lport = lport; 5084 connp->conn_fport = fport; 5085 *src_addrp = src_addr; 5086 5087 ASSERT(!(ipsec_policy_set && ire_requested)); 5088 if (ire_requested) { 5089 iulp_t *ulp_info = NULL; 5090 5091 /* 5092 * Note that sire will not be NULL if this is an off-link 5093 * connection and there is not cache for that dest yet. 5094 * 5095 * XXX Because of an existing bug, if there are multiple 5096 * default routes, the IRE returned now may not be the actual 5097 * default route used (default routes are chosen in a 5098 * round robin fashion). So if the metrics for different 5099 * default routes are different, we may return the wrong 5100 * metrics. This will not be a problem if the existing 5101 * bug is fixed. 5102 */ 5103 if (sire != NULL) { 5104 ulp_info = &(sire->ire_uinfo); 5105 } 5106 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5107 error = -1; 5108 goto bad_addr; 5109 } 5110 } else if (ipsec_policy_set) { 5111 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5112 error = -1; 5113 goto bad_addr; 5114 } 5115 } 5116 5117 /* 5118 * Cache IPsec policy in this conn. If we have per-socket policy, 5119 * we'll cache that. If we don't, we'll inherit global policy. 5120 * 5121 * We can't insert until the conn reflects the policy. Note that 5122 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5123 * connections where we don't have a policy. This is to prevent 5124 * global policy lookups in the inbound path. 5125 * 5126 * If we insert before we set conn_policy_cached, 5127 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5128 * because global policy cound be non-empty. We normally call 5129 * ipsec_check_policy() for conn_policy_cached connections only if 5130 * ipc_in_enforce_policy is set. But in this case, 5131 * conn_policy_cached can get set anytime since we made the 5132 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5133 * called, which will make the above assumption false. Thus, we 5134 * need to insert after we set conn_policy_cached. 5135 */ 5136 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5137 goto bad_addr; 5138 5139 if (fanout_insert) { 5140 /* 5141 * The addresses have been verified. Time to insert in 5142 * the correct fanout list. 5143 * We need to make sure that the conn_recv is set to a non-null 5144 * value before we insert into the classifier table to avoid a 5145 * race with an incoming packet which does an ipcl_classify(). 5146 */ 5147 if (protocol == IPPROTO_TCP) 5148 connp->conn_recv = tcp_input; 5149 error = ipcl_conn_insert(connp, protocol, src_addr, 5150 dst_addr, connp->conn_ports); 5151 } 5152 5153 if (error == 0) { 5154 connp->conn_fully_bound = B_TRUE; 5155 /* 5156 * Our initial checks for LSO/MDT have passed; the IRE is not 5157 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5158 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5159 * ip_xxinfo_return(), which performs further checks 5160 * against them and upon success, returns the LSO/MDT info 5161 * mblk which we will attach to the bind acknowledgment. 5162 */ 5163 if (lso_dst_ire != NULL) { 5164 mblk_t *lsoinfo_mp; 5165 5166 ASSERT(ill->ill_lso_capab != NULL); 5167 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5168 ill->ill_name, ill->ill_lso_capab)) != NULL) 5169 linkb(mp, lsoinfo_mp); 5170 } else if (md_dst_ire != NULL) { 5171 mblk_t *mdinfo_mp; 5172 5173 ASSERT(ill->ill_mdt_capab != NULL); 5174 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5175 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5176 linkb(mp, mdinfo_mp); 5177 } 5178 } 5179 bad_addr: 5180 if (ipsec_policy_set) { 5181 ASSERT(policy_mp == mp->b_cont); 5182 ASSERT(policy_mp != NULL); 5183 freeb(policy_mp); 5184 /* 5185 * As of now assume that nothing else accompanies 5186 * IPSEC_POLICY_SET. 5187 */ 5188 mp->b_cont = NULL; 5189 } 5190 if (src_ire != NULL) 5191 IRE_REFRELE(src_ire); 5192 if (dst_ire != NULL) 5193 IRE_REFRELE(dst_ire); 5194 if (sire != NULL) 5195 IRE_REFRELE(sire); 5196 if (md_dst_ire != NULL) 5197 IRE_REFRELE(md_dst_ire); 5198 if (lso_dst_ire != NULL) 5199 IRE_REFRELE(lso_dst_ire); 5200 return (error); 5201 } 5202 5203 /* 5204 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5205 * Prefers dst_ire over src_ire. 5206 */ 5207 static boolean_t 5208 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5209 { 5210 mblk_t *mp1; 5211 ire_t *ret_ire = NULL; 5212 5213 mp1 = mp->b_cont; 5214 ASSERT(mp1 != NULL); 5215 5216 if (ire != NULL) { 5217 /* 5218 * mp1 initialized above to IRE_DB_REQ_TYPE 5219 * appended mblk. Its <upper protocol>'s 5220 * job to make sure there is room. 5221 */ 5222 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5223 return (0); 5224 5225 mp1->b_datap->db_type = IRE_DB_TYPE; 5226 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5227 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5228 ret_ire = (ire_t *)mp1->b_rptr; 5229 /* 5230 * Pass the latest setting of the ip_path_mtu_discovery and 5231 * copy the ulp info if any. 5232 */ 5233 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5234 IPH_DF : 0; 5235 if (ulp_info != NULL) { 5236 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5237 sizeof (iulp_t)); 5238 } 5239 ret_ire->ire_mp = mp1; 5240 } else { 5241 /* 5242 * No IRE was found. Remove IRE mblk. 5243 */ 5244 mp->b_cont = mp1->b_cont; 5245 freeb(mp1); 5246 } 5247 5248 return (1); 5249 } 5250 5251 /* 5252 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5253 * the final piece where we don't. Return a pointer to the first mblk in the 5254 * result, and update the pointer to the next mblk to chew on. If anything 5255 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5256 * NULL pointer. 5257 */ 5258 mblk_t * 5259 ip_carve_mp(mblk_t **mpp, ssize_t len) 5260 { 5261 mblk_t *mp0; 5262 mblk_t *mp1; 5263 mblk_t *mp2; 5264 5265 if (!len || !mpp || !(mp0 = *mpp)) 5266 return (NULL); 5267 /* If we aren't going to consume the first mblk, we need a dup. */ 5268 if (mp0->b_wptr - mp0->b_rptr > len) { 5269 mp1 = dupb(mp0); 5270 if (mp1) { 5271 /* Partition the data between the two mblks. */ 5272 mp1->b_wptr = mp1->b_rptr + len; 5273 mp0->b_rptr = mp1->b_wptr; 5274 /* 5275 * after adjustments if mblk not consumed is now 5276 * unaligned, try to align it. If this fails free 5277 * all messages and let upper layer recover. 5278 */ 5279 if (!OK_32PTR(mp0->b_rptr)) { 5280 if (!pullupmsg(mp0, -1)) { 5281 freemsg(mp0); 5282 freemsg(mp1); 5283 *mpp = NULL; 5284 return (NULL); 5285 } 5286 } 5287 } 5288 return (mp1); 5289 } 5290 /* Eat through as many mblks as we need to get len bytes. */ 5291 len -= mp0->b_wptr - mp0->b_rptr; 5292 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5293 if (mp2->b_wptr - mp2->b_rptr > len) { 5294 /* 5295 * We won't consume the entire last mblk. Like 5296 * above, dup and partition it. 5297 */ 5298 mp1->b_cont = dupb(mp2); 5299 mp1 = mp1->b_cont; 5300 if (!mp1) { 5301 /* 5302 * Trouble. Rather than go to a lot of 5303 * trouble to clean up, we free the messages. 5304 * This won't be any worse than losing it on 5305 * the wire. 5306 */ 5307 freemsg(mp0); 5308 freemsg(mp2); 5309 *mpp = NULL; 5310 return (NULL); 5311 } 5312 mp1->b_wptr = mp1->b_rptr + len; 5313 mp2->b_rptr = mp1->b_wptr; 5314 /* 5315 * after adjustments if mblk not consumed is now 5316 * unaligned, try to align it. If this fails free 5317 * all messages and let upper layer recover. 5318 */ 5319 if (!OK_32PTR(mp2->b_rptr)) { 5320 if (!pullupmsg(mp2, -1)) { 5321 freemsg(mp0); 5322 freemsg(mp2); 5323 *mpp = NULL; 5324 return (NULL); 5325 } 5326 } 5327 *mpp = mp2; 5328 return (mp0); 5329 } 5330 /* Decrement len by the amount we just got. */ 5331 len -= mp2->b_wptr - mp2->b_rptr; 5332 } 5333 /* 5334 * len should be reduced to zero now. If not our caller has 5335 * screwed up. 5336 */ 5337 if (len) { 5338 /* Shouldn't happen! */ 5339 freemsg(mp0); 5340 *mpp = NULL; 5341 return (NULL); 5342 } 5343 /* 5344 * We consumed up to exactly the end of an mblk. Detach the part 5345 * we are returning from the rest of the chain. 5346 */ 5347 mp1->b_cont = NULL; 5348 *mpp = mp2; 5349 return (mp0); 5350 } 5351 5352 /* The ill stream is being unplumbed. Called from ip_close */ 5353 int 5354 ip_modclose(ill_t *ill) 5355 { 5356 boolean_t success; 5357 ipsq_t *ipsq; 5358 ipif_t *ipif; 5359 queue_t *q = ill->ill_rq; 5360 ip_stack_t *ipst = ill->ill_ipst; 5361 clock_t timeout; 5362 5363 /* 5364 * Wait for the ACKs of all deferred control messages to be processed. 5365 * In particular, we wait for a potential capability reset initiated 5366 * in ip_sioctl_plink() to complete before proceeding. 5367 * 5368 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5369 * in case the driver never replies. 5370 */ 5371 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5372 mutex_enter(&ill->ill_lock); 5373 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5374 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5375 /* Timeout */ 5376 break; 5377 } 5378 } 5379 mutex_exit(&ill->ill_lock); 5380 5381 /* 5382 * Forcibly enter the ipsq after some delay. This is to take 5383 * care of the case when some ioctl does not complete because 5384 * we sent a control message to the driver and it did not 5385 * send us a reply. We want to be able to at least unplumb 5386 * and replumb rather than force the user to reboot the system. 5387 */ 5388 success = ipsq_enter(ill, B_FALSE); 5389 5390 /* 5391 * Open/close/push/pop is guaranteed to be single threaded 5392 * per stream by STREAMS. FS guarantees that all references 5393 * from top are gone before close is called. So there can't 5394 * be another close thread that has set CONDEMNED on this ill. 5395 * and cause ipsq_enter to return failure. 5396 */ 5397 ASSERT(success); 5398 ipsq = ill->ill_phyint->phyint_ipsq; 5399 5400 /* 5401 * Mark it condemned. No new reference will be made to this ill. 5402 * Lookup functions will return an error. Threads that try to 5403 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5404 * that the refcnt will drop down to zero. 5405 */ 5406 mutex_enter(&ill->ill_lock); 5407 ill->ill_state_flags |= ILL_CONDEMNED; 5408 for (ipif = ill->ill_ipif; ipif != NULL; 5409 ipif = ipif->ipif_next) { 5410 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5411 } 5412 /* 5413 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5414 * returns error if ILL_CONDEMNED is set 5415 */ 5416 cv_broadcast(&ill->ill_cv); 5417 mutex_exit(&ill->ill_lock); 5418 5419 /* 5420 * Send all the deferred DLPI messages downstream which came in 5421 * during the small window right before ipsq_enter(). We do this 5422 * without waiting for the ACKs because all the ACKs for M_PROTO 5423 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5424 */ 5425 ill_dlpi_send_deferred(ill); 5426 5427 /* 5428 * Shut down fragmentation reassembly. 5429 * ill_frag_timer won't start a timer again. 5430 * Now cancel any existing timer 5431 */ 5432 (void) untimeout(ill->ill_frag_timer_id); 5433 (void) ill_frag_timeout(ill, 0); 5434 5435 /* 5436 * If MOVE was in progress, clear the 5437 * move_in_progress fields also. 5438 */ 5439 if (ill->ill_move_in_progress) { 5440 ILL_CLEAR_MOVE(ill); 5441 } 5442 5443 /* 5444 * Call ill_delete to bring down the ipifs, ilms and ill on 5445 * this ill. Then wait for the refcnts to drop to zero. 5446 * ill_is_quiescent checks whether the ill is really quiescent. 5447 * Then make sure that threads that are waiting to enter the 5448 * ipsq have seen the error returned by ipsq_enter and have 5449 * gone away. Then we call ill_delete_tail which does the 5450 * DL_UNBIND_REQ with the driver and then qprocsoff. 5451 */ 5452 ill_delete(ill); 5453 mutex_enter(&ill->ill_lock); 5454 while (!ill_is_quiescent(ill)) 5455 cv_wait(&ill->ill_cv, &ill->ill_lock); 5456 while (ill->ill_waiters) 5457 cv_wait(&ill->ill_cv, &ill->ill_lock); 5458 5459 mutex_exit(&ill->ill_lock); 5460 5461 /* 5462 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5463 * it held until the end of the function since the cleanup 5464 * below needs to be able to use the ip_stack_t. 5465 */ 5466 netstack_hold(ipst->ips_netstack); 5467 5468 /* qprocsoff is called in ill_delete_tail */ 5469 ill_delete_tail(ill); 5470 ASSERT(ill->ill_ipst == NULL); 5471 5472 /* 5473 * Walk through all upper (conn) streams and qenable 5474 * those that have queued data. 5475 * close synchronization needs this to 5476 * be done to ensure that all upper layers blocked 5477 * due to flow control to the closing device 5478 * get unblocked. 5479 */ 5480 ip1dbg(("ip_wsrv: walking\n")); 5481 conn_walk_drain(ipst); 5482 5483 mutex_enter(&ipst->ips_ip_mi_lock); 5484 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5485 mutex_exit(&ipst->ips_ip_mi_lock); 5486 5487 /* 5488 * credp could be null if the open didn't succeed and ip_modopen 5489 * itself calls ip_close. 5490 */ 5491 if (ill->ill_credp != NULL) 5492 crfree(ill->ill_credp); 5493 5494 mutex_enter(&ill->ill_lock); 5495 ill_nic_info_dispatch(ill); 5496 mutex_exit(&ill->ill_lock); 5497 5498 /* 5499 * Now we are done with the module close pieces that 5500 * need the netstack_t. 5501 */ 5502 netstack_rele(ipst->ips_netstack); 5503 5504 mi_close_free((IDP)ill); 5505 q->q_ptr = WR(q)->q_ptr = NULL; 5506 5507 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5508 5509 return (0); 5510 } 5511 5512 /* 5513 * This is called as part of close() for both IP and UDP 5514 * in order to quiesce the conn. 5515 */ 5516 void 5517 ip_quiesce_conn(conn_t *connp) 5518 { 5519 boolean_t drain_cleanup_reqd = B_FALSE; 5520 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5521 boolean_t ilg_cleanup_reqd = B_FALSE; 5522 ip_stack_t *ipst; 5523 5524 ASSERT(!IPCL_IS_TCP(connp)); 5525 ipst = connp->conn_netstack->netstack_ip; 5526 5527 /* 5528 * Mark the conn as closing, and this conn must not be 5529 * inserted in future into any list. Eg. conn_drain_insert(), 5530 * won't insert this conn into the conn_drain_list. 5531 * Similarly ill_pending_mp_add() will not add any mp to 5532 * the pending mp list, after this conn has started closing. 5533 * 5534 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5535 * cannot get set henceforth. 5536 */ 5537 mutex_enter(&connp->conn_lock); 5538 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5539 connp->conn_state_flags |= CONN_CLOSING; 5540 if (connp->conn_idl != NULL) 5541 drain_cleanup_reqd = B_TRUE; 5542 if (connp->conn_oper_pending_ill != NULL) 5543 conn_ioctl_cleanup_reqd = B_TRUE; 5544 if (connp->conn_ilg_inuse != 0) 5545 ilg_cleanup_reqd = B_TRUE; 5546 mutex_exit(&connp->conn_lock); 5547 5548 if (IPCL_IS_UDP(connp)) 5549 udp_quiesce_conn(connp); 5550 5551 if (conn_ioctl_cleanup_reqd) 5552 conn_ioctl_cleanup(connp); 5553 5554 if (is_system_labeled() && connp->conn_anon_port) { 5555 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5556 connp->conn_mlp_type, connp->conn_ulp, 5557 ntohs(connp->conn_lport), B_FALSE); 5558 connp->conn_anon_port = 0; 5559 } 5560 connp->conn_mlp_type = mlptSingle; 5561 5562 /* 5563 * Remove this conn from any fanout list it is on. 5564 * and then wait for any threads currently operating 5565 * on this endpoint to finish 5566 */ 5567 ipcl_hash_remove(connp); 5568 5569 /* 5570 * Remove this conn from the drain list, and do 5571 * any other cleanup that may be required. 5572 * (Only non-tcp streams may have a non-null conn_idl. 5573 * TCP streams are never flow controlled, and 5574 * conn_idl will be null) 5575 */ 5576 if (drain_cleanup_reqd) 5577 conn_drain_tail(connp, B_TRUE); 5578 5579 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5580 connp->conn_wq == ipst->ips_ip_g_mrouter) 5581 (void) ip_mrouter_done(NULL, ipst); 5582 5583 if (ilg_cleanup_reqd) 5584 ilg_delete_all(connp); 5585 5586 conn_delete_ire(connp, NULL); 5587 5588 /* 5589 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5590 * callers from write side can't be there now because close 5591 * is in progress. The only other caller is ipcl_walk 5592 * which checks for the condemned flag. 5593 */ 5594 mutex_enter(&connp->conn_lock); 5595 connp->conn_state_flags |= CONN_CONDEMNED; 5596 while (connp->conn_ref != 1) 5597 cv_wait(&connp->conn_cv, &connp->conn_lock); 5598 connp->conn_state_flags |= CONN_QUIESCED; 5599 mutex_exit(&connp->conn_lock); 5600 } 5601 5602 /* ARGSUSED */ 5603 int 5604 ip_close(queue_t *q, int flags) 5605 { 5606 conn_t *connp; 5607 5608 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5609 5610 /* 5611 * Call the appropriate delete routine depending on whether this is 5612 * a module or device. 5613 */ 5614 if (WR(q)->q_next != NULL) { 5615 /* This is a module close */ 5616 return (ip_modclose((ill_t *)q->q_ptr)); 5617 } 5618 5619 connp = q->q_ptr; 5620 ip_quiesce_conn(connp); 5621 5622 qprocsoff(q); 5623 5624 /* 5625 * Now we are truly single threaded on this stream, and can 5626 * delete the things hanging off the connp, and finally the connp. 5627 * We removed this connp from the fanout list, it cannot be 5628 * accessed thru the fanouts, and we already waited for the 5629 * conn_ref to drop to 0. We are already in close, so 5630 * there cannot be any other thread from the top. qprocsoff 5631 * has completed, and service has completed or won't run in 5632 * future. 5633 */ 5634 ASSERT(connp->conn_ref == 1); 5635 5636 /* 5637 * A conn which was previously marked as IPCL_UDP cannot 5638 * retain the flag because it would have been cleared by 5639 * udp_close(). 5640 */ 5641 ASSERT(!IPCL_IS_UDP(connp)); 5642 5643 if (connp->conn_latch != NULL) { 5644 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5645 connp->conn_latch = NULL; 5646 } 5647 if (connp->conn_policy != NULL) { 5648 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5649 connp->conn_policy = NULL; 5650 } 5651 if (connp->conn_ipsec_opt_mp != NULL) { 5652 freemsg(connp->conn_ipsec_opt_mp); 5653 connp->conn_ipsec_opt_mp = NULL; 5654 } 5655 5656 inet_minor_free(ip_minor_arena, connp->conn_dev); 5657 5658 connp->conn_ref--; 5659 ipcl_conn_destroy(connp); 5660 5661 q->q_ptr = WR(q)->q_ptr = NULL; 5662 return (0); 5663 } 5664 5665 int 5666 ip_snmpmod_close(queue_t *q) 5667 { 5668 conn_t *connp = Q_TO_CONN(q); 5669 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5670 5671 qprocsoff(q); 5672 5673 if (connp->conn_flags & IPCL_UDPMOD) 5674 udp_close_free(connp); 5675 5676 if (connp->conn_cred != NULL) { 5677 crfree(connp->conn_cred); 5678 connp->conn_cred = NULL; 5679 } 5680 CONN_DEC_REF(connp); 5681 q->q_ptr = WR(q)->q_ptr = NULL; 5682 return (0); 5683 } 5684 5685 /* 5686 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5687 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5688 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5689 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5690 * queues as we never enqueue messages there and we don't handle any ioctls. 5691 * Everything else is freed. 5692 */ 5693 void 5694 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5695 { 5696 conn_t *connp = q->q_ptr; 5697 pfi_t setfn; 5698 pfi_t getfn; 5699 5700 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5701 5702 switch (DB_TYPE(mp)) { 5703 case M_PROTO: 5704 case M_PCPROTO: 5705 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5706 ((((union T_primitives *)mp->b_rptr)->type == 5707 T_SVR4_OPTMGMT_REQ) || 5708 (((union T_primitives *)mp->b_rptr)->type == 5709 T_OPTMGMT_REQ))) { 5710 /* 5711 * This is the only TPI primitive supported. Its 5712 * handling does not require tcp_t, but it does require 5713 * conn_t to check permissions. 5714 */ 5715 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5716 5717 if (connp->conn_flags & IPCL_TCPMOD) { 5718 setfn = tcp_snmp_set; 5719 getfn = tcp_snmp_get; 5720 } else { 5721 setfn = udp_snmp_set; 5722 getfn = udp_snmp_get; 5723 } 5724 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5725 freemsg(mp); 5726 return; 5727 } 5728 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5729 != NULL) 5730 qreply(q, mp); 5731 break; 5732 case M_FLUSH: 5733 case M_IOCTL: 5734 putnext(q, mp); 5735 break; 5736 default: 5737 freemsg(mp); 5738 break; 5739 } 5740 } 5741 5742 /* Return the IP checksum for the IP header at "iph". */ 5743 uint16_t 5744 ip_csum_hdr(ipha_t *ipha) 5745 { 5746 uint16_t *uph; 5747 uint32_t sum; 5748 int opt_len; 5749 5750 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5751 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5752 uph = (uint16_t *)ipha; 5753 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5754 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5755 if (opt_len > 0) { 5756 do { 5757 sum += uph[10]; 5758 sum += uph[11]; 5759 uph += 2; 5760 } while (--opt_len); 5761 } 5762 sum = (sum & 0xFFFF) + (sum >> 16); 5763 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5764 if (sum == 0xffff) 5765 sum = 0; 5766 return ((uint16_t)sum); 5767 } 5768 5769 /* 5770 * Called when the module is about to be unloaded 5771 */ 5772 void 5773 ip_ddi_destroy(void) 5774 { 5775 tnet_fini(); 5776 5777 sctp_ddi_g_destroy(); 5778 tcp_ddi_g_destroy(); 5779 ipsec_policy_g_destroy(); 5780 ipcl_g_destroy(); 5781 ip_net_g_destroy(); 5782 ip_ire_g_fini(); 5783 inet_minor_destroy(ip_minor_arena); 5784 5785 netstack_unregister(NS_IP); 5786 } 5787 5788 /* 5789 * First step in cleanup. 5790 */ 5791 /* ARGSUSED */ 5792 static void 5793 ip_stack_shutdown(netstackid_t stackid, void *arg) 5794 { 5795 ip_stack_t *ipst = (ip_stack_t *)arg; 5796 5797 #ifdef NS_DEBUG 5798 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5799 #endif 5800 5801 /* Get rid of loopback interfaces and their IREs */ 5802 ip_loopback_cleanup(ipst); 5803 } 5804 5805 /* 5806 * Free the IP stack instance. 5807 */ 5808 static void 5809 ip_stack_fini(netstackid_t stackid, void *arg) 5810 { 5811 ip_stack_t *ipst = (ip_stack_t *)arg; 5812 int ret; 5813 5814 #ifdef NS_DEBUG 5815 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5816 #endif 5817 ipv4_hook_destroy(ipst); 5818 ipv6_hook_destroy(ipst); 5819 ip_net_destroy(ipst); 5820 5821 rw_destroy(&ipst->ips_srcid_lock); 5822 5823 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5824 ipst->ips_ip_mibkp = NULL; 5825 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5826 ipst->ips_icmp_mibkp = NULL; 5827 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5828 ipst->ips_ip_kstat = NULL; 5829 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5830 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5831 ipst->ips_ip6_kstat = NULL; 5832 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5833 5834 nd_free(&ipst->ips_ip_g_nd); 5835 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5836 ipst->ips_param_arr = NULL; 5837 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5838 ipst->ips_ndp_arr = NULL; 5839 5840 ip_mrouter_stack_destroy(ipst); 5841 5842 mutex_destroy(&ipst->ips_ip_mi_lock); 5843 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5844 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5845 rw_destroy(&ipst->ips_ip_g_nd_lock); 5846 5847 ret = untimeout(ipst->ips_igmp_timeout_id); 5848 if (ret == -1) { 5849 ASSERT(ipst->ips_igmp_timeout_id == 0); 5850 } else { 5851 ASSERT(ipst->ips_igmp_timeout_id != 0); 5852 ipst->ips_igmp_timeout_id = 0; 5853 } 5854 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5855 if (ret == -1) { 5856 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5857 } else { 5858 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5859 ipst->ips_igmp_slowtimeout_id = 0; 5860 } 5861 ret = untimeout(ipst->ips_mld_timeout_id); 5862 if (ret == -1) { 5863 ASSERT(ipst->ips_mld_timeout_id == 0); 5864 } else { 5865 ASSERT(ipst->ips_mld_timeout_id != 0); 5866 ipst->ips_mld_timeout_id = 0; 5867 } 5868 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5869 if (ret == -1) { 5870 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5871 } else { 5872 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5873 ipst->ips_mld_slowtimeout_id = 0; 5874 } 5875 ret = untimeout(ipst->ips_ip_ire_expire_id); 5876 if (ret == -1) { 5877 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5878 } else { 5879 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5880 ipst->ips_ip_ire_expire_id = 0; 5881 } 5882 5883 mutex_destroy(&ipst->ips_igmp_timer_lock); 5884 mutex_destroy(&ipst->ips_mld_timer_lock); 5885 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5886 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5887 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5888 rw_destroy(&ipst->ips_ill_g_lock); 5889 5890 ip_ire_fini(ipst); 5891 ip6_asp_free(ipst); 5892 conn_drain_fini(ipst); 5893 ipcl_destroy(ipst); 5894 5895 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5896 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5897 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5898 ipst->ips_ndp4 = NULL; 5899 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5900 ipst->ips_ndp6 = NULL; 5901 5902 if (ipst->ips_loopback_ksp != NULL) { 5903 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5904 ipst->ips_loopback_ksp = NULL; 5905 } 5906 5907 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5908 ipst->ips_phyint_g_list = NULL; 5909 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5910 ipst->ips_ill_g_heads = NULL; 5911 5912 kmem_free(ipst, sizeof (*ipst)); 5913 } 5914 5915 /* 5916 * Called when the IP kernel module is loaded into the kernel 5917 */ 5918 void 5919 ip_ddi_init(void) 5920 { 5921 TCP6_MAJ = ddi_name_to_major(TCP6); 5922 TCP_MAJ = ddi_name_to_major(TCP); 5923 SCTP_MAJ = ddi_name_to_major(SCTP); 5924 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5925 5926 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5927 5928 /* 5929 * For IP and TCP the minor numbers should start from 2 since we have 4 5930 * initial devices: ip, ip6, tcp, tcp6. 5931 */ 5932 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5933 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5934 cmn_err(CE_PANIC, 5935 "ip_ddi_init: ip_minor_arena creation failed\n"); 5936 } 5937 5938 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5939 5940 ipcl_g_init(); 5941 ip_ire_g_init(); 5942 ip_net_g_init(); 5943 5944 #ifdef ILL_DEBUG 5945 /* Default cleanup function */ 5946 ip_cleanup_func = ip_thread_exit; 5947 #endif 5948 5949 /* 5950 * We want to be informed each time a stack is created or 5951 * destroyed in the kernel, so we can maintain the 5952 * set of udp_stack_t's. 5953 */ 5954 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5955 ip_stack_fini); 5956 5957 ipsec_policy_g_init(); 5958 tcp_ddi_g_init(); 5959 sctp_ddi_g_init(); 5960 5961 tnet_init(); 5962 } 5963 5964 /* 5965 * Initialize the IP stack instance. 5966 */ 5967 static void * 5968 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5969 { 5970 ip_stack_t *ipst; 5971 ipparam_t *pa; 5972 ipndp_t *na; 5973 5974 #ifdef NS_DEBUG 5975 printf("ip_stack_init(stack %d)\n", stackid); 5976 #endif 5977 5978 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5979 ipst->ips_netstack = ns; 5980 5981 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5982 KM_SLEEP); 5983 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5984 KM_SLEEP); 5985 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5986 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5987 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5988 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5989 5990 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5991 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5992 ipst->ips_igmp_deferred_next = INFINITY; 5993 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5994 ipst->ips_mld_deferred_next = INFINITY; 5995 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5996 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5997 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5998 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5999 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6000 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6001 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6002 6003 ipcl_init(ipst); 6004 ip_ire_init(ipst); 6005 ip6_asp_init(ipst); 6006 ipif_init(ipst); 6007 conn_drain_init(ipst); 6008 ip_mrouter_stack_init(ipst); 6009 6010 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6011 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6012 6013 ipst->ips_ip_multirt_log_interval = 1000; 6014 6015 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6016 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6017 ipst->ips_ill_index = 1; 6018 6019 ipst->ips_saved_ip_g_forward = -1; 6020 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6021 6022 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6023 ipst->ips_param_arr = pa; 6024 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6025 6026 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6027 ipst->ips_ndp_arr = na; 6028 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6029 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6030 (caddr_t)&ipst->ips_ip_g_forward; 6031 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6032 (caddr_t)&ipst->ips_ipv6_forward; 6033 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6034 "ip_cgtp_filter") == 0); 6035 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6036 (caddr_t)&ip_cgtp_filter; 6037 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6038 "ipmp_hook_emulation") == 0); 6039 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6040 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6041 6042 (void) ip_param_register(&ipst->ips_ip_g_nd, 6043 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6044 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6045 6046 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6047 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6048 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6049 ipst->ips_ip6_kstat = 6050 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6051 6052 ipst->ips_ipmp_enable_failback = B_TRUE; 6053 6054 ipst->ips_ip_src_id = 1; 6055 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6056 6057 ip_net_init(ipst, ns); 6058 ipv4_hook_init(ipst); 6059 ipv6_hook_init(ipst); 6060 6061 return (ipst); 6062 } 6063 6064 /* 6065 * Allocate and initialize a DLPI template of the specified length. (May be 6066 * called as writer.) 6067 */ 6068 mblk_t * 6069 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6070 { 6071 mblk_t *mp; 6072 6073 mp = allocb(len, BPRI_MED); 6074 if (!mp) 6075 return (NULL); 6076 6077 /* 6078 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6079 * of which we don't seem to use) are sent with M_PCPROTO, and 6080 * that other DLPI are M_PROTO. 6081 */ 6082 if (prim == DL_INFO_REQ) { 6083 mp->b_datap->db_type = M_PCPROTO; 6084 } else { 6085 mp->b_datap->db_type = M_PROTO; 6086 } 6087 6088 mp->b_wptr = mp->b_rptr + len; 6089 bzero(mp->b_rptr, len); 6090 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6091 return (mp); 6092 } 6093 6094 const char * 6095 dlpi_prim_str(int prim) 6096 { 6097 switch (prim) { 6098 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6099 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6100 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6101 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6102 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6103 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6104 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6105 case DL_OK_ACK: return ("DL_OK_ACK"); 6106 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6107 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6108 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6109 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6110 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6111 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6112 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6113 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6114 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6115 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6116 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6117 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6118 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6119 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6120 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6121 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6122 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6123 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6124 default: return ("<unknown primitive>"); 6125 } 6126 } 6127 6128 const char * 6129 dlpi_err_str(int err) 6130 { 6131 switch (err) { 6132 case DL_ACCESS: return ("DL_ACCESS"); 6133 case DL_BADADDR: return ("DL_BADADDR"); 6134 case DL_BADCORR: return ("DL_BADCORR"); 6135 case DL_BADDATA: return ("DL_BADDATA"); 6136 case DL_BADPPA: return ("DL_BADPPA"); 6137 case DL_BADPRIM: return ("DL_BADPRIM"); 6138 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6139 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6140 case DL_BADSAP: return ("DL_BADSAP"); 6141 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6142 case DL_BOUND: return ("DL_BOUND"); 6143 case DL_INITFAILED: return ("DL_INITFAILED"); 6144 case DL_NOADDR: return ("DL_NOADDR"); 6145 case DL_NOTINIT: return ("DL_NOTINIT"); 6146 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6147 case DL_SYSERR: return ("DL_SYSERR"); 6148 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6149 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6150 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6151 case DL_TOOMANY: return ("DL_TOOMANY"); 6152 case DL_NOTENAB: return ("DL_NOTENAB"); 6153 case DL_BUSY: return ("DL_BUSY"); 6154 case DL_NOAUTO: return ("DL_NOAUTO"); 6155 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6156 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6157 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6158 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6159 case DL_PENDING: return ("DL_PENDING"); 6160 default: return ("<unknown error>"); 6161 } 6162 } 6163 6164 /* 6165 * Debug formatting routine. Returns a character string representation of the 6166 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6167 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6168 * 6169 * Once the ndd table-printing interfaces are removed, this can be changed to 6170 * standard dotted-decimal form. 6171 */ 6172 char * 6173 ip_dot_addr(ipaddr_t addr, char *buf) 6174 { 6175 uint8_t *ap = (uint8_t *)&addr; 6176 6177 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6178 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6179 return (buf); 6180 } 6181 6182 /* 6183 * Write the given MAC address as a printable string in the usual colon- 6184 * separated format. 6185 */ 6186 const char * 6187 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6188 { 6189 char *bp; 6190 6191 if (alen == 0 || buflen < 4) 6192 return ("?"); 6193 bp = buf; 6194 for (;;) { 6195 /* 6196 * If there are more MAC address bytes available, but we won't 6197 * have any room to print them, then add "..." to the string 6198 * instead. See below for the 'magic number' explanation. 6199 */ 6200 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6201 (void) strcpy(bp, "..."); 6202 break; 6203 } 6204 (void) sprintf(bp, "%02x", *addr++); 6205 bp += 2; 6206 if (--alen == 0) 6207 break; 6208 *bp++ = ':'; 6209 buflen -= 3; 6210 /* 6211 * At this point, based on the first 'if' statement above, 6212 * either alen == 1 and buflen >= 3, or alen > 1 and 6213 * buflen >= 4. The first case leaves room for the final "xx" 6214 * number and trailing NUL byte. The second leaves room for at 6215 * least "...". Thus the apparently 'magic' numbers chosen for 6216 * that statement. 6217 */ 6218 } 6219 return (buf); 6220 } 6221 6222 /* 6223 * Send an ICMP error after patching up the packet appropriately. Returns 6224 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6225 */ 6226 static boolean_t 6227 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6228 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6229 zoneid_t zoneid, ip_stack_t *ipst) 6230 { 6231 ipha_t *ipha; 6232 mblk_t *first_mp; 6233 boolean_t secure; 6234 unsigned char db_type; 6235 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6236 6237 first_mp = mp; 6238 if (mctl_present) { 6239 mp = mp->b_cont; 6240 secure = ipsec_in_is_secure(first_mp); 6241 ASSERT(mp != NULL); 6242 } else { 6243 /* 6244 * If this is an ICMP error being reported - which goes 6245 * up as M_CTLs, we need to convert them to M_DATA till 6246 * we finish checking with global policy because 6247 * ipsec_check_global_policy() assumes M_DATA as clear 6248 * and M_CTL as secure. 6249 */ 6250 db_type = DB_TYPE(mp); 6251 DB_TYPE(mp) = M_DATA; 6252 secure = B_FALSE; 6253 } 6254 /* 6255 * We are generating an icmp error for some inbound packet. 6256 * Called from all ip_fanout_(udp, tcp, proto) functions. 6257 * Before we generate an error, check with global policy 6258 * to see whether this is allowed to enter the system. As 6259 * there is no "conn", we are checking with global policy. 6260 */ 6261 ipha = (ipha_t *)mp->b_rptr; 6262 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6263 first_mp = ipsec_check_global_policy(first_mp, NULL, 6264 ipha, NULL, mctl_present, ipst->ips_netstack); 6265 if (first_mp == NULL) 6266 return (B_FALSE); 6267 } 6268 6269 if (!mctl_present) 6270 DB_TYPE(mp) = db_type; 6271 6272 if (flags & IP_FF_SEND_ICMP) { 6273 if (flags & IP_FF_HDR_COMPLETE) { 6274 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6275 freemsg(first_mp); 6276 return (B_TRUE); 6277 } 6278 } 6279 if (flags & IP_FF_CKSUM) { 6280 /* 6281 * Have to correct checksum since 6282 * the packet might have been 6283 * fragmented and the reassembly code in ip_rput 6284 * does not restore the IP checksum. 6285 */ 6286 ipha->ipha_hdr_checksum = 0; 6287 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6288 } 6289 switch (icmp_type) { 6290 case ICMP_DEST_UNREACHABLE: 6291 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6292 ipst); 6293 break; 6294 default: 6295 freemsg(first_mp); 6296 break; 6297 } 6298 } else { 6299 freemsg(first_mp); 6300 return (B_FALSE); 6301 } 6302 6303 return (B_TRUE); 6304 } 6305 6306 /* 6307 * Used to send an ICMP error message when a packet is received for 6308 * a protocol that is not supported. The mblk passed as argument 6309 * is consumed by this function. 6310 */ 6311 void 6312 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6313 ip_stack_t *ipst) 6314 { 6315 mblk_t *mp; 6316 ipha_t *ipha; 6317 ill_t *ill; 6318 ipsec_in_t *ii; 6319 6320 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6321 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6322 6323 mp = ipsec_mp->b_cont; 6324 ipsec_mp->b_cont = NULL; 6325 ipha = (ipha_t *)mp->b_rptr; 6326 /* Get ill from index in ipsec_in_t. */ 6327 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6328 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6329 ipst); 6330 if (ill != NULL) { 6331 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6332 if (ip_fanout_send_icmp(q, mp, flags, 6333 ICMP_DEST_UNREACHABLE, 6334 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6335 BUMP_MIB(ill->ill_ip_mib, 6336 ipIfStatsInUnknownProtos); 6337 } 6338 } else { 6339 if (ip_fanout_send_icmp_v6(q, mp, flags, 6340 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6341 0, B_FALSE, zoneid, ipst)) { 6342 BUMP_MIB(ill->ill_ip_mib, 6343 ipIfStatsInUnknownProtos); 6344 } 6345 } 6346 ill_refrele(ill); 6347 } else { /* re-link for the freemsg() below. */ 6348 ipsec_mp->b_cont = mp; 6349 } 6350 6351 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6352 freemsg(ipsec_mp); 6353 } 6354 6355 /* 6356 * See if the inbound datagram has had IPsec processing applied to it. 6357 */ 6358 boolean_t 6359 ipsec_in_is_secure(mblk_t *ipsec_mp) 6360 { 6361 ipsec_in_t *ii; 6362 6363 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6364 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6365 6366 if (ii->ipsec_in_loopback) { 6367 return (ii->ipsec_in_secure); 6368 } else { 6369 return (ii->ipsec_in_ah_sa != NULL || 6370 ii->ipsec_in_esp_sa != NULL || 6371 ii->ipsec_in_decaps); 6372 } 6373 } 6374 6375 /* 6376 * Handle protocols with which IP is less intimate. There 6377 * can be more than one stream bound to a particular 6378 * protocol. When this is the case, normally each one gets a copy 6379 * of any incoming packets. 6380 * 6381 * IPSEC NOTE : 6382 * 6383 * Don't allow a secure packet going up a non-secure connection. 6384 * We don't allow this because 6385 * 6386 * 1) Reply might go out in clear which will be dropped at 6387 * the sending side. 6388 * 2) If the reply goes out in clear it will give the 6389 * adversary enough information for getting the key in 6390 * most of the cases. 6391 * 6392 * Moreover getting a secure packet when we expect clear 6393 * implies that SA's were added without checking for 6394 * policy on both ends. This should not happen once ISAKMP 6395 * is used to negotiate SAs as SAs will be added only after 6396 * verifying the policy. 6397 * 6398 * NOTE : If the packet was tunneled and not multicast we only send 6399 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6400 * back to delivering packets to AF_INET6 raw sockets. 6401 * 6402 * IPQoS Notes: 6403 * Once we have determined the client, invoke IPPF processing. 6404 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6405 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6406 * ip_policy will be false. 6407 * 6408 * Zones notes: 6409 * Currently only applications in the global zone can create raw sockets for 6410 * protocols other than ICMP. So unlike the broadcast / multicast case of 6411 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6412 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6413 */ 6414 static void 6415 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6416 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6417 zoneid_t zoneid) 6418 { 6419 queue_t *rq; 6420 mblk_t *mp1, *first_mp1; 6421 uint_t protocol = ipha->ipha_protocol; 6422 ipaddr_t dst; 6423 boolean_t one_only; 6424 mblk_t *first_mp = mp; 6425 boolean_t secure; 6426 uint32_t ill_index; 6427 conn_t *connp, *first_connp, *next_connp; 6428 connf_t *connfp; 6429 boolean_t shared_addr; 6430 mib2_ipIfStatsEntry_t *mibptr; 6431 ip_stack_t *ipst = recv_ill->ill_ipst; 6432 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6433 6434 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6435 if (mctl_present) { 6436 mp = first_mp->b_cont; 6437 secure = ipsec_in_is_secure(first_mp); 6438 ASSERT(mp != NULL); 6439 } else { 6440 secure = B_FALSE; 6441 } 6442 dst = ipha->ipha_dst; 6443 /* 6444 * If the packet was tunneled and not multicast we only send to it 6445 * the first match. 6446 */ 6447 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6448 !CLASSD(dst)); 6449 6450 shared_addr = (zoneid == ALL_ZONES); 6451 if (shared_addr) { 6452 /* 6453 * We don't allow multilevel ports for raw IP, so no need to 6454 * check for that here. 6455 */ 6456 zoneid = tsol_packet_to_zoneid(mp); 6457 } 6458 6459 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6460 mutex_enter(&connfp->connf_lock); 6461 connp = connfp->connf_head; 6462 for (connp = connfp->connf_head; connp != NULL; 6463 connp = connp->conn_next) { 6464 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6465 zoneid) && 6466 (!is_system_labeled() || 6467 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6468 connp))) 6469 break; 6470 } 6471 6472 if (connp == NULL || connp->conn_upq == NULL) { 6473 /* 6474 * No one bound to these addresses. Is 6475 * there a client that wants all 6476 * unclaimed datagrams? 6477 */ 6478 mutex_exit(&connfp->connf_lock); 6479 /* 6480 * Check for IPPROTO_ENCAP... 6481 */ 6482 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6483 /* 6484 * If an IPsec mblk is here on a multicast 6485 * tunnel (using ip_mroute stuff), check policy here, 6486 * THEN ship off to ip_mroute_decap(). 6487 * 6488 * BTW, If I match a configured IP-in-IP 6489 * tunnel, this path will not be reached, and 6490 * ip_mroute_decap will never be called. 6491 */ 6492 first_mp = ipsec_check_global_policy(first_mp, connp, 6493 ipha, NULL, mctl_present, ipst->ips_netstack); 6494 if (first_mp != NULL) { 6495 if (mctl_present) 6496 freeb(first_mp); 6497 ip_mroute_decap(q, mp, ill); 6498 } /* Else we already freed everything! */ 6499 } else { 6500 /* 6501 * Otherwise send an ICMP protocol unreachable. 6502 */ 6503 if (ip_fanout_send_icmp(q, first_mp, flags, 6504 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6505 mctl_present, zoneid, ipst)) { 6506 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6507 } 6508 } 6509 return; 6510 } 6511 CONN_INC_REF(connp); 6512 first_connp = connp; 6513 6514 /* 6515 * Only send message to one tunnel driver by immediately 6516 * terminating the loop. 6517 */ 6518 connp = one_only ? NULL : connp->conn_next; 6519 6520 for (;;) { 6521 while (connp != NULL) { 6522 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6523 flags, zoneid) && 6524 (!is_system_labeled() || 6525 tsol_receive_local(mp, &dst, IPV4_VERSION, 6526 shared_addr, connp))) 6527 break; 6528 connp = connp->conn_next; 6529 } 6530 6531 /* 6532 * Copy the packet. 6533 */ 6534 if (connp == NULL || connp->conn_upq == NULL || 6535 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6536 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6537 /* 6538 * No more interested clients or memory 6539 * allocation failed 6540 */ 6541 connp = first_connp; 6542 break; 6543 } 6544 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6545 CONN_INC_REF(connp); 6546 mutex_exit(&connfp->connf_lock); 6547 rq = connp->conn_rq; 6548 if (!canputnext(rq)) { 6549 if (flags & IP_FF_RAWIP) { 6550 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6551 } else { 6552 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6553 } 6554 6555 freemsg(first_mp1); 6556 } else { 6557 /* 6558 * Don't enforce here if we're an actual tunnel - 6559 * let "tun" do it instead. 6560 */ 6561 if (!IPCL_IS_IPTUN(connp) && 6562 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6563 secure)) { 6564 first_mp1 = ipsec_check_inbound_policy 6565 (first_mp1, connp, ipha, NULL, 6566 mctl_present); 6567 } 6568 if (first_mp1 != NULL) { 6569 int in_flags = 0; 6570 /* 6571 * ip_fanout_proto also gets called from 6572 * icmp_inbound_error_fanout, in which case 6573 * the msg type is M_CTL. Don't add info 6574 * in this case for the time being. In future 6575 * when there is a need for knowing the 6576 * inbound iface index for ICMP error msgs, 6577 * then this can be changed. 6578 */ 6579 if (connp->conn_recvif) 6580 in_flags = IPF_RECVIF; 6581 /* 6582 * The ULP may support IP_RECVPKTINFO for both 6583 * IP v4 and v6 so pass the appropriate argument 6584 * based on conn IP version. 6585 */ 6586 if (connp->conn_ip_recvpktinfo) { 6587 if (connp->conn_af_isv6) { 6588 /* 6589 * V6 only needs index 6590 */ 6591 in_flags |= IPF_RECVIF; 6592 } else { 6593 /* 6594 * V4 needs index + 6595 * matching address. 6596 */ 6597 in_flags |= IPF_RECVADDR; 6598 } 6599 } 6600 if ((in_flags != 0) && 6601 (mp->b_datap->db_type != M_CTL)) { 6602 /* 6603 * the actual data will be 6604 * contained in b_cont upon 6605 * successful return of the 6606 * following call else 6607 * original mblk is returned 6608 */ 6609 ASSERT(recv_ill != NULL); 6610 mp1 = ip_add_info(mp1, recv_ill, 6611 in_flags, IPCL_ZONEID(connp), ipst); 6612 } 6613 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6614 if (mctl_present) 6615 freeb(first_mp1); 6616 putnext(rq, mp1); 6617 } 6618 } 6619 mutex_enter(&connfp->connf_lock); 6620 /* Follow the next pointer before releasing the conn. */ 6621 next_connp = connp->conn_next; 6622 CONN_DEC_REF(connp); 6623 connp = next_connp; 6624 } 6625 6626 /* Last one. Send it upstream. */ 6627 mutex_exit(&connfp->connf_lock); 6628 6629 /* 6630 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6631 * will be set to false. 6632 */ 6633 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6634 ill_index = ill->ill_phyint->phyint_ifindex; 6635 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6636 if (mp == NULL) { 6637 CONN_DEC_REF(connp); 6638 if (mctl_present) { 6639 freeb(first_mp); 6640 } 6641 return; 6642 } 6643 } 6644 6645 rq = connp->conn_rq; 6646 if (!canputnext(rq)) { 6647 if (flags & IP_FF_RAWIP) { 6648 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6649 } else { 6650 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6651 } 6652 6653 freemsg(first_mp); 6654 } else { 6655 if (IPCL_IS_IPTUN(connp)) { 6656 /* 6657 * Tunneled packet. We enforce policy in the tunnel 6658 * module itself. 6659 * 6660 * Send the WHOLE packet up (incl. IPSEC_IN) without 6661 * a policy check. 6662 */ 6663 putnext(rq, first_mp); 6664 CONN_DEC_REF(connp); 6665 return; 6666 } 6667 6668 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6669 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6670 ipha, NULL, mctl_present); 6671 } 6672 6673 if (first_mp != NULL) { 6674 int in_flags = 0; 6675 6676 /* 6677 * ip_fanout_proto also gets called 6678 * from icmp_inbound_error_fanout, in 6679 * which case the msg type is M_CTL. 6680 * Don't add info in this case for time 6681 * being. In future when there is a 6682 * need for knowing the inbound iface 6683 * index for ICMP error msgs, then this 6684 * can be changed 6685 */ 6686 if (connp->conn_recvif) 6687 in_flags = IPF_RECVIF; 6688 if (connp->conn_ip_recvpktinfo) { 6689 if (connp->conn_af_isv6) { 6690 /* 6691 * V6 only needs index 6692 */ 6693 in_flags |= IPF_RECVIF; 6694 } else { 6695 /* 6696 * V4 needs index + 6697 * matching address. 6698 */ 6699 in_flags |= IPF_RECVADDR; 6700 } 6701 } 6702 if ((in_flags != 0) && 6703 (mp->b_datap->db_type != M_CTL)) { 6704 6705 /* 6706 * the actual data will be contained in 6707 * b_cont upon successful return 6708 * of the following call else original 6709 * mblk is returned 6710 */ 6711 ASSERT(recv_ill != NULL); 6712 mp = ip_add_info(mp, recv_ill, 6713 in_flags, IPCL_ZONEID(connp), ipst); 6714 } 6715 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6716 putnext(rq, mp); 6717 if (mctl_present) 6718 freeb(first_mp); 6719 } 6720 } 6721 CONN_DEC_REF(connp); 6722 } 6723 6724 /* 6725 * Fanout for TCP packets 6726 * The caller puts <fport, lport> in the ports parameter. 6727 * 6728 * IPQoS Notes 6729 * Before sending it to the client, invoke IPPF processing. 6730 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6731 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6732 * ip_policy is false. 6733 */ 6734 static void 6735 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6736 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6737 { 6738 mblk_t *first_mp; 6739 boolean_t secure; 6740 uint32_t ill_index; 6741 int ip_hdr_len; 6742 tcph_t *tcph; 6743 boolean_t syn_present = B_FALSE; 6744 conn_t *connp; 6745 ip_stack_t *ipst = recv_ill->ill_ipst; 6746 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6747 6748 ASSERT(recv_ill != NULL); 6749 6750 first_mp = mp; 6751 if (mctl_present) { 6752 ASSERT(first_mp->b_datap->db_type == M_CTL); 6753 mp = first_mp->b_cont; 6754 secure = ipsec_in_is_secure(first_mp); 6755 ASSERT(mp != NULL); 6756 } else { 6757 secure = B_FALSE; 6758 } 6759 6760 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6761 6762 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6763 zoneid, ipst)) == NULL) { 6764 /* 6765 * No connected connection or listener. Send a 6766 * TH_RST via tcp_xmit_listeners_reset. 6767 */ 6768 6769 /* Initiate IPPf processing, if needed. */ 6770 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6771 uint32_t ill_index; 6772 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6773 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6774 if (first_mp == NULL) 6775 return; 6776 } 6777 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6778 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6779 zoneid)); 6780 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6781 ipst->ips_netstack->netstack_tcp); 6782 return; 6783 } 6784 6785 /* 6786 * Allocate the SYN for the TCP connection here itself 6787 */ 6788 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6789 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6790 if (IPCL_IS_TCP(connp)) { 6791 squeue_t *sqp; 6792 6793 /* 6794 * For fused tcp loopback, assign the eager's 6795 * squeue to be that of the active connect's. 6796 * Note that we don't check for IP_FF_LOOPBACK 6797 * here since this routine gets called only 6798 * for loopback (unlike the IPv6 counterpart). 6799 */ 6800 ASSERT(Q_TO_CONN(q) != NULL); 6801 if (do_tcp_fusion && 6802 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6803 !secure && 6804 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6805 IPCL_IS_TCP(Q_TO_CONN(q))) { 6806 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6807 sqp = Q_TO_CONN(q)->conn_sqp; 6808 } else { 6809 sqp = IP_SQUEUE_GET(lbolt); 6810 } 6811 6812 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6813 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6814 syn_present = B_TRUE; 6815 } 6816 } 6817 6818 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6819 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6820 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6821 if ((flags & TH_RST) || (flags & TH_URG)) { 6822 CONN_DEC_REF(connp); 6823 freemsg(first_mp); 6824 return; 6825 } 6826 if (flags & TH_ACK) { 6827 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6828 ipst->ips_netstack->netstack_tcp); 6829 CONN_DEC_REF(connp); 6830 return; 6831 } 6832 6833 CONN_DEC_REF(connp); 6834 freemsg(first_mp); 6835 return; 6836 } 6837 6838 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6839 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6840 NULL, mctl_present); 6841 if (first_mp == NULL) { 6842 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6843 CONN_DEC_REF(connp); 6844 return; 6845 } 6846 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6847 ASSERT(syn_present); 6848 if (mctl_present) { 6849 ASSERT(first_mp != mp); 6850 first_mp->b_datap->db_struioflag |= 6851 STRUIO_POLICY; 6852 } else { 6853 ASSERT(first_mp == mp); 6854 mp->b_datap->db_struioflag &= 6855 ~STRUIO_EAGER; 6856 mp->b_datap->db_struioflag |= 6857 STRUIO_POLICY; 6858 } 6859 } else { 6860 /* 6861 * Discard first_mp early since we're dealing with a 6862 * fully-connected conn_t and tcp doesn't do policy in 6863 * this case. 6864 */ 6865 if (mctl_present) { 6866 freeb(first_mp); 6867 mctl_present = B_FALSE; 6868 } 6869 first_mp = mp; 6870 } 6871 } 6872 6873 /* 6874 * Initiate policy processing here if needed. If we get here from 6875 * icmp_inbound_error_fanout, ip_policy is false. 6876 */ 6877 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6878 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6879 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6880 if (mp == NULL) { 6881 CONN_DEC_REF(connp); 6882 if (mctl_present) 6883 freeb(first_mp); 6884 return; 6885 } else if (mctl_present) { 6886 ASSERT(first_mp != mp); 6887 first_mp->b_cont = mp; 6888 } else { 6889 first_mp = mp; 6890 } 6891 } 6892 6893 6894 6895 /* Handle socket options. */ 6896 if (!syn_present && 6897 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6898 /* Add header */ 6899 ASSERT(recv_ill != NULL); 6900 /* 6901 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6902 * IPF_RECVIF. 6903 */ 6904 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6905 ipst); 6906 if (mp == NULL) { 6907 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6908 CONN_DEC_REF(connp); 6909 if (mctl_present) 6910 freeb(first_mp); 6911 return; 6912 } else if (mctl_present) { 6913 /* 6914 * ip_add_info might return a new mp. 6915 */ 6916 ASSERT(first_mp != mp); 6917 first_mp->b_cont = mp; 6918 } else { 6919 first_mp = mp; 6920 } 6921 } 6922 6923 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6924 if (IPCL_IS_TCP(connp)) { 6925 (*ip_input_proc)(connp->conn_sqp, first_mp, 6926 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6927 } else { 6928 putnext(connp->conn_rq, first_mp); 6929 CONN_DEC_REF(connp); 6930 } 6931 } 6932 6933 /* 6934 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6935 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6936 * Caller is responsible for dropping references to the conn, and freeing 6937 * first_mp. 6938 * 6939 * IPQoS Notes 6940 * Before sending it to the client, invoke IPPF processing. Policy processing 6941 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6942 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6943 * ip_wput_local, ip_policy is false. 6944 */ 6945 static void 6946 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6947 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6948 boolean_t ip_policy) 6949 { 6950 boolean_t mctl_present = (first_mp != NULL); 6951 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6952 uint32_t ill_index; 6953 ip_stack_t *ipst = recv_ill->ill_ipst; 6954 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6955 6956 ASSERT(ill != NULL); 6957 6958 if (mctl_present) 6959 first_mp->b_cont = mp; 6960 else 6961 first_mp = mp; 6962 6963 if (CONN_UDP_FLOWCTLD(connp)) { 6964 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6965 freemsg(first_mp); 6966 return; 6967 } 6968 6969 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6970 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6971 NULL, mctl_present); 6972 if (first_mp == NULL) { 6973 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6974 return; /* Freed by ipsec_check_inbound_policy(). */ 6975 } 6976 } 6977 if (mctl_present) 6978 freeb(first_mp); 6979 6980 /* Handle options. */ 6981 if (connp->conn_recvif) 6982 in_flags = IPF_RECVIF; 6983 /* 6984 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 6985 * passed to ip_add_info is based on IP version of connp. 6986 */ 6987 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6988 if (connp->conn_af_isv6) { 6989 /* 6990 * V6 only needs index 6991 */ 6992 in_flags |= IPF_RECVIF; 6993 } else { 6994 /* 6995 * V4 needs index + matching address. 6996 */ 6997 in_flags |= IPF_RECVADDR; 6998 } 6999 } 7000 7001 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7002 in_flags |= IPF_RECVSLLA; 7003 7004 /* 7005 * Initiate IPPF processing here, if needed. Note first_mp won't be 7006 * freed if the packet is dropped. The caller will do so. 7007 */ 7008 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7009 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7010 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7011 if (mp == NULL) { 7012 return; 7013 } 7014 } 7015 if ((in_flags != 0) && 7016 (mp->b_datap->db_type != M_CTL)) { 7017 /* 7018 * The actual data will be contained in b_cont 7019 * upon successful return of the following call 7020 * else original mblk is returned 7021 */ 7022 ASSERT(recv_ill != NULL); 7023 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7024 ipst); 7025 } 7026 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7027 /* Send it upstream */ 7028 CONN_UDP_RECV(connp, mp); 7029 } 7030 7031 /* 7032 * Fanout for UDP packets. 7033 * The caller puts <fport, lport> in the ports parameter. 7034 * 7035 * If SO_REUSEADDR is set all multicast and broadcast packets 7036 * will be delivered to all streams bound to the same port. 7037 * 7038 * Zones notes: 7039 * Multicast and broadcast packets will be distributed to streams in all zones. 7040 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7041 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7042 * packets. To maintain this behavior with multiple zones, the conns are grouped 7043 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7044 * each zone. If unset, all the following conns in the same zone are skipped. 7045 */ 7046 static void 7047 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7048 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7049 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7050 { 7051 uint32_t dstport, srcport; 7052 ipaddr_t dst; 7053 mblk_t *first_mp; 7054 boolean_t secure; 7055 in6_addr_t v6src; 7056 conn_t *connp; 7057 connf_t *connfp; 7058 conn_t *first_connp; 7059 conn_t *next_connp; 7060 mblk_t *mp1, *first_mp1; 7061 ipaddr_t src; 7062 zoneid_t last_zoneid; 7063 boolean_t reuseaddr; 7064 boolean_t shared_addr; 7065 ip_stack_t *ipst; 7066 7067 ASSERT(recv_ill != NULL); 7068 ipst = recv_ill->ill_ipst; 7069 7070 first_mp = mp; 7071 if (mctl_present) { 7072 mp = first_mp->b_cont; 7073 first_mp->b_cont = NULL; 7074 secure = ipsec_in_is_secure(first_mp); 7075 ASSERT(mp != NULL); 7076 } else { 7077 first_mp = NULL; 7078 secure = B_FALSE; 7079 } 7080 7081 /* Extract ports in net byte order */ 7082 dstport = htons(ntohl(ports) & 0xFFFF); 7083 srcport = htons(ntohl(ports) >> 16); 7084 dst = ipha->ipha_dst; 7085 src = ipha->ipha_src; 7086 7087 shared_addr = (zoneid == ALL_ZONES); 7088 if (shared_addr) { 7089 /* 7090 * No need to handle exclusive-stack zones since ALL_ZONES 7091 * only applies to the shared stack. 7092 */ 7093 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7094 if (zoneid == ALL_ZONES) 7095 zoneid = tsol_packet_to_zoneid(mp); 7096 } 7097 7098 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7099 mutex_enter(&connfp->connf_lock); 7100 connp = connfp->connf_head; 7101 if (!broadcast && !CLASSD(dst)) { 7102 /* 7103 * Not broadcast or multicast. Send to the one (first) 7104 * client we find. No need to check conn_wantpacket() 7105 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7106 * IPv4 unicast packets. 7107 */ 7108 while ((connp != NULL) && 7109 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7110 !IPCL_ZONE_MATCH(connp, zoneid))) { 7111 connp = connp->conn_next; 7112 } 7113 7114 if (connp == NULL || connp->conn_upq == NULL) 7115 goto notfound; 7116 7117 if (is_system_labeled() && 7118 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7119 connp)) 7120 goto notfound; 7121 7122 CONN_INC_REF(connp); 7123 mutex_exit(&connfp->connf_lock); 7124 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7125 flags, recv_ill, ip_policy); 7126 IP_STAT(ipst, ip_udp_fannorm); 7127 CONN_DEC_REF(connp); 7128 return; 7129 } 7130 7131 /* 7132 * Broadcast and multicast case 7133 * 7134 * Need to check conn_wantpacket(). 7135 * If SO_REUSEADDR has been set on the first we send the 7136 * packet to all clients that have joined the group and 7137 * match the port. 7138 */ 7139 7140 while (connp != NULL) { 7141 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7142 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7143 (!is_system_labeled() || 7144 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7145 connp))) 7146 break; 7147 connp = connp->conn_next; 7148 } 7149 7150 if (connp == NULL || connp->conn_upq == NULL) 7151 goto notfound; 7152 7153 first_connp = connp; 7154 /* 7155 * When SO_REUSEADDR is not set, send the packet only to the first 7156 * matching connection in its zone by keeping track of the zoneid. 7157 */ 7158 reuseaddr = first_connp->conn_reuseaddr; 7159 last_zoneid = first_connp->conn_zoneid; 7160 7161 CONN_INC_REF(connp); 7162 connp = connp->conn_next; 7163 for (;;) { 7164 while (connp != NULL) { 7165 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7166 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7167 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7168 (!is_system_labeled() || 7169 tsol_receive_local(mp, &dst, IPV4_VERSION, 7170 shared_addr, connp))) 7171 break; 7172 connp = connp->conn_next; 7173 } 7174 /* 7175 * Just copy the data part alone. The mctl part is 7176 * needed just for verifying policy and it is never 7177 * sent up. 7178 */ 7179 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7180 ((mp1 = copymsg(mp)) == NULL))) { 7181 /* 7182 * No more interested clients or memory 7183 * allocation failed 7184 */ 7185 connp = first_connp; 7186 break; 7187 } 7188 if (connp->conn_zoneid != last_zoneid) { 7189 /* 7190 * Update the zoneid so that the packet isn't sent to 7191 * any more conns in the same zone unless SO_REUSEADDR 7192 * is set. 7193 */ 7194 reuseaddr = connp->conn_reuseaddr; 7195 last_zoneid = connp->conn_zoneid; 7196 } 7197 if (first_mp != NULL) { 7198 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7199 ipsec_info_type == IPSEC_IN); 7200 first_mp1 = ipsec_in_tag(first_mp, NULL, 7201 ipst->ips_netstack); 7202 if (first_mp1 == NULL) { 7203 freemsg(mp1); 7204 connp = first_connp; 7205 break; 7206 } 7207 } else { 7208 first_mp1 = NULL; 7209 } 7210 CONN_INC_REF(connp); 7211 mutex_exit(&connfp->connf_lock); 7212 /* 7213 * IPQoS notes: We don't send the packet for policy 7214 * processing here, will do it for the last one (below). 7215 * i.e. we do it per-packet now, but if we do policy 7216 * processing per-conn, then we would need to do it 7217 * here too. 7218 */ 7219 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7220 ipha, flags, recv_ill, B_FALSE); 7221 mutex_enter(&connfp->connf_lock); 7222 /* Follow the next pointer before releasing the conn. */ 7223 next_connp = connp->conn_next; 7224 IP_STAT(ipst, ip_udp_fanmb); 7225 CONN_DEC_REF(connp); 7226 connp = next_connp; 7227 } 7228 7229 /* Last one. Send it upstream. */ 7230 mutex_exit(&connfp->connf_lock); 7231 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7232 recv_ill, ip_policy); 7233 IP_STAT(ipst, ip_udp_fanmb); 7234 CONN_DEC_REF(connp); 7235 return; 7236 7237 notfound: 7238 7239 mutex_exit(&connfp->connf_lock); 7240 IP_STAT(ipst, ip_udp_fanothers); 7241 /* 7242 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7243 * have already been matched above, since they live in the IPv4 7244 * fanout tables. This implies we only need to 7245 * check for IPv6 in6addr_any endpoints here. 7246 * Thus we compare using ipv6_all_zeros instead of the destination 7247 * address, except for the multicast group membership lookup which 7248 * uses the IPv4 destination. 7249 */ 7250 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7251 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7252 mutex_enter(&connfp->connf_lock); 7253 connp = connfp->connf_head; 7254 if (!broadcast && !CLASSD(dst)) { 7255 while (connp != NULL) { 7256 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7257 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7258 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7259 !connp->conn_ipv6_v6only) 7260 break; 7261 connp = connp->conn_next; 7262 } 7263 7264 if (connp != NULL && is_system_labeled() && 7265 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7266 connp)) 7267 connp = NULL; 7268 7269 if (connp == NULL || connp->conn_upq == NULL) { 7270 /* 7271 * No one bound to this port. Is 7272 * there a client that wants all 7273 * unclaimed datagrams? 7274 */ 7275 mutex_exit(&connfp->connf_lock); 7276 7277 if (mctl_present) 7278 first_mp->b_cont = mp; 7279 else 7280 first_mp = mp; 7281 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7282 connf_head != NULL) { 7283 ip_fanout_proto(q, first_mp, ill, ipha, 7284 flags | IP_FF_RAWIP, mctl_present, 7285 ip_policy, recv_ill, zoneid); 7286 } else { 7287 if (ip_fanout_send_icmp(q, first_mp, flags, 7288 ICMP_DEST_UNREACHABLE, 7289 ICMP_PORT_UNREACHABLE, 7290 mctl_present, zoneid, ipst)) { 7291 BUMP_MIB(ill->ill_ip_mib, 7292 udpIfStatsNoPorts); 7293 } 7294 } 7295 return; 7296 } 7297 7298 CONN_INC_REF(connp); 7299 mutex_exit(&connfp->connf_lock); 7300 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7301 flags, recv_ill, ip_policy); 7302 CONN_DEC_REF(connp); 7303 return; 7304 } 7305 /* 7306 * IPv4 multicast packet being delivered to an AF_INET6 7307 * in6addr_any endpoint. 7308 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7309 * and not conn_wantpacket_v6() since any multicast membership is 7310 * for an IPv4-mapped multicast address. 7311 * The packet is sent to all clients in all zones that have joined the 7312 * group and match the port. 7313 */ 7314 while (connp != NULL) { 7315 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7316 srcport, v6src) && 7317 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7318 (!is_system_labeled() || 7319 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7320 connp))) 7321 break; 7322 connp = connp->conn_next; 7323 } 7324 7325 if (connp == NULL || connp->conn_upq == NULL) { 7326 /* 7327 * No one bound to this port. Is 7328 * there a client that wants all 7329 * unclaimed datagrams? 7330 */ 7331 mutex_exit(&connfp->connf_lock); 7332 7333 if (mctl_present) 7334 first_mp->b_cont = mp; 7335 else 7336 first_mp = mp; 7337 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7338 NULL) { 7339 ip_fanout_proto(q, first_mp, ill, ipha, 7340 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7341 recv_ill, zoneid); 7342 } else { 7343 /* 7344 * We used to attempt to send an icmp error here, but 7345 * since this is known to be a multicast packet 7346 * and we don't send icmp errors in response to 7347 * multicast, just drop the packet and give up sooner. 7348 */ 7349 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7350 freemsg(first_mp); 7351 } 7352 return; 7353 } 7354 7355 first_connp = connp; 7356 7357 CONN_INC_REF(connp); 7358 connp = connp->conn_next; 7359 for (;;) { 7360 while (connp != NULL) { 7361 if (IPCL_UDP_MATCH_V6(connp, dstport, 7362 ipv6_all_zeros, srcport, v6src) && 7363 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7364 (!is_system_labeled() || 7365 tsol_receive_local(mp, &dst, IPV4_VERSION, 7366 shared_addr, connp))) 7367 break; 7368 connp = connp->conn_next; 7369 } 7370 /* 7371 * Just copy the data part alone. The mctl part is 7372 * needed just for verifying policy and it is never 7373 * sent up. 7374 */ 7375 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7376 ((mp1 = copymsg(mp)) == NULL))) { 7377 /* 7378 * No more intested clients or memory 7379 * allocation failed 7380 */ 7381 connp = first_connp; 7382 break; 7383 } 7384 if (first_mp != NULL) { 7385 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7386 ipsec_info_type == IPSEC_IN); 7387 first_mp1 = ipsec_in_tag(first_mp, NULL, 7388 ipst->ips_netstack); 7389 if (first_mp1 == NULL) { 7390 freemsg(mp1); 7391 connp = first_connp; 7392 break; 7393 } 7394 } else { 7395 first_mp1 = NULL; 7396 } 7397 CONN_INC_REF(connp); 7398 mutex_exit(&connfp->connf_lock); 7399 /* 7400 * IPQoS notes: We don't send the packet for policy 7401 * processing here, will do it for the last one (below). 7402 * i.e. we do it per-packet now, but if we do policy 7403 * processing per-conn, then we would need to do it 7404 * here too. 7405 */ 7406 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7407 ipha, flags, recv_ill, B_FALSE); 7408 mutex_enter(&connfp->connf_lock); 7409 /* Follow the next pointer before releasing the conn. */ 7410 next_connp = connp->conn_next; 7411 CONN_DEC_REF(connp); 7412 connp = next_connp; 7413 } 7414 7415 /* Last one. Send it upstream. */ 7416 mutex_exit(&connfp->connf_lock); 7417 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7418 recv_ill, ip_policy); 7419 CONN_DEC_REF(connp); 7420 } 7421 7422 /* 7423 * Complete the ip_wput header so that it 7424 * is possible to generate ICMP 7425 * errors. 7426 */ 7427 int 7428 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7429 { 7430 ire_t *ire; 7431 7432 if (ipha->ipha_src == INADDR_ANY) { 7433 ire = ire_lookup_local(zoneid, ipst); 7434 if (ire == NULL) { 7435 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7436 return (1); 7437 } 7438 ipha->ipha_src = ire->ire_addr; 7439 ire_refrele(ire); 7440 } 7441 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7442 ipha->ipha_hdr_checksum = 0; 7443 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7444 return (0); 7445 } 7446 7447 /* 7448 * Nobody should be sending 7449 * packets up this stream 7450 */ 7451 static void 7452 ip_lrput(queue_t *q, mblk_t *mp) 7453 { 7454 mblk_t *mp1; 7455 7456 switch (mp->b_datap->db_type) { 7457 case M_FLUSH: 7458 /* Turn around */ 7459 if (*mp->b_rptr & FLUSHW) { 7460 *mp->b_rptr &= ~FLUSHR; 7461 qreply(q, mp); 7462 return; 7463 } 7464 break; 7465 } 7466 /* Could receive messages that passed through ar_rput */ 7467 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7468 mp1->b_prev = mp1->b_next = NULL; 7469 freemsg(mp); 7470 } 7471 7472 /* Nobody should be sending packets down this stream */ 7473 /* ARGSUSED */ 7474 void 7475 ip_lwput(queue_t *q, mblk_t *mp) 7476 { 7477 freemsg(mp); 7478 } 7479 7480 /* 7481 * Move the first hop in any source route to ipha_dst and remove that part of 7482 * the source route. Called by other protocols. Errors in option formatting 7483 * are ignored - will be handled by ip_wput_options Return the final 7484 * destination (either ipha_dst or the last entry in a source route.) 7485 */ 7486 ipaddr_t 7487 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7488 { 7489 ipoptp_t opts; 7490 uchar_t *opt; 7491 uint8_t optval; 7492 uint8_t optlen; 7493 ipaddr_t dst; 7494 int i; 7495 ire_t *ire; 7496 ip_stack_t *ipst = ns->netstack_ip; 7497 7498 ip2dbg(("ip_massage_options\n")); 7499 dst = ipha->ipha_dst; 7500 for (optval = ipoptp_first(&opts, ipha); 7501 optval != IPOPT_EOL; 7502 optval = ipoptp_next(&opts)) { 7503 opt = opts.ipoptp_cur; 7504 switch (optval) { 7505 uint8_t off; 7506 case IPOPT_SSRR: 7507 case IPOPT_LSRR: 7508 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7509 ip1dbg(("ip_massage_options: bad src route\n")); 7510 break; 7511 } 7512 optlen = opts.ipoptp_len; 7513 off = opt[IPOPT_OFFSET]; 7514 off--; 7515 redo_srr: 7516 if (optlen < IP_ADDR_LEN || 7517 off > optlen - IP_ADDR_LEN) { 7518 /* End of source route */ 7519 ip1dbg(("ip_massage_options: end of SR\n")); 7520 break; 7521 } 7522 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7523 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7524 ntohl(dst))); 7525 /* 7526 * Check if our address is present more than 7527 * once as consecutive hops in source route. 7528 * XXX verify per-interface ip_forwarding 7529 * for source route? 7530 */ 7531 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7532 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7533 if (ire != NULL) { 7534 ire_refrele(ire); 7535 off += IP_ADDR_LEN; 7536 goto redo_srr; 7537 } 7538 if (dst == htonl(INADDR_LOOPBACK)) { 7539 ip1dbg(("ip_massage_options: loopback addr in " 7540 "source route!\n")); 7541 break; 7542 } 7543 /* 7544 * Update ipha_dst to be the first hop and remove the 7545 * first hop from the source route (by overwriting 7546 * part of the option with NOP options). 7547 */ 7548 ipha->ipha_dst = dst; 7549 /* Put the last entry in dst */ 7550 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7551 3; 7552 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7553 7554 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7555 ntohl(dst))); 7556 /* Move down and overwrite */ 7557 opt[IP_ADDR_LEN] = opt[0]; 7558 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7559 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7560 for (i = 0; i < IP_ADDR_LEN; i++) 7561 opt[i] = IPOPT_NOP; 7562 break; 7563 } 7564 } 7565 return (dst); 7566 } 7567 7568 /* 7569 * This function's job is to forward data to the reverse tunnel (FA->HA) 7570 * after doing a few checks. It is assumed that the incoming interface 7571 * of the packet is always different than the outgoing interface and the 7572 * ire_type of the found ire has to be a non-resolver type. 7573 * 7574 * IPQoS notes 7575 * IP policy is invoked twice for a forwarded packet, once on the read side 7576 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7577 * enabled. 7578 */ 7579 static void 7580 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7581 { 7582 ipha_t *ipha; 7583 queue_t *q; 7584 uint32_t pkt_len; 7585 #define rptr ((uchar_t *)ipha) 7586 uint32_t sum; 7587 uint32_t max_frag; 7588 mblk_t *first_mp; 7589 uint32_t ill_index; 7590 ipxmit_state_t pktxmit_state; 7591 ill_t *out_ill; 7592 ip_stack_t *ipst = in_ill->ill_ipst; 7593 7594 ASSERT(ire != NULL); 7595 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7596 ASSERT(ire->ire_stq != NULL); 7597 7598 /* Initiate read side IPPF processing */ 7599 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 7600 ill_index = in_ill->ill_phyint->phyint_ifindex; 7601 ip_process(IPP_FWD_IN, &mp, ill_index); 7602 if (mp == NULL) { 7603 ip2dbg(("ip_mrtun_forward: inbound pkt " 7604 "dropped during IPPF processing\n")); 7605 return; 7606 } 7607 } 7608 7609 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7610 ILLF_ROUTER) == 0) || 7611 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7612 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7613 ip0dbg(("ip_mrtun_forward: Can't forward :" 7614 "forwarding is not turned on\n")); 7615 goto drop_pkt; 7616 } 7617 7618 /* 7619 * Don't forward if the interface is down 7620 */ 7621 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7622 goto discard_pkt; 7623 } 7624 7625 ipha = (ipha_t *)mp->b_rptr; 7626 pkt_len = ntohs(ipha->ipha_length); 7627 /* Adjust the checksum to reflect the ttl decrement. */ 7628 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7629 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7630 if (ipha->ipha_ttl-- <= 1) { 7631 if (ip_csum_hdr(ipha)) { 7632 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7633 goto drop_pkt; 7634 } 7635 q = ire->ire_stq; 7636 if ((first_mp = allocb(sizeof (ipsec_info_t), 7637 BPRI_HI)) == NULL) { 7638 goto discard_pkt; 7639 } 7640 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7641 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7642 /* Sent by forwarding path, and router is global zone */ 7643 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7644 GLOBAL_ZONEID, ipst); 7645 return; 7646 } 7647 7648 /* Get the ill_index of the ILL */ 7649 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7650 7651 /* 7652 * This location is chosen for the placement of the forwarding hook 7653 * because at this point we know that we have a path out for the 7654 * packet but haven't yet applied any logic (such as fragmenting) 7655 * that happen as part of transmitting the packet out. 7656 */ 7657 out_ill = ire->ire_ipif->ipif_ill; 7658 7659 DTRACE_PROBE4(ip4__forwarding__start, 7660 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7661 7662 FW_HOOKS(ipst->ips_ip4_forwarding_event, 7663 ipst->ips_ipv4firewall_forwarding, 7664 in_ill, out_ill, ipha, mp, mp, ipst); 7665 7666 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7667 7668 if (mp == NULL) 7669 return; 7670 pkt_len = ntohs(ipha->ipha_length); 7671 7672 /* 7673 * ip_mrtun_forward is only used by foreign agent to reverse 7674 * tunnel the incoming packet. So it does not do any option 7675 * processing for source routing. 7676 */ 7677 max_frag = ire->ire_max_frag; 7678 if (pkt_len > max_frag) { 7679 /* 7680 * It needs fragging on its way out. We haven't 7681 * verified the header checksum yet. Since we 7682 * are going to put a surely good checksum in the 7683 * outgoing header, we have to make sure that it 7684 * was good coming in. 7685 */ 7686 if (ip_csum_hdr(ipha)) { 7687 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7688 goto drop_pkt; 7689 } 7690 7691 /* Initiate write side IPPF processing */ 7692 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 7693 ip_process(IPP_FWD_OUT, &mp, ill_index); 7694 if (mp == NULL) { 7695 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7696 "dropped/deferred during ip policy "\ 7697 "processing\n")); 7698 return; 7699 } 7700 } 7701 if ((first_mp = allocb(sizeof (ipsec_info_t), 7702 BPRI_HI)) == NULL) { 7703 goto discard_pkt; 7704 } 7705 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7706 mp = first_mp; 7707 7708 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 7709 return; 7710 } 7711 7712 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7713 7714 ASSERT(ire->ire_ipif != NULL); 7715 7716 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7717 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7718 FW_HOOKS(ipst->ips_ip4_physical_out_event, 7719 ipst->ips_ipv4firewall_physical_out, 7720 NULL, out_ill, ipha, mp, mp, ipst); 7721 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7722 if (mp == NULL) 7723 return; 7724 7725 /* Now send the packet to the tunnel interface */ 7726 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7727 q = ire->ire_stq; 7728 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7729 if ((pktxmit_state == SEND_FAILED) || 7730 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7731 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7732 q->q_ptr)); 7733 } 7734 7735 return; 7736 discard_pkt: 7737 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 7738 drop_pkt:; 7739 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7740 freemsg(mp); 7741 #undef rptr 7742 } 7743 7744 /* 7745 * Fills the ipsec_out_t data structure with appropriate fields and 7746 * prepends it to mp which contains the IP hdr + data that was meant 7747 * to be forwarded. Please note that ipsec_out_info data structure 7748 * is used here to communicate the outgoing ill path at ip_wput() 7749 * for the ICMP error packet. This has nothing to do with ipsec IP 7750 * security. ipsec_out_t is really used to pass the info to the module 7751 * IP where this information cannot be extracted from conn. 7752 * This functions is called by ip_mrtun_forward(). 7753 */ 7754 void 7755 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7756 { 7757 ipsec_out_t *io; 7758 7759 ASSERT(xmit_ill != NULL); 7760 first_mp->b_datap->db_type = M_CTL; 7761 first_mp->b_wptr += sizeof (ipsec_info_t); 7762 /* 7763 * This is to pass info to ip_wput in absence of conn. 7764 * ipsec_out_secure will be B_FALSE because of this. 7765 * Thus ipsec_out_secure being B_FALSE indicates that 7766 * this is not IPSEC security related information. 7767 */ 7768 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7769 io = (ipsec_out_t *)first_mp->b_rptr; 7770 io->ipsec_out_type = IPSEC_OUT; 7771 io->ipsec_out_len = sizeof (ipsec_out_t); 7772 first_mp->b_cont = mp; 7773 io->ipsec_out_ill_index = 7774 xmit_ill->ill_phyint->phyint_ifindex; 7775 io->ipsec_out_xmit_if = B_TRUE; 7776 io->ipsec_out_ns = xmit_ill->ill_ipst->ips_netstack; 7777 } 7778 7779 /* 7780 * Return the network mask 7781 * associated with the specified address. 7782 */ 7783 ipaddr_t 7784 ip_net_mask(ipaddr_t addr) 7785 { 7786 uchar_t *up = (uchar_t *)&addr; 7787 ipaddr_t mask = 0; 7788 uchar_t *maskp = (uchar_t *)&mask; 7789 7790 #if defined(__i386) || defined(__amd64) 7791 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7792 #endif 7793 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7794 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7795 #endif 7796 if (CLASSD(addr)) { 7797 maskp[0] = 0xF0; 7798 return (mask); 7799 } 7800 if (addr == 0) 7801 return (0); 7802 maskp[0] = 0xFF; 7803 if ((up[0] & 0x80) == 0) 7804 return (mask); 7805 7806 maskp[1] = 0xFF; 7807 if ((up[0] & 0xC0) == 0x80) 7808 return (mask); 7809 7810 maskp[2] = 0xFF; 7811 if ((up[0] & 0xE0) == 0xC0) 7812 return (mask); 7813 7814 /* Must be experimental or multicast, indicate as much */ 7815 return ((ipaddr_t)0); 7816 } 7817 7818 /* 7819 * Select an ill for the packet by considering load spreading across 7820 * a different ill in the group if dst_ill is part of some group. 7821 */ 7822 ill_t * 7823 ip_newroute_get_dst_ill(ill_t *dst_ill) 7824 { 7825 ill_t *ill; 7826 7827 /* 7828 * We schedule irrespective of whether the source address is 7829 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7830 */ 7831 ill = illgrp_scheduler(dst_ill); 7832 if (ill == NULL) 7833 return (NULL); 7834 7835 /* 7836 * For groups with names ip_sioctl_groupname ensures that all 7837 * ills are of same type. For groups without names, ifgrp_insert 7838 * ensures this. 7839 */ 7840 ASSERT(dst_ill->ill_type == ill->ill_type); 7841 7842 return (ill); 7843 } 7844 7845 /* 7846 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7847 */ 7848 ill_t * 7849 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7850 ip_stack_t *ipst) 7851 { 7852 ill_t *ret_ill; 7853 7854 ASSERT(ifindex != 0); 7855 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7856 ipst); 7857 if (ret_ill == NULL || 7858 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7859 if (isv6) { 7860 if (ill != NULL) { 7861 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7862 } else { 7863 BUMP_MIB(&ipst->ips_ip6_mib, 7864 ipIfStatsOutDiscards); 7865 } 7866 ip1dbg(("ip_grab_attach_ill (IPv6): " 7867 "bad ifindex %d.\n", ifindex)); 7868 } else { 7869 if (ill != NULL) { 7870 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7871 } else { 7872 BUMP_MIB(&ipst->ips_ip_mib, 7873 ipIfStatsOutDiscards); 7874 } 7875 ip1dbg(("ip_grab_attach_ill (IPv4): " 7876 "bad ifindex %d.\n", ifindex)); 7877 } 7878 if (ret_ill != NULL) 7879 ill_refrele(ret_ill); 7880 freemsg(first_mp); 7881 return (NULL); 7882 } 7883 7884 return (ret_ill); 7885 } 7886 7887 /* 7888 * IPv4 - 7889 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7890 * out a packet to a destination address for which we do not have specific 7891 * (or sufficient) routing information. 7892 * 7893 * NOTE : These are the scopes of some of the variables that point at IRE, 7894 * which needs to be followed while making any future modifications 7895 * to avoid memory leaks. 7896 * 7897 * - ire and sire are the entries looked up initially by 7898 * ire_ftable_lookup. 7899 * - ipif_ire is used to hold the interface ire associated with 7900 * the new cache ire. But it's scope is limited, so we always REFRELE 7901 * it before branching out to error paths. 7902 * - save_ire is initialized before ire_create, so that ire returned 7903 * by ire_create will not over-write the ire. We REFRELE save_ire 7904 * before breaking out of the switch. 7905 * 7906 * Thus on failures, we have to REFRELE only ire and sire, if they 7907 * are not NULL. 7908 */ 7909 void 7910 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7911 zoneid_t zoneid, ip_stack_t *ipst) 7912 { 7913 areq_t *areq; 7914 ipaddr_t gw = 0; 7915 ire_t *ire = NULL; 7916 mblk_t *res_mp; 7917 ipaddr_t *addrp; 7918 ipaddr_t nexthop_addr; 7919 ipif_t *src_ipif = NULL; 7920 ill_t *dst_ill = NULL; 7921 ipha_t *ipha; 7922 ire_t *sire = NULL; 7923 mblk_t *first_mp; 7924 ire_t *save_ire; 7925 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7926 ushort_t ire_marks = 0; 7927 boolean_t mctl_present; 7928 ipsec_out_t *io; 7929 mblk_t *saved_mp; 7930 ire_t *first_sire = NULL; 7931 mblk_t *copy_mp = NULL; 7932 mblk_t *xmit_mp = NULL; 7933 ipaddr_t save_dst; 7934 uint32_t multirt_flags = 7935 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7936 boolean_t multirt_is_resolvable; 7937 boolean_t multirt_resolve_next; 7938 boolean_t do_attach_ill = B_FALSE; 7939 boolean_t ip_nexthop = B_FALSE; 7940 tsol_ire_gw_secattr_t *attrp = NULL; 7941 tsol_gcgrp_t *gcgrp = NULL; 7942 tsol_gcgrp_addr_t ga; 7943 7944 if (ip_debug > 2) { 7945 /* ip1dbg */ 7946 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7947 } 7948 7949 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7950 if (mctl_present) { 7951 io = (ipsec_out_t *)first_mp->b_rptr; 7952 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7953 ASSERT(zoneid == io->ipsec_out_zoneid); 7954 ASSERT(zoneid != ALL_ZONES); 7955 } 7956 7957 ipha = (ipha_t *)mp->b_rptr; 7958 7959 /* All multicast lookups come through ip_newroute_ipif() */ 7960 if (CLASSD(dst)) { 7961 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7962 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7963 freemsg(first_mp); 7964 return; 7965 } 7966 7967 if (mctl_present && io->ipsec_out_attach_if) { 7968 /* ip_grab_attach_ill returns a held ill */ 7969 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7970 io->ipsec_out_ill_index, B_FALSE, ipst); 7971 7972 /* Failure case frees things for us. */ 7973 if (attach_ill == NULL) 7974 return; 7975 7976 /* 7977 * Check if we need an ire that will not be 7978 * looked up by anybody else i.e. HIDDEN. 7979 */ 7980 if (ill_is_probeonly(attach_ill)) 7981 ire_marks = IRE_MARK_HIDDEN; 7982 } 7983 if (mctl_present && io->ipsec_out_ip_nexthop) { 7984 ip_nexthop = B_TRUE; 7985 nexthop_addr = io->ipsec_out_nexthop_addr; 7986 } 7987 /* 7988 * If this IRE is created for forwarding or it is not for 7989 * traffic for congestion controlled protocols, mark it as temporary. 7990 */ 7991 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7992 ire_marks |= IRE_MARK_TEMPORARY; 7993 7994 /* 7995 * Get what we can from ire_ftable_lookup which will follow an IRE 7996 * chain until it gets the most specific information available. 7997 * For example, we know that there is no IRE_CACHE for this dest, 7998 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7999 * ire_ftable_lookup will look up the gateway, etc. 8000 * Check if in_ill != NULL. If it is true, the packet must be 8001 * from an incoming interface where RTA_SRCIFP is set. 8002 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 8003 * to the destination, of equal netmask length in the forward table, 8004 * will be recursively explored. If no information is available 8005 * for the final gateway of that route, we force the returned ire 8006 * to be equal to sire using MATCH_IRE_PARENT. 8007 * At least, in this case we have a starting point (in the buckets) 8008 * to look for other routes to the destination in the forward table. 8009 * This is actually used only for multirouting, where a list 8010 * of routes has to be processed in sequence. 8011 * 8012 * In the process of coming up with the most specific information, 8013 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 8014 * for the gateway (i.e., one for which the ire_nce->nce_state is 8015 * not yet ND_REACHABLE, and is in the middle of arp resolution). 8016 * Two caveats when handling incomplete ire's in ip_newroute: 8017 * - we should be careful when accessing its ire_nce (specifically 8018 * the nce_res_mp) ast it might change underneath our feet, and, 8019 * - not all legacy code path callers are prepared to handle 8020 * incomplete ire's, so we should not create/add incomplete 8021 * ire_cache entries here. (See discussion about temporary solution 8022 * further below). 8023 * 8024 * In order to minimize packet dropping, and to preserve existing 8025 * behavior, we treat this case as if there were no IRE_CACHE for the 8026 * gateway, and instead use the IF_RESOLVER ire to send out 8027 * another request to ARP (this is achieved by passing the 8028 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8029 * arp response comes back in ip_wput_nondata, we will create 8030 * a per-dst ire_cache that has an ND_COMPLETE ire. 8031 * 8032 * Note that this is a temporary solution; the correct solution is 8033 * to create an incomplete per-dst ire_cache entry, and send the 8034 * packet out when the gw's nce is resolved. In order to achieve this, 8035 * all packet processing must have been completed prior to calling 8036 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8037 * to be modified to accomodate this solution. 8038 */ 8039 if (in_ill != NULL) { 8040 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 8041 in_ill, MATCH_IRE_TYPE); 8042 } else if (ip_nexthop) { 8043 /* 8044 * The first time we come here, we look for an IRE_INTERFACE 8045 * entry for the specified nexthop, set the dst to be the 8046 * nexthop address and create an IRE_CACHE entry for the 8047 * nexthop. The next time around, we are able to find an 8048 * IRE_CACHE entry for the nexthop, set the gateway to be the 8049 * nexthop address and create an IRE_CACHE entry for the 8050 * destination address via the specified nexthop. 8051 */ 8052 ire = ire_cache_lookup(nexthop_addr, zoneid, 8053 MBLK_GETLABEL(mp), ipst); 8054 if (ire != NULL) { 8055 gw = nexthop_addr; 8056 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8057 } else { 8058 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8059 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8060 MBLK_GETLABEL(mp), 8061 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8062 ipst); 8063 if (ire != NULL) { 8064 dst = nexthop_addr; 8065 } 8066 } 8067 } else if (attach_ill == NULL) { 8068 ire = ire_ftable_lookup(dst, 0, 0, 0, 8069 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 8070 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8071 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8072 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8073 ipst); 8074 } else { 8075 /* 8076 * attach_ill is set only for communicating with 8077 * on-link hosts. So, don't look for DEFAULT. 8078 */ 8079 ipif_t *attach_ipif; 8080 8081 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 8082 if (attach_ipif == NULL) { 8083 ill_refrele(attach_ill); 8084 goto icmp_err_ret; 8085 } 8086 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 8087 &sire, zoneid, 0, MBLK_GETLABEL(mp), 8088 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 8089 MATCH_IRE_SECATTR, ipst); 8090 ipif_refrele(attach_ipif); 8091 } 8092 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8093 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8094 8095 /* 8096 * This loop is run only once in most cases. 8097 * We loop to resolve further routes only when the destination 8098 * can be reached through multiple RTF_MULTIRT-flagged ires. 8099 */ 8100 do { 8101 /* Clear the previous iteration's values */ 8102 if (src_ipif != NULL) { 8103 ipif_refrele(src_ipif); 8104 src_ipif = NULL; 8105 } 8106 if (dst_ill != NULL) { 8107 ill_refrele(dst_ill); 8108 dst_ill = NULL; 8109 } 8110 8111 multirt_resolve_next = B_FALSE; 8112 /* 8113 * We check if packets have to be multirouted. 8114 * In this case, given the current <ire, sire> couple, 8115 * we look for the next suitable <ire, sire>. 8116 * This check is done in ire_multirt_lookup(), 8117 * which applies various criteria to find the next route 8118 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8119 * unchanged if it detects it has not been tried yet. 8120 */ 8121 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8122 ip3dbg(("ip_newroute: starting next_resolution " 8123 "with first_mp %p, tag %d\n", 8124 (void *)first_mp, 8125 MULTIRT_DEBUG_TAGGED(first_mp))); 8126 8127 ASSERT(sire != NULL); 8128 multirt_is_resolvable = 8129 ire_multirt_lookup(&ire, &sire, multirt_flags, 8130 MBLK_GETLABEL(mp), ipst); 8131 8132 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8133 "ire %p, sire %p\n", 8134 multirt_is_resolvable, 8135 (void *)ire, (void *)sire)); 8136 8137 if (!multirt_is_resolvable) { 8138 /* 8139 * No more multirt route to resolve; give up 8140 * (all routes resolved or no more 8141 * resolvable routes). 8142 */ 8143 if (ire != NULL) { 8144 ire_refrele(ire); 8145 ire = NULL; 8146 } 8147 } else { 8148 ASSERT(sire != NULL); 8149 ASSERT(ire != NULL); 8150 /* 8151 * We simply use first_sire as a flag that 8152 * indicates if a resolvable multirt route 8153 * has already been found. 8154 * If it is not the case, we may have to send 8155 * an ICMP error to report that the 8156 * destination is unreachable. 8157 * We do not IRE_REFHOLD first_sire. 8158 */ 8159 if (first_sire == NULL) { 8160 first_sire = sire; 8161 } 8162 } 8163 } 8164 if (ire == NULL) { 8165 if (ip_debug > 3) { 8166 /* ip2dbg */ 8167 pr_addr_dbg("ip_newroute: " 8168 "can't resolve %s\n", AF_INET, &dst); 8169 } 8170 ip3dbg(("ip_newroute: " 8171 "ire %p, sire %p, first_sire %p\n", 8172 (void *)ire, (void *)sire, (void *)first_sire)); 8173 8174 if (sire != NULL) { 8175 ire_refrele(sire); 8176 sire = NULL; 8177 } 8178 8179 if (first_sire != NULL) { 8180 /* 8181 * At least one multirt route has been found 8182 * in the same call to ip_newroute(); 8183 * there is no need to report an ICMP error. 8184 * first_sire was not IRE_REFHOLDed. 8185 */ 8186 MULTIRT_DEBUG_UNTAG(first_mp); 8187 freemsg(first_mp); 8188 return; 8189 } 8190 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8191 RTA_DST, ipst); 8192 if (attach_ill != NULL) 8193 ill_refrele(attach_ill); 8194 goto icmp_err_ret; 8195 } 8196 8197 /* 8198 * When RTA_SRCIFP is used to add a route, then an interface 8199 * route is added in the source interface's routing table. 8200 * If the outgoing interface of this route is of type 8201 * IRE_IF_RESOLVER, then upon creation of the ire, 8202 * ire_nce->nce_res_mp is set to NULL. 8203 * Later, when this route is first used for forwarding 8204 * a packet, ip_newroute() is called 8205 * to resolve the hardware address of the outgoing ipif. 8206 * We do not come here for IRE_IF_NORESOLVER entries in the 8207 * source interface based table. We only come here if the 8208 * outgoing interface is a resolver interface and we don't 8209 * have the ire_nce->nce_res_mp information yet. 8210 * If in_ill is not null that means it is called from 8211 * ip_rput. 8212 */ 8213 8214 ASSERT(ire->ire_in_ill == NULL || 8215 (ire->ire_type == IRE_IF_RESOLVER && 8216 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 8217 8218 /* 8219 * Verify that the returned IRE does not have either 8220 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8221 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8222 */ 8223 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8224 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8225 if (attach_ill != NULL) 8226 ill_refrele(attach_ill); 8227 goto icmp_err_ret; 8228 } 8229 /* 8230 * Increment the ire_ob_pkt_count field for ire if it is an 8231 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8232 * increment the same for the parent IRE, sire, if it is some 8233 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8234 */ 8235 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8236 UPDATE_OB_PKT_COUNT(ire); 8237 ire->ire_last_used_time = lbolt; 8238 } 8239 8240 if (sire != NULL) { 8241 gw = sire->ire_gateway_addr; 8242 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8243 IRE_INTERFACE)) == 0); 8244 UPDATE_OB_PKT_COUNT(sire); 8245 sire->ire_last_used_time = lbolt; 8246 } 8247 /* 8248 * We have a route to reach the destination. 8249 * 8250 * 1) If the interface is part of ill group, try to get a new 8251 * ill taking load spreading into account. 8252 * 8253 * 2) After selecting the ill, get a source address that 8254 * might create good inbound load spreading. 8255 * ipif_select_source does this for us. 8256 * 8257 * If the application specified the ill (ifindex), we still 8258 * load spread. Only if the packets needs to go out 8259 * specifically on a given ill e.g. binding to 8260 * IPIF_NOFAILOVER address, then we don't try to use a 8261 * different ill for load spreading. 8262 */ 8263 if (attach_ill == NULL) { 8264 /* 8265 * Don't perform outbound load spreading in the 8266 * case of an RTF_MULTIRT route, as we actually 8267 * typically want to replicate outgoing packets 8268 * through particular interfaces. 8269 */ 8270 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8271 dst_ill = ire->ire_ipif->ipif_ill; 8272 /* for uniformity */ 8273 ill_refhold(dst_ill); 8274 } else { 8275 /* 8276 * If we are here trying to create an IRE_CACHE 8277 * for an offlink destination and have the 8278 * IRE_CACHE for the next hop and the latter is 8279 * using virtual IP source address selection i.e 8280 * it's ire->ire_ipif is pointing to a virtual 8281 * network interface (vni) then 8282 * ip_newroute_get_dst_ll() will return the vni 8283 * interface as the dst_ill. Since the vni is 8284 * virtual i.e not associated with any physical 8285 * interface, it cannot be the dst_ill, hence 8286 * in such a case call ip_newroute_get_dst_ll() 8287 * with the stq_ill instead of the ire_ipif ILL. 8288 * The function returns a refheld ill. 8289 */ 8290 if ((ire->ire_type == IRE_CACHE) && 8291 IS_VNI(ire->ire_ipif->ipif_ill)) 8292 dst_ill = ip_newroute_get_dst_ill( 8293 ire->ire_stq->q_ptr); 8294 else 8295 dst_ill = ip_newroute_get_dst_ill( 8296 ire->ire_ipif->ipif_ill); 8297 } 8298 if (dst_ill == NULL) { 8299 if (ip_debug > 2) { 8300 pr_addr_dbg("ip_newroute: " 8301 "no dst ill for dst" 8302 " %s\n", AF_INET, &dst); 8303 } 8304 goto icmp_err_ret; 8305 } 8306 } else { 8307 dst_ill = ire->ire_ipif->ipif_ill; 8308 /* for uniformity */ 8309 ill_refhold(dst_ill); 8310 /* 8311 * We should have found a route matching ill as we 8312 * called ire_ftable_lookup with MATCH_IRE_ILL. 8313 * Rather than asserting, when there is a mismatch, 8314 * we just drop the packet. 8315 */ 8316 if (dst_ill != attach_ill) { 8317 ip0dbg(("ip_newroute: Packet dropped as " 8318 "IPIF_NOFAILOVER ill is %s, " 8319 "ire->ire_ipif->ipif_ill is %s\n", 8320 attach_ill->ill_name, 8321 dst_ill->ill_name)); 8322 ill_refrele(attach_ill); 8323 goto icmp_err_ret; 8324 } 8325 } 8326 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8327 if (attach_ill != NULL) { 8328 ill_refrele(attach_ill); 8329 attach_ill = NULL; 8330 do_attach_ill = B_TRUE; 8331 } 8332 ASSERT(dst_ill != NULL); 8333 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8334 8335 /* 8336 * Pick the best source address from dst_ill. 8337 * 8338 * 1) If it is part of a multipathing group, we would 8339 * like to spread the inbound packets across different 8340 * interfaces. ipif_select_source picks a random source 8341 * across the different ills in the group. 8342 * 8343 * 2) If it is not part of a multipathing group, we try 8344 * to pick the source address from the destination 8345 * route. Clustering assumes that when we have multiple 8346 * prefixes hosted on an interface, the prefix of the 8347 * source address matches the prefix of the destination 8348 * route. We do this only if the address is not 8349 * DEPRECATED. 8350 * 8351 * 3) If the conn is in a different zone than the ire, we 8352 * need to pick a source address from the right zone. 8353 * 8354 * NOTE : If we hit case (1) above, the prefix of the source 8355 * address picked may not match the prefix of the 8356 * destination routes prefix as ipif_select_source 8357 * does not look at "dst" while picking a source 8358 * address. 8359 * If we want the same behavior as (2), we will need 8360 * to change the behavior of ipif_select_source. 8361 */ 8362 ASSERT(src_ipif == NULL); 8363 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8364 /* 8365 * The RTF_SETSRC flag is set in the parent ire (sire). 8366 * Check that the ipif matching the requested source 8367 * address still exists. 8368 */ 8369 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8370 zoneid, NULL, NULL, NULL, NULL, ipst); 8371 } 8372 if (src_ipif == NULL) { 8373 ire_marks |= IRE_MARK_USESRC_CHECK; 8374 if ((dst_ill->ill_group != NULL) || 8375 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8376 (connp != NULL && ire->ire_zoneid != zoneid && 8377 ire->ire_zoneid != ALL_ZONES) || 8378 (dst_ill->ill_usesrc_ifindex != 0)) { 8379 /* 8380 * If the destination is reachable via a 8381 * given gateway, the selected source address 8382 * should be in the same subnet as the gateway. 8383 * Otherwise, the destination is not reachable. 8384 * 8385 * If there are no interfaces on the same subnet 8386 * as the destination, ipif_select_source gives 8387 * first non-deprecated interface which might be 8388 * on a different subnet than the gateway. 8389 * This is not desirable. Hence pass the dst_ire 8390 * source address to ipif_select_source. 8391 * It is sure that the destination is reachable 8392 * with the dst_ire source address subnet. 8393 * So passing dst_ire source address to 8394 * ipif_select_source will make sure that the 8395 * selected source will be on the same subnet 8396 * as dst_ire source address. 8397 */ 8398 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8399 src_ipif = ipif_select_source(dst_ill, saddr, 8400 zoneid); 8401 if (src_ipif == NULL) { 8402 if (ip_debug > 2) { 8403 pr_addr_dbg("ip_newroute: " 8404 "no src for dst %s ", 8405 AF_INET, &dst); 8406 printf("through interface %s\n", 8407 dst_ill->ill_name); 8408 } 8409 goto icmp_err_ret; 8410 } 8411 } else { 8412 src_ipif = ire->ire_ipif; 8413 ASSERT(src_ipif != NULL); 8414 /* hold src_ipif for uniformity */ 8415 ipif_refhold(src_ipif); 8416 } 8417 } 8418 8419 /* 8420 * Assign a source address while we have the conn. 8421 * We can't have ip_wput_ire pick a source address when the 8422 * packet returns from arp since we need to look at 8423 * conn_unspec_src and conn_zoneid, and we lose the conn when 8424 * going through arp. 8425 * 8426 * NOTE : ip_newroute_v6 does not have this piece of code as 8427 * it uses ip6i to store this information. 8428 */ 8429 if (ipha->ipha_src == INADDR_ANY && 8430 (connp == NULL || !connp->conn_unspec_src)) { 8431 ipha->ipha_src = src_ipif->ipif_src_addr; 8432 } 8433 if (ip_debug > 3) { 8434 /* ip2dbg */ 8435 pr_addr_dbg("ip_newroute: first hop %s\n", 8436 AF_INET, &gw); 8437 } 8438 ip2dbg(("\tire type %s (%d)\n", 8439 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8440 8441 /* 8442 * The TTL of multirouted packets is bounded by the 8443 * ip_multirt_ttl ndd variable. 8444 */ 8445 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8446 /* Force TTL of multirouted packets */ 8447 if ((ipst->ips_ip_multirt_ttl > 0) && 8448 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8449 ip2dbg(("ip_newroute: forcing multirt TTL " 8450 "to %d (was %d), dst 0x%08x\n", 8451 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8452 ntohl(sire->ire_addr))); 8453 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8454 } 8455 } 8456 /* 8457 * At this point in ip_newroute(), ire is either the 8458 * IRE_CACHE of the next-hop gateway for an off-subnet 8459 * destination or an IRE_INTERFACE type that should be used 8460 * to resolve an on-subnet destination or an on-subnet 8461 * next-hop gateway. 8462 * 8463 * In the IRE_CACHE case, we have the following : 8464 * 8465 * 1) src_ipif - used for getting a source address. 8466 * 8467 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8468 * means packets using this IRE_CACHE will go out on 8469 * dst_ill. 8470 * 8471 * 3) The IRE sire will point to the prefix that is the 8472 * longest matching route for the destination. These 8473 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8474 * 8475 * The newly created IRE_CACHE entry for the off-subnet 8476 * destination is tied to both the prefix route and the 8477 * interface route used to resolve the next-hop gateway 8478 * via the ire_phandle and ire_ihandle fields, 8479 * respectively. 8480 * 8481 * In the IRE_INTERFACE case, we have the following : 8482 * 8483 * 1) src_ipif - used for getting a source address. 8484 * 8485 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8486 * means packets using the IRE_CACHE that we will build 8487 * here will go out on dst_ill. 8488 * 8489 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8490 * to be created will only be tied to the IRE_INTERFACE 8491 * that was derived from the ire_ihandle field. 8492 * 8493 * If sire is non-NULL, it means the destination is 8494 * off-link and we will first create the IRE_CACHE for the 8495 * gateway. Next time through ip_newroute, we will create 8496 * the IRE_CACHE for the final destination as described 8497 * above. 8498 * 8499 * In both cases, after the current resolution has been 8500 * completed (or possibly initialised, in the IRE_INTERFACE 8501 * case), the loop may be re-entered to attempt the resolution 8502 * of another RTF_MULTIRT route. 8503 * 8504 * When an IRE_CACHE entry for the off-subnet destination is 8505 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8506 * for further processing in emission loops. 8507 */ 8508 save_ire = ire; 8509 switch (ire->ire_type) { 8510 case IRE_CACHE: { 8511 ire_t *ipif_ire; 8512 mblk_t *ire_fp_mp; 8513 8514 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8515 if (gw == 0) 8516 gw = ire->ire_gateway_addr; 8517 /* 8518 * We need 3 ire's to create a new cache ire for an 8519 * off-link destination from the cache ire of the 8520 * gateway. 8521 * 8522 * 1. The prefix ire 'sire' (Note that this does 8523 * not apply to the conn_nexthop_set case) 8524 * 2. The cache ire of the gateway 'ire' 8525 * 3. The interface ire 'ipif_ire' 8526 * 8527 * We have (1) and (2). We lookup (3) below. 8528 * 8529 * If there is no interface route to the gateway, 8530 * it is a race condition, where we found the cache 8531 * but the interface route has been deleted. 8532 */ 8533 if (ip_nexthop) { 8534 ipif_ire = ire_ihandle_lookup_onlink(ire); 8535 } else { 8536 ipif_ire = 8537 ire_ihandle_lookup_offlink(ire, sire); 8538 } 8539 if (ipif_ire == NULL) { 8540 ip1dbg(("ip_newroute: " 8541 "ire_ihandle_lookup_offlink failed\n")); 8542 goto icmp_err_ret; 8543 } 8544 /* 8545 * XXX We are using the same res_mp 8546 * (DL_UNITDATA_REQ) though the save_ire is not 8547 * pointing at the same ill. 8548 * This is incorrect. We need to send it up to the 8549 * resolver to get the right res_mp. For ethernets 8550 * this may be okay (ill_type == DL_ETHER). 8551 */ 8552 res_mp = save_ire->ire_nce->nce_res_mp; 8553 ire_fp_mp = NULL; 8554 8555 /* 8556 * Check cached gateway IRE for any security 8557 * attributes; if found, associate the gateway 8558 * credentials group to the destination IRE. 8559 */ 8560 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8561 mutex_enter(&attrp->igsa_lock); 8562 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8563 GCGRP_REFHOLD(gcgrp); 8564 mutex_exit(&attrp->igsa_lock); 8565 } 8566 8567 ire = ire_create( 8568 (uchar_t *)&dst, /* dest address */ 8569 (uchar_t *)&ip_g_all_ones, /* mask */ 8570 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8571 (uchar_t *)&gw, /* gateway address */ 8572 NULL, 8573 &save_ire->ire_max_frag, 8574 ire_fp_mp, /* Fast Path header */ 8575 dst_ill->ill_rq, /* recv-from queue */ 8576 dst_ill->ill_wq, /* send-to queue */ 8577 IRE_CACHE, /* IRE type */ 8578 res_mp, 8579 src_ipif, 8580 in_ill, /* incoming ill */ 8581 (sire != NULL) ? 8582 sire->ire_mask : 0, /* Parent mask */ 8583 (sire != NULL) ? 8584 sire->ire_phandle : 0, /* Parent handle */ 8585 ipif_ire->ire_ihandle, /* Interface handle */ 8586 (sire != NULL) ? (sire->ire_flags & 8587 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8588 (sire != NULL) ? 8589 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8590 NULL, 8591 gcgrp, 8592 ipst); 8593 8594 if (ire == NULL) { 8595 if (gcgrp != NULL) { 8596 GCGRP_REFRELE(gcgrp); 8597 gcgrp = NULL; 8598 } 8599 ire_refrele(ipif_ire); 8600 ire_refrele(save_ire); 8601 break; 8602 } 8603 8604 /* reference now held by IRE */ 8605 gcgrp = NULL; 8606 8607 ire->ire_marks |= ire_marks; 8608 8609 /* 8610 * Prevent sire and ipif_ire from getting deleted. 8611 * The newly created ire is tied to both of them via 8612 * the phandle and ihandle respectively. 8613 */ 8614 if (sire != NULL) { 8615 IRB_REFHOLD(sire->ire_bucket); 8616 /* Has it been removed already ? */ 8617 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8618 IRB_REFRELE(sire->ire_bucket); 8619 ire_refrele(ipif_ire); 8620 ire_refrele(save_ire); 8621 break; 8622 } 8623 } 8624 8625 IRB_REFHOLD(ipif_ire->ire_bucket); 8626 /* Has it been removed already ? */ 8627 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8628 IRB_REFRELE(ipif_ire->ire_bucket); 8629 if (sire != NULL) 8630 IRB_REFRELE(sire->ire_bucket); 8631 ire_refrele(ipif_ire); 8632 ire_refrele(save_ire); 8633 break; 8634 } 8635 8636 xmit_mp = first_mp; 8637 /* 8638 * In the case of multirouting, a copy 8639 * of the packet is done before its sending. 8640 * The copy is used to attempt another 8641 * route resolution, in a next loop. 8642 */ 8643 if (ire->ire_flags & RTF_MULTIRT) { 8644 copy_mp = copymsg(first_mp); 8645 if (copy_mp != NULL) { 8646 xmit_mp = copy_mp; 8647 MULTIRT_DEBUG_TAG(first_mp); 8648 } 8649 } 8650 ire_add_then_send(q, ire, xmit_mp); 8651 ire_refrele(save_ire); 8652 8653 /* Assert that sire is not deleted yet. */ 8654 if (sire != NULL) { 8655 ASSERT(sire->ire_ptpn != NULL); 8656 IRB_REFRELE(sire->ire_bucket); 8657 } 8658 8659 /* Assert that ipif_ire is not deleted yet. */ 8660 ASSERT(ipif_ire->ire_ptpn != NULL); 8661 IRB_REFRELE(ipif_ire->ire_bucket); 8662 ire_refrele(ipif_ire); 8663 8664 /* 8665 * If copy_mp is not NULL, multirouting was 8666 * requested. We loop to initiate a next 8667 * route resolution attempt, starting from sire. 8668 */ 8669 if (copy_mp != NULL) { 8670 /* 8671 * Search for the next unresolved 8672 * multirt route. 8673 */ 8674 copy_mp = NULL; 8675 ipif_ire = NULL; 8676 ire = NULL; 8677 multirt_resolve_next = B_TRUE; 8678 continue; 8679 } 8680 if (sire != NULL) 8681 ire_refrele(sire); 8682 ipif_refrele(src_ipif); 8683 ill_refrele(dst_ill); 8684 return; 8685 } 8686 case IRE_IF_NORESOLVER: { 8687 /* 8688 * We have what we need to build an IRE_CACHE. 8689 * 8690 * Create a new res_mp with the IP gateway address 8691 * in destination address in the DLPI hdr if the 8692 * physical length is exactly 4 bytes. 8693 */ 8694 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8695 uchar_t *addr; 8696 8697 if (gw) 8698 addr = (uchar_t *)&gw; 8699 else 8700 addr = (uchar_t *)&dst; 8701 8702 res_mp = ill_dlur_gen(addr, 8703 dst_ill->ill_phys_addr_length, 8704 dst_ill->ill_sap, 8705 dst_ill->ill_sap_length); 8706 8707 if (res_mp == NULL) { 8708 ip1dbg(("ip_newroute: res_mp NULL\n")); 8709 break; 8710 } 8711 } else if (dst_ill->ill_resolver_mp == NULL) { 8712 ip1dbg(("ip_newroute: dst_ill %p " 8713 "for IF_NORESOLV ire %p has " 8714 "no ill_resolver_mp\n", 8715 (void *)dst_ill, (void *)ire)); 8716 break; 8717 } else { 8718 res_mp = NULL; 8719 } 8720 8721 /* 8722 * TSol note: We are creating the ire cache for the 8723 * destination 'dst'. If 'dst' is offlink, going 8724 * through the first hop 'gw', the security attributes 8725 * of 'dst' must be set to point to the gateway 8726 * credentials of gateway 'gw'. If 'dst' is onlink, it 8727 * is possible that 'dst' is a potential gateway that is 8728 * referenced by some route that has some security 8729 * attributes. Thus in the former case, we need to do a 8730 * gcgrp_lookup of 'gw' while in the latter case we 8731 * need to do gcgrp_lookup of 'dst' itself. 8732 */ 8733 ga.ga_af = AF_INET; 8734 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8735 &ga.ga_addr); 8736 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8737 8738 ire = ire_create( 8739 (uchar_t *)&dst, /* dest address */ 8740 (uchar_t *)&ip_g_all_ones, /* mask */ 8741 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8742 (uchar_t *)&gw, /* gateway address */ 8743 NULL, 8744 &save_ire->ire_max_frag, 8745 NULL, /* Fast Path header */ 8746 dst_ill->ill_rq, /* recv-from queue */ 8747 dst_ill->ill_wq, /* send-to queue */ 8748 IRE_CACHE, 8749 res_mp, 8750 src_ipif, 8751 in_ill, /* Incoming ill */ 8752 save_ire->ire_mask, /* Parent mask */ 8753 (sire != NULL) ? /* Parent handle */ 8754 sire->ire_phandle : 0, 8755 save_ire->ire_ihandle, /* Interface handle */ 8756 (sire != NULL) ? sire->ire_flags & 8757 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8758 &(save_ire->ire_uinfo), 8759 NULL, 8760 gcgrp, 8761 ipst); 8762 8763 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8764 freeb(res_mp); 8765 8766 if (ire == NULL) { 8767 if (gcgrp != NULL) { 8768 GCGRP_REFRELE(gcgrp); 8769 gcgrp = NULL; 8770 } 8771 ire_refrele(save_ire); 8772 break; 8773 } 8774 8775 /* reference now held by IRE */ 8776 gcgrp = NULL; 8777 8778 ire->ire_marks |= ire_marks; 8779 8780 /* Prevent save_ire from getting deleted */ 8781 IRB_REFHOLD(save_ire->ire_bucket); 8782 /* Has it been removed already ? */ 8783 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8784 IRB_REFRELE(save_ire->ire_bucket); 8785 ire_refrele(save_ire); 8786 break; 8787 } 8788 8789 /* 8790 * In the case of multirouting, a copy 8791 * of the packet is made before it is sent. 8792 * The copy is used in the next 8793 * loop to attempt another resolution. 8794 */ 8795 xmit_mp = first_mp; 8796 if ((sire != NULL) && 8797 (sire->ire_flags & RTF_MULTIRT)) { 8798 copy_mp = copymsg(first_mp); 8799 if (copy_mp != NULL) { 8800 xmit_mp = copy_mp; 8801 MULTIRT_DEBUG_TAG(first_mp); 8802 } 8803 } 8804 ire_add_then_send(q, ire, xmit_mp); 8805 8806 /* Assert that it is not deleted yet. */ 8807 ASSERT(save_ire->ire_ptpn != NULL); 8808 IRB_REFRELE(save_ire->ire_bucket); 8809 ire_refrele(save_ire); 8810 8811 if (copy_mp != NULL) { 8812 /* 8813 * If we found a (no)resolver, we ignore any 8814 * trailing top priority IRE_CACHE in further 8815 * loops. This ensures that we do not omit any 8816 * (no)resolver. 8817 * This IRE_CACHE, if any, will be processed 8818 * by another thread entering ip_newroute(). 8819 * IRE_CACHE entries, if any, will be processed 8820 * by another thread entering ip_newroute(), 8821 * (upon resolver response, for instance). 8822 * This aims to force parallel multirt 8823 * resolutions as soon as a packet must be sent. 8824 * In the best case, after the tx of only one 8825 * packet, all reachable routes are resolved. 8826 * Otherwise, the resolution of all RTF_MULTIRT 8827 * routes would require several emissions. 8828 */ 8829 multirt_flags &= ~MULTIRT_CACHEGW; 8830 8831 /* 8832 * Search for the next unresolved multirt 8833 * route. 8834 */ 8835 copy_mp = NULL; 8836 save_ire = NULL; 8837 ire = NULL; 8838 multirt_resolve_next = B_TRUE; 8839 continue; 8840 } 8841 8842 /* 8843 * Don't need sire anymore 8844 */ 8845 if (sire != NULL) 8846 ire_refrele(sire); 8847 8848 ipif_refrele(src_ipif); 8849 ill_refrele(dst_ill); 8850 return; 8851 } 8852 case IRE_IF_RESOLVER: 8853 /* 8854 * We can't build an IRE_CACHE yet, but at least we 8855 * found a resolver that can help. 8856 */ 8857 res_mp = dst_ill->ill_resolver_mp; 8858 if (!OK_RESOLVER_MP(res_mp)) 8859 break; 8860 8861 /* 8862 * To be at this point in the code with a non-zero gw 8863 * means that dst is reachable through a gateway that 8864 * we have never resolved. By changing dst to the gw 8865 * addr we resolve the gateway first. 8866 * When ire_add_then_send() tries to put the IP dg 8867 * to dst, it will reenter ip_newroute() at which 8868 * time we will find the IRE_CACHE for the gw and 8869 * create another IRE_CACHE in case IRE_CACHE above. 8870 */ 8871 if (gw != INADDR_ANY) { 8872 /* 8873 * The source ipif that was determined above was 8874 * relative to the destination address, not the 8875 * gateway's. If src_ipif was not taken out of 8876 * the IRE_IF_RESOLVER entry, we'll need to call 8877 * ipif_select_source() again. 8878 */ 8879 if (src_ipif != ire->ire_ipif) { 8880 ipif_refrele(src_ipif); 8881 src_ipif = ipif_select_source(dst_ill, 8882 gw, zoneid); 8883 if (src_ipif == NULL) { 8884 if (ip_debug > 2) { 8885 pr_addr_dbg( 8886 "ip_newroute: no " 8887 "src for gw %s ", 8888 AF_INET, &gw); 8889 printf("through " 8890 "interface %s\n", 8891 dst_ill->ill_name); 8892 } 8893 goto icmp_err_ret; 8894 } 8895 } 8896 save_dst = dst; 8897 dst = gw; 8898 gw = INADDR_ANY; 8899 } 8900 8901 /* 8902 * We obtain a partial IRE_CACHE which we will pass 8903 * along with the resolver query. When the response 8904 * comes back it will be there ready for us to add. 8905 * The ire_max_frag is atomically set under the 8906 * irebucket lock in ire_add_v[46]. 8907 */ 8908 8909 ire = ire_create_mp( 8910 (uchar_t *)&dst, /* dest address */ 8911 (uchar_t *)&ip_g_all_ones, /* mask */ 8912 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8913 (uchar_t *)&gw, /* gateway address */ 8914 NULL, /* no in_src_addr */ 8915 NULL, /* ire_max_frag */ 8916 NULL, /* Fast Path header */ 8917 dst_ill->ill_rq, /* recv-from queue */ 8918 dst_ill->ill_wq, /* send-to queue */ 8919 IRE_CACHE, 8920 NULL, 8921 src_ipif, /* Interface ipif */ 8922 in_ill, /* Incoming ILL */ 8923 save_ire->ire_mask, /* Parent mask */ 8924 0, 8925 save_ire->ire_ihandle, /* Interface handle */ 8926 0, /* flags if any */ 8927 &(save_ire->ire_uinfo), 8928 NULL, 8929 NULL, 8930 ipst); 8931 8932 if (ire == NULL) { 8933 ire_refrele(save_ire); 8934 break; 8935 } 8936 8937 if ((sire != NULL) && 8938 (sire->ire_flags & RTF_MULTIRT)) { 8939 copy_mp = copymsg(first_mp); 8940 if (copy_mp != NULL) 8941 MULTIRT_DEBUG_TAG(copy_mp); 8942 } 8943 8944 ire->ire_marks |= ire_marks; 8945 8946 /* 8947 * Construct message chain for the resolver 8948 * of the form: 8949 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8950 * Packet could contain a IPSEC_OUT mp. 8951 * 8952 * NOTE : ire will be added later when the response 8953 * comes back from ARP. If the response does not 8954 * come back, ARP frees the packet. For this reason, 8955 * we can't REFHOLD the bucket of save_ire to prevent 8956 * deletions. We may not be able to REFRELE the bucket 8957 * if the response never comes back. Thus, before 8958 * adding the ire, ire_add_v4 will make sure that the 8959 * interface route does not get deleted. This is the 8960 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8961 * where we can always prevent deletions because of 8962 * the synchronous nature of adding IRES i.e 8963 * ire_add_then_send is called after creating the IRE. 8964 */ 8965 ASSERT(ire->ire_mp != NULL); 8966 ire->ire_mp->b_cont = first_mp; 8967 /* Have saved_mp handy, for cleanup if canput fails */ 8968 saved_mp = mp; 8969 mp = copyb(res_mp); 8970 if (mp == NULL) { 8971 /* Prepare for cleanup */ 8972 mp = saved_mp; /* pkt */ 8973 ire_delete(ire); /* ire_mp */ 8974 ire = NULL; 8975 ire_refrele(save_ire); 8976 if (copy_mp != NULL) { 8977 MULTIRT_DEBUG_UNTAG(copy_mp); 8978 freemsg(copy_mp); 8979 copy_mp = NULL; 8980 } 8981 break; 8982 } 8983 linkb(mp, ire->ire_mp); 8984 8985 /* 8986 * Fill in the source and dest addrs for the resolver. 8987 * NOTE: this depends on memory layouts imposed by 8988 * ill_init(). 8989 */ 8990 areq = (areq_t *)mp->b_rptr; 8991 addrp = (ipaddr_t *)((char *)areq + 8992 areq->areq_sender_addr_offset); 8993 if (do_attach_ill) { 8994 /* 8995 * This is bind to no failover case. 8996 * arp packet also must go out on attach_ill. 8997 */ 8998 ASSERT(ipha->ipha_src != NULL); 8999 *addrp = ipha->ipha_src; 9000 } else { 9001 *addrp = save_ire->ire_src_addr; 9002 } 9003 9004 ire_refrele(save_ire); 9005 addrp = (ipaddr_t *)((char *)areq + 9006 areq->areq_target_addr_offset); 9007 *addrp = dst; 9008 /* Up to the resolver. */ 9009 if (canputnext(dst_ill->ill_rq) && 9010 !(dst_ill->ill_arp_closing)) { 9011 putnext(dst_ill->ill_rq, mp); 9012 ire = NULL; 9013 if (copy_mp != NULL) { 9014 /* 9015 * If we found a resolver, we ignore 9016 * any trailing top priority IRE_CACHE 9017 * in the further loops. This ensures 9018 * that we do not omit any resolver. 9019 * IRE_CACHE entries, if any, will be 9020 * processed next time we enter 9021 * ip_newroute(). 9022 */ 9023 multirt_flags &= ~MULTIRT_CACHEGW; 9024 /* 9025 * Search for the next unresolved 9026 * multirt route. 9027 */ 9028 first_mp = copy_mp; 9029 copy_mp = NULL; 9030 /* Prepare the next resolution loop. */ 9031 mp = first_mp; 9032 EXTRACT_PKT_MP(mp, first_mp, 9033 mctl_present); 9034 if (mctl_present) 9035 io = (ipsec_out_t *) 9036 first_mp->b_rptr; 9037 ipha = (ipha_t *)mp->b_rptr; 9038 9039 ASSERT(sire != NULL); 9040 9041 dst = save_dst; 9042 multirt_resolve_next = B_TRUE; 9043 continue; 9044 } 9045 9046 if (sire != NULL) 9047 ire_refrele(sire); 9048 9049 /* 9050 * The response will come back in ip_wput 9051 * with db_type IRE_DB_TYPE. 9052 */ 9053 ipif_refrele(src_ipif); 9054 ill_refrele(dst_ill); 9055 return; 9056 } else { 9057 /* Prepare for cleanup */ 9058 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 9059 mp); 9060 mp->b_cont = NULL; 9061 freeb(mp); /* areq */ 9062 /* 9063 * this is an ire that is not added to the 9064 * cache. ire_freemblk will handle the release 9065 * of any resources associated with the ire. 9066 */ 9067 ire_delete(ire); /* ire_mp */ 9068 mp = saved_mp; /* pkt */ 9069 ire = NULL; 9070 if (copy_mp != NULL) { 9071 MULTIRT_DEBUG_UNTAG(copy_mp); 9072 freemsg(copy_mp); 9073 copy_mp = NULL; 9074 } 9075 break; 9076 } 9077 default: 9078 break; 9079 } 9080 } while (multirt_resolve_next); 9081 9082 ip1dbg(("ip_newroute: dropped\n")); 9083 /* Did this packet originate externally? */ 9084 if (mp->b_prev) { 9085 mp->b_next = NULL; 9086 mp->b_prev = NULL; 9087 if (in_ill != NULL) { 9088 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 9089 } else { 9090 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9091 } 9092 } else { 9093 if (dst_ill != NULL) { 9094 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 9095 } else { 9096 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 9097 } 9098 } 9099 ASSERT(copy_mp == NULL); 9100 MULTIRT_DEBUG_UNTAG(first_mp); 9101 freemsg(first_mp); 9102 if (ire != NULL) 9103 ire_refrele(ire); 9104 if (sire != NULL) 9105 ire_refrele(sire); 9106 if (src_ipif != NULL) 9107 ipif_refrele(src_ipif); 9108 if (dst_ill != NULL) 9109 ill_refrele(dst_ill); 9110 return; 9111 9112 icmp_err_ret: 9113 ip1dbg(("ip_newroute: no route\n")); 9114 if (src_ipif != NULL) 9115 ipif_refrele(src_ipif); 9116 if (dst_ill != NULL) 9117 ill_refrele(dst_ill); 9118 if (sire != NULL) 9119 ire_refrele(sire); 9120 /* Did this packet originate externally? */ 9121 if (mp->b_prev) { 9122 mp->b_next = NULL; 9123 mp->b_prev = NULL; 9124 if (in_ill != NULL) { 9125 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInNoRoutes); 9126 } else { 9127 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 9128 } 9129 q = WR(q); 9130 } else { 9131 /* 9132 * There is no outgoing ill, so just increment the 9133 * system MIB. 9134 */ 9135 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9136 /* 9137 * Since ip_wput() isn't close to finished, we fill 9138 * in enough of the header for credible error reporting. 9139 */ 9140 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9141 /* Failed */ 9142 MULTIRT_DEBUG_UNTAG(first_mp); 9143 freemsg(first_mp); 9144 if (ire != NULL) 9145 ire_refrele(ire); 9146 return; 9147 } 9148 } 9149 9150 /* 9151 * At this point we will have ire only if RTF_BLACKHOLE 9152 * or RTF_REJECT flags are set on the IRE. It will not 9153 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9154 */ 9155 if (ire != NULL) { 9156 if (ire->ire_flags & RTF_BLACKHOLE) { 9157 ire_refrele(ire); 9158 MULTIRT_DEBUG_UNTAG(first_mp); 9159 freemsg(first_mp); 9160 return; 9161 } 9162 ire_refrele(ire); 9163 } 9164 if (ip_source_routed(ipha, ipst)) { 9165 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9166 zoneid, ipst); 9167 return; 9168 } 9169 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9170 } 9171 9172 ip_opt_info_t zero_info; 9173 9174 /* 9175 * IPv4 - 9176 * ip_newroute_ipif is called by ip_wput_multicast and 9177 * ip_rput_forward_multicast whenever we need to send 9178 * out a packet to a destination address for which we do not have specific 9179 * routing information. It is used when the packet will be sent out 9180 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 9181 * socket option is set or icmp error message wants to go out on a particular 9182 * interface for a unicast packet. 9183 * 9184 * In most cases, the destination address is resolved thanks to the ipif 9185 * intrinsic resolver. However, there are some cases where the call to 9186 * ip_newroute_ipif must take into account the potential presence of 9187 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9188 * that uses the interface. This is specified through flags, 9189 * which can be a combination of: 9190 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9191 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9192 * and flags. Additionally, the packet source address has to be set to 9193 * the specified address. The caller is thus expected to set this flag 9194 * if the packet has no specific source address yet. 9195 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9196 * flag, the resulting ire will inherit the flag. All unresolved routes 9197 * to the destination must be explored in the same call to 9198 * ip_newroute_ipif(). 9199 */ 9200 static void 9201 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9202 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9203 { 9204 areq_t *areq; 9205 ire_t *ire = NULL; 9206 mblk_t *res_mp; 9207 ipaddr_t *addrp; 9208 mblk_t *first_mp; 9209 ire_t *save_ire = NULL; 9210 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9211 ipif_t *src_ipif = NULL; 9212 ushort_t ire_marks = 0; 9213 ill_t *dst_ill = NULL; 9214 boolean_t mctl_present; 9215 ipsec_out_t *io; 9216 ipha_t *ipha; 9217 int ihandle = 0; 9218 mblk_t *saved_mp; 9219 ire_t *fire = NULL; 9220 mblk_t *copy_mp = NULL; 9221 boolean_t multirt_resolve_next; 9222 ipaddr_t ipha_dst; 9223 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9224 9225 /* 9226 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9227 * here for uniformity 9228 */ 9229 ipif_refhold(ipif); 9230 9231 /* 9232 * This loop is run only once in most cases. 9233 * We loop to resolve further routes only when the destination 9234 * can be reached through multiple RTF_MULTIRT-flagged ires. 9235 */ 9236 do { 9237 if (dst_ill != NULL) { 9238 ill_refrele(dst_ill); 9239 dst_ill = NULL; 9240 } 9241 if (src_ipif != NULL) { 9242 ipif_refrele(src_ipif); 9243 src_ipif = NULL; 9244 } 9245 multirt_resolve_next = B_FALSE; 9246 9247 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9248 ipif->ipif_ill->ill_name)); 9249 9250 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9251 if (mctl_present) 9252 io = (ipsec_out_t *)first_mp->b_rptr; 9253 9254 ipha = (ipha_t *)mp->b_rptr; 9255 9256 /* 9257 * Save the packet destination address, we may need it after 9258 * the packet has been consumed. 9259 */ 9260 ipha_dst = ipha->ipha_dst; 9261 9262 /* 9263 * If the interface is a pt-pt interface we look for an 9264 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9265 * local_address and the pt-pt destination address. Otherwise 9266 * we just match the local address. 9267 * NOTE: dst could be different than ipha->ipha_dst in case 9268 * of sending igmp multicast packets over a point-to-point 9269 * connection. 9270 * Thus we must be careful enough to check ipha_dst to be a 9271 * multicast address, otherwise it will take xmit_if path for 9272 * multicast packets resulting into kernel stack overflow by 9273 * repeated calls to ip_newroute_ipif from ire_send(). 9274 */ 9275 if (CLASSD(ipha_dst) && 9276 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9277 goto err_ret; 9278 } 9279 9280 /* 9281 * We check if an IRE_OFFSUBNET for the addr that goes through 9282 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9283 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9284 * propagate its flags to the new ire. 9285 */ 9286 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9287 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9288 ip2dbg(("ip_newroute_ipif: " 9289 "ipif_lookup_multi_ire(" 9290 "ipif %p, dst %08x) = fire %p\n", 9291 (void *)ipif, ntohl(dst), (void *)fire)); 9292 } 9293 9294 if (mctl_present && io->ipsec_out_attach_if) { 9295 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9296 io->ipsec_out_ill_index, B_FALSE, ipst); 9297 9298 /* Failure case frees things for us. */ 9299 if (attach_ill == NULL) { 9300 ipif_refrele(ipif); 9301 if (fire != NULL) 9302 ire_refrele(fire); 9303 return; 9304 } 9305 9306 /* 9307 * Check if we need an ire that will not be 9308 * looked up by anybody else i.e. HIDDEN. 9309 */ 9310 if (ill_is_probeonly(attach_ill)) { 9311 ire_marks = IRE_MARK_HIDDEN; 9312 } 9313 /* 9314 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9315 * case. 9316 */ 9317 dst_ill = ipif->ipif_ill; 9318 /* attach_ill has been refheld by ip_grab_attach_ill */ 9319 ASSERT(dst_ill == attach_ill); 9320 } else { 9321 /* 9322 * If this is set by IP_XMIT_IF, then make sure that 9323 * ipif is pointing to the same ill as the IP_XMIT_IF 9324 * specified ill. 9325 */ 9326 ASSERT((connp == NULL) || 9327 (connp->conn_xmit_if_ill == NULL) || 9328 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9329 /* 9330 * If the interface belongs to an interface group, 9331 * make sure the next possible interface in the group 9332 * is used. This encourages load spreading among 9333 * peers in an interface group. 9334 * Note: load spreading is disabled for RTF_MULTIRT 9335 * routes. 9336 */ 9337 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9338 (fire->ire_flags & RTF_MULTIRT)) { 9339 /* 9340 * Don't perform outbound load spreading 9341 * in the case of an RTF_MULTIRT issued route, 9342 * we actually typically want to replicate 9343 * outgoing packets through particular 9344 * interfaces. 9345 */ 9346 dst_ill = ipif->ipif_ill; 9347 ill_refhold(dst_ill); 9348 } else { 9349 dst_ill = ip_newroute_get_dst_ill( 9350 ipif->ipif_ill); 9351 } 9352 if (dst_ill == NULL) { 9353 if (ip_debug > 2) { 9354 pr_addr_dbg("ip_newroute_ipif: " 9355 "no dst ill for dst %s\n", 9356 AF_INET, &dst); 9357 } 9358 goto err_ret; 9359 } 9360 } 9361 9362 /* 9363 * Pick a source address preferring non-deprecated ones. 9364 * Unlike ip_newroute, we don't do any source address 9365 * selection here since for multicast it really does not help 9366 * in inbound load spreading as in the unicast case. 9367 */ 9368 if ((flags & RTF_SETSRC) && (fire != NULL) && 9369 (fire->ire_flags & RTF_SETSRC)) { 9370 /* 9371 * As requested by flags, an IRE_OFFSUBNET was looked up 9372 * on that interface. This ire has RTF_SETSRC flag, so 9373 * the source address of the packet must be changed. 9374 * Check that the ipif matching the requested source 9375 * address still exists. 9376 */ 9377 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9378 zoneid, NULL, NULL, NULL, NULL, ipst); 9379 } 9380 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9381 (connp != NULL && ipif->ipif_zoneid != zoneid && 9382 ipif->ipif_zoneid != ALL_ZONES)) && 9383 (src_ipif == NULL)) { 9384 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9385 if (src_ipif == NULL) { 9386 if (ip_debug > 2) { 9387 /* ip1dbg */ 9388 pr_addr_dbg("ip_newroute_ipif: " 9389 "no src for dst %s", 9390 AF_INET, &dst); 9391 } 9392 ip1dbg((" through interface %s\n", 9393 dst_ill->ill_name)); 9394 goto err_ret; 9395 } 9396 ipif_refrele(ipif); 9397 ipif = src_ipif; 9398 ipif_refhold(ipif); 9399 } 9400 if (src_ipif == NULL) { 9401 src_ipif = ipif; 9402 ipif_refhold(src_ipif); 9403 } 9404 9405 /* 9406 * Assign a source address while we have the conn. 9407 * We can't have ip_wput_ire pick a source address when the 9408 * packet returns from arp since conn_unspec_src might be set 9409 * and we loose the conn when going through arp. 9410 */ 9411 if (ipha->ipha_src == INADDR_ANY && 9412 (connp == NULL || !connp->conn_unspec_src)) { 9413 ipha->ipha_src = src_ipif->ipif_src_addr; 9414 } 9415 9416 /* 9417 * In case of IP_XMIT_IF, it is possible that the outgoing 9418 * interface does not have an interface ire. 9419 * Example: Thousands of mobileip PPP interfaces to mobile 9420 * nodes. We don't want to create interface ires because 9421 * packets from other mobile nodes must not take the route 9422 * via interface ires to the visiting mobile node without 9423 * going through the home agent, in absence of mobileip 9424 * route optimization. 9425 */ 9426 if (CLASSD(ipha_dst) && (connp == NULL || 9427 connp->conn_xmit_if_ill == NULL) && 9428 infop->ip_opt_ill_index == 0) { 9429 /* ipif_to_ire returns an held ire */ 9430 ire = ipif_to_ire(ipif); 9431 if (ire == NULL) 9432 goto err_ret; 9433 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9434 goto err_ret; 9435 /* 9436 * ihandle is needed when the ire is added to 9437 * cache table. 9438 */ 9439 save_ire = ire; 9440 ihandle = save_ire->ire_ihandle; 9441 9442 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9443 "flags %04x\n", 9444 (void *)ire, (void *)ipif, flags)); 9445 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9446 (fire->ire_flags & RTF_MULTIRT)) { 9447 /* 9448 * As requested by flags, an IRE_OFFSUBNET was 9449 * looked up on that interface. This ire has 9450 * RTF_MULTIRT flag, so the resolution loop will 9451 * be re-entered to resolve additional routes on 9452 * other interfaces. For that purpose, a copy of 9453 * the packet is performed at this point. 9454 */ 9455 fire->ire_last_used_time = lbolt; 9456 copy_mp = copymsg(first_mp); 9457 if (copy_mp) { 9458 MULTIRT_DEBUG_TAG(copy_mp); 9459 } 9460 } 9461 if ((flags & RTF_SETSRC) && (fire != NULL) && 9462 (fire->ire_flags & RTF_SETSRC)) { 9463 /* 9464 * As requested by flags, an IRE_OFFSUBET was 9465 * looked up on that interface. This ire has 9466 * RTF_SETSRC flag, so the source address of the 9467 * packet must be changed. 9468 */ 9469 ipha->ipha_src = fire->ire_src_addr; 9470 } 9471 } else { 9472 ASSERT((connp == NULL) || 9473 (connp->conn_xmit_if_ill != NULL) || 9474 (connp->conn_dontroute) || 9475 infop->ip_opt_ill_index != 0); 9476 /* 9477 * The only ways we can come here are: 9478 * 1) IP_XMIT_IF socket option is set 9479 * 2) ICMP error message generated from 9480 * ip_mrtun_forward() routine and it needs 9481 * to go through the specified ill. 9482 * 3) SO_DONTROUTE socket option is set 9483 * 4) IP_PKTINFO option is passed in as ancillary data. 9484 * In all cases, the new ire will not be added 9485 * into cache table. 9486 */ 9487 ire_marks |= IRE_MARK_NOADD; 9488 } 9489 9490 switch (ipif->ipif_net_type) { 9491 case IRE_IF_NORESOLVER: { 9492 /* We have what we need to build an IRE_CACHE. */ 9493 mblk_t *res_mp; 9494 9495 /* 9496 * Create a new res_mp with the 9497 * IP gateway address as destination address in the 9498 * DLPI hdr if the physical length is exactly 4 bytes. 9499 */ 9500 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9501 res_mp = ill_dlur_gen((uchar_t *)&dst, 9502 dst_ill->ill_phys_addr_length, 9503 dst_ill->ill_sap, 9504 dst_ill->ill_sap_length); 9505 } else if (dst_ill->ill_resolver_mp == NULL) { 9506 ip1dbg(("ip_newroute: dst_ill %p " 9507 "for IF_NORESOLV ire %p has " 9508 "no ill_resolver_mp\n", 9509 (void *)dst_ill, (void *)ire)); 9510 break; 9511 } else { 9512 /* use the value set in ip_ll_subnet_defaults */ 9513 res_mp = ill_dlur_gen(NULL, 9514 dst_ill->ill_phys_addr_length, 9515 dst_ill->ill_sap, 9516 dst_ill->ill_sap_length); 9517 } 9518 9519 if (res_mp == NULL) 9520 break; 9521 /* 9522 * The new ire inherits the IRE_OFFSUBNET flags 9523 * and source address, if this was requested. 9524 */ 9525 ire = ire_create( 9526 (uchar_t *)&dst, /* dest address */ 9527 (uchar_t *)&ip_g_all_ones, /* mask */ 9528 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9529 NULL, /* gateway address */ 9530 NULL, 9531 &ipif->ipif_mtu, 9532 NULL, /* Fast Path header */ 9533 dst_ill->ill_rq, /* recv-from queue */ 9534 dst_ill->ill_wq, /* send-to queue */ 9535 IRE_CACHE, 9536 res_mp, 9537 src_ipif, 9538 NULL, 9539 (save_ire != NULL ? save_ire->ire_mask : 0), 9540 (fire != NULL) ? /* Parent handle */ 9541 fire->ire_phandle : 0, 9542 ihandle, /* Interface handle */ 9543 (fire != NULL) ? 9544 (fire->ire_flags & 9545 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9546 (save_ire == NULL ? &ire_uinfo_null : 9547 &save_ire->ire_uinfo), 9548 NULL, 9549 NULL, 9550 ipst); 9551 9552 freeb(res_mp); 9553 9554 if (ire == NULL) { 9555 if (save_ire != NULL) 9556 ire_refrele(save_ire); 9557 break; 9558 } 9559 9560 ire->ire_marks |= ire_marks; 9561 9562 /* 9563 * If IRE_MARK_NOADD is set then we need to convert 9564 * the max_fragp to a useable value now. This is 9565 * normally done in ire_add_v[46]. We also need to 9566 * associate the ire with an nce (normally would be 9567 * done in ip_wput_nondata()). 9568 * 9569 * Note that IRE_MARK_NOADD packets created here 9570 * do not have a non-null ire_mp pointer. The null 9571 * value of ire_bucket indicates that they were 9572 * never added. 9573 */ 9574 if (ire->ire_marks & IRE_MARK_NOADD) { 9575 uint_t max_frag; 9576 9577 max_frag = *ire->ire_max_fragp; 9578 ire->ire_max_fragp = NULL; 9579 ire->ire_max_frag = max_frag; 9580 9581 if ((ire->ire_nce = ndp_lookup_v4( 9582 ire_to_ill(ire), 9583 (ire->ire_gateway_addr != INADDR_ANY ? 9584 &ire->ire_gateway_addr : &ire->ire_addr), 9585 B_FALSE)) == NULL) { 9586 if (save_ire != NULL) 9587 ire_refrele(save_ire); 9588 break; 9589 } 9590 ASSERT(ire->ire_nce->nce_state == 9591 ND_REACHABLE); 9592 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9593 } 9594 9595 /* Prevent save_ire from getting deleted */ 9596 if (save_ire != NULL) { 9597 IRB_REFHOLD(save_ire->ire_bucket); 9598 /* Has it been removed already ? */ 9599 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9600 IRB_REFRELE(save_ire->ire_bucket); 9601 ire_refrele(save_ire); 9602 break; 9603 } 9604 } 9605 9606 ire_add_then_send(q, ire, first_mp); 9607 9608 /* Assert that save_ire is not deleted yet. */ 9609 if (save_ire != NULL) { 9610 ASSERT(save_ire->ire_ptpn != NULL); 9611 IRB_REFRELE(save_ire->ire_bucket); 9612 ire_refrele(save_ire); 9613 save_ire = NULL; 9614 } 9615 if (fire != NULL) { 9616 ire_refrele(fire); 9617 fire = NULL; 9618 } 9619 9620 /* 9621 * the resolution loop is re-entered if this 9622 * was requested through flags and if we 9623 * actually are in a multirouting case. 9624 */ 9625 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9626 boolean_t need_resolve = 9627 ire_multirt_need_resolve(ipha_dst, 9628 MBLK_GETLABEL(copy_mp), ipst); 9629 if (!need_resolve) { 9630 MULTIRT_DEBUG_UNTAG(copy_mp); 9631 freemsg(copy_mp); 9632 copy_mp = NULL; 9633 } else { 9634 /* 9635 * ipif_lookup_group() calls 9636 * ire_lookup_multi() that uses 9637 * ire_ftable_lookup() to find 9638 * an IRE_INTERFACE for the group. 9639 * In the multirt case, 9640 * ire_lookup_multi() then invokes 9641 * ire_multirt_lookup() to find 9642 * the next resolvable ire. 9643 * As a result, we obtain an new 9644 * interface, derived from the 9645 * next ire. 9646 */ 9647 ipif_refrele(ipif); 9648 ipif = ipif_lookup_group(ipha_dst, 9649 zoneid, ipst); 9650 ip2dbg(("ip_newroute_ipif: " 9651 "multirt dst %08x, ipif %p\n", 9652 htonl(dst), (void *)ipif)); 9653 if (ipif != NULL) { 9654 mp = copy_mp; 9655 copy_mp = NULL; 9656 multirt_resolve_next = B_TRUE; 9657 continue; 9658 } else { 9659 freemsg(copy_mp); 9660 } 9661 } 9662 } 9663 if (ipif != NULL) 9664 ipif_refrele(ipif); 9665 ill_refrele(dst_ill); 9666 ipif_refrele(src_ipif); 9667 return; 9668 } 9669 case IRE_IF_RESOLVER: 9670 /* 9671 * We can't build an IRE_CACHE yet, but at least 9672 * we found a resolver that can help. 9673 */ 9674 res_mp = dst_ill->ill_resolver_mp; 9675 if (!OK_RESOLVER_MP(res_mp)) 9676 break; 9677 9678 /* 9679 * We obtain a partial IRE_CACHE which we will pass 9680 * along with the resolver query. When the response 9681 * comes back it will be there ready for us to add. 9682 * The new ire inherits the IRE_OFFSUBNET flags 9683 * and source address, if this was requested. 9684 * The ire_max_frag is atomically set under the 9685 * irebucket lock in ire_add_v[46]. Only in the 9686 * case of IRE_MARK_NOADD, we set it here itself. 9687 */ 9688 ire = ire_create_mp( 9689 (uchar_t *)&dst, /* dest address */ 9690 (uchar_t *)&ip_g_all_ones, /* mask */ 9691 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9692 NULL, /* gateway address */ 9693 NULL, /* no in_src_addr */ 9694 (ire_marks & IRE_MARK_NOADD) ? 9695 ipif->ipif_mtu : 0, /* max_frag */ 9696 NULL, /* Fast path header */ 9697 dst_ill->ill_rq, /* recv-from queue */ 9698 dst_ill->ill_wq, /* send-to queue */ 9699 IRE_CACHE, 9700 NULL, /* let ire_nce_init figure res_mp out */ 9701 src_ipif, 9702 NULL, 9703 (save_ire != NULL ? save_ire->ire_mask : 0), 9704 (fire != NULL) ? /* Parent handle */ 9705 fire->ire_phandle : 0, 9706 ihandle, /* Interface handle */ 9707 (fire != NULL) ? /* flags if any */ 9708 (fire->ire_flags & 9709 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9710 (save_ire == NULL ? &ire_uinfo_null : 9711 &save_ire->ire_uinfo), 9712 NULL, 9713 NULL, 9714 ipst); 9715 9716 if (save_ire != NULL) { 9717 ire_refrele(save_ire); 9718 save_ire = NULL; 9719 } 9720 if (ire == NULL) 9721 break; 9722 9723 ire->ire_marks |= ire_marks; 9724 /* 9725 * Construct message chain for the resolver of the 9726 * form: 9727 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9728 * 9729 * NOTE : ire will be added later when the response 9730 * comes back from ARP. If the response does not 9731 * come back, ARP frees the packet. For this reason, 9732 * we can't REFHOLD the bucket of save_ire to prevent 9733 * deletions. We may not be able to REFRELE the 9734 * bucket if the response never comes back. 9735 * Thus, before adding the ire, ire_add_v4 will make 9736 * sure that the interface route does not get deleted. 9737 * This is the only case unlike ip_newroute_v6, 9738 * ip_newroute_ipif_v6 where we can always prevent 9739 * deletions because ire_add_then_send is called after 9740 * creating the IRE. 9741 * If IRE_MARK_NOADD is set, then ire_add_then_send 9742 * does not add this IRE into the IRE CACHE. 9743 */ 9744 ASSERT(ire->ire_mp != NULL); 9745 ire->ire_mp->b_cont = first_mp; 9746 /* Have saved_mp handy, for cleanup if canput fails */ 9747 saved_mp = mp; 9748 mp = copyb(res_mp); 9749 if (mp == NULL) { 9750 /* Prepare for cleanup */ 9751 mp = saved_mp; /* pkt */ 9752 ire_delete(ire); /* ire_mp */ 9753 ire = NULL; 9754 if (copy_mp != NULL) { 9755 MULTIRT_DEBUG_UNTAG(copy_mp); 9756 freemsg(copy_mp); 9757 copy_mp = NULL; 9758 } 9759 break; 9760 } 9761 linkb(mp, ire->ire_mp); 9762 9763 /* 9764 * Fill in the source and dest addrs for the resolver. 9765 * NOTE: this depends on memory layouts imposed by 9766 * ill_init(). 9767 */ 9768 areq = (areq_t *)mp->b_rptr; 9769 addrp = (ipaddr_t *)((char *)areq + 9770 areq->areq_sender_addr_offset); 9771 *addrp = ire->ire_src_addr; 9772 addrp = (ipaddr_t *)((char *)areq + 9773 areq->areq_target_addr_offset); 9774 *addrp = dst; 9775 /* Up to the resolver. */ 9776 if (canputnext(dst_ill->ill_rq) && 9777 !(dst_ill->ill_arp_closing)) { 9778 putnext(dst_ill->ill_rq, mp); 9779 /* 9780 * The response will come back in ip_wput 9781 * with db_type IRE_DB_TYPE. 9782 */ 9783 } else { 9784 mp->b_cont = NULL; 9785 freeb(mp); /* areq */ 9786 ire_delete(ire); /* ire_mp */ 9787 saved_mp->b_next = NULL; 9788 saved_mp->b_prev = NULL; 9789 freemsg(first_mp); /* pkt */ 9790 ip2dbg(("ip_newroute_ipif: dropped\n")); 9791 } 9792 9793 if (fire != NULL) { 9794 ire_refrele(fire); 9795 fire = NULL; 9796 } 9797 9798 9799 /* 9800 * The resolution loop is re-entered if this was 9801 * requested through flags and we actually are 9802 * in a multirouting case. 9803 */ 9804 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9805 boolean_t need_resolve = 9806 ire_multirt_need_resolve(ipha_dst, 9807 MBLK_GETLABEL(copy_mp), ipst); 9808 if (!need_resolve) { 9809 MULTIRT_DEBUG_UNTAG(copy_mp); 9810 freemsg(copy_mp); 9811 copy_mp = NULL; 9812 } else { 9813 /* 9814 * ipif_lookup_group() calls 9815 * ire_lookup_multi() that uses 9816 * ire_ftable_lookup() to find 9817 * an IRE_INTERFACE for the group. 9818 * In the multirt case, 9819 * ire_lookup_multi() then invokes 9820 * ire_multirt_lookup() to find 9821 * the next resolvable ire. 9822 * As a result, we obtain an new 9823 * interface, derived from the 9824 * next ire. 9825 */ 9826 ipif_refrele(ipif); 9827 ipif = ipif_lookup_group(ipha_dst, 9828 zoneid, ipst); 9829 if (ipif != NULL) { 9830 mp = copy_mp; 9831 copy_mp = NULL; 9832 multirt_resolve_next = B_TRUE; 9833 continue; 9834 } else { 9835 freemsg(copy_mp); 9836 } 9837 } 9838 } 9839 if (ipif != NULL) 9840 ipif_refrele(ipif); 9841 ill_refrele(dst_ill); 9842 ipif_refrele(src_ipif); 9843 return; 9844 default: 9845 break; 9846 } 9847 } while (multirt_resolve_next); 9848 9849 err_ret: 9850 ip2dbg(("ip_newroute_ipif: dropped\n")); 9851 if (fire != NULL) 9852 ire_refrele(fire); 9853 ipif_refrele(ipif); 9854 /* Did this packet originate externally? */ 9855 if (dst_ill != NULL) 9856 ill_refrele(dst_ill); 9857 if (src_ipif != NULL) 9858 ipif_refrele(src_ipif); 9859 if (mp->b_prev || mp->b_next) { 9860 mp->b_next = NULL; 9861 mp->b_prev = NULL; 9862 } else { 9863 /* 9864 * Since ip_wput() isn't close to finished, we fill 9865 * in enough of the header for credible error reporting. 9866 */ 9867 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9868 /* Failed */ 9869 freemsg(first_mp); 9870 if (ire != NULL) 9871 ire_refrele(ire); 9872 return; 9873 } 9874 } 9875 /* 9876 * At this point we will have ire only if RTF_BLACKHOLE 9877 * or RTF_REJECT flags are set on the IRE. It will not 9878 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9879 */ 9880 if (ire != NULL) { 9881 if (ire->ire_flags & RTF_BLACKHOLE) { 9882 ire_refrele(ire); 9883 freemsg(first_mp); 9884 return; 9885 } 9886 ire_refrele(ire); 9887 } 9888 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9889 } 9890 9891 /* Name/Value Table Lookup Routine */ 9892 char * 9893 ip_nv_lookup(nv_t *nv, int value) 9894 { 9895 if (!nv) 9896 return (NULL); 9897 for (; nv->nv_name; nv++) { 9898 if (nv->nv_value == value) 9899 return (nv->nv_name); 9900 } 9901 return ("unknown"); 9902 } 9903 9904 /* 9905 * This is a module open, i.e. this is a control stream for access 9906 * to a DLPI device. We allocate an ill_t as the instance data in 9907 * this case. 9908 */ 9909 int 9910 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9911 { 9912 ill_t *ill; 9913 int err; 9914 zoneid_t zoneid; 9915 netstack_t *ns; 9916 ip_stack_t *ipst; 9917 9918 /* 9919 * Prevent unprivileged processes from pushing IP so that 9920 * they can't send raw IP. 9921 */ 9922 if (secpolicy_net_rawaccess(credp) != 0) 9923 return (EPERM); 9924 9925 ns = netstack_find_by_cred(credp); 9926 ASSERT(ns != NULL); 9927 ipst = ns->netstack_ip; 9928 ASSERT(ipst != NULL); 9929 9930 /* 9931 * For exclusive stacks we set the zoneid to zero 9932 * to make IP operate as if in the global zone. 9933 */ 9934 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9935 zoneid = GLOBAL_ZONEID; 9936 else 9937 zoneid = crgetzoneid(credp); 9938 9939 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9940 q->q_ptr = WR(q)->q_ptr = ill; 9941 ill->ill_ipst = ipst; 9942 ill->ill_zoneid = zoneid; 9943 9944 /* 9945 * ill_init initializes the ill fields and then sends down 9946 * down a DL_INFO_REQ after calling qprocson. 9947 */ 9948 err = ill_init(q, ill); 9949 if (err != 0) { 9950 mi_free(ill); 9951 netstack_rele(ipst->ips_netstack); 9952 q->q_ptr = NULL; 9953 WR(q)->q_ptr = NULL; 9954 return (err); 9955 } 9956 9957 /* ill_init initializes the ipsq marking this thread as writer */ 9958 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9959 /* Wait for the DL_INFO_ACK */ 9960 mutex_enter(&ill->ill_lock); 9961 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9962 /* 9963 * Return value of 0 indicates a pending signal. 9964 */ 9965 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9966 if (err == 0) { 9967 mutex_exit(&ill->ill_lock); 9968 (void) ip_close(q, 0); 9969 return (EINTR); 9970 } 9971 } 9972 mutex_exit(&ill->ill_lock); 9973 9974 /* 9975 * ip_rput_other could have set an error in ill_error on 9976 * receipt of M_ERROR. 9977 */ 9978 9979 err = ill->ill_error; 9980 if (err != 0) { 9981 (void) ip_close(q, 0); 9982 return (err); 9983 } 9984 9985 ill->ill_credp = credp; 9986 crhold(credp); 9987 9988 mutex_enter(&ipst->ips_ip_mi_lock); 9989 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9990 credp); 9991 mutex_exit(&ipst->ips_ip_mi_lock); 9992 if (err) { 9993 (void) ip_close(q, 0); 9994 return (err); 9995 } 9996 return (0); 9997 } 9998 9999 /* IP open routine. */ 10000 int 10001 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 10002 { 10003 conn_t *connp; 10004 major_t maj; 10005 zoneid_t zoneid; 10006 netstack_t *ns; 10007 ip_stack_t *ipst; 10008 10009 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 10010 10011 /* Allow reopen. */ 10012 if (q->q_ptr != NULL) 10013 return (0); 10014 10015 if (sflag & MODOPEN) { 10016 /* This is a module open */ 10017 return (ip_modopen(q, devp, flag, sflag, credp)); 10018 } 10019 10020 ns = netstack_find_by_cred(credp); 10021 ASSERT(ns != NULL); 10022 ipst = ns->netstack_ip; 10023 ASSERT(ipst != NULL); 10024 10025 /* 10026 * For exclusive stacks we set the zoneid to zero 10027 * to make IP operate as if in the global zone. 10028 */ 10029 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 10030 zoneid = GLOBAL_ZONEID; 10031 else 10032 zoneid = crgetzoneid(credp); 10033 10034 /* 10035 * We are opening as a device. This is an IP client stream, and we 10036 * allocate an conn_t as the instance data. 10037 */ 10038 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 10039 10040 /* 10041 * ipcl_conn_create did a netstack_hold. Undo the hold that was 10042 * done by netstack_find_by_cred() 10043 */ 10044 netstack_rele(ipst->ips_netstack); 10045 10046 connp->conn_zoneid = zoneid; 10047 10048 connp->conn_upq = q; 10049 q->q_ptr = WR(q)->q_ptr = connp; 10050 10051 if (flag & SO_SOCKSTR) 10052 connp->conn_flags |= IPCL_SOCKET; 10053 10054 /* Minor tells us which /dev entry was opened */ 10055 if (geteminor(*devp) == IPV6_MINOR) { 10056 connp->conn_flags |= IPCL_ISV6; 10057 connp->conn_af_isv6 = B_TRUE; 10058 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 10059 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 10060 } else { 10061 connp->conn_af_isv6 = B_FALSE; 10062 connp->conn_pkt_isv6 = B_FALSE; 10063 } 10064 10065 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 10066 /* CONN_DEC_REF takes care of netstack_rele() */ 10067 q->q_ptr = WR(q)->q_ptr = NULL; 10068 CONN_DEC_REF(connp); 10069 return (EBUSY); 10070 } 10071 10072 maj = getemajor(*devp); 10073 *devp = makedevice(maj, (minor_t)connp->conn_dev); 10074 10075 /* 10076 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 10077 */ 10078 connp->conn_cred = credp; 10079 crhold(connp->conn_cred); 10080 10081 /* 10082 * If the caller has the process-wide flag set, then default to MAC 10083 * exempt mode. This allows read-down to unlabeled hosts. 10084 */ 10085 if (getpflags(NET_MAC_AWARE, credp) != 0) 10086 connp->conn_mac_exempt = B_TRUE; 10087 10088 /* 10089 * This should only happen for ndd, netstat, raw socket or other SCTP 10090 * administrative ops. In these cases, we just need a normal conn_t 10091 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 10092 * an error will be returned. 10093 */ 10094 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 10095 connp->conn_rq = q; 10096 connp->conn_wq = WR(q); 10097 } else { 10098 connp->conn_ulp = IPPROTO_SCTP; 10099 connp->conn_rq = connp->conn_wq = NULL; 10100 } 10101 /* Non-zero default values */ 10102 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 10103 10104 /* 10105 * Make the conn globally visible to walkers 10106 */ 10107 mutex_enter(&connp->conn_lock); 10108 connp->conn_state_flags &= ~CONN_INCIPIENT; 10109 mutex_exit(&connp->conn_lock); 10110 ASSERT(connp->conn_ref == 1); 10111 10112 qprocson(q); 10113 10114 return (0); 10115 } 10116 10117 /* 10118 * Change q_qinfo based on the value of isv6. 10119 * This can not called on an ill queue. 10120 * Note that there is no race since either q_qinfo works for conn queues - it 10121 * is just an optimization to enter the best wput routine directly. 10122 */ 10123 void 10124 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 10125 { 10126 ASSERT(q->q_flag & QREADR); 10127 ASSERT(WR(q)->q_next == NULL); 10128 ASSERT(q->q_ptr != NULL); 10129 10130 if (minor == IPV6_MINOR) { 10131 if (bump_mib) { 10132 BUMP_MIB(&ipst->ips_ip6_mib, 10133 ipIfStatsOutSwitchIPVersion); 10134 } 10135 q->q_qinfo = &rinit_ipv6; 10136 WR(q)->q_qinfo = &winit_ipv6; 10137 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 10138 } else { 10139 if (bump_mib) { 10140 BUMP_MIB(&ipst->ips_ip_mib, 10141 ipIfStatsOutSwitchIPVersion); 10142 } 10143 q->q_qinfo = &iprinit; 10144 WR(q)->q_qinfo = &ipwinit; 10145 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 10146 } 10147 10148 } 10149 10150 /* 10151 * See if IPsec needs loading because of the options in mp. 10152 */ 10153 static boolean_t 10154 ipsec_opt_present(mblk_t *mp) 10155 { 10156 uint8_t *optcp, *next_optcp, *opt_endcp; 10157 struct opthdr *opt; 10158 struct T_opthdr *topt; 10159 int opthdr_len; 10160 t_uscalar_t optname, optlevel; 10161 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 10162 ipsec_req_t *ipsr; 10163 10164 /* 10165 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10166 * return TRUE. 10167 */ 10168 10169 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10170 opt_endcp = optcp + tor->OPT_length; 10171 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10172 opthdr_len = sizeof (struct T_opthdr); 10173 } else { /* O_OPTMGMT_REQ */ 10174 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10175 opthdr_len = sizeof (struct opthdr); 10176 } 10177 for (; optcp < opt_endcp; optcp = next_optcp) { 10178 if (optcp + opthdr_len > opt_endcp) 10179 return (B_FALSE); /* Not enough option header. */ 10180 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10181 topt = (struct T_opthdr *)optcp; 10182 optlevel = topt->level; 10183 optname = topt->name; 10184 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10185 } else { 10186 opt = (struct opthdr *)optcp; 10187 optlevel = opt->level; 10188 optname = opt->name; 10189 next_optcp = optcp + opthdr_len + 10190 _TPI_ALIGN_OPT(opt->len); 10191 } 10192 if ((next_optcp < optcp) || /* wraparound pointer space */ 10193 ((next_optcp >= opt_endcp) && /* last option bad len */ 10194 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10195 return (B_FALSE); /* bad option buffer */ 10196 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10197 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10198 /* 10199 * Check to see if it's an all-bypass or all-zeroes 10200 * IPsec request. Don't bother loading IPsec if 10201 * the socket doesn't want to use it. (A good example 10202 * is a bypass request.) 10203 * 10204 * Basically, if any of the non-NEVER bits are set, 10205 * load IPsec. 10206 */ 10207 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10208 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10209 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10210 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10211 != 0) 10212 return (B_TRUE); 10213 } 10214 } 10215 return (B_FALSE); 10216 } 10217 10218 /* 10219 * If conn is is waiting for ipsec to finish loading, kick it. 10220 */ 10221 /* ARGSUSED */ 10222 static void 10223 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10224 { 10225 t_scalar_t optreq_prim; 10226 mblk_t *mp; 10227 cred_t *cr; 10228 int err = 0; 10229 10230 /* 10231 * This function is called, after ipsec loading is complete. 10232 * Since IP checks exclusively and atomically (i.e it prevents 10233 * ipsec load from completing until ip_optcom_req completes) 10234 * whether ipsec load is complete, there cannot be a race with IP 10235 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10236 */ 10237 mutex_enter(&connp->conn_lock); 10238 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10239 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10240 mp = connp->conn_ipsec_opt_mp; 10241 connp->conn_ipsec_opt_mp = NULL; 10242 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10243 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10244 mutex_exit(&connp->conn_lock); 10245 10246 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10247 10248 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10249 if (optreq_prim == T_OPTMGMT_REQ) { 10250 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10251 &ip_opt_obj); 10252 } else { 10253 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10254 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10255 &ip_opt_obj); 10256 } 10257 if (err != EINPROGRESS) 10258 CONN_OPER_PENDING_DONE(connp); 10259 return; 10260 } 10261 mutex_exit(&connp->conn_lock); 10262 } 10263 10264 /* 10265 * Called from the ipsec_loader thread, outside any perimeter, to tell 10266 * ip qenable any of the queues waiting for the ipsec loader to 10267 * complete. 10268 */ 10269 void 10270 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10271 { 10272 netstack_t *ns = ipss->ipsec_netstack; 10273 10274 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10275 } 10276 10277 /* 10278 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10279 * determines the grp on which it has to become exclusive, queues the mp 10280 * and sq draining restarts the optmgmt 10281 */ 10282 static boolean_t 10283 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10284 { 10285 conn_t *connp = Q_TO_CONN(q); 10286 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10287 10288 /* 10289 * Take IPsec requests and treat them special. 10290 */ 10291 if (ipsec_opt_present(mp)) { 10292 /* First check if IPsec is loaded. */ 10293 mutex_enter(&ipss->ipsec_loader_lock); 10294 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10295 mutex_exit(&ipss->ipsec_loader_lock); 10296 return (B_FALSE); 10297 } 10298 mutex_enter(&connp->conn_lock); 10299 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10300 10301 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10302 connp->conn_ipsec_opt_mp = mp; 10303 mutex_exit(&connp->conn_lock); 10304 mutex_exit(&ipss->ipsec_loader_lock); 10305 10306 ipsec_loader_loadnow(ipss); 10307 return (B_TRUE); 10308 } 10309 return (B_FALSE); 10310 } 10311 10312 /* 10313 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10314 * all of them are copied to the conn_t. If the req is "zero", the policy is 10315 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10316 * fields. 10317 * We keep only the latest setting of the policy and thus policy setting 10318 * is not incremental/cumulative. 10319 * 10320 * Requests to set policies with multiple alternative actions will 10321 * go through a different API. 10322 */ 10323 int 10324 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10325 { 10326 uint_t ah_req = 0; 10327 uint_t esp_req = 0; 10328 uint_t se_req = 0; 10329 ipsec_selkey_t sel; 10330 ipsec_act_t *actp = NULL; 10331 uint_t nact; 10332 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10333 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10334 ipsec_policy_root_t *pr; 10335 ipsec_policy_head_t *ph; 10336 int fam; 10337 boolean_t is_pol_reset; 10338 int error = 0; 10339 netstack_t *ns = connp->conn_netstack; 10340 ip_stack_t *ipst = ns->netstack_ip; 10341 ipsec_stack_t *ipss = ns->netstack_ipsec; 10342 10343 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10344 10345 /* 10346 * The IP_SEC_OPT option does not allow variable length parameters, 10347 * hence a request cannot be NULL. 10348 */ 10349 if (req == NULL) 10350 return (EINVAL); 10351 10352 ah_req = req->ipsr_ah_req; 10353 esp_req = req->ipsr_esp_req; 10354 se_req = req->ipsr_self_encap_req; 10355 10356 /* 10357 * Are we dealing with a request to reset the policy (i.e. 10358 * zero requests). 10359 */ 10360 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10361 (esp_req & REQ_MASK) == 0 && 10362 (se_req & REQ_MASK) == 0); 10363 10364 if (!is_pol_reset) { 10365 /* 10366 * If we couldn't load IPsec, fail with "protocol 10367 * not supported". 10368 * IPsec may not have been loaded for a request with zero 10369 * policies, so we don't fail in this case. 10370 */ 10371 mutex_enter(&ipss->ipsec_loader_lock); 10372 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10373 mutex_exit(&ipss->ipsec_loader_lock); 10374 return (EPROTONOSUPPORT); 10375 } 10376 mutex_exit(&ipss->ipsec_loader_lock); 10377 10378 /* 10379 * Test for valid requests. Invalid algorithms 10380 * need to be tested by IPSEC code because new 10381 * algorithms can be added dynamically. 10382 */ 10383 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10384 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10385 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10386 return (EINVAL); 10387 } 10388 10389 /* 10390 * Only privileged users can issue these 10391 * requests. 10392 */ 10393 if (((ah_req & IPSEC_PREF_NEVER) || 10394 (esp_req & IPSEC_PREF_NEVER) || 10395 (se_req & IPSEC_PREF_NEVER)) && 10396 secpolicy_ip_config(cr, B_FALSE) != 0) { 10397 return (EPERM); 10398 } 10399 10400 /* 10401 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10402 * are mutually exclusive. 10403 */ 10404 if (((ah_req & REQ_MASK) == REQ_MASK) || 10405 ((esp_req & REQ_MASK) == REQ_MASK) || 10406 ((se_req & REQ_MASK) == REQ_MASK)) { 10407 /* Both of them are set */ 10408 return (EINVAL); 10409 } 10410 } 10411 10412 mutex_enter(&connp->conn_lock); 10413 10414 /* 10415 * If we have already cached policies in ip_bind_connected*(), don't 10416 * let them change now. We cache policies for connections 10417 * whose src,dst [addr, port] is known. 10418 */ 10419 if (connp->conn_policy_cached) { 10420 mutex_exit(&connp->conn_lock); 10421 return (EINVAL); 10422 } 10423 10424 /* 10425 * We have a zero policies, reset the connection policy if already 10426 * set. This will cause the connection to inherit the 10427 * global policy, if any. 10428 */ 10429 if (is_pol_reset) { 10430 if (connp->conn_policy != NULL) { 10431 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10432 connp->conn_policy = NULL; 10433 } 10434 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10435 connp->conn_in_enforce_policy = B_FALSE; 10436 connp->conn_out_enforce_policy = B_FALSE; 10437 mutex_exit(&connp->conn_lock); 10438 return (0); 10439 } 10440 10441 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10442 ipst->ips_netstack); 10443 if (ph == NULL) 10444 goto enomem; 10445 10446 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10447 if (actp == NULL) 10448 goto enomem; 10449 10450 /* 10451 * Always allocate IPv4 policy entries, since they can also 10452 * apply to ipv6 sockets being used in ipv4-compat mode. 10453 */ 10454 bzero(&sel, sizeof (sel)); 10455 sel.ipsl_valid = IPSL_IPV4; 10456 10457 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10458 ipst->ips_netstack); 10459 if (pin4 == NULL) 10460 goto enomem; 10461 10462 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10463 ipst->ips_netstack); 10464 if (pout4 == NULL) 10465 goto enomem; 10466 10467 if (connp->conn_pkt_isv6) { 10468 /* 10469 * We're looking at a v6 socket, also allocate the 10470 * v6-specific entries... 10471 */ 10472 sel.ipsl_valid = IPSL_IPV6; 10473 pin6 = ipsec_policy_create(&sel, actp, nact, 10474 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10475 if (pin6 == NULL) 10476 goto enomem; 10477 10478 pout6 = ipsec_policy_create(&sel, actp, nact, 10479 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10480 if (pout6 == NULL) 10481 goto enomem; 10482 10483 /* 10484 * .. and file them away in the right place. 10485 */ 10486 fam = IPSEC_AF_V6; 10487 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10488 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10489 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10490 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10491 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10492 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10493 } 10494 10495 ipsec_actvec_free(actp, nact); 10496 10497 /* 10498 * File the v4 policies. 10499 */ 10500 fam = IPSEC_AF_V4; 10501 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10502 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10503 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10504 10505 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10506 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10507 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10508 10509 /* 10510 * If the requests need security, set enforce_policy. 10511 * If the requests are IPSEC_PREF_NEVER, one should 10512 * still set conn_out_enforce_policy so that an ipsec_out 10513 * gets attached in ip_wput. This is needed so that 10514 * for connections that we don't cache policy in ip_bind, 10515 * if global policy matches in ip_wput_attach_policy, we 10516 * don't wrongly inherit global policy. Similarly, we need 10517 * to set conn_in_enforce_policy also so that we don't verify 10518 * policy wrongly. 10519 */ 10520 if ((ah_req & REQ_MASK) != 0 || 10521 (esp_req & REQ_MASK) != 0 || 10522 (se_req & REQ_MASK) != 0) { 10523 connp->conn_in_enforce_policy = B_TRUE; 10524 connp->conn_out_enforce_policy = B_TRUE; 10525 connp->conn_flags |= IPCL_CHECK_POLICY; 10526 } 10527 10528 mutex_exit(&connp->conn_lock); 10529 return (error); 10530 #undef REQ_MASK 10531 10532 /* 10533 * Common memory-allocation-failure exit path. 10534 */ 10535 enomem: 10536 mutex_exit(&connp->conn_lock); 10537 if (actp != NULL) 10538 ipsec_actvec_free(actp, nact); 10539 if (pin4 != NULL) 10540 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10541 if (pout4 != NULL) 10542 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10543 if (pin6 != NULL) 10544 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10545 if (pout6 != NULL) 10546 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10547 return (ENOMEM); 10548 } 10549 10550 /* 10551 * Only for options that pass in an IP addr. Currently only V4 options 10552 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10553 * So this function assumes level is IPPROTO_IP 10554 */ 10555 int 10556 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10557 mblk_t *first_mp) 10558 { 10559 ipif_t *ipif = NULL; 10560 int error; 10561 ill_t *ill; 10562 int zoneid; 10563 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10564 10565 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10566 10567 if (addr != INADDR_ANY || checkonly) { 10568 ASSERT(connp != NULL); 10569 zoneid = IPCL_ZONEID(connp); 10570 if (option == IP_NEXTHOP) { 10571 ipif = ipif_lookup_onlink_addr(addr, 10572 connp->conn_zoneid, ipst); 10573 } else { 10574 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10575 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10576 &error, ipst); 10577 } 10578 if (ipif == NULL) { 10579 if (error == EINPROGRESS) 10580 return (error); 10581 else if ((option == IP_MULTICAST_IF) || 10582 (option == IP_NEXTHOP)) 10583 return (EHOSTUNREACH); 10584 else 10585 return (EINVAL); 10586 } else if (checkonly) { 10587 if (option == IP_MULTICAST_IF) { 10588 ill = ipif->ipif_ill; 10589 /* not supported by the virtual network iface */ 10590 if (IS_VNI(ill)) { 10591 ipif_refrele(ipif); 10592 return (EINVAL); 10593 } 10594 } 10595 ipif_refrele(ipif); 10596 return (0); 10597 } 10598 ill = ipif->ipif_ill; 10599 mutex_enter(&connp->conn_lock); 10600 mutex_enter(&ill->ill_lock); 10601 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10602 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10603 mutex_exit(&ill->ill_lock); 10604 mutex_exit(&connp->conn_lock); 10605 ipif_refrele(ipif); 10606 return (option == IP_MULTICAST_IF ? 10607 EHOSTUNREACH : EINVAL); 10608 } 10609 } else { 10610 mutex_enter(&connp->conn_lock); 10611 } 10612 10613 /* None of the options below are supported on the VNI */ 10614 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10615 mutex_exit(&ill->ill_lock); 10616 mutex_exit(&connp->conn_lock); 10617 ipif_refrele(ipif); 10618 return (EINVAL); 10619 } 10620 10621 switch (option) { 10622 case IP_DONTFAILOVER_IF: 10623 /* 10624 * This option is used by in.mpathd to ensure 10625 * that IPMP probe packets only go out on the 10626 * test interfaces. in.mpathd sets this option 10627 * on the non-failover interfaces. 10628 * For backward compatibility, this option 10629 * implicitly sets IP_MULTICAST_IF, as used 10630 * be done in bind(), so that ip_wput gets 10631 * this ipif to send mcast packets. 10632 */ 10633 if (ipif != NULL) { 10634 ASSERT(addr != INADDR_ANY); 10635 connp->conn_nofailover_ill = ipif->ipif_ill; 10636 connp->conn_multicast_ipif = ipif; 10637 } else { 10638 ASSERT(addr == INADDR_ANY); 10639 connp->conn_nofailover_ill = NULL; 10640 connp->conn_multicast_ipif = NULL; 10641 } 10642 break; 10643 10644 case IP_MULTICAST_IF: 10645 connp->conn_multicast_ipif = ipif; 10646 break; 10647 case IP_NEXTHOP: 10648 connp->conn_nexthop_v4 = addr; 10649 connp->conn_nexthop_set = B_TRUE; 10650 break; 10651 } 10652 10653 if (ipif != NULL) { 10654 mutex_exit(&ill->ill_lock); 10655 mutex_exit(&connp->conn_lock); 10656 ipif_refrele(ipif); 10657 return (0); 10658 } 10659 mutex_exit(&connp->conn_lock); 10660 /* We succeded in cleared the option */ 10661 return (0); 10662 } 10663 10664 /* 10665 * For options that pass in an ifindex specifying the ill. V6 options always 10666 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10667 */ 10668 int 10669 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10670 int level, int option, mblk_t *first_mp) 10671 { 10672 ill_t *ill = NULL; 10673 int error = 0; 10674 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10675 10676 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10677 if (ifindex != 0) { 10678 ASSERT(connp != NULL); 10679 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10680 first_mp, ip_restart_optmgmt, &error, ipst); 10681 if (ill != NULL) { 10682 if (checkonly) { 10683 /* not supported by the virtual network iface */ 10684 if (IS_VNI(ill)) { 10685 ill_refrele(ill); 10686 return (EINVAL); 10687 } 10688 ill_refrele(ill); 10689 return (0); 10690 } 10691 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10692 0, NULL)) { 10693 ill_refrele(ill); 10694 ill = NULL; 10695 mutex_enter(&connp->conn_lock); 10696 goto setit; 10697 } 10698 mutex_enter(&connp->conn_lock); 10699 mutex_enter(&ill->ill_lock); 10700 if (ill->ill_state_flags & ILL_CONDEMNED) { 10701 mutex_exit(&ill->ill_lock); 10702 mutex_exit(&connp->conn_lock); 10703 ill_refrele(ill); 10704 ill = NULL; 10705 mutex_enter(&connp->conn_lock); 10706 } 10707 goto setit; 10708 } else if (error == EINPROGRESS) { 10709 return (error); 10710 } else { 10711 error = 0; 10712 } 10713 } 10714 mutex_enter(&connp->conn_lock); 10715 setit: 10716 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10717 10718 /* 10719 * The options below assume that the ILL (if any) transmits and/or 10720 * receives traffic. Neither of which is true for the virtual network 10721 * interface, so fail setting these on a VNI. 10722 */ 10723 if (IS_VNI(ill)) { 10724 ASSERT(ill != NULL); 10725 mutex_exit(&ill->ill_lock); 10726 mutex_exit(&connp->conn_lock); 10727 ill_refrele(ill); 10728 return (EINVAL); 10729 } 10730 10731 if (level == IPPROTO_IP) { 10732 switch (option) { 10733 case IP_BOUND_IF: 10734 connp->conn_incoming_ill = ill; 10735 connp->conn_outgoing_ill = ill; 10736 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10737 0 : ifindex; 10738 break; 10739 10740 case IP_XMIT_IF: 10741 /* 10742 * Similar to IP_BOUND_IF, but this only 10743 * determines the outgoing interface for 10744 * unicast packets. Also no IRE_CACHE entry 10745 * is added for the destination of the 10746 * outgoing packets. This feature is needed 10747 * for mobile IP. 10748 */ 10749 connp->conn_xmit_if_ill = ill; 10750 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10751 0 : ifindex; 10752 break; 10753 10754 case IP_MULTICAST_IF: 10755 /* 10756 * This option is an internal special. The socket 10757 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10758 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10759 * specifies an ifindex and we try first on V6 ill's. 10760 * If we don't find one, we they try using on v4 ill's 10761 * intenally and we come here. 10762 */ 10763 if (!checkonly && ill != NULL) { 10764 ipif_t *ipif; 10765 ipif = ill->ill_ipif; 10766 10767 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10768 mutex_exit(&ill->ill_lock); 10769 mutex_exit(&connp->conn_lock); 10770 ill_refrele(ill); 10771 ill = NULL; 10772 mutex_enter(&connp->conn_lock); 10773 } else { 10774 connp->conn_multicast_ipif = ipif; 10775 } 10776 } 10777 break; 10778 } 10779 } else { 10780 switch (option) { 10781 case IPV6_BOUND_IF: 10782 connp->conn_incoming_ill = ill; 10783 connp->conn_outgoing_ill = ill; 10784 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10785 0 : ifindex; 10786 break; 10787 10788 case IPV6_BOUND_PIF: 10789 /* 10790 * Limit all transmit to this ill. 10791 * Unlike IPV6_BOUND_IF, using this option 10792 * prevents load spreading and failover from 10793 * happening when the interface is part of the 10794 * group. That's why we don't need to remember 10795 * the ifindex in orig_bound_ifindex as in 10796 * IPV6_BOUND_IF. 10797 */ 10798 connp->conn_outgoing_pill = ill; 10799 break; 10800 10801 case IPV6_DONTFAILOVER_IF: 10802 /* 10803 * This option is used by in.mpathd to ensure 10804 * that IPMP probe packets only go out on the 10805 * test interfaces. in.mpathd sets this option 10806 * on the non-failover interfaces. 10807 */ 10808 connp->conn_nofailover_ill = ill; 10809 /* 10810 * For backward compatibility, this option 10811 * implicitly sets ip_multicast_ill as used in 10812 * IP_MULTICAST_IF so that ip_wput gets 10813 * this ipif to send mcast packets. 10814 */ 10815 connp->conn_multicast_ill = ill; 10816 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10817 0 : ifindex; 10818 break; 10819 10820 case IPV6_MULTICAST_IF: 10821 /* 10822 * Set conn_multicast_ill to be the IPv6 ill. 10823 * Set conn_multicast_ipif to be an IPv4 ipif 10824 * for ifindex to make IPv4 mapped addresses 10825 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10826 * Even if no IPv6 ill exists for the ifindex 10827 * we need to check for an IPv4 ifindex in order 10828 * for this to work with mapped addresses. In that 10829 * case only set conn_multicast_ipif. 10830 */ 10831 if (!checkonly) { 10832 if (ifindex == 0) { 10833 connp->conn_multicast_ill = NULL; 10834 connp->conn_orig_multicast_ifindex = 0; 10835 connp->conn_multicast_ipif = NULL; 10836 } else if (ill != NULL) { 10837 connp->conn_multicast_ill = ill; 10838 connp->conn_orig_multicast_ifindex = 10839 ifindex; 10840 } 10841 } 10842 break; 10843 } 10844 } 10845 10846 if (ill != NULL) { 10847 mutex_exit(&ill->ill_lock); 10848 mutex_exit(&connp->conn_lock); 10849 ill_refrele(ill); 10850 return (0); 10851 } 10852 mutex_exit(&connp->conn_lock); 10853 /* 10854 * We succeeded in clearing the option (ifindex == 0) or failed to 10855 * locate the ill and could not set the option (ifindex != 0) 10856 */ 10857 return (ifindex == 0 ? 0 : EINVAL); 10858 } 10859 10860 /* This routine sets socket options. */ 10861 /* ARGSUSED */ 10862 int 10863 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10864 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10865 void *dummy, cred_t *cr, mblk_t *first_mp) 10866 { 10867 int *i1 = (int *)invalp; 10868 conn_t *connp = Q_TO_CONN(q); 10869 int error = 0; 10870 boolean_t checkonly; 10871 ire_t *ire; 10872 boolean_t found; 10873 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10874 10875 switch (optset_context) { 10876 10877 case SETFN_OPTCOM_CHECKONLY: 10878 checkonly = B_TRUE; 10879 /* 10880 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10881 * inlen != 0 implies value supplied and 10882 * we have to "pretend" to set it. 10883 * inlen == 0 implies that there is no 10884 * value part in T_CHECK request and just validation 10885 * done elsewhere should be enough, we just return here. 10886 */ 10887 if (inlen == 0) { 10888 *outlenp = 0; 10889 return (0); 10890 } 10891 break; 10892 case SETFN_OPTCOM_NEGOTIATE: 10893 case SETFN_UD_NEGOTIATE: 10894 case SETFN_CONN_NEGOTIATE: 10895 checkonly = B_FALSE; 10896 break; 10897 default: 10898 /* 10899 * We should never get here 10900 */ 10901 *outlenp = 0; 10902 return (EINVAL); 10903 } 10904 10905 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10906 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10907 10908 /* 10909 * For fixed length options, no sanity check 10910 * of passed in length is done. It is assumed *_optcom_req() 10911 * routines do the right thing. 10912 */ 10913 10914 switch (level) { 10915 case SOL_SOCKET: 10916 /* 10917 * conn_lock protects the bitfields, and is used to 10918 * set the fields atomically. 10919 */ 10920 switch (name) { 10921 case SO_BROADCAST: 10922 if (!checkonly) { 10923 /* TODO: use value someplace? */ 10924 mutex_enter(&connp->conn_lock); 10925 connp->conn_broadcast = *i1 ? 1 : 0; 10926 mutex_exit(&connp->conn_lock); 10927 } 10928 break; /* goto sizeof (int) option return */ 10929 case SO_USELOOPBACK: 10930 if (!checkonly) { 10931 /* TODO: use value someplace? */ 10932 mutex_enter(&connp->conn_lock); 10933 connp->conn_loopback = *i1 ? 1 : 0; 10934 mutex_exit(&connp->conn_lock); 10935 } 10936 break; /* goto sizeof (int) option return */ 10937 case SO_DONTROUTE: 10938 if (!checkonly) { 10939 mutex_enter(&connp->conn_lock); 10940 connp->conn_dontroute = *i1 ? 1 : 0; 10941 mutex_exit(&connp->conn_lock); 10942 } 10943 break; /* goto sizeof (int) option return */ 10944 case SO_REUSEADDR: 10945 if (!checkonly) { 10946 mutex_enter(&connp->conn_lock); 10947 connp->conn_reuseaddr = *i1 ? 1 : 0; 10948 mutex_exit(&connp->conn_lock); 10949 } 10950 break; /* goto sizeof (int) option return */ 10951 case SO_PROTOTYPE: 10952 if (!checkonly) { 10953 mutex_enter(&connp->conn_lock); 10954 connp->conn_proto = *i1; 10955 mutex_exit(&connp->conn_lock); 10956 } 10957 break; /* goto sizeof (int) option return */ 10958 case SO_ALLZONES: 10959 if (!checkonly) { 10960 mutex_enter(&connp->conn_lock); 10961 if (IPCL_IS_BOUND(connp)) { 10962 mutex_exit(&connp->conn_lock); 10963 return (EINVAL); 10964 } 10965 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10966 mutex_exit(&connp->conn_lock); 10967 } 10968 break; /* goto sizeof (int) option return */ 10969 case SO_ANON_MLP: 10970 if (!checkonly) { 10971 mutex_enter(&connp->conn_lock); 10972 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10973 mutex_exit(&connp->conn_lock); 10974 } 10975 break; /* goto sizeof (int) option return */ 10976 case SO_MAC_EXEMPT: 10977 if (secpolicy_net_mac_aware(cr) != 0 || 10978 IPCL_IS_BOUND(connp)) 10979 return (EACCES); 10980 if (!checkonly) { 10981 mutex_enter(&connp->conn_lock); 10982 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10983 mutex_exit(&connp->conn_lock); 10984 } 10985 break; /* goto sizeof (int) option return */ 10986 default: 10987 /* 10988 * "soft" error (negative) 10989 * option not handled at this level 10990 * Note: Do not modify *outlenp 10991 */ 10992 return (-EINVAL); 10993 } 10994 break; 10995 case IPPROTO_IP: 10996 switch (name) { 10997 case IP_NEXTHOP: 10998 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10999 return (EPERM); 11000 /* FALLTHRU */ 11001 case IP_MULTICAST_IF: 11002 case IP_DONTFAILOVER_IF: { 11003 ipaddr_t addr = *i1; 11004 11005 error = ip_opt_set_ipif(connp, addr, checkonly, name, 11006 first_mp); 11007 if (error != 0) 11008 return (error); 11009 break; /* goto sizeof (int) option return */ 11010 } 11011 11012 case IP_MULTICAST_TTL: 11013 /* Recorded in transport above IP */ 11014 *outvalp = *invalp; 11015 *outlenp = sizeof (uchar_t); 11016 return (0); 11017 case IP_MULTICAST_LOOP: 11018 if (!checkonly) { 11019 mutex_enter(&connp->conn_lock); 11020 connp->conn_multicast_loop = *invalp ? 1 : 0; 11021 mutex_exit(&connp->conn_lock); 11022 } 11023 *outvalp = *invalp; 11024 *outlenp = sizeof (uchar_t); 11025 return (0); 11026 case IP_ADD_MEMBERSHIP: 11027 case MCAST_JOIN_GROUP: 11028 case IP_DROP_MEMBERSHIP: 11029 case MCAST_LEAVE_GROUP: { 11030 struct ip_mreq *mreqp; 11031 struct group_req *greqp; 11032 ire_t *ire; 11033 boolean_t done = B_FALSE; 11034 ipaddr_t group, ifaddr; 11035 struct sockaddr_in *sin; 11036 uint32_t *ifindexp; 11037 boolean_t mcast_opt = B_TRUE; 11038 mcast_record_t fmode; 11039 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11040 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11041 11042 switch (name) { 11043 case IP_ADD_MEMBERSHIP: 11044 mcast_opt = B_FALSE; 11045 /* FALLTHRU */ 11046 case MCAST_JOIN_GROUP: 11047 fmode = MODE_IS_EXCLUDE; 11048 optfn = ip_opt_add_group; 11049 break; 11050 11051 case IP_DROP_MEMBERSHIP: 11052 mcast_opt = B_FALSE; 11053 /* FALLTHRU */ 11054 case MCAST_LEAVE_GROUP: 11055 fmode = MODE_IS_INCLUDE; 11056 optfn = ip_opt_delete_group; 11057 break; 11058 } 11059 11060 if (mcast_opt) { 11061 greqp = (struct group_req *)i1; 11062 sin = (struct sockaddr_in *)&greqp->gr_group; 11063 if (sin->sin_family != AF_INET) { 11064 *outlenp = 0; 11065 return (ENOPROTOOPT); 11066 } 11067 group = (ipaddr_t)sin->sin_addr.s_addr; 11068 ifaddr = INADDR_ANY; 11069 ifindexp = &greqp->gr_interface; 11070 } else { 11071 mreqp = (struct ip_mreq *)i1; 11072 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 11073 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 11074 ifindexp = NULL; 11075 } 11076 11077 /* 11078 * In the multirouting case, we need to replicate 11079 * the request on all interfaces that will take part 11080 * in replication. We do so because multirouting is 11081 * reflective, thus we will probably receive multi- 11082 * casts on those interfaces. 11083 * The ip_multirt_apply_membership() succeeds if the 11084 * operation succeeds on at least one interface. 11085 */ 11086 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 11087 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11088 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11089 if (ire != NULL) { 11090 if (ire->ire_flags & RTF_MULTIRT) { 11091 error = ip_multirt_apply_membership( 11092 optfn, ire, connp, checkonly, group, 11093 fmode, INADDR_ANY, first_mp); 11094 done = B_TRUE; 11095 } 11096 ire_refrele(ire); 11097 } 11098 if (!done) { 11099 error = optfn(connp, checkonly, group, ifaddr, 11100 ifindexp, fmode, INADDR_ANY, first_mp); 11101 } 11102 if (error) { 11103 /* 11104 * EINPROGRESS is a soft error, needs retry 11105 * so don't make *outlenp zero. 11106 */ 11107 if (error != EINPROGRESS) 11108 *outlenp = 0; 11109 return (error); 11110 } 11111 /* OK return - copy input buffer into output buffer */ 11112 if (invalp != outvalp) { 11113 /* don't trust bcopy for identical src/dst */ 11114 bcopy(invalp, outvalp, inlen); 11115 } 11116 *outlenp = inlen; 11117 return (0); 11118 } 11119 case IP_BLOCK_SOURCE: 11120 case IP_UNBLOCK_SOURCE: 11121 case IP_ADD_SOURCE_MEMBERSHIP: 11122 case IP_DROP_SOURCE_MEMBERSHIP: 11123 case MCAST_BLOCK_SOURCE: 11124 case MCAST_UNBLOCK_SOURCE: 11125 case MCAST_JOIN_SOURCE_GROUP: 11126 case MCAST_LEAVE_SOURCE_GROUP: { 11127 struct ip_mreq_source *imreqp; 11128 struct group_source_req *gsreqp; 11129 in_addr_t grp, src, ifaddr = INADDR_ANY; 11130 uint32_t ifindex = 0; 11131 mcast_record_t fmode; 11132 struct sockaddr_in *sin; 11133 ire_t *ire; 11134 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 11135 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11136 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11137 11138 switch (name) { 11139 case IP_BLOCK_SOURCE: 11140 mcast_opt = B_FALSE; 11141 /* FALLTHRU */ 11142 case MCAST_BLOCK_SOURCE: 11143 fmode = MODE_IS_EXCLUDE; 11144 optfn = ip_opt_add_group; 11145 break; 11146 11147 case IP_UNBLOCK_SOURCE: 11148 mcast_opt = B_FALSE; 11149 /* FALLTHRU */ 11150 case MCAST_UNBLOCK_SOURCE: 11151 fmode = MODE_IS_EXCLUDE; 11152 optfn = ip_opt_delete_group; 11153 break; 11154 11155 case IP_ADD_SOURCE_MEMBERSHIP: 11156 mcast_opt = B_FALSE; 11157 /* FALLTHRU */ 11158 case MCAST_JOIN_SOURCE_GROUP: 11159 fmode = MODE_IS_INCLUDE; 11160 optfn = ip_opt_add_group; 11161 break; 11162 11163 case IP_DROP_SOURCE_MEMBERSHIP: 11164 mcast_opt = B_FALSE; 11165 /* FALLTHRU */ 11166 case MCAST_LEAVE_SOURCE_GROUP: 11167 fmode = MODE_IS_INCLUDE; 11168 optfn = ip_opt_delete_group; 11169 break; 11170 } 11171 11172 if (mcast_opt) { 11173 gsreqp = (struct group_source_req *)i1; 11174 if (gsreqp->gsr_group.ss_family != AF_INET) { 11175 *outlenp = 0; 11176 return (ENOPROTOOPT); 11177 } 11178 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11179 grp = (ipaddr_t)sin->sin_addr.s_addr; 11180 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11181 src = (ipaddr_t)sin->sin_addr.s_addr; 11182 ifindex = gsreqp->gsr_interface; 11183 } else { 11184 imreqp = (struct ip_mreq_source *)i1; 11185 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11186 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11187 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11188 } 11189 11190 /* 11191 * In the multirouting case, we need to replicate 11192 * the request as noted in the mcast cases above. 11193 */ 11194 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11195 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11196 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11197 if (ire != NULL) { 11198 if (ire->ire_flags & RTF_MULTIRT) { 11199 error = ip_multirt_apply_membership( 11200 optfn, ire, connp, checkonly, grp, 11201 fmode, src, first_mp); 11202 done = B_TRUE; 11203 } 11204 ire_refrele(ire); 11205 } 11206 if (!done) { 11207 error = optfn(connp, checkonly, grp, ifaddr, 11208 &ifindex, fmode, src, first_mp); 11209 } 11210 if (error != 0) { 11211 /* 11212 * EINPROGRESS is a soft error, needs retry 11213 * so don't make *outlenp zero. 11214 */ 11215 if (error != EINPROGRESS) 11216 *outlenp = 0; 11217 return (error); 11218 } 11219 /* OK return - copy input buffer into output buffer */ 11220 if (invalp != outvalp) { 11221 bcopy(invalp, outvalp, inlen); 11222 } 11223 *outlenp = inlen; 11224 return (0); 11225 } 11226 case IP_SEC_OPT: 11227 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11228 if (error != 0) { 11229 *outlenp = 0; 11230 return (error); 11231 } 11232 break; 11233 case IP_HDRINCL: 11234 case IP_OPTIONS: 11235 case T_IP_OPTIONS: 11236 case IP_TOS: 11237 case T_IP_TOS: 11238 case IP_TTL: 11239 case IP_RECVDSTADDR: 11240 case IP_RECVOPTS: 11241 /* OK return - copy input buffer into output buffer */ 11242 if (invalp != outvalp) { 11243 /* don't trust bcopy for identical src/dst */ 11244 bcopy(invalp, outvalp, inlen); 11245 } 11246 *outlenp = inlen; 11247 return (0); 11248 case IP_RECVIF: 11249 /* Retrieve the inbound interface index */ 11250 if (!checkonly) { 11251 mutex_enter(&connp->conn_lock); 11252 connp->conn_recvif = *i1 ? 1 : 0; 11253 mutex_exit(&connp->conn_lock); 11254 } 11255 break; /* goto sizeof (int) option return */ 11256 case IP_RECVPKTINFO: 11257 if (!checkonly) { 11258 mutex_enter(&connp->conn_lock); 11259 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11260 mutex_exit(&connp->conn_lock); 11261 } 11262 break; /* goto sizeof (int) option return */ 11263 case IP_RECVSLLA: 11264 /* Retrieve the source link layer address */ 11265 if (!checkonly) { 11266 mutex_enter(&connp->conn_lock); 11267 connp->conn_recvslla = *i1 ? 1 : 0; 11268 mutex_exit(&connp->conn_lock); 11269 } 11270 break; /* goto sizeof (int) option return */ 11271 case MRT_INIT: 11272 case MRT_DONE: 11273 case MRT_ADD_VIF: 11274 case MRT_DEL_VIF: 11275 case MRT_ADD_MFC: 11276 case MRT_DEL_MFC: 11277 case MRT_ASSERT: 11278 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11279 *outlenp = 0; 11280 return (error); 11281 } 11282 error = ip_mrouter_set((int)name, q, checkonly, 11283 (uchar_t *)invalp, inlen, first_mp); 11284 if (error) { 11285 *outlenp = 0; 11286 return (error); 11287 } 11288 /* OK return - copy input buffer into output buffer */ 11289 if (invalp != outvalp) { 11290 /* don't trust bcopy for identical src/dst */ 11291 bcopy(invalp, outvalp, inlen); 11292 } 11293 *outlenp = inlen; 11294 return (0); 11295 case IP_BOUND_IF: 11296 case IP_XMIT_IF: 11297 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11298 level, name, first_mp); 11299 if (error != 0) 11300 return (error); 11301 break; /* goto sizeof (int) option return */ 11302 11303 case IP_UNSPEC_SRC: 11304 /* Allow sending with a zero source address */ 11305 if (!checkonly) { 11306 mutex_enter(&connp->conn_lock); 11307 connp->conn_unspec_src = *i1 ? 1 : 0; 11308 mutex_exit(&connp->conn_lock); 11309 } 11310 break; /* goto sizeof (int) option return */ 11311 default: 11312 /* 11313 * "soft" error (negative) 11314 * option not handled at this level 11315 * Note: Do not modify *outlenp 11316 */ 11317 return (-EINVAL); 11318 } 11319 break; 11320 case IPPROTO_IPV6: 11321 switch (name) { 11322 case IPV6_BOUND_IF: 11323 case IPV6_BOUND_PIF: 11324 case IPV6_DONTFAILOVER_IF: 11325 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11326 level, name, first_mp); 11327 if (error != 0) 11328 return (error); 11329 break; /* goto sizeof (int) option return */ 11330 11331 case IPV6_MULTICAST_IF: 11332 /* 11333 * The only possible errors are EINPROGRESS and 11334 * EINVAL. EINPROGRESS will be restarted and is not 11335 * a hard error. We call this option on both V4 and V6 11336 * If both return EINVAL, then this call returns 11337 * EINVAL. If at least one of them succeeds we 11338 * return success. 11339 */ 11340 found = B_FALSE; 11341 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11342 level, name, first_mp); 11343 if (error == EINPROGRESS) 11344 return (error); 11345 if (error == 0) 11346 found = B_TRUE; 11347 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11348 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11349 if (error == 0) 11350 found = B_TRUE; 11351 if (!found) 11352 return (error); 11353 break; /* goto sizeof (int) option return */ 11354 11355 case IPV6_MULTICAST_HOPS: 11356 /* Recorded in transport above IP */ 11357 break; /* goto sizeof (int) option return */ 11358 case IPV6_MULTICAST_LOOP: 11359 if (!checkonly) { 11360 mutex_enter(&connp->conn_lock); 11361 connp->conn_multicast_loop = *i1; 11362 mutex_exit(&connp->conn_lock); 11363 } 11364 break; /* goto sizeof (int) option return */ 11365 case IPV6_JOIN_GROUP: 11366 case MCAST_JOIN_GROUP: 11367 case IPV6_LEAVE_GROUP: 11368 case MCAST_LEAVE_GROUP: { 11369 struct ipv6_mreq *ip_mreqp; 11370 struct group_req *greqp; 11371 ire_t *ire; 11372 boolean_t done = B_FALSE; 11373 in6_addr_t groupv6; 11374 uint32_t ifindex; 11375 boolean_t mcast_opt = B_TRUE; 11376 mcast_record_t fmode; 11377 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11378 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11379 11380 switch (name) { 11381 case IPV6_JOIN_GROUP: 11382 mcast_opt = B_FALSE; 11383 /* FALLTHRU */ 11384 case MCAST_JOIN_GROUP: 11385 fmode = MODE_IS_EXCLUDE; 11386 optfn = ip_opt_add_group_v6; 11387 break; 11388 11389 case IPV6_LEAVE_GROUP: 11390 mcast_opt = B_FALSE; 11391 /* FALLTHRU */ 11392 case MCAST_LEAVE_GROUP: 11393 fmode = MODE_IS_INCLUDE; 11394 optfn = ip_opt_delete_group_v6; 11395 break; 11396 } 11397 11398 if (mcast_opt) { 11399 struct sockaddr_in *sin; 11400 struct sockaddr_in6 *sin6; 11401 greqp = (struct group_req *)i1; 11402 if (greqp->gr_group.ss_family == AF_INET) { 11403 sin = (struct sockaddr_in *) 11404 &(greqp->gr_group); 11405 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11406 &groupv6); 11407 } else { 11408 sin6 = (struct sockaddr_in6 *) 11409 &(greqp->gr_group); 11410 groupv6 = sin6->sin6_addr; 11411 } 11412 ifindex = greqp->gr_interface; 11413 } else { 11414 ip_mreqp = (struct ipv6_mreq *)i1; 11415 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11416 ifindex = ip_mreqp->ipv6mr_interface; 11417 } 11418 /* 11419 * In the multirouting case, we need to replicate 11420 * the request on all interfaces that will take part 11421 * in replication. We do so because multirouting is 11422 * reflective, thus we will probably receive multi- 11423 * casts on those interfaces. 11424 * The ip_multirt_apply_membership_v6() succeeds if 11425 * the operation succeeds on at least one interface. 11426 */ 11427 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11428 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11429 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11430 if (ire != NULL) { 11431 if (ire->ire_flags & RTF_MULTIRT) { 11432 error = ip_multirt_apply_membership_v6( 11433 optfn, ire, connp, checkonly, 11434 &groupv6, fmode, &ipv6_all_zeros, 11435 first_mp); 11436 done = B_TRUE; 11437 } 11438 ire_refrele(ire); 11439 } 11440 if (!done) { 11441 error = optfn(connp, checkonly, &groupv6, 11442 ifindex, fmode, &ipv6_all_zeros, first_mp); 11443 } 11444 if (error) { 11445 /* 11446 * EINPROGRESS is a soft error, needs retry 11447 * so don't make *outlenp zero. 11448 */ 11449 if (error != EINPROGRESS) 11450 *outlenp = 0; 11451 return (error); 11452 } 11453 /* OK return - copy input buffer into output buffer */ 11454 if (invalp != outvalp) { 11455 /* don't trust bcopy for identical src/dst */ 11456 bcopy(invalp, outvalp, inlen); 11457 } 11458 *outlenp = inlen; 11459 return (0); 11460 } 11461 case MCAST_BLOCK_SOURCE: 11462 case MCAST_UNBLOCK_SOURCE: 11463 case MCAST_JOIN_SOURCE_GROUP: 11464 case MCAST_LEAVE_SOURCE_GROUP: { 11465 struct group_source_req *gsreqp; 11466 in6_addr_t v6grp, v6src; 11467 uint32_t ifindex; 11468 mcast_record_t fmode; 11469 ire_t *ire; 11470 boolean_t done = B_FALSE; 11471 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11472 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11473 11474 switch (name) { 11475 case MCAST_BLOCK_SOURCE: 11476 fmode = MODE_IS_EXCLUDE; 11477 optfn = ip_opt_add_group_v6; 11478 break; 11479 case MCAST_UNBLOCK_SOURCE: 11480 fmode = MODE_IS_EXCLUDE; 11481 optfn = ip_opt_delete_group_v6; 11482 break; 11483 case MCAST_JOIN_SOURCE_GROUP: 11484 fmode = MODE_IS_INCLUDE; 11485 optfn = ip_opt_add_group_v6; 11486 break; 11487 case MCAST_LEAVE_SOURCE_GROUP: 11488 fmode = MODE_IS_INCLUDE; 11489 optfn = ip_opt_delete_group_v6; 11490 break; 11491 } 11492 11493 gsreqp = (struct group_source_req *)i1; 11494 ifindex = gsreqp->gsr_interface; 11495 if (gsreqp->gsr_group.ss_family == AF_INET) { 11496 struct sockaddr_in *s; 11497 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11498 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11499 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11500 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11501 } else { 11502 struct sockaddr_in6 *s6; 11503 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11504 v6grp = s6->sin6_addr; 11505 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11506 v6src = s6->sin6_addr; 11507 } 11508 11509 /* 11510 * In the multirouting case, we need to replicate 11511 * the request as noted in the mcast cases above. 11512 */ 11513 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11514 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11515 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11516 if (ire != NULL) { 11517 if (ire->ire_flags & RTF_MULTIRT) { 11518 error = ip_multirt_apply_membership_v6( 11519 optfn, ire, connp, checkonly, 11520 &v6grp, fmode, &v6src, first_mp); 11521 done = B_TRUE; 11522 } 11523 ire_refrele(ire); 11524 } 11525 if (!done) { 11526 error = optfn(connp, checkonly, &v6grp, 11527 ifindex, fmode, &v6src, first_mp); 11528 } 11529 if (error != 0) { 11530 /* 11531 * EINPROGRESS is a soft error, needs retry 11532 * so don't make *outlenp zero. 11533 */ 11534 if (error != EINPROGRESS) 11535 *outlenp = 0; 11536 return (error); 11537 } 11538 /* OK return - copy input buffer into output buffer */ 11539 if (invalp != outvalp) { 11540 bcopy(invalp, outvalp, inlen); 11541 } 11542 *outlenp = inlen; 11543 return (0); 11544 } 11545 case IPV6_UNICAST_HOPS: 11546 /* Recorded in transport above IP */ 11547 break; /* goto sizeof (int) option return */ 11548 case IPV6_UNSPEC_SRC: 11549 /* Allow sending with a zero source address */ 11550 if (!checkonly) { 11551 mutex_enter(&connp->conn_lock); 11552 connp->conn_unspec_src = *i1 ? 1 : 0; 11553 mutex_exit(&connp->conn_lock); 11554 } 11555 break; /* goto sizeof (int) option return */ 11556 case IPV6_RECVPKTINFO: 11557 if (!checkonly) { 11558 mutex_enter(&connp->conn_lock); 11559 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11560 mutex_exit(&connp->conn_lock); 11561 } 11562 break; /* goto sizeof (int) option return */ 11563 case IPV6_RECVTCLASS: 11564 if (!checkonly) { 11565 if (*i1 < 0 || *i1 > 1) { 11566 return (EINVAL); 11567 } 11568 mutex_enter(&connp->conn_lock); 11569 connp->conn_ipv6_recvtclass = *i1; 11570 mutex_exit(&connp->conn_lock); 11571 } 11572 break; 11573 case IPV6_RECVPATHMTU: 11574 if (!checkonly) { 11575 if (*i1 < 0 || *i1 > 1) { 11576 return (EINVAL); 11577 } 11578 mutex_enter(&connp->conn_lock); 11579 connp->conn_ipv6_recvpathmtu = *i1; 11580 mutex_exit(&connp->conn_lock); 11581 } 11582 break; 11583 case IPV6_RECVHOPLIMIT: 11584 if (!checkonly) { 11585 mutex_enter(&connp->conn_lock); 11586 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11587 mutex_exit(&connp->conn_lock); 11588 } 11589 break; /* goto sizeof (int) option return */ 11590 case IPV6_RECVHOPOPTS: 11591 if (!checkonly) { 11592 mutex_enter(&connp->conn_lock); 11593 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11594 mutex_exit(&connp->conn_lock); 11595 } 11596 break; /* goto sizeof (int) option return */ 11597 case IPV6_RECVDSTOPTS: 11598 if (!checkonly) { 11599 mutex_enter(&connp->conn_lock); 11600 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11601 mutex_exit(&connp->conn_lock); 11602 } 11603 break; /* goto sizeof (int) option return */ 11604 case IPV6_RECVRTHDR: 11605 if (!checkonly) { 11606 mutex_enter(&connp->conn_lock); 11607 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11608 mutex_exit(&connp->conn_lock); 11609 } 11610 break; /* goto sizeof (int) option return */ 11611 case IPV6_RECVRTHDRDSTOPTS: 11612 if (!checkonly) { 11613 mutex_enter(&connp->conn_lock); 11614 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11615 mutex_exit(&connp->conn_lock); 11616 } 11617 break; /* goto sizeof (int) option return */ 11618 case IPV6_PKTINFO: 11619 if (inlen == 0) 11620 return (-EINVAL); /* clearing option */ 11621 error = ip6_set_pktinfo(cr, connp, 11622 (struct in6_pktinfo *)invalp, first_mp); 11623 if (error != 0) 11624 *outlenp = 0; 11625 else 11626 *outlenp = inlen; 11627 return (error); 11628 case IPV6_NEXTHOP: { 11629 struct sockaddr_in6 *sin6; 11630 11631 /* Verify that the nexthop is reachable */ 11632 if (inlen == 0) 11633 return (-EINVAL); /* clearing option */ 11634 11635 sin6 = (struct sockaddr_in6 *)invalp; 11636 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11637 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11638 NULL, MATCH_IRE_DEFAULT, ipst); 11639 11640 if (ire == NULL) { 11641 *outlenp = 0; 11642 return (EHOSTUNREACH); 11643 } 11644 ire_refrele(ire); 11645 return (-EINVAL); 11646 } 11647 case IPV6_SEC_OPT: 11648 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11649 if (error != 0) { 11650 *outlenp = 0; 11651 return (error); 11652 } 11653 break; 11654 case IPV6_SRC_PREFERENCES: { 11655 /* 11656 * This is implemented strictly in the ip module 11657 * (here and in tcp_opt_*() to accomodate tcp 11658 * sockets). Modules above ip pass this option 11659 * down here since ip is the only one that needs to 11660 * be aware of source address preferences. 11661 * 11662 * This socket option only affects connected 11663 * sockets that haven't already bound to a specific 11664 * IPv6 address. In other words, sockets that 11665 * don't call bind() with an address other than the 11666 * unspecified address and that call connect(). 11667 * ip_bind_connected_v6() passes these preferences 11668 * to the ipif_select_source_v6() function. 11669 */ 11670 if (inlen != sizeof (uint32_t)) 11671 return (EINVAL); 11672 error = ip6_set_src_preferences(connp, 11673 *(uint32_t *)invalp); 11674 if (error != 0) { 11675 *outlenp = 0; 11676 return (error); 11677 } else { 11678 *outlenp = sizeof (uint32_t); 11679 } 11680 break; 11681 } 11682 case IPV6_V6ONLY: 11683 if (*i1 < 0 || *i1 > 1) { 11684 return (EINVAL); 11685 } 11686 mutex_enter(&connp->conn_lock); 11687 connp->conn_ipv6_v6only = *i1; 11688 mutex_exit(&connp->conn_lock); 11689 break; 11690 default: 11691 return (-EINVAL); 11692 } 11693 break; 11694 default: 11695 /* 11696 * "soft" error (negative) 11697 * option not handled at this level 11698 * Note: Do not modify *outlenp 11699 */ 11700 return (-EINVAL); 11701 } 11702 /* 11703 * Common case of return from an option that is sizeof (int) 11704 */ 11705 *(int *)outvalp = *i1; 11706 *outlenp = sizeof (int); 11707 return (0); 11708 } 11709 11710 /* 11711 * This routine gets default values of certain options whose default 11712 * values are maintained by protocol specific code 11713 */ 11714 /* ARGSUSED */ 11715 int 11716 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11717 { 11718 int *i1 = (int *)ptr; 11719 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11720 11721 switch (level) { 11722 case IPPROTO_IP: 11723 switch (name) { 11724 case IP_MULTICAST_TTL: 11725 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11726 return (sizeof (uchar_t)); 11727 case IP_MULTICAST_LOOP: 11728 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11729 return (sizeof (uchar_t)); 11730 default: 11731 return (-1); 11732 } 11733 case IPPROTO_IPV6: 11734 switch (name) { 11735 case IPV6_UNICAST_HOPS: 11736 *i1 = ipst->ips_ipv6_def_hops; 11737 return (sizeof (int)); 11738 case IPV6_MULTICAST_HOPS: 11739 *i1 = IP_DEFAULT_MULTICAST_TTL; 11740 return (sizeof (int)); 11741 case IPV6_MULTICAST_LOOP: 11742 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11743 return (sizeof (int)); 11744 case IPV6_V6ONLY: 11745 *i1 = 1; 11746 return (sizeof (int)); 11747 default: 11748 return (-1); 11749 } 11750 default: 11751 return (-1); 11752 } 11753 /* NOTREACHED */ 11754 } 11755 11756 /* 11757 * Given a destination address and a pointer to where to put the information 11758 * this routine fills in the mtuinfo. 11759 */ 11760 int 11761 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11762 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11763 { 11764 ire_t *ire; 11765 ip_stack_t *ipst = ns->netstack_ip; 11766 11767 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11768 return (-1); 11769 11770 bzero(mtuinfo, sizeof (*mtuinfo)); 11771 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11772 mtuinfo->ip6m_addr.sin6_port = port; 11773 mtuinfo->ip6m_addr.sin6_addr = *in6; 11774 11775 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11776 if (ire != NULL) { 11777 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11778 ire_refrele(ire); 11779 } else { 11780 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11781 } 11782 return (sizeof (struct ip6_mtuinfo)); 11783 } 11784 11785 /* 11786 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11787 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11788 * isn't. This doesn't matter as the error checking is done properly for the 11789 * other MRT options coming in through ip_opt_set. 11790 */ 11791 int 11792 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11793 { 11794 conn_t *connp = Q_TO_CONN(q); 11795 ipsec_req_t *req = (ipsec_req_t *)ptr; 11796 11797 switch (level) { 11798 case IPPROTO_IP: 11799 switch (name) { 11800 case MRT_VERSION: 11801 case MRT_ASSERT: 11802 (void) ip_mrouter_get(name, q, ptr); 11803 return (sizeof (int)); 11804 case IP_SEC_OPT: 11805 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11806 case IP_NEXTHOP: 11807 if (connp->conn_nexthop_set) { 11808 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11809 return (sizeof (ipaddr_t)); 11810 } else 11811 return (0); 11812 case IP_RECVPKTINFO: 11813 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11814 return (sizeof (int)); 11815 default: 11816 break; 11817 } 11818 break; 11819 case IPPROTO_IPV6: 11820 switch (name) { 11821 case IPV6_SEC_OPT: 11822 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11823 case IPV6_SRC_PREFERENCES: { 11824 return (ip6_get_src_preferences(connp, 11825 (uint32_t *)ptr)); 11826 } 11827 case IPV6_V6ONLY: 11828 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11829 return (sizeof (int)); 11830 case IPV6_PATHMTU: 11831 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11832 (struct ip6_mtuinfo *)ptr, 11833 connp->conn_netstack)); 11834 default: 11835 break; 11836 } 11837 break; 11838 default: 11839 break; 11840 } 11841 return (-1); 11842 } 11843 11844 /* Named Dispatch routine to get a current value out of our parameter table. */ 11845 /* ARGSUSED */ 11846 static int 11847 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11848 { 11849 ipparam_t *ippa = (ipparam_t *)cp; 11850 11851 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11852 return (0); 11853 } 11854 11855 /* ARGSUSED */ 11856 static int 11857 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11858 { 11859 11860 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11861 return (0); 11862 } 11863 11864 /* 11865 * Set ip{,6}_forwarding values. This means walking through all of the 11866 * ill's and toggling their forwarding values. 11867 */ 11868 /* ARGSUSED */ 11869 static int 11870 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11871 { 11872 long new_value; 11873 int *forwarding_value = (int *)cp; 11874 ill_t *ill; 11875 boolean_t isv6; 11876 ill_walk_context_t ctx; 11877 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11878 11879 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11880 11881 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11882 new_value < 0 || new_value > 1) { 11883 return (EINVAL); 11884 } 11885 11886 *forwarding_value = new_value; 11887 11888 /* 11889 * Regardless of the current value of ip_forwarding, set all per-ill 11890 * values of ip_forwarding to the value being set. 11891 * 11892 * Bring all the ill's up to date with the new global value. 11893 */ 11894 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11895 11896 if (isv6) 11897 ill = ILL_START_WALK_V6(&ctx, ipst); 11898 else 11899 ill = ILL_START_WALK_V4(&ctx, ipst); 11900 11901 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11902 (void) ill_forward_set(ill, new_value != 0); 11903 11904 rw_exit(&ipst->ips_ill_g_lock); 11905 return (0); 11906 } 11907 11908 /* 11909 * Walk through the param array specified registering each element with the 11910 * Named Dispatch handler. This is called only during init. So it is ok 11911 * not to acquire any locks 11912 */ 11913 static boolean_t 11914 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11915 ipndp_t *ipnd, size_t ipnd_cnt) 11916 { 11917 for (; ippa_cnt-- > 0; ippa++) { 11918 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11919 if (!nd_load(ndp, ippa->ip_param_name, 11920 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11921 nd_free(ndp); 11922 return (B_FALSE); 11923 } 11924 } 11925 } 11926 11927 for (; ipnd_cnt-- > 0; ipnd++) { 11928 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11929 if (!nd_load(ndp, ipnd->ip_ndp_name, 11930 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11931 ipnd->ip_ndp_data)) { 11932 nd_free(ndp); 11933 return (B_FALSE); 11934 } 11935 } 11936 } 11937 11938 return (B_TRUE); 11939 } 11940 11941 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11942 /* ARGSUSED */ 11943 static int 11944 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11945 { 11946 long new_value; 11947 ipparam_t *ippa = (ipparam_t *)cp; 11948 11949 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11950 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11951 return (EINVAL); 11952 } 11953 ippa->ip_param_value = new_value; 11954 return (0); 11955 } 11956 11957 /* 11958 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11959 * When an ipf is passed here for the first time, if 11960 * we already have in-order fragments on the queue, we convert from the fast- 11961 * path reassembly scheme to the hard-case scheme. From then on, additional 11962 * fragments are reassembled here. We keep track of the start and end offsets 11963 * of each piece, and the number of holes in the chain. When the hole count 11964 * goes to zero, we are done! 11965 * 11966 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11967 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11968 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11969 * after the call to ip_reassemble(). 11970 */ 11971 int 11972 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11973 size_t msg_len) 11974 { 11975 uint_t end; 11976 mblk_t *next_mp; 11977 mblk_t *mp1; 11978 uint_t offset; 11979 boolean_t incr_dups = B_TRUE; 11980 boolean_t offset_zero_seen = B_FALSE; 11981 boolean_t pkt_boundary_checked = B_FALSE; 11982 11983 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11984 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11985 11986 /* Add in byte count */ 11987 ipf->ipf_count += msg_len; 11988 if (ipf->ipf_end) { 11989 /* 11990 * We were part way through in-order reassembly, but now there 11991 * is a hole. We walk through messages already queued, and 11992 * mark them for hard case reassembly. We know that up till 11993 * now they were in order starting from offset zero. 11994 */ 11995 offset = 0; 11996 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11997 IP_REASS_SET_START(mp1, offset); 11998 if (offset == 0) { 11999 ASSERT(ipf->ipf_nf_hdr_len != 0); 12000 offset = -ipf->ipf_nf_hdr_len; 12001 } 12002 offset += mp1->b_wptr - mp1->b_rptr; 12003 IP_REASS_SET_END(mp1, offset); 12004 } 12005 /* One hole at the end. */ 12006 ipf->ipf_hole_cnt = 1; 12007 /* Brand it as a hard case, forever. */ 12008 ipf->ipf_end = 0; 12009 } 12010 /* Walk through all the new pieces. */ 12011 do { 12012 end = start + (mp->b_wptr - mp->b_rptr); 12013 /* 12014 * If start is 0, decrease 'end' only for the first mblk of 12015 * the fragment. Otherwise 'end' can get wrong value in the 12016 * second pass of the loop if first mblk is exactly the 12017 * size of ipf_nf_hdr_len. 12018 */ 12019 if (start == 0 && !offset_zero_seen) { 12020 /* First segment */ 12021 ASSERT(ipf->ipf_nf_hdr_len != 0); 12022 end -= ipf->ipf_nf_hdr_len; 12023 offset_zero_seen = B_TRUE; 12024 } 12025 next_mp = mp->b_cont; 12026 /* 12027 * We are checking to see if there is any interesing data 12028 * to process. If there isn't and the mblk isn't the 12029 * one which carries the unfragmentable header then we 12030 * drop it. It's possible to have just the unfragmentable 12031 * header come through without any data. That needs to be 12032 * saved. 12033 * 12034 * If the assert at the top of this function holds then the 12035 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 12036 * is infrequently traveled enough that the test is left in 12037 * to protect against future code changes which break that 12038 * invariant. 12039 */ 12040 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 12041 /* Empty. Blast it. */ 12042 IP_REASS_SET_START(mp, 0); 12043 IP_REASS_SET_END(mp, 0); 12044 /* 12045 * If the ipf points to the mblk we are about to free, 12046 * update ipf to point to the next mblk (or NULL 12047 * if none). 12048 */ 12049 if (ipf->ipf_mp->b_cont == mp) 12050 ipf->ipf_mp->b_cont = next_mp; 12051 freeb(mp); 12052 continue; 12053 } 12054 mp->b_cont = NULL; 12055 IP_REASS_SET_START(mp, start); 12056 IP_REASS_SET_END(mp, end); 12057 if (!ipf->ipf_tail_mp) { 12058 ipf->ipf_tail_mp = mp; 12059 ipf->ipf_mp->b_cont = mp; 12060 if (start == 0 || !more) { 12061 ipf->ipf_hole_cnt = 1; 12062 /* 12063 * if the first fragment comes in more than one 12064 * mblk, this loop will be executed for each 12065 * mblk. Need to adjust hole count so exiting 12066 * this routine will leave hole count at 1. 12067 */ 12068 if (next_mp) 12069 ipf->ipf_hole_cnt++; 12070 } else 12071 ipf->ipf_hole_cnt = 2; 12072 continue; 12073 } else if (ipf->ipf_last_frag_seen && !more && 12074 !pkt_boundary_checked) { 12075 /* 12076 * We check datagram boundary only if this fragment 12077 * claims to be the last fragment and we have seen a 12078 * last fragment in the past too. We do this only 12079 * once for a given fragment. 12080 * 12081 * start cannot be 0 here as fragments with start=0 12082 * and MF=0 gets handled as a complete packet. These 12083 * fragments should not reach here. 12084 */ 12085 12086 if (start + msgdsize(mp) != 12087 IP_REASS_END(ipf->ipf_tail_mp)) { 12088 /* 12089 * We have two fragments both of which claim 12090 * to be the last fragment but gives conflicting 12091 * information about the whole datagram size. 12092 * Something fishy is going on. Drop the 12093 * fragment and free up the reassembly list. 12094 */ 12095 return (IP_REASS_FAILED); 12096 } 12097 12098 /* 12099 * We shouldn't come to this code block again for this 12100 * particular fragment. 12101 */ 12102 pkt_boundary_checked = B_TRUE; 12103 } 12104 12105 /* New stuff at or beyond tail? */ 12106 offset = IP_REASS_END(ipf->ipf_tail_mp); 12107 if (start >= offset) { 12108 if (ipf->ipf_last_frag_seen) { 12109 /* current fragment is beyond last fragment */ 12110 return (IP_REASS_FAILED); 12111 } 12112 /* Link it on end. */ 12113 ipf->ipf_tail_mp->b_cont = mp; 12114 ipf->ipf_tail_mp = mp; 12115 if (more) { 12116 if (start != offset) 12117 ipf->ipf_hole_cnt++; 12118 } else if (start == offset && next_mp == NULL) 12119 ipf->ipf_hole_cnt--; 12120 continue; 12121 } 12122 mp1 = ipf->ipf_mp->b_cont; 12123 offset = IP_REASS_START(mp1); 12124 /* New stuff at the front? */ 12125 if (start < offset) { 12126 if (start == 0) { 12127 if (end >= offset) { 12128 /* Nailed the hole at the begining. */ 12129 ipf->ipf_hole_cnt--; 12130 } 12131 } else if (end < offset) { 12132 /* 12133 * A hole, stuff, and a hole where there used 12134 * to be just a hole. 12135 */ 12136 ipf->ipf_hole_cnt++; 12137 } 12138 mp->b_cont = mp1; 12139 /* Check for overlap. */ 12140 while (end > offset) { 12141 if (end < IP_REASS_END(mp1)) { 12142 mp->b_wptr -= end - offset; 12143 IP_REASS_SET_END(mp, offset); 12144 BUMP_MIB(ill->ill_ip_mib, 12145 ipIfStatsReasmPartDups); 12146 break; 12147 } 12148 /* Did we cover another hole? */ 12149 if ((mp1->b_cont && 12150 IP_REASS_END(mp1) != 12151 IP_REASS_START(mp1->b_cont) && 12152 end >= IP_REASS_START(mp1->b_cont)) || 12153 (!ipf->ipf_last_frag_seen && !more)) { 12154 ipf->ipf_hole_cnt--; 12155 } 12156 /* Clip out mp1. */ 12157 if ((mp->b_cont = mp1->b_cont) == NULL) { 12158 /* 12159 * After clipping out mp1, this guy 12160 * is now hanging off the end. 12161 */ 12162 ipf->ipf_tail_mp = mp; 12163 } 12164 IP_REASS_SET_START(mp1, 0); 12165 IP_REASS_SET_END(mp1, 0); 12166 /* Subtract byte count */ 12167 ipf->ipf_count -= mp1->b_datap->db_lim - 12168 mp1->b_datap->db_base; 12169 freeb(mp1); 12170 BUMP_MIB(ill->ill_ip_mib, 12171 ipIfStatsReasmPartDups); 12172 mp1 = mp->b_cont; 12173 if (!mp1) 12174 break; 12175 offset = IP_REASS_START(mp1); 12176 } 12177 ipf->ipf_mp->b_cont = mp; 12178 continue; 12179 } 12180 /* 12181 * The new piece starts somewhere between the start of the head 12182 * and before the end of the tail. 12183 */ 12184 for (; mp1; mp1 = mp1->b_cont) { 12185 offset = IP_REASS_END(mp1); 12186 if (start < offset) { 12187 if (end <= offset) { 12188 /* Nothing new. */ 12189 IP_REASS_SET_START(mp, 0); 12190 IP_REASS_SET_END(mp, 0); 12191 /* Subtract byte count */ 12192 ipf->ipf_count -= mp->b_datap->db_lim - 12193 mp->b_datap->db_base; 12194 if (incr_dups) { 12195 ipf->ipf_num_dups++; 12196 incr_dups = B_FALSE; 12197 } 12198 freeb(mp); 12199 BUMP_MIB(ill->ill_ip_mib, 12200 ipIfStatsReasmDuplicates); 12201 break; 12202 } 12203 /* 12204 * Trim redundant stuff off beginning of new 12205 * piece. 12206 */ 12207 IP_REASS_SET_START(mp, offset); 12208 mp->b_rptr += offset - start; 12209 BUMP_MIB(ill->ill_ip_mib, 12210 ipIfStatsReasmPartDups); 12211 start = offset; 12212 if (!mp1->b_cont) { 12213 /* 12214 * After trimming, this guy is now 12215 * hanging off the end. 12216 */ 12217 mp1->b_cont = mp; 12218 ipf->ipf_tail_mp = mp; 12219 if (!more) { 12220 ipf->ipf_hole_cnt--; 12221 } 12222 break; 12223 } 12224 } 12225 if (start >= IP_REASS_START(mp1->b_cont)) 12226 continue; 12227 /* Fill a hole */ 12228 if (start > offset) 12229 ipf->ipf_hole_cnt++; 12230 mp->b_cont = mp1->b_cont; 12231 mp1->b_cont = mp; 12232 mp1 = mp->b_cont; 12233 offset = IP_REASS_START(mp1); 12234 if (end >= offset) { 12235 ipf->ipf_hole_cnt--; 12236 /* Check for overlap. */ 12237 while (end > offset) { 12238 if (end < IP_REASS_END(mp1)) { 12239 mp->b_wptr -= end - offset; 12240 IP_REASS_SET_END(mp, offset); 12241 /* 12242 * TODO we might bump 12243 * this up twice if there is 12244 * overlap at both ends. 12245 */ 12246 BUMP_MIB(ill->ill_ip_mib, 12247 ipIfStatsReasmPartDups); 12248 break; 12249 } 12250 /* Did we cover another hole? */ 12251 if ((mp1->b_cont && 12252 IP_REASS_END(mp1) 12253 != IP_REASS_START(mp1->b_cont) && 12254 end >= 12255 IP_REASS_START(mp1->b_cont)) || 12256 (!ipf->ipf_last_frag_seen && 12257 !more)) { 12258 ipf->ipf_hole_cnt--; 12259 } 12260 /* Clip out mp1. */ 12261 if ((mp->b_cont = mp1->b_cont) == 12262 NULL) { 12263 /* 12264 * After clipping out mp1, 12265 * this guy is now hanging 12266 * off the end. 12267 */ 12268 ipf->ipf_tail_mp = mp; 12269 } 12270 IP_REASS_SET_START(mp1, 0); 12271 IP_REASS_SET_END(mp1, 0); 12272 /* Subtract byte count */ 12273 ipf->ipf_count -= 12274 mp1->b_datap->db_lim - 12275 mp1->b_datap->db_base; 12276 freeb(mp1); 12277 BUMP_MIB(ill->ill_ip_mib, 12278 ipIfStatsReasmPartDups); 12279 mp1 = mp->b_cont; 12280 if (!mp1) 12281 break; 12282 offset = IP_REASS_START(mp1); 12283 } 12284 } 12285 break; 12286 } 12287 } while (start = end, mp = next_mp); 12288 12289 /* Fragment just processed could be the last one. Remember this fact */ 12290 if (!more) 12291 ipf->ipf_last_frag_seen = B_TRUE; 12292 12293 /* Still got holes? */ 12294 if (ipf->ipf_hole_cnt) 12295 return (IP_REASS_PARTIAL); 12296 /* Clean up overloaded fields to avoid upstream disasters. */ 12297 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12298 IP_REASS_SET_START(mp1, 0); 12299 IP_REASS_SET_END(mp1, 0); 12300 } 12301 return (IP_REASS_COMPLETE); 12302 } 12303 12304 /* 12305 * ipsec processing for the fast path, used for input UDP Packets 12306 */ 12307 static boolean_t 12308 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12309 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 12310 { 12311 uint32_t ill_index; 12312 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12313 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12314 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12315 12316 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12317 /* The ill_index of the incoming ILL */ 12318 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12319 12320 /* pass packet up to the transport */ 12321 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12322 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12323 NULL, mctl_present); 12324 if (*first_mpp == NULL) { 12325 return (B_FALSE); 12326 } 12327 } 12328 12329 /* Initiate IPPF processing for fastpath UDP */ 12330 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12331 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12332 if (*mpp == NULL) { 12333 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12334 "deferred/dropped during IPPF processing\n")); 12335 return (B_FALSE); 12336 } 12337 } 12338 /* 12339 * We make the checks as below since we are in the fast path 12340 * and want to minimize the number of checks if the IP_RECVIF and/or 12341 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12342 */ 12343 if (connp->conn_recvif || connp->conn_recvslla || 12344 connp->conn_ip_recvpktinfo) { 12345 if (connp->conn_recvif) { 12346 in_flags = IPF_RECVIF; 12347 } 12348 /* 12349 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12350 * so the flag passed to ip_add_info is based on IP version 12351 * of connp. 12352 */ 12353 if (connp->conn_ip_recvpktinfo) { 12354 if (connp->conn_af_isv6) { 12355 /* 12356 * V6 only needs index 12357 */ 12358 in_flags |= IPF_RECVIF; 12359 } else { 12360 /* 12361 * V4 needs index + matching address. 12362 */ 12363 in_flags |= IPF_RECVADDR; 12364 } 12365 } 12366 if (connp->conn_recvslla) { 12367 in_flags |= IPF_RECVSLLA; 12368 } 12369 /* 12370 * since in_flags are being set ill will be 12371 * referenced in ip_add_info, so it better not 12372 * be NULL. 12373 */ 12374 /* 12375 * the actual data will be contained in b_cont 12376 * upon successful return of the following call. 12377 * If the call fails then the original mblk is 12378 * returned. 12379 */ 12380 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12381 ipst); 12382 } 12383 12384 return (B_TRUE); 12385 } 12386 12387 /* 12388 * Fragmentation reassembly. Each ILL has a hash table for 12389 * queuing packets undergoing reassembly for all IPIFs 12390 * associated with the ILL. The hash is based on the packet 12391 * IP ident field. The ILL frag hash table was allocated 12392 * as a timer block at the time the ILL was created. Whenever 12393 * there is anything on the reassembly queue, the timer will 12394 * be running. Returns B_TRUE if successful else B_FALSE; 12395 * frees mp on failure. 12396 */ 12397 static boolean_t 12398 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12399 uint32_t *cksum_val, uint16_t *cksum_flags) 12400 { 12401 uint32_t frag_offset_flags; 12402 ill_t *ill = (ill_t *)q->q_ptr; 12403 mblk_t *mp = *mpp; 12404 mblk_t *t_mp; 12405 ipaddr_t dst; 12406 uint8_t proto = ipha->ipha_protocol; 12407 uint32_t sum_val; 12408 uint16_t sum_flags; 12409 ipf_t *ipf; 12410 ipf_t **ipfp; 12411 ipfb_t *ipfb; 12412 uint16_t ident; 12413 uint32_t offset; 12414 ipaddr_t src; 12415 uint_t hdr_length; 12416 uint32_t end; 12417 mblk_t *mp1; 12418 mblk_t *tail_mp; 12419 size_t count; 12420 size_t msg_len; 12421 uint8_t ecn_info = 0; 12422 uint32_t packet_size; 12423 boolean_t pruned = B_FALSE; 12424 ip_stack_t *ipst = ill->ill_ipst; 12425 12426 if (cksum_val != NULL) 12427 *cksum_val = 0; 12428 if (cksum_flags != NULL) 12429 *cksum_flags = 0; 12430 12431 /* 12432 * Drop the fragmented as early as possible, if 12433 * we don't have resource(s) to re-assemble. 12434 */ 12435 if (ipst->ips_ip_reass_queue_bytes == 0) { 12436 freemsg(mp); 12437 return (B_FALSE); 12438 } 12439 12440 /* Check for fragmentation offset; return if there's none */ 12441 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12442 (IPH_MF | IPH_OFFSET)) == 0) 12443 return (B_TRUE); 12444 12445 /* 12446 * We utilize hardware computed checksum info only for UDP since 12447 * IP fragmentation is a normal occurence for the protocol. In 12448 * addition, checksum offload support for IP fragments carrying 12449 * UDP payload is commonly implemented across network adapters. 12450 */ 12451 ASSERT(ill != NULL); 12452 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12453 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12454 mblk_t *mp1 = mp->b_cont; 12455 int32_t len; 12456 12457 /* Record checksum information from the packet */ 12458 sum_val = (uint32_t)DB_CKSUM16(mp); 12459 sum_flags = DB_CKSUMFLAGS(mp); 12460 12461 /* IP payload offset from beginning of mblk */ 12462 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12463 12464 if ((sum_flags & HCK_PARTIALCKSUM) && 12465 (mp1 == NULL || mp1->b_cont == NULL) && 12466 offset >= DB_CKSUMSTART(mp) && 12467 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12468 uint32_t adj; 12469 /* 12470 * Partial checksum has been calculated by hardware 12471 * and attached to the packet; in addition, any 12472 * prepended extraneous data is even byte aligned. 12473 * If any such data exists, we adjust the checksum; 12474 * this would also handle any postpended data. 12475 */ 12476 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12477 mp, mp1, len, adj); 12478 12479 /* One's complement subtract extraneous checksum */ 12480 if (adj >= sum_val) 12481 sum_val = ~(adj - sum_val) & 0xFFFF; 12482 else 12483 sum_val -= adj; 12484 } 12485 } else { 12486 sum_val = 0; 12487 sum_flags = 0; 12488 } 12489 12490 /* Clear hardware checksumming flag */ 12491 DB_CKSUMFLAGS(mp) = 0; 12492 12493 ident = ipha->ipha_ident; 12494 offset = (frag_offset_flags << 3) & 0xFFFF; 12495 src = ipha->ipha_src; 12496 dst = ipha->ipha_dst; 12497 hdr_length = IPH_HDR_LENGTH(ipha); 12498 end = ntohs(ipha->ipha_length) - hdr_length; 12499 12500 /* If end == 0 then we have a packet with no data, so just free it */ 12501 if (end == 0) { 12502 freemsg(mp); 12503 return (B_FALSE); 12504 } 12505 12506 /* Record the ECN field info. */ 12507 ecn_info = (ipha->ipha_type_of_service & 0x3); 12508 if (offset != 0) { 12509 /* 12510 * If this isn't the first piece, strip the header, and 12511 * add the offset to the end value. 12512 */ 12513 mp->b_rptr += hdr_length; 12514 end += offset; 12515 } 12516 12517 msg_len = MBLKSIZE(mp); 12518 tail_mp = mp; 12519 while (tail_mp->b_cont != NULL) { 12520 tail_mp = tail_mp->b_cont; 12521 msg_len += MBLKSIZE(tail_mp); 12522 } 12523 12524 /* If the reassembly list for this ILL will get too big, prune it */ 12525 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12526 ipst->ips_ip_reass_queue_bytes) { 12527 ill_frag_prune(ill, 12528 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12529 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12530 pruned = B_TRUE; 12531 } 12532 12533 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12534 mutex_enter(&ipfb->ipfb_lock); 12535 12536 ipfp = &ipfb->ipfb_ipf; 12537 /* Try to find an existing fragment queue for this packet. */ 12538 for (;;) { 12539 ipf = ipfp[0]; 12540 if (ipf != NULL) { 12541 /* 12542 * It has to match on ident and src/dst address. 12543 */ 12544 if (ipf->ipf_ident == ident && 12545 ipf->ipf_src == src && 12546 ipf->ipf_dst == dst && 12547 ipf->ipf_protocol == proto) { 12548 /* 12549 * If we have received too many 12550 * duplicate fragments for this packet 12551 * free it. 12552 */ 12553 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12554 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12555 freemsg(mp); 12556 mutex_exit(&ipfb->ipfb_lock); 12557 return (B_FALSE); 12558 } 12559 /* Found it. */ 12560 break; 12561 } 12562 ipfp = &ipf->ipf_hash_next; 12563 continue; 12564 } 12565 12566 /* 12567 * If we pruned the list, do we want to store this new 12568 * fragment?. We apply an optimization here based on the 12569 * fact that most fragments will be received in order. 12570 * So if the offset of this incoming fragment is zero, 12571 * it is the first fragment of a new packet. We will 12572 * keep it. Otherwise drop the fragment, as we have 12573 * probably pruned the packet already (since the 12574 * packet cannot be found). 12575 */ 12576 if (pruned && offset != 0) { 12577 mutex_exit(&ipfb->ipfb_lock); 12578 freemsg(mp); 12579 return (B_FALSE); 12580 } 12581 12582 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12583 /* 12584 * Too many fragmented packets in this hash 12585 * bucket. Free the oldest. 12586 */ 12587 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12588 } 12589 12590 /* New guy. Allocate a frag message. */ 12591 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12592 if (mp1 == NULL) { 12593 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12594 freemsg(mp); 12595 reass_done: 12596 mutex_exit(&ipfb->ipfb_lock); 12597 return (B_FALSE); 12598 } 12599 12600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12601 mp1->b_cont = mp; 12602 12603 /* Initialize the fragment header. */ 12604 ipf = (ipf_t *)mp1->b_rptr; 12605 ipf->ipf_mp = mp1; 12606 ipf->ipf_ptphn = ipfp; 12607 ipfp[0] = ipf; 12608 ipf->ipf_hash_next = NULL; 12609 ipf->ipf_ident = ident; 12610 ipf->ipf_protocol = proto; 12611 ipf->ipf_src = src; 12612 ipf->ipf_dst = dst; 12613 ipf->ipf_nf_hdr_len = 0; 12614 /* Record reassembly start time. */ 12615 ipf->ipf_timestamp = gethrestime_sec(); 12616 /* Record ipf generation and account for frag header */ 12617 ipf->ipf_gen = ill->ill_ipf_gen++; 12618 ipf->ipf_count = MBLKSIZE(mp1); 12619 ipf->ipf_last_frag_seen = B_FALSE; 12620 ipf->ipf_ecn = ecn_info; 12621 ipf->ipf_num_dups = 0; 12622 ipfb->ipfb_frag_pkts++; 12623 ipf->ipf_checksum = 0; 12624 ipf->ipf_checksum_flags = 0; 12625 12626 /* Store checksum value in fragment header */ 12627 if (sum_flags != 0) { 12628 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12629 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12630 ipf->ipf_checksum = sum_val; 12631 ipf->ipf_checksum_flags = sum_flags; 12632 } 12633 12634 /* 12635 * We handle reassembly two ways. In the easy case, 12636 * where all the fragments show up in order, we do 12637 * minimal bookkeeping, and just clip new pieces on 12638 * the end. If we ever see a hole, then we go off 12639 * to ip_reassemble which has to mark the pieces and 12640 * keep track of the number of holes, etc. Obviously, 12641 * the point of having both mechanisms is so we can 12642 * handle the easy case as efficiently as possible. 12643 */ 12644 if (offset == 0) { 12645 /* Easy case, in-order reassembly so far. */ 12646 ipf->ipf_count += msg_len; 12647 ipf->ipf_tail_mp = tail_mp; 12648 /* 12649 * Keep track of next expected offset in 12650 * ipf_end. 12651 */ 12652 ipf->ipf_end = end; 12653 ipf->ipf_nf_hdr_len = hdr_length; 12654 } else { 12655 /* Hard case, hole at the beginning. */ 12656 ipf->ipf_tail_mp = NULL; 12657 /* 12658 * ipf_end == 0 means that we have given up 12659 * on easy reassembly. 12660 */ 12661 ipf->ipf_end = 0; 12662 12663 /* Forget checksum offload from now on */ 12664 ipf->ipf_checksum_flags = 0; 12665 12666 /* 12667 * ipf_hole_cnt is set by ip_reassemble. 12668 * ipf_count is updated by ip_reassemble. 12669 * No need to check for return value here 12670 * as we don't expect reassembly to complete 12671 * or fail for the first fragment itself. 12672 */ 12673 (void) ip_reassemble(mp, ipf, 12674 (frag_offset_flags & IPH_OFFSET) << 3, 12675 (frag_offset_flags & IPH_MF), ill, msg_len); 12676 } 12677 /* Update per ipfb and ill byte counts */ 12678 ipfb->ipfb_count += ipf->ipf_count; 12679 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12680 ill->ill_frag_count += ipf->ipf_count; 12681 /* If the frag timer wasn't already going, start it. */ 12682 mutex_enter(&ill->ill_lock); 12683 ill_frag_timer_start(ill); 12684 mutex_exit(&ill->ill_lock); 12685 goto reass_done; 12686 } 12687 12688 /* 12689 * If the packet's flag has changed (it could be coming up 12690 * from an interface different than the previous, therefore 12691 * possibly different checksum capability), then forget about 12692 * any stored checksum states. Otherwise add the value to 12693 * the existing one stored in the fragment header. 12694 */ 12695 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12696 sum_val += ipf->ipf_checksum; 12697 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12698 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12699 ipf->ipf_checksum = sum_val; 12700 } else if (ipf->ipf_checksum_flags != 0) { 12701 /* Forget checksum offload from now on */ 12702 ipf->ipf_checksum_flags = 0; 12703 } 12704 12705 /* 12706 * We have a new piece of a datagram which is already being 12707 * reassembled. Update the ECN info if all IP fragments 12708 * are ECN capable. If there is one which is not, clear 12709 * all the info. If there is at least one which has CE 12710 * code point, IP needs to report that up to transport. 12711 */ 12712 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12713 if (ecn_info == IPH_ECN_CE) 12714 ipf->ipf_ecn = IPH_ECN_CE; 12715 } else { 12716 ipf->ipf_ecn = IPH_ECN_NECT; 12717 } 12718 if (offset && ipf->ipf_end == offset) { 12719 /* The new fragment fits at the end */ 12720 ipf->ipf_tail_mp->b_cont = mp; 12721 /* Update the byte count */ 12722 ipf->ipf_count += msg_len; 12723 /* Update per ipfb and ill byte counts */ 12724 ipfb->ipfb_count += msg_len; 12725 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12726 ill->ill_frag_count += msg_len; 12727 if (frag_offset_flags & IPH_MF) { 12728 /* More to come. */ 12729 ipf->ipf_end = end; 12730 ipf->ipf_tail_mp = tail_mp; 12731 goto reass_done; 12732 } 12733 } else { 12734 /* Go do the hard cases. */ 12735 int ret; 12736 12737 if (offset == 0) 12738 ipf->ipf_nf_hdr_len = hdr_length; 12739 12740 /* Save current byte count */ 12741 count = ipf->ipf_count; 12742 ret = ip_reassemble(mp, ipf, 12743 (frag_offset_flags & IPH_OFFSET) << 3, 12744 (frag_offset_flags & IPH_MF), ill, msg_len); 12745 /* Count of bytes added and subtracted (freeb()ed) */ 12746 count = ipf->ipf_count - count; 12747 if (count) { 12748 /* Update per ipfb and ill byte counts */ 12749 ipfb->ipfb_count += count; 12750 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12751 ill->ill_frag_count += count; 12752 } 12753 if (ret == IP_REASS_PARTIAL) { 12754 goto reass_done; 12755 } else if (ret == IP_REASS_FAILED) { 12756 /* Reassembly failed. Free up all resources */ 12757 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12758 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12759 IP_REASS_SET_START(t_mp, 0); 12760 IP_REASS_SET_END(t_mp, 0); 12761 } 12762 freemsg(mp); 12763 goto reass_done; 12764 } 12765 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12766 } 12767 /* 12768 * We have completed reassembly. Unhook the frag header from 12769 * the reassembly list. 12770 * 12771 * Before we free the frag header, record the ECN info 12772 * to report back to the transport. 12773 */ 12774 ecn_info = ipf->ipf_ecn; 12775 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12776 ipfp = ipf->ipf_ptphn; 12777 12778 /* We need to supply these to caller */ 12779 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12780 sum_val = ipf->ipf_checksum; 12781 else 12782 sum_val = 0; 12783 12784 mp1 = ipf->ipf_mp; 12785 count = ipf->ipf_count; 12786 ipf = ipf->ipf_hash_next; 12787 if (ipf != NULL) 12788 ipf->ipf_ptphn = ipfp; 12789 ipfp[0] = ipf; 12790 ill->ill_frag_count -= count; 12791 ASSERT(ipfb->ipfb_count >= count); 12792 ipfb->ipfb_count -= count; 12793 ipfb->ipfb_frag_pkts--; 12794 mutex_exit(&ipfb->ipfb_lock); 12795 /* Ditch the frag header. */ 12796 mp = mp1->b_cont; 12797 12798 freeb(mp1); 12799 12800 /* Restore original IP length in header. */ 12801 packet_size = (uint32_t)msgdsize(mp); 12802 if (packet_size > IP_MAXPACKET) { 12803 freemsg(mp); 12804 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12805 return (B_FALSE); 12806 } 12807 12808 if (DB_REF(mp) > 1) { 12809 mblk_t *mp2 = copymsg(mp); 12810 12811 freemsg(mp); 12812 if (mp2 == NULL) { 12813 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12814 return (B_FALSE); 12815 } 12816 mp = mp2; 12817 } 12818 ipha = (ipha_t *)mp->b_rptr; 12819 12820 ipha->ipha_length = htons((uint16_t)packet_size); 12821 /* We're now complete, zip the frag state */ 12822 ipha->ipha_fragment_offset_and_flags = 0; 12823 /* Record the ECN info. */ 12824 ipha->ipha_type_of_service &= 0xFC; 12825 ipha->ipha_type_of_service |= ecn_info; 12826 *mpp = mp; 12827 12828 /* Reassembly is successful; return checksum information if needed */ 12829 if (cksum_val != NULL) 12830 *cksum_val = sum_val; 12831 if (cksum_flags != NULL) 12832 *cksum_flags = sum_flags; 12833 12834 return (B_TRUE); 12835 } 12836 12837 /* 12838 * Perform ip header check sum update local options. 12839 * return B_TRUE if all is well, else return B_FALSE and release 12840 * the mp. caller is responsible for decrementing ire ref cnt. 12841 */ 12842 static boolean_t 12843 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12844 ip_stack_t *ipst) 12845 { 12846 mblk_t *first_mp; 12847 boolean_t mctl_present; 12848 uint16_t sum; 12849 12850 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12851 /* 12852 * Don't do the checksum if it has gone through AH/ESP 12853 * processing. 12854 */ 12855 if (!mctl_present) { 12856 sum = ip_csum_hdr(ipha); 12857 if (sum != 0) { 12858 if (ill != NULL) { 12859 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12860 } else { 12861 BUMP_MIB(&ipst->ips_ip_mib, 12862 ipIfStatsInCksumErrs); 12863 } 12864 freemsg(first_mp); 12865 return (B_FALSE); 12866 } 12867 } 12868 12869 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12870 if (mctl_present) 12871 freeb(first_mp); 12872 return (B_FALSE); 12873 } 12874 12875 return (B_TRUE); 12876 } 12877 12878 /* 12879 * All udp packet are delivered to the local host via this routine. 12880 */ 12881 void 12882 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12883 ill_t *recv_ill) 12884 { 12885 uint32_t sum; 12886 uint32_t u1; 12887 boolean_t mctl_present; 12888 conn_t *connp; 12889 mblk_t *first_mp; 12890 uint16_t *up; 12891 ill_t *ill = (ill_t *)q->q_ptr; 12892 uint16_t reass_hck_flags = 0; 12893 ip_stack_t *ipst; 12894 12895 ASSERT(recv_ill != NULL); 12896 ipst = recv_ill->ill_ipst; 12897 12898 #define rptr ((uchar_t *)ipha) 12899 12900 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12901 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12902 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12903 ASSERT(ill != NULL); 12904 12905 /* 12906 * FAST PATH for udp packets 12907 */ 12908 12909 /* u1 is # words of IP options */ 12910 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12911 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12912 12913 /* IP options present */ 12914 if (u1 != 0) 12915 goto ipoptions; 12916 12917 /* Check the IP header checksum. */ 12918 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12919 /* Clear the IP header h/w cksum flag */ 12920 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12921 } else { 12922 #define uph ((uint16_t *)ipha) 12923 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12924 uph[6] + uph[7] + uph[8] + uph[9]; 12925 #undef uph 12926 /* finish doing IP checksum */ 12927 sum = (sum & 0xFFFF) + (sum >> 16); 12928 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12929 /* 12930 * Don't verify header checksum if this packet is coming 12931 * back from AH/ESP as we already did it. 12932 */ 12933 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12934 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12935 freemsg(first_mp); 12936 return; 12937 } 12938 } 12939 12940 /* 12941 * Count for SNMP of inbound packets for ire. 12942 * if mctl is present this might be a secure packet and 12943 * has already been counted for in ip_proto_input(). 12944 */ 12945 if (!mctl_present) { 12946 UPDATE_IB_PKT_COUNT(ire); 12947 ire->ire_last_used_time = lbolt; 12948 } 12949 12950 /* packet part of fragmented IP packet? */ 12951 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12952 if (u1 & (IPH_MF | IPH_OFFSET)) { 12953 goto fragmented; 12954 } 12955 12956 /* u1 = IP header length (20 bytes) */ 12957 u1 = IP_SIMPLE_HDR_LENGTH; 12958 12959 /* packet does not contain complete IP & UDP headers */ 12960 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12961 goto udppullup; 12962 12963 /* up points to UDP header */ 12964 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12965 #define iphs ((uint16_t *)ipha) 12966 12967 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12968 if (up[3] != 0) { 12969 mblk_t *mp1 = mp->b_cont; 12970 boolean_t cksum_err; 12971 uint16_t hck_flags = 0; 12972 12973 /* Pseudo-header checksum */ 12974 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12975 iphs[9] + up[2]; 12976 12977 /* 12978 * Revert to software checksum calculation if the interface 12979 * isn't capable of checksum offload or if IPsec is present. 12980 */ 12981 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12982 hck_flags = DB_CKSUMFLAGS(mp); 12983 12984 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12985 IP_STAT(ipst, ip_in_sw_cksum); 12986 12987 IP_CKSUM_RECV(hck_flags, u1, 12988 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12989 (int32_t)((uchar_t *)up - rptr), 12990 mp, mp1, cksum_err); 12991 12992 if (cksum_err) { 12993 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12994 if (hck_flags & HCK_FULLCKSUM) 12995 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12996 else if (hck_flags & HCK_PARTIALCKSUM) 12997 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12998 else 12999 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13000 13001 freemsg(first_mp); 13002 return; 13003 } 13004 } 13005 13006 /* Non-fragmented broadcast or multicast packet? */ 13007 if (ire->ire_type == IRE_BROADCAST) 13008 goto udpslowpath; 13009 13010 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 13011 ire->ire_zoneid, ipst)) != NULL) { 13012 ASSERT(connp->conn_upq != NULL); 13013 IP_STAT(ipst, ip_udp_fast_path); 13014 13015 if (CONN_UDP_FLOWCTLD(connp)) { 13016 freemsg(mp); 13017 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 13018 } else { 13019 if (!mctl_present) { 13020 BUMP_MIB(ill->ill_ip_mib, 13021 ipIfStatsHCInDelivers); 13022 } 13023 /* 13024 * mp and first_mp can change. 13025 */ 13026 if (ip_udp_check(q, connp, recv_ill, 13027 ipha, &mp, &first_mp, mctl_present)) { 13028 /* Send it upstream */ 13029 CONN_UDP_RECV(connp, mp); 13030 } 13031 } 13032 /* 13033 * freeb() cannot deal with null mblk being passed 13034 * in and first_mp can be set to null in the call 13035 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 13036 */ 13037 if (mctl_present && first_mp != NULL) { 13038 freeb(first_mp); 13039 } 13040 CONN_DEC_REF(connp); 13041 return; 13042 } 13043 13044 /* 13045 * if we got here we know the packet is not fragmented and 13046 * has no options. The classifier could not find a conn_t and 13047 * most likely its an icmp packet so send it through slow path. 13048 */ 13049 13050 goto udpslowpath; 13051 13052 ipoptions: 13053 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 13054 goto slow_done; 13055 } 13056 13057 UPDATE_IB_PKT_COUNT(ire); 13058 ire->ire_last_used_time = lbolt; 13059 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13060 if (u1 & (IPH_MF | IPH_OFFSET)) { 13061 fragmented: 13062 /* 13063 * "sum" and "reass_hck_flags" are non-zero if the 13064 * reassembled packet has a valid hardware computed 13065 * checksum information associated with it. 13066 */ 13067 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 13068 goto slow_done; 13069 /* 13070 * Make sure that first_mp points back to mp as 13071 * the mp we came in with could have changed in 13072 * ip_rput_fragment(). 13073 */ 13074 ASSERT(!mctl_present); 13075 ipha = (ipha_t *)mp->b_rptr; 13076 first_mp = mp; 13077 } 13078 13079 /* Now we have a complete datagram, destined for this machine. */ 13080 u1 = IPH_HDR_LENGTH(ipha); 13081 /* Pull up the UDP header, if necessary. */ 13082 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 13083 udppullup: 13084 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 13085 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13086 freemsg(first_mp); 13087 goto slow_done; 13088 } 13089 ipha = (ipha_t *)mp->b_rptr; 13090 } 13091 13092 /* 13093 * Validate the checksum for the reassembled packet; for the 13094 * pullup case we calculate the payload checksum in software. 13095 */ 13096 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 13097 if (up[3] != 0) { 13098 boolean_t cksum_err; 13099 13100 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13101 IP_STAT(ipst, ip_in_sw_cksum); 13102 13103 IP_CKSUM_RECV_REASS(reass_hck_flags, 13104 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 13105 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 13106 iphs[9] + up[2], sum, cksum_err); 13107 13108 if (cksum_err) { 13109 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13110 13111 if (reass_hck_flags & HCK_FULLCKSUM) 13112 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13113 else if (reass_hck_flags & HCK_PARTIALCKSUM) 13114 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13115 else 13116 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13117 13118 freemsg(first_mp); 13119 goto slow_done; 13120 } 13121 } 13122 udpslowpath: 13123 13124 /* Clear hardware checksum flag to be safe */ 13125 DB_CKSUMFLAGS(mp) = 0; 13126 13127 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 13128 (ire->ire_type == IRE_BROADCAST), 13129 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 13130 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 13131 13132 slow_done: 13133 IP_STAT(ipst, ip_udp_slow_path); 13134 return; 13135 13136 #undef iphs 13137 #undef rptr 13138 } 13139 13140 /* ARGSUSED */ 13141 static mblk_t * 13142 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13143 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 13144 ill_rx_ring_t *ill_ring) 13145 { 13146 conn_t *connp; 13147 uint32_t sum; 13148 uint32_t u1; 13149 uint16_t *up; 13150 int offset; 13151 ssize_t len; 13152 mblk_t *mp1; 13153 boolean_t syn_present = B_FALSE; 13154 tcph_t *tcph; 13155 uint_t ip_hdr_len; 13156 ill_t *ill = (ill_t *)q->q_ptr; 13157 zoneid_t zoneid = ire->ire_zoneid; 13158 boolean_t cksum_err; 13159 uint16_t hck_flags = 0; 13160 ip_stack_t *ipst = recv_ill->ill_ipst; 13161 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13162 13163 #define rptr ((uchar_t *)ipha) 13164 13165 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13166 ASSERT(ill != NULL); 13167 13168 /* 13169 * FAST PATH for tcp packets 13170 */ 13171 13172 /* u1 is # words of IP options */ 13173 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13174 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13175 13176 /* IP options present */ 13177 if (u1) { 13178 goto ipoptions; 13179 } else { 13180 /* Check the IP header checksum. */ 13181 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13182 /* Clear the IP header h/w cksum flag */ 13183 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13184 } else { 13185 #define uph ((uint16_t *)ipha) 13186 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13187 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13188 #undef uph 13189 /* finish doing IP checksum */ 13190 sum = (sum & 0xFFFF) + (sum >> 16); 13191 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13192 /* 13193 * Don't verify header checksum if this packet 13194 * is coming back from AH/ESP as we already did it. 13195 */ 13196 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13197 BUMP_MIB(ill->ill_ip_mib, 13198 ipIfStatsInCksumErrs); 13199 goto error; 13200 } 13201 } 13202 } 13203 13204 if (!mctl_present) { 13205 UPDATE_IB_PKT_COUNT(ire); 13206 ire->ire_last_used_time = lbolt; 13207 } 13208 13209 /* packet part of fragmented IP packet? */ 13210 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13211 if (u1 & (IPH_MF | IPH_OFFSET)) { 13212 goto fragmented; 13213 } 13214 13215 /* u1 = IP header length (20 bytes) */ 13216 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13217 13218 /* does packet contain IP+TCP headers? */ 13219 len = mp->b_wptr - rptr; 13220 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13221 IP_STAT(ipst, ip_tcppullup); 13222 goto tcppullup; 13223 } 13224 13225 /* TCP options present? */ 13226 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13227 13228 /* 13229 * If options need to be pulled up, then goto tcpoptions. 13230 * otherwise we are still in the fast path 13231 */ 13232 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13233 IP_STAT(ipst, ip_tcpoptions); 13234 goto tcpoptions; 13235 } 13236 13237 /* multiple mblks of tcp data? */ 13238 if ((mp1 = mp->b_cont) != NULL) { 13239 /* more then two? */ 13240 if (mp1->b_cont != NULL) { 13241 IP_STAT(ipst, ip_multipkttcp); 13242 goto multipkttcp; 13243 } 13244 len += mp1->b_wptr - mp1->b_rptr; 13245 } 13246 13247 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13248 13249 /* part of pseudo checksum */ 13250 13251 /* TCP datagram length */ 13252 u1 = len - IP_SIMPLE_HDR_LENGTH; 13253 13254 #define iphs ((uint16_t *)ipha) 13255 13256 #ifdef _BIG_ENDIAN 13257 u1 += IPPROTO_TCP; 13258 #else 13259 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13260 #endif 13261 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13262 13263 /* 13264 * Revert to software checksum calculation if the interface 13265 * isn't capable of checksum offload or if IPsec is present. 13266 */ 13267 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13268 hck_flags = DB_CKSUMFLAGS(mp); 13269 13270 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13271 IP_STAT(ipst, ip_in_sw_cksum); 13272 13273 IP_CKSUM_RECV(hck_flags, u1, 13274 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13275 (int32_t)((uchar_t *)up - rptr), 13276 mp, mp1, cksum_err); 13277 13278 if (cksum_err) { 13279 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13280 13281 if (hck_flags & HCK_FULLCKSUM) 13282 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13283 else if (hck_flags & HCK_PARTIALCKSUM) 13284 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13285 else 13286 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13287 13288 goto error; 13289 } 13290 13291 try_again: 13292 13293 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13294 zoneid, ipst)) == NULL) { 13295 /* Send the TH_RST */ 13296 goto no_conn; 13297 } 13298 13299 /* 13300 * TCP FAST PATH for AF_INET socket. 13301 * 13302 * TCP fast path to avoid extra work. An AF_INET socket type 13303 * does not have facility to receive extra information via 13304 * ip_process or ip_add_info. Also, when the connection was 13305 * established, we made a check if this connection is impacted 13306 * by any global IPSec policy or per connection policy (a 13307 * policy that comes in effect later will not apply to this 13308 * connection). Since all this can be determined at the 13309 * connection establishment time, a quick check of flags 13310 * can avoid extra work. 13311 */ 13312 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13313 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13314 ASSERT(first_mp == mp); 13315 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13316 SET_SQUEUE(mp, tcp_rput_data, connp); 13317 return (mp); 13318 } 13319 13320 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13321 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13322 if (IPCL_IS_TCP(connp)) { 13323 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13324 DB_CKSUMSTART(mp) = 13325 (intptr_t)ip_squeue_get(ill_ring); 13326 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13327 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13328 BUMP_MIB(ill->ill_ip_mib, 13329 ipIfStatsHCInDelivers); 13330 SET_SQUEUE(mp, connp->conn_recv, connp); 13331 return (mp); 13332 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13333 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13334 BUMP_MIB(ill->ill_ip_mib, 13335 ipIfStatsHCInDelivers); 13336 ip_squeue_enter_unbound++; 13337 SET_SQUEUE(mp, tcp_conn_request_unbound, 13338 connp); 13339 return (mp); 13340 } 13341 syn_present = B_TRUE; 13342 } 13343 13344 } 13345 13346 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13347 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13348 13349 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13350 /* No need to send this packet to TCP */ 13351 if ((flags & TH_RST) || (flags & TH_URG)) { 13352 CONN_DEC_REF(connp); 13353 freemsg(first_mp); 13354 return (NULL); 13355 } 13356 if (flags & TH_ACK) { 13357 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13358 ipst->ips_netstack->netstack_tcp); 13359 CONN_DEC_REF(connp); 13360 return (NULL); 13361 } 13362 13363 CONN_DEC_REF(connp); 13364 freemsg(first_mp); 13365 return (NULL); 13366 } 13367 13368 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13369 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13370 ipha, NULL, mctl_present); 13371 if (first_mp == NULL) { 13372 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13373 CONN_DEC_REF(connp); 13374 return (NULL); 13375 } 13376 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13377 ASSERT(syn_present); 13378 if (mctl_present) { 13379 ASSERT(first_mp != mp); 13380 first_mp->b_datap->db_struioflag |= 13381 STRUIO_POLICY; 13382 } else { 13383 ASSERT(first_mp == mp); 13384 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13385 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13386 } 13387 } else { 13388 /* 13389 * Discard first_mp early since we're dealing with a 13390 * fully-connected conn_t and tcp doesn't do policy in 13391 * this case. 13392 */ 13393 if (mctl_present) { 13394 freeb(first_mp); 13395 mctl_present = B_FALSE; 13396 } 13397 first_mp = mp; 13398 } 13399 } 13400 13401 /* Initiate IPPF processing for fastpath */ 13402 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13403 uint32_t ill_index; 13404 13405 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13406 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13407 if (mp == NULL) { 13408 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13409 "deferred/dropped during IPPF processing\n")); 13410 CONN_DEC_REF(connp); 13411 if (mctl_present) 13412 freeb(first_mp); 13413 return (NULL); 13414 } else if (mctl_present) { 13415 /* 13416 * ip_process might return a new mp. 13417 */ 13418 ASSERT(first_mp != mp); 13419 first_mp->b_cont = mp; 13420 } else { 13421 first_mp = mp; 13422 } 13423 13424 } 13425 13426 if (!syn_present && connp->conn_ip_recvpktinfo) { 13427 /* 13428 * TCP does not support IP_RECVPKTINFO for v4 so lets 13429 * make sure IPF_RECVIF is passed to ip_add_info. 13430 */ 13431 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13432 IPCL_ZONEID(connp), ipst); 13433 if (mp == NULL) { 13434 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13435 CONN_DEC_REF(connp); 13436 if (mctl_present) 13437 freeb(first_mp); 13438 return (NULL); 13439 } else if (mctl_present) { 13440 /* 13441 * ip_add_info might return a new mp. 13442 */ 13443 ASSERT(first_mp != mp); 13444 first_mp->b_cont = mp; 13445 } else { 13446 first_mp = mp; 13447 } 13448 } 13449 13450 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13451 if (IPCL_IS_TCP(connp)) { 13452 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13453 return (first_mp); 13454 } else { 13455 putnext(connp->conn_rq, first_mp); 13456 CONN_DEC_REF(connp); 13457 return (NULL); 13458 } 13459 13460 no_conn: 13461 /* Initiate IPPf processing, if needed. */ 13462 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13463 uint32_t ill_index; 13464 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13465 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13466 if (first_mp == NULL) { 13467 return (NULL); 13468 } 13469 } 13470 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13471 13472 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13473 ipst->ips_netstack->netstack_tcp); 13474 return (NULL); 13475 ipoptions: 13476 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13477 goto slow_done; 13478 } 13479 13480 UPDATE_IB_PKT_COUNT(ire); 13481 ire->ire_last_used_time = lbolt; 13482 13483 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13484 if (u1 & (IPH_MF | IPH_OFFSET)) { 13485 fragmented: 13486 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13487 if (mctl_present) 13488 freeb(first_mp); 13489 goto slow_done; 13490 } 13491 /* 13492 * Make sure that first_mp points back to mp as 13493 * the mp we came in with could have changed in 13494 * ip_rput_fragment(). 13495 */ 13496 ASSERT(!mctl_present); 13497 ipha = (ipha_t *)mp->b_rptr; 13498 first_mp = mp; 13499 } 13500 13501 /* Now we have a complete datagram, destined for this machine. */ 13502 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13503 13504 len = mp->b_wptr - mp->b_rptr; 13505 /* Pull up a minimal TCP header, if necessary. */ 13506 if (len < (u1 + 20)) { 13507 tcppullup: 13508 if (!pullupmsg(mp, u1 + 20)) { 13509 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13510 goto error; 13511 } 13512 ipha = (ipha_t *)mp->b_rptr; 13513 len = mp->b_wptr - mp->b_rptr; 13514 } 13515 13516 /* 13517 * Extract the offset field from the TCP header. As usual, we 13518 * try to help the compiler more than the reader. 13519 */ 13520 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13521 if (offset != 5) { 13522 tcpoptions: 13523 if (offset < 5) { 13524 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13525 goto error; 13526 } 13527 /* 13528 * There must be TCP options. 13529 * Make sure we can grab them. 13530 */ 13531 offset <<= 2; 13532 offset += u1; 13533 if (len < offset) { 13534 if (!pullupmsg(mp, offset)) { 13535 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13536 goto error; 13537 } 13538 ipha = (ipha_t *)mp->b_rptr; 13539 len = mp->b_wptr - rptr; 13540 } 13541 } 13542 13543 /* Get the total packet length in len, including headers. */ 13544 if (mp->b_cont) { 13545 multipkttcp: 13546 len = msgdsize(mp); 13547 } 13548 13549 /* 13550 * Check the TCP checksum by pulling together the pseudo- 13551 * header checksum, and passing it to ip_csum to be added in 13552 * with the TCP datagram. 13553 * 13554 * Since we are not using the hwcksum if available we must 13555 * clear the flag. We may come here via tcppullup or tcpoptions. 13556 * If either of these fails along the way the mblk is freed. 13557 * If this logic ever changes and mblk is reused to say send 13558 * ICMP's back, then this flag may need to be cleared in 13559 * other places as well. 13560 */ 13561 DB_CKSUMFLAGS(mp) = 0; 13562 13563 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13564 13565 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13566 #ifdef _BIG_ENDIAN 13567 u1 += IPPROTO_TCP; 13568 #else 13569 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13570 #endif 13571 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13572 /* 13573 * Not M_DATA mblk or its a dup, so do the checksum now. 13574 */ 13575 IP_STAT(ipst, ip_in_sw_cksum); 13576 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13577 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13578 goto error; 13579 } 13580 13581 IP_STAT(ipst, ip_tcp_slow_path); 13582 goto try_again; 13583 #undef iphs 13584 #undef rptr 13585 13586 error: 13587 freemsg(first_mp); 13588 slow_done: 13589 return (NULL); 13590 } 13591 13592 /* ARGSUSED */ 13593 static void 13594 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13595 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13596 { 13597 conn_t *connp; 13598 uint32_t sum; 13599 uint32_t u1; 13600 ssize_t len; 13601 sctp_hdr_t *sctph; 13602 zoneid_t zoneid = ire->ire_zoneid; 13603 uint32_t pktsum; 13604 uint32_t calcsum; 13605 uint32_t ports; 13606 in6_addr_t map_src, map_dst; 13607 ill_t *ill = (ill_t *)q->q_ptr; 13608 ip_stack_t *ipst; 13609 sctp_stack_t *sctps; 13610 13611 ASSERT(recv_ill != NULL); 13612 ipst = recv_ill->ill_ipst; 13613 sctps = ipst->ips_netstack->netstack_sctp; 13614 13615 #define rptr ((uchar_t *)ipha) 13616 13617 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13618 ASSERT(ill != NULL); 13619 13620 /* u1 is # words of IP options */ 13621 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13622 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13623 13624 /* IP options present */ 13625 if (u1 > 0) { 13626 goto ipoptions; 13627 } else { 13628 /* Check the IP header checksum. */ 13629 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13630 #define uph ((uint16_t *)ipha) 13631 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13632 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13633 #undef uph 13634 /* finish doing IP checksum */ 13635 sum = (sum & 0xFFFF) + (sum >> 16); 13636 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13637 /* 13638 * Don't verify header checksum if this packet 13639 * is coming back from AH/ESP as we already did it. 13640 */ 13641 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13642 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13643 goto error; 13644 } 13645 } 13646 /* 13647 * Since there is no SCTP h/w cksum support yet, just 13648 * clear the flag. 13649 */ 13650 DB_CKSUMFLAGS(mp) = 0; 13651 } 13652 13653 /* 13654 * Don't verify header checksum if this packet is coming 13655 * back from AH/ESP as we already did it. 13656 */ 13657 if (!mctl_present) { 13658 UPDATE_IB_PKT_COUNT(ire); 13659 ire->ire_last_used_time = lbolt; 13660 } 13661 13662 /* packet part of fragmented IP packet? */ 13663 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13664 if (u1 & (IPH_MF | IPH_OFFSET)) 13665 goto fragmented; 13666 13667 /* u1 = IP header length (20 bytes) */ 13668 u1 = IP_SIMPLE_HDR_LENGTH; 13669 13670 find_sctp_client: 13671 /* Pullup if we don't have the sctp common header. */ 13672 len = MBLKL(mp); 13673 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13674 if (mp->b_cont == NULL || 13675 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13676 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13677 goto error; 13678 } 13679 ipha = (ipha_t *)mp->b_rptr; 13680 len = MBLKL(mp); 13681 } 13682 13683 sctph = (sctp_hdr_t *)(rptr + u1); 13684 #ifdef DEBUG 13685 if (!skip_sctp_cksum) { 13686 #endif 13687 pktsum = sctph->sh_chksum; 13688 sctph->sh_chksum = 0; 13689 calcsum = sctp_cksum(mp, u1); 13690 if (calcsum != pktsum) { 13691 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13692 goto error; 13693 } 13694 sctph->sh_chksum = pktsum; 13695 #ifdef DEBUG /* skip_sctp_cksum */ 13696 } 13697 #endif 13698 /* get the ports */ 13699 ports = *(uint32_t *)&sctph->sh_sport; 13700 13701 IRE_REFRELE(ire); 13702 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13703 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13704 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13705 sctps)) == NULL) { 13706 /* Check for raw socket or OOTB handling */ 13707 goto no_conn; 13708 } 13709 13710 /* Found a client; up it goes */ 13711 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13712 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13713 return; 13714 13715 no_conn: 13716 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13717 ports, mctl_present, flags, B_TRUE, zoneid); 13718 return; 13719 13720 ipoptions: 13721 DB_CKSUMFLAGS(mp) = 0; 13722 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13723 goto slow_done; 13724 13725 UPDATE_IB_PKT_COUNT(ire); 13726 ire->ire_last_used_time = lbolt; 13727 13728 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13729 if (u1 & (IPH_MF | IPH_OFFSET)) { 13730 fragmented: 13731 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13732 goto slow_done; 13733 /* 13734 * Make sure that first_mp points back to mp as 13735 * the mp we came in with could have changed in 13736 * ip_rput_fragment(). 13737 */ 13738 ASSERT(!mctl_present); 13739 ipha = (ipha_t *)mp->b_rptr; 13740 first_mp = mp; 13741 } 13742 13743 /* Now we have a complete datagram, destined for this machine. */ 13744 u1 = IPH_HDR_LENGTH(ipha); 13745 goto find_sctp_client; 13746 #undef iphs 13747 #undef rptr 13748 13749 error: 13750 freemsg(first_mp); 13751 slow_done: 13752 IRE_REFRELE(ire); 13753 } 13754 13755 #define VER_BITS 0xF0 13756 #define VERSION_6 0x60 13757 13758 static boolean_t 13759 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13760 ipaddr_t *dstp, ip_stack_t *ipst) 13761 { 13762 uint_t opt_len; 13763 ipha_t *ipha; 13764 ssize_t len; 13765 uint_t pkt_len; 13766 13767 ASSERT(ill != NULL); 13768 IP_STAT(ipst, ip_ipoptions); 13769 ipha = *iphapp; 13770 13771 #define rptr ((uchar_t *)ipha) 13772 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13773 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13774 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13775 freemsg(mp); 13776 return (B_FALSE); 13777 } 13778 13779 /* multiple mblk or too short */ 13780 pkt_len = ntohs(ipha->ipha_length); 13781 13782 /* Get the number of words of IP options in the IP header. */ 13783 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13784 if (opt_len) { 13785 /* IP Options present! Validate and process. */ 13786 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13787 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13788 goto done; 13789 } 13790 /* 13791 * Recompute complete header length and make sure we 13792 * have access to all of it. 13793 */ 13794 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13795 if (len > (mp->b_wptr - rptr)) { 13796 if (len > pkt_len) { 13797 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13798 goto done; 13799 } 13800 if (!pullupmsg(mp, len)) { 13801 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13802 goto done; 13803 } 13804 ipha = (ipha_t *)mp->b_rptr; 13805 } 13806 /* 13807 * Go off to ip_rput_options which returns the next hop 13808 * destination address, which may have been affected 13809 * by source routing. 13810 */ 13811 IP_STAT(ipst, ip_opt); 13812 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13813 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13814 return (B_FALSE); 13815 } 13816 } 13817 *iphapp = ipha; 13818 return (B_TRUE); 13819 done: 13820 /* clear b_prev - used by ip_mroute_decap */ 13821 mp->b_prev = NULL; 13822 freemsg(mp); 13823 return (B_FALSE); 13824 #undef rptr 13825 } 13826 13827 /* 13828 * Deal with the fact that there is no ire for the destination. 13829 * The incoming ill (in_ill) is passed in to ip_newroute only 13830 * in the case of packets coming from mobile ip forward tunnel. 13831 * It must be null otherwise. 13832 */ 13833 static ire_t * 13834 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13835 ipaddr_t dst) 13836 { 13837 ipha_t *ipha; 13838 ill_t *ill; 13839 ire_t *ire; 13840 boolean_t check_multirt = B_FALSE; 13841 ip_stack_t *ipst; 13842 13843 ipha = (ipha_t *)mp->b_rptr; 13844 ill = (ill_t *)q->q_ptr; 13845 13846 ASSERT(ill != NULL); 13847 ipst = ill->ill_ipst; 13848 13849 /* 13850 * No IRE for this destination, so it can't be for us. 13851 * Unless we are forwarding, drop the packet. 13852 * We have to let source routed packets through 13853 * since we don't yet know if they are 'ping -l' 13854 * packets i.e. if they will go out over the 13855 * same interface as they came in on. 13856 */ 13857 if (ll_multicast) { 13858 freemsg(mp); 13859 return (NULL); 13860 } 13861 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13862 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13863 freemsg(mp); 13864 return (NULL); 13865 } 13866 13867 /* 13868 * Mark this packet as having originated externally. 13869 * 13870 * For non-forwarding code path, ire_send later double 13871 * checks this interface to see if it is still exists 13872 * post-ARP resolution. 13873 * 13874 * Also, IPQOS uses this to differentiate between 13875 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13876 * QOS packet processing in ip_wput_attach_llhdr(). 13877 * The QoS module can mark the b_band for a fastpath message 13878 * or the dl_priority field in a unitdata_req header for 13879 * CoS marking. This info can only be found in 13880 * ip_wput_attach_llhdr(). 13881 */ 13882 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13883 /* 13884 * Clear the indication that this may have a hardware checksum 13885 * as we are not using it 13886 */ 13887 DB_CKSUMFLAGS(mp) = 0; 13888 13889 if (in_ill != NULL) { 13890 /* 13891 * Now hand the packet to ip_newroute. 13892 */ 13893 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13894 return (NULL); 13895 } 13896 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13897 MBLK_GETLABEL(mp), ipst); 13898 13899 if (ire == NULL && check_multirt) { 13900 /* Let ip_newroute handle CGTP */ 13901 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13902 return (NULL); 13903 } 13904 13905 if (ire != NULL) 13906 return (ire); 13907 13908 mp->b_prev = mp->b_next = 0; 13909 /* send icmp unreachable */ 13910 q = WR(q); 13911 /* Sent by forwarding path, and router is global zone */ 13912 if (ip_source_routed(ipha, ipst)) { 13913 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13914 GLOBAL_ZONEID, ipst); 13915 } else { 13916 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13917 ipst); 13918 } 13919 13920 return (NULL); 13921 13922 } 13923 13924 /* 13925 * check ip header length and align it. 13926 */ 13927 static boolean_t 13928 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13929 { 13930 ssize_t len; 13931 ill_t *ill; 13932 ipha_t *ipha; 13933 13934 len = MBLKL(mp); 13935 13936 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13937 ill = (ill_t *)q->q_ptr; 13938 13939 if (!OK_32PTR(mp->b_rptr)) 13940 IP_STAT(ipst, ip_notaligned1); 13941 else 13942 IP_STAT(ipst, ip_notaligned2); 13943 /* Guard against bogus device drivers */ 13944 if (len < 0) { 13945 /* clear b_prev - used by ip_mroute_decap */ 13946 mp->b_prev = NULL; 13947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13948 freemsg(mp); 13949 return (B_FALSE); 13950 } 13951 13952 if (ip_rput_pullups++ == 0) { 13953 ipha = (ipha_t *)mp->b_rptr; 13954 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13955 "ip_check_and_align_header: %s forced us to " 13956 " pullup pkt, hdr len %ld, hdr addr %p", 13957 ill->ill_name, len, ipha); 13958 } 13959 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13960 /* clear b_prev - used by ip_mroute_decap */ 13961 mp->b_prev = NULL; 13962 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13963 freemsg(mp); 13964 return (B_FALSE); 13965 } 13966 } 13967 return (B_TRUE); 13968 } 13969 13970 ire_t * 13971 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13972 { 13973 ire_t *new_ire; 13974 ill_t *ire_ill; 13975 uint_t ifindex; 13976 ip_stack_t *ipst = ill->ill_ipst; 13977 boolean_t strict_check = B_FALSE; 13978 13979 /* 13980 * This packet came in on an interface other than the one associated 13981 * with the first ire we found for the destination address. We do 13982 * another ire lookup here, using the ingress ill, to see if the 13983 * interface is in an interface group. 13984 * As long as the ills belong to the same group, we don't consider 13985 * them to be arriving on the wrong interface. Thus, if the switch 13986 * is doing inbound load spreading, we won't drop packets when the 13987 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13988 * for 'usesrc groups' where the destination address may belong to 13989 * another interface to allow multipathing to happen. 13990 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13991 * where the local address may not be unique. In this case we were 13992 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13993 * actually returned. The new lookup, which is more specific, should 13994 * only find the IRE_LOCAL associated with the ingress ill if one 13995 * exists. 13996 */ 13997 13998 if (ire->ire_ipversion == IPV4_VERSION) { 13999 if (ipst->ips_ip_strict_dst_multihoming) 14000 strict_check = B_TRUE; 14001 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 14002 ill->ill_ipif, ALL_ZONES, NULL, 14003 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14004 } else { 14005 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 14006 if (ipst->ips_ipv6_strict_dst_multihoming) 14007 strict_check = B_TRUE; 14008 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 14009 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 14010 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14011 } 14012 /* 14013 * If the same ire that was returned in ip_input() is found then this 14014 * is an indication that interface groups are in use. The packet 14015 * arrived on a different ill in the group than the one associated with 14016 * the destination address. If a different ire was found then the same 14017 * IP address must be hosted on multiple ills. This is possible with 14018 * unnumbered point2point interfaces. We switch to use this new ire in 14019 * order to have accurate interface statistics. 14020 */ 14021 if (new_ire != NULL) { 14022 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 14023 ire_refrele(ire); 14024 ire = new_ire; 14025 } else { 14026 ire_refrele(new_ire); 14027 } 14028 return (ire); 14029 } else if ((ire->ire_rfq == NULL) && 14030 (ire->ire_ipversion == IPV4_VERSION)) { 14031 /* 14032 * The best match could have been the original ire which 14033 * was created against an IRE_LOCAL on lo0. In the IPv4 case 14034 * the strict multihoming checks are irrelevant as we consider 14035 * local addresses hosted on lo0 to be interface agnostic. We 14036 * only expect a null ire_rfq on IREs which are associated with 14037 * lo0 hence we can return now. 14038 */ 14039 return (ire); 14040 } 14041 14042 /* 14043 * Chase pointers once and store locally. 14044 */ 14045 ire_ill = (ire->ire_rfq == NULL) ? NULL : 14046 (ill_t *)(ire->ire_rfq->q_ptr); 14047 ifindex = ill->ill_usesrc_ifindex; 14048 14049 /* 14050 * Check if it's a legal address on the 'usesrc' interface. 14051 */ 14052 if ((ifindex != 0) && (ire_ill != NULL) && 14053 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 14054 return (ire); 14055 } 14056 14057 /* 14058 * If the ip*_strict_dst_multihoming switch is on then we can 14059 * only accept this packet if the interface is marked as routing. 14060 */ 14061 if (!(strict_check)) 14062 return (ire); 14063 14064 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 14065 ILLF_ROUTER) != 0) { 14066 return (ire); 14067 } 14068 14069 ire_refrele(ire); 14070 return (NULL); 14071 } 14072 14073 ire_t * 14074 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 14075 { 14076 ipha_t *ipha; 14077 ipaddr_t ip_dst, ip_src; 14078 ire_t *src_ire = NULL; 14079 ill_t *stq_ill; 14080 uint_t hlen; 14081 uint_t pkt_len; 14082 uint32_t sum; 14083 queue_t *dev_q; 14084 boolean_t check_multirt = B_FALSE; 14085 ip_stack_t *ipst = ill->ill_ipst; 14086 14087 ipha = (ipha_t *)mp->b_rptr; 14088 14089 /* 14090 * Martian Address Filtering [RFC 1812, Section 5.3.7] 14091 * The loopback address check for both src and dst has already 14092 * been checked in ip_input 14093 */ 14094 ip_dst = ntohl(dst); 14095 ip_src = ntohl(ipha->ipha_src); 14096 14097 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 14098 IN_CLASSD(ip_src)) { 14099 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14100 goto drop; 14101 } 14102 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14103 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14104 14105 if (src_ire != NULL) { 14106 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14107 goto drop; 14108 } 14109 14110 14111 /* No ire cache of nexthop. So first create one */ 14112 if (ire == NULL) { 14113 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 14114 /* 14115 * We only come to ip_fast_forward if ip_cgtp_filter is 14116 * is not set. So upon return from ire_forward 14117 * check_multirt should remain as false. 14118 */ 14119 ASSERT(!check_multirt); 14120 if (ire == NULL) { 14121 /* An attempt was made to forward the packet */ 14122 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14123 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14124 mp->b_prev = mp->b_next = 0; 14125 /* send icmp unreachable */ 14126 /* Sent by forwarding path, and router is global zone */ 14127 if (ip_source_routed(ipha, ipst)) { 14128 icmp_unreachable(ill->ill_wq, mp, 14129 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 14130 ipst); 14131 } else { 14132 icmp_unreachable(ill->ill_wq, mp, 14133 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 14134 ipst); 14135 } 14136 return (ire); 14137 } 14138 } 14139 14140 /* 14141 * Forwarding fastpath exception case: 14142 * If either of the follwoing case is true, we take 14143 * the slowpath 14144 * o forwarding is not enabled 14145 * o incoming and outgoing interface are the same, or the same 14146 * IPMP group 14147 * o corresponding ire is in incomplete state 14148 * o packet needs fragmentation 14149 * 14150 * The codeflow from here on is thus: 14151 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14152 */ 14153 pkt_len = ntohs(ipha->ipha_length); 14154 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14155 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14156 !(ill->ill_flags & ILLF_ROUTER) || 14157 (ill == stq_ill) || 14158 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14159 (ire->ire_nce == NULL) || 14160 (ire->ire_nce->nce_state != ND_REACHABLE) || 14161 (pkt_len > ire->ire_max_frag) || 14162 ipha->ipha_ttl <= 1) { 14163 ip_rput_process_forward(ill->ill_rq, mp, ire, 14164 ipha, ill, B_FALSE); 14165 return (ire); 14166 } 14167 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14168 14169 DTRACE_PROBE4(ip4__forwarding__start, 14170 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14171 14172 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14173 ipst->ips_ipv4firewall_forwarding, 14174 ill, stq_ill, ipha, mp, mp, ipst); 14175 14176 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14177 14178 if (mp == NULL) 14179 goto drop; 14180 14181 mp->b_datap->db_struioun.cksum.flags = 0; 14182 /* Adjust the checksum to reflect the ttl decrement. */ 14183 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14184 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14185 ipha->ipha_ttl--; 14186 14187 dev_q = ire->ire_stq->q_next; 14188 if ((dev_q->q_next != NULL || 14189 dev_q->q_first != NULL) && !canput(dev_q)) { 14190 goto indiscard; 14191 } 14192 14193 hlen = ire->ire_nce->nce_fp_mp != NULL ? 14194 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 14195 14196 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 14197 mblk_t *mpip = mp; 14198 14199 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 14200 if (mp != NULL) { 14201 DTRACE_PROBE4(ip4__physical__out__start, 14202 ill_t *, NULL, ill_t *, stq_ill, 14203 ipha_t *, ipha, mblk_t *, mp); 14204 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14205 ipst->ips_ipv4firewall_physical_out, 14206 NULL, stq_ill, ipha, mp, mpip, ipst); 14207 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14208 mp); 14209 if (mp == NULL) 14210 goto drop; 14211 14212 UPDATE_IB_PKT_COUNT(ire); 14213 ire->ire_last_used_time = lbolt; 14214 BUMP_MIB(stq_ill->ill_ip_mib, 14215 ipIfStatsHCOutForwDatagrams); 14216 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14217 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14218 pkt_len); 14219 putnext(ire->ire_stq, mp); 14220 return (ire); 14221 } 14222 } 14223 14224 indiscard: 14225 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14226 drop: 14227 if (mp != NULL) 14228 freemsg(mp); 14229 if (src_ire != NULL) 14230 ire_refrele(src_ire); 14231 return (ire); 14232 14233 } 14234 14235 /* 14236 * This function is called in the forwarding slowpath, when 14237 * either the ire lacks the link-layer address, or the packet needs 14238 * further processing(eg. fragmentation), before transmission. 14239 */ 14240 14241 static void 14242 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14243 ill_t *ill, boolean_t ll_multicast) 14244 { 14245 ill_group_t *ill_group; 14246 ill_group_t *ire_group; 14247 queue_t *dev_q; 14248 ire_t *src_ire; 14249 ip_stack_t *ipst = ill->ill_ipst; 14250 14251 ASSERT(ire->ire_stq != NULL); 14252 14253 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14254 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14255 14256 if (ll_multicast != 0) { 14257 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14258 goto drop_pkt; 14259 } 14260 14261 /* 14262 * check if ipha_src is a broadcast address. Note that this 14263 * check is redundant when we get here from ip_fast_forward() 14264 * which has already done this check. However, since we can 14265 * also get here from ip_rput_process_broadcast() or, for 14266 * for the slow path through ip_fast_forward(), we perform 14267 * the check again for code-reusability 14268 */ 14269 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14270 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14271 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14272 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14273 if (src_ire != NULL) 14274 ire_refrele(src_ire); 14275 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14276 ip2dbg(("ip_rput_process_forward: Received packet with" 14277 " bad src/dst address on %s\n", ill->ill_name)); 14278 goto drop_pkt; 14279 } 14280 14281 ill_group = ill->ill_group; 14282 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14283 /* 14284 * Check if we want to forward this one at this time. 14285 * We allow source routed packets on a host provided that 14286 * they go out the same interface or same interface group 14287 * as they came in on. 14288 * 14289 * XXX To be quicker, we may wish to not chase pointers to 14290 * get the ILLF_ROUTER flag and instead store the 14291 * forwarding policy in the ire. An unfortunate 14292 * side-effect of that would be requiring an ire flush 14293 * whenever the ILLF_ROUTER flag changes. 14294 */ 14295 if (((ill->ill_flags & 14296 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14297 ILLF_ROUTER) == 0) && 14298 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14299 (ill_group != NULL && ill_group == ire_group)))) { 14300 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14301 if (ip_source_routed(ipha, ipst)) { 14302 q = WR(q); 14303 /* 14304 * Clear the indication that this may have 14305 * hardware checksum as we are not using it. 14306 */ 14307 DB_CKSUMFLAGS(mp) = 0; 14308 /* Sent by forwarding path, and router is global zone */ 14309 icmp_unreachable(q, mp, 14310 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14311 return; 14312 } 14313 goto drop_pkt; 14314 } 14315 14316 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14317 14318 /* Packet is being forwarded. Turning off hwcksum flag. */ 14319 DB_CKSUMFLAGS(mp) = 0; 14320 if (ipst->ips_ip_g_send_redirects) { 14321 /* 14322 * Check whether the incoming interface and outgoing 14323 * interface is part of the same group. If so, 14324 * send redirects. 14325 * 14326 * Check the source address to see if it originated 14327 * on the same logical subnet it is going back out on. 14328 * If so, we should be able to send it a redirect. 14329 * Avoid sending a redirect if the destination 14330 * is directly connected (i.e., ipha_dst is the same 14331 * as ire_gateway_addr or the ire_addr of the 14332 * nexthop IRE_CACHE ), or if the packet was source 14333 * routed out this interface. 14334 */ 14335 ipaddr_t src, nhop; 14336 mblk_t *mp1; 14337 ire_t *nhop_ire = NULL; 14338 14339 /* 14340 * Check whether ire_rfq and q are from the same ill 14341 * or if they are not same, they at least belong 14342 * to the same group. If so, send redirects. 14343 */ 14344 if ((ire->ire_rfq == q || 14345 (ill_group != NULL && ill_group == ire_group)) && 14346 !ip_source_routed(ipha, ipst)) { 14347 14348 nhop = (ire->ire_gateway_addr != 0 ? 14349 ire->ire_gateway_addr : ire->ire_addr); 14350 14351 if (ipha->ipha_dst == nhop) { 14352 /* 14353 * We avoid sending a redirect if the 14354 * destination is directly connected 14355 * because it is possible that multiple 14356 * IP subnets may have been configured on 14357 * the link, and the source may not 14358 * be on the same subnet as ip destination, 14359 * even though they are on the same 14360 * physical link. 14361 */ 14362 goto sendit; 14363 } 14364 14365 src = ipha->ipha_src; 14366 14367 /* 14368 * We look up the interface ire for the nexthop, 14369 * to see if ipha_src is in the same subnet 14370 * as the nexthop. 14371 * 14372 * Note that, if, in the future, IRE_CACHE entries 14373 * are obsoleted, this lookup will not be needed, 14374 * as the ire passed to this function will be the 14375 * same as the nhop_ire computed below. 14376 */ 14377 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14378 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14379 0, NULL, MATCH_IRE_TYPE, ipst); 14380 14381 if (nhop_ire != NULL) { 14382 if ((src & nhop_ire->ire_mask) == 14383 (nhop & nhop_ire->ire_mask)) { 14384 /* 14385 * The source is directly connected. 14386 * Just copy the ip header (which is 14387 * in the first mblk) 14388 */ 14389 mp1 = copyb(mp); 14390 if (mp1 != NULL) { 14391 icmp_send_redirect(WR(q), mp1, 14392 nhop, ipst); 14393 } 14394 } 14395 ire_refrele(nhop_ire); 14396 } 14397 } 14398 } 14399 sendit: 14400 dev_q = ire->ire_stq->q_next; 14401 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14402 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14403 freemsg(mp); 14404 return; 14405 } 14406 14407 ip_rput_forward(ire, ipha, mp, ill); 14408 return; 14409 14410 drop_pkt: 14411 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14412 freemsg(mp); 14413 } 14414 14415 ire_t * 14416 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14417 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14418 { 14419 queue_t *q; 14420 uint16_t hcksumflags; 14421 ip_stack_t *ipst = ill->ill_ipst; 14422 14423 q = *qp; 14424 14425 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14426 14427 /* 14428 * Clear the indication that this may have hardware 14429 * checksum as we are not using it for forwarding. 14430 */ 14431 hcksumflags = DB_CKSUMFLAGS(mp); 14432 DB_CKSUMFLAGS(mp) = 0; 14433 14434 /* 14435 * Directed broadcast forwarding: if the packet came in over a 14436 * different interface then it is routed out over we can forward it. 14437 */ 14438 if (ipha->ipha_protocol == IPPROTO_TCP) { 14439 ire_refrele(ire); 14440 freemsg(mp); 14441 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14442 return (NULL); 14443 } 14444 /* 14445 * For multicast we have set dst to be INADDR_BROADCAST 14446 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14447 * only for broadcast packets. 14448 */ 14449 if (!CLASSD(ipha->ipha_dst)) { 14450 ire_t *new_ire; 14451 ipif_t *ipif; 14452 /* 14453 * For ill groups, as the switch duplicates broadcasts 14454 * across all the ports, we need to filter out and 14455 * send up only one copy. There is one copy for every 14456 * broadcast address on each ill. Thus, we look for a 14457 * specific IRE on this ill and look at IRE_MARK_NORECV 14458 * later to see whether this ill is eligible to receive 14459 * them or not. ill_nominate_bcast_rcv() nominates only 14460 * one set of IREs for receiving. 14461 */ 14462 14463 ipif = ipif_get_next_ipif(NULL, ill); 14464 if (ipif == NULL) { 14465 ire_refrele(ire); 14466 freemsg(mp); 14467 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14468 return (NULL); 14469 } 14470 new_ire = ire_ctable_lookup(dst, 0, 0, 14471 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14472 ipif_refrele(ipif); 14473 14474 if (new_ire != NULL) { 14475 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14476 ire_refrele(ire); 14477 ire_refrele(new_ire); 14478 freemsg(mp); 14479 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14480 return (NULL); 14481 } 14482 /* 14483 * In the special case of multirouted broadcast 14484 * packets, we unconditionally need to "gateway" 14485 * them to the appropriate interface here. 14486 * In the normal case, this cannot happen, because 14487 * there is no broadcast IRE tagged with the 14488 * RTF_MULTIRT flag. 14489 */ 14490 if (new_ire->ire_flags & RTF_MULTIRT) { 14491 ire_refrele(new_ire); 14492 if (ire->ire_rfq != NULL) { 14493 q = ire->ire_rfq; 14494 *qp = q; 14495 } 14496 } else { 14497 ire_refrele(ire); 14498 ire = new_ire; 14499 } 14500 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14501 if (!ipst->ips_ip_g_forward_directed_bcast) { 14502 /* 14503 * Free the message if 14504 * ip_g_forward_directed_bcast is turned 14505 * off for non-local broadcast. 14506 */ 14507 ire_refrele(ire); 14508 freemsg(mp); 14509 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14510 return (NULL); 14511 } 14512 } else { 14513 /* 14514 * This CGTP packet successfully passed the 14515 * CGTP filter, but the related CGTP 14516 * broadcast IRE has not been found, 14517 * meaning that the redundant ipif is 14518 * probably down. However, if we discarded 14519 * this packet, its duplicate would be 14520 * filtered out by the CGTP filter so none 14521 * of them would get through. So we keep 14522 * going with this one. 14523 */ 14524 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14525 if (ire->ire_rfq != NULL) { 14526 q = ire->ire_rfq; 14527 *qp = q; 14528 } 14529 } 14530 } 14531 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14532 /* 14533 * Verify that there are not more then one 14534 * IRE_BROADCAST with this broadcast address which 14535 * has ire_stq set. 14536 * TODO: simplify, loop over all IRE's 14537 */ 14538 ire_t *ire1; 14539 int num_stq = 0; 14540 mblk_t *mp1; 14541 14542 /* Find the first one with ire_stq set */ 14543 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14544 for (ire1 = ire; ire1 && 14545 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14546 ire1 = ire1->ire_next) 14547 ; 14548 if (ire1) { 14549 ire_refrele(ire); 14550 ire = ire1; 14551 IRE_REFHOLD(ire); 14552 } 14553 14554 /* Check if there are additional ones with stq set */ 14555 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14556 if (ire->ire_addr != ire1->ire_addr) 14557 break; 14558 if (ire1->ire_stq) { 14559 num_stq++; 14560 break; 14561 } 14562 } 14563 rw_exit(&ire->ire_bucket->irb_lock); 14564 if (num_stq == 1 && ire->ire_stq != NULL) { 14565 ip1dbg(("ip_rput_process_broadcast: directed " 14566 "broadcast to 0x%x\n", 14567 ntohl(ire->ire_addr))); 14568 mp1 = copymsg(mp); 14569 if (mp1) { 14570 switch (ipha->ipha_protocol) { 14571 case IPPROTO_UDP: 14572 ip_udp_input(q, mp1, ipha, ire, ill); 14573 break; 14574 default: 14575 ip_proto_input(q, mp1, ipha, ire, ill); 14576 break; 14577 } 14578 } 14579 /* 14580 * Adjust ttl to 2 (1+1 - the forward engine 14581 * will decrement it by one. 14582 */ 14583 if (ip_csum_hdr(ipha)) { 14584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14585 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14586 freemsg(mp); 14587 ire_refrele(ire); 14588 return (NULL); 14589 } 14590 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14591 ipha->ipha_hdr_checksum = 0; 14592 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14593 ip_rput_process_forward(q, mp, ire, ipha, 14594 ill, ll_multicast); 14595 ire_refrele(ire); 14596 return (NULL); 14597 } 14598 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14599 ntohl(ire->ire_addr))); 14600 } 14601 14602 14603 /* Restore any hardware checksum flags */ 14604 DB_CKSUMFLAGS(mp) = hcksumflags; 14605 return (ire); 14606 } 14607 14608 /* ARGSUSED */ 14609 static boolean_t 14610 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14611 int *ll_multicast, ipaddr_t *dstp) 14612 { 14613 ip_stack_t *ipst = ill->ill_ipst; 14614 14615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14616 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14617 ntohs(ipha->ipha_length)); 14618 14619 /* 14620 * Forward packets only if we have joined the allmulti 14621 * group on this interface. 14622 */ 14623 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14624 int retval; 14625 14626 /* 14627 * Clear the indication that this may have hardware 14628 * checksum as we are not using it. 14629 */ 14630 DB_CKSUMFLAGS(mp) = 0; 14631 retval = ip_mforward(ill, ipha, mp); 14632 /* ip_mforward updates mib variables if needed */ 14633 /* clear b_prev - used by ip_mroute_decap */ 14634 mp->b_prev = NULL; 14635 14636 switch (retval) { 14637 case 0: 14638 /* 14639 * pkt is okay and arrived on phyint. 14640 * 14641 * If we are running as a multicast router 14642 * we need to see all IGMP and/or PIM packets. 14643 */ 14644 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14645 (ipha->ipha_protocol == IPPROTO_PIM)) { 14646 goto done; 14647 } 14648 break; 14649 case -1: 14650 /* pkt is mal-formed, toss it */ 14651 goto drop_pkt; 14652 case 1: 14653 /* pkt is okay and arrived on a tunnel */ 14654 /* 14655 * If we are running a multicast router 14656 * we need to see all igmp packets. 14657 */ 14658 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14659 *dstp = INADDR_BROADCAST; 14660 *ll_multicast = 1; 14661 return (B_FALSE); 14662 } 14663 14664 goto drop_pkt; 14665 } 14666 } 14667 14668 ILM_WALKER_HOLD(ill); 14669 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14670 /* 14671 * This might just be caused by the fact that 14672 * multiple IP Multicast addresses map to the same 14673 * link layer multicast - no need to increment counter! 14674 */ 14675 ILM_WALKER_RELE(ill); 14676 freemsg(mp); 14677 return (B_TRUE); 14678 } 14679 ILM_WALKER_RELE(ill); 14680 done: 14681 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14682 /* 14683 * This assumes the we deliver to all streams for multicast 14684 * and broadcast packets. 14685 */ 14686 *dstp = INADDR_BROADCAST; 14687 *ll_multicast = 1; 14688 return (B_FALSE); 14689 drop_pkt: 14690 ip2dbg(("ip_rput: drop pkt\n")); 14691 freemsg(mp); 14692 return (B_TRUE); 14693 } 14694 14695 static boolean_t 14696 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14697 int *ll_multicast, mblk_t **mpp) 14698 { 14699 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14700 boolean_t must_copy = B_FALSE; 14701 struct iocblk *iocp; 14702 ipha_t *ipha; 14703 ip_stack_t *ipst = ill->ill_ipst; 14704 14705 #define rptr ((uchar_t *)ipha) 14706 14707 first_mp = *first_mpp; 14708 mp = *mpp; 14709 14710 ASSERT(first_mp == mp); 14711 14712 /* 14713 * if db_ref > 1 then copymsg and free original. Packet may be 14714 * changed and do not want other entity who has a reference to this 14715 * message to trip over the changes. This is a blind change because 14716 * trying to catch all places that might change packet is too 14717 * difficult (since it may be a module above this one) 14718 * 14719 * This corresponds to the non-fast path case. We walk down the full 14720 * chain in this case, and check the db_ref count of all the dblks, 14721 * and do a copymsg if required. It is possible that the db_ref counts 14722 * of the data blocks in the mblk chain can be different. 14723 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14724 * count of 1, followed by a M_DATA block with a ref count of 2, if 14725 * 'snoop' is running. 14726 */ 14727 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14728 if (mp1->b_datap->db_ref > 1) { 14729 must_copy = B_TRUE; 14730 break; 14731 } 14732 } 14733 14734 if (must_copy) { 14735 mp1 = copymsg(mp); 14736 if (mp1 == NULL) { 14737 for (mp1 = mp; mp1 != NULL; 14738 mp1 = mp1->b_cont) { 14739 mp1->b_next = NULL; 14740 mp1->b_prev = NULL; 14741 } 14742 freemsg(mp); 14743 if (ill != NULL) { 14744 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14745 } else { 14746 BUMP_MIB(&ipst->ips_ip_mib, 14747 ipIfStatsInDiscards); 14748 } 14749 return (B_TRUE); 14750 } 14751 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14752 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14753 /* Copy b_prev - used by ip_mroute_decap */ 14754 to_mp->b_prev = from_mp->b_prev; 14755 from_mp->b_prev = NULL; 14756 } 14757 *first_mpp = first_mp = mp1; 14758 freemsg(mp); 14759 mp = mp1; 14760 *mpp = mp1; 14761 } 14762 14763 ipha = (ipha_t *)mp->b_rptr; 14764 14765 /* 14766 * previous code has a case for M_DATA. 14767 * We want to check how that happens. 14768 */ 14769 ASSERT(first_mp->b_datap->db_type != M_DATA); 14770 switch (first_mp->b_datap->db_type) { 14771 case M_PROTO: 14772 case M_PCPROTO: 14773 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14774 DL_UNITDATA_IND) { 14775 /* Go handle anything other than data elsewhere. */ 14776 ip_rput_dlpi(q, mp); 14777 return (B_TRUE); 14778 } 14779 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14780 /* Ditch the DLPI header. */ 14781 mp1 = mp->b_cont; 14782 ASSERT(first_mp == mp); 14783 *first_mpp = mp1; 14784 freeb(mp); 14785 *mpp = mp1; 14786 return (B_FALSE); 14787 case M_IOCACK: 14788 ip1dbg(("got iocack ")); 14789 iocp = (struct iocblk *)mp->b_rptr; 14790 switch (iocp->ioc_cmd) { 14791 case DL_IOC_HDR_INFO: 14792 ill = (ill_t *)q->q_ptr; 14793 ill_fastpath_ack(ill, mp); 14794 return (B_TRUE); 14795 case SIOCSTUNPARAM: 14796 case OSIOCSTUNPARAM: 14797 /* Go through qwriter_ip */ 14798 break; 14799 case SIOCGTUNPARAM: 14800 case OSIOCGTUNPARAM: 14801 ip_rput_other(NULL, q, mp, NULL); 14802 return (B_TRUE); 14803 default: 14804 putnext(q, mp); 14805 return (B_TRUE); 14806 } 14807 /* FALLTHRU */ 14808 case M_ERROR: 14809 case M_HANGUP: 14810 /* 14811 * Since this is on the ill stream we unconditionally 14812 * bump up the refcount 14813 */ 14814 ill_refhold(ill); 14815 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14816 return (B_TRUE); 14817 case M_CTL: 14818 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14819 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14820 IPHADA_M_CTL)) { 14821 /* 14822 * It's an IPsec accelerated packet. 14823 * Make sure that the ill from which we received the 14824 * packet has enabled IPsec hardware acceleration. 14825 */ 14826 if (!(ill->ill_capabilities & 14827 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14828 /* IPsec kstats: bean counter */ 14829 freemsg(mp); 14830 return (B_TRUE); 14831 } 14832 14833 /* 14834 * Make mp point to the mblk following the M_CTL, 14835 * then process according to type of mp. 14836 * After this processing, first_mp will point to 14837 * the data-attributes and mp to the pkt following 14838 * the M_CTL. 14839 */ 14840 mp = first_mp->b_cont; 14841 if (mp == NULL) { 14842 freemsg(first_mp); 14843 return (B_TRUE); 14844 } 14845 /* 14846 * A Hardware Accelerated packet can only be M_DATA 14847 * ESP or AH packet. 14848 */ 14849 if (mp->b_datap->db_type != M_DATA) { 14850 /* non-M_DATA IPsec accelerated packet */ 14851 IPSECHW_DEBUG(IPSECHW_PKT, 14852 ("non-M_DATA IPsec accelerated pkt\n")); 14853 freemsg(first_mp); 14854 return (B_TRUE); 14855 } 14856 ipha = (ipha_t *)mp->b_rptr; 14857 if (ipha->ipha_protocol != IPPROTO_AH && 14858 ipha->ipha_protocol != IPPROTO_ESP) { 14859 IPSECHW_DEBUG(IPSECHW_PKT, 14860 ("non-M_DATA IPsec accelerated pkt\n")); 14861 freemsg(first_mp); 14862 return (B_TRUE); 14863 } 14864 *mpp = mp; 14865 return (B_FALSE); 14866 } 14867 putnext(q, mp); 14868 return (B_TRUE); 14869 case M_IOCNAK: 14870 ip1dbg(("got iocnak ")); 14871 iocp = (struct iocblk *)mp->b_rptr; 14872 switch (iocp->ioc_cmd) { 14873 case SIOCSTUNPARAM: 14874 case OSIOCSTUNPARAM: 14875 /* 14876 * Since this is on the ill stream we unconditionally 14877 * bump up the refcount 14878 */ 14879 ill_refhold(ill); 14880 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14881 return (B_TRUE); 14882 case DL_IOC_HDR_INFO: 14883 case SIOCGTUNPARAM: 14884 case OSIOCGTUNPARAM: 14885 ip_rput_other(NULL, q, mp, NULL); 14886 return (B_TRUE); 14887 default: 14888 break; 14889 } 14890 /* FALLTHRU */ 14891 default: 14892 putnext(q, mp); 14893 return (B_TRUE); 14894 } 14895 } 14896 14897 /* Read side put procedure. Packets coming from the wire arrive here. */ 14898 void 14899 ip_rput(queue_t *q, mblk_t *mp) 14900 { 14901 ill_t *ill = (ill_t *)q->q_ptr; 14902 ip_stack_t *ipst = ill->ill_ipst; 14903 union DL_primitives *dl; 14904 14905 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14906 14907 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14908 /* 14909 * If things are opening or closing, only accept high-priority 14910 * DLPI messages. (On open ill->ill_ipif has not yet been 14911 * created; on close, things hanging off the ill may have been 14912 * freed already.) 14913 */ 14914 dl = (union DL_primitives *)mp->b_rptr; 14915 if (DB_TYPE(mp) != M_PCPROTO || 14916 dl->dl_primitive == DL_UNITDATA_IND) { 14917 /* 14918 * SIOC[GS]TUNPARAM ioctls can come here. 14919 */ 14920 inet_freemsg(mp); 14921 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14922 "ip_rput_end: q %p (%S)", q, "uninit"); 14923 return; 14924 } 14925 } 14926 14927 /* 14928 * if db_ref > 1 then copymsg and free original. Packet may be 14929 * changed and we do not want the other entity who has a reference to 14930 * this message to trip over the changes. This is a blind change because 14931 * trying to catch all places that might change the packet is too 14932 * difficult. 14933 * 14934 * This corresponds to the fast path case, where we have a chain of 14935 * M_DATA mblks. We check the db_ref count of only the 1st data block 14936 * in the mblk chain. There doesn't seem to be a reason why a device 14937 * driver would send up data with varying db_ref counts in the mblk 14938 * chain. In any case the Fast path is a private interface, and our 14939 * drivers don't do such a thing. Given the above assumption, there is 14940 * no need to walk down the entire mblk chain (which could have a 14941 * potential performance problem) 14942 */ 14943 if (mp->b_datap->db_ref > 1) { 14944 mblk_t *mp1; 14945 boolean_t adjusted = B_FALSE; 14946 IP_STAT(ipst, ip_db_ref); 14947 14948 /* 14949 * The IP_RECVSLLA option depends on having the link layer 14950 * header. First check that: 14951 * a> the underlying device is of type ether, since this 14952 * option is currently supported only over ethernet. 14953 * b> there is enough room to copy over the link layer header. 14954 * 14955 * Once the checks are done, adjust rptr so that the link layer 14956 * header will be copied via copymsg. Note that, IFT_ETHER may 14957 * be returned by some non-ethernet drivers but in this case the 14958 * second check will fail. 14959 */ 14960 if (ill->ill_type == IFT_ETHER && 14961 (mp->b_rptr - mp->b_datap->db_base) >= 14962 sizeof (struct ether_header)) { 14963 mp->b_rptr -= sizeof (struct ether_header); 14964 adjusted = B_TRUE; 14965 } 14966 mp1 = copymsg(mp); 14967 if (mp1 == NULL) { 14968 mp->b_next = NULL; 14969 /* clear b_prev - used by ip_mroute_decap */ 14970 mp->b_prev = NULL; 14971 freemsg(mp); 14972 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14973 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14974 "ip_rput_end: q %p (%S)", q, "copymsg"); 14975 return; 14976 } 14977 if (adjusted) { 14978 /* 14979 * Copy is done. Restore the pointer in the _new_ mblk 14980 */ 14981 mp1->b_rptr += sizeof (struct ether_header); 14982 } 14983 /* Copy b_prev - used by ip_mroute_decap */ 14984 mp1->b_prev = mp->b_prev; 14985 mp->b_prev = NULL; 14986 freemsg(mp); 14987 mp = mp1; 14988 } 14989 14990 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14991 "ip_rput_end: q %p (%S)", q, "end"); 14992 14993 ip_input(ill, NULL, mp, NULL); 14994 } 14995 14996 /* 14997 * Direct read side procedure capable of dealing with chains. GLDv3 based 14998 * drivers call this function directly with mblk chains while STREAMS 14999 * read side procedure ip_rput() calls this for single packet with ip_ring 15000 * set to NULL to process one packet at a time. 15001 * 15002 * The ill will always be valid if this function is called directly from 15003 * the driver. 15004 * 15005 * If ip_input() is called from GLDv3: 15006 * 15007 * - This must be a non-VLAN IP stream. 15008 * - 'mp' is either an untagged or a special priority-tagged packet. 15009 * - Any VLAN tag that was in the MAC header has been stripped. 15010 * 15011 * If the IP header in packet is not 32-bit aligned, every message in the 15012 * chain will be aligned before further operations. This is required on SPARC 15013 * platform. 15014 */ 15015 /* ARGSUSED */ 15016 void 15017 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 15018 struct mac_header_info_s *mhip) 15019 { 15020 ipaddr_t dst = NULL; 15021 ipaddr_t prev_dst; 15022 ire_t *ire = NULL; 15023 ipha_t *ipha; 15024 uint_t pkt_len; 15025 ssize_t len; 15026 uint_t opt_len; 15027 int ll_multicast; 15028 int cgtp_flt_pkt; 15029 queue_t *q = ill->ill_rq; 15030 squeue_t *curr_sqp = NULL; 15031 mblk_t *head = NULL; 15032 mblk_t *tail = NULL; 15033 mblk_t *first_mp; 15034 mblk_t *mp; 15035 mblk_t *dmp; 15036 int cnt = 0; 15037 ip_stack_t *ipst = ill->ill_ipst; 15038 15039 ASSERT(mp_chain != NULL); 15040 ASSERT(ill != NULL); 15041 15042 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 15043 15044 #define rptr ((uchar_t *)ipha) 15045 15046 while (mp_chain != NULL) { 15047 first_mp = mp = mp_chain; 15048 mp_chain = mp_chain->b_next; 15049 mp->b_next = NULL; 15050 ll_multicast = 0; 15051 15052 /* 15053 * We do ire caching from one iteration to 15054 * another. In the event the packet chain contains 15055 * all packets from the same dst, this caching saves 15056 * an ire_cache_lookup for each of the succeeding 15057 * packets in a packet chain. 15058 */ 15059 prev_dst = dst; 15060 15061 /* 15062 * Check and align the IP header. 15063 */ 15064 if (DB_TYPE(mp) == M_DATA) { 15065 dmp = mp; 15066 } else if (DB_TYPE(mp) == M_PROTO && 15067 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15068 dmp = mp->b_cont; 15069 } else { 15070 dmp = NULL; 15071 } 15072 if (dmp != NULL) { 15073 /* 15074 * IP header ptr not aligned? 15075 * OR IP header not complete in first mblk 15076 */ 15077 if (!OK_32PTR(dmp->b_rptr) || 15078 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15079 if (!ip_check_and_align_header(q, dmp, ipst)) 15080 continue; 15081 } 15082 } 15083 15084 /* 15085 * ip_input fast path 15086 */ 15087 15088 /* mblk type is not M_DATA */ 15089 if (DB_TYPE(mp) != M_DATA) { 15090 if (ip_rput_process_notdata(q, &first_mp, ill, 15091 &ll_multicast, &mp)) 15092 continue; 15093 } 15094 15095 /* Make sure its an M_DATA and that its aligned */ 15096 ASSERT(DB_TYPE(mp) == M_DATA); 15097 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15098 15099 ipha = (ipha_t *)mp->b_rptr; 15100 len = mp->b_wptr - rptr; 15101 pkt_len = ntohs(ipha->ipha_length); 15102 15103 /* 15104 * We must count all incoming packets, even if they end 15105 * up being dropped later on. 15106 */ 15107 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15108 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15109 15110 /* multiple mblk or too short */ 15111 len -= pkt_len; 15112 if (len != 0) { 15113 /* 15114 * Make sure we have data length consistent 15115 * with the IP header. 15116 */ 15117 if (mp->b_cont == NULL) { 15118 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15119 BUMP_MIB(ill->ill_ip_mib, 15120 ipIfStatsInHdrErrors); 15121 ip2dbg(("ip_input: drop pkt\n")); 15122 freemsg(mp); 15123 continue; 15124 } 15125 mp->b_wptr = rptr + pkt_len; 15126 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15127 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15128 BUMP_MIB(ill->ill_ip_mib, 15129 ipIfStatsInHdrErrors); 15130 ip2dbg(("ip_input: drop pkt\n")); 15131 freemsg(mp); 15132 continue; 15133 } 15134 (void) adjmsg(mp, -len); 15135 IP_STAT(ipst, ip_multimblk3); 15136 } 15137 } 15138 15139 /* Obtain the dst of the current packet */ 15140 dst = ipha->ipha_dst; 15141 15142 if (IP_LOOPBACK_ADDR(dst) || 15143 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 15144 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15145 cmn_err(CE_CONT, "dst %X src %X\n", 15146 dst, ipha->ipha_src); 15147 freemsg(mp); 15148 continue; 15149 } 15150 15151 /* 15152 * The event for packets being received from a 'physical' 15153 * interface is placed after validation of the source and/or 15154 * destination address as being local so that packets can be 15155 * redirected to loopback addresses using ipnat. 15156 */ 15157 DTRACE_PROBE4(ip4__physical__in__start, 15158 ill_t *, ill, ill_t *, NULL, 15159 ipha_t *, ipha, mblk_t *, first_mp); 15160 15161 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15162 ipst->ips_ipv4firewall_physical_in, 15163 ill, NULL, ipha, first_mp, mp, ipst); 15164 15165 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15166 15167 if (first_mp == NULL) { 15168 continue; 15169 } 15170 dst = ipha->ipha_dst; 15171 15172 /* 15173 * Attach any necessary label information to 15174 * this packet 15175 */ 15176 if (is_system_labeled() && 15177 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15178 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15179 freemsg(mp); 15180 continue; 15181 } 15182 15183 /* 15184 * Reuse the cached ire only if the ipha_dst of the previous 15185 * packet is the same as the current packet AND it is not 15186 * INADDR_ANY. 15187 */ 15188 if (!(dst == prev_dst && dst != INADDR_ANY) && 15189 (ire != NULL)) { 15190 ire_refrele(ire); 15191 ire = NULL; 15192 } 15193 opt_len = ipha->ipha_version_and_hdr_length - 15194 IP_SIMPLE_HDR_VERSION; 15195 15196 /* 15197 * Check to see if we can take the fastpath. 15198 * That is possible if the following conditions are met 15199 * o Tsol disabled 15200 * o CGTP disabled 15201 * o ipp_action_count is 0 15202 * o Mobile IP not running 15203 * o no options in the packet 15204 * o not a RSVP packet 15205 * o not a multicast packet 15206 */ 15207 if (!is_system_labeled() && 15208 !ip_cgtp_filter && ipp_action_count == 0 && 15209 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 15210 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15211 !ll_multicast && !CLASSD(dst)) { 15212 if (ire == NULL) 15213 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15214 ipst); 15215 15216 /* incoming packet is for forwarding */ 15217 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15218 ire = ip_fast_forward(ire, dst, ill, mp); 15219 continue; 15220 } 15221 /* incoming packet is for local consumption */ 15222 if (ire->ire_type & IRE_LOCAL) 15223 goto local; 15224 } 15225 15226 /* 15227 * Disable ire caching for anything more complex 15228 * than the simple fast path case we checked for above. 15229 */ 15230 if (ire != NULL) { 15231 ire_refrele(ire); 15232 ire = NULL; 15233 } 15234 15235 /* Full-blown slow path */ 15236 if (opt_len != 0) { 15237 if (len != 0) 15238 IP_STAT(ipst, ip_multimblk4); 15239 else 15240 IP_STAT(ipst, ip_ipoptions); 15241 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15242 &dst, ipst)) 15243 continue; 15244 } 15245 15246 /* 15247 * Invoke the CGTP (multirouting) filtering module to process 15248 * the incoming packet. Packets identified as duplicates 15249 * must be discarded. Filtering is active only if the 15250 * the ip_cgtp_filter ndd variable is non-zero. 15251 * 15252 * Only applies to the shared stack since the filter_ops 15253 * do not carry an ip_stack_t or zoneid. 15254 */ 15255 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15256 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL) && 15257 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 15258 cgtp_flt_pkt = 15259 ip_cgtp_filter_ops->cfo_filter(q, mp); 15260 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15261 freemsg(first_mp); 15262 continue; 15263 } 15264 } 15265 15266 /* 15267 * If rsvpd is running, let RSVP daemon handle its processing 15268 * and forwarding of RSVP multicast/unicast packets. 15269 * If rsvpd is not running but mrouted is running, RSVP 15270 * multicast packets are forwarded as multicast traffic 15271 * and RSVP unicast packets are forwarded by unicast router. 15272 * If neither rsvpd nor mrouted is running, RSVP multicast 15273 * packets are not forwarded, but the unicast packets are 15274 * forwarded like unicast traffic. 15275 */ 15276 if (ipha->ipha_protocol == IPPROTO_RSVP && 15277 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15278 NULL) { 15279 /* RSVP packet and rsvpd running. Treat as ours */ 15280 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15281 /* 15282 * This assumes that we deliver to all streams for 15283 * multicast and broadcast packets. 15284 * We have to force ll_multicast to 1 to handle the 15285 * M_DATA messages passed in from ip_mroute_decap. 15286 */ 15287 dst = INADDR_BROADCAST; 15288 ll_multicast = 1; 15289 } else if (CLASSD(dst)) { 15290 /* packet is multicast */ 15291 mp->b_next = NULL; 15292 if (ip_rput_process_multicast(q, mp, ill, ipha, 15293 &ll_multicast, &dst)) 15294 continue; 15295 } 15296 15297 15298 /* 15299 * Check if the packet is coming from the Mobile IP 15300 * forward tunnel interface 15301 */ 15302 if (ill->ill_srcif_refcnt > 0) { 15303 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 15304 NULL, ill, MATCH_IRE_TYPE); 15305 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 15306 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 15307 15308 /* We need to resolve the link layer info */ 15309 ire_refrele(ire); 15310 ire = NULL; 15311 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 15312 ll_multicast, dst); 15313 continue; 15314 } 15315 } 15316 15317 if (ire == NULL) { 15318 ire = ire_cache_lookup(dst, ALL_ZONES, 15319 MBLK_GETLABEL(mp), ipst); 15320 } 15321 15322 /* 15323 * If mipagent is running and reverse tunnel is created as per 15324 * mobile node request, then any packet coming through the 15325 * incoming interface from the mobile-node, should be reverse 15326 * tunneled to it's home agent except those that are destined 15327 * to foreign agent only. 15328 * This needs source address based ire lookup. The routing 15329 * entries for source address based lookup are only created by 15330 * mipagent program only when a reverse tunnel is created. 15331 * Reference : RFC2002, RFC2344 15332 */ 15333 if (ill->ill_mrtun_refcnt > 0) { 15334 ipaddr_t srcaddr; 15335 ire_t *tmp_ire; 15336 15337 tmp_ire = ire; /* Save, we might need it later */ 15338 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 15339 ire->ire_type != IRE_BROADCAST)) { 15340 srcaddr = ipha->ipha_src; 15341 ire = ire_mrtun_lookup(srcaddr, ill); 15342 if (ire != NULL) { 15343 /* 15344 * Should not be getting iphada packet 15345 * here. we should only get those for 15346 * IRE_LOCAL traffic, excluded above. 15347 * Fail-safe (drop packet) in the event 15348 * hardware is misbehaving. 15349 */ 15350 if (first_mp != mp) { 15351 /* IPsec KSTATS: beancount me */ 15352 freemsg(first_mp); 15353 } else { 15354 /* 15355 * This packet must be forwarded 15356 * to Reverse Tunnel 15357 */ 15358 ip_mrtun_forward(ire, ill, mp); 15359 } 15360 ire_refrele(ire); 15361 ire = NULL; 15362 if (tmp_ire != NULL) { 15363 ire_refrele(tmp_ire); 15364 tmp_ire = NULL; 15365 } 15366 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15367 "ip_input_end: q %p (%S)", 15368 q, "uninit"); 15369 continue; 15370 } 15371 } 15372 /* 15373 * If this packet is from a non-mobilenode or a 15374 * mobile-node which does not request reverse 15375 * tunnel service 15376 */ 15377 ire = tmp_ire; 15378 } 15379 15380 15381 /* 15382 * If we reach here that means the incoming packet satisfies 15383 * one of the following conditions: 15384 * - packet is from a mobile node which does not request 15385 * reverse tunnel 15386 * - packet is from a non-mobile node, which is the most 15387 * common case 15388 * - packet is from a reverse tunnel enabled mobile node 15389 * and destined to foreign agent only 15390 */ 15391 15392 if (ire == NULL) { 15393 /* 15394 * No IRE for this destination, so it can't be for us. 15395 * Unless we are forwarding, drop the packet. 15396 * We have to let source routed packets through 15397 * since we don't yet know if they are 'ping -l' 15398 * packets i.e. if they will go out over the 15399 * same interface as they came in on. 15400 */ 15401 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 15402 if (ire == NULL) 15403 continue; 15404 } 15405 15406 /* 15407 * Broadcast IRE may indicate either broadcast or 15408 * multicast packet 15409 */ 15410 if (ire->ire_type == IRE_BROADCAST) { 15411 /* 15412 * Skip broadcast checks if packet is UDP multicast; 15413 * we'd rather not enter ip_rput_process_broadcast() 15414 * unless the packet is broadcast for real, since 15415 * that routine is a no-op for multicast. 15416 */ 15417 if (ipha->ipha_protocol != IPPROTO_UDP || 15418 !CLASSD(ipha->ipha_dst)) { 15419 ire = ip_rput_process_broadcast(&q, mp, 15420 ire, ipha, ill, dst, cgtp_flt_pkt, 15421 ll_multicast); 15422 if (ire == NULL) 15423 continue; 15424 } 15425 } else if (ire->ire_stq != NULL) { 15426 /* fowarding? */ 15427 ip_rput_process_forward(q, mp, ire, ipha, ill, 15428 ll_multicast); 15429 /* ip_rput_process_forward consumed the packet */ 15430 continue; 15431 } 15432 15433 local: 15434 /* 15435 * If the queue in the ire is different to the ingress queue 15436 * then we need to check to see if we can accept the packet. 15437 * Note that for multicast packets and broadcast packets sent 15438 * to a broadcast address which is shared between multiple 15439 * interfaces we should not do this since we just got a random 15440 * broadcast ire. 15441 */ 15442 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15443 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15444 ill)) == NULL) { 15445 /* Drop packet */ 15446 BUMP_MIB(ill->ill_ip_mib, 15447 ipIfStatsForwProhibits); 15448 freemsg(mp); 15449 continue; 15450 } 15451 if (ire->ire_rfq != NULL) 15452 q = ire->ire_rfq; 15453 } 15454 15455 switch (ipha->ipha_protocol) { 15456 case IPPROTO_TCP: 15457 ASSERT(first_mp == mp); 15458 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15459 mp, 0, q, ip_ring)) != NULL) { 15460 if (curr_sqp == NULL) { 15461 curr_sqp = GET_SQUEUE(mp); 15462 ASSERT(cnt == 0); 15463 cnt++; 15464 head = tail = mp; 15465 } else if (curr_sqp == GET_SQUEUE(mp)) { 15466 ASSERT(tail != NULL); 15467 cnt++; 15468 tail->b_next = mp; 15469 tail = mp; 15470 } else { 15471 /* 15472 * A different squeue. Send the 15473 * chain for the previous squeue on 15474 * its way. This shouldn't happen 15475 * often unless interrupt binding 15476 * changes. 15477 */ 15478 IP_STAT(ipst, ip_input_multi_squeue); 15479 squeue_enter_chain(curr_sqp, head, 15480 tail, cnt, SQTAG_IP_INPUT); 15481 curr_sqp = GET_SQUEUE(mp); 15482 head = mp; 15483 tail = mp; 15484 cnt = 1; 15485 } 15486 } 15487 continue; 15488 case IPPROTO_UDP: 15489 ASSERT(first_mp == mp); 15490 ip_udp_input(q, mp, ipha, ire, ill); 15491 continue; 15492 case IPPROTO_SCTP: 15493 ASSERT(first_mp == mp); 15494 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15495 q, dst); 15496 /* ire has been released by ip_sctp_input */ 15497 ire = NULL; 15498 continue; 15499 default: 15500 ip_proto_input(q, first_mp, ipha, ire, ill); 15501 continue; 15502 } 15503 } 15504 15505 if (ire != NULL) 15506 ire_refrele(ire); 15507 15508 if (head != NULL) 15509 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15510 15511 /* 15512 * This code is there just to make netperf/ttcp look good. 15513 * 15514 * Its possible that after being in polling mode (and having cleared 15515 * the backlog), squeues have turned the interrupt frequency higher 15516 * to improve latency at the expense of more CPU utilization (less 15517 * packets per interrupts or more number of interrupts). Workloads 15518 * like ttcp/netperf do manage to tickle polling once in a while 15519 * but for the remaining time, stay in higher interrupt mode since 15520 * their packet arrival rate is pretty uniform and this shows up 15521 * as higher CPU utilization. Since people care about CPU utilization 15522 * while running netperf/ttcp, turn the interrupt frequency back to 15523 * normal/default if polling has not been used in ip_poll_normal_ticks. 15524 */ 15525 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15526 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15527 ip_ring->rr_poll_state &= ~ILL_POLLING; 15528 ip_ring->rr_blank(ip_ring->rr_handle, 15529 ip_ring->rr_normal_blank_time, 15530 ip_ring->rr_normal_pkt_cnt); 15531 } 15532 } 15533 15534 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15535 "ip_input_end: q %p (%S)", q, "end"); 15536 #undef rptr 15537 } 15538 15539 static void 15540 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15541 t_uscalar_t err) 15542 { 15543 if (dl_err == DL_SYSERR) { 15544 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15545 "%s: %s failed: DL_SYSERR (errno %u)\n", 15546 ill->ill_name, dlpi_prim_str(prim), err); 15547 return; 15548 } 15549 15550 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15551 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15552 dlpi_err_str(dl_err)); 15553 } 15554 15555 /* 15556 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15557 * than DL_UNITDATA_IND messages. If we need to process this message 15558 * exclusively, we call qwriter_ip, in which case we also need to call 15559 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15560 */ 15561 void 15562 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15563 { 15564 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15565 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15566 ill_t *ill = (ill_t *)q->q_ptr; 15567 boolean_t pending; 15568 15569 ip1dbg(("ip_rput_dlpi")); 15570 if (dloa->dl_primitive == DL_ERROR_ACK) { 15571 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15572 "%s (0x%x), unix %u\n", ill->ill_name, 15573 dlpi_prim_str(dlea->dl_error_primitive), 15574 dlea->dl_error_primitive, 15575 dlpi_err_str(dlea->dl_errno), 15576 dlea->dl_errno, 15577 dlea->dl_unix_errno)); 15578 } 15579 15580 /* 15581 * If we received an ACK but didn't send a request for it, then it 15582 * can't be part of any pending operation; discard up-front. 15583 */ 15584 switch (dloa->dl_primitive) { 15585 case DL_NOTIFY_IND: 15586 pending = B_TRUE; 15587 break; 15588 case DL_ERROR_ACK: 15589 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15590 break; 15591 case DL_OK_ACK: 15592 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15593 break; 15594 case DL_INFO_ACK: 15595 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15596 break; 15597 case DL_BIND_ACK: 15598 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15599 break; 15600 case DL_PHYS_ADDR_ACK: 15601 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15602 break; 15603 case DL_NOTIFY_ACK: 15604 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15605 break; 15606 case DL_CONTROL_ACK: 15607 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15608 break; 15609 case DL_CAPABILITY_ACK: 15610 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15611 break; 15612 default: 15613 /* Not a DLPI message we support or were expecting */ 15614 freemsg(mp); 15615 return; 15616 } 15617 15618 if (!pending) { 15619 freemsg(mp); 15620 return; 15621 } 15622 15623 switch (dloa->dl_primitive) { 15624 case DL_ERROR_ACK: 15625 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15626 mutex_enter(&ill->ill_lock); 15627 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15628 cv_signal(&ill->ill_cv); 15629 mutex_exit(&ill->ill_lock); 15630 } 15631 break; 15632 15633 case DL_OK_ACK: 15634 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15635 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15636 switch (dloa->dl_correct_primitive) { 15637 case DL_UNBIND_REQ: 15638 mutex_enter(&ill->ill_lock); 15639 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15640 cv_signal(&ill->ill_cv); 15641 mutex_exit(&ill->ill_lock); 15642 break; 15643 15644 case DL_ENABMULTI_REQ: 15645 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15646 ill->ill_dlpi_multicast_state = IDS_OK; 15647 break; 15648 } 15649 break; 15650 default: 15651 break; 15652 } 15653 15654 /* 15655 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15656 * and we need to become writer to continue to process it. If it's not 15657 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15658 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15659 * some work as part of the current exclusive operation that actually 15660 * is not part of it -- which is wrong, but better than the 15661 * alternative of deadlock (if NEW_OP is always used). Someday, we 15662 * should track which DLPI requests have ACKs that we wait on 15663 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15664 * 15665 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15666 * Since this is on the ill stream we unconditionally bump up the 15667 * refcount without doing ILL_CAN_LOOKUP(). 15668 */ 15669 ill_refhold(ill); 15670 if (dloa->dl_primitive == DL_NOTIFY_IND) 15671 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15672 else 15673 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15674 } 15675 15676 /* 15677 * Handling of DLPI messages that require exclusive access to the ipsq. 15678 * 15679 * Need to do ill_pending_mp_release on ioctl completion, which could 15680 * happen here. (along with mi_copy_done) 15681 */ 15682 /* ARGSUSED */ 15683 static void 15684 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15685 { 15686 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15687 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15688 int err = 0; 15689 ill_t *ill; 15690 ipif_t *ipif = NULL; 15691 mblk_t *mp1 = NULL; 15692 conn_t *connp = NULL; 15693 t_uscalar_t paddrreq; 15694 mblk_t *mp_hw; 15695 boolean_t success; 15696 boolean_t ioctl_aborted = B_FALSE; 15697 boolean_t log = B_TRUE; 15698 hook_nic_event_t *info; 15699 ip_stack_t *ipst; 15700 15701 ip1dbg(("ip_rput_dlpi_writer ..")); 15702 ill = (ill_t *)q->q_ptr; 15703 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15704 15705 ASSERT(IAM_WRITER_ILL(ill)); 15706 15707 ipst = ill->ill_ipst; 15708 15709 /* 15710 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15711 * both are null or non-null. However we can assert that only 15712 * after grabbing the ipsq_lock. So we don't make any assertion 15713 * here and in other places in the code. 15714 */ 15715 ipif = ipsq->ipsq_pending_ipif; 15716 /* 15717 * The current ioctl could have been aborted by the user and a new 15718 * ioctl to bring up another ill could have started. We could still 15719 * get a response from the driver later. 15720 */ 15721 if (ipif != NULL && ipif->ipif_ill != ill) 15722 ioctl_aborted = B_TRUE; 15723 15724 switch (dloa->dl_primitive) { 15725 case DL_ERROR_ACK: 15726 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15727 dlpi_prim_str(dlea->dl_error_primitive))); 15728 15729 switch (dlea->dl_error_primitive) { 15730 case DL_PROMISCON_REQ: 15731 case DL_PROMISCOFF_REQ: 15732 case DL_DISABMULTI_REQ: 15733 case DL_UNBIND_REQ: 15734 case DL_ATTACH_REQ: 15735 case DL_INFO_REQ: 15736 ill_dlpi_done(ill, dlea->dl_error_primitive); 15737 break; 15738 case DL_NOTIFY_REQ: 15739 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15740 log = B_FALSE; 15741 break; 15742 case DL_PHYS_ADDR_REQ: 15743 /* 15744 * For IPv6 only, there are two additional 15745 * phys_addr_req's sent to the driver to get the 15746 * IPv6 token and lla. This allows IP to acquire 15747 * the hardware address format for a given interface 15748 * without having built in knowledge of the hardware 15749 * address. ill_phys_addr_pend keeps track of the last 15750 * DL_PAR sent so we know which response we are 15751 * dealing with. ill_dlpi_done will update 15752 * ill_phys_addr_pend when it sends the next req. 15753 * We don't complete the IOCTL until all three DL_PARs 15754 * have been attempted, so set *_len to 0 and break. 15755 */ 15756 paddrreq = ill->ill_phys_addr_pend; 15757 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15758 if (paddrreq == DL_IPV6_TOKEN) { 15759 ill->ill_token_length = 0; 15760 log = B_FALSE; 15761 break; 15762 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15763 ill->ill_nd_lla_len = 0; 15764 log = B_FALSE; 15765 break; 15766 } 15767 /* 15768 * Something went wrong with the DL_PHYS_ADDR_REQ. 15769 * We presumably have an IOCTL hanging out waiting 15770 * for completion. Find it and complete the IOCTL 15771 * with the error noted. 15772 * However, ill_dl_phys was called on an ill queue 15773 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15774 * set. But the ioctl is known to be pending on ill_wq. 15775 */ 15776 if (!ill->ill_ifname_pending) 15777 break; 15778 ill->ill_ifname_pending = 0; 15779 if (!ioctl_aborted) 15780 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15781 if (mp1 != NULL) { 15782 /* 15783 * This operation (SIOCSLIFNAME) must have 15784 * happened on the ill. Assert there is no conn 15785 */ 15786 ASSERT(connp == NULL); 15787 q = ill->ill_wq; 15788 } 15789 break; 15790 case DL_BIND_REQ: 15791 ill_dlpi_done(ill, DL_BIND_REQ); 15792 if (ill->ill_ifname_pending) 15793 break; 15794 /* 15795 * Something went wrong with the bind. We presumably 15796 * have an IOCTL hanging out waiting for completion. 15797 * Find it, take down the interface that was coming 15798 * up, and complete the IOCTL with the error noted. 15799 */ 15800 if (!ioctl_aborted) 15801 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15802 if (mp1 != NULL) { 15803 /* 15804 * This operation (SIOCSLIFFLAGS) must have 15805 * happened from a conn. 15806 */ 15807 ASSERT(connp != NULL); 15808 q = CONNP_TO_WQ(connp); 15809 if (ill->ill_move_in_progress) { 15810 ILL_CLEAR_MOVE(ill); 15811 } 15812 (void) ipif_down(ipif, NULL, NULL); 15813 /* error is set below the switch */ 15814 } 15815 break; 15816 case DL_ENABMULTI_REQ: 15817 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15818 15819 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15820 ill->ill_dlpi_multicast_state = IDS_FAILED; 15821 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15822 ipif_t *ipif; 15823 15824 printf("ip: joining multicasts failed (%d)" 15825 " on %s - will use link layer " 15826 "broadcasts for multicast\n", 15827 dlea->dl_errno, ill->ill_name); 15828 15829 /* 15830 * Set up the multicast mapping alone. 15831 * writer, so ok to access ill->ill_ipif 15832 * without any lock. 15833 */ 15834 ipif = ill->ill_ipif; 15835 mutex_enter(&ill->ill_phyint->phyint_lock); 15836 ill->ill_phyint->phyint_flags |= 15837 PHYI_MULTI_BCAST; 15838 mutex_exit(&ill->ill_phyint->phyint_lock); 15839 15840 if (!ill->ill_isv6) { 15841 (void) ipif_arp_setup_multicast(ipif, 15842 NULL); 15843 } else { 15844 (void) ipif_ndp_setup_multicast(ipif, 15845 NULL); 15846 } 15847 } 15848 freemsg(mp); /* Don't want to pass this up */ 15849 return; 15850 15851 case DL_CAPABILITY_REQ: 15852 case DL_CONTROL_REQ: 15853 ill_dlpi_done(ill, dlea->dl_error_primitive); 15854 ill->ill_dlpi_capab_state = IDS_FAILED; 15855 freemsg(mp); 15856 return; 15857 } 15858 /* 15859 * Note the error for IOCTL completion (mp1 is set when 15860 * ready to complete ioctl). If ill_ifname_pending_err is 15861 * set, an error occured during plumbing (ill_ifname_pending), 15862 * so we want to report that error. 15863 * 15864 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15865 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15866 * expected to get errack'd if the driver doesn't support 15867 * these flags (e.g. ethernet). log will be set to B_FALSE 15868 * if these error conditions are encountered. 15869 */ 15870 if (mp1 != NULL) { 15871 if (ill->ill_ifname_pending_err != 0) { 15872 err = ill->ill_ifname_pending_err; 15873 ill->ill_ifname_pending_err = 0; 15874 } else { 15875 err = dlea->dl_unix_errno ? 15876 dlea->dl_unix_errno : ENXIO; 15877 } 15878 /* 15879 * If we're plumbing an interface and an error hasn't already 15880 * been saved, set ill_ifname_pending_err to the error passed 15881 * up. Ignore the error if log is B_FALSE (see comment above). 15882 */ 15883 } else if (log && ill->ill_ifname_pending && 15884 ill->ill_ifname_pending_err == 0) { 15885 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15886 dlea->dl_unix_errno : ENXIO; 15887 } 15888 15889 if (log) 15890 ip_dlpi_error(ill, dlea->dl_error_primitive, 15891 dlea->dl_errno, dlea->dl_unix_errno); 15892 break; 15893 case DL_CAPABILITY_ACK: { 15894 boolean_t reneg_flag = B_FALSE; 15895 /* Call a routine to handle this one. */ 15896 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15897 /* 15898 * Check if the ACK is due to renegotiation case since we 15899 * will need to send a new CAPABILITY_REQ later. 15900 */ 15901 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15902 /* This is the ack for a renogiation case */ 15903 reneg_flag = B_TRUE; 15904 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15905 } 15906 ill_capability_ack(ill, mp); 15907 if (reneg_flag) 15908 ill_capability_probe(ill); 15909 break; 15910 } 15911 case DL_CONTROL_ACK: 15912 /* We treat all of these as "fire and forget" */ 15913 ill_dlpi_done(ill, DL_CONTROL_REQ); 15914 break; 15915 case DL_INFO_ACK: 15916 /* Call a routine to handle this one. */ 15917 ill_dlpi_done(ill, DL_INFO_REQ); 15918 ip_ll_subnet_defaults(ill, mp); 15919 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15920 return; 15921 case DL_BIND_ACK: 15922 /* 15923 * We should have an IOCTL waiting on this unless 15924 * sent by ill_dl_phys, in which case just return 15925 */ 15926 ill_dlpi_done(ill, DL_BIND_REQ); 15927 if (ill->ill_ifname_pending) 15928 break; 15929 15930 if (!ioctl_aborted) 15931 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15932 if (mp1 == NULL) 15933 break; 15934 /* 15935 * Because mp1 was added by ill_dl_up(), and it always 15936 * passes a valid connp, connp must be valid here. 15937 */ 15938 ASSERT(connp != NULL); 15939 q = CONNP_TO_WQ(connp); 15940 15941 /* 15942 * We are exclusive. So nothing can change even after 15943 * we get the pending mp. If need be we can put it back 15944 * and restart, as in calling ipif_arp_up() below. 15945 */ 15946 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15947 15948 mutex_enter(&ill->ill_lock); 15949 15950 ill->ill_dl_up = 1; 15951 15952 if ((info = ill->ill_nic_event_info) != NULL) { 15953 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15954 "attached for %s\n", info->hne_event, 15955 ill->ill_name)); 15956 if (info->hne_data != NULL) 15957 kmem_free(info->hne_data, info->hne_datalen); 15958 kmem_free(info, sizeof (hook_nic_event_t)); 15959 } 15960 15961 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15962 if (info != NULL) { 15963 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15964 info->hne_lif = 0; 15965 info->hne_event = NE_UP; 15966 info->hne_data = NULL; 15967 info->hne_datalen = 0; 15968 info->hne_family = ill->ill_isv6 ? 15969 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15970 } else 15971 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15972 "event information for %s (ENOMEM)\n", 15973 ill->ill_name)); 15974 15975 ill->ill_nic_event_info = info; 15976 15977 mutex_exit(&ill->ill_lock); 15978 15979 /* 15980 * Now bring up the resolver; when that is complete, we'll 15981 * create IREs. Note that we intentionally mirror what 15982 * ipif_up() would have done, because we got here by way of 15983 * ill_dl_up(), which stopped ipif_up()'s processing. 15984 */ 15985 if (ill->ill_isv6) { 15986 /* 15987 * v6 interfaces. 15988 * Unlike ARP which has to do another bind 15989 * and attach, once we get here we are 15990 * done with NDP. Except in the case of 15991 * ILLF_XRESOLV, in which case we send an 15992 * AR_INTERFACE_UP to the external resolver. 15993 * If all goes well, the ioctl will complete 15994 * in ip_rput(). If there's an error, we 15995 * complete it here. 15996 */ 15997 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 15998 if (err == 0) { 15999 if (ill->ill_flags & ILLF_XRESOLV) { 16000 mutex_enter(&connp->conn_lock); 16001 mutex_enter(&ill->ill_lock); 16002 success = ipsq_pending_mp_add( 16003 connp, ipif, q, mp1, 0); 16004 mutex_exit(&ill->ill_lock); 16005 mutex_exit(&connp->conn_lock); 16006 if (success) { 16007 err = ipif_resolver_up(ipif, 16008 Res_act_initial); 16009 if (err == EINPROGRESS) { 16010 freemsg(mp); 16011 return; 16012 } 16013 ASSERT(err != 0); 16014 mp1 = ipsq_pending_mp_get(ipsq, 16015 &connp); 16016 ASSERT(mp1 != NULL); 16017 } else { 16018 /* conn has started closing */ 16019 err = EINTR; 16020 } 16021 } else { /* Non XRESOLV interface */ 16022 (void) ipif_resolver_up(ipif, 16023 Res_act_initial); 16024 err = ipif_up_done_v6(ipif); 16025 } 16026 } 16027 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16028 /* 16029 * ARP and other v4 external resolvers. 16030 * Leave the pending mblk intact so that 16031 * the ioctl completes in ip_rput(). 16032 */ 16033 mutex_enter(&connp->conn_lock); 16034 mutex_enter(&ill->ill_lock); 16035 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16036 mutex_exit(&ill->ill_lock); 16037 mutex_exit(&connp->conn_lock); 16038 if (success) { 16039 err = ipif_resolver_up(ipif, Res_act_initial); 16040 if (err == EINPROGRESS) { 16041 freemsg(mp); 16042 return; 16043 } 16044 ASSERT(err != 0); 16045 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16046 } else { 16047 /* The conn has started closing */ 16048 err = EINTR; 16049 } 16050 } else { 16051 /* 16052 * This one is complete. Reply to pending ioctl. 16053 */ 16054 (void) ipif_resolver_up(ipif, Res_act_initial); 16055 err = ipif_up_done(ipif); 16056 } 16057 16058 if ((err == 0) && (ill->ill_up_ipifs)) { 16059 err = ill_up_ipifs(ill, q, mp1); 16060 if (err == EINPROGRESS) { 16061 freemsg(mp); 16062 return; 16063 } 16064 } 16065 16066 if (ill->ill_up_ipifs) { 16067 ill_group_cleanup(ill); 16068 } 16069 16070 break; 16071 case DL_NOTIFY_IND: { 16072 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16073 ire_t *ire; 16074 boolean_t need_ire_walk_v4 = B_FALSE; 16075 boolean_t need_ire_walk_v6 = B_FALSE; 16076 16077 switch (notify->dl_notification) { 16078 case DL_NOTE_PHYS_ADDR: 16079 err = ill_set_phys_addr(ill, mp); 16080 break; 16081 16082 case DL_NOTE_FASTPATH_FLUSH: 16083 ill_fastpath_flush(ill); 16084 break; 16085 16086 case DL_NOTE_SDU_SIZE: 16087 /* 16088 * Change the MTU size of the interface, of all 16089 * attached ipif's, and of all relevant ire's. The 16090 * new value's a uint32_t at notify->dl_data. 16091 * Mtu change Vs. new ire creation - protocol below. 16092 * 16093 * a Mark the ipif as IPIF_CHANGING. 16094 * b Set the new mtu in the ipif. 16095 * c Change the ire_max_frag on all affected ires 16096 * d Unmark the IPIF_CHANGING 16097 * 16098 * To see how the protocol works, assume an interface 16099 * route is also being added simultaneously by 16100 * ip_rt_add and let 'ipif' be the ipif referenced by 16101 * the ire. If the ire is created before step a, 16102 * it will be cleaned up by step c. If the ire is 16103 * created after step d, it will see the new value of 16104 * ipif_mtu. Any attempt to create the ire between 16105 * steps a to d will fail because of the IPIF_CHANGING 16106 * flag. Note that ire_create() is passed a pointer to 16107 * the ipif_mtu, and not the value. During ire_add 16108 * under the bucket lock, the ire_max_frag of the 16109 * new ire being created is set from the ipif/ire from 16110 * which it is being derived. 16111 */ 16112 mutex_enter(&ill->ill_lock); 16113 ill->ill_max_frag = (uint_t)notify->dl_data; 16114 16115 /* 16116 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16117 * leave it alone 16118 */ 16119 if (ill->ill_mtu_userspecified) { 16120 mutex_exit(&ill->ill_lock); 16121 break; 16122 } 16123 ill->ill_max_mtu = ill->ill_max_frag; 16124 if (ill->ill_isv6) { 16125 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16126 ill->ill_max_mtu = IPV6_MIN_MTU; 16127 } else { 16128 if (ill->ill_max_mtu < IP_MIN_MTU) 16129 ill->ill_max_mtu = IP_MIN_MTU; 16130 } 16131 for (ipif = ill->ill_ipif; ipif != NULL; 16132 ipif = ipif->ipif_next) { 16133 /* 16134 * Don't override the mtu if the user 16135 * has explicitly set it. 16136 */ 16137 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16138 continue; 16139 ipif->ipif_mtu = (uint_t)notify->dl_data; 16140 if (ipif->ipif_isv6) 16141 ire = ipif_to_ire_v6(ipif); 16142 else 16143 ire = ipif_to_ire(ipif); 16144 if (ire != NULL) { 16145 ire->ire_max_frag = ipif->ipif_mtu; 16146 ire_refrele(ire); 16147 } 16148 if (ipif->ipif_flags & IPIF_UP) { 16149 if (ill->ill_isv6) 16150 need_ire_walk_v6 = B_TRUE; 16151 else 16152 need_ire_walk_v4 = B_TRUE; 16153 } 16154 } 16155 mutex_exit(&ill->ill_lock); 16156 if (need_ire_walk_v4) 16157 ire_walk_v4(ill_mtu_change, (char *)ill, 16158 ALL_ZONES, ipst); 16159 if (need_ire_walk_v6) 16160 ire_walk_v6(ill_mtu_change, (char *)ill, 16161 ALL_ZONES, ipst); 16162 break; 16163 case DL_NOTE_LINK_UP: 16164 case DL_NOTE_LINK_DOWN: { 16165 /* 16166 * We are writer. ill / phyint / ipsq assocs stable. 16167 * The RUNNING flag reflects the state of the link. 16168 */ 16169 phyint_t *phyint = ill->ill_phyint; 16170 uint64_t new_phyint_flags; 16171 boolean_t changed = B_FALSE; 16172 boolean_t went_up; 16173 16174 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16175 mutex_enter(&phyint->phyint_lock); 16176 new_phyint_flags = went_up ? 16177 phyint->phyint_flags | PHYI_RUNNING : 16178 phyint->phyint_flags & ~PHYI_RUNNING; 16179 if (new_phyint_flags != phyint->phyint_flags) { 16180 phyint->phyint_flags = new_phyint_flags; 16181 changed = B_TRUE; 16182 } 16183 mutex_exit(&phyint->phyint_lock); 16184 /* 16185 * ill_restart_dad handles the DAD restart and routing 16186 * socket notification logic. 16187 */ 16188 if (changed) { 16189 ill_restart_dad(phyint->phyint_illv4, went_up); 16190 ill_restart_dad(phyint->phyint_illv6, went_up); 16191 } 16192 break; 16193 } 16194 case DL_NOTE_PROMISC_ON_PHYS: 16195 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16196 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16197 mutex_enter(&ill->ill_lock); 16198 ill->ill_promisc_on_phys = B_TRUE; 16199 mutex_exit(&ill->ill_lock); 16200 break; 16201 case DL_NOTE_PROMISC_OFF_PHYS: 16202 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16203 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16204 mutex_enter(&ill->ill_lock); 16205 ill->ill_promisc_on_phys = B_FALSE; 16206 mutex_exit(&ill->ill_lock); 16207 break; 16208 case DL_NOTE_CAPAB_RENEG: 16209 /* 16210 * Something changed on the driver side. 16211 * It wants us to renegotiate the capabilities 16212 * on this ill. The most likely cause is the 16213 * aggregation interface under us where a 16214 * port got added or went away. 16215 * 16216 * We reset the capabilities and set the 16217 * state to IDS_RENG so that when the ack 16218 * comes back, we can start the 16219 * renegotiation process. 16220 */ 16221 ill_capability_reset(ill); 16222 ill->ill_dlpi_capab_state = IDS_RENEG; 16223 break; 16224 default: 16225 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16226 "type 0x%x for DL_NOTIFY_IND\n", 16227 notify->dl_notification)); 16228 break; 16229 } 16230 16231 /* 16232 * As this is an asynchronous operation, we 16233 * should not call ill_dlpi_done 16234 */ 16235 break; 16236 } 16237 case DL_NOTIFY_ACK: { 16238 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16239 16240 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16241 ill->ill_note_link = 1; 16242 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16243 break; 16244 } 16245 case DL_PHYS_ADDR_ACK: { 16246 /* 16247 * As part of plumbing the interface via SIOCSLIFNAME, 16248 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16249 * whose answers we receive here. As each answer is received, 16250 * we call ill_dlpi_done() to dispatch the next request as 16251 * we're processing the current one. Once all answers have 16252 * been received, we use ipsq_pending_mp_get() to dequeue the 16253 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16254 * is invoked from an ill queue, conn_oper_pending_ill is not 16255 * available, but we know the ioctl is pending on ill_wq.) 16256 */ 16257 uint_t paddrlen, paddroff; 16258 16259 paddrreq = ill->ill_phys_addr_pend; 16260 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16261 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16262 16263 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16264 if (paddrreq == DL_IPV6_TOKEN) { 16265 /* 16266 * bcopy to low-order bits of ill_token 16267 * 16268 * XXX Temporary hack - currently, all known tokens 16269 * are 64 bits, so I'll cheat for the moment. 16270 */ 16271 bcopy(mp->b_rptr + paddroff, 16272 &ill->ill_token.s6_addr32[2], paddrlen); 16273 ill->ill_token_length = paddrlen; 16274 break; 16275 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16276 ASSERT(ill->ill_nd_lla_mp == NULL); 16277 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16278 mp = NULL; 16279 break; 16280 } 16281 16282 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16283 ASSERT(ill->ill_phys_addr_mp == NULL); 16284 if (!ill->ill_ifname_pending) 16285 break; 16286 ill->ill_ifname_pending = 0; 16287 if (!ioctl_aborted) 16288 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16289 if (mp1 != NULL) { 16290 ASSERT(connp == NULL); 16291 q = ill->ill_wq; 16292 } 16293 /* 16294 * If any error acks received during the plumbing sequence, 16295 * ill_ifname_pending_err will be set. Break out and send up 16296 * the error to the pending ioctl. 16297 */ 16298 if (ill->ill_ifname_pending_err != 0) { 16299 err = ill->ill_ifname_pending_err; 16300 ill->ill_ifname_pending_err = 0; 16301 break; 16302 } 16303 16304 ill->ill_phys_addr_mp = mp; 16305 ill->ill_phys_addr = mp->b_rptr + paddroff; 16306 mp = NULL; 16307 16308 /* 16309 * If paddrlen is zero, the DLPI provider doesn't support 16310 * physical addresses. The other two tests were historical 16311 * workarounds for bugs in our former PPP implementation, but 16312 * now other things have grown dependencies on them -- e.g., 16313 * the tun module specifies a dl_addr_length of zero in its 16314 * DL_BIND_ACK, but then specifies an incorrect value in its 16315 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16316 * but only after careful testing ensures that all dependent 16317 * broken DLPI providers have been fixed. 16318 */ 16319 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16320 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16321 ill->ill_phys_addr = NULL; 16322 } else if (paddrlen != ill->ill_phys_addr_length) { 16323 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16324 paddrlen, ill->ill_phys_addr_length)); 16325 err = EINVAL; 16326 break; 16327 } 16328 16329 if (ill->ill_nd_lla_mp == NULL) { 16330 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16331 err = ENOMEM; 16332 break; 16333 } 16334 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16335 } 16336 16337 /* 16338 * Set the interface token. If the zeroth interface address 16339 * is unspecified, then set it to the link local address. 16340 */ 16341 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16342 (void) ill_setdefaulttoken(ill); 16343 16344 ASSERT(ill->ill_ipif->ipif_id == 0); 16345 if (ipif != NULL && 16346 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16347 (void) ipif_setlinklocal(ipif); 16348 } 16349 break; 16350 } 16351 case DL_OK_ACK: 16352 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16353 dlpi_prim_str((int)dloa->dl_correct_primitive), 16354 dloa->dl_correct_primitive)); 16355 switch (dloa->dl_correct_primitive) { 16356 case DL_PROMISCON_REQ: 16357 case DL_PROMISCOFF_REQ: 16358 case DL_ENABMULTI_REQ: 16359 case DL_DISABMULTI_REQ: 16360 case DL_UNBIND_REQ: 16361 case DL_ATTACH_REQ: 16362 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16363 break; 16364 } 16365 break; 16366 default: 16367 break; 16368 } 16369 16370 freemsg(mp); 16371 if (mp1 != NULL) { 16372 /* 16373 * The operation must complete without EINPROGRESS 16374 * since ipsq_pending_mp_get() has removed the mblk 16375 * from ipsq_pending_mp. Otherwise, the operation 16376 * will be stuck forever in the ipsq. 16377 */ 16378 ASSERT(err != EINPROGRESS); 16379 16380 switch (ipsq->ipsq_current_ioctl) { 16381 case 0: 16382 ipsq_current_finish(ipsq); 16383 break; 16384 16385 case SIOCLIFADDIF: 16386 case SIOCSLIFNAME: 16387 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16388 break; 16389 16390 default: 16391 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16392 break; 16393 } 16394 } 16395 } 16396 16397 /* 16398 * ip_rput_other is called by ip_rput to handle messages modifying the global 16399 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16400 */ 16401 /* ARGSUSED */ 16402 void 16403 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16404 { 16405 ill_t *ill; 16406 struct iocblk *iocp; 16407 mblk_t *mp1; 16408 conn_t *connp = NULL; 16409 16410 ip1dbg(("ip_rput_other ")); 16411 ill = (ill_t *)q->q_ptr; 16412 /* 16413 * This routine is not a writer in the case of SIOCGTUNPARAM 16414 * in which case ipsq is NULL. 16415 */ 16416 if (ipsq != NULL) { 16417 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16418 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16419 } 16420 16421 switch (mp->b_datap->db_type) { 16422 case M_ERROR: 16423 case M_HANGUP: 16424 /* 16425 * The device has a problem. We force the ILL down. It can 16426 * be brought up again manually using SIOCSIFFLAGS (via 16427 * ifconfig or equivalent). 16428 */ 16429 ASSERT(ipsq != NULL); 16430 if (mp->b_rptr < mp->b_wptr) 16431 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16432 if (ill->ill_error == 0) 16433 ill->ill_error = ENXIO; 16434 if (!ill_down_start(q, mp)) 16435 return; 16436 ipif_all_down_tail(ipsq, q, mp, NULL); 16437 break; 16438 case M_IOCACK: 16439 iocp = (struct iocblk *)mp->b_rptr; 16440 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16441 switch (iocp->ioc_cmd) { 16442 case SIOCSTUNPARAM: 16443 case OSIOCSTUNPARAM: 16444 ASSERT(ipsq != NULL); 16445 /* 16446 * Finish socket ioctl passed through to tun. 16447 * We should have an IOCTL waiting on this. 16448 */ 16449 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16450 if (ill->ill_isv6) { 16451 struct iftun_req *ta; 16452 16453 /* 16454 * if a source or destination is 16455 * being set, try and set the link 16456 * local address for the tunnel 16457 */ 16458 ta = (struct iftun_req *)mp->b_cont-> 16459 b_cont->b_rptr; 16460 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16461 ipif_set_tun_llink(ill, ta); 16462 } 16463 16464 } 16465 if (mp1 != NULL) { 16466 /* 16467 * Now copy back the b_next/b_prev used by 16468 * mi code for the mi_copy* functions. 16469 * See ip_sioctl_tunparam() for the reason. 16470 * Also protect against missing b_cont. 16471 */ 16472 if (mp->b_cont != NULL) { 16473 mp->b_cont->b_next = 16474 mp1->b_cont->b_next; 16475 mp->b_cont->b_prev = 16476 mp1->b_cont->b_prev; 16477 } 16478 inet_freemsg(mp1); 16479 ASSERT(connp != NULL); 16480 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16481 iocp->ioc_error, NO_COPYOUT, ipsq); 16482 } else { 16483 ASSERT(connp == NULL); 16484 putnext(q, mp); 16485 } 16486 break; 16487 case SIOCGTUNPARAM: 16488 case OSIOCGTUNPARAM: 16489 /* 16490 * This is really M_IOCDATA from the tunnel driver. 16491 * convert back and complete the ioctl. 16492 * We should have an IOCTL waiting on this. 16493 */ 16494 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16495 if (mp1) { 16496 /* 16497 * Now copy back the b_next/b_prev used by 16498 * mi code for the mi_copy* functions. 16499 * See ip_sioctl_tunparam() for the reason. 16500 * Also protect against missing b_cont. 16501 */ 16502 if (mp->b_cont != NULL) { 16503 mp->b_cont->b_next = 16504 mp1->b_cont->b_next; 16505 mp->b_cont->b_prev = 16506 mp1->b_cont->b_prev; 16507 } 16508 inet_freemsg(mp1); 16509 if (iocp->ioc_error == 0) 16510 mp->b_datap->db_type = M_IOCDATA; 16511 ASSERT(connp != NULL); 16512 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16513 iocp->ioc_error, COPYOUT, NULL); 16514 } else { 16515 ASSERT(connp == NULL); 16516 putnext(q, mp); 16517 } 16518 break; 16519 default: 16520 break; 16521 } 16522 break; 16523 case M_IOCNAK: 16524 iocp = (struct iocblk *)mp->b_rptr; 16525 16526 switch (iocp->ioc_cmd) { 16527 int mode; 16528 16529 case DL_IOC_HDR_INFO: 16530 /* 16531 * If this was the first attempt turn of the 16532 * fastpath probing. 16533 */ 16534 mutex_enter(&ill->ill_lock); 16535 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16536 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16537 mutex_exit(&ill->ill_lock); 16538 ill_fastpath_nack(ill); 16539 ip1dbg(("ip_rput: DLPI fastpath off on " 16540 "interface %s\n", 16541 ill->ill_name)); 16542 } else { 16543 mutex_exit(&ill->ill_lock); 16544 } 16545 freemsg(mp); 16546 break; 16547 case SIOCSTUNPARAM: 16548 case OSIOCSTUNPARAM: 16549 ASSERT(ipsq != NULL); 16550 /* 16551 * Finish socket ioctl passed through to tun 16552 * We should have an IOCTL waiting on this. 16553 */ 16554 /* FALLTHRU */ 16555 case SIOCGTUNPARAM: 16556 case OSIOCGTUNPARAM: 16557 /* 16558 * This is really M_IOCDATA from the tunnel driver. 16559 * convert back and complete the ioctl. 16560 * We should have an IOCTL waiting on this. 16561 */ 16562 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16563 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16564 mp1 = ill_pending_mp_get(ill, &connp, 16565 iocp->ioc_id); 16566 mode = COPYOUT; 16567 ipsq = NULL; 16568 } else { 16569 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16570 mode = NO_COPYOUT; 16571 } 16572 if (mp1 != NULL) { 16573 /* 16574 * Now copy back the b_next/b_prev used by 16575 * mi code for the mi_copy* functions. 16576 * See ip_sioctl_tunparam() for the reason. 16577 * Also protect against missing b_cont. 16578 */ 16579 if (mp->b_cont != NULL) { 16580 mp->b_cont->b_next = 16581 mp1->b_cont->b_next; 16582 mp->b_cont->b_prev = 16583 mp1->b_cont->b_prev; 16584 } 16585 inet_freemsg(mp1); 16586 if (iocp->ioc_error == 0) 16587 iocp->ioc_error = EINVAL; 16588 ASSERT(connp != NULL); 16589 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16590 iocp->ioc_error, mode, ipsq); 16591 } else { 16592 ASSERT(connp == NULL); 16593 putnext(q, mp); 16594 } 16595 break; 16596 default: 16597 break; 16598 } 16599 default: 16600 break; 16601 } 16602 } 16603 16604 /* 16605 * NOTE : This function does not ire_refrele the ire argument passed in. 16606 * 16607 * IPQoS notes 16608 * IP policy is invoked twice for a forwarded packet, once on the read side 16609 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16610 * enabled. An additional parameter, in_ill, has been added for this purpose. 16611 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16612 * because ip_mroute drops this information. 16613 * 16614 */ 16615 void 16616 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16617 { 16618 uint32_t pkt_len; 16619 queue_t *q; 16620 uint32_t sum; 16621 #define rptr ((uchar_t *)ipha) 16622 uint32_t max_frag; 16623 uint32_t ill_index; 16624 ill_t *out_ill; 16625 mib2_ipIfStatsEntry_t *mibptr; 16626 ip_stack_t *ipst = in_ill->ill_ipst; 16627 16628 /* Get the ill_index of the incoming ILL */ 16629 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16630 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16631 16632 /* Initiate Read side IPPF processing */ 16633 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16634 ip_process(IPP_FWD_IN, &mp, ill_index); 16635 if (mp == NULL) { 16636 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16637 "during IPPF processing\n")); 16638 return; 16639 } 16640 } 16641 16642 pkt_len = ntohs(ipha->ipha_length); 16643 16644 /* Adjust the checksum to reflect the ttl decrement. */ 16645 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16646 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16647 16648 if (ipha->ipha_ttl-- <= 1) { 16649 if (ip_csum_hdr(ipha)) { 16650 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16651 goto drop_pkt; 16652 } 16653 /* 16654 * Note: ire_stq this will be NULL for multicast 16655 * datagrams using the long path through arp (the IRE 16656 * is not an IRE_CACHE). This should not cause 16657 * problems since we don't generate ICMP errors for 16658 * multicast packets. 16659 */ 16660 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16661 q = ire->ire_stq; 16662 if (q != NULL) { 16663 /* Sent by forwarding path, and router is global zone */ 16664 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16665 GLOBAL_ZONEID, ipst); 16666 } else 16667 freemsg(mp); 16668 return; 16669 } 16670 16671 /* 16672 * Don't forward if the interface is down 16673 */ 16674 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16675 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16676 ip2dbg(("ip_rput_forward:interface is down\n")); 16677 goto drop_pkt; 16678 } 16679 16680 /* Get the ill_index of the outgoing ILL */ 16681 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16682 16683 out_ill = ire->ire_ipif->ipif_ill; 16684 16685 DTRACE_PROBE4(ip4__forwarding__start, 16686 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16687 16688 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16689 ipst->ips_ipv4firewall_forwarding, 16690 in_ill, out_ill, ipha, mp, mp, ipst); 16691 16692 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16693 16694 if (mp == NULL) 16695 return; 16696 pkt_len = ntohs(ipha->ipha_length); 16697 16698 if (is_system_labeled()) { 16699 mblk_t *mp1; 16700 16701 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16702 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16703 goto drop_pkt; 16704 } 16705 /* Size may have changed */ 16706 mp = mp1; 16707 ipha = (ipha_t *)mp->b_rptr; 16708 pkt_len = ntohs(ipha->ipha_length); 16709 } 16710 16711 /* Check if there are options to update */ 16712 if (!IS_SIMPLE_IPH(ipha)) { 16713 if (ip_csum_hdr(ipha)) { 16714 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16715 goto drop_pkt; 16716 } 16717 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16718 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16719 return; 16720 } 16721 16722 ipha->ipha_hdr_checksum = 0; 16723 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16724 } 16725 max_frag = ire->ire_max_frag; 16726 if (pkt_len > max_frag) { 16727 /* 16728 * It needs fragging on its way out. We haven't 16729 * verified the header checksum yet. Since we 16730 * are going to put a surely good checksum in the 16731 * outgoing header, we have to make sure that it 16732 * was good coming in. 16733 */ 16734 if (ip_csum_hdr(ipha)) { 16735 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16736 goto drop_pkt; 16737 } 16738 /* Initiate Write side IPPF processing */ 16739 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16740 ip_process(IPP_FWD_OUT, &mp, ill_index); 16741 if (mp == NULL) { 16742 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16743 " during IPPF processing\n")); 16744 return; 16745 } 16746 } 16747 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16748 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16749 return; 16750 } 16751 16752 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16753 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16754 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16755 ipst->ips_ipv4firewall_physical_out, 16756 NULL, out_ill, ipha, mp, mp, ipst); 16757 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16758 if (mp == NULL) 16759 return; 16760 16761 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16762 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16763 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16764 /* ip_xmit_v4 always consumes the packet */ 16765 return; 16766 16767 drop_pkt:; 16768 ip1dbg(("ip_rput_forward: drop pkt\n")); 16769 freemsg(mp); 16770 #undef rptr 16771 } 16772 16773 void 16774 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16775 { 16776 ire_t *ire; 16777 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16778 16779 ASSERT(!ipif->ipif_isv6); 16780 /* 16781 * Find an IRE which matches the destination and the outgoing 16782 * queue in the cache table. All we need is an IRE_CACHE which 16783 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16784 * then it is enough to have some IRE_CACHE in the group. 16785 */ 16786 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16787 dst = ipif->ipif_pp_dst_addr; 16788 16789 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16790 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16791 if (ire == NULL) { 16792 /* 16793 * Mark this packet to make it be delivered to 16794 * ip_rput_forward after the new ire has been 16795 * created. 16796 */ 16797 mp->b_prev = NULL; 16798 mp->b_next = mp; 16799 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16800 NULL, 0, GLOBAL_ZONEID, &zero_info); 16801 } else { 16802 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16803 IRE_REFRELE(ire); 16804 } 16805 } 16806 16807 /* Update any source route, record route or timestamp options */ 16808 static int 16809 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16810 { 16811 ipoptp_t opts; 16812 uchar_t *opt; 16813 uint8_t optval; 16814 uint8_t optlen; 16815 ipaddr_t dst; 16816 uint32_t ts; 16817 ire_t *dst_ire = NULL; 16818 ire_t *tmp_ire = NULL; 16819 timestruc_t now; 16820 16821 ip2dbg(("ip_rput_forward_options\n")); 16822 dst = ipha->ipha_dst; 16823 for (optval = ipoptp_first(&opts, ipha); 16824 optval != IPOPT_EOL; 16825 optval = ipoptp_next(&opts)) { 16826 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16827 opt = opts.ipoptp_cur; 16828 optlen = opts.ipoptp_len; 16829 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16830 optval, opts.ipoptp_len)); 16831 switch (optval) { 16832 uint32_t off; 16833 case IPOPT_SSRR: 16834 case IPOPT_LSRR: 16835 /* Check if adminstratively disabled */ 16836 if (!ipst->ips_ip_forward_src_routed) { 16837 if (ire->ire_stq != NULL) { 16838 /* 16839 * Sent by forwarding path, and router 16840 * is global zone 16841 */ 16842 icmp_unreachable(ire->ire_stq, mp, 16843 ICMP_SOURCE_ROUTE_FAILED, 16844 GLOBAL_ZONEID, ipst); 16845 } else { 16846 ip0dbg(("ip_rput_forward_options: " 16847 "unable to send unreach\n")); 16848 freemsg(mp); 16849 } 16850 return (-1); 16851 } 16852 16853 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16854 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16855 if (dst_ire == NULL) { 16856 /* 16857 * Must be partial since ip_rput_options 16858 * checked for strict. 16859 */ 16860 break; 16861 } 16862 off = opt[IPOPT_OFFSET]; 16863 off--; 16864 redo_srr: 16865 if (optlen < IP_ADDR_LEN || 16866 off > optlen - IP_ADDR_LEN) { 16867 /* End of source route */ 16868 ip1dbg(( 16869 "ip_rput_forward_options: end of SR\n")); 16870 ire_refrele(dst_ire); 16871 break; 16872 } 16873 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16874 bcopy(&ire->ire_src_addr, (char *)opt + off, 16875 IP_ADDR_LEN); 16876 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16877 ntohl(dst))); 16878 16879 /* 16880 * Check if our address is present more than 16881 * once as consecutive hops in source route. 16882 */ 16883 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16884 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16885 if (tmp_ire != NULL) { 16886 ire_refrele(tmp_ire); 16887 off += IP_ADDR_LEN; 16888 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16889 goto redo_srr; 16890 } 16891 ipha->ipha_dst = dst; 16892 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16893 ire_refrele(dst_ire); 16894 break; 16895 case IPOPT_RR: 16896 off = opt[IPOPT_OFFSET]; 16897 off--; 16898 if (optlen < IP_ADDR_LEN || 16899 off > optlen - IP_ADDR_LEN) { 16900 /* No more room - ignore */ 16901 ip1dbg(( 16902 "ip_rput_forward_options: end of RR\n")); 16903 break; 16904 } 16905 bcopy(&ire->ire_src_addr, (char *)opt + off, 16906 IP_ADDR_LEN); 16907 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16908 break; 16909 case IPOPT_TS: 16910 /* Insert timestamp if there is room */ 16911 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16912 case IPOPT_TS_TSONLY: 16913 off = IPOPT_TS_TIMELEN; 16914 break; 16915 case IPOPT_TS_PRESPEC: 16916 case IPOPT_TS_PRESPEC_RFC791: 16917 /* Verify that the address matched */ 16918 off = opt[IPOPT_OFFSET] - 1; 16919 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16920 dst_ire = ire_ctable_lookup(dst, 0, 16921 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16922 MATCH_IRE_TYPE, ipst); 16923 if (dst_ire == NULL) { 16924 /* Not for us */ 16925 break; 16926 } 16927 ire_refrele(dst_ire); 16928 /* FALLTHRU */ 16929 case IPOPT_TS_TSANDADDR: 16930 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16931 break; 16932 default: 16933 /* 16934 * ip_*put_options should have already 16935 * dropped this packet. 16936 */ 16937 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16938 "unknown IT - bug in ip_rput_options?\n"); 16939 return (0); /* Keep "lint" happy */ 16940 } 16941 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16942 /* Increase overflow counter */ 16943 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16944 opt[IPOPT_POS_OV_FLG] = 16945 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16946 (off << 4)); 16947 break; 16948 } 16949 off = opt[IPOPT_OFFSET] - 1; 16950 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16951 case IPOPT_TS_PRESPEC: 16952 case IPOPT_TS_PRESPEC_RFC791: 16953 case IPOPT_TS_TSANDADDR: 16954 bcopy(&ire->ire_src_addr, 16955 (char *)opt + off, IP_ADDR_LEN); 16956 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16957 /* FALLTHRU */ 16958 case IPOPT_TS_TSONLY: 16959 off = opt[IPOPT_OFFSET] - 1; 16960 /* Compute # of milliseconds since midnight */ 16961 gethrestime(&now); 16962 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16963 now.tv_nsec / (NANOSEC / MILLISEC); 16964 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16965 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16966 break; 16967 } 16968 break; 16969 } 16970 } 16971 return (0); 16972 } 16973 16974 /* 16975 * This is called after processing at least one of AH/ESP headers. 16976 * 16977 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16978 * the actual, physical interface on which the packet was received, 16979 * but, when ip_strict_dst_multihoming is set to 1, could be the 16980 * interface which had the ipha_dst configured when the packet went 16981 * through ip_rput. The ill_index corresponding to the recv_ill 16982 * is saved in ipsec_in_rill_index 16983 * 16984 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16985 * cannot assume "ire" points to valid data for any IPv6 cases. 16986 */ 16987 void 16988 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16989 { 16990 mblk_t *mp; 16991 ipaddr_t dst; 16992 in6_addr_t *v6dstp; 16993 ipha_t *ipha; 16994 ip6_t *ip6h; 16995 ipsec_in_t *ii; 16996 boolean_t ill_need_rele = B_FALSE; 16997 boolean_t rill_need_rele = B_FALSE; 16998 boolean_t ire_need_rele = B_FALSE; 16999 netstack_t *ns; 17000 ip_stack_t *ipst; 17001 17002 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17003 ASSERT(ii->ipsec_in_ill_index != 0); 17004 ns = ii->ipsec_in_ns; 17005 ASSERT(ii->ipsec_in_ns != NULL); 17006 ipst = ns->netstack_ip; 17007 17008 mp = ipsec_mp->b_cont; 17009 ASSERT(mp != NULL); 17010 17011 17012 if (ill == NULL) { 17013 ASSERT(recv_ill == NULL); 17014 /* 17015 * We need to get the original queue on which ip_rput_local 17016 * or ip_rput_data_v6 was called. 17017 */ 17018 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17019 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17020 ill_need_rele = B_TRUE; 17021 17022 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17023 recv_ill = ill_lookup_on_ifindex( 17024 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17025 NULL, NULL, NULL, NULL, ipst); 17026 rill_need_rele = B_TRUE; 17027 } else { 17028 recv_ill = ill; 17029 } 17030 17031 if ((ill == NULL) || (recv_ill == NULL)) { 17032 ip0dbg(("ip_fanout_proto_again: interface " 17033 "disappeared\n")); 17034 if (ill != NULL) 17035 ill_refrele(ill); 17036 if (recv_ill != NULL) 17037 ill_refrele(recv_ill); 17038 freemsg(ipsec_mp); 17039 return; 17040 } 17041 } 17042 17043 ASSERT(ill != NULL && recv_ill != NULL); 17044 17045 if (mp->b_datap->db_type == M_CTL) { 17046 /* 17047 * AH/ESP is returning the ICMP message after 17048 * removing their headers. Fanout again till 17049 * it gets to the right protocol. 17050 */ 17051 if (ii->ipsec_in_v4) { 17052 icmph_t *icmph; 17053 int iph_hdr_length; 17054 int hdr_length; 17055 17056 ipha = (ipha_t *)mp->b_rptr; 17057 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17058 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17059 ipha = (ipha_t *)&icmph[1]; 17060 hdr_length = IPH_HDR_LENGTH(ipha); 17061 /* 17062 * icmp_inbound_error_fanout may need to do pullupmsg. 17063 * Reset the type to M_DATA. 17064 */ 17065 mp->b_datap->db_type = M_DATA; 17066 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17067 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17068 B_FALSE, ill, ii->ipsec_in_zoneid); 17069 } else { 17070 icmp6_t *icmp6; 17071 int hdr_length; 17072 17073 ip6h = (ip6_t *)mp->b_rptr; 17074 /* Don't call hdr_length_v6() unless you have to. */ 17075 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17076 hdr_length = ip_hdr_length_v6(mp, ip6h); 17077 else 17078 hdr_length = IPV6_HDR_LEN; 17079 17080 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17081 /* 17082 * icmp_inbound_error_fanout_v6 may need to do 17083 * pullupmsg. Reset the type to M_DATA. 17084 */ 17085 mp->b_datap->db_type = M_DATA; 17086 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17087 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17088 } 17089 if (ill_need_rele) 17090 ill_refrele(ill); 17091 if (rill_need_rele) 17092 ill_refrele(recv_ill); 17093 return; 17094 } 17095 17096 if (ii->ipsec_in_v4) { 17097 ipha = (ipha_t *)mp->b_rptr; 17098 dst = ipha->ipha_dst; 17099 if (CLASSD(dst)) { 17100 /* 17101 * Multicast has to be delivered to all streams. 17102 */ 17103 dst = INADDR_BROADCAST; 17104 } 17105 17106 if (ire == NULL) { 17107 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17108 MBLK_GETLABEL(mp), ipst); 17109 if (ire == NULL) { 17110 if (ill_need_rele) 17111 ill_refrele(ill); 17112 if (rill_need_rele) 17113 ill_refrele(recv_ill); 17114 ip1dbg(("ip_fanout_proto_again: " 17115 "IRE not found")); 17116 freemsg(ipsec_mp); 17117 return; 17118 } 17119 ire_need_rele = B_TRUE; 17120 } 17121 17122 switch (ipha->ipha_protocol) { 17123 case IPPROTO_UDP: 17124 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17125 recv_ill); 17126 if (ire_need_rele) 17127 ire_refrele(ire); 17128 break; 17129 case IPPROTO_TCP: 17130 if (!ire_need_rele) 17131 IRE_REFHOLD(ire); 17132 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17133 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17134 IRE_REFRELE(ire); 17135 if (mp != NULL) 17136 squeue_enter_chain(GET_SQUEUE(mp), mp, 17137 mp, 1, SQTAG_IP_PROTO_AGAIN); 17138 break; 17139 case IPPROTO_SCTP: 17140 if (!ire_need_rele) 17141 IRE_REFHOLD(ire); 17142 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17143 ipsec_mp, 0, ill->ill_rq, dst); 17144 break; 17145 default: 17146 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17147 recv_ill); 17148 if (ire_need_rele) 17149 ire_refrele(ire); 17150 break; 17151 } 17152 } else { 17153 uint32_t rput_flags = 0; 17154 17155 ip6h = (ip6_t *)mp->b_rptr; 17156 v6dstp = &ip6h->ip6_dst; 17157 /* 17158 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17159 * address. 17160 * 17161 * Currently, we don't store that state in the IPSEC_IN 17162 * message, and we may need to. 17163 */ 17164 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17165 IP6_IN_LLMCAST : 0); 17166 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17167 NULL, NULL); 17168 } 17169 if (ill_need_rele) 17170 ill_refrele(ill); 17171 if (rill_need_rele) 17172 ill_refrele(recv_ill); 17173 } 17174 17175 /* 17176 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17177 * returns 'true' if there are still fragments left on the queue, in 17178 * which case we restart the timer. 17179 */ 17180 void 17181 ill_frag_timer(void *arg) 17182 { 17183 ill_t *ill = (ill_t *)arg; 17184 boolean_t frag_pending; 17185 ip_stack_t *ipst = ill->ill_ipst; 17186 17187 mutex_enter(&ill->ill_lock); 17188 ASSERT(!ill->ill_fragtimer_executing); 17189 if (ill->ill_state_flags & ILL_CONDEMNED) { 17190 ill->ill_frag_timer_id = 0; 17191 mutex_exit(&ill->ill_lock); 17192 return; 17193 } 17194 ill->ill_fragtimer_executing = 1; 17195 mutex_exit(&ill->ill_lock); 17196 17197 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17198 17199 /* 17200 * Restart the timer, if we have fragments pending or if someone 17201 * wanted us to be scheduled again. 17202 */ 17203 mutex_enter(&ill->ill_lock); 17204 ill->ill_fragtimer_executing = 0; 17205 ill->ill_frag_timer_id = 0; 17206 if (frag_pending || ill->ill_fragtimer_needrestart) 17207 ill_frag_timer_start(ill); 17208 mutex_exit(&ill->ill_lock); 17209 } 17210 17211 void 17212 ill_frag_timer_start(ill_t *ill) 17213 { 17214 ip_stack_t *ipst = ill->ill_ipst; 17215 17216 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17217 17218 /* If the ill is closing or opening don't proceed */ 17219 if (ill->ill_state_flags & ILL_CONDEMNED) 17220 return; 17221 17222 if (ill->ill_fragtimer_executing) { 17223 /* 17224 * ill_frag_timer is currently executing. Just record the 17225 * the fact that we want the timer to be restarted. 17226 * ill_frag_timer will post a timeout before it returns, 17227 * ensuring it will be called again. 17228 */ 17229 ill->ill_fragtimer_needrestart = 1; 17230 return; 17231 } 17232 17233 if (ill->ill_frag_timer_id == 0) { 17234 /* 17235 * The timer is neither running nor is the timeout handler 17236 * executing. Post a timeout so that ill_frag_timer will be 17237 * called 17238 */ 17239 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17240 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17241 ill->ill_fragtimer_needrestart = 0; 17242 } 17243 } 17244 17245 /* 17246 * This routine is needed for loopback when forwarding multicasts. 17247 * 17248 * IPQoS Notes: 17249 * IPPF processing is done in fanout routines. 17250 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17251 * processing for IPSec packets is done when it comes back in clear. 17252 * NOTE : The callers of this function need to do the ire_refrele for the 17253 * ire that is being passed in. 17254 */ 17255 void 17256 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17257 ill_t *recv_ill) 17258 { 17259 ill_t *ill = (ill_t *)q->q_ptr; 17260 uint32_t sum; 17261 uint32_t u1; 17262 uint32_t u2; 17263 int hdr_length; 17264 boolean_t mctl_present; 17265 mblk_t *first_mp = mp; 17266 mblk_t *hada_mp = NULL; 17267 ipha_t *inner_ipha; 17268 ip_stack_t *ipst; 17269 17270 ASSERT(recv_ill != NULL); 17271 ipst = recv_ill->ill_ipst; 17272 17273 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17274 "ip_rput_locl_start: q %p", q); 17275 17276 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17277 ASSERT(ill != NULL); 17278 17279 17280 #define rptr ((uchar_t *)ipha) 17281 #define iphs ((uint16_t *)ipha) 17282 17283 /* 17284 * no UDP or TCP packet should come here anymore. 17285 */ 17286 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 17287 (ipha->ipha_protocol != IPPROTO_UDP)); 17288 17289 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17290 if (mctl_present && 17291 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17292 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17293 17294 /* 17295 * It's an IPsec accelerated packet. 17296 * Keep a pointer to the data attributes around until 17297 * we allocate the ipsec_info_t. 17298 */ 17299 IPSECHW_DEBUG(IPSECHW_PKT, 17300 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17301 hada_mp = first_mp; 17302 hada_mp->b_cont = NULL; 17303 /* 17304 * Since it is accelerated, it comes directly from 17305 * the ill and the data attributes is followed by 17306 * the packet data. 17307 */ 17308 ASSERT(mp->b_datap->db_type != M_CTL); 17309 first_mp = mp; 17310 mctl_present = B_FALSE; 17311 } 17312 17313 /* 17314 * IF M_CTL is not present, then ipsec_in_is_secure 17315 * should return B_TRUE. There is a case where loopback 17316 * packets has an M_CTL in the front with all the 17317 * IPSEC options set to IPSEC_PREF_NEVER - which means 17318 * ipsec_in_is_secure will return B_FALSE. As loopback 17319 * packets never comes here, it is safe to ASSERT the 17320 * following. 17321 */ 17322 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17323 17324 17325 /* u1 is # words of IP options */ 17326 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 17327 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17328 17329 if (u1) { 17330 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17331 if (hada_mp != NULL) 17332 freemsg(hada_mp); 17333 return; 17334 } 17335 } else { 17336 /* Check the IP header checksum. */ 17337 #define uph ((uint16_t *)ipha) 17338 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 17339 uph[6] + uph[7] + uph[8] + uph[9]; 17340 #undef uph 17341 /* finish doing IP checksum */ 17342 sum = (sum & 0xFFFF) + (sum >> 16); 17343 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17344 /* 17345 * Don't verify header checksum if this packet is coming 17346 * back from AH/ESP as we already did it. 17347 */ 17348 if (!mctl_present && (sum && sum != 0xFFFF)) { 17349 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17350 goto drop_pkt; 17351 } 17352 } 17353 17354 /* 17355 * Count for SNMP of inbound packets for ire. As ip_proto_input 17356 * might be called more than once for secure packets, count only 17357 * the first time. 17358 */ 17359 if (!mctl_present) { 17360 UPDATE_IB_PKT_COUNT(ire); 17361 ire->ire_last_used_time = lbolt; 17362 } 17363 17364 /* Check for fragmentation offset. */ 17365 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17366 u1 = u2 & (IPH_MF | IPH_OFFSET); 17367 if (u1) { 17368 /* 17369 * We re-assemble fragments before we do the AH/ESP 17370 * processing. Thus, M_CTL should not be present 17371 * while we are re-assembling. 17372 */ 17373 ASSERT(!mctl_present); 17374 ASSERT(first_mp == mp); 17375 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17376 return; 17377 } 17378 /* 17379 * Make sure that first_mp points back to mp as 17380 * the mp we came in with could have changed in 17381 * ip_rput_fragment(). 17382 */ 17383 ipha = (ipha_t *)mp->b_rptr; 17384 first_mp = mp; 17385 } 17386 17387 /* 17388 * Clear hardware checksumming flag as it is currently only 17389 * used by TCP and UDP. 17390 */ 17391 DB_CKSUMFLAGS(mp) = 0; 17392 17393 /* Now we have a complete datagram, destined for this machine. */ 17394 u1 = IPH_HDR_LENGTH(ipha); 17395 switch (ipha->ipha_protocol) { 17396 case IPPROTO_ICMP: { 17397 ire_t *ire_zone; 17398 ilm_t *ilm; 17399 mblk_t *mp1; 17400 zoneid_t last_zoneid; 17401 17402 if (CLASSD(ipha->ipha_dst) && 17403 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 17404 ASSERT(ire->ire_type == IRE_BROADCAST); 17405 /* 17406 * In the multicast case, applications may have joined 17407 * the group from different zones, so we need to deliver 17408 * the packet to each of them. Loop through the 17409 * multicast memberships structures (ilm) on the receive 17410 * ill and send a copy of the packet up each matching 17411 * one. However, we don't do this for multicasts sent on 17412 * the loopback interface (PHYI_LOOPBACK flag set) as 17413 * they must stay in the sender's zone. 17414 * 17415 * ilm_add_v6() ensures that ilms in the same zone are 17416 * contiguous in the ill_ilm list. We use this property 17417 * to avoid sending duplicates needed when two 17418 * applications in the same zone join the same group on 17419 * different logical interfaces: we ignore the ilm if 17420 * its zoneid is the same as the last matching one. 17421 * In addition, the sending of the packet for 17422 * ire_zoneid is delayed until all of the other ilms 17423 * have been exhausted. 17424 */ 17425 last_zoneid = -1; 17426 ILM_WALKER_HOLD(recv_ill); 17427 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17428 ilm = ilm->ilm_next) { 17429 if ((ilm->ilm_flags & ILM_DELETED) || 17430 ipha->ipha_dst != ilm->ilm_addr || 17431 ilm->ilm_zoneid == last_zoneid || 17432 ilm->ilm_zoneid == ire->ire_zoneid || 17433 ilm->ilm_zoneid == ALL_ZONES || 17434 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17435 continue; 17436 mp1 = ip_copymsg(first_mp); 17437 if (mp1 == NULL) 17438 continue; 17439 icmp_inbound(q, mp1, B_TRUE, ill, 17440 0, sum, mctl_present, B_TRUE, 17441 recv_ill, ilm->ilm_zoneid); 17442 last_zoneid = ilm->ilm_zoneid; 17443 } 17444 ILM_WALKER_RELE(recv_ill); 17445 } else if (ire->ire_type == IRE_BROADCAST) { 17446 /* 17447 * In the broadcast case, there may be many zones 17448 * which need a copy of the packet delivered to them. 17449 * There is one IRE_BROADCAST per broadcast address 17450 * and per zone; we walk those using a helper function. 17451 * In addition, the sending of the packet for ire is 17452 * delayed until all of the other ires have been 17453 * processed. 17454 */ 17455 IRB_REFHOLD(ire->ire_bucket); 17456 ire_zone = NULL; 17457 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17458 ire)) != NULL) { 17459 mp1 = ip_copymsg(first_mp); 17460 if (mp1 == NULL) 17461 continue; 17462 17463 UPDATE_IB_PKT_COUNT(ire_zone); 17464 ire_zone->ire_last_used_time = lbolt; 17465 icmp_inbound(q, mp1, B_TRUE, ill, 17466 0, sum, mctl_present, B_TRUE, 17467 recv_ill, ire_zone->ire_zoneid); 17468 } 17469 IRB_REFRELE(ire->ire_bucket); 17470 } 17471 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17472 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17473 ire->ire_zoneid); 17474 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17475 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17476 return; 17477 } 17478 case IPPROTO_IGMP: 17479 /* 17480 * If we are not willing to accept IGMP packets in clear, 17481 * then check with global policy. 17482 */ 17483 if (ipst->ips_igmp_accept_clear_messages == 0) { 17484 first_mp = ipsec_check_global_policy(first_mp, NULL, 17485 ipha, NULL, mctl_present, ipst->ips_netstack); 17486 if (first_mp == NULL) 17487 return; 17488 } 17489 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17490 freemsg(first_mp); 17491 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17492 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17493 return; 17494 } 17495 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17496 /* Bad packet - discarded by igmp_input */ 17497 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17498 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17499 if (mctl_present) 17500 freeb(first_mp); 17501 return; 17502 } 17503 /* 17504 * igmp_input() may have returned the pulled up message. 17505 * So first_mp and ipha need to be reinitialized. 17506 */ 17507 ipha = (ipha_t *)mp->b_rptr; 17508 if (mctl_present) 17509 first_mp->b_cont = mp; 17510 else 17511 first_mp = mp; 17512 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17513 connf_head != NULL) { 17514 /* No user-level listener for IGMP packets */ 17515 goto drop_pkt; 17516 } 17517 /* deliver to local raw users */ 17518 break; 17519 case IPPROTO_PIM: 17520 /* 17521 * If we are not willing to accept PIM packets in clear, 17522 * then check with global policy. 17523 */ 17524 if (ipst->ips_pim_accept_clear_messages == 0) { 17525 first_mp = ipsec_check_global_policy(first_mp, NULL, 17526 ipha, NULL, mctl_present, ipst->ips_netstack); 17527 if (first_mp == NULL) 17528 return; 17529 } 17530 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17531 freemsg(first_mp); 17532 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17533 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17534 return; 17535 } 17536 if (pim_input(q, mp, ill) != 0) { 17537 /* Bad packet - discarded by pim_input */ 17538 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17539 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17540 if (mctl_present) 17541 freeb(first_mp); 17542 return; 17543 } 17544 17545 /* 17546 * pim_input() may have pulled up the message so ipha needs to 17547 * be reinitialized. 17548 */ 17549 ipha = (ipha_t *)mp->b_rptr; 17550 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17551 connf_head != NULL) { 17552 /* No user-level listener for PIM packets */ 17553 goto drop_pkt; 17554 } 17555 /* deliver to local raw users */ 17556 break; 17557 case IPPROTO_ENCAP: 17558 /* 17559 * Handle self-encapsulated packets (IP-in-IP where 17560 * the inner addresses == the outer addresses). 17561 */ 17562 hdr_length = IPH_HDR_LENGTH(ipha); 17563 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17564 mp->b_wptr) { 17565 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17566 sizeof (ipha_t) - mp->b_rptr)) { 17567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17568 freemsg(first_mp); 17569 return; 17570 } 17571 ipha = (ipha_t *)mp->b_rptr; 17572 } 17573 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17574 /* 17575 * Check the sanity of the inner IP header. 17576 */ 17577 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17578 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17579 freemsg(first_mp); 17580 return; 17581 } 17582 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17583 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17584 freemsg(first_mp); 17585 return; 17586 } 17587 if (inner_ipha->ipha_src == ipha->ipha_src && 17588 inner_ipha->ipha_dst == ipha->ipha_dst) { 17589 ipsec_in_t *ii; 17590 17591 /* 17592 * Self-encapsulated tunnel packet. Remove 17593 * the outer IP header and fanout again. 17594 * We also need to make sure that the inner 17595 * header is pulled up until options. 17596 */ 17597 mp->b_rptr = (uchar_t *)inner_ipha; 17598 ipha = inner_ipha; 17599 hdr_length = IPH_HDR_LENGTH(ipha); 17600 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17601 if (!pullupmsg(mp, (uchar_t *)ipha + 17602 + hdr_length - mp->b_rptr)) { 17603 freemsg(first_mp); 17604 return; 17605 } 17606 ipha = (ipha_t *)mp->b_rptr; 17607 } 17608 if (!mctl_present) { 17609 ASSERT(first_mp == mp); 17610 /* 17611 * This means that somebody is sending 17612 * Self-encapsualted packets without AH/ESP. 17613 * If AH/ESP was present, we would have already 17614 * allocated the first_mp. 17615 */ 17616 first_mp = ipsec_in_alloc(B_TRUE, 17617 ipst->ips_netstack); 17618 if (first_mp == NULL) { 17619 ip1dbg(("ip_proto_input: IPSEC_IN " 17620 "allocation failure.\n")); 17621 BUMP_MIB(ill->ill_ip_mib, 17622 ipIfStatsInDiscards); 17623 freemsg(mp); 17624 return; 17625 } 17626 first_mp->b_cont = mp; 17627 } 17628 /* 17629 * We generally store the ill_index if we need to 17630 * do IPSEC processing as we lose the ill queue when 17631 * we come back. But in this case, we never should 17632 * have to store the ill_index here as it should have 17633 * been stored previously when we processed the 17634 * AH/ESP header in this routine or for non-ipsec 17635 * cases, we still have the queue. But for some bad 17636 * packets from the wire, we can get to IPSEC after 17637 * this and we better store the index for that case. 17638 */ 17639 ill = (ill_t *)q->q_ptr; 17640 ii = (ipsec_in_t *)first_mp->b_rptr; 17641 ii->ipsec_in_ill_index = 17642 ill->ill_phyint->phyint_ifindex; 17643 ii->ipsec_in_rill_index = 17644 recv_ill->ill_phyint->phyint_ifindex; 17645 if (ii->ipsec_in_decaps) { 17646 /* 17647 * This packet is self-encapsulated multiple 17648 * times. We don't want to recurse infinitely. 17649 * To keep it simple, drop the packet. 17650 */ 17651 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17652 freemsg(first_mp); 17653 return; 17654 } 17655 ii->ipsec_in_decaps = B_TRUE; 17656 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17657 ire); 17658 return; 17659 } 17660 break; 17661 case IPPROTO_AH: 17662 case IPPROTO_ESP: { 17663 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17664 17665 /* 17666 * Fast path for AH/ESP. If this is the first time 17667 * we are sending a datagram to AH/ESP, allocate 17668 * a IPSEC_IN message and prepend it. Otherwise, 17669 * just fanout. 17670 */ 17671 17672 int ipsec_rc; 17673 ipsec_in_t *ii; 17674 netstack_t *ns = ipst->ips_netstack; 17675 17676 IP_STAT(ipst, ipsec_proto_ahesp); 17677 if (!mctl_present) { 17678 ASSERT(first_mp == mp); 17679 first_mp = ipsec_in_alloc(B_TRUE, ns); 17680 if (first_mp == NULL) { 17681 ip1dbg(("ip_proto_input: IPSEC_IN " 17682 "allocation failure.\n")); 17683 freemsg(hada_mp); /* okay ifnull */ 17684 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17685 freemsg(mp); 17686 return; 17687 } 17688 /* 17689 * Store the ill_index so that when we come back 17690 * from IPSEC we ride on the same queue. 17691 */ 17692 ill = (ill_t *)q->q_ptr; 17693 ii = (ipsec_in_t *)first_mp->b_rptr; 17694 ii->ipsec_in_ill_index = 17695 ill->ill_phyint->phyint_ifindex; 17696 ii->ipsec_in_rill_index = 17697 recv_ill->ill_phyint->phyint_ifindex; 17698 first_mp->b_cont = mp; 17699 /* 17700 * Cache hardware acceleration info. 17701 */ 17702 if (hada_mp != NULL) { 17703 IPSECHW_DEBUG(IPSECHW_PKT, 17704 ("ip_rput_local: caching data attr.\n")); 17705 ii->ipsec_in_accelerated = B_TRUE; 17706 ii->ipsec_in_da = hada_mp; 17707 hada_mp = NULL; 17708 } 17709 } else { 17710 ii = (ipsec_in_t *)first_mp->b_rptr; 17711 } 17712 17713 if (!ipsec_loaded(ipss)) { 17714 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17715 ire->ire_zoneid, ipst); 17716 return; 17717 } 17718 17719 ns = ipst->ips_netstack; 17720 /* select inbound SA and have IPsec process the pkt */ 17721 if (ipha->ipha_protocol == IPPROTO_ESP) { 17722 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17723 if (esph == NULL) 17724 return; 17725 ASSERT(ii->ipsec_in_esp_sa != NULL); 17726 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17727 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17728 first_mp, esph); 17729 } else { 17730 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17731 if (ah == NULL) 17732 return; 17733 ASSERT(ii->ipsec_in_ah_sa != NULL); 17734 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17735 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17736 first_mp, ah); 17737 } 17738 17739 switch (ipsec_rc) { 17740 case IPSEC_STATUS_SUCCESS: 17741 break; 17742 case IPSEC_STATUS_FAILED: 17743 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17744 /* FALLTHRU */ 17745 case IPSEC_STATUS_PENDING: 17746 return; 17747 } 17748 /* we're done with IPsec processing, send it up */ 17749 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17750 return; 17751 } 17752 default: 17753 break; 17754 } 17755 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17756 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17757 ire->ire_zoneid)); 17758 goto drop_pkt; 17759 } 17760 /* 17761 * Handle protocols with which IP is less intimate. There 17762 * can be more than one stream bound to a particular 17763 * protocol. When this is the case, each one gets a copy 17764 * of any incoming packets. 17765 */ 17766 ip_fanout_proto(q, first_mp, ill, ipha, 17767 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17768 B_TRUE, recv_ill, ire->ire_zoneid); 17769 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17770 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17771 return; 17772 17773 drop_pkt: 17774 freemsg(first_mp); 17775 if (hada_mp != NULL) 17776 freeb(hada_mp); 17777 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17778 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17779 #undef rptr 17780 #undef iphs 17781 17782 } 17783 17784 /* 17785 * Update any source route, record route or timestamp options. 17786 * Check that we are at end of strict source route. 17787 * The options have already been checked for sanity in ip_rput_options(). 17788 */ 17789 static boolean_t 17790 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17791 ip_stack_t *ipst) 17792 { 17793 ipoptp_t opts; 17794 uchar_t *opt; 17795 uint8_t optval; 17796 uint8_t optlen; 17797 ipaddr_t dst; 17798 uint32_t ts; 17799 ire_t *dst_ire; 17800 timestruc_t now; 17801 zoneid_t zoneid; 17802 ill_t *ill; 17803 17804 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17805 17806 ip2dbg(("ip_rput_local_options\n")); 17807 17808 for (optval = ipoptp_first(&opts, ipha); 17809 optval != IPOPT_EOL; 17810 optval = ipoptp_next(&opts)) { 17811 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17812 opt = opts.ipoptp_cur; 17813 optlen = opts.ipoptp_len; 17814 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17815 optval, optlen)); 17816 switch (optval) { 17817 uint32_t off; 17818 case IPOPT_SSRR: 17819 case IPOPT_LSRR: 17820 off = opt[IPOPT_OFFSET]; 17821 off--; 17822 if (optlen < IP_ADDR_LEN || 17823 off > optlen - IP_ADDR_LEN) { 17824 /* End of source route */ 17825 ip1dbg(("ip_rput_local_options: end of SR\n")); 17826 break; 17827 } 17828 /* 17829 * This will only happen if two consecutive entries 17830 * in the source route contains our address or if 17831 * it is a packet with a loose source route which 17832 * reaches us before consuming the whole source route 17833 */ 17834 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17835 if (optval == IPOPT_SSRR) { 17836 goto bad_src_route; 17837 } 17838 /* 17839 * Hack: instead of dropping the packet truncate the 17840 * source route to what has been used by filling the 17841 * rest with IPOPT_NOP. 17842 */ 17843 opt[IPOPT_OLEN] = (uint8_t)off; 17844 while (off < optlen) { 17845 opt[off++] = IPOPT_NOP; 17846 } 17847 break; 17848 case IPOPT_RR: 17849 off = opt[IPOPT_OFFSET]; 17850 off--; 17851 if (optlen < IP_ADDR_LEN || 17852 off > optlen - IP_ADDR_LEN) { 17853 /* No more room - ignore */ 17854 ip1dbg(( 17855 "ip_rput_local_options: end of RR\n")); 17856 break; 17857 } 17858 bcopy(&ire->ire_src_addr, (char *)opt + off, 17859 IP_ADDR_LEN); 17860 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17861 break; 17862 case IPOPT_TS: 17863 /* Insert timestamp if there is romm */ 17864 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17865 case IPOPT_TS_TSONLY: 17866 off = IPOPT_TS_TIMELEN; 17867 break; 17868 case IPOPT_TS_PRESPEC: 17869 case IPOPT_TS_PRESPEC_RFC791: 17870 /* Verify that the address matched */ 17871 off = opt[IPOPT_OFFSET] - 1; 17872 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17873 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17874 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17875 ipst); 17876 if (dst_ire == NULL) { 17877 /* Not for us */ 17878 break; 17879 } 17880 ire_refrele(dst_ire); 17881 /* FALLTHRU */ 17882 case IPOPT_TS_TSANDADDR: 17883 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17884 break; 17885 default: 17886 /* 17887 * ip_*put_options should have already 17888 * dropped this packet. 17889 */ 17890 cmn_err(CE_PANIC, "ip_rput_local_options: " 17891 "unknown IT - bug in ip_rput_options?\n"); 17892 return (B_TRUE); /* Keep "lint" happy */ 17893 } 17894 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17895 /* Increase overflow counter */ 17896 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17897 opt[IPOPT_POS_OV_FLG] = 17898 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17899 (off << 4)); 17900 break; 17901 } 17902 off = opt[IPOPT_OFFSET] - 1; 17903 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17904 case IPOPT_TS_PRESPEC: 17905 case IPOPT_TS_PRESPEC_RFC791: 17906 case IPOPT_TS_TSANDADDR: 17907 bcopy(&ire->ire_src_addr, (char *)opt + off, 17908 IP_ADDR_LEN); 17909 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17910 /* FALLTHRU */ 17911 case IPOPT_TS_TSONLY: 17912 off = opt[IPOPT_OFFSET] - 1; 17913 /* Compute # of milliseconds since midnight */ 17914 gethrestime(&now); 17915 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17916 now.tv_nsec / (NANOSEC / MILLISEC); 17917 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17918 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17919 break; 17920 } 17921 break; 17922 } 17923 } 17924 return (B_TRUE); 17925 17926 bad_src_route: 17927 q = WR(q); 17928 if (q->q_next != NULL) 17929 ill = q->q_ptr; 17930 else 17931 ill = NULL; 17932 17933 /* make sure we clear any indication of a hardware checksum */ 17934 DB_CKSUMFLAGS(mp) = 0; 17935 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17936 if (zoneid == ALL_ZONES) 17937 freemsg(mp); 17938 else 17939 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17940 return (B_FALSE); 17941 17942 } 17943 17944 /* 17945 * Process IP options in an inbound packet. If an option affects the 17946 * effective destination address, return the next hop address via dstp. 17947 * Returns -1 if something fails in which case an ICMP error has been sent 17948 * and mp freed. 17949 */ 17950 static int 17951 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17952 ip_stack_t *ipst) 17953 { 17954 ipoptp_t opts; 17955 uchar_t *opt; 17956 uint8_t optval; 17957 uint8_t optlen; 17958 ipaddr_t dst; 17959 intptr_t code = 0; 17960 ire_t *ire = NULL; 17961 zoneid_t zoneid; 17962 ill_t *ill; 17963 17964 ip2dbg(("ip_rput_options\n")); 17965 dst = ipha->ipha_dst; 17966 for (optval = ipoptp_first(&opts, ipha); 17967 optval != IPOPT_EOL; 17968 optval = ipoptp_next(&opts)) { 17969 opt = opts.ipoptp_cur; 17970 optlen = opts.ipoptp_len; 17971 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17972 optval, optlen)); 17973 /* 17974 * Note: we need to verify the checksum before we 17975 * modify anything thus this routine only extracts the next 17976 * hop dst from any source route. 17977 */ 17978 switch (optval) { 17979 uint32_t off; 17980 case IPOPT_SSRR: 17981 case IPOPT_LSRR: 17982 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17983 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17984 if (ire == NULL) { 17985 if (optval == IPOPT_SSRR) { 17986 ip1dbg(("ip_rput_options: not next" 17987 " strict source route 0x%x\n", 17988 ntohl(dst))); 17989 code = (char *)&ipha->ipha_dst - 17990 (char *)ipha; 17991 goto param_prob; /* RouterReq's */ 17992 } 17993 ip2dbg(("ip_rput_options: " 17994 "not next source route 0x%x\n", 17995 ntohl(dst))); 17996 break; 17997 } 17998 ire_refrele(ire); 17999 18000 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18001 ip1dbg(( 18002 "ip_rput_options: bad option offset\n")); 18003 code = (char *)&opt[IPOPT_OLEN] - 18004 (char *)ipha; 18005 goto param_prob; 18006 } 18007 off = opt[IPOPT_OFFSET]; 18008 off--; 18009 redo_srr: 18010 if (optlen < IP_ADDR_LEN || 18011 off > optlen - IP_ADDR_LEN) { 18012 /* End of source route */ 18013 ip1dbg(("ip_rput_options: end of SR\n")); 18014 break; 18015 } 18016 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18017 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18018 ntohl(dst))); 18019 18020 /* 18021 * Check if our address is present more than 18022 * once as consecutive hops in source route. 18023 * XXX verify per-interface ip_forwarding 18024 * for source route? 18025 */ 18026 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18027 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18028 18029 if (ire != NULL) { 18030 ire_refrele(ire); 18031 off += IP_ADDR_LEN; 18032 goto redo_srr; 18033 } 18034 18035 if (dst == htonl(INADDR_LOOPBACK)) { 18036 ip1dbg(("ip_rput_options: loopback addr in " 18037 "source route!\n")); 18038 goto bad_src_route; 18039 } 18040 /* 18041 * For strict: verify that dst is directly 18042 * reachable. 18043 */ 18044 if (optval == IPOPT_SSRR) { 18045 ire = ire_ftable_lookup(dst, 0, 0, 18046 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18047 MBLK_GETLABEL(mp), 18048 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18049 if (ire == NULL) { 18050 ip1dbg(("ip_rput_options: SSRR not " 18051 "directly reachable: 0x%x\n", 18052 ntohl(dst))); 18053 goto bad_src_route; 18054 } 18055 ire_refrele(ire); 18056 } 18057 /* 18058 * Defer update of the offset and the record route 18059 * until the packet is forwarded. 18060 */ 18061 break; 18062 case IPOPT_RR: 18063 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18064 ip1dbg(( 18065 "ip_rput_options: bad option offset\n")); 18066 code = (char *)&opt[IPOPT_OLEN] - 18067 (char *)ipha; 18068 goto param_prob; 18069 } 18070 break; 18071 case IPOPT_TS: 18072 /* 18073 * Verify that length >= 5 and that there is either 18074 * room for another timestamp or that the overflow 18075 * counter is not maxed out. 18076 */ 18077 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18078 if (optlen < IPOPT_MINLEN_IT) { 18079 goto param_prob; 18080 } 18081 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18082 ip1dbg(( 18083 "ip_rput_options: bad option offset\n")); 18084 code = (char *)&opt[IPOPT_OFFSET] - 18085 (char *)ipha; 18086 goto param_prob; 18087 } 18088 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18089 case IPOPT_TS_TSONLY: 18090 off = IPOPT_TS_TIMELEN; 18091 break; 18092 case IPOPT_TS_TSANDADDR: 18093 case IPOPT_TS_PRESPEC: 18094 case IPOPT_TS_PRESPEC_RFC791: 18095 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18096 break; 18097 default: 18098 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18099 (char *)ipha; 18100 goto param_prob; 18101 } 18102 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18103 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18104 /* 18105 * No room and the overflow counter is 15 18106 * already. 18107 */ 18108 goto param_prob; 18109 } 18110 break; 18111 } 18112 } 18113 18114 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18115 *dstp = dst; 18116 return (0); 18117 } 18118 18119 ip1dbg(("ip_rput_options: error processing IP options.")); 18120 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18121 18122 param_prob: 18123 q = WR(q); 18124 if (q->q_next != NULL) 18125 ill = q->q_ptr; 18126 else 18127 ill = NULL; 18128 18129 /* make sure we clear any indication of a hardware checksum */ 18130 DB_CKSUMFLAGS(mp) = 0; 18131 /* Don't know whether this is for non-global or global/forwarding */ 18132 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18133 if (zoneid == ALL_ZONES) 18134 freemsg(mp); 18135 else 18136 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18137 return (-1); 18138 18139 bad_src_route: 18140 q = WR(q); 18141 if (q->q_next != NULL) 18142 ill = q->q_ptr; 18143 else 18144 ill = NULL; 18145 18146 /* make sure we clear any indication of a hardware checksum */ 18147 DB_CKSUMFLAGS(mp) = 0; 18148 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18149 if (zoneid == ALL_ZONES) 18150 freemsg(mp); 18151 else 18152 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18153 return (-1); 18154 } 18155 18156 /* 18157 * IP & ICMP info in >=14 msg's ... 18158 * - ip fixed part (mib2_ip_t) 18159 * - icmp fixed part (mib2_icmp_t) 18160 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18161 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18162 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18163 * - ipRouteAttributeTable (ip 102) labeled routes 18164 * - ip multicast membership (ip_member_t) 18165 * - ip multicast source filtering (ip_grpsrc_t) 18166 * - igmp fixed part (struct igmpstat) 18167 * - multicast routing stats (struct mrtstat) 18168 * - multicast routing vifs (array of struct vifctl) 18169 * - multicast routing routes (array of struct mfcctl) 18170 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18171 * One per ill plus one generic 18172 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18173 * One per ill plus one generic 18174 * - ipv6RouteEntry all IPv6 IREs 18175 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18176 * - ipv6NetToMediaEntry all Neighbor Cache entries 18177 * - ipv6AddrEntry all IPv6 ipifs 18178 * - ipv6 multicast membership (ipv6_member_t) 18179 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18180 * 18181 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18182 * 18183 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18184 * already filled in by the caller. 18185 * Return value of 0 indicates that no messages were sent and caller 18186 * should free mpctl. 18187 */ 18188 int 18189 ip_snmp_get(queue_t *q, mblk_t *mpctl) 18190 { 18191 ip_stack_t *ipst; 18192 sctp_stack_t *sctps; 18193 18194 18195 if (q->q_next != NULL) { 18196 ipst = ILLQ_TO_IPST(q); 18197 } else { 18198 ipst = CONNQ_TO_IPST(q); 18199 } 18200 ASSERT(ipst != NULL); 18201 sctps = ipst->ips_netstack->netstack_sctp; 18202 18203 if (mpctl == NULL || mpctl->b_cont == NULL) { 18204 return (0); 18205 } 18206 18207 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18208 ipst)) == NULL) { 18209 return (1); 18210 } 18211 18212 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18213 return (1); 18214 } 18215 18216 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18217 return (1); 18218 } 18219 18220 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18221 return (1); 18222 } 18223 18224 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18225 return (1); 18226 } 18227 18228 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18229 return (1); 18230 } 18231 18232 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18233 return (1); 18234 } 18235 18236 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18237 return (1); 18238 } 18239 18240 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18241 return (1); 18242 } 18243 18244 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18245 return (1); 18246 } 18247 18248 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18249 return (1); 18250 } 18251 18252 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18253 return (1); 18254 } 18255 18256 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18257 return (1); 18258 } 18259 18260 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18261 return (1); 18262 } 18263 18264 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18265 return (1); 18266 } 18267 18268 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18269 if (mpctl == NULL) { 18270 return (1); 18271 } 18272 18273 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18274 return (1); 18275 } 18276 freemsg(mpctl); 18277 return (1); 18278 } 18279 18280 18281 /* Get global (legacy) IPv4 statistics */ 18282 static mblk_t * 18283 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18284 ip_stack_t *ipst) 18285 { 18286 mib2_ip_t old_ip_mib; 18287 struct opthdr *optp; 18288 mblk_t *mp2ctl; 18289 18290 /* 18291 * make a copy of the original message 18292 */ 18293 mp2ctl = copymsg(mpctl); 18294 18295 /* fixed length IP structure... */ 18296 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18297 optp->level = MIB2_IP; 18298 optp->name = 0; 18299 SET_MIB(old_ip_mib.ipForwarding, 18300 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18301 SET_MIB(old_ip_mib.ipDefaultTTL, 18302 (uint32_t)ipst->ips_ip_def_ttl); 18303 SET_MIB(old_ip_mib.ipReasmTimeout, 18304 ipst->ips_ip_g_frag_timeout); 18305 SET_MIB(old_ip_mib.ipAddrEntrySize, 18306 sizeof (mib2_ipAddrEntry_t)); 18307 SET_MIB(old_ip_mib.ipRouteEntrySize, 18308 sizeof (mib2_ipRouteEntry_t)); 18309 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18310 sizeof (mib2_ipNetToMediaEntry_t)); 18311 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18312 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18313 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18314 sizeof (mib2_ipAttributeEntry_t)); 18315 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18316 18317 /* 18318 * Grab the statistics from the new IP MIB 18319 */ 18320 SET_MIB(old_ip_mib.ipInReceives, 18321 (uint32_t)ipmib->ipIfStatsHCInReceives); 18322 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18323 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18324 SET_MIB(old_ip_mib.ipForwDatagrams, 18325 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18326 SET_MIB(old_ip_mib.ipInUnknownProtos, 18327 ipmib->ipIfStatsInUnknownProtos); 18328 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18329 SET_MIB(old_ip_mib.ipInDelivers, 18330 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18331 SET_MIB(old_ip_mib.ipOutRequests, 18332 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18333 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18334 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18335 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18336 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18337 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18338 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18339 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18340 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18341 18342 /* ipRoutingDiscards is not being used */ 18343 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18344 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18345 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18346 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18347 SET_MIB(old_ip_mib.ipReasmDuplicates, 18348 ipmib->ipIfStatsReasmDuplicates); 18349 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18350 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18351 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18352 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18353 SET_MIB(old_ip_mib.rawipInOverflows, 18354 ipmib->rawipIfStatsInOverflows); 18355 18356 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18357 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18358 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18359 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18360 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18361 ipmib->ipIfStatsOutSwitchIPVersion); 18362 18363 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18364 (int)sizeof (old_ip_mib))) { 18365 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18366 (uint_t)sizeof (old_ip_mib))); 18367 } 18368 18369 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18370 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18371 (int)optp->level, (int)optp->name, (int)optp->len)); 18372 qreply(q, mpctl); 18373 return (mp2ctl); 18374 } 18375 18376 /* Per interface IPv4 statistics */ 18377 static mblk_t * 18378 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18379 { 18380 struct opthdr *optp; 18381 mblk_t *mp2ctl; 18382 ill_t *ill; 18383 ill_walk_context_t ctx; 18384 mblk_t *mp_tail = NULL; 18385 mib2_ipIfStatsEntry_t global_ip_mib; 18386 18387 /* 18388 * Make a copy of the original message 18389 */ 18390 mp2ctl = copymsg(mpctl); 18391 18392 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18393 optp->level = MIB2_IP; 18394 optp->name = MIB2_IP_TRAFFIC_STATS; 18395 /* Include "unknown interface" ip_mib */ 18396 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18397 ipst->ips_ip_mib.ipIfStatsIfIndex = 18398 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18399 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18400 (ipst->ips_ip_g_forward ? 1 : 2)); 18401 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18402 (uint32_t)ipst->ips_ip_def_ttl); 18403 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18404 sizeof (mib2_ipIfStatsEntry_t)); 18405 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18406 sizeof (mib2_ipAddrEntry_t)); 18407 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18408 sizeof (mib2_ipRouteEntry_t)); 18409 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18410 sizeof (mib2_ipNetToMediaEntry_t)); 18411 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18412 sizeof (ip_member_t)); 18413 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18414 sizeof (ip_grpsrc_t)); 18415 18416 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18417 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18418 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18419 "failed to allocate %u bytes\n", 18420 (uint_t)sizeof (ipst->ips_ip_mib))); 18421 } 18422 18423 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18424 18425 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18426 ill = ILL_START_WALK_V4(&ctx, ipst); 18427 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18428 ill->ill_ip_mib->ipIfStatsIfIndex = 18429 ill->ill_phyint->phyint_ifindex; 18430 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18431 (ipst->ips_ip_g_forward ? 1 : 2)); 18432 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18433 (uint32_t)ipst->ips_ip_def_ttl); 18434 18435 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18436 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18437 (char *)ill->ill_ip_mib, 18438 (int)sizeof (*ill->ill_ip_mib))) { 18439 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18440 "failed to allocate %u bytes\n", 18441 (uint_t)sizeof (*ill->ill_ip_mib))); 18442 } 18443 } 18444 rw_exit(&ipst->ips_ill_g_lock); 18445 18446 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18447 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18448 "level %d, name %d, len %d\n", 18449 (int)optp->level, (int)optp->name, (int)optp->len)); 18450 qreply(q, mpctl); 18451 18452 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18453 } 18454 18455 /* Global IPv4 ICMP statistics */ 18456 static mblk_t * 18457 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18458 { 18459 struct opthdr *optp; 18460 mblk_t *mp2ctl; 18461 18462 /* 18463 * Make a copy of the original message 18464 */ 18465 mp2ctl = copymsg(mpctl); 18466 18467 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18468 optp->level = MIB2_ICMP; 18469 optp->name = 0; 18470 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18471 (int)sizeof (ipst->ips_icmp_mib))) { 18472 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18473 (uint_t)sizeof (ipst->ips_icmp_mib))); 18474 } 18475 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18476 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18477 (int)optp->level, (int)optp->name, (int)optp->len)); 18478 qreply(q, mpctl); 18479 return (mp2ctl); 18480 } 18481 18482 /* Global IPv4 IGMP statistics */ 18483 static mblk_t * 18484 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18485 { 18486 struct opthdr *optp; 18487 mblk_t *mp2ctl; 18488 18489 /* 18490 * make a copy of the original message 18491 */ 18492 mp2ctl = copymsg(mpctl); 18493 18494 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18495 optp->level = EXPER_IGMP; 18496 optp->name = 0; 18497 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18498 (int)sizeof (ipst->ips_igmpstat))) { 18499 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18500 (uint_t)sizeof (ipst->ips_igmpstat))); 18501 } 18502 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18503 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18504 (int)optp->level, (int)optp->name, (int)optp->len)); 18505 qreply(q, mpctl); 18506 return (mp2ctl); 18507 } 18508 18509 /* Global IPv4 Multicast Routing statistics */ 18510 static mblk_t * 18511 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18512 { 18513 struct opthdr *optp; 18514 mblk_t *mp2ctl; 18515 18516 /* 18517 * make a copy of the original message 18518 */ 18519 mp2ctl = copymsg(mpctl); 18520 18521 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18522 optp->level = EXPER_DVMRP; 18523 optp->name = 0; 18524 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18525 ip0dbg(("ip_mroute_stats: failed\n")); 18526 } 18527 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18528 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18529 (int)optp->level, (int)optp->name, (int)optp->len)); 18530 qreply(q, mpctl); 18531 return (mp2ctl); 18532 } 18533 18534 /* IPv4 address information */ 18535 static mblk_t * 18536 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18537 { 18538 struct opthdr *optp; 18539 mblk_t *mp2ctl; 18540 mblk_t *mp_tail = NULL; 18541 ill_t *ill; 18542 ipif_t *ipif; 18543 uint_t bitval; 18544 mib2_ipAddrEntry_t mae; 18545 zoneid_t zoneid; 18546 ill_walk_context_t ctx; 18547 18548 /* 18549 * make a copy of the original message 18550 */ 18551 mp2ctl = copymsg(mpctl); 18552 18553 /* ipAddrEntryTable */ 18554 18555 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18556 optp->level = MIB2_IP; 18557 optp->name = MIB2_IP_ADDR; 18558 zoneid = Q_TO_CONN(q)->conn_zoneid; 18559 18560 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18561 ill = ILL_START_WALK_V4(&ctx, ipst); 18562 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18563 for (ipif = ill->ill_ipif; ipif != NULL; 18564 ipif = ipif->ipif_next) { 18565 if (ipif->ipif_zoneid != zoneid && 18566 ipif->ipif_zoneid != ALL_ZONES) 18567 continue; 18568 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18569 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18570 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18571 18572 (void) ipif_get_name(ipif, 18573 mae.ipAdEntIfIndex.o_bytes, 18574 OCTET_LENGTH); 18575 mae.ipAdEntIfIndex.o_length = 18576 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18577 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18578 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18579 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18580 mae.ipAdEntInfo.ae_subnet_len = 18581 ip_mask_to_plen(ipif->ipif_net_mask); 18582 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18583 for (bitval = 1; 18584 bitval && 18585 !(bitval & ipif->ipif_brd_addr); 18586 bitval <<= 1) 18587 noop; 18588 mae.ipAdEntBcastAddr = bitval; 18589 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18590 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18591 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18592 mae.ipAdEntInfo.ae_broadcast_addr = 18593 ipif->ipif_brd_addr; 18594 mae.ipAdEntInfo.ae_pp_dst_addr = 18595 ipif->ipif_pp_dst_addr; 18596 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18597 ill->ill_flags | ill->ill_phyint->phyint_flags; 18598 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18599 18600 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18601 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18602 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18603 "allocate %u bytes\n", 18604 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18605 } 18606 } 18607 } 18608 rw_exit(&ipst->ips_ill_g_lock); 18609 18610 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18611 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18612 (int)optp->level, (int)optp->name, (int)optp->len)); 18613 qreply(q, mpctl); 18614 return (mp2ctl); 18615 } 18616 18617 /* IPv6 address information */ 18618 static mblk_t * 18619 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18620 { 18621 struct opthdr *optp; 18622 mblk_t *mp2ctl; 18623 mblk_t *mp_tail = NULL; 18624 ill_t *ill; 18625 ipif_t *ipif; 18626 mib2_ipv6AddrEntry_t mae6; 18627 zoneid_t zoneid; 18628 ill_walk_context_t ctx; 18629 18630 /* 18631 * make a copy of the original message 18632 */ 18633 mp2ctl = copymsg(mpctl); 18634 18635 /* ipv6AddrEntryTable */ 18636 18637 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18638 optp->level = MIB2_IP6; 18639 optp->name = MIB2_IP6_ADDR; 18640 zoneid = Q_TO_CONN(q)->conn_zoneid; 18641 18642 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18643 ill = ILL_START_WALK_V6(&ctx, ipst); 18644 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18645 for (ipif = ill->ill_ipif; ipif != NULL; 18646 ipif = ipif->ipif_next) { 18647 if (ipif->ipif_zoneid != zoneid && 18648 ipif->ipif_zoneid != ALL_ZONES) 18649 continue; 18650 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18651 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18652 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18653 18654 (void) ipif_get_name(ipif, 18655 mae6.ipv6AddrIfIndex.o_bytes, 18656 OCTET_LENGTH); 18657 mae6.ipv6AddrIfIndex.o_length = 18658 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18659 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18660 mae6.ipv6AddrPfxLength = 18661 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18662 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18663 mae6.ipv6AddrInfo.ae_subnet_len = 18664 mae6.ipv6AddrPfxLength; 18665 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18666 18667 /* Type: stateless(1), stateful(2), unknown(3) */ 18668 if (ipif->ipif_flags & IPIF_ADDRCONF) 18669 mae6.ipv6AddrType = 1; 18670 else 18671 mae6.ipv6AddrType = 2; 18672 /* Anycast: true(1), false(2) */ 18673 if (ipif->ipif_flags & IPIF_ANYCAST) 18674 mae6.ipv6AddrAnycastFlag = 1; 18675 else 18676 mae6.ipv6AddrAnycastFlag = 2; 18677 18678 /* 18679 * Address status: preferred(1), deprecated(2), 18680 * invalid(3), inaccessible(4), unknown(5) 18681 */ 18682 if (ipif->ipif_flags & IPIF_NOLOCAL) 18683 mae6.ipv6AddrStatus = 3; 18684 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18685 mae6.ipv6AddrStatus = 2; 18686 else 18687 mae6.ipv6AddrStatus = 1; 18688 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18689 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18690 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18691 ipif->ipif_v6pp_dst_addr; 18692 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18693 ill->ill_flags | ill->ill_phyint->phyint_flags; 18694 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18695 mae6.ipv6AddrIdentifier = ill->ill_token; 18696 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18697 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18698 mae6.ipv6AddrRetransmitTime = 18699 ill->ill_reachable_retrans_time; 18700 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18701 (char *)&mae6, 18702 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18703 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18704 "allocate %u bytes\n", 18705 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18706 } 18707 } 18708 } 18709 rw_exit(&ipst->ips_ill_g_lock); 18710 18711 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18712 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18713 (int)optp->level, (int)optp->name, (int)optp->len)); 18714 qreply(q, mpctl); 18715 return (mp2ctl); 18716 } 18717 18718 /* IPv4 multicast group membership. */ 18719 static mblk_t * 18720 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18721 { 18722 struct opthdr *optp; 18723 mblk_t *mp2ctl; 18724 ill_t *ill; 18725 ipif_t *ipif; 18726 ilm_t *ilm; 18727 ip_member_t ipm; 18728 mblk_t *mp_tail = NULL; 18729 ill_walk_context_t ctx; 18730 zoneid_t zoneid; 18731 18732 /* 18733 * make a copy of the original message 18734 */ 18735 mp2ctl = copymsg(mpctl); 18736 zoneid = Q_TO_CONN(q)->conn_zoneid; 18737 18738 /* ipGroupMember table */ 18739 optp = (struct opthdr *)&mpctl->b_rptr[ 18740 sizeof (struct T_optmgmt_ack)]; 18741 optp->level = MIB2_IP; 18742 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18743 18744 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18745 ill = ILL_START_WALK_V4(&ctx, ipst); 18746 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18747 ILM_WALKER_HOLD(ill); 18748 for (ipif = ill->ill_ipif; ipif != NULL; 18749 ipif = ipif->ipif_next) { 18750 if (ipif->ipif_zoneid != zoneid && 18751 ipif->ipif_zoneid != ALL_ZONES) 18752 continue; /* not this zone */ 18753 (void) ipif_get_name(ipif, 18754 ipm.ipGroupMemberIfIndex.o_bytes, 18755 OCTET_LENGTH); 18756 ipm.ipGroupMemberIfIndex.o_length = 18757 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18758 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18759 ASSERT(ilm->ilm_ipif != NULL); 18760 ASSERT(ilm->ilm_ill == NULL); 18761 if (ilm->ilm_ipif != ipif) 18762 continue; 18763 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18764 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18765 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18766 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18767 (char *)&ipm, (int)sizeof (ipm))) { 18768 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18769 "failed to allocate %u bytes\n", 18770 (uint_t)sizeof (ipm))); 18771 } 18772 } 18773 } 18774 ILM_WALKER_RELE(ill); 18775 } 18776 rw_exit(&ipst->ips_ill_g_lock); 18777 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18778 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18779 (int)optp->level, (int)optp->name, (int)optp->len)); 18780 qreply(q, mpctl); 18781 return (mp2ctl); 18782 } 18783 18784 /* IPv6 multicast group membership. */ 18785 static mblk_t * 18786 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18787 { 18788 struct opthdr *optp; 18789 mblk_t *mp2ctl; 18790 ill_t *ill; 18791 ilm_t *ilm; 18792 ipv6_member_t ipm6; 18793 mblk_t *mp_tail = NULL; 18794 ill_walk_context_t ctx; 18795 zoneid_t zoneid; 18796 18797 /* 18798 * make a copy of the original message 18799 */ 18800 mp2ctl = copymsg(mpctl); 18801 zoneid = Q_TO_CONN(q)->conn_zoneid; 18802 18803 /* ip6GroupMember table */ 18804 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18805 optp->level = MIB2_IP6; 18806 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18807 18808 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18809 ill = ILL_START_WALK_V6(&ctx, ipst); 18810 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18811 ILM_WALKER_HOLD(ill); 18812 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18813 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18814 ASSERT(ilm->ilm_ipif == NULL); 18815 ASSERT(ilm->ilm_ill != NULL); 18816 if (ilm->ilm_zoneid != zoneid) 18817 continue; /* not this zone */ 18818 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18819 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18820 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18821 if (!snmp_append_data2(mpctl->b_cont, 18822 &mp_tail, 18823 (char *)&ipm6, (int)sizeof (ipm6))) { 18824 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18825 "failed to allocate %u bytes\n", 18826 (uint_t)sizeof (ipm6))); 18827 } 18828 } 18829 ILM_WALKER_RELE(ill); 18830 } 18831 rw_exit(&ipst->ips_ill_g_lock); 18832 18833 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18834 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18835 (int)optp->level, (int)optp->name, (int)optp->len)); 18836 qreply(q, mpctl); 18837 return (mp2ctl); 18838 } 18839 18840 /* IP multicast filtered sources */ 18841 static mblk_t * 18842 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18843 { 18844 struct opthdr *optp; 18845 mblk_t *mp2ctl; 18846 ill_t *ill; 18847 ipif_t *ipif; 18848 ilm_t *ilm; 18849 ip_grpsrc_t ips; 18850 mblk_t *mp_tail = NULL; 18851 ill_walk_context_t ctx; 18852 zoneid_t zoneid; 18853 int i; 18854 slist_t *sl; 18855 18856 /* 18857 * make a copy of the original message 18858 */ 18859 mp2ctl = copymsg(mpctl); 18860 zoneid = Q_TO_CONN(q)->conn_zoneid; 18861 18862 /* ipGroupSource table */ 18863 optp = (struct opthdr *)&mpctl->b_rptr[ 18864 sizeof (struct T_optmgmt_ack)]; 18865 optp->level = MIB2_IP; 18866 optp->name = EXPER_IP_GROUP_SOURCES; 18867 18868 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18869 ill = ILL_START_WALK_V4(&ctx, ipst); 18870 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18871 ILM_WALKER_HOLD(ill); 18872 for (ipif = ill->ill_ipif; ipif != NULL; 18873 ipif = ipif->ipif_next) { 18874 if (ipif->ipif_zoneid != zoneid) 18875 continue; /* not this zone */ 18876 (void) ipif_get_name(ipif, 18877 ips.ipGroupSourceIfIndex.o_bytes, 18878 OCTET_LENGTH); 18879 ips.ipGroupSourceIfIndex.o_length = 18880 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18881 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18882 ASSERT(ilm->ilm_ipif != NULL); 18883 ASSERT(ilm->ilm_ill == NULL); 18884 sl = ilm->ilm_filter; 18885 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18886 continue; 18887 ips.ipGroupSourceGroup = ilm->ilm_addr; 18888 for (i = 0; i < sl->sl_numsrc; i++) { 18889 if (!IN6_IS_ADDR_V4MAPPED( 18890 &sl->sl_addr[i])) 18891 continue; 18892 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18893 ips.ipGroupSourceAddress); 18894 if (snmp_append_data2(mpctl->b_cont, 18895 &mp_tail, (char *)&ips, 18896 (int)sizeof (ips)) == 0) { 18897 ip1dbg(("ip_snmp_get_mib2_" 18898 "ip_group_src: failed to " 18899 "allocate %u bytes\n", 18900 (uint_t)sizeof (ips))); 18901 } 18902 } 18903 } 18904 } 18905 ILM_WALKER_RELE(ill); 18906 } 18907 rw_exit(&ipst->ips_ill_g_lock); 18908 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18909 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18910 (int)optp->level, (int)optp->name, (int)optp->len)); 18911 qreply(q, mpctl); 18912 return (mp2ctl); 18913 } 18914 18915 /* IPv6 multicast filtered sources. */ 18916 static mblk_t * 18917 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18918 { 18919 struct opthdr *optp; 18920 mblk_t *mp2ctl; 18921 ill_t *ill; 18922 ilm_t *ilm; 18923 ipv6_grpsrc_t ips6; 18924 mblk_t *mp_tail = NULL; 18925 ill_walk_context_t ctx; 18926 zoneid_t zoneid; 18927 int i; 18928 slist_t *sl; 18929 18930 /* 18931 * make a copy of the original message 18932 */ 18933 mp2ctl = copymsg(mpctl); 18934 zoneid = Q_TO_CONN(q)->conn_zoneid; 18935 18936 /* ip6GroupMember table */ 18937 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18938 optp->level = MIB2_IP6; 18939 optp->name = EXPER_IP6_GROUP_SOURCES; 18940 18941 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18942 ill = ILL_START_WALK_V6(&ctx, ipst); 18943 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18944 ILM_WALKER_HOLD(ill); 18945 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18946 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18947 ASSERT(ilm->ilm_ipif == NULL); 18948 ASSERT(ilm->ilm_ill != NULL); 18949 sl = ilm->ilm_filter; 18950 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18951 continue; 18952 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18953 for (i = 0; i < sl->sl_numsrc; i++) { 18954 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18955 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18956 (char *)&ips6, (int)sizeof (ips6))) { 18957 ip1dbg(("ip_snmp_get_mib2_ip6_" 18958 "group_src: failed to allocate " 18959 "%u bytes\n", 18960 (uint_t)sizeof (ips6))); 18961 } 18962 } 18963 } 18964 ILM_WALKER_RELE(ill); 18965 } 18966 rw_exit(&ipst->ips_ill_g_lock); 18967 18968 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18969 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18970 (int)optp->level, (int)optp->name, (int)optp->len)); 18971 qreply(q, mpctl); 18972 return (mp2ctl); 18973 } 18974 18975 /* Multicast routing virtual interface table. */ 18976 static mblk_t * 18977 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18978 { 18979 struct opthdr *optp; 18980 mblk_t *mp2ctl; 18981 18982 /* 18983 * make a copy of the original message 18984 */ 18985 mp2ctl = copymsg(mpctl); 18986 18987 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18988 optp->level = EXPER_DVMRP; 18989 optp->name = EXPER_DVMRP_VIF; 18990 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18991 ip0dbg(("ip_mroute_vif: failed\n")); 18992 } 18993 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18994 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18995 (int)optp->level, (int)optp->name, (int)optp->len)); 18996 qreply(q, mpctl); 18997 return (mp2ctl); 18998 } 18999 19000 /* Multicast routing table. */ 19001 static mblk_t * 19002 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19003 { 19004 struct opthdr *optp; 19005 mblk_t *mp2ctl; 19006 19007 /* 19008 * make a copy of the original message 19009 */ 19010 mp2ctl = copymsg(mpctl); 19011 19012 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19013 optp->level = EXPER_DVMRP; 19014 optp->name = EXPER_DVMRP_MRT; 19015 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19016 ip0dbg(("ip_mroute_mrt: failed\n")); 19017 } 19018 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19019 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19020 (int)optp->level, (int)optp->name, (int)optp->len)); 19021 qreply(q, mpctl); 19022 return (mp2ctl); 19023 } 19024 19025 /* 19026 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19027 * in one IRE walk. 19028 */ 19029 static mblk_t * 19030 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19031 { 19032 struct opthdr *optp; 19033 mblk_t *mp2ctl; /* Returned */ 19034 mblk_t *mp3ctl; /* nettomedia */ 19035 mblk_t *mp4ctl; /* routeattrs */ 19036 iproutedata_t ird; 19037 zoneid_t zoneid; 19038 19039 /* 19040 * make copies of the original message 19041 * - mp2ctl is returned unchanged to the caller for his use 19042 * - mpctl is sent upstream as ipRouteEntryTable 19043 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19044 * - mp4ctl is sent upstream as ipRouteAttributeTable 19045 */ 19046 mp2ctl = copymsg(mpctl); 19047 mp3ctl = copymsg(mpctl); 19048 mp4ctl = copymsg(mpctl); 19049 if (mp3ctl == NULL || mp4ctl == NULL) { 19050 freemsg(mp4ctl); 19051 freemsg(mp3ctl); 19052 freemsg(mp2ctl); 19053 freemsg(mpctl); 19054 return (NULL); 19055 } 19056 19057 bzero(&ird, sizeof (ird)); 19058 19059 ird.ird_route.lp_head = mpctl->b_cont; 19060 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19061 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19062 19063 zoneid = Q_TO_CONN(q)->conn_zoneid; 19064 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19065 if (zoneid == GLOBAL_ZONEID) { 19066 /* 19067 * Those IREs are used by Mobile-IP; since mipagent(1M) 19068 * requires the sys_net_config or sys_ip_config privilege, 19069 * it can only run in the global zone or an exclusive-IP zone, 19070 * and both those have a conn_zoneid == GLOBAL_ZONEID. 19071 */ 19072 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird, ipst); 19073 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL, ipst); 19074 } 19075 19076 /* ipRouteEntryTable in mpctl */ 19077 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19078 optp->level = MIB2_IP; 19079 optp->name = MIB2_IP_ROUTE; 19080 optp->len = msgdsize(ird.ird_route.lp_head); 19081 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19082 (int)optp->level, (int)optp->name, (int)optp->len)); 19083 qreply(q, mpctl); 19084 19085 /* ipNetToMediaEntryTable in mp3ctl */ 19086 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19087 optp->level = MIB2_IP; 19088 optp->name = MIB2_IP_MEDIA; 19089 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19090 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19091 (int)optp->level, (int)optp->name, (int)optp->len)); 19092 qreply(q, mp3ctl); 19093 19094 /* ipRouteAttributeTable in mp4ctl */ 19095 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19096 optp->level = MIB2_IP; 19097 optp->name = EXPER_IP_RTATTR; 19098 optp->len = msgdsize(ird.ird_attrs.lp_head); 19099 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19100 (int)optp->level, (int)optp->name, (int)optp->len)); 19101 if (optp->len == 0) 19102 freemsg(mp4ctl); 19103 else 19104 qreply(q, mp4ctl); 19105 19106 return (mp2ctl); 19107 } 19108 19109 /* 19110 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19111 * ipv6NetToMediaEntryTable in an NDP walk. 19112 */ 19113 static mblk_t * 19114 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19115 { 19116 struct opthdr *optp; 19117 mblk_t *mp2ctl; /* Returned */ 19118 mblk_t *mp3ctl; /* nettomedia */ 19119 mblk_t *mp4ctl; /* routeattrs */ 19120 iproutedata_t ird; 19121 zoneid_t zoneid; 19122 19123 /* 19124 * make copies of the original message 19125 * - mp2ctl is returned unchanged to the caller for his use 19126 * - mpctl is sent upstream as ipv6RouteEntryTable 19127 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19128 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19129 */ 19130 mp2ctl = copymsg(mpctl); 19131 mp3ctl = copymsg(mpctl); 19132 mp4ctl = copymsg(mpctl); 19133 if (mp3ctl == NULL || mp4ctl == NULL) { 19134 freemsg(mp4ctl); 19135 freemsg(mp3ctl); 19136 freemsg(mp2ctl); 19137 freemsg(mpctl); 19138 return (NULL); 19139 } 19140 19141 bzero(&ird, sizeof (ird)); 19142 19143 ird.ird_route.lp_head = mpctl->b_cont; 19144 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19145 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19146 19147 zoneid = Q_TO_CONN(q)->conn_zoneid; 19148 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19149 19150 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19151 optp->level = MIB2_IP6; 19152 optp->name = MIB2_IP6_ROUTE; 19153 optp->len = msgdsize(ird.ird_route.lp_head); 19154 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19155 (int)optp->level, (int)optp->name, (int)optp->len)); 19156 qreply(q, mpctl); 19157 19158 /* ipv6NetToMediaEntryTable in mp3ctl */ 19159 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19160 19161 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19162 optp->level = MIB2_IP6; 19163 optp->name = MIB2_IP6_MEDIA; 19164 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19165 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19166 (int)optp->level, (int)optp->name, (int)optp->len)); 19167 qreply(q, mp3ctl); 19168 19169 /* ipv6RouteAttributeTable in mp4ctl */ 19170 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19171 optp->level = MIB2_IP6; 19172 optp->name = EXPER_IP_RTATTR; 19173 optp->len = msgdsize(ird.ird_attrs.lp_head); 19174 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19175 (int)optp->level, (int)optp->name, (int)optp->len)); 19176 if (optp->len == 0) 19177 freemsg(mp4ctl); 19178 else 19179 qreply(q, mp4ctl); 19180 19181 return (mp2ctl); 19182 } 19183 19184 /* 19185 * IPv6 mib: One per ill 19186 */ 19187 static mblk_t * 19188 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19189 { 19190 struct opthdr *optp; 19191 mblk_t *mp2ctl; 19192 ill_t *ill; 19193 ill_walk_context_t ctx; 19194 mblk_t *mp_tail = NULL; 19195 19196 /* 19197 * Make a copy of the original message 19198 */ 19199 mp2ctl = copymsg(mpctl); 19200 19201 /* fixed length IPv6 structure ... */ 19202 19203 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19204 optp->level = MIB2_IP6; 19205 optp->name = 0; 19206 /* Include "unknown interface" ip6_mib */ 19207 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19208 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19209 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19210 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19211 ipst->ips_ipv6_forward ? 1 : 2); 19212 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19213 ipst->ips_ipv6_def_hops); 19214 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19215 sizeof (mib2_ipIfStatsEntry_t)); 19216 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19217 sizeof (mib2_ipv6AddrEntry_t)); 19218 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19219 sizeof (mib2_ipv6RouteEntry_t)); 19220 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19221 sizeof (mib2_ipv6NetToMediaEntry_t)); 19222 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19223 sizeof (ipv6_member_t)); 19224 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19225 sizeof (ipv6_grpsrc_t)); 19226 19227 /* 19228 * Synchronize 64- and 32-bit counters 19229 */ 19230 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19231 ipIfStatsHCInReceives); 19232 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19233 ipIfStatsHCInDelivers); 19234 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19235 ipIfStatsHCOutRequests); 19236 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19237 ipIfStatsHCOutForwDatagrams); 19238 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19239 ipIfStatsHCOutMcastPkts); 19240 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19241 ipIfStatsHCInMcastPkts); 19242 19243 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19244 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19245 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19246 (uint_t)sizeof (ipst->ips_ip6_mib))); 19247 } 19248 19249 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19250 ill = ILL_START_WALK_V6(&ctx, ipst); 19251 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19252 ill->ill_ip_mib->ipIfStatsIfIndex = 19253 ill->ill_phyint->phyint_ifindex; 19254 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19255 ipst->ips_ipv6_forward ? 1 : 2); 19256 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19257 ill->ill_max_hops); 19258 19259 /* 19260 * Synchronize 64- and 32-bit counters 19261 */ 19262 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19263 ipIfStatsHCInReceives); 19264 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19265 ipIfStatsHCInDelivers); 19266 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19267 ipIfStatsHCOutRequests); 19268 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19269 ipIfStatsHCOutForwDatagrams); 19270 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19271 ipIfStatsHCOutMcastPkts); 19272 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19273 ipIfStatsHCInMcastPkts); 19274 19275 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19276 (char *)ill->ill_ip_mib, 19277 (int)sizeof (*ill->ill_ip_mib))) { 19278 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19279 "%u bytes\n", 19280 (uint_t)sizeof (*ill->ill_ip_mib))); 19281 } 19282 } 19283 rw_exit(&ipst->ips_ill_g_lock); 19284 19285 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19286 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19287 (int)optp->level, (int)optp->name, (int)optp->len)); 19288 qreply(q, mpctl); 19289 return (mp2ctl); 19290 } 19291 19292 /* 19293 * ICMPv6 mib: One per ill 19294 */ 19295 static mblk_t * 19296 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19297 { 19298 struct opthdr *optp; 19299 mblk_t *mp2ctl; 19300 ill_t *ill; 19301 ill_walk_context_t ctx; 19302 mblk_t *mp_tail = NULL; 19303 /* 19304 * Make a copy of the original message 19305 */ 19306 mp2ctl = copymsg(mpctl); 19307 19308 /* fixed length ICMPv6 structure ... */ 19309 19310 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19311 optp->level = MIB2_ICMP6; 19312 optp->name = 0; 19313 /* Include "unknown interface" icmp6_mib */ 19314 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19315 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19316 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19317 sizeof (mib2_ipv6IfIcmpEntry_t); 19318 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19319 (char *)&ipst->ips_icmp6_mib, 19320 (int)sizeof (ipst->ips_icmp6_mib))) { 19321 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19322 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19323 } 19324 19325 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19326 ill = ILL_START_WALK_V6(&ctx, ipst); 19327 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19328 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19329 ill->ill_phyint->phyint_ifindex; 19330 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19331 (char *)ill->ill_icmp6_mib, 19332 (int)sizeof (*ill->ill_icmp6_mib))) { 19333 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19334 "%u bytes\n", 19335 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19336 } 19337 } 19338 rw_exit(&ipst->ips_ill_g_lock); 19339 19340 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19341 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19342 (int)optp->level, (int)optp->name, (int)optp->len)); 19343 qreply(q, mpctl); 19344 return (mp2ctl); 19345 } 19346 19347 /* 19348 * ire_walk routine to create both ipRouteEntryTable and 19349 * ipRouteAttributeTable in one IRE walk 19350 */ 19351 static void 19352 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19353 { 19354 ill_t *ill; 19355 ipif_t *ipif; 19356 mib2_ipRouteEntry_t *re; 19357 mib2_ipAttributeEntry_t *iae, *iaeptr; 19358 ipaddr_t gw_addr; 19359 tsol_ire_gw_secattr_t *attrp; 19360 tsol_gc_t *gc = NULL; 19361 tsol_gcgrp_t *gcgrp = NULL; 19362 uint_t sacnt = 0; 19363 int i; 19364 19365 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19366 19367 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19368 return; 19369 19370 if ((attrp = ire->ire_gw_secattr) != NULL) { 19371 mutex_enter(&attrp->igsa_lock); 19372 if ((gc = attrp->igsa_gc) != NULL) { 19373 gcgrp = gc->gc_grp; 19374 ASSERT(gcgrp != NULL); 19375 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19376 sacnt = 1; 19377 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19378 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19379 gc = gcgrp->gcgrp_head; 19380 sacnt = gcgrp->gcgrp_count; 19381 } 19382 mutex_exit(&attrp->igsa_lock); 19383 19384 /* do nothing if there's no gc to report */ 19385 if (gc == NULL) { 19386 ASSERT(sacnt == 0); 19387 if (gcgrp != NULL) { 19388 /* we might as well drop the lock now */ 19389 rw_exit(&gcgrp->gcgrp_rwlock); 19390 gcgrp = NULL; 19391 } 19392 attrp = NULL; 19393 } 19394 19395 ASSERT(gc == NULL || (gcgrp != NULL && 19396 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19397 } 19398 ASSERT(sacnt == 0 || gc != NULL); 19399 19400 if (sacnt != 0 && 19401 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19402 kmem_free(re, sizeof (*re)); 19403 rw_exit(&gcgrp->gcgrp_rwlock); 19404 return; 19405 } 19406 19407 /* 19408 * Return all IRE types for route table... let caller pick and choose 19409 */ 19410 re->ipRouteDest = ire->ire_addr; 19411 ipif = ire->ire_ipif; 19412 re->ipRouteIfIndex.o_length = 0; 19413 if (ire->ire_type == IRE_CACHE) { 19414 ill = (ill_t *)ire->ire_stq->q_ptr; 19415 re->ipRouteIfIndex.o_length = 19416 ill->ill_name_length == 0 ? 0 : 19417 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19418 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19419 re->ipRouteIfIndex.o_length); 19420 } else if (ipif != NULL) { 19421 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 19422 OCTET_LENGTH); 19423 re->ipRouteIfIndex.o_length = 19424 mi_strlen(re->ipRouteIfIndex.o_bytes); 19425 } 19426 re->ipRouteMetric1 = -1; 19427 re->ipRouteMetric2 = -1; 19428 re->ipRouteMetric3 = -1; 19429 re->ipRouteMetric4 = -1; 19430 19431 gw_addr = ire->ire_gateway_addr; 19432 19433 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19434 re->ipRouteNextHop = ire->ire_src_addr; 19435 else 19436 re->ipRouteNextHop = gw_addr; 19437 /* indirect(4), direct(3), or invalid(2) */ 19438 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19439 re->ipRouteType = 2; 19440 else 19441 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19442 re->ipRouteProto = -1; 19443 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19444 re->ipRouteMask = ire->ire_mask; 19445 re->ipRouteMetric5 = -1; 19446 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19447 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19448 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19449 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19450 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19451 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19452 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19453 re->ipRouteInfo.re_flags = ire->ire_flags; 19454 re->ipRouteInfo.re_in_ill.o_length = 0; 19455 19456 if (ire->ire_flags & RTF_DYNAMIC) { 19457 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19458 } else { 19459 re->ipRouteInfo.re_ire_type = ire->ire_type; 19460 } 19461 19462 if (ire->ire_in_ill != NULL) { 19463 re->ipRouteInfo.re_in_ill.o_length = 19464 ire->ire_in_ill->ill_name_length == 0 ? 0 : 19465 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 19466 bcopy(ire->ire_in_ill->ill_name, 19467 re->ipRouteInfo.re_in_ill.o_bytes, 19468 re->ipRouteInfo.re_in_ill.o_length); 19469 } 19470 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 19471 19472 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19473 (char *)re, (int)sizeof (*re))) { 19474 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19475 (uint_t)sizeof (*re))); 19476 } 19477 19478 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19479 iaeptr->iae_routeidx = ird->ird_idx; 19480 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19481 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19482 } 19483 19484 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19485 (char *)iae, sacnt * sizeof (*iae))) { 19486 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19487 (unsigned)(sacnt * sizeof (*iae)))); 19488 } 19489 19490 /* bump route index for next pass */ 19491 ird->ird_idx++; 19492 19493 kmem_free(re, sizeof (*re)); 19494 if (sacnt != 0) 19495 kmem_free(iae, sacnt * sizeof (*iae)); 19496 19497 if (gcgrp != NULL) 19498 rw_exit(&gcgrp->gcgrp_rwlock); 19499 } 19500 19501 /* 19502 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19503 */ 19504 static void 19505 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19506 { 19507 ill_t *ill; 19508 ipif_t *ipif; 19509 mib2_ipv6RouteEntry_t *re; 19510 mib2_ipAttributeEntry_t *iae, *iaeptr; 19511 in6_addr_t gw_addr_v6; 19512 tsol_ire_gw_secattr_t *attrp; 19513 tsol_gc_t *gc = NULL; 19514 tsol_gcgrp_t *gcgrp = NULL; 19515 uint_t sacnt = 0; 19516 int i; 19517 19518 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19519 19520 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19521 return; 19522 19523 if ((attrp = ire->ire_gw_secattr) != NULL) { 19524 mutex_enter(&attrp->igsa_lock); 19525 if ((gc = attrp->igsa_gc) != NULL) { 19526 gcgrp = gc->gc_grp; 19527 ASSERT(gcgrp != NULL); 19528 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19529 sacnt = 1; 19530 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19531 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19532 gc = gcgrp->gcgrp_head; 19533 sacnt = gcgrp->gcgrp_count; 19534 } 19535 mutex_exit(&attrp->igsa_lock); 19536 19537 /* do nothing if there's no gc to report */ 19538 if (gc == NULL) { 19539 ASSERT(sacnt == 0); 19540 if (gcgrp != NULL) { 19541 /* we might as well drop the lock now */ 19542 rw_exit(&gcgrp->gcgrp_rwlock); 19543 gcgrp = NULL; 19544 } 19545 attrp = NULL; 19546 } 19547 19548 ASSERT(gc == NULL || (gcgrp != NULL && 19549 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19550 } 19551 ASSERT(sacnt == 0 || gc != NULL); 19552 19553 if (sacnt != 0 && 19554 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19555 kmem_free(re, sizeof (*re)); 19556 rw_exit(&gcgrp->gcgrp_rwlock); 19557 return; 19558 } 19559 19560 /* 19561 * Return all IRE types for route table... let caller pick and choose 19562 */ 19563 re->ipv6RouteDest = ire->ire_addr_v6; 19564 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19565 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19566 re->ipv6RouteIfIndex.o_length = 0; 19567 ipif = ire->ire_ipif; 19568 if (ire->ire_type == IRE_CACHE) { 19569 ill = (ill_t *)ire->ire_stq->q_ptr; 19570 re->ipv6RouteIfIndex.o_length = 19571 ill->ill_name_length == 0 ? 0 : 19572 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19573 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19574 re->ipv6RouteIfIndex.o_length); 19575 } else if (ipif != NULL) { 19576 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19577 OCTET_LENGTH); 19578 re->ipv6RouteIfIndex.o_length = 19579 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19580 } 19581 19582 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19583 19584 mutex_enter(&ire->ire_lock); 19585 gw_addr_v6 = ire->ire_gateway_addr_v6; 19586 mutex_exit(&ire->ire_lock); 19587 19588 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19589 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19590 else 19591 re->ipv6RouteNextHop = gw_addr_v6; 19592 19593 /* remote(4), local(3), or discard(2) */ 19594 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19595 re->ipv6RouteType = 2; 19596 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19597 re->ipv6RouteType = 3; 19598 else 19599 re->ipv6RouteType = 4; 19600 19601 re->ipv6RouteProtocol = -1; 19602 re->ipv6RoutePolicy = 0; 19603 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19604 re->ipv6RouteNextHopRDI = 0; 19605 re->ipv6RouteWeight = 0; 19606 re->ipv6RouteMetric = 0; 19607 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19608 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19609 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19610 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19611 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19612 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19613 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19614 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19615 19616 if (ire->ire_flags & RTF_DYNAMIC) { 19617 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19618 } else { 19619 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19620 } 19621 19622 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19623 (char *)re, (int)sizeof (*re))) { 19624 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19625 (uint_t)sizeof (*re))); 19626 } 19627 19628 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19629 iaeptr->iae_routeidx = ird->ird_idx; 19630 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19631 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19632 } 19633 19634 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19635 (char *)iae, sacnt * sizeof (*iae))) { 19636 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19637 (unsigned)(sacnt * sizeof (*iae)))); 19638 } 19639 19640 /* bump route index for next pass */ 19641 ird->ird_idx++; 19642 19643 kmem_free(re, sizeof (*re)); 19644 if (sacnt != 0) 19645 kmem_free(iae, sacnt * sizeof (*iae)); 19646 19647 if (gcgrp != NULL) 19648 rw_exit(&gcgrp->gcgrp_rwlock); 19649 } 19650 19651 /* 19652 * ndp_walk routine to create ipv6NetToMediaEntryTable 19653 */ 19654 static int 19655 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19656 { 19657 ill_t *ill; 19658 mib2_ipv6NetToMediaEntry_t ntme; 19659 dl_unitdata_req_t *dl; 19660 19661 ill = nce->nce_ill; 19662 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19663 return (0); 19664 19665 /* 19666 * Neighbor cache entry attached to IRE with on-link 19667 * destination. 19668 */ 19669 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19670 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19671 if ((ill->ill_flags & ILLF_XRESOLV) && 19672 (nce->nce_res_mp != NULL)) { 19673 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19674 ntme.ipv6NetToMediaPhysAddress.o_length = 19675 dl->dl_dest_addr_length; 19676 } else { 19677 ntme.ipv6NetToMediaPhysAddress.o_length = 19678 ill->ill_phys_addr_length; 19679 } 19680 if (nce->nce_res_mp != NULL) { 19681 bcopy((char *)nce->nce_res_mp->b_rptr + 19682 NCE_LL_ADDR_OFFSET(ill), 19683 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19684 ntme.ipv6NetToMediaPhysAddress.o_length); 19685 } else { 19686 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19687 ill->ill_phys_addr_length); 19688 } 19689 /* 19690 * Note: Returns ND_* states. Should be: 19691 * reachable(1), stale(2), delay(3), probe(4), 19692 * invalid(5), unknown(6) 19693 */ 19694 ntme.ipv6NetToMediaState = nce->nce_state; 19695 ntme.ipv6NetToMediaLastUpdated = 0; 19696 19697 /* other(1), dynamic(2), static(3), local(4) */ 19698 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19699 ntme.ipv6NetToMediaType = 4; 19700 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19701 ntme.ipv6NetToMediaType = 1; 19702 } else { 19703 ntme.ipv6NetToMediaType = 2; 19704 } 19705 19706 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19707 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19708 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19709 (uint_t)sizeof (ntme))); 19710 } 19711 return (0); 19712 } 19713 19714 /* 19715 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19716 */ 19717 /* ARGSUSED */ 19718 int 19719 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19720 { 19721 switch (level) { 19722 case MIB2_IP: 19723 case MIB2_ICMP: 19724 switch (name) { 19725 default: 19726 break; 19727 } 19728 return (1); 19729 default: 19730 return (1); 19731 } 19732 } 19733 19734 /* 19735 * When there exists both a 64- and 32-bit counter of a particular type 19736 * (i.e., InReceives), only the 64-bit counters are added. 19737 */ 19738 void 19739 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19740 { 19741 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19742 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19743 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19744 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19745 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19746 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19747 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19748 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19749 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19750 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19751 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19752 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19753 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19754 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19755 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19756 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19757 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19758 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19759 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19760 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19761 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19762 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19763 o2->ipIfStatsInWrongIPVersion); 19764 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19765 o2->ipIfStatsInWrongIPVersion); 19766 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19767 o2->ipIfStatsOutSwitchIPVersion); 19768 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19769 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19770 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19771 o2->ipIfStatsHCInForwDatagrams); 19772 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19773 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19774 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19775 o2->ipIfStatsHCOutForwDatagrams); 19776 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19777 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19778 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19779 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19780 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19781 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19782 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19783 o2->ipIfStatsHCOutMcastOctets); 19784 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19785 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19786 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19787 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19788 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19789 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19790 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19791 } 19792 19793 void 19794 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19795 { 19796 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19797 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19798 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19799 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19800 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19801 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19802 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19803 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19804 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19805 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19806 o2->ipv6IfIcmpInRouterSolicits); 19807 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19808 o2->ipv6IfIcmpInRouterAdvertisements); 19809 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19810 o2->ipv6IfIcmpInNeighborSolicits); 19811 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19812 o2->ipv6IfIcmpInNeighborAdvertisements); 19813 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19814 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19815 o2->ipv6IfIcmpInGroupMembQueries); 19816 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19817 o2->ipv6IfIcmpInGroupMembResponses); 19818 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19819 o2->ipv6IfIcmpInGroupMembReductions); 19820 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19821 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19822 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19823 o2->ipv6IfIcmpOutDestUnreachs); 19824 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19825 o2->ipv6IfIcmpOutAdminProhibs); 19826 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19827 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19828 o2->ipv6IfIcmpOutParmProblems); 19829 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19830 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19831 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19832 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19833 o2->ipv6IfIcmpOutRouterSolicits); 19834 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19835 o2->ipv6IfIcmpOutRouterAdvertisements); 19836 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19837 o2->ipv6IfIcmpOutNeighborSolicits); 19838 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19839 o2->ipv6IfIcmpOutNeighborAdvertisements); 19840 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19841 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19842 o2->ipv6IfIcmpOutGroupMembQueries); 19843 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19844 o2->ipv6IfIcmpOutGroupMembResponses); 19845 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19846 o2->ipv6IfIcmpOutGroupMembReductions); 19847 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19848 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19849 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19850 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19851 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19852 o2->ipv6IfIcmpInBadNeighborSolicitations); 19853 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19854 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19855 o2->ipv6IfIcmpInGroupMembTotal); 19856 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19857 o2->ipv6IfIcmpInGroupMembBadQueries); 19858 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19859 o2->ipv6IfIcmpInGroupMembBadReports); 19860 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19861 o2->ipv6IfIcmpInGroupMembOurReports); 19862 } 19863 19864 /* 19865 * Called before the options are updated to check if this packet will 19866 * be source routed from here. 19867 * This routine assumes that the options are well formed i.e. that they 19868 * have already been checked. 19869 */ 19870 static boolean_t 19871 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19872 { 19873 ipoptp_t opts; 19874 uchar_t *opt; 19875 uint8_t optval; 19876 uint8_t optlen; 19877 ipaddr_t dst; 19878 ire_t *ire; 19879 19880 if (IS_SIMPLE_IPH(ipha)) { 19881 ip2dbg(("not source routed\n")); 19882 return (B_FALSE); 19883 } 19884 dst = ipha->ipha_dst; 19885 for (optval = ipoptp_first(&opts, ipha); 19886 optval != IPOPT_EOL; 19887 optval = ipoptp_next(&opts)) { 19888 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19889 opt = opts.ipoptp_cur; 19890 optlen = opts.ipoptp_len; 19891 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19892 optval, optlen)); 19893 switch (optval) { 19894 uint32_t off; 19895 case IPOPT_SSRR: 19896 case IPOPT_LSRR: 19897 /* 19898 * If dst is one of our addresses and there are some 19899 * entries left in the source route return (true). 19900 */ 19901 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19902 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19903 if (ire == NULL) { 19904 ip2dbg(("ip_source_routed: not next" 19905 " source route 0x%x\n", 19906 ntohl(dst))); 19907 return (B_FALSE); 19908 } 19909 ire_refrele(ire); 19910 off = opt[IPOPT_OFFSET]; 19911 off--; 19912 if (optlen < IP_ADDR_LEN || 19913 off > optlen - IP_ADDR_LEN) { 19914 /* End of source route */ 19915 ip1dbg(("ip_source_routed: end of SR\n")); 19916 return (B_FALSE); 19917 } 19918 return (B_TRUE); 19919 } 19920 } 19921 ip2dbg(("not source routed\n")); 19922 return (B_FALSE); 19923 } 19924 19925 /* 19926 * Check if the packet contains any source route. 19927 */ 19928 static boolean_t 19929 ip_source_route_included(ipha_t *ipha) 19930 { 19931 ipoptp_t opts; 19932 uint8_t optval; 19933 19934 if (IS_SIMPLE_IPH(ipha)) 19935 return (B_FALSE); 19936 for (optval = ipoptp_first(&opts, ipha); 19937 optval != IPOPT_EOL; 19938 optval = ipoptp_next(&opts)) { 19939 switch (optval) { 19940 case IPOPT_SSRR: 19941 case IPOPT_LSRR: 19942 return (B_TRUE); 19943 } 19944 } 19945 return (B_FALSE); 19946 } 19947 19948 /* 19949 * Called when the IRE expiration timer fires. 19950 */ 19951 void 19952 ip_trash_timer_expire(void *args) 19953 { 19954 int flush_flag = 0; 19955 ire_expire_arg_t iea; 19956 ip_stack_t *ipst = (ip_stack_t *)args; 19957 19958 iea.iea_ipst = ipst; /* No netstack_hold */ 19959 19960 /* 19961 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19962 * This lock makes sure that a new invocation of this function 19963 * that occurs due to an almost immediate timer firing will not 19964 * progress beyond this point until the current invocation is done 19965 */ 19966 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19967 ipst->ips_ip_ire_expire_id = 0; 19968 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19969 19970 /* Periodic timer */ 19971 if (ipst->ips_ip_ire_arp_time_elapsed >= 19972 ipst->ips_ip_ire_arp_interval) { 19973 /* 19974 * Remove all IRE_CACHE entries since they might 19975 * contain arp information. 19976 */ 19977 flush_flag |= FLUSH_ARP_TIME; 19978 ipst->ips_ip_ire_arp_time_elapsed = 0; 19979 IP_STAT(ipst, ip_ire_arp_timer_expired); 19980 } 19981 if (ipst->ips_ip_ire_rd_time_elapsed >= 19982 ipst->ips_ip_ire_redir_interval) { 19983 /* Remove all redirects */ 19984 flush_flag |= FLUSH_REDIRECT_TIME; 19985 ipst->ips_ip_ire_rd_time_elapsed = 0; 19986 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19987 } 19988 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19989 ipst->ips_ip_ire_pathmtu_interval) { 19990 /* Increase path mtu */ 19991 flush_flag |= FLUSH_MTU_TIME; 19992 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19993 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19994 } 19995 19996 /* 19997 * Optimize for the case when there are no redirects in the 19998 * ftable, that is, no need to walk the ftable in that case. 19999 */ 20000 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20001 iea.iea_flush_flag = flush_flag; 20002 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20003 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20004 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20005 NULL, ALL_ZONES, ipst); 20006 } 20007 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20008 ipst->ips_ip_redirect_cnt > 0) { 20009 iea.iea_flush_flag = flush_flag; 20010 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20011 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20012 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20013 } 20014 if (flush_flag & FLUSH_MTU_TIME) { 20015 /* 20016 * Walk all IPv6 IRE's and update them 20017 * Note that ARP and redirect timers are not 20018 * needed since NUD handles stale entries. 20019 */ 20020 flush_flag = FLUSH_MTU_TIME; 20021 iea.iea_flush_flag = flush_flag; 20022 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20023 ALL_ZONES, ipst); 20024 } 20025 20026 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20027 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20028 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20029 20030 /* 20031 * Hold the lock to serialize timeout calls and prevent 20032 * stale values in ip_ire_expire_id. Otherwise it is possible 20033 * for the timer to fire and a new invocation of this function 20034 * to start before the return value of timeout has been stored 20035 * in ip_ire_expire_id by the current invocation. 20036 */ 20037 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20038 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20039 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20040 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20041 } 20042 20043 /* 20044 * Called by the memory allocator subsystem directly, when the system 20045 * is running low on memory. 20046 */ 20047 /* ARGSUSED */ 20048 void 20049 ip_trash_ire_reclaim(void *args) 20050 { 20051 netstack_handle_t nh; 20052 netstack_t *ns; 20053 20054 netstack_next_init(&nh); 20055 while ((ns = netstack_next(&nh)) != NULL) { 20056 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20057 netstack_rele(ns); 20058 } 20059 netstack_next_fini(&nh); 20060 } 20061 20062 static void 20063 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20064 { 20065 ire_cache_count_t icc; 20066 ire_cache_reclaim_t icr; 20067 ncc_cache_count_t ncc; 20068 nce_cache_reclaim_t ncr; 20069 uint_t delete_cnt; 20070 /* 20071 * Memory reclaim call back. 20072 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20073 * Then, with a target of freeing 1/Nth of IRE_CACHE 20074 * entries, determine what fraction to free for 20075 * each category of IRE_CACHE entries giving absolute priority 20076 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20077 * entry will be freed unless all offlink entries are freed). 20078 */ 20079 icc.icc_total = 0; 20080 icc.icc_unused = 0; 20081 icc.icc_offlink = 0; 20082 icc.icc_pmtu = 0; 20083 icc.icc_onlink = 0; 20084 ire_walk(ire_cache_count, (char *)&icc, ipst); 20085 20086 /* 20087 * Free NCEs for IPv6 like the onlink ires. 20088 */ 20089 ncc.ncc_total = 0; 20090 ncc.ncc_host = 0; 20091 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20092 20093 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20094 icc.icc_pmtu + icc.icc_onlink); 20095 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20096 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20097 if (delete_cnt == 0) 20098 return; 20099 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20100 /* Always delete all unused offlink entries */ 20101 icr.icr_ipst = ipst; 20102 icr.icr_unused = 1; 20103 if (delete_cnt <= icc.icc_unused) { 20104 /* 20105 * Only need to free unused entries. In other words, 20106 * there are enough unused entries to free to meet our 20107 * target number of freed ire cache entries. 20108 */ 20109 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20110 ncr.ncr_host = 0; 20111 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20112 /* 20113 * Only need to free unused entries, plus a fraction of offlink 20114 * entries. It follows from the first if statement that 20115 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20116 */ 20117 delete_cnt -= icc.icc_unused; 20118 /* Round up # deleted by truncating fraction */ 20119 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20120 icr.icr_pmtu = icr.icr_onlink = 0; 20121 ncr.ncr_host = 0; 20122 } else if (delete_cnt <= 20123 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20124 /* 20125 * Free all unused and offlink entries, plus a fraction of 20126 * pmtu entries. It follows from the previous if statement 20127 * that icc_pmtu is non-zero, and that 20128 * delete_cnt != icc_unused + icc_offlink. 20129 */ 20130 icr.icr_offlink = 1; 20131 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20132 /* Round up # deleted by truncating fraction */ 20133 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20134 icr.icr_onlink = 0; 20135 ncr.ncr_host = 0; 20136 } else { 20137 /* 20138 * Free all unused, offlink, and pmtu entries, plus a fraction 20139 * of onlink entries. If we're here, then we know that 20140 * icc_onlink is non-zero, and that 20141 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20142 */ 20143 icr.icr_offlink = icr.icr_pmtu = 1; 20144 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20145 icc.icc_pmtu; 20146 /* Round up # deleted by truncating fraction */ 20147 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20148 /* Using the same delete fraction as for onlink IREs */ 20149 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20150 } 20151 #ifdef DEBUG 20152 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20153 "fractions %d/%d/%d/%d\n", 20154 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20155 icc.icc_unused, icc.icc_offlink, 20156 icc.icc_pmtu, icc.icc_onlink, 20157 icr.icr_unused, icr.icr_offlink, 20158 icr.icr_pmtu, icr.icr_onlink)); 20159 #endif 20160 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20161 if (ncr.ncr_host != 0) 20162 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20163 (uchar_t *)&ncr, ipst); 20164 #ifdef DEBUG 20165 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20166 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20167 ire_walk(ire_cache_count, (char *)&icc, ipst); 20168 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20169 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20170 icc.icc_pmtu, icc.icc_onlink)); 20171 #endif 20172 } 20173 20174 /* 20175 * ip_unbind is called when a copy of an unbind request is received from the 20176 * upper level protocol. We remove this conn from any fanout hash list it is 20177 * on, and zero out the bind information. No reply is expected up above. 20178 */ 20179 mblk_t * 20180 ip_unbind(queue_t *q, mblk_t *mp) 20181 { 20182 conn_t *connp = Q_TO_CONN(q); 20183 20184 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20185 20186 if (is_system_labeled() && connp->conn_anon_port) { 20187 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20188 connp->conn_mlp_type, connp->conn_ulp, 20189 ntohs(connp->conn_lport), B_FALSE); 20190 connp->conn_anon_port = 0; 20191 } 20192 connp->conn_mlp_type = mlptSingle; 20193 20194 ipcl_hash_remove(connp); 20195 20196 ASSERT(mp->b_cont == NULL); 20197 /* 20198 * Convert mp into a T_OK_ACK 20199 */ 20200 mp = mi_tpi_ok_ack_alloc(mp); 20201 20202 /* 20203 * should not happen in practice... T_OK_ACK is smaller than the 20204 * original message. 20205 */ 20206 if (mp == NULL) 20207 return (NULL); 20208 20209 /* 20210 * Don't bzero the ports if its TCP since TCP still needs the 20211 * lport to remove it from its own bind hash. TCP will do the 20212 * cleanup. 20213 */ 20214 if (!IPCL_IS_TCP(connp)) 20215 bzero(&connp->u_port, sizeof (connp->u_port)); 20216 20217 return (mp); 20218 } 20219 20220 /* 20221 * Write side put procedure. Outbound data, IOCTLs, responses from 20222 * resolvers, etc, come down through here. 20223 * 20224 * arg2 is always a queue_t *. 20225 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20226 * the zoneid. 20227 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20228 */ 20229 void 20230 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20231 { 20232 ip_output_options(arg, mp, arg2, caller, &zero_info); 20233 } 20234 20235 void 20236 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20237 ip_opt_info_t *infop) 20238 { 20239 conn_t *connp = NULL; 20240 queue_t *q = (queue_t *)arg2; 20241 ipha_t *ipha; 20242 #define rptr ((uchar_t *)ipha) 20243 ire_t *ire = NULL; 20244 ire_t *sctp_ire = NULL; 20245 uint32_t v_hlen_tos_len; 20246 ipaddr_t dst; 20247 mblk_t *first_mp = NULL; 20248 boolean_t mctl_present; 20249 ipsec_out_t *io; 20250 int match_flags; 20251 ill_t *attach_ill = NULL; 20252 /* Bind to IPIF_NOFAILOVER ill etc. */ 20253 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 20254 ipif_t *dst_ipif; 20255 boolean_t multirt_need_resolve = B_FALSE; 20256 mblk_t *copy_mp = NULL; 20257 int err; 20258 zoneid_t zoneid; 20259 int adjust; 20260 uint16_t iplen; 20261 boolean_t need_decref = B_FALSE; 20262 boolean_t ignore_dontroute = B_FALSE; 20263 boolean_t ignore_nexthop = B_FALSE; 20264 boolean_t ip_nexthop = B_FALSE; 20265 ipaddr_t nexthop_addr; 20266 ip_stack_t *ipst; 20267 20268 #ifdef _BIG_ENDIAN 20269 #define V_HLEN (v_hlen_tos_len >> 24) 20270 #else 20271 #define V_HLEN (v_hlen_tos_len & 0xFF) 20272 #endif 20273 20274 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20275 "ip_wput_start: q %p", q); 20276 20277 /* 20278 * ip_wput fast path 20279 */ 20280 20281 /* is packet from ARP ? */ 20282 if (q->q_next != NULL) { 20283 zoneid = (zoneid_t)(uintptr_t)arg; 20284 goto qnext; 20285 } 20286 20287 connp = (conn_t *)arg; 20288 ASSERT(connp != NULL); 20289 zoneid = connp->conn_zoneid; 20290 ipst = connp->conn_netstack->netstack_ip; 20291 20292 /* is queue flow controlled? */ 20293 if ((q->q_first != NULL || connp->conn_draining) && 20294 (caller == IP_WPUT)) { 20295 ASSERT(!need_decref); 20296 (void) putq(q, mp); 20297 return; 20298 } 20299 20300 /* Multidata transmit? */ 20301 if (DB_TYPE(mp) == M_MULTIDATA) { 20302 /* 20303 * We should never get here, since all Multidata messages 20304 * originating from tcp should have been directed over to 20305 * tcp_multisend() in the first place. 20306 */ 20307 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20308 freemsg(mp); 20309 return; 20310 } else if (DB_TYPE(mp) != M_DATA) 20311 goto notdata; 20312 20313 if (mp->b_flag & MSGHASREF) { 20314 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20315 mp->b_flag &= ~MSGHASREF; 20316 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20317 need_decref = B_TRUE; 20318 } 20319 ipha = (ipha_t *)mp->b_rptr; 20320 20321 /* is IP header non-aligned or mblk smaller than basic IP header */ 20322 #ifndef SAFETY_BEFORE_SPEED 20323 if (!OK_32PTR(rptr) || 20324 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20325 goto hdrtoosmall; 20326 #endif 20327 20328 ASSERT(OK_32PTR(ipha)); 20329 20330 /* 20331 * This function assumes that mp points to an IPv4 packet. If it's the 20332 * wrong version, we'll catch it again in ip_output_v6. 20333 * 20334 * Note that this is *only* locally-generated output here, and never 20335 * forwarded data, and that we need to deal only with transports that 20336 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20337 * label.) 20338 */ 20339 if (is_system_labeled() && 20340 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20341 !connp->conn_ulp_labeled) { 20342 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20343 connp->conn_mac_exempt, ipst); 20344 ipha = (ipha_t *)mp->b_rptr; 20345 if (err != 0) { 20346 first_mp = mp; 20347 if (err == EINVAL) 20348 goto icmp_parameter_problem; 20349 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20350 goto discard_pkt; 20351 } 20352 iplen = ntohs(ipha->ipha_length) + adjust; 20353 ipha->ipha_length = htons(iplen); 20354 } 20355 20356 ASSERT(infop != NULL); 20357 20358 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20359 /* 20360 * IP_PKTINFO ancillary option is present. 20361 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20362 * allows using address of any zone as the source address. 20363 */ 20364 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20365 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20366 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20367 if (ire == NULL) 20368 goto drop_pkt; 20369 ire_refrele(ire); 20370 ire = NULL; 20371 } 20372 20373 /* 20374 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20375 * ill index passed in IP_PKTINFO. 20376 */ 20377 if (infop->ip_opt_ill_index != 0 && 20378 connp->conn_xmit_if_ill == NULL && 20379 connp->conn_nofailover_ill == NULL) { 20380 20381 xmit_ill = ill_lookup_on_ifindex( 20382 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20383 ipst); 20384 20385 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20386 goto drop_pkt; 20387 /* 20388 * check that there is an ipif belonging 20389 * to our zone. IPCL_ZONEID is not used because 20390 * IP_ALLZONES option is valid only when the ill is 20391 * accessible from all zones i.e has a valid ipif in 20392 * all zones. 20393 */ 20394 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20395 goto drop_pkt; 20396 } 20397 } 20398 20399 /* 20400 * If there is a policy, try to attach an ipsec_out in 20401 * the front. At the end, first_mp either points to a 20402 * M_DATA message or IPSEC_OUT message linked to a 20403 * M_DATA message. We have to do it now as we might 20404 * lose the "conn" if we go through ip_newroute. 20405 */ 20406 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20407 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20408 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20409 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20410 if (need_decref) 20411 CONN_DEC_REF(connp); 20412 return; 20413 } else { 20414 ASSERT(mp->b_datap->db_type == M_CTL); 20415 first_mp = mp; 20416 mp = mp->b_cont; 20417 mctl_present = B_TRUE; 20418 } 20419 } else { 20420 first_mp = mp; 20421 mctl_present = B_FALSE; 20422 } 20423 20424 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20425 20426 /* is wrong version or IP options present */ 20427 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20428 goto version_hdrlen_check; 20429 dst = ipha->ipha_dst; 20430 20431 if (connp->conn_nofailover_ill != NULL) { 20432 attach_ill = conn_get_held_ill(connp, 20433 &connp->conn_nofailover_ill, &err); 20434 if (err == ILL_LOOKUP_FAILED) { 20435 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20436 if (need_decref) 20437 CONN_DEC_REF(connp); 20438 freemsg(first_mp); 20439 return; 20440 } 20441 } 20442 20443 20444 /* is packet multicast? */ 20445 if (CLASSD(dst)) 20446 goto multicast; 20447 20448 /* 20449 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20450 * takes precedence over conn_dontroute and conn_nexthop_set 20451 */ 20452 if (xmit_ill != NULL) { 20453 goto send_from_ill; 20454 } 20455 20456 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20457 (connp->conn_nexthop_set)) { 20458 /* 20459 * If the destination is a broadcast or a loopback 20460 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20461 * through the standard path. But in the case of local 20462 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20463 * the standard path not IP_XMIT_IF. 20464 */ 20465 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20466 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20467 (ire->ire_type != IRE_LOOPBACK))) { 20468 if ((connp->conn_dontroute || 20469 connp->conn_nexthop_set) && (ire != NULL) && 20470 (ire->ire_type == IRE_LOCAL)) 20471 goto standard_path; 20472 20473 if (ire != NULL) { 20474 ire_refrele(ire); 20475 /* No more access to ire */ 20476 ire = NULL; 20477 } 20478 /* 20479 * bypass routing checks and go directly to 20480 * interface. 20481 */ 20482 if (connp->conn_dontroute) { 20483 goto dontroute; 20484 } else if (connp->conn_nexthop_set) { 20485 ip_nexthop = B_TRUE; 20486 nexthop_addr = connp->conn_nexthop_v4; 20487 goto send_from_ill; 20488 } 20489 20490 /* 20491 * If IP_XMIT_IF socket option is set, 20492 * then we allow unicast and multicast 20493 * packets to go through the ill. It is 20494 * quite possible that the destination 20495 * is not in the ire cache table and we 20496 * do not want to go to ip_newroute() 20497 * instead we call ip_newroute_ipif. 20498 */ 20499 xmit_ill = conn_get_held_ill(connp, 20500 &connp->conn_xmit_if_ill, &err); 20501 if (err == ILL_LOOKUP_FAILED) { 20502 BUMP_MIB(&ipst->ips_ip_mib, 20503 ipIfStatsOutDiscards); 20504 if (attach_ill != NULL) 20505 ill_refrele(attach_ill); 20506 if (need_decref) 20507 CONN_DEC_REF(connp); 20508 freemsg(first_mp); 20509 return; 20510 } 20511 goto send_from_ill; 20512 } 20513 standard_path: 20514 /* Must be a broadcast, a loopback or a local ire */ 20515 if (ire != NULL) { 20516 ire_refrele(ire); 20517 /* No more access to ire */ 20518 ire = NULL; 20519 } 20520 } 20521 20522 if (attach_ill != NULL) 20523 goto send_from_ill; 20524 20525 /* 20526 * We cache IRE_CACHEs to avoid lookups. We don't do 20527 * this for the tcp global queue and listen end point 20528 * as it does not really have a real destination to 20529 * talk to. This is also true for SCTP. 20530 */ 20531 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20532 !connp->conn_fully_bound) { 20533 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20534 if (ire == NULL) 20535 goto noirefound; 20536 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20537 "ip_wput_end: q %p (%S)", q, "end"); 20538 20539 /* 20540 * Check if the ire has the RTF_MULTIRT flag, inherited 20541 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20542 */ 20543 if (ire->ire_flags & RTF_MULTIRT) { 20544 20545 /* 20546 * Force the TTL of multirouted packets if required. 20547 * The TTL of such packets is bounded by the 20548 * ip_multirt_ttl ndd variable. 20549 */ 20550 if ((ipst->ips_ip_multirt_ttl > 0) && 20551 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20552 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20553 "(was %d), dst 0x%08x\n", 20554 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20555 ntohl(ire->ire_addr))); 20556 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20557 } 20558 /* 20559 * We look at this point if there are pending 20560 * unresolved routes. ire_multirt_resolvable() 20561 * checks in O(n) that all IRE_OFFSUBNET ire 20562 * entries for the packet's destination and 20563 * flagged RTF_MULTIRT are currently resolved. 20564 * If some remain unresolved, we make a copy 20565 * of the current message. It will be used 20566 * to initiate additional route resolutions. 20567 */ 20568 multirt_need_resolve = 20569 ire_multirt_need_resolve(ire->ire_addr, 20570 MBLK_GETLABEL(first_mp), ipst); 20571 ip2dbg(("ip_wput[TCP]: ire %p, " 20572 "multirt_need_resolve %d, first_mp %p\n", 20573 (void *)ire, multirt_need_resolve, 20574 (void *)first_mp)); 20575 if (multirt_need_resolve) { 20576 copy_mp = copymsg(first_mp); 20577 if (copy_mp != NULL) { 20578 MULTIRT_DEBUG_TAG(copy_mp); 20579 } 20580 } 20581 } 20582 20583 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20584 20585 /* 20586 * Try to resolve another multiroute if 20587 * ire_multirt_need_resolve() deemed it necessary. 20588 */ 20589 if (copy_mp != NULL) { 20590 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20591 } 20592 if (need_decref) 20593 CONN_DEC_REF(connp); 20594 return; 20595 } 20596 20597 /* 20598 * Access to conn_ire_cache. (protected by conn_lock) 20599 * 20600 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20601 * the ire bucket lock here to check for CONDEMNED as it is okay to 20602 * send a packet or two with the IRE_CACHE that is going away. 20603 * Access to the ire requires an ire refhold on the ire prior to 20604 * its use since an interface unplumb thread may delete the cached 20605 * ire and release the refhold at any time. 20606 * 20607 * Caching an ire in the conn_ire_cache 20608 * 20609 * o Caching an ire pointer in the conn requires a strict check for 20610 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20611 * ires before cleaning up the conns. So the caching of an ire pointer 20612 * in the conn is done after making sure under the bucket lock that the 20613 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20614 * caching an ire after the unplumb thread has cleaned up the conn. 20615 * If the conn does not send a packet subsequently the unplumb thread 20616 * will be hanging waiting for the ire count to drop to zero. 20617 * 20618 * o We also need to atomically test for a null conn_ire_cache and 20619 * set the conn_ire_cache under the the protection of the conn_lock 20620 * to avoid races among concurrent threads trying to simultaneously 20621 * cache an ire in the conn_ire_cache. 20622 */ 20623 mutex_enter(&connp->conn_lock); 20624 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20625 20626 if (ire != NULL && ire->ire_addr == dst && 20627 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20628 20629 IRE_REFHOLD(ire); 20630 mutex_exit(&connp->conn_lock); 20631 20632 } else { 20633 boolean_t cached = B_FALSE; 20634 connp->conn_ire_cache = NULL; 20635 mutex_exit(&connp->conn_lock); 20636 /* Release the old ire */ 20637 if (ire != NULL && sctp_ire == NULL) 20638 IRE_REFRELE_NOTR(ire); 20639 20640 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20641 if (ire == NULL) 20642 goto noirefound; 20643 IRE_REFHOLD_NOTR(ire); 20644 20645 mutex_enter(&connp->conn_lock); 20646 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20647 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20648 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20649 if (connp->conn_ulp == IPPROTO_TCP) 20650 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20651 connp->conn_ire_cache = ire; 20652 cached = B_TRUE; 20653 } 20654 rw_exit(&ire->ire_bucket->irb_lock); 20655 } 20656 mutex_exit(&connp->conn_lock); 20657 20658 /* 20659 * We can continue to use the ire but since it was 20660 * not cached, we should drop the extra reference. 20661 */ 20662 if (!cached) 20663 IRE_REFRELE_NOTR(ire); 20664 } 20665 20666 20667 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20668 "ip_wput_end: q %p (%S)", q, "end"); 20669 20670 /* 20671 * Check if the ire has the RTF_MULTIRT flag, inherited 20672 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20673 */ 20674 if (ire->ire_flags & RTF_MULTIRT) { 20675 20676 /* 20677 * Force the TTL of multirouted packets if required. 20678 * The TTL of such packets is bounded by the 20679 * ip_multirt_ttl ndd variable. 20680 */ 20681 if ((ipst->ips_ip_multirt_ttl > 0) && 20682 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20683 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20684 "(was %d), dst 0x%08x\n", 20685 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20686 ntohl(ire->ire_addr))); 20687 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20688 } 20689 20690 /* 20691 * At this point, we check to see if there are any pending 20692 * unresolved routes. ire_multirt_resolvable() 20693 * checks in O(n) that all IRE_OFFSUBNET ire 20694 * entries for the packet's destination and 20695 * flagged RTF_MULTIRT are currently resolved. 20696 * If some remain unresolved, we make a copy 20697 * of the current message. It will be used 20698 * to initiate additional route resolutions. 20699 */ 20700 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20701 MBLK_GETLABEL(first_mp), ipst); 20702 ip2dbg(("ip_wput[not TCP]: ire %p, " 20703 "multirt_need_resolve %d, first_mp %p\n", 20704 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20705 if (multirt_need_resolve) { 20706 copy_mp = copymsg(first_mp); 20707 if (copy_mp != NULL) { 20708 MULTIRT_DEBUG_TAG(copy_mp); 20709 } 20710 } 20711 } 20712 20713 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20714 20715 /* 20716 * Try to resolve another multiroute if 20717 * ire_multirt_resolvable() deemed it necessary 20718 */ 20719 if (copy_mp != NULL) { 20720 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20721 } 20722 if (need_decref) 20723 CONN_DEC_REF(connp); 20724 return; 20725 20726 qnext: 20727 /* 20728 * Upper Level Protocols pass down complete IP datagrams 20729 * as M_DATA messages. Everything else is a sideshow. 20730 * 20731 * 1) We could be re-entering ip_wput because of ip_neworute 20732 * in which case we could have a IPSEC_OUT message. We 20733 * need to pass through ip_wput like other datagrams and 20734 * hence cannot branch to ip_wput_nondata. 20735 * 20736 * 2) ARP, AH, ESP, and other clients who are on the module 20737 * instance of IP stream, give us something to deal with. 20738 * We will handle AH and ESP here and rest in ip_wput_nondata. 20739 * 20740 * 3) ICMP replies also could come here. 20741 */ 20742 ipst = ILLQ_TO_IPST(q); 20743 20744 if (DB_TYPE(mp) != M_DATA) { 20745 notdata: 20746 if (DB_TYPE(mp) == M_CTL) { 20747 /* 20748 * M_CTL messages are used by ARP, AH and ESP to 20749 * communicate with IP. We deal with IPSEC_IN and 20750 * IPSEC_OUT here. ip_wput_nondata handles other 20751 * cases. 20752 */ 20753 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20754 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20755 first_mp = mp->b_cont; 20756 first_mp->b_flag &= ~MSGHASREF; 20757 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20758 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20759 CONN_DEC_REF(connp); 20760 connp = NULL; 20761 } 20762 if (ii->ipsec_info_type == IPSEC_IN) { 20763 /* 20764 * Either this message goes back to 20765 * IPSEC for further processing or to 20766 * ULP after policy checks. 20767 */ 20768 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20769 return; 20770 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20771 io = (ipsec_out_t *)ii; 20772 if (io->ipsec_out_proc_begin) { 20773 /* 20774 * IPSEC processing has already started. 20775 * Complete it. 20776 * IPQoS notes: We don't care what is 20777 * in ipsec_out_ill_index since this 20778 * won't be processed for IPQoS policies 20779 * in ipsec_out_process. 20780 */ 20781 ipsec_out_process(q, mp, NULL, 20782 io->ipsec_out_ill_index); 20783 return; 20784 } else { 20785 connp = (q->q_next != NULL) ? 20786 NULL : Q_TO_CONN(q); 20787 first_mp = mp; 20788 mp = mp->b_cont; 20789 mctl_present = B_TRUE; 20790 } 20791 zoneid = io->ipsec_out_zoneid; 20792 ASSERT(zoneid != ALL_ZONES); 20793 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20794 /* 20795 * It's an IPsec control message requesting 20796 * an SADB update to be sent to the IPsec 20797 * hardware acceleration capable ills. 20798 */ 20799 ipsec_ctl_t *ipsec_ctl = 20800 (ipsec_ctl_t *)mp->b_rptr; 20801 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20802 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20803 mblk_t *cmp = mp->b_cont; 20804 20805 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20806 ASSERT(cmp != NULL); 20807 20808 freeb(mp); 20809 ill_ipsec_capab_send_all(satype, cmp, sa, 20810 ipst->ips_netstack); 20811 return; 20812 } else { 20813 /* 20814 * This must be ARP or special TSOL signaling. 20815 */ 20816 ip_wput_nondata(NULL, q, mp, NULL); 20817 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20818 "ip_wput_end: q %p (%S)", q, "nondata"); 20819 return; 20820 } 20821 } else { 20822 /* 20823 * This must be non-(ARP/AH/ESP) messages. 20824 */ 20825 ASSERT(!need_decref); 20826 ip_wput_nondata(NULL, q, mp, NULL); 20827 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20828 "ip_wput_end: q %p (%S)", q, "nondata"); 20829 return; 20830 } 20831 } else { 20832 first_mp = mp; 20833 mctl_present = B_FALSE; 20834 } 20835 20836 ASSERT(first_mp != NULL); 20837 /* 20838 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20839 * to make sure that this packet goes out on the same interface it 20840 * came in. We handle that here. 20841 */ 20842 if (mctl_present) { 20843 uint_t ifindex; 20844 20845 io = (ipsec_out_t *)first_mp->b_rptr; 20846 if (io->ipsec_out_attach_if || 20847 io->ipsec_out_xmit_if || 20848 io->ipsec_out_ip_nexthop) { 20849 ill_t *ill; 20850 20851 /* 20852 * We may have lost the conn context if we are 20853 * coming here from ip_newroute(). Copy the 20854 * nexthop information. 20855 */ 20856 if (io->ipsec_out_ip_nexthop) { 20857 ip_nexthop = B_TRUE; 20858 nexthop_addr = io->ipsec_out_nexthop_addr; 20859 20860 ipha = (ipha_t *)mp->b_rptr; 20861 dst = ipha->ipha_dst; 20862 goto send_from_ill; 20863 } else { 20864 ASSERT(io->ipsec_out_ill_index != 0); 20865 ifindex = io->ipsec_out_ill_index; 20866 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20867 NULL, NULL, NULL, NULL, ipst); 20868 /* 20869 * ipsec_out_xmit_if bit is used to tell 20870 * ip_wput to use the ill to send outgoing data 20871 * as we have no conn when data comes from ICMP 20872 * error msg routines. Currently this feature is 20873 * only used by ip_mrtun_forward routine. 20874 */ 20875 if (io->ipsec_out_xmit_if) { 20876 xmit_ill = ill; 20877 if (xmit_ill == NULL) { 20878 ip1dbg(("ip_output:bad ifindex " 20879 "for xmit_ill %d\n", 20880 ifindex)); 20881 freemsg(first_mp); 20882 BUMP_MIB(&ipst->ips_ip_mib, 20883 ipIfStatsOutDiscards); 20884 ASSERT(!need_decref); 20885 return; 20886 } 20887 /* Free up the ipsec_out_t mblk */ 20888 ASSERT(first_mp->b_cont == mp); 20889 first_mp->b_cont = NULL; 20890 freeb(first_mp); 20891 /* Just send the IP header+ICMP+data */ 20892 first_mp = mp; 20893 ipha = (ipha_t *)mp->b_rptr; 20894 dst = ipha->ipha_dst; 20895 goto send_from_ill; 20896 } else { 20897 attach_ill = ill; 20898 } 20899 20900 if (attach_ill == NULL) { 20901 ASSERT(xmit_ill == NULL); 20902 ip1dbg(("ip_output: bad ifindex for " 20903 "(BIND TO IPIF_NOFAILOVER) %d\n", 20904 ifindex)); 20905 freemsg(first_mp); 20906 BUMP_MIB(&ipst->ips_ip_mib, 20907 ipIfStatsOutDiscards); 20908 ASSERT(!need_decref); 20909 return; 20910 } 20911 } 20912 } 20913 } 20914 20915 ASSERT(xmit_ill == NULL); 20916 20917 /* We have a complete IP datagram heading outbound. */ 20918 ipha = (ipha_t *)mp->b_rptr; 20919 20920 #ifndef SPEED_BEFORE_SAFETY 20921 /* 20922 * Make sure we have a full-word aligned message and that at least 20923 * a simple IP header is accessible in the first message. If not, 20924 * try a pullup. 20925 */ 20926 if (!OK_32PTR(rptr) || 20927 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20928 hdrtoosmall: 20929 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20930 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20931 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20932 if (first_mp == NULL) 20933 first_mp = mp; 20934 goto discard_pkt; 20935 } 20936 20937 /* This function assumes that mp points to an IPv4 packet. */ 20938 if (is_system_labeled() && q->q_next == NULL && 20939 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20940 !connp->conn_ulp_labeled) { 20941 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20942 &adjust, connp->conn_mac_exempt, ipst); 20943 ipha = (ipha_t *)mp->b_rptr; 20944 if (first_mp != NULL) 20945 first_mp->b_cont = mp; 20946 if (err != 0) { 20947 if (first_mp == NULL) 20948 first_mp = mp; 20949 if (err == EINVAL) 20950 goto icmp_parameter_problem; 20951 ip2dbg(("ip_wput: label check failed (%d)\n", 20952 err)); 20953 goto discard_pkt; 20954 } 20955 iplen = ntohs(ipha->ipha_length) + adjust; 20956 ipha->ipha_length = htons(iplen); 20957 } 20958 20959 ipha = (ipha_t *)mp->b_rptr; 20960 if (first_mp == NULL) { 20961 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20962 /* 20963 * If we got here because of "goto hdrtoosmall" 20964 * We need to attach a IPSEC_OUT. 20965 */ 20966 if (connp->conn_out_enforce_policy) { 20967 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20968 NULL, ipha->ipha_protocol, 20969 ipst->ips_netstack)) == NULL)) { 20970 BUMP_MIB(&ipst->ips_ip_mib, 20971 ipIfStatsOutDiscards); 20972 if (need_decref) 20973 CONN_DEC_REF(connp); 20974 return; 20975 } else { 20976 ASSERT(mp->b_datap->db_type == M_CTL); 20977 first_mp = mp; 20978 mp = mp->b_cont; 20979 mctl_present = B_TRUE; 20980 } 20981 } else { 20982 first_mp = mp; 20983 mctl_present = B_FALSE; 20984 } 20985 } 20986 } 20987 #endif 20988 20989 /* Most of the code below is written for speed, not readability */ 20990 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20991 20992 /* 20993 * If ip_newroute() fails, we're going to need a full 20994 * header for the icmp wraparound. 20995 */ 20996 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20997 uint_t v_hlen; 20998 version_hdrlen_check: 20999 ASSERT(first_mp != NULL); 21000 v_hlen = V_HLEN; 21001 /* 21002 * siphon off IPv6 packets coming down from transport 21003 * layer modules here. 21004 * Note: high-order bit carries NUD reachability confirmation 21005 */ 21006 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21007 /* 21008 * XXX implement a IPv4 and IPv6 packet counter per 21009 * conn and switch when ratio exceeds e.g. 10:1 21010 */ 21011 #ifdef notyet 21012 if (q->q_next == NULL) /* Avoid ill queue */ 21013 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 21014 #endif 21015 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21016 ASSERT(xmit_ill == NULL); 21017 if (attach_ill != NULL) 21018 ill_refrele(attach_ill); 21019 if (need_decref) 21020 mp->b_flag |= MSGHASREF; 21021 (void) ip_output_v6(arg, first_mp, arg2, caller); 21022 return; 21023 } 21024 21025 if ((v_hlen >> 4) != IP_VERSION) { 21026 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21027 "ip_wput_end: q %p (%S)", q, "badvers"); 21028 goto discard_pkt; 21029 } 21030 /* 21031 * Is the header length at least 20 bytes? 21032 * 21033 * Are there enough bytes accessible in the header? If 21034 * not, try a pullup. 21035 */ 21036 v_hlen &= 0xF; 21037 v_hlen <<= 2; 21038 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21039 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21040 "ip_wput_end: q %p (%S)", q, "badlen"); 21041 goto discard_pkt; 21042 } 21043 if (v_hlen > (mp->b_wptr - rptr)) { 21044 if (!pullupmsg(mp, v_hlen)) { 21045 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21046 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21047 goto discard_pkt; 21048 } 21049 ipha = (ipha_t *)mp->b_rptr; 21050 } 21051 /* 21052 * Move first entry from any source route into ipha_dst and 21053 * verify the options 21054 */ 21055 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21056 zoneid, ipst)) { 21057 ASSERT(xmit_ill == NULL); 21058 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21059 if (attach_ill != NULL) 21060 ill_refrele(attach_ill); 21061 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21062 "ip_wput_end: q %p (%S)", q, "badopts"); 21063 if (need_decref) 21064 CONN_DEC_REF(connp); 21065 return; 21066 } 21067 } 21068 dst = ipha->ipha_dst; 21069 21070 /* 21071 * Try to get an IRE_CACHE for the destination address. If we can't, 21072 * we have to run the packet through ip_newroute which will take 21073 * the appropriate action to arrange for an IRE_CACHE, such as querying 21074 * a resolver, or assigning a default gateway, etc. 21075 */ 21076 if (CLASSD(dst)) { 21077 ipif_t *ipif; 21078 uint32_t setsrc = 0; 21079 21080 multicast: 21081 ASSERT(first_mp != NULL); 21082 ip2dbg(("ip_wput: CLASSD\n")); 21083 if (connp == NULL) { 21084 /* 21085 * Use the first good ipif on the ill. 21086 * XXX Should this ever happen? (Appears 21087 * to show up with just ppp and no ethernet due 21088 * to in.rdisc.) 21089 * However, ire_send should be able to 21090 * call ip_wput_ire directly. 21091 * 21092 * XXX Also, this can happen for ICMP and other packets 21093 * with multicast source addresses. Perhaps we should 21094 * fix things so that we drop the packet in question, 21095 * but for now, just run with it. 21096 */ 21097 ill_t *ill = (ill_t *)q->q_ptr; 21098 21099 /* 21100 * Don't honor attach_if for this case. If ill 21101 * is part of the group, ipif could belong to 21102 * any ill and we cannot maintain attach_ill 21103 * and ipif_ill same anymore and the assert 21104 * below would fail. 21105 */ 21106 if (mctl_present && io->ipsec_out_attach_if) { 21107 io->ipsec_out_ill_index = 0; 21108 io->ipsec_out_attach_if = B_FALSE; 21109 ASSERT(attach_ill != NULL); 21110 ill_refrele(attach_ill); 21111 attach_ill = NULL; 21112 } 21113 21114 ASSERT(attach_ill == NULL); 21115 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21116 if (ipif == NULL) { 21117 if (need_decref) 21118 CONN_DEC_REF(connp); 21119 freemsg(first_mp); 21120 return; 21121 } 21122 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21123 ntohl(dst), ill->ill_name)); 21124 } else { 21125 /* 21126 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 21127 * and IP_MULTICAST_IF. 21128 * Block comment above this function explains the 21129 * locking mechanism used here 21130 */ 21131 if (xmit_ill == NULL) { 21132 xmit_ill = conn_get_held_ill(connp, 21133 &connp->conn_xmit_if_ill, &err); 21134 if (err == ILL_LOOKUP_FAILED) { 21135 ip1dbg(("ip_wput: No ill for " 21136 "IP_XMIT_IF\n")); 21137 BUMP_MIB(&ipst->ips_ip_mib, 21138 ipIfStatsOutNoRoutes); 21139 goto drop_pkt; 21140 } 21141 } 21142 21143 if (xmit_ill == NULL) { 21144 ipif = conn_get_held_ipif(connp, 21145 &connp->conn_multicast_ipif, &err); 21146 if (err == IPIF_LOOKUP_FAILED) { 21147 ip1dbg(("ip_wput: No ipif for " 21148 "multicast\n")); 21149 BUMP_MIB(&ipst->ips_ip_mib, 21150 ipIfStatsOutNoRoutes); 21151 goto drop_pkt; 21152 } 21153 } 21154 if (xmit_ill != NULL) { 21155 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21156 if (ipif == NULL) { 21157 ip1dbg(("ip_wput: No ipif for " 21158 "IP_XMIT_IF\n")); 21159 BUMP_MIB(&ipst->ips_ip_mib, 21160 ipIfStatsOutNoRoutes); 21161 goto drop_pkt; 21162 } 21163 } else if (ipif == NULL || ipif->ipif_isv6) { 21164 /* 21165 * We must do this ipif determination here 21166 * else we could pass through ip_newroute 21167 * and come back here without the conn context. 21168 * 21169 * Note: we do late binding i.e. we bind to 21170 * the interface when the first packet is sent. 21171 * For performance reasons we do not rebind on 21172 * each packet but keep the binding until the 21173 * next IP_MULTICAST_IF option. 21174 * 21175 * conn_multicast_{ipif,ill} are shared between 21176 * IPv4 and IPv6 and AF_INET6 sockets can 21177 * send both IPv4 and IPv6 packets. Hence 21178 * we have to check that "isv6" matches above. 21179 */ 21180 if (ipif != NULL) 21181 ipif_refrele(ipif); 21182 ipif = ipif_lookup_group(dst, zoneid, ipst); 21183 if (ipif == NULL) { 21184 ip1dbg(("ip_wput: No ipif for " 21185 "multicast\n")); 21186 BUMP_MIB(&ipst->ips_ip_mib, 21187 ipIfStatsOutNoRoutes); 21188 goto drop_pkt; 21189 } 21190 err = conn_set_held_ipif(connp, 21191 &connp->conn_multicast_ipif, ipif); 21192 if (err == IPIF_LOOKUP_FAILED) { 21193 ipif_refrele(ipif); 21194 ip1dbg(("ip_wput: No ipif for " 21195 "multicast\n")); 21196 BUMP_MIB(&ipst->ips_ip_mib, 21197 ipIfStatsOutNoRoutes); 21198 goto drop_pkt; 21199 } 21200 } 21201 } 21202 ASSERT(!ipif->ipif_isv6); 21203 /* 21204 * As we may lose the conn by the time we reach ip_wput_ire, 21205 * we copy conn_multicast_loop and conn_dontroute on to an 21206 * ipsec_out. In case if this datagram goes out secure, 21207 * we need the ill_index also. Copy that also into the 21208 * ipsec_out. 21209 */ 21210 if (mctl_present) { 21211 io = (ipsec_out_t *)first_mp->b_rptr; 21212 ASSERT(first_mp->b_datap->db_type == M_CTL); 21213 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21214 } else { 21215 ASSERT(mp == first_mp); 21216 if ((first_mp = allocb(sizeof (ipsec_info_t), 21217 BPRI_HI)) == NULL) { 21218 ipif_refrele(ipif); 21219 first_mp = mp; 21220 goto discard_pkt; 21221 } 21222 first_mp->b_datap->db_type = M_CTL; 21223 first_mp->b_wptr += sizeof (ipsec_info_t); 21224 /* ipsec_out_secure is B_FALSE now */ 21225 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21226 io = (ipsec_out_t *)first_mp->b_rptr; 21227 io->ipsec_out_type = IPSEC_OUT; 21228 io->ipsec_out_len = sizeof (ipsec_out_t); 21229 io->ipsec_out_use_global_policy = B_TRUE; 21230 io->ipsec_out_ns = ipst->ips_netstack; 21231 first_mp->b_cont = mp; 21232 mctl_present = B_TRUE; 21233 } 21234 if (attach_ill != NULL) { 21235 ASSERT(attach_ill == ipif->ipif_ill); 21236 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21237 21238 /* 21239 * Check if we need an ire that will not be 21240 * looked up by anybody else i.e. HIDDEN. 21241 */ 21242 if (ill_is_probeonly(attach_ill)) { 21243 match_flags |= MATCH_IRE_MARK_HIDDEN; 21244 } 21245 io->ipsec_out_ill_index = 21246 attach_ill->ill_phyint->phyint_ifindex; 21247 io->ipsec_out_attach_if = B_TRUE; 21248 } else { 21249 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21250 io->ipsec_out_ill_index = 21251 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21252 } 21253 if (connp != NULL) { 21254 io->ipsec_out_multicast_loop = 21255 connp->conn_multicast_loop; 21256 io->ipsec_out_dontroute = connp->conn_dontroute; 21257 io->ipsec_out_zoneid = connp->conn_zoneid; 21258 } 21259 /* 21260 * If the application uses IP_MULTICAST_IF with 21261 * different logical addresses of the same ILL, we 21262 * need to make sure that the soruce address of 21263 * the packet matches the logical IP address used 21264 * in the option. We do it by initializing ipha_src 21265 * here. This should keep IPSEC also happy as 21266 * when we return from IPSEC processing, we don't 21267 * have to worry about getting the right address on 21268 * the packet. Thus it is sufficient to look for 21269 * IRE_CACHE using MATCH_IRE_ILL rathen than 21270 * MATCH_IRE_IPIF. 21271 * 21272 * NOTE : We need to do it for non-secure case also as 21273 * this might go out secure if there is a global policy 21274 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21275 * address, the source should be initialized already and 21276 * hence we won't be initializing here. 21277 * 21278 * As we do not have the ire yet, it is possible that 21279 * we set the source address here and then later discover 21280 * that the ire implies the source address to be assigned 21281 * through the RTF_SETSRC flag. 21282 * In that case, the setsrc variable will remind us 21283 * that overwritting the source address by the one 21284 * of the RTF_SETSRC-flagged ire is allowed. 21285 */ 21286 if (ipha->ipha_src == INADDR_ANY && 21287 (connp == NULL || !connp->conn_unspec_src)) { 21288 ipha->ipha_src = ipif->ipif_src_addr; 21289 setsrc = RTF_SETSRC; 21290 } 21291 /* 21292 * Find an IRE which matches the destination and the outgoing 21293 * queue (i.e. the outgoing interface.) 21294 * For loopback use a unicast IP address for 21295 * the ire lookup. 21296 */ 21297 if (ipif->ipif_ill->ill_phyint->phyint_flags & 21298 PHYI_LOOPBACK) { 21299 dst = ipif->ipif_lcl_addr; 21300 } 21301 /* 21302 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 21303 * We don't need to lookup ire in ctable as the packet 21304 * needs to be sent to the destination through the specified 21305 * ill irrespective of ires in the cache table. 21306 */ 21307 ire = NULL; 21308 if (xmit_ill == NULL) { 21309 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21310 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21311 } 21312 21313 /* 21314 * refrele attach_ill as its not needed anymore. 21315 */ 21316 if (attach_ill != NULL) { 21317 ill_refrele(attach_ill); 21318 attach_ill = NULL; 21319 } 21320 21321 if (ire == NULL) { 21322 /* 21323 * Multicast loopback and multicast forwarding is 21324 * done in ip_wput_ire. 21325 * 21326 * Mark this packet to make it be delivered to 21327 * ip_wput_ire after the new ire has been 21328 * created. 21329 * 21330 * The call to ip_newroute_ipif takes into account 21331 * the setsrc reminder. In any case, we take care 21332 * of the RTF_MULTIRT flag. 21333 */ 21334 mp->b_prev = mp->b_next = NULL; 21335 if (xmit_ill == NULL || 21336 xmit_ill->ill_ipif_up_count > 0) { 21337 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21338 setsrc | RTF_MULTIRT, zoneid, infop); 21339 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21340 "ip_wput_end: q %p (%S)", q, "noire"); 21341 } else { 21342 freemsg(first_mp); 21343 } 21344 ipif_refrele(ipif); 21345 if (xmit_ill != NULL) 21346 ill_refrele(xmit_ill); 21347 if (need_decref) 21348 CONN_DEC_REF(connp); 21349 return; 21350 } 21351 21352 ipif_refrele(ipif); 21353 ipif = NULL; 21354 ASSERT(xmit_ill == NULL); 21355 21356 /* 21357 * Honor the RTF_SETSRC flag for multicast packets, 21358 * if allowed by the setsrc reminder. 21359 */ 21360 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21361 ipha->ipha_src = ire->ire_src_addr; 21362 } 21363 21364 /* 21365 * Unconditionally force the TTL to 1 for 21366 * multirouted multicast packets: 21367 * multirouted multicast should not cross 21368 * multicast routers. 21369 */ 21370 if (ire->ire_flags & RTF_MULTIRT) { 21371 if (ipha->ipha_ttl > 1) { 21372 ip2dbg(("ip_wput: forcing multicast " 21373 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21374 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21375 ipha->ipha_ttl = 1; 21376 } 21377 } 21378 } else { 21379 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21380 if ((ire != NULL) && (ire->ire_type & 21381 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21382 ignore_dontroute = B_TRUE; 21383 ignore_nexthop = B_TRUE; 21384 } 21385 if (ire != NULL) { 21386 ire_refrele(ire); 21387 ire = NULL; 21388 } 21389 /* 21390 * Guard against coming in from arp in which case conn is NULL. 21391 * Also guard against non M_DATA with dontroute set but 21392 * destined to local, loopback or broadcast addresses. 21393 */ 21394 if (connp != NULL && connp->conn_dontroute && 21395 !ignore_dontroute) { 21396 dontroute: 21397 /* 21398 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21399 * routing protocols from seeing false direct 21400 * connectivity. 21401 */ 21402 ipha->ipha_ttl = 1; 21403 /* 21404 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21405 * along with SO_DONTROUTE, higher precedence is 21406 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21407 */ 21408 if (connp->conn_xmit_if_ill == NULL) { 21409 /* If suitable ipif not found, drop packet */ 21410 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21411 ipst); 21412 if (dst_ipif == NULL) { 21413 ip1dbg(("ip_wput: no route for " 21414 "dst using SO_DONTROUTE\n")); 21415 BUMP_MIB(&ipst->ips_ip_mib, 21416 ipIfStatsOutNoRoutes); 21417 mp->b_prev = mp->b_next = NULL; 21418 if (first_mp == NULL) 21419 first_mp = mp; 21420 goto drop_pkt; 21421 } else { 21422 /* 21423 * If suitable ipif has been found, set 21424 * xmit_ill to the corresponding 21425 * ipif_ill because we'll be following 21426 * the IP_XMIT_IF logic. 21427 */ 21428 ASSERT(xmit_ill == NULL); 21429 xmit_ill = dst_ipif->ipif_ill; 21430 mutex_enter(&xmit_ill->ill_lock); 21431 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21432 mutex_exit(&xmit_ill->ill_lock); 21433 xmit_ill = NULL; 21434 ipif_refrele(dst_ipif); 21435 ip1dbg(("ip_wput: no route for" 21436 " dst using" 21437 " SO_DONTROUTE\n")); 21438 BUMP_MIB(&ipst->ips_ip_mib, 21439 ipIfStatsOutNoRoutes); 21440 mp->b_prev = mp->b_next = NULL; 21441 if (first_mp == NULL) 21442 first_mp = mp; 21443 goto drop_pkt; 21444 } 21445 ill_refhold_locked(xmit_ill); 21446 mutex_exit(&xmit_ill->ill_lock); 21447 ipif_refrele(dst_ipif); 21448 } 21449 } 21450 21451 } 21452 /* 21453 * If we are bound to IPIF_NOFAILOVER address, look for 21454 * an IRE_CACHE matching the ill. 21455 */ 21456 send_from_ill: 21457 if (attach_ill != NULL) { 21458 ipif_t *attach_ipif; 21459 21460 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21461 21462 /* 21463 * Check if we need an ire that will not be 21464 * looked up by anybody else i.e. HIDDEN. 21465 */ 21466 if (ill_is_probeonly(attach_ill)) { 21467 match_flags |= MATCH_IRE_MARK_HIDDEN; 21468 } 21469 21470 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21471 if (attach_ipif == NULL) { 21472 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21473 goto discard_pkt; 21474 } 21475 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21476 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21477 ipif_refrele(attach_ipif); 21478 } else if (xmit_ill != NULL || (connp != NULL && 21479 connp->conn_xmit_if_ill != NULL)) { 21480 /* 21481 * Mark this packet as originated locally 21482 */ 21483 mp->b_prev = mp->b_next = NULL; 21484 /* 21485 * xmit_ill could be NULL if SO_DONTROUTE 21486 * is also set. 21487 */ 21488 if (xmit_ill == NULL) { 21489 xmit_ill = conn_get_held_ill(connp, 21490 &connp->conn_xmit_if_ill, &err); 21491 if (err == ILL_LOOKUP_FAILED) { 21492 BUMP_MIB(&ipst->ips_ip_mib, 21493 ipIfStatsOutDiscards); 21494 if (need_decref) 21495 CONN_DEC_REF(connp); 21496 freemsg(first_mp); 21497 return; 21498 } 21499 if (xmit_ill == NULL) { 21500 if (connp->conn_dontroute) 21501 goto dontroute; 21502 goto send_from_ill; 21503 } 21504 } 21505 /* 21506 * Could be SO_DONTROUTE case also. 21507 * check at least one interface is UP as 21508 * specified by this ILL 21509 */ 21510 if (xmit_ill->ill_ipif_up_count > 0) { 21511 ipif_t *ipif; 21512 21513 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21514 if (ipif == NULL) { 21515 ip1dbg(("ip_output: " 21516 "xmit_ill NULL ipif\n")); 21517 goto drop_pkt; 21518 } 21519 /* 21520 * Look for a ire that is part of the group, 21521 * if found use it else call ip_newroute_ipif. 21522 * IPCL_ZONEID is not used for matching because 21523 * IP_ALLZONES option is valid only when the 21524 * ill is accessible from all zones i.e has a 21525 * valid ipif in all zones. 21526 */ 21527 match_flags = MATCH_IRE_ILL_GROUP | 21528 MATCH_IRE_SECATTR; 21529 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21530 MBLK_GETLABEL(mp), match_flags, ipst); 21531 /* 21532 * If an ire exists use it or else create 21533 * an ire but don't add it to the cache. 21534 * Adding an ire may cause issues with 21535 * asymmetric routing. 21536 * In case of multiroute always act as if 21537 * ire does not exist. 21538 */ 21539 if (ire == NULL || 21540 ire->ire_flags & RTF_MULTIRT) { 21541 if (ire != NULL) 21542 ire_refrele(ire); 21543 ip_newroute_ipif(q, first_mp, ipif, 21544 dst, connp, 0, zoneid, infop); 21545 ipif_refrele(ipif); 21546 ip1dbg(("ip_wput: ip_unicast_if\n")); 21547 ill_refrele(xmit_ill); 21548 if (need_decref) 21549 CONN_DEC_REF(connp); 21550 return; 21551 } 21552 ipif_refrele(ipif); 21553 } else { 21554 goto drop_pkt; 21555 } 21556 } else if (ip_nexthop || (connp != NULL && 21557 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21558 if (!ip_nexthop) { 21559 ip_nexthop = B_TRUE; 21560 nexthop_addr = connp->conn_nexthop_v4; 21561 } 21562 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21563 MATCH_IRE_GW; 21564 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21565 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21566 } else { 21567 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21568 ipst); 21569 } 21570 if (!ire) { 21571 /* 21572 * Make sure we don't load spread if this 21573 * is IPIF_NOFAILOVER case. 21574 */ 21575 if ((attach_ill != NULL) || 21576 (ip_nexthop && !ignore_nexthop)) { 21577 if (mctl_present) { 21578 io = (ipsec_out_t *)first_mp->b_rptr; 21579 ASSERT(first_mp->b_datap->db_type == 21580 M_CTL); 21581 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21582 } else { 21583 ASSERT(mp == first_mp); 21584 first_mp = allocb( 21585 sizeof (ipsec_info_t), BPRI_HI); 21586 if (first_mp == NULL) { 21587 first_mp = mp; 21588 goto discard_pkt; 21589 } 21590 first_mp->b_datap->db_type = M_CTL; 21591 first_mp->b_wptr += 21592 sizeof (ipsec_info_t); 21593 /* ipsec_out_secure is B_FALSE now */ 21594 bzero(first_mp->b_rptr, 21595 sizeof (ipsec_info_t)); 21596 io = (ipsec_out_t *)first_mp->b_rptr; 21597 io->ipsec_out_type = IPSEC_OUT; 21598 io->ipsec_out_len = 21599 sizeof (ipsec_out_t); 21600 io->ipsec_out_use_global_policy = 21601 B_TRUE; 21602 io->ipsec_out_ns = ipst->ips_netstack; 21603 first_mp->b_cont = mp; 21604 mctl_present = B_TRUE; 21605 } 21606 if (attach_ill != NULL) { 21607 io->ipsec_out_ill_index = attach_ill-> 21608 ill_phyint->phyint_ifindex; 21609 io->ipsec_out_attach_if = B_TRUE; 21610 } else { 21611 io->ipsec_out_ip_nexthop = ip_nexthop; 21612 io->ipsec_out_nexthop_addr = 21613 nexthop_addr; 21614 } 21615 } 21616 noirefound: 21617 /* 21618 * Mark this packet as having originated on 21619 * this machine. This will be noted in 21620 * ire_add_then_send, which needs to know 21621 * whether to run it back through ip_wput or 21622 * ip_rput following successful resolution. 21623 */ 21624 mp->b_prev = NULL; 21625 mp->b_next = NULL; 21626 ip_newroute(q, first_mp, dst, NULL, connp, zoneid, 21627 ipst); 21628 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21629 "ip_wput_end: q %p (%S)", q, "newroute"); 21630 if (attach_ill != NULL) 21631 ill_refrele(attach_ill); 21632 if (xmit_ill != NULL) 21633 ill_refrele(xmit_ill); 21634 if (need_decref) 21635 CONN_DEC_REF(connp); 21636 return; 21637 } 21638 } 21639 21640 /* We now know where we are going with it. */ 21641 21642 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21643 "ip_wput_end: q %p (%S)", q, "end"); 21644 21645 /* 21646 * Check if the ire has the RTF_MULTIRT flag, inherited 21647 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21648 */ 21649 if (ire->ire_flags & RTF_MULTIRT) { 21650 /* 21651 * Force the TTL of multirouted packets if required. 21652 * The TTL of such packets is bounded by the 21653 * ip_multirt_ttl ndd variable. 21654 */ 21655 if ((ipst->ips_ip_multirt_ttl > 0) && 21656 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21657 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21658 "(was %d), dst 0x%08x\n", 21659 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21660 ntohl(ire->ire_addr))); 21661 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21662 } 21663 /* 21664 * At this point, we check to see if there are any pending 21665 * unresolved routes. ire_multirt_resolvable() 21666 * checks in O(n) that all IRE_OFFSUBNET ire 21667 * entries for the packet's destination and 21668 * flagged RTF_MULTIRT are currently resolved. 21669 * If some remain unresolved, we make a copy 21670 * of the current message. It will be used 21671 * to initiate additional route resolutions. 21672 */ 21673 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21674 MBLK_GETLABEL(first_mp), ipst); 21675 ip2dbg(("ip_wput[noirefound]: ire %p, " 21676 "multirt_need_resolve %d, first_mp %p\n", 21677 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21678 if (multirt_need_resolve) { 21679 copy_mp = copymsg(first_mp); 21680 if (copy_mp != NULL) { 21681 MULTIRT_DEBUG_TAG(copy_mp); 21682 } 21683 } 21684 } 21685 21686 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21687 /* 21688 * Try to resolve another multiroute if 21689 * ire_multirt_resolvable() deemed it necessary. 21690 * At this point, we need to distinguish 21691 * multicasts from other packets. For multicasts, 21692 * we call ip_newroute_ipif() and request that both 21693 * multirouting and setsrc flags are checked. 21694 */ 21695 if (copy_mp != NULL) { 21696 if (CLASSD(dst)) { 21697 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21698 if (ipif) { 21699 ASSERT(infop->ip_opt_ill_index == 0); 21700 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21701 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21702 ipif_refrele(ipif); 21703 } else { 21704 MULTIRT_DEBUG_UNTAG(copy_mp); 21705 freemsg(copy_mp); 21706 copy_mp = NULL; 21707 } 21708 } else { 21709 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 21710 } 21711 } 21712 if (attach_ill != NULL) 21713 ill_refrele(attach_ill); 21714 if (xmit_ill != NULL) 21715 ill_refrele(xmit_ill); 21716 if (need_decref) 21717 CONN_DEC_REF(connp); 21718 return; 21719 21720 icmp_parameter_problem: 21721 /* could not have originated externally */ 21722 ASSERT(mp->b_prev == NULL); 21723 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21724 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21725 /* it's the IP header length that's in trouble */ 21726 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21727 first_mp = NULL; 21728 } 21729 21730 discard_pkt: 21731 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21732 drop_pkt: 21733 ip1dbg(("ip_wput: dropped packet\n")); 21734 if (ire != NULL) 21735 ire_refrele(ire); 21736 if (need_decref) 21737 CONN_DEC_REF(connp); 21738 freemsg(first_mp); 21739 if (attach_ill != NULL) 21740 ill_refrele(attach_ill); 21741 if (xmit_ill != NULL) 21742 ill_refrele(xmit_ill); 21743 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21744 "ip_wput_end: q %p (%S)", q, "droppkt"); 21745 } 21746 21747 /* 21748 * If this is a conn_t queue, then we pass in the conn. This includes the 21749 * zoneid. 21750 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21751 * in which case we use the global zoneid since those are all part of 21752 * the global zone. 21753 */ 21754 void 21755 ip_wput(queue_t *q, mblk_t *mp) 21756 { 21757 if (CONN_Q(q)) 21758 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21759 else 21760 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21761 } 21762 21763 /* 21764 * 21765 * The following rules must be observed when accessing any ipif or ill 21766 * that has been cached in the conn. Typically conn_nofailover_ill, 21767 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21768 * 21769 * Access: The ipif or ill pointed to from the conn can be accessed under 21770 * the protection of the conn_lock or after it has been refheld under the 21771 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21772 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21773 * The reason for this is that a concurrent unplumb could actually be 21774 * cleaning up these cached pointers by walking the conns and might have 21775 * finished cleaning up the conn in question. The macros check that an 21776 * unplumb has not yet started on the ipif or ill. 21777 * 21778 * Caching: An ipif or ill pointer may be cached in the conn only after 21779 * making sure that an unplumb has not started. So the caching is done 21780 * while holding both the conn_lock and the ill_lock and after using the 21781 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21782 * flag before starting the cleanup of conns. 21783 * 21784 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21785 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21786 * or a reference to the ipif or a reference to an ire that references the 21787 * ipif. An ipif does not change its ill except for failover/failback. Since 21788 * failover/failback happens only after bringing down the ipif and making sure 21789 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21790 * the above holds. 21791 */ 21792 ipif_t * 21793 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21794 { 21795 ipif_t *ipif; 21796 ill_t *ill; 21797 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21798 21799 *err = 0; 21800 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21801 mutex_enter(&connp->conn_lock); 21802 ipif = *ipifp; 21803 if (ipif != NULL) { 21804 ill = ipif->ipif_ill; 21805 mutex_enter(&ill->ill_lock); 21806 if (IPIF_CAN_LOOKUP(ipif)) { 21807 ipif_refhold_locked(ipif); 21808 mutex_exit(&ill->ill_lock); 21809 mutex_exit(&connp->conn_lock); 21810 rw_exit(&ipst->ips_ill_g_lock); 21811 return (ipif); 21812 } else { 21813 *err = IPIF_LOOKUP_FAILED; 21814 } 21815 mutex_exit(&ill->ill_lock); 21816 } 21817 mutex_exit(&connp->conn_lock); 21818 rw_exit(&ipst->ips_ill_g_lock); 21819 return (NULL); 21820 } 21821 21822 ill_t * 21823 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21824 { 21825 ill_t *ill; 21826 21827 *err = 0; 21828 mutex_enter(&connp->conn_lock); 21829 ill = *illp; 21830 if (ill != NULL) { 21831 mutex_enter(&ill->ill_lock); 21832 if (ILL_CAN_LOOKUP(ill)) { 21833 ill_refhold_locked(ill); 21834 mutex_exit(&ill->ill_lock); 21835 mutex_exit(&connp->conn_lock); 21836 return (ill); 21837 } else { 21838 *err = ILL_LOOKUP_FAILED; 21839 } 21840 mutex_exit(&ill->ill_lock); 21841 } 21842 mutex_exit(&connp->conn_lock); 21843 return (NULL); 21844 } 21845 21846 static int 21847 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21848 { 21849 ill_t *ill; 21850 21851 ill = ipif->ipif_ill; 21852 mutex_enter(&connp->conn_lock); 21853 mutex_enter(&ill->ill_lock); 21854 if (IPIF_CAN_LOOKUP(ipif)) { 21855 *ipifp = ipif; 21856 mutex_exit(&ill->ill_lock); 21857 mutex_exit(&connp->conn_lock); 21858 return (0); 21859 } 21860 mutex_exit(&ill->ill_lock); 21861 mutex_exit(&connp->conn_lock); 21862 return (IPIF_LOOKUP_FAILED); 21863 } 21864 21865 /* 21866 * This is called if the outbound datagram needs fragmentation. 21867 * 21868 * NOTE : This function does not ire_refrele the ire argument passed in. 21869 */ 21870 static void 21871 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21872 ip_stack_t *ipst) 21873 { 21874 ipha_t *ipha; 21875 mblk_t *mp; 21876 uint32_t v_hlen_tos_len; 21877 uint32_t max_frag; 21878 uint32_t frag_flag; 21879 boolean_t dont_use; 21880 21881 if (ipsec_mp->b_datap->db_type == M_CTL) { 21882 mp = ipsec_mp->b_cont; 21883 } else { 21884 mp = ipsec_mp; 21885 } 21886 21887 ipha = (ipha_t *)mp->b_rptr; 21888 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21889 21890 #ifdef _BIG_ENDIAN 21891 #define V_HLEN (v_hlen_tos_len >> 24) 21892 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21893 #else 21894 #define V_HLEN (v_hlen_tos_len & 0xFF) 21895 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21896 #endif 21897 21898 #ifndef SPEED_BEFORE_SAFETY 21899 /* 21900 * Check that ipha_length is consistent with 21901 * the mblk length 21902 */ 21903 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21904 ip0dbg(("Packet length mismatch: %d, %ld\n", 21905 LENGTH, msgdsize(mp))); 21906 freemsg(ipsec_mp); 21907 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21908 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21909 "packet length mismatch"); 21910 return; 21911 } 21912 #endif 21913 /* 21914 * Don't use frag_flag if pre-built packet or source 21915 * routed or if multicast (since multicast packets do not solicit 21916 * ICMP "packet too big" messages). Get the values of 21917 * max_frag and frag_flag atomically by acquiring the 21918 * ire_lock. 21919 */ 21920 mutex_enter(&ire->ire_lock); 21921 max_frag = ire->ire_max_frag; 21922 frag_flag = ire->ire_frag_flag; 21923 mutex_exit(&ire->ire_lock); 21924 21925 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21926 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21927 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21928 21929 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21930 (dont_use ? 0 : frag_flag), zoneid, ipst); 21931 } 21932 21933 /* 21934 * Used for deciding the MSS size for the upper layer. Thus 21935 * we need to check the outbound policy values in the conn. 21936 */ 21937 int 21938 conn_ipsec_length(conn_t *connp) 21939 { 21940 ipsec_latch_t *ipl; 21941 21942 ipl = connp->conn_latch; 21943 if (ipl == NULL) 21944 return (0); 21945 21946 if (ipl->ipl_out_policy == NULL) 21947 return (0); 21948 21949 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21950 } 21951 21952 /* 21953 * Returns an estimate of the IPSEC headers size. This is used if 21954 * we don't want to call into IPSEC to get the exact size. 21955 */ 21956 int 21957 ipsec_out_extra_length(mblk_t *ipsec_mp) 21958 { 21959 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21960 ipsec_action_t *a; 21961 21962 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21963 if (!io->ipsec_out_secure) 21964 return (0); 21965 21966 a = io->ipsec_out_act; 21967 21968 if (a == NULL) { 21969 ASSERT(io->ipsec_out_policy != NULL); 21970 a = io->ipsec_out_policy->ipsp_act; 21971 } 21972 ASSERT(a != NULL); 21973 21974 return (a->ipa_ovhd); 21975 } 21976 21977 /* 21978 * Returns an estimate of the IPSEC headers size. This is used if 21979 * we don't want to call into IPSEC to get the exact size. 21980 */ 21981 int 21982 ipsec_in_extra_length(mblk_t *ipsec_mp) 21983 { 21984 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21985 ipsec_action_t *a; 21986 21987 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21988 21989 a = ii->ipsec_in_action; 21990 return (a == NULL ? 0 : a->ipa_ovhd); 21991 } 21992 21993 /* 21994 * If there are any source route options, return the true final 21995 * destination. Otherwise, return the destination. 21996 */ 21997 ipaddr_t 21998 ip_get_dst(ipha_t *ipha) 21999 { 22000 ipoptp_t opts; 22001 uchar_t *opt; 22002 uint8_t optval; 22003 uint8_t optlen; 22004 ipaddr_t dst; 22005 uint32_t off; 22006 22007 dst = ipha->ipha_dst; 22008 22009 if (IS_SIMPLE_IPH(ipha)) 22010 return (dst); 22011 22012 for (optval = ipoptp_first(&opts, ipha); 22013 optval != IPOPT_EOL; 22014 optval = ipoptp_next(&opts)) { 22015 opt = opts.ipoptp_cur; 22016 optlen = opts.ipoptp_len; 22017 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22018 switch (optval) { 22019 case IPOPT_SSRR: 22020 case IPOPT_LSRR: 22021 off = opt[IPOPT_OFFSET]; 22022 /* 22023 * If one of the conditions is true, it means 22024 * end of options and dst already has the right 22025 * value. 22026 */ 22027 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22028 off = optlen - IP_ADDR_LEN; 22029 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22030 } 22031 return (dst); 22032 default: 22033 break; 22034 } 22035 } 22036 22037 return (dst); 22038 } 22039 22040 mblk_t * 22041 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22042 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22043 { 22044 ipsec_out_t *io; 22045 mblk_t *first_mp; 22046 boolean_t policy_present; 22047 ip_stack_t *ipst; 22048 ipsec_stack_t *ipss; 22049 22050 ASSERT(ire != NULL); 22051 ipst = ire->ire_ipst; 22052 ipss = ipst->ips_netstack->netstack_ipsec; 22053 22054 first_mp = mp; 22055 if (mp->b_datap->db_type == M_CTL) { 22056 io = (ipsec_out_t *)first_mp->b_rptr; 22057 /* 22058 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22059 * 22060 * 1) There is per-socket policy (including cached global 22061 * policy) or a policy on the IP-in-IP tunnel. 22062 * 2) There is no per-socket policy, but it is 22063 * a multicast packet that needs to go out 22064 * on a specific interface. This is the case 22065 * where (ip_wput and ip_wput_multicast) attaches 22066 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22067 * 22068 * In case (2) we check with global policy to 22069 * see if there is a match and set the ill_index 22070 * appropriately so that we can lookup the ire 22071 * properly in ip_wput_ipsec_out. 22072 */ 22073 22074 /* 22075 * ipsec_out_use_global_policy is set to B_FALSE 22076 * in ipsec_in_to_out(). Refer to that function for 22077 * details. 22078 */ 22079 if ((io->ipsec_out_latch == NULL) && 22080 (io->ipsec_out_use_global_policy)) { 22081 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22082 ire, connp, unspec_src, zoneid)); 22083 } 22084 if (!io->ipsec_out_secure) { 22085 /* 22086 * If this is not a secure packet, drop 22087 * the IPSEC_OUT mp and treat it as a clear 22088 * packet. This happens when we are sending 22089 * a ICMP reply back to a clear packet. See 22090 * ipsec_in_to_out() for details. 22091 */ 22092 mp = first_mp->b_cont; 22093 freeb(first_mp); 22094 } 22095 return (mp); 22096 } 22097 /* 22098 * See whether we need to attach a global policy here. We 22099 * don't depend on the conn (as it could be null) for deciding 22100 * what policy this datagram should go through because it 22101 * should have happened in ip_wput if there was some 22102 * policy. This normally happens for connections which are not 22103 * fully bound preventing us from caching policies in 22104 * ip_bind. Packets coming from the TCP listener/global queue 22105 * - which are non-hard_bound - could also be affected by 22106 * applying policy here. 22107 * 22108 * If this packet is coming from tcp global queue or listener, 22109 * we will be applying policy here. This may not be *right* 22110 * if these packets are coming from the detached connection as 22111 * it could have gone in clear before. This happens only if a 22112 * TCP connection started when there is no policy and somebody 22113 * added policy before it became detached. Thus packets of the 22114 * detached connection could go out secure and the other end 22115 * would drop it because it will be expecting in clear. The 22116 * converse is not true i.e if somebody starts a TCP 22117 * connection and deletes the policy, all the packets will 22118 * still go out with the policy that existed before deleting 22119 * because ip_unbind sends up policy information which is used 22120 * by TCP on subsequent ip_wputs. The right solution is to fix 22121 * TCP to attach a dummy IPSEC_OUT and set 22122 * ipsec_out_use_global_policy to B_FALSE. As this might 22123 * affect performance for normal cases, we are not doing it. 22124 * Thus, set policy before starting any TCP connections. 22125 * 22126 * NOTE - We might apply policy even for a hard bound connection 22127 * - for which we cached policy in ip_bind - if somebody added 22128 * global policy after we inherited the policy in ip_bind. 22129 * This means that the packets that were going out in clear 22130 * previously would start going secure and hence get dropped 22131 * on the other side. To fix this, TCP attaches a dummy 22132 * ipsec_out and make sure that we don't apply global policy. 22133 */ 22134 if (ipha != NULL) 22135 policy_present = ipss->ipsec_outbound_v4_policy_present; 22136 else 22137 policy_present = ipss->ipsec_outbound_v6_policy_present; 22138 if (!policy_present) 22139 return (mp); 22140 22141 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22142 zoneid)); 22143 } 22144 22145 ire_t * 22146 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 22147 { 22148 ipaddr_t addr; 22149 ire_t *save_ire; 22150 irb_t *irb; 22151 ill_group_t *illgrp; 22152 int err; 22153 22154 save_ire = ire; 22155 addr = ire->ire_addr; 22156 22157 ASSERT(ire->ire_type == IRE_BROADCAST); 22158 22159 illgrp = connp->conn_outgoing_ill->ill_group; 22160 if (illgrp == NULL) { 22161 *conn_outgoing_ill = conn_get_held_ill(connp, 22162 &connp->conn_outgoing_ill, &err); 22163 if (err == ILL_LOOKUP_FAILED) { 22164 ire_refrele(save_ire); 22165 return (NULL); 22166 } 22167 return (save_ire); 22168 } 22169 /* 22170 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22171 * If it is part of the group, we need to send on the ire 22172 * that has been cleared of IRE_MARK_NORECV and that belongs 22173 * to this group. This is okay as IP_BOUND_IF really means 22174 * any ill in the group. We depend on the fact that the 22175 * first ire in the group is always cleared of IRE_MARK_NORECV 22176 * if such an ire exists. This is possible only if you have 22177 * at least one ill in the group that has not failed. 22178 * 22179 * First get to the ire that matches the address and group. 22180 * 22181 * We don't look for an ire with a matching zoneid because a given zone 22182 * won't always have broadcast ires on all ills in the group. 22183 */ 22184 irb = ire->ire_bucket; 22185 rw_enter(&irb->irb_lock, RW_READER); 22186 if (ire->ire_marks & IRE_MARK_NORECV) { 22187 /* 22188 * If the current zone only has an ire broadcast for this 22189 * address marked NORECV, the ire we want is ahead in the 22190 * bucket, so we look it up deliberately ignoring the zoneid. 22191 */ 22192 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22193 if (ire->ire_addr != addr) 22194 continue; 22195 /* skip over deleted ires */ 22196 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22197 continue; 22198 } 22199 } 22200 while (ire != NULL) { 22201 /* 22202 * If a new interface is coming up, we could end up 22203 * seeing the loopback ire and the non-loopback ire 22204 * may not have been added yet. So check for ire_stq 22205 */ 22206 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22207 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22208 break; 22209 } 22210 ire = ire->ire_next; 22211 } 22212 if (ire != NULL && ire->ire_addr == addr && 22213 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22214 IRE_REFHOLD(ire); 22215 rw_exit(&irb->irb_lock); 22216 ire_refrele(save_ire); 22217 *conn_outgoing_ill = ire_to_ill(ire); 22218 /* 22219 * Refhold the ill to make the conn_outgoing_ill 22220 * independent of the ire. ip_wput_ire goes in a loop 22221 * and may refrele the ire. Since we have an ire at this 22222 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22223 */ 22224 ill_refhold(*conn_outgoing_ill); 22225 return (ire); 22226 } 22227 rw_exit(&irb->irb_lock); 22228 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22229 /* 22230 * If we can't find a suitable ire, return the original ire. 22231 */ 22232 return (save_ire); 22233 } 22234 22235 /* 22236 * This function does the ire_refrele of the ire passed in as the 22237 * argument. As this function looks up more ires i.e broadcast ires, 22238 * it needs to REFRELE them. Currently, for simplicity we don't 22239 * differentiate the one passed in and looked up here. We always 22240 * REFRELE. 22241 * IPQoS Notes: 22242 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22243 * IPSec packets are done in ipsec_out_process. 22244 * 22245 */ 22246 void 22247 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22248 zoneid_t zoneid) 22249 { 22250 ipha_t *ipha; 22251 #define rptr ((uchar_t *)ipha) 22252 queue_t *stq; 22253 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22254 uint32_t v_hlen_tos_len; 22255 uint32_t ttl_protocol; 22256 ipaddr_t src; 22257 ipaddr_t dst; 22258 uint32_t cksum; 22259 ipaddr_t orig_src; 22260 ire_t *ire1; 22261 mblk_t *next_mp; 22262 uint_t hlen; 22263 uint16_t *up; 22264 uint32_t max_frag = ire->ire_max_frag; 22265 ill_t *ill = ire_to_ill(ire); 22266 int clusterwide; 22267 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22268 int ipsec_len; 22269 mblk_t *first_mp; 22270 ipsec_out_t *io; 22271 boolean_t conn_dontroute; /* conn value for multicast */ 22272 boolean_t conn_multicast_loop; /* conn value for multicast */ 22273 boolean_t multicast_forward; /* Should we forward ? */ 22274 boolean_t unspec_src; 22275 ill_t *conn_outgoing_ill = NULL; 22276 ill_t *ire_ill; 22277 ill_t *ire1_ill; 22278 ill_t *out_ill; 22279 uint32_t ill_index = 0; 22280 boolean_t multirt_send = B_FALSE; 22281 int err; 22282 ipxmit_state_t pktxmit_state; 22283 ip_stack_t *ipst = ire->ire_ipst; 22284 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22285 22286 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22287 "ip_wput_ire_start: q %p", q); 22288 22289 multicast_forward = B_FALSE; 22290 unspec_src = (connp != NULL && connp->conn_unspec_src); 22291 22292 if (ire->ire_flags & RTF_MULTIRT) { 22293 /* 22294 * Multirouting case. The bucket where ire is stored 22295 * probably holds other RTF_MULTIRT flagged ire 22296 * to the destination. In this call to ip_wput_ire, 22297 * we attempt to send the packet through all 22298 * those ires. Thus, we first ensure that ire is the 22299 * first RTF_MULTIRT ire in the bucket, 22300 * before walking the ire list. 22301 */ 22302 ire_t *first_ire; 22303 irb_t *irb = ire->ire_bucket; 22304 ASSERT(irb != NULL); 22305 22306 /* Make sure we do not omit any multiroute ire. */ 22307 IRB_REFHOLD(irb); 22308 for (first_ire = irb->irb_ire; 22309 first_ire != NULL; 22310 first_ire = first_ire->ire_next) { 22311 if ((first_ire->ire_flags & RTF_MULTIRT) && 22312 (first_ire->ire_addr == ire->ire_addr) && 22313 !(first_ire->ire_marks & 22314 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22315 break; 22316 } 22317 22318 if ((first_ire != NULL) && (first_ire != ire)) { 22319 IRE_REFHOLD(first_ire); 22320 ire_refrele(ire); 22321 ire = first_ire; 22322 ill = ire_to_ill(ire); 22323 } 22324 IRB_REFRELE(irb); 22325 } 22326 22327 /* 22328 * conn_outgoing_ill is used only in the broadcast loop. 22329 * for performance we don't grab the mutexs in the fastpath 22330 */ 22331 if ((connp != NULL) && 22332 (connp->conn_xmit_if_ill == NULL) && 22333 (ire->ire_type == IRE_BROADCAST) && 22334 ((connp->conn_nofailover_ill != NULL) || 22335 (connp->conn_outgoing_ill != NULL))) { 22336 /* 22337 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22338 * option. So, see if this endpoint is bound to a 22339 * IPIF_NOFAILOVER address. If so, honor it. This implies 22340 * that if the interface is failed, we will still send 22341 * the packet on the same ill which is what we want. 22342 */ 22343 conn_outgoing_ill = conn_get_held_ill(connp, 22344 &connp->conn_nofailover_ill, &err); 22345 if (err == ILL_LOOKUP_FAILED) { 22346 ire_refrele(ire); 22347 freemsg(mp); 22348 return; 22349 } 22350 if (conn_outgoing_ill == NULL) { 22351 /* 22352 * Choose a good ill in the group to send the 22353 * packets on. 22354 */ 22355 ire = conn_set_outgoing_ill(connp, ire, 22356 &conn_outgoing_ill); 22357 if (ire == NULL) { 22358 freemsg(mp); 22359 return; 22360 } 22361 } 22362 } 22363 22364 if (mp->b_datap->db_type != M_CTL) { 22365 ipha = (ipha_t *)mp->b_rptr; 22366 } else { 22367 io = (ipsec_out_t *)mp->b_rptr; 22368 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22369 ASSERT(zoneid == io->ipsec_out_zoneid); 22370 ASSERT(zoneid != ALL_ZONES); 22371 ipha = (ipha_t *)mp->b_cont->b_rptr; 22372 dst = ipha->ipha_dst; 22373 /* 22374 * For the multicast case, ipsec_out carries conn_dontroute and 22375 * conn_multicast_loop as conn may not be available here. We 22376 * need this for multicast loopback and forwarding which is done 22377 * later in the code. 22378 */ 22379 if (CLASSD(dst)) { 22380 conn_dontroute = io->ipsec_out_dontroute; 22381 conn_multicast_loop = io->ipsec_out_multicast_loop; 22382 /* 22383 * If conn_dontroute is not set or conn_multicast_loop 22384 * is set, we need to do forwarding/loopback. For 22385 * datagrams from ip_wput_multicast, conn_dontroute is 22386 * set to B_TRUE and conn_multicast_loop is set to 22387 * B_FALSE so that we neither do forwarding nor 22388 * loopback. 22389 */ 22390 if (!conn_dontroute || conn_multicast_loop) 22391 multicast_forward = B_TRUE; 22392 } 22393 } 22394 22395 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22396 ire->ire_zoneid != ALL_ZONES) { 22397 /* 22398 * When a zone sends a packet to another zone, we try to deliver 22399 * the packet under the same conditions as if the destination 22400 * was a real node on the network. To do so, we look for a 22401 * matching route in the forwarding table. 22402 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22403 * ip_newroute() does. 22404 * Note that IRE_LOCAL are special, since they are used 22405 * when the zoneid doesn't match in some cases. This means that 22406 * we need to handle ipha_src differently since ire_src_addr 22407 * belongs to the receiving zone instead of the sending zone. 22408 * When ip_restrict_interzone_loopback is set, then 22409 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22410 * for loopback between zones when the logical "Ethernet" would 22411 * have looped them back. 22412 */ 22413 ire_t *src_ire; 22414 22415 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22416 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22417 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22418 if (src_ire != NULL && 22419 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22420 (!ipst->ips_ip_restrict_interzone_loopback || 22421 ire_local_same_ill_group(ire, src_ire))) { 22422 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22423 ipha->ipha_src = src_ire->ire_src_addr; 22424 ire_refrele(src_ire); 22425 } else { 22426 ire_refrele(ire); 22427 if (conn_outgoing_ill != NULL) 22428 ill_refrele(conn_outgoing_ill); 22429 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22430 if (src_ire != NULL) { 22431 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22432 ire_refrele(src_ire); 22433 freemsg(mp); 22434 return; 22435 } 22436 ire_refrele(src_ire); 22437 } 22438 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22439 /* Failed */ 22440 freemsg(mp); 22441 return; 22442 } 22443 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22444 ipst); 22445 return; 22446 } 22447 } 22448 22449 if (mp->b_datap->db_type == M_CTL || 22450 ipss->ipsec_outbound_v4_policy_present) { 22451 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22452 unspec_src, zoneid); 22453 if (mp == NULL) { 22454 ire_refrele(ire); 22455 if (conn_outgoing_ill != NULL) 22456 ill_refrele(conn_outgoing_ill); 22457 return; 22458 } 22459 } 22460 22461 first_mp = mp; 22462 ipsec_len = 0; 22463 22464 if (first_mp->b_datap->db_type == M_CTL) { 22465 io = (ipsec_out_t *)first_mp->b_rptr; 22466 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22467 mp = first_mp->b_cont; 22468 ipsec_len = ipsec_out_extra_length(first_mp); 22469 ASSERT(ipsec_len >= 0); 22470 /* We already picked up the zoneid from the M_CTL above */ 22471 ASSERT(zoneid == io->ipsec_out_zoneid); 22472 ASSERT(zoneid != ALL_ZONES); 22473 22474 /* 22475 * Drop M_CTL here if IPsec processing is not needed. 22476 * (Non-IPsec use of M_CTL extracted any information it 22477 * needed above). 22478 */ 22479 if (ipsec_len == 0) { 22480 freeb(first_mp); 22481 first_mp = mp; 22482 } 22483 } 22484 22485 /* 22486 * Fast path for ip_wput_ire 22487 */ 22488 22489 ipha = (ipha_t *)mp->b_rptr; 22490 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22491 dst = ipha->ipha_dst; 22492 22493 /* 22494 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22495 * if the socket is a SOCK_RAW type. The transport checksum should 22496 * be provided in the pre-built packet, so we don't need to compute it. 22497 * Also, other application set flags, like DF, should not be altered. 22498 * Other transport MUST pass down zero. 22499 */ 22500 ip_hdr_included = ipha->ipha_ident; 22501 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22502 22503 if (CLASSD(dst)) { 22504 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22505 ntohl(dst), 22506 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22507 ntohl(ire->ire_addr))); 22508 } 22509 22510 /* Macros to extract header fields from data already in registers */ 22511 #ifdef _BIG_ENDIAN 22512 #define V_HLEN (v_hlen_tos_len >> 24) 22513 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22514 #define PROTO (ttl_protocol & 0xFF) 22515 #else 22516 #define V_HLEN (v_hlen_tos_len & 0xFF) 22517 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22518 #define PROTO (ttl_protocol >> 8) 22519 #endif 22520 22521 22522 orig_src = src = ipha->ipha_src; 22523 /* (The loop back to "another" is explained down below.) */ 22524 another:; 22525 /* 22526 * Assign an ident value for this packet. We assign idents on 22527 * a per destination basis out of the IRE. There could be 22528 * other threads targeting the same destination, so we have to 22529 * arrange for a atomic increment. Note that we use a 32-bit 22530 * atomic add because it has better performance than its 22531 * 16-bit sibling. 22532 * 22533 * If running in cluster mode and if the source address 22534 * belongs to a replicated service then vector through 22535 * cl_inet_ipident vector to allocate ip identifier 22536 * NOTE: This is a contract private interface with the 22537 * clustering group. 22538 */ 22539 clusterwide = 0; 22540 if (cl_inet_ipident) { 22541 ASSERT(cl_inet_isclusterwide); 22542 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22543 AF_INET, (uint8_t *)(uintptr_t)src)) { 22544 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22545 AF_INET, (uint8_t *)(uintptr_t)src, 22546 (uint8_t *)(uintptr_t)dst); 22547 clusterwide = 1; 22548 } 22549 } 22550 if (!clusterwide) { 22551 ipha->ipha_ident = 22552 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22553 } 22554 22555 #ifndef _BIG_ENDIAN 22556 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22557 #endif 22558 22559 /* 22560 * Set source address unless sent on an ill or conn_unspec_src is set. 22561 * This is needed to obey conn_unspec_src when packets go through 22562 * ip_newroute + arp. 22563 * Assumes ip_newroute{,_multi} sets the source address as well. 22564 */ 22565 if (src == INADDR_ANY && !unspec_src) { 22566 /* 22567 * Assign the appropriate source address from the IRE if none 22568 * was specified. 22569 */ 22570 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22571 22572 /* 22573 * With IP multipathing, broadcast packets are sent on the ire 22574 * that has been cleared of IRE_MARK_NORECV and that belongs to 22575 * the group. However, this ire might not be in the same zone so 22576 * we can't always use its source address. We look for a 22577 * broadcast ire in the same group and in the right zone. 22578 */ 22579 if (ire->ire_type == IRE_BROADCAST && 22580 ire->ire_zoneid != zoneid) { 22581 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22582 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22583 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22584 if (src_ire != NULL) { 22585 src = src_ire->ire_src_addr; 22586 ire_refrele(src_ire); 22587 } else { 22588 ire_refrele(ire); 22589 if (conn_outgoing_ill != NULL) 22590 ill_refrele(conn_outgoing_ill); 22591 freemsg(first_mp); 22592 if (ill != NULL) { 22593 BUMP_MIB(ill->ill_ip_mib, 22594 ipIfStatsOutDiscards); 22595 } else { 22596 BUMP_MIB(&ipst->ips_ip_mib, 22597 ipIfStatsOutDiscards); 22598 } 22599 return; 22600 } 22601 } else { 22602 src = ire->ire_src_addr; 22603 } 22604 22605 if (connp == NULL) { 22606 ip1dbg(("ip_wput_ire: no connp and no src " 22607 "address for dst 0x%x, using src 0x%x\n", 22608 ntohl(dst), 22609 ntohl(src))); 22610 } 22611 ipha->ipha_src = src; 22612 } 22613 stq = ire->ire_stq; 22614 22615 /* 22616 * We only allow ire chains for broadcasts since there will 22617 * be multiple IRE_CACHE entries for the same multicast 22618 * address (one per ipif). 22619 */ 22620 next_mp = NULL; 22621 22622 /* broadcast packet */ 22623 if (ire->ire_type == IRE_BROADCAST) 22624 goto broadcast; 22625 22626 /* loopback ? */ 22627 if (stq == NULL) 22628 goto nullstq; 22629 22630 /* The ill_index for outbound ILL */ 22631 ill_index = Q_TO_INDEX(stq); 22632 22633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22634 ttl_protocol = ((uint16_t *)ipha)[4]; 22635 22636 /* pseudo checksum (do it in parts for IP header checksum) */ 22637 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22638 22639 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22640 queue_t *dev_q = stq->q_next; 22641 22642 /* flow controlled */ 22643 if ((dev_q->q_next || dev_q->q_first) && 22644 !canput(dev_q)) 22645 goto blocked; 22646 if ((PROTO == IPPROTO_UDP) && 22647 (ip_hdr_included != IP_HDR_INCLUDED)) { 22648 hlen = (V_HLEN & 0xF) << 2; 22649 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22650 if (*up != 0) { 22651 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22652 hlen, LENGTH, max_frag, ipsec_len, cksum); 22653 /* Software checksum? */ 22654 if (DB_CKSUMFLAGS(mp) == 0) { 22655 IP_STAT(ipst, ip_out_sw_cksum); 22656 IP_STAT_UPDATE(ipst, 22657 ip_udp_out_sw_cksum_bytes, 22658 LENGTH - hlen); 22659 } 22660 } 22661 } 22662 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22663 hlen = (V_HLEN & 0xF) << 2; 22664 if (PROTO == IPPROTO_TCP) { 22665 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22666 /* 22667 * The packet header is processed once and for all, even 22668 * in the multirouting case. We disable hardware 22669 * checksum if the packet is multirouted, as it will be 22670 * replicated via several interfaces, and not all of 22671 * them may have this capability. 22672 */ 22673 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22674 LENGTH, max_frag, ipsec_len, cksum); 22675 /* Software checksum? */ 22676 if (DB_CKSUMFLAGS(mp) == 0) { 22677 IP_STAT(ipst, ip_out_sw_cksum); 22678 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22679 LENGTH - hlen); 22680 } 22681 } else { 22682 sctp_hdr_t *sctph; 22683 22684 ASSERT(PROTO == IPPROTO_SCTP); 22685 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22686 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22687 /* 22688 * Zero out the checksum field to ensure proper 22689 * checksum calculation. 22690 */ 22691 sctph->sh_chksum = 0; 22692 #ifdef DEBUG 22693 if (!skip_sctp_cksum) 22694 #endif 22695 sctph->sh_chksum = sctp_cksum(mp, hlen); 22696 } 22697 } 22698 22699 /* 22700 * If this is a multicast packet and originated from ip_wput 22701 * we need to do loopback and forwarding checks. If it comes 22702 * from ip_wput_multicast, we SHOULD not do this. 22703 */ 22704 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22705 22706 /* checksum */ 22707 cksum += ttl_protocol; 22708 22709 /* fragment the packet */ 22710 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22711 goto fragmentit; 22712 /* 22713 * Don't use frag_flag if packet is pre-built or source 22714 * routed or if multicast (since multicast packets do 22715 * not solicit ICMP "packet too big" messages). 22716 */ 22717 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22718 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22719 !ip_source_route_included(ipha)) && 22720 !CLASSD(ipha->ipha_dst)) 22721 ipha->ipha_fragment_offset_and_flags |= 22722 htons(ire->ire_frag_flag); 22723 22724 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22725 /* calculate IP header checksum */ 22726 cksum += ipha->ipha_ident; 22727 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22728 cksum += ipha->ipha_fragment_offset_and_flags; 22729 22730 /* IP options present */ 22731 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22732 if (hlen) 22733 goto checksumoptions; 22734 22735 /* calculate hdr checksum */ 22736 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22737 cksum = ~(cksum + (cksum >> 16)); 22738 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22739 } 22740 if (ipsec_len != 0) { 22741 /* 22742 * We will do the rest of the processing after 22743 * we come back from IPSEC in ip_wput_ipsec_out(). 22744 */ 22745 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22746 22747 io = (ipsec_out_t *)first_mp->b_rptr; 22748 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22749 ill_phyint->phyint_ifindex; 22750 22751 ipsec_out_process(q, first_mp, ire, ill_index); 22752 ire_refrele(ire); 22753 if (conn_outgoing_ill != NULL) 22754 ill_refrele(conn_outgoing_ill); 22755 return; 22756 } 22757 22758 /* 22759 * In most cases, the emission loop below is entered only 22760 * once. Only in the case where the ire holds the 22761 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22762 * flagged ires in the bucket, and send the packet 22763 * through all crossed RTF_MULTIRT routes. 22764 */ 22765 if (ire->ire_flags & RTF_MULTIRT) { 22766 multirt_send = B_TRUE; 22767 } 22768 do { 22769 if (multirt_send) { 22770 irb_t *irb; 22771 /* 22772 * We are in a multiple send case, need to get 22773 * the next ire and make a duplicate of the packet. 22774 * ire1 holds here the next ire to process in the 22775 * bucket. If multirouting is expected, 22776 * any non-RTF_MULTIRT ire that has the 22777 * right destination address is ignored. 22778 */ 22779 irb = ire->ire_bucket; 22780 ASSERT(irb != NULL); 22781 22782 IRB_REFHOLD(irb); 22783 for (ire1 = ire->ire_next; 22784 ire1 != NULL; 22785 ire1 = ire1->ire_next) { 22786 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22787 continue; 22788 if (ire1->ire_addr != ire->ire_addr) 22789 continue; 22790 if (ire1->ire_marks & 22791 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22792 continue; 22793 22794 /* Got one */ 22795 IRE_REFHOLD(ire1); 22796 break; 22797 } 22798 IRB_REFRELE(irb); 22799 22800 if (ire1 != NULL) { 22801 next_mp = copyb(mp); 22802 if ((next_mp == NULL) || 22803 ((mp->b_cont != NULL) && 22804 ((next_mp->b_cont = 22805 dupmsg(mp->b_cont)) == NULL))) { 22806 freemsg(next_mp); 22807 next_mp = NULL; 22808 ire_refrele(ire1); 22809 ire1 = NULL; 22810 } 22811 } 22812 22813 /* Last multiroute ire; don't loop anymore. */ 22814 if (ire1 == NULL) { 22815 multirt_send = B_FALSE; 22816 } 22817 } 22818 22819 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22820 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22821 mblk_t *, mp); 22822 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22823 ipst->ips_ipv4firewall_physical_out, 22824 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22825 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22826 if (mp == NULL) 22827 goto release_ire_and_ill; 22828 22829 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22830 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22831 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22832 if ((pktxmit_state == SEND_FAILED) || 22833 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22834 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22835 "- packet dropped\n")); 22836 release_ire_and_ill: 22837 ire_refrele(ire); 22838 if (next_mp != NULL) { 22839 freemsg(next_mp); 22840 ire_refrele(ire1); 22841 } 22842 if (conn_outgoing_ill != NULL) 22843 ill_refrele(conn_outgoing_ill); 22844 return; 22845 } 22846 22847 if (CLASSD(dst)) { 22848 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22849 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22850 LENGTH); 22851 } 22852 22853 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22854 "ip_wput_ire_end: q %p (%S)", 22855 q, "last copy out"); 22856 IRE_REFRELE(ire); 22857 22858 if (multirt_send) { 22859 ASSERT(ire1); 22860 /* 22861 * Proceed with the next RTF_MULTIRT ire, 22862 * Also set up the send-to queue accordingly. 22863 */ 22864 ire = ire1; 22865 ire1 = NULL; 22866 stq = ire->ire_stq; 22867 mp = next_mp; 22868 next_mp = NULL; 22869 ipha = (ipha_t *)mp->b_rptr; 22870 ill_index = Q_TO_INDEX(stq); 22871 ill = (ill_t *)stq->q_ptr; 22872 } 22873 } while (multirt_send); 22874 if (conn_outgoing_ill != NULL) 22875 ill_refrele(conn_outgoing_ill); 22876 return; 22877 22878 /* 22879 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22880 */ 22881 broadcast: 22882 { 22883 /* 22884 * Avoid broadcast storms by setting the ttl to 1 22885 * for broadcasts. This parameter can be set 22886 * via ndd, so make sure that for the SO_DONTROUTE 22887 * case that ipha_ttl is always set to 1. 22888 * In the event that we are replying to incoming 22889 * ICMP packets, conn could be NULL. 22890 */ 22891 if ((connp != NULL) && connp->conn_dontroute) 22892 ipha->ipha_ttl = 1; 22893 else 22894 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22895 22896 /* 22897 * Note that we are not doing a IRB_REFHOLD here. 22898 * Actually we don't care if the list changes i.e 22899 * if somebody deletes an IRE from the list while 22900 * we drop the lock, the next time we come around 22901 * ire_next will be NULL and hence we won't send 22902 * out multiple copies which is fine. 22903 */ 22904 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22905 ire1 = ire->ire_next; 22906 if (conn_outgoing_ill != NULL) { 22907 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22908 ASSERT(ire1 == ire->ire_next); 22909 if (ire1 != NULL && ire1->ire_addr == dst) { 22910 ire_refrele(ire); 22911 ire = ire1; 22912 IRE_REFHOLD(ire); 22913 ire1 = ire->ire_next; 22914 continue; 22915 } 22916 rw_exit(&ire->ire_bucket->irb_lock); 22917 /* Did not find a matching ill */ 22918 ip1dbg(("ip_wput_ire: broadcast with no " 22919 "matching IP_BOUND_IF ill %s\n", 22920 conn_outgoing_ill->ill_name)); 22921 freemsg(first_mp); 22922 if (ire != NULL) 22923 ire_refrele(ire); 22924 ill_refrele(conn_outgoing_ill); 22925 return; 22926 } 22927 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22928 /* 22929 * If the next IRE has the same address and is not one 22930 * of the two copies that we need to send, try to see 22931 * whether this copy should be sent at all. This 22932 * assumes that we insert loopbacks first and then 22933 * non-loopbacks. This is acheived by inserting the 22934 * loopback always before non-loopback. 22935 * This is used to send a single copy of a broadcast 22936 * packet out all physical interfaces that have an 22937 * matching IRE_BROADCAST while also looping 22938 * back one copy (to ip_wput_local) for each 22939 * matching physical interface. However, we avoid 22940 * sending packets out different logical that match by 22941 * having ipif_up/ipif_down supress duplicate 22942 * IRE_BROADCASTS. 22943 * 22944 * This feature is currently used to get broadcasts 22945 * sent to multiple interfaces, when the broadcast 22946 * address being used applies to multiple interfaces. 22947 * For example, a whole net broadcast will be 22948 * replicated on every connected subnet of 22949 * the target net. 22950 * 22951 * Each zone has its own set of IRE_BROADCASTs, so that 22952 * we're able to distribute inbound packets to multiple 22953 * zones who share a broadcast address. We avoid looping 22954 * back outbound packets in different zones but on the 22955 * same ill, as the application would see duplicates. 22956 * 22957 * If the interfaces are part of the same group, 22958 * we would want to send only one copy out for 22959 * whole group. 22960 * 22961 * This logic assumes that ire_add_v4() groups the 22962 * IRE_BROADCAST entries so that those with the same 22963 * ire_addr and ill_group are kept together. 22964 */ 22965 ire_ill = ire->ire_ipif->ipif_ill; 22966 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22967 if (ire_ill->ill_group != NULL && 22968 (ire->ire_marks & IRE_MARK_NORECV)) { 22969 /* 22970 * If the current zone only has an ire 22971 * broadcast for this address marked 22972 * NORECV, the ire we want is ahead in 22973 * the bucket, so we look it up 22974 * deliberately ignoring the zoneid. 22975 */ 22976 for (ire1 = ire->ire_bucket->irb_ire; 22977 ire1 != NULL; 22978 ire1 = ire1->ire_next) { 22979 ire1_ill = 22980 ire1->ire_ipif->ipif_ill; 22981 if (ire1->ire_addr != dst) 22982 continue; 22983 /* skip over the current ire */ 22984 if (ire1 == ire) 22985 continue; 22986 /* skip over deleted ires */ 22987 if (ire1->ire_marks & 22988 IRE_MARK_CONDEMNED) 22989 continue; 22990 /* 22991 * non-loopback ire in our 22992 * group: use it for the next 22993 * pass in the loop 22994 */ 22995 if (ire1->ire_stq != NULL && 22996 ire1_ill->ill_group == 22997 ire_ill->ill_group) 22998 break; 22999 } 23000 } 23001 } else { 23002 while (ire1 != NULL && ire1->ire_addr == dst) { 23003 ire1_ill = ire1->ire_ipif->ipif_ill; 23004 /* 23005 * We can have two broadcast ires on the 23006 * same ill in different zones; here 23007 * we'll send a copy of the packet on 23008 * each ill and the fanout code will 23009 * call conn_wantpacket() to check that 23010 * the zone has the broadcast address 23011 * configured on the ill. If the two 23012 * ires are in the same group we only 23013 * send one copy up. 23014 */ 23015 if (ire1_ill != ire_ill && 23016 (ire1_ill->ill_group == NULL || 23017 ire_ill->ill_group == NULL || 23018 ire1_ill->ill_group != 23019 ire_ill->ill_group)) { 23020 break; 23021 } 23022 ire1 = ire1->ire_next; 23023 } 23024 } 23025 } 23026 ASSERT(multirt_send == B_FALSE); 23027 if (ire1 != NULL && ire1->ire_addr == dst) { 23028 if ((ire->ire_flags & RTF_MULTIRT) && 23029 (ire1->ire_flags & RTF_MULTIRT)) { 23030 /* 23031 * We are in the multirouting case. 23032 * The message must be sent at least 23033 * on both ires. These ires have been 23034 * inserted AFTER the standard ones 23035 * in ip_rt_add(). There are thus no 23036 * other ire entries for the destination 23037 * address in the rest of the bucket 23038 * that do not have the RTF_MULTIRT 23039 * flag. We don't process a copy 23040 * of the message here. This will be 23041 * done in the final sending loop. 23042 */ 23043 multirt_send = B_TRUE; 23044 } else { 23045 next_mp = ip_copymsg(first_mp); 23046 if (next_mp != NULL) 23047 IRE_REFHOLD(ire1); 23048 } 23049 } 23050 rw_exit(&ire->ire_bucket->irb_lock); 23051 } 23052 23053 if (stq) { 23054 /* 23055 * A non-NULL send-to queue means this packet is going 23056 * out of this machine. 23057 */ 23058 out_ill = (ill_t *)stq->q_ptr; 23059 23060 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 23061 ttl_protocol = ((uint16_t *)ipha)[4]; 23062 /* 23063 * We accumulate the pseudo header checksum in cksum. 23064 * This is pretty hairy code, so watch close. One 23065 * thing to keep in mind is that UDP and TCP have 23066 * stored their respective datagram lengths in their 23067 * checksum fields. This lines things up real nice. 23068 */ 23069 cksum = (dst >> 16) + (dst & 0xFFFF) + 23070 (src >> 16) + (src & 0xFFFF); 23071 /* 23072 * We assume the udp checksum field contains the 23073 * length, so to compute the pseudo header checksum, 23074 * all we need is the protocol number and src/dst. 23075 */ 23076 /* Provide the checksums for UDP and TCP. */ 23077 if ((PROTO == IPPROTO_TCP) && 23078 (ip_hdr_included != IP_HDR_INCLUDED)) { 23079 /* hlen gets the number of uchar_ts in the IP header */ 23080 hlen = (V_HLEN & 0xF) << 2; 23081 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 23082 IP_STAT(ipst, ip_out_sw_cksum); 23083 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 23084 LENGTH - hlen); 23085 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 23086 } else if (PROTO == IPPROTO_SCTP && 23087 (ip_hdr_included != IP_HDR_INCLUDED)) { 23088 sctp_hdr_t *sctph; 23089 23090 hlen = (V_HLEN & 0xF) << 2; 23091 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 23092 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 23093 sctph->sh_chksum = 0; 23094 #ifdef DEBUG 23095 if (!skip_sctp_cksum) 23096 #endif 23097 sctph->sh_chksum = sctp_cksum(mp, hlen); 23098 } else { 23099 queue_t *dev_q = stq->q_next; 23100 23101 if ((dev_q->q_next || dev_q->q_first) && 23102 !canput(dev_q)) { 23103 blocked: 23104 ipha->ipha_ident = ip_hdr_included; 23105 /* 23106 * If we don't have a conn to apply 23107 * backpressure, free the message. 23108 * In the ire_send path, we don't know 23109 * the position to requeue the packet. Rather 23110 * than reorder packets, we just drop this 23111 * packet. 23112 */ 23113 if (ipst->ips_ip_output_queue && 23114 connp != NULL && 23115 caller != IRE_SEND) { 23116 if (caller == IP_WSRV) { 23117 connp->conn_did_putbq = 1; 23118 (void) putbq(connp->conn_wq, 23119 first_mp); 23120 conn_drain_insert(connp); 23121 /* 23122 * This is the service thread, 23123 * and the queue is already 23124 * noenabled. The check for 23125 * canput and the putbq is not 23126 * atomic. So we need to check 23127 * again. 23128 */ 23129 if (canput(stq->q_next)) 23130 connp->conn_did_putbq 23131 = 0; 23132 IP_STAT(ipst, ip_conn_flputbq); 23133 } else { 23134 /* 23135 * We are not the service proc. 23136 * ip_wsrv will be scheduled or 23137 * is already running. 23138 */ 23139 (void) putq(connp->conn_wq, 23140 first_mp); 23141 } 23142 } else { 23143 out_ill = (ill_t *)stq->q_ptr; 23144 BUMP_MIB(out_ill->ill_ip_mib, 23145 ipIfStatsOutDiscards); 23146 freemsg(first_mp); 23147 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23148 "ip_wput_ire_end: q %p (%S)", 23149 q, "discard"); 23150 } 23151 ire_refrele(ire); 23152 if (next_mp) { 23153 ire_refrele(ire1); 23154 freemsg(next_mp); 23155 } 23156 if (conn_outgoing_ill != NULL) 23157 ill_refrele(conn_outgoing_ill); 23158 return; 23159 } 23160 if ((PROTO == IPPROTO_UDP) && 23161 (ip_hdr_included != IP_HDR_INCLUDED)) { 23162 /* 23163 * hlen gets the number of uchar_ts in the 23164 * IP header 23165 */ 23166 hlen = (V_HLEN & 0xF) << 2; 23167 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23168 max_frag = ire->ire_max_frag; 23169 if (*up != 0) { 23170 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 23171 up, PROTO, hlen, LENGTH, max_frag, 23172 ipsec_len, cksum); 23173 /* Software checksum? */ 23174 if (DB_CKSUMFLAGS(mp) == 0) { 23175 IP_STAT(ipst, ip_out_sw_cksum); 23176 IP_STAT_UPDATE(ipst, 23177 ip_udp_out_sw_cksum_bytes, 23178 LENGTH - hlen); 23179 } 23180 } 23181 } 23182 } 23183 /* 23184 * Need to do this even when fragmenting. The local 23185 * loopback can be done without computing checksums 23186 * but forwarding out other interface must be done 23187 * after the IP checksum (and ULP checksums) have been 23188 * computed. 23189 * 23190 * NOTE : multicast_forward is set only if this packet 23191 * originated from ip_wput. For packets originating from 23192 * ip_wput_multicast, it is not set. 23193 */ 23194 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23195 multi_loopback: 23196 ip2dbg(("ip_wput: multicast, loop %d\n", 23197 conn_multicast_loop)); 23198 23199 /* Forget header checksum offload */ 23200 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23201 23202 /* 23203 * Local loopback of multicasts? Check the 23204 * ill. 23205 * 23206 * Note that the loopback function will not come 23207 * in through ip_rput - it will only do the 23208 * client fanout thus we need to do an mforward 23209 * as well. The is different from the BSD 23210 * logic. 23211 */ 23212 if (ill != NULL) { 23213 ilm_t *ilm; 23214 23215 ILM_WALKER_HOLD(ill); 23216 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23217 ALL_ZONES); 23218 ILM_WALKER_RELE(ill); 23219 if (ilm != NULL) { 23220 /* 23221 * Pass along the virtual output q. 23222 * ip_wput_local() will distribute the 23223 * packet to all the matching zones, 23224 * except the sending zone when 23225 * IP_MULTICAST_LOOP is false. 23226 */ 23227 ip_multicast_loopback(q, ill, first_mp, 23228 conn_multicast_loop ? 0 : 23229 IP_FF_NO_MCAST_LOOP, zoneid); 23230 } 23231 } 23232 if (ipha->ipha_ttl == 0) { 23233 /* 23234 * 0 => only to this host i.e. we are 23235 * done. We are also done if this was the 23236 * loopback interface since it is sufficient 23237 * to loopback one copy of a multicast packet. 23238 */ 23239 freemsg(first_mp); 23240 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23241 "ip_wput_ire_end: q %p (%S)", 23242 q, "loopback"); 23243 ire_refrele(ire); 23244 if (conn_outgoing_ill != NULL) 23245 ill_refrele(conn_outgoing_ill); 23246 return; 23247 } 23248 /* 23249 * ILLF_MULTICAST is checked in ip_newroute 23250 * i.e. we don't need to check it here since 23251 * all IRE_CACHEs come from ip_newroute. 23252 * For multicast traffic, SO_DONTROUTE is interpreted 23253 * to mean only send the packet out the interface 23254 * (optionally specified with IP_MULTICAST_IF) 23255 * and do not forward it out additional interfaces. 23256 * RSVP and the rsvp daemon is an example of a 23257 * protocol and user level process that 23258 * handles it's own routing. Hence, it uses the 23259 * SO_DONTROUTE option to accomplish this. 23260 */ 23261 23262 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23263 ill != NULL) { 23264 /* Unconditionally redo the checksum */ 23265 ipha->ipha_hdr_checksum = 0; 23266 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23267 23268 /* 23269 * If this needs to go out secure, we need 23270 * to wait till we finish the IPSEC 23271 * processing. 23272 */ 23273 if (ipsec_len == 0 && 23274 ip_mforward(ill, ipha, mp)) { 23275 freemsg(first_mp); 23276 ip1dbg(("ip_wput: mforward failed\n")); 23277 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23278 "ip_wput_ire_end: q %p (%S)", 23279 q, "mforward failed"); 23280 ire_refrele(ire); 23281 if (conn_outgoing_ill != NULL) 23282 ill_refrele(conn_outgoing_ill); 23283 return; 23284 } 23285 } 23286 } 23287 max_frag = ire->ire_max_frag; 23288 cksum += ttl_protocol; 23289 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23290 /* No fragmentation required for this one. */ 23291 /* 23292 * Don't use frag_flag if packet is pre-built or source 23293 * routed or if multicast (since multicast packets do 23294 * not solicit ICMP "packet too big" messages). 23295 */ 23296 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23297 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23298 !ip_source_route_included(ipha)) && 23299 !CLASSD(ipha->ipha_dst)) 23300 ipha->ipha_fragment_offset_and_flags |= 23301 htons(ire->ire_frag_flag); 23302 23303 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23304 /* Complete the IP header checksum. */ 23305 cksum += ipha->ipha_ident; 23306 cksum += (v_hlen_tos_len >> 16)+ 23307 (v_hlen_tos_len & 0xFFFF); 23308 cksum += ipha->ipha_fragment_offset_and_flags; 23309 hlen = (V_HLEN & 0xF) - 23310 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23311 if (hlen) { 23312 checksumoptions: 23313 /* 23314 * Account for the IP Options in the IP 23315 * header checksum. 23316 */ 23317 up = (uint16_t *)(rptr+ 23318 IP_SIMPLE_HDR_LENGTH); 23319 do { 23320 cksum += up[0]; 23321 cksum += up[1]; 23322 up += 2; 23323 } while (--hlen); 23324 } 23325 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23326 cksum = ~(cksum + (cksum >> 16)); 23327 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23328 } 23329 if (ipsec_len != 0) { 23330 ipsec_out_process(q, first_mp, ire, ill_index); 23331 if (!next_mp) { 23332 ire_refrele(ire); 23333 if (conn_outgoing_ill != NULL) 23334 ill_refrele(conn_outgoing_ill); 23335 return; 23336 } 23337 goto next; 23338 } 23339 23340 /* 23341 * multirt_send has already been handled 23342 * for broadcast, but not yet for multicast 23343 * or IP options. 23344 */ 23345 if (next_mp == NULL) { 23346 if (ire->ire_flags & RTF_MULTIRT) { 23347 multirt_send = B_TRUE; 23348 } 23349 } 23350 23351 /* 23352 * In most cases, the emission loop below is 23353 * entered only once. Only in the case where 23354 * the ire holds the RTF_MULTIRT flag, do we loop 23355 * to process all RTF_MULTIRT ires in the bucket, 23356 * and send the packet through all crossed 23357 * RTF_MULTIRT routes. 23358 */ 23359 do { 23360 if (multirt_send) { 23361 irb_t *irb; 23362 23363 irb = ire->ire_bucket; 23364 ASSERT(irb != NULL); 23365 /* 23366 * We are in a multiple send case, 23367 * need to get the next IRE and make 23368 * a duplicate of the packet. 23369 */ 23370 IRB_REFHOLD(irb); 23371 for (ire1 = ire->ire_next; 23372 ire1 != NULL; 23373 ire1 = ire1->ire_next) { 23374 if (!(ire1->ire_flags & 23375 RTF_MULTIRT)) 23376 continue; 23377 if (ire1->ire_addr != 23378 ire->ire_addr) 23379 continue; 23380 if (ire1->ire_marks & 23381 (IRE_MARK_CONDEMNED| 23382 IRE_MARK_HIDDEN)) 23383 continue; 23384 23385 /* Got one */ 23386 IRE_REFHOLD(ire1); 23387 break; 23388 } 23389 IRB_REFRELE(irb); 23390 23391 if (ire1 != NULL) { 23392 next_mp = copyb(mp); 23393 if ((next_mp == NULL) || 23394 ((mp->b_cont != NULL) && 23395 ((next_mp->b_cont = 23396 dupmsg(mp->b_cont)) 23397 == NULL))) { 23398 freemsg(next_mp); 23399 next_mp = NULL; 23400 ire_refrele(ire1); 23401 ire1 = NULL; 23402 } 23403 } 23404 23405 /* 23406 * Last multiroute ire; don't loop 23407 * anymore. The emission is over 23408 * and next_mp is NULL. 23409 */ 23410 if (ire1 == NULL) { 23411 multirt_send = B_FALSE; 23412 } 23413 } 23414 23415 out_ill = ire->ire_ipif->ipif_ill; 23416 DTRACE_PROBE4(ip4__physical__out__start, 23417 ill_t *, NULL, 23418 ill_t *, out_ill, 23419 ipha_t *, ipha, mblk_t *, mp); 23420 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23421 ipst->ips_ipv4firewall_physical_out, 23422 NULL, out_ill, ipha, mp, mp, ipst); 23423 DTRACE_PROBE1(ip4__physical__out__end, 23424 mblk_t *, mp); 23425 if (mp == NULL) 23426 goto release_ire_and_ill_2; 23427 23428 ASSERT(ipsec_len == 0); 23429 mp->b_prev = 23430 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23431 DTRACE_PROBE2(ip__xmit__2, 23432 mblk_t *, mp, ire_t *, ire); 23433 pktxmit_state = ip_xmit_v4(mp, ire, 23434 NULL, B_TRUE); 23435 if ((pktxmit_state == SEND_FAILED) || 23436 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23437 release_ire_and_ill_2: 23438 if (next_mp) { 23439 freemsg(next_mp); 23440 ire_refrele(ire1); 23441 } 23442 ire_refrele(ire); 23443 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23444 "ip_wput_ire_end: q %p (%S)", 23445 q, "discard MDATA"); 23446 if (conn_outgoing_ill != NULL) 23447 ill_refrele(conn_outgoing_ill); 23448 return; 23449 } 23450 23451 if (CLASSD(dst)) { 23452 BUMP_MIB(out_ill->ill_ip_mib, 23453 ipIfStatsHCOutMcastPkts); 23454 UPDATE_MIB(out_ill->ill_ip_mib, 23455 ipIfStatsHCOutMcastOctets, 23456 LENGTH); 23457 } else if (ire->ire_type == IRE_BROADCAST) { 23458 BUMP_MIB(out_ill->ill_ip_mib, 23459 ipIfStatsHCOutBcastPkts); 23460 } 23461 23462 if (multirt_send) { 23463 /* 23464 * We are in a multiple send case, 23465 * need to re-enter the sending loop 23466 * using the next ire. 23467 */ 23468 ire_refrele(ire); 23469 ire = ire1; 23470 stq = ire->ire_stq; 23471 mp = next_mp; 23472 next_mp = NULL; 23473 ipha = (ipha_t *)mp->b_rptr; 23474 ill_index = Q_TO_INDEX(stq); 23475 } 23476 } while (multirt_send); 23477 23478 if (!next_mp) { 23479 /* 23480 * Last copy going out (the ultra-common 23481 * case). Note that we intentionally replicate 23482 * the putnext rather than calling it before 23483 * the next_mp check in hopes of a little 23484 * tail-call action out of the compiler. 23485 */ 23486 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23487 "ip_wput_ire_end: q %p (%S)", 23488 q, "last copy out(1)"); 23489 ire_refrele(ire); 23490 if (conn_outgoing_ill != NULL) 23491 ill_refrele(conn_outgoing_ill); 23492 return; 23493 } 23494 /* More copies going out below. */ 23495 } else { 23496 int offset; 23497 fragmentit: 23498 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23499 /* 23500 * If this would generate a icmp_frag_needed message, 23501 * we need to handle it before we do the IPSEC 23502 * processing. Otherwise, we need to strip the IPSEC 23503 * headers before we send up the message to the ULPs 23504 * which becomes messy and difficult. 23505 */ 23506 if (ipsec_len != 0) { 23507 if ((max_frag < (unsigned int)(LENGTH + 23508 ipsec_len)) && (offset & IPH_DF)) { 23509 out_ill = (ill_t *)stq->q_ptr; 23510 BUMP_MIB(out_ill->ill_ip_mib, 23511 ipIfStatsOutFragFails); 23512 BUMP_MIB(out_ill->ill_ip_mib, 23513 ipIfStatsOutFragReqds); 23514 ipha->ipha_hdr_checksum = 0; 23515 ipha->ipha_hdr_checksum = 23516 (uint16_t)ip_csum_hdr(ipha); 23517 icmp_frag_needed(ire->ire_stq, first_mp, 23518 max_frag, zoneid, ipst); 23519 if (!next_mp) { 23520 ire_refrele(ire); 23521 if (conn_outgoing_ill != NULL) { 23522 ill_refrele( 23523 conn_outgoing_ill); 23524 } 23525 return; 23526 } 23527 } else { 23528 /* 23529 * This won't cause a icmp_frag_needed 23530 * message. to be generated. Send it on 23531 * the wire. Note that this could still 23532 * cause fragmentation and all we 23533 * do is the generation of the message 23534 * to the ULP if needed before IPSEC. 23535 */ 23536 if (!next_mp) { 23537 ipsec_out_process(q, first_mp, 23538 ire, ill_index); 23539 TRACE_2(TR_FAC_IP, 23540 TR_IP_WPUT_IRE_END, 23541 "ip_wput_ire_end: q %p " 23542 "(%S)", q, 23543 "last ipsec_out_process"); 23544 ire_refrele(ire); 23545 if (conn_outgoing_ill != NULL) { 23546 ill_refrele( 23547 conn_outgoing_ill); 23548 } 23549 return; 23550 } 23551 ipsec_out_process(q, first_mp, 23552 ire, ill_index); 23553 } 23554 } else { 23555 /* 23556 * Initiate IPPF processing. For 23557 * fragmentable packets we finish 23558 * all QOS packet processing before 23559 * calling: 23560 * ip_wput_ire_fragmentit->ip_wput_frag 23561 */ 23562 23563 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23564 ip_process(IPP_LOCAL_OUT, &mp, 23565 ill_index); 23566 if (mp == NULL) { 23567 out_ill = (ill_t *)stq->q_ptr; 23568 BUMP_MIB(out_ill->ill_ip_mib, 23569 ipIfStatsOutDiscards); 23570 if (next_mp != NULL) { 23571 freemsg(next_mp); 23572 ire_refrele(ire1); 23573 } 23574 ire_refrele(ire); 23575 TRACE_2(TR_FAC_IP, 23576 TR_IP_WPUT_IRE_END, 23577 "ip_wput_ire: q %p (%S)", 23578 q, "discard MDATA"); 23579 if (conn_outgoing_ill != NULL) { 23580 ill_refrele( 23581 conn_outgoing_ill); 23582 } 23583 return; 23584 } 23585 } 23586 if (!next_mp) { 23587 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23588 "ip_wput_ire_end: q %p (%S)", 23589 q, "last fragmentation"); 23590 ip_wput_ire_fragmentit(mp, ire, 23591 zoneid, ipst); 23592 ire_refrele(ire); 23593 if (conn_outgoing_ill != NULL) 23594 ill_refrele(conn_outgoing_ill); 23595 return; 23596 } 23597 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23598 } 23599 } 23600 } else { 23601 nullstq: 23602 /* A NULL stq means the destination address is local. */ 23603 UPDATE_OB_PKT_COUNT(ire); 23604 ire->ire_last_used_time = lbolt; 23605 ASSERT(ire->ire_ipif != NULL); 23606 if (!next_mp) { 23607 /* 23608 * Is there an "in" and "out" for traffic local 23609 * to a host (loopback)? The code in Solaris doesn't 23610 * explicitly draw a line in its code for in vs out, 23611 * so we've had to draw a line in the sand: ip_wput_ire 23612 * is considered to be the "output" side and 23613 * ip_wput_local to be the "input" side. 23614 */ 23615 out_ill = ire->ire_ipif->ipif_ill; 23616 23617 DTRACE_PROBE4(ip4__loopback__out__start, 23618 ill_t *, NULL, ill_t *, out_ill, 23619 ipha_t *, ipha, mblk_t *, first_mp); 23620 23621 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23622 ipst->ips_ipv4firewall_loopback_out, 23623 NULL, out_ill, ipha, first_mp, mp, ipst); 23624 23625 DTRACE_PROBE1(ip4__loopback__out_end, 23626 mblk_t *, first_mp); 23627 23628 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23629 "ip_wput_ire_end: q %p (%S)", 23630 q, "local address"); 23631 23632 if (first_mp != NULL) 23633 ip_wput_local(q, out_ill, ipha, 23634 first_mp, ire, 0, ire->ire_zoneid); 23635 ire_refrele(ire); 23636 if (conn_outgoing_ill != NULL) 23637 ill_refrele(conn_outgoing_ill); 23638 return; 23639 } 23640 23641 out_ill = ire->ire_ipif->ipif_ill; 23642 23643 DTRACE_PROBE4(ip4__loopback__out__start, 23644 ill_t *, NULL, ill_t *, out_ill, 23645 ipha_t *, ipha, mblk_t *, first_mp); 23646 23647 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23648 ipst->ips_ipv4firewall_loopback_out, 23649 NULL, out_ill, ipha, first_mp, mp, ipst); 23650 23651 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23652 23653 if (first_mp != NULL) 23654 ip_wput_local(q, out_ill, ipha, 23655 first_mp, ire, 0, ire->ire_zoneid); 23656 } 23657 next: 23658 /* 23659 * More copies going out to additional interfaces. 23660 * ire1 has already been held. We don't need the 23661 * "ire" anymore. 23662 */ 23663 ire_refrele(ire); 23664 ire = ire1; 23665 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23666 mp = next_mp; 23667 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23668 ill = ire_to_ill(ire); 23669 first_mp = mp; 23670 if (ipsec_len != 0) { 23671 ASSERT(first_mp->b_datap->db_type == M_CTL); 23672 mp = mp->b_cont; 23673 } 23674 dst = ire->ire_addr; 23675 ipha = (ipha_t *)mp->b_rptr; 23676 /* 23677 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23678 * Restore ipha_ident "no checksum" flag. 23679 */ 23680 src = orig_src; 23681 ipha->ipha_ident = ip_hdr_included; 23682 goto another; 23683 23684 #undef rptr 23685 #undef Q_TO_INDEX 23686 } 23687 23688 /* 23689 * Routine to allocate a message that is used to notify the ULP about MDT. 23690 * The caller may provide a pointer to the link-layer MDT capabilities, 23691 * or NULL if MDT is to be disabled on the stream. 23692 */ 23693 mblk_t * 23694 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23695 { 23696 mblk_t *mp; 23697 ip_mdt_info_t *mdti; 23698 ill_mdt_capab_t *idst; 23699 23700 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23701 DB_TYPE(mp) = M_CTL; 23702 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23703 mdti = (ip_mdt_info_t *)mp->b_rptr; 23704 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23705 idst = &(mdti->mdt_capab); 23706 23707 /* 23708 * If the caller provides us with the capability, copy 23709 * it over into our notification message; otherwise 23710 * we zero out the capability portion. 23711 */ 23712 if (isrc != NULL) 23713 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23714 else 23715 bzero((caddr_t)idst, sizeof (*idst)); 23716 } 23717 return (mp); 23718 } 23719 23720 /* 23721 * Routine which determines whether MDT can be enabled on the destination 23722 * IRE and IPC combination, and if so, allocates and returns the MDT 23723 * notification mblk that may be used by ULP. We also check if we need to 23724 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23725 * MDT usage in the past have been lifted. This gets called during IP 23726 * and ULP binding. 23727 */ 23728 mblk_t * 23729 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23730 ill_mdt_capab_t *mdt_cap) 23731 { 23732 mblk_t *mp; 23733 boolean_t rc = B_FALSE; 23734 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23735 23736 ASSERT(dst_ire != NULL); 23737 ASSERT(connp != NULL); 23738 ASSERT(mdt_cap != NULL); 23739 23740 /* 23741 * Currently, we only support simple TCP/{IPv4,IPv6} with 23742 * Multidata, which is handled in tcp_multisend(). This 23743 * is the reason why we do all these checks here, to ensure 23744 * that we don't enable Multidata for the cases which we 23745 * can't handle at the moment. 23746 */ 23747 do { 23748 /* Only do TCP at the moment */ 23749 if (connp->conn_ulp != IPPROTO_TCP) 23750 break; 23751 23752 /* 23753 * IPSEC outbound policy present? Note that we get here 23754 * after calling ipsec_conn_cache_policy() where the global 23755 * policy checking is performed. conn_latch will be 23756 * non-NULL as long as there's a policy defined, 23757 * i.e. conn_out_enforce_policy may be NULL in such case 23758 * when the connection is non-secure, and hence we check 23759 * further if the latch refers to an outbound policy. 23760 */ 23761 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23762 break; 23763 23764 /* CGTP (multiroute) is enabled? */ 23765 if (dst_ire->ire_flags & RTF_MULTIRT) 23766 break; 23767 23768 /* Outbound IPQoS enabled? */ 23769 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23770 /* 23771 * In this case, we disable MDT for this and all 23772 * future connections going over the interface. 23773 */ 23774 mdt_cap->ill_mdt_on = 0; 23775 break; 23776 } 23777 23778 /* socket option(s) present? */ 23779 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23780 break; 23781 23782 rc = B_TRUE; 23783 /* CONSTCOND */ 23784 } while (0); 23785 23786 /* Remember the result */ 23787 connp->conn_mdt_ok = rc; 23788 23789 if (!rc) 23790 return (NULL); 23791 else if (!mdt_cap->ill_mdt_on) { 23792 /* 23793 * If MDT has been previously turned off in the past, and we 23794 * currently can do MDT (due to IPQoS policy removal, etc.) 23795 * then enable it for this interface. 23796 */ 23797 mdt_cap->ill_mdt_on = 1; 23798 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23799 "interface %s\n", ill_name)); 23800 } 23801 23802 /* Allocate the MDT info mblk */ 23803 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23804 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23805 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23806 return (NULL); 23807 } 23808 return (mp); 23809 } 23810 23811 /* 23812 * Routine to allocate a message that is used to notify the ULP about LSO. 23813 * The caller may provide a pointer to the link-layer LSO capabilities, 23814 * or NULL if LSO is to be disabled on the stream. 23815 */ 23816 mblk_t * 23817 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23818 { 23819 mblk_t *mp; 23820 ip_lso_info_t *lsoi; 23821 ill_lso_capab_t *idst; 23822 23823 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23824 DB_TYPE(mp) = M_CTL; 23825 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23826 lsoi = (ip_lso_info_t *)mp->b_rptr; 23827 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23828 idst = &(lsoi->lso_capab); 23829 23830 /* 23831 * If the caller provides us with the capability, copy 23832 * it over into our notification message; otherwise 23833 * we zero out the capability portion. 23834 */ 23835 if (isrc != NULL) 23836 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23837 else 23838 bzero((caddr_t)idst, sizeof (*idst)); 23839 } 23840 return (mp); 23841 } 23842 23843 /* 23844 * Routine which determines whether LSO can be enabled on the destination 23845 * IRE and IPC combination, and if so, allocates and returns the LSO 23846 * notification mblk that may be used by ULP. We also check if we need to 23847 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23848 * LSO usage in the past have been lifted. This gets called during IP 23849 * and ULP binding. 23850 */ 23851 mblk_t * 23852 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23853 ill_lso_capab_t *lso_cap) 23854 { 23855 mblk_t *mp; 23856 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23857 23858 ASSERT(dst_ire != NULL); 23859 ASSERT(connp != NULL); 23860 ASSERT(lso_cap != NULL); 23861 23862 connp->conn_lso_ok = B_TRUE; 23863 23864 if ((connp->conn_ulp != IPPROTO_TCP) || 23865 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23866 (dst_ire->ire_flags & RTF_MULTIRT) || 23867 !CONN_IS_LSO_MD_FASTPATH(connp) || 23868 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23869 connp->conn_lso_ok = B_FALSE; 23870 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23871 /* 23872 * Disable LSO for this and all future connections going 23873 * over the interface. 23874 */ 23875 lso_cap->ill_lso_on = 0; 23876 } 23877 } 23878 23879 if (!connp->conn_lso_ok) 23880 return (NULL); 23881 else if (!lso_cap->ill_lso_on) { 23882 /* 23883 * If LSO has been previously turned off in the past, and we 23884 * currently can do LSO (due to IPQoS policy removal, etc.) 23885 * then enable it for this interface. 23886 */ 23887 lso_cap->ill_lso_on = 1; 23888 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23889 ill_name)); 23890 } 23891 23892 /* Allocate the LSO info mblk */ 23893 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23894 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23895 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23896 23897 return (mp); 23898 } 23899 23900 /* 23901 * Create destination address attribute, and fill it with the physical 23902 * destination address and SAP taken from the template DL_UNITDATA_REQ 23903 * message block. 23904 */ 23905 boolean_t 23906 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23907 { 23908 dl_unitdata_req_t *dlurp; 23909 pattr_t *pa; 23910 pattrinfo_t pa_info; 23911 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23912 uint_t das_len, das_off; 23913 23914 ASSERT(dlmp != NULL); 23915 23916 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23917 das_len = dlurp->dl_dest_addr_length; 23918 das_off = dlurp->dl_dest_addr_offset; 23919 23920 pa_info.type = PATTR_DSTADDRSAP; 23921 pa_info.len = sizeof (**das) + das_len - 1; 23922 23923 /* create and associate the attribute */ 23924 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23925 if (pa != NULL) { 23926 ASSERT(*das != NULL); 23927 (*das)->addr_is_group = 0; 23928 (*das)->addr_len = (uint8_t)das_len; 23929 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23930 } 23931 23932 return (pa != NULL); 23933 } 23934 23935 /* 23936 * Create hardware checksum attribute and fill it with the values passed. 23937 */ 23938 boolean_t 23939 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23940 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23941 { 23942 pattr_t *pa; 23943 pattrinfo_t pa_info; 23944 23945 ASSERT(mmd != NULL); 23946 23947 pa_info.type = PATTR_HCKSUM; 23948 pa_info.len = sizeof (pattr_hcksum_t); 23949 23950 /* create and associate the attribute */ 23951 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23952 if (pa != NULL) { 23953 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23954 23955 hck->hcksum_start_offset = start_offset; 23956 hck->hcksum_stuff_offset = stuff_offset; 23957 hck->hcksum_end_offset = end_offset; 23958 hck->hcksum_flags = flags; 23959 } 23960 return (pa != NULL); 23961 } 23962 23963 /* 23964 * Create zerocopy attribute and fill it with the specified flags 23965 */ 23966 boolean_t 23967 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23968 { 23969 pattr_t *pa; 23970 pattrinfo_t pa_info; 23971 23972 ASSERT(mmd != NULL); 23973 pa_info.type = PATTR_ZCOPY; 23974 pa_info.len = sizeof (pattr_zcopy_t); 23975 23976 /* create and associate the attribute */ 23977 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23978 if (pa != NULL) { 23979 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23980 23981 zcopy->zcopy_flags = flags; 23982 } 23983 return (pa != NULL); 23984 } 23985 23986 /* 23987 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23988 * block chain. We could rewrite to handle arbitrary message block chains but 23989 * that would make the code complicated and slow. Right now there three 23990 * restrictions: 23991 * 23992 * 1. The first message block must contain the complete IP header and 23993 * at least 1 byte of payload data. 23994 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23995 * so that we can use a single Multidata message. 23996 * 3. No frag must be distributed over two or more message blocks so 23997 * that we don't need more than two packet descriptors per frag. 23998 * 23999 * The above restrictions allow us to support userland applications (which 24000 * will send down a single message block) and NFS over UDP (which will 24001 * send down a chain of at most three message blocks). 24002 * 24003 * We also don't use MDT for payloads with less than or equal to 24004 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 24005 */ 24006 boolean_t 24007 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 24008 { 24009 int blocks; 24010 ssize_t total, missing, size; 24011 24012 ASSERT(mp != NULL); 24013 ASSERT(hdr_len > 0); 24014 24015 size = MBLKL(mp) - hdr_len; 24016 if (size <= 0) 24017 return (B_FALSE); 24018 24019 /* The first mblk contains the header and some payload. */ 24020 blocks = 1; 24021 total = size; 24022 size %= len; 24023 missing = (size == 0) ? 0 : (len - size); 24024 mp = mp->b_cont; 24025 24026 while (mp != NULL) { 24027 /* 24028 * Give up if we encounter a zero length message block. 24029 * In practice, this should rarely happen and therefore 24030 * not worth the trouble of freeing and re-linking the 24031 * mblk from the chain to handle such case. 24032 */ 24033 if ((size = MBLKL(mp)) == 0) 24034 return (B_FALSE); 24035 24036 /* Too many payload buffers for a single Multidata message? */ 24037 if (++blocks > MULTIDATA_MAX_PBUFS) 24038 return (B_FALSE); 24039 24040 total += size; 24041 /* Is a frag distributed over two or more message blocks? */ 24042 if (missing > size) 24043 return (B_FALSE); 24044 size -= missing; 24045 24046 size %= len; 24047 missing = (size == 0) ? 0 : (len - size); 24048 24049 mp = mp->b_cont; 24050 } 24051 24052 return (total > ip_wput_frag_mdt_min); 24053 } 24054 24055 /* 24056 * Outbound IPv4 fragmentation routine using MDT. 24057 */ 24058 static void 24059 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 24060 uint32_t frag_flag, int offset) 24061 { 24062 ipha_t *ipha_orig; 24063 int i1, ip_data_end; 24064 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 24065 mblk_t *hdr_mp, *md_mp = NULL; 24066 unsigned char *hdr_ptr, *pld_ptr; 24067 multidata_t *mmd; 24068 ip_pdescinfo_t pdi; 24069 ill_t *ill; 24070 ip_stack_t *ipst = ire->ire_ipst; 24071 24072 ASSERT(DB_TYPE(mp) == M_DATA); 24073 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 24074 24075 ill = ire_to_ill(ire); 24076 ASSERT(ill != NULL); 24077 24078 ipha_orig = (ipha_t *)mp->b_rptr; 24079 mp->b_rptr += sizeof (ipha_t); 24080 24081 /* Calculate how many packets we will send out */ 24082 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24083 pkts = (i1 + len - 1) / len; 24084 ASSERT(pkts > 1); 24085 24086 /* Allocate a message block which will hold all the IP Headers. */ 24087 wroff = ipst->ips_ip_wroff_extra; 24088 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24089 24090 i1 = pkts * hdr_chunk_len; 24091 /* 24092 * Create the header buffer, Multidata and destination address 24093 * and SAP attribute that should be associated with it. 24094 */ 24095 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24096 ((hdr_mp->b_wptr += i1), 24097 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24098 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24099 freemsg(mp); 24100 if (md_mp == NULL) { 24101 freemsg(hdr_mp); 24102 } else { 24103 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24104 freemsg(md_mp); 24105 } 24106 IP_STAT(ipst, ip_frag_mdt_allocfail); 24107 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24108 return; 24109 } 24110 IP_STAT(ipst, ip_frag_mdt_allocd); 24111 24112 /* 24113 * Add a payload buffer to the Multidata; this operation must not 24114 * fail, or otherwise our logic in this routine is broken. There 24115 * is no memory allocation done by the routine, so any returned 24116 * failure simply tells us that we've done something wrong. 24117 * 24118 * A failure tells us that either we're adding the same payload 24119 * buffer more than once, or we're trying to add more buffers than 24120 * allowed. None of the above cases should happen, and we panic 24121 * because either there's horrible heap corruption, and/or 24122 * programming mistake. 24123 */ 24124 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24125 goto pbuf_panic; 24126 24127 hdr_ptr = hdr_mp->b_rptr; 24128 pld_ptr = mp->b_rptr; 24129 24130 /* Establish the ending byte offset, based on the starting offset. */ 24131 offset <<= 3; 24132 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24133 IP_SIMPLE_HDR_LENGTH; 24134 24135 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24136 24137 while (pld_ptr < mp->b_wptr) { 24138 ipha_t *ipha; 24139 uint16_t offset_and_flags; 24140 uint16_t ip_len; 24141 int error; 24142 24143 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24144 ipha = (ipha_t *)(hdr_ptr + wroff); 24145 ASSERT(OK_32PTR(ipha)); 24146 *ipha = *ipha_orig; 24147 24148 if (ip_data_end - offset > len) { 24149 offset_and_flags = IPH_MF; 24150 } else { 24151 /* 24152 * Last frag. Set len to the length of this last piece. 24153 */ 24154 len = ip_data_end - offset; 24155 /* A frag of a frag might have IPH_MF non-zero */ 24156 offset_and_flags = 24157 ntohs(ipha->ipha_fragment_offset_and_flags) & 24158 IPH_MF; 24159 } 24160 offset_and_flags |= (uint16_t)(offset >> 3); 24161 offset_and_flags |= (uint16_t)frag_flag; 24162 /* Store the offset and flags in the IP header. */ 24163 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24164 24165 /* Store the length in the IP header. */ 24166 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24167 ipha->ipha_length = htons(ip_len); 24168 24169 /* 24170 * Set the IP header checksum. Note that mp is just 24171 * the header, so this is easy to pass to ip_csum. 24172 */ 24173 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24174 24175 /* 24176 * Record offset and size of header and data of the next packet 24177 * in the multidata message. 24178 */ 24179 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24180 PDESC_PLD_INIT(&pdi); 24181 i1 = MIN(mp->b_wptr - pld_ptr, len); 24182 ASSERT(i1 > 0); 24183 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24184 if (i1 == len) { 24185 pld_ptr += len; 24186 } else { 24187 i1 = len - i1; 24188 mp = mp->b_cont; 24189 ASSERT(mp != NULL); 24190 ASSERT(MBLKL(mp) >= i1); 24191 /* 24192 * Attach the next payload message block to the 24193 * multidata message. 24194 */ 24195 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24196 goto pbuf_panic; 24197 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24198 pld_ptr = mp->b_rptr + i1; 24199 } 24200 24201 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24202 KM_NOSLEEP)) == NULL) { 24203 /* 24204 * Any failure other than ENOMEM indicates that we 24205 * have passed in invalid pdesc info or parameters 24206 * to mmd_addpdesc, which must not happen. 24207 * 24208 * EINVAL is a result of failure on boundary checks 24209 * against the pdesc info contents. It should not 24210 * happen, and we panic because either there's 24211 * horrible heap corruption, and/or programming 24212 * mistake. 24213 */ 24214 if (error != ENOMEM) { 24215 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24216 "pdesc logic error detected for " 24217 "mmd %p pinfo %p (%d)\n", 24218 (void *)mmd, (void *)&pdi, error); 24219 /* NOTREACHED */ 24220 } 24221 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24222 /* Free unattached payload message blocks as well */ 24223 md_mp->b_cont = mp->b_cont; 24224 goto free_mmd; 24225 } 24226 24227 /* Advance fragment offset. */ 24228 offset += len; 24229 24230 /* Advance to location for next header in the buffer. */ 24231 hdr_ptr += hdr_chunk_len; 24232 24233 /* Did we reach the next payload message block? */ 24234 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24235 mp = mp->b_cont; 24236 /* 24237 * Attach the next message block with payload 24238 * data to the multidata message. 24239 */ 24240 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24241 goto pbuf_panic; 24242 pld_ptr = mp->b_rptr; 24243 } 24244 } 24245 24246 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24247 ASSERT(mp->b_wptr == pld_ptr); 24248 24249 /* Update IP statistics */ 24250 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24251 24252 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24253 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24254 24255 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24256 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24257 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24258 24259 if (pkt_type == OB_PKT) { 24260 ire->ire_ob_pkt_count += pkts; 24261 if (ire->ire_ipif != NULL) 24262 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24263 } else { 24264 /* 24265 * The type is IB_PKT in the forwarding path and in 24266 * the mobile IP case when the packet is being reverse- 24267 * tunneled to the home agent. 24268 */ 24269 ire->ire_ib_pkt_count += pkts; 24270 ASSERT(!IRE_IS_LOCAL(ire)); 24271 if (ire->ire_type & IRE_BROADCAST) { 24272 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24273 } else { 24274 UPDATE_MIB(ill->ill_ip_mib, 24275 ipIfStatsHCOutForwDatagrams, pkts); 24276 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24277 } 24278 } 24279 ire->ire_last_used_time = lbolt; 24280 /* Send it down */ 24281 putnext(ire->ire_stq, md_mp); 24282 return; 24283 24284 pbuf_panic: 24285 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24286 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24287 pbuf_idx); 24288 /* NOTREACHED */ 24289 } 24290 24291 /* 24292 * Outbound IP fragmentation routine. 24293 * 24294 * NOTE : This routine does not ire_refrele the ire that is passed in 24295 * as the argument. 24296 */ 24297 static void 24298 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24299 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24300 { 24301 int i1; 24302 mblk_t *ll_hdr_mp; 24303 int ll_hdr_len; 24304 int hdr_len; 24305 mblk_t *hdr_mp; 24306 ipha_t *ipha; 24307 int ip_data_end; 24308 int len; 24309 mblk_t *mp = mp_orig, *mp1; 24310 int offset; 24311 queue_t *q; 24312 uint32_t v_hlen_tos_len; 24313 mblk_t *first_mp; 24314 boolean_t mctl_present; 24315 ill_t *ill; 24316 ill_t *out_ill; 24317 mblk_t *xmit_mp; 24318 mblk_t *carve_mp; 24319 ire_t *ire1 = NULL; 24320 ire_t *save_ire = NULL; 24321 mblk_t *next_mp = NULL; 24322 boolean_t last_frag = B_FALSE; 24323 boolean_t multirt_send = B_FALSE; 24324 ire_t *first_ire = NULL; 24325 irb_t *irb = NULL; 24326 mib2_ipIfStatsEntry_t *mibptr = NULL; 24327 24328 ill = ire_to_ill(ire); 24329 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24330 24331 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24332 24333 if (max_frag == 0) { 24334 ip1dbg(("ip_wput_frag: ire frag size is 0" 24335 " - dropping packet\n")); 24336 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24337 freemsg(mp); 24338 return; 24339 } 24340 24341 /* 24342 * IPSEC does not allow hw accelerated packets to be fragmented 24343 * This check is made in ip_wput_ipsec_out prior to coming here 24344 * via ip_wput_ire_fragmentit. 24345 * 24346 * If at this point we have an ire whose ARP request has not 24347 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24348 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24349 * This packet and all fragmentable packets for this ire will 24350 * continue to get dropped while ire_nce->nce_state remains in 24351 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24352 * ND_REACHABLE, all subsquent large packets for this ire will 24353 * get fragemented and sent out by this function. 24354 */ 24355 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24356 /* If nce_state is ND_INITIAL, trigger ARP query */ 24357 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24358 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24359 " - dropping packet\n")); 24360 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24361 freemsg(mp); 24362 return; 24363 } 24364 24365 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24366 "ip_wput_frag_start:"); 24367 24368 if (mp->b_datap->db_type == M_CTL) { 24369 first_mp = mp; 24370 mp_orig = mp = mp->b_cont; 24371 mctl_present = B_TRUE; 24372 } else { 24373 first_mp = mp; 24374 mctl_present = B_FALSE; 24375 } 24376 24377 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24378 ipha = (ipha_t *)mp->b_rptr; 24379 24380 /* 24381 * If the Don't Fragment flag is on, generate an ICMP destination 24382 * unreachable, fragmentation needed. 24383 */ 24384 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24385 if (offset & IPH_DF) { 24386 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24387 /* 24388 * Need to compute hdr checksum if called from ip_wput_ire. 24389 * Note that ip_rput_forward verifies the checksum before 24390 * calling this routine so in that case this is a noop. 24391 */ 24392 ipha->ipha_hdr_checksum = 0; 24393 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24394 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24395 ipst); 24396 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24397 "ip_wput_frag_end:(%S)", 24398 "don't fragment"); 24399 return; 24400 } 24401 if (mctl_present) 24402 freeb(first_mp); 24403 /* 24404 * Establish the starting offset. May not be zero if we are fragging 24405 * a fragment that is being forwarded. 24406 */ 24407 offset = offset & IPH_OFFSET; 24408 24409 /* TODO why is this test needed? */ 24410 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24411 if (((max_frag - LENGTH) & ~7) < 8) { 24412 /* TODO: notify ulp somehow */ 24413 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24414 freemsg(mp); 24415 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24416 "ip_wput_frag_end:(%S)", 24417 "len < 8"); 24418 return; 24419 } 24420 24421 hdr_len = (V_HLEN & 0xF) << 2; 24422 24423 ipha->ipha_hdr_checksum = 0; 24424 24425 /* 24426 * Establish the number of bytes maximum per frag, after putting 24427 * in the header. 24428 */ 24429 len = (max_frag - hdr_len) & ~7; 24430 24431 /* Check if we can use MDT to send out the frags. */ 24432 ASSERT(!IRE_IS_LOCAL(ire)); 24433 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24434 ipst->ips_ip_multidata_outbound && 24435 !(ire->ire_flags & RTF_MULTIRT) && 24436 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24437 ill != NULL && ILL_MDT_CAPABLE(ill) && 24438 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24439 ASSERT(ill->ill_mdt_capab != NULL); 24440 if (!ill->ill_mdt_capab->ill_mdt_on) { 24441 /* 24442 * If MDT has been previously turned off in the past, 24443 * and we currently can do MDT (due to IPQoS policy 24444 * removal, etc.) then enable it for this interface. 24445 */ 24446 ill->ill_mdt_capab->ill_mdt_on = 1; 24447 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24448 ill->ill_name)); 24449 } 24450 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24451 offset); 24452 return; 24453 } 24454 24455 /* Get a copy of the header for the trailing frags */ 24456 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24457 if (!hdr_mp) { 24458 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24459 freemsg(mp); 24460 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24461 "ip_wput_frag_end:(%S)", 24462 "couldn't copy hdr"); 24463 return; 24464 } 24465 if (DB_CRED(mp) != NULL) 24466 mblk_setcred(hdr_mp, DB_CRED(mp)); 24467 24468 /* Store the starting offset, with the MoreFrags flag. */ 24469 i1 = offset | IPH_MF | frag_flag; 24470 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24471 24472 /* Establish the ending byte offset, based on the starting offset. */ 24473 offset <<= 3; 24474 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24475 24476 /* Store the length of the first fragment in the IP header. */ 24477 i1 = len + hdr_len; 24478 ASSERT(i1 <= IP_MAXPACKET); 24479 ipha->ipha_length = htons((uint16_t)i1); 24480 24481 /* 24482 * Compute the IP header checksum for the first frag. We have to 24483 * watch out that we stop at the end of the header. 24484 */ 24485 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24486 24487 /* 24488 * Now carve off the first frag. Note that this will include the 24489 * original IP header. 24490 */ 24491 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24492 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24493 freeb(hdr_mp); 24494 freemsg(mp_orig); 24495 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24496 "ip_wput_frag_end:(%S)", 24497 "couldn't carve first"); 24498 return; 24499 } 24500 24501 /* 24502 * Multirouting case. Each fragment is replicated 24503 * via all non-condemned RTF_MULTIRT routes 24504 * currently resolved. 24505 * We ensure that first_ire is the first RTF_MULTIRT 24506 * ire in the bucket. 24507 */ 24508 if (ire->ire_flags & RTF_MULTIRT) { 24509 irb = ire->ire_bucket; 24510 ASSERT(irb != NULL); 24511 24512 multirt_send = B_TRUE; 24513 24514 /* Make sure we do not omit any multiroute ire. */ 24515 IRB_REFHOLD(irb); 24516 for (first_ire = irb->irb_ire; 24517 first_ire != NULL; 24518 first_ire = first_ire->ire_next) { 24519 if ((first_ire->ire_flags & RTF_MULTIRT) && 24520 (first_ire->ire_addr == ire->ire_addr) && 24521 !(first_ire->ire_marks & 24522 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24523 break; 24524 } 24525 24526 if (first_ire != NULL) { 24527 if (first_ire != ire) { 24528 IRE_REFHOLD(first_ire); 24529 /* 24530 * Do not release the ire passed in 24531 * as the argument. 24532 */ 24533 ire = first_ire; 24534 } else { 24535 first_ire = NULL; 24536 } 24537 } 24538 IRB_REFRELE(irb); 24539 24540 /* 24541 * Save the first ire; we will need to restore it 24542 * for the trailing frags. 24543 * We REFHOLD save_ire, as each iterated ire will be 24544 * REFRELEd. 24545 */ 24546 save_ire = ire; 24547 IRE_REFHOLD(save_ire); 24548 } 24549 24550 /* 24551 * First fragment emission loop. 24552 * In most cases, the emission loop below is entered only 24553 * once. Only in the case where the ire holds the RTF_MULTIRT 24554 * flag, do we loop to process all RTF_MULTIRT ires in the 24555 * bucket, and send the fragment through all crossed 24556 * RTF_MULTIRT routes. 24557 */ 24558 do { 24559 if (ire->ire_flags & RTF_MULTIRT) { 24560 /* 24561 * We are in a multiple send case, need to get 24562 * the next ire and make a copy of the packet. 24563 * ire1 holds here the next ire to process in the 24564 * bucket. If multirouting is expected, 24565 * any non-RTF_MULTIRT ire that has the 24566 * right destination address is ignored. 24567 * 24568 * We have to take into account the MTU of 24569 * each walked ire. max_frag is set by the 24570 * the caller and generally refers to 24571 * the primary ire entry. Here we ensure that 24572 * no route with a lower MTU will be used, as 24573 * fragments are carved once for all ires, 24574 * then replicated. 24575 */ 24576 ASSERT(irb != NULL); 24577 IRB_REFHOLD(irb); 24578 for (ire1 = ire->ire_next; 24579 ire1 != NULL; 24580 ire1 = ire1->ire_next) { 24581 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24582 continue; 24583 if (ire1->ire_addr != ire->ire_addr) 24584 continue; 24585 if (ire1->ire_marks & 24586 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24587 continue; 24588 /* 24589 * Ensure we do not exceed the MTU 24590 * of the next route. 24591 */ 24592 if (ire1->ire_max_frag < max_frag) { 24593 ip_multirt_bad_mtu(ire1, max_frag); 24594 continue; 24595 } 24596 24597 /* Got one. */ 24598 IRE_REFHOLD(ire1); 24599 break; 24600 } 24601 IRB_REFRELE(irb); 24602 24603 if (ire1 != NULL) { 24604 next_mp = copyb(mp); 24605 if ((next_mp == NULL) || 24606 ((mp->b_cont != NULL) && 24607 ((next_mp->b_cont = 24608 dupmsg(mp->b_cont)) == NULL))) { 24609 freemsg(next_mp); 24610 next_mp = NULL; 24611 ire_refrele(ire1); 24612 ire1 = NULL; 24613 } 24614 } 24615 24616 /* Last multiroute ire; don't loop anymore. */ 24617 if (ire1 == NULL) { 24618 multirt_send = B_FALSE; 24619 } 24620 } 24621 24622 ll_hdr_len = 0; 24623 LOCK_IRE_FP_MP(ire); 24624 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24625 if (ll_hdr_mp != NULL) { 24626 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24627 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24628 } else { 24629 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24630 } 24631 24632 /* If there is a transmit header, get a copy for this frag. */ 24633 /* 24634 * TODO: should check db_ref before calling ip_carve_mp since 24635 * it might give us a dup. 24636 */ 24637 if (!ll_hdr_mp) { 24638 /* No xmit header. */ 24639 xmit_mp = mp; 24640 24641 /* We have a link-layer header that can fit in our mblk. */ 24642 } else if (mp->b_datap->db_ref == 1 && 24643 ll_hdr_len != 0 && 24644 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24645 /* M_DATA fastpath */ 24646 mp->b_rptr -= ll_hdr_len; 24647 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24648 xmit_mp = mp; 24649 24650 /* Corner case if copyb has failed */ 24651 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24652 UNLOCK_IRE_FP_MP(ire); 24653 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24654 freeb(hdr_mp); 24655 freemsg(mp); 24656 freemsg(mp_orig); 24657 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24658 "ip_wput_frag_end:(%S)", 24659 "discard"); 24660 24661 if (multirt_send) { 24662 ASSERT(ire1); 24663 ASSERT(next_mp); 24664 24665 freemsg(next_mp); 24666 ire_refrele(ire1); 24667 } 24668 if (save_ire != NULL) 24669 IRE_REFRELE(save_ire); 24670 24671 if (first_ire != NULL) 24672 ire_refrele(first_ire); 24673 return; 24674 24675 /* 24676 * Case of res_mp OR the fastpath mp can't fit 24677 * in the mblk 24678 */ 24679 } else { 24680 xmit_mp->b_cont = mp; 24681 if (DB_CRED(mp) != NULL) 24682 mblk_setcred(xmit_mp, DB_CRED(mp)); 24683 /* 24684 * Get priority marking, if any. 24685 * We propagate the CoS marking from the 24686 * original packet that went to QoS processing 24687 * in ip_wput_ire to the newly carved mp. 24688 */ 24689 if (DB_TYPE(xmit_mp) == M_DATA) 24690 xmit_mp->b_band = mp->b_band; 24691 } 24692 UNLOCK_IRE_FP_MP(ire); 24693 24694 q = ire->ire_stq; 24695 out_ill = (ill_t *)q->q_ptr; 24696 24697 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24698 24699 DTRACE_PROBE4(ip4__physical__out__start, 24700 ill_t *, NULL, ill_t *, out_ill, 24701 ipha_t *, ipha, mblk_t *, xmit_mp); 24702 24703 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24704 ipst->ips_ipv4firewall_physical_out, 24705 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24706 24707 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24708 24709 if (xmit_mp != NULL) { 24710 putnext(q, xmit_mp); 24711 24712 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24713 UPDATE_MIB(out_ill->ill_ip_mib, 24714 ipIfStatsHCOutOctets, i1); 24715 24716 if (pkt_type != OB_PKT) { 24717 /* 24718 * Update the packet count and MIB stats 24719 * of trailing RTF_MULTIRT ires. 24720 */ 24721 UPDATE_OB_PKT_COUNT(ire); 24722 BUMP_MIB(out_ill->ill_ip_mib, 24723 ipIfStatsOutFragReqds); 24724 } 24725 } 24726 24727 if (multirt_send) { 24728 /* 24729 * We are in a multiple send case; look for 24730 * the next ire and re-enter the loop. 24731 */ 24732 ASSERT(ire1); 24733 ASSERT(next_mp); 24734 /* REFRELE the current ire before looping */ 24735 ire_refrele(ire); 24736 ire = ire1; 24737 ire1 = NULL; 24738 mp = next_mp; 24739 next_mp = NULL; 24740 } 24741 } while (multirt_send); 24742 24743 ASSERT(ire1 == NULL); 24744 24745 /* Restore the original ire; we need it for the trailing frags */ 24746 if (save_ire != NULL) { 24747 /* REFRELE the last iterated ire */ 24748 ire_refrele(ire); 24749 /* save_ire has been REFHOLDed */ 24750 ire = save_ire; 24751 save_ire = NULL; 24752 q = ire->ire_stq; 24753 } 24754 24755 if (pkt_type == OB_PKT) { 24756 UPDATE_OB_PKT_COUNT(ire); 24757 } else { 24758 out_ill = (ill_t *)q->q_ptr; 24759 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24760 UPDATE_IB_PKT_COUNT(ire); 24761 } 24762 24763 /* Advance the offset to the second frag starting point. */ 24764 offset += len; 24765 /* 24766 * Update hdr_len from the copied header - there might be less options 24767 * in the later fragments. 24768 */ 24769 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24770 /* Loop until done. */ 24771 for (;;) { 24772 uint16_t offset_and_flags; 24773 uint16_t ip_len; 24774 24775 if (ip_data_end - offset > len) { 24776 /* 24777 * Carve off the appropriate amount from the original 24778 * datagram. 24779 */ 24780 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24781 mp = NULL; 24782 break; 24783 } 24784 /* 24785 * More frags after this one. Get another copy 24786 * of the header. 24787 */ 24788 if (carve_mp->b_datap->db_ref == 1 && 24789 hdr_mp->b_wptr - hdr_mp->b_rptr < 24790 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24791 /* Inline IP header */ 24792 carve_mp->b_rptr -= hdr_mp->b_wptr - 24793 hdr_mp->b_rptr; 24794 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24795 hdr_mp->b_wptr - hdr_mp->b_rptr); 24796 mp = carve_mp; 24797 } else { 24798 if (!(mp = copyb(hdr_mp))) { 24799 freemsg(carve_mp); 24800 break; 24801 } 24802 /* Get priority marking, if any. */ 24803 mp->b_band = carve_mp->b_band; 24804 mp->b_cont = carve_mp; 24805 } 24806 ipha = (ipha_t *)mp->b_rptr; 24807 offset_and_flags = IPH_MF; 24808 } else { 24809 /* 24810 * Last frag. Consume the header. Set len to 24811 * the length of this last piece. 24812 */ 24813 len = ip_data_end - offset; 24814 24815 /* 24816 * Carve off the appropriate amount from the original 24817 * datagram. 24818 */ 24819 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24820 mp = NULL; 24821 break; 24822 } 24823 if (carve_mp->b_datap->db_ref == 1 && 24824 hdr_mp->b_wptr - hdr_mp->b_rptr < 24825 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24826 /* Inline IP header */ 24827 carve_mp->b_rptr -= hdr_mp->b_wptr - 24828 hdr_mp->b_rptr; 24829 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24830 hdr_mp->b_wptr - hdr_mp->b_rptr); 24831 mp = carve_mp; 24832 freeb(hdr_mp); 24833 hdr_mp = mp; 24834 } else { 24835 mp = hdr_mp; 24836 /* Get priority marking, if any. */ 24837 mp->b_band = carve_mp->b_band; 24838 mp->b_cont = carve_mp; 24839 } 24840 ipha = (ipha_t *)mp->b_rptr; 24841 /* A frag of a frag might have IPH_MF non-zero */ 24842 offset_and_flags = 24843 ntohs(ipha->ipha_fragment_offset_and_flags) & 24844 IPH_MF; 24845 } 24846 offset_and_flags |= (uint16_t)(offset >> 3); 24847 offset_and_flags |= (uint16_t)frag_flag; 24848 /* Store the offset and flags in the IP header. */ 24849 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24850 24851 /* Store the length in the IP header. */ 24852 ip_len = (uint16_t)(len + hdr_len); 24853 ipha->ipha_length = htons(ip_len); 24854 24855 /* 24856 * Set the IP header checksum. Note that mp is just 24857 * the header, so this is easy to pass to ip_csum. 24858 */ 24859 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24860 24861 /* Attach a transmit header, if any, and ship it. */ 24862 if (pkt_type == OB_PKT) { 24863 UPDATE_OB_PKT_COUNT(ire); 24864 } else { 24865 out_ill = (ill_t *)q->q_ptr; 24866 BUMP_MIB(out_ill->ill_ip_mib, 24867 ipIfStatsHCOutForwDatagrams); 24868 UPDATE_IB_PKT_COUNT(ire); 24869 } 24870 24871 if (ire->ire_flags & RTF_MULTIRT) { 24872 irb = ire->ire_bucket; 24873 ASSERT(irb != NULL); 24874 24875 multirt_send = B_TRUE; 24876 24877 /* 24878 * Save the original ire; we will need to restore it 24879 * for the tailing frags. 24880 */ 24881 save_ire = ire; 24882 IRE_REFHOLD(save_ire); 24883 } 24884 /* 24885 * Emission loop for this fragment, similar 24886 * to what is done for the first fragment. 24887 */ 24888 do { 24889 if (multirt_send) { 24890 /* 24891 * We are in a multiple send case, need to get 24892 * the next ire and make a copy of the packet. 24893 */ 24894 ASSERT(irb != NULL); 24895 IRB_REFHOLD(irb); 24896 for (ire1 = ire->ire_next; 24897 ire1 != NULL; 24898 ire1 = ire1->ire_next) { 24899 if (!(ire1->ire_flags & RTF_MULTIRT)) 24900 continue; 24901 if (ire1->ire_addr != ire->ire_addr) 24902 continue; 24903 if (ire1->ire_marks & 24904 (IRE_MARK_CONDEMNED| 24905 IRE_MARK_HIDDEN)) 24906 continue; 24907 /* 24908 * Ensure we do not exceed the MTU 24909 * of the next route. 24910 */ 24911 if (ire1->ire_max_frag < max_frag) { 24912 ip_multirt_bad_mtu(ire1, 24913 max_frag); 24914 continue; 24915 } 24916 24917 /* Got one. */ 24918 IRE_REFHOLD(ire1); 24919 break; 24920 } 24921 IRB_REFRELE(irb); 24922 24923 if (ire1 != NULL) { 24924 next_mp = copyb(mp); 24925 if ((next_mp == NULL) || 24926 ((mp->b_cont != NULL) && 24927 ((next_mp->b_cont = 24928 dupmsg(mp->b_cont)) == NULL))) { 24929 freemsg(next_mp); 24930 next_mp = NULL; 24931 ire_refrele(ire1); 24932 ire1 = NULL; 24933 } 24934 } 24935 24936 /* Last multiroute ire; don't loop anymore. */ 24937 if (ire1 == NULL) { 24938 multirt_send = B_FALSE; 24939 } 24940 } 24941 24942 /* Update transmit header */ 24943 ll_hdr_len = 0; 24944 LOCK_IRE_FP_MP(ire); 24945 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24946 if (ll_hdr_mp != NULL) { 24947 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24948 ll_hdr_len = MBLKL(ll_hdr_mp); 24949 } else { 24950 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24951 } 24952 24953 if (!ll_hdr_mp) { 24954 xmit_mp = mp; 24955 24956 /* 24957 * We have link-layer header that can fit in 24958 * our mblk. 24959 */ 24960 } else if (mp->b_datap->db_ref == 1 && 24961 ll_hdr_len != 0 && 24962 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24963 /* M_DATA fastpath */ 24964 mp->b_rptr -= ll_hdr_len; 24965 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24966 ll_hdr_len); 24967 xmit_mp = mp; 24968 24969 /* 24970 * Case of res_mp OR the fastpath mp can't fit 24971 * in the mblk 24972 */ 24973 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24974 xmit_mp->b_cont = mp; 24975 if (DB_CRED(mp) != NULL) 24976 mblk_setcred(xmit_mp, DB_CRED(mp)); 24977 /* Get priority marking, if any. */ 24978 if (DB_TYPE(xmit_mp) == M_DATA) 24979 xmit_mp->b_band = mp->b_band; 24980 24981 /* Corner case if copyb failed */ 24982 } else { 24983 /* 24984 * Exit both the replication and 24985 * fragmentation loops. 24986 */ 24987 UNLOCK_IRE_FP_MP(ire); 24988 goto drop_pkt; 24989 } 24990 UNLOCK_IRE_FP_MP(ire); 24991 24992 mp1 = mp; 24993 out_ill = (ill_t *)q->q_ptr; 24994 24995 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24996 24997 DTRACE_PROBE4(ip4__physical__out__start, 24998 ill_t *, NULL, ill_t *, out_ill, 24999 ipha_t *, ipha, mblk_t *, xmit_mp); 25000 25001 FW_HOOKS(ipst->ips_ip4_physical_out_event, 25002 ipst->ips_ipv4firewall_physical_out, 25003 NULL, out_ill, ipha, xmit_mp, mp, ipst); 25004 25005 DTRACE_PROBE1(ip4__physical__out__end, 25006 mblk_t *, xmit_mp); 25007 25008 if (mp != mp1 && hdr_mp == mp1) 25009 hdr_mp = mp; 25010 if (mp != mp1 && mp_orig == mp1) 25011 mp_orig = mp; 25012 25013 if (xmit_mp != NULL) { 25014 putnext(q, xmit_mp); 25015 25016 BUMP_MIB(out_ill->ill_ip_mib, 25017 ipIfStatsHCOutTransmits); 25018 UPDATE_MIB(out_ill->ill_ip_mib, 25019 ipIfStatsHCOutOctets, ip_len); 25020 25021 if (pkt_type != OB_PKT) { 25022 /* 25023 * Update the packet count of trailing 25024 * RTF_MULTIRT ires. 25025 */ 25026 UPDATE_OB_PKT_COUNT(ire); 25027 } 25028 } 25029 25030 /* All done if we just consumed the hdr_mp. */ 25031 if (mp == hdr_mp) { 25032 last_frag = B_TRUE; 25033 BUMP_MIB(out_ill->ill_ip_mib, 25034 ipIfStatsOutFragOKs); 25035 } 25036 25037 if (multirt_send) { 25038 /* 25039 * We are in a multiple send case; look for 25040 * the next ire and re-enter the loop. 25041 */ 25042 ASSERT(ire1); 25043 ASSERT(next_mp); 25044 /* REFRELE the current ire before looping */ 25045 ire_refrele(ire); 25046 ire = ire1; 25047 ire1 = NULL; 25048 q = ire->ire_stq; 25049 mp = next_mp; 25050 next_mp = NULL; 25051 } 25052 } while (multirt_send); 25053 /* 25054 * Restore the original ire; we need it for the 25055 * trailing frags 25056 */ 25057 if (save_ire != NULL) { 25058 ASSERT(ire1 == NULL); 25059 /* REFRELE the last iterated ire */ 25060 ire_refrele(ire); 25061 /* save_ire has been REFHOLDed */ 25062 ire = save_ire; 25063 q = ire->ire_stq; 25064 save_ire = NULL; 25065 } 25066 25067 if (last_frag) { 25068 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25069 "ip_wput_frag_end:(%S)", 25070 "consumed hdr_mp"); 25071 25072 if (first_ire != NULL) 25073 ire_refrele(first_ire); 25074 return; 25075 } 25076 /* Otherwise, advance and loop. */ 25077 offset += len; 25078 } 25079 25080 drop_pkt: 25081 /* Clean up following allocation failure. */ 25082 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25083 freemsg(mp); 25084 if (mp != hdr_mp) 25085 freeb(hdr_mp); 25086 if (mp != mp_orig) 25087 freemsg(mp_orig); 25088 25089 if (save_ire != NULL) 25090 IRE_REFRELE(save_ire); 25091 if (first_ire != NULL) 25092 ire_refrele(first_ire); 25093 25094 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25095 "ip_wput_frag_end:(%S)", 25096 "end--alloc failure"); 25097 } 25098 25099 /* 25100 * Copy the header plus those options which have the copy bit set 25101 */ 25102 static mblk_t * 25103 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25104 { 25105 mblk_t *mp; 25106 uchar_t *up; 25107 25108 /* 25109 * Quick check if we need to look for options without the copy bit 25110 * set 25111 */ 25112 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25113 if (!mp) 25114 return (mp); 25115 mp->b_rptr += ipst->ips_ip_wroff_extra; 25116 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25117 bcopy(rptr, mp->b_rptr, hdr_len); 25118 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25119 return (mp); 25120 } 25121 up = mp->b_rptr; 25122 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25123 up += IP_SIMPLE_HDR_LENGTH; 25124 rptr += IP_SIMPLE_HDR_LENGTH; 25125 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25126 while (hdr_len > 0) { 25127 uint32_t optval; 25128 uint32_t optlen; 25129 25130 optval = *rptr; 25131 if (optval == IPOPT_EOL) 25132 break; 25133 if (optval == IPOPT_NOP) 25134 optlen = 1; 25135 else 25136 optlen = rptr[1]; 25137 if (optval & IPOPT_COPY) { 25138 bcopy(rptr, up, optlen); 25139 up += optlen; 25140 } 25141 rptr += optlen; 25142 hdr_len -= optlen; 25143 } 25144 /* 25145 * Make sure that we drop an even number of words by filling 25146 * with EOL to the next word boundary. 25147 */ 25148 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25149 hdr_len & 0x3; hdr_len++) 25150 *up++ = IPOPT_EOL; 25151 mp->b_wptr = up; 25152 /* Update header length */ 25153 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25154 return (mp); 25155 } 25156 25157 /* 25158 * Delivery to local recipients including fanout to multiple recipients. 25159 * Does not do checksumming of UDP/TCP. 25160 * Note: q should be the read side queue for either the ill or conn. 25161 * Note: rq should be the read side q for the lower (ill) stream. 25162 * We don't send packets to IPPF processing, thus the last argument 25163 * to all the fanout calls are B_FALSE. 25164 */ 25165 void 25166 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25167 int fanout_flags, zoneid_t zoneid) 25168 { 25169 uint32_t protocol; 25170 mblk_t *first_mp; 25171 boolean_t mctl_present; 25172 int ire_type; 25173 #define rptr ((uchar_t *)ipha) 25174 ip_stack_t *ipst = ill->ill_ipst; 25175 25176 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25177 "ip_wput_local_start: q %p", q); 25178 25179 if (ire != NULL) { 25180 ire_type = ire->ire_type; 25181 } else { 25182 /* 25183 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25184 * packet is not multicast, we can't tell the ire type. 25185 */ 25186 ASSERT(CLASSD(ipha->ipha_dst)); 25187 ire_type = IRE_BROADCAST; 25188 } 25189 25190 first_mp = mp; 25191 if (first_mp->b_datap->db_type == M_CTL) { 25192 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25193 if (!io->ipsec_out_secure) { 25194 /* 25195 * This ipsec_out_t was allocated in ip_wput 25196 * for multicast packets to store the ill_index. 25197 * As this is being delivered locally, we don't 25198 * need this anymore. 25199 */ 25200 mp = first_mp->b_cont; 25201 freeb(first_mp); 25202 first_mp = mp; 25203 mctl_present = B_FALSE; 25204 } else { 25205 /* 25206 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25207 * security properties for the looped-back packet. 25208 */ 25209 mctl_present = B_TRUE; 25210 mp = first_mp->b_cont; 25211 ASSERT(mp != NULL); 25212 ipsec_out_to_in(first_mp); 25213 } 25214 } else { 25215 mctl_present = B_FALSE; 25216 } 25217 25218 DTRACE_PROBE4(ip4__loopback__in__start, 25219 ill_t *, ill, ill_t *, NULL, 25220 ipha_t *, ipha, mblk_t *, first_mp); 25221 25222 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25223 ipst->ips_ipv4firewall_loopback_in, 25224 ill, NULL, ipha, first_mp, mp, ipst); 25225 25226 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25227 25228 if (first_mp == NULL) 25229 return; 25230 25231 ipst->ips_loopback_packets++; 25232 25233 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25234 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25235 if (!IS_SIMPLE_IPH(ipha)) { 25236 ip_wput_local_options(ipha, ipst); 25237 } 25238 25239 protocol = ipha->ipha_protocol; 25240 switch (protocol) { 25241 case IPPROTO_ICMP: { 25242 ire_t *ire_zone; 25243 ilm_t *ilm; 25244 mblk_t *mp1; 25245 zoneid_t last_zoneid; 25246 25247 if (CLASSD(ipha->ipha_dst) && 25248 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 25249 ASSERT(ire_type == IRE_BROADCAST); 25250 /* 25251 * In the multicast case, applications may have joined 25252 * the group from different zones, so we need to deliver 25253 * the packet to each of them. Loop through the 25254 * multicast memberships structures (ilm) on the receive 25255 * ill and send a copy of the packet up each matching 25256 * one. However, we don't do this for multicasts sent on 25257 * the loopback interface (PHYI_LOOPBACK flag set) as 25258 * they must stay in the sender's zone. 25259 * 25260 * ilm_add_v6() ensures that ilms in the same zone are 25261 * contiguous in the ill_ilm list. We use this property 25262 * to avoid sending duplicates needed when two 25263 * applications in the same zone join the same group on 25264 * different logical interfaces: we ignore the ilm if 25265 * it's zoneid is the same as the last matching one. 25266 * In addition, the sending of the packet for 25267 * ire_zoneid is delayed until all of the other ilms 25268 * have been exhausted. 25269 */ 25270 last_zoneid = -1; 25271 ILM_WALKER_HOLD(ill); 25272 for (ilm = ill->ill_ilm; ilm != NULL; 25273 ilm = ilm->ilm_next) { 25274 if ((ilm->ilm_flags & ILM_DELETED) || 25275 ipha->ipha_dst != ilm->ilm_addr || 25276 ilm->ilm_zoneid == last_zoneid || 25277 ilm->ilm_zoneid == zoneid || 25278 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25279 continue; 25280 mp1 = ip_copymsg(first_mp); 25281 if (mp1 == NULL) 25282 continue; 25283 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25284 mctl_present, B_FALSE, ill, 25285 ilm->ilm_zoneid); 25286 last_zoneid = ilm->ilm_zoneid; 25287 } 25288 ILM_WALKER_RELE(ill); 25289 /* 25290 * Loopback case: the sending endpoint has 25291 * IP_MULTICAST_LOOP disabled, therefore we don't 25292 * dispatch the multicast packet to the sending zone. 25293 */ 25294 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25295 freemsg(first_mp); 25296 return; 25297 } 25298 } else if (ire_type == IRE_BROADCAST) { 25299 /* 25300 * In the broadcast case, there may be many zones 25301 * which need a copy of the packet delivered to them. 25302 * There is one IRE_BROADCAST per broadcast address 25303 * and per zone; we walk those using a helper function. 25304 * In addition, the sending of the packet for zoneid is 25305 * delayed until all of the other ires have been 25306 * processed. 25307 */ 25308 IRB_REFHOLD(ire->ire_bucket); 25309 ire_zone = NULL; 25310 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25311 ire)) != NULL) { 25312 mp1 = ip_copymsg(first_mp); 25313 if (mp1 == NULL) 25314 continue; 25315 25316 UPDATE_IB_PKT_COUNT(ire_zone); 25317 ire_zone->ire_last_used_time = lbolt; 25318 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25319 mctl_present, B_FALSE, ill, 25320 ire_zone->ire_zoneid); 25321 } 25322 IRB_REFRELE(ire->ire_bucket); 25323 } 25324 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25325 0, mctl_present, B_FALSE, ill, zoneid); 25326 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25327 "ip_wput_local_end: q %p (%S)", 25328 q, "icmp"); 25329 return; 25330 } 25331 case IPPROTO_IGMP: 25332 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25333 /* Bad packet - discarded by igmp_input */ 25334 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25335 "ip_wput_local_end: q %p (%S)", 25336 q, "igmp_input--bad packet"); 25337 if (mctl_present) 25338 freeb(first_mp); 25339 return; 25340 } 25341 /* 25342 * igmp_input() may have returned the pulled up message. 25343 * So first_mp and ipha need to be reinitialized. 25344 */ 25345 ipha = (ipha_t *)mp->b_rptr; 25346 if (mctl_present) 25347 first_mp->b_cont = mp; 25348 else 25349 first_mp = mp; 25350 /* deliver to local raw users */ 25351 break; 25352 case IPPROTO_ENCAP: 25353 /* 25354 * This case is covered by either ip_fanout_proto, or by 25355 * the above security processing for self-tunneled packets. 25356 */ 25357 break; 25358 case IPPROTO_UDP: { 25359 uint16_t *up; 25360 uint32_t ports; 25361 25362 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25363 UDP_PORTS_OFFSET); 25364 /* Force a 'valid' checksum. */ 25365 up[3] = 0; 25366 25367 ports = *(uint32_t *)up; 25368 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25369 (ire_type == IRE_BROADCAST), 25370 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25371 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25372 ill, zoneid); 25373 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25374 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25375 return; 25376 } 25377 case IPPROTO_TCP: { 25378 25379 /* 25380 * For TCP, discard broadcast packets. 25381 */ 25382 if ((ushort_t)ire_type == IRE_BROADCAST) { 25383 freemsg(first_mp); 25384 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25385 ip2dbg(("ip_wput_local: discard broadcast\n")); 25386 return; 25387 } 25388 25389 if (mp->b_datap->db_type == M_DATA) { 25390 /* 25391 * M_DATA mblk, so init mblk (chain) for no struio(). 25392 */ 25393 mblk_t *mp1 = mp; 25394 25395 do 25396 mp1->b_datap->db_struioflag = 0; 25397 while ((mp1 = mp1->b_cont) != NULL); 25398 } 25399 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25400 <= mp->b_wptr); 25401 ip_fanout_tcp(q, first_mp, ill, ipha, 25402 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25403 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25404 mctl_present, B_FALSE, zoneid); 25405 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25406 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25407 return; 25408 } 25409 case IPPROTO_SCTP: 25410 { 25411 uint32_t ports; 25412 25413 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25414 ip_fanout_sctp(first_mp, ill, ipha, ports, 25415 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25416 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25417 return; 25418 } 25419 25420 default: 25421 break; 25422 } 25423 /* 25424 * Find a client for some other protocol. We give 25425 * copies to multiple clients, if more than one is 25426 * bound. 25427 */ 25428 ip_fanout_proto(q, first_mp, ill, ipha, 25429 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25430 mctl_present, B_FALSE, ill, zoneid); 25431 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25432 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25433 #undef rptr 25434 } 25435 25436 /* 25437 * Update any source route, record route, or timestamp options. 25438 * Check that we are at end of strict source route. 25439 * The options have been sanity checked by ip_wput_options(). 25440 */ 25441 static void 25442 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25443 { 25444 ipoptp_t opts; 25445 uchar_t *opt; 25446 uint8_t optval; 25447 uint8_t optlen; 25448 ipaddr_t dst; 25449 uint32_t ts; 25450 ire_t *ire; 25451 timestruc_t now; 25452 25453 ip2dbg(("ip_wput_local_options\n")); 25454 for (optval = ipoptp_first(&opts, ipha); 25455 optval != IPOPT_EOL; 25456 optval = ipoptp_next(&opts)) { 25457 opt = opts.ipoptp_cur; 25458 optlen = opts.ipoptp_len; 25459 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25460 switch (optval) { 25461 uint32_t off; 25462 case IPOPT_SSRR: 25463 case IPOPT_LSRR: 25464 off = opt[IPOPT_OFFSET]; 25465 off--; 25466 if (optlen < IP_ADDR_LEN || 25467 off > optlen - IP_ADDR_LEN) { 25468 /* End of source route */ 25469 break; 25470 } 25471 /* 25472 * This will only happen if two consecutive entries 25473 * in the source route contains our address or if 25474 * it is a packet with a loose source route which 25475 * reaches us before consuming the whole source route 25476 */ 25477 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25478 if (optval == IPOPT_SSRR) { 25479 return; 25480 } 25481 /* 25482 * Hack: instead of dropping the packet truncate the 25483 * source route to what has been used by filling the 25484 * rest with IPOPT_NOP. 25485 */ 25486 opt[IPOPT_OLEN] = (uint8_t)off; 25487 while (off < optlen) { 25488 opt[off++] = IPOPT_NOP; 25489 } 25490 break; 25491 case IPOPT_RR: 25492 off = opt[IPOPT_OFFSET]; 25493 off--; 25494 if (optlen < IP_ADDR_LEN || 25495 off > optlen - IP_ADDR_LEN) { 25496 /* No more room - ignore */ 25497 ip1dbg(( 25498 "ip_wput_forward_options: end of RR\n")); 25499 break; 25500 } 25501 dst = htonl(INADDR_LOOPBACK); 25502 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25503 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25504 break; 25505 case IPOPT_TS: 25506 /* Insert timestamp if there is romm */ 25507 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25508 case IPOPT_TS_TSONLY: 25509 off = IPOPT_TS_TIMELEN; 25510 break; 25511 case IPOPT_TS_PRESPEC: 25512 case IPOPT_TS_PRESPEC_RFC791: 25513 /* Verify that the address matched */ 25514 off = opt[IPOPT_OFFSET] - 1; 25515 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25516 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25517 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25518 ipst); 25519 if (ire == NULL) { 25520 /* Not for us */ 25521 break; 25522 } 25523 ire_refrele(ire); 25524 /* FALLTHRU */ 25525 case IPOPT_TS_TSANDADDR: 25526 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25527 break; 25528 default: 25529 /* 25530 * ip_*put_options should have already 25531 * dropped this packet. 25532 */ 25533 cmn_err(CE_PANIC, "ip_wput_local_options: " 25534 "unknown IT - bug in ip_wput_options?\n"); 25535 return; /* Keep "lint" happy */ 25536 } 25537 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25538 /* Increase overflow counter */ 25539 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25540 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25541 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25542 (off << 4); 25543 break; 25544 } 25545 off = opt[IPOPT_OFFSET] - 1; 25546 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25547 case IPOPT_TS_PRESPEC: 25548 case IPOPT_TS_PRESPEC_RFC791: 25549 case IPOPT_TS_TSANDADDR: 25550 dst = htonl(INADDR_LOOPBACK); 25551 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25552 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25553 /* FALLTHRU */ 25554 case IPOPT_TS_TSONLY: 25555 off = opt[IPOPT_OFFSET] - 1; 25556 /* Compute # of milliseconds since midnight */ 25557 gethrestime(&now); 25558 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25559 now.tv_nsec / (NANOSEC / MILLISEC); 25560 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25561 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25562 break; 25563 } 25564 break; 25565 } 25566 } 25567 } 25568 25569 /* 25570 * Send out a multicast packet on interface ipif. 25571 * The sender does not have an conn. 25572 * Caller verifies that this isn't a PHYI_LOOPBACK. 25573 */ 25574 void 25575 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25576 { 25577 ipha_t *ipha; 25578 ire_t *ire; 25579 ipaddr_t dst; 25580 mblk_t *first_mp; 25581 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25582 25583 /* igmp_sendpkt always allocates a ipsec_out_t */ 25584 ASSERT(mp->b_datap->db_type == M_CTL); 25585 ASSERT(!ipif->ipif_isv6); 25586 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 25587 25588 first_mp = mp; 25589 mp = first_mp->b_cont; 25590 ASSERT(mp->b_datap->db_type == M_DATA); 25591 ipha = (ipha_t *)mp->b_rptr; 25592 25593 /* 25594 * Find an IRE which matches the destination and the outgoing 25595 * queue (i.e. the outgoing interface.) 25596 */ 25597 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25598 dst = ipif->ipif_pp_dst_addr; 25599 else 25600 dst = ipha->ipha_dst; 25601 /* 25602 * The source address has already been initialized by the 25603 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25604 * be sufficient rather than MATCH_IRE_IPIF. 25605 * 25606 * This function is used for sending IGMP packets. We need 25607 * to make sure that we send the packet out of the interface 25608 * (ipif->ipif_ill) where we joined the group. This is to 25609 * prevent from switches doing IGMP snooping to send us multicast 25610 * packets for a given group on the interface we have joined. 25611 * If we can't find an ire, igmp_sendpkt has already initialized 25612 * ipsec_out_attach_if so that this will not be load spread in 25613 * ip_newroute_ipif. 25614 */ 25615 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25616 MATCH_IRE_ILL, ipst); 25617 if (!ire) { 25618 /* 25619 * Mark this packet to make it be delivered to 25620 * ip_wput_ire after the new ire has been 25621 * created. 25622 */ 25623 mp->b_prev = NULL; 25624 mp->b_next = NULL; 25625 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25626 zoneid, &zero_info); 25627 return; 25628 } 25629 25630 /* 25631 * Honor the RTF_SETSRC flag; this is the only case 25632 * where we force this addr whatever the current src addr is, 25633 * because this address is set by igmp_sendpkt(), and 25634 * cannot be specified by any user. 25635 */ 25636 if (ire->ire_flags & RTF_SETSRC) { 25637 ipha->ipha_src = ire->ire_src_addr; 25638 } 25639 25640 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25641 } 25642 25643 /* 25644 * NOTE : This function does not ire_refrele the ire argument passed in. 25645 * 25646 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25647 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 25648 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25649 * the ire_lock to access the nce_fp_mp in this case. 25650 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25651 * prepending a fastpath message IPQoS processing must precede it, we also set 25652 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25653 * (IPQoS might have set the b_band for CoS marking). 25654 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25655 * must follow it so that IPQoS can mark the dl_priority field for CoS 25656 * marking, if needed. 25657 */ 25658 static mblk_t * 25659 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25660 { 25661 uint_t hlen; 25662 ipha_t *ipha; 25663 mblk_t *mp1; 25664 boolean_t qos_done = B_FALSE; 25665 uchar_t *ll_hdr; 25666 ip_stack_t *ipst = ire->ire_ipst; 25667 25668 #define rptr ((uchar_t *)ipha) 25669 25670 ipha = (ipha_t *)mp->b_rptr; 25671 hlen = 0; 25672 LOCK_IRE_FP_MP(ire); 25673 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25674 ASSERT(DB_TYPE(mp1) == M_DATA); 25675 /* Initiate IPPF processing */ 25676 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25677 UNLOCK_IRE_FP_MP(ire); 25678 ip_process(proc, &mp, ill_index); 25679 if (mp == NULL) 25680 return (NULL); 25681 25682 ipha = (ipha_t *)mp->b_rptr; 25683 LOCK_IRE_FP_MP(ire); 25684 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25685 qos_done = B_TRUE; 25686 goto no_fp_mp; 25687 } 25688 ASSERT(DB_TYPE(mp1) == M_DATA); 25689 } 25690 hlen = MBLKL(mp1); 25691 /* 25692 * Check if we have enough room to prepend fastpath 25693 * header 25694 */ 25695 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25696 ll_hdr = rptr - hlen; 25697 bcopy(mp1->b_rptr, ll_hdr, hlen); 25698 /* 25699 * Set the b_rptr to the start of the link layer 25700 * header 25701 */ 25702 mp->b_rptr = ll_hdr; 25703 mp1 = mp; 25704 } else { 25705 mp1 = copyb(mp1); 25706 if (mp1 == NULL) 25707 goto unlock_err; 25708 mp1->b_band = mp->b_band; 25709 mp1->b_cont = mp; 25710 /* 25711 * certain system generated traffic may not 25712 * have cred/label in ip header block. This 25713 * is true even for a labeled system. But for 25714 * labeled traffic, inherit the label in the 25715 * new header. 25716 */ 25717 if (DB_CRED(mp) != NULL) 25718 mblk_setcred(mp1, DB_CRED(mp)); 25719 /* 25720 * XXX disable ICK_VALID and compute checksum 25721 * here; can happen if nce_fp_mp changes and 25722 * it can't be copied now due to insufficient 25723 * space. (unlikely, fp mp can change, but it 25724 * does not increase in length) 25725 */ 25726 } 25727 UNLOCK_IRE_FP_MP(ire); 25728 } else { 25729 no_fp_mp: 25730 mp1 = copyb(ire->ire_nce->nce_res_mp); 25731 if (mp1 == NULL) { 25732 unlock_err: 25733 UNLOCK_IRE_FP_MP(ire); 25734 freemsg(mp); 25735 return (NULL); 25736 } 25737 UNLOCK_IRE_FP_MP(ire); 25738 mp1->b_cont = mp; 25739 /* 25740 * certain system generated traffic may not 25741 * have cred/label in ip header block. This 25742 * is true even for a labeled system. But for 25743 * labeled traffic, inherit the label in the 25744 * new header. 25745 */ 25746 if (DB_CRED(mp) != NULL) 25747 mblk_setcred(mp1, DB_CRED(mp)); 25748 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25749 ip_process(proc, &mp1, ill_index); 25750 if (mp1 == NULL) 25751 return (NULL); 25752 } 25753 } 25754 return (mp1); 25755 #undef rptr 25756 } 25757 25758 /* 25759 * Finish the outbound IPsec processing for an IPv6 packet. This function 25760 * is called from ipsec_out_process() if the IPsec packet was processed 25761 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25762 * asynchronously. 25763 */ 25764 void 25765 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25766 ire_t *ire_arg) 25767 { 25768 in6_addr_t *v6dstp; 25769 ire_t *ire; 25770 mblk_t *mp; 25771 ip6_t *ip6h1; 25772 uint_t ill_index; 25773 ipsec_out_t *io; 25774 boolean_t attach_if, hwaccel; 25775 uint32_t flags = IP6_NO_IPPOLICY; 25776 int match_flags; 25777 zoneid_t zoneid; 25778 boolean_t ill_need_rele = B_FALSE; 25779 boolean_t ire_need_rele = B_FALSE; 25780 ip_stack_t *ipst; 25781 25782 mp = ipsec_mp->b_cont; 25783 ip6h1 = (ip6_t *)mp->b_rptr; 25784 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25785 ASSERT(io->ipsec_out_ns != NULL); 25786 ipst = io->ipsec_out_ns->netstack_ip; 25787 ill_index = io->ipsec_out_ill_index; 25788 if (io->ipsec_out_reachable) { 25789 flags |= IPV6_REACHABILITY_CONFIRMATION; 25790 } 25791 attach_if = io->ipsec_out_attach_if; 25792 hwaccel = io->ipsec_out_accelerated; 25793 zoneid = io->ipsec_out_zoneid; 25794 ASSERT(zoneid != ALL_ZONES); 25795 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25796 /* Multicast addresses should have non-zero ill_index. */ 25797 v6dstp = &ip6h->ip6_dst; 25798 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25799 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25800 ASSERT(!attach_if || ill_index != 0); 25801 if (ill_index != 0) { 25802 if (ill == NULL) { 25803 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25804 B_TRUE, ipst); 25805 25806 /* Failure case frees things for us. */ 25807 if (ill == NULL) 25808 return; 25809 25810 ill_need_rele = B_TRUE; 25811 } 25812 /* 25813 * If this packet needs to go out on a particular interface 25814 * honor it. 25815 */ 25816 if (attach_if) { 25817 match_flags = MATCH_IRE_ILL; 25818 25819 /* 25820 * Check if we need an ire that will not be 25821 * looked up by anybody else i.e. HIDDEN. 25822 */ 25823 if (ill_is_probeonly(ill)) { 25824 match_flags |= MATCH_IRE_MARK_HIDDEN; 25825 } 25826 } 25827 } 25828 ASSERT(mp != NULL); 25829 25830 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25831 boolean_t unspec_src; 25832 ipif_t *ipif; 25833 25834 /* 25835 * Use the ill_index to get the right ill. 25836 */ 25837 unspec_src = io->ipsec_out_unspec_src; 25838 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25839 if (ipif == NULL) { 25840 if (ill_need_rele) 25841 ill_refrele(ill); 25842 freemsg(ipsec_mp); 25843 return; 25844 } 25845 25846 if (ire_arg != NULL) { 25847 ire = ire_arg; 25848 } else { 25849 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25850 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25851 ire_need_rele = B_TRUE; 25852 } 25853 if (ire != NULL) { 25854 ipif_refrele(ipif); 25855 /* 25856 * XXX Do the multicast forwarding now, as the IPSEC 25857 * processing has been done. 25858 */ 25859 goto send; 25860 } 25861 25862 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25863 mp->b_prev = NULL; 25864 mp->b_next = NULL; 25865 25866 /* 25867 * If the IPsec packet was processed asynchronously, 25868 * drop it now. 25869 */ 25870 if (q == NULL) { 25871 if (ill_need_rele) 25872 ill_refrele(ill); 25873 freemsg(ipsec_mp); 25874 return; 25875 } 25876 25877 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25878 unspec_src, zoneid); 25879 ipif_refrele(ipif); 25880 } else { 25881 if (attach_if) { 25882 ipif_t *ipif; 25883 25884 ipif = ipif_get_next_ipif(NULL, ill); 25885 if (ipif == NULL) { 25886 if (ill_need_rele) 25887 ill_refrele(ill); 25888 freemsg(ipsec_mp); 25889 return; 25890 } 25891 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25892 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25893 ire_need_rele = B_TRUE; 25894 ipif_refrele(ipif); 25895 } else { 25896 if (ire_arg != NULL) { 25897 ire = ire_arg; 25898 } else { 25899 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25900 ipst); 25901 ire_need_rele = B_TRUE; 25902 } 25903 } 25904 if (ire != NULL) 25905 goto send; 25906 /* 25907 * ire disappeared underneath. 25908 * 25909 * What we need to do here is the ip_newroute 25910 * logic to get the ire without doing the IPSEC 25911 * processing. Follow the same old path. But this 25912 * time, ip_wput or ire_add_then_send will call us 25913 * directly as all the IPSEC operations are done. 25914 */ 25915 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25916 mp->b_prev = NULL; 25917 mp->b_next = NULL; 25918 25919 /* 25920 * If the IPsec packet was processed asynchronously, 25921 * drop it now. 25922 */ 25923 if (q == NULL) { 25924 if (ill_need_rele) 25925 ill_refrele(ill); 25926 freemsg(ipsec_mp); 25927 return; 25928 } 25929 25930 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25931 zoneid, ipst); 25932 } 25933 if (ill != NULL && ill_need_rele) 25934 ill_refrele(ill); 25935 return; 25936 send: 25937 if (ill != NULL && ill_need_rele) 25938 ill_refrele(ill); 25939 25940 /* Local delivery */ 25941 if (ire->ire_stq == NULL) { 25942 ill_t *out_ill; 25943 ASSERT(q != NULL); 25944 25945 /* PFHooks: LOOPBACK_OUT */ 25946 out_ill = ire->ire_ipif->ipif_ill; 25947 25948 DTRACE_PROBE4(ip6__loopback__out__start, 25949 ill_t *, NULL, ill_t *, out_ill, 25950 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25951 25952 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25953 ipst->ips_ipv6firewall_loopback_out, 25954 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25955 25956 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25957 25958 if (ipsec_mp != NULL) 25959 ip_wput_local_v6(RD(q), out_ill, 25960 ip6h, ipsec_mp, ire, 0); 25961 if (ire_need_rele) 25962 ire_refrele(ire); 25963 return; 25964 } 25965 /* 25966 * Everything is done. Send it out on the wire. 25967 * We force the insertion of a fragment header using the 25968 * IPH_FRAG_HDR flag in two cases: 25969 * - after reception of an ICMPv6 "packet too big" message 25970 * with a MTU < 1280 (cf. RFC 2460 section 5) 25971 * - for multirouted IPv6 packets, so that the receiver can 25972 * discard duplicates according to their fragment identifier 25973 */ 25974 /* XXX fix flow control problems. */ 25975 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25976 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25977 if (hwaccel) { 25978 /* 25979 * hardware acceleration does not handle these 25980 * "slow path" cases. 25981 */ 25982 /* IPsec KSTATS: should bump bean counter here. */ 25983 if (ire_need_rele) 25984 ire_refrele(ire); 25985 freemsg(ipsec_mp); 25986 return; 25987 } 25988 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25989 (mp->b_cont ? msgdsize(mp) : 25990 mp->b_wptr - (uchar_t *)ip6h)) { 25991 /* IPsec KSTATS: should bump bean counter here. */ 25992 ip0dbg(("Packet length mismatch: %d, %ld\n", 25993 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25994 msgdsize(mp))); 25995 if (ire_need_rele) 25996 ire_refrele(ire); 25997 freemsg(ipsec_mp); 25998 return; 25999 } 26000 ASSERT(mp->b_prev == NULL); 26001 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 26002 ntohs(ip6h->ip6_plen) + 26003 IPV6_HDR_LEN, ire->ire_max_frag)); 26004 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 26005 ire->ire_max_frag); 26006 } else { 26007 UPDATE_OB_PKT_COUNT(ire); 26008 ire->ire_last_used_time = lbolt; 26009 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 26010 } 26011 if (ire_need_rele) 26012 ire_refrele(ire); 26013 freeb(ipsec_mp); 26014 } 26015 26016 void 26017 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 26018 { 26019 mblk_t *hada_mp; /* attributes M_CTL mblk */ 26020 da_ipsec_t *hada; /* data attributes */ 26021 ill_t *ill = (ill_t *)q->q_ptr; 26022 26023 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 26024 26025 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 26026 /* IPsec KSTATS: Bump lose counter here! */ 26027 freemsg(mp); 26028 return; 26029 } 26030 26031 /* 26032 * It's an IPsec packet that must be 26033 * accelerated by the Provider, and the 26034 * outbound ill is IPsec acceleration capable. 26035 * Prepends the mblk with an IPHADA_M_CTL, and ship it 26036 * to the ill. 26037 * IPsec KSTATS: should bump packet counter here. 26038 */ 26039 26040 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26041 if (hada_mp == NULL) { 26042 /* IPsec KSTATS: should bump packet counter here. */ 26043 freemsg(mp); 26044 return; 26045 } 26046 26047 hada_mp->b_datap->db_type = M_CTL; 26048 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26049 hada_mp->b_cont = mp; 26050 26051 hada = (da_ipsec_t *)hada_mp->b_rptr; 26052 bzero(hada, sizeof (da_ipsec_t)); 26053 hada->da_type = IPHADA_M_CTL; 26054 26055 putnext(q, hada_mp); 26056 } 26057 26058 /* 26059 * Finish the outbound IPsec processing. This function is called from 26060 * ipsec_out_process() if the IPsec packet was processed 26061 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26062 * asynchronously. 26063 */ 26064 void 26065 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26066 ire_t *ire_arg) 26067 { 26068 uint32_t v_hlen_tos_len; 26069 ipaddr_t dst; 26070 ipif_t *ipif = NULL; 26071 ire_t *ire; 26072 ire_t *ire1 = NULL; 26073 mblk_t *next_mp = NULL; 26074 uint32_t max_frag; 26075 boolean_t multirt_send = B_FALSE; 26076 mblk_t *mp; 26077 mblk_t *mp1; 26078 ipha_t *ipha1; 26079 uint_t ill_index; 26080 ipsec_out_t *io; 26081 boolean_t attach_if; 26082 int match_flags, offset; 26083 irb_t *irb = NULL; 26084 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26085 zoneid_t zoneid; 26086 uint32_t cksum; 26087 uint16_t *up; 26088 ipxmit_state_t pktxmit_state; 26089 ip_stack_t *ipst; 26090 26091 #ifdef _BIG_ENDIAN 26092 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26093 #else 26094 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26095 #endif 26096 26097 mp = ipsec_mp->b_cont; 26098 ipha1 = (ipha_t *)mp->b_rptr; 26099 ASSERT(mp != NULL); 26100 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26101 dst = ipha->ipha_dst; 26102 26103 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26104 ill_index = io->ipsec_out_ill_index; 26105 attach_if = io->ipsec_out_attach_if; 26106 zoneid = io->ipsec_out_zoneid; 26107 ASSERT(zoneid != ALL_ZONES); 26108 ipst = io->ipsec_out_ns->netstack_ip; 26109 ASSERT(io->ipsec_out_ns != NULL); 26110 26111 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26112 if (ill_index != 0) { 26113 if (ill == NULL) { 26114 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26115 ill_index, B_FALSE, ipst); 26116 26117 /* Failure case frees things for us. */ 26118 if (ill == NULL) 26119 return; 26120 26121 ill_need_rele = B_TRUE; 26122 } 26123 /* 26124 * If this packet needs to go out on a particular interface 26125 * honor it. 26126 */ 26127 if (attach_if) { 26128 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26129 26130 /* 26131 * Check if we need an ire that will not be 26132 * looked up by anybody else i.e. HIDDEN. 26133 */ 26134 if (ill_is_probeonly(ill)) { 26135 match_flags |= MATCH_IRE_MARK_HIDDEN; 26136 } 26137 } 26138 } 26139 26140 if (CLASSD(dst)) { 26141 boolean_t conn_dontroute; 26142 /* 26143 * Use the ill_index to get the right ipif. 26144 */ 26145 conn_dontroute = io->ipsec_out_dontroute; 26146 if (ill_index == 0) 26147 ipif = ipif_lookup_group(dst, zoneid, ipst); 26148 else 26149 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26150 if (ipif == NULL) { 26151 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26152 " multicast\n")); 26153 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26154 freemsg(ipsec_mp); 26155 goto done; 26156 } 26157 /* 26158 * ipha_src has already been intialized with the 26159 * value of the ipif in ip_wput. All we need now is 26160 * an ire to send this downstream. 26161 */ 26162 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26163 MBLK_GETLABEL(mp), match_flags, ipst); 26164 if (ire != NULL) { 26165 ill_t *ill1; 26166 /* 26167 * Do the multicast forwarding now, as the IPSEC 26168 * processing has been done. 26169 */ 26170 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26171 (ill1 = ire_to_ill(ire))) { 26172 if (ip_mforward(ill1, ipha, mp)) { 26173 freemsg(ipsec_mp); 26174 ip1dbg(("ip_wput_ipsec_out: mforward " 26175 "failed\n")); 26176 ire_refrele(ire); 26177 goto done; 26178 } 26179 } 26180 goto send; 26181 } 26182 26183 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26184 mp->b_prev = NULL; 26185 mp->b_next = NULL; 26186 26187 /* 26188 * If the IPsec packet was processed asynchronously, 26189 * drop it now. 26190 */ 26191 if (q == NULL) { 26192 freemsg(ipsec_mp); 26193 goto done; 26194 } 26195 26196 /* 26197 * We may be using a wrong ipif to create the ire. 26198 * But it is okay as the source address is assigned 26199 * for the packet already. Next outbound packet would 26200 * create the IRE with the right IPIF in ip_wput. 26201 * 26202 * Also handle RTF_MULTIRT routes. 26203 */ 26204 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26205 zoneid, &zero_info); 26206 } else { 26207 if (attach_if) { 26208 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26209 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26210 } else { 26211 if (ire_arg != NULL) { 26212 ire = ire_arg; 26213 ire_need_rele = B_FALSE; 26214 } else { 26215 ire = ire_cache_lookup(dst, zoneid, 26216 MBLK_GETLABEL(mp), ipst); 26217 } 26218 } 26219 if (ire != NULL) { 26220 goto send; 26221 } 26222 26223 /* 26224 * ire disappeared underneath. 26225 * 26226 * What we need to do here is the ip_newroute 26227 * logic to get the ire without doing the IPSEC 26228 * processing. Follow the same old path. But this 26229 * time, ip_wput or ire_add_then_put will call us 26230 * directly as all the IPSEC operations are done. 26231 */ 26232 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26233 mp->b_prev = NULL; 26234 mp->b_next = NULL; 26235 26236 /* 26237 * If the IPsec packet was processed asynchronously, 26238 * drop it now. 26239 */ 26240 if (q == NULL) { 26241 freemsg(ipsec_mp); 26242 goto done; 26243 } 26244 26245 /* 26246 * Since we're going through ip_newroute() again, we 26247 * need to make sure we don't: 26248 * 26249 * 1.) Trigger the ASSERT() with the ipha_ident 26250 * overloading. 26251 * 2.) Redo transport-layer checksumming, since we've 26252 * already done all that to get this far. 26253 * 26254 * The easiest way not do either of the above is to set 26255 * the ipha_ident field to IP_HDR_INCLUDED. 26256 */ 26257 ipha->ipha_ident = IP_HDR_INCLUDED; 26258 ip_newroute(q, ipsec_mp, dst, NULL, 26259 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid, ipst); 26260 } 26261 goto done; 26262 send: 26263 if (ipha->ipha_protocol == IPPROTO_UDP && 26264 udp_compute_checksum(ipst->ips_netstack)) { 26265 /* 26266 * ESP NAT-Traversal packet. 26267 * 26268 * Just do software checksum for now. 26269 */ 26270 26271 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 26272 IP_STAT(ipst, ip_out_sw_cksum); 26273 IP_STAT_UPDATE(ipst, ip_udp_out_sw_cksum_bytes, 26274 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 26275 #define iphs ((uint16_t *)ipha) 26276 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 26277 iphs[9] + ntohs(htons(ipha->ipha_length) - 26278 IP_SIMPLE_HDR_LENGTH); 26279 #undef iphs 26280 cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum); 26281 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 26282 if (mp1->b_wptr - mp1->b_rptr >= 26283 offset + sizeof (uint16_t)) { 26284 up = (uint16_t *)(mp1->b_rptr + offset); 26285 *up = cksum; 26286 break; /* out of for loop */ 26287 } else { 26288 offset -= (mp->b_wptr - mp->b_rptr); 26289 } 26290 } /* Otherwise, just keep the all-zero checksum. */ 26291 26292 if (ire->ire_stq == NULL) { 26293 ill_t *out_ill; 26294 /* 26295 * Loopbacks go through ip_wput_local except for one case. 26296 * We come here if we generate a icmp_frag_needed message 26297 * after IPSEC processing is over. When this function calls 26298 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26299 * icmp_frag_needed. The message generated comes back here 26300 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26301 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26302 * source address as it is usually set in ip_wput_ire. As 26303 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26304 * and we end up here. We can't enter ip_wput_ire once the 26305 * IPSEC processing is over and hence we need to do it here. 26306 */ 26307 ASSERT(q != NULL); 26308 UPDATE_OB_PKT_COUNT(ire); 26309 ire->ire_last_used_time = lbolt; 26310 if (ipha->ipha_src == 0) 26311 ipha->ipha_src = ire->ire_src_addr; 26312 26313 /* PFHooks: LOOPBACK_OUT */ 26314 out_ill = ire->ire_ipif->ipif_ill; 26315 26316 DTRACE_PROBE4(ip4__loopback__out__start, 26317 ill_t *, NULL, ill_t *, out_ill, 26318 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26319 26320 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26321 ipst->ips_ipv4firewall_loopback_out, 26322 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26323 26324 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26325 26326 if (ipsec_mp != NULL) 26327 ip_wput_local(RD(q), out_ill, 26328 ipha, ipsec_mp, ire, 0, zoneid); 26329 if (ire_need_rele) 26330 ire_refrele(ire); 26331 goto done; 26332 } 26333 26334 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26335 /* 26336 * We are through with IPSEC processing. 26337 * Fragment this and send it on the wire. 26338 */ 26339 if (io->ipsec_out_accelerated) { 26340 /* 26341 * The packet has been accelerated but must 26342 * be fragmented. This should not happen 26343 * since AH and ESP must not accelerate 26344 * packets that need fragmentation, however 26345 * the configuration could have changed 26346 * since the AH or ESP processing. 26347 * Drop packet. 26348 * IPsec KSTATS: bump bean counter here. 26349 */ 26350 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26351 "fragmented accelerated packet!\n")); 26352 freemsg(ipsec_mp); 26353 } else { 26354 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26355 } 26356 if (ire_need_rele) 26357 ire_refrele(ire); 26358 goto done; 26359 } 26360 26361 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26362 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26363 (void *)ire->ire_ipif, (void *)ipif)); 26364 26365 /* 26366 * Multiroute the secured packet, unless IPsec really 26367 * requires the packet to go out only through a particular 26368 * interface. 26369 */ 26370 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26371 ire_t *first_ire; 26372 irb = ire->ire_bucket; 26373 ASSERT(irb != NULL); 26374 /* 26375 * This ire has been looked up as the one that 26376 * goes through the given ipif; 26377 * make sure we do not omit any other multiroute ire 26378 * that may be present in the bucket before this one. 26379 */ 26380 IRB_REFHOLD(irb); 26381 for (first_ire = irb->irb_ire; 26382 first_ire != NULL; 26383 first_ire = first_ire->ire_next) { 26384 if ((first_ire->ire_flags & RTF_MULTIRT) && 26385 (first_ire->ire_addr == ire->ire_addr) && 26386 !(first_ire->ire_marks & 26387 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 26388 break; 26389 } 26390 26391 if ((first_ire != NULL) && (first_ire != ire)) { 26392 /* 26393 * Don't change the ire if the packet must 26394 * be fragmented if sent via this new one. 26395 */ 26396 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26397 IRE_REFHOLD(first_ire); 26398 if (ire_need_rele) 26399 ire_refrele(ire); 26400 else 26401 ire_need_rele = B_TRUE; 26402 ire = first_ire; 26403 } 26404 } 26405 IRB_REFRELE(irb); 26406 26407 multirt_send = B_TRUE; 26408 max_frag = ire->ire_max_frag; 26409 } else { 26410 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26411 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26412 "flag, attach_if %d\n", attach_if)); 26413 } 26414 } 26415 26416 /* 26417 * In most cases, the emission loop below is entered only once. 26418 * Only in the case where the ire holds the RTF_MULTIRT 26419 * flag, we loop to process all RTF_MULTIRT ires in the 26420 * bucket, and send the packet through all crossed 26421 * RTF_MULTIRT routes. 26422 */ 26423 do { 26424 if (multirt_send) { 26425 /* 26426 * ire1 holds here the next ire to process in the 26427 * bucket. If multirouting is expected, 26428 * any non-RTF_MULTIRT ire that has the 26429 * right destination address is ignored. 26430 */ 26431 ASSERT(irb != NULL); 26432 IRB_REFHOLD(irb); 26433 for (ire1 = ire->ire_next; 26434 ire1 != NULL; 26435 ire1 = ire1->ire_next) { 26436 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26437 continue; 26438 if (ire1->ire_addr != ire->ire_addr) 26439 continue; 26440 if (ire1->ire_marks & 26441 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26442 continue; 26443 /* No loopback here */ 26444 if (ire1->ire_stq == NULL) 26445 continue; 26446 /* 26447 * Ensure we do not exceed the MTU 26448 * of the next route. 26449 */ 26450 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26451 ip_multirt_bad_mtu(ire1, max_frag); 26452 continue; 26453 } 26454 26455 IRE_REFHOLD(ire1); 26456 break; 26457 } 26458 IRB_REFRELE(irb); 26459 if (ire1 != NULL) { 26460 /* 26461 * We are in a multiple send case, need to 26462 * make a copy of the packet. 26463 */ 26464 next_mp = copymsg(ipsec_mp); 26465 if (next_mp == NULL) { 26466 ire_refrele(ire1); 26467 ire1 = NULL; 26468 } 26469 } 26470 } 26471 /* 26472 * Everything is done. Send it out on the wire 26473 * 26474 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26475 * either send it on the wire or, in the case of 26476 * HW acceleration, call ipsec_hw_putnext. 26477 */ 26478 if (ire->ire_nce && 26479 ire->ire_nce->nce_state != ND_REACHABLE) { 26480 DTRACE_PROBE2(ip__wput__ipsec__bail, 26481 (ire_t *), ire, (mblk_t *), ipsec_mp); 26482 /* 26483 * If ire's link-layer is unresolved (this 26484 * would only happen if the incomplete ire 26485 * was added to cachetable via forwarding path) 26486 * don't bother going to ip_xmit_v4. Just drop the 26487 * packet. 26488 * There is a slight risk here, in that, if we 26489 * have the forwarding path create an incomplete 26490 * IRE, then until the IRE is completed, any 26491 * transmitted IPSEC packets will be dropped 26492 * instead of being queued waiting for resolution. 26493 * 26494 * But the likelihood of a forwarding packet and a wput 26495 * packet sending to the same dst at the same time 26496 * and there not yet be an ARP entry for it is small. 26497 * Furthermore, if this actually happens, it might 26498 * be likely that wput would generate multiple 26499 * packets (and forwarding would also have a train 26500 * of packets) for that destination. If this is 26501 * the case, some of them would have been dropped 26502 * anyway, since ARP only queues a few packets while 26503 * waiting for resolution 26504 * 26505 * NOTE: We should really call ip_xmit_v4, 26506 * and let it queue the packet and send the 26507 * ARP query and have ARP come back thus: 26508 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26509 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26510 * hw accel work. But it's too complex to get 26511 * the IPsec hw acceleration approach to fit 26512 * well with ip_xmit_v4 doing ARP without 26513 * doing IPSEC simplification. For now, we just 26514 * poke ip_xmit_v4 to trigger the arp resolve, so 26515 * that we can continue with the send on the next 26516 * attempt. 26517 * 26518 * XXX THis should be revisited, when 26519 * the IPsec/IP interaction is cleaned up 26520 */ 26521 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26522 " - dropping packet\n")); 26523 freemsg(ipsec_mp); 26524 /* 26525 * Call ip_xmit_v4() to trigger ARP query 26526 * in case the nce_state is ND_INITIAL 26527 */ 26528 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26529 goto drop_pkt; 26530 } 26531 26532 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26533 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26534 mblk_t *, mp); 26535 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26536 ipst->ips_ipv4firewall_physical_out, 26537 NULL, ire->ire_ipif->ipif_ill, ipha1, mp, mp, ipst); 26538 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 26539 if (mp == NULL) 26540 goto drop_pkt; 26541 26542 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26543 pktxmit_state = ip_xmit_v4(mp, ire, 26544 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26545 26546 if ((pktxmit_state == SEND_FAILED) || 26547 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26548 26549 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26550 drop_pkt: 26551 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26552 ipIfStatsOutDiscards); 26553 if (ire_need_rele) 26554 ire_refrele(ire); 26555 if (ire1 != NULL) { 26556 ire_refrele(ire1); 26557 freemsg(next_mp); 26558 } 26559 goto done; 26560 } 26561 26562 freeb(ipsec_mp); 26563 if (ire_need_rele) 26564 ire_refrele(ire); 26565 26566 if (ire1 != NULL) { 26567 ire = ire1; 26568 ire_need_rele = B_TRUE; 26569 ASSERT(next_mp); 26570 ipsec_mp = next_mp; 26571 mp = ipsec_mp->b_cont; 26572 ire1 = NULL; 26573 next_mp = NULL; 26574 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26575 } else { 26576 multirt_send = B_FALSE; 26577 } 26578 } while (multirt_send); 26579 done: 26580 if (ill != NULL && ill_need_rele) 26581 ill_refrele(ill); 26582 if (ipif != NULL) 26583 ipif_refrele(ipif); 26584 } 26585 26586 /* 26587 * Get the ill corresponding to the specified ire, and compare its 26588 * capabilities with the protocol and algorithms specified by the 26589 * the SA obtained from ipsec_out. If they match, annotate the 26590 * ipsec_out structure to indicate that the packet needs acceleration. 26591 * 26592 * 26593 * A packet is eligible for outbound hardware acceleration if the 26594 * following conditions are satisfied: 26595 * 26596 * 1. the packet will not be fragmented 26597 * 2. the provider supports the algorithm 26598 * 3. there is no pending control message being exchanged 26599 * 4. snoop is not attached 26600 * 5. the destination address is not a broadcast or multicast address. 26601 * 26602 * Rationale: 26603 * - Hardware drivers do not support fragmentation with 26604 * the current interface. 26605 * - snoop, multicast, and broadcast may result in exposure of 26606 * a cleartext datagram. 26607 * We check all five of these conditions here. 26608 * 26609 * XXX would like to nuke "ire_t *" parameter here; problem is that 26610 * IRE is only way to figure out if a v4 address is a broadcast and 26611 * thus ineligible for acceleration... 26612 */ 26613 static void 26614 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26615 { 26616 ipsec_out_t *io; 26617 mblk_t *data_mp; 26618 uint_t plen, overhead; 26619 ip_stack_t *ipst; 26620 26621 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26622 return; 26623 26624 if (ill == NULL) 26625 return; 26626 ipst = ill->ill_ipst; 26627 /* 26628 * Destination address is a broadcast or multicast. Punt. 26629 */ 26630 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26631 IRE_LOCAL))) 26632 return; 26633 26634 data_mp = ipsec_mp->b_cont; 26635 26636 if (ill->ill_isv6) { 26637 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26638 26639 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26640 return; 26641 26642 plen = ip6h->ip6_plen; 26643 } else { 26644 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26645 26646 if (CLASSD(ipha->ipha_dst)) 26647 return; 26648 26649 plen = ipha->ipha_length; 26650 } 26651 /* 26652 * Is there a pending DLPI control message being exchanged 26653 * between IP/IPsec and the DLS Provider? If there is, it 26654 * could be a SADB update, and the state of the DLS Provider 26655 * SADB might not be in sync with the SADB maintained by 26656 * IPsec. To avoid dropping packets or using the wrong keying 26657 * material, we do not accelerate this packet. 26658 */ 26659 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26660 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26661 "ill_dlpi_pending! don't accelerate packet\n")); 26662 return; 26663 } 26664 26665 /* 26666 * Is the Provider in promiscous mode? If it does, we don't 26667 * accelerate the packet since it will bounce back up to the 26668 * listeners in the clear. 26669 */ 26670 if (ill->ill_promisc_on_phys) { 26671 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26672 "ill in promiscous mode, don't accelerate packet\n")); 26673 return; 26674 } 26675 26676 /* 26677 * Will the packet require fragmentation? 26678 */ 26679 26680 /* 26681 * IPsec ESP note: this is a pessimistic estimate, but the same 26682 * as is used elsewhere. 26683 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26684 * + 2-byte trailer 26685 */ 26686 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26687 IPSEC_BASE_ESP_HDR_SIZE(sa); 26688 26689 if ((plen + overhead) > ill->ill_max_mtu) 26690 return; 26691 26692 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26693 26694 /* 26695 * Can the ill accelerate this IPsec protocol and algorithm 26696 * specified by the SA? 26697 */ 26698 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26699 ill->ill_isv6, sa, ipst->ips_netstack)) { 26700 return; 26701 } 26702 26703 /* 26704 * Tell AH or ESP that the outbound ill is capable of 26705 * accelerating this packet. 26706 */ 26707 io->ipsec_out_is_capab_ill = B_TRUE; 26708 } 26709 26710 /* 26711 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26712 * 26713 * If this function returns B_TRUE, the requested SA's have been filled 26714 * into the ipsec_out_*_sa pointers. 26715 * 26716 * If the function returns B_FALSE, the packet has been "consumed", most 26717 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26718 * 26719 * The SA references created by the protocol-specific "select" 26720 * function will be released when the ipsec_mp is freed, thanks to the 26721 * ipsec_out_free destructor -- see spd.c. 26722 */ 26723 static boolean_t 26724 ipsec_out_select_sa(mblk_t *ipsec_mp) 26725 { 26726 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26727 ipsec_out_t *io; 26728 ipsec_policy_t *pp; 26729 ipsec_action_t *ap; 26730 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26731 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26732 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26733 26734 if (!io->ipsec_out_secure) { 26735 /* 26736 * We came here by mistake. 26737 * Don't bother with ipsec processing 26738 * We should "discourage" this path in the future. 26739 */ 26740 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26741 return (B_FALSE); 26742 } 26743 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26744 ASSERT((io->ipsec_out_policy != NULL) || 26745 (io->ipsec_out_act != NULL)); 26746 26747 ASSERT(io->ipsec_out_failed == B_FALSE); 26748 26749 /* 26750 * IPSEC processing has started. 26751 */ 26752 io->ipsec_out_proc_begin = B_TRUE; 26753 ap = io->ipsec_out_act; 26754 if (ap == NULL) { 26755 pp = io->ipsec_out_policy; 26756 ASSERT(pp != NULL); 26757 ap = pp->ipsp_act; 26758 ASSERT(ap != NULL); 26759 } 26760 26761 /* 26762 * We have an action. now, let's select SA's. 26763 * (In the future, we can cache this in the conn_t..) 26764 */ 26765 if (ap->ipa_want_esp) { 26766 if (io->ipsec_out_esp_sa == NULL) { 26767 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26768 IPPROTO_ESP); 26769 } 26770 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26771 } 26772 26773 if (ap->ipa_want_ah) { 26774 if (io->ipsec_out_ah_sa == NULL) { 26775 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26776 IPPROTO_AH); 26777 } 26778 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26779 /* 26780 * The ESP and AH processing order needs to be preserved 26781 * when both protocols are required (ESP should be applied 26782 * before AH for an outbound packet). Force an ESP ACQUIRE 26783 * when both ESP and AH are required, and an AH ACQUIRE 26784 * is needed. 26785 */ 26786 if (ap->ipa_want_esp && need_ah_acquire) 26787 need_esp_acquire = B_TRUE; 26788 } 26789 26790 /* 26791 * Send an ACQUIRE (extended, regular, or both) if we need one. 26792 * Release SAs that got referenced, but will not be used until we 26793 * acquire _all_ of the SAs we need. 26794 */ 26795 if (need_ah_acquire || need_esp_acquire) { 26796 if (io->ipsec_out_ah_sa != NULL) { 26797 IPSA_REFRELE(io->ipsec_out_ah_sa); 26798 io->ipsec_out_ah_sa = NULL; 26799 } 26800 if (io->ipsec_out_esp_sa != NULL) { 26801 IPSA_REFRELE(io->ipsec_out_esp_sa); 26802 io->ipsec_out_esp_sa = NULL; 26803 } 26804 26805 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26806 return (B_FALSE); 26807 } 26808 26809 return (B_TRUE); 26810 } 26811 26812 /* 26813 * Process an IPSEC_OUT message and see what you can 26814 * do with it. 26815 * IPQoS Notes: 26816 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26817 * IPSec. 26818 * XXX would like to nuke ire_t. 26819 * XXX ill_index better be "real" 26820 */ 26821 void 26822 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26823 { 26824 ipsec_out_t *io; 26825 ipsec_policy_t *pp; 26826 ipsec_action_t *ap; 26827 ipha_t *ipha; 26828 ip6_t *ip6h; 26829 mblk_t *mp; 26830 ill_t *ill; 26831 zoneid_t zoneid; 26832 ipsec_status_t ipsec_rc; 26833 boolean_t ill_need_rele = B_FALSE; 26834 ip_stack_t *ipst; 26835 ipsec_stack_t *ipss; 26836 26837 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26838 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26839 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26840 ipst = io->ipsec_out_ns->netstack_ip; 26841 mp = ipsec_mp->b_cont; 26842 26843 /* 26844 * Initiate IPPF processing. We do it here to account for packets 26845 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26846 * We can check for ipsec_out_proc_begin even for such packets, as 26847 * they will always be false (asserted below). 26848 */ 26849 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26850 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26851 io->ipsec_out_ill_index : ill_index); 26852 if (mp == NULL) { 26853 ip2dbg(("ipsec_out_process: packet dropped "\ 26854 "during IPPF processing\n")); 26855 freeb(ipsec_mp); 26856 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26857 return; 26858 } 26859 } 26860 26861 if (!io->ipsec_out_secure) { 26862 /* 26863 * We came here by mistake. 26864 * Don't bother with ipsec processing 26865 * Should "discourage" this path in the future. 26866 */ 26867 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26868 goto done; 26869 } 26870 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26871 ASSERT((io->ipsec_out_policy != NULL) || 26872 (io->ipsec_out_act != NULL)); 26873 ASSERT(io->ipsec_out_failed == B_FALSE); 26874 26875 ipss = ipst->ips_netstack->netstack_ipsec; 26876 if (!ipsec_loaded(ipss)) { 26877 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26878 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26879 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26880 } else { 26881 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26882 } 26883 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26884 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26885 &ipss->ipsec_dropper); 26886 return; 26887 } 26888 26889 /* 26890 * IPSEC processing has started. 26891 */ 26892 io->ipsec_out_proc_begin = B_TRUE; 26893 ap = io->ipsec_out_act; 26894 if (ap == NULL) { 26895 pp = io->ipsec_out_policy; 26896 ASSERT(pp != NULL); 26897 ap = pp->ipsp_act; 26898 ASSERT(ap != NULL); 26899 } 26900 26901 /* 26902 * Save the outbound ill index. When the packet comes back 26903 * from IPsec, we make sure the ill hasn't changed or disappeared 26904 * before sending it the accelerated packet. 26905 */ 26906 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26907 int ifindex; 26908 ill = ire_to_ill(ire); 26909 ifindex = ill->ill_phyint->phyint_ifindex; 26910 io->ipsec_out_capab_ill_index = ifindex; 26911 } 26912 26913 /* 26914 * The order of processing is first insert a IP header if needed. 26915 * Then insert the ESP header and then the AH header. 26916 */ 26917 if ((io->ipsec_out_se_done == B_FALSE) && 26918 (ap->ipa_want_se)) { 26919 /* 26920 * First get the outer IP header before sending 26921 * it to ESP. 26922 */ 26923 ipha_t *oipha, *iipha; 26924 mblk_t *outer_mp, *inner_mp; 26925 26926 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26927 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26928 "ipsec_out_process: " 26929 "Self-Encapsulation failed: Out of memory\n"); 26930 freemsg(ipsec_mp); 26931 if (ill != NULL) { 26932 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26933 } else { 26934 BUMP_MIB(&ipst->ips_ip_mib, 26935 ipIfStatsOutDiscards); 26936 } 26937 return; 26938 } 26939 inner_mp = ipsec_mp->b_cont; 26940 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26941 oipha = (ipha_t *)outer_mp->b_rptr; 26942 iipha = (ipha_t *)inner_mp->b_rptr; 26943 *oipha = *iipha; 26944 outer_mp->b_wptr += sizeof (ipha_t); 26945 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26946 sizeof (ipha_t)); 26947 oipha->ipha_protocol = IPPROTO_ENCAP; 26948 oipha->ipha_version_and_hdr_length = 26949 IP_SIMPLE_HDR_VERSION; 26950 oipha->ipha_hdr_checksum = 0; 26951 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26952 outer_mp->b_cont = inner_mp; 26953 ipsec_mp->b_cont = outer_mp; 26954 26955 io->ipsec_out_se_done = B_TRUE; 26956 io->ipsec_out_tunnel = B_TRUE; 26957 } 26958 26959 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26960 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26961 !ipsec_out_select_sa(ipsec_mp)) 26962 return; 26963 26964 /* 26965 * By now, we know what SA's to use. Toss over to ESP & AH 26966 * to do the heavy lifting. 26967 */ 26968 zoneid = io->ipsec_out_zoneid; 26969 ASSERT(zoneid != ALL_ZONES); 26970 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26971 ASSERT(io->ipsec_out_esp_sa != NULL); 26972 io->ipsec_out_esp_done = B_TRUE; 26973 /* 26974 * Note that since hw accel can only apply one transform, 26975 * not two, we skip hw accel for ESP if we also have AH 26976 * This is an design limitation of the interface 26977 * which should be revisited. 26978 */ 26979 ASSERT(ire != NULL); 26980 if (io->ipsec_out_ah_sa == NULL) { 26981 ill = (ill_t *)ire->ire_stq->q_ptr; 26982 ipsec_out_is_accelerated(ipsec_mp, 26983 io->ipsec_out_esp_sa, ill, ire); 26984 } 26985 26986 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26987 switch (ipsec_rc) { 26988 case IPSEC_STATUS_SUCCESS: 26989 break; 26990 case IPSEC_STATUS_FAILED: 26991 if (ill != NULL) { 26992 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26993 } else { 26994 BUMP_MIB(&ipst->ips_ip_mib, 26995 ipIfStatsOutDiscards); 26996 } 26997 /* FALLTHRU */ 26998 case IPSEC_STATUS_PENDING: 26999 return; 27000 } 27001 } 27002 27003 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 27004 ASSERT(io->ipsec_out_ah_sa != NULL); 27005 io->ipsec_out_ah_done = B_TRUE; 27006 if (ire == NULL) { 27007 int idx = io->ipsec_out_capab_ill_index; 27008 ill = ill_lookup_on_ifindex(idx, B_FALSE, 27009 NULL, NULL, NULL, NULL, ipst); 27010 ill_need_rele = B_TRUE; 27011 } else { 27012 ill = (ill_t *)ire->ire_stq->q_ptr; 27013 } 27014 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 27015 ire); 27016 27017 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 27018 switch (ipsec_rc) { 27019 case IPSEC_STATUS_SUCCESS: 27020 break; 27021 case IPSEC_STATUS_FAILED: 27022 if (ill != NULL) { 27023 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27024 } else { 27025 BUMP_MIB(&ipst->ips_ip_mib, 27026 ipIfStatsOutDiscards); 27027 } 27028 /* FALLTHRU */ 27029 case IPSEC_STATUS_PENDING: 27030 if (ill != NULL && ill_need_rele) 27031 ill_refrele(ill); 27032 return; 27033 } 27034 } 27035 /* 27036 * We are done with IPSEC processing. Send it over 27037 * the wire. 27038 */ 27039 done: 27040 mp = ipsec_mp->b_cont; 27041 ipha = (ipha_t *)mp->b_rptr; 27042 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27043 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 27044 } else { 27045 ip6h = (ip6_t *)ipha; 27046 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 27047 } 27048 if (ill != NULL && ill_need_rele) 27049 ill_refrele(ill); 27050 } 27051 27052 /* ARGSUSED */ 27053 void 27054 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 27055 { 27056 opt_restart_t *or; 27057 int err; 27058 conn_t *connp; 27059 27060 ASSERT(CONN_Q(q)); 27061 connp = Q_TO_CONN(q); 27062 27063 ASSERT(first_mp->b_datap->db_type == M_CTL); 27064 or = (opt_restart_t *)first_mp->b_rptr; 27065 /* 27066 * We don't need to pass any credentials here since this is just 27067 * a restart. The credentials are passed in when svr4_optcom_req 27068 * is called the first time (from ip_wput_nondata). 27069 */ 27070 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27071 err = svr4_optcom_req(q, first_mp, NULL, 27072 &ip_opt_obj); 27073 } else { 27074 ASSERT(or->or_type == T_OPTMGMT_REQ); 27075 err = tpi_optcom_req(q, first_mp, NULL, 27076 &ip_opt_obj); 27077 } 27078 if (err != EINPROGRESS) { 27079 /* operation is done */ 27080 CONN_OPER_PENDING_DONE(connp); 27081 } 27082 } 27083 27084 /* 27085 * ioctls that go through a down/up sequence may need to wait for the down 27086 * to complete. This involves waiting for the ire and ipif refcnts to go down 27087 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27088 */ 27089 /* ARGSUSED */ 27090 void 27091 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27092 { 27093 struct iocblk *iocp; 27094 mblk_t *mp1; 27095 ip_ioctl_cmd_t *ipip; 27096 int err; 27097 sin_t *sin; 27098 struct lifreq *lifr; 27099 struct ifreq *ifr; 27100 27101 iocp = (struct iocblk *)mp->b_rptr; 27102 ASSERT(ipsq != NULL); 27103 /* Existence of mp1 verified in ip_wput_nondata */ 27104 mp1 = mp->b_cont->b_cont; 27105 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27106 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27107 /* 27108 * Special case where ipsq_current_ipif is not set: 27109 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27110 * ill could also have become part of a ipmp group in the 27111 * process, we are here as were not able to complete the 27112 * operation in ipif_set_values because we could not become 27113 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27114 * will not be set so we need to set it. 27115 */ 27116 ill_t *ill = q->q_ptr; 27117 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27118 } 27119 ASSERT(ipsq->ipsq_current_ipif != NULL); 27120 27121 if (ipip->ipi_cmd_type == IF_CMD) { 27122 /* This a old style SIOC[GS]IF* command */ 27123 ifr = (struct ifreq *)mp1->b_rptr; 27124 sin = (sin_t *)&ifr->ifr_addr; 27125 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27126 /* This a new style SIOC[GS]LIF* command */ 27127 lifr = (struct lifreq *)mp1->b_rptr; 27128 sin = (sin_t *)&lifr->lifr_addr; 27129 } else { 27130 sin = NULL; 27131 } 27132 27133 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27134 ipip, mp1->b_rptr); 27135 27136 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27137 } 27138 27139 /* 27140 * ioctl processing 27141 * 27142 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 27143 * the ioctl command in the ioctl tables and determines the copyin data size 27144 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 27145 * size. 27146 * 27147 * ioctl processing then continues when the M_IOCDATA makes its way down. 27148 * Now the ioctl is looked up again in the ioctl table, and its properties are 27149 * extracted. The associated 'conn' is then refheld till the end of the ioctl 27150 * and the general ioctl processing function ip_process_ioctl is called. 27151 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27152 * so goes thru the serialization primitive ipsq_try_enter. Then the 27153 * appropriate function to handle the ioctl is called based on the entry in 27154 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27155 * which also refreleases the 'conn' that was refheld at the start of the 27156 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27157 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 27158 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 27159 * 27160 * Many exclusive ioctls go thru an internal down up sequence as part of 27161 * the operation. For example an attempt to change the IP address of an 27162 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27163 * does all the cleanup such as deleting all ires that use this address. 27164 * Then we need to wait till all references to the interface go away. 27165 */ 27166 void 27167 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27168 { 27169 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27170 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 27171 cmd_info_t ci; 27172 int err; 27173 boolean_t entered_ipsq = B_FALSE; 27174 27175 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27176 27177 if (ipip == NULL) 27178 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27179 27180 /* 27181 * SIOCLIFADDIF needs to go thru a special path since the 27182 * ill may not exist yet. This happens in the case of lo0 27183 * which is created using this ioctl. 27184 */ 27185 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27186 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27187 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27188 return; 27189 } 27190 27191 ci.ci_ipif = NULL; 27192 switch (ipip->ipi_cmd_type) { 27193 case IF_CMD: 27194 case LIF_CMD: 27195 /* 27196 * ioctls that pass in a [l]ifreq appear here. 27197 * ip_extract_lifreq_cmn returns a refheld ipif in 27198 * ci.ci_ipif 27199 */ 27200 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 27201 ipip->ipi_flags, &ci, ip_process_ioctl); 27202 if (err != 0) { 27203 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27204 return; 27205 } 27206 ASSERT(ci.ci_ipif != NULL); 27207 break; 27208 27209 case TUN_CMD: 27210 /* 27211 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 27212 * a refheld ipif in ci.ci_ipif 27213 */ 27214 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 27215 if (err != 0) { 27216 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27217 return; 27218 } 27219 ASSERT(ci.ci_ipif != NULL); 27220 break; 27221 27222 case MISC_CMD: 27223 /* 27224 * ioctls that neither pass in [l]ifreq or iftun_req come here 27225 * For eg. SIOCGLIFCONF will appear here. 27226 */ 27227 switch (ipip->ipi_cmd) { 27228 case IF_UNITSEL: 27229 /* ioctl comes down the ill */ 27230 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27231 ipif_refhold(ci.ci_ipif); 27232 break; 27233 case SIOCGMSFILTER: 27234 case SIOCSMSFILTER: 27235 case SIOCGIPMSFILTER: 27236 case SIOCSIPMSFILTER: 27237 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 27238 ip_process_ioctl); 27239 if (err != 0) { 27240 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), 27241 NULL); 27242 } 27243 break; 27244 } 27245 err = 0; 27246 ci.ci_sin = NULL; 27247 ci.ci_sin6 = NULL; 27248 ci.ci_lifr = NULL; 27249 break; 27250 } 27251 27252 /* 27253 * If ipsq is non-null, we are already being called exclusively 27254 */ 27255 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27256 if (!(ipip->ipi_flags & IPI_WR)) { 27257 /* 27258 * A return value of EINPROGRESS means the ioctl is 27259 * either queued and waiting for some reason or has 27260 * already completed. 27261 */ 27262 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27263 ci.ci_lifr); 27264 if (ci.ci_ipif != NULL) 27265 ipif_refrele(ci.ci_ipif); 27266 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27267 return; 27268 } 27269 27270 ASSERT(ci.ci_ipif != NULL); 27271 27272 if (ipsq == NULL) { 27273 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27274 ip_process_ioctl, NEW_OP, B_TRUE); 27275 entered_ipsq = B_TRUE; 27276 } 27277 /* 27278 * Release the ipif so that ipif_down and friends that wait for 27279 * references to go away are not misled about the current ipif_refcnt 27280 * values. We are writer so we can access the ipif even after releasing 27281 * the ipif. 27282 */ 27283 ipif_refrele(ci.ci_ipif); 27284 if (ipsq == NULL) 27285 return; 27286 27287 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27288 27289 /* 27290 * For most set ioctls that come here, this serves as a single point 27291 * where we set the IPIF_CHANGING flag. This ensures that there won't 27292 * be any new references to the ipif. This helps functions that go 27293 * through this path and end up trying to wait for the refcnts 27294 * associated with the ipif to go down to zero. Some exceptions are 27295 * Failover, Failback, and Groupname commands that operate on more than 27296 * just the ci.ci_ipif. These commands internally determine the 27297 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27298 * flags on that set. Another exception is the Removeif command that 27299 * sets the IPIF_CONDEMNED flag internally after identifying the right 27300 * ipif to operate on. 27301 */ 27302 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27303 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27304 ipip->ipi_cmd != SIOCLIFFAILOVER && 27305 ipip->ipi_cmd != SIOCLIFFAILBACK && 27306 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27307 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27308 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27309 27310 /* 27311 * A return value of EINPROGRESS means the ioctl is 27312 * either queued and waiting for some reason or has 27313 * already completed. 27314 */ 27315 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27316 27317 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27318 27319 if (entered_ipsq) 27320 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27321 } 27322 27323 /* 27324 * Complete the ioctl. Typically ioctls use the mi package and need to 27325 * do mi_copyout/mi_copy_done. 27326 */ 27327 void 27328 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27329 { 27330 conn_t *connp = NULL; 27331 27332 if (err == EINPROGRESS) 27333 return; 27334 27335 if (CONN_Q(q)) { 27336 connp = Q_TO_CONN(q); 27337 ASSERT(connp->conn_ref >= 2); 27338 } 27339 27340 switch (mode) { 27341 case COPYOUT: 27342 if (err == 0) 27343 mi_copyout(q, mp); 27344 else 27345 mi_copy_done(q, mp, err); 27346 break; 27347 27348 case NO_COPYOUT: 27349 mi_copy_done(q, mp, err); 27350 break; 27351 27352 default: 27353 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27354 break; 27355 } 27356 27357 /* 27358 * The refhold placed at the start of the ioctl is released here. 27359 */ 27360 if (connp != NULL) 27361 CONN_OPER_PENDING_DONE(connp); 27362 27363 if (ipsq != NULL) 27364 ipsq_current_finish(ipsq); 27365 } 27366 27367 /* 27368 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27369 */ 27370 /* ARGSUSED */ 27371 void 27372 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27373 { 27374 conn_t *connp = arg; 27375 tcp_t *tcp; 27376 27377 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27378 tcp = connp->conn_tcp; 27379 27380 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27381 freemsg(mp); 27382 else 27383 tcp_rput_other(tcp, mp); 27384 CONN_OPER_PENDING_DONE(connp); 27385 } 27386 27387 /* Called from ip_wput for all non data messages */ 27388 /* ARGSUSED */ 27389 void 27390 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27391 { 27392 mblk_t *mp1; 27393 ire_t *ire, *fake_ire; 27394 ill_t *ill; 27395 struct iocblk *iocp; 27396 ip_ioctl_cmd_t *ipip; 27397 cred_t *cr; 27398 conn_t *connp; 27399 int cmd, err; 27400 nce_t *nce; 27401 ipif_t *ipif; 27402 ip_stack_t *ipst; 27403 char *proto_str; 27404 27405 if (CONN_Q(q)) { 27406 connp = Q_TO_CONN(q); 27407 ipst = connp->conn_netstack->netstack_ip; 27408 } else { 27409 connp = NULL; 27410 ipst = ILLQ_TO_IPST(q); 27411 } 27412 27413 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27414 27415 /* Check if it is a queue to /dev/sctp. */ 27416 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 27417 connp->conn_rq == NULL) { 27418 sctp_wput(q, mp); 27419 return; 27420 } 27421 27422 switch (DB_TYPE(mp)) { 27423 case M_IOCTL: 27424 /* 27425 * IOCTL processing begins in ip_sioctl_copyin_setup which 27426 * will arrange to copy in associated control structures. 27427 */ 27428 ip_sioctl_copyin_setup(q, mp); 27429 return; 27430 case M_IOCDATA: 27431 /* 27432 * Ensure that this is associated with one of our trans- 27433 * parent ioctls. If it's not ours, discard it if we're 27434 * running as a driver, or pass it on if we're a module. 27435 */ 27436 iocp = (struct iocblk *)mp->b_rptr; 27437 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27438 if (ipip == NULL) { 27439 if (q->q_next == NULL) { 27440 goto nak; 27441 } else { 27442 putnext(q, mp); 27443 } 27444 return; 27445 } else if ((q->q_next != NULL) && 27446 !(ipip->ipi_flags & IPI_MODOK)) { 27447 /* 27448 * the ioctl is one we recognise, but is not 27449 * consumed by IP as a module, pass M_IOCDATA 27450 * for processing downstream, but only for 27451 * common Streams ioctls. 27452 */ 27453 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27454 putnext(q, mp); 27455 return; 27456 } else { 27457 goto nak; 27458 } 27459 } 27460 27461 /* IOCTL continuation following copyin or copyout. */ 27462 if (mi_copy_state(q, mp, NULL) == -1) { 27463 /* 27464 * The copy operation failed. mi_copy_state already 27465 * cleaned up, so we're out of here. 27466 */ 27467 return; 27468 } 27469 /* 27470 * If we just completed a copy in, we become writer and 27471 * continue processing in ip_sioctl_copyin_done. If it 27472 * was a copy out, we call mi_copyout again. If there is 27473 * nothing more to copy out, it will complete the IOCTL. 27474 */ 27475 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27476 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27477 mi_copy_done(q, mp, EPROTO); 27478 return; 27479 } 27480 /* 27481 * Check for cases that need more copying. A return 27482 * value of 0 means a second copyin has been started, 27483 * so we return; a return value of 1 means no more 27484 * copying is needed, so we continue. 27485 */ 27486 cmd = iocp->ioc_cmd; 27487 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 27488 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 27489 MI_COPY_COUNT(mp) == 1) { 27490 if (ip_copyin_msfilter(q, mp) == 0) 27491 return; 27492 } 27493 /* 27494 * Refhold the conn, till the ioctl completes. This is 27495 * needed in case the ioctl ends up in the pending mp 27496 * list. Every mp in the ill_pending_mp list and 27497 * the ipsq_pending_mp must have a refhold on the conn 27498 * to resume processing. The refhold is released when 27499 * the ioctl completes. (normally or abnormally) 27500 * In all cases ip_ioctl_finish is called to finish 27501 * the ioctl. 27502 */ 27503 if (connp != NULL) { 27504 /* This is not a reentry */ 27505 ASSERT(ipsq == NULL); 27506 CONN_INC_REF(connp); 27507 } else { 27508 if (!(ipip->ipi_flags & IPI_MODOK)) { 27509 mi_copy_done(q, mp, EINVAL); 27510 return; 27511 } 27512 } 27513 27514 ip_process_ioctl(ipsq, q, mp, ipip); 27515 27516 } else { 27517 mi_copyout(q, mp); 27518 } 27519 return; 27520 nak: 27521 iocp->ioc_error = EINVAL; 27522 mp->b_datap->db_type = M_IOCNAK; 27523 iocp->ioc_count = 0; 27524 qreply(q, mp); 27525 return; 27526 27527 case M_IOCNAK: 27528 /* 27529 * The only way we could get here is if a resolver didn't like 27530 * an IOCTL we sent it. This shouldn't happen. 27531 */ 27532 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27533 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27534 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27535 freemsg(mp); 27536 return; 27537 case M_IOCACK: 27538 /* /dev/ip shouldn't see this */ 27539 if (CONN_Q(q)) 27540 goto nak; 27541 27542 /* Finish socket ioctls passed through to ARP. */ 27543 ip_sioctl_iocack(q, mp); 27544 return; 27545 case M_FLUSH: 27546 if (*mp->b_rptr & FLUSHW) 27547 flushq(q, FLUSHALL); 27548 if (q->q_next) { 27549 putnext(q, mp); 27550 return; 27551 } 27552 if (*mp->b_rptr & FLUSHR) { 27553 *mp->b_rptr &= ~FLUSHW; 27554 qreply(q, mp); 27555 return; 27556 } 27557 freemsg(mp); 27558 return; 27559 case IRE_DB_REQ_TYPE: 27560 if (connp == NULL) { 27561 proto_str = "IRE_DB_REQ_TYPE"; 27562 goto protonak; 27563 } 27564 /* An Upper Level Protocol wants a copy of an IRE. */ 27565 ip_ire_req(q, mp); 27566 return; 27567 case M_CTL: 27568 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27569 break; 27570 27571 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27572 TUN_HELLO) { 27573 ASSERT(connp != NULL); 27574 connp->conn_flags |= IPCL_IPTUN; 27575 freeb(mp); 27576 return; 27577 } 27578 27579 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27580 IP_ULP_OUT_LABELED) { 27581 out_labeled_t *olp; 27582 27583 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27584 break; 27585 olp = (out_labeled_t *)mp->b_rptr; 27586 connp->conn_ulp_labeled = olp->out_qnext == q; 27587 freemsg(mp); 27588 return; 27589 } 27590 27591 /* M_CTL messages are used by ARP to tell us things. */ 27592 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27593 break; 27594 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27595 case AR_ENTRY_SQUERY: 27596 ip_wput_ctl(q, mp); 27597 return; 27598 case AR_CLIENT_NOTIFY: 27599 ip_arp_news(q, mp); 27600 return; 27601 case AR_DLPIOP_DONE: 27602 ASSERT(q->q_next != NULL); 27603 ill = (ill_t *)q->q_ptr; 27604 /* qwriter_ip releases the refhold */ 27605 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27606 ill_refhold(ill); 27607 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27608 return; 27609 case AR_ARP_CLOSING: 27610 /* 27611 * ARP (above us) is closing. If no ARP bringup is 27612 * currently pending, ack the message so that ARP 27613 * can complete its close. Also mark ill_arp_closing 27614 * so that new ARP bringups will fail. If any 27615 * ARP bringup is currently in progress, we will 27616 * ack this when the current ARP bringup completes. 27617 */ 27618 ASSERT(q->q_next != NULL); 27619 ill = (ill_t *)q->q_ptr; 27620 mutex_enter(&ill->ill_lock); 27621 ill->ill_arp_closing = 1; 27622 if (!ill->ill_arp_bringup_pending) { 27623 mutex_exit(&ill->ill_lock); 27624 qreply(q, mp); 27625 } else { 27626 mutex_exit(&ill->ill_lock); 27627 freemsg(mp); 27628 } 27629 return; 27630 case AR_ARP_EXTEND: 27631 /* 27632 * The ARP module above us is capable of duplicate 27633 * address detection. Old ATM drivers will not send 27634 * this message. 27635 */ 27636 ASSERT(q->q_next != NULL); 27637 ill = (ill_t *)q->q_ptr; 27638 ill->ill_arp_extend = B_TRUE; 27639 freemsg(mp); 27640 return; 27641 default: 27642 break; 27643 } 27644 break; 27645 case M_PROTO: 27646 case M_PCPROTO: 27647 /* 27648 * The only PROTO messages we expect are ULP binds and 27649 * copies of option negotiation acknowledgements. 27650 */ 27651 switch (((union T_primitives *)mp->b_rptr)->type) { 27652 case O_T_BIND_REQ: 27653 case T_BIND_REQ: { 27654 /* Request can get queued in bind */ 27655 if (connp == NULL) { 27656 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27657 goto protonak; 27658 } 27659 /* 27660 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27661 * instead of going through this path. We only get 27662 * here in the following cases: 27663 * 27664 * a. Bind retries, where ipsq is non-NULL. 27665 * b. T_BIND_REQ is issued from non TCP/UDP 27666 * transport, e.g. icmp for raw socket, 27667 * in which case ipsq will be NULL. 27668 */ 27669 ASSERT(ipsq != NULL || 27670 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27671 27672 /* Don't increment refcnt if this is a re-entry */ 27673 if (ipsq == NULL) 27674 CONN_INC_REF(connp); 27675 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27676 connp, NULL) : ip_bind_v4(q, mp, connp); 27677 if (mp == NULL) 27678 return; 27679 if (IPCL_IS_TCP(connp)) { 27680 /* 27681 * In the case of TCP endpoint we 27682 * come here only for bind retries 27683 */ 27684 ASSERT(ipsq != NULL); 27685 CONN_INC_REF(connp); 27686 squeue_fill(connp->conn_sqp, mp, 27687 ip_resume_tcp_bind, connp, 27688 SQTAG_BIND_RETRY); 27689 return; 27690 } else if (IPCL_IS_UDP(connp)) { 27691 /* 27692 * In the case of UDP endpoint we 27693 * come here only for bind retries 27694 */ 27695 ASSERT(ipsq != NULL); 27696 udp_resume_bind(connp, mp); 27697 return; 27698 } 27699 qreply(q, mp); 27700 CONN_OPER_PENDING_DONE(connp); 27701 return; 27702 } 27703 case T_SVR4_OPTMGMT_REQ: 27704 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27705 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27706 27707 if (connp == NULL) { 27708 proto_str = "T_SVR4_OPTMGMT_REQ"; 27709 goto protonak; 27710 } 27711 27712 if (!snmpcom_req(q, mp, ip_snmp_set, 27713 ip_snmp_get, cr)) { 27714 /* 27715 * Call svr4_optcom_req so that it can 27716 * generate the ack. We don't come here 27717 * if this operation is being restarted. 27718 * ip_restart_optmgmt will drop the conn ref. 27719 * In the case of ipsec option after the ipsec 27720 * load is complete conn_restart_ipsec_waiter 27721 * drops the conn ref. 27722 */ 27723 ASSERT(ipsq == NULL); 27724 CONN_INC_REF(connp); 27725 if (ip_check_for_ipsec_opt(q, mp)) 27726 return; 27727 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27728 if (err != EINPROGRESS) { 27729 /* Operation is done */ 27730 CONN_OPER_PENDING_DONE(connp); 27731 } 27732 } 27733 return; 27734 case T_OPTMGMT_REQ: 27735 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27736 /* 27737 * Note: No snmpcom_req support through new 27738 * T_OPTMGMT_REQ. 27739 * Call tpi_optcom_req so that it can 27740 * generate the ack. 27741 */ 27742 if (connp == NULL) { 27743 proto_str = "T_OPTMGMT_REQ"; 27744 goto protonak; 27745 } 27746 27747 ASSERT(ipsq == NULL); 27748 /* 27749 * We don't come here for restart. ip_restart_optmgmt 27750 * will drop the conn ref. In the case of ipsec option 27751 * after the ipsec load is complete 27752 * conn_restart_ipsec_waiter drops the conn ref. 27753 */ 27754 CONN_INC_REF(connp); 27755 if (ip_check_for_ipsec_opt(q, mp)) 27756 return; 27757 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27758 if (err != EINPROGRESS) { 27759 /* Operation is done */ 27760 CONN_OPER_PENDING_DONE(connp); 27761 } 27762 return; 27763 case T_UNBIND_REQ: 27764 if (connp == NULL) { 27765 proto_str = "T_UNBIND_REQ"; 27766 goto protonak; 27767 } 27768 mp = ip_unbind(q, mp); 27769 qreply(q, mp); 27770 return; 27771 default: 27772 /* 27773 * Have to drop any DLPI messages coming down from 27774 * arp (such as an info_req which would cause ip 27775 * to receive an extra info_ack if it was passed 27776 * through. 27777 */ 27778 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27779 (int)*(uint_t *)mp->b_rptr)); 27780 freemsg(mp); 27781 return; 27782 } 27783 /* NOTREACHED */ 27784 case IRE_DB_TYPE: { 27785 nce_t *nce; 27786 ill_t *ill; 27787 in6_addr_t gw_addr_v6; 27788 27789 27790 /* 27791 * This is a response back from a resolver. It 27792 * consists of a message chain containing: 27793 * IRE_MBLK-->LL_HDR_MBLK->pkt 27794 * The IRE_MBLK is the one we allocated in ip_newroute. 27795 * The LL_HDR_MBLK is the DLPI header to use to get 27796 * the attached packet, and subsequent ones for the 27797 * same destination, transmitted. 27798 */ 27799 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27800 break; 27801 /* 27802 * First, check to make sure the resolution succeeded. 27803 * If it failed, the second mblk will be empty. 27804 * If it is, free the chain, dropping the packet. 27805 * (We must ire_delete the ire; that frees the ire mblk) 27806 * We're doing this now to support PVCs for ATM; it's 27807 * a partial xresolv implementation. When we fully implement 27808 * xresolv interfaces, instead of freeing everything here 27809 * we'll initiate neighbor discovery. 27810 * 27811 * For v4 (ARP and other external resolvers) the resolver 27812 * frees the message, so no check is needed. This check 27813 * is required, though, for a full xresolve implementation. 27814 * Including this code here now both shows how external 27815 * resolvers can NACK a resolution request using an 27816 * existing design that has no specific provisions for NACKs, 27817 * and also takes into account that the current non-ARP 27818 * external resolver has been coded to use this method of 27819 * NACKing for all IPv6 (xresolv) cases, 27820 * whether our xresolv implementation is complete or not. 27821 * 27822 */ 27823 ire = (ire_t *)mp->b_rptr; 27824 ill = ire_to_ill(ire); 27825 mp1 = mp->b_cont; /* dl_unitdata_req */ 27826 if (mp1->b_rptr == mp1->b_wptr) { 27827 if (ire->ire_ipversion == IPV6_VERSION) { 27828 /* 27829 * XRESOLV interface. 27830 */ 27831 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27832 mutex_enter(&ire->ire_lock); 27833 gw_addr_v6 = ire->ire_gateway_addr_v6; 27834 mutex_exit(&ire->ire_lock); 27835 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27836 nce = ndp_lookup_v6(ill, 27837 &ire->ire_addr_v6, B_FALSE); 27838 } else { 27839 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27840 B_FALSE); 27841 } 27842 if (nce != NULL) { 27843 nce_resolv_failed(nce); 27844 ndp_delete(nce); 27845 NCE_REFRELE(nce); 27846 } 27847 } 27848 mp->b_cont = NULL; 27849 freemsg(mp1); /* frees the pkt as well */ 27850 ASSERT(ire->ire_nce == NULL); 27851 ire_delete((ire_t *)mp->b_rptr); 27852 return; 27853 } 27854 27855 /* 27856 * Split them into IRE_MBLK and pkt and feed it into 27857 * ire_add_then_send. Then in ire_add_then_send 27858 * the IRE will be added, and then the packet will be 27859 * run back through ip_wput. This time it will make 27860 * it to the wire. 27861 */ 27862 mp->b_cont = NULL; 27863 mp = mp1->b_cont; /* now, mp points to pkt */ 27864 mp1->b_cont = NULL; 27865 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27866 if (ire->ire_ipversion == IPV6_VERSION) { 27867 /* 27868 * XRESOLV interface. Find the nce and put a copy 27869 * of the dl_unitdata_req in nce_res_mp 27870 */ 27871 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27872 mutex_enter(&ire->ire_lock); 27873 gw_addr_v6 = ire->ire_gateway_addr_v6; 27874 mutex_exit(&ire->ire_lock); 27875 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27876 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27877 B_FALSE); 27878 } else { 27879 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27880 } 27881 if (nce != NULL) { 27882 /* 27883 * We have to protect nce_res_mp here 27884 * from being accessed by other threads 27885 * while we change the mblk pointer. 27886 * Other functions will also lock the nce when 27887 * accessing nce_res_mp. 27888 * 27889 * The reason we change the mblk pointer 27890 * here rather than copying the resolved address 27891 * into the template is that, unlike with 27892 * ethernet, we have no guarantee that the 27893 * resolved address length will be 27894 * smaller than or equal to the lla length 27895 * with which the template was allocated, 27896 * (for ethernet, they're equal) 27897 * so we have to use the actual resolved 27898 * address mblk - which holds the real 27899 * dl_unitdata_req with the resolved address. 27900 * 27901 * Doing this is the same behavior as was 27902 * previously used in the v4 ARP case. 27903 */ 27904 mutex_enter(&nce->nce_lock); 27905 if (nce->nce_res_mp != NULL) 27906 freemsg(nce->nce_res_mp); 27907 nce->nce_res_mp = mp1; 27908 mutex_exit(&nce->nce_lock); 27909 /* 27910 * We do a fastpath probe here because 27911 * we have resolved the address without 27912 * using Neighbor Discovery. 27913 * In the non-XRESOLV v6 case, the fastpath 27914 * probe is done right after neighbor 27915 * discovery completes. 27916 */ 27917 if (nce->nce_res_mp != NULL) { 27918 int res; 27919 nce_fastpath_list_add(nce); 27920 res = ill_fastpath_probe(ill, 27921 nce->nce_res_mp); 27922 if (res != 0 && res != EAGAIN) 27923 nce_fastpath_list_delete(nce); 27924 } 27925 27926 ire_add_then_send(q, ire, mp); 27927 /* 27928 * Now we have to clean out any packets 27929 * that may have been queued on the nce 27930 * while it was waiting for address resolution 27931 * to complete. 27932 */ 27933 mutex_enter(&nce->nce_lock); 27934 mp1 = nce->nce_qd_mp; 27935 nce->nce_qd_mp = NULL; 27936 mutex_exit(&nce->nce_lock); 27937 while (mp1 != NULL) { 27938 mblk_t *nxt_mp; 27939 queue_t *fwdq = NULL; 27940 ill_t *inbound_ill; 27941 uint_t ifindex; 27942 27943 nxt_mp = mp1->b_next; 27944 mp1->b_next = NULL; 27945 /* 27946 * Retrieve ifindex stored in 27947 * ip_rput_data_v6() 27948 */ 27949 ifindex = 27950 (uint_t)(uintptr_t)mp1->b_prev; 27951 inbound_ill = 27952 ill_lookup_on_ifindex(ifindex, 27953 B_TRUE, NULL, NULL, NULL, 27954 NULL, ipst); 27955 mp1->b_prev = NULL; 27956 if (inbound_ill != NULL) 27957 fwdq = inbound_ill->ill_rq; 27958 27959 if (fwdq != NULL) { 27960 put(fwdq, mp1); 27961 ill_refrele(inbound_ill); 27962 } else 27963 put(WR(ill->ill_rq), mp1); 27964 mp1 = nxt_mp; 27965 } 27966 NCE_REFRELE(nce); 27967 } else { /* nce is NULL; clean up */ 27968 ire_delete(ire); 27969 freemsg(mp); 27970 freemsg(mp1); 27971 return; 27972 } 27973 } else { 27974 nce_t *arpce; 27975 /* 27976 * Link layer resolution succeeded. Recompute the 27977 * ire_nce. 27978 */ 27979 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27980 if ((arpce = ndp_lookup_v4(ill, 27981 (ire->ire_gateway_addr != INADDR_ANY ? 27982 &ire->ire_gateway_addr : &ire->ire_addr), 27983 B_FALSE)) == NULL) { 27984 freeb(ire->ire_mp); 27985 freeb(mp1); 27986 freemsg(mp); 27987 return; 27988 } 27989 mutex_enter(&arpce->nce_lock); 27990 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27991 if (arpce->nce_state == ND_REACHABLE) { 27992 /* 27993 * Someone resolved this before us; 27994 * cleanup the res_mp. Since ire has 27995 * not been added yet, the call to ire_add_v4 27996 * from ire_add_then_send (when a dup is 27997 * detected) will clean up the ire. 27998 */ 27999 freeb(mp1); 28000 } else { 28001 if (arpce->nce_res_mp != NULL) 28002 freemsg(arpce->nce_res_mp); 28003 arpce->nce_res_mp = mp1; 28004 arpce->nce_state = ND_REACHABLE; 28005 } 28006 mutex_exit(&arpce->nce_lock); 28007 if (ire->ire_marks & IRE_MARK_NOADD) { 28008 /* 28009 * this ire will not be added to the ire 28010 * cache table, so we can set the ire_nce 28011 * here, as there are no atomicity constraints. 28012 */ 28013 ire->ire_nce = arpce; 28014 /* 28015 * We are associating this nce with the ire 28016 * so change the nce ref taken in 28017 * ndp_lookup_v4() from 28018 * NCE_REFHOLD to NCE_REFHOLD_NOTR 28019 */ 28020 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 28021 } else { 28022 NCE_REFRELE(arpce); 28023 } 28024 ire_add_then_send(q, ire, mp); 28025 } 28026 return; /* All is well, the packet has been sent. */ 28027 } 28028 case IRE_ARPRESOLVE_TYPE: { 28029 28030 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 28031 break; 28032 mp1 = mp->b_cont; /* dl_unitdata_req */ 28033 mp->b_cont = NULL; 28034 /* 28035 * First, check to make sure the resolution succeeded. 28036 * If it failed, the second mblk will be empty. 28037 */ 28038 if (mp1->b_rptr == mp1->b_wptr) { 28039 /* cleanup the incomplete ire, free queued packets */ 28040 freemsg(mp); /* fake ire */ 28041 freeb(mp1); /* dl_unitdata response */ 28042 return; 28043 } 28044 28045 /* 28046 * update any incomplete nce_t found. we lookup the ctable 28047 * and find the nce from the ire->ire_nce because we need 28048 * to pass the ire to ip_xmit_v4 later, and can find both 28049 * ire and nce in one lookup from the ctable. 28050 */ 28051 fake_ire = (ire_t *)mp->b_rptr; 28052 /* 28053 * By the time we come back here from ARP 28054 * the logical outgoing interface of the incomplete ire 28055 * we added in ire_forward could have disappeared, 28056 * causing the incomplete ire to also have 28057 * dissapeared. So we need to retreive the 28058 * proper ipif for the ire before looking 28059 * in ctable; do the ctablelookup based on ire_ipif_seqid 28060 */ 28061 ill = q->q_ptr; 28062 28063 /* Get the outgoing ipif */ 28064 mutex_enter(&ill->ill_lock); 28065 if (ill->ill_state_flags & ILL_CONDEMNED) { 28066 mutex_exit(&ill->ill_lock); 28067 freemsg(mp); /* fake ire */ 28068 freeb(mp1); /* dl_unitdata response */ 28069 return; 28070 } 28071 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 28072 28073 if (ipif == NULL) { 28074 mutex_exit(&ill->ill_lock); 28075 ip1dbg(("logical intrf to incomplete ire vanished\n")); 28076 freemsg(mp); 28077 freeb(mp1); 28078 return; 28079 } 28080 ipif_refhold_locked(ipif); 28081 mutex_exit(&ill->ill_lock); 28082 ire = ire_ctable_lookup(fake_ire->ire_addr, 28083 fake_ire->ire_gateway_addr, IRE_CACHE, 28084 ipif, fake_ire->ire_zoneid, NULL, 28085 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 28086 ipif_refrele(ipif); 28087 if (ire == NULL) { 28088 /* 28089 * no ire was found; check if there is an nce 28090 * for this lookup; if it has no ire's pointing at it 28091 * cleanup. 28092 */ 28093 if ((nce = ndp_lookup_v4(ill, 28094 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28095 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28096 B_FALSE)) != NULL) { 28097 /* 28098 * cleanup: 28099 * We check for refcnt 2 (one for the nce 28100 * hash list + 1 for the ref taken by 28101 * ndp_lookup_v4) to check that there are 28102 * no ire's pointing at the nce. 28103 */ 28104 if (nce->nce_refcnt == 2) 28105 ndp_delete(nce); 28106 NCE_REFRELE(nce); 28107 } 28108 freeb(mp1); /* dl_unitdata response */ 28109 freemsg(mp); /* fake ire */ 28110 return; 28111 } 28112 nce = ire->ire_nce; 28113 DTRACE_PROBE2(ire__arpresolve__type, 28114 ire_t *, ire, nce_t *, nce); 28115 ASSERT(nce->nce_state != ND_INITIAL); 28116 mutex_enter(&nce->nce_lock); 28117 nce->nce_last = TICK_TO_MSEC(lbolt64); 28118 if (nce->nce_state == ND_REACHABLE) { 28119 /* 28120 * Someone resolved this before us; 28121 * our response is not needed any more. 28122 */ 28123 mutex_exit(&nce->nce_lock); 28124 freeb(mp1); /* dl_unitdata response */ 28125 } else { 28126 if (nce->nce_res_mp != NULL) { 28127 freemsg(nce->nce_res_mp); 28128 /* existing dl_unitdata template */ 28129 } 28130 nce->nce_res_mp = mp1; 28131 nce->nce_state = ND_REACHABLE; 28132 mutex_exit(&nce->nce_lock); 28133 nce_fastpath(nce); 28134 } 28135 /* 28136 * The cached nce_t has been updated to be reachable; 28137 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 28138 */ 28139 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28140 freemsg(mp); 28141 /* 28142 * send out queued packets. 28143 */ 28144 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 28145 28146 IRE_REFRELE(ire); 28147 return; 28148 } 28149 default: 28150 break; 28151 } 28152 if (q->q_next) { 28153 putnext(q, mp); 28154 } else 28155 freemsg(mp); 28156 return; 28157 28158 protonak: 28159 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28160 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28161 qreply(q, mp); 28162 } 28163 28164 /* 28165 * Process IP options in an outbound packet. Modify the destination if there 28166 * is a source route option. 28167 * Returns non-zero if something fails in which case an ICMP error has been 28168 * sent and mp freed. 28169 */ 28170 static int 28171 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28172 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28173 { 28174 ipoptp_t opts; 28175 uchar_t *opt; 28176 uint8_t optval; 28177 uint8_t optlen; 28178 ipaddr_t dst; 28179 intptr_t code = 0; 28180 mblk_t *mp; 28181 ire_t *ire = NULL; 28182 28183 ip2dbg(("ip_wput_options\n")); 28184 mp = ipsec_mp; 28185 if (mctl_present) { 28186 mp = ipsec_mp->b_cont; 28187 } 28188 28189 dst = ipha->ipha_dst; 28190 for (optval = ipoptp_first(&opts, ipha); 28191 optval != IPOPT_EOL; 28192 optval = ipoptp_next(&opts)) { 28193 opt = opts.ipoptp_cur; 28194 optlen = opts.ipoptp_len; 28195 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28196 optval, optlen)); 28197 switch (optval) { 28198 uint32_t off; 28199 case IPOPT_SSRR: 28200 case IPOPT_LSRR: 28201 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28202 ip1dbg(( 28203 "ip_wput_options: bad option offset\n")); 28204 code = (char *)&opt[IPOPT_OLEN] - 28205 (char *)ipha; 28206 goto param_prob; 28207 } 28208 off = opt[IPOPT_OFFSET]; 28209 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28210 ntohl(dst))); 28211 /* 28212 * For strict: verify that dst is directly 28213 * reachable. 28214 */ 28215 if (optval == IPOPT_SSRR) { 28216 ire = ire_ftable_lookup(dst, 0, 0, 28217 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28218 MBLK_GETLABEL(mp), 28219 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28220 if (ire == NULL) { 28221 ip1dbg(("ip_wput_options: SSRR not" 28222 " directly reachable: 0x%x\n", 28223 ntohl(dst))); 28224 goto bad_src_route; 28225 } 28226 ire_refrele(ire); 28227 } 28228 break; 28229 case IPOPT_RR: 28230 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28231 ip1dbg(( 28232 "ip_wput_options: bad option offset\n")); 28233 code = (char *)&opt[IPOPT_OLEN] - 28234 (char *)ipha; 28235 goto param_prob; 28236 } 28237 break; 28238 case IPOPT_TS: 28239 /* 28240 * Verify that length >=5 and that there is either 28241 * room for another timestamp or that the overflow 28242 * counter is not maxed out. 28243 */ 28244 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28245 if (optlen < IPOPT_MINLEN_IT) { 28246 goto param_prob; 28247 } 28248 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28249 ip1dbg(( 28250 "ip_wput_options: bad option offset\n")); 28251 code = (char *)&opt[IPOPT_OFFSET] - 28252 (char *)ipha; 28253 goto param_prob; 28254 } 28255 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28256 case IPOPT_TS_TSONLY: 28257 off = IPOPT_TS_TIMELEN; 28258 break; 28259 case IPOPT_TS_TSANDADDR: 28260 case IPOPT_TS_PRESPEC: 28261 case IPOPT_TS_PRESPEC_RFC791: 28262 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28263 break; 28264 default: 28265 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28266 (char *)ipha; 28267 goto param_prob; 28268 } 28269 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28270 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28271 /* 28272 * No room and the overflow counter is 15 28273 * already. 28274 */ 28275 goto param_prob; 28276 } 28277 break; 28278 } 28279 } 28280 28281 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28282 return (0); 28283 28284 ip1dbg(("ip_wput_options: error processing IP options.")); 28285 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28286 28287 param_prob: 28288 /* 28289 * Since ip_wput() isn't close to finished, we fill 28290 * in enough of the header for credible error reporting. 28291 */ 28292 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28293 /* Failed */ 28294 freemsg(ipsec_mp); 28295 return (-1); 28296 } 28297 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28298 return (-1); 28299 28300 bad_src_route: 28301 /* 28302 * Since ip_wput() isn't close to finished, we fill 28303 * in enough of the header for credible error reporting. 28304 */ 28305 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28306 /* Failed */ 28307 freemsg(ipsec_mp); 28308 return (-1); 28309 } 28310 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28311 return (-1); 28312 } 28313 28314 /* 28315 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28316 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28317 * thru /etc/system. 28318 */ 28319 #define CONN_MAXDRAINCNT 64 28320 28321 static void 28322 conn_drain_init(ip_stack_t *ipst) 28323 { 28324 int i; 28325 28326 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28327 28328 if ((ipst->ips_conn_drain_list_cnt == 0) || 28329 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28330 /* 28331 * Default value of the number of drainers is the 28332 * number of cpus, subject to maximum of 8 drainers. 28333 */ 28334 if (boot_max_ncpus != -1) 28335 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28336 else 28337 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28338 } 28339 28340 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28341 sizeof (idl_t), KM_SLEEP); 28342 28343 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28344 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28345 MUTEX_DEFAULT, NULL); 28346 } 28347 } 28348 28349 static void 28350 conn_drain_fini(ip_stack_t *ipst) 28351 { 28352 int i; 28353 28354 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28355 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28356 kmem_free(ipst->ips_conn_drain_list, 28357 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28358 ipst->ips_conn_drain_list = NULL; 28359 } 28360 28361 /* 28362 * Note: For an overview of how flowcontrol is handled in IP please see the 28363 * IP Flowcontrol notes at the top of this file. 28364 * 28365 * Flow control has blocked us from proceeding. Insert the given conn in one 28366 * of the conn drain lists. These conn wq's will be qenabled later on when 28367 * STREAMS flow control does a backenable. conn_walk_drain will enable 28368 * the first conn in each of these drain lists. Each of these qenabled conns 28369 * in turn enables the next in the list, after it runs, or when it closes, 28370 * thus sustaining the drain process. 28371 * 28372 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28373 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28374 * running at any time, on a given conn, since there can be only 1 service proc 28375 * running on a queue at any time. 28376 */ 28377 void 28378 conn_drain_insert(conn_t *connp) 28379 { 28380 idl_t *idl; 28381 uint_t index; 28382 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28383 28384 mutex_enter(&connp->conn_lock); 28385 if (connp->conn_state_flags & CONN_CLOSING) { 28386 /* 28387 * The conn is closing as a result of which CONN_CLOSING 28388 * is set. Return. 28389 */ 28390 mutex_exit(&connp->conn_lock); 28391 return; 28392 } else if (connp->conn_idl == NULL) { 28393 /* 28394 * Assign the next drain list round robin. We dont' use 28395 * a lock, and thus it may not be strictly round robin. 28396 * Atomicity of load/stores is enough to make sure that 28397 * conn_drain_list_index is always within bounds. 28398 */ 28399 index = ipst->ips_conn_drain_list_index; 28400 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28401 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28402 index++; 28403 if (index == ipst->ips_conn_drain_list_cnt) 28404 index = 0; 28405 ipst->ips_conn_drain_list_index = index; 28406 } 28407 mutex_exit(&connp->conn_lock); 28408 28409 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28410 if ((connp->conn_drain_prev != NULL) || 28411 (connp->conn_state_flags & CONN_CLOSING)) { 28412 /* 28413 * The conn is already in the drain list, OR 28414 * the conn is closing. We need to check again for 28415 * the closing case again since close can happen 28416 * after we drop the conn_lock, and before we 28417 * acquire the CONN_DRAIN_LIST_LOCK. 28418 */ 28419 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28420 return; 28421 } else { 28422 idl = connp->conn_idl; 28423 } 28424 28425 /* 28426 * The conn is not in the drain list. Insert it at the 28427 * tail of the drain list. The drain list is circular 28428 * and doubly linked. idl_conn points to the 1st element 28429 * in the list. 28430 */ 28431 if (idl->idl_conn == NULL) { 28432 idl->idl_conn = connp; 28433 connp->conn_drain_next = connp; 28434 connp->conn_drain_prev = connp; 28435 } else { 28436 conn_t *head = idl->idl_conn; 28437 28438 connp->conn_drain_next = head; 28439 connp->conn_drain_prev = head->conn_drain_prev; 28440 head->conn_drain_prev->conn_drain_next = connp; 28441 head->conn_drain_prev = connp; 28442 } 28443 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28444 } 28445 28446 /* 28447 * This conn is closing, and we are called from ip_close. OR 28448 * This conn has been serviced by ip_wsrv, and we need to do the tail 28449 * processing. 28450 * If this conn is part of the drain list, we may need to sustain the drain 28451 * process by qenabling the next conn in the drain list. We may also need to 28452 * remove this conn from the list, if it is done. 28453 */ 28454 static void 28455 conn_drain_tail(conn_t *connp, boolean_t closing) 28456 { 28457 idl_t *idl; 28458 28459 /* 28460 * connp->conn_idl is stable at this point, and no lock is needed 28461 * to check it. If we are called from ip_close, close has already 28462 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28463 * called us only because conn_idl is non-null. If we are called thru 28464 * service, conn_idl could be null, but it cannot change because 28465 * service is single-threaded per queue, and there cannot be another 28466 * instance of service trying to call conn_drain_insert on this conn 28467 * now. 28468 */ 28469 ASSERT(!closing || (connp->conn_idl != NULL)); 28470 28471 /* 28472 * If connp->conn_idl is null, the conn has not been inserted into any 28473 * drain list even once since creation of the conn. Just return. 28474 */ 28475 if (connp->conn_idl == NULL) 28476 return; 28477 28478 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28479 28480 if (connp->conn_drain_prev == NULL) { 28481 /* This conn is currently not in the drain list. */ 28482 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28483 return; 28484 } 28485 idl = connp->conn_idl; 28486 if (idl->idl_conn_draining == connp) { 28487 /* 28488 * This conn is the current drainer. If this is the last conn 28489 * in the drain list, we need to do more checks, in the 'if' 28490 * below. Otherwwise we need to just qenable the next conn, 28491 * to sustain the draining, and is handled in the 'else' 28492 * below. 28493 */ 28494 if (connp->conn_drain_next == idl->idl_conn) { 28495 /* 28496 * This conn is the last in this list. This round 28497 * of draining is complete. If idl_repeat is set, 28498 * it means another flow enabling has happened from 28499 * the driver/streams and we need to another round 28500 * of draining. 28501 * If there are more than 2 conns in the drain list, 28502 * do a left rotate by 1, so that all conns except the 28503 * conn at the head move towards the head by 1, and the 28504 * the conn at the head goes to the tail. This attempts 28505 * a more even share for all queues that are being 28506 * drained. 28507 */ 28508 if ((connp->conn_drain_next != connp) && 28509 (idl->idl_conn->conn_drain_next != connp)) { 28510 idl->idl_conn = idl->idl_conn->conn_drain_next; 28511 } 28512 if (idl->idl_repeat) { 28513 qenable(idl->idl_conn->conn_wq); 28514 idl->idl_conn_draining = idl->idl_conn; 28515 idl->idl_repeat = 0; 28516 } else { 28517 idl->idl_conn_draining = NULL; 28518 } 28519 } else { 28520 /* 28521 * If the next queue that we are now qenable'ing, 28522 * is closing, it will remove itself from this list 28523 * and qenable the subsequent queue in ip_close(). 28524 * Serialization is acheived thru idl_lock. 28525 */ 28526 qenable(connp->conn_drain_next->conn_wq); 28527 idl->idl_conn_draining = connp->conn_drain_next; 28528 } 28529 } 28530 if (!connp->conn_did_putbq || closing) { 28531 /* 28532 * Remove ourself from the drain list, if we did not do 28533 * a putbq, or if the conn is closing. 28534 * Note: It is possible that q->q_first is non-null. It means 28535 * that these messages landed after we did a enableok() in 28536 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28537 * service them. 28538 */ 28539 if (connp->conn_drain_next == connp) { 28540 /* Singleton in the list */ 28541 ASSERT(connp->conn_drain_prev == connp); 28542 idl->idl_conn = NULL; 28543 idl->idl_conn_draining = NULL; 28544 } else { 28545 connp->conn_drain_prev->conn_drain_next = 28546 connp->conn_drain_next; 28547 connp->conn_drain_next->conn_drain_prev = 28548 connp->conn_drain_prev; 28549 if (idl->idl_conn == connp) 28550 idl->idl_conn = connp->conn_drain_next; 28551 ASSERT(idl->idl_conn_draining != connp); 28552 28553 } 28554 connp->conn_drain_next = NULL; 28555 connp->conn_drain_prev = NULL; 28556 } 28557 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28558 } 28559 28560 /* 28561 * Write service routine. Shared perimeter entry point. 28562 * ip_wsrv can be called in any of the following ways. 28563 * 1. The device queue's messages has fallen below the low water mark 28564 * and STREAMS has backenabled the ill_wq. We walk thru all the 28565 * the drain lists and backenable the first conn in each list. 28566 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28567 * qenabled non-tcp upper layers. We start dequeing messages and call 28568 * ip_wput for each message. 28569 */ 28570 28571 void 28572 ip_wsrv(queue_t *q) 28573 { 28574 conn_t *connp; 28575 ill_t *ill; 28576 mblk_t *mp; 28577 28578 if (q->q_next) { 28579 ill = (ill_t *)q->q_ptr; 28580 if (ill->ill_state_flags == 0) { 28581 /* 28582 * The device flow control has opened up. 28583 * Walk through conn drain lists and qenable the 28584 * first conn in each list. This makes sense only 28585 * if the stream is fully plumbed and setup. 28586 * Hence the if check above. 28587 */ 28588 ip1dbg(("ip_wsrv: walking\n")); 28589 conn_walk_drain(ill->ill_ipst); 28590 } 28591 return; 28592 } 28593 28594 connp = Q_TO_CONN(q); 28595 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28596 28597 /* 28598 * 1. Set conn_draining flag to signal that service is active. 28599 * 28600 * 2. ip_output determines whether it has been called from service, 28601 * based on the last parameter. If it is IP_WSRV it concludes it 28602 * has been called from service. 28603 * 28604 * 3. Message ordering is preserved by the following logic. 28605 * i. A directly called ip_output (i.e. not thru service) will queue 28606 * the message at the tail, if conn_draining is set (i.e. service 28607 * is running) or if q->q_first is non-null. 28608 * 28609 * ii. If ip_output is called from service, and if ip_output cannot 28610 * putnext due to flow control, it does a putbq. 28611 * 28612 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28613 * (causing an infinite loop). 28614 */ 28615 ASSERT(!connp->conn_did_putbq); 28616 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28617 connp->conn_draining = 1; 28618 noenable(q); 28619 while ((mp = getq(q)) != NULL) { 28620 ASSERT(CONN_Q(q)); 28621 28622 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28623 if (connp->conn_did_putbq) { 28624 /* ip_wput did a putbq */ 28625 break; 28626 } 28627 } 28628 /* 28629 * At this point, a thread coming down from top, calling 28630 * ip_wput, may end up queueing the message. We have not yet 28631 * enabled the queue, so ip_wsrv won't be called again. 28632 * To avoid this race, check q->q_first again (in the loop) 28633 * If the other thread queued the message before we call 28634 * enableok(), we will catch it in the q->q_first check. 28635 * If the other thread queues the message after we call 28636 * enableok(), ip_wsrv will be called again by STREAMS. 28637 */ 28638 connp->conn_draining = 0; 28639 enableok(q); 28640 } 28641 28642 /* Enable the next conn for draining */ 28643 conn_drain_tail(connp, B_FALSE); 28644 28645 connp->conn_did_putbq = 0; 28646 } 28647 28648 /* 28649 * Walk the list of all conn's calling the function provided with the 28650 * specified argument for each. Note that this only walks conn's that 28651 * have been bound. 28652 * Applies to both IPv4 and IPv6. 28653 */ 28654 static void 28655 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28656 { 28657 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28658 ipst->ips_ipcl_udp_fanout_size, 28659 func, arg, zoneid); 28660 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28661 ipst->ips_ipcl_conn_fanout_size, 28662 func, arg, zoneid); 28663 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28664 ipst->ips_ipcl_bind_fanout_size, 28665 func, arg, zoneid); 28666 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28667 IPPROTO_MAX, func, arg, zoneid); 28668 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28669 IPPROTO_MAX, func, arg, zoneid); 28670 } 28671 28672 /* 28673 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28674 * of conns that need to be drained, check if drain is already in progress. 28675 * If so set the idl_repeat bit, indicating that the last conn in the list 28676 * needs to reinitiate the drain once again, for the list. If drain is not 28677 * in progress for the list, initiate the draining, by qenabling the 1st 28678 * conn in the list. The drain is self-sustaining, each qenabled conn will 28679 * in turn qenable the next conn, when it is done/blocked/closing. 28680 */ 28681 static void 28682 conn_walk_drain(ip_stack_t *ipst) 28683 { 28684 int i; 28685 idl_t *idl; 28686 28687 IP_STAT(ipst, ip_conn_walk_drain); 28688 28689 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28690 idl = &ipst->ips_conn_drain_list[i]; 28691 mutex_enter(&idl->idl_lock); 28692 if (idl->idl_conn == NULL) { 28693 mutex_exit(&idl->idl_lock); 28694 continue; 28695 } 28696 /* 28697 * If this list is not being drained currently by 28698 * an ip_wsrv thread, start the process. 28699 */ 28700 if (idl->idl_conn_draining == NULL) { 28701 ASSERT(idl->idl_repeat == 0); 28702 qenable(idl->idl_conn->conn_wq); 28703 idl->idl_conn_draining = idl->idl_conn; 28704 } else { 28705 idl->idl_repeat = 1; 28706 } 28707 mutex_exit(&idl->idl_lock); 28708 } 28709 } 28710 28711 /* 28712 * Walk an conn hash table of `count' buckets, calling func for each entry. 28713 */ 28714 static void 28715 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28716 zoneid_t zoneid) 28717 { 28718 conn_t *connp; 28719 28720 while (count-- > 0) { 28721 mutex_enter(&connfp->connf_lock); 28722 for (connp = connfp->connf_head; connp != NULL; 28723 connp = connp->conn_next) { 28724 if (zoneid == GLOBAL_ZONEID || 28725 zoneid == connp->conn_zoneid) { 28726 CONN_INC_REF(connp); 28727 mutex_exit(&connfp->connf_lock); 28728 (*func)(connp, arg); 28729 mutex_enter(&connfp->connf_lock); 28730 CONN_DEC_REF(connp); 28731 } 28732 } 28733 mutex_exit(&connfp->connf_lock); 28734 connfp++; 28735 } 28736 } 28737 28738 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28739 static void 28740 conn_report1(conn_t *connp, void *mp) 28741 { 28742 char buf1[INET6_ADDRSTRLEN]; 28743 char buf2[INET6_ADDRSTRLEN]; 28744 uint_t print_len, buf_len; 28745 28746 ASSERT(connp != NULL); 28747 28748 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28749 if (buf_len <= 0) 28750 return; 28751 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 28752 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 28753 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28754 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28755 "%5d %s/%05d %s/%05d\n", 28756 (void *)connp, (void *)CONNP_TO_RQ(connp), 28757 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28758 buf1, connp->conn_lport, 28759 buf2, connp->conn_fport); 28760 if (print_len < buf_len) { 28761 ((mblk_t *)mp)->b_wptr += print_len; 28762 } else { 28763 ((mblk_t *)mp)->b_wptr += buf_len; 28764 } 28765 } 28766 28767 /* 28768 * Named Dispatch routine to produce a formatted report on all conns 28769 * that are listed in one of the fanout tables. 28770 * This report is accessed by using the ndd utility to "get" ND variable 28771 * "ip_conn_status". 28772 */ 28773 /* ARGSUSED */ 28774 static int 28775 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28776 { 28777 conn_t *connp = Q_TO_CONN(q); 28778 28779 (void) mi_mpprintf(mp, 28780 "CONN " MI_COL_HDRPAD_STR 28781 "rfq " MI_COL_HDRPAD_STR 28782 "stq " MI_COL_HDRPAD_STR 28783 " zone local remote"); 28784 28785 /* 28786 * Because of the ndd constraint, at most we can have 64K buffer 28787 * to put in all conn info. So to be more efficient, just 28788 * allocate a 64K buffer here, assuming we need that large buffer. 28789 * This should be OK as only privileged processes can do ndd /dev/ip. 28790 */ 28791 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28792 /* The following may work even if we cannot get a large buf. */ 28793 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28794 return (0); 28795 } 28796 28797 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28798 connp->conn_netstack->netstack_ip); 28799 return (0); 28800 } 28801 28802 /* 28803 * Determine if the ill and multicast aspects of that packets 28804 * "matches" the conn. 28805 */ 28806 boolean_t 28807 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28808 zoneid_t zoneid) 28809 { 28810 ill_t *in_ill; 28811 boolean_t found; 28812 ipif_t *ipif; 28813 ire_t *ire; 28814 ipaddr_t dst, src; 28815 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28816 28817 dst = ipha->ipha_dst; 28818 src = ipha->ipha_src; 28819 28820 /* 28821 * conn_incoming_ill is set by IP_BOUND_IF which limits 28822 * unicast, broadcast and multicast reception to 28823 * conn_incoming_ill. conn_wantpacket itself is called 28824 * only for BROADCAST and multicast. 28825 * 28826 * 1) ip_rput supresses duplicate broadcasts if the ill 28827 * is part of a group. Hence, we should be receiving 28828 * just one copy of broadcast for the whole group. 28829 * Thus, if it is part of the group the packet could 28830 * come on any ill of the group and hence we need a 28831 * match on the group. Otherwise, match on ill should 28832 * be sufficient. 28833 * 28834 * 2) ip_rput does not suppress duplicate multicast packets. 28835 * If there are two interfaces in a ill group and we have 28836 * 2 applications (conns) joined a multicast group G on 28837 * both the interfaces, ilm_lookup_ill filter in ip_rput 28838 * will give us two packets because we join G on both the 28839 * interfaces rather than nominating just one interface 28840 * for receiving multicast like broadcast above. So, 28841 * we have to call ilg_lookup_ill to filter out duplicate 28842 * copies, if ill is part of a group. 28843 */ 28844 in_ill = connp->conn_incoming_ill; 28845 if (in_ill != NULL) { 28846 if (in_ill->ill_group == NULL) { 28847 if (in_ill != ill) 28848 return (B_FALSE); 28849 } else if (in_ill->ill_group != ill->ill_group) { 28850 return (B_FALSE); 28851 } 28852 } 28853 28854 if (!CLASSD(dst)) { 28855 if (IPCL_ZONE_MATCH(connp, zoneid)) 28856 return (B_TRUE); 28857 /* 28858 * The conn is in a different zone; we need to check that this 28859 * broadcast address is configured in the application's zone and 28860 * on one ill in the group. 28861 */ 28862 ipif = ipif_get_next_ipif(NULL, ill); 28863 if (ipif == NULL) 28864 return (B_FALSE); 28865 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28866 connp->conn_zoneid, NULL, 28867 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28868 ipif_refrele(ipif); 28869 if (ire != NULL) { 28870 ire_refrele(ire); 28871 return (B_TRUE); 28872 } else { 28873 return (B_FALSE); 28874 } 28875 } 28876 28877 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28878 connp->conn_zoneid == zoneid) { 28879 /* 28880 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28881 * disabled, therefore we don't dispatch the multicast packet to 28882 * the sending zone. 28883 */ 28884 return (B_FALSE); 28885 } 28886 28887 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 28888 connp->conn_zoneid != zoneid) { 28889 /* 28890 * Multicast packet on the loopback interface: we only match 28891 * conns who joined the group in the specified zone. 28892 */ 28893 return (B_FALSE); 28894 } 28895 28896 if (connp->conn_multi_router) { 28897 /* multicast packet and multicast router socket: send up */ 28898 return (B_TRUE); 28899 } 28900 28901 mutex_enter(&connp->conn_lock); 28902 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28903 mutex_exit(&connp->conn_lock); 28904 return (found); 28905 } 28906 28907 /* 28908 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28909 */ 28910 /* ARGSUSED */ 28911 static void 28912 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28913 { 28914 ill_t *ill = (ill_t *)q->q_ptr; 28915 mblk_t *mp1, *mp2; 28916 ipif_t *ipif; 28917 int err = 0; 28918 conn_t *connp = NULL; 28919 ipsq_t *ipsq; 28920 arc_t *arc; 28921 28922 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28923 28924 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28925 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28926 28927 ASSERT(IAM_WRITER_ILL(ill)); 28928 mp2 = mp->b_cont; 28929 mp->b_cont = NULL; 28930 28931 /* 28932 * We have now received the arp bringup completion message 28933 * from ARP. Mark the arp bringup as done. Also if the arp 28934 * stream has already started closing, send up the AR_ARP_CLOSING 28935 * ack now since ARP is waiting in close for this ack. 28936 */ 28937 mutex_enter(&ill->ill_lock); 28938 ill->ill_arp_bringup_pending = 0; 28939 if (ill->ill_arp_closing) { 28940 mutex_exit(&ill->ill_lock); 28941 /* Let's reuse the mp for sending the ack */ 28942 arc = (arc_t *)mp->b_rptr; 28943 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28944 arc->arc_cmd = AR_ARP_CLOSING; 28945 qreply(q, mp); 28946 } else { 28947 mutex_exit(&ill->ill_lock); 28948 freeb(mp); 28949 } 28950 28951 ipsq = ill->ill_phyint->phyint_ipsq; 28952 ipif = ipsq->ipsq_pending_ipif; 28953 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28954 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28955 if (mp1 == NULL) { 28956 /* bringup was aborted by the user */ 28957 freemsg(mp2); 28958 return; 28959 } 28960 28961 /* 28962 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28963 * must have an associated conn_t. Otherwise, we're bringing this 28964 * interface back up as part of handling an asynchronous event (e.g., 28965 * physical address change). 28966 */ 28967 if (ipsq->ipsq_current_ioctl != 0) { 28968 ASSERT(connp != NULL); 28969 q = CONNP_TO_WQ(connp); 28970 } else { 28971 ASSERT(connp == NULL); 28972 q = ill->ill_rq; 28973 } 28974 28975 /* 28976 * If the DL_BIND_REQ fails, it is noted 28977 * in arc_name_offset. 28978 */ 28979 err = *((int *)mp2->b_rptr); 28980 if (err == 0) { 28981 if (ipif->ipif_isv6) { 28982 if ((err = ipif_up_done_v6(ipif)) != 0) 28983 ip0dbg(("ip_arp_done: init failed\n")); 28984 } else { 28985 if ((err = ipif_up_done(ipif)) != 0) 28986 ip0dbg(("ip_arp_done: init failed\n")); 28987 } 28988 } else { 28989 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28990 } 28991 28992 freemsg(mp2); 28993 28994 if ((err == 0) && (ill->ill_up_ipifs)) { 28995 err = ill_up_ipifs(ill, q, mp1); 28996 if (err == EINPROGRESS) 28997 return; 28998 } 28999 29000 if (ill->ill_up_ipifs) 29001 ill_group_cleanup(ill); 29002 29003 /* 29004 * The operation must complete without EINPROGRESS since 29005 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 29006 * Otherwise, the operation will be stuck forever in the ipsq. 29007 */ 29008 ASSERT(err != EINPROGRESS); 29009 if (ipsq->ipsq_current_ioctl != 0) 29010 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 29011 else 29012 ipsq_current_finish(ipsq); 29013 } 29014 29015 /* Allocate the private structure */ 29016 static int 29017 ip_priv_alloc(void **bufp) 29018 { 29019 void *buf; 29020 29021 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 29022 return (ENOMEM); 29023 29024 *bufp = buf; 29025 return (0); 29026 } 29027 29028 /* Function to delete the private structure */ 29029 void 29030 ip_priv_free(void *buf) 29031 { 29032 ASSERT(buf != NULL); 29033 kmem_free(buf, sizeof (ip_priv_t)); 29034 } 29035 29036 /* 29037 * The entry point for IPPF processing. 29038 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 29039 * routine just returns. 29040 * 29041 * When called, ip_process generates an ipp_packet_t structure 29042 * which holds the state information for this packet and invokes the 29043 * the classifier (via ipp_packet_process). The classification, depending on 29044 * configured filters, results in a list of actions for this packet. Invoking 29045 * an action may cause the packet to be dropped, in which case the resulting 29046 * mblk (*mpp) is NULL. proc indicates the callout position for 29047 * this packet and ill_index is the interface this packet on or will leave 29048 * on (inbound and outbound resp.). 29049 */ 29050 void 29051 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 29052 { 29053 mblk_t *mp; 29054 ip_priv_t *priv; 29055 ipp_action_id_t aid; 29056 int rc = 0; 29057 ipp_packet_t *pp; 29058 #define IP_CLASS "ip" 29059 29060 /* If the classifier is not loaded, return */ 29061 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 29062 return; 29063 } 29064 29065 mp = *mpp; 29066 ASSERT(mp != NULL); 29067 29068 /* Allocate the packet structure */ 29069 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 29070 if (rc != 0) { 29071 *mpp = NULL; 29072 freemsg(mp); 29073 return; 29074 } 29075 29076 /* Allocate the private structure */ 29077 rc = ip_priv_alloc((void **)&priv); 29078 if (rc != 0) { 29079 *mpp = NULL; 29080 freemsg(mp); 29081 ipp_packet_free(pp); 29082 return; 29083 } 29084 priv->proc = proc; 29085 priv->ill_index = ill_index; 29086 ipp_packet_set_private(pp, priv, ip_priv_free); 29087 ipp_packet_set_data(pp, mp); 29088 29089 /* Invoke the classifier */ 29090 rc = ipp_packet_process(&pp); 29091 if (pp != NULL) { 29092 mp = ipp_packet_get_data(pp); 29093 ipp_packet_free(pp); 29094 if (rc != 0) { 29095 freemsg(mp); 29096 *mpp = NULL; 29097 } 29098 } else { 29099 *mpp = NULL; 29100 } 29101 #undef IP_CLASS 29102 } 29103 29104 /* 29105 * Propagate a multicast group membership operation (add/drop) on 29106 * all the interfaces crossed by the related multirt routes. 29107 * The call is considered successful if the operation succeeds 29108 * on at least one interface. 29109 */ 29110 static int 29111 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29112 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29113 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29114 mblk_t *first_mp) 29115 { 29116 ire_t *ire_gw; 29117 irb_t *irb; 29118 int error = 0; 29119 opt_restart_t *or; 29120 ip_stack_t *ipst = ire->ire_ipst; 29121 29122 irb = ire->ire_bucket; 29123 ASSERT(irb != NULL); 29124 29125 ASSERT(DB_TYPE(first_mp) == M_CTL); 29126 29127 or = (opt_restart_t *)first_mp->b_rptr; 29128 IRB_REFHOLD(irb); 29129 for (; ire != NULL; ire = ire->ire_next) { 29130 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29131 continue; 29132 if (ire->ire_addr != group) 29133 continue; 29134 29135 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29136 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29137 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29138 /* No resolver exists for the gateway; skip this ire. */ 29139 if (ire_gw == NULL) 29140 continue; 29141 29142 /* 29143 * This function can return EINPROGRESS. If so the operation 29144 * will be restarted from ip_restart_optmgmt which will 29145 * call ip_opt_set and option processing will restart for 29146 * this option. So we may end up calling 'fn' more than once. 29147 * This requires that 'fn' is idempotent except for the 29148 * return value. The operation is considered a success if 29149 * it succeeds at least once on any one interface. 29150 */ 29151 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29152 NULL, fmode, src, first_mp); 29153 if (error == 0) 29154 or->or_private = CGTP_MCAST_SUCCESS; 29155 29156 if (ip_debug > 0) { 29157 ulong_t off; 29158 char *ksym; 29159 ksym = kobj_getsymname((uintptr_t)fn, &off); 29160 ip2dbg(("ip_multirt_apply_membership: " 29161 "called %s, multirt group 0x%08x via itf 0x%08x, " 29162 "error %d [success %u]\n", 29163 ksym ? ksym : "?", 29164 ntohl(group), ntohl(ire_gw->ire_src_addr), 29165 error, or->or_private)); 29166 } 29167 29168 ire_refrele(ire_gw); 29169 if (error == EINPROGRESS) { 29170 IRB_REFRELE(irb); 29171 return (error); 29172 } 29173 } 29174 IRB_REFRELE(irb); 29175 /* 29176 * Consider the call as successful if we succeeded on at least 29177 * one interface. Otherwise, return the last encountered error. 29178 */ 29179 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29180 } 29181 29182 29183 /* 29184 * Issue a warning regarding a route crossing an interface with an 29185 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29186 * amount of time is logged. 29187 */ 29188 static void 29189 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29190 { 29191 hrtime_t current = gethrtime(); 29192 char buf[INET_ADDRSTRLEN]; 29193 ip_stack_t *ipst = ire->ire_ipst; 29194 29195 /* Convert interval in ms to hrtime in ns */ 29196 if (ipst->ips_multirt_bad_mtu_last_time + 29197 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29198 current) { 29199 cmn_err(CE_WARN, "ip: ignoring multiroute " 29200 "to %s, incorrect MTU %u (expected %u)\n", 29201 ip_dot_addr(ire->ire_addr, buf), 29202 ire->ire_max_frag, max_frag); 29203 29204 ipst->ips_multirt_bad_mtu_last_time = current; 29205 } 29206 } 29207 29208 29209 /* 29210 * Get the CGTP (multirouting) filtering status. 29211 * If 0, the CGTP hooks are transparent. 29212 */ 29213 /* ARGSUSED */ 29214 static int 29215 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29216 { 29217 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29218 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29219 29220 /* 29221 * Only applies to the shared stack since the filter_ops 29222 * do not carry an ip_stack_t or zoneid. 29223 */ 29224 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29225 return (ENOTSUP); 29226 29227 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29228 return (0); 29229 } 29230 29231 29232 /* 29233 * Set the CGTP (multirouting) filtering status. 29234 * If the status is changed from active to transparent 29235 * or from transparent to active, forward the new status 29236 * to the filtering module (if loaded). 29237 */ 29238 /* ARGSUSED */ 29239 static int 29240 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29241 cred_t *ioc_cr) 29242 { 29243 long new_value; 29244 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29245 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29246 29247 if (secpolicy_net_config(ioc_cr, B_FALSE) != 0) 29248 return (EPERM); 29249 29250 /* 29251 * Only applies to the shared stack since the filter_ops 29252 * do not carry an ip_stack_t or zoneid. 29253 */ 29254 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29255 return (ENOTSUP); 29256 29257 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29258 new_value < 0 || new_value > 1) { 29259 return (EINVAL); 29260 } 29261 29262 /* 29263 * Do not enable CGTP filtering - thus preventing the hooks 29264 * from being invoked - if the version number of the 29265 * filtering module hooks does not match. 29266 */ 29267 if ((ip_cgtp_filter_ops != NULL) && 29268 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 29269 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 29270 "(module hooks version %d, expecting %d)\n", 29271 ip_cgtp_filter_ops->cfo_filter_rev, 29272 CGTP_FILTER_REV); 29273 return (ENOTSUP); 29274 } 29275 29276 if ((!*ip_cgtp_filter_value) && new_value) { 29277 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29278 ip_cgtp_filter_ops == NULL ? 29279 " (module not loaded)" : ""); 29280 } 29281 if (*ip_cgtp_filter_value && (!new_value)) { 29282 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29283 ip_cgtp_filter_ops == NULL ? 29284 " (module not loaded)" : ""); 29285 } 29286 29287 if (ip_cgtp_filter_ops != NULL) { 29288 int res; 29289 29290 res = ip_cgtp_filter_ops->cfo_change_state(new_value); 29291 if (res) 29292 return (res); 29293 } 29294 29295 *ip_cgtp_filter_value = (boolean_t)new_value; 29296 29297 return (0); 29298 } 29299 29300 29301 /* 29302 * Return the expected CGTP hooks version number. 29303 */ 29304 int 29305 ip_cgtp_filter_supported(void) 29306 { 29307 ip_stack_t *ipst; 29308 int ret; 29309 29310 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29311 if (ipst == NULL) 29312 return (-1); 29313 ret = ip_cgtp_filter_rev; 29314 netstack_rele(ipst->ips_netstack); 29315 return (ret); 29316 } 29317 29318 29319 /* 29320 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 29321 * or by invoking this function. In the first case, the version number 29322 * of the registered structure is checked at hooks activation time 29323 * in ip_cgtp_filter_set(). 29324 * 29325 * Only applies to the shared stack since the filter_ops 29326 * do not carry an ip_stack_t or zoneid. 29327 */ 29328 int 29329 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 29330 { 29331 ip_stack_t *ipst; 29332 29333 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29334 return (ENOTSUP); 29335 29336 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29337 if (ipst == NULL) 29338 return (EINVAL); 29339 29340 ip_cgtp_filter_ops = ops; 29341 netstack_rele(ipst->ips_netstack); 29342 return (0); 29343 } 29344 29345 static squeue_func_t 29346 ip_squeue_switch(int val) 29347 { 29348 squeue_func_t rval = squeue_fill; 29349 29350 switch (val) { 29351 case IP_SQUEUE_ENTER_NODRAIN: 29352 rval = squeue_enter_nodrain; 29353 break; 29354 case IP_SQUEUE_ENTER: 29355 rval = squeue_enter; 29356 break; 29357 default: 29358 break; 29359 } 29360 return (rval); 29361 } 29362 29363 /* ARGSUSED */ 29364 static int 29365 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29366 caddr_t addr, cred_t *cr) 29367 { 29368 int *v = (int *)addr; 29369 long new_value; 29370 29371 if (secpolicy_net_config(cr, B_FALSE) != 0) 29372 return (EPERM); 29373 29374 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29375 return (EINVAL); 29376 29377 ip_input_proc = ip_squeue_switch(new_value); 29378 *v = new_value; 29379 return (0); 29380 } 29381 29382 /* ARGSUSED */ 29383 static int 29384 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29385 caddr_t addr, cred_t *cr) 29386 { 29387 int *v = (int *)addr; 29388 long new_value; 29389 29390 if (secpolicy_net_config(cr, B_FALSE) != 0) 29391 return (EPERM); 29392 29393 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29394 return (EINVAL); 29395 29396 *v = new_value; 29397 return (0); 29398 } 29399 29400 /* 29401 * Handle changes to ipmp_hook_emulation ndd variable. 29402 * Need to update phyint_hook_ifindex. 29403 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29404 */ 29405 static void 29406 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29407 { 29408 phyint_t *phyi; 29409 phyint_t *phyi_tmp; 29410 char *groupname; 29411 int namelen; 29412 ill_t *ill; 29413 boolean_t new_group; 29414 29415 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29416 /* 29417 * Group indicies are stored in the phyint - a common structure 29418 * to both IPv4 and IPv6. 29419 */ 29420 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29421 for (; phyi != NULL; 29422 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29423 phyi, AVL_AFTER)) { 29424 /* Ignore the ones that do not have a group */ 29425 if (phyi->phyint_groupname_len == 0) 29426 continue; 29427 29428 /* 29429 * Look for other phyint in group. 29430 * Clear name/namelen so the lookup doesn't find ourselves. 29431 */ 29432 namelen = phyi->phyint_groupname_len; 29433 groupname = phyi->phyint_groupname; 29434 phyi->phyint_groupname_len = 0; 29435 phyi->phyint_groupname = NULL; 29436 29437 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29438 /* Restore */ 29439 phyi->phyint_groupname_len = namelen; 29440 phyi->phyint_groupname = groupname; 29441 29442 new_group = B_FALSE; 29443 if (ipst->ips_ipmp_hook_emulation) { 29444 /* 29445 * If the group already exists and has already 29446 * been assigned a group ifindex, we use the existing 29447 * group_ifindex, otherwise we pick a new group_ifindex 29448 * here. 29449 */ 29450 if (phyi_tmp != NULL && 29451 phyi_tmp->phyint_group_ifindex != 0) { 29452 phyi->phyint_group_ifindex = 29453 phyi_tmp->phyint_group_ifindex; 29454 } else { 29455 /* XXX We need a recovery strategy here. */ 29456 if (!ip_assign_ifindex( 29457 &phyi->phyint_group_ifindex, ipst)) 29458 cmn_err(CE_PANIC, 29459 "ip_assign_ifindex() failed"); 29460 new_group = B_TRUE; 29461 } 29462 } else { 29463 phyi->phyint_group_ifindex = 0; 29464 } 29465 if (ipst->ips_ipmp_hook_emulation) 29466 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29467 else 29468 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29469 29470 /* 29471 * For IP Filter to find out the relationship between 29472 * names and interface indicies, we need to generate 29473 * a NE_PLUMB event when a new group can appear. 29474 * We always generate events when a new interface appears 29475 * (even when ipmp_hook_emulation is set) so there 29476 * is no need to generate NE_PLUMB events when 29477 * ipmp_hook_emulation is turned off. 29478 * And since it isn't critical for IP Filter to get 29479 * the NE_UNPLUMB events we skip those here. 29480 */ 29481 if (new_group) { 29482 /* 29483 * First phyint in group - generate group PLUMB event. 29484 * Since we are not running inside the ipsq we do 29485 * the dispatch immediately. 29486 */ 29487 if (phyi->phyint_illv4 != NULL) 29488 ill = phyi->phyint_illv4; 29489 else 29490 ill = phyi->phyint_illv6; 29491 29492 if (ill != NULL) { 29493 mutex_enter(&ill->ill_lock); 29494 ill_nic_info_plumb(ill, B_TRUE); 29495 ill_nic_info_dispatch(ill); 29496 mutex_exit(&ill->ill_lock); 29497 } 29498 } 29499 } 29500 rw_exit(&ipst->ips_ill_g_lock); 29501 } 29502 29503 /* ARGSUSED */ 29504 static int 29505 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29506 caddr_t addr, cred_t *cr) 29507 { 29508 int *v = (int *)addr; 29509 long new_value; 29510 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29511 29512 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29513 return (EINVAL); 29514 29515 if (*v != new_value) { 29516 *v = new_value; 29517 ipmp_hook_emulation_changed(ipst); 29518 } 29519 return (0); 29520 } 29521 29522 static void * 29523 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29524 { 29525 kstat_t *ksp; 29526 29527 ip_stat_t template = { 29528 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29529 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29530 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29531 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29532 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29533 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29534 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29535 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29536 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29537 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29538 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29539 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29540 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29541 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29542 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29543 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29544 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29545 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29546 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29547 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29548 { "ip_opt", KSTAT_DATA_UINT64 }, 29549 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29550 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29551 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29552 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29553 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29554 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29555 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29556 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29557 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29558 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29559 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29560 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29561 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29562 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29563 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29564 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29565 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29566 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29567 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29568 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29569 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29570 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29571 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29572 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29573 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29574 }; 29575 29576 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29577 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29578 KSTAT_FLAG_VIRTUAL, stackid); 29579 29580 if (ksp == NULL) 29581 return (NULL); 29582 29583 bcopy(&template, ip_statisticsp, sizeof (template)); 29584 ksp->ks_data = (void *)ip_statisticsp; 29585 ksp->ks_private = (void *)(uintptr_t)stackid; 29586 29587 kstat_install(ksp); 29588 return (ksp); 29589 } 29590 29591 static void 29592 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29593 { 29594 if (ksp != NULL) { 29595 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29596 kstat_delete_netstack(ksp, stackid); 29597 } 29598 } 29599 29600 static void * 29601 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29602 { 29603 kstat_t *ksp; 29604 29605 ip_named_kstat_t template = { 29606 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29607 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29608 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29609 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29610 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29611 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29612 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29613 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29614 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29615 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29616 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29617 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29618 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29619 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29620 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29621 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29622 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29623 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29624 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29625 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29626 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29627 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29628 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29629 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29630 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29631 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29632 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29633 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29634 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29635 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29636 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29637 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29638 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29639 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29640 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29641 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29642 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29643 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29644 }; 29645 29646 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29647 NUM_OF_FIELDS(ip_named_kstat_t), 29648 0, stackid); 29649 if (ksp == NULL || ksp->ks_data == NULL) 29650 return (NULL); 29651 29652 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29653 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29654 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29655 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29656 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29657 29658 template.netToMediaEntrySize.value.i32 = 29659 sizeof (mib2_ipNetToMediaEntry_t); 29660 29661 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29662 29663 bcopy(&template, ksp->ks_data, sizeof (template)); 29664 ksp->ks_update = ip_kstat_update; 29665 ksp->ks_private = (void *)(uintptr_t)stackid; 29666 29667 kstat_install(ksp); 29668 return (ksp); 29669 } 29670 29671 static void 29672 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29673 { 29674 if (ksp != NULL) { 29675 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29676 kstat_delete_netstack(ksp, stackid); 29677 } 29678 } 29679 29680 static int 29681 ip_kstat_update(kstat_t *kp, int rw) 29682 { 29683 ip_named_kstat_t *ipkp; 29684 mib2_ipIfStatsEntry_t ipmib; 29685 ill_walk_context_t ctx; 29686 ill_t *ill; 29687 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29688 netstack_t *ns; 29689 ip_stack_t *ipst; 29690 29691 if (kp == NULL || kp->ks_data == NULL) 29692 return (EIO); 29693 29694 if (rw == KSTAT_WRITE) 29695 return (EACCES); 29696 29697 ns = netstack_find_by_stackid(stackid); 29698 if (ns == NULL) 29699 return (-1); 29700 ipst = ns->netstack_ip; 29701 if (ipst == NULL) { 29702 netstack_rele(ns); 29703 return (-1); 29704 } 29705 ipkp = (ip_named_kstat_t *)kp->ks_data; 29706 29707 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29708 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29709 ill = ILL_START_WALK_V4(&ctx, ipst); 29710 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29711 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29712 rw_exit(&ipst->ips_ill_g_lock); 29713 29714 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29715 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29716 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29717 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29718 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29719 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29720 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29721 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29722 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29723 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29724 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29725 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29726 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29727 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29728 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29729 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29730 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29731 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29732 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29733 29734 ipkp->routingDiscards.value.ui32 = 0; 29735 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29736 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29737 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29738 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29739 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29740 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29741 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29742 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29743 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29744 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29745 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29746 29747 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29748 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29749 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29750 29751 netstack_rele(ns); 29752 29753 return (0); 29754 } 29755 29756 static void * 29757 icmp_kstat_init(netstackid_t stackid) 29758 { 29759 kstat_t *ksp; 29760 29761 icmp_named_kstat_t template = { 29762 { "inMsgs", KSTAT_DATA_UINT32 }, 29763 { "inErrors", KSTAT_DATA_UINT32 }, 29764 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29765 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29766 { "inParmProbs", KSTAT_DATA_UINT32 }, 29767 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29768 { "inRedirects", KSTAT_DATA_UINT32 }, 29769 { "inEchos", KSTAT_DATA_UINT32 }, 29770 { "inEchoReps", KSTAT_DATA_UINT32 }, 29771 { "inTimestamps", KSTAT_DATA_UINT32 }, 29772 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29773 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29774 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29775 { "outMsgs", KSTAT_DATA_UINT32 }, 29776 { "outErrors", KSTAT_DATA_UINT32 }, 29777 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29778 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29779 { "outParmProbs", KSTAT_DATA_UINT32 }, 29780 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29781 { "outRedirects", KSTAT_DATA_UINT32 }, 29782 { "outEchos", KSTAT_DATA_UINT32 }, 29783 { "outEchoReps", KSTAT_DATA_UINT32 }, 29784 { "outTimestamps", KSTAT_DATA_UINT32 }, 29785 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29786 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29787 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29788 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29789 { "inUnknowns", KSTAT_DATA_UINT32 }, 29790 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29791 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29792 { "outDrops", KSTAT_DATA_UINT32 }, 29793 { "inOverFlows", KSTAT_DATA_UINT32 }, 29794 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29795 }; 29796 29797 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29798 NUM_OF_FIELDS(icmp_named_kstat_t), 29799 0, stackid); 29800 if (ksp == NULL || ksp->ks_data == NULL) 29801 return (NULL); 29802 29803 bcopy(&template, ksp->ks_data, sizeof (template)); 29804 29805 ksp->ks_update = icmp_kstat_update; 29806 ksp->ks_private = (void *)(uintptr_t)stackid; 29807 29808 kstat_install(ksp); 29809 return (ksp); 29810 } 29811 29812 static void 29813 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29814 { 29815 if (ksp != NULL) { 29816 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29817 kstat_delete_netstack(ksp, stackid); 29818 } 29819 } 29820 29821 static int 29822 icmp_kstat_update(kstat_t *kp, int rw) 29823 { 29824 icmp_named_kstat_t *icmpkp; 29825 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29826 netstack_t *ns; 29827 ip_stack_t *ipst; 29828 29829 if ((kp == NULL) || (kp->ks_data == NULL)) 29830 return (EIO); 29831 29832 if (rw == KSTAT_WRITE) 29833 return (EACCES); 29834 29835 ns = netstack_find_by_stackid(stackid); 29836 if (ns == NULL) 29837 return (-1); 29838 ipst = ns->netstack_ip; 29839 if (ipst == NULL) { 29840 netstack_rele(ns); 29841 return (-1); 29842 } 29843 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29844 29845 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29846 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29847 icmpkp->inDestUnreachs.value.ui32 = 29848 ipst->ips_icmp_mib.icmpInDestUnreachs; 29849 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29850 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29851 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29852 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29853 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29854 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29855 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29856 icmpkp->inTimestampReps.value.ui32 = 29857 ipst->ips_icmp_mib.icmpInTimestampReps; 29858 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29859 icmpkp->inAddrMaskReps.value.ui32 = 29860 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29861 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29862 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29863 icmpkp->outDestUnreachs.value.ui32 = 29864 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29865 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29866 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29867 icmpkp->outSrcQuenchs.value.ui32 = 29868 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29869 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29870 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29871 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29872 icmpkp->outTimestamps.value.ui32 = 29873 ipst->ips_icmp_mib.icmpOutTimestamps; 29874 icmpkp->outTimestampReps.value.ui32 = 29875 ipst->ips_icmp_mib.icmpOutTimestampReps; 29876 icmpkp->outAddrMasks.value.ui32 = 29877 ipst->ips_icmp_mib.icmpOutAddrMasks; 29878 icmpkp->outAddrMaskReps.value.ui32 = 29879 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29880 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29881 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29882 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29883 icmpkp->outFragNeeded.value.ui32 = 29884 ipst->ips_icmp_mib.icmpOutFragNeeded; 29885 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29886 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29887 icmpkp->inBadRedirects.value.ui32 = 29888 ipst->ips_icmp_mib.icmpInBadRedirects; 29889 29890 netstack_rele(ns); 29891 return (0); 29892 } 29893 29894 /* 29895 * This is the fanout function for raw socket opened for SCTP. Note 29896 * that it is called after SCTP checks that there is no socket which 29897 * wants a packet. Then before SCTP handles this out of the blue packet, 29898 * this function is called to see if there is any raw socket for SCTP. 29899 * If there is and it is bound to the correct address, the packet will 29900 * be sent to that socket. Note that only one raw socket can be bound to 29901 * a port. This is assured in ipcl_sctp_hash_insert(); 29902 */ 29903 void 29904 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29905 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29906 zoneid_t zoneid) 29907 { 29908 conn_t *connp; 29909 queue_t *rq; 29910 mblk_t *first_mp; 29911 boolean_t secure; 29912 ip6_t *ip6h; 29913 ip_stack_t *ipst = recv_ill->ill_ipst; 29914 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29915 29916 first_mp = mp; 29917 if (mctl_present) { 29918 mp = first_mp->b_cont; 29919 secure = ipsec_in_is_secure(first_mp); 29920 ASSERT(mp != NULL); 29921 } else { 29922 secure = B_FALSE; 29923 } 29924 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29925 29926 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29927 if (connp == NULL) { 29928 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29929 return; 29930 } 29931 rq = connp->conn_rq; 29932 if (!canputnext(rq)) { 29933 CONN_DEC_REF(connp); 29934 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29935 freemsg(first_mp); 29936 return; 29937 } 29938 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29939 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29940 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29941 (isv4 ? ipha : NULL), ip6h, mctl_present); 29942 if (first_mp == NULL) { 29943 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29944 CONN_DEC_REF(connp); 29945 return; 29946 } 29947 } 29948 /* 29949 * We probably should not send M_CTL message up to 29950 * raw socket. 29951 */ 29952 if (mctl_present) 29953 freeb(first_mp); 29954 29955 /* Initiate IPPF processing here if needed. */ 29956 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29957 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29958 ip_process(IPP_LOCAL_IN, &mp, 29959 recv_ill->ill_phyint->phyint_ifindex); 29960 if (mp == NULL) { 29961 CONN_DEC_REF(connp); 29962 return; 29963 } 29964 } 29965 29966 if (connp->conn_recvif || connp->conn_recvslla || 29967 ((connp->conn_ip_recvpktinfo || 29968 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29969 (flags & IP_FF_IPINFO))) { 29970 int in_flags = 0; 29971 29972 /* 29973 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29974 * IPF_RECVIF. 29975 */ 29976 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29977 in_flags = IPF_RECVIF; 29978 } 29979 if (connp->conn_recvslla) { 29980 in_flags |= IPF_RECVSLLA; 29981 } 29982 if (isv4) { 29983 mp = ip_add_info(mp, recv_ill, in_flags, 29984 IPCL_ZONEID(connp), ipst); 29985 } else { 29986 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29987 if (mp == NULL) { 29988 BUMP_MIB(recv_ill->ill_ip_mib, 29989 ipIfStatsInDiscards); 29990 CONN_DEC_REF(connp); 29991 return; 29992 } 29993 } 29994 } 29995 29996 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29997 /* 29998 * We are sending the IPSEC_IN message also up. Refer 29999 * to comments above this function. 30000 */ 30001 putnext(rq, mp); 30002 CONN_DEC_REF(connp); 30003 } 30004 30005 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 30006 { \ 30007 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 30008 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 30009 } 30010 /* 30011 * This function should be called only if all packet processing 30012 * including fragmentation is complete. Callers of this function 30013 * must set mp->b_prev to one of these values: 30014 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 30015 * prior to handing over the mp as first argument to this function. 30016 * 30017 * If the ire passed by caller is incomplete, this function 30018 * queues the packet and if necessary, sends ARP request and bails. 30019 * If the ire passed is fully resolved, we simply prepend 30020 * the link-layer header to the packet, do ipsec hw acceleration 30021 * work if necessary, and send the packet out on the wire. 30022 * 30023 * NOTE: IPSEC will only call this function with fully resolved 30024 * ires if hw acceleration is involved. 30025 * TODO list : 30026 * a Handle M_MULTIDATA so that 30027 * tcp_multisend->tcp_multisend_data can 30028 * call ip_xmit_v4 directly 30029 * b Handle post-ARP work for fragments so that 30030 * ip_wput_frag can call this function. 30031 */ 30032 ipxmit_state_t 30033 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 30034 { 30035 nce_t *arpce; 30036 queue_t *q; 30037 int ill_index; 30038 mblk_t *nxt_mp, *first_mp; 30039 boolean_t xmit_drop = B_FALSE; 30040 ip_proc_t proc; 30041 ill_t *out_ill; 30042 int pkt_len; 30043 30044 arpce = ire->ire_nce; 30045 ASSERT(arpce != NULL); 30046 30047 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30048 30049 mutex_enter(&arpce->nce_lock); 30050 switch (arpce->nce_state) { 30051 case ND_REACHABLE: 30052 /* If there are other queued packets, queue this packet */ 30053 if (arpce->nce_qd_mp != NULL) { 30054 if (mp != NULL) 30055 nce_queue_mp_common(arpce, mp, B_FALSE); 30056 mp = arpce->nce_qd_mp; 30057 } 30058 arpce->nce_qd_mp = NULL; 30059 mutex_exit(&arpce->nce_lock); 30060 30061 /* 30062 * Flush the queue. In the common case, where the 30063 * ARP is already resolved, it will go through the 30064 * while loop only once. 30065 */ 30066 while (mp != NULL) { 30067 30068 nxt_mp = mp->b_next; 30069 mp->b_next = NULL; 30070 ASSERT(mp->b_datap->db_type != M_CTL); 30071 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30072 /* 30073 * This info is needed for IPQOS to do COS marking 30074 * in ip_wput_attach_llhdr->ip_process. 30075 */ 30076 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30077 mp->b_prev = NULL; 30078 30079 /* set up ill index for outbound qos processing */ 30080 out_ill = ire->ire_ipif->ipif_ill; 30081 ill_index = out_ill->ill_phyint->phyint_ifindex; 30082 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30083 ill_index); 30084 if (first_mp == NULL) { 30085 xmit_drop = B_TRUE; 30086 BUMP_MIB(out_ill->ill_ip_mib, 30087 ipIfStatsOutDiscards); 30088 goto next_mp; 30089 } 30090 /* non-ipsec hw accel case */ 30091 if (io == NULL || !io->ipsec_out_accelerated) { 30092 /* send it */ 30093 q = ire->ire_stq; 30094 if (proc == IPP_FWD_OUT) { 30095 UPDATE_IB_PKT_COUNT(ire); 30096 } else { 30097 UPDATE_OB_PKT_COUNT(ire); 30098 } 30099 ire->ire_last_used_time = lbolt; 30100 30101 if (flow_ctl_enabled || canputnext(q)) { 30102 if (proc == IPP_FWD_OUT) { 30103 BUMP_MIB(out_ill->ill_ip_mib, 30104 ipIfStatsHCOutForwDatagrams); 30105 } 30106 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30107 pkt_len); 30108 30109 putnext(q, first_mp); 30110 } else { 30111 BUMP_MIB(out_ill->ill_ip_mib, 30112 ipIfStatsOutDiscards); 30113 xmit_drop = B_TRUE; 30114 freemsg(first_mp); 30115 } 30116 } else { 30117 /* 30118 * Safety Pup says: make sure this 30119 * is going to the right interface! 30120 */ 30121 ill_t *ill1 = 30122 (ill_t *)ire->ire_stq->q_ptr; 30123 int ifindex = 30124 ill1->ill_phyint->phyint_ifindex; 30125 if (ifindex != 30126 io->ipsec_out_capab_ill_index) { 30127 xmit_drop = B_TRUE; 30128 freemsg(mp); 30129 } else { 30130 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30131 pkt_len); 30132 ipsec_hw_putnext(ire->ire_stq, mp); 30133 } 30134 } 30135 next_mp: 30136 mp = nxt_mp; 30137 } /* while (mp != NULL) */ 30138 if (xmit_drop) 30139 return (SEND_FAILED); 30140 else 30141 return (SEND_PASSED); 30142 30143 case ND_INITIAL: 30144 case ND_INCOMPLETE: 30145 30146 /* 30147 * While we do send off packets to dests that 30148 * use fully-resolved CGTP routes, we do not 30149 * handle unresolved CGTP routes. 30150 */ 30151 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30152 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30153 30154 if (mp != NULL) { 30155 /* queue the packet */ 30156 nce_queue_mp_common(arpce, mp, B_FALSE); 30157 } 30158 30159 if (arpce->nce_state == ND_INCOMPLETE) { 30160 mutex_exit(&arpce->nce_lock); 30161 DTRACE_PROBE3(ip__xmit__incomplete, 30162 (ire_t *), ire, (mblk_t *), mp, 30163 (ipsec_out_t *), io); 30164 return (LOOKUP_IN_PROGRESS); 30165 } 30166 30167 arpce->nce_state = ND_INCOMPLETE; 30168 mutex_exit(&arpce->nce_lock); 30169 /* 30170 * Note that ire_add() (called from ire_forward()) 30171 * holds a ref on the ire until ARP is completed. 30172 */ 30173 30174 ire_arpresolve(ire, ire_to_ill(ire)); 30175 return (LOOKUP_IN_PROGRESS); 30176 default: 30177 ASSERT(0); 30178 mutex_exit(&arpce->nce_lock); 30179 return (LLHDR_RESLV_FAILED); 30180 } 30181 } 30182 30183 #undef UPDATE_IP_MIB_OB_COUNTERS 30184 30185 /* 30186 * Return B_TRUE if the buffers differ in length or content. 30187 * This is used for comparing extension header buffers. 30188 * Note that an extension header would be declared different 30189 * even if all that changed was the next header value in that header i.e. 30190 * what really changed is the next extension header. 30191 */ 30192 boolean_t 30193 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30194 uint_t blen) 30195 { 30196 if (!b_valid) 30197 blen = 0; 30198 30199 if (alen != blen) 30200 return (B_TRUE); 30201 if (alen == 0) 30202 return (B_FALSE); /* Both zero length */ 30203 return (bcmp(abuf, bbuf, alen)); 30204 } 30205 30206 /* 30207 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30208 * Return B_FALSE if memory allocation fails - don't change any state! 30209 */ 30210 boolean_t 30211 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30212 const void *src, uint_t srclen) 30213 { 30214 void *dst; 30215 30216 if (!src_valid) 30217 srclen = 0; 30218 30219 ASSERT(*dstlenp == 0); 30220 if (src != NULL && srclen != 0) { 30221 dst = mi_alloc(srclen, BPRI_MED); 30222 if (dst == NULL) 30223 return (B_FALSE); 30224 } else { 30225 dst = NULL; 30226 } 30227 if (*dstp != NULL) 30228 mi_free(*dstp); 30229 *dstp = dst; 30230 *dstlenp = dst == NULL ? 0 : srclen; 30231 return (B_TRUE); 30232 } 30233 30234 /* 30235 * Replace what is in *dst, *dstlen with the source. 30236 * Assumes ip_allocbuf has already been called. 30237 */ 30238 void 30239 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30240 const void *src, uint_t srclen) 30241 { 30242 if (!src_valid) 30243 srclen = 0; 30244 30245 ASSERT(*dstlenp == srclen); 30246 if (src != NULL && srclen != 0) 30247 bcopy(src, *dstp, srclen); 30248 } 30249 30250 /* 30251 * Free the storage pointed to by the members of an ip6_pkt_t. 30252 */ 30253 void 30254 ip6_pkt_free(ip6_pkt_t *ipp) 30255 { 30256 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30257 30258 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30259 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30260 ipp->ipp_hopopts = NULL; 30261 ipp->ipp_hopoptslen = 0; 30262 } 30263 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30264 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30265 ipp->ipp_rtdstopts = NULL; 30266 ipp->ipp_rtdstoptslen = 0; 30267 } 30268 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30269 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30270 ipp->ipp_dstopts = NULL; 30271 ipp->ipp_dstoptslen = 0; 30272 } 30273 if (ipp->ipp_fields & IPPF_RTHDR) { 30274 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30275 ipp->ipp_rthdr = NULL; 30276 ipp->ipp_rthdrlen = 0; 30277 } 30278 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30279 IPPF_RTHDR); 30280 } 30281