1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 64 #include <inet/common.h> 65 #include <inet/mi.h> 66 #include <inet/mib2.h> 67 #include <inet/nd.h> 68 #include <inet/arp.h> 69 #include <inet/snmpcom.h> 70 #include <inet/kstatcom.h> 71 72 #include <netinet/igmp_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet/sctp.h> 76 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip6_asp.h> 81 #include <inet/tcp.h> 82 #include <inet/tcp_impl.h> 83 #include <inet/ip_multi.h> 84 #include <inet/ip_if.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_rts.h> 87 #include <inet/optcom.h> 88 #include <inet/ip_ndp.h> 89 #include <inet/ip_listutils.h> 90 #include <netinet/igmp.h> 91 #include <netinet/ip_mroute.h> 92 #include <inet/ipp_common.h> 93 94 #include <net/pfkeyv2.h> 95 #include <inet/ipsec_info.h> 96 #include <inet/sadb.h> 97 #include <inet/ipsec_impl.h> 98 #include <sys/iphada.h> 99 #include <inet/tun.h> 100 #include <inet/ipdrop.h> 101 102 #include <sys/ethernet.h> 103 #include <net/if_types.h> 104 #include <sys/cpuvar.h> 105 106 #include <ipp/ipp.h> 107 #include <ipp/ipp_impl.h> 108 #include <ipp/ipgpc/ipgpc.h> 109 110 #include <sys/multidata.h> 111 #include <sys/pattr.h> 112 113 #include <inet/ipclassifier.h> 114 #include <inet/sctp_ip.h> 115 #include <inet/udp_impl.h> 116 117 /* 118 * Values for squeue switch: 119 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 120 * IP_SQUEUE_ENTER: squeue_enter 121 * IP_SQUEUE_FILL: squeue_fill 122 */ 123 int ip_squeue_enter = 2; 124 squeue_func_t ip_input_proc; 125 /* 126 * IP statistics. 127 */ 128 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 129 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 130 131 typedef struct ip_stat { 132 kstat_named_t ipsec_fanout_proto; 133 kstat_named_t ip_udp_fannorm; 134 kstat_named_t ip_udp_fanmb; 135 kstat_named_t ip_udp_fanothers; 136 kstat_named_t ip_udp_fast_path; 137 kstat_named_t ip_udp_slow_path; 138 kstat_named_t ip_udp_input_err; 139 kstat_named_t ip_tcppullup; 140 kstat_named_t ip_tcpoptions; 141 kstat_named_t ip_multipkttcp; 142 kstat_named_t ip_tcp_fast_path; 143 kstat_named_t ip_tcp_slow_path; 144 kstat_named_t ip_tcp_input_error; 145 kstat_named_t ip_db_ref; 146 kstat_named_t ip_notaligned1; 147 kstat_named_t ip_notaligned2; 148 kstat_named_t ip_multimblk3; 149 kstat_named_t ip_multimblk4; 150 kstat_named_t ip_ipoptions; 151 kstat_named_t ip_classify_fail; 152 kstat_named_t ip_opt; 153 kstat_named_t ip_udp_rput_local; 154 kstat_named_t ipsec_proto_ahesp; 155 kstat_named_t ip_conn_flputbq; 156 kstat_named_t ip_conn_walk_drain; 157 kstat_named_t ip_out_sw_cksum; 158 kstat_named_t ip_in_sw_cksum; 159 kstat_named_t ip_trash_ire_reclaim_calls; 160 kstat_named_t ip_trash_ire_reclaim_success; 161 kstat_named_t ip_ire_arp_timer_expired; 162 kstat_named_t ip_ire_redirect_timer_expired; 163 kstat_named_t ip_ire_pmtu_timer_expired; 164 kstat_named_t ip_input_multi_squeue; 165 kstat_named_t ip_tcp_in_full_hw_cksum_err; 166 kstat_named_t ip_tcp_in_part_hw_cksum_err; 167 kstat_named_t ip_tcp_in_sw_cksum_err; 168 kstat_named_t ip_tcp_out_sw_cksum_bytes; 169 kstat_named_t ip_udp_in_full_hw_cksum_err; 170 kstat_named_t ip_udp_in_part_hw_cksum_err; 171 kstat_named_t ip_udp_in_sw_cksum_err; 172 kstat_named_t ip_udp_out_sw_cksum_bytes; 173 kstat_named_t ip_frag_mdt_pkt_out; 174 kstat_named_t ip_frag_mdt_discarded; 175 kstat_named_t ip_frag_mdt_allocfail; 176 kstat_named_t ip_frag_mdt_addpdescfail; 177 kstat_named_t ip_frag_mdt_allocd; 178 } ip_stat_t; 179 180 static ip_stat_t ip_statistics = { 181 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 182 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 183 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 184 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 185 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 186 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 187 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 188 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 189 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 190 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 191 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 192 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 193 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 194 { "ip_db_ref", KSTAT_DATA_UINT64 }, 195 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 196 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 197 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 198 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 199 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 200 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 201 { "ip_opt", KSTAT_DATA_UINT64 }, 202 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 203 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 204 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 205 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 206 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 207 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 208 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 209 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 210 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 211 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 212 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 213 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 214 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 215 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 216 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 217 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 218 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 219 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 220 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 221 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 222 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 223 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 224 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 225 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 226 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 227 }; 228 229 static kstat_t *ip_kstat; 230 231 #define TCP6 "tcp6" 232 #define TCP "tcp" 233 #define SCTP "sctp" 234 #define SCTP6 "sctp6" 235 236 major_t TCP6_MAJ; 237 major_t TCP_MAJ; 238 major_t SCTP_MAJ; 239 major_t SCTP6_MAJ; 240 241 int ip_poll_normal_ms = 100; 242 int ip_poll_normal_ticks = 0; 243 244 /* 245 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 246 */ 247 248 struct listptr_s { 249 mblk_t *lp_head; /* pointer to the head of the list */ 250 mblk_t *lp_tail; /* pointer to the tail of the list */ 251 }; 252 253 typedef struct listptr_s listptr_t; 254 255 /* 256 * Cluster specific hooks. These should be NULL when booted as a non-cluster 257 */ 258 259 /* 260 * Hook functions to enable cluster networking 261 * On non-clustered systems these vectors must always be NULL. 262 * 263 * Hook function to Check ip specified ip address is a shared ip address 264 * in the cluster 265 * 266 */ 267 int (*cl_inet_isclusterwide)(uint8_t protocol, 268 sa_family_t addr_family, uint8_t *laddrp) = NULL; 269 270 /* 271 * Hook function to generate cluster wide ip fragment identifier 272 */ 273 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 274 uint8_t *laddrp, uint8_t *faddrp) = NULL; 275 276 /* 277 * Synchronization notes: 278 * 279 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 280 * MT level protection given by STREAMS. IP uses a combination of its own 281 * internal serialization mechanism and standard Solaris locking techniques. 282 * The internal serialization is per phyint (no IPMP) or per IPMP group. 283 * This is used to serialize plumbing operations, IPMP operations, certain 284 * multicast operations, most set ioctls, igmp/mld timers etc. 285 * 286 * Plumbing is a long sequence of operations involving message 287 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 288 * involved in plumbing operations. A natural model is to serialize these 289 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 290 * parallel without any interference. But various set ioctls on hme0 are best 291 * serialized. However if the system uses IPMP, the operations are easier if 292 * they are serialized on a per IPMP group basis since IPMP operations 293 * happen across ill's of a group. Thus the lowest common denominator is to 294 * serialize most set ioctls, multicast join/leave operations, IPMP operations 295 * igmp/mld timer operations, and processing of DLPI control messages received 296 * from drivers on a per IPMP group basis. If the system does not employ 297 * IPMP the serialization is on a per phyint basis. This serialization is 298 * provided by the ipsq_t and primitives operating on this. Details can 299 * be found in ip_if.c above the core primitives operating on ipsq_t. 300 * 301 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 302 * Simiarly lookup of an ire by a thread also returns a refheld ire. 303 * In addition ipif's and ill's referenced by the ire are also indirectly 304 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 305 * the ipif's address or netmask change as long as an ipif is refheld 306 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 307 * address of an ipif has to go through the ipsq_t. This ensures that only 308 * 1 such exclusive operation proceeds at any time on the ipif. It then 309 * deletes all ires associated with this ipif, and waits for all refcnts 310 * associated with this ipif to come down to zero. The address is changed 311 * only after the ipif has been quiesced. Then the ipif is brought up again. 312 * More details are described above the comment in ip_sioctl_flags. 313 * 314 * Packet processing is based mostly on IREs and are fully multi-threaded 315 * using standard Solaris MT techniques. 316 * 317 * There are explicit locks in IP to handle: 318 * - The ip_g_head list maintained by mi_open_link() and friends. 319 * 320 * - The reassembly data structures (one lock per hash bucket) 321 * 322 * - conn_lock is meant to protect conn_t fields. The fields actually 323 * protected by conn_lock are documented in the conn_t definition. 324 * 325 * - ire_lock to protect some of the fields of the ire, IRE tables 326 * (one lock per hash bucket). Refer to ip_ire.c for details. 327 * 328 * - ndp_g_lock and nce_lock for protecting NCEs. 329 * 330 * - ill_lock protects fields of the ill and ipif. Details in ip.h 331 * 332 * - ill_g_lock: This is a global reader/writer lock. Protects the following 333 * * The AVL tree based global multi list of all ills. 334 * * The linked list of all ipifs of an ill 335 * * The <ill-ipsq> mapping 336 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 337 * * The illgroup list threaded by ill_group_next. 338 * * <ill-phyint> association 339 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 340 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 341 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 342 * will all have to hold the ill_g_lock as writer for the actual duration 343 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 344 * may be found in the IPMP section. 345 * 346 * - ill_lock: This is a per ill mutex. 347 * It protects some members of the ill and is documented below. 348 * It also protects the <ill-ipsq> mapping 349 * It also protects the illgroup list threaded by ill_group_next. 350 * It also protects the <ill-phyint> assoc. 351 * It also protects the list of ipifs hanging off the ill. 352 * 353 * - ipsq_lock: This is a per ipsq_t mutex lock. 354 * This protects all the other members of the ipsq struct except 355 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 356 * 357 * - illgrp_lock: This is a per ill_group mutex lock. 358 * The only thing it protects is the illgrp_ill_schednext member of ill_group 359 * which dictates which is the next ill in an ill_group that is to be chosen 360 * for sending outgoing packets, through creation of an IRE_CACHE that 361 * references this ill. 362 * 363 * - phyint_lock: This is a per phyint mutex lock. Protects just the 364 * phyint_flags 365 * 366 * - ip_g_nd_lock: This is a global reader/writer lock. 367 * Any call to nd_load to load a new parameter to the ND table must hold the 368 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 369 * as reader. 370 * 371 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 372 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 373 * uniqueness check also done atomically. 374 * 375 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 376 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 377 * as a writer when adding or deleting elements from these lists, and 378 * as a reader when walking these lists to send a SADB update to the 379 * IPsec capable ills. 380 * 381 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 382 * group list linked by ill_usesrc_grp_next. It also protects the 383 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 384 * group is being added or deleted. This lock is taken as a reader when 385 * walking the list/group(eg: to get the number of members in a usesrc group). 386 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 387 * field is changing state i.e from NULL to non-NULL or vice-versa. For 388 * example, it is not necessary to take this lock in the initial portion 389 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 390 * ip_sioctl_flags since the these operations are executed exclusively and 391 * that ensures that the "usesrc group state" cannot change. The "usesrc 392 * group state" change can happen only in the latter part of 393 * ip_sioctl_slifusesrc and in ill_delete. 394 * 395 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 396 * 397 * To change the <ill-phyint> association, the ill_g_lock must be held 398 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 399 * must be held. 400 * 401 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 402 * and the ill_lock of the ill in question must be held. 403 * 404 * To change the <ill-illgroup> association the ill_g_lock must be held as 405 * writer and the ill_lock of the ill in question must be held. 406 * 407 * To add or delete an ipif from the list of ipifs hanging off the ill, 408 * ill_g_lock (writer) and ill_lock must be held and the thread must be 409 * a writer on the associated ipsq,. 410 * 411 * To add or delete an ill to the system, the ill_g_lock must be held as 412 * writer and the thread must be a writer on the associated ipsq. 413 * 414 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 415 * must be a writer on the associated ipsq. 416 * 417 * Lock hierarchy 418 * 419 * Some lock hierarchy scenarios are listed below. 420 * 421 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 422 * ill_g_lock -> illgrp_lock -> ill_lock 423 * ill_g_lock -> ill_lock(s) -> phyint_lock 424 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 425 * ill_g_lock -> ip_addr_avail_lock 426 * conn_lock -> irb_lock -> ill_lock -> ire_lock 427 * ipsa_lock -> ill_g_lock -> ill_lock 428 * ill_g_lock -> ip_g_nd_lock 429 * irb_lock -> ill_lock -> ire_mrtun_lock 430 * irb_lock -> ill_lock -> ire_srcif_table_lock 431 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 432 * ipsec_capab_ills_lock -> ipsa_lock 433 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 434 * 435 * When more than 1 ill lock is needed to be held, all ill lock addresses 436 * are sorted on address and locked starting from highest addressed lock 437 * downward. 438 * 439 * IPSEC notes : 440 * 441 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 442 * in front of the actual packet. For outbound datagrams, the M_CTL 443 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 444 * information used by the IPSEC code for applying the right level of 445 * protection. The information initialized by IP in the ipsec_out_t 446 * is determined by the per-socket policy or global policy in the system. 447 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 448 * ipsec_info.h) which starts out with nothing in it. It gets filled 449 * with the right information if it goes through the AH/ESP code, which 450 * happens if the incoming packet is secure. The information initialized 451 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 452 * the policy requirements needed by per-socket policy or global policy 453 * is met or not. 454 * 455 * If there is both per-socket policy (set using setsockopt) and there 456 * is also global policy match for the 5 tuples of the socket, 457 * ipsec_override_policy() makes the decision of which one to use. 458 * 459 * For fully connected sockets i.e dst, src [addr, port] is known, 460 * conn_policy_cached is set indicating that policy has been cached. 461 * conn_in_enforce_policy may or may not be set depending on whether 462 * there is a global policy match or per-socket policy match. 463 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 464 * Once the right policy is set on the conn_t, policy cannot change for 465 * this socket. This makes life simpler for TCP (UDP ?) where 466 * re-transmissions go out with the same policy. For symmetry, policy 467 * is cached for fully connected UDP sockets also. Thus if policy is cached, 468 * it also implies that policy is latched i.e policy cannot change 469 * on these sockets. As we have the right policy on the conn, we don't 470 * have to lookup global policy for every outbound and inbound datagram 471 * and thus serving as an optimization. Note that a global policy change 472 * does not affect fully connected sockets if they have policy. If fully 473 * connected sockets did not have any policy associated with it, global 474 * policy change may affect them. 475 * 476 * IP Flow control notes: 477 * 478 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 479 * cannot be sent down to the driver by IP, because of a canput failure, IP 480 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 481 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 482 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 483 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 484 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 485 * the queued messages, and removes the conn from the drain list, if all 486 * messages were drained. It also qenables the next conn in the drain list to 487 * continue the drain process. 488 * 489 * In reality the drain list is not a single list, but a configurable number 490 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 491 * list. If the ip_wsrv of the next qenabled conn does not run, because the 492 * stream closes, ip_close takes responsibility to qenable the next conn in 493 * the drain list. The directly called ip_wput path always does a putq, if 494 * it cannot putnext. Thus synchronization problems are handled between 495 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 496 * functions that manipulate this drain list. Furthermore conn_drain_insert 497 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 498 * running on a queue at any time. conn_drain_tail can be simultaneously called 499 * from both ip_wsrv and ip_close. 500 * 501 * IPQOS notes: 502 * 503 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 504 * and IPQoS modules. IPPF includes hooks in IP at different control points 505 * (callout positions) which direct packets to IPQoS modules for policy 506 * processing. Policies, if present, are global. 507 * 508 * The callout positions are located in the following paths: 509 * o local_in (packets destined for this host) 510 * o local_out (packets orginating from this host ) 511 * o fwd_in (packets forwarded by this m/c - inbound) 512 * o fwd_out (packets forwarded by this m/c - outbound) 513 * Hooks at these callout points can be enabled/disabled using the ndd variable 514 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 515 * By default all the callout positions are enabled. 516 * 517 * Outbound (local_out) 518 * Hooks are placed in ip_wput_ire and ipsec_out_process. 519 * 520 * Inbound (local_in) 521 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 522 * TCP and UDP fanout routines. 523 * 524 * Forwarding (in and out) 525 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 526 * 527 * IP Policy Framework processing (IPPF processing) 528 * Policy processing for a packet is initiated by ip_process, which ascertains 529 * that the classifier (ipgpc) is loaded and configured, failing which the 530 * packet resumes normal processing in IP. If the clasifier is present, the 531 * packet is acted upon by one or more IPQoS modules (action instances), per 532 * filters configured in ipgpc and resumes normal IP processing thereafter. 533 * An action instance can drop a packet in course of its processing. 534 * 535 * A boolean variable, ip_policy, is used in all the fanout routines that can 536 * invoke ip_process for a packet. This variable indicates if the packet should 537 * to be sent for policy processing. The variable is set to B_TRUE by default, 538 * i.e. when the routines are invoked in the normal ip procesing path for a 539 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 540 * ip_policy is set to B_FALSE for all the routines called in these two 541 * functions because, in the former case, we don't process loopback traffic 542 * currently while in the latter, the packets have already been processed in 543 * icmp_inbound. 544 * 545 * Zones notes: 546 * 547 * The partitioning rules for networking are as follows: 548 * 1) Packets coming from a zone must have a source address belonging to that 549 * zone. 550 * 2) Packets coming from a zone can only be sent on a physical interface on 551 * which the zone has an IP address. 552 * 3) Between two zones on the same machine, packet delivery is only allowed if 553 * there's a matching route for the destination and zone in the forwarding 554 * table. 555 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 556 * different zones can bind to the same port with the wildcard address 557 * (INADDR_ANY). 558 * 559 * The granularity of interface partitioning is at the logical interface level. 560 * Therefore, every zone has its own IP addresses, and incoming packets can be 561 * attributed to a zone unambiguously. A logical interface is placed into a zone 562 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 563 * structure. Rule (1) is implemented by modifying the source address selection 564 * algorithm so that the list of eligible addresses is filtered based on the 565 * sending process zone. 566 * 567 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 568 * across all zones, depending on their type. Here is the break-up: 569 * 570 * IRE type Shared/exclusive 571 * -------- ---------------- 572 * IRE_BROADCAST Exclusive 573 * IRE_DEFAULT (default routes) Shared (*) 574 * IRE_LOCAL Exclusive 575 * IRE_LOOPBACK Exclusive 576 * IRE_PREFIX (net routes) Shared (*) 577 * IRE_CACHE Exclusive 578 * IRE_IF_NORESOLVER (interface routes) Exclusive 579 * IRE_IF_RESOLVER (interface routes) Exclusive 580 * IRE_HOST (host routes) Shared (*) 581 * 582 * (*) A zone can only use a default or off-subnet route if the gateway is 583 * directly reachable from the zone, that is, if the gateway's address matches 584 * one of the zone's logical interfaces. 585 * 586 * Multiple zones can share a common broadcast address; typically all zones 587 * share the 255.255.255.255 address. Incoming as well as locally originated 588 * broadcast packets must be dispatched to all the zones on the broadcast 589 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 590 * since some zones may not be on the 10.16.72/24 network. To handle this, each 591 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 592 * sent to every zone that has an IRE_BROADCAST entry for the destination 593 * address on the input ill, see conn_wantpacket(). 594 * 595 * Applications in different zones can join the same multicast group address. 596 * For IPv4, group memberships are per-logical interface, so they're already 597 * inherently part of a zone. For IPv6, group memberships are per-physical 598 * interface, so we distinguish IPv6 group memberships based on group address, 599 * interface and zoneid. In both cases, received multicast packets are sent to 600 * every zone for which a group membership entry exists. On IPv6 we need to 601 * check that the target zone still has an address on the receiving physical 602 * interface; it could have been removed since the application issued the 603 * IPV6_JOIN_GROUP. 604 */ 605 606 /* 607 * Squeue Fanout flags: 608 * 0: No fanout. 609 * 1: Fanout across all squeues 610 */ 611 boolean_t ip_squeue_fanout = 0; 612 613 /* 614 * Maximum dups allowed per packet. 615 */ 616 uint_t ip_max_frag_dups = 10; 617 618 #define IS_SIMPLE_IPH(ipha) \ 619 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 620 621 /* RFC1122 Conformance */ 622 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 623 624 #define ILL_MAX_NAMELEN LIFNAMSIZ 625 626 /* Leave room for ip_newroute to tack on the src and target addresses */ 627 #define OK_RESOLVER_MP(mp) \ 628 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 629 630 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 631 632 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 633 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 634 635 static void icmp_frag_needed(queue_t *, mblk_t *, int); 636 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 637 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 638 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *); 639 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 640 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 641 ill_t *, zoneid_t); 642 static void icmp_options_update(ipha_t *); 643 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 644 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 645 static mblk_t *icmp_pkt_err_ok(mblk_t *); 646 static void icmp_redirect(mblk_t *); 647 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 648 649 static void ip_arp_news(queue_t *, mblk_t *); 650 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 651 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 652 char *ip_dot_addr(ipaddr_t, char *); 653 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 654 int ip_close(queue_t *, int); 655 static char *ip_dot_saddr(uchar_t *, char *); 656 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 657 boolean_t, boolean_t, ill_t *, zoneid_t); 658 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 659 boolean_t, boolean_t, zoneid_t); 660 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 661 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 662 static void ip_lrput(queue_t *, mblk_t *); 663 ipaddr_t ip_massage_options(ipha_t *); 664 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 665 ipaddr_t ip_net_mask(ipaddr_t); 666 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 667 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 668 conn_t *, uint32_t); 669 static int ip_hdr_complete(ipha_t *, zoneid_t); 670 char *ip_nv_lookup(nv_t *, int); 671 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 672 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 673 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 674 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 675 size_t); 676 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 677 void ip_rput(queue_t *, mblk_t *); 678 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 679 void *dummy_arg); 680 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 681 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 682 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 683 ire_t *); 684 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 685 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 686 uint16_t *); 687 int ip_snmp_get(queue_t *, mblk_t *); 688 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 689 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 690 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 691 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 692 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 693 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 694 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 695 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 696 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 697 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 698 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 699 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 700 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 701 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 702 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 703 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 704 static void ip_snmp_get2_v4(ire_t *, listptr_t []); 705 static void ip_snmp_get2_v6_route(ire_t *, listptr_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, listptr_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 711 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 712 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 713 static void ip_wput_local_options(ipha_t *); 714 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 715 zoneid_t); 716 717 static void conn_drain_init(void); 718 static void conn_drain_fini(void); 719 static void conn_drain_tail(conn_t *connp, boolean_t closing); 720 721 static void conn_walk_drain(void); 722 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 723 zoneid_t); 724 725 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 726 zoneid_t); 727 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 728 void *dummy_arg); 729 730 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 731 732 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 733 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 734 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 735 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 736 737 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 738 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 739 caddr_t, cred_t *); 740 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 741 caddr_t cp, cred_t *cr); 742 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 743 cred_t *); 744 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 745 caddr_t cp, cred_t *cr); 746 static int ip_fanout_set(queue_t *, mblk_t *, char *, caddr_t, 747 cred_t *); 748 static squeue_func_t ip_squeue_switch(int); 749 750 static void ip_kstat_init(void); 751 static void ip_kstat_fini(void); 752 static int ip_kstat_update(kstat_t *kp, int rw); 753 static void icmp_kstat_init(void); 754 static void icmp_kstat_fini(void); 755 static int icmp_kstat_update(kstat_t *kp, int rw); 756 757 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 758 759 static boolean_t ip_no_forward(ipha_t *, ill_t *); 760 static boolean_t ip_loopback_src_or_dst(ipha_t *, ill_t *); 761 762 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 763 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 764 765 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 766 767 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 768 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 769 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 770 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 771 772 uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries. */ 773 uint_t ip_ire_default_index; /* Walking index used to mod in */ 774 775 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 776 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 777 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 778 779 /* How long, in seconds, we allow frags to hang around. */ 780 #define IP_FRAG_TIMEOUT 60 781 782 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 783 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 784 785 /* 786 * Threshold which determines whether MDT should be used when 787 * generating IP fragments; payload size must be greater than 788 * this threshold for MDT to take place. 789 */ 790 #define IP_WPUT_FRAG_MDT_MIN 32768 791 792 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 793 794 /* Protected by ip_mi_lock */ 795 static void *ip_g_head; /* Instance Data List Head */ 796 kmutex_t ip_mi_lock; /* Lock for list of instances */ 797 798 /* Only modified during _init and _fini thus no locking is needed. */ 799 caddr_t ip_g_nd; /* Named Dispatch List Head */ 800 801 802 static long ip_rput_pullups; 803 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 804 805 vmem_t *ip_minor_arena; 806 807 /* 808 * MIB-2 stuff for SNMP (both IP and ICMP) 809 */ 810 mib2_ip_t ip_mib; 811 mib2_icmp_t icmp_mib; 812 813 #ifdef DEBUG 814 uint32_t ipsechw_debug = 0; 815 #endif 816 817 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 818 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 819 820 uint_t loopback_packets = 0; 821 822 /* 823 * Multirouting/CGTP stuff 824 */ 825 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 826 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 827 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 828 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 829 hrtime_t ip_multirt_log_interval = 1000; 830 /* Time since last warning issued. */ 831 static hrtime_t multirt_bad_mtu_last_time = 0; 832 833 kmutex_t ip_trash_timer_lock; 834 krwlock_t ip_g_nd_lock; 835 836 /* 837 * XXX following really should only be in a header. Would need more 838 * header and .c clean up first. 839 */ 840 extern optdb_obj_t ip_opt_obj; 841 842 ulong_t ip_squeue_enter_unbound = 0; 843 844 /* 845 * Named Dispatch Parameter Table. 846 * All of these are alterable, within the min/max values given, at run time. 847 */ 848 static ipparam_t lcl_param_arr[] = { 849 /* min max value name */ 850 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 851 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 852 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 853 { 0, 1, 0, "ip_respond_to_timestamp"}, 854 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 855 { 0, 1, 1, "ip_send_redirects"}, 856 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 857 { 0, 10, 0, "ip_debug"}, 858 { 0, 10, 0, "ip_mrtdebug"}, 859 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 860 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 861 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 862 { 1, 255, 255, "ip_def_ttl" }, 863 { 0, 1, 0, "ip_forward_src_routed"}, 864 { 0, 256, 32, "ip_wroff_extra" }, 865 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 866 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 867 { 0, 1, 1, "ip_path_mtu_discovery" }, 868 { 0, 240, 30, "ip_ignore_delete_time" }, 869 { 0, 1, 0, "ip_ignore_redirect" }, 870 { 0, 1, 1, "ip_output_queue" }, 871 { 1, 254, 1, "ip_broadcast_ttl" }, 872 { 0, 99999, 100, "ip_icmp_err_interval" }, 873 { 1, 99999, 10, "ip_icmp_err_burst" }, 874 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 875 { 0, 1, 0, "ip_strict_dst_multihoming" }, 876 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 877 { 0, 1, 0, "ipsec_override_persocket_policy" }, 878 { 0, 1, 1, "icmp_accept_clear_messages" }, 879 { 0, 1, 1, "igmp_accept_clear_messages" }, 880 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 881 "ip_ndp_delay_first_probe_time"}, 882 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 883 "ip_ndp_max_unicast_solicit"}, 884 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 885 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 886 { 0, 1, 0, "ip6_forward_src_routed"}, 887 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 888 { 0, 1, 1, "ip6_send_redirects"}, 889 { 0, 1, 0, "ip6_ignore_redirect" }, 890 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 891 892 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 893 894 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 895 896 { 0, 1, 1, "pim_accept_clear_messages" }, 897 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 898 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 899 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 900 { 0, 15, 0, "ip_policy_mask" }, 901 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 902 { 0, 255, 1, "ip_multirt_ttl" }, 903 { 0, 1, 1, "ip_multidata_outbound" }, 904 #ifdef DEBUG 905 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 906 #endif 907 }; 908 909 ipparam_t *ip_param_arr = lcl_param_arr; 910 911 /* Extended NDP table */ 912 static ipndp_t lcl_ndp_arr[] = { 913 /* getf setf data name */ 914 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 915 "ip_forwarding" }, 916 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 917 "ip6_forwarding" }, 918 { ip_ill_report, NULL, NULL, 919 "ip_ill_status" }, 920 { ip_ipif_report, NULL, NULL, 921 "ip_ipif_status" }, 922 { ip_ire_report, NULL, NULL, 923 "ipv4_ire_status" }, 924 { ip_ire_report_mrtun, NULL, NULL, 925 "ipv4_mrtun_ire_status" }, 926 { ip_ire_report_srcif, NULL, NULL, 927 "ipv4_srcif_ire_status" }, 928 { ip_ire_report_v6, NULL, NULL, 929 "ipv6_ire_status" }, 930 { ip_conn_report, NULL, NULL, 931 "ip_conn_status" }, 932 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 933 "ip_rput_pullups" }, 934 { ndp_report, NULL, NULL, 935 "ip_ndp_cache_report" }, 936 { ip_srcid_report, NULL, NULL, 937 "ip_srcid_status" }, 938 { ip_param_generic_get, ip_squeue_profile_set, 939 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 940 { ip_param_generic_get, ip_squeue_bind_set, 941 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 942 { ip_param_generic_get, ip_input_proc_set, 943 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 944 { ip_param_generic_get, ip_fanout_set, 945 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 946 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 947 "ip_cgtp_filter" } 948 }; 949 950 /* 951 * ip_g_forward controls IP forwarding. It takes two values: 952 * 0: IP_FORWARD_NEVER Don't forward packets ever. 953 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 954 * 955 * RFC1122 says there must be a configuration switch to control forwarding, 956 * but that the default MUST be to not forward packets ever. Implicit 957 * control based on configuration of multiple interfaces MUST NOT be 958 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 959 * and, in fact, it was the default. That capability is now provided in the 960 * /etc/rc2.d/S69inet script. 961 */ 962 int ip_g_forward = IP_FORWARD_DEFAULT; 963 964 /* It also has an IPv6 counterpart. */ 965 966 int ipv6_forward = IP_FORWARD_DEFAULT; 967 968 /* Following line is external, and in ip.h. Normally marked with * *. */ 969 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 970 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 971 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 972 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 973 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 974 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 975 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 976 #define ip_debug ip_param_arr[7].ip_param_value /* */ 977 #define ip_mrtdebug ip_param_arr[8].ip_param_value /* */ 978 #define ip_timer_interval ip_param_arr[9].ip_param_value /* */ 979 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value /* */ 980 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 981 #define ip_def_ttl ip_param_arr[12].ip_param_value 982 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 983 #define ip_wroff_extra ip_param_arr[14].ip_param_value 984 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 985 #define ip_icmp_return ip_param_arr[16].ip_param_value 986 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value /* */ 987 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value /* */ 988 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 989 #define ip_output_queue ip_param_arr[20].ip_param_value 990 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 991 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 992 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 993 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 994 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 995 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 996 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value /* */ 997 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 998 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 999 1000 /* IPv6 configuration knobs */ 1001 #define delay_first_probe_time ip_param_arr[30].ip_param_value 1002 #define max_unicast_solicit ip_param_arr[31].ip_param_value 1003 #define ipv6_def_hops ip_param_arr[32].ip_param_value 1004 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 1005 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 1006 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 1007 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 1008 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 1009 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 1010 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 1011 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 1012 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 1013 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 1014 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 1015 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 1016 #define ip_policy_mask ip_param_arr[45].ip_param_value 1017 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 1018 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 1019 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 1020 #ifdef DEBUG 1021 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 1022 #else 1023 #define ipv6_drop_inbound_icmpv6 0 1024 #endif 1025 1026 1027 /* 1028 * Table of IP ioctls encoding the various properties of the ioctl and 1029 * indexed based on the last byte of the ioctl command. Occasionally there 1030 * is a clash, and there is more than 1 ioctl with the same last byte. 1031 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1032 * ioctls are encoded in the misc table. An entry in the ndx table is 1033 * retrieved by indexing on the last byte of the ioctl command and comparing 1034 * the ioctl command with the value in the ndx table. In the event of a 1035 * mismatch the misc table is then searched sequentially for the desired 1036 * ioctl command. 1037 * 1038 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1039 */ 1040 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1041 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 1052 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1053 MISC_CMD, ip_siocaddrt, NULL }, 1054 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1055 MISC_CMD, ip_siocdelrt, NULL }, 1056 1057 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1058 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1059 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1060 IF_CMD, ip_sioctl_get_addr, NULL }, 1061 1062 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1063 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1064 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1065 IPI_GET_CMD | IPI_REPL, 1066 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1067 1068 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1069 IPI_PRIV | IPI_WR | IPI_REPL, 1070 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1071 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1072 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1073 IF_CMD, ip_sioctl_get_flags, NULL }, 1074 1075 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 1078 /* copyin size cannot be coded for SIOCGIFCONF */ 1079 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1080 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1081 1082 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1083 IF_CMD, ip_sioctl_mtu, NULL }, 1084 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1085 IF_CMD, ip_sioctl_get_mtu, NULL }, 1086 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1087 IPI_GET_CMD | IPI_REPL, 1088 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1089 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1090 IF_CMD, ip_sioctl_brdaddr, NULL }, 1091 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1092 IPI_GET_CMD | IPI_REPL, 1093 IF_CMD, ip_sioctl_get_netmask, NULL }, 1094 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1095 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1096 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1097 IPI_GET_CMD | IPI_REPL, 1098 IF_CMD, ip_sioctl_get_metric, NULL }, 1099 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1100 IF_CMD, ip_sioctl_metric, NULL }, 1101 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 1103 /* See 166-168 below for extended SIOC*XARP ioctls */ 1104 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1105 MISC_CMD, ip_sioctl_arp, NULL }, 1106 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1107 MISC_CMD, ip_sioctl_arp, NULL }, 1108 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1109 MISC_CMD, ip_sioctl_arp, NULL }, 1110 1111 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 1133 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1134 MISC_CMD, if_unitsel, if_unitsel_restart }, 1135 1136 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 1155 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1156 IPI_PRIV | IPI_WR | IPI_MODOK, 1157 IF_CMD, ip_sioctl_sifname, NULL }, 1158 1159 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1160 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 1173 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1174 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1175 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1176 IF_CMD, ip_sioctl_get_muxid, NULL }, 1177 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1178 IPI_PRIV | IPI_WR | IPI_REPL, 1179 IF_CMD, ip_sioctl_muxid, NULL }, 1180 1181 /* Both if and lif variants share same func */ 1182 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1183 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1184 /* Both if and lif variants share same func */ 1185 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1186 IPI_PRIV | IPI_WR | IPI_REPL, 1187 IF_CMD, ip_sioctl_slifindex, NULL }, 1188 1189 /* copyin size cannot be coded for SIOCGIFCONF */ 1190 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1191 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1192 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1201 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1202 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1203 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1204 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1205 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1206 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1207 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1208 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1209 1210 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1211 IPI_PRIV | IPI_WR | IPI_REPL, 1212 LIF_CMD, ip_sioctl_removeif, 1213 ip_sioctl_removeif_restart }, 1214 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1215 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1216 LIF_CMD, ip_sioctl_addif, NULL }, 1217 #define SIOCLIFADDR_NDX 112 1218 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1219 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1220 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1221 IPI_GET_CMD | IPI_REPL, 1222 LIF_CMD, ip_sioctl_get_addr, NULL }, 1223 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1224 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1225 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1226 IPI_GET_CMD | IPI_REPL, 1227 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1228 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1229 IPI_PRIV | IPI_WR | IPI_REPL, 1230 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1231 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1232 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1233 LIF_CMD, ip_sioctl_get_flags, NULL }, 1234 1235 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1236 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1237 1238 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1239 ip_sioctl_get_lifconf, NULL }, 1240 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1241 LIF_CMD, ip_sioctl_mtu, NULL }, 1242 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1243 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1244 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1247 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1248 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1249 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1250 IPI_GET_CMD | IPI_REPL, 1251 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1252 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1253 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1254 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1255 IPI_GET_CMD | IPI_REPL, 1256 LIF_CMD, ip_sioctl_get_metric, NULL }, 1257 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1258 LIF_CMD, ip_sioctl_metric, NULL }, 1259 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1260 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1261 LIF_CMD, ip_sioctl_slifname, 1262 ip_sioctl_slifname_restart }, 1263 1264 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1265 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1266 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1267 IPI_GET_CMD | IPI_REPL, 1268 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1269 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1270 IPI_PRIV | IPI_WR | IPI_REPL, 1271 LIF_CMD, ip_sioctl_muxid, NULL }, 1272 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1273 IPI_GET_CMD | IPI_REPL, 1274 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1275 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1276 IPI_PRIV | IPI_WR | IPI_REPL, 1277 LIF_CMD, ip_sioctl_slifindex, 0 }, 1278 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1279 LIF_CMD, ip_sioctl_token, NULL }, 1280 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1281 IPI_GET_CMD | IPI_REPL, 1282 LIF_CMD, ip_sioctl_get_token, NULL }, 1283 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1284 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1285 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1286 IPI_GET_CMD | IPI_REPL, 1287 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1288 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1289 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1290 1291 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1292 IPI_GET_CMD | IPI_REPL, 1293 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1294 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1295 LIF_CMD, ip_siocdelndp_v6, NULL }, 1296 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1297 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1298 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1299 LIF_CMD, ip_siocsetndp_v6, NULL }, 1300 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1301 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1302 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1303 MISC_CMD, ip_sioctl_tonlink, NULL }, 1304 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1305 MISC_CMD, ip_sioctl_tmysite, NULL }, 1306 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1307 TUN_CMD, ip_sioctl_tunparam, NULL }, 1308 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1309 IPI_PRIV | IPI_WR, 1310 TUN_CMD, ip_sioctl_tunparam, NULL }, 1311 1312 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1313 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1314 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1315 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1316 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1317 1318 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1319 IPI_PRIV | IPI_WR | IPI_REPL, 1320 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1321 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1322 IPI_PRIV | IPI_WR | IPI_REPL, 1323 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1324 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1325 IPI_PRIV | IPI_WR, 1326 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1327 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1328 IPI_GET_CMD | IPI_REPL, 1329 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1330 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1331 IPI_GET_CMD | IPI_REPL, 1332 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1333 1334 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1335 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1336 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1337 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1338 1339 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1340 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1341 1342 /* These are handled in ip_sioctl_copyin_setup itself */ 1343 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1344 MISC_CMD, NULL, NULL }, 1345 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1346 MISC_CMD, NULL, NULL }, 1347 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1348 1349 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1350 ip_sioctl_get_lifconf, NULL }, 1351 1352 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1353 MISC_CMD, ip_sioctl_xarp, NULL }, 1354 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1355 MISC_CMD, ip_sioctl_xarp, NULL }, 1356 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1357 MISC_CMD, ip_sioctl_xarp, NULL }, 1358 1359 /* SIOCPOPSOCKFS is not handled by IP */ 1360 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1361 1362 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1363 IPI_GET_CMD | IPI_REPL, 1364 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1365 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1366 IPI_PRIV | IPI_WR | IPI_REPL, 1367 LIF_CMD, ip_sioctl_slifzone, 1368 ip_sioctl_slifzone_restart }, 1369 /* 172-174 are SCTP ioctls and not handled by IP */ 1370 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1371 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1372 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1373 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1374 IPI_GET_CMD, LIF_CMD, 1375 ip_sioctl_get_lifusesrc, 0 }, 1376 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1377 IPI_PRIV | IPI_WR, 1378 LIF_CMD, ip_sioctl_slifusesrc, 1379 NULL }, 1380 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1381 ip_sioctl_get_lifsrcof, NULL }, 1382 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1383 MISC_CMD, ip_sioctl_msfilter, NULL }, 1384 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1385 MISC_CMD, ip_sioctl_msfilter, NULL }, 1386 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1387 MISC_CMD, ip_sioctl_msfilter, NULL }, 1388 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1389 MISC_CMD, ip_sioctl_msfilter, NULL }, 1390 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1391 ip_sioctl_set_ipmpfailback, NULL } 1392 }; 1393 1394 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1395 1396 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1397 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1398 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1399 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1400 TUN_CMD, ip_sioctl_tunparam, NULL }, 1401 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1402 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1403 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1404 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1405 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1406 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1407 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1408 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1409 MISC_CMD, mrt_ioctl}, 1410 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1411 MISC_CMD, mrt_ioctl}, 1412 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1413 MISC_CMD, mrt_ioctl} 1414 }; 1415 1416 int ip_misc_ioctl_count = 1417 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1418 1419 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1420 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1421 static int conn_drain_list_index; /* Next drain_list to be used */ 1422 int conn_drain_nthreads; /* Number of drainers reqd. */ 1423 /* Settable in /etc/system */ 1424 1425 /* Defined in ip_ire.c */ 1426 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1427 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1428 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1429 1430 static nv_t ire_nv_arr[] = { 1431 { IRE_BROADCAST, "BROADCAST" }, 1432 { IRE_LOCAL, "LOCAL" }, 1433 { IRE_LOOPBACK, "LOOPBACK" }, 1434 { IRE_CACHE, "CACHE" }, 1435 { IRE_DEFAULT, "DEFAULT" }, 1436 { IRE_PREFIX, "PREFIX" }, 1437 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1438 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1439 { IRE_HOST, "HOST" }, 1440 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1441 { 0 } 1442 }; 1443 1444 nv_t *ire_nv_tbl = ire_nv_arr; 1445 1446 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1447 extern krwlock_t ipsec_capab_ills_lock; 1448 1449 /* Packet dropper for IP IPsec processing failures */ 1450 ipdropper_t ip_dropper; 1451 1452 /* Simple ICMP IP Header Template */ 1453 static ipha_t icmp_ipha = { 1454 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1455 }; 1456 1457 struct module_info ip_mod_info = { 1458 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1459 }; 1460 1461 static struct qinit rinit = { 1462 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1463 &ip_mod_info 1464 }; 1465 1466 static struct qinit winit = { 1467 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1468 &ip_mod_info 1469 }; 1470 1471 static struct qinit lrinit = { 1472 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1473 &ip_mod_info 1474 }; 1475 1476 static struct qinit lwinit = { 1477 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1478 &ip_mod_info 1479 }; 1480 1481 struct streamtab ipinfo = { 1482 &rinit, &winit, &lrinit, &lwinit 1483 }; 1484 1485 #ifdef DEBUG 1486 static boolean_t skip_sctp_cksum = B_FALSE; 1487 #endif 1488 /* 1489 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1490 */ 1491 mblk_t * 1492 ip_copymsg(mblk_t *mp) 1493 { 1494 mblk_t *nmp; 1495 ipsec_info_t *in; 1496 1497 if (mp->b_datap->db_type != M_CTL) 1498 return (copymsg(mp)); 1499 1500 in = (ipsec_info_t *)mp->b_rptr; 1501 1502 /* 1503 * Note that M_CTL is also used for delivering ICMP error messages 1504 * upstream to transport layers. 1505 */ 1506 if (in->ipsec_info_type != IPSEC_OUT && 1507 in->ipsec_info_type != IPSEC_IN) 1508 return (copymsg(mp)); 1509 1510 nmp = copymsg(mp->b_cont); 1511 1512 if (in->ipsec_info_type == IPSEC_OUT) 1513 return (ipsec_out_tag(mp, nmp)); 1514 else 1515 return (ipsec_in_tag(mp, nmp)); 1516 } 1517 1518 /* Generate an ICMP fragmentation needed message. */ 1519 static void 1520 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1521 { 1522 icmph_t icmph; 1523 mblk_t *first_mp; 1524 boolean_t mctl_present; 1525 1526 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1527 1528 if (!(mp = icmp_pkt_err_ok(mp))) { 1529 if (mctl_present) 1530 freeb(first_mp); 1531 return; 1532 } 1533 1534 bzero(&icmph, sizeof (icmph_t)); 1535 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1536 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1537 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1538 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1539 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1540 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1541 } 1542 1543 /* 1544 * icmp_inbound deals with ICMP messages in the following ways. 1545 * 1546 * 1) It needs to send a reply back and possibly delivering it 1547 * to the "interested" upper clients. 1548 * 2) It needs to send it to the upper clients only. 1549 * 3) It needs to change some values in IP only. 1550 * 4) It needs to change some values in IP and upper layers e.g TCP. 1551 * 1552 * We need to accomodate icmp messages coming in clear until we get 1553 * everything secure from the wire. If icmp_accept_clear_messages 1554 * is zero we check with the global policy and act accordingly. If 1555 * it is non-zero, we accept the message without any checks. But 1556 * *this does not mean* that this will be delivered to the upper 1557 * clients. By accepting we might send replies back, change our MTU 1558 * value etc. but delivery to the ULP/clients depends on their policy 1559 * dispositions. 1560 * 1561 * We handle the above 4 cases in the context of IPSEC in the 1562 * following way : 1563 * 1564 * 1) Send the reply back in the same way as the request came in. 1565 * If it came in encrypted, it goes out encrypted. If it came in 1566 * clear, it goes out in clear. Thus, this will prevent chosen 1567 * plain text attack. 1568 * 2) The client may or may not expect things to come in secure. 1569 * If it comes in secure, the policy constraints are checked 1570 * before delivering it to the upper layers. If it comes in 1571 * clear, ipsec_inbound_accept_clear will decide whether to 1572 * accept this in clear or not. In both the cases, if the returned 1573 * message (IP header + 8 bytes) that caused the icmp message has 1574 * AH/ESP headers, it is sent up to AH/ESP for validation before 1575 * sending up. If there are only 8 bytes of returned message, then 1576 * upper client will not be notified. 1577 * 3) Check with global policy to see whether it matches the constaints. 1578 * But this will be done only if icmp_accept_messages_in_clear is 1579 * zero. 1580 * 4) If we need to change both in IP and ULP, then the decision taken 1581 * while affecting the values in IP and while delivering up to TCP 1582 * should be the same. 1583 * 1584 * There are two cases. 1585 * 1586 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1587 * failed), we will not deliver it to the ULP, even though they 1588 * are *willing* to accept in *clear*. This is fine as our global 1589 * disposition to icmp messages asks us reject the datagram. 1590 * 1591 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1592 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1593 * to deliver it to ULP (policy failed), it can lead to 1594 * consistency problems. The cases known at this time are 1595 * ICMP_DESTINATION_UNREACHABLE messages with following code 1596 * values : 1597 * 1598 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1599 * and Upper layer rejects. Then the communication will 1600 * come to a stop. This is solved by making similar decisions 1601 * at both levels. Currently, when we are unable to deliver 1602 * to the Upper Layer (due to policy failures) while IP has 1603 * adjusted ire_max_frag, the next outbound datagram would 1604 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1605 * will be with the right level of protection. Thus the right 1606 * value will be communicated even if we are not able to 1607 * communicate when we get from the wire initially. But this 1608 * assumes there would be at least one outbound datagram after 1609 * IP has adjusted its ire_max_frag value. To make things 1610 * simpler, we accept in clear after the validation of 1611 * AH/ESP headers. 1612 * 1613 * - Other ICMP ERRORS : We may not be able to deliver it to the 1614 * upper layer depending on the level of protection the upper 1615 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1616 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1617 * should be accepted in clear when the Upper layer expects secure. 1618 * Thus the communication may get aborted by some bad ICMP 1619 * packets. 1620 * 1621 * IPQoS Notes: 1622 * The only instance when a packet is sent for processing is when there 1623 * isn't an ICMP client and if we are interested in it. 1624 * If there is a client, IPPF processing will take place in the 1625 * ip_fanout_proto routine. 1626 * 1627 * Zones notes: 1628 * The packet is only processed in the context of the specified zone: typically 1629 * only this zone will reply to an echo request, and only interested clients in 1630 * this zone will receive a copy of the packet. This means that the caller must 1631 * call icmp_inbound() for each relevant zone. 1632 */ 1633 static void 1634 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1635 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1636 ill_t *recv_ill, zoneid_t zoneid) 1637 { 1638 icmph_t *icmph; 1639 ipha_t *ipha; 1640 int iph_hdr_length; 1641 int hdr_length; 1642 boolean_t interested; 1643 uint32_t ts; 1644 uchar_t *wptr; 1645 ipif_t *ipif; 1646 mblk_t *first_mp; 1647 ipsec_in_t *ii; 1648 ire_t *src_ire; 1649 boolean_t onlink; 1650 timestruc_t now; 1651 uint32_t ill_index; 1652 1653 ASSERT(ill != NULL); 1654 1655 first_mp = mp; 1656 if (mctl_present) { 1657 mp = first_mp->b_cont; 1658 ASSERT(mp != NULL); 1659 } 1660 1661 ipha = (ipha_t *)mp->b_rptr; 1662 if (icmp_accept_clear_messages == 0) { 1663 first_mp = ipsec_check_global_policy(first_mp, NULL, 1664 ipha, NULL, mctl_present); 1665 if (first_mp == NULL) 1666 return; 1667 } 1668 /* 1669 * We have accepted the ICMP message. It means that we will 1670 * respond to the packet if needed. It may not be delivered 1671 * to the upper client depending on the policy constraints 1672 * and the disposition in ipsec_inbound_accept_clear. 1673 */ 1674 1675 ASSERT(ill != NULL); 1676 1677 BUMP_MIB(&icmp_mib, icmpInMsgs); 1678 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1679 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1680 /* Last chance to get real. */ 1681 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1682 BUMP_MIB(&icmp_mib, icmpInErrors); 1683 freemsg(first_mp); 1684 return; 1685 } 1686 /* Refresh iph following the pullup. */ 1687 ipha = (ipha_t *)mp->b_rptr; 1688 } 1689 /* ICMP header checksum, including checksum field, should be zero. */ 1690 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1691 IP_CSUM(mp, iph_hdr_length, 0)) { 1692 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1693 freemsg(first_mp); 1694 return; 1695 } 1696 /* The IP header will always be a multiple of four bytes */ 1697 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1698 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1699 icmph->icmph_code)); 1700 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1701 /* We will set "interested" to "true" if we want a copy */ 1702 interested = B_FALSE; 1703 switch (icmph->icmph_type) { 1704 case ICMP_ECHO_REPLY: 1705 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1706 break; 1707 case ICMP_DEST_UNREACHABLE: 1708 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1709 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1710 interested = B_TRUE; /* Pass up to transport */ 1711 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1712 break; 1713 case ICMP_SOURCE_QUENCH: 1714 interested = B_TRUE; /* Pass up to transport */ 1715 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1716 break; 1717 case ICMP_REDIRECT: 1718 if (!ip_ignore_redirect) 1719 interested = B_TRUE; 1720 BUMP_MIB(&icmp_mib, icmpInRedirects); 1721 break; 1722 case ICMP_ECHO_REQUEST: 1723 /* 1724 * Whether to respond to echo requests that come in as IP 1725 * broadcasts or as IP multicast is subject to debate 1726 * (what isn't?). We aim to please, you pick it. 1727 * Default is do it. 1728 */ 1729 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1730 /* unicast: always respond */ 1731 interested = B_TRUE; 1732 } else if (CLASSD(ipha->ipha_dst)) { 1733 /* multicast: respond based on tunable */ 1734 interested = ip_g_resp_to_echo_mcast; 1735 } else if (broadcast) { 1736 /* broadcast: respond based on tunable */ 1737 interested = ip_g_resp_to_echo_bcast; 1738 } 1739 BUMP_MIB(&icmp_mib, icmpInEchos); 1740 break; 1741 case ICMP_ROUTER_ADVERTISEMENT: 1742 case ICMP_ROUTER_SOLICITATION: 1743 break; 1744 case ICMP_TIME_EXCEEDED: 1745 interested = B_TRUE; /* Pass up to transport */ 1746 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1747 break; 1748 case ICMP_PARAM_PROBLEM: 1749 interested = B_TRUE; /* Pass up to transport */ 1750 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1751 break; 1752 case ICMP_TIME_STAMP_REQUEST: 1753 /* Response to Time Stamp Requests is local policy. */ 1754 if (ip_g_resp_to_timestamp && 1755 /* So is whether to respond if it was an IP broadcast. */ 1756 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1757 int tstamp_len = 3 * sizeof (uint32_t); 1758 1759 if (wptr + tstamp_len > mp->b_wptr) { 1760 if (!pullupmsg(mp, wptr + tstamp_len - 1761 mp->b_rptr)) { 1762 BUMP_MIB(&ip_mib, ipInDiscards); 1763 freemsg(first_mp); 1764 return; 1765 } 1766 /* Refresh ipha following the pullup. */ 1767 ipha = (ipha_t *)mp->b_rptr; 1768 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1769 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1770 } 1771 interested = B_TRUE; 1772 } 1773 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1774 break; 1775 case ICMP_TIME_STAMP_REPLY: 1776 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1777 break; 1778 case ICMP_INFO_REQUEST: 1779 /* Per RFC 1122 3.2.2.7, ignore this. */ 1780 case ICMP_INFO_REPLY: 1781 break; 1782 case ICMP_ADDRESS_MASK_REQUEST: 1783 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1784 /* TODO m_pullup of complete header? */ 1785 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1786 interested = B_TRUE; 1787 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1788 break; 1789 case ICMP_ADDRESS_MASK_REPLY: 1790 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1791 break; 1792 default: 1793 interested = B_TRUE; /* Pass up to transport */ 1794 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1795 break; 1796 } 1797 /* See if there is an ICMP client. */ 1798 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1799 /* If there is an ICMP client and we want one too, copy it. */ 1800 mblk_t *first_mp1; 1801 1802 if (!interested) { 1803 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1804 ip_policy, recv_ill, zoneid); 1805 return; 1806 } 1807 first_mp1 = ip_copymsg(first_mp); 1808 if (first_mp1 != NULL) { 1809 ip_fanout_proto(q, first_mp1, ill, ipha, 1810 0, mctl_present, ip_policy, recv_ill, zoneid); 1811 } 1812 } else if (!interested) { 1813 freemsg(first_mp); 1814 return; 1815 } else { 1816 /* 1817 * Initiate policy processing for this packet if ip_policy 1818 * is true. 1819 */ 1820 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1821 ill_index = ill->ill_phyint->phyint_ifindex; 1822 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1823 if (mp == NULL) { 1824 if (mctl_present) { 1825 freeb(first_mp); 1826 } 1827 BUMP_MIB(&icmp_mib, icmpInErrors); 1828 return; 1829 } 1830 } 1831 } 1832 /* We want to do something with it. */ 1833 /* Check db_ref to make sure we can modify the packet. */ 1834 if (mp->b_datap->db_ref > 1) { 1835 mblk_t *first_mp1; 1836 1837 first_mp1 = ip_copymsg(first_mp); 1838 freemsg(first_mp); 1839 if (!first_mp1) { 1840 BUMP_MIB(&icmp_mib, icmpOutDrops); 1841 return; 1842 } 1843 first_mp = first_mp1; 1844 if (mctl_present) { 1845 mp = first_mp->b_cont; 1846 ASSERT(mp != NULL); 1847 } else { 1848 mp = first_mp; 1849 } 1850 ipha = (ipha_t *)mp->b_rptr; 1851 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1852 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1853 } 1854 switch (icmph->icmph_type) { 1855 case ICMP_ADDRESS_MASK_REQUEST: 1856 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1857 if (ipif == NULL) { 1858 freemsg(first_mp); 1859 return; 1860 } 1861 /* 1862 * outging interface must be IPv4 1863 */ 1864 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1865 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1866 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1867 ipif_refrele(ipif); 1868 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1869 break; 1870 case ICMP_ECHO_REQUEST: 1871 icmph->icmph_type = ICMP_ECHO_REPLY; 1872 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1873 break; 1874 case ICMP_TIME_STAMP_REQUEST: { 1875 uint32_t *tsp; 1876 1877 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1878 tsp = (uint32_t *)wptr; 1879 tsp++; /* Skip past 'originate time' */ 1880 /* Compute # of milliseconds since midnight */ 1881 gethrestime(&now); 1882 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1883 now.tv_nsec / (NANOSEC / MILLISEC); 1884 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1885 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1886 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1887 break; 1888 } 1889 default: 1890 ipha = (ipha_t *)&icmph[1]; 1891 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1892 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1893 BUMP_MIB(&ip_mib, ipInDiscards); 1894 freemsg(first_mp); 1895 return; 1896 } 1897 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1898 ipha = (ipha_t *)&icmph[1]; 1899 } 1900 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1901 BUMP_MIB(&ip_mib, ipInDiscards); 1902 freemsg(first_mp); 1903 return; 1904 } 1905 hdr_length = IPH_HDR_LENGTH(ipha); 1906 if (hdr_length < sizeof (ipha_t)) { 1907 BUMP_MIB(&ip_mib, ipInDiscards); 1908 freemsg(first_mp); 1909 return; 1910 } 1911 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1912 if (!pullupmsg(mp, 1913 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1914 BUMP_MIB(&ip_mib, ipInDiscards); 1915 freemsg(first_mp); 1916 return; 1917 } 1918 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1919 ipha = (ipha_t *)&icmph[1]; 1920 } 1921 switch (icmph->icmph_type) { 1922 case ICMP_REDIRECT: 1923 /* 1924 * As there is no upper client to deliver, we don't 1925 * need the first_mp any more. 1926 */ 1927 if (mctl_present) { 1928 freeb(first_mp); 1929 } 1930 icmp_redirect(mp); 1931 return; 1932 case ICMP_DEST_UNREACHABLE: 1933 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1934 if (!icmp_inbound_too_big(icmph, ipha)) { 1935 freemsg(first_mp); 1936 return; 1937 } 1938 } 1939 /* FALLTHRU */ 1940 default : 1941 /* 1942 * IPQoS notes: Since we have already done IPQoS 1943 * processing we don't want to do it again in 1944 * the fanout routines called by 1945 * icmp_inbound_error_fanout, hence the last 1946 * argument, ip_policy, is B_FALSE. 1947 */ 1948 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1949 ipha, iph_hdr_length, hdr_length, mctl_present, 1950 B_FALSE, recv_ill, zoneid); 1951 } 1952 return; 1953 } 1954 /* Send out an ICMP packet */ 1955 icmph->icmph_checksum = 0; 1956 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1957 if (icmph->icmph_checksum == 0) 1958 icmph->icmph_checksum = 0xFFFF; 1959 if (broadcast || CLASSD(ipha->ipha_dst)) { 1960 ipif_t *ipif_chosen; 1961 /* 1962 * Make it look like it was directed to us, so we don't look 1963 * like a fool with a broadcast or multicast source address. 1964 */ 1965 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1966 /* 1967 * Make sure that we haven't grabbed an interface that's DOWN. 1968 */ 1969 if (ipif != NULL) { 1970 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1971 ipha->ipha_src, zoneid); 1972 if (ipif_chosen != NULL) { 1973 ipif_refrele(ipif); 1974 ipif = ipif_chosen; 1975 } 1976 } 1977 if (ipif == NULL) { 1978 ip0dbg(("icmp_inbound: " 1979 "No source for broadcast/multicast:\n" 1980 "\tsrc 0x%x dst 0x%x ill %p " 1981 "ipif_lcl_addr 0x%x\n", 1982 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1983 (void *)ill, 1984 ill->ill_ipif->ipif_lcl_addr)); 1985 freemsg(first_mp); 1986 return; 1987 } 1988 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1989 ipha->ipha_dst = ipif->ipif_src_addr; 1990 ipif_refrele(ipif); 1991 } 1992 /* Reset time to live. */ 1993 ipha->ipha_ttl = ip_def_ttl; 1994 { 1995 /* Swap source and destination addresses */ 1996 ipaddr_t tmp; 1997 1998 tmp = ipha->ipha_src; 1999 ipha->ipha_src = ipha->ipha_dst; 2000 ipha->ipha_dst = tmp; 2001 } 2002 ipha->ipha_ident = 0; 2003 if (!IS_SIMPLE_IPH(ipha)) 2004 icmp_options_update(ipha); 2005 2006 /* 2007 * ICMP echo replies should go out on the same interface 2008 * the request came on as probes used by in.mpathd for detecting 2009 * NIC failures are ECHO packets. We turn-off load spreading 2010 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2011 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2012 * function. This is in turn handled by ip_wput and ip_newroute 2013 * to make sure that the packet goes out on the interface it came 2014 * in on. If we don't turnoff load spreading, the packets might get 2015 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2016 * to go out and in.mpathd would wrongly detect a failure or 2017 * mis-detect a NIC failure for link failure. As load spreading 2018 * can happen only if ill_group is not NULL, we do only for 2019 * that case and this does not affect the normal case. 2020 * 2021 * We turn off load spreading only on echo packets that came from 2022 * on-link hosts. If the interface route has been deleted, this will 2023 * not be enforced as we can't do much. For off-link hosts, as the 2024 * default routes in IPv4 does not typically have an ire_ipif 2025 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2026 * Moreover, expecting a default route through this interface may 2027 * not be correct. We use ipha_dst because of the swap above. 2028 */ 2029 onlink = B_FALSE; 2030 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2031 /* 2032 * First, we need to make sure that it is not one of our 2033 * local addresses. If we set onlink when it is one of 2034 * our local addresses, we will end up creating IRE_CACHES 2035 * for one of our local addresses. Then, we will never 2036 * accept packets for them afterwards. 2037 */ 2038 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2039 NULL, ALL_ZONES, MATCH_IRE_TYPE); 2040 if (src_ire == NULL) { 2041 ipif = ipif_get_next_ipif(NULL, ill); 2042 if (ipif == NULL) { 2043 BUMP_MIB(&ip_mib, ipInDiscards); 2044 freemsg(mp); 2045 return; 2046 } 2047 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2048 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2049 MATCH_IRE_ILL | MATCH_IRE_TYPE); 2050 ipif_refrele(ipif); 2051 if (src_ire != NULL) { 2052 onlink = B_TRUE; 2053 ire_refrele(src_ire); 2054 } 2055 } else { 2056 ire_refrele(src_ire); 2057 } 2058 } 2059 if (!mctl_present) { 2060 /* 2061 * This packet should go out the same way as it 2062 * came in i.e in clear. To make sure that global 2063 * policy will not be applied to this in ip_wput_ire, 2064 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2065 */ 2066 ASSERT(first_mp == mp); 2067 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2068 BUMP_MIB(&ip_mib, ipInDiscards); 2069 freemsg(mp); 2070 return; 2071 } 2072 ii = (ipsec_in_t *)first_mp->b_rptr; 2073 2074 /* This is not a secure packet */ 2075 ii->ipsec_in_secure = B_FALSE; 2076 if (onlink) { 2077 ii->ipsec_in_attach_if = B_TRUE; 2078 ii->ipsec_in_ill_index = 2079 ill->ill_phyint->phyint_ifindex; 2080 ii->ipsec_in_rill_index = 2081 recv_ill->ill_phyint->phyint_ifindex; 2082 } 2083 first_mp->b_cont = mp; 2084 } else if (onlink) { 2085 ii = (ipsec_in_t *)first_mp->b_rptr; 2086 ii->ipsec_in_attach_if = B_TRUE; 2087 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2088 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2089 } else { 2090 ii = (ipsec_in_t *)first_mp->b_rptr; 2091 } 2092 ii->ipsec_in_zoneid = zoneid; 2093 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2094 BUMP_MIB(&ip_mib, ipInDiscards); 2095 return; 2096 } 2097 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2098 put(WR(q), first_mp); 2099 } 2100 2101 /* Table from RFC 1191 */ 2102 static int icmp_frag_size_table[] = 2103 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2104 2105 /* 2106 * Process received ICMP Packet too big. 2107 * After updating any IRE it does the fanout to any matching transport streams. 2108 * Assumes the message has been pulled up till the IP header that caused 2109 * the error. 2110 * 2111 * Returns B_FALSE on failure and B_TRUE on success. 2112 */ 2113 static boolean_t 2114 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha) 2115 { 2116 ire_t *ire, *first_ire; 2117 int mtu; 2118 int hdr_length; 2119 2120 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2121 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2122 2123 hdr_length = IPH_HDR_LENGTH(ipha); 2124 2125 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, NULL, 2126 ALL_ZONES, MATCH_IRE_TYPE); 2127 2128 if (!first_ire) { 2129 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2130 ntohl(ipha->ipha_dst))); 2131 return (B_FALSE); 2132 } 2133 /* Drop if the original packet contained a source route */ 2134 if (ip_source_route_included(ipha)) { 2135 ire_refrele(first_ire); 2136 return (B_FALSE); 2137 } 2138 /* Check for MTU discovery advice as described in RFC 1191 */ 2139 mtu = ntohs(icmph->icmph_du_mtu); 2140 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2141 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2142 ire = ire->ire_next) { 2143 mutex_enter(&ire->ire_lock); 2144 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2145 /* Reduce the IRE max frag value as advised. */ 2146 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2147 ip1dbg(("Received mtu from router: %d\n", mtu)); 2148 } else { 2149 uint32_t length; 2150 int i; 2151 2152 /* 2153 * Use the table from RFC 1191 to figure out 2154 * the next "plateau" based on the length in 2155 * the original IP packet. 2156 */ 2157 length = ntohs(ipha->ipha_length); 2158 if (ire->ire_max_frag <= length && 2159 ire->ire_max_frag >= length - hdr_length) { 2160 /* 2161 * Handle broken BSD 4.2 systems that 2162 * return the wrong iph_length in ICMP 2163 * errors. 2164 */ 2165 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2166 length, ire->ire_max_frag)); 2167 length -= hdr_length; 2168 } 2169 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2170 if (length > icmp_frag_size_table[i]) 2171 break; 2172 } 2173 if (i == A_CNT(icmp_frag_size_table)) { 2174 /* Smaller than 68! */ 2175 ip1dbg(("Too big for packet size %d\n", 2176 length)); 2177 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2178 ire->ire_frag_flag = 0; 2179 } else { 2180 mtu = icmp_frag_size_table[i]; 2181 ip1dbg(("Calculated mtu %d, packet size %d, " 2182 "before %d", mtu, length, 2183 ire->ire_max_frag)); 2184 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2185 ip1dbg((", after %d\n", ire->ire_max_frag)); 2186 } 2187 /* Record the new max frag size for the ULP. */ 2188 icmph->icmph_du_zero = 0; 2189 icmph->icmph_du_mtu = 2190 htons((uint16_t)ire->ire_max_frag); 2191 } 2192 mutex_exit(&ire->ire_lock); 2193 } 2194 rw_exit(&first_ire->ire_bucket->irb_lock); 2195 ire_refrele(first_ire); 2196 return (B_TRUE); 2197 } 2198 2199 /* 2200 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2201 * calls this function. 2202 */ 2203 static mblk_t * 2204 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2205 { 2206 ipha_t *ipha; 2207 icmph_t *icmph; 2208 ipha_t *in_ipha; 2209 int length; 2210 2211 ASSERT(mp->b_datap->db_type == M_DATA); 2212 2213 /* 2214 * For Self-encapsulated packets, we added an extra IP header 2215 * without the options. Inner IP header is the one from which 2216 * the outer IP header was formed. Thus, we need to remove the 2217 * outer IP header. To do this, we pullup the whole message 2218 * and overlay whatever follows the outer IP header over the 2219 * outer IP header. 2220 */ 2221 2222 if (!pullupmsg(mp, -1)) { 2223 BUMP_MIB(&ip_mib, ipInDiscards); 2224 return (NULL); 2225 } 2226 2227 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2228 ipha = (ipha_t *)&icmph[1]; 2229 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2230 2231 /* 2232 * The length that we want to overlay is following the inner 2233 * IP header. Subtracting the IP header + icmp header + outer 2234 * IP header's length should give us the length that we want to 2235 * overlay. 2236 */ 2237 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2238 hdr_length; 2239 /* 2240 * Overlay whatever follows the inner header over the 2241 * outer header. 2242 */ 2243 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2244 2245 /* Set the wptr to account for the outer header */ 2246 mp->b_wptr -= hdr_length; 2247 return (mp); 2248 } 2249 2250 /* 2251 * Try to pass the ICMP message upstream in case the ULP cares. 2252 * 2253 * If the packet that caused the ICMP error is secure, we send 2254 * it to AH/ESP to make sure that the attached packet has a 2255 * valid association. ipha in the code below points to the 2256 * IP header of the packet that caused the error. 2257 * 2258 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2259 * in the context of IPSEC. Normally we tell the upper layer 2260 * whenever we send the ire (including ip_bind), the IPSEC header 2261 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2262 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2263 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2264 * same thing. As TCP has the IPSEC options size that needs to be 2265 * adjusted, we just pass the MTU unchanged. 2266 * 2267 * IFN could have been generated locally or by some router. 2268 * 2269 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2270 * This happens because IP adjusted its value of MTU on an 2271 * earlier IFN message and could not tell the upper layer, 2272 * the new adjusted value of MTU e.g. Packet was encrypted 2273 * or there was not enough information to fanout to upper 2274 * layers. Thus on the next outbound datagram, ip_wput_ire 2275 * generates the IFN, where IPSEC processing has *not* been 2276 * done. 2277 * 2278 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2279 * could have generated this. This happens because ire_max_frag 2280 * value in IP was set to a new value, while the IPSEC processing 2281 * was being done and after we made the fragmentation check in 2282 * ip_wput_ire. Thus on return from IPSEC processing, 2283 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2284 * and generates the IFN. As IPSEC processing is over, we fanout 2285 * to AH/ESP to remove the header. 2286 * 2287 * In both these cases, ipsec_in_loopback will be set indicating 2288 * that IFN was generated locally. 2289 * 2290 * ROUTER : IFN could be secure or non-secure. 2291 * 2292 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2293 * packet in error has AH/ESP headers to validate the AH/ESP 2294 * headers. AH/ESP will verify whether there is a valid SA or 2295 * not and send it back. We will fanout again if we have more 2296 * data in the packet. 2297 * 2298 * If the packet in error does not have AH/ESP, we handle it 2299 * like any other case. 2300 * 2301 * * NON_SECURE : If the packet in error has AH/ESP headers, 2302 * we attach a dummy ipsec_in and send it up to AH/ESP 2303 * for validation. AH/ESP will verify whether there is a 2304 * valid SA or not and send it back. We will fanout again if 2305 * we have more data in the packet. 2306 * 2307 * If the packet in error does not have AH/ESP, we handle it 2308 * like any other case. 2309 */ 2310 static void 2311 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2312 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2313 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2314 zoneid_t zoneid) 2315 { 2316 uint16_t *up; /* Pointer to ports in ULP header */ 2317 uint32_t ports; /* reversed ports for fanout */ 2318 ipha_t ripha; /* With reversed addresses */ 2319 mblk_t *first_mp; 2320 ipsec_in_t *ii; 2321 tcph_t *tcph; 2322 conn_t *connp; 2323 2324 first_mp = mp; 2325 if (mctl_present) { 2326 mp = first_mp->b_cont; 2327 ASSERT(mp != NULL); 2328 2329 ii = (ipsec_in_t *)first_mp->b_rptr; 2330 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2331 } else { 2332 ii = NULL; 2333 } 2334 2335 switch (ipha->ipha_protocol) { 2336 case IPPROTO_UDP: 2337 /* 2338 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2339 * transport header. 2340 */ 2341 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2342 mp->b_wptr) { 2343 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2344 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2345 BUMP_MIB(&ip_mib, ipInDiscards); 2346 goto drop_pkt; 2347 } 2348 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2349 ipha = (ipha_t *)&icmph[1]; 2350 } 2351 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2352 2353 /* 2354 * Attempt to find a client stream based on port. 2355 * Note that we do a reverse lookup since the header is 2356 * in the form we sent it out. 2357 * The ripha header is only used for the IP_UDP_MATCH and we 2358 * only set the src and dst addresses and protocol. 2359 */ 2360 ripha.ipha_src = ipha->ipha_dst; 2361 ripha.ipha_dst = ipha->ipha_src; 2362 ripha.ipha_protocol = ipha->ipha_protocol; 2363 ((uint16_t *)&ports)[0] = up[1]; 2364 ((uint16_t *)&ports)[1] = up[0]; 2365 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2366 ntohl(ipha->ipha_src), ntohs(up[0]), 2367 ntohl(ipha->ipha_dst), ntohs(up[1]), 2368 icmph->icmph_type, icmph->icmph_code)); 2369 2370 /* Have to change db_type after any pullupmsg */ 2371 DB_TYPE(mp) = M_CTL; 2372 2373 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2374 mctl_present, ip_policy, recv_ill, zoneid); 2375 return; 2376 2377 case IPPROTO_TCP: 2378 /* 2379 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2380 * transport header. 2381 */ 2382 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2383 mp->b_wptr) { 2384 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2385 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2386 BUMP_MIB(&ip_mib, ipInDiscards); 2387 goto drop_pkt; 2388 } 2389 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2390 ipha = (ipha_t *)&icmph[1]; 2391 } 2392 /* 2393 * Find a TCP client stream for this packet. 2394 * Note that we do a reverse lookup since the header is 2395 * in the form we sent it out. 2396 */ 2397 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2398 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2399 if (connp == NULL) { 2400 BUMP_MIB(&ip_mib, ipInDiscards); 2401 goto drop_pkt; 2402 } 2403 2404 /* Have to change db_type after any pullupmsg */ 2405 DB_TYPE(mp) = M_CTL; 2406 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2407 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2408 return; 2409 2410 case IPPROTO_SCTP: 2411 /* 2412 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2413 * transport header. 2414 */ 2415 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2416 mp->b_wptr) { 2417 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2418 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2419 BUMP_MIB(&ip_mib, ipInDiscards); 2420 goto drop_pkt; 2421 } 2422 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2423 ipha = (ipha_t *)&icmph[1]; 2424 } 2425 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2426 /* 2427 * Find a SCTP client stream for this packet. 2428 * Note that we do a reverse lookup since the header is 2429 * in the form we sent it out. 2430 * The ripha header is only used for the matching and we 2431 * only set the src and dst addresses, protocol, and version. 2432 */ 2433 ripha.ipha_src = ipha->ipha_dst; 2434 ripha.ipha_dst = ipha->ipha_src; 2435 ripha.ipha_protocol = ipha->ipha_protocol; 2436 ripha.ipha_version_and_hdr_length = 2437 ipha->ipha_version_and_hdr_length; 2438 ((uint16_t *)&ports)[0] = up[1]; 2439 ((uint16_t *)&ports)[1] = up[0]; 2440 2441 /* Have to change db_type after any pullupmsg */ 2442 DB_TYPE(mp) = M_CTL; 2443 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2444 mctl_present, ip_policy, 0, zoneid); 2445 return; 2446 2447 case IPPROTO_ESP: 2448 case IPPROTO_AH: { 2449 int ipsec_rc; 2450 2451 /* 2452 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2453 * We will re-use the IPSEC_IN if it is already present as 2454 * AH/ESP will not affect any fields in the IPSEC_IN for 2455 * ICMP errors. If there is no IPSEC_IN, allocate a new 2456 * one and attach it in the front. 2457 */ 2458 if (ii != NULL) { 2459 /* 2460 * ip_fanout_proto_again converts the ICMP errors 2461 * that come back from AH/ESP to M_DATA so that 2462 * if it is non-AH/ESP and we do a pullupmsg in 2463 * this function, it would work. Convert it back 2464 * to M_CTL before we send up as this is a ICMP 2465 * error. This could have been generated locally or 2466 * by some router. Validate the inner IPSEC 2467 * headers. 2468 * 2469 * NOTE : ill_index is used by ip_fanout_proto_again 2470 * to locate the ill. 2471 */ 2472 ASSERT(ill != NULL); 2473 ii->ipsec_in_ill_index = 2474 ill->ill_phyint->phyint_ifindex; 2475 ii->ipsec_in_rill_index = 2476 recv_ill->ill_phyint->phyint_ifindex; 2477 DB_TYPE(first_mp->b_cont) = M_CTL; 2478 } else { 2479 /* 2480 * IPSEC_IN is not present. We attach a ipsec_in 2481 * message and send up to IPSEC for validating 2482 * and removing the IPSEC headers. Clear 2483 * ipsec_in_secure so that when we return 2484 * from IPSEC, we don't mistakenly think that this 2485 * is a secure packet came from the network. 2486 * 2487 * NOTE : ill_index is used by ip_fanout_proto_again 2488 * to locate the ill. 2489 */ 2490 ASSERT(first_mp == mp); 2491 first_mp = ipsec_in_alloc(B_TRUE); 2492 if (first_mp == NULL) { 2493 freemsg(mp); 2494 BUMP_MIB(&ip_mib, ipInDiscards); 2495 return; 2496 } 2497 ii = (ipsec_in_t *)first_mp->b_rptr; 2498 2499 /* This is not a secure packet */ 2500 ii->ipsec_in_secure = B_FALSE; 2501 first_mp->b_cont = mp; 2502 DB_TYPE(mp) = M_CTL; 2503 ASSERT(ill != NULL); 2504 ii->ipsec_in_ill_index = 2505 ill->ill_phyint->phyint_ifindex; 2506 ii->ipsec_in_rill_index = 2507 recv_ill->ill_phyint->phyint_ifindex; 2508 } 2509 ip2dbg(("icmp_inbound_error: ipsec\n")); 2510 2511 if (!ipsec_loaded()) { 2512 ip_proto_not_sup(q, first_mp, 0, zoneid); 2513 return; 2514 } 2515 2516 if (ipha->ipha_protocol == IPPROTO_ESP) 2517 ipsec_rc = ipsecesp_icmp_error(first_mp); 2518 else 2519 ipsec_rc = ipsecah_icmp_error(first_mp); 2520 if (ipsec_rc == IPSEC_STATUS_FAILED) 2521 return; 2522 2523 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2524 return; 2525 } 2526 default: 2527 /* 2528 * The ripha header is only used for the lookup and we 2529 * only set the src and dst addresses and protocol. 2530 */ 2531 ripha.ipha_src = ipha->ipha_dst; 2532 ripha.ipha_dst = ipha->ipha_src; 2533 ripha.ipha_protocol = ipha->ipha_protocol; 2534 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2535 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2536 ntohl(ipha->ipha_dst), 2537 icmph->icmph_type, icmph->icmph_code)); 2538 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2539 ipha_t *in_ipha; 2540 2541 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2542 mp->b_wptr) { 2543 if (!pullupmsg(mp, (uchar_t *)ipha + 2544 hdr_length + sizeof (ipha_t) - 2545 mp->b_rptr)) { 2546 2547 BUMP_MIB(&ip_mib, ipInDiscards); 2548 goto drop_pkt; 2549 } 2550 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2551 ipha = (ipha_t *)&icmph[1]; 2552 } 2553 /* 2554 * Caller has verified that length has to be 2555 * at least the size of IP header. 2556 */ 2557 ASSERT(hdr_length >= sizeof (ipha_t)); 2558 /* 2559 * Check the sanity of the inner IP header like 2560 * we did for the outer header. 2561 */ 2562 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2563 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2564 BUMP_MIB(&ip_mib, ipInDiscards); 2565 goto drop_pkt; 2566 } 2567 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2568 BUMP_MIB(&ip_mib, ipInDiscards); 2569 goto drop_pkt; 2570 } 2571 /* Check for Self-encapsulated tunnels */ 2572 if (in_ipha->ipha_src == ipha->ipha_src && 2573 in_ipha->ipha_dst == ipha->ipha_dst) { 2574 2575 mp = icmp_inbound_self_encap_error(mp, 2576 iph_hdr_length, hdr_length); 2577 if (mp == NULL) 2578 goto drop_pkt; 2579 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2580 ipha = (ipha_t *)&icmph[1]; 2581 hdr_length = IPH_HDR_LENGTH(ipha); 2582 /* 2583 * The packet in error is self-encapsualted. 2584 * And we are finding it further encapsulated 2585 * which we could not have possibly generated. 2586 */ 2587 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2588 BUMP_MIB(&ip_mib, ipInDiscards); 2589 goto drop_pkt; 2590 } 2591 icmp_inbound_error_fanout(q, ill, first_mp, 2592 icmph, ipha, iph_hdr_length, hdr_length, 2593 mctl_present, ip_policy, recv_ill, zoneid); 2594 return; 2595 } 2596 } 2597 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2598 ipha->ipha_protocol == IPPROTO_IPV6) && 2599 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2600 ii != NULL && 2601 ii->ipsec_in_loopback && 2602 ii->ipsec_in_secure) { 2603 /* 2604 * For IP tunnels that get a looped-back 2605 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2606 * reported new MTU to take into account the IPsec 2607 * headers protecting this configured tunnel. 2608 * 2609 * This allows the tunnel module (tun.c) to blindly 2610 * accept the MTU reported in an ICMP "too big" 2611 * message. 2612 * 2613 * Non-looped back ICMP messages will just be 2614 * handled by the security protocols (if needed), 2615 * and the first subsequent packet will hit this 2616 * path. 2617 */ 2618 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2619 ipsec_in_extra_length(first_mp)); 2620 } 2621 /* Have to change db_type after any pullupmsg */ 2622 DB_TYPE(mp) = M_CTL; 2623 2624 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2625 ip_policy, recv_ill, zoneid); 2626 return; 2627 } 2628 /* NOTREACHED */ 2629 drop_pkt:; 2630 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2631 freemsg(first_mp); 2632 } 2633 2634 /* 2635 * Common IP options parser. 2636 * 2637 * Setup routine: fill in *optp with options-parsing state, then 2638 * tail-call ipoptp_next to return the first option. 2639 */ 2640 uint8_t 2641 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2642 { 2643 uint32_t totallen; /* total length of all options */ 2644 2645 totallen = ipha->ipha_version_and_hdr_length - 2646 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2647 totallen <<= 2; 2648 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2649 optp->ipoptp_end = optp->ipoptp_next + totallen; 2650 optp->ipoptp_flags = 0; 2651 return (ipoptp_next(optp)); 2652 } 2653 2654 /* 2655 * Common IP options parser: extract next option. 2656 */ 2657 uint8_t 2658 ipoptp_next(ipoptp_t *optp) 2659 { 2660 uint8_t *end = optp->ipoptp_end; 2661 uint8_t *cur = optp->ipoptp_next; 2662 uint8_t opt, len, pointer; 2663 2664 /* 2665 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2666 * has been corrupted. 2667 */ 2668 ASSERT(cur <= end); 2669 2670 if (cur == end) 2671 return (IPOPT_EOL); 2672 2673 opt = cur[IPOPT_OPTVAL]; 2674 2675 /* 2676 * Skip any NOP options. 2677 */ 2678 while (opt == IPOPT_NOP) { 2679 cur++; 2680 if (cur == end) 2681 return (IPOPT_EOL); 2682 opt = cur[IPOPT_OPTVAL]; 2683 } 2684 2685 if (opt == IPOPT_EOL) 2686 return (IPOPT_EOL); 2687 2688 /* 2689 * Option requiring a length. 2690 */ 2691 if ((cur + 1) >= end) { 2692 optp->ipoptp_flags |= IPOPTP_ERROR; 2693 return (IPOPT_EOL); 2694 } 2695 len = cur[IPOPT_OLEN]; 2696 if (len < 2) { 2697 optp->ipoptp_flags |= IPOPTP_ERROR; 2698 return (IPOPT_EOL); 2699 } 2700 optp->ipoptp_cur = cur; 2701 optp->ipoptp_len = len; 2702 optp->ipoptp_next = cur + len; 2703 if (cur + len > end) { 2704 optp->ipoptp_flags |= IPOPTP_ERROR; 2705 return (IPOPT_EOL); 2706 } 2707 2708 /* 2709 * For the options which require a pointer field, make sure 2710 * its there, and make sure it points to either something 2711 * inside this option, or the end of the option. 2712 */ 2713 switch (opt) { 2714 case IPOPT_RR: 2715 case IPOPT_TS: 2716 case IPOPT_LSRR: 2717 case IPOPT_SSRR: 2718 if (len <= IPOPT_OFFSET) { 2719 optp->ipoptp_flags |= IPOPTP_ERROR; 2720 return (opt); 2721 } 2722 pointer = cur[IPOPT_OFFSET]; 2723 if (pointer - 1 > len) { 2724 optp->ipoptp_flags |= IPOPTP_ERROR; 2725 return (opt); 2726 } 2727 break; 2728 } 2729 2730 /* 2731 * Sanity check the pointer field based on the type of the 2732 * option. 2733 */ 2734 switch (opt) { 2735 case IPOPT_RR: 2736 case IPOPT_SSRR: 2737 case IPOPT_LSRR: 2738 if (pointer < IPOPT_MINOFF_SR) 2739 optp->ipoptp_flags |= IPOPTP_ERROR; 2740 break; 2741 case IPOPT_TS: 2742 if (pointer < IPOPT_MINOFF_IT) 2743 optp->ipoptp_flags |= IPOPTP_ERROR; 2744 /* 2745 * Note that the Internet Timestamp option also 2746 * contains two four bit fields (the Overflow field, 2747 * and the Flag field), which follow the pointer 2748 * field. We don't need to check that these fields 2749 * fall within the length of the option because this 2750 * was implicitely done above. We've checked that the 2751 * pointer value is at least IPOPT_MINOFF_IT, and that 2752 * it falls within the option. Since IPOPT_MINOFF_IT > 2753 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2754 */ 2755 ASSERT(len > IPOPT_POS_OV_FLG); 2756 break; 2757 } 2758 2759 return (opt); 2760 } 2761 2762 /* 2763 * Update any record route or timestamp options to include this host. 2764 * Reverse any source route option. 2765 * This routine assumes that the options are well formed i.e. that they 2766 * have already been checked. 2767 */ 2768 static void 2769 icmp_options_update(ipha_t *ipha) 2770 { 2771 ipoptp_t opts; 2772 uchar_t *opt; 2773 uint8_t optval; 2774 ipaddr_t src; /* Our local address */ 2775 ipaddr_t dst; 2776 2777 ip2dbg(("icmp_options_update\n")); 2778 src = ipha->ipha_src; 2779 dst = ipha->ipha_dst; 2780 2781 for (optval = ipoptp_first(&opts, ipha); 2782 optval != IPOPT_EOL; 2783 optval = ipoptp_next(&opts)) { 2784 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2785 opt = opts.ipoptp_cur; 2786 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2787 optval, opts.ipoptp_len)); 2788 switch (optval) { 2789 int off1, off2; 2790 case IPOPT_SSRR: 2791 case IPOPT_LSRR: 2792 /* 2793 * Reverse the source route. The first entry 2794 * should be the next to last one in the current 2795 * source route (the last entry is our address). 2796 * The last entry should be the final destination. 2797 */ 2798 off1 = IPOPT_MINOFF_SR - 1; 2799 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2800 if (off2 < 0) { 2801 /* No entries in source route */ 2802 ip1dbg(( 2803 "icmp_options_update: bad src route\n")); 2804 break; 2805 } 2806 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2807 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2808 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2809 off2 -= IP_ADDR_LEN; 2810 2811 while (off1 < off2) { 2812 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2813 bcopy((char *)opt + off2, (char *)opt + off1, 2814 IP_ADDR_LEN); 2815 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2816 off1 += IP_ADDR_LEN; 2817 off2 -= IP_ADDR_LEN; 2818 } 2819 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2820 break; 2821 } 2822 } 2823 } 2824 2825 /* 2826 * Process received ICMP Redirect messages. 2827 */ 2828 /* ARGSUSED */ 2829 static void 2830 icmp_redirect(mblk_t *mp) 2831 { 2832 ipha_t *ipha; 2833 int iph_hdr_length; 2834 icmph_t *icmph; 2835 ipha_t *ipha_err; 2836 ire_t *ire; 2837 ire_t *prev_ire; 2838 ire_t *save_ire; 2839 ipaddr_t src, dst, gateway; 2840 iulp_t ulp_info = { 0 }; 2841 int error; 2842 2843 ipha = (ipha_t *)mp->b_rptr; 2844 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2845 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 2846 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 2847 BUMP_MIB(&icmp_mib, icmpInErrors); 2848 freemsg(mp); 2849 return; 2850 } 2851 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2852 ipha_err = (ipha_t *)&icmph[1]; 2853 src = ipha->ipha_src; 2854 dst = ipha_err->ipha_dst; 2855 gateway = icmph->icmph_rd_gateway; 2856 /* Make sure the new gateway is reachable somehow. */ 2857 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 2858 ALL_ZONES, MATCH_IRE_TYPE); 2859 /* 2860 * Make sure we had a route for the dest in question and that 2861 * that route was pointing to the old gateway (the source of the 2862 * redirect packet.) 2863 */ 2864 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 2865 MATCH_IRE_GW); 2866 /* 2867 * Check that 2868 * the redirect was not from ourselves 2869 * the new gateway and the old gateway are directly reachable 2870 */ 2871 if (!prev_ire || 2872 !ire || 2873 ire->ire_type == IRE_LOCAL) { 2874 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2875 freemsg(mp); 2876 if (ire != NULL) 2877 ire_refrele(ire); 2878 if (prev_ire != NULL) 2879 ire_refrele(prev_ire); 2880 return; 2881 } 2882 2883 /* 2884 * Should we use the old ULP info to create the new gateway? From 2885 * a user's perspective, we should inherit the info so that it 2886 * is a "smooth" transition. If we do not do that, then new 2887 * connections going thru the new gateway will have no route metrics, 2888 * which is counter-intuitive to user. From a network point of 2889 * view, this may or may not make sense even though the new gateway 2890 * is still directly connected to us so the route metrics should not 2891 * change much. 2892 * 2893 * But if the old ire_uinfo is not initialized, we do another 2894 * recursive lookup on the dest using the new gateway. There may 2895 * be a route to that. If so, use it to initialize the redirect 2896 * route. 2897 */ 2898 if (prev_ire->ire_uinfo.iulp_set) { 2899 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2900 } else { 2901 ire_t *tmp_ire; 2902 ire_t *sire; 2903 2904 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 2905 ALL_ZONES, 0, 2906 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 2907 if (sire != NULL) { 2908 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2909 /* 2910 * If sire != NULL, ire_ftable_lookup() should not 2911 * return a NULL value. 2912 */ 2913 ASSERT(tmp_ire != NULL); 2914 ire_refrele(tmp_ire); 2915 ire_refrele(sire); 2916 } else if (tmp_ire != NULL) { 2917 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 2918 sizeof (iulp_t)); 2919 ire_refrele(tmp_ire); 2920 } 2921 } 2922 if (prev_ire->ire_type == IRE_CACHE) 2923 ire_delete(prev_ire); 2924 ire_refrele(prev_ire); 2925 /* 2926 * TODO: more precise handling for cases 0, 2, 3, the latter two 2927 * require TOS routing 2928 */ 2929 switch (icmph->icmph_code) { 2930 case 0: 2931 case 1: 2932 /* TODO: TOS specificity for cases 2 and 3 */ 2933 case 2: 2934 case 3: 2935 break; 2936 default: 2937 freemsg(mp); 2938 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2939 ire_refrele(ire); 2940 return; 2941 } 2942 /* 2943 * Create a Route Association. This will allow us to remember that 2944 * someone we believe told us to use the particular gateway. 2945 */ 2946 save_ire = ire; 2947 ire = ire_create( 2948 (uchar_t *)&dst, /* dest addr */ 2949 (uchar_t *)&ip_g_all_ones, /* mask */ 2950 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 2951 (uchar_t *)&gateway, /* gateway addr */ 2952 NULL, /* no in_srcaddr */ 2953 &save_ire->ire_max_frag, /* max frag */ 2954 NULL, /* Fast Path header */ 2955 NULL, /* no rfq */ 2956 NULL, /* no stq */ 2957 IRE_HOST_REDIRECT, 2958 NULL, 2959 NULL, 2960 NULL, 2961 0, 2962 0, 2963 0, 2964 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2965 &ulp_info); 2966 2967 if (ire == NULL) { 2968 freemsg(mp); 2969 ire_refrele(save_ire); 2970 return; 2971 } 2972 error = ire_add(&ire, NULL, NULL, NULL); 2973 ire_refrele(save_ire); 2974 if (error == 0) { 2975 ire_refrele(ire); /* Held in ire_add_v4 */ 2976 /* tell routing sockets that we received a redirect */ 2977 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2978 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2979 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 2980 } 2981 2982 /* 2983 * Delete any existing IRE_HOST_REDIRECT for this destination. 2984 * This together with the added IRE has the effect of 2985 * modifying an existing redirect. 2986 */ 2987 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 2988 ALL_ZONES, 0, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 2989 if (prev_ire) { 2990 ire_delete(prev_ire); 2991 ire_refrele(prev_ire); 2992 } 2993 2994 freemsg(mp); 2995 } 2996 2997 /* 2998 * Generate an ICMP parameter problem message. 2999 */ 3000 static void 3001 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 3002 { 3003 icmph_t icmph; 3004 boolean_t mctl_present; 3005 mblk_t *first_mp; 3006 3007 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3008 3009 if (!(mp = icmp_pkt_err_ok(mp))) { 3010 if (mctl_present) 3011 freeb(first_mp); 3012 return; 3013 } 3014 3015 bzero(&icmph, sizeof (icmph_t)); 3016 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3017 icmph.icmph_pp_ptr = ptr; 3018 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3019 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3020 } 3021 3022 /* 3023 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3024 * the ICMP header pointed to by "stuff". (May be called as writer.) 3025 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3026 * an icmp error packet can be sent. 3027 * Assigns an appropriate source address to the packet. If ipha_dst is 3028 * one of our addresses use it for source. Otherwise pick a source based 3029 * on a route lookup back to ipha_src. 3030 * Note that ipha_src must be set here since the 3031 * packet is likely to arrive on an ill queue in ip_wput() which will 3032 * not set a source address. 3033 */ 3034 static void 3035 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3036 boolean_t mctl_present) 3037 { 3038 ipaddr_t dst; 3039 icmph_t *icmph; 3040 ipha_t *ipha; 3041 uint_t len_needed; 3042 size_t msg_len; 3043 mblk_t *mp1; 3044 ipaddr_t src; 3045 ire_t *ire; 3046 mblk_t *ipsec_mp; 3047 ipsec_out_t *io = NULL; 3048 boolean_t xmit_if_on = B_FALSE; 3049 zoneid_t zoneid; 3050 3051 if (mctl_present) { 3052 /* 3053 * If it is : 3054 * 3055 * 1) a IPSEC_OUT, then this is caused by outbound 3056 * datagram originating on this host. IPSEC processing 3057 * may or may not have been done. Refer to comments above 3058 * icmp_inbound_error_fanout for details. 3059 * 3060 * 2) a IPSEC_IN if we are generating a icmp_message 3061 * for an incoming datagram destined for us i.e called 3062 * from ip_fanout_send_icmp. 3063 */ 3064 ipsec_info_t *in; 3065 ipsec_mp = mp; 3066 mp = ipsec_mp->b_cont; 3067 3068 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3069 ipha = (ipha_t *)mp->b_rptr; 3070 3071 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3072 in->ipsec_info_type == IPSEC_IN); 3073 3074 if (in->ipsec_info_type == IPSEC_IN) { 3075 /* 3076 * Convert the IPSEC_IN to IPSEC_OUT. 3077 */ 3078 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3079 BUMP_MIB(&ip_mib, ipOutDiscards); 3080 return; 3081 } 3082 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3083 } else { 3084 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3085 io = (ipsec_out_t *)in; 3086 if (io->ipsec_out_xmit_if) 3087 xmit_if_on = B_TRUE; 3088 /* 3089 * Clear out ipsec_out_proc_begin, so we do a fresh 3090 * ire lookup. 3091 */ 3092 io->ipsec_out_proc_begin = B_FALSE; 3093 } 3094 zoneid = io->ipsec_out_zoneid; 3095 ASSERT(zoneid != ALL_ZONES); 3096 } else { 3097 /* 3098 * This is in clear. The icmp message we are building 3099 * here should go out in clear. 3100 * 3101 * Pardon the convolution of it all, but it's easier to 3102 * allocate a "use cleartext" IPSEC_IN message and convert 3103 * it than it is to allocate a new one. 3104 */ 3105 ipsec_in_t *ii; 3106 ASSERT(DB_TYPE(mp) == M_DATA); 3107 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3108 freemsg(mp); 3109 BUMP_MIB(&ip_mib, ipOutDiscards); 3110 return; 3111 } 3112 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3113 3114 /* This is not a secure packet */ 3115 ii->ipsec_in_secure = B_FALSE; 3116 if (CONN_Q(q)) { 3117 zoneid = Q_TO_CONN(q)->conn_zoneid; 3118 } else { 3119 zoneid = GLOBAL_ZONEID; 3120 } 3121 ii->ipsec_in_zoneid = zoneid; 3122 ipsec_mp->b_cont = mp; 3123 ipha = (ipha_t *)mp->b_rptr; 3124 /* 3125 * Convert the IPSEC_IN to IPSEC_OUT. 3126 */ 3127 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3128 BUMP_MIB(&ip_mib, ipOutDiscards); 3129 return; 3130 } 3131 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3132 } 3133 3134 /* Remember our eventual destination */ 3135 dst = ipha->ipha_src; 3136 3137 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3138 NULL, NULL, zoneid, MATCH_IRE_TYPE); 3139 if (ire != NULL && ire->ire_zoneid == zoneid) { 3140 src = ipha->ipha_dst; 3141 } else if (!xmit_if_on) { 3142 if (ire != NULL) 3143 ire_refrele(ire); 3144 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, 3145 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3146 if (ire == NULL) { 3147 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3148 freemsg(ipsec_mp); 3149 return; 3150 } 3151 src = ire->ire_src_addr; 3152 } else { 3153 ipif_t *ipif = NULL; 3154 ill_t *ill; 3155 /* 3156 * This must be an ICMP error coming from 3157 * ip_mrtun_forward(). The src addr should 3158 * be equal to the IP-addr of the outgoing 3159 * interface. 3160 */ 3161 if (io == NULL) { 3162 /* This is not a IPSEC_OUT type control msg */ 3163 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3164 freemsg(ipsec_mp); 3165 return; 3166 } 3167 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3168 NULL, NULL, NULL, NULL); 3169 if (ill != NULL) { 3170 ipif = ipif_get_next_ipif(NULL, ill); 3171 ill_refrele(ill); 3172 } 3173 if (ipif == NULL) { 3174 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3175 freemsg(ipsec_mp); 3176 return; 3177 } 3178 src = ipif->ipif_src_addr; 3179 ipif_refrele(ipif); 3180 } 3181 3182 if (ire != NULL) 3183 ire_refrele(ire); 3184 3185 /* 3186 * Check if we can send back more then 8 bytes in addition 3187 * to the IP header. We will include as much as 64 bytes. 3188 */ 3189 len_needed = IPH_HDR_LENGTH(ipha) + ip_icmp_return; 3190 msg_len = msgdsize(mp); 3191 if (msg_len > len_needed) { 3192 (void) adjmsg(mp, len_needed - msg_len); 3193 msg_len = len_needed; 3194 } 3195 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3196 if (!mp1) { 3197 BUMP_MIB(&icmp_mib, icmpOutErrors); 3198 freemsg(ipsec_mp); 3199 return; 3200 } 3201 mp1->b_cont = mp; 3202 mp = mp1; 3203 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3204 ipsec_mp->b_rptr == (uint8_t *)io && 3205 io->ipsec_out_type == IPSEC_OUT); 3206 ipsec_mp->b_cont = mp; 3207 3208 /* 3209 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3210 * node generates be accepted in peace by all on-host destinations. 3211 * If we do NOT assume that all on-host destinations trust 3212 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3213 * (Look for ipsec_out_icmp_loopback). 3214 */ 3215 io->ipsec_out_icmp_loopback = B_TRUE; 3216 3217 ipha = (ipha_t *)mp->b_rptr; 3218 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3219 *ipha = icmp_ipha; 3220 ipha->ipha_src = src; 3221 ipha->ipha_dst = dst; 3222 ipha->ipha_ttl = ip_def_ttl; 3223 msg_len += sizeof (icmp_ipha) + len; 3224 if (msg_len > IP_MAXPACKET) { 3225 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3226 msg_len = IP_MAXPACKET; 3227 } 3228 ipha->ipha_length = htons((uint16_t)msg_len); 3229 icmph = (icmph_t *)&ipha[1]; 3230 bcopy(stuff, icmph, len); 3231 icmph->icmph_checksum = 0; 3232 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3233 if (icmph->icmph_checksum == 0) 3234 icmph->icmph_checksum = 0xFFFF; 3235 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3236 put(q, ipsec_mp); 3237 } 3238 3239 /* 3240 * Determine if an ICMP error packet can be sent given the rate limit. 3241 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3242 * in milliseconds) and a burst size. Burst size number of packets can 3243 * be sent arbitrarely closely spaced. 3244 * The state is tracked using two variables to implement an approximate 3245 * token bucket filter: 3246 * icmp_pkt_err_last - lbolt value when the last burst started 3247 * icmp_pkt_err_sent - number of packets sent in current burst 3248 */ 3249 boolean_t 3250 icmp_err_rate_limit(void) 3251 { 3252 clock_t now = TICK_TO_MSEC(lbolt); 3253 uint_t refilled; /* Number of packets refilled in tbf since last */ 3254 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3255 3256 if (err_interval == 0) 3257 return (B_FALSE); 3258 3259 if (icmp_pkt_err_last > now) { 3260 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3261 icmp_pkt_err_last = 0; 3262 icmp_pkt_err_sent = 0; 3263 } 3264 /* 3265 * If we are in a burst update the token bucket filter. 3266 * Update the "last" time to be close to "now" but make sure 3267 * we don't loose precision. 3268 */ 3269 if (icmp_pkt_err_sent != 0) { 3270 refilled = (now - icmp_pkt_err_last)/err_interval; 3271 if (refilled > icmp_pkt_err_sent) { 3272 icmp_pkt_err_sent = 0; 3273 } else { 3274 icmp_pkt_err_sent -= refilled; 3275 icmp_pkt_err_last += refilled * err_interval; 3276 } 3277 } 3278 if (icmp_pkt_err_sent == 0) { 3279 /* Start of new burst */ 3280 icmp_pkt_err_last = now; 3281 } 3282 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3283 icmp_pkt_err_sent++; 3284 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3285 icmp_pkt_err_sent)); 3286 return (B_FALSE); 3287 } 3288 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3289 return (B_TRUE); 3290 } 3291 3292 /* 3293 * Check if it is ok to send an IPv4 ICMP error packet in 3294 * response to the IPv4 packet in mp. 3295 * Free the message and return null if no 3296 * ICMP error packet should be sent. 3297 */ 3298 static mblk_t * 3299 icmp_pkt_err_ok(mblk_t *mp) 3300 { 3301 icmph_t *icmph; 3302 ipha_t *ipha; 3303 uint_t len_needed; 3304 ire_t *src_ire; 3305 ire_t *dst_ire; 3306 3307 if (!mp) 3308 return (NULL); 3309 ipha = (ipha_t *)mp->b_rptr; 3310 if (ip_csum_hdr(ipha)) { 3311 BUMP_MIB(&ip_mib, ipInCksumErrs); 3312 freemsg(mp); 3313 return (NULL); 3314 } 3315 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3316 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3317 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3318 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3319 if (src_ire != NULL || dst_ire != NULL || 3320 CLASSD(ipha->ipha_dst) || 3321 CLASSD(ipha->ipha_src) || 3322 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3323 /* Note: only errors to the fragment with offset 0 */ 3324 BUMP_MIB(&icmp_mib, icmpOutDrops); 3325 freemsg(mp); 3326 if (src_ire != NULL) 3327 ire_refrele(src_ire); 3328 if (dst_ire != NULL) 3329 ire_refrele(dst_ire); 3330 return (NULL); 3331 } 3332 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3333 /* 3334 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3335 * errors in response to any ICMP errors. 3336 */ 3337 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3338 if (mp->b_wptr - mp->b_rptr < len_needed) { 3339 if (!pullupmsg(mp, len_needed)) { 3340 BUMP_MIB(&icmp_mib, icmpInErrors); 3341 freemsg(mp); 3342 return (NULL); 3343 } 3344 ipha = (ipha_t *)mp->b_rptr; 3345 } 3346 icmph = (icmph_t *) 3347 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3348 switch (icmph->icmph_type) { 3349 case ICMP_DEST_UNREACHABLE: 3350 case ICMP_SOURCE_QUENCH: 3351 case ICMP_TIME_EXCEEDED: 3352 case ICMP_PARAM_PROBLEM: 3353 case ICMP_REDIRECT: 3354 BUMP_MIB(&icmp_mib, icmpOutDrops); 3355 freemsg(mp); 3356 return (NULL); 3357 default: 3358 break; 3359 } 3360 } 3361 if (icmp_err_rate_limit()) { 3362 /* 3363 * Only send ICMP error packets every so often. 3364 * This should be done on a per port/source basis, 3365 * but for now this will suffice. 3366 */ 3367 freemsg(mp); 3368 return (NULL); 3369 } 3370 return (mp); 3371 } 3372 3373 /* 3374 * Generate an ICMP redirect message. 3375 */ 3376 static void 3377 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3378 { 3379 icmph_t icmph; 3380 3381 /* 3382 * We are called from ip_rput where we could 3383 * not have attached an IPSEC_IN. 3384 */ 3385 ASSERT(mp->b_datap->db_type == M_DATA); 3386 3387 if (!(mp = icmp_pkt_err_ok(mp))) { 3388 return; 3389 } 3390 3391 bzero(&icmph, sizeof (icmph_t)); 3392 icmph.icmph_type = ICMP_REDIRECT; 3393 icmph.icmph_code = 1; 3394 icmph.icmph_rd_gateway = gateway; 3395 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3396 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3397 } 3398 3399 /* 3400 * Generate an ICMP time exceeded message. 3401 */ 3402 void 3403 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3404 { 3405 icmph_t icmph; 3406 boolean_t mctl_present; 3407 mblk_t *first_mp; 3408 3409 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3410 3411 if (!(mp = icmp_pkt_err_ok(mp))) { 3412 if (mctl_present) 3413 freeb(first_mp); 3414 return; 3415 } 3416 3417 bzero(&icmph, sizeof (icmph_t)); 3418 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3419 icmph.icmph_code = code; 3420 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3421 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3422 } 3423 3424 /* 3425 * Generate an ICMP unreachable message. 3426 */ 3427 void 3428 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3429 { 3430 icmph_t icmph; 3431 mblk_t *first_mp; 3432 boolean_t mctl_present; 3433 3434 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3435 3436 if (!(mp = icmp_pkt_err_ok(mp))) { 3437 if (mctl_present) 3438 freeb(first_mp); 3439 return; 3440 } 3441 3442 bzero(&icmph, sizeof (icmph_t)); 3443 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3444 icmph.icmph_code = code; 3445 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3446 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3447 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3448 } 3449 3450 /* 3451 * News from ARP. ARP sends notification of interesting events down 3452 * to its clients using M_CTL messages with the interesting ARP packet 3453 * attached via b_cont. 3454 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3455 * queue as opposed to ARP sending the message to all the clients, i.e. all 3456 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3457 * table if a cache IRE is found to delete all the entries for the address in 3458 * the packet. 3459 */ 3460 static void 3461 ip_arp_news(queue_t *q, mblk_t *mp) 3462 { 3463 arcn_t *arcn; 3464 arh_t *arh; 3465 char *cp1; 3466 uchar_t *cp2; 3467 ire_t *ire = NULL; 3468 int i1; 3469 char hbuf[128]; 3470 char sbuf[16]; 3471 ipaddr_t src; 3472 in6_addr_t v6src; 3473 boolean_t isv6 = B_FALSE; 3474 3475 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3476 if (q->q_next) { 3477 putnext(q, mp); 3478 } else 3479 freemsg(mp); 3480 return; 3481 } 3482 arh = (arh_t *)mp->b_cont->b_rptr; 3483 /* Is it one we are interested in? */ 3484 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3485 isv6 = B_TRUE; 3486 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3487 IPV6_ADDR_LEN); 3488 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3489 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3490 IP_ADDR_LEN); 3491 } else { 3492 freemsg(mp); 3493 return; 3494 } 3495 3496 arcn = (arcn_t *)mp->b_rptr; 3497 switch (arcn->arcn_code) { 3498 case AR_CN_BOGON: 3499 /* 3500 * Someone is sending ARP packets with a source protocol 3501 * address which we have published. Either they are 3502 * pretending to be us, or we have been asked to proxy 3503 * for a machine that can do fine for itself, or two 3504 * different machines are providing proxy service for the 3505 * same protocol address, or something. We try and do 3506 * something appropriate here. 3507 */ 3508 cp2 = (uchar_t *)&arh[1]; 3509 cp1 = hbuf; 3510 *cp1 = '\0'; 3511 for (i1 = arh->arh_hlen; i1--; cp1 += 3) 3512 (void) sprintf(cp1, "%02x:", *cp2++ & 0xff); 3513 if (cp1 != hbuf) 3514 cp1[-1] = '\0'; 3515 (void) ip_dot_addr(src, sbuf); 3516 if (isv6) 3517 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES); 3518 else 3519 ire = ire_cache_lookup(src, ALL_ZONES); 3520 3521 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3522 cmn_err(CE_WARN, 3523 "IP: Hardware address '%s' trying" 3524 " to be our address %s!", 3525 hbuf, sbuf); 3526 } else { 3527 cmn_err(CE_WARN, 3528 "IP: Proxy ARP problem? " 3529 "Hardware address '%s' thinks it is %s", 3530 hbuf, sbuf); 3531 } 3532 if (ire != NULL) 3533 ire_refrele(ire); 3534 break; 3535 case AR_CN_ANNOUNCE: 3536 if (isv6) { 3537 /* 3538 * For XRESOLV interfaces. 3539 * Delete the IRE cache entry and NCE for this 3540 * v6 address 3541 */ 3542 ip_ire_clookup_and_delete_v6(&v6src); 3543 /* 3544 * If v6src is a non-zero, it's a router address 3545 * as below. Do the same sort of thing to clean 3546 * out off-net IRE_CACHE entries that go through 3547 * the router. 3548 */ 3549 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3550 ire_walk_v6(ire_delete_cache_gw_v6, 3551 (char *)&v6src, ALL_ZONES); 3552 } 3553 break; 3554 } 3555 /* 3556 * ARP gives us a copy of any broadcast packet with identical 3557 * sender and receiver protocol address, in 3558 * case we want to intuit something from it. Such a packet 3559 * usually means that a machine has just come up on the net. 3560 * If we have an IRE_CACHE, we blow it away. This way we will 3561 * immediately pick up the rare case of a host changing 3562 * hardware address. ip_ire_clookup_and_delete achieves this. 3563 * 3564 * The address in "src" may be an entry for a router. 3565 * (Default router, or non-default router.) If 3566 * that's true, then any off-net IRE_CACHE entries 3567 * that go through the router with address "src" 3568 * must be clobbered. Use ire_walk to achieve this 3569 * goal. 3570 * 3571 * It should be possible to determine if the address 3572 * in src is or is not for a router. This way, 3573 * the ire_walk() isn't called all of the time here. 3574 * Do not pass 'src' value of 0 to ire_delete_cache_gw, 3575 * as it would remove all IRE_CACHE entries for onlink 3576 * destinations. All onlink destinations have 3577 * ire_gateway_addr == 0. 3578 */ 3579 if ((ip_ire_clookup_and_delete(src, NULL) || 3580 (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL, 3581 0, MATCH_IRE_DSTONLY)) != NULL) && src != 0) { 3582 ire_walk_v4(ire_delete_cache_gw, (char *)&src, 3583 ALL_ZONES); 3584 } 3585 /* From ire_ftable_lookup */ 3586 if (ire != NULL) 3587 ire_refrele(ire); 3588 break; 3589 default: 3590 if (ire != NULL) 3591 ire_refrele(ire); 3592 break; 3593 } 3594 freemsg(mp); 3595 } 3596 3597 /* 3598 * Create a mblk suitable for carrying the interface index and/or source link 3599 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 3600 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 3601 * application. 3602 */ 3603 mblk_t * 3604 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 3605 { 3606 mblk_t *mp; 3607 in_pktinfo_t *pinfo; 3608 ipha_t *ipha; 3609 struct ether_header *pether; 3610 3611 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 3612 if (mp == NULL) { 3613 ip1dbg(("ip_add_info: allocation failure.\n")); 3614 return (data_mp); 3615 } 3616 3617 ipha = (ipha_t *)data_mp->b_rptr; 3618 pinfo = (in_pktinfo_t *)mp->b_rptr; 3619 bzero(pinfo, sizeof (in_pktinfo_t)); 3620 pinfo->in_pkt_flags = (uchar_t)flags; 3621 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 3622 3623 if (flags & IPF_RECVIF) 3624 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 3625 3626 pether = (struct ether_header *)((char *)ipha 3627 - sizeof (struct ether_header)); 3628 /* 3629 * Make sure the interface is an ethernet type, since this option 3630 * is currently supported only on this type of interface. Also make 3631 * sure we are pointing correctly above db_base. 3632 */ 3633 3634 if ((flags & IPF_RECVSLLA) && 3635 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 3636 (ill->ill_type == IFT_ETHER) && 3637 (ill->ill_net_type == IRE_IF_RESOLVER)) { 3638 3639 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 3640 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 3641 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 3642 } else { 3643 /* 3644 * Clear the bit. Indicate to upper layer that IP is not 3645 * sending this ancillary info. 3646 */ 3647 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 3648 } 3649 3650 mp->b_datap->db_type = M_CTL; 3651 mp->b_wptr += sizeof (in_pktinfo_t); 3652 mp->b_cont = data_mp; 3653 3654 return (mp); 3655 } 3656 3657 /* 3658 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 3659 * part of the bind request. 3660 */ 3661 3662 boolean_t 3663 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 3664 { 3665 ipsec_in_t *ii; 3666 3667 ASSERT(policy_mp != NULL); 3668 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 3669 3670 ii = (ipsec_in_t *)policy_mp->b_rptr; 3671 ASSERT(ii->ipsec_in_type == IPSEC_IN); 3672 3673 connp->conn_policy = ii->ipsec_in_policy; 3674 ii->ipsec_in_policy = NULL; 3675 3676 if (ii->ipsec_in_action != NULL) { 3677 if (connp->conn_latch == NULL) { 3678 connp->conn_latch = iplatch_create(); 3679 if (connp->conn_latch == NULL) 3680 return (B_FALSE); 3681 } 3682 ipsec_latch_inbound(connp->conn_latch, ii); 3683 } 3684 return (B_TRUE); 3685 } 3686 3687 /* 3688 * Upper level protocols (ULP) pass through bind requests to IP for inspection 3689 * and to arrange for power-fanout assist. The ULP is identified by 3690 * adding a single byte at the end of the original bind message. 3691 * A ULP other than UDP or TCP that wishes to be recognized passes 3692 * down a bind with a zero length address. 3693 * 3694 * The binding works as follows: 3695 * - A zero byte address means just bind to the protocol. 3696 * - A four byte address is treated as a request to validate 3697 * that the address is a valid local address, appropriate for 3698 * an application to bind to. This does not affect any fanout 3699 * information in IP. 3700 * - A sizeof sin_t byte address is used to bind to only the local address 3701 * and port. 3702 * - A sizeof ipa_conn_t byte address contains complete fanout information 3703 * consisting of local and remote addresses and ports. In 3704 * this case, the addresses are both validated as appropriate 3705 * for this operation, and, if so, the information is retained 3706 * for use in the inbound fanout. 3707 * 3708 * The ULP (except in the zero-length bind) can append an 3709 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 3710 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 3711 * a copy of the source or destination IRE (source for local bind; 3712 * destination for complete bind). IPSEC_POLICY_SET indicates that the 3713 * policy information contained should be copied on to the conn. 3714 * 3715 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 3716 */ 3717 mblk_t * 3718 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 3719 { 3720 ssize_t len; 3721 struct T_bind_req *tbr; 3722 sin_t *sin; 3723 ipa_conn_t *ac; 3724 uchar_t *ucp; 3725 mblk_t *mp1; 3726 boolean_t ire_requested; 3727 boolean_t ipsec_policy_set = B_FALSE; 3728 int error = 0; 3729 int protocol; 3730 ipa_conn_x_t *acx; 3731 3732 ASSERT(!connp->conn_af_isv6); 3733 connp->conn_pkt_isv6 = B_FALSE; 3734 3735 len = MBLKL(mp); 3736 if (len < (sizeof (*tbr) + 1)) { 3737 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 3738 "ip_bind: bogus msg, len %ld", len); 3739 /* XXX: Need to return something better */ 3740 goto bad_addr; 3741 } 3742 /* Back up and extract the protocol identifier. */ 3743 mp->b_wptr--; 3744 protocol = *mp->b_wptr & 0xFF; 3745 tbr = (struct T_bind_req *)mp->b_rptr; 3746 /* Reset the message type in preparation for shipping it back. */ 3747 DB_TYPE(mp) = M_PCPROTO; 3748 3749 connp->conn_ulp = (uint8_t)protocol; 3750 3751 /* 3752 * Check for a zero length address. This is from a protocol that 3753 * wants to register to receive all packets of its type. 3754 */ 3755 if (tbr->ADDR_length == 0) { 3756 /* 3757 * These protocols are now intercepted in ip_bind_v6(). 3758 * Reject protocol-level binds here for now. 3759 * 3760 * For SCTP raw socket, ICMP sends down a bind with sin_t 3761 * so that the protocol type cannot be SCTP. 3762 */ 3763 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 3764 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 3765 goto bad_addr; 3766 } 3767 3768 /* No hash here really. The table is big enough. */ 3769 connp->conn_srcv6 = ipv6_all_zeros; 3770 3771 ipcl_proto_insert(connp, protocol); 3772 3773 tbr->PRIM_type = T_BIND_ACK; 3774 return (mp); 3775 } 3776 3777 /* Extract the address pointer from the message. */ 3778 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 3779 tbr->ADDR_length); 3780 if (ucp == NULL) { 3781 ip1dbg(("ip_bind: no address\n")); 3782 goto bad_addr; 3783 } 3784 if (!OK_32PTR(ucp)) { 3785 ip1dbg(("ip_bind: unaligned address\n")); 3786 goto bad_addr; 3787 } 3788 /* 3789 * Check for trailing mps. 3790 */ 3791 3792 mp1 = mp->b_cont; 3793 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 3794 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 3795 3796 switch (tbr->ADDR_length) { 3797 default: 3798 ip1dbg(("ip_bind: bad address length %d\n", 3799 (int)tbr->ADDR_length)); 3800 goto bad_addr; 3801 3802 case IP_ADDR_LEN: 3803 /* Verification of local address only */ 3804 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 3805 ire_requested, ipsec_policy_set, B_FALSE); 3806 break; 3807 3808 case sizeof (sin_t): 3809 sin = (sin_t *)ucp; 3810 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 3811 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 3812 if (protocol == IPPROTO_TCP) 3813 connp->conn_recv = tcp_conn_request; 3814 break; 3815 3816 case sizeof (ipa_conn_t): 3817 ac = (ipa_conn_t *)ucp; 3818 /* For raw socket, the local port is not set. */ 3819 if (ac->ac_lport == 0) 3820 ac->ac_lport = connp->conn_lport; 3821 /* Always verify destination reachability. */ 3822 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 3823 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 3824 ipsec_policy_set, B_TRUE, B_TRUE); 3825 if (protocol == IPPROTO_TCP) 3826 connp->conn_recv = tcp_input; 3827 break; 3828 3829 case sizeof (ipa_conn_x_t): 3830 acx = (ipa_conn_x_t *)ucp; 3831 /* 3832 * Whether or not to verify destination reachability depends 3833 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 3834 */ 3835 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 3836 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 3837 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 3838 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 3839 if (protocol == IPPROTO_TCP) 3840 connp->conn_recv = tcp_input; 3841 break; 3842 } 3843 if (error == EINPROGRESS) 3844 return (NULL); 3845 else if (error != 0) 3846 goto bad_addr; 3847 /* 3848 * Pass the IPSEC headers size in ire_ipsec_overhead. 3849 * We can't do this in ip_bind_insert_ire because the policy 3850 * may not have been inherited at that point in time and hence 3851 * conn_out_enforce_policy may not be set. 3852 */ 3853 mp1 = mp->b_cont; 3854 if (ire_requested && connp->conn_out_enforce_policy && 3855 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 3856 ire_t *ire = (ire_t *)mp1->b_rptr; 3857 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 3858 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 3859 } 3860 3861 /* Send it home. */ 3862 mp->b_datap->db_type = M_PCPROTO; 3863 tbr->PRIM_type = T_BIND_ACK; 3864 return (mp); 3865 3866 bad_addr: 3867 /* 3868 * If error = -1 then we generate a TBADADDR - otherwise error is 3869 * a unix errno. 3870 */ 3871 if (error > 0) 3872 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 3873 else 3874 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 3875 return (mp); 3876 } 3877 3878 /* 3879 * Here address is verified to be a valid local address. 3880 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 3881 * address is also considered a valid local address. 3882 * In the case of a broadcast/multicast address, however, the 3883 * upper protocol is expected to reset the src address 3884 * to 0 if it sees a IRE_BROADCAST type returned so that 3885 * no packets are emitted with broadcast/multicast address as 3886 * source address (that violates hosts requirements RFC1122) 3887 * The addresses valid for bind are: 3888 * (1) - INADDR_ANY (0) 3889 * (2) - IP address of an UP interface 3890 * (3) - IP address of a DOWN interface 3891 * (4) - valid local IP broadcast addresses. In this case 3892 * the conn will only receive packets destined to 3893 * the specified broadcast address. 3894 * (5) - a multicast address. In this case 3895 * the conn will only receive packets destined to 3896 * the specified multicast address. Note: the 3897 * application still has to issue an 3898 * IP_ADD_MEMBERSHIP socket option. 3899 * 3900 * On error, return -1 for TBADADDR otherwise pass the 3901 * errno with TSYSERR reply. 3902 * 3903 * In all the above cases, the bound address must be valid in the current zone. 3904 * When the address is loopback, multicast or broadcast, there might be many 3905 * matching IREs so bind has to look up based on the zone. 3906 */ 3907 int 3908 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 3909 boolean_t ire_requested, boolean_t ipsec_policy_set, 3910 boolean_t fanout_insert) 3911 { 3912 int error = 0; 3913 ire_t *src_ire; 3914 mblk_t *policy_mp; 3915 ipif_t *ipif; 3916 zoneid_t zoneid; 3917 3918 if (ipsec_policy_set) { 3919 policy_mp = mp->b_cont; 3920 } 3921 3922 /* 3923 * If it was previously connected, conn_fully_bound would have 3924 * been set. 3925 */ 3926 connp->conn_fully_bound = B_FALSE; 3927 3928 src_ire = NULL; 3929 ipif = NULL; 3930 3931 zoneid = connp->conn_zoneid; 3932 3933 if (src_addr) { 3934 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 3935 NULL, NULL, zoneid, MATCH_IRE_ZONEONLY); 3936 /* 3937 * If an address other than 0.0.0.0 is requested, 3938 * we verify that it is a valid address for bind 3939 * Note: Following code is in if-else-if form for 3940 * readability compared to a condition check. 3941 */ 3942 /* LINTED - statement has no consequent */ 3943 if (IRE_IS_LOCAL(src_ire)) { 3944 /* 3945 * (2) Bind to address of local UP interface 3946 */ 3947 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 3948 /* 3949 * (4) Bind to broadcast address 3950 * Note: permitted only from transports that 3951 * request IRE 3952 */ 3953 if (!ire_requested) 3954 error = EADDRNOTAVAIL; 3955 } else { 3956 /* 3957 * (3) Bind to address of local DOWN interface 3958 * (ipif_lookup_addr() looks up all interfaces 3959 * but we do not get here for UP interfaces 3960 * - case (2) above) 3961 * We put the protocol byte back into the mblk 3962 * since we may come back via ip_wput_nondata() 3963 * later with this mblk if ipif_lookup_addr chooses 3964 * to defer processing. 3965 */ 3966 *mp->b_wptr++ = (char)connp->conn_ulp; 3967 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 3968 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 3969 &error)) != NULL) { 3970 ipif_refrele(ipif); 3971 } else if (error == EINPROGRESS) { 3972 if (src_ire != NULL) 3973 ire_refrele(src_ire); 3974 return (EINPROGRESS); 3975 } else if (CLASSD(src_addr)) { 3976 error = 0; 3977 if (src_ire != NULL) 3978 ire_refrele(src_ire); 3979 /* 3980 * (5) bind to multicast address. 3981 * Fake out the IRE returned to upper 3982 * layer to be a broadcast IRE. 3983 */ 3984 src_ire = ire_ctable_lookup( 3985 INADDR_BROADCAST, INADDR_ANY, 3986 IRE_BROADCAST, NULL, zoneid, 3987 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 3988 if (src_ire == NULL || !ire_requested) 3989 error = EADDRNOTAVAIL; 3990 } else { 3991 /* 3992 * Not a valid address for bind 3993 */ 3994 error = EADDRNOTAVAIL; 3995 } 3996 /* 3997 * Just to keep it consistent with the processing in 3998 * ip_bind_v4() 3999 */ 4000 mp->b_wptr--; 4001 } 4002 if (error) { 4003 /* Red Alert! Attempting to be a bogon! */ 4004 ip1dbg(("ip_bind: bad src address 0x%x\n", 4005 ntohl(src_addr))); 4006 goto bad_addr; 4007 } 4008 } 4009 4010 /* 4011 * Allow setting new policies. For example, disconnects come 4012 * down as ipa_t bind. As we would have set conn_policy_cached 4013 * to B_TRUE before, we should set it to B_FALSE, so that policy 4014 * can change after the disconnect. 4015 */ 4016 connp->conn_policy_cached = B_FALSE; 4017 4018 /* 4019 * If not fanout_insert this was just an address verification 4020 */ 4021 if (fanout_insert) { 4022 /* 4023 * The addresses have been verified. Time to insert in 4024 * the correct fanout list. 4025 */ 4026 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4027 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4028 connp->conn_lport = lport; 4029 connp->conn_fport = 0; 4030 /* 4031 * Do we need to add a check to reject Multicast packets 4032 */ 4033 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4034 } 4035 done: 4036 if (error == 0) { 4037 if (ire_requested) { 4038 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4039 error = -1; 4040 /* Falls through to bad_addr */ 4041 } 4042 } else if (ipsec_policy_set) { 4043 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4044 error = -1; 4045 /* Falls through to bad_addr */ 4046 } 4047 } 4048 } 4049 bad_addr: 4050 if (src_ire != NULL) 4051 IRE_REFRELE(src_ire); 4052 if (ipsec_policy_set) { 4053 ASSERT(policy_mp == mp->b_cont); 4054 ASSERT(policy_mp != NULL); 4055 freeb(policy_mp); 4056 /* 4057 * As of now assume that nothing else accompanies 4058 * IPSEC_POLICY_SET. 4059 */ 4060 mp->b_cont = NULL; 4061 } 4062 return (error); 4063 } 4064 4065 /* 4066 * Verify that both the source and destination addresses 4067 * are valid. If verify_dst is false, then the destination address may be 4068 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4069 * destination reachability, while tunnels do not. 4070 * Note that we allow connect to broadcast and multicast 4071 * addresses when ire_requested is set. Thus the ULP 4072 * has to check for IRE_BROADCAST and multicast. 4073 * 4074 * Returns zero if ok. 4075 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4076 * (for use with TSYSERR reply). 4077 */ 4078 int 4079 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4080 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4081 boolean_t ire_requested, boolean_t ipsec_policy_set, 4082 boolean_t fanout_insert, boolean_t verify_dst) 4083 { 4084 ire_t *src_ire; 4085 ire_t *dst_ire; 4086 int error = 0; 4087 int protocol; 4088 mblk_t *policy_mp; 4089 ire_t *sire = NULL; 4090 ire_t *md_dst_ire = NULL; 4091 ill_t *md_ill = NULL; 4092 zoneid_t zoneid; 4093 ipaddr_t src_addr = *src_addrp; 4094 4095 src_ire = dst_ire = NULL; 4096 protocol = *mp->b_wptr & 0xFF; 4097 4098 /* 4099 * If we never got a disconnect before, clear it now. 4100 */ 4101 connp->conn_fully_bound = B_FALSE; 4102 4103 if (ipsec_policy_set) { 4104 policy_mp = mp->b_cont; 4105 } 4106 4107 zoneid = connp->conn_zoneid; 4108 4109 if (CLASSD(dst_addr)) { 4110 /* Pick up an IRE_BROADCAST */ 4111 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4112 NULL, zoneid, (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4113 MATCH_IRE_RJ_BHOLE)); 4114 } else { 4115 /* 4116 * If conn_dontroute is set or if conn_nexthop_set is set, 4117 * and onlink ipif is not found set ENETUNREACH error. 4118 */ 4119 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4120 ipif_t *ipif; 4121 4122 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4123 dst_addr : connp->conn_nexthop_v4, zoneid); 4124 if (ipif == NULL) { 4125 error = ENETUNREACH; 4126 goto bad_addr; 4127 } 4128 ipif_refrele(ipif); 4129 } 4130 4131 if (connp->conn_nexthop_set) { 4132 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4133 0, 0, NULL, NULL, zoneid, 0); 4134 } else { 4135 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4136 &sire, zoneid, 4137 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4138 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE)); 4139 } 4140 } 4141 /* 4142 * dst_ire can't be a broadcast when not ire_requested. 4143 * We also prevent ire's with src address INADDR_ANY to 4144 * be used, which are created temporarily for 4145 * sending out packets from endpoints that have 4146 * conn_unspec_src set. If verify_dst is true, the destination must be 4147 * reachable. If verify_dst is false, the destination needn't be 4148 * reachable. 4149 * 4150 * If we match on a reject or black hole, then we've got a 4151 * local failure. May as well fail out the connect() attempt, 4152 * since it's never going to succeed. 4153 */ 4154 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4155 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4156 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4157 /* 4158 * If we're verifying destination reachability, we always want 4159 * to complain here. 4160 * 4161 * If we're not verifying destination reachability but the 4162 * destination has a route, we still want to fail on the 4163 * temporary address and broadcast address tests. 4164 */ 4165 if (verify_dst || (dst_ire != NULL)) { 4166 if (ip_debug > 2) { 4167 pr_addr_dbg("ip_bind_connected: bad connected " 4168 "dst %s\n", AF_INET, &dst_addr); 4169 } 4170 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4171 error = ENETUNREACH; 4172 else 4173 error = EHOSTUNREACH; 4174 goto bad_addr; 4175 } 4176 } 4177 /* 4178 * If the app does a connect(), it means that it will most likely 4179 * send more than 1 packet to the destination. It makes sense 4180 * to clear the temporary flag. 4181 */ 4182 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4183 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4184 irb_t *irb = dst_ire->ire_bucket; 4185 4186 rw_enter(&irb->irb_lock, RW_WRITER); 4187 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4188 irb->irb_tmp_ire_cnt--; 4189 rw_exit(&irb->irb_lock); 4190 } 4191 4192 /* 4193 * See if we should notify ULP about MDT; we do this whether or not 4194 * ire_requested is TRUE, in order to handle active connects; MDT 4195 * eligibility tests for passive connects are handled separately 4196 * through tcp_adapt_ire(). We do this before the source address 4197 * selection, because dst_ire may change after a call to 4198 * ipif_select_source(). This is a best-effort check, as the 4199 * packet for this connection may not actually go through 4200 * dst_ire->ire_stq, and the exact IRE can only be known after 4201 * calling ip_newroute(). This is why we further check on the 4202 * IRE during Multidata packet transmission in tcp_multisend(). 4203 */ 4204 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4205 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4206 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4207 ILL_MDT_CAPABLE(md_ill)) { 4208 md_dst_ire = dst_ire; 4209 IRE_REFHOLD(md_dst_ire); 4210 } 4211 4212 if (dst_ire != NULL && 4213 dst_ire->ire_type == IRE_LOCAL && 4214 dst_ire->ire_zoneid != zoneid) { 4215 /* 4216 * If the IRE belongs to a different zone, look for a matching 4217 * route in the forwarding table and use the source address from 4218 * that route. 4219 */ 4220 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4221 zoneid, 0, 4222 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4223 MATCH_IRE_RJ_BHOLE); 4224 if (src_ire == NULL) { 4225 error = EHOSTUNREACH; 4226 goto bad_addr; 4227 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4228 if (!(src_ire->ire_type & IRE_HOST)) 4229 error = ENETUNREACH; 4230 else 4231 error = EHOSTUNREACH; 4232 goto bad_addr; 4233 } 4234 if (src_addr == INADDR_ANY) 4235 src_addr = src_ire->ire_src_addr; 4236 ire_refrele(src_ire); 4237 src_ire = NULL; 4238 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4239 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4240 src_addr = sire->ire_src_addr; 4241 ire_refrele(dst_ire); 4242 dst_ire = sire; 4243 sire = NULL; 4244 } else { 4245 /* 4246 * Pick a source address so that a proper inbound 4247 * load spreading would happen. 4248 */ 4249 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4250 ipif_t *src_ipif = NULL; 4251 ire_t *ipif_ire; 4252 4253 /* 4254 * Supply a local source address such that inbound 4255 * load spreading happens. 4256 * 4257 * Determine the best source address on this ill for 4258 * the destination. 4259 * 4260 * 1) For broadcast, we should return a broadcast ire 4261 * found above so that upper layers know that the 4262 * destination address is a broadcast address. 4263 * 4264 * 2) If this is part of a group, select a better 4265 * source address so that better inbound load 4266 * balancing happens. Do the same if the ipif 4267 * is DEPRECATED. 4268 * 4269 * 3) If the outgoing interface is part of a usesrc 4270 * group, then try selecting a source address from 4271 * the usesrc ILL. 4272 */ 4273 if (!(dst_ire->ire_type & IRE_BROADCAST) && 4274 ((dst_ill->ill_group != NULL) || 4275 (dst_ire->ire_ipif->ipif_flags & 4276 IPIF_DEPRECATED) || 4277 (dst_ill->ill_usesrc_ifindex != 0))) { 4278 src_ipif = ipif_select_source(dst_ill, 4279 dst_addr, zoneid); 4280 if (src_ipif != NULL) { 4281 if (IS_VNI(src_ipif->ipif_ill)) { 4282 /* 4283 * For VNI there is no 4284 * interface route 4285 */ 4286 src_addr = 4287 src_ipif->ipif_src_addr; 4288 } else { 4289 ipif_ire = 4290 ipif_to_ire(src_ipif); 4291 if (ipif_ire != NULL) { 4292 IRE_REFRELE(dst_ire); 4293 dst_ire = ipif_ire; 4294 } 4295 src_addr = 4296 dst_ire->ire_src_addr; 4297 } 4298 ipif_refrele(src_ipif); 4299 } else { 4300 src_addr = dst_ire->ire_src_addr; 4301 } 4302 } else { 4303 src_addr = dst_ire->ire_src_addr; 4304 } 4305 } 4306 } 4307 4308 /* 4309 * We do ire_route_lookup() here (and not 4310 * interface lookup as we assert that 4311 * src_addr should only come from an 4312 * UP interface for hard binding. 4313 */ 4314 ASSERT(src_ire == NULL); 4315 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4316 NULL, zoneid, MATCH_IRE_ZONEONLY); 4317 /* src_ire must be a local|loopback */ 4318 if (!IRE_IS_LOCAL(src_ire)) { 4319 if (ip_debug > 2) { 4320 pr_addr_dbg("ip_bind_connected: bad connected " 4321 "src %s\n", AF_INET, &src_addr); 4322 } 4323 error = EADDRNOTAVAIL; 4324 goto bad_addr; 4325 } 4326 4327 /* 4328 * If the source address is a loopback address, the 4329 * destination had best be local or multicast. 4330 * The transports that can't handle multicast will reject 4331 * those addresses. 4332 */ 4333 if (src_ire->ire_type == IRE_LOOPBACK && 4334 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4335 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 4336 error = -1; 4337 goto bad_addr; 4338 } 4339 4340 /* 4341 * Allow setting new policies. For example, disconnects come 4342 * down as ipa_t bind. As we would have set conn_policy_cached 4343 * to B_TRUE before, we should set it to B_FALSE, so that policy 4344 * can change after the disconnect. 4345 */ 4346 connp->conn_policy_cached = B_FALSE; 4347 4348 /* 4349 * Set the conn addresses/ports immediately, so the IPsec policy calls 4350 * can handle their passed-in conn's. 4351 */ 4352 4353 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4354 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 4355 connp->conn_lport = lport; 4356 connp->conn_fport = fport; 4357 *src_addrp = src_addr; 4358 4359 ASSERT(!(ipsec_policy_set && ire_requested)); 4360 if (ire_requested) { 4361 iulp_t *ulp_info = NULL; 4362 4363 /* 4364 * Note that sire will not be NULL if this is an off-link 4365 * connection and there is not cache for that dest yet. 4366 * 4367 * XXX Because of an existing bug, if there are multiple 4368 * default routes, the IRE returned now may not be the actual 4369 * default route used (default routes are chosen in a 4370 * round robin fashion). So if the metrics for different 4371 * default routes are different, we may return the wrong 4372 * metrics. This will not be a problem if the existing 4373 * bug is fixed. 4374 */ 4375 if (sire != NULL) { 4376 ulp_info = &(sire->ire_uinfo); 4377 } 4378 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 4379 error = -1; 4380 goto bad_addr; 4381 } 4382 } else if (ipsec_policy_set) { 4383 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4384 error = -1; 4385 goto bad_addr; 4386 } 4387 } 4388 4389 /* 4390 * Cache IPsec policy in this conn. If we have per-socket policy, 4391 * we'll cache that. If we don't, we'll inherit global policy. 4392 * 4393 * We can't insert until the conn reflects the policy. Note that 4394 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 4395 * connections where we don't have a policy. This is to prevent 4396 * global policy lookups in the inbound path. 4397 * 4398 * If we insert before we set conn_policy_cached, 4399 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 4400 * because global policy cound be non-empty. We normally call 4401 * ipsec_check_policy() for conn_policy_cached connections only if 4402 * ipc_in_enforce_policy is set. But in this case, 4403 * conn_policy_cached can get set anytime since we made the 4404 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 4405 * called, which will make the above assumption false. Thus, we 4406 * need to insert after we set conn_policy_cached. 4407 */ 4408 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 4409 goto bad_addr; 4410 4411 if (fanout_insert) { 4412 /* 4413 * The addresses have been verified. Time to insert in 4414 * the correct fanout list. 4415 */ 4416 error = ipcl_conn_insert(connp, protocol, src_addr, 4417 dst_addr, connp->conn_ports); 4418 } 4419 4420 if (error == 0) { 4421 connp->conn_fully_bound = B_TRUE; 4422 /* 4423 * Our initial checks for MDT have passed; the IRE is not 4424 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 4425 * be supporting MDT. Pass the IRE, IPC and ILL into 4426 * ip_mdinfo_return(), which performs further checks 4427 * against them and upon success, returns the MDT info 4428 * mblk which we will attach to the bind acknowledgment. 4429 */ 4430 if (md_dst_ire != NULL) { 4431 mblk_t *mdinfo_mp; 4432 4433 ASSERT(md_ill != NULL); 4434 ASSERT(md_ill->ill_mdt_capab != NULL); 4435 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 4436 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 4437 linkb(mp, mdinfo_mp); 4438 } 4439 } 4440 bad_addr: 4441 if (ipsec_policy_set) { 4442 ASSERT(policy_mp == mp->b_cont); 4443 ASSERT(policy_mp != NULL); 4444 freeb(policy_mp); 4445 /* 4446 * As of now assume that nothing else accompanies 4447 * IPSEC_POLICY_SET. 4448 */ 4449 mp->b_cont = NULL; 4450 } 4451 if (src_ire != NULL) 4452 IRE_REFRELE(src_ire); 4453 if (dst_ire != NULL) 4454 IRE_REFRELE(dst_ire); 4455 if (sire != NULL) 4456 IRE_REFRELE(sire); 4457 if (md_dst_ire != NULL) 4458 IRE_REFRELE(md_dst_ire); 4459 return (error); 4460 } 4461 4462 /* 4463 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 4464 * Prefers dst_ire over src_ire. 4465 */ 4466 static boolean_t 4467 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 4468 { 4469 mblk_t *mp1; 4470 ire_t *ret_ire = NULL; 4471 4472 mp1 = mp->b_cont; 4473 ASSERT(mp1 != NULL); 4474 4475 if (ire != NULL) { 4476 /* 4477 * mp1 initialized above to IRE_DB_REQ_TYPE 4478 * appended mblk. Its <upper protocol>'s 4479 * job to make sure there is room. 4480 */ 4481 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 4482 return (0); 4483 4484 mp1->b_datap->db_type = IRE_DB_TYPE; 4485 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 4486 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 4487 ret_ire = (ire_t *)mp1->b_rptr; 4488 /* 4489 * Pass the latest setting of the ip_path_mtu_discovery and 4490 * copy the ulp info if any. 4491 */ 4492 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 4493 IPH_DF : 0; 4494 if (ulp_info != NULL) { 4495 bcopy(ulp_info, &(ret_ire->ire_uinfo), 4496 sizeof (iulp_t)); 4497 } 4498 ret_ire->ire_mp = mp1; 4499 } else { 4500 /* 4501 * No IRE was found. Remove IRE mblk. 4502 */ 4503 mp->b_cont = mp1->b_cont; 4504 freeb(mp1); 4505 } 4506 4507 return (1); 4508 } 4509 4510 /* 4511 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4512 * the final piece where we don't. Return a pointer to the first mblk in the 4513 * result, and update the pointer to the next mblk to chew on. If anything 4514 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4515 * NULL pointer. 4516 */ 4517 mblk_t * 4518 ip_carve_mp(mblk_t **mpp, ssize_t len) 4519 { 4520 mblk_t *mp0; 4521 mblk_t *mp1; 4522 mblk_t *mp2; 4523 4524 if (!len || !mpp || !(mp0 = *mpp)) 4525 return (NULL); 4526 /* If we aren't going to consume the first mblk, we need a dup. */ 4527 if (mp0->b_wptr - mp0->b_rptr > len) { 4528 mp1 = dupb(mp0); 4529 if (mp1) { 4530 /* Partition the data between the two mblks. */ 4531 mp1->b_wptr = mp1->b_rptr + len; 4532 mp0->b_rptr = mp1->b_wptr; 4533 /* 4534 * after adjustments if mblk not consumed is now 4535 * unaligned, try to align it. If this fails free 4536 * all messages and let upper layer recover. 4537 */ 4538 if (!OK_32PTR(mp0->b_rptr)) { 4539 if (!pullupmsg(mp0, -1)) { 4540 freemsg(mp0); 4541 freemsg(mp1); 4542 *mpp = NULL; 4543 return (NULL); 4544 } 4545 } 4546 } 4547 return (mp1); 4548 } 4549 /* Eat through as many mblks as we need to get len bytes. */ 4550 len -= mp0->b_wptr - mp0->b_rptr; 4551 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4552 if (mp2->b_wptr - mp2->b_rptr > len) { 4553 /* 4554 * We won't consume the entire last mblk. Like 4555 * above, dup and partition it. 4556 */ 4557 mp1->b_cont = dupb(mp2); 4558 mp1 = mp1->b_cont; 4559 if (!mp1) { 4560 /* 4561 * Trouble. Rather than go to a lot of 4562 * trouble to clean up, we free the messages. 4563 * This won't be any worse than losing it on 4564 * the wire. 4565 */ 4566 freemsg(mp0); 4567 freemsg(mp2); 4568 *mpp = NULL; 4569 return (NULL); 4570 } 4571 mp1->b_wptr = mp1->b_rptr + len; 4572 mp2->b_rptr = mp1->b_wptr; 4573 /* 4574 * after adjustments if mblk not consumed is now 4575 * unaligned, try to align it. If this fails free 4576 * all messages and let upper layer recover. 4577 */ 4578 if (!OK_32PTR(mp2->b_rptr)) { 4579 if (!pullupmsg(mp2, -1)) { 4580 freemsg(mp0); 4581 freemsg(mp2); 4582 *mpp = NULL; 4583 return (NULL); 4584 } 4585 } 4586 *mpp = mp2; 4587 return (mp0); 4588 } 4589 /* Decrement len by the amount we just got. */ 4590 len -= mp2->b_wptr - mp2->b_rptr; 4591 } 4592 /* 4593 * len should be reduced to zero now. If not our caller has 4594 * screwed up. 4595 */ 4596 if (len) { 4597 /* Shouldn't happen! */ 4598 freemsg(mp0); 4599 *mpp = NULL; 4600 return (NULL); 4601 } 4602 /* 4603 * We consumed up to exactly the end of an mblk. Detach the part 4604 * we are returning from the rest of the chain. 4605 */ 4606 mp1->b_cont = NULL; 4607 *mpp = mp2; 4608 return (mp0); 4609 } 4610 4611 /* The ill stream is being unplumbed. Called from ip_close */ 4612 int 4613 ip_modclose(ill_t *ill) 4614 { 4615 4616 boolean_t success; 4617 ipsq_t *ipsq; 4618 ipif_t *ipif; 4619 queue_t *q = ill->ill_rq; 4620 4621 /* 4622 * Forcibly enter the ipsq after some delay. This is to take 4623 * care of the case when some ioctl does not complete because 4624 * we sent a control message to the driver and it did not 4625 * send us a reply. We want to be able to at least unplumb 4626 * and replumb rather than force the user to reboot the system. 4627 */ 4628 success = ipsq_enter(ill, B_FALSE); 4629 4630 /* 4631 * Open/close/push/pop is guaranteed to be single threaded 4632 * per stream by STREAMS. FS guarantees that all references 4633 * from top are gone before close is called. So there can't 4634 * be another close thread that has set CONDEMNED on this ill. 4635 * and cause ipsq_enter to return failure. 4636 */ 4637 ASSERT(success); 4638 ipsq = ill->ill_phyint->phyint_ipsq; 4639 4640 /* 4641 * Mark it condemned. No new reference will be made to this ill. 4642 * Lookup functions will return an error. Threads that try to 4643 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4644 * that the refcnt will drop down to zero. 4645 */ 4646 mutex_enter(&ill->ill_lock); 4647 ill->ill_state_flags |= ILL_CONDEMNED; 4648 for (ipif = ill->ill_ipif; ipif != NULL; 4649 ipif = ipif->ipif_next) { 4650 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4651 } 4652 /* 4653 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4654 * returns error if ILL_CONDEMNED is set 4655 */ 4656 cv_broadcast(&ill->ill_cv); 4657 mutex_exit(&ill->ill_lock); 4658 4659 /* 4660 * Shut down fragmentation reassembly. 4661 * ill_frag_timer won't start a timer again. 4662 * Now cancel any existing timer 4663 */ 4664 (void) untimeout(ill->ill_frag_timer_id); 4665 (void) ill_frag_timeout(ill, 0); 4666 4667 /* 4668 * If MOVE was in progress, clear the 4669 * move_in_progress fields also. 4670 */ 4671 if (ill->ill_move_in_progress) { 4672 ILL_CLEAR_MOVE(ill); 4673 } 4674 4675 /* 4676 * Call ill_delete to bring down the ipifs, ilms and ill on 4677 * this ill. Then wait for the refcnts to drop to zero. 4678 * ill_is_quiescent checks whether the ill is really quiescent. 4679 * Then make sure that threads that are waiting to enter the 4680 * ipsq have seen the error returned by ipsq_enter and have 4681 * gone away. Then we call ill_delete_tail which does the 4682 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 4683 */ 4684 ill_delete(ill); 4685 mutex_enter(&ill->ill_lock); 4686 while (!ill_is_quiescent(ill)) 4687 cv_wait(&ill->ill_cv, &ill->ill_lock); 4688 while (ill->ill_waiters) 4689 cv_wait(&ill->ill_cv, &ill->ill_lock); 4690 4691 mutex_exit(&ill->ill_lock); 4692 4693 /* qprocsoff is called in ill_delete_tail */ 4694 ill_delete_tail(ill); 4695 4696 /* 4697 * Walk through all upper (conn) streams and qenable 4698 * those that have queued data. 4699 * close synchronization needs this to 4700 * be done to ensure that all upper layers blocked 4701 * due to flow control to the closing device 4702 * get unblocked. 4703 */ 4704 ip1dbg(("ip_wsrv: walking\n")); 4705 conn_walk_drain(); 4706 4707 mutex_enter(&ip_mi_lock); 4708 mi_close_unlink(&ip_g_head, (IDP)ill); 4709 mutex_exit(&ip_mi_lock); 4710 4711 /* 4712 * credp could be null if the open didn't succeed and ip_modopen 4713 * itself calls ip_close. 4714 */ 4715 if (ill->ill_credp != NULL) 4716 crfree(ill->ill_credp); 4717 4718 mi_close_free((IDP)ill); 4719 q->q_ptr = WR(q)->q_ptr = NULL; 4720 4721 ipsq_exit(ipsq, B_TRUE, B_TRUE); 4722 4723 return (0); 4724 } 4725 4726 /* 4727 * This is called as part of close() for both IP and UDP 4728 * in order to quiesce the conn. 4729 */ 4730 void 4731 ip_quiesce_conn(conn_t *connp) 4732 { 4733 boolean_t drain_cleanup_reqd = B_FALSE; 4734 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4735 boolean_t ilg_cleanup_reqd = B_FALSE; 4736 4737 ASSERT(!IPCL_IS_TCP(connp)); 4738 4739 /* 4740 * Mark the conn as closing, and this conn must not be 4741 * inserted in future into any list. Eg. conn_drain_insert(), 4742 * won't insert this conn into the conn_drain_list. 4743 * Similarly ill_pending_mp_add() will not add any mp to 4744 * the pending mp list, after this conn has started closing. 4745 * 4746 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 4747 * cannot get set henceforth. 4748 */ 4749 mutex_enter(&connp->conn_lock); 4750 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4751 connp->conn_state_flags |= CONN_CLOSING; 4752 if (connp->conn_idl != NULL) 4753 drain_cleanup_reqd = B_TRUE; 4754 if (connp->conn_oper_pending_ill != NULL) 4755 conn_ioctl_cleanup_reqd = B_TRUE; 4756 if (connp->conn_ilg_inuse != 0) 4757 ilg_cleanup_reqd = B_TRUE; 4758 mutex_exit(&connp->conn_lock); 4759 4760 if (IPCL_IS_UDP(connp)) 4761 udp_quiesce_conn(connp); 4762 4763 if (conn_ioctl_cleanup_reqd) 4764 conn_ioctl_cleanup(connp); 4765 4766 /* 4767 * Remove this conn from any fanout list it is on. 4768 * and then wait for any threads currently operating 4769 * on this endpoint to finish 4770 */ 4771 ipcl_hash_remove(connp); 4772 4773 /* 4774 * Remove this conn from the drain list, and do 4775 * any other cleanup that may be required. 4776 * (Only non-tcp streams may have a non-null conn_idl. 4777 * TCP streams are never flow controlled, and 4778 * conn_idl will be null) 4779 */ 4780 if (drain_cleanup_reqd) 4781 conn_drain_tail(connp, B_TRUE); 4782 4783 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 4784 (void) ip_mrouter_done(NULL); 4785 4786 if (ilg_cleanup_reqd) 4787 ilg_delete_all(connp); 4788 4789 conn_delete_ire(connp, NULL); 4790 4791 /* 4792 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4793 * callers from write side can't be there now because close 4794 * is in progress. The only other caller is ipcl_walk 4795 * which checks for the condemned flag. 4796 */ 4797 mutex_enter(&connp->conn_lock); 4798 connp->conn_state_flags |= CONN_CONDEMNED; 4799 while (connp->conn_ref != 1) 4800 cv_wait(&connp->conn_cv, &connp->conn_lock); 4801 connp->conn_state_flags |= CONN_QUIESCED; 4802 mutex_exit(&connp->conn_lock); 4803 } 4804 4805 /* ARGSUSED */ 4806 int 4807 ip_close(queue_t *q, int flags) 4808 { 4809 conn_t *connp; 4810 4811 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 4812 4813 /* 4814 * Call the appropriate delete routine depending on whether this is 4815 * a module or device. 4816 */ 4817 if (WR(q)->q_next != NULL) { 4818 /* This is a module close */ 4819 return (ip_modclose((ill_t *)q->q_ptr)); 4820 } 4821 4822 connp = q->q_ptr; 4823 ip_quiesce_conn(connp); 4824 4825 qprocsoff(q); 4826 4827 /* 4828 * Now we are truly single threaded on this stream, and can 4829 * delete the things hanging off the connp, and finally the connp. 4830 * We removed this connp from the fanout list, it cannot be 4831 * accessed thru the fanouts, and we already waited for the 4832 * conn_ref to drop to 0. We are already in close, so 4833 * there cannot be any other thread from the top. qprocsoff 4834 * has completed, and service has completed or won't run in 4835 * future. 4836 */ 4837 ASSERT(connp->conn_ref == 1); 4838 4839 /* 4840 * A conn which was previously marked as IPCL_UDP cannot 4841 * retain the flag because it would have been cleared by 4842 * udp_close(). 4843 */ 4844 ASSERT(!IPCL_IS_UDP(connp)); 4845 4846 if (connp->conn_latch != NULL) { 4847 IPLATCH_REFRELE(connp->conn_latch); 4848 connp->conn_latch = NULL; 4849 } 4850 if (connp->conn_policy != NULL) { 4851 IPPH_REFRELE(connp->conn_policy); 4852 connp->conn_policy = NULL; 4853 } 4854 if (connp->conn_ipsec_opt_mp != NULL) { 4855 freemsg(connp->conn_ipsec_opt_mp); 4856 connp->conn_ipsec_opt_mp = NULL; 4857 } 4858 if (connp->conn_cred != NULL) { 4859 crfree(connp->conn_cred); 4860 connp->conn_cred = NULL; 4861 } 4862 4863 inet_minor_free(ip_minor_arena, connp->conn_dev); 4864 4865 connp->conn_ref--; 4866 ipcl_conn_destroy(connp); 4867 4868 q->q_ptr = WR(q)->q_ptr = NULL; 4869 return (0); 4870 } 4871 4872 int 4873 ip_snmpmod_close(queue_t *q) 4874 { 4875 conn_t *connp = Q_TO_CONN(q); 4876 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 4877 4878 qprocsoff(q); 4879 4880 if (connp->conn_flags & IPCL_UDPMOD) 4881 udp_close_free(connp); 4882 4883 if (connp->conn_cred != NULL) { 4884 crfree(connp->conn_cred); 4885 connp->conn_cred = NULL; 4886 } 4887 CONN_DEC_REF(connp); 4888 q->q_ptr = WR(q)->q_ptr = NULL; 4889 return (0); 4890 } 4891 4892 /* 4893 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 4894 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 4895 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 4896 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 4897 * queues as we never enqueue messages there and we don't handle any ioctls. 4898 * Everything else is freed. 4899 */ 4900 void 4901 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 4902 { 4903 conn_t *connp = q->q_ptr; 4904 pfi_t setfn; 4905 pfi_t getfn; 4906 4907 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 4908 4909 switch (DB_TYPE(mp)) { 4910 case M_PROTO: 4911 case M_PCPROTO: 4912 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 4913 ((((union T_primitives *)mp->b_rptr)->type == 4914 T_SVR4_OPTMGMT_REQ) || 4915 (((union T_primitives *)mp->b_rptr)->type == 4916 T_OPTMGMT_REQ))) { 4917 /* 4918 * This is the only TPI primitive supported. Its 4919 * handling does not require tcp_t, but it does require 4920 * conn_t to check permissions. 4921 */ 4922 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 4923 4924 if (connp->conn_flags & IPCL_TCPMOD) { 4925 setfn = tcp_snmp_set; 4926 getfn = tcp_snmp_get; 4927 } else { 4928 setfn = udp_snmp_set; 4929 getfn = udp_snmp_get; 4930 } 4931 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 4932 freemsg(mp); 4933 return; 4934 } 4935 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 4936 != NULL) 4937 qreply(q, mp); 4938 break; 4939 case M_FLUSH: 4940 case M_IOCTL: 4941 putnext(q, mp); 4942 break; 4943 default: 4944 freemsg(mp); 4945 break; 4946 } 4947 } 4948 4949 /* Return the IP checksum for the IP header at "iph". */ 4950 uint16_t 4951 ip_csum_hdr(ipha_t *ipha) 4952 { 4953 uint16_t *uph; 4954 uint32_t sum; 4955 int opt_len; 4956 4957 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 4958 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 4959 uph = (uint16_t *)ipha; 4960 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 4961 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 4962 if (opt_len > 0) { 4963 do { 4964 sum += uph[10]; 4965 sum += uph[11]; 4966 uph += 2; 4967 } while (--opt_len); 4968 } 4969 sum = (sum & 0xFFFF) + (sum >> 16); 4970 sum = ~(sum + (sum >> 16)) & 0xFFFF; 4971 if (sum == 0xffff) 4972 sum = 0; 4973 return ((uint16_t)sum); 4974 } 4975 4976 void 4977 ip_ddi_destroy(void) 4978 { 4979 tcp_ddi_destroy(); 4980 sctp_ddi_destroy(); 4981 ipsec_loader_destroy(); 4982 ipsec_policy_destroy(); 4983 ipsec_kstat_destroy(); 4984 nd_free(&ip_g_nd); 4985 mutex_destroy(&igmp_timer_lock); 4986 mutex_destroy(&mld_timer_lock); 4987 mutex_destroy(&igmp_slowtimeout_lock); 4988 mutex_destroy(&mld_slowtimeout_lock); 4989 mutex_destroy(&ip_mi_lock); 4990 mutex_destroy(&rts_clients.connf_lock); 4991 ip_ire_fini(); 4992 ip6_asp_free(); 4993 conn_drain_fini(); 4994 ipcl_destroy(); 4995 inet_minor_destroy(ip_minor_arena); 4996 icmp_kstat_fini(); 4997 ip_kstat_fini(); 4998 rw_destroy(&ipsec_capab_ills_lock); 4999 rw_destroy(&ill_g_usesrc_lock); 5000 ip_drop_unregister(&ip_dropper); 5001 } 5002 5003 5004 void 5005 ip_ddi_init(void) 5006 { 5007 TCP6_MAJ = ddi_name_to_major(TCP6); 5008 TCP_MAJ = ddi_name_to_major(TCP); 5009 SCTP_MAJ = ddi_name_to_major(SCTP); 5010 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5011 5012 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5013 5014 /* IP's IPsec code calls the packet dropper */ 5015 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5016 5017 if (!ip_g_nd) { 5018 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5019 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5020 nd_free(&ip_g_nd); 5021 } 5022 } 5023 5024 ipsec_loader_init(); 5025 ipsec_policy_init(); 5026 ipsec_kstat_init(); 5027 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5028 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5029 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5030 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5031 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5032 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5033 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5034 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5035 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5036 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5037 5038 /* 5039 * For IP and TCP the minor numbers should start from 2 since we have 4 5040 * initial devices: ip, ip6, tcp, tcp6. 5041 */ 5042 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5043 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5044 cmn_err(CE_PANIC, 5045 "ip_ddi_init: ip_minor_arena creation failed\n"); 5046 } 5047 5048 ipcl_init(); 5049 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5050 ip_ire_init(); 5051 ip6_asp_init(); 5052 ipif_init(); 5053 conn_drain_init(); 5054 tcp_ddi_init(); 5055 sctp_ddi_init(); 5056 5057 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5058 5059 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5060 "net", KSTAT_TYPE_NAMED, 5061 sizeof (ip_statistics) / sizeof (kstat_named_t), 5062 KSTAT_FLAG_VIRTUAL)) != NULL) { 5063 ip_kstat->ks_data = &ip_statistics; 5064 kstat_install(ip_kstat); 5065 } 5066 ip_kstat_init(); 5067 ip6_kstat_init(); 5068 icmp_kstat_init(); 5069 5070 ipsec_loader_start(); 5071 } 5072 5073 /* 5074 * Allocate and initialize a DLPI template of the specified length. (May be 5075 * called as writer.) 5076 */ 5077 mblk_t * 5078 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5079 { 5080 mblk_t *mp; 5081 5082 mp = allocb(len, BPRI_MED); 5083 if (!mp) 5084 return (NULL); 5085 5086 /* 5087 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5088 * of which we don't seem to use) are sent with M_PCPROTO, and 5089 * that other DLPI are M_PROTO. 5090 */ 5091 if (prim == DL_INFO_REQ) { 5092 mp->b_datap->db_type = M_PCPROTO; 5093 } else { 5094 mp->b_datap->db_type = M_PROTO; 5095 } 5096 5097 mp->b_wptr = mp->b_rptr + len; 5098 bzero(mp->b_rptr, len); 5099 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5100 return (mp); 5101 } 5102 5103 const char * 5104 dlpi_prim_str(int prim) 5105 { 5106 switch (prim) { 5107 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5108 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5109 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5110 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5111 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5112 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5113 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5114 case DL_OK_ACK: return ("DL_OK_ACK"); 5115 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5116 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5117 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5118 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5119 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5120 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5121 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5122 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5123 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5124 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5125 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5126 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5127 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5128 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5129 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5130 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5131 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5132 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5133 default: return ("<unknown primitive>"); 5134 } 5135 } 5136 5137 const char * 5138 dlpi_err_str(int err) 5139 { 5140 switch (err) { 5141 case DL_ACCESS: return ("DL_ACCESS"); 5142 case DL_BADADDR: return ("DL_BADADDR"); 5143 case DL_BADCORR: return ("DL_BADCORR"); 5144 case DL_BADDATA: return ("DL_BADDATA"); 5145 case DL_BADPPA: return ("DL_BADPPA"); 5146 case DL_BADPRIM: return ("DL_BADPRIM"); 5147 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5148 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5149 case DL_BADSAP: return ("DL_BADSAP"); 5150 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5151 case DL_BOUND: return ("DL_BOUND"); 5152 case DL_INITFAILED: return ("DL_INITFAILED"); 5153 case DL_NOADDR: return ("DL_NOADDR"); 5154 case DL_NOTINIT: return ("DL_NOTINIT"); 5155 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5156 case DL_SYSERR: return ("DL_SYSERR"); 5157 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5158 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5159 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5160 case DL_TOOMANY: return ("DL_TOOMANY"); 5161 case DL_NOTENAB: return ("DL_NOTENAB"); 5162 case DL_BUSY: return ("DL_BUSY"); 5163 case DL_NOAUTO: return ("DL_NOAUTO"); 5164 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5165 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5166 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5167 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5168 case DL_PENDING: return ("DL_PENDING"); 5169 default: return ("<unknown error>"); 5170 } 5171 } 5172 5173 /* 5174 * Debug formatting routine. Returns a character string representation of the 5175 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5176 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5177 */ 5178 char * 5179 ip_dot_addr(ipaddr_t addr, char *buf) 5180 { 5181 return (ip_dot_saddr((uchar_t *)&addr, buf)); 5182 } 5183 5184 /* 5185 * Debug formatting routine. Returns a character string representation of the 5186 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5187 * as a pointer. The "xxx" parts including left zero padding so the final 5188 * string will fit easily in tables. It would be nice to take a padding 5189 * length argument instead. 5190 */ 5191 static char * 5192 ip_dot_saddr(uchar_t *addr, char *buf) 5193 { 5194 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5195 addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF); 5196 return (buf); 5197 } 5198 5199 /* 5200 * Send an ICMP error after patching up the packet appropriately. Returns 5201 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5202 */ 5203 static boolean_t 5204 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5205 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5206 { 5207 ipha_t *ipha; 5208 mblk_t *first_mp; 5209 boolean_t secure; 5210 unsigned char db_type; 5211 5212 first_mp = mp; 5213 if (mctl_present) { 5214 mp = mp->b_cont; 5215 secure = ipsec_in_is_secure(first_mp); 5216 ASSERT(mp != NULL); 5217 } else { 5218 /* 5219 * If this is an ICMP error being reported - which goes 5220 * up as M_CTLs, we need to convert them to M_DATA till 5221 * we finish checking with global policy because 5222 * ipsec_check_global_policy() assumes M_DATA as clear 5223 * and M_CTL as secure. 5224 */ 5225 db_type = DB_TYPE(mp); 5226 DB_TYPE(mp) = M_DATA; 5227 secure = B_FALSE; 5228 } 5229 /* 5230 * We are generating an icmp error for some inbound packet. 5231 * Called from all ip_fanout_(udp, tcp, proto) functions. 5232 * Before we generate an error, check with global policy 5233 * to see whether this is allowed to enter the system. As 5234 * there is no "conn", we are checking with global policy. 5235 */ 5236 ipha = (ipha_t *)mp->b_rptr; 5237 if (secure || ipsec_inbound_v4_policy_present) { 5238 first_mp = ipsec_check_global_policy(first_mp, NULL, 5239 ipha, NULL, mctl_present); 5240 if (first_mp == NULL) 5241 return (B_FALSE); 5242 } 5243 5244 if (!mctl_present) 5245 DB_TYPE(mp) = db_type; 5246 5247 if (flags & IP_FF_SEND_ICMP) { 5248 if (flags & IP_FF_HDR_COMPLETE) { 5249 if (ip_hdr_complete(ipha, zoneid)) { 5250 freemsg(first_mp); 5251 return (B_TRUE); 5252 } 5253 } 5254 if (flags & IP_FF_CKSUM) { 5255 /* 5256 * Have to correct checksum since 5257 * the packet might have been 5258 * fragmented and the reassembly code in ip_rput 5259 * does not restore the IP checksum. 5260 */ 5261 ipha->ipha_hdr_checksum = 0; 5262 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5263 } 5264 switch (icmp_type) { 5265 case ICMP_DEST_UNREACHABLE: 5266 icmp_unreachable(WR(q), first_mp, icmp_code); 5267 break; 5268 default: 5269 freemsg(first_mp); 5270 break; 5271 } 5272 } else { 5273 freemsg(first_mp); 5274 return (B_FALSE); 5275 } 5276 5277 return (B_TRUE); 5278 } 5279 5280 #ifdef DEBUG 5281 /* 5282 * Copy the header into the IPSEC_IN message. 5283 */ 5284 static void 5285 ipsec_inbound_debug_tag(mblk_t *ipsec_mp) 5286 { 5287 mblk_t *data_mp = ipsec_mp->b_cont; 5288 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5289 ipha_t *ipha; 5290 5291 if (ii->ipsec_in_type != IPSEC_IN) 5292 return; 5293 ASSERT(data_mp != NULL); 5294 5295 ipha = (ipha_t *)data_mp->b_rptr; 5296 bcopy(ipha, ii->ipsec_in_saved_hdr, 5297 (IPH_HDR_VERSION(ipha) == IP_VERSION) ? 5298 sizeof (ipha_t) : sizeof (ip6_t)); 5299 } 5300 #else 5301 #define ipsec_inbound_debug_tag(x) /* NOP */ 5302 #endif /* DEBUG */ 5303 5304 /* 5305 * Used to send an ICMP error message when a packet is received for 5306 * a protocol that is not supported. The mblk passed as argument 5307 * is consumed by this function. 5308 */ 5309 void 5310 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5311 { 5312 mblk_t *mp; 5313 ipha_t *ipha; 5314 ill_t *ill; 5315 ipsec_in_t *ii; 5316 5317 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5318 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5319 5320 mp = ipsec_mp->b_cont; 5321 ipsec_mp->b_cont = NULL; 5322 ipha = (ipha_t *)mp->b_rptr; 5323 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5324 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 5325 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 5326 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5327 } 5328 } else { 5329 /* Get ill from index in ipsec_in_t. */ 5330 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 5331 B_TRUE, NULL, NULL, NULL, NULL); 5332 if (ill != NULL) { 5333 if (ip_fanout_send_icmp_v6(q, mp, flags, 5334 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 5335 0, B_FALSE, zoneid)) { 5336 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 5337 } 5338 5339 ill_refrele(ill); 5340 } else { /* re-link for the freemsg() below. */ 5341 ipsec_mp->b_cont = mp; 5342 } 5343 } 5344 5345 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 5346 freemsg(ipsec_mp); 5347 } 5348 5349 /* 5350 * See if the inbound datagram has had IPsec processing applied to it. 5351 */ 5352 boolean_t 5353 ipsec_in_is_secure(mblk_t *ipsec_mp) 5354 { 5355 ipsec_in_t *ii; 5356 5357 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5358 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5359 5360 if (ii->ipsec_in_loopback) { 5361 return (ii->ipsec_in_secure); 5362 } else { 5363 return (ii->ipsec_in_ah_sa != NULL || 5364 ii->ipsec_in_esp_sa != NULL || 5365 ii->ipsec_in_decaps); 5366 } 5367 } 5368 5369 /* 5370 * Handle protocols with which IP is less intimate. There 5371 * can be more than one stream bound to a particular 5372 * protocol. When this is the case, normally each one gets a copy 5373 * of any incoming packets. 5374 * 5375 * IPSEC NOTE : 5376 * 5377 * Don't allow a secure packet going up a non-secure connection. 5378 * We don't allow this because 5379 * 5380 * 1) Reply might go out in clear which will be dropped at 5381 * the sending side. 5382 * 2) If the reply goes out in clear it will give the 5383 * adversary enough information for getting the key in 5384 * most of the cases. 5385 * 5386 * Moreover getting a secure packet when we expect clear 5387 * implies that SA's were added without checking for 5388 * policy on both ends. This should not happen once ISAKMP 5389 * is used to negotiate SAs as SAs will be added only after 5390 * verifying the policy. 5391 * 5392 * NOTE : If the packet was tunneled and not multicast we only send 5393 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 5394 * back to delivering packets to AF_INET6 raw sockets. 5395 * 5396 * IPQoS Notes: 5397 * Once we have determined the client, invoke IPPF processing. 5398 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5399 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5400 * ip_policy will be false. 5401 * 5402 * Zones notes: 5403 * Currently only applications in the global zone can create raw sockets for 5404 * protocols other than ICMP. So unlike the broadcast / multicast case of 5405 * ip_fanout_udp(), we only send a copy of the packet to streams in the 5406 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 5407 */ 5408 static void 5409 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 5410 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 5411 zoneid_t zoneid) 5412 { 5413 queue_t *rq; 5414 mblk_t *mp1, *first_mp1; 5415 uint_t protocol = ipha->ipha_protocol; 5416 ipaddr_t dst; 5417 boolean_t one_only; 5418 mblk_t *first_mp = mp; 5419 boolean_t secure; 5420 uint32_t ill_index; 5421 conn_t *connp, *first_connp, *next_connp; 5422 connf_t *connfp; 5423 5424 if (mctl_present) { 5425 mp = first_mp->b_cont; 5426 secure = ipsec_in_is_secure(first_mp); 5427 ASSERT(mp != NULL); 5428 } else { 5429 secure = B_FALSE; 5430 } 5431 dst = ipha->ipha_dst; 5432 /* 5433 * If the packet was tunneled and not multicast we only send to it 5434 * the first match. 5435 */ 5436 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 5437 !CLASSD(dst)); 5438 5439 connfp = &ipcl_proto_fanout[protocol]; 5440 mutex_enter(&connfp->connf_lock); 5441 connp = connfp->connf_head; 5442 for (connp = connfp->connf_head; connp != NULL; 5443 connp = connp->conn_next) { 5444 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, zoneid)) 5445 break; 5446 } 5447 5448 if (connp == NULL || connp->conn_upq == NULL) { 5449 /* 5450 * No one bound to these addresses. Is 5451 * there a client that wants all 5452 * unclaimed datagrams? 5453 */ 5454 mutex_exit(&connfp->connf_lock); 5455 /* 5456 * Check for IPPROTO_ENCAP... 5457 */ 5458 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 5459 /* 5460 * XXX If an IPsec mblk is here on a multicast 5461 * tunnel (using ip_mroute stuff), what should 5462 * I do? 5463 * 5464 * For now, just free the IPsec mblk before 5465 * passing it up to the multicast routing 5466 * stuff. 5467 * 5468 * BTW, If I match a configured IP-in-IP 5469 * tunnel, ip_mroute_decap will never be 5470 * called. 5471 */ 5472 if (mp != first_mp) 5473 freeb(first_mp); 5474 ip_mroute_decap(q, mp); 5475 } else { 5476 /* 5477 * Otherwise send an ICMP protocol unreachable. 5478 */ 5479 if (ip_fanout_send_icmp(q, first_mp, flags, 5480 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 5481 mctl_present, zoneid)) { 5482 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5483 } 5484 } 5485 return; 5486 } 5487 CONN_INC_REF(connp); 5488 first_connp = connp; 5489 5490 /* 5491 * Only send message to one tunnel driver by immediately 5492 * terminating the loop. 5493 */ 5494 connp = one_only ? NULL : connp->conn_next; 5495 5496 for (;;) { 5497 while (connp != NULL) { 5498 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 5499 flags, zoneid)) 5500 break; 5501 connp = connp->conn_next; 5502 } 5503 5504 /* 5505 * Copy the packet. 5506 */ 5507 if (connp == NULL || connp->conn_upq == NULL || 5508 (((first_mp1 = dupmsg(first_mp)) == NULL) && 5509 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 5510 /* 5511 * No more interested clients or memory 5512 * allocation failed 5513 */ 5514 connp = first_connp; 5515 break; 5516 } 5517 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 5518 CONN_INC_REF(connp); 5519 mutex_exit(&connfp->connf_lock); 5520 rq = connp->conn_rq; 5521 if (!canputnext(rq)) { 5522 if (flags & IP_FF_RAWIP) { 5523 BUMP_MIB(&ip_mib, rawipInOverflows); 5524 } else { 5525 BUMP_MIB(&icmp_mib, icmpInOverflows); 5526 } 5527 5528 freemsg(first_mp1); 5529 } else { 5530 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5531 first_mp1 = ipsec_check_inbound_policy 5532 (first_mp1, connp, ipha, NULL, 5533 mctl_present); 5534 } 5535 if (first_mp1 != NULL) { 5536 /* 5537 * ip_fanout_proto also gets called from 5538 * icmp_inbound_error_fanout, in which case 5539 * the msg type is M_CTL. Don't add info 5540 * in this case for the time being. In future 5541 * when there is a need for knowing the 5542 * inbound iface index for ICMP error msgs, 5543 * then this can be changed. 5544 */ 5545 if ((connp->conn_recvif != 0) && 5546 (mp->b_datap->db_type != M_CTL)) { 5547 /* 5548 * the actual data will be 5549 * contained in b_cont upon 5550 * successful return of the 5551 * following call else 5552 * original mblk is returned 5553 */ 5554 ASSERT(recv_ill != NULL); 5555 mp1 = ip_add_info(mp1, recv_ill, 5556 IPF_RECVIF); 5557 } 5558 BUMP_MIB(&ip_mib, ipInDelivers); 5559 if (mctl_present) 5560 freeb(first_mp1); 5561 putnext(rq, mp1); 5562 } 5563 } 5564 mutex_enter(&connfp->connf_lock); 5565 /* Follow the next pointer before releasing the conn. */ 5566 next_connp = connp->conn_next; 5567 CONN_DEC_REF(connp); 5568 connp = next_connp; 5569 } 5570 5571 /* Last one. Send it upstream. */ 5572 mutex_exit(&connfp->connf_lock); 5573 5574 /* 5575 * If this packet is coming from icmp_inbound_error_fanout ip_policy 5576 * will be set to false. 5577 */ 5578 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5579 ill_index = ill->ill_phyint->phyint_ifindex; 5580 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5581 if (mp == NULL) { 5582 CONN_DEC_REF(connp); 5583 if (mctl_present) { 5584 freeb(first_mp); 5585 } 5586 return; 5587 } 5588 } 5589 5590 rq = connp->conn_rq; 5591 if (!canputnext(rq)) { 5592 if (flags & IP_FF_RAWIP) { 5593 BUMP_MIB(&ip_mib, rawipInOverflows); 5594 } else { 5595 BUMP_MIB(&icmp_mib, icmpInOverflows); 5596 } 5597 5598 freemsg(first_mp); 5599 } else { 5600 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5601 first_mp = ipsec_check_inbound_policy(first_mp, connp, 5602 ipha, NULL, mctl_present); 5603 } 5604 if (first_mp != NULL) { 5605 /* 5606 * ip_fanout_proto also gets called 5607 * from icmp_inbound_error_fanout, in 5608 * which case the msg type is M_CTL. 5609 * Don't add info in this case for time 5610 * being. In future when there is a 5611 * need for knowing the inbound iface 5612 * index for ICMP error msgs, then this 5613 * can be changed 5614 */ 5615 if ((connp->conn_recvif != 0) && 5616 (mp->b_datap->db_type != M_CTL)) { 5617 /* 5618 * the actual data will be contained in 5619 * b_cont upon successful return 5620 * of the following call else original 5621 * mblk is returned 5622 */ 5623 ASSERT(recv_ill != NULL); 5624 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5625 } 5626 BUMP_MIB(&ip_mib, ipInDelivers); 5627 putnext(rq, mp); 5628 if (mctl_present) 5629 freeb(first_mp); 5630 } 5631 } 5632 CONN_DEC_REF(connp); 5633 } 5634 5635 /* 5636 * Fanout for TCP packets 5637 * The caller puts <fport, lport> in the ports parameter. 5638 * 5639 * IPQoS Notes 5640 * Before sending it to the client, invoke IPPF processing. 5641 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5642 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5643 * ip_policy is false. 5644 */ 5645 static void 5646 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 5647 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 5648 { 5649 mblk_t *first_mp; 5650 boolean_t secure; 5651 uint32_t ill_index; 5652 int ip_hdr_len; 5653 tcph_t *tcph; 5654 boolean_t syn_present = B_FALSE; 5655 conn_t *connp; 5656 5657 first_mp = mp; 5658 if (mctl_present) { 5659 ASSERT(first_mp->b_datap->db_type == M_CTL); 5660 mp = first_mp->b_cont; 5661 secure = ipsec_in_is_secure(first_mp); 5662 ASSERT(mp != NULL); 5663 } else { 5664 secure = B_FALSE; 5665 } 5666 5667 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 5668 5669 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 5670 NULL) { 5671 /* 5672 * No connected connection or listener. Send a 5673 * TH_RST via tcp_xmit_listeners_reset. 5674 */ 5675 5676 /* Initiate IPPf processing, if needed. */ 5677 if (IPP_ENABLED(IPP_LOCAL_IN)) { 5678 uint32_t ill_index; 5679 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5680 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 5681 if (first_mp == NULL) 5682 return; 5683 } 5684 BUMP_MIB(&ip_mib, ipInDelivers); 5685 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5686 return; 5687 } 5688 5689 /* 5690 * Allocate the SYN for the TCP connection here itself 5691 */ 5692 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5693 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 5694 if (IPCL_IS_TCP(connp)) { 5695 squeue_t *sqp; 5696 5697 /* 5698 * For fused tcp loopback, assign the eager's 5699 * squeue to be that of the active connect's. 5700 * Note that we don't check for IP_FF_LOOPBACK 5701 * here since this routine gets called only 5702 * for loopback (unlike the IPv6 counterpart). 5703 */ 5704 if (do_tcp_fusion && 5705 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 5706 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy) { 5707 ASSERT(Q_TO_CONN(q) != NULL); 5708 sqp = Q_TO_CONN(q)->conn_sqp; 5709 } else { 5710 sqp = IP_SQUEUE_GET(lbolt); 5711 } 5712 5713 mp->b_datap->db_struioflag |= STRUIO_EAGER; 5714 DB_CKSUMSTART(mp) = (intptr_t)sqp; 5715 syn_present = B_TRUE; 5716 } 5717 } 5718 5719 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 5720 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 5721 if ((flags & TH_RST) || (flags & TH_URG)) { 5722 CONN_DEC_REF(connp); 5723 freemsg(first_mp); 5724 return; 5725 } 5726 if (flags & TH_ACK) { 5727 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5728 CONN_DEC_REF(connp); 5729 return; 5730 } 5731 5732 CONN_DEC_REF(connp); 5733 freemsg(first_mp); 5734 return; 5735 } 5736 5737 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5738 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5739 NULL, mctl_present); 5740 if (first_mp == NULL) { 5741 CONN_DEC_REF(connp); 5742 return; 5743 } 5744 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 5745 ASSERT(syn_present); 5746 if (mctl_present) { 5747 ASSERT(first_mp != mp); 5748 first_mp->b_datap->db_struioflag |= 5749 STRUIO_POLICY; 5750 } else { 5751 ASSERT(first_mp == mp); 5752 mp->b_datap->db_struioflag &= 5753 ~STRUIO_EAGER; 5754 mp->b_datap->db_struioflag |= 5755 STRUIO_POLICY; 5756 } 5757 } else { 5758 /* 5759 * Discard first_mp early since we're dealing with a 5760 * fully-connected conn_t and tcp doesn't do policy in 5761 * this case. 5762 */ 5763 if (mctl_present) { 5764 freeb(first_mp); 5765 mctl_present = B_FALSE; 5766 } 5767 first_mp = mp; 5768 } 5769 } 5770 5771 /* 5772 * Initiate policy processing here if needed. If we get here from 5773 * icmp_inbound_error_fanout, ip_policy is false. 5774 */ 5775 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5776 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5777 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5778 if (mp == NULL) { 5779 CONN_DEC_REF(connp); 5780 if (mctl_present) 5781 freeb(first_mp); 5782 return; 5783 } else if (mctl_present) { 5784 ASSERT(first_mp != mp); 5785 first_mp->b_cont = mp; 5786 } else { 5787 first_mp = mp; 5788 } 5789 } 5790 5791 5792 5793 /* Handle IPv6 socket options. */ 5794 if (!syn_present && 5795 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 5796 /* Add header */ 5797 ASSERT(recv_ill != NULL); 5798 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5799 if (mp == NULL) { 5800 CONN_DEC_REF(connp); 5801 if (mctl_present) 5802 freeb(first_mp); 5803 return; 5804 } else if (mctl_present) { 5805 /* 5806 * ip_add_info might return a new mp. 5807 */ 5808 ASSERT(first_mp != mp); 5809 first_mp->b_cont = mp; 5810 } else { 5811 first_mp = mp; 5812 } 5813 } 5814 5815 BUMP_MIB(&ip_mib, ipInDelivers); 5816 if (IPCL_IS_TCP(connp)) { 5817 (*ip_input_proc)(connp->conn_sqp, first_mp, 5818 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 5819 } else { 5820 putnext(connp->conn_rq, first_mp); 5821 CONN_DEC_REF(connp); 5822 } 5823 } 5824 5825 /* 5826 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5827 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5828 * Caller is responsible for dropping references to the conn, and freeing 5829 * first_mp. 5830 * 5831 * IPQoS Notes 5832 * Before sending it to the client, invoke IPPF processing. Policy processing 5833 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 5834 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 5835 * ip_wput_local, ip_policy is false. 5836 */ 5837 static void 5838 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 5839 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 5840 boolean_t ip_policy) 5841 { 5842 boolean_t mctl_present = (first_mp != NULL); 5843 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 5844 uint32_t ill_index; 5845 5846 if (mctl_present) 5847 first_mp->b_cont = mp; 5848 else 5849 first_mp = mp; 5850 5851 if (CONN_UDP_FLOWCTLD(connp)) { 5852 BUMP_MIB(&ip_mib, udpInOverflows); 5853 freemsg(first_mp); 5854 return; 5855 } 5856 5857 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5858 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5859 NULL, mctl_present); 5860 if (first_mp == NULL) 5861 return; /* Freed by ipsec_check_inbound_policy(). */ 5862 } 5863 if (mctl_present) 5864 freeb(first_mp); 5865 5866 if (connp->conn_recvif) 5867 in_flags = IPF_RECVIF; 5868 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 5869 in_flags |= IPF_RECVSLLA; 5870 5871 /* Handle IPv6 options. */ 5872 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 5873 in_flags |= IPF_RECVIF; 5874 5875 /* 5876 * Initiate IPPF processing here, if needed. Note first_mp won't be 5877 * freed if the packet is dropped. The caller will do so. 5878 */ 5879 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5880 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5881 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5882 if (mp == NULL) { 5883 return; 5884 } 5885 } 5886 if ((in_flags != 0) && 5887 (mp->b_datap->db_type != M_CTL)) { 5888 /* 5889 * The actual data will be contained in b_cont 5890 * upon successful return of the following call 5891 * else original mblk is returned 5892 */ 5893 ASSERT(recv_ill != NULL); 5894 mp = ip_add_info(mp, recv_ill, in_flags); 5895 } 5896 BUMP_MIB(&ip_mib, ipInDelivers); 5897 5898 /* Send it upstream */ 5899 CONN_UDP_RECV(connp, mp); 5900 } 5901 5902 /* 5903 * Fanout for UDP packets. 5904 * The caller puts <fport, lport> in the ports parameter. 5905 * 5906 * If SO_REUSEADDR is set all multicast and broadcast packets 5907 * will be delivered to all streams bound to the same port. 5908 * 5909 * Zones notes: 5910 * Multicast and broadcast packets will be distributed to streams in all zones. 5911 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5912 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5913 * packets. To maintain this behavior with multiple zones, the conns are grouped 5914 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 5915 * each zone. If unset, all the following conns in the same zone are skipped. 5916 */ 5917 static void 5918 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 5919 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 5920 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 5921 { 5922 uint32_t dstport, srcport; 5923 ipaddr_t dst; 5924 mblk_t *first_mp; 5925 boolean_t secure; 5926 in6_addr_t v6src; 5927 conn_t *connp; 5928 connf_t *connfp; 5929 conn_t *first_connp; 5930 conn_t *next_connp; 5931 mblk_t *mp1, *first_mp1; 5932 ipaddr_t src; 5933 zoneid_t last_zoneid; 5934 boolean_t reuseaddr; 5935 5936 first_mp = mp; 5937 if (mctl_present) { 5938 mp = first_mp->b_cont; 5939 first_mp->b_cont = NULL; 5940 secure = ipsec_in_is_secure(first_mp); 5941 ASSERT(mp != NULL); 5942 } else { 5943 first_mp = NULL; 5944 secure = B_FALSE; 5945 } 5946 5947 /* Extract ports in net byte order */ 5948 dstport = htons(ntohl(ports) & 0xFFFF); 5949 srcport = htons(ntohl(ports) >> 16); 5950 dst = ipha->ipha_dst; 5951 src = ipha->ipha_src; 5952 5953 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 5954 mutex_enter(&connfp->connf_lock); 5955 connp = connfp->connf_head; 5956 if (!broadcast && !CLASSD(dst)) { 5957 /* 5958 * Not broadcast or multicast. Send to the one (first) 5959 * client we find. No need to check conn_wantpacket() 5960 * since IP_BOUND_IF/conn_incoming_ill does not apply to 5961 * IPv4 unicast packets. 5962 */ 5963 while ((connp != NULL) && 5964 (!IPCL_UDP_MATCH(connp, dstport, dst, 5965 srcport, src) || connp->conn_zoneid != zoneid)) { 5966 connp = connp->conn_next; 5967 } 5968 5969 if (connp == NULL || connp->conn_upq == NULL) 5970 goto notfound; 5971 CONN_INC_REF(connp); 5972 mutex_exit(&connfp->connf_lock); 5973 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 5974 recv_ill, ip_policy); 5975 IP_STAT(ip_udp_fannorm); 5976 CONN_DEC_REF(connp); 5977 return; 5978 } 5979 5980 /* 5981 * Broadcast and multicast case 5982 * 5983 * Need to check conn_wantpacket(). 5984 * If SO_REUSEADDR has been set on the first we send the 5985 * packet to all clients that have joined the group and 5986 * match the port. 5987 */ 5988 5989 while (connp != NULL) { 5990 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 5991 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 5992 break; 5993 connp = connp->conn_next; 5994 } 5995 5996 if (connp == NULL || connp->conn_upq == NULL) 5997 goto notfound; 5998 5999 first_connp = connp; 6000 /* 6001 * When SO_REUSEADDR is not set, send the packet only to the first 6002 * matching connection in its zone by keeping track of the zoneid. 6003 */ 6004 reuseaddr = first_connp->conn_reuseaddr; 6005 last_zoneid = first_connp->conn_zoneid; 6006 6007 CONN_INC_REF(connp); 6008 connp = connp->conn_next; 6009 for (;;) { 6010 while (connp != NULL) { 6011 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6012 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6013 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6014 break; 6015 connp = connp->conn_next; 6016 } 6017 /* 6018 * Just copy the data part alone. The mctl part is 6019 * needed just for verifying policy and it is never 6020 * sent up. 6021 */ 6022 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6023 ((mp1 = copymsg(mp)) == NULL))) { 6024 /* 6025 * No more interested clients or memory 6026 * allocation failed 6027 */ 6028 connp = first_connp; 6029 break; 6030 } 6031 if (connp->conn_zoneid != last_zoneid) { 6032 /* 6033 * Update the zoneid so that the packet isn't sent to 6034 * any more conns in the same zone unless SO_REUSEADDR 6035 * is set. 6036 */ 6037 reuseaddr = connp->conn_reuseaddr; 6038 last_zoneid = connp->conn_zoneid; 6039 } 6040 if (first_mp != NULL) { 6041 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6042 ipsec_info_type == IPSEC_IN); 6043 first_mp1 = ipsec_in_tag(first_mp, NULL); 6044 if (first_mp1 == NULL) { 6045 freemsg(mp1); 6046 connp = first_connp; 6047 break; 6048 } 6049 } else { 6050 first_mp1 = NULL; 6051 } 6052 CONN_INC_REF(connp); 6053 mutex_exit(&connfp->connf_lock); 6054 /* 6055 * IPQoS notes: We don't send the packet for policy 6056 * processing here, will do it for the last one (below). 6057 * i.e. we do it per-packet now, but if we do policy 6058 * processing per-conn, then we would need to do it 6059 * here too. 6060 */ 6061 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6062 ipha, flags, recv_ill, B_FALSE); 6063 mutex_enter(&connfp->connf_lock); 6064 /* Follow the next pointer before releasing the conn. */ 6065 next_connp = connp->conn_next; 6066 IP_STAT(ip_udp_fanmb); 6067 CONN_DEC_REF(connp); 6068 connp = next_connp; 6069 } 6070 6071 /* Last one. Send it upstream. */ 6072 mutex_exit(&connfp->connf_lock); 6073 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6074 ip_policy); 6075 IP_STAT(ip_udp_fanmb); 6076 CONN_DEC_REF(connp); 6077 return; 6078 6079 notfound: 6080 6081 mutex_exit(&connfp->connf_lock); 6082 IP_STAT(ip_udp_fanothers); 6083 /* 6084 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6085 * have already been matched above, since they live in the IPv4 6086 * fanout tables. This implies we only need to 6087 * check for IPv6 in6addr_any endpoints here. 6088 * Thus we compare using ipv6_all_zeros instead of the destination 6089 * address, except for the multicast group membership lookup which 6090 * uses the IPv4 destination. 6091 */ 6092 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6093 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6094 mutex_enter(&connfp->connf_lock); 6095 connp = connfp->connf_head; 6096 if (!broadcast && !CLASSD(dst)) { 6097 while (connp != NULL) { 6098 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6099 srcport, v6src) && connp->conn_zoneid == zoneid && 6100 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6101 !connp->conn_ipv6_v6only) 6102 break; 6103 connp = connp->conn_next; 6104 } 6105 6106 if (connp == NULL || connp->conn_upq == NULL) { 6107 /* 6108 * No one bound to this port. Is 6109 * there a client that wants all 6110 * unclaimed datagrams? 6111 */ 6112 mutex_exit(&connfp->connf_lock); 6113 6114 if (mctl_present) 6115 first_mp->b_cont = mp; 6116 else 6117 first_mp = mp; 6118 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6119 ip_fanout_proto(q, first_mp, ill, ipha, 6120 flags | IP_FF_RAWIP, mctl_present, 6121 ip_policy, recv_ill, zoneid); 6122 } else { 6123 if (ip_fanout_send_icmp(q, first_mp, flags, 6124 ICMP_DEST_UNREACHABLE, 6125 ICMP_PORT_UNREACHABLE, 6126 mctl_present, zoneid)) { 6127 BUMP_MIB(&ip_mib, udpNoPorts); 6128 } 6129 } 6130 return; 6131 } 6132 CONN_INC_REF(connp); 6133 mutex_exit(&connfp->connf_lock); 6134 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6135 recv_ill, ip_policy); 6136 CONN_DEC_REF(connp); 6137 return; 6138 } 6139 /* 6140 * IPv4 multicast packet being delivered to an AF_INET6 6141 * in6addr_any endpoint. 6142 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6143 * and not conn_wantpacket_v6() since any multicast membership is 6144 * for an IPv4-mapped multicast address. 6145 * The packet is sent to all clients in all zones that have joined the 6146 * group and match the port. 6147 */ 6148 while (connp != NULL) { 6149 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6150 srcport, v6src) && 6151 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6152 break; 6153 connp = connp->conn_next; 6154 } 6155 6156 if (connp == NULL || connp->conn_upq == NULL) { 6157 /* 6158 * No one bound to this port. Is 6159 * there a client that wants all 6160 * unclaimed datagrams? 6161 */ 6162 mutex_exit(&connfp->connf_lock); 6163 6164 if (mctl_present) 6165 first_mp->b_cont = mp; 6166 else 6167 first_mp = mp; 6168 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6169 ip_fanout_proto(q, first_mp, ill, ipha, 6170 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6171 recv_ill, zoneid); 6172 } else { 6173 /* 6174 * We used to attempt to send an icmp error here, but 6175 * since this is known to be a multicast packet 6176 * and we don't send icmp errors in response to 6177 * multicast, just drop the packet and give up sooner. 6178 */ 6179 BUMP_MIB(&ip_mib, udpNoPorts); 6180 freemsg(first_mp); 6181 } 6182 return; 6183 } 6184 6185 first_connp = connp; 6186 6187 CONN_INC_REF(connp); 6188 connp = connp->conn_next; 6189 for (;;) { 6190 while (connp != NULL) { 6191 if (IPCL_UDP_MATCH_V6(connp, dstport, 6192 ipv6_all_zeros, srcport, v6src) && 6193 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6194 break; 6195 connp = connp->conn_next; 6196 } 6197 /* 6198 * Just copy the data part alone. The mctl part is 6199 * needed just for verifying policy and it is never 6200 * sent up. 6201 */ 6202 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6203 ((mp1 = copymsg(mp)) == NULL))) { 6204 /* 6205 * No more intested clients or memory 6206 * allocation failed 6207 */ 6208 connp = first_connp; 6209 break; 6210 } 6211 if (first_mp != NULL) { 6212 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6213 ipsec_info_type == IPSEC_IN); 6214 first_mp1 = ipsec_in_tag(first_mp, NULL); 6215 if (first_mp1 == NULL) { 6216 freemsg(mp1); 6217 connp = first_connp; 6218 break; 6219 } 6220 } else { 6221 first_mp1 = NULL; 6222 } 6223 CONN_INC_REF(connp); 6224 mutex_exit(&connfp->connf_lock); 6225 /* 6226 * IPQoS notes: We don't send the packet for policy 6227 * processing here, will do it for the last one (below). 6228 * i.e. we do it per-packet now, but if we do policy 6229 * processing per-conn, then we would need to do it 6230 * here too. 6231 */ 6232 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6233 ipha, flags, recv_ill, B_FALSE); 6234 mutex_enter(&connfp->connf_lock); 6235 /* Follow the next pointer before releasing the conn. */ 6236 next_connp = connp->conn_next; 6237 CONN_DEC_REF(connp); 6238 connp = next_connp; 6239 } 6240 6241 /* Last one. Send it upstream. */ 6242 mutex_exit(&connfp->connf_lock); 6243 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6244 ip_policy); 6245 CONN_DEC_REF(connp); 6246 } 6247 6248 /* 6249 * Complete the ip_wput header so that it 6250 * is possible to generate ICMP 6251 * errors. 6252 */ 6253 static int 6254 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6255 { 6256 ire_t *ire; 6257 6258 if (ipha->ipha_src == INADDR_ANY) { 6259 ire = ire_lookup_local(zoneid); 6260 if (ire == NULL) { 6261 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6262 return (1); 6263 } 6264 ipha->ipha_src = ire->ire_addr; 6265 ire_refrele(ire); 6266 } 6267 ipha->ipha_ttl = ip_def_ttl; 6268 ipha->ipha_hdr_checksum = 0; 6269 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6270 return (0); 6271 } 6272 6273 /* 6274 * Nobody should be sending 6275 * packets up this stream 6276 */ 6277 static void 6278 ip_lrput(queue_t *q, mblk_t *mp) 6279 { 6280 mblk_t *mp1; 6281 6282 switch (mp->b_datap->db_type) { 6283 case M_FLUSH: 6284 /* Turn around */ 6285 if (*mp->b_rptr & FLUSHW) { 6286 *mp->b_rptr &= ~FLUSHR; 6287 qreply(q, mp); 6288 return; 6289 } 6290 break; 6291 } 6292 /* Could receive messages that passed through ar_rput */ 6293 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 6294 mp1->b_prev = mp1->b_next = NULL; 6295 freemsg(mp); 6296 } 6297 6298 /* Nobody should be sending packets down this stream */ 6299 /* ARGSUSED */ 6300 void 6301 ip_lwput(queue_t *q, mblk_t *mp) 6302 { 6303 freemsg(mp); 6304 } 6305 6306 /* 6307 * Move the first hop in any source route to ipha_dst and remove that part of 6308 * the source route. Called by other protocols. Errors in option formatting 6309 * are ignored - will be handled by ip_wput_options Return the final 6310 * destination (either ipha_dst or the last entry in a source route.) 6311 */ 6312 ipaddr_t 6313 ip_massage_options(ipha_t *ipha) 6314 { 6315 ipoptp_t opts; 6316 uchar_t *opt; 6317 uint8_t optval; 6318 uint8_t optlen; 6319 ipaddr_t dst; 6320 int i; 6321 ire_t *ire; 6322 6323 ip2dbg(("ip_massage_options\n")); 6324 dst = ipha->ipha_dst; 6325 for (optval = ipoptp_first(&opts, ipha); 6326 optval != IPOPT_EOL; 6327 optval = ipoptp_next(&opts)) { 6328 opt = opts.ipoptp_cur; 6329 switch (optval) { 6330 uint8_t off; 6331 case IPOPT_SSRR: 6332 case IPOPT_LSRR: 6333 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 6334 ip1dbg(("ip_massage_options: bad src route\n")); 6335 break; 6336 } 6337 optlen = opts.ipoptp_len; 6338 off = opt[IPOPT_OFFSET]; 6339 off--; 6340 redo_srr: 6341 if (optlen < IP_ADDR_LEN || 6342 off > optlen - IP_ADDR_LEN) { 6343 /* End of source route */ 6344 ip1dbg(("ip_massage_options: end of SR\n")); 6345 break; 6346 } 6347 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 6348 ip1dbg(("ip_massage_options: next hop 0x%x\n", 6349 ntohl(dst))); 6350 /* 6351 * Check if our address is present more than 6352 * once as consecutive hops in source route. 6353 * XXX verify per-interface ip_forwarding 6354 * for source route? 6355 */ 6356 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 6357 ALL_ZONES, MATCH_IRE_TYPE); 6358 if (ire != NULL) { 6359 ire_refrele(ire); 6360 off += IP_ADDR_LEN; 6361 goto redo_srr; 6362 } 6363 if (dst == htonl(INADDR_LOOPBACK)) { 6364 ip1dbg(("ip_massage_options: loopback addr in " 6365 "source route!\n")); 6366 break; 6367 } 6368 /* 6369 * Update ipha_dst to be the first hop and remove the 6370 * first hop from the source route (by overwriting 6371 * part of the option with NOP options). 6372 */ 6373 ipha->ipha_dst = dst; 6374 /* Put the last entry in dst */ 6375 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 6376 3; 6377 bcopy(&opt[off], &dst, IP_ADDR_LEN); 6378 6379 ip1dbg(("ip_massage_options: last hop 0x%x\n", 6380 ntohl(dst))); 6381 /* Move down and overwrite */ 6382 opt[IP_ADDR_LEN] = opt[0]; 6383 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 6384 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 6385 for (i = 0; i < IP_ADDR_LEN; i++) 6386 opt[i] = IPOPT_NOP; 6387 break; 6388 } 6389 } 6390 return (dst); 6391 } 6392 6393 /* 6394 * This function's job is to forward data to the reverse tunnel (FA->HA) 6395 * after doing a few checks. It is assumed that the incoming interface 6396 * of the packet is always different than the outgoing interface and the 6397 * ire_type of the found ire has to be a non-resolver type. 6398 * 6399 * IPQoS notes 6400 * IP policy is invoked twice for a forwarded packet, once on the read side 6401 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 6402 * enabled. 6403 */ 6404 static void 6405 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 6406 { 6407 ipha_t *ipha; 6408 queue_t *q; 6409 uint32_t pkt_len; 6410 #define rptr ((uchar_t *)ipha) 6411 uint32_t sum; 6412 uint32_t max_frag; 6413 mblk_t *first_mp; 6414 uint32_t ill_index; 6415 6416 ASSERT(ire != NULL); 6417 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 6418 ASSERT(ire->ire_stq != NULL); 6419 6420 /* Initiate read side IPPF processing */ 6421 if (IPP_ENABLED(IPP_FWD_IN)) { 6422 ill_index = in_ill->ill_phyint->phyint_ifindex; 6423 ip_process(IPP_FWD_IN, &mp, ill_index); 6424 if (mp == NULL) { 6425 ip2dbg(("ip_mrtun_forward: inbound pkt " 6426 "dropped during IPPF processing\n")); 6427 return; 6428 } 6429 } 6430 6431 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 6432 ILLF_ROUTER) == 0) || 6433 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 6434 BUMP_MIB(&ip_mib, ipForwProhibits); 6435 ip0dbg(("ip_mrtun_forward: Can't forward :" 6436 "forwarding is not turned on\n")); 6437 goto drop_pkt; 6438 } 6439 6440 /* 6441 * Don't forward if the interface is down 6442 */ 6443 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 6444 BUMP_MIB(&ip_mib, ipInDiscards); 6445 goto drop_pkt; 6446 } 6447 6448 ipha = (ipha_t *)mp->b_rptr; 6449 pkt_len = ntohs(ipha->ipha_length); 6450 /* Adjust the checksum to reflect the ttl decrement. */ 6451 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 6452 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 6453 if (ipha->ipha_ttl-- <= 1) { 6454 if (ip_csum_hdr(ipha)) { 6455 BUMP_MIB(&ip_mib, ipInCksumErrs); 6456 goto drop_pkt; 6457 } 6458 q = ire->ire_stq; 6459 if ((first_mp = allocb(sizeof (ipsec_info_t), 6460 BPRI_HI)) == NULL) { 6461 goto drop_pkt; 6462 } 6463 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6464 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 6465 6466 return; 6467 } 6468 6469 /* Get the ill_index of the ILL */ 6470 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 6471 6472 /* 6473 * ip_mrtun_forward is only used by foreign agent to reverse 6474 * tunnel the incoming packet. So it does not do any option 6475 * processing for source routing. 6476 */ 6477 max_frag = ire->ire_max_frag; 6478 if (pkt_len > max_frag) { 6479 /* 6480 * It needs fragging on its way out. We haven't 6481 * verified the header checksum yet. Since we 6482 * are going to put a surely good checksum in the 6483 * outgoing header, we have to make sure that it 6484 * was good coming in. 6485 */ 6486 if (ip_csum_hdr(ipha)) { 6487 BUMP_MIB(&ip_mib, ipInCksumErrs); 6488 goto drop_pkt; 6489 } 6490 6491 /* Initiate write side IPPF processing */ 6492 if (IPP_ENABLED(IPP_FWD_OUT)) { 6493 ip_process(IPP_FWD_OUT, &mp, ill_index); 6494 if (mp == NULL) { 6495 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 6496 "dropped/deferred during ip policy "\ 6497 "processing\n")); 6498 return; 6499 } 6500 } 6501 if ((first_mp = allocb(sizeof (ipsec_info_t), 6502 BPRI_HI)) == NULL) { 6503 goto drop_pkt; 6504 } 6505 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6506 mp = first_mp; 6507 6508 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 6509 return; 6510 } 6511 6512 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 6513 6514 ASSERT(ire->ire_ipif != NULL); 6515 6516 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 6517 if (mp == NULL) { 6518 BUMP_MIB(&ip_mib, ipInDiscards); 6519 return; 6520 } 6521 6522 /* Now send the packet to the tunnel interface */ 6523 q = ire->ire_stq; 6524 UPDATE_IB_PKT_COUNT(ire); 6525 ire->ire_last_used_time = lbolt; 6526 BUMP_MIB(&ip_mib, ipForwDatagrams); 6527 putnext(q, mp); 6528 ip2dbg(("ip_mrtun_forward: sent packet to ill %p\n", q->q_ptr)); 6529 return; 6530 6531 drop_pkt:; 6532 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 6533 freemsg(mp); 6534 #undef rptr 6535 } 6536 6537 /* 6538 * Fills the ipsec_out_t data structure with appropriate fields and 6539 * prepends it to mp which contains the IP hdr + data that was meant 6540 * to be forwarded. Please note that ipsec_out_info data structure 6541 * is used here to communicate the outgoing ill path at ip_wput() 6542 * for the ICMP error packet. This has nothing to do with ipsec IP 6543 * security. ipsec_out_t is really used to pass the info to the module 6544 * IP where this information cannot be extracted from conn. 6545 * This functions is called by ip_mrtun_forward(). 6546 */ 6547 void 6548 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 6549 { 6550 ipsec_out_t *io; 6551 6552 ASSERT(xmit_ill != NULL); 6553 first_mp->b_datap->db_type = M_CTL; 6554 first_mp->b_wptr += sizeof (ipsec_info_t); 6555 /* 6556 * This is to pass info to ip_wput in absence of conn. 6557 * ipsec_out_secure will be B_FALSE because of this. 6558 * Thus ipsec_out_secure being B_FALSE indicates that 6559 * this is not IPSEC security related information. 6560 */ 6561 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 6562 io = (ipsec_out_t *)first_mp->b_rptr; 6563 io->ipsec_out_type = IPSEC_OUT; 6564 io->ipsec_out_len = sizeof (ipsec_out_t); 6565 first_mp->b_cont = mp; 6566 io->ipsec_out_ill_index = 6567 xmit_ill->ill_phyint->phyint_ifindex; 6568 io->ipsec_out_xmit_if = B_TRUE; 6569 } 6570 6571 /* 6572 * Return the network mask 6573 * associated with the specified address. 6574 */ 6575 ipaddr_t 6576 ip_net_mask(ipaddr_t addr) 6577 { 6578 uchar_t *up = (uchar_t *)&addr; 6579 ipaddr_t mask = 0; 6580 uchar_t *maskp = (uchar_t *)&mask; 6581 6582 #if defined(__i386) || defined(__amd64) 6583 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 6584 #endif 6585 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 6586 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 6587 #endif 6588 if (CLASSD(addr)) { 6589 maskp[0] = 0xF0; 6590 return (mask); 6591 } 6592 if (addr == 0) 6593 return (0); 6594 maskp[0] = 0xFF; 6595 if ((up[0] & 0x80) == 0) 6596 return (mask); 6597 6598 maskp[1] = 0xFF; 6599 if ((up[0] & 0xC0) == 0x80) 6600 return (mask); 6601 6602 maskp[2] = 0xFF; 6603 if ((up[0] & 0xE0) == 0xC0) 6604 return (mask); 6605 6606 /* Must be experimental or multicast, indicate as much */ 6607 return ((ipaddr_t)0); 6608 } 6609 6610 /* 6611 * Select an ill for the packet by considering load spreading across 6612 * a different ill in the group if dst_ill is part of some group. 6613 */ 6614 static ill_t * 6615 ip_newroute_get_dst_ill(ill_t *dst_ill) 6616 { 6617 ill_t *ill; 6618 6619 /* 6620 * We schedule irrespective of whether the source address is 6621 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 6622 */ 6623 ill = illgrp_scheduler(dst_ill); 6624 if (ill == NULL) 6625 return (NULL); 6626 6627 /* 6628 * For groups with names ip_sioctl_groupname ensures that all 6629 * ills are of same type. For groups without names, ifgrp_insert 6630 * ensures this. 6631 */ 6632 ASSERT(dst_ill->ill_type == ill->ill_type); 6633 6634 return (ill); 6635 } 6636 6637 /* 6638 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 6639 */ 6640 ill_t * 6641 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 6642 { 6643 ill_t *ret_ill; 6644 6645 ASSERT(ifindex != 0); 6646 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 6647 if (ret_ill == NULL || 6648 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 6649 if (isv6) { 6650 if (ill != NULL) { 6651 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 6652 } else { 6653 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 6654 } 6655 ip1dbg(("ip_grab_attach_ill (IPv6): " 6656 "bad ifindex %d.\n", ifindex)); 6657 } else { 6658 BUMP_MIB(&ip_mib, ipOutDiscards); 6659 ip1dbg(("ip_grab_attach_ill (IPv4): " 6660 "bad ifindex %d.\n", ifindex)); 6661 } 6662 if (ret_ill != NULL) 6663 ill_refrele(ret_ill); 6664 freemsg(first_mp); 6665 return (NULL); 6666 } 6667 6668 return (ret_ill); 6669 } 6670 6671 /* 6672 * IPv4 - 6673 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 6674 * out a packet to a destination address for which we do not have specific 6675 * (or sufficient) routing information. 6676 * 6677 * NOTE : These are the scopes of some of the variables that point at IRE, 6678 * which needs to be followed while making any future modifications 6679 * to avoid memory leaks. 6680 * 6681 * - ire and sire are the entries looked up initially by 6682 * ire_ftable_lookup. 6683 * - ipif_ire is used to hold the interface ire associated with 6684 * the new cache ire. But it's scope is limited, so we always REFRELE 6685 * it before branching out to error paths. 6686 * - save_ire is initialized before ire_create, so that ire returned 6687 * by ire_create will not over-write the ire. We REFRELE save_ire 6688 * before breaking out of the switch. 6689 * 6690 * Thus on failures, we have to REFRELE only ire and sire, if they 6691 * are not NULL. 6692 */ 6693 void 6694 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 6695 { 6696 areq_t *areq; 6697 ipaddr_t gw = 0; 6698 ire_t *ire = NULL; 6699 mblk_t *res_mp; 6700 ipaddr_t *addrp; 6701 ipaddr_t nexthop_addr; 6702 ipif_t *src_ipif = NULL; 6703 ill_t *dst_ill = NULL; 6704 ipha_t *ipha; 6705 ire_t *sire = NULL; 6706 mblk_t *first_mp; 6707 ire_t *save_ire; 6708 mblk_t *dlureq_mp; 6709 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 6710 ushort_t ire_marks = 0; 6711 boolean_t mctl_present; 6712 ipsec_out_t *io; 6713 mblk_t *saved_mp; 6714 ire_t *first_sire = NULL; 6715 mblk_t *copy_mp = NULL; 6716 mblk_t *xmit_mp = NULL; 6717 ipaddr_t save_dst; 6718 uint32_t multirt_flags = 6719 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 6720 boolean_t multirt_is_resolvable; 6721 boolean_t multirt_resolve_next; 6722 boolean_t do_attach_ill = B_FALSE; 6723 boolean_t ip_nexthop = B_FALSE; 6724 zoneid_t zoneid; 6725 6726 if (ip_debug > 2) { 6727 /* ip1dbg */ 6728 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 6729 } 6730 6731 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 6732 if (mctl_present) { 6733 io = (ipsec_out_t *)first_mp->b_rptr; 6734 zoneid = io->ipsec_out_zoneid; 6735 ASSERT(zoneid != ALL_ZONES); 6736 } else if (connp != NULL) { 6737 zoneid = connp->conn_zoneid; 6738 } else { 6739 zoneid = GLOBAL_ZONEID; 6740 } 6741 6742 ipha = (ipha_t *)mp->b_rptr; 6743 6744 /* All multicast lookups come through ip_newroute_ipif() */ 6745 if (CLASSD(dst)) { 6746 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 6747 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 6748 freemsg(first_mp); 6749 return; 6750 } 6751 6752 if (ip_loopback_src_or_dst(ipha, NULL)) { 6753 goto icmp_err_ret; 6754 } 6755 6756 if (mctl_present && io->ipsec_out_attach_if) { 6757 /* ip_grab_attach_ill returns a held ill */ 6758 attach_ill = ip_grab_attach_ill(NULL, first_mp, 6759 io->ipsec_out_ill_index, B_FALSE); 6760 6761 /* Failure case frees things for us. */ 6762 if (attach_ill == NULL) 6763 return; 6764 6765 /* 6766 * Check if we need an ire that will not be 6767 * looked up by anybody else i.e. HIDDEN. 6768 */ 6769 if (ill_is_probeonly(attach_ill)) 6770 ire_marks = IRE_MARK_HIDDEN; 6771 } 6772 if (mctl_present && io->ipsec_out_ip_nexthop) { 6773 ip_nexthop = B_TRUE; 6774 nexthop_addr = io->ipsec_out_nexthop_addr; 6775 } 6776 /* 6777 * If this IRE is created for forwarding or it is not for 6778 * traffic for congestion controlled protocols, mark it as temporary. 6779 */ 6780 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 6781 ire_marks |= IRE_MARK_TEMPORARY; 6782 6783 /* 6784 * Get what we can from ire_ftable_lookup which will follow an IRE 6785 * chain until it gets the most specific information available. 6786 * For example, we know that there is no IRE_CACHE for this dest, 6787 * but there may be an IRE_OFFSUBNET which specifies a gateway. 6788 * ire_ftable_lookup will look up the gateway, etc. 6789 * Check if in_ill != NULL. If it is true, the packet must be 6790 * from an incoming interface where RTA_SRCIFP is set. 6791 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 6792 * to the destination, of equal netmask length in the forward table, 6793 * will be recursively explored. If no information is available 6794 * for the final gateway of that route, we force the returned ire 6795 * to be equal to sire using MATCH_IRE_PARENT. 6796 * At least, in this case we have a starting point (in the buckets) 6797 * to look for other routes to the destination in the forward table. 6798 * This is actually used only for multirouting, where a list 6799 * of routes has to be processed in sequence. 6800 */ 6801 if (in_ill != NULL) { 6802 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 6803 in_ill, MATCH_IRE_TYPE); 6804 } else if (ip_nexthop) { 6805 /* 6806 * The first time we come here, we look for an IRE_INTERFACE 6807 * entry for the specified nexthop, set the dst to be the 6808 * nexthop address and create an IRE_CACHE entry for the 6809 * nexthop. The next time around, we are able to find an 6810 * IRE_CACHE entry for the nexthop, set the gateway to be the 6811 * nexthop address and create an IRE_CACHE entry for the 6812 * destination address via the specified nexthop. 6813 */ 6814 ire = ire_cache_lookup(nexthop_addr, zoneid); 6815 if (ire != NULL) { 6816 gw = nexthop_addr; 6817 ire_marks |= IRE_MARK_PRIVATE_ADDR; 6818 } else { 6819 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 6820 IRE_INTERFACE, NULL, NULL, zoneid, 0, 6821 MATCH_IRE_TYPE); 6822 if (ire != NULL) { 6823 dst = nexthop_addr; 6824 } 6825 } 6826 } else if (attach_ill == NULL) { 6827 ire = ire_ftable_lookup(dst, 0, 0, 0, 6828 NULL, &sire, zoneid, 0, 6829 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 6830 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT); 6831 } else { 6832 /* 6833 * attach_ill is set only for communicating with 6834 * on-link hosts. So, don't look for DEFAULT. 6835 */ 6836 ipif_t *attach_ipif; 6837 6838 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 6839 if (attach_ipif == NULL) { 6840 ill_refrele(attach_ill); 6841 goto icmp_err_ret; 6842 } 6843 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 6844 &sire, zoneid, 0, 6845 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL); 6846 ipif_refrele(attach_ipif); 6847 } 6848 ip3dbg(("ip_newroute: ire_ftable_lookup() " 6849 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 6850 6851 /* 6852 * This loop is run only once in most cases. 6853 * We loop to resolve further routes only when the destination 6854 * can be reached through multiple RTF_MULTIRT-flagged ires. 6855 */ 6856 do { 6857 /* Clear the previous iteration's values */ 6858 if (src_ipif != NULL) { 6859 ipif_refrele(src_ipif); 6860 src_ipif = NULL; 6861 } 6862 if (dst_ill != NULL) { 6863 ill_refrele(dst_ill); 6864 dst_ill = NULL; 6865 } 6866 6867 multirt_resolve_next = B_FALSE; 6868 /* 6869 * We check if packets have to be multirouted. 6870 * In this case, given the current <ire, sire> couple, 6871 * we look for the next suitable <ire, sire>. 6872 * This check is done in ire_multirt_lookup(), 6873 * which applies various criteria to find the next route 6874 * to resolve. ire_multirt_lookup() leaves <ire, sire> 6875 * unchanged if it detects it has not been tried yet. 6876 */ 6877 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 6878 ip3dbg(("ip_newroute: starting next_resolution " 6879 "with first_mp %p, tag %d\n", 6880 (void *)first_mp, 6881 MULTIRT_DEBUG_TAGGED(first_mp))); 6882 6883 ASSERT(sire != NULL); 6884 multirt_is_resolvable = 6885 ire_multirt_lookup(&ire, &sire, multirt_flags); 6886 6887 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 6888 "ire %p, sire %p\n", 6889 multirt_is_resolvable, 6890 (void *)ire, (void *)sire)); 6891 6892 if (!multirt_is_resolvable) { 6893 /* 6894 * No more multirt route to resolve; give up 6895 * (all routes resolved or no more 6896 * resolvable routes). 6897 */ 6898 if (ire != NULL) { 6899 ire_refrele(ire); 6900 ire = NULL; 6901 } 6902 } else { 6903 ASSERT(sire != NULL); 6904 ASSERT(ire != NULL); 6905 /* 6906 * We simply use first_sire as a flag that 6907 * indicates if a resolvable multirt route 6908 * has already been found. 6909 * If it is not the case, we may have to send 6910 * an ICMP error to report that the 6911 * destination is unreachable. 6912 * We do not IRE_REFHOLD first_sire. 6913 */ 6914 if (first_sire == NULL) { 6915 first_sire = sire; 6916 } 6917 } 6918 } 6919 if (ire == NULL) { 6920 if (ip_debug > 3) { 6921 /* ip2dbg */ 6922 pr_addr_dbg("ip_newroute: " 6923 "can't resolve %s\n", AF_INET, &dst); 6924 } 6925 ip3dbg(("ip_newroute: " 6926 "ire %p, sire %p, first_sire %p\n", 6927 (void *)ire, (void *)sire, (void *)first_sire)); 6928 6929 if (sire != NULL) { 6930 ire_refrele(sire); 6931 sire = NULL; 6932 } 6933 6934 if (first_sire != NULL) { 6935 /* 6936 * At least one multirt route has been found 6937 * in the same call to ip_newroute(); 6938 * there is no need to report an ICMP error. 6939 * first_sire was not IRE_REFHOLDed. 6940 */ 6941 MULTIRT_DEBUG_UNTAG(first_mp); 6942 freemsg(first_mp); 6943 return; 6944 } 6945 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 6946 RTA_DST); 6947 if (attach_ill != NULL) 6948 ill_refrele(attach_ill); 6949 goto icmp_err_ret; 6950 } 6951 6952 /* 6953 * When RTA_SRCIFP is used to add a route, then an interface 6954 * route is added in the source interface's routing table. 6955 * If the outgoing interface of this route is of type 6956 * IRE_IF_RESOLVER, then upon creation of the ire, 6957 * ire_dlureq_mp is set to NULL. Later, when this route is 6958 * first used for forwarding packet, ip_newroute() is called 6959 * to resolve the hardware address of the outgoing ipif. 6960 * We do not come here for IRE_IF_NORESOLVER entries in the 6961 * source interface based table. We only come here if the 6962 * outgoing interface is a resolver interface and we don't 6963 * have the ire_dlureq_mp information yet. 6964 * If in_ill is not null that means it is called from 6965 * ip_rput. 6966 */ 6967 6968 ASSERT(ire->ire_in_ill == NULL || 6969 (ire->ire_type == IRE_IF_RESOLVER && 6970 ire->ire_dlureq_mp == NULL)); 6971 6972 /* 6973 * Verify that the returned IRE does not have either 6974 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 6975 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 6976 */ 6977 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 6978 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 6979 if (attach_ill != NULL) 6980 ill_refrele(attach_ill); 6981 goto icmp_err_ret; 6982 } 6983 /* 6984 * Increment the ire_ob_pkt_count field for ire if it is an 6985 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 6986 * increment the same for the parent IRE, sire, if it is some 6987 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 6988 * and HOST_REDIRECT). 6989 */ 6990 if ((ire->ire_type & IRE_INTERFACE) != 0) { 6991 UPDATE_OB_PKT_COUNT(ire); 6992 ire->ire_last_used_time = lbolt; 6993 } 6994 6995 if (sire != NULL) { 6996 gw = sire->ire_gateway_addr; 6997 ASSERT((sire->ire_type & (IRE_CACHETABLE | 6998 IRE_INTERFACE)) == 0); 6999 UPDATE_OB_PKT_COUNT(sire); 7000 sire->ire_last_used_time = lbolt; 7001 } 7002 /* 7003 * We have a route to reach the destination. 7004 * 7005 * 1) If the interface is part of ill group, try to get a new 7006 * ill taking load spreading into account. 7007 * 7008 * 2) After selecting the ill, get a source address that 7009 * might create good inbound load spreading. 7010 * ipif_select_source does this for us. 7011 * 7012 * If the application specified the ill (ifindex), we still 7013 * load spread. Only if the packets needs to go out 7014 * specifically on a given ill e.g. binding to 7015 * IPIF_NOFAILOVER address, then we don't try to use a 7016 * different ill for load spreading. 7017 */ 7018 if (attach_ill == NULL) { 7019 /* 7020 * Don't perform outbound load spreading in the 7021 * case of an RTF_MULTIRT route, as we actually 7022 * typically want to replicate outgoing packets 7023 * through particular interfaces. 7024 */ 7025 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7026 dst_ill = ire->ire_ipif->ipif_ill; 7027 /* for uniformity */ 7028 ill_refhold(dst_ill); 7029 } else { 7030 /* 7031 * If we are here trying to create an IRE_CACHE 7032 * for an offlink destination and have the 7033 * IRE_CACHE for the next hop and the latter is 7034 * using virtual IP source address selection i.e 7035 * it's ire->ire_ipif is pointing to a virtual 7036 * network interface (vni) then 7037 * ip_newroute_get_dst_ll() will return the vni 7038 * interface as the dst_ill. Since the vni is 7039 * virtual i.e not associated with any physical 7040 * interface, it cannot be the dst_ill, hence 7041 * in such a case call ip_newroute_get_dst_ll() 7042 * with the stq_ill instead of the ire_ipif ILL. 7043 * The function returns a refheld ill. 7044 */ 7045 if ((ire->ire_type == IRE_CACHE) && 7046 IS_VNI(ire->ire_ipif->ipif_ill)) 7047 dst_ill = ip_newroute_get_dst_ill( 7048 ire->ire_stq->q_ptr); 7049 else 7050 dst_ill = ip_newroute_get_dst_ill( 7051 ire->ire_ipif->ipif_ill); 7052 } 7053 if (dst_ill == NULL) { 7054 if (ip_debug > 2) { 7055 pr_addr_dbg("ip_newroute: " 7056 "no dst ill for dst" 7057 " %s\n", AF_INET, &dst); 7058 } 7059 goto icmp_err_ret; 7060 } 7061 } else { 7062 dst_ill = ire->ire_ipif->ipif_ill; 7063 /* for uniformity */ 7064 ill_refhold(dst_ill); 7065 /* 7066 * We should have found a route matching ill as we 7067 * called ire_ftable_lookup with MATCH_IRE_ILL. 7068 * Rather than asserting, when there is a mismatch, 7069 * we just drop the packet. 7070 */ 7071 if (dst_ill != attach_ill) { 7072 ip0dbg(("ip_newroute: Packet dropped as " 7073 "IPIF_NOFAILOVER ill is %s, " 7074 "ire->ire_ipif->ipif_ill is %s\n", 7075 attach_ill->ill_name, 7076 dst_ill->ill_name)); 7077 ill_refrele(attach_ill); 7078 goto icmp_err_ret; 7079 } 7080 } 7081 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7082 if (attach_ill != NULL) { 7083 ill_refrele(attach_ill); 7084 attach_ill = NULL; 7085 do_attach_ill = B_TRUE; 7086 } 7087 ASSERT(dst_ill != NULL); 7088 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7089 7090 /* 7091 * Pick the best source address from dst_ill. 7092 * 7093 * 1) If it is part of a multipathing group, we would 7094 * like to spread the inbound packets across different 7095 * interfaces. ipif_select_source picks a random source 7096 * across the different ills in the group. 7097 * 7098 * 2) If it is not part of a multipathing group, we try 7099 * to pick the source address from the destination 7100 * route. Clustering assumes that when we have multiple 7101 * prefixes hosted on an interface, the prefix of the 7102 * source address matches the prefix of the destination 7103 * route. We do this only if the address is not 7104 * DEPRECATED. 7105 * 7106 * 3) If the conn is in a different zone than the ire, we 7107 * need to pick a source address from the right zone. 7108 * 7109 * NOTE : If we hit case (1) above, the prefix of the source 7110 * address picked may not match the prefix of the 7111 * destination routes prefix as ipif_select_source 7112 * does not look at "dst" while picking a source 7113 * address. 7114 * If we want the same behavior as (2), we will need 7115 * to change the behavior of ipif_select_source. 7116 */ 7117 ASSERT(src_ipif == NULL); 7118 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7119 /* 7120 * The RTF_SETSRC flag is set in the parent ire (sire). 7121 * Check that the ipif matching the requested source 7122 * address still exists. 7123 */ 7124 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7125 zoneid, NULL, NULL, NULL, NULL); 7126 } 7127 if (src_ipif == NULL) { 7128 ire_marks |= IRE_MARK_USESRC_CHECK; 7129 if ((dst_ill->ill_group != NULL) || 7130 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 7131 (connp != NULL && ire->ire_zoneid != zoneid) || 7132 (dst_ill->ill_usesrc_ifindex != 0)) { 7133 src_ipif = ipif_select_source(dst_ill, dst, 7134 zoneid); 7135 if (src_ipif == NULL) { 7136 if (ip_debug > 2) { 7137 pr_addr_dbg("ip_newroute: " 7138 "no src for dst %s ", 7139 AF_INET, &dst); 7140 printf("through interface %s\n", 7141 dst_ill->ill_name); 7142 } 7143 goto icmp_err_ret; 7144 } 7145 } else { 7146 src_ipif = ire->ire_ipif; 7147 ASSERT(src_ipif != NULL); 7148 /* hold src_ipif for uniformity */ 7149 ipif_refhold(src_ipif); 7150 } 7151 } 7152 7153 /* 7154 * Assign a source address while we have the conn. 7155 * We can't have ip_wput_ire pick a source address when the 7156 * packet returns from arp since we need to look at 7157 * conn_unspec_src and conn_zoneid, and we lose the conn when 7158 * going through arp. 7159 * 7160 * NOTE : ip_newroute_v6 does not have this piece of code as 7161 * it uses ip6i to store this information. 7162 */ 7163 if (ipha->ipha_src == INADDR_ANY && 7164 (connp == NULL || !connp->conn_unspec_src)) { 7165 ipha->ipha_src = src_ipif->ipif_src_addr; 7166 } 7167 if (ip_debug > 3) { 7168 /* ip2dbg */ 7169 pr_addr_dbg("ip_newroute: first hop %s\n", 7170 AF_INET, &gw); 7171 } 7172 ip2dbg(("\tire type %s (%d)\n", 7173 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7174 7175 /* 7176 * The TTL of multirouted packets is bounded by the 7177 * ip_multirt_ttl ndd variable. 7178 */ 7179 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7180 /* Force TTL of multirouted packets */ 7181 if ((ip_multirt_ttl > 0) && 7182 (ipha->ipha_ttl > ip_multirt_ttl)) { 7183 ip2dbg(("ip_newroute: forcing multirt TTL " 7184 "to %d (was %d), dst 0x%08x\n", 7185 ip_multirt_ttl, ipha->ipha_ttl, 7186 ntohl(sire->ire_addr))); 7187 ipha->ipha_ttl = ip_multirt_ttl; 7188 } 7189 } 7190 /* 7191 * At this point in ip_newroute(), ire is either the 7192 * IRE_CACHE of the next-hop gateway for an off-subnet 7193 * destination or an IRE_INTERFACE type that should be used 7194 * to resolve an on-subnet destination or an on-subnet 7195 * next-hop gateway. 7196 * 7197 * In the IRE_CACHE case, we have the following : 7198 * 7199 * 1) src_ipif - used for getting a source address. 7200 * 7201 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7202 * means packets using this IRE_CACHE will go out on 7203 * dst_ill. 7204 * 7205 * 3) The IRE sire will point to the prefix that is the 7206 * longest matching route for the destination. These 7207 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7208 * and IRE_HOST_REDIRECT. 7209 * 7210 * The newly created IRE_CACHE entry for the off-subnet 7211 * destination is tied to both the prefix route and the 7212 * interface route used to resolve the next-hop gateway 7213 * via the ire_phandle and ire_ihandle fields, 7214 * respectively. 7215 * 7216 * In the IRE_INTERFACE case, we have the following : 7217 * 7218 * 1) src_ipif - used for getting a source address. 7219 * 7220 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7221 * means packets using the IRE_CACHE that we will build 7222 * here will go out on dst_ill. 7223 * 7224 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 7225 * to be created will only be tied to the IRE_INTERFACE 7226 * that was derived from the ire_ihandle field. 7227 * 7228 * If sire is non-NULL, it means the destination is 7229 * off-link and we will first create the IRE_CACHE for the 7230 * gateway. Next time through ip_newroute, we will create 7231 * the IRE_CACHE for the final destination as described 7232 * above. 7233 * 7234 * In both cases, after the current resolution has been 7235 * completed (or possibly initialised, in the IRE_INTERFACE 7236 * case), the loop may be re-entered to attempt the resolution 7237 * of another RTF_MULTIRT route. 7238 * 7239 * When an IRE_CACHE entry for the off-subnet destination is 7240 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 7241 * for further processing in emission loops. 7242 */ 7243 save_ire = ire; 7244 switch (ire->ire_type) { 7245 case IRE_CACHE: { 7246 ire_t *ipif_ire; 7247 mblk_t *ire_fp_mp; 7248 7249 if (gw == 0) 7250 gw = ire->ire_gateway_addr; 7251 /* 7252 * We need 3 ire's to create a new cache ire for an 7253 * off-link destination from the cache ire of the 7254 * gateway. 7255 * 7256 * 1. The prefix ire 'sire' (Note that this does 7257 * not apply to the conn_nexthop_set case) 7258 * 2. The cache ire of the gateway 'ire' 7259 * 3. The interface ire 'ipif_ire' 7260 * 7261 * We have (1) and (2). We lookup (3) below. 7262 * 7263 * If there is no interface route to the gateway, 7264 * it is a race condition, where we found the cache 7265 * but the interface route has been deleted. 7266 */ 7267 if (ip_nexthop) { 7268 ipif_ire = ire_ihandle_lookup_onlink(ire); 7269 } else { 7270 ipif_ire = 7271 ire_ihandle_lookup_offlink(ire, sire); 7272 } 7273 if (ipif_ire == NULL) { 7274 ip1dbg(("ip_newroute: " 7275 "ire_ihandle_lookup_offlink failed\n")); 7276 goto icmp_err_ret; 7277 } 7278 /* 7279 * XXX We are using the same dlureq_mp 7280 * (DL_UNITDATA_REQ) though the save_ire is not 7281 * pointing at the same ill. 7282 * This is incorrect. We need to send it up to the 7283 * resolver to get the right dlureq_mp. For ethernets 7284 * this may be okay (ill_type == DL_ETHER). 7285 */ 7286 dlureq_mp = save_ire->ire_dlureq_mp; 7287 ire_fp_mp = NULL; 7288 /* 7289 * save_ire's ire_fp_mp can't change since it is 7290 * not an IRE_MIPRTUN or IRE_BROADCAST 7291 * LOCK_IRE_FP_MP does not do any useful work in 7292 * the case of IRE_CACHE. So we don't use it below. 7293 */ 7294 if (save_ire->ire_stq == dst_ill->ill_wq) 7295 ire_fp_mp = save_ire->ire_fp_mp; 7296 7297 ire = ire_create( 7298 (uchar_t *)&dst, /* dest address */ 7299 (uchar_t *)&ip_g_all_ones, /* mask */ 7300 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7301 (uchar_t *)&gw, /* gateway address */ 7302 NULL, 7303 &save_ire->ire_max_frag, 7304 ire_fp_mp, /* Fast Path header */ 7305 dst_ill->ill_rq, /* recv-from queue */ 7306 dst_ill->ill_wq, /* send-to queue */ 7307 IRE_CACHE, /* IRE type */ 7308 save_ire->ire_dlureq_mp, 7309 src_ipif, 7310 in_ill, /* incoming ill */ 7311 (sire != NULL) ? 7312 sire->ire_mask : 0, /* Parent mask */ 7313 (sire != NULL) ? 7314 sire->ire_phandle : 0, /* Parent handle */ 7315 ipif_ire->ire_ihandle, /* Interface handle */ 7316 (sire != NULL) ? (sire->ire_flags & 7317 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 7318 (sire != NULL) ? 7319 &(sire->ire_uinfo) : &(save_ire->ire_uinfo)); 7320 7321 if (ire == NULL) { 7322 ire_refrele(ipif_ire); 7323 ire_refrele(save_ire); 7324 break; 7325 } 7326 ire->ire_marks |= ire_marks; 7327 7328 /* 7329 * Prevent sire and ipif_ire from getting deleted. 7330 * The newly created ire is tied to both of them via 7331 * the phandle and ihandle respectively. 7332 */ 7333 if (sire != NULL) { 7334 IRB_REFHOLD(sire->ire_bucket); 7335 /* Has it been removed already ? */ 7336 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 7337 IRB_REFRELE(sire->ire_bucket); 7338 ire_refrele(ipif_ire); 7339 ire_refrele(save_ire); 7340 break; 7341 } 7342 } 7343 7344 IRB_REFHOLD(ipif_ire->ire_bucket); 7345 /* Has it been removed already ? */ 7346 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 7347 IRB_REFRELE(ipif_ire->ire_bucket); 7348 if (sire != NULL) 7349 IRB_REFRELE(sire->ire_bucket); 7350 ire_refrele(ipif_ire); 7351 ire_refrele(save_ire); 7352 break; 7353 } 7354 7355 xmit_mp = first_mp; 7356 /* 7357 * In the case of multirouting, a copy 7358 * of the packet is done before its sending. 7359 * The copy is used to attempt another 7360 * route resolution, in a next loop. 7361 */ 7362 if (ire->ire_flags & RTF_MULTIRT) { 7363 copy_mp = copymsg(first_mp); 7364 if (copy_mp != NULL) { 7365 xmit_mp = copy_mp; 7366 MULTIRT_DEBUG_TAG(first_mp); 7367 } 7368 } 7369 ire_add_then_send(q, ire, xmit_mp); 7370 ire_refrele(save_ire); 7371 7372 /* Assert that sire is not deleted yet. */ 7373 if (sire != NULL) { 7374 ASSERT(sire->ire_ptpn != NULL); 7375 IRB_REFRELE(sire->ire_bucket); 7376 } 7377 7378 /* Assert that ipif_ire is not deleted yet. */ 7379 ASSERT(ipif_ire->ire_ptpn != NULL); 7380 IRB_REFRELE(ipif_ire->ire_bucket); 7381 ire_refrele(ipif_ire); 7382 7383 /* 7384 * If copy_mp is not NULL, multirouting was 7385 * requested. We loop to initiate a next 7386 * route resolution attempt, starting from sire. 7387 */ 7388 if (copy_mp != NULL) { 7389 /* 7390 * Search for the next unresolved 7391 * multirt route. 7392 */ 7393 copy_mp = NULL; 7394 ipif_ire = NULL; 7395 ire = NULL; 7396 multirt_resolve_next = B_TRUE; 7397 continue; 7398 } 7399 if (sire != NULL) 7400 ire_refrele(sire); 7401 ipif_refrele(src_ipif); 7402 ill_refrele(dst_ill); 7403 return; 7404 } 7405 case IRE_IF_NORESOLVER: { 7406 /* 7407 * We have what we need to build an IRE_CACHE. 7408 * 7409 * Create a new dlureq_mp with the IP gateway address 7410 * in destination address in the DLPI hdr if the 7411 * physical length is exactly 4 bytes. 7412 */ 7413 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7414 uchar_t *addr; 7415 7416 if (gw) 7417 addr = (uchar_t *)&gw; 7418 else 7419 addr = (uchar_t *)&dst; 7420 7421 dlureq_mp = ill_dlur_gen(addr, 7422 dst_ill->ill_phys_addr_length, 7423 dst_ill->ill_sap, 7424 dst_ill->ill_sap_length); 7425 } else { 7426 dlureq_mp = ire->ire_dlureq_mp; 7427 } 7428 7429 if (dlureq_mp == NULL) { 7430 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 7431 break; 7432 } 7433 7434 ire = ire_create( 7435 (uchar_t *)&dst, /* dest address */ 7436 (uchar_t *)&ip_g_all_ones, /* mask */ 7437 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7438 (uchar_t *)&gw, /* gateway address */ 7439 NULL, 7440 &save_ire->ire_max_frag, 7441 NULL, /* Fast Path header */ 7442 dst_ill->ill_rq, /* recv-from queue */ 7443 dst_ill->ill_wq, /* send-to queue */ 7444 IRE_CACHE, 7445 dlureq_mp, 7446 src_ipif, 7447 in_ill, /* Incoming ill */ 7448 save_ire->ire_mask, /* Parent mask */ 7449 (sire != NULL) ? /* Parent handle */ 7450 sire->ire_phandle : 0, 7451 save_ire->ire_ihandle, /* Interface handle */ 7452 (sire != NULL) ? sire->ire_flags & 7453 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 7454 &(save_ire->ire_uinfo)); 7455 7456 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 7457 freeb(dlureq_mp); 7458 7459 if (ire == NULL) { 7460 ire_refrele(save_ire); 7461 break; 7462 } 7463 7464 ire->ire_marks |= ire_marks; 7465 7466 /* Prevent save_ire from getting deleted */ 7467 IRB_REFHOLD(save_ire->ire_bucket); 7468 /* Has it been removed already ? */ 7469 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 7470 IRB_REFRELE(save_ire->ire_bucket); 7471 ire_refrele(save_ire); 7472 break; 7473 } 7474 7475 /* 7476 * In the case of multirouting, a copy 7477 * of the packet is made before it is sent. 7478 * The copy is used in the next 7479 * loop to attempt another resolution. 7480 */ 7481 xmit_mp = first_mp; 7482 if ((sire != NULL) && 7483 (sire->ire_flags & RTF_MULTIRT)) { 7484 copy_mp = copymsg(first_mp); 7485 if (copy_mp != NULL) { 7486 xmit_mp = copy_mp; 7487 MULTIRT_DEBUG_TAG(first_mp); 7488 } 7489 } 7490 ire_add_then_send(q, ire, xmit_mp); 7491 7492 /* Assert that it is not deleted yet. */ 7493 ASSERT(save_ire->ire_ptpn != NULL); 7494 IRB_REFRELE(save_ire->ire_bucket); 7495 ire_refrele(save_ire); 7496 7497 if (copy_mp != NULL) { 7498 /* 7499 * If we found a (no)resolver, we ignore any 7500 * trailing top priority IRE_CACHE in further 7501 * loops. This ensures that we do not omit any 7502 * (no)resolver. 7503 * This IRE_CACHE, if any, will be processed 7504 * by another thread entering ip_newroute(). 7505 * IRE_CACHE entries, if any, will be processed 7506 * by another thread entering ip_newroute(), 7507 * (upon resolver response, for instance). 7508 * This aims to force parallel multirt 7509 * resolutions as soon as a packet must be sent. 7510 * In the best case, after the tx of only one 7511 * packet, all reachable routes are resolved. 7512 * Otherwise, the resolution of all RTF_MULTIRT 7513 * routes would require several emissions. 7514 */ 7515 multirt_flags &= ~MULTIRT_CACHEGW; 7516 7517 /* 7518 * Search for the next unresolved multirt 7519 * route. 7520 */ 7521 copy_mp = NULL; 7522 save_ire = NULL; 7523 ire = NULL; 7524 multirt_resolve_next = B_TRUE; 7525 continue; 7526 } 7527 7528 /* 7529 * Don't need sire anymore 7530 */ 7531 if (sire != NULL) 7532 ire_refrele(sire); 7533 7534 ipif_refrele(src_ipif); 7535 ill_refrele(dst_ill); 7536 return; 7537 } 7538 case IRE_IF_RESOLVER: 7539 /* 7540 * We can't build an IRE_CACHE yet, but at least we 7541 * found a resolver that can help. 7542 */ 7543 res_mp = dst_ill->ill_resolver_mp; 7544 if (!OK_RESOLVER_MP(res_mp)) 7545 break; 7546 /* 7547 * To be at this point in the code with a non-zero gw 7548 * means that dst is reachable through a gateway that 7549 * we have never resolved. By changing dst to the gw 7550 * addr we resolve the gateway first. 7551 * When ire_add_then_send() tries to put the IP dg 7552 * to dst, it will reenter ip_newroute() at which 7553 * time we will find the IRE_CACHE for the gw and 7554 * create another IRE_CACHE in case IRE_CACHE above. 7555 */ 7556 if (gw != INADDR_ANY) { 7557 /* 7558 * The source ipif that was determined above was 7559 * relative to the destination address, not the 7560 * gateway's. If src_ipif was not taken out of 7561 * the IRE_IF_RESOLVER entry, we'll need to call 7562 * ipif_select_source() again. 7563 */ 7564 if (src_ipif != ire->ire_ipif) { 7565 ipif_refrele(src_ipif); 7566 src_ipif = ipif_select_source(dst_ill, 7567 gw, zoneid); 7568 if (src_ipif == NULL) { 7569 if (ip_debug > 2) { 7570 pr_addr_dbg( 7571 "ip_newroute: no " 7572 "src for gw %s ", 7573 AF_INET, &gw); 7574 printf("through " 7575 "interface %s\n", 7576 dst_ill->ill_name); 7577 } 7578 goto icmp_err_ret; 7579 } 7580 } 7581 save_dst = dst; 7582 dst = gw; 7583 gw = INADDR_ANY; 7584 } 7585 /* 7586 * We obtain a partial IRE_CACHE which we will pass 7587 * along with the resolver query. When the response 7588 * comes back it will be there ready for us to add. 7589 * The ire_max_frag is atomically set under the 7590 * irebucket lock in ire_add_v[46]. 7591 */ 7592 ire = ire_create_mp( 7593 (uchar_t *)&dst, /* dest address */ 7594 (uchar_t *)&ip_g_all_ones, /* mask */ 7595 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7596 (uchar_t *)&gw, /* gateway address */ 7597 NULL, /* no in_src_addr */ 7598 NULL, /* ire_max_frag */ 7599 NULL, /* Fast Path header */ 7600 dst_ill->ill_rq, /* recv-from queue */ 7601 dst_ill->ill_wq, /* send-to queue */ 7602 IRE_CACHE, 7603 res_mp, 7604 src_ipif, /* Interface ipif */ 7605 in_ill, /* Incoming ILL */ 7606 save_ire->ire_mask, /* Parent mask */ 7607 0, 7608 save_ire->ire_ihandle, /* Interface handle */ 7609 0, /* flags if any */ 7610 &(save_ire->ire_uinfo)); 7611 7612 if (ire == NULL) { 7613 ire_refrele(save_ire); 7614 break; 7615 } 7616 7617 if ((sire != NULL) && 7618 (sire->ire_flags & RTF_MULTIRT)) { 7619 copy_mp = copymsg(first_mp); 7620 if (copy_mp != NULL) 7621 MULTIRT_DEBUG_TAG(copy_mp); 7622 } 7623 7624 ire->ire_marks |= ire_marks; 7625 7626 /* 7627 * Construct message chain for the resolver 7628 * of the form: 7629 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 7630 * Packet could contain a IPSEC_OUT mp. 7631 * 7632 * NOTE : ire will be added later when the response 7633 * comes back from ARP. If the response does not 7634 * come back, ARP frees the packet. For this reason, 7635 * we can't REFHOLD the bucket of save_ire to prevent 7636 * deletions. We may not be able to REFRELE the bucket 7637 * if the response never comes back. Thus, before 7638 * adding the ire, ire_add_v4 will make sure that the 7639 * interface route does not get deleted. This is the 7640 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 7641 * where we can always prevent deletions because of 7642 * the synchronous nature of adding IRES i.e 7643 * ire_add_then_send is called after creating the IRE. 7644 */ 7645 ASSERT(ire->ire_mp != NULL); 7646 ire->ire_mp->b_cont = first_mp; 7647 /* Have saved_mp handy, for cleanup if canput fails */ 7648 saved_mp = mp; 7649 mp = ire->ire_dlureq_mp; 7650 ASSERT(mp != NULL); 7651 ire->ire_dlureq_mp = NULL; 7652 linkb(mp, ire->ire_mp); 7653 7654 7655 /* 7656 * Fill in the source and dest addrs for the resolver. 7657 * NOTE: this depends on memory layouts imposed by 7658 * ill_init(). 7659 */ 7660 areq = (areq_t *)mp->b_rptr; 7661 addrp = (ipaddr_t *)((char *)areq + 7662 areq->areq_sender_addr_offset); 7663 if (do_attach_ill) { 7664 /* 7665 * This is bind to no failover case. 7666 * arp packet also must go out on attach_ill. 7667 */ 7668 ASSERT(ipha->ipha_src != NULL); 7669 *addrp = ipha->ipha_src; 7670 } else { 7671 *addrp = save_ire->ire_src_addr; 7672 } 7673 7674 ire_refrele(save_ire); 7675 addrp = (ipaddr_t *)((char *)areq + 7676 areq->areq_target_addr_offset); 7677 *addrp = dst; 7678 /* Up to the resolver. */ 7679 if (canputnext(dst_ill->ill_rq)) { 7680 putnext(dst_ill->ill_rq, mp); 7681 ire = NULL; 7682 if (copy_mp != NULL) { 7683 /* 7684 * If we found a resolver, we ignore 7685 * any trailing top priority IRE_CACHE 7686 * in the further loops. This ensures 7687 * that we do not omit any resolver. 7688 * IRE_CACHE entries, if any, will be 7689 * processed next time we enter 7690 * ip_newroute(). 7691 */ 7692 multirt_flags &= ~MULTIRT_CACHEGW; 7693 /* 7694 * Search for the next unresolved 7695 * multirt route. 7696 */ 7697 first_mp = copy_mp; 7698 copy_mp = NULL; 7699 /* Prepare the next resolution loop. */ 7700 mp = first_mp; 7701 EXTRACT_PKT_MP(mp, first_mp, 7702 mctl_present); 7703 if (mctl_present) 7704 io = (ipsec_out_t *) 7705 first_mp->b_rptr; 7706 ipha = (ipha_t *)mp->b_rptr; 7707 7708 ASSERT(sire != NULL); 7709 7710 dst = save_dst; 7711 multirt_resolve_next = B_TRUE; 7712 continue; 7713 } 7714 7715 if (sire != NULL) 7716 ire_refrele(sire); 7717 7718 /* 7719 * The response will come back in ip_wput 7720 * with db_type IRE_DB_TYPE. 7721 */ 7722 ipif_refrele(src_ipif); 7723 ill_refrele(dst_ill); 7724 return; 7725 } else { 7726 /* Prepare for cleanup */ 7727 ire->ire_dlureq_mp = mp; 7728 mp->b_cont = NULL; 7729 ire_delete(ire); 7730 mp = saved_mp; 7731 ire = NULL; 7732 if (copy_mp != NULL) { 7733 MULTIRT_DEBUG_UNTAG(copy_mp); 7734 freemsg(copy_mp); 7735 copy_mp = NULL; 7736 } 7737 break; 7738 } 7739 default: 7740 break; 7741 } 7742 } while (multirt_resolve_next); 7743 7744 ip1dbg(("ip_newroute: dropped\n")); 7745 /* Did this packet originate externally? */ 7746 if (mp->b_prev) { 7747 mp->b_next = NULL; 7748 mp->b_prev = NULL; 7749 BUMP_MIB(&ip_mib, ipInDiscards); 7750 } else { 7751 BUMP_MIB(&ip_mib, ipOutDiscards); 7752 } 7753 ASSERT(copy_mp == NULL); 7754 MULTIRT_DEBUG_UNTAG(first_mp); 7755 freemsg(first_mp); 7756 if (ire != NULL) 7757 ire_refrele(ire); 7758 if (sire != NULL) 7759 ire_refrele(sire); 7760 if (src_ipif != NULL) 7761 ipif_refrele(src_ipif); 7762 if (dst_ill != NULL) 7763 ill_refrele(dst_ill); 7764 return; 7765 7766 icmp_err_ret: 7767 ip1dbg(("ip_newroute: no route\n")); 7768 if (src_ipif != NULL) 7769 ipif_refrele(src_ipif); 7770 if (dst_ill != NULL) 7771 ill_refrele(dst_ill); 7772 if (sire != NULL) 7773 ire_refrele(sire); 7774 /* Did this packet originate externally? */ 7775 if (mp->b_prev) { 7776 mp->b_next = NULL; 7777 mp->b_prev = NULL; 7778 /* XXX ipInNoRoutes */ 7779 q = WR(q); 7780 } else { 7781 /* 7782 * Since ip_wput() isn't close to finished, we fill 7783 * in enough of the header for credible error reporting. 7784 */ 7785 if (ip_hdr_complete(ipha, zoneid)) { 7786 /* Failed */ 7787 MULTIRT_DEBUG_UNTAG(first_mp); 7788 freemsg(first_mp); 7789 if (ire != NULL) 7790 ire_refrele(ire); 7791 return; 7792 } 7793 } 7794 BUMP_MIB(&ip_mib, ipOutNoRoutes); 7795 7796 /* 7797 * At this point we will have ire only if RTF_BLACKHOLE 7798 * or RTF_REJECT flags are set on the IRE. It will not 7799 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 7800 */ 7801 if (ire != NULL) { 7802 if (ire->ire_flags & RTF_BLACKHOLE) { 7803 ire_refrele(ire); 7804 MULTIRT_DEBUG_UNTAG(first_mp); 7805 freemsg(first_mp); 7806 return; 7807 } 7808 ire_refrele(ire); 7809 } 7810 if (ip_source_routed(ipha)) { 7811 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 7812 return; 7813 } 7814 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 7815 } 7816 7817 /* 7818 * IPv4 - 7819 * ip_newroute_ipif is called by ip_wput_multicast and 7820 * ip_rput_forward_multicast whenever we need to send 7821 * out a packet to a destination address for which we do not have specific 7822 * routing information. It is used when the packet will be sent out 7823 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 7824 * socket option is set or icmp error message wants to go out on a particular 7825 * interface for a unicast packet. 7826 * 7827 * In most cases, the destination address is resolved thanks to the ipif 7828 * intrinsic resolver. However, there are some cases where the call to 7829 * ip_newroute_ipif must take into account the potential presence of 7830 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 7831 * that uses the interface. This is specified through flags, 7832 * which can be a combination of: 7833 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 7834 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 7835 * and flags. Additionally, the packet source address has to be set to 7836 * the specified address. The caller is thus expected to set this flag 7837 * if the packet has no specific source address yet. 7838 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 7839 * flag, the resulting ire will inherit the flag. All unresolved routes 7840 * to the destination must be explored in the same call to 7841 * ip_newroute_ipif(). 7842 */ 7843 static void 7844 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 7845 conn_t *connp, uint32_t flags) 7846 { 7847 areq_t *areq; 7848 ire_t *ire = NULL; 7849 mblk_t *res_mp; 7850 ipaddr_t *addrp; 7851 mblk_t *first_mp; 7852 ire_t *save_ire = NULL; 7853 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 7854 ipif_t *src_ipif = NULL; 7855 ushort_t ire_marks = 0; 7856 ill_t *dst_ill = NULL; 7857 boolean_t mctl_present; 7858 ipsec_out_t *io; 7859 ipha_t *ipha; 7860 int ihandle = 0; 7861 mblk_t *saved_mp; 7862 ire_t *fire = NULL; 7863 mblk_t *copy_mp = NULL; 7864 boolean_t multirt_resolve_next; 7865 ipaddr_t ipha_dst; 7866 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 7867 7868 /* 7869 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 7870 * here for uniformity 7871 */ 7872 ipif_refhold(ipif); 7873 7874 /* 7875 * This loop is run only once in most cases. 7876 * We loop to resolve further routes only when the destination 7877 * can be reached through multiple RTF_MULTIRT-flagged ires. 7878 */ 7879 do { 7880 if (dst_ill != NULL) { 7881 ill_refrele(dst_ill); 7882 dst_ill = NULL; 7883 } 7884 if (src_ipif != NULL) { 7885 ipif_refrele(src_ipif); 7886 src_ipif = NULL; 7887 } 7888 multirt_resolve_next = B_FALSE; 7889 7890 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 7891 ipif->ipif_ill->ill_name)); 7892 7893 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7894 if (mctl_present) 7895 io = (ipsec_out_t *)first_mp->b_rptr; 7896 7897 ipha = (ipha_t *)mp->b_rptr; 7898 7899 /* 7900 * Save the packet destination address, we may need it after 7901 * the packet has been consumed. 7902 */ 7903 ipha_dst = ipha->ipha_dst; 7904 7905 /* 7906 * If the interface is a pt-pt interface we look for an 7907 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 7908 * local_address and the pt-pt destination address. Otherwise 7909 * we just match the local address. 7910 * NOTE: dst could be different than ipha->ipha_dst in case 7911 * of sending igmp multicast packets over a point-to-point 7912 * connection. 7913 * Thus we must be careful enough to check ipha_dst to be a 7914 * multicast address, otherwise it will take xmit_if path for 7915 * multicast packets resulting into kernel stack overflow by 7916 * repeated calls to ip_newroute_ipif from ire_send(). 7917 */ 7918 if (CLASSD(ipha_dst) && 7919 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 7920 goto err_ret; 7921 } 7922 7923 /* 7924 * We check if an IRE_OFFSUBNET for the addr that goes through 7925 * ipif exists. We need it to determine if the RTF_SETSRC and/or 7926 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 7927 * propagate its flags to the new ire. 7928 */ 7929 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 7930 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 7931 ip2dbg(("ip_newroute_ipif: " 7932 "ipif_lookup_multi_ire(" 7933 "ipif %p, dst %08x) = fire %p\n", 7934 (void *)ipif, ntohl(dst), (void *)fire)); 7935 } 7936 7937 if (mctl_present && io->ipsec_out_attach_if) { 7938 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7939 io->ipsec_out_ill_index, B_FALSE); 7940 7941 /* Failure case frees things for us. */ 7942 if (attach_ill == NULL) { 7943 ipif_refrele(ipif); 7944 if (fire != NULL) 7945 ire_refrele(fire); 7946 return; 7947 } 7948 7949 /* 7950 * Check if we need an ire that will not be 7951 * looked up by anybody else i.e. HIDDEN. 7952 */ 7953 if (ill_is_probeonly(attach_ill)) { 7954 ire_marks = IRE_MARK_HIDDEN; 7955 } 7956 /* 7957 * ip_wput passes the right ipif for IPIF_NOFAILOVER 7958 * case. 7959 */ 7960 dst_ill = ipif->ipif_ill; 7961 /* attach_ill has been refheld by ip_grab_attach_ill */ 7962 ASSERT(dst_ill == attach_ill); 7963 } else { 7964 /* 7965 * If this is set by IP_XMIT_IF, then make sure that 7966 * ipif is pointing to the same ill as the IP_XMIT_IF 7967 * specified ill. 7968 */ 7969 ASSERT((connp == NULL) || 7970 (connp->conn_xmit_if_ill == NULL) || 7971 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 7972 /* 7973 * If the interface belongs to an interface group, 7974 * make sure the next possible interface in the group 7975 * is used. This encourages load spreading among 7976 * peers in an interface group. 7977 * Note: load spreading is disabled for RTF_MULTIRT 7978 * routes. 7979 */ 7980 if ((flags & RTF_MULTIRT) && (fire != NULL) && 7981 (fire->ire_flags & RTF_MULTIRT)) { 7982 /* 7983 * Don't perform outbound load spreading 7984 * in the case of an RTF_MULTIRT issued route, 7985 * we actually typically want to replicate 7986 * outgoing packets through particular 7987 * interfaces. 7988 */ 7989 dst_ill = ipif->ipif_ill; 7990 ill_refhold(dst_ill); 7991 } else { 7992 dst_ill = ip_newroute_get_dst_ill( 7993 ipif->ipif_ill); 7994 } 7995 if (dst_ill == NULL) { 7996 if (ip_debug > 2) { 7997 pr_addr_dbg("ip_newroute_ipif: " 7998 "no dst ill for dst %s\n", 7999 AF_INET, &dst); 8000 } 8001 goto err_ret; 8002 } 8003 } 8004 8005 /* 8006 * Pick a source address preferring non-deprecated ones. 8007 * Unlike ip_newroute, we don't do any source address 8008 * selection here since for multicast it really does not help 8009 * in inbound load spreading as in the unicast case. 8010 */ 8011 if ((flags & RTF_SETSRC) && (fire != NULL) && 8012 (fire->ire_flags & RTF_SETSRC)) { 8013 /* 8014 * As requested by flags, an IRE_OFFSUBNET was looked up 8015 * on that interface. This ire has RTF_SETSRC flag, so 8016 * the source address of the packet must be changed. 8017 * Check that the ipif matching the requested source 8018 * address still exists. 8019 */ 8020 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8021 zoneid, NULL, NULL, NULL, NULL); 8022 } 8023 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 8024 (connp != NULL && ipif->ipif_zoneid != zoneid)) && 8025 (src_ipif == NULL)) { 8026 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8027 if (src_ipif == NULL) { 8028 if (ip_debug > 2) { 8029 /* ip1dbg */ 8030 pr_addr_dbg("ip_newroute_ipif: " 8031 "no src for dst %s", 8032 AF_INET, &dst); 8033 } 8034 ip1dbg((" through interface %s\n", 8035 dst_ill->ill_name)); 8036 goto err_ret; 8037 } 8038 ipif_refrele(ipif); 8039 ipif = src_ipif; 8040 ipif_refhold(ipif); 8041 } 8042 if (src_ipif == NULL) { 8043 src_ipif = ipif; 8044 ipif_refhold(src_ipif); 8045 } 8046 8047 /* 8048 * Assign a source address while we have the conn. 8049 * We can't have ip_wput_ire pick a source address when the 8050 * packet returns from arp since conn_unspec_src might be set 8051 * and we loose the conn when going through arp. 8052 */ 8053 if (ipha->ipha_src == INADDR_ANY && 8054 (connp == NULL || !connp->conn_unspec_src)) { 8055 ipha->ipha_src = src_ipif->ipif_src_addr; 8056 } 8057 8058 /* 8059 * In case of IP_XMIT_IF, it is possible that the outgoing 8060 * interface does not have an interface ire. 8061 * Example: Thousands of mobileip PPP interfaces to mobile 8062 * nodes. We don't want to create interface ires because 8063 * packets from other mobile nodes must not take the route 8064 * via interface ires to the visiting mobile node without 8065 * going through the home agent, in absence of mobileip 8066 * route optimization. 8067 */ 8068 if (CLASSD(ipha_dst) && (connp == NULL || 8069 connp->conn_xmit_if_ill == NULL)) { 8070 /* ipif_to_ire returns an held ire */ 8071 ire = ipif_to_ire(ipif); 8072 if (ire == NULL) 8073 goto err_ret; 8074 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 8075 goto err_ret; 8076 /* 8077 * ihandle is needed when the ire is added to 8078 * cache table. 8079 */ 8080 save_ire = ire; 8081 ihandle = save_ire->ire_ihandle; 8082 8083 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 8084 "flags %04x\n", 8085 (void *)ire, (void *)ipif, flags)); 8086 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8087 (fire->ire_flags & RTF_MULTIRT)) { 8088 /* 8089 * As requested by flags, an IRE_OFFSUBNET was 8090 * looked up on that interface. This ire has 8091 * RTF_MULTIRT flag, so the resolution loop will 8092 * be re-entered to resolve additional routes on 8093 * other interfaces. For that purpose, a copy of 8094 * the packet is performed at this point. 8095 */ 8096 fire->ire_last_used_time = lbolt; 8097 copy_mp = copymsg(first_mp); 8098 if (copy_mp) { 8099 MULTIRT_DEBUG_TAG(copy_mp); 8100 } 8101 } 8102 if ((flags & RTF_SETSRC) && (fire != NULL) && 8103 (fire->ire_flags & RTF_SETSRC)) { 8104 /* 8105 * As requested by flags, an IRE_OFFSUBET was 8106 * looked up on that interface. This ire has 8107 * RTF_SETSRC flag, so the source address of the 8108 * packet must be changed. 8109 */ 8110 ipha->ipha_src = fire->ire_src_addr; 8111 } 8112 } else { 8113 ASSERT((connp == NULL) || 8114 (connp->conn_xmit_if_ill != NULL) || 8115 (connp->conn_dontroute)); 8116 /* 8117 * The only ways we can come here are: 8118 * 1) IP_XMIT_IF socket option is set 8119 * 2) ICMP error message generated from 8120 * ip_mrtun_forward() routine and it needs 8121 * to go through the specified ill. 8122 * 3) SO_DONTROUTE socket option is set 8123 * In all cases, the new ire will not be added 8124 * into cache table. 8125 */ 8126 ire_marks |= IRE_MARK_NOADD; 8127 } 8128 8129 switch (ipif->ipif_net_type) { 8130 case IRE_IF_NORESOLVER: { 8131 /* We have what we need to build an IRE_CACHE. */ 8132 mblk_t *dlureq_mp; 8133 8134 /* 8135 * Create a new dlureq_mp with the 8136 * IP gateway address as destination address in the 8137 * DLPI hdr if the physical length is exactly 4 bytes. 8138 */ 8139 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8140 dlureq_mp = ill_dlur_gen((uchar_t *)&dst, 8141 dst_ill->ill_phys_addr_length, 8142 dst_ill->ill_sap, 8143 dst_ill->ill_sap_length); 8144 } else { 8145 /* use the value set in ip_ll_subnet_defaults */ 8146 dlureq_mp = ill_dlur_gen(NULL, 8147 dst_ill->ill_phys_addr_length, 8148 dst_ill->ill_sap, 8149 dst_ill->ill_sap_length); 8150 } 8151 8152 if (dlureq_mp == NULL) 8153 break; 8154 /* 8155 * The new ire inherits the IRE_OFFSUBNET flags 8156 * and source address, if this was requested. 8157 */ 8158 ire = ire_create( 8159 (uchar_t *)&dst, /* dest address */ 8160 (uchar_t *)&ip_g_all_ones, /* mask */ 8161 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8162 NULL, /* gateway address */ 8163 NULL, 8164 &ipif->ipif_mtu, 8165 NULL, /* Fast Path header */ 8166 dst_ill->ill_rq, /* recv-from queue */ 8167 dst_ill->ill_wq, /* send-to queue */ 8168 IRE_CACHE, 8169 dlureq_mp, 8170 src_ipif, 8171 NULL, 8172 (save_ire != NULL ? save_ire->ire_mask : 0), 8173 (fire != NULL) ? /* Parent handle */ 8174 fire->ire_phandle : 0, 8175 ihandle, /* Interface handle */ 8176 (fire != NULL) ? 8177 (fire->ire_flags & 8178 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8179 (save_ire == NULL ? &ire_uinfo_null : 8180 &save_ire->ire_uinfo)); 8181 8182 freeb(dlureq_mp); 8183 8184 if (ire == NULL) { 8185 if (save_ire != NULL) 8186 ire_refrele(save_ire); 8187 break; 8188 } 8189 8190 ire->ire_marks |= ire_marks; 8191 8192 /* Prevent save_ire from getting deleted */ 8193 if (save_ire != NULL) { 8194 IRB_REFHOLD(save_ire->ire_bucket); 8195 /* Has it been removed already ? */ 8196 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8197 IRB_REFRELE(save_ire->ire_bucket); 8198 ire_refrele(save_ire); 8199 break; 8200 } 8201 } 8202 8203 ire_add_then_send(q, ire, first_mp); 8204 8205 /* Assert that save_ire is not deleted yet. */ 8206 if (save_ire != NULL) { 8207 ASSERT(save_ire->ire_ptpn != NULL); 8208 IRB_REFRELE(save_ire->ire_bucket); 8209 ire_refrele(save_ire); 8210 save_ire = NULL; 8211 } 8212 if (fire != NULL) { 8213 ire_refrele(fire); 8214 fire = NULL; 8215 } 8216 8217 /* 8218 * the resolution loop is re-entered if this 8219 * was requested through flags and if we 8220 * actually are in a multirouting case. 8221 */ 8222 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8223 boolean_t need_resolve = 8224 ire_multirt_need_resolve(ipha_dst); 8225 if (!need_resolve) { 8226 MULTIRT_DEBUG_UNTAG(copy_mp); 8227 freemsg(copy_mp); 8228 copy_mp = NULL; 8229 } else { 8230 /* 8231 * ipif_lookup_group() calls 8232 * ire_lookup_multi() that uses 8233 * ire_ftable_lookup() to find 8234 * an IRE_INTERFACE for the group. 8235 * In the multirt case, 8236 * ire_lookup_multi() then invokes 8237 * ire_multirt_lookup() to find 8238 * the next resolvable ire. 8239 * As a result, we obtain an new 8240 * interface, derived from the 8241 * next ire. 8242 */ 8243 ipif_refrele(ipif); 8244 ipif = ipif_lookup_group(ipha_dst, 8245 zoneid); 8246 ip2dbg(("ip_newroute_ipif: " 8247 "multirt dst %08x, ipif %p\n", 8248 htonl(dst), (void *)ipif)); 8249 if (ipif != NULL) { 8250 mp = copy_mp; 8251 copy_mp = NULL; 8252 multirt_resolve_next = B_TRUE; 8253 continue; 8254 } else { 8255 freemsg(copy_mp); 8256 } 8257 } 8258 } 8259 if (ipif != NULL) 8260 ipif_refrele(ipif); 8261 ill_refrele(dst_ill); 8262 ipif_refrele(src_ipif); 8263 return; 8264 } 8265 case IRE_IF_RESOLVER: 8266 /* 8267 * We can't build an IRE_CACHE yet, but at least 8268 * we found a resolver that can help. 8269 */ 8270 res_mp = dst_ill->ill_resolver_mp; 8271 if (!OK_RESOLVER_MP(res_mp)) 8272 break; 8273 8274 /* 8275 * We obtain a partial IRE_CACHE which we will pass 8276 * along with the resolver query. When the response 8277 * comes back it will be there ready for us to add. 8278 * The new ire inherits the IRE_OFFSUBNET flags 8279 * and source address, if this was requested. 8280 * The ire_max_frag is atomically set under the 8281 * irebucket lock in ire_add_v[46]. Only in the 8282 * case of IRE_MARK_NOADD, we set it here itself. 8283 */ 8284 ire = ire_create_mp( 8285 (uchar_t *)&dst, /* dest address */ 8286 (uchar_t *)&ip_g_all_ones, /* mask */ 8287 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8288 NULL, /* gateway address */ 8289 NULL, /* no in_src_addr */ 8290 (ire_marks & IRE_MARK_NOADD) ? 8291 ipif->ipif_mtu : 0, /* max_frag */ 8292 NULL, /* Fast path header */ 8293 dst_ill->ill_rq, /* recv-from queue */ 8294 dst_ill->ill_wq, /* send-to queue */ 8295 IRE_CACHE, 8296 res_mp, 8297 src_ipif, 8298 NULL, 8299 (save_ire != NULL ? save_ire->ire_mask : 0), 8300 (fire != NULL) ? /* Parent handle */ 8301 fire->ire_phandle : 0, 8302 ihandle, /* Interface handle */ 8303 (fire != NULL) ? /* flags if any */ 8304 (fire->ire_flags & 8305 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8306 (save_ire == NULL ? &ire_uinfo_null : 8307 &save_ire->ire_uinfo)); 8308 8309 if (save_ire != NULL) { 8310 ire_refrele(save_ire); 8311 save_ire = NULL; 8312 } 8313 if (ire == NULL) 8314 break; 8315 8316 ire->ire_marks |= ire_marks; 8317 /* 8318 * Construct message chain for the resolver of the 8319 * form: 8320 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8321 * 8322 * NOTE : ire will be added later when the response 8323 * comes back from ARP. If the response does not 8324 * come back, ARP frees the packet. For this reason, 8325 * we can't REFHOLD the bucket of save_ire to prevent 8326 * deletions. We may not be able to REFRELE the 8327 * bucket if the response never comes back. 8328 * Thus, before adding the ire, ire_add_v4 will make 8329 * sure that the interface route does not get deleted. 8330 * This is the only case unlike ip_newroute_v6, 8331 * ip_newroute_ipif_v6 where we can always prevent 8332 * deletions because ire_add_then_send is called after 8333 * creating the IRE. 8334 * If IRE_MARK_NOADD is set, then ire_add_then_send 8335 * does not add this IRE into the IRE CACHE. 8336 */ 8337 ASSERT(ire->ire_mp != NULL); 8338 ire->ire_mp->b_cont = first_mp; 8339 /* Have saved_mp handy, for cleanup if canput fails */ 8340 saved_mp = mp; 8341 mp = ire->ire_dlureq_mp; 8342 ASSERT(mp != NULL); 8343 ire->ire_dlureq_mp = NULL; 8344 linkb(mp, ire->ire_mp); 8345 8346 /* 8347 * Fill in the source and dest addrs for the resolver. 8348 * NOTE: this depends on memory layouts imposed by 8349 * ill_init(). 8350 */ 8351 areq = (areq_t *)mp->b_rptr; 8352 addrp = (ipaddr_t *)((char *)areq + 8353 areq->areq_sender_addr_offset); 8354 *addrp = ire->ire_src_addr; 8355 addrp = (ipaddr_t *)((char *)areq + 8356 areq->areq_target_addr_offset); 8357 *addrp = dst; 8358 /* Up to the resolver. */ 8359 if (canputnext(dst_ill->ill_rq)) { 8360 putnext(dst_ill->ill_rq, mp); 8361 /* 8362 * The response will come back in ip_wput 8363 * with db_type IRE_DB_TYPE. 8364 */ 8365 } else { 8366 ire->ire_dlureq_mp = mp; 8367 mp->b_cont = NULL; 8368 ire_delete(ire); 8369 saved_mp->b_next = NULL; 8370 saved_mp->b_prev = NULL; 8371 freemsg(first_mp); 8372 ip2dbg(("ip_newroute_ipif: dropped\n")); 8373 } 8374 8375 if (fire != NULL) { 8376 ire_refrele(fire); 8377 fire = NULL; 8378 } 8379 8380 8381 /* 8382 * The resolution loop is re-entered if this was 8383 * requested through flags and we actually are 8384 * in a multirouting case. 8385 */ 8386 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8387 boolean_t need_resolve = 8388 ire_multirt_need_resolve(ipha_dst); 8389 if (!need_resolve) { 8390 MULTIRT_DEBUG_UNTAG(copy_mp); 8391 freemsg(copy_mp); 8392 copy_mp = NULL; 8393 } else { 8394 /* 8395 * ipif_lookup_group() calls 8396 * ire_lookup_multi() that uses 8397 * ire_ftable_lookup() to find 8398 * an IRE_INTERFACE for the group. 8399 * In the multirt case, 8400 * ire_lookup_multi() then invokes 8401 * ire_multirt_lookup() to find 8402 * the next resolvable ire. 8403 * As a result, we obtain an new 8404 * interface, derived from the 8405 * next ire. 8406 */ 8407 ipif_refrele(ipif); 8408 ipif = ipif_lookup_group(ipha_dst, 8409 zoneid); 8410 if (ipif != NULL) { 8411 mp = copy_mp; 8412 copy_mp = NULL; 8413 multirt_resolve_next = B_TRUE; 8414 continue; 8415 } else { 8416 freemsg(copy_mp); 8417 } 8418 } 8419 } 8420 if (ipif != NULL) 8421 ipif_refrele(ipif); 8422 ill_refrele(dst_ill); 8423 ipif_refrele(src_ipif); 8424 return; 8425 default: 8426 break; 8427 } 8428 } while (multirt_resolve_next); 8429 8430 err_ret: 8431 ip2dbg(("ip_newroute_ipif: dropped\n")); 8432 if (fire != NULL) 8433 ire_refrele(fire); 8434 ipif_refrele(ipif); 8435 /* Did this packet originate externally? */ 8436 if (dst_ill != NULL) 8437 ill_refrele(dst_ill); 8438 if (src_ipif != NULL) 8439 ipif_refrele(src_ipif); 8440 if (mp->b_prev || mp->b_next) { 8441 mp->b_next = NULL; 8442 mp->b_prev = NULL; 8443 } else { 8444 /* 8445 * Since ip_wput() isn't close to finished, we fill 8446 * in enough of the header for credible error reporting. 8447 */ 8448 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 8449 /* Failed */ 8450 freemsg(first_mp); 8451 if (ire != NULL) 8452 ire_refrele(ire); 8453 return; 8454 } 8455 } 8456 /* 8457 * At this point we will have ire only if RTF_BLACKHOLE 8458 * or RTF_REJECT flags are set on the IRE. It will not 8459 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8460 */ 8461 if (ire != NULL) { 8462 if (ire->ire_flags & RTF_BLACKHOLE) { 8463 ire_refrele(ire); 8464 freemsg(first_mp); 8465 return; 8466 } 8467 ire_refrele(ire); 8468 } 8469 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8470 } 8471 8472 /* Name/Value Table Lookup Routine */ 8473 char * 8474 ip_nv_lookup(nv_t *nv, int value) 8475 { 8476 if (!nv) 8477 return (NULL); 8478 for (; nv->nv_name; nv++) { 8479 if (nv->nv_value == value) 8480 return (nv->nv_name); 8481 } 8482 return ("unknown"); 8483 } 8484 8485 /* 8486 * one day it can be patched to 1 from /etc/system for machines that have few 8487 * fast network interfaces feeding multiple cpus. 8488 */ 8489 int ill_stream_putlocks = 0; 8490 8491 /* 8492 * This is a module open, i.e. this is a control stream for access 8493 * to a DLPI device. We allocate an ill_t as the instance data in 8494 * this case. 8495 */ 8496 int 8497 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8498 { 8499 uint32_t mem_cnt; 8500 uint32_t cpu_cnt; 8501 uint32_t min_cnt; 8502 pgcnt_t mem_avail; 8503 extern uint32_t ip_cache_table_size, ip6_cache_table_size; 8504 ill_t *ill; 8505 int err; 8506 8507 /* 8508 * Prevent unprivileged processes from pushing IP so that 8509 * they can't send raw IP. 8510 */ 8511 if (secpolicy_net_rawaccess(credp) != 0) 8512 return (EPERM); 8513 8514 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 8515 q->q_ptr = WR(q)->q_ptr = ill; 8516 8517 /* 8518 * ill_init initializes the ill fields and then sends down 8519 * down a DL_INFO_REQ after calling qprocson. 8520 */ 8521 err = ill_init(q, ill); 8522 if (err != 0) { 8523 mi_free(ill); 8524 q->q_ptr = NULL; 8525 WR(q)->q_ptr = NULL; 8526 return (err); 8527 } 8528 8529 /* ill_init initializes the ipsq marking this thread as writer */ 8530 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 8531 /* Wait for the DL_INFO_ACK */ 8532 mutex_enter(&ill->ill_lock); 8533 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 8534 /* 8535 * Return value of 0 indicates a pending signal. 8536 */ 8537 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 8538 if (err == 0) { 8539 mutex_exit(&ill->ill_lock); 8540 (void) ip_close(q, 0); 8541 return (EINTR); 8542 } 8543 } 8544 mutex_exit(&ill->ill_lock); 8545 8546 /* 8547 * ip_rput_other could have set an error in ill_error on 8548 * receipt of M_ERROR. 8549 */ 8550 8551 err = ill->ill_error; 8552 if (err != 0) { 8553 (void) ip_close(q, 0); 8554 return (err); 8555 } 8556 8557 /* 8558 * ip_ire_max_bucket_cnt is sized below based on the memory 8559 * size and the cpu speed of the machine. This is upper 8560 * bounded by the compile time value of ip_ire_max_bucket_cnt 8561 * and is lower bounded by the compile time value of 8562 * ip_ire_min_bucket_cnt. Similar logic applies to 8563 * ip6_ire_max_bucket_cnt. 8564 */ 8565 mem_avail = kmem_avail(); 8566 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8567 ip_cache_table_size / sizeof (ire_t); 8568 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 8569 8570 min_cnt = MIN(cpu_cnt, mem_cnt); 8571 if (min_cnt < ip_ire_min_bucket_cnt) 8572 min_cnt = ip_ire_min_bucket_cnt; 8573 if (ip_ire_max_bucket_cnt > min_cnt) { 8574 ip_ire_max_bucket_cnt = min_cnt; 8575 } 8576 8577 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8578 ip6_cache_table_size / sizeof (ire_t); 8579 min_cnt = MIN(cpu_cnt, mem_cnt); 8580 if (min_cnt < ip6_ire_min_bucket_cnt) 8581 min_cnt = ip6_ire_min_bucket_cnt; 8582 if (ip6_ire_max_bucket_cnt > min_cnt) { 8583 ip6_ire_max_bucket_cnt = min_cnt; 8584 } 8585 8586 ill->ill_credp = credp; 8587 crhold(credp); 8588 8589 mutex_enter(&ip_mi_lock); 8590 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 8591 mutex_exit(&ip_mi_lock); 8592 if (err) { 8593 (void) ip_close(q, 0); 8594 return (err); 8595 } 8596 return (0); 8597 } 8598 8599 /* IP open routine. */ 8600 int 8601 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8602 { 8603 conn_t *connp; 8604 major_t maj; 8605 8606 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 8607 8608 /* Allow reopen. */ 8609 if (q->q_ptr != NULL) 8610 return (0); 8611 8612 if (sflag & MODOPEN) { 8613 /* This is a module open */ 8614 return (ip_modopen(q, devp, flag, sflag, credp)); 8615 } 8616 8617 /* 8618 * We are opening as a device. This is an IP client stream, and we 8619 * allocate an conn_t as the instance data. 8620 */ 8621 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 8622 connp->conn_upq = q; 8623 q->q_ptr = WR(q)->q_ptr = connp; 8624 8625 if (flag & SO_SOCKSTR) 8626 connp->conn_flags |= IPCL_SOCKET; 8627 8628 /* Minor tells us which /dev entry was opened */ 8629 if (geteminor(*devp) == IPV6_MINOR) { 8630 connp->conn_flags |= IPCL_ISV6; 8631 connp->conn_af_isv6 = B_TRUE; 8632 ip_setqinfo(q, geteminor(*devp), B_FALSE); 8633 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 8634 } else { 8635 connp->conn_af_isv6 = B_FALSE; 8636 connp->conn_pkt_isv6 = B_FALSE; 8637 } 8638 8639 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 8640 q->q_ptr = WR(q)->q_ptr = NULL; 8641 CONN_DEC_REF(connp); 8642 return (EBUSY); 8643 } 8644 8645 maj = getemajor(*devp); 8646 *devp = makedevice(maj, (minor_t)connp->conn_dev); 8647 8648 /* 8649 * connp->conn_cred is crfree()ed in ip_close(). 8650 */ 8651 connp->conn_cred = credp; 8652 crhold(connp->conn_cred); 8653 8654 connp->conn_zoneid = getzoneid(); 8655 8656 /* 8657 * This should only happen for ndd, netstat, raw socket or other SCTP 8658 * administrative ops. In these cases, we just need a normal conn_t 8659 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 8660 * an error will be returned. 8661 */ 8662 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 8663 connp->conn_rq = q; 8664 connp->conn_wq = WR(q); 8665 } else { 8666 connp->conn_ulp = IPPROTO_SCTP; 8667 connp->conn_rq = connp->conn_wq = NULL; 8668 } 8669 /* Non-zero default values */ 8670 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 8671 8672 /* 8673 * Make the conn globally visible to walkers 8674 */ 8675 mutex_enter(&connp->conn_lock); 8676 connp->conn_state_flags &= ~CONN_INCIPIENT; 8677 mutex_exit(&connp->conn_lock); 8678 ASSERT(connp->conn_ref == 1); 8679 8680 qprocson(q); 8681 8682 return (0); 8683 } 8684 8685 /* 8686 * Change q_qinfo based on the value of isv6. 8687 * This can not called on an ill queue. 8688 * Note that there is no race since either q_qinfo works for conn queues - it 8689 * is just an optimization to enter the best wput routine directly. 8690 */ 8691 void 8692 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 8693 { 8694 ASSERT(q->q_flag & QREADR); 8695 ASSERT(WR(q)->q_next == NULL); 8696 ASSERT(q->q_ptr != NULL); 8697 8698 if (minor == IPV6_MINOR) { 8699 if (bump_mib) 8700 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 8701 q->q_qinfo = &rinit_ipv6; 8702 WR(q)->q_qinfo = &winit_ipv6; 8703 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 8704 } else { 8705 if (bump_mib) 8706 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 8707 q->q_qinfo = &rinit; 8708 WR(q)->q_qinfo = &winit; 8709 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 8710 } 8711 8712 } 8713 8714 /* 8715 * See if IPsec needs loading because of the options in mp. 8716 */ 8717 static boolean_t 8718 ipsec_opt_present(mblk_t *mp) 8719 { 8720 uint8_t *optcp, *next_optcp, *opt_endcp; 8721 struct opthdr *opt; 8722 struct T_opthdr *topt; 8723 int opthdr_len; 8724 t_uscalar_t optname, optlevel; 8725 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 8726 ipsec_req_t *ipsr; 8727 8728 /* 8729 * Walk through the mess, and find IP_SEC_OPT. If it's there, 8730 * return TRUE. 8731 */ 8732 8733 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 8734 opt_endcp = optcp + tor->OPT_length; 8735 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8736 opthdr_len = sizeof (struct T_opthdr); 8737 } else { /* O_OPTMGMT_REQ */ 8738 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 8739 opthdr_len = sizeof (struct opthdr); 8740 } 8741 for (; optcp < opt_endcp; optcp = next_optcp) { 8742 if (optcp + opthdr_len > opt_endcp) 8743 return (B_FALSE); /* Not enough option header. */ 8744 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8745 topt = (struct T_opthdr *)optcp; 8746 optlevel = topt->level; 8747 optname = topt->name; 8748 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 8749 } else { 8750 opt = (struct opthdr *)optcp; 8751 optlevel = opt->level; 8752 optname = opt->name; 8753 next_optcp = optcp + opthdr_len + 8754 _TPI_ALIGN_OPT(opt->len); 8755 } 8756 if ((next_optcp < optcp) || /* wraparound pointer space */ 8757 ((next_optcp >= opt_endcp) && /* last option bad len */ 8758 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 8759 return (B_FALSE); /* bad option buffer */ 8760 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 8761 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 8762 /* 8763 * Check to see if it's an all-bypass or all-zeroes 8764 * IPsec request. Don't bother loading IPsec if 8765 * the socket doesn't want to use it. (A good example 8766 * is a bypass request.) 8767 * 8768 * Basically, if any of the non-NEVER bits are set, 8769 * load IPsec. 8770 */ 8771 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 8772 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 8773 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 8774 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 8775 != 0) 8776 return (B_TRUE); 8777 } 8778 } 8779 return (B_FALSE); 8780 } 8781 8782 /* 8783 * If conn is is waiting for ipsec to finish loading, kick it. 8784 */ 8785 /* ARGSUSED */ 8786 static void 8787 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 8788 { 8789 t_scalar_t optreq_prim; 8790 mblk_t *mp; 8791 cred_t *cr; 8792 int err = 0; 8793 8794 /* 8795 * This function is called, after ipsec loading is complete. 8796 * Since IP checks exclusively and atomically (i.e it prevents 8797 * ipsec load from completing until ip_optcom_req completes) 8798 * whether ipsec load is complete, there cannot be a race with IP 8799 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 8800 */ 8801 mutex_enter(&connp->conn_lock); 8802 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 8803 ASSERT(connp->conn_ipsec_opt_mp != NULL); 8804 mp = connp->conn_ipsec_opt_mp; 8805 connp->conn_ipsec_opt_mp = NULL; 8806 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 8807 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 8808 mutex_exit(&connp->conn_lock); 8809 8810 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 8811 8812 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 8813 if (optreq_prim == T_OPTMGMT_REQ) { 8814 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8815 &ip_opt_obj); 8816 } else { 8817 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 8818 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8819 &ip_opt_obj); 8820 } 8821 if (err != EINPROGRESS) 8822 CONN_OPER_PENDING_DONE(connp); 8823 return; 8824 } 8825 mutex_exit(&connp->conn_lock); 8826 } 8827 8828 /* 8829 * Called from the ipsec_loader thread, outside any perimeter, to tell 8830 * ip qenable any of the queues waiting for the ipsec loader to 8831 * complete. 8832 * 8833 * Use ip_mi_lock to be safe here: all modifications of the mi lists 8834 * are done with this lock held, so it's guaranteed that none of the 8835 * links will change along the way. 8836 */ 8837 void 8838 ip_ipsec_load_complete() 8839 { 8840 ipcl_walk(conn_restart_ipsec_waiter, NULL); 8841 } 8842 8843 /* 8844 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 8845 * determines the grp on which it has to become exclusive, queues the mp 8846 * and sq draining restarts the optmgmt 8847 */ 8848 static boolean_t 8849 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 8850 { 8851 conn_t *connp; 8852 8853 /* 8854 * Take IPsec requests and treat them special. 8855 */ 8856 if (ipsec_opt_present(mp)) { 8857 /* First check if IPsec is loaded. */ 8858 mutex_enter(&ipsec_loader_lock); 8859 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 8860 mutex_exit(&ipsec_loader_lock); 8861 return (B_FALSE); 8862 } 8863 connp = Q_TO_CONN(q); 8864 mutex_enter(&connp->conn_lock); 8865 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 8866 8867 ASSERT(connp->conn_ipsec_opt_mp == NULL); 8868 connp->conn_ipsec_opt_mp = mp; 8869 mutex_exit(&connp->conn_lock); 8870 mutex_exit(&ipsec_loader_lock); 8871 8872 ipsec_loader_loadnow(); 8873 return (B_TRUE); 8874 } 8875 return (B_FALSE); 8876 } 8877 8878 /* 8879 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 8880 * all of them are copied to the conn_t. If the req is "zero", the policy is 8881 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 8882 * fields. 8883 * We keep only the latest setting of the policy and thus policy setting 8884 * is not incremental/cumulative. 8885 * 8886 * Requests to set policies with multiple alternative actions will 8887 * go through a different API. 8888 */ 8889 int 8890 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 8891 { 8892 uint_t ah_req = 0; 8893 uint_t esp_req = 0; 8894 uint_t se_req = 0; 8895 ipsec_selkey_t sel; 8896 ipsec_act_t *actp = NULL; 8897 uint_t nact; 8898 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 8899 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 8900 ipsec_policy_root_t *pr; 8901 ipsec_policy_head_t *ph; 8902 int fam; 8903 boolean_t is_pol_reset; 8904 int error = 0; 8905 8906 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 8907 8908 /* 8909 * The IP_SEC_OPT option does not allow variable length parameters, 8910 * hence a request cannot be NULL. 8911 */ 8912 if (req == NULL) 8913 return (EINVAL); 8914 8915 ah_req = req->ipsr_ah_req; 8916 esp_req = req->ipsr_esp_req; 8917 se_req = req->ipsr_self_encap_req; 8918 8919 /* 8920 * Are we dealing with a request to reset the policy (i.e. 8921 * zero requests). 8922 */ 8923 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 8924 (esp_req & REQ_MASK) == 0 && 8925 (se_req & REQ_MASK) == 0); 8926 8927 if (!is_pol_reset) { 8928 /* 8929 * If we couldn't load IPsec, fail with "protocol 8930 * not supported". 8931 * IPsec may not have been loaded for a request with zero 8932 * policies, so we don't fail in this case. 8933 */ 8934 mutex_enter(&ipsec_loader_lock); 8935 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 8936 mutex_exit(&ipsec_loader_lock); 8937 return (EPROTONOSUPPORT); 8938 } 8939 mutex_exit(&ipsec_loader_lock); 8940 8941 /* 8942 * Test for valid requests. Invalid algorithms 8943 * need to be tested by IPSEC code because new 8944 * algorithms can be added dynamically. 8945 */ 8946 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8947 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8948 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 8949 return (EINVAL); 8950 } 8951 8952 /* 8953 * Only privileged users can issue these 8954 * requests. 8955 */ 8956 if (((ah_req & IPSEC_PREF_NEVER) || 8957 (esp_req & IPSEC_PREF_NEVER) || 8958 (se_req & IPSEC_PREF_NEVER)) && 8959 secpolicy_net_config(cr, B_FALSE) != 0) { 8960 return (EPERM); 8961 } 8962 8963 /* 8964 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 8965 * are mutually exclusive. 8966 */ 8967 if (((ah_req & REQ_MASK) == REQ_MASK) || 8968 ((esp_req & REQ_MASK) == REQ_MASK) || 8969 ((se_req & REQ_MASK) == REQ_MASK)) { 8970 /* Both of them are set */ 8971 return (EINVAL); 8972 } 8973 } 8974 8975 mutex_enter(&connp->conn_lock); 8976 8977 /* 8978 * If we have already cached policies in ip_bind_connected*(), don't 8979 * let them change now. We cache policies for connections 8980 * whose src,dst [addr, port] is known. The exception to this is 8981 * tunnels. Tunnels are allowed to change policies after having 8982 * become fully bound. 8983 */ 8984 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 8985 mutex_exit(&connp->conn_lock); 8986 return (EINVAL); 8987 } 8988 8989 /* 8990 * We have a zero policies, reset the connection policy if already 8991 * set. This will cause the connection to inherit the 8992 * global policy, if any. 8993 */ 8994 if (is_pol_reset) { 8995 if (connp->conn_policy != NULL) { 8996 IPPH_REFRELE(connp->conn_policy); 8997 connp->conn_policy = NULL; 8998 } 8999 connp->conn_flags &= ~IPCL_CHECK_POLICY; 9000 connp->conn_in_enforce_policy = B_FALSE; 9001 connp->conn_out_enforce_policy = B_FALSE; 9002 mutex_exit(&connp->conn_lock); 9003 return (0); 9004 } 9005 9006 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 9007 if (ph == NULL) 9008 goto enomem; 9009 9010 ipsec_actvec_from_req(req, &actp, &nact); 9011 if (actp == NULL) 9012 goto enomem; 9013 9014 /* 9015 * Always allocate IPv4 policy entries, since they can also 9016 * apply to ipv6 sockets being used in ipv4-compat mode. 9017 */ 9018 bzero(&sel, sizeof (sel)); 9019 sel.ipsl_valid = IPSL_IPV4; 9020 9021 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9022 if (pin4 == NULL) 9023 goto enomem; 9024 9025 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9026 if (pout4 == NULL) 9027 goto enomem; 9028 9029 if (connp->conn_pkt_isv6) { 9030 /* 9031 * We're looking at a v6 socket, also allocate the 9032 * v6-specific entries... 9033 */ 9034 sel.ipsl_valid = IPSL_IPV6; 9035 pin6 = ipsec_policy_create(&sel, actp, nact, 9036 IPSEC_PRIO_SOCKET); 9037 if (pin6 == NULL) 9038 goto enomem; 9039 9040 pout6 = ipsec_policy_create(&sel, actp, nact, 9041 IPSEC_PRIO_SOCKET); 9042 if (pout6 == NULL) 9043 goto enomem; 9044 9045 /* 9046 * .. and file them away in the right place. 9047 */ 9048 fam = IPSEC_AF_V6; 9049 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9050 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 9051 ipsec_insert_always(&ph->iph_rulebyid, pin6); 9052 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9053 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 9054 ipsec_insert_always(&ph->iph_rulebyid, pout6); 9055 } 9056 9057 ipsec_actvec_free(actp, nact); 9058 9059 /* 9060 * File the v4 policies. 9061 */ 9062 fam = IPSEC_AF_V4; 9063 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9064 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 9065 ipsec_insert_always(&ph->iph_rulebyid, pin4); 9066 9067 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9068 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 9069 ipsec_insert_always(&ph->iph_rulebyid, pout4); 9070 9071 /* 9072 * If the requests need security, set enforce_policy. 9073 * If the requests are IPSEC_PREF_NEVER, one should 9074 * still set conn_out_enforce_policy so that an ipsec_out 9075 * gets attached in ip_wput. This is needed so that 9076 * for connections that we don't cache policy in ip_bind, 9077 * if global policy matches in ip_wput_attach_policy, we 9078 * don't wrongly inherit global policy. Similarly, we need 9079 * to set conn_in_enforce_policy also so that we don't verify 9080 * policy wrongly. 9081 */ 9082 if ((ah_req & REQ_MASK) != 0 || 9083 (esp_req & REQ_MASK) != 0 || 9084 (se_req & REQ_MASK) != 0) { 9085 connp->conn_in_enforce_policy = B_TRUE; 9086 connp->conn_out_enforce_policy = B_TRUE; 9087 connp->conn_flags |= IPCL_CHECK_POLICY; 9088 } 9089 9090 /* 9091 * Tunnels are allowed to set policy after having been fully bound. 9092 * If that's the case, cache policy here. 9093 */ 9094 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 9095 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 9096 9097 mutex_exit(&connp->conn_lock); 9098 return (error); 9099 #undef REQ_MASK 9100 9101 /* 9102 * Common memory-allocation-failure exit path. 9103 */ 9104 enomem: 9105 mutex_exit(&connp->conn_lock); 9106 if (actp != NULL) 9107 ipsec_actvec_free(actp, nact); 9108 if (pin4 != NULL) 9109 IPPOL_REFRELE(pin4); 9110 if (pout4 != NULL) 9111 IPPOL_REFRELE(pout4); 9112 if (pin6 != NULL) 9113 IPPOL_REFRELE(pin6); 9114 if (pout6 != NULL) 9115 IPPOL_REFRELE(pout6); 9116 return (ENOMEM); 9117 } 9118 9119 /* 9120 * Only for options that pass in an IP addr. Currently only V4 options 9121 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 9122 * So this function assumes level is IPPROTO_IP 9123 */ 9124 int 9125 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 9126 mblk_t *first_mp) 9127 { 9128 ipif_t *ipif = NULL; 9129 int error; 9130 ill_t *ill; 9131 9132 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 9133 9134 if (addr != INADDR_ANY || checkonly) { 9135 ASSERT(connp != NULL); 9136 if (option == IP_NEXTHOP) { 9137 ipif = 9138 ipif_lookup_onlink_addr(addr, connp->conn_zoneid); 9139 } else { 9140 ipif = ipif_lookup_addr(addr, NULL, connp->conn_zoneid, 9141 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 9142 &error); 9143 } 9144 if (ipif == NULL) { 9145 if (error == EINPROGRESS) 9146 return (error); 9147 else if ((option == IP_MULTICAST_IF) || 9148 (option == IP_NEXTHOP)) 9149 return (EHOSTUNREACH); 9150 else 9151 return (EINVAL); 9152 } else if (checkonly) { 9153 if (option == IP_MULTICAST_IF) { 9154 ill = ipif->ipif_ill; 9155 /* not supported by the virtual network iface */ 9156 if (IS_VNI(ill)) { 9157 ipif_refrele(ipif); 9158 return (EINVAL); 9159 } 9160 } 9161 ipif_refrele(ipif); 9162 return (0); 9163 } 9164 ill = ipif->ipif_ill; 9165 mutex_enter(&connp->conn_lock); 9166 mutex_enter(&ill->ill_lock); 9167 if ((ill->ill_state_flags & ILL_CONDEMNED) || 9168 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 9169 mutex_exit(&ill->ill_lock); 9170 mutex_exit(&connp->conn_lock); 9171 ipif_refrele(ipif); 9172 return (option == IP_MULTICAST_IF ? 9173 EHOSTUNREACH : EINVAL); 9174 } 9175 } else { 9176 mutex_enter(&connp->conn_lock); 9177 } 9178 9179 /* None of the options below are supported on the VNI */ 9180 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 9181 mutex_exit(&ill->ill_lock); 9182 mutex_exit(&connp->conn_lock); 9183 ipif_refrele(ipif); 9184 return (EINVAL); 9185 } 9186 9187 switch (option) { 9188 case IP_DONTFAILOVER_IF: 9189 /* 9190 * This option is used by in.mpathd to ensure 9191 * that IPMP probe packets only go out on the 9192 * test interfaces. in.mpathd sets this option 9193 * on the non-failover interfaces. 9194 * For backward compatibility, this option 9195 * implicitly sets IP_MULTICAST_IF, as used 9196 * be done in bind(), so that ip_wput gets 9197 * this ipif to send mcast packets. 9198 */ 9199 if (ipif != NULL) { 9200 ASSERT(addr != INADDR_ANY); 9201 connp->conn_nofailover_ill = ipif->ipif_ill; 9202 connp->conn_multicast_ipif = ipif; 9203 } else { 9204 ASSERT(addr == INADDR_ANY); 9205 connp->conn_nofailover_ill = NULL; 9206 connp->conn_multicast_ipif = NULL; 9207 } 9208 break; 9209 9210 case IP_MULTICAST_IF: 9211 connp->conn_multicast_ipif = ipif; 9212 break; 9213 case IP_NEXTHOP: 9214 connp->conn_nexthop_v4 = addr; 9215 connp->conn_nexthop_set = B_TRUE; 9216 break; 9217 } 9218 9219 if (ipif != NULL) { 9220 mutex_exit(&ill->ill_lock); 9221 mutex_exit(&connp->conn_lock); 9222 ipif_refrele(ipif); 9223 return (0); 9224 } 9225 mutex_exit(&connp->conn_lock); 9226 /* We succeded in cleared the option */ 9227 return (0); 9228 } 9229 9230 /* 9231 * For options that pass in an ifindex specifying the ill. V6 options always 9232 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 9233 */ 9234 int 9235 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 9236 int level, int option, mblk_t *first_mp) 9237 { 9238 ill_t *ill = NULL; 9239 int error = 0; 9240 9241 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 9242 if (ifindex != 0) { 9243 ASSERT(connp != NULL); 9244 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 9245 first_mp, ip_restart_optmgmt, &error); 9246 if (ill != NULL) { 9247 if (checkonly) { 9248 /* not supported by the virtual network iface */ 9249 if (IS_VNI(ill)) { 9250 ill_refrele(ill); 9251 return (EINVAL); 9252 } 9253 ill_refrele(ill); 9254 return (0); 9255 } 9256 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 9257 0, NULL)) { 9258 ill_refrele(ill); 9259 ill = NULL; 9260 mutex_enter(&connp->conn_lock); 9261 goto setit; 9262 } 9263 mutex_enter(&connp->conn_lock); 9264 mutex_enter(&ill->ill_lock); 9265 if (ill->ill_state_flags & ILL_CONDEMNED) { 9266 mutex_exit(&ill->ill_lock); 9267 mutex_exit(&connp->conn_lock); 9268 ill_refrele(ill); 9269 ill = NULL; 9270 mutex_enter(&connp->conn_lock); 9271 } 9272 goto setit; 9273 } else if (error == EINPROGRESS) { 9274 return (error); 9275 } else { 9276 error = 0; 9277 } 9278 } 9279 mutex_enter(&connp->conn_lock); 9280 setit: 9281 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 9282 9283 /* 9284 * The options below assume that the ILL (if any) transmits and/or 9285 * receives traffic. Neither of which is true for the virtual network 9286 * interface, so fail setting these on a VNI. 9287 */ 9288 if (IS_VNI(ill)) { 9289 ASSERT(ill != NULL); 9290 mutex_exit(&ill->ill_lock); 9291 mutex_exit(&connp->conn_lock); 9292 ill_refrele(ill); 9293 return (EINVAL); 9294 } 9295 9296 if (level == IPPROTO_IP) { 9297 switch (option) { 9298 case IP_BOUND_IF: 9299 connp->conn_incoming_ill = ill; 9300 connp->conn_outgoing_ill = ill; 9301 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9302 0 : ifindex; 9303 break; 9304 9305 case IP_XMIT_IF: 9306 /* 9307 * Similar to IP_BOUND_IF, but this only 9308 * determines the outgoing interface for 9309 * unicast packets. Also no IRE_CACHE entry 9310 * is added for the destination of the 9311 * outgoing packets. This feature is needed 9312 * for mobile IP. 9313 */ 9314 connp->conn_xmit_if_ill = ill; 9315 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 9316 0 : ifindex; 9317 break; 9318 9319 case IP_MULTICAST_IF: 9320 /* 9321 * This option is an internal special. The socket 9322 * level IP_MULTICAST_IF specifies an 'ipaddr' and 9323 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 9324 * specifies an ifindex and we try first on V6 ill's. 9325 * If we don't find one, we they try using on v4 ill's 9326 * intenally and we come here. 9327 */ 9328 if (!checkonly && ill != NULL) { 9329 ipif_t *ipif; 9330 ipif = ill->ill_ipif; 9331 9332 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 9333 mutex_exit(&ill->ill_lock); 9334 mutex_exit(&connp->conn_lock); 9335 ill_refrele(ill); 9336 ill = NULL; 9337 mutex_enter(&connp->conn_lock); 9338 } else { 9339 connp->conn_multicast_ipif = ipif; 9340 } 9341 } 9342 break; 9343 } 9344 } else { 9345 switch (option) { 9346 case IPV6_BOUND_IF: 9347 connp->conn_incoming_ill = ill; 9348 connp->conn_outgoing_ill = ill; 9349 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9350 0 : ifindex; 9351 break; 9352 9353 case IPV6_BOUND_PIF: 9354 /* 9355 * Limit all transmit to this ill. 9356 * Unlike IPV6_BOUND_IF, using this option 9357 * prevents load spreading and failover from 9358 * happening when the interface is part of the 9359 * group. That's why we don't need to remember 9360 * the ifindex in orig_bound_ifindex as in 9361 * IPV6_BOUND_IF. 9362 */ 9363 connp->conn_outgoing_pill = ill; 9364 break; 9365 9366 case IPV6_DONTFAILOVER_IF: 9367 /* 9368 * This option is used by in.mpathd to ensure 9369 * that IPMP probe packets only go out on the 9370 * test interfaces. in.mpathd sets this option 9371 * on the non-failover interfaces. 9372 */ 9373 connp->conn_nofailover_ill = ill; 9374 /* 9375 * For backward compatibility, this option 9376 * implicitly sets ip_multicast_ill as used in 9377 * IP_MULTICAST_IF so that ip_wput gets 9378 * this ipif to send mcast packets. 9379 */ 9380 connp->conn_multicast_ill = ill; 9381 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 9382 0 : ifindex; 9383 break; 9384 9385 case IPV6_MULTICAST_IF: 9386 /* 9387 * Set conn_multicast_ill to be the IPv6 ill. 9388 * Set conn_multicast_ipif to be an IPv4 ipif 9389 * for ifindex to make IPv4 mapped addresses 9390 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 9391 * Even if no IPv6 ill exists for the ifindex 9392 * we need to check for an IPv4 ifindex in order 9393 * for this to work with mapped addresses. In that 9394 * case only set conn_multicast_ipif. 9395 */ 9396 if (!checkonly) { 9397 if (ifindex == 0) { 9398 connp->conn_multicast_ill = NULL; 9399 connp->conn_orig_multicast_ifindex = 0; 9400 connp->conn_multicast_ipif = NULL; 9401 } else if (ill != NULL) { 9402 connp->conn_multicast_ill = ill; 9403 connp->conn_orig_multicast_ifindex = 9404 ifindex; 9405 } 9406 } 9407 break; 9408 } 9409 } 9410 9411 if (ill != NULL) { 9412 mutex_exit(&ill->ill_lock); 9413 mutex_exit(&connp->conn_lock); 9414 ill_refrele(ill); 9415 return (0); 9416 } 9417 mutex_exit(&connp->conn_lock); 9418 /* 9419 * We succeeded in clearing the option (ifindex == 0) or failed to 9420 * locate the ill and could not set the option (ifindex != 0) 9421 */ 9422 return (ifindex == 0 ? 0 : EINVAL); 9423 } 9424 9425 /* This routine sets socket options. */ 9426 /* ARGSUSED */ 9427 int 9428 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9429 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9430 void *dummy, cred_t *cr, mblk_t *first_mp) 9431 { 9432 int *i1 = (int *)invalp; 9433 conn_t *connp = Q_TO_CONN(q); 9434 int error = 0; 9435 boolean_t checkonly; 9436 ire_t *ire; 9437 boolean_t found; 9438 9439 switch (optset_context) { 9440 9441 case SETFN_OPTCOM_CHECKONLY: 9442 checkonly = B_TRUE; 9443 /* 9444 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9445 * inlen != 0 implies value supplied and 9446 * we have to "pretend" to set it. 9447 * inlen == 0 implies that there is no 9448 * value part in T_CHECK request and just validation 9449 * done elsewhere should be enough, we just return here. 9450 */ 9451 if (inlen == 0) { 9452 *outlenp = 0; 9453 return (0); 9454 } 9455 break; 9456 case SETFN_OPTCOM_NEGOTIATE: 9457 case SETFN_UD_NEGOTIATE: 9458 case SETFN_CONN_NEGOTIATE: 9459 checkonly = B_FALSE; 9460 break; 9461 default: 9462 /* 9463 * We should never get here 9464 */ 9465 *outlenp = 0; 9466 return (EINVAL); 9467 } 9468 9469 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9470 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9471 9472 /* 9473 * For fixed length options, no sanity check 9474 * of passed in length is done. It is assumed *_optcom_req() 9475 * routines do the right thing. 9476 */ 9477 9478 switch (level) { 9479 case SOL_SOCKET: 9480 /* 9481 * conn_lock protects the bitfields, and is used to 9482 * set the fields atomically. 9483 */ 9484 switch (name) { 9485 case SO_BROADCAST: 9486 if (!checkonly) { 9487 /* TODO: use value someplace? */ 9488 mutex_enter(&connp->conn_lock); 9489 connp->conn_broadcast = *i1 ? 1 : 0; 9490 mutex_exit(&connp->conn_lock); 9491 } 9492 break; /* goto sizeof (int) option return */ 9493 case SO_USELOOPBACK: 9494 if (!checkonly) { 9495 /* TODO: use value someplace? */ 9496 mutex_enter(&connp->conn_lock); 9497 connp->conn_loopback = *i1 ? 1 : 0; 9498 mutex_exit(&connp->conn_lock); 9499 } 9500 break; /* goto sizeof (int) option return */ 9501 case SO_DONTROUTE: 9502 if (!checkonly) { 9503 mutex_enter(&connp->conn_lock); 9504 connp->conn_dontroute = *i1 ? 1 : 0; 9505 mutex_exit(&connp->conn_lock); 9506 } 9507 break; /* goto sizeof (int) option return */ 9508 case SO_REUSEADDR: 9509 if (!checkonly) { 9510 mutex_enter(&connp->conn_lock); 9511 connp->conn_reuseaddr = *i1 ? 1 : 0; 9512 mutex_exit(&connp->conn_lock); 9513 } 9514 break; /* goto sizeof (int) option return */ 9515 case SO_PROTOTYPE: 9516 if (!checkonly) { 9517 mutex_enter(&connp->conn_lock); 9518 connp->conn_proto = *i1; 9519 mutex_exit(&connp->conn_lock); 9520 } 9521 break; /* goto sizeof (int) option return */ 9522 default: 9523 /* 9524 * "soft" error (negative) 9525 * option not handled at this level 9526 * Note: Do not modify *outlenp 9527 */ 9528 return (-EINVAL); 9529 } 9530 break; 9531 case IPPROTO_IP: 9532 switch (name) { 9533 case IP_NEXTHOP: 9534 case IP_MULTICAST_IF: 9535 case IP_DONTFAILOVER_IF: { 9536 ipaddr_t addr = *i1; 9537 9538 error = ip_opt_set_ipif(connp, addr, checkonly, name, 9539 first_mp); 9540 if (error != 0) 9541 return (error); 9542 break; /* goto sizeof (int) option return */ 9543 } 9544 9545 case IP_MULTICAST_TTL: 9546 /* Recorded in transport above IP */ 9547 *outvalp = *invalp; 9548 *outlenp = sizeof (uchar_t); 9549 return (0); 9550 case IP_MULTICAST_LOOP: 9551 if (!checkonly) { 9552 mutex_enter(&connp->conn_lock); 9553 connp->conn_multicast_loop = *invalp ? 1 : 0; 9554 mutex_exit(&connp->conn_lock); 9555 } 9556 *outvalp = *invalp; 9557 *outlenp = sizeof (uchar_t); 9558 return (0); 9559 case IP_ADD_MEMBERSHIP: 9560 case MCAST_JOIN_GROUP: 9561 case IP_DROP_MEMBERSHIP: 9562 case MCAST_LEAVE_GROUP: { 9563 struct ip_mreq *mreqp; 9564 struct group_req *greqp; 9565 ire_t *ire; 9566 boolean_t done = B_FALSE; 9567 ipaddr_t group, ifaddr; 9568 struct sockaddr_in *sin; 9569 uint32_t *ifindexp; 9570 boolean_t mcast_opt = B_TRUE; 9571 mcast_record_t fmode; 9572 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9573 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9574 9575 switch (name) { 9576 case IP_ADD_MEMBERSHIP: 9577 mcast_opt = B_FALSE; 9578 /* FALLTHRU */ 9579 case MCAST_JOIN_GROUP: 9580 fmode = MODE_IS_EXCLUDE; 9581 optfn = ip_opt_add_group; 9582 break; 9583 9584 case IP_DROP_MEMBERSHIP: 9585 mcast_opt = B_FALSE; 9586 /* FALLTHRU */ 9587 case MCAST_LEAVE_GROUP: 9588 fmode = MODE_IS_INCLUDE; 9589 optfn = ip_opt_delete_group; 9590 break; 9591 } 9592 9593 if (mcast_opt) { 9594 greqp = (struct group_req *)i1; 9595 sin = (struct sockaddr_in *)&greqp->gr_group; 9596 if (sin->sin_family != AF_INET) { 9597 *outlenp = 0; 9598 return (ENOPROTOOPT); 9599 } 9600 group = (ipaddr_t)sin->sin_addr.s_addr; 9601 ifaddr = INADDR_ANY; 9602 ifindexp = &greqp->gr_interface; 9603 } else { 9604 mreqp = (struct ip_mreq *)i1; 9605 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 9606 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 9607 ifindexp = NULL; 9608 } 9609 9610 /* 9611 * In the multirouting case, we need to replicate 9612 * the request on all interfaces that will take part 9613 * in replication. We do so because multirouting is 9614 * reflective, thus we will probably receive multi- 9615 * casts on those interfaces. 9616 * The ip_multirt_apply_membership() succeeds if the 9617 * operation succeeds on at least one interface. 9618 */ 9619 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 9620 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9621 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9622 if (ire != NULL) { 9623 if (ire->ire_flags & RTF_MULTIRT) { 9624 error = ip_multirt_apply_membership( 9625 optfn, ire, connp, checkonly, group, 9626 fmode, INADDR_ANY, first_mp); 9627 done = B_TRUE; 9628 } 9629 ire_refrele(ire); 9630 } 9631 if (!done) { 9632 error = optfn(connp, checkonly, group, ifaddr, 9633 ifindexp, fmode, INADDR_ANY, first_mp); 9634 } 9635 if (error) { 9636 /* 9637 * EINPROGRESS is a soft error, needs retry 9638 * so don't make *outlenp zero. 9639 */ 9640 if (error != EINPROGRESS) 9641 *outlenp = 0; 9642 return (error); 9643 } 9644 /* OK return - copy input buffer into output buffer */ 9645 if (invalp != outvalp) { 9646 /* don't trust bcopy for identical src/dst */ 9647 bcopy(invalp, outvalp, inlen); 9648 } 9649 *outlenp = inlen; 9650 return (0); 9651 } 9652 case IP_BLOCK_SOURCE: 9653 case IP_UNBLOCK_SOURCE: 9654 case IP_ADD_SOURCE_MEMBERSHIP: 9655 case IP_DROP_SOURCE_MEMBERSHIP: 9656 case MCAST_BLOCK_SOURCE: 9657 case MCAST_UNBLOCK_SOURCE: 9658 case MCAST_JOIN_SOURCE_GROUP: 9659 case MCAST_LEAVE_SOURCE_GROUP: { 9660 struct ip_mreq_source *imreqp; 9661 struct group_source_req *gsreqp; 9662 in_addr_t grp, src, ifaddr = INADDR_ANY; 9663 uint32_t ifindex = 0; 9664 mcast_record_t fmode; 9665 struct sockaddr_in *sin; 9666 ire_t *ire; 9667 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 9668 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9669 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9670 9671 switch (name) { 9672 case IP_BLOCK_SOURCE: 9673 mcast_opt = B_FALSE; 9674 /* FALLTHRU */ 9675 case MCAST_BLOCK_SOURCE: 9676 fmode = MODE_IS_EXCLUDE; 9677 optfn = ip_opt_add_group; 9678 break; 9679 9680 case IP_UNBLOCK_SOURCE: 9681 mcast_opt = B_FALSE; 9682 /* FALLTHRU */ 9683 case MCAST_UNBLOCK_SOURCE: 9684 fmode = MODE_IS_EXCLUDE; 9685 optfn = ip_opt_delete_group; 9686 break; 9687 9688 case IP_ADD_SOURCE_MEMBERSHIP: 9689 mcast_opt = B_FALSE; 9690 /* FALLTHRU */ 9691 case MCAST_JOIN_SOURCE_GROUP: 9692 fmode = MODE_IS_INCLUDE; 9693 optfn = ip_opt_add_group; 9694 break; 9695 9696 case IP_DROP_SOURCE_MEMBERSHIP: 9697 mcast_opt = B_FALSE; 9698 /* FALLTHRU */ 9699 case MCAST_LEAVE_SOURCE_GROUP: 9700 fmode = MODE_IS_INCLUDE; 9701 optfn = ip_opt_delete_group; 9702 break; 9703 } 9704 9705 if (mcast_opt) { 9706 gsreqp = (struct group_source_req *)i1; 9707 if (gsreqp->gsr_group.ss_family != AF_INET) { 9708 *outlenp = 0; 9709 return (ENOPROTOOPT); 9710 } 9711 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 9712 grp = (ipaddr_t)sin->sin_addr.s_addr; 9713 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 9714 src = (ipaddr_t)sin->sin_addr.s_addr; 9715 ifindex = gsreqp->gsr_interface; 9716 } else { 9717 imreqp = (struct ip_mreq_source *)i1; 9718 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 9719 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 9720 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 9721 } 9722 9723 /* 9724 * In the multirouting case, we need to replicate 9725 * the request as noted in the mcast cases above. 9726 */ 9727 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 9728 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9729 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9730 if (ire != NULL) { 9731 if (ire->ire_flags & RTF_MULTIRT) { 9732 error = ip_multirt_apply_membership( 9733 optfn, ire, connp, checkonly, grp, 9734 fmode, src, first_mp); 9735 done = B_TRUE; 9736 } 9737 ire_refrele(ire); 9738 } 9739 if (!done) { 9740 error = optfn(connp, checkonly, grp, ifaddr, 9741 &ifindex, fmode, src, first_mp); 9742 } 9743 if (error != 0) { 9744 /* 9745 * EINPROGRESS is a soft error, needs retry 9746 * so don't make *outlenp zero. 9747 */ 9748 if (error != EINPROGRESS) 9749 *outlenp = 0; 9750 return (error); 9751 } 9752 /* OK return - copy input buffer into output buffer */ 9753 if (invalp != outvalp) { 9754 bcopy(invalp, outvalp, inlen); 9755 } 9756 *outlenp = inlen; 9757 return (0); 9758 } 9759 case IP_SEC_OPT: 9760 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 9761 if (error != 0) { 9762 *outlenp = 0; 9763 return (error); 9764 } 9765 break; 9766 case IP_HDRINCL: 9767 case IP_OPTIONS: 9768 case T_IP_OPTIONS: 9769 case IP_TOS: 9770 case T_IP_TOS: 9771 case IP_TTL: 9772 case IP_RECVDSTADDR: 9773 case IP_RECVOPTS: 9774 /* OK return - copy input buffer into output buffer */ 9775 if (invalp != outvalp) { 9776 /* don't trust bcopy for identical src/dst */ 9777 bcopy(invalp, outvalp, inlen); 9778 } 9779 *outlenp = inlen; 9780 return (0); 9781 case IP_RECVIF: 9782 /* Retrieve the inbound interface index */ 9783 if (!checkonly) { 9784 mutex_enter(&connp->conn_lock); 9785 connp->conn_recvif = *i1 ? 1 : 0; 9786 mutex_exit(&connp->conn_lock); 9787 } 9788 break; /* goto sizeof (int) option return */ 9789 case IP_RECVSLLA: 9790 /* Retrieve the source link layer address */ 9791 if (!checkonly) { 9792 mutex_enter(&connp->conn_lock); 9793 connp->conn_recvslla = *i1 ? 1 : 0; 9794 mutex_exit(&connp->conn_lock); 9795 } 9796 break; /* goto sizeof (int) option return */ 9797 case MRT_INIT: 9798 case MRT_DONE: 9799 case MRT_ADD_VIF: 9800 case MRT_DEL_VIF: 9801 case MRT_ADD_MFC: 9802 case MRT_DEL_MFC: 9803 case MRT_ASSERT: 9804 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 9805 *outlenp = 0; 9806 return (error); 9807 } 9808 error = ip_mrouter_set((int)name, q, checkonly, 9809 (uchar_t *)invalp, inlen, first_mp); 9810 if (error) { 9811 *outlenp = 0; 9812 return (error); 9813 } 9814 /* OK return - copy input buffer into output buffer */ 9815 if (invalp != outvalp) { 9816 /* don't trust bcopy for identical src/dst */ 9817 bcopy(invalp, outvalp, inlen); 9818 } 9819 *outlenp = inlen; 9820 return (0); 9821 case IP_BOUND_IF: 9822 case IP_XMIT_IF: 9823 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9824 level, name, first_mp); 9825 if (error != 0) 9826 return (error); 9827 break; /* goto sizeof (int) option return */ 9828 9829 case IP_UNSPEC_SRC: 9830 /* Allow sending with a zero source address */ 9831 if (!checkonly) { 9832 mutex_enter(&connp->conn_lock); 9833 connp->conn_unspec_src = *i1 ? 1 : 0; 9834 mutex_exit(&connp->conn_lock); 9835 } 9836 break; /* goto sizeof (int) option return */ 9837 default: 9838 /* 9839 * "soft" error (negative) 9840 * option not handled at this level 9841 * Note: Do not modify *outlenp 9842 */ 9843 return (-EINVAL); 9844 } 9845 break; 9846 case IPPROTO_IPV6: 9847 switch (name) { 9848 case IPV6_BOUND_IF: 9849 case IPV6_BOUND_PIF: 9850 case IPV6_DONTFAILOVER_IF: 9851 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9852 level, name, first_mp); 9853 if (error != 0) 9854 return (error); 9855 break; /* goto sizeof (int) option return */ 9856 9857 case IPV6_MULTICAST_IF: 9858 /* 9859 * The only possible errors are EINPROGRESS and 9860 * EINVAL. EINPROGRESS will be restarted and is not 9861 * a hard error. We call this option on both V4 and V6 9862 * If both return EINVAL, then this call returns 9863 * EINVAL. If at least one of them succeeds we 9864 * return success. 9865 */ 9866 found = B_FALSE; 9867 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9868 level, name, first_mp); 9869 if (error == EINPROGRESS) 9870 return (error); 9871 if (error == 0) 9872 found = B_TRUE; 9873 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9874 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 9875 if (error == 0) 9876 found = B_TRUE; 9877 if (!found) 9878 return (error); 9879 break; /* goto sizeof (int) option return */ 9880 9881 case IPV6_MULTICAST_HOPS: 9882 /* Recorded in transport above IP */ 9883 break; /* goto sizeof (int) option return */ 9884 case IPV6_MULTICAST_LOOP: 9885 if (!checkonly) { 9886 mutex_enter(&connp->conn_lock); 9887 connp->conn_multicast_loop = *i1; 9888 mutex_exit(&connp->conn_lock); 9889 } 9890 break; /* goto sizeof (int) option return */ 9891 case IPV6_JOIN_GROUP: 9892 case MCAST_JOIN_GROUP: 9893 case IPV6_LEAVE_GROUP: 9894 case MCAST_LEAVE_GROUP: { 9895 struct ipv6_mreq *ip_mreqp; 9896 struct group_req *greqp; 9897 ire_t *ire; 9898 boolean_t done = B_FALSE; 9899 in6_addr_t groupv6; 9900 uint32_t ifindex; 9901 boolean_t mcast_opt = B_TRUE; 9902 mcast_record_t fmode; 9903 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9904 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9905 9906 switch (name) { 9907 case IPV6_JOIN_GROUP: 9908 mcast_opt = B_FALSE; 9909 /* FALLTHRU */ 9910 case MCAST_JOIN_GROUP: 9911 fmode = MODE_IS_EXCLUDE; 9912 optfn = ip_opt_add_group_v6; 9913 break; 9914 9915 case IPV6_LEAVE_GROUP: 9916 mcast_opt = B_FALSE; 9917 /* FALLTHRU */ 9918 case MCAST_LEAVE_GROUP: 9919 fmode = MODE_IS_INCLUDE; 9920 optfn = ip_opt_delete_group_v6; 9921 break; 9922 } 9923 9924 if (mcast_opt) { 9925 struct sockaddr_in *sin; 9926 struct sockaddr_in6 *sin6; 9927 greqp = (struct group_req *)i1; 9928 if (greqp->gr_group.ss_family == AF_INET) { 9929 sin = (struct sockaddr_in *) 9930 &(greqp->gr_group); 9931 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 9932 &groupv6); 9933 } else { 9934 sin6 = (struct sockaddr_in6 *) 9935 &(greqp->gr_group); 9936 groupv6 = sin6->sin6_addr; 9937 } 9938 ifindex = greqp->gr_interface; 9939 } else { 9940 ip_mreqp = (struct ipv6_mreq *)i1; 9941 groupv6 = ip_mreqp->ipv6mr_multiaddr; 9942 ifindex = ip_mreqp->ipv6mr_interface; 9943 } 9944 /* 9945 * In the multirouting case, we need to replicate 9946 * the request on all interfaces that will take part 9947 * in replication. We do so because multirouting is 9948 * reflective, thus we will probably receive multi- 9949 * casts on those interfaces. 9950 * The ip_multirt_apply_membership_v6() succeeds if 9951 * the operation succeeds on at least one interface. 9952 */ 9953 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 9954 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9955 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9956 if (ire != NULL) { 9957 if (ire->ire_flags & RTF_MULTIRT) { 9958 error = ip_multirt_apply_membership_v6( 9959 optfn, ire, connp, checkonly, 9960 &groupv6, fmode, &ipv6_all_zeros, 9961 first_mp); 9962 done = B_TRUE; 9963 } 9964 ire_refrele(ire); 9965 } 9966 if (!done) { 9967 error = optfn(connp, checkonly, &groupv6, 9968 ifindex, fmode, &ipv6_all_zeros, first_mp); 9969 } 9970 if (error) { 9971 /* 9972 * EINPROGRESS is a soft error, needs retry 9973 * so don't make *outlenp zero. 9974 */ 9975 if (error != EINPROGRESS) 9976 *outlenp = 0; 9977 return (error); 9978 } 9979 /* OK return - copy input buffer into output buffer */ 9980 if (invalp != outvalp) { 9981 /* don't trust bcopy for identical src/dst */ 9982 bcopy(invalp, outvalp, inlen); 9983 } 9984 *outlenp = inlen; 9985 return (0); 9986 } 9987 case MCAST_BLOCK_SOURCE: 9988 case MCAST_UNBLOCK_SOURCE: 9989 case MCAST_JOIN_SOURCE_GROUP: 9990 case MCAST_LEAVE_SOURCE_GROUP: { 9991 struct group_source_req *gsreqp; 9992 in6_addr_t v6grp, v6src; 9993 uint32_t ifindex; 9994 mcast_record_t fmode; 9995 ire_t *ire; 9996 boolean_t done = B_FALSE; 9997 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9998 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9999 10000 switch (name) { 10001 case MCAST_BLOCK_SOURCE: 10002 fmode = MODE_IS_EXCLUDE; 10003 optfn = ip_opt_add_group_v6; 10004 break; 10005 case MCAST_UNBLOCK_SOURCE: 10006 fmode = MODE_IS_EXCLUDE; 10007 optfn = ip_opt_delete_group_v6; 10008 break; 10009 case MCAST_JOIN_SOURCE_GROUP: 10010 fmode = MODE_IS_INCLUDE; 10011 optfn = ip_opt_add_group_v6; 10012 break; 10013 case MCAST_LEAVE_SOURCE_GROUP: 10014 fmode = MODE_IS_INCLUDE; 10015 optfn = ip_opt_delete_group_v6; 10016 break; 10017 } 10018 10019 gsreqp = (struct group_source_req *)i1; 10020 ifindex = gsreqp->gsr_interface; 10021 if (gsreqp->gsr_group.ss_family == AF_INET) { 10022 struct sockaddr_in *s; 10023 s = (struct sockaddr_in *)&gsreqp->gsr_group; 10024 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 10025 s = (struct sockaddr_in *)&gsreqp->gsr_source; 10026 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 10027 } else { 10028 struct sockaddr_in6 *s6; 10029 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 10030 v6grp = s6->sin6_addr; 10031 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 10032 v6src = s6->sin6_addr; 10033 } 10034 10035 /* 10036 * In the multirouting case, we need to replicate 10037 * the request as noted in the mcast cases above. 10038 */ 10039 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 10040 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 10041 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10042 if (ire != NULL) { 10043 if (ire->ire_flags & RTF_MULTIRT) { 10044 error = ip_multirt_apply_membership_v6( 10045 optfn, ire, connp, checkonly, 10046 &v6grp, fmode, &v6src, first_mp); 10047 done = B_TRUE; 10048 } 10049 ire_refrele(ire); 10050 } 10051 if (!done) { 10052 error = optfn(connp, checkonly, &v6grp, 10053 ifindex, fmode, &v6src, first_mp); 10054 } 10055 if (error != 0) { 10056 /* 10057 * EINPROGRESS is a soft error, needs retry 10058 * so don't make *outlenp zero. 10059 */ 10060 if (error != EINPROGRESS) 10061 *outlenp = 0; 10062 return (error); 10063 } 10064 /* OK return - copy input buffer into output buffer */ 10065 if (invalp != outvalp) { 10066 bcopy(invalp, outvalp, inlen); 10067 } 10068 *outlenp = inlen; 10069 return (0); 10070 } 10071 case IPV6_UNICAST_HOPS: 10072 /* Recorded in transport above IP */ 10073 break; /* goto sizeof (int) option return */ 10074 case IPV6_UNSPEC_SRC: 10075 /* Allow sending with a zero source address */ 10076 if (!checkonly) { 10077 mutex_enter(&connp->conn_lock); 10078 connp->conn_unspec_src = *i1 ? 1 : 0; 10079 mutex_exit(&connp->conn_lock); 10080 } 10081 break; /* goto sizeof (int) option return */ 10082 case IPV6_RECVPKTINFO: 10083 if (!checkonly) { 10084 mutex_enter(&connp->conn_lock); 10085 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 10086 mutex_exit(&connp->conn_lock); 10087 } 10088 break; /* goto sizeof (int) option return */ 10089 case IPV6_RECVTCLASS: 10090 if (!checkonly) { 10091 if (*i1 < 0 || *i1 > 1) { 10092 return (EINVAL); 10093 } 10094 mutex_enter(&connp->conn_lock); 10095 connp->conn_ipv6_recvtclass = *i1; 10096 mutex_exit(&connp->conn_lock); 10097 } 10098 break; 10099 case IPV6_RECVPATHMTU: 10100 if (!checkonly) { 10101 if (*i1 < 0 || *i1 > 1) { 10102 return (EINVAL); 10103 } 10104 mutex_enter(&connp->conn_lock); 10105 connp->conn_ipv6_recvpathmtu = *i1; 10106 mutex_exit(&connp->conn_lock); 10107 } 10108 break; 10109 case IPV6_RECVHOPLIMIT: 10110 if (!checkonly) { 10111 mutex_enter(&connp->conn_lock); 10112 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 10113 mutex_exit(&connp->conn_lock); 10114 } 10115 break; /* goto sizeof (int) option return */ 10116 case IPV6_RECVHOPOPTS: 10117 if (!checkonly) { 10118 mutex_enter(&connp->conn_lock); 10119 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 10120 mutex_exit(&connp->conn_lock); 10121 } 10122 break; /* goto sizeof (int) option return */ 10123 case IPV6_RECVDSTOPTS: 10124 if (!checkonly) { 10125 mutex_enter(&connp->conn_lock); 10126 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 10127 mutex_exit(&connp->conn_lock); 10128 } 10129 break; /* goto sizeof (int) option return */ 10130 case IPV6_RECVRTHDR: 10131 if (!checkonly) { 10132 mutex_enter(&connp->conn_lock); 10133 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 10134 mutex_exit(&connp->conn_lock); 10135 } 10136 break; /* goto sizeof (int) option return */ 10137 case IPV6_RECVRTHDRDSTOPTS: 10138 if (!checkonly) { 10139 mutex_enter(&connp->conn_lock); 10140 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 10141 mutex_exit(&connp->conn_lock); 10142 } 10143 break; /* goto sizeof (int) option return */ 10144 case IPV6_PKTINFO: 10145 if (inlen == 0) 10146 return (-EINVAL); /* clearing option */ 10147 error = ip6_set_pktinfo(cr, connp, 10148 (struct in6_pktinfo *)invalp, first_mp); 10149 if (error != 0) 10150 *outlenp = 0; 10151 else 10152 *outlenp = inlen; 10153 return (error); 10154 case IPV6_NEXTHOP: { 10155 struct sockaddr_in6 *sin6; 10156 10157 /* Verify that the nexthop is reachable */ 10158 if (inlen == 0) 10159 return (-EINVAL); /* clearing option */ 10160 10161 sin6 = (struct sockaddr_in6 *)invalp; 10162 ire = ire_route_lookup_v6(&sin6->sin6_addr, 10163 0, 0, 0, NULL, NULL, connp->conn_zoneid, 10164 MATCH_IRE_DEFAULT); 10165 10166 if (ire == NULL) { 10167 *outlenp = 0; 10168 return (EHOSTUNREACH); 10169 } 10170 ire_refrele(ire); 10171 return (-EINVAL); 10172 } 10173 case IPV6_SEC_OPT: 10174 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10175 if (error != 0) { 10176 *outlenp = 0; 10177 return (error); 10178 } 10179 break; 10180 case IPV6_SRC_PREFERENCES: { 10181 /* 10182 * This is implemented strictly in the ip module 10183 * (here and in tcp_opt_*() to accomodate tcp 10184 * sockets). Modules above ip pass this option 10185 * down here since ip is the only one that needs to 10186 * be aware of source address preferences. 10187 * 10188 * This socket option only affects connected 10189 * sockets that haven't already bound to a specific 10190 * IPv6 address. In other words, sockets that 10191 * don't call bind() with an address other than the 10192 * unspecified address and that call connect(). 10193 * ip_bind_connected_v6() passes these preferences 10194 * to the ipif_select_source_v6() function. 10195 */ 10196 if (inlen != sizeof (uint32_t)) 10197 return (EINVAL); 10198 error = ip6_set_src_preferences(connp, 10199 *(uint32_t *)invalp); 10200 if (error != 0) { 10201 *outlenp = 0; 10202 return (error); 10203 } else { 10204 *outlenp = sizeof (uint32_t); 10205 } 10206 break; 10207 } 10208 case IPV6_V6ONLY: 10209 if (*i1 < 0 || *i1 > 1) { 10210 return (EINVAL); 10211 } 10212 mutex_enter(&connp->conn_lock); 10213 connp->conn_ipv6_v6only = *i1; 10214 mutex_exit(&connp->conn_lock); 10215 break; 10216 default: 10217 return (-EINVAL); 10218 } 10219 break; 10220 default: 10221 /* 10222 * "soft" error (negative) 10223 * option not handled at this level 10224 * Note: Do not modify *outlenp 10225 */ 10226 return (-EINVAL); 10227 } 10228 /* 10229 * Common case of return from an option that is sizeof (int) 10230 */ 10231 *(int *)outvalp = *i1; 10232 *outlenp = sizeof (int); 10233 return (0); 10234 } 10235 10236 /* 10237 * This routine gets default values of certain options whose default 10238 * values are maintained by protocol specific code 10239 */ 10240 /* ARGSUSED */ 10241 int 10242 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 10243 { 10244 int *i1 = (int *)ptr; 10245 10246 switch (level) { 10247 case IPPROTO_IP: 10248 switch (name) { 10249 case IP_MULTICAST_TTL: 10250 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 10251 return (sizeof (uchar_t)); 10252 case IP_MULTICAST_LOOP: 10253 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 10254 return (sizeof (uchar_t)); 10255 default: 10256 return (-1); 10257 } 10258 case IPPROTO_IPV6: 10259 switch (name) { 10260 case IPV6_UNICAST_HOPS: 10261 *i1 = ipv6_def_hops; 10262 return (sizeof (int)); 10263 case IPV6_MULTICAST_HOPS: 10264 *i1 = IP_DEFAULT_MULTICAST_TTL; 10265 return (sizeof (int)); 10266 case IPV6_MULTICAST_LOOP: 10267 *i1 = IP_DEFAULT_MULTICAST_LOOP; 10268 return (sizeof (int)); 10269 case IPV6_V6ONLY: 10270 *i1 = 1; 10271 return (sizeof (int)); 10272 default: 10273 return (-1); 10274 } 10275 default: 10276 return (-1); 10277 } 10278 /* NOTREACHED */ 10279 } 10280 10281 /* 10282 * Given a destination address and a pointer to where to put the information 10283 * this routine fills in the mtuinfo. 10284 */ 10285 int 10286 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 10287 struct ip6_mtuinfo *mtuinfo) 10288 { 10289 ire_t *ire; 10290 10291 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 10292 return (-1); 10293 10294 bzero(mtuinfo, sizeof (*mtuinfo)); 10295 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 10296 mtuinfo->ip6m_addr.sin6_port = port; 10297 mtuinfo->ip6m_addr.sin6_addr = *in6; 10298 10299 ire = ire_cache_lookup_v6(in6, ALL_ZONES); 10300 if (ire != NULL) { 10301 mtuinfo->ip6m_mtu = ire->ire_max_frag; 10302 ire_refrele(ire); 10303 } else { 10304 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 10305 } 10306 return (sizeof (struct ip6_mtuinfo)); 10307 } 10308 10309 /* 10310 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 10311 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 10312 * isn't. This doesn't matter as the error checking is done properly for the 10313 * other MRT options coming in through ip_opt_set. 10314 */ 10315 int 10316 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10317 { 10318 conn_t *connp = Q_TO_CONN(q); 10319 ipsec_req_t *req = (ipsec_req_t *)ptr; 10320 10321 switch (level) { 10322 case IPPROTO_IP: 10323 switch (name) { 10324 case MRT_VERSION: 10325 case MRT_ASSERT: 10326 (void) ip_mrouter_get(name, q, ptr); 10327 return (sizeof (int)); 10328 case IP_SEC_OPT: 10329 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 10330 case IP_NEXTHOP: 10331 if (connp->conn_nexthop_set) { 10332 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 10333 return (sizeof (ipaddr_t)); 10334 } else 10335 return (0); 10336 default: 10337 break; 10338 } 10339 break; 10340 case IPPROTO_IPV6: 10341 switch (name) { 10342 case IPV6_SEC_OPT: 10343 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 10344 case IPV6_SRC_PREFERENCES: { 10345 return (ip6_get_src_preferences(connp, 10346 (uint32_t *)ptr)); 10347 } 10348 case IPV6_V6ONLY: 10349 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 10350 return (sizeof (int)); 10351 case IPV6_PATHMTU: 10352 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 10353 (struct ip6_mtuinfo *)ptr)); 10354 default: 10355 break; 10356 } 10357 break; 10358 default: 10359 break; 10360 } 10361 return (-1); 10362 } 10363 10364 /* Named Dispatch routine to get a current value out of our parameter table. */ 10365 /* ARGSUSED */ 10366 static int 10367 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10368 { 10369 ipparam_t *ippa = (ipparam_t *)cp; 10370 10371 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 10372 return (0); 10373 } 10374 10375 /* ARGSUSED */ 10376 static int 10377 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10378 { 10379 10380 (void) mi_mpprintf(mp, "%d", *(int *)cp); 10381 return (0); 10382 } 10383 10384 /* 10385 * Set ip{,6}_forwarding values. This means walking through all of the 10386 * ill's and toggling their forwarding values. 10387 */ 10388 /* ARGSUSED */ 10389 static int 10390 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10391 { 10392 long new_value; 10393 int *forwarding_value = (int *)cp; 10394 ill_t *walker; 10395 boolean_t isv6 = (forwarding_value == &ipv6_forward); 10396 ill_walk_context_t ctx; 10397 10398 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10399 new_value < 0 || new_value > 1) { 10400 return (EINVAL); 10401 } 10402 10403 *forwarding_value = new_value; 10404 10405 /* 10406 * Regardless of the current value of ip_forwarding, set all per-ill 10407 * values of ip_forwarding to the value being set. 10408 * 10409 * Bring all the ill's up to date with the new global value. 10410 */ 10411 rw_enter(&ill_g_lock, RW_READER); 10412 10413 if (isv6) 10414 walker = ILL_START_WALK_V6(&ctx); 10415 else 10416 walker = ILL_START_WALK_V4(&ctx); 10417 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 10418 (void) ill_forward_set(q, mp, (new_value != 0), 10419 (caddr_t)walker); 10420 } 10421 rw_exit(&ill_g_lock); 10422 10423 return (0); 10424 } 10425 10426 /* 10427 * Walk through the param array specified registering each element with the 10428 * Named Dispatch handler. This is called only during init. So it is ok 10429 * not to acquire any locks 10430 */ 10431 static boolean_t 10432 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 10433 ipndp_t *ipnd, size_t ipnd_cnt) 10434 { 10435 for (; ippa_cnt-- > 0; ippa++) { 10436 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 10437 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 10438 ip_param_get, ip_param_set, (caddr_t)ippa)) { 10439 nd_free(&ip_g_nd); 10440 return (B_FALSE); 10441 } 10442 } 10443 } 10444 10445 for (; ipnd_cnt-- > 0; ipnd++) { 10446 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 10447 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 10448 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 10449 ipnd->ip_ndp_data)) { 10450 nd_free(&ip_g_nd); 10451 return (B_FALSE); 10452 } 10453 } 10454 } 10455 10456 return (B_TRUE); 10457 } 10458 10459 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 10460 /* ARGSUSED */ 10461 static int 10462 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10463 { 10464 long new_value; 10465 ipparam_t *ippa = (ipparam_t *)cp; 10466 10467 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10468 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 10469 return (EINVAL); 10470 } 10471 ippa->ip_param_value = new_value; 10472 return (0); 10473 } 10474 10475 /* 10476 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 10477 * When an ipf is passed here for the first time, if 10478 * we already have in-order fragments on the queue, we convert from the fast- 10479 * path reassembly scheme to the hard-case scheme. From then on, additional 10480 * fragments are reassembled here. We keep track of the start and end offsets 10481 * of each piece, and the number of holes in the chain. When the hole count 10482 * goes to zero, we are done! 10483 * 10484 * The ipf_count will be updated to account for any mblk(s) added (pointed to 10485 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 10486 * ipfb_count and ill_frag_count by the difference of ipf_count before and 10487 * after the call to ip_reassemble(). 10488 */ 10489 int 10490 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 10491 size_t msg_len) 10492 { 10493 uint_t end; 10494 mblk_t *next_mp; 10495 mblk_t *mp1; 10496 uint_t offset; 10497 boolean_t incr_dups = B_TRUE; 10498 boolean_t offset_zero_seen = B_FALSE; 10499 boolean_t pkt_boundary_checked = B_FALSE; 10500 10501 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 10502 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 10503 10504 /* Add in byte count */ 10505 ipf->ipf_count += msg_len; 10506 if (ipf->ipf_end) { 10507 /* 10508 * We were part way through in-order reassembly, but now there 10509 * is a hole. We walk through messages already queued, and 10510 * mark them for hard case reassembly. We know that up till 10511 * now they were in order starting from offset zero. 10512 */ 10513 offset = 0; 10514 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10515 IP_REASS_SET_START(mp1, offset); 10516 if (offset == 0) { 10517 ASSERT(ipf->ipf_nf_hdr_len != 0); 10518 offset = -ipf->ipf_nf_hdr_len; 10519 } 10520 offset += mp1->b_wptr - mp1->b_rptr; 10521 IP_REASS_SET_END(mp1, offset); 10522 } 10523 /* One hole at the end. */ 10524 ipf->ipf_hole_cnt = 1; 10525 /* Brand it as a hard case, forever. */ 10526 ipf->ipf_end = 0; 10527 } 10528 /* Walk through all the new pieces. */ 10529 do { 10530 end = start + (mp->b_wptr - mp->b_rptr); 10531 /* 10532 * If start is 0, decrease 'end' only for the first mblk of 10533 * the fragment. Otherwise 'end' can get wrong value in the 10534 * second pass of the loop if first mblk is exactly the 10535 * size of ipf_nf_hdr_len. 10536 */ 10537 if (start == 0 && !offset_zero_seen) { 10538 /* First segment */ 10539 ASSERT(ipf->ipf_nf_hdr_len != 0); 10540 end -= ipf->ipf_nf_hdr_len; 10541 offset_zero_seen = B_TRUE; 10542 } 10543 next_mp = mp->b_cont; 10544 /* 10545 * We are checking to see if there is any interesing data 10546 * to process. If there isn't and the mblk isn't the 10547 * one which carries the unfragmentable header then we 10548 * drop it. It's possible to have just the unfragmentable 10549 * header come through without any data. That needs to be 10550 * saved. 10551 * 10552 * If the assert at the top of this function holds then the 10553 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 10554 * is infrequently traveled enough that the test is left in 10555 * to protect against future code changes which break that 10556 * invariant. 10557 */ 10558 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 10559 /* Empty. Blast it. */ 10560 IP_REASS_SET_START(mp, 0); 10561 IP_REASS_SET_END(mp, 0); 10562 /* 10563 * If the ipf points to the mblk we are about to free, 10564 * update ipf to point to the next mblk (or NULL 10565 * if none). 10566 */ 10567 if (ipf->ipf_mp->b_cont == mp) 10568 ipf->ipf_mp->b_cont = next_mp; 10569 freeb(mp); 10570 continue; 10571 } 10572 mp->b_cont = NULL; 10573 IP_REASS_SET_START(mp, start); 10574 IP_REASS_SET_END(mp, end); 10575 if (!ipf->ipf_tail_mp) { 10576 ipf->ipf_tail_mp = mp; 10577 ipf->ipf_mp->b_cont = mp; 10578 if (start == 0 || !more) { 10579 ipf->ipf_hole_cnt = 1; 10580 /* 10581 * if the first fragment comes in more than one 10582 * mblk, this loop will be executed for each 10583 * mblk. Need to adjust hole count so exiting 10584 * this routine will leave hole count at 1. 10585 */ 10586 if (next_mp) 10587 ipf->ipf_hole_cnt++; 10588 } else 10589 ipf->ipf_hole_cnt = 2; 10590 continue; 10591 } else if (ipf->ipf_last_frag_seen && !more && 10592 !pkt_boundary_checked) { 10593 /* 10594 * We check datagram boundary only if this fragment 10595 * claims to be the last fragment and we have seen a 10596 * last fragment in the past too. We do this only 10597 * once for a given fragment. 10598 * 10599 * start cannot be 0 here as fragments with start=0 10600 * and MF=0 gets handled as a complete packet. These 10601 * fragments should not reach here. 10602 */ 10603 10604 if (start + msgdsize(mp) != 10605 IP_REASS_END(ipf->ipf_tail_mp)) { 10606 /* 10607 * We have two fragments both of which claim 10608 * to be the last fragment but gives conflicting 10609 * information about the whole datagram size. 10610 * Something fishy is going on. Drop the 10611 * fragment and free up the reassembly list. 10612 */ 10613 return (IP_REASS_FAILED); 10614 } 10615 10616 /* 10617 * We shouldn't come to this code block again for this 10618 * particular fragment. 10619 */ 10620 pkt_boundary_checked = B_TRUE; 10621 } 10622 10623 /* New stuff at or beyond tail? */ 10624 offset = IP_REASS_END(ipf->ipf_tail_mp); 10625 if (start >= offset) { 10626 if (ipf->ipf_last_frag_seen) { 10627 /* current fragment is beyond last fragment */ 10628 return (IP_REASS_FAILED); 10629 } 10630 /* Link it on end. */ 10631 ipf->ipf_tail_mp->b_cont = mp; 10632 ipf->ipf_tail_mp = mp; 10633 if (more) { 10634 if (start != offset) 10635 ipf->ipf_hole_cnt++; 10636 } else if (start == offset && next_mp == NULL) 10637 ipf->ipf_hole_cnt--; 10638 continue; 10639 } 10640 mp1 = ipf->ipf_mp->b_cont; 10641 offset = IP_REASS_START(mp1); 10642 /* New stuff at the front? */ 10643 if (start < offset) { 10644 if (start == 0) { 10645 if (end >= offset) { 10646 /* Nailed the hole at the begining. */ 10647 ipf->ipf_hole_cnt--; 10648 } 10649 } else if (end < offset) { 10650 /* 10651 * A hole, stuff, and a hole where there used 10652 * to be just a hole. 10653 */ 10654 ipf->ipf_hole_cnt++; 10655 } 10656 mp->b_cont = mp1; 10657 /* Check for overlap. */ 10658 while (end > offset) { 10659 if (end < IP_REASS_END(mp1)) { 10660 mp->b_wptr -= end - offset; 10661 IP_REASS_SET_END(mp, offset); 10662 if (ill->ill_isv6) { 10663 BUMP_MIB(ill->ill_ip6_mib, 10664 ipv6ReasmPartDups); 10665 } else { 10666 BUMP_MIB(&ip_mib, 10667 ipReasmPartDups); 10668 } 10669 break; 10670 } 10671 /* Did we cover another hole? */ 10672 if ((mp1->b_cont && 10673 IP_REASS_END(mp1) != 10674 IP_REASS_START(mp1->b_cont) && 10675 end >= IP_REASS_START(mp1->b_cont)) || 10676 (!ipf->ipf_last_frag_seen && !more)) { 10677 ipf->ipf_hole_cnt--; 10678 } 10679 /* Clip out mp1. */ 10680 if ((mp->b_cont = mp1->b_cont) == NULL) { 10681 /* 10682 * After clipping out mp1, this guy 10683 * is now hanging off the end. 10684 */ 10685 ipf->ipf_tail_mp = mp; 10686 } 10687 IP_REASS_SET_START(mp1, 0); 10688 IP_REASS_SET_END(mp1, 0); 10689 /* Subtract byte count */ 10690 ipf->ipf_count -= mp1->b_datap->db_lim - 10691 mp1->b_datap->db_base; 10692 freeb(mp1); 10693 if (ill->ill_isv6) { 10694 BUMP_MIB(ill->ill_ip6_mib, 10695 ipv6ReasmPartDups); 10696 } else { 10697 BUMP_MIB(&ip_mib, ipReasmPartDups); 10698 } 10699 mp1 = mp->b_cont; 10700 if (!mp1) 10701 break; 10702 offset = IP_REASS_START(mp1); 10703 } 10704 ipf->ipf_mp->b_cont = mp; 10705 continue; 10706 } 10707 /* 10708 * The new piece starts somewhere between the start of the head 10709 * and before the end of the tail. 10710 */ 10711 for (; mp1; mp1 = mp1->b_cont) { 10712 offset = IP_REASS_END(mp1); 10713 if (start < offset) { 10714 if (end <= offset) { 10715 /* Nothing new. */ 10716 IP_REASS_SET_START(mp, 0); 10717 IP_REASS_SET_END(mp, 0); 10718 /* Subtract byte count */ 10719 ipf->ipf_count -= mp->b_datap->db_lim - 10720 mp->b_datap->db_base; 10721 if (incr_dups) { 10722 ipf->ipf_num_dups++; 10723 incr_dups = B_FALSE; 10724 } 10725 freeb(mp); 10726 if (ill->ill_isv6) { 10727 BUMP_MIB(ill->ill_ip6_mib, 10728 ipv6ReasmDuplicates); 10729 } else { 10730 BUMP_MIB(&ip_mib, 10731 ipReasmDuplicates); 10732 } 10733 break; 10734 } 10735 /* 10736 * Trim redundant stuff off beginning of new 10737 * piece. 10738 */ 10739 IP_REASS_SET_START(mp, offset); 10740 mp->b_rptr += offset - start; 10741 if (ill->ill_isv6) { 10742 BUMP_MIB(ill->ill_ip6_mib, 10743 ipv6ReasmPartDups); 10744 } else { 10745 BUMP_MIB(&ip_mib, ipReasmPartDups); 10746 } 10747 start = offset; 10748 if (!mp1->b_cont) { 10749 /* 10750 * After trimming, this guy is now 10751 * hanging off the end. 10752 */ 10753 mp1->b_cont = mp; 10754 ipf->ipf_tail_mp = mp; 10755 if (!more) { 10756 ipf->ipf_hole_cnt--; 10757 } 10758 break; 10759 } 10760 } 10761 if (start >= IP_REASS_START(mp1->b_cont)) 10762 continue; 10763 /* Fill a hole */ 10764 if (start > offset) 10765 ipf->ipf_hole_cnt++; 10766 mp->b_cont = mp1->b_cont; 10767 mp1->b_cont = mp; 10768 mp1 = mp->b_cont; 10769 offset = IP_REASS_START(mp1); 10770 if (end >= offset) { 10771 ipf->ipf_hole_cnt--; 10772 /* Check for overlap. */ 10773 while (end > offset) { 10774 if (end < IP_REASS_END(mp1)) { 10775 mp->b_wptr -= end - offset; 10776 IP_REASS_SET_END(mp, offset); 10777 /* 10778 * TODO we might bump 10779 * this up twice if there is 10780 * overlap at both ends. 10781 */ 10782 if (ill->ill_isv6) { 10783 BUMP_MIB( 10784 ill->ill_ip6_mib, 10785 ipv6ReasmPartDups); 10786 } else { 10787 BUMP_MIB(&ip_mib, 10788 ipReasmPartDups); 10789 } 10790 break; 10791 } 10792 /* Did we cover another hole? */ 10793 if ((mp1->b_cont && 10794 IP_REASS_END(mp1) 10795 != IP_REASS_START(mp1->b_cont) && 10796 end >= 10797 IP_REASS_START(mp1->b_cont)) || 10798 (!ipf->ipf_last_frag_seen && 10799 !more)) { 10800 ipf->ipf_hole_cnt--; 10801 } 10802 /* Clip out mp1. */ 10803 if ((mp->b_cont = mp1->b_cont) == 10804 NULL) { 10805 /* 10806 * After clipping out mp1, 10807 * this guy is now hanging 10808 * off the end. 10809 */ 10810 ipf->ipf_tail_mp = mp; 10811 } 10812 IP_REASS_SET_START(mp1, 0); 10813 IP_REASS_SET_END(mp1, 0); 10814 /* Subtract byte count */ 10815 ipf->ipf_count -= 10816 mp1->b_datap->db_lim - 10817 mp1->b_datap->db_base; 10818 freeb(mp1); 10819 if (ill->ill_isv6) { 10820 BUMP_MIB(ill->ill_ip6_mib, 10821 ipv6ReasmPartDups); 10822 } else { 10823 BUMP_MIB(&ip_mib, 10824 ipReasmPartDups); 10825 } 10826 mp1 = mp->b_cont; 10827 if (!mp1) 10828 break; 10829 offset = IP_REASS_START(mp1); 10830 } 10831 } 10832 break; 10833 } 10834 } while (start = end, mp = next_mp); 10835 10836 /* Fragment just processed could be the last one. Remember this fact */ 10837 if (!more) 10838 ipf->ipf_last_frag_seen = B_TRUE; 10839 10840 /* Still got holes? */ 10841 if (ipf->ipf_hole_cnt) 10842 return (IP_REASS_PARTIAL); 10843 /* Clean up overloaded fields to avoid upstream disasters. */ 10844 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10845 IP_REASS_SET_START(mp1, 0); 10846 IP_REASS_SET_END(mp1, 0); 10847 } 10848 return (IP_REASS_COMPLETE); 10849 } 10850 10851 /* 10852 * ipsec processing for the fast path, used for input UDP Packets 10853 */ 10854 static boolean_t 10855 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 10856 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 10857 { 10858 uint32_t ill_index; 10859 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 10860 10861 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 10862 /* The ill_index of the incoming ILL */ 10863 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 10864 10865 /* pass packet up to the transport */ 10866 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 10867 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 10868 NULL, mctl_present); 10869 if (*first_mpp == NULL) { 10870 return (B_FALSE); 10871 } 10872 } 10873 10874 /* Initiate IPPF processing for fastpath UDP */ 10875 if (IPP_ENABLED(IPP_LOCAL_IN)) { 10876 ip_process(IPP_LOCAL_IN, mpp, ill_index); 10877 if (*mpp == NULL) { 10878 ip2dbg(("ip_input_ipsec_process: UDP pkt " 10879 "deferred/dropped during IPPF processing\n")); 10880 return (B_FALSE); 10881 } 10882 } 10883 /* 10884 * We make the checks as below since we are in the fast path 10885 * and want to minimize the number of checks if the IP_RECVIF and/or 10886 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 10887 */ 10888 if (connp->conn_recvif || connp->conn_recvslla || 10889 connp->conn_ipv6_recvpktinfo) { 10890 if (connp->conn_recvif || 10891 connp->conn_ipv6_recvpktinfo) { 10892 in_flags = IPF_RECVIF; 10893 } 10894 if (connp->conn_recvslla) { 10895 in_flags |= IPF_RECVSLLA; 10896 } 10897 /* 10898 * since in_flags are being set ill will be 10899 * referenced in ip_add_info, so it better not 10900 * be NULL. 10901 */ 10902 /* 10903 * the actual data will be contained in b_cont 10904 * upon successful return of the following call. 10905 * If the call fails then the original mblk is 10906 * returned. 10907 */ 10908 *mpp = ip_add_info(*mpp, ill, in_flags); 10909 } 10910 10911 return (B_TRUE); 10912 } 10913 10914 /* 10915 * Fragmentation reassembly. Each ILL has a hash table for 10916 * queuing packets undergoing reassembly for all IPIFs 10917 * associated with the ILL. The hash is based on the packet 10918 * IP ident field. The ILL frag hash table was allocated 10919 * as a timer block at the time the ILL was created. Whenever 10920 * there is anything on the reassembly queue, the timer will 10921 * be running. Returns B_TRUE if successful else B_FALSE; 10922 * frees mp on failure. 10923 */ 10924 static boolean_t 10925 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 10926 uint32_t *cksum_val, uint16_t *cksum_flags) 10927 { 10928 uint32_t frag_offset_flags; 10929 ill_t *ill = (ill_t *)q->q_ptr; 10930 mblk_t *mp = *mpp; 10931 mblk_t *t_mp; 10932 ipaddr_t dst; 10933 uint8_t proto = ipha->ipha_protocol; 10934 uint32_t sum_val; 10935 uint16_t sum_flags; 10936 ipf_t *ipf; 10937 ipf_t **ipfp; 10938 ipfb_t *ipfb; 10939 uint16_t ident; 10940 uint32_t offset; 10941 ipaddr_t src; 10942 uint_t hdr_length; 10943 uint32_t end; 10944 mblk_t *mp1; 10945 mblk_t *tail_mp; 10946 size_t count; 10947 size_t msg_len; 10948 uint8_t ecn_info = 0; 10949 uint32_t packet_size; 10950 boolean_t pruned = B_FALSE; 10951 10952 if (cksum_val != NULL) 10953 *cksum_val = 0; 10954 if (cksum_flags != NULL) 10955 *cksum_flags = 0; 10956 10957 /* 10958 * Drop the fragmented as early as possible, if 10959 * we don't have resource(s) to re-assemble. 10960 */ 10961 if (ip_reass_queue_bytes == 0) { 10962 freemsg(mp); 10963 return (B_FALSE); 10964 } 10965 10966 /* Check for fragmentation offset; return if there's none */ 10967 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 10968 (IPH_MF | IPH_OFFSET)) == 0) 10969 return (B_TRUE); 10970 10971 /* 10972 * We utilize hardware computed checksum info only for UDP since 10973 * IP fragmentation is a normal occurence for the protocol. In 10974 * addition, checksum offload support for IP fragments carrying 10975 * UDP payload is commonly implemented across network adapters. 10976 */ 10977 ASSERT(ill != NULL); 10978 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 10979 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 10980 mblk_t *mp1 = mp->b_cont; 10981 int32_t len; 10982 10983 /* Record checksum information from the packet */ 10984 sum_val = (uint32_t)DB_CKSUM16(mp); 10985 sum_flags = DB_CKSUMFLAGS(mp); 10986 10987 /* IP payload offset from beginning of mblk */ 10988 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 10989 10990 if ((sum_flags & HCK_PARTIALCKSUM) && 10991 (mp1 == NULL || mp1->b_cont == NULL) && 10992 offset >= DB_CKSUMSTART(mp) && 10993 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 10994 uint32_t adj; 10995 /* 10996 * Partial checksum has been calculated by hardware 10997 * and attached to the packet; in addition, any 10998 * prepended extraneous data is even byte aligned. 10999 * If any such data exists, we adjust the checksum; 11000 * this would also handle any postpended data. 11001 */ 11002 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 11003 mp, mp1, len, adj); 11004 11005 /* One's complement subtract extraneous checksum */ 11006 if (adj >= sum_val) 11007 sum_val = ~(adj - sum_val) & 0xFFFF; 11008 else 11009 sum_val -= adj; 11010 } 11011 } else { 11012 sum_val = 0; 11013 sum_flags = 0; 11014 } 11015 11016 /* Clear hardware checksumming flag */ 11017 DB_CKSUMFLAGS(mp) = 0; 11018 11019 ident = ipha->ipha_ident; 11020 offset = (frag_offset_flags << 3) & 0xFFFF; 11021 src = ipha->ipha_src; 11022 dst = ipha->ipha_dst; 11023 hdr_length = IPH_HDR_LENGTH(ipha); 11024 end = ntohs(ipha->ipha_length) - hdr_length; 11025 11026 /* If end == 0 then we have a packet with no data, so just free it */ 11027 if (end == 0) { 11028 freemsg(mp); 11029 return (B_FALSE); 11030 } 11031 11032 /* Record the ECN field info. */ 11033 ecn_info = (ipha->ipha_type_of_service & 0x3); 11034 if (offset != 0) { 11035 /* 11036 * If this isn't the first piece, strip the header, and 11037 * add the offset to the end value. 11038 */ 11039 mp->b_rptr += hdr_length; 11040 end += offset; 11041 } 11042 11043 msg_len = MBLKSIZE(mp); 11044 tail_mp = mp; 11045 while (tail_mp->b_cont != NULL) { 11046 tail_mp = tail_mp->b_cont; 11047 msg_len += MBLKSIZE(tail_mp); 11048 } 11049 11050 /* If the reassembly list for this ILL will get too big, prune it */ 11051 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 11052 ip_reass_queue_bytes) { 11053 ill_frag_prune(ill, 11054 (ip_reass_queue_bytes < msg_len) ? 0 : 11055 (ip_reass_queue_bytes - msg_len)); 11056 pruned = B_TRUE; 11057 } 11058 11059 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 11060 mutex_enter(&ipfb->ipfb_lock); 11061 11062 ipfp = &ipfb->ipfb_ipf; 11063 /* Try to find an existing fragment queue for this packet. */ 11064 for (;;) { 11065 ipf = ipfp[0]; 11066 if (ipf != NULL) { 11067 /* 11068 * It has to match on ident and src/dst address. 11069 */ 11070 if (ipf->ipf_ident == ident && 11071 ipf->ipf_src == src && 11072 ipf->ipf_dst == dst && 11073 ipf->ipf_protocol == proto) { 11074 /* 11075 * If we have received too many 11076 * duplicate fragments for this packet 11077 * free it. 11078 */ 11079 if (ipf->ipf_num_dups > ip_max_frag_dups) { 11080 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11081 freemsg(mp); 11082 mutex_exit(&ipfb->ipfb_lock); 11083 return (B_FALSE); 11084 } 11085 /* Found it. */ 11086 break; 11087 } 11088 ipfp = &ipf->ipf_hash_next; 11089 continue; 11090 } 11091 11092 /* 11093 * If we pruned the list, do we want to store this new 11094 * fragment?. We apply an optimization here based on the 11095 * fact that most fragments will be received in order. 11096 * So if the offset of this incoming fragment is zero, 11097 * it is the first fragment of a new packet. We will 11098 * keep it. Otherwise drop the fragment, as we have 11099 * probably pruned the packet already (since the 11100 * packet cannot be found). 11101 */ 11102 if (pruned && offset != 0) { 11103 mutex_exit(&ipfb->ipfb_lock); 11104 freemsg(mp); 11105 return (B_FALSE); 11106 } 11107 11108 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 11109 /* 11110 * Too many fragmented packets in this hash 11111 * bucket. Free the oldest. 11112 */ 11113 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 11114 } 11115 11116 /* New guy. Allocate a frag message. */ 11117 mp1 = allocb(sizeof (*ipf), BPRI_MED); 11118 if (mp1 == NULL) { 11119 BUMP_MIB(&ip_mib, ipInDiscards); 11120 freemsg(mp); 11121 reass_done: 11122 mutex_exit(&ipfb->ipfb_lock); 11123 return (B_FALSE); 11124 } 11125 11126 11127 BUMP_MIB(&ip_mib, ipReasmReqds); 11128 mp1->b_cont = mp; 11129 11130 /* Initialize the fragment header. */ 11131 ipf = (ipf_t *)mp1->b_rptr; 11132 ipf->ipf_mp = mp1; 11133 ipf->ipf_ptphn = ipfp; 11134 ipfp[0] = ipf; 11135 ipf->ipf_hash_next = NULL; 11136 ipf->ipf_ident = ident; 11137 ipf->ipf_protocol = proto; 11138 ipf->ipf_src = src; 11139 ipf->ipf_dst = dst; 11140 ipf->ipf_nf_hdr_len = 0; 11141 /* Record reassembly start time. */ 11142 ipf->ipf_timestamp = gethrestime_sec(); 11143 /* Record ipf generation and account for frag header */ 11144 ipf->ipf_gen = ill->ill_ipf_gen++; 11145 ipf->ipf_count = MBLKSIZE(mp1); 11146 ipf->ipf_last_frag_seen = B_FALSE; 11147 ipf->ipf_ecn = ecn_info; 11148 ipf->ipf_num_dups = 0; 11149 ipfb->ipfb_frag_pkts++; 11150 ipf->ipf_checksum = 0; 11151 ipf->ipf_checksum_flags = 0; 11152 11153 /* Store checksum value in fragment header */ 11154 if (sum_flags != 0) { 11155 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11156 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11157 ipf->ipf_checksum = sum_val; 11158 ipf->ipf_checksum_flags = sum_flags; 11159 } 11160 11161 /* 11162 * We handle reassembly two ways. In the easy case, 11163 * where all the fragments show up in order, we do 11164 * minimal bookkeeping, and just clip new pieces on 11165 * the end. If we ever see a hole, then we go off 11166 * to ip_reassemble which has to mark the pieces and 11167 * keep track of the number of holes, etc. Obviously, 11168 * the point of having both mechanisms is so we can 11169 * handle the easy case as efficiently as possible. 11170 */ 11171 if (offset == 0) { 11172 /* Easy case, in-order reassembly so far. */ 11173 ipf->ipf_count += msg_len; 11174 ipf->ipf_tail_mp = tail_mp; 11175 /* 11176 * Keep track of next expected offset in 11177 * ipf_end. 11178 */ 11179 ipf->ipf_end = end; 11180 ipf->ipf_nf_hdr_len = hdr_length; 11181 } else { 11182 /* Hard case, hole at the beginning. */ 11183 ipf->ipf_tail_mp = NULL; 11184 /* 11185 * ipf_end == 0 means that we have given up 11186 * on easy reassembly. 11187 */ 11188 ipf->ipf_end = 0; 11189 11190 /* Forget checksum offload from now on */ 11191 ipf->ipf_checksum_flags = 0; 11192 11193 /* 11194 * ipf_hole_cnt is set by ip_reassemble. 11195 * ipf_count is updated by ip_reassemble. 11196 * No need to check for return value here 11197 * as we don't expect reassembly to complete 11198 * or fail for the first fragment itself. 11199 */ 11200 (void) ip_reassemble(mp, ipf, 11201 (frag_offset_flags & IPH_OFFSET) << 3, 11202 (frag_offset_flags & IPH_MF), ill, msg_len); 11203 } 11204 /* Update per ipfb and ill byte counts */ 11205 ipfb->ipfb_count += ipf->ipf_count; 11206 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11207 ill->ill_frag_count += ipf->ipf_count; 11208 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11209 /* If the frag timer wasn't already going, start it. */ 11210 mutex_enter(&ill->ill_lock); 11211 ill_frag_timer_start(ill); 11212 mutex_exit(&ill->ill_lock); 11213 goto reass_done; 11214 } 11215 11216 /* 11217 * If the packet's flag has changed (it could be coming up 11218 * from an interface different than the previous, therefore 11219 * possibly different checksum capability), then forget about 11220 * any stored checksum states. Otherwise add the value to 11221 * the existing one stored in the fragment header. 11222 */ 11223 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 11224 sum_val += ipf->ipf_checksum; 11225 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11226 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11227 ipf->ipf_checksum = sum_val; 11228 } else if (ipf->ipf_checksum_flags != 0) { 11229 /* Forget checksum offload from now on */ 11230 ipf->ipf_checksum_flags = 0; 11231 } 11232 11233 /* 11234 * We have a new piece of a datagram which is already being 11235 * reassembled. Update the ECN info if all IP fragments 11236 * are ECN capable. If there is one which is not, clear 11237 * all the info. If there is at least one which has CE 11238 * code point, IP needs to report that up to transport. 11239 */ 11240 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 11241 if (ecn_info == IPH_ECN_CE) 11242 ipf->ipf_ecn = IPH_ECN_CE; 11243 } else { 11244 ipf->ipf_ecn = IPH_ECN_NECT; 11245 } 11246 if (offset && ipf->ipf_end == offset) { 11247 /* The new fragment fits at the end */ 11248 ipf->ipf_tail_mp->b_cont = mp; 11249 /* Update the byte count */ 11250 ipf->ipf_count += msg_len; 11251 /* Update per ipfb and ill byte counts */ 11252 ipfb->ipfb_count += msg_len; 11253 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11254 ill->ill_frag_count += msg_len; 11255 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11256 if (frag_offset_flags & IPH_MF) { 11257 /* More to come. */ 11258 ipf->ipf_end = end; 11259 ipf->ipf_tail_mp = tail_mp; 11260 goto reass_done; 11261 } 11262 } else { 11263 /* Go do the hard cases. */ 11264 int ret; 11265 11266 if (offset == 0) 11267 ipf->ipf_nf_hdr_len = hdr_length; 11268 11269 /* Save current byte count */ 11270 count = ipf->ipf_count; 11271 ret = ip_reassemble(mp, ipf, 11272 (frag_offset_flags & IPH_OFFSET) << 3, 11273 (frag_offset_flags & IPH_MF), ill, msg_len); 11274 /* Count of bytes added and subtracted (freeb()ed) */ 11275 count = ipf->ipf_count - count; 11276 if (count) { 11277 /* Update per ipfb and ill byte counts */ 11278 ipfb->ipfb_count += count; 11279 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11280 ill->ill_frag_count += count; 11281 ASSERT(ill->ill_frag_count > 0); 11282 } 11283 if (ret == IP_REASS_PARTIAL) { 11284 goto reass_done; 11285 } else if (ret == IP_REASS_FAILED) { 11286 /* Reassembly failed. Free up all resources */ 11287 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11288 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 11289 IP_REASS_SET_START(t_mp, 0); 11290 IP_REASS_SET_END(t_mp, 0); 11291 } 11292 freemsg(mp); 11293 goto reass_done; 11294 } 11295 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 11296 } 11297 /* 11298 * We have completed reassembly. Unhook the frag header from 11299 * the reassembly list. 11300 * 11301 * Before we free the frag header, record the ECN info 11302 * to report back to the transport. 11303 */ 11304 ecn_info = ipf->ipf_ecn; 11305 BUMP_MIB(&ip_mib, ipReasmOKs); 11306 ipfp = ipf->ipf_ptphn; 11307 11308 /* We need to supply these to caller */ 11309 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 11310 sum_val = ipf->ipf_checksum; 11311 else 11312 sum_val = 0; 11313 11314 mp1 = ipf->ipf_mp; 11315 count = ipf->ipf_count; 11316 ipf = ipf->ipf_hash_next; 11317 if (ipf != NULL) 11318 ipf->ipf_ptphn = ipfp; 11319 ipfp[0] = ipf; 11320 ill->ill_frag_count -= count; 11321 ASSERT(ipfb->ipfb_count >= count); 11322 ipfb->ipfb_count -= count; 11323 ipfb->ipfb_frag_pkts--; 11324 mutex_exit(&ipfb->ipfb_lock); 11325 /* Ditch the frag header. */ 11326 mp = mp1->b_cont; 11327 11328 freeb(mp1); 11329 11330 /* Restore original IP length in header. */ 11331 packet_size = (uint32_t)msgdsize(mp); 11332 if (packet_size > IP_MAXPACKET) { 11333 freemsg(mp); 11334 BUMP_MIB(&ip_mib, ipInHdrErrors); 11335 return (B_FALSE); 11336 } 11337 11338 if (DB_REF(mp) > 1) { 11339 mblk_t *mp2 = copymsg(mp); 11340 11341 freemsg(mp); 11342 if (mp2 == NULL) { 11343 BUMP_MIB(&ip_mib, ipInDiscards); 11344 return (B_FALSE); 11345 } 11346 mp = mp2; 11347 } 11348 ipha = (ipha_t *)mp->b_rptr; 11349 11350 ipha->ipha_length = htons((uint16_t)packet_size); 11351 /* We're now complete, zip the frag state */ 11352 ipha->ipha_fragment_offset_and_flags = 0; 11353 /* Record the ECN info. */ 11354 ipha->ipha_type_of_service &= 0xFC; 11355 ipha->ipha_type_of_service |= ecn_info; 11356 *mpp = mp; 11357 11358 /* Reassembly is successful; return checksum information if needed */ 11359 if (cksum_val != NULL) 11360 *cksum_val = sum_val; 11361 if (cksum_flags != NULL) 11362 *cksum_flags = sum_flags; 11363 11364 return (B_TRUE); 11365 } 11366 11367 /* 11368 * Perform ip header check sum update local options. 11369 * return B_TRUE if all is well, else return B_FALSE and release 11370 * the mp. caller is responsible for decrementing ire ref cnt. 11371 */ 11372 static boolean_t 11373 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 11374 { 11375 mblk_t *first_mp; 11376 boolean_t mctl_present; 11377 uint16_t sum; 11378 11379 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11380 /* 11381 * Don't do the checksum if it has gone through AH/ESP 11382 * processing. 11383 */ 11384 if (!mctl_present) { 11385 sum = ip_csum_hdr(ipha); 11386 if (sum != 0) { 11387 BUMP_MIB(&ip_mib, ipInCksumErrs); 11388 freemsg(first_mp); 11389 return (B_FALSE); 11390 } 11391 } 11392 11393 if (!ip_rput_local_options(q, mp, ipha, ire)) { 11394 if (mctl_present) 11395 freeb(first_mp); 11396 return (B_FALSE); 11397 } 11398 11399 return (B_TRUE); 11400 } 11401 11402 /* 11403 * All udp packet are delivered to the local host via this routine. 11404 */ 11405 void 11406 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 11407 ill_t *recv_ill) 11408 { 11409 uint32_t sum; 11410 uint32_t u1; 11411 boolean_t mctl_present; 11412 conn_t *connp; 11413 mblk_t *first_mp; 11414 uint16_t *up; 11415 ill_t *ill = (ill_t *)q->q_ptr; 11416 uint16_t reass_hck_flags = 0; 11417 11418 #define rptr ((uchar_t *)ipha) 11419 11420 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11421 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 11422 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11423 11424 /* 11425 * FAST PATH for udp packets 11426 */ 11427 11428 /* u1 is # words of IP options */ 11429 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 11430 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11431 11432 /* IP options present */ 11433 if (u1 != 0) 11434 goto ipoptions; 11435 11436 /* Check the IP header checksum. */ 11437 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 11438 /* Clear the IP header h/w cksum flag */ 11439 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 11440 } else { 11441 #define uph ((uint16_t *)ipha) 11442 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 11443 uph[6] + uph[7] + uph[8] + uph[9]; 11444 #undef uph 11445 /* finish doing IP checksum */ 11446 sum = (sum & 0xFFFF) + (sum >> 16); 11447 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11448 /* 11449 * Don't verify header checksum if this packet is coming 11450 * back from AH/ESP as we already did it. 11451 */ 11452 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 11453 BUMP_MIB(&ip_mib, ipInCksumErrs); 11454 freemsg(first_mp); 11455 return; 11456 } 11457 } 11458 11459 /* 11460 * Count for SNMP of inbound packets for ire. 11461 * if mctl is present this might be a secure packet and 11462 * has already been counted for in ip_proto_input(). 11463 */ 11464 if (!mctl_present) { 11465 UPDATE_IB_PKT_COUNT(ire); 11466 ire->ire_last_used_time = lbolt; 11467 } 11468 11469 /* packet part of fragmented IP packet? */ 11470 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11471 if (u1 & (IPH_MF | IPH_OFFSET)) { 11472 goto fragmented; 11473 } 11474 11475 /* u1 = IP header length (20 bytes) */ 11476 u1 = IP_SIMPLE_HDR_LENGTH; 11477 11478 /* packet does not contain complete IP & UDP headers */ 11479 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 11480 goto udppullup; 11481 11482 /* up points to UDP header */ 11483 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 11484 #define iphs ((uint16_t *)ipha) 11485 11486 /* if udp hdr cksum != 0, then need to checksum udp packet */ 11487 if (up[3] != 0) { 11488 mblk_t *mp1 = mp->b_cont; 11489 boolean_t cksum_err; 11490 uint16_t hck_flags = 0; 11491 11492 /* Pseudo-header checksum */ 11493 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 11494 iphs[9] + up[2]; 11495 11496 /* 11497 * Revert to software checksum calculation if the interface 11498 * isn't capable of checksum offload or if IPsec is present. 11499 */ 11500 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 11501 hck_flags = DB_CKSUMFLAGS(mp); 11502 11503 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 11504 IP_STAT(ip_in_sw_cksum); 11505 11506 IP_CKSUM_RECV(hck_flags, u1, 11507 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 11508 (int32_t)((uchar_t *)up - rptr), 11509 mp, mp1, cksum_err); 11510 11511 if (cksum_err) { 11512 BUMP_MIB(&ip_mib, udpInCksumErrs); 11513 11514 if (hck_flags & HCK_FULLCKSUM) 11515 IP_STAT(ip_udp_in_full_hw_cksum_err); 11516 else if (hck_flags & HCK_PARTIALCKSUM) 11517 IP_STAT(ip_udp_in_part_hw_cksum_err); 11518 else 11519 IP_STAT(ip_udp_in_sw_cksum_err); 11520 11521 freemsg(first_mp); 11522 return; 11523 } 11524 } 11525 11526 /* Non-fragmented broadcast or multicast packet? */ 11527 if (ire->ire_type == IRE_BROADCAST) 11528 goto udpslowpath; 11529 11530 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 11531 ire->ire_zoneid)) != NULL) { 11532 ASSERT(connp->conn_upq != NULL); 11533 IP_STAT(ip_udp_fast_path); 11534 11535 if (CONN_UDP_FLOWCTLD(connp)) { 11536 freemsg(mp); 11537 BUMP_MIB(&ip_mib, udpInOverflows); 11538 } else { 11539 if (!mctl_present) { 11540 BUMP_MIB(&ip_mib, ipInDelivers); 11541 } 11542 /* 11543 * mp and first_mp can change. 11544 */ 11545 if (ip_udp_check(q, connp, recv_ill, 11546 ipha, &mp, &first_mp, mctl_present)) { 11547 /* Send it upstream */ 11548 CONN_UDP_RECV(connp, mp); 11549 } 11550 } 11551 /* 11552 * freeb() cannot deal with null mblk being passed 11553 * in and first_mp can be set to null in the call 11554 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 11555 */ 11556 if (mctl_present && first_mp != NULL) { 11557 freeb(first_mp); 11558 } 11559 CONN_DEC_REF(connp); 11560 return; 11561 } 11562 11563 /* 11564 * if we got here we know the packet is not fragmented and 11565 * has no options. The classifier could not find a conn_t and 11566 * most likely its an icmp packet so send it through slow path. 11567 */ 11568 11569 goto udpslowpath; 11570 11571 ipoptions: 11572 if (!ip_options_cksum(q, mp, ipha, ire)) { 11573 goto slow_done; 11574 } 11575 11576 UPDATE_IB_PKT_COUNT(ire); 11577 ire->ire_last_used_time = lbolt; 11578 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11579 if (u1 & (IPH_MF | IPH_OFFSET)) { 11580 fragmented: 11581 /* 11582 * "sum" and "reass_hck_flags" are non-zero if the 11583 * reassembled packet has a valid hardware computed 11584 * checksum information associated with it. 11585 */ 11586 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 11587 goto slow_done; 11588 /* 11589 * Make sure that first_mp points back to mp as 11590 * the mp we came in with could have changed in 11591 * ip_rput_fragment(). 11592 */ 11593 ASSERT(!mctl_present); 11594 ipha = (ipha_t *)mp->b_rptr; 11595 first_mp = mp; 11596 } 11597 11598 /* Now we have a complete datagram, destined for this machine. */ 11599 u1 = IPH_HDR_LENGTH(ipha); 11600 /* Pull up the UDP header, if necessary. */ 11601 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 11602 udppullup: 11603 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 11604 BUMP_MIB(&ip_mib, ipInDiscards); 11605 freemsg(first_mp); 11606 goto slow_done; 11607 } 11608 ipha = (ipha_t *)mp->b_rptr; 11609 } 11610 11611 /* 11612 * Validate the checksum for the reassembled packet; for the 11613 * pullup case we calculate the payload checksum in software. 11614 */ 11615 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 11616 if (up[3] != 0) { 11617 boolean_t cksum_err; 11618 11619 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 11620 IP_STAT(ip_in_sw_cksum); 11621 11622 IP_CKSUM_RECV_REASS(reass_hck_flags, 11623 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 11624 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 11625 iphs[9] + up[2], sum, cksum_err); 11626 11627 if (cksum_err) { 11628 BUMP_MIB(&ip_mib, udpInCksumErrs); 11629 11630 if (reass_hck_flags & HCK_FULLCKSUM) 11631 IP_STAT(ip_udp_in_full_hw_cksum_err); 11632 else if (reass_hck_flags & HCK_PARTIALCKSUM) 11633 IP_STAT(ip_udp_in_part_hw_cksum_err); 11634 else 11635 IP_STAT(ip_udp_in_sw_cksum_err); 11636 11637 freemsg(first_mp); 11638 goto slow_done; 11639 } 11640 } 11641 udpslowpath: 11642 11643 /* Clear hardware checksum flag to be safe */ 11644 DB_CKSUMFLAGS(mp) = 0; 11645 11646 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 11647 (ire->ire_type == IRE_BROADCAST), 11648 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 11649 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 11650 11651 slow_done: 11652 IP_STAT(ip_udp_slow_path); 11653 return; 11654 11655 #undef iphs 11656 #undef rptr 11657 } 11658 11659 /* ARGSUSED */ 11660 static mblk_t * 11661 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 11662 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 11663 ill_rx_ring_t *ill_ring) 11664 { 11665 conn_t *connp; 11666 uint32_t sum; 11667 uint32_t u1; 11668 uint16_t *up; 11669 int offset; 11670 ssize_t len; 11671 mblk_t *mp1; 11672 boolean_t syn_present = B_FALSE; 11673 tcph_t *tcph; 11674 uint_t ip_hdr_len; 11675 ill_t *ill = (ill_t *)q->q_ptr; 11676 zoneid_t zoneid = ire->ire_zoneid; 11677 boolean_t cksum_err; 11678 uint16_t hck_flags = 0; 11679 11680 #define rptr ((uchar_t *)ipha) 11681 11682 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 11683 11684 /* 11685 * FAST PATH for tcp packets 11686 */ 11687 11688 /* u1 is # words of IP options */ 11689 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 11690 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11691 11692 /* IP options present */ 11693 if (u1) { 11694 goto ipoptions; 11695 } else { 11696 /* Check the IP header checksum. */ 11697 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 11698 /* Clear the IP header h/w cksum flag */ 11699 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 11700 } else { 11701 #define uph ((uint16_t *)ipha) 11702 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 11703 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 11704 #undef uph 11705 /* finish doing IP checksum */ 11706 sum = (sum & 0xFFFF) + (sum >> 16); 11707 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11708 /* 11709 * Don't verify header checksum if this packet 11710 * is coming back from AH/ESP as we already did it. 11711 */ 11712 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 11713 BUMP_MIB(&ip_mib, ipInCksumErrs); 11714 goto error; 11715 } 11716 } 11717 } 11718 11719 if (!mctl_present) { 11720 UPDATE_IB_PKT_COUNT(ire); 11721 ire->ire_last_used_time = lbolt; 11722 } 11723 11724 /* packet part of fragmented IP packet? */ 11725 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11726 if (u1 & (IPH_MF | IPH_OFFSET)) { 11727 goto fragmented; 11728 } 11729 11730 /* u1 = IP header length (20 bytes) */ 11731 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 11732 11733 /* does packet contain IP+TCP headers? */ 11734 len = mp->b_wptr - rptr; 11735 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 11736 IP_STAT(ip_tcppullup); 11737 goto tcppullup; 11738 } 11739 11740 /* TCP options present? */ 11741 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 11742 11743 /* 11744 * If options need to be pulled up, then goto tcpoptions. 11745 * otherwise we are still in the fast path 11746 */ 11747 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 11748 IP_STAT(ip_tcpoptions); 11749 goto tcpoptions; 11750 } 11751 11752 /* multiple mblks of tcp data? */ 11753 if ((mp1 = mp->b_cont) != NULL) { 11754 /* more then two? */ 11755 if (mp1->b_cont != NULL) { 11756 IP_STAT(ip_multipkttcp); 11757 goto multipkttcp; 11758 } 11759 len += mp1->b_wptr - mp1->b_rptr; 11760 } 11761 11762 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 11763 11764 /* part of pseudo checksum */ 11765 11766 /* TCP datagram length */ 11767 u1 = len - IP_SIMPLE_HDR_LENGTH; 11768 11769 #define iphs ((uint16_t *)ipha) 11770 11771 #ifdef _BIG_ENDIAN 11772 u1 += IPPROTO_TCP; 11773 #else 11774 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 11775 #endif 11776 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 11777 11778 /* 11779 * Revert to software checksum calculation if the interface 11780 * isn't capable of checksum offload or if IPsec is present. 11781 */ 11782 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 11783 hck_flags = DB_CKSUMFLAGS(mp); 11784 11785 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 11786 IP_STAT(ip_in_sw_cksum); 11787 11788 IP_CKSUM_RECV(hck_flags, u1, 11789 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 11790 (int32_t)((uchar_t *)up - rptr), 11791 mp, mp1, cksum_err); 11792 11793 if (cksum_err) { 11794 BUMP_MIB(&ip_mib, tcpInErrs); 11795 11796 if (hck_flags & HCK_FULLCKSUM) 11797 IP_STAT(ip_tcp_in_full_hw_cksum_err); 11798 else if (hck_flags & HCK_PARTIALCKSUM) 11799 IP_STAT(ip_tcp_in_part_hw_cksum_err); 11800 else 11801 IP_STAT(ip_tcp_in_sw_cksum_err); 11802 11803 goto error; 11804 } 11805 11806 try_again: 11807 11808 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 11809 NULL) { 11810 /* Send the TH_RST */ 11811 goto no_conn; 11812 } 11813 11814 /* 11815 * TCP FAST PATH for AF_INET socket. 11816 * 11817 * TCP fast path to avoid extra work. An AF_INET socket type 11818 * does not have facility to receive extra information via 11819 * ip_process or ip_add_info. Also, when the connection was 11820 * established, we made a check if this connection is impacted 11821 * by any global IPSec policy or per connection policy (a 11822 * policy that comes in effect later will not apply to this 11823 * connection). Since all this can be determined at the 11824 * connection establishment time, a quick check of flags 11825 * can avoid extra work. 11826 */ 11827 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 11828 !IPP_ENABLED(IPP_LOCAL_IN)) { 11829 ASSERT(first_mp == mp); 11830 SET_SQUEUE(mp, tcp_rput_data, connp); 11831 return (mp); 11832 } 11833 11834 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 11835 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 11836 if (IPCL_IS_TCP(connp)) { 11837 mp->b_datap->db_struioflag |= STRUIO_EAGER; 11838 DB_CKSUMSTART(mp) = 11839 (intptr_t)ip_squeue_get(ill_ring); 11840 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 11841 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11842 SET_SQUEUE(mp, connp->conn_recv, connp); 11843 return (mp); 11844 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 11845 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11846 ip_squeue_enter_unbound++; 11847 SET_SQUEUE(mp, tcp_conn_request_unbound, 11848 connp); 11849 return (mp); 11850 } 11851 syn_present = B_TRUE; 11852 } 11853 11854 } 11855 11856 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 11857 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 11858 11859 /* No need to send this packet to TCP */ 11860 if ((flags & TH_RST) || (flags & TH_URG)) { 11861 CONN_DEC_REF(connp); 11862 freemsg(first_mp); 11863 return (NULL); 11864 } 11865 if (flags & TH_ACK) { 11866 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 11867 CONN_DEC_REF(connp); 11868 return (NULL); 11869 } 11870 11871 CONN_DEC_REF(connp); 11872 freemsg(first_mp); 11873 return (NULL); 11874 } 11875 11876 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11877 first_mp = ipsec_check_inbound_policy(first_mp, connp, 11878 ipha, NULL, mctl_present); 11879 if (first_mp == NULL) { 11880 CONN_DEC_REF(connp); 11881 return (NULL); 11882 } 11883 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 11884 ASSERT(syn_present); 11885 if (mctl_present) { 11886 ASSERT(first_mp != mp); 11887 first_mp->b_datap->db_struioflag |= 11888 STRUIO_POLICY; 11889 } else { 11890 ASSERT(first_mp == mp); 11891 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 11892 mp->b_datap->db_struioflag |= STRUIO_POLICY; 11893 } 11894 } else { 11895 /* 11896 * Discard first_mp early since we're dealing with a 11897 * fully-connected conn_t and tcp doesn't do policy in 11898 * this case. 11899 */ 11900 if (mctl_present) { 11901 freeb(first_mp); 11902 mctl_present = B_FALSE; 11903 } 11904 first_mp = mp; 11905 } 11906 } 11907 11908 /* Initiate IPPF processing for fastpath */ 11909 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11910 uint32_t ill_index; 11911 11912 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11913 ip_process(IPP_LOCAL_IN, &mp, ill_index); 11914 if (mp == NULL) { 11915 ip2dbg(("ip_input_ipsec_process: TCP pkt " 11916 "deferred/dropped during IPPF processing\n")); 11917 CONN_DEC_REF(connp); 11918 if (mctl_present) 11919 freeb(first_mp); 11920 return (NULL); 11921 } else if (mctl_present) { 11922 /* 11923 * ip_process might return a new mp. 11924 */ 11925 ASSERT(first_mp != mp); 11926 first_mp->b_cont = mp; 11927 } else { 11928 first_mp = mp; 11929 } 11930 11931 } 11932 11933 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 11934 mp = ip_add_info(mp, recv_ill, flags); 11935 if (mp == NULL) { 11936 CONN_DEC_REF(connp); 11937 if (mctl_present) 11938 freeb(first_mp); 11939 return (NULL); 11940 } else if (mctl_present) { 11941 /* 11942 * ip_add_info might return a new mp. 11943 */ 11944 ASSERT(first_mp != mp); 11945 first_mp->b_cont = mp; 11946 } else { 11947 first_mp = mp; 11948 } 11949 } 11950 11951 if (IPCL_IS_TCP(connp)) { 11952 SET_SQUEUE(first_mp, connp->conn_recv, connp); 11953 return (first_mp); 11954 } else { 11955 putnext(connp->conn_rq, first_mp); 11956 CONN_DEC_REF(connp); 11957 return (NULL); 11958 } 11959 11960 no_conn: 11961 /* Initiate IPPf processing, if needed. */ 11962 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11963 uint32_t ill_index; 11964 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11965 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 11966 if (first_mp == NULL) { 11967 return (NULL); 11968 } 11969 } 11970 BUMP_MIB(&ip_mib, ipInDelivers); 11971 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 11972 return (NULL); 11973 ipoptions: 11974 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 11975 goto slow_done; 11976 } 11977 11978 UPDATE_IB_PKT_COUNT(ire); 11979 ire->ire_last_used_time = lbolt; 11980 11981 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11982 if (u1 & (IPH_MF | IPH_OFFSET)) { 11983 fragmented: 11984 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 11985 if (mctl_present) 11986 freeb(first_mp); 11987 goto slow_done; 11988 } 11989 /* 11990 * Make sure that first_mp points back to mp as 11991 * the mp we came in with could have changed in 11992 * ip_rput_fragment(). 11993 */ 11994 ASSERT(!mctl_present); 11995 ipha = (ipha_t *)mp->b_rptr; 11996 first_mp = mp; 11997 } 11998 11999 tcp_slow: 12000 /* Now we have a complete datagram, destined for this machine. */ 12001 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 12002 12003 len = mp->b_wptr - mp->b_rptr; 12004 /* Pull up a minimal TCP header, if necessary. */ 12005 if (len < (u1 + 20)) { 12006 tcppullup: 12007 if (!pullupmsg(mp, u1 + 20)) { 12008 BUMP_MIB(&ip_mib, ipInDiscards); 12009 goto error; 12010 } 12011 ipha = (ipha_t *)mp->b_rptr; 12012 len = mp->b_wptr - mp->b_rptr; 12013 } 12014 12015 /* 12016 * Extract the offset field from the TCP header. As usual, we 12017 * try to help the compiler more than the reader. 12018 */ 12019 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 12020 if (offset != 5) { 12021 tcpoptions: 12022 if (offset < 5) { 12023 BUMP_MIB(&ip_mib, ipInDiscards); 12024 goto error; 12025 } 12026 /* 12027 * There must be TCP options. 12028 * Make sure we can grab them. 12029 */ 12030 offset <<= 2; 12031 offset += u1; 12032 if (len < offset) { 12033 if (!pullupmsg(mp, offset)) { 12034 BUMP_MIB(&ip_mib, ipInDiscards); 12035 goto error; 12036 } 12037 ipha = (ipha_t *)mp->b_rptr; 12038 len = mp->b_wptr - rptr; 12039 } 12040 } 12041 12042 /* Get the total packet length in len, including headers. */ 12043 if (mp->b_cont) { 12044 multipkttcp: 12045 len = msgdsize(mp); 12046 } 12047 12048 /* 12049 * Check the TCP checksum by pulling together the pseudo- 12050 * header checksum, and passing it to ip_csum to be added in 12051 * with the TCP datagram. 12052 * 12053 * Since we are not using the hwcksum if available we must 12054 * clear the flag. We may come here via tcppullup or tcpoptions. 12055 * If either of these fails along the way the mblk is freed. 12056 * If this logic ever changes and mblk is reused to say send 12057 * ICMP's back, then this flag may need to be cleared in 12058 * other places as well. 12059 */ 12060 DB_CKSUMFLAGS(mp) = 0; 12061 12062 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 12063 12064 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 12065 #ifdef _BIG_ENDIAN 12066 u1 += IPPROTO_TCP; 12067 #else 12068 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12069 #endif 12070 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12071 /* 12072 * Not M_DATA mblk or its a dup, so do the checksum now. 12073 */ 12074 IP_STAT(ip_in_sw_cksum); 12075 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 12076 BUMP_MIB(&ip_mib, tcpInErrs); 12077 goto error; 12078 } 12079 12080 IP_STAT(ip_tcp_slow_path); 12081 goto try_again; 12082 #undef iphs 12083 #undef rptr 12084 12085 error: 12086 freemsg(first_mp); 12087 slow_done: 12088 return (NULL); 12089 } 12090 12091 /* ARGSUSED */ 12092 static void 12093 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12094 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 12095 { 12096 conn_t *connp; 12097 uint32_t sum; 12098 uint32_t u1; 12099 ssize_t len; 12100 sctp_hdr_t *sctph; 12101 zoneid_t zoneid = ire->ire_zoneid; 12102 uint32_t pktsum; 12103 uint32_t calcsum; 12104 uint32_t ports; 12105 uint_t ipif_seqid; 12106 in6_addr_t map_src, map_dst; 12107 ill_t *ill = (ill_t *)q->q_ptr; 12108 12109 #define rptr ((uchar_t *)ipha) 12110 12111 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 12112 12113 /* u1 is # words of IP options */ 12114 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12115 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12116 12117 /* IP options present */ 12118 if (u1 > 0) { 12119 goto ipoptions; 12120 } else { 12121 /* Check the IP header checksum. */ 12122 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12123 /* 12124 * Since there is no SCTP h/w cksum support yet, just 12125 * clear the flag. 12126 */ 12127 DB_CKSUMFLAGS(mp) = 0; 12128 } else { 12129 #define uph ((uint16_t *)ipha) 12130 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12131 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12132 #undef uph 12133 /* finish doing IP checksum */ 12134 sum = (sum & 0xFFFF) + (sum >> 16); 12135 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12136 /* 12137 * Don't verify header checksum if this packet 12138 * is coming back from AH/ESP as we already did it. 12139 */ 12140 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12141 BUMP_MIB(&ip_mib, ipInCksumErrs); 12142 goto error; 12143 } 12144 } 12145 } 12146 12147 /* 12148 * Don't verify header checksum if this packet is coming 12149 * back from AH/ESP as we already did it. 12150 */ 12151 if (!mctl_present) { 12152 UPDATE_IB_PKT_COUNT(ire); 12153 ire->ire_last_used_time = lbolt; 12154 } 12155 12156 /* packet part of fragmented IP packet? */ 12157 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12158 if (u1 & (IPH_MF | IPH_OFFSET)) 12159 goto fragmented; 12160 12161 /* u1 = IP header length (20 bytes) */ 12162 u1 = IP_SIMPLE_HDR_LENGTH; 12163 12164 find_sctp_client: 12165 /* Pullup if we don't have the sctp common header. */ 12166 len = MBLKL(mp); 12167 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 12168 if (mp->b_cont == NULL || 12169 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 12170 BUMP_MIB(&ip_mib, ipInDiscards); 12171 goto error; 12172 } 12173 ipha = (ipha_t *)mp->b_rptr; 12174 len = MBLKL(mp); 12175 } 12176 12177 sctph = (sctp_hdr_t *)(rptr + u1); 12178 #ifdef DEBUG 12179 if (!skip_sctp_cksum) { 12180 #endif 12181 pktsum = sctph->sh_chksum; 12182 sctph->sh_chksum = 0; 12183 calcsum = sctp_cksum(mp, u1); 12184 if (calcsum != pktsum) { 12185 BUMP_MIB(&sctp_mib, sctpChecksumError); 12186 goto error; 12187 } 12188 sctph->sh_chksum = pktsum; 12189 #ifdef DEBUG /* skip_sctp_cksum */ 12190 } 12191 #endif 12192 /* get the ports */ 12193 ports = *(uint32_t *)&sctph->sh_sport; 12194 12195 ipif_seqid = ire->ire_ipif->ipif_seqid; 12196 IRE_REFRELE(ire); 12197 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 12198 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 12199 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, ipif_seqid, 12200 zoneid)) == NULL) { 12201 /* Check for raw socket or OOTB handling */ 12202 goto no_conn; 12203 } 12204 12205 /* Found a client; up it goes */ 12206 BUMP_MIB(&ip_mib, ipInDelivers); 12207 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 12208 return; 12209 12210 no_conn: 12211 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 12212 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 12213 return; 12214 12215 ipoptions: 12216 DB_CKSUMFLAGS(mp) = 0; 12217 if (!ip_options_cksum(q, first_mp, ipha, ire)) 12218 goto slow_done; 12219 12220 UPDATE_IB_PKT_COUNT(ire); 12221 ire->ire_last_used_time = lbolt; 12222 12223 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12224 if (u1 & (IPH_MF | IPH_OFFSET)) { 12225 fragmented: 12226 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 12227 goto slow_done; 12228 /* 12229 * Make sure that first_mp points back to mp as 12230 * the mp we came in with could have changed in 12231 * ip_rput_fragment(). 12232 */ 12233 ASSERT(!mctl_present); 12234 ipha = (ipha_t *)mp->b_rptr; 12235 first_mp = mp; 12236 } 12237 12238 /* Now we have a complete datagram, destined for this machine. */ 12239 u1 = IPH_HDR_LENGTH(ipha); 12240 goto find_sctp_client; 12241 #undef iphs 12242 #undef rptr 12243 12244 error: 12245 freemsg(first_mp); 12246 slow_done: 12247 IRE_REFRELE(ire); 12248 } 12249 12250 #define VER_BITS 0xF0 12251 #define VERSION_6 0x60 12252 12253 static boolean_t 12254 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 12255 ipaddr_t *dstp) 12256 { 12257 uint_t opt_len; 12258 ipha_t *ipha; 12259 ssize_t len; 12260 uint_t pkt_len; 12261 12262 IP_STAT(ip_ipoptions); 12263 ipha = *iphapp; 12264 12265 #define rptr ((uchar_t *)ipha) 12266 /* Assume no IPv6 packets arrive over the IPv4 queue */ 12267 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 12268 BUMP_MIB(&ip_mib, ipInIPv6); 12269 freemsg(mp); 12270 return (B_FALSE); 12271 } 12272 12273 /* multiple mblk or too short */ 12274 pkt_len = ntohs(ipha->ipha_length); 12275 12276 /* Get the number of words of IP options in the IP header. */ 12277 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 12278 if (opt_len) { 12279 /* IP Options present! Validate and process. */ 12280 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 12281 BUMP_MIB(&ip_mib, ipInHdrErrors); 12282 goto done; 12283 } 12284 /* 12285 * Recompute complete header length and make sure we 12286 * have access to all of it. 12287 */ 12288 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 12289 if (len > (mp->b_wptr - rptr)) { 12290 if (len > pkt_len) { 12291 BUMP_MIB(&ip_mib, ipInHdrErrors); 12292 goto done; 12293 } 12294 if (!pullupmsg(mp, len)) { 12295 BUMP_MIB(&ip_mib, ipInDiscards); 12296 goto done; 12297 } 12298 ipha = (ipha_t *)mp->b_rptr; 12299 } 12300 /* 12301 * Go off to ip_rput_options which returns the next hop 12302 * destination address, which may have been affected 12303 * by source routing. 12304 */ 12305 IP_STAT(ip_opt); 12306 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 12307 return (B_FALSE); 12308 } 12309 } 12310 *iphapp = ipha; 12311 return (B_TRUE); 12312 done: 12313 /* clear b_prev - used by ip_mroute_decap */ 12314 mp->b_prev = NULL; 12315 freemsg(mp); 12316 return (B_FALSE); 12317 #undef rptr 12318 } 12319 12320 /* 12321 * Deal with the fact that there is no ire for the destination. 12322 * The incoming ill (in_ill) is passed in to ip_newroute only 12323 * in the case of packets coming from mobile ip forward tunnel. 12324 * It must be null otherwise. 12325 */ 12326 static void 12327 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 12328 ipaddr_t dst) 12329 { 12330 ipha_t *ipha; 12331 ill_t *ill; 12332 12333 ipha = (ipha_t *)mp->b_rptr; 12334 ill = (ill_t *)q->q_ptr; 12335 12336 ASSERT(ill != NULL); 12337 /* 12338 * No IRE for this destination, so it can't be for us. 12339 * Unless we are forwarding, drop the packet. 12340 * We have to let source routed packets through 12341 * since we don't yet know if they are 'ping -l' 12342 * packets i.e. if they will go out over the 12343 * same interface as they came in on. 12344 */ 12345 if (ll_multicast) { 12346 freemsg(mp); 12347 return; 12348 } 12349 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 12350 BUMP_MIB(&ip_mib, ipForwProhibits); 12351 freemsg(mp); 12352 return; 12353 } 12354 12355 /* Check for Martian addresses */ 12356 if ((in_ill == NULL) && (ip_no_forward(ipha, ill))) { 12357 freemsg(mp); 12358 return; 12359 } 12360 12361 /* Mark this packet as having originated externally */ 12362 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 12363 12364 /* 12365 * Clear the indication that this may have a hardware checksum 12366 * as we are not using it 12367 */ 12368 DB_CKSUMFLAGS(mp) = 0; 12369 12370 /* 12371 * Now hand the packet to ip_newroute. 12372 */ 12373 ip_newroute(q, mp, dst, in_ill, NULL); 12374 } 12375 12376 /* 12377 * check ip header length and align it. 12378 */ 12379 static boolean_t 12380 ip_check_and_align_header(queue_t *q, mblk_t *mp) 12381 { 12382 ssize_t len; 12383 ill_t *ill; 12384 ipha_t *ipha; 12385 12386 len = MBLKL(mp); 12387 12388 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 12389 if (!OK_32PTR(mp->b_rptr)) 12390 IP_STAT(ip_notaligned1); 12391 else 12392 IP_STAT(ip_notaligned2); 12393 /* Guard against bogus device drivers */ 12394 if (len < 0) { 12395 /* clear b_prev - used by ip_mroute_decap */ 12396 mp->b_prev = NULL; 12397 BUMP_MIB(&ip_mib, ipInHdrErrors); 12398 freemsg(mp); 12399 return (B_FALSE); 12400 } 12401 12402 if (ip_rput_pullups++ == 0) { 12403 ill = (ill_t *)q->q_ptr; 12404 ipha = (ipha_t *)mp->b_rptr; 12405 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12406 "ip_check_and_align_header: %s forced us to " 12407 " pullup pkt, hdr len %ld, hdr addr %p", 12408 ill->ill_name, len, ipha); 12409 } 12410 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 12411 /* clear b_prev - used by ip_mroute_decap */ 12412 mp->b_prev = NULL; 12413 BUMP_MIB(&ip_mib, ipInDiscards); 12414 freemsg(mp); 12415 return (B_FALSE); 12416 } 12417 } 12418 return (B_TRUE); 12419 } 12420 12421 static boolean_t 12422 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 12423 { 12424 ill_group_t *ill_group; 12425 ill_group_t *ire_group; 12426 queue_t *q; 12427 ill_t *ire_ill; 12428 uint_t ill_ifindex; 12429 12430 q = *qp; 12431 /* 12432 * We need to check to make sure the packet came in 12433 * on the queue associated with the destination IRE. 12434 * Note that for multicast packets and broadcast packets sent to 12435 * a broadcast address which is shared between multiple interfaces 12436 * we should not do this since we just got a random broadcast ire. 12437 */ 12438 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 12439 boolean_t check_multi = B_TRUE; 12440 12441 /* 12442 * This packet came in on an interface other than the 12443 * one associated with the destination address. 12444 * "Gateway" it to the appropriate interface here. 12445 * As long as the ills belong to the same group, 12446 * we don't consider them to arriving on the wrong 12447 * interface. Thus, when the switch is doing inbound 12448 * load spreading, we won't drop packets when we 12449 * are doing strict multihoming checks. Note, the 12450 * same holds true for 'usesrc groups' where the 12451 * destination address may belong to another interface 12452 * to allow multipathing to happen 12453 */ 12454 ill_group = ill->ill_group; 12455 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 12456 ill_ifindex = ill->ill_usesrc_ifindex; 12457 ire_group = ire_ill->ill_group; 12458 12459 /* 12460 * If it's part of the same IPMP group, or if it's a legal 12461 * address on the 'usesrc' interface, then bypass strict 12462 * checks. 12463 */ 12464 if (ill_group != NULL && ill_group == ire_group) { 12465 check_multi = B_FALSE; 12466 } else if (ill_ifindex != 0 && 12467 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 12468 check_multi = B_FALSE; 12469 } 12470 12471 if (check_multi && 12472 ip_strict_dst_multihoming && 12473 ((ill->ill_flags & 12474 ire->ire_ipif->ipif_ill->ill_flags & 12475 ILLF_ROUTER) == 0)) { 12476 /* Drop packet */ 12477 BUMP_MIB(&ip_mib, ipForwProhibits); 12478 freemsg(mp); 12479 ire_refrele(ire); 12480 return (B_TRUE); 12481 } 12482 12483 /* 12484 * Change the queue (for non-virtual destination network 12485 * interfaces) and ip_rput_local will be called with the right 12486 * queue 12487 */ 12488 q = ire->ire_rfq; 12489 } 12490 /* Must be broadcast. We'll take it. */ 12491 *qp = q; 12492 return (B_FALSE); 12493 } 12494 12495 static void 12496 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 12497 ill_t *ill, int ll_multicast) 12498 { 12499 ill_group_t *ill_group; 12500 ill_group_t *ire_group; 12501 queue_t *dev_q; 12502 12503 ASSERT(ire->ire_stq != NULL); 12504 if (ll_multicast != 0) 12505 goto drop_pkt; 12506 12507 if (ip_no_forward(ipha, ill)) 12508 goto drop_pkt; 12509 12510 ill_group = ill->ill_group; 12511 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 12512 /* 12513 * Check if we want to forward this one at this time. 12514 * We allow source routed packets on a host provided that 12515 * they go out the same interface or same interface group 12516 * as they came in on. 12517 * 12518 * XXX To be quicker, we may wish to not chase pointers to 12519 * get the ILLF_ROUTER flag and instead store the 12520 * forwarding policy in the ire. An unfortunate 12521 * side-effect of that would be requiring an ire flush 12522 * whenever the ILLF_ROUTER flag changes. 12523 */ 12524 if (((ill->ill_flags & 12525 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 12526 ILLF_ROUTER) == 0) && 12527 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 12528 (ill_group != NULL && ill_group == ire_group)))) { 12529 BUMP_MIB(&ip_mib, ipForwProhibits); 12530 if (ip_source_routed(ipha)) { 12531 q = WR(q); 12532 /* 12533 * Clear the indication that this may have 12534 * hardware checksum as we are not using it. 12535 */ 12536 DB_CKSUMFLAGS(mp) = 0; 12537 icmp_unreachable(q, mp, 12538 ICMP_SOURCE_ROUTE_FAILED); 12539 ire_refrele(ire); 12540 return; 12541 } 12542 goto drop_pkt; 12543 } 12544 12545 /* Packet is being forwarded. Turning off hwcksum flag. */ 12546 DB_CKSUMFLAGS(mp) = 0; 12547 if (ip_g_send_redirects) { 12548 /* 12549 * Check whether the incoming interface and outgoing 12550 * interface is part of the same group. If so, 12551 * send redirects. 12552 * 12553 * Check the source address to see if it originated 12554 * on the same logical subnet it is going back out on. 12555 * If so, we should be able to send it a redirect. 12556 * Avoid sending a redirect if the destination 12557 * is directly connected (gw_addr == 0), 12558 * or if the packet was source routed out this 12559 * interface. 12560 */ 12561 ipaddr_t src; 12562 mblk_t *mp1; 12563 ire_t *src_ire = NULL; 12564 12565 /* 12566 * Check whether ire_rfq and q are from the same ill 12567 * or if they are not same, they at least belong 12568 * to the same group. If so, send redirects. 12569 */ 12570 if ((ire->ire_rfq == q || 12571 (ill_group != NULL && ill_group == ire_group)) && 12572 (ire->ire_gateway_addr != 0) && 12573 !ip_source_routed(ipha)) { 12574 12575 src = ipha->ipha_src; 12576 src_ire = ire_ftable_lookup(src, 0, 0, 12577 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 12578 0, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 12579 12580 if (src_ire != NULL) { 12581 /* 12582 * The source is directly connected. 12583 * Just copy the ip header (which is 12584 * in the first mblk) 12585 */ 12586 mp1 = copyb(mp); 12587 if (mp1 != NULL) { 12588 icmp_send_redirect(WR(q), mp1, 12589 ire->ire_gateway_addr); 12590 } 12591 ire_refrele(src_ire); 12592 } 12593 } 12594 } 12595 12596 dev_q = ire->ire_stq->q_next; 12597 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 12598 BUMP_MIB(&ip_mib, ipInDiscards); 12599 freemsg(mp); 12600 ire_refrele(ire); 12601 return; 12602 } 12603 12604 ip_rput_forward(ire, ipha, mp, ill); 12605 IRE_REFRELE(ire); 12606 return; 12607 12608 drop_pkt: 12609 ire_refrele(ire); 12610 ip2dbg(("ip_rput_forward: drop pkt\n")); 12611 freemsg(mp); 12612 } 12613 12614 static boolean_t 12615 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t **irep, ipha_t *ipha, 12616 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 12617 { 12618 queue_t *q; 12619 ire_t *ire; 12620 uint16_t hcksumflags; 12621 12622 q = *qp; 12623 ire = *irep; 12624 12625 /* 12626 * Clear the indication that this may have hardware 12627 * checksum as we are not using it for forwarding. 12628 */ 12629 hcksumflags = DB_CKSUMFLAGS(mp); 12630 DB_CKSUMFLAGS(mp) = 0; 12631 12632 /* 12633 * Directed broadcast forwarding: if the packet came in over a 12634 * different interface then it is routed out over we can forward it. 12635 */ 12636 if (ipha->ipha_protocol == IPPROTO_TCP) { 12637 ire_refrele(ire); 12638 freemsg(mp); 12639 BUMP_MIB(&ip_mib, ipInDiscards); 12640 return (B_TRUE); 12641 } 12642 /* 12643 * For multicast we have set dst to be INADDR_BROADCAST 12644 * for delivering to all STREAMS. IRE_MARK_NORECV is really 12645 * only for broadcast packets. 12646 */ 12647 if (!CLASSD(ipha->ipha_dst)) { 12648 ire_t *new_ire; 12649 ipif_t *ipif; 12650 /* 12651 * For ill groups, as the switch duplicates broadcasts 12652 * across all the ports, we need to filter out and 12653 * send up only one copy. There is one copy for every 12654 * broadcast address on each ill. Thus, we look for a 12655 * specific IRE on this ill and look at IRE_MARK_NORECV 12656 * later to see whether this ill is eligible to receive 12657 * them or not. ill_nominate_bcast_rcv() nominates only 12658 * one set of IREs for receiving. 12659 */ 12660 12661 ipif = ipif_get_next_ipif(NULL, ill); 12662 if (ipif == NULL) { 12663 ire_refrele(ire); 12664 freemsg(mp); 12665 BUMP_MIB(&ip_mib, ipInDiscards); 12666 return (B_TRUE); 12667 } 12668 new_ire = ire_ctable_lookup(dst, 0, 0, 12669 ipif, ALL_ZONES, MATCH_IRE_ILL); 12670 ipif_refrele(ipif); 12671 12672 if (new_ire != NULL) { 12673 if (new_ire->ire_marks & IRE_MARK_NORECV) { 12674 ire_refrele(ire); 12675 ire_refrele(new_ire); 12676 freemsg(mp); 12677 BUMP_MIB(&ip_mib, ipInDiscards); 12678 return (B_TRUE); 12679 } 12680 /* 12681 * In the special case of multirouted broadcast 12682 * packets, we unconditionally need to "gateway" 12683 * them to the appropriate interface here. 12684 * In the normal case, this cannot happen, because 12685 * there is no broadcast IRE tagged with the 12686 * RTF_MULTIRT flag. 12687 */ 12688 if (new_ire->ire_flags & RTF_MULTIRT) { 12689 ire_refrele(new_ire); 12690 if (ire->ire_rfq != NULL) { 12691 q = ire->ire_rfq; 12692 *qp = q; 12693 } 12694 } else { 12695 ire_refrele(ire); 12696 ire = new_ire; 12697 } 12698 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 12699 if (!ip_g_forward_directed_bcast) { 12700 /* 12701 * Free the message if 12702 * ip_g_forward_directed_bcast is turned 12703 * off for non-local broadcast. 12704 */ 12705 ire_refrele(ire); 12706 freemsg(mp); 12707 BUMP_MIB(&ip_mib, ipInDiscards); 12708 return (B_TRUE); 12709 } 12710 } else { 12711 /* 12712 * This CGTP packet successfully passed the 12713 * CGTP filter, but the related CGTP 12714 * broadcast IRE has not been found, 12715 * meaning that the redundant ipif is 12716 * probably down. However, if we discarded 12717 * this packet, its duplicate would be 12718 * filtered out by the CGTP filter so none 12719 * of them would get through. So we keep 12720 * going with this one. 12721 */ 12722 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 12723 if (ire->ire_rfq != NULL) { 12724 q = ire->ire_rfq; 12725 *qp = q; 12726 } 12727 } 12728 } 12729 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 12730 /* 12731 * Verify that there are not more then one 12732 * IRE_BROADCAST with this broadcast address which 12733 * has ire_stq set. 12734 * TODO: simplify, loop over all IRE's 12735 */ 12736 ire_t *ire1; 12737 int num_stq = 0; 12738 mblk_t *mp1; 12739 12740 /* Find the first one with ire_stq set */ 12741 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 12742 for (ire1 = ire; ire1 && 12743 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 12744 ire1 = ire1->ire_next) 12745 ; 12746 if (ire1) { 12747 ire_refrele(ire); 12748 ire = ire1; 12749 IRE_REFHOLD(ire); 12750 } 12751 12752 /* Check if there are additional ones with stq set */ 12753 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 12754 if (ire->ire_addr != ire1->ire_addr) 12755 break; 12756 if (ire1->ire_stq) { 12757 num_stq++; 12758 break; 12759 } 12760 } 12761 rw_exit(&ire->ire_bucket->irb_lock); 12762 if (num_stq == 1 && ire->ire_stq != NULL) { 12763 ip1dbg(("ip_rput_process_broadcast: directed " 12764 "broadcast to 0x%x\n", 12765 ntohl(ire->ire_addr))); 12766 mp1 = copymsg(mp); 12767 if (mp1) { 12768 switch (ipha->ipha_protocol) { 12769 case IPPROTO_UDP: 12770 ip_udp_input(q, mp1, ipha, ire, ill); 12771 break; 12772 default: 12773 ip_proto_input(q, mp1, ipha, ire, ill); 12774 break; 12775 } 12776 } 12777 /* 12778 * Adjust ttl to 2 (1+1 - the forward engine 12779 * will decrement it by one. 12780 */ 12781 if (ip_csum_hdr(ipha)) { 12782 BUMP_MIB(&ip_mib, ipInCksumErrs); 12783 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 12784 freemsg(mp); 12785 ire_refrele(ire); 12786 return (B_TRUE); 12787 } 12788 ipha->ipha_ttl = ip_broadcast_ttl + 1; 12789 ipha->ipha_hdr_checksum = 0; 12790 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 12791 ip_rput_process_forward(q, mp, ire, ipha, 12792 ill, ll_multicast); 12793 return (B_TRUE); 12794 } 12795 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 12796 ntohl(ire->ire_addr))); 12797 } 12798 12799 *irep = ire; 12800 12801 /* Restore any hardware checksum flags */ 12802 DB_CKSUMFLAGS(mp) = hcksumflags; 12803 return (B_FALSE); 12804 } 12805 12806 /* ARGSUSED */ 12807 static boolean_t 12808 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 12809 int *ll_multicast, ipaddr_t *dstp) 12810 { 12811 /* 12812 * Forward packets only if we have joined the allmulti 12813 * group on this interface. 12814 */ 12815 if (ip_g_mrouter && ill->ill_join_allmulti) { 12816 int retval; 12817 12818 /* 12819 * Clear the indication that this may have hardware 12820 * checksum as we are not using it. 12821 */ 12822 DB_CKSUMFLAGS(mp) = 0; 12823 retval = ip_mforward(ill, ipha, mp); 12824 /* ip_mforward updates mib variables if needed */ 12825 /* clear b_prev - used by ip_mroute_decap */ 12826 mp->b_prev = NULL; 12827 12828 switch (retval) { 12829 case 0: 12830 /* 12831 * pkt is okay and arrived on phyint. 12832 * 12833 * If we are running as a multicast router 12834 * we need to see all IGMP and/or PIM packets. 12835 */ 12836 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 12837 (ipha->ipha_protocol == IPPROTO_PIM)) { 12838 goto done; 12839 } 12840 break; 12841 case -1: 12842 /* pkt is mal-formed, toss it */ 12843 goto drop_pkt; 12844 case 1: 12845 /* pkt is okay and arrived on a tunnel */ 12846 /* 12847 * If we are running a multicast router 12848 * we need to see all igmp packets. 12849 */ 12850 if (ipha->ipha_protocol == IPPROTO_IGMP) { 12851 *dstp = INADDR_BROADCAST; 12852 *ll_multicast = 1; 12853 return (B_FALSE); 12854 } 12855 12856 goto drop_pkt; 12857 } 12858 } 12859 12860 ILM_WALKER_HOLD(ill); 12861 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 12862 /* 12863 * This might just be caused by the fact that 12864 * multiple IP Multicast addresses map to the same 12865 * link layer multicast - no need to increment counter! 12866 */ 12867 ILM_WALKER_RELE(ill); 12868 freemsg(mp); 12869 return (B_TRUE); 12870 } 12871 ILM_WALKER_RELE(ill); 12872 done: 12873 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 12874 /* 12875 * This assumes the we deliver to all streams for multicast 12876 * and broadcast packets. 12877 */ 12878 *dstp = INADDR_BROADCAST; 12879 *ll_multicast = 1; 12880 return (B_FALSE); 12881 drop_pkt: 12882 ip2dbg(("ip_rput: drop pkt\n")); 12883 freemsg(mp); 12884 return (B_TRUE); 12885 } 12886 12887 static boolean_t 12888 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 12889 int *ll_multicast, mblk_t **mpp) 12890 { 12891 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 12892 boolean_t must_copy = B_FALSE; 12893 struct iocblk *iocp; 12894 ipha_t *ipha; 12895 12896 #define rptr ((uchar_t *)ipha) 12897 12898 first_mp = *first_mpp; 12899 mp = *mpp; 12900 12901 ASSERT(first_mp == mp); 12902 12903 /* 12904 * if db_ref > 1 then copymsg and free original. Packet may be 12905 * changed and do not want other entity who has a reference to this 12906 * message to trip over the changes. This is a blind change because 12907 * trying to catch all places that might change packet is too 12908 * difficult (since it may be a module above this one) 12909 * 12910 * This corresponds to the non-fast path case. We walk down the full 12911 * chain in this case, and check the db_ref count of all the dblks, 12912 * and do a copymsg if required. It is possible that the db_ref counts 12913 * of the data blocks in the mblk chain can be different. 12914 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 12915 * count of 1, followed by a M_DATA block with a ref count of 2, if 12916 * 'snoop' is running. 12917 */ 12918 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 12919 if (mp1->b_datap->db_ref > 1) { 12920 must_copy = B_TRUE; 12921 break; 12922 } 12923 } 12924 12925 if (must_copy) { 12926 mp1 = copymsg(mp); 12927 if (mp1 == NULL) { 12928 for (mp1 = mp; mp1 != NULL; 12929 mp1 = mp1->b_cont) { 12930 mp1->b_next = NULL; 12931 mp1->b_prev = NULL; 12932 } 12933 freemsg(mp); 12934 BUMP_MIB(&ip_mib, ipInDiscards); 12935 return (B_TRUE); 12936 } 12937 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 12938 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 12939 /* Copy b_next - used in M_BREAK messages */ 12940 to_mp->b_next = from_mp->b_next; 12941 from_mp->b_next = NULL; 12942 /* Copy b_prev - used by ip_mroute_decap */ 12943 to_mp->b_prev = from_mp->b_prev; 12944 from_mp->b_prev = NULL; 12945 } 12946 *first_mpp = first_mp = mp1; 12947 freemsg(mp); 12948 mp = mp1; 12949 *mpp = mp1; 12950 } 12951 12952 ipha = (ipha_t *)mp->b_rptr; 12953 12954 /* 12955 * previous code has a case for M_DATA. 12956 * We want to check how that happens. 12957 */ 12958 ASSERT(first_mp->b_datap->db_type != M_DATA); 12959 switch (first_mp->b_datap->db_type) { 12960 case M_PROTO: 12961 case M_PCPROTO: 12962 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 12963 DL_UNITDATA_IND) { 12964 /* Go handle anything other than data elsewhere. */ 12965 ip_rput_dlpi(q, mp); 12966 return (B_TRUE); 12967 } 12968 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 12969 /* Ditch the DLPI header. */ 12970 mp1 = mp->b_cont; 12971 ASSERT(first_mp == mp); 12972 *first_mpp = mp1; 12973 freeb(mp); 12974 *mpp = mp1; 12975 return (B_FALSE); 12976 case M_BREAK: 12977 /* 12978 * A packet arrives as M_BREAK following a cycle through 12979 * ip_rput, ip_newroute, ... and finally ire_add_then_send. 12980 * This is an IP datagram sans lower level header. 12981 * M_BREAK are also used to pass back in multicast packets 12982 * that are encapsulated with a source route. 12983 */ 12984 /* Ditch the M_BREAK mblk */ 12985 mp1 = mp->b_cont; 12986 ASSERT(first_mp == mp); 12987 *first_mpp = mp1; 12988 freeb(mp); 12989 mp = mp1; 12990 mp->b_next = NULL; 12991 *mpp = mp; 12992 *ll_multicast = 0; 12993 return (B_FALSE); 12994 case M_IOCACK: 12995 ip1dbg(("got iocack ")); 12996 iocp = (struct iocblk *)mp->b_rptr; 12997 switch (iocp->ioc_cmd) { 12998 case DL_IOC_HDR_INFO: 12999 ill = (ill_t *)q->q_ptr; 13000 ill_fastpath_ack(ill, mp); 13001 return (B_TRUE); 13002 case SIOCSTUNPARAM: 13003 case OSIOCSTUNPARAM: 13004 /* Go through qwriter_ip */ 13005 break; 13006 case SIOCGTUNPARAM: 13007 case OSIOCGTUNPARAM: 13008 ip_rput_other(NULL, q, mp, NULL); 13009 return (B_TRUE); 13010 default: 13011 putnext(q, mp); 13012 return (B_TRUE); 13013 } 13014 /* FALLTHRU */ 13015 case M_ERROR: 13016 case M_HANGUP: 13017 /* 13018 * Since this is on the ill stream we unconditionally 13019 * bump up the refcount 13020 */ 13021 ill_refhold(ill); 13022 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 13023 B_FALSE); 13024 return (B_TRUE); 13025 case M_CTL: 13026 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 13027 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 13028 IPHADA_M_CTL)) { 13029 /* 13030 * It's an IPsec accelerated packet. 13031 * Make sure that the ill from which we received the 13032 * packet has enabled IPsec hardware acceleration. 13033 */ 13034 if (!(ill->ill_capabilities & 13035 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 13036 /* IPsec kstats: bean counter */ 13037 freemsg(mp); 13038 return (B_TRUE); 13039 } 13040 13041 /* 13042 * Make mp point to the mblk following the M_CTL, 13043 * then process according to type of mp. 13044 * After this processing, first_mp will point to 13045 * the data-attributes and mp to the pkt following 13046 * the M_CTL. 13047 */ 13048 mp = first_mp->b_cont; 13049 if (mp == NULL) { 13050 freemsg(first_mp); 13051 return (B_TRUE); 13052 } 13053 /* 13054 * A Hardware Accelerated packet can only be M_DATA 13055 * ESP or AH packet. 13056 */ 13057 if (mp->b_datap->db_type != M_DATA) { 13058 /* non-M_DATA IPsec accelerated packet */ 13059 IPSECHW_DEBUG(IPSECHW_PKT, 13060 ("non-M_DATA IPsec accelerated pkt\n")); 13061 freemsg(first_mp); 13062 return (B_TRUE); 13063 } 13064 ipha = (ipha_t *)mp->b_rptr; 13065 if (ipha->ipha_protocol != IPPROTO_AH && 13066 ipha->ipha_protocol != IPPROTO_ESP) { 13067 IPSECHW_DEBUG(IPSECHW_PKT, 13068 ("non-M_DATA IPsec accelerated pkt\n")); 13069 freemsg(first_mp); 13070 return (B_TRUE); 13071 } 13072 *mpp = mp; 13073 return (B_FALSE); 13074 } 13075 putnext(q, mp); 13076 return (B_TRUE); 13077 case M_FLUSH: 13078 if (*mp->b_rptr & FLUSHW) { 13079 *mp->b_rptr &= ~FLUSHR; 13080 qreply(q, mp); 13081 return (B_TRUE); 13082 } 13083 freemsg(mp); 13084 return (B_TRUE); 13085 case M_IOCNAK: 13086 ip1dbg(("got iocnak ")); 13087 iocp = (struct iocblk *)mp->b_rptr; 13088 switch (iocp->ioc_cmd) { 13089 case DL_IOC_HDR_INFO: 13090 case SIOCSTUNPARAM: 13091 case OSIOCSTUNPARAM: 13092 /* 13093 * Since this is on the ill stream we unconditionally 13094 * bump up the refcount 13095 */ 13096 ill_refhold(ill); 13097 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 13098 CUR_OP, B_FALSE); 13099 return (B_TRUE); 13100 case SIOCGTUNPARAM: 13101 case OSIOCGTUNPARAM: 13102 ip_rput_other(NULL, q, mp, NULL); 13103 return (B_TRUE); 13104 default: 13105 break; 13106 } 13107 /* FALLTHRU */ 13108 default: 13109 putnext(q, mp); 13110 return (B_TRUE); 13111 } 13112 } 13113 13114 /* Read side put procedure. Packets coming from the wire arrive here. */ 13115 void 13116 ip_rput(queue_t *q, mblk_t *mp) 13117 { 13118 ill_t *ill; 13119 13120 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 13121 13122 ill = (ill_t *)q->q_ptr; 13123 13124 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 13125 union DL_primitives *dl; 13126 13127 /* 13128 * Things are opening or closing. Only accept DLPI control 13129 * messages. In the open case, the ill->ill_ipif has not yet 13130 * been created. In the close case, things hanging off the 13131 * ill could have been freed already. In either case it 13132 * may not be safe to proceed further. 13133 */ 13134 13135 dl = (union DL_primitives *)mp->b_rptr; 13136 if ((mp->b_datap->db_type != M_PCPROTO) || 13137 (dl->dl_primitive == DL_UNITDATA_IND)) { 13138 /* 13139 * Also SIOC[GS]TUN* ioctls can come here. 13140 */ 13141 inet_freemsg(mp); 13142 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13143 "ip_input_end: q %p (%S)", q, "uninit"); 13144 return; 13145 } 13146 } 13147 13148 /* 13149 * if db_ref > 1 then copymsg and free original. Packet may be 13150 * changed and we do not want the other entity who has a reference to 13151 * this message to trip over the changes. This is a blind change because 13152 * trying to catch all places that might change the packet is too 13153 * difficult. 13154 * 13155 * This corresponds to the fast path case, where we have a chain of 13156 * M_DATA mblks. We check the db_ref count of only the 1st data block 13157 * in the mblk chain. There doesn't seem to be a reason why a device 13158 * driver would send up data with varying db_ref counts in the mblk 13159 * chain. In any case the Fast path is a private interface, and our 13160 * drivers don't do such a thing. Given the above assumption, there is 13161 * no need to walk down the entire mblk chain (which could have a 13162 * potential performance problem) 13163 */ 13164 if (mp->b_datap->db_ref > 1) { 13165 mblk_t *mp1; 13166 boolean_t adjusted = B_FALSE; 13167 IP_STAT(ip_db_ref); 13168 13169 /* 13170 * The IP_RECVSLLA option depends on having the link layer 13171 * header. First check that: 13172 * a> the underlying device is of type ether, since this 13173 * option is currently supported only over ethernet. 13174 * b> there is enough room to copy over the link layer header. 13175 * 13176 * Once the checks are done, adjust rptr so that the link layer 13177 * header will be copied via copymsg. Note that, IFT_ETHER may 13178 * be returned by some non-ethernet drivers but in this case the 13179 * second check will fail. 13180 */ 13181 if (ill->ill_type == IFT_ETHER && 13182 (mp->b_rptr - mp->b_datap->db_base) >= 13183 sizeof (struct ether_header)) { 13184 mp->b_rptr -= sizeof (struct ether_header); 13185 adjusted = B_TRUE; 13186 } 13187 mp1 = copymsg(mp); 13188 if (mp1 == NULL) { 13189 /* Clear b_next - used in M_BREAK messages */ 13190 mp->b_next = NULL; 13191 /* clear b_prev - used by ip_mroute_decap */ 13192 mp->b_prev = NULL; 13193 freemsg(mp); 13194 BUMP_MIB(&ip_mib, ipInDiscards); 13195 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13196 "ip_rput_end: q %p (%S)", q, "copymsg"); 13197 return; 13198 } 13199 if (adjusted) { 13200 /* 13201 * Copy is done. Restore the pointer in the _new_ mblk 13202 */ 13203 mp1->b_rptr += sizeof (struct ether_header); 13204 } 13205 /* Copy b_next - used in M_BREAK messages */ 13206 mp1->b_next = mp->b_next; 13207 mp->b_next = NULL; 13208 /* Copy b_prev - used by ip_mroute_decap */ 13209 mp1->b_prev = mp->b_prev; 13210 mp->b_prev = NULL; 13211 freemsg(mp); 13212 mp = mp1; 13213 } 13214 13215 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13216 "ip_rput_end: q %p (%S)", q, "end"); 13217 13218 ip_input(ill, NULL, mp, 0); 13219 } 13220 13221 /* 13222 * Direct read side procedure capable of dealing with chains. GLDv3 based 13223 * drivers call this function directly with mblk chains while STREAMS 13224 * read side procedure ip_rput() calls this for single packet with ip_ring 13225 * set to NULL to process one packet at a time. 13226 * 13227 * The ill will always be valid if this function is called directly from 13228 * the driver. 13229 */ 13230 /*ARGSUSED*/ 13231 void 13232 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 13233 { 13234 ipaddr_t dst; 13235 ire_t *ire; 13236 ipha_t *ipha; 13237 uint_t pkt_len; 13238 ssize_t len; 13239 uint_t opt_len; 13240 int ll_multicast; 13241 int cgtp_flt_pkt; 13242 queue_t *q = ill->ill_rq; 13243 squeue_t *curr_sqp = NULL; 13244 mblk_t *head = NULL; 13245 mblk_t *tail = NULL; 13246 mblk_t *first_mp; 13247 mblk_t *mp; 13248 int cnt = 0; 13249 13250 ASSERT(mp_chain != NULL); 13251 ASSERT(ill != NULL); 13252 13253 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 13254 13255 #define rptr ((uchar_t *)ipha) 13256 13257 while (mp_chain != NULL) { 13258 first_mp = mp = mp_chain; 13259 mp_chain = mp_chain->b_next; 13260 mp->b_next = NULL; 13261 ll_multicast = 0; 13262 ire = NULL; 13263 13264 /* 13265 * ip_input fast path 13266 */ 13267 13268 /* mblk type is not M_DATA */ 13269 if (mp->b_datap->db_type != M_DATA) { 13270 if (ip_rput_process_notdata(q, &first_mp, ill, 13271 &ll_multicast, &mp)) 13272 continue; 13273 } 13274 13275 ASSERT(mp->b_datap->db_type == M_DATA); 13276 ASSERT(mp->b_datap->db_ref == 1); 13277 13278 /* 13279 * Invoke the CGTP (multirouting) filtering module to process 13280 * the incoming packet. Packets identified as duplicates 13281 * must be discarded. Filtering is active only if the 13282 * the ip_cgtp_filter ndd variable is non-zero. 13283 */ 13284 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 13285 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 13286 cgtp_flt_pkt = 13287 ip_cgtp_filter_ops->cfo_filter_fp(q, mp); 13288 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 13289 freemsg(first_mp); 13290 continue; 13291 } 13292 } 13293 13294 ipha = (ipha_t *)mp->b_rptr; 13295 len = mp->b_wptr - rptr; 13296 13297 BUMP_MIB(&ip_mib, ipInReceives); 13298 13299 /* 13300 * IP header ptr not aligned? 13301 * OR IP header not complete in first mblk 13302 */ 13303 if (!OK_32PTR(rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13304 if (!ip_check_and_align_header(q, mp)) 13305 continue; 13306 ipha = (ipha_t *)mp->b_rptr; 13307 len = mp->b_wptr - rptr; 13308 } 13309 13310 /* multiple mblk or too short */ 13311 pkt_len = ntohs(ipha->ipha_length); 13312 len -= pkt_len; 13313 if (len != 0) { 13314 /* 13315 * Make sure we have data length consistent 13316 * with the IP header. 13317 */ 13318 if (mp->b_cont == NULL) { 13319 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13320 BUMP_MIB(&ip_mib, ipInHdrErrors); 13321 ip2dbg(("ip_input: drop pkt\n")); 13322 freemsg(mp); 13323 continue; 13324 } 13325 mp->b_wptr = rptr + pkt_len; 13326 } else if (len += msgdsize(mp->b_cont)) { 13327 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13328 BUMP_MIB(&ip_mib, ipInHdrErrors); 13329 ip2dbg(("ip_input: drop pkt\n")); 13330 freemsg(mp); 13331 continue; 13332 } 13333 (void) adjmsg(mp, -len); 13334 IP_STAT(ip_multimblk3); 13335 } 13336 } 13337 13338 if (ip_loopback_src_or_dst(ipha, ill)) { 13339 ip2dbg(("ip_input: drop pkt\n")); 13340 freemsg(mp); 13341 continue; 13342 } 13343 13344 opt_len = ipha->ipha_version_and_hdr_length - 13345 IP_SIMPLE_HDR_VERSION; 13346 /* IP version bad or there are IP options */ 13347 if (opt_len) { 13348 if (len != 0) 13349 IP_STAT(ip_multimblk4); 13350 else 13351 IP_STAT(ip_ipoptions); 13352 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 13353 continue; 13354 } else { 13355 dst = ipha->ipha_dst; 13356 } 13357 13358 /* 13359 * If rsvpd is running, let RSVP daemon handle its processing 13360 * and forwarding of RSVP multicast/unicast packets. 13361 * If rsvpd is not running but mrouted is running, RSVP 13362 * multicast packets are forwarded as multicast traffic 13363 * and RSVP unicast packets are forwarded by unicast router. 13364 * If neither rsvpd nor mrouted is running, RSVP multicast 13365 * packets are not forwarded, but the unicast packets are 13366 * forwarded like unicast traffic. 13367 */ 13368 if (ipha->ipha_protocol == IPPROTO_RSVP && 13369 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 13370 /* RSVP packet and rsvpd running. Treat as ours */ 13371 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 13372 /* 13373 * This assumes that we deliver to all streams for 13374 * multicast and broadcast packets. 13375 * We have to force ll_multicast to 1 to handle the 13376 * M_DATA messages passed in from ip_mroute_decap. 13377 */ 13378 dst = INADDR_BROADCAST; 13379 ll_multicast = 1; 13380 } else if (CLASSD(dst)) { 13381 /* packet is multicast */ 13382 mp->b_next = NULL; 13383 if (ip_rput_process_multicast(q, mp, ill, ipha, 13384 &ll_multicast, &dst)) 13385 continue; 13386 } 13387 13388 13389 /* 13390 * Check if the packet is coming from the Mobile IP 13391 * forward tunnel interface 13392 */ 13393 if (ill->ill_srcif_refcnt > 0) { 13394 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 13395 NULL, ill, MATCH_IRE_TYPE); 13396 if (ire != NULL && ire->ire_dlureq_mp == NULL && 13397 ire->ire_ipif->ipif_net_type == 13398 IRE_IF_RESOLVER) { 13399 /* We need to resolve the link layer info */ 13400 ire_refrele(ire); 13401 ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 13402 ll_multicast, dst); 13403 continue; 13404 } 13405 } 13406 13407 if (ire == NULL) 13408 ire = ire_cache_lookup(dst, ALL_ZONES); 13409 13410 /* 13411 * If mipagent is running and reverse tunnel is created as per 13412 * mobile node request, then any packet coming through the 13413 * incoming interface from the mobile-node, should be reverse 13414 * tunneled to it's home agent except those that are destined 13415 * to foreign agent only. 13416 * This needs source address based ire lookup. The routing 13417 * entries for source address based lookup are only created by 13418 * mipagent program only when a reverse tunnel is created. 13419 * Reference : RFC2002, RFC2344 13420 */ 13421 if (ill->ill_mrtun_refcnt > 0) { 13422 ipaddr_t srcaddr; 13423 ire_t *tmp_ire; 13424 13425 tmp_ire = ire; /* Save, we might need it later */ 13426 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 13427 ire->ire_type != IRE_BROADCAST)) { 13428 srcaddr = ipha->ipha_src; 13429 ire = ire_mrtun_lookup(srcaddr, ill); 13430 if (ire != NULL) { 13431 /* 13432 * Should not be getting iphada packet 13433 * here. we should only get those for 13434 * IRE_LOCAL traffic, excluded above. 13435 * Fail-safe (drop packet) in the event 13436 * hardware is misbehaving. 13437 */ 13438 if (first_mp != mp) { 13439 /* IPsec KSTATS: beancount me */ 13440 freemsg(first_mp); 13441 } else { 13442 /* 13443 * This packet must be forwarded 13444 * to Reverse Tunnel 13445 */ 13446 ip_mrtun_forward(ire, ill, mp); 13447 } 13448 ire_refrele(ire); 13449 if (tmp_ire != NULL) 13450 ire_refrele(tmp_ire); 13451 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13452 "ip_input_end: q %p (%S)", 13453 q, "uninit"); 13454 continue; 13455 } 13456 } 13457 /* 13458 * If this packet is from a non-mobilenode or a 13459 * mobile-node which does not request reverse 13460 * tunnel service 13461 */ 13462 ire = tmp_ire; 13463 } 13464 13465 13466 /* 13467 * If we reach here that means the incoming packet satisfies 13468 * one of the following conditions: 13469 * - packet is from a mobile node which does not request 13470 * reverse tunnel 13471 * - packet is from a non-mobile node, which is the most 13472 * common case 13473 * - packet is from a reverse tunnel enabled mobile node 13474 * and destined to foreign agent only 13475 */ 13476 13477 if (ire == NULL) { 13478 /* 13479 * No IRE for this destination, so it can't be for us. 13480 * Unless we are forwarding, drop the packet. 13481 * We have to let source routed packets through 13482 * since we don't yet know if they are 'ping -l' 13483 * packets i.e. if they will go out over the 13484 * same interface as they came in on. 13485 */ 13486 ip_rput_noire(q, NULL, mp, ll_multicast, dst); 13487 continue; 13488 } 13489 13490 /* 13491 * Broadcast IRE may indicate either broadcast or 13492 * multicast packet 13493 */ 13494 if (ire->ire_type == IRE_BROADCAST) { 13495 /* 13496 * Skip broadcast checks if packet is UDP multicast; 13497 * we'd rather not enter ip_rput_process_broadcast() 13498 * unless the packet is broadcast for real, since 13499 * that routine is a no-op for multicast. 13500 */ 13501 if ((ipha->ipha_protocol != IPPROTO_UDP || 13502 !CLASSD(ipha->ipha_dst)) && 13503 ip_rput_process_broadcast(&q, mp, &ire, ipha, ill, 13504 dst, cgtp_flt_pkt, ll_multicast)) { 13505 continue; 13506 } 13507 } else if (ire->ire_stq != NULL) { 13508 /* fowarding? */ 13509 ip_rput_process_forward(q, mp, ire, ipha, ill, 13510 ll_multicast); 13511 continue; 13512 } 13513 13514 /* packet not for us */ 13515 if (ire->ire_rfq != q) { 13516 if (ip_rput_notforus(&q, mp, ire, ill)) { 13517 continue; 13518 } 13519 } 13520 13521 switch (ipha->ipha_protocol) { 13522 case IPPROTO_TCP: 13523 ASSERT(first_mp == mp); 13524 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 13525 mp, 0, q, ip_ring)) != NULL) { 13526 if (curr_sqp == NULL) { 13527 curr_sqp = GET_SQUEUE(mp); 13528 ASSERT(cnt == 0); 13529 cnt++; 13530 head = tail = mp; 13531 } else if (curr_sqp == GET_SQUEUE(mp)) { 13532 ASSERT(tail != NULL); 13533 cnt++; 13534 tail->b_next = mp; 13535 tail = mp; 13536 } else { 13537 /* 13538 * A different squeue. Send the 13539 * chain for the previous squeue on 13540 * its way. This shouldn't happen 13541 * often unless interrupt binding 13542 * changes. 13543 */ 13544 IP_STAT(ip_input_multi_squeue); 13545 squeue_enter_chain(curr_sqp, head, 13546 tail, cnt, SQTAG_IP_INPUT); 13547 curr_sqp = GET_SQUEUE(mp); 13548 head = mp; 13549 tail = mp; 13550 cnt = 1; 13551 } 13552 } 13553 IRE_REFRELE(ire); 13554 continue; 13555 case IPPROTO_UDP: 13556 ASSERT(first_mp == mp); 13557 ip_udp_input(q, mp, ipha, ire, ill); 13558 IRE_REFRELE(ire); 13559 continue; 13560 case IPPROTO_SCTP: 13561 ASSERT(first_mp == mp); 13562 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 13563 q, dst); 13564 continue; 13565 default: 13566 ip_proto_input(q, first_mp, ipha, ire, ill); 13567 IRE_REFRELE(ire); 13568 continue; 13569 } 13570 } 13571 13572 if (head != NULL) 13573 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 13574 13575 /* 13576 * This code is there just to make netperf/ttcp look good. 13577 * 13578 * Its possible that after being in polling mode (and having cleared 13579 * the backlog), squeues have turned the interrupt frequency higher 13580 * to improve latency at the expense of more CPU utilization (less 13581 * packets per interrupts or more number of interrupts). Workloads 13582 * like ttcp/netperf do manage to tickle polling once in a while 13583 * but for the remaining time, stay in higher interrupt mode since 13584 * their packet arrival rate is pretty uniform and this shows up 13585 * as higher CPU utilization. Since people care about CPU utilization 13586 * while running netperf/ttcp, turn the interrupt frequency back to 13587 * normal/default if polling has not been used in ip_poll_normal_ticks. 13588 */ 13589 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 13590 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 13591 ip_ring->rr_poll_state &= ~ILL_POLLING; 13592 ip_ring->rr_blank(ip_ring->rr_handle, 13593 ip_ring->rr_normal_blank_time, 13594 ip_ring->rr_normal_pkt_cnt); 13595 } 13596 } 13597 13598 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13599 "ip_input_end: q %p (%S)", q, "end"); 13600 #undef rptr 13601 } 13602 13603 static void 13604 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 13605 t_uscalar_t err) 13606 { 13607 if (dl_err == DL_SYSERR) { 13608 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13609 "%s: %s failed: DL_SYSERR (errno %u)\n", 13610 ill->ill_name, dlpi_prim_str(prim), err); 13611 return; 13612 } 13613 13614 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13615 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 13616 dlpi_err_str(dl_err)); 13617 } 13618 13619 /* 13620 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 13621 * than DL_UNITDATA_IND messages. If we need to process this message 13622 * exclusively, we call qwriter_ip, in which case we also need to call 13623 * ill_refhold before that, since qwriter_ip does an ill_refrele. 13624 */ 13625 void 13626 ip_rput_dlpi(queue_t *q, mblk_t *mp) 13627 { 13628 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13629 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13630 ill_t *ill; 13631 13632 ip1dbg(("ip_rput_dlpi")); 13633 ill = (ill_t *)q->q_ptr; 13634 switch (dloa->dl_primitive) { 13635 case DL_ERROR_ACK: 13636 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 13637 "%s (0x%x), unix %u\n", ill->ill_name, 13638 dlpi_prim_str(dlea->dl_error_primitive), 13639 dlea->dl_error_primitive, 13640 dlpi_err_str(dlea->dl_errno), 13641 dlea->dl_errno, 13642 dlea->dl_unix_errno)); 13643 switch (dlea->dl_error_primitive) { 13644 case DL_NOTIFY_REQ: 13645 case DL_UNBIND_REQ: 13646 case DL_ATTACH_REQ: 13647 case DL_DETACH_REQ: 13648 case DL_INFO_REQ: 13649 case DL_BIND_REQ: 13650 case DL_ENABMULTI_REQ: 13651 case DL_PHYS_ADDR_REQ: 13652 case DL_CAPABILITY_REQ: 13653 case DL_CONTROL_REQ: 13654 /* 13655 * Refhold the ill to match qwriter_ip which does a 13656 * refrele. Since this is on the ill stream we 13657 * unconditionally bump up the refcount without 13658 * checking for ILL_CAN_LOOKUP 13659 */ 13660 ill_refhold(ill); 13661 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13662 CUR_OP, B_FALSE); 13663 return; 13664 case DL_DISABMULTI_REQ: 13665 freemsg(mp); /* Don't want to pass this up */ 13666 return; 13667 default: 13668 break; 13669 } 13670 ip_dlpi_error(ill, dlea->dl_error_primitive, 13671 dlea->dl_errno, dlea->dl_unix_errno); 13672 freemsg(mp); 13673 return; 13674 case DL_INFO_ACK: 13675 case DL_BIND_ACK: 13676 case DL_PHYS_ADDR_ACK: 13677 case DL_NOTIFY_ACK: 13678 case DL_CAPABILITY_ACK: 13679 case DL_CONTROL_ACK: 13680 /* 13681 * Refhold the ill to match qwriter_ip which does a refrele 13682 * Since this is on the ill stream we unconditionally 13683 * bump up the refcount without doing ILL_CAN_LOOKUP. 13684 */ 13685 ill_refhold(ill); 13686 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13687 CUR_OP, B_FALSE); 13688 return; 13689 case DL_NOTIFY_IND: 13690 ill_refhold(ill); 13691 /* 13692 * The DL_NOTIFY_IND is an asynchronous message that has no 13693 * relation to the current ioctl in progress (if any). Hence we 13694 * pass in NEW_OP in this case. 13695 */ 13696 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13697 NEW_OP, B_FALSE); 13698 return; 13699 case DL_OK_ACK: 13700 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 13701 dlpi_prim_str((int)dloa->dl_correct_primitive))); 13702 switch (dloa->dl_correct_primitive) { 13703 case DL_UNBIND_REQ: 13704 mutex_enter(&ill->ill_lock); 13705 ill->ill_state_flags |= ILL_DL_UNBIND_DONE; 13706 cv_signal(&ill->ill_cv); 13707 mutex_exit(&ill->ill_lock); 13708 /* FALLTHRU */ 13709 case DL_ATTACH_REQ: 13710 case DL_DETACH_REQ: 13711 /* 13712 * Refhold the ill to match qwriter_ip which does a 13713 * refrele. Since this is on the ill stream we 13714 * unconditionally bump up the refcount 13715 */ 13716 ill_refhold(ill); 13717 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13718 CUR_OP, B_FALSE); 13719 return; 13720 case DL_ENABMULTI_REQ: 13721 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13722 ill->ill_dlpi_multicast_state = IDMS_OK; 13723 break; 13724 13725 } 13726 break; 13727 default: 13728 break; 13729 } 13730 freemsg(mp); 13731 } 13732 13733 /* 13734 * Handling of DLPI messages that require exclusive access to the ipsq. 13735 * 13736 * Need to do ill_pending_mp_release on ioctl completion, which could 13737 * happen here. (along with mi_copy_done) 13738 */ 13739 /* ARGSUSED */ 13740 static void 13741 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 13742 { 13743 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13744 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13745 int err = 0; 13746 ill_t *ill; 13747 ipif_t *ipif = NULL; 13748 mblk_t *mp1 = NULL; 13749 conn_t *connp = NULL; 13750 t_uscalar_t physaddr_req; 13751 mblk_t *mp_hw; 13752 union DL_primitives *dlp; 13753 boolean_t success; 13754 boolean_t ioctl_aborted = B_FALSE; 13755 boolean_t log = B_TRUE; 13756 13757 ip1dbg(("ip_rput_dlpi_writer ..")); 13758 ill = (ill_t *)q->q_ptr; 13759 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 13760 13761 ASSERT(IAM_WRITER_ILL(ill)); 13762 13763 /* 13764 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 13765 * both are null or non-null. However we can assert that only 13766 * after grabbing the ipsq_lock. So we don't make any assertion 13767 * here and in other places in the code. 13768 */ 13769 ipif = ipsq->ipsq_pending_ipif; 13770 /* 13771 * The current ioctl could have been aborted by the user and a new 13772 * ioctl to bring up another ill could have started. We could still 13773 * get a response from the driver later. 13774 */ 13775 if (ipif != NULL && ipif->ipif_ill != ill) 13776 ioctl_aborted = B_TRUE; 13777 13778 switch (dloa->dl_primitive) { 13779 case DL_ERROR_ACK: 13780 switch (dlea->dl_error_primitive) { 13781 case DL_UNBIND_REQ: 13782 case DL_ATTACH_REQ: 13783 case DL_DETACH_REQ: 13784 case DL_INFO_REQ: 13785 ill_dlpi_done(ill, dlea->dl_error_primitive); 13786 break; 13787 case DL_NOTIFY_REQ: 13788 ill_dlpi_done(ill, DL_NOTIFY_REQ); 13789 log = B_FALSE; 13790 break; 13791 case DL_PHYS_ADDR_REQ: 13792 /* 13793 * For IPv6 only, there are two additional 13794 * phys_addr_req's sent to the driver to get the 13795 * IPv6 token and lla. This allows IP to acquire 13796 * the hardware address format for a given interface 13797 * without having built in knowledge of the hardware 13798 * address. ill_phys_addr_pend keeps track of the last 13799 * DL_PAR sent so we know which response we are 13800 * dealing with. ill_dlpi_done will update 13801 * ill_phys_addr_pend when it sends the next req. 13802 * We don't complete the IOCTL until all three DL_PARs 13803 * have been attempted, so set *_len to 0 and break. 13804 */ 13805 physaddr_req = ill->ill_phys_addr_pend; 13806 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 13807 if (physaddr_req == DL_IPV6_TOKEN) { 13808 ill->ill_token_length = 0; 13809 log = B_FALSE; 13810 break; 13811 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 13812 ill->ill_nd_lla_len = 0; 13813 log = B_FALSE; 13814 break; 13815 } 13816 /* 13817 * Something went wrong with the DL_PHYS_ADDR_REQ. 13818 * We presumably have an IOCTL hanging out waiting 13819 * for completion. Find it and complete the IOCTL 13820 * with the error noted. 13821 * However, ill_dl_phys was called on an ill queue 13822 * (from SIOCSLIFNAME), thus conn_pending_ill is not 13823 * set. But the ioctl is known to be pending on ill_wq. 13824 */ 13825 if (!ill->ill_ifname_pending) 13826 break; 13827 ill->ill_ifname_pending = 0; 13828 if (!ioctl_aborted) 13829 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13830 if (mp1 != NULL) { 13831 /* 13832 * This operation (SIOCSLIFNAME) must have 13833 * happened on the ill. Assert there is no conn 13834 */ 13835 ASSERT(connp == NULL); 13836 q = ill->ill_wq; 13837 } 13838 break; 13839 case DL_BIND_REQ: 13840 ill_dlpi_done(ill, DL_BIND_REQ); 13841 if (ill->ill_ifname_pending) 13842 break; 13843 /* 13844 * Something went wrong with the bind. We presumably 13845 * have an IOCTL hanging out waiting for completion. 13846 * Find it, take down the interface that was coming 13847 * up, and complete the IOCTL with the error noted. 13848 */ 13849 if (!ioctl_aborted) 13850 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13851 if (mp1 != NULL) { 13852 /* 13853 * This operation (SIOCSLIFFLAGS) must have 13854 * happened from a conn. 13855 */ 13856 ASSERT(connp != NULL); 13857 q = CONNP_TO_WQ(connp); 13858 if (ill->ill_move_in_progress) { 13859 ILL_CLEAR_MOVE(ill); 13860 } 13861 (void) ipif_down(ipif, NULL, NULL); 13862 /* error is set below the switch */ 13863 } 13864 break; 13865 case DL_ENABMULTI_REQ: 13866 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 13867 13868 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13869 ill->ill_dlpi_multicast_state = IDMS_FAILED; 13870 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 13871 ipif_t *ipif; 13872 13873 log = B_FALSE; 13874 printf("ip: joining multicasts failed (%d)" 13875 " on %s - will use link layer " 13876 "broadcasts for multicast\n", 13877 dlea->dl_errno, ill->ill_name); 13878 13879 /* 13880 * Set up the multicast mapping alone. 13881 * writer, so ok to access ill->ill_ipif 13882 * without any lock. 13883 */ 13884 ipif = ill->ill_ipif; 13885 mutex_enter(&ill->ill_phyint->phyint_lock); 13886 ill->ill_phyint->phyint_flags |= 13887 PHYI_MULTI_BCAST; 13888 mutex_exit(&ill->ill_phyint->phyint_lock); 13889 13890 if (!ill->ill_isv6) { 13891 (void) ipif_arp_setup_multicast(ipif, 13892 NULL); 13893 } else { 13894 (void) ipif_ndp_setup_multicast(ipif, 13895 NULL); 13896 } 13897 } 13898 freemsg(mp); /* Don't want to pass this up */ 13899 return; 13900 case DL_CAPABILITY_REQ: 13901 case DL_CONTROL_REQ: 13902 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 13903 "DL_CAPABILITY/CONTROL REQ\n")); 13904 ill_dlpi_done(ill, dlea->dl_error_primitive); 13905 ill->ill_capab_state = IDMS_FAILED; 13906 freemsg(mp); 13907 return; 13908 } 13909 /* 13910 * Note the error for IOCTL completion (mp1 is set when 13911 * ready to complete ioctl). If ill_ifname_pending_err is 13912 * set, an error occured during plumbing (ill_ifname_pending), 13913 * so we want to report that error. 13914 * 13915 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 13916 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 13917 * expected to get errack'd if the driver doesn't support 13918 * these flags (e.g. ethernet). log will be set to B_FALSE 13919 * if these error conditions are encountered. 13920 */ 13921 if (mp1 != NULL) { 13922 if (ill->ill_ifname_pending_err != 0) { 13923 err = ill->ill_ifname_pending_err; 13924 ill->ill_ifname_pending_err = 0; 13925 } else { 13926 err = dlea->dl_unix_errno ? 13927 dlea->dl_unix_errno : ENXIO; 13928 } 13929 /* 13930 * If we're plumbing an interface and an error hasn't already 13931 * been saved, set ill_ifname_pending_err to the error passed 13932 * up. Ignore the error if log is B_FALSE (see comment above). 13933 */ 13934 } else if (log && ill->ill_ifname_pending && 13935 ill->ill_ifname_pending_err == 0) { 13936 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 13937 dlea->dl_unix_errno : ENXIO; 13938 } 13939 13940 if (log) 13941 ip_dlpi_error(ill, dlea->dl_error_primitive, 13942 dlea->dl_errno, dlea->dl_unix_errno); 13943 break; 13944 case DL_CAPABILITY_ACK: { 13945 boolean_t reneg_flag = B_FALSE; 13946 /* Call a routine to handle this one. */ 13947 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 13948 /* 13949 * Check if the ACK is due to renegotiation case since we 13950 * will need to send a new CAPABILITY_REQ later. 13951 */ 13952 if (ill->ill_capab_state == IDMS_RENEG) { 13953 /* This is the ack for a renogiation case */ 13954 reneg_flag = B_TRUE; 13955 ill->ill_capab_state = IDMS_UNKNOWN; 13956 } 13957 ill_capability_ack(ill, mp); 13958 if (reneg_flag) 13959 ill_capability_probe(ill); 13960 break; 13961 } 13962 case DL_CONTROL_ACK: 13963 /* We treat all of these as "fire and forget" */ 13964 ill_dlpi_done(ill, DL_CONTROL_REQ); 13965 break; 13966 case DL_INFO_ACK: 13967 /* Call a routine to handle this one. */ 13968 ill_dlpi_done(ill, DL_INFO_REQ); 13969 ip_ll_subnet_defaults(ill, mp); 13970 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 13971 return; 13972 case DL_BIND_ACK: 13973 /* 13974 * We should have an IOCTL waiting on this unless 13975 * sent by ill_dl_phys, in which case just return 13976 */ 13977 ill_dlpi_done(ill, DL_BIND_REQ); 13978 if (ill->ill_ifname_pending) 13979 break; 13980 13981 if (!ioctl_aborted) 13982 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13983 if (mp1 == NULL) 13984 break; 13985 ASSERT(connp != NULL); 13986 q = CONNP_TO_WQ(connp); 13987 13988 /* 13989 * We are exclusive. So nothing can change even after 13990 * we get the pending mp. If need be we can put it back 13991 * and restart, as in calling ipif_arp_up() below. 13992 */ 13993 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 13994 13995 mutex_enter(&ill->ill_lock); 13996 ill->ill_dl_up = 1; 13997 mutex_exit(&ill->ill_lock); 13998 13999 /* 14000 * Now bring up the resolver, when that is 14001 * done we'll create IREs and we are done. 14002 */ 14003 if (ill->ill_isv6) { 14004 /* 14005 * v6 interfaces. 14006 * Unlike ARP which has to do another bind 14007 * and attach, once we get here we are 14008 * done withh NDP. Except in the case of 14009 * ILLF_XRESOLV, in which case we send an 14010 * AR_INTERFACE_UP to the external resolver. 14011 * If all goes well, the ioctl will complete 14012 * in ip_rput(). If there's an error, we 14013 * complete it here. 14014 */ 14015 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 14016 B_FALSE); 14017 if (err == 0) { 14018 if (ill->ill_flags & ILLF_XRESOLV) { 14019 mutex_enter(&connp->conn_lock); 14020 mutex_enter(&ill->ill_lock); 14021 success = ipsq_pending_mp_add( 14022 connp, ipif, q, mp1, 0); 14023 mutex_exit(&ill->ill_lock); 14024 mutex_exit(&connp->conn_lock); 14025 if (success) { 14026 err = ipif_resolver_up(ipif, 14027 B_FALSE); 14028 if (err == EINPROGRESS) { 14029 freemsg(mp); 14030 return; 14031 } 14032 ASSERT(err != 0); 14033 mp1 = ipsq_pending_mp_get(ipsq, 14034 &connp); 14035 ASSERT(mp1 != NULL); 14036 } else { 14037 /* conn has started closing */ 14038 err = EINTR; 14039 } 14040 } else { /* Non XRESOLV interface */ 14041 err = ipif_up_done_v6(ipif); 14042 } 14043 } 14044 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 14045 /* 14046 * ARP and other v4 external resolvers. 14047 * Leave the pending mblk intact so that 14048 * the ioctl completes in ip_rput(). 14049 */ 14050 mutex_enter(&connp->conn_lock); 14051 mutex_enter(&ill->ill_lock); 14052 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 14053 mutex_exit(&ill->ill_lock); 14054 mutex_exit(&connp->conn_lock); 14055 if (success) { 14056 err = ipif_resolver_up(ipif, B_FALSE); 14057 if (err == EINPROGRESS) { 14058 freemsg(mp); 14059 return; 14060 } 14061 ASSERT(err != 0); 14062 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14063 } else { 14064 /* The conn has started closing */ 14065 err = EINTR; 14066 } 14067 } else { 14068 /* 14069 * This one is complete. Reply to pending ioctl. 14070 */ 14071 err = ipif_up_done(ipif); 14072 } 14073 14074 if ((err == 0) && (ill->ill_up_ipifs)) { 14075 err = ill_up_ipifs(ill, q, mp1); 14076 if (err == EINPROGRESS) { 14077 freemsg(mp); 14078 return; 14079 } 14080 } 14081 14082 if (ill->ill_up_ipifs) { 14083 ill_group_cleanup(ill); 14084 } 14085 14086 break; 14087 case DL_NOTIFY_IND: { 14088 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 14089 ire_t *ire; 14090 boolean_t need_ire_walk_v4 = B_FALSE; 14091 boolean_t need_ire_walk_v6 = B_FALSE; 14092 14093 /* 14094 * Change the address everywhere we need to. 14095 * What we're getting here is a link-level addr or phys addr. 14096 * The new addr is at notify + notify->dl_addr_offset 14097 * The address length is notify->dl_addr_length; 14098 */ 14099 switch (notify->dl_notification) { 14100 case DL_NOTE_PHYS_ADDR: 14101 mp_hw = copyb(mp); 14102 if (mp_hw == NULL) { 14103 err = ENOMEM; 14104 break; 14105 } 14106 dlp = (union DL_primitives *)mp_hw->b_rptr; 14107 /* 14108 * We currently don't support changing 14109 * the token via DL_NOTIFY_IND. 14110 * When we do support it, we have to consider 14111 * what the implications are with respect to 14112 * the token and the link local address. 14113 */ 14114 mutex_enter(&ill->ill_lock); 14115 if (dlp->notify_ind.dl_data == 14116 DL_IPV6_LINK_LAYER_ADDR) { 14117 if (ill->ill_nd_lla_mp != NULL) 14118 freemsg(ill->ill_nd_lla_mp); 14119 ill->ill_nd_lla_mp = mp_hw; 14120 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14121 dlp->notify_ind.dl_addr_offset; 14122 ill->ill_nd_lla_len = 14123 dlp->notify_ind.dl_addr_length - 14124 ABS(ill->ill_sap_length); 14125 mutex_exit(&ill->ill_lock); 14126 break; 14127 } else if (dlp->notify_ind.dl_data == 14128 DL_CURR_PHYS_ADDR) { 14129 if (ill->ill_phys_addr_mp != NULL) 14130 freemsg(ill->ill_phys_addr_mp); 14131 ill->ill_phys_addr_mp = mp_hw; 14132 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14133 dlp->notify_ind.dl_addr_offset; 14134 ill->ill_phys_addr_length = 14135 dlp->notify_ind.dl_addr_length - 14136 ABS(ill->ill_sap_length); 14137 if (ill->ill_isv6 && 14138 !(ill->ill_flags & ILLF_XRESOLV)) { 14139 if (ill->ill_nd_lla_mp != NULL) 14140 freemsg(ill->ill_nd_lla_mp); 14141 ill->ill_nd_lla_mp = copyb(mp_hw); 14142 ill->ill_nd_lla = (uchar_t *) 14143 ill->ill_nd_lla_mp->b_rptr + 14144 dlp->notify_ind.dl_addr_offset; 14145 ill->ill_nd_lla_len = 14146 ill->ill_phys_addr_length; 14147 } 14148 } 14149 mutex_exit(&ill->ill_lock); 14150 /* 14151 * Send out gratuitous arp request for our new 14152 * hardware address. 14153 */ 14154 for (ipif = ill->ill_ipif; ipif != NULL; 14155 ipif = ipif->ipif_next) { 14156 if (!(ipif->ipif_flags & IPIF_UP)) 14157 continue; 14158 if (ill->ill_isv6) { 14159 ipif_ndp_down(ipif); 14160 /* 14161 * Set B_TRUE to enable 14162 * ipif_ndp_up() to send out 14163 * unsolicited advertisements. 14164 */ 14165 err = ipif_ndp_up(ipif, 14166 &ipif->ipif_v6lcl_addr, 14167 B_TRUE); 14168 if (err) { 14169 ip1dbg(( 14170 "ip_rput_dlpi_writer: " 14171 "Failed to update ndp " 14172 "err %d\n", err)); 14173 } 14174 } else { 14175 /* 14176 * IPv4 ARP case 14177 * 14178 * Set B_TRUE, as we only want 14179 * ipif_resolver_up to send an 14180 * AR_ENTRY_ADD request up to 14181 * ARP. 14182 */ 14183 err = ipif_resolver_up(ipif, 14184 B_TRUE); 14185 if (err) { 14186 ip1dbg(( 14187 "ip_rput_dlpi_writer: " 14188 "Failed to update arp " 14189 "err %d\n", err)); 14190 } 14191 } 14192 } 14193 /* 14194 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 14195 * case so that all old fastpath information can be 14196 * purged from IRE caches. 14197 */ 14198 /* FALLTHRU */ 14199 case DL_NOTE_FASTPATH_FLUSH: 14200 /* 14201 * Any fastpath probe sent henceforth will get the 14202 * new fp mp. So we first delete any ires that are 14203 * waiting for the fastpath. Then walk all ires and 14204 * delete the ire or delete the fp mp. In the case of 14205 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 14206 * recreate the ire's without going through a complex 14207 * ipif up/down dance. So we don't delete the ire 14208 * itself, but just the ire_fp_mp for these 2 ire's 14209 * In the case of the other ire's we delete the ire's 14210 * themselves. Access to ire_fp_mp is completely 14211 * protected by ire_lock for IRE_MIPRTUN and 14212 * IRE_BROADCAST. Deleting the ire is preferable in the 14213 * other cases for performance. 14214 */ 14215 if (ill->ill_isv6) { 14216 nce_fastpath_list_dispatch(ill, NULL, NULL); 14217 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 14218 NULL); 14219 } else { 14220 ire_fastpath_list_dispatch(ill, NULL, NULL); 14221 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 14222 IRE_CACHE | IRE_BROADCAST, 14223 ire_fastpath_flush, NULL, ill); 14224 mutex_enter(&ire_mrtun_lock); 14225 if (ire_mrtun_count != 0) { 14226 mutex_exit(&ire_mrtun_lock); 14227 ire_walk_ill_mrtun(MATCH_IRE_WQ, 14228 IRE_MIPRTUN, ire_fastpath_flush, 14229 NULL, ill); 14230 } else { 14231 mutex_exit(&ire_mrtun_lock); 14232 } 14233 } 14234 break; 14235 case DL_NOTE_SDU_SIZE: 14236 /* 14237 * Change the MTU size of the interface, of all 14238 * attached ipif's, and of all relevant ire's. The 14239 * new value's a uint32_t at notify->dl_data. 14240 * Mtu change Vs. new ire creation - protocol below. 14241 * 14242 * a Mark the ipif as IPIF_CHANGING. 14243 * b Set the new mtu in the ipif. 14244 * c Change the ire_max_frag on all affected ires 14245 * d Unmark the IPIF_CHANGING 14246 * 14247 * To see how the protocol works, assume an interface 14248 * route is also being added simultaneously by 14249 * ip_rt_add and let 'ipif' be the ipif referenced by 14250 * the ire. If the ire is created before step a, 14251 * it will be cleaned up by step c. If the ire is 14252 * created after step d, it will see the new value of 14253 * ipif_mtu. Any attempt to create the ire between 14254 * steps a to d will fail because of the IPIF_CHANGING 14255 * flag. Note that ire_create() is passed a pointer to 14256 * the ipif_mtu, and not the value. During ire_add 14257 * under the bucket lock, the ire_max_frag of the 14258 * new ire being created is set from the ipif/ire from 14259 * which it is being derived. 14260 */ 14261 mutex_enter(&ill->ill_lock); 14262 ill->ill_max_frag = (uint_t)notify->dl_data; 14263 14264 /* 14265 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 14266 * leave it alone 14267 */ 14268 if (ill->ill_mtu_userspecified) { 14269 mutex_exit(&ill->ill_lock); 14270 break; 14271 } 14272 ill->ill_max_mtu = ill->ill_max_frag; 14273 if (ill->ill_isv6) { 14274 if (ill->ill_max_mtu < IPV6_MIN_MTU) 14275 ill->ill_max_mtu = IPV6_MIN_MTU; 14276 } else { 14277 if (ill->ill_max_mtu < IP_MIN_MTU) 14278 ill->ill_max_mtu = IP_MIN_MTU; 14279 } 14280 for (ipif = ill->ill_ipif; ipif != NULL; 14281 ipif = ipif->ipif_next) { 14282 /* 14283 * Don't override the mtu if the user 14284 * has explicitly set it. 14285 */ 14286 if (ipif->ipif_flags & IPIF_FIXEDMTU) 14287 continue; 14288 ipif->ipif_mtu = (uint_t)notify->dl_data; 14289 if (ipif->ipif_isv6) 14290 ire = ipif_to_ire_v6(ipif); 14291 else 14292 ire = ipif_to_ire(ipif); 14293 if (ire != NULL) { 14294 ire->ire_max_frag = ipif->ipif_mtu; 14295 ire_refrele(ire); 14296 } 14297 if (ipif->ipif_flags & IPIF_UP) { 14298 if (ill->ill_isv6) 14299 need_ire_walk_v6 = B_TRUE; 14300 else 14301 need_ire_walk_v4 = B_TRUE; 14302 } 14303 } 14304 mutex_exit(&ill->ill_lock); 14305 if (need_ire_walk_v4) 14306 ire_walk_v4(ill_mtu_change, (char *)ill, 14307 ALL_ZONES); 14308 if (need_ire_walk_v6) 14309 ire_walk_v6(ill_mtu_change, (char *)ill, 14310 ALL_ZONES); 14311 break; 14312 case DL_NOTE_LINK_UP: 14313 case DL_NOTE_LINK_DOWN: { 14314 /* 14315 * We are writer. ill / phyint / ipsq assocs stable. 14316 * The RUNNING flag reflects the state of the link. 14317 */ 14318 phyint_t *phyint = ill->ill_phyint; 14319 uint64_t new_phyint_flags; 14320 boolean_t changed = B_FALSE; 14321 14322 mutex_enter(&phyint->phyint_lock); 14323 new_phyint_flags = 14324 (notify->dl_notification == DL_NOTE_LINK_UP) ? 14325 phyint->phyint_flags | PHYI_RUNNING : 14326 phyint->phyint_flags & ~PHYI_RUNNING; 14327 if (new_phyint_flags != phyint->phyint_flags) { 14328 phyint->phyint_flags = new_phyint_flags; 14329 changed = B_TRUE; 14330 } 14331 mutex_exit(&phyint->phyint_lock); 14332 /* 14333 * If the flags have changed, send a message to 14334 * the routing socket. 14335 */ 14336 if (changed) { 14337 if (phyint->phyint_illv4 != NULL) { 14338 ip_rts_ifmsg( 14339 phyint->phyint_illv4->ill_ipif); 14340 } 14341 if (phyint->phyint_illv6 != NULL) { 14342 ip_rts_ifmsg( 14343 phyint->phyint_illv6->ill_ipif); 14344 } 14345 } 14346 break; 14347 } 14348 case DL_NOTE_PROMISC_ON_PHYS: 14349 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14350 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 14351 mutex_enter(&ill->ill_lock); 14352 ill->ill_promisc_on_phys = B_TRUE; 14353 mutex_exit(&ill->ill_lock); 14354 break; 14355 case DL_NOTE_PROMISC_OFF_PHYS: 14356 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14357 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 14358 mutex_enter(&ill->ill_lock); 14359 ill->ill_promisc_on_phys = B_FALSE; 14360 mutex_exit(&ill->ill_lock); 14361 break; 14362 case DL_NOTE_CAPAB_RENEG: 14363 /* 14364 * Something changed on the driver side. 14365 * It wants us to renegotiate the capabilities 14366 * on this ill. The most likely cause is the 14367 * aggregation interface under us where a 14368 * port got added or went away. 14369 * 14370 * We reset the capabilities and set the 14371 * state to IDMS_RENG so that when the ack 14372 * comes back, we can start the 14373 * renegotiation process. 14374 */ 14375 ill_capability_reset(ill); 14376 ill->ill_capab_state = IDMS_RENEG; 14377 break; 14378 default: 14379 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 14380 "type 0x%x for DL_NOTIFY_IND\n", 14381 notify->dl_notification)); 14382 break; 14383 } 14384 14385 /* 14386 * As this is an asynchronous operation, we 14387 * should not call ill_dlpi_done 14388 */ 14389 break; 14390 } 14391 case DL_NOTIFY_ACK: 14392 /* 14393 * Don't really need to check for what notifications 14394 * are supported; we'll process what gets sent upstream, 14395 * and we know it'll be something we support changing 14396 * based on our DL_NOTIFY_REQ. 14397 */ 14398 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14399 break; 14400 case DL_PHYS_ADDR_ACK: { 14401 /* 14402 * We should have an IOCTL waiting on this when request 14403 * sent by ill_dl_phys. 14404 * However, ill_dl_phys was called on an ill queue (from 14405 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 14406 * ioctl is known to be pending on ill_wq. 14407 * There are two additional phys_addr_req's sent to the 14408 * driver to get the token and lla. ill_phys_addr_pend 14409 * keeps track of the last one sent so we know which 14410 * response we are dealing with. ill_dlpi_done will 14411 * update ill_phys_addr_pend when it sends the next req. 14412 * We don't complete the IOCTL until all three DL_PARs 14413 * have been attempted. 14414 * 14415 * We don't need any lock to update ill_nd_lla* fields, 14416 * since the ill is not yet up, We grab the lock just 14417 * for uniformity with other code that accesses ill_nd_lla. 14418 */ 14419 physaddr_req = ill->ill_phys_addr_pend; 14420 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14421 if (physaddr_req == DL_IPV6_TOKEN || 14422 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14423 if (physaddr_req == DL_IPV6_TOKEN) { 14424 /* 14425 * bcopy to low-order bits of ill_token 14426 * 14427 * XXX Temporary hack - currently, 14428 * all known tokens are 64 bits, 14429 * so I'll cheat for the moment. 14430 */ 14431 dlp = (union DL_primitives *)mp->b_rptr; 14432 14433 mutex_enter(&ill->ill_lock); 14434 bcopy((uchar_t *)(mp->b_rptr + 14435 dlp->physaddr_ack.dl_addr_offset), 14436 (void *)&ill->ill_token.s6_addr32[2], 14437 dlp->physaddr_ack.dl_addr_length); 14438 ill->ill_token_length = 14439 dlp->physaddr_ack.dl_addr_length; 14440 mutex_exit(&ill->ill_lock); 14441 } else { 14442 ASSERT(ill->ill_nd_lla_mp == NULL); 14443 mp_hw = copyb(mp); 14444 if (mp_hw == NULL) { 14445 err = ENOMEM; 14446 break; 14447 } 14448 dlp = (union DL_primitives *)mp_hw->b_rptr; 14449 mutex_enter(&ill->ill_lock); 14450 ill->ill_nd_lla_mp = mp_hw; 14451 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14452 dlp->physaddr_ack.dl_addr_offset; 14453 ill->ill_nd_lla_len = 14454 dlp->physaddr_ack.dl_addr_length; 14455 mutex_exit(&ill->ill_lock); 14456 } 14457 break; 14458 } 14459 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 14460 ASSERT(ill->ill_phys_addr_mp == NULL); 14461 if (!ill->ill_ifname_pending) 14462 break; 14463 ill->ill_ifname_pending = 0; 14464 if (!ioctl_aborted) 14465 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14466 if (mp1 != NULL) { 14467 ASSERT(connp == NULL); 14468 q = ill->ill_wq; 14469 } 14470 /* 14471 * If any error acks received during the plumbing sequence, 14472 * ill_ifname_pending_err will be set. Break out and send up 14473 * the error to the pending ioctl. 14474 */ 14475 if (ill->ill_ifname_pending_err != 0) { 14476 err = ill->ill_ifname_pending_err; 14477 ill->ill_ifname_pending_err = 0; 14478 break; 14479 } 14480 /* 14481 * Get the interface token. If the zeroth interface 14482 * address is zero then set the address to the link local 14483 * address 14484 */ 14485 mp_hw = copyb(mp); 14486 if (mp_hw == NULL) { 14487 err = ENOMEM; 14488 break; 14489 } 14490 dlp = (union DL_primitives *)mp_hw->b_rptr; 14491 ill->ill_phys_addr_mp = mp_hw; 14492 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14493 dlp->physaddr_ack.dl_addr_offset; 14494 if (dlp->physaddr_ack.dl_addr_length == 0 || 14495 ill->ill_phys_addr_length == 0 || 14496 ill->ill_phys_addr_length == IP_ADDR_LEN) { 14497 /* 14498 * Compatibility: atun driver returns a length of 0. 14499 * ipdptp has an ill_phys_addr_length of zero(from 14500 * DL_BIND_ACK) but a non-zero length here. 14501 * ipd has an ill_phys_addr_length of 4(from 14502 * DL_BIND_ACK) but a non-zero length here. 14503 */ 14504 ill->ill_phys_addr = NULL; 14505 } else if (dlp->physaddr_ack.dl_addr_length != 14506 ill->ill_phys_addr_length) { 14507 ip0dbg(("DL_PHYS_ADDR_ACK: " 14508 "Address length mismatch %d %d\n", 14509 dlp->physaddr_ack.dl_addr_length, 14510 ill->ill_phys_addr_length)); 14511 err = EINVAL; 14512 break; 14513 } 14514 mutex_enter(&ill->ill_lock); 14515 if (ill->ill_nd_lla_mp == NULL) { 14516 ill->ill_nd_lla_mp = copyb(mp_hw); 14517 if (ill->ill_nd_lla_mp == NULL) { 14518 err = ENOMEM; 14519 mutex_exit(&ill->ill_lock); 14520 break; 14521 } 14522 ill->ill_nd_lla = 14523 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 14524 dlp->physaddr_ack.dl_addr_offset; 14525 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 14526 } 14527 mutex_exit(&ill->ill_lock); 14528 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 14529 (void) ill_setdefaulttoken(ill); 14530 14531 /* 14532 * If the ill zero interface has a zero address assign 14533 * it the proper link local address. 14534 */ 14535 ASSERT(ill->ill_ipif->ipif_id == 0); 14536 if (ipif != NULL && 14537 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14538 (void) ipif_setlinklocal(ipif); 14539 break; 14540 } 14541 case DL_OK_ACK: 14542 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 14543 dlpi_prim_str((int)dloa->dl_correct_primitive), 14544 dloa->dl_correct_primitive)); 14545 switch (dloa->dl_correct_primitive) { 14546 case DL_UNBIND_REQ: 14547 case DL_ATTACH_REQ: 14548 case DL_DETACH_REQ: 14549 ill_dlpi_done(ill, dloa->dl_correct_primitive); 14550 break; 14551 } 14552 break; 14553 default: 14554 break; 14555 } 14556 14557 freemsg(mp); 14558 if (mp1) { 14559 struct iocblk *iocp; 14560 int mode; 14561 14562 /* 14563 * Complete the waiting IOCTL. For SIOCLIFADDIF or 14564 * SIOCSLIFNAME do a copyout. 14565 */ 14566 iocp = (struct iocblk *)mp1->b_rptr; 14567 14568 if (iocp->ioc_cmd == SIOCLIFADDIF || 14569 iocp->ioc_cmd == SIOCSLIFNAME) 14570 mode = COPYOUT; 14571 else 14572 mode = NO_COPYOUT; 14573 /* 14574 * The ioctl must complete now without EINPROGRESS 14575 * since ipsq_pending_mp_get has removed the ioctl mblk 14576 * from ipsq_pending_mp. Otherwise the ioctl will be 14577 * stuck for ever in the ipsq. 14578 */ 14579 ASSERT(err != EINPROGRESS); 14580 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 14581 14582 } 14583 } 14584 14585 /* 14586 * ip_rput_other is called by ip_rput to handle messages modifying the global 14587 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 14588 */ 14589 /* ARGSUSED */ 14590 void 14591 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14592 { 14593 ill_t *ill; 14594 struct iocblk *iocp; 14595 mblk_t *mp1; 14596 conn_t *connp = NULL; 14597 14598 ip1dbg(("ip_rput_other ")); 14599 ill = (ill_t *)q->q_ptr; 14600 /* 14601 * This routine is not a writer in the case of SIOCGTUNPARAM 14602 * in which case ipsq is NULL. 14603 */ 14604 if (ipsq != NULL) { 14605 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14606 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14607 } 14608 14609 switch (mp->b_datap->db_type) { 14610 case M_ERROR: 14611 case M_HANGUP: 14612 /* 14613 * The device has a problem. We force the ILL down. It can 14614 * be brought up again manually using SIOCSIFFLAGS (via 14615 * ifconfig or equivalent). 14616 */ 14617 ASSERT(ipsq != NULL); 14618 if (mp->b_rptr < mp->b_wptr) 14619 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 14620 if (ill->ill_error == 0) 14621 ill->ill_error = ENXIO; 14622 if (!ill_down_start(q, mp)) 14623 return; 14624 ipif_all_down_tail(ipsq, q, mp, NULL); 14625 break; 14626 case M_IOCACK: 14627 iocp = (struct iocblk *)mp->b_rptr; 14628 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 14629 switch (iocp->ioc_cmd) { 14630 case SIOCSTUNPARAM: 14631 case OSIOCSTUNPARAM: 14632 ASSERT(ipsq != NULL); 14633 /* 14634 * Finish socket ioctl passed through to tun. 14635 * We should have an IOCTL waiting on this. 14636 */ 14637 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14638 if (ill->ill_isv6) { 14639 struct iftun_req *ta; 14640 14641 /* 14642 * if a source or destination is 14643 * being set, try and set the link 14644 * local address for the tunnel 14645 */ 14646 ta = (struct iftun_req *)mp->b_cont-> 14647 b_cont->b_rptr; 14648 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 14649 ipif_set_tun_llink(ill, ta); 14650 } 14651 14652 } 14653 if (mp1 != NULL) { 14654 /* 14655 * Now copy back the b_next/b_prev used by 14656 * mi code for the mi_copy* functions. 14657 * See ip_sioctl_tunparam() for the reason. 14658 * Also protect against missing b_cont. 14659 */ 14660 if (mp->b_cont != NULL) { 14661 mp->b_cont->b_next = 14662 mp1->b_cont->b_next; 14663 mp->b_cont->b_prev = 14664 mp1->b_cont->b_prev; 14665 } 14666 inet_freemsg(mp1); 14667 ASSERT(ipsq->ipsq_current_ipif != NULL); 14668 ASSERT(connp != NULL); 14669 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14670 iocp->ioc_error, NO_COPYOUT, 14671 ipsq->ipsq_current_ipif, ipsq); 14672 } else { 14673 ASSERT(connp == NULL); 14674 putnext(q, mp); 14675 } 14676 break; 14677 case SIOCGTUNPARAM: 14678 case OSIOCGTUNPARAM: 14679 /* 14680 * This is really M_IOCDATA from the tunnel driver. 14681 * convert back and complete the ioctl. 14682 * We should have an IOCTL waiting on this. 14683 */ 14684 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 14685 if (mp1) { 14686 /* 14687 * Now copy back the b_next/b_prev used by 14688 * mi code for the mi_copy* functions. 14689 * See ip_sioctl_tunparam() for the reason. 14690 * Also protect against missing b_cont. 14691 */ 14692 if (mp->b_cont != NULL) { 14693 mp->b_cont->b_next = 14694 mp1->b_cont->b_next; 14695 mp->b_cont->b_prev = 14696 mp1->b_cont->b_prev; 14697 } 14698 inet_freemsg(mp1); 14699 if (iocp->ioc_error == 0) 14700 mp->b_datap->db_type = M_IOCDATA; 14701 ASSERT(connp != NULL); 14702 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14703 iocp->ioc_error, COPYOUT, NULL, NULL); 14704 } else { 14705 ASSERT(connp == NULL); 14706 putnext(q, mp); 14707 } 14708 break; 14709 default: 14710 break; 14711 } 14712 break; 14713 case M_IOCNAK: 14714 iocp = (struct iocblk *)mp->b_rptr; 14715 14716 switch (iocp->ioc_cmd) { 14717 int mode; 14718 ipif_t *ipif; 14719 14720 case DL_IOC_HDR_INFO: 14721 /* 14722 * If this was the first attempt turn of the 14723 * fastpath probing. 14724 */ 14725 mutex_enter(&ill->ill_lock); 14726 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 14727 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 14728 mutex_exit(&ill->ill_lock); 14729 ill_fastpath_nack(ill); 14730 ip1dbg(("ip_rput: DLPI fastpath off on " 14731 "interface %s\n", 14732 ill->ill_name)); 14733 } else { 14734 mutex_exit(&ill->ill_lock); 14735 } 14736 freemsg(mp); 14737 break; 14738 case SIOCSTUNPARAM: 14739 case OSIOCSTUNPARAM: 14740 ASSERT(ipsq != NULL); 14741 /* 14742 * Finish socket ioctl passed through to tun 14743 * We should have an IOCTL waiting on this. 14744 */ 14745 /* FALLTHRU */ 14746 case SIOCGTUNPARAM: 14747 case OSIOCGTUNPARAM: 14748 /* 14749 * This is really M_IOCDATA from the tunnel driver. 14750 * convert back and complete the ioctl. 14751 * We should have an IOCTL waiting on this. 14752 */ 14753 if (iocp->ioc_cmd == SIOCGTUNPARAM || 14754 iocp->ioc_cmd == OSIOCGTUNPARAM) { 14755 mp1 = ill_pending_mp_get(ill, &connp, 14756 iocp->ioc_id); 14757 mode = COPYOUT; 14758 ipsq = NULL; 14759 ipif = NULL; 14760 } else { 14761 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14762 mode = NO_COPYOUT; 14763 ASSERT(ipsq->ipsq_current_ipif != NULL); 14764 ipif = ipsq->ipsq_current_ipif; 14765 } 14766 if (mp1 != NULL) { 14767 /* 14768 * Now copy back the b_next/b_prev used by 14769 * mi code for the mi_copy* functions. 14770 * See ip_sioctl_tunparam() for the reason. 14771 * Also protect against missing b_cont. 14772 */ 14773 if (mp->b_cont != NULL) { 14774 mp->b_cont->b_next = 14775 mp1->b_cont->b_next; 14776 mp->b_cont->b_prev = 14777 mp1->b_cont->b_prev; 14778 } 14779 inet_freemsg(mp1); 14780 if (iocp->ioc_error == 0) 14781 iocp->ioc_error = EINVAL; 14782 ASSERT(connp != NULL); 14783 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14784 iocp->ioc_error, mode, ipif, ipsq); 14785 } else { 14786 ASSERT(connp == NULL); 14787 putnext(q, mp); 14788 } 14789 break; 14790 default: 14791 break; 14792 } 14793 default: 14794 break; 14795 } 14796 } 14797 14798 /* 14799 * NOTE : This function does not ire_refrele the ire argument passed in. 14800 * 14801 * IPQoS notes 14802 * IP policy is invoked twice for a forwarded packet, once on the read side 14803 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 14804 * enabled. An additional parameter, in_ill, has been added for this purpose. 14805 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 14806 * because ip_mroute drops this information. 14807 * 14808 */ 14809 void 14810 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 14811 { 14812 uint32_t pkt_len; 14813 queue_t *q; 14814 uint32_t sum; 14815 #define rptr ((uchar_t *)ipha) 14816 uint32_t max_frag; 14817 uint32_t ill_index; 14818 14819 /* Get the ill_index of the incoming ILL */ 14820 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 14821 14822 /* Initiate Read side IPPF processing */ 14823 if (IPP_ENABLED(IPP_FWD_IN)) { 14824 ip_process(IPP_FWD_IN, &mp, ill_index); 14825 if (mp == NULL) { 14826 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 14827 "during IPPF processing\n")); 14828 return; 14829 } 14830 } 14831 pkt_len = ntohs(ipha->ipha_length); 14832 14833 /* Adjust the checksum to reflect the ttl decrement. */ 14834 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14835 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14836 14837 if (ipha->ipha_ttl-- <= 1) { 14838 if (ip_csum_hdr(ipha)) { 14839 BUMP_MIB(&ip_mib, ipInCksumErrs); 14840 goto drop_pkt; 14841 } 14842 /* 14843 * Note: ire_stq this will be NULL for multicast 14844 * datagrams using the long path through arp (the IRE 14845 * is not an IRE_CACHE). This should not cause 14846 * problems since we don't generate ICMP errors for 14847 * multicast packets. 14848 */ 14849 q = ire->ire_stq; 14850 if (q) 14851 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 14852 else 14853 freemsg(mp); 14854 return; 14855 } 14856 14857 /* 14858 * Don't forward if the interface is down 14859 */ 14860 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 14861 BUMP_MIB(&ip_mib, ipInDiscards); 14862 goto drop_pkt; 14863 } 14864 14865 /* Get the ill_index of the outgoing ILL */ 14866 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 14867 14868 /* Check if there are options to update */ 14869 if (!IS_SIMPLE_IPH(ipha)) { 14870 if (ip_csum_hdr(ipha)) { 14871 BUMP_MIB(&ip_mib, ipInCksumErrs); 14872 goto drop_pkt; 14873 } 14874 if (ip_rput_forward_options(mp, ipha, ire)) { 14875 return; 14876 } 14877 14878 ipha->ipha_hdr_checksum = 0; 14879 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14880 } 14881 max_frag = ire->ire_max_frag; 14882 if (pkt_len > max_frag) { 14883 /* 14884 * It needs fragging on its way out. We haven't 14885 * verified the header checksum yet. Since we 14886 * are going to put a surely good checksum in the 14887 * outgoing header, we have to make sure that it 14888 * was good coming in. 14889 */ 14890 if (ip_csum_hdr(ipha)) { 14891 BUMP_MIB(&ip_mib, ipInCksumErrs); 14892 goto drop_pkt; 14893 } 14894 /* Initiate Write side IPPF processing */ 14895 if (IPP_ENABLED(IPP_FWD_OUT)) { 14896 ip_process(IPP_FWD_OUT, &mp, ill_index); 14897 if (mp == NULL) { 14898 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 14899 " during IPPF processing\n")); 14900 return; 14901 } 14902 } 14903 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 14904 return; 14905 } 14906 14907 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 14908 if (mp == NULL) { 14909 BUMP_MIB(&ip_mib, ipInDiscards); 14910 return; 14911 } 14912 14913 q = ire->ire_stq; 14914 UPDATE_IB_PKT_COUNT(ire); 14915 ire->ire_last_used_time = lbolt; 14916 BUMP_MIB(&ip_mib, ipForwDatagrams); 14917 putnext(q, mp); 14918 return; 14919 14920 drop_pkt:; 14921 ip1dbg(("ip_rput_forward: drop pkt\n")); 14922 freemsg(mp); 14923 #undef rptr 14924 } 14925 14926 void 14927 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 14928 { 14929 ire_t *ire; 14930 14931 ASSERT(!ipif->ipif_isv6); 14932 /* 14933 * Find an IRE which matches the destination and the outgoing 14934 * queue in the cache table. All we need is an IRE_CACHE which 14935 * is pointing at ipif->ipif_ill. If it is part of some ill group, 14936 * then it is enough to have some IRE_CACHE in the group. 14937 */ 14938 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14939 dst = ipif->ipif_pp_dst_addr; 14940 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, 14941 MATCH_IRE_ILL_GROUP); 14942 if (!ire) { 14943 /* 14944 * Mark this packet to make it be delivered to 14945 * ip_rput_forward after the new ire has been 14946 * created. 14947 */ 14948 mp->b_prev = NULL; 14949 mp->b_next = mp; 14950 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 14951 NULL, 0); 14952 } else { 14953 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 14954 IRE_REFRELE(ire); 14955 } 14956 } 14957 14958 /* Update any source route, record route or timestamp options */ 14959 static int 14960 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 14961 { 14962 ipoptp_t opts; 14963 uchar_t *opt; 14964 uint8_t optval; 14965 uint8_t optlen; 14966 ipaddr_t dst; 14967 uint32_t ts; 14968 ire_t *dst_ire = NULL; 14969 ire_t *tmp_ire = NULL; 14970 timestruc_t now; 14971 14972 ip2dbg(("ip_rput_forward_options\n")); 14973 dst = ipha->ipha_dst; 14974 for (optval = ipoptp_first(&opts, ipha); 14975 optval != IPOPT_EOL; 14976 optval = ipoptp_next(&opts)) { 14977 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 14978 opt = opts.ipoptp_cur; 14979 optlen = opts.ipoptp_len; 14980 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 14981 optval, opts.ipoptp_len)); 14982 switch (optval) { 14983 uint32_t off; 14984 case IPOPT_SSRR: 14985 case IPOPT_LSRR: 14986 /* Check if adminstratively disabled */ 14987 if (!ip_forward_src_routed) { 14988 BUMP_MIB(&ip_mib, ipForwProhibits); 14989 if (ire->ire_stq) 14990 icmp_unreachable(ire->ire_stq, mp, 14991 ICMP_SOURCE_ROUTE_FAILED); 14992 else { 14993 ip0dbg(("ip_rput_forward_options: " 14994 "unable to send unreach\n")); 14995 freemsg(mp); 14996 } 14997 return (-1); 14998 } 14999 15000 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15001 NULL, ALL_ZONES, MATCH_IRE_TYPE); 15002 if (dst_ire == NULL) { 15003 /* 15004 * Must be partial since ip_rput_options 15005 * checked for strict. 15006 */ 15007 break; 15008 } 15009 off = opt[IPOPT_OFFSET]; 15010 off--; 15011 redo_srr: 15012 if (optlen < IP_ADDR_LEN || 15013 off > optlen - IP_ADDR_LEN) { 15014 /* End of source route */ 15015 ip1dbg(( 15016 "ip_rput_forward_options: end of SR\n")); 15017 ire_refrele(dst_ire); 15018 break; 15019 } 15020 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15021 bcopy(&ire->ire_src_addr, (char *)opt + off, 15022 IP_ADDR_LEN); 15023 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 15024 ntohl(dst))); 15025 15026 /* 15027 * Check if our address is present more than 15028 * once as consecutive hops in source route. 15029 */ 15030 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15031 NULL, ALL_ZONES, MATCH_IRE_TYPE); 15032 if (tmp_ire != NULL) { 15033 ire_refrele(tmp_ire); 15034 off += IP_ADDR_LEN; 15035 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15036 goto redo_srr; 15037 } 15038 ipha->ipha_dst = dst; 15039 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15040 ire_refrele(dst_ire); 15041 break; 15042 case IPOPT_RR: 15043 off = opt[IPOPT_OFFSET]; 15044 off--; 15045 if (optlen < IP_ADDR_LEN || 15046 off > optlen - IP_ADDR_LEN) { 15047 /* No more room - ignore */ 15048 ip1dbg(( 15049 "ip_rput_forward_options: end of RR\n")); 15050 break; 15051 } 15052 bcopy(&ire->ire_src_addr, (char *)opt + off, 15053 IP_ADDR_LEN); 15054 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15055 break; 15056 case IPOPT_TS: 15057 /* Insert timestamp if there is room */ 15058 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15059 case IPOPT_TS_TSONLY: 15060 off = IPOPT_TS_TIMELEN; 15061 break; 15062 case IPOPT_TS_PRESPEC: 15063 case IPOPT_TS_PRESPEC_RFC791: 15064 /* Verify that the address matched */ 15065 off = opt[IPOPT_OFFSET] - 1; 15066 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15067 dst_ire = ire_ctable_lookup(dst, 0, 15068 IRE_LOCAL, NULL, ALL_ZONES, MATCH_IRE_TYPE); 15069 if (dst_ire == NULL) { 15070 /* Not for us */ 15071 break; 15072 } 15073 ire_refrele(dst_ire); 15074 /* FALLTHRU */ 15075 case IPOPT_TS_TSANDADDR: 15076 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15077 break; 15078 default: 15079 /* 15080 * ip_*put_options should have already 15081 * dropped this packet. 15082 */ 15083 cmn_err(CE_PANIC, "ip_rput_forward_options: " 15084 "unknown IT - bug in ip_rput_options?\n"); 15085 return (0); /* Keep "lint" happy */ 15086 } 15087 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15088 /* Increase overflow counter */ 15089 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15090 opt[IPOPT_POS_OV_FLG] = 15091 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15092 (off << 4)); 15093 break; 15094 } 15095 off = opt[IPOPT_OFFSET] - 1; 15096 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15097 case IPOPT_TS_PRESPEC: 15098 case IPOPT_TS_PRESPEC_RFC791: 15099 case IPOPT_TS_TSANDADDR: 15100 bcopy(&ire->ire_src_addr, 15101 (char *)opt + off, IP_ADDR_LEN); 15102 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15103 /* FALLTHRU */ 15104 case IPOPT_TS_TSONLY: 15105 off = opt[IPOPT_OFFSET] - 1; 15106 /* Compute # of milliseconds since midnight */ 15107 gethrestime(&now); 15108 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 15109 now.tv_nsec / (NANOSEC / MILLISEC); 15110 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 15111 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 15112 break; 15113 } 15114 break; 15115 } 15116 } 15117 return (0); 15118 } 15119 15120 /* 15121 * This is called after processing at least one of AH/ESP headers. 15122 * 15123 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 15124 * the actual, physical interface on which the packet was received, 15125 * but, when ip_strict_dst_multihoming is set to 1, could be the 15126 * interface which had the ipha_dst configured when the packet went 15127 * through ip_rput. The ill_index corresponding to the recv_ill 15128 * is saved in ipsec_in_rill_index 15129 */ 15130 void 15131 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 15132 { 15133 mblk_t *mp; 15134 ipaddr_t dst; 15135 in6_addr_t *v6dstp; 15136 ipha_t *ipha; 15137 ip6_t *ip6h; 15138 ipsec_in_t *ii; 15139 boolean_t ill_need_rele = B_FALSE; 15140 boolean_t rill_need_rele = B_FALSE; 15141 boolean_t ire_need_rele = B_FALSE; 15142 15143 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 15144 ASSERT(ii->ipsec_in_ill_index != 0); 15145 15146 mp = ipsec_mp->b_cont; 15147 ASSERT(mp != NULL); 15148 15149 15150 if (ill == NULL) { 15151 ASSERT(recv_ill == NULL); 15152 /* 15153 * We need to get the original queue on which ip_rput_local 15154 * or ip_rput_data_v6 was called. 15155 */ 15156 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 15157 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 15158 ill_need_rele = B_TRUE; 15159 15160 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 15161 recv_ill = ill_lookup_on_ifindex( 15162 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 15163 NULL, NULL, NULL, NULL); 15164 rill_need_rele = B_TRUE; 15165 } else { 15166 recv_ill = ill; 15167 } 15168 15169 if ((ill == NULL) || (recv_ill == NULL)) { 15170 ip0dbg(("ip_fanout_proto_again: interface " 15171 "disappeared\n")); 15172 if (ill != NULL) 15173 ill_refrele(ill); 15174 if (recv_ill != NULL) 15175 ill_refrele(recv_ill); 15176 freemsg(ipsec_mp); 15177 return; 15178 } 15179 } 15180 15181 ASSERT(ill != NULL && recv_ill != NULL); 15182 15183 if (mp->b_datap->db_type == M_CTL) { 15184 /* 15185 * AH/ESP is returning the ICMP message after 15186 * removing their headers. Fanout again till 15187 * it gets to the right protocol. 15188 */ 15189 if (ii->ipsec_in_v4) { 15190 icmph_t *icmph; 15191 int iph_hdr_length; 15192 int hdr_length; 15193 15194 ipha = (ipha_t *)mp->b_rptr; 15195 iph_hdr_length = IPH_HDR_LENGTH(ipha); 15196 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 15197 ipha = (ipha_t *)&icmph[1]; 15198 hdr_length = IPH_HDR_LENGTH(ipha); 15199 /* 15200 * icmp_inbound_error_fanout may need to do pullupmsg. 15201 * Reset the type to M_DATA. 15202 */ 15203 mp->b_datap->db_type = M_DATA; 15204 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 15205 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 15206 B_FALSE, ill, ii->ipsec_in_zoneid); 15207 } else { 15208 icmp6_t *icmp6; 15209 int hdr_length; 15210 15211 ip6h = (ip6_t *)mp->b_rptr; 15212 /* Don't call hdr_length_v6() unless you have to. */ 15213 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 15214 hdr_length = ip_hdr_length_v6(mp, ip6h); 15215 else 15216 hdr_length = IPV6_HDR_LEN; 15217 15218 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 15219 /* 15220 * icmp_inbound_error_fanout_v6 may need to do 15221 * pullupmsg. Reset the type to M_DATA. 15222 */ 15223 mp->b_datap->db_type = M_DATA; 15224 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 15225 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 15226 } 15227 if (ill_need_rele) 15228 ill_refrele(ill); 15229 if (rill_need_rele) 15230 ill_refrele(recv_ill); 15231 return; 15232 } 15233 15234 if (ii->ipsec_in_v4) { 15235 ipha = (ipha_t *)mp->b_rptr; 15236 dst = ipha->ipha_dst; 15237 if (CLASSD(dst)) { 15238 /* 15239 * Multicast has to be delivered to all streams. 15240 */ 15241 dst = INADDR_BROADCAST; 15242 } 15243 15244 if (ire == NULL) { 15245 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid); 15246 if (ire == NULL) { 15247 if (ill_need_rele) 15248 ill_refrele(ill); 15249 if (rill_need_rele) 15250 ill_refrele(recv_ill); 15251 ip1dbg(("ip_fanout_proto_again: " 15252 "IRE not found")); 15253 freemsg(ipsec_mp); 15254 return; 15255 } 15256 ire_need_rele = B_TRUE; 15257 } 15258 15259 switch (ipha->ipha_protocol) { 15260 case IPPROTO_UDP: 15261 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 15262 recv_ill); 15263 if (ire_need_rele) 15264 ire_refrele(ire); 15265 break; 15266 case IPPROTO_TCP: 15267 if (!ire_need_rele) 15268 IRE_REFHOLD(ire); 15269 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 15270 ire, ipsec_mp, 0, ill->ill_rq, NULL); 15271 IRE_REFRELE(ire); 15272 if (mp != NULL) 15273 squeue_enter_chain(GET_SQUEUE(mp), mp, 15274 mp, 1, SQTAG_IP_PROTO_AGAIN); 15275 break; 15276 case IPPROTO_SCTP: 15277 if (!ire_need_rele) 15278 IRE_REFHOLD(ire); 15279 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 15280 ipsec_mp, 0, ill->ill_rq, dst); 15281 break; 15282 default: 15283 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 15284 recv_ill); 15285 if (ire_need_rele) 15286 ire_refrele(ire); 15287 break; 15288 } 15289 } else { 15290 uint32_t rput_flags = 0; 15291 15292 ip6h = (ip6_t *)mp->b_rptr; 15293 v6dstp = &ip6h->ip6_dst; 15294 /* 15295 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 15296 * address. 15297 * 15298 * Currently, we don't store that state in the IPSEC_IN 15299 * message, and we may need to. 15300 */ 15301 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 15302 IP6_IN_LLMCAST : 0); 15303 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 15304 NULL); 15305 } 15306 if (ill_need_rele) 15307 ill_refrele(ill); 15308 if (rill_need_rele) 15309 ill_refrele(recv_ill); 15310 } 15311 15312 /* 15313 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 15314 * returns 'true' if there are still fragments left on the queue, in 15315 * which case we restart the timer. 15316 */ 15317 void 15318 ill_frag_timer(void *arg) 15319 { 15320 ill_t *ill = (ill_t *)arg; 15321 boolean_t frag_pending; 15322 15323 mutex_enter(&ill->ill_lock); 15324 ASSERT(!ill->ill_fragtimer_executing); 15325 if (ill->ill_state_flags & ILL_CONDEMNED) { 15326 ill->ill_frag_timer_id = 0; 15327 mutex_exit(&ill->ill_lock); 15328 return; 15329 } 15330 ill->ill_fragtimer_executing = 1; 15331 mutex_exit(&ill->ill_lock); 15332 15333 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 15334 15335 /* 15336 * Restart the timer, if we have fragments pending or if someone 15337 * wanted us to be scheduled again. 15338 */ 15339 mutex_enter(&ill->ill_lock); 15340 ill->ill_fragtimer_executing = 0; 15341 ill->ill_frag_timer_id = 0; 15342 if (frag_pending || ill->ill_fragtimer_needrestart) 15343 ill_frag_timer_start(ill); 15344 mutex_exit(&ill->ill_lock); 15345 } 15346 15347 void 15348 ill_frag_timer_start(ill_t *ill) 15349 { 15350 ASSERT(MUTEX_HELD(&ill->ill_lock)); 15351 15352 /* If the ill is closing or opening don't proceed */ 15353 if (ill->ill_state_flags & ILL_CONDEMNED) 15354 return; 15355 15356 if (ill->ill_fragtimer_executing) { 15357 /* 15358 * ill_frag_timer is currently executing. Just record the 15359 * the fact that we want the timer to be restarted. 15360 * ill_frag_timer will post a timeout before it returns, 15361 * ensuring it will be called again. 15362 */ 15363 ill->ill_fragtimer_needrestart = 1; 15364 return; 15365 } 15366 15367 if (ill->ill_frag_timer_id == 0) { 15368 /* 15369 * The timer is neither running nor is the timeout handler 15370 * executing. Post a timeout so that ill_frag_timer will be 15371 * called 15372 */ 15373 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 15374 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 15375 ill->ill_fragtimer_needrestart = 0; 15376 } 15377 } 15378 15379 /* 15380 * This routine is needed for loopback when forwarding multicasts. 15381 * 15382 * IPQoS Notes: 15383 * IPPF processing is done in fanout routines. 15384 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 15385 * processing for IPSec packets is done when it comes back in clear. 15386 * NOTE : The callers of this function need to do the ire_refrele for the 15387 * ire that is being passed in. 15388 */ 15389 void 15390 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 15391 ill_t *recv_ill) 15392 { 15393 ill_t *ill = (ill_t *)q->q_ptr; 15394 uint32_t sum; 15395 uint32_t u1; 15396 uint32_t u2; 15397 int hdr_length; 15398 boolean_t mctl_present; 15399 mblk_t *first_mp = mp; 15400 mblk_t *hada_mp = NULL; 15401 ipha_t *inner_ipha; 15402 15403 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 15404 "ip_rput_locl_start: q %p", q); 15405 15406 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15407 15408 15409 #define rptr ((uchar_t *)ipha) 15410 #define iphs ((uint16_t *)ipha) 15411 15412 /* 15413 * no UDP or TCP packet should come here anymore. 15414 */ 15415 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 15416 (ipha->ipha_protocol != IPPROTO_UDP)); 15417 15418 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 15419 if (mctl_present && 15420 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 15421 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 15422 15423 /* 15424 * It's an IPsec accelerated packet. 15425 * Keep a pointer to the data attributes around until 15426 * we allocate the ipsec_info_t. 15427 */ 15428 IPSECHW_DEBUG(IPSECHW_PKT, 15429 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 15430 hada_mp = first_mp; 15431 hada_mp->b_cont = NULL; 15432 /* 15433 * Since it is accelerated, it comes directly from 15434 * the ill and the data attributes is followed by 15435 * the packet data. 15436 */ 15437 ASSERT(mp->b_datap->db_type != M_CTL); 15438 first_mp = mp; 15439 mctl_present = B_FALSE; 15440 } 15441 15442 /* 15443 * IF M_CTL is not present, then ipsec_in_is_secure 15444 * should return B_TRUE. There is a case where loopback 15445 * packets has an M_CTL in the front with all the 15446 * IPSEC options set to IPSEC_PREF_NEVER - which means 15447 * ipsec_in_is_secure will return B_FALSE. As loopback 15448 * packets never comes here, it is safe to ASSERT the 15449 * following. 15450 */ 15451 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 15452 15453 15454 /* u1 is # words of IP options */ 15455 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 15456 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 15457 15458 if (u1) { 15459 if (!ip_options_cksum(q, mp, ipha, ire)) { 15460 if (hada_mp != NULL) 15461 freemsg(hada_mp); 15462 return; 15463 } 15464 } else { 15465 /* Check the IP header checksum. */ 15466 #define uph ((uint16_t *)ipha) 15467 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 15468 uph[6] + uph[7] + uph[8] + uph[9]; 15469 #undef uph 15470 /* finish doing IP checksum */ 15471 sum = (sum & 0xFFFF) + (sum >> 16); 15472 sum = ~(sum + (sum >> 16)) & 0xFFFF; 15473 /* 15474 * Don't verify header checksum if this packet is coming 15475 * back from AH/ESP as we already did it. 15476 */ 15477 if (!mctl_present && (sum && sum != 0xFFFF)) { 15478 BUMP_MIB(&ip_mib, ipInCksumErrs); 15479 goto drop_pkt; 15480 } 15481 } 15482 15483 /* 15484 * Count for SNMP of inbound packets for ire. As ip_proto_input 15485 * might be called more than once for secure packets, count only 15486 * the first time. 15487 */ 15488 if (!mctl_present) { 15489 UPDATE_IB_PKT_COUNT(ire); 15490 ire->ire_last_used_time = lbolt; 15491 } 15492 15493 /* Check for fragmentation offset. */ 15494 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 15495 u1 = u2 & (IPH_MF | IPH_OFFSET); 15496 if (u1) { 15497 /* 15498 * We re-assemble fragments before we do the AH/ESP 15499 * processing. Thus, M_CTL should not be present 15500 * while we are re-assembling. 15501 */ 15502 ASSERT(!mctl_present); 15503 ASSERT(first_mp == mp); 15504 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 15505 return; 15506 } 15507 /* 15508 * Make sure that first_mp points back to mp as 15509 * the mp we came in with could have changed in 15510 * ip_rput_fragment(). 15511 */ 15512 ipha = (ipha_t *)mp->b_rptr; 15513 first_mp = mp; 15514 } 15515 15516 /* 15517 * Clear hardware checksumming flag as it is currently only 15518 * used by TCP and UDP. 15519 */ 15520 DB_CKSUMFLAGS(mp) = 0; 15521 15522 /* Now we have a complete datagram, destined for this machine. */ 15523 u1 = IPH_HDR_LENGTH(ipha); 15524 switch (ipha->ipha_protocol) { 15525 case IPPROTO_ICMP: { 15526 ire_t *ire_zone; 15527 ilm_t *ilm; 15528 mblk_t *mp1; 15529 zoneid_t last_zoneid; 15530 15531 if (CLASSD(ipha->ipha_dst) && 15532 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 15533 ASSERT(ire->ire_type == IRE_BROADCAST); 15534 /* 15535 * In the multicast case, applications may have joined 15536 * the group from different zones, so we need to deliver 15537 * the packet to each of them. Loop through the 15538 * multicast memberships structures (ilm) on the receive 15539 * ill and send a copy of the packet up each matching 15540 * one. However, we don't do this for multicasts sent on 15541 * the loopback interface (PHYI_LOOPBACK flag set) as 15542 * they must stay in the sender's zone. 15543 * 15544 * ilm_add_v6() ensures that ilms in the same zone are 15545 * contiguous in the ill_ilm list. We use this property 15546 * to avoid sending duplicates needed when two 15547 * applications in the same zone join the same group on 15548 * different logical interfaces: we ignore the ilm if 15549 * its zoneid is the same as the last matching one. 15550 * In addition, the sending of the packet for 15551 * ire_zoneid is delayed until all of the other ilms 15552 * have been exhausted. 15553 */ 15554 last_zoneid = -1; 15555 ILM_WALKER_HOLD(recv_ill); 15556 for (ilm = recv_ill->ill_ilm; ilm != NULL; 15557 ilm = ilm->ilm_next) { 15558 if ((ilm->ilm_flags & ILM_DELETED) || 15559 ipha->ipha_dst != ilm->ilm_addr || 15560 ilm->ilm_zoneid == last_zoneid || 15561 ilm->ilm_zoneid == ire->ire_zoneid || 15562 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 15563 continue; 15564 mp1 = ip_copymsg(first_mp); 15565 if (mp1 == NULL) 15566 continue; 15567 icmp_inbound(q, mp1, B_TRUE, ill, 15568 0, sum, mctl_present, B_TRUE, 15569 recv_ill, ilm->ilm_zoneid); 15570 last_zoneid = ilm->ilm_zoneid; 15571 } 15572 ILM_WALKER_RELE(recv_ill); 15573 } else if (ire->ire_type == IRE_BROADCAST) { 15574 /* 15575 * In the broadcast case, there may be many zones 15576 * which need a copy of the packet delivered to them. 15577 * There is one IRE_BROADCAST per broadcast address 15578 * and per zone; we walk those using a helper function. 15579 * In addition, the sending of the packet for ire is 15580 * delayed until all of the other ires have been 15581 * processed. 15582 */ 15583 IRB_REFHOLD(ire->ire_bucket); 15584 ire_zone = NULL; 15585 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 15586 ire)) != NULL) { 15587 mp1 = ip_copymsg(first_mp); 15588 if (mp1 == NULL) 15589 continue; 15590 15591 UPDATE_IB_PKT_COUNT(ire_zone); 15592 ire_zone->ire_last_used_time = lbolt; 15593 icmp_inbound(q, mp1, B_TRUE, ill, 15594 0, sum, mctl_present, B_TRUE, 15595 recv_ill, ire_zone->ire_zoneid); 15596 } 15597 IRB_REFRELE(ire->ire_bucket); 15598 } 15599 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 15600 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 15601 ire->ire_zoneid); 15602 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15603 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 15604 return; 15605 } 15606 case IPPROTO_IGMP: 15607 /* 15608 * If we are not willing to accept IGMP packets in clear, 15609 * then check with global policy. 15610 */ 15611 if (igmp_accept_clear_messages == 0) { 15612 first_mp = ipsec_check_global_policy(first_mp, NULL, 15613 ipha, NULL, mctl_present); 15614 if (first_mp == NULL) 15615 return; 15616 } 15617 if (igmp_input(q, mp, ill)) { 15618 /* Bad packet - discarded by igmp_input */ 15619 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15620 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 15621 if (mctl_present) 15622 freeb(first_mp); 15623 return; 15624 } 15625 /* 15626 * igmp_input() may have pulled up the message so ipha needs to 15627 * be reinitialized. 15628 */ 15629 ipha = (ipha_t *)mp->b_rptr; 15630 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15631 /* No user-level listener for IGMP packets */ 15632 goto drop_pkt; 15633 } 15634 /* deliver to local raw users */ 15635 break; 15636 case IPPROTO_PIM: 15637 /* 15638 * If we are not willing to accept PIM packets in clear, 15639 * then check with global policy. 15640 */ 15641 if (pim_accept_clear_messages == 0) { 15642 first_mp = ipsec_check_global_policy(first_mp, NULL, 15643 ipha, NULL, mctl_present); 15644 if (first_mp == NULL) 15645 return; 15646 } 15647 if (pim_input(q, mp) != 0) { 15648 /* Bad packet - discarded by pim_input */ 15649 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15650 "ip_rput_locl_end: q %p (%S)", q, "pim"); 15651 if (mctl_present) 15652 freeb(first_mp); 15653 return; 15654 } 15655 15656 /* 15657 * pim_input() may have pulled up the message so ipha needs to 15658 * be reinitialized. 15659 */ 15660 ipha = (ipha_t *)mp->b_rptr; 15661 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15662 /* No user-level listener for PIM packets */ 15663 goto drop_pkt; 15664 } 15665 /* deliver to local raw users */ 15666 break; 15667 case IPPROTO_ENCAP: 15668 /* 15669 * Handle self-encapsulated packets (IP-in-IP where 15670 * the inner addresses == the outer addresses). 15671 */ 15672 hdr_length = IPH_HDR_LENGTH(ipha); 15673 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 15674 mp->b_wptr) { 15675 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 15676 sizeof (ipha_t) - mp->b_rptr)) { 15677 BUMP_MIB(&ip_mib, ipInDiscards); 15678 freemsg(first_mp); 15679 return; 15680 } 15681 ipha = (ipha_t *)mp->b_rptr; 15682 } 15683 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 15684 /* 15685 * Check the sanity of the inner IP header. 15686 */ 15687 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 15688 BUMP_MIB(&ip_mib, ipInDiscards); 15689 freemsg(first_mp); 15690 return; 15691 } 15692 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 15693 BUMP_MIB(&ip_mib, ipInDiscards); 15694 freemsg(first_mp); 15695 return; 15696 } 15697 if (inner_ipha->ipha_src == ipha->ipha_src && 15698 inner_ipha->ipha_dst == ipha->ipha_dst) { 15699 ipsec_in_t *ii; 15700 15701 /* 15702 * Self-encapsulated tunnel packet. Remove 15703 * the outer IP header and fanout again. 15704 * We also need to make sure that the inner 15705 * header is pulled up until options. 15706 */ 15707 mp->b_rptr = (uchar_t *)inner_ipha; 15708 ipha = inner_ipha; 15709 hdr_length = IPH_HDR_LENGTH(ipha); 15710 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 15711 if (!pullupmsg(mp, (uchar_t *)ipha + 15712 + hdr_length - mp->b_rptr)) { 15713 freemsg(first_mp); 15714 return; 15715 } 15716 ipha = (ipha_t *)mp->b_rptr; 15717 } 15718 if (!mctl_present) { 15719 ASSERT(first_mp == mp); 15720 /* 15721 * This means that somebody is sending 15722 * Self-encapsualted packets without AH/ESP. 15723 * If AH/ESP was present, we would have already 15724 * allocated the first_mp. 15725 */ 15726 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 15727 NULL) { 15728 ip1dbg(("ip_proto_input: IPSEC_IN " 15729 "allocation failure.\n")); 15730 BUMP_MIB(&ip_mib, ipInDiscards); 15731 freemsg(mp); 15732 return; 15733 } 15734 first_mp->b_cont = mp; 15735 } 15736 /* 15737 * We generally store the ill_index if we need to 15738 * do IPSEC processing as we lose the ill queue when 15739 * we come back. But in this case, we never should 15740 * have to store the ill_index here as it should have 15741 * been stored previously when we processed the 15742 * AH/ESP header in this routine or for non-ipsec 15743 * cases, we still have the queue. But for some bad 15744 * packets from the wire, we can get to IPSEC after 15745 * this and we better store the index for that case. 15746 */ 15747 ill = (ill_t *)q->q_ptr; 15748 ii = (ipsec_in_t *)first_mp->b_rptr; 15749 ii->ipsec_in_ill_index = 15750 ill->ill_phyint->phyint_ifindex; 15751 ii->ipsec_in_rill_index = 15752 recv_ill->ill_phyint->phyint_ifindex; 15753 if (ii->ipsec_in_decaps) { 15754 /* 15755 * This packet is self-encapsulated multiple 15756 * times. We don't want to recurse infinitely. 15757 * To keep it simple, drop the packet. 15758 */ 15759 BUMP_MIB(&ip_mib, ipInDiscards); 15760 freemsg(first_mp); 15761 return; 15762 } 15763 ii->ipsec_in_decaps = B_TRUE; 15764 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 15765 return; 15766 } 15767 break; 15768 case IPPROTO_AH: 15769 case IPPROTO_ESP: { 15770 /* 15771 * Fast path for AH/ESP. If this is the first time 15772 * we are sending a datagram to AH/ESP, allocate 15773 * a IPSEC_IN message and prepend it. Otherwise, 15774 * just fanout. 15775 */ 15776 15777 int ipsec_rc; 15778 ipsec_in_t *ii; 15779 15780 IP_STAT(ipsec_proto_ahesp); 15781 if (!mctl_present) { 15782 ASSERT(first_mp == mp); 15783 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 15784 ip1dbg(("ip_proto_input: IPSEC_IN " 15785 "allocation failure.\n")); 15786 freemsg(hada_mp); /* okay ifnull */ 15787 BUMP_MIB(&ip_mib, ipInDiscards); 15788 freemsg(mp); 15789 return; 15790 } 15791 /* 15792 * Store the ill_index so that when we come back 15793 * from IPSEC we ride on the same queue. 15794 */ 15795 ill = (ill_t *)q->q_ptr; 15796 ii = (ipsec_in_t *)first_mp->b_rptr; 15797 ii->ipsec_in_ill_index = 15798 ill->ill_phyint->phyint_ifindex; 15799 ii->ipsec_in_rill_index = 15800 recv_ill->ill_phyint->phyint_ifindex; 15801 first_mp->b_cont = mp; 15802 /* 15803 * Cache hardware acceleration info. 15804 */ 15805 if (hada_mp != NULL) { 15806 IPSECHW_DEBUG(IPSECHW_PKT, 15807 ("ip_rput_local: caching data attr.\n")); 15808 ii->ipsec_in_accelerated = B_TRUE; 15809 ii->ipsec_in_da = hada_mp; 15810 hada_mp = NULL; 15811 } 15812 } else { 15813 ii = (ipsec_in_t *)first_mp->b_rptr; 15814 } 15815 15816 if (!ipsec_loaded()) { 15817 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 15818 ire->ire_zoneid); 15819 return; 15820 } 15821 15822 /* select inbound SA and have IPsec process the pkt */ 15823 if (ipha->ipha_protocol == IPPROTO_ESP) { 15824 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 15825 if (esph == NULL) 15826 return; 15827 ASSERT(ii->ipsec_in_esp_sa != NULL); 15828 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 15829 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 15830 first_mp, esph); 15831 } else { 15832 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 15833 if (ah == NULL) 15834 return; 15835 ASSERT(ii->ipsec_in_ah_sa != NULL); 15836 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 15837 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 15838 first_mp, ah); 15839 } 15840 15841 switch (ipsec_rc) { 15842 case IPSEC_STATUS_SUCCESS: 15843 break; 15844 case IPSEC_STATUS_FAILED: 15845 BUMP_MIB(&ip_mib, ipInDiscards); 15846 /* FALLTHRU */ 15847 case IPSEC_STATUS_PENDING: 15848 return; 15849 } 15850 /* we're done with IPsec processing, send it up */ 15851 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 15852 return; 15853 } 15854 default: 15855 break; 15856 } 15857 /* 15858 * Handle protocols with which IP is less intimate. There 15859 * can be more than one stream bound to a particular 15860 * protocol. When this is the case, each one gets a copy 15861 * of any incoming packets. 15862 */ 15863 ip_fanout_proto(q, first_mp, ill, ipha, 15864 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 15865 B_TRUE, recv_ill, ire->ire_zoneid); 15866 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15867 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 15868 return; 15869 15870 drop_pkt: 15871 freemsg(first_mp); 15872 if (hada_mp != NULL) 15873 freeb(hada_mp); 15874 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15875 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 15876 #undef rptr 15877 #undef iphs 15878 15879 } 15880 15881 /* 15882 * Update any source route, record route or timestamp options. 15883 * Check that we are at end of strict source route. 15884 * The options have already been checked for sanity in ip_rput_options(). 15885 */ 15886 static boolean_t 15887 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 15888 { 15889 ipoptp_t opts; 15890 uchar_t *opt; 15891 uint8_t optval; 15892 uint8_t optlen; 15893 ipaddr_t dst; 15894 uint32_t ts; 15895 ire_t *dst_ire; 15896 timestruc_t now; 15897 15898 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15899 15900 ip2dbg(("ip_rput_local_options\n")); 15901 15902 for (optval = ipoptp_first(&opts, ipha); 15903 optval != IPOPT_EOL; 15904 optval = ipoptp_next(&opts)) { 15905 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15906 opt = opts.ipoptp_cur; 15907 optlen = opts.ipoptp_len; 15908 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 15909 optval, optlen)); 15910 switch (optval) { 15911 uint32_t off; 15912 case IPOPT_SSRR: 15913 case IPOPT_LSRR: 15914 off = opt[IPOPT_OFFSET]; 15915 off--; 15916 if (optlen < IP_ADDR_LEN || 15917 off > optlen - IP_ADDR_LEN) { 15918 /* End of source route */ 15919 ip1dbg(("ip_rput_local_options: end of SR\n")); 15920 break; 15921 } 15922 /* 15923 * This will only happen if two consecutive entries 15924 * in the source route contains our address or if 15925 * it is a packet with a loose source route which 15926 * reaches us before consuming the whole source route 15927 */ 15928 ip1dbg(("ip_rput_local_options: not end of SR\n")); 15929 if (optval == IPOPT_SSRR) { 15930 goto bad_src_route; 15931 } 15932 /* 15933 * Hack: instead of dropping the packet truncate the 15934 * source route to what has been used by filling the 15935 * rest with IPOPT_NOP. 15936 */ 15937 opt[IPOPT_OLEN] = (uint8_t)off; 15938 while (off < optlen) { 15939 opt[off++] = IPOPT_NOP; 15940 } 15941 break; 15942 case IPOPT_RR: 15943 off = opt[IPOPT_OFFSET]; 15944 off--; 15945 if (optlen < IP_ADDR_LEN || 15946 off > optlen - IP_ADDR_LEN) { 15947 /* No more room - ignore */ 15948 ip1dbg(( 15949 "ip_rput_local_options: end of RR\n")); 15950 break; 15951 } 15952 bcopy(&ire->ire_src_addr, (char *)opt + off, 15953 IP_ADDR_LEN); 15954 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15955 break; 15956 case IPOPT_TS: 15957 /* Insert timestamp if there is romm */ 15958 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15959 case IPOPT_TS_TSONLY: 15960 off = IPOPT_TS_TIMELEN; 15961 break; 15962 case IPOPT_TS_PRESPEC: 15963 case IPOPT_TS_PRESPEC_RFC791: 15964 /* Verify that the address matched */ 15965 off = opt[IPOPT_OFFSET] - 1; 15966 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15967 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15968 NULL, ALL_ZONES, MATCH_IRE_TYPE); 15969 if (dst_ire == NULL) { 15970 /* Not for us */ 15971 break; 15972 } 15973 ire_refrele(dst_ire); 15974 /* FALLTHRU */ 15975 case IPOPT_TS_TSANDADDR: 15976 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15977 break; 15978 default: 15979 /* 15980 * ip_*put_options should have already 15981 * dropped this packet. 15982 */ 15983 cmn_err(CE_PANIC, "ip_rput_local_options: " 15984 "unknown IT - bug in ip_rput_options?\n"); 15985 return (B_TRUE); /* Keep "lint" happy */ 15986 } 15987 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15988 /* Increase overflow counter */ 15989 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15990 opt[IPOPT_POS_OV_FLG] = 15991 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15992 (off << 4)); 15993 break; 15994 } 15995 off = opt[IPOPT_OFFSET] - 1; 15996 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15997 case IPOPT_TS_PRESPEC: 15998 case IPOPT_TS_PRESPEC_RFC791: 15999 case IPOPT_TS_TSANDADDR: 16000 bcopy(&ire->ire_src_addr, (char *)opt + off, 16001 IP_ADDR_LEN); 16002 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16003 /* FALLTHRU */ 16004 case IPOPT_TS_TSONLY: 16005 off = opt[IPOPT_OFFSET] - 1; 16006 /* Compute # of milliseconds since midnight */ 16007 gethrestime(&now); 16008 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16009 now.tv_nsec / (NANOSEC / MILLISEC); 16010 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16011 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16012 break; 16013 } 16014 break; 16015 } 16016 } 16017 return (B_TRUE); 16018 16019 bad_src_route: 16020 q = WR(q); 16021 /* make sure we clear any indication of a hardware checksum */ 16022 DB_CKSUMFLAGS(mp) = 0; 16023 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16024 return (B_FALSE); 16025 16026 } 16027 16028 /* 16029 * Process IP options in an inbound packet. If an option affects the 16030 * effective destination address, return the next hop address via dstp. 16031 * Returns -1 if something fails in which case an ICMP error has been sent 16032 * and mp freed. 16033 */ 16034 static int 16035 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 16036 { 16037 ipoptp_t opts; 16038 uchar_t *opt; 16039 uint8_t optval; 16040 uint8_t optlen; 16041 ipaddr_t dst; 16042 intptr_t code = 0; 16043 ire_t *ire = NULL; 16044 16045 ip2dbg(("ip_rput_options\n")); 16046 dst = ipha->ipha_dst; 16047 for (optval = ipoptp_first(&opts, ipha); 16048 optval != IPOPT_EOL; 16049 optval = ipoptp_next(&opts)) { 16050 opt = opts.ipoptp_cur; 16051 optlen = opts.ipoptp_len; 16052 ip2dbg(("ip_rput_options: opt %d, len %d\n", 16053 optval, optlen)); 16054 /* 16055 * Note: we need to verify the checksum before we 16056 * modify anything thus this routine only extracts the next 16057 * hop dst from any source route. 16058 */ 16059 switch (optval) { 16060 uint32_t off; 16061 case IPOPT_SSRR: 16062 case IPOPT_LSRR: 16063 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16064 ALL_ZONES, MATCH_IRE_TYPE); 16065 if (ire == NULL) { 16066 if (optval == IPOPT_SSRR) { 16067 ip1dbg(("ip_rput_options: not next" 16068 " strict source route 0x%x\n", 16069 ntohl(dst))); 16070 code = (char *)&ipha->ipha_dst - 16071 (char *)ipha; 16072 goto param_prob; /* RouterReq's */ 16073 } 16074 ip2dbg(("ip_rput_options: " 16075 "not next source route 0x%x\n", 16076 ntohl(dst))); 16077 break; 16078 } 16079 ire_refrele(ire); 16080 16081 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16082 ip1dbg(( 16083 "ip_rput_options: bad option offset\n")); 16084 code = (char *)&opt[IPOPT_OLEN] - 16085 (char *)ipha; 16086 goto param_prob; 16087 } 16088 off = opt[IPOPT_OFFSET]; 16089 off--; 16090 redo_srr: 16091 if (optlen < IP_ADDR_LEN || 16092 off > optlen - IP_ADDR_LEN) { 16093 /* End of source route */ 16094 ip1dbg(("ip_rput_options: end of SR\n")); 16095 break; 16096 } 16097 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16098 ip1dbg(("ip_rput_options: next hop 0x%x\n", 16099 ntohl(dst))); 16100 16101 /* 16102 * Check if our address is present more than 16103 * once as consecutive hops in source route. 16104 * XXX verify per-interface ip_forwarding 16105 * for source route? 16106 */ 16107 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16108 ALL_ZONES, MATCH_IRE_TYPE); 16109 16110 if (ire != NULL) { 16111 ire_refrele(ire); 16112 off += IP_ADDR_LEN; 16113 goto redo_srr; 16114 } 16115 16116 if (dst == htonl(INADDR_LOOPBACK)) { 16117 ip1dbg(("ip_rput_options: loopback addr in " 16118 "source route!\n")); 16119 goto bad_src_route; 16120 } 16121 /* 16122 * For strict: verify that dst is directly 16123 * reachable. 16124 */ 16125 if (optval == IPOPT_SSRR) { 16126 ire = ire_ftable_lookup(dst, 0, 0, 16127 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 16128 MATCH_IRE_TYPE); 16129 if (ire == NULL) { 16130 ip1dbg(("ip_rput_options: SSRR not " 16131 "directly reachable: 0x%x\n", 16132 ntohl(dst))); 16133 goto bad_src_route; 16134 } 16135 ire_refrele(ire); 16136 } 16137 /* 16138 * Defer update of the offset and the record route 16139 * until the packet is forwarded. 16140 */ 16141 break; 16142 case IPOPT_RR: 16143 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16144 ip1dbg(( 16145 "ip_rput_options: bad option offset\n")); 16146 code = (char *)&opt[IPOPT_OLEN] - 16147 (char *)ipha; 16148 goto param_prob; 16149 } 16150 break; 16151 case IPOPT_TS: 16152 /* 16153 * Verify that length >= 5 and that there is either 16154 * room for another timestamp or that the overflow 16155 * counter is not maxed out. 16156 */ 16157 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 16158 if (optlen < IPOPT_MINLEN_IT) { 16159 goto param_prob; 16160 } 16161 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16162 ip1dbg(( 16163 "ip_rput_options: bad option offset\n")); 16164 code = (char *)&opt[IPOPT_OFFSET] - 16165 (char *)ipha; 16166 goto param_prob; 16167 } 16168 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16169 case IPOPT_TS_TSONLY: 16170 off = IPOPT_TS_TIMELEN; 16171 break; 16172 case IPOPT_TS_TSANDADDR: 16173 case IPOPT_TS_PRESPEC: 16174 case IPOPT_TS_PRESPEC_RFC791: 16175 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16176 break; 16177 default: 16178 code = (char *)&opt[IPOPT_POS_OV_FLG] - 16179 (char *)ipha; 16180 goto param_prob; 16181 } 16182 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 16183 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 16184 /* 16185 * No room and the overflow counter is 15 16186 * already. 16187 */ 16188 goto param_prob; 16189 } 16190 break; 16191 } 16192 } 16193 16194 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 16195 *dstp = dst; 16196 return (0); 16197 } 16198 16199 ip1dbg(("ip_rput_options: error processing IP options.")); 16200 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 16201 16202 param_prob: 16203 q = WR(q); 16204 /* make sure we clear any indication of a hardware checksum */ 16205 DB_CKSUMFLAGS(mp) = 0; 16206 icmp_param_problem(q, mp, (uint8_t)code); 16207 return (-1); 16208 16209 bad_src_route: 16210 q = WR(q); 16211 /* make sure we clear any indication of a hardware checksum */ 16212 DB_CKSUMFLAGS(mp) = 0; 16213 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16214 return (-1); 16215 } 16216 16217 /* 16218 * IP & ICMP info in >=14 msg's ... 16219 * - ip fixed part (mib2_ip_t) 16220 * - icmp fixed part (mib2_icmp_t) 16221 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 16222 * - ipRouteEntryTable (ip 21) all IPv4 IREs 16223 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 16224 * - ip multicast membership (ip_member_t) 16225 * - ip multicast source filtering (ip_grpsrc_t) 16226 * - igmp fixed part (struct igmpstat) 16227 * - multicast routing stats (struct mrtstat) 16228 * - multicast routing vifs (array of struct vifctl) 16229 * - multicast routing routes (array of struct mfcctl) 16230 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 16231 * One per ill plus one generic 16232 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 16233 * One per ill plus one generic 16234 * - ipv6RouteEntry all IPv6 IREs 16235 * - ipv6NetToMediaEntry all Neighbor Cache entries 16236 * - ipv6AddrEntry all IPv6 ipifs 16237 * - ipv6 multicast membership (ipv6_member_t) 16238 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 16239 * 16240 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 16241 * already present. 16242 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part 16243 * already filled in by caller. 16244 * Return value of 0 indicates that no messages were sent and caller 16245 * should free mpctl. 16246 */ 16247 int 16248 ip_snmp_get(queue_t *q, mblk_t *mpctl) 16249 { 16250 16251 if (mpctl == NULL || mpctl->b_cont == NULL) { 16252 return (0); 16253 } 16254 16255 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 16256 return (1); 16257 } 16258 16259 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 16260 return (1); 16261 } 16262 16263 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 16264 return (1); 16265 } 16266 16267 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 16268 return (1); 16269 } 16270 16271 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 16272 return (1); 16273 } 16274 16275 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 16276 return (1); 16277 } 16278 16279 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 16280 return (1); 16281 } 16282 16283 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 16284 return (1); 16285 } 16286 16287 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 16288 return (1); 16289 } 16290 16291 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 16292 return (1); 16293 } 16294 16295 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 16296 return (1); 16297 } 16298 16299 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 16300 return (1); 16301 } 16302 16303 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 16304 return (1); 16305 } 16306 16307 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 16308 return (1); 16309 } 16310 16311 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 16312 return (1); 16313 } 16314 16315 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 16316 return (1); 16317 } 16318 16319 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 16320 return (1); 16321 } 16322 freemsg(mpctl); 16323 return (1); 16324 } 16325 16326 16327 /* Get global IPv4 statistics */ 16328 static mblk_t * 16329 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 16330 { 16331 struct opthdr *optp; 16332 mblk_t *mp2ctl; 16333 16334 /* 16335 * make a copy of the original message 16336 */ 16337 mp2ctl = copymsg(mpctl); 16338 16339 /* fixed length IP structure... */ 16340 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16341 optp->level = MIB2_IP; 16342 optp->name = 0; 16343 SET_MIB(ip_mib.ipForwarding, 16344 (WE_ARE_FORWARDING ? 1 : 2)); 16345 SET_MIB(ip_mib.ipDefaultTTL, 16346 (uint32_t)ip_def_ttl); 16347 SET_MIB(ip_mib.ipReasmTimeout, 16348 ip_g_frag_timeout); 16349 SET_MIB(ip_mib.ipAddrEntrySize, 16350 sizeof (mib2_ipAddrEntry_t)); 16351 SET_MIB(ip_mib.ipRouteEntrySize, 16352 sizeof (mib2_ipRouteEntry_t)); 16353 SET_MIB(ip_mib.ipNetToMediaEntrySize, 16354 sizeof (mib2_ipNetToMediaEntry_t)); 16355 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 16356 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 16357 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 16358 (int)sizeof (ip_mib))) { 16359 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 16360 (uint_t)sizeof (ip_mib))); 16361 } 16362 16363 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16364 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 16365 (int)optp->level, (int)optp->name, (int)optp->len)); 16366 qreply(q, mpctl); 16367 return (mp2ctl); 16368 } 16369 16370 /* Global IPv4 ICMP statistics */ 16371 static mblk_t * 16372 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 16373 { 16374 struct opthdr *optp; 16375 mblk_t *mp2ctl; 16376 16377 /* 16378 * Make a copy of the original message 16379 */ 16380 mp2ctl = copymsg(mpctl); 16381 16382 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16383 optp->level = MIB2_ICMP; 16384 optp->name = 0; 16385 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 16386 (int)sizeof (icmp_mib))) { 16387 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 16388 (uint_t)sizeof (icmp_mib))); 16389 } 16390 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16391 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 16392 (int)optp->level, (int)optp->name, (int)optp->len)); 16393 qreply(q, mpctl); 16394 return (mp2ctl); 16395 } 16396 16397 /* Global IPv4 IGMP statistics */ 16398 static mblk_t * 16399 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 16400 { 16401 struct opthdr *optp; 16402 mblk_t *mp2ctl; 16403 16404 /* 16405 * make a copy of the original message 16406 */ 16407 mp2ctl = copymsg(mpctl); 16408 16409 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16410 optp->level = EXPER_IGMP; 16411 optp->name = 0; 16412 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 16413 (int)sizeof (igmpstat))) { 16414 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 16415 (uint_t)sizeof (igmpstat))); 16416 } 16417 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16418 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 16419 (int)optp->level, (int)optp->name, (int)optp->len)); 16420 qreply(q, mpctl); 16421 return (mp2ctl); 16422 } 16423 16424 /* Global IPv4 Multicast Routing statistics */ 16425 static mblk_t * 16426 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 16427 { 16428 struct opthdr *optp; 16429 mblk_t *mp2ctl; 16430 16431 /* 16432 * make a copy of the original message 16433 */ 16434 mp2ctl = copymsg(mpctl); 16435 16436 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16437 optp->level = EXPER_DVMRP; 16438 optp->name = 0; 16439 if (!ip_mroute_stats(mpctl->b_cont)) { 16440 ip0dbg(("ip_mroute_stats: failed\n")); 16441 } 16442 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16443 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 16444 (int)optp->level, (int)optp->name, (int)optp->len)); 16445 qreply(q, mpctl); 16446 return (mp2ctl); 16447 } 16448 16449 /* IPv4 address information */ 16450 static mblk_t * 16451 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 16452 { 16453 struct opthdr *optp; 16454 mblk_t *mp2ctl; 16455 mblk_t *mp_tail = NULL; 16456 ill_t *ill; 16457 ipif_t *ipif; 16458 uint_t bitval; 16459 mib2_ipAddrEntry_t mae; 16460 zoneid_t zoneid; 16461 ill_walk_context_t ctx; 16462 16463 /* 16464 * make a copy of the original message 16465 */ 16466 mp2ctl = copymsg(mpctl); 16467 16468 /* ipAddrEntryTable */ 16469 16470 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16471 optp->level = MIB2_IP; 16472 optp->name = MIB2_IP_ADDR; 16473 zoneid = Q_TO_CONN(q)->conn_zoneid; 16474 16475 rw_enter(&ill_g_lock, RW_READER); 16476 ill = ILL_START_WALK_V4(&ctx); 16477 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16478 for (ipif = ill->ill_ipif; ipif != NULL; 16479 ipif = ipif->ipif_next) { 16480 if (ipif->ipif_zoneid != zoneid) 16481 continue; 16482 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16483 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16484 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16485 16486 (void) ipif_get_name(ipif, 16487 mae.ipAdEntIfIndex.o_bytes, 16488 OCTET_LENGTH); 16489 mae.ipAdEntIfIndex.o_length = 16490 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 16491 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 16492 mae.ipAdEntNetMask = ipif->ipif_net_mask; 16493 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 16494 mae.ipAdEntInfo.ae_subnet_len = 16495 ip_mask_to_plen(ipif->ipif_net_mask); 16496 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 16497 for (bitval = 1; 16498 bitval && 16499 !(bitval & ipif->ipif_brd_addr); 16500 bitval <<= 1) 16501 noop; 16502 mae.ipAdEntBcastAddr = bitval; 16503 mae.ipAdEntReasmMaxSize = 65535; 16504 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 16505 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 16506 mae.ipAdEntInfo.ae_broadcast_addr = 16507 ipif->ipif_brd_addr; 16508 mae.ipAdEntInfo.ae_pp_dst_addr = 16509 ipif->ipif_pp_dst_addr; 16510 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 16511 ill->ill_flags | ill->ill_phyint->phyint_flags; 16512 16513 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16514 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 16515 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 16516 "allocate %u bytes\n", 16517 (uint_t)sizeof (mib2_ipAddrEntry_t))); 16518 } 16519 } 16520 } 16521 rw_exit(&ill_g_lock); 16522 16523 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16524 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 16525 (int)optp->level, (int)optp->name, (int)optp->len)); 16526 qreply(q, mpctl); 16527 return (mp2ctl); 16528 } 16529 16530 /* IPv6 address information */ 16531 static mblk_t * 16532 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 16533 { 16534 struct opthdr *optp; 16535 mblk_t *mp2ctl; 16536 mblk_t *mp_tail = NULL; 16537 ill_t *ill; 16538 ipif_t *ipif; 16539 mib2_ipv6AddrEntry_t mae6; 16540 zoneid_t zoneid; 16541 ill_walk_context_t ctx; 16542 16543 /* 16544 * make a copy of the original message 16545 */ 16546 mp2ctl = copymsg(mpctl); 16547 16548 /* ipv6AddrEntryTable */ 16549 16550 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16551 optp->level = MIB2_IP6; 16552 optp->name = MIB2_IP6_ADDR; 16553 zoneid = Q_TO_CONN(q)->conn_zoneid; 16554 16555 rw_enter(&ill_g_lock, RW_READER); 16556 ill = ILL_START_WALK_V6(&ctx); 16557 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16558 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 16559 if (ipif->ipif_zoneid != zoneid) 16560 continue; 16561 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16562 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16563 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16564 16565 (void) ipif_get_name(ipif, 16566 mae6.ipv6AddrIfIndex.o_bytes, 16567 OCTET_LENGTH); 16568 mae6.ipv6AddrIfIndex.o_length = 16569 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 16570 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 16571 mae6.ipv6AddrPfxLength = 16572 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 16573 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 16574 mae6.ipv6AddrInfo.ae_subnet_len = 16575 mae6.ipv6AddrPfxLength; 16576 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 16577 16578 /* Type: stateless(1), stateful(2), unknown(3) */ 16579 if (ipif->ipif_flags & IPIF_ADDRCONF) 16580 mae6.ipv6AddrType = 1; 16581 else 16582 mae6.ipv6AddrType = 2; 16583 /* Anycast: true(1), false(2) */ 16584 if (ipif->ipif_flags & IPIF_ANYCAST) 16585 mae6.ipv6AddrAnycastFlag = 1; 16586 else 16587 mae6.ipv6AddrAnycastFlag = 2; 16588 16589 /* 16590 * Address status: preferred(1), deprecated(2), 16591 * invalid(3), inaccessible(4), unknown(5) 16592 */ 16593 if (ipif->ipif_flags & IPIF_NOLOCAL) 16594 mae6.ipv6AddrStatus = 3; 16595 else if (ipif->ipif_flags & IPIF_DEPRECATED) 16596 mae6.ipv6AddrStatus = 2; 16597 else 16598 mae6.ipv6AddrStatus = 1; 16599 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 16600 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 16601 mae6.ipv6AddrInfo.ae_pp_dst_addr = 16602 ipif->ipif_v6pp_dst_addr; 16603 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 16604 ill->ill_flags | ill->ill_phyint->phyint_flags; 16605 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16606 (char *)&mae6, 16607 (int)sizeof (mib2_ipv6AddrEntry_t))) { 16608 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 16609 "allocate %u bytes\n", 16610 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 16611 } 16612 } 16613 } 16614 rw_exit(&ill_g_lock); 16615 16616 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16617 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 16618 (int)optp->level, (int)optp->name, (int)optp->len)); 16619 qreply(q, mpctl); 16620 return (mp2ctl); 16621 } 16622 16623 /* IPv4 multicast group membership. */ 16624 static mblk_t * 16625 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 16626 { 16627 struct opthdr *optp; 16628 mblk_t *mp2ctl; 16629 ill_t *ill; 16630 ipif_t *ipif; 16631 ilm_t *ilm; 16632 ip_member_t ipm; 16633 mblk_t *mp_tail = NULL; 16634 ill_walk_context_t ctx; 16635 zoneid_t zoneid; 16636 16637 /* 16638 * make a copy of the original message 16639 */ 16640 mp2ctl = copymsg(mpctl); 16641 zoneid = Q_TO_CONN(q)->conn_zoneid; 16642 16643 /* ipGroupMember table */ 16644 optp = (struct opthdr *)&mpctl->b_rptr[ 16645 sizeof (struct T_optmgmt_ack)]; 16646 optp->level = MIB2_IP; 16647 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 16648 16649 rw_enter(&ill_g_lock, RW_READER); 16650 ill = ILL_START_WALK_V4(&ctx); 16651 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16652 ILM_WALKER_HOLD(ill); 16653 for (ipif = ill->ill_ipif; ipif != NULL; 16654 ipif = ipif->ipif_next) { 16655 if (ipif->ipif_zoneid != zoneid) 16656 continue; /* not this zone */ 16657 (void) ipif_get_name(ipif, 16658 ipm.ipGroupMemberIfIndex.o_bytes, 16659 OCTET_LENGTH); 16660 ipm.ipGroupMemberIfIndex.o_length = 16661 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 16662 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16663 ASSERT(ilm->ilm_ipif != NULL); 16664 ASSERT(ilm->ilm_ill == NULL); 16665 if (ilm->ilm_ipif != ipif) 16666 continue; 16667 ipm.ipGroupMemberAddress = ilm->ilm_addr; 16668 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 16669 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 16670 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16671 (char *)&ipm, (int)sizeof (ipm))) { 16672 ip1dbg(("ip_snmp_get_mib2_ip_group: " 16673 "failed to allocate %u bytes\n", 16674 (uint_t)sizeof (ipm))); 16675 } 16676 } 16677 } 16678 ILM_WALKER_RELE(ill); 16679 } 16680 rw_exit(&ill_g_lock); 16681 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16682 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16683 (int)optp->level, (int)optp->name, (int)optp->len)); 16684 qreply(q, mpctl); 16685 return (mp2ctl); 16686 } 16687 16688 /* IPv6 multicast group membership. */ 16689 static mblk_t * 16690 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 16691 { 16692 struct opthdr *optp; 16693 mblk_t *mp2ctl; 16694 ill_t *ill; 16695 ilm_t *ilm; 16696 ipv6_member_t ipm6; 16697 mblk_t *mp_tail = NULL; 16698 ill_walk_context_t ctx; 16699 zoneid_t zoneid; 16700 16701 /* 16702 * make a copy of the original message 16703 */ 16704 mp2ctl = copymsg(mpctl); 16705 zoneid = Q_TO_CONN(q)->conn_zoneid; 16706 16707 /* ip6GroupMember table */ 16708 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16709 optp->level = MIB2_IP6; 16710 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 16711 16712 rw_enter(&ill_g_lock, RW_READER); 16713 ill = ILL_START_WALK_V6(&ctx); 16714 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16715 ILM_WALKER_HOLD(ill); 16716 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 16717 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16718 ASSERT(ilm->ilm_ipif == NULL); 16719 ASSERT(ilm->ilm_ill != NULL); 16720 if (ilm->ilm_zoneid != zoneid) 16721 continue; /* not this zone */ 16722 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 16723 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 16724 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 16725 if (!snmp_append_data2(mpctl->b_cont, 16726 &mp_tail, 16727 (char *)&ipm6, (int)sizeof (ipm6))) { 16728 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 16729 "failed to allocate %u bytes\n", 16730 (uint_t)sizeof (ipm6))); 16731 } 16732 } 16733 ILM_WALKER_RELE(ill); 16734 } 16735 rw_exit(&ill_g_lock); 16736 16737 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16738 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16739 (int)optp->level, (int)optp->name, (int)optp->len)); 16740 qreply(q, mpctl); 16741 return (mp2ctl); 16742 } 16743 16744 /* IP multicast filtered sources */ 16745 static mblk_t * 16746 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 16747 { 16748 struct opthdr *optp; 16749 mblk_t *mp2ctl; 16750 ill_t *ill; 16751 ipif_t *ipif; 16752 ilm_t *ilm; 16753 ip_grpsrc_t ips; 16754 mblk_t *mp_tail = NULL; 16755 ill_walk_context_t ctx; 16756 zoneid_t zoneid; 16757 int i; 16758 slist_t *sl; 16759 16760 /* 16761 * make a copy of the original message 16762 */ 16763 mp2ctl = copymsg(mpctl); 16764 zoneid = Q_TO_CONN(q)->conn_zoneid; 16765 16766 /* ipGroupSource table */ 16767 optp = (struct opthdr *)&mpctl->b_rptr[ 16768 sizeof (struct T_optmgmt_ack)]; 16769 optp->level = MIB2_IP; 16770 optp->name = EXPER_IP_GROUP_SOURCES; 16771 16772 rw_enter(&ill_g_lock, RW_READER); 16773 ill = ILL_START_WALK_V4(&ctx); 16774 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16775 ILM_WALKER_HOLD(ill); 16776 for (ipif = ill->ill_ipif; ipif != NULL; 16777 ipif = ipif->ipif_next) { 16778 if (ipif->ipif_zoneid != zoneid) 16779 continue; /* not this zone */ 16780 (void) ipif_get_name(ipif, 16781 ips.ipGroupSourceIfIndex.o_bytes, 16782 OCTET_LENGTH); 16783 ips.ipGroupSourceIfIndex.o_length = 16784 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 16785 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16786 ASSERT(ilm->ilm_ipif != NULL); 16787 ASSERT(ilm->ilm_ill == NULL); 16788 sl = ilm->ilm_filter; 16789 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 16790 continue; 16791 ips.ipGroupSourceGroup = ilm->ilm_addr; 16792 for (i = 0; i < sl->sl_numsrc; i++) { 16793 if (!IN6_IS_ADDR_V4MAPPED( 16794 &sl->sl_addr[i])) 16795 continue; 16796 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 16797 ips.ipGroupSourceAddress); 16798 if (snmp_append_data2(mpctl->b_cont, 16799 &mp_tail, (char *)&ips, 16800 (int)sizeof (ips)) == 0) { 16801 ip1dbg(("ip_snmp_get_mib2_" 16802 "ip_group_src: failed to " 16803 "allocate %u bytes\n", 16804 (uint_t)sizeof (ips))); 16805 } 16806 } 16807 } 16808 } 16809 ILM_WALKER_RELE(ill); 16810 } 16811 rw_exit(&ill_g_lock); 16812 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16813 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16814 (int)optp->level, (int)optp->name, (int)optp->len)); 16815 qreply(q, mpctl); 16816 return (mp2ctl); 16817 } 16818 16819 /* IPv6 multicast filtered sources. */ 16820 static mblk_t * 16821 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 16822 { 16823 struct opthdr *optp; 16824 mblk_t *mp2ctl; 16825 ill_t *ill; 16826 ilm_t *ilm; 16827 ipv6_grpsrc_t ips6; 16828 mblk_t *mp_tail = NULL; 16829 ill_walk_context_t ctx; 16830 zoneid_t zoneid; 16831 int i; 16832 slist_t *sl; 16833 16834 /* 16835 * make a copy of the original message 16836 */ 16837 mp2ctl = copymsg(mpctl); 16838 zoneid = Q_TO_CONN(q)->conn_zoneid; 16839 16840 /* ip6GroupMember table */ 16841 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16842 optp->level = MIB2_IP6; 16843 optp->name = EXPER_IP6_GROUP_SOURCES; 16844 16845 rw_enter(&ill_g_lock, RW_READER); 16846 ill = ILL_START_WALK_V6(&ctx); 16847 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16848 ILM_WALKER_HOLD(ill); 16849 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 16850 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16851 ASSERT(ilm->ilm_ipif == NULL); 16852 ASSERT(ilm->ilm_ill != NULL); 16853 sl = ilm->ilm_filter; 16854 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 16855 continue; 16856 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 16857 for (i = 0; i < sl->sl_numsrc; i++) { 16858 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 16859 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16860 (char *)&ips6, (int)sizeof (ips6))) { 16861 ip1dbg(("ip_snmp_get_mib2_ip6_" 16862 "group_src: failed to allocate " 16863 "%u bytes\n", 16864 (uint_t)sizeof (ips6))); 16865 } 16866 } 16867 } 16868 ILM_WALKER_RELE(ill); 16869 } 16870 rw_exit(&ill_g_lock); 16871 16872 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16873 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16874 (int)optp->level, (int)optp->name, (int)optp->len)); 16875 qreply(q, mpctl); 16876 return (mp2ctl); 16877 } 16878 16879 /* Multicast routing virtual interface table. */ 16880 static mblk_t * 16881 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 16882 { 16883 struct opthdr *optp; 16884 mblk_t *mp2ctl; 16885 16886 /* 16887 * make a copy of the original message 16888 */ 16889 mp2ctl = copymsg(mpctl); 16890 16891 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16892 optp->level = EXPER_DVMRP; 16893 optp->name = EXPER_DVMRP_VIF; 16894 if (!ip_mroute_vif(mpctl->b_cont)) { 16895 ip0dbg(("ip_mroute_vif: failed\n")); 16896 } 16897 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16898 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 16899 (int)optp->level, (int)optp->name, (int)optp->len)); 16900 qreply(q, mpctl); 16901 return (mp2ctl); 16902 } 16903 16904 /* Multicast routing table. */ 16905 static mblk_t * 16906 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 16907 { 16908 struct opthdr *optp; 16909 mblk_t *mp2ctl; 16910 16911 /* 16912 * make a copy of the original message 16913 */ 16914 mp2ctl = copymsg(mpctl); 16915 16916 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16917 optp->level = EXPER_DVMRP; 16918 optp->name = EXPER_DVMRP_MRT; 16919 if (!ip_mroute_mrt(mpctl->b_cont)) { 16920 ip0dbg(("ip_mroute_mrt: failed\n")); 16921 } 16922 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16923 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 16924 (int)optp->level, (int)optp->name, (int)optp->len)); 16925 qreply(q, mpctl); 16926 return (mp2ctl); 16927 } 16928 16929 /* 16930 * Return both ipRouteEntryTable, and ipNetToMediaEntryTable 16931 * in one IRE walk. 16932 */ 16933 static mblk_t * 16934 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 16935 { 16936 struct opthdr *optp; 16937 mblk_t *mp2ctl; /* Returned */ 16938 mblk_t *mp3ctl; /* nettomedia */ 16939 /* 16940 * We need two listptrs, for ipRouteEntryTable and 16941 * ipNetToMediaEntryTable to pass to ip_snmp_get2_v4() 16942 */ 16943 listptr_t re_ntme_v4[2]; 16944 zoneid_t zoneid; 16945 16946 /* 16947 * make a copy of the original message 16948 */ 16949 mp2ctl = copymsg(mpctl); 16950 mp3ctl = copymsg(mpctl); 16951 if (mp3ctl == NULL) { 16952 freemsg(mp2ctl); 16953 freemsg(mpctl); 16954 return (NULL); 16955 } 16956 16957 re_ntme_v4[0].lp_head = mpctl->b_cont; /* ipRouteEntryTable */ 16958 re_ntme_v4[1].lp_head = mp3ctl->b_cont; /* ipNetToMediaEntryTable */ 16959 /* 16960 * We assign NULL to tail ptrs as snmp_append_data2() will assign 16961 * proper values when called. 16962 */ 16963 re_ntme_v4[0].lp_tail = NULL; 16964 re_ntme_v4[1].lp_tail = NULL; 16965 16966 zoneid = Q_TO_CONN(q)->conn_zoneid; 16967 ire_walk_v4(ip_snmp_get2_v4, (char *)re_ntme_v4, zoneid); 16968 if (zoneid == GLOBAL_ZONEID) { 16969 /* 16970 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 16971 * the sys_net_config privilege, it can only run in the global 16972 * zone, so we don't display these IREs in the other zones. 16973 */ 16974 ire_walk_srcif_table_v4(ip_snmp_get2_v4, (char *)re_ntme_v4); 16975 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, (char *)re_ntme_v4, 16976 NULL); 16977 } 16978 16979 /* ipRouteEntryTable in mpctl */ 16980 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16981 optp->level = MIB2_IP; 16982 optp->name = MIB2_IP_ROUTE; 16983 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[0].lp_head); 16984 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 16985 (int)optp->level, (int)optp->name, (int)optp->len)); 16986 qreply(q, mpctl); 16987 16988 /* ipNetToMediaEntryTable in mp3ctl */ 16989 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16990 optp->level = MIB2_IP; 16991 optp->name = MIB2_IP_MEDIA; 16992 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[1].lp_head); 16993 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 16994 (int)optp->level, (int)optp->name, (int)optp->len)); 16995 qreply(q, mp3ctl); 16996 return (mp2ctl); 16997 } 16998 16999 /* 17000 * Return both ipv6RouteEntryTable, and ipv6NetToMediaEntryTable 17001 * in one IRE walk. 17002 */ 17003 static mblk_t * 17004 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 17005 { 17006 struct opthdr *optp; 17007 mblk_t *mp2ctl; /* Returned */ 17008 mblk_t *mp3ctl; /* nettomedia */ 17009 listptr_t re_ntme_v6; 17010 zoneid_t zoneid; 17011 17012 /* 17013 * make a copy of the original message 17014 */ 17015 mp2ctl = copymsg(mpctl); 17016 mp3ctl = copymsg(mpctl); 17017 if (mp3ctl == NULL) { 17018 freemsg(mp2ctl); 17019 freemsg(mpctl); 17020 return (NULL); 17021 } 17022 17023 /* 17024 * We assign NULL to tail ptrs as snmp_append_data2() will assign 17025 * proper values when called. ipv6RouteEntryTable in is placed 17026 * in mpctl. 17027 */ 17028 re_ntme_v6.lp_head = mpctl->b_cont; /* ip6RouteEntryTable */ 17029 re_ntme_v6.lp_tail = NULL; 17030 zoneid = Q_TO_CONN(q)->conn_zoneid; 17031 ire_walk_v6(ip_snmp_get2_v6_route, (char *)&re_ntme_v6, zoneid); 17032 17033 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17034 optp->level = MIB2_IP6; 17035 optp->name = MIB2_IP6_ROUTE; 17036 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 17037 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17038 (int)optp->level, (int)optp->name, (int)optp->len)); 17039 qreply(q, mpctl); 17040 17041 /* ipv6NetToMediaEntryTable in mp3ctl */ 17042 re_ntme_v6.lp_head = mp3ctl->b_cont; /* ip6NetToMediaEntryTable */ 17043 re_ntme_v6.lp_tail = NULL; 17044 ndp_walk(NULL, ip_snmp_get2_v6_media, (uchar_t *)&re_ntme_v6); 17045 17046 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17047 optp->level = MIB2_IP6; 17048 optp->name = MIB2_IP6_MEDIA; 17049 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 17050 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17051 (int)optp->level, (int)optp->name, (int)optp->len)); 17052 qreply(q, mp3ctl); 17053 return (mp2ctl); 17054 } 17055 17056 /* 17057 * ICMPv6 mib: One per ill 17058 */ 17059 static mblk_t * 17060 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 17061 { 17062 struct opthdr *optp; 17063 mblk_t *mp2ctl; 17064 ill_t *ill; 17065 ill_walk_context_t ctx; 17066 mblk_t *mp_tail = NULL; 17067 17068 /* 17069 * Make a copy of the original message 17070 */ 17071 mp2ctl = copymsg(mpctl); 17072 17073 /* fixed length IPv6 structure ... */ 17074 17075 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17076 optp->level = MIB2_IP6; 17077 optp->name = 0; 17078 /* Include "unknown interface" ip6_mib */ 17079 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 17080 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 17081 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 17082 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 17083 sizeof (mib2_ipv6IfStatsEntry_t)); 17084 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 17085 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 17086 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 17087 sizeof (mib2_ipv6NetToMediaEntry_t)); 17088 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 17089 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 17090 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 17091 (int)sizeof (ip6_mib))) { 17092 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 17093 (uint_t)sizeof (ip6_mib))); 17094 } 17095 17096 rw_enter(&ill_g_lock, RW_READER); 17097 ill = ILL_START_WALK_V6(&ctx); 17098 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17099 ill->ill_ip6_mib->ipv6IfIndex = 17100 ill->ill_phyint->phyint_ifindex; 17101 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 17102 ipv6_forward ? 1 : 2); 17103 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 17104 ill->ill_max_hops); 17105 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 17106 sizeof (mib2_ipv6IfStatsEntry_t)); 17107 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 17108 sizeof (mib2_ipv6AddrEntry_t)); 17109 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 17110 sizeof (mib2_ipv6RouteEntry_t)); 17111 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 17112 sizeof (mib2_ipv6NetToMediaEntry_t)); 17113 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 17114 sizeof (ipv6_member_t)); 17115 17116 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17117 (char *)ill->ill_ip6_mib, 17118 (int)sizeof (*ill->ill_ip6_mib))) { 17119 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 17120 "%u bytes\n", 17121 (uint_t)sizeof (*ill->ill_ip6_mib))); 17122 } 17123 } 17124 rw_exit(&ill_g_lock); 17125 17126 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17127 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 17128 (int)optp->level, (int)optp->name, (int)optp->len)); 17129 qreply(q, mpctl); 17130 return (mp2ctl); 17131 } 17132 17133 /* 17134 * ICMPv6 mib: One per ill 17135 */ 17136 static mblk_t * 17137 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 17138 { 17139 struct opthdr *optp; 17140 mblk_t *mp2ctl; 17141 ill_t *ill; 17142 ill_walk_context_t ctx; 17143 mblk_t *mp_tail = NULL; 17144 /* 17145 * Make a copy of the original message 17146 */ 17147 mp2ctl = copymsg(mpctl); 17148 17149 /* fixed length ICMPv6 structure ... */ 17150 17151 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17152 optp->level = MIB2_ICMP6; 17153 optp->name = 0; 17154 /* Include "unknown interface" icmp6_mib */ 17155 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 17156 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 17157 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 17158 (int)sizeof (icmp6_mib))) { 17159 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 17160 (uint_t)sizeof (icmp6_mib))); 17161 } 17162 17163 rw_enter(&ill_g_lock, RW_READER); 17164 ill = ILL_START_WALK_V6(&ctx); 17165 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17166 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 17167 ill->ill_phyint->phyint_ifindex; 17168 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 17169 sizeof (mib2_ipv6IfIcmpEntry_t); 17170 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17171 (char *)ill->ill_icmp6_mib, 17172 (int)sizeof (*ill->ill_icmp6_mib))) { 17173 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 17174 "%u bytes\n", 17175 (uint_t)sizeof (*ill->ill_icmp6_mib))); 17176 } 17177 } 17178 rw_exit(&ill_g_lock); 17179 17180 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17181 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 17182 (int)optp->level, (int)optp->name, (int)optp->len)); 17183 qreply(q, mpctl); 17184 return (mp2ctl); 17185 } 17186 17187 /* 17188 * ire_walk routine to create both ipRouteEntryTable and 17189 * ipNetToMediaEntryTable in one IRE walk 17190 */ 17191 static void 17192 ip_snmp_get2_v4(ire_t *ire, listptr_t re_ntme[]) 17193 { 17194 ill_t *ill; 17195 ipif_t *ipif; 17196 mblk_t *llmp; 17197 dl_unitdata_req_t *dlup; 17198 mib2_ipRouteEntry_t re; 17199 mib2_ipNetToMediaEntry_t ntme; 17200 ipaddr_t gw_addr; 17201 17202 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17203 17204 /* 17205 * Return all IRE types for route table... let caller pick and choose 17206 */ 17207 re.ipRouteDest = ire->ire_addr; 17208 ipif = ire->ire_ipif; 17209 re.ipRouteIfIndex.o_length = 0; 17210 if (ire->ire_type == IRE_CACHE) { 17211 ill = (ill_t *)ire->ire_stq->q_ptr; 17212 re.ipRouteIfIndex.o_length = 17213 ill->ill_name_length == 0 ? 0 : 17214 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17215 bcopy(ill->ill_name, re.ipRouteIfIndex.o_bytes, 17216 re.ipRouteIfIndex.o_length); 17217 } else if (ipif != NULL) { 17218 (void) ipif_get_name(ipif, re.ipRouteIfIndex.o_bytes, 17219 OCTET_LENGTH); 17220 re.ipRouteIfIndex.o_length = 17221 mi_strlen(re.ipRouteIfIndex.o_bytes); 17222 } 17223 re.ipRouteMetric1 = -1; 17224 re.ipRouteMetric2 = -1; 17225 re.ipRouteMetric3 = -1; 17226 re.ipRouteMetric4 = -1; 17227 17228 gw_addr = ire->ire_gateway_addr; 17229 17230 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 17231 re.ipRouteNextHop = ire->ire_src_addr; 17232 else 17233 re.ipRouteNextHop = gw_addr; 17234 /* indirect(4), direct(3), or invalid(2) */ 17235 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17236 re.ipRouteType = 2; 17237 else 17238 re.ipRouteType = (gw_addr != 0) ? 4 : 3; 17239 re.ipRouteProto = -1; 17240 re.ipRouteAge = gethrestime_sec() - ire->ire_create_time; 17241 re.ipRouteMask = ire->ire_mask; 17242 re.ipRouteMetric5 = -1; 17243 re.ipRouteInfo.re_max_frag = ire->ire_max_frag; 17244 re.ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 17245 re.ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17246 llmp = ire->ire_dlureq_mp; 17247 re.ipRouteInfo.re_ref = ire->ire_refcnt; 17248 re.ipRouteInfo.re_src_addr = ire->ire_src_addr; 17249 re.ipRouteInfo.re_ire_type = ire->ire_type; 17250 re.ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17251 re.ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17252 re.ipRouteInfo.re_flags = ire->ire_flags; 17253 re.ipRouteInfo.re_in_ill.o_length = 0; 17254 if (ire->ire_in_ill != NULL) { 17255 re.ipRouteInfo.re_in_ill.o_length = 17256 ire->ire_in_ill->ill_name_length == 0 ? 0 : 17257 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 17258 bcopy(ire->ire_in_ill->ill_name, 17259 re.ipRouteInfo.re_in_ill.o_bytes, 17260 re.ipRouteInfo.re_in_ill.o_length); 17261 } 17262 re.ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 17263 if (!snmp_append_data2(re_ntme[0].lp_head, &(re_ntme[0].lp_tail), 17264 (char *)&re, (int)sizeof (re))) { 17265 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17266 (uint_t)sizeof (re))); 17267 } 17268 17269 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 17270 return; 17271 /* 17272 * only IRE_CACHE entries that are for a directly connected subnet 17273 * get appended to net -> phys addr table 17274 * (others in arp) 17275 */ 17276 ntme.ipNetToMediaIfIndex.o_length = 0; 17277 ill = ire_to_ill(ire); 17278 ASSERT(ill != NULL); 17279 ntme.ipNetToMediaIfIndex.o_length = 17280 ill->ill_name_length == 0 ? 0 : 17281 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17282 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 17283 ntme.ipNetToMediaIfIndex.o_length); 17284 17285 ntme.ipNetToMediaPhysAddress.o_length = 0; 17286 if (llmp) { 17287 uchar_t *addr; 17288 17289 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 17290 /* Remove sap from address */ 17291 if (ill->ill_sap_length < 0) 17292 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 17293 else 17294 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 17295 ill->ill_sap_length; 17296 17297 ntme.ipNetToMediaPhysAddress.o_length = 17298 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 17299 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 17300 ntme.ipNetToMediaPhysAddress.o_length); 17301 } 17302 ntme.ipNetToMediaNetAddress = ire->ire_addr; 17303 /* assume dynamic (may be changed in arp) */ 17304 ntme.ipNetToMediaType = 3; 17305 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 17306 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 17307 ntme.ipNetToMediaInfo.ntm_mask.o_length); 17308 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 17309 if (!snmp_append_data2(re_ntme[1].lp_head, &(re_ntme[1].lp_tail), 17310 (char *)&ntme, (int)sizeof (ntme))) { 17311 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17312 (uint_t)sizeof (ntme))); 17313 } 17314 } 17315 17316 /* 17317 * ire_walk routine to create ipv6RouteEntryTable. 17318 */ 17319 static void 17320 ip_snmp_get2_v6_route(ire_t *ire, listptr_t *re_ntme) 17321 { 17322 ill_t *ill; 17323 ipif_t *ipif; 17324 mib2_ipv6RouteEntry_t re; 17325 in6_addr_t gw_addr_v6; 17326 17327 ASSERT(ire->ire_ipversion == IPV6_VERSION); 17328 17329 /* 17330 * Return all IRE types for route table... let caller pick and choose 17331 */ 17332 re.ipv6RouteDest = ire->ire_addr_v6; 17333 re.ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 17334 re.ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 17335 re.ipv6RouteIfIndex.o_length = 0; 17336 ipif = ire->ire_ipif; 17337 if (ire->ire_type == IRE_CACHE) { 17338 ill = (ill_t *)ire->ire_stq->q_ptr; 17339 re.ipv6RouteIfIndex.o_length = 17340 ill->ill_name_length == 0 ? 0 : 17341 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17342 bcopy(ill->ill_name, re.ipv6RouteIfIndex.o_bytes, 17343 re.ipv6RouteIfIndex.o_length); 17344 } else if (ipif != NULL) { 17345 (void) ipif_get_name(ipif, re.ipv6RouteIfIndex.o_bytes, 17346 OCTET_LENGTH); 17347 re.ipv6RouteIfIndex.o_length = 17348 mi_strlen(re.ipv6RouteIfIndex.o_bytes); 17349 } 17350 17351 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 17352 17353 mutex_enter(&ire->ire_lock); 17354 gw_addr_v6 = ire->ire_gateway_addr_v6; 17355 mutex_exit(&ire->ire_lock); 17356 17357 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 17358 re.ipv6RouteNextHop = ire->ire_src_addr_v6; 17359 else 17360 re.ipv6RouteNextHop = gw_addr_v6; 17361 17362 /* remote(4), local(3), or discard(2) */ 17363 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17364 re.ipv6RouteType = 2; 17365 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 17366 re.ipv6RouteType = 3; 17367 else 17368 re.ipv6RouteType = 4; 17369 17370 re.ipv6RouteProtocol = -1; 17371 re.ipv6RoutePolicy = 0; 17372 re.ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 17373 re.ipv6RouteNextHopRDI = 0; 17374 re.ipv6RouteWeight = 0; 17375 re.ipv6RouteMetric = 0; 17376 re.ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 17377 re.ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 17378 re.ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17379 re.ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 17380 re.ipv6RouteInfo.re_ire_type = ire->ire_type; 17381 re.ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17382 re.ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17383 re.ipv6RouteInfo.re_ref = ire->ire_refcnt; 17384 re.ipv6RouteInfo.re_flags = ire->ire_flags; 17385 17386 if (!snmp_append_data2(re_ntme->lp_head, &(re_ntme->lp_tail), 17387 (char *)&re, (int)sizeof (re))) { 17388 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 17389 (uint_t)sizeof (re))); 17390 } 17391 } 17392 17393 /* 17394 * ndp_walk routine to create ipv6NetToMediaEntryTable 17395 */ 17396 static int 17397 ip_snmp_get2_v6_media(nce_t *nce, listptr_t *re_ntme) 17398 { 17399 ill_t *ill; 17400 mib2_ipv6NetToMediaEntry_t ntme; 17401 dl_unitdata_req_t *dl; 17402 17403 ill = nce->nce_ill; 17404 ASSERT(ill->ill_isv6); 17405 17406 /* 17407 * Neighbor cache entry attached to IRE with on-link 17408 * destination. 17409 */ 17410 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 17411 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 17412 if ((ill->ill_flags & ILLF_XRESOLV) && 17413 (nce->nce_res_mp != NULL)) { 17414 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 17415 ntme.ipv6NetToMediaPhysAddress.o_length = 17416 dl->dl_dest_addr_length; 17417 } else { 17418 ntme.ipv6NetToMediaPhysAddress.o_length = 17419 ill->ill_phys_addr_length; 17420 } 17421 if (nce->nce_res_mp != NULL) { 17422 bcopy((char *)nce->nce_res_mp->b_rptr + 17423 NCE_LL_ADDR_OFFSET(ill), 17424 ntme.ipv6NetToMediaPhysAddress.o_bytes, 17425 ntme.ipv6NetToMediaPhysAddress.o_length); 17426 } else { 17427 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 17428 ill->ill_phys_addr_length); 17429 } 17430 /* 17431 * Note: Returns ND_* states. Should be: 17432 * reachable(1), stale(2), delay(3), probe(4), 17433 * invalid(5), unknown(6) 17434 */ 17435 ntme.ipv6NetToMediaState = nce->nce_state; 17436 ntme.ipv6NetToMediaLastUpdated = 0; 17437 17438 /* other(1), dynamic(2), static(3), local(4) */ 17439 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 17440 ntme.ipv6NetToMediaType = 4; 17441 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 17442 ntme.ipv6NetToMediaType = 1; 17443 } else { 17444 ntme.ipv6NetToMediaType = 2; 17445 } 17446 17447 if (!snmp_append_data2(re_ntme->lp_head, 17448 &(re_ntme->lp_tail), (char *)&ntme, (int)sizeof (ntme))) { 17449 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 17450 (uint_t)sizeof (ntme))); 17451 } 17452 return (0); 17453 } 17454 17455 /* 17456 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 17457 */ 17458 /* ARGSUSED */ 17459 int 17460 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 17461 { 17462 switch (level) { 17463 case MIB2_IP: 17464 case MIB2_ICMP: 17465 switch (name) { 17466 default: 17467 break; 17468 } 17469 return (1); 17470 default: 17471 return (1); 17472 } 17473 } 17474 17475 /* 17476 * Called before the options are updated to check if this packet will 17477 * be source routed from here. 17478 * This routine assumes that the options are well formed i.e. that they 17479 * have already been checked. 17480 */ 17481 static boolean_t 17482 ip_source_routed(ipha_t *ipha) 17483 { 17484 ipoptp_t opts; 17485 uchar_t *opt; 17486 uint8_t optval; 17487 uint8_t optlen; 17488 ipaddr_t dst; 17489 ire_t *ire; 17490 17491 if (IS_SIMPLE_IPH(ipha)) { 17492 ip2dbg(("not source routed\n")); 17493 return (B_FALSE); 17494 } 17495 dst = ipha->ipha_dst; 17496 for (optval = ipoptp_first(&opts, ipha); 17497 optval != IPOPT_EOL; 17498 optval = ipoptp_next(&opts)) { 17499 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17500 opt = opts.ipoptp_cur; 17501 optlen = opts.ipoptp_len; 17502 ip2dbg(("ip_source_routed: opt %d, len %d\n", 17503 optval, optlen)); 17504 switch (optval) { 17505 uint32_t off; 17506 case IPOPT_SSRR: 17507 case IPOPT_LSRR: 17508 /* 17509 * If dst is one of our addresses and there are some 17510 * entries left in the source route return (true). 17511 */ 17512 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17513 ALL_ZONES, MATCH_IRE_TYPE); 17514 if (ire == NULL) { 17515 ip2dbg(("ip_source_routed: not next" 17516 " source route 0x%x\n", 17517 ntohl(dst))); 17518 return (B_FALSE); 17519 } 17520 ire_refrele(ire); 17521 off = opt[IPOPT_OFFSET]; 17522 off--; 17523 if (optlen < IP_ADDR_LEN || 17524 off > optlen - IP_ADDR_LEN) { 17525 /* End of source route */ 17526 ip1dbg(("ip_source_routed: end of SR\n")); 17527 return (B_FALSE); 17528 } 17529 return (B_TRUE); 17530 } 17531 } 17532 ip2dbg(("not source routed\n")); 17533 return (B_FALSE); 17534 } 17535 17536 /* 17537 * Check if the packet contains any source route. 17538 */ 17539 static boolean_t 17540 ip_source_route_included(ipha_t *ipha) 17541 { 17542 ipoptp_t opts; 17543 uint8_t optval; 17544 17545 if (IS_SIMPLE_IPH(ipha)) 17546 return (B_FALSE); 17547 for (optval = ipoptp_first(&opts, ipha); 17548 optval != IPOPT_EOL; 17549 optval = ipoptp_next(&opts)) { 17550 switch (optval) { 17551 case IPOPT_SSRR: 17552 case IPOPT_LSRR: 17553 return (B_TRUE); 17554 } 17555 } 17556 return (B_FALSE); 17557 } 17558 17559 /* 17560 * Called when the IRE expiration timer fires. 17561 */ 17562 /* ARGSUSED */ 17563 void 17564 ip_trash_timer_expire(void *args) 17565 { 17566 int flush_flag = 0; 17567 17568 /* 17569 * ip_ire_expire_id is protected by ip_trash_timer_lock. 17570 * This lock makes sure that a new invocation of this function 17571 * that occurs due to an almost immediate timer firing will not 17572 * progress beyond this point until the current invocation is done 17573 */ 17574 mutex_enter(&ip_trash_timer_lock); 17575 ip_ire_expire_id = 0; 17576 mutex_exit(&ip_trash_timer_lock); 17577 17578 /* Periodic timer */ 17579 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 17580 /* 17581 * Remove all IRE_CACHE entries since they might 17582 * contain arp information. 17583 */ 17584 flush_flag |= FLUSH_ARP_TIME; 17585 ip_ire_arp_time_elapsed = 0; 17586 IP_STAT(ip_ire_arp_timer_expired); 17587 } 17588 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 17589 /* Remove all redirects */ 17590 flush_flag |= FLUSH_REDIRECT_TIME; 17591 ip_ire_rd_time_elapsed = 0; 17592 IP_STAT(ip_ire_redirect_timer_expired); 17593 } 17594 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 17595 /* Increase path mtu */ 17596 flush_flag |= FLUSH_MTU_TIME; 17597 ip_ire_pmtu_time_elapsed = 0; 17598 IP_STAT(ip_ire_pmtu_timer_expired); 17599 } 17600 if (flush_flag != 0) { 17601 /* Walk all IPv4 IRE's and update them */ 17602 ire_walk_v4(ire_expire, (char *)(uintptr_t)flush_flag, 17603 ALL_ZONES); 17604 } 17605 if (flush_flag & FLUSH_MTU_TIME) { 17606 /* 17607 * Walk all IPv6 IRE's and update them 17608 * Note that ARP and redirect timers are not 17609 * needed since NUD handles stale entries. 17610 */ 17611 flush_flag = FLUSH_MTU_TIME; 17612 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 17613 ALL_ZONES); 17614 } 17615 17616 ip_ire_arp_time_elapsed += ip_timer_interval; 17617 ip_ire_rd_time_elapsed += ip_timer_interval; 17618 ip_ire_pmtu_time_elapsed += ip_timer_interval; 17619 17620 /* 17621 * Hold the lock to serialize timeout calls and prevent 17622 * stale values in ip_ire_expire_id. Otherwise it is possible 17623 * for the timer to fire and a new invocation of this function 17624 * to start before the return value of timeout has been stored 17625 * in ip_ire_expire_id by the current invocation. 17626 */ 17627 mutex_enter(&ip_trash_timer_lock); 17628 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 17629 MSEC_TO_TICK(ip_timer_interval)); 17630 mutex_exit(&ip_trash_timer_lock); 17631 } 17632 17633 /* 17634 * Called by the memory allocator subsystem directly, when the system 17635 * is running low on memory. 17636 */ 17637 /* ARGSUSED */ 17638 void 17639 ip_trash_ire_reclaim(void *args) 17640 { 17641 ire_cache_count_t icc; 17642 ire_cache_reclaim_t icr; 17643 ncc_cache_count_t ncc; 17644 nce_cache_reclaim_t ncr; 17645 uint_t delete_cnt; 17646 /* 17647 * Memory reclaim call back. 17648 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 17649 * Then, with a target of freeing 1/Nth of IRE_CACHE 17650 * entries, determine what fraction to free for 17651 * each category of IRE_CACHE entries giving absolute priority 17652 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 17653 * entry will be freed unless all offlink entries are freed). 17654 */ 17655 icc.icc_total = 0; 17656 icc.icc_unused = 0; 17657 icc.icc_offlink = 0; 17658 icc.icc_pmtu = 0; 17659 icc.icc_onlink = 0; 17660 ire_walk(ire_cache_count, (char *)&icc); 17661 17662 /* 17663 * Free NCEs for IPv6 like the onlink ires. 17664 */ 17665 ncc.ncc_total = 0; 17666 ncc.ncc_host = 0; 17667 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 17668 17669 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 17670 icc.icc_pmtu + icc.icc_onlink); 17671 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 17672 IP_STAT(ip_trash_ire_reclaim_calls); 17673 if (delete_cnt == 0) 17674 return; 17675 IP_STAT(ip_trash_ire_reclaim_success); 17676 /* Always delete all unused offlink entries */ 17677 icr.icr_unused = 1; 17678 if (delete_cnt <= icc.icc_unused) { 17679 /* 17680 * Only need to free unused entries. In other words, 17681 * there are enough unused entries to free to meet our 17682 * target number of freed ire cache entries. 17683 */ 17684 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 17685 ncr.ncr_host = 0; 17686 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 17687 /* 17688 * Only need to free unused entries, plus a fraction of offlink 17689 * entries. It follows from the first if statement that 17690 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 17691 */ 17692 delete_cnt -= icc.icc_unused; 17693 /* Round up # deleted by truncating fraction */ 17694 icr.icr_offlink = icc.icc_offlink / delete_cnt; 17695 icr.icr_pmtu = icr.icr_onlink = 0; 17696 ncr.ncr_host = 0; 17697 } else if (delete_cnt <= 17698 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 17699 /* 17700 * Free all unused and offlink entries, plus a fraction of 17701 * pmtu entries. It follows from the previous if statement 17702 * that icc_pmtu is non-zero, and that 17703 * delete_cnt != icc_unused + icc_offlink. 17704 */ 17705 icr.icr_offlink = 1; 17706 delete_cnt -= icc.icc_unused + icc.icc_offlink; 17707 /* Round up # deleted by truncating fraction */ 17708 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 17709 icr.icr_onlink = 0; 17710 ncr.ncr_host = 0; 17711 } else { 17712 /* 17713 * Free all unused, offlink, and pmtu entries, plus a fraction 17714 * of onlink entries. If we're here, then we know that 17715 * icc_onlink is non-zero, and that 17716 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 17717 */ 17718 icr.icr_offlink = icr.icr_pmtu = 1; 17719 delete_cnt -= icc.icc_unused + icc.icc_offlink + 17720 icc.icc_pmtu; 17721 /* Round up # deleted by truncating fraction */ 17722 icr.icr_onlink = icc.icc_onlink / delete_cnt; 17723 /* Using the same delete fraction as for onlink IREs */ 17724 ncr.ncr_host = ncc.ncc_host / delete_cnt; 17725 } 17726 #ifdef DEBUG 17727 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 17728 "fractions %d/%d/%d/%d\n", 17729 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 17730 icc.icc_unused, icc.icc_offlink, 17731 icc.icc_pmtu, icc.icc_onlink, 17732 icr.icr_unused, icr.icr_offlink, 17733 icr.icr_pmtu, icr.icr_onlink)); 17734 #endif 17735 ire_walk(ire_cache_reclaim, (char *)&icr); 17736 if (ncr.ncr_host != 0) 17737 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 17738 (uchar_t *)&ncr); 17739 #ifdef DEBUG 17740 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 17741 icc.icc_pmtu = 0; icc.icc_onlink = 0; 17742 ire_walk(ire_cache_count, (char *)&icc); 17743 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 17744 icc.icc_total, icc.icc_unused, icc.icc_offlink, 17745 icc.icc_pmtu, icc.icc_onlink)); 17746 #endif 17747 } 17748 17749 /* 17750 * ip_unbind is called when a copy of an unbind request is received from the 17751 * upper level protocol. We remove this conn from any fanout hash list it is 17752 * on, and zero out the bind information. No reply is expected up above. 17753 */ 17754 mblk_t * 17755 ip_unbind(queue_t *q, mblk_t *mp) 17756 { 17757 conn_t *connp = Q_TO_CONN(q); 17758 17759 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 17760 17761 ipcl_hash_remove(connp); 17762 17763 ASSERT(mp->b_cont == NULL); 17764 /* 17765 * Convert mp into a T_OK_ACK 17766 */ 17767 mp = mi_tpi_ok_ack_alloc(mp); 17768 17769 /* 17770 * should not happen in practice... T_OK_ACK is smaller than the 17771 * original message. 17772 */ 17773 if (mp == NULL) 17774 return (NULL); 17775 17776 /* 17777 * Don't bzero the ports if its TCP since TCP still needs the 17778 * lport to remove it from its own bind hash. TCP will do the 17779 * cleanup. 17780 */ 17781 if (!IPCL_IS_TCP(connp)) 17782 bzero(&connp->u_port, sizeof (connp->u_port)); 17783 17784 return (mp); 17785 } 17786 17787 /* 17788 * Write side put procedure. Outbound data, IOCTLs, responses from 17789 * resolvers, etc, come down through here. 17790 */ 17791 void 17792 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 17793 { 17794 conn_t *connp = NULL; 17795 queue_t *q = (queue_t *)arg2; 17796 ipha_t *ipha; 17797 #define rptr ((uchar_t *)ipha) 17798 ire_t *ire = NULL; 17799 ire_t *sctp_ire = NULL; 17800 uint32_t v_hlen_tos_len; 17801 ipaddr_t dst; 17802 mblk_t *first_mp = NULL; 17803 boolean_t mctl_present; 17804 ipsec_out_t *io; 17805 int match_flags; 17806 ill_t *attach_ill = NULL; 17807 /* Bind to IPIF_NOFAILOVER ill etc. */ 17808 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 17809 ipif_t *dst_ipif; 17810 boolean_t multirt_need_resolve = B_FALSE; 17811 mblk_t *copy_mp = NULL; 17812 int err; 17813 zoneid_t zoneid; 17814 boolean_t need_decref = B_FALSE; 17815 boolean_t ignore_dontroute = B_FALSE; 17816 boolean_t ignore_nexthop = B_FALSE; 17817 boolean_t ip_nexthop = B_FALSE; 17818 ipaddr_t nexthop_addr; 17819 17820 #ifdef _BIG_ENDIAN 17821 #define V_HLEN (v_hlen_tos_len >> 24) 17822 #else 17823 #define V_HLEN (v_hlen_tos_len & 0xFF) 17824 #endif 17825 17826 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 17827 "ip_wput_start: q %p", q); 17828 17829 /* 17830 * ip_wput fast path 17831 */ 17832 17833 /* is packet from ARP ? */ 17834 if (q->q_next != NULL) 17835 goto qnext; 17836 17837 connp = (conn_t *)arg; 17838 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 17839 17840 /* is queue flow controlled? */ 17841 if ((q->q_first != NULL || connp->conn_draining) && 17842 (caller == IP_WPUT)) { 17843 ASSERT(!need_decref); 17844 (void) putq(q, mp); 17845 return; 17846 } 17847 17848 /* Multidata transmit? */ 17849 if (DB_TYPE(mp) == M_MULTIDATA) { 17850 /* 17851 * We should never get here, since all Multidata messages 17852 * originating from tcp should have been directed over to 17853 * tcp_multisend() in the first place. 17854 */ 17855 BUMP_MIB(&ip_mib, ipOutDiscards); 17856 freemsg(mp); 17857 return; 17858 } else if (DB_TYPE(mp) != M_DATA) 17859 goto notdata; 17860 if (mp->b_flag & MSGHASREF) { 17861 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 17862 mp->b_flag &= ~MSGHASREF; 17863 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 17864 need_decref = B_TRUE; 17865 } 17866 ipha = (ipha_t *)mp->b_rptr; 17867 17868 /* is IP header non-aligned or mblk smaller than basic IP header */ 17869 #ifndef SAFETY_BEFORE_SPEED 17870 if (!OK_32PTR(rptr) || 17871 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 17872 goto hdrtoosmall; 17873 #endif 17874 17875 /* 17876 * If there is a policy, try to attach an ipsec_out in 17877 * the front. At the end, first_mp either points to a 17878 * M_DATA message or IPSEC_OUT message linked to a 17879 * M_DATA message. We have to do it now as we might 17880 * lose the "conn" if we go through ip_newroute. 17881 */ 17882 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 17883 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 17884 ipha->ipha_protocol)) == NULL)) { 17885 if (need_decref) 17886 CONN_DEC_REF(connp); 17887 return; 17888 } else { 17889 ASSERT(mp->b_datap->db_type == M_CTL); 17890 first_mp = mp; 17891 mp = mp->b_cont; 17892 mctl_present = B_TRUE; 17893 } 17894 } else { 17895 first_mp = mp; 17896 mctl_present = B_FALSE; 17897 } 17898 17899 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 17900 17901 /* is wrong version or IP options present */ 17902 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 17903 goto version_hdrlen_check; 17904 dst = ipha->ipha_dst; 17905 17906 if (connp->conn_nofailover_ill != NULL) { 17907 attach_ill = conn_get_held_ill(connp, 17908 &connp->conn_nofailover_ill, &err); 17909 if (err == ILL_LOOKUP_FAILED) { 17910 if (need_decref) 17911 CONN_DEC_REF(connp); 17912 freemsg(first_mp); 17913 return; 17914 } 17915 } 17916 17917 /* is packet multicast? */ 17918 if (CLASSD(dst)) 17919 goto multicast; 17920 17921 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 17922 (connp->conn_nexthop_set)) { 17923 /* 17924 * If the destination is a broadcast or a loopback 17925 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 17926 * through the standard path. But in the case of local 17927 * destination only SO_DONTROUTE and IP_NEXTHOP go through 17928 * the standard path not IP_XMIT_IF. 17929 */ 17930 ire = ire_cache_lookup(dst, zoneid); 17931 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 17932 (ire->ire_type != IRE_LOOPBACK))) { 17933 if ((connp->conn_dontroute || 17934 connp->conn_nexthop_set) && (ire != NULL) && 17935 (ire->ire_type == IRE_LOCAL)) 17936 goto standard_path; 17937 17938 if (ire != NULL) { 17939 ire_refrele(ire); 17940 /* No more access to ire */ 17941 ire = NULL; 17942 } 17943 /* 17944 * bypass routing checks and go directly to 17945 * interface. 17946 */ 17947 if (connp->conn_dontroute) { 17948 goto dontroute; 17949 } else if (connp->conn_nexthop_set) { 17950 ip_nexthop = B_TRUE; 17951 nexthop_addr = connp->conn_nexthop_v4; 17952 goto send_from_ill; 17953 } 17954 17955 /* 17956 * If IP_XMIT_IF socket option is set, 17957 * then we allow unicast and multicast 17958 * packets to go through the ill. It is 17959 * quite possible that the destination 17960 * is not in the ire cache table and we 17961 * do not want to go to ip_newroute() 17962 * instead we call ip_newroute_ipif. 17963 */ 17964 xmit_ill = conn_get_held_ill(connp, 17965 &connp->conn_xmit_if_ill, &err); 17966 if (err == ILL_LOOKUP_FAILED) { 17967 if (attach_ill != NULL) 17968 ill_refrele(attach_ill); 17969 if (need_decref) 17970 CONN_DEC_REF(connp); 17971 freemsg(first_mp); 17972 return; 17973 } 17974 goto send_from_ill; 17975 } 17976 standard_path: 17977 /* Must be a broadcast, a loopback or a local ire */ 17978 if (ire != NULL) { 17979 ire_refrele(ire); 17980 /* No more access to ire */ 17981 ire = NULL; 17982 } 17983 } 17984 17985 if (attach_ill != NULL) 17986 goto send_from_ill; 17987 17988 /* 17989 * We cache IRE_CACHEs to avoid lookups. We don't do 17990 * this for the tcp global queue and listen end point 17991 * as it does not really have a real destination to 17992 * talk to. This is also true for SCTP. 17993 */ 17994 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 17995 !connp->conn_fully_bound) { 17996 ire = ire_cache_lookup(dst, zoneid); 17997 if (ire == NULL) 17998 goto noirefound; 17999 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18000 "ip_wput_end: q %p (%S)", q, "end"); 18001 18002 /* 18003 * Check if the ire has the RTF_MULTIRT flag, inherited 18004 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18005 */ 18006 if (ire->ire_flags & RTF_MULTIRT) { 18007 18008 /* 18009 * Force the TTL of multirouted packets if required. 18010 * The TTL of such packets is bounded by the 18011 * ip_multirt_ttl ndd variable. 18012 */ 18013 if ((ip_multirt_ttl > 0) && 18014 (ipha->ipha_ttl > ip_multirt_ttl)) { 18015 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18016 "(was %d), dst 0x%08x\n", 18017 ip_multirt_ttl, ipha->ipha_ttl, 18018 ntohl(ire->ire_addr))); 18019 ipha->ipha_ttl = ip_multirt_ttl; 18020 } 18021 /* 18022 * We look at this point if there are pending 18023 * unresolved routes. ire_multirt_resolvable() 18024 * checks in O(n) that all IRE_OFFSUBNET ire 18025 * entries for the packet's destination and 18026 * flagged RTF_MULTIRT are currently resolved. 18027 * If some remain unresolved, we make a copy 18028 * of the current message. It will be used 18029 * to initiate additional route resolutions. 18030 */ 18031 multirt_need_resolve = 18032 ire_multirt_need_resolve(ire->ire_addr); 18033 ip2dbg(("ip_wput[TCP]: ire %p, " 18034 "multirt_need_resolve %d, first_mp %p\n", 18035 (void *)ire, multirt_need_resolve, 18036 (void *)first_mp)); 18037 if (multirt_need_resolve) { 18038 copy_mp = copymsg(first_mp); 18039 if (copy_mp != NULL) { 18040 MULTIRT_DEBUG_TAG(copy_mp); 18041 } 18042 } 18043 } 18044 18045 ip_wput_ire(q, first_mp, ire, connp, caller); 18046 18047 /* 18048 * Try to resolve another multiroute if 18049 * ire_multirt_need_resolve() deemed it necessary. 18050 */ 18051 if (copy_mp != NULL) { 18052 ip_newroute(q, copy_mp, dst, NULL, connp); 18053 } 18054 if (need_decref) 18055 CONN_DEC_REF(connp); 18056 return; 18057 } 18058 18059 /* 18060 * Access to conn_ire_cache. (protected by conn_lock) 18061 * 18062 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 18063 * the ire bucket lock here to check for CONDEMNED as it is okay to 18064 * send a packet or two with the IRE_CACHE that is going away. 18065 * Access to the ire requires an ire refhold on the ire prior to 18066 * its use since an interface unplumb thread may delete the cached 18067 * ire and release the refhold at any time. 18068 * 18069 * Caching an ire in the conn_ire_cache 18070 * 18071 * o Caching an ire pointer in the conn requires a strict check for 18072 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 18073 * ires before cleaning up the conns. So the caching of an ire pointer 18074 * in the conn is done after making sure under the bucket lock that the 18075 * ire has not yet been marked CONDEMNED. Otherwise we will end up 18076 * caching an ire after the unplumb thread has cleaned up the conn. 18077 * If the conn does not send a packet subsequently the unplumb thread 18078 * will be hanging waiting for the ire count to drop to zero. 18079 * 18080 * o We also need to atomically test for a null conn_ire_cache and 18081 * set the conn_ire_cache under the the protection of the conn_lock 18082 * to avoid races among concurrent threads trying to simultaneously 18083 * cache an ire in the conn_ire_cache. 18084 */ 18085 mutex_enter(&connp->conn_lock); 18086 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 18087 18088 if (ire != NULL && ire->ire_addr == dst && 18089 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18090 18091 IRE_REFHOLD(ire); 18092 mutex_exit(&connp->conn_lock); 18093 18094 } else { 18095 boolean_t cached = B_FALSE; 18096 connp->conn_ire_cache = NULL; 18097 mutex_exit(&connp->conn_lock); 18098 /* Release the old ire */ 18099 if (ire != NULL && sctp_ire == NULL) 18100 IRE_REFRELE_NOTR(ire); 18101 18102 ire = (ire_t *)ire_cache_lookup(dst, zoneid); 18103 if (ire == NULL) 18104 goto noirefound; 18105 IRE_REFHOLD_NOTR(ire); 18106 18107 mutex_enter(&connp->conn_lock); 18108 if (!(connp->conn_state_flags & CONN_CLOSING) && 18109 connp->conn_ire_cache == NULL) { 18110 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18111 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18112 connp->conn_ire_cache = ire; 18113 cached = B_TRUE; 18114 } 18115 rw_exit(&ire->ire_bucket->irb_lock); 18116 } 18117 mutex_exit(&connp->conn_lock); 18118 18119 /* 18120 * We can continue to use the ire but since it was 18121 * not cached, we should drop the extra reference. 18122 */ 18123 if (!cached) 18124 IRE_REFRELE_NOTR(ire); 18125 } 18126 18127 18128 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18129 "ip_wput_end: q %p (%S)", q, "end"); 18130 18131 /* 18132 * Check if the ire has the RTF_MULTIRT flag, inherited 18133 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18134 */ 18135 if (ire->ire_flags & RTF_MULTIRT) { 18136 18137 /* 18138 * Force the TTL of multirouted packets if required. 18139 * The TTL of such packets is bounded by the 18140 * ip_multirt_ttl ndd variable. 18141 */ 18142 if ((ip_multirt_ttl > 0) && 18143 (ipha->ipha_ttl > ip_multirt_ttl)) { 18144 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18145 "(was %d), dst 0x%08x\n", 18146 ip_multirt_ttl, ipha->ipha_ttl, 18147 ntohl(ire->ire_addr))); 18148 ipha->ipha_ttl = ip_multirt_ttl; 18149 } 18150 18151 /* 18152 * At this point, we check to see if there are any pending 18153 * unresolved routes. ire_multirt_resolvable() 18154 * checks in O(n) that all IRE_OFFSUBNET ire 18155 * entries for the packet's destination and 18156 * flagged RTF_MULTIRT are currently resolved. 18157 * If some remain unresolved, we make a copy 18158 * of the current message. It will be used 18159 * to initiate additional route resolutions. 18160 */ 18161 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 18162 ip2dbg(("ip_wput[not TCP]: ire %p, " 18163 "multirt_need_resolve %d, first_mp %p\n", 18164 (void *)ire, multirt_need_resolve, (void *)first_mp)); 18165 if (multirt_need_resolve) { 18166 copy_mp = copymsg(first_mp); 18167 if (copy_mp != NULL) { 18168 MULTIRT_DEBUG_TAG(copy_mp); 18169 } 18170 } 18171 } 18172 18173 ip_wput_ire(q, first_mp, ire, connp, caller); 18174 18175 /* 18176 * Try to resolve another multiroute if 18177 * ire_multirt_resolvable() deemed it necessary 18178 */ 18179 if (copy_mp != NULL) { 18180 ip_newroute(q, copy_mp, dst, NULL, connp); 18181 } 18182 if (need_decref) 18183 CONN_DEC_REF(connp); 18184 return; 18185 18186 qnext: 18187 /* 18188 * Upper Level Protocols pass down complete IP datagrams 18189 * as M_DATA messages. Everything else is a sideshow. 18190 * 18191 * 1) We could be re-entering ip_wput because of ip_neworute 18192 * in which case we could have a IPSEC_OUT message. We 18193 * need to pass through ip_wput like other datagrams and 18194 * hence cannot branch to ip_wput_nondata. 18195 * 18196 * 2) ARP, AH, ESP, and other clients who are on the module 18197 * instance of IP stream, give us something to deal with. 18198 * We will handle AH and ESP here and rest in ip_wput_nondata. 18199 * 18200 * 3) ICMP replies also could come here. 18201 */ 18202 if (DB_TYPE(mp) != M_DATA) { 18203 notdata: 18204 if (DB_TYPE(mp) == M_CTL) { 18205 /* 18206 * M_CTL messages are used by ARP, AH and ESP to 18207 * communicate with IP. We deal with IPSEC_IN and 18208 * IPSEC_OUT here. ip_wput_nondata handles other 18209 * cases. 18210 */ 18211 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 18212 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 18213 first_mp = mp->b_cont; 18214 first_mp->b_flag &= ~MSGHASREF; 18215 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 18216 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 18217 CONN_DEC_REF(connp); 18218 connp = NULL; 18219 } 18220 if (ii->ipsec_info_type == IPSEC_IN) { 18221 /* 18222 * Either this message goes back to 18223 * IPSEC for further processing or to 18224 * ULP after policy checks. 18225 */ 18226 ip_fanout_proto_again(mp, NULL, NULL, NULL); 18227 return; 18228 } else if (ii->ipsec_info_type == IPSEC_OUT) { 18229 io = (ipsec_out_t *)ii; 18230 if (io->ipsec_out_proc_begin) { 18231 /* 18232 * IPSEC processing has already started. 18233 * Complete it. 18234 * IPQoS notes: We don't care what is 18235 * in ipsec_out_ill_index since this 18236 * won't be processed for IPQoS policies 18237 * in ipsec_out_process. 18238 */ 18239 ipsec_out_process(q, mp, NULL, 18240 io->ipsec_out_ill_index); 18241 return; 18242 } else { 18243 connp = (q->q_next != NULL) ? 18244 NULL : Q_TO_CONN(q); 18245 first_mp = mp; 18246 mp = mp->b_cont; 18247 mctl_present = B_TRUE; 18248 } 18249 zoneid = io->ipsec_out_zoneid; 18250 ASSERT(zoneid != ALL_ZONES); 18251 } else if (ii->ipsec_info_type == IPSEC_CTL) { 18252 /* 18253 * It's an IPsec control message requesting 18254 * an SADB update to be sent to the IPsec 18255 * hardware acceleration capable ills. 18256 */ 18257 ipsec_ctl_t *ipsec_ctl = 18258 (ipsec_ctl_t *)mp->b_rptr; 18259 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 18260 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 18261 mblk_t *cmp = mp->b_cont; 18262 18263 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 18264 ASSERT(cmp != NULL); 18265 18266 freeb(mp); 18267 ill_ipsec_capab_send_all(satype, cmp, sa); 18268 return; 18269 } else { 18270 /* 18271 * This must be ARP. 18272 */ 18273 ip_wput_nondata(NULL, q, mp, NULL); 18274 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18275 "ip_wput_end: q %p (%S)", q, "nondata"); 18276 return; 18277 } 18278 } else { 18279 /* 18280 * This must be non-(ARP/AH/ESP) messages. 18281 */ 18282 ASSERT(!need_decref); 18283 ip_wput_nondata(NULL, q, mp, NULL); 18284 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18285 "ip_wput_end: q %p (%S)", q, "nondata"); 18286 return; 18287 } 18288 } else { 18289 first_mp = mp; 18290 mctl_present = B_FALSE; 18291 } 18292 18293 ASSERT(first_mp != NULL); 18294 /* 18295 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 18296 * to make sure that this packet goes out on the same interface it 18297 * came in. We handle that here. 18298 */ 18299 if (mctl_present) { 18300 uint_t ifindex; 18301 18302 io = (ipsec_out_t *)first_mp->b_rptr; 18303 if (io->ipsec_out_attach_if || 18304 io->ipsec_out_xmit_if || 18305 io->ipsec_out_ip_nexthop) { 18306 ill_t *ill; 18307 18308 /* 18309 * We may have lost the conn context if we are 18310 * coming here from ip_newroute(). Copy the 18311 * nexthop information. 18312 */ 18313 if (io->ipsec_out_ip_nexthop) { 18314 ip_nexthop = B_TRUE; 18315 nexthop_addr = io->ipsec_out_nexthop_addr; 18316 18317 ipha = (ipha_t *)mp->b_rptr; 18318 dst = ipha->ipha_dst; 18319 goto send_from_ill; 18320 } else { 18321 ASSERT(io->ipsec_out_ill_index != 0); 18322 ifindex = io->ipsec_out_ill_index; 18323 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 18324 NULL, NULL, NULL, NULL); 18325 /* 18326 * ipsec_out_xmit_if bit is used to tell 18327 * ip_wput to use the ill to send outgoing data 18328 * as we have no conn when data comes from ICMP 18329 * error msg routines. Currently this feature is 18330 * only used by ip_mrtun_forward routine. 18331 */ 18332 if (io->ipsec_out_xmit_if) { 18333 xmit_ill = ill; 18334 if (xmit_ill == NULL) { 18335 ip1dbg(("ip_output:bad ifindex " 18336 "for xmit_ill %d\n", 18337 ifindex)); 18338 freemsg(first_mp); 18339 BUMP_MIB(&ip_mib, 18340 ipOutDiscards); 18341 ASSERT(!need_decref); 18342 return; 18343 } 18344 /* Free up the ipsec_out_t mblk */ 18345 ASSERT(first_mp->b_cont == mp); 18346 first_mp->b_cont = NULL; 18347 freeb(first_mp); 18348 /* Just send the IP header+ICMP+data */ 18349 first_mp = mp; 18350 ipha = (ipha_t *)mp->b_rptr; 18351 dst = ipha->ipha_dst; 18352 goto send_from_ill; 18353 } else { 18354 attach_ill = ill; 18355 } 18356 18357 if (attach_ill == NULL) { 18358 ASSERT(xmit_ill == NULL); 18359 ip1dbg(("ip_output: bad ifindex for " 18360 "(BIND TO IPIF_NOFAILOVER) %d\n", 18361 ifindex)); 18362 freemsg(first_mp); 18363 BUMP_MIB(&ip_mib, ipOutDiscards); 18364 ASSERT(!need_decref); 18365 return; 18366 } 18367 } 18368 } 18369 } 18370 18371 ASSERT(xmit_ill == NULL); 18372 18373 /* We have a complete IP datagram heading outbound. */ 18374 ipha = (ipha_t *)mp->b_rptr; 18375 18376 #ifndef SPEED_BEFORE_SAFETY 18377 /* 18378 * Make sure we have a full-word aligned message and that at least 18379 * a simple IP header is accessible in the first message. If not, 18380 * try a pullup. 18381 */ 18382 if (!OK_32PTR(rptr) || 18383 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 18384 hdrtoosmall: 18385 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 18386 BUMP_MIB(&ip_mib, ipOutDiscards); 18387 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18388 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 18389 if (first_mp == NULL) 18390 first_mp = mp; 18391 goto drop_pkt; 18392 } 18393 ipha = (ipha_t *)mp->b_rptr; 18394 if (first_mp == NULL) { 18395 ASSERT(attach_ill == NULL && xmit_ill == NULL); 18396 /* 18397 * If we got here because of "goto hdrtoosmall" 18398 * We need to attach a IPSEC_OUT. 18399 */ 18400 if (connp->conn_out_enforce_policy) { 18401 if (((mp = ipsec_attach_ipsec_out(mp, connp, 18402 NULL, ipha->ipha_protocol)) == NULL)) { 18403 if (need_decref) 18404 CONN_DEC_REF(connp); 18405 return; 18406 } else { 18407 ASSERT(mp->b_datap->db_type == M_CTL); 18408 first_mp = mp; 18409 mp = mp->b_cont; 18410 mctl_present = B_TRUE; 18411 } 18412 } else { 18413 first_mp = mp; 18414 mctl_present = B_FALSE; 18415 } 18416 } 18417 } 18418 #endif 18419 18420 /* Most of the code below is written for speed, not readability */ 18421 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 18422 18423 /* 18424 * If ip_newroute() fails, we're going to need a full 18425 * header for the icmp wraparound. 18426 */ 18427 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 18428 uint_t v_hlen; 18429 version_hdrlen_check: 18430 ASSERT(first_mp != NULL); 18431 v_hlen = V_HLEN; 18432 /* 18433 * siphon off IPv6 packets coming down from transport 18434 * layer modules here. 18435 * Note: high-order bit carries NUD reachability confirmation 18436 */ 18437 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 18438 /* 18439 * XXX implement a IPv4 and IPv6 packet counter per 18440 * conn and switch when ratio exceeds e.g. 10:1 18441 */ 18442 #ifdef notyet 18443 if (q->q_next == NULL) /* Avoid ill queue */ 18444 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 18445 #endif 18446 BUMP_MIB(&ip_mib, ipOutIPv6); 18447 ASSERT(xmit_ill == NULL); 18448 if (attach_ill != NULL) 18449 ill_refrele(attach_ill); 18450 if (need_decref) 18451 mp->b_flag |= MSGHASREF; 18452 (void) ip_output_v6(connp, first_mp, q, caller); 18453 return; 18454 } 18455 18456 if ((v_hlen >> 4) != IP_VERSION) { 18457 BUMP_MIB(&ip_mib, ipOutDiscards); 18458 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18459 "ip_wput_end: q %p (%S)", q, "badvers"); 18460 goto drop_pkt; 18461 } 18462 /* 18463 * Is the header length at least 20 bytes? 18464 * 18465 * Are there enough bytes accessible in the header? If 18466 * not, try a pullup. 18467 */ 18468 v_hlen &= 0xF; 18469 v_hlen <<= 2; 18470 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 18471 BUMP_MIB(&ip_mib, ipOutDiscards); 18472 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18473 "ip_wput_end: q %p (%S)", q, "badlen"); 18474 goto drop_pkt; 18475 } 18476 if (v_hlen > (mp->b_wptr - rptr)) { 18477 if (!pullupmsg(mp, v_hlen)) { 18478 BUMP_MIB(&ip_mib, ipOutDiscards); 18479 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18480 "ip_wput_end: q %p (%S)", q, "badpullup2"); 18481 goto drop_pkt; 18482 } 18483 ipha = (ipha_t *)mp->b_rptr; 18484 } 18485 /* 18486 * Move first entry from any source route into ipha_dst and 18487 * verify the options 18488 */ 18489 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 18490 ASSERT(xmit_ill == NULL); 18491 if (attach_ill != NULL) 18492 ill_refrele(attach_ill); 18493 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18494 "ip_wput_end: q %p (%S)", q, "badopts"); 18495 if (need_decref) 18496 CONN_DEC_REF(connp); 18497 return; 18498 } 18499 } 18500 dst = ipha->ipha_dst; 18501 18502 /* 18503 * Try to get an IRE_CACHE for the destination address. If we can't, 18504 * we have to run the packet through ip_newroute which will take 18505 * the appropriate action to arrange for an IRE_CACHE, such as querying 18506 * a resolver, or assigning a default gateway, etc. 18507 */ 18508 if (CLASSD(dst)) { 18509 ipif_t *ipif; 18510 uint32_t setsrc = 0; 18511 18512 multicast: 18513 ASSERT(first_mp != NULL); 18514 ASSERT(xmit_ill == NULL); 18515 ip2dbg(("ip_wput: CLASSD\n")); 18516 if (connp == NULL) { 18517 /* 18518 * Use the first good ipif on the ill. 18519 * XXX Should this ever happen? (Appears 18520 * to show up with just ppp and no ethernet due 18521 * to in.rdisc.) 18522 * However, ire_send should be able to 18523 * call ip_wput_ire directly. 18524 * 18525 * XXX Also, this can happen for ICMP and other packets 18526 * with multicast source addresses. Perhaps we should 18527 * fix things so that we drop the packet in question, 18528 * but for now, just run with it. 18529 */ 18530 ill_t *ill = (ill_t *)q->q_ptr; 18531 18532 /* 18533 * Don't honor attach_if for this case. If ill 18534 * is part of the group, ipif could belong to 18535 * any ill and we cannot maintain attach_ill 18536 * and ipif_ill same anymore and the assert 18537 * below would fail. 18538 */ 18539 if (mctl_present) { 18540 io->ipsec_out_ill_index = 0; 18541 io->ipsec_out_attach_if = B_FALSE; 18542 ASSERT(attach_ill != NULL); 18543 ill_refrele(attach_ill); 18544 attach_ill = NULL; 18545 } 18546 18547 ASSERT(attach_ill == NULL); 18548 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 18549 if (ipif == NULL) { 18550 if (need_decref) 18551 CONN_DEC_REF(connp); 18552 freemsg(first_mp); 18553 return; 18554 } 18555 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 18556 ntohl(dst), ill->ill_name)); 18557 } else { 18558 /* 18559 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 18560 * IP_XMIT_IF is honoured. 18561 * Block comment above this function explains the 18562 * locking mechanism used here 18563 */ 18564 xmit_ill = conn_get_held_ill(connp, 18565 &connp->conn_xmit_if_ill, &err); 18566 if (err == ILL_LOOKUP_FAILED) { 18567 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 18568 goto drop_pkt; 18569 } 18570 if (xmit_ill == NULL) { 18571 ipif = conn_get_held_ipif(connp, 18572 &connp->conn_multicast_ipif, &err); 18573 if (err == IPIF_LOOKUP_FAILED) { 18574 ip1dbg(("ip_wput: No ipif for " 18575 "multicast\n")); 18576 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18577 goto drop_pkt; 18578 } 18579 } 18580 if (xmit_ill != NULL) { 18581 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18582 if (ipif == NULL) { 18583 ip1dbg(("ip_wput: No ipif for " 18584 "IP_XMIT_IF\n")); 18585 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18586 goto drop_pkt; 18587 } 18588 } else if (ipif == NULL || ipif->ipif_isv6) { 18589 /* 18590 * We must do this ipif determination here 18591 * else we could pass through ip_newroute 18592 * and come back here without the conn context. 18593 * 18594 * Note: we do late binding i.e. we bind to 18595 * the interface when the first packet is sent. 18596 * For performance reasons we do not rebind on 18597 * each packet but keep the binding until the 18598 * next IP_MULTICAST_IF option. 18599 * 18600 * conn_multicast_{ipif,ill} are shared between 18601 * IPv4 and IPv6 and AF_INET6 sockets can 18602 * send both IPv4 and IPv6 packets. Hence 18603 * we have to check that "isv6" matches above. 18604 */ 18605 if (ipif != NULL) 18606 ipif_refrele(ipif); 18607 ipif = ipif_lookup_group(dst, zoneid); 18608 if (ipif == NULL) { 18609 ip1dbg(("ip_wput: No ipif for " 18610 "multicast\n")); 18611 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18612 goto drop_pkt; 18613 } 18614 err = conn_set_held_ipif(connp, 18615 &connp->conn_multicast_ipif, ipif); 18616 if (err == IPIF_LOOKUP_FAILED) { 18617 ipif_refrele(ipif); 18618 ip1dbg(("ip_wput: No ipif for " 18619 "multicast\n")); 18620 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18621 goto drop_pkt; 18622 } 18623 } 18624 } 18625 ASSERT(!ipif->ipif_isv6); 18626 /* 18627 * As we may lose the conn by the time we reach ip_wput_ire, 18628 * we copy conn_multicast_loop and conn_dontroute on to an 18629 * ipsec_out. In case if this datagram goes out secure, 18630 * we need the ill_index also. Copy that also into the 18631 * ipsec_out. 18632 */ 18633 if (mctl_present) { 18634 io = (ipsec_out_t *)first_mp->b_rptr; 18635 ASSERT(first_mp->b_datap->db_type == M_CTL); 18636 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18637 } else { 18638 ASSERT(mp == first_mp); 18639 if ((first_mp = allocb(sizeof (ipsec_info_t), 18640 BPRI_HI)) == NULL) { 18641 ipif_refrele(ipif); 18642 first_mp = mp; 18643 goto drop_pkt; 18644 } 18645 first_mp->b_datap->db_type = M_CTL; 18646 first_mp->b_wptr += sizeof (ipsec_info_t); 18647 /* ipsec_out_secure is B_FALSE now */ 18648 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 18649 io = (ipsec_out_t *)first_mp->b_rptr; 18650 io->ipsec_out_type = IPSEC_OUT; 18651 io->ipsec_out_len = sizeof (ipsec_out_t); 18652 io->ipsec_out_use_global_policy = B_TRUE; 18653 first_mp->b_cont = mp; 18654 mctl_present = B_TRUE; 18655 } 18656 if (attach_ill != NULL) { 18657 ASSERT(attach_ill == ipif->ipif_ill); 18658 match_flags = MATCH_IRE_ILL; 18659 18660 /* 18661 * Check if we need an ire that will not be 18662 * looked up by anybody else i.e. HIDDEN. 18663 */ 18664 if (ill_is_probeonly(attach_ill)) { 18665 match_flags |= MATCH_IRE_MARK_HIDDEN; 18666 } 18667 io->ipsec_out_ill_index = 18668 attach_ill->ill_phyint->phyint_ifindex; 18669 io->ipsec_out_attach_if = B_TRUE; 18670 } else { 18671 match_flags = MATCH_IRE_ILL_GROUP; 18672 io->ipsec_out_ill_index = 18673 ipif->ipif_ill->ill_phyint->phyint_ifindex; 18674 } 18675 if (connp != NULL) { 18676 io->ipsec_out_multicast_loop = 18677 connp->conn_multicast_loop; 18678 io->ipsec_out_dontroute = connp->conn_dontroute; 18679 io->ipsec_out_zoneid = connp->conn_zoneid; 18680 } 18681 /* 18682 * If the application uses IP_MULTICAST_IF with 18683 * different logical addresses of the same ILL, we 18684 * need to make sure that the soruce address of 18685 * the packet matches the logical IP address used 18686 * in the option. We do it by initializing ipha_src 18687 * here. This should keep IPSEC also happy as 18688 * when we return from IPSEC processing, we don't 18689 * have to worry about getting the right address on 18690 * the packet. Thus it is sufficient to look for 18691 * IRE_CACHE using MATCH_IRE_ILL rathen than 18692 * MATCH_IRE_IPIF. 18693 * 18694 * NOTE : We need to do it for non-secure case also as 18695 * this might go out secure if there is a global policy 18696 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 18697 * address, the source should be initialized already and 18698 * hence we won't be initializing here. 18699 * 18700 * As we do not have the ire yet, it is possible that 18701 * we set the source address here and then later discover 18702 * that the ire implies the source address to be assigned 18703 * through the RTF_SETSRC flag. 18704 * In that case, the setsrc variable will remind us 18705 * that overwritting the source address by the one 18706 * of the RTF_SETSRC-flagged ire is allowed. 18707 */ 18708 if (ipha->ipha_src == INADDR_ANY && 18709 (connp == NULL || !connp->conn_unspec_src)) { 18710 ipha->ipha_src = ipif->ipif_src_addr; 18711 setsrc = RTF_SETSRC; 18712 } 18713 /* 18714 * Find an IRE which matches the destination and the outgoing 18715 * queue (i.e. the outgoing interface.) 18716 * For loopback use a unicast IP address for 18717 * the ire lookup. 18718 */ 18719 if (ipif->ipif_ill->ill_phyint->phyint_flags & 18720 PHYI_LOOPBACK) { 18721 dst = ipif->ipif_lcl_addr; 18722 } 18723 /* 18724 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 18725 * We don't need to lookup ire in ctable as the packet 18726 * needs to be sent to the destination through the specified 18727 * ill irrespective of ires in the cache table. 18728 */ 18729 ire = NULL; 18730 if (xmit_ill == NULL) { 18731 ire = ire_ctable_lookup(dst, 0, 0, ipif, 18732 zoneid, match_flags); 18733 } 18734 18735 /* 18736 * refrele attach_ill as its not needed anymore. 18737 */ 18738 if (attach_ill != NULL) { 18739 ill_refrele(attach_ill); 18740 attach_ill = NULL; 18741 } 18742 18743 if (ire == NULL) { 18744 /* 18745 * Multicast loopback and multicast forwarding is 18746 * done in ip_wput_ire. 18747 * 18748 * Mark this packet to make it be delivered to 18749 * ip_wput_ire after the new ire has been 18750 * created. 18751 * 18752 * The call to ip_newroute_ipif takes into account 18753 * the setsrc reminder. In any case, we take care 18754 * of the RTF_MULTIRT flag. 18755 */ 18756 mp->b_prev = mp->b_next = NULL; 18757 if (xmit_ill == NULL || 18758 xmit_ill->ill_ipif_up_count > 0) { 18759 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 18760 setsrc | RTF_MULTIRT); 18761 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18762 "ip_wput_end: q %p (%S)", q, "noire"); 18763 } else { 18764 freemsg(first_mp); 18765 } 18766 ipif_refrele(ipif); 18767 if (xmit_ill != NULL) 18768 ill_refrele(xmit_ill); 18769 if (need_decref) 18770 CONN_DEC_REF(connp); 18771 return; 18772 } 18773 18774 ipif_refrele(ipif); 18775 ipif = NULL; 18776 ASSERT(xmit_ill == NULL); 18777 18778 /* 18779 * Honor the RTF_SETSRC flag for multicast packets, 18780 * if allowed by the setsrc reminder. 18781 */ 18782 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 18783 ipha->ipha_src = ire->ire_src_addr; 18784 } 18785 18786 /* 18787 * Unconditionally force the TTL to 1 for 18788 * multirouted multicast packets: 18789 * multirouted multicast should not cross 18790 * multicast routers. 18791 */ 18792 if (ire->ire_flags & RTF_MULTIRT) { 18793 if (ipha->ipha_ttl > 1) { 18794 ip2dbg(("ip_wput: forcing multicast " 18795 "multirt TTL to 1 (was %d), dst 0x%08x\n", 18796 ipha->ipha_ttl, ntohl(ire->ire_addr))); 18797 ipha->ipha_ttl = 1; 18798 } 18799 } 18800 } else { 18801 ire = ire_cache_lookup(dst, zoneid); 18802 if ((ire != NULL) && (ire->ire_type & 18803 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 18804 ignore_dontroute = B_TRUE; 18805 ignore_nexthop = B_TRUE; 18806 } 18807 if (ire != NULL) { 18808 ire_refrele(ire); 18809 ire = NULL; 18810 } 18811 /* 18812 * Guard against coming in from arp in which case conn is NULL. 18813 * Also guard against non M_DATA with dontroute set but 18814 * destined to local, loopback or broadcast addresses. 18815 */ 18816 if (connp != NULL && connp->conn_dontroute && 18817 !ignore_dontroute) { 18818 dontroute: 18819 /* 18820 * Set TTL to 1 if SO_DONTROUTE is set to prevent 18821 * routing protocols from seeing false direct 18822 * connectivity. 18823 */ 18824 ipha->ipha_ttl = 1; 18825 /* 18826 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 18827 * along with SO_DONTROUTE, higher precedence is 18828 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 18829 */ 18830 if (connp->conn_xmit_if_ill == NULL) { 18831 /* If suitable ipif not found, drop packet */ 18832 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 18833 if (dst_ipif == NULL) { 18834 ip1dbg(("ip_wput: no route for " 18835 "dst using SO_DONTROUTE\n")); 18836 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18837 mp->b_prev = mp->b_next = NULL; 18838 if (first_mp == NULL) 18839 first_mp = mp; 18840 goto drop_pkt; 18841 } else { 18842 /* 18843 * If suitable ipif has been found, set 18844 * xmit_ill to the corresponding 18845 * ipif_ill because we'll be following 18846 * the IP_XMIT_IF logic. 18847 */ 18848 ASSERT(xmit_ill == NULL); 18849 xmit_ill = dst_ipif->ipif_ill; 18850 mutex_enter(&xmit_ill->ill_lock); 18851 if (!ILL_CAN_LOOKUP(xmit_ill)) { 18852 mutex_exit(&xmit_ill->ill_lock); 18853 xmit_ill = NULL; 18854 ipif_refrele(dst_ipif); 18855 ip1dbg(("ip_wput: no route for" 18856 " dst using" 18857 " SO_DONTROUTE\n")); 18858 BUMP_MIB(&ip_mib, 18859 ipOutNoRoutes); 18860 mp->b_prev = mp->b_next = NULL; 18861 if (first_mp == NULL) 18862 first_mp = mp; 18863 goto drop_pkt; 18864 } 18865 ill_refhold_locked(xmit_ill); 18866 mutex_exit(&xmit_ill->ill_lock); 18867 ipif_refrele(dst_ipif); 18868 } 18869 } 18870 18871 } 18872 /* 18873 * If we are bound to IPIF_NOFAILOVER address, look for 18874 * an IRE_CACHE matching the ill. 18875 */ 18876 send_from_ill: 18877 if (attach_ill != NULL) { 18878 ipif_t *attach_ipif; 18879 18880 match_flags = MATCH_IRE_ILL; 18881 18882 /* 18883 * Check if we need an ire that will not be 18884 * looked up by anybody else i.e. HIDDEN. 18885 */ 18886 if (ill_is_probeonly(attach_ill)) { 18887 match_flags |= MATCH_IRE_MARK_HIDDEN; 18888 } 18889 18890 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 18891 if (attach_ipif == NULL) { 18892 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 18893 goto drop_pkt; 18894 } 18895 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 18896 zoneid, match_flags); 18897 ipif_refrele(attach_ipif); 18898 } else if (xmit_ill != NULL || (connp != NULL && 18899 connp->conn_xmit_if_ill != NULL)) { 18900 /* 18901 * Mark this packet as originated locally 18902 */ 18903 mp->b_prev = mp->b_next = NULL; 18904 /* 18905 * xmit_ill could be NULL if SO_DONTROUTE 18906 * is also set. 18907 */ 18908 if (xmit_ill == NULL) { 18909 xmit_ill = conn_get_held_ill(connp, 18910 &connp->conn_xmit_if_ill, &err); 18911 if (err == ILL_LOOKUP_FAILED) { 18912 if (need_decref) 18913 CONN_DEC_REF(connp); 18914 freemsg(first_mp); 18915 return; 18916 } 18917 if (xmit_ill == NULL) { 18918 if (connp->conn_dontroute) 18919 goto dontroute; 18920 goto send_from_ill; 18921 } 18922 } 18923 /* 18924 * could be SO_DONTROUTE case also. 18925 * check at least one interface is UP as 18926 * spcified by this ILL, and then call 18927 * ip_newroute_ipif() 18928 */ 18929 if (xmit_ill->ill_ipif_up_count > 0) { 18930 ipif_t *ipif; 18931 18932 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18933 if (ipif != NULL) { 18934 ip_newroute_ipif(q, first_mp, ipif, 18935 dst, connp, 0); 18936 ipif_refrele(ipif); 18937 ip1dbg(("ip_wput: ip_unicast_if\n")); 18938 } 18939 } else { 18940 freemsg(first_mp); 18941 } 18942 ill_refrele(xmit_ill); 18943 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18944 "ip_wput_end: q %p (%S)", q, "unicast_if"); 18945 if (need_decref) 18946 CONN_DEC_REF(connp); 18947 return; 18948 } else if (ip_nexthop || (connp != NULL && 18949 (connp->conn_nexthop_set)) && !ignore_nexthop) { 18950 if (!ip_nexthop) { 18951 ip_nexthop = B_TRUE; 18952 nexthop_addr = connp->conn_nexthop_v4; 18953 } 18954 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 18955 MATCH_IRE_GW; 18956 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 18957 NULL, zoneid, match_flags); 18958 } else { 18959 ire = ire_cache_lookup(dst, zoneid); 18960 } 18961 if (!ire) { 18962 /* 18963 * Make sure we don't load spread if this 18964 * is IPIF_NOFAILOVER case. 18965 */ 18966 if ((attach_ill != NULL) || 18967 (ip_nexthop && !ignore_nexthop)) { 18968 if (mctl_present) { 18969 io = (ipsec_out_t *)first_mp->b_rptr; 18970 ASSERT(first_mp->b_datap->db_type == 18971 M_CTL); 18972 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18973 } else { 18974 ASSERT(mp == first_mp); 18975 first_mp = allocb( 18976 sizeof (ipsec_info_t), BPRI_HI); 18977 if (first_mp == NULL) { 18978 first_mp = mp; 18979 goto drop_pkt; 18980 } 18981 first_mp->b_datap->db_type = M_CTL; 18982 first_mp->b_wptr += 18983 sizeof (ipsec_info_t); 18984 /* ipsec_out_secure is B_FALSE now */ 18985 bzero(first_mp->b_rptr, 18986 sizeof (ipsec_info_t)); 18987 io = (ipsec_out_t *)first_mp->b_rptr; 18988 io->ipsec_out_type = IPSEC_OUT; 18989 io->ipsec_out_len = 18990 sizeof (ipsec_out_t); 18991 io->ipsec_out_use_global_policy = 18992 B_TRUE; 18993 first_mp->b_cont = mp; 18994 mctl_present = B_TRUE; 18995 } 18996 if (attach_ill != NULL) { 18997 io->ipsec_out_ill_index = attach_ill-> 18998 ill_phyint->phyint_ifindex; 18999 io->ipsec_out_attach_if = B_TRUE; 19000 } else { 19001 io->ipsec_out_ip_nexthop = ip_nexthop; 19002 io->ipsec_out_nexthop_addr = 19003 nexthop_addr; 19004 } 19005 } 19006 noirefound: 19007 /* 19008 * Mark this packet as having originated on 19009 * this machine. This will be noted in 19010 * ire_add_then_send, which needs to know 19011 * whether to run it back through ip_wput or 19012 * ip_rput following successful resolution. 19013 */ 19014 mp->b_prev = NULL; 19015 mp->b_next = NULL; 19016 ip_newroute(q, first_mp, dst, NULL, connp); 19017 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19018 "ip_wput_end: q %p (%S)", q, "newroute"); 19019 if (attach_ill != NULL) 19020 ill_refrele(attach_ill); 19021 if (xmit_ill != NULL) 19022 ill_refrele(xmit_ill); 19023 if (need_decref) 19024 CONN_DEC_REF(connp); 19025 return; 19026 } 19027 } 19028 19029 /* We now know where we are going with it. */ 19030 19031 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19032 "ip_wput_end: q %p (%S)", q, "end"); 19033 19034 /* 19035 * Check if the ire has the RTF_MULTIRT flag, inherited 19036 * from an IRE_OFFSUBNET ire entry in ip_newroute. 19037 */ 19038 if (ire->ire_flags & RTF_MULTIRT) { 19039 /* 19040 * Force the TTL of multirouted packets if required. 19041 * The TTL of such packets is bounded by the 19042 * ip_multirt_ttl ndd variable. 19043 */ 19044 if ((ip_multirt_ttl > 0) && 19045 (ipha->ipha_ttl > ip_multirt_ttl)) { 19046 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19047 "(was %d), dst 0x%08x\n", 19048 ip_multirt_ttl, ipha->ipha_ttl, 19049 ntohl(ire->ire_addr))); 19050 ipha->ipha_ttl = ip_multirt_ttl; 19051 } 19052 /* 19053 * At this point, we check to see if there are any pending 19054 * unresolved routes. ire_multirt_resolvable() 19055 * checks in O(n) that all IRE_OFFSUBNET ire 19056 * entries for the packet's destination and 19057 * flagged RTF_MULTIRT are currently resolved. 19058 * If some remain unresolved, we make a copy 19059 * of the current message. It will be used 19060 * to initiate additional route resolutions. 19061 */ 19062 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 19063 ip2dbg(("ip_wput[noirefound]: ire %p, " 19064 "multirt_need_resolve %d, first_mp %p\n", 19065 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19066 if (multirt_need_resolve) { 19067 copy_mp = copymsg(first_mp); 19068 if (copy_mp != NULL) { 19069 MULTIRT_DEBUG_TAG(copy_mp); 19070 } 19071 } 19072 } 19073 19074 ip_wput_ire(q, first_mp, ire, connp, caller); 19075 /* 19076 * Try to resolve another multiroute if 19077 * ire_multirt_resolvable() deemed it necessary. 19078 * At this point, we need to distinguish 19079 * multicasts from other packets. For multicasts, 19080 * we call ip_newroute_ipif() and request that both 19081 * multirouting and setsrc flags are checked. 19082 */ 19083 if (copy_mp != NULL) { 19084 if (CLASSD(dst)) { 19085 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 19086 if (ipif) { 19087 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 19088 RTF_SETSRC | RTF_MULTIRT); 19089 ipif_refrele(ipif); 19090 } else { 19091 MULTIRT_DEBUG_UNTAG(copy_mp); 19092 freemsg(copy_mp); 19093 copy_mp = NULL; 19094 } 19095 } else { 19096 ip_newroute(q, copy_mp, dst, NULL, connp); 19097 } 19098 } 19099 if (attach_ill != NULL) 19100 ill_refrele(attach_ill); 19101 if (xmit_ill != NULL) 19102 ill_refrele(xmit_ill); 19103 if (need_decref) 19104 CONN_DEC_REF(connp); 19105 return; 19106 19107 drop_pkt: 19108 ip1dbg(("ip_wput: dropped packet\n")); 19109 if (ire != NULL) 19110 ire_refrele(ire); 19111 if (need_decref) 19112 CONN_DEC_REF(connp); 19113 freemsg(first_mp); 19114 if (attach_ill != NULL) 19115 ill_refrele(attach_ill); 19116 if (xmit_ill != NULL) 19117 ill_refrele(xmit_ill); 19118 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19119 "ip_wput_end: q %p (%S)", q, "droppkt"); 19120 } 19121 19122 void 19123 ip_wput(queue_t *q, mblk_t *mp) 19124 { 19125 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 19126 } 19127 19128 /* 19129 * 19130 * The following rules must be observed when accessing any ipif or ill 19131 * that has been cached in the conn. Typically conn_nofailover_ill, 19132 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 19133 * 19134 * Access: The ipif or ill pointed to from the conn can be accessed under 19135 * the protection of the conn_lock or after it has been refheld under the 19136 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 19137 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 19138 * The reason for this is that a concurrent unplumb could actually be 19139 * cleaning up these cached pointers by walking the conns and might have 19140 * finished cleaning up the conn in question. The macros check that an 19141 * unplumb has not yet started on the ipif or ill. 19142 * 19143 * Caching: An ipif or ill pointer may be cached in the conn only after 19144 * making sure that an unplumb has not started. So the caching is done 19145 * while holding both the conn_lock and the ill_lock and after using the 19146 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 19147 * flag before starting the cleanup of conns. 19148 * 19149 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 19150 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 19151 * or a reference to the ipif or a reference to an ire that references the 19152 * ipif. An ipif does not change its ill except for failover/failback. Since 19153 * failover/failback happens only after bringing down the ipif and making sure 19154 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 19155 * the above holds. 19156 */ 19157 ipif_t * 19158 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 19159 { 19160 ipif_t *ipif; 19161 ill_t *ill; 19162 19163 *err = 0; 19164 rw_enter(&ill_g_lock, RW_READER); 19165 mutex_enter(&connp->conn_lock); 19166 ipif = *ipifp; 19167 if (ipif != NULL) { 19168 ill = ipif->ipif_ill; 19169 mutex_enter(&ill->ill_lock); 19170 if (IPIF_CAN_LOOKUP(ipif)) { 19171 ipif_refhold_locked(ipif); 19172 mutex_exit(&ill->ill_lock); 19173 mutex_exit(&connp->conn_lock); 19174 rw_exit(&ill_g_lock); 19175 return (ipif); 19176 } else { 19177 *err = IPIF_LOOKUP_FAILED; 19178 } 19179 mutex_exit(&ill->ill_lock); 19180 } 19181 mutex_exit(&connp->conn_lock); 19182 rw_exit(&ill_g_lock); 19183 return (NULL); 19184 } 19185 19186 ill_t * 19187 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 19188 { 19189 ill_t *ill; 19190 19191 *err = 0; 19192 mutex_enter(&connp->conn_lock); 19193 ill = *illp; 19194 if (ill != NULL) { 19195 mutex_enter(&ill->ill_lock); 19196 if (ILL_CAN_LOOKUP(ill)) { 19197 ill_refhold_locked(ill); 19198 mutex_exit(&ill->ill_lock); 19199 mutex_exit(&connp->conn_lock); 19200 return (ill); 19201 } else { 19202 *err = ILL_LOOKUP_FAILED; 19203 } 19204 mutex_exit(&ill->ill_lock); 19205 } 19206 mutex_exit(&connp->conn_lock); 19207 return (NULL); 19208 } 19209 19210 static int 19211 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 19212 { 19213 ill_t *ill; 19214 19215 ill = ipif->ipif_ill; 19216 mutex_enter(&connp->conn_lock); 19217 mutex_enter(&ill->ill_lock); 19218 if (IPIF_CAN_LOOKUP(ipif)) { 19219 *ipifp = ipif; 19220 mutex_exit(&ill->ill_lock); 19221 mutex_exit(&connp->conn_lock); 19222 return (0); 19223 } 19224 mutex_exit(&ill->ill_lock); 19225 mutex_exit(&connp->conn_lock); 19226 return (IPIF_LOOKUP_FAILED); 19227 } 19228 19229 /* 19230 * This is called if the outbound datagram needs fragmentation. 19231 * 19232 * NOTE : This function does not ire_refrele the ire argument passed in. 19233 */ 19234 static void 19235 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 19236 { 19237 ipha_t *ipha; 19238 mblk_t *mp; 19239 uint32_t v_hlen_tos_len; 19240 uint32_t max_frag; 19241 uint32_t frag_flag; 19242 boolean_t dont_use; 19243 19244 if (ipsec_mp->b_datap->db_type == M_CTL) { 19245 mp = ipsec_mp->b_cont; 19246 } else { 19247 mp = ipsec_mp; 19248 } 19249 19250 ipha = (ipha_t *)mp->b_rptr; 19251 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19252 19253 #ifdef _BIG_ENDIAN 19254 #define V_HLEN (v_hlen_tos_len >> 24) 19255 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19256 #else 19257 #define V_HLEN (v_hlen_tos_len & 0xFF) 19258 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19259 #endif 19260 19261 #ifndef SPEED_BEFORE_SAFETY 19262 /* 19263 * Check that ipha_length is consistent with 19264 * the mblk length 19265 */ 19266 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 19267 ip0dbg(("Packet length mismatch: %d, %ld\n", 19268 LENGTH, msgdsize(mp))); 19269 freemsg(ipsec_mp); 19270 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 19271 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 19272 "packet length mismatch"); 19273 return; 19274 } 19275 #endif 19276 /* 19277 * Don't use frag_flag if pre-built packet or source 19278 * routed or if multicast (since multicast packets do not solicit 19279 * ICMP "packet too big" messages). Get the values of 19280 * max_frag and frag_flag atomically by acquiring the 19281 * ire_lock. 19282 */ 19283 mutex_enter(&ire->ire_lock); 19284 max_frag = ire->ire_max_frag; 19285 frag_flag = ire->ire_frag_flag; 19286 mutex_exit(&ire->ire_lock); 19287 19288 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 19289 (V_HLEN != IP_SIMPLE_HDR_VERSION && 19290 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 19291 19292 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 19293 (dont_use ? 0 : frag_flag)); 19294 } 19295 19296 /* 19297 * Used for deciding the MSS size for the upper layer. Thus 19298 * we need to check the outbound policy values in the conn. 19299 */ 19300 int 19301 conn_ipsec_length(conn_t *connp) 19302 { 19303 ipsec_latch_t *ipl; 19304 19305 ipl = connp->conn_latch; 19306 if (ipl == NULL) 19307 return (0); 19308 19309 if (ipl->ipl_out_policy == NULL) 19310 return (0); 19311 19312 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 19313 } 19314 19315 /* 19316 * Returns an estimate of the IPSEC headers size. This is used if 19317 * we don't want to call into IPSEC to get the exact size. 19318 */ 19319 int 19320 ipsec_out_extra_length(mblk_t *ipsec_mp) 19321 { 19322 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 19323 ipsec_action_t *a; 19324 19325 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19326 if (!io->ipsec_out_secure) 19327 return (0); 19328 19329 a = io->ipsec_out_act; 19330 19331 if (a == NULL) { 19332 ASSERT(io->ipsec_out_policy != NULL); 19333 a = io->ipsec_out_policy->ipsp_act; 19334 } 19335 ASSERT(a != NULL); 19336 19337 return (a->ipa_ovhd); 19338 } 19339 19340 /* 19341 * Returns an estimate of the IPSEC headers size. This is used if 19342 * we don't want to call into IPSEC to get the exact size. 19343 */ 19344 int 19345 ipsec_in_extra_length(mblk_t *ipsec_mp) 19346 { 19347 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 19348 ipsec_action_t *a; 19349 19350 ASSERT(ii->ipsec_in_type == IPSEC_IN); 19351 19352 a = ii->ipsec_in_action; 19353 return (a == NULL ? 0 : a->ipa_ovhd); 19354 } 19355 19356 /* 19357 * If there are any source route options, return the true final 19358 * destination. Otherwise, return the destination. 19359 */ 19360 ipaddr_t 19361 ip_get_dst(ipha_t *ipha) 19362 { 19363 ipoptp_t opts; 19364 uchar_t *opt; 19365 uint8_t optval; 19366 uint8_t optlen; 19367 ipaddr_t dst; 19368 uint32_t off; 19369 19370 dst = ipha->ipha_dst; 19371 19372 if (IS_SIMPLE_IPH(ipha)) 19373 return (dst); 19374 19375 for (optval = ipoptp_first(&opts, ipha); 19376 optval != IPOPT_EOL; 19377 optval = ipoptp_next(&opts)) { 19378 opt = opts.ipoptp_cur; 19379 optlen = opts.ipoptp_len; 19380 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19381 switch (optval) { 19382 case IPOPT_SSRR: 19383 case IPOPT_LSRR: 19384 off = opt[IPOPT_OFFSET]; 19385 /* 19386 * If one of the conditions is true, it means 19387 * end of options and dst already has the right 19388 * value. 19389 */ 19390 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 19391 off = optlen - IP_ADDR_LEN; 19392 bcopy(&opt[off], &dst, IP_ADDR_LEN); 19393 } 19394 return (dst); 19395 default: 19396 break; 19397 } 19398 } 19399 19400 return (dst); 19401 } 19402 19403 mblk_t * 19404 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 19405 conn_t *connp, boolean_t unspec_src) 19406 { 19407 ipsec_out_t *io; 19408 mblk_t *first_mp; 19409 boolean_t policy_present; 19410 19411 first_mp = mp; 19412 if (mp->b_datap->db_type == M_CTL) { 19413 io = (ipsec_out_t *)first_mp->b_rptr; 19414 /* 19415 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 19416 * 19417 * 1) There is per-socket policy (including cached global 19418 * policy). 19419 * 2) There is no per-socket policy, but it is 19420 * a multicast packet that needs to go out 19421 * on a specific interface. This is the case 19422 * where (ip_wput and ip_wput_multicast) attaches 19423 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 19424 * 19425 * In case (2) we check with global policy to 19426 * see if there is a match and set the ill_index 19427 * appropriately so that we can lookup the ire 19428 * properly in ip_wput_ipsec_out. 19429 */ 19430 19431 /* 19432 * ipsec_out_use_global_policy is set to B_FALSE 19433 * in ipsec_in_to_out(). Refer to that function for 19434 * details. 19435 */ 19436 if ((io->ipsec_out_latch == NULL) && 19437 (io->ipsec_out_use_global_policy)) { 19438 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 19439 ire, connp, unspec_src)); 19440 } 19441 if (!io->ipsec_out_secure) { 19442 /* 19443 * If this is not a secure packet, drop 19444 * the IPSEC_OUT mp and treat it as a clear 19445 * packet. This happens when we are sending 19446 * a ICMP reply back to a clear packet. See 19447 * ipsec_in_to_out() for details. 19448 */ 19449 mp = first_mp->b_cont; 19450 freeb(first_mp); 19451 } 19452 return (mp); 19453 } 19454 /* 19455 * See whether we need to attach a global policy here. We 19456 * don't depend on the conn (as it could be null) for deciding 19457 * what policy this datagram should go through because it 19458 * should have happened in ip_wput if there was some 19459 * policy. This normally happens for connections which are not 19460 * fully bound preventing us from caching policies in 19461 * ip_bind. Packets coming from the TCP listener/global queue 19462 * - which are non-hard_bound - could also be affected by 19463 * applying policy here. 19464 * 19465 * If this packet is coming from tcp global queue or listener, 19466 * we will be applying policy here. This may not be *right* 19467 * if these packets are coming from the detached connection as 19468 * it could have gone in clear before. This happens only if a 19469 * TCP connection started when there is no policy and somebody 19470 * added policy before it became detached. Thus packets of the 19471 * detached connection could go out secure and the other end 19472 * would drop it because it will be expecting in clear. The 19473 * converse is not true i.e if somebody starts a TCP 19474 * connection and deletes the policy, all the packets will 19475 * still go out with the policy that existed before deleting 19476 * because ip_unbind sends up policy information which is used 19477 * by TCP on subsequent ip_wputs. The right solution is to fix 19478 * TCP to attach a dummy IPSEC_OUT and set 19479 * ipsec_out_use_global_policy to B_FALSE. As this might 19480 * affect performance for normal cases, we are not doing it. 19481 * Thus, set policy before starting any TCP connections. 19482 * 19483 * NOTE - We might apply policy even for a hard bound connection 19484 * - for which we cached policy in ip_bind - if somebody added 19485 * global policy after we inherited the policy in ip_bind. 19486 * This means that the packets that were going out in clear 19487 * previously would start going secure and hence get dropped 19488 * on the other side. To fix this, TCP attaches a dummy 19489 * ipsec_out and make sure that we don't apply global policy. 19490 */ 19491 if (ipha != NULL) 19492 policy_present = ipsec_outbound_v4_policy_present; 19493 else 19494 policy_present = ipsec_outbound_v6_policy_present; 19495 if (!policy_present) 19496 return (mp); 19497 19498 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 19499 } 19500 19501 ire_t * 19502 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 19503 { 19504 ipaddr_t addr; 19505 ire_t *save_ire; 19506 irb_t *irb; 19507 ill_group_t *illgrp; 19508 int err; 19509 19510 save_ire = ire; 19511 addr = ire->ire_addr; 19512 19513 ASSERT(ire->ire_type == IRE_BROADCAST); 19514 19515 illgrp = connp->conn_outgoing_ill->ill_group; 19516 if (illgrp == NULL) { 19517 *conn_outgoing_ill = conn_get_held_ill(connp, 19518 &connp->conn_outgoing_ill, &err); 19519 if (err == ILL_LOOKUP_FAILED) { 19520 ire_refrele(save_ire); 19521 return (NULL); 19522 } 19523 return (save_ire); 19524 } 19525 /* 19526 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 19527 * If it is part of the group, we need to send on the ire 19528 * that has been cleared of IRE_MARK_NORECV and that belongs 19529 * to this group. This is okay as IP_BOUND_IF really means 19530 * any ill in the group. We depend on the fact that the 19531 * first ire in the group is always cleared of IRE_MARK_NORECV 19532 * if such an ire exists. This is possible only if you have 19533 * at least one ill in the group that has not failed. 19534 * 19535 * First get to the ire that matches the address and group. 19536 * 19537 * We don't look for an ire with a matching zoneid because a given zone 19538 * won't always have broadcast ires on all ills in the group. 19539 */ 19540 irb = ire->ire_bucket; 19541 rw_enter(&irb->irb_lock, RW_READER); 19542 if (ire->ire_marks & IRE_MARK_NORECV) { 19543 /* 19544 * If the current zone only has an ire broadcast for this 19545 * address marked NORECV, the ire we want is ahead in the 19546 * bucket, so we look it up deliberately ignoring the zoneid. 19547 */ 19548 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 19549 if (ire->ire_addr != addr) 19550 continue; 19551 /* skip over deleted ires */ 19552 if (ire->ire_marks & IRE_MARK_CONDEMNED) 19553 continue; 19554 } 19555 } 19556 while (ire != NULL) { 19557 /* 19558 * If a new interface is coming up, we could end up 19559 * seeing the loopback ire and the non-loopback ire 19560 * may not have been added yet. So check for ire_stq 19561 */ 19562 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 19563 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 19564 break; 19565 } 19566 ire = ire->ire_next; 19567 } 19568 if (ire != NULL && ire->ire_addr == addr && 19569 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 19570 IRE_REFHOLD(ire); 19571 rw_exit(&irb->irb_lock); 19572 ire_refrele(save_ire); 19573 *conn_outgoing_ill = ire_to_ill(ire); 19574 /* 19575 * Refhold the ill to make the conn_outgoing_ill 19576 * independent of the ire. ip_wput_ire goes in a loop 19577 * and may refrele the ire. Since we have an ire at this 19578 * point we don't need to use ILL_CAN_LOOKUP on the ill. 19579 */ 19580 ill_refhold(*conn_outgoing_ill); 19581 return (ire); 19582 } 19583 rw_exit(&irb->irb_lock); 19584 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 19585 /* 19586 * If we can't find a suitable ire, return the original ire. 19587 */ 19588 return (save_ire); 19589 } 19590 19591 /* 19592 * This function does the ire_refrele of the ire passed in as the 19593 * argument. As this function looks up more ires i.e broadcast ires, 19594 * it needs to REFRELE them. Currently, for simplicity we don't 19595 * differentiate the one passed in and looked up here. We always 19596 * REFRELE. 19597 * IPQoS Notes: 19598 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 19599 * IPSec packets are done in ipsec_out_process. 19600 * 19601 */ 19602 void 19603 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 19604 { 19605 ipha_t *ipha; 19606 #define rptr ((uchar_t *)ipha) 19607 mblk_t *mp1; 19608 queue_t *stq; 19609 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 19610 uint32_t v_hlen_tos_len; 19611 uint32_t ttl_protocol; 19612 ipaddr_t src; 19613 ipaddr_t dst; 19614 uint32_t cksum; 19615 ipaddr_t orig_src; 19616 ire_t *ire1; 19617 mblk_t *next_mp; 19618 uint_t hlen; 19619 uint16_t *up; 19620 uint32_t max_frag = ire->ire_max_frag; 19621 ill_t *ill = ire_to_ill(ire); 19622 int clusterwide; 19623 uint16_t ip_hdr_included; /* IP header included by ULP? */ 19624 int ipsec_len; 19625 mblk_t *first_mp; 19626 ipsec_out_t *io; 19627 boolean_t conn_dontroute; /* conn value for multicast */ 19628 boolean_t conn_multicast_loop; /* conn value for multicast */ 19629 boolean_t multicast_forward; /* Should we forward ? */ 19630 boolean_t unspec_src; 19631 ill_t *conn_outgoing_ill = NULL; 19632 ill_t *ire_ill; 19633 ill_t *ire1_ill; 19634 uint32_t ill_index = 0; 19635 boolean_t multirt_send = B_FALSE; 19636 int err; 19637 zoneid_t zoneid; 19638 19639 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 19640 "ip_wput_ire_start: q %p", q); 19641 19642 multicast_forward = B_FALSE; 19643 unspec_src = (connp != NULL && connp->conn_unspec_src); 19644 19645 if (ire->ire_flags & RTF_MULTIRT) { 19646 /* 19647 * Multirouting case. The bucket where ire is stored 19648 * probably holds other RTF_MULTIRT flagged ire 19649 * to the destination. In this call to ip_wput_ire, 19650 * we attempt to send the packet through all 19651 * those ires. Thus, we first ensure that ire is the 19652 * first RTF_MULTIRT ire in the bucket, 19653 * before walking the ire list. 19654 */ 19655 ire_t *first_ire; 19656 irb_t *irb = ire->ire_bucket; 19657 ASSERT(irb != NULL); 19658 19659 /* Make sure we do not omit any multiroute ire. */ 19660 IRB_REFHOLD(irb); 19661 for (first_ire = irb->irb_ire; 19662 first_ire != NULL; 19663 first_ire = first_ire->ire_next) { 19664 if ((first_ire->ire_flags & RTF_MULTIRT) && 19665 (first_ire->ire_addr == ire->ire_addr) && 19666 !(first_ire->ire_marks & 19667 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 19668 break; 19669 } 19670 19671 if ((first_ire != NULL) && (first_ire != ire)) { 19672 IRE_REFHOLD(first_ire); 19673 ire_refrele(ire); 19674 ire = first_ire; 19675 ill = ire_to_ill(ire); 19676 } 19677 IRB_REFRELE(irb); 19678 } 19679 19680 /* 19681 * conn_outgoing_ill is used only in the broadcast loop. 19682 * for performance we don't grab the mutexs in the fastpath 19683 */ 19684 if ((connp != NULL) && 19685 (connp->conn_xmit_if_ill == NULL) && 19686 (ire->ire_type == IRE_BROADCAST) && 19687 ((connp->conn_nofailover_ill != NULL) || 19688 (connp->conn_outgoing_ill != NULL))) { 19689 /* 19690 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 19691 * option. So, see if this endpoint is bound to a 19692 * IPIF_NOFAILOVER address. If so, honor it. This implies 19693 * that if the interface is failed, we will still send 19694 * the packet on the same ill which is what we want. 19695 */ 19696 conn_outgoing_ill = conn_get_held_ill(connp, 19697 &connp->conn_nofailover_ill, &err); 19698 if (err == ILL_LOOKUP_FAILED) { 19699 ire_refrele(ire); 19700 freemsg(mp); 19701 return; 19702 } 19703 if (conn_outgoing_ill == NULL) { 19704 /* 19705 * Choose a good ill in the group to send the 19706 * packets on. 19707 */ 19708 ire = conn_set_outgoing_ill(connp, ire, 19709 &conn_outgoing_ill); 19710 if (ire == NULL) { 19711 freemsg(mp); 19712 return; 19713 } 19714 } 19715 } 19716 19717 if (mp->b_datap->db_type != M_CTL) { 19718 ipha = (ipha_t *)mp->b_rptr; 19719 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 19720 } else { 19721 io = (ipsec_out_t *)mp->b_rptr; 19722 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19723 zoneid = io->ipsec_out_zoneid; 19724 ASSERT(zoneid != ALL_ZONES); 19725 ipha = (ipha_t *)mp->b_cont->b_rptr; 19726 dst = ipha->ipha_dst; 19727 /* 19728 * For the multicast case, ipsec_out carries conn_dontroute and 19729 * conn_multicast_loop as conn may not be available here. We 19730 * need this for multicast loopback and forwarding which is done 19731 * later in the code. 19732 */ 19733 if (CLASSD(dst)) { 19734 conn_dontroute = io->ipsec_out_dontroute; 19735 conn_multicast_loop = io->ipsec_out_multicast_loop; 19736 /* 19737 * If conn_dontroute is not set or conn_multicast_loop 19738 * is set, we need to do forwarding/loopback. For 19739 * datagrams from ip_wput_multicast, conn_dontroute is 19740 * set to B_TRUE and conn_multicast_loop is set to 19741 * B_FALSE so that we neither do forwarding nor 19742 * loopback. 19743 */ 19744 if (!conn_dontroute || conn_multicast_loop) 19745 multicast_forward = B_TRUE; 19746 } 19747 } 19748 19749 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid) { 19750 /* 19751 * When a zone sends a packet to another zone, we try to deliver 19752 * the packet under the same conditions as if the destination 19753 * was a real node on the network. To do so, we look for a 19754 * matching route in the forwarding table. 19755 * RTF_REJECT and RTF_BLACKHOLE are handled just like 19756 * ip_newroute() does. 19757 */ 19758 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 19759 NULL, NULL, zoneid, 0, (MATCH_IRE_RECURSIVE | 19760 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 19761 if (src_ire != NULL && 19762 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 19763 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 19764 ipha->ipha_src = src_ire->ire_src_addr; 19765 ire_refrele(src_ire); 19766 } else { 19767 ire_refrele(ire); 19768 if (conn_outgoing_ill != NULL) 19769 ill_refrele(conn_outgoing_ill); 19770 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19771 if (src_ire != NULL) { 19772 if (src_ire->ire_flags & RTF_BLACKHOLE) { 19773 ire_refrele(src_ire); 19774 freemsg(mp); 19775 return; 19776 } 19777 ire_refrele(src_ire); 19778 } 19779 if (ip_hdr_complete(ipha, zoneid)) { 19780 /* Failed */ 19781 freemsg(mp); 19782 return; 19783 } 19784 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 19785 return; 19786 } 19787 } 19788 19789 if (mp->b_datap->db_type == M_CTL || 19790 ipsec_outbound_v4_policy_present) { 19791 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 19792 unspec_src); 19793 if (mp == NULL) { 19794 ire_refrele(ire); 19795 if (conn_outgoing_ill != NULL) 19796 ill_refrele(conn_outgoing_ill); 19797 return; 19798 } 19799 } 19800 19801 first_mp = mp; 19802 ipsec_len = 0; 19803 19804 if (first_mp->b_datap->db_type == M_CTL) { 19805 io = (ipsec_out_t *)first_mp->b_rptr; 19806 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19807 mp = first_mp->b_cont; 19808 ipsec_len = ipsec_out_extra_length(first_mp); 19809 ASSERT(ipsec_len >= 0); 19810 zoneid = io->ipsec_out_zoneid; 19811 ASSERT(zoneid != ALL_ZONES); 19812 19813 /* 19814 * Drop M_CTL here if IPsec processing is not needed. 19815 * (Non-IPsec use of M_CTL extracted any information it 19816 * needed above). 19817 */ 19818 if (ipsec_len == 0) { 19819 freeb(first_mp); 19820 first_mp = mp; 19821 } 19822 } 19823 19824 /* 19825 * Fast path for ip_wput_ire 19826 */ 19827 19828 ipha = (ipha_t *)mp->b_rptr; 19829 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19830 dst = ipha->ipha_dst; 19831 19832 /* 19833 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 19834 * if the socket is a SOCK_RAW type. The transport checksum should 19835 * be provided in the pre-built packet, so we don't need to compute it. 19836 * Also, other application set flags, like DF, should not be altered. 19837 * Other transport MUST pass down zero. 19838 */ 19839 ip_hdr_included = ipha->ipha_ident; 19840 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19841 19842 if (CLASSD(dst)) { 19843 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 19844 ntohl(dst), 19845 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 19846 ntohl(ire->ire_addr))); 19847 } 19848 19849 /* Macros to extract header fields from data already in registers */ 19850 #ifdef _BIG_ENDIAN 19851 #define V_HLEN (v_hlen_tos_len >> 24) 19852 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19853 #define PROTO (ttl_protocol & 0xFF) 19854 #else 19855 #define V_HLEN (v_hlen_tos_len & 0xFF) 19856 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19857 #define PROTO (ttl_protocol >> 8) 19858 #endif 19859 19860 19861 orig_src = src = ipha->ipha_src; 19862 /* (The loop back to "another" is explained down below.) */ 19863 another:; 19864 /* 19865 * Assign an ident value for this packet. We assign idents on 19866 * a per destination basis out of the IRE. There could be 19867 * other threads targeting the same destination, so we have to 19868 * arrange for a atomic increment. Note that we use a 32-bit 19869 * atomic add because it has better performance than its 19870 * 16-bit sibling. 19871 * 19872 * If running in cluster mode and if the source address 19873 * belongs to a replicated service then vector through 19874 * cl_inet_ipident vector to allocate ip identifier 19875 * NOTE: This is a contract private interface with the 19876 * clustering group. 19877 */ 19878 clusterwide = 0; 19879 if (cl_inet_ipident) { 19880 ASSERT(cl_inet_isclusterwide); 19881 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19882 AF_INET, (uint8_t *)(uintptr_t)src)) { 19883 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 19884 AF_INET, (uint8_t *)(uintptr_t)src, 19885 (uint8_t *)(uintptr_t)dst); 19886 clusterwide = 1; 19887 } 19888 } 19889 if (!clusterwide) { 19890 ipha->ipha_ident = 19891 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19892 } 19893 19894 #ifndef _BIG_ENDIAN 19895 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19896 #endif 19897 19898 /* 19899 * Set source address unless sent on an ill or conn_unspec_src is set. 19900 * This is needed to obey conn_unspec_src when packets go through 19901 * ip_newroute + arp. 19902 * Assumes ip_newroute{,_multi} sets the source address as well. 19903 */ 19904 if (src == INADDR_ANY && !unspec_src) { 19905 /* 19906 * Assign the appropriate source address from the IRE if none 19907 * was specified. 19908 */ 19909 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19910 19911 /* 19912 * With IP multipathing, broadcast packets are sent on the ire 19913 * that has been cleared of IRE_MARK_NORECV and that belongs to 19914 * the group. However, this ire might not be in the same zone so 19915 * we can't always use its source address. We look for a 19916 * broadcast ire in the same group and in the right zone. 19917 */ 19918 if (ire->ire_type == IRE_BROADCAST && 19919 ire->ire_zoneid != zoneid) { 19920 ire_t *src_ire = ire_ctable_lookup(dst, 0, 19921 IRE_BROADCAST, ire->ire_ipif, zoneid, 19922 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 19923 if (src_ire != NULL) { 19924 src = src_ire->ire_src_addr; 19925 ire_refrele(src_ire); 19926 } else { 19927 ire_refrele(ire); 19928 if (conn_outgoing_ill != NULL) 19929 ill_refrele(conn_outgoing_ill); 19930 freemsg(first_mp); 19931 BUMP_MIB(&ip_mib, ipOutDiscards); 19932 return; 19933 } 19934 } else { 19935 src = ire->ire_src_addr; 19936 } 19937 19938 if (connp == NULL) { 19939 ip1dbg(("ip_wput_ire: no connp and no src " 19940 "address for dst 0x%x, using src 0x%x\n", 19941 ntohl(dst), 19942 ntohl(src))); 19943 } 19944 ipha->ipha_src = src; 19945 } 19946 stq = ire->ire_stq; 19947 19948 /* 19949 * We only allow ire chains for broadcasts since there will 19950 * be multiple IRE_CACHE entries for the same multicast 19951 * address (one per ipif). 19952 */ 19953 next_mp = NULL; 19954 19955 /* broadcast packet */ 19956 if (ire->ire_type == IRE_BROADCAST) 19957 goto broadcast; 19958 19959 /* loopback ? */ 19960 if (stq == NULL) 19961 goto nullstq; 19962 19963 /* The ill_index for outbound ILL */ 19964 ill_index = Q_TO_INDEX(stq); 19965 19966 BUMP_MIB(&ip_mib, ipOutRequests); 19967 ttl_protocol = ((uint16_t *)ipha)[4]; 19968 19969 /* pseudo checksum (do it in parts for IP header checksum) */ 19970 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19971 19972 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 19973 queue_t *dev_q = stq->q_next; 19974 19975 /* flow controlled */ 19976 if ((dev_q->q_next || dev_q->q_first) && 19977 !canput(dev_q)) 19978 goto blocked; 19979 if ((PROTO == IPPROTO_UDP) && 19980 (ip_hdr_included != IP_HDR_INCLUDED)) { 19981 hlen = (V_HLEN & 0xF) << 2; 19982 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 19983 if (*up != 0) { 19984 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 19985 hlen, LENGTH, max_frag, ipsec_len, cksum); 19986 /* Software checksum? */ 19987 if (DB_CKSUMFLAGS(mp) == 0) { 19988 IP_STAT(ip_out_sw_cksum); 19989 IP_STAT_UPDATE( 19990 ip_udp_out_sw_cksum_bytes, 19991 LENGTH - hlen); 19992 } 19993 } 19994 } 19995 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 19996 hlen = (V_HLEN & 0xF) << 2; 19997 if (PROTO == IPPROTO_TCP) { 19998 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 19999 /* 20000 * The packet header is processed once and for all, even 20001 * in the multirouting case. We disable hardware 20002 * checksum if the packet is multirouted, as it will be 20003 * replicated via several interfaces, and not all of 20004 * them may have this capability. 20005 */ 20006 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 20007 LENGTH, max_frag, ipsec_len, cksum); 20008 /* Software checksum? */ 20009 if (DB_CKSUMFLAGS(mp) == 0) { 20010 IP_STAT(ip_out_sw_cksum); 20011 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 20012 LENGTH - hlen); 20013 } 20014 } else { 20015 sctp_hdr_t *sctph; 20016 20017 ASSERT(PROTO == IPPROTO_SCTP); 20018 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20019 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20020 /* 20021 * Zero out the checksum field to ensure proper 20022 * checksum calculation. 20023 */ 20024 sctph->sh_chksum = 0; 20025 #ifdef DEBUG 20026 if (!skip_sctp_cksum) 20027 #endif 20028 sctph->sh_chksum = sctp_cksum(mp, hlen); 20029 } 20030 } 20031 20032 /* 20033 * If this is a multicast packet and originated from ip_wput 20034 * we need to do loopback and forwarding checks. If it comes 20035 * from ip_wput_multicast, we SHOULD not do this. 20036 */ 20037 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 20038 20039 /* checksum */ 20040 cksum += ttl_protocol; 20041 20042 /* fragment the packet */ 20043 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 20044 goto fragmentit; 20045 /* 20046 * Don't use frag_flag if packet is pre-built or source 20047 * routed or if multicast (since multicast packets do 20048 * not solicit ICMP "packet too big" messages). 20049 */ 20050 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20051 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20052 !ip_source_route_included(ipha)) && 20053 !CLASSD(ipha->ipha_dst)) 20054 ipha->ipha_fragment_offset_and_flags |= 20055 htons(ire->ire_frag_flag); 20056 20057 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 20058 /* calculate IP header checksum */ 20059 cksum += ipha->ipha_ident; 20060 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 20061 cksum += ipha->ipha_fragment_offset_and_flags; 20062 20063 /* IP options present */ 20064 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20065 if (hlen) 20066 goto checksumoptions; 20067 20068 /* calculate hdr checksum */ 20069 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20070 cksum = ~(cksum + (cksum >> 16)); 20071 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20072 } 20073 if (ipsec_len != 0) { 20074 /* 20075 * We will do the rest of the processing after 20076 * we come back from IPSEC in ip_wput_ipsec_out(). 20077 */ 20078 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 20079 20080 io = (ipsec_out_t *)first_mp->b_rptr; 20081 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 20082 ill_phyint->phyint_ifindex; 20083 20084 ipsec_out_process(q, first_mp, ire, ill_index); 20085 ire_refrele(ire); 20086 if (conn_outgoing_ill != NULL) 20087 ill_refrele(conn_outgoing_ill); 20088 return; 20089 } 20090 20091 /* 20092 * In most cases, the emission loop below is entered only 20093 * once. Only in the case where the ire holds the 20094 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 20095 * flagged ires in the bucket, and send the packet 20096 * through all crossed RTF_MULTIRT routes. 20097 */ 20098 if (ire->ire_flags & RTF_MULTIRT) { 20099 multirt_send = B_TRUE; 20100 } 20101 do { 20102 if (multirt_send) { 20103 irb_t *irb; 20104 /* 20105 * We are in a multiple send case, need to get 20106 * the next ire and make a duplicate of the packet. 20107 * ire1 holds here the next ire to process in the 20108 * bucket. If multirouting is expected, 20109 * any non-RTF_MULTIRT ire that has the 20110 * right destination address is ignored. 20111 */ 20112 irb = ire->ire_bucket; 20113 ASSERT(irb != NULL); 20114 20115 IRB_REFHOLD(irb); 20116 for (ire1 = ire->ire_next; 20117 ire1 != NULL; 20118 ire1 = ire1->ire_next) { 20119 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 20120 continue; 20121 if (ire1->ire_addr != ire->ire_addr) 20122 continue; 20123 if (ire1->ire_marks & 20124 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 20125 continue; 20126 20127 /* Got one */ 20128 IRE_REFHOLD(ire1); 20129 break; 20130 } 20131 IRB_REFRELE(irb); 20132 20133 if (ire1 != NULL) { 20134 next_mp = copyb(mp); 20135 if ((next_mp == NULL) || 20136 ((mp->b_cont != NULL) && 20137 ((next_mp->b_cont = 20138 dupmsg(mp->b_cont)) == NULL))) { 20139 freemsg(next_mp); 20140 next_mp = NULL; 20141 ire_refrele(ire1); 20142 ire1 = NULL; 20143 } 20144 } 20145 20146 /* Last multiroute ire; don't loop anymore. */ 20147 if (ire1 == NULL) { 20148 multirt_send = B_FALSE; 20149 } 20150 } 20151 mp = ip_wput_attach_llhdr(mp, ire, IPP_LOCAL_OUT, ill_index); 20152 if (mp == NULL) { 20153 BUMP_MIB(&ip_mib, ipOutDiscards); 20154 ip2dbg(("ip_wput_ire: fastpath wput pkt dropped "\ 20155 "during IPPF processing\n")); 20156 ire_refrele(ire); 20157 if (next_mp != NULL) { 20158 freemsg(next_mp); 20159 ire_refrele(ire1); 20160 } 20161 if (conn_outgoing_ill != NULL) 20162 ill_refrele(conn_outgoing_ill); 20163 return; 20164 } 20165 UPDATE_OB_PKT_COUNT(ire); 20166 ire->ire_last_used_time = lbolt; 20167 20168 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20169 "ip_wput_ire_end: q %p (%S)", 20170 q, "last copy out"); 20171 putnext(stq, mp); 20172 IRE_REFRELE(ire); 20173 20174 if (multirt_send) { 20175 ASSERT(ire1); 20176 /* 20177 * Proceed with the next RTF_MULTIRT ire, 20178 * Also set up the send-to queue accordingly. 20179 */ 20180 ire = ire1; 20181 ire1 = NULL; 20182 stq = ire->ire_stq; 20183 mp = next_mp; 20184 next_mp = NULL; 20185 ipha = (ipha_t *)mp->b_rptr; 20186 ill_index = Q_TO_INDEX(stq); 20187 } 20188 } while (multirt_send); 20189 if (conn_outgoing_ill != NULL) 20190 ill_refrele(conn_outgoing_ill); 20191 return; 20192 20193 /* 20194 * ire->ire_type == IRE_BROADCAST (minimize diffs) 20195 */ 20196 broadcast: 20197 { 20198 /* 20199 * Avoid broadcast storms by setting the ttl to 1 20200 * for broadcasts. This parameter can be set 20201 * via ndd, so make sure that for the SO_DONTROUTE 20202 * case that ipha_ttl is always set to 1. 20203 * In the event that we are replying to incoming 20204 * ICMP packets, conn could be NULL. 20205 */ 20206 if ((connp != NULL) && connp->conn_dontroute) 20207 ipha->ipha_ttl = 1; 20208 else 20209 ipha->ipha_ttl = ip_broadcast_ttl; 20210 20211 /* 20212 * Note that we are not doing a IRB_REFHOLD here. 20213 * Actually we don't care if the list changes i.e 20214 * if somebody deletes an IRE from the list while 20215 * we drop the lock, the next time we come around 20216 * ire_next will be NULL and hence we won't send 20217 * out multiple copies which is fine. 20218 */ 20219 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20220 ire1 = ire->ire_next; 20221 if (conn_outgoing_ill != NULL) { 20222 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 20223 ASSERT(ire1 == ire->ire_next); 20224 if (ire1 != NULL && ire1->ire_addr == dst) { 20225 ire_refrele(ire); 20226 ire = ire1; 20227 IRE_REFHOLD(ire); 20228 ire1 = ire->ire_next; 20229 continue; 20230 } 20231 rw_exit(&ire->ire_bucket->irb_lock); 20232 /* Did not find a matching ill */ 20233 ip1dbg(("ip_wput_ire: broadcast with no " 20234 "matching IP_BOUND_IF ill %s\n", 20235 conn_outgoing_ill->ill_name)); 20236 freemsg(first_mp); 20237 if (ire != NULL) 20238 ire_refrele(ire); 20239 ill_refrele(conn_outgoing_ill); 20240 return; 20241 } 20242 } else if (ire1 != NULL && ire1->ire_addr == dst) { 20243 /* 20244 * If the next IRE has the same address and is not one 20245 * of the two copies that we need to send, try to see 20246 * whether this copy should be sent at all. This 20247 * assumes that we insert loopbacks first and then 20248 * non-loopbacks. This is acheived by inserting the 20249 * loopback always before non-loopback. 20250 * This is used to send a single copy of a broadcast 20251 * packet out all physical interfaces that have an 20252 * matching IRE_BROADCAST while also looping 20253 * back one copy (to ip_wput_local) for each 20254 * matching physical interface. However, we avoid 20255 * sending packets out different logical that match by 20256 * having ipif_up/ipif_down supress duplicate 20257 * IRE_BROADCASTS. 20258 * 20259 * This feature is currently used to get broadcasts 20260 * sent to multiple interfaces, when the broadcast 20261 * address being used applies to multiple interfaces. 20262 * For example, a whole net broadcast will be 20263 * replicated on every connected subnet of 20264 * the target net. 20265 * 20266 * Each zone has its own set of IRE_BROADCASTs, so that 20267 * we're able to distribute inbound packets to multiple 20268 * zones who share a broadcast address. We avoid looping 20269 * back outbound packets in different zones but on the 20270 * same ill, as the application would see duplicates. 20271 * 20272 * If the interfaces are part of the same group, 20273 * we would want to send only one copy out for 20274 * whole group. 20275 * 20276 * This logic assumes that ire_add_v4() groups the 20277 * IRE_BROADCAST entries so that those with the same 20278 * ire_addr and ill_group are kept together. 20279 */ 20280 ire_ill = ire->ire_ipif->ipif_ill; 20281 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 20282 if (ire_ill->ill_group != NULL && 20283 (ire->ire_marks & IRE_MARK_NORECV)) { 20284 /* 20285 * If the current zone only has an ire 20286 * broadcast for this address marked 20287 * NORECV, the ire we want is ahead in 20288 * the bucket, so we look it up 20289 * deliberately ignoring the zoneid. 20290 */ 20291 for (ire1 = ire->ire_bucket->irb_ire; 20292 ire1 != NULL; 20293 ire1 = ire1->ire_next) { 20294 ire1_ill = 20295 ire1->ire_ipif->ipif_ill; 20296 if (ire1->ire_addr != dst) 20297 continue; 20298 /* skip over the current ire */ 20299 if (ire1 == ire) 20300 continue; 20301 /* skip over deleted ires */ 20302 if (ire1->ire_marks & 20303 IRE_MARK_CONDEMNED) 20304 continue; 20305 /* 20306 * non-loopback ire in our 20307 * group: use it for the next 20308 * pass in the loop 20309 */ 20310 if (ire1->ire_stq != NULL && 20311 ire1_ill->ill_group == 20312 ire_ill->ill_group) 20313 break; 20314 } 20315 } 20316 } else { 20317 while (ire1 != NULL && ire1->ire_addr == dst) { 20318 ire1_ill = ire1->ire_ipif->ipif_ill; 20319 /* 20320 * We can have two broadcast ires on the 20321 * same ill in different zones; here 20322 * we'll send a copy of the packet on 20323 * each ill and the fanout code will 20324 * call conn_wantpacket() to check that 20325 * the zone has the broadcast address 20326 * configured on the ill. If the two 20327 * ires are in the same group we only 20328 * send one copy up. 20329 */ 20330 if (ire1_ill != ire_ill && 20331 (ire1_ill->ill_group == NULL || 20332 ire_ill->ill_group == NULL || 20333 ire1_ill->ill_group != 20334 ire_ill->ill_group)) { 20335 break; 20336 } 20337 ire1 = ire1->ire_next; 20338 } 20339 } 20340 } 20341 ASSERT(multirt_send == B_FALSE); 20342 if (ire1 != NULL && ire1->ire_addr == dst) { 20343 if ((ire->ire_flags & RTF_MULTIRT) && 20344 (ire1->ire_flags & RTF_MULTIRT)) { 20345 /* 20346 * We are in the multirouting case. 20347 * The message must be sent at least 20348 * on both ires. These ires have been 20349 * inserted AFTER the standard ones 20350 * in ip_rt_add(). There are thus no 20351 * other ire entries for the destination 20352 * address in the rest of the bucket 20353 * that do not have the RTF_MULTIRT 20354 * flag. We don't process a copy 20355 * of the message here. This will be 20356 * done in the final sending loop. 20357 */ 20358 multirt_send = B_TRUE; 20359 } else { 20360 next_mp = ip_copymsg(first_mp); 20361 if (next_mp != NULL) 20362 IRE_REFHOLD(ire1); 20363 } 20364 } 20365 rw_exit(&ire->ire_bucket->irb_lock); 20366 } 20367 20368 if (stq) { 20369 /* 20370 * A non-NULL send-to queue means this packet is going 20371 * out of this machine. 20372 */ 20373 20374 BUMP_MIB(&ip_mib, ipOutRequests); 20375 ttl_protocol = ((uint16_t *)ipha)[4]; 20376 /* 20377 * We accumulate the pseudo header checksum in cksum. 20378 * This is pretty hairy code, so watch close. One 20379 * thing to keep in mind is that UDP and TCP have 20380 * stored their respective datagram lengths in their 20381 * checksum fields. This lines things up real nice. 20382 */ 20383 cksum = (dst >> 16) + (dst & 0xFFFF) + 20384 (src >> 16) + (src & 0xFFFF); 20385 /* 20386 * We assume the udp checksum field contains the 20387 * length, so to compute the pseudo header checksum, 20388 * all we need is the protocol number and src/dst. 20389 */ 20390 /* Provide the checksums for UDP and TCP. */ 20391 if ((PROTO == IPPROTO_TCP) && 20392 (ip_hdr_included != IP_HDR_INCLUDED)) { 20393 /* hlen gets the number of uchar_ts in the IP header */ 20394 hlen = (V_HLEN & 0xF) << 2; 20395 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20396 IP_STAT(ip_out_sw_cksum); 20397 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 20398 LENGTH - hlen); 20399 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 20400 if (*up == 0) 20401 *up = 0xFFFF; 20402 } else if (PROTO == IPPROTO_SCTP && 20403 (ip_hdr_included != IP_HDR_INCLUDED)) { 20404 sctp_hdr_t *sctph; 20405 20406 hlen = (V_HLEN & 0xF) << 2; 20407 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20408 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20409 sctph->sh_chksum = 0; 20410 #ifdef DEBUG 20411 if (!skip_sctp_cksum) 20412 #endif 20413 sctph->sh_chksum = sctp_cksum(mp, hlen); 20414 } else { 20415 queue_t *dev_q = stq->q_next; 20416 20417 if ((dev_q->q_next || dev_q->q_first) && 20418 !canput(dev_q)) { 20419 blocked: 20420 ipha->ipha_ident = ip_hdr_included; 20421 /* 20422 * If we don't have a conn to apply 20423 * backpressure, free the message. 20424 * In the ire_send path, we don't know 20425 * the position to requeue the packet. Rather 20426 * than reorder packets, we just drop this 20427 * packet. 20428 */ 20429 if (ip_output_queue && connp != NULL && 20430 caller != IRE_SEND) { 20431 if (caller == IP_WSRV) { 20432 connp->conn_did_putbq = 1; 20433 (void) putbq(connp->conn_wq, 20434 first_mp); 20435 conn_drain_insert(connp); 20436 /* 20437 * This is the service thread, 20438 * and the queue is already 20439 * noenabled. The check for 20440 * canput and the putbq is not 20441 * atomic. So we need to check 20442 * again. 20443 */ 20444 if (canput(stq->q_next)) 20445 connp->conn_did_putbq 20446 = 0; 20447 IP_STAT(ip_conn_flputbq); 20448 } else { 20449 /* 20450 * We are not the service proc. 20451 * ip_wsrv will be scheduled or 20452 * is already running. 20453 */ 20454 (void) putq(connp->conn_wq, 20455 first_mp); 20456 } 20457 } else { 20458 BUMP_MIB(&ip_mib, ipOutDiscards); 20459 freemsg(first_mp); 20460 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20461 "ip_wput_ire_end: q %p (%S)", 20462 q, "discard"); 20463 } 20464 ire_refrele(ire); 20465 if (next_mp) { 20466 ire_refrele(ire1); 20467 freemsg(next_mp); 20468 } 20469 if (conn_outgoing_ill != NULL) 20470 ill_refrele(conn_outgoing_ill); 20471 return; 20472 } 20473 if ((PROTO == IPPROTO_UDP) && 20474 (ip_hdr_included != IP_HDR_INCLUDED)) { 20475 /* 20476 * hlen gets the number of uchar_ts in the 20477 * IP header 20478 */ 20479 hlen = (V_HLEN & 0xF) << 2; 20480 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20481 max_frag = ire->ire_max_frag; 20482 if (*up != 0) { 20483 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 20484 up, PROTO, hlen, LENGTH, max_frag, 20485 ipsec_len, cksum); 20486 /* Software checksum? */ 20487 if (DB_CKSUMFLAGS(mp) == 0) { 20488 IP_STAT(ip_out_sw_cksum); 20489 IP_STAT_UPDATE( 20490 ip_udp_out_sw_cksum_bytes, 20491 LENGTH - hlen); 20492 } 20493 } 20494 } 20495 } 20496 /* 20497 * Need to do this even when fragmenting. The local 20498 * loopback can be done without computing checksums 20499 * but forwarding out other interface must be done 20500 * after the IP checksum (and ULP checksums) have been 20501 * computed. 20502 * 20503 * NOTE : multicast_forward is set only if this packet 20504 * originated from ip_wput. For packets originating from 20505 * ip_wput_multicast, it is not set. 20506 */ 20507 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 20508 multi_loopback: 20509 ip2dbg(("ip_wput: multicast, loop %d\n", 20510 conn_multicast_loop)); 20511 20512 /* Forget header checksum offload */ 20513 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 20514 20515 /* 20516 * Local loopback of multicasts? Check the 20517 * ill. 20518 * 20519 * Note that the loopback function will not come 20520 * in through ip_rput - it will only do the 20521 * client fanout thus we need to do an mforward 20522 * as well. The is different from the BSD 20523 * logic. 20524 */ 20525 if (ill != NULL) { 20526 ilm_t *ilm; 20527 20528 ILM_WALKER_HOLD(ill); 20529 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 20530 ALL_ZONES); 20531 ILM_WALKER_RELE(ill); 20532 if (ilm != NULL) { 20533 /* 20534 * Pass along the virtual output q. 20535 * ip_wput_local() will distribute the 20536 * packet to all the matching zones, 20537 * except the sending zone when 20538 * IP_MULTICAST_LOOP is false. 20539 */ 20540 ip_multicast_loopback(q, ill, first_mp, 20541 conn_multicast_loop ? 0 : 20542 IP_FF_NO_MCAST_LOOP, zoneid); 20543 } 20544 } 20545 if (ipha->ipha_ttl == 0) { 20546 /* 20547 * 0 => only to this host i.e. we are 20548 * done. We are also done if this was the 20549 * loopback interface since it is sufficient 20550 * to loopback one copy of a multicast packet. 20551 */ 20552 freemsg(first_mp); 20553 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20554 "ip_wput_ire_end: q %p (%S)", 20555 q, "loopback"); 20556 ire_refrele(ire); 20557 if (conn_outgoing_ill != NULL) 20558 ill_refrele(conn_outgoing_ill); 20559 return; 20560 } 20561 /* 20562 * ILLF_MULTICAST is checked in ip_newroute 20563 * i.e. we don't need to check it here since 20564 * all IRE_CACHEs come from ip_newroute. 20565 * For multicast traffic, SO_DONTROUTE is interpreted 20566 * to mean only send the packet out the interface 20567 * (optionally specified with IP_MULTICAST_IF) 20568 * and do not forward it out additional interfaces. 20569 * RSVP and the rsvp daemon is an example of a 20570 * protocol and user level process that 20571 * handles it's own routing. Hence, it uses the 20572 * SO_DONTROUTE option to accomplish this. 20573 */ 20574 20575 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 20576 /* Unconditionally redo the checksum */ 20577 ipha->ipha_hdr_checksum = 0; 20578 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 20579 20580 /* 20581 * If this needs to go out secure, we need 20582 * to wait till we finish the IPSEC 20583 * processing. 20584 */ 20585 if (ipsec_len == 0 && 20586 ip_mforward(ill, ipha, mp)) { 20587 freemsg(first_mp); 20588 ip1dbg(("ip_wput: mforward failed\n")); 20589 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20590 "ip_wput_ire_end: q %p (%S)", 20591 q, "mforward failed"); 20592 ire_refrele(ire); 20593 if (conn_outgoing_ill != NULL) 20594 ill_refrele(conn_outgoing_ill); 20595 return; 20596 } 20597 } 20598 } 20599 max_frag = ire->ire_max_frag; 20600 cksum += ttl_protocol; 20601 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 20602 /* No fragmentation required for this one. */ 20603 /* 20604 * Don't use frag_flag if packet is pre-built or source 20605 * routed or if multicast (since multicast packets do 20606 * not solicit ICMP "packet too big" messages). 20607 */ 20608 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20609 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20610 !ip_source_route_included(ipha)) && 20611 !CLASSD(ipha->ipha_dst)) 20612 ipha->ipha_fragment_offset_and_flags |= 20613 htons(ire->ire_frag_flag); 20614 20615 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 20616 /* Complete the IP header checksum. */ 20617 cksum += ipha->ipha_ident; 20618 cksum += (v_hlen_tos_len >> 16)+ 20619 (v_hlen_tos_len & 0xFFFF); 20620 cksum += ipha->ipha_fragment_offset_and_flags; 20621 hlen = (V_HLEN & 0xF) - 20622 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20623 if (hlen) { 20624 checksumoptions: 20625 /* 20626 * Account for the IP Options in the IP 20627 * header checksum. 20628 */ 20629 up = (uint16_t *)(rptr+ 20630 IP_SIMPLE_HDR_LENGTH); 20631 do { 20632 cksum += up[0]; 20633 cksum += up[1]; 20634 up += 2; 20635 } while (--hlen); 20636 } 20637 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20638 cksum = ~(cksum + (cksum >> 16)); 20639 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20640 } 20641 if (ipsec_len != 0) { 20642 ipsec_out_process(q, first_mp, ire, ill_index); 20643 if (!next_mp) { 20644 ire_refrele(ire); 20645 if (conn_outgoing_ill != NULL) 20646 ill_refrele(conn_outgoing_ill); 20647 return; 20648 } 20649 goto next; 20650 } 20651 20652 /* 20653 * multirt_send has already been handled 20654 * for broadcast, but not yet for multicast 20655 * or IP options. 20656 */ 20657 if (next_mp == NULL) { 20658 if (ire->ire_flags & RTF_MULTIRT) { 20659 multirt_send = B_TRUE; 20660 } 20661 } 20662 20663 /* 20664 * In most cases, the emission loop below is 20665 * entered only once. Only in the case where 20666 * the ire holds the RTF_MULTIRT flag, do we loop 20667 * to process all RTF_MULTIRT ires in the bucket, 20668 * and send the packet through all crossed 20669 * RTF_MULTIRT routes. 20670 */ 20671 do { 20672 if (multirt_send) { 20673 irb_t *irb; 20674 20675 irb = ire->ire_bucket; 20676 ASSERT(irb != NULL); 20677 /* 20678 * We are in a multiple send case, 20679 * need to get the next IRE and make 20680 * a duplicate of the packet. 20681 */ 20682 IRB_REFHOLD(irb); 20683 for (ire1 = ire->ire_next; 20684 ire1 != NULL; 20685 ire1 = ire1->ire_next) { 20686 if (!(ire1->ire_flags & 20687 RTF_MULTIRT)) 20688 continue; 20689 if (ire1->ire_addr != 20690 ire->ire_addr) 20691 continue; 20692 if (ire1->ire_marks & 20693 (IRE_MARK_CONDEMNED| 20694 IRE_MARK_HIDDEN)) 20695 continue; 20696 20697 /* Got one */ 20698 IRE_REFHOLD(ire1); 20699 break; 20700 } 20701 IRB_REFRELE(irb); 20702 20703 if (ire1 != NULL) { 20704 next_mp = copyb(mp); 20705 if ((next_mp == NULL) || 20706 ((mp->b_cont != NULL) && 20707 ((next_mp->b_cont = 20708 dupmsg(mp->b_cont)) 20709 == NULL))) { 20710 freemsg(next_mp); 20711 next_mp = NULL; 20712 ire_refrele(ire1); 20713 ire1 = NULL; 20714 } 20715 } 20716 20717 /* 20718 * Last multiroute ire; don't loop 20719 * anymore. The emission is over 20720 * and next_mp is NULL. 20721 */ 20722 if (ire1 == NULL) { 20723 multirt_send = B_FALSE; 20724 } 20725 } 20726 20727 noprepend: 20728 ASSERT(ipsec_len == 0); 20729 mp1 = ip_wput_attach_llhdr(mp, ire, 20730 IPP_LOCAL_OUT, ill_index); 20731 if (mp1 == NULL) { 20732 BUMP_MIB(&ip_mib, ipOutDiscards); 20733 if (next_mp) { 20734 freemsg(next_mp); 20735 ire_refrele(ire1); 20736 } 20737 ire_refrele(ire); 20738 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20739 "ip_wput_ire_end: q %p (%S)", 20740 q, "discard MDATA"); 20741 if (conn_outgoing_ill != NULL) 20742 ill_refrele(conn_outgoing_ill); 20743 return; 20744 } 20745 UPDATE_OB_PKT_COUNT(ire); 20746 ire->ire_last_used_time = lbolt; 20747 20748 if (multirt_send) { 20749 /* 20750 * We are in a multiple send case, 20751 * need to re-enter the sending loop 20752 * using the next ire. 20753 */ 20754 putnext(stq, mp1); 20755 ire_refrele(ire); 20756 ire = ire1; 20757 stq = ire->ire_stq; 20758 mp = next_mp; 20759 next_mp = NULL; 20760 ipha = (ipha_t *)mp->b_rptr; 20761 ill_index = Q_TO_INDEX(stq); 20762 } 20763 } while (multirt_send); 20764 20765 if (!next_mp) { 20766 /* 20767 * Last copy going out (the ultra-common 20768 * case). Note that we intentionally replicate 20769 * the putnext rather than calling it before 20770 * the next_mp check in hopes of a little 20771 * tail-call action out of the compiler. 20772 */ 20773 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20774 "ip_wput_ire_end: q %p (%S)", 20775 q, "last copy out(1)"); 20776 putnext(stq, mp1); 20777 ire_refrele(ire); 20778 if (conn_outgoing_ill != NULL) 20779 ill_refrele(conn_outgoing_ill); 20780 return; 20781 } 20782 /* More copies going out below. */ 20783 putnext(stq, mp1); 20784 } else { 20785 int offset; 20786 fragmentit: 20787 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 20788 /* 20789 * If this would generate a icmp_frag_needed message, 20790 * we need to handle it before we do the IPSEC 20791 * processing. Otherwise, we need to strip the IPSEC 20792 * headers before we send up the message to the ULPs 20793 * which becomes messy and difficult. 20794 */ 20795 if (ipsec_len != 0) { 20796 if ((max_frag < (unsigned int)(LENGTH + 20797 ipsec_len)) && (offset & IPH_DF)) { 20798 20799 BUMP_MIB(&ip_mib, ipFragFails); 20800 ipha->ipha_hdr_checksum = 0; 20801 ipha->ipha_hdr_checksum = 20802 (uint16_t)ip_csum_hdr(ipha); 20803 icmp_frag_needed(ire->ire_stq, first_mp, 20804 max_frag); 20805 if (!next_mp) { 20806 ire_refrele(ire); 20807 if (conn_outgoing_ill != NULL) { 20808 ill_refrele( 20809 conn_outgoing_ill); 20810 } 20811 return; 20812 } 20813 } else { 20814 /* 20815 * This won't cause a icmp_frag_needed 20816 * message. to be gnerated. Send it on 20817 * the wire. Note that this could still 20818 * cause fragmentation and all we 20819 * do is the generation of the message 20820 * to the ULP if needed before IPSEC. 20821 */ 20822 if (!next_mp) { 20823 ipsec_out_process(q, first_mp, 20824 ire, ill_index); 20825 TRACE_2(TR_FAC_IP, 20826 TR_IP_WPUT_IRE_END, 20827 "ip_wput_ire_end: q %p " 20828 "(%S)", q, 20829 "last ipsec_out_process"); 20830 ire_refrele(ire); 20831 if (conn_outgoing_ill != NULL) { 20832 ill_refrele( 20833 conn_outgoing_ill); 20834 } 20835 return; 20836 } 20837 ipsec_out_process(q, first_mp, 20838 ire, ill_index); 20839 } 20840 } else { 20841 /* Initiate IPPF processing */ 20842 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 20843 ip_process(IPP_LOCAL_OUT, &mp, 20844 ill_index); 20845 if (mp == NULL) { 20846 BUMP_MIB(&ip_mib, 20847 ipOutDiscards); 20848 if (next_mp != NULL) { 20849 freemsg(next_mp); 20850 ire_refrele(ire1); 20851 } 20852 ire_refrele(ire); 20853 TRACE_2(TR_FAC_IP, 20854 TR_IP_WPUT_IRE_END, 20855 "ip_wput_ire: q %p (%S)", 20856 q, "discard MDATA"); 20857 if (conn_outgoing_ill != NULL) { 20858 ill_refrele( 20859 conn_outgoing_ill); 20860 } 20861 return; 20862 } 20863 } 20864 if (!next_mp) { 20865 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20866 "ip_wput_ire_end: q %p (%S)", 20867 q, "last fragmentation"); 20868 ip_wput_ire_fragmentit(mp, ire); 20869 ire_refrele(ire); 20870 if (conn_outgoing_ill != NULL) 20871 ill_refrele(conn_outgoing_ill); 20872 return; 20873 } 20874 ip_wput_ire_fragmentit(mp, ire); 20875 } 20876 } 20877 } else { 20878 nullstq: 20879 /* A NULL stq means the destination address is local. */ 20880 UPDATE_OB_PKT_COUNT(ire); 20881 ire->ire_last_used_time = lbolt; 20882 ASSERT(ire->ire_ipif != NULL); 20883 if (!next_mp) { 20884 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20885 "ip_wput_ire_end: q %p (%S)", 20886 q, "local address"); 20887 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 20888 first_mp, ire, 0, ire->ire_zoneid); 20889 ire_refrele(ire); 20890 if (conn_outgoing_ill != NULL) 20891 ill_refrele(conn_outgoing_ill); 20892 return; 20893 } 20894 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 20895 ire, 0, ire->ire_zoneid); 20896 } 20897 next: 20898 /* 20899 * More copies going out to additional interfaces. 20900 * ire1 has already been held. We don't need the 20901 * "ire" anymore. 20902 */ 20903 ire_refrele(ire); 20904 ire = ire1; 20905 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 20906 mp = next_mp; 20907 ASSERT(ire->ire_ipversion == IPV4_VERSION); 20908 ill = ire_to_ill(ire); 20909 first_mp = mp; 20910 if (ipsec_len != 0) { 20911 ASSERT(first_mp->b_datap->db_type == M_CTL); 20912 mp = mp->b_cont; 20913 } 20914 dst = ire->ire_addr; 20915 ipha = (ipha_t *)mp->b_rptr; 20916 /* 20917 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 20918 * Restore ipha_ident "no checksum" flag. 20919 */ 20920 src = orig_src; 20921 ipha->ipha_ident = ip_hdr_included; 20922 goto another; 20923 20924 #undef rptr 20925 #undef Q_TO_INDEX 20926 } 20927 20928 /* 20929 * Routine to allocate a message that is used to notify the ULP about MDT. 20930 * The caller may provide a pointer to the link-layer MDT capabilities, 20931 * or NULL if MDT is to be disabled on the stream. 20932 */ 20933 mblk_t * 20934 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 20935 { 20936 mblk_t *mp; 20937 ip_mdt_info_t *mdti; 20938 ill_mdt_capab_t *idst; 20939 20940 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 20941 DB_TYPE(mp) = M_CTL; 20942 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 20943 mdti = (ip_mdt_info_t *)mp->b_rptr; 20944 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 20945 idst = &(mdti->mdt_capab); 20946 20947 /* 20948 * If the caller provides us with the capability, copy 20949 * it over into our notification message; otherwise 20950 * we zero out the capability portion. 20951 */ 20952 if (isrc != NULL) 20953 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 20954 else 20955 bzero((caddr_t)idst, sizeof (*idst)); 20956 } 20957 return (mp); 20958 } 20959 20960 /* 20961 * Routine which determines whether MDT can be enabled on the destination 20962 * IRE and IPC combination, and if so, allocates and returns the MDT 20963 * notification mblk that may be used by ULP. We also check if we need to 20964 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 20965 * MDT usage in the past have been lifted. This gets called during IP 20966 * and ULP binding. 20967 */ 20968 mblk_t * 20969 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 20970 ill_mdt_capab_t *mdt_cap) 20971 { 20972 mblk_t *mp; 20973 boolean_t rc = B_FALSE; 20974 20975 ASSERT(dst_ire != NULL); 20976 ASSERT(connp != NULL); 20977 ASSERT(mdt_cap != NULL); 20978 20979 /* 20980 * Currently, we only support simple TCP/{IPv4,IPv6} with 20981 * Multidata, which is handled in tcp_multisend(). This 20982 * is the reason why we do all these checks here, to ensure 20983 * that we don't enable Multidata for the cases which we 20984 * can't handle at the moment. 20985 */ 20986 do { 20987 /* Only do TCP at the moment */ 20988 if (connp->conn_ulp != IPPROTO_TCP) 20989 break; 20990 20991 /* 20992 * IPSEC outbound policy present? Note that we get here 20993 * after calling ipsec_conn_cache_policy() where the global 20994 * policy checking is performed. conn_latch will be 20995 * non-NULL as long as there's a policy defined, 20996 * i.e. conn_out_enforce_policy may be NULL in such case 20997 * when the connection is non-secure, and hence we check 20998 * further if the latch refers to an outbound policy. 20999 */ 21000 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 21001 break; 21002 21003 /* CGTP (multiroute) is enabled? */ 21004 if (dst_ire->ire_flags & RTF_MULTIRT) 21005 break; 21006 21007 /* Outbound IPQoS enabled? */ 21008 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 21009 /* 21010 * In this case, we disable MDT for this and all 21011 * future connections going over the interface. 21012 */ 21013 mdt_cap->ill_mdt_on = 0; 21014 break; 21015 } 21016 21017 /* socket option(s) present? */ 21018 if (!CONN_IS_MD_FASTPATH(connp)) 21019 break; 21020 21021 rc = B_TRUE; 21022 /* CONSTCOND */ 21023 } while (0); 21024 21025 /* Remember the result */ 21026 connp->conn_mdt_ok = rc; 21027 21028 if (!rc) 21029 return (NULL); 21030 else if (!mdt_cap->ill_mdt_on) { 21031 /* 21032 * If MDT has been previously turned off in the past, and we 21033 * currently can do MDT (due to IPQoS policy removal, etc.) 21034 * then enable it for this interface. 21035 */ 21036 mdt_cap->ill_mdt_on = 1; 21037 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 21038 "interface %s\n", ill_name)); 21039 } 21040 21041 /* Allocate the MDT info mblk */ 21042 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 21043 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 21044 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 21045 return (NULL); 21046 } 21047 return (mp); 21048 } 21049 21050 /* 21051 * Create destination address attribute, and fill it with the physical 21052 * destination address and SAP taken from the template DL_UNITDATA_REQ 21053 * message block. 21054 */ 21055 boolean_t 21056 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 21057 { 21058 dl_unitdata_req_t *dlurp; 21059 pattr_t *pa; 21060 pattrinfo_t pa_info; 21061 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 21062 uint_t das_len, das_off; 21063 21064 ASSERT(dlmp != NULL); 21065 21066 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 21067 das_len = dlurp->dl_dest_addr_length; 21068 das_off = dlurp->dl_dest_addr_offset; 21069 21070 pa_info.type = PATTR_DSTADDRSAP; 21071 pa_info.len = sizeof (**das) + das_len - 1; 21072 21073 /* create and associate the attribute */ 21074 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21075 if (pa != NULL) { 21076 ASSERT(*das != NULL); 21077 (*das)->addr_is_group = 0; 21078 (*das)->addr_len = (uint8_t)das_len; 21079 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 21080 } 21081 21082 return (pa != NULL); 21083 } 21084 21085 /* 21086 * Create hardware checksum attribute and fill it with the values passed. 21087 */ 21088 boolean_t 21089 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 21090 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 21091 { 21092 pattr_t *pa; 21093 pattrinfo_t pa_info; 21094 21095 ASSERT(mmd != NULL); 21096 21097 pa_info.type = PATTR_HCKSUM; 21098 pa_info.len = sizeof (pattr_hcksum_t); 21099 21100 /* create and associate the attribute */ 21101 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21102 if (pa != NULL) { 21103 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 21104 21105 hck->hcksum_start_offset = start_offset; 21106 hck->hcksum_stuff_offset = stuff_offset; 21107 hck->hcksum_end_offset = end_offset; 21108 hck->hcksum_flags = flags; 21109 } 21110 return (pa != NULL); 21111 } 21112 21113 /* 21114 * Create zerocopy attribute and fill it with the specified flags 21115 */ 21116 boolean_t 21117 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 21118 { 21119 pattr_t *pa; 21120 pattrinfo_t pa_info; 21121 21122 ASSERT(mmd != NULL); 21123 pa_info.type = PATTR_ZCOPY; 21124 pa_info.len = sizeof (pattr_zcopy_t); 21125 21126 /* create and associate the attribute */ 21127 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21128 if (pa != NULL) { 21129 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 21130 21131 zcopy->zcopy_flags = flags; 21132 } 21133 return (pa != NULL); 21134 } 21135 21136 /* 21137 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 21138 * block chain. We could rewrite to handle arbitrary message block chains but 21139 * that would make the code complicated and slow. Right now there three 21140 * restrictions: 21141 * 21142 * 1. The first message block must contain the complete IP header and 21143 * at least 1 byte of payload data. 21144 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 21145 * so that we can use a single Multidata message. 21146 * 3. No frag must be distributed over two or more message blocks so 21147 * that we don't need more than two packet descriptors per frag. 21148 * 21149 * The above restrictions allow us to support userland applications (which 21150 * will send down a single message block) and NFS over UDP (which will 21151 * send down a chain of at most three message blocks). 21152 * 21153 * We also don't use MDT for payloads with less than or equal to 21154 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 21155 */ 21156 boolean_t 21157 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 21158 { 21159 int blocks; 21160 ssize_t total, missing, size; 21161 21162 ASSERT(mp != NULL); 21163 ASSERT(hdr_len > 0); 21164 21165 size = MBLKL(mp) - hdr_len; 21166 if (size <= 0) 21167 return (B_FALSE); 21168 21169 /* The first mblk contains the header and some payload. */ 21170 blocks = 1; 21171 total = size; 21172 size %= len; 21173 missing = (size == 0) ? 0 : (len - size); 21174 mp = mp->b_cont; 21175 21176 while (mp != NULL) { 21177 /* 21178 * Give up if we encounter a zero length message block. 21179 * In practice, this should rarely happen and therefore 21180 * not worth the trouble of freeing and re-linking the 21181 * mblk from the chain to handle such case. 21182 */ 21183 if ((size = MBLKL(mp)) == 0) 21184 return (B_FALSE); 21185 21186 /* Too many payload buffers for a single Multidata message? */ 21187 if (++blocks > MULTIDATA_MAX_PBUFS) 21188 return (B_FALSE); 21189 21190 total += size; 21191 /* Is a frag distributed over two or more message blocks? */ 21192 if (missing > size) 21193 return (B_FALSE); 21194 size -= missing; 21195 21196 size %= len; 21197 missing = (size == 0) ? 0 : (len - size); 21198 21199 mp = mp->b_cont; 21200 } 21201 21202 return (total > ip_wput_frag_mdt_min); 21203 } 21204 21205 /* 21206 * Outbound IPv4 fragmentation routine using MDT. 21207 */ 21208 static void 21209 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 21210 uint32_t frag_flag, int offset) 21211 { 21212 ipha_t *ipha_orig; 21213 int i1, ip_data_end; 21214 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 21215 mblk_t *hdr_mp, *md_mp = NULL; 21216 unsigned char *hdr_ptr, *pld_ptr; 21217 multidata_t *mmd; 21218 ip_pdescinfo_t pdi; 21219 21220 ASSERT(DB_TYPE(mp) == M_DATA); 21221 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 21222 21223 ipha_orig = (ipha_t *)mp->b_rptr; 21224 mp->b_rptr += sizeof (ipha_t); 21225 21226 /* Calculate how many packets we will send out */ 21227 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 21228 pkts = (i1 + len - 1) / len; 21229 ASSERT(pkts > 1); 21230 21231 /* Allocate a message block which will hold all the IP Headers. */ 21232 wroff = ip_wroff_extra; 21233 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 21234 21235 i1 = pkts * hdr_chunk_len; 21236 /* 21237 * Create the header buffer, Multidata and destination address 21238 * and SAP attribute that should be associated with it. 21239 */ 21240 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 21241 ((hdr_mp->b_wptr += i1), 21242 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 21243 !ip_md_addr_attr(mmd, NULL, ire->ire_dlureq_mp)) { 21244 freemsg(mp); 21245 if (md_mp == NULL) { 21246 freemsg(hdr_mp); 21247 } else { 21248 free_mmd: IP_STAT(ip_frag_mdt_discarded); 21249 freemsg(md_mp); 21250 } 21251 IP_STAT(ip_frag_mdt_allocfail); 21252 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 21253 return; 21254 } 21255 IP_STAT(ip_frag_mdt_allocd); 21256 21257 /* 21258 * Add a payload buffer to the Multidata; this operation must not 21259 * fail, or otherwise our logic in this routine is broken. There 21260 * is no memory allocation done by the routine, so any returned 21261 * failure simply tells us that we've done something wrong. 21262 * 21263 * A failure tells us that either we're adding the same payload 21264 * buffer more than once, or we're trying to add more buffers than 21265 * allowed. None of the above cases should happen, and we panic 21266 * because either there's horrible heap corruption, and/or 21267 * programming mistake. 21268 */ 21269 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 21270 goto pbuf_panic; 21271 21272 hdr_ptr = hdr_mp->b_rptr; 21273 pld_ptr = mp->b_rptr; 21274 21275 /* Establish the ending byte offset, based on the starting offset. */ 21276 offset <<= 3; 21277 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 21278 IP_SIMPLE_HDR_LENGTH; 21279 21280 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 21281 21282 while (pld_ptr < mp->b_wptr) { 21283 ipha_t *ipha; 21284 uint16_t offset_and_flags; 21285 uint16_t ip_len; 21286 int error; 21287 21288 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 21289 ipha = (ipha_t *)(hdr_ptr + wroff); 21290 ASSERT(OK_32PTR(ipha)); 21291 *ipha = *ipha_orig; 21292 21293 if (ip_data_end - offset > len) { 21294 offset_and_flags = IPH_MF; 21295 } else { 21296 /* 21297 * Last frag. Set len to the length of this last piece. 21298 */ 21299 len = ip_data_end - offset; 21300 /* A frag of a frag might have IPH_MF non-zero */ 21301 offset_and_flags = 21302 ntohs(ipha->ipha_fragment_offset_and_flags) & 21303 IPH_MF; 21304 } 21305 offset_and_flags |= (uint16_t)(offset >> 3); 21306 offset_and_flags |= (uint16_t)frag_flag; 21307 /* Store the offset and flags in the IP header. */ 21308 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 21309 21310 /* Store the length in the IP header. */ 21311 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 21312 ipha->ipha_length = htons(ip_len); 21313 21314 /* 21315 * Set the IP header checksum. Note that mp is just 21316 * the header, so this is easy to pass to ip_csum. 21317 */ 21318 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21319 21320 /* 21321 * Record offset and size of header and data of the next packet 21322 * in the multidata message. 21323 */ 21324 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 21325 PDESC_PLD_INIT(&pdi); 21326 i1 = MIN(mp->b_wptr - pld_ptr, len); 21327 ASSERT(i1 > 0); 21328 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 21329 if (i1 == len) { 21330 pld_ptr += len; 21331 } else { 21332 i1 = len - i1; 21333 mp = mp->b_cont; 21334 ASSERT(mp != NULL); 21335 ASSERT(MBLKL(mp) >= i1); 21336 /* 21337 * Attach the next payload message block to the 21338 * multidata message. 21339 */ 21340 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 21341 goto pbuf_panic; 21342 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 21343 pld_ptr = mp->b_rptr + i1; 21344 } 21345 21346 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 21347 KM_NOSLEEP)) == NULL) { 21348 /* 21349 * Any failure other than ENOMEM indicates that we 21350 * have passed in invalid pdesc info or parameters 21351 * to mmd_addpdesc, which must not happen. 21352 * 21353 * EINVAL is a result of failure on boundary checks 21354 * against the pdesc info contents. It should not 21355 * happen, and we panic because either there's 21356 * horrible heap corruption, and/or programming 21357 * mistake. 21358 */ 21359 if (error != ENOMEM) { 21360 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 21361 "pdesc logic error detected for " 21362 "mmd %p pinfo %p (%d)\n", 21363 (void *)mmd, (void *)&pdi, error); 21364 /* NOTREACHED */ 21365 } 21366 IP_STAT(ip_frag_mdt_addpdescfail); 21367 /* Free unattached payload message blocks as well */ 21368 md_mp->b_cont = mp->b_cont; 21369 goto free_mmd; 21370 } 21371 21372 /* Advance fragment offset. */ 21373 offset += len; 21374 21375 /* Advance to location for next header in the buffer. */ 21376 hdr_ptr += hdr_chunk_len; 21377 21378 /* Did we reach the next payload message block? */ 21379 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 21380 mp = mp->b_cont; 21381 /* 21382 * Attach the next message block with payload 21383 * data to the multidata message. 21384 */ 21385 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 21386 goto pbuf_panic; 21387 pld_ptr = mp->b_rptr; 21388 } 21389 } 21390 21391 ASSERT(hdr_mp->b_wptr == hdr_ptr); 21392 ASSERT(mp->b_wptr == pld_ptr); 21393 21394 /* Update IP statistics */ 21395 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 21396 BUMP_MIB(&ip_mib, ipFragOKs); 21397 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 21398 21399 if (pkt_type == OB_PKT) { 21400 ire->ire_ob_pkt_count += pkts; 21401 if (ire->ire_ipif != NULL) 21402 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 21403 } else { 21404 /* 21405 * The type is IB_PKT in the forwarding path and in 21406 * the mobile IP case when the packet is being reverse- 21407 * tunneled to the home agent. 21408 */ 21409 ire->ire_ib_pkt_count += pkts; 21410 ASSERT(!IRE_IS_LOCAL(ire)); 21411 if (ire->ire_type & IRE_BROADCAST) 21412 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 21413 else 21414 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 21415 } 21416 ire->ire_last_used_time = lbolt; 21417 /* Send it down */ 21418 putnext(ire->ire_stq, md_mp); 21419 return; 21420 21421 pbuf_panic: 21422 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 21423 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 21424 pbuf_idx); 21425 /* NOTREACHED */ 21426 } 21427 21428 /* 21429 * Outbound IP fragmentation routine. 21430 * 21431 * NOTE : This routine does not ire_refrele the ire that is passed in 21432 * as the argument. 21433 */ 21434 static void 21435 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 21436 uint32_t frag_flag) 21437 { 21438 int i1; 21439 mblk_t *ll_hdr_mp; 21440 int ll_hdr_len; 21441 int hdr_len; 21442 mblk_t *hdr_mp; 21443 ipha_t *ipha; 21444 int ip_data_end; 21445 int len; 21446 mblk_t *mp = mp_orig; 21447 int offset; 21448 queue_t *q; 21449 uint32_t v_hlen_tos_len; 21450 mblk_t *first_mp; 21451 boolean_t mctl_present; 21452 ill_t *ill; 21453 mblk_t *xmit_mp; 21454 mblk_t *carve_mp; 21455 ire_t *ire1 = NULL; 21456 ire_t *save_ire = NULL; 21457 mblk_t *next_mp = NULL; 21458 boolean_t last_frag = B_FALSE; 21459 boolean_t multirt_send = B_FALSE; 21460 ire_t *first_ire = NULL; 21461 irb_t *irb = NULL; 21462 21463 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 21464 "ip_wput_frag_start:"); 21465 21466 if (mp->b_datap->db_type == M_CTL) { 21467 first_mp = mp; 21468 mp_orig = mp = mp->b_cont; 21469 mctl_present = B_TRUE; 21470 } else { 21471 first_mp = mp; 21472 mctl_present = B_FALSE; 21473 } 21474 21475 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 21476 ipha = (ipha_t *)mp->b_rptr; 21477 21478 /* 21479 * If the Don't Fragment flag is on, generate an ICMP destination 21480 * unreachable, fragmentation needed. 21481 */ 21482 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 21483 if (offset & IPH_DF) { 21484 BUMP_MIB(&ip_mib, ipFragFails); 21485 /* 21486 * Need to compute hdr checksum if called from ip_wput_ire. 21487 * Note that ip_rput_forward verifies the checksum before 21488 * calling this routine so in that case this is a noop. 21489 */ 21490 ipha->ipha_hdr_checksum = 0; 21491 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21492 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 21493 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21494 "ip_wput_frag_end:(%S)", 21495 "don't fragment"); 21496 return; 21497 } 21498 if (mctl_present) 21499 freeb(first_mp); 21500 /* 21501 * Establish the starting offset. May not be zero if we are fragging 21502 * a fragment that is being forwarded. 21503 */ 21504 offset = offset & IPH_OFFSET; 21505 21506 /* TODO why is this test needed? */ 21507 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21508 if (((max_frag - LENGTH) & ~7) < 8) { 21509 /* TODO: notify ulp somehow */ 21510 BUMP_MIB(&ip_mib, ipFragFails); 21511 freemsg(mp); 21512 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21513 "ip_wput_frag_end:(%S)", 21514 "len < 8"); 21515 return; 21516 } 21517 21518 hdr_len = (V_HLEN & 0xF) << 2; 21519 21520 ipha->ipha_hdr_checksum = 0; 21521 21522 /* 21523 * Establish the number of bytes maximum per frag, after putting 21524 * in the header. 21525 */ 21526 len = (max_frag - hdr_len) & ~7; 21527 21528 /* Check if we can use MDT to send out the frags. */ 21529 ASSERT(!IRE_IS_LOCAL(ire)); 21530 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 21531 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 21532 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 21533 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 21534 ASSERT(ill->ill_mdt_capab != NULL); 21535 if (!ill->ill_mdt_capab->ill_mdt_on) { 21536 /* 21537 * If MDT has been previously turned off in the past, 21538 * and we currently can do MDT (due to IPQoS policy 21539 * removal, etc.) then enable it for this interface. 21540 */ 21541 ill->ill_mdt_capab->ill_mdt_on = 1; 21542 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 21543 ill->ill_name)); 21544 } 21545 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 21546 offset); 21547 return; 21548 } 21549 21550 /* Get a copy of the header for the trailing frags */ 21551 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 21552 if (!hdr_mp) { 21553 BUMP_MIB(&ip_mib, ipOutDiscards); 21554 freemsg(mp); 21555 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21556 "ip_wput_frag_end:(%S)", 21557 "couldn't copy hdr"); 21558 return; 21559 } 21560 21561 /* Store the starting offset, with the MoreFrags flag. */ 21562 i1 = offset | IPH_MF | frag_flag; 21563 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 21564 21565 /* Establish the ending byte offset, based on the starting offset. */ 21566 offset <<= 3; 21567 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 21568 21569 /* Store the length of the first fragment in the IP header. */ 21570 i1 = len + hdr_len; 21571 ASSERT(i1 <= IP_MAXPACKET); 21572 ipha->ipha_length = htons((uint16_t)i1); 21573 21574 /* 21575 * Compute the IP header checksum for the first frag. We have to 21576 * watch out that we stop at the end of the header. 21577 */ 21578 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21579 21580 /* 21581 * Now carve off the first frag. Note that this will include the 21582 * original IP header. 21583 */ 21584 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 21585 BUMP_MIB(&ip_mib, ipOutDiscards); 21586 freeb(hdr_mp); 21587 freemsg(mp_orig); 21588 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21589 "ip_wput_frag_end:(%S)", 21590 "couldn't carve first"); 21591 return; 21592 } 21593 21594 /* 21595 * Multirouting case. Each fragment is replicated 21596 * via all non-condemned RTF_MULTIRT routes 21597 * currently resolved. 21598 * We ensure that first_ire is the first RTF_MULTIRT 21599 * ire in the bucket. 21600 */ 21601 if (ire->ire_flags & RTF_MULTIRT) { 21602 irb = ire->ire_bucket; 21603 ASSERT(irb != NULL); 21604 21605 multirt_send = B_TRUE; 21606 21607 /* Make sure we do not omit any multiroute ire. */ 21608 IRB_REFHOLD(irb); 21609 for (first_ire = irb->irb_ire; 21610 first_ire != NULL; 21611 first_ire = first_ire->ire_next) { 21612 if ((first_ire->ire_flags & RTF_MULTIRT) && 21613 (first_ire->ire_addr == ire->ire_addr) && 21614 !(first_ire->ire_marks & 21615 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21616 break; 21617 } 21618 21619 if (first_ire != NULL) { 21620 if (first_ire != ire) { 21621 IRE_REFHOLD(first_ire); 21622 /* 21623 * Do not release the ire passed in 21624 * as the argument. 21625 */ 21626 ire = first_ire; 21627 } else { 21628 first_ire = NULL; 21629 } 21630 } 21631 IRB_REFRELE(irb); 21632 21633 /* 21634 * Save the first ire; we will need to restore it 21635 * for the trailing frags. 21636 * We REFHOLD save_ire, as each iterated ire will be 21637 * REFRELEd. 21638 */ 21639 save_ire = ire; 21640 IRE_REFHOLD(save_ire); 21641 } 21642 21643 /* 21644 * First fragment emission loop. 21645 * In most cases, the emission loop below is entered only 21646 * once. Only in the case where the ire holds the RTF_MULTIRT 21647 * flag, do we loop to process all RTF_MULTIRT ires in the 21648 * bucket, and send the fragment through all crossed 21649 * RTF_MULTIRT routes. 21650 */ 21651 do { 21652 if (ire->ire_flags & RTF_MULTIRT) { 21653 /* 21654 * We are in a multiple send case, need to get 21655 * the next ire and make a copy of the packet. 21656 * ire1 holds here the next ire to process in the 21657 * bucket. If multirouting is expected, 21658 * any non-RTF_MULTIRT ire that has the 21659 * right destination address is ignored. 21660 * 21661 * We have to take into account the MTU of 21662 * each walked ire. max_frag is set by the 21663 * the caller and generally refers to 21664 * the primary ire entry. Here we ensure that 21665 * no route with a lower MTU will be used, as 21666 * fragments are carved once for all ires, 21667 * then replicated. 21668 */ 21669 ASSERT(irb != NULL); 21670 IRB_REFHOLD(irb); 21671 for (ire1 = ire->ire_next; 21672 ire1 != NULL; 21673 ire1 = ire1->ire_next) { 21674 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21675 continue; 21676 if (ire1->ire_addr != ire->ire_addr) 21677 continue; 21678 if (ire1->ire_marks & 21679 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21680 continue; 21681 /* 21682 * Ensure we do not exceed the MTU 21683 * of the next route. 21684 */ 21685 if (ire1->ire_max_frag < max_frag) { 21686 ip_multirt_bad_mtu(ire1, max_frag); 21687 continue; 21688 } 21689 21690 /* Got one. */ 21691 IRE_REFHOLD(ire1); 21692 break; 21693 } 21694 IRB_REFRELE(irb); 21695 21696 if (ire1 != NULL) { 21697 next_mp = copyb(mp); 21698 if ((next_mp == NULL) || 21699 ((mp->b_cont != NULL) && 21700 ((next_mp->b_cont = 21701 dupmsg(mp->b_cont)) == NULL))) { 21702 freemsg(next_mp); 21703 next_mp = NULL; 21704 ire_refrele(ire1); 21705 ire1 = NULL; 21706 } 21707 } 21708 21709 /* Last multiroute ire; don't loop anymore. */ 21710 if (ire1 == NULL) { 21711 multirt_send = B_FALSE; 21712 } 21713 } 21714 21715 ll_hdr_len = 0; 21716 LOCK_IRE_FP_MP(ire); 21717 ll_hdr_mp = ire->ire_fp_mp; 21718 if (ll_hdr_mp != NULL) { 21719 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21720 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 21721 } else { 21722 ll_hdr_mp = ire->ire_dlureq_mp; 21723 } 21724 21725 /* If there is a transmit header, get a copy for this frag. */ 21726 /* 21727 * TODO: should check db_ref before calling ip_carve_mp since 21728 * it might give us a dup. 21729 */ 21730 if (!ll_hdr_mp) { 21731 /* No xmit header. */ 21732 xmit_mp = mp; 21733 } else if (mp->b_datap->db_ref == 1 && 21734 ll_hdr_len != 0 && 21735 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 21736 /* M_DATA fastpath */ 21737 mp->b_rptr -= ll_hdr_len; 21738 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 21739 xmit_mp = mp; 21740 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 21741 UNLOCK_IRE_FP_MP(ire); 21742 BUMP_MIB(&ip_mib, ipOutDiscards); 21743 freeb(hdr_mp); 21744 freemsg(mp); 21745 freemsg(mp_orig); 21746 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21747 "ip_wput_frag_end:(%S)", 21748 "discard"); 21749 21750 if (multirt_send) { 21751 ASSERT(ire1); 21752 ASSERT(next_mp); 21753 21754 freemsg(next_mp); 21755 ire_refrele(ire1); 21756 } 21757 if (save_ire != NULL) 21758 IRE_REFRELE(save_ire); 21759 21760 if (first_ire != NULL) 21761 ire_refrele(first_ire); 21762 return; 21763 } else { 21764 xmit_mp->b_cont = mp; 21765 /* Get priority marking, if any. */ 21766 if (DB_TYPE(xmit_mp) == M_DATA) 21767 xmit_mp->b_band = mp->b_band; 21768 } 21769 UNLOCK_IRE_FP_MP(ire); 21770 q = ire->ire_stq; 21771 BUMP_MIB(&ip_mib, ipFragCreates); 21772 putnext(q, xmit_mp); 21773 if (pkt_type != OB_PKT) { 21774 /* 21775 * Update the packet count of trailing 21776 * RTF_MULTIRT ires. 21777 */ 21778 UPDATE_OB_PKT_COUNT(ire); 21779 } 21780 21781 if (multirt_send) { 21782 /* 21783 * We are in a multiple send case; look for 21784 * the next ire and re-enter the loop. 21785 */ 21786 ASSERT(ire1); 21787 ASSERT(next_mp); 21788 /* REFRELE the current ire before looping */ 21789 ire_refrele(ire); 21790 ire = ire1; 21791 ire1 = NULL; 21792 mp = next_mp; 21793 next_mp = NULL; 21794 } 21795 } while (multirt_send); 21796 21797 ASSERT(ire1 == NULL); 21798 21799 /* Restore the original ire; we need it for the trailing frags */ 21800 if (save_ire != NULL) { 21801 /* REFRELE the last iterated ire */ 21802 ire_refrele(ire); 21803 /* save_ire has been REFHOLDed */ 21804 ire = save_ire; 21805 save_ire = NULL; 21806 q = ire->ire_stq; 21807 } 21808 21809 if (pkt_type == OB_PKT) { 21810 UPDATE_OB_PKT_COUNT(ire); 21811 } else { 21812 UPDATE_IB_PKT_COUNT(ire); 21813 } 21814 21815 /* Advance the offset to the second frag starting point. */ 21816 offset += len; 21817 /* 21818 * Update hdr_len from the copied header - there might be less options 21819 * in the later fragments. 21820 */ 21821 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 21822 /* Loop until done. */ 21823 for (;;) { 21824 uint16_t offset_and_flags; 21825 uint16_t ip_len; 21826 21827 if (ip_data_end - offset > len) { 21828 /* 21829 * Carve off the appropriate amount from the original 21830 * datagram. 21831 */ 21832 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21833 mp = NULL; 21834 break; 21835 } 21836 /* 21837 * More frags after this one. Get another copy 21838 * of the header. 21839 */ 21840 if (carve_mp->b_datap->db_ref == 1 && 21841 hdr_mp->b_wptr - hdr_mp->b_rptr < 21842 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21843 /* Inline IP header */ 21844 carve_mp->b_rptr -= hdr_mp->b_wptr - 21845 hdr_mp->b_rptr; 21846 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21847 hdr_mp->b_wptr - hdr_mp->b_rptr); 21848 mp = carve_mp; 21849 } else { 21850 if (!(mp = copyb(hdr_mp))) { 21851 freemsg(carve_mp); 21852 break; 21853 } 21854 /* Get priority marking, if any. */ 21855 mp->b_band = carve_mp->b_band; 21856 mp->b_cont = carve_mp; 21857 } 21858 ipha = (ipha_t *)mp->b_rptr; 21859 offset_and_flags = IPH_MF; 21860 } else { 21861 /* 21862 * Last frag. Consume the header. Set len to 21863 * the length of this last piece. 21864 */ 21865 len = ip_data_end - offset; 21866 21867 /* 21868 * Carve off the appropriate amount from the original 21869 * datagram. 21870 */ 21871 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21872 mp = NULL; 21873 break; 21874 } 21875 if (carve_mp->b_datap->db_ref == 1 && 21876 hdr_mp->b_wptr - hdr_mp->b_rptr < 21877 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21878 /* Inline IP header */ 21879 carve_mp->b_rptr -= hdr_mp->b_wptr - 21880 hdr_mp->b_rptr; 21881 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21882 hdr_mp->b_wptr - hdr_mp->b_rptr); 21883 mp = carve_mp; 21884 freeb(hdr_mp); 21885 hdr_mp = mp; 21886 } else { 21887 mp = hdr_mp; 21888 /* Get priority marking, if any. */ 21889 mp->b_band = carve_mp->b_band; 21890 mp->b_cont = carve_mp; 21891 } 21892 ipha = (ipha_t *)mp->b_rptr; 21893 /* A frag of a frag might have IPH_MF non-zero */ 21894 offset_and_flags = 21895 ntohs(ipha->ipha_fragment_offset_and_flags) & 21896 IPH_MF; 21897 } 21898 offset_and_flags |= (uint16_t)(offset >> 3); 21899 offset_and_flags |= (uint16_t)frag_flag; 21900 /* Store the offset and flags in the IP header. */ 21901 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 21902 21903 /* Store the length in the IP header. */ 21904 ip_len = (uint16_t)(len + hdr_len); 21905 ipha->ipha_length = htons(ip_len); 21906 21907 /* 21908 * Set the IP header checksum. Note that mp is just 21909 * the header, so this is easy to pass to ip_csum. 21910 */ 21911 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21912 21913 /* Attach a transmit header, if any, and ship it. */ 21914 if (pkt_type == OB_PKT) { 21915 UPDATE_OB_PKT_COUNT(ire); 21916 } else { 21917 UPDATE_IB_PKT_COUNT(ire); 21918 } 21919 21920 if (ire->ire_flags & RTF_MULTIRT) { 21921 irb = ire->ire_bucket; 21922 ASSERT(irb != NULL); 21923 21924 multirt_send = B_TRUE; 21925 21926 /* 21927 * Save the original ire; we will need to restore it 21928 * for the tailing frags. 21929 */ 21930 save_ire = ire; 21931 IRE_REFHOLD(save_ire); 21932 } 21933 /* 21934 * Emission loop for this fragment, similar 21935 * to what is done for the first fragment. 21936 */ 21937 do { 21938 if (multirt_send) { 21939 /* 21940 * We are in a multiple send case, need to get 21941 * the next ire and make a copy of the packet. 21942 */ 21943 ASSERT(irb != NULL); 21944 IRB_REFHOLD(irb); 21945 for (ire1 = ire->ire_next; 21946 ire1 != NULL; 21947 ire1 = ire1->ire_next) { 21948 if (!(ire1->ire_flags & RTF_MULTIRT)) 21949 continue; 21950 if (ire1->ire_addr != ire->ire_addr) 21951 continue; 21952 if (ire1->ire_marks & 21953 (IRE_MARK_CONDEMNED| 21954 IRE_MARK_HIDDEN)) 21955 continue; 21956 /* 21957 * Ensure we do not exceed the MTU 21958 * of the next route. 21959 */ 21960 if (ire1->ire_max_frag < max_frag) { 21961 ip_multirt_bad_mtu(ire1, 21962 max_frag); 21963 continue; 21964 } 21965 21966 /* Got one. */ 21967 IRE_REFHOLD(ire1); 21968 break; 21969 } 21970 IRB_REFRELE(irb); 21971 21972 if (ire1 != NULL) { 21973 next_mp = copyb(mp); 21974 if ((next_mp == NULL) || 21975 ((mp->b_cont != NULL) && 21976 ((next_mp->b_cont = 21977 dupmsg(mp->b_cont)) == NULL))) { 21978 freemsg(next_mp); 21979 next_mp = NULL; 21980 ire_refrele(ire1); 21981 ire1 = NULL; 21982 } 21983 } 21984 21985 /* Last multiroute ire; don't loop anymore. */ 21986 if (ire1 == NULL) { 21987 multirt_send = B_FALSE; 21988 } 21989 } 21990 21991 /* Update transmit header */ 21992 ll_hdr_len = 0; 21993 LOCK_IRE_FP_MP(ire); 21994 ll_hdr_mp = ire->ire_fp_mp; 21995 if (ll_hdr_mp != NULL) { 21996 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21997 ll_hdr_len = MBLKL(ll_hdr_mp); 21998 } else { 21999 ll_hdr_mp = ire->ire_dlureq_mp; 22000 } 22001 22002 if (!ll_hdr_mp) { 22003 xmit_mp = mp; 22004 } else if (mp->b_datap->db_ref == 1 && 22005 ll_hdr_len != 0 && 22006 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 22007 /* M_DATA fastpath */ 22008 mp->b_rptr -= ll_hdr_len; 22009 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 22010 ll_hdr_len); 22011 xmit_mp = mp; 22012 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 22013 xmit_mp->b_cont = mp; 22014 /* Get priority marking, if any. */ 22015 if (DB_TYPE(xmit_mp) == M_DATA) 22016 xmit_mp->b_band = mp->b_band; 22017 } else { 22018 /* 22019 * Exit both the replication and 22020 * fragmentation loops. 22021 */ 22022 UNLOCK_IRE_FP_MP(ire); 22023 goto drop_pkt; 22024 } 22025 UNLOCK_IRE_FP_MP(ire); 22026 BUMP_MIB(&ip_mib, ipFragCreates); 22027 putnext(q, xmit_mp); 22028 22029 if (pkt_type != OB_PKT) { 22030 /* 22031 * Update the packet count of trailing 22032 * RTF_MULTIRT ires. 22033 */ 22034 UPDATE_OB_PKT_COUNT(ire); 22035 } 22036 22037 /* All done if we just consumed the hdr_mp. */ 22038 if (mp == hdr_mp) { 22039 last_frag = B_TRUE; 22040 } 22041 22042 if (multirt_send) { 22043 /* 22044 * We are in a multiple send case; look for 22045 * the next ire and re-enter the loop. 22046 */ 22047 ASSERT(ire1); 22048 ASSERT(next_mp); 22049 /* REFRELE the current ire before looping */ 22050 ire_refrele(ire); 22051 ire = ire1; 22052 ire1 = NULL; 22053 q = ire->ire_stq; 22054 mp = next_mp; 22055 next_mp = NULL; 22056 } 22057 } while (multirt_send); 22058 /* 22059 * Restore the original ire; we need it for the 22060 * trailing frags 22061 */ 22062 if (save_ire != NULL) { 22063 ASSERT(ire1 == NULL); 22064 /* REFRELE the last iterated ire */ 22065 ire_refrele(ire); 22066 /* save_ire has been REFHOLDed */ 22067 ire = save_ire; 22068 q = ire->ire_stq; 22069 save_ire = NULL; 22070 } 22071 22072 if (last_frag) { 22073 BUMP_MIB(&ip_mib, ipFragOKs); 22074 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22075 "ip_wput_frag_end:(%S)", 22076 "consumed hdr_mp"); 22077 22078 if (first_ire != NULL) 22079 ire_refrele(first_ire); 22080 return; 22081 } 22082 /* Otherwise, advance and loop. */ 22083 offset += len; 22084 } 22085 22086 drop_pkt: 22087 /* Clean up following allocation failure. */ 22088 BUMP_MIB(&ip_mib, ipOutDiscards); 22089 freemsg(mp); 22090 if (mp != hdr_mp) 22091 freeb(hdr_mp); 22092 if (mp != mp_orig) 22093 freemsg(mp_orig); 22094 22095 if (save_ire != NULL) 22096 IRE_REFRELE(save_ire); 22097 if (first_ire != NULL) 22098 ire_refrele(first_ire); 22099 22100 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22101 "ip_wput_frag_end:(%S)", 22102 "end--alloc failure"); 22103 } 22104 22105 /* 22106 * Copy the header plus those options which have the copy bit set 22107 */ 22108 static mblk_t * 22109 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 22110 { 22111 mblk_t *mp; 22112 uchar_t *up; 22113 22114 /* 22115 * Quick check if we need to look for options without the copy bit 22116 * set 22117 */ 22118 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 22119 if (!mp) 22120 return (mp); 22121 mp->b_rptr += ip_wroff_extra; 22122 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 22123 bcopy(rptr, mp->b_rptr, hdr_len); 22124 mp->b_wptr += hdr_len + ip_wroff_extra; 22125 return (mp); 22126 } 22127 up = mp->b_rptr; 22128 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 22129 up += IP_SIMPLE_HDR_LENGTH; 22130 rptr += IP_SIMPLE_HDR_LENGTH; 22131 hdr_len -= IP_SIMPLE_HDR_LENGTH; 22132 while (hdr_len > 0) { 22133 uint32_t optval; 22134 uint32_t optlen; 22135 22136 optval = *rptr; 22137 if (optval == IPOPT_EOL) 22138 break; 22139 if (optval == IPOPT_NOP) 22140 optlen = 1; 22141 else 22142 optlen = rptr[1]; 22143 if (optval & IPOPT_COPY) { 22144 bcopy(rptr, up, optlen); 22145 up += optlen; 22146 } 22147 rptr += optlen; 22148 hdr_len -= optlen; 22149 } 22150 /* 22151 * Make sure that we drop an even number of words by filling 22152 * with EOL to the next word boundary. 22153 */ 22154 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 22155 hdr_len & 0x3; hdr_len++) 22156 *up++ = IPOPT_EOL; 22157 mp->b_wptr = up; 22158 /* Update header length */ 22159 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 22160 return (mp); 22161 } 22162 22163 /* 22164 * Delivery to local recipients including fanout to multiple recipients. 22165 * Does not do checksumming of UDP/TCP. 22166 * Note: q should be the read side queue for either the ill or conn. 22167 * Note: rq should be the read side q for the lower (ill) stream. 22168 * We don't send packets to IPPF processing, thus the last argument 22169 * to all the fanout calls are B_FALSE. 22170 */ 22171 void 22172 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 22173 int fanout_flags, zoneid_t zoneid) 22174 { 22175 uint32_t protocol; 22176 mblk_t *first_mp; 22177 boolean_t mctl_present; 22178 int ire_type; 22179 #define rptr ((uchar_t *)ipha) 22180 22181 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 22182 "ip_wput_local_start: q %p", q); 22183 22184 if (ire != NULL) { 22185 ire_type = ire->ire_type; 22186 } else { 22187 /* 22188 * Only ip_multicast_loopback() calls us with a NULL ire. If the 22189 * packet is not multicast, we can't tell the ire type. 22190 */ 22191 ASSERT(CLASSD(ipha->ipha_dst)); 22192 ire_type = IRE_BROADCAST; 22193 } 22194 22195 first_mp = mp; 22196 if (first_mp->b_datap->db_type == M_CTL) { 22197 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 22198 if (!io->ipsec_out_secure) { 22199 /* 22200 * This ipsec_out_t was allocated in ip_wput 22201 * for multicast packets to store the ill_index. 22202 * As this is being delivered locally, we don't 22203 * need this anymore. 22204 */ 22205 mp = first_mp->b_cont; 22206 freeb(first_mp); 22207 first_mp = mp; 22208 mctl_present = B_FALSE; 22209 } else { 22210 mctl_present = B_TRUE; 22211 mp = first_mp->b_cont; 22212 ASSERT(mp != NULL); 22213 ipsec_out_to_in(first_mp); 22214 } 22215 } else { 22216 mctl_present = B_FALSE; 22217 } 22218 22219 loopback_packets++; 22220 22221 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 22222 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 22223 if (!IS_SIMPLE_IPH(ipha)) { 22224 ip_wput_local_options(ipha); 22225 } 22226 22227 protocol = ipha->ipha_protocol; 22228 switch (protocol) { 22229 case IPPROTO_ICMP: { 22230 ire_t *ire_zone; 22231 ilm_t *ilm; 22232 mblk_t *mp1; 22233 zoneid_t last_zoneid; 22234 22235 if (CLASSD(ipha->ipha_dst) && 22236 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 22237 ASSERT(ire_type == IRE_BROADCAST); 22238 /* 22239 * In the multicast case, applications may have joined 22240 * the group from different zones, so we need to deliver 22241 * the packet to each of them. Loop through the 22242 * multicast memberships structures (ilm) on the receive 22243 * ill and send a copy of the packet up each matching 22244 * one. However, we don't do this for multicasts sent on 22245 * the loopback interface (PHYI_LOOPBACK flag set) as 22246 * they must stay in the sender's zone. 22247 * 22248 * ilm_add_v6() ensures that ilms in the same zone are 22249 * contiguous in the ill_ilm list. We use this property 22250 * to avoid sending duplicates needed when two 22251 * applications in the same zone join the same group on 22252 * different logical interfaces: we ignore the ilm if 22253 * its zoneid is the same as the last matching one. 22254 * In addition, the sending of the packet for 22255 * ire_zoneid is delayed until all of the other ilms 22256 * have been exhausted. 22257 */ 22258 last_zoneid = -1; 22259 ILM_WALKER_HOLD(ill); 22260 for (ilm = ill->ill_ilm; ilm != NULL; 22261 ilm = ilm->ilm_next) { 22262 if ((ilm->ilm_flags & ILM_DELETED) || 22263 ipha->ipha_dst != ilm->ilm_addr || 22264 ilm->ilm_zoneid == last_zoneid || 22265 ilm->ilm_zoneid == zoneid || 22266 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 22267 continue; 22268 mp1 = ip_copymsg(first_mp); 22269 if (mp1 == NULL) 22270 continue; 22271 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 22272 mctl_present, B_FALSE, ill, 22273 ilm->ilm_zoneid); 22274 last_zoneid = ilm->ilm_zoneid; 22275 } 22276 ILM_WALKER_RELE(ill); 22277 /* 22278 * Loopback case: the sending endpoint has 22279 * IP_MULTICAST_LOOP disabled, therefore we don't 22280 * dispatch the multicast packet to the sending zone. 22281 */ 22282 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 22283 freemsg(first_mp); 22284 return; 22285 } 22286 } else if (ire_type == IRE_BROADCAST) { 22287 /* 22288 * In the broadcast case, there may be many zones 22289 * which need a copy of the packet delivered to them. 22290 * There is one IRE_BROADCAST per broadcast address 22291 * and per zone; we walk those using a helper function. 22292 * In addition, the sending of the packet for zoneid is 22293 * delayed until all of the other ires have been 22294 * processed. 22295 */ 22296 IRB_REFHOLD(ire->ire_bucket); 22297 ire_zone = NULL; 22298 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 22299 ire)) != NULL) { 22300 mp1 = ip_copymsg(first_mp); 22301 if (mp1 == NULL) 22302 continue; 22303 22304 UPDATE_IB_PKT_COUNT(ire_zone); 22305 ire_zone->ire_last_used_time = lbolt; 22306 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 22307 mctl_present, B_FALSE, ill, 22308 ire_zone->ire_zoneid); 22309 } 22310 IRB_REFRELE(ire->ire_bucket); 22311 } 22312 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 22313 0, mctl_present, B_FALSE, ill, zoneid); 22314 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22315 "ip_wput_local_end: q %p (%S)", 22316 q, "icmp"); 22317 return; 22318 } 22319 case IPPROTO_IGMP: 22320 if (igmp_input(q, mp, ill)) { 22321 /* Bad packet - discarded by igmp_input */ 22322 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22323 "ip_wput_local_end: q %p (%S)", 22324 q, "igmp_input--bad packet"); 22325 if (mctl_present) 22326 freeb(first_mp); 22327 return; 22328 } 22329 /* 22330 * igmp_input() may have pulled up the message so ipha needs to 22331 * be reinitialized. 22332 */ 22333 ipha = (ipha_t *)mp->b_rptr; 22334 /* deliver to local raw users */ 22335 break; 22336 case IPPROTO_ENCAP: 22337 /* 22338 * This case is covered by either ip_fanout_proto, or by 22339 * the above security processing for self-tunneled packets. 22340 */ 22341 break; 22342 case IPPROTO_UDP: { 22343 uint16_t *up; 22344 uint32_t ports; 22345 22346 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 22347 UDP_PORTS_OFFSET); 22348 /* Force a 'valid' checksum. */ 22349 up[3] = 0; 22350 22351 ports = *(uint32_t *)up; 22352 ip_fanout_udp(q, first_mp, ill, ipha, ports, 22353 (ire_type == IRE_BROADCAST), 22354 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 22355 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 22356 ill, zoneid); 22357 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22358 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 22359 return; 22360 } 22361 case IPPROTO_TCP: { 22362 22363 /* 22364 * For TCP, discard broadcast packets. 22365 */ 22366 if ((ushort_t)ire_type == IRE_BROADCAST) { 22367 freemsg(first_mp); 22368 BUMP_MIB(&ip_mib, ipInDiscards); 22369 return; 22370 } 22371 22372 if (mp->b_datap->db_type == M_DATA) { 22373 /* 22374 * M_DATA mblk, so init mblk (chain) for no struio(). 22375 */ 22376 mblk_t *mp1 = mp; 22377 22378 do 22379 mp1->b_datap->db_struioflag = 0; 22380 while ((mp1 = mp1->b_cont) != NULL); 22381 } 22382 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 22383 <= mp->b_wptr); 22384 ip_fanout_tcp(q, first_mp, ill, ipha, 22385 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 22386 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 22387 mctl_present, B_FALSE, zoneid); 22388 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22389 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 22390 return; 22391 } 22392 case IPPROTO_SCTP: 22393 { 22394 uint32_t ports; 22395 22396 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 22397 ip_fanout_sctp(first_mp, ill, ipha, ports, 22398 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 22399 IP_FF_IP6INFO, 22400 mctl_present, B_FALSE, 0, zoneid); 22401 return; 22402 } 22403 22404 default: 22405 break; 22406 } 22407 /* 22408 * Find a client for some other protocol. We give 22409 * copies to multiple clients, if more than one is 22410 * bound. 22411 */ 22412 ip_fanout_proto(q, first_mp, ill, ipha, 22413 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 22414 mctl_present, B_FALSE, ill, zoneid); 22415 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22416 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 22417 #undef rptr 22418 } 22419 22420 /* 22421 * Update any source route, record route, or timestamp options. 22422 * Check that we are at end of strict source route. 22423 * The options have been sanity checked by ip_wput_options(). 22424 */ 22425 static void 22426 ip_wput_local_options(ipha_t *ipha) 22427 { 22428 ipoptp_t opts; 22429 uchar_t *opt; 22430 uint8_t optval; 22431 uint8_t optlen; 22432 ipaddr_t dst; 22433 uint32_t ts; 22434 ire_t *ire; 22435 timestruc_t now; 22436 22437 ip2dbg(("ip_wput_local_options\n")); 22438 for (optval = ipoptp_first(&opts, ipha); 22439 optval != IPOPT_EOL; 22440 optval = ipoptp_next(&opts)) { 22441 opt = opts.ipoptp_cur; 22442 optlen = opts.ipoptp_len; 22443 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22444 switch (optval) { 22445 uint32_t off; 22446 case IPOPT_SSRR: 22447 case IPOPT_LSRR: 22448 off = opt[IPOPT_OFFSET]; 22449 off--; 22450 if (optlen < IP_ADDR_LEN || 22451 off > optlen - IP_ADDR_LEN) { 22452 /* End of source route */ 22453 break; 22454 } 22455 /* 22456 * This will only happen if two consecutive entries 22457 * in the source route contains our address or if 22458 * it is a packet with a loose source route which 22459 * reaches us before consuming the whole source route 22460 */ 22461 ip1dbg(("ip_wput_local_options: not end of SR\n")); 22462 if (optval == IPOPT_SSRR) { 22463 return; 22464 } 22465 /* 22466 * Hack: instead of dropping the packet truncate the 22467 * source route to what has been used by filling the 22468 * rest with IPOPT_NOP. 22469 */ 22470 opt[IPOPT_OLEN] = (uint8_t)off; 22471 while (off < optlen) { 22472 opt[off++] = IPOPT_NOP; 22473 } 22474 break; 22475 case IPOPT_RR: 22476 off = opt[IPOPT_OFFSET]; 22477 off--; 22478 if (optlen < IP_ADDR_LEN || 22479 off > optlen - IP_ADDR_LEN) { 22480 /* No more room - ignore */ 22481 ip1dbg(( 22482 "ip_wput_forward_options: end of RR\n")); 22483 break; 22484 } 22485 dst = htonl(INADDR_LOOPBACK); 22486 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22487 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22488 break; 22489 case IPOPT_TS: 22490 /* Insert timestamp if there is romm */ 22491 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22492 case IPOPT_TS_TSONLY: 22493 off = IPOPT_TS_TIMELEN; 22494 break; 22495 case IPOPT_TS_PRESPEC: 22496 case IPOPT_TS_PRESPEC_RFC791: 22497 /* Verify that the address matched */ 22498 off = opt[IPOPT_OFFSET] - 1; 22499 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 22500 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 22501 NULL, ALL_ZONES, MATCH_IRE_TYPE); 22502 if (ire == NULL) { 22503 /* Not for us */ 22504 break; 22505 } 22506 ire_refrele(ire); 22507 /* FALLTHRU */ 22508 case IPOPT_TS_TSANDADDR: 22509 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 22510 break; 22511 default: 22512 /* 22513 * ip_*put_options should have already 22514 * dropped this packet. 22515 */ 22516 cmn_err(CE_PANIC, "ip_wput_local_options: " 22517 "unknown IT - bug in ip_wput_options?\n"); 22518 return; /* Keep "lint" happy */ 22519 } 22520 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 22521 /* Increase overflow counter */ 22522 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 22523 opt[IPOPT_POS_OV_FLG] = (uint8_t) 22524 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 22525 (off << 4); 22526 break; 22527 } 22528 off = opt[IPOPT_OFFSET] - 1; 22529 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22530 case IPOPT_TS_PRESPEC: 22531 case IPOPT_TS_PRESPEC_RFC791: 22532 case IPOPT_TS_TSANDADDR: 22533 dst = htonl(INADDR_LOOPBACK); 22534 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22535 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22536 /* FALLTHRU */ 22537 case IPOPT_TS_TSONLY: 22538 off = opt[IPOPT_OFFSET] - 1; 22539 /* Compute # of milliseconds since midnight */ 22540 gethrestime(&now); 22541 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 22542 now.tv_nsec / (NANOSEC / MILLISEC); 22543 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 22544 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 22545 break; 22546 } 22547 break; 22548 } 22549 } 22550 } 22551 22552 /* 22553 * Send out a multicast packet on interface ipif. 22554 * The sender does not have an conn. 22555 * Caller verifies that this isn't a PHYI_LOOPBACK. 22556 */ 22557 void 22558 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 22559 { 22560 ipha_t *ipha; 22561 ire_t *ire; 22562 ipaddr_t dst; 22563 mblk_t *first_mp; 22564 22565 /* igmp_sendpkt always allocates a ipsec_out_t */ 22566 ASSERT(mp->b_datap->db_type == M_CTL); 22567 ASSERT(!ipif->ipif_isv6); 22568 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 22569 22570 first_mp = mp; 22571 mp = first_mp->b_cont; 22572 ASSERT(mp->b_datap->db_type == M_DATA); 22573 ipha = (ipha_t *)mp->b_rptr; 22574 22575 /* 22576 * Find an IRE which matches the destination and the outgoing 22577 * queue (i.e. the outgoing interface.) 22578 */ 22579 if (ipif->ipif_flags & IPIF_POINTOPOINT) 22580 dst = ipif->ipif_pp_dst_addr; 22581 else 22582 dst = ipha->ipha_dst; 22583 /* 22584 * The source address has already been initialized by the 22585 * caller and hence matching on ILL (MATCH_IRE_ILL) would 22586 * be sufficient rather than MATCH_IRE_IPIF. 22587 * 22588 * This function is used for sending IGMP packets. We need 22589 * to make sure that we send the packet out of the interface 22590 * (ipif->ipif_ill) where we joined the group. This is to 22591 * prevent from switches doing IGMP snooping to send us multicast 22592 * packets for a given group on the interface we have joined. 22593 * If we can't find an ire, igmp_sendpkt has already initialized 22594 * ipsec_out_attach_if so that this will not be load spread in 22595 * ip_newroute_ipif. 22596 */ 22597 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MATCH_IRE_ILL); 22598 if (!ire) { 22599 /* 22600 * Mark this packet to make it be delivered to 22601 * ip_wput_ire after the new ire has been 22602 * created. 22603 */ 22604 mp->b_prev = NULL; 22605 mp->b_next = NULL; 22606 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 22607 return; 22608 } 22609 22610 /* 22611 * Honor the RTF_SETSRC flag; this is the only case 22612 * where we force this addr whatever the current src addr is, 22613 * because this address is set by igmp_sendpkt(), and 22614 * cannot be specified by any user. 22615 */ 22616 if (ire->ire_flags & RTF_SETSRC) { 22617 ipha->ipha_src = ire->ire_src_addr; 22618 } 22619 22620 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 22621 } 22622 22623 /* 22624 * NOTE : This function does not ire_refrele the ire argument passed in. 22625 * 22626 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 22627 * failure. The ire_fp_mp can vanish any time in the case of IRE_MIPRTUN 22628 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 22629 * the ire_lock to access the ire_fp_mp in this case. 22630 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 22631 * prepending a fastpath message IPQoS processing must precede it, we also set 22632 * the b_band of the fastpath message to that of the mblk returned by IPQoS 22633 * (IPQoS might have set the b_band for CoS marking). 22634 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 22635 * must follow it so that IPQoS can mark the dl_priority field for CoS 22636 * marking, if needed. 22637 */ 22638 static mblk_t * 22639 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 22640 { 22641 uint_t hlen; 22642 ipha_t *ipha; 22643 mblk_t *mp1; 22644 boolean_t qos_done = B_FALSE; 22645 uchar_t *ll_hdr; 22646 22647 #define rptr ((uchar_t *)ipha) 22648 22649 ipha = (ipha_t *)mp->b_rptr; 22650 hlen = 0; 22651 LOCK_IRE_FP_MP(ire); 22652 if ((mp1 = ire->ire_fp_mp) != NULL) { 22653 ASSERT(DB_TYPE(mp1) == M_DATA); 22654 /* Initiate IPPF processing */ 22655 if ((proc != 0) && IPP_ENABLED(proc)) { 22656 UNLOCK_IRE_FP_MP(ire); 22657 ip_process(proc, &mp, ill_index); 22658 if (mp == NULL) 22659 return (NULL); 22660 22661 ipha = (ipha_t *)mp->b_rptr; 22662 LOCK_IRE_FP_MP(ire); 22663 if ((mp1 = ire->ire_fp_mp) == NULL) { 22664 qos_done = B_TRUE; 22665 goto no_fp_mp; 22666 } 22667 ASSERT(DB_TYPE(mp1) == M_DATA); 22668 } 22669 hlen = MBLKL(mp1); 22670 /* 22671 * Check if we have enough room to prepend fastpath 22672 * header 22673 */ 22674 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 22675 ll_hdr = rptr - hlen; 22676 bcopy(mp1->b_rptr, ll_hdr, hlen); 22677 /* XXX ipha is not aligned here */ 22678 ipha = (ipha_t *)(rptr - hlen); 22679 /* 22680 * Set the b_rptr to the start of the link layer 22681 * header 22682 */ 22683 mp->b_rptr = rptr; 22684 mp1 = mp; 22685 } else { 22686 mp1 = copyb(mp1); 22687 if (mp1 == NULL) 22688 goto unlock_err; 22689 mp1->b_band = mp->b_band; 22690 mp1->b_cont = mp; 22691 /* 22692 * XXX disable ICK_VALID and compute checksum 22693 * here; can happen if ire_fp_mp changes and 22694 * it can't be copied now due to insufficient 22695 * space. (unlikely, fp mp can change, but it 22696 * does not increase in length) 22697 */ 22698 } 22699 UNLOCK_IRE_FP_MP(ire); 22700 } else { 22701 no_fp_mp: 22702 mp1 = copyb(ire->ire_dlureq_mp); 22703 if (mp1 == NULL) { 22704 unlock_err: 22705 UNLOCK_IRE_FP_MP(ire); 22706 freemsg(mp); 22707 return (NULL); 22708 } 22709 UNLOCK_IRE_FP_MP(ire); 22710 mp1->b_cont = mp; 22711 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 22712 ip_process(proc, &mp1, ill_index); 22713 if (mp1 == NULL) 22714 return (NULL); 22715 } 22716 } 22717 return (mp1); 22718 #undef rptr 22719 } 22720 22721 /* 22722 * Finish the outbound IPsec processing for an IPv6 packet. This function 22723 * is called from ipsec_out_process() if the IPsec packet was processed 22724 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 22725 * asynchronously. 22726 */ 22727 void 22728 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 22729 ire_t *ire_arg) 22730 { 22731 in6_addr_t *v6dstp; 22732 ire_t *ire; 22733 mblk_t *mp; 22734 uint_t ill_index; 22735 ipsec_out_t *io; 22736 boolean_t attach_if, hwaccel; 22737 uint32_t flags = IP6_NO_IPPOLICY; 22738 int match_flags; 22739 zoneid_t zoneid; 22740 boolean_t ill_need_rele = B_FALSE; 22741 boolean_t ire_need_rele = B_FALSE; 22742 22743 mp = ipsec_mp->b_cont; 22744 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22745 ill_index = io->ipsec_out_ill_index; 22746 if (io->ipsec_out_reachable) { 22747 flags |= IPV6_REACHABILITY_CONFIRMATION; 22748 } 22749 attach_if = io->ipsec_out_attach_if; 22750 hwaccel = io->ipsec_out_accelerated; 22751 zoneid = io->ipsec_out_zoneid; 22752 ASSERT(zoneid != ALL_ZONES); 22753 match_flags = MATCH_IRE_ILL_GROUP; 22754 /* Multicast addresses should have non-zero ill_index. */ 22755 v6dstp = &ip6h->ip6_dst; 22756 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 22757 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 22758 ASSERT(!attach_if || ill_index != 0); 22759 if (ill_index != 0) { 22760 if (ill == NULL) { 22761 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 22762 B_TRUE); 22763 22764 /* Failure case frees things for us. */ 22765 if (ill == NULL) 22766 return; 22767 22768 ill_need_rele = B_TRUE; 22769 } 22770 /* 22771 * If this packet needs to go out on a particular interface 22772 * honor it. 22773 */ 22774 if (attach_if) { 22775 match_flags = MATCH_IRE_ILL; 22776 22777 /* 22778 * Check if we need an ire that will not be 22779 * looked up by anybody else i.e. HIDDEN. 22780 */ 22781 if (ill_is_probeonly(ill)) { 22782 match_flags |= MATCH_IRE_MARK_HIDDEN; 22783 } 22784 } 22785 } 22786 ASSERT(mp != NULL); 22787 22788 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 22789 boolean_t unspec_src; 22790 ipif_t *ipif; 22791 22792 /* 22793 * Use the ill_index to get the right ill. 22794 */ 22795 unspec_src = io->ipsec_out_unspec_src; 22796 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 22797 if (ipif == NULL) { 22798 if (ill_need_rele) 22799 ill_refrele(ill); 22800 freemsg(ipsec_mp); 22801 return; 22802 } 22803 22804 if (ire_arg != NULL) { 22805 ire = ire_arg; 22806 } else { 22807 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22808 zoneid, match_flags); 22809 ire_need_rele = B_TRUE; 22810 } 22811 if (ire != NULL) { 22812 ipif_refrele(ipif); 22813 /* 22814 * XXX Do the multicast forwarding now, as the IPSEC 22815 * processing has been done. 22816 */ 22817 goto send; 22818 } 22819 22820 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 22821 mp->b_prev = NULL; 22822 mp->b_next = NULL; 22823 22824 /* 22825 * If the IPsec packet was processed asynchronously, 22826 * drop it now. 22827 */ 22828 if (q == NULL) { 22829 if (ill_need_rele) 22830 ill_refrele(ill); 22831 freemsg(ipsec_mp); 22832 return; 22833 } 22834 22835 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 22836 unspec_src, zoneid); 22837 ipif_refrele(ipif); 22838 } else { 22839 if (attach_if) { 22840 ipif_t *ipif; 22841 22842 ipif = ipif_get_next_ipif(NULL, ill); 22843 if (ipif == NULL) { 22844 if (ill_need_rele) 22845 ill_refrele(ill); 22846 freemsg(ipsec_mp); 22847 return; 22848 } 22849 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22850 zoneid, match_flags); 22851 ire_need_rele = B_TRUE; 22852 ipif_refrele(ipif); 22853 } else { 22854 if (ire_arg != NULL) { 22855 ire = ire_arg; 22856 } else { 22857 ire = ire_cache_lookup_v6(v6dstp, zoneid); 22858 ire_need_rele = B_TRUE; 22859 } 22860 } 22861 if (ire != NULL) 22862 goto send; 22863 /* 22864 * ire disappeared underneath. 22865 * 22866 * What we need to do here is the ip_newroute 22867 * logic to get the ire without doing the IPSEC 22868 * processing. Follow the same old path. But this 22869 * time, ip_wput or ire_add_then_send will call us 22870 * directly as all the IPSEC operations are done. 22871 */ 22872 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 22873 mp->b_prev = NULL; 22874 mp->b_next = NULL; 22875 22876 /* 22877 * If the IPsec packet was processed asynchronously, 22878 * drop it now. 22879 */ 22880 if (q == NULL) { 22881 if (ill_need_rele) 22882 ill_refrele(ill); 22883 freemsg(ipsec_mp); 22884 return; 22885 } 22886 22887 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 22888 zoneid); 22889 } 22890 if (ill != NULL && ill_need_rele) 22891 ill_refrele(ill); 22892 return; 22893 send: 22894 if (ill != NULL && ill_need_rele) 22895 ill_refrele(ill); 22896 22897 /* Local delivery */ 22898 if (ire->ire_stq == NULL) { 22899 ASSERT(q != NULL); 22900 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 22901 ire, 0); 22902 if (ire_need_rele) 22903 ire_refrele(ire); 22904 return; 22905 } 22906 /* 22907 * Everything is done. Send it out on the wire. 22908 * We force the insertion of a fragment header using the 22909 * IPH_FRAG_HDR flag in two cases: 22910 * - after reception of an ICMPv6 "packet too big" message 22911 * with a MTU < 1280 (cf. RFC 2460 section 5) 22912 * - for multirouted IPv6 packets, so that the receiver can 22913 * discard duplicates according to their fragment identifier 22914 */ 22915 /* XXX fix flow control problems. */ 22916 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 22917 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 22918 if (hwaccel) { 22919 /* 22920 * hardware acceleration does not handle these 22921 * "slow path" cases. 22922 */ 22923 /* IPsec KSTATS: should bump bean counter here. */ 22924 if (ire_need_rele) 22925 ire_refrele(ire); 22926 freemsg(ipsec_mp); 22927 return; 22928 } 22929 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 22930 (mp->b_cont ? msgdsize(mp) : 22931 mp->b_wptr - (uchar_t *)ip6h)) { 22932 /* IPsec KSTATS: should bump bean counter here. */ 22933 ip0dbg(("Packet length mismatch: %d, %ld\n", 22934 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 22935 msgdsize(mp))); 22936 if (ire_need_rele) 22937 ire_refrele(ire); 22938 freemsg(ipsec_mp); 22939 return; 22940 } 22941 ASSERT(mp->b_prev == NULL); 22942 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 22943 ntohs(ip6h->ip6_plen) + 22944 IPV6_HDR_LEN, ire->ire_max_frag)); 22945 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 22946 ire->ire_max_frag); 22947 } else { 22948 UPDATE_OB_PKT_COUNT(ire); 22949 ire->ire_last_used_time = lbolt; 22950 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 22951 } 22952 if (ire_need_rele) 22953 ire_refrele(ire); 22954 freeb(ipsec_mp); 22955 } 22956 22957 void 22958 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 22959 { 22960 mblk_t *hada_mp; /* attributes M_CTL mblk */ 22961 da_ipsec_t *hada; /* data attributes */ 22962 ill_t *ill = (ill_t *)q->q_ptr; 22963 22964 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 22965 22966 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 22967 /* IPsec KSTATS: Bump lose counter here! */ 22968 freemsg(mp); 22969 return; 22970 } 22971 22972 /* 22973 * It's an IPsec packet that must be 22974 * accelerated by the Provider, and the 22975 * outbound ill is IPsec acceleration capable. 22976 * Prepends the mblk with an IPHADA_M_CTL, and ship it 22977 * to the ill. 22978 * IPsec KSTATS: should bump packet counter here. 22979 */ 22980 22981 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 22982 if (hada_mp == NULL) { 22983 /* IPsec KSTATS: should bump packet counter here. */ 22984 freemsg(mp); 22985 return; 22986 } 22987 22988 hada_mp->b_datap->db_type = M_CTL; 22989 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 22990 hada_mp->b_cont = mp; 22991 22992 hada = (da_ipsec_t *)hada_mp->b_rptr; 22993 bzero(hada, sizeof (da_ipsec_t)); 22994 hada->da_type = IPHADA_M_CTL; 22995 22996 putnext(q, hada_mp); 22997 } 22998 22999 /* 23000 * Finish the outbound IPsec processing. This function is called from 23001 * ipsec_out_process() if the IPsec packet was processed 23002 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 23003 * asynchronously. 23004 */ 23005 void 23006 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 23007 ire_t *ire_arg) 23008 { 23009 uint32_t v_hlen_tos_len; 23010 ipaddr_t dst; 23011 ipif_t *ipif = NULL; 23012 ire_t *ire; 23013 ire_t *ire1 = NULL; 23014 mblk_t *next_mp = NULL; 23015 uint32_t max_frag; 23016 boolean_t multirt_send = B_FALSE; 23017 mblk_t *mp; 23018 mblk_t *mp1; 23019 uint_t ill_index; 23020 ipsec_out_t *io; 23021 boolean_t attach_if; 23022 int match_flags, offset; 23023 irb_t *irb = NULL; 23024 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 23025 zoneid_t zoneid; 23026 uint32_t cksum; 23027 uint16_t *up; 23028 #ifdef _BIG_ENDIAN 23029 #define LENGTH (v_hlen_tos_len & 0xFFFF) 23030 #else 23031 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 23032 #endif 23033 23034 mp = ipsec_mp->b_cont; 23035 ASSERT(mp != NULL); 23036 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23037 dst = ipha->ipha_dst; 23038 23039 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23040 ill_index = io->ipsec_out_ill_index; 23041 attach_if = io->ipsec_out_attach_if; 23042 zoneid = io->ipsec_out_zoneid; 23043 ASSERT(zoneid != ALL_ZONES); 23044 match_flags = MATCH_IRE_ILL_GROUP; 23045 if (ill_index != 0) { 23046 if (ill == NULL) { 23047 ill = ip_grab_attach_ill(NULL, ipsec_mp, 23048 ill_index, B_FALSE); 23049 23050 /* Failure case frees things for us. */ 23051 if (ill == NULL) 23052 return; 23053 23054 ill_need_rele = B_TRUE; 23055 } 23056 /* 23057 * If this packet needs to go out on a particular interface 23058 * honor it. 23059 */ 23060 if (attach_if) { 23061 match_flags = MATCH_IRE_ILL; 23062 23063 /* 23064 * Check if we need an ire that will not be 23065 * looked up by anybody else i.e. HIDDEN. 23066 */ 23067 if (ill_is_probeonly(ill)) { 23068 match_flags |= MATCH_IRE_MARK_HIDDEN; 23069 } 23070 } 23071 } 23072 23073 if (CLASSD(dst)) { 23074 boolean_t conn_dontroute; 23075 /* 23076 * Use the ill_index to get the right ipif. 23077 */ 23078 conn_dontroute = io->ipsec_out_dontroute; 23079 if (ill_index == 0) 23080 ipif = ipif_lookup_group(dst, zoneid); 23081 else 23082 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 23083 if (ipif == NULL) { 23084 ip1dbg(("ip_wput_ipsec_out: No ipif for" 23085 " multicast\n")); 23086 BUMP_MIB(&ip_mib, ipOutNoRoutes); 23087 freemsg(ipsec_mp); 23088 goto done; 23089 } 23090 /* 23091 * ipha_src has already been intialized with the 23092 * value of the ipif in ip_wput. All we need now is 23093 * an ire to send this downstream. 23094 */ 23095 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, match_flags); 23096 if (ire != NULL) { 23097 ill_t *ill1; 23098 /* 23099 * Do the multicast forwarding now, as the IPSEC 23100 * processing has been done. 23101 */ 23102 if (ip_g_mrouter && !conn_dontroute && 23103 (ill1 = ire_to_ill(ire))) { 23104 if (ip_mforward(ill1, ipha, mp)) { 23105 freemsg(ipsec_mp); 23106 ip1dbg(("ip_wput_ipsec_out: mforward " 23107 "failed\n")); 23108 ire_refrele(ire); 23109 goto done; 23110 } 23111 } 23112 goto send; 23113 } 23114 23115 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 23116 mp->b_prev = NULL; 23117 mp->b_next = NULL; 23118 23119 /* 23120 * If the IPsec packet was processed asynchronously, 23121 * drop it now. 23122 */ 23123 if (q == NULL) { 23124 freemsg(ipsec_mp); 23125 goto done; 23126 } 23127 23128 /* 23129 * We may be using a wrong ipif to create the ire. 23130 * But it is okay as the source address is assigned 23131 * for the packet already. Next outbound packet would 23132 * create the IRE with the right IPIF in ip_wput. 23133 * 23134 * Also handle RTF_MULTIRT routes. 23135 */ 23136 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 23137 } else { 23138 if (attach_if) { 23139 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 23140 zoneid, match_flags); 23141 } else { 23142 if (ire_arg != NULL) { 23143 ire = ire_arg; 23144 ire_need_rele = B_FALSE; 23145 } else { 23146 ire = ire_cache_lookup(dst, zoneid); 23147 } 23148 } 23149 if (ire != NULL) { 23150 goto send; 23151 } 23152 23153 /* 23154 * ire disappeared underneath. 23155 * 23156 * What we need to do here is the ip_newroute 23157 * logic to get the ire without doing the IPSEC 23158 * processing. Follow the same old path. But this 23159 * time, ip_wput or ire_add_then_put will call us 23160 * directly as all the IPSEC operations are done. 23161 */ 23162 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 23163 mp->b_prev = NULL; 23164 mp->b_next = NULL; 23165 23166 /* 23167 * If the IPsec packet was processed asynchronously, 23168 * drop it now. 23169 */ 23170 if (q == NULL) { 23171 freemsg(ipsec_mp); 23172 goto done; 23173 } 23174 23175 /* 23176 * Since we're going through ip_newroute() again, we 23177 * need to make sure we don't: 23178 * 23179 * 1.) Trigger the ASSERT() with the ipha_ident 23180 * overloading. 23181 * 2.) Redo transport-layer checksumming, since we've 23182 * already done all that to get this far. 23183 * 23184 * The easiest way not do either of the above is to set 23185 * the ipha_ident field to IP_HDR_INCLUDED. 23186 */ 23187 ipha->ipha_ident = IP_HDR_INCLUDED; 23188 ip_newroute(q, ipsec_mp, dst, NULL, 23189 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 23190 } 23191 goto done; 23192 send: 23193 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 23194 /* 23195 * ESP NAT-Traversal packet. 23196 * 23197 * Just do software checksum for now. 23198 */ 23199 23200 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 23201 IP_STAT(ip_out_sw_cksum); 23202 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 23203 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 23204 #define iphs ((uint16_t *)ipha) 23205 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 23206 iphs[9] + ntohs(htons(ipha->ipha_length) - 23207 IP_SIMPLE_HDR_LENGTH); 23208 #undef iphs 23209 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 23210 cksum = 0xFFFF; 23211 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 23212 if (mp1->b_wptr - mp1->b_rptr >= 23213 offset + sizeof (uint16_t)) { 23214 up = (uint16_t *)(mp1->b_rptr + offset); 23215 *up = cksum; 23216 break; /* out of for loop */ 23217 } else { 23218 offset -= (mp->b_wptr - mp->b_rptr); 23219 } 23220 } /* Otherwise, just keep the all-zero checksum. */ 23221 23222 if (ire->ire_stq == NULL) { 23223 /* 23224 * Loopbacks go through ip_wput_local except for one case. 23225 * We come here if we generate a icmp_frag_needed message 23226 * after IPSEC processing is over. When this function calls 23227 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 23228 * icmp_frag_needed. The message generated comes back here 23229 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 23230 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 23231 * source address as it is usually set in ip_wput_ire. As 23232 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 23233 * and we end up here. We can't enter ip_wput_ire once the 23234 * IPSEC processing is over and hence we need to do it here. 23235 */ 23236 ASSERT(q != NULL); 23237 UPDATE_OB_PKT_COUNT(ire); 23238 ire->ire_last_used_time = lbolt; 23239 if (ipha->ipha_src == 0) 23240 ipha->ipha_src = ire->ire_src_addr; 23241 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 23242 ire, 0, zoneid); 23243 if (ire_need_rele) 23244 ire_refrele(ire); 23245 goto done; 23246 } 23247 23248 if (ire->ire_max_frag < (unsigned int)LENGTH) { 23249 /* 23250 * We are through with IPSEC processing. 23251 * Fragment this and send it on the wire. 23252 */ 23253 if (io->ipsec_out_accelerated) { 23254 /* 23255 * The packet has been accelerated but must 23256 * be fragmented. This should not happen 23257 * since AH and ESP must not accelerate 23258 * packets that need fragmentation, however 23259 * the configuration could have changed 23260 * since the AH or ESP processing. 23261 * Drop packet. 23262 * IPsec KSTATS: bump bean counter here. 23263 */ 23264 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 23265 "fragmented accelerated packet!\n")); 23266 freemsg(ipsec_mp); 23267 } else { 23268 ip_wput_ire_fragmentit(ipsec_mp, ire); 23269 } 23270 if (ire_need_rele) 23271 ire_refrele(ire); 23272 goto done; 23273 } 23274 23275 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 23276 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 23277 (void *)ire->ire_ipif, (void *)ipif)); 23278 23279 /* 23280 * Multiroute the secured packet, unless IPsec really 23281 * requires the packet to go out only through a particular 23282 * interface. 23283 */ 23284 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 23285 ire_t *first_ire; 23286 irb = ire->ire_bucket; 23287 ASSERT(irb != NULL); 23288 /* 23289 * This ire has been looked up as the one that 23290 * goes through the given ipif; 23291 * make sure we do not omit any other multiroute ire 23292 * that may be present in the bucket before this one. 23293 */ 23294 IRB_REFHOLD(irb); 23295 for (first_ire = irb->irb_ire; 23296 first_ire != NULL; 23297 first_ire = first_ire->ire_next) { 23298 if ((first_ire->ire_flags & RTF_MULTIRT) && 23299 (first_ire->ire_addr == ire->ire_addr) && 23300 !(first_ire->ire_marks & 23301 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 23302 break; 23303 } 23304 23305 if ((first_ire != NULL) && (first_ire != ire)) { 23306 /* 23307 * Don't change the ire if the packet must 23308 * be fragmented if sent via this new one. 23309 */ 23310 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 23311 IRE_REFHOLD(first_ire); 23312 if (ire_need_rele) 23313 ire_refrele(ire); 23314 else 23315 ire_need_rele = B_TRUE; 23316 ire = first_ire; 23317 } 23318 } 23319 IRB_REFRELE(irb); 23320 23321 multirt_send = B_TRUE; 23322 max_frag = ire->ire_max_frag; 23323 } else { 23324 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 23325 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 23326 "flag, attach_if %d\n", attach_if)); 23327 } 23328 } 23329 23330 /* 23331 * In most cases, the emission loop below is entered only once. 23332 * Only in the case where the ire holds the RTF_MULTIRT 23333 * flag, we loop to process all RTF_MULTIRT ires in the 23334 * bucket, and send the packet through all crossed 23335 * RTF_MULTIRT routes. 23336 */ 23337 do { 23338 if (multirt_send) { 23339 /* 23340 * ire1 holds here the next ire to process in the 23341 * bucket. If multirouting is expected, 23342 * any non-RTF_MULTIRT ire that has the 23343 * right destination address is ignored. 23344 */ 23345 ASSERT(irb != NULL); 23346 IRB_REFHOLD(irb); 23347 for (ire1 = ire->ire_next; 23348 ire1 != NULL; 23349 ire1 = ire1->ire_next) { 23350 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 23351 continue; 23352 if (ire1->ire_addr != ire->ire_addr) 23353 continue; 23354 if (ire1->ire_marks & 23355 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 23356 continue; 23357 /* No loopback here */ 23358 if (ire1->ire_stq == NULL) 23359 continue; 23360 /* 23361 * Ensure we do not exceed the MTU 23362 * of the next route. 23363 */ 23364 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 23365 ip_multirt_bad_mtu(ire1, max_frag); 23366 continue; 23367 } 23368 23369 IRE_REFHOLD(ire1); 23370 break; 23371 } 23372 IRB_REFRELE(irb); 23373 if (ire1 != NULL) { 23374 /* 23375 * We are in a multiple send case, need to 23376 * make a copy of the packet. 23377 */ 23378 next_mp = copymsg(ipsec_mp); 23379 if (next_mp == NULL) { 23380 ire_refrele(ire1); 23381 ire1 = NULL; 23382 } 23383 } 23384 } 23385 23386 /* Everything is done. Send it out on the wire */ 23387 mp1 = ip_wput_attach_llhdr(mp, ire, 0, 0); 23388 if (mp1 == NULL) { 23389 BUMP_MIB(&ip_mib, ipOutDiscards); 23390 freemsg(ipsec_mp); 23391 if (ire_need_rele) 23392 ire_refrele(ire); 23393 if (ire1 != NULL) { 23394 ire_refrele(ire1); 23395 freemsg(next_mp); 23396 } 23397 goto done; 23398 } 23399 UPDATE_OB_PKT_COUNT(ire); 23400 ire->ire_last_used_time = lbolt; 23401 if (!io->ipsec_out_accelerated) { 23402 putnext(ire->ire_stq, mp1); 23403 } else { 23404 /* 23405 * Safety Pup says: make sure this is going to 23406 * the right interface! 23407 */ 23408 ill_t *ill1 = (ill_t *)ire->ire_stq->q_ptr; 23409 int ifindex = ill1->ill_phyint->phyint_ifindex; 23410 23411 if (ifindex != io->ipsec_out_capab_ill_index) { 23412 /* IPsec kstats: bump lose counter */ 23413 freemsg(mp1); 23414 } else { 23415 ipsec_hw_putnext(ire->ire_stq, mp1); 23416 } 23417 } 23418 23419 freeb(ipsec_mp); 23420 if (ire_need_rele) 23421 ire_refrele(ire); 23422 23423 if (ire1 != NULL) { 23424 ire = ire1; 23425 ire_need_rele = B_TRUE; 23426 ASSERT(next_mp); 23427 ipsec_mp = next_mp; 23428 mp = ipsec_mp->b_cont; 23429 ire1 = NULL; 23430 next_mp = NULL; 23431 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23432 } else { 23433 multirt_send = B_FALSE; 23434 } 23435 } while (multirt_send); 23436 done: 23437 if (ill != NULL && ill_need_rele) 23438 ill_refrele(ill); 23439 if (ipif != NULL) 23440 ipif_refrele(ipif); 23441 } 23442 23443 /* 23444 * Get the ill corresponding to the specified ire, and compare its 23445 * capabilities with the protocol and algorithms specified by the 23446 * the SA obtained from ipsec_out. If they match, annotate the 23447 * ipsec_out structure to indicate that the packet needs acceleration. 23448 * 23449 * 23450 * A packet is eligible for outbound hardware acceleration if the 23451 * following conditions are satisfied: 23452 * 23453 * 1. the packet will not be fragmented 23454 * 2. the provider supports the algorithm 23455 * 3. there is no pending control message being exchanged 23456 * 4. snoop is not attached 23457 * 5. the destination address is not a broadcast or multicast address. 23458 * 23459 * Rationale: 23460 * - Hardware drivers do not support fragmentation with 23461 * the current interface. 23462 * - snoop, multicast, and broadcast may result in exposure of 23463 * a cleartext datagram. 23464 * We check all five of these conditions here. 23465 * 23466 * XXX would like to nuke "ire_t *" parameter here; problem is that 23467 * IRE is only way to figure out if a v4 address is a broadcast and 23468 * thus ineligible for acceleration... 23469 */ 23470 static void 23471 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 23472 { 23473 ipsec_out_t *io; 23474 mblk_t *data_mp; 23475 uint_t plen, overhead; 23476 23477 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 23478 return; 23479 23480 if (ill == NULL) 23481 return; 23482 23483 /* 23484 * Destination address is a broadcast or multicast. Punt. 23485 */ 23486 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 23487 IRE_LOCAL))) 23488 return; 23489 23490 data_mp = ipsec_mp->b_cont; 23491 23492 if (ill->ill_isv6) { 23493 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 23494 23495 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 23496 return; 23497 23498 plen = ip6h->ip6_plen; 23499 } else { 23500 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 23501 23502 if (CLASSD(ipha->ipha_dst)) 23503 return; 23504 23505 plen = ipha->ipha_length; 23506 } 23507 /* 23508 * Is there a pending DLPI control message being exchanged 23509 * between IP/IPsec and the DLS Provider? If there is, it 23510 * could be a SADB update, and the state of the DLS Provider 23511 * SADB might not be in sync with the SADB maintained by 23512 * IPsec. To avoid dropping packets or using the wrong keying 23513 * material, we do not accelerate this packet. 23514 */ 23515 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 23516 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23517 "ill_dlpi_pending! don't accelerate packet\n")); 23518 return; 23519 } 23520 23521 /* 23522 * Is the Provider in promiscous mode? If it does, we don't 23523 * accelerate the packet since it will bounce back up to the 23524 * listeners in the clear. 23525 */ 23526 if (ill->ill_promisc_on_phys) { 23527 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23528 "ill in promiscous mode, don't accelerate packet\n")); 23529 return; 23530 } 23531 23532 /* 23533 * Will the packet require fragmentation? 23534 */ 23535 23536 /* 23537 * IPsec ESP note: this is a pessimistic estimate, but the same 23538 * as is used elsewhere. 23539 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 23540 * + 2-byte trailer 23541 */ 23542 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 23543 IPSEC_BASE_ESP_HDR_SIZE(sa); 23544 23545 if ((plen + overhead) > ill->ill_max_mtu) 23546 return; 23547 23548 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23549 23550 /* 23551 * Can the ill accelerate this IPsec protocol and algorithm 23552 * specified by the SA? 23553 */ 23554 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 23555 ill->ill_isv6, sa)) { 23556 return; 23557 } 23558 23559 /* 23560 * Tell AH or ESP that the outbound ill is capable of 23561 * accelerating this packet. 23562 */ 23563 io->ipsec_out_is_capab_ill = B_TRUE; 23564 } 23565 23566 /* 23567 * Select which AH & ESP SA's to use (if any) for the outbound packet. 23568 * 23569 * If this function returns B_TRUE, the requested SA's have been filled 23570 * into the ipsec_out_*_sa pointers. 23571 * 23572 * If the function returns B_FALSE, the packet has been "consumed", most 23573 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 23574 * 23575 * The SA references created by the protocol-specific "select" 23576 * function will be released when the ipsec_mp is freed, thanks to the 23577 * ipsec_out_free destructor -- see spd.c. 23578 */ 23579 static boolean_t 23580 ipsec_out_select_sa(mblk_t *ipsec_mp) 23581 { 23582 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 23583 ipsec_out_t *io; 23584 ipsec_policy_t *pp; 23585 ipsec_action_t *ap; 23586 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23587 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23588 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23589 23590 if (!io->ipsec_out_secure) { 23591 /* 23592 * We came here by mistake. 23593 * Don't bother with ipsec processing 23594 * We should "discourage" this path in the future. 23595 */ 23596 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23597 return (B_FALSE); 23598 } 23599 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23600 ASSERT((io->ipsec_out_policy != NULL) || 23601 (io->ipsec_out_act != NULL)); 23602 23603 ASSERT(io->ipsec_out_failed == B_FALSE); 23604 23605 /* 23606 * IPSEC processing has started. 23607 */ 23608 io->ipsec_out_proc_begin = B_TRUE; 23609 ap = io->ipsec_out_act; 23610 if (ap == NULL) { 23611 pp = io->ipsec_out_policy; 23612 ASSERT(pp != NULL); 23613 ap = pp->ipsp_act; 23614 ASSERT(ap != NULL); 23615 } 23616 23617 /* 23618 * We have an action. now, let's select SA's. 23619 * (In the future, we can cache this in the conn_t..) 23620 */ 23621 if (ap->ipa_want_esp) { 23622 if (io->ipsec_out_esp_sa == NULL) { 23623 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 23624 IPPROTO_ESP); 23625 } 23626 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 23627 } 23628 23629 if (ap->ipa_want_ah) { 23630 if (io->ipsec_out_ah_sa == NULL) { 23631 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 23632 IPPROTO_AH); 23633 } 23634 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 23635 /* 23636 * The ESP and AH processing order needs to be preserved 23637 * when both protocols are required (ESP should be applied 23638 * before AH for an outbound packet). Force an ESP ACQUIRE 23639 * when both ESP and AH are required, and an AH ACQUIRE 23640 * is needed. 23641 */ 23642 if (ap->ipa_want_esp && need_ah_acquire) 23643 need_esp_acquire = B_TRUE; 23644 } 23645 23646 /* 23647 * Send an ACQUIRE (extended, regular, or both) if we need one. 23648 * Release SAs that got referenced, but will not be used until we 23649 * acquire _all_ of the SAs we need. 23650 */ 23651 if (need_ah_acquire || need_esp_acquire) { 23652 if (io->ipsec_out_ah_sa != NULL) { 23653 IPSA_REFRELE(io->ipsec_out_ah_sa); 23654 io->ipsec_out_ah_sa = NULL; 23655 } 23656 if (io->ipsec_out_esp_sa != NULL) { 23657 IPSA_REFRELE(io->ipsec_out_esp_sa); 23658 io->ipsec_out_esp_sa = NULL; 23659 } 23660 23661 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 23662 return (B_FALSE); 23663 } 23664 23665 return (B_TRUE); 23666 } 23667 23668 /* 23669 * Process an IPSEC_OUT message and see what you can 23670 * do with it. 23671 * IPQoS Notes: 23672 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 23673 * IPSec. 23674 * XXX would like to nuke ire_t. 23675 * XXX ill_index better be "real" 23676 */ 23677 void 23678 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 23679 { 23680 ipsec_out_t *io; 23681 ipsec_policy_t *pp; 23682 ipsec_action_t *ap; 23683 ipha_t *ipha; 23684 ip6_t *ip6h; 23685 mblk_t *mp; 23686 ill_t *ill; 23687 zoneid_t zoneid; 23688 ipsec_status_t ipsec_rc; 23689 boolean_t ill_need_rele = B_FALSE; 23690 23691 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23692 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23693 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23694 mp = ipsec_mp->b_cont; 23695 23696 /* 23697 * Initiate IPPF processing. We do it here to account for packets 23698 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 23699 * We can check for ipsec_out_proc_begin even for such packets, as 23700 * they will always be false (asserted below). 23701 */ 23702 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 23703 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 23704 io->ipsec_out_ill_index : ill_index); 23705 if (mp == NULL) { 23706 ip2dbg(("ipsec_out_process: packet dropped "\ 23707 "during IPPF processing\n")); 23708 freeb(ipsec_mp); 23709 BUMP_MIB(&ip_mib, ipOutDiscards); 23710 return; 23711 } 23712 } 23713 23714 if (!io->ipsec_out_secure) { 23715 /* 23716 * We came here by mistake. 23717 * Don't bother with ipsec processing 23718 * Should "discourage" this path in the future. 23719 */ 23720 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23721 goto done; 23722 } 23723 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23724 ASSERT((io->ipsec_out_policy != NULL) || 23725 (io->ipsec_out_act != NULL)); 23726 ASSERT(io->ipsec_out_failed == B_FALSE); 23727 23728 if (!ipsec_loaded()) { 23729 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 23730 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23731 BUMP_MIB(&ip_mib, ipOutDiscards); 23732 } else { 23733 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 23734 } 23735 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 23736 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 23737 return; 23738 } 23739 23740 /* 23741 * IPSEC processing has started. 23742 */ 23743 io->ipsec_out_proc_begin = B_TRUE; 23744 ap = io->ipsec_out_act; 23745 if (ap == NULL) { 23746 pp = io->ipsec_out_policy; 23747 ASSERT(pp != NULL); 23748 ap = pp->ipsp_act; 23749 ASSERT(ap != NULL); 23750 } 23751 23752 /* 23753 * Save the outbound ill index. When the packet comes back 23754 * from IPsec, we make sure the ill hasn't changed or disappeared 23755 * before sending it the accelerated packet. 23756 */ 23757 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 23758 int ifindex; 23759 ill = ire_to_ill(ire); 23760 ifindex = ill->ill_phyint->phyint_ifindex; 23761 io->ipsec_out_capab_ill_index = ifindex; 23762 } 23763 23764 /* 23765 * The order of processing is first insert a IP header if needed. 23766 * Then insert the ESP header and then the AH header. 23767 */ 23768 if ((io->ipsec_out_se_done == B_FALSE) && 23769 (ap->ipa_want_se)) { 23770 /* 23771 * First get the outer IP header before sending 23772 * it to ESP. 23773 */ 23774 ipha_t *oipha, *iipha; 23775 mblk_t *outer_mp, *inner_mp; 23776 23777 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 23778 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 23779 "ipsec_out_process: " 23780 "Self-Encapsulation failed: Out of memory\n"); 23781 freemsg(ipsec_mp); 23782 BUMP_MIB(&ip_mib, ipOutDiscards); 23783 return; 23784 } 23785 inner_mp = ipsec_mp->b_cont; 23786 ASSERT(inner_mp->b_datap->db_type == M_DATA); 23787 oipha = (ipha_t *)outer_mp->b_rptr; 23788 iipha = (ipha_t *)inner_mp->b_rptr; 23789 *oipha = *iipha; 23790 outer_mp->b_wptr += sizeof (ipha_t); 23791 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 23792 sizeof (ipha_t)); 23793 oipha->ipha_protocol = IPPROTO_ENCAP; 23794 oipha->ipha_version_and_hdr_length = 23795 IP_SIMPLE_HDR_VERSION; 23796 oipha->ipha_hdr_checksum = 0; 23797 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 23798 outer_mp->b_cont = inner_mp; 23799 ipsec_mp->b_cont = outer_mp; 23800 23801 io->ipsec_out_se_done = B_TRUE; 23802 io->ipsec_out_encaps = B_TRUE; 23803 } 23804 23805 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 23806 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 23807 !ipsec_out_select_sa(ipsec_mp)) 23808 return; 23809 23810 /* 23811 * By now, we know what SA's to use. Toss over to ESP & AH 23812 * to do the heavy lifting. 23813 */ 23814 zoneid = io->ipsec_out_zoneid; 23815 ASSERT(zoneid != ALL_ZONES); 23816 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 23817 ASSERT(io->ipsec_out_esp_sa != NULL); 23818 io->ipsec_out_esp_done = B_TRUE; 23819 /* 23820 * Note that since hw accel can only apply one transform, 23821 * not two, we skip hw accel for ESP if we also have AH 23822 * This is an design limitation of the interface 23823 * which should be revisited. 23824 */ 23825 ASSERT(ire != NULL); 23826 if (io->ipsec_out_ah_sa == NULL) { 23827 ill = (ill_t *)ire->ire_stq->q_ptr; 23828 ipsec_out_is_accelerated(ipsec_mp, 23829 io->ipsec_out_esp_sa, ill, ire); 23830 } 23831 23832 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 23833 switch (ipsec_rc) { 23834 case IPSEC_STATUS_SUCCESS: 23835 break; 23836 case IPSEC_STATUS_FAILED: 23837 BUMP_MIB(&ip_mib, ipOutDiscards); 23838 /* FALLTHRU */ 23839 case IPSEC_STATUS_PENDING: 23840 return; 23841 } 23842 } 23843 23844 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 23845 ASSERT(io->ipsec_out_ah_sa != NULL); 23846 io->ipsec_out_ah_done = B_TRUE; 23847 if (ire == NULL) { 23848 int idx = io->ipsec_out_capab_ill_index; 23849 ill = ill_lookup_on_ifindex(idx, B_FALSE, 23850 NULL, NULL, NULL, NULL); 23851 ill_need_rele = B_TRUE; 23852 } else { 23853 ill = (ill_t *)ire->ire_stq->q_ptr; 23854 } 23855 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 23856 ire); 23857 23858 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 23859 switch (ipsec_rc) { 23860 case IPSEC_STATUS_SUCCESS: 23861 break; 23862 case IPSEC_STATUS_FAILED: 23863 BUMP_MIB(&ip_mib, ipOutDiscards); 23864 /* FALLTHRU */ 23865 case IPSEC_STATUS_PENDING: 23866 if (ill != NULL && ill_need_rele) 23867 ill_refrele(ill); 23868 return; 23869 } 23870 } 23871 /* 23872 * We are done with IPSEC processing. Send it over 23873 * the wire. 23874 */ 23875 done: 23876 mp = ipsec_mp->b_cont; 23877 ipha = (ipha_t *)mp->b_rptr; 23878 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23879 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 23880 } else { 23881 ip6h = (ip6_t *)ipha; 23882 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 23883 } 23884 if (ill != NULL && ill_need_rele) 23885 ill_refrele(ill); 23886 } 23887 23888 /* ARGSUSED */ 23889 void 23890 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 23891 { 23892 opt_restart_t *or; 23893 int err; 23894 conn_t *connp; 23895 23896 ASSERT(CONN_Q(q)); 23897 connp = Q_TO_CONN(q); 23898 23899 ASSERT(first_mp->b_datap->db_type == M_CTL); 23900 or = (opt_restart_t *)first_mp->b_rptr; 23901 /* 23902 * We don't need to pass any credentials here since this is just 23903 * a restart. The credentials are passed in when svr4_optcom_req 23904 * is called the first time (from ip_wput_nondata). 23905 */ 23906 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 23907 err = svr4_optcom_req(q, first_mp, NULL, 23908 &ip_opt_obj); 23909 } else { 23910 ASSERT(or->or_type == T_OPTMGMT_REQ); 23911 err = tpi_optcom_req(q, first_mp, NULL, 23912 &ip_opt_obj); 23913 } 23914 if (err != EINPROGRESS) { 23915 /* operation is done */ 23916 CONN_OPER_PENDING_DONE(connp); 23917 } 23918 } 23919 23920 /* 23921 * ioctls that go through a down/up sequence may need to wait for the down 23922 * to complete. This involves waiting for the ire and ipif refcnts to go down 23923 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 23924 */ 23925 /* ARGSUSED */ 23926 void 23927 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 23928 { 23929 struct iocblk *iocp; 23930 mblk_t *mp1; 23931 ipif_t *ipif; 23932 ip_ioctl_cmd_t *ipip; 23933 int err; 23934 sin_t *sin; 23935 struct lifreq *lifr; 23936 struct ifreq *ifr; 23937 23938 iocp = (struct iocblk *)mp->b_rptr; 23939 ASSERT(ipsq != NULL); 23940 /* Existence of mp1 verified in ip_wput_nondata */ 23941 mp1 = mp->b_cont->b_cont; 23942 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23943 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 23944 ill_t *ill; 23945 /* 23946 * Special case where ipsq_current_ipif may not be set. 23947 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 23948 * ill could also have become part of a ipmp group in the 23949 * process, we are here as were not able to complete the 23950 * operation in ipif_set_values because we could not become 23951 * exclusive on the new ipsq, In such a case ipsq_current_ipif 23952 * will not be set so we need to set it. 23953 */ 23954 ill = (ill_t *)q->q_ptr; 23955 ipsq->ipsq_current_ipif = ill->ill_ipif; 23956 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 23957 } 23958 23959 ipif = ipsq->ipsq_current_ipif; 23960 ASSERT(ipif != NULL); 23961 if (ipip->ipi_cmd_type == IF_CMD) { 23962 /* This a old style SIOC[GS]IF* command */ 23963 ifr = (struct ifreq *)mp1->b_rptr; 23964 sin = (sin_t *)&ifr->ifr_addr; 23965 } else if (ipip->ipi_cmd_type == LIF_CMD) { 23966 /* This a new style SIOC[GS]LIF* command */ 23967 lifr = (struct lifreq *)mp1->b_rptr; 23968 sin = (sin_t *)&lifr->lifr_addr; 23969 } else { 23970 sin = NULL; 23971 } 23972 23973 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 23974 (void *)mp1->b_rptr); 23975 23976 /* SIOCLIFREMOVEIF could have removed the ipif */ 23977 ip_ioctl_finish(q, mp, err, 23978 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23979 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 23980 } 23981 23982 /* 23983 * ioctl processing 23984 * 23985 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 23986 * the ioctl command in the ioctl tables and determines the copyin data size 23987 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 23988 * size. 23989 * 23990 * ioctl processing then continues when the M_IOCDATA makes its way down. 23991 * Now the ioctl is looked up again in the ioctl table, and its properties are 23992 * extracted. The associated 'conn' is then refheld till the end of the ioctl 23993 * and the general ioctl processing function ip_process_ioctl is called. 23994 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 23995 * so goes thru the serialization primitive ipsq_try_enter. Then the 23996 * appropriate function to handle the ioctl is called based on the entry in 23997 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 23998 * which also refreleases the 'conn' that was refheld at the start of the 23999 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 24000 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 24001 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 24002 * 24003 * Many exclusive ioctls go thru an internal down up sequence as part of 24004 * the operation. For example an attempt to change the IP address of an 24005 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 24006 * does all the cleanup such as deleting all ires that use this address. 24007 * Then we need to wait till all references to the interface go away. 24008 */ 24009 void 24010 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 24011 { 24012 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 24013 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 24014 cmd_info_t ci; 24015 int err; 24016 boolean_t entered_ipsq = B_FALSE; 24017 24018 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 24019 24020 if (ipip == NULL) 24021 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24022 24023 /* 24024 * SIOCLIFADDIF needs to go thru a special path since the 24025 * ill may not exist yet. This happens in the case of lo0 24026 * which is created using this ioctl. 24027 */ 24028 if (ipip->ipi_cmd == SIOCLIFADDIF) { 24029 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 24030 ip_ioctl_finish(q, mp, err, 24031 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24032 NULL, NULL); 24033 return; 24034 } 24035 24036 ci.ci_ipif = NULL; 24037 switch (ipip->ipi_cmd_type) { 24038 case IF_CMD: 24039 case LIF_CMD: 24040 /* 24041 * ioctls that pass in a [l]ifreq appear here. 24042 * ip_extract_lifreq_cmn returns a refheld ipif in 24043 * ci.ci_ipif 24044 */ 24045 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 24046 ipip->ipi_flags, &ci, ip_process_ioctl); 24047 if (err != 0) { 24048 ip_ioctl_finish(q, mp, err, 24049 ipip->ipi_flags & IPI_GET_CMD ? 24050 COPYOUT : NO_COPYOUT, NULL, NULL); 24051 return; 24052 } 24053 ASSERT(ci.ci_ipif != NULL); 24054 break; 24055 24056 case TUN_CMD: 24057 /* 24058 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 24059 * a refheld ipif in ci.ci_ipif 24060 */ 24061 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 24062 if (err != 0) { 24063 ip_ioctl_finish(q, mp, err, 24064 ipip->ipi_flags & IPI_GET_CMD ? 24065 COPYOUT : NO_COPYOUT, NULL, NULL); 24066 return; 24067 } 24068 ASSERT(ci.ci_ipif != NULL); 24069 break; 24070 24071 case MISC_CMD: 24072 /* 24073 * ioctls that neither pass in [l]ifreq or iftun_req come here 24074 * For eg. SIOCGLIFCONF will appear here. 24075 */ 24076 switch (ipip->ipi_cmd) { 24077 case IF_UNITSEL: 24078 /* ioctl comes down the ill */ 24079 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 24080 ipif_refhold(ci.ci_ipif); 24081 break; 24082 case SIOCGMSFILTER: 24083 case SIOCSMSFILTER: 24084 case SIOCGIPMSFILTER: 24085 case SIOCSIPMSFILTER: 24086 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 24087 ip_process_ioctl); 24088 if (err != 0) { 24089 ip_ioctl_finish(q, mp, err, 24090 ipip->ipi_flags & IPI_GET_CMD ? 24091 COPYOUT : NO_COPYOUT, NULL, NULL); 24092 return; 24093 } 24094 break; 24095 } 24096 err = 0; 24097 ci.ci_sin = NULL; 24098 ci.ci_sin6 = NULL; 24099 ci.ci_lifr = NULL; 24100 break; 24101 } 24102 24103 /* 24104 * If ipsq is non-null, we are already being called exclusively 24105 */ 24106 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 24107 if (!(ipip->ipi_flags & IPI_WR)) { 24108 /* 24109 * A return value of EINPROGRESS means the ioctl is 24110 * either queued and waiting for some reason or has 24111 * already completed. 24112 */ 24113 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 24114 ci.ci_lifr); 24115 if (ci.ci_ipif != NULL) 24116 ipif_refrele(ci.ci_ipif); 24117 ip_ioctl_finish(q, mp, err, 24118 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24119 NULL, NULL); 24120 return; 24121 } 24122 24123 ASSERT(ci.ci_ipif != NULL); 24124 24125 if (ipsq == NULL) { 24126 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 24127 ip_process_ioctl, NEW_OP, B_TRUE); 24128 entered_ipsq = B_TRUE; 24129 } 24130 /* 24131 * Release the ipif so that ipif_down and friends that wait for 24132 * references to go away are not misled about the current ipif_refcnt 24133 * values. We are writer so we can access the ipif even after releasing 24134 * the ipif. 24135 */ 24136 ipif_refrele(ci.ci_ipif); 24137 if (ipsq == NULL) 24138 return; 24139 24140 mutex_enter(&ipsq->ipsq_lock); 24141 ASSERT(ipsq->ipsq_current_ipif == NULL); 24142 ipsq->ipsq_current_ipif = ci.ci_ipif; 24143 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 24144 mutex_exit(&ipsq->ipsq_lock); 24145 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 24146 /* 24147 * For most set ioctls that come here, this serves as a single point 24148 * where we set the IPIF_CHANGING flag. This ensures that there won't 24149 * be any new references to the ipif. This helps functions that go 24150 * through this path and end up trying to wait for the refcnts 24151 * associated with the ipif to go down to zero. Some exceptions are 24152 * Failover, Failback, and Groupname commands that operate on more than 24153 * just the ci.ci_ipif. These commands internally determine the 24154 * set of ipif's they operate on and set and clear the IPIF_CHANGING 24155 * flags on that set. Another exception is the Removeif command that 24156 * sets the IPIF_CONDEMNED flag internally after identifying the right 24157 * ipif to operate on. 24158 */ 24159 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 24160 ipip->ipi_cmd != SIOCLIFFAILOVER && 24161 ipip->ipi_cmd != SIOCLIFFAILBACK && 24162 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 24163 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 24164 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 24165 24166 /* 24167 * A return value of EINPROGRESS means the ioctl is 24168 * either queued and waiting for some reason or has 24169 * already completed. 24170 */ 24171 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 24172 ci.ci_lifr); 24173 24174 /* SIOCLIFREMOVEIF could have removed the ipif */ 24175 ip_ioctl_finish(q, mp, err, 24176 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24177 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 24178 24179 if (entered_ipsq) 24180 ipsq_exit(ipsq, B_TRUE, B_TRUE); 24181 } 24182 24183 /* 24184 * Complete the ioctl. Typically ioctls use the mi package and need to 24185 * do mi_copyout/mi_copy_done. 24186 */ 24187 void 24188 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 24189 ipif_t *ipif, ipsq_t *ipsq) 24190 { 24191 conn_t *connp = NULL; 24192 24193 if (err == EINPROGRESS) 24194 return; 24195 24196 if (CONN_Q(q)) { 24197 connp = Q_TO_CONN(q); 24198 ASSERT(connp->conn_ref >= 2); 24199 } 24200 24201 switch (mode) { 24202 case COPYOUT: 24203 if (err == 0) 24204 mi_copyout(q, mp); 24205 else 24206 mi_copy_done(q, mp, err); 24207 break; 24208 24209 case NO_COPYOUT: 24210 mi_copy_done(q, mp, err); 24211 break; 24212 24213 default: 24214 /* An ioctl aborted through a conn close would take this path */ 24215 break; 24216 } 24217 24218 /* 24219 * The refhold placed at the start of the ioctl is released here. 24220 */ 24221 if (connp != NULL) 24222 CONN_OPER_PENDING_DONE(connp); 24223 24224 /* 24225 * If the ioctl were an exclusive ioctl it would have set 24226 * IPIF_CHANGING at the start of the ioctl which is undone here. 24227 */ 24228 if (ipif != NULL) { 24229 mutex_enter(&(ipif)->ipif_ill->ill_lock); 24230 ipif->ipif_state_flags &= ~IPIF_CHANGING; 24231 mutex_exit(&(ipif)->ipif_ill->ill_lock); 24232 } 24233 24234 /* 24235 * Clear the current ipif in the ipsq at the completion of the ioctl. 24236 * Note that a non-null ipsq_current_ipif prevents new ioctls from 24237 * entering the ipsq 24238 */ 24239 if (ipsq != NULL) { 24240 mutex_enter(&ipsq->ipsq_lock); 24241 ipsq->ipsq_current_ipif = NULL; 24242 mutex_exit(&ipsq->ipsq_lock); 24243 } 24244 } 24245 24246 /* 24247 * This is called from ip_wput_nondata to resume a deferred TCP bind. 24248 */ 24249 /* ARGSUSED */ 24250 void 24251 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 24252 { 24253 conn_t *connp = arg; 24254 tcp_t *tcp; 24255 24256 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 24257 tcp = connp->conn_tcp; 24258 24259 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 24260 freemsg(mp); 24261 else 24262 tcp_rput_other(tcp, mp); 24263 CONN_OPER_PENDING_DONE(connp); 24264 } 24265 24266 /* Called from ip_wput for all non data messages */ 24267 /* ARGSUSED */ 24268 void 24269 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 24270 { 24271 mblk_t *mp1; 24272 ire_t *ire; 24273 ill_t *ill; 24274 struct iocblk *iocp; 24275 ip_ioctl_cmd_t *ipip; 24276 cred_t *cr; 24277 conn_t *connp = NULL; 24278 int cmd, err; 24279 24280 if (CONN_Q(q)) 24281 connp = Q_TO_CONN(q); 24282 24283 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 24284 24285 /* Check if it is a queue to /dev/sctp. */ 24286 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 24287 connp->conn_rq == NULL) { 24288 sctp_wput(q, mp); 24289 return; 24290 } 24291 24292 switch (DB_TYPE(mp)) { 24293 case M_IOCTL: 24294 /* 24295 * IOCTL processing begins in ip_sioctl_copyin_setup which 24296 * will arrange to copy in associated control structures. 24297 */ 24298 ip_sioctl_copyin_setup(q, mp); 24299 return; 24300 case M_IOCDATA: 24301 /* 24302 * Ensure that this is associated with one of our trans- 24303 * parent ioctls. If it's not ours, discard it if we're 24304 * running as a driver, or pass it on if we're a module. 24305 */ 24306 iocp = (struct iocblk *)mp->b_rptr; 24307 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24308 if (ipip == NULL) { 24309 if (q->q_next == NULL) { 24310 goto nak; 24311 } else { 24312 putnext(q, mp); 24313 } 24314 return; 24315 } else if ((q->q_next != NULL) && 24316 !(ipip->ipi_flags & IPI_MODOK)) { 24317 /* 24318 * the ioctl is one we recognise, but is not 24319 * consumed by IP as a module, pass M_IOCDATA 24320 * for processing downstream, but only for 24321 * common Streams ioctls. 24322 */ 24323 if (ipip->ipi_flags & IPI_PASS_DOWN) { 24324 putnext(q, mp); 24325 return; 24326 } else { 24327 goto nak; 24328 } 24329 } 24330 24331 /* IOCTL continuation following copyin or copyout. */ 24332 if (mi_copy_state(q, mp, NULL) == -1) { 24333 /* 24334 * The copy operation failed. mi_copy_state already 24335 * cleaned up, so we're out of here. 24336 */ 24337 return; 24338 } 24339 /* 24340 * If we just completed a copy in, we become writer and 24341 * continue processing in ip_sioctl_copyin_done. If it 24342 * was a copy out, we call mi_copyout again. If there is 24343 * nothing more to copy out, it will complete the IOCTL. 24344 */ 24345 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 24346 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 24347 mi_copy_done(q, mp, EPROTO); 24348 return; 24349 } 24350 /* 24351 * Check for cases that need more copying. A return 24352 * value of 0 means a second copyin has been started, 24353 * so we return; a return value of 1 means no more 24354 * copying is needed, so we continue. 24355 */ 24356 cmd = iocp->ioc_cmd; 24357 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 24358 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 24359 MI_COPY_COUNT(mp) == 1) { 24360 if (ip_copyin_msfilter(q, mp) == 0) 24361 return; 24362 } 24363 /* 24364 * Refhold the conn, till the ioctl completes. This is 24365 * needed in case the ioctl ends up in the pending mp 24366 * list. Every mp in the ill_pending_mp list and 24367 * the ipsq_pending_mp must have a refhold on the conn 24368 * to resume processing. The refhold is released when 24369 * the ioctl completes. (normally or abnormally) 24370 * In all cases ip_ioctl_finish is called to finish 24371 * the ioctl. 24372 */ 24373 if (connp != NULL) { 24374 /* This is not a reentry */ 24375 ASSERT(ipsq == NULL); 24376 CONN_INC_REF(connp); 24377 } else { 24378 if (!(ipip->ipi_flags & IPI_MODOK)) { 24379 mi_copy_done(q, mp, EINVAL); 24380 return; 24381 } 24382 } 24383 24384 ip_process_ioctl(ipsq, q, mp, ipip); 24385 24386 } else { 24387 mi_copyout(q, mp); 24388 } 24389 return; 24390 nak: 24391 iocp->ioc_error = EINVAL; 24392 mp->b_datap->db_type = M_IOCNAK; 24393 iocp->ioc_count = 0; 24394 qreply(q, mp); 24395 return; 24396 24397 case M_IOCNAK: 24398 /* 24399 * The only way we could get here is if a resolver didn't like 24400 * an IOCTL we sent it. This shouldn't happen. 24401 */ 24402 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 24403 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 24404 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 24405 freemsg(mp); 24406 return; 24407 case M_IOCACK: 24408 /* Finish socket ioctls passed through to ARP. */ 24409 ip_sioctl_iocack(q, mp); 24410 return; 24411 case M_FLUSH: 24412 if (*mp->b_rptr & FLUSHW) 24413 flushq(q, FLUSHALL); 24414 if (q->q_next) { 24415 /* 24416 * M_FLUSH is sent up to IP by some drivers during 24417 * unbind. ip_rput has already replied to it. We are 24418 * here for the M_FLUSH that we originated in IP 24419 * before sending the unbind request to the driver. 24420 * Just free it as we don't queue packets in IP 24421 * on the write side of the device instance. 24422 */ 24423 freemsg(mp); 24424 return; 24425 } 24426 if (*mp->b_rptr & FLUSHR) { 24427 *mp->b_rptr &= ~FLUSHW; 24428 qreply(q, mp); 24429 return; 24430 } 24431 freemsg(mp); 24432 return; 24433 case IRE_DB_REQ_TYPE: 24434 /* An Upper Level Protocol wants a copy of an IRE. */ 24435 ip_ire_req(q, mp); 24436 return; 24437 case M_CTL: 24438 /* M_CTL messages are used by ARP to tell us things. */ 24439 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 24440 break; 24441 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 24442 case AR_ENTRY_SQUERY: 24443 ip_wput_ctl(q, mp); 24444 return; 24445 case AR_CLIENT_NOTIFY: 24446 ip_arp_news(q, mp); 24447 return; 24448 case AR_DLPIOP_DONE: 24449 ASSERT(q->q_next != NULL); 24450 ill = (ill_t *)q->q_ptr; 24451 /* qwriter_ip releases the refhold */ 24452 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 24453 ill_refhold(ill); 24454 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 24455 CUR_OP, B_FALSE); 24456 return; 24457 case AR_ARP_CLOSING: 24458 /* 24459 * ARP (above us) is closing. If no ARP bringup is 24460 * currently pending, ack the message so that ARP 24461 * can complete its close. Also mark ill_arp_closing 24462 * so that new ARP bringups will fail. If any 24463 * ARP bringup is currently in progress, we will 24464 * ack this when the current ARP bringup completes. 24465 */ 24466 ASSERT(q->q_next != NULL); 24467 ill = (ill_t *)q->q_ptr; 24468 mutex_enter(&ill->ill_lock); 24469 ill->ill_arp_closing = 1; 24470 if (!ill->ill_arp_bringup_pending) { 24471 mutex_exit(&ill->ill_lock); 24472 qreply(q, mp); 24473 } else { 24474 mutex_exit(&ill->ill_lock); 24475 freemsg(mp); 24476 } 24477 return; 24478 default: 24479 break; 24480 } 24481 break; 24482 case M_PROTO: 24483 case M_PCPROTO: 24484 /* 24485 * The only PROTO messages we expect are ULP binds and 24486 * copies of option negotiation acknowledgements. 24487 */ 24488 switch (((union T_primitives *)mp->b_rptr)->type) { 24489 case O_T_BIND_REQ: 24490 case T_BIND_REQ: { 24491 /* Request can get queued in bind */ 24492 ASSERT(connp != NULL); 24493 /* 24494 * Both TCP and UDP call ip_bind_{v4,v6}() directly 24495 * instead of going through this path. We only get 24496 * here in the following cases: 24497 * 24498 * a. Bind retries, where ipsq is non-NULL. 24499 * b. T_BIND_REQ is issued from non TCP/UDP 24500 * transport, e.g. icmp for raw socket, 24501 * in which case ipsq will be NULL. 24502 */ 24503 ASSERT(ipsq != NULL || 24504 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 24505 24506 /* Don't increment refcnt if this is a re-entry */ 24507 if (ipsq == NULL) 24508 CONN_INC_REF(connp); 24509 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 24510 connp, NULL) : ip_bind_v4(q, mp, connp); 24511 if (mp == NULL) 24512 return; 24513 if (IPCL_IS_TCP(connp)) { 24514 /* 24515 * In the case of TCP endpoint we 24516 * come here only for bind retries 24517 */ 24518 ASSERT(ipsq != NULL); 24519 CONN_INC_REF(connp); 24520 squeue_fill(connp->conn_sqp, mp, 24521 ip_resume_tcp_bind, connp, 24522 SQTAG_BIND_RETRY); 24523 return; 24524 } else if (IPCL_IS_UDP(connp)) { 24525 /* 24526 * In the case of UDP endpoint we 24527 * come here only for bind retries 24528 */ 24529 ASSERT(ipsq != NULL); 24530 udp_resume_bind(connp, mp); 24531 return; 24532 } 24533 qreply(q, mp); 24534 CONN_OPER_PENDING_DONE(connp); 24535 return; 24536 } 24537 case T_SVR4_OPTMGMT_REQ: 24538 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 24539 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 24540 24541 ASSERT(connp != NULL); 24542 if (!snmpcom_req(q, mp, ip_snmp_set, 24543 ip_snmp_get, cr)) { 24544 /* 24545 * Call svr4_optcom_req so that it can 24546 * generate the ack. We don't come here 24547 * if this operation is being restarted. 24548 * ip_restart_optmgmt will drop the conn ref. 24549 * In the case of ipsec option after the ipsec 24550 * load is complete conn_restart_ipsec_waiter 24551 * drops the conn ref. 24552 */ 24553 ASSERT(ipsq == NULL); 24554 CONN_INC_REF(connp); 24555 if (ip_check_for_ipsec_opt(q, mp)) 24556 return; 24557 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 24558 if (err != EINPROGRESS) { 24559 /* Operation is done */ 24560 CONN_OPER_PENDING_DONE(connp); 24561 } 24562 } 24563 return; 24564 case T_OPTMGMT_REQ: 24565 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 24566 /* 24567 * Note: No snmpcom_req support through new 24568 * T_OPTMGMT_REQ. 24569 * Call tpi_optcom_req so that it can 24570 * generate the ack. 24571 */ 24572 ASSERT(connp != NULL); 24573 ASSERT(ipsq == NULL); 24574 /* 24575 * We don't come here for restart. ip_restart_optmgmt 24576 * will drop the conn ref. In the case of ipsec option 24577 * after the ipsec load is complete 24578 * conn_restart_ipsec_waiter drops the conn ref. 24579 */ 24580 CONN_INC_REF(connp); 24581 if (ip_check_for_ipsec_opt(q, mp)) 24582 return; 24583 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 24584 if (err != EINPROGRESS) { 24585 /* Operation is done */ 24586 CONN_OPER_PENDING_DONE(connp); 24587 } 24588 return; 24589 case T_UNBIND_REQ: 24590 mp = ip_unbind(q, mp); 24591 qreply(q, mp); 24592 return; 24593 default: 24594 /* 24595 * Have to drop any DLPI messages coming down from 24596 * arp (such as an info_req which would cause ip 24597 * to receive an extra info_ack if it was passed 24598 * through. 24599 */ 24600 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 24601 (int)*(uint_t *)mp->b_rptr)); 24602 freemsg(mp); 24603 return; 24604 } 24605 /* NOTREACHED */ 24606 case IRE_DB_TYPE: { 24607 nce_t *nce; 24608 ill_t *ill; 24609 in6_addr_t gw_addr_v6; 24610 24611 24612 /* 24613 * This is a response back from a resolver. It 24614 * consists of a message chain containing: 24615 * IRE_MBLK-->LL_HDR_MBLK->pkt 24616 * The IRE_MBLK is the one we allocated in ip_newroute. 24617 * The LL_HDR_MBLK is the DLPI header to use to get 24618 * the attached packet, and subsequent ones for the 24619 * same destination, transmitted. 24620 */ 24621 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 24622 break; 24623 /* 24624 * First, check to make sure the resolution succeeded. 24625 * If it failed, the second mblk will be empty. 24626 * If it is, free the chain, dropping the packet. 24627 * (We must ire_delete the ire; that frees the ire mblk) 24628 * We're doing this now to support PVCs for ATM; it's 24629 * a partial xresolv implementation. When we fully implement 24630 * xresolv interfaces, instead of freeing everything here 24631 * we'll initiate neighbor discovery. 24632 * 24633 * For v4 (ARP and other external resolvers) the resolver 24634 * frees the message, so no check is needed. This check 24635 * is required, though, for a full xresolve implementation. 24636 * Including this code here now both shows how external 24637 * resolvers can NACK a resolution request using an 24638 * existing design that has no specific provisions for NACKs, 24639 * and also takes into account that the current non-ARP 24640 * external resolver has been coded to use this method of 24641 * NACKing for all IPv6 (xresolv) cases, 24642 * whether our xresolv implementation is complete or not. 24643 * 24644 */ 24645 ire = (ire_t *)mp->b_rptr; 24646 ill = ire_to_ill(ire); 24647 mp1 = mp->b_cont; /* dl_unitdata_req */ 24648 if (mp1->b_rptr == mp1->b_wptr) { 24649 if (ire->ire_ipversion == IPV6_VERSION) { 24650 /* 24651 * XRESOLV interface. 24652 */ 24653 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24654 mutex_enter(&ire->ire_lock); 24655 gw_addr_v6 = ire->ire_gateway_addr_v6; 24656 mutex_exit(&ire->ire_lock); 24657 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24658 nce = ndp_lookup(ill, 24659 &ire->ire_addr_v6, B_FALSE); 24660 } else { 24661 nce = ndp_lookup(ill, &gw_addr_v6, 24662 B_FALSE); 24663 } 24664 if (nce != NULL) { 24665 nce_resolv_failed(nce); 24666 ndp_delete(nce); 24667 NCE_REFRELE(nce); 24668 } 24669 } 24670 mp->b_cont = NULL; 24671 freemsg(mp1); /* frees the pkt as well */ 24672 ire_delete((ire_t *)mp->b_rptr); 24673 return; 24674 } 24675 /* 24676 * Split them into IRE_MBLK and pkt and feed it into 24677 * ire_add_then_send. Then in ire_add_then_send 24678 * the IRE will be added, and then the packet will be 24679 * run back through ip_wput. This time it will make 24680 * it to the wire. 24681 */ 24682 mp->b_cont = NULL; 24683 mp = mp1->b_cont; /* now, mp points to pkt */ 24684 mp1->b_cont = NULL; 24685 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 24686 if (ire->ire_ipversion == IPV6_VERSION) { 24687 /* 24688 * XRESOLV interface. Find the nce and put a copy 24689 * of the dl_unitdata_req in nce_res_mp 24690 */ 24691 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24692 mutex_enter(&ire->ire_lock); 24693 gw_addr_v6 = ire->ire_gateway_addr_v6; 24694 mutex_exit(&ire->ire_lock); 24695 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24696 nce = ndp_lookup(ill, &ire->ire_addr_v6, 24697 B_FALSE); 24698 } else { 24699 nce = ndp_lookup(ill, &gw_addr_v6, B_FALSE); 24700 } 24701 if (nce != NULL) { 24702 /* 24703 * We have to protect nce_res_mp here 24704 * from being accessed by other threads 24705 * while we change the mblk pointer. 24706 * Other functions will also lock the nce when 24707 * accessing nce_res_mp. 24708 * 24709 * The reason we change the mblk pointer 24710 * here rather than copying the resolved address 24711 * into the template is that, unlike with 24712 * ethernet, we have no guarantee that the 24713 * resolved address length will be 24714 * smaller than or equal to the lla length 24715 * with which the template was allocated, 24716 * (for ethernet, they're equal) 24717 * so we have to use the actual resolved 24718 * address mblk - which holds the real 24719 * dl_unitdata_req with the resolved address. 24720 * 24721 * Doing this is the same behavior as was 24722 * previously used in the v4 ARP case. 24723 */ 24724 mutex_enter(&nce->nce_lock); 24725 if (nce->nce_res_mp != NULL) 24726 freemsg(nce->nce_res_mp); 24727 nce->nce_res_mp = mp1; 24728 mutex_exit(&nce->nce_lock); 24729 /* 24730 * We do a fastpath probe here because 24731 * we have resolved the address without 24732 * using Neighbor Discovery. 24733 * In the non-XRESOLV v6 case, the fastpath 24734 * probe is done right after neighbor 24735 * discovery completes. 24736 */ 24737 if (nce->nce_res_mp != NULL) { 24738 int res; 24739 nce_fastpath_list_add(nce); 24740 res = ill_fastpath_probe(ill, 24741 nce->nce_res_mp); 24742 if (res != 0 && res != EAGAIN) 24743 nce_fastpath_list_delete(nce); 24744 } 24745 24746 ire_add_then_send(q, ire, mp); 24747 /* 24748 * Now we have to clean out any packets 24749 * that may have been queued on the nce 24750 * while it was waiting for address resolution 24751 * to complete. 24752 */ 24753 mutex_enter(&nce->nce_lock); 24754 mp1 = nce->nce_qd_mp; 24755 nce->nce_qd_mp = NULL; 24756 mutex_exit(&nce->nce_lock); 24757 while (mp1 != NULL) { 24758 mblk_t *nxt_mp; 24759 queue_t *fwdq = NULL; 24760 ill_t *inbound_ill; 24761 uint_t ifindex; 24762 24763 nxt_mp = mp1->b_next; 24764 mp1->b_next = NULL; 24765 /* 24766 * Retrieve ifindex stored in 24767 * ip_rput_data_v6() 24768 */ 24769 ifindex = 24770 (uint_t)(uintptr_t)mp1->b_prev; 24771 inbound_ill = 24772 ill_lookup_on_ifindex(ifindex, 24773 B_TRUE, NULL, NULL, NULL, 24774 NULL); 24775 mp1->b_prev = NULL; 24776 if (inbound_ill != NULL) 24777 fwdq = inbound_ill->ill_rq; 24778 24779 if (fwdq != NULL) { 24780 put(fwdq, mp1); 24781 ill_refrele(inbound_ill); 24782 } else 24783 put(WR(ill->ill_rq), mp1); 24784 mp1 = nxt_mp; 24785 } 24786 NCE_REFRELE(nce); 24787 } else { /* nce is NULL; clean up */ 24788 ire_delete(ire); 24789 freemsg(mp); 24790 freemsg(mp1); 24791 return; 24792 } 24793 } else { 24794 ire->ire_dlureq_mp = mp1; 24795 ire_add_then_send(q, ire, mp); 24796 } 24797 return; /* All is well, the packet has been sent. */ 24798 } 24799 default: 24800 break; 24801 } 24802 if (q->q_next) { 24803 putnext(q, mp); 24804 } else 24805 freemsg(mp); 24806 } 24807 24808 /* 24809 * Process IP options in an outbound packet. Modify the destination if there 24810 * is a source route option. 24811 * Returns non-zero if something fails in which case an ICMP error has been 24812 * sent and mp freed. 24813 */ 24814 static int 24815 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 24816 boolean_t mctl_present, zoneid_t zoneid) 24817 { 24818 ipoptp_t opts; 24819 uchar_t *opt; 24820 uint8_t optval; 24821 uint8_t optlen; 24822 ipaddr_t dst; 24823 intptr_t code = 0; 24824 mblk_t *mp; 24825 ire_t *ire = NULL; 24826 24827 ip2dbg(("ip_wput_options\n")); 24828 mp = ipsec_mp; 24829 if (mctl_present) { 24830 mp = ipsec_mp->b_cont; 24831 } 24832 24833 dst = ipha->ipha_dst; 24834 for (optval = ipoptp_first(&opts, ipha); 24835 optval != IPOPT_EOL; 24836 optval = ipoptp_next(&opts)) { 24837 opt = opts.ipoptp_cur; 24838 optlen = opts.ipoptp_len; 24839 ip2dbg(("ip_wput_options: opt %d, len %d\n", 24840 optval, optlen)); 24841 switch (optval) { 24842 uint32_t off; 24843 case IPOPT_SSRR: 24844 case IPOPT_LSRR: 24845 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24846 ip1dbg(( 24847 "ip_wput_options: bad option offset\n")); 24848 code = (char *)&opt[IPOPT_OLEN] - 24849 (char *)ipha; 24850 goto param_prob; 24851 } 24852 off = opt[IPOPT_OFFSET]; 24853 ip1dbg(("ip_wput_options: next hop 0x%x\n", 24854 ntohl(dst))); 24855 /* 24856 * For strict: verify that dst is directly 24857 * reachable. 24858 */ 24859 if (optval == IPOPT_SSRR) { 24860 ire = ire_ftable_lookup(dst, 0, 0, 24861 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 24862 MATCH_IRE_TYPE); 24863 if (ire == NULL) { 24864 ip1dbg(("ip_wput_options: SSRR not" 24865 " directly reachable: 0x%x\n", 24866 ntohl(dst))); 24867 goto bad_src_route; 24868 } 24869 ire_refrele(ire); 24870 } 24871 break; 24872 case IPOPT_RR: 24873 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24874 ip1dbg(( 24875 "ip_wput_options: bad option offset\n")); 24876 code = (char *)&opt[IPOPT_OLEN] - 24877 (char *)ipha; 24878 goto param_prob; 24879 } 24880 break; 24881 case IPOPT_TS: 24882 /* 24883 * Verify that length >=5 and that there is either 24884 * room for another timestamp or that the overflow 24885 * counter is not maxed out. 24886 */ 24887 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 24888 if (optlen < IPOPT_MINLEN_IT) { 24889 goto param_prob; 24890 } 24891 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24892 ip1dbg(( 24893 "ip_wput_options: bad option offset\n")); 24894 code = (char *)&opt[IPOPT_OFFSET] - 24895 (char *)ipha; 24896 goto param_prob; 24897 } 24898 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24899 case IPOPT_TS_TSONLY: 24900 off = IPOPT_TS_TIMELEN; 24901 break; 24902 case IPOPT_TS_TSANDADDR: 24903 case IPOPT_TS_PRESPEC: 24904 case IPOPT_TS_PRESPEC_RFC791: 24905 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24906 break; 24907 default: 24908 code = (char *)&opt[IPOPT_POS_OV_FLG] - 24909 (char *)ipha; 24910 goto param_prob; 24911 } 24912 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 24913 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 24914 /* 24915 * No room and the overflow counter is 15 24916 * already. 24917 */ 24918 goto param_prob; 24919 } 24920 break; 24921 } 24922 } 24923 24924 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 24925 return (0); 24926 24927 ip1dbg(("ip_wput_options: error processing IP options.")); 24928 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 24929 24930 param_prob: 24931 /* 24932 * Since ip_wput() isn't close to finished, we fill 24933 * in enough of the header for credible error reporting. 24934 */ 24935 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24936 /* Failed */ 24937 freemsg(ipsec_mp); 24938 return (-1); 24939 } 24940 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 24941 return (-1); 24942 24943 bad_src_route: 24944 /* 24945 * Since ip_wput() isn't close to finished, we fill 24946 * in enough of the header for credible error reporting. 24947 */ 24948 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24949 /* Failed */ 24950 freemsg(ipsec_mp); 24951 return (-1); 24952 } 24953 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 24954 return (-1); 24955 } 24956 24957 /* 24958 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 24959 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 24960 * thru /etc/system. 24961 */ 24962 #define CONN_MAXDRAINCNT 64 24963 24964 static void 24965 conn_drain_init(void) 24966 { 24967 int i; 24968 24969 conn_drain_list_cnt = conn_drain_nthreads; 24970 24971 if ((conn_drain_list_cnt == 0) || 24972 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 24973 /* 24974 * Default value of the number of drainers is the 24975 * number of cpus, subject to maximum of 8 drainers. 24976 */ 24977 if (boot_max_ncpus != -1) 24978 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 24979 else 24980 conn_drain_list_cnt = MIN(max_ncpus, 8); 24981 } 24982 24983 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 24984 KM_SLEEP); 24985 24986 for (i = 0; i < conn_drain_list_cnt; i++) { 24987 mutex_init(&conn_drain_list[i].idl_lock, NULL, 24988 MUTEX_DEFAULT, NULL); 24989 } 24990 } 24991 24992 static void 24993 conn_drain_fini(void) 24994 { 24995 int i; 24996 24997 for (i = 0; i < conn_drain_list_cnt; i++) 24998 mutex_destroy(&conn_drain_list[i].idl_lock); 24999 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 25000 conn_drain_list = NULL; 25001 } 25002 25003 /* 25004 * Note: For an overview of how flowcontrol is handled in IP please see the 25005 * IP Flowcontrol notes at the top of this file. 25006 * 25007 * Flow control has blocked us from proceeding. Insert the given conn in one 25008 * of the conn drain lists. These conn wq's will be qenabled later on when 25009 * STREAMS flow control does a backenable. conn_walk_drain will enable 25010 * the first conn in each of these drain lists. Each of these qenabled conns 25011 * in turn enables the next in the list, after it runs, or when it closes, 25012 * thus sustaining the drain process. 25013 * 25014 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 25015 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 25016 * running at any time, on a given conn, since there can be only 1 service proc 25017 * running on a queue at any time. 25018 */ 25019 void 25020 conn_drain_insert(conn_t *connp) 25021 { 25022 idl_t *idl; 25023 uint_t index; 25024 25025 mutex_enter(&connp->conn_lock); 25026 if (connp->conn_state_flags & CONN_CLOSING) { 25027 /* 25028 * The conn is closing as a result of which CONN_CLOSING 25029 * is set. Return. 25030 */ 25031 mutex_exit(&connp->conn_lock); 25032 return; 25033 } else if (connp->conn_idl == NULL) { 25034 /* 25035 * Assign the next drain list round robin. We dont' use 25036 * a lock, and thus it may not be strictly round robin. 25037 * Atomicity of load/stores is enough to make sure that 25038 * conn_drain_list_index is always within bounds. 25039 */ 25040 index = conn_drain_list_index; 25041 ASSERT(index < conn_drain_list_cnt); 25042 connp->conn_idl = &conn_drain_list[index]; 25043 index++; 25044 if (index == conn_drain_list_cnt) 25045 index = 0; 25046 conn_drain_list_index = index; 25047 } 25048 mutex_exit(&connp->conn_lock); 25049 25050 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 25051 if ((connp->conn_drain_prev != NULL) || 25052 (connp->conn_state_flags & CONN_CLOSING)) { 25053 /* 25054 * The conn is already in the drain list, OR 25055 * the conn is closing. We need to check again for 25056 * the closing case again since close can happen 25057 * after we drop the conn_lock, and before we 25058 * acquire the CONN_DRAIN_LIST_LOCK. 25059 */ 25060 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25061 return; 25062 } else { 25063 idl = connp->conn_idl; 25064 } 25065 25066 /* 25067 * The conn is not in the drain list. Insert it at the 25068 * tail of the drain list. The drain list is circular 25069 * and doubly linked. idl_conn points to the 1st element 25070 * in the list. 25071 */ 25072 if (idl->idl_conn == NULL) { 25073 idl->idl_conn = connp; 25074 connp->conn_drain_next = connp; 25075 connp->conn_drain_prev = connp; 25076 } else { 25077 conn_t *head = idl->idl_conn; 25078 25079 connp->conn_drain_next = head; 25080 connp->conn_drain_prev = head->conn_drain_prev; 25081 head->conn_drain_prev->conn_drain_next = connp; 25082 head->conn_drain_prev = connp; 25083 } 25084 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25085 } 25086 25087 /* 25088 * This conn is closing, and we are called from ip_close. OR 25089 * This conn has been serviced by ip_wsrv, and we need to do the tail 25090 * processing. 25091 * If this conn is part of the drain list, we may need to sustain the drain 25092 * process by qenabling the next conn in the drain list. We may also need to 25093 * remove this conn from the list, if it is done. 25094 */ 25095 static void 25096 conn_drain_tail(conn_t *connp, boolean_t closing) 25097 { 25098 idl_t *idl; 25099 25100 /* 25101 * connp->conn_idl is stable at this point, and no lock is needed 25102 * to check it. If we are called from ip_close, close has already 25103 * set CONN_CLOSING, thus freezing the value of conn_idl, and 25104 * called us only because conn_idl is non-null. If we are called thru 25105 * service, conn_idl could be null, but it cannot change because 25106 * service is single-threaded per queue, and there cannot be another 25107 * instance of service trying to call conn_drain_insert on this conn 25108 * now. 25109 */ 25110 ASSERT(!closing || (connp->conn_idl != NULL)); 25111 25112 /* 25113 * If connp->conn_idl is null, the conn has not been inserted into any 25114 * drain list even once since creation of the conn. Just return. 25115 */ 25116 if (connp->conn_idl == NULL) 25117 return; 25118 25119 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 25120 25121 if (connp->conn_drain_prev == NULL) { 25122 /* This conn is currently not in the drain list. */ 25123 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25124 return; 25125 } 25126 idl = connp->conn_idl; 25127 if (idl->idl_conn_draining == connp) { 25128 /* 25129 * This conn is the current drainer. If this is the last conn 25130 * in the drain list, we need to do more checks, in the 'if' 25131 * below. Otherwwise we need to just qenable the next conn, 25132 * to sustain the draining, and is handled in the 'else' 25133 * below. 25134 */ 25135 if (connp->conn_drain_next == idl->idl_conn) { 25136 /* 25137 * This conn is the last in this list. This round 25138 * of draining is complete. If idl_repeat is set, 25139 * it means another flow enabling has happened from 25140 * the driver/streams and we need to another round 25141 * of draining. 25142 * If there are more than 2 conns in the drain list, 25143 * do a left rotate by 1, so that all conns except the 25144 * conn at the head move towards the head by 1, and the 25145 * the conn at the head goes to the tail. This attempts 25146 * a more even share for all queues that are being 25147 * drained. 25148 */ 25149 if ((connp->conn_drain_next != connp) && 25150 (idl->idl_conn->conn_drain_next != connp)) { 25151 idl->idl_conn = idl->idl_conn->conn_drain_next; 25152 } 25153 if (idl->idl_repeat) { 25154 qenable(idl->idl_conn->conn_wq); 25155 idl->idl_conn_draining = idl->idl_conn; 25156 idl->idl_repeat = 0; 25157 } else { 25158 idl->idl_conn_draining = NULL; 25159 } 25160 } else { 25161 /* 25162 * If the next queue that we are now qenable'ing, 25163 * is closing, it will remove itself from this list 25164 * and qenable the subsequent queue in ip_close(). 25165 * Serialization is acheived thru idl_lock. 25166 */ 25167 qenable(connp->conn_drain_next->conn_wq); 25168 idl->idl_conn_draining = connp->conn_drain_next; 25169 } 25170 } 25171 if (!connp->conn_did_putbq || closing) { 25172 /* 25173 * Remove ourself from the drain list, if we did not do 25174 * a putbq, or if the conn is closing. 25175 * Note: It is possible that q->q_first is non-null. It means 25176 * that these messages landed after we did a enableok() in 25177 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 25178 * service them. 25179 */ 25180 if (connp->conn_drain_next == connp) { 25181 /* Singleton in the list */ 25182 ASSERT(connp->conn_drain_prev == connp); 25183 idl->idl_conn = NULL; 25184 idl->idl_conn_draining = NULL; 25185 } else { 25186 connp->conn_drain_prev->conn_drain_next = 25187 connp->conn_drain_next; 25188 connp->conn_drain_next->conn_drain_prev = 25189 connp->conn_drain_prev; 25190 if (idl->idl_conn == connp) 25191 idl->idl_conn = connp->conn_drain_next; 25192 ASSERT(idl->idl_conn_draining != connp); 25193 25194 } 25195 connp->conn_drain_next = NULL; 25196 connp->conn_drain_prev = NULL; 25197 } 25198 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25199 } 25200 25201 /* 25202 * Write service routine. Shared perimeter entry point. 25203 * ip_wsrv can be called in any of the following ways. 25204 * 1. The device queue's messages has fallen below the low water mark 25205 * and STREAMS has backenabled the ill_wq. We walk thru all the 25206 * the drain lists and backenable the first conn in each list. 25207 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 25208 * qenabled non-tcp upper layers. We start dequeing messages and call 25209 * ip_wput for each message. 25210 */ 25211 25212 void 25213 ip_wsrv(queue_t *q) 25214 { 25215 conn_t *connp; 25216 ill_t *ill; 25217 mblk_t *mp; 25218 25219 if (q->q_next) { 25220 ill = (ill_t *)q->q_ptr; 25221 if (ill->ill_state_flags == 0) { 25222 /* 25223 * The device flow control has opened up. 25224 * Walk through conn drain lists and qenable the 25225 * first conn in each list. This makes sense only 25226 * if the stream is fully plumbed and setup. 25227 * Hence the if check above. 25228 */ 25229 ip1dbg(("ip_wsrv: walking\n")); 25230 conn_walk_drain(); 25231 } 25232 return; 25233 } 25234 25235 connp = Q_TO_CONN(q); 25236 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 25237 25238 /* 25239 * 1. Set conn_draining flag to signal that service is active. 25240 * 25241 * 2. ip_output determines whether it has been called from service, 25242 * based on the last parameter. If it is IP_WSRV it concludes it 25243 * has been called from service. 25244 * 25245 * 3. Message ordering is preserved by the following logic. 25246 * i. A directly called ip_output (i.e. not thru service) will queue 25247 * the message at the tail, if conn_draining is set (i.e. service 25248 * is running) or if q->q_first is non-null. 25249 * 25250 * ii. If ip_output is called from service, and if ip_output cannot 25251 * putnext due to flow control, it does a putbq. 25252 * 25253 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 25254 * (causing an infinite loop). 25255 */ 25256 ASSERT(!connp->conn_did_putbq); 25257 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 25258 connp->conn_draining = 1; 25259 noenable(q); 25260 while ((mp = getq(q)) != NULL) { 25261 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 25262 if (connp->conn_did_putbq) { 25263 /* ip_wput did a putbq */ 25264 break; 25265 } 25266 } 25267 /* 25268 * At this point, a thread coming down from top, calling 25269 * ip_wput, may end up queueing the message. We have not yet 25270 * enabled the queue, so ip_wsrv won't be called again. 25271 * To avoid this race, check q->q_first again (in the loop) 25272 * If the other thread queued the message before we call 25273 * enableok(), we will catch it in the q->q_first check. 25274 * If the other thread queues the message after we call 25275 * enableok(), ip_wsrv will be called again by STREAMS. 25276 */ 25277 connp->conn_draining = 0; 25278 enableok(q); 25279 } 25280 25281 /* Enable the next conn for draining */ 25282 conn_drain_tail(connp, B_FALSE); 25283 25284 connp->conn_did_putbq = 0; 25285 } 25286 25287 /* 25288 * Walk the list of all conn's calling the function provided with the 25289 * specified argument for each. Note that this only walks conn's that 25290 * have been bound. 25291 * Applies to both IPv4 and IPv6. 25292 */ 25293 static void 25294 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 25295 { 25296 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 25297 func, arg, zoneid); 25298 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 25299 func, arg, zoneid); 25300 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 25301 func, arg, zoneid); 25302 conn_walk_fanout_table(ipcl_proto_fanout, 25303 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 25304 conn_walk_fanout_table(ipcl_proto_fanout_v6, 25305 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 25306 } 25307 25308 /* 25309 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 25310 * of conns that need to be drained, check if drain is already in progress. 25311 * If so set the idl_repeat bit, indicating that the last conn in the list 25312 * needs to reinitiate the drain once again, for the list. If drain is not 25313 * in progress for the list, initiate the draining, by qenabling the 1st 25314 * conn in the list. The drain is self-sustaining, each qenabled conn will 25315 * in turn qenable the next conn, when it is done/blocked/closing. 25316 */ 25317 static void 25318 conn_walk_drain(void) 25319 { 25320 int i; 25321 idl_t *idl; 25322 25323 IP_STAT(ip_conn_walk_drain); 25324 25325 for (i = 0; i < conn_drain_list_cnt; i++) { 25326 idl = &conn_drain_list[i]; 25327 mutex_enter(&idl->idl_lock); 25328 if (idl->idl_conn == NULL) { 25329 mutex_exit(&idl->idl_lock); 25330 continue; 25331 } 25332 /* 25333 * If this list is not being drained currently by 25334 * an ip_wsrv thread, start the process. 25335 */ 25336 if (idl->idl_conn_draining == NULL) { 25337 ASSERT(idl->idl_repeat == 0); 25338 qenable(idl->idl_conn->conn_wq); 25339 idl->idl_conn_draining = idl->idl_conn; 25340 } else { 25341 idl->idl_repeat = 1; 25342 } 25343 mutex_exit(&idl->idl_lock); 25344 } 25345 } 25346 25347 /* 25348 * Walk an conn hash table of `count' buckets, calling func for each entry. 25349 */ 25350 static void 25351 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 25352 zoneid_t zoneid) 25353 { 25354 conn_t *connp; 25355 25356 while (count-- > 0) { 25357 mutex_enter(&connfp->connf_lock); 25358 for (connp = connfp->connf_head; connp != NULL; 25359 connp = connp->conn_next) { 25360 if (zoneid == GLOBAL_ZONEID || 25361 zoneid == connp->conn_zoneid) { 25362 CONN_INC_REF(connp); 25363 mutex_exit(&connfp->connf_lock); 25364 (*func)(connp, arg); 25365 mutex_enter(&connfp->connf_lock); 25366 CONN_DEC_REF(connp); 25367 } 25368 } 25369 mutex_exit(&connfp->connf_lock); 25370 connfp++; 25371 } 25372 } 25373 25374 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 25375 static void 25376 conn_report1(conn_t *connp, void *mp) 25377 { 25378 char buf1[INET6_ADDRSTRLEN]; 25379 char buf2[INET6_ADDRSTRLEN]; 25380 uint_t print_len, buf_len; 25381 25382 ASSERT(connp != NULL); 25383 25384 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 25385 if (buf_len <= 0) 25386 return; 25387 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 25388 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 25389 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 25390 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 25391 "%5d %s/%05d %s/%05d\n", 25392 (void *)connp, (void *)CONNP_TO_RQ(connp), 25393 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 25394 buf1, connp->conn_lport, 25395 buf2, connp->conn_fport); 25396 if (print_len < buf_len) { 25397 ((mblk_t *)mp)->b_wptr += print_len; 25398 } else { 25399 ((mblk_t *)mp)->b_wptr += buf_len; 25400 } 25401 } 25402 25403 /* 25404 * Named Dispatch routine to produce a formatted report on all conns 25405 * that are listed in one of the fanout tables. 25406 * This report is accessed by using the ndd utility to "get" ND variable 25407 * "ip_conn_status". 25408 */ 25409 /* ARGSUSED */ 25410 static int 25411 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 25412 { 25413 (void) mi_mpprintf(mp, 25414 "CONN " MI_COL_HDRPAD_STR 25415 "rfq " MI_COL_HDRPAD_STR 25416 "stq " MI_COL_HDRPAD_STR 25417 " zone local remote"); 25418 25419 /* 25420 * Because of the ndd constraint, at most we can have 64K buffer 25421 * to put in all conn info. So to be more efficient, just 25422 * allocate a 64K buffer here, assuming we need that large buffer. 25423 * This should be OK as only privileged processes can do ndd /dev/ip. 25424 */ 25425 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 25426 /* The following may work even if we cannot get a large buf. */ 25427 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 25428 return (0); 25429 } 25430 25431 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 25432 return (0); 25433 } 25434 25435 /* 25436 * Determine if the ill and multicast aspects of that packets 25437 * "matches" the conn. 25438 */ 25439 boolean_t 25440 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 25441 zoneid_t zoneid) 25442 { 25443 ill_t *in_ill; 25444 boolean_t found; 25445 ipif_t *ipif; 25446 ire_t *ire; 25447 ipaddr_t dst, src; 25448 25449 dst = ipha->ipha_dst; 25450 src = ipha->ipha_src; 25451 25452 /* 25453 * conn_incoming_ill is set by IP_BOUND_IF which limits 25454 * unicast, broadcast and multicast reception to 25455 * conn_incoming_ill. conn_wantpacket itself is called 25456 * only for BROADCAST and multicast. 25457 * 25458 * 1) ip_rput supresses duplicate broadcasts if the ill 25459 * is part of a group. Hence, we should be receiving 25460 * just one copy of broadcast for the whole group. 25461 * Thus, if it is part of the group the packet could 25462 * come on any ill of the group and hence we need a 25463 * match on the group. Otherwise, match on ill should 25464 * be sufficient. 25465 * 25466 * 2) ip_rput does not suppress duplicate multicast packets. 25467 * If there are two interfaces in a ill group and we have 25468 * 2 applications (conns) joined a multicast group G on 25469 * both the interfaces, ilm_lookup_ill filter in ip_rput 25470 * will give us two packets because we join G on both the 25471 * interfaces rather than nominating just one interface 25472 * for receiving multicast like broadcast above. So, 25473 * we have to call ilg_lookup_ill to filter out duplicate 25474 * copies, if ill is part of a group. 25475 */ 25476 in_ill = connp->conn_incoming_ill; 25477 if (in_ill != NULL) { 25478 if (in_ill->ill_group == NULL) { 25479 if (in_ill != ill) 25480 return (B_FALSE); 25481 } else if (in_ill->ill_group != ill->ill_group) { 25482 return (B_FALSE); 25483 } 25484 } 25485 25486 if (!CLASSD(dst)) { 25487 if (connp->conn_zoneid == zoneid) 25488 return (B_TRUE); 25489 /* 25490 * The conn is in a different zone; we need to check that this 25491 * broadcast address is configured in the application's zone and 25492 * on one ill in the group. 25493 */ 25494 ipif = ipif_get_next_ipif(NULL, ill); 25495 if (ipif == NULL) 25496 return (B_FALSE); 25497 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 25498 connp->conn_zoneid, (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 25499 ipif_refrele(ipif); 25500 if (ire != NULL) { 25501 ire_refrele(ire); 25502 return (B_TRUE); 25503 } else { 25504 return (B_FALSE); 25505 } 25506 } 25507 25508 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 25509 connp->conn_zoneid == zoneid) { 25510 /* 25511 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 25512 * disabled, therefore we don't dispatch the multicast packet to 25513 * the sending zone. 25514 */ 25515 return (B_FALSE); 25516 } 25517 25518 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 25519 connp->conn_zoneid != zoneid) { 25520 /* 25521 * Multicast packet on the loopback interface: we only match 25522 * conns who joined the group in the specified zone. 25523 */ 25524 return (B_FALSE); 25525 } 25526 25527 if (connp->conn_multi_router) { 25528 /* multicast packet and multicast router socket: send up */ 25529 return (B_TRUE); 25530 } 25531 25532 mutex_enter(&connp->conn_lock); 25533 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 25534 mutex_exit(&connp->conn_lock); 25535 return (found); 25536 } 25537 25538 /* 25539 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 25540 */ 25541 /* ARGSUSED */ 25542 static void 25543 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 25544 { 25545 ill_t *ill = (ill_t *)q->q_ptr; 25546 mblk_t *mp1, *mp2; 25547 ipif_t *ipif; 25548 int err = 0; 25549 conn_t *connp = NULL; 25550 ipsq_t *ipsq; 25551 arc_t *arc; 25552 25553 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 25554 25555 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 25556 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 25557 25558 ASSERT(IAM_WRITER_ILL(ill)); 25559 mp2 = mp->b_cont; 25560 mp->b_cont = NULL; 25561 25562 /* 25563 * We have now received the arp bringup completion message 25564 * from ARP. Mark the arp bringup as done. Also if the arp 25565 * stream has already started closing, send up the AR_ARP_CLOSING 25566 * ack now since ARP is waiting in close for this ack. 25567 */ 25568 mutex_enter(&ill->ill_lock); 25569 ill->ill_arp_bringup_pending = 0; 25570 if (ill->ill_arp_closing) { 25571 mutex_exit(&ill->ill_lock); 25572 /* Let's reuse the mp for sending the ack */ 25573 arc = (arc_t *)mp->b_rptr; 25574 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 25575 arc->arc_cmd = AR_ARP_CLOSING; 25576 qreply(q, mp); 25577 } else { 25578 mutex_exit(&ill->ill_lock); 25579 freeb(mp); 25580 } 25581 25582 /* We should have an IOCTL waiting on this. */ 25583 ipsq = ill->ill_phyint->phyint_ipsq; 25584 ipif = ipsq->ipsq_pending_ipif; 25585 mp1 = ipsq_pending_mp_get(ipsq, &connp); 25586 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 25587 if (mp1 == NULL) { 25588 /* bringup was aborted by the user */ 25589 freemsg(mp2); 25590 return; 25591 } 25592 ASSERT(connp != NULL); 25593 q = CONNP_TO_WQ(connp); 25594 /* 25595 * If the DL_BIND_REQ fails, it is noted 25596 * in arc_name_offset. 25597 */ 25598 err = *((int *)mp2->b_rptr); 25599 if (err == 0) { 25600 if (ipif->ipif_isv6) { 25601 if ((err = ipif_up_done_v6(ipif)) != 0) 25602 ip0dbg(("ip_arp_done: init failed\n")); 25603 } else { 25604 if ((err = ipif_up_done(ipif)) != 0) 25605 ip0dbg(("ip_arp_done: init failed\n")); 25606 } 25607 } else { 25608 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 25609 } 25610 25611 freemsg(mp2); 25612 25613 if ((err == 0) && (ill->ill_up_ipifs)) { 25614 err = ill_up_ipifs(ill, q, mp1); 25615 if (err == EINPROGRESS) 25616 return; 25617 } 25618 25619 if (ill->ill_up_ipifs) { 25620 ill_group_cleanup(ill); 25621 } 25622 25623 /* 25624 * The ioctl must complete now without EINPROGRESS 25625 * since ipsq_pending_mp_get has removed the ioctl mblk 25626 * from ipsq_pending_mp. Otherwise the ioctl will be 25627 * stuck for ever in the ipsq. 25628 */ 25629 ASSERT(err != EINPROGRESS); 25630 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 25631 } 25632 25633 /* Allocate the private structure */ 25634 static int 25635 ip_priv_alloc(void **bufp) 25636 { 25637 void *buf; 25638 25639 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 25640 return (ENOMEM); 25641 25642 *bufp = buf; 25643 return (0); 25644 } 25645 25646 /* Function to delete the private structure */ 25647 void 25648 ip_priv_free(void *buf) 25649 { 25650 ASSERT(buf != NULL); 25651 kmem_free(buf, sizeof (ip_priv_t)); 25652 } 25653 25654 /* 25655 * The entry point for IPPF processing. 25656 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 25657 * routine just returns. 25658 * 25659 * When called, ip_process generates an ipp_packet_t structure 25660 * which holds the state information for this packet and invokes the 25661 * the classifier (via ipp_packet_process). The classification, depending on 25662 * configured filters, results in a list of actions for this packet. Invoking 25663 * an action may cause the packet to be dropped, in which case the resulting 25664 * mblk (*mpp) is NULL. proc indicates the callout position for 25665 * this packet and ill_index is the interface this packet on or will leave 25666 * on (inbound and outbound resp.). 25667 */ 25668 void 25669 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 25670 { 25671 mblk_t *mp; 25672 ip_priv_t *priv; 25673 ipp_action_id_t aid; 25674 int rc = 0; 25675 ipp_packet_t *pp; 25676 #define IP_CLASS "ip" 25677 25678 /* If the classifier is not loaded, return */ 25679 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 25680 return; 25681 } 25682 25683 mp = *mpp; 25684 ASSERT(mp != NULL); 25685 25686 /* Allocate the packet structure */ 25687 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 25688 if (rc != 0) { 25689 *mpp = NULL; 25690 freemsg(mp); 25691 return; 25692 } 25693 25694 /* Allocate the private structure */ 25695 rc = ip_priv_alloc((void **)&priv); 25696 if (rc != 0) { 25697 *mpp = NULL; 25698 freemsg(mp); 25699 ipp_packet_free(pp); 25700 return; 25701 } 25702 priv->proc = proc; 25703 priv->ill_index = ill_index; 25704 ipp_packet_set_private(pp, priv, ip_priv_free); 25705 ipp_packet_set_data(pp, mp); 25706 25707 /* Invoke the classifier */ 25708 rc = ipp_packet_process(&pp); 25709 if (pp != NULL) { 25710 mp = ipp_packet_get_data(pp); 25711 ipp_packet_free(pp); 25712 if (rc != 0) { 25713 freemsg(mp); 25714 *mpp = NULL; 25715 } 25716 } else { 25717 *mpp = NULL; 25718 } 25719 #undef IP_CLASS 25720 } 25721 25722 /* 25723 * Propagate a multicast group membership operation (add/drop) on 25724 * all the interfaces crossed by the related multirt routes. 25725 * The call is considered successful if the operation succeeds 25726 * on at least one interface. 25727 */ 25728 static int 25729 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 25730 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 25731 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 25732 mblk_t *first_mp) 25733 { 25734 ire_t *ire_gw; 25735 irb_t *irb; 25736 int error = 0; 25737 opt_restart_t *or; 25738 25739 irb = ire->ire_bucket; 25740 ASSERT(irb != NULL); 25741 25742 ASSERT(DB_TYPE(first_mp) == M_CTL); 25743 25744 or = (opt_restart_t *)first_mp->b_rptr; 25745 IRB_REFHOLD(irb); 25746 for (; ire != NULL; ire = ire->ire_next) { 25747 if ((ire->ire_flags & RTF_MULTIRT) == 0) 25748 continue; 25749 if (ire->ire_addr != group) 25750 continue; 25751 25752 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 25753 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 25754 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 25755 /* No resolver exists for the gateway; skip this ire. */ 25756 if (ire_gw == NULL) 25757 continue; 25758 25759 /* 25760 * This function can return EINPROGRESS. If so the operation 25761 * will be restarted from ip_restart_optmgmt which will 25762 * call ip_opt_set and option processing will restart for 25763 * this option. So we may end up calling 'fn' more than once. 25764 * This requires that 'fn' is idempotent except for the 25765 * return value. The operation is considered a success if 25766 * it succeeds at least once on any one interface. 25767 */ 25768 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 25769 NULL, fmode, src, first_mp); 25770 if (error == 0) 25771 or->or_private = CGTP_MCAST_SUCCESS; 25772 25773 if (ip_debug > 0) { 25774 ulong_t off; 25775 char *ksym; 25776 ksym = kobj_getsymname((uintptr_t)fn, &off); 25777 ip2dbg(("ip_multirt_apply_membership: " 25778 "called %s, multirt group 0x%08x via itf 0x%08x, " 25779 "error %d [success %u]\n", 25780 ksym ? ksym : "?", 25781 ntohl(group), ntohl(ire_gw->ire_src_addr), 25782 error, or->or_private)); 25783 } 25784 25785 ire_refrele(ire_gw); 25786 if (error == EINPROGRESS) { 25787 IRB_REFRELE(irb); 25788 return (error); 25789 } 25790 } 25791 IRB_REFRELE(irb); 25792 /* 25793 * Consider the call as successful if we succeeded on at least 25794 * one interface. Otherwise, return the last encountered error. 25795 */ 25796 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 25797 } 25798 25799 25800 /* 25801 * Issue a warning regarding a route crossing an interface with an 25802 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 25803 * amount of time is logged. 25804 */ 25805 static void 25806 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 25807 { 25808 hrtime_t current = gethrtime(); 25809 char buf[16]; 25810 25811 /* Convert interval in ms to hrtime in ns */ 25812 if (multirt_bad_mtu_last_time + 25813 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 25814 current) { 25815 cmn_err(CE_WARN, "ip: ignoring multiroute " 25816 "to %s, incorrect MTU %u (expected %u)\n", 25817 ip_dot_addr(ire->ire_addr, buf), 25818 ire->ire_max_frag, max_frag); 25819 25820 multirt_bad_mtu_last_time = current; 25821 } 25822 } 25823 25824 25825 /* 25826 * Get the CGTP (multirouting) filtering status. 25827 * If 0, the CGTP hooks are transparent. 25828 */ 25829 /* ARGSUSED */ 25830 static int 25831 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 25832 { 25833 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25834 25835 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 25836 return (0); 25837 } 25838 25839 25840 /* 25841 * Set the CGTP (multirouting) filtering status. 25842 * If the status is changed from active to transparent 25843 * or from transparent to active, forward the new status 25844 * to the filtering module (if loaded). 25845 */ 25846 /* ARGSUSED */ 25847 static int 25848 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 25849 cred_t *ioc_cr) 25850 { 25851 long new_value; 25852 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25853 25854 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 25855 new_value < 0 || new_value > 1) { 25856 return (EINVAL); 25857 } 25858 25859 /* 25860 * Do not enable CGTP filtering - thus preventing the hooks 25861 * from being invoked - if the version number of the 25862 * filtering module hooks does not match. 25863 */ 25864 if ((ip_cgtp_filter_ops != NULL) && 25865 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 25866 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 25867 "(module hooks version %d, expecting %d)\n", 25868 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 25869 return (ENOTSUP); 25870 } 25871 25872 if ((!*ip_cgtp_filter_value) && new_value) { 25873 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 25874 ip_cgtp_filter_ops == NULL ? 25875 " (module not loaded)" : ""); 25876 } 25877 if (*ip_cgtp_filter_value && (!new_value)) { 25878 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 25879 ip_cgtp_filter_ops == NULL ? 25880 " (module not loaded)" : ""); 25881 } 25882 25883 if (ip_cgtp_filter_ops != NULL) { 25884 int res; 25885 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 25886 return (res); 25887 } 25888 } 25889 25890 *ip_cgtp_filter_value = (boolean_t)new_value; 25891 25892 return (0); 25893 } 25894 25895 25896 /* 25897 * Return the expected CGTP hooks version number. 25898 */ 25899 int 25900 ip_cgtp_filter_supported(void) 25901 { 25902 return (ip_cgtp_filter_rev); 25903 } 25904 25905 25906 /* 25907 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 25908 * or by invoking this function. In the first case, the version number 25909 * of the registered structure is checked at hooks activation time 25910 * in ip_cgtp_filter_set(). 25911 */ 25912 int 25913 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 25914 { 25915 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 25916 return (ENOTSUP); 25917 25918 ip_cgtp_filter_ops = ops; 25919 return (0); 25920 } 25921 25922 static squeue_func_t 25923 ip_squeue_switch(int val) 25924 { 25925 squeue_func_t rval = squeue_fill; 25926 25927 switch (val) { 25928 case IP_SQUEUE_ENTER_NODRAIN: 25929 rval = squeue_enter_nodrain; 25930 break; 25931 case IP_SQUEUE_ENTER: 25932 rval = squeue_enter; 25933 break; 25934 default: 25935 break; 25936 } 25937 return (rval); 25938 } 25939 25940 /* ARGSUSED */ 25941 static int 25942 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 25943 caddr_t addr, cred_t *cr) 25944 { 25945 int *v = (int *)addr; 25946 long new_value; 25947 25948 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25949 return (EINVAL); 25950 25951 ip_input_proc = ip_squeue_switch(new_value); 25952 *v = new_value; 25953 return (0); 25954 } 25955 25956 /* ARGSUSED */ 25957 static int 25958 ip_fanout_set(queue_t *q, mblk_t *mp, char *value, 25959 caddr_t addr, cred_t *cr) 25960 { 25961 int *v = (int *)addr; 25962 long new_value; 25963 25964 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25965 return (EINVAL); 25966 25967 *v = new_value; 25968 return (0); 25969 } 25970 25971 25972 static void 25973 ip_kstat_init(void) 25974 { 25975 ip_named_kstat_t template = { 25976 { "forwarding", KSTAT_DATA_UINT32, 0 }, 25977 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 25978 { "inReceives", KSTAT_DATA_UINT32, 0 }, 25979 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 25980 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 25981 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 25982 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 25983 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 25984 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 25985 { "outRequests", KSTAT_DATA_UINT32, 0 }, 25986 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 25987 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 25988 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 25989 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 25990 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 25991 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 25992 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 25993 { "fragFails", KSTAT_DATA_UINT32, 0 }, 25994 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 25995 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 25996 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 25997 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 25998 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 25999 { "inErrs", KSTAT_DATA_UINT32, 0 }, 26000 { "noPorts", KSTAT_DATA_UINT32, 0 }, 26001 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 26002 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 26003 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 26004 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 26005 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 26006 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 26007 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 26008 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 26009 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 26010 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 26011 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 26012 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 26013 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 26014 }; 26015 26016 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 26017 NUM_OF_FIELDS(ip_named_kstat_t), 26018 0); 26019 if (!ip_mibkp) 26020 return; 26021 26022 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 26023 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 26024 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 26025 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 26026 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 26027 26028 template.netToMediaEntrySize.value.i32 = 26029 sizeof (mib2_ipNetToMediaEntry_t); 26030 26031 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 26032 26033 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 26034 26035 ip_mibkp->ks_update = ip_kstat_update; 26036 26037 kstat_install(ip_mibkp); 26038 } 26039 26040 static void 26041 ip_kstat_fini(void) 26042 { 26043 26044 if (ip_mibkp != NULL) { 26045 kstat_delete(ip_mibkp); 26046 ip_mibkp = NULL; 26047 } 26048 } 26049 26050 static int 26051 ip_kstat_update(kstat_t *kp, int rw) 26052 { 26053 ip_named_kstat_t *ipkp; 26054 26055 if (!kp || !kp->ks_data) 26056 return (EIO); 26057 26058 if (rw == KSTAT_WRITE) 26059 return (EACCES); 26060 26061 ipkp = (ip_named_kstat_t *)kp->ks_data; 26062 26063 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 26064 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 26065 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 26066 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 26067 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 26068 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 26069 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 26070 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 26071 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 26072 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 26073 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 26074 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 26075 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 26076 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 26077 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 26078 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 26079 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 26080 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 26081 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 26082 26083 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 26084 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 26085 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 26086 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 26087 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 26088 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 26089 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 26090 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 26091 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 26092 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 26093 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 26094 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 26095 26096 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 26097 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 26098 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 26099 26100 return (0); 26101 } 26102 26103 static void 26104 icmp_kstat_init(void) 26105 { 26106 icmp_named_kstat_t template = { 26107 { "inMsgs", KSTAT_DATA_UINT32 }, 26108 { "inErrors", KSTAT_DATA_UINT32 }, 26109 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 26110 { "inTimeExcds", KSTAT_DATA_UINT32 }, 26111 { "inParmProbs", KSTAT_DATA_UINT32 }, 26112 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 26113 { "inRedirects", KSTAT_DATA_UINT32 }, 26114 { "inEchos", KSTAT_DATA_UINT32 }, 26115 { "inEchoReps", KSTAT_DATA_UINT32 }, 26116 { "inTimestamps", KSTAT_DATA_UINT32 }, 26117 { "inTimestampReps", KSTAT_DATA_UINT32 }, 26118 { "inAddrMasks", KSTAT_DATA_UINT32 }, 26119 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 26120 { "outMsgs", KSTAT_DATA_UINT32 }, 26121 { "outErrors", KSTAT_DATA_UINT32 }, 26122 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 26123 { "outTimeExcds", KSTAT_DATA_UINT32 }, 26124 { "outParmProbs", KSTAT_DATA_UINT32 }, 26125 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 26126 { "outRedirects", KSTAT_DATA_UINT32 }, 26127 { "outEchos", KSTAT_DATA_UINT32 }, 26128 { "outEchoReps", KSTAT_DATA_UINT32 }, 26129 { "outTimestamps", KSTAT_DATA_UINT32 }, 26130 { "outTimestampReps", KSTAT_DATA_UINT32 }, 26131 { "outAddrMasks", KSTAT_DATA_UINT32 }, 26132 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 26133 { "inChksumErrs", KSTAT_DATA_UINT32 }, 26134 { "inUnknowns", KSTAT_DATA_UINT32 }, 26135 { "inFragNeeded", KSTAT_DATA_UINT32 }, 26136 { "outFragNeeded", KSTAT_DATA_UINT32 }, 26137 { "outDrops", KSTAT_DATA_UINT32 }, 26138 { "inOverFlows", KSTAT_DATA_UINT32 }, 26139 { "inBadRedirects", KSTAT_DATA_UINT32 }, 26140 }; 26141 26142 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 26143 NUM_OF_FIELDS(icmp_named_kstat_t), 26144 0); 26145 if (icmp_mibkp == NULL) 26146 return; 26147 26148 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 26149 26150 icmp_mibkp->ks_update = icmp_kstat_update; 26151 26152 kstat_install(icmp_mibkp); 26153 } 26154 26155 static void 26156 icmp_kstat_fini(void) 26157 { 26158 26159 if (icmp_mibkp != NULL) { 26160 kstat_delete(icmp_mibkp); 26161 icmp_mibkp = NULL; 26162 } 26163 } 26164 26165 static int 26166 icmp_kstat_update(kstat_t *kp, int rw) 26167 { 26168 icmp_named_kstat_t *icmpkp; 26169 26170 if ((kp == NULL) || (kp->ks_data == NULL)) 26171 return (EIO); 26172 26173 if (rw == KSTAT_WRITE) 26174 return (EACCES); 26175 26176 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 26177 26178 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 26179 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 26180 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 26181 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 26182 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 26183 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 26184 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 26185 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 26186 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 26187 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 26188 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 26189 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 26190 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 26191 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 26192 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 26193 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 26194 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 26195 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 26196 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 26197 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 26198 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 26199 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 26200 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 26201 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 26202 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 26203 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 26204 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 26205 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 26206 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 26207 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 26208 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 26209 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 26210 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 26211 26212 return (0); 26213 } 26214 26215 /* 26216 * This is the fanout function for raw socket opened for SCTP. Note 26217 * that it is called after SCTP checks that there is no socket which 26218 * wants a packet. Then before SCTP handles this out of the blue packet, 26219 * this function is called to see if there is any raw socket for SCTP. 26220 * If there is and it is bound to the correct address, the packet will 26221 * be sent to that socket. Note that only one raw socket can be bound to 26222 * a port. This is assured in ipcl_sctp_hash_insert(); 26223 */ 26224 void 26225 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 26226 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 26227 uint_t ipif_seqid, zoneid_t zoneid) 26228 { 26229 conn_t *connp; 26230 queue_t *rq; 26231 mblk_t *first_mp; 26232 boolean_t secure; 26233 ip6_t *ip6h; 26234 26235 first_mp = mp; 26236 if (mctl_present) { 26237 mp = first_mp->b_cont; 26238 secure = ipsec_in_is_secure(first_mp); 26239 ASSERT(mp != NULL); 26240 } else { 26241 secure = B_FALSE; 26242 } 26243 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 26244 26245 connp = ipcl_classify_raw(IPPROTO_SCTP, zoneid, ports, ipha); 26246 if (connp == NULL) { 26247 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 26248 mctl_present); 26249 return; 26250 } 26251 rq = connp->conn_rq; 26252 if (!canputnext(rq)) { 26253 CONN_DEC_REF(connp); 26254 BUMP_MIB(&ip_mib, rawipInOverflows); 26255 freemsg(first_mp); 26256 return; 26257 } 26258 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 26259 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 26260 first_mp = ipsec_check_inbound_policy(first_mp, connp, 26261 (isv4 ? ipha : NULL), ip6h, mctl_present); 26262 if (first_mp == NULL) { 26263 CONN_DEC_REF(connp); 26264 return; 26265 } 26266 } 26267 /* 26268 * We probably should not send M_CTL message up to 26269 * raw socket. 26270 */ 26271 if (mctl_present) 26272 freeb(first_mp); 26273 26274 /* Initiate IPPF processing here if needed. */ 26275 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 26276 (!isv4 && IP6_IN_IPP(flags))) { 26277 ip_process(IPP_LOCAL_IN, &mp, 26278 recv_ill->ill_phyint->phyint_ifindex); 26279 if (mp == NULL) { 26280 CONN_DEC_REF(connp); 26281 return; 26282 } 26283 } 26284 26285 if (connp->conn_recvif || connp->conn_recvslla || 26286 ((connp->conn_ipv6_recvpktinfo || 26287 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 26288 (flags & IP_FF_IP6INFO))) { 26289 int in_flags = 0; 26290 26291 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 26292 in_flags = IPF_RECVIF; 26293 } 26294 if (connp->conn_recvslla) { 26295 in_flags |= IPF_RECVSLLA; 26296 } 26297 if (isv4) { 26298 mp = ip_add_info(mp, recv_ill, in_flags); 26299 } else { 26300 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 26301 if (mp == NULL) { 26302 CONN_DEC_REF(connp); 26303 return; 26304 } 26305 } 26306 } 26307 26308 BUMP_MIB(&ip_mib, ipInDelivers); 26309 /* 26310 * We are sending the IPSEC_IN message also up. Refer 26311 * to comments above this function. 26312 */ 26313 putnext(rq, mp); 26314 CONN_DEC_REF(connp); 26315 } 26316 26317 /* 26318 * Martian Address Filtering [RFC 1812, Section 5.3.7] 26319 */ 26320 static boolean_t 26321 ip_no_forward(ipha_t *ipha, ill_t *ill) 26322 { 26323 ipaddr_t ip_src, ip_dst; 26324 ire_t *src_ire = NULL; 26325 26326 ip_src = ntohl(ipha->ipha_src); 26327 ip_dst = ntohl(ipha->ipha_dst); 26328 26329 if (ip_dst == INADDR_ANY) 26330 goto dont_forward; 26331 26332 if (IN_CLASSD(ip_src)) 26333 goto dont_forward; 26334 26335 if ((ip_src >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 26336 goto dont_forward; 26337 26338 if (IN_BADCLASS(ip_dst)) 26339 goto dont_forward; 26340 26341 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 26342 ALL_ZONES, MATCH_IRE_TYPE); 26343 if (src_ire != NULL) { 26344 ire_refrele(src_ire); 26345 goto dont_forward; 26346 } 26347 26348 return (B_FALSE); 26349 26350 dont_forward: 26351 if (ip_debug > 2) { 26352 printf("ip_no_forward: dropping packet received on %s\n", 26353 ill->ill_name); 26354 pr_addr_dbg("ip_no_forward: from src %s\n", 26355 AF_INET, &ipha->ipha_src); 26356 pr_addr_dbg("ip_no_forward: to dst %s\n", 26357 AF_INET, &ipha->ipha_dst); 26358 } 26359 BUMP_MIB(&ip_mib, ipForwProhibits); 26360 return (B_TRUE); 26361 } 26362 26363 static boolean_t 26364 ip_loopback_src_or_dst(ipha_t *ipha, ill_t *ill) 26365 { 26366 if (((ntohl(ipha->ipha_src) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) || 26367 ((ntohl(ipha->ipha_dst) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 26368 if (ip_debug > 2) { 26369 if (ill != NULL) { 26370 printf("ip_loopback_src_or_dst: " 26371 "dropping packet received on %s\n", 26372 ill->ill_name); 26373 } else { 26374 printf("ip_loopback_src_or_dst: " 26375 "dropping packet\n"); 26376 } 26377 26378 pr_addr_dbg( 26379 "ip_loopback_src_or_dst: from src %s\n", 26380 AF_INET, &ipha->ipha_src); 26381 pr_addr_dbg( 26382 "ip_loopback_src_or_dst: to dst %s\n", 26383 AF_INET, &ipha->ipha_dst); 26384 } 26385 26386 BUMP_MIB(&ip_mib, ipInAddrErrors); 26387 return (B_TRUE); 26388 } 26389 return (B_FALSE); 26390 } 26391