1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 64 #include <inet/common.h> 65 #include <inet/mi.h> 66 #include <inet/mib2.h> 67 #include <inet/nd.h> 68 #include <inet/arp.h> 69 #include <inet/snmpcom.h> 70 #include <inet/kstatcom.h> 71 72 #include <netinet/igmp_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet/sctp.h> 76 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip6_asp.h> 81 #include <inet/tcp.h> 82 #include <inet/tcp_impl.h> 83 #include <inet/ip_multi.h> 84 #include <inet/ip_if.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_ftable.h> 87 #include <inet/ip_rts.h> 88 #include <inet/optcom.h> 89 #include <inet/ip_ndp.h> 90 #include <inet/ip_listutils.h> 91 #include <netinet/igmp.h> 92 #include <netinet/ip_mroute.h> 93 #include <inet/ipp_common.h> 94 95 #include <net/pfkeyv2.h> 96 #include <inet/ipsec_info.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <sys/iphada.h> 100 #include <inet/tun.h> 101 #include <inet/ipdrop.h> 102 103 #include <sys/ethernet.h> 104 #include <net/if_types.h> 105 #include <sys/cpuvar.h> 106 107 #include <ipp/ipp.h> 108 #include <ipp/ipp_impl.h> 109 #include <ipp/ipgpc/ipgpc.h> 110 111 #include <sys/multidata.h> 112 #include <sys/pattr.h> 113 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 119 #include <sys/tsol/label.h> 120 #include <sys/tsol/tnet.h> 121 122 #include <rpc/pmap_prot.h> 123 124 /* 125 * Values for squeue switch: 126 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 127 * IP_SQUEUE_ENTER: squeue_enter 128 * IP_SQUEUE_FILL: squeue_fill 129 */ 130 int ip_squeue_enter = 2; 131 squeue_func_t ip_input_proc; 132 /* 133 * IP statistics. 134 */ 135 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 136 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 typedef struct ip_stat { 140 kstat_named_t ipsec_fanout_proto; 141 kstat_named_t ip_udp_fannorm; 142 kstat_named_t ip_udp_fanmb; 143 kstat_named_t ip_udp_fanothers; 144 kstat_named_t ip_udp_fast_path; 145 kstat_named_t ip_udp_slow_path; 146 kstat_named_t ip_udp_input_err; 147 kstat_named_t ip_tcppullup; 148 kstat_named_t ip_tcpoptions; 149 kstat_named_t ip_multipkttcp; 150 kstat_named_t ip_tcp_fast_path; 151 kstat_named_t ip_tcp_slow_path; 152 kstat_named_t ip_tcp_input_error; 153 kstat_named_t ip_db_ref; 154 kstat_named_t ip_notaligned1; 155 kstat_named_t ip_notaligned2; 156 kstat_named_t ip_multimblk3; 157 kstat_named_t ip_multimblk4; 158 kstat_named_t ip_ipoptions; 159 kstat_named_t ip_classify_fail; 160 kstat_named_t ip_opt; 161 kstat_named_t ip_udp_rput_local; 162 kstat_named_t ipsec_proto_ahesp; 163 kstat_named_t ip_conn_flputbq; 164 kstat_named_t ip_conn_walk_drain; 165 kstat_named_t ip_out_sw_cksum; 166 kstat_named_t ip_in_sw_cksum; 167 kstat_named_t ip_trash_ire_reclaim_calls; 168 kstat_named_t ip_trash_ire_reclaim_success; 169 kstat_named_t ip_ire_arp_timer_expired; 170 kstat_named_t ip_ire_redirect_timer_expired; 171 kstat_named_t ip_ire_pmtu_timer_expired; 172 kstat_named_t ip_input_multi_squeue; 173 kstat_named_t ip_tcp_in_full_hw_cksum_err; 174 kstat_named_t ip_tcp_in_part_hw_cksum_err; 175 kstat_named_t ip_tcp_in_sw_cksum_err; 176 kstat_named_t ip_tcp_out_sw_cksum_bytes; 177 kstat_named_t ip_udp_in_full_hw_cksum_err; 178 kstat_named_t ip_udp_in_part_hw_cksum_err; 179 kstat_named_t ip_udp_in_sw_cksum_err; 180 kstat_named_t ip_udp_out_sw_cksum_bytes; 181 kstat_named_t ip_frag_mdt_pkt_out; 182 kstat_named_t ip_frag_mdt_discarded; 183 kstat_named_t ip_frag_mdt_allocfail; 184 kstat_named_t ip_frag_mdt_addpdescfail; 185 kstat_named_t ip_frag_mdt_allocd; 186 } ip_stat_t; 187 188 static ip_stat_t ip_statistics = { 189 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 190 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 191 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 192 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 193 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 194 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 195 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 196 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 197 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 198 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 199 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 200 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 201 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 202 { "ip_db_ref", KSTAT_DATA_UINT64 }, 203 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 204 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 205 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 206 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 207 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 208 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 209 { "ip_opt", KSTAT_DATA_UINT64 }, 210 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 211 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 212 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 213 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 214 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 215 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 216 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 217 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 218 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 219 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 220 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 221 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 222 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 223 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 224 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 225 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 226 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 229 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 230 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 231 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 232 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 234 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 235 }; 236 237 static kstat_t *ip_kstat; 238 239 #define TCP6 "tcp6" 240 #define TCP "tcp" 241 #define SCTP "sctp" 242 #define SCTP6 "sctp6" 243 244 major_t TCP6_MAJ; 245 major_t TCP_MAJ; 246 major_t SCTP_MAJ; 247 major_t SCTP6_MAJ; 248 249 int ip_poll_normal_ms = 100; 250 int ip_poll_normal_ticks = 0; 251 252 /* 253 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 254 */ 255 256 struct listptr_s { 257 mblk_t *lp_head; /* pointer to the head of the list */ 258 mblk_t *lp_tail; /* pointer to the tail of the list */ 259 }; 260 261 typedef struct listptr_s listptr_t; 262 263 /* 264 * This is used by ip_snmp_get_mib2_ip_route_media and 265 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 266 */ 267 typedef struct iproutedata_s { 268 uint_t ird_idx; 269 listptr_t ird_route; /* ipRouteEntryTable */ 270 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 271 listptr_t ird_attrs; /* ipRouteAttributeTable */ 272 } iproutedata_t; 273 274 /* 275 * Cluster specific hooks. These should be NULL when booted as a non-cluster 276 */ 277 278 /* 279 * Hook functions to enable cluster networking 280 * On non-clustered systems these vectors must always be NULL. 281 * 282 * Hook function to Check ip specified ip address is a shared ip address 283 * in the cluster 284 * 285 */ 286 int (*cl_inet_isclusterwide)(uint8_t protocol, 287 sa_family_t addr_family, uint8_t *laddrp) = NULL; 288 289 /* 290 * Hook function to generate cluster wide ip fragment identifier 291 */ 292 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 293 uint8_t *laddrp, uint8_t *faddrp) = NULL; 294 295 /* 296 * Synchronization notes: 297 * 298 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 299 * MT level protection given by STREAMS. IP uses a combination of its own 300 * internal serialization mechanism and standard Solaris locking techniques. 301 * The internal serialization is per phyint (no IPMP) or per IPMP group. 302 * This is used to serialize plumbing operations, IPMP operations, certain 303 * multicast operations, most set ioctls, igmp/mld timers etc. 304 * 305 * Plumbing is a long sequence of operations involving message 306 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 307 * involved in plumbing operations. A natural model is to serialize these 308 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 309 * parallel without any interference. But various set ioctls on hme0 are best 310 * serialized. However if the system uses IPMP, the operations are easier if 311 * they are serialized on a per IPMP group basis since IPMP operations 312 * happen across ill's of a group. Thus the lowest common denominator is to 313 * serialize most set ioctls, multicast join/leave operations, IPMP operations 314 * igmp/mld timer operations, and processing of DLPI control messages received 315 * from drivers on a per IPMP group basis. If the system does not employ 316 * IPMP the serialization is on a per phyint basis. This serialization is 317 * provided by the ipsq_t and primitives operating on this. Details can 318 * be found in ip_if.c above the core primitives operating on ipsq_t. 319 * 320 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 321 * Simiarly lookup of an ire by a thread also returns a refheld ire. 322 * In addition ipif's and ill's referenced by the ire are also indirectly 323 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 324 * the ipif's address or netmask change as long as an ipif is refheld 325 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 326 * address of an ipif has to go through the ipsq_t. This ensures that only 327 * 1 such exclusive operation proceeds at any time on the ipif. It then 328 * deletes all ires associated with this ipif, and waits for all refcnts 329 * associated with this ipif to come down to zero. The address is changed 330 * only after the ipif has been quiesced. Then the ipif is brought up again. 331 * More details are described above the comment in ip_sioctl_flags. 332 * 333 * Packet processing is based mostly on IREs and are fully multi-threaded 334 * using standard Solaris MT techniques. 335 * 336 * There are explicit locks in IP to handle: 337 * - The ip_g_head list maintained by mi_open_link() and friends. 338 * 339 * - The reassembly data structures (one lock per hash bucket) 340 * 341 * - conn_lock is meant to protect conn_t fields. The fields actually 342 * protected by conn_lock are documented in the conn_t definition. 343 * 344 * - ire_lock to protect some of the fields of the ire, IRE tables 345 * (one lock per hash bucket). Refer to ip_ire.c for details. 346 * 347 * - ndp_g_lock and nce_lock for protecting NCEs. 348 * 349 * - ill_lock protects fields of the ill and ipif. Details in ip.h 350 * 351 * - ill_g_lock: This is a global reader/writer lock. Protects the following 352 * * The AVL tree based global multi list of all ills. 353 * * The linked list of all ipifs of an ill 354 * * The <ill-ipsq> mapping 355 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 356 * * The illgroup list threaded by ill_group_next. 357 * * <ill-phyint> association 358 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 359 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 360 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 361 * will all have to hold the ill_g_lock as writer for the actual duration 362 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 363 * may be found in the IPMP section. 364 * 365 * - ill_lock: This is a per ill mutex. 366 * It protects some members of the ill and is documented below. 367 * It also protects the <ill-ipsq> mapping 368 * It also protects the illgroup list threaded by ill_group_next. 369 * It also protects the <ill-phyint> assoc. 370 * It also protects the list of ipifs hanging off the ill. 371 * 372 * - ipsq_lock: This is a per ipsq_t mutex lock. 373 * This protects all the other members of the ipsq struct except 374 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 375 * 376 * - illgrp_lock: This is a per ill_group mutex lock. 377 * The only thing it protects is the illgrp_ill_schednext member of ill_group 378 * which dictates which is the next ill in an ill_group that is to be chosen 379 * for sending outgoing packets, through creation of an IRE_CACHE that 380 * references this ill. 381 * 382 * - phyint_lock: This is a per phyint mutex lock. Protects just the 383 * phyint_flags 384 * 385 * - ip_g_nd_lock: This is a global reader/writer lock. 386 * Any call to nd_load to load a new parameter to the ND table must hold the 387 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 388 * as reader. 389 * 390 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 391 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 392 * uniqueness check also done atomically. 393 * 394 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 395 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 396 * as a writer when adding or deleting elements from these lists, and 397 * as a reader when walking these lists to send a SADB update to the 398 * IPsec capable ills. 399 * 400 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 401 * group list linked by ill_usesrc_grp_next. It also protects the 402 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 403 * group is being added or deleted. This lock is taken as a reader when 404 * walking the list/group(eg: to get the number of members in a usesrc group). 405 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 406 * field is changing state i.e from NULL to non-NULL or vice-versa. For 407 * example, it is not necessary to take this lock in the initial portion 408 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 409 * ip_sioctl_flags since the these operations are executed exclusively and 410 * that ensures that the "usesrc group state" cannot change. The "usesrc 411 * group state" change can happen only in the latter part of 412 * ip_sioctl_slifusesrc and in ill_delete. 413 * 414 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 415 * 416 * To change the <ill-phyint> association, the ill_g_lock must be held 417 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 418 * must be held. 419 * 420 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 421 * and the ill_lock of the ill in question must be held. 422 * 423 * To change the <ill-illgroup> association the ill_g_lock must be held as 424 * writer and the ill_lock of the ill in question must be held. 425 * 426 * To add or delete an ipif from the list of ipifs hanging off the ill, 427 * ill_g_lock (writer) and ill_lock must be held and the thread must be 428 * a writer on the associated ipsq,. 429 * 430 * To add or delete an ill to the system, the ill_g_lock must be held as 431 * writer and the thread must be a writer on the associated ipsq. 432 * 433 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 434 * must be a writer on the associated ipsq. 435 * 436 * Lock hierarchy 437 * 438 * Some lock hierarchy scenarios are listed below. 439 * 440 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 441 * ill_g_lock -> illgrp_lock -> ill_lock 442 * ill_g_lock -> ill_lock(s) -> phyint_lock 443 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 444 * ill_g_lock -> ip_addr_avail_lock 445 * conn_lock -> irb_lock -> ill_lock -> ire_lock 446 * ill_g_lock -> ip_g_nd_lock 447 * 448 * When more than 1 ill lock is needed to be held, all ill lock addresses 449 * are sorted on address and locked starting from highest addressed lock 450 * downward. 451 * 452 * Mobile-IP scenarios 453 * 454 * irb_lock -> ill_lock -> ire_mrtun_lock 455 * irb_lock -> ill_lock -> ire_srcif_table_lock 456 * 457 * IPsec scenarios 458 * 459 * ipsa_lock -> ill_g_lock -> ill_lock 460 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 461 * ipsec_capab_ills_lock -> ipsa_lock 462 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 463 * 464 * Trusted Solaris scenarios 465 * 466 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 467 * igsa_lock -> gcdb_lock 468 * gcgrp_rwlock -> ire_lock 469 * gcgrp_rwlock -> gcdb_lock 470 * 471 * 472 * Routing/forwarding table locking notes: 473 * 474 * Lock acquisition order: Radix tree lock, irb_lock. 475 * Requirements: 476 * i. Walker must not hold any locks during the walker callback. 477 * ii Walker must not see a truncated tree during the walk because of any node 478 * deletion. 479 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 480 * in many places in the code to walk the irb list. Thus even if all the 481 * ires in a bucket have been deleted, we still can't free the radix node 482 * until the ires have actually been inactive'd (freed). 483 * 484 * Tree traversal - Need to hold the global tree lock in read mode. 485 * Before dropping the global tree lock, need to either increment the ire_refcnt 486 * to ensure that the radix node can't be deleted. 487 * 488 * Tree add - Need to hold the global tree lock in write mode to add a 489 * radix node. To prevent the node from being deleted, increment the 490 * irb_refcnt, after the node is added to the tree. The ire itself is 491 * added later while holding the irb_lock, but not the tree lock. 492 * 493 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 494 * All associated ires must be inactive (i.e. freed), and irb_refcnt 495 * must be zero. 496 * 497 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 498 * global tree lock (read mode) for traversal. 499 * 500 * IPSEC notes : 501 * 502 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 503 * in front of the actual packet. For outbound datagrams, the M_CTL 504 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 505 * information used by the IPSEC code for applying the right level of 506 * protection. The information initialized by IP in the ipsec_out_t 507 * is determined by the per-socket policy or global policy in the system. 508 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 509 * ipsec_info.h) which starts out with nothing in it. It gets filled 510 * with the right information if it goes through the AH/ESP code, which 511 * happens if the incoming packet is secure. The information initialized 512 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 513 * the policy requirements needed by per-socket policy or global policy 514 * is met or not. 515 * 516 * If there is both per-socket policy (set using setsockopt) and there 517 * is also global policy match for the 5 tuples of the socket, 518 * ipsec_override_policy() makes the decision of which one to use. 519 * 520 * For fully connected sockets i.e dst, src [addr, port] is known, 521 * conn_policy_cached is set indicating that policy has been cached. 522 * conn_in_enforce_policy may or may not be set depending on whether 523 * there is a global policy match or per-socket policy match. 524 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 525 * Once the right policy is set on the conn_t, policy cannot change for 526 * this socket. This makes life simpler for TCP (UDP ?) where 527 * re-transmissions go out with the same policy. For symmetry, policy 528 * is cached for fully connected UDP sockets also. Thus if policy is cached, 529 * it also implies that policy is latched i.e policy cannot change 530 * on these sockets. As we have the right policy on the conn, we don't 531 * have to lookup global policy for every outbound and inbound datagram 532 * and thus serving as an optimization. Note that a global policy change 533 * does not affect fully connected sockets if they have policy. If fully 534 * connected sockets did not have any policy associated with it, global 535 * policy change may affect them. 536 * 537 * IP Flow control notes: 538 * 539 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 540 * cannot be sent down to the driver by IP, because of a canput failure, IP 541 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 542 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 543 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 544 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 545 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 546 * the queued messages, and removes the conn from the drain list, if all 547 * messages were drained. It also qenables the next conn in the drain list to 548 * continue the drain process. 549 * 550 * In reality the drain list is not a single list, but a configurable number 551 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 552 * list. If the ip_wsrv of the next qenabled conn does not run, because the 553 * stream closes, ip_close takes responsibility to qenable the next conn in 554 * the drain list. The directly called ip_wput path always does a putq, if 555 * it cannot putnext. Thus synchronization problems are handled between 556 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 557 * functions that manipulate this drain list. Furthermore conn_drain_insert 558 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 559 * running on a queue at any time. conn_drain_tail can be simultaneously called 560 * from both ip_wsrv and ip_close. 561 * 562 * IPQOS notes: 563 * 564 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 565 * and IPQoS modules. IPPF includes hooks in IP at different control points 566 * (callout positions) which direct packets to IPQoS modules for policy 567 * processing. Policies, if present, are global. 568 * 569 * The callout positions are located in the following paths: 570 * o local_in (packets destined for this host) 571 * o local_out (packets orginating from this host ) 572 * o fwd_in (packets forwarded by this m/c - inbound) 573 * o fwd_out (packets forwarded by this m/c - outbound) 574 * Hooks at these callout points can be enabled/disabled using the ndd variable 575 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 576 * By default all the callout positions are enabled. 577 * 578 * Outbound (local_out) 579 * Hooks are placed in ip_wput_ire and ipsec_out_process. 580 * 581 * Inbound (local_in) 582 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 583 * TCP and UDP fanout routines. 584 * 585 * Forwarding (in and out) 586 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 587 * 588 * IP Policy Framework processing (IPPF processing) 589 * Policy processing for a packet is initiated by ip_process, which ascertains 590 * that the classifier (ipgpc) is loaded and configured, failing which the 591 * packet resumes normal processing in IP. If the clasifier is present, the 592 * packet is acted upon by one or more IPQoS modules (action instances), per 593 * filters configured in ipgpc and resumes normal IP processing thereafter. 594 * An action instance can drop a packet in course of its processing. 595 * 596 * A boolean variable, ip_policy, is used in all the fanout routines that can 597 * invoke ip_process for a packet. This variable indicates if the packet should 598 * to be sent for policy processing. The variable is set to B_TRUE by default, 599 * i.e. when the routines are invoked in the normal ip procesing path for a 600 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 601 * ip_policy is set to B_FALSE for all the routines called in these two 602 * functions because, in the former case, we don't process loopback traffic 603 * currently while in the latter, the packets have already been processed in 604 * icmp_inbound. 605 * 606 * Zones notes: 607 * 608 * The partitioning rules for networking are as follows: 609 * 1) Packets coming from a zone must have a source address belonging to that 610 * zone. 611 * 2) Packets coming from a zone can only be sent on a physical interface on 612 * which the zone has an IP address. 613 * 3) Between two zones on the same machine, packet delivery is only allowed if 614 * there's a matching route for the destination and zone in the forwarding 615 * table. 616 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 617 * different zones can bind to the same port with the wildcard address 618 * (INADDR_ANY). 619 * 620 * The granularity of interface partitioning is at the logical interface level. 621 * Therefore, every zone has its own IP addresses, and incoming packets can be 622 * attributed to a zone unambiguously. A logical interface is placed into a zone 623 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 624 * structure. Rule (1) is implemented by modifying the source address selection 625 * algorithm so that the list of eligible addresses is filtered based on the 626 * sending process zone. 627 * 628 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 629 * across all zones, depending on their type. Here is the break-up: 630 * 631 * IRE type Shared/exclusive 632 * -------- ---------------- 633 * IRE_BROADCAST Exclusive 634 * IRE_DEFAULT (default routes) Shared (*) 635 * IRE_LOCAL Exclusive (x) 636 * IRE_LOOPBACK Exclusive 637 * IRE_PREFIX (net routes) Shared (*) 638 * IRE_CACHE Exclusive 639 * IRE_IF_NORESOLVER (interface routes) Exclusive 640 * IRE_IF_RESOLVER (interface routes) Exclusive 641 * IRE_HOST (host routes) Shared (*) 642 * 643 * (*) A zone can only use a default or off-subnet route if the gateway is 644 * directly reachable from the zone, that is, if the gateway's address matches 645 * one of the zone's logical interfaces. 646 * 647 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 648 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 649 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 650 * address of the zone itself (the destination). Since IRE_LOCAL is used 651 * for communication between zones, ip_wput_ire has special logic to set 652 * the right source address when sending using an IRE_LOCAL. 653 * 654 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 655 * ire_cache_lookup restricts loopback using an IRE_LOCAL 656 * between zone to the case when L2 would have conceptually looped the packet 657 * back, i.e. the loopback which is required since neither Ethernet drivers 658 * nor Ethernet hardware loops them back. This is the case when the normal 659 * routes (ignoring IREs with different zoneids) would send out the packet on 660 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 661 * associated. 662 * 663 * Multiple zones can share a common broadcast address; typically all zones 664 * share the 255.255.255.255 address. Incoming as well as locally originated 665 * broadcast packets must be dispatched to all the zones on the broadcast 666 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 667 * since some zones may not be on the 10.16.72/24 network. To handle this, each 668 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 669 * sent to every zone that has an IRE_BROADCAST entry for the destination 670 * address on the input ill, see conn_wantpacket(). 671 * 672 * Applications in different zones can join the same multicast group address. 673 * For IPv4, group memberships are per-logical interface, so they're already 674 * inherently part of a zone. For IPv6, group memberships are per-physical 675 * interface, so we distinguish IPv6 group memberships based on group address, 676 * interface and zoneid. In both cases, received multicast packets are sent to 677 * every zone for which a group membership entry exists. On IPv6 we need to 678 * check that the target zone still has an address on the receiving physical 679 * interface; it could have been removed since the application issued the 680 * IPV6_JOIN_GROUP. 681 */ 682 683 /* 684 * Squeue Fanout flags: 685 * 0: No fanout. 686 * 1: Fanout across all squeues 687 */ 688 boolean_t ip_squeue_fanout = 0; 689 690 /* 691 * Maximum dups allowed per packet. 692 */ 693 uint_t ip_max_frag_dups = 10; 694 695 #define IS_SIMPLE_IPH(ipha) \ 696 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 697 698 /* RFC1122 Conformance */ 699 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 700 701 #define ILL_MAX_NAMELEN LIFNAMSIZ 702 703 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 704 705 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 706 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 707 708 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t); 709 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 710 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 711 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 712 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 713 mblk_t *, int); 714 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 715 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 716 ill_t *, zoneid_t); 717 static void icmp_options_update(ipha_t *); 718 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t); 719 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 720 zoneid_t zoneid); 721 static mblk_t *icmp_pkt_err_ok(mblk_t *); 722 static void icmp_redirect(mblk_t *); 723 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 724 725 static void ip_arp_news(queue_t *, mblk_t *); 726 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 727 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 728 char *ip_dot_addr(ipaddr_t, char *); 729 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 730 int ip_close(queue_t *, int); 731 static char *ip_dot_saddr(uchar_t *, char *); 732 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 733 boolean_t, boolean_t, ill_t *, zoneid_t); 734 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 735 boolean_t, boolean_t, zoneid_t); 736 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 737 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 738 static void ip_lrput(queue_t *, mblk_t *); 739 ipaddr_t ip_massage_options(ipha_t *); 740 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 741 ipaddr_t ip_net_mask(ipaddr_t); 742 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 743 zoneid_t); 744 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 745 conn_t *, uint32_t, zoneid_t); 746 char *ip_nv_lookup(nv_t *, int); 747 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 748 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 749 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 750 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 751 size_t); 752 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 753 void ip_rput(queue_t *, mblk_t *); 754 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 755 void *dummy_arg); 756 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 757 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 758 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 759 ire_t *); 760 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 761 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 762 uint16_t *); 763 int ip_snmp_get(queue_t *, mblk_t *); 764 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 765 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 766 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 767 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 768 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 769 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 770 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 771 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 772 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 773 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 775 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 776 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 777 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 778 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 779 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 780 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 781 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 782 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 783 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 784 static boolean_t ip_source_routed(ipha_t *); 785 static boolean_t ip_source_route_included(ipha_t *); 786 787 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 788 zoneid_t); 789 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 790 static void ip_wput_local_options(ipha_t *); 791 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 792 zoneid_t); 793 794 static void conn_drain_init(void); 795 static void conn_drain_fini(void); 796 static void conn_drain_tail(conn_t *connp, boolean_t closing); 797 798 static void conn_walk_drain(void); 799 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 800 zoneid_t); 801 802 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 803 zoneid_t); 804 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 805 void *dummy_arg); 806 807 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 808 809 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 810 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 811 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 812 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 813 814 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 815 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 816 caddr_t, cred_t *); 817 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 818 caddr_t cp, cred_t *cr); 819 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 820 cred_t *); 821 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 822 caddr_t cp, cred_t *cr); 823 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 824 cred_t *); 825 static squeue_func_t ip_squeue_switch(int); 826 827 static void ip_kstat_init(void); 828 static void ip_kstat_fini(void); 829 static int ip_kstat_update(kstat_t *kp, int rw); 830 static void icmp_kstat_init(void); 831 static void icmp_kstat_fini(void); 832 static int icmp_kstat_update(kstat_t *kp, int rw); 833 834 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 835 836 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 837 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 838 839 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 840 841 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 842 ipha_t *, ill_t *, boolean_t); 843 844 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 845 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 846 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 847 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 848 849 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 850 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 851 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 852 853 /* How long, in seconds, we allow frags to hang around. */ 854 #define IP_FRAG_TIMEOUT 60 855 856 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 857 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 858 859 /* 860 * Threshold which determines whether MDT should be used when 861 * generating IP fragments; payload size must be greater than 862 * this threshold for MDT to take place. 863 */ 864 #define IP_WPUT_FRAG_MDT_MIN 32768 865 866 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 867 868 /* Protected by ip_mi_lock */ 869 static void *ip_g_head; /* Instance Data List Head */ 870 kmutex_t ip_mi_lock; /* Lock for list of instances */ 871 872 /* Only modified during _init and _fini thus no locking is needed. */ 873 caddr_t ip_g_nd; /* Named Dispatch List Head */ 874 875 876 static long ip_rput_pullups; 877 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 878 879 vmem_t *ip_minor_arena; 880 881 /* 882 * MIB-2 stuff for SNMP (both IP and ICMP) 883 */ 884 mib2_ip_t ip_mib; 885 mib2_icmp_t icmp_mib; 886 887 #ifdef DEBUG 888 uint32_t ipsechw_debug = 0; 889 #endif 890 891 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 892 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 893 894 uint_t loopback_packets = 0; 895 896 /* 897 * Multirouting/CGTP stuff 898 */ 899 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 900 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 901 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 902 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 903 hrtime_t ip_multirt_log_interval = 1000; 904 /* Time since last warning issued. */ 905 static hrtime_t multirt_bad_mtu_last_time = 0; 906 907 kmutex_t ip_trash_timer_lock; 908 krwlock_t ip_g_nd_lock; 909 910 /* 911 * XXX following really should only be in a header. Would need more 912 * header and .c clean up first. 913 */ 914 extern optdb_obj_t ip_opt_obj; 915 916 ulong_t ip_squeue_enter_unbound = 0; 917 918 /* 919 * Named Dispatch Parameter Table. 920 * All of these are alterable, within the min/max values given, at run time. 921 */ 922 static ipparam_t lcl_param_arr[] = { 923 /* min max value name */ 924 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 925 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 926 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 927 { 0, 1, 0, "ip_respond_to_timestamp"}, 928 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 929 { 0, 1, 1, "ip_send_redirects"}, 930 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 931 { 0, 10, 0, "ip_debug"}, 932 { 0, 10, 0, "ip_mrtdebug"}, 933 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 934 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 935 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 936 { 1, 255, 255, "ip_def_ttl" }, 937 { 0, 1, 0, "ip_forward_src_routed"}, 938 { 0, 256, 32, "ip_wroff_extra" }, 939 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 940 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 941 { 0, 1, 1, "ip_path_mtu_discovery" }, 942 { 0, 240, 30, "ip_ignore_delete_time" }, 943 { 0, 1, 0, "ip_ignore_redirect" }, 944 { 0, 1, 1, "ip_output_queue" }, 945 { 1, 254, 1, "ip_broadcast_ttl" }, 946 { 0, 99999, 100, "ip_icmp_err_interval" }, 947 { 1, 99999, 10, "ip_icmp_err_burst" }, 948 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 949 { 0, 1, 0, "ip_strict_dst_multihoming" }, 950 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 951 { 0, 1, 0, "ipsec_override_persocket_policy" }, 952 { 0, 1, 1, "icmp_accept_clear_messages" }, 953 { 0, 1, 1, "igmp_accept_clear_messages" }, 954 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 955 "ip_ndp_delay_first_probe_time"}, 956 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 957 "ip_ndp_max_unicast_solicit"}, 958 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 959 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 960 { 0, 1, 0, "ip6_forward_src_routed"}, 961 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 962 { 0, 1, 1, "ip6_send_redirects"}, 963 { 0, 1, 0, "ip6_ignore_redirect" }, 964 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 965 966 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 967 968 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 969 970 { 0, 1, 1, "pim_accept_clear_messages" }, 971 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 972 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 973 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 974 { 0, 15, 0, "ip_policy_mask" }, 975 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 976 { 0, 255, 1, "ip_multirt_ttl" }, 977 { 0, 1, 1, "ip_multidata_outbound" }, 978 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 979 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 980 { 0, 1000, 1, "ip_max_temp_defend" }, 981 { 0, 1000, 3, "ip_max_defend" }, 982 { 0, 999999, 30, "ip_defend_interval" }, 983 { 0, 3600000, 300000, "ip_dup_recovery" }, 984 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 985 #ifdef DEBUG 986 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 987 #endif 988 }; 989 990 ipparam_t *ip_param_arr = lcl_param_arr; 991 992 /* Extended NDP table */ 993 static ipndp_t lcl_ndp_arr[] = { 994 /* getf setf data name */ 995 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 996 "ip_forwarding" }, 997 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 998 "ip6_forwarding" }, 999 { ip_ill_report, NULL, NULL, 1000 "ip_ill_status" }, 1001 { ip_ipif_report, NULL, NULL, 1002 "ip_ipif_status" }, 1003 { ip_ire_report, NULL, NULL, 1004 "ipv4_ire_status" }, 1005 { ip_ire_report_mrtun, NULL, NULL, 1006 "ipv4_mrtun_ire_status" }, 1007 { ip_ire_report_srcif, NULL, NULL, 1008 "ipv4_srcif_ire_status" }, 1009 { ip_ire_report_v6, NULL, NULL, 1010 "ipv6_ire_status" }, 1011 { ip_conn_report, NULL, NULL, 1012 "ip_conn_status" }, 1013 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 1014 "ip_rput_pullups" }, 1015 { ndp_report, NULL, NULL, 1016 "ip_ndp_cache_report" }, 1017 { ip_srcid_report, NULL, NULL, 1018 "ip_srcid_status" }, 1019 { ip_param_generic_get, ip_squeue_profile_set, 1020 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 1021 { ip_param_generic_get, ip_squeue_bind_set, 1022 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 1023 { ip_param_generic_get, ip_input_proc_set, 1024 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1025 { ip_param_generic_get, ip_int_set, 1026 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1027 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 1028 "ip_cgtp_filter" }, 1029 { ip_param_generic_get, ip_int_set, 1030 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 1031 }; 1032 1033 /* 1034 * ip_g_forward controls IP forwarding. It takes two values: 1035 * 0: IP_FORWARD_NEVER Don't forward packets ever. 1036 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 1037 * 1038 * RFC1122 says there must be a configuration switch to control forwarding, 1039 * but that the default MUST be to not forward packets ever. Implicit 1040 * control based on configuration of multiple interfaces MUST NOT be 1041 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 1042 * and, in fact, it was the default. That capability is now provided in the 1043 * /etc/rc2.d/S69inet script. 1044 */ 1045 int ip_g_forward = IP_FORWARD_DEFAULT; 1046 1047 /* It also has an IPv6 counterpart. */ 1048 1049 int ipv6_forward = IP_FORWARD_DEFAULT; 1050 1051 /* 1052 * Table of IP ioctls encoding the various properties of the ioctl and 1053 * indexed based on the last byte of the ioctl command. Occasionally there 1054 * is a clash, and there is more than 1 ioctl with the same last byte. 1055 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1056 * ioctls are encoded in the misc table. An entry in the ndx table is 1057 * retrieved by indexing on the last byte of the ioctl command and comparing 1058 * the ioctl command with the value in the ndx table. In the event of a 1059 * mismatch the misc table is then searched sequentially for the desired 1060 * ioctl command. 1061 * 1062 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1063 */ 1064 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1065 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 1076 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1077 MISC_CMD, ip_siocaddrt, NULL }, 1078 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1079 MISC_CMD, ip_siocdelrt, NULL }, 1080 1081 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1082 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1083 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1084 IF_CMD, ip_sioctl_get_addr, NULL }, 1085 1086 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1087 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1088 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1089 IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1091 1092 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1093 IPI_PRIV | IPI_WR | IPI_REPL, 1094 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1095 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1096 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1097 IF_CMD, ip_sioctl_get_flags, NULL }, 1098 1099 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 1102 /* copyin size cannot be coded for SIOCGIFCONF */ 1103 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1104 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1105 1106 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1107 IF_CMD, ip_sioctl_mtu, NULL }, 1108 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1109 IF_CMD, ip_sioctl_get_mtu, NULL }, 1110 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1111 IPI_GET_CMD | IPI_REPL, 1112 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1113 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1114 IF_CMD, ip_sioctl_brdaddr, NULL }, 1115 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1116 IPI_GET_CMD | IPI_REPL, 1117 IF_CMD, ip_sioctl_get_netmask, NULL }, 1118 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1119 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1120 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1121 IPI_GET_CMD | IPI_REPL, 1122 IF_CMD, ip_sioctl_get_metric, NULL }, 1123 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1124 IF_CMD, ip_sioctl_metric, NULL }, 1125 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 1127 /* See 166-168 below for extended SIOC*XARP ioctls */ 1128 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1129 MISC_CMD, ip_sioctl_arp, NULL }, 1130 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1131 MISC_CMD, ip_sioctl_arp, NULL }, 1132 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1133 MISC_CMD, ip_sioctl_arp, NULL }, 1134 1135 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 1157 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1158 MISC_CMD, if_unitsel, if_unitsel_restart }, 1159 1160 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 1179 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1180 IPI_PRIV | IPI_WR | IPI_MODOK, 1181 IF_CMD, ip_sioctl_sifname, NULL }, 1182 1183 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1190 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1191 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1192 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 1197 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1198 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1199 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1200 IF_CMD, ip_sioctl_get_muxid, NULL }, 1201 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1202 IPI_PRIV | IPI_WR | IPI_REPL, 1203 IF_CMD, ip_sioctl_muxid, NULL }, 1204 1205 /* Both if and lif variants share same func */ 1206 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1207 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1208 /* Both if and lif variants share same func */ 1209 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1210 IPI_PRIV | IPI_WR | IPI_REPL, 1211 IF_CMD, ip_sioctl_slifindex, NULL }, 1212 1213 /* copyin size cannot be coded for SIOCGIFCONF */ 1214 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1215 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1216 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1217 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1218 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1219 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1220 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1221 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1222 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1223 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1226 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1227 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1232 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1233 1234 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1235 IPI_PRIV | IPI_WR | IPI_REPL, 1236 LIF_CMD, ip_sioctl_removeif, 1237 ip_sioctl_removeif_restart }, 1238 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1239 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1240 LIF_CMD, ip_sioctl_addif, NULL }, 1241 #define SIOCLIFADDR_NDX 112 1242 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1243 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1244 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_addr, NULL }, 1247 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1248 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1249 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1250 IPI_GET_CMD | IPI_REPL, 1251 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1252 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1253 IPI_PRIV | IPI_WR | IPI_REPL, 1254 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1255 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1256 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1257 LIF_CMD, ip_sioctl_get_flags, NULL }, 1258 1259 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1260 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1261 1262 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1263 ip_sioctl_get_lifconf, NULL }, 1264 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1265 LIF_CMD, ip_sioctl_mtu, NULL }, 1266 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1267 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1268 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1269 IPI_GET_CMD | IPI_REPL, 1270 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1271 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1272 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1273 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1274 IPI_GET_CMD | IPI_REPL, 1275 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1276 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1277 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1278 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1279 IPI_GET_CMD | IPI_REPL, 1280 LIF_CMD, ip_sioctl_get_metric, NULL }, 1281 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1282 LIF_CMD, ip_sioctl_metric, NULL }, 1283 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1284 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1285 LIF_CMD, ip_sioctl_slifname, 1286 ip_sioctl_slifname_restart }, 1287 1288 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1289 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1290 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1291 IPI_GET_CMD | IPI_REPL, 1292 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1293 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1294 IPI_PRIV | IPI_WR | IPI_REPL, 1295 LIF_CMD, ip_sioctl_muxid, NULL }, 1296 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1297 IPI_GET_CMD | IPI_REPL, 1298 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1299 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1300 IPI_PRIV | IPI_WR | IPI_REPL, 1301 LIF_CMD, ip_sioctl_slifindex, 0 }, 1302 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1303 LIF_CMD, ip_sioctl_token, NULL }, 1304 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1305 IPI_GET_CMD | IPI_REPL, 1306 LIF_CMD, ip_sioctl_get_token, NULL }, 1307 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1308 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1309 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1310 IPI_GET_CMD | IPI_REPL, 1311 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1312 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1313 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1314 1315 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1316 IPI_GET_CMD | IPI_REPL, 1317 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1318 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1319 LIF_CMD, ip_siocdelndp_v6, NULL }, 1320 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1321 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1322 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1323 LIF_CMD, ip_siocsetndp_v6, NULL }, 1324 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1325 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1326 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1327 MISC_CMD, ip_sioctl_tonlink, NULL }, 1328 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1329 MISC_CMD, ip_sioctl_tmysite, NULL }, 1330 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1331 TUN_CMD, ip_sioctl_tunparam, NULL }, 1332 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1333 IPI_PRIV | IPI_WR, 1334 TUN_CMD, ip_sioctl_tunparam, NULL }, 1335 1336 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1337 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1338 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1339 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1340 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1341 1342 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1343 IPI_PRIV | IPI_WR | IPI_REPL, 1344 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1345 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1346 IPI_PRIV | IPI_WR | IPI_REPL, 1347 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1348 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1349 IPI_PRIV | IPI_WR, 1350 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1351 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1352 IPI_GET_CMD | IPI_REPL, 1353 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1354 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1355 IPI_GET_CMD | IPI_REPL, 1356 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1357 1358 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1359 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1360 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1361 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1362 1363 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1364 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1365 1366 /* These are handled in ip_sioctl_copyin_setup itself */ 1367 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1368 MISC_CMD, NULL, NULL }, 1369 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1370 MISC_CMD, NULL, NULL }, 1371 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1372 1373 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1374 ip_sioctl_get_lifconf, NULL }, 1375 1376 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1377 MISC_CMD, ip_sioctl_xarp, NULL }, 1378 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1379 MISC_CMD, ip_sioctl_xarp, NULL }, 1380 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1381 MISC_CMD, ip_sioctl_xarp, NULL }, 1382 1383 /* SIOCPOPSOCKFS is not handled by IP */ 1384 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1385 1386 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1387 IPI_GET_CMD | IPI_REPL, 1388 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1389 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1390 IPI_PRIV | IPI_WR | IPI_REPL, 1391 LIF_CMD, ip_sioctl_slifzone, 1392 ip_sioctl_slifzone_restart }, 1393 /* 172-174 are SCTP ioctls and not handled by IP */ 1394 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1395 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1396 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1397 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1398 IPI_GET_CMD, LIF_CMD, 1399 ip_sioctl_get_lifusesrc, 0 }, 1400 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1401 IPI_PRIV | IPI_WR, 1402 LIF_CMD, ip_sioctl_slifusesrc, 1403 NULL }, 1404 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1405 ip_sioctl_get_lifsrcof, NULL }, 1406 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1407 MISC_CMD, ip_sioctl_msfilter, NULL }, 1408 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1409 MISC_CMD, ip_sioctl_msfilter, NULL }, 1410 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1411 MISC_CMD, ip_sioctl_msfilter, NULL }, 1412 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1413 MISC_CMD, ip_sioctl_msfilter, NULL }, 1414 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1415 ip_sioctl_set_ipmpfailback, NULL } 1416 }; 1417 1418 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1419 1420 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1421 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1422 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1423 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1424 TUN_CMD, ip_sioctl_tunparam, NULL }, 1425 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1426 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1427 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1428 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1429 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1430 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1431 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1432 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1433 MISC_CMD, mrt_ioctl}, 1434 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1435 MISC_CMD, mrt_ioctl}, 1436 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1437 MISC_CMD, mrt_ioctl} 1438 }; 1439 1440 int ip_misc_ioctl_count = 1441 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1442 1443 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1444 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1445 static int conn_drain_list_index; /* Next drain_list to be used */ 1446 int conn_drain_nthreads; /* Number of drainers reqd. */ 1447 /* Settable in /etc/system */ 1448 uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 1449 1450 /* Defined in ip_ire.c */ 1451 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1452 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1453 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1454 1455 static nv_t ire_nv_arr[] = { 1456 { IRE_BROADCAST, "BROADCAST" }, 1457 { IRE_LOCAL, "LOCAL" }, 1458 { IRE_LOOPBACK, "LOOPBACK" }, 1459 { IRE_CACHE, "CACHE" }, 1460 { IRE_DEFAULT, "DEFAULT" }, 1461 { IRE_PREFIX, "PREFIX" }, 1462 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1463 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1464 { IRE_HOST, "HOST" }, 1465 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1466 { 0 } 1467 }; 1468 1469 nv_t *ire_nv_tbl = ire_nv_arr; 1470 1471 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1472 extern krwlock_t ipsec_capab_ills_lock; 1473 1474 /* Packet dropper for IP IPsec processing failures */ 1475 ipdropper_t ip_dropper; 1476 1477 /* Simple ICMP IP Header Template */ 1478 static ipha_t icmp_ipha = { 1479 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1480 }; 1481 1482 struct module_info ip_mod_info = { 1483 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1484 }; 1485 1486 /* 1487 * Duplicate static symbols within a module confuses mdb; so we avoid the 1488 * problem by making the symbols here distinct from those in udp.c. 1489 */ 1490 1491 static struct qinit iprinit = { 1492 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1493 &ip_mod_info 1494 }; 1495 1496 static struct qinit ipwinit = { 1497 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1498 &ip_mod_info 1499 }; 1500 1501 static struct qinit iplrinit = { 1502 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1503 &ip_mod_info 1504 }; 1505 1506 static struct qinit iplwinit = { 1507 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1508 &ip_mod_info 1509 }; 1510 1511 struct streamtab ipinfo = { 1512 &iprinit, &ipwinit, &iplrinit, &iplwinit 1513 }; 1514 1515 #ifdef DEBUG 1516 static boolean_t skip_sctp_cksum = B_FALSE; 1517 #endif 1518 1519 /* 1520 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1521 * ip_rput_v6(), ip_output(), etc. If the message 1522 * block already has a M_CTL at the front of it, then simply set the zoneid 1523 * appropriately. 1524 */ 1525 mblk_t * 1526 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid) 1527 { 1528 mblk_t *first_mp; 1529 ipsec_out_t *io; 1530 1531 ASSERT(zoneid != ALL_ZONES); 1532 if (mp->b_datap->db_type == M_CTL) { 1533 io = (ipsec_out_t *)mp->b_rptr; 1534 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1535 io->ipsec_out_zoneid = zoneid; 1536 return (mp); 1537 } 1538 1539 first_mp = ipsec_alloc_ipsec_out(); 1540 if (first_mp == NULL) 1541 return (NULL); 1542 io = (ipsec_out_t *)first_mp->b_rptr; 1543 /* This is not a secure packet */ 1544 io->ipsec_out_secure = B_FALSE; 1545 io->ipsec_out_zoneid = zoneid; 1546 first_mp->b_cont = mp; 1547 return (first_mp); 1548 } 1549 1550 /* 1551 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1552 */ 1553 mblk_t * 1554 ip_copymsg(mblk_t *mp) 1555 { 1556 mblk_t *nmp; 1557 ipsec_info_t *in; 1558 1559 if (mp->b_datap->db_type != M_CTL) 1560 return (copymsg(mp)); 1561 1562 in = (ipsec_info_t *)mp->b_rptr; 1563 1564 /* 1565 * Note that M_CTL is also used for delivering ICMP error messages 1566 * upstream to transport layers. 1567 */ 1568 if (in->ipsec_info_type != IPSEC_OUT && 1569 in->ipsec_info_type != IPSEC_IN) 1570 return (copymsg(mp)); 1571 1572 nmp = copymsg(mp->b_cont); 1573 1574 if (in->ipsec_info_type == IPSEC_OUT) 1575 return (ipsec_out_tag(mp, nmp)); 1576 else 1577 return (ipsec_in_tag(mp, nmp)); 1578 } 1579 1580 /* Generate an ICMP fragmentation needed message. */ 1581 static void 1582 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid) 1583 { 1584 icmph_t icmph; 1585 mblk_t *first_mp; 1586 boolean_t mctl_present; 1587 1588 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1589 1590 if (!(mp = icmp_pkt_err_ok(mp))) { 1591 if (mctl_present) 1592 freeb(first_mp); 1593 return; 1594 } 1595 1596 bzero(&icmph, sizeof (icmph_t)); 1597 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1598 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1599 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1600 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1601 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1602 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 1603 } 1604 1605 /* 1606 * icmp_inbound deals with ICMP messages in the following ways. 1607 * 1608 * 1) It needs to send a reply back and possibly delivering it 1609 * to the "interested" upper clients. 1610 * 2) It needs to send it to the upper clients only. 1611 * 3) It needs to change some values in IP only. 1612 * 4) It needs to change some values in IP and upper layers e.g TCP. 1613 * 1614 * We need to accomodate icmp messages coming in clear until we get 1615 * everything secure from the wire. If icmp_accept_clear_messages 1616 * is zero we check with the global policy and act accordingly. If 1617 * it is non-zero, we accept the message without any checks. But 1618 * *this does not mean* that this will be delivered to the upper 1619 * clients. By accepting we might send replies back, change our MTU 1620 * value etc. but delivery to the ULP/clients depends on their policy 1621 * dispositions. 1622 * 1623 * We handle the above 4 cases in the context of IPSEC in the 1624 * following way : 1625 * 1626 * 1) Send the reply back in the same way as the request came in. 1627 * If it came in encrypted, it goes out encrypted. If it came in 1628 * clear, it goes out in clear. Thus, this will prevent chosen 1629 * plain text attack. 1630 * 2) The client may or may not expect things to come in secure. 1631 * If it comes in secure, the policy constraints are checked 1632 * before delivering it to the upper layers. If it comes in 1633 * clear, ipsec_inbound_accept_clear will decide whether to 1634 * accept this in clear or not. In both the cases, if the returned 1635 * message (IP header + 8 bytes) that caused the icmp message has 1636 * AH/ESP headers, it is sent up to AH/ESP for validation before 1637 * sending up. If there are only 8 bytes of returned message, then 1638 * upper client will not be notified. 1639 * 3) Check with global policy to see whether it matches the constaints. 1640 * But this will be done only if icmp_accept_messages_in_clear is 1641 * zero. 1642 * 4) If we need to change both in IP and ULP, then the decision taken 1643 * while affecting the values in IP and while delivering up to TCP 1644 * should be the same. 1645 * 1646 * There are two cases. 1647 * 1648 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1649 * failed), we will not deliver it to the ULP, even though they 1650 * are *willing* to accept in *clear*. This is fine as our global 1651 * disposition to icmp messages asks us reject the datagram. 1652 * 1653 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1654 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1655 * to deliver it to ULP (policy failed), it can lead to 1656 * consistency problems. The cases known at this time are 1657 * ICMP_DESTINATION_UNREACHABLE messages with following code 1658 * values : 1659 * 1660 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1661 * and Upper layer rejects. Then the communication will 1662 * come to a stop. This is solved by making similar decisions 1663 * at both levels. Currently, when we are unable to deliver 1664 * to the Upper Layer (due to policy failures) while IP has 1665 * adjusted ire_max_frag, the next outbound datagram would 1666 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1667 * will be with the right level of protection. Thus the right 1668 * value will be communicated even if we are not able to 1669 * communicate when we get from the wire initially. But this 1670 * assumes there would be at least one outbound datagram after 1671 * IP has adjusted its ire_max_frag value. To make things 1672 * simpler, we accept in clear after the validation of 1673 * AH/ESP headers. 1674 * 1675 * - Other ICMP ERRORS : We may not be able to deliver it to the 1676 * upper layer depending on the level of protection the upper 1677 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1678 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1679 * should be accepted in clear when the Upper layer expects secure. 1680 * Thus the communication may get aborted by some bad ICMP 1681 * packets. 1682 * 1683 * IPQoS Notes: 1684 * The only instance when a packet is sent for processing is when there 1685 * isn't an ICMP client and if we are interested in it. 1686 * If there is a client, IPPF processing will take place in the 1687 * ip_fanout_proto routine. 1688 * 1689 * Zones notes: 1690 * The packet is only processed in the context of the specified zone: typically 1691 * only this zone will reply to an echo request, and only interested clients in 1692 * this zone will receive a copy of the packet. This means that the caller must 1693 * call icmp_inbound() for each relevant zone. 1694 */ 1695 static void 1696 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1697 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1698 ill_t *recv_ill, zoneid_t zoneid) 1699 { 1700 icmph_t *icmph; 1701 ipha_t *ipha; 1702 int iph_hdr_length; 1703 int hdr_length; 1704 boolean_t interested; 1705 uint32_t ts; 1706 uchar_t *wptr; 1707 ipif_t *ipif; 1708 mblk_t *first_mp; 1709 ipsec_in_t *ii; 1710 ire_t *src_ire; 1711 boolean_t onlink; 1712 timestruc_t now; 1713 uint32_t ill_index; 1714 1715 ASSERT(ill != NULL); 1716 1717 first_mp = mp; 1718 if (mctl_present) { 1719 mp = first_mp->b_cont; 1720 ASSERT(mp != NULL); 1721 } 1722 1723 ipha = (ipha_t *)mp->b_rptr; 1724 if (icmp_accept_clear_messages == 0) { 1725 first_mp = ipsec_check_global_policy(first_mp, NULL, 1726 ipha, NULL, mctl_present); 1727 if (first_mp == NULL) 1728 return; 1729 } 1730 1731 /* 1732 * On a labeled system, we have to check whether the zone itself is 1733 * permitted to receive raw traffic. 1734 */ 1735 if (is_system_labeled()) { 1736 if (zoneid == ALL_ZONES) 1737 zoneid = tsol_packet_to_zoneid(mp); 1738 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1739 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1740 zoneid)); 1741 BUMP_MIB(&icmp_mib, icmpInErrors); 1742 freemsg(first_mp); 1743 return; 1744 } 1745 } 1746 1747 /* 1748 * We have accepted the ICMP message. It means that we will 1749 * respond to the packet if needed. It may not be delivered 1750 * to the upper client depending on the policy constraints 1751 * and the disposition in ipsec_inbound_accept_clear. 1752 */ 1753 1754 ASSERT(ill != NULL); 1755 1756 BUMP_MIB(&icmp_mib, icmpInMsgs); 1757 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1758 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1759 /* Last chance to get real. */ 1760 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1761 BUMP_MIB(&icmp_mib, icmpInErrors); 1762 freemsg(first_mp); 1763 return; 1764 } 1765 /* Refresh iph following the pullup. */ 1766 ipha = (ipha_t *)mp->b_rptr; 1767 } 1768 /* ICMP header checksum, including checksum field, should be zero. */ 1769 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1770 IP_CSUM(mp, iph_hdr_length, 0)) { 1771 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1772 freemsg(first_mp); 1773 return; 1774 } 1775 /* The IP header will always be a multiple of four bytes */ 1776 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1777 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1778 icmph->icmph_code)); 1779 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1780 /* We will set "interested" to "true" if we want a copy */ 1781 interested = B_FALSE; 1782 switch (icmph->icmph_type) { 1783 case ICMP_ECHO_REPLY: 1784 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1785 break; 1786 case ICMP_DEST_UNREACHABLE: 1787 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1788 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1789 interested = B_TRUE; /* Pass up to transport */ 1790 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1791 break; 1792 case ICMP_SOURCE_QUENCH: 1793 interested = B_TRUE; /* Pass up to transport */ 1794 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1795 break; 1796 case ICMP_REDIRECT: 1797 if (!ip_ignore_redirect) 1798 interested = B_TRUE; 1799 BUMP_MIB(&icmp_mib, icmpInRedirects); 1800 break; 1801 case ICMP_ECHO_REQUEST: 1802 /* 1803 * Whether to respond to echo requests that come in as IP 1804 * broadcasts or as IP multicast is subject to debate 1805 * (what isn't?). We aim to please, you pick it. 1806 * Default is do it. 1807 */ 1808 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1809 /* unicast: always respond */ 1810 interested = B_TRUE; 1811 } else if (CLASSD(ipha->ipha_dst)) { 1812 /* multicast: respond based on tunable */ 1813 interested = ip_g_resp_to_echo_mcast; 1814 } else if (broadcast) { 1815 /* broadcast: respond based on tunable */ 1816 interested = ip_g_resp_to_echo_bcast; 1817 } 1818 BUMP_MIB(&icmp_mib, icmpInEchos); 1819 break; 1820 case ICMP_ROUTER_ADVERTISEMENT: 1821 case ICMP_ROUTER_SOLICITATION: 1822 break; 1823 case ICMP_TIME_EXCEEDED: 1824 interested = B_TRUE; /* Pass up to transport */ 1825 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1826 break; 1827 case ICMP_PARAM_PROBLEM: 1828 interested = B_TRUE; /* Pass up to transport */ 1829 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1830 break; 1831 case ICMP_TIME_STAMP_REQUEST: 1832 /* Response to Time Stamp Requests is local policy. */ 1833 if (ip_g_resp_to_timestamp && 1834 /* So is whether to respond if it was an IP broadcast. */ 1835 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1836 int tstamp_len = 3 * sizeof (uint32_t); 1837 1838 if (wptr + tstamp_len > mp->b_wptr) { 1839 if (!pullupmsg(mp, wptr + tstamp_len - 1840 mp->b_rptr)) { 1841 BUMP_MIB(&ip_mib, ipInDiscards); 1842 freemsg(first_mp); 1843 return; 1844 } 1845 /* Refresh ipha following the pullup. */ 1846 ipha = (ipha_t *)mp->b_rptr; 1847 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1848 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1849 } 1850 interested = B_TRUE; 1851 } 1852 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1853 break; 1854 case ICMP_TIME_STAMP_REPLY: 1855 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1856 break; 1857 case ICMP_INFO_REQUEST: 1858 /* Per RFC 1122 3.2.2.7, ignore this. */ 1859 case ICMP_INFO_REPLY: 1860 break; 1861 case ICMP_ADDRESS_MASK_REQUEST: 1862 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1863 /* TODO m_pullup of complete header? */ 1864 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1865 interested = B_TRUE; 1866 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1867 break; 1868 case ICMP_ADDRESS_MASK_REPLY: 1869 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1870 break; 1871 default: 1872 interested = B_TRUE; /* Pass up to transport */ 1873 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1874 break; 1875 } 1876 /* See if there is an ICMP client. */ 1877 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1878 /* If there is an ICMP client and we want one too, copy it. */ 1879 mblk_t *first_mp1; 1880 1881 if (!interested) { 1882 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1883 ip_policy, recv_ill, zoneid); 1884 return; 1885 } 1886 first_mp1 = ip_copymsg(first_mp); 1887 if (first_mp1 != NULL) { 1888 ip_fanout_proto(q, first_mp1, ill, ipha, 1889 0, mctl_present, ip_policy, recv_ill, zoneid); 1890 } 1891 } else if (!interested) { 1892 freemsg(first_mp); 1893 return; 1894 } else { 1895 /* 1896 * Initiate policy processing for this packet if ip_policy 1897 * is true. 1898 */ 1899 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1900 ill_index = ill->ill_phyint->phyint_ifindex; 1901 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1902 if (mp == NULL) { 1903 if (mctl_present) { 1904 freeb(first_mp); 1905 } 1906 BUMP_MIB(&icmp_mib, icmpInErrors); 1907 return; 1908 } 1909 } 1910 } 1911 /* We want to do something with it. */ 1912 /* Check db_ref to make sure we can modify the packet. */ 1913 if (mp->b_datap->db_ref > 1) { 1914 mblk_t *first_mp1; 1915 1916 first_mp1 = ip_copymsg(first_mp); 1917 freemsg(first_mp); 1918 if (!first_mp1) { 1919 BUMP_MIB(&icmp_mib, icmpOutDrops); 1920 return; 1921 } 1922 first_mp = first_mp1; 1923 if (mctl_present) { 1924 mp = first_mp->b_cont; 1925 ASSERT(mp != NULL); 1926 } else { 1927 mp = first_mp; 1928 } 1929 ipha = (ipha_t *)mp->b_rptr; 1930 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1931 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1932 } 1933 switch (icmph->icmph_type) { 1934 case ICMP_ADDRESS_MASK_REQUEST: 1935 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1936 if (ipif == NULL) { 1937 freemsg(first_mp); 1938 return; 1939 } 1940 /* 1941 * outging interface must be IPv4 1942 */ 1943 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1944 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1945 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1946 ipif_refrele(ipif); 1947 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1948 break; 1949 case ICMP_ECHO_REQUEST: 1950 icmph->icmph_type = ICMP_ECHO_REPLY; 1951 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1952 break; 1953 case ICMP_TIME_STAMP_REQUEST: { 1954 uint32_t *tsp; 1955 1956 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1957 tsp = (uint32_t *)wptr; 1958 tsp++; /* Skip past 'originate time' */ 1959 /* Compute # of milliseconds since midnight */ 1960 gethrestime(&now); 1961 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1962 now.tv_nsec / (NANOSEC / MILLISEC); 1963 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1964 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1965 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1966 break; 1967 } 1968 default: 1969 ipha = (ipha_t *)&icmph[1]; 1970 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1971 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1972 BUMP_MIB(&ip_mib, ipInDiscards); 1973 freemsg(first_mp); 1974 return; 1975 } 1976 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1977 ipha = (ipha_t *)&icmph[1]; 1978 } 1979 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1980 BUMP_MIB(&ip_mib, ipInDiscards); 1981 freemsg(first_mp); 1982 return; 1983 } 1984 hdr_length = IPH_HDR_LENGTH(ipha); 1985 if (hdr_length < sizeof (ipha_t)) { 1986 BUMP_MIB(&ip_mib, ipInDiscards); 1987 freemsg(first_mp); 1988 return; 1989 } 1990 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1991 if (!pullupmsg(mp, 1992 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1993 BUMP_MIB(&ip_mib, ipInDiscards); 1994 freemsg(first_mp); 1995 return; 1996 } 1997 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1998 ipha = (ipha_t *)&icmph[1]; 1999 } 2000 switch (icmph->icmph_type) { 2001 case ICMP_REDIRECT: 2002 /* 2003 * As there is no upper client to deliver, we don't 2004 * need the first_mp any more. 2005 */ 2006 if (mctl_present) { 2007 freeb(first_mp); 2008 } 2009 icmp_redirect(mp); 2010 return; 2011 case ICMP_DEST_UNREACHABLE: 2012 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 2013 if (!icmp_inbound_too_big(icmph, ipha, ill, 2014 zoneid, mp, iph_hdr_length)) { 2015 freemsg(first_mp); 2016 return; 2017 } 2018 /* 2019 * icmp_inbound_too_big() may alter mp. 2020 * Resynch ipha and icmph accordingly. 2021 */ 2022 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2023 ipha = (ipha_t *)&icmph[1]; 2024 } 2025 /* FALLTHRU */ 2026 default : 2027 /* 2028 * IPQoS notes: Since we have already done IPQoS 2029 * processing we don't want to do it again in 2030 * the fanout routines called by 2031 * icmp_inbound_error_fanout, hence the last 2032 * argument, ip_policy, is B_FALSE. 2033 */ 2034 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2035 ipha, iph_hdr_length, hdr_length, mctl_present, 2036 B_FALSE, recv_ill, zoneid); 2037 } 2038 return; 2039 } 2040 /* Send out an ICMP packet */ 2041 icmph->icmph_checksum = 0; 2042 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2043 if (icmph->icmph_checksum == 0) 2044 icmph->icmph_checksum = 0xFFFF; 2045 if (broadcast || CLASSD(ipha->ipha_dst)) { 2046 ipif_t *ipif_chosen; 2047 /* 2048 * Make it look like it was directed to us, so we don't look 2049 * like a fool with a broadcast or multicast source address. 2050 */ 2051 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2052 /* 2053 * Make sure that we haven't grabbed an interface that's DOWN. 2054 */ 2055 if (ipif != NULL) { 2056 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2057 ipha->ipha_src, zoneid); 2058 if (ipif_chosen != NULL) { 2059 ipif_refrele(ipif); 2060 ipif = ipif_chosen; 2061 } 2062 } 2063 if (ipif == NULL) { 2064 ip0dbg(("icmp_inbound: " 2065 "No source for broadcast/multicast:\n" 2066 "\tsrc 0x%x dst 0x%x ill %p " 2067 "ipif_lcl_addr 0x%x\n", 2068 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2069 (void *)ill, 2070 ill->ill_ipif->ipif_lcl_addr)); 2071 freemsg(first_mp); 2072 return; 2073 } 2074 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2075 ipha->ipha_dst = ipif->ipif_src_addr; 2076 ipif_refrele(ipif); 2077 } 2078 /* Reset time to live. */ 2079 ipha->ipha_ttl = ip_def_ttl; 2080 { 2081 /* Swap source and destination addresses */ 2082 ipaddr_t tmp; 2083 2084 tmp = ipha->ipha_src; 2085 ipha->ipha_src = ipha->ipha_dst; 2086 ipha->ipha_dst = tmp; 2087 } 2088 ipha->ipha_ident = 0; 2089 if (!IS_SIMPLE_IPH(ipha)) 2090 icmp_options_update(ipha); 2091 2092 /* 2093 * ICMP echo replies should go out on the same interface 2094 * the request came on as probes used by in.mpathd for detecting 2095 * NIC failures are ECHO packets. We turn-off load spreading 2096 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2097 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2098 * function. This is in turn handled by ip_wput and ip_newroute 2099 * to make sure that the packet goes out on the interface it came 2100 * in on. If we don't turnoff load spreading, the packets might get 2101 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2102 * to go out and in.mpathd would wrongly detect a failure or 2103 * mis-detect a NIC failure for link failure. As load spreading 2104 * can happen only if ill_group is not NULL, we do only for 2105 * that case and this does not affect the normal case. 2106 * 2107 * We turn off load spreading only on echo packets that came from 2108 * on-link hosts. If the interface route has been deleted, this will 2109 * not be enforced as we can't do much. For off-link hosts, as the 2110 * default routes in IPv4 does not typically have an ire_ipif 2111 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2112 * Moreover, expecting a default route through this interface may 2113 * not be correct. We use ipha_dst because of the swap above. 2114 */ 2115 onlink = B_FALSE; 2116 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2117 /* 2118 * First, we need to make sure that it is not one of our 2119 * local addresses. If we set onlink when it is one of 2120 * our local addresses, we will end up creating IRE_CACHES 2121 * for one of our local addresses. Then, we will never 2122 * accept packets for them afterwards. 2123 */ 2124 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2125 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2126 if (src_ire == NULL) { 2127 ipif = ipif_get_next_ipif(NULL, ill); 2128 if (ipif == NULL) { 2129 BUMP_MIB(&ip_mib, ipInDiscards); 2130 freemsg(mp); 2131 return; 2132 } 2133 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2134 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2135 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2136 ipif_refrele(ipif); 2137 if (src_ire != NULL) { 2138 onlink = B_TRUE; 2139 ire_refrele(src_ire); 2140 } 2141 } else { 2142 ire_refrele(src_ire); 2143 } 2144 } 2145 if (!mctl_present) { 2146 /* 2147 * This packet should go out the same way as it 2148 * came in i.e in clear. To make sure that global 2149 * policy will not be applied to this in ip_wput_ire, 2150 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2151 */ 2152 ASSERT(first_mp == mp); 2153 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2154 BUMP_MIB(&ip_mib, ipInDiscards); 2155 freemsg(mp); 2156 return; 2157 } 2158 ii = (ipsec_in_t *)first_mp->b_rptr; 2159 2160 /* This is not a secure packet */ 2161 ii->ipsec_in_secure = B_FALSE; 2162 if (onlink) { 2163 ii->ipsec_in_attach_if = B_TRUE; 2164 ii->ipsec_in_ill_index = 2165 ill->ill_phyint->phyint_ifindex; 2166 ii->ipsec_in_rill_index = 2167 recv_ill->ill_phyint->phyint_ifindex; 2168 } 2169 first_mp->b_cont = mp; 2170 } else if (onlink) { 2171 ii = (ipsec_in_t *)first_mp->b_rptr; 2172 ii->ipsec_in_attach_if = B_TRUE; 2173 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2174 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2175 } else { 2176 ii = (ipsec_in_t *)first_mp->b_rptr; 2177 } 2178 ii->ipsec_in_zoneid = zoneid; 2179 ASSERT(zoneid != ALL_ZONES); 2180 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2181 BUMP_MIB(&ip_mib, ipInDiscards); 2182 return; 2183 } 2184 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2185 put(WR(q), first_mp); 2186 } 2187 2188 static ipaddr_t 2189 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2190 { 2191 conn_t *connp; 2192 connf_t *connfp; 2193 ipaddr_t nexthop_addr = INADDR_ANY; 2194 int hdr_length = IPH_HDR_LENGTH(ipha); 2195 uint16_t *up; 2196 uint32_t ports; 2197 2198 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2199 switch (ipha->ipha_protocol) { 2200 case IPPROTO_TCP: 2201 { 2202 tcph_t *tcph; 2203 2204 /* do a reverse lookup */ 2205 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2206 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2207 TCPS_LISTEN); 2208 break; 2209 } 2210 case IPPROTO_UDP: 2211 { 2212 uint32_t dstport, srcport; 2213 2214 ((uint16_t *)&ports)[0] = up[1]; 2215 ((uint16_t *)&ports)[1] = up[0]; 2216 2217 /* Extract ports in net byte order */ 2218 dstport = htons(ntohl(ports) & 0xFFFF); 2219 srcport = htons(ntohl(ports) >> 16); 2220 2221 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2222 mutex_enter(&connfp->connf_lock); 2223 connp = connfp->connf_head; 2224 2225 /* do a reverse lookup */ 2226 while ((connp != NULL) && 2227 (!IPCL_UDP_MATCH(connp, dstport, 2228 ipha->ipha_src, srcport, ipha->ipha_dst) || 2229 connp->conn_zoneid != zoneid)) { 2230 connp = connp->conn_next; 2231 } 2232 if (connp != NULL) 2233 CONN_INC_REF(connp); 2234 mutex_exit(&connfp->connf_lock); 2235 break; 2236 } 2237 case IPPROTO_SCTP: 2238 { 2239 in6_addr_t map_src, map_dst; 2240 2241 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2242 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2243 ((uint16_t *)&ports)[0] = up[1]; 2244 ((uint16_t *)&ports)[1] = up[0]; 2245 2246 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2247 0, zoneid)) == NULL) { 2248 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2249 zoneid, ports, ipha); 2250 } else { 2251 CONN_INC_REF(connp); 2252 SCTP_REFRELE(CONN2SCTP(connp)); 2253 } 2254 break; 2255 } 2256 default: 2257 { 2258 ipha_t ripha; 2259 2260 ripha.ipha_src = ipha->ipha_dst; 2261 ripha.ipha_dst = ipha->ipha_src; 2262 ripha.ipha_protocol = ipha->ipha_protocol; 2263 2264 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2265 mutex_enter(&connfp->connf_lock); 2266 connp = connfp->connf_head; 2267 for (connp = connfp->connf_head; connp != NULL; 2268 connp = connp->conn_next) { 2269 if (IPCL_PROTO_MATCH(connp, 2270 ipha->ipha_protocol, &ripha, ill, 2271 0, zoneid)) { 2272 CONN_INC_REF(connp); 2273 break; 2274 } 2275 } 2276 mutex_exit(&connfp->connf_lock); 2277 } 2278 } 2279 if (connp != NULL) { 2280 if (connp->conn_nexthop_set) 2281 nexthop_addr = connp->conn_nexthop_v4; 2282 CONN_DEC_REF(connp); 2283 } 2284 return (nexthop_addr); 2285 } 2286 2287 /* Table from RFC 1191 */ 2288 static int icmp_frag_size_table[] = 2289 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2290 2291 /* 2292 * Process received ICMP Packet too big. 2293 * After updating any IRE it does the fanout to any matching transport streams. 2294 * Assumes the message has been pulled up till the IP header that caused 2295 * the error. 2296 * 2297 * Returns B_FALSE on failure and B_TRUE on success. 2298 */ 2299 static boolean_t 2300 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2301 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2302 { 2303 ire_t *ire, *first_ire; 2304 int mtu; 2305 int hdr_length; 2306 ipaddr_t nexthop_addr; 2307 2308 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2309 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2310 2311 hdr_length = IPH_HDR_LENGTH(ipha); 2312 2313 /* Drop if the original packet contained a source route */ 2314 if (ip_source_route_included(ipha)) { 2315 return (B_FALSE); 2316 } 2317 /* 2318 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2319 * header. 2320 */ 2321 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2322 mp->b_wptr) { 2323 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2324 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2325 BUMP_MIB(&ip_mib, ipInDiscards); 2326 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2327 return (B_FALSE); 2328 } 2329 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2330 ipha = (ipha_t *)&icmph[1]; 2331 } 2332 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2333 if (nexthop_addr != INADDR_ANY) { 2334 /* nexthop set */ 2335 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2336 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2337 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2338 } else { 2339 /* nexthop not set */ 2340 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2341 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2342 } 2343 2344 if (!first_ire) { 2345 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2346 ntohl(ipha->ipha_dst))); 2347 return (B_FALSE); 2348 } 2349 /* Check for MTU discovery advice as described in RFC 1191 */ 2350 mtu = ntohs(icmph->icmph_du_mtu); 2351 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2352 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2353 ire = ire->ire_next) { 2354 /* 2355 * Look for the connection to which this ICMP message is 2356 * directed. If it has the IP_NEXTHOP option set, then the 2357 * search is limited to IREs with the MATCH_IRE_PRIVATE 2358 * option. Else the search is limited to regular IREs. 2359 */ 2360 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2361 (nexthop_addr != ire->ire_gateway_addr)) || 2362 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2363 (nexthop_addr != INADDR_ANY))) 2364 continue; 2365 2366 mutex_enter(&ire->ire_lock); 2367 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2368 /* Reduce the IRE max frag value as advised. */ 2369 ip1dbg(("Received mtu from router: %d (was %d)\n", 2370 mtu, ire->ire_max_frag)); 2371 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2372 } else { 2373 uint32_t length; 2374 int i; 2375 2376 /* 2377 * Use the table from RFC 1191 to figure out 2378 * the next "plateau" based on the length in 2379 * the original IP packet. 2380 */ 2381 length = ntohs(ipha->ipha_length); 2382 if (ire->ire_max_frag <= length && 2383 ire->ire_max_frag >= length - hdr_length) { 2384 /* 2385 * Handle broken BSD 4.2 systems that 2386 * return the wrong iph_length in ICMP 2387 * errors. 2388 */ 2389 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2390 length, ire->ire_max_frag)); 2391 length -= hdr_length; 2392 } 2393 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2394 if (length > icmp_frag_size_table[i]) 2395 break; 2396 } 2397 if (i == A_CNT(icmp_frag_size_table)) { 2398 /* Smaller than 68! */ 2399 ip1dbg(("Too big for packet size %d\n", 2400 length)); 2401 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2402 ire->ire_frag_flag = 0; 2403 } else { 2404 mtu = icmp_frag_size_table[i]; 2405 ip1dbg(("Calculated mtu %d, packet size %d, " 2406 "before %d", mtu, length, 2407 ire->ire_max_frag)); 2408 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2409 ip1dbg((", after %d\n", ire->ire_max_frag)); 2410 } 2411 /* Record the new max frag size for the ULP. */ 2412 icmph->icmph_du_zero = 0; 2413 icmph->icmph_du_mtu = 2414 htons((uint16_t)ire->ire_max_frag); 2415 } 2416 mutex_exit(&ire->ire_lock); 2417 } 2418 rw_exit(&first_ire->ire_bucket->irb_lock); 2419 ire_refrele(first_ire); 2420 return (B_TRUE); 2421 } 2422 2423 /* 2424 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2425 * calls this function. 2426 */ 2427 static mblk_t * 2428 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2429 { 2430 ipha_t *ipha; 2431 icmph_t *icmph; 2432 ipha_t *in_ipha; 2433 int length; 2434 2435 ASSERT(mp->b_datap->db_type == M_DATA); 2436 2437 /* 2438 * For Self-encapsulated packets, we added an extra IP header 2439 * without the options. Inner IP header is the one from which 2440 * the outer IP header was formed. Thus, we need to remove the 2441 * outer IP header. To do this, we pullup the whole message 2442 * and overlay whatever follows the outer IP header over the 2443 * outer IP header. 2444 */ 2445 2446 if (!pullupmsg(mp, -1)) { 2447 BUMP_MIB(&ip_mib, ipInDiscards); 2448 return (NULL); 2449 } 2450 2451 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2452 ipha = (ipha_t *)&icmph[1]; 2453 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2454 2455 /* 2456 * The length that we want to overlay is following the inner 2457 * IP header. Subtracting the IP header + icmp header + outer 2458 * IP header's length should give us the length that we want to 2459 * overlay. 2460 */ 2461 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2462 hdr_length; 2463 /* 2464 * Overlay whatever follows the inner header over the 2465 * outer header. 2466 */ 2467 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2468 2469 /* Set the wptr to account for the outer header */ 2470 mp->b_wptr -= hdr_length; 2471 return (mp); 2472 } 2473 2474 /* 2475 * Try to pass the ICMP message upstream in case the ULP cares. 2476 * 2477 * If the packet that caused the ICMP error is secure, we send 2478 * it to AH/ESP to make sure that the attached packet has a 2479 * valid association. ipha in the code below points to the 2480 * IP header of the packet that caused the error. 2481 * 2482 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2483 * in the context of IPSEC. Normally we tell the upper layer 2484 * whenever we send the ire (including ip_bind), the IPSEC header 2485 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2486 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2487 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2488 * same thing. As TCP has the IPSEC options size that needs to be 2489 * adjusted, we just pass the MTU unchanged. 2490 * 2491 * IFN could have been generated locally or by some router. 2492 * 2493 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2494 * This happens because IP adjusted its value of MTU on an 2495 * earlier IFN message and could not tell the upper layer, 2496 * the new adjusted value of MTU e.g. Packet was encrypted 2497 * or there was not enough information to fanout to upper 2498 * layers. Thus on the next outbound datagram, ip_wput_ire 2499 * generates the IFN, where IPSEC processing has *not* been 2500 * done. 2501 * 2502 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2503 * could have generated this. This happens because ire_max_frag 2504 * value in IP was set to a new value, while the IPSEC processing 2505 * was being done and after we made the fragmentation check in 2506 * ip_wput_ire. Thus on return from IPSEC processing, 2507 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2508 * and generates the IFN. As IPSEC processing is over, we fanout 2509 * to AH/ESP to remove the header. 2510 * 2511 * In both these cases, ipsec_in_loopback will be set indicating 2512 * that IFN was generated locally. 2513 * 2514 * ROUTER : IFN could be secure or non-secure. 2515 * 2516 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2517 * packet in error has AH/ESP headers to validate the AH/ESP 2518 * headers. AH/ESP will verify whether there is a valid SA or 2519 * not and send it back. We will fanout again if we have more 2520 * data in the packet. 2521 * 2522 * If the packet in error does not have AH/ESP, we handle it 2523 * like any other case. 2524 * 2525 * * NON_SECURE : If the packet in error has AH/ESP headers, 2526 * we attach a dummy ipsec_in and send it up to AH/ESP 2527 * for validation. AH/ESP will verify whether there is a 2528 * valid SA or not and send it back. We will fanout again if 2529 * we have more data in the packet. 2530 * 2531 * If the packet in error does not have AH/ESP, we handle it 2532 * like any other case. 2533 */ 2534 static void 2535 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2536 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2537 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2538 zoneid_t zoneid) 2539 { 2540 uint16_t *up; /* Pointer to ports in ULP header */ 2541 uint32_t ports; /* reversed ports for fanout */ 2542 ipha_t ripha; /* With reversed addresses */ 2543 mblk_t *first_mp; 2544 ipsec_in_t *ii; 2545 tcph_t *tcph; 2546 conn_t *connp; 2547 2548 first_mp = mp; 2549 if (mctl_present) { 2550 mp = first_mp->b_cont; 2551 ASSERT(mp != NULL); 2552 2553 ii = (ipsec_in_t *)first_mp->b_rptr; 2554 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2555 } else { 2556 ii = NULL; 2557 } 2558 2559 switch (ipha->ipha_protocol) { 2560 case IPPROTO_UDP: 2561 /* 2562 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2563 * transport header. 2564 */ 2565 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2566 mp->b_wptr) { 2567 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2568 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2569 BUMP_MIB(&ip_mib, ipInDiscards); 2570 goto drop_pkt; 2571 } 2572 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2573 ipha = (ipha_t *)&icmph[1]; 2574 } 2575 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2576 2577 /* 2578 * Attempt to find a client stream based on port. 2579 * Note that we do a reverse lookup since the header is 2580 * in the form we sent it out. 2581 * The ripha header is only used for the IP_UDP_MATCH and we 2582 * only set the src and dst addresses and protocol. 2583 */ 2584 ripha.ipha_src = ipha->ipha_dst; 2585 ripha.ipha_dst = ipha->ipha_src; 2586 ripha.ipha_protocol = ipha->ipha_protocol; 2587 ((uint16_t *)&ports)[0] = up[1]; 2588 ((uint16_t *)&ports)[1] = up[0]; 2589 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2590 ntohl(ipha->ipha_src), ntohs(up[0]), 2591 ntohl(ipha->ipha_dst), ntohs(up[1]), 2592 icmph->icmph_type, icmph->icmph_code)); 2593 2594 /* Have to change db_type after any pullupmsg */ 2595 DB_TYPE(mp) = M_CTL; 2596 2597 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2598 mctl_present, ip_policy, recv_ill, zoneid); 2599 return; 2600 2601 case IPPROTO_TCP: 2602 /* 2603 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2604 * transport header. 2605 */ 2606 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2607 mp->b_wptr) { 2608 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2609 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2610 BUMP_MIB(&ip_mib, ipInDiscards); 2611 goto drop_pkt; 2612 } 2613 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2614 ipha = (ipha_t *)&icmph[1]; 2615 } 2616 /* 2617 * Find a TCP client stream for this packet. 2618 * Note that we do a reverse lookup since the header is 2619 * in the form we sent it out. 2620 */ 2621 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2622 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2623 if (connp == NULL) { 2624 BUMP_MIB(&ip_mib, ipInDiscards); 2625 goto drop_pkt; 2626 } 2627 2628 /* Have to change db_type after any pullupmsg */ 2629 DB_TYPE(mp) = M_CTL; 2630 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2631 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2632 return; 2633 2634 case IPPROTO_SCTP: 2635 /* 2636 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2637 * transport header. 2638 */ 2639 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2640 mp->b_wptr) { 2641 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2642 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2643 BUMP_MIB(&ip_mib, ipInDiscards); 2644 goto drop_pkt; 2645 } 2646 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2647 ipha = (ipha_t *)&icmph[1]; 2648 } 2649 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2650 /* 2651 * Find a SCTP client stream for this packet. 2652 * Note that we do a reverse lookup since the header is 2653 * in the form we sent it out. 2654 * The ripha header is only used for the matching and we 2655 * only set the src and dst addresses, protocol, and version. 2656 */ 2657 ripha.ipha_src = ipha->ipha_dst; 2658 ripha.ipha_dst = ipha->ipha_src; 2659 ripha.ipha_protocol = ipha->ipha_protocol; 2660 ripha.ipha_version_and_hdr_length = 2661 ipha->ipha_version_and_hdr_length; 2662 ((uint16_t *)&ports)[0] = up[1]; 2663 ((uint16_t *)&ports)[1] = up[0]; 2664 2665 /* Have to change db_type after any pullupmsg */ 2666 DB_TYPE(mp) = M_CTL; 2667 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2668 mctl_present, ip_policy, 0, zoneid); 2669 return; 2670 2671 case IPPROTO_ESP: 2672 case IPPROTO_AH: { 2673 int ipsec_rc; 2674 2675 /* 2676 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2677 * We will re-use the IPSEC_IN if it is already present as 2678 * AH/ESP will not affect any fields in the IPSEC_IN for 2679 * ICMP errors. If there is no IPSEC_IN, allocate a new 2680 * one and attach it in the front. 2681 */ 2682 if (ii != NULL) { 2683 /* 2684 * ip_fanout_proto_again converts the ICMP errors 2685 * that come back from AH/ESP to M_DATA so that 2686 * if it is non-AH/ESP and we do a pullupmsg in 2687 * this function, it would work. Convert it back 2688 * to M_CTL before we send up as this is a ICMP 2689 * error. This could have been generated locally or 2690 * by some router. Validate the inner IPSEC 2691 * headers. 2692 * 2693 * NOTE : ill_index is used by ip_fanout_proto_again 2694 * to locate the ill. 2695 */ 2696 ASSERT(ill != NULL); 2697 ii->ipsec_in_ill_index = 2698 ill->ill_phyint->phyint_ifindex; 2699 ii->ipsec_in_rill_index = 2700 recv_ill->ill_phyint->phyint_ifindex; 2701 DB_TYPE(first_mp->b_cont) = M_CTL; 2702 } else { 2703 /* 2704 * IPSEC_IN is not present. We attach a ipsec_in 2705 * message and send up to IPSEC for validating 2706 * and removing the IPSEC headers. Clear 2707 * ipsec_in_secure so that when we return 2708 * from IPSEC, we don't mistakenly think that this 2709 * is a secure packet came from the network. 2710 * 2711 * NOTE : ill_index is used by ip_fanout_proto_again 2712 * to locate the ill. 2713 */ 2714 ASSERT(first_mp == mp); 2715 first_mp = ipsec_in_alloc(B_TRUE); 2716 if (first_mp == NULL) { 2717 freemsg(mp); 2718 BUMP_MIB(&ip_mib, ipInDiscards); 2719 return; 2720 } 2721 ii = (ipsec_in_t *)first_mp->b_rptr; 2722 2723 /* This is not a secure packet */ 2724 ii->ipsec_in_secure = B_FALSE; 2725 first_mp->b_cont = mp; 2726 DB_TYPE(mp) = M_CTL; 2727 ASSERT(ill != NULL); 2728 ii->ipsec_in_ill_index = 2729 ill->ill_phyint->phyint_ifindex; 2730 ii->ipsec_in_rill_index = 2731 recv_ill->ill_phyint->phyint_ifindex; 2732 } 2733 ip2dbg(("icmp_inbound_error: ipsec\n")); 2734 2735 if (!ipsec_loaded()) { 2736 ip_proto_not_sup(q, first_mp, 0, zoneid); 2737 return; 2738 } 2739 2740 if (ipha->ipha_protocol == IPPROTO_ESP) 2741 ipsec_rc = ipsecesp_icmp_error(first_mp); 2742 else 2743 ipsec_rc = ipsecah_icmp_error(first_mp); 2744 if (ipsec_rc == IPSEC_STATUS_FAILED) 2745 return; 2746 2747 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2748 return; 2749 } 2750 default: 2751 /* 2752 * The ripha header is only used for the lookup and we 2753 * only set the src and dst addresses and protocol. 2754 */ 2755 ripha.ipha_src = ipha->ipha_dst; 2756 ripha.ipha_dst = ipha->ipha_src; 2757 ripha.ipha_protocol = ipha->ipha_protocol; 2758 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2759 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2760 ntohl(ipha->ipha_dst), 2761 icmph->icmph_type, icmph->icmph_code)); 2762 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2763 ipha_t *in_ipha; 2764 2765 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2766 mp->b_wptr) { 2767 if (!pullupmsg(mp, (uchar_t *)ipha + 2768 hdr_length + sizeof (ipha_t) - 2769 mp->b_rptr)) { 2770 2771 BUMP_MIB(&ip_mib, ipInDiscards); 2772 goto drop_pkt; 2773 } 2774 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2775 ipha = (ipha_t *)&icmph[1]; 2776 } 2777 /* 2778 * Caller has verified that length has to be 2779 * at least the size of IP header. 2780 */ 2781 ASSERT(hdr_length >= sizeof (ipha_t)); 2782 /* 2783 * Check the sanity of the inner IP header like 2784 * we did for the outer header. 2785 */ 2786 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2787 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2788 BUMP_MIB(&ip_mib, ipInDiscards); 2789 goto drop_pkt; 2790 } 2791 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2792 BUMP_MIB(&ip_mib, ipInDiscards); 2793 goto drop_pkt; 2794 } 2795 /* Check for Self-encapsulated tunnels */ 2796 if (in_ipha->ipha_src == ipha->ipha_src && 2797 in_ipha->ipha_dst == ipha->ipha_dst) { 2798 2799 mp = icmp_inbound_self_encap_error(mp, 2800 iph_hdr_length, hdr_length); 2801 if (mp == NULL) 2802 goto drop_pkt; 2803 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2804 ipha = (ipha_t *)&icmph[1]; 2805 hdr_length = IPH_HDR_LENGTH(ipha); 2806 /* 2807 * The packet in error is self-encapsualted. 2808 * And we are finding it further encapsulated 2809 * which we could not have possibly generated. 2810 */ 2811 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2812 BUMP_MIB(&ip_mib, ipInDiscards); 2813 goto drop_pkt; 2814 } 2815 icmp_inbound_error_fanout(q, ill, first_mp, 2816 icmph, ipha, iph_hdr_length, hdr_length, 2817 mctl_present, ip_policy, recv_ill, zoneid); 2818 return; 2819 } 2820 } 2821 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2822 ipha->ipha_protocol == IPPROTO_IPV6) && 2823 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2824 ii != NULL && 2825 ii->ipsec_in_loopback && 2826 ii->ipsec_in_secure) { 2827 /* 2828 * For IP tunnels that get a looped-back 2829 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2830 * reported new MTU to take into account the IPsec 2831 * headers protecting this configured tunnel. 2832 * 2833 * This allows the tunnel module (tun.c) to blindly 2834 * accept the MTU reported in an ICMP "too big" 2835 * message. 2836 * 2837 * Non-looped back ICMP messages will just be 2838 * handled by the security protocols (if needed), 2839 * and the first subsequent packet will hit this 2840 * path. 2841 */ 2842 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2843 ipsec_in_extra_length(first_mp)); 2844 } 2845 /* Have to change db_type after any pullupmsg */ 2846 DB_TYPE(mp) = M_CTL; 2847 2848 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2849 ip_policy, recv_ill, zoneid); 2850 return; 2851 } 2852 /* NOTREACHED */ 2853 drop_pkt:; 2854 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2855 freemsg(first_mp); 2856 } 2857 2858 /* 2859 * Common IP options parser. 2860 * 2861 * Setup routine: fill in *optp with options-parsing state, then 2862 * tail-call ipoptp_next to return the first option. 2863 */ 2864 uint8_t 2865 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2866 { 2867 uint32_t totallen; /* total length of all options */ 2868 2869 totallen = ipha->ipha_version_and_hdr_length - 2870 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2871 totallen <<= 2; 2872 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2873 optp->ipoptp_end = optp->ipoptp_next + totallen; 2874 optp->ipoptp_flags = 0; 2875 return (ipoptp_next(optp)); 2876 } 2877 2878 /* 2879 * Common IP options parser: extract next option. 2880 */ 2881 uint8_t 2882 ipoptp_next(ipoptp_t *optp) 2883 { 2884 uint8_t *end = optp->ipoptp_end; 2885 uint8_t *cur = optp->ipoptp_next; 2886 uint8_t opt, len, pointer; 2887 2888 /* 2889 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2890 * has been corrupted. 2891 */ 2892 ASSERT(cur <= end); 2893 2894 if (cur == end) 2895 return (IPOPT_EOL); 2896 2897 opt = cur[IPOPT_OPTVAL]; 2898 2899 /* 2900 * Skip any NOP options. 2901 */ 2902 while (opt == IPOPT_NOP) { 2903 cur++; 2904 if (cur == end) 2905 return (IPOPT_EOL); 2906 opt = cur[IPOPT_OPTVAL]; 2907 } 2908 2909 if (opt == IPOPT_EOL) 2910 return (IPOPT_EOL); 2911 2912 /* 2913 * Option requiring a length. 2914 */ 2915 if ((cur + 1) >= end) { 2916 optp->ipoptp_flags |= IPOPTP_ERROR; 2917 return (IPOPT_EOL); 2918 } 2919 len = cur[IPOPT_OLEN]; 2920 if (len < 2) { 2921 optp->ipoptp_flags |= IPOPTP_ERROR; 2922 return (IPOPT_EOL); 2923 } 2924 optp->ipoptp_cur = cur; 2925 optp->ipoptp_len = len; 2926 optp->ipoptp_next = cur + len; 2927 if (cur + len > end) { 2928 optp->ipoptp_flags |= IPOPTP_ERROR; 2929 return (IPOPT_EOL); 2930 } 2931 2932 /* 2933 * For the options which require a pointer field, make sure 2934 * its there, and make sure it points to either something 2935 * inside this option, or the end of the option. 2936 */ 2937 switch (opt) { 2938 case IPOPT_RR: 2939 case IPOPT_TS: 2940 case IPOPT_LSRR: 2941 case IPOPT_SSRR: 2942 if (len <= IPOPT_OFFSET) { 2943 optp->ipoptp_flags |= IPOPTP_ERROR; 2944 return (opt); 2945 } 2946 pointer = cur[IPOPT_OFFSET]; 2947 if (pointer - 1 > len) { 2948 optp->ipoptp_flags |= IPOPTP_ERROR; 2949 return (opt); 2950 } 2951 break; 2952 } 2953 2954 /* 2955 * Sanity check the pointer field based on the type of the 2956 * option. 2957 */ 2958 switch (opt) { 2959 case IPOPT_RR: 2960 case IPOPT_SSRR: 2961 case IPOPT_LSRR: 2962 if (pointer < IPOPT_MINOFF_SR) 2963 optp->ipoptp_flags |= IPOPTP_ERROR; 2964 break; 2965 case IPOPT_TS: 2966 if (pointer < IPOPT_MINOFF_IT) 2967 optp->ipoptp_flags |= IPOPTP_ERROR; 2968 /* 2969 * Note that the Internet Timestamp option also 2970 * contains two four bit fields (the Overflow field, 2971 * and the Flag field), which follow the pointer 2972 * field. We don't need to check that these fields 2973 * fall within the length of the option because this 2974 * was implicitely done above. We've checked that the 2975 * pointer value is at least IPOPT_MINOFF_IT, and that 2976 * it falls within the option. Since IPOPT_MINOFF_IT > 2977 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2978 */ 2979 ASSERT(len > IPOPT_POS_OV_FLG); 2980 break; 2981 } 2982 2983 return (opt); 2984 } 2985 2986 /* 2987 * Use the outgoing IP header to create an IP_OPTIONS option the way 2988 * it was passed down from the application. 2989 */ 2990 int 2991 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2992 { 2993 ipoptp_t opts; 2994 const uchar_t *opt; 2995 uint8_t optval; 2996 uint8_t optlen; 2997 uint32_t len = 0; 2998 uchar_t *buf1 = buf; 2999 3000 buf += IP_ADDR_LEN; /* Leave room for final destination */ 3001 len += IP_ADDR_LEN; 3002 bzero(buf1, IP_ADDR_LEN); 3003 3004 /* 3005 * OK to cast away const here, as we don't store through the returned 3006 * opts.ipoptp_cur pointer. 3007 */ 3008 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 3009 optval != IPOPT_EOL; 3010 optval = ipoptp_next(&opts)) { 3011 int off; 3012 3013 opt = opts.ipoptp_cur; 3014 optlen = opts.ipoptp_len; 3015 switch (optval) { 3016 case IPOPT_SSRR: 3017 case IPOPT_LSRR: 3018 3019 /* 3020 * Insert ipha_dst as the first entry in the source 3021 * route and move down the entries on step. 3022 * The last entry gets placed at buf1. 3023 */ 3024 buf[IPOPT_OPTVAL] = optval; 3025 buf[IPOPT_OLEN] = optlen; 3026 buf[IPOPT_OFFSET] = optlen; 3027 3028 off = optlen - IP_ADDR_LEN; 3029 if (off < 0) { 3030 /* No entries in source route */ 3031 break; 3032 } 3033 /* Last entry in source route */ 3034 bcopy(opt + off, buf1, IP_ADDR_LEN); 3035 off -= IP_ADDR_LEN; 3036 3037 while (off > 0) { 3038 bcopy(opt + off, 3039 buf + off + IP_ADDR_LEN, 3040 IP_ADDR_LEN); 3041 off -= IP_ADDR_LEN; 3042 } 3043 /* ipha_dst into first slot */ 3044 bcopy(&ipha->ipha_dst, 3045 buf + off + IP_ADDR_LEN, 3046 IP_ADDR_LEN); 3047 buf += optlen; 3048 len += optlen; 3049 break; 3050 3051 case IPOPT_COMSEC: 3052 case IPOPT_SECURITY: 3053 /* if passing up a label is not ok, then remove */ 3054 if (is_system_labeled()) 3055 break; 3056 /* FALLTHROUGH */ 3057 default: 3058 bcopy(opt, buf, optlen); 3059 buf += optlen; 3060 len += optlen; 3061 break; 3062 } 3063 } 3064 done: 3065 /* Pad the resulting options */ 3066 while (len & 0x3) { 3067 *buf++ = IPOPT_EOL; 3068 len++; 3069 } 3070 return (len); 3071 } 3072 3073 /* 3074 * Update any record route or timestamp options to include this host. 3075 * Reverse any source route option. 3076 * This routine assumes that the options are well formed i.e. that they 3077 * have already been checked. 3078 */ 3079 static void 3080 icmp_options_update(ipha_t *ipha) 3081 { 3082 ipoptp_t opts; 3083 uchar_t *opt; 3084 uint8_t optval; 3085 ipaddr_t src; /* Our local address */ 3086 ipaddr_t dst; 3087 3088 ip2dbg(("icmp_options_update\n")); 3089 src = ipha->ipha_src; 3090 dst = ipha->ipha_dst; 3091 3092 for (optval = ipoptp_first(&opts, ipha); 3093 optval != IPOPT_EOL; 3094 optval = ipoptp_next(&opts)) { 3095 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3096 opt = opts.ipoptp_cur; 3097 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3098 optval, opts.ipoptp_len)); 3099 switch (optval) { 3100 int off1, off2; 3101 case IPOPT_SSRR: 3102 case IPOPT_LSRR: 3103 /* 3104 * Reverse the source route. The first entry 3105 * should be the next to last one in the current 3106 * source route (the last entry is our address). 3107 * The last entry should be the final destination. 3108 */ 3109 off1 = IPOPT_MINOFF_SR - 1; 3110 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3111 if (off2 < 0) { 3112 /* No entries in source route */ 3113 ip1dbg(( 3114 "icmp_options_update: bad src route\n")); 3115 break; 3116 } 3117 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3118 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3119 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3120 off2 -= IP_ADDR_LEN; 3121 3122 while (off1 < off2) { 3123 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3124 bcopy((char *)opt + off2, (char *)opt + off1, 3125 IP_ADDR_LEN); 3126 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3127 off1 += IP_ADDR_LEN; 3128 off2 -= IP_ADDR_LEN; 3129 } 3130 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3131 break; 3132 } 3133 } 3134 } 3135 3136 /* 3137 * Process received ICMP Redirect messages. 3138 */ 3139 /* ARGSUSED */ 3140 static void 3141 icmp_redirect(mblk_t *mp) 3142 { 3143 ipha_t *ipha; 3144 int iph_hdr_length; 3145 icmph_t *icmph; 3146 ipha_t *ipha_err; 3147 ire_t *ire; 3148 ire_t *prev_ire; 3149 ire_t *save_ire; 3150 ipaddr_t src, dst, gateway; 3151 iulp_t ulp_info = { 0 }; 3152 int error; 3153 3154 ipha = (ipha_t *)mp->b_rptr; 3155 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3156 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3157 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3158 BUMP_MIB(&icmp_mib, icmpInErrors); 3159 freemsg(mp); 3160 return; 3161 } 3162 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3163 ipha_err = (ipha_t *)&icmph[1]; 3164 src = ipha->ipha_src; 3165 dst = ipha_err->ipha_dst; 3166 gateway = icmph->icmph_rd_gateway; 3167 /* Make sure the new gateway is reachable somehow. */ 3168 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3169 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3170 /* 3171 * Make sure we had a route for the dest in question and that 3172 * that route was pointing to the old gateway (the source of the 3173 * redirect packet.) 3174 */ 3175 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3176 NULL, MATCH_IRE_GW); 3177 /* 3178 * Check that 3179 * the redirect was not from ourselves 3180 * the new gateway and the old gateway are directly reachable 3181 */ 3182 if (!prev_ire || 3183 !ire || 3184 ire->ire_type == IRE_LOCAL) { 3185 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3186 freemsg(mp); 3187 if (ire != NULL) 3188 ire_refrele(ire); 3189 if (prev_ire != NULL) 3190 ire_refrele(prev_ire); 3191 return; 3192 } 3193 3194 /* 3195 * Should we use the old ULP info to create the new gateway? From 3196 * a user's perspective, we should inherit the info so that it 3197 * is a "smooth" transition. If we do not do that, then new 3198 * connections going thru the new gateway will have no route metrics, 3199 * which is counter-intuitive to user. From a network point of 3200 * view, this may or may not make sense even though the new gateway 3201 * is still directly connected to us so the route metrics should not 3202 * change much. 3203 * 3204 * But if the old ire_uinfo is not initialized, we do another 3205 * recursive lookup on the dest using the new gateway. There may 3206 * be a route to that. If so, use it to initialize the redirect 3207 * route. 3208 */ 3209 if (prev_ire->ire_uinfo.iulp_set) { 3210 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3211 } else { 3212 ire_t *tmp_ire; 3213 ire_t *sire; 3214 3215 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3216 ALL_ZONES, 0, NULL, 3217 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3218 if (sire != NULL) { 3219 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3220 /* 3221 * If sire != NULL, ire_ftable_lookup() should not 3222 * return a NULL value. 3223 */ 3224 ASSERT(tmp_ire != NULL); 3225 ire_refrele(tmp_ire); 3226 ire_refrele(sire); 3227 } else if (tmp_ire != NULL) { 3228 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3229 sizeof (iulp_t)); 3230 ire_refrele(tmp_ire); 3231 } 3232 } 3233 if (prev_ire->ire_type == IRE_CACHE) 3234 ire_delete(prev_ire); 3235 ire_refrele(prev_ire); 3236 /* 3237 * TODO: more precise handling for cases 0, 2, 3, the latter two 3238 * require TOS routing 3239 */ 3240 switch (icmph->icmph_code) { 3241 case 0: 3242 case 1: 3243 /* TODO: TOS specificity for cases 2 and 3 */ 3244 case 2: 3245 case 3: 3246 break; 3247 default: 3248 freemsg(mp); 3249 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3250 ire_refrele(ire); 3251 return; 3252 } 3253 /* 3254 * Create a Route Association. This will allow us to remember that 3255 * someone we believe told us to use the particular gateway. 3256 */ 3257 save_ire = ire; 3258 ire = ire_create( 3259 (uchar_t *)&dst, /* dest addr */ 3260 (uchar_t *)&ip_g_all_ones, /* mask */ 3261 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3262 (uchar_t *)&gateway, /* gateway addr */ 3263 NULL, /* no in_srcaddr */ 3264 &save_ire->ire_max_frag, /* max frag */ 3265 NULL, /* Fast Path header */ 3266 NULL, /* no rfq */ 3267 NULL, /* no stq */ 3268 IRE_HOST_REDIRECT, 3269 NULL, 3270 NULL, 3271 NULL, 3272 0, 3273 0, 3274 0, 3275 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3276 &ulp_info, 3277 NULL, 3278 NULL); 3279 3280 if (ire == NULL) { 3281 freemsg(mp); 3282 ire_refrele(save_ire); 3283 return; 3284 } 3285 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3286 ire_refrele(save_ire); 3287 atomic_inc_32(&ip_redirect_cnt); 3288 3289 if (error == 0) { 3290 ire_refrele(ire); /* Held in ire_add_v4 */ 3291 /* tell routing sockets that we received a redirect */ 3292 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3293 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3294 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3295 } 3296 3297 /* 3298 * Delete any existing IRE_HOST_REDIRECT for this destination. 3299 * This together with the added IRE has the effect of 3300 * modifying an existing redirect. 3301 */ 3302 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 3303 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3304 if (prev_ire) { 3305 ire_delete(prev_ire); 3306 ire_refrele(prev_ire); 3307 } 3308 3309 freemsg(mp); 3310 } 3311 3312 /* 3313 * Generate an ICMP parameter problem message. 3314 */ 3315 static void 3316 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid) 3317 { 3318 icmph_t icmph; 3319 boolean_t mctl_present; 3320 mblk_t *first_mp; 3321 3322 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3323 3324 if (!(mp = icmp_pkt_err_ok(mp))) { 3325 if (mctl_present) 3326 freeb(first_mp); 3327 return; 3328 } 3329 3330 bzero(&icmph, sizeof (icmph_t)); 3331 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3332 icmph.icmph_pp_ptr = ptr; 3333 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3334 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3335 } 3336 3337 /* 3338 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3339 * the ICMP header pointed to by "stuff". (May be called as writer.) 3340 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3341 * an icmp error packet can be sent. 3342 * Assigns an appropriate source address to the packet. If ipha_dst is 3343 * one of our addresses use it for source. Otherwise pick a source based 3344 * on a route lookup back to ipha_src. 3345 * Note that ipha_src must be set here since the 3346 * packet is likely to arrive on an ill queue in ip_wput() which will 3347 * not set a source address. 3348 */ 3349 static void 3350 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3351 boolean_t mctl_present, zoneid_t zoneid) 3352 { 3353 ipaddr_t dst; 3354 icmph_t *icmph; 3355 ipha_t *ipha; 3356 uint_t len_needed; 3357 size_t msg_len; 3358 mblk_t *mp1; 3359 ipaddr_t src; 3360 ire_t *ire; 3361 mblk_t *ipsec_mp; 3362 ipsec_out_t *io = NULL; 3363 boolean_t xmit_if_on = B_FALSE; 3364 3365 if (mctl_present) { 3366 /* 3367 * If it is : 3368 * 3369 * 1) a IPSEC_OUT, then this is caused by outbound 3370 * datagram originating on this host. IPSEC processing 3371 * may or may not have been done. Refer to comments above 3372 * icmp_inbound_error_fanout for details. 3373 * 3374 * 2) a IPSEC_IN if we are generating a icmp_message 3375 * for an incoming datagram destined for us i.e called 3376 * from ip_fanout_send_icmp. 3377 */ 3378 ipsec_info_t *in; 3379 ipsec_mp = mp; 3380 mp = ipsec_mp->b_cont; 3381 3382 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3383 ipha = (ipha_t *)mp->b_rptr; 3384 3385 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3386 in->ipsec_info_type == IPSEC_IN); 3387 3388 if (in->ipsec_info_type == IPSEC_IN) { 3389 /* 3390 * Convert the IPSEC_IN to IPSEC_OUT. 3391 */ 3392 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3393 BUMP_MIB(&ip_mib, ipOutDiscards); 3394 return; 3395 } 3396 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3397 } else { 3398 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3399 io = (ipsec_out_t *)in; 3400 if (io->ipsec_out_xmit_if) 3401 xmit_if_on = B_TRUE; 3402 /* 3403 * Clear out ipsec_out_proc_begin, so we do a fresh 3404 * ire lookup. 3405 */ 3406 io->ipsec_out_proc_begin = B_FALSE; 3407 } 3408 ASSERT(zoneid == io->ipsec_out_zoneid); 3409 ASSERT(zoneid != ALL_ZONES); 3410 } else { 3411 /* 3412 * This is in clear. The icmp message we are building 3413 * here should go out in clear. 3414 * 3415 * Pardon the convolution of it all, but it's easier to 3416 * allocate a "use cleartext" IPSEC_IN message and convert 3417 * it than it is to allocate a new one. 3418 */ 3419 ipsec_in_t *ii; 3420 ASSERT(DB_TYPE(mp) == M_DATA); 3421 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3422 freemsg(mp); 3423 BUMP_MIB(&ip_mib, ipOutDiscards); 3424 return; 3425 } 3426 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3427 3428 /* This is not a secure packet */ 3429 ii->ipsec_in_secure = B_FALSE; 3430 /* 3431 * For trusted extensions using a shared IP address we can 3432 * send using any zoneid. 3433 */ 3434 if (zoneid == ALL_ZONES) 3435 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3436 else 3437 ii->ipsec_in_zoneid = zoneid; 3438 ipsec_mp->b_cont = mp; 3439 ipha = (ipha_t *)mp->b_rptr; 3440 /* 3441 * Convert the IPSEC_IN to IPSEC_OUT. 3442 */ 3443 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3444 BUMP_MIB(&ip_mib, ipOutDiscards); 3445 return; 3446 } 3447 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3448 } 3449 3450 /* Remember our eventual destination */ 3451 dst = ipha->ipha_src; 3452 3453 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3454 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3455 if (ire != NULL && 3456 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3457 src = ipha->ipha_dst; 3458 } else if (!xmit_if_on) { 3459 if (ire != NULL) 3460 ire_refrele(ire); 3461 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3462 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3463 if (ire == NULL) { 3464 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3465 freemsg(ipsec_mp); 3466 return; 3467 } 3468 src = ire->ire_src_addr; 3469 } else { 3470 ipif_t *ipif = NULL; 3471 ill_t *ill; 3472 /* 3473 * This must be an ICMP error coming from 3474 * ip_mrtun_forward(). The src addr should 3475 * be equal to the IP-addr of the outgoing 3476 * interface. 3477 */ 3478 if (io == NULL) { 3479 /* This is not a IPSEC_OUT type control msg */ 3480 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3481 freemsg(ipsec_mp); 3482 return; 3483 } 3484 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3485 NULL, NULL, NULL, NULL); 3486 if (ill != NULL) { 3487 ipif = ipif_get_next_ipif(NULL, ill); 3488 ill_refrele(ill); 3489 } 3490 if (ipif == NULL) { 3491 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3492 freemsg(ipsec_mp); 3493 return; 3494 } 3495 src = ipif->ipif_src_addr; 3496 ipif_refrele(ipif); 3497 } 3498 3499 if (ire != NULL) 3500 ire_refrele(ire); 3501 3502 /* 3503 * Check if we can send back more then 8 bytes in addition 3504 * to the IP header. We will include as much as 64 bytes. 3505 */ 3506 len_needed = IPH_HDR_LENGTH(ipha); 3507 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3508 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3509 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3510 } 3511 len_needed += ip_icmp_return; 3512 msg_len = msgdsize(mp); 3513 if (msg_len > len_needed) { 3514 (void) adjmsg(mp, len_needed - msg_len); 3515 msg_len = len_needed; 3516 } 3517 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3518 if (mp1 == NULL) { 3519 BUMP_MIB(&icmp_mib, icmpOutErrors); 3520 freemsg(ipsec_mp); 3521 return; 3522 } 3523 /* 3524 * On an unlabeled system, dblks don't necessarily have creds. 3525 */ 3526 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3527 if (DB_CRED(mp) != NULL) 3528 mblk_setcred(mp1, DB_CRED(mp)); 3529 mp1->b_cont = mp; 3530 mp = mp1; 3531 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3532 ipsec_mp->b_rptr == (uint8_t *)io && 3533 io->ipsec_out_type == IPSEC_OUT); 3534 ipsec_mp->b_cont = mp; 3535 3536 /* 3537 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3538 * node generates be accepted in peace by all on-host destinations. 3539 * If we do NOT assume that all on-host destinations trust 3540 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3541 * (Look for ipsec_out_icmp_loopback). 3542 */ 3543 io->ipsec_out_icmp_loopback = B_TRUE; 3544 3545 ipha = (ipha_t *)mp->b_rptr; 3546 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3547 *ipha = icmp_ipha; 3548 ipha->ipha_src = src; 3549 ipha->ipha_dst = dst; 3550 ipha->ipha_ttl = ip_def_ttl; 3551 msg_len += sizeof (icmp_ipha) + len; 3552 if (msg_len > IP_MAXPACKET) { 3553 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3554 msg_len = IP_MAXPACKET; 3555 } 3556 ipha->ipha_length = htons((uint16_t)msg_len); 3557 icmph = (icmph_t *)&ipha[1]; 3558 bcopy(stuff, icmph, len); 3559 icmph->icmph_checksum = 0; 3560 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3561 if (icmph->icmph_checksum == 0) 3562 icmph->icmph_checksum = 0xFFFF; 3563 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3564 put(q, ipsec_mp); 3565 } 3566 3567 /* 3568 * Determine if an ICMP error packet can be sent given the rate limit. 3569 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3570 * in milliseconds) and a burst size. Burst size number of packets can 3571 * be sent arbitrarely closely spaced. 3572 * The state is tracked using two variables to implement an approximate 3573 * token bucket filter: 3574 * icmp_pkt_err_last - lbolt value when the last burst started 3575 * icmp_pkt_err_sent - number of packets sent in current burst 3576 */ 3577 boolean_t 3578 icmp_err_rate_limit(void) 3579 { 3580 clock_t now = TICK_TO_MSEC(lbolt); 3581 uint_t refilled; /* Number of packets refilled in tbf since last */ 3582 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3583 3584 if (err_interval == 0) 3585 return (B_FALSE); 3586 3587 if (icmp_pkt_err_last > now) { 3588 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3589 icmp_pkt_err_last = 0; 3590 icmp_pkt_err_sent = 0; 3591 } 3592 /* 3593 * If we are in a burst update the token bucket filter. 3594 * Update the "last" time to be close to "now" but make sure 3595 * we don't loose precision. 3596 */ 3597 if (icmp_pkt_err_sent != 0) { 3598 refilled = (now - icmp_pkt_err_last)/err_interval; 3599 if (refilled > icmp_pkt_err_sent) { 3600 icmp_pkt_err_sent = 0; 3601 } else { 3602 icmp_pkt_err_sent -= refilled; 3603 icmp_pkt_err_last += refilled * err_interval; 3604 } 3605 } 3606 if (icmp_pkt_err_sent == 0) { 3607 /* Start of new burst */ 3608 icmp_pkt_err_last = now; 3609 } 3610 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3611 icmp_pkt_err_sent++; 3612 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3613 icmp_pkt_err_sent)); 3614 return (B_FALSE); 3615 } 3616 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3617 return (B_TRUE); 3618 } 3619 3620 /* 3621 * Check if it is ok to send an IPv4 ICMP error packet in 3622 * response to the IPv4 packet in mp. 3623 * Free the message and return null if no 3624 * ICMP error packet should be sent. 3625 */ 3626 static mblk_t * 3627 icmp_pkt_err_ok(mblk_t *mp) 3628 { 3629 icmph_t *icmph; 3630 ipha_t *ipha; 3631 uint_t len_needed; 3632 ire_t *src_ire; 3633 ire_t *dst_ire; 3634 3635 if (!mp) 3636 return (NULL); 3637 ipha = (ipha_t *)mp->b_rptr; 3638 if (ip_csum_hdr(ipha)) { 3639 BUMP_MIB(&ip_mib, ipInCksumErrs); 3640 freemsg(mp); 3641 return (NULL); 3642 } 3643 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3644 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3645 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3646 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3647 if (src_ire != NULL || dst_ire != NULL || 3648 CLASSD(ipha->ipha_dst) || 3649 CLASSD(ipha->ipha_src) || 3650 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3651 /* Note: only errors to the fragment with offset 0 */ 3652 BUMP_MIB(&icmp_mib, icmpOutDrops); 3653 freemsg(mp); 3654 if (src_ire != NULL) 3655 ire_refrele(src_ire); 3656 if (dst_ire != NULL) 3657 ire_refrele(dst_ire); 3658 return (NULL); 3659 } 3660 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3661 /* 3662 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3663 * errors in response to any ICMP errors. 3664 */ 3665 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3666 if (mp->b_wptr - mp->b_rptr < len_needed) { 3667 if (!pullupmsg(mp, len_needed)) { 3668 BUMP_MIB(&icmp_mib, icmpInErrors); 3669 freemsg(mp); 3670 return (NULL); 3671 } 3672 ipha = (ipha_t *)mp->b_rptr; 3673 } 3674 icmph = (icmph_t *) 3675 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3676 switch (icmph->icmph_type) { 3677 case ICMP_DEST_UNREACHABLE: 3678 case ICMP_SOURCE_QUENCH: 3679 case ICMP_TIME_EXCEEDED: 3680 case ICMP_PARAM_PROBLEM: 3681 case ICMP_REDIRECT: 3682 BUMP_MIB(&icmp_mib, icmpOutDrops); 3683 freemsg(mp); 3684 return (NULL); 3685 default: 3686 break; 3687 } 3688 } 3689 /* 3690 * If this is a labeled system, then check to see if we're allowed to 3691 * send a response to this particular sender. If not, then just drop. 3692 */ 3693 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3694 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3695 BUMP_MIB(&icmp_mib, icmpOutDrops); 3696 freemsg(mp); 3697 return (NULL); 3698 } 3699 if (icmp_err_rate_limit()) { 3700 /* 3701 * Only send ICMP error packets every so often. 3702 * This should be done on a per port/source basis, 3703 * but for now this will suffice. 3704 */ 3705 freemsg(mp); 3706 return (NULL); 3707 } 3708 return (mp); 3709 } 3710 3711 /* 3712 * Generate an ICMP redirect message. 3713 */ 3714 static void 3715 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3716 { 3717 icmph_t icmph; 3718 3719 /* 3720 * We are called from ip_rput where we could 3721 * not have attached an IPSEC_IN. 3722 */ 3723 ASSERT(mp->b_datap->db_type == M_DATA); 3724 3725 if (!(mp = icmp_pkt_err_ok(mp))) { 3726 return; 3727 } 3728 3729 bzero(&icmph, sizeof (icmph_t)); 3730 icmph.icmph_type = ICMP_REDIRECT; 3731 icmph.icmph_code = 1; 3732 icmph.icmph_rd_gateway = gateway; 3733 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3734 /* Redirects sent by router, and router is global zone */ 3735 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID); 3736 } 3737 3738 /* 3739 * Generate an ICMP time exceeded message. 3740 */ 3741 void 3742 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3743 { 3744 icmph_t icmph; 3745 boolean_t mctl_present; 3746 mblk_t *first_mp; 3747 3748 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3749 3750 if (!(mp = icmp_pkt_err_ok(mp))) { 3751 if (mctl_present) 3752 freeb(first_mp); 3753 return; 3754 } 3755 3756 bzero(&icmph, sizeof (icmph_t)); 3757 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3758 icmph.icmph_code = code; 3759 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3760 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3761 } 3762 3763 /* 3764 * Generate an ICMP unreachable message. 3765 */ 3766 void 3767 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3768 { 3769 icmph_t icmph; 3770 mblk_t *first_mp; 3771 boolean_t mctl_present; 3772 3773 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3774 3775 if (!(mp = icmp_pkt_err_ok(mp))) { 3776 if (mctl_present) 3777 freeb(first_mp); 3778 return; 3779 } 3780 3781 bzero(&icmph, sizeof (icmph_t)); 3782 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3783 icmph.icmph_code = code; 3784 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3785 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3786 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3787 zoneid); 3788 } 3789 3790 /* 3791 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3792 * duplicate. As long as someone else holds the address, the interface will 3793 * stay down. When that conflict goes away, the interface is brought back up. 3794 * This is done so that accidental shutdowns of addresses aren't made 3795 * permanent. Your server will recover from a failure. 3796 * 3797 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3798 * user space process (dhcpagent). 3799 * 3800 * Recovery completes if ARP reports that the address is now ours (via 3801 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3802 * 3803 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3804 */ 3805 static void 3806 ipif_dup_recovery(void *arg) 3807 { 3808 ipif_t *ipif = arg; 3809 ill_t *ill = ipif->ipif_ill; 3810 mblk_t *arp_add_mp; 3811 mblk_t *arp_del_mp; 3812 area_t *area; 3813 3814 ipif->ipif_recovery_id = 0; 3815 3816 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3817 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 3818 /* No reason to try to bring this address back. */ 3819 return; 3820 } 3821 3822 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3823 goto alloc_fail; 3824 3825 if (ipif->ipif_arp_del_mp == NULL) { 3826 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3827 goto alloc_fail; 3828 ipif->ipif_arp_del_mp = arp_del_mp; 3829 } 3830 3831 /* Setting the 'unverified' flag restarts DAD */ 3832 area = (area_t *)arp_add_mp->b_rptr; 3833 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3834 ACE_F_UNVERIFIED; 3835 putnext(ill->ill_rq, arp_add_mp); 3836 return; 3837 3838 alloc_fail: 3839 /* On allocation failure, just restart the timer */ 3840 freemsg(arp_add_mp); 3841 if (ip_dup_recovery > 0) { 3842 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3843 MSEC_TO_TICK(ip_dup_recovery)); 3844 } 3845 } 3846 3847 /* 3848 * This is for exclusive changes due to ARP. Either tear down an interface due 3849 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3850 */ 3851 /* ARGSUSED */ 3852 static void 3853 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3854 { 3855 ill_t *ill = rq->q_ptr; 3856 arh_t *arh; 3857 ipaddr_t src; 3858 ipif_t *ipif; 3859 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3860 char hbuf[MAC_STR_LEN]; 3861 char sbuf[INET_ADDRSTRLEN]; 3862 const char *failtype; 3863 boolean_t bring_up; 3864 3865 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3866 case AR_CN_READY: 3867 failtype = NULL; 3868 bring_up = B_TRUE; 3869 break; 3870 case AR_CN_FAILED: 3871 failtype = "in use"; 3872 bring_up = B_FALSE; 3873 break; 3874 default: 3875 failtype = "claimed"; 3876 bring_up = B_FALSE; 3877 break; 3878 } 3879 3880 arh = (arh_t *)mp->b_cont->b_rptr; 3881 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3882 3883 /* Handle failures due to probes */ 3884 if (src == 0) { 3885 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3886 IP_ADDR_LEN); 3887 } 3888 3889 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3890 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3891 sizeof (hbuf)); 3892 (void) ip_dot_addr(src, sbuf); 3893 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3894 3895 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3896 ipif->ipif_lcl_addr != src) { 3897 continue; 3898 } 3899 3900 /* 3901 * If we failed on a recovery probe, then restart the timer to 3902 * try again later. 3903 */ 3904 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3905 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3906 ill->ill_net_type == IRE_IF_RESOLVER && 3907 ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0) { 3908 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3909 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3910 continue; 3911 } 3912 3913 /* 3914 * If what we're trying to do has already been done, then do 3915 * nothing. 3916 */ 3917 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3918 continue; 3919 3920 if (ipif->ipif_id != 0) { 3921 (void) snprintf(ibuf + ill->ill_name_length - 1, 3922 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3923 ipif->ipif_id); 3924 } 3925 if (failtype == NULL) { 3926 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3927 ibuf); 3928 } else { 3929 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3930 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3931 } 3932 3933 if (bring_up) { 3934 ASSERT(ill->ill_dl_up); 3935 /* 3936 * Free up the ARP delete message so we can allocate 3937 * a fresh one through the normal path. 3938 */ 3939 freemsg(ipif->ipif_arp_del_mp); 3940 ipif->ipif_arp_del_mp = NULL; 3941 if (ipif_resolver_up(ipif, Res_act_initial) != 3942 EINPROGRESS) { 3943 ipif->ipif_addr_ready = 1; 3944 (void) ipif_up_done(ipif); 3945 } 3946 continue; 3947 } 3948 3949 mutex_enter(&ill->ill_lock); 3950 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3951 ipif->ipif_flags |= IPIF_DUPLICATE; 3952 ill->ill_ipif_dup_count++; 3953 mutex_exit(&ill->ill_lock); 3954 /* 3955 * Already exclusive on the ill; no need to handle deferred 3956 * processing here. 3957 */ 3958 (void) ipif_down(ipif, NULL, NULL); 3959 ipif_down_tail(ipif); 3960 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3961 ill->ill_net_type == IRE_IF_RESOLVER && 3962 ip_dup_recovery > 0) { 3963 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3964 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3965 } 3966 } 3967 freemsg(mp); 3968 } 3969 3970 /* ARGSUSED */ 3971 static void 3972 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3973 { 3974 ill_t *ill = rq->q_ptr; 3975 arh_t *arh; 3976 ipaddr_t src; 3977 ipif_t *ipif; 3978 3979 arh = (arh_t *)mp->b_cont->b_rptr; 3980 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3981 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3982 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3983 (void) ipif_resolver_up(ipif, Res_act_defend); 3984 } 3985 freemsg(mp); 3986 } 3987 3988 /* 3989 * News from ARP. ARP sends notification of interesting events down 3990 * to its clients using M_CTL messages with the interesting ARP packet 3991 * attached via b_cont. 3992 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3993 * queue as opposed to ARP sending the message to all the clients, i.e. all 3994 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3995 * table if a cache IRE is found to delete all the entries for the address in 3996 * the packet. 3997 */ 3998 static void 3999 ip_arp_news(queue_t *q, mblk_t *mp) 4000 { 4001 arcn_t *arcn; 4002 arh_t *arh; 4003 ire_t *ire = NULL; 4004 char hbuf[MAC_STR_LEN]; 4005 char sbuf[INET_ADDRSTRLEN]; 4006 ipaddr_t src; 4007 in6_addr_t v6src; 4008 boolean_t isv6 = B_FALSE; 4009 ipif_t *ipif; 4010 ill_t *ill; 4011 4012 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 4013 if (q->q_next) { 4014 putnext(q, mp); 4015 } else 4016 freemsg(mp); 4017 return; 4018 } 4019 arh = (arh_t *)mp->b_cont->b_rptr; 4020 /* Is it one we are interested in? */ 4021 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 4022 isv6 = B_TRUE; 4023 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 4024 IPV6_ADDR_LEN); 4025 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 4026 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 4027 IP_ADDR_LEN); 4028 } else { 4029 freemsg(mp); 4030 return; 4031 } 4032 4033 ill = q->q_ptr; 4034 4035 arcn = (arcn_t *)mp->b_rptr; 4036 switch (arcn->arcn_code) { 4037 case AR_CN_BOGON: 4038 /* 4039 * Someone is sending ARP packets with a source protocol 4040 * address that we have published and for which we believe our 4041 * entry is authoritative and (when ill_arp_extend is set) 4042 * verified to be unique on the network. 4043 * 4044 * The ARP module internally handles the cases where the sender 4045 * is just probing (for DAD) and where the hardware address of 4046 * a non-authoritative entry has changed. Thus, these are the 4047 * real conflicts, and we have to do resolution. 4048 * 4049 * We back away quickly from the address if it's from DHCP or 4050 * otherwise temporary and hasn't been used recently (or at 4051 * all). We'd like to include "deprecated" addresses here as 4052 * well (as there's no real reason to defend something we're 4053 * discarding), but IPMP "reuses" this flag to mean something 4054 * other than the standard meaning. 4055 * 4056 * If the ARP module above is not extended (meaning that it 4057 * doesn't know how to defend the address), then we just log 4058 * the problem as we always did and continue on. It's not 4059 * right, but there's little else we can do, and those old ATM 4060 * users are going away anyway. 4061 */ 4062 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4063 hbuf, sizeof (hbuf)); 4064 (void) ip_dot_addr(src, sbuf); 4065 if (isv6) 4066 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 4067 else 4068 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 4069 4070 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4071 uint32_t now; 4072 uint32_t maxage; 4073 clock_t lused; 4074 uint_t maxdefense; 4075 uint_t defs; 4076 4077 /* 4078 * First, figure out if this address hasn't been used 4079 * in a while. If it hasn't, then it's a better 4080 * candidate for abandoning. 4081 */ 4082 ipif = ire->ire_ipif; 4083 ASSERT(ipif != NULL); 4084 now = gethrestime_sec(); 4085 maxage = now - ire->ire_create_time; 4086 if (maxage > ip_max_temp_idle) 4087 maxage = ip_max_temp_idle; 4088 lused = drv_hztousec(ddi_get_lbolt() - 4089 ire->ire_last_used_time) / MICROSEC + 1; 4090 if (lused >= maxage && (ipif->ipif_flags & 4091 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4092 maxdefense = ip_max_temp_defend; 4093 else 4094 maxdefense = ip_max_defend; 4095 4096 /* 4097 * Now figure out how many times we've defended 4098 * ourselves. Ignore defenses that happened long in 4099 * the past. 4100 */ 4101 mutex_enter(&ire->ire_lock); 4102 if ((defs = ire->ire_defense_count) > 0 && 4103 now - ire->ire_defense_time > ip_defend_interval) { 4104 ire->ire_defense_count = defs = 0; 4105 } 4106 ire->ire_defense_count++; 4107 ire->ire_defense_time = now; 4108 mutex_exit(&ire->ire_lock); 4109 ill_refhold(ill); 4110 ire_refrele(ire); 4111 4112 /* 4113 * If we've defended ourselves too many times already, 4114 * then give up and tear down the interface(s) using 4115 * this address. Otherwise, defend by sending out a 4116 * gratuitous ARP. 4117 */ 4118 if (defs >= maxdefense && ill->ill_arp_extend) { 4119 (void) qwriter_ip(NULL, ill, q, mp, 4120 ip_arp_excl, CUR_OP, B_FALSE); 4121 } else { 4122 cmn_err(CE_WARN, 4123 "node %s is using our IP address %s on %s", 4124 hbuf, sbuf, ill->ill_name); 4125 /* 4126 * If this is an old (ATM) ARP module, then 4127 * don't try to defend the address. Remain 4128 * compatible with the old behavior. Defend 4129 * only with new ARP. 4130 */ 4131 if (ill->ill_arp_extend) { 4132 (void) qwriter_ip(NULL, ill, q, mp, 4133 ip_arp_defend, CUR_OP, B_FALSE); 4134 } else { 4135 ill_refrele(ill); 4136 } 4137 } 4138 return; 4139 } 4140 cmn_err(CE_WARN, 4141 "proxy ARP problem? Node '%s' is using %s on %s", 4142 hbuf, sbuf, ill->ill_name); 4143 if (ire != NULL) 4144 ire_refrele(ire); 4145 break; 4146 case AR_CN_ANNOUNCE: 4147 if (isv6) { 4148 /* 4149 * For XRESOLV interfaces. 4150 * Delete the IRE cache entry and NCE for this 4151 * v6 address 4152 */ 4153 ip_ire_clookup_and_delete_v6(&v6src); 4154 /* 4155 * If v6src is a non-zero, it's a router address 4156 * as below. Do the same sort of thing to clean 4157 * out off-net IRE_CACHE entries that go through 4158 * the router. 4159 */ 4160 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4161 ire_walk_v6(ire_delete_cache_gw_v6, 4162 (char *)&v6src, ALL_ZONES); 4163 } 4164 } else { 4165 nce_hw_map_t hwm; 4166 4167 /* 4168 * ARP gives us a copy of any packet where it thinks 4169 * the address has changed, so that we can update our 4170 * caches. We're responsible for caching known answers 4171 * in the current design. We check whether the 4172 * hardware address really has changed in all of our 4173 * entries that have cached this mapping, and if so, we 4174 * blow them away. This way we will immediately pick 4175 * up the rare case of a host changing hardware 4176 * address. 4177 */ 4178 if (src == 0) 4179 break; 4180 hwm.hwm_addr = src; 4181 hwm.hwm_hwlen = arh->arh_hlen; 4182 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4183 ndp_walk_common(&ndp4, NULL, 4184 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4185 } 4186 break; 4187 case AR_CN_READY: 4188 /* No external v6 resolver has a contract to use this */ 4189 if (isv6) 4190 break; 4191 /* If the link is down, we'll retry this later */ 4192 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4193 break; 4194 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4195 NULL, NULL); 4196 if (ipif != NULL) { 4197 /* 4198 * If this is a duplicate recovery, then we now need to 4199 * go exclusive to bring this thing back up. 4200 */ 4201 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4202 IPIF_DUPLICATE) { 4203 ipif_refrele(ipif); 4204 ill_refhold(ill); 4205 (void) qwriter_ip(NULL, ill, q, mp, 4206 ip_arp_excl, CUR_OP, B_FALSE); 4207 return; 4208 } 4209 /* 4210 * If this is the first notice that this address is 4211 * ready, then let the user know now. 4212 */ 4213 if ((ipif->ipif_flags & IPIF_UP) && 4214 !ipif->ipif_addr_ready) { 4215 ipif_mask_reply(ipif); 4216 ip_rts_ifmsg(ipif); 4217 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4218 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4219 } 4220 ipif->ipif_addr_ready = 1; 4221 ipif_refrele(ipif); 4222 } 4223 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp)); 4224 if (ire != NULL) { 4225 ire->ire_defense_count = 0; 4226 ire_refrele(ire); 4227 } 4228 break; 4229 case AR_CN_FAILED: 4230 /* No external v6 resolver has a contract to use this */ 4231 if (isv6) 4232 break; 4233 ill_refhold(ill); 4234 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4235 B_FALSE); 4236 return; 4237 } 4238 freemsg(mp); 4239 } 4240 4241 /* 4242 * Create a mblk suitable for carrying the interface index and/or source link 4243 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4244 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4245 * application. 4246 */ 4247 mblk_t * 4248 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 4249 { 4250 mblk_t *mp; 4251 in_pktinfo_t *pinfo; 4252 ipha_t *ipha; 4253 struct ether_header *pether; 4254 4255 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 4256 if (mp == NULL) { 4257 ip1dbg(("ip_add_info: allocation failure.\n")); 4258 return (data_mp); 4259 } 4260 4261 ipha = (ipha_t *)data_mp->b_rptr; 4262 pinfo = (in_pktinfo_t *)mp->b_rptr; 4263 bzero(pinfo, sizeof (in_pktinfo_t)); 4264 pinfo->in_pkt_flags = (uchar_t)flags; 4265 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4266 4267 if (flags & IPF_RECVIF) 4268 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4269 4270 pether = (struct ether_header *)((char *)ipha 4271 - sizeof (struct ether_header)); 4272 /* 4273 * Make sure the interface is an ethernet type, since this option 4274 * is currently supported only on this type of interface. Also make 4275 * sure we are pointing correctly above db_base. 4276 */ 4277 4278 if ((flags & IPF_RECVSLLA) && 4279 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4280 (ill->ill_type == IFT_ETHER) && 4281 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4282 4283 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 4284 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4285 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 4286 } else { 4287 /* 4288 * Clear the bit. Indicate to upper layer that IP is not 4289 * sending this ancillary info. 4290 */ 4291 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 4292 } 4293 4294 mp->b_datap->db_type = M_CTL; 4295 mp->b_wptr += sizeof (in_pktinfo_t); 4296 mp->b_cont = data_mp; 4297 4298 return (mp); 4299 } 4300 4301 /* 4302 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4303 * part of the bind request. 4304 */ 4305 4306 boolean_t 4307 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4308 { 4309 ipsec_in_t *ii; 4310 4311 ASSERT(policy_mp != NULL); 4312 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4313 4314 ii = (ipsec_in_t *)policy_mp->b_rptr; 4315 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4316 4317 connp->conn_policy = ii->ipsec_in_policy; 4318 ii->ipsec_in_policy = NULL; 4319 4320 if (ii->ipsec_in_action != NULL) { 4321 if (connp->conn_latch == NULL) { 4322 connp->conn_latch = iplatch_create(); 4323 if (connp->conn_latch == NULL) 4324 return (B_FALSE); 4325 } 4326 ipsec_latch_inbound(connp->conn_latch, ii); 4327 } 4328 return (B_TRUE); 4329 } 4330 4331 /* 4332 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4333 * and to arrange for power-fanout assist. The ULP is identified by 4334 * adding a single byte at the end of the original bind message. 4335 * A ULP other than UDP or TCP that wishes to be recognized passes 4336 * down a bind with a zero length address. 4337 * 4338 * The binding works as follows: 4339 * - A zero byte address means just bind to the protocol. 4340 * - A four byte address is treated as a request to validate 4341 * that the address is a valid local address, appropriate for 4342 * an application to bind to. This does not affect any fanout 4343 * information in IP. 4344 * - A sizeof sin_t byte address is used to bind to only the local address 4345 * and port. 4346 * - A sizeof ipa_conn_t byte address contains complete fanout information 4347 * consisting of local and remote addresses and ports. In 4348 * this case, the addresses are both validated as appropriate 4349 * for this operation, and, if so, the information is retained 4350 * for use in the inbound fanout. 4351 * 4352 * The ULP (except in the zero-length bind) can append an 4353 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4354 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4355 * a copy of the source or destination IRE (source for local bind; 4356 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4357 * policy information contained should be copied on to the conn. 4358 * 4359 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4360 */ 4361 mblk_t * 4362 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4363 { 4364 ssize_t len; 4365 struct T_bind_req *tbr; 4366 sin_t *sin; 4367 ipa_conn_t *ac; 4368 uchar_t *ucp; 4369 mblk_t *mp1; 4370 boolean_t ire_requested; 4371 boolean_t ipsec_policy_set = B_FALSE; 4372 int error = 0; 4373 int protocol; 4374 ipa_conn_x_t *acx; 4375 4376 ASSERT(!connp->conn_af_isv6); 4377 connp->conn_pkt_isv6 = B_FALSE; 4378 4379 len = MBLKL(mp); 4380 if (len < (sizeof (*tbr) + 1)) { 4381 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4382 "ip_bind: bogus msg, len %ld", len); 4383 /* XXX: Need to return something better */ 4384 goto bad_addr; 4385 } 4386 /* Back up and extract the protocol identifier. */ 4387 mp->b_wptr--; 4388 protocol = *mp->b_wptr & 0xFF; 4389 tbr = (struct T_bind_req *)mp->b_rptr; 4390 /* Reset the message type in preparation for shipping it back. */ 4391 DB_TYPE(mp) = M_PCPROTO; 4392 4393 connp->conn_ulp = (uint8_t)protocol; 4394 4395 /* 4396 * Check for a zero length address. This is from a protocol that 4397 * wants to register to receive all packets of its type. 4398 */ 4399 if (tbr->ADDR_length == 0) { 4400 /* 4401 * These protocols are now intercepted in ip_bind_v6(). 4402 * Reject protocol-level binds here for now. 4403 * 4404 * For SCTP raw socket, ICMP sends down a bind with sin_t 4405 * so that the protocol type cannot be SCTP. 4406 */ 4407 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4408 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4409 goto bad_addr; 4410 } 4411 4412 /* 4413 * 4414 * The udp module never sends down a zero-length address, 4415 * and allowing this on a labeled system will break MLP 4416 * functionality. 4417 */ 4418 if (is_system_labeled() && protocol == IPPROTO_UDP) 4419 goto bad_addr; 4420 4421 if (connp->conn_mac_exempt) 4422 goto bad_addr; 4423 4424 /* No hash here really. The table is big enough. */ 4425 connp->conn_srcv6 = ipv6_all_zeros; 4426 4427 ipcl_proto_insert(connp, protocol); 4428 4429 tbr->PRIM_type = T_BIND_ACK; 4430 return (mp); 4431 } 4432 4433 /* Extract the address pointer from the message. */ 4434 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4435 tbr->ADDR_length); 4436 if (ucp == NULL) { 4437 ip1dbg(("ip_bind: no address\n")); 4438 goto bad_addr; 4439 } 4440 if (!OK_32PTR(ucp)) { 4441 ip1dbg(("ip_bind: unaligned address\n")); 4442 goto bad_addr; 4443 } 4444 /* 4445 * Check for trailing mps. 4446 */ 4447 4448 mp1 = mp->b_cont; 4449 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4450 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4451 4452 switch (tbr->ADDR_length) { 4453 default: 4454 ip1dbg(("ip_bind: bad address length %d\n", 4455 (int)tbr->ADDR_length)); 4456 goto bad_addr; 4457 4458 case IP_ADDR_LEN: 4459 /* Verification of local address only */ 4460 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4461 ire_requested, ipsec_policy_set, B_FALSE); 4462 break; 4463 4464 case sizeof (sin_t): 4465 sin = (sin_t *)ucp; 4466 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4467 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4468 if (protocol == IPPROTO_TCP) 4469 connp->conn_recv = tcp_conn_request; 4470 break; 4471 4472 case sizeof (ipa_conn_t): 4473 ac = (ipa_conn_t *)ucp; 4474 /* For raw socket, the local port is not set. */ 4475 if (ac->ac_lport == 0) 4476 ac->ac_lport = connp->conn_lport; 4477 /* Always verify destination reachability. */ 4478 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4479 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4480 ipsec_policy_set, B_TRUE, B_TRUE); 4481 if (protocol == IPPROTO_TCP) 4482 connp->conn_recv = tcp_input; 4483 break; 4484 4485 case sizeof (ipa_conn_x_t): 4486 acx = (ipa_conn_x_t *)ucp; 4487 /* 4488 * Whether or not to verify destination reachability depends 4489 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4490 */ 4491 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4492 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4493 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4494 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4495 if (protocol == IPPROTO_TCP) 4496 connp->conn_recv = tcp_input; 4497 break; 4498 } 4499 if (error == EINPROGRESS) 4500 return (NULL); 4501 else if (error != 0) 4502 goto bad_addr; 4503 /* 4504 * Pass the IPSEC headers size in ire_ipsec_overhead. 4505 * We can't do this in ip_bind_insert_ire because the policy 4506 * may not have been inherited at that point in time and hence 4507 * conn_out_enforce_policy may not be set. 4508 */ 4509 mp1 = mp->b_cont; 4510 if (ire_requested && connp->conn_out_enforce_policy && 4511 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4512 ire_t *ire = (ire_t *)mp1->b_rptr; 4513 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4514 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4515 } 4516 4517 /* Send it home. */ 4518 mp->b_datap->db_type = M_PCPROTO; 4519 tbr->PRIM_type = T_BIND_ACK; 4520 return (mp); 4521 4522 bad_addr: 4523 /* 4524 * If error = -1 then we generate a TBADADDR - otherwise error is 4525 * a unix errno. 4526 */ 4527 if (error > 0) 4528 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4529 else 4530 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4531 return (mp); 4532 } 4533 4534 /* 4535 * Here address is verified to be a valid local address. 4536 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4537 * address is also considered a valid local address. 4538 * In the case of a broadcast/multicast address, however, the 4539 * upper protocol is expected to reset the src address 4540 * to 0 if it sees a IRE_BROADCAST type returned so that 4541 * no packets are emitted with broadcast/multicast address as 4542 * source address (that violates hosts requirements RFC1122) 4543 * The addresses valid for bind are: 4544 * (1) - INADDR_ANY (0) 4545 * (2) - IP address of an UP interface 4546 * (3) - IP address of a DOWN interface 4547 * (4) - valid local IP broadcast addresses. In this case 4548 * the conn will only receive packets destined to 4549 * the specified broadcast address. 4550 * (5) - a multicast address. In this case 4551 * the conn will only receive packets destined to 4552 * the specified multicast address. Note: the 4553 * application still has to issue an 4554 * IP_ADD_MEMBERSHIP socket option. 4555 * 4556 * On error, return -1 for TBADADDR otherwise pass the 4557 * errno with TSYSERR reply. 4558 * 4559 * In all the above cases, the bound address must be valid in the current zone. 4560 * When the address is loopback, multicast or broadcast, there might be many 4561 * matching IREs so bind has to look up based on the zone. 4562 * 4563 * Note: lport is in network byte order. 4564 */ 4565 int 4566 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4567 boolean_t ire_requested, boolean_t ipsec_policy_set, 4568 boolean_t fanout_insert) 4569 { 4570 int error = 0; 4571 ire_t *src_ire; 4572 mblk_t *policy_mp; 4573 ipif_t *ipif; 4574 zoneid_t zoneid; 4575 4576 if (ipsec_policy_set) { 4577 policy_mp = mp->b_cont; 4578 } 4579 4580 /* 4581 * If it was previously connected, conn_fully_bound would have 4582 * been set. 4583 */ 4584 connp->conn_fully_bound = B_FALSE; 4585 4586 src_ire = NULL; 4587 ipif = NULL; 4588 4589 zoneid = IPCL_ZONEID(connp); 4590 4591 if (src_addr) { 4592 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4593 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4594 /* 4595 * If an address other than 0.0.0.0 is requested, 4596 * we verify that it is a valid address for bind 4597 * Note: Following code is in if-else-if form for 4598 * readability compared to a condition check. 4599 */ 4600 /* LINTED - statement has no consequent */ 4601 if (IRE_IS_LOCAL(src_ire)) { 4602 /* 4603 * (2) Bind to address of local UP interface 4604 */ 4605 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4606 /* 4607 * (4) Bind to broadcast address 4608 * Note: permitted only from transports that 4609 * request IRE 4610 */ 4611 if (!ire_requested) 4612 error = EADDRNOTAVAIL; 4613 } else { 4614 /* 4615 * (3) Bind to address of local DOWN interface 4616 * (ipif_lookup_addr() looks up all interfaces 4617 * but we do not get here for UP interfaces 4618 * - case (2) above) 4619 * We put the protocol byte back into the mblk 4620 * since we may come back via ip_wput_nondata() 4621 * later with this mblk if ipif_lookup_addr chooses 4622 * to defer processing. 4623 */ 4624 *mp->b_wptr++ = (char)connp->conn_ulp; 4625 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4626 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4627 &error)) != NULL) { 4628 ipif_refrele(ipif); 4629 } else if (error == EINPROGRESS) { 4630 if (src_ire != NULL) 4631 ire_refrele(src_ire); 4632 return (EINPROGRESS); 4633 } else if (CLASSD(src_addr)) { 4634 error = 0; 4635 if (src_ire != NULL) 4636 ire_refrele(src_ire); 4637 /* 4638 * (5) bind to multicast address. 4639 * Fake out the IRE returned to upper 4640 * layer to be a broadcast IRE. 4641 */ 4642 src_ire = ire_ctable_lookup( 4643 INADDR_BROADCAST, INADDR_ANY, 4644 IRE_BROADCAST, NULL, zoneid, NULL, 4645 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4646 if (src_ire == NULL || !ire_requested) 4647 error = EADDRNOTAVAIL; 4648 } else { 4649 /* 4650 * Not a valid address for bind 4651 */ 4652 error = EADDRNOTAVAIL; 4653 } 4654 /* 4655 * Just to keep it consistent with the processing in 4656 * ip_bind_v4() 4657 */ 4658 mp->b_wptr--; 4659 } 4660 if (error) { 4661 /* Red Alert! Attempting to be a bogon! */ 4662 ip1dbg(("ip_bind: bad src address 0x%x\n", 4663 ntohl(src_addr))); 4664 goto bad_addr; 4665 } 4666 } 4667 4668 /* 4669 * Allow setting new policies. For example, disconnects come 4670 * down as ipa_t bind. As we would have set conn_policy_cached 4671 * to B_TRUE before, we should set it to B_FALSE, so that policy 4672 * can change after the disconnect. 4673 */ 4674 connp->conn_policy_cached = B_FALSE; 4675 4676 /* 4677 * If not fanout_insert this was just an address verification 4678 */ 4679 if (fanout_insert) { 4680 /* 4681 * The addresses have been verified. Time to insert in 4682 * the correct fanout list. 4683 */ 4684 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4685 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4686 connp->conn_lport = lport; 4687 connp->conn_fport = 0; 4688 /* 4689 * Do we need to add a check to reject Multicast packets 4690 */ 4691 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4692 } 4693 4694 if (error == 0) { 4695 if (ire_requested) { 4696 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4697 error = -1; 4698 /* Falls through to bad_addr */ 4699 } 4700 } else if (ipsec_policy_set) { 4701 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4702 error = -1; 4703 /* Falls through to bad_addr */ 4704 } 4705 } 4706 } 4707 bad_addr: 4708 if (error != 0) { 4709 if (connp->conn_anon_port) { 4710 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4711 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4712 B_FALSE); 4713 } 4714 connp->conn_mlp_type = mlptSingle; 4715 } 4716 if (src_ire != NULL) 4717 IRE_REFRELE(src_ire); 4718 if (ipsec_policy_set) { 4719 ASSERT(policy_mp == mp->b_cont); 4720 ASSERT(policy_mp != NULL); 4721 freeb(policy_mp); 4722 /* 4723 * As of now assume that nothing else accompanies 4724 * IPSEC_POLICY_SET. 4725 */ 4726 mp->b_cont = NULL; 4727 } 4728 return (error); 4729 } 4730 4731 /* 4732 * Verify that both the source and destination addresses 4733 * are valid. If verify_dst is false, then the destination address may be 4734 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4735 * destination reachability, while tunnels do not. 4736 * Note that we allow connect to broadcast and multicast 4737 * addresses when ire_requested is set. Thus the ULP 4738 * has to check for IRE_BROADCAST and multicast. 4739 * 4740 * Returns zero if ok. 4741 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4742 * (for use with TSYSERR reply). 4743 * 4744 * Note: lport and fport are in network byte order. 4745 */ 4746 int 4747 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4748 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4749 boolean_t ire_requested, boolean_t ipsec_policy_set, 4750 boolean_t fanout_insert, boolean_t verify_dst) 4751 { 4752 ire_t *src_ire; 4753 ire_t *dst_ire; 4754 int error = 0; 4755 int protocol; 4756 mblk_t *policy_mp; 4757 ire_t *sire = NULL; 4758 ire_t *md_dst_ire = NULL; 4759 ill_t *md_ill = NULL; 4760 zoneid_t zoneid; 4761 ipaddr_t src_addr = *src_addrp; 4762 4763 src_ire = dst_ire = NULL; 4764 protocol = *mp->b_wptr & 0xFF; 4765 4766 /* 4767 * If we never got a disconnect before, clear it now. 4768 */ 4769 connp->conn_fully_bound = B_FALSE; 4770 4771 if (ipsec_policy_set) { 4772 policy_mp = mp->b_cont; 4773 } 4774 4775 zoneid = IPCL_ZONEID(connp); 4776 4777 if (CLASSD(dst_addr)) { 4778 /* Pick up an IRE_BROADCAST */ 4779 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4780 NULL, zoneid, MBLK_GETLABEL(mp), 4781 (MATCH_IRE_RECURSIVE | 4782 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4783 MATCH_IRE_SECATTR)); 4784 } else { 4785 /* 4786 * If conn_dontroute is set or if conn_nexthop_set is set, 4787 * and onlink ipif is not found set ENETUNREACH error. 4788 */ 4789 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4790 ipif_t *ipif; 4791 4792 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4793 dst_addr : connp->conn_nexthop_v4, zoneid); 4794 if (ipif == NULL) { 4795 error = ENETUNREACH; 4796 goto bad_addr; 4797 } 4798 ipif_refrele(ipif); 4799 } 4800 4801 if (connp->conn_nexthop_set) { 4802 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4803 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4804 MATCH_IRE_SECATTR); 4805 } else { 4806 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4807 &sire, zoneid, MBLK_GETLABEL(mp), 4808 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4809 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4810 MATCH_IRE_SECATTR)); 4811 } 4812 } 4813 /* 4814 * dst_ire can't be a broadcast when not ire_requested. 4815 * We also prevent ire's with src address INADDR_ANY to 4816 * be used, which are created temporarily for 4817 * sending out packets from endpoints that have 4818 * conn_unspec_src set. If verify_dst is true, the destination must be 4819 * reachable. If verify_dst is false, the destination needn't be 4820 * reachable. 4821 * 4822 * If we match on a reject or black hole, then we've got a 4823 * local failure. May as well fail out the connect() attempt, 4824 * since it's never going to succeed. 4825 */ 4826 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4827 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4828 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4829 /* 4830 * If we're verifying destination reachability, we always want 4831 * to complain here. 4832 * 4833 * If we're not verifying destination reachability but the 4834 * destination has a route, we still want to fail on the 4835 * temporary address and broadcast address tests. 4836 */ 4837 if (verify_dst || (dst_ire != NULL)) { 4838 if (ip_debug > 2) { 4839 pr_addr_dbg("ip_bind_connected: bad connected " 4840 "dst %s\n", AF_INET, &dst_addr); 4841 } 4842 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4843 error = ENETUNREACH; 4844 else 4845 error = EHOSTUNREACH; 4846 goto bad_addr; 4847 } 4848 } 4849 4850 /* 4851 * We now know that routing will allow us to reach the destination. 4852 * Check whether Trusted Solaris policy allows communication with this 4853 * host, and pretend that the destination is unreachable if not. 4854 * 4855 * This is never a problem for TCP, since that transport is known to 4856 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4857 * handling. If the remote is unreachable, it will be detected at that 4858 * point, so there's no reason to check it here. 4859 * 4860 * Note that for sendto (and other datagram-oriented friends), this 4861 * check is done as part of the data path label computation instead. 4862 * The check here is just to make non-TCP connect() report the right 4863 * error. 4864 */ 4865 if (dst_ire != NULL && is_system_labeled() && 4866 !IPCL_IS_TCP(connp) && 4867 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4868 connp->conn_mac_exempt) != 0) { 4869 error = EHOSTUNREACH; 4870 if (ip_debug > 2) { 4871 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4872 AF_INET, &dst_addr); 4873 } 4874 goto bad_addr; 4875 } 4876 4877 /* 4878 * If the app does a connect(), it means that it will most likely 4879 * send more than 1 packet to the destination. It makes sense 4880 * to clear the temporary flag. 4881 */ 4882 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4883 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4884 irb_t *irb = dst_ire->ire_bucket; 4885 4886 rw_enter(&irb->irb_lock, RW_WRITER); 4887 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4888 irb->irb_tmp_ire_cnt--; 4889 rw_exit(&irb->irb_lock); 4890 } 4891 4892 /* 4893 * See if we should notify ULP about MDT; we do this whether or not 4894 * ire_requested is TRUE, in order to handle active connects; MDT 4895 * eligibility tests for passive connects are handled separately 4896 * through tcp_adapt_ire(). We do this before the source address 4897 * selection, because dst_ire may change after a call to 4898 * ipif_select_source(). This is a best-effort check, as the 4899 * packet for this connection may not actually go through 4900 * dst_ire->ire_stq, and the exact IRE can only be known after 4901 * calling ip_newroute(). This is why we further check on the 4902 * IRE during Multidata packet transmission in tcp_multisend(). 4903 */ 4904 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4905 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4906 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4907 ILL_MDT_CAPABLE(md_ill)) { 4908 md_dst_ire = dst_ire; 4909 IRE_REFHOLD(md_dst_ire); 4910 } 4911 4912 if (dst_ire != NULL && 4913 dst_ire->ire_type == IRE_LOCAL && 4914 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4915 /* 4916 * If the IRE belongs to a different zone, look for a matching 4917 * route in the forwarding table and use the source address from 4918 * that route. 4919 */ 4920 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4921 zoneid, 0, NULL, 4922 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4923 MATCH_IRE_RJ_BHOLE); 4924 if (src_ire == NULL) { 4925 error = EHOSTUNREACH; 4926 goto bad_addr; 4927 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4928 if (!(src_ire->ire_type & IRE_HOST)) 4929 error = ENETUNREACH; 4930 else 4931 error = EHOSTUNREACH; 4932 goto bad_addr; 4933 } 4934 if (src_addr == INADDR_ANY) 4935 src_addr = src_ire->ire_src_addr; 4936 ire_refrele(src_ire); 4937 src_ire = NULL; 4938 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4939 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4940 src_addr = sire->ire_src_addr; 4941 ire_refrele(dst_ire); 4942 dst_ire = sire; 4943 sire = NULL; 4944 } else { 4945 /* 4946 * Pick a source address so that a proper inbound 4947 * load spreading would happen. 4948 */ 4949 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4950 ipif_t *src_ipif = NULL; 4951 ire_t *ipif_ire; 4952 4953 /* 4954 * Supply a local source address such that inbound 4955 * load spreading happens. 4956 * 4957 * Determine the best source address on this ill for 4958 * the destination. 4959 * 4960 * 1) For broadcast, we should return a broadcast ire 4961 * found above so that upper layers know that the 4962 * destination address is a broadcast address. 4963 * 4964 * 2) If this is part of a group, select a better 4965 * source address so that better inbound load 4966 * balancing happens. Do the same if the ipif 4967 * is DEPRECATED. 4968 * 4969 * 3) If the outgoing interface is part of a usesrc 4970 * group, then try selecting a source address from 4971 * the usesrc ILL. 4972 */ 4973 if ((dst_ire->ire_zoneid != zoneid && 4974 dst_ire->ire_zoneid != ALL_ZONES) || 4975 (!(dst_ire->ire_type & IRE_BROADCAST) && 4976 ((dst_ill->ill_group != NULL) || 4977 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4978 (dst_ill->ill_usesrc_ifindex != 0)))) { 4979 /* 4980 * If the destination is reachable via a 4981 * given gateway, the selected source address 4982 * should be in the same subnet as the gateway. 4983 * Otherwise, the destination is not reachable. 4984 * 4985 * If there are no interfaces on the same subnet 4986 * as the destination, ipif_select_source gives 4987 * first non-deprecated interface which might be 4988 * on a different subnet than the gateway. 4989 * This is not desirable. Hence pass the dst_ire 4990 * source address to ipif_select_source. 4991 * It is sure that the destination is reachable 4992 * with the dst_ire source address subnet. 4993 * So passing dst_ire source address to 4994 * ipif_select_source will make sure that the 4995 * selected source will be on the same subnet 4996 * as dst_ire source address. 4997 */ 4998 ipaddr_t saddr = 4999 dst_ire->ire_ipif->ipif_src_addr; 5000 src_ipif = ipif_select_source(dst_ill, 5001 saddr, zoneid); 5002 if (src_ipif != NULL) { 5003 if (IS_VNI(src_ipif->ipif_ill)) { 5004 /* 5005 * For VNI there is no 5006 * interface route 5007 */ 5008 src_addr = 5009 src_ipif->ipif_src_addr; 5010 } else { 5011 ipif_ire = 5012 ipif_to_ire(src_ipif); 5013 if (ipif_ire != NULL) { 5014 IRE_REFRELE(dst_ire); 5015 dst_ire = ipif_ire; 5016 } 5017 src_addr = 5018 dst_ire->ire_src_addr; 5019 } 5020 ipif_refrele(src_ipif); 5021 } else { 5022 src_addr = dst_ire->ire_src_addr; 5023 } 5024 } else { 5025 src_addr = dst_ire->ire_src_addr; 5026 } 5027 } 5028 } 5029 5030 /* 5031 * We do ire_route_lookup() here (and not 5032 * interface lookup as we assert that 5033 * src_addr should only come from an 5034 * UP interface for hard binding. 5035 */ 5036 ASSERT(src_ire == NULL); 5037 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5038 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 5039 /* src_ire must be a local|loopback */ 5040 if (!IRE_IS_LOCAL(src_ire)) { 5041 if (ip_debug > 2) { 5042 pr_addr_dbg("ip_bind_connected: bad connected " 5043 "src %s\n", AF_INET, &src_addr); 5044 } 5045 error = EADDRNOTAVAIL; 5046 goto bad_addr; 5047 } 5048 5049 /* 5050 * If the source address is a loopback address, the 5051 * destination had best be local or multicast. 5052 * The transports that can't handle multicast will reject 5053 * those addresses. 5054 */ 5055 if (src_ire->ire_type == IRE_LOOPBACK && 5056 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5057 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5058 error = -1; 5059 goto bad_addr; 5060 } 5061 5062 /* 5063 * Allow setting new policies. For example, disconnects come 5064 * down as ipa_t bind. As we would have set conn_policy_cached 5065 * to B_TRUE before, we should set it to B_FALSE, so that policy 5066 * can change after the disconnect. 5067 */ 5068 connp->conn_policy_cached = B_FALSE; 5069 5070 /* 5071 * Set the conn addresses/ports immediately, so the IPsec policy calls 5072 * can handle their passed-in conn's. 5073 */ 5074 5075 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5076 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5077 connp->conn_lport = lport; 5078 connp->conn_fport = fport; 5079 *src_addrp = src_addr; 5080 5081 ASSERT(!(ipsec_policy_set && ire_requested)); 5082 if (ire_requested) { 5083 iulp_t *ulp_info = NULL; 5084 5085 /* 5086 * Note that sire will not be NULL if this is an off-link 5087 * connection and there is not cache for that dest yet. 5088 * 5089 * XXX Because of an existing bug, if there are multiple 5090 * default routes, the IRE returned now may not be the actual 5091 * default route used (default routes are chosen in a 5092 * round robin fashion). So if the metrics for different 5093 * default routes are different, we may return the wrong 5094 * metrics. This will not be a problem if the existing 5095 * bug is fixed. 5096 */ 5097 if (sire != NULL) { 5098 ulp_info = &(sire->ire_uinfo); 5099 } 5100 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 5101 error = -1; 5102 goto bad_addr; 5103 } 5104 } else if (ipsec_policy_set) { 5105 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5106 error = -1; 5107 goto bad_addr; 5108 } 5109 } 5110 5111 /* 5112 * Cache IPsec policy in this conn. If we have per-socket policy, 5113 * we'll cache that. If we don't, we'll inherit global policy. 5114 * 5115 * We can't insert until the conn reflects the policy. Note that 5116 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5117 * connections where we don't have a policy. This is to prevent 5118 * global policy lookups in the inbound path. 5119 * 5120 * If we insert before we set conn_policy_cached, 5121 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5122 * because global policy cound be non-empty. We normally call 5123 * ipsec_check_policy() for conn_policy_cached connections only if 5124 * ipc_in_enforce_policy is set. But in this case, 5125 * conn_policy_cached can get set anytime since we made the 5126 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5127 * called, which will make the above assumption false. Thus, we 5128 * need to insert after we set conn_policy_cached. 5129 */ 5130 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5131 goto bad_addr; 5132 5133 if (fanout_insert) { 5134 /* 5135 * The addresses have been verified. Time to insert in 5136 * the correct fanout list. 5137 */ 5138 error = ipcl_conn_insert(connp, protocol, src_addr, 5139 dst_addr, connp->conn_ports); 5140 } 5141 5142 if (error == 0) { 5143 connp->conn_fully_bound = B_TRUE; 5144 /* 5145 * Our initial checks for MDT have passed; the IRE is not 5146 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5147 * be supporting MDT. Pass the IRE, IPC and ILL into 5148 * ip_mdinfo_return(), which performs further checks 5149 * against them and upon success, returns the MDT info 5150 * mblk which we will attach to the bind acknowledgment. 5151 */ 5152 if (md_dst_ire != NULL) { 5153 mblk_t *mdinfo_mp; 5154 5155 ASSERT(md_ill != NULL); 5156 ASSERT(md_ill->ill_mdt_capab != NULL); 5157 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5158 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 5159 linkb(mp, mdinfo_mp); 5160 } 5161 } 5162 bad_addr: 5163 if (ipsec_policy_set) { 5164 ASSERT(policy_mp == mp->b_cont); 5165 ASSERT(policy_mp != NULL); 5166 freeb(policy_mp); 5167 /* 5168 * As of now assume that nothing else accompanies 5169 * IPSEC_POLICY_SET. 5170 */ 5171 mp->b_cont = NULL; 5172 } 5173 if (src_ire != NULL) 5174 IRE_REFRELE(src_ire); 5175 if (dst_ire != NULL) 5176 IRE_REFRELE(dst_ire); 5177 if (sire != NULL) 5178 IRE_REFRELE(sire); 5179 if (md_dst_ire != NULL) 5180 IRE_REFRELE(md_dst_ire); 5181 return (error); 5182 } 5183 5184 /* 5185 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5186 * Prefers dst_ire over src_ire. 5187 */ 5188 static boolean_t 5189 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 5190 { 5191 mblk_t *mp1; 5192 ire_t *ret_ire = NULL; 5193 5194 mp1 = mp->b_cont; 5195 ASSERT(mp1 != NULL); 5196 5197 if (ire != NULL) { 5198 /* 5199 * mp1 initialized above to IRE_DB_REQ_TYPE 5200 * appended mblk. Its <upper protocol>'s 5201 * job to make sure there is room. 5202 */ 5203 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5204 return (0); 5205 5206 mp1->b_datap->db_type = IRE_DB_TYPE; 5207 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5208 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5209 ret_ire = (ire_t *)mp1->b_rptr; 5210 /* 5211 * Pass the latest setting of the ip_path_mtu_discovery and 5212 * copy the ulp info if any. 5213 */ 5214 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 5215 IPH_DF : 0; 5216 if (ulp_info != NULL) { 5217 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5218 sizeof (iulp_t)); 5219 } 5220 ret_ire->ire_mp = mp1; 5221 } else { 5222 /* 5223 * No IRE was found. Remove IRE mblk. 5224 */ 5225 mp->b_cont = mp1->b_cont; 5226 freeb(mp1); 5227 } 5228 5229 return (1); 5230 } 5231 5232 /* 5233 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5234 * the final piece where we don't. Return a pointer to the first mblk in the 5235 * result, and update the pointer to the next mblk to chew on. If anything 5236 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5237 * NULL pointer. 5238 */ 5239 mblk_t * 5240 ip_carve_mp(mblk_t **mpp, ssize_t len) 5241 { 5242 mblk_t *mp0; 5243 mblk_t *mp1; 5244 mblk_t *mp2; 5245 5246 if (!len || !mpp || !(mp0 = *mpp)) 5247 return (NULL); 5248 /* If we aren't going to consume the first mblk, we need a dup. */ 5249 if (mp0->b_wptr - mp0->b_rptr > len) { 5250 mp1 = dupb(mp0); 5251 if (mp1) { 5252 /* Partition the data between the two mblks. */ 5253 mp1->b_wptr = mp1->b_rptr + len; 5254 mp0->b_rptr = mp1->b_wptr; 5255 /* 5256 * after adjustments if mblk not consumed is now 5257 * unaligned, try to align it. If this fails free 5258 * all messages and let upper layer recover. 5259 */ 5260 if (!OK_32PTR(mp0->b_rptr)) { 5261 if (!pullupmsg(mp0, -1)) { 5262 freemsg(mp0); 5263 freemsg(mp1); 5264 *mpp = NULL; 5265 return (NULL); 5266 } 5267 } 5268 } 5269 return (mp1); 5270 } 5271 /* Eat through as many mblks as we need to get len bytes. */ 5272 len -= mp0->b_wptr - mp0->b_rptr; 5273 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5274 if (mp2->b_wptr - mp2->b_rptr > len) { 5275 /* 5276 * We won't consume the entire last mblk. Like 5277 * above, dup and partition it. 5278 */ 5279 mp1->b_cont = dupb(mp2); 5280 mp1 = mp1->b_cont; 5281 if (!mp1) { 5282 /* 5283 * Trouble. Rather than go to a lot of 5284 * trouble to clean up, we free the messages. 5285 * This won't be any worse than losing it on 5286 * the wire. 5287 */ 5288 freemsg(mp0); 5289 freemsg(mp2); 5290 *mpp = NULL; 5291 return (NULL); 5292 } 5293 mp1->b_wptr = mp1->b_rptr + len; 5294 mp2->b_rptr = mp1->b_wptr; 5295 /* 5296 * after adjustments if mblk not consumed is now 5297 * unaligned, try to align it. If this fails free 5298 * all messages and let upper layer recover. 5299 */ 5300 if (!OK_32PTR(mp2->b_rptr)) { 5301 if (!pullupmsg(mp2, -1)) { 5302 freemsg(mp0); 5303 freemsg(mp2); 5304 *mpp = NULL; 5305 return (NULL); 5306 } 5307 } 5308 *mpp = mp2; 5309 return (mp0); 5310 } 5311 /* Decrement len by the amount we just got. */ 5312 len -= mp2->b_wptr - mp2->b_rptr; 5313 } 5314 /* 5315 * len should be reduced to zero now. If not our caller has 5316 * screwed up. 5317 */ 5318 if (len) { 5319 /* Shouldn't happen! */ 5320 freemsg(mp0); 5321 *mpp = NULL; 5322 return (NULL); 5323 } 5324 /* 5325 * We consumed up to exactly the end of an mblk. Detach the part 5326 * we are returning from the rest of the chain. 5327 */ 5328 mp1->b_cont = NULL; 5329 *mpp = mp2; 5330 return (mp0); 5331 } 5332 5333 /* The ill stream is being unplumbed. Called from ip_close */ 5334 int 5335 ip_modclose(ill_t *ill) 5336 { 5337 5338 boolean_t success; 5339 ipsq_t *ipsq; 5340 ipif_t *ipif; 5341 queue_t *q = ill->ill_rq; 5342 5343 /* 5344 * Forcibly enter the ipsq after some delay. This is to take 5345 * care of the case when some ioctl does not complete because 5346 * we sent a control message to the driver and it did not 5347 * send us a reply. We want to be able to at least unplumb 5348 * and replumb rather than force the user to reboot the system. 5349 */ 5350 success = ipsq_enter(ill, B_FALSE); 5351 5352 /* 5353 * Open/close/push/pop is guaranteed to be single threaded 5354 * per stream by STREAMS. FS guarantees that all references 5355 * from top are gone before close is called. So there can't 5356 * be another close thread that has set CONDEMNED on this ill. 5357 * and cause ipsq_enter to return failure. 5358 */ 5359 ASSERT(success); 5360 ipsq = ill->ill_phyint->phyint_ipsq; 5361 5362 /* 5363 * Mark it condemned. No new reference will be made to this ill. 5364 * Lookup functions will return an error. Threads that try to 5365 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5366 * that the refcnt will drop down to zero. 5367 */ 5368 mutex_enter(&ill->ill_lock); 5369 ill->ill_state_flags |= ILL_CONDEMNED; 5370 for (ipif = ill->ill_ipif; ipif != NULL; 5371 ipif = ipif->ipif_next) { 5372 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5373 } 5374 /* 5375 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5376 * returns error if ILL_CONDEMNED is set 5377 */ 5378 cv_broadcast(&ill->ill_cv); 5379 mutex_exit(&ill->ill_lock); 5380 5381 /* 5382 * Shut down fragmentation reassembly. 5383 * ill_frag_timer won't start a timer again. 5384 * Now cancel any existing timer 5385 */ 5386 (void) untimeout(ill->ill_frag_timer_id); 5387 (void) ill_frag_timeout(ill, 0); 5388 5389 /* 5390 * If MOVE was in progress, clear the 5391 * move_in_progress fields also. 5392 */ 5393 if (ill->ill_move_in_progress) { 5394 ILL_CLEAR_MOVE(ill); 5395 } 5396 5397 /* 5398 * Call ill_delete to bring down the ipifs, ilms and ill on 5399 * this ill. Then wait for the refcnts to drop to zero. 5400 * ill_is_quiescent checks whether the ill is really quiescent. 5401 * Then make sure that threads that are waiting to enter the 5402 * ipsq have seen the error returned by ipsq_enter and have 5403 * gone away. Then we call ill_delete_tail which does the 5404 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5405 */ 5406 ill_delete(ill); 5407 mutex_enter(&ill->ill_lock); 5408 while (!ill_is_quiescent(ill)) 5409 cv_wait(&ill->ill_cv, &ill->ill_lock); 5410 while (ill->ill_waiters) 5411 cv_wait(&ill->ill_cv, &ill->ill_lock); 5412 5413 mutex_exit(&ill->ill_lock); 5414 5415 /* qprocsoff is called in ill_delete_tail */ 5416 ill_delete_tail(ill); 5417 5418 /* 5419 * Walk through all upper (conn) streams and qenable 5420 * those that have queued data. 5421 * close synchronization needs this to 5422 * be done to ensure that all upper layers blocked 5423 * due to flow control to the closing device 5424 * get unblocked. 5425 */ 5426 ip1dbg(("ip_wsrv: walking\n")); 5427 conn_walk_drain(); 5428 5429 mutex_enter(&ip_mi_lock); 5430 mi_close_unlink(&ip_g_head, (IDP)ill); 5431 mutex_exit(&ip_mi_lock); 5432 5433 /* 5434 * credp could be null if the open didn't succeed and ip_modopen 5435 * itself calls ip_close. 5436 */ 5437 if (ill->ill_credp != NULL) 5438 crfree(ill->ill_credp); 5439 5440 mi_close_free((IDP)ill); 5441 q->q_ptr = WR(q)->q_ptr = NULL; 5442 5443 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5444 5445 return (0); 5446 } 5447 5448 /* 5449 * This is called as part of close() for both IP and UDP 5450 * in order to quiesce the conn. 5451 */ 5452 void 5453 ip_quiesce_conn(conn_t *connp) 5454 { 5455 boolean_t drain_cleanup_reqd = B_FALSE; 5456 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5457 boolean_t ilg_cleanup_reqd = B_FALSE; 5458 5459 ASSERT(!IPCL_IS_TCP(connp)); 5460 5461 /* 5462 * Mark the conn as closing, and this conn must not be 5463 * inserted in future into any list. Eg. conn_drain_insert(), 5464 * won't insert this conn into the conn_drain_list. 5465 * Similarly ill_pending_mp_add() will not add any mp to 5466 * the pending mp list, after this conn has started closing. 5467 * 5468 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5469 * cannot get set henceforth. 5470 */ 5471 mutex_enter(&connp->conn_lock); 5472 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5473 connp->conn_state_flags |= CONN_CLOSING; 5474 if (connp->conn_idl != NULL) 5475 drain_cleanup_reqd = B_TRUE; 5476 if (connp->conn_oper_pending_ill != NULL) 5477 conn_ioctl_cleanup_reqd = B_TRUE; 5478 if (connp->conn_ilg_inuse != 0) 5479 ilg_cleanup_reqd = B_TRUE; 5480 mutex_exit(&connp->conn_lock); 5481 5482 if (IPCL_IS_UDP(connp)) 5483 udp_quiesce_conn(connp); 5484 5485 if (conn_ioctl_cleanup_reqd) 5486 conn_ioctl_cleanup(connp); 5487 5488 if (is_system_labeled() && connp->conn_anon_port) { 5489 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5490 connp->conn_mlp_type, connp->conn_ulp, 5491 ntohs(connp->conn_lport), B_FALSE); 5492 connp->conn_anon_port = 0; 5493 } 5494 connp->conn_mlp_type = mlptSingle; 5495 5496 /* 5497 * Remove this conn from any fanout list it is on. 5498 * and then wait for any threads currently operating 5499 * on this endpoint to finish 5500 */ 5501 ipcl_hash_remove(connp); 5502 5503 /* 5504 * Remove this conn from the drain list, and do 5505 * any other cleanup that may be required. 5506 * (Only non-tcp streams may have a non-null conn_idl. 5507 * TCP streams are never flow controlled, and 5508 * conn_idl will be null) 5509 */ 5510 if (drain_cleanup_reqd) 5511 conn_drain_tail(connp, B_TRUE); 5512 5513 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5514 (void) ip_mrouter_done(NULL); 5515 5516 if (ilg_cleanup_reqd) 5517 ilg_delete_all(connp); 5518 5519 conn_delete_ire(connp, NULL); 5520 5521 /* 5522 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5523 * callers from write side can't be there now because close 5524 * is in progress. The only other caller is ipcl_walk 5525 * which checks for the condemned flag. 5526 */ 5527 mutex_enter(&connp->conn_lock); 5528 connp->conn_state_flags |= CONN_CONDEMNED; 5529 while (connp->conn_ref != 1) 5530 cv_wait(&connp->conn_cv, &connp->conn_lock); 5531 connp->conn_state_flags |= CONN_QUIESCED; 5532 mutex_exit(&connp->conn_lock); 5533 } 5534 5535 /* ARGSUSED */ 5536 int 5537 ip_close(queue_t *q, int flags) 5538 { 5539 conn_t *connp; 5540 5541 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5542 5543 /* 5544 * Call the appropriate delete routine depending on whether this is 5545 * a module or device. 5546 */ 5547 if (WR(q)->q_next != NULL) { 5548 /* This is a module close */ 5549 return (ip_modclose((ill_t *)q->q_ptr)); 5550 } 5551 5552 connp = q->q_ptr; 5553 ip_quiesce_conn(connp); 5554 5555 qprocsoff(q); 5556 5557 /* 5558 * Now we are truly single threaded on this stream, and can 5559 * delete the things hanging off the connp, and finally the connp. 5560 * We removed this connp from the fanout list, it cannot be 5561 * accessed thru the fanouts, and we already waited for the 5562 * conn_ref to drop to 0. We are already in close, so 5563 * there cannot be any other thread from the top. qprocsoff 5564 * has completed, and service has completed or won't run in 5565 * future. 5566 */ 5567 ASSERT(connp->conn_ref == 1); 5568 5569 /* 5570 * A conn which was previously marked as IPCL_UDP cannot 5571 * retain the flag because it would have been cleared by 5572 * udp_close(). 5573 */ 5574 ASSERT(!IPCL_IS_UDP(connp)); 5575 5576 if (connp->conn_latch != NULL) { 5577 IPLATCH_REFRELE(connp->conn_latch); 5578 connp->conn_latch = NULL; 5579 } 5580 if (connp->conn_policy != NULL) { 5581 IPPH_REFRELE(connp->conn_policy); 5582 connp->conn_policy = NULL; 5583 } 5584 if (connp->conn_ipsec_opt_mp != NULL) { 5585 freemsg(connp->conn_ipsec_opt_mp); 5586 connp->conn_ipsec_opt_mp = NULL; 5587 } 5588 5589 inet_minor_free(ip_minor_arena, connp->conn_dev); 5590 5591 connp->conn_ref--; 5592 ipcl_conn_destroy(connp); 5593 5594 q->q_ptr = WR(q)->q_ptr = NULL; 5595 return (0); 5596 } 5597 5598 int 5599 ip_snmpmod_close(queue_t *q) 5600 { 5601 conn_t *connp = Q_TO_CONN(q); 5602 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5603 5604 qprocsoff(q); 5605 5606 if (connp->conn_flags & IPCL_UDPMOD) 5607 udp_close_free(connp); 5608 5609 if (connp->conn_cred != NULL) { 5610 crfree(connp->conn_cred); 5611 connp->conn_cred = NULL; 5612 } 5613 CONN_DEC_REF(connp); 5614 q->q_ptr = WR(q)->q_ptr = NULL; 5615 return (0); 5616 } 5617 5618 /* 5619 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5620 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5621 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5622 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5623 * queues as we never enqueue messages there and we don't handle any ioctls. 5624 * Everything else is freed. 5625 */ 5626 void 5627 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5628 { 5629 conn_t *connp = q->q_ptr; 5630 pfi_t setfn; 5631 pfi_t getfn; 5632 5633 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5634 5635 switch (DB_TYPE(mp)) { 5636 case M_PROTO: 5637 case M_PCPROTO: 5638 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5639 ((((union T_primitives *)mp->b_rptr)->type == 5640 T_SVR4_OPTMGMT_REQ) || 5641 (((union T_primitives *)mp->b_rptr)->type == 5642 T_OPTMGMT_REQ))) { 5643 /* 5644 * This is the only TPI primitive supported. Its 5645 * handling does not require tcp_t, but it does require 5646 * conn_t to check permissions. 5647 */ 5648 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5649 5650 if (connp->conn_flags & IPCL_TCPMOD) { 5651 setfn = tcp_snmp_set; 5652 getfn = tcp_snmp_get; 5653 } else { 5654 setfn = udp_snmp_set; 5655 getfn = udp_snmp_get; 5656 } 5657 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5658 freemsg(mp); 5659 return; 5660 } 5661 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5662 != NULL) 5663 qreply(q, mp); 5664 break; 5665 case M_FLUSH: 5666 case M_IOCTL: 5667 putnext(q, mp); 5668 break; 5669 default: 5670 freemsg(mp); 5671 break; 5672 } 5673 } 5674 5675 /* Return the IP checksum for the IP header at "iph". */ 5676 uint16_t 5677 ip_csum_hdr(ipha_t *ipha) 5678 { 5679 uint16_t *uph; 5680 uint32_t sum; 5681 int opt_len; 5682 5683 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5684 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5685 uph = (uint16_t *)ipha; 5686 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5687 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5688 if (opt_len > 0) { 5689 do { 5690 sum += uph[10]; 5691 sum += uph[11]; 5692 uph += 2; 5693 } while (--opt_len); 5694 } 5695 sum = (sum & 0xFFFF) + (sum >> 16); 5696 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5697 if (sum == 0xffff) 5698 sum = 0; 5699 return ((uint16_t)sum); 5700 } 5701 5702 void 5703 ip_ddi_destroy(void) 5704 { 5705 tnet_fini(); 5706 tcp_ddi_destroy(); 5707 sctp_ddi_destroy(); 5708 ipsec_loader_destroy(); 5709 ipsec_policy_destroy(); 5710 ipsec_kstat_destroy(); 5711 nd_free(&ip_g_nd); 5712 mutex_destroy(&igmp_timer_lock); 5713 mutex_destroy(&mld_timer_lock); 5714 mutex_destroy(&igmp_slowtimeout_lock); 5715 mutex_destroy(&mld_slowtimeout_lock); 5716 mutex_destroy(&ip_mi_lock); 5717 mutex_destroy(&rts_clients.connf_lock); 5718 ip_ire_fini(); 5719 ip6_asp_free(); 5720 conn_drain_fini(); 5721 ipcl_destroy(); 5722 inet_minor_destroy(ip_minor_arena); 5723 icmp_kstat_fini(); 5724 ip_kstat_fini(); 5725 rw_destroy(&ipsec_capab_ills_lock); 5726 rw_destroy(&ill_g_usesrc_lock); 5727 ip_drop_unregister(&ip_dropper); 5728 } 5729 5730 5731 void 5732 ip_ddi_init(void) 5733 { 5734 TCP6_MAJ = ddi_name_to_major(TCP6); 5735 TCP_MAJ = ddi_name_to_major(TCP); 5736 SCTP_MAJ = ddi_name_to_major(SCTP); 5737 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5738 5739 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5740 5741 /* IP's IPsec code calls the packet dropper */ 5742 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5743 5744 if (!ip_g_nd) { 5745 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5746 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5747 nd_free(&ip_g_nd); 5748 } 5749 } 5750 5751 ipsec_loader_init(); 5752 ipsec_policy_init(); 5753 ipsec_kstat_init(); 5754 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5755 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5756 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5757 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5758 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5759 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5760 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5761 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5762 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5763 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5764 5765 /* 5766 * For IP and TCP the minor numbers should start from 2 since we have 4 5767 * initial devices: ip, ip6, tcp, tcp6. 5768 */ 5769 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5770 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5771 cmn_err(CE_PANIC, 5772 "ip_ddi_init: ip_minor_arena creation failed\n"); 5773 } 5774 5775 ipcl_init(); 5776 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5777 ip_ire_init(); 5778 ip6_asp_init(); 5779 ipif_init(); 5780 conn_drain_init(); 5781 tcp_ddi_init(); 5782 sctp_ddi_init(); 5783 5784 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5785 5786 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5787 "net", KSTAT_TYPE_NAMED, 5788 sizeof (ip_statistics) / sizeof (kstat_named_t), 5789 KSTAT_FLAG_VIRTUAL)) != NULL) { 5790 ip_kstat->ks_data = &ip_statistics; 5791 kstat_install(ip_kstat); 5792 } 5793 ip_kstat_init(); 5794 ip6_kstat_init(); 5795 icmp_kstat_init(); 5796 ipsec_loader_start(); 5797 tnet_init(); 5798 } 5799 5800 /* 5801 * Allocate and initialize a DLPI template of the specified length. (May be 5802 * called as writer.) 5803 */ 5804 mblk_t * 5805 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5806 { 5807 mblk_t *mp; 5808 5809 mp = allocb(len, BPRI_MED); 5810 if (!mp) 5811 return (NULL); 5812 5813 /* 5814 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5815 * of which we don't seem to use) are sent with M_PCPROTO, and 5816 * that other DLPI are M_PROTO. 5817 */ 5818 if (prim == DL_INFO_REQ) { 5819 mp->b_datap->db_type = M_PCPROTO; 5820 } else { 5821 mp->b_datap->db_type = M_PROTO; 5822 } 5823 5824 mp->b_wptr = mp->b_rptr + len; 5825 bzero(mp->b_rptr, len); 5826 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5827 return (mp); 5828 } 5829 5830 const char * 5831 dlpi_prim_str(int prim) 5832 { 5833 switch (prim) { 5834 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5835 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5836 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5837 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5838 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5839 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5840 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5841 case DL_OK_ACK: return ("DL_OK_ACK"); 5842 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5843 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5844 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5845 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5846 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5847 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5848 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5849 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5850 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5851 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5852 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5853 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5854 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5855 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5856 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5857 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5858 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5859 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5860 default: return ("<unknown primitive>"); 5861 } 5862 } 5863 5864 const char * 5865 dlpi_err_str(int err) 5866 { 5867 switch (err) { 5868 case DL_ACCESS: return ("DL_ACCESS"); 5869 case DL_BADADDR: return ("DL_BADADDR"); 5870 case DL_BADCORR: return ("DL_BADCORR"); 5871 case DL_BADDATA: return ("DL_BADDATA"); 5872 case DL_BADPPA: return ("DL_BADPPA"); 5873 case DL_BADPRIM: return ("DL_BADPRIM"); 5874 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5875 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5876 case DL_BADSAP: return ("DL_BADSAP"); 5877 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5878 case DL_BOUND: return ("DL_BOUND"); 5879 case DL_INITFAILED: return ("DL_INITFAILED"); 5880 case DL_NOADDR: return ("DL_NOADDR"); 5881 case DL_NOTINIT: return ("DL_NOTINIT"); 5882 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5883 case DL_SYSERR: return ("DL_SYSERR"); 5884 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5885 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5886 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5887 case DL_TOOMANY: return ("DL_TOOMANY"); 5888 case DL_NOTENAB: return ("DL_NOTENAB"); 5889 case DL_BUSY: return ("DL_BUSY"); 5890 case DL_NOAUTO: return ("DL_NOAUTO"); 5891 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5892 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5893 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5894 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5895 case DL_PENDING: return ("DL_PENDING"); 5896 default: return ("<unknown error>"); 5897 } 5898 } 5899 5900 /* 5901 * Debug formatting routine. Returns a character string representation of the 5902 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5903 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5904 * 5905 * Once the ndd table-printing interfaces are removed, this can be changed to 5906 * standard dotted-decimal form. 5907 */ 5908 char * 5909 ip_dot_addr(ipaddr_t addr, char *buf) 5910 { 5911 uint8_t *ap = (uint8_t *)&addr; 5912 5913 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5914 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 5915 return (buf); 5916 } 5917 5918 /* 5919 * Write the given MAC address as a printable string in the usual colon- 5920 * separated format. 5921 */ 5922 const char * 5923 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 5924 { 5925 char *bp; 5926 5927 if (alen == 0 || buflen < 4) 5928 return ("?"); 5929 bp = buf; 5930 for (;;) { 5931 /* 5932 * If there are more MAC address bytes available, but we won't 5933 * have any room to print them, then add "..." to the string 5934 * instead. See below for the 'magic number' explanation. 5935 */ 5936 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 5937 (void) strcpy(bp, "..."); 5938 break; 5939 } 5940 (void) sprintf(bp, "%02x", *addr++); 5941 bp += 2; 5942 if (--alen == 0) 5943 break; 5944 *bp++ = ':'; 5945 buflen -= 3; 5946 /* 5947 * At this point, based on the first 'if' statement above, 5948 * either alen == 1 and buflen >= 3, or alen > 1 and 5949 * buflen >= 4. The first case leaves room for the final "xx" 5950 * number and trailing NUL byte. The second leaves room for at 5951 * least "...". Thus the apparently 'magic' numbers chosen for 5952 * that statement. 5953 */ 5954 } 5955 return (buf); 5956 } 5957 5958 /* 5959 * Send an ICMP error after patching up the packet appropriately. Returns 5960 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5961 */ 5962 static boolean_t 5963 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5964 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5965 { 5966 ipha_t *ipha; 5967 mblk_t *first_mp; 5968 boolean_t secure; 5969 unsigned char db_type; 5970 5971 first_mp = mp; 5972 if (mctl_present) { 5973 mp = mp->b_cont; 5974 secure = ipsec_in_is_secure(first_mp); 5975 ASSERT(mp != NULL); 5976 } else { 5977 /* 5978 * If this is an ICMP error being reported - which goes 5979 * up as M_CTLs, we need to convert them to M_DATA till 5980 * we finish checking with global policy because 5981 * ipsec_check_global_policy() assumes M_DATA as clear 5982 * and M_CTL as secure. 5983 */ 5984 db_type = DB_TYPE(mp); 5985 DB_TYPE(mp) = M_DATA; 5986 secure = B_FALSE; 5987 } 5988 /* 5989 * We are generating an icmp error for some inbound packet. 5990 * Called from all ip_fanout_(udp, tcp, proto) functions. 5991 * Before we generate an error, check with global policy 5992 * to see whether this is allowed to enter the system. As 5993 * there is no "conn", we are checking with global policy. 5994 */ 5995 ipha = (ipha_t *)mp->b_rptr; 5996 if (secure || ipsec_inbound_v4_policy_present) { 5997 first_mp = ipsec_check_global_policy(first_mp, NULL, 5998 ipha, NULL, mctl_present); 5999 if (first_mp == NULL) 6000 return (B_FALSE); 6001 } 6002 6003 if (!mctl_present) 6004 DB_TYPE(mp) = db_type; 6005 6006 if (flags & IP_FF_SEND_ICMP) { 6007 if (flags & IP_FF_HDR_COMPLETE) { 6008 if (ip_hdr_complete(ipha, zoneid)) { 6009 freemsg(first_mp); 6010 return (B_TRUE); 6011 } 6012 } 6013 if (flags & IP_FF_CKSUM) { 6014 /* 6015 * Have to correct checksum since 6016 * the packet might have been 6017 * fragmented and the reassembly code in ip_rput 6018 * does not restore the IP checksum. 6019 */ 6020 ipha->ipha_hdr_checksum = 0; 6021 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6022 } 6023 switch (icmp_type) { 6024 case ICMP_DEST_UNREACHABLE: 6025 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid); 6026 break; 6027 default: 6028 freemsg(first_mp); 6029 break; 6030 } 6031 } else { 6032 freemsg(first_mp); 6033 return (B_FALSE); 6034 } 6035 6036 return (B_TRUE); 6037 } 6038 6039 /* 6040 * Used to send an ICMP error message when a packet is received for 6041 * a protocol that is not supported. The mblk passed as argument 6042 * is consumed by this function. 6043 */ 6044 void 6045 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 6046 { 6047 mblk_t *mp; 6048 ipha_t *ipha; 6049 ill_t *ill; 6050 ipsec_in_t *ii; 6051 6052 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6053 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6054 6055 mp = ipsec_mp->b_cont; 6056 ipsec_mp->b_cont = NULL; 6057 ipha = (ipha_t *)mp->b_rptr; 6058 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6059 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 6060 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 6061 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6062 } 6063 } else { 6064 /* Get ill from index in ipsec_in_t. */ 6065 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6066 B_TRUE, NULL, NULL, NULL, NULL); 6067 if (ill != NULL) { 6068 if (ip_fanout_send_icmp_v6(q, mp, flags, 6069 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6070 0, B_FALSE, zoneid)) { 6071 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 6072 } 6073 6074 ill_refrele(ill); 6075 } else { /* re-link for the freemsg() below. */ 6076 ipsec_mp->b_cont = mp; 6077 } 6078 } 6079 6080 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6081 freemsg(ipsec_mp); 6082 } 6083 6084 /* 6085 * See if the inbound datagram has had IPsec processing applied to it. 6086 */ 6087 boolean_t 6088 ipsec_in_is_secure(mblk_t *ipsec_mp) 6089 { 6090 ipsec_in_t *ii; 6091 6092 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6093 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6094 6095 if (ii->ipsec_in_loopback) { 6096 return (ii->ipsec_in_secure); 6097 } else { 6098 return (ii->ipsec_in_ah_sa != NULL || 6099 ii->ipsec_in_esp_sa != NULL || 6100 ii->ipsec_in_decaps); 6101 } 6102 } 6103 6104 /* 6105 * Handle protocols with which IP is less intimate. There 6106 * can be more than one stream bound to a particular 6107 * protocol. When this is the case, normally each one gets a copy 6108 * of any incoming packets. 6109 * 6110 * IPSEC NOTE : 6111 * 6112 * Don't allow a secure packet going up a non-secure connection. 6113 * We don't allow this because 6114 * 6115 * 1) Reply might go out in clear which will be dropped at 6116 * the sending side. 6117 * 2) If the reply goes out in clear it will give the 6118 * adversary enough information for getting the key in 6119 * most of the cases. 6120 * 6121 * Moreover getting a secure packet when we expect clear 6122 * implies that SA's were added without checking for 6123 * policy on both ends. This should not happen once ISAKMP 6124 * is used to negotiate SAs as SAs will be added only after 6125 * verifying the policy. 6126 * 6127 * NOTE : If the packet was tunneled and not multicast we only send 6128 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6129 * back to delivering packets to AF_INET6 raw sockets. 6130 * 6131 * IPQoS Notes: 6132 * Once we have determined the client, invoke IPPF processing. 6133 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6134 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6135 * ip_policy will be false. 6136 * 6137 * Zones notes: 6138 * Currently only applications in the global zone can create raw sockets for 6139 * protocols other than ICMP. So unlike the broadcast / multicast case of 6140 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6141 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6142 */ 6143 static void 6144 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6145 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6146 zoneid_t zoneid) 6147 { 6148 queue_t *rq; 6149 mblk_t *mp1, *first_mp1; 6150 uint_t protocol = ipha->ipha_protocol; 6151 ipaddr_t dst; 6152 boolean_t one_only; 6153 mblk_t *first_mp = mp; 6154 boolean_t secure; 6155 uint32_t ill_index; 6156 conn_t *connp, *first_connp, *next_connp; 6157 connf_t *connfp; 6158 boolean_t shared_addr; 6159 6160 if (mctl_present) { 6161 mp = first_mp->b_cont; 6162 secure = ipsec_in_is_secure(first_mp); 6163 ASSERT(mp != NULL); 6164 } else { 6165 secure = B_FALSE; 6166 } 6167 dst = ipha->ipha_dst; 6168 /* 6169 * If the packet was tunneled and not multicast we only send to it 6170 * the first match. 6171 */ 6172 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6173 !CLASSD(dst)); 6174 6175 shared_addr = (zoneid == ALL_ZONES); 6176 if (shared_addr) { 6177 /* 6178 * We don't allow multilevel ports for raw IP, so no need to 6179 * check for that here. 6180 */ 6181 zoneid = tsol_packet_to_zoneid(mp); 6182 } 6183 6184 connfp = &ipcl_proto_fanout[protocol]; 6185 mutex_enter(&connfp->connf_lock); 6186 connp = connfp->connf_head; 6187 for (connp = connfp->connf_head; connp != NULL; 6188 connp = connp->conn_next) { 6189 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6190 zoneid) && 6191 (!is_system_labeled() || 6192 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6193 connp))) 6194 break; 6195 } 6196 6197 if (connp == NULL || connp->conn_upq == NULL) { 6198 /* 6199 * No one bound to these addresses. Is 6200 * there a client that wants all 6201 * unclaimed datagrams? 6202 */ 6203 mutex_exit(&connfp->connf_lock); 6204 /* 6205 * Check for IPPROTO_ENCAP... 6206 */ 6207 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 6208 /* 6209 * XXX If an IPsec mblk is here on a multicast 6210 * tunnel (using ip_mroute stuff), what should 6211 * I do? 6212 * 6213 * For now, just free the IPsec mblk before 6214 * passing it up to the multicast routing 6215 * stuff. 6216 * 6217 * BTW, If I match a configured IP-in-IP 6218 * tunnel, ip_mroute_decap will never be 6219 * called. 6220 */ 6221 if (mp != first_mp) 6222 freeb(first_mp); 6223 ip_mroute_decap(q, mp); 6224 } else { 6225 /* 6226 * Otherwise send an ICMP protocol unreachable. 6227 */ 6228 if (ip_fanout_send_icmp(q, first_mp, flags, 6229 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6230 mctl_present, zoneid)) { 6231 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6232 } 6233 } 6234 return; 6235 } 6236 CONN_INC_REF(connp); 6237 first_connp = connp; 6238 6239 /* 6240 * Only send message to one tunnel driver by immediately 6241 * terminating the loop. 6242 */ 6243 connp = one_only ? NULL : connp->conn_next; 6244 6245 for (;;) { 6246 while (connp != NULL) { 6247 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6248 flags, zoneid) && 6249 (!is_system_labeled() || 6250 tsol_receive_local(mp, &dst, IPV4_VERSION, 6251 shared_addr, connp))) 6252 break; 6253 connp = connp->conn_next; 6254 } 6255 6256 /* 6257 * Copy the packet. 6258 */ 6259 if (connp == NULL || connp->conn_upq == NULL || 6260 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6261 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6262 /* 6263 * No more interested clients or memory 6264 * allocation failed 6265 */ 6266 connp = first_connp; 6267 break; 6268 } 6269 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6270 CONN_INC_REF(connp); 6271 mutex_exit(&connfp->connf_lock); 6272 rq = connp->conn_rq; 6273 if (!canputnext(rq)) { 6274 if (flags & IP_FF_RAWIP) { 6275 BUMP_MIB(&ip_mib, rawipInOverflows); 6276 } else { 6277 BUMP_MIB(&icmp_mib, icmpInOverflows); 6278 } 6279 6280 freemsg(first_mp1); 6281 } else { 6282 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6283 first_mp1 = ipsec_check_inbound_policy 6284 (first_mp1, connp, ipha, NULL, 6285 mctl_present); 6286 } 6287 if (first_mp1 != NULL) { 6288 /* 6289 * ip_fanout_proto also gets called from 6290 * icmp_inbound_error_fanout, in which case 6291 * the msg type is M_CTL. Don't add info 6292 * in this case for the time being. In future 6293 * when there is a need for knowing the 6294 * inbound iface index for ICMP error msgs, 6295 * then this can be changed. 6296 */ 6297 if ((connp->conn_recvif != 0) && 6298 (mp->b_datap->db_type != M_CTL)) { 6299 /* 6300 * the actual data will be 6301 * contained in b_cont upon 6302 * successful return of the 6303 * following call else 6304 * original mblk is returned 6305 */ 6306 ASSERT(recv_ill != NULL); 6307 mp1 = ip_add_info(mp1, recv_ill, 6308 IPF_RECVIF); 6309 } 6310 BUMP_MIB(&ip_mib, ipInDelivers); 6311 if (mctl_present) 6312 freeb(first_mp1); 6313 putnext(rq, mp1); 6314 } 6315 } 6316 mutex_enter(&connfp->connf_lock); 6317 /* Follow the next pointer before releasing the conn. */ 6318 next_connp = connp->conn_next; 6319 CONN_DEC_REF(connp); 6320 connp = next_connp; 6321 } 6322 6323 /* Last one. Send it upstream. */ 6324 mutex_exit(&connfp->connf_lock); 6325 6326 /* 6327 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6328 * will be set to false. 6329 */ 6330 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6331 ill_index = ill->ill_phyint->phyint_ifindex; 6332 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6333 if (mp == NULL) { 6334 CONN_DEC_REF(connp); 6335 if (mctl_present) { 6336 freeb(first_mp); 6337 } 6338 return; 6339 } 6340 } 6341 6342 rq = connp->conn_rq; 6343 if (!canputnext(rq)) { 6344 if (flags & IP_FF_RAWIP) { 6345 BUMP_MIB(&ip_mib, rawipInOverflows); 6346 } else { 6347 BUMP_MIB(&icmp_mib, icmpInOverflows); 6348 } 6349 6350 freemsg(first_mp); 6351 } else { 6352 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6353 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6354 ipha, NULL, mctl_present); 6355 } 6356 if (first_mp != NULL) { 6357 /* 6358 * ip_fanout_proto also gets called 6359 * from icmp_inbound_error_fanout, in 6360 * which case the msg type is M_CTL. 6361 * Don't add info in this case for time 6362 * being. In future when there is a 6363 * need for knowing the inbound iface 6364 * index for ICMP error msgs, then this 6365 * can be changed 6366 */ 6367 if ((connp->conn_recvif != 0) && 6368 (mp->b_datap->db_type != M_CTL)) { 6369 /* 6370 * the actual data will be contained in 6371 * b_cont upon successful return 6372 * of the following call else original 6373 * mblk is returned 6374 */ 6375 ASSERT(recv_ill != NULL); 6376 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6377 } 6378 BUMP_MIB(&ip_mib, ipInDelivers); 6379 putnext(rq, mp); 6380 if (mctl_present) 6381 freeb(first_mp); 6382 } 6383 } 6384 CONN_DEC_REF(connp); 6385 } 6386 6387 /* 6388 * Fanout for TCP packets 6389 * The caller puts <fport, lport> in the ports parameter. 6390 * 6391 * IPQoS Notes 6392 * Before sending it to the client, invoke IPPF processing. 6393 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6394 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6395 * ip_policy is false. 6396 */ 6397 static void 6398 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6399 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6400 { 6401 mblk_t *first_mp; 6402 boolean_t secure; 6403 uint32_t ill_index; 6404 int ip_hdr_len; 6405 tcph_t *tcph; 6406 boolean_t syn_present = B_FALSE; 6407 conn_t *connp; 6408 6409 first_mp = mp; 6410 if (mctl_present) { 6411 ASSERT(first_mp->b_datap->db_type == M_CTL); 6412 mp = first_mp->b_cont; 6413 secure = ipsec_in_is_secure(first_mp); 6414 ASSERT(mp != NULL); 6415 } else { 6416 secure = B_FALSE; 6417 } 6418 6419 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6420 6421 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6422 NULL) { 6423 /* 6424 * No connected connection or listener. Send a 6425 * TH_RST via tcp_xmit_listeners_reset. 6426 */ 6427 6428 /* Initiate IPPf processing, if needed. */ 6429 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6430 uint32_t ill_index; 6431 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6432 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6433 if (first_mp == NULL) 6434 return; 6435 } 6436 BUMP_MIB(&ip_mib, ipInDelivers); 6437 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6438 zoneid)); 6439 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6440 return; 6441 } 6442 6443 /* 6444 * Allocate the SYN for the TCP connection here itself 6445 */ 6446 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6447 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6448 if (IPCL_IS_TCP(connp)) { 6449 squeue_t *sqp; 6450 6451 /* 6452 * For fused tcp loopback, assign the eager's 6453 * squeue to be that of the active connect's. 6454 * Note that we don't check for IP_FF_LOOPBACK 6455 * here since this routine gets called only 6456 * for loopback (unlike the IPv6 counterpart). 6457 */ 6458 ASSERT(Q_TO_CONN(q) != NULL); 6459 if (do_tcp_fusion && 6460 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6461 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6462 IPCL_IS_TCP(Q_TO_CONN(q))) { 6463 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6464 sqp = Q_TO_CONN(q)->conn_sqp; 6465 } else { 6466 sqp = IP_SQUEUE_GET(lbolt); 6467 } 6468 6469 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6470 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6471 syn_present = B_TRUE; 6472 } 6473 } 6474 6475 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6476 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6477 if ((flags & TH_RST) || (flags & TH_URG)) { 6478 CONN_DEC_REF(connp); 6479 freemsg(first_mp); 6480 return; 6481 } 6482 if (flags & TH_ACK) { 6483 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6484 CONN_DEC_REF(connp); 6485 return; 6486 } 6487 6488 CONN_DEC_REF(connp); 6489 freemsg(first_mp); 6490 return; 6491 } 6492 6493 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6494 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6495 NULL, mctl_present); 6496 if (first_mp == NULL) { 6497 CONN_DEC_REF(connp); 6498 return; 6499 } 6500 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6501 ASSERT(syn_present); 6502 if (mctl_present) { 6503 ASSERT(first_mp != mp); 6504 first_mp->b_datap->db_struioflag |= 6505 STRUIO_POLICY; 6506 } else { 6507 ASSERT(first_mp == mp); 6508 mp->b_datap->db_struioflag &= 6509 ~STRUIO_EAGER; 6510 mp->b_datap->db_struioflag |= 6511 STRUIO_POLICY; 6512 } 6513 } else { 6514 /* 6515 * Discard first_mp early since we're dealing with a 6516 * fully-connected conn_t and tcp doesn't do policy in 6517 * this case. 6518 */ 6519 if (mctl_present) { 6520 freeb(first_mp); 6521 mctl_present = B_FALSE; 6522 } 6523 first_mp = mp; 6524 } 6525 } 6526 6527 /* 6528 * Initiate policy processing here if needed. If we get here from 6529 * icmp_inbound_error_fanout, ip_policy is false. 6530 */ 6531 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6532 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6533 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6534 if (mp == NULL) { 6535 CONN_DEC_REF(connp); 6536 if (mctl_present) 6537 freeb(first_mp); 6538 return; 6539 } else if (mctl_present) { 6540 ASSERT(first_mp != mp); 6541 first_mp->b_cont = mp; 6542 } else { 6543 first_mp = mp; 6544 } 6545 } 6546 6547 6548 6549 /* Handle IPv6 socket options. */ 6550 if (!syn_present && 6551 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6552 /* Add header */ 6553 ASSERT(recv_ill != NULL); 6554 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6555 if (mp == NULL) { 6556 CONN_DEC_REF(connp); 6557 if (mctl_present) 6558 freeb(first_mp); 6559 return; 6560 } else if (mctl_present) { 6561 /* 6562 * ip_add_info might return a new mp. 6563 */ 6564 ASSERT(first_mp != mp); 6565 first_mp->b_cont = mp; 6566 } else { 6567 first_mp = mp; 6568 } 6569 } 6570 6571 BUMP_MIB(&ip_mib, ipInDelivers); 6572 if (IPCL_IS_TCP(connp)) { 6573 (*ip_input_proc)(connp->conn_sqp, first_mp, 6574 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6575 } else { 6576 putnext(connp->conn_rq, first_mp); 6577 CONN_DEC_REF(connp); 6578 } 6579 } 6580 6581 /* 6582 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6583 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6584 * Caller is responsible for dropping references to the conn, and freeing 6585 * first_mp. 6586 * 6587 * IPQoS Notes 6588 * Before sending it to the client, invoke IPPF processing. Policy processing 6589 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6590 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6591 * ip_wput_local, ip_policy is false. 6592 */ 6593 static void 6594 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6595 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6596 boolean_t ip_policy) 6597 { 6598 boolean_t mctl_present = (first_mp != NULL); 6599 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6600 uint32_t ill_index; 6601 6602 if (mctl_present) 6603 first_mp->b_cont = mp; 6604 else 6605 first_mp = mp; 6606 6607 if (CONN_UDP_FLOWCTLD(connp)) { 6608 BUMP_MIB(&ip_mib, udpInOverflows); 6609 freemsg(first_mp); 6610 return; 6611 } 6612 6613 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6614 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6615 NULL, mctl_present); 6616 if (first_mp == NULL) 6617 return; /* Freed by ipsec_check_inbound_policy(). */ 6618 } 6619 if (mctl_present) 6620 freeb(first_mp); 6621 6622 if (connp->conn_recvif) 6623 in_flags = IPF_RECVIF; 6624 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6625 in_flags |= IPF_RECVSLLA; 6626 6627 /* Handle IPv6 options. */ 6628 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6629 in_flags |= IPF_RECVIF; 6630 6631 /* 6632 * Initiate IPPF processing here, if needed. Note first_mp won't be 6633 * freed if the packet is dropped. The caller will do so. 6634 */ 6635 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6636 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6637 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6638 if (mp == NULL) { 6639 return; 6640 } 6641 } 6642 if ((in_flags != 0) && 6643 (mp->b_datap->db_type != M_CTL)) { 6644 /* 6645 * The actual data will be contained in b_cont 6646 * upon successful return of the following call 6647 * else original mblk is returned 6648 */ 6649 ASSERT(recv_ill != NULL); 6650 mp = ip_add_info(mp, recv_ill, in_flags); 6651 } 6652 BUMP_MIB(&ip_mib, ipInDelivers); 6653 6654 /* Send it upstream */ 6655 CONN_UDP_RECV(connp, mp); 6656 } 6657 6658 /* 6659 * Fanout for UDP packets. 6660 * The caller puts <fport, lport> in the ports parameter. 6661 * 6662 * If SO_REUSEADDR is set all multicast and broadcast packets 6663 * will be delivered to all streams bound to the same port. 6664 * 6665 * Zones notes: 6666 * Multicast and broadcast packets will be distributed to streams in all zones. 6667 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6668 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6669 * packets. To maintain this behavior with multiple zones, the conns are grouped 6670 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6671 * each zone. If unset, all the following conns in the same zone are skipped. 6672 */ 6673 static void 6674 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6675 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6676 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6677 { 6678 uint32_t dstport, srcport; 6679 ipaddr_t dst; 6680 mblk_t *first_mp; 6681 boolean_t secure; 6682 in6_addr_t v6src; 6683 conn_t *connp; 6684 connf_t *connfp; 6685 conn_t *first_connp; 6686 conn_t *next_connp; 6687 mblk_t *mp1, *first_mp1; 6688 ipaddr_t src; 6689 zoneid_t last_zoneid; 6690 boolean_t reuseaddr; 6691 boolean_t shared_addr; 6692 6693 first_mp = mp; 6694 if (mctl_present) { 6695 mp = first_mp->b_cont; 6696 first_mp->b_cont = NULL; 6697 secure = ipsec_in_is_secure(first_mp); 6698 ASSERT(mp != NULL); 6699 } else { 6700 first_mp = NULL; 6701 secure = B_FALSE; 6702 } 6703 6704 /* Extract ports in net byte order */ 6705 dstport = htons(ntohl(ports) & 0xFFFF); 6706 srcport = htons(ntohl(ports) >> 16); 6707 dst = ipha->ipha_dst; 6708 src = ipha->ipha_src; 6709 6710 shared_addr = (zoneid == ALL_ZONES); 6711 if (shared_addr) { 6712 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6713 if (zoneid == ALL_ZONES) 6714 zoneid = tsol_packet_to_zoneid(mp); 6715 } 6716 6717 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6718 mutex_enter(&connfp->connf_lock); 6719 connp = connfp->connf_head; 6720 if (!broadcast && !CLASSD(dst)) { 6721 /* 6722 * Not broadcast or multicast. Send to the one (first) 6723 * client we find. No need to check conn_wantpacket() 6724 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6725 * IPv4 unicast packets. 6726 */ 6727 while ((connp != NULL) && 6728 (!IPCL_UDP_MATCH(connp, dstport, dst, 6729 srcport, src) || 6730 (connp->conn_zoneid != zoneid && !connp->conn_allzones))) { 6731 connp = connp->conn_next; 6732 } 6733 6734 if (connp == NULL || connp->conn_upq == NULL) 6735 goto notfound; 6736 6737 if (is_system_labeled() && 6738 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6739 connp)) 6740 goto notfound; 6741 6742 CONN_INC_REF(connp); 6743 mutex_exit(&connfp->connf_lock); 6744 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6745 recv_ill, ip_policy); 6746 IP_STAT(ip_udp_fannorm); 6747 CONN_DEC_REF(connp); 6748 return; 6749 } 6750 6751 /* 6752 * Broadcast and multicast case 6753 * 6754 * Need to check conn_wantpacket(). 6755 * If SO_REUSEADDR has been set on the first we send the 6756 * packet to all clients that have joined the group and 6757 * match the port. 6758 */ 6759 6760 while (connp != NULL) { 6761 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6762 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6763 (!is_system_labeled() || 6764 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6765 connp))) 6766 break; 6767 connp = connp->conn_next; 6768 } 6769 6770 if (connp == NULL || connp->conn_upq == NULL) 6771 goto notfound; 6772 6773 first_connp = connp; 6774 /* 6775 * When SO_REUSEADDR is not set, send the packet only to the first 6776 * matching connection in its zone by keeping track of the zoneid. 6777 */ 6778 reuseaddr = first_connp->conn_reuseaddr; 6779 last_zoneid = first_connp->conn_zoneid; 6780 6781 CONN_INC_REF(connp); 6782 connp = connp->conn_next; 6783 for (;;) { 6784 while (connp != NULL) { 6785 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6786 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6787 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6788 (!is_system_labeled() || 6789 tsol_receive_local(mp, &dst, IPV4_VERSION, 6790 shared_addr, connp))) 6791 break; 6792 connp = connp->conn_next; 6793 } 6794 /* 6795 * Just copy the data part alone. The mctl part is 6796 * needed just for verifying policy and it is never 6797 * sent up. 6798 */ 6799 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6800 ((mp1 = copymsg(mp)) == NULL))) { 6801 /* 6802 * No more interested clients or memory 6803 * allocation failed 6804 */ 6805 connp = first_connp; 6806 break; 6807 } 6808 if (connp->conn_zoneid != last_zoneid) { 6809 /* 6810 * Update the zoneid so that the packet isn't sent to 6811 * any more conns in the same zone unless SO_REUSEADDR 6812 * is set. 6813 */ 6814 reuseaddr = connp->conn_reuseaddr; 6815 last_zoneid = connp->conn_zoneid; 6816 } 6817 if (first_mp != NULL) { 6818 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6819 ipsec_info_type == IPSEC_IN); 6820 first_mp1 = ipsec_in_tag(first_mp, NULL); 6821 if (first_mp1 == NULL) { 6822 freemsg(mp1); 6823 connp = first_connp; 6824 break; 6825 } 6826 } else { 6827 first_mp1 = NULL; 6828 } 6829 CONN_INC_REF(connp); 6830 mutex_exit(&connfp->connf_lock); 6831 /* 6832 * IPQoS notes: We don't send the packet for policy 6833 * processing here, will do it for the last one (below). 6834 * i.e. we do it per-packet now, but if we do policy 6835 * processing per-conn, then we would need to do it 6836 * here too. 6837 */ 6838 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6839 ipha, flags, recv_ill, B_FALSE); 6840 mutex_enter(&connfp->connf_lock); 6841 /* Follow the next pointer before releasing the conn. */ 6842 next_connp = connp->conn_next; 6843 IP_STAT(ip_udp_fanmb); 6844 CONN_DEC_REF(connp); 6845 connp = next_connp; 6846 } 6847 6848 /* Last one. Send it upstream. */ 6849 mutex_exit(&connfp->connf_lock); 6850 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6851 ip_policy); 6852 IP_STAT(ip_udp_fanmb); 6853 CONN_DEC_REF(connp); 6854 return; 6855 6856 notfound: 6857 6858 mutex_exit(&connfp->connf_lock); 6859 IP_STAT(ip_udp_fanothers); 6860 /* 6861 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6862 * have already been matched above, since they live in the IPv4 6863 * fanout tables. This implies we only need to 6864 * check for IPv6 in6addr_any endpoints here. 6865 * Thus we compare using ipv6_all_zeros instead of the destination 6866 * address, except for the multicast group membership lookup which 6867 * uses the IPv4 destination. 6868 */ 6869 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6870 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6871 mutex_enter(&connfp->connf_lock); 6872 connp = connfp->connf_head; 6873 if (!broadcast && !CLASSD(dst)) { 6874 while (connp != NULL) { 6875 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6876 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6877 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6878 !connp->conn_ipv6_v6only) 6879 break; 6880 connp = connp->conn_next; 6881 } 6882 6883 if (connp != NULL && is_system_labeled() && 6884 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6885 connp)) 6886 connp = NULL; 6887 6888 if (connp == NULL || connp->conn_upq == NULL) { 6889 /* 6890 * No one bound to this port. Is 6891 * there a client that wants all 6892 * unclaimed datagrams? 6893 */ 6894 mutex_exit(&connfp->connf_lock); 6895 6896 if (mctl_present) 6897 first_mp->b_cont = mp; 6898 else 6899 first_mp = mp; 6900 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6901 ip_fanout_proto(q, first_mp, ill, ipha, 6902 flags | IP_FF_RAWIP, mctl_present, 6903 ip_policy, recv_ill, zoneid); 6904 } else { 6905 if (ip_fanout_send_icmp(q, first_mp, flags, 6906 ICMP_DEST_UNREACHABLE, 6907 ICMP_PORT_UNREACHABLE, 6908 mctl_present, zoneid)) { 6909 BUMP_MIB(&ip_mib, udpNoPorts); 6910 } 6911 } 6912 return; 6913 } 6914 6915 CONN_INC_REF(connp); 6916 mutex_exit(&connfp->connf_lock); 6917 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6918 recv_ill, ip_policy); 6919 CONN_DEC_REF(connp); 6920 return; 6921 } 6922 /* 6923 * IPv4 multicast packet being delivered to an AF_INET6 6924 * in6addr_any endpoint. 6925 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6926 * and not conn_wantpacket_v6() since any multicast membership is 6927 * for an IPv4-mapped multicast address. 6928 * The packet is sent to all clients in all zones that have joined the 6929 * group and match the port. 6930 */ 6931 while (connp != NULL) { 6932 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6933 srcport, v6src) && 6934 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6935 (!is_system_labeled() || 6936 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6937 connp))) 6938 break; 6939 connp = connp->conn_next; 6940 } 6941 6942 if (connp == NULL || connp->conn_upq == NULL) { 6943 /* 6944 * No one bound to this port. Is 6945 * there a client that wants all 6946 * unclaimed datagrams? 6947 */ 6948 mutex_exit(&connfp->connf_lock); 6949 6950 if (mctl_present) 6951 first_mp->b_cont = mp; 6952 else 6953 first_mp = mp; 6954 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6955 ip_fanout_proto(q, first_mp, ill, ipha, 6956 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6957 recv_ill, zoneid); 6958 } else { 6959 /* 6960 * We used to attempt to send an icmp error here, but 6961 * since this is known to be a multicast packet 6962 * and we don't send icmp errors in response to 6963 * multicast, just drop the packet and give up sooner. 6964 */ 6965 BUMP_MIB(&ip_mib, udpNoPorts); 6966 freemsg(first_mp); 6967 } 6968 return; 6969 } 6970 6971 first_connp = connp; 6972 6973 CONN_INC_REF(connp); 6974 connp = connp->conn_next; 6975 for (;;) { 6976 while (connp != NULL) { 6977 if (IPCL_UDP_MATCH_V6(connp, dstport, 6978 ipv6_all_zeros, srcport, v6src) && 6979 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6980 (!is_system_labeled() || 6981 tsol_receive_local(mp, &dst, IPV4_VERSION, 6982 shared_addr, connp))) 6983 break; 6984 connp = connp->conn_next; 6985 } 6986 /* 6987 * Just copy the data part alone. The mctl part is 6988 * needed just for verifying policy and it is never 6989 * sent up. 6990 */ 6991 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6992 ((mp1 = copymsg(mp)) == NULL))) { 6993 /* 6994 * No more intested clients or memory 6995 * allocation failed 6996 */ 6997 connp = first_connp; 6998 break; 6999 } 7000 if (first_mp != NULL) { 7001 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7002 ipsec_info_type == IPSEC_IN); 7003 first_mp1 = ipsec_in_tag(first_mp, NULL); 7004 if (first_mp1 == NULL) { 7005 freemsg(mp1); 7006 connp = first_connp; 7007 break; 7008 } 7009 } else { 7010 first_mp1 = NULL; 7011 } 7012 CONN_INC_REF(connp); 7013 mutex_exit(&connfp->connf_lock); 7014 /* 7015 * IPQoS notes: We don't send the packet for policy 7016 * processing here, will do it for the last one (below). 7017 * i.e. we do it per-packet now, but if we do policy 7018 * processing per-conn, then we would need to do it 7019 * here too. 7020 */ 7021 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 7022 ipha, flags, recv_ill, B_FALSE); 7023 mutex_enter(&connfp->connf_lock); 7024 /* Follow the next pointer before releasing the conn. */ 7025 next_connp = connp->conn_next; 7026 CONN_DEC_REF(connp); 7027 connp = next_connp; 7028 } 7029 7030 /* Last one. Send it upstream. */ 7031 mutex_exit(&connfp->connf_lock); 7032 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 7033 ip_policy); 7034 CONN_DEC_REF(connp); 7035 } 7036 7037 /* 7038 * Complete the ip_wput header so that it 7039 * is possible to generate ICMP 7040 * errors. 7041 */ 7042 int 7043 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 7044 { 7045 ire_t *ire; 7046 7047 if (ipha->ipha_src == INADDR_ANY) { 7048 ire = ire_lookup_local(zoneid); 7049 if (ire == NULL) { 7050 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7051 return (1); 7052 } 7053 ipha->ipha_src = ire->ire_addr; 7054 ire_refrele(ire); 7055 } 7056 ipha->ipha_ttl = ip_def_ttl; 7057 ipha->ipha_hdr_checksum = 0; 7058 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7059 return (0); 7060 } 7061 7062 /* 7063 * Nobody should be sending 7064 * packets up this stream 7065 */ 7066 static void 7067 ip_lrput(queue_t *q, mblk_t *mp) 7068 { 7069 mblk_t *mp1; 7070 7071 switch (mp->b_datap->db_type) { 7072 case M_FLUSH: 7073 /* Turn around */ 7074 if (*mp->b_rptr & FLUSHW) { 7075 *mp->b_rptr &= ~FLUSHR; 7076 qreply(q, mp); 7077 return; 7078 } 7079 break; 7080 } 7081 /* Could receive messages that passed through ar_rput */ 7082 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7083 mp1->b_prev = mp1->b_next = NULL; 7084 freemsg(mp); 7085 } 7086 7087 /* Nobody should be sending packets down this stream */ 7088 /* ARGSUSED */ 7089 void 7090 ip_lwput(queue_t *q, mblk_t *mp) 7091 { 7092 freemsg(mp); 7093 } 7094 7095 /* 7096 * Move the first hop in any source route to ipha_dst and remove that part of 7097 * the source route. Called by other protocols. Errors in option formatting 7098 * are ignored - will be handled by ip_wput_options Return the final 7099 * destination (either ipha_dst or the last entry in a source route.) 7100 */ 7101 ipaddr_t 7102 ip_massage_options(ipha_t *ipha) 7103 { 7104 ipoptp_t opts; 7105 uchar_t *opt; 7106 uint8_t optval; 7107 uint8_t optlen; 7108 ipaddr_t dst; 7109 int i; 7110 ire_t *ire; 7111 7112 ip2dbg(("ip_massage_options\n")); 7113 dst = ipha->ipha_dst; 7114 for (optval = ipoptp_first(&opts, ipha); 7115 optval != IPOPT_EOL; 7116 optval = ipoptp_next(&opts)) { 7117 opt = opts.ipoptp_cur; 7118 switch (optval) { 7119 uint8_t off; 7120 case IPOPT_SSRR: 7121 case IPOPT_LSRR: 7122 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7123 ip1dbg(("ip_massage_options: bad src route\n")); 7124 break; 7125 } 7126 optlen = opts.ipoptp_len; 7127 off = opt[IPOPT_OFFSET]; 7128 off--; 7129 redo_srr: 7130 if (optlen < IP_ADDR_LEN || 7131 off > optlen - IP_ADDR_LEN) { 7132 /* End of source route */ 7133 ip1dbg(("ip_massage_options: end of SR\n")); 7134 break; 7135 } 7136 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7137 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7138 ntohl(dst))); 7139 /* 7140 * Check if our address is present more than 7141 * once as consecutive hops in source route. 7142 * XXX verify per-interface ip_forwarding 7143 * for source route? 7144 */ 7145 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7146 ALL_ZONES, NULL, MATCH_IRE_TYPE); 7147 if (ire != NULL) { 7148 ire_refrele(ire); 7149 off += IP_ADDR_LEN; 7150 goto redo_srr; 7151 } 7152 if (dst == htonl(INADDR_LOOPBACK)) { 7153 ip1dbg(("ip_massage_options: loopback addr in " 7154 "source route!\n")); 7155 break; 7156 } 7157 /* 7158 * Update ipha_dst to be the first hop and remove the 7159 * first hop from the source route (by overwriting 7160 * part of the option with NOP options). 7161 */ 7162 ipha->ipha_dst = dst; 7163 /* Put the last entry in dst */ 7164 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7165 3; 7166 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7167 7168 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7169 ntohl(dst))); 7170 /* Move down and overwrite */ 7171 opt[IP_ADDR_LEN] = opt[0]; 7172 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7173 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7174 for (i = 0; i < IP_ADDR_LEN; i++) 7175 opt[i] = IPOPT_NOP; 7176 break; 7177 } 7178 } 7179 return (dst); 7180 } 7181 7182 /* 7183 * This function's job is to forward data to the reverse tunnel (FA->HA) 7184 * after doing a few checks. It is assumed that the incoming interface 7185 * of the packet is always different than the outgoing interface and the 7186 * ire_type of the found ire has to be a non-resolver type. 7187 * 7188 * IPQoS notes 7189 * IP policy is invoked twice for a forwarded packet, once on the read side 7190 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7191 * enabled. 7192 */ 7193 static void 7194 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7195 { 7196 ipha_t *ipha; 7197 queue_t *q; 7198 uint32_t pkt_len; 7199 #define rptr ((uchar_t *)ipha) 7200 uint32_t sum; 7201 uint32_t max_frag; 7202 mblk_t *first_mp; 7203 uint32_t ill_index; 7204 ipxmit_state_t pktxmit_state; 7205 7206 ASSERT(ire != NULL); 7207 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7208 ASSERT(ire->ire_stq != NULL); 7209 7210 /* Initiate read side IPPF processing */ 7211 if (IPP_ENABLED(IPP_FWD_IN)) { 7212 ill_index = in_ill->ill_phyint->phyint_ifindex; 7213 ip_process(IPP_FWD_IN, &mp, ill_index); 7214 if (mp == NULL) { 7215 ip2dbg(("ip_mrtun_forward: inbound pkt " 7216 "dropped during IPPF processing\n")); 7217 return; 7218 } 7219 } 7220 7221 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7222 ILLF_ROUTER) == 0) || 7223 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7224 BUMP_MIB(&ip_mib, ipForwProhibits); 7225 ip0dbg(("ip_mrtun_forward: Can't forward :" 7226 "forwarding is not turned on\n")); 7227 goto drop_pkt; 7228 } 7229 7230 /* 7231 * Don't forward if the interface is down 7232 */ 7233 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7234 BUMP_MIB(&ip_mib, ipInDiscards); 7235 goto drop_pkt; 7236 } 7237 7238 ipha = (ipha_t *)mp->b_rptr; 7239 pkt_len = ntohs(ipha->ipha_length); 7240 /* Adjust the checksum to reflect the ttl decrement. */ 7241 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7242 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7243 if (ipha->ipha_ttl-- <= 1) { 7244 if (ip_csum_hdr(ipha)) { 7245 BUMP_MIB(&ip_mib, ipInCksumErrs); 7246 goto drop_pkt; 7247 } 7248 q = ire->ire_stq; 7249 if ((first_mp = allocb(sizeof (ipsec_info_t), 7250 BPRI_HI)) == NULL) { 7251 goto drop_pkt; 7252 } 7253 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7254 /* Sent by forwarding path, and router is global zone */ 7255 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7256 GLOBAL_ZONEID); 7257 return; 7258 } 7259 7260 /* Get the ill_index of the ILL */ 7261 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7262 7263 /* 7264 * ip_mrtun_forward is only used by foreign agent to reverse 7265 * tunnel the incoming packet. So it does not do any option 7266 * processing for source routing. 7267 */ 7268 max_frag = ire->ire_max_frag; 7269 if (pkt_len > max_frag) { 7270 /* 7271 * It needs fragging on its way out. We haven't 7272 * verified the header checksum yet. Since we 7273 * are going to put a surely good checksum in the 7274 * outgoing header, we have to make sure that it 7275 * was good coming in. 7276 */ 7277 if (ip_csum_hdr(ipha)) { 7278 BUMP_MIB(&ip_mib, ipInCksumErrs); 7279 goto drop_pkt; 7280 } 7281 7282 /* Initiate write side IPPF processing */ 7283 if (IPP_ENABLED(IPP_FWD_OUT)) { 7284 ip_process(IPP_FWD_OUT, &mp, ill_index); 7285 if (mp == NULL) { 7286 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7287 "dropped/deferred during ip policy "\ 7288 "processing\n")); 7289 return; 7290 } 7291 } 7292 if ((first_mp = allocb(sizeof (ipsec_info_t), 7293 BPRI_HI)) == NULL) { 7294 goto drop_pkt; 7295 } 7296 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7297 mp = first_mp; 7298 7299 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 7300 return; 7301 } 7302 7303 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7304 7305 ASSERT(ire->ire_ipif != NULL); 7306 7307 /* Now send the packet to the tunnel interface */ 7308 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7309 q = ire->ire_stq; 7310 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7311 if ((pktxmit_state == SEND_FAILED) || 7312 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7313 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7314 q->q_ptr)); 7315 } 7316 7317 return; 7318 7319 drop_pkt:; 7320 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7321 freemsg(mp); 7322 #undef rptr 7323 } 7324 7325 /* 7326 * Fills the ipsec_out_t data structure with appropriate fields and 7327 * prepends it to mp which contains the IP hdr + data that was meant 7328 * to be forwarded. Please note that ipsec_out_info data structure 7329 * is used here to communicate the outgoing ill path at ip_wput() 7330 * for the ICMP error packet. This has nothing to do with ipsec IP 7331 * security. ipsec_out_t is really used to pass the info to the module 7332 * IP where this information cannot be extracted from conn. 7333 * This functions is called by ip_mrtun_forward(). 7334 */ 7335 void 7336 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7337 { 7338 ipsec_out_t *io; 7339 7340 ASSERT(xmit_ill != NULL); 7341 first_mp->b_datap->db_type = M_CTL; 7342 first_mp->b_wptr += sizeof (ipsec_info_t); 7343 /* 7344 * This is to pass info to ip_wput in absence of conn. 7345 * ipsec_out_secure will be B_FALSE because of this. 7346 * Thus ipsec_out_secure being B_FALSE indicates that 7347 * this is not IPSEC security related information. 7348 */ 7349 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7350 io = (ipsec_out_t *)first_mp->b_rptr; 7351 io->ipsec_out_type = IPSEC_OUT; 7352 io->ipsec_out_len = sizeof (ipsec_out_t); 7353 first_mp->b_cont = mp; 7354 io->ipsec_out_ill_index = 7355 xmit_ill->ill_phyint->phyint_ifindex; 7356 io->ipsec_out_xmit_if = B_TRUE; 7357 } 7358 7359 /* 7360 * Return the network mask 7361 * associated with the specified address. 7362 */ 7363 ipaddr_t 7364 ip_net_mask(ipaddr_t addr) 7365 { 7366 uchar_t *up = (uchar_t *)&addr; 7367 ipaddr_t mask = 0; 7368 uchar_t *maskp = (uchar_t *)&mask; 7369 7370 #if defined(__i386) || defined(__amd64) 7371 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7372 #endif 7373 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7374 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7375 #endif 7376 if (CLASSD(addr)) { 7377 maskp[0] = 0xF0; 7378 return (mask); 7379 } 7380 if (addr == 0) 7381 return (0); 7382 maskp[0] = 0xFF; 7383 if ((up[0] & 0x80) == 0) 7384 return (mask); 7385 7386 maskp[1] = 0xFF; 7387 if ((up[0] & 0xC0) == 0x80) 7388 return (mask); 7389 7390 maskp[2] = 0xFF; 7391 if ((up[0] & 0xE0) == 0xC0) 7392 return (mask); 7393 7394 /* Must be experimental or multicast, indicate as much */ 7395 return ((ipaddr_t)0); 7396 } 7397 7398 /* 7399 * Select an ill for the packet by considering load spreading across 7400 * a different ill in the group if dst_ill is part of some group. 7401 */ 7402 ill_t * 7403 ip_newroute_get_dst_ill(ill_t *dst_ill) 7404 { 7405 ill_t *ill; 7406 7407 /* 7408 * We schedule irrespective of whether the source address is 7409 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7410 */ 7411 ill = illgrp_scheduler(dst_ill); 7412 if (ill == NULL) 7413 return (NULL); 7414 7415 /* 7416 * For groups with names ip_sioctl_groupname ensures that all 7417 * ills are of same type. For groups without names, ifgrp_insert 7418 * ensures this. 7419 */ 7420 ASSERT(dst_ill->ill_type == ill->ill_type); 7421 7422 return (ill); 7423 } 7424 7425 /* 7426 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7427 */ 7428 ill_t * 7429 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7430 { 7431 ill_t *ret_ill; 7432 7433 ASSERT(ifindex != 0); 7434 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7435 if (ret_ill == NULL || 7436 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7437 if (isv6) { 7438 if (ill != NULL) { 7439 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7440 } else { 7441 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7442 } 7443 ip1dbg(("ip_grab_attach_ill (IPv6): " 7444 "bad ifindex %d.\n", ifindex)); 7445 } else { 7446 BUMP_MIB(&ip_mib, ipOutDiscards); 7447 ip1dbg(("ip_grab_attach_ill (IPv4): " 7448 "bad ifindex %d.\n", ifindex)); 7449 } 7450 if (ret_ill != NULL) 7451 ill_refrele(ret_ill); 7452 freemsg(first_mp); 7453 return (NULL); 7454 } 7455 7456 return (ret_ill); 7457 } 7458 7459 /* 7460 * IPv4 - 7461 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7462 * out a packet to a destination address for which we do not have specific 7463 * (or sufficient) routing information. 7464 * 7465 * NOTE : These are the scopes of some of the variables that point at IRE, 7466 * which needs to be followed while making any future modifications 7467 * to avoid memory leaks. 7468 * 7469 * - ire and sire are the entries looked up initially by 7470 * ire_ftable_lookup. 7471 * - ipif_ire is used to hold the interface ire associated with 7472 * the new cache ire. But it's scope is limited, so we always REFRELE 7473 * it before branching out to error paths. 7474 * - save_ire is initialized before ire_create, so that ire returned 7475 * by ire_create will not over-write the ire. We REFRELE save_ire 7476 * before breaking out of the switch. 7477 * 7478 * Thus on failures, we have to REFRELE only ire and sire, if they 7479 * are not NULL. 7480 */ 7481 void 7482 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7483 zoneid_t zoneid) 7484 { 7485 areq_t *areq; 7486 ipaddr_t gw = 0; 7487 ire_t *ire = NULL; 7488 mblk_t *res_mp; 7489 ipaddr_t *addrp; 7490 ipaddr_t nexthop_addr; 7491 ipif_t *src_ipif = NULL; 7492 ill_t *dst_ill = NULL; 7493 ipha_t *ipha; 7494 ire_t *sire = NULL; 7495 mblk_t *first_mp; 7496 ire_t *save_ire; 7497 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7498 ushort_t ire_marks = 0; 7499 boolean_t mctl_present; 7500 ipsec_out_t *io; 7501 mblk_t *saved_mp; 7502 ire_t *first_sire = NULL; 7503 mblk_t *copy_mp = NULL; 7504 mblk_t *xmit_mp = NULL; 7505 ipaddr_t save_dst; 7506 uint32_t multirt_flags = 7507 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7508 boolean_t multirt_is_resolvable; 7509 boolean_t multirt_resolve_next; 7510 boolean_t do_attach_ill = B_FALSE; 7511 boolean_t ip_nexthop = B_FALSE; 7512 tsol_ire_gw_secattr_t *attrp = NULL; 7513 tsol_gcgrp_t *gcgrp = NULL; 7514 tsol_gcgrp_addr_t ga; 7515 7516 if (ip_debug > 2) { 7517 /* ip1dbg */ 7518 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7519 } 7520 7521 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7522 if (mctl_present) { 7523 io = (ipsec_out_t *)first_mp->b_rptr; 7524 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7525 ASSERT(zoneid == io->ipsec_out_zoneid); 7526 ASSERT(zoneid != ALL_ZONES); 7527 } 7528 7529 ipha = (ipha_t *)mp->b_rptr; 7530 7531 /* All multicast lookups come through ip_newroute_ipif() */ 7532 if (CLASSD(dst)) { 7533 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7534 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7535 freemsg(first_mp); 7536 return; 7537 } 7538 7539 if (mctl_present && io->ipsec_out_attach_if) { 7540 /* ip_grab_attach_ill returns a held ill */ 7541 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7542 io->ipsec_out_ill_index, B_FALSE); 7543 7544 /* Failure case frees things for us. */ 7545 if (attach_ill == NULL) 7546 return; 7547 7548 /* 7549 * Check if we need an ire that will not be 7550 * looked up by anybody else i.e. HIDDEN. 7551 */ 7552 if (ill_is_probeonly(attach_ill)) 7553 ire_marks = IRE_MARK_HIDDEN; 7554 } 7555 if (mctl_present && io->ipsec_out_ip_nexthop) { 7556 ip_nexthop = B_TRUE; 7557 nexthop_addr = io->ipsec_out_nexthop_addr; 7558 } 7559 /* 7560 * If this IRE is created for forwarding or it is not for 7561 * traffic for congestion controlled protocols, mark it as temporary. 7562 */ 7563 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7564 ire_marks |= IRE_MARK_TEMPORARY; 7565 7566 /* 7567 * Get what we can from ire_ftable_lookup which will follow an IRE 7568 * chain until it gets the most specific information available. 7569 * For example, we know that there is no IRE_CACHE for this dest, 7570 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7571 * ire_ftable_lookup will look up the gateway, etc. 7572 * Check if in_ill != NULL. If it is true, the packet must be 7573 * from an incoming interface where RTA_SRCIFP is set. 7574 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7575 * to the destination, of equal netmask length in the forward table, 7576 * will be recursively explored. If no information is available 7577 * for the final gateway of that route, we force the returned ire 7578 * to be equal to sire using MATCH_IRE_PARENT. 7579 * At least, in this case we have a starting point (in the buckets) 7580 * to look for other routes to the destination in the forward table. 7581 * This is actually used only for multirouting, where a list 7582 * of routes has to be processed in sequence. 7583 * 7584 * In the process of coming up with the most specific information, 7585 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7586 * for the gateway (i.e., one for which the ire_nce->nce_state is 7587 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7588 * Two caveats when handling incomplete ire's in ip_newroute: 7589 * - we should be careful when accessing its ire_nce (specifically 7590 * the nce_res_mp) ast it might change underneath our feet, and, 7591 * - not all legacy code path callers are prepared to handle 7592 * incomplete ire's, so we should not create/add incomplete 7593 * ire_cache entries here. (See discussion about temporary solution 7594 * further below). 7595 * 7596 * In order to minimize packet dropping, and to preserve existing 7597 * behavior, we treat this case as if there were no IRE_CACHE for the 7598 * gateway, and instead use the IF_RESOLVER ire to send out 7599 * another request to ARP (this is achieved by passing the 7600 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7601 * arp response comes back in ip_wput_nondata, we will create 7602 * a per-dst ire_cache that has an ND_COMPLETE ire. 7603 * 7604 * Note that this is a temporary solution; the correct solution is 7605 * to create an incomplete per-dst ire_cache entry, and send the 7606 * packet out when the gw's nce is resolved. In order to achieve this, 7607 * all packet processing must have been completed prior to calling 7608 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7609 * to be modified to accomodate this solution. 7610 */ 7611 if (in_ill != NULL) { 7612 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7613 in_ill, MATCH_IRE_TYPE); 7614 } else if (ip_nexthop) { 7615 /* 7616 * The first time we come here, we look for an IRE_INTERFACE 7617 * entry for the specified nexthop, set the dst to be the 7618 * nexthop address and create an IRE_CACHE entry for the 7619 * nexthop. The next time around, we are able to find an 7620 * IRE_CACHE entry for the nexthop, set the gateway to be the 7621 * nexthop address and create an IRE_CACHE entry for the 7622 * destination address via the specified nexthop. 7623 */ 7624 ire = ire_cache_lookup(nexthop_addr, zoneid, 7625 MBLK_GETLABEL(mp)); 7626 if (ire != NULL) { 7627 gw = nexthop_addr; 7628 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7629 } else { 7630 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7631 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7632 MBLK_GETLABEL(mp), 7633 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7634 if (ire != NULL) { 7635 dst = nexthop_addr; 7636 } 7637 } 7638 } else if (attach_ill == NULL) { 7639 ire = ire_ftable_lookup(dst, 0, 0, 0, 7640 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7641 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7642 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7643 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE); 7644 } else { 7645 /* 7646 * attach_ill is set only for communicating with 7647 * on-link hosts. So, don't look for DEFAULT. 7648 */ 7649 ipif_t *attach_ipif; 7650 7651 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7652 if (attach_ipif == NULL) { 7653 ill_refrele(attach_ill); 7654 goto icmp_err_ret; 7655 } 7656 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7657 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7658 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7659 MATCH_IRE_SECATTR); 7660 ipif_refrele(attach_ipif); 7661 } 7662 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7663 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7664 7665 /* 7666 * This loop is run only once in most cases. 7667 * We loop to resolve further routes only when the destination 7668 * can be reached through multiple RTF_MULTIRT-flagged ires. 7669 */ 7670 do { 7671 /* Clear the previous iteration's values */ 7672 if (src_ipif != NULL) { 7673 ipif_refrele(src_ipif); 7674 src_ipif = NULL; 7675 } 7676 if (dst_ill != NULL) { 7677 ill_refrele(dst_ill); 7678 dst_ill = NULL; 7679 } 7680 7681 multirt_resolve_next = B_FALSE; 7682 /* 7683 * We check if packets have to be multirouted. 7684 * In this case, given the current <ire, sire> couple, 7685 * we look for the next suitable <ire, sire>. 7686 * This check is done in ire_multirt_lookup(), 7687 * which applies various criteria to find the next route 7688 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7689 * unchanged if it detects it has not been tried yet. 7690 */ 7691 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7692 ip3dbg(("ip_newroute: starting next_resolution " 7693 "with first_mp %p, tag %d\n", 7694 (void *)first_mp, 7695 MULTIRT_DEBUG_TAGGED(first_mp))); 7696 7697 ASSERT(sire != NULL); 7698 multirt_is_resolvable = 7699 ire_multirt_lookup(&ire, &sire, multirt_flags, 7700 MBLK_GETLABEL(mp)); 7701 7702 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7703 "ire %p, sire %p\n", 7704 multirt_is_resolvable, 7705 (void *)ire, (void *)sire)); 7706 7707 if (!multirt_is_resolvable) { 7708 /* 7709 * No more multirt route to resolve; give up 7710 * (all routes resolved or no more 7711 * resolvable routes). 7712 */ 7713 if (ire != NULL) { 7714 ire_refrele(ire); 7715 ire = NULL; 7716 } 7717 } else { 7718 ASSERT(sire != NULL); 7719 ASSERT(ire != NULL); 7720 /* 7721 * We simply use first_sire as a flag that 7722 * indicates if a resolvable multirt route 7723 * has already been found. 7724 * If it is not the case, we may have to send 7725 * an ICMP error to report that the 7726 * destination is unreachable. 7727 * We do not IRE_REFHOLD first_sire. 7728 */ 7729 if (first_sire == NULL) { 7730 first_sire = sire; 7731 } 7732 } 7733 } 7734 if (ire == NULL) { 7735 if (ip_debug > 3) { 7736 /* ip2dbg */ 7737 pr_addr_dbg("ip_newroute: " 7738 "can't resolve %s\n", AF_INET, &dst); 7739 } 7740 ip3dbg(("ip_newroute: " 7741 "ire %p, sire %p, first_sire %p\n", 7742 (void *)ire, (void *)sire, (void *)first_sire)); 7743 7744 if (sire != NULL) { 7745 ire_refrele(sire); 7746 sire = NULL; 7747 } 7748 7749 if (first_sire != NULL) { 7750 /* 7751 * At least one multirt route has been found 7752 * in the same call to ip_newroute(); 7753 * there is no need to report an ICMP error. 7754 * first_sire was not IRE_REFHOLDed. 7755 */ 7756 MULTIRT_DEBUG_UNTAG(first_mp); 7757 freemsg(first_mp); 7758 return; 7759 } 7760 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7761 RTA_DST); 7762 if (attach_ill != NULL) 7763 ill_refrele(attach_ill); 7764 goto icmp_err_ret; 7765 } 7766 7767 /* 7768 * When RTA_SRCIFP is used to add a route, then an interface 7769 * route is added in the source interface's routing table. 7770 * If the outgoing interface of this route is of type 7771 * IRE_IF_RESOLVER, then upon creation of the ire, 7772 * ire_nce->nce_res_mp is set to NULL. 7773 * Later, when this route is first used for forwarding 7774 * a packet, ip_newroute() is called 7775 * to resolve the hardware address of the outgoing ipif. 7776 * We do not come here for IRE_IF_NORESOLVER entries in the 7777 * source interface based table. We only come here if the 7778 * outgoing interface is a resolver interface and we don't 7779 * have the ire_nce->nce_res_mp information yet. 7780 * If in_ill is not null that means it is called from 7781 * ip_rput. 7782 */ 7783 7784 ASSERT(ire->ire_in_ill == NULL || 7785 (ire->ire_type == IRE_IF_RESOLVER && 7786 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 7787 7788 /* 7789 * Verify that the returned IRE does not have either 7790 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7791 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7792 */ 7793 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7794 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7795 if (attach_ill != NULL) 7796 ill_refrele(attach_ill); 7797 goto icmp_err_ret; 7798 } 7799 /* 7800 * Increment the ire_ob_pkt_count field for ire if it is an 7801 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7802 * increment the same for the parent IRE, sire, if it is some 7803 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7804 * and HOST_REDIRECT). 7805 */ 7806 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7807 UPDATE_OB_PKT_COUNT(ire); 7808 ire->ire_last_used_time = lbolt; 7809 } 7810 7811 if (sire != NULL) { 7812 gw = sire->ire_gateway_addr; 7813 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7814 IRE_INTERFACE)) == 0); 7815 UPDATE_OB_PKT_COUNT(sire); 7816 sire->ire_last_used_time = lbolt; 7817 } 7818 /* 7819 * We have a route to reach the destination. 7820 * 7821 * 1) If the interface is part of ill group, try to get a new 7822 * ill taking load spreading into account. 7823 * 7824 * 2) After selecting the ill, get a source address that 7825 * might create good inbound load spreading. 7826 * ipif_select_source does this for us. 7827 * 7828 * If the application specified the ill (ifindex), we still 7829 * load spread. Only if the packets needs to go out 7830 * specifically on a given ill e.g. binding to 7831 * IPIF_NOFAILOVER address, then we don't try to use a 7832 * different ill for load spreading. 7833 */ 7834 if (attach_ill == NULL) { 7835 /* 7836 * Don't perform outbound load spreading in the 7837 * case of an RTF_MULTIRT route, as we actually 7838 * typically want to replicate outgoing packets 7839 * through particular interfaces. 7840 */ 7841 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7842 dst_ill = ire->ire_ipif->ipif_ill; 7843 /* for uniformity */ 7844 ill_refhold(dst_ill); 7845 } else { 7846 /* 7847 * If we are here trying to create an IRE_CACHE 7848 * for an offlink destination and have the 7849 * IRE_CACHE for the next hop and the latter is 7850 * using virtual IP source address selection i.e 7851 * it's ire->ire_ipif is pointing to a virtual 7852 * network interface (vni) then 7853 * ip_newroute_get_dst_ll() will return the vni 7854 * interface as the dst_ill. Since the vni is 7855 * virtual i.e not associated with any physical 7856 * interface, it cannot be the dst_ill, hence 7857 * in such a case call ip_newroute_get_dst_ll() 7858 * with the stq_ill instead of the ire_ipif ILL. 7859 * The function returns a refheld ill. 7860 */ 7861 if ((ire->ire_type == IRE_CACHE) && 7862 IS_VNI(ire->ire_ipif->ipif_ill)) 7863 dst_ill = ip_newroute_get_dst_ill( 7864 ire->ire_stq->q_ptr); 7865 else 7866 dst_ill = ip_newroute_get_dst_ill( 7867 ire->ire_ipif->ipif_ill); 7868 } 7869 if (dst_ill == NULL) { 7870 if (ip_debug > 2) { 7871 pr_addr_dbg("ip_newroute: " 7872 "no dst ill for dst" 7873 " %s\n", AF_INET, &dst); 7874 } 7875 goto icmp_err_ret; 7876 } 7877 } else { 7878 dst_ill = ire->ire_ipif->ipif_ill; 7879 /* for uniformity */ 7880 ill_refhold(dst_ill); 7881 /* 7882 * We should have found a route matching ill as we 7883 * called ire_ftable_lookup with MATCH_IRE_ILL. 7884 * Rather than asserting, when there is a mismatch, 7885 * we just drop the packet. 7886 */ 7887 if (dst_ill != attach_ill) { 7888 ip0dbg(("ip_newroute: Packet dropped as " 7889 "IPIF_NOFAILOVER ill is %s, " 7890 "ire->ire_ipif->ipif_ill is %s\n", 7891 attach_ill->ill_name, 7892 dst_ill->ill_name)); 7893 ill_refrele(attach_ill); 7894 goto icmp_err_ret; 7895 } 7896 } 7897 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7898 if (attach_ill != NULL) { 7899 ill_refrele(attach_ill); 7900 attach_ill = NULL; 7901 do_attach_ill = B_TRUE; 7902 } 7903 ASSERT(dst_ill != NULL); 7904 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7905 7906 /* 7907 * Pick the best source address from dst_ill. 7908 * 7909 * 1) If it is part of a multipathing group, we would 7910 * like to spread the inbound packets across different 7911 * interfaces. ipif_select_source picks a random source 7912 * across the different ills in the group. 7913 * 7914 * 2) If it is not part of a multipathing group, we try 7915 * to pick the source address from the destination 7916 * route. Clustering assumes that when we have multiple 7917 * prefixes hosted on an interface, the prefix of the 7918 * source address matches the prefix of the destination 7919 * route. We do this only if the address is not 7920 * DEPRECATED. 7921 * 7922 * 3) If the conn is in a different zone than the ire, we 7923 * need to pick a source address from the right zone. 7924 * 7925 * NOTE : If we hit case (1) above, the prefix of the source 7926 * address picked may not match the prefix of the 7927 * destination routes prefix as ipif_select_source 7928 * does not look at "dst" while picking a source 7929 * address. 7930 * If we want the same behavior as (2), we will need 7931 * to change the behavior of ipif_select_source. 7932 */ 7933 ASSERT(src_ipif == NULL); 7934 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7935 /* 7936 * The RTF_SETSRC flag is set in the parent ire (sire). 7937 * Check that the ipif matching the requested source 7938 * address still exists. 7939 */ 7940 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7941 zoneid, NULL, NULL, NULL, NULL); 7942 } 7943 if (src_ipif == NULL) { 7944 ire_marks |= IRE_MARK_USESRC_CHECK; 7945 if ((dst_ill->ill_group != NULL) || 7946 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 7947 (connp != NULL && ire->ire_zoneid != zoneid && 7948 ire->ire_zoneid != ALL_ZONES) || 7949 (dst_ill->ill_usesrc_ifindex != 0)) { 7950 /* 7951 * If the destination is reachable via a 7952 * given gateway, the selected source address 7953 * should be in the same subnet as the gateway. 7954 * Otherwise, the destination is not reachable. 7955 * 7956 * If there are no interfaces on the same subnet 7957 * as the destination, ipif_select_source gives 7958 * first non-deprecated interface which might be 7959 * on a different subnet than the gateway. 7960 * This is not desirable. Hence pass the dst_ire 7961 * source address to ipif_select_source. 7962 * It is sure that the destination is reachable 7963 * with the dst_ire source address subnet. 7964 * So passing dst_ire source address to 7965 * ipif_select_source will make sure that the 7966 * selected source will be on the same subnet 7967 * as dst_ire source address. 7968 */ 7969 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 7970 src_ipif = ipif_select_source(dst_ill, saddr, 7971 zoneid); 7972 if (src_ipif == NULL) { 7973 if (ip_debug > 2) { 7974 pr_addr_dbg("ip_newroute: " 7975 "no src for dst %s ", 7976 AF_INET, &dst); 7977 printf("through interface %s\n", 7978 dst_ill->ill_name); 7979 } 7980 goto icmp_err_ret; 7981 } 7982 } else { 7983 src_ipif = ire->ire_ipif; 7984 ASSERT(src_ipif != NULL); 7985 /* hold src_ipif for uniformity */ 7986 ipif_refhold(src_ipif); 7987 } 7988 } 7989 7990 /* 7991 * Assign a source address while we have the conn. 7992 * We can't have ip_wput_ire pick a source address when the 7993 * packet returns from arp since we need to look at 7994 * conn_unspec_src and conn_zoneid, and we lose the conn when 7995 * going through arp. 7996 * 7997 * NOTE : ip_newroute_v6 does not have this piece of code as 7998 * it uses ip6i to store this information. 7999 */ 8000 if (ipha->ipha_src == INADDR_ANY && 8001 (connp == NULL || !connp->conn_unspec_src)) { 8002 ipha->ipha_src = src_ipif->ipif_src_addr; 8003 } 8004 if (ip_debug > 3) { 8005 /* ip2dbg */ 8006 pr_addr_dbg("ip_newroute: first hop %s\n", 8007 AF_INET, &gw); 8008 } 8009 ip2dbg(("\tire type %s (%d)\n", 8010 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8011 8012 /* 8013 * The TTL of multirouted packets is bounded by the 8014 * ip_multirt_ttl ndd variable. 8015 */ 8016 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8017 /* Force TTL of multirouted packets */ 8018 if ((ip_multirt_ttl > 0) && 8019 (ipha->ipha_ttl > ip_multirt_ttl)) { 8020 ip2dbg(("ip_newroute: forcing multirt TTL " 8021 "to %d (was %d), dst 0x%08x\n", 8022 ip_multirt_ttl, ipha->ipha_ttl, 8023 ntohl(sire->ire_addr))); 8024 ipha->ipha_ttl = ip_multirt_ttl; 8025 } 8026 } 8027 /* 8028 * At this point in ip_newroute(), ire is either the 8029 * IRE_CACHE of the next-hop gateway for an off-subnet 8030 * destination or an IRE_INTERFACE type that should be used 8031 * to resolve an on-subnet destination or an on-subnet 8032 * next-hop gateway. 8033 * 8034 * In the IRE_CACHE case, we have the following : 8035 * 8036 * 1) src_ipif - used for getting a source address. 8037 * 8038 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8039 * means packets using this IRE_CACHE will go out on 8040 * dst_ill. 8041 * 8042 * 3) The IRE sire will point to the prefix that is the 8043 * longest matching route for the destination. These 8044 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 8045 * and IRE_HOST_REDIRECT. 8046 * 8047 * The newly created IRE_CACHE entry for the off-subnet 8048 * destination is tied to both the prefix route and the 8049 * interface route used to resolve the next-hop gateway 8050 * via the ire_phandle and ire_ihandle fields, 8051 * respectively. 8052 * 8053 * In the IRE_INTERFACE case, we have the following : 8054 * 8055 * 1) src_ipif - used for getting a source address. 8056 * 8057 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8058 * means packets using the IRE_CACHE that we will build 8059 * here will go out on dst_ill. 8060 * 8061 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8062 * to be created will only be tied to the IRE_INTERFACE 8063 * that was derived from the ire_ihandle field. 8064 * 8065 * If sire is non-NULL, it means the destination is 8066 * off-link and we will first create the IRE_CACHE for the 8067 * gateway. Next time through ip_newroute, we will create 8068 * the IRE_CACHE for the final destination as described 8069 * above. 8070 * 8071 * In both cases, after the current resolution has been 8072 * completed (or possibly initialised, in the IRE_INTERFACE 8073 * case), the loop may be re-entered to attempt the resolution 8074 * of another RTF_MULTIRT route. 8075 * 8076 * When an IRE_CACHE entry for the off-subnet destination is 8077 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8078 * for further processing in emission loops. 8079 */ 8080 save_ire = ire; 8081 switch (ire->ire_type) { 8082 case IRE_CACHE: { 8083 ire_t *ipif_ire; 8084 mblk_t *ire_fp_mp; 8085 8086 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8087 if (gw == 0) 8088 gw = ire->ire_gateway_addr; 8089 /* 8090 * We need 3 ire's to create a new cache ire for an 8091 * off-link destination from the cache ire of the 8092 * gateway. 8093 * 8094 * 1. The prefix ire 'sire' (Note that this does 8095 * not apply to the conn_nexthop_set case) 8096 * 2. The cache ire of the gateway 'ire' 8097 * 3. The interface ire 'ipif_ire' 8098 * 8099 * We have (1) and (2). We lookup (3) below. 8100 * 8101 * If there is no interface route to the gateway, 8102 * it is a race condition, where we found the cache 8103 * but the interface route has been deleted. 8104 */ 8105 if (ip_nexthop) { 8106 ipif_ire = ire_ihandle_lookup_onlink(ire); 8107 } else { 8108 ipif_ire = 8109 ire_ihandle_lookup_offlink(ire, sire); 8110 } 8111 if (ipif_ire == NULL) { 8112 ip1dbg(("ip_newroute: " 8113 "ire_ihandle_lookup_offlink failed\n")); 8114 goto icmp_err_ret; 8115 } 8116 /* 8117 * XXX We are using the same res_mp 8118 * (DL_UNITDATA_REQ) though the save_ire is not 8119 * pointing at the same ill. 8120 * This is incorrect. We need to send it up to the 8121 * resolver to get the right res_mp. For ethernets 8122 * this may be okay (ill_type == DL_ETHER). 8123 */ 8124 res_mp = save_ire->ire_nce->nce_res_mp; 8125 ire_fp_mp = NULL; 8126 /* 8127 * save_ire's nce_fp_mp can't change since it is 8128 * not an IRE_MIPRTUN or IRE_BROADCAST 8129 * LOCK_IRE_FP_MP does not do any useful work in 8130 * the case of IRE_CACHE. So we don't use it below. 8131 */ 8132 if (save_ire->ire_stq == dst_ill->ill_wq) 8133 ire_fp_mp = save_ire->ire_nce->nce_fp_mp; 8134 8135 /* 8136 * Check cached gateway IRE for any security 8137 * attributes; if found, associate the gateway 8138 * credentials group to the destination IRE. 8139 */ 8140 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8141 mutex_enter(&attrp->igsa_lock); 8142 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8143 GCGRP_REFHOLD(gcgrp); 8144 mutex_exit(&attrp->igsa_lock); 8145 } 8146 8147 ire = ire_create( 8148 (uchar_t *)&dst, /* dest address */ 8149 (uchar_t *)&ip_g_all_ones, /* mask */ 8150 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8151 (uchar_t *)&gw, /* gateway address */ 8152 NULL, 8153 &save_ire->ire_max_frag, 8154 ire_fp_mp, /* Fast Path header */ 8155 dst_ill->ill_rq, /* recv-from queue */ 8156 dst_ill->ill_wq, /* send-to queue */ 8157 IRE_CACHE, /* IRE type */ 8158 res_mp, 8159 src_ipif, 8160 in_ill, /* incoming ill */ 8161 (sire != NULL) ? 8162 sire->ire_mask : 0, /* Parent mask */ 8163 (sire != NULL) ? 8164 sire->ire_phandle : 0, /* Parent handle */ 8165 ipif_ire->ire_ihandle, /* Interface handle */ 8166 (sire != NULL) ? (sire->ire_flags & 8167 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8168 (sire != NULL) ? 8169 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8170 NULL, 8171 gcgrp); 8172 8173 if (ire == NULL) { 8174 if (gcgrp != NULL) { 8175 GCGRP_REFRELE(gcgrp); 8176 gcgrp = NULL; 8177 } 8178 ire_refrele(ipif_ire); 8179 ire_refrele(save_ire); 8180 break; 8181 } 8182 8183 /* reference now held by IRE */ 8184 gcgrp = NULL; 8185 8186 ire->ire_marks |= ire_marks; 8187 8188 /* 8189 * Prevent sire and ipif_ire from getting deleted. 8190 * The newly created ire is tied to both of them via 8191 * the phandle and ihandle respectively. 8192 */ 8193 if (sire != NULL) { 8194 IRB_REFHOLD(sire->ire_bucket); 8195 /* Has it been removed already ? */ 8196 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8197 IRB_REFRELE(sire->ire_bucket); 8198 ire_refrele(ipif_ire); 8199 ire_refrele(save_ire); 8200 break; 8201 } 8202 } 8203 8204 IRB_REFHOLD(ipif_ire->ire_bucket); 8205 /* Has it been removed already ? */ 8206 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8207 IRB_REFRELE(ipif_ire->ire_bucket); 8208 if (sire != NULL) 8209 IRB_REFRELE(sire->ire_bucket); 8210 ire_refrele(ipif_ire); 8211 ire_refrele(save_ire); 8212 break; 8213 } 8214 8215 xmit_mp = first_mp; 8216 /* 8217 * In the case of multirouting, a copy 8218 * of the packet is done before its sending. 8219 * The copy is used to attempt another 8220 * route resolution, in a next loop. 8221 */ 8222 if (ire->ire_flags & RTF_MULTIRT) { 8223 copy_mp = copymsg(first_mp); 8224 if (copy_mp != NULL) { 8225 xmit_mp = copy_mp; 8226 MULTIRT_DEBUG_TAG(first_mp); 8227 } 8228 } 8229 ire_add_then_send(q, ire, xmit_mp); 8230 ire_refrele(save_ire); 8231 8232 /* Assert that sire is not deleted yet. */ 8233 if (sire != NULL) { 8234 ASSERT(sire->ire_ptpn != NULL); 8235 IRB_REFRELE(sire->ire_bucket); 8236 } 8237 8238 /* Assert that ipif_ire is not deleted yet. */ 8239 ASSERT(ipif_ire->ire_ptpn != NULL); 8240 IRB_REFRELE(ipif_ire->ire_bucket); 8241 ire_refrele(ipif_ire); 8242 8243 /* 8244 * If copy_mp is not NULL, multirouting was 8245 * requested. We loop to initiate a next 8246 * route resolution attempt, starting from sire. 8247 */ 8248 if (copy_mp != NULL) { 8249 /* 8250 * Search for the next unresolved 8251 * multirt route. 8252 */ 8253 copy_mp = NULL; 8254 ipif_ire = NULL; 8255 ire = NULL; 8256 multirt_resolve_next = B_TRUE; 8257 continue; 8258 } 8259 if (sire != NULL) 8260 ire_refrele(sire); 8261 ipif_refrele(src_ipif); 8262 ill_refrele(dst_ill); 8263 return; 8264 } 8265 case IRE_IF_NORESOLVER: { 8266 /* 8267 * We have what we need to build an IRE_CACHE. 8268 * 8269 * Create a new res_mp with the IP gateway address 8270 * in destination address in the DLPI hdr if the 8271 * physical length is exactly 4 bytes. 8272 */ 8273 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8274 uchar_t *addr; 8275 8276 if (gw) 8277 addr = (uchar_t *)&gw; 8278 else 8279 addr = (uchar_t *)&dst; 8280 8281 res_mp = ill_dlur_gen(addr, 8282 dst_ill->ill_phys_addr_length, 8283 dst_ill->ill_sap, 8284 dst_ill->ill_sap_length); 8285 8286 if (res_mp == NULL) { 8287 ip1dbg(("ip_newroute: res_mp NULL\n")); 8288 break; 8289 } 8290 } else { 8291 res_mp = NULL; 8292 } 8293 8294 /* 8295 * TSol note: We are creating the ire cache for the 8296 * destination 'dst'. If 'dst' is offlink, going 8297 * through the first hop 'gw', the security attributes 8298 * of 'dst' must be set to point to the gateway 8299 * credentials of gateway 'gw'. If 'dst' is onlink, it 8300 * is possible that 'dst' is a potential gateway that is 8301 * referenced by some route that has some security 8302 * attributes. Thus in the former case, we need to do a 8303 * gcgrp_lookup of 'gw' while in the latter case we 8304 * need to do gcgrp_lookup of 'dst' itself. 8305 */ 8306 ga.ga_af = AF_INET; 8307 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8308 &ga.ga_addr); 8309 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8310 8311 ire = ire_create( 8312 (uchar_t *)&dst, /* dest address */ 8313 (uchar_t *)&ip_g_all_ones, /* mask */ 8314 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8315 (uchar_t *)&gw, /* gateway address */ 8316 NULL, 8317 &save_ire->ire_max_frag, 8318 NULL, /* Fast Path header */ 8319 dst_ill->ill_rq, /* recv-from queue */ 8320 dst_ill->ill_wq, /* send-to queue */ 8321 IRE_CACHE, 8322 res_mp, 8323 src_ipif, 8324 in_ill, /* Incoming ill */ 8325 save_ire->ire_mask, /* Parent mask */ 8326 (sire != NULL) ? /* Parent handle */ 8327 sire->ire_phandle : 0, 8328 save_ire->ire_ihandle, /* Interface handle */ 8329 (sire != NULL) ? sire->ire_flags & 8330 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8331 &(save_ire->ire_uinfo), 8332 NULL, 8333 gcgrp); 8334 8335 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8336 freeb(res_mp); 8337 8338 if (ire == NULL) { 8339 if (gcgrp != NULL) { 8340 GCGRP_REFRELE(gcgrp); 8341 gcgrp = NULL; 8342 } 8343 ire_refrele(save_ire); 8344 break; 8345 } 8346 8347 /* reference now held by IRE */ 8348 gcgrp = NULL; 8349 8350 ire->ire_marks |= ire_marks; 8351 8352 /* Prevent save_ire from getting deleted */ 8353 IRB_REFHOLD(save_ire->ire_bucket); 8354 /* Has it been removed already ? */ 8355 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8356 IRB_REFRELE(save_ire->ire_bucket); 8357 ire_refrele(save_ire); 8358 break; 8359 } 8360 8361 /* 8362 * In the case of multirouting, a copy 8363 * of the packet is made before it is sent. 8364 * The copy is used in the next 8365 * loop to attempt another resolution. 8366 */ 8367 xmit_mp = first_mp; 8368 if ((sire != NULL) && 8369 (sire->ire_flags & RTF_MULTIRT)) { 8370 copy_mp = copymsg(first_mp); 8371 if (copy_mp != NULL) { 8372 xmit_mp = copy_mp; 8373 MULTIRT_DEBUG_TAG(first_mp); 8374 } 8375 } 8376 ire_add_then_send(q, ire, xmit_mp); 8377 8378 /* Assert that it is not deleted yet. */ 8379 ASSERT(save_ire->ire_ptpn != NULL); 8380 IRB_REFRELE(save_ire->ire_bucket); 8381 ire_refrele(save_ire); 8382 8383 if (copy_mp != NULL) { 8384 /* 8385 * If we found a (no)resolver, we ignore any 8386 * trailing top priority IRE_CACHE in further 8387 * loops. This ensures that we do not omit any 8388 * (no)resolver. 8389 * This IRE_CACHE, if any, will be processed 8390 * by another thread entering ip_newroute(). 8391 * IRE_CACHE entries, if any, will be processed 8392 * by another thread entering ip_newroute(), 8393 * (upon resolver response, for instance). 8394 * This aims to force parallel multirt 8395 * resolutions as soon as a packet must be sent. 8396 * In the best case, after the tx of only one 8397 * packet, all reachable routes are resolved. 8398 * Otherwise, the resolution of all RTF_MULTIRT 8399 * routes would require several emissions. 8400 */ 8401 multirt_flags &= ~MULTIRT_CACHEGW; 8402 8403 /* 8404 * Search for the next unresolved multirt 8405 * route. 8406 */ 8407 copy_mp = NULL; 8408 save_ire = NULL; 8409 ire = NULL; 8410 multirt_resolve_next = B_TRUE; 8411 continue; 8412 } 8413 8414 /* 8415 * Don't need sire anymore 8416 */ 8417 if (sire != NULL) 8418 ire_refrele(sire); 8419 8420 ipif_refrele(src_ipif); 8421 ill_refrele(dst_ill); 8422 return; 8423 } 8424 case IRE_IF_RESOLVER: 8425 /* 8426 * We can't build an IRE_CACHE yet, but at least we 8427 * found a resolver that can help. 8428 */ 8429 res_mp = dst_ill->ill_resolver_mp; 8430 if (!OK_RESOLVER_MP(res_mp)) 8431 break; 8432 8433 /* 8434 * To be at this point in the code with a non-zero gw 8435 * means that dst is reachable through a gateway that 8436 * we have never resolved. By changing dst to the gw 8437 * addr we resolve the gateway first. 8438 * When ire_add_then_send() tries to put the IP dg 8439 * to dst, it will reenter ip_newroute() at which 8440 * time we will find the IRE_CACHE for the gw and 8441 * create another IRE_CACHE in case IRE_CACHE above. 8442 */ 8443 if (gw != INADDR_ANY) { 8444 /* 8445 * The source ipif that was determined above was 8446 * relative to the destination address, not the 8447 * gateway's. If src_ipif was not taken out of 8448 * the IRE_IF_RESOLVER entry, we'll need to call 8449 * ipif_select_source() again. 8450 */ 8451 if (src_ipif != ire->ire_ipif) { 8452 ipif_refrele(src_ipif); 8453 src_ipif = ipif_select_source(dst_ill, 8454 gw, zoneid); 8455 if (src_ipif == NULL) { 8456 if (ip_debug > 2) { 8457 pr_addr_dbg( 8458 "ip_newroute: no " 8459 "src for gw %s ", 8460 AF_INET, &gw); 8461 printf("through " 8462 "interface %s\n", 8463 dst_ill->ill_name); 8464 } 8465 goto icmp_err_ret; 8466 } 8467 } 8468 save_dst = dst; 8469 dst = gw; 8470 gw = INADDR_ANY; 8471 } 8472 8473 /* 8474 * We obtain a partial IRE_CACHE which we will pass 8475 * along with the resolver query. When the response 8476 * comes back it will be there ready for us to add. 8477 * The ire_max_frag is atomically set under the 8478 * irebucket lock in ire_add_v[46]. 8479 */ 8480 8481 ire = ire_create_mp( 8482 (uchar_t *)&dst, /* dest address */ 8483 (uchar_t *)&ip_g_all_ones, /* mask */ 8484 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8485 (uchar_t *)&gw, /* gateway address */ 8486 NULL, /* no in_src_addr */ 8487 NULL, /* ire_max_frag */ 8488 NULL, /* Fast Path header */ 8489 dst_ill->ill_rq, /* recv-from queue */ 8490 dst_ill->ill_wq, /* send-to queue */ 8491 IRE_CACHE, 8492 NULL, 8493 src_ipif, /* Interface ipif */ 8494 in_ill, /* Incoming ILL */ 8495 save_ire->ire_mask, /* Parent mask */ 8496 0, 8497 save_ire->ire_ihandle, /* Interface handle */ 8498 0, /* flags if any */ 8499 &(save_ire->ire_uinfo), 8500 NULL, 8501 NULL); 8502 8503 if (ire == NULL) { 8504 ire_refrele(save_ire); 8505 break; 8506 } 8507 8508 if ((sire != NULL) && 8509 (sire->ire_flags & RTF_MULTIRT)) { 8510 copy_mp = copymsg(first_mp); 8511 if (copy_mp != NULL) 8512 MULTIRT_DEBUG_TAG(copy_mp); 8513 } 8514 8515 ire->ire_marks |= ire_marks; 8516 8517 /* 8518 * Construct message chain for the resolver 8519 * of the form: 8520 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8521 * Packet could contain a IPSEC_OUT mp. 8522 * 8523 * NOTE : ire will be added later when the response 8524 * comes back from ARP. If the response does not 8525 * come back, ARP frees the packet. For this reason, 8526 * we can't REFHOLD the bucket of save_ire to prevent 8527 * deletions. We may not be able to REFRELE the bucket 8528 * if the response never comes back. Thus, before 8529 * adding the ire, ire_add_v4 will make sure that the 8530 * interface route does not get deleted. This is the 8531 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8532 * where we can always prevent deletions because of 8533 * the synchronous nature of adding IRES i.e 8534 * ire_add_then_send is called after creating the IRE. 8535 */ 8536 ASSERT(ire->ire_mp != NULL); 8537 ire->ire_mp->b_cont = first_mp; 8538 /* Have saved_mp handy, for cleanup if canput fails */ 8539 saved_mp = mp; 8540 mp = copyb(res_mp); 8541 ASSERT(mp != NULL); 8542 linkb(mp, ire->ire_mp); 8543 8544 8545 /* 8546 * Fill in the source and dest addrs for the resolver. 8547 * NOTE: this depends on memory layouts imposed by 8548 * ill_init(). 8549 */ 8550 areq = (areq_t *)mp->b_rptr; 8551 addrp = (ipaddr_t *)((char *)areq + 8552 areq->areq_sender_addr_offset); 8553 if (do_attach_ill) { 8554 /* 8555 * This is bind to no failover case. 8556 * arp packet also must go out on attach_ill. 8557 */ 8558 ASSERT(ipha->ipha_src != NULL); 8559 *addrp = ipha->ipha_src; 8560 } else { 8561 *addrp = save_ire->ire_src_addr; 8562 } 8563 8564 ire_refrele(save_ire); 8565 addrp = (ipaddr_t *)((char *)areq + 8566 areq->areq_target_addr_offset); 8567 *addrp = dst; 8568 /* Up to the resolver. */ 8569 if (canputnext(dst_ill->ill_rq) && 8570 !(dst_ill->ill_arp_closing)) { 8571 putnext(dst_ill->ill_rq, mp); 8572 ire = NULL; 8573 if (copy_mp != NULL) { 8574 /* 8575 * If we found a resolver, we ignore 8576 * any trailing top priority IRE_CACHE 8577 * in the further loops. This ensures 8578 * that we do not omit any resolver. 8579 * IRE_CACHE entries, if any, will be 8580 * processed next time we enter 8581 * ip_newroute(). 8582 */ 8583 multirt_flags &= ~MULTIRT_CACHEGW; 8584 /* 8585 * Search for the next unresolved 8586 * multirt route. 8587 */ 8588 first_mp = copy_mp; 8589 copy_mp = NULL; 8590 /* Prepare the next resolution loop. */ 8591 mp = first_mp; 8592 EXTRACT_PKT_MP(mp, first_mp, 8593 mctl_present); 8594 if (mctl_present) 8595 io = (ipsec_out_t *) 8596 first_mp->b_rptr; 8597 ipha = (ipha_t *)mp->b_rptr; 8598 8599 ASSERT(sire != NULL); 8600 8601 dst = save_dst; 8602 multirt_resolve_next = B_TRUE; 8603 continue; 8604 } 8605 8606 if (sire != NULL) 8607 ire_refrele(sire); 8608 8609 /* 8610 * The response will come back in ip_wput 8611 * with db_type IRE_DB_TYPE. 8612 */ 8613 ipif_refrele(src_ipif); 8614 ill_refrele(dst_ill); 8615 return; 8616 } else { 8617 /* Prepare for cleanup */ 8618 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8619 mp); 8620 mp->b_cont = NULL; 8621 freeb(mp); /* areq */ 8622 /* 8623 * this is an ire that is not added to the 8624 * cache. ire_freemblk will handle the release 8625 * of any resources associated with the ire. 8626 */ 8627 ire_delete(ire); /* ire_mp */ 8628 mp = saved_mp; /* pkt */ 8629 ire = NULL; 8630 if (copy_mp != NULL) { 8631 MULTIRT_DEBUG_UNTAG(copy_mp); 8632 freemsg(copy_mp); 8633 copy_mp = NULL; 8634 } 8635 break; 8636 } 8637 default: 8638 break; 8639 } 8640 } while (multirt_resolve_next); 8641 8642 ip1dbg(("ip_newroute: dropped\n")); 8643 /* Did this packet originate externally? */ 8644 if (mp->b_prev) { 8645 mp->b_next = NULL; 8646 mp->b_prev = NULL; 8647 BUMP_MIB(&ip_mib, ipInDiscards); 8648 } else { 8649 BUMP_MIB(&ip_mib, ipOutDiscards); 8650 } 8651 ASSERT(copy_mp == NULL); 8652 MULTIRT_DEBUG_UNTAG(first_mp); 8653 freemsg(first_mp); 8654 if (ire != NULL) 8655 ire_refrele(ire); 8656 if (sire != NULL) 8657 ire_refrele(sire); 8658 if (src_ipif != NULL) 8659 ipif_refrele(src_ipif); 8660 if (dst_ill != NULL) 8661 ill_refrele(dst_ill); 8662 return; 8663 8664 icmp_err_ret: 8665 ip1dbg(("ip_newroute: no route\n")); 8666 if (src_ipif != NULL) 8667 ipif_refrele(src_ipif); 8668 if (dst_ill != NULL) 8669 ill_refrele(dst_ill); 8670 if (sire != NULL) 8671 ire_refrele(sire); 8672 /* Did this packet originate externally? */ 8673 if (mp->b_prev) { 8674 mp->b_next = NULL; 8675 mp->b_prev = NULL; 8676 /* XXX ipInNoRoutes */ 8677 q = WR(q); 8678 } else { 8679 /* 8680 * Since ip_wput() isn't close to finished, we fill 8681 * in enough of the header for credible error reporting. 8682 */ 8683 if (ip_hdr_complete(ipha, zoneid)) { 8684 /* Failed */ 8685 MULTIRT_DEBUG_UNTAG(first_mp); 8686 freemsg(first_mp); 8687 if (ire != NULL) 8688 ire_refrele(ire); 8689 return; 8690 } 8691 } 8692 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8693 8694 /* 8695 * At this point we will have ire only if RTF_BLACKHOLE 8696 * or RTF_REJECT flags are set on the IRE. It will not 8697 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8698 */ 8699 if (ire != NULL) { 8700 if (ire->ire_flags & RTF_BLACKHOLE) { 8701 ire_refrele(ire); 8702 MULTIRT_DEBUG_UNTAG(first_mp); 8703 freemsg(first_mp); 8704 return; 8705 } 8706 ire_refrele(ire); 8707 } 8708 if (ip_source_routed(ipha)) { 8709 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8710 zoneid); 8711 return; 8712 } 8713 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 8714 } 8715 8716 /* 8717 * IPv4 - 8718 * ip_newroute_ipif is called by ip_wput_multicast and 8719 * ip_rput_forward_multicast whenever we need to send 8720 * out a packet to a destination address for which we do not have specific 8721 * routing information. It is used when the packet will be sent out 8722 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8723 * socket option is set or icmp error message wants to go out on a particular 8724 * interface for a unicast packet. 8725 * 8726 * In most cases, the destination address is resolved thanks to the ipif 8727 * intrinsic resolver. However, there are some cases where the call to 8728 * ip_newroute_ipif must take into account the potential presence of 8729 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8730 * that uses the interface. This is specified through flags, 8731 * which can be a combination of: 8732 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8733 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8734 * and flags. Additionally, the packet source address has to be set to 8735 * the specified address. The caller is thus expected to set this flag 8736 * if the packet has no specific source address yet. 8737 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8738 * flag, the resulting ire will inherit the flag. All unresolved routes 8739 * to the destination must be explored in the same call to 8740 * ip_newroute_ipif(). 8741 */ 8742 static void 8743 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8744 conn_t *connp, uint32_t flags, zoneid_t zoneid) 8745 { 8746 areq_t *areq; 8747 ire_t *ire = NULL; 8748 mblk_t *res_mp; 8749 ipaddr_t *addrp; 8750 mblk_t *first_mp; 8751 ire_t *save_ire = NULL; 8752 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8753 ipif_t *src_ipif = NULL; 8754 ushort_t ire_marks = 0; 8755 ill_t *dst_ill = NULL; 8756 boolean_t mctl_present; 8757 ipsec_out_t *io; 8758 ipha_t *ipha; 8759 int ihandle = 0; 8760 mblk_t *saved_mp; 8761 ire_t *fire = NULL; 8762 mblk_t *copy_mp = NULL; 8763 boolean_t multirt_resolve_next; 8764 ipaddr_t ipha_dst; 8765 8766 /* 8767 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8768 * here for uniformity 8769 */ 8770 ipif_refhold(ipif); 8771 8772 /* 8773 * This loop is run only once in most cases. 8774 * We loop to resolve further routes only when the destination 8775 * can be reached through multiple RTF_MULTIRT-flagged ires. 8776 */ 8777 do { 8778 if (dst_ill != NULL) { 8779 ill_refrele(dst_ill); 8780 dst_ill = NULL; 8781 } 8782 if (src_ipif != NULL) { 8783 ipif_refrele(src_ipif); 8784 src_ipif = NULL; 8785 } 8786 multirt_resolve_next = B_FALSE; 8787 8788 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8789 ipif->ipif_ill->ill_name)); 8790 8791 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8792 if (mctl_present) 8793 io = (ipsec_out_t *)first_mp->b_rptr; 8794 8795 ipha = (ipha_t *)mp->b_rptr; 8796 8797 /* 8798 * Save the packet destination address, we may need it after 8799 * the packet has been consumed. 8800 */ 8801 ipha_dst = ipha->ipha_dst; 8802 8803 /* 8804 * If the interface is a pt-pt interface we look for an 8805 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8806 * local_address and the pt-pt destination address. Otherwise 8807 * we just match the local address. 8808 * NOTE: dst could be different than ipha->ipha_dst in case 8809 * of sending igmp multicast packets over a point-to-point 8810 * connection. 8811 * Thus we must be careful enough to check ipha_dst to be a 8812 * multicast address, otherwise it will take xmit_if path for 8813 * multicast packets resulting into kernel stack overflow by 8814 * repeated calls to ip_newroute_ipif from ire_send(). 8815 */ 8816 if (CLASSD(ipha_dst) && 8817 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8818 goto err_ret; 8819 } 8820 8821 /* 8822 * We check if an IRE_OFFSUBNET for the addr that goes through 8823 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8824 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8825 * propagate its flags to the new ire. 8826 */ 8827 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8828 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8829 ip2dbg(("ip_newroute_ipif: " 8830 "ipif_lookup_multi_ire(" 8831 "ipif %p, dst %08x) = fire %p\n", 8832 (void *)ipif, ntohl(dst), (void *)fire)); 8833 } 8834 8835 if (mctl_present && io->ipsec_out_attach_if) { 8836 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8837 io->ipsec_out_ill_index, B_FALSE); 8838 8839 /* Failure case frees things for us. */ 8840 if (attach_ill == NULL) { 8841 ipif_refrele(ipif); 8842 if (fire != NULL) 8843 ire_refrele(fire); 8844 return; 8845 } 8846 8847 /* 8848 * Check if we need an ire that will not be 8849 * looked up by anybody else i.e. HIDDEN. 8850 */ 8851 if (ill_is_probeonly(attach_ill)) { 8852 ire_marks = IRE_MARK_HIDDEN; 8853 } 8854 /* 8855 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8856 * case. 8857 */ 8858 dst_ill = ipif->ipif_ill; 8859 /* attach_ill has been refheld by ip_grab_attach_ill */ 8860 ASSERT(dst_ill == attach_ill); 8861 } else { 8862 /* 8863 * If this is set by IP_XMIT_IF, then make sure that 8864 * ipif is pointing to the same ill as the IP_XMIT_IF 8865 * specified ill. 8866 */ 8867 ASSERT((connp == NULL) || 8868 (connp->conn_xmit_if_ill == NULL) || 8869 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8870 /* 8871 * If the interface belongs to an interface group, 8872 * make sure the next possible interface in the group 8873 * is used. This encourages load spreading among 8874 * peers in an interface group. 8875 * Note: load spreading is disabled for RTF_MULTIRT 8876 * routes. 8877 */ 8878 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8879 (fire->ire_flags & RTF_MULTIRT)) { 8880 /* 8881 * Don't perform outbound load spreading 8882 * in the case of an RTF_MULTIRT issued route, 8883 * we actually typically want to replicate 8884 * outgoing packets through particular 8885 * interfaces. 8886 */ 8887 dst_ill = ipif->ipif_ill; 8888 ill_refhold(dst_ill); 8889 } else { 8890 dst_ill = ip_newroute_get_dst_ill( 8891 ipif->ipif_ill); 8892 } 8893 if (dst_ill == NULL) { 8894 if (ip_debug > 2) { 8895 pr_addr_dbg("ip_newroute_ipif: " 8896 "no dst ill for dst %s\n", 8897 AF_INET, &dst); 8898 } 8899 goto err_ret; 8900 } 8901 } 8902 8903 /* 8904 * Pick a source address preferring non-deprecated ones. 8905 * Unlike ip_newroute, we don't do any source address 8906 * selection here since for multicast it really does not help 8907 * in inbound load spreading as in the unicast case. 8908 */ 8909 if ((flags & RTF_SETSRC) && (fire != NULL) && 8910 (fire->ire_flags & RTF_SETSRC)) { 8911 /* 8912 * As requested by flags, an IRE_OFFSUBNET was looked up 8913 * on that interface. This ire has RTF_SETSRC flag, so 8914 * the source address of the packet must be changed. 8915 * Check that the ipif matching the requested source 8916 * address still exists. 8917 */ 8918 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8919 zoneid, NULL, NULL, NULL, NULL); 8920 } 8921 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 8922 (connp != NULL && ipif->ipif_zoneid != zoneid && 8923 ipif->ipif_zoneid != ALL_ZONES)) && 8924 (src_ipif == NULL)) { 8925 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8926 if (src_ipif == NULL) { 8927 if (ip_debug > 2) { 8928 /* ip1dbg */ 8929 pr_addr_dbg("ip_newroute_ipif: " 8930 "no src for dst %s", 8931 AF_INET, &dst); 8932 } 8933 ip1dbg((" through interface %s\n", 8934 dst_ill->ill_name)); 8935 goto err_ret; 8936 } 8937 ipif_refrele(ipif); 8938 ipif = src_ipif; 8939 ipif_refhold(ipif); 8940 } 8941 if (src_ipif == NULL) { 8942 src_ipif = ipif; 8943 ipif_refhold(src_ipif); 8944 } 8945 8946 /* 8947 * Assign a source address while we have the conn. 8948 * We can't have ip_wput_ire pick a source address when the 8949 * packet returns from arp since conn_unspec_src might be set 8950 * and we loose the conn when going through arp. 8951 */ 8952 if (ipha->ipha_src == INADDR_ANY && 8953 (connp == NULL || !connp->conn_unspec_src)) { 8954 ipha->ipha_src = src_ipif->ipif_src_addr; 8955 } 8956 8957 /* 8958 * In case of IP_XMIT_IF, it is possible that the outgoing 8959 * interface does not have an interface ire. 8960 * Example: Thousands of mobileip PPP interfaces to mobile 8961 * nodes. We don't want to create interface ires because 8962 * packets from other mobile nodes must not take the route 8963 * via interface ires to the visiting mobile node without 8964 * going through the home agent, in absence of mobileip 8965 * route optimization. 8966 */ 8967 if (CLASSD(ipha_dst) && (connp == NULL || 8968 connp->conn_xmit_if_ill == NULL)) { 8969 /* ipif_to_ire returns an held ire */ 8970 ire = ipif_to_ire(ipif); 8971 if (ire == NULL) 8972 goto err_ret; 8973 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 8974 goto err_ret; 8975 /* 8976 * ihandle is needed when the ire is added to 8977 * cache table. 8978 */ 8979 save_ire = ire; 8980 ihandle = save_ire->ire_ihandle; 8981 8982 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 8983 "flags %04x\n", 8984 (void *)ire, (void *)ipif, flags)); 8985 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8986 (fire->ire_flags & RTF_MULTIRT)) { 8987 /* 8988 * As requested by flags, an IRE_OFFSUBNET was 8989 * looked up on that interface. This ire has 8990 * RTF_MULTIRT flag, so the resolution loop will 8991 * be re-entered to resolve additional routes on 8992 * other interfaces. For that purpose, a copy of 8993 * the packet is performed at this point. 8994 */ 8995 fire->ire_last_used_time = lbolt; 8996 copy_mp = copymsg(first_mp); 8997 if (copy_mp) { 8998 MULTIRT_DEBUG_TAG(copy_mp); 8999 } 9000 } 9001 if ((flags & RTF_SETSRC) && (fire != NULL) && 9002 (fire->ire_flags & RTF_SETSRC)) { 9003 /* 9004 * As requested by flags, an IRE_OFFSUBET was 9005 * looked up on that interface. This ire has 9006 * RTF_SETSRC flag, so the source address of the 9007 * packet must be changed. 9008 */ 9009 ipha->ipha_src = fire->ire_src_addr; 9010 } 9011 } else { 9012 ASSERT((connp == NULL) || 9013 (connp->conn_xmit_if_ill != NULL) || 9014 (connp->conn_dontroute)); 9015 /* 9016 * The only ways we can come here are: 9017 * 1) IP_XMIT_IF socket option is set 9018 * 2) ICMP error message generated from 9019 * ip_mrtun_forward() routine and it needs 9020 * to go through the specified ill. 9021 * 3) SO_DONTROUTE socket option is set 9022 * In all cases, the new ire will not be added 9023 * into cache table. 9024 */ 9025 ire_marks |= IRE_MARK_NOADD; 9026 } 9027 9028 switch (ipif->ipif_net_type) { 9029 case IRE_IF_NORESOLVER: { 9030 /* We have what we need to build an IRE_CACHE. */ 9031 mblk_t *res_mp; 9032 9033 /* 9034 * Create a new res_mp with the 9035 * IP gateway address as destination address in the 9036 * DLPI hdr if the physical length is exactly 4 bytes. 9037 */ 9038 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9039 res_mp = ill_dlur_gen((uchar_t *)&dst, 9040 dst_ill->ill_phys_addr_length, 9041 dst_ill->ill_sap, 9042 dst_ill->ill_sap_length); 9043 } else { 9044 /* use the value set in ip_ll_subnet_defaults */ 9045 res_mp = ill_dlur_gen(NULL, 9046 dst_ill->ill_phys_addr_length, 9047 dst_ill->ill_sap, 9048 dst_ill->ill_sap_length); 9049 } 9050 9051 if (res_mp == NULL) 9052 break; 9053 /* 9054 * The new ire inherits the IRE_OFFSUBNET flags 9055 * and source address, if this was requested. 9056 */ 9057 ire = ire_create( 9058 (uchar_t *)&dst, /* dest address */ 9059 (uchar_t *)&ip_g_all_ones, /* mask */ 9060 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9061 NULL, /* gateway address */ 9062 NULL, 9063 &ipif->ipif_mtu, 9064 NULL, /* Fast Path header */ 9065 dst_ill->ill_rq, /* recv-from queue */ 9066 dst_ill->ill_wq, /* send-to queue */ 9067 IRE_CACHE, 9068 res_mp, 9069 src_ipif, 9070 NULL, 9071 (save_ire != NULL ? save_ire->ire_mask : 0), 9072 (fire != NULL) ? /* Parent handle */ 9073 fire->ire_phandle : 0, 9074 ihandle, /* Interface handle */ 9075 (fire != NULL) ? 9076 (fire->ire_flags & 9077 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9078 (save_ire == NULL ? &ire_uinfo_null : 9079 &save_ire->ire_uinfo), 9080 NULL, 9081 NULL); 9082 9083 freeb(res_mp); 9084 9085 if (ire == NULL) { 9086 if (save_ire != NULL) 9087 ire_refrele(save_ire); 9088 break; 9089 } 9090 9091 ire->ire_marks |= ire_marks; 9092 9093 /* 9094 * If IRE_MARK_NOADD is set then we need to convert 9095 * the max_fragp to a useable value now. This is 9096 * normally done in ire_add_v[46]. We also need to 9097 * associate the ire with an nce (normally would be 9098 * done in ip_wput_nondata()). 9099 * 9100 * Note that IRE_MARK_NOADD packets created here 9101 * do not have a non-null ire_mp pointer. The null 9102 * value of ire_bucket indicates that they were 9103 * never added. 9104 */ 9105 if (ire->ire_marks & IRE_MARK_NOADD) { 9106 uint_t max_frag; 9107 9108 max_frag = *ire->ire_max_fragp; 9109 ire->ire_max_fragp = NULL; 9110 ire->ire_max_frag = max_frag; 9111 9112 if ((ire->ire_nce = ndp_lookup_v4( 9113 ire_to_ill(ire), 9114 (ire->ire_gateway_addr != INADDR_ANY ? 9115 &ire->ire_gateway_addr : &ire->ire_addr), 9116 B_FALSE)) == NULL) { 9117 if (save_ire != NULL) 9118 ire_refrele(save_ire); 9119 break; 9120 } 9121 ASSERT(ire->ire_nce->nce_state == 9122 ND_REACHABLE); 9123 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9124 } 9125 9126 /* Prevent save_ire from getting deleted */ 9127 if (save_ire != NULL) { 9128 IRB_REFHOLD(save_ire->ire_bucket); 9129 /* Has it been removed already ? */ 9130 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9131 IRB_REFRELE(save_ire->ire_bucket); 9132 ire_refrele(save_ire); 9133 break; 9134 } 9135 } 9136 9137 ire_add_then_send(q, ire, first_mp); 9138 9139 /* Assert that save_ire is not deleted yet. */ 9140 if (save_ire != NULL) { 9141 ASSERT(save_ire->ire_ptpn != NULL); 9142 IRB_REFRELE(save_ire->ire_bucket); 9143 ire_refrele(save_ire); 9144 save_ire = NULL; 9145 } 9146 if (fire != NULL) { 9147 ire_refrele(fire); 9148 fire = NULL; 9149 } 9150 9151 /* 9152 * the resolution loop is re-entered if this 9153 * was requested through flags and if we 9154 * actually are in a multirouting case. 9155 */ 9156 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9157 boolean_t need_resolve = 9158 ire_multirt_need_resolve(ipha_dst, 9159 MBLK_GETLABEL(copy_mp)); 9160 if (!need_resolve) { 9161 MULTIRT_DEBUG_UNTAG(copy_mp); 9162 freemsg(copy_mp); 9163 copy_mp = NULL; 9164 } else { 9165 /* 9166 * ipif_lookup_group() calls 9167 * ire_lookup_multi() that uses 9168 * ire_ftable_lookup() to find 9169 * an IRE_INTERFACE for the group. 9170 * In the multirt case, 9171 * ire_lookup_multi() then invokes 9172 * ire_multirt_lookup() to find 9173 * the next resolvable ire. 9174 * As a result, we obtain an new 9175 * interface, derived from the 9176 * next ire. 9177 */ 9178 ipif_refrele(ipif); 9179 ipif = ipif_lookup_group(ipha_dst, 9180 zoneid); 9181 ip2dbg(("ip_newroute_ipif: " 9182 "multirt dst %08x, ipif %p\n", 9183 htonl(dst), (void *)ipif)); 9184 if (ipif != NULL) { 9185 mp = copy_mp; 9186 copy_mp = NULL; 9187 multirt_resolve_next = B_TRUE; 9188 continue; 9189 } else { 9190 freemsg(copy_mp); 9191 } 9192 } 9193 } 9194 if (ipif != NULL) 9195 ipif_refrele(ipif); 9196 ill_refrele(dst_ill); 9197 ipif_refrele(src_ipif); 9198 return; 9199 } 9200 case IRE_IF_RESOLVER: 9201 /* 9202 * We can't build an IRE_CACHE yet, but at least 9203 * we found a resolver that can help. 9204 */ 9205 res_mp = dst_ill->ill_resolver_mp; 9206 if (!OK_RESOLVER_MP(res_mp)) 9207 break; 9208 9209 /* 9210 * We obtain a partial IRE_CACHE which we will pass 9211 * along with the resolver query. When the response 9212 * comes back it will be there ready for us to add. 9213 * The new ire inherits the IRE_OFFSUBNET flags 9214 * and source address, if this was requested. 9215 * The ire_max_frag is atomically set under the 9216 * irebucket lock in ire_add_v[46]. Only in the 9217 * case of IRE_MARK_NOADD, we set it here itself. 9218 */ 9219 ire = ire_create_mp( 9220 (uchar_t *)&dst, /* dest address */ 9221 (uchar_t *)&ip_g_all_ones, /* mask */ 9222 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9223 NULL, /* gateway address */ 9224 NULL, /* no in_src_addr */ 9225 (ire_marks & IRE_MARK_NOADD) ? 9226 ipif->ipif_mtu : 0, /* max_frag */ 9227 NULL, /* Fast path header */ 9228 dst_ill->ill_rq, /* recv-from queue */ 9229 dst_ill->ill_wq, /* send-to queue */ 9230 IRE_CACHE, 9231 NULL, /* let ire_nce_init figure res_mp out */ 9232 src_ipif, 9233 NULL, 9234 (save_ire != NULL ? save_ire->ire_mask : 0), 9235 (fire != NULL) ? /* Parent handle */ 9236 fire->ire_phandle : 0, 9237 ihandle, /* Interface handle */ 9238 (fire != NULL) ? /* flags if any */ 9239 (fire->ire_flags & 9240 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9241 (save_ire == NULL ? &ire_uinfo_null : 9242 &save_ire->ire_uinfo), 9243 NULL, 9244 NULL); 9245 9246 if (save_ire != NULL) { 9247 ire_refrele(save_ire); 9248 save_ire = NULL; 9249 } 9250 if (ire == NULL) 9251 break; 9252 9253 ire->ire_marks |= ire_marks; 9254 /* 9255 * Construct message chain for the resolver of the 9256 * form: 9257 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9258 * 9259 * NOTE : ire will be added later when the response 9260 * comes back from ARP. If the response does not 9261 * come back, ARP frees the packet. For this reason, 9262 * we can't REFHOLD the bucket of save_ire to prevent 9263 * deletions. We may not be able to REFRELE the 9264 * bucket if the response never comes back. 9265 * Thus, before adding the ire, ire_add_v4 will make 9266 * sure that the interface route does not get deleted. 9267 * This is the only case unlike ip_newroute_v6, 9268 * ip_newroute_ipif_v6 where we can always prevent 9269 * deletions because ire_add_then_send is called after 9270 * creating the IRE. 9271 * If IRE_MARK_NOADD is set, then ire_add_then_send 9272 * does not add this IRE into the IRE CACHE. 9273 */ 9274 ASSERT(ire->ire_mp != NULL); 9275 ire->ire_mp->b_cont = first_mp; 9276 /* Have saved_mp handy, for cleanup if canput fails */ 9277 saved_mp = mp; 9278 mp = copyb(res_mp); 9279 ASSERT(mp != NULL); 9280 linkb(mp, ire->ire_mp); 9281 9282 /* 9283 * Fill in the source and dest addrs for the resolver. 9284 * NOTE: this depends on memory layouts imposed by 9285 * ill_init(). 9286 */ 9287 areq = (areq_t *)mp->b_rptr; 9288 addrp = (ipaddr_t *)((char *)areq + 9289 areq->areq_sender_addr_offset); 9290 *addrp = ire->ire_src_addr; 9291 addrp = (ipaddr_t *)((char *)areq + 9292 areq->areq_target_addr_offset); 9293 *addrp = dst; 9294 /* Up to the resolver. */ 9295 if (canputnext(dst_ill->ill_rq) && 9296 !(dst_ill->ill_arp_closing)) { 9297 putnext(dst_ill->ill_rq, mp); 9298 /* 9299 * The response will come back in ip_wput 9300 * with db_type IRE_DB_TYPE. 9301 */ 9302 } else { 9303 mp->b_cont = NULL; 9304 freeb(mp); /* areq */ 9305 ire_delete(ire); /* ire_mp */ 9306 saved_mp->b_next = NULL; 9307 saved_mp->b_prev = NULL; 9308 freemsg(first_mp); /* pkt */ 9309 ip2dbg(("ip_newroute_ipif: dropped\n")); 9310 } 9311 9312 if (fire != NULL) { 9313 ire_refrele(fire); 9314 fire = NULL; 9315 } 9316 9317 9318 /* 9319 * The resolution loop is re-entered if this was 9320 * requested through flags and we actually are 9321 * in a multirouting case. 9322 */ 9323 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9324 boolean_t need_resolve = 9325 ire_multirt_need_resolve(ipha_dst, 9326 MBLK_GETLABEL(copy_mp)); 9327 if (!need_resolve) { 9328 MULTIRT_DEBUG_UNTAG(copy_mp); 9329 freemsg(copy_mp); 9330 copy_mp = NULL; 9331 } else { 9332 /* 9333 * ipif_lookup_group() calls 9334 * ire_lookup_multi() that uses 9335 * ire_ftable_lookup() to find 9336 * an IRE_INTERFACE for the group. 9337 * In the multirt case, 9338 * ire_lookup_multi() then invokes 9339 * ire_multirt_lookup() to find 9340 * the next resolvable ire. 9341 * As a result, we obtain an new 9342 * interface, derived from the 9343 * next ire. 9344 */ 9345 ipif_refrele(ipif); 9346 ipif = ipif_lookup_group(ipha_dst, 9347 zoneid); 9348 if (ipif != NULL) { 9349 mp = copy_mp; 9350 copy_mp = NULL; 9351 multirt_resolve_next = B_TRUE; 9352 continue; 9353 } else { 9354 freemsg(copy_mp); 9355 } 9356 } 9357 } 9358 if (ipif != NULL) 9359 ipif_refrele(ipif); 9360 ill_refrele(dst_ill); 9361 ipif_refrele(src_ipif); 9362 return; 9363 default: 9364 break; 9365 } 9366 } while (multirt_resolve_next); 9367 9368 err_ret: 9369 ip2dbg(("ip_newroute_ipif: dropped\n")); 9370 if (fire != NULL) 9371 ire_refrele(fire); 9372 ipif_refrele(ipif); 9373 /* Did this packet originate externally? */ 9374 if (dst_ill != NULL) 9375 ill_refrele(dst_ill); 9376 if (src_ipif != NULL) 9377 ipif_refrele(src_ipif); 9378 if (mp->b_prev || mp->b_next) { 9379 mp->b_next = NULL; 9380 mp->b_prev = NULL; 9381 } else { 9382 /* 9383 * Since ip_wput() isn't close to finished, we fill 9384 * in enough of the header for credible error reporting. 9385 */ 9386 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 9387 /* Failed */ 9388 freemsg(first_mp); 9389 if (ire != NULL) 9390 ire_refrele(ire); 9391 return; 9392 } 9393 } 9394 /* 9395 * At this point we will have ire only if RTF_BLACKHOLE 9396 * or RTF_REJECT flags are set on the IRE. It will not 9397 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9398 */ 9399 if (ire != NULL) { 9400 if (ire->ire_flags & RTF_BLACKHOLE) { 9401 ire_refrele(ire); 9402 freemsg(first_mp); 9403 return; 9404 } 9405 ire_refrele(ire); 9406 } 9407 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 9408 } 9409 9410 /* Name/Value Table Lookup Routine */ 9411 char * 9412 ip_nv_lookup(nv_t *nv, int value) 9413 { 9414 if (!nv) 9415 return (NULL); 9416 for (; nv->nv_name; nv++) { 9417 if (nv->nv_value == value) 9418 return (nv->nv_name); 9419 } 9420 return ("unknown"); 9421 } 9422 9423 /* 9424 * one day it can be patched to 1 from /etc/system for machines that have few 9425 * fast network interfaces feeding multiple cpus. 9426 */ 9427 int ill_stream_putlocks = 0; 9428 9429 /* 9430 * This is a module open, i.e. this is a control stream for access 9431 * to a DLPI device. We allocate an ill_t as the instance data in 9432 * this case. 9433 */ 9434 int 9435 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9436 { 9437 uint32_t mem_cnt; 9438 uint32_t cpu_cnt; 9439 uint32_t min_cnt; 9440 pgcnt_t mem_avail; 9441 ill_t *ill; 9442 int err; 9443 9444 /* 9445 * Prevent unprivileged processes from pushing IP so that 9446 * they can't send raw IP. 9447 */ 9448 if (secpolicy_net_rawaccess(credp) != 0) 9449 return (EPERM); 9450 9451 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9452 q->q_ptr = WR(q)->q_ptr = ill; 9453 9454 /* 9455 * ill_init initializes the ill fields and then sends down 9456 * down a DL_INFO_REQ after calling qprocson. 9457 */ 9458 err = ill_init(q, ill); 9459 if (err != 0) { 9460 mi_free(ill); 9461 q->q_ptr = NULL; 9462 WR(q)->q_ptr = NULL; 9463 return (err); 9464 } 9465 9466 /* ill_init initializes the ipsq marking this thread as writer */ 9467 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9468 /* Wait for the DL_INFO_ACK */ 9469 mutex_enter(&ill->ill_lock); 9470 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9471 /* 9472 * Return value of 0 indicates a pending signal. 9473 */ 9474 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9475 if (err == 0) { 9476 mutex_exit(&ill->ill_lock); 9477 (void) ip_close(q, 0); 9478 return (EINTR); 9479 } 9480 } 9481 mutex_exit(&ill->ill_lock); 9482 9483 /* 9484 * ip_rput_other could have set an error in ill_error on 9485 * receipt of M_ERROR. 9486 */ 9487 9488 err = ill->ill_error; 9489 if (err != 0) { 9490 (void) ip_close(q, 0); 9491 return (err); 9492 } 9493 9494 /* 9495 * ip_ire_max_bucket_cnt is sized below based on the memory 9496 * size and the cpu speed of the machine. This is upper 9497 * bounded by the compile time value of ip_ire_max_bucket_cnt 9498 * and is lower bounded by the compile time value of 9499 * ip_ire_min_bucket_cnt. Similar logic applies to 9500 * ip6_ire_max_bucket_cnt. 9501 */ 9502 mem_avail = kmem_avail(); 9503 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9504 ip_cache_table_size / sizeof (ire_t); 9505 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9506 9507 min_cnt = MIN(cpu_cnt, mem_cnt); 9508 if (min_cnt < ip_ire_min_bucket_cnt) 9509 min_cnt = ip_ire_min_bucket_cnt; 9510 if (ip_ire_max_bucket_cnt > min_cnt) { 9511 ip_ire_max_bucket_cnt = min_cnt; 9512 } 9513 9514 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9515 ip6_cache_table_size / sizeof (ire_t); 9516 min_cnt = MIN(cpu_cnt, mem_cnt); 9517 if (min_cnt < ip6_ire_min_bucket_cnt) 9518 min_cnt = ip6_ire_min_bucket_cnt; 9519 if (ip6_ire_max_bucket_cnt > min_cnt) { 9520 ip6_ire_max_bucket_cnt = min_cnt; 9521 } 9522 9523 ill->ill_credp = credp; 9524 crhold(credp); 9525 9526 mutex_enter(&ip_mi_lock); 9527 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9528 mutex_exit(&ip_mi_lock); 9529 if (err) { 9530 (void) ip_close(q, 0); 9531 return (err); 9532 } 9533 return (0); 9534 } 9535 9536 /* IP open routine. */ 9537 int 9538 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9539 { 9540 conn_t *connp; 9541 major_t maj; 9542 9543 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9544 9545 /* Allow reopen. */ 9546 if (q->q_ptr != NULL) 9547 return (0); 9548 9549 if (sflag & MODOPEN) { 9550 /* This is a module open */ 9551 return (ip_modopen(q, devp, flag, sflag, credp)); 9552 } 9553 9554 /* 9555 * We are opening as a device. This is an IP client stream, and we 9556 * allocate an conn_t as the instance data. 9557 */ 9558 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9559 connp->conn_upq = q; 9560 q->q_ptr = WR(q)->q_ptr = connp; 9561 9562 if (flag & SO_SOCKSTR) 9563 connp->conn_flags |= IPCL_SOCKET; 9564 9565 /* Minor tells us which /dev entry was opened */ 9566 if (geteminor(*devp) == IPV6_MINOR) { 9567 connp->conn_flags |= IPCL_ISV6; 9568 connp->conn_af_isv6 = B_TRUE; 9569 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9570 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9571 } else { 9572 connp->conn_af_isv6 = B_FALSE; 9573 connp->conn_pkt_isv6 = B_FALSE; 9574 } 9575 9576 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9577 q->q_ptr = WR(q)->q_ptr = NULL; 9578 CONN_DEC_REF(connp); 9579 return (EBUSY); 9580 } 9581 9582 maj = getemajor(*devp); 9583 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9584 9585 /* 9586 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9587 */ 9588 connp->conn_cred = credp; 9589 crhold(connp->conn_cred); 9590 9591 /* 9592 * If the caller has the process-wide flag set, then default to MAC 9593 * exempt mode. This allows read-down to unlabeled hosts. 9594 */ 9595 if (getpflags(NET_MAC_AWARE, credp) != 0) 9596 connp->conn_mac_exempt = B_TRUE; 9597 9598 connp->conn_zoneid = getzoneid(); 9599 9600 /* 9601 * This should only happen for ndd, netstat, raw socket or other SCTP 9602 * administrative ops. In these cases, we just need a normal conn_t 9603 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9604 * an error will be returned. 9605 */ 9606 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9607 connp->conn_rq = q; 9608 connp->conn_wq = WR(q); 9609 } else { 9610 connp->conn_ulp = IPPROTO_SCTP; 9611 connp->conn_rq = connp->conn_wq = NULL; 9612 } 9613 /* Non-zero default values */ 9614 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9615 9616 /* 9617 * Make the conn globally visible to walkers 9618 */ 9619 mutex_enter(&connp->conn_lock); 9620 connp->conn_state_flags &= ~CONN_INCIPIENT; 9621 mutex_exit(&connp->conn_lock); 9622 ASSERT(connp->conn_ref == 1); 9623 9624 qprocson(q); 9625 9626 return (0); 9627 } 9628 9629 /* 9630 * Change q_qinfo based on the value of isv6. 9631 * This can not called on an ill queue. 9632 * Note that there is no race since either q_qinfo works for conn queues - it 9633 * is just an optimization to enter the best wput routine directly. 9634 */ 9635 void 9636 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9637 { 9638 ASSERT(q->q_flag & QREADR); 9639 ASSERT(WR(q)->q_next == NULL); 9640 ASSERT(q->q_ptr != NULL); 9641 9642 if (minor == IPV6_MINOR) { 9643 if (bump_mib) 9644 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9645 q->q_qinfo = &rinit_ipv6; 9646 WR(q)->q_qinfo = &winit_ipv6; 9647 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9648 } else { 9649 if (bump_mib) 9650 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9651 q->q_qinfo = &iprinit; 9652 WR(q)->q_qinfo = &ipwinit; 9653 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9654 } 9655 9656 } 9657 9658 /* 9659 * See if IPsec needs loading because of the options in mp. 9660 */ 9661 static boolean_t 9662 ipsec_opt_present(mblk_t *mp) 9663 { 9664 uint8_t *optcp, *next_optcp, *opt_endcp; 9665 struct opthdr *opt; 9666 struct T_opthdr *topt; 9667 int opthdr_len; 9668 t_uscalar_t optname, optlevel; 9669 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9670 ipsec_req_t *ipsr; 9671 9672 /* 9673 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9674 * return TRUE. 9675 */ 9676 9677 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9678 opt_endcp = optcp + tor->OPT_length; 9679 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9680 opthdr_len = sizeof (struct T_opthdr); 9681 } else { /* O_OPTMGMT_REQ */ 9682 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9683 opthdr_len = sizeof (struct opthdr); 9684 } 9685 for (; optcp < opt_endcp; optcp = next_optcp) { 9686 if (optcp + opthdr_len > opt_endcp) 9687 return (B_FALSE); /* Not enough option header. */ 9688 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9689 topt = (struct T_opthdr *)optcp; 9690 optlevel = topt->level; 9691 optname = topt->name; 9692 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9693 } else { 9694 opt = (struct opthdr *)optcp; 9695 optlevel = opt->level; 9696 optname = opt->name; 9697 next_optcp = optcp + opthdr_len + 9698 _TPI_ALIGN_OPT(opt->len); 9699 } 9700 if ((next_optcp < optcp) || /* wraparound pointer space */ 9701 ((next_optcp >= opt_endcp) && /* last option bad len */ 9702 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9703 return (B_FALSE); /* bad option buffer */ 9704 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9705 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9706 /* 9707 * Check to see if it's an all-bypass or all-zeroes 9708 * IPsec request. Don't bother loading IPsec if 9709 * the socket doesn't want to use it. (A good example 9710 * is a bypass request.) 9711 * 9712 * Basically, if any of the non-NEVER bits are set, 9713 * load IPsec. 9714 */ 9715 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9716 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9717 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9718 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9719 != 0) 9720 return (B_TRUE); 9721 } 9722 } 9723 return (B_FALSE); 9724 } 9725 9726 /* 9727 * If conn is is waiting for ipsec to finish loading, kick it. 9728 */ 9729 /* ARGSUSED */ 9730 static void 9731 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9732 { 9733 t_scalar_t optreq_prim; 9734 mblk_t *mp; 9735 cred_t *cr; 9736 int err = 0; 9737 9738 /* 9739 * This function is called, after ipsec loading is complete. 9740 * Since IP checks exclusively and atomically (i.e it prevents 9741 * ipsec load from completing until ip_optcom_req completes) 9742 * whether ipsec load is complete, there cannot be a race with IP 9743 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9744 */ 9745 mutex_enter(&connp->conn_lock); 9746 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9747 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9748 mp = connp->conn_ipsec_opt_mp; 9749 connp->conn_ipsec_opt_mp = NULL; 9750 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9751 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9752 mutex_exit(&connp->conn_lock); 9753 9754 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9755 9756 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9757 if (optreq_prim == T_OPTMGMT_REQ) { 9758 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9759 &ip_opt_obj); 9760 } else { 9761 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9762 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9763 &ip_opt_obj); 9764 } 9765 if (err != EINPROGRESS) 9766 CONN_OPER_PENDING_DONE(connp); 9767 return; 9768 } 9769 mutex_exit(&connp->conn_lock); 9770 } 9771 9772 /* 9773 * Called from the ipsec_loader thread, outside any perimeter, to tell 9774 * ip qenable any of the queues waiting for the ipsec loader to 9775 * complete. 9776 * 9777 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9778 * are done with this lock held, so it's guaranteed that none of the 9779 * links will change along the way. 9780 */ 9781 void 9782 ip_ipsec_load_complete() 9783 { 9784 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9785 } 9786 9787 /* 9788 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9789 * determines the grp on which it has to become exclusive, queues the mp 9790 * and sq draining restarts the optmgmt 9791 */ 9792 static boolean_t 9793 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9794 { 9795 conn_t *connp; 9796 9797 /* 9798 * Take IPsec requests and treat them special. 9799 */ 9800 if (ipsec_opt_present(mp)) { 9801 /* First check if IPsec is loaded. */ 9802 mutex_enter(&ipsec_loader_lock); 9803 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9804 mutex_exit(&ipsec_loader_lock); 9805 return (B_FALSE); 9806 } 9807 connp = Q_TO_CONN(q); 9808 mutex_enter(&connp->conn_lock); 9809 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9810 9811 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9812 connp->conn_ipsec_opt_mp = mp; 9813 mutex_exit(&connp->conn_lock); 9814 mutex_exit(&ipsec_loader_lock); 9815 9816 ipsec_loader_loadnow(); 9817 return (B_TRUE); 9818 } 9819 return (B_FALSE); 9820 } 9821 9822 /* 9823 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9824 * all of them are copied to the conn_t. If the req is "zero", the policy is 9825 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9826 * fields. 9827 * We keep only the latest setting of the policy and thus policy setting 9828 * is not incremental/cumulative. 9829 * 9830 * Requests to set policies with multiple alternative actions will 9831 * go through a different API. 9832 */ 9833 int 9834 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9835 { 9836 uint_t ah_req = 0; 9837 uint_t esp_req = 0; 9838 uint_t se_req = 0; 9839 ipsec_selkey_t sel; 9840 ipsec_act_t *actp = NULL; 9841 uint_t nact; 9842 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9843 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9844 ipsec_policy_root_t *pr; 9845 ipsec_policy_head_t *ph; 9846 int fam; 9847 boolean_t is_pol_reset; 9848 int error = 0; 9849 9850 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9851 9852 /* 9853 * The IP_SEC_OPT option does not allow variable length parameters, 9854 * hence a request cannot be NULL. 9855 */ 9856 if (req == NULL) 9857 return (EINVAL); 9858 9859 ah_req = req->ipsr_ah_req; 9860 esp_req = req->ipsr_esp_req; 9861 se_req = req->ipsr_self_encap_req; 9862 9863 /* 9864 * Are we dealing with a request to reset the policy (i.e. 9865 * zero requests). 9866 */ 9867 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9868 (esp_req & REQ_MASK) == 0 && 9869 (se_req & REQ_MASK) == 0); 9870 9871 if (!is_pol_reset) { 9872 /* 9873 * If we couldn't load IPsec, fail with "protocol 9874 * not supported". 9875 * IPsec may not have been loaded for a request with zero 9876 * policies, so we don't fail in this case. 9877 */ 9878 mutex_enter(&ipsec_loader_lock); 9879 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 9880 mutex_exit(&ipsec_loader_lock); 9881 return (EPROTONOSUPPORT); 9882 } 9883 mutex_exit(&ipsec_loader_lock); 9884 9885 /* 9886 * Test for valid requests. Invalid algorithms 9887 * need to be tested by IPSEC code because new 9888 * algorithms can be added dynamically. 9889 */ 9890 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9891 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9892 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 9893 return (EINVAL); 9894 } 9895 9896 /* 9897 * Only privileged users can issue these 9898 * requests. 9899 */ 9900 if (((ah_req & IPSEC_PREF_NEVER) || 9901 (esp_req & IPSEC_PREF_NEVER) || 9902 (se_req & IPSEC_PREF_NEVER)) && 9903 secpolicy_net_config(cr, B_FALSE) != 0) { 9904 return (EPERM); 9905 } 9906 9907 /* 9908 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 9909 * are mutually exclusive. 9910 */ 9911 if (((ah_req & REQ_MASK) == REQ_MASK) || 9912 ((esp_req & REQ_MASK) == REQ_MASK) || 9913 ((se_req & REQ_MASK) == REQ_MASK)) { 9914 /* Both of them are set */ 9915 return (EINVAL); 9916 } 9917 } 9918 9919 mutex_enter(&connp->conn_lock); 9920 9921 /* 9922 * If we have already cached policies in ip_bind_connected*(), don't 9923 * let them change now. We cache policies for connections 9924 * whose src,dst [addr, port] is known. The exception to this is 9925 * tunnels. Tunnels are allowed to change policies after having 9926 * become fully bound. 9927 */ 9928 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 9929 mutex_exit(&connp->conn_lock); 9930 return (EINVAL); 9931 } 9932 9933 /* 9934 * We have a zero policies, reset the connection policy if already 9935 * set. This will cause the connection to inherit the 9936 * global policy, if any. 9937 */ 9938 if (is_pol_reset) { 9939 if (connp->conn_policy != NULL) { 9940 IPPH_REFRELE(connp->conn_policy); 9941 connp->conn_policy = NULL; 9942 } 9943 connp->conn_flags &= ~IPCL_CHECK_POLICY; 9944 connp->conn_in_enforce_policy = B_FALSE; 9945 connp->conn_out_enforce_policy = B_FALSE; 9946 mutex_exit(&connp->conn_lock); 9947 return (0); 9948 } 9949 9950 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 9951 if (ph == NULL) 9952 goto enomem; 9953 9954 ipsec_actvec_from_req(req, &actp, &nact); 9955 if (actp == NULL) 9956 goto enomem; 9957 9958 /* 9959 * Always allocate IPv4 policy entries, since they can also 9960 * apply to ipv6 sockets being used in ipv4-compat mode. 9961 */ 9962 bzero(&sel, sizeof (sel)); 9963 sel.ipsl_valid = IPSL_IPV4; 9964 9965 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9966 if (pin4 == NULL) 9967 goto enomem; 9968 9969 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9970 if (pout4 == NULL) 9971 goto enomem; 9972 9973 if (connp->conn_pkt_isv6) { 9974 /* 9975 * We're looking at a v6 socket, also allocate the 9976 * v6-specific entries... 9977 */ 9978 sel.ipsl_valid = IPSL_IPV6; 9979 pin6 = ipsec_policy_create(&sel, actp, nact, 9980 IPSEC_PRIO_SOCKET); 9981 if (pin6 == NULL) 9982 goto enomem; 9983 9984 pout6 = ipsec_policy_create(&sel, actp, nact, 9985 IPSEC_PRIO_SOCKET); 9986 if (pout6 == NULL) 9987 goto enomem; 9988 9989 /* 9990 * .. and file them away in the right place. 9991 */ 9992 fam = IPSEC_AF_V6; 9993 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9994 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 9995 ipsec_insert_always(&ph->iph_rulebyid, pin6); 9996 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9997 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 9998 ipsec_insert_always(&ph->iph_rulebyid, pout6); 9999 } 10000 10001 ipsec_actvec_free(actp, nact); 10002 10003 /* 10004 * File the v4 policies. 10005 */ 10006 fam = IPSEC_AF_V4; 10007 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10008 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10009 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10010 10011 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10012 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10013 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10014 10015 /* 10016 * If the requests need security, set enforce_policy. 10017 * If the requests are IPSEC_PREF_NEVER, one should 10018 * still set conn_out_enforce_policy so that an ipsec_out 10019 * gets attached in ip_wput. This is needed so that 10020 * for connections that we don't cache policy in ip_bind, 10021 * if global policy matches in ip_wput_attach_policy, we 10022 * don't wrongly inherit global policy. Similarly, we need 10023 * to set conn_in_enforce_policy also so that we don't verify 10024 * policy wrongly. 10025 */ 10026 if ((ah_req & REQ_MASK) != 0 || 10027 (esp_req & REQ_MASK) != 0 || 10028 (se_req & REQ_MASK) != 0) { 10029 connp->conn_in_enforce_policy = B_TRUE; 10030 connp->conn_out_enforce_policy = B_TRUE; 10031 connp->conn_flags |= IPCL_CHECK_POLICY; 10032 } 10033 10034 /* 10035 * Tunnels are allowed to set policy after having been fully bound. 10036 * If that's the case, cache policy here. 10037 */ 10038 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 10039 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 10040 10041 mutex_exit(&connp->conn_lock); 10042 return (error); 10043 #undef REQ_MASK 10044 10045 /* 10046 * Common memory-allocation-failure exit path. 10047 */ 10048 enomem: 10049 mutex_exit(&connp->conn_lock); 10050 if (actp != NULL) 10051 ipsec_actvec_free(actp, nact); 10052 if (pin4 != NULL) 10053 IPPOL_REFRELE(pin4); 10054 if (pout4 != NULL) 10055 IPPOL_REFRELE(pout4); 10056 if (pin6 != NULL) 10057 IPPOL_REFRELE(pin6); 10058 if (pout6 != NULL) 10059 IPPOL_REFRELE(pout6); 10060 return (ENOMEM); 10061 } 10062 10063 /* 10064 * Only for options that pass in an IP addr. Currently only V4 options 10065 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10066 * So this function assumes level is IPPROTO_IP 10067 */ 10068 int 10069 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10070 mblk_t *first_mp) 10071 { 10072 ipif_t *ipif = NULL; 10073 int error; 10074 ill_t *ill; 10075 int zoneid; 10076 10077 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10078 10079 if (addr != INADDR_ANY || checkonly) { 10080 ASSERT(connp != NULL); 10081 zoneid = IPCL_ZONEID(connp); 10082 if (option == IP_NEXTHOP) { 10083 ipif = ipif_lookup_onlink_addr(addr, zoneid); 10084 } else { 10085 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10086 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10087 &error); 10088 } 10089 if (ipif == NULL) { 10090 if (error == EINPROGRESS) 10091 return (error); 10092 else if ((option == IP_MULTICAST_IF) || 10093 (option == IP_NEXTHOP)) 10094 return (EHOSTUNREACH); 10095 else 10096 return (EINVAL); 10097 } else if (checkonly) { 10098 if (option == IP_MULTICAST_IF) { 10099 ill = ipif->ipif_ill; 10100 /* not supported by the virtual network iface */ 10101 if (IS_VNI(ill)) { 10102 ipif_refrele(ipif); 10103 return (EINVAL); 10104 } 10105 } 10106 ipif_refrele(ipif); 10107 return (0); 10108 } 10109 ill = ipif->ipif_ill; 10110 mutex_enter(&connp->conn_lock); 10111 mutex_enter(&ill->ill_lock); 10112 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10113 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10114 mutex_exit(&ill->ill_lock); 10115 mutex_exit(&connp->conn_lock); 10116 ipif_refrele(ipif); 10117 return (option == IP_MULTICAST_IF ? 10118 EHOSTUNREACH : EINVAL); 10119 } 10120 } else { 10121 mutex_enter(&connp->conn_lock); 10122 } 10123 10124 /* None of the options below are supported on the VNI */ 10125 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10126 mutex_exit(&ill->ill_lock); 10127 mutex_exit(&connp->conn_lock); 10128 ipif_refrele(ipif); 10129 return (EINVAL); 10130 } 10131 10132 switch (option) { 10133 case IP_DONTFAILOVER_IF: 10134 /* 10135 * This option is used by in.mpathd to ensure 10136 * that IPMP probe packets only go out on the 10137 * test interfaces. in.mpathd sets this option 10138 * on the non-failover interfaces. 10139 * For backward compatibility, this option 10140 * implicitly sets IP_MULTICAST_IF, as used 10141 * be done in bind(), so that ip_wput gets 10142 * this ipif to send mcast packets. 10143 */ 10144 if (ipif != NULL) { 10145 ASSERT(addr != INADDR_ANY); 10146 connp->conn_nofailover_ill = ipif->ipif_ill; 10147 connp->conn_multicast_ipif = ipif; 10148 } else { 10149 ASSERT(addr == INADDR_ANY); 10150 connp->conn_nofailover_ill = NULL; 10151 connp->conn_multicast_ipif = NULL; 10152 } 10153 break; 10154 10155 case IP_MULTICAST_IF: 10156 connp->conn_multicast_ipif = ipif; 10157 break; 10158 case IP_NEXTHOP: 10159 connp->conn_nexthop_v4 = addr; 10160 connp->conn_nexthop_set = B_TRUE; 10161 break; 10162 } 10163 10164 if (ipif != NULL) { 10165 mutex_exit(&ill->ill_lock); 10166 mutex_exit(&connp->conn_lock); 10167 ipif_refrele(ipif); 10168 return (0); 10169 } 10170 mutex_exit(&connp->conn_lock); 10171 /* We succeded in cleared the option */ 10172 return (0); 10173 } 10174 10175 /* 10176 * For options that pass in an ifindex specifying the ill. V6 options always 10177 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10178 */ 10179 int 10180 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10181 int level, int option, mblk_t *first_mp) 10182 { 10183 ill_t *ill = NULL; 10184 int error = 0; 10185 10186 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10187 if (ifindex != 0) { 10188 ASSERT(connp != NULL); 10189 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10190 first_mp, ip_restart_optmgmt, &error); 10191 if (ill != NULL) { 10192 if (checkonly) { 10193 /* not supported by the virtual network iface */ 10194 if (IS_VNI(ill)) { 10195 ill_refrele(ill); 10196 return (EINVAL); 10197 } 10198 ill_refrele(ill); 10199 return (0); 10200 } 10201 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10202 0, NULL)) { 10203 ill_refrele(ill); 10204 ill = NULL; 10205 mutex_enter(&connp->conn_lock); 10206 goto setit; 10207 } 10208 mutex_enter(&connp->conn_lock); 10209 mutex_enter(&ill->ill_lock); 10210 if (ill->ill_state_flags & ILL_CONDEMNED) { 10211 mutex_exit(&ill->ill_lock); 10212 mutex_exit(&connp->conn_lock); 10213 ill_refrele(ill); 10214 ill = NULL; 10215 mutex_enter(&connp->conn_lock); 10216 } 10217 goto setit; 10218 } else if (error == EINPROGRESS) { 10219 return (error); 10220 } else { 10221 error = 0; 10222 } 10223 } 10224 mutex_enter(&connp->conn_lock); 10225 setit: 10226 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10227 10228 /* 10229 * The options below assume that the ILL (if any) transmits and/or 10230 * receives traffic. Neither of which is true for the virtual network 10231 * interface, so fail setting these on a VNI. 10232 */ 10233 if (IS_VNI(ill)) { 10234 ASSERT(ill != NULL); 10235 mutex_exit(&ill->ill_lock); 10236 mutex_exit(&connp->conn_lock); 10237 ill_refrele(ill); 10238 return (EINVAL); 10239 } 10240 10241 if (level == IPPROTO_IP) { 10242 switch (option) { 10243 case IP_BOUND_IF: 10244 connp->conn_incoming_ill = ill; 10245 connp->conn_outgoing_ill = ill; 10246 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10247 0 : ifindex; 10248 break; 10249 10250 case IP_XMIT_IF: 10251 /* 10252 * Similar to IP_BOUND_IF, but this only 10253 * determines the outgoing interface for 10254 * unicast packets. Also no IRE_CACHE entry 10255 * is added for the destination of the 10256 * outgoing packets. This feature is needed 10257 * for mobile IP. 10258 */ 10259 connp->conn_xmit_if_ill = ill; 10260 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10261 0 : ifindex; 10262 break; 10263 10264 case IP_MULTICAST_IF: 10265 /* 10266 * This option is an internal special. The socket 10267 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10268 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10269 * specifies an ifindex and we try first on V6 ill's. 10270 * If we don't find one, we they try using on v4 ill's 10271 * intenally and we come here. 10272 */ 10273 if (!checkonly && ill != NULL) { 10274 ipif_t *ipif; 10275 ipif = ill->ill_ipif; 10276 10277 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10278 mutex_exit(&ill->ill_lock); 10279 mutex_exit(&connp->conn_lock); 10280 ill_refrele(ill); 10281 ill = NULL; 10282 mutex_enter(&connp->conn_lock); 10283 } else { 10284 connp->conn_multicast_ipif = ipif; 10285 } 10286 } 10287 break; 10288 } 10289 } else { 10290 switch (option) { 10291 case IPV6_BOUND_IF: 10292 connp->conn_incoming_ill = ill; 10293 connp->conn_outgoing_ill = ill; 10294 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10295 0 : ifindex; 10296 break; 10297 10298 case IPV6_BOUND_PIF: 10299 /* 10300 * Limit all transmit to this ill. 10301 * Unlike IPV6_BOUND_IF, using this option 10302 * prevents load spreading and failover from 10303 * happening when the interface is part of the 10304 * group. That's why we don't need to remember 10305 * the ifindex in orig_bound_ifindex as in 10306 * IPV6_BOUND_IF. 10307 */ 10308 connp->conn_outgoing_pill = ill; 10309 break; 10310 10311 case IPV6_DONTFAILOVER_IF: 10312 /* 10313 * This option is used by in.mpathd to ensure 10314 * that IPMP probe packets only go out on the 10315 * test interfaces. in.mpathd sets this option 10316 * on the non-failover interfaces. 10317 */ 10318 connp->conn_nofailover_ill = ill; 10319 /* 10320 * For backward compatibility, this option 10321 * implicitly sets ip_multicast_ill as used in 10322 * IP_MULTICAST_IF so that ip_wput gets 10323 * this ipif to send mcast packets. 10324 */ 10325 connp->conn_multicast_ill = ill; 10326 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10327 0 : ifindex; 10328 break; 10329 10330 case IPV6_MULTICAST_IF: 10331 /* 10332 * Set conn_multicast_ill to be the IPv6 ill. 10333 * Set conn_multicast_ipif to be an IPv4 ipif 10334 * for ifindex to make IPv4 mapped addresses 10335 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10336 * Even if no IPv6 ill exists for the ifindex 10337 * we need to check for an IPv4 ifindex in order 10338 * for this to work with mapped addresses. In that 10339 * case only set conn_multicast_ipif. 10340 */ 10341 if (!checkonly) { 10342 if (ifindex == 0) { 10343 connp->conn_multicast_ill = NULL; 10344 connp->conn_orig_multicast_ifindex = 0; 10345 connp->conn_multicast_ipif = NULL; 10346 } else if (ill != NULL) { 10347 connp->conn_multicast_ill = ill; 10348 connp->conn_orig_multicast_ifindex = 10349 ifindex; 10350 } 10351 } 10352 break; 10353 } 10354 } 10355 10356 if (ill != NULL) { 10357 mutex_exit(&ill->ill_lock); 10358 mutex_exit(&connp->conn_lock); 10359 ill_refrele(ill); 10360 return (0); 10361 } 10362 mutex_exit(&connp->conn_lock); 10363 /* 10364 * We succeeded in clearing the option (ifindex == 0) or failed to 10365 * locate the ill and could not set the option (ifindex != 0) 10366 */ 10367 return (ifindex == 0 ? 0 : EINVAL); 10368 } 10369 10370 /* This routine sets socket options. */ 10371 /* ARGSUSED */ 10372 int 10373 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10374 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10375 void *dummy, cred_t *cr, mblk_t *first_mp) 10376 { 10377 int *i1 = (int *)invalp; 10378 conn_t *connp = Q_TO_CONN(q); 10379 int error = 0; 10380 boolean_t checkonly; 10381 ire_t *ire; 10382 boolean_t found; 10383 10384 switch (optset_context) { 10385 10386 case SETFN_OPTCOM_CHECKONLY: 10387 checkonly = B_TRUE; 10388 /* 10389 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10390 * inlen != 0 implies value supplied and 10391 * we have to "pretend" to set it. 10392 * inlen == 0 implies that there is no 10393 * value part in T_CHECK request and just validation 10394 * done elsewhere should be enough, we just return here. 10395 */ 10396 if (inlen == 0) { 10397 *outlenp = 0; 10398 return (0); 10399 } 10400 break; 10401 case SETFN_OPTCOM_NEGOTIATE: 10402 case SETFN_UD_NEGOTIATE: 10403 case SETFN_CONN_NEGOTIATE: 10404 checkonly = B_FALSE; 10405 break; 10406 default: 10407 /* 10408 * We should never get here 10409 */ 10410 *outlenp = 0; 10411 return (EINVAL); 10412 } 10413 10414 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10415 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10416 10417 /* 10418 * For fixed length options, no sanity check 10419 * of passed in length is done. It is assumed *_optcom_req() 10420 * routines do the right thing. 10421 */ 10422 10423 switch (level) { 10424 case SOL_SOCKET: 10425 /* 10426 * conn_lock protects the bitfields, and is used to 10427 * set the fields atomically. 10428 */ 10429 switch (name) { 10430 case SO_BROADCAST: 10431 if (!checkonly) { 10432 /* TODO: use value someplace? */ 10433 mutex_enter(&connp->conn_lock); 10434 connp->conn_broadcast = *i1 ? 1 : 0; 10435 mutex_exit(&connp->conn_lock); 10436 } 10437 break; /* goto sizeof (int) option return */ 10438 case SO_USELOOPBACK: 10439 if (!checkonly) { 10440 /* TODO: use value someplace? */ 10441 mutex_enter(&connp->conn_lock); 10442 connp->conn_loopback = *i1 ? 1 : 0; 10443 mutex_exit(&connp->conn_lock); 10444 } 10445 break; /* goto sizeof (int) option return */ 10446 case SO_DONTROUTE: 10447 if (!checkonly) { 10448 mutex_enter(&connp->conn_lock); 10449 connp->conn_dontroute = *i1 ? 1 : 0; 10450 mutex_exit(&connp->conn_lock); 10451 } 10452 break; /* goto sizeof (int) option return */ 10453 case SO_REUSEADDR: 10454 if (!checkonly) { 10455 mutex_enter(&connp->conn_lock); 10456 connp->conn_reuseaddr = *i1 ? 1 : 0; 10457 mutex_exit(&connp->conn_lock); 10458 } 10459 break; /* goto sizeof (int) option return */ 10460 case SO_PROTOTYPE: 10461 if (!checkonly) { 10462 mutex_enter(&connp->conn_lock); 10463 connp->conn_proto = *i1; 10464 mutex_exit(&connp->conn_lock); 10465 } 10466 break; /* goto sizeof (int) option return */ 10467 case SO_ALLZONES: 10468 if (!checkonly) { 10469 mutex_enter(&connp->conn_lock); 10470 if (IPCL_IS_BOUND(connp)) { 10471 mutex_exit(&connp->conn_lock); 10472 return (EINVAL); 10473 } 10474 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10475 mutex_exit(&connp->conn_lock); 10476 } 10477 break; /* goto sizeof (int) option return */ 10478 case SO_ANON_MLP: 10479 if (!checkonly) { 10480 mutex_enter(&connp->conn_lock); 10481 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10482 mutex_exit(&connp->conn_lock); 10483 } 10484 break; /* goto sizeof (int) option return */ 10485 case SO_MAC_EXEMPT: 10486 if (secpolicy_net_mac_aware(cr) != 0 || 10487 IPCL_IS_BOUND(connp)) 10488 return (EACCES); 10489 if (!checkonly) { 10490 mutex_enter(&connp->conn_lock); 10491 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10492 mutex_exit(&connp->conn_lock); 10493 } 10494 break; /* goto sizeof (int) option return */ 10495 default: 10496 /* 10497 * "soft" error (negative) 10498 * option not handled at this level 10499 * Note: Do not modify *outlenp 10500 */ 10501 return (-EINVAL); 10502 } 10503 break; 10504 case IPPROTO_IP: 10505 switch (name) { 10506 case IP_NEXTHOP: 10507 if (secpolicy_net_config(cr, B_FALSE) != 0) 10508 return (EPERM); 10509 /* FALLTHRU */ 10510 case IP_MULTICAST_IF: 10511 case IP_DONTFAILOVER_IF: { 10512 ipaddr_t addr = *i1; 10513 10514 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10515 first_mp); 10516 if (error != 0) 10517 return (error); 10518 break; /* goto sizeof (int) option return */ 10519 } 10520 10521 case IP_MULTICAST_TTL: 10522 /* Recorded in transport above IP */ 10523 *outvalp = *invalp; 10524 *outlenp = sizeof (uchar_t); 10525 return (0); 10526 case IP_MULTICAST_LOOP: 10527 if (!checkonly) { 10528 mutex_enter(&connp->conn_lock); 10529 connp->conn_multicast_loop = *invalp ? 1 : 0; 10530 mutex_exit(&connp->conn_lock); 10531 } 10532 *outvalp = *invalp; 10533 *outlenp = sizeof (uchar_t); 10534 return (0); 10535 case IP_ADD_MEMBERSHIP: 10536 case MCAST_JOIN_GROUP: 10537 case IP_DROP_MEMBERSHIP: 10538 case MCAST_LEAVE_GROUP: { 10539 struct ip_mreq *mreqp; 10540 struct group_req *greqp; 10541 ire_t *ire; 10542 boolean_t done = B_FALSE; 10543 ipaddr_t group, ifaddr; 10544 struct sockaddr_in *sin; 10545 uint32_t *ifindexp; 10546 boolean_t mcast_opt = B_TRUE; 10547 mcast_record_t fmode; 10548 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10549 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10550 10551 switch (name) { 10552 case IP_ADD_MEMBERSHIP: 10553 mcast_opt = B_FALSE; 10554 /* FALLTHRU */ 10555 case MCAST_JOIN_GROUP: 10556 fmode = MODE_IS_EXCLUDE; 10557 optfn = ip_opt_add_group; 10558 break; 10559 10560 case IP_DROP_MEMBERSHIP: 10561 mcast_opt = B_FALSE; 10562 /* FALLTHRU */ 10563 case MCAST_LEAVE_GROUP: 10564 fmode = MODE_IS_INCLUDE; 10565 optfn = ip_opt_delete_group; 10566 break; 10567 } 10568 10569 if (mcast_opt) { 10570 greqp = (struct group_req *)i1; 10571 sin = (struct sockaddr_in *)&greqp->gr_group; 10572 if (sin->sin_family != AF_INET) { 10573 *outlenp = 0; 10574 return (ENOPROTOOPT); 10575 } 10576 group = (ipaddr_t)sin->sin_addr.s_addr; 10577 ifaddr = INADDR_ANY; 10578 ifindexp = &greqp->gr_interface; 10579 } else { 10580 mreqp = (struct ip_mreq *)i1; 10581 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10582 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10583 ifindexp = NULL; 10584 } 10585 10586 /* 10587 * In the multirouting case, we need to replicate 10588 * the request on all interfaces that will take part 10589 * in replication. We do so because multirouting is 10590 * reflective, thus we will probably receive multi- 10591 * casts on those interfaces. 10592 * The ip_multirt_apply_membership() succeeds if the 10593 * operation succeeds on at least one interface. 10594 */ 10595 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10596 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10597 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10598 if (ire != NULL) { 10599 if (ire->ire_flags & RTF_MULTIRT) { 10600 error = ip_multirt_apply_membership( 10601 optfn, ire, connp, checkonly, group, 10602 fmode, INADDR_ANY, first_mp); 10603 done = B_TRUE; 10604 } 10605 ire_refrele(ire); 10606 } 10607 if (!done) { 10608 error = optfn(connp, checkonly, group, ifaddr, 10609 ifindexp, fmode, INADDR_ANY, first_mp); 10610 } 10611 if (error) { 10612 /* 10613 * EINPROGRESS is a soft error, needs retry 10614 * so don't make *outlenp zero. 10615 */ 10616 if (error != EINPROGRESS) 10617 *outlenp = 0; 10618 return (error); 10619 } 10620 /* OK return - copy input buffer into output buffer */ 10621 if (invalp != outvalp) { 10622 /* don't trust bcopy for identical src/dst */ 10623 bcopy(invalp, outvalp, inlen); 10624 } 10625 *outlenp = inlen; 10626 return (0); 10627 } 10628 case IP_BLOCK_SOURCE: 10629 case IP_UNBLOCK_SOURCE: 10630 case IP_ADD_SOURCE_MEMBERSHIP: 10631 case IP_DROP_SOURCE_MEMBERSHIP: 10632 case MCAST_BLOCK_SOURCE: 10633 case MCAST_UNBLOCK_SOURCE: 10634 case MCAST_JOIN_SOURCE_GROUP: 10635 case MCAST_LEAVE_SOURCE_GROUP: { 10636 struct ip_mreq_source *imreqp; 10637 struct group_source_req *gsreqp; 10638 in_addr_t grp, src, ifaddr = INADDR_ANY; 10639 uint32_t ifindex = 0; 10640 mcast_record_t fmode; 10641 struct sockaddr_in *sin; 10642 ire_t *ire; 10643 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10644 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10645 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10646 10647 switch (name) { 10648 case IP_BLOCK_SOURCE: 10649 mcast_opt = B_FALSE; 10650 /* FALLTHRU */ 10651 case MCAST_BLOCK_SOURCE: 10652 fmode = MODE_IS_EXCLUDE; 10653 optfn = ip_opt_add_group; 10654 break; 10655 10656 case IP_UNBLOCK_SOURCE: 10657 mcast_opt = B_FALSE; 10658 /* FALLTHRU */ 10659 case MCAST_UNBLOCK_SOURCE: 10660 fmode = MODE_IS_EXCLUDE; 10661 optfn = ip_opt_delete_group; 10662 break; 10663 10664 case IP_ADD_SOURCE_MEMBERSHIP: 10665 mcast_opt = B_FALSE; 10666 /* FALLTHRU */ 10667 case MCAST_JOIN_SOURCE_GROUP: 10668 fmode = MODE_IS_INCLUDE; 10669 optfn = ip_opt_add_group; 10670 break; 10671 10672 case IP_DROP_SOURCE_MEMBERSHIP: 10673 mcast_opt = B_FALSE; 10674 /* FALLTHRU */ 10675 case MCAST_LEAVE_SOURCE_GROUP: 10676 fmode = MODE_IS_INCLUDE; 10677 optfn = ip_opt_delete_group; 10678 break; 10679 } 10680 10681 if (mcast_opt) { 10682 gsreqp = (struct group_source_req *)i1; 10683 if (gsreqp->gsr_group.ss_family != AF_INET) { 10684 *outlenp = 0; 10685 return (ENOPROTOOPT); 10686 } 10687 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10688 grp = (ipaddr_t)sin->sin_addr.s_addr; 10689 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10690 src = (ipaddr_t)sin->sin_addr.s_addr; 10691 ifindex = gsreqp->gsr_interface; 10692 } else { 10693 imreqp = (struct ip_mreq_source *)i1; 10694 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10695 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10696 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10697 } 10698 10699 /* 10700 * In the multirouting case, we need to replicate 10701 * the request as noted in the mcast cases above. 10702 */ 10703 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10704 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10705 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10706 if (ire != NULL) { 10707 if (ire->ire_flags & RTF_MULTIRT) { 10708 error = ip_multirt_apply_membership( 10709 optfn, ire, connp, checkonly, grp, 10710 fmode, src, first_mp); 10711 done = B_TRUE; 10712 } 10713 ire_refrele(ire); 10714 } 10715 if (!done) { 10716 error = optfn(connp, checkonly, grp, ifaddr, 10717 &ifindex, fmode, src, first_mp); 10718 } 10719 if (error != 0) { 10720 /* 10721 * EINPROGRESS is a soft error, needs retry 10722 * so don't make *outlenp zero. 10723 */ 10724 if (error != EINPROGRESS) 10725 *outlenp = 0; 10726 return (error); 10727 } 10728 /* OK return - copy input buffer into output buffer */ 10729 if (invalp != outvalp) { 10730 bcopy(invalp, outvalp, inlen); 10731 } 10732 *outlenp = inlen; 10733 return (0); 10734 } 10735 case IP_SEC_OPT: 10736 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10737 if (error != 0) { 10738 *outlenp = 0; 10739 return (error); 10740 } 10741 break; 10742 case IP_HDRINCL: 10743 case IP_OPTIONS: 10744 case T_IP_OPTIONS: 10745 case IP_TOS: 10746 case T_IP_TOS: 10747 case IP_TTL: 10748 case IP_RECVDSTADDR: 10749 case IP_RECVOPTS: 10750 /* OK return - copy input buffer into output buffer */ 10751 if (invalp != outvalp) { 10752 /* don't trust bcopy for identical src/dst */ 10753 bcopy(invalp, outvalp, inlen); 10754 } 10755 *outlenp = inlen; 10756 return (0); 10757 case IP_RECVIF: 10758 /* Retrieve the inbound interface index */ 10759 if (!checkonly) { 10760 mutex_enter(&connp->conn_lock); 10761 connp->conn_recvif = *i1 ? 1 : 0; 10762 mutex_exit(&connp->conn_lock); 10763 } 10764 break; /* goto sizeof (int) option return */ 10765 case IP_RECVSLLA: 10766 /* Retrieve the source link layer address */ 10767 if (!checkonly) { 10768 mutex_enter(&connp->conn_lock); 10769 connp->conn_recvslla = *i1 ? 1 : 0; 10770 mutex_exit(&connp->conn_lock); 10771 } 10772 break; /* goto sizeof (int) option return */ 10773 case MRT_INIT: 10774 case MRT_DONE: 10775 case MRT_ADD_VIF: 10776 case MRT_DEL_VIF: 10777 case MRT_ADD_MFC: 10778 case MRT_DEL_MFC: 10779 case MRT_ASSERT: 10780 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10781 *outlenp = 0; 10782 return (error); 10783 } 10784 error = ip_mrouter_set((int)name, q, checkonly, 10785 (uchar_t *)invalp, inlen, first_mp); 10786 if (error) { 10787 *outlenp = 0; 10788 return (error); 10789 } 10790 /* OK return - copy input buffer into output buffer */ 10791 if (invalp != outvalp) { 10792 /* don't trust bcopy for identical src/dst */ 10793 bcopy(invalp, outvalp, inlen); 10794 } 10795 *outlenp = inlen; 10796 return (0); 10797 case IP_BOUND_IF: 10798 case IP_XMIT_IF: 10799 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10800 level, name, first_mp); 10801 if (error != 0) 10802 return (error); 10803 break; /* goto sizeof (int) option return */ 10804 10805 case IP_UNSPEC_SRC: 10806 /* Allow sending with a zero source address */ 10807 if (!checkonly) { 10808 mutex_enter(&connp->conn_lock); 10809 connp->conn_unspec_src = *i1 ? 1 : 0; 10810 mutex_exit(&connp->conn_lock); 10811 } 10812 break; /* goto sizeof (int) option return */ 10813 default: 10814 /* 10815 * "soft" error (negative) 10816 * option not handled at this level 10817 * Note: Do not modify *outlenp 10818 */ 10819 return (-EINVAL); 10820 } 10821 break; 10822 case IPPROTO_IPV6: 10823 switch (name) { 10824 case IPV6_BOUND_IF: 10825 case IPV6_BOUND_PIF: 10826 case IPV6_DONTFAILOVER_IF: 10827 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10828 level, name, first_mp); 10829 if (error != 0) 10830 return (error); 10831 break; /* goto sizeof (int) option return */ 10832 10833 case IPV6_MULTICAST_IF: 10834 /* 10835 * The only possible errors are EINPROGRESS and 10836 * EINVAL. EINPROGRESS will be restarted and is not 10837 * a hard error. We call this option on both V4 and V6 10838 * If both return EINVAL, then this call returns 10839 * EINVAL. If at least one of them succeeds we 10840 * return success. 10841 */ 10842 found = B_FALSE; 10843 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10844 level, name, first_mp); 10845 if (error == EINPROGRESS) 10846 return (error); 10847 if (error == 0) 10848 found = B_TRUE; 10849 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10850 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10851 if (error == 0) 10852 found = B_TRUE; 10853 if (!found) 10854 return (error); 10855 break; /* goto sizeof (int) option return */ 10856 10857 case IPV6_MULTICAST_HOPS: 10858 /* Recorded in transport above IP */ 10859 break; /* goto sizeof (int) option return */ 10860 case IPV6_MULTICAST_LOOP: 10861 if (!checkonly) { 10862 mutex_enter(&connp->conn_lock); 10863 connp->conn_multicast_loop = *i1; 10864 mutex_exit(&connp->conn_lock); 10865 } 10866 break; /* goto sizeof (int) option return */ 10867 case IPV6_JOIN_GROUP: 10868 case MCAST_JOIN_GROUP: 10869 case IPV6_LEAVE_GROUP: 10870 case MCAST_LEAVE_GROUP: { 10871 struct ipv6_mreq *ip_mreqp; 10872 struct group_req *greqp; 10873 ire_t *ire; 10874 boolean_t done = B_FALSE; 10875 in6_addr_t groupv6; 10876 uint32_t ifindex; 10877 boolean_t mcast_opt = B_TRUE; 10878 mcast_record_t fmode; 10879 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10880 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10881 10882 switch (name) { 10883 case IPV6_JOIN_GROUP: 10884 mcast_opt = B_FALSE; 10885 /* FALLTHRU */ 10886 case MCAST_JOIN_GROUP: 10887 fmode = MODE_IS_EXCLUDE; 10888 optfn = ip_opt_add_group_v6; 10889 break; 10890 10891 case IPV6_LEAVE_GROUP: 10892 mcast_opt = B_FALSE; 10893 /* FALLTHRU */ 10894 case MCAST_LEAVE_GROUP: 10895 fmode = MODE_IS_INCLUDE; 10896 optfn = ip_opt_delete_group_v6; 10897 break; 10898 } 10899 10900 if (mcast_opt) { 10901 struct sockaddr_in *sin; 10902 struct sockaddr_in6 *sin6; 10903 greqp = (struct group_req *)i1; 10904 if (greqp->gr_group.ss_family == AF_INET) { 10905 sin = (struct sockaddr_in *) 10906 &(greqp->gr_group); 10907 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 10908 &groupv6); 10909 } else { 10910 sin6 = (struct sockaddr_in6 *) 10911 &(greqp->gr_group); 10912 groupv6 = sin6->sin6_addr; 10913 } 10914 ifindex = greqp->gr_interface; 10915 } else { 10916 ip_mreqp = (struct ipv6_mreq *)i1; 10917 groupv6 = ip_mreqp->ipv6mr_multiaddr; 10918 ifindex = ip_mreqp->ipv6mr_interface; 10919 } 10920 /* 10921 * In the multirouting case, we need to replicate 10922 * the request on all interfaces that will take part 10923 * in replication. We do so because multirouting is 10924 * reflective, thus we will probably receive multi- 10925 * casts on those interfaces. 10926 * The ip_multirt_apply_membership_v6() succeeds if 10927 * the operation succeeds on at least one interface. 10928 */ 10929 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 10930 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10931 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10932 if (ire != NULL) { 10933 if (ire->ire_flags & RTF_MULTIRT) { 10934 error = ip_multirt_apply_membership_v6( 10935 optfn, ire, connp, checkonly, 10936 &groupv6, fmode, &ipv6_all_zeros, 10937 first_mp); 10938 done = B_TRUE; 10939 } 10940 ire_refrele(ire); 10941 } 10942 if (!done) { 10943 error = optfn(connp, checkonly, &groupv6, 10944 ifindex, fmode, &ipv6_all_zeros, first_mp); 10945 } 10946 if (error) { 10947 /* 10948 * EINPROGRESS is a soft error, needs retry 10949 * so don't make *outlenp zero. 10950 */ 10951 if (error != EINPROGRESS) 10952 *outlenp = 0; 10953 return (error); 10954 } 10955 /* OK return - copy input buffer into output buffer */ 10956 if (invalp != outvalp) { 10957 /* don't trust bcopy for identical src/dst */ 10958 bcopy(invalp, outvalp, inlen); 10959 } 10960 *outlenp = inlen; 10961 return (0); 10962 } 10963 case MCAST_BLOCK_SOURCE: 10964 case MCAST_UNBLOCK_SOURCE: 10965 case MCAST_JOIN_SOURCE_GROUP: 10966 case MCAST_LEAVE_SOURCE_GROUP: { 10967 struct group_source_req *gsreqp; 10968 in6_addr_t v6grp, v6src; 10969 uint32_t ifindex; 10970 mcast_record_t fmode; 10971 ire_t *ire; 10972 boolean_t done = B_FALSE; 10973 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10974 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10975 10976 switch (name) { 10977 case MCAST_BLOCK_SOURCE: 10978 fmode = MODE_IS_EXCLUDE; 10979 optfn = ip_opt_add_group_v6; 10980 break; 10981 case MCAST_UNBLOCK_SOURCE: 10982 fmode = MODE_IS_EXCLUDE; 10983 optfn = ip_opt_delete_group_v6; 10984 break; 10985 case MCAST_JOIN_SOURCE_GROUP: 10986 fmode = MODE_IS_INCLUDE; 10987 optfn = ip_opt_add_group_v6; 10988 break; 10989 case MCAST_LEAVE_SOURCE_GROUP: 10990 fmode = MODE_IS_INCLUDE; 10991 optfn = ip_opt_delete_group_v6; 10992 break; 10993 } 10994 10995 gsreqp = (struct group_source_req *)i1; 10996 ifindex = gsreqp->gsr_interface; 10997 if (gsreqp->gsr_group.ss_family == AF_INET) { 10998 struct sockaddr_in *s; 10999 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11000 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11001 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11002 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11003 } else { 11004 struct sockaddr_in6 *s6; 11005 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11006 v6grp = s6->sin6_addr; 11007 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11008 v6src = s6->sin6_addr; 11009 } 11010 11011 /* 11012 * In the multirouting case, we need to replicate 11013 * the request as noted in the mcast cases above. 11014 */ 11015 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11016 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11017 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11018 if (ire != NULL) { 11019 if (ire->ire_flags & RTF_MULTIRT) { 11020 error = ip_multirt_apply_membership_v6( 11021 optfn, ire, connp, checkonly, 11022 &v6grp, fmode, &v6src, first_mp); 11023 done = B_TRUE; 11024 } 11025 ire_refrele(ire); 11026 } 11027 if (!done) { 11028 error = optfn(connp, checkonly, &v6grp, 11029 ifindex, fmode, &v6src, first_mp); 11030 } 11031 if (error != 0) { 11032 /* 11033 * EINPROGRESS is a soft error, needs retry 11034 * so don't make *outlenp zero. 11035 */ 11036 if (error != EINPROGRESS) 11037 *outlenp = 0; 11038 return (error); 11039 } 11040 /* OK return - copy input buffer into output buffer */ 11041 if (invalp != outvalp) { 11042 bcopy(invalp, outvalp, inlen); 11043 } 11044 *outlenp = inlen; 11045 return (0); 11046 } 11047 case IPV6_UNICAST_HOPS: 11048 /* Recorded in transport above IP */ 11049 break; /* goto sizeof (int) option return */ 11050 case IPV6_UNSPEC_SRC: 11051 /* Allow sending with a zero source address */ 11052 if (!checkonly) { 11053 mutex_enter(&connp->conn_lock); 11054 connp->conn_unspec_src = *i1 ? 1 : 0; 11055 mutex_exit(&connp->conn_lock); 11056 } 11057 break; /* goto sizeof (int) option return */ 11058 case IPV6_RECVPKTINFO: 11059 if (!checkonly) { 11060 mutex_enter(&connp->conn_lock); 11061 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 11062 mutex_exit(&connp->conn_lock); 11063 } 11064 break; /* goto sizeof (int) option return */ 11065 case IPV6_RECVTCLASS: 11066 if (!checkonly) { 11067 if (*i1 < 0 || *i1 > 1) { 11068 return (EINVAL); 11069 } 11070 mutex_enter(&connp->conn_lock); 11071 connp->conn_ipv6_recvtclass = *i1; 11072 mutex_exit(&connp->conn_lock); 11073 } 11074 break; 11075 case IPV6_RECVPATHMTU: 11076 if (!checkonly) { 11077 if (*i1 < 0 || *i1 > 1) { 11078 return (EINVAL); 11079 } 11080 mutex_enter(&connp->conn_lock); 11081 connp->conn_ipv6_recvpathmtu = *i1; 11082 mutex_exit(&connp->conn_lock); 11083 } 11084 break; 11085 case IPV6_RECVHOPLIMIT: 11086 if (!checkonly) { 11087 mutex_enter(&connp->conn_lock); 11088 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11089 mutex_exit(&connp->conn_lock); 11090 } 11091 break; /* goto sizeof (int) option return */ 11092 case IPV6_RECVHOPOPTS: 11093 if (!checkonly) { 11094 mutex_enter(&connp->conn_lock); 11095 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11096 mutex_exit(&connp->conn_lock); 11097 } 11098 break; /* goto sizeof (int) option return */ 11099 case IPV6_RECVDSTOPTS: 11100 if (!checkonly) { 11101 mutex_enter(&connp->conn_lock); 11102 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11103 mutex_exit(&connp->conn_lock); 11104 } 11105 break; /* goto sizeof (int) option return */ 11106 case IPV6_RECVRTHDR: 11107 if (!checkonly) { 11108 mutex_enter(&connp->conn_lock); 11109 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11110 mutex_exit(&connp->conn_lock); 11111 } 11112 break; /* goto sizeof (int) option return */ 11113 case IPV6_RECVRTHDRDSTOPTS: 11114 if (!checkonly) { 11115 mutex_enter(&connp->conn_lock); 11116 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11117 mutex_exit(&connp->conn_lock); 11118 } 11119 break; /* goto sizeof (int) option return */ 11120 case IPV6_PKTINFO: 11121 if (inlen == 0) 11122 return (-EINVAL); /* clearing option */ 11123 error = ip6_set_pktinfo(cr, connp, 11124 (struct in6_pktinfo *)invalp, first_mp); 11125 if (error != 0) 11126 *outlenp = 0; 11127 else 11128 *outlenp = inlen; 11129 return (error); 11130 case IPV6_NEXTHOP: { 11131 struct sockaddr_in6 *sin6; 11132 11133 /* Verify that the nexthop is reachable */ 11134 if (inlen == 0) 11135 return (-EINVAL); /* clearing option */ 11136 11137 sin6 = (struct sockaddr_in6 *)invalp; 11138 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11139 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11140 NULL, MATCH_IRE_DEFAULT); 11141 11142 if (ire == NULL) { 11143 *outlenp = 0; 11144 return (EHOSTUNREACH); 11145 } 11146 ire_refrele(ire); 11147 return (-EINVAL); 11148 } 11149 case IPV6_SEC_OPT: 11150 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11151 if (error != 0) { 11152 *outlenp = 0; 11153 return (error); 11154 } 11155 break; 11156 case IPV6_SRC_PREFERENCES: { 11157 /* 11158 * This is implemented strictly in the ip module 11159 * (here and in tcp_opt_*() to accomodate tcp 11160 * sockets). Modules above ip pass this option 11161 * down here since ip is the only one that needs to 11162 * be aware of source address preferences. 11163 * 11164 * This socket option only affects connected 11165 * sockets that haven't already bound to a specific 11166 * IPv6 address. In other words, sockets that 11167 * don't call bind() with an address other than the 11168 * unspecified address and that call connect(). 11169 * ip_bind_connected_v6() passes these preferences 11170 * to the ipif_select_source_v6() function. 11171 */ 11172 if (inlen != sizeof (uint32_t)) 11173 return (EINVAL); 11174 error = ip6_set_src_preferences(connp, 11175 *(uint32_t *)invalp); 11176 if (error != 0) { 11177 *outlenp = 0; 11178 return (error); 11179 } else { 11180 *outlenp = sizeof (uint32_t); 11181 } 11182 break; 11183 } 11184 case IPV6_V6ONLY: 11185 if (*i1 < 0 || *i1 > 1) { 11186 return (EINVAL); 11187 } 11188 mutex_enter(&connp->conn_lock); 11189 connp->conn_ipv6_v6only = *i1; 11190 mutex_exit(&connp->conn_lock); 11191 break; 11192 default: 11193 return (-EINVAL); 11194 } 11195 break; 11196 default: 11197 /* 11198 * "soft" error (negative) 11199 * option not handled at this level 11200 * Note: Do not modify *outlenp 11201 */ 11202 return (-EINVAL); 11203 } 11204 /* 11205 * Common case of return from an option that is sizeof (int) 11206 */ 11207 *(int *)outvalp = *i1; 11208 *outlenp = sizeof (int); 11209 return (0); 11210 } 11211 11212 /* 11213 * This routine gets default values of certain options whose default 11214 * values are maintained by protocol specific code 11215 */ 11216 /* ARGSUSED */ 11217 int 11218 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11219 { 11220 int *i1 = (int *)ptr; 11221 11222 switch (level) { 11223 case IPPROTO_IP: 11224 switch (name) { 11225 case IP_MULTICAST_TTL: 11226 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11227 return (sizeof (uchar_t)); 11228 case IP_MULTICAST_LOOP: 11229 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11230 return (sizeof (uchar_t)); 11231 default: 11232 return (-1); 11233 } 11234 case IPPROTO_IPV6: 11235 switch (name) { 11236 case IPV6_UNICAST_HOPS: 11237 *i1 = ipv6_def_hops; 11238 return (sizeof (int)); 11239 case IPV6_MULTICAST_HOPS: 11240 *i1 = IP_DEFAULT_MULTICAST_TTL; 11241 return (sizeof (int)); 11242 case IPV6_MULTICAST_LOOP: 11243 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11244 return (sizeof (int)); 11245 case IPV6_V6ONLY: 11246 *i1 = 1; 11247 return (sizeof (int)); 11248 default: 11249 return (-1); 11250 } 11251 default: 11252 return (-1); 11253 } 11254 /* NOTREACHED */ 11255 } 11256 11257 /* 11258 * Given a destination address and a pointer to where to put the information 11259 * this routine fills in the mtuinfo. 11260 */ 11261 int 11262 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11263 struct ip6_mtuinfo *mtuinfo) 11264 { 11265 ire_t *ire; 11266 11267 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11268 return (-1); 11269 11270 bzero(mtuinfo, sizeof (*mtuinfo)); 11271 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11272 mtuinfo->ip6m_addr.sin6_port = port; 11273 mtuinfo->ip6m_addr.sin6_addr = *in6; 11274 11275 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 11276 if (ire != NULL) { 11277 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11278 ire_refrele(ire); 11279 } else { 11280 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11281 } 11282 return (sizeof (struct ip6_mtuinfo)); 11283 } 11284 11285 /* 11286 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11287 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11288 * isn't. This doesn't matter as the error checking is done properly for the 11289 * other MRT options coming in through ip_opt_set. 11290 */ 11291 int 11292 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11293 { 11294 conn_t *connp = Q_TO_CONN(q); 11295 ipsec_req_t *req = (ipsec_req_t *)ptr; 11296 11297 switch (level) { 11298 case IPPROTO_IP: 11299 switch (name) { 11300 case MRT_VERSION: 11301 case MRT_ASSERT: 11302 (void) ip_mrouter_get(name, q, ptr); 11303 return (sizeof (int)); 11304 case IP_SEC_OPT: 11305 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11306 case IP_NEXTHOP: 11307 if (connp->conn_nexthop_set) { 11308 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11309 return (sizeof (ipaddr_t)); 11310 } else 11311 return (0); 11312 default: 11313 break; 11314 } 11315 break; 11316 case IPPROTO_IPV6: 11317 switch (name) { 11318 case IPV6_SEC_OPT: 11319 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11320 case IPV6_SRC_PREFERENCES: { 11321 return (ip6_get_src_preferences(connp, 11322 (uint32_t *)ptr)); 11323 } 11324 case IPV6_V6ONLY: 11325 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11326 return (sizeof (int)); 11327 case IPV6_PATHMTU: 11328 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11329 (struct ip6_mtuinfo *)ptr)); 11330 default: 11331 break; 11332 } 11333 break; 11334 default: 11335 break; 11336 } 11337 return (-1); 11338 } 11339 11340 /* Named Dispatch routine to get a current value out of our parameter table. */ 11341 /* ARGSUSED */ 11342 static int 11343 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11344 { 11345 ipparam_t *ippa = (ipparam_t *)cp; 11346 11347 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11348 return (0); 11349 } 11350 11351 /* ARGSUSED */ 11352 static int 11353 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11354 { 11355 11356 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11357 return (0); 11358 } 11359 11360 /* 11361 * Set ip{,6}_forwarding values. This means walking through all of the 11362 * ill's and toggling their forwarding values. 11363 */ 11364 /* ARGSUSED */ 11365 static int 11366 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11367 { 11368 long new_value; 11369 int *forwarding_value = (int *)cp; 11370 ill_t *walker; 11371 boolean_t isv6 = (forwarding_value == &ipv6_forward); 11372 ill_walk_context_t ctx; 11373 11374 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11375 new_value < 0 || new_value > 1) { 11376 return (EINVAL); 11377 } 11378 11379 *forwarding_value = new_value; 11380 11381 /* 11382 * Regardless of the current value of ip_forwarding, set all per-ill 11383 * values of ip_forwarding to the value being set. 11384 * 11385 * Bring all the ill's up to date with the new global value. 11386 */ 11387 rw_enter(&ill_g_lock, RW_READER); 11388 11389 if (isv6) 11390 walker = ILL_START_WALK_V6(&ctx); 11391 else 11392 walker = ILL_START_WALK_V4(&ctx); 11393 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11394 (void) ill_forward_set(q, mp, (new_value != 0), 11395 (caddr_t)walker); 11396 } 11397 rw_exit(&ill_g_lock); 11398 11399 return (0); 11400 } 11401 11402 /* 11403 * Walk through the param array specified registering each element with the 11404 * Named Dispatch handler. This is called only during init. So it is ok 11405 * not to acquire any locks 11406 */ 11407 static boolean_t 11408 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11409 ipndp_t *ipnd, size_t ipnd_cnt) 11410 { 11411 for (; ippa_cnt-- > 0; ippa++) { 11412 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11413 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11414 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11415 nd_free(&ip_g_nd); 11416 return (B_FALSE); 11417 } 11418 } 11419 } 11420 11421 for (; ipnd_cnt-- > 0; ipnd++) { 11422 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11423 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11424 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11425 ipnd->ip_ndp_data)) { 11426 nd_free(&ip_g_nd); 11427 return (B_FALSE); 11428 } 11429 } 11430 } 11431 11432 return (B_TRUE); 11433 } 11434 11435 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11436 /* ARGSUSED */ 11437 static int 11438 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11439 { 11440 long new_value; 11441 ipparam_t *ippa = (ipparam_t *)cp; 11442 11443 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11444 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11445 return (EINVAL); 11446 } 11447 ippa->ip_param_value = new_value; 11448 return (0); 11449 } 11450 11451 /* 11452 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11453 * When an ipf is passed here for the first time, if 11454 * we already have in-order fragments on the queue, we convert from the fast- 11455 * path reassembly scheme to the hard-case scheme. From then on, additional 11456 * fragments are reassembled here. We keep track of the start and end offsets 11457 * of each piece, and the number of holes in the chain. When the hole count 11458 * goes to zero, we are done! 11459 * 11460 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11461 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11462 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11463 * after the call to ip_reassemble(). 11464 */ 11465 int 11466 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11467 size_t msg_len) 11468 { 11469 uint_t end; 11470 mblk_t *next_mp; 11471 mblk_t *mp1; 11472 uint_t offset; 11473 boolean_t incr_dups = B_TRUE; 11474 boolean_t offset_zero_seen = B_FALSE; 11475 boolean_t pkt_boundary_checked = B_FALSE; 11476 11477 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11478 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11479 11480 /* Add in byte count */ 11481 ipf->ipf_count += msg_len; 11482 if (ipf->ipf_end) { 11483 /* 11484 * We were part way through in-order reassembly, but now there 11485 * is a hole. We walk through messages already queued, and 11486 * mark them for hard case reassembly. We know that up till 11487 * now they were in order starting from offset zero. 11488 */ 11489 offset = 0; 11490 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11491 IP_REASS_SET_START(mp1, offset); 11492 if (offset == 0) { 11493 ASSERT(ipf->ipf_nf_hdr_len != 0); 11494 offset = -ipf->ipf_nf_hdr_len; 11495 } 11496 offset += mp1->b_wptr - mp1->b_rptr; 11497 IP_REASS_SET_END(mp1, offset); 11498 } 11499 /* One hole at the end. */ 11500 ipf->ipf_hole_cnt = 1; 11501 /* Brand it as a hard case, forever. */ 11502 ipf->ipf_end = 0; 11503 } 11504 /* Walk through all the new pieces. */ 11505 do { 11506 end = start + (mp->b_wptr - mp->b_rptr); 11507 /* 11508 * If start is 0, decrease 'end' only for the first mblk of 11509 * the fragment. Otherwise 'end' can get wrong value in the 11510 * second pass of the loop if first mblk is exactly the 11511 * size of ipf_nf_hdr_len. 11512 */ 11513 if (start == 0 && !offset_zero_seen) { 11514 /* First segment */ 11515 ASSERT(ipf->ipf_nf_hdr_len != 0); 11516 end -= ipf->ipf_nf_hdr_len; 11517 offset_zero_seen = B_TRUE; 11518 } 11519 next_mp = mp->b_cont; 11520 /* 11521 * We are checking to see if there is any interesing data 11522 * to process. If there isn't and the mblk isn't the 11523 * one which carries the unfragmentable header then we 11524 * drop it. It's possible to have just the unfragmentable 11525 * header come through without any data. That needs to be 11526 * saved. 11527 * 11528 * If the assert at the top of this function holds then the 11529 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11530 * is infrequently traveled enough that the test is left in 11531 * to protect against future code changes which break that 11532 * invariant. 11533 */ 11534 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11535 /* Empty. Blast it. */ 11536 IP_REASS_SET_START(mp, 0); 11537 IP_REASS_SET_END(mp, 0); 11538 /* 11539 * If the ipf points to the mblk we are about to free, 11540 * update ipf to point to the next mblk (or NULL 11541 * if none). 11542 */ 11543 if (ipf->ipf_mp->b_cont == mp) 11544 ipf->ipf_mp->b_cont = next_mp; 11545 freeb(mp); 11546 continue; 11547 } 11548 mp->b_cont = NULL; 11549 IP_REASS_SET_START(mp, start); 11550 IP_REASS_SET_END(mp, end); 11551 if (!ipf->ipf_tail_mp) { 11552 ipf->ipf_tail_mp = mp; 11553 ipf->ipf_mp->b_cont = mp; 11554 if (start == 0 || !more) { 11555 ipf->ipf_hole_cnt = 1; 11556 /* 11557 * if the first fragment comes in more than one 11558 * mblk, this loop will be executed for each 11559 * mblk. Need to adjust hole count so exiting 11560 * this routine will leave hole count at 1. 11561 */ 11562 if (next_mp) 11563 ipf->ipf_hole_cnt++; 11564 } else 11565 ipf->ipf_hole_cnt = 2; 11566 continue; 11567 } else if (ipf->ipf_last_frag_seen && !more && 11568 !pkt_boundary_checked) { 11569 /* 11570 * We check datagram boundary only if this fragment 11571 * claims to be the last fragment and we have seen a 11572 * last fragment in the past too. We do this only 11573 * once for a given fragment. 11574 * 11575 * start cannot be 0 here as fragments with start=0 11576 * and MF=0 gets handled as a complete packet. These 11577 * fragments should not reach here. 11578 */ 11579 11580 if (start + msgdsize(mp) != 11581 IP_REASS_END(ipf->ipf_tail_mp)) { 11582 /* 11583 * We have two fragments both of which claim 11584 * to be the last fragment but gives conflicting 11585 * information about the whole datagram size. 11586 * Something fishy is going on. Drop the 11587 * fragment and free up the reassembly list. 11588 */ 11589 return (IP_REASS_FAILED); 11590 } 11591 11592 /* 11593 * We shouldn't come to this code block again for this 11594 * particular fragment. 11595 */ 11596 pkt_boundary_checked = B_TRUE; 11597 } 11598 11599 /* New stuff at or beyond tail? */ 11600 offset = IP_REASS_END(ipf->ipf_tail_mp); 11601 if (start >= offset) { 11602 if (ipf->ipf_last_frag_seen) { 11603 /* current fragment is beyond last fragment */ 11604 return (IP_REASS_FAILED); 11605 } 11606 /* Link it on end. */ 11607 ipf->ipf_tail_mp->b_cont = mp; 11608 ipf->ipf_tail_mp = mp; 11609 if (more) { 11610 if (start != offset) 11611 ipf->ipf_hole_cnt++; 11612 } else if (start == offset && next_mp == NULL) 11613 ipf->ipf_hole_cnt--; 11614 continue; 11615 } 11616 mp1 = ipf->ipf_mp->b_cont; 11617 offset = IP_REASS_START(mp1); 11618 /* New stuff at the front? */ 11619 if (start < offset) { 11620 if (start == 0) { 11621 if (end >= offset) { 11622 /* Nailed the hole at the begining. */ 11623 ipf->ipf_hole_cnt--; 11624 } 11625 } else if (end < offset) { 11626 /* 11627 * A hole, stuff, and a hole where there used 11628 * to be just a hole. 11629 */ 11630 ipf->ipf_hole_cnt++; 11631 } 11632 mp->b_cont = mp1; 11633 /* Check for overlap. */ 11634 while (end > offset) { 11635 if (end < IP_REASS_END(mp1)) { 11636 mp->b_wptr -= end - offset; 11637 IP_REASS_SET_END(mp, offset); 11638 if (ill->ill_isv6) { 11639 BUMP_MIB(ill->ill_ip6_mib, 11640 ipv6ReasmPartDups); 11641 } else { 11642 BUMP_MIB(&ip_mib, 11643 ipReasmPartDups); 11644 } 11645 break; 11646 } 11647 /* Did we cover another hole? */ 11648 if ((mp1->b_cont && 11649 IP_REASS_END(mp1) != 11650 IP_REASS_START(mp1->b_cont) && 11651 end >= IP_REASS_START(mp1->b_cont)) || 11652 (!ipf->ipf_last_frag_seen && !more)) { 11653 ipf->ipf_hole_cnt--; 11654 } 11655 /* Clip out mp1. */ 11656 if ((mp->b_cont = mp1->b_cont) == NULL) { 11657 /* 11658 * After clipping out mp1, this guy 11659 * is now hanging off the end. 11660 */ 11661 ipf->ipf_tail_mp = mp; 11662 } 11663 IP_REASS_SET_START(mp1, 0); 11664 IP_REASS_SET_END(mp1, 0); 11665 /* Subtract byte count */ 11666 ipf->ipf_count -= mp1->b_datap->db_lim - 11667 mp1->b_datap->db_base; 11668 freeb(mp1); 11669 if (ill->ill_isv6) { 11670 BUMP_MIB(ill->ill_ip6_mib, 11671 ipv6ReasmPartDups); 11672 } else { 11673 BUMP_MIB(&ip_mib, ipReasmPartDups); 11674 } 11675 mp1 = mp->b_cont; 11676 if (!mp1) 11677 break; 11678 offset = IP_REASS_START(mp1); 11679 } 11680 ipf->ipf_mp->b_cont = mp; 11681 continue; 11682 } 11683 /* 11684 * The new piece starts somewhere between the start of the head 11685 * and before the end of the tail. 11686 */ 11687 for (; mp1; mp1 = mp1->b_cont) { 11688 offset = IP_REASS_END(mp1); 11689 if (start < offset) { 11690 if (end <= offset) { 11691 /* Nothing new. */ 11692 IP_REASS_SET_START(mp, 0); 11693 IP_REASS_SET_END(mp, 0); 11694 /* Subtract byte count */ 11695 ipf->ipf_count -= mp->b_datap->db_lim - 11696 mp->b_datap->db_base; 11697 if (incr_dups) { 11698 ipf->ipf_num_dups++; 11699 incr_dups = B_FALSE; 11700 } 11701 freeb(mp); 11702 if (ill->ill_isv6) { 11703 BUMP_MIB(ill->ill_ip6_mib, 11704 ipv6ReasmDuplicates); 11705 } else { 11706 BUMP_MIB(&ip_mib, 11707 ipReasmDuplicates); 11708 } 11709 break; 11710 } 11711 /* 11712 * Trim redundant stuff off beginning of new 11713 * piece. 11714 */ 11715 IP_REASS_SET_START(mp, offset); 11716 mp->b_rptr += offset - start; 11717 if (ill->ill_isv6) { 11718 BUMP_MIB(ill->ill_ip6_mib, 11719 ipv6ReasmPartDups); 11720 } else { 11721 BUMP_MIB(&ip_mib, ipReasmPartDups); 11722 } 11723 start = offset; 11724 if (!mp1->b_cont) { 11725 /* 11726 * After trimming, this guy is now 11727 * hanging off the end. 11728 */ 11729 mp1->b_cont = mp; 11730 ipf->ipf_tail_mp = mp; 11731 if (!more) { 11732 ipf->ipf_hole_cnt--; 11733 } 11734 break; 11735 } 11736 } 11737 if (start >= IP_REASS_START(mp1->b_cont)) 11738 continue; 11739 /* Fill a hole */ 11740 if (start > offset) 11741 ipf->ipf_hole_cnt++; 11742 mp->b_cont = mp1->b_cont; 11743 mp1->b_cont = mp; 11744 mp1 = mp->b_cont; 11745 offset = IP_REASS_START(mp1); 11746 if (end >= offset) { 11747 ipf->ipf_hole_cnt--; 11748 /* Check for overlap. */ 11749 while (end > offset) { 11750 if (end < IP_REASS_END(mp1)) { 11751 mp->b_wptr -= end - offset; 11752 IP_REASS_SET_END(mp, offset); 11753 /* 11754 * TODO we might bump 11755 * this up twice if there is 11756 * overlap at both ends. 11757 */ 11758 if (ill->ill_isv6) { 11759 BUMP_MIB( 11760 ill->ill_ip6_mib, 11761 ipv6ReasmPartDups); 11762 } else { 11763 BUMP_MIB(&ip_mib, 11764 ipReasmPartDups); 11765 } 11766 break; 11767 } 11768 /* Did we cover another hole? */ 11769 if ((mp1->b_cont && 11770 IP_REASS_END(mp1) 11771 != IP_REASS_START(mp1->b_cont) && 11772 end >= 11773 IP_REASS_START(mp1->b_cont)) || 11774 (!ipf->ipf_last_frag_seen && 11775 !more)) { 11776 ipf->ipf_hole_cnt--; 11777 } 11778 /* Clip out mp1. */ 11779 if ((mp->b_cont = mp1->b_cont) == 11780 NULL) { 11781 /* 11782 * After clipping out mp1, 11783 * this guy is now hanging 11784 * off the end. 11785 */ 11786 ipf->ipf_tail_mp = mp; 11787 } 11788 IP_REASS_SET_START(mp1, 0); 11789 IP_REASS_SET_END(mp1, 0); 11790 /* Subtract byte count */ 11791 ipf->ipf_count -= 11792 mp1->b_datap->db_lim - 11793 mp1->b_datap->db_base; 11794 freeb(mp1); 11795 if (ill->ill_isv6) { 11796 BUMP_MIB(ill->ill_ip6_mib, 11797 ipv6ReasmPartDups); 11798 } else { 11799 BUMP_MIB(&ip_mib, 11800 ipReasmPartDups); 11801 } 11802 mp1 = mp->b_cont; 11803 if (!mp1) 11804 break; 11805 offset = IP_REASS_START(mp1); 11806 } 11807 } 11808 break; 11809 } 11810 } while (start = end, mp = next_mp); 11811 11812 /* Fragment just processed could be the last one. Remember this fact */ 11813 if (!more) 11814 ipf->ipf_last_frag_seen = B_TRUE; 11815 11816 /* Still got holes? */ 11817 if (ipf->ipf_hole_cnt) 11818 return (IP_REASS_PARTIAL); 11819 /* Clean up overloaded fields to avoid upstream disasters. */ 11820 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11821 IP_REASS_SET_START(mp1, 0); 11822 IP_REASS_SET_END(mp1, 0); 11823 } 11824 return (IP_REASS_COMPLETE); 11825 } 11826 11827 /* 11828 * ipsec processing for the fast path, used for input UDP Packets 11829 */ 11830 static boolean_t 11831 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11832 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11833 { 11834 uint32_t ill_index; 11835 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11836 11837 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11838 /* The ill_index of the incoming ILL */ 11839 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11840 11841 /* pass packet up to the transport */ 11842 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11843 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11844 NULL, mctl_present); 11845 if (*first_mpp == NULL) { 11846 return (B_FALSE); 11847 } 11848 } 11849 11850 /* Initiate IPPF processing for fastpath UDP */ 11851 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11852 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11853 if (*mpp == NULL) { 11854 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11855 "deferred/dropped during IPPF processing\n")); 11856 return (B_FALSE); 11857 } 11858 } 11859 /* 11860 * We make the checks as below since we are in the fast path 11861 * and want to minimize the number of checks if the IP_RECVIF and/or 11862 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11863 */ 11864 if (connp->conn_recvif || connp->conn_recvslla || 11865 connp->conn_ipv6_recvpktinfo) { 11866 if (connp->conn_recvif || 11867 connp->conn_ipv6_recvpktinfo) { 11868 in_flags = IPF_RECVIF; 11869 } 11870 if (connp->conn_recvslla) { 11871 in_flags |= IPF_RECVSLLA; 11872 } 11873 /* 11874 * since in_flags are being set ill will be 11875 * referenced in ip_add_info, so it better not 11876 * be NULL. 11877 */ 11878 /* 11879 * the actual data will be contained in b_cont 11880 * upon successful return of the following call. 11881 * If the call fails then the original mblk is 11882 * returned. 11883 */ 11884 *mpp = ip_add_info(*mpp, ill, in_flags); 11885 } 11886 11887 return (B_TRUE); 11888 } 11889 11890 /* 11891 * Fragmentation reassembly. Each ILL has a hash table for 11892 * queuing packets undergoing reassembly for all IPIFs 11893 * associated with the ILL. The hash is based on the packet 11894 * IP ident field. The ILL frag hash table was allocated 11895 * as a timer block at the time the ILL was created. Whenever 11896 * there is anything on the reassembly queue, the timer will 11897 * be running. Returns B_TRUE if successful else B_FALSE; 11898 * frees mp on failure. 11899 */ 11900 static boolean_t 11901 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 11902 uint32_t *cksum_val, uint16_t *cksum_flags) 11903 { 11904 uint32_t frag_offset_flags; 11905 ill_t *ill = (ill_t *)q->q_ptr; 11906 mblk_t *mp = *mpp; 11907 mblk_t *t_mp; 11908 ipaddr_t dst; 11909 uint8_t proto = ipha->ipha_protocol; 11910 uint32_t sum_val; 11911 uint16_t sum_flags; 11912 ipf_t *ipf; 11913 ipf_t **ipfp; 11914 ipfb_t *ipfb; 11915 uint16_t ident; 11916 uint32_t offset; 11917 ipaddr_t src; 11918 uint_t hdr_length; 11919 uint32_t end; 11920 mblk_t *mp1; 11921 mblk_t *tail_mp; 11922 size_t count; 11923 size_t msg_len; 11924 uint8_t ecn_info = 0; 11925 uint32_t packet_size; 11926 boolean_t pruned = B_FALSE; 11927 11928 if (cksum_val != NULL) 11929 *cksum_val = 0; 11930 if (cksum_flags != NULL) 11931 *cksum_flags = 0; 11932 11933 /* 11934 * Drop the fragmented as early as possible, if 11935 * we don't have resource(s) to re-assemble. 11936 */ 11937 if (ip_reass_queue_bytes == 0) { 11938 freemsg(mp); 11939 return (B_FALSE); 11940 } 11941 11942 /* Check for fragmentation offset; return if there's none */ 11943 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 11944 (IPH_MF | IPH_OFFSET)) == 0) 11945 return (B_TRUE); 11946 11947 /* 11948 * We utilize hardware computed checksum info only for UDP since 11949 * IP fragmentation is a normal occurence for the protocol. In 11950 * addition, checksum offload support for IP fragments carrying 11951 * UDP payload is commonly implemented across network adapters. 11952 */ 11953 ASSERT(ill != NULL); 11954 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 11955 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 11956 mblk_t *mp1 = mp->b_cont; 11957 int32_t len; 11958 11959 /* Record checksum information from the packet */ 11960 sum_val = (uint32_t)DB_CKSUM16(mp); 11961 sum_flags = DB_CKSUMFLAGS(mp); 11962 11963 /* IP payload offset from beginning of mblk */ 11964 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 11965 11966 if ((sum_flags & HCK_PARTIALCKSUM) && 11967 (mp1 == NULL || mp1->b_cont == NULL) && 11968 offset >= DB_CKSUMSTART(mp) && 11969 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 11970 uint32_t adj; 11971 /* 11972 * Partial checksum has been calculated by hardware 11973 * and attached to the packet; in addition, any 11974 * prepended extraneous data is even byte aligned. 11975 * If any such data exists, we adjust the checksum; 11976 * this would also handle any postpended data. 11977 */ 11978 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 11979 mp, mp1, len, adj); 11980 11981 /* One's complement subtract extraneous checksum */ 11982 if (adj >= sum_val) 11983 sum_val = ~(adj - sum_val) & 0xFFFF; 11984 else 11985 sum_val -= adj; 11986 } 11987 } else { 11988 sum_val = 0; 11989 sum_flags = 0; 11990 } 11991 11992 /* Clear hardware checksumming flag */ 11993 DB_CKSUMFLAGS(mp) = 0; 11994 11995 ident = ipha->ipha_ident; 11996 offset = (frag_offset_flags << 3) & 0xFFFF; 11997 src = ipha->ipha_src; 11998 dst = ipha->ipha_dst; 11999 hdr_length = IPH_HDR_LENGTH(ipha); 12000 end = ntohs(ipha->ipha_length) - hdr_length; 12001 12002 /* If end == 0 then we have a packet with no data, so just free it */ 12003 if (end == 0) { 12004 freemsg(mp); 12005 return (B_FALSE); 12006 } 12007 12008 /* Record the ECN field info. */ 12009 ecn_info = (ipha->ipha_type_of_service & 0x3); 12010 if (offset != 0) { 12011 /* 12012 * If this isn't the first piece, strip the header, and 12013 * add the offset to the end value. 12014 */ 12015 mp->b_rptr += hdr_length; 12016 end += offset; 12017 } 12018 12019 msg_len = MBLKSIZE(mp); 12020 tail_mp = mp; 12021 while (tail_mp->b_cont != NULL) { 12022 tail_mp = tail_mp->b_cont; 12023 msg_len += MBLKSIZE(tail_mp); 12024 } 12025 12026 /* If the reassembly list for this ILL will get too big, prune it */ 12027 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12028 ip_reass_queue_bytes) { 12029 ill_frag_prune(ill, 12030 (ip_reass_queue_bytes < msg_len) ? 0 : 12031 (ip_reass_queue_bytes - msg_len)); 12032 pruned = B_TRUE; 12033 } 12034 12035 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12036 mutex_enter(&ipfb->ipfb_lock); 12037 12038 ipfp = &ipfb->ipfb_ipf; 12039 /* Try to find an existing fragment queue for this packet. */ 12040 for (;;) { 12041 ipf = ipfp[0]; 12042 if (ipf != NULL) { 12043 /* 12044 * It has to match on ident and src/dst address. 12045 */ 12046 if (ipf->ipf_ident == ident && 12047 ipf->ipf_src == src && 12048 ipf->ipf_dst == dst && 12049 ipf->ipf_protocol == proto) { 12050 /* 12051 * If we have received too many 12052 * duplicate fragments for this packet 12053 * free it. 12054 */ 12055 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12056 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12057 freemsg(mp); 12058 mutex_exit(&ipfb->ipfb_lock); 12059 return (B_FALSE); 12060 } 12061 /* Found it. */ 12062 break; 12063 } 12064 ipfp = &ipf->ipf_hash_next; 12065 continue; 12066 } 12067 12068 /* 12069 * If we pruned the list, do we want to store this new 12070 * fragment?. We apply an optimization here based on the 12071 * fact that most fragments will be received in order. 12072 * So if the offset of this incoming fragment is zero, 12073 * it is the first fragment of a new packet. We will 12074 * keep it. Otherwise drop the fragment, as we have 12075 * probably pruned the packet already (since the 12076 * packet cannot be found). 12077 */ 12078 if (pruned && offset != 0) { 12079 mutex_exit(&ipfb->ipfb_lock); 12080 freemsg(mp); 12081 return (B_FALSE); 12082 } 12083 12084 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 12085 /* 12086 * Too many fragmented packets in this hash 12087 * bucket. Free the oldest. 12088 */ 12089 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12090 } 12091 12092 /* New guy. Allocate a frag message. */ 12093 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12094 if (mp1 == NULL) { 12095 BUMP_MIB(&ip_mib, ipInDiscards); 12096 freemsg(mp); 12097 reass_done: 12098 mutex_exit(&ipfb->ipfb_lock); 12099 return (B_FALSE); 12100 } 12101 12102 12103 BUMP_MIB(&ip_mib, ipReasmReqds); 12104 mp1->b_cont = mp; 12105 12106 /* Initialize the fragment header. */ 12107 ipf = (ipf_t *)mp1->b_rptr; 12108 ipf->ipf_mp = mp1; 12109 ipf->ipf_ptphn = ipfp; 12110 ipfp[0] = ipf; 12111 ipf->ipf_hash_next = NULL; 12112 ipf->ipf_ident = ident; 12113 ipf->ipf_protocol = proto; 12114 ipf->ipf_src = src; 12115 ipf->ipf_dst = dst; 12116 ipf->ipf_nf_hdr_len = 0; 12117 /* Record reassembly start time. */ 12118 ipf->ipf_timestamp = gethrestime_sec(); 12119 /* Record ipf generation and account for frag header */ 12120 ipf->ipf_gen = ill->ill_ipf_gen++; 12121 ipf->ipf_count = MBLKSIZE(mp1); 12122 ipf->ipf_last_frag_seen = B_FALSE; 12123 ipf->ipf_ecn = ecn_info; 12124 ipf->ipf_num_dups = 0; 12125 ipfb->ipfb_frag_pkts++; 12126 ipf->ipf_checksum = 0; 12127 ipf->ipf_checksum_flags = 0; 12128 12129 /* Store checksum value in fragment header */ 12130 if (sum_flags != 0) { 12131 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12132 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12133 ipf->ipf_checksum = sum_val; 12134 ipf->ipf_checksum_flags = sum_flags; 12135 } 12136 12137 /* 12138 * We handle reassembly two ways. In the easy case, 12139 * where all the fragments show up in order, we do 12140 * minimal bookkeeping, and just clip new pieces on 12141 * the end. If we ever see a hole, then we go off 12142 * to ip_reassemble which has to mark the pieces and 12143 * keep track of the number of holes, etc. Obviously, 12144 * the point of having both mechanisms is so we can 12145 * handle the easy case as efficiently as possible. 12146 */ 12147 if (offset == 0) { 12148 /* Easy case, in-order reassembly so far. */ 12149 ipf->ipf_count += msg_len; 12150 ipf->ipf_tail_mp = tail_mp; 12151 /* 12152 * Keep track of next expected offset in 12153 * ipf_end. 12154 */ 12155 ipf->ipf_end = end; 12156 ipf->ipf_nf_hdr_len = hdr_length; 12157 } else { 12158 /* Hard case, hole at the beginning. */ 12159 ipf->ipf_tail_mp = NULL; 12160 /* 12161 * ipf_end == 0 means that we have given up 12162 * on easy reassembly. 12163 */ 12164 ipf->ipf_end = 0; 12165 12166 /* Forget checksum offload from now on */ 12167 ipf->ipf_checksum_flags = 0; 12168 12169 /* 12170 * ipf_hole_cnt is set by ip_reassemble. 12171 * ipf_count is updated by ip_reassemble. 12172 * No need to check for return value here 12173 * as we don't expect reassembly to complete 12174 * or fail for the first fragment itself. 12175 */ 12176 (void) ip_reassemble(mp, ipf, 12177 (frag_offset_flags & IPH_OFFSET) << 3, 12178 (frag_offset_flags & IPH_MF), ill, msg_len); 12179 } 12180 /* Update per ipfb and ill byte counts */ 12181 ipfb->ipfb_count += ipf->ipf_count; 12182 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12183 ill->ill_frag_count += ipf->ipf_count; 12184 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12185 /* If the frag timer wasn't already going, start it. */ 12186 mutex_enter(&ill->ill_lock); 12187 ill_frag_timer_start(ill); 12188 mutex_exit(&ill->ill_lock); 12189 goto reass_done; 12190 } 12191 12192 /* 12193 * If the packet's flag has changed (it could be coming up 12194 * from an interface different than the previous, therefore 12195 * possibly different checksum capability), then forget about 12196 * any stored checksum states. Otherwise add the value to 12197 * the existing one stored in the fragment header. 12198 */ 12199 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12200 sum_val += ipf->ipf_checksum; 12201 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12202 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12203 ipf->ipf_checksum = sum_val; 12204 } else if (ipf->ipf_checksum_flags != 0) { 12205 /* Forget checksum offload from now on */ 12206 ipf->ipf_checksum_flags = 0; 12207 } 12208 12209 /* 12210 * We have a new piece of a datagram which is already being 12211 * reassembled. Update the ECN info if all IP fragments 12212 * are ECN capable. If there is one which is not, clear 12213 * all the info. If there is at least one which has CE 12214 * code point, IP needs to report that up to transport. 12215 */ 12216 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12217 if (ecn_info == IPH_ECN_CE) 12218 ipf->ipf_ecn = IPH_ECN_CE; 12219 } else { 12220 ipf->ipf_ecn = IPH_ECN_NECT; 12221 } 12222 if (offset && ipf->ipf_end == offset) { 12223 /* The new fragment fits at the end */ 12224 ipf->ipf_tail_mp->b_cont = mp; 12225 /* Update the byte count */ 12226 ipf->ipf_count += msg_len; 12227 /* Update per ipfb and ill byte counts */ 12228 ipfb->ipfb_count += msg_len; 12229 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12230 ill->ill_frag_count += msg_len; 12231 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12232 if (frag_offset_flags & IPH_MF) { 12233 /* More to come. */ 12234 ipf->ipf_end = end; 12235 ipf->ipf_tail_mp = tail_mp; 12236 goto reass_done; 12237 } 12238 } else { 12239 /* Go do the hard cases. */ 12240 int ret; 12241 12242 if (offset == 0) 12243 ipf->ipf_nf_hdr_len = hdr_length; 12244 12245 /* Save current byte count */ 12246 count = ipf->ipf_count; 12247 ret = ip_reassemble(mp, ipf, 12248 (frag_offset_flags & IPH_OFFSET) << 3, 12249 (frag_offset_flags & IPH_MF), ill, msg_len); 12250 /* Count of bytes added and subtracted (freeb()ed) */ 12251 count = ipf->ipf_count - count; 12252 if (count) { 12253 /* Update per ipfb and ill byte counts */ 12254 ipfb->ipfb_count += count; 12255 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12256 ill->ill_frag_count += count; 12257 ASSERT(ill->ill_frag_count > 0); 12258 } 12259 if (ret == IP_REASS_PARTIAL) { 12260 goto reass_done; 12261 } else if (ret == IP_REASS_FAILED) { 12262 /* Reassembly failed. Free up all resources */ 12263 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12264 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12265 IP_REASS_SET_START(t_mp, 0); 12266 IP_REASS_SET_END(t_mp, 0); 12267 } 12268 freemsg(mp); 12269 goto reass_done; 12270 } 12271 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12272 } 12273 /* 12274 * We have completed reassembly. Unhook the frag header from 12275 * the reassembly list. 12276 * 12277 * Before we free the frag header, record the ECN info 12278 * to report back to the transport. 12279 */ 12280 ecn_info = ipf->ipf_ecn; 12281 BUMP_MIB(&ip_mib, ipReasmOKs); 12282 ipfp = ipf->ipf_ptphn; 12283 12284 /* We need to supply these to caller */ 12285 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12286 sum_val = ipf->ipf_checksum; 12287 else 12288 sum_val = 0; 12289 12290 mp1 = ipf->ipf_mp; 12291 count = ipf->ipf_count; 12292 ipf = ipf->ipf_hash_next; 12293 if (ipf != NULL) 12294 ipf->ipf_ptphn = ipfp; 12295 ipfp[0] = ipf; 12296 ill->ill_frag_count -= count; 12297 ASSERT(ipfb->ipfb_count >= count); 12298 ipfb->ipfb_count -= count; 12299 ipfb->ipfb_frag_pkts--; 12300 mutex_exit(&ipfb->ipfb_lock); 12301 /* Ditch the frag header. */ 12302 mp = mp1->b_cont; 12303 12304 freeb(mp1); 12305 12306 /* Restore original IP length in header. */ 12307 packet_size = (uint32_t)msgdsize(mp); 12308 if (packet_size > IP_MAXPACKET) { 12309 freemsg(mp); 12310 BUMP_MIB(&ip_mib, ipInHdrErrors); 12311 return (B_FALSE); 12312 } 12313 12314 if (DB_REF(mp) > 1) { 12315 mblk_t *mp2 = copymsg(mp); 12316 12317 freemsg(mp); 12318 if (mp2 == NULL) { 12319 BUMP_MIB(&ip_mib, ipInDiscards); 12320 return (B_FALSE); 12321 } 12322 mp = mp2; 12323 } 12324 ipha = (ipha_t *)mp->b_rptr; 12325 12326 ipha->ipha_length = htons((uint16_t)packet_size); 12327 /* We're now complete, zip the frag state */ 12328 ipha->ipha_fragment_offset_and_flags = 0; 12329 /* Record the ECN info. */ 12330 ipha->ipha_type_of_service &= 0xFC; 12331 ipha->ipha_type_of_service |= ecn_info; 12332 *mpp = mp; 12333 12334 /* Reassembly is successful; return checksum information if needed */ 12335 if (cksum_val != NULL) 12336 *cksum_val = sum_val; 12337 if (cksum_flags != NULL) 12338 *cksum_flags = sum_flags; 12339 12340 return (B_TRUE); 12341 } 12342 12343 /* 12344 * Perform ip header check sum update local options. 12345 * return B_TRUE if all is well, else return B_FALSE and release 12346 * the mp. caller is responsible for decrementing ire ref cnt. 12347 */ 12348 static boolean_t 12349 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 12350 { 12351 mblk_t *first_mp; 12352 boolean_t mctl_present; 12353 uint16_t sum; 12354 12355 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12356 /* 12357 * Don't do the checksum if it has gone through AH/ESP 12358 * processing. 12359 */ 12360 if (!mctl_present) { 12361 sum = ip_csum_hdr(ipha); 12362 if (sum != 0) { 12363 BUMP_MIB(&ip_mib, ipInCksumErrs); 12364 freemsg(first_mp); 12365 return (B_FALSE); 12366 } 12367 } 12368 12369 if (!ip_rput_local_options(q, mp, ipha, ire)) { 12370 if (mctl_present) 12371 freeb(first_mp); 12372 return (B_FALSE); 12373 } 12374 12375 return (B_TRUE); 12376 } 12377 12378 /* 12379 * All udp packet are delivered to the local host via this routine. 12380 */ 12381 void 12382 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12383 ill_t *recv_ill) 12384 { 12385 uint32_t sum; 12386 uint32_t u1; 12387 boolean_t mctl_present; 12388 conn_t *connp; 12389 mblk_t *first_mp; 12390 uint16_t *up; 12391 ill_t *ill = (ill_t *)q->q_ptr; 12392 uint16_t reass_hck_flags = 0; 12393 12394 #define rptr ((uchar_t *)ipha) 12395 12396 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12397 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12398 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12399 12400 /* 12401 * FAST PATH for udp packets 12402 */ 12403 12404 /* u1 is # words of IP options */ 12405 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12406 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12407 12408 /* IP options present */ 12409 if (u1 != 0) 12410 goto ipoptions; 12411 12412 /* Check the IP header checksum. */ 12413 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12414 /* Clear the IP header h/w cksum flag */ 12415 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12416 } else { 12417 #define uph ((uint16_t *)ipha) 12418 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12419 uph[6] + uph[7] + uph[8] + uph[9]; 12420 #undef uph 12421 /* finish doing IP checksum */ 12422 sum = (sum & 0xFFFF) + (sum >> 16); 12423 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12424 /* 12425 * Don't verify header checksum if this packet is coming 12426 * back from AH/ESP as we already did it. 12427 */ 12428 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12429 BUMP_MIB(&ip_mib, ipInCksumErrs); 12430 freemsg(first_mp); 12431 return; 12432 } 12433 } 12434 12435 /* 12436 * Count for SNMP of inbound packets for ire. 12437 * if mctl is present this might be a secure packet and 12438 * has already been counted for in ip_proto_input(). 12439 */ 12440 if (!mctl_present) { 12441 UPDATE_IB_PKT_COUNT(ire); 12442 ire->ire_last_used_time = lbolt; 12443 } 12444 12445 /* packet part of fragmented IP packet? */ 12446 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12447 if (u1 & (IPH_MF | IPH_OFFSET)) { 12448 goto fragmented; 12449 } 12450 12451 /* u1 = IP header length (20 bytes) */ 12452 u1 = IP_SIMPLE_HDR_LENGTH; 12453 12454 /* packet does not contain complete IP & UDP headers */ 12455 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12456 goto udppullup; 12457 12458 /* up points to UDP header */ 12459 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12460 #define iphs ((uint16_t *)ipha) 12461 12462 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12463 if (up[3] != 0) { 12464 mblk_t *mp1 = mp->b_cont; 12465 boolean_t cksum_err; 12466 uint16_t hck_flags = 0; 12467 12468 /* Pseudo-header checksum */ 12469 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12470 iphs[9] + up[2]; 12471 12472 /* 12473 * Revert to software checksum calculation if the interface 12474 * isn't capable of checksum offload or if IPsec is present. 12475 */ 12476 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12477 hck_flags = DB_CKSUMFLAGS(mp); 12478 12479 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12480 IP_STAT(ip_in_sw_cksum); 12481 12482 IP_CKSUM_RECV(hck_flags, u1, 12483 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12484 (int32_t)((uchar_t *)up - rptr), 12485 mp, mp1, cksum_err); 12486 12487 if (cksum_err) { 12488 BUMP_MIB(&ip_mib, udpInCksumErrs); 12489 12490 if (hck_flags & HCK_FULLCKSUM) 12491 IP_STAT(ip_udp_in_full_hw_cksum_err); 12492 else if (hck_flags & HCK_PARTIALCKSUM) 12493 IP_STAT(ip_udp_in_part_hw_cksum_err); 12494 else 12495 IP_STAT(ip_udp_in_sw_cksum_err); 12496 12497 freemsg(first_mp); 12498 return; 12499 } 12500 } 12501 12502 /* Non-fragmented broadcast or multicast packet? */ 12503 if (ire->ire_type == IRE_BROADCAST) 12504 goto udpslowpath; 12505 12506 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12507 ire->ire_zoneid)) != NULL) { 12508 ASSERT(connp->conn_upq != NULL); 12509 IP_STAT(ip_udp_fast_path); 12510 12511 if (CONN_UDP_FLOWCTLD(connp)) { 12512 freemsg(mp); 12513 BUMP_MIB(&ip_mib, udpInOverflows); 12514 } else { 12515 if (!mctl_present) { 12516 BUMP_MIB(&ip_mib, ipInDelivers); 12517 } 12518 /* 12519 * mp and first_mp can change. 12520 */ 12521 if (ip_udp_check(q, connp, recv_ill, 12522 ipha, &mp, &first_mp, mctl_present)) { 12523 /* Send it upstream */ 12524 CONN_UDP_RECV(connp, mp); 12525 } 12526 } 12527 /* 12528 * freeb() cannot deal with null mblk being passed 12529 * in and first_mp can be set to null in the call 12530 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12531 */ 12532 if (mctl_present && first_mp != NULL) { 12533 freeb(first_mp); 12534 } 12535 CONN_DEC_REF(connp); 12536 return; 12537 } 12538 12539 /* 12540 * if we got here we know the packet is not fragmented and 12541 * has no options. The classifier could not find a conn_t and 12542 * most likely its an icmp packet so send it through slow path. 12543 */ 12544 12545 goto udpslowpath; 12546 12547 ipoptions: 12548 if (!ip_options_cksum(q, mp, ipha, ire)) { 12549 goto slow_done; 12550 } 12551 12552 UPDATE_IB_PKT_COUNT(ire); 12553 ire->ire_last_used_time = lbolt; 12554 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12555 if (u1 & (IPH_MF | IPH_OFFSET)) { 12556 fragmented: 12557 /* 12558 * "sum" and "reass_hck_flags" are non-zero if the 12559 * reassembled packet has a valid hardware computed 12560 * checksum information associated with it. 12561 */ 12562 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12563 goto slow_done; 12564 /* 12565 * Make sure that first_mp points back to mp as 12566 * the mp we came in with could have changed in 12567 * ip_rput_fragment(). 12568 */ 12569 ASSERT(!mctl_present); 12570 ipha = (ipha_t *)mp->b_rptr; 12571 first_mp = mp; 12572 } 12573 12574 /* Now we have a complete datagram, destined for this machine. */ 12575 u1 = IPH_HDR_LENGTH(ipha); 12576 /* Pull up the UDP header, if necessary. */ 12577 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12578 udppullup: 12579 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12580 BUMP_MIB(&ip_mib, ipInDiscards); 12581 freemsg(first_mp); 12582 goto slow_done; 12583 } 12584 ipha = (ipha_t *)mp->b_rptr; 12585 } 12586 12587 /* 12588 * Validate the checksum for the reassembled packet; for the 12589 * pullup case we calculate the payload checksum in software. 12590 */ 12591 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12592 if (up[3] != 0) { 12593 boolean_t cksum_err; 12594 12595 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12596 IP_STAT(ip_in_sw_cksum); 12597 12598 IP_CKSUM_RECV_REASS(reass_hck_flags, 12599 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12600 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12601 iphs[9] + up[2], sum, cksum_err); 12602 12603 if (cksum_err) { 12604 BUMP_MIB(&ip_mib, udpInCksumErrs); 12605 12606 if (reass_hck_flags & HCK_FULLCKSUM) 12607 IP_STAT(ip_udp_in_full_hw_cksum_err); 12608 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12609 IP_STAT(ip_udp_in_part_hw_cksum_err); 12610 else 12611 IP_STAT(ip_udp_in_sw_cksum_err); 12612 12613 freemsg(first_mp); 12614 goto slow_done; 12615 } 12616 } 12617 udpslowpath: 12618 12619 /* Clear hardware checksum flag to be safe */ 12620 DB_CKSUMFLAGS(mp) = 0; 12621 12622 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12623 (ire->ire_type == IRE_BROADCAST), 12624 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12625 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12626 12627 slow_done: 12628 IP_STAT(ip_udp_slow_path); 12629 return; 12630 12631 #undef iphs 12632 #undef rptr 12633 } 12634 12635 /* ARGSUSED */ 12636 static mblk_t * 12637 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12638 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12639 ill_rx_ring_t *ill_ring) 12640 { 12641 conn_t *connp; 12642 uint32_t sum; 12643 uint32_t u1; 12644 uint16_t *up; 12645 int offset; 12646 ssize_t len; 12647 mblk_t *mp1; 12648 boolean_t syn_present = B_FALSE; 12649 tcph_t *tcph; 12650 uint_t ip_hdr_len; 12651 ill_t *ill = (ill_t *)q->q_ptr; 12652 zoneid_t zoneid = ire->ire_zoneid; 12653 boolean_t cksum_err; 12654 uint16_t hck_flags = 0; 12655 12656 #define rptr ((uchar_t *)ipha) 12657 12658 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12659 12660 /* 12661 * FAST PATH for tcp packets 12662 */ 12663 12664 /* u1 is # words of IP options */ 12665 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12666 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12667 12668 /* IP options present */ 12669 if (u1) { 12670 goto ipoptions; 12671 } else { 12672 /* Check the IP header checksum. */ 12673 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12674 /* Clear the IP header h/w cksum flag */ 12675 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12676 } else { 12677 #define uph ((uint16_t *)ipha) 12678 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12679 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12680 #undef uph 12681 /* finish doing IP checksum */ 12682 sum = (sum & 0xFFFF) + (sum >> 16); 12683 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12684 /* 12685 * Don't verify header checksum if this packet 12686 * is coming back from AH/ESP as we already did it. 12687 */ 12688 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12689 BUMP_MIB(&ip_mib, ipInCksumErrs); 12690 goto error; 12691 } 12692 } 12693 } 12694 12695 if (!mctl_present) { 12696 UPDATE_IB_PKT_COUNT(ire); 12697 ire->ire_last_used_time = lbolt; 12698 } 12699 12700 /* packet part of fragmented IP packet? */ 12701 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12702 if (u1 & (IPH_MF | IPH_OFFSET)) { 12703 goto fragmented; 12704 } 12705 12706 /* u1 = IP header length (20 bytes) */ 12707 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12708 12709 /* does packet contain IP+TCP headers? */ 12710 len = mp->b_wptr - rptr; 12711 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12712 IP_STAT(ip_tcppullup); 12713 goto tcppullup; 12714 } 12715 12716 /* TCP options present? */ 12717 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12718 12719 /* 12720 * If options need to be pulled up, then goto tcpoptions. 12721 * otherwise we are still in the fast path 12722 */ 12723 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12724 IP_STAT(ip_tcpoptions); 12725 goto tcpoptions; 12726 } 12727 12728 /* multiple mblks of tcp data? */ 12729 if ((mp1 = mp->b_cont) != NULL) { 12730 /* more then two? */ 12731 if (mp1->b_cont != NULL) { 12732 IP_STAT(ip_multipkttcp); 12733 goto multipkttcp; 12734 } 12735 len += mp1->b_wptr - mp1->b_rptr; 12736 } 12737 12738 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12739 12740 /* part of pseudo checksum */ 12741 12742 /* TCP datagram length */ 12743 u1 = len - IP_SIMPLE_HDR_LENGTH; 12744 12745 #define iphs ((uint16_t *)ipha) 12746 12747 #ifdef _BIG_ENDIAN 12748 u1 += IPPROTO_TCP; 12749 #else 12750 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12751 #endif 12752 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12753 12754 /* 12755 * Revert to software checksum calculation if the interface 12756 * isn't capable of checksum offload or if IPsec is present. 12757 */ 12758 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12759 hck_flags = DB_CKSUMFLAGS(mp); 12760 12761 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12762 IP_STAT(ip_in_sw_cksum); 12763 12764 IP_CKSUM_RECV(hck_flags, u1, 12765 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12766 (int32_t)((uchar_t *)up - rptr), 12767 mp, mp1, cksum_err); 12768 12769 if (cksum_err) { 12770 BUMP_MIB(&ip_mib, tcpInErrs); 12771 12772 if (hck_flags & HCK_FULLCKSUM) 12773 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12774 else if (hck_flags & HCK_PARTIALCKSUM) 12775 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12776 else 12777 IP_STAT(ip_tcp_in_sw_cksum_err); 12778 12779 goto error; 12780 } 12781 12782 try_again: 12783 12784 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12785 NULL) { 12786 /* Send the TH_RST */ 12787 goto no_conn; 12788 } 12789 12790 /* 12791 * TCP FAST PATH for AF_INET socket. 12792 * 12793 * TCP fast path to avoid extra work. An AF_INET socket type 12794 * does not have facility to receive extra information via 12795 * ip_process or ip_add_info. Also, when the connection was 12796 * established, we made a check if this connection is impacted 12797 * by any global IPSec policy or per connection policy (a 12798 * policy that comes in effect later will not apply to this 12799 * connection). Since all this can be determined at the 12800 * connection establishment time, a quick check of flags 12801 * can avoid extra work. 12802 */ 12803 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12804 !IPP_ENABLED(IPP_LOCAL_IN)) { 12805 ASSERT(first_mp == mp); 12806 SET_SQUEUE(mp, tcp_rput_data, connp); 12807 return (mp); 12808 } 12809 12810 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12811 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12812 if (IPCL_IS_TCP(connp)) { 12813 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12814 DB_CKSUMSTART(mp) = 12815 (intptr_t)ip_squeue_get(ill_ring); 12816 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12817 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12818 SET_SQUEUE(mp, connp->conn_recv, connp); 12819 return (mp); 12820 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12821 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12822 ip_squeue_enter_unbound++; 12823 SET_SQUEUE(mp, tcp_conn_request_unbound, 12824 connp); 12825 return (mp); 12826 } 12827 syn_present = B_TRUE; 12828 } 12829 12830 } 12831 12832 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12833 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12834 12835 /* No need to send this packet to TCP */ 12836 if ((flags & TH_RST) || (flags & TH_URG)) { 12837 CONN_DEC_REF(connp); 12838 freemsg(first_mp); 12839 return (NULL); 12840 } 12841 if (flags & TH_ACK) { 12842 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 12843 CONN_DEC_REF(connp); 12844 return (NULL); 12845 } 12846 12847 CONN_DEC_REF(connp); 12848 freemsg(first_mp); 12849 return (NULL); 12850 } 12851 12852 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12853 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12854 ipha, NULL, mctl_present); 12855 if (first_mp == NULL) { 12856 CONN_DEC_REF(connp); 12857 return (NULL); 12858 } 12859 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12860 ASSERT(syn_present); 12861 if (mctl_present) { 12862 ASSERT(first_mp != mp); 12863 first_mp->b_datap->db_struioflag |= 12864 STRUIO_POLICY; 12865 } else { 12866 ASSERT(first_mp == mp); 12867 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12868 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12869 } 12870 } else { 12871 /* 12872 * Discard first_mp early since we're dealing with a 12873 * fully-connected conn_t and tcp doesn't do policy in 12874 * this case. 12875 */ 12876 if (mctl_present) { 12877 freeb(first_mp); 12878 mctl_present = B_FALSE; 12879 } 12880 first_mp = mp; 12881 } 12882 } 12883 12884 /* Initiate IPPF processing for fastpath */ 12885 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12886 uint32_t ill_index; 12887 12888 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12889 ip_process(IPP_LOCAL_IN, &mp, ill_index); 12890 if (mp == NULL) { 12891 ip2dbg(("ip_input_ipsec_process: TCP pkt " 12892 "deferred/dropped during IPPF processing\n")); 12893 CONN_DEC_REF(connp); 12894 if (mctl_present) 12895 freeb(first_mp); 12896 return (NULL); 12897 } else if (mctl_present) { 12898 /* 12899 * ip_process might return a new mp. 12900 */ 12901 ASSERT(first_mp != mp); 12902 first_mp->b_cont = mp; 12903 } else { 12904 first_mp = mp; 12905 } 12906 12907 } 12908 12909 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 12910 mp = ip_add_info(mp, recv_ill, flags); 12911 if (mp == NULL) { 12912 CONN_DEC_REF(connp); 12913 if (mctl_present) 12914 freeb(first_mp); 12915 return (NULL); 12916 } else if (mctl_present) { 12917 /* 12918 * ip_add_info might return a new mp. 12919 */ 12920 ASSERT(first_mp != mp); 12921 first_mp->b_cont = mp; 12922 } else { 12923 first_mp = mp; 12924 } 12925 } 12926 12927 if (IPCL_IS_TCP(connp)) { 12928 SET_SQUEUE(first_mp, connp->conn_recv, connp); 12929 return (first_mp); 12930 } else { 12931 putnext(connp->conn_rq, first_mp); 12932 CONN_DEC_REF(connp); 12933 return (NULL); 12934 } 12935 12936 no_conn: 12937 /* Initiate IPPf processing, if needed. */ 12938 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12939 uint32_t ill_index; 12940 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12941 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 12942 if (first_mp == NULL) { 12943 return (NULL); 12944 } 12945 } 12946 BUMP_MIB(&ip_mib, ipInDelivers); 12947 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid); 12948 return (NULL); 12949 ipoptions: 12950 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 12951 goto slow_done; 12952 } 12953 12954 UPDATE_IB_PKT_COUNT(ire); 12955 ire->ire_last_used_time = lbolt; 12956 12957 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12958 if (u1 & (IPH_MF | IPH_OFFSET)) { 12959 fragmented: 12960 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 12961 if (mctl_present) 12962 freeb(first_mp); 12963 goto slow_done; 12964 } 12965 /* 12966 * Make sure that first_mp points back to mp as 12967 * the mp we came in with could have changed in 12968 * ip_rput_fragment(). 12969 */ 12970 ASSERT(!mctl_present); 12971 ipha = (ipha_t *)mp->b_rptr; 12972 first_mp = mp; 12973 } 12974 12975 /* Now we have a complete datagram, destined for this machine. */ 12976 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 12977 12978 len = mp->b_wptr - mp->b_rptr; 12979 /* Pull up a minimal TCP header, if necessary. */ 12980 if (len < (u1 + 20)) { 12981 tcppullup: 12982 if (!pullupmsg(mp, u1 + 20)) { 12983 BUMP_MIB(&ip_mib, ipInDiscards); 12984 goto error; 12985 } 12986 ipha = (ipha_t *)mp->b_rptr; 12987 len = mp->b_wptr - mp->b_rptr; 12988 } 12989 12990 /* 12991 * Extract the offset field from the TCP header. As usual, we 12992 * try to help the compiler more than the reader. 12993 */ 12994 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 12995 if (offset != 5) { 12996 tcpoptions: 12997 if (offset < 5) { 12998 BUMP_MIB(&ip_mib, ipInDiscards); 12999 goto error; 13000 } 13001 /* 13002 * There must be TCP options. 13003 * Make sure we can grab them. 13004 */ 13005 offset <<= 2; 13006 offset += u1; 13007 if (len < offset) { 13008 if (!pullupmsg(mp, offset)) { 13009 BUMP_MIB(&ip_mib, ipInDiscards); 13010 goto error; 13011 } 13012 ipha = (ipha_t *)mp->b_rptr; 13013 len = mp->b_wptr - rptr; 13014 } 13015 } 13016 13017 /* Get the total packet length in len, including headers. */ 13018 if (mp->b_cont) { 13019 multipkttcp: 13020 len = msgdsize(mp); 13021 } 13022 13023 /* 13024 * Check the TCP checksum by pulling together the pseudo- 13025 * header checksum, and passing it to ip_csum to be added in 13026 * with the TCP datagram. 13027 * 13028 * Since we are not using the hwcksum if available we must 13029 * clear the flag. We may come here via tcppullup or tcpoptions. 13030 * If either of these fails along the way the mblk is freed. 13031 * If this logic ever changes and mblk is reused to say send 13032 * ICMP's back, then this flag may need to be cleared in 13033 * other places as well. 13034 */ 13035 DB_CKSUMFLAGS(mp) = 0; 13036 13037 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13038 13039 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13040 #ifdef _BIG_ENDIAN 13041 u1 += IPPROTO_TCP; 13042 #else 13043 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13044 #endif 13045 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13046 /* 13047 * Not M_DATA mblk or its a dup, so do the checksum now. 13048 */ 13049 IP_STAT(ip_in_sw_cksum); 13050 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13051 BUMP_MIB(&ip_mib, tcpInErrs); 13052 goto error; 13053 } 13054 13055 IP_STAT(ip_tcp_slow_path); 13056 goto try_again; 13057 #undef iphs 13058 #undef rptr 13059 13060 error: 13061 freemsg(first_mp); 13062 slow_done: 13063 return (NULL); 13064 } 13065 13066 /* ARGSUSED */ 13067 static void 13068 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13069 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13070 { 13071 conn_t *connp; 13072 uint32_t sum; 13073 uint32_t u1; 13074 ssize_t len; 13075 sctp_hdr_t *sctph; 13076 zoneid_t zoneid = ire->ire_zoneid; 13077 uint32_t pktsum; 13078 uint32_t calcsum; 13079 uint32_t ports; 13080 uint_t ipif_seqid; 13081 in6_addr_t map_src, map_dst; 13082 ill_t *ill = (ill_t *)q->q_ptr; 13083 13084 #define rptr ((uchar_t *)ipha) 13085 13086 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13087 13088 /* u1 is # words of IP options */ 13089 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13090 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13091 13092 /* IP options present */ 13093 if (u1 > 0) { 13094 goto ipoptions; 13095 } else { 13096 /* Check the IP header checksum. */ 13097 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13098 #define uph ((uint16_t *)ipha) 13099 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13100 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13101 #undef uph 13102 /* finish doing IP checksum */ 13103 sum = (sum & 0xFFFF) + (sum >> 16); 13104 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13105 /* 13106 * Don't verify header checksum if this packet 13107 * is coming back from AH/ESP as we already did it. 13108 */ 13109 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13110 BUMP_MIB(&ip_mib, ipInCksumErrs); 13111 goto error; 13112 } 13113 } 13114 /* 13115 * Since there is no SCTP h/w cksum support yet, just 13116 * clear the flag. 13117 */ 13118 DB_CKSUMFLAGS(mp) = 0; 13119 } 13120 13121 /* 13122 * Don't verify header checksum if this packet is coming 13123 * back from AH/ESP as we already did it. 13124 */ 13125 if (!mctl_present) { 13126 UPDATE_IB_PKT_COUNT(ire); 13127 ire->ire_last_used_time = lbolt; 13128 } 13129 13130 /* packet part of fragmented IP packet? */ 13131 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13132 if (u1 & (IPH_MF | IPH_OFFSET)) 13133 goto fragmented; 13134 13135 /* u1 = IP header length (20 bytes) */ 13136 u1 = IP_SIMPLE_HDR_LENGTH; 13137 13138 find_sctp_client: 13139 /* Pullup if we don't have the sctp common header. */ 13140 len = MBLKL(mp); 13141 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13142 if (mp->b_cont == NULL || 13143 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13144 BUMP_MIB(&ip_mib, ipInDiscards); 13145 goto error; 13146 } 13147 ipha = (ipha_t *)mp->b_rptr; 13148 len = MBLKL(mp); 13149 } 13150 13151 sctph = (sctp_hdr_t *)(rptr + u1); 13152 #ifdef DEBUG 13153 if (!skip_sctp_cksum) { 13154 #endif 13155 pktsum = sctph->sh_chksum; 13156 sctph->sh_chksum = 0; 13157 calcsum = sctp_cksum(mp, u1); 13158 if (calcsum != pktsum) { 13159 BUMP_MIB(&sctp_mib, sctpChecksumError); 13160 goto error; 13161 } 13162 sctph->sh_chksum = pktsum; 13163 #ifdef DEBUG /* skip_sctp_cksum */ 13164 } 13165 #endif 13166 /* get the ports */ 13167 ports = *(uint32_t *)&sctph->sh_sport; 13168 13169 ipif_seqid = ire->ire_ipif->ipif_seqid; 13170 IRE_REFRELE(ire); 13171 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13172 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13173 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 13174 mp)) == NULL) { 13175 /* Check for raw socket or OOTB handling */ 13176 goto no_conn; 13177 } 13178 13179 /* Found a client; up it goes */ 13180 BUMP_MIB(&ip_mib, ipInDelivers); 13181 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13182 return; 13183 13184 no_conn: 13185 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13186 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 13187 return; 13188 13189 ipoptions: 13190 DB_CKSUMFLAGS(mp) = 0; 13191 if (!ip_options_cksum(q, first_mp, ipha, ire)) 13192 goto slow_done; 13193 13194 UPDATE_IB_PKT_COUNT(ire); 13195 ire->ire_last_used_time = lbolt; 13196 13197 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13198 if (u1 & (IPH_MF | IPH_OFFSET)) { 13199 fragmented: 13200 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13201 goto slow_done; 13202 /* 13203 * Make sure that first_mp points back to mp as 13204 * the mp we came in with could have changed in 13205 * ip_rput_fragment(). 13206 */ 13207 ASSERT(!mctl_present); 13208 ipha = (ipha_t *)mp->b_rptr; 13209 first_mp = mp; 13210 } 13211 13212 /* Now we have a complete datagram, destined for this machine. */ 13213 u1 = IPH_HDR_LENGTH(ipha); 13214 goto find_sctp_client; 13215 #undef iphs 13216 #undef rptr 13217 13218 error: 13219 freemsg(first_mp); 13220 slow_done: 13221 IRE_REFRELE(ire); 13222 } 13223 13224 #define VER_BITS 0xF0 13225 #define VERSION_6 0x60 13226 13227 static boolean_t 13228 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 13229 ipaddr_t *dstp) 13230 { 13231 uint_t opt_len; 13232 ipha_t *ipha; 13233 ssize_t len; 13234 uint_t pkt_len; 13235 13236 IP_STAT(ip_ipoptions); 13237 ipha = *iphapp; 13238 13239 #define rptr ((uchar_t *)ipha) 13240 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13241 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13242 BUMP_MIB(&ip_mib, ipInIPv6); 13243 freemsg(mp); 13244 return (B_FALSE); 13245 } 13246 13247 /* multiple mblk or too short */ 13248 pkt_len = ntohs(ipha->ipha_length); 13249 13250 /* Get the number of words of IP options in the IP header. */ 13251 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13252 if (opt_len) { 13253 /* IP Options present! Validate and process. */ 13254 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13255 BUMP_MIB(&ip_mib, ipInHdrErrors); 13256 goto done; 13257 } 13258 /* 13259 * Recompute complete header length and make sure we 13260 * have access to all of it. 13261 */ 13262 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13263 if (len > (mp->b_wptr - rptr)) { 13264 if (len > pkt_len) { 13265 BUMP_MIB(&ip_mib, ipInHdrErrors); 13266 goto done; 13267 } 13268 if (!pullupmsg(mp, len)) { 13269 BUMP_MIB(&ip_mib, ipInDiscards); 13270 goto done; 13271 } 13272 ipha = (ipha_t *)mp->b_rptr; 13273 } 13274 /* 13275 * Go off to ip_rput_options which returns the next hop 13276 * destination address, which may have been affected 13277 * by source routing. 13278 */ 13279 IP_STAT(ip_opt); 13280 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 13281 return (B_FALSE); 13282 } 13283 } 13284 *iphapp = ipha; 13285 return (B_TRUE); 13286 done: 13287 /* clear b_prev - used by ip_mroute_decap */ 13288 mp->b_prev = NULL; 13289 freemsg(mp); 13290 return (B_FALSE); 13291 #undef rptr 13292 } 13293 13294 /* 13295 * Deal with the fact that there is no ire for the destination. 13296 * The incoming ill (in_ill) is passed in to ip_newroute only 13297 * in the case of packets coming from mobile ip forward tunnel. 13298 * It must be null otherwise. 13299 */ 13300 static ire_t * 13301 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13302 ipaddr_t dst) 13303 { 13304 ipha_t *ipha; 13305 ill_t *ill; 13306 ire_t *ire; 13307 boolean_t check_multirt = B_FALSE; 13308 13309 ipha = (ipha_t *)mp->b_rptr; 13310 ill = (ill_t *)q->q_ptr; 13311 13312 ASSERT(ill != NULL); 13313 /* 13314 * No IRE for this destination, so it can't be for us. 13315 * Unless we are forwarding, drop the packet. 13316 * We have to let source routed packets through 13317 * since we don't yet know if they are 'ping -l' 13318 * packets i.e. if they will go out over the 13319 * same interface as they came in on. 13320 */ 13321 if (ll_multicast) { 13322 freemsg(mp); 13323 return (NULL); 13324 } 13325 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 13326 BUMP_MIB(&ip_mib, ipForwProhibits); 13327 freemsg(mp); 13328 return (NULL); 13329 } 13330 13331 /* 13332 * Mark this packet as having originated externally. 13333 * 13334 * For non-forwarding code path, ire_send later double 13335 * checks this interface to see if it is still exists 13336 * post-ARP resolution. 13337 * 13338 * Also, IPQOS uses this to differentiate between 13339 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13340 * QOS packet processing in ip_wput_attach_llhdr(). 13341 * The QoS module can mark the b_band for a fastpath message 13342 * or the dl_priority field in a unitdata_req header for 13343 * CoS marking. This info can only be found in 13344 * ip_wput_attach_llhdr(). 13345 */ 13346 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13347 /* 13348 * Clear the indication that this may have a hardware checksum 13349 * as we are not using it 13350 */ 13351 DB_CKSUMFLAGS(mp) = 0; 13352 13353 if (in_ill != NULL) { 13354 /* 13355 * Now hand the packet to ip_newroute. 13356 */ 13357 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13358 return (NULL); 13359 } 13360 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13361 MBLK_GETLABEL(mp)); 13362 13363 if (ire == NULL && check_multirt) { 13364 /* Let ip_newroute handle CGTP */ 13365 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13366 return (NULL); 13367 } 13368 13369 if (ire != NULL) 13370 return (ire); 13371 13372 mp->b_prev = mp->b_next = 0; 13373 /* send icmp unreachable */ 13374 q = WR(q); 13375 /* Sent by forwarding path, and router is global zone */ 13376 if (ip_source_routed(ipha)) { 13377 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13378 GLOBAL_ZONEID); 13379 } else { 13380 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13381 } 13382 13383 return (NULL); 13384 13385 } 13386 13387 /* 13388 * check ip header length and align it. 13389 */ 13390 static boolean_t 13391 ip_check_and_align_header(queue_t *q, mblk_t *mp) 13392 { 13393 ssize_t len; 13394 ill_t *ill; 13395 ipha_t *ipha; 13396 13397 len = MBLKL(mp); 13398 13399 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13400 if (!OK_32PTR(mp->b_rptr)) 13401 IP_STAT(ip_notaligned1); 13402 else 13403 IP_STAT(ip_notaligned2); 13404 /* Guard against bogus device drivers */ 13405 if (len < 0) { 13406 /* clear b_prev - used by ip_mroute_decap */ 13407 mp->b_prev = NULL; 13408 BUMP_MIB(&ip_mib, ipInHdrErrors); 13409 freemsg(mp); 13410 return (B_FALSE); 13411 } 13412 13413 if (ip_rput_pullups++ == 0) { 13414 ill = (ill_t *)q->q_ptr; 13415 ipha = (ipha_t *)mp->b_rptr; 13416 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13417 "ip_check_and_align_header: %s forced us to " 13418 " pullup pkt, hdr len %ld, hdr addr %p", 13419 ill->ill_name, len, ipha); 13420 } 13421 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13422 /* clear b_prev - used by ip_mroute_decap */ 13423 mp->b_prev = NULL; 13424 BUMP_MIB(&ip_mib, ipInDiscards); 13425 freemsg(mp); 13426 return (B_FALSE); 13427 } 13428 } 13429 return (B_TRUE); 13430 } 13431 13432 static boolean_t 13433 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 13434 { 13435 ill_group_t *ill_group; 13436 ill_group_t *ire_group; 13437 queue_t *q; 13438 ill_t *ire_ill; 13439 uint_t ill_ifindex; 13440 13441 q = *qp; 13442 /* 13443 * We need to check to make sure the packet came in 13444 * on the queue associated with the destination IRE. 13445 * Note that for multicast packets and broadcast packets sent to 13446 * a broadcast address which is shared between multiple interfaces 13447 * we should not do this since we just got a random broadcast ire. 13448 */ 13449 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13450 boolean_t check_multi = B_TRUE; 13451 13452 /* 13453 * This packet came in on an interface other than the 13454 * one associated with the destination address. 13455 * "Gateway" it to the appropriate interface here. 13456 * As long as the ills belong to the same group, 13457 * we don't consider them to arriving on the wrong 13458 * interface. Thus, when the switch is doing inbound 13459 * load spreading, we won't drop packets when we 13460 * are doing strict multihoming checks. Note, the 13461 * same holds true for 'usesrc groups' where the 13462 * destination address may belong to another interface 13463 * to allow multipathing to happen 13464 */ 13465 ill_group = ill->ill_group; 13466 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13467 ill_ifindex = ill->ill_usesrc_ifindex; 13468 ire_group = ire_ill->ill_group; 13469 13470 /* 13471 * If it's part of the same IPMP group, or if it's a legal 13472 * address on the 'usesrc' interface, then bypass strict 13473 * checks. 13474 */ 13475 if (ill_group != NULL && ill_group == ire_group) { 13476 check_multi = B_FALSE; 13477 } else if (ill_ifindex != 0 && 13478 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13479 check_multi = B_FALSE; 13480 } 13481 13482 if (check_multi && 13483 ip_strict_dst_multihoming && 13484 ((ill->ill_flags & 13485 ire->ire_ipif->ipif_ill->ill_flags & 13486 ILLF_ROUTER) == 0)) { 13487 /* Drop packet */ 13488 BUMP_MIB(&ip_mib, ipForwProhibits); 13489 freemsg(mp); 13490 return (B_TRUE); 13491 } 13492 13493 /* 13494 * Change the queue (for non-virtual destination network 13495 * interfaces) and ip_rput_local will be called with the right 13496 * queue 13497 */ 13498 q = ire->ire_rfq; 13499 } 13500 /* Must be broadcast. We'll take it. */ 13501 *qp = q; 13502 return (B_FALSE); 13503 } 13504 13505 #define SEND_PKT(ire, mp) \ 13506 { \ 13507 UPDATE_IB_PKT_COUNT(ire); \ 13508 (ire)->ire_last_used_time = lbolt; \ 13509 BUMP_MIB(&ip_mib, ipForwDatagrams); \ 13510 putnext((ire)->ire_stq, mp); \ 13511 } 13512 13513 ire_t * 13514 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13515 { 13516 ipha_t *ipha; 13517 ipaddr_t ip_dst, ip_src; 13518 ire_t *src_ire = NULL; 13519 ill_t *stq_ill; 13520 uint_t hlen; 13521 uint32_t sum; 13522 queue_t *dev_q; 13523 boolean_t check_multirt = B_FALSE; 13524 13525 13526 ipha = (ipha_t *)mp->b_rptr; 13527 13528 /* 13529 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13530 * The loopback address check for both src and dst has already 13531 * been checked in ip_input 13532 */ 13533 ip_dst = ntohl(dst); 13534 ip_src = ntohl(ipha->ipha_src); 13535 13536 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13537 IN_CLASSD(ip_src)) { 13538 BUMP_MIB(&ip_mib, ipForwProhibits); 13539 goto drop; 13540 } 13541 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13542 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13543 13544 if (src_ire != NULL) { 13545 BUMP_MIB(&ip_mib, ipForwProhibits); 13546 goto drop; 13547 } 13548 13549 /* No ire cache of nexthop. So first create one */ 13550 if (ire == NULL) { 13551 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL); 13552 /* 13553 * We only come to ip_fast_forward if ip_cgtp_filter is 13554 * is not set. So upon return from ire_forward 13555 * check_multirt should remain as false. 13556 */ 13557 ASSERT(!check_multirt); 13558 if (ire == NULL) { 13559 BUMP_MIB(&ip_mib, ipInDiscards); 13560 mp->b_prev = mp->b_next = 0; 13561 /* send icmp unreachable */ 13562 /* Sent by forwarding path, and router is global zone */ 13563 if (ip_source_routed(ipha)) { 13564 icmp_unreachable(ill->ill_wq, mp, 13565 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13566 } else { 13567 icmp_unreachable(ill->ill_wq, mp, 13568 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13569 } 13570 return (ire); 13571 } 13572 } 13573 13574 /* 13575 * Forwarding fastpath exception case: 13576 * If either of the follwoing case is true, we take 13577 * the slowpath 13578 * o forwarding is not enabled 13579 * o IPMP is enabled 13580 * o corresponding ire is in incomplete state 13581 * o packet needs fragmentation 13582 * 13583 * The codeflow from here on is thus: 13584 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13585 */ 13586 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13587 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13588 !(ill->ill_flags & ILLF_ROUTER) || SAME_IPMP_GROUP(ill, stq_ill) || 13589 (ire->ire_nce == NULL) || 13590 (ire->ire_nce->nce_state != ND_REACHABLE) || 13591 (ntohs(ipha->ipha_length) > ire->ire_max_frag) || 13592 ipha->ipha_ttl <= 1) { 13593 ip_rput_process_forward(ill->ill_rq, mp, ire, 13594 ipha, ill, B_FALSE); 13595 return (ire); 13596 } 13597 13598 mp->b_datap->db_struioun.cksum.flags = 0; 13599 /* Adjust the checksum to reflect the ttl decrement. */ 13600 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13601 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13602 ipha->ipha_ttl--; 13603 13604 dev_q = ire->ire_stq->q_next; 13605 if ((dev_q->q_next != NULL || 13606 dev_q->q_first != NULL) && !canput(dev_q)) { 13607 goto indiscard; 13608 } 13609 13610 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13611 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13612 13613 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13614 mp = ip_wput_attach_llhdr(mp, ire, 0, 0); 13615 if (mp != NULL) { 13616 SEND_PKT(ire, mp); 13617 return (ire); 13618 } 13619 } 13620 13621 indiscard: 13622 BUMP_MIB(&ip_mib, ipInDiscards); 13623 drop: 13624 if (mp != NULL) 13625 freemsg(mp); 13626 if (src_ire != NULL) 13627 ire_refrele(src_ire); 13628 return (ire); 13629 13630 } 13631 13632 /* 13633 * This function is called in the forwarding slowpath, when 13634 * either the ire lacks the link-layer address, or the packet needs 13635 * further processing(eg. fragmentation), before transmission. 13636 */ 13637 static void 13638 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13639 ill_t *ill, boolean_t ll_multicast) 13640 { 13641 ill_group_t *ill_group; 13642 ill_group_t *ire_group; 13643 queue_t *dev_q; 13644 ire_t *src_ire; 13645 13646 ASSERT(ire->ire_stq != NULL); 13647 13648 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13649 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13650 13651 if (ll_multicast != 0) 13652 goto drop_pkt; 13653 13654 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13655 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13656 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 13657 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 13658 if (src_ire != NULL) 13659 ire_refrele(src_ire); 13660 BUMP_MIB(&ip_mib, ipForwProhibits); 13661 ip2dbg(("ip_rput_process_forward: Received packet with" 13662 " bad src/dst address on %s\n", ill->ill_name)); 13663 } 13664 13665 ill_group = ill->ill_group; 13666 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13667 /* 13668 * Check if we want to forward this one at this time. 13669 * We allow source routed packets on a host provided that 13670 * they go out the same interface or same interface group 13671 * as they came in on. 13672 * 13673 * XXX To be quicker, we may wish to not chase pointers to 13674 * get the ILLF_ROUTER flag and instead store the 13675 * forwarding policy in the ire. An unfortunate 13676 * side-effect of that would be requiring an ire flush 13677 * whenever the ILLF_ROUTER flag changes. 13678 */ 13679 if (((ill->ill_flags & 13680 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13681 ILLF_ROUTER) == 0) && 13682 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13683 (ill_group != NULL && ill_group == ire_group)))) { 13684 BUMP_MIB(&ip_mib, ipForwProhibits); 13685 if (ip_source_routed(ipha)) { 13686 q = WR(q); 13687 /* 13688 * Clear the indication that this may have 13689 * hardware checksum as we are not using it. 13690 */ 13691 DB_CKSUMFLAGS(mp) = 0; 13692 /* Sent by forwarding path, and router is global zone */ 13693 icmp_unreachable(q, mp, 13694 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13695 return; 13696 } 13697 goto drop_pkt; 13698 } 13699 13700 /* Packet is being forwarded. Turning off hwcksum flag. */ 13701 DB_CKSUMFLAGS(mp) = 0; 13702 if (ip_g_send_redirects) { 13703 /* 13704 * Check whether the incoming interface and outgoing 13705 * interface is part of the same group. If so, 13706 * send redirects. 13707 * 13708 * Check the source address to see if it originated 13709 * on the same logical subnet it is going back out on. 13710 * If so, we should be able to send it a redirect. 13711 * Avoid sending a redirect if the destination 13712 * is directly connected (gw_addr == 0), 13713 * or if the packet was source routed out this 13714 * interface. 13715 */ 13716 ipaddr_t src; 13717 mblk_t *mp1; 13718 ire_t *src_ire = NULL; 13719 13720 /* 13721 * Check whether ire_rfq and q are from the same ill 13722 * or if they are not same, they at least belong 13723 * to the same group. If so, send redirects. 13724 */ 13725 if ((ire->ire_rfq == q || 13726 (ill_group != NULL && ill_group == ire_group)) && 13727 (ire->ire_gateway_addr != 0) && 13728 !ip_source_routed(ipha)) { 13729 13730 src = ipha->ipha_src; 13731 src_ire = ire_ftable_lookup(src, 0, 0, 13732 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 13733 0, NULL, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 13734 13735 if (src_ire != NULL) { 13736 /* 13737 * The source is directly connected. 13738 * Just copy the ip header (which is 13739 * in the first mblk) 13740 */ 13741 mp1 = copyb(mp); 13742 if (mp1 != NULL) { 13743 icmp_send_redirect(WR(q), mp1, 13744 ire->ire_gateway_addr); 13745 } 13746 ire_refrele(src_ire); 13747 } 13748 } 13749 } 13750 13751 dev_q = ire->ire_stq->q_next; 13752 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13753 BUMP_MIB(&ip_mib, ipInDiscards); 13754 freemsg(mp); 13755 return; 13756 } 13757 13758 ip_rput_forward(ire, ipha, mp, ill); 13759 return; 13760 13761 drop_pkt: 13762 ip2dbg(("ip_rput_forward: drop pkt\n")); 13763 freemsg(mp); 13764 } 13765 13766 ire_t * 13767 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13768 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13769 { 13770 queue_t *q; 13771 uint16_t hcksumflags; 13772 13773 q = *qp; 13774 13775 /* 13776 * Clear the indication that this may have hardware 13777 * checksum as we are not using it for forwarding. 13778 */ 13779 hcksumflags = DB_CKSUMFLAGS(mp); 13780 DB_CKSUMFLAGS(mp) = 0; 13781 13782 /* 13783 * Directed broadcast forwarding: if the packet came in over a 13784 * different interface then it is routed out over we can forward it. 13785 */ 13786 if (ipha->ipha_protocol == IPPROTO_TCP) { 13787 ire_refrele(ire); 13788 freemsg(mp); 13789 BUMP_MIB(&ip_mib, ipInDiscards); 13790 return (NULL); 13791 } 13792 /* 13793 * For multicast we have set dst to be INADDR_BROADCAST 13794 * for delivering to all STREAMS. IRE_MARK_NORECV is really 13795 * only for broadcast packets. 13796 */ 13797 if (!CLASSD(ipha->ipha_dst)) { 13798 ire_t *new_ire; 13799 ipif_t *ipif; 13800 /* 13801 * For ill groups, as the switch duplicates broadcasts 13802 * across all the ports, we need to filter out and 13803 * send up only one copy. There is one copy for every 13804 * broadcast address on each ill. Thus, we look for a 13805 * specific IRE on this ill and look at IRE_MARK_NORECV 13806 * later to see whether this ill is eligible to receive 13807 * them or not. ill_nominate_bcast_rcv() nominates only 13808 * one set of IREs for receiving. 13809 */ 13810 13811 ipif = ipif_get_next_ipif(NULL, ill); 13812 if (ipif == NULL) { 13813 ire_refrele(ire); 13814 freemsg(mp); 13815 BUMP_MIB(&ip_mib, ipInDiscards); 13816 return (NULL); 13817 } 13818 new_ire = ire_ctable_lookup(dst, 0, 0, 13819 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 13820 ipif_refrele(ipif); 13821 13822 if (new_ire != NULL) { 13823 if (new_ire->ire_marks & IRE_MARK_NORECV) { 13824 ire_refrele(ire); 13825 ire_refrele(new_ire); 13826 freemsg(mp); 13827 BUMP_MIB(&ip_mib, ipInDiscards); 13828 return (NULL); 13829 } 13830 /* 13831 * In the special case of multirouted broadcast 13832 * packets, we unconditionally need to "gateway" 13833 * them to the appropriate interface here. 13834 * In the normal case, this cannot happen, because 13835 * there is no broadcast IRE tagged with the 13836 * RTF_MULTIRT flag. 13837 */ 13838 if (new_ire->ire_flags & RTF_MULTIRT) { 13839 ire_refrele(new_ire); 13840 if (ire->ire_rfq != NULL) { 13841 q = ire->ire_rfq; 13842 *qp = q; 13843 } 13844 } else { 13845 ire_refrele(ire); 13846 ire = new_ire; 13847 } 13848 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 13849 if (!ip_g_forward_directed_bcast) { 13850 /* 13851 * Free the message if 13852 * ip_g_forward_directed_bcast is turned 13853 * off for non-local broadcast. 13854 */ 13855 ire_refrele(ire); 13856 freemsg(mp); 13857 BUMP_MIB(&ip_mib, ipInDiscards); 13858 return (NULL); 13859 } 13860 } else { 13861 /* 13862 * This CGTP packet successfully passed the 13863 * CGTP filter, but the related CGTP 13864 * broadcast IRE has not been found, 13865 * meaning that the redundant ipif is 13866 * probably down. However, if we discarded 13867 * this packet, its duplicate would be 13868 * filtered out by the CGTP filter so none 13869 * of them would get through. So we keep 13870 * going with this one. 13871 */ 13872 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 13873 if (ire->ire_rfq != NULL) { 13874 q = ire->ire_rfq; 13875 *qp = q; 13876 } 13877 } 13878 } 13879 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 13880 /* 13881 * Verify that there are not more then one 13882 * IRE_BROADCAST with this broadcast address which 13883 * has ire_stq set. 13884 * TODO: simplify, loop over all IRE's 13885 */ 13886 ire_t *ire1; 13887 int num_stq = 0; 13888 mblk_t *mp1; 13889 13890 /* Find the first one with ire_stq set */ 13891 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 13892 for (ire1 = ire; ire1 && 13893 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 13894 ire1 = ire1->ire_next) 13895 ; 13896 if (ire1) { 13897 ire_refrele(ire); 13898 ire = ire1; 13899 IRE_REFHOLD(ire); 13900 } 13901 13902 /* Check if there are additional ones with stq set */ 13903 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 13904 if (ire->ire_addr != ire1->ire_addr) 13905 break; 13906 if (ire1->ire_stq) { 13907 num_stq++; 13908 break; 13909 } 13910 } 13911 rw_exit(&ire->ire_bucket->irb_lock); 13912 if (num_stq == 1 && ire->ire_stq != NULL) { 13913 ip1dbg(("ip_rput_process_broadcast: directed " 13914 "broadcast to 0x%x\n", 13915 ntohl(ire->ire_addr))); 13916 mp1 = copymsg(mp); 13917 if (mp1) { 13918 switch (ipha->ipha_protocol) { 13919 case IPPROTO_UDP: 13920 ip_udp_input(q, mp1, ipha, ire, ill); 13921 break; 13922 default: 13923 ip_proto_input(q, mp1, ipha, ire, ill); 13924 break; 13925 } 13926 } 13927 /* 13928 * Adjust ttl to 2 (1+1 - the forward engine 13929 * will decrement it by one. 13930 */ 13931 if (ip_csum_hdr(ipha)) { 13932 BUMP_MIB(&ip_mib, ipInCksumErrs); 13933 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 13934 freemsg(mp); 13935 ire_refrele(ire); 13936 return (NULL); 13937 } 13938 ipha->ipha_ttl = ip_broadcast_ttl + 1; 13939 ipha->ipha_hdr_checksum = 0; 13940 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 13941 ip_rput_process_forward(q, mp, ire, ipha, 13942 ill, ll_multicast); 13943 ire_refrele(ire); 13944 return (NULL); 13945 } 13946 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 13947 ntohl(ire->ire_addr))); 13948 } 13949 13950 13951 /* Restore any hardware checksum flags */ 13952 DB_CKSUMFLAGS(mp) = hcksumflags; 13953 return (ire); 13954 } 13955 13956 /* ARGSUSED */ 13957 static boolean_t 13958 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 13959 int *ll_multicast, ipaddr_t *dstp) 13960 { 13961 /* 13962 * Forward packets only if we have joined the allmulti 13963 * group on this interface. 13964 */ 13965 if (ip_g_mrouter && ill->ill_join_allmulti) { 13966 int retval; 13967 13968 /* 13969 * Clear the indication that this may have hardware 13970 * checksum as we are not using it. 13971 */ 13972 DB_CKSUMFLAGS(mp) = 0; 13973 retval = ip_mforward(ill, ipha, mp); 13974 /* ip_mforward updates mib variables if needed */ 13975 /* clear b_prev - used by ip_mroute_decap */ 13976 mp->b_prev = NULL; 13977 13978 switch (retval) { 13979 case 0: 13980 /* 13981 * pkt is okay and arrived on phyint. 13982 * 13983 * If we are running as a multicast router 13984 * we need to see all IGMP and/or PIM packets. 13985 */ 13986 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 13987 (ipha->ipha_protocol == IPPROTO_PIM)) { 13988 goto done; 13989 } 13990 break; 13991 case -1: 13992 /* pkt is mal-formed, toss it */ 13993 goto drop_pkt; 13994 case 1: 13995 /* pkt is okay and arrived on a tunnel */ 13996 /* 13997 * If we are running a multicast router 13998 * we need to see all igmp packets. 13999 */ 14000 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14001 *dstp = INADDR_BROADCAST; 14002 *ll_multicast = 1; 14003 return (B_FALSE); 14004 } 14005 14006 goto drop_pkt; 14007 } 14008 } 14009 14010 ILM_WALKER_HOLD(ill); 14011 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14012 /* 14013 * This might just be caused by the fact that 14014 * multiple IP Multicast addresses map to the same 14015 * link layer multicast - no need to increment counter! 14016 */ 14017 ILM_WALKER_RELE(ill); 14018 freemsg(mp); 14019 return (B_TRUE); 14020 } 14021 ILM_WALKER_RELE(ill); 14022 done: 14023 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14024 /* 14025 * This assumes the we deliver to all streams for multicast 14026 * and broadcast packets. 14027 */ 14028 *dstp = INADDR_BROADCAST; 14029 *ll_multicast = 1; 14030 return (B_FALSE); 14031 drop_pkt: 14032 ip2dbg(("ip_rput: drop pkt\n")); 14033 freemsg(mp); 14034 return (B_TRUE); 14035 } 14036 14037 static boolean_t 14038 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14039 int *ll_multicast, mblk_t **mpp) 14040 { 14041 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14042 boolean_t must_copy = B_FALSE; 14043 struct iocblk *iocp; 14044 ipha_t *ipha; 14045 14046 #define rptr ((uchar_t *)ipha) 14047 14048 first_mp = *first_mpp; 14049 mp = *mpp; 14050 14051 ASSERT(first_mp == mp); 14052 14053 /* 14054 * if db_ref > 1 then copymsg and free original. Packet may be 14055 * changed and do not want other entity who has a reference to this 14056 * message to trip over the changes. This is a blind change because 14057 * trying to catch all places that might change packet is too 14058 * difficult (since it may be a module above this one) 14059 * 14060 * This corresponds to the non-fast path case. We walk down the full 14061 * chain in this case, and check the db_ref count of all the dblks, 14062 * and do a copymsg if required. It is possible that the db_ref counts 14063 * of the data blocks in the mblk chain can be different. 14064 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14065 * count of 1, followed by a M_DATA block with a ref count of 2, if 14066 * 'snoop' is running. 14067 */ 14068 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14069 if (mp1->b_datap->db_ref > 1) { 14070 must_copy = B_TRUE; 14071 break; 14072 } 14073 } 14074 14075 if (must_copy) { 14076 mp1 = copymsg(mp); 14077 if (mp1 == NULL) { 14078 for (mp1 = mp; mp1 != NULL; 14079 mp1 = mp1->b_cont) { 14080 mp1->b_next = NULL; 14081 mp1->b_prev = NULL; 14082 } 14083 freemsg(mp); 14084 BUMP_MIB(&ip_mib, ipInDiscards); 14085 return (B_TRUE); 14086 } 14087 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14088 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14089 /* Copy b_prev - used by ip_mroute_decap */ 14090 to_mp->b_prev = from_mp->b_prev; 14091 from_mp->b_prev = NULL; 14092 } 14093 *first_mpp = first_mp = mp1; 14094 freemsg(mp); 14095 mp = mp1; 14096 *mpp = mp1; 14097 } 14098 14099 ipha = (ipha_t *)mp->b_rptr; 14100 14101 /* 14102 * previous code has a case for M_DATA. 14103 * We want to check how that happens. 14104 */ 14105 ASSERT(first_mp->b_datap->db_type != M_DATA); 14106 switch (first_mp->b_datap->db_type) { 14107 case M_PROTO: 14108 case M_PCPROTO: 14109 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14110 DL_UNITDATA_IND) { 14111 /* Go handle anything other than data elsewhere. */ 14112 ip_rput_dlpi(q, mp); 14113 return (B_TRUE); 14114 } 14115 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14116 /* Ditch the DLPI header. */ 14117 mp1 = mp->b_cont; 14118 ASSERT(first_mp == mp); 14119 *first_mpp = mp1; 14120 freeb(mp); 14121 *mpp = mp1; 14122 return (B_FALSE); 14123 case M_IOCACK: 14124 ip1dbg(("got iocack ")); 14125 iocp = (struct iocblk *)mp->b_rptr; 14126 switch (iocp->ioc_cmd) { 14127 case DL_IOC_HDR_INFO: 14128 ill = (ill_t *)q->q_ptr; 14129 ill_fastpath_ack(ill, mp); 14130 return (B_TRUE); 14131 case SIOCSTUNPARAM: 14132 case OSIOCSTUNPARAM: 14133 /* Go through qwriter_ip */ 14134 break; 14135 case SIOCGTUNPARAM: 14136 case OSIOCGTUNPARAM: 14137 ip_rput_other(NULL, q, mp, NULL); 14138 return (B_TRUE); 14139 default: 14140 putnext(q, mp); 14141 return (B_TRUE); 14142 } 14143 /* FALLTHRU */ 14144 case M_ERROR: 14145 case M_HANGUP: 14146 /* 14147 * Since this is on the ill stream we unconditionally 14148 * bump up the refcount 14149 */ 14150 ill_refhold(ill); 14151 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14152 B_FALSE); 14153 return (B_TRUE); 14154 case M_CTL: 14155 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14156 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14157 IPHADA_M_CTL)) { 14158 /* 14159 * It's an IPsec accelerated packet. 14160 * Make sure that the ill from which we received the 14161 * packet has enabled IPsec hardware acceleration. 14162 */ 14163 if (!(ill->ill_capabilities & 14164 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14165 /* IPsec kstats: bean counter */ 14166 freemsg(mp); 14167 return (B_TRUE); 14168 } 14169 14170 /* 14171 * Make mp point to the mblk following the M_CTL, 14172 * then process according to type of mp. 14173 * After this processing, first_mp will point to 14174 * the data-attributes and mp to the pkt following 14175 * the M_CTL. 14176 */ 14177 mp = first_mp->b_cont; 14178 if (mp == NULL) { 14179 freemsg(first_mp); 14180 return (B_TRUE); 14181 } 14182 /* 14183 * A Hardware Accelerated packet can only be M_DATA 14184 * ESP or AH packet. 14185 */ 14186 if (mp->b_datap->db_type != M_DATA) { 14187 /* non-M_DATA IPsec accelerated packet */ 14188 IPSECHW_DEBUG(IPSECHW_PKT, 14189 ("non-M_DATA IPsec accelerated pkt\n")); 14190 freemsg(first_mp); 14191 return (B_TRUE); 14192 } 14193 ipha = (ipha_t *)mp->b_rptr; 14194 if (ipha->ipha_protocol != IPPROTO_AH && 14195 ipha->ipha_protocol != IPPROTO_ESP) { 14196 IPSECHW_DEBUG(IPSECHW_PKT, 14197 ("non-M_DATA IPsec accelerated pkt\n")); 14198 freemsg(first_mp); 14199 return (B_TRUE); 14200 } 14201 *mpp = mp; 14202 return (B_FALSE); 14203 } 14204 putnext(q, mp); 14205 return (B_TRUE); 14206 case M_FLUSH: 14207 if (*mp->b_rptr & FLUSHW) { 14208 *mp->b_rptr &= ~FLUSHR; 14209 qreply(q, mp); 14210 return (B_TRUE); 14211 } 14212 freemsg(mp); 14213 return (B_TRUE); 14214 case M_IOCNAK: 14215 ip1dbg(("got iocnak ")); 14216 iocp = (struct iocblk *)mp->b_rptr; 14217 switch (iocp->ioc_cmd) { 14218 case DL_IOC_HDR_INFO: 14219 case SIOCSTUNPARAM: 14220 case OSIOCSTUNPARAM: 14221 /* 14222 * Since this is on the ill stream we unconditionally 14223 * bump up the refcount 14224 */ 14225 ill_refhold(ill); 14226 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14227 CUR_OP, B_FALSE); 14228 return (B_TRUE); 14229 case SIOCGTUNPARAM: 14230 case OSIOCGTUNPARAM: 14231 ip_rput_other(NULL, q, mp, NULL); 14232 return (B_TRUE); 14233 default: 14234 break; 14235 } 14236 /* FALLTHRU */ 14237 default: 14238 putnext(q, mp); 14239 return (B_TRUE); 14240 } 14241 } 14242 14243 /* Read side put procedure. Packets coming from the wire arrive here. */ 14244 void 14245 ip_rput(queue_t *q, mblk_t *mp) 14246 { 14247 ill_t *ill; 14248 mblk_t *dmp = NULL; 14249 14250 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14251 14252 ill = (ill_t *)q->q_ptr; 14253 14254 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14255 union DL_primitives *dl; 14256 14257 /* 14258 * Things are opening or closing. Only accept DLPI control 14259 * messages. In the open case, the ill->ill_ipif has not yet 14260 * been created. In the close case, things hanging off the 14261 * ill could have been freed already. In either case it 14262 * may not be safe to proceed further. 14263 */ 14264 14265 dl = (union DL_primitives *)mp->b_rptr; 14266 if ((mp->b_datap->db_type != M_PCPROTO) || 14267 (dl->dl_primitive == DL_UNITDATA_IND)) { 14268 /* 14269 * Also SIOC[GS]TUN* ioctls can come here. 14270 */ 14271 inet_freemsg(mp); 14272 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14273 "ip_input_end: q %p (%S)", q, "uninit"); 14274 return; 14275 } 14276 } 14277 14278 /* 14279 * if db_ref > 1 then copymsg and free original. Packet may be 14280 * changed and we do not want the other entity who has a reference to 14281 * this message to trip over the changes. This is a blind change because 14282 * trying to catch all places that might change the packet is too 14283 * difficult. 14284 * 14285 * This corresponds to the fast path case, where we have a chain of 14286 * M_DATA mblks. We check the db_ref count of only the 1st data block 14287 * in the mblk chain. There doesn't seem to be a reason why a device 14288 * driver would send up data with varying db_ref counts in the mblk 14289 * chain. In any case the Fast path is a private interface, and our 14290 * drivers don't do such a thing. Given the above assumption, there is 14291 * no need to walk down the entire mblk chain (which could have a 14292 * potential performance problem) 14293 */ 14294 if (mp->b_datap->db_ref > 1) { 14295 mblk_t *mp1; 14296 boolean_t adjusted = B_FALSE; 14297 IP_STAT(ip_db_ref); 14298 14299 /* 14300 * The IP_RECVSLLA option depends on having the link layer 14301 * header. First check that: 14302 * a> the underlying device is of type ether, since this 14303 * option is currently supported only over ethernet. 14304 * b> there is enough room to copy over the link layer header. 14305 * 14306 * Once the checks are done, adjust rptr so that the link layer 14307 * header will be copied via copymsg. Note that, IFT_ETHER may 14308 * be returned by some non-ethernet drivers but in this case the 14309 * second check will fail. 14310 */ 14311 if (ill->ill_type == IFT_ETHER && 14312 (mp->b_rptr - mp->b_datap->db_base) >= 14313 sizeof (struct ether_header)) { 14314 mp->b_rptr -= sizeof (struct ether_header); 14315 adjusted = B_TRUE; 14316 } 14317 mp1 = copymsg(mp); 14318 if (mp1 == NULL) { 14319 mp->b_next = NULL; 14320 /* clear b_prev - used by ip_mroute_decap */ 14321 mp->b_prev = NULL; 14322 freemsg(mp); 14323 BUMP_MIB(&ip_mib, ipInDiscards); 14324 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14325 "ip_rput_end: q %p (%S)", q, "copymsg"); 14326 return; 14327 } 14328 if (adjusted) { 14329 /* 14330 * Copy is done. Restore the pointer in the _new_ mblk 14331 */ 14332 mp1->b_rptr += sizeof (struct ether_header); 14333 } 14334 /* Copy b_prev - used by ip_mroute_decap */ 14335 mp1->b_prev = mp->b_prev; 14336 mp->b_prev = NULL; 14337 freemsg(mp); 14338 mp = mp1; 14339 } 14340 if (DB_TYPE(mp) == M_DATA) { 14341 dmp = mp; 14342 } else if (DB_TYPE(mp) == M_PROTO && 14343 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14344 dmp = mp->b_cont; 14345 } 14346 if (dmp != NULL) { 14347 /* 14348 * IP header ptr not aligned? 14349 * OR IP header not complete in first mblk 14350 */ 14351 if (!OK_32PTR(dmp->b_rptr) || 14352 (dmp->b_wptr - dmp->b_rptr) < IP_SIMPLE_HDR_LENGTH) { 14353 if (!ip_check_and_align_header(q, dmp)) 14354 return; 14355 } 14356 } 14357 14358 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14359 "ip_rput_end: q %p (%S)", q, "end"); 14360 14361 ip_input(ill, NULL, mp, 0); 14362 } 14363 14364 /* 14365 * Direct read side procedure capable of dealing with chains. GLDv3 based 14366 * drivers call this function directly with mblk chains while STREAMS 14367 * read side procedure ip_rput() calls this for single packet with ip_ring 14368 * set to NULL to process one packet at a time. 14369 * 14370 * The ill will always be valid if this function is called directly from 14371 * the driver. 14372 */ 14373 /* ARGSUSED */ 14374 void 14375 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 14376 { 14377 ipaddr_t dst = NULL; 14378 ipaddr_t prev_dst; 14379 ire_t *ire = NULL; 14380 ipha_t *ipha; 14381 uint_t pkt_len; 14382 ssize_t len; 14383 uint_t opt_len; 14384 int ll_multicast; 14385 int cgtp_flt_pkt; 14386 queue_t *q = ill->ill_rq; 14387 squeue_t *curr_sqp = NULL; 14388 mblk_t *head = NULL; 14389 mblk_t *tail = NULL; 14390 mblk_t *first_mp; 14391 mblk_t *mp; 14392 int cnt = 0; 14393 14394 ASSERT(mp_chain != NULL); 14395 ASSERT(ill != NULL); 14396 14397 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14398 14399 #define rptr ((uchar_t *)ipha) 14400 14401 while (mp_chain != NULL) { 14402 first_mp = mp = mp_chain; 14403 mp_chain = mp_chain->b_next; 14404 mp->b_next = NULL; 14405 ll_multicast = 0; 14406 14407 /* 14408 * We do ire caching from one iteration to 14409 * another. In the event the packet chain contains 14410 * all packets from the same dst, this caching saves 14411 * an ire_cache_lookup for each of the succeeding 14412 * packets in a packet chain. 14413 */ 14414 prev_dst = dst; 14415 14416 /* 14417 * ip_input fast path 14418 */ 14419 14420 /* mblk type is not M_DATA */ 14421 if (mp->b_datap->db_type != M_DATA) { 14422 if (ip_rput_process_notdata(q, &first_mp, ill, 14423 &ll_multicast, &mp)) 14424 continue; 14425 } 14426 14427 /* Make sure its an M_DATA and that its aligned */ 14428 ASSERT(mp->b_datap->db_type == M_DATA); 14429 ASSERT(mp->b_datap->db_ref == 1 && OK_32PTR(mp->b_rptr)); 14430 14431 ipha = (ipha_t *)mp->b_rptr; 14432 len = mp->b_wptr - rptr; 14433 14434 BUMP_MIB(&ip_mib, ipInReceives); 14435 14436 14437 /* multiple mblk or too short */ 14438 pkt_len = ntohs(ipha->ipha_length); 14439 len -= pkt_len; 14440 if (len != 0) { 14441 /* 14442 * Make sure we have data length consistent 14443 * with the IP header. 14444 */ 14445 if (mp->b_cont == NULL) { 14446 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14447 BUMP_MIB(&ip_mib, ipInHdrErrors); 14448 ip2dbg(("ip_input: drop pkt\n")); 14449 freemsg(mp); 14450 continue; 14451 } 14452 mp->b_wptr = rptr + pkt_len; 14453 } else if (len += msgdsize(mp->b_cont)) { 14454 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14455 BUMP_MIB(&ip_mib, ipInHdrErrors); 14456 ip2dbg(("ip_input: drop pkt\n")); 14457 freemsg(mp); 14458 continue; 14459 } 14460 (void) adjmsg(mp, -len); 14461 IP_STAT(ip_multimblk3); 14462 } 14463 } 14464 14465 /* Obtain the dst of the current packet */ 14466 dst = ipha->ipha_dst; 14467 14468 if (IP_LOOPBACK_ADDR(dst) || 14469 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14470 BUMP_MIB(&ip_mib, ipInAddrErrors); 14471 cmn_err(CE_CONT, "dst %X src %X\n", 14472 dst, ipha->ipha_src); 14473 freemsg(mp); 14474 continue; 14475 } 14476 14477 /* 14478 * Attach any necessary label information to 14479 * this packet 14480 */ 14481 if (is_system_labeled() && 14482 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14483 BUMP_MIB(&ip_mib, ipInDiscards); 14484 freemsg(mp); 14485 continue; 14486 } 14487 14488 /* 14489 * Reuse the cached ire only if the ipha_dst of the previous 14490 * packet is the same as the current packet AND it is not 14491 * INADDR_ANY. 14492 */ 14493 if (!(dst == prev_dst && dst != INADDR_ANY) && 14494 (ire != NULL)) { 14495 ire_refrele(ire); 14496 ire = NULL; 14497 } 14498 opt_len = ipha->ipha_version_and_hdr_length - 14499 IP_SIMPLE_HDR_VERSION; 14500 14501 /* 14502 * Check to see if we can take the fastpath. 14503 * That is possible if the following conditions are met 14504 * o Tsol disabled 14505 * o CGTP disabled 14506 * o ipp_action_count is 0 14507 * o Mobile IP not running 14508 * o no options in the packet 14509 * o not a RSVP packet 14510 * o not a multicast packet 14511 */ 14512 if (!is_system_labeled() && 14513 !ip_cgtp_filter && ipp_action_count == 0 && 14514 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 14515 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14516 !ll_multicast && !CLASSD(dst)) { 14517 if (ire == NULL) 14518 ire = ire_cache_lookup(dst, ALL_ZONES, NULL); 14519 14520 /* incoming packet is for forwarding */ 14521 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14522 ire = ip_fast_forward(ire, dst, ill, mp); 14523 continue; 14524 } 14525 /* incoming packet is for local consumption */ 14526 if (ire->ire_type & IRE_LOCAL) 14527 goto local; 14528 } 14529 14530 /* 14531 * Disable ire caching for anything more complex 14532 * than the simple fast path case we checked for above. 14533 */ 14534 if (ire != NULL) { 14535 ire_refrele(ire); 14536 ire = NULL; 14537 } 14538 14539 /* Full-blown slow path */ 14540 if (opt_len != 0) { 14541 if (len != 0) 14542 IP_STAT(ip_multimblk4); 14543 else 14544 IP_STAT(ip_ipoptions); 14545 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 14546 continue; 14547 } 14548 14549 /* 14550 * Invoke the CGTP (multirouting) filtering module to process 14551 * the incoming packet. Packets identified as duplicates 14552 * must be discarded. Filtering is active only if the 14553 * the ip_cgtp_filter ndd variable is non-zero. 14554 */ 14555 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 14556 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 14557 cgtp_flt_pkt = 14558 ip_cgtp_filter_ops->cfo_filter(q, mp); 14559 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 14560 freemsg(first_mp); 14561 continue; 14562 } 14563 } 14564 14565 /* 14566 * If rsvpd is running, let RSVP daemon handle its processing 14567 * and forwarding of RSVP multicast/unicast packets. 14568 * If rsvpd is not running but mrouted is running, RSVP 14569 * multicast packets are forwarded as multicast traffic 14570 * and RSVP unicast packets are forwarded by unicast router. 14571 * If neither rsvpd nor mrouted is running, RSVP multicast 14572 * packets are not forwarded, but the unicast packets are 14573 * forwarded like unicast traffic. 14574 */ 14575 if (ipha->ipha_protocol == IPPROTO_RSVP && 14576 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 14577 /* RSVP packet and rsvpd running. Treat as ours */ 14578 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 14579 /* 14580 * This assumes that we deliver to all streams for 14581 * multicast and broadcast packets. 14582 * We have to force ll_multicast to 1 to handle the 14583 * M_DATA messages passed in from ip_mroute_decap. 14584 */ 14585 dst = INADDR_BROADCAST; 14586 ll_multicast = 1; 14587 } else if (CLASSD(dst)) { 14588 /* packet is multicast */ 14589 mp->b_next = NULL; 14590 if (ip_rput_process_multicast(q, mp, ill, ipha, 14591 &ll_multicast, &dst)) 14592 continue; 14593 } 14594 14595 14596 /* 14597 * Check if the packet is coming from the Mobile IP 14598 * forward tunnel interface 14599 */ 14600 if (ill->ill_srcif_refcnt > 0) { 14601 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 14602 NULL, ill, MATCH_IRE_TYPE); 14603 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 14604 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 14605 14606 /* We need to resolve the link layer info */ 14607 ire_refrele(ire); 14608 ire = NULL; 14609 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 14610 ll_multicast, dst); 14611 continue; 14612 } 14613 } 14614 14615 if (ire == NULL) { 14616 ire = ire_cache_lookup(dst, ALL_ZONES, 14617 MBLK_GETLABEL(mp)); 14618 } 14619 14620 /* 14621 * If mipagent is running and reverse tunnel is created as per 14622 * mobile node request, then any packet coming through the 14623 * incoming interface from the mobile-node, should be reverse 14624 * tunneled to it's home agent except those that are destined 14625 * to foreign agent only. 14626 * This needs source address based ire lookup. The routing 14627 * entries for source address based lookup are only created by 14628 * mipagent program only when a reverse tunnel is created. 14629 * Reference : RFC2002, RFC2344 14630 */ 14631 if (ill->ill_mrtun_refcnt > 0) { 14632 ipaddr_t srcaddr; 14633 ire_t *tmp_ire; 14634 14635 tmp_ire = ire; /* Save, we might need it later */ 14636 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14637 ire->ire_type != IRE_BROADCAST)) { 14638 srcaddr = ipha->ipha_src; 14639 ire = ire_mrtun_lookup(srcaddr, ill); 14640 if (ire != NULL) { 14641 /* 14642 * Should not be getting iphada packet 14643 * here. we should only get those for 14644 * IRE_LOCAL traffic, excluded above. 14645 * Fail-safe (drop packet) in the event 14646 * hardware is misbehaving. 14647 */ 14648 if (first_mp != mp) { 14649 /* IPsec KSTATS: beancount me */ 14650 freemsg(first_mp); 14651 } else { 14652 /* 14653 * This packet must be forwarded 14654 * to Reverse Tunnel 14655 */ 14656 ip_mrtun_forward(ire, ill, mp); 14657 } 14658 ire_refrele(ire); 14659 ire = NULL; 14660 if (tmp_ire != NULL) { 14661 ire_refrele(tmp_ire); 14662 tmp_ire = NULL; 14663 } 14664 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14665 "ip_input_end: q %p (%S)", 14666 q, "uninit"); 14667 continue; 14668 } 14669 } 14670 /* 14671 * If this packet is from a non-mobilenode or a 14672 * mobile-node which does not request reverse 14673 * tunnel service 14674 */ 14675 ire = tmp_ire; 14676 } 14677 14678 14679 /* 14680 * If we reach here that means the incoming packet satisfies 14681 * one of the following conditions: 14682 * - packet is from a mobile node which does not request 14683 * reverse tunnel 14684 * - packet is from a non-mobile node, which is the most 14685 * common case 14686 * - packet is from a reverse tunnel enabled mobile node 14687 * and destined to foreign agent only 14688 */ 14689 14690 if (ire == NULL) { 14691 /* 14692 * No IRE for this destination, so it can't be for us. 14693 * Unless we are forwarding, drop the packet. 14694 * We have to let source routed packets through 14695 * since we don't yet know if they are 'ping -l' 14696 * packets i.e. if they will go out over the 14697 * same interface as they came in on. 14698 */ 14699 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14700 if (ire == NULL) 14701 continue; 14702 } 14703 14704 /* 14705 * Broadcast IRE may indicate either broadcast or 14706 * multicast packet 14707 */ 14708 if (ire->ire_type == IRE_BROADCAST) { 14709 /* 14710 * Skip broadcast checks if packet is UDP multicast; 14711 * we'd rather not enter ip_rput_process_broadcast() 14712 * unless the packet is broadcast for real, since 14713 * that routine is a no-op for multicast. 14714 */ 14715 if (ipha->ipha_protocol != IPPROTO_UDP || 14716 !CLASSD(ipha->ipha_dst)) { 14717 ire = ip_rput_process_broadcast(&q, mp, 14718 ire, ipha, ill, dst, cgtp_flt_pkt, 14719 ll_multicast); 14720 if (ire == NULL) 14721 continue; 14722 } 14723 } else if (ire->ire_stq != NULL) { 14724 /* fowarding? */ 14725 ip_rput_process_forward(q, mp, ire, ipha, ill, 14726 ll_multicast); 14727 /* ip_rput_process_forward consumed the packet */ 14728 continue; 14729 } 14730 14731 local: 14732 /* packet not for us */ 14733 if (ire->ire_rfq != q) { 14734 if (ip_rput_notforus(&q, mp, ire, ill)) 14735 continue; 14736 } 14737 14738 switch (ipha->ipha_protocol) { 14739 case IPPROTO_TCP: 14740 ASSERT(first_mp == mp); 14741 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14742 mp, 0, q, ip_ring)) != NULL) { 14743 if (curr_sqp == NULL) { 14744 curr_sqp = GET_SQUEUE(mp); 14745 ASSERT(cnt == 0); 14746 cnt++; 14747 head = tail = mp; 14748 } else if (curr_sqp == GET_SQUEUE(mp)) { 14749 ASSERT(tail != NULL); 14750 cnt++; 14751 tail->b_next = mp; 14752 tail = mp; 14753 } else { 14754 /* 14755 * A different squeue. Send the 14756 * chain for the previous squeue on 14757 * its way. This shouldn't happen 14758 * often unless interrupt binding 14759 * changes. 14760 */ 14761 IP_STAT(ip_input_multi_squeue); 14762 squeue_enter_chain(curr_sqp, head, 14763 tail, cnt, SQTAG_IP_INPUT); 14764 curr_sqp = GET_SQUEUE(mp); 14765 head = mp; 14766 tail = mp; 14767 cnt = 1; 14768 } 14769 } 14770 continue; 14771 case IPPROTO_UDP: 14772 ASSERT(first_mp == mp); 14773 ip_udp_input(q, mp, ipha, ire, ill); 14774 continue; 14775 case IPPROTO_SCTP: 14776 ASSERT(first_mp == mp); 14777 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 14778 q, dst); 14779 /* ire has been released by ip_sctp_input */ 14780 ire = NULL; 14781 continue; 14782 default: 14783 ip_proto_input(q, first_mp, ipha, ire, ill); 14784 continue; 14785 } 14786 } 14787 14788 if (ire != NULL) 14789 ire_refrele(ire); 14790 14791 if (head != NULL) 14792 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 14793 14794 /* 14795 * This code is there just to make netperf/ttcp look good. 14796 * 14797 * Its possible that after being in polling mode (and having cleared 14798 * the backlog), squeues have turned the interrupt frequency higher 14799 * to improve latency at the expense of more CPU utilization (less 14800 * packets per interrupts or more number of interrupts). Workloads 14801 * like ttcp/netperf do manage to tickle polling once in a while 14802 * but for the remaining time, stay in higher interrupt mode since 14803 * their packet arrival rate is pretty uniform and this shows up 14804 * as higher CPU utilization. Since people care about CPU utilization 14805 * while running netperf/ttcp, turn the interrupt frequency back to 14806 * normal/default if polling has not been used in ip_poll_normal_ticks. 14807 */ 14808 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 14809 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 14810 ip_ring->rr_poll_state &= ~ILL_POLLING; 14811 ip_ring->rr_blank(ip_ring->rr_handle, 14812 ip_ring->rr_normal_blank_time, 14813 ip_ring->rr_normal_pkt_cnt); 14814 } 14815 } 14816 14817 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14818 "ip_input_end: q %p (%S)", q, "end"); 14819 #undef rptr 14820 } 14821 14822 static void 14823 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 14824 t_uscalar_t err) 14825 { 14826 if (dl_err == DL_SYSERR) { 14827 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14828 "%s: %s failed: DL_SYSERR (errno %u)\n", 14829 ill->ill_name, dlpi_prim_str(prim), err); 14830 return; 14831 } 14832 14833 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14834 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 14835 dlpi_err_str(dl_err)); 14836 } 14837 14838 /* 14839 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 14840 * than DL_UNITDATA_IND messages. If we need to process this message 14841 * exclusively, we call qwriter_ip, in which case we also need to call 14842 * ill_refhold before that, since qwriter_ip does an ill_refrele. 14843 */ 14844 void 14845 ip_rput_dlpi(queue_t *q, mblk_t *mp) 14846 { 14847 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14848 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14849 ill_t *ill; 14850 14851 ip1dbg(("ip_rput_dlpi")); 14852 ill = (ill_t *)q->q_ptr; 14853 switch (dloa->dl_primitive) { 14854 case DL_ERROR_ACK: 14855 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 14856 "%s (0x%x), unix %u\n", ill->ill_name, 14857 dlpi_prim_str(dlea->dl_error_primitive), 14858 dlea->dl_error_primitive, 14859 dlpi_err_str(dlea->dl_errno), 14860 dlea->dl_errno, 14861 dlea->dl_unix_errno)); 14862 switch (dlea->dl_error_primitive) { 14863 case DL_UNBIND_REQ: 14864 mutex_enter(&ill->ill_lock); 14865 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14866 cv_signal(&ill->ill_cv); 14867 mutex_exit(&ill->ill_lock); 14868 /* FALLTHRU */ 14869 case DL_NOTIFY_REQ: 14870 case DL_ATTACH_REQ: 14871 case DL_DETACH_REQ: 14872 case DL_INFO_REQ: 14873 case DL_BIND_REQ: 14874 case DL_ENABMULTI_REQ: 14875 case DL_PHYS_ADDR_REQ: 14876 case DL_CAPABILITY_REQ: 14877 case DL_CONTROL_REQ: 14878 /* 14879 * Refhold the ill to match qwriter_ip which does a 14880 * refrele. Since this is on the ill stream we 14881 * unconditionally bump up the refcount without 14882 * checking for ILL_CAN_LOOKUP 14883 */ 14884 ill_refhold(ill); 14885 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14886 CUR_OP, B_FALSE); 14887 return; 14888 case DL_DISABMULTI_REQ: 14889 freemsg(mp); /* Don't want to pass this up */ 14890 return; 14891 default: 14892 break; 14893 } 14894 ip_dlpi_error(ill, dlea->dl_error_primitive, 14895 dlea->dl_errno, dlea->dl_unix_errno); 14896 freemsg(mp); 14897 return; 14898 case DL_INFO_ACK: 14899 case DL_BIND_ACK: 14900 case DL_PHYS_ADDR_ACK: 14901 case DL_NOTIFY_ACK: 14902 case DL_CAPABILITY_ACK: 14903 case DL_CONTROL_ACK: 14904 /* 14905 * Refhold the ill to match qwriter_ip which does a refrele 14906 * Since this is on the ill stream we unconditionally 14907 * bump up the refcount without doing ILL_CAN_LOOKUP. 14908 */ 14909 ill_refhold(ill); 14910 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14911 CUR_OP, B_FALSE); 14912 return; 14913 case DL_NOTIFY_IND: 14914 ill_refhold(ill); 14915 /* 14916 * The DL_NOTIFY_IND is an asynchronous message that has no 14917 * relation to the current ioctl in progress (if any). Hence we 14918 * pass in NEW_OP in this case. 14919 */ 14920 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14921 NEW_OP, B_FALSE); 14922 return; 14923 case DL_OK_ACK: 14924 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 14925 dlpi_prim_str((int)dloa->dl_correct_primitive))); 14926 switch (dloa->dl_correct_primitive) { 14927 case DL_UNBIND_REQ: 14928 mutex_enter(&ill->ill_lock); 14929 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14930 cv_signal(&ill->ill_cv); 14931 mutex_exit(&ill->ill_lock); 14932 /* FALLTHRU */ 14933 case DL_ATTACH_REQ: 14934 case DL_DETACH_REQ: 14935 /* 14936 * Refhold the ill to match qwriter_ip which does a 14937 * refrele. Since this is on the ill stream we 14938 * unconditionally bump up the refcount 14939 */ 14940 ill_refhold(ill); 14941 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14942 CUR_OP, B_FALSE); 14943 return; 14944 case DL_ENABMULTI_REQ: 14945 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 14946 ill->ill_dlpi_multicast_state = IDMS_OK; 14947 break; 14948 14949 } 14950 break; 14951 default: 14952 break; 14953 } 14954 freemsg(mp); 14955 } 14956 14957 /* 14958 * Handling of DLPI messages that require exclusive access to the ipsq. 14959 * 14960 * Need to do ill_pending_mp_release on ioctl completion, which could 14961 * happen here. (along with mi_copy_done) 14962 */ 14963 /* ARGSUSED */ 14964 static void 14965 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14966 { 14967 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14968 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14969 int err = 0; 14970 ill_t *ill; 14971 ipif_t *ipif = NULL; 14972 mblk_t *mp1 = NULL; 14973 conn_t *connp = NULL; 14974 t_uscalar_t physaddr_req; 14975 mblk_t *mp_hw; 14976 union DL_primitives *dlp; 14977 boolean_t success; 14978 boolean_t ioctl_aborted = B_FALSE; 14979 boolean_t log = B_TRUE; 14980 14981 ip1dbg(("ip_rput_dlpi_writer ..")); 14982 ill = (ill_t *)q->q_ptr; 14983 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14984 14985 ASSERT(IAM_WRITER_ILL(ill)); 14986 14987 /* 14988 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 14989 * both are null or non-null. However we can assert that only 14990 * after grabbing the ipsq_lock. So we don't make any assertion 14991 * here and in other places in the code. 14992 */ 14993 ipif = ipsq->ipsq_pending_ipif; 14994 /* 14995 * The current ioctl could have been aborted by the user and a new 14996 * ioctl to bring up another ill could have started. We could still 14997 * get a response from the driver later. 14998 */ 14999 if (ipif != NULL && ipif->ipif_ill != ill) 15000 ioctl_aborted = B_TRUE; 15001 15002 switch (dloa->dl_primitive) { 15003 case DL_ERROR_ACK: 15004 switch (dlea->dl_error_primitive) { 15005 case DL_UNBIND_REQ: 15006 case DL_ATTACH_REQ: 15007 case DL_DETACH_REQ: 15008 case DL_INFO_REQ: 15009 ill_dlpi_done(ill, dlea->dl_error_primitive); 15010 break; 15011 case DL_NOTIFY_REQ: 15012 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15013 log = B_FALSE; 15014 break; 15015 case DL_PHYS_ADDR_REQ: 15016 /* 15017 * For IPv6 only, there are two additional 15018 * phys_addr_req's sent to the driver to get the 15019 * IPv6 token and lla. This allows IP to acquire 15020 * the hardware address format for a given interface 15021 * without having built in knowledge of the hardware 15022 * address. ill_phys_addr_pend keeps track of the last 15023 * DL_PAR sent so we know which response we are 15024 * dealing with. ill_dlpi_done will update 15025 * ill_phys_addr_pend when it sends the next req. 15026 * We don't complete the IOCTL until all three DL_PARs 15027 * have been attempted, so set *_len to 0 and break. 15028 */ 15029 physaddr_req = ill->ill_phys_addr_pend; 15030 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15031 if (physaddr_req == DL_IPV6_TOKEN) { 15032 ill->ill_token_length = 0; 15033 log = B_FALSE; 15034 break; 15035 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15036 ill->ill_nd_lla_len = 0; 15037 log = B_FALSE; 15038 break; 15039 } 15040 /* 15041 * Something went wrong with the DL_PHYS_ADDR_REQ. 15042 * We presumably have an IOCTL hanging out waiting 15043 * for completion. Find it and complete the IOCTL 15044 * with the error noted. 15045 * However, ill_dl_phys was called on an ill queue 15046 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15047 * set. But the ioctl is known to be pending on ill_wq. 15048 */ 15049 if (!ill->ill_ifname_pending) 15050 break; 15051 ill->ill_ifname_pending = 0; 15052 if (!ioctl_aborted) 15053 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15054 if (mp1 != NULL) { 15055 /* 15056 * This operation (SIOCSLIFNAME) must have 15057 * happened on the ill. Assert there is no conn 15058 */ 15059 ASSERT(connp == NULL); 15060 q = ill->ill_wq; 15061 } 15062 break; 15063 case DL_BIND_REQ: 15064 ill_dlpi_done(ill, DL_BIND_REQ); 15065 if (ill->ill_ifname_pending) 15066 break; 15067 /* 15068 * Something went wrong with the bind. We presumably 15069 * have an IOCTL hanging out waiting for completion. 15070 * Find it, take down the interface that was coming 15071 * up, and complete the IOCTL with the error noted. 15072 */ 15073 if (!ioctl_aborted) 15074 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15075 if (mp1 != NULL) { 15076 /* 15077 * This operation (SIOCSLIFFLAGS) must have 15078 * happened from a conn. 15079 */ 15080 ASSERT(connp != NULL); 15081 q = CONNP_TO_WQ(connp); 15082 if (ill->ill_move_in_progress) { 15083 ILL_CLEAR_MOVE(ill); 15084 } 15085 (void) ipif_down(ipif, NULL, NULL); 15086 /* error is set below the switch */ 15087 } 15088 break; 15089 case DL_ENABMULTI_REQ: 15090 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15091 15092 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 15093 ill->ill_dlpi_multicast_state = IDMS_FAILED; 15094 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 15095 ipif_t *ipif; 15096 15097 log = B_FALSE; 15098 printf("ip: joining multicasts failed (%d)" 15099 " on %s - will use link layer " 15100 "broadcasts for multicast\n", 15101 dlea->dl_errno, ill->ill_name); 15102 15103 /* 15104 * Set up the multicast mapping alone. 15105 * writer, so ok to access ill->ill_ipif 15106 * without any lock. 15107 */ 15108 ipif = ill->ill_ipif; 15109 mutex_enter(&ill->ill_phyint->phyint_lock); 15110 ill->ill_phyint->phyint_flags |= 15111 PHYI_MULTI_BCAST; 15112 mutex_exit(&ill->ill_phyint->phyint_lock); 15113 15114 if (!ill->ill_isv6) { 15115 (void) ipif_arp_setup_multicast(ipif, 15116 NULL); 15117 } else { 15118 (void) ipif_ndp_setup_multicast(ipif, 15119 NULL); 15120 } 15121 } 15122 freemsg(mp); /* Don't want to pass this up */ 15123 return; 15124 case DL_CAPABILITY_REQ: 15125 case DL_CONTROL_REQ: 15126 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15127 "DL_CAPABILITY/CONTROL REQ\n")); 15128 ill_dlpi_done(ill, dlea->dl_error_primitive); 15129 ill->ill_capab_state = IDMS_FAILED; 15130 freemsg(mp); 15131 return; 15132 } 15133 /* 15134 * Note the error for IOCTL completion (mp1 is set when 15135 * ready to complete ioctl). If ill_ifname_pending_err is 15136 * set, an error occured during plumbing (ill_ifname_pending), 15137 * so we want to report that error. 15138 * 15139 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15140 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15141 * expected to get errack'd if the driver doesn't support 15142 * these flags (e.g. ethernet). log will be set to B_FALSE 15143 * if these error conditions are encountered. 15144 */ 15145 if (mp1 != NULL) { 15146 if (ill->ill_ifname_pending_err != 0) { 15147 err = ill->ill_ifname_pending_err; 15148 ill->ill_ifname_pending_err = 0; 15149 } else { 15150 err = dlea->dl_unix_errno ? 15151 dlea->dl_unix_errno : ENXIO; 15152 } 15153 /* 15154 * If we're plumbing an interface and an error hasn't already 15155 * been saved, set ill_ifname_pending_err to the error passed 15156 * up. Ignore the error if log is B_FALSE (see comment above). 15157 */ 15158 } else if (log && ill->ill_ifname_pending && 15159 ill->ill_ifname_pending_err == 0) { 15160 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15161 dlea->dl_unix_errno : ENXIO; 15162 } 15163 15164 if (log) 15165 ip_dlpi_error(ill, dlea->dl_error_primitive, 15166 dlea->dl_errno, dlea->dl_unix_errno); 15167 break; 15168 case DL_CAPABILITY_ACK: { 15169 boolean_t reneg_flag = B_FALSE; 15170 /* Call a routine to handle this one. */ 15171 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15172 /* 15173 * Check if the ACK is due to renegotiation case since we 15174 * will need to send a new CAPABILITY_REQ later. 15175 */ 15176 if (ill->ill_capab_state == IDMS_RENEG) { 15177 /* This is the ack for a renogiation case */ 15178 reneg_flag = B_TRUE; 15179 ill->ill_capab_state = IDMS_UNKNOWN; 15180 } 15181 ill_capability_ack(ill, mp); 15182 if (reneg_flag) 15183 ill_capability_probe(ill); 15184 break; 15185 } 15186 case DL_CONTROL_ACK: 15187 /* We treat all of these as "fire and forget" */ 15188 ill_dlpi_done(ill, DL_CONTROL_REQ); 15189 break; 15190 case DL_INFO_ACK: 15191 /* Call a routine to handle this one. */ 15192 ill_dlpi_done(ill, DL_INFO_REQ); 15193 ip_ll_subnet_defaults(ill, mp); 15194 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15195 return; 15196 case DL_BIND_ACK: 15197 /* 15198 * We should have an IOCTL waiting on this unless 15199 * sent by ill_dl_phys, in which case just return 15200 */ 15201 ill_dlpi_done(ill, DL_BIND_REQ); 15202 if (ill->ill_ifname_pending) 15203 break; 15204 15205 if (!ioctl_aborted) 15206 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15207 if (mp1 == NULL) 15208 break; 15209 ASSERT(connp != NULL); 15210 q = CONNP_TO_WQ(connp); 15211 15212 /* 15213 * We are exclusive. So nothing can change even after 15214 * we get the pending mp. If need be we can put it back 15215 * and restart, as in calling ipif_arp_up() below. 15216 */ 15217 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15218 15219 mutex_enter(&ill->ill_lock); 15220 ill->ill_dl_up = 1; 15221 mutex_exit(&ill->ill_lock); 15222 15223 /* 15224 * Now bring up the resolver; when that is complete, we'll 15225 * create IREs. Note that we intentionally mirror what 15226 * ipif_up() would have done, because we got here by way of 15227 * ill_dl_up(), which stopped ipif_up()'s processing. 15228 */ 15229 if (ill->ill_isv6) { 15230 /* 15231 * v6 interfaces. 15232 * Unlike ARP which has to do another bind 15233 * and attach, once we get here we are 15234 * done with NDP. Except in the case of 15235 * ILLF_XRESOLV, in which case we send an 15236 * AR_INTERFACE_UP to the external resolver. 15237 * If all goes well, the ioctl will complete 15238 * in ip_rput(). If there's an error, we 15239 * complete it here. 15240 */ 15241 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 15242 B_FALSE); 15243 if (err == 0) { 15244 if (ill->ill_flags & ILLF_XRESOLV) { 15245 mutex_enter(&connp->conn_lock); 15246 mutex_enter(&ill->ill_lock); 15247 success = ipsq_pending_mp_add( 15248 connp, ipif, q, mp1, 0); 15249 mutex_exit(&ill->ill_lock); 15250 mutex_exit(&connp->conn_lock); 15251 if (success) { 15252 err = ipif_resolver_up(ipif, 15253 Res_act_initial); 15254 if (err == EINPROGRESS) { 15255 freemsg(mp); 15256 return; 15257 } 15258 ASSERT(err != 0); 15259 mp1 = ipsq_pending_mp_get(ipsq, 15260 &connp); 15261 ASSERT(mp1 != NULL); 15262 } else { 15263 /* conn has started closing */ 15264 err = EINTR; 15265 } 15266 } else { /* Non XRESOLV interface */ 15267 (void) ipif_resolver_up(ipif, 15268 Res_act_initial); 15269 err = ipif_up_done_v6(ipif); 15270 } 15271 } 15272 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15273 /* 15274 * ARP and other v4 external resolvers. 15275 * Leave the pending mblk intact so that 15276 * the ioctl completes in ip_rput(). 15277 */ 15278 mutex_enter(&connp->conn_lock); 15279 mutex_enter(&ill->ill_lock); 15280 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15281 mutex_exit(&ill->ill_lock); 15282 mutex_exit(&connp->conn_lock); 15283 if (success) { 15284 err = ipif_resolver_up(ipif, Res_act_initial); 15285 if (err == EINPROGRESS) { 15286 freemsg(mp); 15287 return; 15288 } 15289 ASSERT(err != 0); 15290 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15291 } else { 15292 /* The conn has started closing */ 15293 err = EINTR; 15294 } 15295 } else { 15296 /* 15297 * This one is complete. Reply to pending ioctl. 15298 */ 15299 (void) ipif_resolver_up(ipif, Res_act_initial); 15300 err = ipif_up_done(ipif); 15301 } 15302 15303 if ((err == 0) && (ill->ill_up_ipifs)) { 15304 err = ill_up_ipifs(ill, q, mp1); 15305 if (err == EINPROGRESS) { 15306 freemsg(mp); 15307 return; 15308 } 15309 } 15310 15311 if (ill->ill_up_ipifs) { 15312 ill_group_cleanup(ill); 15313 } 15314 15315 break; 15316 case DL_NOTIFY_IND: { 15317 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15318 ire_t *ire; 15319 boolean_t need_ire_walk_v4 = B_FALSE; 15320 boolean_t need_ire_walk_v6 = B_FALSE; 15321 15322 /* 15323 * Change the address everywhere we need to. 15324 * What we're getting here is a link-level addr or phys addr. 15325 * The new addr is at notify + notify->dl_addr_offset 15326 * The address length is notify->dl_addr_length; 15327 */ 15328 switch (notify->dl_notification) { 15329 case DL_NOTE_PHYS_ADDR: 15330 mp_hw = copyb(mp); 15331 if (mp_hw == NULL) { 15332 err = ENOMEM; 15333 break; 15334 } 15335 dlp = (union DL_primitives *)mp_hw->b_rptr; 15336 /* 15337 * We currently don't support changing 15338 * the token via DL_NOTIFY_IND. 15339 * When we do support it, we have to consider 15340 * what the implications are with respect to 15341 * the token and the link local address. 15342 */ 15343 mutex_enter(&ill->ill_lock); 15344 if (dlp->notify_ind.dl_data == 15345 DL_IPV6_LINK_LAYER_ADDR) { 15346 if (ill->ill_nd_lla_mp != NULL) 15347 freemsg(ill->ill_nd_lla_mp); 15348 ill->ill_nd_lla_mp = mp_hw; 15349 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15350 dlp->notify_ind.dl_addr_offset; 15351 ill->ill_nd_lla_len = 15352 dlp->notify_ind.dl_addr_length - 15353 ABS(ill->ill_sap_length); 15354 mutex_exit(&ill->ill_lock); 15355 break; 15356 } else if (dlp->notify_ind.dl_data == 15357 DL_CURR_PHYS_ADDR) { 15358 if (ill->ill_phys_addr_mp != NULL) 15359 freemsg(ill->ill_phys_addr_mp); 15360 ill->ill_phys_addr_mp = mp_hw; 15361 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15362 dlp->notify_ind.dl_addr_offset; 15363 ill->ill_phys_addr_length = 15364 dlp->notify_ind.dl_addr_length - 15365 ABS(ill->ill_sap_length); 15366 if (ill->ill_isv6 && 15367 !(ill->ill_flags & ILLF_XRESOLV)) { 15368 if (ill->ill_nd_lla_mp != NULL) 15369 freemsg(ill->ill_nd_lla_mp); 15370 ill->ill_nd_lla_mp = copyb(mp_hw); 15371 ill->ill_nd_lla = (uchar_t *) 15372 ill->ill_nd_lla_mp->b_rptr + 15373 dlp->notify_ind.dl_addr_offset; 15374 ill->ill_nd_lla_len = 15375 ill->ill_phys_addr_length; 15376 } 15377 } 15378 mutex_exit(&ill->ill_lock); 15379 /* 15380 * Send out gratuitous arp request for our new 15381 * hardware address. 15382 */ 15383 for (ipif = ill->ill_ipif; ipif != NULL; 15384 ipif = ipif->ipif_next) { 15385 if (!(ipif->ipif_flags & IPIF_UP)) 15386 continue; 15387 if (ill->ill_isv6) { 15388 ipif_ndp_down(ipif); 15389 /* 15390 * Set B_TRUE to enable 15391 * ipif_ndp_up() to send out 15392 * unsolicited advertisements. 15393 */ 15394 err = ipif_ndp_up(ipif, 15395 &ipif->ipif_v6lcl_addr, 15396 B_TRUE); 15397 if (err) { 15398 ip1dbg(( 15399 "ip_rput_dlpi_writer: " 15400 "Failed to update ndp " 15401 "err %d\n", err)); 15402 } 15403 } else { 15404 /* 15405 * IPv4 ARP case 15406 * 15407 * Set Res_act_move, as we only want 15408 * ipif_resolver_up to send an 15409 * AR_ENTRY_ADD request up to 15410 * ARP. 15411 */ 15412 err = ipif_resolver_up(ipif, 15413 Res_act_move); 15414 if (err) { 15415 ip1dbg(( 15416 "ip_rput_dlpi_writer: " 15417 "Failed to update arp " 15418 "err %d\n", err)); 15419 } 15420 } 15421 } 15422 /* 15423 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 15424 * case so that all old fastpath information can be 15425 * purged from IRE caches. 15426 */ 15427 /* FALLTHRU */ 15428 case DL_NOTE_FASTPATH_FLUSH: 15429 /* 15430 * Any fastpath probe sent henceforth will get the 15431 * new fp mp. So we first delete any ires that are 15432 * waiting for the fastpath. Then walk all ires and 15433 * delete the ire or delete the fp mp. In the case of 15434 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 15435 * recreate the ire's without going through a complex 15436 * ipif up/down dance. So we don't delete the ire 15437 * itself, but just the nce_fp_mp for these 2 ire's 15438 * In the case of the other ire's we delete the ire's 15439 * themselves. Access to nce_fp_mp is completely 15440 * protected by ire_lock for IRE_MIPRTUN and 15441 * IRE_BROADCAST. Deleting the ire is preferable in the 15442 * other cases for performance. 15443 */ 15444 if (ill->ill_isv6) { 15445 nce_fastpath_list_dispatch(ill, NULL, NULL); 15446 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 15447 NULL); 15448 } else { 15449 ire_fastpath_list_dispatch(ill, NULL, NULL); 15450 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 15451 IRE_CACHE | IRE_BROADCAST, 15452 ire_fastpath_flush, NULL, ill); 15453 mutex_enter(&ire_mrtun_lock); 15454 if (ire_mrtun_count != 0) { 15455 mutex_exit(&ire_mrtun_lock); 15456 ire_walk_ill_mrtun(MATCH_IRE_WQ, 15457 IRE_MIPRTUN, ire_fastpath_flush, 15458 NULL, ill); 15459 } else { 15460 mutex_exit(&ire_mrtun_lock); 15461 } 15462 } 15463 break; 15464 case DL_NOTE_SDU_SIZE: 15465 /* 15466 * Change the MTU size of the interface, of all 15467 * attached ipif's, and of all relevant ire's. The 15468 * new value's a uint32_t at notify->dl_data. 15469 * Mtu change Vs. new ire creation - protocol below. 15470 * 15471 * a Mark the ipif as IPIF_CHANGING. 15472 * b Set the new mtu in the ipif. 15473 * c Change the ire_max_frag on all affected ires 15474 * d Unmark the IPIF_CHANGING 15475 * 15476 * To see how the protocol works, assume an interface 15477 * route is also being added simultaneously by 15478 * ip_rt_add and let 'ipif' be the ipif referenced by 15479 * the ire. If the ire is created before step a, 15480 * it will be cleaned up by step c. If the ire is 15481 * created after step d, it will see the new value of 15482 * ipif_mtu. Any attempt to create the ire between 15483 * steps a to d will fail because of the IPIF_CHANGING 15484 * flag. Note that ire_create() is passed a pointer to 15485 * the ipif_mtu, and not the value. During ire_add 15486 * under the bucket lock, the ire_max_frag of the 15487 * new ire being created is set from the ipif/ire from 15488 * which it is being derived. 15489 */ 15490 mutex_enter(&ill->ill_lock); 15491 ill->ill_max_frag = (uint_t)notify->dl_data; 15492 15493 /* 15494 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15495 * leave it alone 15496 */ 15497 if (ill->ill_mtu_userspecified) { 15498 mutex_exit(&ill->ill_lock); 15499 break; 15500 } 15501 ill->ill_max_mtu = ill->ill_max_frag; 15502 if (ill->ill_isv6) { 15503 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15504 ill->ill_max_mtu = IPV6_MIN_MTU; 15505 } else { 15506 if (ill->ill_max_mtu < IP_MIN_MTU) 15507 ill->ill_max_mtu = IP_MIN_MTU; 15508 } 15509 for (ipif = ill->ill_ipif; ipif != NULL; 15510 ipif = ipif->ipif_next) { 15511 /* 15512 * Don't override the mtu if the user 15513 * has explicitly set it. 15514 */ 15515 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15516 continue; 15517 ipif->ipif_mtu = (uint_t)notify->dl_data; 15518 if (ipif->ipif_isv6) 15519 ire = ipif_to_ire_v6(ipif); 15520 else 15521 ire = ipif_to_ire(ipif); 15522 if (ire != NULL) { 15523 ire->ire_max_frag = ipif->ipif_mtu; 15524 ire_refrele(ire); 15525 } 15526 if (ipif->ipif_flags & IPIF_UP) { 15527 if (ill->ill_isv6) 15528 need_ire_walk_v6 = B_TRUE; 15529 else 15530 need_ire_walk_v4 = B_TRUE; 15531 } 15532 } 15533 mutex_exit(&ill->ill_lock); 15534 if (need_ire_walk_v4) 15535 ire_walk_v4(ill_mtu_change, (char *)ill, 15536 ALL_ZONES); 15537 if (need_ire_walk_v6) 15538 ire_walk_v6(ill_mtu_change, (char *)ill, 15539 ALL_ZONES); 15540 break; 15541 case DL_NOTE_LINK_UP: 15542 case DL_NOTE_LINK_DOWN: { 15543 /* 15544 * We are writer. ill / phyint / ipsq assocs stable. 15545 * The RUNNING flag reflects the state of the link. 15546 */ 15547 phyint_t *phyint = ill->ill_phyint; 15548 uint64_t new_phyint_flags; 15549 boolean_t changed = B_FALSE; 15550 boolean_t went_up; 15551 15552 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15553 mutex_enter(&phyint->phyint_lock); 15554 new_phyint_flags = went_up ? 15555 phyint->phyint_flags | PHYI_RUNNING : 15556 phyint->phyint_flags & ~PHYI_RUNNING; 15557 if (new_phyint_flags != phyint->phyint_flags) { 15558 phyint->phyint_flags = new_phyint_flags; 15559 changed = B_TRUE; 15560 } 15561 mutex_exit(&phyint->phyint_lock); 15562 /* 15563 * ill_restart_dad handles the DAD restart and routing 15564 * socket notification logic. 15565 */ 15566 if (changed) { 15567 ill_restart_dad(phyint->phyint_illv4, went_up); 15568 ill_restart_dad(phyint->phyint_illv6, went_up); 15569 } 15570 break; 15571 } 15572 case DL_NOTE_PROMISC_ON_PHYS: 15573 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15574 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15575 mutex_enter(&ill->ill_lock); 15576 ill->ill_promisc_on_phys = B_TRUE; 15577 mutex_exit(&ill->ill_lock); 15578 break; 15579 case DL_NOTE_PROMISC_OFF_PHYS: 15580 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15581 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15582 mutex_enter(&ill->ill_lock); 15583 ill->ill_promisc_on_phys = B_FALSE; 15584 mutex_exit(&ill->ill_lock); 15585 break; 15586 case DL_NOTE_CAPAB_RENEG: 15587 /* 15588 * Something changed on the driver side. 15589 * It wants us to renegotiate the capabilities 15590 * on this ill. The most likely cause is the 15591 * aggregation interface under us where a 15592 * port got added or went away. 15593 * 15594 * We reset the capabilities and set the 15595 * state to IDMS_RENG so that when the ack 15596 * comes back, we can start the 15597 * renegotiation process. 15598 */ 15599 ill_capability_reset(ill); 15600 ill->ill_capab_state = IDMS_RENEG; 15601 break; 15602 default: 15603 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15604 "type 0x%x for DL_NOTIFY_IND\n", 15605 notify->dl_notification)); 15606 break; 15607 } 15608 15609 /* 15610 * As this is an asynchronous operation, we 15611 * should not call ill_dlpi_done 15612 */ 15613 break; 15614 } 15615 case DL_NOTIFY_ACK: { 15616 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15617 15618 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15619 ill->ill_note_link = 1; 15620 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15621 break; 15622 } 15623 case DL_PHYS_ADDR_ACK: { 15624 /* 15625 * We should have an IOCTL waiting on this when request 15626 * sent by ill_dl_phys. 15627 * However, ill_dl_phys was called on an ill queue (from 15628 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 15629 * ioctl is known to be pending on ill_wq. 15630 * There are two additional phys_addr_req's sent to the 15631 * driver to get the token and lla. ill_phys_addr_pend 15632 * keeps track of the last one sent so we know which 15633 * response we are dealing with. ill_dlpi_done will 15634 * update ill_phys_addr_pend when it sends the next req. 15635 * We don't complete the IOCTL until all three DL_PARs 15636 * have been attempted. 15637 * 15638 * We don't need any lock to update ill_nd_lla* fields, 15639 * since the ill is not yet up, We grab the lock just 15640 * for uniformity with other code that accesses ill_nd_lla. 15641 */ 15642 physaddr_req = ill->ill_phys_addr_pend; 15643 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15644 if (physaddr_req == DL_IPV6_TOKEN || 15645 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15646 if (physaddr_req == DL_IPV6_TOKEN) { 15647 /* 15648 * bcopy to low-order bits of ill_token 15649 * 15650 * XXX Temporary hack - currently, 15651 * all known tokens are 64 bits, 15652 * so I'll cheat for the moment. 15653 */ 15654 dlp = (union DL_primitives *)mp->b_rptr; 15655 15656 mutex_enter(&ill->ill_lock); 15657 bcopy((uchar_t *)(mp->b_rptr + 15658 dlp->physaddr_ack.dl_addr_offset), 15659 (void *)&ill->ill_token.s6_addr32[2], 15660 dlp->physaddr_ack.dl_addr_length); 15661 ill->ill_token_length = 15662 dlp->physaddr_ack.dl_addr_length; 15663 mutex_exit(&ill->ill_lock); 15664 } else { 15665 ASSERT(ill->ill_nd_lla_mp == NULL); 15666 mp_hw = copyb(mp); 15667 if (mp_hw == NULL) { 15668 err = ENOMEM; 15669 break; 15670 } 15671 dlp = (union DL_primitives *)mp_hw->b_rptr; 15672 mutex_enter(&ill->ill_lock); 15673 ill->ill_nd_lla_mp = mp_hw; 15674 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15675 dlp->physaddr_ack.dl_addr_offset; 15676 ill->ill_nd_lla_len = 15677 dlp->physaddr_ack.dl_addr_length; 15678 mutex_exit(&ill->ill_lock); 15679 } 15680 break; 15681 } 15682 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15683 ASSERT(ill->ill_phys_addr_mp == NULL); 15684 if (!ill->ill_ifname_pending) 15685 break; 15686 ill->ill_ifname_pending = 0; 15687 if (!ioctl_aborted) 15688 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15689 if (mp1 != NULL) { 15690 ASSERT(connp == NULL); 15691 q = ill->ill_wq; 15692 } 15693 /* 15694 * If any error acks received during the plumbing sequence, 15695 * ill_ifname_pending_err will be set. Break out and send up 15696 * the error to the pending ioctl. 15697 */ 15698 if (ill->ill_ifname_pending_err != 0) { 15699 err = ill->ill_ifname_pending_err; 15700 ill->ill_ifname_pending_err = 0; 15701 break; 15702 } 15703 /* 15704 * Get the interface token. If the zeroth interface 15705 * address is zero then set the address to the link local 15706 * address 15707 */ 15708 mp_hw = copyb(mp); 15709 if (mp_hw == NULL) { 15710 err = ENOMEM; 15711 break; 15712 } 15713 dlp = (union DL_primitives *)mp_hw->b_rptr; 15714 ill->ill_phys_addr_mp = mp_hw; 15715 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15716 dlp->physaddr_ack.dl_addr_offset; 15717 if (dlp->physaddr_ack.dl_addr_length == 0 || 15718 ill->ill_phys_addr_length == 0 || 15719 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15720 /* 15721 * Compatibility: atun driver returns a length of 0. 15722 * ipdptp has an ill_phys_addr_length of zero(from 15723 * DL_BIND_ACK) but a non-zero length here. 15724 * ipd has an ill_phys_addr_length of 4(from 15725 * DL_BIND_ACK) but a non-zero length here. 15726 */ 15727 ill->ill_phys_addr = NULL; 15728 } else if (dlp->physaddr_ack.dl_addr_length != 15729 ill->ill_phys_addr_length) { 15730 ip0dbg(("DL_PHYS_ADDR_ACK: " 15731 "Address length mismatch %d %d\n", 15732 dlp->physaddr_ack.dl_addr_length, 15733 ill->ill_phys_addr_length)); 15734 err = EINVAL; 15735 break; 15736 } 15737 mutex_enter(&ill->ill_lock); 15738 if (ill->ill_nd_lla_mp == NULL) { 15739 ill->ill_nd_lla_mp = copyb(mp_hw); 15740 if (ill->ill_nd_lla_mp == NULL) { 15741 err = ENOMEM; 15742 mutex_exit(&ill->ill_lock); 15743 break; 15744 } 15745 ill->ill_nd_lla = 15746 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 15747 dlp->physaddr_ack.dl_addr_offset; 15748 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 15749 } 15750 mutex_exit(&ill->ill_lock); 15751 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15752 (void) ill_setdefaulttoken(ill); 15753 15754 /* 15755 * If the ill zero interface has a zero address assign 15756 * it the proper link local address. 15757 */ 15758 ASSERT(ill->ill_ipif->ipif_id == 0); 15759 if (ipif != NULL && 15760 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15761 (void) ipif_setlinklocal(ipif); 15762 break; 15763 } 15764 case DL_OK_ACK: 15765 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15766 dlpi_prim_str((int)dloa->dl_correct_primitive), 15767 dloa->dl_correct_primitive)); 15768 switch (dloa->dl_correct_primitive) { 15769 case DL_UNBIND_REQ: 15770 case DL_ATTACH_REQ: 15771 case DL_DETACH_REQ: 15772 ill_dlpi_done(ill, dloa->dl_correct_primitive); 15773 break; 15774 } 15775 break; 15776 default: 15777 break; 15778 } 15779 15780 freemsg(mp); 15781 if (mp1) { 15782 struct iocblk *iocp; 15783 int mode; 15784 15785 /* 15786 * Complete the waiting IOCTL. For SIOCLIFADDIF or 15787 * SIOCSLIFNAME do a copyout. 15788 */ 15789 iocp = (struct iocblk *)mp1->b_rptr; 15790 15791 if (iocp->ioc_cmd == SIOCLIFADDIF || 15792 iocp->ioc_cmd == SIOCSLIFNAME) 15793 mode = COPYOUT; 15794 else 15795 mode = NO_COPYOUT; 15796 /* 15797 * The ioctl must complete now without EINPROGRESS 15798 * since ipsq_pending_mp_get has removed the ioctl mblk 15799 * from ipsq_pending_mp. Otherwise the ioctl will be 15800 * stuck for ever in the ipsq. 15801 */ 15802 ASSERT(err != EINPROGRESS); 15803 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 15804 15805 } 15806 } 15807 15808 /* 15809 * ip_rput_other is called by ip_rput to handle messages modifying the global 15810 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 15811 */ 15812 /* ARGSUSED */ 15813 void 15814 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15815 { 15816 ill_t *ill; 15817 struct iocblk *iocp; 15818 mblk_t *mp1; 15819 conn_t *connp = NULL; 15820 15821 ip1dbg(("ip_rput_other ")); 15822 ill = (ill_t *)q->q_ptr; 15823 /* 15824 * This routine is not a writer in the case of SIOCGTUNPARAM 15825 * in which case ipsq is NULL. 15826 */ 15827 if (ipsq != NULL) { 15828 ASSERT(IAM_WRITER_IPSQ(ipsq)); 15829 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15830 } 15831 15832 switch (mp->b_datap->db_type) { 15833 case M_ERROR: 15834 case M_HANGUP: 15835 /* 15836 * The device has a problem. We force the ILL down. It can 15837 * be brought up again manually using SIOCSIFFLAGS (via 15838 * ifconfig or equivalent). 15839 */ 15840 ASSERT(ipsq != NULL); 15841 if (mp->b_rptr < mp->b_wptr) 15842 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 15843 if (ill->ill_error == 0) 15844 ill->ill_error = ENXIO; 15845 if (!ill_down_start(q, mp)) 15846 return; 15847 ipif_all_down_tail(ipsq, q, mp, NULL); 15848 break; 15849 case M_IOCACK: 15850 iocp = (struct iocblk *)mp->b_rptr; 15851 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 15852 switch (iocp->ioc_cmd) { 15853 case SIOCSTUNPARAM: 15854 case OSIOCSTUNPARAM: 15855 ASSERT(ipsq != NULL); 15856 /* 15857 * Finish socket ioctl passed through to tun. 15858 * We should have an IOCTL waiting on this. 15859 */ 15860 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15861 if (ill->ill_isv6) { 15862 struct iftun_req *ta; 15863 15864 /* 15865 * if a source or destination is 15866 * being set, try and set the link 15867 * local address for the tunnel 15868 */ 15869 ta = (struct iftun_req *)mp->b_cont-> 15870 b_cont->b_rptr; 15871 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 15872 ipif_set_tun_llink(ill, ta); 15873 } 15874 15875 } 15876 if (mp1 != NULL) { 15877 /* 15878 * Now copy back the b_next/b_prev used by 15879 * mi code for the mi_copy* functions. 15880 * See ip_sioctl_tunparam() for the reason. 15881 * Also protect against missing b_cont. 15882 */ 15883 if (mp->b_cont != NULL) { 15884 mp->b_cont->b_next = 15885 mp1->b_cont->b_next; 15886 mp->b_cont->b_prev = 15887 mp1->b_cont->b_prev; 15888 } 15889 inet_freemsg(mp1); 15890 ASSERT(ipsq->ipsq_current_ipif != NULL); 15891 ASSERT(connp != NULL); 15892 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15893 iocp->ioc_error, NO_COPYOUT, 15894 ipsq->ipsq_current_ipif, ipsq); 15895 } else { 15896 ASSERT(connp == NULL); 15897 putnext(q, mp); 15898 } 15899 break; 15900 case SIOCGTUNPARAM: 15901 case OSIOCGTUNPARAM: 15902 /* 15903 * This is really M_IOCDATA from the tunnel driver. 15904 * convert back and complete the ioctl. 15905 * We should have an IOCTL waiting on this. 15906 */ 15907 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 15908 if (mp1) { 15909 /* 15910 * Now copy back the b_next/b_prev used by 15911 * mi code for the mi_copy* functions. 15912 * See ip_sioctl_tunparam() for the reason. 15913 * Also protect against missing b_cont. 15914 */ 15915 if (mp->b_cont != NULL) { 15916 mp->b_cont->b_next = 15917 mp1->b_cont->b_next; 15918 mp->b_cont->b_prev = 15919 mp1->b_cont->b_prev; 15920 } 15921 inet_freemsg(mp1); 15922 if (iocp->ioc_error == 0) 15923 mp->b_datap->db_type = M_IOCDATA; 15924 ASSERT(connp != NULL); 15925 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15926 iocp->ioc_error, COPYOUT, NULL, NULL); 15927 } else { 15928 ASSERT(connp == NULL); 15929 putnext(q, mp); 15930 } 15931 break; 15932 default: 15933 break; 15934 } 15935 break; 15936 case M_IOCNAK: 15937 iocp = (struct iocblk *)mp->b_rptr; 15938 15939 switch (iocp->ioc_cmd) { 15940 int mode; 15941 ipif_t *ipif; 15942 15943 case DL_IOC_HDR_INFO: 15944 /* 15945 * If this was the first attempt turn of the 15946 * fastpath probing. 15947 */ 15948 mutex_enter(&ill->ill_lock); 15949 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 15950 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 15951 mutex_exit(&ill->ill_lock); 15952 ill_fastpath_nack(ill); 15953 ip1dbg(("ip_rput: DLPI fastpath off on " 15954 "interface %s\n", 15955 ill->ill_name)); 15956 } else { 15957 mutex_exit(&ill->ill_lock); 15958 } 15959 freemsg(mp); 15960 break; 15961 case SIOCSTUNPARAM: 15962 case OSIOCSTUNPARAM: 15963 ASSERT(ipsq != NULL); 15964 /* 15965 * Finish socket ioctl passed through to tun 15966 * We should have an IOCTL waiting on this. 15967 */ 15968 /* FALLTHRU */ 15969 case SIOCGTUNPARAM: 15970 case OSIOCGTUNPARAM: 15971 /* 15972 * This is really M_IOCDATA from the tunnel driver. 15973 * convert back and complete the ioctl. 15974 * We should have an IOCTL waiting on this. 15975 */ 15976 if (iocp->ioc_cmd == SIOCGTUNPARAM || 15977 iocp->ioc_cmd == OSIOCGTUNPARAM) { 15978 mp1 = ill_pending_mp_get(ill, &connp, 15979 iocp->ioc_id); 15980 mode = COPYOUT; 15981 ipsq = NULL; 15982 ipif = NULL; 15983 } else { 15984 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15985 mode = NO_COPYOUT; 15986 ASSERT(ipsq->ipsq_current_ipif != NULL); 15987 ipif = ipsq->ipsq_current_ipif; 15988 } 15989 if (mp1 != NULL) { 15990 /* 15991 * Now copy back the b_next/b_prev used by 15992 * mi code for the mi_copy* functions. 15993 * See ip_sioctl_tunparam() for the reason. 15994 * Also protect against missing b_cont. 15995 */ 15996 if (mp->b_cont != NULL) { 15997 mp->b_cont->b_next = 15998 mp1->b_cont->b_next; 15999 mp->b_cont->b_prev = 16000 mp1->b_cont->b_prev; 16001 } 16002 inet_freemsg(mp1); 16003 if (iocp->ioc_error == 0) 16004 iocp->ioc_error = EINVAL; 16005 ASSERT(connp != NULL); 16006 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16007 iocp->ioc_error, mode, ipif, ipsq); 16008 } else { 16009 ASSERT(connp == NULL); 16010 putnext(q, mp); 16011 } 16012 break; 16013 default: 16014 break; 16015 } 16016 default: 16017 break; 16018 } 16019 } 16020 16021 /* 16022 * NOTE : This function does not ire_refrele the ire argument passed in. 16023 * 16024 * IPQoS notes 16025 * IP policy is invoked twice for a forwarded packet, once on the read side 16026 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16027 * enabled. An additional parameter, in_ill, has been added for this purpose. 16028 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16029 * because ip_mroute drops this information. 16030 * 16031 */ 16032 void 16033 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16034 { 16035 uint32_t pkt_len; 16036 queue_t *q; 16037 uint32_t sum; 16038 #define rptr ((uchar_t *)ipha) 16039 uint32_t max_frag; 16040 uint32_t ill_index; 16041 16042 /* Get the ill_index of the incoming ILL */ 16043 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16044 16045 /* Initiate Read side IPPF processing */ 16046 if (IPP_ENABLED(IPP_FWD_IN)) { 16047 ip_process(IPP_FWD_IN, &mp, ill_index); 16048 if (mp == NULL) { 16049 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16050 "during IPPF processing\n")); 16051 return; 16052 } 16053 } 16054 16055 pkt_len = ntohs(ipha->ipha_length); 16056 16057 /* Adjust the checksum to reflect the ttl decrement. */ 16058 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16059 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16060 16061 if (ipha->ipha_ttl-- <= 1) { 16062 if (ip_csum_hdr(ipha)) { 16063 BUMP_MIB(&ip_mib, ipInCksumErrs); 16064 goto drop_pkt; 16065 } 16066 /* 16067 * Note: ire_stq this will be NULL for multicast 16068 * datagrams using the long path through arp (the IRE 16069 * is not an IRE_CACHE). This should not cause 16070 * problems since we don't generate ICMP errors for 16071 * multicast packets. 16072 */ 16073 q = ire->ire_stq; 16074 if (q != NULL) { 16075 /* Sent by forwarding path, and router is global zone */ 16076 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16077 GLOBAL_ZONEID); 16078 } else 16079 freemsg(mp); 16080 return; 16081 } 16082 16083 /* 16084 * Don't forward if the interface is down 16085 */ 16086 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16087 BUMP_MIB(&ip_mib, ipInDiscards); 16088 ip2dbg(("ip_rput_forward:interface is down\n")); 16089 goto drop_pkt; 16090 } 16091 16092 /* Get the ill_index of the outgoing ILL */ 16093 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16094 16095 if (is_system_labeled()) { 16096 mblk_t *mp1; 16097 16098 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16099 BUMP_MIB(&ip_mib, ipForwProhibits); 16100 goto drop_pkt; 16101 } 16102 /* Size may have changed */ 16103 mp = mp1; 16104 ipha = (ipha_t *)mp->b_rptr; 16105 pkt_len = ntohs(ipha->ipha_length); 16106 } 16107 16108 /* Check if there are options to update */ 16109 if (!IS_SIMPLE_IPH(ipha)) { 16110 if (ip_csum_hdr(ipha)) { 16111 BUMP_MIB(&ip_mib, ipInCksumErrs); 16112 goto drop_pkt; 16113 } 16114 if (ip_rput_forward_options(mp, ipha, ire)) { 16115 return; 16116 } 16117 16118 ipha->ipha_hdr_checksum = 0; 16119 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16120 } 16121 max_frag = ire->ire_max_frag; 16122 if (pkt_len > max_frag) { 16123 /* 16124 * It needs fragging on its way out. We haven't 16125 * verified the header checksum yet. Since we 16126 * are going to put a surely good checksum in the 16127 * outgoing header, we have to make sure that it 16128 * was good coming in. 16129 */ 16130 if (ip_csum_hdr(ipha)) { 16131 BUMP_MIB(&ip_mib, ipInCksumErrs); 16132 goto drop_pkt; 16133 } 16134 /* Initiate Write side IPPF processing */ 16135 if (IPP_ENABLED(IPP_FWD_OUT)) { 16136 ip_process(IPP_FWD_OUT, &mp, ill_index); 16137 if (mp == NULL) { 16138 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16139 " during IPPF processing\n")); 16140 return; 16141 } 16142 } 16143 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 16144 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16145 return; 16146 } 16147 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16148 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16149 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16150 /* ip_xmit_v4 always consumes the packet */ 16151 return; 16152 16153 drop_pkt:; 16154 ip1dbg(("ip_rput_forward: drop pkt\n")); 16155 freemsg(mp); 16156 #undef rptr 16157 } 16158 16159 void 16160 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16161 { 16162 ire_t *ire; 16163 16164 ASSERT(!ipif->ipif_isv6); 16165 /* 16166 * Find an IRE which matches the destination and the outgoing 16167 * queue in the cache table. All we need is an IRE_CACHE which 16168 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16169 * then it is enough to have some IRE_CACHE in the group. 16170 */ 16171 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16172 dst = ipif->ipif_pp_dst_addr; 16173 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16174 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 16175 if (ire == NULL) { 16176 /* 16177 * Mark this packet to make it be delivered to 16178 * ip_rput_forward after the new ire has been 16179 * created. 16180 */ 16181 mp->b_prev = NULL; 16182 mp->b_next = mp; 16183 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16184 NULL, 0, GLOBAL_ZONEID); 16185 } else { 16186 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16187 IRE_REFRELE(ire); 16188 } 16189 } 16190 16191 /* Update any source route, record route or timestamp options */ 16192 static int 16193 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 16194 { 16195 ipoptp_t opts; 16196 uchar_t *opt; 16197 uint8_t optval; 16198 uint8_t optlen; 16199 ipaddr_t dst; 16200 uint32_t ts; 16201 ire_t *dst_ire = NULL; 16202 ire_t *tmp_ire = NULL; 16203 timestruc_t now; 16204 16205 ip2dbg(("ip_rput_forward_options\n")); 16206 dst = ipha->ipha_dst; 16207 for (optval = ipoptp_first(&opts, ipha); 16208 optval != IPOPT_EOL; 16209 optval = ipoptp_next(&opts)) { 16210 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16211 opt = opts.ipoptp_cur; 16212 optlen = opts.ipoptp_len; 16213 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16214 optval, opts.ipoptp_len)); 16215 switch (optval) { 16216 uint32_t off; 16217 case IPOPT_SSRR: 16218 case IPOPT_LSRR: 16219 /* Check if adminstratively disabled */ 16220 if (!ip_forward_src_routed) { 16221 BUMP_MIB(&ip_mib, ipForwProhibits); 16222 if (ire->ire_stq != NULL) { 16223 /* 16224 * Sent by forwarding path, and router 16225 * is global zone 16226 */ 16227 icmp_unreachable(ire->ire_stq, mp, 16228 ICMP_SOURCE_ROUTE_FAILED, 16229 GLOBAL_ZONEID); 16230 } else { 16231 ip0dbg(("ip_rput_forward_options: " 16232 "unable to send unreach\n")); 16233 freemsg(mp); 16234 } 16235 return (-1); 16236 } 16237 16238 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16239 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16240 if (dst_ire == NULL) { 16241 /* 16242 * Must be partial since ip_rput_options 16243 * checked for strict. 16244 */ 16245 break; 16246 } 16247 off = opt[IPOPT_OFFSET]; 16248 off--; 16249 redo_srr: 16250 if (optlen < IP_ADDR_LEN || 16251 off > optlen - IP_ADDR_LEN) { 16252 /* End of source route */ 16253 ip1dbg(( 16254 "ip_rput_forward_options: end of SR\n")); 16255 ire_refrele(dst_ire); 16256 break; 16257 } 16258 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16259 bcopy(&ire->ire_src_addr, (char *)opt + off, 16260 IP_ADDR_LEN); 16261 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16262 ntohl(dst))); 16263 16264 /* 16265 * Check if our address is present more than 16266 * once as consecutive hops in source route. 16267 */ 16268 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16269 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16270 if (tmp_ire != NULL) { 16271 ire_refrele(tmp_ire); 16272 off += IP_ADDR_LEN; 16273 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16274 goto redo_srr; 16275 } 16276 ipha->ipha_dst = dst; 16277 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16278 ire_refrele(dst_ire); 16279 break; 16280 case IPOPT_RR: 16281 off = opt[IPOPT_OFFSET]; 16282 off--; 16283 if (optlen < IP_ADDR_LEN || 16284 off > optlen - IP_ADDR_LEN) { 16285 /* No more room - ignore */ 16286 ip1dbg(( 16287 "ip_rput_forward_options: end of RR\n")); 16288 break; 16289 } 16290 bcopy(&ire->ire_src_addr, (char *)opt + off, 16291 IP_ADDR_LEN); 16292 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16293 break; 16294 case IPOPT_TS: 16295 /* Insert timestamp if there is room */ 16296 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16297 case IPOPT_TS_TSONLY: 16298 off = IPOPT_TS_TIMELEN; 16299 break; 16300 case IPOPT_TS_PRESPEC: 16301 case IPOPT_TS_PRESPEC_RFC791: 16302 /* Verify that the address matched */ 16303 off = opt[IPOPT_OFFSET] - 1; 16304 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16305 dst_ire = ire_ctable_lookup(dst, 0, 16306 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16307 MATCH_IRE_TYPE); 16308 16309 if (dst_ire == NULL) { 16310 /* Not for us */ 16311 break; 16312 } 16313 ire_refrele(dst_ire); 16314 /* FALLTHRU */ 16315 case IPOPT_TS_TSANDADDR: 16316 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16317 break; 16318 default: 16319 /* 16320 * ip_*put_options should have already 16321 * dropped this packet. 16322 */ 16323 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16324 "unknown IT - bug in ip_rput_options?\n"); 16325 return (0); /* Keep "lint" happy */ 16326 } 16327 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16328 /* Increase overflow counter */ 16329 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16330 opt[IPOPT_POS_OV_FLG] = 16331 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16332 (off << 4)); 16333 break; 16334 } 16335 off = opt[IPOPT_OFFSET] - 1; 16336 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16337 case IPOPT_TS_PRESPEC: 16338 case IPOPT_TS_PRESPEC_RFC791: 16339 case IPOPT_TS_TSANDADDR: 16340 bcopy(&ire->ire_src_addr, 16341 (char *)opt + off, IP_ADDR_LEN); 16342 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16343 /* FALLTHRU */ 16344 case IPOPT_TS_TSONLY: 16345 off = opt[IPOPT_OFFSET] - 1; 16346 /* Compute # of milliseconds since midnight */ 16347 gethrestime(&now); 16348 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16349 now.tv_nsec / (NANOSEC / MILLISEC); 16350 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16351 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16352 break; 16353 } 16354 break; 16355 } 16356 } 16357 return (0); 16358 } 16359 16360 /* 16361 * This is called after processing at least one of AH/ESP headers. 16362 * 16363 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16364 * the actual, physical interface on which the packet was received, 16365 * but, when ip_strict_dst_multihoming is set to 1, could be the 16366 * interface which had the ipha_dst configured when the packet went 16367 * through ip_rput. The ill_index corresponding to the recv_ill 16368 * is saved in ipsec_in_rill_index 16369 */ 16370 void 16371 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16372 { 16373 mblk_t *mp; 16374 ipaddr_t dst; 16375 in6_addr_t *v6dstp; 16376 ipha_t *ipha; 16377 ip6_t *ip6h; 16378 ipsec_in_t *ii; 16379 boolean_t ill_need_rele = B_FALSE; 16380 boolean_t rill_need_rele = B_FALSE; 16381 boolean_t ire_need_rele = B_FALSE; 16382 16383 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16384 ASSERT(ii->ipsec_in_ill_index != 0); 16385 16386 mp = ipsec_mp->b_cont; 16387 ASSERT(mp != NULL); 16388 16389 16390 if (ill == NULL) { 16391 ASSERT(recv_ill == NULL); 16392 /* 16393 * We need to get the original queue on which ip_rput_local 16394 * or ip_rput_data_v6 was called. 16395 */ 16396 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16397 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 16398 ill_need_rele = B_TRUE; 16399 16400 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16401 recv_ill = ill_lookup_on_ifindex( 16402 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16403 NULL, NULL, NULL, NULL); 16404 rill_need_rele = B_TRUE; 16405 } else { 16406 recv_ill = ill; 16407 } 16408 16409 if ((ill == NULL) || (recv_ill == NULL)) { 16410 ip0dbg(("ip_fanout_proto_again: interface " 16411 "disappeared\n")); 16412 if (ill != NULL) 16413 ill_refrele(ill); 16414 if (recv_ill != NULL) 16415 ill_refrele(recv_ill); 16416 freemsg(ipsec_mp); 16417 return; 16418 } 16419 } 16420 16421 ASSERT(ill != NULL && recv_ill != NULL); 16422 16423 if (mp->b_datap->db_type == M_CTL) { 16424 /* 16425 * AH/ESP is returning the ICMP message after 16426 * removing their headers. Fanout again till 16427 * it gets to the right protocol. 16428 */ 16429 if (ii->ipsec_in_v4) { 16430 icmph_t *icmph; 16431 int iph_hdr_length; 16432 int hdr_length; 16433 16434 ipha = (ipha_t *)mp->b_rptr; 16435 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16436 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16437 ipha = (ipha_t *)&icmph[1]; 16438 hdr_length = IPH_HDR_LENGTH(ipha); 16439 /* 16440 * icmp_inbound_error_fanout may need to do pullupmsg. 16441 * Reset the type to M_DATA. 16442 */ 16443 mp->b_datap->db_type = M_DATA; 16444 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16445 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16446 B_FALSE, ill, ii->ipsec_in_zoneid); 16447 } else { 16448 icmp6_t *icmp6; 16449 int hdr_length; 16450 16451 ip6h = (ip6_t *)mp->b_rptr; 16452 /* Don't call hdr_length_v6() unless you have to. */ 16453 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16454 hdr_length = ip_hdr_length_v6(mp, ip6h); 16455 else 16456 hdr_length = IPV6_HDR_LEN; 16457 16458 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16459 /* 16460 * icmp_inbound_error_fanout_v6 may need to do 16461 * pullupmsg. Reset the type to M_DATA. 16462 */ 16463 mp->b_datap->db_type = M_DATA; 16464 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16465 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16466 } 16467 if (ill_need_rele) 16468 ill_refrele(ill); 16469 if (rill_need_rele) 16470 ill_refrele(recv_ill); 16471 return; 16472 } 16473 16474 if (ii->ipsec_in_v4) { 16475 ipha = (ipha_t *)mp->b_rptr; 16476 dst = ipha->ipha_dst; 16477 if (CLASSD(dst)) { 16478 /* 16479 * Multicast has to be delivered to all streams. 16480 */ 16481 dst = INADDR_BROADCAST; 16482 } 16483 16484 if (ire == NULL) { 16485 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16486 MBLK_GETLABEL(mp)); 16487 if (ire == NULL) { 16488 if (ill_need_rele) 16489 ill_refrele(ill); 16490 if (rill_need_rele) 16491 ill_refrele(recv_ill); 16492 ip1dbg(("ip_fanout_proto_again: " 16493 "IRE not found")); 16494 freemsg(ipsec_mp); 16495 return; 16496 } 16497 ire_need_rele = B_TRUE; 16498 } 16499 16500 switch (ipha->ipha_protocol) { 16501 case IPPROTO_UDP: 16502 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16503 recv_ill); 16504 if (ire_need_rele) 16505 ire_refrele(ire); 16506 break; 16507 case IPPROTO_TCP: 16508 if (!ire_need_rele) 16509 IRE_REFHOLD(ire); 16510 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16511 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16512 IRE_REFRELE(ire); 16513 if (mp != NULL) 16514 squeue_enter_chain(GET_SQUEUE(mp), mp, 16515 mp, 1, SQTAG_IP_PROTO_AGAIN); 16516 break; 16517 case IPPROTO_SCTP: 16518 if (!ire_need_rele) 16519 IRE_REFHOLD(ire); 16520 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16521 ipsec_mp, 0, ill->ill_rq, dst); 16522 break; 16523 default: 16524 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16525 recv_ill); 16526 if (ire_need_rele) 16527 ire_refrele(ire); 16528 break; 16529 } 16530 } else { 16531 uint32_t rput_flags = 0; 16532 16533 ip6h = (ip6_t *)mp->b_rptr; 16534 v6dstp = &ip6h->ip6_dst; 16535 /* 16536 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16537 * address. 16538 * 16539 * Currently, we don't store that state in the IPSEC_IN 16540 * message, and we may need to. 16541 */ 16542 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16543 IP6_IN_LLMCAST : 0); 16544 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16545 NULL, NULL); 16546 } 16547 if (ill_need_rele) 16548 ill_refrele(ill); 16549 if (rill_need_rele) 16550 ill_refrele(recv_ill); 16551 } 16552 16553 /* 16554 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16555 * returns 'true' if there are still fragments left on the queue, in 16556 * which case we restart the timer. 16557 */ 16558 void 16559 ill_frag_timer(void *arg) 16560 { 16561 ill_t *ill = (ill_t *)arg; 16562 boolean_t frag_pending; 16563 16564 mutex_enter(&ill->ill_lock); 16565 ASSERT(!ill->ill_fragtimer_executing); 16566 if (ill->ill_state_flags & ILL_CONDEMNED) { 16567 ill->ill_frag_timer_id = 0; 16568 mutex_exit(&ill->ill_lock); 16569 return; 16570 } 16571 ill->ill_fragtimer_executing = 1; 16572 mutex_exit(&ill->ill_lock); 16573 16574 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 16575 16576 /* 16577 * Restart the timer, if we have fragments pending or if someone 16578 * wanted us to be scheduled again. 16579 */ 16580 mutex_enter(&ill->ill_lock); 16581 ill->ill_fragtimer_executing = 0; 16582 ill->ill_frag_timer_id = 0; 16583 if (frag_pending || ill->ill_fragtimer_needrestart) 16584 ill_frag_timer_start(ill); 16585 mutex_exit(&ill->ill_lock); 16586 } 16587 16588 void 16589 ill_frag_timer_start(ill_t *ill) 16590 { 16591 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16592 16593 /* If the ill is closing or opening don't proceed */ 16594 if (ill->ill_state_flags & ILL_CONDEMNED) 16595 return; 16596 16597 if (ill->ill_fragtimer_executing) { 16598 /* 16599 * ill_frag_timer is currently executing. Just record the 16600 * the fact that we want the timer to be restarted. 16601 * ill_frag_timer will post a timeout before it returns, 16602 * ensuring it will be called again. 16603 */ 16604 ill->ill_fragtimer_needrestart = 1; 16605 return; 16606 } 16607 16608 if (ill->ill_frag_timer_id == 0) { 16609 /* 16610 * The timer is neither running nor is the timeout handler 16611 * executing. Post a timeout so that ill_frag_timer will be 16612 * called 16613 */ 16614 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16615 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 16616 ill->ill_fragtimer_needrestart = 0; 16617 } 16618 } 16619 16620 /* 16621 * This routine is needed for loopback when forwarding multicasts. 16622 * 16623 * IPQoS Notes: 16624 * IPPF processing is done in fanout routines. 16625 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16626 * processing for IPSec packets is done when it comes back in clear. 16627 * NOTE : The callers of this function need to do the ire_refrele for the 16628 * ire that is being passed in. 16629 */ 16630 void 16631 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16632 ill_t *recv_ill) 16633 { 16634 ill_t *ill = (ill_t *)q->q_ptr; 16635 uint32_t sum; 16636 uint32_t u1; 16637 uint32_t u2; 16638 int hdr_length; 16639 boolean_t mctl_present; 16640 mblk_t *first_mp = mp; 16641 mblk_t *hada_mp = NULL; 16642 ipha_t *inner_ipha; 16643 16644 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16645 "ip_rput_locl_start: q %p", q); 16646 16647 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16648 16649 16650 #define rptr ((uchar_t *)ipha) 16651 #define iphs ((uint16_t *)ipha) 16652 16653 /* 16654 * no UDP or TCP packet should come here anymore. 16655 */ 16656 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16657 (ipha->ipha_protocol != IPPROTO_UDP)); 16658 16659 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16660 if (mctl_present && 16661 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16662 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16663 16664 /* 16665 * It's an IPsec accelerated packet. 16666 * Keep a pointer to the data attributes around until 16667 * we allocate the ipsec_info_t. 16668 */ 16669 IPSECHW_DEBUG(IPSECHW_PKT, 16670 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16671 hada_mp = first_mp; 16672 hada_mp->b_cont = NULL; 16673 /* 16674 * Since it is accelerated, it comes directly from 16675 * the ill and the data attributes is followed by 16676 * the packet data. 16677 */ 16678 ASSERT(mp->b_datap->db_type != M_CTL); 16679 first_mp = mp; 16680 mctl_present = B_FALSE; 16681 } 16682 16683 /* 16684 * IF M_CTL is not present, then ipsec_in_is_secure 16685 * should return B_TRUE. There is a case where loopback 16686 * packets has an M_CTL in the front with all the 16687 * IPSEC options set to IPSEC_PREF_NEVER - which means 16688 * ipsec_in_is_secure will return B_FALSE. As loopback 16689 * packets never comes here, it is safe to ASSERT the 16690 * following. 16691 */ 16692 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16693 16694 16695 /* u1 is # words of IP options */ 16696 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16697 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16698 16699 if (u1) { 16700 if (!ip_options_cksum(q, mp, ipha, ire)) { 16701 if (hada_mp != NULL) 16702 freemsg(hada_mp); 16703 return; 16704 } 16705 } else { 16706 /* Check the IP header checksum. */ 16707 #define uph ((uint16_t *)ipha) 16708 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16709 uph[6] + uph[7] + uph[8] + uph[9]; 16710 #undef uph 16711 /* finish doing IP checksum */ 16712 sum = (sum & 0xFFFF) + (sum >> 16); 16713 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16714 /* 16715 * Don't verify header checksum if this packet is coming 16716 * back from AH/ESP as we already did it. 16717 */ 16718 if (!mctl_present && (sum && sum != 0xFFFF)) { 16719 BUMP_MIB(&ip_mib, ipInCksumErrs); 16720 goto drop_pkt; 16721 } 16722 } 16723 16724 /* 16725 * Count for SNMP of inbound packets for ire. As ip_proto_input 16726 * might be called more than once for secure packets, count only 16727 * the first time. 16728 */ 16729 if (!mctl_present) { 16730 UPDATE_IB_PKT_COUNT(ire); 16731 ire->ire_last_used_time = lbolt; 16732 } 16733 16734 /* Check for fragmentation offset. */ 16735 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16736 u1 = u2 & (IPH_MF | IPH_OFFSET); 16737 if (u1) { 16738 /* 16739 * We re-assemble fragments before we do the AH/ESP 16740 * processing. Thus, M_CTL should not be present 16741 * while we are re-assembling. 16742 */ 16743 ASSERT(!mctl_present); 16744 ASSERT(first_mp == mp); 16745 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 16746 return; 16747 } 16748 /* 16749 * Make sure that first_mp points back to mp as 16750 * the mp we came in with could have changed in 16751 * ip_rput_fragment(). 16752 */ 16753 ipha = (ipha_t *)mp->b_rptr; 16754 first_mp = mp; 16755 } 16756 16757 /* 16758 * Clear hardware checksumming flag as it is currently only 16759 * used by TCP and UDP. 16760 */ 16761 DB_CKSUMFLAGS(mp) = 0; 16762 16763 /* Now we have a complete datagram, destined for this machine. */ 16764 u1 = IPH_HDR_LENGTH(ipha); 16765 switch (ipha->ipha_protocol) { 16766 case IPPROTO_ICMP: { 16767 ire_t *ire_zone; 16768 ilm_t *ilm; 16769 mblk_t *mp1; 16770 zoneid_t last_zoneid; 16771 16772 if (CLASSD(ipha->ipha_dst) && 16773 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 16774 ASSERT(ire->ire_type == IRE_BROADCAST); 16775 /* 16776 * In the multicast case, applications may have joined 16777 * the group from different zones, so we need to deliver 16778 * the packet to each of them. Loop through the 16779 * multicast memberships structures (ilm) on the receive 16780 * ill and send a copy of the packet up each matching 16781 * one. However, we don't do this for multicasts sent on 16782 * the loopback interface (PHYI_LOOPBACK flag set) as 16783 * they must stay in the sender's zone. 16784 * 16785 * ilm_add_v6() ensures that ilms in the same zone are 16786 * contiguous in the ill_ilm list. We use this property 16787 * to avoid sending duplicates needed when two 16788 * applications in the same zone join the same group on 16789 * different logical interfaces: we ignore the ilm if 16790 * its zoneid is the same as the last matching one. 16791 * In addition, the sending of the packet for 16792 * ire_zoneid is delayed until all of the other ilms 16793 * have been exhausted. 16794 */ 16795 last_zoneid = -1; 16796 ILM_WALKER_HOLD(recv_ill); 16797 for (ilm = recv_ill->ill_ilm; ilm != NULL; 16798 ilm = ilm->ilm_next) { 16799 if ((ilm->ilm_flags & ILM_DELETED) || 16800 ipha->ipha_dst != ilm->ilm_addr || 16801 ilm->ilm_zoneid == last_zoneid || 16802 ilm->ilm_zoneid == ire->ire_zoneid || 16803 ilm->ilm_zoneid == ALL_ZONES || 16804 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 16805 continue; 16806 mp1 = ip_copymsg(first_mp); 16807 if (mp1 == NULL) 16808 continue; 16809 icmp_inbound(q, mp1, B_TRUE, ill, 16810 0, sum, mctl_present, B_TRUE, 16811 recv_ill, ilm->ilm_zoneid); 16812 last_zoneid = ilm->ilm_zoneid; 16813 } 16814 ILM_WALKER_RELE(recv_ill); 16815 } else if (ire->ire_type == IRE_BROADCAST) { 16816 /* 16817 * In the broadcast case, there may be many zones 16818 * which need a copy of the packet delivered to them. 16819 * There is one IRE_BROADCAST per broadcast address 16820 * and per zone; we walk those using a helper function. 16821 * In addition, the sending of the packet for ire is 16822 * delayed until all of the other ires have been 16823 * processed. 16824 */ 16825 IRB_REFHOLD(ire->ire_bucket); 16826 ire_zone = NULL; 16827 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 16828 ire)) != NULL) { 16829 mp1 = ip_copymsg(first_mp); 16830 if (mp1 == NULL) 16831 continue; 16832 16833 UPDATE_IB_PKT_COUNT(ire_zone); 16834 ire_zone->ire_last_used_time = lbolt; 16835 icmp_inbound(q, mp1, B_TRUE, ill, 16836 0, sum, mctl_present, B_TRUE, 16837 recv_ill, ire_zone->ire_zoneid); 16838 } 16839 IRB_REFRELE(ire->ire_bucket); 16840 } 16841 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 16842 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 16843 ire->ire_zoneid); 16844 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16845 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 16846 return; 16847 } 16848 case IPPROTO_IGMP: 16849 /* 16850 * If we are not willing to accept IGMP packets in clear, 16851 * then check with global policy. 16852 */ 16853 if (igmp_accept_clear_messages == 0) { 16854 first_mp = ipsec_check_global_policy(first_mp, NULL, 16855 ipha, NULL, mctl_present); 16856 if (first_mp == NULL) 16857 return; 16858 } 16859 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16860 freemsg(first_mp); 16861 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 16862 BUMP_MIB(&ip_mib, ipInDiscards); 16863 return; 16864 } 16865 if (igmp_input(q, mp, ill)) { 16866 /* Bad packet - discarded by igmp_input */ 16867 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16868 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 16869 if (mctl_present) 16870 freeb(first_mp); 16871 return; 16872 } 16873 /* 16874 * igmp_input() may have pulled up the message so ipha needs to 16875 * be reinitialized. 16876 */ 16877 ipha = (ipha_t *)mp->b_rptr; 16878 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16879 /* No user-level listener for IGMP packets */ 16880 goto drop_pkt; 16881 } 16882 /* deliver to local raw users */ 16883 break; 16884 case IPPROTO_PIM: 16885 /* 16886 * If we are not willing to accept PIM packets in clear, 16887 * then check with global policy. 16888 */ 16889 if (pim_accept_clear_messages == 0) { 16890 first_mp = ipsec_check_global_policy(first_mp, NULL, 16891 ipha, NULL, mctl_present); 16892 if (first_mp == NULL) 16893 return; 16894 } 16895 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16896 freemsg(first_mp); 16897 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 16898 BUMP_MIB(&ip_mib, ipInDiscards); 16899 return; 16900 } 16901 if (pim_input(q, mp) != 0) { 16902 /* Bad packet - discarded by pim_input */ 16903 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16904 "ip_rput_locl_end: q %p (%S)", q, "pim"); 16905 if (mctl_present) 16906 freeb(first_mp); 16907 return; 16908 } 16909 16910 /* 16911 * pim_input() may have pulled up the message so ipha needs to 16912 * be reinitialized. 16913 */ 16914 ipha = (ipha_t *)mp->b_rptr; 16915 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16916 /* No user-level listener for PIM packets */ 16917 goto drop_pkt; 16918 } 16919 /* deliver to local raw users */ 16920 break; 16921 case IPPROTO_ENCAP: 16922 /* 16923 * Handle self-encapsulated packets (IP-in-IP where 16924 * the inner addresses == the outer addresses). 16925 */ 16926 hdr_length = IPH_HDR_LENGTH(ipha); 16927 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 16928 mp->b_wptr) { 16929 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 16930 sizeof (ipha_t) - mp->b_rptr)) { 16931 BUMP_MIB(&ip_mib, ipInDiscards); 16932 freemsg(first_mp); 16933 return; 16934 } 16935 ipha = (ipha_t *)mp->b_rptr; 16936 } 16937 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 16938 /* 16939 * Check the sanity of the inner IP header. 16940 */ 16941 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 16942 BUMP_MIB(&ip_mib, ipInDiscards); 16943 freemsg(first_mp); 16944 return; 16945 } 16946 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 16947 BUMP_MIB(&ip_mib, ipInDiscards); 16948 freemsg(first_mp); 16949 return; 16950 } 16951 if (inner_ipha->ipha_src == ipha->ipha_src && 16952 inner_ipha->ipha_dst == ipha->ipha_dst) { 16953 ipsec_in_t *ii; 16954 16955 /* 16956 * Self-encapsulated tunnel packet. Remove 16957 * the outer IP header and fanout again. 16958 * We also need to make sure that the inner 16959 * header is pulled up until options. 16960 */ 16961 mp->b_rptr = (uchar_t *)inner_ipha; 16962 ipha = inner_ipha; 16963 hdr_length = IPH_HDR_LENGTH(ipha); 16964 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 16965 if (!pullupmsg(mp, (uchar_t *)ipha + 16966 + hdr_length - mp->b_rptr)) { 16967 freemsg(first_mp); 16968 return; 16969 } 16970 ipha = (ipha_t *)mp->b_rptr; 16971 } 16972 if (!mctl_present) { 16973 ASSERT(first_mp == mp); 16974 /* 16975 * This means that somebody is sending 16976 * Self-encapsualted packets without AH/ESP. 16977 * If AH/ESP was present, we would have already 16978 * allocated the first_mp. 16979 */ 16980 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 16981 NULL) { 16982 ip1dbg(("ip_proto_input: IPSEC_IN " 16983 "allocation failure.\n")); 16984 BUMP_MIB(&ip_mib, ipInDiscards); 16985 freemsg(mp); 16986 return; 16987 } 16988 first_mp->b_cont = mp; 16989 } 16990 /* 16991 * We generally store the ill_index if we need to 16992 * do IPSEC processing as we lose the ill queue when 16993 * we come back. But in this case, we never should 16994 * have to store the ill_index here as it should have 16995 * been stored previously when we processed the 16996 * AH/ESP header in this routine or for non-ipsec 16997 * cases, we still have the queue. But for some bad 16998 * packets from the wire, we can get to IPSEC after 16999 * this and we better store the index for that case. 17000 */ 17001 ill = (ill_t *)q->q_ptr; 17002 ii = (ipsec_in_t *)first_mp->b_rptr; 17003 ii->ipsec_in_ill_index = 17004 ill->ill_phyint->phyint_ifindex; 17005 ii->ipsec_in_rill_index = 17006 recv_ill->ill_phyint->phyint_ifindex; 17007 if (ii->ipsec_in_decaps) { 17008 /* 17009 * This packet is self-encapsulated multiple 17010 * times. We don't want to recurse infinitely. 17011 * To keep it simple, drop the packet. 17012 */ 17013 BUMP_MIB(&ip_mib, ipInDiscards); 17014 freemsg(first_mp); 17015 return; 17016 } 17017 ii->ipsec_in_decaps = B_TRUE; 17018 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 17019 return; 17020 } 17021 break; 17022 case IPPROTO_AH: 17023 case IPPROTO_ESP: { 17024 /* 17025 * Fast path for AH/ESP. If this is the first time 17026 * we are sending a datagram to AH/ESP, allocate 17027 * a IPSEC_IN message and prepend it. Otherwise, 17028 * just fanout. 17029 */ 17030 17031 int ipsec_rc; 17032 ipsec_in_t *ii; 17033 17034 IP_STAT(ipsec_proto_ahesp); 17035 if (!mctl_present) { 17036 ASSERT(first_mp == mp); 17037 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 17038 ip1dbg(("ip_proto_input: IPSEC_IN " 17039 "allocation failure.\n")); 17040 freemsg(hada_mp); /* okay ifnull */ 17041 BUMP_MIB(&ip_mib, ipInDiscards); 17042 freemsg(mp); 17043 return; 17044 } 17045 /* 17046 * Store the ill_index so that when we come back 17047 * from IPSEC we ride on the same queue. 17048 */ 17049 ill = (ill_t *)q->q_ptr; 17050 ii = (ipsec_in_t *)first_mp->b_rptr; 17051 ii->ipsec_in_ill_index = 17052 ill->ill_phyint->phyint_ifindex; 17053 ii->ipsec_in_rill_index = 17054 recv_ill->ill_phyint->phyint_ifindex; 17055 first_mp->b_cont = mp; 17056 /* 17057 * Cache hardware acceleration info. 17058 */ 17059 if (hada_mp != NULL) { 17060 IPSECHW_DEBUG(IPSECHW_PKT, 17061 ("ip_rput_local: caching data attr.\n")); 17062 ii->ipsec_in_accelerated = B_TRUE; 17063 ii->ipsec_in_da = hada_mp; 17064 hada_mp = NULL; 17065 } 17066 } else { 17067 ii = (ipsec_in_t *)first_mp->b_rptr; 17068 } 17069 17070 if (!ipsec_loaded()) { 17071 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17072 ire->ire_zoneid); 17073 return; 17074 } 17075 17076 /* select inbound SA and have IPsec process the pkt */ 17077 if (ipha->ipha_protocol == IPPROTO_ESP) { 17078 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 17079 if (esph == NULL) 17080 return; 17081 ASSERT(ii->ipsec_in_esp_sa != NULL); 17082 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17083 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17084 first_mp, esph); 17085 } else { 17086 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 17087 if (ah == NULL) 17088 return; 17089 ASSERT(ii->ipsec_in_ah_sa != NULL); 17090 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17091 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17092 first_mp, ah); 17093 } 17094 17095 switch (ipsec_rc) { 17096 case IPSEC_STATUS_SUCCESS: 17097 break; 17098 case IPSEC_STATUS_FAILED: 17099 BUMP_MIB(&ip_mib, ipInDiscards); 17100 /* FALLTHRU */ 17101 case IPSEC_STATUS_PENDING: 17102 return; 17103 } 17104 /* we're done with IPsec processing, send it up */ 17105 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17106 return; 17107 } 17108 default: 17109 break; 17110 } 17111 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17112 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17113 ire->ire_zoneid)); 17114 goto drop_pkt; 17115 } 17116 /* 17117 * Handle protocols with which IP is less intimate. There 17118 * can be more than one stream bound to a particular 17119 * protocol. When this is the case, each one gets a copy 17120 * of any incoming packets. 17121 */ 17122 ip_fanout_proto(q, first_mp, ill, ipha, 17123 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17124 B_TRUE, recv_ill, ire->ire_zoneid); 17125 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17126 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17127 return; 17128 17129 drop_pkt: 17130 freemsg(first_mp); 17131 if (hada_mp != NULL) 17132 freeb(hada_mp); 17133 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17134 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17135 #undef rptr 17136 #undef iphs 17137 17138 } 17139 17140 /* 17141 * Update any source route, record route or timestamp options. 17142 * Check that we are at end of strict source route. 17143 * The options have already been checked for sanity in ip_rput_options(). 17144 */ 17145 static boolean_t 17146 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 17147 { 17148 ipoptp_t opts; 17149 uchar_t *opt; 17150 uint8_t optval; 17151 uint8_t optlen; 17152 ipaddr_t dst; 17153 uint32_t ts; 17154 ire_t *dst_ire; 17155 timestruc_t now; 17156 zoneid_t zoneid; 17157 ill_t *ill; 17158 17159 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17160 17161 ip2dbg(("ip_rput_local_options\n")); 17162 17163 for (optval = ipoptp_first(&opts, ipha); 17164 optval != IPOPT_EOL; 17165 optval = ipoptp_next(&opts)) { 17166 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17167 opt = opts.ipoptp_cur; 17168 optlen = opts.ipoptp_len; 17169 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17170 optval, optlen)); 17171 switch (optval) { 17172 uint32_t off; 17173 case IPOPT_SSRR: 17174 case IPOPT_LSRR: 17175 off = opt[IPOPT_OFFSET]; 17176 off--; 17177 if (optlen < IP_ADDR_LEN || 17178 off > optlen - IP_ADDR_LEN) { 17179 /* End of source route */ 17180 ip1dbg(("ip_rput_local_options: end of SR\n")); 17181 break; 17182 } 17183 /* 17184 * This will only happen if two consecutive entries 17185 * in the source route contains our address or if 17186 * it is a packet with a loose source route which 17187 * reaches us before consuming the whole source route 17188 */ 17189 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17190 if (optval == IPOPT_SSRR) { 17191 goto bad_src_route; 17192 } 17193 /* 17194 * Hack: instead of dropping the packet truncate the 17195 * source route to what has been used by filling the 17196 * rest with IPOPT_NOP. 17197 */ 17198 opt[IPOPT_OLEN] = (uint8_t)off; 17199 while (off < optlen) { 17200 opt[off++] = IPOPT_NOP; 17201 } 17202 break; 17203 case IPOPT_RR: 17204 off = opt[IPOPT_OFFSET]; 17205 off--; 17206 if (optlen < IP_ADDR_LEN || 17207 off > optlen - IP_ADDR_LEN) { 17208 /* No more room - ignore */ 17209 ip1dbg(( 17210 "ip_rput_local_options: end of RR\n")); 17211 break; 17212 } 17213 bcopy(&ire->ire_src_addr, (char *)opt + off, 17214 IP_ADDR_LEN); 17215 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17216 break; 17217 case IPOPT_TS: 17218 /* Insert timestamp if there is romm */ 17219 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17220 case IPOPT_TS_TSONLY: 17221 off = IPOPT_TS_TIMELEN; 17222 break; 17223 case IPOPT_TS_PRESPEC: 17224 case IPOPT_TS_PRESPEC_RFC791: 17225 /* Verify that the address matched */ 17226 off = opt[IPOPT_OFFSET] - 1; 17227 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17228 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17229 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 17230 if (dst_ire == NULL) { 17231 /* Not for us */ 17232 break; 17233 } 17234 ire_refrele(dst_ire); 17235 /* FALLTHRU */ 17236 case IPOPT_TS_TSANDADDR: 17237 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17238 break; 17239 default: 17240 /* 17241 * ip_*put_options should have already 17242 * dropped this packet. 17243 */ 17244 cmn_err(CE_PANIC, "ip_rput_local_options: " 17245 "unknown IT - bug in ip_rput_options?\n"); 17246 return (B_TRUE); /* Keep "lint" happy */ 17247 } 17248 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17249 /* Increase overflow counter */ 17250 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17251 opt[IPOPT_POS_OV_FLG] = 17252 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17253 (off << 4)); 17254 break; 17255 } 17256 off = opt[IPOPT_OFFSET] - 1; 17257 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17258 case IPOPT_TS_PRESPEC: 17259 case IPOPT_TS_PRESPEC_RFC791: 17260 case IPOPT_TS_TSANDADDR: 17261 bcopy(&ire->ire_src_addr, (char *)opt + off, 17262 IP_ADDR_LEN); 17263 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17264 /* FALLTHRU */ 17265 case IPOPT_TS_TSONLY: 17266 off = opt[IPOPT_OFFSET] - 1; 17267 /* Compute # of milliseconds since midnight */ 17268 gethrestime(&now); 17269 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17270 now.tv_nsec / (NANOSEC / MILLISEC); 17271 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17272 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17273 break; 17274 } 17275 break; 17276 } 17277 } 17278 return (B_TRUE); 17279 17280 bad_src_route: 17281 q = WR(q); 17282 if (q->q_next != NULL) 17283 ill = q->q_ptr; 17284 else 17285 ill = NULL; 17286 17287 /* make sure we clear any indication of a hardware checksum */ 17288 DB_CKSUMFLAGS(mp) = 0; 17289 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill); 17290 if (zoneid == ALL_ZONES) 17291 freemsg(mp); 17292 else 17293 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17294 return (B_FALSE); 17295 17296 } 17297 17298 /* 17299 * Process IP options in an inbound packet. If an option affects the 17300 * effective destination address, return the next hop address via dstp. 17301 * Returns -1 if something fails in which case an ICMP error has been sent 17302 * and mp freed. 17303 */ 17304 static int 17305 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 17306 { 17307 ipoptp_t opts; 17308 uchar_t *opt; 17309 uint8_t optval; 17310 uint8_t optlen; 17311 ipaddr_t dst; 17312 intptr_t code = 0; 17313 ire_t *ire = NULL; 17314 zoneid_t zoneid; 17315 ill_t *ill; 17316 17317 ip2dbg(("ip_rput_options\n")); 17318 dst = ipha->ipha_dst; 17319 for (optval = ipoptp_first(&opts, ipha); 17320 optval != IPOPT_EOL; 17321 optval = ipoptp_next(&opts)) { 17322 opt = opts.ipoptp_cur; 17323 optlen = opts.ipoptp_len; 17324 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17325 optval, optlen)); 17326 /* 17327 * Note: we need to verify the checksum before we 17328 * modify anything thus this routine only extracts the next 17329 * hop dst from any source route. 17330 */ 17331 switch (optval) { 17332 uint32_t off; 17333 case IPOPT_SSRR: 17334 case IPOPT_LSRR: 17335 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17336 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17337 if (ire == NULL) { 17338 if (optval == IPOPT_SSRR) { 17339 ip1dbg(("ip_rput_options: not next" 17340 " strict source route 0x%x\n", 17341 ntohl(dst))); 17342 code = (char *)&ipha->ipha_dst - 17343 (char *)ipha; 17344 goto param_prob; /* RouterReq's */ 17345 } 17346 ip2dbg(("ip_rput_options: " 17347 "not next source route 0x%x\n", 17348 ntohl(dst))); 17349 break; 17350 } 17351 ire_refrele(ire); 17352 17353 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17354 ip1dbg(( 17355 "ip_rput_options: bad option offset\n")); 17356 code = (char *)&opt[IPOPT_OLEN] - 17357 (char *)ipha; 17358 goto param_prob; 17359 } 17360 off = opt[IPOPT_OFFSET]; 17361 off--; 17362 redo_srr: 17363 if (optlen < IP_ADDR_LEN || 17364 off > optlen - IP_ADDR_LEN) { 17365 /* End of source route */ 17366 ip1dbg(("ip_rput_options: end of SR\n")); 17367 break; 17368 } 17369 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17370 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17371 ntohl(dst))); 17372 17373 /* 17374 * Check if our address is present more than 17375 * once as consecutive hops in source route. 17376 * XXX verify per-interface ip_forwarding 17377 * for source route? 17378 */ 17379 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17380 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17381 17382 if (ire != NULL) { 17383 ire_refrele(ire); 17384 off += IP_ADDR_LEN; 17385 goto redo_srr; 17386 } 17387 17388 if (dst == htonl(INADDR_LOOPBACK)) { 17389 ip1dbg(("ip_rput_options: loopback addr in " 17390 "source route!\n")); 17391 goto bad_src_route; 17392 } 17393 /* 17394 * For strict: verify that dst is directly 17395 * reachable. 17396 */ 17397 if (optval == IPOPT_SSRR) { 17398 ire = ire_ftable_lookup(dst, 0, 0, 17399 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17400 MBLK_GETLABEL(mp), 17401 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 17402 if (ire == NULL) { 17403 ip1dbg(("ip_rput_options: SSRR not " 17404 "directly reachable: 0x%x\n", 17405 ntohl(dst))); 17406 goto bad_src_route; 17407 } 17408 ire_refrele(ire); 17409 } 17410 /* 17411 * Defer update of the offset and the record route 17412 * until the packet is forwarded. 17413 */ 17414 break; 17415 case IPOPT_RR: 17416 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17417 ip1dbg(( 17418 "ip_rput_options: bad option offset\n")); 17419 code = (char *)&opt[IPOPT_OLEN] - 17420 (char *)ipha; 17421 goto param_prob; 17422 } 17423 break; 17424 case IPOPT_TS: 17425 /* 17426 * Verify that length >= 5 and that there is either 17427 * room for another timestamp or that the overflow 17428 * counter is not maxed out. 17429 */ 17430 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17431 if (optlen < IPOPT_MINLEN_IT) { 17432 goto param_prob; 17433 } 17434 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17435 ip1dbg(( 17436 "ip_rput_options: bad option offset\n")); 17437 code = (char *)&opt[IPOPT_OFFSET] - 17438 (char *)ipha; 17439 goto param_prob; 17440 } 17441 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17442 case IPOPT_TS_TSONLY: 17443 off = IPOPT_TS_TIMELEN; 17444 break; 17445 case IPOPT_TS_TSANDADDR: 17446 case IPOPT_TS_PRESPEC: 17447 case IPOPT_TS_PRESPEC_RFC791: 17448 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17449 break; 17450 default: 17451 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17452 (char *)ipha; 17453 goto param_prob; 17454 } 17455 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17456 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17457 /* 17458 * No room and the overflow counter is 15 17459 * already. 17460 */ 17461 goto param_prob; 17462 } 17463 break; 17464 } 17465 } 17466 17467 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17468 *dstp = dst; 17469 return (0); 17470 } 17471 17472 ip1dbg(("ip_rput_options: error processing IP options.")); 17473 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17474 17475 param_prob: 17476 q = WR(q); 17477 if (q->q_next != NULL) 17478 ill = q->q_ptr; 17479 else 17480 ill = NULL; 17481 17482 /* make sure we clear any indication of a hardware checksum */ 17483 DB_CKSUMFLAGS(mp) = 0; 17484 /* Don't know whether this is for non-global or global/forwarding */ 17485 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17486 if (zoneid == ALL_ZONES) 17487 freemsg(mp); 17488 else 17489 icmp_param_problem(q, mp, (uint8_t)code, zoneid); 17490 return (-1); 17491 17492 bad_src_route: 17493 q = WR(q); 17494 if (q->q_next != NULL) 17495 ill = q->q_ptr; 17496 else 17497 ill = NULL; 17498 17499 /* make sure we clear any indication of a hardware checksum */ 17500 DB_CKSUMFLAGS(mp) = 0; 17501 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17502 if (zoneid == ALL_ZONES) 17503 freemsg(mp); 17504 else 17505 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17506 return (-1); 17507 } 17508 17509 /* 17510 * IP & ICMP info in >=14 msg's ... 17511 * - ip fixed part (mib2_ip_t) 17512 * - icmp fixed part (mib2_icmp_t) 17513 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17514 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17515 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 17516 * - ipRouteAttributeTable (ip 102) labeled routes 17517 * - ip multicast membership (ip_member_t) 17518 * - ip multicast source filtering (ip_grpsrc_t) 17519 * - igmp fixed part (struct igmpstat) 17520 * - multicast routing stats (struct mrtstat) 17521 * - multicast routing vifs (array of struct vifctl) 17522 * - multicast routing routes (array of struct mfcctl) 17523 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17524 * One per ill plus one generic 17525 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17526 * One per ill plus one generic 17527 * - ipv6RouteEntry all IPv6 IREs 17528 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17529 * - ipv6NetToMediaEntry all Neighbor Cache entries 17530 * - ipv6AddrEntry all IPv6 ipifs 17531 * - ipv6 multicast membership (ipv6_member_t) 17532 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17533 * 17534 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 17535 * already present. 17536 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17537 * already filled in by the caller. 17538 * Return value of 0 indicates that no messages were sent and caller 17539 * should free mpctl. 17540 */ 17541 int 17542 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17543 { 17544 17545 if (mpctl == NULL || mpctl->b_cont == NULL) { 17546 return (0); 17547 } 17548 17549 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 17550 return (1); 17551 } 17552 17553 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 17554 return (1); 17555 } 17556 17557 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 17558 return (1); 17559 } 17560 17561 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 17562 return (1); 17563 } 17564 17565 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 17566 return (1); 17567 } 17568 17569 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 17570 return (1); 17571 } 17572 17573 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 17574 return (1); 17575 } 17576 17577 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 17578 return (1); 17579 } 17580 17581 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 17582 return (1); 17583 } 17584 17585 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 17586 return (1); 17587 } 17588 17589 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 17590 return (1); 17591 } 17592 17593 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 17594 return (1); 17595 } 17596 17597 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 17598 return (1); 17599 } 17600 17601 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 17602 return (1); 17603 } 17604 17605 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 17606 return (1); 17607 } 17608 17609 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 17610 return (1); 17611 } 17612 17613 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 17614 return (1); 17615 } 17616 freemsg(mpctl); 17617 return (1); 17618 } 17619 17620 17621 /* Get global IPv4 statistics */ 17622 static mblk_t * 17623 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 17624 { 17625 struct opthdr *optp; 17626 mblk_t *mp2ctl; 17627 17628 /* 17629 * make a copy of the original message 17630 */ 17631 mp2ctl = copymsg(mpctl); 17632 17633 /* fixed length IP structure... */ 17634 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17635 optp->level = MIB2_IP; 17636 optp->name = 0; 17637 SET_MIB(ip_mib.ipForwarding, 17638 (WE_ARE_FORWARDING ? 1 : 2)); 17639 SET_MIB(ip_mib.ipDefaultTTL, 17640 (uint32_t)ip_def_ttl); 17641 SET_MIB(ip_mib.ipReasmTimeout, 17642 ip_g_frag_timeout); 17643 SET_MIB(ip_mib.ipAddrEntrySize, 17644 sizeof (mib2_ipAddrEntry_t)); 17645 SET_MIB(ip_mib.ipRouteEntrySize, 17646 sizeof (mib2_ipRouteEntry_t)); 17647 SET_MIB(ip_mib.ipNetToMediaEntrySize, 17648 sizeof (mib2_ipNetToMediaEntry_t)); 17649 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 17650 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 17651 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 17652 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 17653 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 17654 (int)sizeof (ip_mib))) { 17655 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 17656 (uint_t)sizeof (ip_mib))); 17657 } 17658 17659 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17660 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 17661 (int)optp->level, (int)optp->name, (int)optp->len)); 17662 qreply(q, mpctl); 17663 return (mp2ctl); 17664 } 17665 17666 /* Global IPv4 ICMP statistics */ 17667 static mblk_t * 17668 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 17669 { 17670 struct opthdr *optp; 17671 mblk_t *mp2ctl; 17672 17673 /* 17674 * Make a copy of the original message 17675 */ 17676 mp2ctl = copymsg(mpctl); 17677 17678 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17679 optp->level = MIB2_ICMP; 17680 optp->name = 0; 17681 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17682 (int)sizeof (icmp_mib))) { 17683 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17684 (uint_t)sizeof (icmp_mib))); 17685 } 17686 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17687 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17688 (int)optp->level, (int)optp->name, (int)optp->len)); 17689 qreply(q, mpctl); 17690 return (mp2ctl); 17691 } 17692 17693 /* Global IPv4 IGMP statistics */ 17694 static mblk_t * 17695 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17696 { 17697 struct opthdr *optp; 17698 mblk_t *mp2ctl; 17699 17700 /* 17701 * make a copy of the original message 17702 */ 17703 mp2ctl = copymsg(mpctl); 17704 17705 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17706 optp->level = EXPER_IGMP; 17707 optp->name = 0; 17708 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 17709 (int)sizeof (igmpstat))) { 17710 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 17711 (uint_t)sizeof (igmpstat))); 17712 } 17713 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17714 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 17715 (int)optp->level, (int)optp->name, (int)optp->len)); 17716 qreply(q, mpctl); 17717 return (mp2ctl); 17718 } 17719 17720 /* Global IPv4 Multicast Routing statistics */ 17721 static mblk_t * 17722 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 17723 { 17724 struct opthdr *optp; 17725 mblk_t *mp2ctl; 17726 17727 /* 17728 * make a copy of the original message 17729 */ 17730 mp2ctl = copymsg(mpctl); 17731 17732 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17733 optp->level = EXPER_DVMRP; 17734 optp->name = 0; 17735 if (!ip_mroute_stats(mpctl->b_cont)) { 17736 ip0dbg(("ip_mroute_stats: failed\n")); 17737 } 17738 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17739 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 17740 (int)optp->level, (int)optp->name, (int)optp->len)); 17741 qreply(q, mpctl); 17742 return (mp2ctl); 17743 } 17744 17745 /* IPv4 address information */ 17746 static mblk_t * 17747 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 17748 { 17749 struct opthdr *optp; 17750 mblk_t *mp2ctl; 17751 mblk_t *mp_tail = NULL; 17752 ill_t *ill; 17753 ipif_t *ipif; 17754 uint_t bitval; 17755 mib2_ipAddrEntry_t mae; 17756 zoneid_t zoneid; 17757 ill_walk_context_t ctx; 17758 17759 /* 17760 * make a copy of the original message 17761 */ 17762 mp2ctl = copymsg(mpctl); 17763 17764 /* ipAddrEntryTable */ 17765 17766 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17767 optp->level = MIB2_IP; 17768 optp->name = MIB2_IP_ADDR; 17769 zoneid = Q_TO_CONN(q)->conn_zoneid; 17770 17771 rw_enter(&ill_g_lock, RW_READER); 17772 ill = ILL_START_WALK_V4(&ctx); 17773 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17774 for (ipif = ill->ill_ipif; ipif != NULL; 17775 ipif = ipif->ipif_next) { 17776 if (ipif->ipif_zoneid != zoneid && 17777 ipif->ipif_zoneid != ALL_ZONES) 17778 continue; 17779 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17780 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17781 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17782 17783 (void) ipif_get_name(ipif, 17784 mae.ipAdEntIfIndex.o_bytes, 17785 OCTET_LENGTH); 17786 mae.ipAdEntIfIndex.o_length = 17787 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 17788 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 17789 mae.ipAdEntNetMask = ipif->ipif_net_mask; 17790 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 17791 mae.ipAdEntInfo.ae_subnet_len = 17792 ip_mask_to_plen(ipif->ipif_net_mask); 17793 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 17794 for (bitval = 1; 17795 bitval && 17796 !(bitval & ipif->ipif_brd_addr); 17797 bitval <<= 1) 17798 noop; 17799 mae.ipAdEntBcastAddr = bitval; 17800 mae.ipAdEntReasmMaxSize = 65535; 17801 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 17802 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 17803 mae.ipAdEntInfo.ae_broadcast_addr = 17804 ipif->ipif_brd_addr; 17805 mae.ipAdEntInfo.ae_pp_dst_addr = 17806 ipif->ipif_pp_dst_addr; 17807 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 17808 ill->ill_flags | ill->ill_phyint->phyint_flags; 17809 17810 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17811 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 17812 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 17813 "allocate %u bytes\n", 17814 (uint_t)sizeof (mib2_ipAddrEntry_t))); 17815 } 17816 } 17817 } 17818 rw_exit(&ill_g_lock); 17819 17820 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17821 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 17822 (int)optp->level, (int)optp->name, (int)optp->len)); 17823 qreply(q, mpctl); 17824 return (mp2ctl); 17825 } 17826 17827 /* IPv6 address information */ 17828 static mblk_t * 17829 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 17830 { 17831 struct opthdr *optp; 17832 mblk_t *mp2ctl; 17833 mblk_t *mp_tail = NULL; 17834 ill_t *ill; 17835 ipif_t *ipif; 17836 mib2_ipv6AddrEntry_t mae6; 17837 zoneid_t zoneid; 17838 ill_walk_context_t ctx; 17839 17840 /* 17841 * make a copy of the original message 17842 */ 17843 mp2ctl = copymsg(mpctl); 17844 17845 /* ipv6AddrEntryTable */ 17846 17847 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17848 optp->level = MIB2_IP6; 17849 optp->name = MIB2_IP6_ADDR; 17850 zoneid = Q_TO_CONN(q)->conn_zoneid; 17851 17852 rw_enter(&ill_g_lock, RW_READER); 17853 ill = ILL_START_WALK_V6(&ctx); 17854 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17855 for (ipif = ill->ill_ipif; ipif != NULL; 17856 ipif = ipif->ipif_next) { 17857 if (ipif->ipif_zoneid != zoneid && 17858 ipif->ipif_zoneid != ALL_ZONES) 17859 continue; 17860 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17861 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17862 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17863 17864 (void) ipif_get_name(ipif, 17865 mae6.ipv6AddrIfIndex.o_bytes, 17866 OCTET_LENGTH); 17867 mae6.ipv6AddrIfIndex.o_length = 17868 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 17869 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 17870 mae6.ipv6AddrPfxLength = 17871 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 17872 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 17873 mae6.ipv6AddrInfo.ae_subnet_len = 17874 mae6.ipv6AddrPfxLength; 17875 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 17876 17877 /* Type: stateless(1), stateful(2), unknown(3) */ 17878 if (ipif->ipif_flags & IPIF_ADDRCONF) 17879 mae6.ipv6AddrType = 1; 17880 else 17881 mae6.ipv6AddrType = 2; 17882 /* Anycast: true(1), false(2) */ 17883 if (ipif->ipif_flags & IPIF_ANYCAST) 17884 mae6.ipv6AddrAnycastFlag = 1; 17885 else 17886 mae6.ipv6AddrAnycastFlag = 2; 17887 17888 /* 17889 * Address status: preferred(1), deprecated(2), 17890 * invalid(3), inaccessible(4), unknown(5) 17891 */ 17892 if (ipif->ipif_flags & IPIF_NOLOCAL) 17893 mae6.ipv6AddrStatus = 3; 17894 else if (ipif->ipif_flags & IPIF_DEPRECATED) 17895 mae6.ipv6AddrStatus = 2; 17896 else 17897 mae6.ipv6AddrStatus = 1; 17898 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 17899 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 17900 mae6.ipv6AddrInfo.ae_pp_dst_addr = 17901 ipif->ipif_v6pp_dst_addr; 17902 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 17903 ill->ill_flags | ill->ill_phyint->phyint_flags; 17904 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17905 (char *)&mae6, 17906 (int)sizeof (mib2_ipv6AddrEntry_t))) { 17907 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 17908 "allocate %u bytes\n", 17909 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 17910 } 17911 } 17912 } 17913 rw_exit(&ill_g_lock); 17914 17915 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17916 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 17917 (int)optp->level, (int)optp->name, (int)optp->len)); 17918 qreply(q, mpctl); 17919 return (mp2ctl); 17920 } 17921 17922 /* IPv4 multicast group membership. */ 17923 static mblk_t * 17924 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 17925 { 17926 struct opthdr *optp; 17927 mblk_t *mp2ctl; 17928 ill_t *ill; 17929 ipif_t *ipif; 17930 ilm_t *ilm; 17931 ip_member_t ipm; 17932 mblk_t *mp_tail = NULL; 17933 ill_walk_context_t ctx; 17934 zoneid_t zoneid; 17935 17936 /* 17937 * make a copy of the original message 17938 */ 17939 mp2ctl = copymsg(mpctl); 17940 zoneid = Q_TO_CONN(q)->conn_zoneid; 17941 17942 /* ipGroupMember table */ 17943 optp = (struct opthdr *)&mpctl->b_rptr[ 17944 sizeof (struct T_optmgmt_ack)]; 17945 optp->level = MIB2_IP; 17946 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 17947 17948 rw_enter(&ill_g_lock, RW_READER); 17949 ill = ILL_START_WALK_V4(&ctx); 17950 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17951 ILM_WALKER_HOLD(ill); 17952 for (ipif = ill->ill_ipif; ipif != NULL; 17953 ipif = ipif->ipif_next) { 17954 if (ipif->ipif_zoneid != zoneid && 17955 ipif->ipif_zoneid != ALL_ZONES) 17956 continue; /* not this zone */ 17957 (void) ipif_get_name(ipif, 17958 ipm.ipGroupMemberIfIndex.o_bytes, 17959 OCTET_LENGTH); 17960 ipm.ipGroupMemberIfIndex.o_length = 17961 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 17962 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17963 ASSERT(ilm->ilm_ipif != NULL); 17964 ASSERT(ilm->ilm_ill == NULL); 17965 if (ilm->ilm_ipif != ipif) 17966 continue; 17967 ipm.ipGroupMemberAddress = ilm->ilm_addr; 17968 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 17969 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 17970 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17971 (char *)&ipm, (int)sizeof (ipm))) { 17972 ip1dbg(("ip_snmp_get_mib2_ip_group: " 17973 "failed to allocate %u bytes\n", 17974 (uint_t)sizeof (ipm))); 17975 } 17976 } 17977 } 17978 ILM_WALKER_RELE(ill); 17979 } 17980 rw_exit(&ill_g_lock); 17981 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17982 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17983 (int)optp->level, (int)optp->name, (int)optp->len)); 17984 qreply(q, mpctl); 17985 return (mp2ctl); 17986 } 17987 17988 /* IPv6 multicast group membership. */ 17989 static mblk_t * 17990 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 17991 { 17992 struct opthdr *optp; 17993 mblk_t *mp2ctl; 17994 ill_t *ill; 17995 ilm_t *ilm; 17996 ipv6_member_t ipm6; 17997 mblk_t *mp_tail = NULL; 17998 ill_walk_context_t ctx; 17999 zoneid_t zoneid; 18000 18001 /* 18002 * make a copy of the original message 18003 */ 18004 mp2ctl = copymsg(mpctl); 18005 zoneid = Q_TO_CONN(q)->conn_zoneid; 18006 18007 /* ip6GroupMember table */ 18008 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18009 optp->level = MIB2_IP6; 18010 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18011 18012 rw_enter(&ill_g_lock, RW_READER); 18013 ill = ILL_START_WALK_V6(&ctx); 18014 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18015 ILM_WALKER_HOLD(ill); 18016 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18017 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18018 ASSERT(ilm->ilm_ipif == NULL); 18019 ASSERT(ilm->ilm_ill != NULL); 18020 if (ilm->ilm_zoneid != zoneid) 18021 continue; /* not this zone */ 18022 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18023 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18024 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18025 if (!snmp_append_data2(mpctl->b_cont, 18026 &mp_tail, 18027 (char *)&ipm6, (int)sizeof (ipm6))) { 18028 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18029 "failed to allocate %u bytes\n", 18030 (uint_t)sizeof (ipm6))); 18031 } 18032 } 18033 ILM_WALKER_RELE(ill); 18034 } 18035 rw_exit(&ill_g_lock); 18036 18037 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18038 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18039 (int)optp->level, (int)optp->name, (int)optp->len)); 18040 qreply(q, mpctl); 18041 return (mp2ctl); 18042 } 18043 18044 /* IP multicast filtered sources */ 18045 static mblk_t * 18046 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 18047 { 18048 struct opthdr *optp; 18049 mblk_t *mp2ctl; 18050 ill_t *ill; 18051 ipif_t *ipif; 18052 ilm_t *ilm; 18053 ip_grpsrc_t ips; 18054 mblk_t *mp_tail = NULL; 18055 ill_walk_context_t ctx; 18056 zoneid_t zoneid; 18057 int i; 18058 slist_t *sl; 18059 18060 /* 18061 * make a copy of the original message 18062 */ 18063 mp2ctl = copymsg(mpctl); 18064 zoneid = Q_TO_CONN(q)->conn_zoneid; 18065 18066 /* ipGroupSource table */ 18067 optp = (struct opthdr *)&mpctl->b_rptr[ 18068 sizeof (struct T_optmgmt_ack)]; 18069 optp->level = MIB2_IP; 18070 optp->name = EXPER_IP_GROUP_SOURCES; 18071 18072 rw_enter(&ill_g_lock, RW_READER); 18073 ill = ILL_START_WALK_V4(&ctx); 18074 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18075 ILM_WALKER_HOLD(ill); 18076 for (ipif = ill->ill_ipif; ipif != NULL; 18077 ipif = ipif->ipif_next) { 18078 if (ipif->ipif_zoneid != zoneid) 18079 continue; /* not this zone */ 18080 (void) ipif_get_name(ipif, 18081 ips.ipGroupSourceIfIndex.o_bytes, 18082 OCTET_LENGTH); 18083 ips.ipGroupSourceIfIndex.o_length = 18084 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18085 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18086 ASSERT(ilm->ilm_ipif != NULL); 18087 ASSERT(ilm->ilm_ill == NULL); 18088 sl = ilm->ilm_filter; 18089 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18090 continue; 18091 ips.ipGroupSourceGroup = ilm->ilm_addr; 18092 for (i = 0; i < sl->sl_numsrc; i++) { 18093 if (!IN6_IS_ADDR_V4MAPPED( 18094 &sl->sl_addr[i])) 18095 continue; 18096 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18097 ips.ipGroupSourceAddress); 18098 if (snmp_append_data2(mpctl->b_cont, 18099 &mp_tail, (char *)&ips, 18100 (int)sizeof (ips)) == 0) { 18101 ip1dbg(("ip_snmp_get_mib2_" 18102 "ip_group_src: failed to " 18103 "allocate %u bytes\n", 18104 (uint_t)sizeof (ips))); 18105 } 18106 } 18107 } 18108 } 18109 ILM_WALKER_RELE(ill); 18110 } 18111 rw_exit(&ill_g_lock); 18112 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18113 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18114 (int)optp->level, (int)optp->name, (int)optp->len)); 18115 qreply(q, mpctl); 18116 return (mp2ctl); 18117 } 18118 18119 /* IPv6 multicast filtered sources. */ 18120 static mblk_t * 18121 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 18122 { 18123 struct opthdr *optp; 18124 mblk_t *mp2ctl; 18125 ill_t *ill; 18126 ilm_t *ilm; 18127 ipv6_grpsrc_t ips6; 18128 mblk_t *mp_tail = NULL; 18129 ill_walk_context_t ctx; 18130 zoneid_t zoneid; 18131 int i; 18132 slist_t *sl; 18133 18134 /* 18135 * make a copy of the original message 18136 */ 18137 mp2ctl = copymsg(mpctl); 18138 zoneid = Q_TO_CONN(q)->conn_zoneid; 18139 18140 /* ip6GroupMember table */ 18141 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18142 optp->level = MIB2_IP6; 18143 optp->name = EXPER_IP6_GROUP_SOURCES; 18144 18145 rw_enter(&ill_g_lock, RW_READER); 18146 ill = ILL_START_WALK_V6(&ctx); 18147 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18148 ILM_WALKER_HOLD(ill); 18149 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18150 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18151 ASSERT(ilm->ilm_ipif == NULL); 18152 ASSERT(ilm->ilm_ill != NULL); 18153 sl = ilm->ilm_filter; 18154 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18155 continue; 18156 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18157 for (i = 0; i < sl->sl_numsrc; i++) { 18158 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18159 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18160 (char *)&ips6, (int)sizeof (ips6))) { 18161 ip1dbg(("ip_snmp_get_mib2_ip6_" 18162 "group_src: failed to allocate " 18163 "%u bytes\n", 18164 (uint_t)sizeof (ips6))); 18165 } 18166 } 18167 } 18168 ILM_WALKER_RELE(ill); 18169 } 18170 rw_exit(&ill_g_lock); 18171 18172 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18173 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18174 (int)optp->level, (int)optp->name, (int)optp->len)); 18175 qreply(q, mpctl); 18176 return (mp2ctl); 18177 } 18178 18179 /* Multicast routing virtual interface table. */ 18180 static mblk_t * 18181 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 18182 { 18183 struct opthdr *optp; 18184 mblk_t *mp2ctl; 18185 18186 /* 18187 * make a copy of the original message 18188 */ 18189 mp2ctl = copymsg(mpctl); 18190 18191 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18192 optp->level = EXPER_DVMRP; 18193 optp->name = EXPER_DVMRP_VIF; 18194 if (!ip_mroute_vif(mpctl->b_cont)) { 18195 ip0dbg(("ip_mroute_vif: failed\n")); 18196 } 18197 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18198 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18199 (int)optp->level, (int)optp->name, (int)optp->len)); 18200 qreply(q, mpctl); 18201 return (mp2ctl); 18202 } 18203 18204 /* Multicast routing table. */ 18205 static mblk_t * 18206 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 18207 { 18208 struct opthdr *optp; 18209 mblk_t *mp2ctl; 18210 18211 /* 18212 * make a copy of the original message 18213 */ 18214 mp2ctl = copymsg(mpctl); 18215 18216 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18217 optp->level = EXPER_DVMRP; 18218 optp->name = EXPER_DVMRP_MRT; 18219 if (!ip_mroute_mrt(mpctl->b_cont)) { 18220 ip0dbg(("ip_mroute_mrt: failed\n")); 18221 } 18222 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18223 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18224 (int)optp->level, (int)optp->name, (int)optp->len)); 18225 qreply(q, mpctl); 18226 return (mp2ctl); 18227 } 18228 18229 /* 18230 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18231 * in one IRE walk. 18232 */ 18233 static mblk_t * 18234 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 18235 { 18236 struct opthdr *optp; 18237 mblk_t *mp2ctl; /* Returned */ 18238 mblk_t *mp3ctl; /* nettomedia */ 18239 mblk_t *mp4ctl; /* routeattrs */ 18240 iproutedata_t ird; 18241 zoneid_t zoneid; 18242 18243 /* 18244 * make copies of the original message 18245 * - mp2ctl is returned unchanged to the caller for his use 18246 * - mpctl is sent upstream as ipRouteEntryTable 18247 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18248 * - mp4ctl is sent upstream as ipRouteAttributeTable 18249 */ 18250 mp2ctl = copymsg(mpctl); 18251 mp3ctl = copymsg(mpctl); 18252 mp4ctl = copymsg(mpctl); 18253 if (mp3ctl == NULL || mp4ctl == NULL) { 18254 freemsg(mp4ctl); 18255 freemsg(mp3ctl); 18256 freemsg(mp2ctl); 18257 freemsg(mpctl); 18258 return (NULL); 18259 } 18260 18261 bzero(&ird, sizeof (ird)); 18262 18263 ird.ird_route.lp_head = mpctl->b_cont; 18264 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18265 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18266 18267 zoneid = Q_TO_CONN(q)->conn_zoneid; 18268 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 18269 if (zoneid == GLOBAL_ZONEID) { 18270 /* 18271 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 18272 * the sys_net_config privilege, it can only run in the global 18273 * zone, so we don't display these IREs in the other zones. 18274 */ 18275 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 18276 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 18277 } 18278 18279 /* ipRouteEntryTable in mpctl */ 18280 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18281 optp->level = MIB2_IP; 18282 optp->name = MIB2_IP_ROUTE; 18283 optp->len = msgdsize(ird.ird_route.lp_head); 18284 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18285 (int)optp->level, (int)optp->name, (int)optp->len)); 18286 qreply(q, mpctl); 18287 18288 /* ipNetToMediaEntryTable in mp3ctl */ 18289 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18290 optp->level = MIB2_IP; 18291 optp->name = MIB2_IP_MEDIA; 18292 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18293 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18294 (int)optp->level, (int)optp->name, (int)optp->len)); 18295 qreply(q, mp3ctl); 18296 18297 /* ipRouteAttributeTable in mp4ctl */ 18298 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18299 optp->level = MIB2_IP; 18300 optp->name = EXPER_IP_RTATTR; 18301 optp->len = msgdsize(ird.ird_attrs.lp_head); 18302 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18303 (int)optp->level, (int)optp->name, (int)optp->len)); 18304 if (optp->len == 0) 18305 freemsg(mp4ctl); 18306 else 18307 qreply(q, mp4ctl); 18308 18309 return (mp2ctl); 18310 } 18311 18312 /* 18313 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18314 * ipv6NetToMediaEntryTable in an NDP walk. 18315 */ 18316 static mblk_t * 18317 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 18318 { 18319 struct opthdr *optp; 18320 mblk_t *mp2ctl; /* Returned */ 18321 mblk_t *mp3ctl; /* nettomedia */ 18322 mblk_t *mp4ctl; /* routeattrs */ 18323 iproutedata_t ird; 18324 zoneid_t zoneid; 18325 18326 /* 18327 * make copies of the original message 18328 * - mp2ctl is returned unchanged to the caller for his use 18329 * - mpctl is sent upstream as ipv6RouteEntryTable 18330 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18331 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18332 */ 18333 mp2ctl = copymsg(mpctl); 18334 mp3ctl = copymsg(mpctl); 18335 mp4ctl = copymsg(mpctl); 18336 if (mp3ctl == NULL || mp4ctl == NULL) { 18337 freemsg(mp4ctl); 18338 freemsg(mp3ctl); 18339 freemsg(mp2ctl); 18340 freemsg(mpctl); 18341 return (NULL); 18342 } 18343 18344 bzero(&ird, sizeof (ird)); 18345 18346 ird.ird_route.lp_head = mpctl->b_cont; 18347 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18348 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18349 18350 zoneid = Q_TO_CONN(q)->conn_zoneid; 18351 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 18352 18353 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18354 optp->level = MIB2_IP6; 18355 optp->name = MIB2_IP6_ROUTE; 18356 optp->len = msgdsize(ird.ird_route.lp_head); 18357 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18358 (int)optp->level, (int)optp->name, (int)optp->len)); 18359 qreply(q, mpctl); 18360 18361 /* ipv6NetToMediaEntryTable in mp3ctl */ 18362 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 18363 18364 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18365 optp->level = MIB2_IP6; 18366 optp->name = MIB2_IP6_MEDIA; 18367 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18368 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18369 (int)optp->level, (int)optp->name, (int)optp->len)); 18370 qreply(q, mp3ctl); 18371 18372 /* ipv6RouteAttributeTable in mp4ctl */ 18373 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18374 optp->level = MIB2_IP6; 18375 optp->name = EXPER_IP_RTATTR; 18376 optp->len = msgdsize(ird.ird_attrs.lp_head); 18377 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18378 (int)optp->level, (int)optp->name, (int)optp->len)); 18379 if (optp->len == 0) 18380 freemsg(mp4ctl); 18381 else 18382 qreply(q, mp4ctl); 18383 18384 return (mp2ctl); 18385 } 18386 18387 /* 18388 * ICMPv6 mib: One per ill 18389 */ 18390 static mblk_t * 18391 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 18392 { 18393 struct opthdr *optp; 18394 mblk_t *mp2ctl; 18395 ill_t *ill; 18396 ill_walk_context_t ctx; 18397 mblk_t *mp_tail = NULL; 18398 18399 /* 18400 * Make a copy of the original message 18401 */ 18402 mp2ctl = copymsg(mpctl); 18403 18404 /* fixed length IPv6 structure ... */ 18405 18406 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18407 optp->level = MIB2_IP6; 18408 optp->name = 0; 18409 /* Include "unknown interface" ip6_mib */ 18410 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 18411 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 18412 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 18413 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 18414 sizeof (mib2_ipv6IfStatsEntry_t)); 18415 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 18416 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 18417 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 18418 sizeof (mib2_ipv6NetToMediaEntry_t)); 18419 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 18420 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 18421 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 18422 (int)sizeof (ip6_mib))) { 18423 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18424 (uint_t)sizeof (ip6_mib))); 18425 } 18426 18427 rw_enter(&ill_g_lock, RW_READER); 18428 ill = ILL_START_WALK_V6(&ctx); 18429 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18430 ill->ill_ip6_mib->ipv6IfIndex = 18431 ill->ill_phyint->phyint_ifindex; 18432 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 18433 ipv6_forward ? 1 : 2); 18434 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 18435 ill->ill_max_hops); 18436 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 18437 sizeof (mib2_ipv6IfStatsEntry_t)); 18438 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 18439 sizeof (mib2_ipv6AddrEntry_t)); 18440 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 18441 sizeof (mib2_ipv6RouteEntry_t)); 18442 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 18443 sizeof (mib2_ipv6NetToMediaEntry_t)); 18444 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 18445 sizeof (ipv6_member_t)); 18446 18447 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18448 (char *)ill->ill_ip6_mib, 18449 (int)sizeof (*ill->ill_ip6_mib))) { 18450 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18451 "%u bytes\n", 18452 (uint_t)sizeof (*ill->ill_ip6_mib))); 18453 } 18454 } 18455 rw_exit(&ill_g_lock); 18456 18457 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18458 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18459 (int)optp->level, (int)optp->name, (int)optp->len)); 18460 qreply(q, mpctl); 18461 return (mp2ctl); 18462 } 18463 18464 /* 18465 * ICMPv6 mib: One per ill 18466 */ 18467 static mblk_t * 18468 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 18469 { 18470 struct opthdr *optp; 18471 mblk_t *mp2ctl; 18472 ill_t *ill; 18473 ill_walk_context_t ctx; 18474 mblk_t *mp_tail = NULL; 18475 /* 18476 * Make a copy of the original message 18477 */ 18478 mp2ctl = copymsg(mpctl); 18479 18480 /* fixed length ICMPv6 structure ... */ 18481 18482 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18483 optp->level = MIB2_ICMP6; 18484 optp->name = 0; 18485 /* Include "unknown interface" icmp6_mib */ 18486 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 18487 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 18488 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 18489 (int)sizeof (icmp6_mib))) { 18490 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18491 (uint_t)sizeof (icmp6_mib))); 18492 } 18493 18494 rw_enter(&ill_g_lock, RW_READER); 18495 ill = ILL_START_WALK_V6(&ctx); 18496 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18497 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18498 ill->ill_phyint->phyint_ifindex; 18499 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 18500 sizeof (mib2_ipv6IfIcmpEntry_t); 18501 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18502 (char *)ill->ill_icmp6_mib, 18503 (int)sizeof (*ill->ill_icmp6_mib))) { 18504 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 18505 "%u bytes\n", 18506 (uint_t)sizeof (*ill->ill_icmp6_mib))); 18507 } 18508 } 18509 rw_exit(&ill_g_lock); 18510 18511 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18512 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 18513 (int)optp->level, (int)optp->name, (int)optp->len)); 18514 qreply(q, mpctl); 18515 return (mp2ctl); 18516 } 18517 18518 /* 18519 * ire_walk routine to create both ipRouteEntryTable and 18520 * ipNetToMediaEntryTable in one IRE walk 18521 */ 18522 static void 18523 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 18524 { 18525 ill_t *ill; 18526 ipif_t *ipif; 18527 mblk_t *llmp; 18528 dl_unitdata_req_t *dlup; 18529 mib2_ipRouteEntry_t *re; 18530 mib2_ipNetToMediaEntry_t ntme; 18531 mib2_ipAttributeEntry_t *iae, *iaeptr; 18532 ipaddr_t gw_addr; 18533 tsol_ire_gw_secattr_t *attrp; 18534 tsol_gc_t *gc = NULL; 18535 tsol_gcgrp_t *gcgrp = NULL; 18536 uint_t sacnt = 0; 18537 int i; 18538 18539 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18540 18541 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18542 return; 18543 18544 if ((attrp = ire->ire_gw_secattr) != NULL) { 18545 mutex_enter(&attrp->igsa_lock); 18546 if ((gc = attrp->igsa_gc) != NULL) { 18547 gcgrp = gc->gc_grp; 18548 ASSERT(gcgrp != NULL); 18549 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18550 sacnt = 1; 18551 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18552 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18553 gc = gcgrp->gcgrp_head; 18554 sacnt = gcgrp->gcgrp_count; 18555 } 18556 mutex_exit(&attrp->igsa_lock); 18557 18558 /* do nothing if there's no gc to report */ 18559 if (gc == NULL) { 18560 ASSERT(sacnt == 0); 18561 if (gcgrp != NULL) { 18562 /* we might as well drop the lock now */ 18563 rw_exit(&gcgrp->gcgrp_rwlock); 18564 gcgrp = NULL; 18565 } 18566 attrp = NULL; 18567 } 18568 18569 ASSERT(gc == NULL || (gcgrp != NULL && 18570 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18571 } 18572 ASSERT(sacnt == 0 || gc != NULL); 18573 18574 if (sacnt != 0 && 18575 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18576 kmem_free(re, sizeof (*re)); 18577 rw_exit(&gcgrp->gcgrp_rwlock); 18578 return; 18579 } 18580 18581 /* 18582 * Return all IRE types for route table... let caller pick and choose 18583 */ 18584 re->ipRouteDest = ire->ire_addr; 18585 ipif = ire->ire_ipif; 18586 re->ipRouteIfIndex.o_length = 0; 18587 if (ire->ire_type == IRE_CACHE) { 18588 ill = (ill_t *)ire->ire_stq->q_ptr; 18589 re->ipRouteIfIndex.o_length = 18590 ill->ill_name_length == 0 ? 0 : 18591 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18592 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 18593 re->ipRouteIfIndex.o_length); 18594 } else if (ipif != NULL) { 18595 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 18596 OCTET_LENGTH); 18597 re->ipRouteIfIndex.o_length = 18598 mi_strlen(re->ipRouteIfIndex.o_bytes); 18599 } 18600 re->ipRouteMetric1 = -1; 18601 re->ipRouteMetric2 = -1; 18602 re->ipRouteMetric3 = -1; 18603 re->ipRouteMetric4 = -1; 18604 18605 gw_addr = ire->ire_gateway_addr; 18606 18607 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 18608 re->ipRouteNextHop = ire->ire_src_addr; 18609 else 18610 re->ipRouteNextHop = gw_addr; 18611 /* indirect(4), direct(3), or invalid(2) */ 18612 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18613 re->ipRouteType = 2; 18614 else 18615 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 18616 re->ipRouteProto = -1; 18617 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 18618 re->ipRouteMask = ire->ire_mask; 18619 re->ipRouteMetric5 = -1; 18620 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 18621 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 18622 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18623 if (ire->ire_nce && 18624 ire->ire_nce->nce_state == ND_REACHABLE) 18625 llmp = ire->ire_nce->nce_res_mp; 18626 else 18627 llmp = NULL; 18628 re->ipRouteInfo.re_ref = ire->ire_refcnt; 18629 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 18630 re->ipRouteInfo.re_ire_type = ire->ire_type; 18631 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18632 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18633 re->ipRouteInfo.re_flags = ire->ire_flags; 18634 re->ipRouteInfo.re_in_ill.o_length = 0; 18635 if (ire->ire_in_ill != NULL) { 18636 re->ipRouteInfo.re_in_ill.o_length = 18637 ire->ire_in_ill->ill_name_length == 0 ? 0 : 18638 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 18639 bcopy(ire->ire_in_ill->ill_name, 18640 re->ipRouteInfo.re_in_ill.o_bytes, 18641 re->ipRouteInfo.re_in_ill.o_length); 18642 } 18643 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 18644 18645 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18646 (char *)re, (int)sizeof (*re))) { 18647 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18648 (uint_t)sizeof (*re))); 18649 } 18650 18651 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18652 iaeptr->iae_routeidx = ird->ird_idx; 18653 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18654 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18655 } 18656 18657 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18658 (char *)iae, sacnt * sizeof (*iae))) { 18659 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18660 (unsigned)(sacnt * sizeof (*iae)))); 18661 } 18662 18663 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 18664 goto done; 18665 /* 18666 * only IRE_CACHE entries that are for a directly connected subnet 18667 * get appended to net -> phys addr table 18668 * (others in arp) 18669 */ 18670 ntme.ipNetToMediaIfIndex.o_length = 0; 18671 ill = ire_to_ill(ire); 18672 ASSERT(ill != NULL); 18673 ntme.ipNetToMediaIfIndex.o_length = 18674 ill->ill_name_length == 0 ? 0 : 18675 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18676 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 18677 ntme.ipNetToMediaIfIndex.o_length); 18678 18679 ntme.ipNetToMediaPhysAddress.o_length = 0; 18680 if (llmp) { 18681 uchar_t *addr; 18682 18683 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 18684 /* Remove sap from address */ 18685 if (ill->ill_sap_length < 0) 18686 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 18687 else 18688 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 18689 ill->ill_sap_length; 18690 18691 ntme.ipNetToMediaPhysAddress.o_length = 18692 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 18693 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 18694 ntme.ipNetToMediaPhysAddress.o_length); 18695 } 18696 ntme.ipNetToMediaNetAddress = ire->ire_addr; 18697 /* assume dynamic (may be changed in arp) */ 18698 ntme.ipNetToMediaType = 3; 18699 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 18700 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 18701 ntme.ipNetToMediaInfo.ntm_mask.o_length); 18702 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 18703 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18704 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18705 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18706 (uint_t)sizeof (ntme))); 18707 } 18708 done: 18709 /* bump route index for next pass */ 18710 ird->ird_idx++; 18711 18712 kmem_free(re, sizeof (*re)); 18713 if (sacnt != 0) 18714 kmem_free(iae, sacnt * sizeof (*iae)); 18715 18716 if (gcgrp != NULL) 18717 rw_exit(&gcgrp->gcgrp_rwlock); 18718 } 18719 18720 /* 18721 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18722 */ 18723 static void 18724 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18725 { 18726 ill_t *ill; 18727 ipif_t *ipif; 18728 mib2_ipv6RouteEntry_t *re; 18729 mib2_ipAttributeEntry_t *iae, *iaeptr; 18730 in6_addr_t gw_addr_v6; 18731 tsol_ire_gw_secattr_t *attrp; 18732 tsol_gc_t *gc = NULL; 18733 tsol_gcgrp_t *gcgrp = NULL; 18734 uint_t sacnt = 0; 18735 int i; 18736 18737 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18738 18739 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18740 return; 18741 18742 if ((attrp = ire->ire_gw_secattr) != NULL) { 18743 mutex_enter(&attrp->igsa_lock); 18744 if ((gc = attrp->igsa_gc) != NULL) { 18745 gcgrp = gc->gc_grp; 18746 ASSERT(gcgrp != NULL); 18747 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18748 sacnt = 1; 18749 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18750 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18751 gc = gcgrp->gcgrp_head; 18752 sacnt = gcgrp->gcgrp_count; 18753 } 18754 mutex_exit(&attrp->igsa_lock); 18755 18756 /* do nothing if there's no gc to report */ 18757 if (gc == NULL) { 18758 ASSERT(sacnt == 0); 18759 if (gcgrp != NULL) { 18760 /* we might as well drop the lock now */ 18761 rw_exit(&gcgrp->gcgrp_rwlock); 18762 gcgrp = NULL; 18763 } 18764 attrp = NULL; 18765 } 18766 18767 ASSERT(gc == NULL || (gcgrp != NULL && 18768 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18769 } 18770 ASSERT(sacnt == 0 || gc != NULL); 18771 18772 if (sacnt != 0 && 18773 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18774 kmem_free(re, sizeof (*re)); 18775 rw_exit(&gcgrp->gcgrp_rwlock); 18776 return; 18777 } 18778 18779 /* 18780 * Return all IRE types for route table... let caller pick and choose 18781 */ 18782 re->ipv6RouteDest = ire->ire_addr_v6; 18783 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 18784 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 18785 re->ipv6RouteIfIndex.o_length = 0; 18786 ipif = ire->ire_ipif; 18787 if (ire->ire_type == IRE_CACHE) { 18788 ill = (ill_t *)ire->ire_stq->q_ptr; 18789 re->ipv6RouteIfIndex.o_length = 18790 ill->ill_name_length == 0 ? 0 : 18791 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18792 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 18793 re->ipv6RouteIfIndex.o_length); 18794 } else if (ipif != NULL) { 18795 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 18796 OCTET_LENGTH); 18797 re->ipv6RouteIfIndex.o_length = 18798 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 18799 } 18800 18801 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18802 18803 mutex_enter(&ire->ire_lock); 18804 gw_addr_v6 = ire->ire_gateway_addr_v6; 18805 mutex_exit(&ire->ire_lock); 18806 18807 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 18808 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 18809 else 18810 re->ipv6RouteNextHop = gw_addr_v6; 18811 18812 /* remote(4), local(3), or discard(2) */ 18813 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18814 re->ipv6RouteType = 2; 18815 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 18816 re->ipv6RouteType = 3; 18817 else 18818 re->ipv6RouteType = 4; 18819 18820 re->ipv6RouteProtocol = -1; 18821 re->ipv6RoutePolicy = 0; 18822 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 18823 re->ipv6RouteNextHopRDI = 0; 18824 re->ipv6RouteWeight = 0; 18825 re->ipv6RouteMetric = 0; 18826 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 18827 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 18828 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18829 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 18830 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 18831 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18832 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18833 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 18834 re->ipv6RouteInfo.re_flags = ire->ire_flags; 18835 18836 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18837 (char *)re, (int)sizeof (*re))) { 18838 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18839 (uint_t)sizeof (*re))); 18840 } 18841 18842 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18843 iaeptr->iae_routeidx = ird->ird_idx; 18844 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18845 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18846 } 18847 18848 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18849 (char *)iae, sacnt * sizeof (*iae))) { 18850 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18851 (unsigned)(sacnt * sizeof (*iae)))); 18852 } 18853 18854 /* bump route index for next pass */ 18855 ird->ird_idx++; 18856 18857 kmem_free(re, sizeof (*re)); 18858 if (sacnt != 0) 18859 kmem_free(iae, sacnt * sizeof (*iae)); 18860 18861 if (gcgrp != NULL) 18862 rw_exit(&gcgrp->gcgrp_rwlock); 18863 } 18864 18865 /* 18866 * ndp_walk routine to create ipv6NetToMediaEntryTable 18867 */ 18868 static int 18869 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 18870 { 18871 ill_t *ill; 18872 mib2_ipv6NetToMediaEntry_t ntme; 18873 dl_unitdata_req_t *dl; 18874 18875 ill = nce->nce_ill; 18876 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 18877 return (0); 18878 18879 /* 18880 * Neighbor cache entry attached to IRE with on-link 18881 * destination. 18882 */ 18883 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 18884 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 18885 if ((ill->ill_flags & ILLF_XRESOLV) && 18886 (nce->nce_res_mp != NULL)) { 18887 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 18888 ntme.ipv6NetToMediaPhysAddress.o_length = 18889 dl->dl_dest_addr_length; 18890 } else { 18891 ntme.ipv6NetToMediaPhysAddress.o_length = 18892 ill->ill_phys_addr_length; 18893 } 18894 if (nce->nce_res_mp != NULL) { 18895 bcopy((char *)nce->nce_res_mp->b_rptr + 18896 NCE_LL_ADDR_OFFSET(ill), 18897 ntme.ipv6NetToMediaPhysAddress.o_bytes, 18898 ntme.ipv6NetToMediaPhysAddress.o_length); 18899 } else { 18900 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 18901 ill->ill_phys_addr_length); 18902 } 18903 /* 18904 * Note: Returns ND_* states. Should be: 18905 * reachable(1), stale(2), delay(3), probe(4), 18906 * invalid(5), unknown(6) 18907 */ 18908 ntme.ipv6NetToMediaState = nce->nce_state; 18909 ntme.ipv6NetToMediaLastUpdated = 0; 18910 18911 /* other(1), dynamic(2), static(3), local(4) */ 18912 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 18913 ntme.ipv6NetToMediaType = 4; 18914 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 18915 ntme.ipv6NetToMediaType = 1; 18916 } else { 18917 ntme.ipv6NetToMediaType = 2; 18918 } 18919 18920 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18921 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18922 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 18923 (uint_t)sizeof (ntme))); 18924 } 18925 return (0); 18926 } 18927 18928 /* 18929 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 18930 */ 18931 /* ARGSUSED */ 18932 int 18933 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 18934 { 18935 switch (level) { 18936 case MIB2_IP: 18937 case MIB2_ICMP: 18938 switch (name) { 18939 default: 18940 break; 18941 } 18942 return (1); 18943 default: 18944 return (1); 18945 } 18946 } 18947 18948 /* 18949 * Called before the options are updated to check if this packet will 18950 * be source routed from here. 18951 * This routine assumes that the options are well formed i.e. that they 18952 * have already been checked. 18953 */ 18954 static boolean_t 18955 ip_source_routed(ipha_t *ipha) 18956 { 18957 ipoptp_t opts; 18958 uchar_t *opt; 18959 uint8_t optval; 18960 uint8_t optlen; 18961 ipaddr_t dst; 18962 ire_t *ire; 18963 18964 if (IS_SIMPLE_IPH(ipha)) { 18965 ip2dbg(("not source routed\n")); 18966 return (B_FALSE); 18967 } 18968 dst = ipha->ipha_dst; 18969 for (optval = ipoptp_first(&opts, ipha); 18970 optval != IPOPT_EOL; 18971 optval = ipoptp_next(&opts)) { 18972 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18973 opt = opts.ipoptp_cur; 18974 optlen = opts.ipoptp_len; 18975 ip2dbg(("ip_source_routed: opt %d, len %d\n", 18976 optval, optlen)); 18977 switch (optval) { 18978 uint32_t off; 18979 case IPOPT_SSRR: 18980 case IPOPT_LSRR: 18981 /* 18982 * If dst is one of our addresses and there are some 18983 * entries left in the source route return (true). 18984 */ 18985 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18986 ALL_ZONES, NULL, MATCH_IRE_TYPE); 18987 if (ire == NULL) { 18988 ip2dbg(("ip_source_routed: not next" 18989 " source route 0x%x\n", 18990 ntohl(dst))); 18991 return (B_FALSE); 18992 } 18993 ire_refrele(ire); 18994 off = opt[IPOPT_OFFSET]; 18995 off--; 18996 if (optlen < IP_ADDR_LEN || 18997 off > optlen - IP_ADDR_LEN) { 18998 /* End of source route */ 18999 ip1dbg(("ip_source_routed: end of SR\n")); 19000 return (B_FALSE); 19001 } 19002 return (B_TRUE); 19003 } 19004 } 19005 ip2dbg(("not source routed\n")); 19006 return (B_FALSE); 19007 } 19008 19009 /* 19010 * Check if the packet contains any source route. 19011 */ 19012 static boolean_t 19013 ip_source_route_included(ipha_t *ipha) 19014 { 19015 ipoptp_t opts; 19016 uint8_t optval; 19017 19018 if (IS_SIMPLE_IPH(ipha)) 19019 return (B_FALSE); 19020 for (optval = ipoptp_first(&opts, ipha); 19021 optval != IPOPT_EOL; 19022 optval = ipoptp_next(&opts)) { 19023 switch (optval) { 19024 case IPOPT_SSRR: 19025 case IPOPT_LSRR: 19026 return (B_TRUE); 19027 } 19028 } 19029 return (B_FALSE); 19030 } 19031 19032 /* 19033 * Called when the IRE expiration timer fires. 19034 */ 19035 /* ARGSUSED */ 19036 void 19037 ip_trash_timer_expire(void *args) 19038 { 19039 int flush_flag = 0; 19040 19041 /* 19042 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19043 * This lock makes sure that a new invocation of this function 19044 * that occurs due to an almost immediate timer firing will not 19045 * progress beyond this point until the current invocation is done 19046 */ 19047 mutex_enter(&ip_trash_timer_lock); 19048 ip_ire_expire_id = 0; 19049 mutex_exit(&ip_trash_timer_lock); 19050 19051 /* Periodic timer */ 19052 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 19053 /* 19054 * Remove all IRE_CACHE entries since they might 19055 * contain arp information. 19056 */ 19057 flush_flag |= FLUSH_ARP_TIME; 19058 ip_ire_arp_time_elapsed = 0; 19059 IP_STAT(ip_ire_arp_timer_expired); 19060 } 19061 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 19062 /* Remove all redirects */ 19063 flush_flag |= FLUSH_REDIRECT_TIME; 19064 ip_ire_rd_time_elapsed = 0; 19065 IP_STAT(ip_ire_redirect_timer_expired); 19066 } 19067 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 19068 /* Increase path mtu */ 19069 flush_flag |= FLUSH_MTU_TIME; 19070 ip_ire_pmtu_time_elapsed = 0; 19071 IP_STAT(ip_ire_pmtu_timer_expired); 19072 } 19073 19074 /* 19075 * Optimize for the case when there are no redirects in the 19076 * ftable, that is, no need to walk the ftable in that case. 19077 */ 19078 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19079 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19080 (char *)(uintptr_t)flush_flag, IP_MASK_TABLE_SIZE, 0, NULL, 19081 ip_cache_table_size, ip_cache_table, NULL, ALL_ZONES); 19082 } 19083 if ((flush_flag & FLUSH_REDIRECT_TIME) && ip_redirect_cnt > 0) { 19084 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19085 ire_expire, (char *)(uintptr_t)flush_flag, 19086 IP_MASK_TABLE_SIZE, 0, NULL, 0, NULL, NULL, ALL_ZONES); 19087 } 19088 if (flush_flag & FLUSH_MTU_TIME) { 19089 /* 19090 * Walk all IPv6 IRE's and update them 19091 * Note that ARP and redirect timers are not 19092 * needed since NUD handles stale entries. 19093 */ 19094 flush_flag = FLUSH_MTU_TIME; 19095 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 19096 ALL_ZONES); 19097 } 19098 19099 ip_ire_arp_time_elapsed += ip_timer_interval; 19100 ip_ire_rd_time_elapsed += ip_timer_interval; 19101 ip_ire_pmtu_time_elapsed += ip_timer_interval; 19102 19103 /* 19104 * Hold the lock to serialize timeout calls and prevent 19105 * stale values in ip_ire_expire_id. Otherwise it is possible 19106 * for the timer to fire and a new invocation of this function 19107 * to start before the return value of timeout has been stored 19108 * in ip_ire_expire_id by the current invocation. 19109 */ 19110 mutex_enter(&ip_trash_timer_lock); 19111 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 19112 MSEC_TO_TICK(ip_timer_interval)); 19113 mutex_exit(&ip_trash_timer_lock); 19114 } 19115 19116 /* 19117 * Called by the memory allocator subsystem directly, when the system 19118 * is running low on memory. 19119 */ 19120 /* ARGSUSED */ 19121 void 19122 ip_trash_ire_reclaim(void *args) 19123 { 19124 ire_cache_count_t icc; 19125 ire_cache_reclaim_t icr; 19126 ncc_cache_count_t ncc; 19127 nce_cache_reclaim_t ncr; 19128 uint_t delete_cnt; 19129 /* 19130 * Memory reclaim call back. 19131 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19132 * Then, with a target of freeing 1/Nth of IRE_CACHE 19133 * entries, determine what fraction to free for 19134 * each category of IRE_CACHE entries giving absolute priority 19135 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19136 * entry will be freed unless all offlink entries are freed). 19137 */ 19138 icc.icc_total = 0; 19139 icc.icc_unused = 0; 19140 icc.icc_offlink = 0; 19141 icc.icc_pmtu = 0; 19142 icc.icc_onlink = 0; 19143 ire_walk(ire_cache_count, (char *)&icc); 19144 19145 /* 19146 * Free NCEs for IPv6 like the onlink ires. 19147 */ 19148 ncc.ncc_total = 0; 19149 ncc.ncc_host = 0; 19150 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 19151 19152 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19153 icc.icc_pmtu + icc.icc_onlink); 19154 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 19155 IP_STAT(ip_trash_ire_reclaim_calls); 19156 if (delete_cnt == 0) 19157 return; 19158 IP_STAT(ip_trash_ire_reclaim_success); 19159 /* Always delete all unused offlink entries */ 19160 icr.icr_unused = 1; 19161 if (delete_cnt <= icc.icc_unused) { 19162 /* 19163 * Only need to free unused entries. In other words, 19164 * there are enough unused entries to free to meet our 19165 * target number of freed ire cache entries. 19166 */ 19167 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19168 ncr.ncr_host = 0; 19169 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19170 /* 19171 * Only need to free unused entries, plus a fraction of offlink 19172 * entries. It follows from the first if statement that 19173 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19174 */ 19175 delete_cnt -= icc.icc_unused; 19176 /* Round up # deleted by truncating fraction */ 19177 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19178 icr.icr_pmtu = icr.icr_onlink = 0; 19179 ncr.ncr_host = 0; 19180 } else if (delete_cnt <= 19181 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19182 /* 19183 * Free all unused and offlink entries, plus a fraction of 19184 * pmtu entries. It follows from the previous if statement 19185 * that icc_pmtu is non-zero, and that 19186 * delete_cnt != icc_unused + icc_offlink. 19187 */ 19188 icr.icr_offlink = 1; 19189 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19190 /* Round up # deleted by truncating fraction */ 19191 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19192 icr.icr_onlink = 0; 19193 ncr.ncr_host = 0; 19194 } else { 19195 /* 19196 * Free all unused, offlink, and pmtu entries, plus a fraction 19197 * of onlink entries. If we're here, then we know that 19198 * icc_onlink is non-zero, and that 19199 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19200 */ 19201 icr.icr_offlink = icr.icr_pmtu = 1; 19202 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19203 icc.icc_pmtu; 19204 /* Round up # deleted by truncating fraction */ 19205 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19206 /* Using the same delete fraction as for onlink IREs */ 19207 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19208 } 19209 #ifdef DEBUG 19210 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19211 "fractions %d/%d/%d/%d\n", 19212 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 19213 icc.icc_unused, icc.icc_offlink, 19214 icc.icc_pmtu, icc.icc_onlink, 19215 icr.icr_unused, icr.icr_offlink, 19216 icr.icr_pmtu, icr.icr_onlink)); 19217 #endif 19218 ire_walk(ire_cache_reclaim, (char *)&icr); 19219 if (ncr.ncr_host != 0) 19220 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19221 (uchar_t *)&ncr); 19222 #ifdef DEBUG 19223 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19224 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19225 ire_walk(ire_cache_count, (char *)&icc); 19226 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19227 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19228 icc.icc_pmtu, icc.icc_onlink)); 19229 #endif 19230 } 19231 19232 /* 19233 * ip_unbind is called when a copy of an unbind request is received from the 19234 * upper level protocol. We remove this conn from any fanout hash list it is 19235 * on, and zero out the bind information. No reply is expected up above. 19236 */ 19237 mblk_t * 19238 ip_unbind(queue_t *q, mblk_t *mp) 19239 { 19240 conn_t *connp = Q_TO_CONN(q); 19241 19242 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19243 19244 if (is_system_labeled() && connp->conn_anon_port) { 19245 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19246 connp->conn_mlp_type, connp->conn_ulp, 19247 ntohs(connp->conn_lport), B_FALSE); 19248 connp->conn_anon_port = 0; 19249 } 19250 connp->conn_mlp_type = mlptSingle; 19251 19252 ipcl_hash_remove(connp); 19253 19254 ASSERT(mp->b_cont == NULL); 19255 /* 19256 * Convert mp into a T_OK_ACK 19257 */ 19258 mp = mi_tpi_ok_ack_alloc(mp); 19259 19260 /* 19261 * should not happen in practice... T_OK_ACK is smaller than the 19262 * original message. 19263 */ 19264 if (mp == NULL) 19265 return (NULL); 19266 19267 /* 19268 * Don't bzero the ports if its TCP since TCP still needs the 19269 * lport to remove it from its own bind hash. TCP will do the 19270 * cleanup. 19271 */ 19272 if (!IPCL_IS_TCP(connp)) 19273 bzero(&connp->u_port, sizeof (connp->u_port)); 19274 19275 return (mp); 19276 } 19277 19278 /* 19279 * Write side put procedure. Outbound data, IOCTLs, responses from 19280 * resolvers, etc, come down through here. 19281 * 19282 * arg2 is always a queue_t *. 19283 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19284 * the zoneid. 19285 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19286 */ 19287 void 19288 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19289 { 19290 conn_t *connp = NULL; 19291 queue_t *q = (queue_t *)arg2; 19292 ipha_t *ipha; 19293 #define rptr ((uchar_t *)ipha) 19294 ire_t *ire = NULL; 19295 ire_t *sctp_ire = NULL; 19296 uint32_t v_hlen_tos_len; 19297 ipaddr_t dst; 19298 mblk_t *first_mp = NULL; 19299 boolean_t mctl_present; 19300 ipsec_out_t *io; 19301 int match_flags; 19302 ill_t *attach_ill = NULL; 19303 /* Bind to IPIF_NOFAILOVER ill etc. */ 19304 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19305 ipif_t *dst_ipif; 19306 boolean_t multirt_need_resolve = B_FALSE; 19307 mblk_t *copy_mp = NULL; 19308 int err; 19309 zoneid_t zoneid; 19310 int adjust; 19311 uint16_t iplen; 19312 boolean_t need_decref = B_FALSE; 19313 boolean_t ignore_dontroute = B_FALSE; 19314 boolean_t ignore_nexthop = B_FALSE; 19315 boolean_t ip_nexthop = B_FALSE; 19316 ipaddr_t nexthop_addr; 19317 19318 #ifdef _BIG_ENDIAN 19319 #define V_HLEN (v_hlen_tos_len >> 24) 19320 #else 19321 #define V_HLEN (v_hlen_tos_len & 0xFF) 19322 #endif 19323 19324 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19325 "ip_wput_start: q %p", q); 19326 19327 /* 19328 * ip_wput fast path 19329 */ 19330 19331 /* is packet from ARP ? */ 19332 if (q->q_next != NULL) { 19333 zoneid = (zoneid_t)(uintptr_t)arg; 19334 goto qnext; 19335 } 19336 19337 connp = (conn_t *)arg; 19338 ASSERT(connp != NULL); 19339 zoneid = connp->conn_zoneid; 19340 19341 /* is queue flow controlled? */ 19342 if ((q->q_first != NULL || connp->conn_draining) && 19343 (caller == IP_WPUT)) { 19344 ASSERT(!need_decref); 19345 (void) putq(q, mp); 19346 return; 19347 } 19348 19349 /* Multidata transmit? */ 19350 if (DB_TYPE(mp) == M_MULTIDATA) { 19351 /* 19352 * We should never get here, since all Multidata messages 19353 * originating from tcp should have been directed over to 19354 * tcp_multisend() in the first place. 19355 */ 19356 BUMP_MIB(&ip_mib, ipOutDiscards); 19357 freemsg(mp); 19358 return; 19359 } else if (DB_TYPE(mp) != M_DATA) 19360 goto notdata; 19361 19362 if (mp->b_flag & MSGHASREF) { 19363 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19364 mp->b_flag &= ~MSGHASREF; 19365 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 19366 need_decref = B_TRUE; 19367 } 19368 ipha = (ipha_t *)mp->b_rptr; 19369 19370 /* is IP header non-aligned or mblk smaller than basic IP header */ 19371 #ifndef SAFETY_BEFORE_SPEED 19372 if (!OK_32PTR(rptr) || 19373 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 19374 goto hdrtoosmall; 19375 #endif 19376 19377 ASSERT(OK_32PTR(ipha)); 19378 19379 /* 19380 * This function assumes that mp points to an IPv4 packet. If it's the 19381 * wrong version, we'll catch it again in ip_output_v6. 19382 * 19383 * Note that this is *only* locally-generated output here, and never 19384 * forwarded data, and that we need to deal only with transports that 19385 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19386 * label.) 19387 */ 19388 if (is_system_labeled() && 19389 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19390 !connp->conn_ulp_labeled) { 19391 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19392 connp->conn_mac_exempt); 19393 ipha = (ipha_t *)mp->b_rptr; 19394 if (err != 0) { 19395 first_mp = mp; 19396 if (err == EINVAL) 19397 goto icmp_parameter_problem; 19398 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19399 goto drop_pkt; 19400 } 19401 iplen = ntohs(ipha->ipha_length) + adjust; 19402 ipha->ipha_length = htons(iplen); 19403 } 19404 19405 /* 19406 * If there is a policy, try to attach an ipsec_out in 19407 * the front. At the end, first_mp either points to a 19408 * M_DATA message or IPSEC_OUT message linked to a 19409 * M_DATA message. We have to do it now as we might 19410 * lose the "conn" if we go through ip_newroute. 19411 */ 19412 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 19413 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 19414 ipha->ipha_protocol)) == NULL)) { 19415 if (need_decref) 19416 CONN_DEC_REF(connp); 19417 return; 19418 } else { 19419 ASSERT(mp->b_datap->db_type == M_CTL); 19420 first_mp = mp; 19421 mp = mp->b_cont; 19422 mctl_present = B_TRUE; 19423 } 19424 } else { 19425 first_mp = mp; 19426 mctl_present = B_FALSE; 19427 } 19428 19429 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19430 19431 /* is wrong version or IP options present */ 19432 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 19433 goto version_hdrlen_check; 19434 dst = ipha->ipha_dst; 19435 19436 if (connp->conn_nofailover_ill != NULL) { 19437 attach_ill = conn_get_held_ill(connp, 19438 &connp->conn_nofailover_ill, &err); 19439 if (err == ILL_LOOKUP_FAILED) { 19440 if (need_decref) 19441 CONN_DEC_REF(connp); 19442 freemsg(first_mp); 19443 return; 19444 } 19445 } 19446 19447 /* is packet multicast? */ 19448 if (CLASSD(dst)) 19449 goto multicast; 19450 19451 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 19452 (connp->conn_nexthop_set)) { 19453 /* 19454 * If the destination is a broadcast or a loopback 19455 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 19456 * through the standard path. But in the case of local 19457 * destination only SO_DONTROUTE and IP_NEXTHOP go through 19458 * the standard path not IP_XMIT_IF. 19459 */ 19460 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19461 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 19462 (ire->ire_type != IRE_LOOPBACK))) { 19463 if ((connp->conn_dontroute || 19464 connp->conn_nexthop_set) && (ire != NULL) && 19465 (ire->ire_type == IRE_LOCAL)) 19466 goto standard_path; 19467 19468 if (ire != NULL) { 19469 ire_refrele(ire); 19470 /* No more access to ire */ 19471 ire = NULL; 19472 } 19473 /* 19474 * bypass routing checks and go directly to 19475 * interface. 19476 */ 19477 if (connp->conn_dontroute) { 19478 goto dontroute; 19479 } else if (connp->conn_nexthop_set) { 19480 ip_nexthop = B_TRUE; 19481 nexthop_addr = connp->conn_nexthop_v4; 19482 goto send_from_ill; 19483 } 19484 19485 /* 19486 * If IP_XMIT_IF socket option is set, 19487 * then we allow unicast and multicast 19488 * packets to go through the ill. It is 19489 * quite possible that the destination 19490 * is not in the ire cache table and we 19491 * do not want to go to ip_newroute() 19492 * instead we call ip_newroute_ipif. 19493 */ 19494 xmit_ill = conn_get_held_ill(connp, 19495 &connp->conn_xmit_if_ill, &err); 19496 if (err == ILL_LOOKUP_FAILED) { 19497 if (attach_ill != NULL) 19498 ill_refrele(attach_ill); 19499 if (need_decref) 19500 CONN_DEC_REF(connp); 19501 freemsg(first_mp); 19502 return; 19503 } 19504 goto send_from_ill; 19505 } 19506 standard_path: 19507 /* Must be a broadcast, a loopback or a local ire */ 19508 if (ire != NULL) { 19509 ire_refrele(ire); 19510 /* No more access to ire */ 19511 ire = NULL; 19512 } 19513 } 19514 19515 if (attach_ill != NULL) 19516 goto send_from_ill; 19517 19518 /* 19519 * We cache IRE_CACHEs to avoid lookups. We don't do 19520 * this for the tcp global queue and listen end point 19521 * as it does not really have a real destination to 19522 * talk to. This is also true for SCTP. 19523 */ 19524 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 19525 !connp->conn_fully_bound) { 19526 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19527 if (ire == NULL) 19528 goto noirefound; 19529 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19530 "ip_wput_end: q %p (%S)", q, "end"); 19531 19532 /* 19533 * Check if the ire has the RTF_MULTIRT flag, inherited 19534 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19535 */ 19536 if (ire->ire_flags & RTF_MULTIRT) { 19537 19538 /* 19539 * Force the TTL of multirouted packets if required. 19540 * The TTL of such packets is bounded by the 19541 * ip_multirt_ttl ndd variable. 19542 */ 19543 if ((ip_multirt_ttl > 0) && 19544 (ipha->ipha_ttl > ip_multirt_ttl)) { 19545 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19546 "(was %d), dst 0x%08x\n", 19547 ip_multirt_ttl, ipha->ipha_ttl, 19548 ntohl(ire->ire_addr))); 19549 ipha->ipha_ttl = ip_multirt_ttl; 19550 } 19551 /* 19552 * We look at this point if there are pending 19553 * unresolved routes. ire_multirt_resolvable() 19554 * checks in O(n) that all IRE_OFFSUBNET ire 19555 * entries for the packet's destination and 19556 * flagged RTF_MULTIRT are currently resolved. 19557 * If some remain unresolved, we make a copy 19558 * of the current message. It will be used 19559 * to initiate additional route resolutions. 19560 */ 19561 multirt_need_resolve = 19562 ire_multirt_need_resolve(ire->ire_addr, 19563 MBLK_GETLABEL(first_mp)); 19564 ip2dbg(("ip_wput[TCP]: ire %p, " 19565 "multirt_need_resolve %d, first_mp %p\n", 19566 (void *)ire, multirt_need_resolve, 19567 (void *)first_mp)); 19568 if (multirt_need_resolve) { 19569 copy_mp = copymsg(first_mp); 19570 if (copy_mp != NULL) { 19571 MULTIRT_DEBUG_TAG(copy_mp); 19572 } 19573 } 19574 } 19575 19576 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19577 19578 /* 19579 * Try to resolve another multiroute if 19580 * ire_multirt_need_resolve() deemed it necessary. 19581 */ 19582 if (copy_mp != NULL) { 19583 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19584 } 19585 if (need_decref) 19586 CONN_DEC_REF(connp); 19587 return; 19588 } 19589 19590 /* 19591 * Access to conn_ire_cache. (protected by conn_lock) 19592 * 19593 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 19594 * the ire bucket lock here to check for CONDEMNED as it is okay to 19595 * send a packet or two with the IRE_CACHE that is going away. 19596 * Access to the ire requires an ire refhold on the ire prior to 19597 * its use since an interface unplumb thread may delete the cached 19598 * ire and release the refhold at any time. 19599 * 19600 * Caching an ire in the conn_ire_cache 19601 * 19602 * o Caching an ire pointer in the conn requires a strict check for 19603 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 19604 * ires before cleaning up the conns. So the caching of an ire pointer 19605 * in the conn is done after making sure under the bucket lock that the 19606 * ire has not yet been marked CONDEMNED. Otherwise we will end up 19607 * caching an ire after the unplumb thread has cleaned up the conn. 19608 * If the conn does not send a packet subsequently the unplumb thread 19609 * will be hanging waiting for the ire count to drop to zero. 19610 * 19611 * o We also need to atomically test for a null conn_ire_cache and 19612 * set the conn_ire_cache under the the protection of the conn_lock 19613 * to avoid races among concurrent threads trying to simultaneously 19614 * cache an ire in the conn_ire_cache. 19615 */ 19616 mutex_enter(&connp->conn_lock); 19617 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 19618 19619 if (ire != NULL && ire->ire_addr == dst && 19620 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19621 19622 IRE_REFHOLD(ire); 19623 mutex_exit(&connp->conn_lock); 19624 19625 } else { 19626 boolean_t cached = B_FALSE; 19627 connp->conn_ire_cache = NULL; 19628 mutex_exit(&connp->conn_lock); 19629 /* Release the old ire */ 19630 if (ire != NULL && sctp_ire == NULL) 19631 IRE_REFRELE_NOTR(ire); 19632 19633 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19634 if (ire == NULL) 19635 goto noirefound; 19636 IRE_REFHOLD_NOTR(ire); 19637 19638 mutex_enter(&connp->conn_lock); 19639 if (!(connp->conn_state_flags & CONN_CLOSING) && 19640 connp->conn_ire_cache == NULL) { 19641 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19642 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19643 connp->conn_ire_cache = ire; 19644 cached = B_TRUE; 19645 } 19646 rw_exit(&ire->ire_bucket->irb_lock); 19647 } 19648 mutex_exit(&connp->conn_lock); 19649 19650 /* 19651 * We can continue to use the ire but since it was 19652 * not cached, we should drop the extra reference. 19653 */ 19654 if (!cached) 19655 IRE_REFRELE_NOTR(ire); 19656 } 19657 19658 19659 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19660 "ip_wput_end: q %p (%S)", q, "end"); 19661 19662 /* 19663 * Check if the ire has the RTF_MULTIRT flag, inherited 19664 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19665 */ 19666 if (ire->ire_flags & RTF_MULTIRT) { 19667 19668 /* 19669 * Force the TTL of multirouted packets if required. 19670 * The TTL of such packets is bounded by the 19671 * ip_multirt_ttl ndd variable. 19672 */ 19673 if ((ip_multirt_ttl > 0) && 19674 (ipha->ipha_ttl > ip_multirt_ttl)) { 19675 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19676 "(was %d), dst 0x%08x\n", 19677 ip_multirt_ttl, ipha->ipha_ttl, 19678 ntohl(ire->ire_addr))); 19679 ipha->ipha_ttl = ip_multirt_ttl; 19680 } 19681 19682 /* 19683 * At this point, we check to see if there are any pending 19684 * unresolved routes. ire_multirt_resolvable() 19685 * checks in O(n) that all IRE_OFFSUBNET ire 19686 * entries for the packet's destination and 19687 * flagged RTF_MULTIRT are currently resolved. 19688 * If some remain unresolved, we make a copy 19689 * of the current message. It will be used 19690 * to initiate additional route resolutions. 19691 */ 19692 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19693 MBLK_GETLABEL(first_mp)); 19694 ip2dbg(("ip_wput[not TCP]: ire %p, " 19695 "multirt_need_resolve %d, first_mp %p\n", 19696 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19697 if (multirt_need_resolve) { 19698 copy_mp = copymsg(first_mp); 19699 if (copy_mp != NULL) { 19700 MULTIRT_DEBUG_TAG(copy_mp); 19701 } 19702 } 19703 } 19704 19705 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19706 19707 /* 19708 * Try to resolve another multiroute if 19709 * ire_multirt_resolvable() deemed it necessary 19710 */ 19711 if (copy_mp != NULL) { 19712 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19713 } 19714 if (need_decref) 19715 CONN_DEC_REF(connp); 19716 return; 19717 19718 qnext: 19719 /* 19720 * Upper Level Protocols pass down complete IP datagrams 19721 * as M_DATA messages. Everything else is a sideshow. 19722 * 19723 * 1) We could be re-entering ip_wput because of ip_neworute 19724 * in which case we could have a IPSEC_OUT message. We 19725 * need to pass through ip_wput like other datagrams and 19726 * hence cannot branch to ip_wput_nondata. 19727 * 19728 * 2) ARP, AH, ESP, and other clients who are on the module 19729 * instance of IP stream, give us something to deal with. 19730 * We will handle AH and ESP here and rest in ip_wput_nondata. 19731 * 19732 * 3) ICMP replies also could come here. 19733 */ 19734 if (DB_TYPE(mp) != M_DATA) { 19735 notdata: 19736 if (DB_TYPE(mp) == M_CTL) { 19737 /* 19738 * M_CTL messages are used by ARP, AH and ESP to 19739 * communicate with IP. We deal with IPSEC_IN and 19740 * IPSEC_OUT here. ip_wput_nondata handles other 19741 * cases. 19742 */ 19743 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 19744 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 19745 first_mp = mp->b_cont; 19746 first_mp->b_flag &= ~MSGHASREF; 19747 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19748 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 19749 CONN_DEC_REF(connp); 19750 connp = NULL; 19751 } 19752 if (ii->ipsec_info_type == IPSEC_IN) { 19753 /* 19754 * Either this message goes back to 19755 * IPSEC for further processing or to 19756 * ULP after policy checks. 19757 */ 19758 ip_fanout_proto_again(mp, NULL, NULL, NULL); 19759 return; 19760 } else if (ii->ipsec_info_type == IPSEC_OUT) { 19761 io = (ipsec_out_t *)ii; 19762 if (io->ipsec_out_proc_begin) { 19763 /* 19764 * IPSEC processing has already started. 19765 * Complete it. 19766 * IPQoS notes: We don't care what is 19767 * in ipsec_out_ill_index since this 19768 * won't be processed for IPQoS policies 19769 * in ipsec_out_process. 19770 */ 19771 ipsec_out_process(q, mp, NULL, 19772 io->ipsec_out_ill_index); 19773 return; 19774 } else { 19775 connp = (q->q_next != NULL) ? 19776 NULL : Q_TO_CONN(q); 19777 first_mp = mp; 19778 mp = mp->b_cont; 19779 mctl_present = B_TRUE; 19780 } 19781 zoneid = io->ipsec_out_zoneid; 19782 ASSERT(zoneid != ALL_ZONES); 19783 } else if (ii->ipsec_info_type == IPSEC_CTL) { 19784 /* 19785 * It's an IPsec control message requesting 19786 * an SADB update to be sent to the IPsec 19787 * hardware acceleration capable ills. 19788 */ 19789 ipsec_ctl_t *ipsec_ctl = 19790 (ipsec_ctl_t *)mp->b_rptr; 19791 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 19792 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 19793 mblk_t *cmp = mp->b_cont; 19794 19795 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 19796 ASSERT(cmp != NULL); 19797 19798 freeb(mp); 19799 ill_ipsec_capab_send_all(satype, cmp, sa); 19800 return; 19801 } else { 19802 /* 19803 * This must be ARP or special TSOL signaling. 19804 */ 19805 ip_wput_nondata(NULL, q, mp, NULL); 19806 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19807 "ip_wput_end: q %p (%S)", q, "nondata"); 19808 return; 19809 } 19810 } else { 19811 /* 19812 * This must be non-(ARP/AH/ESP) messages. 19813 */ 19814 ASSERT(!need_decref); 19815 ip_wput_nondata(NULL, q, mp, NULL); 19816 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19817 "ip_wput_end: q %p (%S)", q, "nondata"); 19818 return; 19819 } 19820 } else { 19821 first_mp = mp; 19822 mctl_present = B_FALSE; 19823 } 19824 19825 ASSERT(first_mp != NULL); 19826 /* 19827 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 19828 * to make sure that this packet goes out on the same interface it 19829 * came in. We handle that here. 19830 */ 19831 if (mctl_present) { 19832 uint_t ifindex; 19833 19834 io = (ipsec_out_t *)first_mp->b_rptr; 19835 if (io->ipsec_out_attach_if || 19836 io->ipsec_out_xmit_if || 19837 io->ipsec_out_ip_nexthop) { 19838 ill_t *ill; 19839 19840 /* 19841 * We may have lost the conn context if we are 19842 * coming here from ip_newroute(). Copy the 19843 * nexthop information. 19844 */ 19845 if (io->ipsec_out_ip_nexthop) { 19846 ip_nexthop = B_TRUE; 19847 nexthop_addr = io->ipsec_out_nexthop_addr; 19848 19849 ipha = (ipha_t *)mp->b_rptr; 19850 dst = ipha->ipha_dst; 19851 goto send_from_ill; 19852 } else { 19853 ASSERT(io->ipsec_out_ill_index != 0); 19854 ifindex = io->ipsec_out_ill_index; 19855 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 19856 NULL, NULL, NULL, NULL); 19857 /* 19858 * ipsec_out_xmit_if bit is used to tell 19859 * ip_wput to use the ill to send outgoing data 19860 * as we have no conn when data comes from ICMP 19861 * error msg routines. Currently this feature is 19862 * only used by ip_mrtun_forward routine. 19863 */ 19864 if (io->ipsec_out_xmit_if) { 19865 xmit_ill = ill; 19866 if (xmit_ill == NULL) { 19867 ip1dbg(("ip_output:bad ifindex " 19868 "for xmit_ill %d\n", 19869 ifindex)); 19870 freemsg(first_mp); 19871 BUMP_MIB(&ip_mib, 19872 ipOutDiscards); 19873 ASSERT(!need_decref); 19874 return; 19875 } 19876 /* Free up the ipsec_out_t mblk */ 19877 ASSERT(first_mp->b_cont == mp); 19878 first_mp->b_cont = NULL; 19879 freeb(first_mp); 19880 /* Just send the IP header+ICMP+data */ 19881 first_mp = mp; 19882 ipha = (ipha_t *)mp->b_rptr; 19883 dst = ipha->ipha_dst; 19884 goto send_from_ill; 19885 } else { 19886 attach_ill = ill; 19887 } 19888 19889 if (attach_ill == NULL) { 19890 ASSERT(xmit_ill == NULL); 19891 ip1dbg(("ip_output: bad ifindex for " 19892 "(BIND TO IPIF_NOFAILOVER) %d\n", 19893 ifindex)); 19894 freemsg(first_mp); 19895 BUMP_MIB(&ip_mib, ipOutDiscards); 19896 ASSERT(!need_decref); 19897 return; 19898 } 19899 } 19900 } 19901 } 19902 19903 ASSERT(xmit_ill == NULL); 19904 19905 /* We have a complete IP datagram heading outbound. */ 19906 ipha = (ipha_t *)mp->b_rptr; 19907 19908 #ifndef SPEED_BEFORE_SAFETY 19909 /* 19910 * Make sure we have a full-word aligned message and that at least 19911 * a simple IP header is accessible in the first message. If not, 19912 * try a pullup. 19913 */ 19914 if (!OK_32PTR(rptr) || 19915 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 19916 hdrtoosmall: 19917 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 19918 BUMP_MIB(&ip_mib, ipOutDiscards); 19919 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19920 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 19921 if (first_mp == NULL) 19922 first_mp = mp; 19923 goto drop_pkt; 19924 } 19925 19926 /* This function assumes that mp points to an IPv4 packet. */ 19927 if (is_system_labeled() && q->q_next == NULL && 19928 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 19929 !connp->conn_ulp_labeled) { 19930 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 19931 &adjust, connp->conn_mac_exempt); 19932 ipha = (ipha_t *)mp->b_rptr; 19933 if (first_mp != NULL) 19934 first_mp->b_cont = mp; 19935 if (err != 0) { 19936 if (first_mp == NULL) 19937 first_mp = mp; 19938 if (err == EINVAL) 19939 goto icmp_parameter_problem; 19940 ip2dbg(("ip_wput: label check failed (%d)\n", 19941 err)); 19942 goto drop_pkt; 19943 } 19944 iplen = ntohs(ipha->ipha_length) + adjust; 19945 ipha->ipha_length = htons(iplen); 19946 } 19947 19948 ipha = (ipha_t *)mp->b_rptr; 19949 if (first_mp == NULL) { 19950 ASSERT(attach_ill == NULL && xmit_ill == NULL); 19951 /* 19952 * If we got here because of "goto hdrtoosmall" 19953 * We need to attach a IPSEC_OUT. 19954 */ 19955 if (connp->conn_out_enforce_policy) { 19956 if (((mp = ipsec_attach_ipsec_out(mp, connp, 19957 NULL, ipha->ipha_protocol)) == NULL)) { 19958 if (need_decref) 19959 CONN_DEC_REF(connp); 19960 return; 19961 } else { 19962 ASSERT(mp->b_datap->db_type == M_CTL); 19963 first_mp = mp; 19964 mp = mp->b_cont; 19965 mctl_present = B_TRUE; 19966 } 19967 } else { 19968 first_mp = mp; 19969 mctl_present = B_FALSE; 19970 } 19971 } 19972 } 19973 #endif 19974 19975 /* Most of the code below is written for speed, not readability */ 19976 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19977 19978 /* 19979 * If ip_newroute() fails, we're going to need a full 19980 * header for the icmp wraparound. 19981 */ 19982 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 19983 uint_t v_hlen; 19984 version_hdrlen_check: 19985 ASSERT(first_mp != NULL); 19986 v_hlen = V_HLEN; 19987 /* 19988 * siphon off IPv6 packets coming down from transport 19989 * layer modules here. 19990 * Note: high-order bit carries NUD reachability confirmation 19991 */ 19992 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 19993 /* 19994 * XXX implement a IPv4 and IPv6 packet counter per 19995 * conn and switch when ratio exceeds e.g. 10:1 19996 */ 19997 #ifdef notyet 19998 if (q->q_next == NULL) /* Avoid ill queue */ 19999 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 20000 #endif 20001 BUMP_MIB(&ip_mib, ipOutIPv6); 20002 ASSERT(xmit_ill == NULL); 20003 if (attach_ill != NULL) 20004 ill_refrele(attach_ill); 20005 if (need_decref) 20006 mp->b_flag |= MSGHASREF; 20007 (void) ip_output_v6(arg, first_mp, arg2, caller); 20008 return; 20009 } 20010 20011 if ((v_hlen >> 4) != IP_VERSION) { 20012 BUMP_MIB(&ip_mib, ipOutDiscards); 20013 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20014 "ip_wput_end: q %p (%S)", q, "badvers"); 20015 goto drop_pkt; 20016 } 20017 /* 20018 * Is the header length at least 20 bytes? 20019 * 20020 * Are there enough bytes accessible in the header? If 20021 * not, try a pullup. 20022 */ 20023 v_hlen &= 0xF; 20024 v_hlen <<= 2; 20025 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20026 BUMP_MIB(&ip_mib, ipOutDiscards); 20027 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20028 "ip_wput_end: q %p (%S)", q, "badlen"); 20029 goto drop_pkt; 20030 } 20031 if (v_hlen > (mp->b_wptr - rptr)) { 20032 if (!pullupmsg(mp, v_hlen)) { 20033 BUMP_MIB(&ip_mib, ipOutDiscards); 20034 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20035 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20036 goto drop_pkt; 20037 } 20038 ipha = (ipha_t *)mp->b_rptr; 20039 } 20040 /* 20041 * Move first entry from any source route into ipha_dst and 20042 * verify the options 20043 */ 20044 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 20045 ASSERT(xmit_ill == NULL); 20046 if (attach_ill != NULL) 20047 ill_refrele(attach_ill); 20048 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20049 "ip_wput_end: q %p (%S)", q, "badopts"); 20050 if (need_decref) 20051 CONN_DEC_REF(connp); 20052 return; 20053 } 20054 } 20055 dst = ipha->ipha_dst; 20056 20057 /* 20058 * Try to get an IRE_CACHE for the destination address. If we can't, 20059 * we have to run the packet through ip_newroute which will take 20060 * the appropriate action to arrange for an IRE_CACHE, such as querying 20061 * a resolver, or assigning a default gateway, etc. 20062 */ 20063 if (CLASSD(dst)) { 20064 ipif_t *ipif; 20065 uint32_t setsrc = 0; 20066 20067 multicast: 20068 ASSERT(first_mp != NULL); 20069 ASSERT(xmit_ill == NULL); 20070 ip2dbg(("ip_wput: CLASSD\n")); 20071 if (connp == NULL) { 20072 /* 20073 * Use the first good ipif on the ill. 20074 * XXX Should this ever happen? (Appears 20075 * to show up with just ppp and no ethernet due 20076 * to in.rdisc.) 20077 * However, ire_send should be able to 20078 * call ip_wput_ire directly. 20079 * 20080 * XXX Also, this can happen for ICMP and other packets 20081 * with multicast source addresses. Perhaps we should 20082 * fix things so that we drop the packet in question, 20083 * but for now, just run with it. 20084 */ 20085 ill_t *ill = (ill_t *)q->q_ptr; 20086 20087 /* 20088 * Don't honor attach_if for this case. If ill 20089 * is part of the group, ipif could belong to 20090 * any ill and we cannot maintain attach_ill 20091 * and ipif_ill same anymore and the assert 20092 * below would fail. 20093 */ 20094 if (mctl_present) { 20095 io->ipsec_out_ill_index = 0; 20096 io->ipsec_out_attach_if = B_FALSE; 20097 ASSERT(attach_ill != NULL); 20098 ill_refrele(attach_ill); 20099 attach_ill = NULL; 20100 } 20101 20102 ASSERT(attach_ill == NULL); 20103 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20104 if (ipif == NULL) { 20105 if (need_decref) 20106 CONN_DEC_REF(connp); 20107 freemsg(first_mp); 20108 return; 20109 } 20110 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20111 ntohl(dst), ill->ill_name)); 20112 } else { 20113 /* 20114 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 20115 * IP_XMIT_IF is honoured. 20116 * Block comment above this function explains the 20117 * locking mechanism used here 20118 */ 20119 xmit_ill = conn_get_held_ill(connp, 20120 &connp->conn_xmit_if_ill, &err); 20121 if (err == ILL_LOOKUP_FAILED) { 20122 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 20123 goto drop_pkt; 20124 } 20125 if (xmit_ill == NULL) { 20126 ipif = conn_get_held_ipif(connp, 20127 &connp->conn_multicast_ipif, &err); 20128 if (err == IPIF_LOOKUP_FAILED) { 20129 ip1dbg(("ip_wput: No ipif for " 20130 "multicast\n")); 20131 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20132 goto drop_pkt; 20133 } 20134 } 20135 if (xmit_ill != NULL) { 20136 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20137 if (ipif == NULL) { 20138 ip1dbg(("ip_wput: No ipif for " 20139 "IP_XMIT_IF\n")); 20140 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20141 goto drop_pkt; 20142 } 20143 } else if (ipif == NULL || ipif->ipif_isv6) { 20144 /* 20145 * We must do this ipif determination here 20146 * else we could pass through ip_newroute 20147 * and come back here without the conn context. 20148 * 20149 * Note: we do late binding i.e. we bind to 20150 * the interface when the first packet is sent. 20151 * For performance reasons we do not rebind on 20152 * each packet but keep the binding until the 20153 * next IP_MULTICAST_IF option. 20154 * 20155 * conn_multicast_{ipif,ill} are shared between 20156 * IPv4 and IPv6 and AF_INET6 sockets can 20157 * send both IPv4 and IPv6 packets. Hence 20158 * we have to check that "isv6" matches above. 20159 */ 20160 if (ipif != NULL) 20161 ipif_refrele(ipif); 20162 ipif = ipif_lookup_group(dst, zoneid); 20163 if (ipif == NULL) { 20164 ip1dbg(("ip_wput: No ipif for " 20165 "multicast\n")); 20166 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20167 goto drop_pkt; 20168 } 20169 err = conn_set_held_ipif(connp, 20170 &connp->conn_multicast_ipif, ipif); 20171 if (err == IPIF_LOOKUP_FAILED) { 20172 ipif_refrele(ipif); 20173 ip1dbg(("ip_wput: No ipif for " 20174 "multicast\n")); 20175 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20176 goto drop_pkt; 20177 } 20178 } 20179 } 20180 ASSERT(!ipif->ipif_isv6); 20181 /* 20182 * As we may lose the conn by the time we reach ip_wput_ire, 20183 * we copy conn_multicast_loop and conn_dontroute on to an 20184 * ipsec_out. In case if this datagram goes out secure, 20185 * we need the ill_index also. Copy that also into the 20186 * ipsec_out. 20187 */ 20188 if (mctl_present) { 20189 io = (ipsec_out_t *)first_mp->b_rptr; 20190 ASSERT(first_mp->b_datap->db_type == M_CTL); 20191 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20192 } else { 20193 ASSERT(mp == first_mp); 20194 if ((first_mp = allocb(sizeof (ipsec_info_t), 20195 BPRI_HI)) == NULL) { 20196 ipif_refrele(ipif); 20197 first_mp = mp; 20198 goto drop_pkt; 20199 } 20200 first_mp->b_datap->db_type = M_CTL; 20201 first_mp->b_wptr += sizeof (ipsec_info_t); 20202 /* ipsec_out_secure is B_FALSE now */ 20203 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20204 io = (ipsec_out_t *)first_mp->b_rptr; 20205 io->ipsec_out_type = IPSEC_OUT; 20206 io->ipsec_out_len = sizeof (ipsec_out_t); 20207 io->ipsec_out_use_global_policy = B_TRUE; 20208 first_mp->b_cont = mp; 20209 mctl_present = B_TRUE; 20210 } 20211 if (attach_ill != NULL) { 20212 ASSERT(attach_ill == ipif->ipif_ill); 20213 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20214 20215 /* 20216 * Check if we need an ire that will not be 20217 * looked up by anybody else i.e. HIDDEN. 20218 */ 20219 if (ill_is_probeonly(attach_ill)) { 20220 match_flags |= MATCH_IRE_MARK_HIDDEN; 20221 } 20222 io->ipsec_out_ill_index = 20223 attach_ill->ill_phyint->phyint_ifindex; 20224 io->ipsec_out_attach_if = B_TRUE; 20225 } else { 20226 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20227 io->ipsec_out_ill_index = 20228 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20229 } 20230 if (connp != NULL) { 20231 io->ipsec_out_multicast_loop = 20232 connp->conn_multicast_loop; 20233 io->ipsec_out_dontroute = connp->conn_dontroute; 20234 io->ipsec_out_zoneid = connp->conn_zoneid; 20235 } 20236 /* 20237 * If the application uses IP_MULTICAST_IF with 20238 * different logical addresses of the same ILL, we 20239 * need to make sure that the soruce address of 20240 * the packet matches the logical IP address used 20241 * in the option. We do it by initializing ipha_src 20242 * here. This should keep IPSEC also happy as 20243 * when we return from IPSEC processing, we don't 20244 * have to worry about getting the right address on 20245 * the packet. Thus it is sufficient to look for 20246 * IRE_CACHE using MATCH_IRE_ILL rathen than 20247 * MATCH_IRE_IPIF. 20248 * 20249 * NOTE : We need to do it for non-secure case also as 20250 * this might go out secure if there is a global policy 20251 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20252 * address, the source should be initialized already and 20253 * hence we won't be initializing here. 20254 * 20255 * As we do not have the ire yet, it is possible that 20256 * we set the source address here and then later discover 20257 * that the ire implies the source address to be assigned 20258 * through the RTF_SETSRC flag. 20259 * In that case, the setsrc variable will remind us 20260 * that overwritting the source address by the one 20261 * of the RTF_SETSRC-flagged ire is allowed. 20262 */ 20263 if (ipha->ipha_src == INADDR_ANY && 20264 (connp == NULL || !connp->conn_unspec_src)) { 20265 ipha->ipha_src = ipif->ipif_src_addr; 20266 setsrc = RTF_SETSRC; 20267 } 20268 /* 20269 * Find an IRE which matches the destination and the outgoing 20270 * queue (i.e. the outgoing interface.) 20271 * For loopback use a unicast IP address for 20272 * the ire lookup. 20273 */ 20274 if (ipif->ipif_ill->ill_phyint->phyint_flags & 20275 PHYI_LOOPBACK) { 20276 dst = ipif->ipif_lcl_addr; 20277 } 20278 /* 20279 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20280 * We don't need to lookup ire in ctable as the packet 20281 * needs to be sent to the destination through the specified 20282 * ill irrespective of ires in the cache table. 20283 */ 20284 ire = NULL; 20285 if (xmit_ill == NULL) { 20286 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20287 zoneid, MBLK_GETLABEL(mp), match_flags); 20288 } 20289 20290 /* 20291 * refrele attach_ill as its not needed anymore. 20292 */ 20293 if (attach_ill != NULL) { 20294 ill_refrele(attach_ill); 20295 attach_ill = NULL; 20296 } 20297 20298 if (ire == NULL) { 20299 /* 20300 * Multicast loopback and multicast forwarding is 20301 * done in ip_wput_ire. 20302 * 20303 * Mark this packet to make it be delivered to 20304 * ip_wput_ire after the new ire has been 20305 * created. 20306 * 20307 * The call to ip_newroute_ipif takes into account 20308 * the setsrc reminder. In any case, we take care 20309 * of the RTF_MULTIRT flag. 20310 */ 20311 mp->b_prev = mp->b_next = NULL; 20312 if (xmit_ill == NULL || 20313 xmit_ill->ill_ipif_up_count > 0) { 20314 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 20315 setsrc | RTF_MULTIRT, zoneid); 20316 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20317 "ip_wput_end: q %p (%S)", q, "noire"); 20318 } else { 20319 freemsg(first_mp); 20320 } 20321 ipif_refrele(ipif); 20322 if (xmit_ill != NULL) 20323 ill_refrele(xmit_ill); 20324 if (need_decref) 20325 CONN_DEC_REF(connp); 20326 return; 20327 } 20328 20329 ipif_refrele(ipif); 20330 ipif = NULL; 20331 ASSERT(xmit_ill == NULL); 20332 20333 /* 20334 * Honor the RTF_SETSRC flag for multicast packets, 20335 * if allowed by the setsrc reminder. 20336 */ 20337 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 20338 ipha->ipha_src = ire->ire_src_addr; 20339 } 20340 20341 /* 20342 * Unconditionally force the TTL to 1 for 20343 * multirouted multicast packets: 20344 * multirouted multicast should not cross 20345 * multicast routers. 20346 */ 20347 if (ire->ire_flags & RTF_MULTIRT) { 20348 if (ipha->ipha_ttl > 1) { 20349 ip2dbg(("ip_wput: forcing multicast " 20350 "multirt TTL to 1 (was %d), dst 0x%08x\n", 20351 ipha->ipha_ttl, ntohl(ire->ire_addr))); 20352 ipha->ipha_ttl = 1; 20353 } 20354 } 20355 } else { 20356 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20357 if ((ire != NULL) && (ire->ire_type & 20358 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 20359 ignore_dontroute = B_TRUE; 20360 ignore_nexthop = B_TRUE; 20361 } 20362 if (ire != NULL) { 20363 ire_refrele(ire); 20364 ire = NULL; 20365 } 20366 /* 20367 * Guard against coming in from arp in which case conn is NULL. 20368 * Also guard against non M_DATA with dontroute set but 20369 * destined to local, loopback or broadcast addresses. 20370 */ 20371 if (connp != NULL && connp->conn_dontroute && 20372 !ignore_dontroute) { 20373 dontroute: 20374 /* 20375 * Set TTL to 1 if SO_DONTROUTE is set to prevent 20376 * routing protocols from seeing false direct 20377 * connectivity. 20378 */ 20379 ipha->ipha_ttl = 1; 20380 /* 20381 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 20382 * along with SO_DONTROUTE, higher precedence is 20383 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 20384 */ 20385 if (connp->conn_xmit_if_ill == NULL) { 20386 /* If suitable ipif not found, drop packet */ 20387 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 20388 if (dst_ipif == NULL) { 20389 ip1dbg(("ip_wput: no route for " 20390 "dst using SO_DONTROUTE\n")); 20391 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20392 mp->b_prev = mp->b_next = NULL; 20393 if (first_mp == NULL) 20394 first_mp = mp; 20395 goto drop_pkt; 20396 } else { 20397 /* 20398 * If suitable ipif has been found, set 20399 * xmit_ill to the corresponding 20400 * ipif_ill because we'll be following 20401 * the IP_XMIT_IF logic. 20402 */ 20403 ASSERT(xmit_ill == NULL); 20404 xmit_ill = dst_ipif->ipif_ill; 20405 mutex_enter(&xmit_ill->ill_lock); 20406 if (!ILL_CAN_LOOKUP(xmit_ill)) { 20407 mutex_exit(&xmit_ill->ill_lock); 20408 xmit_ill = NULL; 20409 ipif_refrele(dst_ipif); 20410 ip1dbg(("ip_wput: no route for" 20411 " dst using" 20412 " SO_DONTROUTE\n")); 20413 BUMP_MIB(&ip_mib, 20414 ipOutNoRoutes); 20415 mp->b_prev = mp->b_next = NULL; 20416 if (first_mp == NULL) 20417 first_mp = mp; 20418 goto drop_pkt; 20419 } 20420 ill_refhold_locked(xmit_ill); 20421 mutex_exit(&xmit_ill->ill_lock); 20422 ipif_refrele(dst_ipif); 20423 } 20424 } 20425 20426 } 20427 /* 20428 * If we are bound to IPIF_NOFAILOVER address, look for 20429 * an IRE_CACHE matching the ill. 20430 */ 20431 send_from_ill: 20432 if (attach_ill != NULL) { 20433 ipif_t *attach_ipif; 20434 20435 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20436 20437 /* 20438 * Check if we need an ire that will not be 20439 * looked up by anybody else i.e. HIDDEN. 20440 */ 20441 if (ill_is_probeonly(attach_ill)) { 20442 match_flags |= MATCH_IRE_MARK_HIDDEN; 20443 } 20444 20445 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 20446 if (attach_ipif == NULL) { 20447 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 20448 goto drop_pkt; 20449 } 20450 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 20451 zoneid, MBLK_GETLABEL(mp), match_flags); 20452 ipif_refrele(attach_ipif); 20453 } else if (xmit_ill != NULL || (connp != NULL && 20454 connp->conn_xmit_if_ill != NULL)) { 20455 /* 20456 * Mark this packet as originated locally 20457 */ 20458 mp->b_prev = mp->b_next = NULL; 20459 /* 20460 * xmit_ill could be NULL if SO_DONTROUTE 20461 * is also set. 20462 */ 20463 if (xmit_ill == NULL) { 20464 xmit_ill = conn_get_held_ill(connp, 20465 &connp->conn_xmit_if_ill, &err); 20466 if (err == ILL_LOOKUP_FAILED) { 20467 if (need_decref) 20468 CONN_DEC_REF(connp); 20469 freemsg(first_mp); 20470 return; 20471 } 20472 if (xmit_ill == NULL) { 20473 if (connp->conn_dontroute) 20474 goto dontroute; 20475 goto send_from_ill; 20476 } 20477 } 20478 /* 20479 * could be SO_DONTROUTE case also. 20480 * check at least one interface is UP as 20481 * spcified by this ILL, and then call 20482 * ip_newroute_ipif() 20483 */ 20484 if (xmit_ill->ill_ipif_up_count > 0) { 20485 ipif_t *ipif; 20486 20487 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20488 if (ipif != NULL) { 20489 ip_newroute_ipif(q, first_mp, ipif, 20490 dst, connp, 0, zoneid); 20491 ipif_refrele(ipif); 20492 ip1dbg(("ip_wput: ip_unicast_if\n")); 20493 } 20494 } else { 20495 freemsg(first_mp); 20496 } 20497 ill_refrele(xmit_ill); 20498 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20499 "ip_wput_end: q %p (%S)", q, "unicast_if"); 20500 if (need_decref) 20501 CONN_DEC_REF(connp); 20502 return; 20503 } else if (ip_nexthop || (connp != NULL && 20504 (connp->conn_nexthop_set)) && !ignore_nexthop) { 20505 if (!ip_nexthop) { 20506 ip_nexthop = B_TRUE; 20507 nexthop_addr = connp->conn_nexthop_v4; 20508 } 20509 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 20510 MATCH_IRE_GW; 20511 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 20512 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 20513 } else { 20514 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20515 } 20516 if (!ire) { 20517 /* 20518 * Make sure we don't load spread if this 20519 * is IPIF_NOFAILOVER case. 20520 */ 20521 if ((attach_ill != NULL) || 20522 (ip_nexthop && !ignore_nexthop)) { 20523 if (mctl_present) { 20524 io = (ipsec_out_t *)first_mp->b_rptr; 20525 ASSERT(first_mp->b_datap->db_type == 20526 M_CTL); 20527 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20528 } else { 20529 ASSERT(mp == first_mp); 20530 first_mp = allocb( 20531 sizeof (ipsec_info_t), BPRI_HI); 20532 if (first_mp == NULL) { 20533 first_mp = mp; 20534 goto drop_pkt; 20535 } 20536 first_mp->b_datap->db_type = M_CTL; 20537 first_mp->b_wptr += 20538 sizeof (ipsec_info_t); 20539 /* ipsec_out_secure is B_FALSE now */ 20540 bzero(first_mp->b_rptr, 20541 sizeof (ipsec_info_t)); 20542 io = (ipsec_out_t *)first_mp->b_rptr; 20543 io->ipsec_out_type = IPSEC_OUT; 20544 io->ipsec_out_len = 20545 sizeof (ipsec_out_t); 20546 io->ipsec_out_use_global_policy = 20547 B_TRUE; 20548 first_mp->b_cont = mp; 20549 mctl_present = B_TRUE; 20550 } 20551 if (attach_ill != NULL) { 20552 io->ipsec_out_ill_index = attach_ill-> 20553 ill_phyint->phyint_ifindex; 20554 io->ipsec_out_attach_if = B_TRUE; 20555 } else { 20556 io->ipsec_out_ip_nexthop = ip_nexthop; 20557 io->ipsec_out_nexthop_addr = 20558 nexthop_addr; 20559 } 20560 } 20561 noirefound: 20562 /* 20563 * Mark this packet as having originated on 20564 * this machine. This will be noted in 20565 * ire_add_then_send, which needs to know 20566 * whether to run it back through ip_wput or 20567 * ip_rput following successful resolution. 20568 */ 20569 mp->b_prev = NULL; 20570 mp->b_next = NULL; 20571 ip_newroute(q, first_mp, dst, NULL, connp, zoneid); 20572 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20573 "ip_wput_end: q %p (%S)", q, "newroute"); 20574 if (attach_ill != NULL) 20575 ill_refrele(attach_ill); 20576 if (xmit_ill != NULL) 20577 ill_refrele(xmit_ill); 20578 if (need_decref) 20579 CONN_DEC_REF(connp); 20580 return; 20581 } 20582 } 20583 20584 /* We now know where we are going with it. */ 20585 20586 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20587 "ip_wput_end: q %p (%S)", q, "end"); 20588 20589 /* 20590 * Check if the ire has the RTF_MULTIRT flag, inherited 20591 * from an IRE_OFFSUBNET ire entry in ip_newroute. 20592 */ 20593 if (ire->ire_flags & RTF_MULTIRT) { 20594 /* 20595 * Force the TTL of multirouted packets if required. 20596 * The TTL of such packets is bounded by the 20597 * ip_multirt_ttl ndd variable. 20598 */ 20599 if ((ip_multirt_ttl > 0) && 20600 (ipha->ipha_ttl > ip_multirt_ttl)) { 20601 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20602 "(was %d), dst 0x%08x\n", 20603 ip_multirt_ttl, ipha->ipha_ttl, 20604 ntohl(ire->ire_addr))); 20605 ipha->ipha_ttl = ip_multirt_ttl; 20606 } 20607 /* 20608 * At this point, we check to see if there are any pending 20609 * unresolved routes. ire_multirt_resolvable() 20610 * checks in O(n) that all IRE_OFFSUBNET ire 20611 * entries for the packet's destination and 20612 * flagged RTF_MULTIRT are currently resolved. 20613 * If some remain unresolved, we make a copy 20614 * of the current message. It will be used 20615 * to initiate additional route resolutions. 20616 */ 20617 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20618 MBLK_GETLABEL(first_mp)); 20619 ip2dbg(("ip_wput[noirefound]: ire %p, " 20620 "multirt_need_resolve %d, first_mp %p\n", 20621 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20622 if (multirt_need_resolve) { 20623 copy_mp = copymsg(first_mp); 20624 if (copy_mp != NULL) { 20625 MULTIRT_DEBUG_TAG(copy_mp); 20626 } 20627 } 20628 } 20629 20630 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20631 /* 20632 * Try to resolve another multiroute if 20633 * ire_multirt_resolvable() deemed it necessary. 20634 * At this point, we need to distinguish 20635 * multicasts from other packets. For multicasts, 20636 * we call ip_newroute_ipif() and request that both 20637 * multirouting and setsrc flags are checked. 20638 */ 20639 if (copy_mp != NULL) { 20640 if (CLASSD(dst)) { 20641 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 20642 if (ipif) { 20643 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 20644 RTF_SETSRC | RTF_MULTIRT, zoneid); 20645 ipif_refrele(ipif); 20646 } else { 20647 MULTIRT_DEBUG_UNTAG(copy_mp); 20648 freemsg(copy_mp); 20649 copy_mp = NULL; 20650 } 20651 } else { 20652 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 20653 } 20654 } 20655 if (attach_ill != NULL) 20656 ill_refrele(attach_ill); 20657 if (xmit_ill != NULL) 20658 ill_refrele(xmit_ill); 20659 if (need_decref) 20660 CONN_DEC_REF(connp); 20661 return; 20662 20663 icmp_parameter_problem: 20664 /* could not have originated externally */ 20665 ASSERT(mp->b_prev == NULL); 20666 if (ip_hdr_complete(ipha, zoneid) == 0) { 20667 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20668 /* it's the IP header length that's in trouble */ 20669 icmp_param_problem(q, first_mp, 0, zoneid); 20670 first_mp = NULL; 20671 } 20672 20673 drop_pkt: 20674 ip1dbg(("ip_wput: dropped packet\n")); 20675 if (ire != NULL) 20676 ire_refrele(ire); 20677 if (need_decref) 20678 CONN_DEC_REF(connp); 20679 freemsg(first_mp); 20680 if (attach_ill != NULL) 20681 ill_refrele(attach_ill); 20682 if (xmit_ill != NULL) 20683 ill_refrele(xmit_ill); 20684 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20685 "ip_wput_end: q %p (%S)", q, "droppkt"); 20686 } 20687 20688 /* 20689 * If this is a conn_t queue, then we pass in the conn. This includes the 20690 * zoneid. 20691 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 20692 * in which case we use the global zoneid since those are all part of 20693 * the global zone. 20694 */ 20695 void 20696 ip_wput(queue_t *q, mblk_t *mp) 20697 { 20698 if (CONN_Q(q)) 20699 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 20700 else 20701 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 20702 } 20703 20704 /* 20705 * 20706 * The following rules must be observed when accessing any ipif or ill 20707 * that has been cached in the conn. Typically conn_nofailover_ill, 20708 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 20709 * 20710 * Access: The ipif or ill pointed to from the conn can be accessed under 20711 * the protection of the conn_lock or after it has been refheld under the 20712 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 20713 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 20714 * The reason for this is that a concurrent unplumb could actually be 20715 * cleaning up these cached pointers by walking the conns and might have 20716 * finished cleaning up the conn in question. The macros check that an 20717 * unplumb has not yet started on the ipif or ill. 20718 * 20719 * Caching: An ipif or ill pointer may be cached in the conn only after 20720 * making sure that an unplumb has not started. So the caching is done 20721 * while holding both the conn_lock and the ill_lock and after using the 20722 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20723 * flag before starting the cleanup of conns. 20724 * 20725 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20726 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20727 * or a reference to the ipif or a reference to an ire that references the 20728 * ipif. An ipif does not change its ill except for failover/failback. Since 20729 * failover/failback happens only after bringing down the ipif and making sure 20730 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20731 * the above holds. 20732 */ 20733 ipif_t * 20734 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20735 { 20736 ipif_t *ipif; 20737 ill_t *ill; 20738 20739 *err = 0; 20740 rw_enter(&ill_g_lock, RW_READER); 20741 mutex_enter(&connp->conn_lock); 20742 ipif = *ipifp; 20743 if (ipif != NULL) { 20744 ill = ipif->ipif_ill; 20745 mutex_enter(&ill->ill_lock); 20746 if (IPIF_CAN_LOOKUP(ipif)) { 20747 ipif_refhold_locked(ipif); 20748 mutex_exit(&ill->ill_lock); 20749 mutex_exit(&connp->conn_lock); 20750 rw_exit(&ill_g_lock); 20751 return (ipif); 20752 } else { 20753 *err = IPIF_LOOKUP_FAILED; 20754 } 20755 mutex_exit(&ill->ill_lock); 20756 } 20757 mutex_exit(&connp->conn_lock); 20758 rw_exit(&ill_g_lock); 20759 return (NULL); 20760 } 20761 20762 ill_t * 20763 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 20764 { 20765 ill_t *ill; 20766 20767 *err = 0; 20768 mutex_enter(&connp->conn_lock); 20769 ill = *illp; 20770 if (ill != NULL) { 20771 mutex_enter(&ill->ill_lock); 20772 if (ILL_CAN_LOOKUP(ill)) { 20773 ill_refhold_locked(ill); 20774 mutex_exit(&ill->ill_lock); 20775 mutex_exit(&connp->conn_lock); 20776 return (ill); 20777 } else { 20778 *err = ILL_LOOKUP_FAILED; 20779 } 20780 mutex_exit(&ill->ill_lock); 20781 } 20782 mutex_exit(&connp->conn_lock); 20783 return (NULL); 20784 } 20785 20786 static int 20787 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 20788 { 20789 ill_t *ill; 20790 20791 ill = ipif->ipif_ill; 20792 mutex_enter(&connp->conn_lock); 20793 mutex_enter(&ill->ill_lock); 20794 if (IPIF_CAN_LOOKUP(ipif)) { 20795 *ipifp = ipif; 20796 mutex_exit(&ill->ill_lock); 20797 mutex_exit(&connp->conn_lock); 20798 return (0); 20799 } 20800 mutex_exit(&ill->ill_lock); 20801 mutex_exit(&connp->conn_lock); 20802 return (IPIF_LOOKUP_FAILED); 20803 } 20804 20805 /* 20806 * This is called if the outbound datagram needs fragmentation. 20807 * 20808 * NOTE : This function does not ire_refrele the ire argument passed in. 20809 */ 20810 static void 20811 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid) 20812 { 20813 ipha_t *ipha; 20814 mblk_t *mp; 20815 uint32_t v_hlen_tos_len; 20816 uint32_t max_frag; 20817 uint32_t frag_flag; 20818 boolean_t dont_use; 20819 20820 if (ipsec_mp->b_datap->db_type == M_CTL) { 20821 mp = ipsec_mp->b_cont; 20822 } else { 20823 mp = ipsec_mp; 20824 } 20825 20826 ipha = (ipha_t *)mp->b_rptr; 20827 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20828 20829 #ifdef _BIG_ENDIAN 20830 #define V_HLEN (v_hlen_tos_len >> 24) 20831 #define LENGTH (v_hlen_tos_len & 0xFFFF) 20832 #else 20833 #define V_HLEN (v_hlen_tos_len & 0xFF) 20834 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 20835 #endif 20836 20837 #ifndef SPEED_BEFORE_SAFETY 20838 /* 20839 * Check that ipha_length is consistent with 20840 * the mblk length 20841 */ 20842 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 20843 ip0dbg(("Packet length mismatch: %d, %ld\n", 20844 LENGTH, msgdsize(mp))); 20845 freemsg(ipsec_mp); 20846 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20847 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 20848 "packet length mismatch"); 20849 return; 20850 } 20851 #endif 20852 /* 20853 * Don't use frag_flag if pre-built packet or source 20854 * routed or if multicast (since multicast packets do not solicit 20855 * ICMP "packet too big" messages). Get the values of 20856 * max_frag and frag_flag atomically by acquiring the 20857 * ire_lock. 20858 */ 20859 mutex_enter(&ire->ire_lock); 20860 max_frag = ire->ire_max_frag; 20861 frag_flag = ire->ire_frag_flag; 20862 mutex_exit(&ire->ire_lock); 20863 20864 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 20865 (V_HLEN != IP_SIMPLE_HDR_VERSION && 20866 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 20867 20868 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 20869 (dont_use ? 0 : frag_flag), zoneid); 20870 } 20871 20872 /* 20873 * Used for deciding the MSS size for the upper layer. Thus 20874 * we need to check the outbound policy values in the conn. 20875 */ 20876 int 20877 conn_ipsec_length(conn_t *connp) 20878 { 20879 ipsec_latch_t *ipl; 20880 20881 ipl = connp->conn_latch; 20882 if (ipl == NULL) 20883 return (0); 20884 20885 if (ipl->ipl_out_policy == NULL) 20886 return (0); 20887 20888 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 20889 } 20890 20891 /* 20892 * Returns an estimate of the IPSEC headers size. This is used if 20893 * we don't want to call into IPSEC to get the exact size. 20894 */ 20895 int 20896 ipsec_out_extra_length(mblk_t *ipsec_mp) 20897 { 20898 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 20899 ipsec_action_t *a; 20900 20901 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20902 if (!io->ipsec_out_secure) 20903 return (0); 20904 20905 a = io->ipsec_out_act; 20906 20907 if (a == NULL) { 20908 ASSERT(io->ipsec_out_policy != NULL); 20909 a = io->ipsec_out_policy->ipsp_act; 20910 } 20911 ASSERT(a != NULL); 20912 20913 return (a->ipa_ovhd); 20914 } 20915 20916 /* 20917 * Returns an estimate of the IPSEC headers size. This is used if 20918 * we don't want to call into IPSEC to get the exact size. 20919 */ 20920 int 20921 ipsec_in_extra_length(mblk_t *ipsec_mp) 20922 { 20923 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 20924 ipsec_action_t *a; 20925 20926 ASSERT(ii->ipsec_in_type == IPSEC_IN); 20927 20928 a = ii->ipsec_in_action; 20929 return (a == NULL ? 0 : a->ipa_ovhd); 20930 } 20931 20932 /* 20933 * If there are any source route options, return the true final 20934 * destination. Otherwise, return the destination. 20935 */ 20936 ipaddr_t 20937 ip_get_dst(ipha_t *ipha) 20938 { 20939 ipoptp_t opts; 20940 uchar_t *opt; 20941 uint8_t optval; 20942 uint8_t optlen; 20943 ipaddr_t dst; 20944 uint32_t off; 20945 20946 dst = ipha->ipha_dst; 20947 20948 if (IS_SIMPLE_IPH(ipha)) 20949 return (dst); 20950 20951 for (optval = ipoptp_first(&opts, ipha); 20952 optval != IPOPT_EOL; 20953 optval = ipoptp_next(&opts)) { 20954 opt = opts.ipoptp_cur; 20955 optlen = opts.ipoptp_len; 20956 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20957 switch (optval) { 20958 case IPOPT_SSRR: 20959 case IPOPT_LSRR: 20960 off = opt[IPOPT_OFFSET]; 20961 /* 20962 * If one of the conditions is true, it means 20963 * end of options and dst already has the right 20964 * value. 20965 */ 20966 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 20967 off = optlen - IP_ADDR_LEN; 20968 bcopy(&opt[off], &dst, IP_ADDR_LEN); 20969 } 20970 return (dst); 20971 default: 20972 break; 20973 } 20974 } 20975 20976 return (dst); 20977 } 20978 20979 mblk_t * 20980 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 20981 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 20982 { 20983 ipsec_out_t *io; 20984 mblk_t *first_mp; 20985 boolean_t policy_present; 20986 20987 first_mp = mp; 20988 if (mp->b_datap->db_type == M_CTL) { 20989 io = (ipsec_out_t *)first_mp->b_rptr; 20990 /* 20991 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 20992 * 20993 * 1) There is per-socket policy (including cached global 20994 * policy). 20995 * 2) There is no per-socket policy, but it is 20996 * a multicast packet that needs to go out 20997 * on a specific interface. This is the case 20998 * where (ip_wput and ip_wput_multicast) attaches 20999 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21000 * 21001 * In case (2) we check with global policy to 21002 * see if there is a match and set the ill_index 21003 * appropriately so that we can lookup the ire 21004 * properly in ip_wput_ipsec_out. 21005 */ 21006 21007 /* 21008 * ipsec_out_use_global_policy is set to B_FALSE 21009 * in ipsec_in_to_out(). Refer to that function for 21010 * details. 21011 */ 21012 if ((io->ipsec_out_latch == NULL) && 21013 (io->ipsec_out_use_global_policy)) { 21014 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21015 ire, connp, unspec_src, zoneid)); 21016 } 21017 if (!io->ipsec_out_secure) { 21018 /* 21019 * If this is not a secure packet, drop 21020 * the IPSEC_OUT mp and treat it as a clear 21021 * packet. This happens when we are sending 21022 * a ICMP reply back to a clear packet. See 21023 * ipsec_in_to_out() for details. 21024 */ 21025 mp = first_mp->b_cont; 21026 freeb(first_mp); 21027 } 21028 return (mp); 21029 } 21030 /* 21031 * See whether we need to attach a global policy here. We 21032 * don't depend on the conn (as it could be null) for deciding 21033 * what policy this datagram should go through because it 21034 * should have happened in ip_wput if there was some 21035 * policy. This normally happens for connections which are not 21036 * fully bound preventing us from caching policies in 21037 * ip_bind. Packets coming from the TCP listener/global queue 21038 * - which are non-hard_bound - could also be affected by 21039 * applying policy here. 21040 * 21041 * If this packet is coming from tcp global queue or listener, 21042 * we will be applying policy here. This may not be *right* 21043 * if these packets are coming from the detached connection as 21044 * it could have gone in clear before. This happens only if a 21045 * TCP connection started when there is no policy and somebody 21046 * added policy before it became detached. Thus packets of the 21047 * detached connection could go out secure and the other end 21048 * would drop it because it will be expecting in clear. The 21049 * converse is not true i.e if somebody starts a TCP 21050 * connection and deletes the policy, all the packets will 21051 * still go out with the policy that existed before deleting 21052 * because ip_unbind sends up policy information which is used 21053 * by TCP on subsequent ip_wputs. The right solution is to fix 21054 * TCP to attach a dummy IPSEC_OUT and set 21055 * ipsec_out_use_global_policy to B_FALSE. As this might 21056 * affect performance for normal cases, we are not doing it. 21057 * Thus, set policy before starting any TCP connections. 21058 * 21059 * NOTE - We might apply policy even for a hard bound connection 21060 * - for which we cached policy in ip_bind - if somebody added 21061 * global policy after we inherited the policy in ip_bind. 21062 * This means that the packets that were going out in clear 21063 * previously would start going secure and hence get dropped 21064 * on the other side. To fix this, TCP attaches a dummy 21065 * ipsec_out and make sure that we don't apply global policy. 21066 */ 21067 if (ipha != NULL) 21068 policy_present = ipsec_outbound_v4_policy_present; 21069 else 21070 policy_present = ipsec_outbound_v6_policy_present; 21071 if (!policy_present) 21072 return (mp); 21073 21074 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21075 zoneid)); 21076 } 21077 21078 ire_t * 21079 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21080 { 21081 ipaddr_t addr; 21082 ire_t *save_ire; 21083 irb_t *irb; 21084 ill_group_t *illgrp; 21085 int err; 21086 21087 save_ire = ire; 21088 addr = ire->ire_addr; 21089 21090 ASSERT(ire->ire_type == IRE_BROADCAST); 21091 21092 illgrp = connp->conn_outgoing_ill->ill_group; 21093 if (illgrp == NULL) { 21094 *conn_outgoing_ill = conn_get_held_ill(connp, 21095 &connp->conn_outgoing_ill, &err); 21096 if (err == ILL_LOOKUP_FAILED) { 21097 ire_refrele(save_ire); 21098 return (NULL); 21099 } 21100 return (save_ire); 21101 } 21102 /* 21103 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21104 * If it is part of the group, we need to send on the ire 21105 * that has been cleared of IRE_MARK_NORECV and that belongs 21106 * to this group. This is okay as IP_BOUND_IF really means 21107 * any ill in the group. We depend on the fact that the 21108 * first ire in the group is always cleared of IRE_MARK_NORECV 21109 * if such an ire exists. This is possible only if you have 21110 * at least one ill in the group that has not failed. 21111 * 21112 * First get to the ire that matches the address and group. 21113 * 21114 * We don't look for an ire with a matching zoneid because a given zone 21115 * won't always have broadcast ires on all ills in the group. 21116 */ 21117 irb = ire->ire_bucket; 21118 rw_enter(&irb->irb_lock, RW_READER); 21119 if (ire->ire_marks & IRE_MARK_NORECV) { 21120 /* 21121 * If the current zone only has an ire broadcast for this 21122 * address marked NORECV, the ire we want is ahead in the 21123 * bucket, so we look it up deliberately ignoring the zoneid. 21124 */ 21125 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21126 if (ire->ire_addr != addr) 21127 continue; 21128 /* skip over deleted ires */ 21129 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21130 continue; 21131 } 21132 } 21133 while (ire != NULL) { 21134 /* 21135 * If a new interface is coming up, we could end up 21136 * seeing the loopback ire and the non-loopback ire 21137 * may not have been added yet. So check for ire_stq 21138 */ 21139 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21140 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21141 break; 21142 } 21143 ire = ire->ire_next; 21144 } 21145 if (ire != NULL && ire->ire_addr == addr && 21146 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21147 IRE_REFHOLD(ire); 21148 rw_exit(&irb->irb_lock); 21149 ire_refrele(save_ire); 21150 *conn_outgoing_ill = ire_to_ill(ire); 21151 /* 21152 * Refhold the ill to make the conn_outgoing_ill 21153 * independent of the ire. ip_wput_ire goes in a loop 21154 * and may refrele the ire. Since we have an ire at this 21155 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21156 */ 21157 ill_refhold(*conn_outgoing_ill); 21158 return (ire); 21159 } 21160 rw_exit(&irb->irb_lock); 21161 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21162 /* 21163 * If we can't find a suitable ire, return the original ire. 21164 */ 21165 return (save_ire); 21166 } 21167 21168 /* 21169 * This function does the ire_refrele of the ire passed in as the 21170 * argument. As this function looks up more ires i.e broadcast ires, 21171 * it needs to REFRELE them. Currently, for simplicity we don't 21172 * differentiate the one passed in and looked up here. We always 21173 * REFRELE. 21174 * IPQoS Notes: 21175 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21176 * IPSec packets are done in ipsec_out_process. 21177 * 21178 */ 21179 void 21180 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21181 zoneid_t zoneid) 21182 { 21183 ipha_t *ipha; 21184 #define rptr ((uchar_t *)ipha) 21185 queue_t *stq; 21186 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21187 uint32_t v_hlen_tos_len; 21188 uint32_t ttl_protocol; 21189 ipaddr_t src; 21190 ipaddr_t dst; 21191 uint32_t cksum; 21192 ipaddr_t orig_src; 21193 ire_t *ire1; 21194 mblk_t *next_mp; 21195 uint_t hlen; 21196 uint16_t *up; 21197 uint32_t max_frag = ire->ire_max_frag; 21198 ill_t *ill = ire_to_ill(ire); 21199 int clusterwide; 21200 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21201 int ipsec_len; 21202 mblk_t *first_mp; 21203 ipsec_out_t *io; 21204 boolean_t conn_dontroute; /* conn value for multicast */ 21205 boolean_t conn_multicast_loop; /* conn value for multicast */ 21206 boolean_t multicast_forward; /* Should we forward ? */ 21207 boolean_t unspec_src; 21208 ill_t *conn_outgoing_ill = NULL; 21209 ill_t *ire_ill; 21210 ill_t *ire1_ill; 21211 uint32_t ill_index = 0; 21212 boolean_t multirt_send = B_FALSE; 21213 int err; 21214 ipxmit_state_t pktxmit_state; 21215 21216 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21217 "ip_wput_ire_start: q %p", q); 21218 21219 multicast_forward = B_FALSE; 21220 unspec_src = (connp != NULL && connp->conn_unspec_src); 21221 21222 if (ire->ire_flags & RTF_MULTIRT) { 21223 /* 21224 * Multirouting case. The bucket where ire is stored 21225 * probably holds other RTF_MULTIRT flagged ire 21226 * to the destination. In this call to ip_wput_ire, 21227 * we attempt to send the packet through all 21228 * those ires. Thus, we first ensure that ire is the 21229 * first RTF_MULTIRT ire in the bucket, 21230 * before walking the ire list. 21231 */ 21232 ire_t *first_ire; 21233 irb_t *irb = ire->ire_bucket; 21234 ASSERT(irb != NULL); 21235 21236 /* Make sure we do not omit any multiroute ire. */ 21237 IRB_REFHOLD(irb); 21238 for (first_ire = irb->irb_ire; 21239 first_ire != NULL; 21240 first_ire = first_ire->ire_next) { 21241 if ((first_ire->ire_flags & RTF_MULTIRT) && 21242 (first_ire->ire_addr == ire->ire_addr) && 21243 !(first_ire->ire_marks & 21244 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21245 break; 21246 } 21247 21248 if ((first_ire != NULL) && (first_ire != ire)) { 21249 IRE_REFHOLD(first_ire); 21250 ire_refrele(ire); 21251 ire = first_ire; 21252 ill = ire_to_ill(ire); 21253 } 21254 IRB_REFRELE(irb); 21255 } 21256 21257 /* 21258 * conn_outgoing_ill is used only in the broadcast loop. 21259 * for performance we don't grab the mutexs in the fastpath 21260 */ 21261 if ((connp != NULL) && 21262 (connp->conn_xmit_if_ill == NULL) && 21263 (ire->ire_type == IRE_BROADCAST) && 21264 ((connp->conn_nofailover_ill != NULL) || 21265 (connp->conn_outgoing_ill != NULL))) { 21266 /* 21267 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 21268 * option. So, see if this endpoint is bound to a 21269 * IPIF_NOFAILOVER address. If so, honor it. This implies 21270 * that if the interface is failed, we will still send 21271 * the packet on the same ill which is what we want. 21272 */ 21273 conn_outgoing_ill = conn_get_held_ill(connp, 21274 &connp->conn_nofailover_ill, &err); 21275 if (err == ILL_LOOKUP_FAILED) { 21276 ire_refrele(ire); 21277 freemsg(mp); 21278 return; 21279 } 21280 if (conn_outgoing_ill == NULL) { 21281 /* 21282 * Choose a good ill in the group to send the 21283 * packets on. 21284 */ 21285 ire = conn_set_outgoing_ill(connp, ire, 21286 &conn_outgoing_ill); 21287 if (ire == NULL) { 21288 freemsg(mp); 21289 return; 21290 } 21291 } 21292 } 21293 21294 if (mp->b_datap->db_type != M_CTL) { 21295 ipha = (ipha_t *)mp->b_rptr; 21296 } else { 21297 io = (ipsec_out_t *)mp->b_rptr; 21298 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21299 ASSERT(zoneid == io->ipsec_out_zoneid); 21300 ASSERT(zoneid != ALL_ZONES); 21301 ipha = (ipha_t *)mp->b_cont->b_rptr; 21302 dst = ipha->ipha_dst; 21303 /* 21304 * For the multicast case, ipsec_out carries conn_dontroute and 21305 * conn_multicast_loop as conn may not be available here. We 21306 * need this for multicast loopback and forwarding which is done 21307 * later in the code. 21308 */ 21309 if (CLASSD(dst)) { 21310 conn_dontroute = io->ipsec_out_dontroute; 21311 conn_multicast_loop = io->ipsec_out_multicast_loop; 21312 /* 21313 * If conn_dontroute is not set or conn_multicast_loop 21314 * is set, we need to do forwarding/loopback. For 21315 * datagrams from ip_wput_multicast, conn_dontroute is 21316 * set to B_TRUE and conn_multicast_loop is set to 21317 * B_FALSE so that we neither do forwarding nor 21318 * loopback. 21319 */ 21320 if (!conn_dontroute || conn_multicast_loop) 21321 multicast_forward = B_TRUE; 21322 } 21323 } 21324 21325 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 21326 ire->ire_zoneid != ALL_ZONES) { 21327 /* 21328 * When a zone sends a packet to another zone, we try to deliver 21329 * the packet under the same conditions as if the destination 21330 * was a real node on the network. To do so, we look for a 21331 * matching route in the forwarding table. 21332 * RTF_REJECT and RTF_BLACKHOLE are handled just like 21333 * ip_newroute() does. 21334 * Note that IRE_LOCAL are special, since they are used 21335 * when the zoneid doesn't match in some cases. This means that 21336 * we need to handle ipha_src differently since ire_src_addr 21337 * belongs to the receiving zone instead of the sending zone. 21338 * When ip_restrict_interzone_loopback is set, then 21339 * ire_cache_lookup() ensures that IRE_LOCAL are only used 21340 * for loopback between zones when the logical "Ethernet" would 21341 * have looped them back. 21342 */ 21343 ire_t *src_ire; 21344 21345 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 21346 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 21347 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 21348 if (src_ire != NULL && 21349 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 21350 (!ip_restrict_interzone_loopback || 21351 ire_local_same_ill_group(ire, src_ire))) { 21352 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 21353 ipha->ipha_src = src_ire->ire_src_addr; 21354 ire_refrele(src_ire); 21355 } else { 21356 ire_refrele(ire); 21357 if (conn_outgoing_ill != NULL) 21358 ill_refrele(conn_outgoing_ill); 21359 BUMP_MIB(&ip_mib, ipOutNoRoutes); 21360 if (src_ire != NULL) { 21361 if (src_ire->ire_flags & RTF_BLACKHOLE) { 21362 ire_refrele(src_ire); 21363 freemsg(mp); 21364 return; 21365 } 21366 ire_refrele(src_ire); 21367 } 21368 if (ip_hdr_complete(ipha, zoneid)) { 21369 /* Failed */ 21370 freemsg(mp); 21371 return; 21372 } 21373 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid); 21374 return; 21375 } 21376 } 21377 21378 if (mp->b_datap->db_type == M_CTL || 21379 ipsec_outbound_v4_policy_present) { 21380 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 21381 unspec_src, zoneid); 21382 if (mp == NULL) { 21383 ire_refrele(ire); 21384 if (conn_outgoing_ill != NULL) 21385 ill_refrele(conn_outgoing_ill); 21386 return; 21387 } 21388 } 21389 21390 first_mp = mp; 21391 ipsec_len = 0; 21392 21393 if (first_mp->b_datap->db_type == M_CTL) { 21394 io = (ipsec_out_t *)first_mp->b_rptr; 21395 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21396 mp = first_mp->b_cont; 21397 ipsec_len = ipsec_out_extra_length(first_mp); 21398 ASSERT(ipsec_len >= 0); 21399 /* We already picked up the zoneid from the M_CTL above */ 21400 ASSERT(zoneid == io->ipsec_out_zoneid); 21401 ASSERT(zoneid != ALL_ZONES); 21402 21403 /* 21404 * Drop M_CTL here if IPsec processing is not needed. 21405 * (Non-IPsec use of M_CTL extracted any information it 21406 * needed above). 21407 */ 21408 if (ipsec_len == 0) { 21409 freeb(first_mp); 21410 first_mp = mp; 21411 } 21412 } 21413 21414 /* 21415 * Fast path for ip_wput_ire 21416 */ 21417 21418 ipha = (ipha_t *)mp->b_rptr; 21419 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21420 dst = ipha->ipha_dst; 21421 21422 /* 21423 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 21424 * if the socket is a SOCK_RAW type. The transport checksum should 21425 * be provided in the pre-built packet, so we don't need to compute it. 21426 * Also, other application set flags, like DF, should not be altered. 21427 * Other transport MUST pass down zero. 21428 */ 21429 ip_hdr_included = ipha->ipha_ident; 21430 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21431 21432 if (CLASSD(dst)) { 21433 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 21434 ntohl(dst), 21435 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 21436 ntohl(ire->ire_addr))); 21437 } 21438 21439 /* Macros to extract header fields from data already in registers */ 21440 #ifdef _BIG_ENDIAN 21441 #define V_HLEN (v_hlen_tos_len >> 24) 21442 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21443 #define PROTO (ttl_protocol & 0xFF) 21444 #else 21445 #define V_HLEN (v_hlen_tos_len & 0xFF) 21446 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21447 #define PROTO (ttl_protocol >> 8) 21448 #endif 21449 21450 21451 orig_src = src = ipha->ipha_src; 21452 /* (The loop back to "another" is explained down below.) */ 21453 another:; 21454 /* 21455 * Assign an ident value for this packet. We assign idents on 21456 * a per destination basis out of the IRE. There could be 21457 * other threads targeting the same destination, so we have to 21458 * arrange for a atomic increment. Note that we use a 32-bit 21459 * atomic add because it has better performance than its 21460 * 16-bit sibling. 21461 * 21462 * If running in cluster mode and if the source address 21463 * belongs to a replicated service then vector through 21464 * cl_inet_ipident vector to allocate ip identifier 21465 * NOTE: This is a contract private interface with the 21466 * clustering group. 21467 */ 21468 clusterwide = 0; 21469 if (cl_inet_ipident) { 21470 ASSERT(cl_inet_isclusterwide); 21471 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 21472 AF_INET, (uint8_t *)(uintptr_t)src)) { 21473 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 21474 AF_INET, (uint8_t *)(uintptr_t)src, 21475 (uint8_t *)(uintptr_t)dst); 21476 clusterwide = 1; 21477 } 21478 } 21479 if (!clusterwide) { 21480 ipha->ipha_ident = 21481 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 21482 } 21483 21484 #ifndef _BIG_ENDIAN 21485 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21486 #endif 21487 21488 /* 21489 * Set source address unless sent on an ill or conn_unspec_src is set. 21490 * This is needed to obey conn_unspec_src when packets go through 21491 * ip_newroute + arp. 21492 * Assumes ip_newroute{,_multi} sets the source address as well. 21493 */ 21494 if (src == INADDR_ANY && !unspec_src) { 21495 /* 21496 * Assign the appropriate source address from the IRE if none 21497 * was specified. 21498 */ 21499 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21500 21501 /* 21502 * With IP multipathing, broadcast packets are sent on the ire 21503 * that has been cleared of IRE_MARK_NORECV and that belongs to 21504 * the group. However, this ire might not be in the same zone so 21505 * we can't always use its source address. We look for a 21506 * broadcast ire in the same group and in the right zone. 21507 */ 21508 if (ire->ire_type == IRE_BROADCAST && 21509 ire->ire_zoneid != zoneid) { 21510 ire_t *src_ire = ire_ctable_lookup(dst, 0, 21511 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 21512 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 21513 if (src_ire != NULL) { 21514 src = src_ire->ire_src_addr; 21515 ire_refrele(src_ire); 21516 } else { 21517 ire_refrele(ire); 21518 if (conn_outgoing_ill != NULL) 21519 ill_refrele(conn_outgoing_ill); 21520 freemsg(first_mp); 21521 BUMP_MIB(&ip_mib, ipOutDiscards); 21522 return; 21523 } 21524 } else { 21525 src = ire->ire_src_addr; 21526 } 21527 21528 if (connp == NULL) { 21529 ip1dbg(("ip_wput_ire: no connp and no src " 21530 "address for dst 0x%x, using src 0x%x\n", 21531 ntohl(dst), 21532 ntohl(src))); 21533 } 21534 ipha->ipha_src = src; 21535 } 21536 stq = ire->ire_stq; 21537 21538 /* 21539 * We only allow ire chains for broadcasts since there will 21540 * be multiple IRE_CACHE entries for the same multicast 21541 * address (one per ipif). 21542 */ 21543 next_mp = NULL; 21544 21545 /* broadcast packet */ 21546 if (ire->ire_type == IRE_BROADCAST) 21547 goto broadcast; 21548 21549 /* loopback ? */ 21550 if (stq == NULL) 21551 goto nullstq; 21552 21553 /* The ill_index for outbound ILL */ 21554 ill_index = Q_TO_INDEX(stq); 21555 21556 BUMP_MIB(&ip_mib, ipOutRequests); 21557 ttl_protocol = ((uint16_t *)ipha)[4]; 21558 21559 /* pseudo checksum (do it in parts for IP header checksum) */ 21560 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21561 21562 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 21563 queue_t *dev_q = stq->q_next; 21564 21565 /* flow controlled */ 21566 if ((dev_q->q_next || dev_q->q_first) && 21567 !canput(dev_q)) 21568 goto blocked; 21569 if ((PROTO == IPPROTO_UDP) && 21570 (ip_hdr_included != IP_HDR_INCLUDED)) { 21571 hlen = (V_HLEN & 0xF) << 2; 21572 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21573 if (*up != 0) { 21574 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 21575 hlen, LENGTH, max_frag, ipsec_len, cksum); 21576 /* Software checksum? */ 21577 if (DB_CKSUMFLAGS(mp) == 0) { 21578 IP_STAT(ip_out_sw_cksum); 21579 IP_STAT_UPDATE( 21580 ip_udp_out_sw_cksum_bytes, 21581 LENGTH - hlen); 21582 } 21583 } 21584 } 21585 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 21586 hlen = (V_HLEN & 0xF) << 2; 21587 if (PROTO == IPPROTO_TCP) { 21588 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21589 /* 21590 * The packet header is processed once and for all, even 21591 * in the multirouting case. We disable hardware 21592 * checksum if the packet is multirouted, as it will be 21593 * replicated via several interfaces, and not all of 21594 * them may have this capability. 21595 */ 21596 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 21597 LENGTH, max_frag, ipsec_len, cksum); 21598 /* Software checksum? */ 21599 if (DB_CKSUMFLAGS(mp) == 0) { 21600 IP_STAT(ip_out_sw_cksum); 21601 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21602 LENGTH - hlen); 21603 } 21604 } else { 21605 sctp_hdr_t *sctph; 21606 21607 ASSERT(PROTO == IPPROTO_SCTP); 21608 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21609 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21610 /* 21611 * Zero out the checksum field to ensure proper 21612 * checksum calculation. 21613 */ 21614 sctph->sh_chksum = 0; 21615 #ifdef DEBUG 21616 if (!skip_sctp_cksum) 21617 #endif 21618 sctph->sh_chksum = sctp_cksum(mp, hlen); 21619 } 21620 } 21621 21622 /* 21623 * If this is a multicast packet and originated from ip_wput 21624 * we need to do loopback and forwarding checks. If it comes 21625 * from ip_wput_multicast, we SHOULD not do this. 21626 */ 21627 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 21628 21629 /* checksum */ 21630 cksum += ttl_protocol; 21631 21632 /* fragment the packet */ 21633 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 21634 goto fragmentit; 21635 /* 21636 * Don't use frag_flag if packet is pre-built or source 21637 * routed or if multicast (since multicast packets do 21638 * not solicit ICMP "packet too big" messages). 21639 */ 21640 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21641 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21642 !ip_source_route_included(ipha)) && 21643 !CLASSD(ipha->ipha_dst)) 21644 ipha->ipha_fragment_offset_and_flags |= 21645 htons(ire->ire_frag_flag); 21646 21647 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21648 /* calculate IP header checksum */ 21649 cksum += ipha->ipha_ident; 21650 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 21651 cksum += ipha->ipha_fragment_offset_and_flags; 21652 21653 /* IP options present */ 21654 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21655 if (hlen) 21656 goto checksumoptions; 21657 21658 /* calculate hdr checksum */ 21659 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21660 cksum = ~(cksum + (cksum >> 16)); 21661 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21662 } 21663 if (ipsec_len != 0) { 21664 /* 21665 * We will do the rest of the processing after 21666 * we come back from IPSEC in ip_wput_ipsec_out(). 21667 */ 21668 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 21669 21670 io = (ipsec_out_t *)first_mp->b_rptr; 21671 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 21672 ill_phyint->phyint_ifindex; 21673 21674 ipsec_out_process(q, first_mp, ire, ill_index); 21675 ire_refrele(ire); 21676 if (conn_outgoing_ill != NULL) 21677 ill_refrele(conn_outgoing_ill); 21678 return; 21679 } 21680 21681 /* 21682 * In most cases, the emission loop below is entered only 21683 * once. Only in the case where the ire holds the 21684 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 21685 * flagged ires in the bucket, and send the packet 21686 * through all crossed RTF_MULTIRT routes. 21687 */ 21688 if (ire->ire_flags & RTF_MULTIRT) { 21689 multirt_send = B_TRUE; 21690 } 21691 do { 21692 if (multirt_send) { 21693 irb_t *irb; 21694 /* 21695 * We are in a multiple send case, need to get 21696 * the next ire and make a duplicate of the packet. 21697 * ire1 holds here the next ire to process in the 21698 * bucket. If multirouting is expected, 21699 * any non-RTF_MULTIRT ire that has the 21700 * right destination address is ignored. 21701 */ 21702 irb = ire->ire_bucket; 21703 ASSERT(irb != NULL); 21704 21705 IRB_REFHOLD(irb); 21706 for (ire1 = ire->ire_next; 21707 ire1 != NULL; 21708 ire1 = ire1->ire_next) { 21709 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21710 continue; 21711 if (ire1->ire_addr != ire->ire_addr) 21712 continue; 21713 if (ire1->ire_marks & 21714 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21715 continue; 21716 21717 /* Got one */ 21718 IRE_REFHOLD(ire1); 21719 break; 21720 } 21721 IRB_REFRELE(irb); 21722 21723 if (ire1 != NULL) { 21724 next_mp = copyb(mp); 21725 if ((next_mp == NULL) || 21726 ((mp->b_cont != NULL) && 21727 ((next_mp->b_cont = 21728 dupmsg(mp->b_cont)) == NULL))) { 21729 freemsg(next_mp); 21730 next_mp = NULL; 21731 ire_refrele(ire1); 21732 ire1 = NULL; 21733 } 21734 } 21735 21736 /* Last multiroute ire; don't loop anymore. */ 21737 if (ire1 == NULL) { 21738 multirt_send = B_FALSE; 21739 } 21740 } 21741 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 21742 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 21743 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 21744 if ((pktxmit_state == SEND_FAILED) || 21745 (pktxmit_state == LLHDR_RESLV_FAILED)) { 21746 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 21747 "- packet dropped\n")); 21748 ire_refrele(ire); 21749 if (next_mp != NULL) { 21750 freemsg(next_mp); 21751 ire_refrele(ire1); 21752 } 21753 if (conn_outgoing_ill != NULL) 21754 ill_refrele(conn_outgoing_ill); 21755 return; 21756 } 21757 21758 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21759 "ip_wput_ire_end: q %p (%S)", 21760 q, "last copy out"); 21761 IRE_REFRELE(ire); 21762 21763 if (multirt_send) { 21764 ASSERT(ire1); 21765 /* 21766 * Proceed with the next RTF_MULTIRT ire, 21767 * Also set up the send-to queue accordingly. 21768 */ 21769 ire = ire1; 21770 ire1 = NULL; 21771 stq = ire->ire_stq; 21772 mp = next_mp; 21773 next_mp = NULL; 21774 ipha = (ipha_t *)mp->b_rptr; 21775 ill_index = Q_TO_INDEX(stq); 21776 } 21777 } while (multirt_send); 21778 if (conn_outgoing_ill != NULL) 21779 ill_refrele(conn_outgoing_ill); 21780 return; 21781 21782 /* 21783 * ire->ire_type == IRE_BROADCAST (minimize diffs) 21784 */ 21785 broadcast: 21786 { 21787 /* 21788 * Avoid broadcast storms by setting the ttl to 1 21789 * for broadcasts. This parameter can be set 21790 * via ndd, so make sure that for the SO_DONTROUTE 21791 * case that ipha_ttl is always set to 1. 21792 * In the event that we are replying to incoming 21793 * ICMP packets, conn could be NULL. 21794 */ 21795 if ((connp != NULL) && connp->conn_dontroute) 21796 ipha->ipha_ttl = 1; 21797 else 21798 ipha->ipha_ttl = ip_broadcast_ttl; 21799 21800 /* 21801 * Note that we are not doing a IRB_REFHOLD here. 21802 * Actually we don't care if the list changes i.e 21803 * if somebody deletes an IRE from the list while 21804 * we drop the lock, the next time we come around 21805 * ire_next will be NULL and hence we won't send 21806 * out multiple copies which is fine. 21807 */ 21808 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 21809 ire1 = ire->ire_next; 21810 if (conn_outgoing_ill != NULL) { 21811 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 21812 ASSERT(ire1 == ire->ire_next); 21813 if (ire1 != NULL && ire1->ire_addr == dst) { 21814 ire_refrele(ire); 21815 ire = ire1; 21816 IRE_REFHOLD(ire); 21817 ire1 = ire->ire_next; 21818 continue; 21819 } 21820 rw_exit(&ire->ire_bucket->irb_lock); 21821 /* Did not find a matching ill */ 21822 ip1dbg(("ip_wput_ire: broadcast with no " 21823 "matching IP_BOUND_IF ill %s\n", 21824 conn_outgoing_ill->ill_name)); 21825 freemsg(first_mp); 21826 if (ire != NULL) 21827 ire_refrele(ire); 21828 ill_refrele(conn_outgoing_ill); 21829 return; 21830 } 21831 } else if (ire1 != NULL && ire1->ire_addr == dst) { 21832 /* 21833 * If the next IRE has the same address and is not one 21834 * of the two copies that we need to send, try to see 21835 * whether this copy should be sent at all. This 21836 * assumes that we insert loopbacks first and then 21837 * non-loopbacks. This is acheived by inserting the 21838 * loopback always before non-loopback. 21839 * This is used to send a single copy of a broadcast 21840 * packet out all physical interfaces that have an 21841 * matching IRE_BROADCAST while also looping 21842 * back one copy (to ip_wput_local) for each 21843 * matching physical interface. However, we avoid 21844 * sending packets out different logical that match by 21845 * having ipif_up/ipif_down supress duplicate 21846 * IRE_BROADCASTS. 21847 * 21848 * This feature is currently used to get broadcasts 21849 * sent to multiple interfaces, when the broadcast 21850 * address being used applies to multiple interfaces. 21851 * For example, a whole net broadcast will be 21852 * replicated on every connected subnet of 21853 * the target net. 21854 * 21855 * Each zone has its own set of IRE_BROADCASTs, so that 21856 * we're able to distribute inbound packets to multiple 21857 * zones who share a broadcast address. We avoid looping 21858 * back outbound packets in different zones but on the 21859 * same ill, as the application would see duplicates. 21860 * 21861 * If the interfaces are part of the same group, 21862 * we would want to send only one copy out for 21863 * whole group. 21864 * 21865 * This logic assumes that ire_add_v4() groups the 21866 * IRE_BROADCAST entries so that those with the same 21867 * ire_addr and ill_group are kept together. 21868 */ 21869 ire_ill = ire->ire_ipif->ipif_ill; 21870 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 21871 if (ire_ill->ill_group != NULL && 21872 (ire->ire_marks & IRE_MARK_NORECV)) { 21873 /* 21874 * If the current zone only has an ire 21875 * broadcast for this address marked 21876 * NORECV, the ire we want is ahead in 21877 * the bucket, so we look it up 21878 * deliberately ignoring the zoneid. 21879 */ 21880 for (ire1 = ire->ire_bucket->irb_ire; 21881 ire1 != NULL; 21882 ire1 = ire1->ire_next) { 21883 ire1_ill = 21884 ire1->ire_ipif->ipif_ill; 21885 if (ire1->ire_addr != dst) 21886 continue; 21887 /* skip over the current ire */ 21888 if (ire1 == ire) 21889 continue; 21890 /* skip over deleted ires */ 21891 if (ire1->ire_marks & 21892 IRE_MARK_CONDEMNED) 21893 continue; 21894 /* 21895 * non-loopback ire in our 21896 * group: use it for the next 21897 * pass in the loop 21898 */ 21899 if (ire1->ire_stq != NULL && 21900 ire1_ill->ill_group == 21901 ire_ill->ill_group) 21902 break; 21903 } 21904 } 21905 } else { 21906 while (ire1 != NULL && ire1->ire_addr == dst) { 21907 ire1_ill = ire1->ire_ipif->ipif_ill; 21908 /* 21909 * We can have two broadcast ires on the 21910 * same ill in different zones; here 21911 * we'll send a copy of the packet on 21912 * each ill and the fanout code will 21913 * call conn_wantpacket() to check that 21914 * the zone has the broadcast address 21915 * configured on the ill. If the two 21916 * ires are in the same group we only 21917 * send one copy up. 21918 */ 21919 if (ire1_ill != ire_ill && 21920 (ire1_ill->ill_group == NULL || 21921 ire_ill->ill_group == NULL || 21922 ire1_ill->ill_group != 21923 ire_ill->ill_group)) { 21924 break; 21925 } 21926 ire1 = ire1->ire_next; 21927 } 21928 } 21929 } 21930 ASSERT(multirt_send == B_FALSE); 21931 if (ire1 != NULL && ire1->ire_addr == dst) { 21932 if ((ire->ire_flags & RTF_MULTIRT) && 21933 (ire1->ire_flags & RTF_MULTIRT)) { 21934 /* 21935 * We are in the multirouting case. 21936 * The message must be sent at least 21937 * on both ires. These ires have been 21938 * inserted AFTER the standard ones 21939 * in ip_rt_add(). There are thus no 21940 * other ire entries for the destination 21941 * address in the rest of the bucket 21942 * that do not have the RTF_MULTIRT 21943 * flag. We don't process a copy 21944 * of the message here. This will be 21945 * done in the final sending loop. 21946 */ 21947 multirt_send = B_TRUE; 21948 } else { 21949 next_mp = ip_copymsg(first_mp); 21950 if (next_mp != NULL) 21951 IRE_REFHOLD(ire1); 21952 } 21953 } 21954 rw_exit(&ire->ire_bucket->irb_lock); 21955 } 21956 21957 if (stq) { 21958 /* 21959 * A non-NULL send-to queue means this packet is going 21960 * out of this machine. 21961 */ 21962 21963 BUMP_MIB(&ip_mib, ipOutRequests); 21964 ttl_protocol = ((uint16_t *)ipha)[4]; 21965 /* 21966 * We accumulate the pseudo header checksum in cksum. 21967 * This is pretty hairy code, so watch close. One 21968 * thing to keep in mind is that UDP and TCP have 21969 * stored their respective datagram lengths in their 21970 * checksum fields. This lines things up real nice. 21971 */ 21972 cksum = (dst >> 16) + (dst & 0xFFFF) + 21973 (src >> 16) + (src & 0xFFFF); 21974 /* 21975 * We assume the udp checksum field contains the 21976 * length, so to compute the pseudo header checksum, 21977 * all we need is the protocol number and src/dst. 21978 */ 21979 /* Provide the checksums for UDP and TCP. */ 21980 if ((PROTO == IPPROTO_TCP) && 21981 (ip_hdr_included != IP_HDR_INCLUDED)) { 21982 /* hlen gets the number of uchar_ts in the IP header */ 21983 hlen = (V_HLEN & 0xF) << 2; 21984 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21985 IP_STAT(ip_out_sw_cksum); 21986 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21987 LENGTH - hlen); 21988 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 21989 if (*up == 0) 21990 *up = 0xFFFF; 21991 } else if (PROTO == IPPROTO_SCTP && 21992 (ip_hdr_included != IP_HDR_INCLUDED)) { 21993 sctp_hdr_t *sctph; 21994 21995 hlen = (V_HLEN & 0xF) << 2; 21996 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21997 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21998 sctph->sh_chksum = 0; 21999 #ifdef DEBUG 22000 if (!skip_sctp_cksum) 22001 #endif 22002 sctph->sh_chksum = sctp_cksum(mp, hlen); 22003 } else { 22004 queue_t *dev_q = stq->q_next; 22005 22006 if ((dev_q->q_next || dev_q->q_first) && 22007 !canput(dev_q)) { 22008 blocked: 22009 ipha->ipha_ident = ip_hdr_included; 22010 /* 22011 * If we don't have a conn to apply 22012 * backpressure, free the message. 22013 * In the ire_send path, we don't know 22014 * the position to requeue the packet. Rather 22015 * than reorder packets, we just drop this 22016 * packet. 22017 */ 22018 if (ip_output_queue && connp != NULL && 22019 caller != IRE_SEND) { 22020 if (caller == IP_WSRV) { 22021 connp->conn_did_putbq = 1; 22022 (void) putbq(connp->conn_wq, 22023 first_mp); 22024 conn_drain_insert(connp); 22025 /* 22026 * This is the service thread, 22027 * and the queue is already 22028 * noenabled. The check for 22029 * canput and the putbq is not 22030 * atomic. So we need to check 22031 * again. 22032 */ 22033 if (canput(stq->q_next)) 22034 connp->conn_did_putbq 22035 = 0; 22036 IP_STAT(ip_conn_flputbq); 22037 } else { 22038 /* 22039 * We are not the service proc. 22040 * ip_wsrv will be scheduled or 22041 * is already running. 22042 */ 22043 (void) putq(connp->conn_wq, 22044 first_mp); 22045 } 22046 } else { 22047 BUMP_MIB(&ip_mib, ipOutDiscards); 22048 freemsg(first_mp); 22049 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22050 "ip_wput_ire_end: q %p (%S)", 22051 q, "discard"); 22052 } 22053 ire_refrele(ire); 22054 if (next_mp) { 22055 ire_refrele(ire1); 22056 freemsg(next_mp); 22057 } 22058 if (conn_outgoing_ill != NULL) 22059 ill_refrele(conn_outgoing_ill); 22060 return; 22061 } 22062 if ((PROTO == IPPROTO_UDP) && 22063 (ip_hdr_included != IP_HDR_INCLUDED)) { 22064 /* 22065 * hlen gets the number of uchar_ts in the 22066 * IP header 22067 */ 22068 hlen = (V_HLEN & 0xF) << 2; 22069 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22070 max_frag = ire->ire_max_frag; 22071 if (*up != 0) { 22072 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22073 up, PROTO, hlen, LENGTH, max_frag, 22074 ipsec_len, cksum); 22075 /* Software checksum? */ 22076 if (DB_CKSUMFLAGS(mp) == 0) { 22077 IP_STAT(ip_out_sw_cksum); 22078 IP_STAT_UPDATE( 22079 ip_udp_out_sw_cksum_bytes, 22080 LENGTH - hlen); 22081 } 22082 } 22083 } 22084 } 22085 /* 22086 * Need to do this even when fragmenting. The local 22087 * loopback can be done without computing checksums 22088 * but forwarding out other interface must be done 22089 * after the IP checksum (and ULP checksums) have been 22090 * computed. 22091 * 22092 * NOTE : multicast_forward is set only if this packet 22093 * originated from ip_wput. For packets originating from 22094 * ip_wput_multicast, it is not set. 22095 */ 22096 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22097 multi_loopback: 22098 ip2dbg(("ip_wput: multicast, loop %d\n", 22099 conn_multicast_loop)); 22100 22101 /* Forget header checksum offload */ 22102 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22103 22104 /* 22105 * Local loopback of multicasts? Check the 22106 * ill. 22107 * 22108 * Note that the loopback function will not come 22109 * in through ip_rput - it will only do the 22110 * client fanout thus we need to do an mforward 22111 * as well. The is different from the BSD 22112 * logic. 22113 */ 22114 if (ill != NULL) { 22115 ilm_t *ilm; 22116 22117 ILM_WALKER_HOLD(ill); 22118 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22119 ALL_ZONES); 22120 ILM_WALKER_RELE(ill); 22121 if (ilm != NULL) { 22122 /* 22123 * Pass along the virtual output q. 22124 * ip_wput_local() will distribute the 22125 * packet to all the matching zones, 22126 * except the sending zone when 22127 * IP_MULTICAST_LOOP is false. 22128 */ 22129 ip_multicast_loopback(q, ill, first_mp, 22130 conn_multicast_loop ? 0 : 22131 IP_FF_NO_MCAST_LOOP, zoneid); 22132 } 22133 } 22134 if (ipha->ipha_ttl == 0) { 22135 /* 22136 * 0 => only to this host i.e. we are 22137 * done. We are also done if this was the 22138 * loopback interface since it is sufficient 22139 * to loopback one copy of a multicast packet. 22140 */ 22141 freemsg(first_mp); 22142 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22143 "ip_wput_ire_end: q %p (%S)", 22144 q, "loopback"); 22145 ire_refrele(ire); 22146 if (conn_outgoing_ill != NULL) 22147 ill_refrele(conn_outgoing_ill); 22148 return; 22149 } 22150 /* 22151 * ILLF_MULTICAST is checked in ip_newroute 22152 * i.e. we don't need to check it here since 22153 * all IRE_CACHEs come from ip_newroute. 22154 * For multicast traffic, SO_DONTROUTE is interpreted 22155 * to mean only send the packet out the interface 22156 * (optionally specified with IP_MULTICAST_IF) 22157 * and do not forward it out additional interfaces. 22158 * RSVP and the rsvp daemon is an example of a 22159 * protocol and user level process that 22160 * handles it's own routing. Hence, it uses the 22161 * SO_DONTROUTE option to accomplish this. 22162 */ 22163 22164 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 22165 /* Unconditionally redo the checksum */ 22166 ipha->ipha_hdr_checksum = 0; 22167 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22168 22169 /* 22170 * If this needs to go out secure, we need 22171 * to wait till we finish the IPSEC 22172 * processing. 22173 */ 22174 if (ipsec_len == 0 && 22175 ip_mforward(ill, ipha, mp)) { 22176 freemsg(first_mp); 22177 ip1dbg(("ip_wput: mforward failed\n")); 22178 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22179 "ip_wput_ire_end: q %p (%S)", 22180 q, "mforward failed"); 22181 ire_refrele(ire); 22182 if (conn_outgoing_ill != NULL) 22183 ill_refrele(conn_outgoing_ill); 22184 return; 22185 } 22186 } 22187 } 22188 max_frag = ire->ire_max_frag; 22189 cksum += ttl_protocol; 22190 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22191 /* No fragmentation required for this one. */ 22192 /* 22193 * Don't use frag_flag if packet is pre-built or source 22194 * routed or if multicast (since multicast packets do 22195 * not solicit ICMP "packet too big" messages). 22196 */ 22197 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22198 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22199 !ip_source_route_included(ipha)) && 22200 !CLASSD(ipha->ipha_dst)) 22201 ipha->ipha_fragment_offset_and_flags |= 22202 htons(ire->ire_frag_flag); 22203 22204 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22205 /* Complete the IP header checksum. */ 22206 cksum += ipha->ipha_ident; 22207 cksum += (v_hlen_tos_len >> 16)+ 22208 (v_hlen_tos_len & 0xFFFF); 22209 cksum += ipha->ipha_fragment_offset_and_flags; 22210 hlen = (V_HLEN & 0xF) - 22211 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22212 if (hlen) { 22213 checksumoptions: 22214 /* 22215 * Account for the IP Options in the IP 22216 * header checksum. 22217 */ 22218 up = (uint16_t *)(rptr+ 22219 IP_SIMPLE_HDR_LENGTH); 22220 do { 22221 cksum += up[0]; 22222 cksum += up[1]; 22223 up += 2; 22224 } while (--hlen); 22225 } 22226 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22227 cksum = ~(cksum + (cksum >> 16)); 22228 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22229 } 22230 if (ipsec_len != 0) { 22231 ipsec_out_process(q, first_mp, ire, ill_index); 22232 if (!next_mp) { 22233 ire_refrele(ire); 22234 if (conn_outgoing_ill != NULL) 22235 ill_refrele(conn_outgoing_ill); 22236 return; 22237 } 22238 goto next; 22239 } 22240 22241 /* 22242 * multirt_send has already been handled 22243 * for broadcast, but not yet for multicast 22244 * or IP options. 22245 */ 22246 if (next_mp == NULL) { 22247 if (ire->ire_flags & RTF_MULTIRT) { 22248 multirt_send = B_TRUE; 22249 } 22250 } 22251 22252 /* 22253 * In most cases, the emission loop below is 22254 * entered only once. Only in the case where 22255 * the ire holds the RTF_MULTIRT flag, do we loop 22256 * to process all RTF_MULTIRT ires in the bucket, 22257 * and send the packet through all crossed 22258 * RTF_MULTIRT routes. 22259 */ 22260 do { 22261 if (multirt_send) { 22262 irb_t *irb; 22263 22264 irb = ire->ire_bucket; 22265 ASSERT(irb != NULL); 22266 /* 22267 * We are in a multiple send case, 22268 * need to get the next IRE and make 22269 * a duplicate of the packet. 22270 */ 22271 IRB_REFHOLD(irb); 22272 for (ire1 = ire->ire_next; 22273 ire1 != NULL; 22274 ire1 = ire1->ire_next) { 22275 if (!(ire1->ire_flags & 22276 RTF_MULTIRT)) 22277 continue; 22278 if (ire1->ire_addr != 22279 ire->ire_addr) 22280 continue; 22281 if (ire1->ire_marks & 22282 (IRE_MARK_CONDEMNED| 22283 IRE_MARK_HIDDEN)) 22284 continue; 22285 22286 /* Got one */ 22287 IRE_REFHOLD(ire1); 22288 break; 22289 } 22290 IRB_REFRELE(irb); 22291 22292 if (ire1 != NULL) { 22293 next_mp = copyb(mp); 22294 if ((next_mp == NULL) || 22295 ((mp->b_cont != NULL) && 22296 ((next_mp->b_cont = 22297 dupmsg(mp->b_cont)) 22298 == NULL))) { 22299 freemsg(next_mp); 22300 next_mp = NULL; 22301 ire_refrele(ire1); 22302 ire1 = NULL; 22303 } 22304 } 22305 22306 /* 22307 * Last multiroute ire; don't loop 22308 * anymore. The emission is over 22309 * and next_mp is NULL. 22310 */ 22311 if (ire1 == NULL) { 22312 multirt_send = B_FALSE; 22313 } 22314 } 22315 22316 ASSERT(ipsec_len == 0); 22317 mp->b_prev = 22318 SET_BPREV_FLAG(IPP_LOCAL_OUT); 22319 DTRACE_PROBE2(ip__xmit__2, 22320 mblk_t *, mp, ire_t *, ire); 22321 pktxmit_state = ip_xmit_v4(mp, ire, 22322 NULL, B_TRUE); 22323 if ((pktxmit_state == SEND_FAILED) || 22324 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22325 if (next_mp) { 22326 freemsg(next_mp); 22327 ire_refrele(ire1); 22328 } 22329 ire_refrele(ire); 22330 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22331 "ip_wput_ire_end: q %p (%S)", 22332 q, "discard MDATA"); 22333 if (conn_outgoing_ill != NULL) 22334 ill_refrele(conn_outgoing_ill); 22335 return; 22336 } 22337 22338 if (multirt_send) { 22339 /* 22340 * We are in a multiple send case, 22341 * need to re-enter the sending loop 22342 * using the next ire. 22343 */ 22344 ire_refrele(ire); 22345 ire = ire1; 22346 stq = ire->ire_stq; 22347 mp = next_mp; 22348 next_mp = NULL; 22349 ipha = (ipha_t *)mp->b_rptr; 22350 ill_index = Q_TO_INDEX(stq); 22351 } 22352 } while (multirt_send); 22353 22354 if (!next_mp) { 22355 /* 22356 * Last copy going out (the ultra-common 22357 * case). Note that we intentionally replicate 22358 * the putnext rather than calling it before 22359 * the next_mp check in hopes of a little 22360 * tail-call action out of the compiler. 22361 */ 22362 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22363 "ip_wput_ire_end: q %p (%S)", 22364 q, "last copy out(1)"); 22365 ire_refrele(ire); 22366 if (conn_outgoing_ill != NULL) 22367 ill_refrele(conn_outgoing_ill); 22368 return; 22369 } 22370 /* More copies going out below. */ 22371 } else { 22372 int offset; 22373 fragmentit: 22374 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22375 /* 22376 * If this would generate a icmp_frag_needed message, 22377 * we need to handle it before we do the IPSEC 22378 * processing. Otherwise, we need to strip the IPSEC 22379 * headers before we send up the message to the ULPs 22380 * which becomes messy and difficult. 22381 */ 22382 if (ipsec_len != 0) { 22383 if ((max_frag < (unsigned int)(LENGTH + 22384 ipsec_len)) && (offset & IPH_DF)) { 22385 22386 BUMP_MIB(&ip_mib, ipFragFails); 22387 ipha->ipha_hdr_checksum = 0; 22388 ipha->ipha_hdr_checksum = 22389 (uint16_t)ip_csum_hdr(ipha); 22390 icmp_frag_needed(ire->ire_stq, first_mp, 22391 max_frag, zoneid); 22392 if (!next_mp) { 22393 ire_refrele(ire); 22394 if (conn_outgoing_ill != NULL) { 22395 ill_refrele( 22396 conn_outgoing_ill); 22397 } 22398 return; 22399 } 22400 } else { 22401 /* 22402 * This won't cause a icmp_frag_needed 22403 * message. to be gnerated. Send it on 22404 * the wire. Note that this could still 22405 * cause fragmentation and all we 22406 * do is the generation of the message 22407 * to the ULP if needed before IPSEC. 22408 */ 22409 if (!next_mp) { 22410 ipsec_out_process(q, first_mp, 22411 ire, ill_index); 22412 TRACE_2(TR_FAC_IP, 22413 TR_IP_WPUT_IRE_END, 22414 "ip_wput_ire_end: q %p " 22415 "(%S)", q, 22416 "last ipsec_out_process"); 22417 ire_refrele(ire); 22418 if (conn_outgoing_ill != NULL) { 22419 ill_refrele( 22420 conn_outgoing_ill); 22421 } 22422 return; 22423 } 22424 ipsec_out_process(q, first_mp, 22425 ire, ill_index); 22426 } 22427 } else { 22428 /* 22429 * Initiate IPPF processing. For 22430 * fragmentable packets we finish 22431 * all QOS packet processing before 22432 * calling: 22433 * ip_wput_ire_fragmentit->ip_wput_frag 22434 */ 22435 22436 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22437 ip_process(IPP_LOCAL_OUT, &mp, 22438 ill_index); 22439 if (mp == NULL) { 22440 BUMP_MIB(&ip_mib, 22441 ipOutDiscards); 22442 if (next_mp != NULL) { 22443 freemsg(next_mp); 22444 ire_refrele(ire1); 22445 } 22446 ire_refrele(ire); 22447 TRACE_2(TR_FAC_IP, 22448 TR_IP_WPUT_IRE_END, 22449 "ip_wput_ire: q %p (%S)", 22450 q, "discard MDATA"); 22451 if (conn_outgoing_ill != NULL) { 22452 ill_refrele( 22453 conn_outgoing_ill); 22454 } 22455 return; 22456 } 22457 } 22458 if (!next_mp) { 22459 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22460 "ip_wput_ire_end: q %p (%S)", 22461 q, "last fragmentation"); 22462 ip_wput_ire_fragmentit(mp, ire, 22463 zoneid); 22464 ire_refrele(ire); 22465 if (conn_outgoing_ill != NULL) 22466 ill_refrele(conn_outgoing_ill); 22467 return; 22468 } 22469 ip_wput_ire_fragmentit(mp, ire, zoneid); 22470 } 22471 } 22472 } else { 22473 nullstq: 22474 /* A NULL stq means the destination address is local. */ 22475 UPDATE_OB_PKT_COUNT(ire); 22476 ire->ire_last_used_time = lbolt; 22477 ASSERT(ire->ire_ipif != NULL); 22478 if (!next_mp) { 22479 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22480 "ip_wput_ire_end: q %p (%S)", 22481 q, "local address"); 22482 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 22483 first_mp, ire, 0, ire->ire_zoneid); 22484 ire_refrele(ire); 22485 if (conn_outgoing_ill != NULL) 22486 ill_refrele(conn_outgoing_ill); 22487 return; 22488 } 22489 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 22490 ire, 0, ire->ire_zoneid); 22491 } 22492 next: 22493 /* 22494 * More copies going out to additional interfaces. 22495 * ire1 has already been held. We don't need the 22496 * "ire" anymore. 22497 */ 22498 ire_refrele(ire); 22499 ire = ire1; 22500 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 22501 mp = next_mp; 22502 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22503 ill = ire_to_ill(ire); 22504 first_mp = mp; 22505 if (ipsec_len != 0) { 22506 ASSERT(first_mp->b_datap->db_type == M_CTL); 22507 mp = mp->b_cont; 22508 } 22509 dst = ire->ire_addr; 22510 ipha = (ipha_t *)mp->b_rptr; 22511 /* 22512 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 22513 * Restore ipha_ident "no checksum" flag. 22514 */ 22515 src = orig_src; 22516 ipha->ipha_ident = ip_hdr_included; 22517 goto another; 22518 22519 #undef rptr 22520 #undef Q_TO_INDEX 22521 } 22522 22523 /* 22524 * Routine to allocate a message that is used to notify the ULP about MDT. 22525 * The caller may provide a pointer to the link-layer MDT capabilities, 22526 * or NULL if MDT is to be disabled on the stream. 22527 */ 22528 mblk_t * 22529 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 22530 { 22531 mblk_t *mp; 22532 ip_mdt_info_t *mdti; 22533 ill_mdt_capab_t *idst; 22534 22535 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 22536 DB_TYPE(mp) = M_CTL; 22537 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 22538 mdti = (ip_mdt_info_t *)mp->b_rptr; 22539 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 22540 idst = &(mdti->mdt_capab); 22541 22542 /* 22543 * If the caller provides us with the capability, copy 22544 * it over into our notification message; otherwise 22545 * we zero out the capability portion. 22546 */ 22547 if (isrc != NULL) 22548 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 22549 else 22550 bzero((caddr_t)idst, sizeof (*idst)); 22551 } 22552 return (mp); 22553 } 22554 22555 /* 22556 * Routine which determines whether MDT can be enabled on the destination 22557 * IRE and IPC combination, and if so, allocates and returns the MDT 22558 * notification mblk that may be used by ULP. We also check if we need to 22559 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 22560 * MDT usage in the past have been lifted. This gets called during IP 22561 * and ULP binding. 22562 */ 22563 mblk_t * 22564 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 22565 ill_mdt_capab_t *mdt_cap) 22566 { 22567 mblk_t *mp; 22568 boolean_t rc = B_FALSE; 22569 22570 ASSERT(dst_ire != NULL); 22571 ASSERT(connp != NULL); 22572 ASSERT(mdt_cap != NULL); 22573 22574 /* 22575 * Currently, we only support simple TCP/{IPv4,IPv6} with 22576 * Multidata, which is handled in tcp_multisend(). This 22577 * is the reason why we do all these checks here, to ensure 22578 * that we don't enable Multidata for the cases which we 22579 * can't handle at the moment. 22580 */ 22581 do { 22582 /* Only do TCP at the moment */ 22583 if (connp->conn_ulp != IPPROTO_TCP) 22584 break; 22585 22586 /* 22587 * IPSEC outbound policy present? Note that we get here 22588 * after calling ipsec_conn_cache_policy() where the global 22589 * policy checking is performed. conn_latch will be 22590 * non-NULL as long as there's a policy defined, 22591 * i.e. conn_out_enforce_policy may be NULL in such case 22592 * when the connection is non-secure, and hence we check 22593 * further if the latch refers to an outbound policy. 22594 */ 22595 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 22596 break; 22597 22598 /* CGTP (multiroute) is enabled? */ 22599 if (dst_ire->ire_flags & RTF_MULTIRT) 22600 break; 22601 22602 /* Outbound IPQoS enabled? */ 22603 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22604 /* 22605 * In this case, we disable MDT for this and all 22606 * future connections going over the interface. 22607 */ 22608 mdt_cap->ill_mdt_on = 0; 22609 break; 22610 } 22611 22612 /* socket option(s) present? */ 22613 if (!CONN_IS_MD_FASTPATH(connp)) 22614 break; 22615 22616 rc = B_TRUE; 22617 /* CONSTCOND */ 22618 } while (0); 22619 22620 /* Remember the result */ 22621 connp->conn_mdt_ok = rc; 22622 22623 if (!rc) 22624 return (NULL); 22625 else if (!mdt_cap->ill_mdt_on) { 22626 /* 22627 * If MDT has been previously turned off in the past, and we 22628 * currently can do MDT (due to IPQoS policy removal, etc.) 22629 * then enable it for this interface. 22630 */ 22631 mdt_cap->ill_mdt_on = 1; 22632 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 22633 "interface %s\n", ill_name)); 22634 } 22635 22636 /* Allocate the MDT info mblk */ 22637 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 22638 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 22639 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 22640 return (NULL); 22641 } 22642 return (mp); 22643 } 22644 22645 /* 22646 * Create destination address attribute, and fill it with the physical 22647 * destination address and SAP taken from the template DL_UNITDATA_REQ 22648 * message block. 22649 */ 22650 boolean_t 22651 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 22652 { 22653 dl_unitdata_req_t *dlurp; 22654 pattr_t *pa; 22655 pattrinfo_t pa_info; 22656 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 22657 uint_t das_len, das_off; 22658 22659 ASSERT(dlmp != NULL); 22660 22661 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 22662 das_len = dlurp->dl_dest_addr_length; 22663 das_off = dlurp->dl_dest_addr_offset; 22664 22665 pa_info.type = PATTR_DSTADDRSAP; 22666 pa_info.len = sizeof (**das) + das_len - 1; 22667 22668 /* create and associate the attribute */ 22669 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22670 if (pa != NULL) { 22671 ASSERT(*das != NULL); 22672 (*das)->addr_is_group = 0; 22673 (*das)->addr_len = (uint8_t)das_len; 22674 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 22675 } 22676 22677 return (pa != NULL); 22678 } 22679 22680 /* 22681 * Create hardware checksum attribute and fill it with the values passed. 22682 */ 22683 boolean_t 22684 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 22685 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 22686 { 22687 pattr_t *pa; 22688 pattrinfo_t pa_info; 22689 22690 ASSERT(mmd != NULL); 22691 22692 pa_info.type = PATTR_HCKSUM; 22693 pa_info.len = sizeof (pattr_hcksum_t); 22694 22695 /* create and associate the attribute */ 22696 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22697 if (pa != NULL) { 22698 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 22699 22700 hck->hcksum_start_offset = start_offset; 22701 hck->hcksum_stuff_offset = stuff_offset; 22702 hck->hcksum_end_offset = end_offset; 22703 hck->hcksum_flags = flags; 22704 } 22705 return (pa != NULL); 22706 } 22707 22708 /* 22709 * Create zerocopy attribute and fill it with the specified flags 22710 */ 22711 boolean_t 22712 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 22713 { 22714 pattr_t *pa; 22715 pattrinfo_t pa_info; 22716 22717 ASSERT(mmd != NULL); 22718 pa_info.type = PATTR_ZCOPY; 22719 pa_info.len = sizeof (pattr_zcopy_t); 22720 22721 /* create and associate the attribute */ 22722 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22723 if (pa != NULL) { 22724 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 22725 22726 zcopy->zcopy_flags = flags; 22727 } 22728 return (pa != NULL); 22729 } 22730 22731 /* 22732 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 22733 * block chain. We could rewrite to handle arbitrary message block chains but 22734 * that would make the code complicated and slow. Right now there three 22735 * restrictions: 22736 * 22737 * 1. The first message block must contain the complete IP header and 22738 * at least 1 byte of payload data. 22739 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 22740 * so that we can use a single Multidata message. 22741 * 3. No frag must be distributed over two or more message blocks so 22742 * that we don't need more than two packet descriptors per frag. 22743 * 22744 * The above restrictions allow us to support userland applications (which 22745 * will send down a single message block) and NFS over UDP (which will 22746 * send down a chain of at most three message blocks). 22747 * 22748 * We also don't use MDT for payloads with less than or equal to 22749 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 22750 */ 22751 boolean_t 22752 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 22753 { 22754 int blocks; 22755 ssize_t total, missing, size; 22756 22757 ASSERT(mp != NULL); 22758 ASSERT(hdr_len > 0); 22759 22760 size = MBLKL(mp) - hdr_len; 22761 if (size <= 0) 22762 return (B_FALSE); 22763 22764 /* The first mblk contains the header and some payload. */ 22765 blocks = 1; 22766 total = size; 22767 size %= len; 22768 missing = (size == 0) ? 0 : (len - size); 22769 mp = mp->b_cont; 22770 22771 while (mp != NULL) { 22772 /* 22773 * Give up if we encounter a zero length message block. 22774 * In practice, this should rarely happen and therefore 22775 * not worth the trouble of freeing and re-linking the 22776 * mblk from the chain to handle such case. 22777 */ 22778 if ((size = MBLKL(mp)) == 0) 22779 return (B_FALSE); 22780 22781 /* Too many payload buffers for a single Multidata message? */ 22782 if (++blocks > MULTIDATA_MAX_PBUFS) 22783 return (B_FALSE); 22784 22785 total += size; 22786 /* Is a frag distributed over two or more message blocks? */ 22787 if (missing > size) 22788 return (B_FALSE); 22789 size -= missing; 22790 22791 size %= len; 22792 missing = (size == 0) ? 0 : (len - size); 22793 22794 mp = mp->b_cont; 22795 } 22796 22797 return (total > ip_wput_frag_mdt_min); 22798 } 22799 22800 /* 22801 * Outbound IPv4 fragmentation routine using MDT. 22802 */ 22803 static void 22804 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 22805 uint32_t frag_flag, int offset) 22806 { 22807 ipha_t *ipha_orig; 22808 int i1, ip_data_end; 22809 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 22810 mblk_t *hdr_mp, *md_mp = NULL; 22811 unsigned char *hdr_ptr, *pld_ptr; 22812 multidata_t *mmd; 22813 ip_pdescinfo_t pdi; 22814 22815 ASSERT(DB_TYPE(mp) == M_DATA); 22816 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 22817 22818 ipha_orig = (ipha_t *)mp->b_rptr; 22819 mp->b_rptr += sizeof (ipha_t); 22820 22821 /* Calculate how many packets we will send out */ 22822 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 22823 pkts = (i1 + len - 1) / len; 22824 ASSERT(pkts > 1); 22825 22826 /* Allocate a message block which will hold all the IP Headers. */ 22827 wroff = ip_wroff_extra; 22828 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 22829 22830 i1 = pkts * hdr_chunk_len; 22831 /* 22832 * Create the header buffer, Multidata and destination address 22833 * and SAP attribute that should be associated with it. 22834 */ 22835 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 22836 ((hdr_mp->b_wptr += i1), 22837 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 22838 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 22839 freemsg(mp); 22840 if (md_mp == NULL) { 22841 freemsg(hdr_mp); 22842 } else { 22843 free_mmd: IP_STAT(ip_frag_mdt_discarded); 22844 freemsg(md_mp); 22845 } 22846 IP_STAT(ip_frag_mdt_allocfail); 22847 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 22848 return; 22849 } 22850 IP_STAT(ip_frag_mdt_allocd); 22851 22852 /* 22853 * Add a payload buffer to the Multidata; this operation must not 22854 * fail, or otherwise our logic in this routine is broken. There 22855 * is no memory allocation done by the routine, so any returned 22856 * failure simply tells us that we've done something wrong. 22857 * 22858 * A failure tells us that either we're adding the same payload 22859 * buffer more than once, or we're trying to add more buffers than 22860 * allowed. None of the above cases should happen, and we panic 22861 * because either there's horrible heap corruption, and/or 22862 * programming mistake. 22863 */ 22864 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22865 goto pbuf_panic; 22866 22867 hdr_ptr = hdr_mp->b_rptr; 22868 pld_ptr = mp->b_rptr; 22869 22870 /* Establish the ending byte offset, based on the starting offset. */ 22871 offset <<= 3; 22872 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 22873 IP_SIMPLE_HDR_LENGTH; 22874 22875 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 22876 22877 while (pld_ptr < mp->b_wptr) { 22878 ipha_t *ipha; 22879 uint16_t offset_and_flags; 22880 uint16_t ip_len; 22881 int error; 22882 22883 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 22884 ipha = (ipha_t *)(hdr_ptr + wroff); 22885 ASSERT(OK_32PTR(ipha)); 22886 *ipha = *ipha_orig; 22887 22888 if (ip_data_end - offset > len) { 22889 offset_and_flags = IPH_MF; 22890 } else { 22891 /* 22892 * Last frag. Set len to the length of this last piece. 22893 */ 22894 len = ip_data_end - offset; 22895 /* A frag of a frag might have IPH_MF non-zero */ 22896 offset_and_flags = 22897 ntohs(ipha->ipha_fragment_offset_and_flags) & 22898 IPH_MF; 22899 } 22900 offset_and_flags |= (uint16_t)(offset >> 3); 22901 offset_and_flags |= (uint16_t)frag_flag; 22902 /* Store the offset and flags in the IP header. */ 22903 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 22904 22905 /* Store the length in the IP header. */ 22906 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 22907 ipha->ipha_length = htons(ip_len); 22908 22909 /* 22910 * Set the IP header checksum. Note that mp is just 22911 * the header, so this is easy to pass to ip_csum. 22912 */ 22913 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22914 22915 /* 22916 * Record offset and size of header and data of the next packet 22917 * in the multidata message. 22918 */ 22919 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 22920 PDESC_PLD_INIT(&pdi); 22921 i1 = MIN(mp->b_wptr - pld_ptr, len); 22922 ASSERT(i1 > 0); 22923 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 22924 if (i1 == len) { 22925 pld_ptr += len; 22926 } else { 22927 i1 = len - i1; 22928 mp = mp->b_cont; 22929 ASSERT(mp != NULL); 22930 ASSERT(MBLKL(mp) >= i1); 22931 /* 22932 * Attach the next payload message block to the 22933 * multidata message. 22934 */ 22935 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22936 goto pbuf_panic; 22937 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 22938 pld_ptr = mp->b_rptr + i1; 22939 } 22940 22941 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 22942 KM_NOSLEEP)) == NULL) { 22943 /* 22944 * Any failure other than ENOMEM indicates that we 22945 * have passed in invalid pdesc info or parameters 22946 * to mmd_addpdesc, which must not happen. 22947 * 22948 * EINVAL is a result of failure on boundary checks 22949 * against the pdesc info contents. It should not 22950 * happen, and we panic because either there's 22951 * horrible heap corruption, and/or programming 22952 * mistake. 22953 */ 22954 if (error != ENOMEM) { 22955 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 22956 "pdesc logic error detected for " 22957 "mmd %p pinfo %p (%d)\n", 22958 (void *)mmd, (void *)&pdi, error); 22959 /* NOTREACHED */ 22960 } 22961 IP_STAT(ip_frag_mdt_addpdescfail); 22962 /* Free unattached payload message blocks as well */ 22963 md_mp->b_cont = mp->b_cont; 22964 goto free_mmd; 22965 } 22966 22967 /* Advance fragment offset. */ 22968 offset += len; 22969 22970 /* Advance to location for next header in the buffer. */ 22971 hdr_ptr += hdr_chunk_len; 22972 22973 /* Did we reach the next payload message block? */ 22974 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 22975 mp = mp->b_cont; 22976 /* 22977 * Attach the next message block with payload 22978 * data to the multidata message. 22979 */ 22980 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22981 goto pbuf_panic; 22982 pld_ptr = mp->b_rptr; 22983 } 22984 } 22985 22986 ASSERT(hdr_mp->b_wptr == hdr_ptr); 22987 ASSERT(mp->b_wptr == pld_ptr); 22988 22989 /* Update IP statistics */ 22990 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 22991 BUMP_MIB(&ip_mib, ipFragOKs); 22992 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 22993 22994 if (pkt_type == OB_PKT) { 22995 ire->ire_ob_pkt_count += pkts; 22996 if (ire->ire_ipif != NULL) 22997 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 22998 } else { 22999 /* 23000 * The type is IB_PKT in the forwarding path and in 23001 * the mobile IP case when the packet is being reverse- 23002 * tunneled to the home agent. 23003 */ 23004 ire->ire_ib_pkt_count += pkts; 23005 ASSERT(!IRE_IS_LOCAL(ire)); 23006 if (ire->ire_type & IRE_BROADCAST) 23007 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23008 else 23009 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23010 } 23011 ire->ire_last_used_time = lbolt; 23012 /* Send it down */ 23013 putnext(ire->ire_stq, md_mp); 23014 return; 23015 23016 pbuf_panic: 23017 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23018 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23019 pbuf_idx); 23020 /* NOTREACHED */ 23021 } 23022 23023 /* 23024 * Outbound IP fragmentation routine. 23025 * 23026 * NOTE : This routine does not ire_refrele the ire that is passed in 23027 * as the argument. 23028 */ 23029 static void 23030 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23031 uint32_t frag_flag, zoneid_t zoneid) 23032 { 23033 int i1; 23034 mblk_t *ll_hdr_mp; 23035 int ll_hdr_len; 23036 int hdr_len; 23037 mblk_t *hdr_mp; 23038 ipha_t *ipha; 23039 int ip_data_end; 23040 int len; 23041 mblk_t *mp = mp_orig; 23042 int offset; 23043 queue_t *q; 23044 uint32_t v_hlen_tos_len; 23045 mblk_t *first_mp; 23046 boolean_t mctl_present; 23047 ill_t *ill; 23048 mblk_t *xmit_mp; 23049 mblk_t *carve_mp; 23050 ire_t *ire1 = NULL; 23051 ire_t *save_ire = NULL; 23052 mblk_t *next_mp = NULL; 23053 boolean_t last_frag = B_FALSE; 23054 boolean_t multirt_send = B_FALSE; 23055 ire_t *first_ire = NULL; 23056 irb_t *irb = NULL; 23057 23058 /* 23059 * IPSEC does not allow hw accelerated packets to be fragmented 23060 * This check is made in ip_wput_ipsec_out prior to coming here 23061 * via ip_wput_ire_fragmentit. 23062 * 23063 * If at this point we have an ire whose ARP request has not 23064 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23065 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23066 * This packet and all fragmentable packets for this ire will 23067 * continue to get dropped while ire_nce->nce_state remains in 23068 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23069 * ND_REACHABLE, all subsquent large packets for this ire will 23070 * get fragemented and sent out by this function. 23071 */ 23072 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23073 /* If nce_state is ND_INITIAL, trigger ARP query */ 23074 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 23075 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23076 " - dropping packet\n")); 23077 BUMP_MIB(&ip_mib, ipFragFails); 23078 freemsg(mp); 23079 return; 23080 } 23081 23082 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23083 "ip_wput_frag_start:"); 23084 23085 if (mp->b_datap->db_type == M_CTL) { 23086 first_mp = mp; 23087 mp_orig = mp = mp->b_cont; 23088 mctl_present = B_TRUE; 23089 } else { 23090 first_mp = mp; 23091 mctl_present = B_FALSE; 23092 } 23093 23094 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 23095 ipha = (ipha_t *)mp->b_rptr; 23096 23097 /* 23098 * If the Don't Fragment flag is on, generate an ICMP destination 23099 * unreachable, fragmentation needed. 23100 */ 23101 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23102 if (offset & IPH_DF) { 23103 BUMP_MIB(&ip_mib, ipFragFails); 23104 /* 23105 * Need to compute hdr checksum if called from ip_wput_ire. 23106 * Note that ip_rput_forward verifies the checksum before 23107 * calling this routine so in that case this is a noop. 23108 */ 23109 ipha->ipha_hdr_checksum = 0; 23110 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23111 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid); 23112 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23113 "ip_wput_frag_end:(%S)", 23114 "don't fragment"); 23115 return; 23116 } 23117 if (mctl_present) 23118 freeb(first_mp); 23119 /* 23120 * Establish the starting offset. May not be zero if we are fragging 23121 * a fragment that is being forwarded. 23122 */ 23123 offset = offset & IPH_OFFSET; 23124 23125 /* TODO why is this test needed? */ 23126 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23127 if (((max_frag - LENGTH) & ~7) < 8) { 23128 /* TODO: notify ulp somehow */ 23129 BUMP_MIB(&ip_mib, ipFragFails); 23130 freemsg(mp); 23131 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23132 "ip_wput_frag_end:(%S)", 23133 "len < 8"); 23134 return; 23135 } 23136 23137 hdr_len = (V_HLEN & 0xF) << 2; 23138 23139 ipha->ipha_hdr_checksum = 0; 23140 23141 /* 23142 * Establish the number of bytes maximum per frag, after putting 23143 * in the header. 23144 */ 23145 len = (max_frag - hdr_len) & ~7; 23146 23147 /* Check if we can use MDT to send out the frags. */ 23148 ASSERT(!IRE_IS_LOCAL(ire)); 23149 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 23150 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 23151 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 23152 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 23153 ASSERT(ill->ill_mdt_capab != NULL); 23154 if (!ill->ill_mdt_capab->ill_mdt_on) { 23155 /* 23156 * If MDT has been previously turned off in the past, 23157 * and we currently can do MDT (due to IPQoS policy 23158 * removal, etc.) then enable it for this interface. 23159 */ 23160 ill->ill_mdt_capab->ill_mdt_on = 1; 23161 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 23162 ill->ill_name)); 23163 } 23164 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 23165 offset); 23166 return; 23167 } 23168 23169 /* Get a copy of the header for the trailing frags */ 23170 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 23171 if (!hdr_mp) { 23172 BUMP_MIB(&ip_mib, ipOutDiscards); 23173 freemsg(mp); 23174 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23175 "ip_wput_frag_end:(%S)", 23176 "couldn't copy hdr"); 23177 return; 23178 } 23179 if (DB_CRED(mp) != NULL) 23180 mblk_setcred(hdr_mp, DB_CRED(mp)); 23181 23182 /* Store the starting offset, with the MoreFrags flag. */ 23183 i1 = offset | IPH_MF | frag_flag; 23184 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 23185 23186 /* Establish the ending byte offset, based on the starting offset. */ 23187 offset <<= 3; 23188 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 23189 23190 /* Store the length of the first fragment in the IP header. */ 23191 i1 = len + hdr_len; 23192 ASSERT(i1 <= IP_MAXPACKET); 23193 ipha->ipha_length = htons((uint16_t)i1); 23194 23195 /* 23196 * Compute the IP header checksum for the first frag. We have to 23197 * watch out that we stop at the end of the header. 23198 */ 23199 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23200 23201 /* 23202 * Now carve off the first frag. Note that this will include the 23203 * original IP header. 23204 */ 23205 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 23206 BUMP_MIB(&ip_mib, ipOutDiscards); 23207 freeb(hdr_mp); 23208 freemsg(mp_orig); 23209 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23210 "ip_wput_frag_end:(%S)", 23211 "couldn't carve first"); 23212 return; 23213 } 23214 23215 /* 23216 * Multirouting case. Each fragment is replicated 23217 * via all non-condemned RTF_MULTIRT routes 23218 * currently resolved. 23219 * We ensure that first_ire is the first RTF_MULTIRT 23220 * ire in the bucket. 23221 */ 23222 if (ire->ire_flags & RTF_MULTIRT) { 23223 irb = ire->ire_bucket; 23224 ASSERT(irb != NULL); 23225 23226 multirt_send = B_TRUE; 23227 23228 /* Make sure we do not omit any multiroute ire. */ 23229 IRB_REFHOLD(irb); 23230 for (first_ire = irb->irb_ire; 23231 first_ire != NULL; 23232 first_ire = first_ire->ire_next) { 23233 if ((first_ire->ire_flags & RTF_MULTIRT) && 23234 (first_ire->ire_addr == ire->ire_addr) && 23235 !(first_ire->ire_marks & 23236 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 23237 break; 23238 } 23239 23240 if (first_ire != NULL) { 23241 if (first_ire != ire) { 23242 IRE_REFHOLD(first_ire); 23243 /* 23244 * Do not release the ire passed in 23245 * as the argument. 23246 */ 23247 ire = first_ire; 23248 } else { 23249 first_ire = NULL; 23250 } 23251 } 23252 IRB_REFRELE(irb); 23253 23254 /* 23255 * Save the first ire; we will need to restore it 23256 * for the trailing frags. 23257 * We REFHOLD save_ire, as each iterated ire will be 23258 * REFRELEd. 23259 */ 23260 save_ire = ire; 23261 IRE_REFHOLD(save_ire); 23262 } 23263 23264 /* 23265 * First fragment emission loop. 23266 * In most cases, the emission loop below is entered only 23267 * once. Only in the case where the ire holds the RTF_MULTIRT 23268 * flag, do we loop to process all RTF_MULTIRT ires in the 23269 * bucket, and send the fragment through all crossed 23270 * RTF_MULTIRT routes. 23271 */ 23272 do { 23273 if (ire->ire_flags & RTF_MULTIRT) { 23274 /* 23275 * We are in a multiple send case, need to get 23276 * the next ire and make a copy of the packet. 23277 * ire1 holds here the next ire to process in the 23278 * bucket. If multirouting is expected, 23279 * any non-RTF_MULTIRT ire that has the 23280 * right destination address is ignored. 23281 * 23282 * We have to take into account the MTU of 23283 * each walked ire. max_frag is set by the 23284 * the caller and generally refers to 23285 * the primary ire entry. Here we ensure that 23286 * no route with a lower MTU will be used, as 23287 * fragments are carved once for all ires, 23288 * then replicated. 23289 */ 23290 ASSERT(irb != NULL); 23291 IRB_REFHOLD(irb); 23292 for (ire1 = ire->ire_next; 23293 ire1 != NULL; 23294 ire1 = ire1->ire_next) { 23295 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 23296 continue; 23297 if (ire1->ire_addr != ire->ire_addr) 23298 continue; 23299 if (ire1->ire_marks & 23300 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 23301 continue; 23302 /* 23303 * Ensure we do not exceed the MTU 23304 * of the next route. 23305 */ 23306 if (ire1->ire_max_frag < max_frag) { 23307 ip_multirt_bad_mtu(ire1, max_frag); 23308 continue; 23309 } 23310 23311 /* Got one. */ 23312 IRE_REFHOLD(ire1); 23313 break; 23314 } 23315 IRB_REFRELE(irb); 23316 23317 if (ire1 != NULL) { 23318 next_mp = copyb(mp); 23319 if ((next_mp == NULL) || 23320 ((mp->b_cont != NULL) && 23321 ((next_mp->b_cont = 23322 dupmsg(mp->b_cont)) == NULL))) { 23323 freemsg(next_mp); 23324 next_mp = NULL; 23325 ire_refrele(ire1); 23326 ire1 = NULL; 23327 } 23328 } 23329 23330 /* Last multiroute ire; don't loop anymore. */ 23331 if (ire1 == NULL) { 23332 multirt_send = B_FALSE; 23333 } 23334 } 23335 23336 ll_hdr_len = 0; 23337 LOCK_IRE_FP_MP(ire); 23338 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23339 if (ll_hdr_mp != NULL) { 23340 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23341 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 23342 } else { 23343 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23344 } 23345 23346 /* If there is a transmit header, get a copy for this frag. */ 23347 /* 23348 * TODO: should check db_ref before calling ip_carve_mp since 23349 * it might give us a dup. 23350 */ 23351 if (!ll_hdr_mp) { 23352 /* No xmit header. */ 23353 xmit_mp = mp; 23354 23355 /* We have a link-layer header that can fit in our mblk. */ 23356 } else if (mp->b_datap->db_ref == 1 && 23357 ll_hdr_len != 0 && 23358 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23359 /* M_DATA fastpath */ 23360 mp->b_rptr -= ll_hdr_len; 23361 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 23362 xmit_mp = mp; 23363 23364 /* Corner case if copyb has failed */ 23365 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 23366 UNLOCK_IRE_FP_MP(ire); 23367 BUMP_MIB(&ip_mib, ipOutDiscards); 23368 freeb(hdr_mp); 23369 freemsg(mp); 23370 freemsg(mp_orig); 23371 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23372 "ip_wput_frag_end:(%S)", 23373 "discard"); 23374 23375 if (multirt_send) { 23376 ASSERT(ire1); 23377 ASSERT(next_mp); 23378 23379 freemsg(next_mp); 23380 ire_refrele(ire1); 23381 } 23382 if (save_ire != NULL) 23383 IRE_REFRELE(save_ire); 23384 23385 if (first_ire != NULL) 23386 ire_refrele(first_ire); 23387 return; 23388 23389 /* 23390 * Case of res_mp OR the fastpath mp can't fit 23391 * in the mblk 23392 */ 23393 } else { 23394 xmit_mp->b_cont = mp; 23395 if (DB_CRED(mp) != NULL) 23396 mblk_setcred(xmit_mp, DB_CRED(mp)); 23397 /* 23398 * Get priority marking, if any. 23399 * We propagate the CoS marking from the 23400 * original packet that went to QoS processing 23401 * in ip_wput_ire to the newly carved mp. 23402 */ 23403 if (DB_TYPE(xmit_mp) == M_DATA) 23404 xmit_mp->b_band = mp->b_band; 23405 } 23406 UNLOCK_IRE_FP_MP(ire); 23407 q = ire->ire_stq; 23408 BUMP_MIB(&ip_mib, ipFragCreates); 23409 putnext(q, xmit_mp); 23410 if (pkt_type != OB_PKT) { 23411 /* 23412 * Update the packet count of trailing 23413 * RTF_MULTIRT ires. 23414 */ 23415 UPDATE_OB_PKT_COUNT(ire); 23416 } 23417 23418 if (multirt_send) { 23419 /* 23420 * We are in a multiple send case; look for 23421 * the next ire and re-enter the loop. 23422 */ 23423 ASSERT(ire1); 23424 ASSERT(next_mp); 23425 /* REFRELE the current ire before looping */ 23426 ire_refrele(ire); 23427 ire = ire1; 23428 ire1 = NULL; 23429 mp = next_mp; 23430 next_mp = NULL; 23431 } 23432 } while (multirt_send); 23433 23434 ASSERT(ire1 == NULL); 23435 23436 /* Restore the original ire; we need it for the trailing frags */ 23437 if (save_ire != NULL) { 23438 /* REFRELE the last iterated ire */ 23439 ire_refrele(ire); 23440 /* save_ire has been REFHOLDed */ 23441 ire = save_ire; 23442 save_ire = NULL; 23443 q = ire->ire_stq; 23444 } 23445 23446 if (pkt_type == OB_PKT) { 23447 UPDATE_OB_PKT_COUNT(ire); 23448 } else { 23449 UPDATE_IB_PKT_COUNT(ire); 23450 } 23451 23452 /* Advance the offset to the second frag starting point. */ 23453 offset += len; 23454 /* 23455 * Update hdr_len from the copied header - there might be less options 23456 * in the later fragments. 23457 */ 23458 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 23459 /* Loop until done. */ 23460 for (;;) { 23461 uint16_t offset_and_flags; 23462 uint16_t ip_len; 23463 23464 if (ip_data_end - offset > len) { 23465 /* 23466 * Carve off the appropriate amount from the original 23467 * datagram. 23468 */ 23469 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23470 mp = NULL; 23471 break; 23472 } 23473 /* 23474 * More frags after this one. Get another copy 23475 * of the header. 23476 */ 23477 if (carve_mp->b_datap->db_ref == 1 && 23478 hdr_mp->b_wptr - hdr_mp->b_rptr < 23479 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23480 /* Inline IP header */ 23481 carve_mp->b_rptr -= hdr_mp->b_wptr - 23482 hdr_mp->b_rptr; 23483 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23484 hdr_mp->b_wptr - hdr_mp->b_rptr); 23485 mp = carve_mp; 23486 } else { 23487 if (!(mp = copyb(hdr_mp))) { 23488 freemsg(carve_mp); 23489 break; 23490 } 23491 /* Get priority marking, if any. */ 23492 mp->b_band = carve_mp->b_band; 23493 mp->b_cont = carve_mp; 23494 } 23495 ipha = (ipha_t *)mp->b_rptr; 23496 offset_and_flags = IPH_MF; 23497 } else { 23498 /* 23499 * Last frag. Consume the header. Set len to 23500 * the length of this last piece. 23501 */ 23502 len = ip_data_end - offset; 23503 23504 /* 23505 * Carve off the appropriate amount from the original 23506 * datagram. 23507 */ 23508 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23509 mp = NULL; 23510 break; 23511 } 23512 if (carve_mp->b_datap->db_ref == 1 && 23513 hdr_mp->b_wptr - hdr_mp->b_rptr < 23514 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23515 /* Inline IP header */ 23516 carve_mp->b_rptr -= hdr_mp->b_wptr - 23517 hdr_mp->b_rptr; 23518 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23519 hdr_mp->b_wptr - hdr_mp->b_rptr); 23520 mp = carve_mp; 23521 freeb(hdr_mp); 23522 hdr_mp = mp; 23523 } else { 23524 mp = hdr_mp; 23525 /* Get priority marking, if any. */ 23526 mp->b_band = carve_mp->b_band; 23527 mp->b_cont = carve_mp; 23528 } 23529 ipha = (ipha_t *)mp->b_rptr; 23530 /* A frag of a frag might have IPH_MF non-zero */ 23531 offset_and_flags = 23532 ntohs(ipha->ipha_fragment_offset_and_flags) & 23533 IPH_MF; 23534 } 23535 offset_and_flags |= (uint16_t)(offset >> 3); 23536 offset_and_flags |= (uint16_t)frag_flag; 23537 /* Store the offset and flags in the IP header. */ 23538 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23539 23540 /* Store the length in the IP header. */ 23541 ip_len = (uint16_t)(len + hdr_len); 23542 ipha->ipha_length = htons(ip_len); 23543 23544 /* 23545 * Set the IP header checksum. Note that mp is just 23546 * the header, so this is easy to pass to ip_csum. 23547 */ 23548 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23549 23550 /* Attach a transmit header, if any, and ship it. */ 23551 if (pkt_type == OB_PKT) { 23552 UPDATE_OB_PKT_COUNT(ire); 23553 } else { 23554 UPDATE_IB_PKT_COUNT(ire); 23555 } 23556 23557 if (ire->ire_flags & RTF_MULTIRT) { 23558 irb = ire->ire_bucket; 23559 ASSERT(irb != NULL); 23560 23561 multirt_send = B_TRUE; 23562 23563 /* 23564 * Save the original ire; we will need to restore it 23565 * for the tailing frags. 23566 */ 23567 save_ire = ire; 23568 IRE_REFHOLD(save_ire); 23569 } 23570 /* 23571 * Emission loop for this fragment, similar 23572 * to what is done for the first fragment. 23573 */ 23574 do { 23575 if (multirt_send) { 23576 /* 23577 * We are in a multiple send case, need to get 23578 * the next ire and make a copy of the packet. 23579 */ 23580 ASSERT(irb != NULL); 23581 IRB_REFHOLD(irb); 23582 for (ire1 = ire->ire_next; 23583 ire1 != NULL; 23584 ire1 = ire1->ire_next) { 23585 if (!(ire1->ire_flags & RTF_MULTIRT)) 23586 continue; 23587 if (ire1->ire_addr != ire->ire_addr) 23588 continue; 23589 if (ire1->ire_marks & 23590 (IRE_MARK_CONDEMNED| 23591 IRE_MARK_HIDDEN)) 23592 continue; 23593 /* 23594 * Ensure we do not exceed the MTU 23595 * of the next route. 23596 */ 23597 if (ire1->ire_max_frag < max_frag) { 23598 ip_multirt_bad_mtu(ire1, 23599 max_frag); 23600 continue; 23601 } 23602 23603 /* Got one. */ 23604 IRE_REFHOLD(ire1); 23605 break; 23606 } 23607 IRB_REFRELE(irb); 23608 23609 if (ire1 != NULL) { 23610 next_mp = copyb(mp); 23611 if ((next_mp == NULL) || 23612 ((mp->b_cont != NULL) && 23613 ((next_mp->b_cont = 23614 dupmsg(mp->b_cont)) == NULL))) { 23615 freemsg(next_mp); 23616 next_mp = NULL; 23617 ire_refrele(ire1); 23618 ire1 = NULL; 23619 } 23620 } 23621 23622 /* Last multiroute ire; don't loop anymore. */ 23623 if (ire1 == NULL) { 23624 multirt_send = B_FALSE; 23625 } 23626 } 23627 23628 /* Update transmit header */ 23629 ll_hdr_len = 0; 23630 LOCK_IRE_FP_MP(ire); 23631 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23632 if (ll_hdr_mp != NULL) { 23633 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23634 ll_hdr_len = MBLKL(ll_hdr_mp); 23635 } else { 23636 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23637 } 23638 23639 if (!ll_hdr_mp) { 23640 xmit_mp = mp; 23641 23642 /* 23643 * We have link-layer header that can fit in 23644 * our mblk. 23645 */ 23646 } else if (mp->b_datap->db_ref == 1 && 23647 ll_hdr_len != 0 && 23648 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23649 /* M_DATA fastpath */ 23650 mp->b_rptr -= ll_hdr_len; 23651 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 23652 ll_hdr_len); 23653 xmit_mp = mp; 23654 23655 /* 23656 * Case of res_mp OR the fastpath mp can't fit 23657 * in the mblk 23658 */ 23659 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 23660 xmit_mp->b_cont = mp; 23661 if (DB_CRED(mp) != NULL) 23662 mblk_setcred(xmit_mp, DB_CRED(mp)); 23663 /* Get priority marking, if any. */ 23664 if (DB_TYPE(xmit_mp) == M_DATA) 23665 xmit_mp->b_band = mp->b_band; 23666 23667 /* Corner case if copyb failed */ 23668 } else { 23669 /* 23670 * Exit both the replication and 23671 * fragmentation loops. 23672 */ 23673 UNLOCK_IRE_FP_MP(ire); 23674 goto drop_pkt; 23675 } 23676 UNLOCK_IRE_FP_MP(ire); 23677 BUMP_MIB(&ip_mib, ipFragCreates); 23678 putnext(q, xmit_mp); 23679 23680 if (pkt_type != OB_PKT) { 23681 /* 23682 * Update the packet count of trailing 23683 * RTF_MULTIRT ires. 23684 */ 23685 UPDATE_OB_PKT_COUNT(ire); 23686 } 23687 23688 /* All done if we just consumed the hdr_mp. */ 23689 if (mp == hdr_mp) { 23690 last_frag = B_TRUE; 23691 } 23692 23693 if (multirt_send) { 23694 /* 23695 * We are in a multiple send case; look for 23696 * the next ire and re-enter the loop. 23697 */ 23698 ASSERT(ire1); 23699 ASSERT(next_mp); 23700 /* REFRELE the current ire before looping */ 23701 ire_refrele(ire); 23702 ire = ire1; 23703 ire1 = NULL; 23704 q = ire->ire_stq; 23705 mp = next_mp; 23706 next_mp = NULL; 23707 } 23708 } while (multirt_send); 23709 /* 23710 * Restore the original ire; we need it for the 23711 * trailing frags 23712 */ 23713 if (save_ire != NULL) { 23714 ASSERT(ire1 == NULL); 23715 /* REFRELE the last iterated ire */ 23716 ire_refrele(ire); 23717 /* save_ire has been REFHOLDed */ 23718 ire = save_ire; 23719 q = ire->ire_stq; 23720 save_ire = NULL; 23721 } 23722 23723 if (last_frag) { 23724 BUMP_MIB(&ip_mib, ipFragOKs); 23725 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23726 "ip_wput_frag_end:(%S)", 23727 "consumed hdr_mp"); 23728 23729 if (first_ire != NULL) 23730 ire_refrele(first_ire); 23731 return; 23732 } 23733 /* Otherwise, advance and loop. */ 23734 offset += len; 23735 } 23736 23737 drop_pkt: 23738 /* Clean up following allocation failure. */ 23739 BUMP_MIB(&ip_mib, ipOutDiscards); 23740 freemsg(mp); 23741 if (mp != hdr_mp) 23742 freeb(hdr_mp); 23743 if (mp != mp_orig) 23744 freemsg(mp_orig); 23745 23746 if (save_ire != NULL) 23747 IRE_REFRELE(save_ire); 23748 if (first_ire != NULL) 23749 ire_refrele(first_ire); 23750 23751 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23752 "ip_wput_frag_end:(%S)", 23753 "end--alloc failure"); 23754 } 23755 23756 /* 23757 * Copy the header plus those options which have the copy bit set 23758 */ 23759 static mblk_t * 23760 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 23761 { 23762 mblk_t *mp; 23763 uchar_t *up; 23764 23765 /* 23766 * Quick check if we need to look for options without the copy bit 23767 * set 23768 */ 23769 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 23770 if (!mp) 23771 return (mp); 23772 mp->b_rptr += ip_wroff_extra; 23773 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 23774 bcopy(rptr, mp->b_rptr, hdr_len); 23775 mp->b_wptr += hdr_len + ip_wroff_extra; 23776 return (mp); 23777 } 23778 up = mp->b_rptr; 23779 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 23780 up += IP_SIMPLE_HDR_LENGTH; 23781 rptr += IP_SIMPLE_HDR_LENGTH; 23782 hdr_len -= IP_SIMPLE_HDR_LENGTH; 23783 while (hdr_len > 0) { 23784 uint32_t optval; 23785 uint32_t optlen; 23786 23787 optval = *rptr; 23788 if (optval == IPOPT_EOL) 23789 break; 23790 if (optval == IPOPT_NOP) 23791 optlen = 1; 23792 else 23793 optlen = rptr[1]; 23794 if (optval & IPOPT_COPY) { 23795 bcopy(rptr, up, optlen); 23796 up += optlen; 23797 } 23798 rptr += optlen; 23799 hdr_len -= optlen; 23800 } 23801 /* 23802 * Make sure that we drop an even number of words by filling 23803 * with EOL to the next word boundary. 23804 */ 23805 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 23806 hdr_len & 0x3; hdr_len++) 23807 *up++ = IPOPT_EOL; 23808 mp->b_wptr = up; 23809 /* Update header length */ 23810 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 23811 return (mp); 23812 } 23813 23814 /* 23815 * Delivery to local recipients including fanout to multiple recipients. 23816 * Does not do checksumming of UDP/TCP. 23817 * Note: q should be the read side queue for either the ill or conn. 23818 * Note: rq should be the read side q for the lower (ill) stream. 23819 * We don't send packets to IPPF processing, thus the last argument 23820 * to all the fanout calls are B_FALSE. 23821 */ 23822 void 23823 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 23824 int fanout_flags, zoneid_t zoneid) 23825 { 23826 uint32_t protocol; 23827 mblk_t *first_mp; 23828 boolean_t mctl_present; 23829 int ire_type; 23830 #define rptr ((uchar_t *)ipha) 23831 23832 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 23833 "ip_wput_local_start: q %p", q); 23834 23835 if (ire != NULL) { 23836 ire_type = ire->ire_type; 23837 } else { 23838 /* 23839 * Only ip_multicast_loopback() calls us with a NULL ire. If the 23840 * packet is not multicast, we can't tell the ire type. 23841 */ 23842 ASSERT(CLASSD(ipha->ipha_dst)); 23843 ire_type = IRE_BROADCAST; 23844 } 23845 23846 first_mp = mp; 23847 if (first_mp->b_datap->db_type == M_CTL) { 23848 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 23849 if (!io->ipsec_out_secure) { 23850 /* 23851 * This ipsec_out_t was allocated in ip_wput 23852 * for multicast packets to store the ill_index. 23853 * As this is being delivered locally, we don't 23854 * need this anymore. 23855 */ 23856 mp = first_mp->b_cont; 23857 freeb(first_mp); 23858 first_mp = mp; 23859 mctl_present = B_FALSE; 23860 } else { 23861 mctl_present = B_TRUE; 23862 mp = first_mp->b_cont; 23863 ASSERT(mp != NULL); 23864 ipsec_out_to_in(first_mp); 23865 } 23866 } else { 23867 mctl_present = B_FALSE; 23868 } 23869 23870 loopback_packets++; 23871 23872 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 23873 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 23874 if (!IS_SIMPLE_IPH(ipha)) { 23875 ip_wput_local_options(ipha); 23876 } 23877 23878 protocol = ipha->ipha_protocol; 23879 switch (protocol) { 23880 case IPPROTO_ICMP: { 23881 ire_t *ire_zone; 23882 ilm_t *ilm; 23883 mblk_t *mp1; 23884 zoneid_t last_zoneid; 23885 23886 if (CLASSD(ipha->ipha_dst) && 23887 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 23888 ASSERT(ire_type == IRE_BROADCAST); 23889 /* 23890 * In the multicast case, applications may have joined 23891 * the group from different zones, so we need to deliver 23892 * the packet to each of them. Loop through the 23893 * multicast memberships structures (ilm) on the receive 23894 * ill and send a copy of the packet up each matching 23895 * one. However, we don't do this for multicasts sent on 23896 * the loopback interface (PHYI_LOOPBACK flag set) as 23897 * they must stay in the sender's zone. 23898 * 23899 * ilm_add_v6() ensures that ilms in the same zone are 23900 * contiguous in the ill_ilm list. We use this property 23901 * to avoid sending duplicates needed when two 23902 * applications in the same zone join the same group on 23903 * different logical interfaces: we ignore the ilm if 23904 * it's zoneid is the same as the last matching one. 23905 * In addition, the sending of the packet for 23906 * ire_zoneid is delayed until all of the other ilms 23907 * have been exhausted. 23908 */ 23909 last_zoneid = -1; 23910 ILM_WALKER_HOLD(ill); 23911 for (ilm = ill->ill_ilm; ilm != NULL; 23912 ilm = ilm->ilm_next) { 23913 if ((ilm->ilm_flags & ILM_DELETED) || 23914 ipha->ipha_dst != ilm->ilm_addr || 23915 ilm->ilm_zoneid == last_zoneid || 23916 ilm->ilm_zoneid == zoneid || 23917 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 23918 continue; 23919 mp1 = ip_copymsg(first_mp); 23920 if (mp1 == NULL) 23921 continue; 23922 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23923 mctl_present, B_FALSE, ill, 23924 ilm->ilm_zoneid); 23925 last_zoneid = ilm->ilm_zoneid; 23926 } 23927 ILM_WALKER_RELE(ill); 23928 /* 23929 * Loopback case: the sending endpoint has 23930 * IP_MULTICAST_LOOP disabled, therefore we don't 23931 * dispatch the multicast packet to the sending zone. 23932 */ 23933 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 23934 freemsg(first_mp); 23935 return; 23936 } 23937 } else if (ire_type == IRE_BROADCAST) { 23938 /* 23939 * In the broadcast case, there may be many zones 23940 * which need a copy of the packet delivered to them. 23941 * There is one IRE_BROADCAST per broadcast address 23942 * and per zone; we walk those using a helper function. 23943 * In addition, the sending of the packet for zoneid is 23944 * delayed until all of the other ires have been 23945 * processed. 23946 */ 23947 IRB_REFHOLD(ire->ire_bucket); 23948 ire_zone = NULL; 23949 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 23950 ire)) != NULL) { 23951 mp1 = ip_copymsg(first_mp); 23952 if (mp1 == NULL) 23953 continue; 23954 23955 UPDATE_IB_PKT_COUNT(ire_zone); 23956 ire_zone->ire_last_used_time = lbolt; 23957 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23958 mctl_present, B_FALSE, ill, 23959 ire_zone->ire_zoneid); 23960 } 23961 IRB_REFRELE(ire->ire_bucket); 23962 } 23963 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 23964 0, mctl_present, B_FALSE, ill, zoneid); 23965 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23966 "ip_wput_local_end: q %p (%S)", 23967 q, "icmp"); 23968 return; 23969 } 23970 case IPPROTO_IGMP: 23971 if (igmp_input(q, mp, ill)) { 23972 /* Bad packet - discarded by igmp_input */ 23973 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23974 "ip_wput_local_end: q %p (%S)", 23975 q, "igmp_input--bad packet"); 23976 if (mctl_present) 23977 freeb(first_mp); 23978 return; 23979 } 23980 /* 23981 * igmp_input() may have pulled up the message so ipha needs to 23982 * be reinitialized. 23983 */ 23984 ipha = (ipha_t *)mp->b_rptr; 23985 /* deliver to local raw users */ 23986 break; 23987 case IPPROTO_ENCAP: 23988 /* 23989 * This case is covered by either ip_fanout_proto, or by 23990 * the above security processing for self-tunneled packets. 23991 */ 23992 break; 23993 case IPPROTO_UDP: { 23994 uint16_t *up; 23995 uint32_t ports; 23996 23997 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 23998 UDP_PORTS_OFFSET); 23999 /* Force a 'valid' checksum. */ 24000 up[3] = 0; 24001 24002 ports = *(uint32_t *)up; 24003 ip_fanout_udp(q, first_mp, ill, ipha, ports, 24004 (ire_type == IRE_BROADCAST), 24005 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24006 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 24007 ill, zoneid); 24008 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24009 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 24010 return; 24011 } 24012 case IPPROTO_TCP: { 24013 24014 /* 24015 * For TCP, discard broadcast packets. 24016 */ 24017 if ((ushort_t)ire_type == IRE_BROADCAST) { 24018 freemsg(first_mp); 24019 BUMP_MIB(&ip_mib, ipInDiscards); 24020 ip2dbg(("ip_wput_local: discard broadcast\n")); 24021 return; 24022 } 24023 24024 if (mp->b_datap->db_type == M_DATA) { 24025 /* 24026 * M_DATA mblk, so init mblk (chain) for no struio(). 24027 */ 24028 mblk_t *mp1 = mp; 24029 24030 do 24031 mp1->b_datap->db_struioflag = 0; 24032 while ((mp1 = mp1->b_cont) != NULL); 24033 } 24034 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 24035 <= mp->b_wptr); 24036 ip_fanout_tcp(q, first_mp, ill, ipha, 24037 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24038 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 24039 mctl_present, B_FALSE, zoneid); 24040 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24041 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 24042 return; 24043 } 24044 case IPPROTO_SCTP: 24045 { 24046 uint32_t ports; 24047 24048 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 24049 ip_fanout_sctp(first_mp, ill, ipha, ports, 24050 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24051 IP_FF_IP6INFO, 24052 mctl_present, B_FALSE, 0, zoneid); 24053 return; 24054 } 24055 24056 default: 24057 break; 24058 } 24059 /* 24060 * Find a client for some other protocol. We give 24061 * copies to multiple clients, if more than one is 24062 * bound. 24063 */ 24064 ip_fanout_proto(q, first_mp, ill, ipha, 24065 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 24066 mctl_present, B_FALSE, ill, zoneid); 24067 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24068 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 24069 #undef rptr 24070 } 24071 24072 /* 24073 * Update any source route, record route, or timestamp options. 24074 * Check that we are at end of strict source route. 24075 * The options have been sanity checked by ip_wput_options(). 24076 */ 24077 static void 24078 ip_wput_local_options(ipha_t *ipha) 24079 { 24080 ipoptp_t opts; 24081 uchar_t *opt; 24082 uint8_t optval; 24083 uint8_t optlen; 24084 ipaddr_t dst; 24085 uint32_t ts; 24086 ire_t *ire; 24087 timestruc_t now; 24088 24089 ip2dbg(("ip_wput_local_options\n")); 24090 for (optval = ipoptp_first(&opts, ipha); 24091 optval != IPOPT_EOL; 24092 optval = ipoptp_next(&opts)) { 24093 opt = opts.ipoptp_cur; 24094 optlen = opts.ipoptp_len; 24095 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 24096 switch (optval) { 24097 uint32_t off; 24098 case IPOPT_SSRR: 24099 case IPOPT_LSRR: 24100 off = opt[IPOPT_OFFSET]; 24101 off--; 24102 if (optlen < IP_ADDR_LEN || 24103 off > optlen - IP_ADDR_LEN) { 24104 /* End of source route */ 24105 break; 24106 } 24107 /* 24108 * This will only happen if two consecutive entries 24109 * in the source route contains our address or if 24110 * it is a packet with a loose source route which 24111 * reaches us before consuming the whole source route 24112 */ 24113 ip1dbg(("ip_wput_local_options: not end of SR\n")); 24114 if (optval == IPOPT_SSRR) { 24115 return; 24116 } 24117 /* 24118 * Hack: instead of dropping the packet truncate the 24119 * source route to what has been used by filling the 24120 * rest with IPOPT_NOP. 24121 */ 24122 opt[IPOPT_OLEN] = (uint8_t)off; 24123 while (off < optlen) { 24124 opt[off++] = IPOPT_NOP; 24125 } 24126 break; 24127 case IPOPT_RR: 24128 off = opt[IPOPT_OFFSET]; 24129 off--; 24130 if (optlen < IP_ADDR_LEN || 24131 off > optlen - IP_ADDR_LEN) { 24132 /* No more room - ignore */ 24133 ip1dbg(( 24134 "ip_wput_forward_options: end of RR\n")); 24135 break; 24136 } 24137 dst = htonl(INADDR_LOOPBACK); 24138 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24139 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24140 break; 24141 case IPOPT_TS: 24142 /* Insert timestamp if there is romm */ 24143 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24144 case IPOPT_TS_TSONLY: 24145 off = IPOPT_TS_TIMELEN; 24146 break; 24147 case IPOPT_TS_PRESPEC: 24148 case IPOPT_TS_PRESPEC_RFC791: 24149 /* Verify that the address matched */ 24150 off = opt[IPOPT_OFFSET] - 1; 24151 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 24152 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 24153 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 24154 if (ire == NULL) { 24155 /* Not for us */ 24156 break; 24157 } 24158 ire_refrele(ire); 24159 /* FALLTHRU */ 24160 case IPOPT_TS_TSANDADDR: 24161 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24162 break; 24163 default: 24164 /* 24165 * ip_*put_options should have already 24166 * dropped this packet. 24167 */ 24168 cmn_err(CE_PANIC, "ip_wput_local_options: " 24169 "unknown IT - bug in ip_wput_options?\n"); 24170 return; /* Keep "lint" happy */ 24171 } 24172 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 24173 /* Increase overflow counter */ 24174 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 24175 opt[IPOPT_POS_OV_FLG] = (uint8_t) 24176 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 24177 (off << 4); 24178 break; 24179 } 24180 off = opt[IPOPT_OFFSET] - 1; 24181 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24182 case IPOPT_TS_PRESPEC: 24183 case IPOPT_TS_PRESPEC_RFC791: 24184 case IPOPT_TS_TSANDADDR: 24185 dst = htonl(INADDR_LOOPBACK); 24186 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24187 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24188 /* FALLTHRU */ 24189 case IPOPT_TS_TSONLY: 24190 off = opt[IPOPT_OFFSET] - 1; 24191 /* Compute # of milliseconds since midnight */ 24192 gethrestime(&now); 24193 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 24194 now.tv_nsec / (NANOSEC / MILLISEC); 24195 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 24196 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 24197 break; 24198 } 24199 break; 24200 } 24201 } 24202 } 24203 24204 /* 24205 * Send out a multicast packet on interface ipif. 24206 * The sender does not have an conn. 24207 * Caller verifies that this isn't a PHYI_LOOPBACK. 24208 */ 24209 void 24210 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 24211 { 24212 ipha_t *ipha; 24213 ire_t *ire; 24214 ipaddr_t dst; 24215 mblk_t *first_mp; 24216 24217 /* igmp_sendpkt always allocates a ipsec_out_t */ 24218 ASSERT(mp->b_datap->db_type == M_CTL); 24219 ASSERT(!ipif->ipif_isv6); 24220 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 24221 24222 first_mp = mp; 24223 mp = first_mp->b_cont; 24224 ASSERT(mp->b_datap->db_type == M_DATA); 24225 ipha = (ipha_t *)mp->b_rptr; 24226 24227 /* 24228 * Find an IRE which matches the destination and the outgoing 24229 * queue (i.e. the outgoing interface.) 24230 */ 24231 if (ipif->ipif_flags & IPIF_POINTOPOINT) 24232 dst = ipif->ipif_pp_dst_addr; 24233 else 24234 dst = ipha->ipha_dst; 24235 /* 24236 * The source address has already been initialized by the 24237 * caller and hence matching on ILL (MATCH_IRE_ILL) would 24238 * be sufficient rather than MATCH_IRE_IPIF. 24239 * 24240 * This function is used for sending IGMP packets. We need 24241 * to make sure that we send the packet out of the interface 24242 * (ipif->ipif_ill) where we joined the group. This is to 24243 * prevent from switches doing IGMP snooping to send us multicast 24244 * packets for a given group on the interface we have joined. 24245 * If we can't find an ire, igmp_sendpkt has already initialized 24246 * ipsec_out_attach_if so that this will not be load spread in 24247 * ip_newroute_ipif. 24248 */ 24249 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 24250 MATCH_IRE_ILL); 24251 if (!ire) { 24252 /* 24253 * Mark this packet to make it be delivered to 24254 * ip_wput_ire after the new ire has been 24255 * created. 24256 */ 24257 mp->b_prev = NULL; 24258 mp->b_next = NULL; 24259 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 24260 zoneid); 24261 return; 24262 } 24263 24264 /* 24265 * Honor the RTF_SETSRC flag; this is the only case 24266 * where we force this addr whatever the current src addr is, 24267 * because this address is set by igmp_sendpkt(), and 24268 * cannot be specified by any user. 24269 */ 24270 if (ire->ire_flags & RTF_SETSRC) { 24271 ipha->ipha_src = ire->ire_src_addr; 24272 } 24273 24274 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 24275 } 24276 24277 /* 24278 * NOTE : This function does not ire_refrele the ire argument passed in. 24279 * 24280 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 24281 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 24282 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 24283 * the ire_lock to access the nce_fp_mp in this case. 24284 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 24285 * prepending a fastpath message IPQoS processing must precede it, we also set 24286 * the b_band of the fastpath message to that of the mblk returned by IPQoS 24287 * (IPQoS might have set the b_band for CoS marking). 24288 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 24289 * must follow it so that IPQoS can mark the dl_priority field for CoS 24290 * marking, if needed. 24291 */ 24292 static mblk_t * 24293 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 24294 { 24295 uint_t hlen; 24296 ipha_t *ipha; 24297 mblk_t *mp1; 24298 boolean_t qos_done = B_FALSE; 24299 uchar_t *ll_hdr; 24300 24301 #define rptr ((uchar_t *)ipha) 24302 24303 ipha = (ipha_t *)mp->b_rptr; 24304 hlen = 0; 24305 LOCK_IRE_FP_MP(ire); 24306 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 24307 ASSERT(DB_TYPE(mp1) == M_DATA); 24308 /* Initiate IPPF processing */ 24309 if ((proc != 0) && IPP_ENABLED(proc)) { 24310 UNLOCK_IRE_FP_MP(ire); 24311 ip_process(proc, &mp, ill_index); 24312 if (mp == NULL) 24313 return (NULL); 24314 24315 ipha = (ipha_t *)mp->b_rptr; 24316 LOCK_IRE_FP_MP(ire); 24317 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 24318 qos_done = B_TRUE; 24319 goto no_fp_mp; 24320 } 24321 ASSERT(DB_TYPE(mp1) == M_DATA); 24322 } 24323 hlen = MBLKL(mp1); 24324 /* 24325 * Check if we have enough room to prepend fastpath 24326 * header 24327 */ 24328 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 24329 ll_hdr = rptr - hlen; 24330 bcopy(mp1->b_rptr, ll_hdr, hlen); 24331 /* 24332 * Set the b_rptr to the start of the link layer 24333 * header 24334 */ 24335 mp->b_rptr = ll_hdr; 24336 mp1 = mp; 24337 } else { 24338 mp1 = copyb(mp1); 24339 if (mp1 == NULL) 24340 goto unlock_err; 24341 mp1->b_band = mp->b_band; 24342 mp1->b_cont = mp; 24343 /* 24344 * certain system generated traffic may not 24345 * have cred/label in ip header block. This 24346 * is true even for a labeled system. But for 24347 * labeled traffic, inherit the label in the 24348 * new header. 24349 */ 24350 if (DB_CRED(mp) != NULL) 24351 mblk_setcred(mp1, DB_CRED(mp)); 24352 /* 24353 * XXX disable ICK_VALID and compute checksum 24354 * here; can happen if nce_fp_mp changes and 24355 * it can't be copied now due to insufficient 24356 * space. (unlikely, fp mp can change, but it 24357 * does not increase in length) 24358 */ 24359 } 24360 UNLOCK_IRE_FP_MP(ire); 24361 } else { 24362 no_fp_mp: 24363 mp1 = copyb(ire->ire_nce->nce_res_mp); 24364 if (mp1 == NULL) { 24365 unlock_err: 24366 UNLOCK_IRE_FP_MP(ire); 24367 freemsg(mp); 24368 return (NULL); 24369 } 24370 UNLOCK_IRE_FP_MP(ire); 24371 mp1->b_cont = mp; 24372 /* 24373 * certain system generated traffic may not 24374 * have cred/label in ip header block. This 24375 * is true even for a labeled system. But for 24376 * labeled traffic, inherit the label in the 24377 * new header. 24378 */ 24379 if (DB_CRED(mp) != NULL) 24380 mblk_setcred(mp1, DB_CRED(mp)); 24381 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 24382 ip_process(proc, &mp1, ill_index); 24383 if (mp1 == NULL) 24384 return (NULL); 24385 } 24386 } 24387 return (mp1); 24388 #undef rptr 24389 } 24390 24391 /* 24392 * Finish the outbound IPsec processing for an IPv6 packet. This function 24393 * is called from ipsec_out_process() if the IPsec packet was processed 24394 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24395 * asynchronously. 24396 */ 24397 void 24398 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 24399 ire_t *ire_arg) 24400 { 24401 in6_addr_t *v6dstp; 24402 ire_t *ire; 24403 mblk_t *mp; 24404 uint_t ill_index; 24405 ipsec_out_t *io; 24406 boolean_t attach_if, hwaccel; 24407 uint32_t flags = IP6_NO_IPPOLICY; 24408 int match_flags; 24409 zoneid_t zoneid; 24410 boolean_t ill_need_rele = B_FALSE; 24411 boolean_t ire_need_rele = B_FALSE; 24412 24413 mp = ipsec_mp->b_cont; 24414 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24415 ill_index = io->ipsec_out_ill_index; 24416 if (io->ipsec_out_reachable) { 24417 flags |= IPV6_REACHABILITY_CONFIRMATION; 24418 } 24419 attach_if = io->ipsec_out_attach_if; 24420 hwaccel = io->ipsec_out_accelerated; 24421 zoneid = io->ipsec_out_zoneid; 24422 ASSERT(zoneid != ALL_ZONES); 24423 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24424 /* Multicast addresses should have non-zero ill_index. */ 24425 v6dstp = &ip6h->ip6_dst; 24426 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 24427 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 24428 ASSERT(!attach_if || ill_index != 0); 24429 if (ill_index != 0) { 24430 if (ill == NULL) { 24431 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 24432 B_TRUE); 24433 24434 /* Failure case frees things for us. */ 24435 if (ill == NULL) 24436 return; 24437 24438 ill_need_rele = B_TRUE; 24439 } 24440 /* 24441 * If this packet needs to go out on a particular interface 24442 * honor it. 24443 */ 24444 if (attach_if) { 24445 match_flags = MATCH_IRE_ILL; 24446 24447 /* 24448 * Check if we need an ire that will not be 24449 * looked up by anybody else i.e. HIDDEN. 24450 */ 24451 if (ill_is_probeonly(ill)) { 24452 match_flags |= MATCH_IRE_MARK_HIDDEN; 24453 } 24454 } 24455 } 24456 ASSERT(mp != NULL); 24457 24458 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 24459 boolean_t unspec_src; 24460 ipif_t *ipif; 24461 24462 /* 24463 * Use the ill_index to get the right ill. 24464 */ 24465 unspec_src = io->ipsec_out_unspec_src; 24466 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24467 if (ipif == NULL) { 24468 if (ill_need_rele) 24469 ill_refrele(ill); 24470 freemsg(ipsec_mp); 24471 return; 24472 } 24473 24474 if (ire_arg != NULL) { 24475 ire = ire_arg; 24476 } else { 24477 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24478 zoneid, MBLK_GETLABEL(mp), match_flags); 24479 ire_need_rele = B_TRUE; 24480 } 24481 if (ire != NULL) { 24482 ipif_refrele(ipif); 24483 /* 24484 * XXX Do the multicast forwarding now, as the IPSEC 24485 * processing has been done. 24486 */ 24487 goto send; 24488 } 24489 24490 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 24491 mp->b_prev = NULL; 24492 mp->b_next = NULL; 24493 24494 /* 24495 * If the IPsec packet was processed asynchronously, 24496 * drop it now. 24497 */ 24498 if (q == NULL) { 24499 if (ill_need_rele) 24500 ill_refrele(ill); 24501 freemsg(ipsec_mp); 24502 return; 24503 } 24504 24505 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 24506 unspec_src, zoneid); 24507 ipif_refrele(ipif); 24508 } else { 24509 if (attach_if) { 24510 ipif_t *ipif; 24511 24512 ipif = ipif_get_next_ipif(NULL, ill); 24513 if (ipif == NULL) { 24514 if (ill_need_rele) 24515 ill_refrele(ill); 24516 freemsg(ipsec_mp); 24517 return; 24518 } 24519 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24520 zoneid, MBLK_GETLABEL(mp), match_flags); 24521 ire_need_rele = B_TRUE; 24522 ipif_refrele(ipif); 24523 } else { 24524 if (ire_arg != NULL) { 24525 ire = ire_arg; 24526 } else { 24527 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 24528 ire_need_rele = B_TRUE; 24529 } 24530 } 24531 if (ire != NULL) 24532 goto send; 24533 /* 24534 * ire disappeared underneath. 24535 * 24536 * What we need to do here is the ip_newroute 24537 * logic to get the ire without doing the IPSEC 24538 * processing. Follow the same old path. But this 24539 * time, ip_wput or ire_add_then_send will call us 24540 * directly as all the IPSEC operations are done. 24541 */ 24542 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 24543 mp->b_prev = NULL; 24544 mp->b_next = NULL; 24545 24546 /* 24547 * If the IPsec packet was processed asynchronously, 24548 * drop it now. 24549 */ 24550 if (q == NULL) { 24551 if (ill_need_rele) 24552 ill_refrele(ill); 24553 freemsg(ipsec_mp); 24554 return; 24555 } 24556 24557 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 24558 zoneid); 24559 } 24560 if (ill != NULL && ill_need_rele) 24561 ill_refrele(ill); 24562 return; 24563 send: 24564 if (ill != NULL && ill_need_rele) 24565 ill_refrele(ill); 24566 24567 /* Local delivery */ 24568 if (ire->ire_stq == NULL) { 24569 ASSERT(q != NULL); 24570 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 24571 ire, 0); 24572 if (ire_need_rele) 24573 ire_refrele(ire); 24574 return; 24575 } 24576 /* 24577 * Everything is done. Send it out on the wire. 24578 * We force the insertion of a fragment header using the 24579 * IPH_FRAG_HDR flag in two cases: 24580 * - after reception of an ICMPv6 "packet too big" message 24581 * with a MTU < 1280 (cf. RFC 2460 section 5) 24582 * - for multirouted IPv6 packets, so that the receiver can 24583 * discard duplicates according to their fragment identifier 24584 */ 24585 /* XXX fix flow control problems. */ 24586 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 24587 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 24588 if (hwaccel) { 24589 /* 24590 * hardware acceleration does not handle these 24591 * "slow path" cases. 24592 */ 24593 /* IPsec KSTATS: should bump bean counter here. */ 24594 if (ire_need_rele) 24595 ire_refrele(ire); 24596 freemsg(ipsec_mp); 24597 return; 24598 } 24599 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 24600 (mp->b_cont ? msgdsize(mp) : 24601 mp->b_wptr - (uchar_t *)ip6h)) { 24602 /* IPsec KSTATS: should bump bean counter here. */ 24603 ip0dbg(("Packet length mismatch: %d, %ld\n", 24604 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 24605 msgdsize(mp))); 24606 if (ire_need_rele) 24607 ire_refrele(ire); 24608 freemsg(ipsec_mp); 24609 return; 24610 } 24611 ASSERT(mp->b_prev == NULL); 24612 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 24613 ntohs(ip6h->ip6_plen) + 24614 IPV6_HDR_LEN, ire->ire_max_frag)); 24615 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 24616 ire->ire_max_frag); 24617 } else { 24618 UPDATE_OB_PKT_COUNT(ire); 24619 ire->ire_last_used_time = lbolt; 24620 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 24621 } 24622 if (ire_need_rele) 24623 ire_refrele(ire); 24624 freeb(ipsec_mp); 24625 } 24626 24627 void 24628 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 24629 { 24630 mblk_t *hada_mp; /* attributes M_CTL mblk */ 24631 da_ipsec_t *hada; /* data attributes */ 24632 ill_t *ill = (ill_t *)q->q_ptr; 24633 24634 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 24635 24636 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 24637 /* IPsec KSTATS: Bump lose counter here! */ 24638 freemsg(mp); 24639 return; 24640 } 24641 24642 /* 24643 * It's an IPsec packet that must be 24644 * accelerated by the Provider, and the 24645 * outbound ill is IPsec acceleration capable. 24646 * Prepends the mblk with an IPHADA_M_CTL, and ship it 24647 * to the ill. 24648 * IPsec KSTATS: should bump packet counter here. 24649 */ 24650 24651 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 24652 if (hada_mp == NULL) { 24653 /* IPsec KSTATS: should bump packet counter here. */ 24654 freemsg(mp); 24655 return; 24656 } 24657 24658 hada_mp->b_datap->db_type = M_CTL; 24659 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 24660 hada_mp->b_cont = mp; 24661 24662 hada = (da_ipsec_t *)hada_mp->b_rptr; 24663 bzero(hada, sizeof (da_ipsec_t)); 24664 hada->da_type = IPHADA_M_CTL; 24665 24666 putnext(q, hada_mp); 24667 } 24668 24669 /* 24670 * Finish the outbound IPsec processing. This function is called from 24671 * ipsec_out_process() if the IPsec packet was processed 24672 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24673 * asynchronously. 24674 */ 24675 void 24676 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 24677 ire_t *ire_arg) 24678 { 24679 uint32_t v_hlen_tos_len; 24680 ipaddr_t dst; 24681 ipif_t *ipif = NULL; 24682 ire_t *ire; 24683 ire_t *ire1 = NULL; 24684 mblk_t *next_mp = NULL; 24685 uint32_t max_frag; 24686 boolean_t multirt_send = B_FALSE; 24687 mblk_t *mp; 24688 mblk_t *mp1; 24689 uint_t ill_index; 24690 ipsec_out_t *io; 24691 boolean_t attach_if; 24692 int match_flags, offset; 24693 irb_t *irb = NULL; 24694 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 24695 zoneid_t zoneid; 24696 uint32_t cksum; 24697 uint16_t *up; 24698 ipxmit_state_t pktxmit_state; 24699 #ifdef _BIG_ENDIAN 24700 #define LENGTH (v_hlen_tos_len & 0xFFFF) 24701 #else 24702 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 24703 #endif 24704 24705 mp = ipsec_mp->b_cont; 24706 ASSERT(mp != NULL); 24707 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24708 dst = ipha->ipha_dst; 24709 24710 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24711 ill_index = io->ipsec_out_ill_index; 24712 attach_if = io->ipsec_out_attach_if; 24713 zoneid = io->ipsec_out_zoneid; 24714 ASSERT(zoneid != ALL_ZONES); 24715 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24716 if (ill_index != 0) { 24717 if (ill == NULL) { 24718 ill = ip_grab_attach_ill(NULL, ipsec_mp, 24719 ill_index, B_FALSE); 24720 24721 /* Failure case frees things for us. */ 24722 if (ill == NULL) 24723 return; 24724 24725 ill_need_rele = B_TRUE; 24726 } 24727 /* 24728 * If this packet needs to go out on a particular interface 24729 * honor it. 24730 */ 24731 if (attach_if) { 24732 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 24733 24734 /* 24735 * Check if we need an ire that will not be 24736 * looked up by anybody else i.e. HIDDEN. 24737 */ 24738 if (ill_is_probeonly(ill)) { 24739 match_flags |= MATCH_IRE_MARK_HIDDEN; 24740 } 24741 } 24742 } 24743 24744 if (CLASSD(dst)) { 24745 boolean_t conn_dontroute; 24746 /* 24747 * Use the ill_index to get the right ipif. 24748 */ 24749 conn_dontroute = io->ipsec_out_dontroute; 24750 if (ill_index == 0) 24751 ipif = ipif_lookup_group(dst, zoneid); 24752 else 24753 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24754 if (ipif == NULL) { 24755 ip1dbg(("ip_wput_ipsec_out: No ipif for" 24756 " multicast\n")); 24757 BUMP_MIB(&ip_mib, ipOutNoRoutes); 24758 freemsg(ipsec_mp); 24759 goto done; 24760 } 24761 /* 24762 * ipha_src has already been intialized with the 24763 * value of the ipif in ip_wput. All we need now is 24764 * an ire to send this downstream. 24765 */ 24766 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 24767 MBLK_GETLABEL(mp), match_flags); 24768 if (ire != NULL) { 24769 ill_t *ill1; 24770 /* 24771 * Do the multicast forwarding now, as the IPSEC 24772 * processing has been done. 24773 */ 24774 if (ip_g_mrouter && !conn_dontroute && 24775 (ill1 = ire_to_ill(ire))) { 24776 if (ip_mforward(ill1, ipha, mp)) { 24777 freemsg(ipsec_mp); 24778 ip1dbg(("ip_wput_ipsec_out: mforward " 24779 "failed\n")); 24780 ire_refrele(ire); 24781 goto done; 24782 } 24783 } 24784 goto send; 24785 } 24786 24787 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 24788 mp->b_prev = NULL; 24789 mp->b_next = NULL; 24790 24791 /* 24792 * If the IPsec packet was processed asynchronously, 24793 * drop it now. 24794 */ 24795 if (q == NULL) { 24796 freemsg(ipsec_mp); 24797 goto done; 24798 } 24799 24800 /* 24801 * We may be using a wrong ipif to create the ire. 24802 * But it is okay as the source address is assigned 24803 * for the packet already. Next outbound packet would 24804 * create the IRE with the right IPIF in ip_wput. 24805 * 24806 * Also handle RTF_MULTIRT routes. 24807 */ 24808 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 24809 zoneid); 24810 } else { 24811 if (attach_if) { 24812 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 24813 zoneid, MBLK_GETLABEL(mp), match_flags); 24814 } else { 24815 if (ire_arg != NULL) { 24816 ire = ire_arg; 24817 ire_need_rele = B_FALSE; 24818 } else { 24819 ire = ire_cache_lookup(dst, zoneid, 24820 MBLK_GETLABEL(mp)); 24821 } 24822 } 24823 if (ire != NULL) { 24824 goto send; 24825 } 24826 24827 /* 24828 * ire disappeared underneath. 24829 * 24830 * What we need to do here is the ip_newroute 24831 * logic to get the ire without doing the IPSEC 24832 * processing. Follow the same old path. But this 24833 * time, ip_wput or ire_add_then_put will call us 24834 * directly as all the IPSEC operations are done. 24835 */ 24836 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 24837 mp->b_prev = NULL; 24838 mp->b_next = NULL; 24839 24840 /* 24841 * If the IPsec packet was processed asynchronously, 24842 * drop it now. 24843 */ 24844 if (q == NULL) { 24845 freemsg(ipsec_mp); 24846 goto done; 24847 } 24848 24849 /* 24850 * Since we're going through ip_newroute() again, we 24851 * need to make sure we don't: 24852 * 24853 * 1.) Trigger the ASSERT() with the ipha_ident 24854 * overloading. 24855 * 2.) Redo transport-layer checksumming, since we've 24856 * already done all that to get this far. 24857 * 24858 * The easiest way not do either of the above is to set 24859 * the ipha_ident field to IP_HDR_INCLUDED. 24860 */ 24861 ipha->ipha_ident = IP_HDR_INCLUDED; 24862 ip_newroute(q, ipsec_mp, dst, NULL, 24863 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid); 24864 } 24865 goto done; 24866 send: 24867 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 24868 /* 24869 * ESP NAT-Traversal packet. 24870 * 24871 * Just do software checksum for now. 24872 */ 24873 24874 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 24875 IP_STAT(ip_out_sw_cksum); 24876 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 24877 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 24878 #define iphs ((uint16_t *)ipha) 24879 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 24880 iphs[9] + ntohs(htons(ipha->ipha_length) - 24881 IP_SIMPLE_HDR_LENGTH); 24882 #undef iphs 24883 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 24884 cksum = 0xFFFF; 24885 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 24886 if (mp1->b_wptr - mp1->b_rptr >= 24887 offset + sizeof (uint16_t)) { 24888 up = (uint16_t *)(mp1->b_rptr + offset); 24889 *up = cksum; 24890 break; /* out of for loop */ 24891 } else { 24892 offset -= (mp->b_wptr - mp->b_rptr); 24893 } 24894 } /* Otherwise, just keep the all-zero checksum. */ 24895 24896 if (ire->ire_stq == NULL) { 24897 /* 24898 * Loopbacks go through ip_wput_local except for one case. 24899 * We come here if we generate a icmp_frag_needed message 24900 * after IPSEC processing is over. When this function calls 24901 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 24902 * icmp_frag_needed. The message generated comes back here 24903 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 24904 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 24905 * source address as it is usually set in ip_wput_ire. As 24906 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 24907 * and we end up here. We can't enter ip_wput_ire once the 24908 * IPSEC processing is over and hence we need to do it here. 24909 */ 24910 ASSERT(q != NULL); 24911 UPDATE_OB_PKT_COUNT(ire); 24912 ire->ire_last_used_time = lbolt; 24913 if (ipha->ipha_src == 0) 24914 ipha->ipha_src = ire->ire_src_addr; 24915 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 24916 ire, 0, zoneid); 24917 if (ire_need_rele) 24918 ire_refrele(ire); 24919 goto done; 24920 } 24921 24922 if (ire->ire_max_frag < (unsigned int)LENGTH) { 24923 /* 24924 * We are through with IPSEC processing. 24925 * Fragment this and send it on the wire. 24926 */ 24927 if (io->ipsec_out_accelerated) { 24928 /* 24929 * The packet has been accelerated but must 24930 * be fragmented. This should not happen 24931 * since AH and ESP must not accelerate 24932 * packets that need fragmentation, however 24933 * the configuration could have changed 24934 * since the AH or ESP processing. 24935 * Drop packet. 24936 * IPsec KSTATS: bump bean counter here. 24937 */ 24938 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 24939 "fragmented accelerated packet!\n")); 24940 freemsg(ipsec_mp); 24941 } else { 24942 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid); 24943 } 24944 if (ire_need_rele) 24945 ire_refrele(ire); 24946 goto done; 24947 } 24948 24949 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 24950 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 24951 (void *)ire->ire_ipif, (void *)ipif)); 24952 24953 /* 24954 * Multiroute the secured packet, unless IPsec really 24955 * requires the packet to go out only through a particular 24956 * interface. 24957 */ 24958 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 24959 ire_t *first_ire; 24960 irb = ire->ire_bucket; 24961 ASSERT(irb != NULL); 24962 /* 24963 * This ire has been looked up as the one that 24964 * goes through the given ipif; 24965 * make sure we do not omit any other multiroute ire 24966 * that may be present in the bucket before this one. 24967 */ 24968 IRB_REFHOLD(irb); 24969 for (first_ire = irb->irb_ire; 24970 first_ire != NULL; 24971 first_ire = first_ire->ire_next) { 24972 if ((first_ire->ire_flags & RTF_MULTIRT) && 24973 (first_ire->ire_addr == ire->ire_addr) && 24974 !(first_ire->ire_marks & 24975 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24976 break; 24977 } 24978 24979 if ((first_ire != NULL) && (first_ire != ire)) { 24980 /* 24981 * Don't change the ire if the packet must 24982 * be fragmented if sent via this new one. 24983 */ 24984 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 24985 IRE_REFHOLD(first_ire); 24986 if (ire_need_rele) 24987 ire_refrele(ire); 24988 else 24989 ire_need_rele = B_TRUE; 24990 ire = first_ire; 24991 } 24992 } 24993 IRB_REFRELE(irb); 24994 24995 multirt_send = B_TRUE; 24996 max_frag = ire->ire_max_frag; 24997 } else { 24998 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 24999 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 25000 "flag, attach_if %d\n", attach_if)); 25001 } 25002 } 25003 25004 /* 25005 * In most cases, the emission loop below is entered only once. 25006 * Only in the case where the ire holds the RTF_MULTIRT 25007 * flag, we loop to process all RTF_MULTIRT ires in the 25008 * bucket, and send the packet through all crossed 25009 * RTF_MULTIRT routes. 25010 */ 25011 do { 25012 if (multirt_send) { 25013 /* 25014 * ire1 holds here the next ire to process in the 25015 * bucket. If multirouting is expected, 25016 * any non-RTF_MULTIRT ire that has the 25017 * right destination address is ignored. 25018 */ 25019 ASSERT(irb != NULL); 25020 IRB_REFHOLD(irb); 25021 for (ire1 = ire->ire_next; 25022 ire1 != NULL; 25023 ire1 = ire1->ire_next) { 25024 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 25025 continue; 25026 if (ire1->ire_addr != ire->ire_addr) 25027 continue; 25028 if (ire1->ire_marks & 25029 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 25030 continue; 25031 /* No loopback here */ 25032 if (ire1->ire_stq == NULL) 25033 continue; 25034 /* 25035 * Ensure we do not exceed the MTU 25036 * of the next route. 25037 */ 25038 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 25039 ip_multirt_bad_mtu(ire1, max_frag); 25040 continue; 25041 } 25042 25043 IRE_REFHOLD(ire1); 25044 break; 25045 } 25046 IRB_REFRELE(irb); 25047 if (ire1 != NULL) { 25048 /* 25049 * We are in a multiple send case, need to 25050 * make a copy of the packet. 25051 */ 25052 next_mp = copymsg(ipsec_mp); 25053 if (next_mp == NULL) { 25054 ire_refrele(ire1); 25055 ire1 = NULL; 25056 } 25057 } 25058 } 25059 /* 25060 * Everything is done. Send it out on the wire 25061 * 25062 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 25063 * either send it on the wire or, in the case of 25064 * HW acceleration, call ipsec_hw_putnext. 25065 */ 25066 if (ire->ire_nce && 25067 ire->ire_nce->nce_state != ND_REACHABLE) { 25068 DTRACE_PROBE2(ip__wput__ipsec__bail, 25069 (ire_t *), ire, (mblk_t *), ipsec_mp); 25070 /* 25071 * If ire's link-layer is unresolved (this 25072 * would only happen if the incomplete ire 25073 * was added to cachetable via forwarding path) 25074 * don't bother going to ip_xmit_v4. Just drop the 25075 * packet. 25076 * There is a slight risk here, in that, if we 25077 * have the forwarding path create an incomplete 25078 * IRE, then until the IRE is completed, any 25079 * transmitted IPSEC packets will be dropped 25080 * instead of being queued waiting for resolution. 25081 * 25082 * But the likelihood of a forwarding packet and a wput 25083 * packet sending to the same dst at the same time 25084 * and there not yet be an ARP entry for it is small. 25085 * Furthermore, if this actually happens, it might 25086 * be likely that wput would generate multiple 25087 * packets (and forwarding would also have a train 25088 * of packets) for that destination. If this is 25089 * the case, some of them would have been dropped 25090 * anyway, since ARP only queues a few packets while 25091 * waiting for resolution 25092 * 25093 * NOTE: We should really call ip_xmit_v4, 25094 * and let it queue the packet and send the 25095 * ARP query and have ARP come back thus: 25096 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 25097 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 25098 * hw accel work. But it's too complex to get 25099 * the IPsec hw acceleration approach to fit 25100 * well with ip_xmit_v4 doing ARP without 25101 * doing IPSEC simplification. For now, we just 25102 * poke ip_xmit_v4 to trigger the arp resolve, so 25103 * that we can continue with the send on the next 25104 * attempt. 25105 * 25106 * XXX THis should be revisited, when 25107 * the IPsec/IP interaction is cleaned up 25108 */ 25109 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 25110 " - dropping packet\n")); 25111 freemsg(ipsec_mp); 25112 /* 25113 * Call ip_xmit_v4() to trigger ARP query 25114 * in case the nce_state is ND_INITIAL 25115 */ 25116 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 25117 goto drop_pkt; 25118 } 25119 25120 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 25121 pktxmit_state = ip_xmit_v4(mp, ire, 25122 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 25123 25124 if ((pktxmit_state == SEND_FAILED) || 25125 (pktxmit_state == LLHDR_RESLV_FAILED)) { 25126 25127 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 25128 drop_pkt: 25129 BUMP_MIB(&ip_mib, ipOutDiscards); 25130 if (ire_need_rele) 25131 ire_refrele(ire); 25132 if (ire1 != NULL) { 25133 ire_refrele(ire1); 25134 freemsg(next_mp); 25135 } 25136 goto done; 25137 } 25138 25139 freeb(ipsec_mp); 25140 if (ire_need_rele) 25141 ire_refrele(ire); 25142 25143 if (ire1 != NULL) { 25144 ire = ire1; 25145 ire_need_rele = B_TRUE; 25146 ASSERT(next_mp); 25147 ipsec_mp = next_mp; 25148 mp = ipsec_mp->b_cont; 25149 ire1 = NULL; 25150 next_mp = NULL; 25151 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25152 } else { 25153 multirt_send = B_FALSE; 25154 } 25155 } while (multirt_send); 25156 done: 25157 if (ill != NULL && ill_need_rele) 25158 ill_refrele(ill); 25159 if (ipif != NULL) 25160 ipif_refrele(ipif); 25161 } 25162 25163 /* 25164 * Get the ill corresponding to the specified ire, and compare its 25165 * capabilities with the protocol and algorithms specified by the 25166 * the SA obtained from ipsec_out. If they match, annotate the 25167 * ipsec_out structure to indicate that the packet needs acceleration. 25168 * 25169 * 25170 * A packet is eligible for outbound hardware acceleration if the 25171 * following conditions are satisfied: 25172 * 25173 * 1. the packet will not be fragmented 25174 * 2. the provider supports the algorithm 25175 * 3. there is no pending control message being exchanged 25176 * 4. snoop is not attached 25177 * 5. the destination address is not a broadcast or multicast address. 25178 * 25179 * Rationale: 25180 * - Hardware drivers do not support fragmentation with 25181 * the current interface. 25182 * - snoop, multicast, and broadcast may result in exposure of 25183 * a cleartext datagram. 25184 * We check all five of these conditions here. 25185 * 25186 * XXX would like to nuke "ire_t *" parameter here; problem is that 25187 * IRE is only way to figure out if a v4 address is a broadcast and 25188 * thus ineligible for acceleration... 25189 */ 25190 static void 25191 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 25192 { 25193 ipsec_out_t *io; 25194 mblk_t *data_mp; 25195 uint_t plen, overhead; 25196 25197 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 25198 return; 25199 25200 if (ill == NULL) 25201 return; 25202 25203 /* 25204 * Destination address is a broadcast or multicast. Punt. 25205 */ 25206 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 25207 IRE_LOCAL))) 25208 return; 25209 25210 data_mp = ipsec_mp->b_cont; 25211 25212 if (ill->ill_isv6) { 25213 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 25214 25215 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 25216 return; 25217 25218 plen = ip6h->ip6_plen; 25219 } else { 25220 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 25221 25222 if (CLASSD(ipha->ipha_dst)) 25223 return; 25224 25225 plen = ipha->ipha_length; 25226 } 25227 /* 25228 * Is there a pending DLPI control message being exchanged 25229 * between IP/IPsec and the DLS Provider? If there is, it 25230 * could be a SADB update, and the state of the DLS Provider 25231 * SADB might not be in sync with the SADB maintained by 25232 * IPsec. To avoid dropping packets or using the wrong keying 25233 * material, we do not accelerate this packet. 25234 */ 25235 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 25236 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25237 "ill_dlpi_pending! don't accelerate packet\n")); 25238 return; 25239 } 25240 25241 /* 25242 * Is the Provider in promiscous mode? If it does, we don't 25243 * accelerate the packet since it will bounce back up to the 25244 * listeners in the clear. 25245 */ 25246 if (ill->ill_promisc_on_phys) { 25247 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25248 "ill in promiscous mode, don't accelerate packet\n")); 25249 return; 25250 } 25251 25252 /* 25253 * Will the packet require fragmentation? 25254 */ 25255 25256 /* 25257 * IPsec ESP note: this is a pessimistic estimate, but the same 25258 * as is used elsewhere. 25259 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 25260 * + 2-byte trailer 25261 */ 25262 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 25263 IPSEC_BASE_ESP_HDR_SIZE(sa); 25264 25265 if ((plen + overhead) > ill->ill_max_mtu) 25266 return; 25267 25268 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25269 25270 /* 25271 * Can the ill accelerate this IPsec protocol and algorithm 25272 * specified by the SA? 25273 */ 25274 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 25275 ill->ill_isv6, sa)) { 25276 return; 25277 } 25278 25279 /* 25280 * Tell AH or ESP that the outbound ill is capable of 25281 * accelerating this packet. 25282 */ 25283 io->ipsec_out_is_capab_ill = B_TRUE; 25284 } 25285 25286 /* 25287 * Select which AH & ESP SA's to use (if any) for the outbound packet. 25288 * 25289 * If this function returns B_TRUE, the requested SA's have been filled 25290 * into the ipsec_out_*_sa pointers. 25291 * 25292 * If the function returns B_FALSE, the packet has been "consumed", most 25293 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 25294 * 25295 * The SA references created by the protocol-specific "select" 25296 * function will be released when the ipsec_mp is freed, thanks to the 25297 * ipsec_out_free destructor -- see spd.c. 25298 */ 25299 static boolean_t 25300 ipsec_out_select_sa(mblk_t *ipsec_mp) 25301 { 25302 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 25303 ipsec_out_t *io; 25304 ipsec_policy_t *pp; 25305 ipsec_action_t *ap; 25306 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25307 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25308 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25309 25310 if (!io->ipsec_out_secure) { 25311 /* 25312 * We came here by mistake. 25313 * Don't bother with ipsec processing 25314 * We should "discourage" this path in the future. 25315 */ 25316 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25317 return (B_FALSE); 25318 } 25319 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25320 ASSERT((io->ipsec_out_policy != NULL) || 25321 (io->ipsec_out_act != NULL)); 25322 25323 ASSERT(io->ipsec_out_failed == B_FALSE); 25324 25325 /* 25326 * IPSEC processing has started. 25327 */ 25328 io->ipsec_out_proc_begin = B_TRUE; 25329 ap = io->ipsec_out_act; 25330 if (ap == NULL) { 25331 pp = io->ipsec_out_policy; 25332 ASSERT(pp != NULL); 25333 ap = pp->ipsp_act; 25334 ASSERT(ap != NULL); 25335 } 25336 25337 /* 25338 * We have an action. now, let's select SA's. 25339 * (In the future, we can cache this in the conn_t..) 25340 */ 25341 if (ap->ipa_want_esp) { 25342 if (io->ipsec_out_esp_sa == NULL) { 25343 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 25344 IPPROTO_ESP); 25345 } 25346 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 25347 } 25348 25349 if (ap->ipa_want_ah) { 25350 if (io->ipsec_out_ah_sa == NULL) { 25351 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 25352 IPPROTO_AH); 25353 } 25354 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 25355 /* 25356 * The ESP and AH processing order needs to be preserved 25357 * when both protocols are required (ESP should be applied 25358 * before AH for an outbound packet). Force an ESP ACQUIRE 25359 * when both ESP and AH are required, and an AH ACQUIRE 25360 * is needed. 25361 */ 25362 if (ap->ipa_want_esp && need_ah_acquire) 25363 need_esp_acquire = B_TRUE; 25364 } 25365 25366 /* 25367 * Send an ACQUIRE (extended, regular, or both) if we need one. 25368 * Release SAs that got referenced, but will not be used until we 25369 * acquire _all_ of the SAs we need. 25370 */ 25371 if (need_ah_acquire || need_esp_acquire) { 25372 if (io->ipsec_out_ah_sa != NULL) { 25373 IPSA_REFRELE(io->ipsec_out_ah_sa); 25374 io->ipsec_out_ah_sa = NULL; 25375 } 25376 if (io->ipsec_out_esp_sa != NULL) { 25377 IPSA_REFRELE(io->ipsec_out_esp_sa); 25378 io->ipsec_out_esp_sa = NULL; 25379 } 25380 25381 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 25382 return (B_FALSE); 25383 } 25384 25385 return (B_TRUE); 25386 } 25387 25388 /* 25389 * Process an IPSEC_OUT message and see what you can 25390 * do with it. 25391 * IPQoS Notes: 25392 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 25393 * IPSec. 25394 * XXX would like to nuke ire_t. 25395 * XXX ill_index better be "real" 25396 */ 25397 void 25398 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 25399 { 25400 ipsec_out_t *io; 25401 ipsec_policy_t *pp; 25402 ipsec_action_t *ap; 25403 ipha_t *ipha; 25404 ip6_t *ip6h; 25405 mblk_t *mp; 25406 ill_t *ill; 25407 zoneid_t zoneid; 25408 ipsec_status_t ipsec_rc; 25409 boolean_t ill_need_rele = B_FALSE; 25410 25411 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25412 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25413 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25414 mp = ipsec_mp->b_cont; 25415 25416 /* 25417 * Initiate IPPF processing. We do it here to account for packets 25418 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 25419 * We can check for ipsec_out_proc_begin even for such packets, as 25420 * they will always be false (asserted below). 25421 */ 25422 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 25423 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 25424 io->ipsec_out_ill_index : ill_index); 25425 if (mp == NULL) { 25426 ip2dbg(("ipsec_out_process: packet dropped "\ 25427 "during IPPF processing\n")); 25428 freeb(ipsec_mp); 25429 BUMP_MIB(&ip_mib, ipOutDiscards); 25430 return; 25431 } 25432 } 25433 25434 if (!io->ipsec_out_secure) { 25435 /* 25436 * We came here by mistake. 25437 * Don't bother with ipsec processing 25438 * Should "discourage" this path in the future. 25439 */ 25440 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25441 goto done; 25442 } 25443 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25444 ASSERT((io->ipsec_out_policy != NULL) || 25445 (io->ipsec_out_act != NULL)); 25446 ASSERT(io->ipsec_out_failed == B_FALSE); 25447 25448 if (!ipsec_loaded()) { 25449 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 25450 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25451 BUMP_MIB(&ip_mib, ipOutDiscards); 25452 } else { 25453 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 25454 } 25455 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 25456 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 25457 return; 25458 } 25459 25460 /* 25461 * IPSEC processing has started. 25462 */ 25463 io->ipsec_out_proc_begin = B_TRUE; 25464 ap = io->ipsec_out_act; 25465 if (ap == NULL) { 25466 pp = io->ipsec_out_policy; 25467 ASSERT(pp != NULL); 25468 ap = pp->ipsp_act; 25469 ASSERT(ap != NULL); 25470 } 25471 25472 /* 25473 * Save the outbound ill index. When the packet comes back 25474 * from IPsec, we make sure the ill hasn't changed or disappeared 25475 * before sending it the accelerated packet. 25476 */ 25477 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 25478 int ifindex; 25479 ill = ire_to_ill(ire); 25480 ifindex = ill->ill_phyint->phyint_ifindex; 25481 io->ipsec_out_capab_ill_index = ifindex; 25482 } 25483 25484 /* 25485 * The order of processing is first insert a IP header if needed. 25486 * Then insert the ESP header and then the AH header. 25487 */ 25488 if ((io->ipsec_out_se_done == B_FALSE) && 25489 (ap->ipa_want_se)) { 25490 /* 25491 * First get the outer IP header before sending 25492 * it to ESP. 25493 */ 25494 ipha_t *oipha, *iipha; 25495 mblk_t *outer_mp, *inner_mp; 25496 25497 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 25498 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 25499 "ipsec_out_process: " 25500 "Self-Encapsulation failed: Out of memory\n"); 25501 freemsg(ipsec_mp); 25502 BUMP_MIB(&ip_mib, ipOutDiscards); 25503 return; 25504 } 25505 inner_mp = ipsec_mp->b_cont; 25506 ASSERT(inner_mp->b_datap->db_type == M_DATA); 25507 oipha = (ipha_t *)outer_mp->b_rptr; 25508 iipha = (ipha_t *)inner_mp->b_rptr; 25509 *oipha = *iipha; 25510 outer_mp->b_wptr += sizeof (ipha_t); 25511 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 25512 sizeof (ipha_t)); 25513 oipha->ipha_protocol = IPPROTO_ENCAP; 25514 oipha->ipha_version_and_hdr_length = 25515 IP_SIMPLE_HDR_VERSION; 25516 oipha->ipha_hdr_checksum = 0; 25517 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 25518 outer_mp->b_cont = inner_mp; 25519 ipsec_mp->b_cont = outer_mp; 25520 25521 io->ipsec_out_se_done = B_TRUE; 25522 io->ipsec_out_encaps = B_TRUE; 25523 } 25524 25525 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 25526 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 25527 !ipsec_out_select_sa(ipsec_mp)) 25528 return; 25529 25530 /* 25531 * By now, we know what SA's to use. Toss over to ESP & AH 25532 * to do the heavy lifting. 25533 */ 25534 zoneid = io->ipsec_out_zoneid; 25535 ASSERT(zoneid != ALL_ZONES); 25536 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 25537 ASSERT(io->ipsec_out_esp_sa != NULL); 25538 io->ipsec_out_esp_done = B_TRUE; 25539 /* 25540 * Note that since hw accel can only apply one transform, 25541 * not two, we skip hw accel for ESP if we also have AH 25542 * This is an design limitation of the interface 25543 * which should be revisited. 25544 */ 25545 ASSERT(ire != NULL); 25546 if (io->ipsec_out_ah_sa == NULL) { 25547 ill = (ill_t *)ire->ire_stq->q_ptr; 25548 ipsec_out_is_accelerated(ipsec_mp, 25549 io->ipsec_out_esp_sa, ill, ire); 25550 } 25551 25552 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 25553 switch (ipsec_rc) { 25554 case IPSEC_STATUS_SUCCESS: 25555 break; 25556 case IPSEC_STATUS_FAILED: 25557 BUMP_MIB(&ip_mib, ipOutDiscards); 25558 /* FALLTHRU */ 25559 case IPSEC_STATUS_PENDING: 25560 return; 25561 } 25562 } 25563 25564 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 25565 ASSERT(io->ipsec_out_ah_sa != NULL); 25566 io->ipsec_out_ah_done = B_TRUE; 25567 if (ire == NULL) { 25568 int idx = io->ipsec_out_capab_ill_index; 25569 ill = ill_lookup_on_ifindex(idx, B_FALSE, 25570 NULL, NULL, NULL, NULL); 25571 ill_need_rele = B_TRUE; 25572 } else { 25573 ill = (ill_t *)ire->ire_stq->q_ptr; 25574 } 25575 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 25576 ire); 25577 25578 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 25579 switch (ipsec_rc) { 25580 case IPSEC_STATUS_SUCCESS: 25581 break; 25582 case IPSEC_STATUS_FAILED: 25583 BUMP_MIB(&ip_mib, ipOutDiscards); 25584 /* FALLTHRU */ 25585 case IPSEC_STATUS_PENDING: 25586 if (ill != NULL && ill_need_rele) 25587 ill_refrele(ill); 25588 return; 25589 } 25590 } 25591 /* 25592 * We are done with IPSEC processing. Send it over 25593 * the wire. 25594 */ 25595 done: 25596 mp = ipsec_mp->b_cont; 25597 ipha = (ipha_t *)mp->b_rptr; 25598 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25599 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 25600 } else { 25601 ip6h = (ip6_t *)ipha; 25602 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 25603 } 25604 if (ill != NULL && ill_need_rele) 25605 ill_refrele(ill); 25606 } 25607 25608 /* ARGSUSED */ 25609 void 25610 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 25611 { 25612 opt_restart_t *or; 25613 int err; 25614 conn_t *connp; 25615 25616 ASSERT(CONN_Q(q)); 25617 connp = Q_TO_CONN(q); 25618 25619 ASSERT(first_mp->b_datap->db_type == M_CTL); 25620 or = (opt_restart_t *)first_mp->b_rptr; 25621 /* 25622 * We don't need to pass any credentials here since this is just 25623 * a restart. The credentials are passed in when svr4_optcom_req 25624 * is called the first time (from ip_wput_nondata). 25625 */ 25626 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 25627 err = svr4_optcom_req(q, first_mp, NULL, 25628 &ip_opt_obj); 25629 } else { 25630 ASSERT(or->or_type == T_OPTMGMT_REQ); 25631 err = tpi_optcom_req(q, first_mp, NULL, 25632 &ip_opt_obj); 25633 } 25634 if (err != EINPROGRESS) { 25635 /* operation is done */ 25636 CONN_OPER_PENDING_DONE(connp); 25637 } 25638 } 25639 25640 /* 25641 * ioctls that go through a down/up sequence may need to wait for the down 25642 * to complete. This involves waiting for the ire and ipif refcnts to go down 25643 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 25644 */ 25645 /* ARGSUSED */ 25646 void 25647 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 25648 { 25649 struct iocblk *iocp; 25650 mblk_t *mp1; 25651 ipif_t *ipif; 25652 ip_ioctl_cmd_t *ipip; 25653 int err; 25654 sin_t *sin; 25655 struct lifreq *lifr; 25656 struct ifreq *ifr; 25657 25658 iocp = (struct iocblk *)mp->b_rptr; 25659 ASSERT(ipsq != NULL); 25660 /* Existence of mp1 verified in ip_wput_nondata */ 25661 mp1 = mp->b_cont->b_cont; 25662 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25663 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 25664 ill_t *ill; 25665 /* 25666 * Special case where ipsq_current_ipif may not be set. 25667 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 25668 * ill could also have become part of a ipmp group in the 25669 * process, we are here as were not able to complete the 25670 * operation in ipif_set_values because we could not become 25671 * exclusive on the new ipsq, In such a case ipsq_current_ipif 25672 * will not be set so we need to set it. 25673 */ 25674 ill = (ill_t *)q->q_ptr; 25675 ipsq->ipsq_current_ipif = ill->ill_ipif; 25676 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25677 } 25678 25679 ipif = ipsq->ipsq_current_ipif; 25680 ASSERT(ipif != NULL); 25681 if (ipip->ipi_cmd_type == IF_CMD) { 25682 /* This a old style SIOC[GS]IF* command */ 25683 ifr = (struct ifreq *)mp1->b_rptr; 25684 sin = (sin_t *)&ifr->ifr_addr; 25685 } else if (ipip->ipi_cmd_type == LIF_CMD) { 25686 /* This a new style SIOC[GS]LIF* command */ 25687 lifr = (struct lifreq *)mp1->b_rptr; 25688 sin = (sin_t *)&lifr->lifr_addr; 25689 } else { 25690 sin = NULL; 25691 } 25692 25693 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 25694 (void *)mp1->b_rptr); 25695 25696 /* SIOCLIFREMOVEIF could have removed the ipif */ 25697 ip_ioctl_finish(q, mp, err, 25698 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25699 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 25700 } 25701 25702 /* 25703 * ioctl processing 25704 * 25705 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 25706 * the ioctl command in the ioctl tables and determines the copyin data size 25707 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 25708 * size. 25709 * 25710 * ioctl processing then continues when the M_IOCDATA makes its way down. 25711 * Now the ioctl is looked up again in the ioctl table, and its properties are 25712 * extracted. The associated 'conn' is then refheld till the end of the ioctl 25713 * and the general ioctl processing function ip_process_ioctl is called. 25714 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 25715 * so goes thru the serialization primitive ipsq_try_enter. Then the 25716 * appropriate function to handle the ioctl is called based on the entry in 25717 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 25718 * which also refreleases the 'conn' that was refheld at the start of the 25719 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 25720 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 25721 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 25722 * 25723 * Many exclusive ioctls go thru an internal down up sequence as part of 25724 * the operation. For example an attempt to change the IP address of an 25725 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 25726 * does all the cleanup such as deleting all ires that use this address. 25727 * Then we need to wait till all references to the interface go away. 25728 */ 25729 void 25730 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 25731 { 25732 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 25733 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 25734 cmd_info_t ci; 25735 int err; 25736 boolean_t entered_ipsq = B_FALSE; 25737 25738 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 25739 25740 if (ipip == NULL) 25741 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25742 25743 /* 25744 * SIOCLIFADDIF needs to go thru a special path since the 25745 * ill may not exist yet. This happens in the case of lo0 25746 * which is created using this ioctl. 25747 */ 25748 if (ipip->ipi_cmd == SIOCLIFADDIF) { 25749 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 25750 ip_ioctl_finish(q, mp, err, 25751 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25752 NULL, NULL); 25753 return; 25754 } 25755 25756 ci.ci_ipif = NULL; 25757 switch (ipip->ipi_cmd_type) { 25758 case IF_CMD: 25759 case LIF_CMD: 25760 /* 25761 * ioctls that pass in a [l]ifreq appear here. 25762 * ip_extract_lifreq_cmn returns a refheld ipif in 25763 * ci.ci_ipif 25764 */ 25765 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 25766 ipip->ipi_flags, &ci, ip_process_ioctl); 25767 if (err != 0) { 25768 ip_ioctl_finish(q, mp, err, 25769 ipip->ipi_flags & IPI_GET_CMD ? 25770 COPYOUT : NO_COPYOUT, NULL, NULL); 25771 return; 25772 } 25773 ASSERT(ci.ci_ipif != NULL); 25774 break; 25775 25776 case TUN_CMD: 25777 /* 25778 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 25779 * a refheld ipif in ci.ci_ipif 25780 */ 25781 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 25782 if (err != 0) { 25783 ip_ioctl_finish(q, mp, err, 25784 ipip->ipi_flags & IPI_GET_CMD ? 25785 COPYOUT : NO_COPYOUT, NULL, NULL); 25786 return; 25787 } 25788 ASSERT(ci.ci_ipif != NULL); 25789 break; 25790 25791 case MISC_CMD: 25792 /* 25793 * ioctls that neither pass in [l]ifreq or iftun_req come here 25794 * For eg. SIOCGLIFCONF will appear here. 25795 */ 25796 switch (ipip->ipi_cmd) { 25797 case IF_UNITSEL: 25798 /* ioctl comes down the ill */ 25799 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 25800 ipif_refhold(ci.ci_ipif); 25801 break; 25802 case SIOCGMSFILTER: 25803 case SIOCSMSFILTER: 25804 case SIOCGIPMSFILTER: 25805 case SIOCSIPMSFILTER: 25806 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 25807 ip_process_ioctl); 25808 if (err != 0) { 25809 ip_ioctl_finish(q, mp, err, 25810 ipip->ipi_flags & IPI_GET_CMD ? 25811 COPYOUT : NO_COPYOUT, NULL, NULL); 25812 return; 25813 } 25814 break; 25815 } 25816 err = 0; 25817 ci.ci_sin = NULL; 25818 ci.ci_sin6 = NULL; 25819 ci.ci_lifr = NULL; 25820 break; 25821 } 25822 25823 /* 25824 * If ipsq is non-null, we are already being called exclusively 25825 */ 25826 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 25827 if (!(ipip->ipi_flags & IPI_WR)) { 25828 /* 25829 * A return value of EINPROGRESS means the ioctl is 25830 * either queued and waiting for some reason or has 25831 * already completed. 25832 */ 25833 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25834 ci.ci_lifr); 25835 if (ci.ci_ipif != NULL) 25836 ipif_refrele(ci.ci_ipif); 25837 ip_ioctl_finish(q, mp, err, 25838 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25839 NULL, NULL); 25840 return; 25841 } 25842 25843 ASSERT(ci.ci_ipif != NULL); 25844 25845 if (ipsq == NULL) { 25846 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 25847 ip_process_ioctl, NEW_OP, B_TRUE); 25848 entered_ipsq = B_TRUE; 25849 } 25850 /* 25851 * Release the ipif so that ipif_down and friends that wait for 25852 * references to go away are not misled about the current ipif_refcnt 25853 * values. We are writer so we can access the ipif even after releasing 25854 * the ipif. 25855 */ 25856 ipif_refrele(ci.ci_ipif); 25857 if (ipsq == NULL) 25858 return; 25859 25860 mutex_enter(&ipsq->ipsq_lock); 25861 ASSERT(ipsq->ipsq_current_ipif == NULL); 25862 ipsq->ipsq_current_ipif = ci.ci_ipif; 25863 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25864 mutex_exit(&ipsq->ipsq_lock); 25865 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 25866 /* 25867 * For most set ioctls that come here, this serves as a single point 25868 * where we set the IPIF_CHANGING flag. This ensures that there won't 25869 * be any new references to the ipif. This helps functions that go 25870 * through this path and end up trying to wait for the refcnts 25871 * associated with the ipif to go down to zero. Some exceptions are 25872 * Failover, Failback, and Groupname commands that operate on more than 25873 * just the ci.ci_ipif. These commands internally determine the 25874 * set of ipif's they operate on and set and clear the IPIF_CHANGING 25875 * flags on that set. Another exception is the Removeif command that 25876 * sets the IPIF_CONDEMNED flag internally after identifying the right 25877 * ipif to operate on. 25878 */ 25879 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 25880 ipip->ipi_cmd != SIOCLIFFAILOVER && 25881 ipip->ipi_cmd != SIOCLIFFAILBACK && 25882 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 25883 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 25884 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 25885 25886 /* 25887 * A return value of EINPROGRESS means the ioctl is 25888 * either queued and waiting for some reason or has 25889 * already completed. 25890 */ 25891 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25892 ci.ci_lifr); 25893 25894 /* SIOCLIFREMOVEIF could have removed the ipif */ 25895 ip_ioctl_finish(q, mp, err, 25896 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25897 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 25898 25899 if (entered_ipsq) 25900 ipsq_exit(ipsq, B_TRUE, B_TRUE); 25901 } 25902 25903 /* 25904 * Complete the ioctl. Typically ioctls use the mi package and need to 25905 * do mi_copyout/mi_copy_done. 25906 */ 25907 void 25908 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 25909 ipif_t *ipif, ipsq_t *ipsq) 25910 { 25911 conn_t *connp = NULL; 25912 25913 if (err == EINPROGRESS) 25914 return; 25915 25916 if (CONN_Q(q)) { 25917 connp = Q_TO_CONN(q); 25918 ASSERT(connp->conn_ref >= 2); 25919 } 25920 25921 switch (mode) { 25922 case COPYOUT: 25923 if (err == 0) 25924 mi_copyout(q, mp); 25925 else 25926 mi_copy_done(q, mp, err); 25927 break; 25928 25929 case NO_COPYOUT: 25930 mi_copy_done(q, mp, err); 25931 break; 25932 25933 default: 25934 /* An ioctl aborted through a conn close would take this path */ 25935 break; 25936 } 25937 25938 /* 25939 * The refhold placed at the start of the ioctl is released here. 25940 */ 25941 if (connp != NULL) 25942 CONN_OPER_PENDING_DONE(connp); 25943 25944 /* 25945 * If the ioctl were an exclusive ioctl it would have set 25946 * IPIF_CHANGING at the start of the ioctl which is undone here. 25947 */ 25948 if (ipif != NULL) { 25949 mutex_enter(&(ipif)->ipif_ill->ill_lock); 25950 ipif->ipif_state_flags &= ~IPIF_CHANGING; 25951 mutex_exit(&(ipif)->ipif_ill->ill_lock); 25952 } 25953 25954 /* 25955 * Clear the current ipif in the ipsq at the completion of the ioctl. 25956 * Note that a non-null ipsq_current_ipif prevents new ioctls from 25957 * entering the ipsq 25958 */ 25959 if (ipsq != NULL) { 25960 mutex_enter(&ipsq->ipsq_lock); 25961 ipsq->ipsq_current_ipif = NULL; 25962 mutex_exit(&ipsq->ipsq_lock); 25963 } 25964 } 25965 25966 /* 25967 * This is called from ip_wput_nondata to resume a deferred TCP bind. 25968 */ 25969 /* ARGSUSED */ 25970 void 25971 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 25972 { 25973 conn_t *connp = arg; 25974 tcp_t *tcp; 25975 25976 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 25977 tcp = connp->conn_tcp; 25978 25979 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 25980 freemsg(mp); 25981 else 25982 tcp_rput_other(tcp, mp); 25983 CONN_OPER_PENDING_DONE(connp); 25984 } 25985 25986 /* Called from ip_wput for all non data messages */ 25987 /* ARGSUSED */ 25988 void 25989 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 25990 { 25991 mblk_t *mp1; 25992 ire_t *ire, *fake_ire; 25993 ill_t *ill; 25994 struct iocblk *iocp; 25995 ip_ioctl_cmd_t *ipip; 25996 cred_t *cr; 25997 conn_t *connp = NULL; 25998 int cmd, err; 25999 nce_t *nce; 26000 ipif_t *ipif; 26001 26002 if (CONN_Q(q)) 26003 connp = Q_TO_CONN(q); 26004 26005 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26006 26007 /* Check if it is a queue to /dev/sctp. */ 26008 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 26009 connp->conn_rq == NULL) { 26010 sctp_wput(q, mp); 26011 return; 26012 } 26013 26014 switch (DB_TYPE(mp)) { 26015 case M_IOCTL: 26016 /* 26017 * IOCTL processing begins in ip_sioctl_copyin_setup which 26018 * will arrange to copy in associated control structures. 26019 */ 26020 ip_sioctl_copyin_setup(q, mp); 26021 return; 26022 case M_IOCDATA: 26023 /* 26024 * Ensure that this is associated with one of our trans- 26025 * parent ioctls. If it's not ours, discard it if we're 26026 * running as a driver, or pass it on if we're a module. 26027 */ 26028 iocp = (struct iocblk *)mp->b_rptr; 26029 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26030 if (ipip == NULL) { 26031 if (q->q_next == NULL) { 26032 goto nak; 26033 } else { 26034 putnext(q, mp); 26035 } 26036 return; 26037 } else if ((q->q_next != NULL) && 26038 !(ipip->ipi_flags & IPI_MODOK)) { 26039 /* 26040 * the ioctl is one we recognise, but is not 26041 * consumed by IP as a module, pass M_IOCDATA 26042 * for processing downstream, but only for 26043 * common Streams ioctls. 26044 */ 26045 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26046 putnext(q, mp); 26047 return; 26048 } else { 26049 goto nak; 26050 } 26051 } 26052 26053 /* IOCTL continuation following copyin or copyout. */ 26054 if (mi_copy_state(q, mp, NULL) == -1) { 26055 /* 26056 * The copy operation failed. mi_copy_state already 26057 * cleaned up, so we're out of here. 26058 */ 26059 return; 26060 } 26061 /* 26062 * If we just completed a copy in, we become writer and 26063 * continue processing in ip_sioctl_copyin_done. If it 26064 * was a copy out, we call mi_copyout again. If there is 26065 * nothing more to copy out, it will complete the IOCTL. 26066 */ 26067 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 26068 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 26069 mi_copy_done(q, mp, EPROTO); 26070 return; 26071 } 26072 /* 26073 * Check for cases that need more copying. A return 26074 * value of 0 means a second copyin has been started, 26075 * so we return; a return value of 1 means no more 26076 * copying is needed, so we continue. 26077 */ 26078 cmd = iocp->ioc_cmd; 26079 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 26080 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 26081 MI_COPY_COUNT(mp) == 1) { 26082 if (ip_copyin_msfilter(q, mp) == 0) 26083 return; 26084 } 26085 /* 26086 * Refhold the conn, till the ioctl completes. This is 26087 * needed in case the ioctl ends up in the pending mp 26088 * list. Every mp in the ill_pending_mp list and 26089 * the ipsq_pending_mp must have a refhold on the conn 26090 * to resume processing. The refhold is released when 26091 * the ioctl completes. (normally or abnormally) 26092 * In all cases ip_ioctl_finish is called to finish 26093 * the ioctl. 26094 */ 26095 if (connp != NULL) { 26096 /* This is not a reentry */ 26097 ASSERT(ipsq == NULL); 26098 CONN_INC_REF(connp); 26099 } else { 26100 if (!(ipip->ipi_flags & IPI_MODOK)) { 26101 mi_copy_done(q, mp, EINVAL); 26102 return; 26103 } 26104 } 26105 26106 ip_process_ioctl(ipsq, q, mp, ipip); 26107 26108 } else { 26109 mi_copyout(q, mp); 26110 } 26111 return; 26112 nak: 26113 iocp->ioc_error = EINVAL; 26114 mp->b_datap->db_type = M_IOCNAK; 26115 iocp->ioc_count = 0; 26116 qreply(q, mp); 26117 return; 26118 26119 case M_IOCNAK: 26120 /* 26121 * The only way we could get here is if a resolver didn't like 26122 * an IOCTL we sent it. This shouldn't happen. 26123 */ 26124 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 26125 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 26126 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 26127 freemsg(mp); 26128 return; 26129 case M_IOCACK: 26130 /* Finish socket ioctls passed through to ARP. */ 26131 ip_sioctl_iocack(q, mp); 26132 return; 26133 case M_FLUSH: 26134 if (*mp->b_rptr & FLUSHW) 26135 flushq(q, FLUSHALL); 26136 if (q->q_next) { 26137 /* 26138 * M_FLUSH is sent up to IP by some drivers during 26139 * unbind. ip_rput has already replied to it. We are 26140 * here for the M_FLUSH that we originated in IP 26141 * before sending the unbind request to the driver. 26142 * Just free it as we don't queue packets in IP 26143 * on the write side of the device instance. 26144 */ 26145 freemsg(mp); 26146 return; 26147 } 26148 if (*mp->b_rptr & FLUSHR) { 26149 *mp->b_rptr &= ~FLUSHW; 26150 qreply(q, mp); 26151 return; 26152 } 26153 freemsg(mp); 26154 return; 26155 case IRE_DB_REQ_TYPE: 26156 /* An Upper Level Protocol wants a copy of an IRE. */ 26157 ip_ire_req(q, mp); 26158 return; 26159 case M_CTL: 26160 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 26161 break; 26162 26163 if (connp != NULL && *(uint32_t *)mp->b_rptr == 26164 IP_ULP_OUT_LABELED) { 26165 out_labeled_t *olp; 26166 26167 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 26168 break; 26169 olp = (out_labeled_t *)mp->b_rptr; 26170 connp->conn_ulp_labeled = olp->out_qnext == q; 26171 freemsg(mp); 26172 return; 26173 } 26174 26175 /* M_CTL messages are used by ARP to tell us things. */ 26176 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 26177 break; 26178 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 26179 case AR_ENTRY_SQUERY: 26180 ip_wput_ctl(q, mp); 26181 return; 26182 case AR_CLIENT_NOTIFY: 26183 ip_arp_news(q, mp); 26184 return; 26185 case AR_DLPIOP_DONE: 26186 ASSERT(q->q_next != NULL); 26187 ill = (ill_t *)q->q_ptr; 26188 /* qwriter_ip releases the refhold */ 26189 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 26190 ill_refhold(ill); 26191 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 26192 CUR_OP, B_FALSE); 26193 return; 26194 case AR_ARP_CLOSING: 26195 /* 26196 * ARP (above us) is closing. If no ARP bringup is 26197 * currently pending, ack the message so that ARP 26198 * can complete its close. Also mark ill_arp_closing 26199 * so that new ARP bringups will fail. If any 26200 * ARP bringup is currently in progress, we will 26201 * ack this when the current ARP bringup completes. 26202 */ 26203 ASSERT(q->q_next != NULL); 26204 ill = (ill_t *)q->q_ptr; 26205 mutex_enter(&ill->ill_lock); 26206 ill->ill_arp_closing = 1; 26207 if (!ill->ill_arp_bringup_pending) { 26208 mutex_exit(&ill->ill_lock); 26209 qreply(q, mp); 26210 } else { 26211 mutex_exit(&ill->ill_lock); 26212 freemsg(mp); 26213 } 26214 return; 26215 case AR_ARP_EXTEND: 26216 /* 26217 * The ARP module above us is capable of duplicate 26218 * address detection. Old ATM drivers will not send 26219 * this message. 26220 */ 26221 ASSERT(q->q_next != NULL); 26222 ill = (ill_t *)q->q_ptr; 26223 ill->ill_arp_extend = B_TRUE; 26224 freemsg(mp); 26225 return; 26226 default: 26227 break; 26228 } 26229 break; 26230 case M_PROTO: 26231 case M_PCPROTO: 26232 /* 26233 * The only PROTO messages we expect are ULP binds and 26234 * copies of option negotiation acknowledgements. 26235 */ 26236 switch (((union T_primitives *)mp->b_rptr)->type) { 26237 case O_T_BIND_REQ: 26238 case T_BIND_REQ: { 26239 /* Request can get queued in bind */ 26240 ASSERT(connp != NULL); 26241 /* 26242 * Both TCP and UDP call ip_bind_{v4,v6}() directly 26243 * instead of going through this path. We only get 26244 * here in the following cases: 26245 * 26246 * a. Bind retries, where ipsq is non-NULL. 26247 * b. T_BIND_REQ is issued from non TCP/UDP 26248 * transport, e.g. icmp for raw socket, 26249 * in which case ipsq will be NULL. 26250 */ 26251 ASSERT(ipsq != NULL || 26252 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 26253 26254 /* Don't increment refcnt if this is a re-entry */ 26255 if (ipsq == NULL) 26256 CONN_INC_REF(connp); 26257 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 26258 connp, NULL) : ip_bind_v4(q, mp, connp); 26259 if (mp == NULL) 26260 return; 26261 if (IPCL_IS_TCP(connp)) { 26262 /* 26263 * In the case of TCP endpoint we 26264 * come here only for bind retries 26265 */ 26266 ASSERT(ipsq != NULL); 26267 CONN_INC_REF(connp); 26268 squeue_fill(connp->conn_sqp, mp, 26269 ip_resume_tcp_bind, connp, 26270 SQTAG_BIND_RETRY); 26271 return; 26272 } else if (IPCL_IS_UDP(connp)) { 26273 /* 26274 * In the case of UDP endpoint we 26275 * come here only for bind retries 26276 */ 26277 ASSERT(ipsq != NULL); 26278 udp_resume_bind(connp, mp); 26279 return; 26280 } 26281 qreply(q, mp); 26282 CONN_OPER_PENDING_DONE(connp); 26283 return; 26284 } 26285 case T_SVR4_OPTMGMT_REQ: 26286 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 26287 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 26288 26289 ASSERT(connp != NULL); 26290 if (!snmpcom_req(q, mp, ip_snmp_set, 26291 ip_snmp_get, cr)) { 26292 /* 26293 * Call svr4_optcom_req so that it can 26294 * generate the ack. We don't come here 26295 * if this operation is being restarted. 26296 * ip_restart_optmgmt will drop the conn ref. 26297 * In the case of ipsec option after the ipsec 26298 * load is complete conn_restart_ipsec_waiter 26299 * drops the conn ref. 26300 */ 26301 ASSERT(ipsq == NULL); 26302 CONN_INC_REF(connp); 26303 if (ip_check_for_ipsec_opt(q, mp)) 26304 return; 26305 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 26306 if (err != EINPROGRESS) { 26307 /* Operation is done */ 26308 CONN_OPER_PENDING_DONE(connp); 26309 } 26310 } 26311 return; 26312 case T_OPTMGMT_REQ: 26313 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 26314 /* 26315 * Note: No snmpcom_req support through new 26316 * T_OPTMGMT_REQ. 26317 * Call tpi_optcom_req so that it can 26318 * generate the ack. 26319 */ 26320 ASSERT(connp != NULL); 26321 ASSERT(ipsq == NULL); 26322 /* 26323 * We don't come here for restart. ip_restart_optmgmt 26324 * will drop the conn ref. In the case of ipsec option 26325 * after the ipsec load is complete 26326 * conn_restart_ipsec_waiter drops the conn ref. 26327 */ 26328 CONN_INC_REF(connp); 26329 if (ip_check_for_ipsec_opt(q, mp)) 26330 return; 26331 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 26332 if (err != EINPROGRESS) { 26333 /* Operation is done */ 26334 CONN_OPER_PENDING_DONE(connp); 26335 } 26336 return; 26337 case T_UNBIND_REQ: 26338 mp = ip_unbind(q, mp); 26339 qreply(q, mp); 26340 return; 26341 default: 26342 /* 26343 * Have to drop any DLPI messages coming down from 26344 * arp (such as an info_req which would cause ip 26345 * to receive an extra info_ack if it was passed 26346 * through. 26347 */ 26348 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 26349 (int)*(uint_t *)mp->b_rptr)); 26350 freemsg(mp); 26351 return; 26352 } 26353 /* NOTREACHED */ 26354 case IRE_DB_TYPE: { 26355 nce_t *nce; 26356 ill_t *ill; 26357 in6_addr_t gw_addr_v6; 26358 26359 26360 /* 26361 * This is a response back from a resolver. It 26362 * consists of a message chain containing: 26363 * IRE_MBLK-->LL_HDR_MBLK->pkt 26364 * The IRE_MBLK is the one we allocated in ip_newroute. 26365 * The LL_HDR_MBLK is the DLPI header to use to get 26366 * the attached packet, and subsequent ones for the 26367 * same destination, transmitted. 26368 */ 26369 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 26370 break; 26371 /* 26372 * First, check to make sure the resolution succeeded. 26373 * If it failed, the second mblk will be empty. 26374 * If it is, free the chain, dropping the packet. 26375 * (We must ire_delete the ire; that frees the ire mblk) 26376 * We're doing this now to support PVCs for ATM; it's 26377 * a partial xresolv implementation. When we fully implement 26378 * xresolv interfaces, instead of freeing everything here 26379 * we'll initiate neighbor discovery. 26380 * 26381 * For v4 (ARP and other external resolvers) the resolver 26382 * frees the message, so no check is needed. This check 26383 * is required, though, for a full xresolve implementation. 26384 * Including this code here now both shows how external 26385 * resolvers can NACK a resolution request using an 26386 * existing design that has no specific provisions for NACKs, 26387 * and also takes into account that the current non-ARP 26388 * external resolver has been coded to use this method of 26389 * NACKing for all IPv6 (xresolv) cases, 26390 * whether our xresolv implementation is complete or not. 26391 * 26392 */ 26393 ire = (ire_t *)mp->b_rptr; 26394 ill = ire_to_ill(ire); 26395 mp1 = mp->b_cont; /* dl_unitdata_req */ 26396 if (mp1->b_rptr == mp1->b_wptr) { 26397 if (ire->ire_ipversion == IPV6_VERSION) { 26398 /* 26399 * XRESOLV interface. 26400 */ 26401 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26402 mutex_enter(&ire->ire_lock); 26403 gw_addr_v6 = ire->ire_gateway_addr_v6; 26404 mutex_exit(&ire->ire_lock); 26405 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26406 nce = ndp_lookup_v6(ill, 26407 &ire->ire_addr_v6, B_FALSE); 26408 } else { 26409 nce = ndp_lookup_v6(ill, &gw_addr_v6, 26410 B_FALSE); 26411 } 26412 if (nce != NULL) { 26413 nce_resolv_failed(nce); 26414 ndp_delete(nce); 26415 NCE_REFRELE(nce); 26416 } 26417 } 26418 mp->b_cont = NULL; 26419 freemsg(mp1); /* frees the pkt as well */ 26420 ASSERT(ire->ire_nce == NULL); 26421 ire_delete((ire_t *)mp->b_rptr); 26422 return; 26423 } 26424 26425 /* 26426 * Split them into IRE_MBLK and pkt and feed it into 26427 * ire_add_then_send. Then in ire_add_then_send 26428 * the IRE will be added, and then the packet will be 26429 * run back through ip_wput. This time it will make 26430 * it to the wire. 26431 */ 26432 mp->b_cont = NULL; 26433 mp = mp1->b_cont; /* now, mp points to pkt */ 26434 mp1->b_cont = NULL; 26435 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 26436 if (ire->ire_ipversion == IPV6_VERSION) { 26437 /* 26438 * XRESOLV interface. Find the nce and put a copy 26439 * of the dl_unitdata_req in nce_res_mp 26440 */ 26441 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26442 mutex_enter(&ire->ire_lock); 26443 gw_addr_v6 = ire->ire_gateway_addr_v6; 26444 mutex_exit(&ire->ire_lock); 26445 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26446 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 26447 B_FALSE); 26448 } else { 26449 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 26450 } 26451 if (nce != NULL) { 26452 /* 26453 * We have to protect nce_res_mp here 26454 * from being accessed by other threads 26455 * while we change the mblk pointer. 26456 * Other functions will also lock the nce when 26457 * accessing nce_res_mp. 26458 * 26459 * The reason we change the mblk pointer 26460 * here rather than copying the resolved address 26461 * into the template is that, unlike with 26462 * ethernet, we have no guarantee that the 26463 * resolved address length will be 26464 * smaller than or equal to the lla length 26465 * with which the template was allocated, 26466 * (for ethernet, they're equal) 26467 * so we have to use the actual resolved 26468 * address mblk - which holds the real 26469 * dl_unitdata_req with the resolved address. 26470 * 26471 * Doing this is the same behavior as was 26472 * previously used in the v4 ARP case. 26473 */ 26474 mutex_enter(&nce->nce_lock); 26475 if (nce->nce_res_mp != NULL) 26476 freemsg(nce->nce_res_mp); 26477 nce->nce_res_mp = mp1; 26478 mutex_exit(&nce->nce_lock); 26479 /* 26480 * We do a fastpath probe here because 26481 * we have resolved the address without 26482 * using Neighbor Discovery. 26483 * In the non-XRESOLV v6 case, the fastpath 26484 * probe is done right after neighbor 26485 * discovery completes. 26486 */ 26487 if (nce->nce_res_mp != NULL) { 26488 int res; 26489 nce_fastpath_list_add(nce); 26490 res = ill_fastpath_probe(ill, 26491 nce->nce_res_mp); 26492 if (res != 0 && res != EAGAIN) 26493 nce_fastpath_list_delete(nce); 26494 } 26495 26496 ire_add_then_send(q, ire, mp); 26497 /* 26498 * Now we have to clean out any packets 26499 * that may have been queued on the nce 26500 * while it was waiting for address resolution 26501 * to complete. 26502 */ 26503 mutex_enter(&nce->nce_lock); 26504 mp1 = nce->nce_qd_mp; 26505 nce->nce_qd_mp = NULL; 26506 mutex_exit(&nce->nce_lock); 26507 while (mp1 != NULL) { 26508 mblk_t *nxt_mp; 26509 queue_t *fwdq = NULL; 26510 ill_t *inbound_ill; 26511 uint_t ifindex; 26512 26513 nxt_mp = mp1->b_next; 26514 mp1->b_next = NULL; 26515 /* 26516 * Retrieve ifindex stored in 26517 * ip_rput_data_v6() 26518 */ 26519 ifindex = 26520 (uint_t)(uintptr_t)mp1->b_prev; 26521 inbound_ill = 26522 ill_lookup_on_ifindex(ifindex, 26523 B_TRUE, NULL, NULL, NULL, 26524 NULL); 26525 mp1->b_prev = NULL; 26526 if (inbound_ill != NULL) 26527 fwdq = inbound_ill->ill_rq; 26528 26529 if (fwdq != NULL) { 26530 put(fwdq, mp1); 26531 ill_refrele(inbound_ill); 26532 } else 26533 put(WR(ill->ill_rq), mp1); 26534 mp1 = nxt_mp; 26535 } 26536 NCE_REFRELE(nce); 26537 } else { /* nce is NULL; clean up */ 26538 ire_delete(ire); 26539 freemsg(mp); 26540 freemsg(mp1); 26541 return; 26542 } 26543 } else { 26544 nce_t *arpce; 26545 /* 26546 * Link layer resolution succeeded. Recompute the 26547 * ire_nce. 26548 */ 26549 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 26550 if ((arpce = ndp_lookup_v4(ill, 26551 (ire->ire_gateway_addr != INADDR_ANY ? 26552 &ire->ire_gateway_addr : &ire->ire_addr), 26553 B_FALSE)) == NULL) { 26554 freeb(ire->ire_mp); 26555 freeb(mp1); 26556 freemsg(mp); 26557 return; 26558 } 26559 mutex_enter(&arpce->nce_lock); 26560 arpce->nce_last = TICK_TO_MSEC(lbolt64); 26561 if (arpce->nce_state == ND_REACHABLE) { 26562 /* 26563 * Someone resolved this before us; 26564 * cleanup the res_mp. Since ire has 26565 * not been added yet, the call to ire_add_v4 26566 * from ire_add_then_send (when a dup is 26567 * detected) will clean up the ire. 26568 */ 26569 freeb(mp1); 26570 } else { 26571 if (arpce->nce_res_mp != NULL) 26572 freemsg(arpce->nce_res_mp); 26573 arpce->nce_res_mp = mp1; 26574 arpce->nce_state = ND_REACHABLE; 26575 } 26576 mutex_exit(&arpce->nce_lock); 26577 if (ire->ire_marks & IRE_MARK_NOADD) { 26578 /* 26579 * this ire will not be added to the ire 26580 * cache table, so we can set the ire_nce 26581 * here, as there are no atomicity constraints. 26582 */ 26583 ire->ire_nce = arpce; 26584 /* 26585 * We are associating this nce with the ire 26586 * so change the nce ref taken in 26587 * ndp_lookup_v4() from 26588 * NCE_REFHOLD to NCE_REFHOLD_NOTR 26589 */ 26590 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 26591 } else { 26592 NCE_REFRELE(arpce); 26593 } 26594 ire_add_then_send(q, ire, mp); 26595 } 26596 return; /* All is well, the packet has been sent. */ 26597 } 26598 case IRE_ARPRESOLVE_TYPE: { 26599 26600 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 26601 break; 26602 mp1 = mp->b_cont; /* dl_unitdata_req */ 26603 mp->b_cont = NULL; 26604 /* 26605 * First, check to make sure the resolution succeeded. 26606 * If it failed, the second mblk will be empty. 26607 */ 26608 if (mp1->b_rptr == mp1->b_wptr) { 26609 /* cleanup the incomplete ire, free queued packets */ 26610 freemsg(mp); /* fake ire */ 26611 freeb(mp1); /* dl_unitdata response */ 26612 return; 26613 } 26614 26615 /* 26616 * update any incomplete nce_t found. we lookup the ctable 26617 * and find the nce from the ire->ire_nce because we need 26618 * to pass the ire to ip_xmit_v4 later, and can find both 26619 * ire and nce in one lookup from the ctable. 26620 */ 26621 fake_ire = (ire_t *)mp->b_rptr; 26622 /* 26623 * By the time we come back here from ARP 26624 * the logical outgoing interface of the incomplete ire 26625 * we added in ire_forward could have disappeared, 26626 * causing the incomplete ire to also have 26627 * dissapeared. So we need to retreive the 26628 * proper ipif for the ire before looking 26629 * in ctable; do the ctablelookup based on ire_ipif_seqid 26630 */ 26631 ill = q->q_ptr; 26632 26633 /* Get the outgoing ipif */ 26634 mutex_enter(&ill->ill_lock); 26635 if (ill->ill_state_flags & ILL_CONDEMNED) { 26636 mutex_exit(&ill->ill_lock); 26637 freemsg(mp); /* fake ire */ 26638 freeb(mp1); /* dl_unitdata response */ 26639 return; 26640 } 26641 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 26642 26643 if (ipif == NULL) { 26644 mutex_exit(&ill->ill_lock); 26645 ip1dbg(("logical intrf to incomplete ire vanished\n")); 26646 freemsg(mp); 26647 freeb(mp1); 26648 return; 26649 } 26650 ipif_refhold_locked(ipif); 26651 mutex_exit(&ill->ill_lock); 26652 ire = ire_ctable_lookup(fake_ire->ire_addr, 26653 fake_ire->ire_gateway_addr, IRE_CACHE, 26654 ipif, fake_ire->ire_zoneid, NULL, 26655 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY)); 26656 ipif_refrele(ipif); 26657 if (ire == NULL) { 26658 /* 26659 * no ire was found; check if there is an nce 26660 * for this lookup; if it has no ire's pointing at it 26661 * cleanup. 26662 */ 26663 if ((nce = ndp_lookup_v4(ill, 26664 (fake_ire->ire_gateway_addr != INADDR_ANY ? 26665 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 26666 B_FALSE)) != NULL) { 26667 /* 26668 * cleanup: just reset nce. 26669 * We check for refcnt 2 (one for the nce 26670 * hash list + 1 for the ref taken by 26671 * ndp_lookup_v4) to ensure that there are 26672 * no ire's pointing at the nce. 26673 */ 26674 if (nce->nce_refcnt == 2) { 26675 nce = nce_reinit(nce); 26676 } 26677 if (nce != NULL) 26678 NCE_REFRELE(nce); 26679 } 26680 freeb(mp1); /* dl_unitdata response */ 26681 freemsg(mp); /* fake ire */ 26682 return; 26683 } 26684 nce = ire->ire_nce; 26685 DTRACE_PROBE2(ire__arpresolve__type, 26686 ire_t *, ire, nce_t *, nce); 26687 ASSERT(nce->nce_state != ND_INITIAL); 26688 mutex_enter(&nce->nce_lock); 26689 nce->nce_last = TICK_TO_MSEC(lbolt64); 26690 if (nce->nce_state == ND_REACHABLE) { 26691 /* 26692 * Someone resolved this before us; 26693 * our response is not needed any more. 26694 */ 26695 mutex_exit(&nce->nce_lock); 26696 freeb(mp1); /* dl_unitdata response */ 26697 } else { 26698 if (nce->nce_res_mp != NULL) { 26699 freemsg(nce->nce_res_mp); 26700 /* existing dl_unitdata template */ 26701 } 26702 nce->nce_res_mp = mp1; 26703 nce->nce_state = ND_REACHABLE; 26704 mutex_exit(&nce->nce_lock); 26705 ire_fastpath(ire); 26706 } 26707 /* 26708 * The cached nce_t has been updated to be reachable; 26709 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 26710 */ 26711 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 26712 freemsg(mp); 26713 /* 26714 * send out queued packets. 26715 */ 26716 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26717 26718 IRE_REFRELE(ire); 26719 return; 26720 } 26721 default: 26722 break; 26723 } 26724 if (q->q_next) { 26725 putnext(q, mp); 26726 } else 26727 freemsg(mp); 26728 } 26729 26730 /* 26731 * Process IP options in an outbound packet. Modify the destination if there 26732 * is a source route option. 26733 * Returns non-zero if something fails in which case an ICMP error has been 26734 * sent and mp freed. 26735 */ 26736 static int 26737 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 26738 boolean_t mctl_present, zoneid_t zoneid) 26739 { 26740 ipoptp_t opts; 26741 uchar_t *opt; 26742 uint8_t optval; 26743 uint8_t optlen; 26744 ipaddr_t dst; 26745 intptr_t code = 0; 26746 mblk_t *mp; 26747 ire_t *ire = NULL; 26748 26749 ip2dbg(("ip_wput_options\n")); 26750 mp = ipsec_mp; 26751 if (mctl_present) { 26752 mp = ipsec_mp->b_cont; 26753 } 26754 26755 dst = ipha->ipha_dst; 26756 for (optval = ipoptp_first(&opts, ipha); 26757 optval != IPOPT_EOL; 26758 optval = ipoptp_next(&opts)) { 26759 opt = opts.ipoptp_cur; 26760 optlen = opts.ipoptp_len; 26761 ip2dbg(("ip_wput_options: opt %d, len %d\n", 26762 optval, optlen)); 26763 switch (optval) { 26764 uint32_t off; 26765 case IPOPT_SSRR: 26766 case IPOPT_LSRR: 26767 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26768 ip1dbg(( 26769 "ip_wput_options: bad option offset\n")); 26770 code = (char *)&opt[IPOPT_OLEN] - 26771 (char *)ipha; 26772 goto param_prob; 26773 } 26774 off = opt[IPOPT_OFFSET]; 26775 ip1dbg(("ip_wput_options: next hop 0x%x\n", 26776 ntohl(dst))); 26777 /* 26778 * For strict: verify that dst is directly 26779 * reachable. 26780 */ 26781 if (optval == IPOPT_SSRR) { 26782 ire = ire_ftable_lookup(dst, 0, 0, 26783 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 26784 MBLK_GETLABEL(mp), 26785 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 26786 if (ire == NULL) { 26787 ip1dbg(("ip_wput_options: SSRR not" 26788 " directly reachable: 0x%x\n", 26789 ntohl(dst))); 26790 goto bad_src_route; 26791 } 26792 ire_refrele(ire); 26793 } 26794 break; 26795 case IPOPT_RR: 26796 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26797 ip1dbg(( 26798 "ip_wput_options: bad option offset\n")); 26799 code = (char *)&opt[IPOPT_OLEN] - 26800 (char *)ipha; 26801 goto param_prob; 26802 } 26803 break; 26804 case IPOPT_TS: 26805 /* 26806 * Verify that length >=5 and that there is either 26807 * room for another timestamp or that the overflow 26808 * counter is not maxed out. 26809 */ 26810 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 26811 if (optlen < IPOPT_MINLEN_IT) { 26812 goto param_prob; 26813 } 26814 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26815 ip1dbg(( 26816 "ip_wput_options: bad option offset\n")); 26817 code = (char *)&opt[IPOPT_OFFSET] - 26818 (char *)ipha; 26819 goto param_prob; 26820 } 26821 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 26822 case IPOPT_TS_TSONLY: 26823 off = IPOPT_TS_TIMELEN; 26824 break; 26825 case IPOPT_TS_TSANDADDR: 26826 case IPOPT_TS_PRESPEC: 26827 case IPOPT_TS_PRESPEC_RFC791: 26828 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 26829 break; 26830 default: 26831 code = (char *)&opt[IPOPT_POS_OV_FLG] - 26832 (char *)ipha; 26833 goto param_prob; 26834 } 26835 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 26836 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 26837 /* 26838 * No room and the overflow counter is 15 26839 * already. 26840 */ 26841 goto param_prob; 26842 } 26843 break; 26844 } 26845 } 26846 26847 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 26848 return (0); 26849 26850 ip1dbg(("ip_wput_options: error processing IP options.")); 26851 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 26852 26853 param_prob: 26854 /* 26855 * Since ip_wput() isn't close to finished, we fill 26856 * in enough of the header for credible error reporting. 26857 */ 26858 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 26859 /* Failed */ 26860 freemsg(ipsec_mp); 26861 return (-1); 26862 } 26863 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid); 26864 return (-1); 26865 26866 bad_src_route: 26867 /* 26868 * Since ip_wput() isn't close to finished, we fill 26869 * in enough of the header for credible error reporting. 26870 */ 26871 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 26872 /* Failed */ 26873 freemsg(ipsec_mp); 26874 return (-1); 26875 } 26876 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 26877 return (-1); 26878 } 26879 26880 /* 26881 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 26882 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 26883 * thru /etc/system. 26884 */ 26885 #define CONN_MAXDRAINCNT 64 26886 26887 static void 26888 conn_drain_init(void) 26889 { 26890 int i; 26891 26892 conn_drain_list_cnt = conn_drain_nthreads; 26893 26894 if ((conn_drain_list_cnt == 0) || 26895 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 26896 /* 26897 * Default value of the number of drainers is the 26898 * number of cpus, subject to maximum of 8 drainers. 26899 */ 26900 if (boot_max_ncpus != -1) 26901 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 26902 else 26903 conn_drain_list_cnt = MIN(max_ncpus, 8); 26904 } 26905 26906 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 26907 KM_SLEEP); 26908 26909 for (i = 0; i < conn_drain_list_cnt; i++) { 26910 mutex_init(&conn_drain_list[i].idl_lock, NULL, 26911 MUTEX_DEFAULT, NULL); 26912 } 26913 } 26914 26915 static void 26916 conn_drain_fini(void) 26917 { 26918 int i; 26919 26920 for (i = 0; i < conn_drain_list_cnt; i++) 26921 mutex_destroy(&conn_drain_list[i].idl_lock); 26922 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 26923 conn_drain_list = NULL; 26924 } 26925 26926 /* 26927 * Note: For an overview of how flowcontrol is handled in IP please see the 26928 * IP Flowcontrol notes at the top of this file. 26929 * 26930 * Flow control has blocked us from proceeding. Insert the given conn in one 26931 * of the conn drain lists. These conn wq's will be qenabled later on when 26932 * STREAMS flow control does a backenable. conn_walk_drain will enable 26933 * the first conn in each of these drain lists. Each of these qenabled conns 26934 * in turn enables the next in the list, after it runs, or when it closes, 26935 * thus sustaining the drain process. 26936 * 26937 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 26938 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 26939 * running at any time, on a given conn, since there can be only 1 service proc 26940 * running on a queue at any time. 26941 */ 26942 void 26943 conn_drain_insert(conn_t *connp) 26944 { 26945 idl_t *idl; 26946 uint_t index; 26947 26948 mutex_enter(&connp->conn_lock); 26949 if (connp->conn_state_flags & CONN_CLOSING) { 26950 /* 26951 * The conn is closing as a result of which CONN_CLOSING 26952 * is set. Return. 26953 */ 26954 mutex_exit(&connp->conn_lock); 26955 return; 26956 } else if (connp->conn_idl == NULL) { 26957 /* 26958 * Assign the next drain list round robin. We dont' use 26959 * a lock, and thus it may not be strictly round robin. 26960 * Atomicity of load/stores is enough to make sure that 26961 * conn_drain_list_index is always within bounds. 26962 */ 26963 index = conn_drain_list_index; 26964 ASSERT(index < conn_drain_list_cnt); 26965 connp->conn_idl = &conn_drain_list[index]; 26966 index++; 26967 if (index == conn_drain_list_cnt) 26968 index = 0; 26969 conn_drain_list_index = index; 26970 } 26971 mutex_exit(&connp->conn_lock); 26972 26973 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 26974 if ((connp->conn_drain_prev != NULL) || 26975 (connp->conn_state_flags & CONN_CLOSING)) { 26976 /* 26977 * The conn is already in the drain list, OR 26978 * the conn is closing. We need to check again for 26979 * the closing case again since close can happen 26980 * after we drop the conn_lock, and before we 26981 * acquire the CONN_DRAIN_LIST_LOCK. 26982 */ 26983 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26984 return; 26985 } else { 26986 idl = connp->conn_idl; 26987 } 26988 26989 /* 26990 * The conn is not in the drain list. Insert it at the 26991 * tail of the drain list. The drain list is circular 26992 * and doubly linked. idl_conn points to the 1st element 26993 * in the list. 26994 */ 26995 if (idl->idl_conn == NULL) { 26996 idl->idl_conn = connp; 26997 connp->conn_drain_next = connp; 26998 connp->conn_drain_prev = connp; 26999 } else { 27000 conn_t *head = idl->idl_conn; 27001 27002 connp->conn_drain_next = head; 27003 connp->conn_drain_prev = head->conn_drain_prev; 27004 head->conn_drain_prev->conn_drain_next = connp; 27005 head->conn_drain_prev = connp; 27006 } 27007 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27008 } 27009 27010 /* 27011 * This conn is closing, and we are called from ip_close. OR 27012 * This conn has been serviced by ip_wsrv, and we need to do the tail 27013 * processing. 27014 * If this conn is part of the drain list, we may need to sustain the drain 27015 * process by qenabling the next conn in the drain list. We may also need to 27016 * remove this conn from the list, if it is done. 27017 */ 27018 static void 27019 conn_drain_tail(conn_t *connp, boolean_t closing) 27020 { 27021 idl_t *idl; 27022 27023 /* 27024 * connp->conn_idl is stable at this point, and no lock is needed 27025 * to check it. If we are called from ip_close, close has already 27026 * set CONN_CLOSING, thus freezing the value of conn_idl, and 27027 * called us only because conn_idl is non-null. If we are called thru 27028 * service, conn_idl could be null, but it cannot change because 27029 * service is single-threaded per queue, and there cannot be another 27030 * instance of service trying to call conn_drain_insert on this conn 27031 * now. 27032 */ 27033 ASSERT(!closing || (connp->conn_idl != NULL)); 27034 27035 /* 27036 * If connp->conn_idl is null, the conn has not been inserted into any 27037 * drain list even once since creation of the conn. Just return. 27038 */ 27039 if (connp->conn_idl == NULL) 27040 return; 27041 27042 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27043 27044 if (connp->conn_drain_prev == NULL) { 27045 /* This conn is currently not in the drain list. */ 27046 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27047 return; 27048 } 27049 idl = connp->conn_idl; 27050 if (idl->idl_conn_draining == connp) { 27051 /* 27052 * This conn is the current drainer. If this is the last conn 27053 * in the drain list, we need to do more checks, in the 'if' 27054 * below. Otherwwise we need to just qenable the next conn, 27055 * to sustain the draining, and is handled in the 'else' 27056 * below. 27057 */ 27058 if (connp->conn_drain_next == idl->idl_conn) { 27059 /* 27060 * This conn is the last in this list. This round 27061 * of draining is complete. If idl_repeat is set, 27062 * it means another flow enabling has happened from 27063 * the driver/streams and we need to another round 27064 * of draining. 27065 * If there are more than 2 conns in the drain list, 27066 * do a left rotate by 1, so that all conns except the 27067 * conn at the head move towards the head by 1, and the 27068 * the conn at the head goes to the tail. This attempts 27069 * a more even share for all queues that are being 27070 * drained. 27071 */ 27072 if ((connp->conn_drain_next != connp) && 27073 (idl->idl_conn->conn_drain_next != connp)) { 27074 idl->idl_conn = idl->idl_conn->conn_drain_next; 27075 } 27076 if (idl->idl_repeat) { 27077 qenable(idl->idl_conn->conn_wq); 27078 idl->idl_conn_draining = idl->idl_conn; 27079 idl->idl_repeat = 0; 27080 } else { 27081 idl->idl_conn_draining = NULL; 27082 } 27083 } else { 27084 /* 27085 * If the next queue that we are now qenable'ing, 27086 * is closing, it will remove itself from this list 27087 * and qenable the subsequent queue in ip_close(). 27088 * Serialization is acheived thru idl_lock. 27089 */ 27090 qenable(connp->conn_drain_next->conn_wq); 27091 idl->idl_conn_draining = connp->conn_drain_next; 27092 } 27093 } 27094 if (!connp->conn_did_putbq || closing) { 27095 /* 27096 * Remove ourself from the drain list, if we did not do 27097 * a putbq, or if the conn is closing. 27098 * Note: It is possible that q->q_first is non-null. It means 27099 * that these messages landed after we did a enableok() in 27100 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 27101 * service them. 27102 */ 27103 if (connp->conn_drain_next == connp) { 27104 /* Singleton in the list */ 27105 ASSERT(connp->conn_drain_prev == connp); 27106 idl->idl_conn = NULL; 27107 idl->idl_conn_draining = NULL; 27108 } else { 27109 connp->conn_drain_prev->conn_drain_next = 27110 connp->conn_drain_next; 27111 connp->conn_drain_next->conn_drain_prev = 27112 connp->conn_drain_prev; 27113 if (idl->idl_conn == connp) 27114 idl->idl_conn = connp->conn_drain_next; 27115 ASSERT(idl->idl_conn_draining != connp); 27116 27117 } 27118 connp->conn_drain_next = NULL; 27119 connp->conn_drain_prev = NULL; 27120 } 27121 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27122 } 27123 27124 /* 27125 * Write service routine. Shared perimeter entry point. 27126 * ip_wsrv can be called in any of the following ways. 27127 * 1. The device queue's messages has fallen below the low water mark 27128 * and STREAMS has backenabled the ill_wq. We walk thru all the 27129 * the drain lists and backenable the first conn in each list. 27130 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 27131 * qenabled non-tcp upper layers. We start dequeing messages and call 27132 * ip_wput for each message. 27133 */ 27134 27135 void 27136 ip_wsrv(queue_t *q) 27137 { 27138 conn_t *connp; 27139 ill_t *ill; 27140 mblk_t *mp; 27141 27142 if (q->q_next) { 27143 ill = (ill_t *)q->q_ptr; 27144 if (ill->ill_state_flags == 0) { 27145 /* 27146 * The device flow control has opened up. 27147 * Walk through conn drain lists and qenable the 27148 * first conn in each list. This makes sense only 27149 * if the stream is fully plumbed and setup. 27150 * Hence the if check above. 27151 */ 27152 ip1dbg(("ip_wsrv: walking\n")); 27153 conn_walk_drain(); 27154 } 27155 return; 27156 } 27157 27158 connp = Q_TO_CONN(q); 27159 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 27160 27161 /* 27162 * 1. Set conn_draining flag to signal that service is active. 27163 * 27164 * 2. ip_output determines whether it has been called from service, 27165 * based on the last parameter. If it is IP_WSRV it concludes it 27166 * has been called from service. 27167 * 27168 * 3. Message ordering is preserved by the following logic. 27169 * i. A directly called ip_output (i.e. not thru service) will queue 27170 * the message at the tail, if conn_draining is set (i.e. service 27171 * is running) or if q->q_first is non-null. 27172 * 27173 * ii. If ip_output is called from service, and if ip_output cannot 27174 * putnext due to flow control, it does a putbq. 27175 * 27176 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 27177 * (causing an infinite loop). 27178 */ 27179 ASSERT(!connp->conn_did_putbq); 27180 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 27181 connp->conn_draining = 1; 27182 noenable(q); 27183 while ((mp = getq(q)) != NULL) { 27184 ASSERT(CONN_Q(q)); 27185 27186 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 27187 if (connp->conn_did_putbq) { 27188 /* ip_wput did a putbq */ 27189 break; 27190 } 27191 } 27192 /* 27193 * At this point, a thread coming down from top, calling 27194 * ip_wput, may end up queueing the message. We have not yet 27195 * enabled the queue, so ip_wsrv won't be called again. 27196 * To avoid this race, check q->q_first again (in the loop) 27197 * If the other thread queued the message before we call 27198 * enableok(), we will catch it in the q->q_first check. 27199 * If the other thread queues the message after we call 27200 * enableok(), ip_wsrv will be called again by STREAMS. 27201 */ 27202 connp->conn_draining = 0; 27203 enableok(q); 27204 } 27205 27206 /* Enable the next conn for draining */ 27207 conn_drain_tail(connp, B_FALSE); 27208 27209 connp->conn_did_putbq = 0; 27210 } 27211 27212 /* 27213 * Walk the list of all conn's calling the function provided with the 27214 * specified argument for each. Note that this only walks conn's that 27215 * have been bound. 27216 * Applies to both IPv4 and IPv6. 27217 */ 27218 static void 27219 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 27220 { 27221 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 27222 func, arg, zoneid); 27223 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 27224 func, arg, zoneid); 27225 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 27226 func, arg, zoneid); 27227 conn_walk_fanout_table(ipcl_proto_fanout, 27228 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 27229 conn_walk_fanout_table(ipcl_proto_fanout_v6, 27230 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 27231 } 27232 27233 /* 27234 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 27235 * of conns that need to be drained, check if drain is already in progress. 27236 * If so set the idl_repeat bit, indicating that the last conn in the list 27237 * needs to reinitiate the drain once again, for the list. If drain is not 27238 * in progress for the list, initiate the draining, by qenabling the 1st 27239 * conn in the list. The drain is self-sustaining, each qenabled conn will 27240 * in turn qenable the next conn, when it is done/blocked/closing. 27241 */ 27242 static void 27243 conn_walk_drain(void) 27244 { 27245 int i; 27246 idl_t *idl; 27247 27248 IP_STAT(ip_conn_walk_drain); 27249 27250 for (i = 0; i < conn_drain_list_cnt; i++) { 27251 idl = &conn_drain_list[i]; 27252 mutex_enter(&idl->idl_lock); 27253 if (idl->idl_conn == NULL) { 27254 mutex_exit(&idl->idl_lock); 27255 continue; 27256 } 27257 /* 27258 * If this list is not being drained currently by 27259 * an ip_wsrv thread, start the process. 27260 */ 27261 if (idl->idl_conn_draining == NULL) { 27262 ASSERT(idl->idl_repeat == 0); 27263 qenable(idl->idl_conn->conn_wq); 27264 idl->idl_conn_draining = idl->idl_conn; 27265 } else { 27266 idl->idl_repeat = 1; 27267 } 27268 mutex_exit(&idl->idl_lock); 27269 } 27270 } 27271 27272 /* 27273 * Walk an conn hash table of `count' buckets, calling func for each entry. 27274 */ 27275 static void 27276 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 27277 zoneid_t zoneid) 27278 { 27279 conn_t *connp; 27280 27281 while (count-- > 0) { 27282 mutex_enter(&connfp->connf_lock); 27283 for (connp = connfp->connf_head; connp != NULL; 27284 connp = connp->conn_next) { 27285 if (zoneid == GLOBAL_ZONEID || 27286 zoneid == connp->conn_zoneid) { 27287 CONN_INC_REF(connp); 27288 mutex_exit(&connfp->connf_lock); 27289 (*func)(connp, arg); 27290 mutex_enter(&connfp->connf_lock); 27291 CONN_DEC_REF(connp); 27292 } 27293 } 27294 mutex_exit(&connfp->connf_lock); 27295 connfp++; 27296 } 27297 } 27298 27299 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 27300 static void 27301 conn_report1(conn_t *connp, void *mp) 27302 { 27303 char buf1[INET6_ADDRSTRLEN]; 27304 char buf2[INET6_ADDRSTRLEN]; 27305 uint_t print_len, buf_len; 27306 27307 ASSERT(connp != NULL); 27308 27309 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 27310 if (buf_len <= 0) 27311 return; 27312 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 27313 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 27314 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 27315 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 27316 "%5d %s/%05d %s/%05d\n", 27317 (void *)connp, (void *)CONNP_TO_RQ(connp), 27318 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 27319 buf1, connp->conn_lport, 27320 buf2, connp->conn_fport); 27321 if (print_len < buf_len) { 27322 ((mblk_t *)mp)->b_wptr += print_len; 27323 } else { 27324 ((mblk_t *)mp)->b_wptr += buf_len; 27325 } 27326 } 27327 27328 /* 27329 * Named Dispatch routine to produce a formatted report on all conns 27330 * that are listed in one of the fanout tables. 27331 * This report is accessed by using the ndd utility to "get" ND variable 27332 * "ip_conn_status". 27333 */ 27334 /* ARGSUSED */ 27335 static int 27336 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 27337 { 27338 (void) mi_mpprintf(mp, 27339 "CONN " MI_COL_HDRPAD_STR 27340 "rfq " MI_COL_HDRPAD_STR 27341 "stq " MI_COL_HDRPAD_STR 27342 " zone local remote"); 27343 27344 /* 27345 * Because of the ndd constraint, at most we can have 64K buffer 27346 * to put in all conn info. So to be more efficient, just 27347 * allocate a 64K buffer here, assuming we need that large buffer. 27348 * This should be OK as only privileged processes can do ndd /dev/ip. 27349 */ 27350 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 27351 /* The following may work even if we cannot get a large buf. */ 27352 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 27353 return (0); 27354 } 27355 27356 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 27357 return (0); 27358 } 27359 27360 /* 27361 * Determine if the ill and multicast aspects of that packets 27362 * "matches" the conn. 27363 */ 27364 boolean_t 27365 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 27366 zoneid_t zoneid) 27367 { 27368 ill_t *in_ill; 27369 boolean_t found; 27370 ipif_t *ipif; 27371 ire_t *ire; 27372 ipaddr_t dst, src; 27373 27374 dst = ipha->ipha_dst; 27375 src = ipha->ipha_src; 27376 27377 /* 27378 * conn_incoming_ill is set by IP_BOUND_IF which limits 27379 * unicast, broadcast and multicast reception to 27380 * conn_incoming_ill. conn_wantpacket itself is called 27381 * only for BROADCAST and multicast. 27382 * 27383 * 1) ip_rput supresses duplicate broadcasts if the ill 27384 * is part of a group. Hence, we should be receiving 27385 * just one copy of broadcast for the whole group. 27386 * Thus, if it is part of the group the packet could 27387 * come on any ill of the group and hence we need a 27388 * match on the group. Otherwise, match on ill should 27389 * be sufficient. 27390 * 27391 * 2) ip_rput does not suppress duplicate multicast packets. 27392 * If there are two interfaces in a ill group and we have 27393 * 2 applications (conns) joined a multicast group G on 27394 * both the interfaces, ilm_lookup_ill filter in ip_rput 27395 * will give us two packets because we join G on both the 27396 * interfaces rather than nominating just one interface 27397 * for receiving multicast like broadcast above. So, 27398 * we have to call ilg_lookup_ill to filter out duplicate 27399 * copies, if ill is part of a group. 27400 */ 27401 in_ill = connp->conn_incoming_ill; 27402 if (in_ill != NULL) { 27403 if (in_ill->ill_group == NULL) { 27404 if (in_ill != ill) 27405 return (B_FALSE); 27406 } else if (in_ill->ill_group != ill->ill_group) { 27407 return (B_FALSE); 27408 } 27409 } 27410 27411 if (!CLASSD(dst)) { 27412 if (IPCL_ZONE_MATCH(connp, zoneid)) 27413 return (B_TRUE); 27414 /* 27415 * The conn is in a different zone; we need to check that this 27416 * broadcast address is configured in the application's zone and 27417 * on one ill in the group. 27418 */ 27419 ipif = ipif_get_next_ipif(NULL, ill); 27420 if (ipif == NULL) 27421 return (B_FALSE); 27422 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 27423 connp->conn_zoneid, NULL, 27424 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 27425 ipif_refrele(ipif); 27426 if (ire != NULL) { 27427 ire_refrele(ire); 27428 return (B_TRUE); 27429 } else { 27430 return (B_FALSE); 27431 } 27432 } 27433 27434 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 27435 connp->conn_zoneid == zoneid) { 27436 /* 27437 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 27438 * disabled, therefore we don't dispatch the multicast packet to 27439 * the sending zone. 27440 */ 27441 return (B_FALSE); 27442 } 27443 27444 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 27445 connp->conn_zoneid != zoneid) { 27446 /* 27447 * Multicast packet on the loopback interface: we only match 27448 * conns who joined the group in the specified zone. 27449 */ 27450 return (B_FALSE); 27451 } 27452 27453 if (connp->conn_multi_router) { 27454 /* multicast packet and multicast router socket: send up */ 27455 return (B_TRUE); 27456 } 27457 27458 mutex_enter(&connp->conn_lock); 27459 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 27460 mutex_exit(&connp->conn_lock); 27461 return (found); 27462 } 27463 27464 /* 27465 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 27466 */ 27467 /* ARGSUSED */ 27468 static void 27469 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 27470 { 27471 ill_t *ill = (ill_t *)q->q_ptr; 27472 mblk_t *mp1, *mp2; 27473 ipif_t *ipif; 27474 int err = 0; 27475 conn_t *connp = NULL; 27476 ipsq_t *ipsq; 27477 arc_t *arc; 27478 27479 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 27480 27481 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 27482 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 27483 27484 ASSERT(IAM_WRITER_ILL(ill)); 27485 mp2 = mp->b_cont; 27486 mp->b_cont = NULL; 27487 27488 /* 27489 * We have now received the arp bringup completion message 27490 * from ARP. Mark the arp bringup as done. Also if the arp 27491 * stream has already started closing, send up the AR_ARP_CLOSING 27492 * ack now since ARP is waiting in close for this ack. 27493 */ 27494 mutex_enter(&ill->ill_lock); 27495 ill->ill_arp_bringup_pending = 0; 27496 if (ill->ill_arp_closing) { 27497 mutex_exit(&ill->ill_lock); 27498 /* Let's reuse the mp for sending the ack */ 27499 arc = (arc_t *)mp->b_rptr; 27500 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 27501 arc->arc_cmd = AR_ARP_CLOSING; 27502 qreply(q, mp); 27503 } else { 27504 mutex_exit(&ill->ill_lock); 27505 freeb(mp); 27506 } 27507 27508 /* We should have an IOCTL waiting on this. */ 27509 ipsq = ill->ill_phyint->phyint_ipsq; 27510 ipif = ipsq->ipsq_pending_ipif; 27511 mp1 = ipsq_pending_mp_get(ipsq, &connp); 27512 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 27513 if (mp1 == NULL) { 27514 /* bringup was aborted by the user */ 27515 freemsg(mp2); 27516 return; 27517 } 27518 ASSERT(connp != NULL); 27519 q = CONNP_TO_WQ(connp); 27520 /* 27521 * If the DL_BIND_REQ fails, it is noted 27522 * in arc_name_offset. 27523 */ 27524 err = *((int *)mp2->b_rptr); 27525 if (err == 0) { 27526 if (ipif->ipif_isv6) { 27527 if ((err = ipif_up_done_v6(ipif)) != 0) 27528 ip0dbg(("ip_arp_done: init failed\n")); 27529 } else { 27530 if ((err = ipif_up_done(ipif)) != 0) 27531 ip0dbg(("ip_arp_done: init failed\n")); 27532 } 27533 } else { 27534 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 27535 } 27536 27537 freemsg(mp2); 27538 27539 if ((err == 0) && (ill->ill_up_ipifs)) { 27540 err = ill_up_ipifs(ill, q, mp1); 27541 if (err == EINPROGRESS) 27542 return; 27543 } 27544 27545 if (ill->ill_up_ipifs) { 27546 ill_group_cleanup(ill); 27547 } 27548 27549 /* 27550 * The ioctl must complete now without EINPROGRESS 27551 * since ipsq_pending_mp_get has removed the ioctl mblk 27552 * from ipsq_pending_mp. Otherwise the ioctl will be 27553 * stuck for ever in the ipsq. 27554 */ 27555 ASSERT(err != EINPROGRESS); 27556 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 27557 } 27558 27559 /* Allocate the private structure */ 27560 static int 27561 ip_priv_alloc(void **bufp) 27562 { 27563 void *buf; 27564 27565 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 27566 return (ENOMEM); 27567 27568 *bufp = buf; 27569 return (0); 27570 } 27571 27572 /* Function to delete the private structure */ 27573 void 27574 ip_priv_free(void *buf) 27575 { 27576 ASSERT(buf != NULL); 27577 kmem_free(buf, sizeof (ip_priv_t)); 27578 } 27579 27580 /* 27581 * The entry point for IPPF processing. 27582 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 27583 * routine just returns. 27584 * 27585 * When called, ip_process generates an ipp_packet_t structure 27586 * which holds the state information for this packet and invokes the 27587 * the classifier (via ipp_packet_process). The classification, depending on 27588 * configured filters, results in a list of actions for this packet. Invoking 27589 * an action may cause the packet to be dropped, in which case the resulting 27590 * mblk (*mpp) is NULL. proc indicates the callout position for 27591 * this packet and ill_index is the interface this packet on or will leave 27592 * on (inbound and outbound resp.). 27593 */ 27594 void 27595 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 27596 { 27597 mblk_t *mp; 27598 ip_priv_t *priv; 27599 ipp_action_id_t aid; 27600 int rc = 0; 27601 ipp_packet_t *pp; 27602 #define IP_CLASS "ip" 27603 27604 /* If the classifier is not loaded, return */ 27605 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 27606 return; 27607 } 27608 27609 mp = *mpp; 27610 ASSERT(mp != NULL); 27611 27612 /* Allocate the packet structure */ 27613 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 27614 if (rc != 0) { 27615 *mpp = NULL; 27616 freemsg(mp); 27617 return; 27618 } 27619 27620 /* Allocate the private structure */ 27621 rc = ip_priv_alloc((void **)&priv); 27622 if (rc != 0) { 27623 *mpp = NULL; 27624 freemsg(mp); 27625 ipp_packet_free(pp); 27626 return; 27627 } 27628 priv->proc = proc; 27629 priv->ill_index = ill_index; 27630 ipp_packet_set_private(pp, priv, ip_priv_free); 27631 ipp_packet_set_data(pp, mp); 27632 27633 /* Invoke the classifier */ 27634 rc = ipp_packet_process(&pp); 27635 if (pp != NULL) { 27636 mp = ipp_packet_get_data(pp); 27637 ipp_packet_free(pp); 27638 if (rc != 0) { 27639 freemsg(mp); 27640 *mpp = NULL; 27641 } 27642 } else { 27643 *mpp = NULL; 27644 } 27645 #undef IP_CLASS 27646 } 27647 27648 /* 27649 * Propagate a multicast group membership operation (add/drop) on 27650 * all the interfaces crossed by the related multirt routes. 27651 * The call is considered successful if the operation succeeds 27652 * on at least one interface. 27653 */ 27654 static int 27655 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 27656 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 27657 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 27658 mblk_t *first_mp) 27659 { 27660 ire_t *ire_gw; 27661 irb_t *irb; 27662 int error = 0; 27663 opt_restart_t *or; 27664 27665 irb = ire->ire_bucket; 27666 ASSERT(irb != NULL); 27667 27668 ASSERT(DB_TYPE(first_mp) == M_CTL); 27669 27670 or = (opt_restart_t *)first_mp->b_rptr; 27671 IRB_REFHOLD(irb); 27672 for (; ire != NULL; ire = ire->ire_next) { 27673 if ((ire->ire_flags & RTF_MULTIRT) == 0) 27674 continue; 27675 if (ire->ire_addr != group) 27676 continue; 27677 27678 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 27679 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 27680 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 27681 /* No resolver exists for the gateway; skip this ire. */ 27682 if (ire_gw == NULL) 27683 continue; 27684 27685 /* 27686 * This function can return EINPROGRESS. If so the operation 27687 * will be restarted from ip_restart_optmgmt which will 27688 * call ip_opt_set and option processing will restart for 27689 * this option. So we may end up calling 'fn' more than once. 27690 * This requires that 'fn' is idempotent except for the 27691 * return value. The operation is considered a success if 27692 * it succeeds at least once on any one interface. 27693 */ 27694 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 27695 NULL, fmode, src, first_mp); 27696 if (error == 0) 27697 or->or_private = CGTP_MCAST_SUCCESS; 27698 27699 if (ip_debug > 0) { 27700 ulong_t off; 27701 char *ksym; 27702 ksym = kobj_getsymname((uintptr_t)fn, &off); 27703 ip2dbg(("ip_multirt_apply_membership: " 27704 "called %s, multirt group 0x%08x via itf 0x%08x, " 27705 "error %d [success %u]\n", 27706 ksym ? ksym : "?", 27707 ntohl(group), ntohl(ire_gw->ire_src_addr), 27708 error, or->or_private)); 27709 } 27710 27711 ire_refrele(ire_gw); 27712 if (error == EINPROGRESS) { 27713 IRB_REFRELE(irb); 27714 return (error); 27715 } 27716 } 27717 IRB_REFRELE(irb); 27718 /* 27719 * Consider the call as successful if we succeeded on at least 27720 * one interface. Otherwise, return the last encountered error. 27721 */ 27722 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 27723 } 27724 27725 27726 /* 27727 * Issue a warning regarding a route crossing an interface with an 27728 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 27729 * amount of time is logged. 27730 */ 27731 static void 27732 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 27733 { 27734 hrtime_t current = gethrtime(); 27735 char buf[INET_ADDRSTRLEN]; 27736 27737 /* Convert interval in ms to hrtime in ns */ 27738 if (multirt_bad_mtu_last_time + 27739 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 27740 current) { 27741 cmn_err(CE_WARN, "ip: ignoring multiroute " 27742 "to %s, incorrect MTU %u (expected %u)\n", 27743 ip_dot_addr(ire->ire_addr, buf), 27744 ire->ire_max_frag, max_frag); 27745 27746 multirt_bad_mtu_last_time = current; 27747 } 27748 } 27749 27750 27751 /* 27752 * Get the CGTP (multirouting) filtering status. 27753 * If 0, the CGTP hooks are transparent. 27754 */ 27755 /* ARGSUSED */ 27756 static int 27757 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 27758 { 27759 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 27760 27761 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 27762 return (0); 27763 } 27764 27765 27766 /* 27767 * Set the CGTP (multirouting) filtering status. 27768 * If the status is changed from active to transparent 27769 * or from transparent to active, forward the new status 27770 * to the filtering module (if loaded). 27771 */ 27772 /* ARGSUSED */ 27773 static int 27774 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 27775 cred_t *ioc_cr) 27776 { 27777 long new_value; 27778 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 27779 27780 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 27781 new_value < 0 || new_value > 1) { 27782 return (EINVAL); 27783 } 27784 27785 /* 27786 * Do not enable CGTP filtering - thus preventing the hooks 27787 * from being invoked - if the version number of the 27788 * filtering module hooks does not match. 27789 */ 27790 if ((ip_cgtp_filter_ops != NULL) && 27791 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 27792 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 27793 "(module hooks version %d, expecting %d)\n", 27794 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 27795 return (ENOTSUP); 27796 } 27797 27798 if ((!*ip_cgtp_filter_value) && new_value) { 27799 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 27800 ip_cgtp_filter_ops == NULL ? 27801 " (module not loaded)" : ""); 27802 } 27803 if (*ip_cgtp_filter_value && (!new_value)) { 27804 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 27805 ip_cgtp_filter_ops == NULL ? 27806 " (module not loaded)" : ""); 27807 } 27808 27809 if (ip_cgtp_filter_ops != NULL) { 27810 int res; 27811 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 27812 return (res); 27813 } 27814 } 27815 27816 *ip_cgtp_filter_value = (boolean_t)new_value; 27817 27818 return (0); 27819 } 27820 27821 27822 /* 27823 * Return the expected CGTP hooks version number. 27824 */ 27825 int 27826 ip_cgtp_filter_supported(void) 27827 { 27828 return (ip_cgtp_filter_rev); 27829 } 27830 27831 27832 /* 27833 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 27834 * or by invoking this function. In the first case, the version number 27835 * of the registered structure is checked at hooks activation time 27836 * in ip_cgtp_filter_set(). 27837 */ 27838 int 27839 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 27840 { 27841 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 27842 return (ENOTSUP); 27843 27844 ip_cgtp_filter_ops = ops; 27845 return (0); 27846 } 27847 27848 static squeue_func_t 27849 ip_squeue_switch(int val) 27850 { 27851 squeue_func_t rval = squeue_fill; 27852 27853 switch (val) { 27854 case IP_SQUEUE_ENTER_NODRAIN: 27855 rval = squeue_enter_nodrain; 27856 break; 27857 case IP_SQUEUE_ENTER: 27858 rval = squeue_enter; 27859 break; 27860 default: 27861 break; 27862 } 27863 return (rval); 27864 } 27865 27866 /* ARGSUSED */ 27867 static int 27868 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 27869 caddr_t addr, cred_t *cr) 27870 { 27871 int *v = (int *)addr; 27872 long new_value; 27873 27874 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 27875 return (EINVAL); 27876 27877 ip_input_proc = ip_squeue_switch(new_value); 27878 *v = new_value; 27879 return (0); 27880 } 27881 27882 /* ARGSUSED */ 27883 static int 27884 ip_int_set(queue_t *q, mblk_t *mp, char *value, 27885 caddr_t addr, cred_t *cr) 27886 { 27887 int *v = (int *)addr; 27888 long new_value; 27889 27890 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 27891 return (EINVAL); 27892 27893 *v = new_value; 27894 return (0); 27895 } 27896 27897 static void 27898 ip_kstat_init(void) 27899 { 27900 ip_named_kstat_t template = { 27901 { "forwarding", KSTAT_DATA_UINT32, 0 }, 27902 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 27903 { "inReceives", KSTAT_DATA_UINT32, 0 }, 27904 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 27905 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 27906 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 27907 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 27908 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 27909 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 27910 { "outRequests", KSTAT_DATA_UINT32, 0 }, 27911 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 27912 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 27913 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 27914 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 27915 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 27916 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 27917 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 27918 { "fragFails", KSTAT_DATA_UINT32, 0 }, 27919 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 27920 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 27921 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 27922 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 27923 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 27924 { "inErrs", KSTAT_DATA_UINT32, 0 }, 27925 { "noPorts", KSTAT_DATA_UINT32, 0 }, 27926 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 27927 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 27928 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 27929 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 27930 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 27931 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 27932 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 27933 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 27934 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 27935 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 27936 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 27937 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 27938 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 27939 }; 27940 27941 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 27942 NUM_OF_FIELDS(ip_named_kstat_t), 27943 0); 27944 if (!ip_mibkp) 27945 return; 27946 27947 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 27948 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 27949 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 27950 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 27951 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 27952 27953 template.netToMediaEntrySize.value.i32 = 27954 sizeof (mib2_ipNetToMediaEntry_t); 27955 27956 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 27957 27958 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 27959 27960 ip_mibkp->ks_update = ip_kstat_update; 27961 27962 kstat_install(ip_mibkp); 27963 } 27964 27965 static void 27966 ip_kstat_fini(void) 27967 { 27968 27969 if (ip_mibkp != NULL) { 27970 kstat_delete(ip_mibkp); 27971 ip_mibkp = NULL; 27972 } 27973 } 27974 27975 static int 27976 ip_kstat_update(kstat_t *kp, int rw) 27977 { 27978 ip_named_kstat_t *ipkp; 27979 27980 if (!kp || !kp->ks_data) 27981 return (EIO); 27982 27983 if (rw == KSTAT_WRITE) 27984 return (EACCES); 27985 27986 ipkp = (ip_named_kstat_t *)kp->ks_data; 27987 27988 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 27989 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 27990 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 27991 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 27992 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 27993 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 27994 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 27995 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 27996 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 27997 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 27998 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 27999 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 28000 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 28001 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 28002 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 28003 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 28004 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 28005 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 28006 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 28007 28008 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 28009 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 28010 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 28011 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 28012 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 28013 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 28014 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 28015 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 28016 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 28017 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 28018 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 28019 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 28020 28021 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 28022 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 28023 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 28024 28025 return (0); 28026 } 28027 28028 static void 28029 icmp_kstat_init(void) 28030 { 28031 icmp_named_kstat_t template = { 28032 { "inMsgs", KSTAT_DATA_UINT32 }, 28033 { "inErrors", KSTAT_DATA_UINT32 }, 28034 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 28035 { "inTimeExcds", KSTAT_DATA_UINT32 }, 28036 { "inParmProbs", KSTAT_DATA_UINT32 }, 28037 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 28038 { "inRedirects", KSTAT_DATA_UINT32 }, 28039 { "inEchos", KSTAT_DATA_UINT32 }, 28040 { "inEchoReps", KSTAT_DATA_UINT32 }, 28041 { "inTimestamps", KSTAT_DATA_UINT32 }, 28042 { "inTimestampReps", KSTAT_DATA_UINT32 }, 28043 { "inAddrMasks", KSTAT_DATA_UINT32 }, 28044 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 28045 { "outMsgs", KSTAT_DATA_UINT32 }, 28046 { "outErrors", KSTAT_DATA_UINT32 }, 28047 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 28048 { "outTimeExcds", KSTAT_DATA_UINT32 }, 28049 { "outParmProbs", KSTAT_DATA_UINT32 }, 28050 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 28051 { "outRedirects", KSTAT_DATA_UINT32 }, 28052 { "outEchos", KSTAT_DATA_UINT32 }, 28053 { "outEchoReps", KSTAT_DATA_UINT32 }, 28054 { "outTimestamps", KSTAT_DATA_UINT32 }, 28055 { "outTimestampReps", KSTAT_DATA_UINT32 }, 28056 { "outAddrMasks", KSTAT_DATA_UINT32 }, 28057 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 28058 { "inChksumErrs", KSTAT_DATA_UINT32 }, 28059 { "inUnknowns", KSTAT_DATA_UINT32 }, 28060 { "inFragNeeded", KSTAT_DATA_UINT32 }, 28061 { "outFragNeeded", KSTAT_DATA_UINT32 }, 28062 { "outDrops", KSTAT_DATA_UINT32 }, 28063 { "inOverFlows", KSTAT_DATA_UINT32 }, 28064 { "inBadRedirects", KSTAT_DATA_UINT32 }, 28065 }; 28066 28067 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 28068 NUM_OF_FIELDS(icmp_named_kstat_t), 28069 0); 28070 if (icmp_mibkp == NULL) 28071 return; 28072 28073 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 28074 28075 icmp_mibkp->ks_update = icmp_kstat_update; 28076 28077 kstat_install(icmp_mibkp); 28078 } 28079 28080 static void 28081 icmp_kstat_fini(void) 28082 { 28083 28084 if (icmp_mibkp != NULL) { 28085 kstat_delete(icmp_mibkp); 28086 icmp_mibkp = NULL; 28087 } 28088 } 28089 28090 static int 28091 icmp_kstat_update(kstat_t *kp, int rw) 28092 { 28093 icmp_named_kstat_t *icmpkp; 28094 28095 if ((kp == NULL) || (kp->ks_data == NULL)) 28096 return (EIO); 28097 28098 if (rw == KSTAT_WRITE) 28099 return (EACCES); 28100 28101 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 28102 28103 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 28104 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 28105 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 28106 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 28107 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 28108 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 28109 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 28110 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 28111 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 28112 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 28113 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 28114 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 28115 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 28116 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 28117 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 28118 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 28119 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 28120 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 28121 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 28122 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 28123 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 28124 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 28125 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 28126 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 28127 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 28128 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 28129 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 28130 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 28131 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 28132 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 28133 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 28134 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 28135 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 28136 28137 return (0); 28138 } 28139 28140 /* 28141 * This is the fanout function for raw socket opened for SCTP. Note 28142 * that it is called after SCTP checks that there is no socket which 28143 * wants a packet. Then before SCTP handles this out of the blue packet, 28144 * this function is called to see if there is any raw socket for SCTP. 28145 * If there is and it is bound to the correct address, the packet will 28146 * be sent to that socket. Note that only one raw socket can be bound to 28147 * a port. This is assured in ipcl_sctp_hash_insert(); 28148 */ 28149 void 28150 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 28151 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 28152 uint_t ipif_seqid, zoneid_t zoneid) 28153 { 28154 conn_t *connp; 28155 queue_t *rq; 28156 mblk_t *first_mp; 28157 boolean_t secure; 28158 ip6_t *ip6h; 28159 28160 first_mp = mp; 28161 if (mctl_present) { 28162 mp = first_mp->b_cont; 28163 secure = ipsec_in_is_secure(first_mp); 28164 ASSERT(mp != NULL); 28165 } else { 28166 secure = B_FALSE; 28167 } 28168 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 28169 28170 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 28171 if (connp == NULL) { 28172 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 28173 mctl_present); 28174 return; 28175 } 28176 rq = connp->conn_rq; 28177 if (!canputnext(rq)) { 28178 CONN_DEC_REF(connp); 28179 BUMP_MIB(&ip_mib, rawipInOverflows); 28180 freemsg(first_mp); 28181 return; 28182 } 28183 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 28184 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 28185 first_mp = ipsec_check_inbound_policy(first_mp, connp, 28186 (isv4 ? ipha : NULL), ip6h, mctl_present); 28187 if (first_mp == NULL) { 28188 CONN_DEC_REF(connp); 28189 return; 28190 } 28191 } 28192 /* 28193 * We probably should not send M_CTL message up to 28194 * raw socket. 28195 */ 28196 if (mctl_present) 28197 freeb(first_mp); 28198 28199 /* Initiate IPPF processing here if needed. */ 28200 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 28201 (!isv4 && IP6_IN_IPP(flags))) { 28202 ip_process(IPP_LOCAL_IN, &mp, 28203 recv_ill->ill_phyint->phyint_ifindex); 28204 if (mp == NULL) { 28205 CONN_DEC_REF(connp); 28206 return; 28207 } 28208 } 28209 28210 if (connp->conn_recvif || connp->conn_recvslla || 28211 ((connp->conn_ipv6_recvpktinfo || 28212 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 28213 (flags & IP_FF_IP6INFO))) { 28214 int in_flags = 0; 28215 28216 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 28217 in_flags = IPF_RECVIF; 28218 } 28219 if (connp->conn_recvslla) { 28220 in_flags |= IPF_RECVSLLA; 28221 } 28222 if (isv4) { 28223 mp = ip_add_info(mp, recv_ill, in_flags); 28224 } else { 28225 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 28226 if (mp == NULL) { 28227 CONN_DEC_REF(connp); 28228 return; 28229 } 28230 } 28231 } 28232 28233 BUMP_MIB(&ip_mib, ipInDelivers); 28234 /* 28235 * We are sending the IPSEC_IN message also up. Refer 28236 * to comments above this function. 28237 */ 28238 putnext(rq, mp); 28239 CONN_DEC_REF(connp); 28240 } 28241 28242 /* 28243 * This function should be called only if all packet processing 28244 * including fragmentation is complete. Callers of this function 28245 * must set mp->b_prev to one of these values: 28246 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 28247 * prior to handing over the mp as first argument to this function. 28248 * 28249 * If the ire passed by caller is incomplete, this function 28250 * queues the packet and if necessary, sends ARP request and bails. 28251 * If the ire passed is fully resolved, we simply prepend 28252 * the link-layer header to the packet, do ipsec hw acceleration 28253 * work if necessary, and send the packet out on the wire. 28254 * 28255 * NOTE: IPSEC will only call this function with fully resolved 28256 * ires if hw acceleration is involved. 28257 * TODO list : 28258 * a Handle M_MULTIDATA so that 28259 * tcp_multisend->tcp_multisend_data can 28260 * call ip_xmit_v4 directly 28261 * b Handle post-ARP work for fragments so that 28262 * ip_wput_frag can call this function. 28263 */ 28264 ipxmit_state_t 28265 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 28266 { 28267 nce_t *arpce; 28268 queue_t *q; 28269 int ill_index; 28270 mblk_t *nxt_mp; 28271 boolean_t xmit_drop = B_FALSE; 28272 ip_proc_t proc; 28273 28274 arpce = ire->ire_nce; 28275 ASSERT(arpce != NULL); 28276 28277 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 28278 28279 mutex_enter(&arpce->nce_lock); 28280 switch (arpce->nce_state) { 28281 case ND_REACHABLE: 28282 /* If there are other queued packets, queue this packet */ 28283 if (arpce->nce_qd_mp != NULL) { 28284 if (mp != NULL) 28285 nce_queue_mp_common(arpce, mp, B_FALSE); 28286 mp = arpce->nce_qd_mp; 28287 } 28288 arpce->nce_qd_mp = NULL; 28289 mutex_exit(&arpce->nce_lock); 28290 28291 /* 28292 * Flush the queue. In the common case, where the 28293 * ARP is already resolved, it will go through the 28294 * while loop only once. 28295 */ 28296 while (mp != NULL) { 28297 28298 nxt_mp = mp->b_next; 28299 mp->b_next = NULL; 28300 /* 28301 * This info is needed for IPQOS to do COS marking 28302 * in ip_wput_attach_llhdr->ip_process. 28303 */ 28304 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 28305 mp->b_prev = NULL; 28306 28307 /* set up ill index for outbound qos processing */ 28308 ill_index = 28309 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 28310 mp = ip_wput_attach_llhdr(mp, ire, proc, ill_index); 28311 if (mp == NULL) { 28312 xmit_drop = B_TRUE; 28313 if (proc == IPP_FWD_OUT) { 28314 BUMP_MIB(&ip_mib, ipInDiscards); 28315 } else { 28316 BUMP_MIB(&ip_mib, ipOutDiscards); 28317 } 28318 goto next_mp; 28319 } 28320 /* non-ipsec hw accel case */ 28321 if (io == NULL || !io->ipsec_out_accelerated) { 28322 /* send it */ 28323 q = ire->ire_stq; 28324 if (proc == IPP_FWD_OUT) { 28325 UPDATE_IB_PKT_COUNT(ire); 28326 } else { 28327 UPDATE_OB_PKT_COUNT(ire); 28328 } 28329 ire->ire_last_used_time = lbolt; 28330 28331 if (flow_ctl_enabled) { 28332 /* 28333 * We are here from ip_wout_ire 28334 * which has already done canput 28335 * check and has enabled flow 28336 * control, so skip the canputnext 28337 * check. 28338 */ 28339 putnext(q, mp); 28340 goto next_mp; 28341 } 28342 if (canputnext(q)) { 28343 if (proc == IPP_FWD_OUT) { 28344 BUMP_MIB(&ip_mib, 28345 ipForwDatagrams); 28346 } 28347 putnext(q, mp); 28348 } else { 28349 BUMP_MIB(&ip_mib, 28350 ipOutDiscards); 28351 xmit_drop = B_TRUE; 28352 freemsg(mp); 28353 } 28354 } else { 28355 /* 28356 * Safety Pup says: make sure this 28357 * is going to the right interface! 28358 */ 28359 ill_t *ill1 = 28360 (ill_t *)ire->ire_stq->q_ptr; 28361 int ifindex = 28362 ill1->ill_phyint->phyint_ifindex; 28363 if (ifindex != 28364 io->ipsec_out_capab_ill_index) { 28365 xmit_drop = B_TRUE; 28366 freemsg(mp); 28367 } else { 28368 ipsec_hw_putnext(ire->ire_stq, 28369 mp); 28370 } 28371 } 28372 next_mp: 28373 mp = nxt_mp; 28374 } /* while (mp != NULL) */ 28375 if (xmit_drop) 28376 return (SEND_FAILED); 28377 else 28378 return (SEND_PASSED); 28379 28380 case ND_INITIAL: 28381 case ND_INCOMPLETE: 28382 28383 /* 28384 * While we do send off packets to dests that 28385 * use fully-resolved CGTP routes, we do not 28386 * handle unresolved CGTP routes. 28387 */ 28388 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 28389 ASSERT(io == NULL || !io->ipsec_out_accelerated); 28390 28391 if (mp != NULL) { 28392 /* queue the packet */ 28393 nce_queue_mp_common(arpce, mp, B_FALSE); 28394 } 28395 28396 if (arpce->nce_state == ND_INCOMPLETE) { 28397 mutex_exit(&arpce->nce_lock); 28398 DTRACE_PROBE3(ip__xmit__incomplete, 28399 (ire_t *), ire, (mblk_t *), mp, 28400 (ipsec_out_t *), io); 28401 return (LOOKUP_IN_PROGRESS); 28402 } 28403 28404 arpce->nce_state = ND_INCOMPLETE; 28405 mutex_exit(&arpce->nce_lock); 28406 /* 28407 * Note that ire_add() (called from ire_forward()) 28408 * holds a ref on the ire until ARP is completed. 28409 */ 28410 28411 ire_arpresolve(ire, ire->ire_ipif->ipif_ill); 28412 return (LOOKUP_IN_PROGRESS); 28413 default: 28414 ASSERT(0); 28415 mutex_exit(&arpce->nce_lock); 28416 return (LLHDR_RESLV_FAILED); 28417 } 28418 } 28419 28420 /* 28421 * Return B_TRUE if the buffers differ in length or content. 28422 * This is used for comparing extension header buffers. 28423 * Note that an extension header would be declared different 28424 * even if all that changed was the next header value in that header i.e. 28425 * what really changed is the next extension header. 28426 */ 28427 boolean_t 28428 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 28429 uint_t blen) 28430 { 28431 if (!b_valid) 28432 blen = 0; 28433 28434 if (alen != blen) 28435 return (B_TRUE); 28436 if (alen == 0) 28437 return (B_FALSE); /* Both zero length */ 28438 return (bcmp(abuf, bbuf, alen)); 28439 } 28440 28441 /* 28442 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 28443 * Return B_FALSE if memory allocation fails - don't change any state! 28444 */ 28445 boolean_t 28446 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28447 const void *src, uint_t srclen) 28448 { 28449 void *dst; 28450 28451 if (!src_valid) 28452 srclen = 0; 28453 28454 ASSERT(*dstlenp == 0); 28455 if (src != NULL && srclen != 0) { 28456 dst = mi_alloc(srclen, BPRI_MED); 28457 if (dst == NULL) 28458 return (B_FALSE); 28459 } else { 28460 dst = NULL; 28461 } 28462 if (*dstp != NULL) 28463 mi_free(*dstp); 28464 *dstp = dst; 28465 *dstlenp = dst == NULL ? 0 : srclen; 28466 return (B_TRUE); 28467 } 28468 28469 /* 28470 * Replace what is in *dst, *dstlen with the source. 28471 * Assumes ip_allocbuf has already been called. 28472 */ 28473 void 28474 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28475 const void *src, uint_t srclen) 28476 { 28477 if (!src_valid) 28478 srclen = 0; 28479 28480 ASSERT(*dstlenp == srclen); 28481 if (src != NULL && srclen != 0) 28482 bcopy(src, *dstp, srclen); 28483 } 28484 28485 /* 28486 * Free the storage pointed to by the members of an ip6_pkt_t. 28487 */ 28488 void 28489 ip6_pkt_free(ip6_pkt_t *ipp) 28490 { 28491 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 28492 28493 if (ipp->ipp_fields & IPPF_HOPOPTS) { 28494 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 28495 ipp->ipp_hopopts = NULL; 28496 ipp->ipp_hopoptslen = 0; 28497 } 28498 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 28499 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 28500 ipp->ipp_rtdstopts = NULL; 28501 ipp->ipp_rtdstoptslen = 0; 28502 } 28503 if (ipp->ipp_fields & IPPF_DSTOPTS) { 28504 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 28505 ipp->ipp_dstopts = NULL; 28506 ipp->ipp_dstoptslen = 0; 28507 } 28508 if (ipp->ipp_fields & IPPF_RTHDR) { 28509 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 28510 ipp->ipp_rthdr = NULL; 28511 ipp->ipp_rthdrlen = 0; 28512 } 28513 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 28514 IPPF_RTHDR); 28515 } 28516