1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <inet/rawip_impl.h> 122 #include <inet/rts_impl.h> 123 #include <sys/sunddi.h> 124 125 #include <sys/tsol/label.h> 126 #include <sys/tsol/tnet.h> 127 128 #include <rpc/pmap_prot.h> 129 130 /* 131 * Values for squeue switch: 132 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 133 * IP_SQUEUE_ENTER: squeue_enter 134 * IP_SQUEUE_FILL: squeue_fill 135 */ 136 int ip_squeue_enter = 2; /* Setable in /etc/system */ 137 138 squeue_func_t ip_input_proc; 139 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 140 141 /* 142 * Setable in /etc/system 143 */ 144 int ip_poll_normal_ms = 100; 145 int ip_poll_normal_ticks = 0; 146 int ip_modclose_ackwait_ms = 3000; 147 148 /* 149 * It would be nice to have these present only in DEBUG systems, but the 150 * current design of the global symbol checking logic requires them to be 151 * unconditionally present. 152 */ 153 uint_t ip_thread_data; /* TSD key for debug support */ 154 krwlock_t ip_thread_rwlock; 155 list_t ip_thread_list; 156 157 /* 158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 159 */ 160 161 struct listptr_s { 162 mblk_t *lp_head; /* pointer to the head of the list */ 163 mblk_t *lp_tail; /* pointer to the tail of the list */ 164 }; 165 166 typedef struct listptr_s listptr_t; 167 168 /* 169 * This is used by ip_snmp_get_mib2_ip_route_media and 170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 171 */ 172 typedef struct iproutedata_s { 173 uint_t ird_idx; 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 /* 180 * Cluster specific hooks. These should be NULL when booted as a non-cluster 181 */ 182 183 /* 184 * Hook functions to enable cluster networking 185 * On non-clustered systems these vectors must always be NULL. 186 * 187 * Hook function to Check ip specified ip address is a shared ip address 188 * in the cluster 189 * 190 */ 191 int (*cl_inet_isclusterwide)(uint8_t protocol, 192 sa_family_t addr_family, uint8_t *laddrp) = NULL; 193 194 /* 195 * Hook function to generate cluster wide ip fragment identifier 196 */ 197 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 198 uint8_t *laddrp, uint8_t *faddrp) = NULL; 199 200 /* 201 * Synchronization notes: 202 * 203 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 204 * MT level protection given by STREAMS. IP uses a combination of its own 205 * internal serialization mechanism and standard Solaris locking techniques. 206 * The internal serialization is per phyint (no IPMP) or per IPMP group. 207 * This is used to serialize plumbing operations, IPMP operations, certain 208 * multicast operations, most set ioctls, igmp/mld timers etc. 209 * 210 * Plumbing is a long sequence of operations involving message 211 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 212 * involved in plumbing operations. A natural model is to serialize these 213 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 214 * parallel without any interference. But various set ioctls on hme0 are best 215 * serialized. However if the system uses IPMP, the operations are easier if 216 * they are serialized on a per IPMP group basis since IPMP operations 217 * happen across ill's of a group. Thus the lowest common denominator is to 218 * serialize most set ioctls, multicast join/leave operations, IPMP operations 219 * igmp/mld timer operations, and processing of DLPI control messages received 220 * from drivers on a per IPMP group basis. If the system does not employ 221 * IPMP the serialization is on a per phyint basis. This serialization is 222 * provided by the ipsq_t and primitives operating on this. Details can 223 * be found in ip_if.c above the core primitives operating on ipsq_t. 224 * 225 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 226 * Simiarly lookup of an ire by a thread also returns a refheld ire. 227 * In addition ipif's and ill's referenced by the ire are also indirectly 228 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 229 * the ipif's address or netmask change as long as an ipif is refheld 230 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 231 * address of an ipif has to go through the ipsq_t. This ensures that only 232 * 1 such exclusive operation proceeds at any time on the ipif. It then 233 * deletes all ires associated with this ipif, and waits for all refcnts 234 * associated with this ipif to come down to zero. The address is changed 235 * only after the ipif has been quiesced. Then the ipif is brought up again. 236 * More details are described above the comment in ip_sioctl_flags. 237 * 238 * Packet processing is based mostly on IREs and are fully multi-threaded 239 * using standard Solaris MT techniques. 240 * 241 * There are explicit locks in IP to handle: 242 * - The ip_g_head list maintained by mi_open_link() and friends. 243 * 244 * - The reassembly data structures (one lock per hash bucket) 245 * 246 * - conn_lock is meant to protect conn_t fields. The fields actually 247 * protected by conn_lock are documented in the conn_t definition. 248 * 249 * - ire_lock to protect some of the fields of the ire, IRE tables 250 * (one lock per hash bucket). Refer to ip_ire.c for details. 251 * 252 * - ndp_g_lock and nce_lock for protecting NCEs. 253 * 254 * - ill_lock protects fields of the ill and ipif. Details in ip.h 255 * 256 * - ill_g_lock: This is a global reader/writer lock. Protects the following 257 * * The AVL tree based global multi list of all ills. 258 * * The linked list of all ipifs of an ill 259 * * The <ill-ipsq> mapping 260 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 261 * * The illgroup list threaded by ill_group_next. 262 * * <ill-phyint> association 263 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 264 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 265 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 266 * will all have to hold the ill_g_lock as writer for the actual duration 267 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 268 * may be found in the IPMP section. 269 * 270 * - ill_lock: This is a per ill mutex. 271 * It protects some members of the ill and is documented below. 272 * It also protects the <ill-ipsq> mapping 273 * It also protects the illgroup list threaded by ill_group_next. 274 * It also protects the <ill-phyint> assoc. 275 * It also protects the list of ipifs hanging off the ill. 276 * 277 * - ipsq_lock: This is a per ipsq_t mutex lock. 278 * This protects all the other members of the ipsq struct except 279 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 280 * 281 * - illgrp_lock: This is a per ill_group mutex lock. 282 * The only thing it protects is the illgrp_ill_schednext member of ill_group 283 * which dictates which is the next ill in an ill_group that is to be chosen 284 * for sending outgoing packets, through creation of an IRE_CACHE that 285 * references this ill. 286 * 287 * - phyint_lock: This is a per phyint mutex lock. Protects just the 288 * phyint_flags 289 * 290 * - ip_g_nd_lock: This is a global reader/writer lock. 291 * Any call to nd_load to load a new parameter to the ND table must hold the 292 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 293 * as reader. 294 * 295 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 296 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 297 * uniqueness check also done atomically. 298 * 299 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 300 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 301 * as a writer when adding or deleting elements from these lists, and 302 * as a reader when walking these lists to send a SADB update to the 303 * IPsec capable ills. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 314 * ip_sioctl_flags since the these operations are executed exclusively and 315 * that ensures that the "usesrc group state" cannot change. The "usesrc 316 * group state" change can happen only in the latter part of 317 * ip_sioctl_slifusesrc and in ill_delete. 318 * 319 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 320 * 321 * To change the <ill-phyint> association, the ill_g_lock must be held 322 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 323 * must be held. 324 * 325 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 326 * and the ill_lock of the ill in question must be held. 327 * 328 * To change the <ill-illgroup> association the ill_g_lock must be held as 329 * writer and the ill_lock of the ill in question must be held. 330 * 331 * To add or delete an ipif from the list of ipifs hanging off the ill, 332 * ill_g_lock (writer) and ill_lock must be held and the thread must be 333 * a writer on the associated ipsq,. 334 * 335 * To add or delete an ill to the system, the ill_g_lock must be held as 336 * writer and the thread must be a writer on the associated ipsq. 337 * 338 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 339 * must be a writer on the associated ipsq. 340 * 341 * Lock hierarchy 342 * 343 * Some lock hierarchy scenarios are listed below. 344 * 345 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 346 * ill_g_lock -> illgrp_lock -> ill_lock 347 * ill_g_lock -> ill_lock(s) -> phyint_lock 348 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ip_addr_avail_lock 350 * conn_lock -> irb_lock -> ill_lock -> ire_lock 351 * ill_g_lock -> ip_g_nd_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * IPsec scenarios 358 * 359 * ipsa_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ipsa_lock 362 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 363 * 364 * Trusted Solaris scenarios 365 * 366 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 367 * igsa_lock -> gcdb_lock 368 * gcgrp_rwlock -> ire_lock 369 * gcgrp_rwlock -> gcdb_lock 370 * 371 * 372 * Routing/forwarding table locking notes: 373 * 374 * Lock acquisition order: Radix tree lock, irb_lock. 375 * Requirements: 376 * i. Walker must not hold any locks during the walker callback. 377 * ii Walker must not see a truncated tree during the walk because of any node 378 * deletion. 379 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 380 * in many places in the code to walk the irb list. Thus even if all the 381 * ires in a bucket have been deleted, we still can't free the radix node 382 * until the ires have actually been inactive'd (freed). 383 * 384 * Tree traversal - Need to hold the global tree lock in read mode. 385 * Before dropping the global tree lock, need to either increment the ire_refcnt 386 * to ensure that the radix node can't be deleted. 387 * 388 * Tree add - Need to hold the global tree lock in write mode to add a 389 * radix node. To prevent the node from being deleted, increment the 390 * irb_refcnt, after the node is added to the tree. The ire itself is 391 * added later while holding the irb_lock, but not the tree lock. 392 * 393 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 394 * All associated ires must be inactive (i.e. freed), and irb_refcnt 395 * must be zero. 396 * 397 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 398 * global tree lock (read mode) for traversal. 399 * 400 * IPsec notes : 401 * 402 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 403 * in front of the actual packet. For outbound datagrams, the M_CTL 404 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 405 * information used by the IPsec code for applying the right level of 406 * protection. The information initialized by IP in the ipsec_out_t 407 * is determined by the per-socket policy or global policy in the system. 408 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 409 * ipsec_info.h) which starts out with nothing in it. It gets filled 410 * with the right information if it goes through the AH/ESP code, which 411 * happens if the incoming packet is secure. The information initialized 412 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 413 * the policy requirements needed by per-socket policy or global policy 414 * is met or not. 415 * 416 * If there is both per-socket policy (set using setsockopt) and there 417 * is also global policy match for the 5 tuples of the socket, 418 * ipsec_override_policy() makes the decision of which one to use. 419 * 420 * For fully connected sockets i.e dst, src [addr, port] is known, 421 * conn_policy_cached is set indicating that policy has been cached. 422 * conn_in_enforce_policy may or may not be set depending on whether 423 * there is a global policy match or per-socket policy match. 424 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 425 * Once the right policy is set on the conn_t, policy cannot change for 426 * this socket. This makes life simpler for TCP (UDP ?) where 427 * re-transmissions go out with the same policy. For symmetry, policy 428 * is cached for fully connected UDP sockets also. Thus if policy is cached, 429 * it also implies that policy is latched i.e policy cannot change 430 * on these sockets. As we have the right policy on the conn, we don't 431 * have to lookup global policy for every outbound and inbound datagram 432 * and thus serving as an optimization. Note that a global policy change 433 * does not affect fully connected sockets if they have policy. If fully 434 * connected sockets did not have any policy associated with it, global 435 * policy change may affect them. 436 * 437 * IP Flow control notes: 438 * 439 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 440 * cannot be sent down to the driver by IP, because of a canput failure, IP 441 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 442 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 443 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 444 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 445 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 446 * the queued messages, and removes the conn from the drain list, if all 447 * messages were drained. It also qenables the next conn in the drain list to 448 * continue the drain process. 449 * 450 * In reality the drain list is not a single list, but a configurable number 451 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 452 * list. If the ip_wsrv of the next qenabled conn does not run, because the 453 * stream closes, ip_close takes responsibility to qenable the next conn in 454 * the drain list. The directly called ip_wput path always does a putq, if 455 * it cannot putnext. Thus synchronization problems are handled between 456 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 457 * functions that manipulate this drain list. Furthermore conn_drain_insert 458 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 459 * running on a queue at any time. conn_drain_tail can be simultaneously called 460 * from both ip_wsrv and ip_close. 461 * 462 * IPQOS notes: 463 * 464 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 465 * and IPQoS modules. IPPF includes hooks in IP at different control points 466 * (callout positions) which direct packets to IPQoS modules for policy 467 * processing. Policies, if present, are global. 468 * 469 * The callout positions are located in the following paths: 470 * o local_in (packets destined for this host) 471 * o local_out (packets orginating from this host ) 472 * o fwd_in (packets forwarded by this m/c - inbound) 473 * o fwd_out (packets forwarded by this m/c - outbound) 474 * Hooks at these callout points can be enabled/disabled using the ndd variable 475 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 476 * By default all the callout positions are enabled. 477 * 478 * Outbound (local_out) 479 * Hooks are placed in ip_wput_ire and ipsec_out_process. 480 * 481 * Inbound (local_in) 482 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 483 * TCP and UDP fanout routines. 484 * 485 * Forwarding (in and out) 486 * Hooks are placed in ip_rput_forward. 487 * 488 * IP Policy Framework processing (IPPF processing) 489 * Policy processing for a packet is initiated by ip_process, which ascertains 490 * that the classifier (ipgpc) is loaded and configured, failing which the 491 * packet resumes normal processing in IP. If the clasifier is present, the 492 * packet is acted upon by one or more IPQoS modules (action instances), per 493 * filters configured in ipgpc and resumes normal IP processing thereafter. 494 * An action instance can drop a packet in course of its processing. 495 * 496 * A boolean variable, ip_policy, is used in all the fanout routines that can 497 * invoke ip_process for a packet. This variable indicates if the packet should 498 * to be sent for policy processing. The variable is set to B_TRUE by default, 499 * i.e. when the routines are invoked in the normal ip procesing path for a 500 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 501 * ip_policy is set to B_FALSE for all the routines called in these two 502 * functions because, in the former case, we don't process loopback traffic 503 * currently while in the latter, the packets have already been processed in 504 * icmp_inbound. 505 * 506 * Zones notes: 507 * 508 * The partitioning rules for networking are as follows: 509 * 1) Packets coming from a zone must have a source address belonging to that 510 * zone. 511 * 2) Packets coming from a zone can only be sent on a physical interface on 512 * which the zone has an IP address. 513 * 3) Between two zones on the same machine, packet delivery is only allowed if 514 * there's a matching route for the destination and zone in the forwarding 515 * table. 516 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 517 * different zones can bind to the same port with the wildcard address 518 * (INADDR_ANY). 519 * 520 * The granularity of interface partitioning is at the logical interface level. 521 * Therefore, every zone has its own IP addresses, and incoming packets can be 522 * attributed to a zone unambiguously. A logical interface is placed into a zone 523 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 524 * structure. Rule (1) is implemented by modifying the source address selection 525 * algorithm so that the list of eligible addresses is filtered based on the 526 * sending process zone. 527 * 528 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 529 * across all zones, depending on their type. Here is the break-up: 530 * 531 * IRE type Shared/exclusive 532 * -------- ---------------- 533 * IRE_BROADCAST Exclusive 534 * IRE_DEFAULT (default routes) Shared (*) 535 * IRE_LOCAL Exclusive (x) 536 * IRE_LOOPBACK Exclusive 537 * IRE_PREFIX (net routes) Shared (*) 538 * IRE_CACHE Exclusive 539 * IRE_IF_NORESOLVER (interface routes) Exclusive 540 * IRE_IF_RESOLVER (interface routes) Exclusive 541 * IRE_HOST (host routes) Shared (*) 542 * 543 * (*) A zone can only use a default or off-subnet route if the gateway is 544 * directly reachable from the zone, that is, if the gateway's address matches 545 * one of the zone's logical interfaces. 546 * 547 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 548 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 549 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 550 * address of the zone itself (the destination). Since IRE_LOCAL is used 551 * for communication between zones, ip_wput_ire has special logic to set 552 * the right source address when sending using an IRE_LOCAL. 553 * 554 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 555 * ire_cache_lookup restricts loopback using an IRE_LOCAL 556 * between zone to the case when L2 would have conceptually looped the packet 557 * back, i.e. the loopback which is required since neither Ethernet drivers 558 * nor Ethernet hardware loops them back. This is the case when the normal 559 * routes (ignoring IREs with different zoneids) would send out the packet on 560 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 561 * associated. 562 * 563 * Multiple zones can share a common broadcast address; typically all zones 564 * share the 255.255.255.255 address. Incoming as well as locally originated 565 * broadcast packets must be dispatched to all the zones on the broadcast 566 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 567 * since some zones may not be on the 10.16.72/24 network. To handle this, each 568 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 569 * sent to every zone that has an IRE_BROADCAST entry for the destination 570 * address on the input ill, see conn_wantpacket(). 571 * 572 * Applications in different zones can join the same multicast group address. 573 * For IPv4, group memberships are per-logical interface, so they're already 574 * inherently part of a zone. For IPv6, group memberships are per-physical 575 * interface, so we distinguish IPv6 group memberships based on group address, 576 * interface and zoneid. In both cases, received multicast packets are sent to 577 * every zone for which a group membership entry exists. On IPv6 we need to 578 * check that the target zone still has an address on the receiving physical 579 * interface; it could have been removed since the application issued the 580 * IPV6_JOIN_GROUP. 581 */ 582 583 /* 584 * Squeue Fanout flags: 585 * 0: No fanout. 586 * 1: Fanout across all squeues 587 */ 588 boolean_t ip_squeue_fanout = 0; 589 590 /* 591 * Maximum dups allowed per packet. 592 */ 593 uint_t ip_max_frag_dups = 10; 594 595 #define IS_SIMPLE_IPH(ipha) \ 596 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 597 598 /* RFC1122 Conformance */ 599 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 600 601 #define ILL_MAX_NAMELEN LIFNAMSIZ 602 603 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 604 605 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 606 cred_t *credp, boolean_t isv6); 607 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 608 609 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 610 ip_stack_t *); 611 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 612 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 613 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 614 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 615 mblk_t *, int, ip_stack_t *); 616 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 617 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 618 ill_t *, zoneid_t); 619 static void icmp_options_update(ipha_t *); 620 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 621 ip_stack_t *); 622 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 623 zoneid_t zoneid, ip_stack_t *); 624 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 625 static void icmp_redirect(ill_t *, mblk_t *); 626 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 627 ip_stack_t *); 628 629 static void ip_arp_news(queue_t *, mblk_t *); 630 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 631 ip_stack_t *); 632 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 633 char *ip_dot_addr(ipaddr_t, char *); 634 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 635 int ip_close(queue_t *, int); 636 static char *ip_dot_saddr(uchar_t *, char *); 637 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 638 boolean_t, boolean_t, ill_t *, zoneid_t); 639 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, zoneid_t); 641 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 642 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 643 static void ip_lrput(queue_t *, mblk_t *); 644 ipaddr_t ip_net_mask(ipaddr_t); 645 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 646 ip_stack_t *); 647 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 648 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 649 char *ip_nv_lookup(nv_t *, int); 650 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 651 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 652 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 654 ipndp_t *, size_t); 655 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 656 void ip_rput(queue_t *, mblk_t *); 657 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 658 void *dummy_arg); 659 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 660 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 661 ip_stack_t *); 662 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 663 ire_t *, ip_stack_t *); 664 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 665 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 666 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 667 ip_stack_t *); 668 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 669 uint16_t *); 670 int ip_snmp_get(queue_t *, mblk_t *, int); 671 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 672 mib2_ipIfStatsEntry_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 674 ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 681 ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 701 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 702 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 703 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 704 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 705 static boolean_t ip_source_route_included(ipha_t *); 706 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 707 708 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 709 zoneid_t, ip_stack_t *); 710 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 711 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 712 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 713 zoneid_t, ip_stack_t *); 714 715 static void conn_drain_init(ip_stack_t *); 716 static void conn_drain_fini(ip_stack_t *); 717 static void conn_drain_tail(conn_t *connp, boolean_t closing); 718 719 static void conn_walk_drain(ip_stack_t *); 720 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 721 zoneid_t); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 728 zoneid_t); 729 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 730 void *dummy_arg); 731 732 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 733 734 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 735 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 736 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 737 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 738 739 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 740 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 741 caddr_t, cred_t *); 742 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 743 caddr_t cp, cred_t *cr); 744 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 745 cred_t *); 746 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static squeue_func_t ip_squeue_switch(int); 753 754 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 755 static void ip_kstat_fini(netstackid_t, kstat_t *); 756 static int ip_kstat_update(kstat_t *kp, int rw); 757 static void *icmp_kstat_init(netstackid_t); 758 static void icmp_kstat_fini(netstackid_t, kstat_t *); 759 static int icmp_kstat_update(kstat_t *kp, int rw); 760 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 761 static void ip_kstat2_fini(netstackid_t, kstat_t *); 762 763 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 764 765 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 766 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 767 768 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 769 ipha_t *, ill_t *, boolean_t); 770 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 771 772 /* How long, in seconds, we allow frags to hang around. */ 773 #define IP_FRAG_TIMEOUT 60 774 775 /* 776 * Threshold which determines whether MDT should be used when 777 * generating IP fragments; payload size must be greater than 778 * this threshold for MDT to take place. 779 */ 780 #define IP_WPUT_FRAG_MDT_MIN 32768 781 782 /* Setable in /etc/system only */ 783 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 784 785 static long ip_rput_pullups; 786 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 787 788 vmem_t *ip_minor_arena; 789 790 int ip_debug; 791 792 #ifdef DEBUG 793 uint32_t ipsechw_debug = 0; 794 #endif 795 796 /* 797 * Multirouting/CGTP stuff 798 */ 799 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 800 801 /* 802 * XXX following really should only be in a header. Would need more 803 * header and .c clean up first. 804 */ 805 extern optdb_obj_t ip_opt_obj; 806 807 ulong_t ip_squeue_enter_unbound = 0; 808 809 /* 810 * Named Dispatch Parameter Table. 811 * All of these are alterable, within the min/max values given, at run time. 812 */ 813 static ipparam_t lcl_param_arr[] = { 814 /* min max value name */ 815 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 816 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 817 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 818 { 0, 1, 0, "ip_respond_to_timestamp"}, 819 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 820 { 0, 1, 1, "ip_send_redirects"}, 821 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 822 { 0, 10, 0, "ip_debug"}, 823 { 0, 10, 0, "ip_mrtdebug"}, 824 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 825 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 826 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 827 { 1, 255, 255, "ip_def_ttl" }, 828 { 0, 1, 0, "ip_forward_src_routed"}, 829 { 0, 256, 32, "ip_wroff_extra" }, 830 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 831 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 832 { 0, 1, 1, "ip_path_mtu_discovery" }, 833 { 0, 240, 30, "ip_ignore_delete_time" }, 834 { 0, 1, 0, "ip_ignore_redirect" }, 835 { 0, 1, 1, "ip_output_queue" }, 836 { 1, 254, 1, "ip_broadcast_ttl" }, 837 { 0, 99999, 100, "ip_icmp_err_interval" }, 838 { 1, 99999, 10, "ip_icmp_err_burst" }, 839 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 840 { 0, 1, 0, "ip_strict_dst_multihoming" }, 841 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 842 { 0, 1, 0, "ipsec_override_persocket_policy" }, 843 { 0, 1, 1, "icmp_accept_clear_messages" }, 844 { 0, 1, 1, "igmp_accept_clear_messages" }, 845 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 846 "ip_ndp_delay_first_probe_time"}, 847 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 848 "ip_ndp_max_unicast_solicit"}, 849 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 850 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 851 { 0, 1, 0, "ip6_forward_src_routed"}, 852 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 853 { 0, 1, 1, "ip6_send_redirects"}, 854 { 0, 1, 0, "ip6_ignore_redirect" }, 855 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 856 857 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 858 859 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 860 861 { 0, 1, 1, "pim_accept_clear_messages" }, 862 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 863 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 864 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 865 { 0, 15, 0, "ip_policy_mask" }, 866 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 867 { 0, 255, 1, "ip_multirt_ttl" }, 868 { 0, 1, 1, "ip_multidata_outbound" }, 869 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 870 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 871 { 0, 1000, 1, "ip_max_temp_defend" }, 872 { 0, 1000, 3, "ip_max_defend" }, 873 { 0, 999999, 30, "ip_defend_interval" }, 874 { 0, 3600000, 300000, "ip_dup_recovery" }, 875 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 876 { 0, 1, 1, "ip_lso_outbound" }, 877 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 878 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 879 #ifdef DEBUG 880 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 881 #else 882 { 0, 0, 0, "" }, 883 #endif 884 }; 885 886 /* 887 * Extended NDP table 888 * The addresses for the first two are filled in to be ips_ip_g_forward 889 * and ips_ipv6_forward at init time. 890 */ 891 static ipndp_t lcl_ndp_arr[] = { 892 /* getf setf data name */ 893 #define IPNDP_IP_FORWARDING_OFFSET 0 894 { ip_param_generic_get, ip_forward_set, NULL, 895 "ip_forwarding" }, 896 #define IPNDP_IP6_FORWARDING_OFFSET 1 897 { ip_param_generic_get, ip_forward_set, NULL, 898 "ip6_forwarding" }, 899 { ip_ill_report, NULL, NULL, 900 "ip_ill_status" }, 901 { ip_ipif_report, NULL, NULL, 902 "ip_ipif_status" }, 903 { ip_ire_report, NULL, NULL, 904 "ipv4_ire_status" }, 905 { ip_ire_report_v6, NULL, NULL, 906 "ipv6_ire_status" }, 907 { ip_conn_report, NULL, NULL, 908 "ip_conn_status" }, 909 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 910 "ip_rput_pullups" }, 911 { ndp_report, NULL, NULL, 912 "ip_ndp_cache_report" }, 913 { ip_srcid_report, NULL, NULL, 914 "ip_srcid_status" }, 915 { ip_param_generic_get, ip_squeue_profile_set, 916 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 917 { ip_param_generic_get, ip_squeue_bind_set, 918 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 919 { ip_param_generic_get, ip_input_proc_set, 920 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 921 { ip_param_generic_get, ip_int_set, 922 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 923 #define IPNDP_CGTP_FILTER_OFFSET 14 924 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 925 "ip_cgtp_filter" }, 926 { ip_param_generic_get, ip_int_set, 927 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 928 #define IPNDP_IPMP_HOOK_OFFSET 16 929 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 930 "ipmp_hook_emulation" }, 931 }; 932 933 /* 934 * Table of IP ioctls encoding the various properties of the ioctl and 935 * indexed based on the last byte of the ioctl command. Occasionally there 936 * is a clash, and there is more than 1 ioctl with the same last byte. 937 * In such a case 1 ioctl is encoded in the ndx table and the remaining 938 * ioctls are encoded in the misc table. An entry in the ndx table is 939 * retrieved by indexing on the last byte of the ioctl command and comparing 940 * the ioctl command with the value in the ndx table. In the event of a 941 * mismatch the misc table is then searched sequentially for the desired 942 * ioctl command. 943 * 944 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 945 */ 946 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 947 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 958 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 959 MISC_CMD, ip_siocaddrt, NULL }, 960 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 961 MISC_CMD, ip_siocdelrt, NULL }, 962 963 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 964 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 965 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 966 IF_CMD, ip_sioctl_get_addr, NULL }, 967 968 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 969 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 970 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 971 IPI_GET_CMD | IPI_REPL, 972 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 973 974 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 975 IPI_PRIV | IPI_WR | IPI_REPL, 976 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 977 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 978 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 979 IF_CMD, ip_sioctl_get_flags, NULL }, 980 981 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 982 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 983 984 /* copyin size cannot be coded for SIOCGIFCONF */ 985 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 986 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 987 988 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 989 IF_CMD, ip_sioctl_mtu, NULL }, 990 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 991 IF_CMD, ip_sioctl_get_mtu, NULL }, 992 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 993 IPI_GET_CMD | IPI_REPL, 994 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 995 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 996 IF_CMD, ip_sioctl_brdaddr, NULL }, 997 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 998 IPI_GET_CMD | IPI_REPL, 999 IF_CMD, ip_sioctl_get_netmask, NULL }, 1000 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1001 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1002 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1003 IPI_GET_CMD | IPI_REPL, 1004 IF_CMD, ip_sioctl_get_metric, NULL }, 1005 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1006 IF_CMD, ip_sioctl_metric, NULL }, 1007 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1008 1009 /* See 166-168 below for extended SIOC*XARP ioctls */ 1010 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1011 ARP_CMD, ip_sioctl_arp, NULL }, 1012 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1013 ARP_CMD, ip_sioctl_arp, NULL }, 1014 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1015 ARP_CMD, ip_sioctl_arp, NULL }, 1016 1017 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 1039 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1040 MISC_CMD, if_unitsel, if_unitsel_restart }, 1041 1042 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1062 IPI_PRIV | IPI_WR | IPI_MODOK, 1063 IF_CMD, ip_sioctl_sifname, NULL }, 1064 1065 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 1079 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1080 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1081 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1082 IF_CMD, ip_sioctl_get_muxid, NULL }, 1083 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1084 IPI_PRIV | IPI_WR | IPI_REPL, 1085 IF_CMD, ip_sioctl_muxid, NULL }, 1086 1087 /* Both if and lif variants share same func */ 1088 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1089 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1090 /* Both if and lif variants share same func */ 1091 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1092 IPI_PRIV | IPI_WR | IPI_REPL, 1093 IF_CMD, ip_sioctl_slifindex, NULL }, 1094 1095 /* copyin size cannot be coded for SIOCGIFCONF */ 1096 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1097 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1098 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 1116 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1117 IPI_PRIV | IPI_WR | IPI_REPL, 1118 LIF_CMD, ip_sioctl_removeif, 1119 ip_sioctl_removeif_restart }, 1120 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1121 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1122 LIF_CMD, ip_sioctl_addif, NULL }, 1123 #define SIOCLIFADDR_NDX 112 1124 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1125 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1126 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1127 IPI_GET_CMD | IPI_REPL, 1128 LIF_CMD, ip_sioctl_get_addr, NULL }, 1129 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1130 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1131 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1132 IPI_GET_CMD | IPI_REPL, 1133 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1134 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1135 IPI_PRIV | IPI_WR | IPI_REPL, 1136 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1137 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1138 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1139 LIF_CMD, ip_sioctl_get_flags, NULL }, 1140 1141 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 1144 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1145 ip_sioctl_get_lifconf, NULL }, 1146 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1147 LIF_CMD, ip_sioctl_mtu, NULL }, 1148 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1149 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1150 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1151 IPI_GET_CMD | IPI_REPL, 1152 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1153 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1154 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1155 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1156 IPI_GET_CMD | IPI_REPL, 1157 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1158 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1159 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1160 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1161 IPI_GET_CMD | IPI_REPL, 1162 LIF_CMD, ip_sioctl_get_metric, NULL }, 1163 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1164 LIF_CMD, ip_sioctl_metric, NULL }, 1165 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1166 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1167 LIF_CMD, ip_sioctl_slifname, 1168 ip_sioctl_slifname_restart }, 1169 1170 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1171 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1172 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1173 IPI_GET_CMD | IPI_REPL, 1174 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1175 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1176 IPI_PRIV | IPI_WR | IPI_REPL, 1177 LIF_CMD, ip_sioctl_muxid, NULL }, 1178 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1179 IPI_GET_CMD | IPI_REPL, 1180 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1181 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1182 IPI_PRIV | IPI_WR | IPI_REPL, 1183 LIF_CMD, ip_sioctl_slifindex, 0 }, 1184 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1185 LIF_CMD, ip_sioctl_token, NULL }, 1186 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1187 IPI_GET_CMD | IPI_REPL, 1188 LIF_CMD, ip_sioctl_get_token, NULL }, 1189 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1190 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1191 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1192 IPI_GET_CMD | IPI_REPL, 1193 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1194 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1195 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1196 1197 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1198 IPI_GET_CMD | IPI_REPL, 1199 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1200 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1201 LIF_CMD, ip_siocdelndp_v6, NULL }, 1202 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1203 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1204 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1205 LIF_CMD, ip_siocsetndp_v6, NULL }, 1206 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1207 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1208 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1209 MISC_CMD, ip_sioctl_tonlink, NULL }, 1210 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1211 MISC_CMD, ip_sioctl_tmysite, NULL }, 1212 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1213 TUN_CMD, ip_sioctl_tunparam, NULL }, 1214 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1215 IPI_PRIV | IPI_WR, 1216 TUN_CMD, ip_sioctl_tunparam, NULL }, 1217 1218 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1219 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1220 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1221 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1222 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1223 1224 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1225 IPI_PRIV | IPI_WR | IPI_REPL, 1226 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1227 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1228 IPI_PRIV | IPI_WR | IPI_REPL, 1229 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1230 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1231 IPI_PRIV | IPI_WR, 1232 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1233 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1234 IPI_GET_CMD | IPI_REPL, 1235 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1236 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1237 IPI_GET_CMD | IPI_REPL, 1238 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1239 1240 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1241 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1242 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1243 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1244 1245 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1246 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1247 1248 /* These are handled in ip_sioctl_copyin_setup itself */ 1249 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1250 MISC_CMD, NULL, NULL }, 1251 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1252 MISC_CMD, NULL, NULL }, 1253 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1254 1255 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1256 ip_sioctl_get_lifconf, NULL }, 1257 1258 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1259 XARP_CMD, ip_sioctl_arp, NULL }, 1260 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1261 XARP_CMD, ip_sioctl_arp, NULL }, 1262 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1263 XARP_CMD, ip_sioctl_arp, NULL }, 1264 1265 /* SIOCPOPSOCKFS is not handled by IP */ 1266 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1267 1268 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1269 IPI_GET_CMD | IPI_REPL, 1270 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1271 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1272 IPI_PRIV | IPI_WR | IPI_REPL, 1273 LIF_CMD, ip_sioctl_slifzone, 1274 ip_sioctl_slifzone_restart }, 1275 /* 172-174 are SCTP ioctls and not handled by IP */ 1276 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1277 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1278 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1279 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1280 IPI_GET_CMD, LIF_CMD, 1281 ip_sioctl_get_lifusesrc, 0 }, 1282 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1283 IPI_PRIV | IPI_WR, 1284 LIF_CMD, ip_sioctl_slifusesrc, 1285 NULL }, 1286 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1287 ip_sioctl_get_lifsrcof, NULL }, 1288 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1289 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1290 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1291 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1292 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1293 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1294 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1295 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1296 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1297 ip_sioctl_set_ipmpfailback, NULL } 1298 }; 1299 1300 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1301 1302 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1303 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1304 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1305 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1306 TUN_CMD, ip_sioctl_tunparam, NULL }, 1307 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1308 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1309 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1313 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1314 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1315 MISC_CMD, mrt_ioctl}, 1316 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1317 MISC_CMD, mrt_ioctl}, 1318 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1319 MISC_CMD, mrt_ioctl} 1320 }; 1321 1322 int ip_misc_ioctl_count = 1323 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1324 1325 int conn_drain_nthreads; /* Number of drainers reqd. */ 1326 /* Settable in /etc/system */ 1327 /* Defined in ip_ire.c */ 1328 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1329 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1330 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1331 1332 static nv_t ire_nv_arr[] = { 1333 { IRE_BROADCAST, "BROADCAST" }, 1334 { IRE_LOCAL, "LOCAL" }, 1335 { IRE_LOOPBACK, "LOOPBACK" }, 1336 { IRE_CACHE, "CACHE" }, 1337 { IRE_DEFAULT, "DEFAULT" }, 1338 { IRE_PREFIX, "PREFIX" }, 1339 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1340 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1341 { IRE_HOST, "HOST" }, 1342 { 0 } 1343 }; 1344 1345 nv_t *ire_nv_tbl = ire_nv_arr; 1346 1347 /* Defined in ip_netinfo.c */ 1348 extern ddi_taskq_t *eventq_queue_nic; 1349 1350 /* Simple ICMP IP Header Template */ 1351 static ipha_t icmp_ipha = { 1352 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1353 }; 1354 1355 struct module_info ip_mod_info = { 1356 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1357 }; 1358 1359 /* 1360 * Duplicate static symbols within a module confuses mdb; so we avoid the 1361 * problem by making the symbols here distinct from those in udp.c. 1362 */ 1363 1364 /* 1365 * Entry points for IP as a device and as a module. 1366 * FIXME: down the road we might want a separate module and driver qinit. 1367 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1368 */ 1369 static struct qinit iprinitv4 = { 1370 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1371 &ip_mod_info 1372 }; 1373 1374 struct qinit iprinitv6 = { 1375 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1376 &ip_mod_info 1377 }; 1378 1379 static struct qinit ipwinitv4 = { 1380 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1381 &ip_mod_info 1382 }; 1383 1384 struct qinit ipwinitv6 = { 1385 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1386 &ip_mod_info 1387 }; 1388 1389 static struct qinit iplrinit = { 1390 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1391 &ip_mod_info 1392 }; 1393 1394 static struct qinit iplwinit = { 1395 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1396 &ip_mod_info 1397 }; 1398 1399 /* For AF_INET aka /dev/ip */ 1400 struct streamtab ipinfov4 = { 1401 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1402 }; 1403 1404 /* For AF_INET6 aka /dev/ip6 */ 1405 struct streamtab ipinfov6 = { 1406 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1407 }; 1408 1409 #ifdef DEBUG 1410 static boolean_t skip_sctp_cksum = B_FALSE; 1411 #endif 1412 1413 /* 1414 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1415 * ip_rput_v6(), ip_output(), etc. If the message 1416 * block already has a M_CTL at the front of it, then simply set the zoneid 1417 * appropriately. 1418 */ 1419 mblk_t * 1420 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1421 { 1422 mblk_t *first_mp; 1423 ipsec_out_t *io; 1424 1425 ASSERT(zoneid != ALL_ZONES); 1426 if (mp->b_datap->db_type == M_CTL) { 1427 io = (ipsec_out_t *)mp->b_rptr; 1428 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1429 io->ipsec_out_zoneid = zoneid; 1430 return (mp); 1431 } 1432 1433 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1434 if (first_mp == NULL) 1435 return (NULL); 1436 io = (ipsec_out_t *)first_mp->b_rptr; 1437 /* This is not a secure packet */ 1438 io->ipsec_out_secure = B_FALSE; 1439 io->ipsec_out_zoneid = zoneid; 1440 first_mp->b_cont = mp; 1441 return (first_mp); 1442 } 1443 1444 /* 1445 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1446 */ 1447 mblk_t * 1448 ip_copymsg(mblk_t *mp) 1449 { 1450 mblk_t *nmp; 1451 ipsec_info_t *in; 1452 1453 if (mp->b_datap->db_type != M_CTL) 1454 return (copymsg(mp)); 1455 1456 in = (ipsec_info_t *)mp->b_rptr; 1457 1458 /* 1459 * Note that M_CTL is also used for delivering ICMP error messages 1460 * upstream to transport layers. 1461 */ 1462 if (in->ipsec_info_type != IPSEC_OUT && 1463 in->ipsec_info_type != IPSEC_IN) 1464 return (copymsg(mp)); 1465 1466 nmp = copymsg(mp->b_cont); 1467 1468 if (in->ipsec_info_type == IPSEC_OUT) { 1469 return (ipsec_out_tag(mp, nmp, 1470 ((ipsec_out_t *)in)->ipsec_out_ns)); 1471 } else { 1472 return (ipsec_in_tag(mp, nmp, 1473 ((ipsec_in_t *)in)->ipsec_in_ns)); 1474 } 1475 } 1476 1477 /* Generate an ICMP fragmentation needed message. */ 1478 static void 1479 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1480 ip_stack_t *ipst) 1481 { 1482 icmph_t icmph; 1483 mblk_t *first_mp; 1484 boolean_t mctl_present; 1485 1486 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1487 1488 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1489 if (mctl_present) 1490 freeb(first_mp); 1491 return; 1492 } 1493 1494 bzero(&icmph, sizeof (icmph_t)); 1495 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1496 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1497 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1498 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1499 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1500 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1501 ipst); 1502 } 1503 1504 /* 1505 * icmp_inbound deals with ICMP messages in the following ways. 1506 * 1507 * 1) It needs to send a reply back and possibly delivering it 1508 * to the "interested" upper clients. 1509 * 2) It needs to send it to the upper clients only. 1510 * 3) It needs to change some values in IP only. 1511 * 4) It needs to change some values in IP and upper layers e.g TCP. 1512 * 1513 * We need to accomodate icmp messages coming in clear until we get 1514 * everything secure from the wire. If icmp_accept_clear_messages 1515 * is zero we check with the global policy and act accordingly. If 1516 * it is non-zero, we accept the message without any checks. But 1517 * *this does not mean* that this will be delivered to the upper 1518 * clients. By accepting we might send replies back, change our MTU 1519 * value etc. but delivery to the ULP/clients depends on their policy 1520 * dispositions. 1521 * 1522 * We handle the above 4 cases in the context of IPsec in the 1523 * following way : 1524 * 1525 * 1) Send the reply back in the same way as the request came in. 1526 * If it came in encrypted, it goes out encrypted. If it came in 1527 * clear, it goes out in clear. Thus, this will prevent chosen 1528 * plain text attack. 1529 * 2) The client may or may not expect things to come in secure. 1530 * If it comes in secure, the policy constraints are checked 1531 * before delivering it to the upper layers. If it comes in 1532 * clear, ipsec_inbound_accept_clear will decide whether to 1533 * accept this in clear or not. In both the cases, if the returned 1534 * message (IP header + 8 bytes) that caused the icmp message has 1535 * AH/ESP headers, it is sent up to AH/ESP for validation before 1536 * sending up. If there are only 8 bytes of returned message, then 1537 * upper client will not be notified. 1538 * 3) Check with global policy to see whether it matches the constaints. 1539 * But this will be done only if icmp_accept_messages_in_clear is 1540 * zero. 1541 * 4) If we need to change both in IP and ULP, then the decision taken 1542 * while affecting the values in IP and while delivering up to TCP 1543 * should be the same. 1544 * 1545 * There are two cases. 1546 * 1547 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1548 * failed), we will not deliver it to the ULP, even though they 1549 * are *willing* to accept in *clear*. This is fine as our global 1550 * disposition to icmp messages asks us reject the datagram. 1551 * 1552 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1553 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1554 * to deliver it to ULP (policy failed), it can lead to 1555 * consistency problems. The cases known at this time are 1556 * ICMP_DESTINATION_UNREACHABLE messages with following code 1557 * values : 1558 * 1559 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1560 * and Upper layer rejects. Then the communication will 1561 * come to a stop. This is solved by making similar decisions 1562 * at both levels. Currently, when we are unable to deliver 1563 * to the Upper Layer (due to policy failures) while IP has 1564 * adjusted ire_max_frag, the next outbound datagram would 1565 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1566 * will be with the right level of protection. Thus the right 1567 * value will be communicated even if we are not able to 1568 * communicate when we get from the wire initially. But this 1569 * assumes there would be at least one outbound datagram after 1570 * IP has adjusted its ire_max_frag value. To make things 1571 * simpler, we accept in clear after the validation of 1572 * AH/ESP headers. 1573 * 1574 * - Other ICMP ERRORS : We may not be able to deliver it to the 1575 * upper layer depending on the level of protection the upper 1576 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1577 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1578 * should be accepted in clear when the Upper layer expects secure. 1579 * Thus the communication may get aborted by some bad ICMP 1580 * packets. 1581 * 1582 * IPQoS Notes: 1583 * The only instance when a packet is sent for processing is when there 1584 * isn't an ICMP client and if we are interested in it. 1585 * If there is a client, IPPF processing will take place in the 1586 * ip_fanout_proto routine. 1587 * 1588 * Zones notes: 1589 * The packet is only processed in the context of the specified zone: typically 1590 * only this zone will reply to an echo request, and only interested clients in 1591 * this zone will receive a copy of the packet. This means that the caller must 1592 * call icmp_inbound() for each relevant zone. 1593 */ 1594 static void 1595 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1596 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1597 ill_t *recv_ill, zoneid_t zoneid) 1598 { 1599 icmph_t *icmph; 1600 ipha_t *ipha; 1601 int iph_hdr_length; 1602 int hdr_length; 1603 boolean_t interested; 1604 uint32_t ts; 1605 uchar_t *wptr; 1606 ipif_t *ipif; 1607 mblk_t *first_mp; 1608 ipsec_in_t *ii; 1609 ire_t *src_ire; 1610 boolean_t onlink; 1611 timestruc_t now; 1612 uint32_t ill_index; 1613 ip_stack_t *ipst; 1614 1615 ASSERT(ill != NULL); 1616 ipst = ill->ill_ipst; 1617 1618 first_mp = mp; 1619 if (mctl_present) { 1620 mp = first_mp->b_cont; 1621 ASSERT(mp != NULL); 1622 } 1623 1624 ipha = (ipha_t *)mp->b_rptr; 1625 if (ipst->ips_icmp_accept_clear_messages == 0) { 1626 first_mp = ipsec_check_global_policy(first_mp, NULL, 1627 ipha, NULL, mctl_present, ipst->ips_netstack); 1628 if (first_mp == NULL) 1629 return; 1630 } 1631 1632 /* 1633 * On a labeled system, we have to check whether the zone itself is 1634 * permitted to receive raw traffic. 1635 */ 1636 if (is_system_labeled()) { 1637 if (zoneid == ALL_ZONES) 1638 zoneid = tsol_packet_to_zoneid(mp); 1639 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1640 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1641 zoneid)); 1642 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1643 freemsg(first_mp); 1644 return; 1645 } 1646 } 1647 1648 /* 1649 * We have accepted the ICMP message. It means that we will 1650 * respond to the packet if needed. It may not be delivered 1651 * to the upper client depending on the policy constraints 1652 * and the disposition in ipsec_inbound_accept_clear. 1653 */ 1654 1655 ASSERT(ill != NULL); 1656 1657 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1658 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1659 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1660 /* Last chance to get real. */ 1661 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1662 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1663 freemsg(first_mp); 1664 return; 1665 } 1666 /* Refresh iph following the pullup. */ 1667 ipha = (ipha_t *)mp->b_rptr; 1668 } 1669 /* ICMP header checksum, including checksum field, should be zero. */ 1670 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1671 IP_CSUM(mp, iph_hdr_length, 0)) { 1672 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1673 freemsg(first_mp); 1674 return; 1675 } 1676 /* The IP header will always be a multiple of four bytes */ 1677 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1678 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1679 icmph->icmph_code)); 1680 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1681 /* We will set "interested" to "true" if we want a copy */ 1682 interested = B_FALSE; 1683 switch (icmph->icmph_type) { 1684 case ICMP_ECHO_REPLY: 1685 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1686 break; 1687 case ICMP_DEST_UNREACHABLE: 1688 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1689 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1690 interested = B_TRUE; /* Pass up to transport */ 1691 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1692 break; 1693 case ICMP_SOURCE_QUENCH: 1694 interested = B_TRUE; /* Pass up to transport */ 1695 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1696 break; 1697 case ICMP_REDIRECT: 1698 if (!ipst->ips_ip_ignore_redirect) 1699 interested = B_TRUE; 1700 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1701 break; 1702 case ICMP_ECHO_REQUEST: 1703 /* 1704 * Whether to respond to echo requests that come in as IP 1705 * broadcasts or as IP multicast is subject to debate 1706 * (what isn't?). We aim to please, you pick it. 1707 * Default is do it. 1708 */ 1709 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1710 /* unicast: always respond */ 1711 interested = B_TRUE; 1712 } else if (CLASSD(ipha->ipha_dst)) { 1713 /* multicast: respond based on tunable */ 1714 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1715 } else if (broadcast) { 1716 /* broadcast: respond based on tunable */ 1717 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1718 } 1719 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1720 break; 1721 case ICMP_ROUTER_ADVERTISEMENT: 1722 case ICMP_ROUTER_SOLICITATION: 1723 break; 1724 case ICMP_TIME_EXCEEDED: 1725 interested = B_TRUE; /* Pass up to transport */ 1726 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1727 break; 1728 case ICMP_PARAM_PROBLEM: 1729 interested = B_TRUE; /* Pass up to transport */ 1730 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1731 break; 1732 case ICMP_TIME_STAMP_REQUEST: 1733 /* Response to Time Stamp Requests is local policy. */ 1734 if (ipst->ips_ip_g_resp_to_timestamp && 1735 /* So is whether to respond if it was an IP broadcast. */ 1736 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1737 int tstamp_len = 3 * sizeof (uint32_t); 1738 1739 if (wptr + tstamp_len > mp->b_wptr) { 1740 if (!pullupmsg(mp, wptr + tstamp_len - 1741 mp->b_rptr)) { 1742 BUMP_MIB(ill->ill_ip_mib, 1743 ipIfStatsInDiscards); 1744 freemsg(first_mp); 1745 return; 1746 } 1747 /* Refresh ipha following the pullup. */ 1748 ipha = (ipha_t *)mp->b_rptr; 1749 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1750 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1751 } 1752 interested = B_TRUE; 1753 } 1754 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1755 break; 1756 case ICMP_TIME_STAMP_REPLY: 1757 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1758 break; 1759 case ICMP_INFO_REQUEST: 1760 /* Per RFC 1122 3.2.2.7, ignore this. */ 1761 case ICMP_INFO_REPLY: 1762 break; 1763 case ICMP_ADDRESS_MASK_REQUEST: 1764 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1765 !broadcast) && 1766 /* TODO m_pullup of complete header? */ 1767 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1768 interested = B_TRUE; 1769 } 1770 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1771 break; 1772 case ICMP_ADDRESS_MASK_REPLY: 1773 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1774 break; 1775 default: 1776 interested = B_TRUE; /* Pass up to transport */ 1777 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1778 break; 1779 } 1780 /* See if there is an ICMP client. */ 1781 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1782 /* If there is an ICMP client and we want one too, copy it. */ 1783 mblk_t *first_mp1; 1784 1785 if (!interested) { 1786 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1787 ip_policy, recv_ill, zoneid); 1788 return; 1789 } 1790 first_mp1 = ip_copymsg(first_mp); 1791 if (first_mp1 != NULL) { 1792 ip_fanout_proto(q, first_mp1, ill, ipha, 1793 0, mctl_present, ip_policy, recv_ill, zoneid); 1794 } 1795 } else if (!interested) { 1796 freemsg(first_mp); 1797 return; 1798 } else { 1799 /* 1800 * Initiate policy processing for this packet if ip_policy 1801 * is true. 1802 */ 1803 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1804 ill_index = ill->ill_phyint->phyint_ifindex; 1805 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1806 if (mp == NULL) { 1807 if (mctl_present) { 1808 freeb(first_mp); 1809 } 1810 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1811 return; 1812 } 1813 } 1814 } 1815 /* We want to do something with it. */ 1816 /* Check db_ref to make sure we can modify the packet. */ 1817 if (mp->b_datap->db_ref > 1) { 1818 mblk_t *first_mp1; 1819 1820 first_mp1 = ip_copymsg(first_mp); 1821 freemsg(first_mp); 1822 if (!first_mp1) { 1823 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1824 return; 1825 } 1826 first_mp = first_mp1; 1827 if (mctl_present) { 1828 mp = first_mp->b_cont; 1829 ASSERT(mp != NULL); 1830 } else { 1831 mp = first_mp; 1832 } 1833 ipha = (ipha_t *)mp->b_rptr; 1834 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1835 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1836 } 1837 switch (icmph->icmph_type) { 1838 case ICMP_ADDRESS_MASK_REQUEST: 1839 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1840 if (ipif == NULL) { 1841 freemsg(first_mp); 1842 return; 1843 } 1844 /* 1845 * outging interface must be IPv4 1846 */ 1847 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1848 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1849 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1850 ipif_refrele(ipif); 1851 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1852 break; 1853 case ICMP_ECHO_REQUEST: 1854 icmph->icmph_type = ICMP_ECHO_REPLY; 1855 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1856 break; 1857 case ICMP_TIME_STAMP_REQUEST: { 1858 uint32_t *tsp; 1859 1860 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1861 tsp = (uint32_t *)wptr; 1862 tsp++; /* Skip past 'originate time' */ 1863 /* Compute # of milliseconds since midnight */ 1864 gethrestime(&now); 1865 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1866 now.tv_nsec / (NANOSEC / MILLISEC); 1867 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1868 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1869 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1870 break; 1871 } 1872 default: 1873 ipha = (ipha_t *)&icmph[1]; 1874 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1875 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1876 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1877 freemsg(first_mp); 1878 return; 1879 } 1880 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1881 ipha = (ipha_t *)&icmph[1]; 1882 } 1883 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1884 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1885 freemsg(first_mp); 1886 return; 1887 } 1888 hdr_length = IPH_HDR_LENGTH(ipha); 1889 if (hdr_length < sizeof (ipha_t)) { 1890 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1891 freemsg(first_mp); 1892 return; 1893 } 1894 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1895 if (!pullupmsg(mp, 1896 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1897 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1898 freemsg(first_mp); 1899 return; 1900 } 1901 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1902 ipha = (ipha_t *)&icmph[1]; 1903 } 1904 switch (icmph->icmph_type) { 1905 case ICMP_REDIRECT: 1906 /* 1907 * As there is no upper client to deliver, we don't 1908 * need the first_mp any more. 1909 */ 1910 if (mctl_present) { 1911 freeb(first_mp); 1912 } 1913 icmp_redirect(ill, mp); 1914 return; 1915 case ICMP_DEST_UNREACHABLE: 1916 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1917 if (!icmp_inbound_too_big(icmph, ipha, ill, 1918 zoneid, mp, iph_hdr_length, ipst)) { 1919 freemsg(first_mp); 1920 return; 1921 } 1922 /* 1923 * icmp_inbound_too_big() may alter mp. 1924 * Resynch ipha and icmph accordingly. 1925 */ 1926 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1927 ipha = (ipha_t *)&icmph[1]; 1928 } 1929 /* FALLTHRU */ 1930 default : 1931 /* 1932 * IPQoS notes: Since we have already done IPQoS 1933 * processing we don't want to do it again in 1934 * the fanout routines called by 1935 * icmp_inbound_error_fanout, hence the last 1936 * argument, ip_policy, is B_FALSE. 1937 */ 1938 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1939 ipha, iph_hdr_length, hdr_length, mctl_present, 1940 B_FALSE, recv_ill, zoneid); 1941 } 1942 return; 1943 } 1944 /* Send out an ICMP packet */ 1945 icmph->icmph_checksum = 0; 1946 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1947 if (broadcast || CLASSD(ipha->ipha_dst)) { 1948 ipif_t *ipif_chosen; 1949 /* 1950 * Make it look like it was directed to us, so we don't look 1951 * like a fool with a broadcast or multicast source address. 1952 */ 1953 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1954 /* 1955 * Make sure that we haven't grabbed an interface that's DOWN. 1956 */ 1957 if (ipif != NULL) { 1958 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1959 ipha->ipha_src, zoneid); 1960 if (ipif_chosen != NULL) { 1961 ipif_refrele(ipif); 1962 ipif = ipif_chosen; 1963 } 1964 } 1965 if (ipif == NULL) { 1966 ip0dbg(("icmp_inbound: " 1967 "No source for broadcast/multicast:\n" 1968 "\tsrc 0x%x dst 0x%x ill %p " 1969 "ipif_lcl_addr 0x%x\n", 1970 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1971 (void *)ill, 1972 ill->ill_ipif->ipif_lcl_addr)); 1973 freemsg(first_mp); 1974 return; 1975 } 1976 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1977 ipha->ipha_dst = ipif->ipif_src_addr; 1978 ipif_refrele(ipif); 1979 } 1980 /* Reset time to live. */ 1981 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1982 { 1983 /* Swap source and destination addresses */ 1984 ipaddr_t tmp; 1985 1986 tmp = ipha->ipha_src; 1987 ipha->ipha_src = ipha->ipha_dst; 1988 ipha->ipha_dst = tmp; 1989 } 1990 ipha->ipha_ident = 0; 1991 if (!IS_SIMPLE_IPH(ipha)) 1992 icmp_options_update(ipha); 1993 1994 /* 1995 * ICMP echo replies should go out on the same interface 1996 * the request came on as probes used by in.mpathd for detecting 1997 * NIC failures are ECHO packets. We turn-off load spreading 1998 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1999 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2000 * function. This is in turn handled by ip_wput and ip_newroute 2001 * to make sure that the packet goes out on the interface it came 2002 * in on. If we don't turnoff load spreading, the packets might get 2003 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2004 * to go out and in.mpathd would wrongly detect a failure or 2005 * mis-detect a NIC failure for link failure. As load spreading 2006 * can happen only if ill_group is not NULL, we do only for 2007 * that case and this does not affect the normal case. 2008 * 2009 * We turn off load spreading only on echo packets that came from 2010 * on-link hosts. If the interface route has been deleted, this will 2011 * not be enforced as we can't do much. For off-link hosts, as the 2012 * default routes in IPv4 does not typically have an ire_ipif 2013 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2014 * Moreover, expecting a default route through this interface may 2015 * not be correct. We use ipha_dst because of the swap above. 2016 */ 2017 onlink = B_FALSE; 2018 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2019 /* 2020 * First, we need to make sure that it is not one of our 2021 * local addresses. If we set onlink when it is one of 2022 * our local addresses, we will end up creating IRE_CACHES 2023 * for one of our local addresses. Then, we will never 2024 * accept packets for them afterwards. 2025 */ 2026 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2027 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2028 if (src_ire == NULL) { 2029 ipif = ipif_get_next_ipif(NULL, ill); 2030 if (ipif == NULL) { 2031 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2032 freemsg(mp); 2033 return; 2034 } 2035 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2036 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2037 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2038 ipif_refrele(ipif); 2039 if (src_ire != NULL) { 2040 onlink = B_TRUE; 2041 ire_refrele(src_ire); 2042 } 2043 } else { 2044 ire_refrele(src_ire); 2045 } 2046 } 2047 if (!mctl_present) { 2048 /* 2049 * This packet should go out the same way as it 2050 * came in i.e in clear. To make sure that global 2051 * policy will not be applied to this in ip_wput_ire, 2052 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2053 */ 2054 ASSERT(first_mp == mp); 2055 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2056 if (first_mp == NULL) { 2057 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2058 freemsg(mp); 2059 return; 2060 } 2061 ii = (ipsec_in_t *)first_mp->b_rptr; 2062 2063 /* This is not a secure packet */ 2064 ii->ipsec_in_secure = B_FALSE; 2065 if (onlink) { 2066 ii->ipsec_in_attach_if = B_TRUE; 2067 ii->ipsec_in_ill_index = 2068 ill->ill_phyint->phyint_ifindex; 2069 ii->ipsec_in_rill_index = 2070 recv_ill->ill_phyint->phyint_ifindex; 2071 } 2072 first_mp->b_cont = mp; 2073 } else if (onlink) { 2074 ii = (ipsec_in_t *)first_mp->b_rptr; 2075 ii->ipsec_in_attach_if = B_TRUE; 2076 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2077 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2078 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2079 } else { 2080 ii = (ipsec_in_t *)first_mp->b_rptr; 2081 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2082 } 2083 ii->ipsec_in_zoneid = zoneid; 2084 ASSERT(zoneid != ALL_ZONES); 2085 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2086 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2087 return; 2088 } 2089 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2090 put(WR(q), first_mp); 2091 } 2092 2093 static ipaddr_t 2094 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2095 { 2096 conn_t *connp; 2097 connf_t *connfp; 2098 ipaddr_t nexthop_addr = INADDR_ANY; 2099 int hdr_length = IPH_HDR_LENGTH(ipha); 2100 uint16_t *up; 2101 uint32_t ports; 2102 ip_stack_t *ipst = ill->ill_ipst; 2103 2104 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2105 switch (ipha->ipha_protocol) { 2106 case IPPROTO_TCP: 2107 { 2108 tcph_t *tcph; 2109 2110 /* do a reverse lookup */ 2111 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2112 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2113 TCPS_LISTEN, ipst); 2114 break; 2115 } 2116 case IPPROTO_UDP: 2117 { 2118 uint32_t dstport, srcport; 2119 2120 ((uint16_t *)&ports)[0] = up[1]; 2121 ((uint16_t *)&ports)[1] = up[0]; 2122 2123 /* Extract ports in net byte order */ 2124 dstport = htons(ntohl(ports) & 0xFFFF); 2125 srcport = htons(ntohl(ports) >> 16); 2126 2127 connfp = &ipst->ips_ipcl_udp_fanout[ 2128 IPCL_UDP_HASH(dstport, ipst)]; 2129 mutex_enter(&connfp->connf_lock); 2130 connp = connfp->connf_head; 2131 2132 /* do a reverse lookup */ 2133 while ((connp != NULL) && 2134 (!IPCL_UDP_MATCH(connp, dstport, 2135 ipha->ipha_src, srcport, ipha->ipha_dst) || 2136 !IPCL_ZONE_MATCH(connp, zoneid))) { 2137 connp = connp->conn_next; 2138 } 2139 if (connp != NULL) 2140 CONN_INC_REF(connp); 2141 mutex_exit(&connfp->connf_lock); 2142 break; 2143 } 2144 case IPPROTO_SCTP: 2145 { 2146 in6_addr_t map_src, map_dst; 2147 2148 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2149 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2150 ((uint16_t *)&ports)[0] = up[1]; 2151 ((uint16_t *)&ports)[1] = up[0]; 2152 2153 connp = sctp_find_conn(&map_src, &map_dst, ports, 2154 zoneid, ipst->ips_netstack->netstack_sctp); 2155 if (connp == NULL) { 2156 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2157 zoneid, ports, ipha, ipst); 2158 } else { 2159 CONN_INC_REF(connp); 2160 SCTP_REFRELE(CONN2SCTP(connp)); 2161 } 2162 break; 2163 } 2164 default: 2165 { 2166 ipha_t ripha; 2167 2168 ripha.ipha_src = ipha->ipha_dst; 2169 ripha.ipha_dst = ipha->ipha_src; 2170 ripha.ipha_protocol = ipha->ipha_protocol; 2171 2172 connfp = &ipst->ips_ipcl_proto_fanout[ 2173 ipha->ipha_protocol]; 2174 mutex_enter(&connfp->connf_lock); 2175 connp = connfp->connf_head; 2176 for (connp = connfp->connf_head; connp != NULL; 2177 connp = connp->conn_next) { 2178 if (IPCL_PROTO_MATCH(connp, 2179 ipha->ipha_protocol, &ripha, ill, 2180 0, zoneid)) { 2181 CONN_INC_REF(connp); 2182 break; 2183 } 2184 } 2185 mutex_exit(&connfp->connf_lock); 2186 } 2187 } 2188 if (connp != NULL) { 2189 if (connp->conn_nexthop_set) 2190 nexthop_addr = connp->conn_nexthop_v4; 2191 CONN_DEC_REF(connp); 2192 } 2193 return (nexthop_addr); 2194 } 2195 2196 /* Table from RFC 1191 */ 2197 static int icmp_frag_size_table[] = 2198 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2199 2200 /* 2201 * Process received ICMP Packet too big. 2202 * After updating any IRE it does the fanout to any matching transport streams. 2203 * Assumes the message has been pulled up till the IP header that caused 2204 * the error. 2205 * 2206 * Returns B_FALSE on failure and B_TRUE on success. 2207 */ 2208 static boolean_t 2209 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2210 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2211 ip_stack_t *ipst) 2212 { 2213 ire_t *ire, *first_ire; 2214 int mtu; 2215 int hdr_length; 2216 ipaddr_t nexthop_addr; 2217 2218 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2219 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2220 ASSERT(ill != NULL); 2221 2222 hdr_length = IPH_HDR_LENGTH(ipha); 2223 2224 /* Drop if the original packet contained a source route */ 2225 if (ip_source_route_included(ipha)) { 2226 return (B_FALSE); 2227 } 2228 /* 2229 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2230 * header. 2231 */ 2232 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2233 mp->b_wptr) { 2234 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2235 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2236 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2237 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2238 return (B_FALSE); 2239 } 2240 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2241 ipha = (ipha_t *)&icmph[1]; 2242 } 2243 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2244 if (nexthop_addr != INADDR_ANY) { 2245 /* nexthop set */ 2246 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2247 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2248 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2249 } else { 2250 /* nexthop not set */ 2251 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2252 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2253 } 2254 2255 if (!first_ire) { 2256 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2257 ntohl(ipha->ipha_dst))); 2258 return (B_FALSE); 2259 } 2260 /* Check for MTU discovery advice as described in RFC 1191 */ 2261 mtu = ntohs(icmph->icmph_du_mtu); 2262 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2263 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2264 ire = ire->ire_next) { 2265 /* 2266 * Look for the connection to which this ICMP message is 2267 * directed. If it has the IP_NEXTHOP option set, then the 2268 * search is limited to IREs with the MATCH_IRE_PRIVATE 2269 * option. Else the search is limited to regular IREs. 2270 */ 2271 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2272 (nexthop_addr != ire->ire_gateway_addr)) || 2273 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2274 (nexthop_addr != INADDR_ANY))) 2275 continue; 2276 2277 mutex_enter(&ire->ire_lock); 2278 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2279 /* Reduce the IRE max frag value as advised. */ 2280 ip1dbg(("Received mtu from router: %d (was %d)\n", 2281 mtu, ire->ire_max_frag)); 2282 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2283 } else { 2284 uint32_t length; 2285 int i; 2286 2287 /* 2288 * Use the table from RFC 1191 to figure out 2289 * the next "plateau" based on the length in 2290 * the original IP packet. 2291 */ 2292 length = ntohs(ipha->ipha_length); 2293 if (ire->ire_max_frag <= length && 2294 ire->ire_max_frag >= length - hdr_length) { 2295 /* 2296 * Handle broken BSD 4.2 systems that 2297 * return the wrong iph_length in ICMP 2298 * errors. 2299 */ 2300 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2301 length, ire->ire_max_frag)); 2302 length -= hdr_length; 2303 } 2304 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2305 if (length > icmp_frag_size_table[i]) 2306 break; 2307 } 2308 if (i == A_CNT(icmp_frag_size_table)) { 2309 /* Smaller than 68! */ 2310 ip1dbg(("Too big for packet size %d\n", 2311 length)); 2312 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2313 ire->ire_frag_flag = 0; 2314 } else { 2315 mtu = icmp_frag_size_table[i]; 2316 ip1dbg(("Calculated mtu %d, packet size %d, " 2317 "before %d", mtu, length, 2318 ire->ire_max_frag)); 2319 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2320 ip1dbg((", after %d\n", ire->ire_max_frag)); 2321 } 2322 /* Record the new max frag size for the ULP. */ 2323 icmph->icmph_du_zero = 0; 2324 icmph->icmph_du_mtu = 2325 htons((uint16_t)ire->ire_max_frag); 2326 } 2327 mutex_exit(&ire->ire_lock); 2328 } 2329 rw_exit(&first_ire->ire_bucket->irb_lock); 2330 ire_refrele(first_ire); 2331 return (B_TRUE); 2332 } 2333 2334 /* 2335 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2336 * calls this function. 2337 */ 2338 static mblk_t * 2339 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2340 { 2341 ipha_t *ipha; 2342 icmph_t *icmph; 2343 ipha_t *in_ipha; 2344 int length; 2345 2346 ASSERT(mp->b_datap->db_type == M_DATA); 2347 2348 /* 2349 * For Self-encapsulated packets, we added an extra IP header 2350 * without the options. Inner IP header is the one from which 2351 * the outer IP header was formed. Thus, we need to remove the 2352 * outer IP header. To do this, we pullup the whole message 2353 * and overlay whatever follows the outer IP header over the 2354 * outer IP header. 2355 */ 2356 2357 if (!pullupmsg(mp, -1)) 2358 return (NULL); 2359 2360 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2361 ipha = (ipha_t *)&icmph[1]; 2362 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2363 2364 /* 2365 * The length that we want to overlay is following the inner 2366 * IP header. Subtracting the IP header + icmp header + outer 2367 * IP header's length should give us the length that we want to 2368 * overlay. 2369 */ 2370 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2371 hdr_length; 2372 /* 2373 * Overlay whatever follows the inner header over the 2374 * outer header. 2375 */ 2376 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2377 2378 /* Set the wptr to account for the outer header */ 2379 mp->b_wptr -= hdr_length; 2380 return (mp); 2381 } 2382 2383 /* 2384 * Try to pass the ICMP message upstream in case the ULP cares. 2385 * 2386 * If the packet that caused the ICMP error is secure, we send 2387 * it to AH/ESP to make sure that the attached packet has a 2388 * valid association. ipha in the code below points to the 2389 * IP header of the packet that caused the error. 2390 * 2391 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2392 * in the context of IPsec. Normally we tell the upper layer 2393 * whenever we send the ire (including ip_bind), the IPsec header 2394 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2395 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2396 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2397 * same thing. As TCP has the IPsec options size that needs to be 2398 * adjusted, we just pass the MTU unchanged. 2399 * 2400 * IFN could have been generated locally or by some router. 2401 * 2402 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2403 * This happens because IP adjusted its value of MTU on an 2404 * earlier IFN message and could not tell the upper layer, 2405 * the new adjusted value of MTU e.g. Packet was encrypted 2406 * or there was not enough information to fanout to upper 2407 * layers. Thus on the next outbound datagram, ip_wput_ire 2408 * generates the IFN, where IPsec processing has *not* been 2409 * done. 2410 * 2411 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2412 * could have generated this. This happens because ire_max_frag 2413 * value in IP was set to a new value, while the IPsec processing 2414 * was being done and after we made the fragmentation check in 2415 * ip_wput_ire. Thus on return from IPsec processing, 2416 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2417 * and generates the IFN. As IPsec processing is over, we fanout 2418 * to AH/ESP to remove the header. 2419 * 2420 * In both these cases, ipsec_in_loopback will be set indicating 2421 * that IFN was generated locally. 2422 * 2423 * ROUTER : IFN could be secure or non-secure. 2424 * 2425 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2426 * packet in error has AH/ESP headers to validate the AH/ESP 2427 * headers. AH/ESP will verify whether there is a valid SA or 2428 * not and send it back. We will fanout again if we have more 2429 * data in the packet. 2430 * 2431 * If the packet in error does not have AH/ESP, we handle it 2432 * like any other case. 2433 * 2434 * * NON_SECURE : If the packet in error has AH/ESP headers, 2435 * we attach a dummy ipsec_in and send it up to AH/ESP 2436 * for validation. AH/ESP will verify whether there is a 2437 * valid SA or not and send it back. We will fanout again if 2438 * we have more data in the packet. 2439 * 2440 * If the packet in error does not have AH/ESP, we handle it 2441 * like any other case. 2442 */ 2443 static void 2444 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2445 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2446 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2447 zoneid_t zoneid) 2448 { 2449 uint16_t *up; /* Pointer to ports in ULP header */ 2450 uint32_t ports; /* reversed ports for fanout */ 2451 ipha_t ripha; /* With reversed addresses */ 2452 mblk_t *first_mp; 2453 ipsec_in_t *ii; 2454 tcph_t *tcph; 2455 conn_t *connp; 2456 ip_stack_t *ipst; 2457 2458 ASSERT(ill != NULL); 2459 2460 ASSERT(recv_ill != NULL); 2461 ipst = recv_ill->ill_ipst; 2462 2463 first_mp = mp; 2464 if (mctl_present) { 2465 mp = first_mp->b_cont; 2466 ASSERT(mp != NULL); 2467 2468 ii = (ipsec_in_t *)first_mp->b_rptr; 2469 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2470 } else { 2471 ii = NULL; 2472 } 2473 2474 switch (ipha->ipha_protocol) { 2475 case IPPROTO_UDP: 2476 /* 2477 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2478 * transport header. 2479 */ 2480 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2481 mp->b_wptr) { 2482 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2483 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2484 goto discard_pkt; 2485 } 2486 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2487 ipha = (ipha_t *)&icmph[1]; 2488 } 2489 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2490 2491 /* 2492 * Attempt to find a client stream based on port. 2493 * Note that we do a reverse lookup since the header is 2494 * in the form we sent it out. 2495 * The ripha header is only used for the IP_UDP_MATCH and we 2496 * only set the src and dst addresses and protocol. 2497 */ 2498 ripha.ipha_src = ipha->ipha_dst; 2499 ripha.ipha_dst = ipha->ipha_src; 2500 ripha.ipha_protocol = ipha->ipha_protocol; 2501 ((uint16_t *)&ports)[0] = up[1]; 2502 ((uint16_t *)&ports)[1] = up[0]; 2503 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2504 ntohl(ipha->ipha_src), ntohs(up[0]), 2505 ntohl(ipha->ipha_dst), ntohs(up[1]), 2506 icmph->icmph_type, icmph->icmph_code)); 2507 2508 /* Have to change db_type after any pullupmsg */ 2509 DB_TYPE(mp) = M_CTL; 2510 2511 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2512 mctl_present, ip_policy, recv_ill, zoneid); 2513 return; 2514 2515 case IPPROTO_TCP: 2516 /* 2517 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2518 * transport header. 2519 */ 2520 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2521 mp->b_wptr) { 2522 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2523 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2524 goto discard_pkt; 2525 } 2526 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2527 ipha = (ipha_t *)&icmph[1]; 2528 } 2529 /* 2530 * Find a TCP client stream for this packet. 2531 * Note that we do a reverse lookup since the header is 2532 * in the form we sent it out. 2533 */ 2534 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2535 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2536 ipst); 2537 if (connp == NULL) 2538 goto discard_pkt; 2539 2540 /* Have to change db_type after any pullupmsg */ 2541 DB_TYPE(mp) = M_CTL; 2542 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2543 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2544 return; 2545 2546 case IPPROTO_SCTP: 2547 /* 2548 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2549 * transport header. 2550 */ 2551 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2552 mp->b_wptr) { 2553 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2554 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2555 goto discard_pkt; 2556 } 2557 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2558 ipha = (ipha_t *)&icmph[1]; 2559 } 2560 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2561 /* 2562 * Find a SCTP client stream for this packet. 2563 * Note that we do a reverse lookup since the header is 2564 * in the form we sent it out. 2565 * The ripha header is only used for the matching and we 2566 * only set the src and dst addresses, protocol, and version. 2567 */ 2568 ripha.ipha_src = ipha->ipha_dst; 2569 ripha.ipha_dst = ipha->ipha_src; 2570 ripha.ipha_protocol = ipha->ipha_protocol; 2571 ripha.ipha_version_and_hdr_length = 2572 ipha->ipha_version_and_hdr_length; 2573 ((uint16_t *)&ports)[0] = up[1]; 2574 ((uint16_t *)&ports)[1] = up[0]; 2575 2576 /* Have to change db_type after any pullupmsg */ 2577 DB_TYPE(mp) = M_CTL; 2578 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2579 mctl_present, ip_policy, zoneid); 2580 return; 2581 2582 case IPPROTO_ESP: 2583 case IPPROTO_AH: { 2584 int ipsec_rc; 2585 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2586 2587 /* 2588 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2589 * We will re-use the IPSEC_IN if it is already present as 2590 * AH/ESP will not affect any fields in the IPSEC_IN for 2591 * ICMP errors. If there is no IPSEC_IN, allocate a new 2592 * one and attach it in the front. 2593 */ 2594 if (ii != NULL) { 2595 /* 2596 * ip_fanout_proto_again converts the ICMP errors 2597 * that come back from AH/ESP to M_DATA so that 2598 * if it is non-AH/ESP and we do a pullupmsg in 2599 * this function, it would work. Convert it back 2600 * to M_CTL before we send up as this is a ICMP 2601 * error. This could have been generated locally or 2602 * by some router. Validate the inner IPsec 2603 * headers. 2604 * 2605 * NOTE : ill_index is used by ip_fanout_proto_again 2606 * to locate the ill. 2607 */ 2608 ASSERT(ill != NULL); 2609 ii->ipsec_in_ill_index = 2610 ill->ill_phyint->phyint_ifindex; 2611 ii->ipsec_in_rill_index = 2612 recv_ill->ill_phyint->phyint_ifindex; 2613 DB_TYPE(first_mp->b_cont) = M_CTL; 2614 } else { 2615 /* 2616 * IPSEC_IN is not present. We attach a ipsec_in 2617 * message and send up to IPsec for validating 2618 * and removing the IPsec headers. Clear 2619 * ipsec_in_secure so that when we return 2620 * from IPsec, we don't mistakenly think that this 2621 * is a secure packet came from the network. 2622 * 2623 * NOTE : ill_index is used by ip_fanout_proto_again 2624 * to locate the ill. 2625 */ 2626 ASSERT(first_mp == mp); 2627 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2628 if (first_mp == NULL) { 2629 freemsg(mp); 2630 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2631 return; 2632 } 2633 ii = (ipsec_in_t *)first_mp->b_rptr; 2634 2635 /* This is not a secure packet */ 2636 ii->ipsec_in_secure = B_FALSE; 2637 first_mp->b_cont = mp; 2638 DB_TYPE(mp) = M_CTL; 2639 ASSERT(ill != NULL); 2640 ii->ipsec_in_ill_index = 2641 ill->ill_phyint->phyint_ifindex; 2642 ii->ipsec_in_rill_index = 2643 recv_ill->ill_phyint->phyint_ifindex; 2644 } 2645 ip2dbg(("icmp_inbound_error: ipsec\n")); 2646 2647 if (!ipsec_loaded(ipss)) { 2648 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2649 return; 2650 } 2651 2652 if (ipha->ipha_protocol == IPPROTO_ESP) 2653 ipsec_rc = ipsecesp_icmp_error(first_mp); 2654 else 2655 ipsec_rc = ipsecah_icmp_error(first_mp); 2656 if (ipsec_rc == IPSEC_STATUS_FAILED) 2657 return; 2658 2659 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2660 return; 2661 } 2662 default: 2663 /* 2664 * The ripha header is only used for the lookup and we 2665 * only set the src and dst addresses and protocol. 2666 */ 2667 ripha.ipha_src = ipha->ipha_dst; 2668 ripha.ipha_dst = ipha->ipha_src; 2669 ripha.ipha_protocol = ipha->ipha_protocol; 2670 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2671 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2672 ntohl(ipha->ipha_dst), 2673 icmph->icmph_type, icmph->icmph_code)); 2674 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2675 ipha_t *in_ipha; 2676 2677 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2678 mp->b_wptr) { 2679 if (!pullupmsg(mp, (uchar_t *)ipha + 2680 hdr_length + sizeof (ipha_t) - 2681 mp->b_rptr)) { 2682 goto discard_pkt; 2683 } 2684 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2685 ipha = (ipha_t *)&icmph[1]; 2686 } 2687 /* 2688 * Caller has verified that length has to be 2689 * at least the size of IP header. 2690 */ 2691 ASSERT(hdr_length >= sizeof (ipha_t)); 2692 /* 2693 * Check the sanity of the inner IP header like 2694 * we did for the outer header. 2695 */ 2696 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2697 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2698 goto discard_pkt; 2699 } 2700 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2701 goto discard_pkt; 2702 } 2703 /* Check for Self-encapsulated tunnels */ 2704 if (in_ipha->ipha_src == ipha->ipha_src && 2705 in_ipha->ipha_dst == ipha->ipha_dst) { 2706 2707 mp = icmp_inbound_self_encap_error(mp, 2708 iph_hdr_length, hdr_length); 2709 if (mp == NULL) 2710 goto discard_pkt; 2711 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2712 ipha = (ipha_t *)&icmph[1]; 2713 hdr_length = IPH_HDR_LENGTH(ipha); 2714 /* 2715 * The packet in error is self-encapsualted. 2716 * And we are finding it further encapsulated 2717 * which we could not have possibly generated. 2718 */ 2719 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2720 goto discard_pkt; 2721 } 2722 icmp_inbound_error_fanout(q, ill, first_mp, 2723 icmph, ipha, iph_hdr_length, hdr_length, 2724 mctl_present, ip_policy, recv_ill, zoneid); 2725 return; 2726 } 2727 } 2728 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2729 ipha->ipha_protocol == IPPROTO_IPV6) && 2730 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2731 ii != NULL && 2732 ii->ipsec_in_loopback && 2733 ii->ipsec_in_secure) { 2734 /* 2735 * For IP tunnels that get a looped-back 2736 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2737 * reported new MTU to take into account the IPsec 2738 * headers protecting this configured tunnel. 2739 * 2740 * This allows the tunnel module (tun.c) to blindly 2741 * accept the MTU reported in an ICMP "too big" 2742 * message. 2743 * 2744 * Non-looped back ICMP messages will just be 2745 * handled by the security protocols (if needed), 2746 * and the first subsequent packet will hit this 2747 * path. 2748 */ 2749 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2750 ipsec_in_extra_length(first_mp)); 2751 } 2752 /* Have to change db_type after any pullupmsg */ 2753 DB_TYPE(mp) = M_CTL; 2754 2755 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2756 ip_policy, recv_ill, zoneid); 2757 return; 2758 } 2759 /* NOTREACHED */ 2760 discard_pkt: 2761 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2762 drop_pkt:; 2763 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2764 freemsg(first_mp); 2765 } 2766 2767 /* 2768 * Common IP options parser. 2769 * 2770 * Setup routine: fill in *optp with options-parsing state, then 2771 * tail-call ipoptp_next to return the first option. 2772 */ 2773 uint8_t 2774 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2775 { 2776 uint32_t totallen; /* total length of all options */ 2777 2778 totallen = ipha->ipha_version_and_hdr_length - 2779 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2780 totallen <<= 2; 2781 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2782 optp->ipoptp_end = optp->ipoptp_next + totallen; 2783 optp->ipoptp_flags = 0; 2784 return (ipoptp_next(optp)); 2785 } 2786 2787 /* 2788 * Common IP options parser: extract next option. 2789 */ 2790 uint8_t 2791 ipoptp_next(ipoptp_t *optp) 2792 { 2793 uint8_t *end = optp->ipoptp_end; 2794 uint8_t *cur = optp->ipoptp_next; 2795 uint8_t opt, len, pointer; 2796 2797 /* 2798 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2799 * has been corrupted. 2800 */ 2801 ASSERT(cur <= end); 2802 2803 if (cur == end) 2804 return (IPOPT_EOL); 2805 2806 opt = cur[IPOPT_OPTVAL]; 2807 2808 /* 2809 * Skip any NOP options. 2810 */ 2811 while (opt == IPOPT_NOP) { 2812 cur++; 2813 if (cur == end) 2814 return (IPOPT_EOL); 2815 opt = cur[IPOPT_OPTVAL]; 2816 } 2817 2818 if (opt == IPOPT_EOL) 2819 return (IPOPT_EOL); 2820 2821 /* 2822 * Option requiring a length. 2823 */ 2824 if ((cur + 1) >= end) { 2825 optp->ipoptp_flags |= IPOPTP_ERROR; 2826 return (IPOPT_EOL); 2827 } 2828 len = cur[IPOPT_OLEN]; 2829 if (len < 2) { 2830 optp->ipoptp_flags |= IPOPTP_ERROR; 2831 return (IPOPT_EOL); 2832 } 2833 optp->ipoptp_cur = cur; 2834 optp->ipoptp_len = len; 2835 optp->ipoptp_next = cur + len; 2836 if (cur + len > end) { 2837 optp->ipoptp_flags |= IPOPTP_ERROR; 2838 return (IPOPT_EOL); 2839 } 2840 2841 /* 2842 * For the options which require a pointer field, make sure 2843 * its there, and make sure it points to either something 2844 * inside this option, or the end of the option. 2845 */ 2846 switch (opt) { 2847 case IPOPT_RR: 2848 case IPOPT_TS: 2849 case IPOPT_LSRR: 2850 case IPOPT_SSRR: 2851 if (len <= IPOPT_OFFSET) { 2852 optp->ipoptp_flags |= IPOPTP_ERROR; 2853 return (opt); 2854 } 2855 pointer = cur[IPOPT_OFFSET]; 2856 if (pointer - 1 > len) { 2857 optp->ipoptp_flags |= IPOPTP_ERROR; 2858 return (opt); 2859 } 2860 break; 2861 } 2862 2863 /* 2864 * Sanity check the pointer field based on the type of the 2865 * option. 2866 */ 2867 switch (opt) { 2868 case IPOPT_RR: 2869 case IPOPT_SSRR: 2870 case IPOPT_LSRR: 2871 if (pointer < IPOPT_MINOFF_SR) 2872 optp->ipoptp_flags |= IPOPTP_ERROR; 2873 break; 2874 case IPOPT_TS: 2875 if (pointer < IPOPT_MINOFF_IT) 2876 optp->ipoptp_flags |= IPOPTP_ERROR; 2877 /* 2878 * Note that the Internet Timestamp option also 2879 * contains two four bit fields (the Overflow field, 2880 * and the Flag field), which follow the pointer 2881 * field. We don't need to check that these fields 2882 * fall within the length of the option because this 2883 * was implicitely done above. We've checked that the 2884 * pointer value is at least IPOPT_MINOFF_IT, and that 2885 * it falls within the option. Since IPOPT_MINOFF_IT > 2886 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2887 */ 2888 ASSERT(len > IPOPT_POS_OV_FLG); 2889 break; 2890 } 2891 2892 return (opt); 2893 } 2894 2895 /* 2896 * Use the outgoing IP header to create an IP_OPTIONS option the way 2897 * it was passed down from the application. 2898 */ 2899 int 2900 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2901 { 2902 ipoptp_t opts; 2903 const uchar_t *opt; 2904 uint8_t optval; 2905 uint8_t optlen; 2906 uint32_t len = 0; 2907 uchar_t *buf1 = buf; 2908 2909 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2910 len += IP_ADDR_LEN; 2911 bzero(buf1, IP_ADDR_LEN); 2912 2913 /* 2914 * OK to cast away const here, as we don't store through the returned 2915 * opts.ipoptp_cur pointer. 2916 */ 2917 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2918 optval != IPOPT_EOL; 2919 optval = ipoptp_next(&opts)) { 2920 int off; 2921 2922 opt = opts.ipoptp_cur; 2923 optlen = opts.ipoptp_len; 2924 switch (optval) { 2925 case IPOPT_SSRR: 2926 case IPOPT_LSRR: 2927 2928 /* 2929 * Insert ipha_dst as the first entry in the source 2930 * route and move down the entries on step. 2931 * The last entry gets placed at buf1. 2932 */ 2933 buf[IPOPT_OPTVAL] = optval; 2934 buf[IPOPT_OLEN] = optlen; 2935 buf[IPOPT_OFFSET] = optlen; 2936 2937 off = optlen - IP_ADDR_LEN; 2938 if (off < 0) { 2939 /* No entries in source route */ 2940 break; 2941 } 2942 /* Last entry in source route */ 2943 bcopy(opt + off, buf1, IP_ADDR_LEN); 2944 off -= IP_ADDR_LEN; 2945 2946 while (off > 0) { 2947 bcopy(opt + off, 2948 buf + off + IP_ADDR_LEN, 2949 IP_ADDR_LEN); 2950 off -= IP_ADDR_LEN; 2951 } 2952 /* ipha_dst into first slot */ 2953 bcopy(&ipha->ipha_dst, 2954 buf + off + IP_ADDR_LEN, 2955 IP_ADDR_LEN); 2956 buf += optlen; 2957 len += optlen; 2958 break; 2959 2960 case IPOPT_COMSEC: 2961 case IPOPT_SECURITY: 2962 /* if passing up a label is not ok, then remove */ 2963 if (is_system_labeled()) 2964 break; 2965 /* FALLTHROUGH */ 2966 default: 2967 bcopy(opt, buf, optlen); 2968 buf += optlen; 2969 len += optlen; 2970 break; 2971 } 2972 } 2973 done: 2974 /* Pad the resulting options */ 2975 while (len & 0x3) { 2976 *buf++ = IPOPT_EOL; 2977 len++; 2978 } 2979 return (len); 2980 } 2981 2982 /* 2983 * Update any record route or timestamp options to include this host. 2984 * Reverse any source route option. 2985 * This routine assumes that the options are well formed i.e. that they 2986 * have already been checked. 2987 */ 2988 static void 2989 icmp_options_update(ipha_t *ipha) 2990 { 2991 ipoptp_t opts; 2992 uchar_t *opt; 2993 uint8_t optval; 2994 ipaddr_t src; /* Our local address */ 2995 ipaddr_t dst; 2996 2997 ip2dbg(("icmp_options_update\n")); 2998 src = ipha->ipha_src; 2999 dst = ipha->ipha_dst; 3000 3001 for (optval = ipoptp_first(&opts, ipha); 3002 optval != IPOPT_EOL; 3003 optval = ipoptp_next(&opts)) { 3004 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3005 opt = opts.ipoptp_cur; 3006 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3007 optval, opts.ipoptp_len)); 3008 switch (optval) { 3009 int off1, off2; 3010 case IPOPT_SSRR: 3011 case IPOPT_LSRR: 3012 /* 3013 * Reverse the source route. The first entry 3014 * should be the next to last one in the current 3015 * source route (the last entry is our address). 3016 * The last entry should be the final destination. 3017 */ 3018 off1 = IPOPT_MINOFF_SR - 1; 3019 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3020 if (off2 < 0) { 3021 /* No entries in source route */ 3022 ip1dbg(( 3023 "icmp_options_update: bad src route\n")); 3024 break; 3025 } 3026 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3027 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3028 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3029 off2 -= IP_ADDR_LEN; 3030 3031 while (off1 < off2) { 3032 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3033 bcopy((char *)opt + off2, (char *)opt + off1, 3034 IP_ADDR_LEN); 3035 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3036 off1 += IP_ADDR_LEN; 3037 off2 -= IP_ADDR_LEN; 3038 } 3039 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3040 break; 3041 } 3042 } 3043 } 3044 3045 /* 3046 * Process received ICMP Redirect messages. 3047 */ 3048 static void 3049 icmp_redirect(ill_t *ill, mblk_t *mp) 3050 { 3051 ipha_t *ipha; 3052 int iph_hdr_length; 3053 icmph_t *icmph; 3054 ipha_t *ipha_err; 3055 ire_t *ire; 3056 ire_t *prev_ire; 3057 ire_t *save_ire; 3058 ipaddr_t src, dst, gateway; 3059 iulp_t ulp_info = { 0 }; 3060 int error; 3061 ip_stack_t *ipst; 3062 3063 ASSERT(ill != NULL); 3064 ipst = ill->ill_ipst; 3065 3066 ipha = (ipha_t *)mp->b_rptr; 3067 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3068 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3069 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3070 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3071 freemsg(mp); 3072 return; 3073 } 3074 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3075 ipha_err = (ipha_t *)&icmph[1]; 3076 src = ipha->ipha_src; 3077 dst = ipha_err->ipha_dst; 3078 gateway = icmph->icmph_rd_gateway; 3079 /* Make sure the new gateway is reachable somehow. */ 3080 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3081 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3082 /* 3083 * Make sure we had a route for the dest in question and that 3084 * that route was pointing to the old gateway (the source of the 3085 * redirect packet.) 3086 */ 3087 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3088 NULL, MATCH_IRE_GW, ipst); 3089 /* 3090 * Check that 3091 * the redirect was not from ourselves 3092 * the new gateway and the old gateway are directly reachable 3093 */ 3094 if (!prev_ire || 3095 !ire || 3096 ire->ire_type == IRE_LOCAL) { 3097 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3098 freemsg(mp); 3099 if (ire != NULL) 3100 ire_refrele(ire); 3101 if (prev_ire != NULL) 3102 ire_refrele(prev_ire); 3103 return; 3104 } 3105 3106 /* 3107 * Should we use the old ULP info to create the new gateway? From 3108 * a user's perspective, we should inherit the info so that it 3109 * is a "smooth" transition. If we do not do that, then new 3110 * connections going thru the new gateway will have no route metrics, 3111 * which is counter-intuitive to user. From a network point of 3112 * view, this may or may not make sense even though the new gateway 3113 * is still directly connected to us so the route metrics should not 3114 * change much. 3115 * 3116 * But if the old ire_uinfo is not initialized, we do another 3117 * recursive lookup on the dest using the new gateway. There may 3118 * be a route to that. If so, use it to initialize the redirect 3119 * route. 3120 */ 3121 if (prev_ire->ire_uinfo.iulp_set) { 3122 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3123 } else { 3124 ire_t *tmp_ire; 3125 ire_t *sire; 3126 3127 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3128 ALL_ZONES, 0, NULL, 3129 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3130 ipst); 3131 if (sire != NULL) { 3132 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3133 /* 3134 * If sire != NULL, ire_ftable_lookup() should not 3135 * return a NULL value. 3136 */ 3137 ASSERT(tmp_ire != NULL); 3138 ire_refrele(tmp_ire); 3139 ire_refrele(sire); 3140 } else if (tmp_ire != NULL) { 3141 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3142 sizeof (iulp_t)); 3143 ire_refrele(tmp_ire); 3144 } 3145 } 3146 if (prev_ire->ire_type == IRE_CACHE) 3147 ire_delete(prev_ire); 3148 ire_refrele(prev_ire); 3149 /* 3150 * TODO: more precise handling for cases 0, 2, 3, the latter two 3151 * require TOS routing 3152 */ 3153 switch (icmph->icmph_code) { 3154 case 0: 3155 case 1: 3156 /* TODO: TOS specificity for cases 2 and 3 */ 3157 case 2: 3158 case 3: 3159 break; 3160 default: 3161 freemsg(mp); 3162 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3163 ire_refrele(ire); 3164 return; 3165 } 3166 /* 3167 * Create a Route Association. This will allow us to remember that 3168 * someone we believe told us to use the particular gateway. 3169 */ 3170 save_ire = ire; 3171 ire = ire_create( 3172 (uchar_t *)&dst, /* dest addr */ 3173 (uchar_t *)&ip_g_all_ones, /* mask */ 3174 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3175 (uchar_t *)&gateway, /* gateway addr */ 3176 &save_ire->ire_max_frag, /* max frag */ 3177 NULL, /* no src nce */ 3178 NULL, /* no rfq */ 3179 NULL, /* no stq */ 3180 IRE_HOST, 3181 NULL, /* ipif */ 3182 0, /* cmask */ 3183 0, /* phandle */ 3184 0, /* ihandle */ 3185 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3186 &ulp_info, 3187 NULL, /* tsol_gc_t */ 3188 NULL, /* gcgrp */ 3189 ipst); 3190 3191 if (ire == NULL) { 3192 freemsg(mp); 3193 ire_refrele(save_ire); 3194 return; 3195 } 3196 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3197 ire_refrele(save_ire); 3198 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3199 3200 if (error == 0) { 3201 ire_refrele(ire); /* Held in ire_add_v4 */ 3202 /* tell routing sockets that we received a redirect */ 3203 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3204 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3205 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3206 } 3207 3208 /* 3209 * Delete any existing IRE_HOST type redirect ires for this destination. 3210 * This together with the added IRE has the effect of 3211 * modifying an existing redirect. 3212 */ 3213 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3214 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3215 if (prev_ire != NULL) { 3216 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3217 ire_delete(prev_ire); 3218 ire_refrele(prev_ire); 3219 } 3220 3221 freemsg(mp); 3222 } 3223 3224 /* 3225 * Generate an ICMP parameter problem message. 3226 */ 3227 static void 3228 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3229 ip_stack_t *ipst) 3230 { 3231 icmph_t icmph; 3232 boolean_t mctl_present; 3233 mblk_t *first_mp; 3234 3235 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3236 3237 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3238 if (mctl_present) 3239 freeb(first_mp); 3240 return; 3241 } 3242 3243 bzero(&icmph, sizeof (icmph_t)); 3244 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3245 icmph.icmph_pp_ptr = ptr; 3246 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3247 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3248 ipst); 3249 } 3250 3251 /* 3252 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3253 * the ICMP header pointed to by "stuff". (May be called as writer.) 3254 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3255 * an icmp error packet can be sent. 3256 * Assigns an appropriate source address to the packet. If ipha_dst is 3257 * one of our addresses use it for source. Otherwise pick a source based 3258 * on a route lookup back to ipha_src. 3259 * Note that ipha_src must be set here since the 3260 * packet is likely to arrive on an ill queue in ip_wput() which will 3261 * not set a source address. 3262 */ 3263 static void 3264 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3265 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3266 { 3267 ipaddr_t dst; 3268 icmph_t *icmph; 3269 ipha_t *ipha; 3270 uint_t len_needed; 3271 size_t msg_len; 3272 mblk_t *mp1; 3273 ipaddr_t src; 3274 ire_t *ire; 3275 mblk_t *ipsec_mp; 3276 ipsec_out_t *io = NULL; 3277 3278 if (mctl_present) { 3279 /* 3280 * If it is : 3281 * 3282 * 1) a IPSEC_OUT, then this is caused by outbound 3283 * datagram originating on this host. IPsec processing 3284 * may or may not have been done. Refer to comments above 3285 * icmp_inbound_error_fanout for details. 3286 * 3287 * 2) a IPSEC_IN if we are generating a icmp_message 3288 * for an incoming datagram destined for us i.e called 3289 * from ip_fanout_send_icmp. 3290 */ 3291 ipsec_info_t *in; 3292 ipsec_mp = mp; 3293 mp = ipsec_mp->b_cont; 3294 3295 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3296 ipha = (ipha_t *)mp->b_rptr; 3297 3298 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3299 in->ipsec_info_type == IPSEC_IN); 3300 3301 if (in->ipsec_info_type == IPSEC_IN) { 3302 /* 3303 * Convert the IPSEC_IN to IPSEC_OUT. 3304 */ 3305 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3306 BUMP_MIB(&ipst->ips_ip_mib, 3307 ipIfStatsOutDiscards); 3308 return; 3309 } 3310 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3311 } else { 3312 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3313 io = (ipsec_out_t *)in; 3314 /* 3315 * Clear out ipsec_out_proc_begin, so we do a fresh 3316 * ire lookup. 3317 */ 3318 io->ipsec_out_proc_begin = B_FALSE; 3319 } 3320 ASSERT(zoneid == io->ipsec_out_zoneid); 3321 ASSERT(zoneid != ALL_ZONES); 3322 } else { 3323 /* 3324 * This is in clear. The icmp message we are building 3325 * here should go out in clear. 3326 * 3327 * Pardon the convolution of it all, but it's easier to 3328 * allocate a "use cleartext" IPSEC_IN message and convert 3329 * it than it is to allocate a new one. 3330 */ 3331 ipsec_in_t *ii; 3332 ASSERT(DB_TYPE(mp) == M_DATA); 3333 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3334 if (ipsec_mp == NULL) { 3335 freemsg(mp); 3336 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3337 return; 3338 } 3339 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3340 3341 /* This is not a secure packet */ 3342 ii->ipsec_in_secure = B_FALSE; 3343 /* 3344 * For trusted extensions using a shared IP address we can 3345 * send using any zoneid. 3346 */ 3347 if (zoneid == ALL_ZONES) 3348 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3349 else 3350 ii->ipsec_in_zoneid = zoneid; 3351 ipsec_mp->b_cont = mp; 3352 ipha = (ipha_t *)mp->b_rptr; 3353 /* 3354 * Convert the IPSEC_IN to IPSEC_OUT. 3355 */ 3356 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3357 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3358 return; 3359 } 3360 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3361 } 3362 3363 /* Remember our eventual destination */ 3364 dst = ipha->ipha_src; 3365 3366 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3367 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3368 if (ire != NULL && 3369 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3370 src = ipha->ipha_dst; 3371 } else { 3372 if (ire != NULL) 3373 ire_refrele(ire); 3374 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3375 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3376 ipst); 3377 if (ire == NULL) { 3378 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3379 freemsg(ipsec_mp); 3380 return; 3381 } 3382 src = ire->ire_src_addr; 3383 } 3384 3385 if (ire != NULL) 3386 ire_refrele(ire); 3387 3388 /* 3389 * Check if we can send back more then 8 bytes in addition to 3390 * the IP header. We try to send 64 bytes of data and the internal 3391 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3392 */ 3393 len_needed = IPH_HDR_LENGTH(ipha); 3394 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3395 ipha->ipha_protocol == IPPROTO_IPV6) { 3396 3397 if (!pullupmsg(mp, -1)) { 3398 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3399 freemsg(ipsec_mp); 3400 return; 3401 } 3402 ipha = (ipha_t *)mp->b_rptr; 3403 3404 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3405 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3406 len_needed)); 3407 } else { 3408 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3409 3410 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3411 len_needed += ip_hdr_length_v6(mp, ip6h); 3412 } 3413 } 3414 len_needed += ipst->ips_ip_icmp_return; 3415 msg_len = msgdsize(mp); 3416 if (msg_len > len_needed) { 3417 (void) adjmsg(mp, len_needed - msg_len); 3418 msg_len = len_needed; 3419 } 3420 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3421 if (mp1 == NULL) { 3422 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3423 freemsg(ipsec_mp); 3424 return; 3425 } 3426 mp1->b_cont = mp; 3427 mp = mp1; 3428 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3429 ipsec_mp->b_rptr == (uint8_t *)io && 3430 io->ipsec_out_type == IPSEC_OUT); 3431 ipsec_mp->b_cont = mp; 3432 3433 /* 3434 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3435 * node generates be accepted in peace by all on-host destinations. 3436 * If we do NOT assume that all on-host destinations trust 3437 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3438 * (Look for ipsec_out_icmp_loopback). 3439 */ 3440 io->ipsec_out_icmp_loopback = B_TRUE; 3441 3442 ipha = (ipha_t *)mp->b_rptr; 3443 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3444 *ipha = icmp_ipha; 3445 ipha->ipha_src = src; 3446 ipha->ipha_dst = dst; 3447 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3448 msg_len += sizeof (icmp_ipha) + len; 3449 if (msg_len > IP_MAXPACKET) { 3450 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3451 msg_len = IP_MAXPACKET; 3452 } 3453 ipha->ipha_length = htons((uint16_t)msg_len); 3454 icmph = (icmph_t *)&ipha[1]; 3455 bcopy(stuff, icmph, len); 3456 icmph->icmph_checksum = 0; 3457 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3458 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3459 put(q, ipsec_mp); 3460 } 3461 3462 /* 3463 * Determine if an ICMP error packet can be sent given the rate limit. 3464 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3465 * in milliseconds) and a burst size. Burst size number of packets can 3466 * be sent arbitrarely closely spaced. 3467 * The state is tracked using two variables to implement an approximate 3468 * token bucket filter: 3469 * icmp_pkt_err_last - lbolt value when the last burst started 3470 * icmp_pkt_err_sent - number of packets sent in current burst 3471 */ 3472 boolean_t 3473 icmp_err_rate_limit(ip_stack_t *ipst) 3474 { 3475 clock_t now = TICK_TO_MSEC(lbolt); 3476 uint_t refilled; /* Number of packets refilled in tbf since last */ 3477 /* Guard against changes by loading into local variable */ 3478 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3479 3480 if (err_interval == 0) 3481 return (B_FALSE); 3482 3483 if (ipst->ips_icmp_pkt_err_last > now) { 3484 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3485 ipst->ips_icmp_pkt_err_last = 0; 3486 ipst->ips_icmp_pkt_err_sent = 0; 3487 } 3488 /* 3489 * If we are in a burst update the token bucket filter. 3490 * Update the "last" time to be close to "now" but make sure 3491 * we don't loose precision. 3492 */ 3493 if (ipst->ips_icmp_pkt_err_sent != 0) { 3494 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3495 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3496 ipst->ips_icmp_pkt_err_sent = 0; 3497 } else { 3498 ipst->ips_icmp_pkt_err_sent -= refilled; 3499 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3500 } 3501 } 3502 if (ipst->ips_icmp_pkt_err_sent == 0) { 3503 /* Start of new burst */ 3504 ipst->ips_icmp_pkt_err_last = now; 3505 } 3506 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3507 ipst->ips_icmp_pkt_err_sent++; 3508 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3509 ipst->ips_icmp_pkt_err_sent)); 3510 return (B_FALSE); 3511 } 3512 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3513 return (B_TRUE); 3514 } 3515 3516 /* 3517 * Check if it is ok to send an IPv4 ICMP error packet in 3518 * response to the IPv4 packet in mp. 3519 * Free the message and return null if no 3520 * ICMP error packet should be sent. 3521 */ 3522 static mblk_t * 3523 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3524 { 3525 icmph_t *icmph; 3526 ipha_t *ipha; 3527 uint_t len_needed; 3528 ire_t *src_ire; 3529 ire_t *dst_ire; 3530 3531 if (!mp) 3532 return (NULL); 3533 ipha = (ipha_t *)mp->b_rptr; 3534 if (ip_csum_hdr(ipha)) { 3535 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3536 freemsg(mp); 3537 return (NULL); 3538 } 3539 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3540 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3541 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3542 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3543 if (src_ire != NULL || dst_ire != NULL || 3544 CLASSD(ipha->ipha_dst) || 3545 CLASSD(ipha->ipha_src) || 3546 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3547 /* Note: only errors to the fragment with offset 0 */ 3548 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3549 freemsg(mp); 3550 if (src_ire != NULL) 3551 ire_refrele(src_ire); 3552 if (dst_ire != NULL) 3553 ire_refrele(dst_ire); 3554 return (NULL); 3555 } 3556 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3557 /* 3558 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3559 * errors in response to any ICMP errors. 3560 */ 3561 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3562 if (mp->b_wptr - mp->b_rptr < len_needed) { 3563 if (!pullupmsg(mp, len_needed)) { 3564 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3565 freemsg(mp); 3566 return (NULL); 3567 } 3568 ipha = (ipha_t *)mp->b_rptr; 3569 } 3570 icmph = (icmph_t *) 3571 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3572 switch (icmph->icmph_type) { 3573 case ICMP_DEST_UNREACHABLE: 3574 case ICMP_SOURCE_QUENCH: 3575 case ICMP_TIME_EXCEEDED: 3576 case ICMP_PARAM_PROBLEM: 3577 case ICMP_REDIRECT: 3578 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3579 freemsg(mp); 3580 return (NULL); 3581 default: 3582 break; 3583 } 3584 } 3585 /* 3586 * If this is a labeled system, then check to see if we're allowed to 3587 * send a response to this particular sender. If not, then just drop. 3588 */ 3589 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3590 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3591 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3592 freemsg(mp); 3593 return (NULL); 3594 } 3595 if (icmp_err_rate_limit(ipst)) { 3596 /* 3597 * Only send ICMP error packets every so often. 3598 * This should be done on a per port/source basis, 3599 * but for now this will suffice. 3600 */ 3601 freemsg(mp); 3602 return (NULL); 3603 } 3604 return (mp); 3605 } 3606 3607 /* 3608 * Generate an ICMP redirect message. 3609 */ 3610 static void 3611 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3612 { 3613 icmph_t icmph; 3614 3615 /* 3616 * We are called from ip_rput where we could 3617 * not have attached an IPSEC_IN. 3618 */ 3619 ASSERT(mp->b_datap->db_type == M_DATA); 3620 3621 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3622 return; 3623 } 3624 3625 bzero(&icmph, sizeof (icmph_t)); 3626 icmph.icmph_type = ICMP_REDIRECT; 3627 icmph.icmph_code = 1; 3628 icmph.icmph_rd_gateway = gateway; 3629 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3630 /* Redirects sent by router, and router is global zone */ 3631 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3632 } 3633 3634 /* 3635 * Generate an ICMP time exceeded message. 3636 */ 3637 void 3638 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3639 ip_stack_t *ipst) 3640 { 3641 icmph_t icmph; 3642 boolean_t mctl_present; 3643 mblk_t *first_mp; 3644 3645 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3646 3647 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3648 if (mctl_present) 3649 freeb(first_mp); 3650 return; 3651 } 3652 3653 bzero(&icmph, sizeof (icmph_t)); 3654 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3655 icmph.icmph_code = code; 3656 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3657 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3658 ipst); 3659 } 3660 3661 /* 3662 * Generate an ICMP unreachable message. 3663 */ 3664 void 3665 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3666 ip_stack_t *ipst) 3667 { 3668 icmph_t icmph; 3669 mblk_t *first_mp; 3670 boolean_t mctl_present; 3671 3672 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3673 3674 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3675 if (mctl_present) 3676 freeb(first_mp); 3677 return; 3678 } 3679 3680 bzero(&icmph, sizeof (icmph_t)); 3681 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3682 icmph.icmph_code = code; 3683 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3684 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3685 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3686 zoneid, ipst); 3687 } 3688 3689 /* 3690 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3691 * duplicate. As long as someone else holds the address, the interface will 3692 * stay down. When that conflict goes away, the interface is brought back up. 3693 * This is done so that accidental shutdowns of addresses aren't made 3694 * permanent. Your server will recover from a failure. 3695 * 3696 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3697 * user space process (dhcpagent). 3698 * 3699 * Recovery completes if ARP reports that the address is now ours (via 3700 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3701 * 3702 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3703 */ 3704 static void 3705 ipif_dup_recovery(void *arg) 3706 { 3707 ipif_t *ipif = arg; 3708 ill_t *ill = ipif->ipif_ill; 3709 mblk_t *arp_add_mp; 3710 mblk_t *arp_del_mp; 3711 area_t *area; 3712 ip_stack_t *ipst = ill->ill_ipst; 3713 3714 ipif->ipif_recovery_id = 0; 3715 3716 /* 3717 * No lock needed for moving or condemned check, as this is just an 3718 * optimization. 3719 */ 3720 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3721 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3722 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3723 /* No reason to try to bring this address back. */ 3724 return; 3725 } 3726 3727 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3728 goto alloc_fail; 3729 3730 if (ipif->ipif_arp_del_mp == NULL) { 3731 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3732 goto alloc_fail; 3733 ipif->ipif_arp_del_mp = arp_del_mp; 3734 } 3735 3736 /* Setting the 'unverified' flag restarts DAD */ 3737 area = (area_t *)arp_add_mp->b_rptr; 3738 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3739 ACE_F_UNVERIFIED; 3740 putnext(ill->ill_rq, arp_add_mp); 3741 return; 3742 3743 alloc_fail: 3744 /* 3745 * On allocation failure, just restart the timer. Note that the ipif 3746 * is down here, so no other thread could be trying to start a recovery 3747 * timer. The ill_lock protects the condemned flag and the recovery 3748 * timer ID. 3749 */ 3750 freemsg(arp_add_mp); 3751 mutex_enter(&ill->ill_lock); 3752 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3753 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3754 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3755 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3756 } 3757 mutex_exit(&ill->ill_lock); 3758 } 3759 3760 /* 3761 * This is for exclusive changes due to ARP. Either tear down an interface due 3762 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3763 */ 3764 /* ARGSUSED */ 3765 static void 3766 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3767 { 3768 ill_t *ill = rq->q_ptr; 3769 arh_t *arh; 3770 ipaddr_t src; 3771 ipif_t *ipif; 3772 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3773 char hbuf[MAC_STR_LEN]; 3774 char sbuf[INET_ADDRSTRLEN]; 3775 const char *failtype; 3776 boolean_t bring_up; 3777 ip_stack_t *ipst = ill->ill_ipst; 3778 3779 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3780 case AR_CN_READY: 3781 failtype = NULL; 3782 bring_up = B_TRUE; 3783 break; 3784 case AR_CN_FAILED: 3785 failtype = "in use"; 3786 bring_up = B_FALSE; 3787 break; 3788 default: 3789 failtype = "claimed"; 3790 bring_up = B_FALSE; 3791 break; 3792 } 3793 3794 arh = (arh_t *)mp->b_cont->b_rptr; 3795 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3796 3797 /* Handle failures due to probes */ 3798 if (src == 0) { 3799 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3800 IP_ADDR_LEN); 3801 } 3802 3803 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3804 sizeof (hbuf)); 3805 (void) ip_dot_addr(src, sbuf); 3806 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3807 3808 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3809 ipif->ipif_lcl_addr != src) { 3810 continue; 3811 } 3812 3813 /* 3814 * If we failed on a recovery probe, then restart the timer to 3815 * try again later. 3816 */ 3817 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3818 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3819 ill->ill_net_type == IRE_IF_RESOLVER && 3820 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3821 ipst->ips_ip_dup_recovery > 0 && 3822 ipif->ipif_recovery_id == 0) { 3823 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3824 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3825 continue; 3826 } 3827 3828 /* 3829 * If what we're trying to do has already been done, then do 3830 * nothing. 3831 */ 3832 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3833 continue; 3834 3835 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3836 3837 if (failtype == NULL) { 3838 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3839 ibuf); 3840 } else { 3841 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3842 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3843 } 3844 3845 if (bring_up) { 3846 ASSERT(ill->ill_dl_up); 3847 /* 3848 * Free up the ARP delete message so we can allocate 3849 * a fresh one through the normal path. 3850 */ 3851 freemsg(ipif->ipif_arp_del_mp); 3852 ipif->ipif_arp_del_mp = NULL; 3853 if (ipif_resolver_up(ipif, Res_act_initial) != 3854 EINPROGRESS) { 3855 ipif->ipif_addr_ready = 1; 3856 (void) ipif_up_done(ipif); 3857 } 3858 continue; 3859 } 3860 3861 mutex_enter(&ill->ill_lock); 3862 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3863 ipif->ipif_flags |= IPIF_DUPLICATE; 3864 ill->ill_ipif_dup_count++; 3865 mutex_exit(&ill->ill_lock); 3866 /* 3867 * Already exclusive on the ill; no need to handle deferred 3868 * processing here. 3869 */ 3870 (void) ipif_down(ipif, NULL, NULL); 3871 ipif_down_tail(ipif); 3872 mutex_enter(&ill->ill_lock); 3873 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3874 ill->ill_net_type == IRE_IF_RESOLVER && 3875 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3876 ipst->ips_ip_dup_recovery > 0) { 3877 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3878 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3879 } 3880 mutex_exit(&ill->ill_lock); 3881 } 3882 freemsg(mp); 3883 } 3884 3885 /* ARGSUSED */ 3886 static void 3887 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3888 { 3889 ill_t *ill = rq->q_ptr; 3890 arh_t *arh; 3891 ipaddr_t src; 3892 ipif_t *ipif; 3893 3894 arh = (arh_t *)mp->b_cont->b_rptr; 3895 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3896 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3897 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3898 (void) ipif_resolver_up(ipif, Res_act_defend); 3899 } 3900 freemsg(mp); 3901 } 3902 3903 /* 3904 * News from ARP. ARP sends notification of interesting events down 3905 * to its clients using M_CTL messages with the interesting ARP packet 3906 * attached via b_cont. 3907 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3908 * queue as opposed to ARP sending the message to all the clients, i.e. all 3909 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3910 * table if a cache IRE is found to delete all the entries for the address in 3911 * the packet. 3912 */ 3913 static void 3914 ip_arp_news(queue_t *q, mblk_t *mp) 3915 { 3916 arcn_t *arcn; 3917 arh_t *arh; 3918 ire_t *ire = NULL; 3919 char hbuf[MAC_STR_LEN]; 3920 char sbuf[INET_ADDRSTRLEN]; 3921 ipaddr_t src; 3922 in6_addr_t v6src; 3923 boolean_t isv6 = B_FALSE; 3924 ipif_t *ipif; 3925 ill_t *ill; 3926 ip_stack_t *ipst; 3927 3928 if (CONN_Q(q)) { 3929 conn_t *connp = Q_TO_CONN(q); 3930 3931 ipst = connp->conn_netstack->netstack_ip; 3932 } else { 3933 ill_t *ill = (ill_t *)q->q_ptr; 3934 3935 ipst = ill->ill_ipst; 3936 } 3937 3938 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3939 if (q->q_next) { 3940 putnext(q, mp); 3941 } else 3942 freemsg(mp); 3943 return; 3944 } 3945 arh = (arh_t *)mp->b_cont->b_rptr; 3946 /* Is it one we are interested in? */ 3947 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3948 isv6 = B_TRUE; 3949 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3950 IPV6_ADDR_LEN); 3951 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3952 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3953 IP_ADDR_LEN); 3954 } else { 3955 freemsg(mp); 3956 return; 3957 } 3958 3959 ill = q->q_ptr; 3960 3961 arcn = (arcn_t *)mp->b_rptr; 3962 switch (arcn->arcn_code) { 3963 case AR_CN_BOGON: 3964 /* 3965 * Someone is sending ARP packets with a source protocol 3966 * address that we have published and for which we believe our 3967 * entry is authoritative and (when ill_arp_extend is set) 3968 * verified to be unique on the network. 3969 * 3970 * The ARP module internally handles the cases where the sender 3971 * is just probing (for DAD) and where the hardware address of 3972 * a non-authoritative entry has changed. Thus, these are the 3973 * real conflicts, and we have to do resolution. 3974 * 3975 * We back away quickly from the address if it's from DHCP or 3976 * otherwise temporary and hasn't been used recently (or at 3977 * all). We'd like to include "deprecated" addresses here as 3978 * well (as there's no real reason to defend something we're 3979 * discarding), but IPMP "reuses" this flag to mean something 3980 * other than the standard meaning. 3981 * 3982 * If the ARP module above is not extended (meaning that it 3983 * doesn't know how to defend the address), then we just log 3984 * the problem as we always did and continue on. It's not 3985 * right, but there's little else we can do, and those old ATM 3986 * users are going away anyway. 3987 */ 3988 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3989 hbuf, sizeof (hbuf)); 3990 (void) ip_dot_addr(src, sbuf); 3991 if (isv6) { 3992 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3993 ipst); 3994 } else { 3995 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3996 } 3997 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3998 uint32_t now; 3999 uint32_t maxage; 4000 clock_t lused; 4001 uint_t maxdefense; 4002 uint_t defs; 4003 4004 /* 4005 * First, figure out if this address hasn't been used 4006 * in a while. If it hasn't, then it's a better 4007 * candidate for abandoning. 4008 */ 4009 ipif = ire->ire_ipif; 4010 ASSERT(ipif != NULL); 4011 now = gethrestime_sec(); 4012 maxage = now - ire->ire_create_time; 4013 if (maxage > ipst->ips_ip_max_temp_idle) 4014 maxage = ipst->ips_ip_max_temp_idle; 4015 lused = drv_hztousec(ddi_get_lbolt() - 4016 ire->ire_last_used_time) / MICROSEC + 1; 4017 if (lused >= maxage && (ipif->ipif_flags & 4018 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4019 maxdefense = ipst->ips_ip_max_temp_defend; 4020 else 4021 maxdefense = ipst->ips_ip_max_defend; 4022 4023 /* 4024 * Now figure out how many times we've defended 4025 * ourselves. Ignore defenses that happened long in 4026 * the past. 4027 */ 4028 mutex_enter(&ire->ire_lock); 4029 if ((defs = ire->ire_defense_count) > 0 && 4030 now - ire->ire_defense_time > 4031 ipst->ips_ip_defend_interval) { 4032 ire->ire_defense_count = defs = 0; 4033 } 4034 ire->ire_defense_count++; 4035 ire->ire_defense_time = now; 4036 mutex_exit(&ire->ire_lock); 4037 ill_refhold(ill); 4038 ire_refrele(ire); 4039 4040 /* 4041 * If we've defended ourselves too many times already, 4042 * then give up and tear down the interface(s) using 4043 * this address. Otherwise, defend by sending out a 4044 * gratuitous ARP. 4045 */ 4046 if (defs >= maxdefense && ill->ill_arp_extend) { 4047 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4048 B_FALSE); 4049 } else { 4050 cmn_err(CE_WARN, 4051 "node %s is using our IP address %s on %s", 4052 hbuf, sbuf, ill->ill_name); 4053 /* 4054 * If this is an old (ATM) ARP module, then 4055 * don't try to defend the address. Remain 4056 * compatible with the old behavior. Defend 4057 * only with new ARP. 4058 */ 4059 if (ill->ill_arp_extend) { 4060 qwriter_ip(ill, q, mp, ip_arp_defend, 4061 NEW_OP, B_FALSE); 4062 } else { 4063 ill_refrele(ill); 4064 } 4065 } 4066 return; 4067 } 4068 cmn_err(CE_WARN, 4069 "proxy ARP problem? Node '%s' is using %s on %s", 4070 hbuf, sbuf, ill->ill_name); 4071 if (ire != NULL) 4072 ire_refrele(ire); 4073 break; 4074 case AR_CN_ANNOUNCE: 4075 if (isv6) { 4076 /* 4077 * For XRESOLV interfaces. 4078 * Delete the IRE cache entry and NCE for this 4079 * v6 address 4080 */ 4081 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4082 /* 4083 * If v6src is a non-zero, it's a router address 4084 * as below. Do the same sort of thing to clean 4085 * out off-net IRE_CACHE entries that go through 4086 * the router. 4087 */ 4088 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4089 ire_walk_v6(ire_delete_cache_gw_v6, 4090 (char *)&v6src, ALL_ZONES, ipst); 4091 } 4092 } else { 4093 nce_hw_map_t hwm; 4094 4095 /* 4096 * ARP gives us a copy of any packet where it thinks 4097 * the address has changed, so that we can update our 4098 * caches. We're responsible for caching known answers 4099 * in the current design. We check whether the 4100 * hardware address really has changed in all of our 4101 * entries that have cached this mapping, and if so, we 4102 * blow them away. This way we will immediately pick 4103 * up the rare case of a host changing hardware 4104 * address. 4105 */ 4106 if (src == 0) 4107 break; 4108 hwm.hwm_addr = src; 4109 hwm.hwm_hwlen = arh->arh_hlen; 4110 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4111 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4112 ndp_walk_common(ipst->ips_ndp4, NULL, 4113 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4114 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4115 } 4116 break; 4117 case AR_CN_READY: 4118 /* No external v6 resolver has a contract to use this */ 4119 if (isv6) 4120 break; 4121 /* If the link is down, we'll retry this later */ 4122 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4123 break; 4124 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4125 NULL, NULL, ipst); 4126 if (ipif != NULL) { 4127 /* 4128 * If this is a duplicate recovery, then we now need to 4129 * go exclusive to bring this thing back up. 4130 */ 4131 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4132 IPIF_DUPLICATE) { 4133 ipif_refrele(ipif); 4134 ill_refhold(ill); 4135 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4136 B_FALSE); 4137 return; 4138 } 4139 /* 4140 * If this is the first notice that this address is 4141 * ready, then let the user know now. 4142 */ 4143 if ((ipif->ipif_flags & IPIF_UP) && 4144 !ipif->ipif_addr_ready) { 4145 ipif_mask_reply(ipif); 4146 ip_rts_ifmsg(ipif); 4147 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4148 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4149 } 4150 ipif->ipif_addr_ready = 1; 4151 ipif_refrele(ipif); 4152 } 4153 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4154 if (ire != NULL) { 4155 ire->ire_defense_count = 0; 4156 ire_refrele(ire); 4157 } 4158 break; 4159 case AR_CN_FAILED: 4160 /* No external v6 resolver has a contract to use this */ 4161 if (isv6) 4162 break; 4163 ill_refhold(ill); 4164 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4165 return; 4166 } 4167 freemsg(mp); 4168 } 4169 4170 /* 4171 * Create a mblk suitable for carrying the interface index and/or source link 4172 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4173 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4174 * application. 4175 */ 4176 mblk_t * 4177 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4178 ip_stack_t *ipst) 4179 { 4180 mblk_t *mp; 4181 ip_pktinfo_t *pinfo; 4182 ipha_t *ipha; 4183 struct ether_header *pether; 4184 4185 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4186 if (mp == NULL) { 4187 ip1dbg(("ip_add_info: allocation failure.\n")); 4188 return (data_mp); 4189 } 4190 4191 ipha = (ipha_t *)data_mp->b_rptr; 4192 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4193 bzero(pinfo, sizeof (ip_pktinfo_t)); 4194 pinfo->ip_pkt_flags = (uchar_t)flags; 4195 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4196 4197 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4198 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4199 if (flags & IPF_RECVADDR) { 4200 ipif_t *ipif; 4201 ire_t *ire; 4202 4203 /* 4204 * Only valid for V4 4205 */ 4206 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4207 (IPV4_VERSION << 4)); 4208 4209 ipif = ipif_get_next_ipif(NULL, ill); 4210 if (ipif != NULL) { 4211 /* 4212 * Since a decision has already been made to deliver the 4213 * packet, there is no need to test for SECATTR and 4214 * ZONEONLY. 4215 * When a multicast packet is transmitted 4216 * a cache entry is created for the multicast address. 4217 * When delivering a copy of the packet or when new 4218 * packets are received we do not want to match on the 4219 * cached entry so explicitly match on 4220 * IRE_LOCAL and IRE_LOOPBACK 4221 */ 4222 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4223 IRE_LOCAL | IRE_LOOPBACK, 4224 ipif, zoneid, NULL, 4225 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4226 if (ire == NULL) { 4227 /* 4228 * packet must have come on a different 4229 * interface. 4230 * Since a decision has already been made to 4231 * deliver the packet, there is no need to test 4232 * for SECATTR and ZONEONLY. 4233 * Only match on local and broadcast ire's. 4234 * See detailed comment above. 4235 */ 4236 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4237 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4238 NULL, MATCH_IRE_TYPE, ipst); 4239 } 4240 4241 if (ire == NULL) { 4242 /* 4243 * This is either a multicast packet or 4244 * the address has been removed since 4245 * the packet was received. 4246 * Return INADDR_ANY so that normal source 4247 * selection occurs for the response. 4248 */ 4249 4250 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4251 } else { 4252 pinfo->ip_pkt_match_addr.s_addr = 4253 ire->ire_src_addr; 4254 ire_refrele(ire); 4255 } 4256 ipif_refrele(ipif); 4257 } else { 4258 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4259 } 4260 } 4261 4262 pether = (struct ether_header *)((char *)ipha 4263 - sizeof (struct ether_header)); 4264 /* 4265 * Make sure the interface is an ethernet type, since this option 4266 * is currently supported only on this type of interface. Also make 4267 * sure we are pointing correctly above db_base. 4268 */ 4269 4270 if ((flags & IPF_RECVSLLA) && 4271 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4272 (ill->ill_type == IFT_ETHER) && 4273 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4274 4275 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4276 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4277 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4278 } else { 4279 /* 4280 * Clear the bit. Indicate to upper layer that IP is not 4281 * sending this ancillary info. 4282 */ 4283 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4284 } 4285 4286 mp->b_datap->db_type = M_CTL; 4287 mp->b_wptr += sizeof (ip_pktinfo_t); 4288 mp->b_cont = data_mp; 4289 4290 return (mp); 4291 } 4292 4293 /* 4294 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4295 * part of the bind request. 4296 */ 4297 4298 boolean_t 4299 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4300 { 4301 ipsec_in_t *ii; 4302 4303 ASSERT(policy_mp != NULL); 4304 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4305 4306 ii = (ipsec_in_t *)policy_mp->b_rptr; 4307 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4308 4309 connp->conn_policy = ii->ipsec_in_policy; 4310 ii->ipsec_in_policy = NULL; 4311 4312 if (ii->ipsec_in_action != NULL) { 4313 if (connp->conn_latch == NULL) { 4314 connp->conn_latch = iplatch_create(); 4315 if (connp->conn_latch == NULL) 4316 return (B_FALSE); 4317 } 4318 ipsec_latch_inbound(connp->conn_latch, ii); 4319 } 4320 return (B_TRUE); 4321 } 4322 4323 /* 4324 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4325 * and to arrange for power-fanout assist. The ULP is identified by 4326 * adding a single byte at the end of the original bind message. 4327 * A ULP other than UDP or TCP that wishes to be recognized passes 4328 * down a bind with a zero length address. 4329 * 4330 * The binding works as follows: 4331 * - A zero byte address means just bind to the protocol. 4332 * - A four byte address is treated as a request to validate 4333 * that the address is a valid local address, appropriate for 4334 * an application to bind to. This does not affect any fanout 4335 * information in IP. 4336 * - A sizeof sin_t byte address is used to bind to only the local address 4337 * and port. 4338 * - A sizeof ipa_conn_t byte address contains complete fanout information 4339 * consisting of local and remote addresses and ports. In 4340 * this case, the addresses are both validated as appropriate 4341 * for this operation, and, if so, the information is retained 4342 * for use in the inbound fanout. 4343 * 4344 * The ULP (except in the zero-length bind) can append an 4345 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4346 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4347 * a copy of the source or destination IRE (source for local bind; 4348 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4349 * policy information contained should be copied on to the conn. 4350 * 4351 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4352 */ 4353 mblk_t * 4354 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4355 { 4356 ssize_t len; 4357 struct T_bind_req *tbr; 4358 sin_t *sin; 4359 ipa_conn_t *ac; 4360 uchar_t *ucp; 4361 mblk_t *mp1; 4362 boolean_t ire_requested; 4363 boolean_t ipsec_policy_set = B_FALSE; 4364 int error = 0; 4365 int protocol; 4366 ipa_conn_x_t *acx; 4367 4368 ASSERT(!connp->conn_af_isv6); 4369 connp->conn_pkt_isv6 = B_FALSE; 4370 4371 len = MBLKL(mp); 4372 if (len < (sizeof (*tbr) + 1)) { 4373 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4374 "ip_bind: bogus msg, len %ld", len); 4375 /* XXX: Need to return something better */ 4376 goto bad_addr; 4377 } 4378 /* Back up and extract the protocol identifier. */ 4379 mp->b_wptr--; 4380 protocol = *mp->b_wptr & 0xFF; 4381 tbr = (struct T_bind_req *)mp->b_rptr; 4382 /* Reset the message type in preparation for shipping it back. */ 4383 DB_TYPE(mp) = M_PCPROTO; 4384 4385 connp->conn_ulp = (uint8_t)protocol; 4386 4387 /* 4388 * Check for a zero length address. This is from a protocol that 4389 * wants to register to receive all packets of its type. 4390 */ 4391 if (tbr->ADDR_length == 0) { 4392 /* 4393 * These protocols are now intercepted in ip_bind_v6(). 4394 * Reject protocol-level binds here for now. 4395 * 4396 * For SCTP raw socket, ICMP sends down a bind with sin_t 4397 * so that the protocol type cannot be SCTP. 4398 */ 4399 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4400 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4401 goto bad_addr; 4402 } 4403 4404 /* 4405 * 4406 * The udp module never sends down a zero-length address, 4407 * and allowing this on a labeled system will break MLP 4408 * functionality. 4409 */ 4410 if (is_system_labeled() && protocol == IPPROTO_UDP) 4411 goto bad_addr; 4412 4413 if (connp->conn_mac_exempt) 4414 goto bad_addr; 4415 4416 /* No hash here really. The table is big enough. */ 4417 connp->conn_srcv6 = ipv6_all_zeros; 4418 4419 ipcl_proto_insert(connp, protocol); 4420 4421 tbr->PRIM_type = T_BIND_ACK; 4422 return (mp); 4423 } 4424 4425 /* Extract the address pointer from the message. */ 4426 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4427 tbr->ADDR_length); 4428 if (ucp == NULL) { 4429 ip1dbg(("ip_bind: no address\n")); 4430 goto bad_addr; 4431 } 4432 if (!OK_32PTR(ucp)) { 4433 ip1dbg(("ip_bind: unaligned address\n")); 4434 goto bad_addr; 4435 } 4436 /* 4437 * Check for trailing mps. 4438 */ 4439 4440 mp1 = mp->b_cont; 4441 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4442 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4443 4444 switch (tbr->ADDR_length) { 4445 default: 4446 ip1dbg(("ip_bind: bad address length %d\n", 4447 (int)tbr->ADDR_length)); 4448 goto bad_addr; 4449 4450 case IP_ADDR_LEN: 4451 /* Verification of local address only */ 4452 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4453 ire_requested, ipsec_policy_set, B_FALSE); 4454 break; 4455 4456 case sizeof (sin_t): 4457 sin = (sin_t *)ucp; 4458 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4459 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4460 break; 4461 4462 case sizeof (ipa_conn_t): 4463 ac = (ipa_conn_t *)ucp; 4464 /* For raw socket, the local port is not set. */ 4465 if (ac->ac_lport == 0) 4466 ac->ac_lport = connp->conn_lport; 4467 /* Always verify destination reachability. */ 4468 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4469 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4470 ipsec_policy_set, B_TRUE, B_TRUE); 4471 break; 4472 4473 case sizeof (ipa_conn_x_t): 4474 acx = (ipa_conn_x_t *)ucp; 4475 /* 4476 * Whether or not to verify destination reachability depends 4477 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4478 */ 4479 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4480 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4481 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4482 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4483 break; 4484 } 4485 if (error == EINPROGRESS) 4486 return (NULL); 4487 else if (error != 0) 4488 goto bad_addr; 4489 /* 4490 * Pass the IPsec headers size in ire_ipsec_overhead. 4491 * We can't do this in ip_bind_insert_ire because the policy 4492 * may not have been inherited at that point in time and hence 4493 * conn_out_enforce_policy may not be set. 4494 */ 4495 mp1 = mp->b_cont; 4496 if (ire_requested && connp->conn_out_enforce_policy && 4497 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4498 ire_t *ire = (ire_t *)mp1->b_rptr; 4499 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4500 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4501 } 4502 4503 /* Send it home. */ 4504 mp->b_datap->db_type = M_PCPROTO; 4505 tbr->PRIM_type = T_BIND_ACK; 4506 return (mp); 4507 4508 bad_addr: 4509 /* 4510 * If error = -1 then we generate a TBADADDR - otherwise error is 4511 * a unix errno. 4512 */ 4513 if (error > 0) 4514 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4515 else 4516 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4517 return (mp); 4518 } 4519 4520 /* 4521 * Here address is verified to be a valid local address. 4522 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4523 * address is also considered a valid local address. 4524 * In the case of a broadcast/multicast address, however, the 4525 * upper protocol is expected to reset the src address 4526 * to 0 if it sees a IRE_BROADCAST type returned so that 4527 * no packets are emitted with broadcast/multicast address as 4528 * source address (that violates hosts requirements RFC1122) 4529 * The addresses valid for bind are: 4530 * (1) - INADDR_ANY (0) 4531 * (2) - IP address of an UP interface 4532 * (3) - IP address of a DOWN interface 4533 * (4) - valid local IP broadcast addresses. In this case 4534 * the conn will only receive packets destined to 4535 * the specified broadcast address. 4536 * (5) - a multicast address. In this case 4537 * the conn will only receive packets destined to 4538 * the specified multicast address. Note: the 4539 * application still has to issue an 4540 * IP_ADD_MEMBERSHIP socket option. 4541 * 4542 * On error, return -1 for TBADADDR otherwise pass the 4543 * errno with TSYSERR reply. 4544 * 4545 * In all the above cases, the bound address must be valid in the current zone. 4546 * When the address is loopback, multicast or broadcast, there might be many 4547 * matching IREs so bind has to look up based on the zone. 4548 * 4549 * Note: lport is in network byte order. 4550 */ 4551 int 4552 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4553 boolean_t ire_requested, boolean_t ipsec_policy_set, 4554 boolean_t fanout_insert) 4555 { 4556 int error = 0; 4557 ire_t *src_ire; 4558 mblk_t *policy_mp; 4559 ipif_t *ipif; 4560 zoneid_t zoneid; 4561 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4562 4563 if (ipsec_policy_set) { 4564 policy_mp = mp->b_cont; 4565 } 4566 4567 /* 4568 * If it was previously connected, conn_fully_bound would have 4569 * been set. 4570 */ 4571 connp->conn_fully_bound = B_FALSE; 4572 4573 src_ire = NULL; 4574 ipif = NULL; 4575 4576 zoneid = IPCL_ZONEID(connp); 4577 4578 if (src_addr) { 4579 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4580 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4581 /* 4582 * If an address other than 0.0.0.0 is requested, 4583 * we verify that it is a valid address for bind 4584 * Note: Following code is in if-else-if form for 4585 * readability compared to a condition check. 4586 */ 4587 /* LINTED - statement has no consequent */ 4588 if (IRE_IS_LOCAL(src_ire)) { 4589 /* 4590 * (2) Bind to address of local UP interface 4591 */ 4592 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4593 /* 4594 * (4) Bind to broadcast address 4595 * Note: permitted only from transports that 4596 * request IRE 4597 */ 4598 if (!ire_requested) 4599 error = EADDRNOTAVAIL; 4600 } else { 4601 /* 4602 * (3) Bind to address of local DOWN interface 4603 * (ipif_lookup_addr() looks up all interfaces 4604 * but we do not get here for UP interfaces 4605 * - case (2) above) 4606 * We put the protocol byte back into the mblk 4607 * since we may come back via ip_wput_nondata() 4608 * later with this mblk if ipif_lookup_addr chooses 4609 * to defer processing. 4610 */ 4611 *mp->b_wptr++ = (char)connp->conn_ulp; 4612 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4613 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4614 &error, ipst)) != NULL) { 4615 ipif_refrele(ipif); 4616 } else if (error == EINPROGRESS) { 4617 if (src_ire != NULL) 4618 ire_refrele(src_ire); 4619 return (EINPROGRESS); 4620 } else if (CLASSD(src_addr)) { 4621 error = 0; 4622 if (src_ire != NULL) 4623 ire_refrele(src_ire); 4624 /* 4625 * (5) bind to multicast address. 4626 * Fake out the IRE returned to upper 4627 * layer to be a broadcast IRE. 4628 */ 4629 src_ire = ire_ctable_lookup( 4630 INADDR_BROADCAST, INADDR_ANY, 4631 IRE_BROADCAST, NULL, zoneid, NULL, 4632 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4633 ipst); 4634 if (src_ire == NULL || !ire_requested) 4635 error = EADDRNOTAVAIL; 4636 } else { 4637 /* 4638 * Not a valid address for bind 4639 */ 4640 error = EADDRNOTAVAIL; 4641 } 4642 /* 4643 * Just to keep it consistent with the processing in 4644 * ip_bind_v4() 4645 */ 4646 mp->b_wptr--; 4647 } 4648 if (error) { 4649 /* Red Alert! Attempting to be a bogon! */ 4650 ip1dbg(("ip_bind: bad src address 0x%x\n", 4651 ntohl(src_addr))); 4652 goto bad_addr; 4653 } 4654 } 4655 4656 /* 4657 * Allow setting new policies. For example, disconnects come 4658 * down as ipa_t bind. As we would have set conn_policy_cached 4659 * to B_TRUE before, we should set it to B_FALSE, so that policy 4660 * can change after the disconnect. 4661 */ 4662 connp->conn_policy_cached = B_FALSE; 4663 4664 /* 4665 * If not fanout_insert this was just an address verification 4666 */ 4667 if (fanout_insert) { 4668 /* 4669 * The addresses have been verified. Time to insert in 4670 * the correct fanout list. 4671 */ 4672 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4673 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4674 connp->conn_lport = lport; 4675 connp->conn_fport = 0; 4676 /* 4677 * Do we need to add a check to reject Multicast packets 4678 */ 4679 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4680 } 4681 4682 if (error == 0) { 4683 if (ire_requested) { 4684 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4685 error = -1; 4686 /* Falls through to bad_addr */ 4687 } 4688 } else if (ipsec_policy_set) { 4689 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4690 error = -1; 4691 /* Falls through to bad_addr */ 4692 } 4693 } 4694 } 4695 bad_addr: 4696 if (error != 0) { 4697 if (connp->conn_anon_port) { 4698 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4699 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4700 B_FALSE); 4701 } 4702 connp->conn_mlp_type = mlptSingle; 4703 } 4704 if (src_ire != NULL) 4705 IRE_REFRELE(src_ire); 4706 if (ipsec_policy_set) { 4707 ASSERT(policy_mp == mp->b_cont); 4708 ASSERT(policy_mp != NULL); 4709 freeb(policy_mp); 4710 /* 4711 * As of now assume that nothing else accompanies 4712 * IPSEC_POLICY_SET. 4713 */ 4714 mp->b_cont = NULL; 4715 } 4716 return (error); 4717 } 4718 4719 /* 4720 * Verify that both the source and destination addresses 4721 * are valid. If verify_dst is false, then the destination address may be 4722 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4723 * destination reachability, while tunnels do not. 4724 * Note that we allow connect to broadcast and multicast 4725 * addresses when ire_requested is set. Thus the ULP 4726 * has to check for IRE_BROADCAST and multicast. 4727 * 4728 * Returns zero if ok. 4729 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4730 * (for use with TSYSERR reply). 4731 * 4732 * Note: lport and fport are in network byte order. 4733 */ 4734 int 4735 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4736 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4737 boolean_t ire_requested, boolean_t ipsec_policy_set, 4738 boolean_t fanout_insert, boolean_t verify_dst) 4739 { 4740 ire_t *src_ire; 4741 ire_t *dst_ire; 4742 int error = 0; 4743 int protocol; 4744 mblk_t *policy_mp; 4745 ire_t *sire = NULL; 4746 ire_t *md_dst_ire = NULL; 4747 ire_t *lso_dst_ire = NULL; 4748 ill_t *ill = NULL; 4749 zoneid_t zoneid; 4750 ipaddr_t src_addr = *src_addrp; 4751 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4752 4753 src_ire = dst_ire = NULL; 4754 protocol = *mp->b_wptr & 0xFF; 4755 4756 /* 4757 * If we never got a disconnect before, clear it now. 4758 */ 4759 connp->conn_fully_bound = B_FALSE; 4760 4761 if (ipsec_policy_set) { 4762 policy_mp = mp->b_cont; 4763 } 4764 4765 zoneid = IPCL_ZONEID(connp); 4766 4767 if (CLASSD(dst_addr)) { 4768 /* Pick up an IRE_BROADCAST */ 4769 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4770 NULL, zoneid, MBLK_GETLABEL(mp), 4771 (MATCH_IRE_RECURSIVE | 4772 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4773 MATCH_IRE_SECATTR), ipst); 4774 } else { 4775 /* 4776 * If conn_dontroute is set or if conn_nexthop_set is set, 4777 * and onlink ipif is not found set ENETUNREACH error. 4778 */ 4779 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4780 ipif_t *ipif; 4781 4782 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4783 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4784 if (ipif == NULL) { 4785 error = ENETUNREACH; 4786 goto bad_addr; 4787 } 4788 ipif_refrele(ipif); 4789 } 4790 4791 if (connp->conn_nexthop_set) { 4792 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4793 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4794 MATCH_IRE_SECATTR, ipst); 4795 } else { 4796 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4797 &sire, zoneid, MBLK_GETLABEL(mp), 4798 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4799 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4800 MATCH_IRE_SECATTR), ipst); 4801 } 4802 } 4803 /* 4804 * dst_ire can't be a broadcast when not ire_requested. 4805 * We also prevent ire's with src address INADDR_ANY to 4806 * be used, which are created temporarily for 4807 * sending out packets from endpoints that have 4808 * conn_unspec_src set. If verify_dst is true, the destination must be 4809 * reachable. If verify_dst is false, the destination needn't be 4810 * reachable. 4811 * 4812 * If we match on a reject or black hole, then we've got a 4813 * local failure. May as well fail out the connect() attempt, 4814 * since it's never going to succeed. 4815 */ 4816 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4817 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4818 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4819 /* 4820 * If we're verifying destination reachability, we always want 4821 * to complain here. 4822 * 4823 * If we're not verifying destination reachability but the 4824 * destination has a route, we still want to fail on the 4825 * temporary address and broadcast address tests. 4826 */ 4827 if (verify_dst || (dst_ire != NULL)) { 4828 if (ip_debug > 2) { 4829 pr_addr_dbg("ip_bind_connected: bad connected " 4830 "dst %s\n", AF_INET, &dst_addr); 4831 } 4832 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4833 error = ENETUNREACH; 4834 else 4835 error = EHOSTUNREACH; 4836 goto bad_addr; 4837 } 4838 } 4839 4840 /* 4841 * We now know that routing will allow us to reach the destination. 4842 * Check whether Trusted Solaris policy allows communication with this 4843 * host, and pretend that the destination is unreachable if not. 4844 * 4845 * This is never a problem for TCP, since that transport is known to 4846 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4847 * handling. If the remote is unreachable, it will be detected at that 4848 * point, so there's no reason to check it here. 4849 * 4850 * Note that for sendto (and other datagram-oriented friends), this 4851 * check is done as part of the data path label computation instead. 4852 * The check here is just to make non-TCP connect() report the right 4853 * error. 4854 */ 4855 if (dst_ire != NULL && is_system_labeled() && 4856 !IPCL_IS_TCP(connp) && 4857 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4858 connp->conn_mac_exempt, ipst) != 0) { 4859 error = EHOSTUNREACH; 4860 if (ip_debug > 2) { 4861 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4862 AF_INET, &dst_addr); 4863 } 4864 goto bad_addr; 4865 } 4866 4867 /* 4868 * If the app does a connect(), it means that it will most likely 4869 * send more than 1 packet to the destination. It makes sense 4870 * to clear the temporary flag. 4871 */ 4872 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4873 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4874 irb_t *irb = dst_ire->ire_bucket; 4875 4876 rw_enter(&irb->irb_lock, RW_WRITER); 4877 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4878 irb->irb_tmp_ire_cnt--; 4879 rw_exit(&irb->irb_lock); 4880 } 4881 4882 /* 4883 * See if we should notify ULP about LSO/MDT; we do this whether or not 4884 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4885 * eligibility tests for passive connects are handled separately 4886 * through tcp_adapt_ire(). We do this before the source address 4887 * selection, because dst_ire may change after a call to 4888 * ipif_select_source(). This is a best-effort check, as the 4889 * packet for this connection may not actually go through 4890 * dst_ire->ire_stq, and the exact IRE can only be known after 4891 * calling ip_newroute(). This is why we further check on the 4892 * IRE during LSO/Multidata packet transmission in 4893 * tcp_lsosend()/tcp_multisend(). 4894 */ 4895 if (!ipsec_policy_set && dst_ire != NULL && 4896 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4897 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4898 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4899 lso_dst_ire = dst_ire; 4900 IRE_REFHOLD(lso_dst_ire); 4901 } else if (ipst->ips_ip_multidata_outbound && 4902 ILL_MDT_CAPABLE(ill)) { 4903 md_dst_ire = dst_ire; 4904 IRE_REFHOLD(md_dst_ire); 4905 } 4906 } 4907 4908 if (dst_ire != NULL && 4909 dst_ire->ire_type == IRE_LOCAL && 4910 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4911 /* 4912 * If the IRE belongs to a different zone, look for a matching 4913 * route in the forwarding table and use the source address from 4914 * that route. 4915 */ 4916 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4917 zoneid, 0, NULL, 4918 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4919 MATCH_IRE_RJ_BHOLE, ipst); 4920 if (src_ire == NULL) { 4921 error = EHOSTUNREACH; 4922 goto bad_addr; 4923 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4924 if (!(src_ire->ire_type & IRE_HOST)) 4925 error = ENETUNREACH; 4926 else 4927 error = EHOSTUNREACH; 4928 goto bad_addr; 4929 } 4930 if (src_addr == INADDR_ANY) 4931 src_addr = src_ire->ire_src_addr; 4932 ire_refrele(src_ire); 4933 src_ire = NULL; 4934 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4935 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4936 src_addr = sire->ire_src_addr; 4937 ire_refrele(dst_ire); 4938 dst_ire = sire; 4939 sire = NULL; 4940 } else { 4941 /* 4942 * Pick a source address so that a proper inbound 4943 * load spreading would happen. 4944 */ 4945 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4946 ipif_t *src_ipif = NULL; 4947 ire_t *ipif_ire; 4948 4949 /* 4950 * Supply a local source address such that inbound 4951 * load spreading happens. 4952 * 4953 * Determine the best source address on this ill for 4954 * the destination. 4955 * 4956 * 1) For broadcast, we should return a broadcast ire 4957 * found above so that upper layers know that the 4958 * destination address is a broadcast address. 4959 * 4960 * 2) If this is part of a group, select a better 4961 * source address so that better inbound load 4962 * balancing happens. Do the same if the ipif 4963 * is DEPRECATED. 4964 * 4965 * 3) If the outgoing interface is part of a usesrc 4966 * group, then try selecting a source address from 4967 * the usesrc ILL. 4968 */ 4969 if ((dst_ire->ire_zoneid != zoneid && 4970 dst_ire->ire_zoneid != ALL_ZONES) || 4971 (!(dst_ire->ire_type & IRE_BROADCAST) && 4972 ((dst_ill->ill_group != NULL) || 4973 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4974 (dst_ill->ill_usesrc_ifindex != 0)))) { 4975 /* 4976 * If the destination is reachable via a 4977 * given gateway, the selected source address 4978 * should be in the same subnet as the gateway. 4979 * Otherwise, the destination is not reachable. 4980 * 4981 * If there are no interfaces on the same subnet 4982 * as the destination, ipif_select_source gives 4983 * first non-deprecated interface which might be 4984 * on a different subnet than the gateway. 4985 * This is not desirable. Hence pass the dst_ire 4986 * source address to ipif_select_source. 4987 * It is sure that the destination is reachable 4988 * with the dst_ire source address subnet. 4989 * So passing dst_ire source address to 4990 * ipif_select_source will make sure that the 4991 * selected source will be on the same subnet 4992 * as dst_ire source address. 4993 */ 4994 ipaddr_t saddr = 4995 dst_ire->ire_ipif->ipif_src_addr; 4996 src_ipif = ipif_select_source(dst_ill, 4997 saddr, zoneid); 4998 if (src_ipif != NULL) { 4999 if (IS_VNI(src_ipif->ipif_ill)) { 5000 /* 5001 * For VNI there is no 5002 * interface route 5003 */ 5004 src_addr = 5005 src_ipif->ipif_src_addr; 5006 } else { 5007 ipif_ire = 5008 ipif_to_ire(src_ipif); 5009 if (ipif_ire != NULL) { 5010 IRE_REFRELE(dst_ire); 5011 dst_ire = ipif_ire; 5012 } 5013 src_addr = 5014 dst_ire->ire_src_addr; 5015 } 5016 ipif_refrele(src_ipif); 5017 } else { 5018 src_addr = dst_ire->ire_src_addr; 5019 } 5020 } else { 5021 src_addr = dst_ire->ire_src_addr; 5022 } 5023 } 5024 } 5025 5026 /* 5027 * We do ire_route_lookup() here (and not 5028 * interface lookup as we assert that 5029 * src_addr should only come from an 5030 * UP interface for hard binding. 5031 */ 5032 ASSERT(src_ire == NULL); 5033 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5034 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5035 /* src_ire must be a local|loopback */ 5036 if (!IRE_IS_LOCAL(src_ire)) { 5037 if (ip_debug > 2) { 5038 pr_addr_dbg("ip_bind_connected: bad connected " 5039 "src %s\n", AF_INET, &src_addr); 5040 } 5041 error = EADDRNOTAVAIL; 5042 goto bad_addr; 5043 } 5044 5045 /* 5046 * If the source address is a loopback address, the 5047 * destination had best be local or multicast. 5048 * The transports that can't handle multicast will reject 5049 * those addresses. 5050 */ 5051 if (src_ire->ire_type == IRE_LOOPBACK && 5052 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5053 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5054 error = -1; 5055 goto bad_addr; 5056 } 5057 5058 /* 5059 * Allow setting new policies. For example, disconnects come 5060 * down as ipa_t bind. As we would have set conn_policy_cached 5061 * to B_TRUE before, we should set it to B_FALSE, so that policy 5062 * can change after the disconnect. 5063 */ 5064 connp->conn_policy_cached = B_FALSE; 5065 5066 /* 5067 * Set the conn addresses/ports immediately, so the IPsec policy calls 5068 * can handle their passed-in conn's. 5069 */ 5070 5071 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5072 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5073 connp->conn_lport = lport; 5074 connp->conn_fport = fport; 5075 *src_addrp = src_addr; 5076 5077 ASSERT(!(ipsec_policy_set && ire_requested)); 5078 if (ire_requested) { 5079 iulp_t *ulp_info = NULL; 5080 5081 /* 5082 * Note that sire will not be NULL if this is an off-link 5083 * connection and there is not cache for that dest yet. 5084 * 5085 * XXX Because of an existing bug, if there are multiple 5086 * default routes, the IRE returned now may not be the actual 5087 * default route used (default routes are chosen in a 5088 * round robin fashion). So if the metrics for different 5089 * default routes are different, we may return the wrong 5090 * metrics. This will not be a problem if the existing 5091 * bug is fixed. 5092 */ 5093 if (sire != NULL) { 5094 ulp_info = &(sire->ire_uinfo); 5095 } 5096 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5097 error = -1; 5098 goto bad_addr; 5099 } 5100 } else if (ipsec_policy_set) { 5101 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5102 error = -1; 5103 goto bad_addr; 5104 } 5105 } 5106 5107 /* 5108 * Cache IPsec policy in this conn. If we have per-socket policy, 5109 * we'll cache that. If we don't, we'll inherit global policy. 5110 * 5111 * We can't insert until the conn reflects the policy. Note that 5112 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5113 * connections where we don't have a policy. This is to prevent 5114 * global policy lookups in the inbound path. 5115 * 5116 * If we insert before we set conn_policy_cached, 5117 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5118 * because global policy cound be non-empty. We normally call 5119 * ipsec_check_policy() for conn_policy_cached connections only if 5120 * ipc_in_enforce_policy is set. But in this case, 5121 * conn_policy_cached can get set anytime since we made the 5122 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5123 * called, which will make the above assumption false. Thus, we 5124 * need to insert after we set conn_policy_cached. 5125 */ 5126 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5127 goto bad_addr; 5128 5129 if (fanout_insert) { 5130 /* 5131 * The addresses have been verified. Time to insert in 5132 * the correct fanout list. 5133 */ 5134 error = ipcl_conn_insert(connp, protocol, src_addr, 5135 dst_addr, connp->conn_ports); 5136 } 5137 5138 if (error == 0) { 5139 connp->conn_fully_bound = B_TRUE; 5140 /* 5141 * Our initial checks for LSO/MDT have passed; the IRE is not 5142 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5143 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5144 * ip_xxinfo_return(), which performs further checks 5145 * against them and upon success, returns the LSO/MDT info 5146 * mblk which we will attach to the bind acknowledgment. 5147 */ 5148 if (lso_dst_ire != NULL) { 5149 mblk_t *lsoinfo_mp; 5150 5151 ASSERT(ill->ill_lso_capab != NULL); 5152 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5153 ill->ill_name, ill->ill_lso_capab)) != NULL) 5154 linkb(mp, lsoinfo_mp); 5155 } else if (md_dst_ire != NULL) { 5156 mblk_t *mdinfo_mp; 5157 5158 ASSERT(ill->ill_mdt_capab != NULL); 5159 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5160 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5161 linkb(mp, mdinfo_mp); 5162 } 5163 } 5164 bad_addr: 5165 if (ipsec_policy_set) { 5166 ASSERT(policy_mp == mp->b_cont); 5167 ASSERT(policy_mp != NULL); 5168 freeb(policy_mp); 5169 /* 5170 * As of now assume that nothing else accompanies 5171 * IPSEC_POLICY_SET. 5172 */ 5173 mp->b_cont = NULL; 5174 } 5175 if (src_ire != NULL) 5176 IRE_REFRELE(src_ire); 5177 if (dst_ire != NULL) 5178 IRE_REFRELE(dst_ire); 5179 if (sire != NULL) 5180 IRE_REFRELE(sire); 5181 if (md_dst_ire != NULL) 5182 IRE_REFRELE(md_dst_ire); 5183 if (lso_dst_ire != NULL) 5184 IRE_REFRELE(lso_dst_ire); 5185 return (error); 5186 } 5187 5188 /* 5189 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5190 * Prefers dst_ire over src_ire. 5191 */ 5192 static boolean_t 5193 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5194 { 5195 mblk_t *mp1; 5196 ire_t *ret_ire = NULL; 5197 5198 mp1 = mp->b_cont; 5199 ASSERT(mp1 != NULL); 5200 5201 if (ire != NULL) { 5202 /* 5203 * mp1 initialized above to IRE_DB_REQ_TYPE 5204 * appended mblk. Its <upper protocol>'s 5205 * job to make sure there is room. 5206 */ 5207 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5208 return (0); 5209 5210 mp1->b_datap->db_type = IRE_DB_TYPE; 5211 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5212 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5213 ret_ire = (ire_t *)mp1->b_rptr; 5214 /* 5215 * Pass the latest setting of the ip_path_mtu_discovery and 5216 * copy the ulp info if any. 5217 */ 5218 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5219 IPH_DF : 0; 5220 if (ulp_info != NULL) { 5221 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5222 sizeof (iulp_t)); 5223 } 5224 ret_ire->ire_mp = mp1; 5225 } else { 5226 /* 5227 * No IRE was found. Remove IRE mblk. 5228 */ 5229 mp->b_cont = mp1->b_cont; 5230 freeb(mp1); 5231 } 5232 5233 return (1); 5234 } 5235 5236 /* 5237 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5238 * the final piece where we don't. Return a pointer to the first mblk in the 5239 * result, and update the pointer to the next mblk to chew on. If anything 5240 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5241 * NULL pointer. 5242 */ 5243 mblk_t * 5244 ip_carve_mp(mblk_t **mpp, ssize_t len) 5245 { 5246 mblk_t *mp0; 5247 mblk_t *mp1; 5248 mblk_t *mp2; 5249 5250 if (!len || !mpp || !(mp0 = *mpp)) 5251 return (NULL); 5252 /* If we aren't going to consume the first mblk, we need a dup. */ 5253 if (mp0->b_wptr - mp0->b_rptr > len) { 5254 mp1 = dupb(mp0); 5255 if (mp1) { 5256 /* Partition the data between the two mblks. */ 5257 mp1->b_wptr = mp1->b_rptr + len; 5258 mp0->b_rptr = mp1->b_wptr; 5259 /* 5260 * after adjustments if mblk not consumed is now 5261 * unaligned, try to align it. If this fails free 5262 * all messages and let upper layer recover. 5263 */ 5264 if (!OK_32PTR(mp0->b_rptr)) { 5265 if (!pullupmsg(mp0, -1)) { 5266 freemsg(mp0); 5267 freemsg(mp1); 5268 *mpp = NULL; 5269 return (NULL); 5270 } 5271 } 5272 } 5273 return (mp1); 5274 } 5275 /* Eat through as many mblks as we need to get len bytes. */ 5276 len -= mp0->b_wptr - mp0->b_rptr; 5277 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5278 if (mp2->b_wptr - mp2->b_rptr > len) { 5279 /* 5280 * We won't consume the entire last mblk. Like 5281 * above, dup and partition it. 5282 */ 5283 mp1->b_cont = dupb(mp2); 5284 mp1 = mp1->b_cont; 5285 if (!mp1) { 5286 /* 5287 * Trouble. Rather than go to a lot of 5288 * trouble to clean up, we free the messages. 5289 * This won't be any worse than losing it on 5290 * the wire. 5291 */ 5292 freemsg(mp0); 5293 freemsg(mp2); 5294 *mpp = NULL; 5295 return (NULL); 5296 } 5297 mp1->b_wptr = mp1->b_rptr + len; 5298 mp2->b_rptr = mp1->b_wptr; 5299 /* 5300 * after adjustments if mblk not consumed is now 5301 * unaligned, try to align it. If this fails free 5302 * all messages and let upper layer recover. 5303 */ 5304 if (!OK_32PTR(mp2->b_rptr)) { 5305 if (!pullupmsg(mp2, -1)) { 5306 freemsg(mp0); 5307 freemsg(mp2); 5308 *mpp = NULL; 5309 return (NULL); 5310 } 5311 } 5312 *mpp = mp2; 5313 return (mp0); 5314 } 5315 /* Decrement len by the amount we just got. */ 5316 len -= mp2->b_wptr - mp2->b_rptr; 5317 } 5318 /* 5319 * len should be reduced to zero now. If not our caller has 5320 * screwed up. 5321 */ 5322 if (len) { 5323 /* Shouldn't happen! */ 5324 freemsg(mp0); 5325 *mpp = NULL; 5326 return (NULL); 5327 } 5328 /* 5329 * We consumed up to exactly the end of an mblk. Detach the part 5330 * we are returning from the rest of the chain. 5331 */ 5332 mp1->b_cont = NULL; 5333 *mpp = mp2; 5334 return (mp0); 5335 } 5336 5337 /* The ill stream is being unplumbed. Called from ip_close */ 5338 int 5339 ip_modclose(ill_t *ill) 5340 { 5341 boolean_t success; 5342 ipsq_t *ipsq; 5343 ipif_t *ipif; 5344 queue_t *q = ill->ill_rq; 5345 ip_stack_t *ipst = ill->ill_ipst; 5346 clock_t timeout; 5347 5348 /* 5349 * Wait for the ACKs of all deferred control messages to be processed. 5350 * In particular, we wait for a potential capability reset initiated 5351 * in ip_sioctl_plink() to complete before proceeding. 5352 * 5353 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5354 * in case the driver never replies. 5355 */ 5356 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5357 mutex_enter(&ill->ill_lock); 5358 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5359 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5360 /* Timeout */ 5361 break; 5362 } 5363 } 5364 mutex_exit(&ill->ill_lock); 5365 5366 /* 5367 * Forcibly enter the ipsq after some delay. This is to take 5368 * care of the case when some ioctl does not complete because 5369 * we sent a control message to the driver and it did not 5370 * send us a reply. We want to be able to at least unplumb 5371 * and replumb rather than force the user to reboot the system. 5372 */ 5373 success = ipsq_enter(ill, B_FALSE); 5374 5375 /* 5376 * Open/close/push/pop is guaranteed to be single threaded 5377 * per stream by STREAMS. FS guarantees that all references 5378 * from top are gone before close is called. So there can't 5379 * be another close thread that has set CONDEMNED on this ill. 5380 * and cause ipsq_enter to return failure. 5381 */ 5382 ASSERT(success); 5383 ipsq = ill->ill_phyint->phyint_ipsq; 5384 5385 /* 5386 * Mark it condemned. No new reference will be made to this ill. 5387 * Lookup functions will return an error. Threads that try to 5388 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5389 * that the refcnt will drop down to zero. 5390 */ 5391 mutex_enter(&ill->ill_lock); 5392 ill->ill_state_flags |= ILL_CONDEMNED; 5393 for (ipif = ill->ill_ipif; ipif != NULL; 5394 ipif = ipif->ipif_next) { 5395 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5396 } 5397 /* 5398 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5399 * returns error if ILL_CONDEMNED is set 5400 */ 5401 cv_broadcast(&ill->ill_cv); 5402 mutex_exit(&ill->ill_lock); 5403 5404 /* 5405 * Send all the deferred DLPI messages downstream which came in 5406 * during the small window right before ipsq_enter(). We do this 5407 * without waiting for the ACKs because all the ACKs for M_PROTO 5408 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5409 */ 5410 ill_dlpi_send_deferred(ill); 5411 5412 /* 5413 * Shut down fragmentation reassembly. 5414 * ill_frag_timer won't start a timer again. 5415 * Now cancel any existing timer 5416 */ 5417 (void) untimeout(ill->ill_frag_timer_id); 5418 (void) ill_frag_timeout(ill, 0); 5419 5420 /* 5421 * If MOVE was in progress, clear the 5422 * move_in_progress fields also. 5423 */ 5424 if (ill->ill_move_in_progress) { 5425 ILL_CLEAR_MOVE(ill); 5426 } 5427 5428 /* 5429 * Call ill_delete to bring down the ipifs, ilms and ill on 5430 * this ill. Then wait for the refcnts to drop to zero. 5431 * ill_is_quiescent checks whether the ill is really quiescent. 5432 * Then make sure that threads that are waiting to enter the 5433 * ipsq have seen the error returned by ipsq_enter and have 5434 * gone away. Then we call ill_delete_tail which does the 5435 * DL_UNBIND_REQ with the driver and then qprocsoff. 5436 */ 5437 ill_delete(ill); 5438 mutex_enter(&ill->ill_lock); 5439 while (!ill_is_quiescent(ill)) 5440 cv_wait(&ill->ill_cv, &ill->ill_lock); 5441 while (ill->ill_waiters) 5442 cv_wait(&ill->ill_cv, &ill->ill_lock); 5443 5444 mutex_exit(&ill->ill_lock); 5445 5446 /* 5447 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5448 * it held until the end of the function since the cleanup 5449 * below needs to be able to use the ip_stack_t. 5450 */ 5451 netstack_hold(ipst->ips_netstack); 5452 5453 /* qprocsoff is called in ill_delete_tail */ 5454 ill_delete_tail(ill); 5455 ASSERT(ill->ill_ipst == NULL); 5456 5457 /* 5458 * Walk through all upper (conn) streams and qenable 5459 * those that have queued data. 5460 * close synchronization needs this to 5461 * be done to ensure that all upper layers blocked 5462 * due to flow control to the closing device 5463 * get unblocked. 5464 */ 5465 ip1dbg(("ip_wsrv: walking\n")); 5466 conn_walk_drain(ipst); 5467 5468 mutex_enter(&ipst->ips_ip_mi_lock); 5469 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5470 mutex_exit(&ipst->ips_ip_mi_lock); 5471 5472 /* 5473 * credp could be null if the open didn't succeed and ip_modopen 5474 * itself calls ip_close. 5475 */ 5476 if (ill->ill_credp != NULL) 5477 crfree(ill->ill_credp); 5478 5479 mutex_enter(&ill->ill_lock); 5480 ill_nic_info_dispatch(ill); 5481 mutex_exit(&ill->ill_lock); 5482 5483 /* 5484 * Now we are done with the module close pieces that 5485 * need the netstack_t. 5486 */ 5487 netstack_rele(ipst->ips_netstack); 5488 5489 mi_close_free((IDP)ill); 5490 q->q_ptr = WR(q)->q_ptr = NULL; 5491 5492 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5493 5494 return (0); 5495 } 5496 5497 /* 5498 * This is called as part of close() for IP, UDP, ICMP, and RTS 5499 * in order to quiesce the conn. 5500 */ 5501 void 5502 ip_quiesce_conn(conn_t *connp) 5503 { 5504 boolean_t drain_cleanup_reqd = B_FALSE; 5505 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5506 boolean_t ilg_cleanup_reqd = B_FALSE; 5507 ip_stack_t *ipst; 5508 5509 ASSERT(!IPCL_IS_TCP(connp)); 5510 ipst = connp->conn_netstack->netstack_ip; 5511 5512 /* 5513 * Mark the conn as closing, and this conn must not be 5514 * inserted in future into any list. Eg. conn_drain_insert(), 5515 * won't insert this conn into the conn_drain_list. 5516 * Similarly ill_pending_mp_add() will not add any mp to 5517 * the pending mp list, after this conn has started closing. 5518 * 5519 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5520 * cannot get set henceforth. 5521 */ 5522 mutex_enter(&connp->conn_lock); 5523 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5524 connp->conn_state_flags |= CONN_CLOSING; 5525 if (connp->conn_idl != NULL) 5526 drain_cleanup_reqd = B_TRUE; 5527 if (connp->conn_oper_pending_ill != NULL) 5528 conn_ioctl_cleanup_reqd = B_TRUE; 5529 if (connp->conn_ilg_inuse != 0) 5530 ilg_cleanup_reqd = B_TRUE; 5531 mutex_exit(&connp->conn_lock); 5532 5533 if (conn_ioctl_cleanup_reqd) 5534 conn_ioctl_cleanup(connp); 5535 5536 if (is_system_labeled() && connp->conn_anon_port) { 5537 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5538 connp->conn_mlp_type, connp->conn_ulp, 5539 ntohs(connp->conn_lport), B_FALSE); 5540 connp->conn_anon_port = 0; 5541 } 5542 connp->conn_mlp_type = mlptSingle; 5543 5544 /* 5545 * Remove this conn from any fanout list it is on. 5546 * and then wait for any threads currently operating 5547 * on this endpoint to finish 5548 */ 5549 ipcl_hash_remove(connp); 5550 5551 /* 5552 * Remove this conn from the drain list, and do 5553 * any other cleanup that may be required. 5554 * (Only non-tcp streams may have a non-null conn_idl. 5555 * TCP streams are never flow controlled, and 5556 * conn_idl will be null) 5557 */ 5558 if (drain_cleanup_reqd) 5559 conn_drain_tail(connp, B_TRUE); 5560 5561 if (connp == ipst->ips_ip_g_mrouter) 5562 (void) ip_mrouter_done(NULL, ipst); 5563 5564 if (ilg_cleanup_reqd) 5565 ilg_delete_all(connp); 5566 5567 conn_delete_ire(connp, NULL); 5568 5569 /* 5570 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5571 * callers from write side can't be there now because close 5572 * is in progress. The only other caller is ipcl_walk 5573 * which checks for the condemned flag. 5574 */ 5575 mutex_enter(&connp->conn_lock); 5576 connp->conn_state_flags |= CONN_CONDEMNED; 5577 while (connp->conn_ref != 1) 5578 cv_wait(&connp->conn_cv, &connp->conn_lock); 5579 connp->conn_state_flags |= CONN_QUIESCED; 5580 mutex_exit(&connp->conn_lock); 5581 } 5582 5583 /* ARGSUSED */ 5584 int 5585 ip_close(queue_t *q, int flags) 5586 { 5587 conn_t *connp; 5588 5589 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5590 5591 /* 5592 * Call the appropriate delete routine depending on whether this is 5593 * a module or device. 5594 */ 5595 if (WR(q)->q_next != NULL) { 5596 /* This is a module close */ 5597 return (ip_modclose((ill_t *)q->q_ptr)); 5598 } 5599 5600 connp = q->q_ptr; 5601 ip_quiesce_conn(connp); 5602 5603 qprocsoff(q); 5604 5605 /* 5606 * Now we are truly single threaded on this stream, and can 5607 * delete the things hanging off the connp, and finally the connp. 5608 * We removed this connp from the fanout list, it cannot be 5609 * accessed thru the fanouts, and we already waited for the 5610 * conn_ref to drop to 0. We are already in close, so 5611 * there cannot be any other thread from the top. qprocsoff 5612 * has completed, and service has completed or won't run in 5613 * future. 5614 */ 5615 ASSERT(connp->conn_ref == 1); 5616 5617 inet_minor_free(ip_minor_arena, connp->conn_dev); 5618 5619 connp->conn_ref--; 5620 ipcl_conn_destroy(connp); 5621 5622 q->q_ptr = WR(q)->q_ptr = NULL; 5623 return (0); 5624 } 5625 5626 /* 5627 * Wapper around putnext() so that ip_rts_request can merely use 5628 * conn_recv. 5629 */ 5630 /*ARGSUSED2*/ 5631 static void 5632 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5633 { 5634 conn_t *connp = (conn_t *)arg1; 5635 5636 putnext(connp->conn_rq, mp); 5637 } 5638 5639 /* Return the IP checksum for the IP header at "iph". */ 5640 uint16_t 5641 ip_csum_hdr(ipha_t *ipha) 5642 { 5643 uint16_t *uph; 5644 uint32_t sum; 5645 int opt_len; 5646 5647 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5648 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5649 uph = (uint16_t *)ipha; 5650 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5651 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5652 if (opt_len > 0) { 5653 do { 5654 sum += uph[10]; 5655 sum += uph[11]; 5656 uph += 2; 5657 } while (--opt_len); 5658 } 5659 sum = (sum & 0xFFFF) + (sum >> 16); 5660 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5661 if (sum == 0xffff) 5662 sum = 0; 5663 return ((uint16_t)sum); 5664 } 5665 5666 /* 5667 * Called when the module is about to be unloaded 5668 */ 5669 void 5670 ip_ddi_destroy(void) 5671 { 5672 tnet_fini(); 5673 5674 icmp_ddi_destroy(); 5675 rts_ddi_destroy(); 5676 udp_ddi_destroy(); 5677 sctp_ddi_g_destroy(); 5678 tcp_ddi_g_destroy(); 5679 ipsec_policy_g_destroy(); 5680 ipcl_g_destroy(); 5681 ip_net_g_destroy(); 5682 ip_ire_g_fini(); 5683 inet_minor_destroy(ip_minor_arena); 5684 5685 #ifdef DEBUG 5686 list_destroy(&ip_thread_list); 5687 rw_destroy(&ip_thread_rwlock); 5688 tsd_destroy(&ip_thread_data); 5689 #endif 5690 5691 netstack_unregister(NS_IP); 5692 } 5693 5694 /* 5695 * First step in cleanup. 5696 */ 5697 /* ARGSUSED */ 5698 static void 5699 ip_stack_shutdown(netstackid_t stackid, void *arg) 5700 { 5701 ip_stack_t *ipst = (ip_stack_t *)arg; 5702 5703 #ifdef NS_DEBUG 5704 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5705 #endif 5706 5707 /* Get rid of loopback interfaces and their IREs */ 5708 ip_loopback_cleanup(ipst); 5709 } 5710 5711 /* 5712 * Free the IP stack instance. 5713 */ 5714 static void 5715 ip_stack_fini(netstackid_t stackid, void *arg) 5716 { 5717 ip_stack_t *ipst = (ip_stack_t *)arg; 5718 int ret; 5719 5720 #ifdef NS_DEBUG 5721 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5722 #endif 5723 ipv4_hook_destroy(ipst); 5724 ipv6_hook_destroy(ipst); 5725 ip_net_destroy(ipst); 5726 5727 rw_destroy(&ipst->ips_srcid_lock); 5728 5729 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5730 ipst->ips_ip_mibkp = NULL; 5731 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5732 ipst->ips_icmp_mibkp = NULL; 5733 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5734 ipst->ips_ip_kstat = NULL; 5735 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5736 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5737 ipst->ips_ip6_kstat = NULL; 5738 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5739 5740 nd_free(&ipst->ips_ip_g_nd); 5741 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5742 ipst->ips_param_arr = NULL; 5743 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5744 ipst->ips_ndp_arr = NULL; 5745 5746 ip_mrouter_stack_destroy(ipst); 5747 5748 mutex_destroy(&ipst->ips_ip_mi_lock); 5749 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5750 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5751 rw_destroy(&ipst->ips_ip_g_nd_lock); 5752 5753 ret = untimeout(ipst->ips_igmp_timeout_id); 5754 if (ret == -1) { 5755 ASSERT(ipst->ips_igmp_timeout_id == 0); 5756 } else { 5757 ASSERT(ipst->ips_igmp_timeout_id != 0); 5758 ipst->ips_igmp_timeout_id = 0; 5759 } 5760 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5761 if (ret == -1) { 5762 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5763 } else { 5764 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5765 ipst->ips_igmp_slowtimeout_id = 0; 5766 } 5767 ret = untimeout(ipst->ips_mld_timeout_id); 5768 if (ret == -1) { 5769 ASSERT(ipst->ips_mld_timeout_id == 0); 5770 } else { 5771 ASSERT(ipst->ips_mld_timeout_id != 0); 5772 ipst->ips_mld_timeout_id = 0; 5773 } 5774 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5775 if (ret == -1) { 5776 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5777 } else { 5778 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5779 ipst->ips_mld_slowtimeout_id = 0; 5780 } 5781 ret = untimeout(ipst->ips_ip_ire_expire_id); 5782 if (ret == -1) { 5783 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5784 } else { 5785 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5786 ipst->ips_ip_ire_expire_id = 0; 5787 } 5788 5789 mutex_destroy(&ipst->ips_igmp_timer_lock); 5790 mutex_destroy(&ipst->ips_mld_timer_lock); 5791 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5792 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5793 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5794 rw_destroy(&ipst->ips_ill_g_lock); 5795 5796 ip_ire_fini(ipst); 5797 ip6_asp_free(ipst); 5798 conn_drain_fini(ipst); 5799 ipcl_destroy(ipst); 5800 5801 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5802 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5803 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5804 ipst->ips_ndp4 = NULL; 5805 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5806 ipst->ips_ndp6 = NULL; 5807 5808 if (ipst->ips_loopback_ksp != NULL) { 5809 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5810 ipst->ips_loopback_ksp = NULL; 5811 } 5812 5813 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5814 ipst->ips_phyint_g_list = NULL; 5815 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5816 ipst->ips_ill_g_heads = NULL; 5817 5818 kmem_free(ipst, sizeof (*ipst)); 5819 } 5820 5821 /* 5822 * This function is called from the TSD destructor, and is used to debug 5823 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5824 * details. 5825 */ 5826 static void 5827 ip_thread_exit(void *phash) 5828 { 5829 th_hash_t *thh = phash; 5830 5831 rw_enter(&ip_thread_rwlock, RW_WRITER); 5832 list_remove(&ip_thread_list, thh); 5833 rw_exit(&ip_thread_rwlock); 5834 mod_hash_destroy_hash(thh->thh_hash); 5835 kmem_free(thh, sizeof (*thh)); 5836 } 5837 5838 /* 5839 * Called when the IP kernel module is loaded into the kernel 5840 */ 5841 void 5842 ip_ddi_init(void) 5843 { 5844 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5845 5846 /* 5847 * For IP and TCP the minor numbers should start from 2 since we have 4 5848 * initial devices: ip, ip6, tcp, tcp6. 5849 */ 5850 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5851 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5852 cmn_err(CE_PANIC, 5853 "ip_ddi_init: ip_minor_arena creation failed\n"); 5854 } 5855 5856 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5857 5858 ipcl_g_init(); 5859 ip_ire_g_init(); 5860 ip_net_g_init(); 5861 5862 #ifdef DEBUG 5863 tsd_create(&ip_thread_data, ip_thread_exit); 5864 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5865 list_create(&ip_thread_list, sizeof (th_hash_t), 5866 offsetof(th_hash_t, thh_link)); 5867 #endif 5868 5869 /* 5870 * We want to be informed each time a stack is created or 5871 * destroyed in the kernel, so we can maintain the 5872 * set of udp_stack_t's. 5873 */ 5874 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5875 ip_stack_fini); 5876 5877 ipsec_policy_g_init(); 5878 tcp_ddi_g_init(); 5879 sctp_ddi_g_init(); 5880 5881 tnet_init(); 5882 5883 udp_ddi_init(); 5884 rts_ddi_init(); 5885 icmp_ddi_init(); 5886 } 5887 5888 /* 5889 * Initialize the IP stack instance. 5890 */ 5891 static void * 5892 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5893 { 5894 ip_stack_t *ipst; 5895 ipparam_t *pa; 5896 ipndp_t *na; 5897 5898 #ifdef NS_DEBUG 5899 printf("ip_stack_init(stack %d)\n", stackid); 5900 #endif 5901 5902 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5903 ipst->ips_netstack = ns; 5904 5905 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5906 KM_SLEEP); 5907 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5908 KM_SLEEP); 5909 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5910 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5911 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5912 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5913 5914 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5915 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5916 ipst->ips_igmp_deferred_next = INFINITY; 5917 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5918 ipst->ips_mld_deferred_next = INFINITY; 5919 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5920 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5921 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5922 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5923 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5924 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5925 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5926 5927 ipcl_init(ipst); 5928 ip_ire_init(ipst); 5929 ip6_asp_init(ipst); 5930 ipif_init(ipst); 5931 conn_drain_init(ipst); 5932 ip_mrouter_stack_init(ipst); 5933 5934 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5935 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5936 5937 ipst->ips_ip_multirt_log_interval = 1000; 5938 5939 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5940 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5941 ipst->ips_ill_index = 1; 5942 5943 ipst->ips_saved_ip_g_forward = -1; 5944 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5945 5946 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5947 ipst->ips_param_arr = pa; 5948 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5949 5950 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5951 ipst->ips_ndp_arr = na; 5952 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5953 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5954 (caddr_t)&ipst->ips_ip_g_forward; 5955 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5956 (caddr_t)&ipst->ips_ipv6_forward; 5957 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5958 "ip_cgtp_filter") == 0); 5959 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5960 (caddr_t)&ipst->ips_ip_cgtp_filter; 5961 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5962 "ipmp_hook_emulation") == 0); 5963 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5964 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5965 5966 (void) ip_param_register(&ipst->ips_ip_g_nd, 5967 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5968 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5969 5970 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5971 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5972 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5973 ipst->ips_ip6_kstat = 5974 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 5975 5976 ipst->ips_ipmp_enable_failback = B_TRUE; 5977 5978 ipst->ips_ip_src_id = 1; 5979 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 5980 5981 ip_net_init(ipst, ns); 5982 ipv4_hook_init(ipst); 5983 ipv6_hook_init(ipst); 5984 5985 return (ipst); 5986 } 5987 5988 /* 5989 * Allocate and initialize a DLPI template of the specified length. (May be 5990 * called as writer.) 5991 */ 5992 mblk_t * 5993 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5994 { 5995 mblk_t *mp; 5996 5997 mp = allocb(len, BPRI_MED); 5998 if (!mp) 5999 return (NULL); 6000 6001 /* 6002 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6003 * of which we don't seem to use) are sent with M_PCPROTO, and 6004 * that other DLPI are M_PROTO. 6005 */ 6006 if (prim == DL_INFO_REQ) { 6007 mp->b_datap->db_type = M_PCPROTO; 6008 } else { 6009 mp->b_datap->db_type = M_PROTO; 6010 } 6011 6012 mp->b_wptr = mp->b_rptr + len; 6013 bzero(mp->b_rptr, len); 6014 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6015 return (mp); 6016 } 6017 6018 const char * 6019 dlpi_prim_str(int prim) 6020 { 6021 switch (prim) { 6022 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6023 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6024 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6025 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6026 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6027 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6028 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6029 case DL_OK_ACK: return ("DL_OK_ACK"); 6030 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6031 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6032 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6033 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6034 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6035 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6036 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6037 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6038 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6039 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6040 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6041 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6042 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6043 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6044 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6045 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6046 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6047 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6048 default: return ("<unknown primitive>"); 6049 } 6050 } 6051 6052 const char * 6053 dlpi_err_str(int err) 6054 { 6055 switch (err) { 6056 case DL_ACCESS: return ("DL_ACCESS"); 6057 case DL_BADADDR: return ("DL_BADADDR"); 6058 case DL_BADCORR: return ("DL_BADCORR"); 6059 case DL_BADDATA: return ("DL_BADDATA"); 6060 case DL_BADPPA: return ("DL_BADPPA"); 6061 case DL_BADPRIM: return ("DL_BADPRIM"); 6062 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6063 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6064 case DL_BADSAP: return ("DL_BADSAP"); 6065 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6066 case DL_BOUND: return ("DL_BOUND"); 6067 case DL_INITFAILED: return ("DL_INITFAILED"); 6068 case DL_NOADDR: return ("DL_NOADDR"); 6069 case DL_NOTINIT: return ("DL_NOTINIT"); 6070 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6071 case DL_SYSERR: return ("DL_SYSERR"); 6072 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6073 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6074 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6075 case DL_TOOMANY: return ("DL_TOOMANY"); 6076 case DL_NOTENAB: return ("DL_NOTENAB"); 6077 case DL_BUSY: return ("DL_BUSY"); 6078 case DL_NOAUTO: return ("DL_NOAUTO"); 6079 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6080 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6081 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6082 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6083 case DL_PENDING: return ("DL_PENDING"); 6084 default: return ("<unknown error>"); 6085 } 6086 } 6087 6088 /* 6089 * Debug formatting routine. Returns a character string representation of the 6090 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6091 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6092 * 6093 * Once the ndd table-printing interfaces are removed, this can be changed to 6094 * standard dotted-decimal form. 6095 */ 6096 char * 6097 ip_dot_addr(ipaddr_t addr, char *buf) 6098 { 6099 uint8_t *ap = (uint8_t *)&addr; 6100 6101 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6102 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6103 return (buf); 6104 } 6105 6106 /* 6107 * Write the given MAC address as a printable string in the usual colon- 6108 * separated format. 6109 */ 6110 const char * 6111 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6112 { 6113 char *bp; 6114 6115 if (alen == 0 || buflen < 4) 6116 return ("?"); 6117 bp = buf; 6118 for (;;) { 6119 /* 6120 * If there are more MAC address bytes available, but we won't 6121 * have any room to print them, then add "..." to the string 6122 * instead. See below for the 'magic number' explanation. 6123 */ 6124 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6125 (void) strcpy(bp, "..."); 6126 break; 6127 } 6128 (void) sprintf(bp, "%02x", *addr++); 6129 bp += 2; 6130 if (--alen == 0) 6131 break; 6132 *bp++ = ':'; 6133 buflen -= 3; 6134 /* 6135 * At this point, based on the first 'if' statement above, 6136 * either alen == 1 and buflen >= 3, or alen > 1 and 6137 * buflen >= 4. The first case leaves room for the final "xx" 6138 * number and trailing NUL byte. The second leaves room for at 6139 * least "...". Thus the apparently 'magic' numbers chosen for 6140 * that statement. 6141 */ 6142 } 6143 return (buf); 6144 } 6145 6146 /* 6147 * Send an ICMP error after patching up the packet appropriately. Returns 6148 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6149 */ 6150 static boolean_t 6151 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6152 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6153 zoneid_t zoneid, ip_stack_t *ipst) 6154 { 6155 ipha_t *ipha; 6156 mblk_t *first_mp; 6157 boolean_t secure; 6158 unsigned char db_type; 6159 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6160 6161 first_mp = mp; 6162 if (mctl_present) { 6163 mp = mp->b_cont; 6164 secure = ipsec_in_is_secure(first_mp); 6165 ASSERT(mp != NULL); 6166 } else { 6167 /* 6168 * If this is an ICMP error being reported - which goes 6169 * up as M_CTLs, we need to convert them to M_DATA till 6170 * we finish checking with global policy because 6171 * ipsec_check_global_policy() assumes M_DATA as clear 6172 * and M_CTL as secure. 6173 */ 6174 db_type = DB_TYPE(mp); 6175 DB_TYPE(mp) = M_DATA; 6176 secure = B_FALSE; 6177 } 6178 /* 6179 * We are generating an icmp error for some inbound packet. 6180 * Called from all ip_fanout_(udp, tcp, proto) functions. 6181 * Before we generate an error, check with global policy 6182 * to see whether this is allowed to enter the system. As 6183 * there is no "conn", we are checking with global policy. 6184 */ 6185 ipha = (ipha_t *)mp->b_rptr; 6186 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6187 first_mp = ipsec_check_global_policy(first_mp, NULL, 6188 ipha, NULL, mctl_present, ipst->ips_netstack); 6189 if (first_mp == NULL) 6190 return (B_FALSE); 6191 } 6192 6193 if (!mctl_present) 6194 DB_TYPE(mp) = db_type; 6195 6196 if (flags & IP_FF_SEND_ICMP) { 6197 if (flags & IP_FF_HDR_COMPLETE) { 6198 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6199 freemsg(first_mp); 6200 return (B_TRUE); 6201 } 6202 } 6203 if (flags & IP_FF_CKSUM) { 6204 /* 6205 * Have to correct checksum since 6206 * the packet might have been 6207 * fragmented and the reassembly code in ip_rput 6208 * does not restore the IP checksum. 6209 */ 6210 ipha->ipha_hdr_checksum = 0; 6211 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6212 } 6213 switch (icmp_type) { 6214 case ICMP_DEST_UNREACHABLE: 6215 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6216 ipst); 6217 break; 6218 default: 6219 freemsg(first_mp); 6220 break; 6221 } 6222 } else { 6223 freemsg(first_mp); 6224 return (B_FALSE); 6225 } 6226 6227 return (B_TRUE); 6228 } 6229 6230 /* 6231 * Used to send an ICMP error message when a packet is received for 6232 * a protocol that is not supported. The mblk passed as argument 6233 * is consumed by this function. 6234 */ 6235 void 6236 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6237 ip_stack_t *ipst) 6238 { 6239 mblk_t *mp; 6240 ipha_t *ipha; 6241 ill_t *ill; 6242 ipsec_in_t *ii; 6243 6244 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6245 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6246 6247 mp = ipsec_mp->b_cont; 6248 ipsec_mp->b_cont = NULL; 6249 ipha = (ipha_t *)mp->b_rptr; 6250 /* Get ill from index in ipsec_in_t. */ 6251 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6252 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6253 ipst); 6254 if (ill != NULL) { 6255 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6256 if (ip_fanout_send_icmp(q, mp, flags, 6257 ICMP_DEST_UNREACHABLE, 6258 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6259 BUMP_MIB(ill->ill_ip_mib, 6260 ipIfStatsInUnknownProtos); 6261 } 6262 } else { 6263 if (ip_fanout_send_icmp_v6(q, mp, flags, 6264 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6265 0, B_FALSE, zoneid, ipst)) { 6266 BUMP_MIB(ill->ill_ip_mib, 6267 ipIfStatsInUnknownProtos); 6268 } 6269 } 6270 ill_refrele(ill); 6271 } else { /* re-link for the freemsg() below. */ 6272 ipsec_mp->b_cont = mp; 6273 } 6274 6275 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6276 freemsg(ipsec_mp); 6277 } 6278 6279 /* 6280 * See if the inbound datagram has had IPsec processing applied to it. 6281 */ 6282 boolean_t 6283 ipsec_in_is_secure(mblk_t *ipsec_mp) 6284 { 6285 ipsec_in_t *ii; 6286 6287 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6288 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6289 6290 if (ii->ipsec_in_loopback) { 6291 return (ii->ipsec_in_secure); 6292 } else { 6293 return (ii->ipsec_in_ah_sa != NULL || 6294 ii->ipsec_in_esp_sa != NULL || 6295 ii->ipsec_in_decaps); 6296 } 6297 } 6298 6299 /* 6300 * Handle protocols with which IP is less intimate. There 6301 * can be more than one stream bound to a particular 6302 * protocol. When this is the case, normally each one gets a copy 6303 * of any incoming packets. 6304 * 6305 * IPsec NOTE : 6306 * 6307 * Don't allow a secure packet going up a non-secure connection. 6308 * We don't allow this because 6309 * 6310 * 1) Reply might go out in clear which will be dropped at 6311 * the sending side. 6312 * 2) If the reply goes out in clear it will give the 6313 * adversary enough information for getting the key in 6314 * most of the cases. 6315 * 6316 * Moreover getting a secure packet when we expect clear 6317 * implies that SA's were added without checking for 6318 * policy on both ends. This should not happen once ISAKMP 6319 * is used to negotiate SAs as SAs will be added only after 6320 * verifying the policy. 6321 * 6322 * NOTE : If the packet was tunneled and not multicast we only send 6323 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6324 * back to delivering packets to AF_INET6 raw sockets. 6325 * 6326 * IPQoS Notes: 6327 * Once we have determined the client, invoke IPPF processing. 6328 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6329 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6330 * ip_policy will be false. 6331 * 6332 * Zones notes: 6333 * Currently only applications in the global zone can create raw sockets for 6334 * protocols other than ICMP. So unlike the broadcast / multicast case of 6335 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6336 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6337 */ 6338 static void 6339 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6340 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6341 zoneid_t zoneid) 6342 { 6343 queue_t *rq; 6344 mblk_t *mp1, *first_mp1; 6345 uint_t protocol = ipha->ipha_protocol; 6346 ipaddr_t dst; 6347 boolean_t one_only; 6348 mblk_t *first_mp = mp; 6349 boolean_t secure; 6350 uint32_t ill_index; 6351 conn_t *connp, *first_connp, *next_connp; 6352 connf_t *connfp; 6353 boolean_t shared_addr; 6354 mib2_ipIfStatsEntry_t *mibptr; 6355 ip_stack_t *ipst = recv_ill->ill_ipst; 6356 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6357 6358 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6359 if (mctl_present) { 6360 mp = first_mp->b_cont; 6361 secure = ipsec_in_is_secure(first_mp); 6362 ASSERT(mp != NULL); 6363 } else { 6364 secure = B_FALSE; 6365 } 6366 dst = ipha->ipha_dst; 6367 /* 6368 * If the packet was tunneled and not multicast we only send to it 6369 * the first match. 6370 */ 6371 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6372 !CLASSD(dst)); 6373 6374 shared_addr = (zoneid == ALL_ZONES); 6375 if (shared_addr) { 6376 /* 6377 * We don't allow multilevel ports for raw IP, so no need to 6378 * check for that here. 6379 */ 6380 zoneid = tsol_packet_to_zoneid(mp); 6381 } 6382 6383 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6384 mutex_enter(&connfp->connf_lock); 6385 connp = connfp->connf_head; 6386 for (connp = connfp->connf_head; connp != NULL; 6387 connp = connp->conn_next) { 6388 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6389 zoneid) && 6390 (!is_system_labeled() || 6391 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6392 connp))) { 6393 break; 6394 } 6395 } 6396 6397 if (connp == NULL || connp->conn_upq == NULL) { 6398 /* 6399 * No one bound to these addresses. Is 6400 * there a client that wants all 6401 * unclaimed datagrams? 6402 */ 6403 mutex_exit(&connfp->connf_lock); 6404 /* 6405 * Check for IPPROTO_ENCAP... 6406 */ 6407 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6408 /* 6409 * If an IPsec mblk is here on a multicast 6410 * tunnel (using ip_mroute stuff), check policy here, 6411 * THEN ship off to ip_mroute_decap(). 6412 * 6413 * BTW, If I match a configured IP-in-IP 6414 * tunnel, this path will not be reached, and 6415 * ip_mroute_decap will never be called. 6416 */ 6417 first_mp = ipsec_check_global_policy(first_mp, connp, 6418 ipha, NULL, mctl_present, ipst->ips_netstack); 6419 if (first_mp != NULL) { 6420 if (mctl_present) 6421 freeb(first_mp); 6422 ip_mroute_decap(q, mp, ill); 6423 } /* Else we already freed everything! */ 6424 } else { 6425 /* 6426 * Otherwise send an ICMP protocol unreachable. 6427 */ 6428 if (ip_fanout_send_icmp(q, first_mp, flags, 6429 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6430 mctl_present, zoneid, ipst)) { 6431 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6432 } 6433 } 6434 return; 6435 } 6436 CONN_INC_REF(connp); 6437 first_connp = connp; 6438 6439 /* 6440 * Only send message to one tunnel driver by immediately 6441 * terminating the loop. 6442 */ 6443 connp = one_only ? NULL : connp->conn_next; 6444 6445 for (;;) { 6446 while (connp != NULL) { 6447 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6448 flags, zoneid) && 6449 (!is_system_labeled() || 6450 tsol_receive_local(mp, &dst, IPV4_VERSION, 6451 shared_addr, connp))) 6452 break; 6453 connp = connp->conn_next; 6454 } 6455 6456 /* 6457 * Copy the packet. 6458 */ 6459 if (connp == NULL || connp->conn_upq == NULL || 6460 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6461 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6462 /* 6463 * No more interested clients or memory 6464 * allocation failed 6465 */ 6466 connp = first_connp; 6467 break; 6468 } 6469 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6470 CONN_INC_REF(connp); 6471 mutex_exit(&connfp->connf_lock); 6472 rq = connp->conn_rq; 6473 if (!canputnext(rq)) { 6474 if (flags & IP_FF_RAWIP) { 6475 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6476 } else { 6477 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6478 } 6479 6480 freemsg(first_mp1); 6481 } else { 6482 /* 6483 * Don't enforce here if we're an actual tunnel - 6484 * let "tun" do it instead. 6485 */ 6486 if (!IPCL_IS_IPTUN(connp) && 6487 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6488 secure)) { 6489 first_mp1 = ipsec_check_inbound_policy 6490 (first_mp1, connp, ipha, NULL, 6491 mctl_present); 6492 } 6493 if (first_mp1 != NULL) { 6494 int in_flags = 0; 6495 /* 6496 * ip_fanout_proto also gets called from 6497 * icmp_inbound_error_fanout, in which case 6498 * the msg type is M_CTL. Don't add info 6499 * in this case for the time being. In future 6500 * when there is a need for knowing the 6501 * inbound iface index for ICMP error msgs, 6502 * then this can be changed. 6503 */ 6504 if (connp->conn_recvif) 6505 in_flags = IPF_RECVIF; 6506 /* 6507 * The ULP may support IP_RECVPKTINFO for both 6508 * IP v4 and v6 so pass the appropriate argument 6509 * based on conn IP version. 6510 */ 6511 if (connp->conn_ip_recvpktinfo) { 6512 if (connp->conn_af_isv6) { 6513 /* 6514 * V6 only needs index 6515 */ 6516 in_flags |= IPF_RECVIF; 6517 } else { 6518 /* 6519 * V4 needs index + 6520 * matching address. 6521 */ 6522 in_flags |= IPF_RECVADDR; 6523 } 6524 } 6525 if ((in_flags != 0) && 6526 (mp->b_datap->db_type != M_CTL)) { 6527 /* 6528 * the actual data will be 6529 * contained in b_cont upon 6530 * successful return of the 6531 * following call else 6532 * original mblk is returned 6533 */ 6534 ASSERT(recv_ill != NULL); 6535 mp1 = ip_add_info(mp1, recv_ill, 6536 in_flags, IPCL_ZONEID(connp), ipst); 6537 } 6538 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6539 if (mctl_present) 6540 freeb(first_mp1); 6541 (connp->conn_recv)(connp, mp1, NULL); 6542 } 6543 } 6544 mutex_enter(&connfp->connf_lock); 6545 /* Follow the next pointer before releasing the conn. */ 6546 next_connp = connp->conn_next; 6547 CONN_DEC_REF(connp); 6548 connp = next_connp; 6549 } 6550 6551 /* Last one. Send it upstream. */ 6552 mutex_exit(&connfp->connf_lock); 6553 6554 /* 6555 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6556 * will be set to false. 6557 */ 6558 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6559 ill_index = ill->ill_phyint->phyint_ifindex; 6560 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6561 if (mp == NULL) { 6562 CONN_DEC_REF(connp); 6563 if (mctl_present) { 6564 freeb(first_mp); 6565 } 6566 return; 6567 } 6568 } 6569 6570 rq = connp->conn_rq; 6571 if (!canputnext(rq)) { 6572 if (flags & IP_FF_RAWIP) { 6573 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6574 } else { 6575 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6576 } 6577 6578 freemsg(first_mp); 6579 } else { 6580 if (IPCL_IS_IPTUN(connp)) { 6581 /* 6582 * Tunneled packet. We enforce policy in the tunnel 6583 * module itself. 6584 * 6585 * Send the WHOLE packet up (incl. IPSEC_IN) without 6586 * a policy check. 6587 * FIXME to use conn_recv for tun later. 6588 */ 6589 putnext(rq, first_mp); 6590 CONN_DEC_REF(connp); 6591 return; 6592 } 6593 6594 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6595 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6596 ipha, NULL, mctl_present); 6597 } 6598 6599 if (first_mp != NULL) { 6600 int in_flags = 0; 6601 6602 /* 6603 * ip_fanout_proto also gets called 6604 * from icmp_inbound_error_fanout, in 6605 * which case the msg type is M_CTL. 6606 * Don't add info in this case for time 6607 * being. In future when there is a 6608 * need for knowing the inbound iface 6609 * index for ICMP error msgs, then this 6610 * can be changed 6611 */ 6612 if (connp->conn_recvif) 6613 in_flags = IPF_RECVIF; 6614 if (connp->conn_ip_recvpktinfo) { 6615 if (connp->conn_af_isv6) { 6616 /* 6617 * V6 only needs index 6618 */ 6619 in_flags |= IPF_RECVIF; 6620 } else { 6621 /* 6622 * V4 needs index + 6623 * matching address. 6624 */ 6625 in_flags |= IPF_RECVADDR; 6626 } 6627 } 6628 if ((in_flags != 0) && 6629 (mp->b_datap->db_type != M_CTL)) { 6630 6631 /* 6632 * the actual data will be contained in 6633 * b_cont upon successful return 6634 * of the following call else original 6635 * mblk is returned 6636 */ 6637 ASSERT(recv_ill != NULL); 6638 mp = ip_add_info(mp, recv_ill, 6639 in_flags, IPCL_ZONEID(connp), ipst); 6640 } 6641 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6642 (connp->conn_recv)(connp, mp, NULL); 6643 if (mctl_present) 6644 freeb(first_mp); 6645 } 6646 } 6647 CONN_DEC_REF(connp); 6648 } 6649 6650 /* 6651 * Fanout for TCP packets 6652 * The caller puts <fport, lport> in the ports parameter. 6653 * 6654 * IPQoS Notes 6655 * Before sending it to the client, invoke IPPF processing. 6656 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6657 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6658 * ip_policy is false. 6659 */ 6660 static void 6661 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6662 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6663 { 6664 mblk_t *first_mp; 6665 boolean_t secure; 6666 uint32_t ill_index; 6667 int ip_hdr_len; 6668 tcph_t *tcph; 6669 boolean_t syn_present = B_FALSE; 6670 conn_t *connp; 6671 ip_stack_t *ipst = recv_ill->ill_ipst; 6672 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6673 6674 ASSERT(recv_ill != NULL); 6675 6676 first_mp = mp; 6677 if (mctl_present) { 6678 ASSERT(first_mp->b_datap->db_type == M_CTL); 6679 mp = first_mp->b_cont; 6680 secure = ipsec_in_is_secure(first_mp); 6681 ASSERT(mp != NULL); 6682 } else { 6683 secure = B_FALSE; 6684 } 6685 6686 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6687 6688 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6689 zoneid, ipst)) == NULL) { 6690 /* 6691 * No connected connection or listener. Send a 6692 * TH_RST via tcp_xmit_listeners_reset. 6693 */ 6694 6695 /* Initiate IPPf processing, if needed. */ 6696 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6697 uint32_t ill_index; 6698 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6699 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6700 if (first_mp == NULL) 6701 return; 6702 } 6703 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6704 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6705 zoneid)); 6706 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6707 ipst->ips_netstack->netstack_tcp, NULL); 6708 return; 6709 } 6710 6711 /* 6712 * Allocate the SYN for the TCP connection here itself 6713 */ 6714 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6715 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6716 if (IPCL_IS_TCP(connp)) { 6717 squeue_t *sqp; 6718 6719 /* 6720 * For fused tcp loopback, assign the eager's 6721 * squeue to be that of the active connect's. 6722 * Note that we don't check for IP_FF_LOOPBACK 6723 * here since this routine gets called only 6724 * for loopback (unlike the IPv6 counterpart). 6725 */ 6726 ASSERT(Q_TO_CONN(q) != NULL); 6727 if (do_tcp_fusion && 6728 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6729 !secure && 6730 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6731 IPCL_IS_TCP(Q_TO_CONN(q))) { 6732 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6733 sqp = Q_TO_CONN(q)->conn_sqp; 6734 } else { 6735 sqp = IP_SQUEUE_GET(lbolt); 6736 } 6737 6738 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6739 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6740 syn_present = B_TRUE; 6741 } 6742 } 6743 6744 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6745 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6746 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6747 if ((flags & TH_RST) || (flags & TH_URG)) { 6748 CONN_DEC_REF(connp); 6749 freemsg(first_mp); 6750 return; 6751 } 6752 if (flags & TH_ACK) { 6753 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6754 ipst->ips_netstack->netstack_tcp, connp); 6755 CONN_DEC_REF(connp); 6756 return; 6757 } 6758 6759 CONN_DEC_REF(connp); 6760 freemsg(first_mp); 6761 return; 6762 } 6763 6764 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6765 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6766 NULL, mctl_present); 6767 if (first_mp == NULL) { 6768 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6769 CONN_DEC_REF(connp); 6770 return; 6771 } 6772 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6773 ASSERT(syn_present); 6774 if (mctl_present) { 6775 ASSERT(first_mp != mp); 6776 first_mp->b_datap->db_struioflag |= 6777 STRUIO_POLICY; 6778 } else { 6779 ASSERT(first_mp == mp); 6780 mp->b_datap->db_struioflag &= 6781 ~STRUIO_EAGER; 6782 mp->b_datap->db_struioflag |= 6783 STRUIO_POLICY; 6784 } 6785 } else { 6786 /* 6787 * Discard first_mp early since we're dealing with a 6788 * fully-connected conn_t and tcp doesn't do policy in 6789 * this case. 6790 */ 6791 if (mctl_present) { 6792 freeb(first_mp); 6793 mctl_present = B_FALSE; 6794 } 6795 first_mp = mp; 6796 } 6797 } 6798 6799 /* 6800 * Initiate policy processing here if needed. If we get here from 6801 * icmp_inbound_error_fanout, ip_policy is false. 6802 */ 6803 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6804 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6805 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6806 if (mp == NULL) { 6807 CONN_DEC_REF(connp); 6808 if (mctl_present) 6809 freeb(first_mp); 6810 return; 6811 } else if (mctl_present) { 6812 ASSERT(first_mp != mp); 6813 first_mp->b_cont = mp; 6814 } else { 6815 first_mp = mp; 6816 } 6817 } 6818 6819 6820 6821 /* Handle socket options. */ 6822 if (!syn_present && 6823 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6824 /* Add header */ 6825 ASSERT(recv_ill != NULL); 6826 /* 6827 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6828 * IPF_RECVIF. 6829 */ 6830 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6831 ipst); 6832 if (mp == NULL) { 6833 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6834 CONN_DEC_REF(connp); 6835 if (mctl_present) 6836 freeb(first_mp); 6837 return; 6838 } else if (mctl_present) { 6839 /* 6840 * ip_add_info might return a new mp. 6841 */ 6842 ASSERT(first_mp != mp); 6843 first_mp->b_cont = mp; 6844 } else { 6845 first_mp = mp; 6846 } 6847 } 6848 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6849 if (IPCL_IS_TCP(connp)) { 6850 /* do not drain, certain use cases can blow the stack */ 6851 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6852 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6853 } else { 6854 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6855 (connp->conn_recv)(connp, first_mp, NULL); 6856 CONN_DEC_REF(connp); 6857 } 6858 } 6859 6860 /* 6861 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6862 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6863 * is not consumed. 6864 * 6865 * One of four things can happen, all of which affect the passed-in mblk: 6866 * 6867 * 1.) ICMP messages that go through here just get returned TRUE. 6868 * 6869 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6870 * 6871 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6872 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6873 * 6874 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6875 */ 6876 static boolean_t 6877 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6878 ipsec_stack_t *ipss) 6879 { 6880 int shift, plen, iph_len; 6881 ipha_t *ipha; 6882 udpha_t *udpha; 6883 uint32_t *spi; 6884 uint8_t *orptr; 6885 boolean_t udp_pkt, free_ire; 6886 6887 if (DB_TYPE(mp) == M_CTL) { 6888 /* 6889 * ICMP message with UDP inside. Don't bother stripping, just 6890 * send it up. 6891 * 6892 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6893 * to ignore errors set by ICMP anyway ('cause they might be 6894 * forged), but that's the app's decision, not ours. 6895 */ 6896 6897 /* Bunch of reality checks for DEBUG kernels... */ 6898 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6899 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6900 6901 return (B_TRUE); 6902 } 6903 6904 ipha = (ipha_t *)mp->b_rptr; 6905 iph_len = IPH_HDR_LENGTH(ipha); 6906 plen = ntohs(ipha->ipha_length); 6907 6908 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6909 /* 6910 * Most likely a keepalive for the benefit of an intervening 6911 * NAT. These aren't for us, per se, so drop it. 6912 * 6913 * RFC 3947/8 doesn't say for sure what to do for 2-3 6914 * byte packets (keepalives are 1-byte), but we'll drop them 6915 * also. 6916 */ 6917 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6918 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6919 return (B_FALSE); 6920 } 6921 6922 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6923 /* might as well pull it all up - it might be ESP. */ 6924 if (!pullupmsg(mp, -1)) { 6925 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6926 DROPPER(ipss, ipds_esp_nomem), 6927 &ipss->ipsec_dropper); 6928 return (B_FALSE); 6929 } 6930 6931 ipha = (ipha_t *)mp->b_rptr; 6932 } 6933 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6934 if (*spi == 0) { 6935 /* UDP packet - remove 0-spi. */ 6936 shift = sizeof (uint32_t); 6937 } else { 6938 /* ESP-in-UDP packet - reduce to ESP. */ 6939 ipha->ipha_protocol = IPPROTO_ESP; 6940 shift = sizeof (udpha_t); 6941 } 6942 6943 /* Fix IP header */ 6944 ipha->ipha_length = htons(plen - shift); 6945 ipha->ipha_hdr_checksum = 0; 6946 6947 orptr = mp->b_rptr; 6948 mp->b_rptr += shift; 6949 6950 if (*spi == 0) { 6951 ASSERT((uint8_t *)ipha == orptr); 6952 udpha = (udpha_t *)(orptr + iph_len); 6953 udpha->uha_length = htons(plen - shift - iph_len); 6954 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6955 udp_pkt = B_TRUE; 6956 } else { 6957 udp_pkt = B_FALSE; 6958 } 6959 ovbcopy(orptr, orptr + shift, iph_len); 6960 if (!udp_pkt) /* Punt up for ESP processing. */ { 6961 ipha = (ipha_t *)(orptr + shift); 6962 6963 free_ire = (ire == NULL); 6964 if (free_ire) { 6965 /* Re-acquire ire. */ 6966 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6967 ipss->ipsec_netstack->netstack_ip); 6968 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6969 if (ire != NULL) 6970 ire_refrele(ire); 6971 /* 6972 * Do a regular freemsg(), as this is an IP 6973 * error (no local route) not an IPsec one. 6974 */ 6975 freemsg(mp); 6976 } 6977 } 6978 6979 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 6980 if (free_ire) 6981 ire_refrele(ire); 6982 } 6983 6984 return (udp_pkt); 6985 } 6986 6987 /* 6988 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6989 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6990 * Caller is responsible for dropping references to the conn, and freeing 6991 * first_mp. 6992 * 6993 * IPQoS Notes 6994 * Before sending it to the client, invoke IPPF processing. Policy processing 6995 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6996 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6997 * ip_wput_local, ip_policy is false. 6998 */ 6999 static void 7000 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7001 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7002 boolean_t ip_policy) 7003 { 7004 boolean_t mctl_present = (first_mp != NULL); 7005 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7006 uint32_t ill_index; 7007 ip_stack_t *ipst = recv_ill->ill_ipst; 7008 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7009 7010 ASSERT(ill != NULL); 7011 7012 if (mctl_present) 7013 first_mp->b_cont = mp; 7014 else 7015 first_mp = mp; 7016 7017 if (CONN_UDP_FLOWCTLD(connp)) { 7018 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7019 freemsg(first_mp); 7020 return; 7021 } 7022 7023 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7024 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7025 NULL, mctl_present); 7026 if (first_mp == NULL) { 7027 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7028 return; /* Freed by ipsec_check_inbound_policy(). */ 7029 } 7030 } 7031 if (mctl_present) 7032 freeb(first_mp); 7033 7034 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7035 if (connp->conn_udp->udp_nat_t_endpoint) { 7036 if (mctl_present) { 7037 /* mctl_present *shouldn't* happen. */ 7038 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7039 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7040 &ipss->ipsec_dropper); 7041 return; 7042 } 7043 7044 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7045 return; 7046 } 7047 7048 /* Handle options. */ 7049 if (connp->conn_recvif) 7050 in_flags = IPF_RECVIF; 7051 /* 7052 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7053 * passed to ip_add_info is based on IP version of connp. 7054 */ 7055 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7056 if (connp->conn_af_isv6) { 7057 /* 7058 * V6 only needs index 7059 */ 7060 in_flags |= IPF_RECVIF; 7061 } else { 7062 /* 7063 * V4 needs index + matching address. 7064 */ 7065 in_flags |= IPF_RECVADDR; 7066 } 7067 } 7068 7069 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7070 in_flags |= IPF_RECVSLLA; 7071 7072 /* 7073 * Initiate IPPF processing here, if needed. Note first_mp won't be 7074 * freed if the packet is dropped. The caller will do so. 7075 */ 7076 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7077 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7078 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7079 if (mp == NULL) { 7080 return; 7081 } 7082 } 7083 if ((in_flags != 0) && 7084 (mp->b_datap->db_type != M_CTL)) { 7085 /* 7086 * The actual data will be contained in b_cont 7087 * upon successful return of the following call 7088 * else original mblk is returned 7089 */ 7090 ASSERT(recv_ill != NULL); 7091 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7092 ipst); 7093 } 7094 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7095 /* Send it upstream */ 7096 (connp->conn_recv)(connp, mp, NULL); 7097 } 7098 7099 /* 7100 * Fanout for UDP packets. 7101 * The caller puts <fport, lport> in the ports parameter. 7102 * 7103 * If SO_REUSEADDR is set all multicast and broadcast packets 7104 * will be delivered to all streams bound to the same port. 7105 * 7106 * Zones notes: 7107 * Multicast and broadcast packets will be distributed to streams in all zones. 7108 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7109 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7110 * packets. To maintain this behavior with multiple zones, the conns are grouped 7111 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7112 * each zone. If unset, all the following conns in the same zone are skipped. 7113 */ 7114 static void 7115 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7116 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7117 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7118 { 7119 uint32_t dstport, srcport; 7120 ipaddr_t dst; 7121 mblk_t *first_mp; 7122 boolean_t secure; 7123 in6_addr_t v6src; 7124 conn_t *connp; 7125 connf_t *connfp; 7126 conn_t *first_connp; 7127 conn_t *next_connp; 7128 mblk_t *mp1, *first_mp1; 7129 ipaddr_t src; 7130 zoneid_t last_zoneid; 7131 boolean_t reuseaddr; 7132 boolean_t shared_addr; 7133 ip_stack_t *ipst; 7134 7135 ASSERT(recv_ill != NULL); 7136 ipst = recv_ill->ill_ipst; 7137 7138 first_mp = mp; 7139 if (mctl_present) { 7140 mp = first_mp->b_cont; 7141 first_mp->b_cont = NULL; 7142 secure = ipsec_in_is_secure(first_mp); 7143 ASSERT(mp != NULL); 7144 } else { 7145 first_mp = NULL; 7146 secure = B_FALSE; 7147 } 7148 7149 /* Extract ports in net byte order */ 7150 dstport = htons(ntohl(ports) & 0xFFFF); 7151 srcport = htons(ntohl(ports) >> 16); 7152 dst = ipha->ipha_dst; 7153 src = ipha->ipha_src; 7154 7155 shared_addr = (zoneid == ALL_ZONES); 7156 if (shared_addr) { 7157 /* 7158 * No need to handle exclusive-stack zones since ALL_ZONES 7159 * only applies to the shared stack. 7160 */ 7161 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7162 if (zoneid == ALL_ZONES) 7163 zoneid = tsol_packet_to_zoneid(mp); 7164 } 7165 7166 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7167 mutex_enter(&connfp->connf_lock); 7168 connp = connfp->connf_head; 7169 if (!broadcast && !CLASSD(dst)) { 7170 /* 7171 * Not broadcast or multicast. Send to the one (first) 7172 * client we find. No need to check conn_wantpacket() 7173 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7174 * IPv4 unicast packets. 7175 */ 7176 while ((connp != NULL) && 7177 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7178 !IPCL_ZONE_MATCH(connp, zoneid))) { 7179 connp = connp->conn_next; 7180 } 7181 7182 if (connp == NULL || connp->conn_upq == NULL) 7183 goto notfound; 7184 7185 if (is_system_labeled() && 7186 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7187 connp)) 7188 goto notfound; 7189 7190 CONN_INC_REF(connp); 7191 mutex_exit(&connfp->connf_lock); 7192 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7193 flags, recv_ill, ip_policy); 7194 IP_STAT(ipst, ip_udp_fannorm); 7195 CONN_DEC_REF(connp); 7196 return; 7197 } 7198 7199 /* 7200 * Broadcast and multicast case 7201 * 7202 * Need to check conn_wantpacket(). 7203 * If SO_REUSEADDR has been set on the first we send the 7204 * packet to all clients that have joined the group and 7205 * match the port. 7206 */ 7207 7208 while (connp != NULL) { 7209 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7210 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7211 (!is_system_labeled() || 7212 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7213 connp))) 7214 break; 7215 connp = connp->conn_next; 7216 } 7217 7218 if (connp == NULL || connp->conn_upq == NULL) 7219 goto notfound; 7220 7221 first_connp = connp; 7222 /* 7223 * When SO_REUSEADDR is not set, send the packet only to the first 7224 * matching connection in its zone by keeping track of the zoneid. 7225 */ 7226 reuseaddr = first_connp->conn_reuseaddr; 7227 last_zoneid = first_connp->conn_zoneid; 7228 7229 CONN_INC_REF(connp); 7230 connp = connp->conn_next; 7231 for (;;) { 7232 while (connp != NULL) { 7233 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7234 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7235 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7236 (!is_system_labeled() || 7237 tsol_receive_local(mp, &dst, IPV4_VERSION, 7238 shared_addr, connp))) 7239 break; 7240 connp = connp->conn_next; 7241 } 7242 /* 7243 * Just copy the data part alone. The mctl part is 7244 * needed just for verifying policy and it is never 7245 * sent up. 7246 */ 7247 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7248 ((mp1 = copymsg(mp)) == NULL))) { 7249 /* 7250 * No more interested clients or memory 7251 * allocation failed 7252 */ 7253 connp = first_connp; 7254 break; 7255 } 7256 if (connp->conn_zoneid != last_zoneid) { 7257 /* 7258 * Update the zoneid so that the packet isn't sent to 7259 * any more conns in the same zone unless SO_REUSEADDR 7260 * is set. 7261 */ 7262 reuseaddr = connp->conn_reuseaddr; 7263 last_zoneid = connp->conn_zoneid; 7264 } 7265 if (first_mp != NULL) { 7266 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7267 ipsec_info_type == IPSEC_IN); 7268 first_mp1 = ipsec_in_tag(first_mp, NULL, 7269 ipst->ips_netstack); 7270 if (first_mp1 == NULL) { 7271 freemsg(mp1); 7272 connp = first_connp; 7273 break; 7274 } 7275 } else { 7276 first_mp1 = NULL; 7277 } 7278 CONN_INC_REF(connp); 7279 mutex_exit(&connfp->connf_lock); 7280 /* 7281 * IPQoS notes: We don't send the packet for policy 7282 * processing here, will do it for the last one (below). 7283 * i.e. we do it per-packet now, but if we do policy 7284 * processing per-conn, then we would need to do it 7285 * here too. 7286 */ 7287 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7288 ipha, flags, recv_ill, B_FALSE); 7289 mutex_enter(&connfp->connf_lock); 7290 /* Follow the next pointer before releasing the conn. */ 7291 next_connp = connp->conn_next; 7292 IP_STAT(ipst, ip_udp_fanmb); 7293 CONN_DEC_REF(connp); 7294 connp = next_connp; 7295 } 7296 7297 /* Last one. Send it upstream. */ 7298 mutex_exit(&connfp->connf_lock); 7299 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7300 recv_ill, ip_policy); 7301 IP_STAT(ipst, ip_udp_fanmb); 7302 CONN_DEC_REF(connp); 7303 return; 7304 7305 notfound: 7306 7307 mutex_exit(&connfp->connf_lock); 7308 IP_STAT(ipst, ip_udp_fanothers); 7309 /* 7310 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7311 * have already been matched above, since they live in the IPv4 7312 * fanout tables. This implies we only need to 7313 * check for IPv6 in6addr_any endpoints here. 7314 * Thus we compare using ipv6_all_zeros instead of the destination 7315 * address, except for the multicast group membership lookup which 7316 * uses the IPv4 destination. 7317 */ 7318 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7319 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7320 mutex_enter(&connfp->connf_lock); 7321 connp = connfp->connf_head; 7322 if (!broadcast && !CLASSD(dst)) { 7323 while (connp != NULL) { 7324 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7325 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7326 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7327 !connp->conn_ipv6_v6only) 7328 break; 7329 connp = connp->conn_next; 7330 } 7331 7332 if (connp != NULL && is_system_labeled() && 7333 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7334 connp)) 7335 connp = NULL; 7336 7337 if (connp == NULL || connp->conn_upq == NULL) { 7338 /* 7339 * No one bound to this port. Is 7340 * there a client that wants all 7341 * unclaimed datagrams? 7342 */ 7343 mutex_exit(&connfp->connf_lock); 7344 7345 if (mctl_present) 7346 first_mp->b_cont = mp; 7347 else 7348 first_mp = mp; 7349 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7350 connf_head != NULL) { 7351 ip_fanout_proto(q, first_mp, ill, ipha, 7352 flags | IP_FF_RAWIP, mctl_present, 7353 ip_policy, recv_ill, zoneid); 7354 } else { 7355 if (ip_fanout_send_icmp(q, first_mp, flags, 7356 ICMP_DEST_UNREACHABLE, 7357 ICMP_PORT_UNREACHABLE, 7358 mctl_present, zoneid, ipst)) { 7359 BUMP_MIB(ill->ill_ip_mib, 7360 udpIfStatsNoPorts); 7361 } 7362 } 7363 return; 7364 } 7365 7366 CONN_INC_REF(connp); 7367 mutex_exit(&connfp->connf_lock); 7368 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7369 flags, recv_ill, ip_policy); 7370 CONN_DEC_REF(connp); 7371 return; 7372 } 7373 /* 7374 * IPv4 multicast packet being delivered to an AF_INET6 7375 * in6addr_any endpoint. 7376 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7377 * and not conn_wantpacket_v6() since any multicast membership is 7378 * for an IPv4-mapped multicast address. 7379 * The packet is sent to all clients in all zones that have joined the 7380 * group and match the port. 7381 */ 7382 while (connp != NULL) { 7383 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7384 srcport, v6src) && 7385 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7386 (!is_system_labeled() || 7387 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7388 connp))) 7389 break; 7390 connp = connp->conn_next; 7391 } 7392 7393 if (connp == NULL || connp->conn_upq == NULL) { 7394 /* 7395 * No one bound to this port. Is 7396 * there a client that wants all 7397 * unclaimed datagrams? 7398 */ 7399 mutex_exit(&connfp->connf_lock); 7400 7401 if (mctl_present) 7402 first_mp->b_cont = mp; 7403 else 7404 first_mp = mp; 7405 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7406 NULL) { 7407 ip_fanout_proto(q, first_mp, ill, ipha, 7408 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7409 recv_ill, zoneid); 7410 } else { 7411 /* 7412 * We used to attempt to send an icmp error here, but 7413 * since this is known to be a multicast packet 7414 * and we don't send icmp errors in response to 7415 * multicast, just drop the packet and give up sooner. 7416 */ 7417 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7418 freemsg(first_mp); 7419 } 7420 return; 7421 } 7422 7423 first_connp = connp; 7424 7425 CONN_INC_REF(connp); 7426 connp = connp->conn_next; 7427 for (;;) { 7428 while (connp != NULL) { 7429 if (IPCL_UDP_MATCH_V6(connp, dstport, 7430 ipv6_all_zeros, srcport, v6src) && 7431 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7432 (!is_system_labeled() || 7433 tsol_receive_local(mp, &dst, IPV4_VERSION, 7434 shared_addr, connp))) 7435 break; 7436 connp = connp->conn_next; 7437 } 7438 /* 7439 * Just copy the data part alone. The mctl part is 7440 * needed just for verifying policy and it is never 7441 * sent up. 7442 */ 7443 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7444 ((mp1 = copymsg(mp)) == NULL))) { 7445 /* 7446 * No more intested clients or memory 7447 * allocation failed 7448 */ 7449 connp = first_connp; 7450 break; 7451 } 7452 if (first_mp != NULL) { 7453 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7454 ipsec_info_type == IPSEC_IN); 7455 first_mp1 = ipsec_in_tag(first_mp, NULL, 7456 ipst->ips_netstack); 7457 if (first_mp1 == NULL) { 7458 freemsg(mp1); 7459 connp = first_connp; 7460 break; 7461 } 7462 } else { 7463 first_mp1 = NULL; 7464 } 7465 CONN_INC_REF(connp); 7466 mutex_exit(&connfp->connf_lock); 7467 /* 7468 * IPQoS notes: We don't send the packet for policy 7469 * processing here, will do it for the last one (below). 7470 * i.e. we do it per-packet now, but if we do policy 7471 * processing per-conn, then we would need to do it 7472 * here too. 7473 */ 7474 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7475 ipha, flags, recv_ill, B_FALSE); 7476 mutex_enter(&connfp->connf_lock); 7477 /* Follow the next pointer before releasing the conn. */ 7478 next_connp = connp->conn_next; 7479 CONN_DEC_REF(connp); 7480 connp = next_connp; 7481 } 7482 7483 /* Last one. Send it upstream. */ 7484 mutex_exit(&connfp->connf_lock); 7485 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7486 recv_ill, ip_policy); 7487 CONN_DEC_REF(connp); 7488 } 7489 7490 /* 7491 * Complete the ip_wput header so that it 7492 * is possible to generate ICMP 7493 * errors. 7494 */ 7495 int 7496 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7497 { 7498 ire_t *ire; 7499 7500 if (ipha->ipha_src == INADDR_ANY) { 7501 ire = ire_lookup_local(zoneid, ipst); 7502 if (ire == NULL) { 7503 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7504 return (1); 7505 } 7506 ipha->ipha_src = ire->ire_addr; 7507 ire_refrele(ire); 7508 } 7509 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7510 ipha->ipha_hdr_checksum = 0; 7511 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7512 return (0); 7513 } 7514 7515 /* 7516 * Nobody should be sending 7517 * packets up this stream 7518 */ 7519 static void 7520 ip_lrput(queue_t *q, mblk_t *mp) 7521 { 7522 mblk_t *mp1; 7523 7524 switch (mp->b_datap->db_type) { 7525 case M_FLUSH: 7526 /* Turn around */ 7527 if (*mp->b_rptr & FLUSHW) { 7528 *mp->b_rptr &= ~FLUSHR; 7529 qreply(q, mp); 7530 return; 7531 } 7532 break; 7533 } 7534 /* Could receive messages that passed through ar_rput */ 7535 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7536 mp1->b_prev = mp1->b_next = NULL; 7537 freemsg(mp); 7538 } 7539 7540 /* Nobody should be sending packets down this stream */ 7541 /* ARGSUSED */ 7542 void 7543 ip_lwput(queue_t *q, mblk_t *mp) 7544 { 7545 freemsg(mp); 7546 } 7547 7548 /* 7549 * Move the first hop in any source route to ipha_dst and remove that part of 7550 * the source route. Called by other protocols. Errors in option formatting 7551 * are ignored - will be handled by ip_wput_options Return the final 7552 * destination (either ipha_dst or the last entry in a source route.) 7553 */ 7554 ipaddr_t 7555 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7556 { 7557 ipoptp_t opts; 7558 uchar_t *opt; 7559 uint8_t optval; 7560 uint8_t optlen; 7561 ipaddr_t dst; 7562 int i; 7563 ire_t *ire; 7564 ip_stack_t *ipst = ns->netstack_ip; 7565 7566 ip2dbg(("ip_massage_options\n")); 7567 dst = ipha->ipha_dst; 7568 for (optval = ipoptp_first(&opts, ipha); 7569 optval != IPOPT_EOL; 7570 optval = ipoptp_next(&opts)) { 7571 opt = opts.ipoptp_cur; 7572 switch (optval) { 7573 uint8_t off; 7574 case IPOPT_SSRR: 7575 case IPOPT_LSRR: 7576 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7577 ip1dbg(("ip_massage_options: bad src route\n")); 7578 break; 7579 } 7580 optlen = opts.ipoptp_len; 7581 off = opt[IPOPT_OFFSET]; 7582 off--; 7583 redo_srr: 7584 if (optlen < IP_ADDR_LEN || 7585 off > optlen - IP_ADDR_LEN) { 7586 /* End of source route */ 7587 ip1dbg(("ip_massage_options: end of SR\n")); 7588 break; 7589 } 7590 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7591 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7592 ntohl(dst))); 7593 /* 7594 * Check if our address is present more than 7595 * once as consecutive hops in source route. 7596 * XXX verify per-interface ip_forwarding 7597 * for source route? 7598 */ 7599 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7600 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7601 if (ire != NULL) { 7602 ire_refrele(ire); 7603 off += IP_ADDR_LEN; 7604 goto redo_srr; 7605 } 7606 if (dst == htonl(INADDR_LOOPBACK)) { 7607 ip1dbg(("ip_massage_options: loopback addr in " 7608 "source route!\n")); 7609 break; 7610 } 7611 /* 7612 * Update ipha_dst to be the first hop and remove the 7613 * first hop from the source route (by overwriting 7614 * part of the option with NOP options). 7615 */ 7616 ipha->ipha_dst = dst; 7617 /* Put the last entry in dst */ 7618 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7619 3; 7620 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7621 7622 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7623 ntohl(dst))); 7624 /* Move down and overwrite */ 7625 opt[IP_ADDR_LEN] = opt[0]; 7626 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7627 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7628 for (i = 0; i < IP_ADDR_LEN; i++) 7629 opt[i] = IPOPT_NOP; 7630 break; 7631 } 7632 } 7633 return (dst); 7634 } 7635 7636 /* 7637 * Return the network mask 7638 * associated with the specified address. 7639 */ 7640 ipaddr_t 7641 ip_net_mask(ipaddr_t addr) 7642 { 7643 uchar_t *up = (uchar_t *)&addr; 7644 ipaddr_t mask = 0; 7645 uchar_t *maskp = (uchar_t *)&mask; 7646 7647 #if defined(__i386) || defined(__amd64) 7648 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7649 #endif 7650 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7651 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7652 #endif 7653 if (CLASSD(addr)) { 7654 maskp[0] = 0xF0; 7655 return (mask); 7656 } 7657 if (addr == 0) 7658 return (0); 7659 maskp[0] = 0xFF; 7660 if ((up[0] & 0x80) == 0) 7661 return (mask); 7662 7663 maskp[1] = 0xFF; 7664 if ((up[0] & 0xC0) == 0x80) 7665 return (mask); 7666 7667 maskp[2] = 0xFF; 7668 if ((up[0] & 0xE0) == 0xC0) 7669 return (mask); 7670 7671 /* Must be experimental or multicast, indicate as much */ 7672 return ((ipaddr_t)0); 7673 } 7674 7675 /* 7676 * Select an ill for the packet by considering load spreading across 7677 * a different ill in the group if dst_ill is part of some group. 7678 */ 7679 ill_t * 7680 ip_newroute_get_dst_ill(ill_t *dst_ill) 7681 { 7682 ill_t *ill; 7683 7684 /* 7685 * We schedule irrespective of whether the source address is 7686 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7687 */ 7688 ill = illgrp_scheduler(dst_ill); 7689 if (ill == NULL) 7690 return (NULL); 7691 7692 /* 7693 * For groups with names ip_sioctl_groupname ensures that all 7694 * ills are of same type. For groups without names, ifgrp_insert 7695 * ensures this. 7696 */ 7697 ASSERT(dst_ill->ill_type == ill->ill_type); 7698 7699 return (ill); 7700 } 7701 7702 /* 7703 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7704 */ 7705 ill_t * 7706 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7707 ip_stack_t *ipst) 7708 { 7709 ill_t *ret_ill; 7710 7711 ASSERT(ifindex != 0); 7712 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7713 ipst); 7714 if (ret_ill == NULL || 7715 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7716 if (isv6) { 7717 if (ill != NULL) { 7718 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7719 } else { 7720 BUMP_MIB(&ipst->ips_ip6_mib, 7721 ipIfStatsOutDiscards); 7722 } 7723 ip1dbg(("ip_grab_attach_ill (IPv6): " 7724 "bad ifindex %d.\n", ifindex)); 7725 } else { 7726 if (ill != NULL) { 7727 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7728 } else { 7729 BUMP_MIB(&ipst->ips_ip_mib, 7730 ipIfStatsOutDiscards); 7731 } 7732 ip1dbg(("ip_grab_attach_ill (IPv4): " 7733 "bad ifindex %d.\n", ifindex)); 7734 } 7735 if (ret_ill != NULL) 7736 ill_refrele(ret_ill); 7737 freemsg(first_mp); 7738 return (NULL); 7739 } 7740 7741 return (ret_ill); 7742 } 7743 7744 /* 7745 * IPv4 - 7746 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7747 * out a packet to a destination address for which we do not have specific 7748 * (or sufficient) routing information. 7749 * 7750 * NOTE : These are the scopes of some of the variables that point at IRE, 7751 * which needs to be followed while making any future modifications 7752 * to avoid memory leaks. 7753 * 7754 * - ire and sire are the entries looked up initially by 7755 * ire_ftable_lookup. 7756 * - ipif_ire is used to hold the interface ire associated with 7757 * the new cache ire. But it's scope is limited, so we always REFRELE 7758 * it before branching out to error paths. 7759 * - save_ire is initialized before ire_create, so that ire returned 7760 * by ire_create will not over-write the ire. We REFRELE save_ire 7761 * before breaking out of the switch. 7762 * 7763 * Thus on failures, we have to REFRELE only ire and sire, if they 7764 * are not NULL. 7765 */ 7766 void 7767 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7768 zoneid_t zoneid, ip_stack_t *ipst) 7769 { 7770 areq_t *areq; 7771 ipaddr_t gw = 0; 7772 ire_t *ire = NULL; 7773 mblk_t *res_mp; 7774 ipaddr_t *addrp; 7775 ipaddr_t nexthop_addr; 7776 ipif_t *src_ipif = NULL; 7777 ill_t *dst_ill = NULL; 7778 ipha_t *ipha; 7779 ire_t *sire = NULL; 7780 mblk_t *first_mp; 7781 ire_t *save_ire; 7782 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7783 ushort_t ire_marks = 0; 7784 boolean_t mctl_present; 7785 ipsec_out_t *io; 7786 mblk_t *saved_mp; 7787 ire_t *first_sire = NULL; 7788 mblk_t *copy_mp = NULL; 7789 mblk_t *xmit_mp = NULL; 7790 ipaddr_t save_dst; 7791 uint32_t multirt_flags = 7792 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7793 boolean_t multirt_is_resolvable; 7794 boolean_t multirt_resolve_next; 7795 boolean_t do_attach_ill = B_FALSE; 7796 boolean_t ip_nexthop = B_FALSE; 7797 tsol_ire_gw_secattr_t *attrp = NULL; 7798 tsol_gcgrp_t *gcgrp = NULL; 7799 tsol_gcgrp_addr_t ga; 7800 7801 if (ip_debug > 2) { 7802 /* ip1dbg */ 7803 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7804 } 7805 7806 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7807 if (mctl_present) { 7808 io = (ipsec_out_t *)first_mp->b_rptr; 7809 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7810 ASSERT(zoneid == io->ipsec_out_zoneid); 7811 ASSERT(zoneid != ALL_ZONES); 7812 } 7813 7814 ipha = (ipha_t *)mp->b_rptr; 7815 7816 /* All multicast lookups come through ip_newroute_ipif() */ 7817 if (CLASSD(dst)) { 7818 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7819 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7820 freemsg(first_mp); 7821 return; 7822 } 7823 7824 if (mctl_present && io->ipsec_out_attach_if) { 7825 /* ip_grab_attach_ill returns a held ill */ 7826 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7827 io->ipsec_out_ill_index, B_FALSE, ipst); 7828 7829 /* Failure case frees things for us. */ 7830 if (attach_ill == NULL) 7831 return; 7832 7833 /* 7834 * Check if we need an ire that will not be 7835 * looked up by anybody else i.e. HIDDEN. 7836 */ 7837 if (ill_is_probeonly(attach_ill)) 7838 ire_marks = IRE_MARK_HIDDEN; 7839 } 7840 if (mctl_present && io->ipsec_out_ip_nexthop) { 7841 ip_nexthop = B_TRUE; 7842 nexthop_addr = io->ipsec_out_nexthop_addr; 7843 } 7844 /* 7845 * If this IRE is created for forwarding or it is not for 7846 * traffic for congestion controlled protocols, mark it as temporary. 7847 */ 7848 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7849 ire_marks |= IRE_MARK_TEMPORARY; 7850 7851 /* 7852 * Get what we can from ire_ftable_lookup which will follow an IRE 7853 * chain until it gets the most specific information available. 7854 * For example, we know that there is no IRE_CACHE for this dest, 7855 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7856 * ire_ftable_lookup will look up the gateway, etc. 7857 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7858 * to the destination, of equal netmask length in the forward table, 7859 * will be recursively explored. If no information is available 7860 * for the final gateway of that route, we force the returned ire 7861 * to be equal to sire using MATCH_IRE_PARENT. 7862 * At least, in this case we have a starting point (in the buckets) 7863 * to look for other routes to the destination in the forward table. 7864 * This is actually used only for multirouting, where a list 7865 * of routes has to be processed in sequence. 7866 * 7867 * In the process of coming up with the most specific information, 7868 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7869 * for the gateway (i.e., one for which the ire_nce->nce_state is 7870 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7871 * Two caveats when handling incomplete ire's in ip_newroute: 7872 * - we should be careful when accessing its ire_nce (specifically 7873 * the nce_res_mp) ast it might change underneath our feet, and, 7874 * - not all legacy code path callers are prepared to handle 7875 * incomplete ire's, so we should not create/add incomplete 7876 * ire_cache entries here. (See discussion about temporary solution 7877 * further below). 7878 * 7879 * In order to minimize packet dropping, and to preserve existing 7880 * behavior, we treat this case as if there were no IRE_CACHE for the 7881 * gateway, and instead use the IF_RESOLVER ire to send out 7882 * another request to ARP (this is achieved by passing the 7883 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7884 * arp response comes back in ip_wput_nondata, we will create 7885 * a per-dst ire_cache that has an ND_COMPLETE ire. 7886 * 7887 * Note that this is a temporary solution; the correct solution is 7888 * to create an incomplete per-dst ire_cache entry, and send the 7889 * packet out when the gw's nce is resolved. In order to achieve this, 7890 * all packet processing must have been completed prior to calling 7891 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7892 * to be modified to accomodate this solution. 7893 */ 7894 if (ip_nexthop) { 7895 /* 7896 * The first time we come here, we look for an IRE_INTERFACE 7897 * entry for the specified nexthop, set the dst to be the 7898 * nexthop address and create an IRE_CACHE entry for the 7899 * nexthop. The next time around, we are able to find an 7900 * IRE_CACHE entry for the nexthop, set the gateway to be the 7901 * nexthop address and create an IRE_CACHE entry for the 7902 * destination address via the specified nexthop. 7903 */ 7904 ire = ire_cache_lookup(nexthop_addr, zoneid, 7905 MBLK_GETLABEL(mp), ipst); 7906 if (ire != NULL) { 7907 gw = nexthop_addr; 7908 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7909 } else { 7910 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7911 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7912 MBLK_GETLABEL(mp), 7913 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7914 ipst); 7915 if (ire != NULL) { 7916 dst = nexthop_addr; 7917 } 7918 } 7919 } else if (attach_ill == NULL) { 7920 ire = ire_ftable_lookup(dst, 0, 0, 0, 7921 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7922 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7923 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7924 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7925 ipst); 7926 } else { 7927 /* 7928 * attach_ill is set only for communicating with 7929 * on-link hosts. So, don't look for DEFAULT. 7930 */ 7931 ipif_t *attach_ipif; 7932 7933 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7934 if (attach_ipif == NULL) { 7935 ill_refrele(attach_ill); 7936 goto icmp_err_ret; 7937 } 7938 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7939 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7940 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7941 MATCH_IRE_SECATTR, ipst); 7942 ipif_refrele(attach_ipif); 7943 } 7944 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7945 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7946 7947 /* 7948 * This loop is run only once in most cases. 7949 * We loop to resolve further routes only when the destination 7950 * can be reached through multiple RTF_MULTIRT-flagged ires. 7951 */ 7952 do { 7953 /* Clear the previous iteration's values */ 7954 if (src_ipif != NULL) { 7955 ipif_refrele(src_ipif); 7956 src_ipif = NULL; 7957 } 7958 if (dst_ill != NULL) { 7959 ill_refrele(dst_ill); 7960 dst_ill = NULL; 7961 } 7962 7963 multirt_resolve_next = B_FALSE; 7964 /* 7965 * We check if packets have to be multirouted. 7966 * In this case, given the current <ire, sire> couple, 7967 * we look for the next suitable <ire, sire>. 7968 * This check is done in ire_multirt_lookup(), 7969 * which applies various criteria to find the next route 7970 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7971 * unchanged if it detects it has not been tried yet. 7972 */ 7973 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7974 ip3dbg(("ip_newroute: starting next_resolution " 7975 "with first_mp %p, tag %d\n", 7976 (void *)first_mp, 7977 MULTIRT_DEBUG_TAGGED(first_mp))); 7978 7979 ASSERT(sire != NULL); 7980 multirt_is_resolvable = 7981 ire_multirt_lookup(&ire, &sire, multirt_flags, 7982 MBLK_GETLABEL(mp), ipst); 7983 7984 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7985 "ire %p, sire %p\n", 7986 multirt_is_resolvable, 7987 (void *)ire, (void *)sire)); 7988 7989 if (!multirt_is_resolvable) { 7990 /* 7991 * No more multirt route to resolve; give up 7992 * (all routes resolved or no more 7993 * resolvable routes). 7994 */ 7995 if (ire != NULL) { 7996 ire_refrele(ire); 7997 ire = NULL; 7998 } 7999 } else { 8000 ASSERT(sire != NULL); 8001 ASSERT(ire != NULL); 8002 /* 8003 * We simply use first_sire as a flag that 8004 * indicates if a resolvable multirt route 8005 * has already been found. 8006 * If it is not the case, we may have to send 8007 * an ICMP error to report that the 8008 * destination is unreachable. 8009 * We do not IRE_REFHOLD first_sire. 8010 */ 8011 if (first_sire == NULL) { 8012 first_sire = sire; 8013 } 8014 } 8015 } 8016 if (ire == NULL) { 8017 if (ip_debug > 3) { 8018 /* ip2dbg */ 8019 pr_addr_dbg("ip_newroute: " 8020 "can't resolve %s\n", AF_INET, &dst); 8021 } 8022 ip3dbg(("ip_newroute: " 8023 "ire %p, sire %p, first_sire %p\n", 8024 (void *)ire, (void *)sire, (void *)first_sire)); 8025 8026 if (sire != NULL) { 8027 ire_refrele(sire); 8028 sire = NULL; 8029 } 8030 8031 if (first_sire != NULL) { 8032 /* 8033 * At least one multirt route has been found 8034 * in the same call to ip_newroute(); 8035 * there is no need to report an ICMP error. 8036 * first_sire was not IRE_REFHOLDed. 8037 */ 8038 MULTIRT_DEBUG_UNTAG(first_mp); 8039 freemsg(first_mp); 8040 return; 8041 } 8042 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8043 RTA_DST, ipst); 8044 if (attach_ill != NULL) 8045 ill_refrele(attach_ill); 8046 goto icmp_err_ret; 8047 } 8048 8049 /* 8050 * Verify that the returned IRE does not have either 8051 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8052 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8053 */ 8054 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8055 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8056 if (attach_ill != NULL) 8057 ill_refrele(attach_ill); 8058 goto icmp_err_ret; 8059 } 8060 /* 8061 * Increment the ire_ob_pkt_count field for ire if it is an 8062 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8063 * increment the same for the parent IRE, sire, if it is some 8064 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8065 */ 8066 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8067 UPDATE_OB_PKT_COUNT(ire); 8068 ire->ire_last_used_time = lbolt; 8069 } 8070 8071 if (sire != NULL) { 8072 gw = sire->ire_gateway_addr; 8073 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8074 IRE_INTERFACE)) == 0); 8075 UPDATE_OB_PKT_COUNT(sire); 8076 sire->ire_last_used_time = lbolt; 8077 } 8078 /* 8079 * We have a route to reach the destination. 8080 * 8081 * 1) If the interface is part of ill group, try to get a new 8082 * ill taking load spreading into account. 8083 * 8084 * 2) After selecting the ill, get a source address that 8085 * might create good inbound load spreading. 8086 * ipif_select_source does this for us. 8087 * 8088 * If the application specified the ill (ifindex), we still 8089 * load spread. Only if the packets needs to go out 8090 * specifically on a given ill e.g. binding to 8091 * IPIF_NOFAILOVER address, then we don't try to use a 8092 * different ill for load spreading. 8093 */ 8094 if (attach_ill == NULL) { 8095 /* 8096 * Don't perform outbound load spreading in the 8097 * case of an RTF_MULTIRT route, as we actually 8098 * typically want to replicate outgoing packets 8099 * through particular interfaces. 8100 */ 8101 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8102 dst_ill = ire->ire_ipif->ipif_ill; 8103 /* for uniformity */ 8104 ill_refhold(dst_ill); 8105 } else { 8106 /* 8107 * If we are here trying to create an IRE_CACHE 8108 * for an offlink destination and have the 8109 * IRE_CACHE for the next hop and the latter is 8110 * using virtual IP source address selection i.e 8111 * it's ire->ire_ipif is pointing to a virtual 8112 * network interface (vni) then 8113 * ip_newroute_get_dst_ll() will return the vni 8114 * interface as the dst_ill. Since the vni is 8115 * virtual i.e not associated with any physical 8116 * interface, it cannot be the dst_ill, hence 8117 * in such a case call ip_newroute_get_dst_ll() 8118 * with the stq_ill instead of the ire_ipif ILL. 8119 * The function returns a refheld ill. 8120 */ 8121 if ((ire->ire_type == IRE_CACHE) && 8122 IS_VNI(ire->ire_ipif->ipif_ill)) 8123 dst_ill = ip_newroute_get_dst_ill( 8124 ire->ire_stq->q_ptr); 8125 else 8126 dst_ill = ip_newroute_get_dst_ill( 8127 ire->ire_ipif->ipif_ill); 8128 } 8129 if (dst_ill == NULL) { 8130 if (ip_debug > 2) { 8131 pr_addr_dbg("ip_newroute: " 8132 "no dst ill for dst" 8133 " %s\n", AF_INET, &dst); 8134 } 8135 goto icmp_err_ret; 8136 } 8137 } else { 8138 dst_ill = ire->ire_ipif->ipif_ill; 8139 /* for uniformity */ 8140 ill_refhold(dst_ill); 8141 /* 8142 * We should have found a route matching ill as we 8143 * called ire_ftable_lookup with MATCH_IRE_ILL. 8144 * Rather than asserting, when there is a mismatch, 8145 * we just drop the packet. 8146 */ 8147 if (dst_ill != attach_ill) { 8148 ip0dbg(("ip_newroute: Packet dropped as " 8149 "IPIF_NOFAILOVER ill is %s, " 8150 "ire->ire_ipif->ipif_ill is %s\n", 8151 attach_ill->ill_name, 8152 dst_ill->ill_name)); 8153 ill_refrele(attach_ill); 8154 goto icmp_err_ret; 8155 } 8156 } 8157 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8158 if (attach_ill != NULL) { 8159 ill_refrele(attach_ill); 8160 attach_ill = NULL; 8161 do_attach_ill = B_TRUE; 8162 } 8163 ASSERT(dst_ill != NULL); 8164 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8165 8166 /* 8167 * Pick the best source address from dst_ill. 8168 * 8169 * 1) If it is part of a multipathing group, we would 8170 * like to spread the inbound packets across different 8171 * interfaces. ipif_select_source picks a random source 8172 * across the different ills in the group. 8173 * 8174 * 2) If it is not part of a multipathing group, we try 8175 * to pick the source address from the destination 8176 * route. Clustering assumes that when we have multiple 8177 * prefixes hosted on an interface, the prefix of the 8178 * source address matches the prefix of the destination 8179 * route. We do this only if the address is not 8180 * DEPRECATED. 8181 * 8182 * 3) If the conn is in a different zone than the ire, we 8183 * need to pick a source address from the right zone. 8184 * 8185 * NOTE : If we hit case (1) above, the prefix of the source 8186 * address picked may not match the prefix of the 8187 * destination routes prefix as ipif_select_source 8188 * does not look at "dst" while picking a source 8189 * address. 8190 * If we want the same behavior as (2), we will need 8191 * to change the behavior of ipif_select_source. 8192 */ 8193 ASSERT(src_ipif == NULL); 8194 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8195 /* 8196 * The RTF_SETSRC flag is set in the parent ire (sire). 8197 * Check that the ipif matching the requested source 8198 * address still exists. 8199 */ 8200 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8201 zoneid, NULL, NULL, NULL, NULL, ipst); 8202 } 8203 if (src_ipif == NULL) { 8204 ire_marks |= IRE_MARK_USESRC_CHECK; 8205 if ((dst_ill->ill_group != NULL) || 8206 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8207 (connp != NULL && ire->ire_zoneid != zoneid && 8208 ire->ire_zoneid != ALL_ZONES) || 8209 (dst_ill->ill_usesrc_ifindex != 0)) { 8210 /* 8211 * If the destination is reachable via a 8212 * given gateway, the selected source address 8213 * should be in the same subnet as the gateway. 8214 * Otherwise, the destination is not reachable. 8215 * 8216 * If there are no interfaces on the same subnet 8217 * as the destination, ipif_select_source gives 8218 * first non-deprecated interface which might be 8219 * on a different subnet than the gateway. 8220 * This is not desirable. Hence pass the dst_ire 8221 * source address to ipif_select_source. 8222 * It is sure that the destination is reachable 8223 * with the dst_ire source address subnet. 8224 * So passing dst_ire source address to 8225 * ipif_select_source will make sure that the 8226 * selected source will be on the same subnet 8227 * as dst_ire source address. 8228 */ 8229 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8230 src_ipif = ipif_select_source(dst_ill, saddr, 8231 zoneid); 8232 if (src_ipif == NULL) { 8233 if (ip_debug > 2) { 8234 pr_addr_dbg("ip_newroute: " 8235 "no src for dst %s ", 8236 AF_INET, &dst); 8237 printf("through interface %s\n", 8238 dst_ill->ill_name); 8239 } 8240 goto icmp_err_ret; 8241 } 8242 } else { 8243 src_ipif = ire->ire_ipif; 8244 ASSERT(src_ipif != NULL); 8245 /* hold src_ipif for uniformity */ 8246 ipif_refhold(src_ipif); 8247 } 8248 } 8249 8250 /* 8251 * Assign a source address while we have the conn. 8252 * We can't have ip_wput_ire pick a source address when the 8253 * packet returns from arp since we need to look at 8254 * conn_unspec_src and conn_zoneid, and we lose the conn when 8255 * going through arp. 8256 * 8257 * NOTE : ip_newroute_v6 does not have this piece of code as 8258 * it uses ip6i to store this information. 8259 */ 8260 if (ipha->ipha_src == INADDR_ANY && 8261 (connp == NULL || !connp->conn_unspec_src)) { 8262 ipha->ipha_src = src_ipif->ipif_src_addr; 8263 } 8264 if (ip_debug > 3) { 8265 /* ip2dbg */ 8266 pr_addr_dbg("ip_newroute: first hop %s\n", 8267 AF_INET, &gw); 8268 } 8269 ip2dbg(("\tire type %s (%d)\n", 8270 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8271 8272 /* 8273 * The TTL of multirouted packets is bounded by the 8274 * ip_multirt_ttl ndd variable. 8275 */ 8276 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8277 /* Force TTL of multirouted packets */ 8278 if ((ipst->ips_ip_multirt_ttl > 0) && 8279 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8280 ip2dbg(("ip_newroute: forcing multirt TTL " 8281 "to %d (was %d), dst 0x%08x\n", 8282 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8283 ntohl(sire->ire_addr))); 8284 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8285 } 8286 } 8287 /* 8288 * At this point in ip_newroute(), ire is either the 8289 * IRE_CACHE of the next-hop gateway for an off-subnet 8290 * destination or an IRE_INTERFACE type that should be used 8291 * to resolve an on-subnet destination or an on-subnet 8292 * next-hop gateway. 8293 * 8294 * In the IRE_CACHE case, we have the following : 8295 * 8296 * 1) src_ipif - used for getting a source address. 8297 * 8298 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8299 * means packets using this IRE_CACHE will go out on 8300 * dst_ill. 8301 * 8302 * 3) The IRE sire will point to the prefix that is the 8303 * longest matching route for the destination. These 8304 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8305 * 8306 * The newly created IRE_CACHE entry for the off-subnet 8307 * destination is tied to both the prefix route and the 8308 * interface route used to resolve the next-hop gateway 8309 * via the ire_phandle and ire_ihandle fields, 8310 * respectively. 8311 * 8312 * In the IRE_INTERFACE case, we have the following : 8313 * 8314 * 1) src_ipif - used for getting a source address. 8315 * 8316 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8317 * means packets using the IRE_CACHE that we will build 8318 * here will go out on dst_ill. 8319 * 8320 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8321 * to be created will only be tied to the IRE_INTERFACE 8322 * that was derived from the ire_ihandle field. 8323 * 8324 * If sire is non-NULL, it means the destination is 8325 * off-link and we will first create the IRE_CACHE for the 8326 * gateway. Next time through ip_newroute, we will create 8327 * the IRE_CACHE for the final destination as described 8328 * above. 8329 * 8330 * In both cases, after the current resolution has been 8331 * completed (or possibly initialised, in the IRE_INTERFACE 8332 * case), the loop may be re-entered to attempt the resolution 8333 * of another RTF_MULTIRT route. 8334 * 8335 * When an IRE_CACHE entry for the off-subnet destination is 8336 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8337 * for further processing in emission loops. 8338 */ 8339 save_ire = ire; 8340 switch (ire->ire_type) { 8341 case IRE_CACHE: { 8342 ire_t *ipif_ire; 8343 8344 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8345 if (gw == 0) 8346 gw = ire->ire_gateway_addr; 8347 /* 8348 * We need 3 ire's to create a new cache ire for an 8349 * off-link destination from the cache ire of the 8350 * gateway. 8351 * 8352 * 1. The prefix ire 'sire' (Note that this does 8353 * not apply to the conn_nexthop_set case) 8354 * 2. The cache ire of the gateway 'ire' 8355 * 3. The interface ire 'ipif_ire' 8356 * 8357 * We have (1) and (2). We lookup (3) below. 8358 * 8359 * If there is no interface route to the gateway, 8360 * it is a race condition, where we found the cache 8361 * but the interface route has been deleted. 8362 */ 8363 if (ip_nexthop) { 8364 ipif_ire = ire_ihandle_lookup_onlink(ire); 8365 } else { 8366 ipif_ire = 8367 ire_ihandle_lookup_offlink(ire, sire); 8368 } 8369 if (ipif_ire == NULL) { 8370 ip1dbg(("ip_newroute: " 8371 "ire_ihandle_lookup_offlink failed\n")); 8372 goto icmp_err_ret; 8373 } 8374 8375 /* 8376 * Check cached gateway IRE for any security 8377 * attributes; if found, associate the gateway 8378 * credentials group to the destination IRE. 8379 */ 8380 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8381 mutex_enter(&attrp->igsa_lock); 8382 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8383 GCGRP_REFHOLD(gcgrp); 8384 mutex_exit(&attrp->igsa_lock); 8385 } 8386 8387 /* 8388 * XXX For the source of the resolver mp, 8389 * we are using the same DL_UNITDATA_REQ 8390 * (from save_ire->ire_nce->nce_res_mp) 8391 * though the save_ire is not pointing at the same ill. 8392 * This is incorrect. We need to send it up to the 8393 * resolver to get the right res_mp. For ethernets 8394 * this may be okay (ill_type == DL_ETHER). 8395 */ 8396 8397 ire = ire_create( 8398 (uchar_t *)&dst, /* dest address */ 8399 (uchar_t *)&ip_g_all_ones, /* mask */ 8400 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8401 (uchar_t *)&gw, /* gateway address */ 8402 &save_ire->ire_max_frag, 8403 save_ire->ire_nce, /* src nce */ 8404 dst_ill->ill_rq, /* recv-from queue */ 8405 dst_ill->ill_wq, /* send-to queue */ 8406 IRE_CACHE, /* IRE type */ 8407 src_ipif, 8408 (sire != NULL) ? 8409 sire->ire_mask : 0, /* Parent mask */ 8410 (sire != NULL) ? 8411 sire->ire_phandle : 0, /* Parent handle */ 8412 ipif_ire->ire_ihandle, /* Interface handle */ 8413 (sire != NULL) ? (sire->ire_flags & 8414 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8415 (sire != NULL) ? 8416 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8417 NULL, 8418 gcgrp, 8419 ipst); 8420 8421 if (ire == NULL) { 8422 if (gcgrp != NULL) { 8423 GCGRP_REFRELE(gcgrp); 8424 gcgrp = NULL; 8425 } 8426 ire_refrele(ipif_ire); 8427 ire_refrele(save_ire); 8428 break; 8429 } 8430 8431 /* reference now held by IRE */ 8432 gcgrp = NULL; 8433 8434 ire->ire_marks |= ire_marks; 8435 8436 /* 8437 * Prevent sire and ipif_ire from getting deleted. 8438 * The newly created ire is tied to both of them via 8439 * the phandle and ihandle respectively. 8440 */ 8441 if (sire != NULL) { 8442 IRB_REFHOLD(sire->ire_bucket); 8443 /* Has it been removed already ? */ 8444 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8445 IRB_REFRELE(sire->ire_bucket); 8446 ire_refrele(ipif_ire); 8447 ire_refrele(save_ire); 8448 break; 8449 } 8450 } 8451 8452 IRB_REFHOLD(ipif_ire->ire_bucket); 8453 /* Has it been removed already ? */ 8454 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8455 IRB_REFRELE(ipif_ire->ire_bucket); 8456 if (sire != NULL) 8457 IRB_REFRELE(sire->ire_bucket); 8458 ire_refrele(ipif_ire); 8459 ire_refrele(save_ire); 8460 break; 8461 } 8462 8463 xmit_mp = first_mp; 8464 /* 8465 * In the case of multirouting, a copy 8466 * of the packet is done before its sending. 8467 * The copy is used to attempt another 8468 * route resolution, in a next loop. 8469 */ 8470 if (ire->ire_flags & RTF_MULTIRT) { 8471 copy_mp = copymsg(first_mp); 8472 if (copy_mp != NULL) { 8473 xmit_mp = copy_mp; 8474 MULTIRT_DEBUG_TAG(first_mp); 8475 } 8476 } 8477 ire_add_then_send(q, ire, xmit_mp); 8478 ire_refrele(save_ire); 8479 8480 /* Assert that sire is not deleted yet. */ 8481 if (sire != NULL) { 8482 ASSERT(sire->ire_ptpn != NULL); 8483 IRB_REFRELE(sire->ire_bucket); 8484 } 8485 8486 /* Assert that ipif_ire is not deleted yet. */ 8487 ASSERT(ipif_ire->ire_ptpn != NULL); 8488 IRB_REFRELE(ipif_ire->ire_bucket); 8489 ire_refrele(ipif_ire); 8490 8491 /* 8492 * If copy_mp is not NULL, multirouting was 8493 * requested. We loop to initiate a next 8494 * route resolution attempt, starting from sire. 8495 */ 8496 if (copy_mp != NULL) { 8497 /* 8498 * Search for the next unresolved 8499 * multirt route. 8500 */ 8501 copy_mp = NULL; 8502 ipif_ire = NULL; 8503 ire = NULL; 8504 multirt_resolve_next = B_TRUE; 8505 continue; 8506 } 8507 if (sire != NULL) 8508 ire_refrele(sire); 8509 ipif_refrele(src_ipif); 8510 ill_refrele(dst_ill); 8511 return; 8512 } 8513 case IRE_IF_NORESOLVER: { 8514 8515 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8516 dst_ill->ill_resolver_mp == NULL) { 8517 ip1dbg(("ip_newroute: dst_ill %p " 8518 "for IRE_IF_NORESOLVER ire %p has " 8519 "no ill_resolver_mp\n", 8520 (void *)dst_ill, (void *)ire)); 8521 break; 8522 } 8523 8524 /* 8525 * TSol note: We are creating the ire cache for the 8526 * destination 'dst'. If 'dst' is offlink, going 8527 * through the first hop 'gw', the security attributes 8528 * of 'dst' must be set to point to the gateway 8529 * credentials of gateway 'gw'. If 'dst' is onlink, it 8530 * is possible that 'dst' is a potential gateway that is 8531 * referenced by some route that has some security 8532 * attributes. Thus in the former case, we need to do a 8533 * gcgrp_lookup of 'gw' while in the latter case we 8534 * need to do gcgrp_lookup of 'dst' itself. 8535 */ 8536 ga.ga_af = AF_INET; 8537 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8538 &ga.ga_addr); 8539 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8540 8541 ire = ire_create( 8542 (uchar_t *)&dst, /* dest address */ 8543 (uchar_t *)&ip_g_all_ones, /* mask */ 8544 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8545 (uchar_t *)&gw, /* gateway address */ 8546 &save_ire->ire_max_frag, 8547 NULL, /* no src nce */ 8548 dst_ill->ill_rq, /* recv-from queue */ 8549 dst_ill->ill_wq, /* send-to queue */ 8550 IRE_CACHE, 8551 src_ipif, 8552 save_ire->ire_mask, /* Parent mask */ 8553 (sire != NULL) ? /* Parent handle */ 8554 sire->ire_phandle : 0, 8555 save_ire->ire_ihandle, /* Interface handle */ 8556 (sire != NULL) ? sire->ire_flags & 8557 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8558 &(save_ire->ire_uinfo), 8559 NULL, 8560 gcgrp, 8561 ipst); 8562 8563 if (ire == NULL) { 8564 if (gcgrp != NULL) { 8565 GCGRP_REFRELE(gcgrp); 8566 gcgrp = NULL; 8567 } 8568 ire_refrele(save_ire); 8569 break; 8570 } 8571 8572 /* reference now held by IRE */ 8573 gcgrp = NULL; 8574 8575 ire->ire_marks |= ire_marks; 8576 8577 /* Prevent save_ire from getting deleted */ 8578 IRB_REFHOLD(save_ire->ire_bucket); 8579 /* Has it been removed already ? */ 8580 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8581 IRB_REFRELE(save_ire->ire_bucket); 8582 ire_refrele(save_ire); 8583 break; 8584 } 8585 8586 /* 8587 * In the case of multirouting, a copy 8588 * of the packet is made before it is sent. 8589 * The copy is used in the next 8590 * loop to attempt another resolution. 8591 */ 8592 xmit_mp = first_mp; 8593 if ((sire != NULL) && 8594 (sire->ire_flags & RTF_MULTIRT)) { 8595 copy_mp = copymsg(first_mp); 8596 if (copy_mp != NULL) { 8597 xmit_mp = copy_mp; 8598 MULTIRT_DEBUG_TAG(first_mp); 8599 } 8600 } 8601 ire_add_then_send(q, ire, xmit_mp); 8602 8603 /* Assert that it is not deleted yet. */ 8604 ASSERT(save_ire->ire_ptpn != NULL); 8605 IRB_REFRELE(save_ire->ire_bucket); 8606 ire_refrele(save_ire); 8607 8608 if (copy_mp != NULL) { 8609 /* 8610 * If we found a (no)resolver, we ignore any 8611 * trailing top priority IRE_CACHE in further 8612 * loops. This ensures that we do not omit any 8613 * (no)resolver. 8614 * This IRE_CACHE, if any, will be processed 8615 * by another thread entering ip_newroute(). 8616 * IRE_CACHE entries, if any, will be processed 8617 * by another thread entering ip_newroute(), 8618 * (upon resolver response, for instance). 8619 * This aims to force parallel multirt 8620 * resolutions as soon as a packet must be sent. 8621 * In the best case, after the tx of only one 8622 * packet, all reachable routes are resolved. 8623 * Otherwise, the resolution of all RTF_MULTIRT 8624 * routes would require several emissions. 8625 */ 8626 multirt_flags &= ~MULTIRT_CACHEGW; 8627 8628 /* 8629 * Search for the next unresolved multirt 8630 * route. 8631 */ 8632 copy_mp = NULL; 8633 save_ire = NULL; 8634 ire = NULL; 8635 multirt_resolve_next = B_TRUE; 8636 continue; 8637 } 8638 8639 /* 8640 * Don't need sire anymore 8641 */ 8642 if (sire != NULL) 8643 ire_refrele(sire); 8644 8645 ipif_refrele(src_ipif); 8646 ill_refrele(dst_ill); 8647 return; 8648 } 8649 case IRE_IF_RESOLVER: 8650 /* 8651 * We can't build an IRE_CACHE yet, but at least we 8652 * found a resolver that can help. 8653 */ 8654 res_mp = dst_ill->ill_resolver_mp; 8655 if (!OK_RESOLVER_MP(res_mp)) 8656 break; 8657 8658 /* 8659 * To be at this point in the code with a non-zero gw 8660 * means that dst is reachable through a gateway that 8661 * we have never resolved. By changing dst to the gw 8662 * addr we resolve the gateway first. 8663 * When ire_add_then_send() tries to put the IP dg 8664 * to dst, it will reenter ip_newroute() at which 8665 * time we will find the IRE_CACHE for the gw and 8666 * create another IRE_CACHE in case IRE_CACHE above. 8667 */ 8668 if (gw != INADDR_ANY) { 8669 /* 8670 * The source ipif that was determined above was 8671 * relative to the destination address, not the 8672 * gateway's. If src_ipif was not taken out of 8673 * the IRE_IF_RESOLVER entry, we'll need to call 8674 * ipif_select_source() again. 8675 */ 8676 if (src_ipif != ire->ire_ipif) { 8677 ipif_refrele(src_ipif); 8678 src_ipif = ipif_select_source(dst_ill, 8679 gw, zoneid); 8680 if (src_ipif == NULL) { 8681 if (ip_debug > 2) { 8682 pr_addr_dbg( 8683 "ip_newroute: no " 8684 "src for gw %s ", 8685 AF_INET, &gw); 8686 printf("through " 8687 "interface %s\n", 8688 dst_ill->ill_name); 8689 } 8690 goto icmp_err_ret; 8691 } 8692 } 8693 save_dst = dst; 8694 dst = gw; 8695 gw = INADDR_ANY; 8696 } 8697 8698 /* 8699 * We obtain a partial IRE_CACHE which we will pass 8700 * along with the resolver query. When the response 8701 * comes back it will be there ready for us to add. 8702 * The ire_max_frag is atomically set under the 8703 * irebucket lock in ire_add_v[46]. 8704 */ 8705 8706 ire = ire_create_mp( 8707 (uchar_t *)&dst, /* dest address */ 8708 (uchar_t *)&ip_g_all_ones, /* mask */ 8709 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8710 (uchar_t *)&gw, /* gateway address */ 8711 NULL, /* ire_max_frag */ 8712 NULL, /* no src nce */ 8713 dst_ill->ill_rq, /* recv-from queue */ 8714 dst_ill->ill_wq, /* send-to queue */ 8715 IRE_CACHE, 8716 src_ipif, /* Interface ipif */ 8717 save_ire->ire_mask, /* Parent mask */ 8718 0, 8719 save_ire->ire_ihandle, /* Interface handle */ 8720 0, /* flags if any */ 8721 &(save_ire->ire_uinfo), 8722 NULL, 8723 NULL, 8724 ipst); 8725 8726 if (ire == NULL) { 8727 ire_refrele(save_ire); 8728 break; 8729 } 8730 8731 if ((sire != NULL) && 8732 (sire->ire_flags & RTF_MULTIRT)) { 8733 copy_mp = copymsg(first_mp); 8734 if (copy_mp != NULL) 8735 MULTIRT_DEBUG_TAG(copy_mp); 8736 } 8737 8738 ire->ire_marks |= ire_marks; 8739 8740 /* 8741 * Construct message chain for the resolver 8742 * of the form: 8743 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8744 * Packet could contain a IPSEC_OUT mp. 8745 * 8746 * NOTE : ire will be added later when the response 8747 * comes back from ARP. If the response does not 8748 * come back, ARP frees the packet. For this reason, 8749 * we can't REFHOLD the bucket of save_ire to prevent 8750 * deletions. We may not be able to REFRELE the bucket 8751 * if the response never comes back. Thus, before 8752 * adding the ire, ire_add_v4 will make sure that the 8753 * interface route does not get deleted. This is the 8754 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8755 * where we can always prevent deletions because of 8756 * the synchronous nature of adding IRES i.e 8757 * ire_add_then_send is called after creating the IRE. 8758 */ 8759 ASSERT(ire->ire_mp != NULL); 8760 ire->ire_mp->b_cont = first_mp; 8761 /* Have saved_mp handy, for cleanup if canput fails */ 8762 saved_mp = mp; 8763 mp = copyb(res_mp); 8764 if (mp == NULL) { 8765 /* Prepare for cleanup */ 8766 mp = saved_mp; /* pkt */ 8767 ire_delete(ire); /* ire_mp */ 8768 ire = NULL; 8769 ire_refrele(save_ire); 8770 if (copy_mp != NULL) { 8771 MULTIRT_DEBUG_UNTAG(copy_mp); 8772 freemsg(copy_mp); 8773 copy_mp = NULL; 8774 } 8775 break; 8776 } 8777 linkb(mp, ire->ire_mp); 8778 8779 /* 8780 * Fill in the source and dest addrs for the resolver. 8781 * NOTE: this depends on memory layouts imposed by 8782 * ill_init(). 8783 */ 8784 areq = (areq_t *)mp->b_rptr; 8785 addrp = (ipaddr_t *)((char *)areq + 8786 areq->areq_sender_addr_offset); 8787 if (do_attach_ill) { 8788 /* 8789 * This is bind to no failover case. 8790 * arp packet also must go out on attach_ill. 8791 */ 8792 ASSERT(ipha->ipha_src != NULL); 8793 *addrp = ipha->ipha_src; 8794 } else { 8795 *addrp = save_ire->ire_src_addr; 8796 } 8797 8798 ire_refrele(save_ire); 8799 addrp = (ipaddr_t *)((char *)areq + 8800 areq->areq_target_addr_offset); 8801 *addrp = dst; 8802 /* Up to the resolver. */ 8803 if (canputnext(dst_ill->ill_rq) && 8804 !(dst_ill->ill_arp_closing)) { 8805 putnext(dst_ill->ill_rq, mp); 8806 ire = NULL; 8807 if (copy_mp != NULL) { 8808 /* 8809 * If we found a resolver, we ignore 8810 * any trailing top priority IRE_CACHE 8811 * in the further loops. This ensures 8812 * that we do not omit any resolver. 8813 * IRE_CACHE entries, if any, will be 8814 * processed next time we enter 8815 * ip_newroute(). 8816 */ 8817 multirt_flags &= ~MULTIRT_CACHEGW; 8818 /* 8819 * Search for the next unresolved 8820 * multirt route. 8821 */ 8822 first_mp = copy_mp; 8823 copy_mp = NULL; 8824 /* Prepare the next resolution loop. */ 8825 mp = first_mp; 8826 EXTRACT_PKT_MP(mp, first_mp, 8827 mctl_present); 8828 if (mctl_present) 8829 io = (ipsec_out_t *) 8830 first_mp->b_rptr; 8831 ipha = (ipha_t *)mp->b_rptr; 8832 8833 ASSERT(sire != NULL); 8834 8835 dst = save_dst; 8836 multirt_resolve_next = B_TRUE; 8837 continue; 8838 } 8839 8840 if (sire != NULL) 8841 ire_refrele(sire); 8842 8843 /* 8844 * The response will come back in ip_wput 8845 * with db_type IRE_DB_TYPE. 8846 */ 8847 ipif_refrele(src_ipif); 8848 ill_refrele(dst_ill); 8849 return; 8850 } else { 8851 /* Prepare for cleanup */ 8852 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8853 mp); 8854 mp->b_cont = NULL; 8855 freeb(mp); /* areq */ 8856 /* 8857 * this is an ire that is not added to the 8858 * cache. ire_freemblk will handle the release 8859 * of any resources associated with the ire. 8860 */ 8861 ire_delete(ire); /* ire_mp */ 8862 mp = saved_mp; /* pkt */ 8863 ire = NULL; 8864 if (copy_mp != NULL) { 8865 MULTIRT_DEBUG_UNTAG(copy_mp); 8866 freemsg(copy_mp); 8867 copy_mp = NULL; 8868 } 8869 break; 8870 } 8871 default: 8872 break; 8873 } 8874 } while (multirt_resolve_next); 8875 8876 ip1dbg(("ip_newroute: dropped\n")); 8877 /* Did this packet originate externally? */ 8878 if (mp->b_prev) { 8879 mp->b_next = NULL; 8880 mp->b_prev = NULL; 8881 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8882 } else { 8883 if (dst_ill != NULL) { 8884 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8885 } else { 8886 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8887 } 8888 } 8889 ASSERT(copy_mp == NULL); 8890 MULTIRT_DEBUG_UNTAG(first_mp); 8891 freemsg(first_mp); 8892 if (ire != NULL) 8893 ire_refrele(ire); 8894 if (sire != NULL) 8895 ire_refrele(sire); 8896 if (src_ipif != NULL) 8897 ipif_refrele(src_ipif); 8898 if (dst_ill != NULL) 8899 ill_refrele(dst_ill); 8900 return; 8901 8902 icmp_err_ret: 8903 ip1dbg(("ip_newroute: no route\n")); 8904 if (src_ipif != NULL) 8905 ipif_refrele(src_ipif); 8906 if (dst_ill != NULL) 8907 ill_refrele(dst_ill); 8908 if (sire != NULL) 8909 ire_refrele(sire); 8910 /* Did this packet originate externally? */ 8911 if (mp->b_prev) { 8912 mp->b_next = NULL; 8913 mp->b_prev = NULL; 8914 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8915 q = WR(q); 8916 } else { 8917 /* 8918 * There is no outgoing ill, so just increment the 8919 * system MIB. 8920 */ 8921 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8922 /* 8923 * Since ip_wput() isn't close to finished, we fill 8924 * in enough of the header for credible error reporting. 8925 */ 8926 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8927 /* Failed */ 8928 MULTIRT_DEBUG_UNTAG(first_mp); 8929 freemsg(first_mp); 8930 if (ire != NULL) 8931 ire_refrele(ire); 8932 return; 8933 } 8934 } 8935 8936 /* 8937 * At this point we will have ire only if RTF_BLACKHOLE 8938 * or RTF_REJECT flags are set on the IRE. It will not 8939 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8940 */ 8941 if (ire != NULL) { 8942 if (ire->ire_flags & RTF_BLACKHOLE) { 8943 ire_refrele(ire); 8944 MULTIRT_DEBUG_UNTAG(first_mp); 8945 freemsg(first_mp); 8946 return; 8947 } 8948 ire_refrele(ire); 8949 } 8950 if (ip_source_routed(ipha, ipst)) { 8951 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8952 zoneid, ipst); 8953 return; 8954 } 8955 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8956 } 8957 8958 ip_opt_info_t zero_info; 8959 8960 /* 8961 * IPv4 - 8962 * ip_newroute_ipif is called by ip_wput_multicast and 8963 * ip_rput_forward_multicast whenever we need to send 8964 * out a packet to a destination address for which we do not have specific 8965 * routing information. It is used when the packet will be sent out 8966 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8967 * socket option is set or icmp error message wants to go out on a particular 8968 * interface for a unicast packet. 8969 * 8970 * In most cases, the destination address is resolved thanks to the ipif 8971 * intrinsic resolver. However, there are some cases where the call to 8972 * ip_newroute_ipif must take into account the potential presence of 8973 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8974 * that uses the interface. This is specified through flags, 8975 * which can be a combination of: 8976 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8977 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8978 * and flags. Additionally, the packet source address has to be set to 8979 * the specified address. The caller is thus expected to set this flag 8980 * if the packet has no specific source address yet. 8981 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8982 * flag, the resulting ire will inherit the flag. All unresolved routes 8983 * to the destination must be explored in the same call to 8984 * ip_newroute_ipif(). 8985 */ 8986 static void 8987 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8988 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8989 { 8990 areq_t *areq; 8991 ire_t *ire = NULL; 8992 mblk_t *res_mp; 8993 ipaddr_t *addrp; 8994 mblk_t *first_mp; 8995 ire_t *save_ire = NULL; 8996 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8997 ipif_t *src_ipif = NULL; 8998 ushort_t ire_marks = 0; 8999 ill_t *dst_ill = NULL; 9000 boolean_t mctl_present; 9001 ipsec_out_t *io; 9002 ipha_t *ipha; 9003 int ihandle = 0; 9004 mblk_t *saved_mp; 9005 ire_t *fire = NULL; 9006 mblk_t *copy_mp = NULL; 9007 boolean_t multirt_resolve_next; 9008 ipaddr_t ipha_dst; 9009 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9010 9011 /* 9012 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9013 * here for uniformity 9014 */ 9015 ipif_refhold(ipif); 9016 9017 /* 9018 * This loop is run only once in most cases. 9019 * We loop to resolve further routes only when the destination 9020 * can be reached through multiple RTF_MULTIRT-flagged ires. 9021 */ 9022 do { 9023 if (dst_ill != NULL) { 9024 ill_refrele(dst_ill); 9025 dst_ill = NULL; 9026 } 9027 if (src_ipif != NULL) { 9028 ipif_refrele(src_ipif); 9029 src_ipif = NULL; 9030 } 9031 multirt_resolve_next = B_FALSE; 9032 9033 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9034 ipif->ipif_ill->ill_name)); 9035 9036 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9037 if (mctl_present) 9038 io = (ipsec_out_t *)first_mp->b_rptr; 9039 9040 ipha = (ipha_t *)mp->b_rptr; 9041 9042 /* 9043 * Save the packet destination address, we may need it after 9044 * the packet has been consumed. 9045 */ 9046 ipha_dst = ipha->ipha_dst; 9047 9048 /* 9049 * If the interface is a pt-pt interface we look for an 9050 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9051 * local_address and the pt-pt destination address. Otherwise 9052 * we just match the local address. 9053 * NOTE: dst could be different than ipha->ipha_dst in case 9054 * of sending igmp multicast packets over a point-to-point 9055 * connection. 9056 * Thus we must be careful enough to check ipha_dst to be a 9057 * multicast address, otherwise it will take xmit_if path for 9058 * multicast packets resulting into kernel stack overflow by 9059 * repeated calls to ip_newroute_ipif from ire_send(). 9060 */ 9061 if (CLASSD(ipha_dst) && 9062 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9063 goto err_ret; 9064 } 9065 9066 /* 9067 * We check if an IRE_OFFSUBNET for the addr that goes through 9068 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9069 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9070 * propagate its flags to the new ire. 9071 */ 9072 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9073 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9074 ip2dbg(("ip_newroute_ipif: " 9075 "ipif_lookup_multi_ire(" 9076 "ipif %p, dst %08x) = fire %p\n", 9077 (void *)ipif, ntohl(dst), (void *)fire)); 9078 } 9079 9080 if (mctl_present && io->ipsec_out_attach_if) { 9081 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9082 io->ipsec_out_ill_index, B_FALSE, ipst); 9083 9084 /* Failure case frees things for us. */ 9085 if (attach_ill == NULL) { 9086 ipif_refrele(ipif); 9087 if (fire != NULL) 9088 ire_refrele(fire); 9089 return; 9090 } 9091 9092 /* 9093 * Check if we need an ire that will not be 9094 * looked up by anybody else i.e. HIDDEN. 9095 */ 9096 if (ill_is_probeonly(attach_ill)) { 9097 ire_marks = IRE_MARK_HIDDEN; 9098 } 9099 /* 9100 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9101 * case. 9102 */ 9103 dst_ill = ipif->ipif_ill; 9104 /* attach_ill has been refheld by ip_grab_attach_ill */ 9105 ASSERT(dst_ill == attach_ill); 9106 } else { 9107 /* 9108 * If this is set by IP_XMIT_IF, then make sure that 9109 * ipif is pointing to the same ill as the IP_XMIT_IF 9110 * specified ill. 9111 */ 9112 ASSERT((connp == NULL) || 9113 (connp->conn_xmit_if_ill == NULL) || 9114 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9115 /* 9116 * If the interface belongs to an interface group, 9117 * make sure the next possible interface in the group 9118 * is used. This encourages load spreading among 9119 * peers in an interface group. 9120 * Note: load spreading is disabled for RTF_MULTIRT 9121 * routes. 9122 */ 9123 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9124 (fire->ire_flags & RTF_MULTIRT)) { 9125 /* 9126 * Don't perform outbound load spreading 9127 * in the case of an RTF_MULTIRT issued route, 9128 * we actually typically want to replicate 9129 * outgoing packets through particular 9130 * interfaces. 9131 */ 9132 dst_ill = ipif->ipif_ill; 9133 ill_refhold(dst_ill); 9134 } else { 9135 dst_ill = ip_newroute_get_dst_ill( 9136 ipif->ipif_ill); 9137 } 9138 if (dst_ill == NULL) { 9139 if (ip_debug > 2) { 9140 pr_addr_dbg("ip_newroute_ipif: " 9141 "no dst ill for dst %s\n", 9142 AF_INET, &dst); 9143 } 9144 goto err_ret; 9145 } 9146 } 9147 9148 /* 9149 * Pick a source address preferring non-deprecated ones. 9150 * Unlike ip_newroute, we don't do any source address 9151 * selection here since for multicast it really does not help 9152 * in inbound load spreading as in the unicast case. 9153 */ 9154 if ((flags & RTF_SETSRC) && (fire != NULL) && 9155 (fire->ire_flags & RTF_SETSRC)) { 9156 /* 9157 * As requested by flags, an IRE_OFFSUBNET was looked up 9158 * on that interface. This ire has RTF_SETSRC flag, so 9159 * the source address of the packet must be changed. 9160 * Check that the ipif matching the requested source 9161 * address still exists. 9162 */ 9163 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9164 zoneid, NULL, NULL, NULL, NULL, ipst); 9165 } 9166 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9167 (connp != NULL && ipif->ipif_zoneid != zoneid && 9168 ipif->ipif_zoneid != ALL_ZONES)) && 9169 (src_ipif == NULL)) { 9170 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9171 if (src_ipif == NULL) { 9172 if (ip_debug > 2) { 9173 /* ip1dbg */ 9174 pr_addr_dbg("ip_newroute_ipif: " 9175 "no src for dst %s", 9176 AF_INET, &dst); 9177 } 9178 ip1dbg((" through interface %s\n", 9179 dst_ill->ill_name)); 9180 goto err_ret; 9181 } 9182 ipif_refrele(ipif); 9183 ipif = src_ipif; 9184 ipif_refhold(ipif); 9185 } 9186 if (src_ipif == NULL) { 9187 src_ipif = ipif; 9188 ipif_refhold(src_ipif); 9189 } 9190 9191 /* 9192 * Assign a source address while we have the conn. 9193 * We can't have ip_wput_ire pick a source address when the 9194 * packet returns from arp since conn_unspec_src might be set 9195 * and we loose the conn when going through arp. 9196 */ 9197 if (ipha->ipha_src == INADDR_ANY && 9198 (connp == NULL || !connp->conn_unspec_src)) { 9199 ipha->ipha_src = src_ipif->ipif_src_addr; 9200 } 9201 9202 /* 9203 * In the case of IP_XMIT_IF, it is possible that the 9204 * outgoing interface does not have an interface ire. 9205 */ 9206 if (CLASSD(ipha_dst) && (connp == NULL || 9207 connp->conn_xmit_if_ill == NULL) && 9208 infop->ip_opt_ill_index == 0) { 9209 /* ipif_to_ire returns an held ire */ 9210 ire = ipif_to_ire(ipif); 9211 if (ire == NULL) 9212 goto err_ret; 9213 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9214 goto err_ret; 9215 /* 9216 * ihandle is needed when the ire is added to 9217 * cache table. 9218 */ 9219 save_ire = ire; 9220 ihandle = save_ire->ire_ihandle; 9221 9222 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9223 "flags %04x\n", 9224 (void *)ire, (void *)ipif, flags)); 9225 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9226 (fire->ire_flags & RTF_MULTIRT)) { 9227 /* 9228 * As requested by flags, an IRE_OFFSUBNET was 9229 * looked up on that interface. This ire has 9230 * RTF_MULTIRT flag, so the resolution loop will 9231 * be re-entered to resolve additional routes on 9232 * other interfaces. For that purpose, a copy of 9233 * the packet is performed at this point. 9234 */ 9235 fire->ire_last_used_time = lbolt; 9236 copy_mp = copymsg(first_mp); 9237 if (copy_mp) { 9238 MULTIRT_DEBUG_TAG(copy_mp); 9239 } 9240 } 9241 if ((flags & RTF_SETSRC) && (fire != NULL) && 9242 (fire->ire_flags & RTF_SETSRC)) { 9243 /* 9244 * As requested by flags, an IRE_OFFSUBET was 9245 * looked up on that interface. This ire has 9246 * RTF_SETSRC flag, so the source address of the 9247 * packet must be changed. 9248 */ 9249 ipha->ipha_src = fire->ire_src_addr; 9250 } 9251 } else { 9252 ASSERT((connp == NULL) || 9253 (connp->conn_xmit_if_ill != NULL) || 9254 (connp->conn_dontroute) || 9255 infop->ip_opt_ill_index != 0); 9256 /* 9257 * The only ways we can come here are: 9258 * 1) IP_XMIT_IF socket option is set 9259 * 2) SO_DONTROUTE socket option is set 9260 * 3) IP_PKTINFO option is passed in as ancillary data. 9261 * In all cases, the new ire will not be added 9262 * into cache table. 9263 */ 9264 ire_marks |= IRE_MARK_NOADD; 9265 } 9266 9267 switch (ipif->ipif_net_type) { 9268 case IRE_IF_NORESOLVER: { 9269 /* We have what we need to build an IRE_CACHE. */ 9270 9271 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9272 (dst_ill->ill_resolver_mp == NULL)) { 9273 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9274 "for IRE_IF_NORESOLVER ire %p has " 9275 "no ill_resolver_mp\n", 9276 (void *)dst_ill, (void *)ire)); 9277 break; 9278 } 9279 9280 /* 9281 * The new ire inherits the IRE_OFFSUBNET flags 9282 * and source address, if this was requested. 9283 */ 9284 ire = ire_create( 9285 (uchar_t *)&dst, /* dest address */ 9286 (uchar_t *)&ip_g_all_ones, /* mask */ 9287 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9288 NULL, /* gateway address */ 9289 &ipif->ipif_mtu, 9290 NULL, /* no src nce */ 9291 dst_ill->ill_rq, /* recv-from queue */ 9292 dst_ill->ill_wq, /* send-to queue */ 9293 IRE_CACHE, 9294 src_ipif, 9295 (save_ire != NULL ? save_ire->ire_mask : 0), 9296 (fire != NULL) ? /* Parent handle */ 9297 fire->ire_phandle : 0, 9298 ihandle, /* Interface handle */ 9299 (fire != NULL) ? 9300 (fire->ire_flags & 9301 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9302 (save_ire == NULL ? &ire_uinfo_null : 9303 &save_ire->ire_uinfo), 9304 NULL, 9305 NULL, 9306 ipst); 9307 9308 if (ire == NULL) { 9309 if (save_ire != NULL) 9310 ire_refrele(save_ire); 9311 break; 9312 } 9313 9314 ire->ire_marks |= ire_marks; 9315 9316 /* 9317 * If IRE_MARK_NOADD is set then we need to convert 9318 * the max_fragp to a useable value now. This is 9319 * normally done in ire_add_v[46]. We also need to 9320 * associate the ire with an nce (normally would be 9321 * done in ip_wput_nondata()). 9322 * 9323 * Note that IRE_MARK_NOADD packets created here 9324 * do not have a non-null ire_mp pointer. The null 9325 * value of ire_bucket indicates that they were 9326 * never added. 9327 */ 9328 if (ire->ire_marks & IRE_MARK_NOADD) { 9329 uint_t max_frag; 9330 9331 max_frag = *ire->ire_max_fragp; 9332 ire->ire_max_fragp = NULL; 9333 ire->ire_max_frag = max_frag; 9334 9335 if ((ire->ire_nce = ndp_lookup_v4( 9336 ire_to_ill(ire), 9337 (ire->ire_gateway_addr != INADDR_ANY ? 9338 &ire->ire_gateway_addr : &ire->ire_addr), 9339 B_FALSE)) == NULL) { 9340 if (save_ire != NULL) 9341 ire_refrele(save_ire); 9342 break; 9343 } 9344 ASSERT(ire->ire_nce->nce_state == 9345 ND_REACHABLE); 9346 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9347 } 9348 9349 /* Prevent save_ire from getting deleted */ 9350 if (save_ire != NULL) { 9351 IRB_REFHOLD(save_ire->ire_bucket); 9352 /* Has it been removed already ? */ 9353 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9354 IRB_REFRELE(save_ire->ire_bucket); 9355 ire_refrele(save_ire); 9356 break; 9357 } 9358 } 9359 9360 ire_add_then_send(q, ire, first_mp); 9361 9362 /* Assert that save_ire is not deleted yet. */ 9363 if (save_ire != NULL) { 9364 ASSERT(save_ire->ire_ptpn != NULL); 9365 IRB_REFRELE(save_ire->ire_bucket); 9366 ire_refrele(save_ire); 9367 save_ire = NULL; 9368 } 9369 if (fire != NULL) { 9370 ire_refrele(fire); 9371 fire = NULL; 9372 } 9373 9374 /* 9375 * the resolution loop is re-entered if this 9376 * was requested through flags and if we 9377 * actually are in a multirouting case. 9378 */ 9379 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9380 boolean_t need_resolve = 9381 ire_multirt_need_resolve(ipha_dst, 9382 MBLK_GETLABEL(copy_mp), ipst); 9383 if (!need_resolve) { 9384 MULTIRT_DEBUG_UNTAG(copy_mp); 9385 freemsg(copy_mp); 9386 copy_mp = NULL; 9387 } else { 9388 /* 9389 * ipif_lookup_group() calls 9390 * ire_lookup_multi() that uses 9391 * ire_ftable_lookup() to find 9392 * an IRE_INTERFACE for the group. 9393 * In the multirt case, 9394 * ire_lookup_multi() then invokes 9395 * ire_multirt_lookup() to find 9396 * the next resolvable ire. 9397 * As a result, we obtain an new 9398 * interface, derived from the 9399 * next ire. 9400 */ 9401 ipif_refrele(ipif); 9402 ipif = ipif_lookup_group(ipha_dst, 9403 zoneid, ipst); 9404 ip2dbg(("ip_newroute_ipif: " 9405 "multirt dst %08x, ipif %p\n", 9406 htonl(dst), (void *)ipif)); 9407 if (ipif != NULL) { 9408 mp = copy_mp; 9409 copy_mp = NULL; 9410 multirt_resolve_next = B_TRUE; 9411 continue; 9412 } else { 9413 freemsg(copy_mp); 9414 } 9415 } 9416 } 9417 if (ipif != NULL) 9418 ipif_refrele(ipif); 9419 ill_refrele(dst_ill); 9420 ipif_refrele(src_ipif); 9421 return; 9422 } 9423 case IRE_IF_RESOLVER: 9424 /* 9425 * We can't build an IRE_CACHE yet, but at least 9426 * we found a resolver that can help. 9427 */ 9428 res_mp = dst_ill->ill_resolver_mp; 9429 if (!OK_RESOLVER_MP(res_mp)) 9430 break; 9431 9432 /* 9433 * We obtain a partial IRE_CACHE which we will pass 9434 * along with the resolver query. When the response 9435 * comes back it will be there ready for us to add. 9436 * The new ire inherits the IRE_OFFSUBNET flags 9437 * and source address, if this was requested. 9438 * The ire_max_frag is atomically set under the 9439 * irebucket lock in ire_add_v[46]. Only in the 9440 * case of IRE_MARK_NOADD, we set it here itself. 9441 */ 9442 ire = ire_create_mp( 9443 (uchar_t *)&dst, /* dest address */ 9444 (uchar_t *)&ip_g_all_ones, /* mask */ 9445 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9446 NULL, /* gateway address */ 9447 (ire_marks & IRE_MARK_NOADD) ? 9448 ipif->ipif_mtu : 0, /* max_frag */ 9449 NULL, /* no src nce */ 9450 dst_ill->ill_rq, /* recv-from queue */ 9451 dst_ill->ill_wq, /* send-to queue */ 9452 IRE_CACHE, 9453 src_ipif, 9454 (save_ire != NULL ? save_ire->ire_mask : 0), 9455 (fire != NULL) ? /* Parent handle */ 9456 fire->ire_phandle : 0, 9457 ihandle, /* Interface handle */ 9458 (fire != NULL) ? /* flags if any */ 9459 (fire->ire_flags & 9460 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9461 (save_ire == NULL ? &ire_uinfo_null : 9462 &save_ire->ire_uinfo), 9463 NULL, 9464 NULL, 9465 ipst); 9466 9467 if (save_ire != NULL) { 9468 ire_refrele(save_ire); 9469 save_ire = NULL; 9470 } 9471 if (ire == NULL) 9472 break; 9473 9474 ire->ire_marks |= ire_marks; 9475 /* 9476 * Construct message chain for the resolver of the 9477 * form: 9478 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9479 * 9480 * NOTE : ire will be added later when the response 9481 * comes back from ARP. If the response does not 9482 * come back, ARP frees the packet. For this reason, 9483 * we can't REFHOLD the bucket of save_ire to prevent 9484 * deletions. We may not be able to REFRELE the 9485 * bucket if the response never comes back. 9486 * Thus, before adding the ire, ire_add_v4 will make 9487 * sure that the interface route does not get deleted. 9488 * This is the only case unlike ip_newroute_v6, 9489 * ip_newroute_ipif_v6 where we can always prevent 9490 * deletions because ire_add_then_send is called after 9491 * creating the IRE. 9492 * If IRE_MARK_NOADD is set, then ire_add_then_send 9493 * does not add this IRE into the IRE CACHE. 9494 */ 9495 ASSERT(ire->ire_mp != NULL); 9496 ire->ire_mp->b_cont = first_mp; 9497 /* Have saved_mp handy, for cleanup if canput fails */ 9498 saved_mp = mp; 9499 mp = copyb(res_mp); 9500 if (mp == NULL) { 9501 /* Prepare for cleanup */ 9502 mp = saved_mp; /* pkt */ 9503 ire_delete(ire); /* ire_mp */ 9504 ire = NULL; 9505 if (copy_mp != NULL) { 9506 MULTIRT_DEBUG_UNTAG(copy_mp); 9507 freemsg(copy_mp); 9508 copy_mp = NULL; 9509 } 9510 break; 9511 } 9512 linkb(mp, ire->ire_mp); 9513 9514 /* 9515 * Fill in the source and dest addrs for the resolver. 9516 * NOTE: this depends on memory layouts imposed by 9517 * ill_init(). 9518 */ 9519 areq = (areq_t *)mp->b_rptr; 9520 addrp = (ipaddr_t *)((char *)areq + 9521 areq->areq_sender_addr_offset); 9522 *addrp = ire->ire_src_addr; 9523 addrp = (ipaddr_t *)((char *)areq + 9524 areq->areq_target_addr_offset); 9525 *addrp = dst; 9526 /* Up to the resolver. */ 9527 if (canputnext(dst_ill->ill_rq) && 9528 !(dst_ill->ill_arp_closing)) { 9529 putnext(dst_ill->ill_rq, mp); 9530 /* 9531 * The response will come back in ip_wput 9532 * with db_type IRE_DB_TYPE. 9533 */ 9534 } else { 9535 mp->b_cont = NULL; 9536 freeb(mp); /* areq */ 9537 ire_delete(ire); /* ire_mp */ 9538 saved_mp->b_next = NULL; 9539 saved_mp->b_prev = NULL; 9540 freemsg(first_mp); /* pkt */ 9541 ip2dbg(("ip_newroute_ipif: dropped\n")); 9542 } 9543 9544 if (fire != NULL) { 9545 ire_refrele(fire); 9546 fire = NULL; 9547 } 9548 9549 9550 /* 9551 * The resolution loop is re-entered if this was 9552 * requested through flags and we actually are 9553 * in a multirouting case. 9554 */ 9555 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9556 boolean_t need_resolve = 9557 ire_multirt_need_resolve(ipha_dst, 9558 MBLK_GETLABEL(copy_mp), ipst); 9559 if (!need_resolve) { 9560 MULTIRT_DEBUG_UNTAG(copy_mp); 9561 freemsg(copy_mp); 9562 copy_mp = NULL; 9563 } else { 9564 /* 9565 * ipif_lookup_group() calls 9566 * ire_lookup_multi() that uses 9567 * ire_ftable_lookup() to find 9568 * an IRE_INTERFACE for the group. 9569 * In the multirt case, 9570 * ire_lookup_multi() then invokes 9571 * ire_multirt_lookup() to find 9572 * the next resolvable ire. 9573 * As a result, we obtain an new 9574 * interface, derived from the 9575 * next ire. 9576 */ 9577 ipif_refrele(ipif); 9578 ipif = ipif_lookup_group(ipha_dst, 9579 zoneid, ipst); 9580 if (ipif != NULL) { 9581 mp = copy_mp; 9582 copy_mp = NULL; 9583 multirt_resolve_next = B_TRUE; 9584 continue; 9585 } else { 9586 freemsg(copy_mp); 9587 } 9588 } 9589 } 9590 if (ipif != NULL) 9591 ipif_refrele(ipif); 9592 ill_refrele(dst_ill); 9593 ipif_refrele(src_ipif); 9594 return; 9595 default: 9596 break; 9597 } 9598 } while (multirt_resolve_next); 9599 9600 err_ret: 9601 ip2dbg(("ip_newroute_ipif: dropped\n")); 9602 if (fire != NULL) 9603 ire_refrele(fire); 9604 ipif_refrele(ipif); 9605 /* Did this packet originate externally? */ 9606 if (dst_ill != NULL) 9607 ill_refrele(dst_ill); 9608 if (src_ipif != NULL) 9609 ipif_refrele(src_ipif); 9610 if (mp->b_prev || mp->b_next) { 9611 mp->b_next = NULL; 9612 mp->b_prev = NULL; 9613 } else { 9614 /* 9615 * Since ip_wput() isn't close to finished, we fill 9616 * in enough of the header for credible error reporting. 9617 */ 9618 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9619 /* Failed */ 9620 freemsg(first_mp); 9621 if (ire != NULL) 9622 ire_refrele(ire); 9623 return; 9624 } 9625 } 9626 /* 9627 * At this point we will have ire only if RTF_BLACKHOLE 9628 * or RTF_REJECT flags are set on the IRE. It will not 9629 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9630 */ 9631 if (ire != NULL) { 9632 if (ire->ire_flags & RTF_BLACKHOLE) { 9633 ire_refrele(ire); 9634 freemsg(first_mp); 9635 return; 9636 } 9637 ire_refrele(ire); 9638 } 9639 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9640 } 9641 9642 /* Name/Value Table Lookup Routine */ 9643 char * 9644 ip_nv_lookup(nv_t *nv, int value) 9645 { 9646 if (!nv) 9647 return (NULL); 9648 for (; nv->nv_name; nv++) { 9649 if (nv->nv_value == value) 9650 return (nv->nv_name); 9651 } 9652 return ("unknown"); 9653 } 9654 9655 /* 9656 * This is a module open, i.e. this is a control stream for access 9657 * to a DLPI device. We allocate an ill_t as the instance data in 9658 * this case. 9659 */ 9660 int 9661 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9662 { 9663 ill_t *ill; 9664 int err; 9665 zoneid_t zoneid; 9666 netstack_t *ns; 9667 ip_stack_t *ipst; 9668 9669 /* 9670 * Prevent unprivileged processes from pushing IP so that 9671 * they can't send raw IP. 9672 */ 9673 if (secpolicy_net_rawaccess(credp) != 0) 9674 return (EPERM); 9675 9676 ns = netstack_find_by_cred(credp); 9677 ASSERT(ns != NULL); 9678 ipst = ns->netstack_ip; 9679 ASSERT(ipst != NULL); 9680 9681 /* 9682 * For exclusive stacks we set the zoneid to zero 9683 * to make IP operate as if in the global zone. 9684 */ 9685 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9686 zoneid = GLOBAL_ZONEID; 9687 else 9688 zoneid = crgetzoneid(credp); 9689 9690 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9691 q->q_ptr = WR(q)->q_ptr = ill; 9692 ill->ill_ipst = ipst; 9693 ill->ill_zoneid = zoneid; 9694 9695 /* 9696 * ill_init initializes the ill fields and then sends down 9697 * down a DL_INFO_REQ after calling qprocson. 9698 */ 9699 err = ill_init(q, ill); 9700 if (err != 0) { 9701 mi_free(ill); 9702 netstack_rele(ipst->ips_netstack); 9703 q->q_ptr = NULL; 9704 WR(q)->q_ptr = NULL; 9705 return (err); 9706 } 9707 9708 /* ill_init initializes the ipsq marking this thread as writer */ 9709 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9710 /* Wait for the DL_INFO_ACK */ 9711 mutex_enter(&ill->ill_lock); 9712 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9713 /* 9714 * Return value of 0 indicates a pending signal. 9715 */ 9716 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9717 if (err == 0) { 9718 mutex_exit(&ill->ill_lock); 9719 (void) ip_close(q, 0); 9720 return (EINTR); 9721 } 9722 } 9723 mutex_exit(&ill->ill_lock); 9724 9725 /* 9726 * ip_rput_other could have set an error in ill_error on 9727 * receipt of M_ERROR. 9728 */ 9729 9730 err = ill->ill_error; 9731 if (err != 0) { 9732 (void) ip_close(q, 0); 9733 return (err); 9734 } 9735 9736 ill->ill_credp = credp; 9737 crhold(credp); 9738 9739 mutex_enter(&ipst->ips_ip_mi_lock); 9740 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9741 credp); 9742 mutex_exit(&ipst->ips_ip_mi_lock); 9743 if (err) { 9744 (void) ip_close(q, 0); 9745 return (err); 9746 } 9747 return (0); 9748 } 9749 9750 /* For /dev/ip aka AF_INET open */ 9751 int 9752 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9753 { 9754 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9755 } 9756 9757 /* For /dev/ip6 aka AF_INET6 open */ 9758 int 9759 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9760 { 9761 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9762 } 9763 9764 /* IP open routine. */ 9765 int 9766 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9767 boolean_t isv6) 9768 { 9769 conn_t *connp; 9770 major_t maj; 9771 zoneid_t zoneid; 9772 netstack_t *ns; 9773 ip_stack_t *ipst; 9774 9775 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9776 9777 /* Allow reopen. */ 9778 if (q->q_ptr != NULL) 9779 return (0); 9780 9781 if (sflag & MODOPEN) { 9782 /* This is a module open */ 9783 return (ip_modopen(q, devp, flag, sflag, credp)); 9784 } 9785 9786 ns = netstack_find_by_cred(credp); 9787 ASSERT(ns != NULL); 9788 ipst = ns->netstack_ip; 9789 ASSERT(ipst != NULL); 9790 9791 /* 9792 * For exclusive stacks we set the zoneid to zero 9793 * to make IP operate as if in the global zone. 9794 */ 9795 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9796 zoneid = GLOBAL_ZONEID; 9797 else 9798 zoneid = crgetzoneid(credp); 9799 9800 /* 9801 * We are opening as a device. This is an IP client stream, and we 9802 * allocate an conn_t as the instance data. 9803 */ 9804 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9805 9806 /* 9807 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9808 * done by netstack_find_by_cred() 9809 */ 9810 netstack_rele(ipst->ips_netstack); 9811 9812 connp->conn_zoneid = zoneid; 9813 9814 connp->conn_upq = q; 9815 q->q_ptr = WR(q)->q_ptr = connp; 9816 9817 if (flag & SO_SOCKSTR) 9818 connp->conn_flags |= IPCL_SOCKET; 9819 9820 /* Minor tells us which /dev entry was opened */ 9821 if (isv6) { 9822 connp->conn_flags |= IPCL_ISV6; 9823 connp->conn_af_isv6 = B_TRUE; 9824 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9825 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9826 } else { 9827 connp->conn_af_isv6 = B_FALSE; 9828 connp->conn_pkt_isv6 = B_FALSE; 9829 } 9830 9831 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9832 /* CONN_DEC_REF takes care of netstack_rele() */ 9833 q->q_ptr = WR(q)->q_ptr = NULL; 9834 CONN_DEC_REF(connp); 9835 return (EBUSY); 9836 } 9837 9838 maj = getemajor(*devp); 9839 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9840 9841 /* 9842 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9843 */ 9844 connp->conn_cred = credp; 9845 9846 /* 9847 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9848 */ 9849 connp->conn_recv = ip_conn_input; 9850 9851 crhold(connp->conn_cred); 9852 9853 /* 9854 * If the caller has the process-wide flag set, then default to MAC 9855 * exempt mode. This allows read-down to unlabeled hosts. 9856 */ 9857 if (getpflags(NET_MAC_AWARE, credp) != 0) 9858 connp->conn_mac_exempt = B_TRUE; 9859 9860 connp->conn_rq = q; 9861 connp->conn_wq = WR(q); 9862 9863 /* Non-zero default values */ 9864 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9865 9866 /* 9867 * Make the conn globally visible to walkers 9868 */ 9869 ASSERT(connp->conn_ref == 1); 9870 mutex_enter(&connp->conn_lock); 9871 connp->conn_state_flags &= ~CONN_INCIPIENT; 9872 mutex_exit(&connp->conn_lock); 9873 9874 qprocson(q); 9875 9876 return (0); 9877 } 9878 9879 /* 9880 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9881 * Note that there is no race since either ip_output function works - it 9882 * is just an optimization to enter the best ip_output routine directly. 9883 */ 9884 void 9885 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9886 ip_stack_t *ipst) 9887 { 9888 if (isv6) { 9889 if (bump_mib) { 9890 BUMP_MIB(&ipst->ips_ip6_mib, 9891 ipIfStatsOutSwitchIPVersion); 9892 } 9893 connp->conn_send = ip_output_v6; 9894 connp->conn_pkt_isv6 = B_TRUE; 9895 } else { 9896 if (bump_mib) { 9897 BUMP_MIB(&ipst->ips_ip_mib, 9898 ipIfStatsOutSwitchIPVersion); 9899 } 9900 connp->conn_send = ip_output; 9901 connp->conn_pkt_isv6 = B_FALSE; 9902 } 9903 9904 } 9905 9906 /* 9907 * See if IPsec needs loading because of the options in mp. 9908 */ 9909 static boolean_t 9910 ipsec_opt_present(mblk_t *mp) 9911 { 9912 uint8_t *optcp, *next_optcp, *opt_endcp; 9913 struct opthdr *opt; 9914 struct T_opthdr *topt; 9915 int opthdr_len; 9916 t_uscalar_t optname, optlevel; 9917 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9918 ipsec_req_t *ipsr; 9919 9920 /* 9921 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9922 * return TRUE. 9923 */ 9924 9925 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9926 opt_endcp = optcp + tor->OPT_length; 9927 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9928 opthdr_len = sizeof (struct T_opthdr); 9929 } else { /* O_OPTMGMT_REQ */ 9930 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9931 opthdr_len = sizeof (struct opthdr); 9932 } 9933 for (; optcp < opt_endcp; optcp = next_optcp) { 9934 if (optcp + opthdr_len > opt_endcp) 9935 return (B_FALSE); /* Not enough option header. */ 9936 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9937 topt = (struct T_opthdr *)optcp; 9938 optlevel = topt->level; 9939 optname = topt->name; 9940 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9941 } else { 9942 opt = (struct opthdr *)optcp; 9943 optlevel = opt->level; 9944 optname = opt->name; 9945 next_optcp = optcp + opthdr_len + 9946 _TPI_ALIGN_OPT(opt->len); 9947 } 9948 if ((next_optcp < optcp) || /* wraparound pointer space */ 9949 ((next_optcp >= opt_endcp) && /* last option bad len */ 9950 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9951 return (B_FALSE); /* bad option buffer */ 9952 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9953 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9954 /* 9955 * Check to see if it's an all-bypass or all-zeroes 9956 * IPsec request. Don't bother loading IPsec if 9957 * the socket doesn't want to use it. (A good example 9958 * is a bypass request.) 9959 * 9960 * Basically, if any of the non-NEVER bits are set, 9961 * load IPsec. 9962 */ 9963 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9964 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9965 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9966 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9967 != 0) 9968 return (B_TRUE); 9969 } 9970 } 9971 return (B_FALSE); 9972 } 9973 9974 /* 9975 * If conn is is waiting for ipsec to finish loading, kick it. 9976 */ 9977 /* ARGSUSED */ 9978 static void 9979 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9980 { 9981 t_scalar_t optreq_prim; 9982 mblk_t *mp; 9983 cred_t *cr; 9984 int err = 0; 9985 9986 /* 9987 * This function is called, after ipsec loading is complete. 9988 * Since IP checks exclusively and atomically (i.e it prevents 9989 * ipsec load from completing until ip_optcom_req completes) 9990 * whether ipsec load is complete, there cannot be a race with IP 9991 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9992 */ 9993 mutex_enter(&connp->conn_lock); 9994 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9995 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9996 mp = connp->conn_ipsec_opt_mp; 9997 connp->conn_ipsec_opt_mp = NULL; 9998 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9999 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10000 mutex_exit(&connp->conn_lock); 10001 10002 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10003 10004 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10005 if (optreq_prim == T_OPTMGMT_REQ) { 10006 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10007 &ip_opt_obj, B_FALSE); 10008 } else { 10009 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10010 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10011 &ip_opt_obj, B_FALSE); 10012 } 10013 if (err != EINPROGRESS) 10014 CONN_OPER_PENDING_DONE(connp); 10015 return; 10016 } 10017 mutex_exit(&connp->conn_lock); 10018 } 10019 10020 /* 10021 * Called from the ipsec_loader thread, outside any perimeter, to tell 10022 * ip qenable any of the queues waiting for the ipsec loader to 10023 * complete. 10024 */ 10025 void 10026 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10027 { 10028 netstack_t *ns = ipss->ipsec_netstack; 10029 10030 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10031 } 10032 10033 /* 10034 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10035 * determines the grp on which it has to become exclusive, queues the mp 10036 * and sq draining restarts the optmgmt 10037 */ 10038 static boolean_t 10039 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10040 { 10041 conn_t *connp = Q_TO_CONN(q); 10042 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10043 10044 /* 10045 * Take IPsec requests and treat them special. 10046 */ 10047 if (ipsec_opt_present(mp)) { 10048 /* First check if IPsec is loaded. */ 10049 mutex_enter(&ipss->ipsec_loader_lock); 10050 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10051 mutex_exit(&ipss->ipsec_loader_lock); 10052 return (B_FALSE); 10053 } 10054 mutex_enter(&connp->conn_lock); 10055 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10056 10057 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10058 connp->conn_ipsec_opt_mp = mp; 10059 mutex_exit(&connp->conn_lock); 10060 mutex_exit(&ipss->ipsec_loader_lock); 10061 10062 ipsec_loader_loadnow(ipss); 10063 return (B_TRUE); 10064 } 10065 return (B_FALSE); 10066 } 10067 10068 /* 10069 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10070 * all of them are copied to the conn_t. If the req is "zero", the policy is 10071 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10072 * fields. 10073 * We keep only the latest setting of the policy and thus policy setting 10074 * is not incremental/cumulative. 10075 * 10076 * Requests to set policies with multiple alternative actions will 10077 * go through a different API. 10078 */ 10079 int 10080 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10081 { 10082 uint_t ah_req = 0; 10083 uint_t esp_req = 0; 10084 uint_t se_req = 0; 10085 ipsec_selkey_t sel; 10086 ipsec_act_t *actp = NULL; 10087 uint_t nact; 10088 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10089 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10090 ipsec_policy_root_t *pr; 10091 ipsec_policy_head_t *ph; 10092 int fam; 10093 boolean_t is_pol_reset; 10094 int error = 0; 10095 netstack_t *ns = connp->conn_netstack; 10096 ip_stack_t *ipst = ns->netstack_ip; 10097 ipsec_stack_t *ipss = ns->netstack_ipsec; 10098 10099 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10100 10101 /* 10102 * The IP_SEC_OPT option does not allow variable length parameters, 10103 * hence a request cannot be NULL. 10104 */ 10105 if (req == NULL) 10106 return (EINVAL); 10107 10108 ah_req = req->ipsr_ah_req; 10109 esp_req = req->ipsr_esp_req; 10110 se_req = req->ipsr_self_encap_req; 10111 10112 /* 10113 * Are we dealing with a request to reset the policy (i.e. 10114 * zero requests). 10115 */ 10116 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10117 (esp_req & REQ_MASK) == 0 && 10118 (se_req & REQ_MASK) == 0); 10119 10120 if (!is_pol_reset) { 10121 /* 10122 * If we couldn't load IPsec, fail with "protocol 10123 * not supported". 10124 * IPsec may not have been loaded for a request with zero 10125 * policies, so we don't fail in this case. 10126 */ 10127 mutex_enter(&ipss->ipsec_loader_lock); 10128 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10129 mutex_exit(&ipss->ipsec_loader_lock); 10130 return (EPROTONOSUPPORT); 10131 } 10132 mutex_exit(&ipss->ipsec_loader_lock); 10133 10134 /* 10135 * Test for valid requests. Invalid algorithms 10136 * need to be tested by IPsec code because new 10137 * algorithms can be added dynamically. 10138 */ 10139 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10140 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10141 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10142 return (EINVAL); 10143 } 10144 10145 /* 10146 * Only privileged users can issue these 10147 * requests. 10148 */ 10149 if (((ah_req & IPSEC_PREF_NEVER) || 10150 (esp_req & IPSEC_PREF_NEVER) || 10151 (se_req & IPSEC_PREF_NEVER)) && 10152 secpolicy_ip_config(cr, B_FALSE) != 0) { 10153 return (EPERM); 10154 } 10155 10156 /* 10157 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10158 * are mutually exclusive. 10159 */ 10160 if (((ah_req & REQ_MASK) == REQ_MASK) || 10161 ((esp_req & REQ_MASK) == REQ_MASK) || 10162 ((se_req & REQ_MASK) == REQ_MASK)) { 10163 /* Both of them are set */ 10164 return (EINVAL); 10165 } 10166 } 10167 10168 mutex_enter(&connp->conn_lock); 10169 10170 /* 10171 * If we have already cached policies in ip_bind_connected*(), don't 10172 * let them change now. We cache policies for connections 10173 * whose src,dst [addr, port] is known. 10174 */ 10175 if (connp->conn_policy_cached) { 10176 mutex_exit(&connp->conn_lock); 10177 return (EINVAL); 10178 } 10179 10180 /* 10181 * We have a zero policies, reset the connection policy if already 10182 * set. This will cause the connection to inherit the 10183 * global policy, if any. 10184 */ 10185 if (is_pol_reset) { 10186 if (connp->conn_policy != NULL) { 10187 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10188 connp->conn_policy = NULL; 10189 } 10190 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10191 connp->conn_in_enforce_policy = B_FALSE; 10192 connp->conn_out_enforce_policy = B_FALSE; 10193 mutex_exit(&connp->conn_lock); 10194 return (0); 10195 } 10196 10197 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10198 ipst->ips_netstack); 10199 if (ph == NULL) 10200 goto enomem; 10201 10202 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10203 if (actp == NULL) 10204 goto enomem; 10205 10206 /* 10207 * Always allocate IPv4 policy entries, since they can also 10208 * apply to ipv6 sockets being used in ipv4-compat mode. 10209 */ 10210 bzero(&sel, sizeof (sel)); 10211 sel.ipsl_valid = IPSL_IPV4; 10212 10213 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10214 ipst->ips_netstack); 10215 if (pin4 == NULL) 10216 goto enomem; 10217 10218 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10219 ipst->ips_netstack); 10220 if (pout4 == NULL) 10221 goto enomem; 10222 10223 if (connp->conn_af_isv6) { 10224 /* 10225 * We're looking at a v6 socket, also allocate the 10226 * v6-specific entries... 10227 */ 10228 sel.ipsl_valid = IPSL_IPV6; 10229 pin6 = ipsec_policy_create(&sel, actp, nact, 10230 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10231 if (pin6 == NULL) 10232 goto enomem; 10233 10234 pout6 = ipsec_policy_create(&sel, actp, nact, 10235 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10236 if (pout6 == NULL) 10237 goto enomem; 10238 10239 /* 10240 * .. and file them away in the right place. 10241 */ 10242 fam = IPSEC_AF_V6; 10243 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10244 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10245 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10246 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10247 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10248 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10249 } 10250 10251 ipsec_actvec_free(actp, nact); 10252 10253 /* 10254 * File the v4 policies. 10255 */ 10256 fam = IPSEC_AF_V4; 10257 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10258 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10259 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10260 10261 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10262 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10263 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10264 10265 /* 10266 * If the requests need security, set enforce_policy. 10267 * If the requests are IPSEC_PREF_NEVER, one should 10268 * still set conn_out_enforce_policy so that an ipsec_out 10269 * gets attached in ip_wput. This is needed so that 10270 * for connections that we don't cache policy in ip_bind, 10271 * if global policy matches in ip_wput_attach_policy, we 10272 * don't wrongly inherit global policy. Similarly, we need 10273 * to set conn_in_enforce_policy also so that we don't verify 10274 * policy wrongly. 10275 */ 10276 if ((ah_req & REQ_MASK) != 0 || 10277 (esp_req & REQ_MASK) != 0 || 10278 (se_req & REQ_MASK) != 0) { 10279 connp->conn_in_enforce_policy = B_TRUE; 10280 connp->conn_out_enforce_policy = B_TRUE; 10281 connp->conn_flags |= IPCL_CHECK_POLICY; 10282 } 10283 10284 mutex_exit(&connp->conn_lock); 10285 return (error); 10286 #undef REQ_MASK 10287 10288 /* 10289 * Common memory-allocation-failure exit path. 10290 */ 10291 enomem: 10292 mutex_exit(&connp->conn_lock); 10293 if (actp != NULL) 10294 ipsec_actvec_free(actp, nact); 10295 if (pin4 != NULL) 10296 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10297 if (pout4 != NULL) 10298 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10299 if (pin6 != NULL) 10300 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10301 if (pout6 != NULL) 10302 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10303 return (ENOMEM); 10304 } 10305 10306 /* 10307 * Only for options that pass in an IP addr. Currently only V4 options 10308 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10309 * So this function assumes level is IPPROTO_IP 10310 */ 10311 int 10312 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10313 mblk_t *first_mp) 10314 { 10315 ipif_t *ipif = NULL; 10316 int error; 10317 ill_t *ill; 10318 int zoneid; 10319 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10320 10321 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10322 10323 if (addr != INADDR_ANY || checkonly) { 10324 ASSERT(connp != NULL); 10325 zoneid = IPCL_ZONEID(connp); 10326 if (option == IP_NEXTHOP) { 10327 ipif = ipif_lookup_onlink_addr(addr, 10328 connp->conn_zoneid, ipst); 10329 } else { 10330 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10331 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10332 &error, ipst); 10333 } 10334 if (ipif == NULL) { 10335 if (error == EINPROGRESS) 10336 return (error); 10337 else if ((option == IP_MULTICAST_IF) || 10338 (option == IP_NEXTHOP)) 10339 return (EHOSTUNREACH); 10340 else 10341 return (EINVAL); 10342 } else if (checkonly) { 10343 if (option == IP_MULTICAST_IF) { 10344 ill = ipif->ipif_ill; 10345 /* not supported by the virtual network iface */ 10346 if (IS_VNI(ill)) { 10347 ipif_refrele(ipif); 10348 return (EINVAL); 10349 } 10350 } 10351 ipif_refrele(ipif); 10352 return (0); 10353 } 10354 ill = ipif->ipif_ill; 10355 mutex_enter(&connp->conn_lock); 10356 mutex_enter(&ill->ill_lock); 10357 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10358 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10359 mutex_exit(&ill->ill_lock); 10360 mutex_exit(&connp->conn_lock); 10361 ipif_refrele(ipif); 10362 return (option == IP_MULTICAST_IF ? 10363 EHOSTUNREACH : EINVAL); 10364 } 10365 } else { 10366 mutex_enter(&connp->conn_lock); 10367 } 10368 10369 /* None of the options below are supported on the VNI */ 10370 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10371 mutex_exit(&ill->ill_lock); 10372 mutex_exit(&connp->conn_lock); 10373 ipif_refrele(ipif); 10374 return (EINVAL); 10375 } 10376 10377 switch (option) { 10378 case IP_DONTFAILOVER_IF: 10379 /* 10380 * This option is used by in.mpathd to ensure 10381 * that IPMP probe packets only go out on the 10382 * test interfaces. in.mpathd sets this option 10383 * on the non-failover interfaces. 10384 * For backward compatibility, this option 10385 * implicitly sets IP_MULTICAST_IF, as used 10386 * be done in bind(), so that ip_wput gets 10387 * this ipif to send mcast packets. 10388 */ 10389 if (ipif != NULL) { 10390 ASSERT(addr != INADDR_ANY); 10391 connp->conn_nofailover_ill = ipif->ipif_ill; 10392 connp->conn_multicast_ipif = ipif; 10393 } else { 10394 ASSERT(addr == INADDR_ANY); 10395 connp->conn_nofailover_ill = NULL; 10396 connp->conn_multicast_ipif = NULL; 10397 } 10398 break; 10399 10400 case IP_MULTICAST_IF: 10401 connp->conn_multicast_ipif = ipif; 10402 break; 10403 case IP_NEXTHOP: 10404 connp->conn_nexthop_v4 = addr; 10405 connp->conn_nexthop_set = B_TRUE; 10406 break; 10407 } 10408 10409 if (ipif != NULL) { 10410 mutex_exit(&ill->ill_lock); 10411 mutex_exit(&connp->conn_lock); 10412 ipif_refrele(ipif); 10413 return (0); 10414 } 10415 mutex_exit(&connp->conn_lock); 10416 /* We succeded in cleared the option */ 10417 return (0); 10418 } 10419 10420 /* 10421 * For options that pass in an ifindex specifying the ill. V6 options always 10422 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10423 */ 10424 int 10425 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10426 int level, int option, mblk_t *first_mp) 10427 { 10428 ill_t *ill = NULL; 10429 int error = 0; 10430 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10431 10432 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10433 if (ifindex != 0) { 10434 ASSERT(connp != NULL); 10435 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10436 first_mp, ip_restart_optmgmt, &error, ipst); 10437 if (ill != NULL) { 10438 if (checkonly) { 10439 /* not supported by the virtual network iface */ 10440 if (IS_VNI(ill)) { 10441 ill_refrele(ill); 10442 return (EINVAL); 10443 } 10444 ill_refrele(ill); 10445 return (0); 10446 } 10447 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10448 0, NULL)) { 10449 ill_refrele(ill); 10450 ill = NULL; 10451 mutex_enter(&connp->conn_lock); 10452 goto setit; 10453 } 10454 mutex_enter(&connp->conn_lock); 10455 mutex_enter(&ill->ill_lock); 10456 if (ill->ill_state_flags & ILL_CONDEMNED) { 10457 mutex_exit(&ill->ill_lock); 10458 mutex_exit(&connp->conn_lock); 10459 ill_refrele(ill); 10460 ill = NULL; 10461 mutex_enter(&connp->conn_lock); 10462 } 10463 goto setit; 10464 } else if (error == EINPROGRESS) { 10465 return (error); 10466 } else { 10467 error = 0; 10468 } 10469 } 10470 mutex_enter(&connp->conn_lock); 10471 setit: 10472 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10473 10474 /* 10475 * The options below assume that the ILL (if any) transmits and/or 10476 * receives traffic. Neither of which is true for the virtual network 10477 * interface, so fail setting these on a VNI. 10478 */ 10479 if (IS_VNI(ill)) { 10480 ASSERT(ill != NULL); 10481 mutex_exit(&ill->ill_lock); 10482 mutex_exit(&connp->conn_lock); 10483 ill_refrele(ill); 10484 return (EINVAL); 10485 } 10486 10487 if (level == IPPROTO_IP) { 10488 switch (option) { 10489 case IP_BOUND_IF: 10490 connp->conn_incoming_ill = ill; 10491 connp->conn_outgoing_ill = ill; 10492 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10493 0 : ifindex; 10494 break; 10495 10496 case IP_XMIT_IF: 10497 /* 10498 * Similar to IP_BOUND_IF, but this only 10499 * determines the outgoing interface for 10500 * unicast packets. Also no IRE_CACHE entry 10501 * is added for the destination of the 10502 * outgoing packets. 10503 */ 10504 connp->conn_xmit_if_ill = ill; 10505 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10506 0 : ifindex; 10507 break; 10508 10509 case IP_MULTICAST_IF: 10510 /* 10511 * This option is an internal special. The socket 10512 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10513 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10514 * specifies an ifindex and we try first on V6 ill's. 10515 * If we don't find one, we they try using on v4 ill's 10516 * intenally and we come here. 10517 */ 10518 if (!checkonly && ill != NULL) { 10519 ipif_t *ipif; 10520 ipif = ill->ill_ipif; 10521 10522 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10523 mutex_exit(&ill->ill_lock); 10524 mutex_exit(&connp->conn_lock); 10525 ill_refrele(ill); 10526 ill = NULL; 10527 mutex_enter(&connp->conn_lock); 10528 } else { 10529 connp->conn_multicast_ipif = ipif; 10530 } 10531 } 10532 break; 10533 } 10534 } else { 10535 switch (option) { 10536 case IPV6_BOUND_IF: 10537 connp->conn_incoming_ill = ill; 10538 connp->conn_outgoing_ill = ill; 10539 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10540 0 : ifindex; 10541 break; 10542 10543 case IPV6_BOUND_PIF: 10544 /* 10545 * Limit all transmit to this ill. 10546 * Unlike IPV6_BOUND_IF, using this option 10547 * prevents load spreading and failover from 10548 * happening when the interface is part of the 10549 * group. That's why we don't need to remember 10550 * the ifindex in orig_bound_ifindex as in 10551 * IPV6_BOUND_IF. 10552 */ 10553 connp->conn_outgoing_pill = ill; 10554 break; 10555 10556 case IPV6_DONTFAILOVER_IF: 10557 /* 10558 * This option is used by in.mpathd to ensure 10559 * that IPMP probe packets only go out on the 10560 * test interfaces. in.mpathd sets this option 10561 * on the non-failover interfaces. 10562 */ 10563 connp->conn_nofailover_ill = ill; 10564 /* 10565 * For backward compatibility, this option 10566 * implicitly sets ip_multicast_ill as used in 10567 * IPV6_MULTICAST_IF so that ip_wput gets 10568 * this ill to send mcast packets. 10569 */ 10570 connp->conn_multicast_ill = ill; 10571 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10572 0 : ifindex; 10573 break; 10574 10575 case IPV6_MULTICAST_IF: 10576 /* 10577 * Set conn_multicast_ill to be the IPv6 ill. 10578 * Set conn_multicast_ipif to be an IPv4 ipif 10579 * for ifindex to make IPv4 mapped addresses 10580 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10581 * Even if no IPv6 ill exists for the ifindex 10582 * we need to check for an IPv4 ifindex in order 10583 * for this to work with mapped addresses. In that 10584 * case only set conn_multicast_ipif. 10585 */ 10586 if (!checkonly) { 10587 if (ifindex == 0) { 10588 connp->conn_multicast_ill = NULL; 10589 connp->conn_orig_multicast_ifindex = 0; 10590 connp->conn_multicast_ipif = NULL; 10591 } else if (ill != NULL) { 10592 connp->conn_multicast_ill = ill; 10593 connp->conn_orig_multicast_ifindex = 10594 ifindex; 10595 } 10596 } 10597 break; 10598 } 10599 } 10600 10601 if (ill != NULL) { 10602 mutex_exit(&ill->ill_lock); 10603 mutex_exit(&connp->conn_lock); 10604 ill_refrele(ill); 10605 return (0); 10606 } 10607 mutex_exit(&connp->conn_lock); 10608 /* 10609 * We succeeded in clearing the option (ifindex == 0) or failed to 10610 * locate the ill and could not set the option (ifindex != 0) 10611 */ 10612 return (ifindex == 0 ? 0 : EINVAL); 10613 } 10614 10615 /* This routine sets socket options. */ 10616 /* ARGSUSED */ 10617 int 10618 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10619 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10620 void *dummy, cred_t *cr, mblk_t *first_mp) 10621 { 10622 int *i1 = (int *)invalp; 10623 conn_t *connp = Q_TO_CONN(q); 10624 int error = 0; 10625 boolean_t checkonly; 10626 ire_t *ire; 10627 boolean_t found; 10628 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10629 10630 switch (optset_context) { 10631 10632 case SETFN_OPTCOM_CHECKONLY: 10633 checkonly = B_TRUE; 10634 /* 10635 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10636 * inlen != 0 implies value supplied and 10637 * we have to "pretend" to set it. 10638 * inlen == 0 implies that there is no 10639 * value part in T_CHECK request and just validation 10640 * done elsewhere should be enough, we just return here. 10641 */ 10642 if (inlen == 0) { 10643 *outlenp = 0; 10644 return (0); 10645 } 10646 break; 10647 case SETFN_OPTCOM_NEGOTIATE: 10648 case SETFN_UD_NEGOTIATE: 10649 case SETFN_CONN_NEGOTIATE: 10650 checkonly = B_FALSE; 10651 break; 10652 default: 10653 /* 10654 * We should never get here 10655 */ 10656 *outlenp = 0; 10657 return (EINVAL); 10658 } 10659 10660 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10661 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10662 10663 /* 10664 * For fixed length options, no sanity check 10665 * of passed in length is done. It is assumed *_optcom_req() 10666 * routines do the right thing. 10667 */ 10668 10669 switch (level) { 10670 case SOL_SOCKET: 10671 /* 10672 * conn_lock protects the bitfields, and is used to 10673 * set the fields atomically. 10674 */ 10675 switch (name) { 10676 case SO_BROADCAST: 10677 if (!checkonly) { 10678 /* TODO: use value someplace? */ 10679 mutex_enter(&connp->conn_lock); 10680 connp->conn_broadcast = *i1 ? 1 : 0; 10681 mutex_exit(&connp->conn_lock); 10682 } 10683 break; /* goto sizeof (int) option return */ 10684 case SO_USELOOPBACK: 10685 if (!checkonly) { 10686 /* TODO: use value someplace? */ 10687 mutex_enter(&connp->conn_lock); 10688 connp->conn_loopback = *i1 ? 1 : 0; 10689 mutex_exit(&connp->conn_lock); 10690 } 10691 break; /* goto sizeof (int) option return */ 10692 case SO_DONTROUTE: 10693 if (!checkonly) { 10694 mutex_enter(&connp->conn_lock); 10695 connp->conn_dontroute = *i1 ? 1 : 0; 10696 mutex_exit(&connp->conn_lock); 10697 } 10698 break; /* goto sizeof (int) option return */ 10699 case SO_REUSEADDR: 10700 if (!checkonly) { 10701 mutex_enter(&connp->conn_lock); 10702 connp->conn_reuseaddr = *i1 ? 1 : 0; 10703 mutex_exit(&connp->conn_lock); 10704 } 10705 break; /* goto sizeof (int) option return */ 10706 case SO_PROTOTYPE: 10707 if (!checkonly) { 10708 mutex_enter(&connp->conn_lock); 10709 connp->conn_proto = *i1; 10710 mutex_exit(&connp->conn_lock); 10711 } 10712 break; /* goto sizeof (int) option return */ 10713 case SO_ALLZONES: 10714 if (!checkonly) { 10715 mutex_enter(&connp->conn_lock); 10716 if (IPCL_IS_BOUND(connp)) { 10717 mutex_exit(&connp->conn_lock); 10718 return (EINVAL); 10719 } 10720 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10721 mutex_exit(&connp->conn_lock); 10722 } 10723 break; /* goto sizeof (int) option return */ 10724 case SO_ANON_MLP: 10725 if (!checkonly) { 10726 mutex_enter(&connp->conn_lock); 10727 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10728 mutex_exit(&connp->conn_lock); 10729 } 10730 break; /* goto sizeof (int) option return */ 10731 case SO_MAC_EXEMPT: 10732 if (secpolicy_net_mac_aware(cr) != 0 || 10733 IPCL_IS_BOUND(connp)) 10734 return (EACCES); 10735 if (!checkonly) { 10736 mutex_enter(&connp->conn_lock); 10737 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10738 mutex_exit(&connp->conn_lock); 10739 } 10740 break; /* goto sizeof (int) option return */ 10741 default: 10742 /* 10743 * "soft" error (negative) 10744 * option not handled at this level 10745 * Note: Do not modify *outlenp 10746 */ 10747 return (-EINVAL); 10748 } 10749 break; 10750 case IPPROTO_IP: 10751 switch (name) { 10752 case IP_NEXTHOP: 10753 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10754 return (EPERM); 10755 /* FALLTHRU */ 10756 case IP_MULTICAST_IF: 10757 case IP_DONTFAILOVER_IF: { 10758 ipaddr_t addr = *i1; 10759 10760 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10761 first_mp); 10762 if (error != 0) 10763 return (error); 10764 break; /* goto sizeof (int) option return */ 10765 } 10766 10767 case IP_MULTICAST_TTL: 10768 /* Recorded in transport above IP */ 10769 *outvalp = *invalp; 10770 *outlenp = sizeof (uchar_t); 10771 return (0); 10772 case IP_MULTICAST_LOOP: 10773 if (!checkonly) { 10774 mutex_enter(&connp->conn_lock); 10775 connp->conn_multicast_loop = *invalp ? 1 : 0; 10776 mutex_exit(&connp->conn_lock); 10777 } 10778 *outvalp = *invalp; 10779 *outlenp = sizeof (uchar_t); 10780 return (0); 10781 case IP_ADD_MEMBERSHIP: 10782 case MCAST_JOIN_GROUP: 10783 case IP_DROP_MEMBERSHIP: 10784 case MCAST_LEAVE_GROUP: { 10785 struct ip_mreq *mreqp; 10786 struct group_req *greqp; 10787 ire_t *ire; 10788 boolean_t done = B_FALSE; 10789 ipaddr_t group, ifaddr; 10790 struct sockaddr_in *sin; 10791 uint32_t *ifindexp; 10792 boolean_t mcast_opt = B_TRUE; 10793 mcast_record_t fmode; 10794 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10795 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10796 10797 switch (name) { 10798 case IP_ADD_MEMBERSHIP: 10799 mcast_opt = B_FALSE; 10800 /* FALLTHRU */ 10801 case MCAST_JOIN_GROUP: 10802 fmode = MODE_IS_EXCLUDE; 10803 optfn = ip_opt_add_group; 10804 break; 10805 10806 case IP_DROP_MEMBERSHIP: 10807 mcast_opt = B_FALSE; 10808 /* FALLTHRU */ 10809 case MCAST_LEAVE_GROUP: 10810 fmode = MODE_IS_INCLUDE; 10811 optfn = ip_opt_delete_group; 10812 break; 10813 } 10814 10815 if (mcast_opt) { 10816 greqp = (struct group_req *)i1; 10817 sin = (struct sockaddr_in *)&greqp->gr_group; 10818 if (sin->sin_family != AF_INET) { 10819 *outlenp = 0; 10820 return (ENOPROTOOPT); 10821 } 10822 group = (ipaddr_t)sin->sin_addr.s_addr; 10823 ifaddr = INADDR_ANY; 10824 ifindexp = &greqp->gr_interface; 10825 } else { 10826 mreqp = (struct ip_mreq *)i1; 10827 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10828 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10829 ifindexp = NULL; 10830 } 10831 10832 /* 10833 * In the multirouting case, we need to replicate 10834 * the request on all interfaces that will take part 10835 * in replication. We do so because multirouting is 10836 * reflective, thus we will probably receive multi- 10837 * casts on those interfaces. 10838 * The ip_multirt_apply_membership() succeeds if the 10839 * operation succeeds on at least one interface. 10840 */ 10841 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10842 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10843 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10844 if (ire != NULL) { 10845 if (ire->ire_flags & RTF_MULTIRT) { 10846 error = ip_multirt_apply_membership( 10847 optfn, ire, connp, checkonly, group, 10848 fmode, INADDR_ANY, first_mp); 10849 done = B_TRUE; 10850 } 10851 ire_refrele(ire); 10852 } 10853 if (!done) { 10854 error = optfn(connp, checkonly, group, ifaddr, 10855 ifindexp, fmode, INADDR_ANY, first_mp); 10856 } 10857 if (error) { 10858 /* 10859 * EINPROGRESS is a soft error, needs retry 10860 * so don't make *outlenp zero. 10861 */ 10862 if (error != EINPROGRESS) 10863 *outlenp = 0; 10864 return (error); 10865 } 10866 /* OK return - copy input buffer into output buffer */ 10867 if (invalp != outvalp) { 10868 /* don't trust bcopy for identical src/dst */ 10869 bcopy(invalp, outvalp, inlen); 10870 } 10871 *outlenp = inlen; 10872 return (0); 10873 } 10874 case IP_BLOCK_SOURCE: 10875 case IP_UNBLOCK_SOURCE: 10876 case IP_ADD_SOURCE_MEMBERSHIP: 10877 case IP_DROP_SOURCE_MEMBERSHIP: 10878 case MCAST_BLOCK_SOURCE: 10879 case MCAST_UNBLOCK_SOURCE: 10880 case MCAST_JOIN_SOURCE_GROUP: 10881 case MCAST_LEAVE_SOURCE_GROUP: { 10882 struct ip_mreq_source *imreqp; 10883 struct group_source_req *gsreqp; 10884 in_addr_t grp, src, ifaddr = INADDR_ANY; 10885 uint32_t ifindex = 0; 10886 mcast_record_t fmode; 10887 struct sockaddr_in *sin; 10888 ire_t *ire; 10889 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10890 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10891 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10892 10893 switch (name) { 10894 case IP_BLOCK_SOURCE: 10895 mcast_opt = B_FALSE; 10896 /* FALLTHRU */ 10897 case MCAST_BLOCK_SOURCE: 10898 fmode = MODE_IS_EXCLUDE; 10899 optfn = ip_opt_add_group; 10900 break; 10901 10902 case IP_UNBLOCK_SOURCE: 10903 mcast_opt = B_FALSE; 10904 /* FALLTHRU */ 10905 case MCAST_UNBLOCK_SOURCE: 10906 fmode = MODE_IS_EXCLUDE; 10907 optfn = ip_opt_delete_group; 10908 break; 10909 10910 case IP_ADD_SOURCE_MEMBERSHIP: 10911 mcast_opt = B_FALSE; 10912 /* FALLTHRU */ 10913 case MCAST_JOIN_SOURCE_GROUP: 10914 fmode = MODE_IS_INCLUDE; 10915 optfn = ip_opt_add_group; 10916 break; 10917 10918 case IP_DROP_SOURCE_MEMBERSHIP: 10919 mcast_opt = B_FALSE; 10920 /* FALLTHRU */ 10921 case MCAST_LEAVE_SOURCE_GROUP: 10922 fmode = MODE_IS_INCLUDE; 10923 optfn = ip_opt_delete_group; 10924 break; 10925 } 10926 10927 if (mcast_opt) { 10928 gsreqp = (struct group_source_req *)i1; 10929 if (gsreqp->gsr_group.ss_family != AF_INET) { 10930 *outlenp = 0; 10931 return (ENOPROTOOPT); 10932 } 10933 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10934 grp = (ipaddr_t)sin->sin_addr.s_addr; 10935 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10936 src = (ipaddr_t)sin->sin_addr.s_addr; 10937 ifindex = gsreqp->gsr_interface; 10938 } else { 10939 imreqp = (struct ip_mreq_source *)i1; 10940 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10941 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10942 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10943 } 10944 10945 /* 10946 * In the multirouting case, we need to replicate 10947 * the request as noted in the mcast cases above. 10948 */ 10949 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10950 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10951 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10952 if (ire != NULL) { 10953 if (ire->ire_flags & RTF_MULTIRT) { 10954 error = ip_multirt_apply_membership( 10955 optfn, ire, connp, checkonly, grp, 10956 fmode, src, first_mp); 10957 done = B_TRUE; 10958 } 10959 ire_refrele(ire); 10960 } 10961 if (!done) { 10962 error = optfn(connp, checkonly, grp, ifaddr, 10963 &ifindex, fmode, src, first_mp); 10964 } 10965 if (error != 0) { 10966 /* 10967 * EINPROGRESS is a soft error, needs retry 10968 * so don't make *outlenp zero. 10969 */ 10970 if (error != EINPROGRESS) 10971 *outlenp = 0; 10972 return (error); 10973 } 10974 /* OK return - copy input buffer into output buffer */ 10975 if (invalp != outvalp) { 10976 bcopy(invalp, outvalp, inlen); 10977 } 10978 *outlenp = inlen; 10979 return (0); 10980 } 10981 case IP_SEC_OPT: 10982 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10983 if (error != 0) { 10984 *outlenp = 0; 10985 return (error); 10986 } 10987 break; 10988 case IP_HDRINCL: 10989 case IP_OPTIONS: 10990 case T_IP_OPTIONS: 10991 case IP_TOS: 10992 case T_IP_TOS: 10993 case IP_TTL: 10994 case IP_RECVDSTADDR: 10995 case IP_RECVOPTS: 10996 /* OK return - copy input buffer into output buffer */ 10997 if (invalp != outvalp) { 10998 /* don't trust bcopy for identical src/dst */ 10999 bcopy(invalp, outvalp, inlen); 11000 } 11001 *outlenp = inlen; 11002 return (0); 11003 case IP_RECVIF: 11004 /* Retrieve the inbound interface index */ 11005 if (!checkonly) { 11006 mutex_enter(&connp->conn_lock); 11007 connp->conn_recvif = *i1 ? 1 : 0; 11008 mutex_exit(&connp->conn_lock); 11009 } 11010 break; /* goto sizeof (int) option return */ 11011 case IP_RECVPKTINFO: 11012 if (!checkonly) { 11013 mutex_enter(&connp->conn_lock); 11014 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11015 mutex_exit(&connp->conn_lock); 11016 } 11017 break; /* goto sizeof (int) option return */ 11018 case IP_RECVSLLA: 11019 /* Retrieve the source link layer address */ 11020 if (!checkonly) { 11021 mutex_enter(&connp->conn_lock); 11022 connp->conn_recvslla = *i1 ? 1 : 0; 11023 mutex_exit(&connp->conn_lock); 11024 } 11025 break; /* goto sizeof (int) option return */ 11026 case MRT_INIT: 11027 case MRT_DONE: 11028 case MRT_ADD_VIF: 11029 case MRT_DEL_VIF: 11030 case MRT_ADD_MFC: 11031 case MRT_DEL_MFC: 11032 case MRT_ASSERT: 11033 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11034 *outlenp = 0; 11035 return (error); 11036 } 11037 error = ip_mrouter_set((int)name, q, checkonly, 11038 (uchar_t *)invalp, inlen, first_mp); 11039 if (error) { 11040 *outlenp = 0; 11041 return (error); 11042 } 11043 /* OK return - copy input buffer into output buffer */ 11044 if (invalp != outvalp) { 11045 /* don't trust bcopy for identical src/dst */ 11046 bcopy(invalp, outvalp, inlen); 11047 } 11048 *outlenp = inlen; 11049 return (0); 11050 case IP_BOUND_IF: 11051 case IP_XMIT_IF: 11052 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11053 level, name, first_mp); 11054 if (error != 0) 11055 return (error); 11056 break; /* goto sizeof (int) option return */ 11057 11058 case IP_UNSPEC_SRC: 11059 /* Allow sending with a zero source address */ 11060 if (!checkonly) { 11061 mutex_enter(&connp->conn_lock); 11062 connp->conn_unspec_src = *i1 ? 1 : 0; 11063 mutex_exit(&connp->conn_lock); 11064 } 11065 break; /* goto sizeof (int) option return */ 11066 default: 11067 /* 11068 * "soft" error (negative) 11069 * option not handled at this level 11070 * Note: Do not modify *outlenp 11071 */ 11072 return (-EINVAL); 11073 } 11074 break; 11075 case IPPROTO_IPV6: 11076 switch (name) { 11077 case IPV6_BOUND_IF: 11078 case IPV6_BOUND_PIF: 11079 case IPV6_DONTFAILOVER_IF: 11080 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11081 level, name, first_mp); 11082 if (error != 0) 11083 return (error); 11084 break; /* goto sizeof (int) option return */ 11085 11086 case IPV6_MULTICAST_IF: 11087 /* 11088 * The only possible errors are EINPROGRESS and 11089 * EINVAL. EINPROGRESS will be restarted and is not 11090 * a hard error. We call this option on both V4 and V6 11091 * If both return EINVAL, then this call returns 11092 * EINVAL. If at least one of them succeeds we 11093 * return success. 11094 */ 11095 found = B_FALSE; 11096 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11097 level, name, first_mp); 11098 if (error == EINPROGRESS) 11099 return (error); 11100 if (error == 0) 11101 found = B_TRUE; 11102 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11103 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11104 if (error == 0) 11105 found = B_TRUE; 11106 if (!found) 11107 return (error); 11108 break; /* goto sizeof (int) option return */ 11109 11110 case IPV6_MULTICAST_HOPS: 11111 /* Recorded in transport above IP */ 11112 break; /* goto sizeof (int) option return */ 11113 case IPV6_MULTICAST_LOOP: 11114 if (!checkonly) { 11115 mutex_enter(&connp->conn_lock); 11116 connp->conn_multicast_loop = *i1; 11117 mutex_exit(&connp->conn_lock); 11118 } 11119 break; /* goto sizeof (int) option return */ 11120 case IPV6_JOIN_GROUP: 11121 case MCAST_JOIN_GROUP: 11122 case IPV6_LEAVE_GROUP: 11123 case MCAST_LEAVE_GROUP: { 11124 struct ipv6_mreq *ip_mreqp; 11125 struct group_req *greqp; 11126 ire_t *ire; 11127 boolean_t done = B_FALSE; 11128 in6_addr_t groupv6; 11129 uint32_t ifindex; 11130 boolean_t mcast_opt = B_TRUE; 11131 mcast_record_t fmode; 11132 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11133 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11134 11135 switch (name) { 11136 case IPV6_JOIN_GROUP: 11137 mcast_opt = B_FALSE; 11138 /* FALLTHRU */ 11139 case MCAST_JOIN_GROUP: 11140 fmode = MODE_IS_EXCLUDE; 11141 optfn = ip_opt_add_group_v6; 11142 break; 11143 11144 case IPV6_LEAVE_GROUP: 11145 mcast_opt = B_FALSE; 11146 /* FALLTHRU */ 11147 case MCAST_LEAVE_GROUP: 11148 fmode = MODE_IS_INCLUDE; 11149 optfn = ip_opt_delete_group_v6; 11150 break; 11151 } 11152 11153 if (mcast_opt) { 11154 struct sockaddr_in *sin; 11155 struct sockaddr_in6 *sin6; 11156 greqp = (struct group_req *)i1; 11157 if (greqp->gr_group.ss_family == AF_INET) { 11158 sin = (struct sockaddr_in *) 11159 &(greqp->gr_group); 11160 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11161 &groupv6); 11162 } else { 11163 sin6 = (struct sockaddr_in6 *) 11164 &(greqp->gr_group); 11165 groupv6 = sin6->sin6_addr; 11166 } 11167 ifindex = greqp->gr_interface; 11168 } else { 11169 ip_mreqp = (struct ipv6_mreq *)i1; 11170 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11171 ifindex = ip_mreqp->ipv6mr_interface; 11172 } 11173 /* 11174 * In the multirouting case, we need to replicate 11175 * the request on all interfaces that will take part 11176 * in replication. We do so because multirouting is 11177 * reflective, thus we will probably receive multi- 11178 * casts on those interfaces. 11179 * The ip_multirt_apply_membership_v6() succeeds if 11180 * the operation succeeds on at least one interface. 11181 */ 11182 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11183 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11184 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11185 if (ire != NULL) { 11186 if (ire->ire_flags & RTF_MULTIRT) { 11187 error = ip_multirt_apply_membership_v6( 11188 optfn, ire, connp, checkonly, 11189 &groupv6, fmode, &ipv6_all_zeros, 11190 first_mp); 11191 done = B_TRUE; 11192 } 11193 ire_refrele(ire); 11194 } 11195 if (!done) { 11196 error = optfn(connp, checkonly, &groupv6, 11197 ifindex, fmode, &ipv6_all_zeros, first_mp); 11198 } 11199 if (error) { 11200 /* 11201 * EINPROGRESS is a soft error, needs retry 11202 * so don't make *outlenp zero. 11203 */ 11204 if (error != EINPROGRESS) 11205 *outlenp = 0; 11206 return (error); 11207 } 11208 /* OK return - copy input buffer into output buffer */ 11209 if (invalp != outvalp) { 11210 /* don't trust bcopy for identical src/dst */ 11211 bcopy(invalp, outvalp, inlen); 11212 } 11213 *outlenp = inlen; 11214 return (0); 11215 } 11216 case MCAST_BLOCK_SOURCE: 11217 case MCAST_UNBLOCK_SOURCE: 11218 case MCAST_JOIN_SOURCE_GROUP: 11219 case MCAST_LEAVE_SOURCE_GROUP: { 11220 struct group_source_req *gsreqp; 11221 in6_addr_t v6grp, v6src; 11222 uint32_t ifindex; 11223 mcast_record_t fmode; 11224 ire_t *ire; 11225 boolean_t done = B_FALSE; 11226 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11227 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11228 11229 switch (name) { 11230 case MCAST_BLOCK_SOURCE: 11231 fmode = MODE_IS_EXCLUDE; 11232 optfn = ip_opt_add_group_v6; 11233 break; 11234 case MCAST_UNBLOCK_SOURCE: 11235 fmode = MODE_IS_EXCLUDE; 11236 optfn = ip_opt_delete_group_v6; 11237 break; 11238 case MCAST_JOIN_SOURCE_GROUP: 11239 fmode = MODE_IS_INCLUDE; 11240 optfn = ip_opt_add_group_v6; 11241 break; 11242 case MCAST_LEAVE_SOURCE_GROUP: 11243 fmode = MODE_IS_INCLUDE; 11244 optfn = ip_opt_delete_group_v6; 11245 break; 11246 } 11247 11248 gsreqp = (struct group_source_req *)i1; 11249 ifindex = gsreqp->gsr_interface; 11250 if (gsreqp->gsr_group.ss_family == AF_INET) { 11251 struct sockaddr_in *s; 11252 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11253 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11254 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11255 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11256 } else { 11257 struct sockaddr_in6 *s6; 11258 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11259 v6grp = s6->sin6_addr; 11260 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11261 v6src = s6->sin6_addr; 11262 } 11263 11264 /* 11265 * In the multirouting case, we need to replicate 11266 * the request as noted in the mcast cases above. 11267 */ 11268 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11269 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11270 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11271 if (ire != NULL) { 11272 if (ire->ire_flags & RTF_MULTIRT) { 11273 error = ip_multirt_apply_membership_v6( 11274 optfn, ire, connp, checkonly, 11275 &v6grp, fmode, &v6src, first_mp); 11276 done = B_TRUE; 11277 } 11278 ire_refrele(ire); 11279 } 11280 if (!done) { 11281 error = optfn(connp, checkonly, &v6grp, 11282 ifindex, fmode, &v6src, first_mp); 11283 } 11284 if (error != 0) { 11285 /* 11286 * EINPROGRESS is a soft error, needs retry 11287 * so don't make *outlenp zero. 11288 */ 11289 if (error != EINPROGRESS) 11290 *outlenp = 0; 11291 return (error); 11292 } 11293 /* OK return - copy input buffer into output buffer */ 11294 if (invalp != outvalp) { 11295 bcopy(invalp, outvalp, inlen); 11296 } 11297 *outlenp = inlen; 11298 return (0); 11299 } 11300 case IPV6_UNICAST_HOPS: 11301 /* Recorded in transport above IP */ 11302 break; /* goto sizeof (int) option return */ 11303 case IPV6_UNSPEC_SRC: 11304 /* Allow sending with a zero source address */ 11305 if (!checkonly) { 11306 mutex_enter(&connp->conn_lock); 11307 connp->conn_unspec_src = *i1 ? 1 : 0; 11308 mutex_exit(&connp->conn_lock); 11309 } 11310 break; /* goto sizeof (int) option return */ 11311 case IPV6_RECVPKTINFO: 11312 if (!checkonly) { 11313 mutex_enter(&connp->conn_lock); 11314 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11315 mutex_exit(&connp->conn_lock); 11316 } 11317 break; /* goto sizeof (int) option return */ 11318 case IPV6_RECVTCLASS: 11319 if (!checkonly) { 11320 if (*i1 < 0 || *i1 > 1) { 11321 return (EINVAL); 11322 } 11323 mutex_enter(&connp->conn_lock); 11324 connp->conn_ipv6_recvtclass = *i1; 11325 mutex_exit(&connp->conn_lock); 11326 } 11327 break; 11328 case IPV6_RECVPATHMTU: 11329 if (!checkonly) { 11330 if (*i1 < 0 || *i1 > 1) { 11331 return (EINVAL); 11332 } 11333 mutex_enter(&connp->conn_lock); 11334 connp->conn_ipv6_recvpathmtu = *i1; 11335 mutex_exit(&connp->conn_lock); 11336 } 11337 break; 11338 case IPV6_RECVHOPLIMIT: 11339 if (!checkonly) { 11340 mutex_enter(&connp->conn_lock); 11341 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11342 mutex_exit(&connp->conn_lock); 11343 } 11344 break; /* goto sizeof (int) option return */ 11345 case IPV6_RECVHOPOPTS: 11346 if (!checkonly) { 11347 mutex_enter(&connp->conn_lock); 11348 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11349 mutex_exit(&connp->conn_lock); 11350 } 11351 break; /* goto sizeof (int) option return */ 11352 case IPV6_RECVDSTOPTS: 11353 if (!checkonly) { 11354 mutex_enter(&connp->conn_lock); 11355 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11356 mutex_exit(&connp->conn_lock); 11357 } 11358 break; /* goto sizeof (int) option return */ 11359 case IPV6_RECVRTHDR: 11360 if (!checkonly) { 11361 mutex_enter(&connp->conn_lock); 11362 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11363 mutex_exit(&connp->conn_lock); 11364 } 11365 break; /* goto sizeof (int) option return */ 11366 case IPV6_RECVRTHDRDSTOPTS: 11367 if (!checkonly) { 11368 mutex_enter(&connp->conn_lock); 11369 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11370 mutex_exit(&connp->conn_lock); 11371 } 11372 break; /* goto sizeof (int) option return */ 11373 case IPV6_PKTINFO: 11374 if (inlen == 0) 11375 return (-EINVAL); /* clearing option */ 11376 error = ip6_set_pktinfo(cr, connp, 11377 (struct in6_pktinfo *)invalp, first_mp); 11378 if (error != 0) 11379 *outlenp = 0; 11380 else 11381 *outlenp = inlen; 11382 return (error); 11383 case IPV6_NEXTHOP: { 11384 struct sockaddr_in6 *sin6; 11385 11386 /* Verify that the nexthop is reachable */ 11387 if (inlen == 0) 11388 return (-EINVAL); /* clearing option */ 11389 11390 sin6 = (struct sockaddr_in6 *)invalp; 11391 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11392 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11393 NULL, MATCH_IRE_DEFAULT, ipst); 11394 11395 if (ire == NULL) { 11396 *outlenp = 0; 11397 return (EHOSTUNREACH); 11398 } 11399 ire_refrele(ire); 11400 return (-EINVAL); 11401 } 11402 case IPV6_SEC_OPT: 11403 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11404 if (error != 0) { 11405 *outlenp = 0; 11406 return (error); 11407 } 11408 break; 11409 case IPV6_SRC_PREFERENCES: { 11410 /* 11411 * This is implemented strictly in the ip module 11412 * (here and in tcp_opt_*() to accomodate tcp 11413 * sockets). Modules above ip pass this option 11414 * down here since ip is the only one that needs to 11415 * be aware of source address preferences. 11416 * 11417 * This socket option only affects connected 11418 * sockets that haven't already bound to a specific 11419 * IPv6 address. In other words, sockets that 11420 * don't call bind() with an address other than the 11421 * unspecified address and that call connect(). 11422 * ip_bind_connected_v6() passes these preferences 11423 * to the ipif_select_source_v6() function. 11424 */ 11425 if (inlen != sizeof (uint32_t)) 11426 return (EINVAL); 11427 error = ip6_set_src_preferences(connp, 11428 *(uint32_t *)invalp); 11429 if (error != 0) { 11430 *outlenp = 0; 11431 return (error); 11432 } else { 11433 *outlenp = sizeof (uint32_t); 11434 } 11435 break; 11436 } 11437 case IPV6_V6ONLY: 11438 if (*i1 < 0 || *i1 > 1) { 11439 return (EINVAL); 11440 } 11441 mutex_enter(&connp->conn_lock); 11442 connp->conn_ipv6_v6only = *i1; 11443 mutex_exit(&connp->conn_lock); 11444 break; 11445 default: 11446 return (-EINVAL); 11447 } 11448 break; 11449 default: 11450 /* 11451 * "soft" error (negative) 11452 * option not handled at this level 11453 * Note: Do not modify *outlenp 11454 */ 11455 return (-EINVAL); 11456 } 11457 /* 11458 * Common case of return from an option that is sizeof (int) 11459 */ 11460 *(int *)outvalp = *i1; 11461 *outlenp = sizeof (int); 11462 return (0); 11463 } 11464 11465 /* 11466 * This routine gets default values of certain options whose default 11467 * values are maintained by protocol specific code 11468 */ 11469 /* ARGSUSED */ 11470 int 11471 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11472 { 11473 int *i1 = (int *)ptr; 11474 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11475 11476 switch (level) { 11477 case IPPROTO_IP: 11478 switch (name) { 11479 case IP_MULTICAST_TTL: 11480 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11481 return (sizeof (uchar_t)); 11482 case IP_MULTICAST_LOOP: 11483 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11484 return (sizeof (uchar_t)); 11485 default: 11486 return (-1); 11487 } 11488 case IPPROTO_IPV6: 11489 switch (name) { 11490 case IPV6_UNICAST_HOPS: 11491 *i1 = ipst->ips_ipv6_def_hops; 11492 return (sizeof (int)); 11493 case IPV6_MULTICAST_HOPS: 11494 *i1 = IP_DEFAULT_MULTICAST_TTL; 11495 return (sizeof (int)); 11496 case IPV6_MULTICAST_LOOP: 11497 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11498 return (sizeof (int)); 11499 case IPV6_V6ONLY: 11500 *i1 = 1; 11501 return (sizeof (int)); 11502 default: 11503 return (-1); 11504 } 11505 default: 11506 return (-1); 11507 } 11508 /* NOTREACHED */ 11509 } 11510 11511 /* 11512 * Given a destination address and a pointer to where to put the information 11513 * this routine fills in the mtuinfo. 11514 */ 11515 int 11516 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11517 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11518 { 11519 ire_t *ire; 11520 ip_stack_t *ipst = ns->netstack_ip; 11521 11522 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11523 return (-1); 11524 11525 bzero(mtuinfo, sizeof (*mtuinfo)); 11526 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11527 mtuinfo->ip6m_addr.sin6_port = port; 11528 mtuinfo->ip6m_addr.sin6_addr = *in6; 11529 11530 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11531 if (ire != NULL) { 11532 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11533 ire_refrele(ire); 11534 } else { 11535 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11536 } 11537 return (sizeof (struct ip6_mtuinfo)); 11538 } 11539 11540 /* 11541 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11542 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11543 * isn't. This doesn't matter as the error checking is done properly for the 11544 * other MRT options coming in through ip_opt_set. 11545 */ 11546 int 11547 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11548 { 11549 conn_t *connp = Q_TO_CONN(q); 11550 ipsec_req_t *req = (ipsec_req_t *)ptr; 11551 11552 switch (level) { 11553 case IPPROTO_IP: 11554 switch (name) { 11555 case MRT_VERSION: 11556 case MRT_ASSERT: 11557 (void) ip_mrouter_get(name, q, ptr); 11558 return (sizeof (int)); 11559 case IP_SEC_OPT: 11560 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11561 case IP_NEXTHOP: 11562 if (connp->conn_nexthop_set) { 11563 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11564 return (sizeof (ipaddr_t)); 11565 } else 11566 return (0); 11567 case IP_RECVPKTINFO: 11568 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11569 return (sizeof (int)); 11570 default: 11571 break; 11572 } 11573 break; 11574 case IPPROTO_IPV6: 11575 switch (name) { 11576 case IPV6_SEC_OPT: 11577 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11578 case IPV6_SRC_PREFERENCES: { 11579 return (ip6_get_src_preferences(connp, 11580 (uint32_t *)ptr)); 11581 } 11582 case IPV6_V6ONLY: 11583 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11584 return (sizeof (int)); 11585 case IPV6_PATHMTU: 11586 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11587 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11588 default: 11589 break; 11590 } 11591 break; 11592 default: 11593 break; 11594 } 11595 return (-1); 11596 } 11597 11598 /* Named Dispatch routine to get a current value out of our parameter table. */ 11599 /* ARGSUSED */ 11600 static int 11601 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11602 { 11603 ipparam_t *ippa = (ipparam_t *)cp; 11604 11605 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11606 return (0); 11607 } 11608 11609 /* ARGSUSED */ 11610 static int 11611 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11612 { 11613 11614 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11615 return (0); 11616 } 11617 11618 /* 11619 * Set ip{,6}_forwarding values. This means walking through all of the 11620 * ill's and toggling their forwarding values. 11621 */ 11622 /* ARGSUSED */ 11623 static int 11624 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11625 { 11626 long new_value; 11627 int *forwarding_value = (int *)cp; 11628 ill_t *ill; 11629 boolean_t isv6; 11630 ill_walk_context_t ctx; 11631 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11632 11633 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11634 11635 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11636 new_value < 0 || new_value > 1) { 11637 return (EINVAL); 11638 } 11639 11640 *forwarding_value = new_value; 11641 11642 /* 11643 * Regardless of the current value of ip_forwarding, set all per-ill 11644 * values of ip_forwarding to the value being set. 11645 * 11646 * Bring all the ill's up to date with the new global value. 11647 */ 11648 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11649 11650 if (isv6) 11651 ill = ILL_START_WALK_V6(&ctx, ipst); 11652 else 11653 ill = ILL_START_WALK_V4(&ctx, ipst); 11654 11655 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11656 (void) ill_forward_set(ill, new_value != 0); 11657 11658 rw_exit(&ipst->ips_ill_g_lock); 11659 return (0); 11660 } 11661 11662 /* 11663 * Walk through the param array specified registering each element with the 11664 * Named Dispatch handler. This is called only during init. So it is ok 11665 * not to acquire any locks 11666 */ 11667 static boolean_t 11668 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11669 ipndp_t *ipnd, size_t ipnd_cnt) 11670 { 11671 for (; ippa_cnt-- > 0; ippa++) { 11672 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11673 if (!nd_load(ndp, ippa->ip_param_name, 11674 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11675 nd_free(ndp); 11676 return (B_FALSE); 11677 } 11678 } 11679 } 11680 11681 for (; ipnd_cnt-- > 0; ipnd++) { 11682 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11683 if (!nd_load(ndp, ipnd->ip_ndp_name, 11684 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11685 ipnd->ip_ndp_data)) { 11686 nd_free(ndp); 11687 return (B_FALSE); 11688 } 11689 } 11690 } 11691 11692 return (B_TRUE); 11693 } 11694 11695 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11696 /* ARGSUSED */ 11697 static int 11698 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11699 { 11700 long new_value; 11701 ipparam_t *ippa = (ipparam_t *)cp; 11702 11703 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11704 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11705 return (EINVAL); 11706 } 11707 ippa->ip_param_value = new_value; 11708 return (0); 11709 } 11710 11711 /* 11712 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11713 * When an ipf is passed here for the first time, if 11714 * we already have in-order fragments on the queue, we convert from the fast- 11715 * path reassembly scheme to the hard-case scheme. From then on, additional 11716 * fragments are reassembled here. We keep track of the start and end offsets 11717 * of each piece, and the number of holes in the chain. When the hole count 11718 * goes to zero, we are done! 11719 * 11720 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11721 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11722 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11723 * after the call to ip_reassemble(). 11724 */ 11725 int 11726 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11727 size_t msg_len) 11728 { 11729 uint_t end; 11730 mblk_t *next_mp; 11731 mblk_t *mp1; 11732 uint_t offset; 11733 boolean_t incr_dups = B_TRUE; 11734 boolean_t offset_zero_seen = B_FALSE; 11735 boolean_t pkt_boundary_checked = B_FALSE; 11736 11737 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11738 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11739 11740 /* Add in byte count */ 11741 ipf->ipf_count += msg_len; 11742 if (ipf->ipf_end) { 11743 /* 11744 * We were part way through in-order reassembly, but now there 11745 * is a hole. We walk through messages already queued, and 11746 * mark them for hard case reassembly. We know that up till 11747 * now they were in order starting from offset zero. 11748 */ 11749 offset = 0; 11750 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11751 IP_REASS_SET_START(mp1, offset); 11752 if (offset == 0) { 11753 ASSERT(ipf->ipf_nf_hdr_len != 0); 11754 offset = -ipf->ipf_nf_hdr_len; 11755 } 11756 offset += mp1->b_wptr - mp1->b_rptr; 11757 IP_REASS_SET_END(mp1, offset); 11758 } 11759 /* One hole at the end. */ 11760 ipf->ipf_hole_cnt = 1; 11761 /* Brand it as a hard case, forever. */ 11762 ipf->ipf_end = 0; 11763 } 11764 /* Walk through all the new pieces. */ 11765 do { 11766 end = start + (mp->b_wptr - mp->b_rptr); 11767 /* 11768 * If start is 0, decrease 'end' only for the first mblk of 11769 * the fragment. Otherwise 'end' can get wrong value in the 11770 * second pass of the loop if first mblk is exactly the 11771 * size of ipf_nf_hdr_len. 11772 */ 11773 if (start == 0 && !offset_zero_seen) { 11774 /* First segment */ 11775 ASSERT(ipf->ipf_nf_hdr_len != 0); 11776 end -= ipf->ipf_nf_hdr_len; 11777 offset_zero_seen = B_TRUE; 11778 } 11779 next_mp = mp->b_cont; 11780 /* 11781 * We are checking to see if there is any interesing data 11782 * to process. If there isn't and the mblk isn't the 11783 * one which carries the unfragmentable header then we 11784 * drop it. It's possible to have just the unfragmentable 11785 * header come through without any data. That needs to be 11786 * saved. 11787 * 11788 * If the assert at the top of this function holds then the 11789 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11790 * is infrequently traveled enough that the test is left in 11791 * to protect against future code changes which break that 11792 * invariant. 11793 */ 11794 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11795 /* Empty. Blast it. */ 11796 IP_REASS_SET_START(mp, 0); 11797 IP_REASS_SET_END(mp, 0); 11798 /* 11799 * If the ipf points to the mblk we are about to free, 11800 * update ipf to point to the next mblk (or NULL 11801 * if none). 11802 */ 11803 if (ipf->ipf_mp->b_cont == mp) 11804 ipf->ipf_mp->b_cont = next_mp; 11805 freeb(mp); 11806 continue; 11807 } 11808 mp->b_cont = NULL; 11809 IP_REASS_SET_START(mp, start); 11810 IP_REASS_SET_END(mp, end); 11811 if (!ipf->ipf_tail_mp) { 11812 ipf->ipf_tail_mp = mp; 11813 ipf->ipf_mp->b_cont = mp; 11814 if (start == 0 || !more) { 11815 ipf->ipf_hole_cnt = 1; 11816 /* 11817 * if the first fragment comes in more than one 11818 * mblk, this loop will be executed for each 11819 * mblk. Need to adjust hole count so exiting 11820 * this routine will leave hole count at 1. 11821 */ 11822 if (next_mp) 11823 ipf->ipf_hole_cnt++; 11824 } else 11825 ipf->ipf_hole_cnt = 2; 11826 continue; 11827 } else if (ipf->ipf_last_frag_seen && !more && 11828 !pkt_boundary_checked) { 11829 /* 11830 * We check datagram boundary only if this fragment 11831 * claims to be the last fragment and we have seen a 11832 * last fragment in the past too. We do this only 11833 * once for a given fragment. 11834 * 11835 * start cannot be 0 here as fragments with start=0 11836 * and MF=0 gets handled as a complete packet. These 11837 * fragments should not reach here. 11838 */ 11839 11840 if (start + msgdsize(mp) != 11841 IP_REASS_END(ipf->ipf_tail_mp)) { 11842 /* 11843 * We have two fragments both of which claim 11844 * to be the last fragment but gives conflicting 11845 * information about the whole datagram size. 11846 * Something fishy is going on. Drop the 11847 * fragment and free up the reassembly list. 11848 */ 11849 return (IP_REASS_FAILED); 11850 } 11851 11852 /* 11853 * We shouldn't come to this code block again for this 11854 * particular fragment. 11855 */ 11856 pkt_boundary_checked = B_TRUE; 11857 } 11858 11859 /* New stuff at or beyond tail? */ 11860 offset = IP_REASS_END(ipf->ipf_tail_mp); 11861 if (start >= offset) { 11862 if (ipf->ipf_last_frag_seen) { 11863 /* current fragment is beyond last fragment */ 11864 return (IP_REASS_FAILED); 11865 } 11866 /* Link it on end. */ 11867 ipf->ipf_tail_mp->b_cont = mp; 11868 ipf->ipf_tail_mp = mp; 11869 if (more) { 11870 if (start != offset) 11871 ipf->ipf_hole_cnt++; 11872 } else if (start == offset && next_mp == NULL) 11873 ipf->ipf_hole_cnt--; 11874 continue; 11875 } 11876 mp1 = ipf->ipf_mp->b_cont; 11877 offset = IP_REASS_START(mp1); 11878 /* New stuff at the front? */ 11879 if (start < offset) { 11880 if (start == 0) { 11881 if (end >= offset) { 11882 /* Nailed the hole at the begining. */ 11883 ipf->ipf_hole_cnt--; 11884 } 11885 } else if (end < offset) { 11886 /* 11887 * A hole, stuff, and a hole where there used 11888 * to be just a hole. 11889 */ 11890 ipf->ipf_hole_cnt++; 11891 } 11892 mp->b_cont = mp1; 11893 /* Check for overlap. */ 11894 while (end > offset) { 11895 if (end < IP_REASS_END(mp1)) { 11896 mp->b_wptr -= end - offset; 11897 IP_REASS_SET_END(mp, offset); 11898 BUMP_MIB(ill->ill_ip_mib, 11899 ipIfStatsReasmPartDups); 11900 break; 11901 } 11902 /* Did we cover another hole? */ 11903 if ((mp1->b_cont && 11904 IP_REASS_END(mp1) != 11905 IP_REASS_START(mp1->b_cont) && 11906 end >= IP_REASS_START(mp1->b_cont)) || 11907 (!ipf->ipf_last_frag_seen && !more)) { 11908 ipf->ipf_hole_cnt--; 11909 } 11910 /* Clip out mp1. */ 11911 if ((mp->b_cont = mp1->b_cont) == NULL) { 11912 /* 11913 * After clipping out mp1, this guy 11914 * is now hanging off the end. 11915 */ 11916 ipf->ipf_tail_mp = mp; 11917 } 11918 IP_REASS_SET_START(mp1, 0); 11919 IP_REASS_SET_END(mp1, 0); 11920 /* Subtract byte count */ 11921 ipf->ipf_count -= mp1->b_datap->db_lim - 11922 mp1->b_datap->db_base; 11923 freeb(mp1); 11924 BUMP_MIB(ill->ill_ip_mib, 11925 ipIfStatsReasmPartDups); 11926 mp1 = mp->b_cont; 11927 if (!mp1) 11928 break; 11929 offset = IP_REASS_START(mp1); 11930 } 11931 ipf->ipf_mp->b_cont = mp; 11932 continue; 11933 } 11934 /* 11935 * The new piece starts somewhere between the start of the head 11936 * and before the end of the tail. 11937 */ 11938 for (; mp1; mp1 = mp1->b_cont) { 11939 offset = IP_REASS_END(mp1); 11940 if (start < offset) { 11941 if (end <= offset) { 11942 /* Nothing new. */ 11943 IP_REASS_SET_START(mp, 0); 11944 IP_REASS_SET_END(mp, 0); 11945 /* Subtract byte count */ 11946 ipf->ipf_count -= mp->b_datap->db_lim - 11947 mp->b_datap->db_base; 11948 if (incr_dups) { 11949 ipf->ipf_num_dups++; 11950 incr_dups = B_FALSE; 11951 } 11952 freeb(mp); 11953 BUMP_MIB(ill->ill_ip_mib, 11954 ipIfStatsReasmDuplicates); 11955 break; 11956 } 11957 /* 11958 * Trim redundant stuff off beginning of new 11959 * piece. 11960 */ 11961 IP_REASS_SET_START(mp, offset); 11962 mp->b_rptr += offset - start; 11963 BUMP_MIB(ill->ill_ip_mib, 11964 ipIfStatsReasmPartDups); 11965 start = offset; 11966 if (!mp1->b_cont) { 11967 /* 11968 * After trimming, this guy is now 11969 * hanging off the end. 11970 */ 11971 mp1->b_cont = mp; 11972 ipf->ipf_tail_mp = mp; 11973 if (!more) { 11974 ipf->ipf_hole_cnt--; 11975 } 11976 break; 11977 } 11978 } 11979 if (start >= IP_REASS_START(mp1->b_cont)) 11980 continue; 11981 /* Fill a hole */ 11982 if (start > offset) 11983 ipf->ipf_hole_cnt++; 11984 mp->b_cont = mp1->b_cont; 11985 mp1->b_cont = mp; 11986 mp1 = mp->b_cont; 11987 offset = IP_REASS_START(mp1); 11988 if (end >= offset) { 11989 ipf->ipf_hole_cnt--; 11990 /* Check for overlap. */ 11991 while (end > offset) { 11992 if (end < IP_REASS_END(mp1)) { 11993 mp->b_wptr -= end - offset; 11994 IP_REASS_SET_END(mp, offset); 11995 /* 11996 * TODO we might bump 11997 * this up twice if there is 11998 * overlap at both ends. 11999 */ 12000 BUMP_MIB(ill->ill_ip_mib, 12001 ipIfStatsReasmPartDups); 12002 break; 12003 } 12004 /* Did we cover another hole? */ 12005 if ((mp1->b_cont && 12006 IP_REASS_END(mp1) 12007 != IP_REASS_START(mp1->b_cont) && 12008 end >= 12009 IP_REASS_START(mp1->b_cont)) || 12010 (!ipf->ipf_last_frag_seen && 12011 !more)) { 12012 ipf->ipf_hole_cnt--; 12013 } 12014 /* Clip out mp1. */ 12015 if ((mp->b_cont = mp1->b_cont) == 12016 NULL) { 12017 /* 12018 * After clipping out mp1, 12019 * this guy is now hanging 12020 * off the end. 12021 */ 12022 ipf->ipf_tail_mp = mp; 12023 } 12024 IP_REASS_SET_START(mp1, 0); 12025 IP_REASS_SET_END(mp1, 0); 12026 /* Subtract byte count */ 12027 ipf->ipf_count -= 12028 mp1->b_datap->db_lim - 12029 mp1->b_datap->db_base; 12030 freeb(mp1); 12031 BUMP_MIB(ill->ill_ip_mib, 12032 ipIfStatsReasmPartDups); 12033 mp1 = mp->b_cont; 12034 if (!mp1) 12035 break; 12036 offset = IP_REASS_START(mp1); 12037 } 12038 } 12039 break; 12040 } 12041 } while (start = end, mp = next_mp); 12042 12043 /* Fragment just processed could be the last one. Remember this fact */ 12044 if (!more) 12045 ipf->ipf_last_frag_seen = B_TRUE; 12046 12047 /* Still got holes? */ 12048 if (ipf->ipf_hole_cnt) 12049 return (IP_REASS_PARTIAL); 12050 /* Clean up overloaded fields to avoid upstream disasters. */ 12051 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12052 IP_REASS_SET_START(mp1, 0); 12053 IP_REASS_SET_END(mp1, 0); 12054 } 12055 return (IP_REASS_COMPLETE); 12056 } 12057 12058 /* 12059 * ipsec processing for the fast path, used for input UDP Packets 12060 * Returns true if ready for passup to UDP. 12061 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12062 * was an ESP-in-UDP packet, etc.). 12063 */ 12064 static boolean_t 12065 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12066 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12067 { 12068 uint32_t ill_index; 12069 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12070 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12071 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12072 udp_t *udp = connp->conn_udp; 12073 12074 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12075 /* The ill_index of the incoming ILL */ 12076 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12077 12078 /* pass packet up to the transport */ 12079 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12080 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12081 NULL, mctl_present); 12082 if (*first_mpp == NULL) { 12083 return (B_FALSE); 12084 } 12085 } 12086 12087 /* Initiate IPPF processing for fastpath UDP */ 12088 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12089 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12090 if (*mpp == NULL) { 12091 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12092 "deferred/dropped during IPPF processing\n")); 12093 return (B_FALSE); 12094 } 12095 } 12096 /* 12097 * Remove 0-spi if it's 0, or move everything behind 12098 * the UDP header over it and forward to ESP via 12099 * ip_proto_input(). 12100 */ 12101 if (udp->udp_nat_t_endpoint) { 12102 if (mctl_present) { 12103 /* mctl_present *shouldn't* happen. */ 12104 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12105 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12106 &ipss->ipsec_dropper); 12107 *first_mpp = NULL; 12108 return (B_FALSE); 12109 } 12110 12111 /* "ill" is "recv_ill" in actuality. */ 12112 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12113 return (B_FALSE); 12114 12115 /* Else continue like a normal UDP packet. */ 12116 } 12117 12118 /* 12119 * We make the checks as below since we are in the fast path 12120 * and want to minimize the number of checks if the IP_RECVIF and/or 12121 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12122 */ 12123 if (connp->conn_recvif || connp->conn_recvslla || 12124 connp->conn_ip_recvpktinfo) { 12125 if (connp->conn_recvif) { 12126 in_flags = IPF_RECVIF; 12127 } 12128 /* 12129 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12130 * so the flag passed to ip_add_info is based on IP version 12131 * of connp. 12132 */ 12133 if (connp->conn_ip_recvpktinfo) { 12134 if (connp->conn_af_isv6) { 12135 /* 12136 * V6 only needs index 12137 */ 12138 in_flags |= IPF_RECVIF; 12139 } else { 12140 /* 12141 * V4 needs index + matching address. 12142 */ 12143 in_flags |= IPF_RECVADDR; 12144 } 12145 } 12146 if (connp->conn_recvslla) { 12147 in_flags |= IPF_RECVSLLA; 12148 } 12149 /* 12150 * since in_flags are being set ill will be 12151 * referenced in ip_add_info, so it better not 12152 * be NULL. 12153 */ 12154 /* 12155 * the actual data will be contained in b_cont 12156 * upon successful return of the following call. 12157 * If the call fails then the original mblk is 12158 * returned. 12159 */ 12160 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12161 ipst); 12162 } 12163 12164 return (B_TRUE); 12165 } 12166 12167 /* 12168 * Fragmentation reassembly. Each ILL has a hash table for 12169 * queuing packets undergoing reassembly for all IPIFs 12170 * associated with the ILL. The hash is based on the packet 12171 * IP ident field. The ILL frag hash table was allocated 12172 * as a timer block at the time the ILL was created. Whenever 12173 * there is anything on the reassembly queue, the timer will 12174 * be running. Returns B_TRUE if successful else B_FALSE; 12175 * frees mp on failure. 12176 */ 12177 static boolean_t 12178 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12179 uint32_t *cksum_val, uint16_t *cksum_flags) 12180 { 12181 uint32_t frag_offset_flags; 12182 ill_t *ill = (ill_t *)q->q_ptr; 12183 mblk_t *mp = *mpp; 12184 mblk_t *t_mp; 12185 ipaddr_t dst; 12186 uint8_t proto = ipha->ipha_protocol; 12187 uint32_t sum_val; 12188 uint16_t sum_flags; 12189 ipf_t *ipf; 12190 ipf_t **ipfp; 12191 ipfb_t *ipfb; 12192 uint16_t ident; 12193 uint32_t offset; 12194 ipaddr_t src; 12195 uint_t hdr_length; 12196 uint32_t end; 12197 mblk_t *mp1; 12198 mblk_t *tail_mp; 12199 size_t count; 12200 size_t msg_len; 12201 uint8_t ecn_info = 0; 12202 uint32_t packet_size; 12203 boolean_t pruned = B_FALSE; 12204 ip_stack_t *ipst = ill->ill_ipst; 12205 12206 if (cksum_val != NULL) 12207 *cksum_val = 0; 12208 if (cksum_flags != NULL) 12209 *cksum_flags = 0; 12210 12211 /* 12212 * Drop the fragmented as early as possible, if 12213 * we don't have resource(s) to re-assemble. 12214 */ 12215 if (ipst->ips_ip_reass_queue_bytes == 0) { 12216 freemsg(mp); 12217 return (B_FALSE); 12218 } 12219 12220 /* Check for fragmentation offset; return if there's none */ 12221 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12222 (IPH_MF | IPH_OFFSET)) == 0) 12223 return (B_TRUE); 12224 12225 /* 12226 * We utilize hardware computed checksum info only for UDP since 12227 * IP fragmentation is a normal occurence for the protocol. In 12228 * addition, checksum offload support for IP fragments carrying 12229 * UDP payload is commonly implemented across network adapters. 12230 */ 12231 ASSERT(ill != NULL); 12232 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12233 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12234 mblk_t *mp1 = mp->b_cont; 12235 int32_t len; 12236 12237 /* Record checksum information from the packet */ 12238 sum_val = (uint32_t)DB_CKSUM16(mp); 12239 sum_flags = DB_CKSUMFLAGS(mp); 12240 12241 /* IP payload offset from beginning of mblk */ 12242 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12243 12244 if ((sum_flags & HCK_PARTIALCKSUM) && 12245 (mp1 == NULL || mp1->b_cont == NULL) && 12246 offset >= DB_CKSUMSTART(mp) && 12247 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12248 uint32_t adj; 12249 /* 12250 * Partial checksum has been calculated by hardware 12251 * and attached to the packet; in addition, any 12252 * prepended extraneous data is even byte aligned. 12253 * If any such data exists, we adjust the checksum; 12254 * this would also handle any postpended data. 12255 */ 12256 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12257 mp, mp1, len, adj); 12258 12259 /* One's complement subtract extraneous checksum */ 12260 if (adj >= sum_val) 12261 sum_val = ~(adj - sum_val) & 0xFFFF; 12262 else 12263 sum_val -= adj; 12264 } 12265 } else { 12266 sum_val = 0; 12267 sum_flags = 0; 12268 } 12269 12270 /* Clear hardware checksumming flag */ 12271 DB_CKSUMFLAGS(mp) = 0; 12272 12273 ident = ipha->ipha_ident; 12274 offset = (frag_offset_flags << 3) & 0xFFFF; 12275 src = ipha->ipha_src; 12276 dst = ipha->ipha_dst; 12277 hdr_length = IPH_HDR_LENGTH(ipha); 12278 end = ntohs(ipha->ipha_length) - hdr_length; 12279 12280 /* If end == 0 then we have a packet with no data, so just free it */ 12281 if (end == 0) { 12282 freemsg(mp); 12283 return (B_FALSE); 12284 } 12285 12286 /* Record the ECN field info. */ 12287 ecn_info = (ipha->ipha_type_of_service & 0x3); 12288 if (offset != 0) { 12289 /* 12290 * If this isn't the first piece, strip the header, and 12291 * add the offset to the end value. 12292 */ 12293 mp->b_rptr += hdr_length; 12294 end += offset; 12295 } 12296 12297 msg_len = MBLKSIZE(mp); 12298 tail_mp = mp; 12299 while (tail_mp->b_cont != NULL) { 12300 tail_mp = tail_mp->b_cont; 12301 msg_len += MBLKSIZE(tail_mp); 12302 } 12303 12304 /* If the reassembly list for this ILL will get too big, prune it */ 12305 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12306 ipst->ips_ip_reass_queue_bytes) { 12307 ill_frag_prune(ill, 12308 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12309 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12310 pruned = B_TRUE; 12311 } 12312 12313 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12314 mutex_enter(&ipfb->ipfb_lock); 12315 12316 ipfp = &ipfb->ipfb_ipf; 12317 /* Try to find an existing fragment queue for this packet. */ 12318 for (;;) { 12319 ipf = ipfp[0]; 12320 if (ipf != NULL) { 12321 /* 12322 * It has to match on ident and src/dst address. 12323 */ 12324 if (ipf->ipf_ident == ident && 12325 ipf->ipf_src == src && 12326 ipf->ipf_dst == dst && 12327 ipf->ipf_protocol == proto) { 12328 /* 12329 * If we have received too many 12330 * duplicate fragments for this packet 12331 * free it. 12332 */ 12333 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12334 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12335 freemsg(mp); 12336 mutex_exit(&ipfb->ipfb_lock); 12337 return (B_FALSE); 12338 } 12339 /* Found it. */ 12340 break; 12341 } 12342 ipfp = &ipf->ipf_hash_next; 12343 continue; 12344 } 12345 12346 /* 12347 * If we pruned the list, do we want to store this new 12348 * fragment?. We apply an optimization here based on the 12349 * fact that most fragments will be received in order. 12350 * So if the offset of this incoming fragment is zero, 12351 * it is the first fragment of a new packet. We will 12352 * keep it. Otherwise drop the fragment, as we have 12353 * probably pruned the packet already (since the 12354 * packet cannot be found). 12355 */ 12356 if (pruned && offset != 0) { 12357 mutex_exit(&ipfb->ipfb_lock); 12358 freemsg(mp); 12359 return (B_FALSE); 12360 } 12361 12362 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12363 /* 12364 * Too many fragmented packets in this hash 12365 * bucket. Free the oldest. 12366 */ 12367 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12368 } 12369 12370 /* New guy. Allocate a frag message. */ 12371 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12372 if (mp1 == NULL) { 12373 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12374 freemsg(mp); 12375 reass_done: 12376 mutex_exit(&ipfb->ipfb_lock); 12377 return (B_FALSE); 12378 } 12379 12380 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12381 mp1->b_cont = mp; 12382 12383 /* Initialize the fragment header. */ 12384 ipf = (ipf_t *)mp1->b_rptr; 12385 ipf->ipf_mp = mp1; 12386 ipf->ipf_ptphn = ipfp; 12387 ipfp[0] = ipf; 12388 ipf->ipf_hash_next = NULL; 12389 ipf->ipf_ident = ident; 12390 ipf->ipf_protocol = proto; 12391 ipf->ipf_src = src; 12392 ipf->ipf_dst = dst; 12393 ipf->ipf_nf_hdr_len = 0; 12394 /* Record reassembly start time. */ 12395 ipf->ipf_timestamp = gethrestime_sec(); 12396 /* Record ipf generation and account for frag header */ 12397 ipf->ipf_gen = ill->ill_ipf_gen++; 12398 ipf->ipf_count = MBLKSIZE(mp1); 12399 ipf->ipf_last_frag_seen = B_FALSE; 12400 ipf->ipf_ecn = ecn_info; 12401 ipf->ipf_num_dups = 0; 12402 ipfb->ipfb_frag_pkts++; 12403 ipf->ipf_checksum = 0; 12404 ipf->ipf_checksum_flags = 0; 12405 12406 /* Store checksum value in fragment header */ 12407 if (sum_flags != 0) { 12408 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12409 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12410 ipf->ipf_checksum = sum_val; 12411 ipf->ipf_checksum_flags = sum_flags; 12412 } 12413 12414 /* 12415 * We handle reassembly two ways. In the easy case, 12416 * where all the fragments show up in order, we do 12417 * minimal bookkeeping, and just clip new pieces on 12418 * the end. If we ever see a hole, then we go off 12419 * to ip_reassemble which has to mark the pieces and 12420 * keep track of the number of holes, etc. Obviously, 12421 * the point of having both mechanisms is so we can 12422 * handle the easy case as efficiently as possible. 12423 */ 12424 if (offset == 0) { 12425 /* Easy case, in-order reassembly so far. */ 12426 ipf->ipf_count += msg_len; 12427 ipf->ipf_tail_mp = tail_mp; 12428 /* 12429 * Keep track of next expected offset in 12430 * ipf_end. 12431 */ 12432 ipf->ipf_end = end; 12433 ipf->ipf_nf_hdr_len = hdr_length; 12434 } else { 12435 /* Hard case, hole at the beginning. */ 12436 ipf->ipf_tail_mp = NULL; 12437 /* 12438 * ipf_end == 0 means that we have given up 12439 * on easy reassembly. 12440 */ 12441 ipf->ipf_end = 0; 12442 12443 /* Forget checksum offload from now on */ 12444 ipf->ipf_checksum_flags = 0; 12445 12446 /* 12447 * ipf_hole_cnt is set by ip_reassemble. 12448 * ipf_count is updated by ip_reassemble. 12449 * No need to check for return value here 12450 * as we don't expect reassembly to complete 12451 * or fail for the first fragment itself. 12452 */ 12453 (void) ip_reassemble(mp, ipf, 12454 (frag_offset_flags & IPH_OFFSET) << 3, 12455 (frag_offset_flags & IPH_MF), ill, msg_len); 12456 } 12457 /* Update per ipfb and ill byte counts */ 12458 ipfb->ipfb_count += ipf->ipf_count; 12459 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12460 ill->ill_frag_count += ipf->ipf_count; 12461 /* If the frag timer wasn't already going, start it. */ 12462 mutex_enter(&ill->ill_lock); 12463 ill_frag_timer_start(ill); 12464 mutex_exit(&ill->ill_lock); 12465 goto reass_done; 12466 } 12467 12468 /* 12469 * If the packet's flag has changed (it could be coming up 12470 * from an interface different than the previous, therefore 12471 * possibly different checksum capability), then forget about 12472 * any stored checksum states. Otherwise add the value to 12473 * the existing one stored in the fragment header. 12474 */ 12475 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12476 sum_val += ipf->ipf_checksum; 12477 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12478 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12479 ipf->ipf_checksum = sum_val; 12480 } else if (ipf->ipf_checksum_flags != 0) { 12481 /* Forget checksum offload from now on */ 12482 ipf->ipf_checksum_flags = 0; 12483 } 12484 12485 /* 12486 * We have a new piece of a datagram which is already being 12487 * reassembled. Update the ECN info if all IP fragments 12488 * are ECN capable. If there is one which is not, clear 12489 * all the info. If there is at least one which has CE 12490 * code point, IP needs to report that up to transport. 12491 */ 12492 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12493 if (ecn_info == IPH_ECN_CE) 12494 ipf->ipf_ecn = IPH_ECN_CE; 12495 } else { 12496 ipf->ipf_ecn = IPH_ECN_NECT; 12497 } 12498 if (offset && ipf->ipf_end == offset) { 12499 /* The new fragment fits at the end */ 12500 ipf->ipf_tail_mp->b_cont = mp; 12501 /* Update the byte count */ 12502 ipf->ipf_count += msg_len; 12503 /* Update per ipfb and ill byte counts */ 12504 ipfb->ipfb_count += msg_len; 12505 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12506 ill->ill_frag_count += msg_len; 12507 if (frag_offset_flags & IPH_MF) { 12508 /* More to come. */ 12509 ipf->ipf_end = end; 12510 ipf->ipf_tail_mp = tail_mp; 12511 goto reass_done; 12512 } 12513 } else { 12514 /* Go do the hard cases. */ 12515 int ret; 12516 12517 if (offset == 0) 12518 ipf->ipf_nf_hdr_len = hdr_length; 12519 12520 /* Save current byte count */ 12521 count = ipf->ipf_count; 12522 ret = ip_reassemble(mp, ipf, 12523 (frag_offset_flags & IPH_OFFSET) << 3, 12524 (frag_offset_flags & IPH_MF), ill, msg_len); 12525 /* Count of bytes added and subtracted (freeb()ed) */ 12526 count = ipf->ipf_count - count; 12527 if (count) { 12528 /* Update per ipfb and ill byte counts */ 12529 ipfb->ipfb_count += count; 12530 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12531 ill->ill_frag_count += count; 12532 } 12533 if (ret == IP_REASS_PARTIAL) { 12534 goto reass_done; 12535 } else if (ret == IP_REASS_FAILED) { 12536 /* Reassembly failed. Free up all resources */ 12537 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12538 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12539 IP_REASS_SET_START(t_mp, 0); 12540 IP_REASS_SET_END(t_mp, 0); 12541 } 12542 freemsg(mp); 12543 goto reass_done; 12544 } 12545 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12546 } 12547 /* 12548 * We have completed reassembly. Unhook the frag header from 12549 * the reassembly list. 12550 * 12551 * Before we free the frag header, record the ECN info 12552 * to report back to the transport. 12553 */ 12554 ecn_info = ipf->ipf_ecn; 12555 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12556 ipfp = ipf->ipf_ptphn; 12557 12558 /* We need to supply these to caller */ 12559 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12560 sum_val = ipf->ipf_checksum; 12561 else 12562 sum_val = 0; 12563 12564 mp1 = ipf->ipf_mp; 12565 count = ipf->ipf_count; 12566 ipf = ipf->ipf_hash_next; 12567 if (ipf != NULL) 12568 ipf->ipf_ptphn = ipfp; 12569 ipfp[0] = ipf; 12570 ill->ill_frag_count -= count; 12571 ASSERT(ipfb->ipfb_count >= count); 12572 ipfb->ipfb_count -= count; 12573 ipfb->ipfb_frag_pkts--; 12574 mutex_exit(&ipfb->ipfb_lock); 12575 /* Ditch the frag header. */ 12576 mp = mp1->b_cont; 12577 12578 freeb(mp1); 12579 12580 /* Restore original IP length in header. */ 12581 packet_size = (uint32_t)msgdsize(mp); 12582 if (packet_size > IP_MAXPACKET) { 12583 freemsg(mp); 12584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12585 return (B_FALSE); 12586 } 12587 12588 if (DB_REF(mp) > 1) { 12589 mblk_t *mp2 = copymsg(mp); 12590 12591 freemsg(mp); 12592 if (mp2 == NULL) { 12593 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12594 return (B_FALSE); 12595 } 12596 mp = mp2; 12597 } 12598 ipha = (ipha_t *)mp->b_rptr; 12599 12600 ipha->ipha_length = htons((uint16_t)packet_size); 12601 /* We're now complete, zip the frag state */ 12602 ipha->ipha_fragment_offset_and_flags = 0; 12603 /* Record the ECN info. */ 12604 ipha->ipha_type_of_service &= 0xFC; 12605 ipha->ipha_type_of_service |= ecn_info; 12606 *mpp = mp; 12607 12608 /* Reassembly is successful; return checksum information if needed */ 12609 if (cksum_val != NULL) 12610 *cksum_val = sum_val; 12611 if (cksum_flags != NULL) 12612 *cksum_flags = sum_flags; 12613 12614 return (B_TRUE); 12615 } 12616 12617 /* 12618 * Perform ip header check sum update local options. 12619 * return B_TRUE if all is well, else return B_FALSE and release 12620 * the mp. caller is responsible for decrementing ire ref cnt. 12621 */ 12622 static boolean_t 12623 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12624 ip_stack_t *ipst) 12625 { 12626 mblk_t *first_mp; 12627 boolean_t mctl_present; 12628 uint16_t sum; 12629 12630 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12631 /* 12632 * Don't do the checksum if it has gone through AH/ESP 12633 * processing. 12634 */ 12635 if (!mctl_present) { 12636 sum = ip_csum_hdr(ipha); 12637 if (sum != 0) { 12638 if (ill != NULL) { 12639 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12640 } else { 12641 BUMP_MIB(&ipst->ips_ip_mib, 12642 ipIfStatsInCksumErrs); 12643 } 12644 freemsg(first_mp); 12645 return (B_FALSE); 12646 } 12647 } 12648 12649 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12650 if (mctl_present) 12651 freeb(first_mp); 12652 return (B_FALSE); 12653 } 12654 12655 return (B_TRUE); 12656 } 12657 12658 /* 12659 * All udp packet are delivered to the local host via this routine. 12660 */ 12661 void 12662 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12663 ill_t *recv_ill) 12664 { 12665 uint32_t sum; 12666 uint32_t u1; 12667 boolean_t mctl_present; 12668 conn_t *connp; 12669 mblk_t *first_mp; 12670 uint16_t *up; 12671 ill_t *ill = (ill_t *)q->q_ptr; 12672 uint16_t reass_hck_flags = 0; 12673 ip_stack_t *ipst; 12674 12675 ASSERT(recv_ill != NULL); 12676 ipst = recv_ill->ill_ipst; 12677 12678 #define rptr ((uchar_t *)ipha) 12679 12680 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12681 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12682 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12683 ASSERT(ill != NULL); 12684 12685 /* 12686 * FAST PATH for udp packets 12687 */ 12688 12689 /* u1 is # words of IP options */ 12690 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12691 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12692 12693 /* IP options present */ 12694 if (u1 != 0) 12695 goto ipoptions; 12696 12697 /* Check the IP header checksum. */ 12698 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12699 /* Clear the IP header h/w cksum flag */ 12700 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12701 } else if (!mctl_present) { 12702 /* 12703 * Don't verify header checksum if this packet is coming 12704 * back from AH/ESP as we already did it. 12705 */ 12706 #define uph ((uint16_t *)ipha) 12707 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12708 uph[6] + uph[7] + uph[8] + uph[9]; 12709 #undef uph 12710 /* finish doing IP checksum */ 12711 sum = (sum & 0xFFFF) + (sum >> 16); 12712 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12713 if (sum != 0 && sum != 0xFFFF) { 12714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12715 freemsg(first_mp); 12716 return; 12717 } 12718 } 12719 12720 /* 12721 * Count for SNMP of inbound packets for ire. 12722 * if mctl is present this might be a secure packet and 12723 * has already been counted for in ip_proto_input(). 12724 */ 12725 if (!mctl_present) { 12726 UPDATE_IB_PKT_COUNT(ire); 12727 ire->ire_last_used_time = lbolt; 12728 } 12729 12730 /* packet part of fragmented IP packet? */ 12731 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12732 if (u1 & (IPH_MF | IPH_OFFSET)) { 12733 goto fragmented; 12734 } 12735 12736 /* u1 = IP header length (20 bytes) */ 12737 u1 = IP_SIMPLE_HDR_LENGTH; 12738 12739 /* packet does not contain complete IP & UDP headers */ 12740 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12741 goto udppullup; 12742 12743 /* up points to UDP header */ 12744 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12745 #define iphs ((uint16_t *)ipha) 12746 12747 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12748 if (up[3] != 0) { 12749 mblk_t *mp1 = mp->b_cont; 12750 boolean_t cksum_err; 12751 uint16_t hck_flags = 0; 12752 12753 /* Pseudo-header checksum */ 12754 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12755 iphs[9] + up[2]; 12756 12757 /* 12758 * Revert to software checksum calculation if the interface 12759 * isn't capable of checksum offload or if IPsec is present. 12760 */ 12761 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12762 hck_flags = DB_CKSUMFLAGS(mp); 12763 12764 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12765 IP_STAT(ipst, ip_in_sw_cksum); 12766 12767 IP_CKSUM_RECV(hck_flags, u1, 12768 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12769 (int32_t)((uchar_t *)up - rptr), 12770 mp, mp1, cksum_err); 12771 12772 if (cksum_err) { 12773 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12774 if (hck_flags & HCK_FULLCKSUM) 12775 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12776 else if (hck_flags & HCK_PARTIALCKSUM) 12777 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12778 else 12779 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12780 12781 freemsg(first_mp); 12782 return; 12783 } 12784 } 12785 12786 /* Non-fragmented broadcast or multicast packet? */ 12787 if (ire->ire_type == IRE_BROADCAST) 12788 goto udpslowpath; 12789 12790 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12791 ire->ire_zoneid, ipst)) != NULL) { 12792 ASSERT(connp->conn_upq != NULL); 12793 IP_STAT(ipst, ip_udp_fast_path); 12794 12795 if (CONN_UDP_FLOWCTLD(connp)) { 12796 freemsg(mp); 12797 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12798 } else { 12799 if (!mctl_present) { 12800 BUMP_MIB(ill->ill_ip_mib, 12801 ipIfStatsHCInDelivers); 12802 } 12803 /* 12804 * mp and first_mp can change. 12805 */ 12806 if (ip_udp_check(q, connp, recv_ill, 12807 ipha, &mp, &first_mp, mctl_present, ire)) { 12808 /* Send it upstream */ 12809 (connp->conn_recv)(connp, mp, NULL); 12810 } 12811 } 12812 /* 12813 * freeb() cannot deal with null mblk being passed 12814 * in and first_mp can be set to null in the call 12815 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12816 */ 12817 if (mctl_present && first_mp != NULL) { 12818 freeb(first_mp); 12819 } 12820 CONN_DEC_REF(connp); 12821 return; 12822 } 12823 12824 /* 12825 * if we got here we know the packet is not fragmented and 12826 * has no options. The classifier could not find a conn_t and 12827 * most likely its an icmp packet so send it through slow path. 12828 */ 12829 12830 goto udpslowpath; 12831 12832 ipoptions: 12833 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12834 goto slow_done; 12835 } 12836 12837 UPDATE_IB_PKT_COUNT(ire); 12838 ire->ire_last_used_time = lbolt; 12839 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12840 if (u1 & (IPH_MF | IPH_OFFSET)) { 12841 fragmented: 12842 /* 12843 * "sum" and "reass_hck_flags" are non-zero if the 12844 * reassembled packet has a valid hardware computed 12845 * checksum information associated with it. 12846 */ 12847 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12848 goto slow_done; 12849 /* 12850 * Make sure that first_mp points back to mp as 12851 * the mp we came in with could have changed in 12852 * ip_rput_fragment(). 12853 */ 12854 ASSERT(!mctl_present); 12855 ipha = (ipha_t *)mp->b_rptr; 12856 first_mp = mp; 12857 } 12858 12859 /* Now we have a complete datagram, destined for this machine. */ 12860 u1 = IPH_HDR_LENGTH(ipha); 12861 /* Pull up the UDP header, if necessary. */ 12862 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12863 udppullup: 12864 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12865 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12866 freemsg(first_mp); 12867 goto slow_done; 12868 } 12869 ipha = (ipha_t *)mp->b_rptr; 12870 } 12871 12872 /* 12873 * Validate the checksum for the reassembled packet; for the 12874 * pullup case we calculate the payload checksum in software. 12875 */ 12876 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12877 if (up[3] != 0) { 12878 boolean_t cksum_err; 12879 12880 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12881 IP_STAT(ipst, ip_in_sw_cksum); 12882 12883 IP_CKSUM_RECV_REASS(reass_hck_flags, 12884 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12885 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12886 iphs[9] + up[2], sum, cksum_err); 12887 12888 if (cksum_err) { 12889 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12890 12891 if (reass_hck_flags & HCK_FULLCKSUM) 12892 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12893 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12894 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12895 else 12896 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12897 12898 freemsg(first_mp); 12899 goto slow_done; 12900 } 12901 } 12902 udpslowpath: 12903 12904 /* Clear hardware checksum flag to be safe */ 12905 DB_CKSUMFLAGS(mp) = 0; 12906 12907 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12908 (ire->ire_type == IRE_BROADCAST), 12909 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12910 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12911 12912 slow_done: 12913 IP_STAT(ipst, ip_udp_slow_path); 12914 return; 12915 12916 #undef iphs 12917 #undef rptr 12918 } 12919 12920 /* ARGSUSED */ 12921 static mblk_t * 12922 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12923 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12924 ill_rx_ring_t *ill_ring) 12925 { 12926 conn_t *connp; 12927 uint32_t sum; 12928 uint32_t u1; 12929 uint16_t *up; 12930 int offset; 12931 ssize_t len; 12932 mblk_t *mp1; 12933 boolean_t syn_present = B_FALSE; 12934 tcph_t *tcph; 12935 uint_t ip_hdr_len; 12936 ill_t *ill = (ill_t *)q->q_ptr; 12937 zoneid_t zoneid = ire->ire_zoneid; 12938 boolean_t cksum_err; 12939 uint16_t hck_flags = 0; 12940 ip_stack_t *ipst = recv_ill->ill_ipst; 12941 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12942 12943 #define rptr ((uchar_t *)ipha) 12944 12945 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12946 ASSERT(ill != NULL); 12947 12948 /* 12949 * FAST PATH for tcp packets 12950 */ 12951 12952 /* u1 is # words of IP options */ 12953 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12954 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12955 12956 /* IP options present */ 12957 if (u1) { 12958 goto ipoptions; 12959 } else if (!mctl_present) { 12960 /* Check the IP header checksum. */ 12961 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12962 /* Clear the IP header h/w cksum flag */ 12963 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12964 } else if (!mctl_present) { 12965 /* 12966 * Don't verify header checksum if this packet 12967 * is coming back from AH/ESP as we already did it. 12968 */ 12969 #define uph ((uint16_t *)ipha) 12970 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12971 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12972 #undef uph 12973 /* finish doing IP checksum */ 12974 sum = (sum & 0xFFFF) + (sum >> 16); 12975 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12976 if (sum != 0 && sum != 0xFFFF) { 12977 BUMP_MIB(ill->ill_ip_mib, 12978 ipIfStatsInCksumErrs); 12979 goto error; 12980 } 12981 } 12982 } 12983 12984 if (!mctl_present) { 12985 UPDATE_IB_PKT_COUNT(ire); 12986 ire->ire_last_used_time = lbolt; 12987 } 12988 12989 /* packet part of fragmented IP packet? */ 12990 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12991 if (u1 & (IPH_MF | IPH_OFFSET)) { 12992 goto fragmented; 12993 } 12994 12995 /* u1 = IP header length (20 bytes) */ 12996 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12997 12998 /* does packet contain IP+TCP headers? */ 12999 len = mp->b_wptr - rptr; 13000 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13001 IP_STAT(ipst, ip_tcppullup); 13002 goto tcppullup; 13003 } 13004 13005 /* TCP options present? */ 13006 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13007 13008 /* 13009 * If options need to be pulled up, then goto tcpoptions. 13010 * otherwise we are still in the fast path 13011 */ 13012 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13013 IP_STAT(ipst, ip_tcpoptions); 13014 goto tcpoptions; 13015 } 13016 13017 /* multiple mblks of tcp data? */ 13018 if ((mp1 = mp->b_cont) != NULL) { 13019 /* more then two? */ 13020 if (mp1->b_cont != NULL) { 13021 IP_STAT(ipst, ip_multipkttcp); 13022 goto multipkttcp; 13023 } 13024 len += mp1->b_wptr - mp1->b_rptr; 13025 } 13026 13027 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13028 13029 /* part of pseudo checksum */ 13030 13031 /* TCP datagram length */ 13032 u1 = len - IP_SIMPLE_HDR_LENGTH; 13033 13034 #define iphs ((uint16_t *)ipha) 13035 13036 #ifdef _BIG_ENDIAN 13037 u1 += IPPROTO_TCP; 13038 #else 13039 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13040 #endif 13041 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13042 13043 /* 13044 * Revert to software checksum calculation if the interface 13045 * isn't capable of checksum offload or if IPsec is present. 13046 */ 13047 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13048 hck_flags = DB_CKSUMFLAGS(mp); 13049 13050 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13051 IP_STAT(ipst, ip_in_sw_cksum); 13052 13053 IP_CKSUM_RECV(hck_flags, u1, 13054 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13055 (int32_t)((uchar_t *)up - rptr), 13056 mp, mp1, cksum_err); 13057 13058 if (cksum_err) { 13059 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13060 13061 if (hck_flags & HCK_FULLCKSUM) 13062 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13063 else if (hck_flags & HCK_PARTIALCKSUM) 13064 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13065 else 13066 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13067 13068 goto error; 13069 } 13070 13071 try_again: 13072 13073 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13074 zoneid, ipst)) == NULL) { 13075 /* Send the TH_RST */ 13076 goto no_conn; 13077 } 13078 13079 /* 13080 * TCP FAST PATH for AF_INET socket. 13081 * 13082 * TCP fast path to avoid extra work. An AF_INET socket type 13083 * does not have facility to receive extra information via 13084 * ip_process or ip_add_info. Also, when the connection was 13085 * established, we made a check if this connection is impacted 13086 * by any global IPsec policy or per connection policy (a 13087 * policy that comes in effect later will not apply to this 13088 * connection). Since all this can be determined at the 13089 * connection establishment time, a quick check of flags 13090 * can avoid extra work. 13091 */ 13092 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13093 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13094 ASSERT(first_mp == mp); 13095 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13096 SET_SQUEUE(mp, tcp_rput_data, connp); 13097 return (mp); 13098 } 13099 13100 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13101 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13102 if (IPCL_IS_TCP(connp)) { 13103 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13104 DB_CKSUMSTART(mp) = 13105 (intptr_t)ip_squeue_get(ill_ring); 13106 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13107 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13108 BUMP_MIB(ill->ill_ip_mib, 13109 ipIfStatsHCInDelivers); 13110 SET_SQUEUE(mp, connp->conn_recv, connp); 13111 return (mp); 13112 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13113 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13114 BUMP_MIB(ill->ill_ip_mib, 13115 ipIfStatsHCInDelivers); 13116 ip_squeue_enter_unbound++; 13117 SET_SQUEUE(mp, tcp_conn_request_unbound, 13118 connp); 13119 return (mp); 13120 } 13121 syn_present = B_TRUE; 13122 } 13123 13124 } 13125 13126 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13127 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13128 13129 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13130 /* No need to send this packet to TCP */ 13131 if ((flags & TH_RST) || (flags & TH_URG)) { 13132 CONN_DEC_REF(connp); 13133 freemsg(first_mp); 13134 return (NULL); 13135 } 13136 if (flags & TH_ACK) { 13137 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13138 ipst->ips_netstack->netstack_tcp, connp); 13139 CONN_DEC_REF(connp); 13140 return (NULL); 13141 } 13142 13143 CONN_DEC_REF(connp); 13144 freemsg(first_mp); 13145 return (NULL); 13146 } 13147 13148 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13149 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13150 ipha, NULL, mctl_present); 13151 if (first_mp == NULL) { 13152 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13153 CONN_DEC_REF(connp); 13154 return (NULL); 13155 } 13156 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13157 ASSERT(syn_present); 13158 if (mctl_present) { 13159 ASSERT(first_mp != mp); 13160 first_mp->b_datap->db_struioflag |= 13161 STRUIO_POLICY; 13162 } else { 13163 ASSERT(first_mp == mp); 13164 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13165 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13166 } 13167 } else { 13168 /* 13169 * Discard first_mp early since we're dealing with a 13170 * fully-connected conn_t and tcp doesn't do policy in 13171 * this case. 13172 */ 13173 if (mctl_present) { 13174 freeb(first_mp); 13175 mctl_present = B_FALSE; 13176 } 13177 first_mp = mp; 13178 } 13179 } 13180 13181 /* Initiate IPPF processing for fastpath */ 13182 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13183 uint32_t ill_index; 13184 13185 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13186 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13187 if (mp == NULL) { 13188 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13189 "deferred/dropped during IPPF processing\n")); 13190 CONN_DEC_REF(connp); 13191 if (mctl_present) 13192 freeb(first_mp); 13193 return (NULL); 13194 } else if (mctl_present) { 13195 /* 13196 * ip_process might return a new mp. 13197 */ 13198 ASSERT(first_mp != mp); 13199 first_mp->b_cont = mp; 13200 } else { 13201 first_mp = mp; 13202 } 13203 13204 } 13205 13206 if (!syn_present && connp->conn_ip_recvpktinfo) { 13207 /* 13208 * TCP does not support IP_RECVPKTINFO for v4 so lets 13209 * make sure IPF_RECVIF is passed to ip_add_info. 13210 */ 13211 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13212 IPCL_ZONEID(connp), ipst); 13213 if (mp == NULL) { 13214 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13215 CONN_DEC_REF(connp); 13216 if (mctl_present) 13217 freeb(first_mp); 13218 return (NULL); 13219 } else if (mctl_present) { 13220 /* 13221 * ip_add_info might return a new mp. 13222 */ 13223 ASSERT(first_mp != mp); 13224 first_mp->b_cont = mp; 13225 } else { 13226 first_mp = mp; 13227 } 13228 } 13229 13230 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13231 if (IPCL_IS_TCP(connp)) { 13232 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13233 return (first_mp); 13234 } else { 13235 /* SOCK_RAW, IPPROTO_TCP case */ 13236 (connp->conn_recv)(connp, first_mp, NULL); 13237 CONN_DEC_REF(connp); 13238 return (NULL); 13239 } 13240 13241 no_conn: 13242 /* Initiate IPPf processing, if needed. */ 13243 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13244 uint32_t ill_index; 13245 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13246 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13247 if (first_mp == NULL) { 13248 return (NULL); 13249 } 13250 } 13251 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13252 13253 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13254 ipst->ips_netstack->netstack_tcp, NULL); 13255 return (NULL); 13256 ipoptions: 13257 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13258 goto slow_done; 13259 } 13260 13261 UPDATE_IB_PKT_COUNT(ire); 13262 ire->ire_last_used_time = lbolt; 13263 13264 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13265 if (u1 & (IPH_MF | IPH_OFFSET)) { 13266 fragmented: 13267 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13268 if (mctl_present) 13269 freeb(first_mp); 13270 goto slow_done; 13271 } 13272 /* 13273 * Make sure that first_mp points back to mp as 13274 * the mp we came in with could have changed in 13275 * ip_rput_fragment(). 13276 */ 13277 ASSERT(!mctl_present); 13278 ipha = (ipha_t *)mp->b_rptr; 13279 first_mp = mp; 13280 } 13281 13282 /* Now we have a complete datagram, destined for this machine. */ 13283 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13284 13285 len = mp->b_wptr - mp->b_rptr; 13286 /* Pull up a minimal TCP header, if necessary. */ 13287 if (len < (u1 + 20)) { 13288 tcppullup: 13289 if (!pullupmsg(mp, u1 + 20)) { 13290 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13291 goto error; 13292 } 13293 ipha = (ipha_t *)mp->b_rptr; 13294 len = mp->b_wptr - mp->b_rptr; 13295 } 13296 13297 /* 13298 * Extract the offset field from the TCP header. As usual, we 13299 * try to help the compiler more than the reader. 13300 */ 13301 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13302 if (offset != 5) { 13303 tcpoptions: 13304 if (offset < 5) { 13305 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13306 goto error; 13307 } 13308 /* 13309 * There must be TCP options. 13310 * Make sure we can grab them. 13311 */ 13312 offset <<= 2; 13313 offset += u1; 13314 if (len < offset) { 13315 if (!pullupmsg(mp, offset)) { 13316 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13317 goto error; 13318 } 13319 ipha = (ipha_t *)mp->b_rptr; 13320 len = mp->b_wptr - rptr; 13321 } 13322 } 13323 13324 /* Get the total packet length in len, including headers. */ 13325 if (mp->b_cont) { 13326 multipkttcp: 13327 len = msgdsize(mp); 13328 } 13329 13330 /* 13331 * Check the TCP checksum by pulling together the pseudo- 13332 * header checksum, and passing it to ip_csum to be added in 13333 * with the TCP datagram. 13334 * 13335 * Since we are not using the hwcksum if available we must 13336 * clear the flag. We may come here via tcppullup or tcpoptions. 13337 * If either of these fails along the way the mblk is freed. 13338 * If this logic ever changes and mblk is reused to say send 13339 * ICMP's back, then this flag may need to be cleared in 13340 * other places as well. 13341 */ 13342 DB_CKSUMFLAGS(mp) = 0; 13343 13344 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13345 13346 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13347 #ifdef _BIG_ENDIAN 13348 u1 += IPPROTO_TCP; 13349 #else 13350 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13351 #endif 13352 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13353 /* 13354 * Not M_DATA mblk or its a dup, so do the checksum now. 13355 */ 13356 IP_STAT(ipst, ip_in_sw_cksum); 13357 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13358 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13359 goto error; 13360 } 13361 13362 IP_STAT(ipst, ip_tcp_slow_path); 13363 goto try_again; 13364 #undef iphs 13365 #undef rptr 13366 13367 error: 13368 freemsg(first_mp); 13369 slow_done: 13370 return (NULL); 13371 } 13372 13373 /* ARGSUSED */ 13374 static void 13375 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13376 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13377 { 13378 conn_t *connp; 13379 uint32_t sum; 13380 uint32_t u1; 13381 ssize_t len; 13382 sctp_hdr_t *sctph; 13383 zoneid_t zoneid = ire->ire_zoneid; 13384 uint32_t pktsum; 13385 uint32_t calcsum; 13386 uint32_t ports; 13387 in6_addr_t map_src, map_dst; 13388 ill_t *ill = (ill_t *)q->q_ptr; 13389 ip_stack_t *ipst; 13390 sctp_stack_t *sctps; 13391 13392 ASSERT(recv_ill != NULL); 13393 ipst = recv_ill->ill_ipst; 13394 sctps = ipst->ips_netstack->netstack_sctp; 13395 13396 #define rptr ((uchar_t *)ipha) 13397 13398 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13399 ASSERT(ill != NULL); 13400 13401 /* u1 is # words of IP options */ 13402 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13403 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13404 13405 /* IP options present */ 13406 if (u1 > 0) { 13407 goto ipoptions; 13408 } else { 13409 /* Check the IP header checksum. */ 13410 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13411 !mctl_present) { 13412 #define uph ((uint16_t *)ipha) 13413 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13414 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13415 #undef uph 13416 /* finish doing IP checksum */ 13417 sum = (sum & 0xFFFF) + (sum >> 16); 13418 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13419 /* 13420 * Don't verify header checksum if this packet 13421 * is coming back from AH/ESP as we already did it. 13422 */ 13423 if (sum != 0 && sum != 0xFFFF) { 13424 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13425 goto error; 13426 } 13427 } 13428 /* 13429 * Since there is no SCTP h/w cksum support yet, just 13430 * clear the flag. 13431 */ 13432 DB_CKSUMFLAGS(mp) = 0; 13433 } 13434 13435 /* 13436 * Don't verify header checksum if this packet is coming 13437 * back from AH/ESP as we already did it. 13438 */ 13439 if (!mctl_present) { 13440 UPDATE_IB_PKT_COUNT(ire); 13441 ire->ire_last_used_time = lbolt; 13442 } 13443 13444 /* packet part of fragmented IP packet? */ 13445 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13446 if (u1 & (IPH_MF | IPH_OFFSET)) 13447 goto fragmented; 13448 13449 /* u1 = IP header length (20 bytes) */ 13450 u1 = IP_SIMPLE_HDR_LENGTH; 13451 13452 find_sctp_client: 13453 /* Pullup if we don't have the sctp common header. */ 13454 len = MBLKL(mp); 13455 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13456 if (mp->b_cont == NULL || 13457 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13458 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13459 goto error; 13460 } 13461 ipha = (ipha_t *)mp->b_rptr; 13462 len = MBLKL(mp); 13463 } 13464 13465 sctph = (sctp_hdr_t *)(rptr + u1); 13466 #ifdef DEBUG 13467 if (!skip_sctp_cksum) { 13468 #endif 13469 pktsum = sctph->sh_chksum; 13470 sctph->sh_chksum = 0; 13471 calcsum = sctp_cksum(mp, u1); 13472 if (calcsum != pktsum) { 13473 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13474 goto error; 13475 } 13476 sctph->sh_chksum = pktsum; 13477 #ifdef DEBUG /* skip_sctp_cksum */ 13478 } 13479 #endif 13480 /* get the ports */ 13481 ports = *(uint32_t *)&sctph->sh_sport; 13482 13483 IRE_REFRELE(ire); 13484 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13485 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13486 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13487 sctps)) == NULL) { 13488 /* Check for raw socket or OOTB handling */ 13489 goto no_conn; 13490 } 13491 13492 /* Found a client; up it goes */ 13493 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13494 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13495 return; 13496 13497 no_conn: 13498 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13499 ports, mctl_present, flags, B_TRUE, zoneid); 13500 return; 13501 13502 ipoptions: 13503 DB_CKSUMFLAGS(mp) = 0; 13504 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13505 goto slow_done; 13506 13507 UPDATE_IB_PKT_COUNT(ire); 13508 ire->ire_last_used_time = lbolt; 13509 13510 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13511 if (u1 & (IPH_MF | IPH_OFFSET)) { 13512 fragmented: 13513 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13514 goto slow_done; 13515 /* 13516 * Make sure that first_mp points back to mp as 13517 * the mp we came in with could have changed in 13518 * ip_rput_fragment(). 13519 */ 13520 ASSERT(!mctl_present); 13521 ipha = (ipha_t *)mp->b_rptr; 13522 first_mp = mp; 13523 } 13524 13525 /* Now we have a complete datagram, destined for this machine. */ 13526 u1 = IPH_HDR_LENGTH(ipha); 13527 goto find_sctp_client; 13528 #undef iphs 13529 #undef rptr 13530 13531 error: 13532 freemsg(first_mp); 13533 slow_done: 13534 IRE_REFRELE(ire); 13535 } 13536 13537 #define VER_BITS 0xF0 13538 #define VERSION_6 0x60 13539 13540 static boolean_t 13541 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13542 ipaddr_t *dstp, ip_stack_t *ipst) 13543 { 13544 uint_t opt_len; 13545 ipha_t *ipha; 13546 ssize_t len; 13547 uint_t pkt_len; 13548 13549 ASSERT(ill != NULL); 13550 IP_STAT(ipst, ip_ipoptions); 13551 ipha = *iphapp; 13552 13553 #define rptr ((uchar_t *)ipha) 13554 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13555 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13556 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13557 freemsg(mp); 13558 return (B_FALSE); 13559 } 13560 13561 /* multiple mblk or too short */ 13562 pkt_len = ntohs(ipha->ipha_length); 13563 13564 /* Get the number of words of IP options in the IP header. */ 13565 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13566 if (opt_len) { 13567 /* IP Options present! Validate and process. */ 13568 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13569 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13570 goto done; 13571 } 13572 /* 13573 * Recompute complete header length and make sure we 13574 * have access to all of it. 13575 */ 13576 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13577 if (len > (mp->b_wptr - rptr)) { 13578 if (len > pkt_len) { 13579 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13580 goto done; 13581 } 13582 if (!pullupmsg(mp, len)) { 13583 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13584 goto done; 13585 } 13586 ipha = (ipha_t *)mp->b_rptr; 13587 } 13588 /* 13589 * Go off to ip_rput_options which returns the next hop 13590 * destination address, which may have been affected 13591 * by source routing. 13592 */ 13593 IP_STAT(ipst, ip_opt); 13594 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13595 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13596 return (B_FALSE); 13597 } 13598 } 13599 *iphapp = ipha; 13600 return (B_TRUE); 13601 done: 13602 /* clear b_prev - used by ip_mroute_decap */ 13603 mp->b_prev = NULL; 13604 freemsg(mp); 13605 return (B_FALSE); 13606 #undef rptr 13607 } 13608 13609 /* 13610 * Deal with the fact that there is no ire for the destination. 13611 */ 13612 static ire_t * 13613 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13614 { 13615 ipha_t *ipha; 13616 ill_t *ill; 13617 ire_t *ire; 13618 boolean_t check_multirt = B_FALSE; 13619 ip_stack_t *ipst; 13620 13621 ipha = (ipha_t *)mp->b_rptr; 13622 ill = (ill_t *)q->q_ptr; 13623 13624 ASSERT(ill != NULL); 13625 ipst = ill->ill_ipst; 13626 13627 /* 13628 * No IRE for this destination, so it can't be for us. 13629 * Unless we are forwarding, drop the packet. 13630 * We have to let source routed packets through 13631 * since we don't yet know if they are 'ping -l' 13632 * packets i.e. if they will go out over the 13633 * same interface as they came in on. 13634 */ 13635 if (ll_multicast) { 13636 freemsg(mp); 13637 return (NULL); 13638 } 13639 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13640 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13641 freemsg(mp); 13642 return (NULL); 13643 } 13644 13645 /* 13646 * Mark this packet as having originated externally. 13647 * 13648 * For non-forwarding code path, ire_send later double 13649 * checks this interface to see if it is still exists 13650 * post-ARP resolution. 13651 * 13652 * Also, IPQOS uses this to differentiate between 13653 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13654 * QOS packet processing in ip_wput_attach_llhdr(). 13655 * The QoS module can mark the b_band for a fastpath message 13656 * or the dl_priority field in a unitdata_req header for 13657 * CoS marking. This info can only be found in 13658 * ip_wput_attach_llhdr(). 13659 */ 13660 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13661 /* 13662 * Clear the indication that this may have a hardware checksum 13663 * as we are not using it 13664 */ 13665 DB_CKSUMFLAGS(mp) = 0; 13666 13667 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13668 MBLK_GETLABEL(mp), ipst); 13669 13670 if (ire == NULL && check_multirt) { 13671 /* Let ip_newroute handle CGTP */ 13672 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13673 return (NULL); 13674 } 13675 13676 if (ire != NULL) 13677 return (ire); 13678 13679 mp->b_prev = mp->b_next = 0; 13680 /* send icmp unreachable */ 13681 q = WR(q); 13682 /* Sent by forwarding path, and router is global zone */ 13683 if (ip_source_routed(ipha, ipst)) { 13684 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13685 GLOBAL_ZONEID, ipst); 13686 } else { 13687 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13688 ipst); 13689 } 13690 13691 return (NULL); 13692 13693 } 13694 13695 /* 13696 * check ip header length and align it. 13697 */ 13698 static boolean_t 13699 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13700 { 13701 ssize_t len; 13702 ill_t *ill; 13703 ipha_t *ipha; 13704 13705 len = MBLKL(mp); 13706 13707 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13708 ill = (ill_t *)q->q_ptr; 13709 13710 if (!OK_32PTR(mp->b_rptr)) 13711 IP_STAT(ipst, ip_notaligned1); 13712 else 13713 IP_STAT(ipst, ip_notaligned2); 13714 /* Guard against bogus device drivers */ 13715 if (len < 0) { 13716 /* clear b_prev - used by ip_mroute_decap */ 13717 mp->b_prev = NULL; 13718 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13719 freemsg(mp); 13720 return (B_FALSE); 13721 } 13722 13723 if (ip_rput_pullups++ == 0) { 13724 ipha = (ipha_t *)mp->b_rptr; 13725 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13726 "ip_check_and_align_header: %s forced us to " 13727 " pullup pkt, hdr len %ld, hdr addr %p", 13728 ill->ill_name, len, ipha); 13729 } 13730 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13731 /* clear b_prev - used by ip_mroute_decap */ 13732 mp->b_prev = NULL; 13733 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13734 freemsg(mp); 13735 return (B_FALSE); 13736 } 13737 } 13738 return (B_TRUE); 13739 } 13740 13741 ire_t * 13742 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13743 { 13744 ire_t *new_ire; 13745 ill_t *ire_ill; 13746 uint_t ifindex; 13747 ip_stack_t *ipst = ill->ill_ipst; 13748 boolean_t strict_check = B_FALSE; 13749 13750 /* 13751 * This packet came in on an interface other than the one associated 13752 * with the first ire we found for the destination address. We do 13753 * another ire lookup here, using the ingress ill, to see if the 13754 * interface is in an interface group. 13755 * As long as the ills belong to the same group, we don't consider 13756 * them to be arriving on the wrong interface. Thus, if the switch 13757 * is doing inbound load spreading, we won't drop packets when the 13758 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13759 * for 'usesrc groups' where the destination address may belong to 13760 * another interface to allow multipathing to happen. 13761 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13762 * where the local address may not be unique. In this case we were 13763 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13764 * actually returned. The new lookup, which is more specific, should 13765 * only find the IRE_LOCAL associated with the ingress ill if one 13766 * exists. 13767 */ 13768 13769 if (ire->ire_ipversion == IPV4_VERSION) { 13770 if (ipst->ips_ip_strict_dst_multihoming) 13771 strict_check = B_TRUE; 13772 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13773 ill->ill_ipif, ALL_ZONES, NULL, 13774 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13775 } else { 13776 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13777 if (ipst->ips_ipv6_strict_dst_multihoming) 13778 strict_check = B_TRUE; 13779 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13780 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13781 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13782 } 13783 /* 13784 * If the same ire that was returned in ip_input() is found then this 13785 * is an indication that interface groups are in use. The packet 13786 * arrived on a different ill in the group than the one associated with 13787 * the destination address. If a different ire was found then the same 13788 * IP address must be hosted on multiple ills. This is possible with 13789 * unnumbered point2point interfaces. We switch to use this new ire in 13790 * order to have accurate interface statistics. 13791 */ 13792 if (new_ire != NULL) { 13793 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13794 ire_refrele(ire); 13795 ire = new_ire; 13796 } else { 13797 ire_refrele(new_ire); 13798 } 13799 return (ire); 13800 } else if ((ire->ire_rfq == NULL) && 13801 (ire->ire_ipversion == IPV4_VERSION)) { 13802 /* 13803 * The best match could have been the original ire which 13804 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13805 * the strict multihoming checks are irrelevant as we consider 13806 * local addresses hosted on lo0 to be interface agnostic. We 13807 * only expect a null ire_rfq on IREs which are associated with 13808 * lo0 hence we can return now. 13809 */ 13810 return (ire); 13811 } 13812 13813 /* 13814 * Chase pointers once and store locally. 13815 */ 13816 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13817 (ill_t *)(ire->ire_rfq->q_ptr); 13818 ifindex = ill->ill_usesrc_ifindex; 13819 13820 /* 13821 * Check if it's a legal address on the 'usesrc' interface. 13822 */ 13823 if ((ifindex != 0) && (ire_ill != NULL) && 13824 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13825 return (ire); 13826 } 13827 13828 /* 13829 * If the ip*_strict_dst_multihoming switch is on then we can 13830 * only accept this packet if the interface is marked as routing. 13831 */ 13832 if (!(strict_check)) 13833 return (ire); 13834 13835 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13836 ILLF_ROUTER) != 0) { 13837 return (ire); 13838 } 13839 13840 ire_refrele(ire); 13841 return (NULL); 13842 } 13843 13844 ire_t * 13845 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13846 { 13847 ipha_t *ipha; 13848 ipaddr_t ip_dst, ip_src; 13849 ire_t *src_ire = NULL; 13850 ill_t *stq_ill; 13851 uint_t hlen; 13852 uint_t pkt_len; 13853 uint32_t sum; 13854 queue_t *dev_q; 13855 boolean_t check_multirt = B_FALSE; 13856 ip_stack_t *ipst = ill->ill_ipst; 13857 13858 ipha = (ipha_t *)mp->b_rptr; 13859 13860 /* 13861 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13862 * The loopback address check for both src and dst has already 13863 * been checked in ip_input 13864 */ 13865 ip_dst = ntohl(dst); 13866 ip_src = ntohl(ipha->ipha_src); 13867 13868 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13869 IN_CLASSD(ip_src)) { 13870 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13871 goto drop; 13872 } 13873 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13874 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13875 13876 if (src_ire != NULL) { 13877 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13878 goto drop; 13879 } 13880 13881 13882 /* No ire cache of nexthop. So first create one */ 13883 if (ire == NULL) { 13884 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 13885 /* 13886 * We only come to ip_fast_forward if ip_cgtp_filter is 13887 * is not set. So upon return from ire_forward 13888 * check_multirt should remain as false. 13889 */ 13890 ASSERT(!check_multirt); 13891 if (ire == NULL) { 13892 /* An attempt was made to forward the packet */ 13893 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13894 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13895 mp->b_prev = mp->b_next = 0; 13896 /* send icmp unreachable */ 13897 /* Sent by forwarding path, and router is global zone */ 13898 if (ip_source_routed(ipha, ipst)) { 13899 icmp_unreachable(ill->ill_wq, mp, 13900 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 13901 ipst); 13902 } else { 13903 icmp_unreachable(ill->ill_wq, mp, 13904 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13905 ipst); 13906 } 13907 return (ire); 13908 } 13909 } 13910 13911 /* 13912 * Forwarding fastpath exception case: 13913 * If either of the follwoing case is true, we take 13914 * the slowpath 13915 * o forwarding is not enabled 13916 * o incoming and outgoing interface are the same, or the same 13917 * IPMP group 13918 * o corresponding ire is in incomplete state 13919 * o packet needs fragmentation 13920 * 13921 * The codeflow from here on is thus: 13922 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13923 */ 13924 pkt_len = ntohs(ipha->ipha_length); 13925 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13926 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13927 !(ill->ill_flags & ILLF_ROUTER) || 13928 (ill == stq_ill) || 13929 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13930 (ire->ire_nce == NULL) || 13931 (ire->ire_nce->nce_state != ND_REACHABLE) || 13932 (pkt_len > ire->ire_max_frag) || 13933 ipha->ipha_ttl <= 1) { 13934 ip_rput_process_forward(ill->ill_rq, mp, ire, 13935 ipha, ill, B_FALSE); 13936 return (ire); 13937 } 13938 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13939 13940 DTRACE_PROBE4(ip4__forwarding__start, 13941 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13942 13943 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13944 ipst->ips_ipv4firewall_forwarding, 13945 ill, stq_ill, ipha, mp, mp, ipst); 13946 13947 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13948 13949 if (mp == NULL) 13950 goto drop; 13951 13952 mp->b_datap->db_struioun.cksum.flags = 0; 13953 /* Adjust the checksum to reflect the ttl decrement. */ 13954 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13955 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13956 ipha->ipha_ttl--; 13957 13958 dev_q = ire->ire_stq->q_next; 13959 if ((dev_q->q_next != NULL || 13960 dev_q->q_first != NULL) && !canput(dev_q)) { 13961 goto indiscard; 13962 } 13963 13964 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13965 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13966 13967 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13968 mblk_t *mpip = mp; 13969 13970 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13971 if (mp != NULL) { 13972 DTRACE_PROBE4(ip4__physical__out__start, 13973 ill_t *, NULL, ill_t *, stq_ill, 13974 ipha_t *, ipha, mblk_t *, mp); 13975 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13976 ipst->ips_ipv4firewall_physical_out, 13977 NULL, stq_ill, ipha, mp, mpip, ipst); 13978 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 13979 mp); 13980 if (mp == NULL) 13981 goto drop; 13982 13983 UPDATE_IB_PKT_COUNT(ire); 13984 ire->ire_last_used_time = lbolt; 13985 BUMP_MIB(stq_ill->ill_ip_mib, 13986 ipIfStatsHCOutForwDatagrams); 13987 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13988 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 13989 pkt_len); 13990 putnext(ire->ire_stq, mp); 13991 return (ire); 13992 } 13993 } 13994 13995 indiscard: 13996 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13997 drop: 13998 if (mp != NULL) 13999 freemsg(mp); 14000 if (src_ire != NULL) 14001 ire_refrele(src_ire); 14002 return (ire); 14003 14004 } 14005 14006 /* 14007 * This function is called in the forwarding slowpath, when 14008 * either the ire lacks the link-layer address, or the packet needs 14009 * further processing(eg. fragmentation), before transmission. 14010 */ 14011 14012 static void 14013 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14014 ill_t *ill, boolean_t ll_multicast) 14015 { 14016 ill_group_t *ill_group; 14017 ill_group_t *ire_group; 14018 queue_t *dev_q; 14019 ire_t *src_ire; 14020 ip_stack_t *ipst = ill->ill_ipst; 14021 14022 ASSERT(ire->ire_stq != NULL); 14023 14024 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14025 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14026 14027 if (ll_multicast != 0) { 14028 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14029 goto drop_pkt; 14030 } 14031 14032 /* 14033 * check if ipha_src is a broadcast address. Note that this 14034 * check is redundant when we get here from ip_fast_forward() 14035 * which has already done this check. However, since we can 14036 * also get here from ip_rput_process_broadcast() or, for 14037 * for the slow path through ip_fast_forward(), we perform 14038 * the check again for code-reusability 14039 */ 14040 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14041 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14042 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14043 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14044 if (src_ire != NULL) 14045 ire_refrele(src_ire); 14046 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14047 ip2dbg(("ip_rput_process_forward: Received packet with" 14048 " bad src/dst address on %s\n", ill->ill_name)); 14049 goto drop_pkt; 14050 } 14051 14052 ill_group = ill->ill_group; 14053 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14054 /* 14055 * Check if we want to forward this one at this time. 14056 * We allow source routed packets on a host provided that 14057 * they go out the same interface or same interface group 14058 * as they came in on. 14059 * 14060 * XXX To be quicker, we may wish to not chase pointers to 14061 * get the ILLF_ROUTER flag and instead store the 14062 * forwarding policy in the ire. An unfortunate 14063 * side-effect of that would be requiring an ire flush 14064 * whenever the ILLF_ROUTER flag changes. 14065 */ 14066 if (((ill->ill_flags & 14067 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14068 ILLF_ROUTER) == 0) && 14069 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14070 (ill_group != NULL && ill_group == ire_group)))) { 14071 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14072 if (ip_source_routed(ipha, ipst)) { 14073 q = WR(q); 14074 /* 14075 * Clear the indication that this may have 14076 * hardware checksum as we are not using it. 14077 */ 14078 DB_CKSUMFLAGS(mp) = 0; 14079 /* Sent by forwarding path, and router is global zone */ 14080 icmp_unreachable(q, mp, 14081 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14082 return; 14083 } 14084 goto drop_pkt; 14085 } 14086 14087 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14088 14089 /* Packet is being forwarded. Turning off hwcksum flag. */ 14090 DB_CKSUMFLAGS(mp) = 0; 14091 if (ipst->ips_ip_g_send_redirects) { 14092 /* 14093 * Check whether the incoming interface and outgoing 14094 * interface is part of the same group. If so, 14095 * send redirects. 14096 * 14097 * Check the source address to see if it originated 14098 * on the same logical subnet it is going back out on. 14099 * If so, we should be able to send it a redirect. 14100 * Avoid sending a redirect if the destination 14101 * is directly connected (i.e., ipha_dst is the same 14102 * as ire_gateway_addr or the ire_addr of the 14103 * nexthop IRE_CACHE ), or if the packet was source 14104 * routed out this interface. 14105 */ 14106 ipaddr_t src, nhop; 14107 mblk_t *mp1; 14108 ire_t *nhop_ire = NULL; 14109 14110 /* 14111 * Check whether ire_rfq and q are from the same ill 14112 * or if they are not same, they at least belong 14113 * to the same group. If so, send redirects. 14114 */ 14115 if ((ire->ire_rfq == q || 14116 (ill_group != NULL && ill_group == ire_group)) && 14117 !ip_source_routed(ipha, ipst)) { 14118 14119 nhop = (ire->ire_gateway_addr != 0 ? 14120 ire->ire_gateway_addr : ire->ire_addr); 14121 14122 if (ipha->ipha_dst == nhop) { 14123 /* 14124 * We avoid sending a redirect if the 14125 * destination is directly connected 14126 * because it is possible that multiple 14127 * IP subnets may have been configured on 14128 * the link, and the source may not 14129 * be on the same subnet as ip destination, 14130 * even though they are on the same 14131 * physical link. 14132 */ 14133 goto sendit; 14134 } 14135 14136 src = ipha->ipha_src; 14137 14138 /* 14139 * We look up the interface ire for the nexthop, 14140 * to see if ipha_src is in the same subnet 14141 * as the nexthop. 14142 * 14143 * Note that, if, in the future, IRE_CACHE entries 14144 * are obsoleted, this lookup will not be needed, 14145 * as the ire passed to this function will be the 14146 * same as the nhop_ire computed below. 14147 */ 14148 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14149 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14150 0, NULL, MATCH_IRE_TYPE, ipst); 14151 14152 if (nhop_ire != NULL) { 14153 if ((src & nhop_ire->ire_mask) == 14154 (nhop & nhop_ire->ire_mask)) { 14155 /* 14156 * The source is directly connected. 14157 * Just copy the ip header (which is 14158 * in the first mblk) 14159 */ 14160 mp1 = copyb(mp); 14161 if (mp1 != NULL) { 14162 icmp_send_redirect(WR(q), mp1, 14163 nhop, ipst); 14164 } 14165 } 14166 ire_refrele(nhop_ire); 14167 } 14168 } 14169 } 14170 sendit: 14171 dev_q = ire->ire_stq->q_next; 14172 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14173 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14174 freemsg(mp); 14175 return; 14176 } 14177 14178 ip_rput_forward(ire, ipha, mp, ill); 14179 return; 14180 14181 drop_pkt: 14182 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14183 freemsg(mp); 14184 } 14185 14186 ire_t * 14187 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14188 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14189 { 14190 queue_t *q; 14191 uint16_t hcksumflags; 14192 ip_stack_t *ipst = ill->ill_ipst; 14193 14194 q = *qp; 14195 14196 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14197 14198 /* 14199 * Clear the indication that this may have hardware 14200 * checksum as we are not using it for forwarding. 14201 */ 14202 hcksumflags = DB_CKSUMFLAGS(mp); 14203 DB_CKSUMFLAGS(mp) = 0; 14204 14205 /* 14206 * Directed broadcast forwarding: if the packet came in over a 14207 * different interface then it is routed out over we can forward it. 14208 */ 14209 if (ipha->ipha_protocol == IPPROTO_TCP) { 14210 ire_refrele(ire); 14211 freemsg(mp); 14212 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14213 return (NULL); 14214 } 14215 /* 14216 * For multicast we have set dst to be INADDR_BROADCAST 14217 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14218 * only for broadcast packets. 14219 */ 14220 if (!CLASSD(ipha->ipha_dst)) { 14221 ire_t *new_ire; 14222 ipif_t *ipif; 14223 /* 14224 * For ill groups, as the switch duplicates broadcasts 14225 * across all the ports, we need to filter out and 14226 * send up only one copy. There is one copy for every 14227 * broadcast address on each ill. Thus, we look for a 14228 * specific IRE on this ill and look at IRE_MARK_NORECV 14229 * later to see whether this ill is eligible to receive 14230 * them or not. ill_nominate_bcast_rcv() nominates only 14231 * one set of IREs for receiving. 14232 */ 14233 14234 ipif = ipif_get_next_ipif(NULL, ill); 14235 if (ipif == NULL) { 14236 ire_refrele(ire); 14237 freemsg(mp); 14238 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14239 return (NULL); 14240 } 14241 new_ire = ire_ctable_lookup(dst, 0, 0, 14242 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14243 ipif_refrele(ipif); 14244 14245 if (new_ire != NULL) { 14246 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14247 ire_refrele(ire); 14248 ire_refrele(new_ire); 14249 freemsg(mp); 14250 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14251 return (NULL); 14252 } 14253 /* 14254 * In the special case of multirouted broadcast 14255 * packets, we unconditionally need to "gateway" 14256 * them to the appropriate interface here. 14257 * In the normal case, this cannot happen, because 14258 * there is no broadcast IRE tagged with the 14259 * RTF_MULTIRT flag. 14260 */ 14261 if (new_ire->ire_flags & RTF_MULTIRT) { 14262 ire_refrele(new_ire); 14263 if (ire->ire_rfq != NULL) { 14264 q = ire->ire_rfq; 14265 *qp = q; 14266 } 14267 } else { 14268 ire_refrele(ire); 14269 ire = new_ire; 14270 } 14271 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14272 if (!ipst->ips_ip_g_forward_directed_bcast) { 14273 /* 14274 * Free the message if 14275 * ip_g_forward_directed_bcast is turned 14276 * off for non-local broadcast. 14277 */ 14278 ire_refrele(ire); 14279 freemsg(mp); 14280 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14281 return (NULL); 14282 } 14283 } else { 14284 /* 14285 * This CGTP packet successfully passed the 14286 * CGTP filter, but the related CGTP 14287 * broadcast IRE has not been found, 14288 * meaning that the redundant ipif is 14289 * probably down. However, if we discarded 14290 * this packet, its duplicate would be 14291 * filtered out by the CGTP filter so none 14292 * of them would get through. So we keep 14293 * going with this one. 14294 */ 14295 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14296 if (ire->ire_rfq != NULL) { 14297 q = ire->ire_rfq; 14298 *qp = q; 14299 } 14300 } 14301 } 14302 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14303 /* 14304 * Verify that there are not more then one 14305 * IRE_BROADCAST with this broadcast address which 14306 * has ire_stq set. 14307 * TODO: simplify, loop over all IRE's 14308 */ 14309 ire_t *ire1; 14310 int num_stq = 0; 14311 mblk_t *mp1; 14312 14313 /* Find the first one with ire_stq set */ 14314 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14315 for (ire1 = ire; ire1 && 14316 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14317 ire1 = ire1->ire_next) 14318 ; 14319 if (ire1) { 14320 ire_refrele(ire); 14321 ire = ire1; 14322 IRE_REFHOLD(ire); 14323 } 14324 14325 /* Check if there are additional ones with stq set */ 14326 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14327 if (ire->ire_addr != ire1->ire_addr) 14328 break; 14329 if (ire1->ire_stq) { 14330 num_stq++; 14331 break; 14332 } 14333 } 14334 rw_exit(&ire->ire_bucket->irb_lock); 14335 if (num_stq == 1 && ire->ire_stq != NULL) { 14336 ip1dbg(("ip_rput_process_broadcast: directed " 14337 "broadcast to 0x%x\n", 14338 ntohl(ire->ire_addr))); 14339 mp1 = copymsg(mp); 14340 if (mp1) { 14341 switch (ipha->ipha_protocol) { 14342 case IPPROTO_UDP: 14343 ip_udp_input(q, mp1, ipha, ire, ill); 14344 break; 14345 default: 14346 ip_proto_input(q, mp1, ipha, ire, ill, 14347 B_FALSE); 14348 break; 14349 } 14350 } 14351 /* 14352 * Adjust ttl to 2 (1+1 - the forward engine 14353 * will decrement it by one. 14354 */ 14355 if (ip_csum_hdr(ipha)) { 14356 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14357 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14358 freemsg(mp); 14359 ire_refrele(ire); 14360 return (NULL); 14361 } 14362 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14363 ipha->ipha_hdr_checksum = 0; 14364 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14365 ip_rput_process_forward(q, mp, ire, ipha, 14366 ill, ll_multicast); 14367 ire_refrele(ire); 14368 return (NULL); 14369 } 14370 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14371 ntohl(ire->ire_addr))); 14372 } 14373 14374 14375 /* Restore any hardware checksum flags */ 14376 DB_CKSUMFLAGS(mp) = hcksumflags; 14377 return (ire); 14378 } 14379 14380 /* ARGSUSED */ 14381 static boolean_t 14382 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14383 int *ll_multicast, ipaddr_t *dstp) 14384 { 14385 ip_stack_t *ipst = ill->ill_ipst; 14386 14387 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14388 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14389 ntohs(ipha->ipha_length)); 14390 14391 /* 14392 * Forward packets only if we have joined the allmulti 14393 * group on this interface. 14394 */ 14395 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14396 int retval; 14397 14398 /* 14399 * Clear the indication that this may have hardware 14400 * checksum as we are not using it. 14401 */ 14402 DB_CKSUMFLAGS(mp) = 0; 14403 retval = ip_mforward(ill, ipha, mp); 14404 /* ip_mforward updates mib variables if needed */ 14405 /* clear b_prev - used by ip_mroute_decap */ 14406 mp->b_prev = NULL; 14407 14408 switch (retval) { 14409 case 0: 14410 /* 14411 * pkt is okay and arrived on phyint. 14412 * 14413 * If we are running as a multicast router 14414 * we need to see all IGMP and/or PIM packets. 14415 */ 14416 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14417 (ipha->ipha_protocol == IPPROTO_PIM)) { 14418 goto done; 14419 } 14420 break; 14421 case -1: 14422 /* pkt is mal-formed, toss it */ 14423 goto drop_pkt; 14424 case 1: 14425 /* pkt is okay and arrived on a tunnel */ 14426 /* 14427 * If we are running a multicast router 14428 * we need to see all igmp packets. 14429 */ 14430 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14431 *dstp = INADDR_BROADCAST; 14432 *ll_multicast = 1; 14433 return (B_FALSE); 14434 } 14435 14436 goto drop_pkt; 14437 } 14438 } 14439 14440 ILM_WALKER_HOLD(ill); 14441 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14442 /* 14443 * This might just be caused by the fact that 14444 * multiple IP Multicast addresses map to the same 14445 * link layer multicast - no need to increment counter! 14446 */ 14447 ILM_WALKER_RELE(ill); 14448 freemsg(mp); 14449 return (B_TRUE); 14450 } 14451 ILM_WALKER_RELE(ill); 14452 done: 14453 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14454 /* 14455 * This assumes the we deliver to all streams for multicast 14456 * and broadcast packets. 14457 */ 14458 *dstp = INADDR_BROADCAST; 14459 *ll_multicast = 1; 14460 return (B_FALSE); 14461 drop_pkt: 14462 ip2dbg(("ip_rput: drop pkt\n")); 14463 freemsg(mp); 14464 return (B_TRUE); 14465 } 14466 14467 static boolean_t 14468 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14469 int *ll_multicast, mblk_t **mpp) 14470 { 14471 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14472 boolean_t must_copy = B_FALSE; 14473 struct iocblk *iocp; 14474 ipha_t *ipha; 14475 ip_stack_t *ipst = ill->ill_ipst; 14476 14477 #define rptr ((uchar_t *)ipha) 14478 14479 first_mp = *first_mpp; 14480 mp = *mpp; 14481 14482 ASSERT(first_mp == mp); 14483 14484 /* 14485 * if db_ref > 1 then copymsg and free original. Packet may be 14486 * changed and do not want other entity who has a reference to this 14487 * message to trip over the changes. This is a blind change because 14488 * trying to catch all places that might change packet is too 14489 * difficult (since it may be a module above this one) 14490 * 14491 * This corresponds to the non-fast path case. We walk down the full 14492 * chain in this case, and check the db_ref count of all the dblks, 14493 * and do a copymsg if required. It is possible that the db_ref counts 14494 * of the data blocks in the mblk chain can be different. 14495 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14496 * count of 1, followed by a M_DATA block with a ref count of 2, if 14497 * 'snoop' is running. 14498 */ 14499 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14500 if (mp1->b_datap->db_ref > 1) { 14501 must_copy = B_TRUE; 14502 break; 14503 } 14504 } 14505 14506 if (must_copy) { 14507 mp1 = copymsg(mp); 14508 if (mp1 == NULL) { 14509 for (mp1 = mp; mp1 != NULL; 14510 mp1 = mp1->b_cont) { 14511 mp1->b_next = NULL; 14512 mp1->b_prev = NULL; 14513 } 14514 freemsg(mp); 14515 if (ill != NULL) { 14516 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14517 } else { 14518 BUMP_MIB(&ipst->ips_ip_mib, 14519 ipIfStatsInDiscards); 14520 } 14521 return (B_TRUE); 14522 } 14523 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14524 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14525 /* Copy b_prev - used by ip_mroute_decap */ 14526 to_mp->b_prev = from_mp->b_prev; 14527 from_mp->b_prev = NULL; 14528 } 14529 *first_mpp = first_mp = mp1; 14530 freemsg(mp); 14531 mp = mp1; 14532 *mpp = mp1; 14533 } 14534 14535 ipha = (ipha_t *)mp->b_rptr; 14536 14537 /* 14538 * previous code has a case for M_DATA. 14539 * We want to check how that happens. 14540 */ 14541 ASSERT(first_mp->b_datap->db_type != M_DATA); 14542 switch (first_mp->b_datap->db_type) { 14543 case M_PROTO: 14544 case M_PCPROTO: 14545 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14546 DL_UNITDATA_IND) { 14547 /* Go handle anything other than data elsewhere. */ 14548 ip_rput_dlpi(q, mp); 14549 return (B_TRUE); 14550 } 14551 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14552 /* Ditch the DLPI header. */ 14553 mp1 = mp->b_cont; 14554 ASSERT(first_mp == mp); 14555 *first_mpp = mp1; 14556 freeb(mp); 14557 *mpp = mp1; 14558 return (B_FALSE); 14559 case M_IOCACK: 14560 ip1dbg(("got iocack ")); 14561 iocp = (struct iocblk *)mp->b_rptr; 14562 switch (iocp->ioc_cmd) { 14563 case DL_IOC_HDR_INFO: 14564 ill = (ill_t *)q->q_ptr; 14565 ill_fastpath_ack(ill, mp); 14566 return (B_TRUE); 14567 case SIOCSTUNPARAM: 14568 case OSIOCSTUNPARAM: 14569 /* Go through qwriter_ip */ 14570 break; 14571 case SIOCGTUNPARAM: 14572 case OSIOCGTUNPARAM: 14573 ip_rput_other(NULL, q, mp, NULL); 14574 return (B_TRUE); 14575 default: 14576 putnext(q, mp); 14577 return (B_TRUE); 14578 } 14579 /* FALLTHRU */ 14580 case M_ERROR: 14581 case M_HANGUP: 14582 /* 14583 * Since this is on the ill stream we unconditionally 14584 * bump up the refcount 14585 */ 14586 ill_refhold(ill); 14587 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14588 return (B_TRUE); 14589 case M_CTL: 14590 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14591 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14592 IPHADA_M_CTL)) { 14593 /* 14594 * It's an IPsec accelerated packet. 14595 * Make sure that the ill from which we received the 14596 * packet has enabled IPsec hardware acceleration. 14597 */ 14598 if (!(ill->ill_capabilities & 14599 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14600 /* IPsec kstats: bean counter */ 14601 freemsg(mp); 14602 return (B_TRUE); 14603 } 14604 14605 /* 14606 * Make mp point to the mblk following the M_CTL, 14607 * then process according to type of mp. 14608 * After this processing, first_mp will point to 14609 * the data-attributes and mp to the pkt following 14610 * the M_CTL. 14611 */ 14612 mp = first_mp->b_cont; 14613 if (mp == NULL) { 14614 freemsg(first_mp); 14615 return (B_TRUE); 14616 } 14617 /* 14618 * A Hardware Accelerated packet can only be M_DATA 14619 * ESP or AH packet. 14620 */ 14621 if (mp->b_datap->db_type != M_DATA) { 14622 /* non-M_DATA IPsec accelerated packet */ 14623 IPSECHW_DEBUG(IPSECHW_PKT, 14624 ("non-M_DATA IPsec accelerated pkt\n")); 14625 freemsg(first_mp); 14626 return (B_TRUE); 14627 } 14628 ipha = (ipha_t *)mp->b_rptr; 14629 if (ipha->ipha_protocol != IPPROTO_AH && 14630 ipha->ipha_protocol != IPPROTO_ESP) { 14631 IPSECHW_DEBUG(IPSECHW_PKT, 14632 ("non-M_DATA IPsec accelerated pkt\n")); 14633 freemsg(first_mp); 14634 return (B_TRUE); 14635 } 14636 *mpp = mp; 14637 return (B_FALSE); 14638 } 14639 putnext(q, mp); 14640 return (B_TRUE); 14641 case M_IOCNAK: 14642 ip1dbg(("got iocnak ")); 14643 iocp = (struct iocblk *)mp->b_rptr; 14644 switch (iocp->ioc_cmd) { 14645 case SIOCSTUNPARAM: 14646 case OSIOCSTUNPARAM: 14647 /* 14648 * Since this is on the ill stream we unconditionally 14649 * bump up the refcount 14650 */ 14651 ill_refhold(ill); 14652 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14653 return (B_TRUE); 14654 case DL_IOC_HDR_INFO: 14655 case SIOCGTUNPARAM: 14656 case OSIOCGTUNPARAM: 14657 ip_rput_other(NULL, q, mp, NULL); 14658 return (B_TRUE); 14659 default: 14660 break; 14661 } 14662 /* FALLTHRU */ 14663 default: 14664 putnext(q, mp); 14665 return (B_TRUE); 14666 } 14667 } 14668 14669 /* Read side put procedure. Packets coming from the wire arrive here. */ 14670 void 14671 ip_rput(queue_t *q, mblk_t *mp) 14672 { 14673 ill_t *ill; 14674 union DL_primitives *dl; 14675 14676 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14677 14678 ill = (ill_t *)q->q_ptr; 14679 14680 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14681 /* 14682 * If things are opening or closing, only accept high-priority 14683 * DLPI messages. (On open ill->ill_ipif has not yet been 14684 * created; on close, things hanging off the ill may have been 14685 * freed already.) 14686 */ 14687 dl = (union DL_primitives *)mp->b_rptr; 14688 if (DB_TYPE(mp) != M_PCPROTO || 14689 dl->dl_primitive == DL_UNITDATA_IND) { 14690 /* 14691 * SIOC[GS]TUNPARAM ioctls can come here. 14692 */ 14693 inet_freemsg(mp); 14694 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14695 "ip_rput_end: q %p (%S)", q, "uninit"); 14696 return; 14697 } 14698 } 14699 14700 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14701 "ip_rput_end: q %p (%S)", q, "end"); 14702 14703 ip_input(ill, NULL, mp, NULL); 14704 } 14705 14706 static mblk_t * 14707 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14708 { 14709 mblk_t *mp1; 14710 boolean_t adjusted = B_FALSE; 14711 ip_stack_t *ipst = ill->ill_ipst; 14712 14713 IP_STAT(ipst, ip_db_ref); 14714 /* 14715 * The IP_RECVSLLA option depends on having the 14716 * link layer header. First check that: 14717 * a> the underlying device is of type ether, 14718 * since this option is currently supported only 14719 * over ethernet. 14720 * b> there is enough room to copy over the link 14721 * layer header. 14722 * 14723 * Once the checks are done, adjust rptr so that 14724 * the link layer header will be copied via 14725 * copymsg. Note that, IFT_ETHER may be returned 14726 * by some non-ethernet drivers but in this case 14727 * the second check will fail. 14728 */ 14729 if (ill->ill_type == IFT_ETHER && 14730 (mp->b_rptr - mp->b_datap->db_base) >= 14731 sizeof (struct ether_header)) { 14732 mp->b_rptr -= sizeof (struct ether_header); 14733 adjusted = B_TRUE; 14734 } 14735 mp1 = copymsg(mp); 14736 14737 if (mp1 == NULL) { 14738 mp->b_next = NULL; 14739 /* clear b_prev - used by ip_mroute_decap */ 14740 mp->b_prev = NULL; 14741 freemsg(mp); 14742 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14743 return (NULL); 14744 } 14745 14746 if (adjusted) { 14747 /* 14748 * Copy is done. Restore the pointer in 14749 * the _new_ mblk 14750 */ 14751 mp1->b_rptr += sizeof (struct ether_header); 14752 } 14753 14754 /* Copy b_prev - used by ip_mroute_decap */ 14755 mp1->b_prev = mp->b_prev; 14756 mp->b_prev = NULL; 14757 14758 /* preserve the hardware checksum flags and data, if present */ 14759 if (DB_CKSUMFLAGS(mp) != 0) { 14760 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14761 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14762 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14763 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14764 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14765 } 14766 14767 freemsg(mp); 14768 return (mp1); 14769 } 14770 14771 /* 14772 * Direct read side procedure capable of dealing with chains. GLDv3 based 14773 * drivers call this function directly with mblk chains while STREAMS 14774 * read side procedure ip_rput() calls this for single packet with ip_ring 14775 * set to NULL to process one packet at a time. 14776 * 14777 * The ill will always be valid if this function is called directly from 14778 * the driver. 14779 * 14780 * If ip_input() is called from GLDv3: 14781 * 14782 * - This must be a non-VLAN IP stream. 14783 * - 'mp' is either an untagged or a special priority-tagged packet. 14784 * - Any VLAN tag that was in the MAC header has been stripped. 14785 * 14786 * If the IP header in packet is not 32-bit aligned, every message in the 14787 * chain will be aligned before further operations. This is required on SPARC 14788 * platform. 14789 */ 14790 /* ARGSUSED */ 14791 void 14792 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14793 struct mac_header_info_s *mhip) 14794 { 14795 ipaddr_t dst = NULL; 14796 ipaddr_t prev_dst; 14797 ire_t *ire = NULL; 14798 ipha_t *ipha; 14799 uint_t pkt_len; 14800 ssize_t len; 14801 uint_t opt_len; 14802 int ll_multicast; 14803 int cgtp_flt_pkt; 14804 queue_t *q = ill->ill_rq; 14805 squeue_t *curr_sqp = NULL; 14806 mblk_t *head = NULL; 14807 mblk_t *tail = NULL; 14808 mblk_t *first_mp; 14809 mblk_t *mp; 14810 mblk_t *dmp; 14811 int cnt = 0; 14812 ip_stack_t *ipst = ill->ill_ipst; 14813 14814 ASSERT(mp_chain != NULL); 14815 ASSERT(ill != NULL); 14816 14817 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14818 14819 #define rptr ((uchar_t *)ipha) 14820 14821 while (mp_chain != NULL) { 14822 first_mp = mp = mp_chain; 14823 mp_chain = mp_chain->b_next; 14824 mp->b_next = NULL; 14825 ll_multicast = 0; 14826 14827 /* 14828 * We do ire caching from one iteration to 14829 * another. In the event the packet chain contains 14830 * all packets from the same dst, this caching saves 14831 * an ire_cache_lookup for each of the succeeding 14832 * packets in a packet chain. 14833 */ 14834 prev_dst = dst; 14835 14836 /* 14837 * if db_ref > 1 then copymsg and free original. Packet 14838 * may be changed and we do not want the other entity 14839 * who has a reference to this message to trip over the 14840 * changes. This is a blind change because trying to 14841 * catch all places that might change the packet is too 14842 * difficult. 14843 * 14844 * This corresponds to the fast path case, where we have 14845 * a chain of M_DATA mblks. We check the db_ref count 14846 * of only the 1st data block in the mblk chain. There 14847 * doesn't seem to be a reason why a device driver would 14848 * send up data with varying db_ref counts in the mblk 14849 * chain. In any case the Fast path is a private 14850 * interface, and our drivers don't do such a thing. 14851 * Given the above assumption, there is no need to walk 14852 * down the entire mblk chain (which could have a 14853 * potential performance problem) 14854 */ 14855 14856 if (DB_REF(mp) > 1) { 14857 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14858 continue; 14859 } 14860 14861 /* 14862 * Check and align the IP header. 14863 */ 14864 first_mp = mp; 14865 if (DB_TYPE(mp) == M_DATA) { 14866 dmp = mp; 14867 } else if (DB_TYPE(mp) == M_PROTO && 14868 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14869 dmp = mp->b_cont; 14870 } else { 14871 dmp = NULL; 14872 } 14873 if (dmp != NULL) { 14874 /* 14875 * IP header ptr not aligned? 14876 * OR IP header not complete in first mblk 14877 */ 14878 if (!OK_32PTR(dmp->b_rptr) || 14879 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14880 if (!ip_check_and_align_header(q, dmp, ipst)) 14881 continue; 14882 } 14883 } 14884 14885 /* 14886 * ip_input fast path 14887 */ 14888 14889 /* mblk type is not M_DATA */ 14890 if (DB_TYPE(mp) != M_DATA) { 14891 if (ip_rput_process_notdata(q, &first_mp, ill, 14892 &ll_multicast, &mp)) 14893 continue; 14894 } 14895 14896 /* Make sure its an M_DATA and that its aligned */ 14897 ASSERT(DB_TYPE(mp) == M_DATA); 14898 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14899 14900 ipha = (ipha_t *)mp->b_rptr; 14901 len = mp->b_wptr - rptr; 14902 pkt_len = ntohs(ipha->ipha_length); 14903 14904 /* 14905 * We must count all incoming packets, even if they end 14906 * up being dropped later on. 14907 */ 14908 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14909 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14910 14911 /* multiple mblk or too short */ 14912 len -= pkt_len; 14913 if (len != 0) { 14914 /* 14915 * Make sure we have data length consistent 14916 * with the IP header. 14917 */ 14918 if (mp->b_cont == NULL) { 14919 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14920 BUMP_MIB(ill->ill_ip_mib, 14921 ipIfStatsInHdrErrors); 14922 ip2dbg(("ip_input: drop pkt\n")); 14923 freemsg(mp); 14924 continue; 14925 } 14926 mp->b_wptr = rptr + pkt_len; 14927 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14928 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14929 BUMP_MIB(ill->ill_ip_mib, 14930 ipIfStatsInHdrErrors); 14931 ip2dbg(("ip_input: drop pkt\n")); 14932 freemsg(mp); 14933 continue; 14934 } 14935 (void) adjmsg(mp, -len); 14936 IP_STAT(ipst, ip_multimblk3); 14937 } 14938 } 14939 14940 /* Obtain the dst of the current packet */ 14941 dst = ipha->ipha_dst; 14942 14943 if (IP_LOOPBACK_ADDR(dst) || 14944 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14945 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14946 cmn_err(CE_CONT, "dst %X src %X\n", 14947 dst, ipha->ipha_src); 14948 freemsg(mp); 14949 continue; 14950 } 14951 14952 /* 14953 * The event for packets being received from a 'physical' 14954 * interface is placed after validation of the source and/or 14955 * destination address as being local so that packets can be 14956 * redirected to loopback addresses using ipnat. 14957 */ 14958 DTRACE_PROBE4(ip4__physical__in__start, 14959 ill_t *, ill, ill_t *, NULL, 14960 ipha_t *, ipha, mblk_t *, first_mp); 14961 14962 FW_HOOKS(ipst->ips_ip4_physical_in_event, 14963 ipst->ips_ipv4firewall_physical_in, 14964 ill, NULL, ipha, first_mp, mp, ipst); 14965 14966 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14967 14968 if (first_mp == NULL) { 14969 continue; 14970 } 14971 dst = ipha->ipha_dst; 14972 14973 /* 14974 * Attach any necessary label information to 14975 * this packet 14976 */ 14977 if (is_system_labeled() && 14978 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14979 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14980 freemsg(mp); 14981 continue; 14982 } 14983 14984 /* 14985 * Reuse the cached ire only if the ipha_dst of the previous 14986 * packet is the same as the current packet AND it is not 14987 * INADDR_ANY. 14988 */ 14989 if (!(dst == prev_dst && dst != INADDR_ANY) && 14990 (ire != NULL)) { 14991 ire_refrele(ire); 14992 ire = NULL; 14993 } 14994 opt_len = ipha->ipha_version_and_hdr_length - 14995 IP_SIMPLE_HDR_VERSION; 14996 14997 /* 14998 * Check to see if we can take the fastpath. 14999 * That is possible if the following conditions are met 15000 * o Tsol disabled 15001 * o CGTP disabled 15002 * o ipp_action_count is 0 15003 * o no options in the packet 15004 * o not a RSVP packet 15005 * o not a multicast packet 15006 */ 15007 if (!is_system_labeled() && 15008 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15009 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15010 !ll_multicast && !CLASSD(dst)) { 15011 if (ire == NULL) 15012 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15013 ipst); 15014 15015 /* incoming packet is for forwarding */ 15016 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15017 ire = ip_fast_forward(ire, dst, ill, mp); 15018 continue; 15019 } 15020 /* incoming packet is for local consumption */ 15021 if (ire->ire_type & IRE_LOCAL) 15022 goto local; 15023 } 15024 15025 /* 15026 * Disable ire caching for anything more complex 15027 * than the simple fast path case we checked for above. 15028 */ 15029 if (ire != NULL) { 15030 ire_refrele(ire); 15031 ire = NULL; 15032 } 15033 15034 /* Full-blown slow path */ 15035 if (opt_len != 0) { 15036 if (len != 0) 15037 IP_STAT(ipst, ip_multimblk4); 15038 else 15039 IP_STAT(ipst, ip_ipoptions); 15040 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15041 &dst, ipst)) 15042 continue; 15043 } 15044 15045 /* 15046 * Invoke the CGTP (multirouting) filtering module to process 15047 * the incoming packet. Packets identified as duplicates 15048 * must be discarded. Filtering is active only if the 15049 * the ip_cgtp_filter ndd variable is non-zero. 15050 */ 15051 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15052 if (ipst->ips_ip_cgtp_filter && 15053 ipst->ips_ip_cgtp_filter_ops != NULL) { 15054 netstackid_t stackid; 15055 15056 stackid = ipst->ips_netstack->netstack_stackid; 15057 cgtp_flt_pkt = 15058 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15059 ill->ill_phyint->phyint_ifindex, mp); 15060 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15061 freemsg(first_mp); 15062 continue; 15063 } 15064 } 15065 15066 /* 15067 * If rsvpd is running, let RSVP daemon handle its processing 15068 * and forwarding of RSVP multicast/unicast packets. 15069 * If rsvpd is not running but mrouted is running, RSVP 15070 * multicast packets are forwarded as multicast traffic 15071 * and RSVP unicast packets are forwarded by unicast router. 15072 * If neither rsvpd nor mrouted is running, RSVP multicast 15073 * packets are not forwarded, but the unicast packets are 15074 * forwarded like unicast traffic. 15075 */ 15076 if (ipha->ipha_protocol == IPPROTO_RSVP && 15077 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15078 NULL) { 15079 /* RSVP packet and rsvpd running. Treat as ours */ 15080 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15081 /* 15082 * This assumes that we deliver to all streams for 15083 * multicast and broadcast packets. 15084 * We have to force ll_multicast to 1 to handle the 15085 * M_DATA messages passed in from ip_mroute_decap. 15086 */ 15087 dst = INADDR_BROADCAST; 15088 ll_multicast = 1; 15089 } else if (CLASSD(dst)) { 15090 /* packet is multicast */ 15091 mp->b_next = NULL; 15092 if (ip_rput_process_multicast(q, mp, ill, ipha, 15093 &ll_multicast, &dst)) 15094 continue; 15095 } 15096 15097 if (ire == NULL) { 15098 ire = ire_cache_lookup(dst, ALL_ZONES, 15099 MBLK_GETLABEL(mp), ipst); 15100 } 15101 15102 if (ire == NULL) { 15103 /* 15104 * No IRE for this destination, so it can't be for us. 15105 * Unless we are forwarding, drop the packet. 15106 * We have to let source routed packets through 15107 * since we don't yet know if they are 'ping -l' 15108 * packets i.e. if they will go out over the 15109 * same interface as they came in on. 15110 */ 15111 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15112 if (ire == NULL) 15113 continue; 15114 } 15115 15116 /* 15117 * Broadcast IRE may indicate either broadcast or 15118 * multicast packet 15119 */ 15120 if (ire->ire_type == IRE_BROADCAST) { 15121 /* 15122 * Skip broadcast checks if packet is UDP multicast; 15123 * we'd rather not enter ip_rput_process_broadcast() 15124 * unless the packet is broadcast for real, since 15125 * that routine is a no-op for multicast. 15126 */ 15127 if (ipha->ipha_protocol != IPPROTO_UDP || 15128 !CLASSD(ipha->ipha_dst)) { 15129 ire = ip_rput_process_broadcast(&q, mp, 15130 ire, ipha, ill, dst, cgtp_flt_pkt, 15131 ll_multicast); 15132 if (ire == NULL) 15133 continue; 15134 } 15135 } else if (ire->ire_stq != NULL) { 15136 /* fowarding? */ 15137 ip_rput_process_forward(q, mp, ire, ipha, ill, 15138 ll_multicast); 15139 /* ip_rput_process_forward consumed the packet */ 15140 continue; 15141 } 15142 15143 local: 15144 /* 15145 * If the queue in the ire is different to the ingress queue 15146 * then we need to check to see if we can accept the packet. 15147 * Note that for multicast packets and broadcast packets sent 15148 * to a broadcast address which is shared between multiple 15149 * interfaces we should not do this since we just got a random 15150 * broadcast ire. 15151 */ 15152 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15153 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15154 ill)) == NULL) { 15155 /* Drop packet */ 15156 BUMP_MIB(ill->ill_ip_mib, 15157 ipIfStatsForwProhibits); 15158 freemsg(mp); 15159 continue; 15160 } 15161 if (ire->ire_rfq != NULL) 15162 q = ire->ire_rfq; 15163 } 15164 15165 switch (ipha->ipha_protocol) { 15166 case IPPROTO_TCP: 15167 ASSERT(first_mp == mp); 15168 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15169 mp, 0, q, ip_ring)) != NULL) { 15170 if (curr_sqp == NULL) { 15171 curr_sqp = GET_SQUEUE(mp); 15172 ASSERT(cnt == 0); 15173 cnt++; 15174 head = tail = mp; 15175 } else if (curr_sqp == GET_SQUEUE(mp)) { 15176 ASSERT(tail != NULL); 15177 cnt++; 15178 tail->b_next = mp; 15179 tail = mp; 15180 } else { 15181 /* 15182 * A different squeue. Send the 15183 * chain for the previous squeue on 15184 * its way. This shouldn't happen 15185 * often unless interrupt binding 15186 * changes. 15187 */ 15188 IP_STAT(ipst, ip_input_multi_squeue); 15189 squeue_enter_chain(curr_sqp, head, 15190 tail, cnt, SQTAG_IP_INPUT); 15191 curr_sqp = GET_SQUEUE(mp); 15192 head = mp; 15193 tail = mp; 15194 cnt = 1; 15195 } 15196 } 15197 continue; 15198 case IPPROTO_UDP: 15199 ASSERT(first_mp == mp); 15200 ip_udp_input(q, mp, ipha, ire, ill); 15201 continue; 15202 case IPPROTO_SCTP: 15203 ASSERT(first_mp == mp); 15204 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15205 q, dst); 15206 /* ire has been released by ip_sctp_input */ 15207 ire = NULL; 15208 continue; 15209 default: 15210 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15211 continue; 15212 } 15213 } 15214 15215 if (ire != NULL) 15216 ire_refrele(ire); 15217 15218 if (head != NULL) 15219 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15220 15221 /* 15222 * This code is there just to make netperf/ttcp look good. 15223 * 15224 * Its possible that after being in polling mode (and having cleared 15225 * the backlog), squeues have turned the interrupt frequency higher 15226 * to improve latency at the expense of more CPU utilization (less 15227 * packets per interrupts or more number of interrupts). Workloads 15228 * like ttcp/netperf do manage to tickle polling once in a while 15229 * but for the remaining time, stay in higher interrupt mode since 15230 * their packet arrival rate is pretty uniform and this shows up 15231 * as higher CPU utilization. Since people care about CPU utilization 15232 * while running netperf/ttcp, turn the interrupt frequency back to 15233 * normal/default if polling has not been used in ip_poll_normal_ticks. 15234 */ 15235 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15236 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15237 ip_ring->rr_poll_state &= ~ILL_POLLING; 15238 ip_ring->rr_blank(ip_ring->rr_handle, 15239 ip_ring->rr_normal_blank_time, 15240 ip_ring->rr_normal_pkt_cnt); 15241 } 15242 } 15243 15244 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15245 "ip_input_end: q %p (%S)", q, "end"); 15246 #undef rptr 15247 } 15248 15249 static void 15250 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15251 t_uscalar_t err) 15252 { 15253 if (dl_err == DL_SYSERR) { 15254 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15255 "%s: %s failed: DL_SYSERR (errno %u)\n", 15256 ill->ill_name, dlpi_prim_str(prim), err); 15257 return; 15258 } 15259 15260 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15261 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15262 dlpi_err_str(dl_err)); 15263 } 15264 15265 /* 15266 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15267 * than DL_UNITDATA_IND messages. If we need to process this message 15268 * exclusively, we call qwriter_ip, in which case we also need to call 15269 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15270 */ 15271 void 15272 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15273 { 15274 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15275 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15276 ill_t *ill = (ill_t *)q->q_ptr; 15277 boolean_t pending; 15278 15279 ip1dbg(("ip_rput_dlpi")); 15280 if (dloa->dl_primitive == DL_ERROR_ACK) { 15281 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15282 "%s (0x%x), unix %u\n", ill->ill_name, 15283 dlpi_prim_str(dlea->dl_error_primitive), 15284 dlea->dl_error_primitive, 15285 dlpi_err_str(dlea->dl_errno), 15286 dlea->dl_errno, 15287 dlea->dl_unix_errno)); 15288 } 15289 15290 /* 15291 * If we received an ACK but didn't send a request for it, then it 15292 * can't be part of any pending operation; discard up-front. 15293 */ 15294 switch (dloa->dl_primitive) { 15295 case DL_NOTIFY_IND: 15296 pending = B_TRUE; 15297 break; 15298 case DL_ERROR_ACK: 15299 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15300 break; 15301 case DL_OK_ACK: 15302 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15303 break; 15304 case DL_INFO_ACK: 15305 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15306 break; 15307 case DL_BIND_ACK: 15308 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15309 break; 15310 case DL_PHYS_ADDR_ACK: 15311 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15312 break; 15313 case DL_NOTIFY_ACK: 15314 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15315 break; 15316 case DL_CONTROL_ACK: 15317 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15318 break; 15319 case DL_CAPABILITY_ACK: 15320 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15321 break; 15322 default: 15323 /* Not a DLPI message we support or were expecting */ 15324 freemsg(mp); 15325 return; 15326 } 15327 15328 if (!pending) { 15329 freemsg(mp); 15330 return; 15331 } 15332 15333 switch (dloa->dl_primitive) { 15334 case DL_ERROR_ACK: 15335 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15336 mutex_enter(&ill->ill_lock); 15337 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15338 cv_signal(&ill->ill_cv); 15339 mutex_exit(&ill->ill_lock); 15340 } 15341 break; 15342 15343 case DL_OK_ACK: 15344 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15345 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15346 switch (dloa->dl_correct_primitive) { 15347 case DL_UNBIND_REQ: 15348 mutex_enter(&ill->ill_lock); 15349 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15350 cv_signal(&ill->ill_cv); 15351 mutex_exit(&ill->ill_lock); 15352 break; 15353 15354 case DL_ENABMULTI_REQ: 15355 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15356 ill->ill_dlpi_multicast_state = IDS_OK; 15357 break; 15358 } 15359 break; 15360 default: 15361 break; 15362 } 15363 15364 /* 15365 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15366 * and we need to become writer to continue to process it. If it's not 15367 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15368 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15369 * some work as part of the current exclusive operation that actually 15370 * is not part of it -- which is wrong, but better than the 15371 * alternative of deadlock (if NEW_OP is always used). Someday, we 15372 * should track which DLPI requests have ACKs that we wait on 15373 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15374 * 15375 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15376 * Since this is on the ill stream we unconditionally bump up the 15377 * refcount without doing ILL_CAN_LOOKUP(). 15378 */ 15379 ill_refhold(ill); 15380 if (dloa->dl_primitive == DL_NOTIFY_IND) 15381 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15382 else 15383 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15384 } 15385 15386 /* 15387 * Handling of DLPI messages that require exclusive access to the ipsq. 15388 * 15389 * Need to do ill_pending_mp_release on ioctl completion, which could 15390 * happen here. (along with mi_copy_done) 15391 */ 15392 /* ARGSUSED */ 15393 static void 15394 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15395 { 15396 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15397 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15398 int err = 0; 15399 ill_t *ill; 15400 ipif_t *ipif = NULL; 15401 mblk_t *mp1 = NULL; 15402 conn_t *connp = NULL; 15403 t_uscalar_t paddrreq; 15404 mblk_t *mp_hw; 15405 boolean_t success; 15406 boolean_t ioctl_aborted = B_FALSE; 15407 boolean_t log = B_TRUE; 15408 hook_nic_event_t *info; 15409 ip_stack_t *ipst; 15410 15411 ip1dbg(("ip_rput_dlpi_writer ..")); 15412 ill = (ill_t *)q->q_ptr; 15413 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15414 15415 ASSERT(IAM_WRITER_ILL(ill)); 15416 15417 ipst = ill->ill_ipst; 15418 15419 /* 15420 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15421 * both are null or non-null. However we can assert that only 15422 * after grabbing the ipsq_lock. So we don't make any assertion 15423 * here and in other places in the code. 15424 */ 15425 ipif = ipsq->ipsq_pending_ipif; 15426 /* 15427 * The current ioctl could have been aborted by the user and a new 15428 * ioctl to bring up another ill could have started. We could still 15429 * get a response from the driver later. 15430 */ 15431 if (ipif != NULL && ipif->ipif_ill != ill) 15432 ioctl_aborted = B_TRUE; 15433 15434 switch (dloa->dl_primitive) { 15435 case DL_ERROR_ACK: 15436 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15437 dlpi_prim_str(dlea->dl_error_primitive))); 15438 15439 switch (dlea->dl_error_primitive) { 15440 case DL_PROMISCON_REQ: 15441 case DL_PROMISCOFF_REQ: 15442 case DL_DISABMULTI_REQ: 15443 case DL_UNBIND_REQ: 15444 case DL_ATTACH_REQ: 15445 case DL_INFO_REQ: 15446 ill_dlpi_done(ill, dlea->dl_error_primitive); 15447 break; 15448 case DL_NOTIFY_REQ: 15449 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15450 log = B_FALSE; 15451 break; 15452 case DL_PHYS_ADDR_REQ: 15453 /* 15454 * For IPv6 only, there are two additional 15455 * phys_addr_req's sent to the driver to get the 15456 * IPv6 token and lla. This allows IP to acquire 15457 * the hardware address format for a given interface 15458 * without having built in knowledge of the hardware 15459 * address. ill_phys_addr_pend keeps track of the last 15460 * DL_PAR sent so we know which response we are 15461 * dealing with. ill_dlpi_done will update 15462 * ill_phys_addr_pend when it sends the next req. 15463 * We don't complete the IOCTL until all three DL_PARs 15464 * have been attempted, so set *_len to 0 and break. 15465 */ 15466 paddrreq = ill->ill_phys_addr_pend; 15467 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15468 if (paddrreq == DL_IPV6_TOKEN) { 15469 ill->ill_token_length = 0; 15470 log = B_FALSE; 15471 break; 15472 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15473 ill->ill_nd_lla_len = 0; 15474 log = B_FALSE; 15475 break; 15476 } 15477 /* 15478 * Something went wrong with the DL_PHYS_ADDR_REQ. 15479 * We presumably have an IOCTL hanging out waiting 15480 * for completion. Find it and complete the IOCTL 15481 * with the error noted. 15482 * However, ill_dl_phys was called on an ill queue 15483 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15484 * set. But the ioctl is known to be pending on ill_wq. 15485 */ 15486 if (!ill->ill_ifname_pending) 15487 break; 15488 ill->ill_ifname_pending = 0; 15489 if (!ioctl_aborted) 15490 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15491 if (mp1 != NULL) { 15492 /* 15493 * This operation (SIOCSLIFNAME) must have 15494 * happened on the ill. Assert there is no conn 15495 */ 15496 ASSERT(connp == NULL); 15497 q = ill->ill_wq; 15498 } 15499 break; 15500 case DL_BIND_REQ: 15501 ill_dlpi_done(ill, DL_BIND_REQ); 15502 if (ill->ill_ifname_pending) 15503 break; 15504 /* 15505 * Something went wrong with the bind. We presumably 15506 * have an IOCTL hanging out waiting for completion. 15507 * Find it, take down the interface that was coming 15508 * up, and complete the IOCTL with the error noted. 15509 */ 15510 if (!ioctl_aborted) 15511 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15512 if (mp1 != NULL) { 15513 /* 15514 * This operation (SIOCSLIFFLAGS) must have 15515 * happened from a conn. 15516 */ 15517 ASSERT(connp != NULL); 15518 q = CONNP_TO_WQ(connp); 15519 if (ill->ill_move_in_progress) { 15520 ILL_CLEAR_MOVE(ill); 15521 } 15522 (void) ipif_down(ipif, NULL, NULL); 15523 /* error is set below the switch */ 15524 } 15525 break; 15526 case DL_ENABMULTI_REQ: 15527 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15528 15529 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15530 ill->ill_dlpi_multicast_state = IDS_FAILED; 15531 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15532 ipif_t *ipif; 15533 15534 printf("ip: joining multicasts failed (%d)" 15535 " on %s - will use link layer " 15536 "broadcasts for multicast\n", 15537 dlea->dl_errno, ill->ill_name); 15538 15539 /* 15540 * Set up the multicast mapping alone. 15541 * writer, so ok to access ill->ill_ipif 15542 * without any lock. 15543 */ 15544 ipif = ill->ill_ipif; 15545 mutex_enter(&ill->ill_phyint->phyint_lock); 15546 ill->ill_phyint->phyint_flags |= 15547 PHYI_MULTI_BCAST; 15548 mutex_exit(&ill->ill_phyint->phyint_lock); 15549 15550 if (!ill->ill_isv6) { 15551 (void) ipif_arp_setup_multicast(ipif, 15552 NULL); 15553 } else { 15554 (void) ipif_ndp_setup_multicast(ipif, 15555 NULL); 15556 } 15557 } 15558 freemsg(mp); /* Don't want to pass this up */ 15559 return; 15560 15561 case DL_CAPABILITY_REQ: 15562 case DL_CONTROL_REQ: 15563 ill_dlpi_done(ill, dlea->dl_error_primitive); 15564 ill->ill_dlpi_capab_state = IDS_FAILED; 15565 freemsg(mp); 15566 return; 15567 } 15568 /* 15569 * Note the error for IOCTL completion (mp1 is set when 15570 * ready to complete ioctl). If ill_ifname_pending_err is 15571 * set, an error occured during plumbing (ill_ifname_pending), 15572 * so we want to report that error. 15573 * 15574 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15575 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15576 * expected to get errack'd if the driver doesn't support 15577 * these flags (e.g. ethernet). log will be set to B_FALSE 15578 * if these error conditions are encountered. 15579 */ 15580 if (mp1 != NULL) { 15581 if (ill->ill_ifname_pending_err != 0) { 15582 err = ill->ill_ifname_pending_err; 15583 ill->ill_ifname_pending_err = 0; 15584 } else { 15585 err = dlea->dl_unix_errno ? 15586 dlea->dl_unix_errno : ENXIO; 15587 } 15588 /* 15589 * If we're plumbing an interface and an error hasn't already 15590 * been saved, set ill_ifname_pending_err to the error passed 15591 * up. Ignore the error if log is B_FALSE (see comment above). 15592 */ 15593 } else if (log && ill->ill_ifname_pending && 15594 ill->ill_ifname_pending_err == 0) { 15595 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15596 dlea->dl_unix_errno : ENXIO; 15597 } 15598 15599 if (log) 15600 ip_dlpi_error(ill, dlea->dl_error_primitive, 15601 dlea->dl_errno, dlea->dl_unix_errno); 15602 break; 15603 case DL_CAPABILITY_ACK: 15604 /* Call a routine to handle this one. */ 15605 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15606 ill_capability_ack(ill, mp); 15607 15608 /* 15609 * If the ack is due to renegotiation, we will need to send 15610 * a new CAPABILITY_REQ to start the renegotiation. 15611 */ 15612 if (ill->ill_capab_reneg) { 15613 ill->ill_capab_reneg = B_FALSE; 15614 ill_capability_probe(ill); 15615 } 15616 break; 15617 case DL_CONTROL_ACK: 15618 /* We treat all of these as "fire and forget" */ 15619 ill_dlpi_done(ill, DL_CONTROL_REQ); 15620 break; 15621 case DL_INFO_ACK: 15622 /* Call a routine to handle this one. */ 15623 ill_dlpi_done(ill, DL_INFO_REQ); 15624 ip_ll_subnet_defaults(ill, mp); 15625 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15626 return; 15627 case DL_BIND_ACK: 15628 /* 15629 * We should have an IOCTL waiting on this unless 15630 * sent by ill_dl_phys, in which case just return 15631 */ 15632 ill_dlpi_done(ill, DL_BIND_REQ); 15633 if (ill->ill_ifname_pending) 15634 break; 15635 15636 if (!ioctl_aborted) 15637 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15638 if (mp1 == NULL) 15639 break; 15640 /* 15641 * Because mp1 was added by ill_dl_up(), and it always 15642 * passes a valid connp, connp must be valid here. 15643 */ 15644 ASSERT(connp != NULL); 15645 q = CONNP_TO_WQ(connp); 15646 15647 /* 15648 * We are exclusive. So nothing can change even after 15649 * we get the pending mp. If need be we can put it back 15650 * and restart, as in calling ipif_arp_up() below. 15651 */ 15652 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15653 15654 mutex_enter(&ill->ill_lock); 15655 15656 ill->ill_dl_up = 1; 15657 15658 if ((info = ill->ill_nic_event_info) != NULL) { 15659 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15660 "attached for %s\n", info->hne_event, 15661 ill->ill_name)); 15662 if (info->hne_data != NULL) 15663 kmem_free(info->hne_data, info->hne_datalen); 15664 kmem_free(info, sizeof (hook_nic_event_t)); 15665 } 15666 15667 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15668 if (info != NULL) { 15669 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15670 info->hne_lif = 0; 15671 info->hne_event = NE_UP; 15672 info->hne_data = NULL; 15673 info->hne_datalen = 0; 15674 info->hne_family = ill->ill_isv6 ? 15675 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15676 } else 15677 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15678 "event information for %s (ENOMEM)\n", 15679 ill->ill_name)); 15680 15681 ill->ill_nic_event_info = info; 15682 15683 mutex_exit(&ill->ill_lock); 15684 15685 /* 15686 * Now bring up the resolver; when that is complete, we'll 15687 * create IREs. Note that we intentionally mirror what 15688 * ipif_up() would have done, because we got here by way of 15689 * ill_dl_up(), which stopped ipif_up()'s processing. 15690 */ 15691 if (ill->ill_isv6) { 15692 /* 15693 * v6 interfaces. 15694 * Unlike ARP which has to do another bind 15695 * and attach, once we get here we are 15696 * done with NDP. Except in the case of 15697 * ILLF_XRESOLV, in which case we send an 15698 * AR_INTERFACE_UP to the external resolver. 15699 * If all goes well, the ioctl will complete 15700 * in ip_rput(). If there's an error, we 15701 * complete it here. 15702 */ 15703 if ((err = ipif_ndp_up(ipif)) == 0) { 15704 if (ill->ill_flags & ILLF_XRESOLV) { 15705 mutex_enter(&connp->conn_lock); 15706 mutex_enter(&ill->ill_lock); 15707 success = ipsq_pending_mp_add( 15708 connp, ipif, q, mp1, 0); 15709 mutex_exit(&ill->ill_lock); 15710 mutex_exit(&connp->conn_lock); 15711 if (success) { 15712 err = ipif_resolver_up(ipif, 15713 Res_act_initial); 15714 if (err == EINPROGRESS) { 15715 freemsg(mp); 15716 return; 15717 } 15718 ASSERT(err != 0); 15719 mp1 = ipsq_pending_mp_get(ipsq, 15720 &connp); 15721 ASSERT(mp1 != NULL); 15722 } else { 15723 /* conn has started closing */ 15724 err = EINTR; 15725 } 15726 } else { /* Non XRESOLV interface */ 15727 (void) ipif_resolver_up(ipif, 15728 Res_act_initial); 15729 err = ipif_up_done_v6(ipif); 15730 } 15731 } 15732 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15733 /* 15734 * ARP and other v4 external resolvers. 15735 * Leave the pending mblk intact so that 15736 * the ioctl completes in ip_rput(). 15737 */ 15738 mutex_enter(&connp->conn_lock); 15739 mutex_enter(&ill->ill_lock); 15740 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15741 mutex_exit(&ill->ill_lock); 15742 mutex_exit(&connp->conn_lock); 15743 if (success) { 15744 err = ipif_resolver_up(ipif, Res_act_initial); 15745 if (err == EINPROGRESS) { 15746 freemsg(mp); 15747 return; 15748 } 15749 ASSERT(err != 0); 15750 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15751 } else { 15752 /* The conn has started closing */ 15753 err = EINTR; 15754 } 15755 } else { 15756 /* 15757 * This one is complete. Reply to pending ioctl. 15758 */ 15759 (void) ipif_resolver_up(ipif, Res_act_initial); 15760 err = ipif_up_done(ipif); 15761 } 15762 15763 if ((err == 0) && (ill->ill_up_ipifs)) { 15764 err = ill_up_ipifs(ill, q, mp1); 15765 if (err == EINPROGRESS) { 15766 freemsg(mp); 15767 return; 15768 } 15769 } 15770 15771 if (ill->ill_up_ipifs) { 15772 ill_group_cleanup(ill); 15773 } 15774 15775 break; 15776 case DL_NOTIFY_IND: { 15777 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15778 ire_t *ire; 15779 boolean_t need_ire_walk_v4 = B_FALSE; 15780 boolean_t need_ire_walk_v6 = B_FALSE; 15781 15782 switch (notify->dl_notification) { 15783 case DL_NOTE_PHYS_ADDR: 15784 err = ill_set_phys_addr(ill, mp); 15785 break; 15786 15787 case DL_NOTE_FASTPATH_FLUSH: 15788 ill_fastpath_flush(ill); 15789 break; 15790 15791 case DL_NOTE_SDU_SIZE: 15792 /* 15793 * Change the MTU size of the interface, of all 15794 * attached ipif's, and of all relevant ire's. The 15795 * new value's a uint32_t at notify->dl_data. 15796 * Mtu change Vs. new ire creation - protocol below. 15797 * 15798 * a Mark the ipif as IPIF_CHANGING. 15799 * b Set the new mtu in the ipif. 15800 * c Change the ire_max_frag on all affected ires 15801 * d Unmark the IPIF_CHANGING 15802 * 15803 * To see how the protocol works, assume an interface 15804 * route is also being added simultaneously by 15805 * ip_rt_add and let 'ipif' be the ipif referenced by 15806 * the ire. If the ire is created before step a, 15807 * it will be cleaned up by step c. If the ire is 15808 * created after step d, it will see the new value of 15809 * ipif_mtu. Any attempt to create the ire between 15810 * steps a to d will fail because of the IPIF_CHANGING 15811 * flag. Note that ire_create() is passed a pointer to 15812 * the ipif_mtu, and not the value. During ire_add 15813 * under the bucket lock, the ire_max_frag of the 15814 * new ire being created is set from the ipif/ire from 15815 * which it is being derived. 15816 */ 15817 mutex_enter(&ill->ill_lock); 15818 ill->ill_max_frag = (uint_t)notify->dl_data; 15819 15820 /* 15821 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15822 * leave it alone 15823 */ 15824 if (ill->ill_mtu_userspecified) { 15825 mutex_exit(&ill->ill_lock); 15826 break; 15827 } 15828 ill->ill_max_mtu = ill->ill_max_frag; 15829 if (ill->ill_isv6) { 15830 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15831 ill->ill_max_mtu = IPV6_MIN_MTU; 15832 } else { 15833 if (ill->ill_max_mtu < IP_MIN_MTU) 15834 ill->ill_max_mtu = IP_MIN_MTU; 15835 } 15836 for (ipif = ill->ill_ipif; ipif != NULL; 15837 ipif = ipif->ipif_next) { 15838 /* 15839 * Don't override the mtu if the user 15840 * has explicitly set it. 15841 */ 15842 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15843 continue; 15844 ipif->ipif_mtu = (uint_t)notify->dl_data; 15845 if (ipif->ipif_isv6) 15846 ire = ipif_to_ire_v6(ipif); 15847 else 15848 ire = ipif_to_ire(ipif); 15849 if (ire != NULL) { 15850 ire->ire_max_frag = ipif->ipif_mtu; 15851 ire_refrele(ire); 15852 } 15853 if (ipif->ipif_flags & IPIF_UP) { 15854 if (ill->ill_isv6) 15855 need_ire_walk_v6 = B_TRUE; 15856 else 15857 need_ire_walk_v4 = B_TRUE; 15858 } 15859 } 15860 mutex_exit(&ill->ill_lock); 15861 if (need_ire_walk_v4) 15862 ire_walk_v4(ill_mtu_change, (char *)ill, 15863 ALL_ZONES, ipst); 15864 if (need_ire_walk_v6) 15865 ire_walk_v6(ill_mtu_change, (char *)ill, 15866 ALL_ZONES, ipst); 15867 break; 15868 case DL_NOTE_LINK_UP: 15869 case DL_NOTE_LINK_DOWN: { 15870 /* 15871 * We are writer. ill / phyint / ipsq assocs stable. 15872 * The RUNNING flag reflects the state of the link. 15873 */ 15874 phyint_t *phyint = ill->ill_phyint; 15875 uint64_t new_phyint_flags; 15876 boolean_t changed = B_FALSE; 15877 boolean_t went_up; 15878 15879 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15880 mutex_enter(&phyint->phyint_lock); 15881 new_phyint_flags = went_up ? 15882 phyint->phyint_flags | PHYI_RUNNING : 15883 phyint->phyint_flags & ~PHYI_RUNNING; 15884 if (new_phyint_flags != phyint->phyint_flags) { 15885 phyint->phyint_flags = new_phyint_flags; 15886 changed = B_TRUE; 15887 } 15888 mutex_exit(&phyint->phyint_lock); 15889 /* 15890 * ill_restart_dad handles the DAD restart and routing 15891 * socket notification logic. 15892 */ 15893 if (changed) { 15894 ill_restart_dad(phyint->phyint_illv4, went_up); 15895 ill_restart_dad(phyint->phyint_illv6, went_up); 15896 } 15897 break; 15898 } 15899 case DL_NOTE_PROMISC_ON_PHYS: 15900 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15901 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15902 mutex_enter(&ill->ill_lock); 15903 ill->ill_promisc_on_phys = B_TRUE; 15904 mutex_exit(&ill->ill_lock); 15905 break; 15906 case DL_NOTE_PROMISC_OFF_PHYS: 15907 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15908 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15909 mutex_enter(&ill->ill_lock); 15910 ill->ill_promisc_on_phys = B_FALSE; 15911 mutex_exit(&ill->ill_lock); 15912 break; 15913 case DL_NOTE_CAPAB_RENEG: 15914 /* 15915 * Something changed on the driver side. 15916 * It wants us to renegotiate the capabilities 15917 * on this ill. One possible cause is the aggregation 15918 * interface under us where a port got added or 15919 * went away. 15920 * 15921 * If the capability negotiation is already done 15922 * or is in progress, reset the capabilities and 15923 * mark the ill's ill_capab_reneg to be B_TRUE, 15924 * so that when the ack comes back, we can start 15925 * the renegotiation process. 15926 * 15927 * Note that if ill_capab_reneg is already B_TRUE 15928 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 15929 * the capability resetting request has been sent 15930 * and the renegotiation has not been started yet; 15931 * nothing needs to be done in this case. 15932 */ 15933 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 15934 ill_capability_reset(ill); 15935 ill->ill_capab_reneg = B_TRUE; 15936 } 15937 break; 15938 default: 15939 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15940 "type 0x%x for DL_NOTIFY_IND\n", 15941 notify->dl_notification)); 15942 break; 15943 } 15944 15945 /* 15946 * As this is an asynchronous operation, we 15947 * should not call ill_dlpi_done 15948 */ 15949 break; 15950 } 15951 case DL_NOTIFY_ACK: { 15952 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15953 15954 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15955 ill->ill_note_link = 1; 15956 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15957 break; 15958 } 15959 case DL_PHYS_ADDR_ACK: { 15960 /* 15961 * As part of plumbing the interface via SIOCSLIFNAME, 15962 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 15963 * whose answers we receive here. As each answer is received, 15964 * we call ill_dlpi_done() to dispatch the next request as 15965 * we're processing the current one. Once all answers have 15966 * been received, we use ipsq_pending_mp_get() to dequeue the 15967 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 15968 * is invoked from an ill queue, conn_oper_pending_ill is not 15969 * available, but we know the ioctl is pending on ill_wq.) 15970 */ 15971 uint_t paddrlen, paddroff; 15972 15973 paddrreq = ill->ill_phys_addr_pend; 15974 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 15975 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 15976 15977 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15978 if (paddrreq == DL_IPV6_TOKEN) { 15979 /* 15980 * bcopy to low-order bits of ill_token 15981 * 15982 * XXX Temporary hack - currently, all known tokens 15983 * are 64 bits, so I'll cheat for the moment. 15984 */ 15985 bcopy(mp->b_rptr + paddroff, 15986 &ill->ill_token.s6_addr32[2], paddrlen); 15987 ill->ill_token_length = paddrlen; 15988 break; 15989 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15990 ASSERT(ill->ill_nd_lla_mp == NULL); 15991 ill_set_ndmp(ill, mp, paddroff, paddrlen); 15992 mp = NULL; 15993 break; 15994 } 15995 15996 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 15997 ASSERT(ill->ill_phys_addr_mp == NULL); 15998 if (!ill->ill_ifname_pending) 15999 break; 16000 ill->ill_ifname_pending = 0; 16001 if (!ioctl_aborted) 16002 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16003 if (mp1 != NULL) { 16004 ASSERT(connp == NULL); 16005 q = ill->ill_wq; 16006 } 16007 /* 16008 * If any error acks received during the plumbing sequence, 16009 * ill_ifname_pending_err will be set. Break out and send up 16010 * the error to the pending ioctl. 16011 */ 16012 if (ill->ill_ifname_pending_err != 0) { 16013 err = ill->ill_ifname_pending_err; 16014 ill->ill_ifname_pending_err = 0; 16015 break; 16016 } 16017 16018 ill->ill_phys_addr_mp = mp; 16019 ill->ill_phys_addr = mp->b_rptr + paddroff; 16020 mp = NULL; 16021 16022 /* 16023 * If paddrlen is zero, the DLPI provider doesn't support 16024 * physical addresses. The other two tests were historical 16025 * workarounds for bugs in our former PPP implementation, but 16026 * now other things have grown dependencies on them -- e.g., 16027 * the tun module specifies a dl_addr_length of zero in its 16028 * DL_BIND_ACK, but then specifies an incorrect value in its 16029 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16030 * but only after careful testing ensures that all dependent 16031 * broken DLPI providers have been fixed. 16032 */ 16033 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16034 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16035 ill->ill_phys_addr = NULL; 16036 } else if (paddrlen != ill->ill_phys_addr_length) { 16037 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16038 paddrlen, ill->ill_phys_addr_length)); 16039 err = EINVAL; 16040 break; 16041 } 16042 16043 if (ill->ill_nd_lla_mp == NULL) { 16044 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16045 err = ENOMEM; 16046 break; 16047 } 16048 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16049 } 16050 16051 /* 16052 * Set the interface token. If the zeroth interface address 16053 * is unspecified, then set it to the link local address. 16054 */ 16055 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16056 (void) ill_setdefaulttoken(ill); 16057 16058 ASSERT(ill->ill_ipif->ipif_id == 0); 16059 if (ipif != NULL && 16060 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16061 (void) ipif_setlinklocal(ipif); 16062 } 16063 break; 16064 } 16065 case DL_OK_ACK: 16066 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16067 dlpi_prim_str((int)dloa->dl_correct_primitive), 16068 dloa->dl_correct_primitive)); 16069 switch (dloa->dl_correct_primitive) { 16070 case DL_PROMISCON_REQ: 16071 case DL_PROMISCOFF_REQ: 16072 case DL_ENABMULTI_REQ: 16073 case DL_DISABMULTI_REQ: 16074 case DL_UNBIND_REQ: 16075 case DL_ATTACH_REQ: 16076 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16077 break; 16078 } 16079 break; 16080 default: 16081 break; 16082 } 16083 16084 freemsg(mp); 16085 if (mp1 != NULL) { 16086 /* 16087 * The operation must complete without EINPROGRESS 16088 * since ipsq_pending_mp_get() has removed the mblk 16089 * from ipsq_pending_mp. Otherwise, the operation 16090 * will be stuck forever in the ipsq. 16091 */ 16092 ASSERT(err != EINPROGRESS); 16093 16094 switch (ipsq->ipsq_current_ioctl) { 16095 case 0: 16096 ipsq_current_finish(ipsq); 16097 break; 16098 16099 case SIOCLIFADDIF: 16100 case SIOCSLIFNAME: 16101 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16102 break; 16103 16104 default: 16105 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16106 break; 16107 } 16108 } 16109 } 16110 16111 /* 16112 * ip_rput_other is called by ip_rput to handle messages modifying the global 16113 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16114 */ 16115 /* ARGSUSED */ 16116 void 16117 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16118 { 16119 ill_t *ill; 16120 struct iocblk *iocp; 16121 mblk_t *mp1; 16122 conn_t *connp = NULL; 16123 16124 ip1dbg(("ip_rput_other ")); 16125 ill = (ill_t *)q->q_ptr; 16126 /* 16127 * This routine is not a writer in the case of SIOCGTUNPARAM 16128 * in which case ipsq is NULL. 16129 */ 16130 if (ipsq != NULL) { 16131 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16132 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16133 } 16134 16135 switch (mp->b_datap->db_type) { 16136 case M_ERROR: 16137 case M_HANGUP: 16138 /* 16139 * The device has a problem. We force the ILL down. It can 16140 * be brought up again manually using SIOCSIFFLAGS (via 16141 * ifconfig or equivalent). 16142 */ 16143 ASSERT(ipsq != NULL); 16144 if (mp->b_rptr < mp->b_wptr) 16145 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16146 if (ill->ill_error == 0) 16147 ill->ill_error = ENXIO; 16148 if (!ill_down_start(q, mp)) 16149 return; 16150 ipif_all_down_tail(ipsq, q, mp, NULL); 16151 break; 16152 case M_IOCACK: 16153 iocp = (struct iocblk *)mp->b_rptr; 16154 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16155 switch (iocp->ioc_cmd) { 16156 case SIOCSTUNPARAM: 16157 case OSIOCSTUNPARAM: 16158 ASSERT(ipsq != NULL); 16159 /* 16160 * Finish socket ioctl passed through to tun. 16161 * We should have an IOCTL waiting on this. 16162 */ 16163 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16164 if (ill->ill_isv6) { 16165 struct iftun_req *ta; 16166 16167 /* 16168 * if a source or destination is 16169 * being set, try and set the link 16170 * local address for the tunnel 16171 */ 16172 ta = (struct iftun_req *)mp->b_cont-> 16173 b_cont->b_rptr; 16174 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16175 ipif_set_tun_llink(ill, ta); 16176 } 16177 16178 } 16179 if (mp1 != NULL) { 16180 /* 16181 * Now copy back the b_next/b_prev used by 16182 * mi code for the mi_copy* functions. 16183 * See ip_sioctl_tunparam() for the reason. 16184 * Also protect against missing b_cont. 16185 */ 16186 if (mp->b_cont != NULL) { 16187 mp->b_cont->b_next = 16188 mp1->b_cont->b_next; 16189 mp->b_cont->b_prev = 16190 mp1->b_cont->b_prev; 16191 } 16192 inet_freemsg(mp1); 16193 ASSERT(connp != NULL); 16194 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16195 iocp->ioc_error, NO_COPYOUT, ipsq); 16196 } else { 16197 ASSERT(connp == NULL); 16198 putnext(q, mp); 16199 } 16200 break; 16201 case SIOCGTUNPARAM: 16202 case OSIOCGTUNPARAM: 16203 /* 16204 * This is really M_IOCDATA from the tunnel driver. 16205 * convert back and complete the ioctl. 16206 * We should have an IOCTL waiting on this. 16207 */ 16208 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16209 if (mp1) { 16210 /* 16211 * Now copy back the b_next/b_prev used by 16212 * mi code for the mi_copy* functions. 16213 * See ip_sioctl_tunparam() for the reason. 16214 * Also protect against missing b_cont. 16215 */ 16216 if (mp->b_cont != NULL) { 16217 mp->b_cont->b_next = 16218 mp1->b_cont->b_next; 16219 mp->b_cont->b_prev = 16220 mp1->b_cont->b_prev; 16221 } 16222 inet_freemsg(mp1); 16223 if (iocp->ioc_error == 0) 16224 mp->b_datap->db_type = M_IOCDATA; 16225 ASSERT(connp != NULL); 16226 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16227 iocp->ioc_error, COPYOUT, NULL); 16228 } else { 16229 ASSERT(connp == NULL); 16230 putnext(q, mp); 16231 } 16232 break; 16233 default: 16234 break; 16235 } 16236 break; 16237 case M_IOCNAK: 16238 iocp = (struct iocblk *)mp->b_rptr; 16239 16240 switch (iocp->ioc_cmd) { 16241 int mode; 16242 16243 case DL_IOC_HDR_INFO: 16244 /* 16245 * If this was the first attempt turn of the 16246 * fastpath probing. 16247 */ 16248 mutex_enter(&ill->ill_lock); 16249 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16250 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16251 mutex_exit(&ill->ill_lock); 16252 ill_fastpath_nack(ill); 16253 ip1dbg(("ip_rput: DLPI fastpath off on " 16254 "interface %s\n", 16255 ill->ill_name)); 16256 } else { 16257 mutex_exit(&ill->ill_lock); 16258 } 16259 freemsg(mp); 16260 break; 16261 case SIOCSTUNPARAM: 16262 case OSIOCSTUNPARAM: 16263 ASSERT(ipsq != NULL); 16264 /* 16265 * Finish socket ioctl passed through to tun 16266 * We should have an IOCTL waiting on this. 16267 */ 16268 /* FALLTHRU */ 16269 case SIOCGTUNPARAM: 16270 case OSIOCGTUNPARAM: 16271 /* 16272 * This is really M_IOCDATA from the tunnel driver. 16273 * convert back and complete the ioctl. 16274 * We should have an IOCTL waiting on this. 16275 */ 16276 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16277 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16278 mp1 = ill_pending_mp_get(ill, &connp, 16279 iocp->ioc_id); 16280 mode = COPYOUT; 16281 ipsq = NULL; 16282 } else { 16283 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16284 mode = NO_COPYOUT; 16285 } 16286 if (mp1 != NULL) { 16287 /* 16288 * Now copy back the b_next/b_prev used by 16289 * mi code for the mi_copy* functions. 16290 * See ip_sioctl_tunparam() for the reason. 16291 * Also protect against missing b_cont. 16292 */ 16293 if (mp->b_cont != NULL) { 16294 mp->b_cont->b_next = 16295 mp1->b_cont->b_next; 16296 mp->b_cont->b_prev = 16297 mp1->b_cont->b_prev; 16298 } 16299 inet_freemsg(mp1); 16300 if (iocp->ioc_error == 0) 16301 iocp->ioc_error = EINVAL; 16302 ASSERT(connp != NULL); 16303 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16304 iocp->ioc_error, mode, ipsq); 16305 } else { 16306 ASSERT(connp == NULL); 16307 putnext(q, mp); 16308 } 16309 break; 16310 default: 16311 break; 16312 } 16313 default: 16314 break; 16315 } 16316 } 16317 16318 /* 16319 * NOTE : This function does not ire_refrele the ire argument passed in. 16320 * 16321 * IPQoS notes 16322 * IP policy is invoked twice for a forwarded packet, once on the read side 16323 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16324 * enabled. An additional parameter, in_ill, has been added for this purpose. 16325 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16326 * because ip_mroute drops this information. 16327 * 16328 */ 16329 void 16330 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16331 { 16332 uint32_t old_pkt_len; 16333 uint32_t pkt_len; 16334 queue_t *q; 16335 uint32_t sum; 16336 #define rptr ((uchar_t *)ipha) 16337 uint32_t max_frag; 16338 uint32_t ill_index; 16339 ill_t *out_ill; 16340 mib2_ipIfStatsEntry_t *mibptr; 16341 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16342 16343 /* Get the ill_index of the incoming ILL */ 16344 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16345 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16346 16347 /* Initiate Read side IPPF processing */ 16348 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16349 ip_process(IPP_FWD_IN, &mp, ill_index); 16350 if (mp == NULL) { 16351 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16352 "during IPPF processing\n")); 16353 return; 16354 } 16355 } 16356 16357 /* Adjust the checksum to reflect the ttl decrement. */ 16358 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16359 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16360 16361 if (ipha->ipha_ttl-- <= 1) { 16362 if (ip_csum_hdr(ipha)) { 16363 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16364 goto drop_pkt; 16365 } 16366 /* 16367 * Note: ire_stq this will be NULL for multicast 16368 * datagrams using the long path through arp (the IRE 16369 * is not an IRE_CACHE). This should not cause 16370 * problems since we don't generate ICMP errors for 16371 * multicast packets. 16372 */ 16373 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16374 q = ire->ire_stq; 16375 if (q != NULL) { 16376 /* Sent by forwarding path, and router is global zone */ 16377 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16378 GLOBAL_ZONEID, ipst); 16379 } else 16380 freemsg(mp); 16381 return; 16382 } 16383 16384 /* 16385 * Don't forward if the interface is down 16386 */ 16387 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16388 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16389 ip2dbg(("ip_rput_forward:interface is down\n")); 16390 goto drop_pkt; 16391 } 16392 16393 /* Get the ill_index of the outgoing ILL */ 16394 out_ill = ire_to_ill(ire); 16395 ill_index = out_ill->ill_phyint->phyint_ifindex; 16396 16397 DTRACE_PROBE4(ip4__forwarding__start, 16398 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16399 16400 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16401 ipst->ips_ipv4firewall_forwarding, 16402 in_ill, out_ill, ipha, mp, mp, ipst); 16403 16404 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16405 16406 if (mp == NULL) 16407 return; 16408 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16409 16410 if (is_system_labeled()) { 16411 mblk_t *mp1; 16412 16413 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16414 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16415 goto drop_pkt; 16416 } 16417 /* Size may have changed */ 16418 mp = mp1; 16419 ipha = (ipha_t *)mp->b_rptr; 16420 pkt_len = ntohs(ipha->ipha_length); 16421 } 16422 16423 /* Check if there are options to update */ 16424 if (!IS_SIMPLE_IPH(ipha)) { 16425 if (ip_csum_hdr(ipha)) { 16426 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16427 goto drop_pkt; 16428 } 16429 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16430 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16431 return; 16432 } 16433 16434 ipha->ipha_hdr_checksum = 0; 16435 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16436 } 16437 max_frag = ire->ire_max_frag; 16438 if (pkt_len > max_frag) { 16439 /* 16440 * It needs fragging on its way out. We haven't 16441 * verified the header checksum yet. Since we 16442 * are going to put a surely good checksum in the 16443 * outgoing header, we have to make sure that it 16444 * was good coming in. 16445 */ 16446 if (ip_csum_hdr(ipha)) { 16447 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16448 goto drop_pkt; 16449 } 16450 /* Initiate Write side IPPF processing */ 16451 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16452 ip_process(IPP_FWD_OUT, &mp, ill_index); 16453 if (mp == NULL) { 16454 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16455 " during IPPF processing\n")); 16456 return; 16457 } 16458 } 16459 /* 16460 * Handle labeled packet resizing. 16461 * 16462 * If we have added a label, inform ip_wput_frag() of its 16463 * effect on the MTU for ICMP messages. 16464 */ 16465 if (pkt_len > old_pkt_len) { 16466 uint32_t secopt_size; 16467 16468 secopt_size = pkt_len - old_pkt_len; 16469 if (secopt_size < max_frag) 16470 max_frag -= secopt_size; 16471 } 16472 16473 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16474 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16475 return; 16476 } 16477 16478 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16479 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16480 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16481 ipst->ips_ipv4firewall_physical_out, 16482 NULL, out_ill, ipha, mp, mp, ipst); 16483 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16484 if (mp == NULL) 16485 return; 16486 16487 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16488 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16489 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16490 /* ip_xmit_v4 always consumes the packet */ 16491 return; 16492 16493 drop_pkt:; 16494 ip1dbg(("ip_rput_forward: drop pkt\n")); 16495 freemsg(mp); 16496 #undef rptr 16497 } 16498 16499 void 16500 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16501 { 16502 ire_t *ire; 16503 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16504 16505 ASSERT(!ipif->ipif_isv6); 16506 /* 16507 * Find an IRE which matches the destination and the outgoing 16508 * queue in the cache table. All we need is an IRE_CACHE which 16509 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16510 * then it is enough to have some IRE_CACHE in the group. 16511 */ 16512 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16513 dst = ipif->ipif_pp_dst_addr; 16514 16515 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16516 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16517 if (ire == NULL) { 16518 /* 16519 * Mark this packet to make it be delivered to 16520 * ip_rput_forward after the new ire has been 16521 * created. 16522 */ 16523 mp->b_prev = NULL; 16524 mp->b_next = mp; 16525 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16526 NULL, 0, GLOBAL_ZONEID, &zero_info); 16527 } else { 16528 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16529 IRE_REFRELE(ire); 16530 } 16531 } 16532 16533 /* Update any source route, record route or timestamp options */ 16534 static int 16535 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16536 { 16537 ipoptp_t opts; 16538 uchar_t *opt; 16539 uint8_t optval; 16540 uint8_t optlen; 16541 ipaddr_t dst; 16542 uint32_t ts; 16543 ire_t *dst_ire = NULL; 16544 ire_t *tmp_ire = NULL; 16545 timestruc_t now; 16546 16547 ip2dbg(("ip_rput_forward_options\n")); 16548 dst = ipha->ipha_dst; 16549 for (optval = ipoptp_first(&opts, ipha); 16550 optval != IPOPT_EOL; 16551 optval = ipoptp_next(&opts)) { 16552 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16553 opt = opts.ipoptp_cur; 16554 optlen = opts.ipoptp_len; 16555 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16556 optval, opts.ipoptp_len)); 16557 switch (optval) { 16558 uint32_t off; 16559 case IPOPT_SSRR: 16560 case IPOPT_LSRR: 16561 /* Check if adminstratively disabled */ 16562 if (!ipst->ips_ip_forward_src_routed) { 16563 if (ire->ire_stq != NULL) { 16564 /* 16565 * Sent by forwarding path, and router 16566 * is global zone 16567 */ 16568 icmp_unreachable(ire->ire_stq, mp, 16569 ICMP_SOURCE_ROUTE_FAILED, 16570 GLOBAL_ZONEID, ipst); 16571 } else { 16572 ip0dbg(("ip_rput_forward_options: " 16573 "unable to send unreach\n")); 16574 freemsg(mp); 16575 } 16576 return (-1); 16577 } 16578 16579 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16580 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16581 if (dst_ire == NULL) { 16582 /* 16583 * Must be partial since ip_rput_options 16584 * checked for strict. 16585 */ 16586 break; 16587 } 16588 off = opt[IPOPT_OFFSET]; 16589 off--; 16590 redo_srr: 16591 if (optlen < IP_ADDR_LEN || 16592 off > optlen - IP_ADDR_LEN) { 16593 /* End of source route */ 16594 ip1dbg(( 16595 "ip_rput_forward_options: end of SR\n")); 16596 ire_refrele(dst_ire); 16597 break; 16598 } 16599 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16600 bcopy(&ire->ire_src_addr, (char *)opt + off, 16601 IP_ADDR_LEN); 16602 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16603 ntohl(dst))); 16604 16605 /* 16606 * Check if our address is present more than 16607 * once as consecutive hops in source route. 16608 */ 16609 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16610 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16611 if (tmp_ire != NULL) { 16612 ire_refrele(tmp_ire); 16613 off += IP_ADDR_LEN; 16614 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16615 goto redo_srr; 16616 } 16617 ipha->ipha_dst = dst; 16618 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16619 ire_refrele(dst_ire); 16620 break; 16621 case IPOPT_RR: 16622 off = opt[IPOPT_OFFSET]; 16623 off--; 16624 if (optlen < IP_ADDR_LEN || 16625 off > optlen - IP_ADDR_LEN) { 16626 /* No more room - ignore */ 16627 ip1dbg(( 16628 "ip_rput_forward_options: end of RR\n")); 16629 break; 16630 } 16631 bcopy(&ire->ire_src_addr, (char *)opt + off, 16632 IP_ADDR_LEN); 16633 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16634 break; 16635 case IPOPT_TS: 16636 /* Insert timestamp if there is room */ 16637 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16638 case IPOPT_TS_TSONLY: 16639 off = IPOPT_TS_TIMELEN; 16640 break; 16641 case IPOPT_TS_PRESPEC: 16642 case IPOPT_TS_PRESPEC_RFC791: 16643 /* Verify that the address matched */ 16644 off = opt[IPOPT_OFFSET] - 1; 16645 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16646 dst_ire = ire_ctable_lookup(dst, 0, 16647 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16648 MATCH_IRE_TYPE, ipst); 16649 if (dst_ire == NULL) { 16650 /* Not for us */ 16651 break; 16652 } 16653 ire_refrele(dst_ire); 16654 /* FALLTHRU */ 16655 case IPOPT_TS_TSANDADDR: 16656 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16657 break; 16658 default: 16659 /* 16660 * ip_*put_options should have already 16661 * dropped this packet. 16662 */ 16663 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16664 "unknown IT - bug in ip_rput_options?\n"); 16665 return (0); /* Keep "lint" happy */ 16666 } 16667 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16668 /* Increase overflow counter */ 16669 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16670 opt[IPOPT_POS_OV_FLG] = 16671 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16672 (off << 4)); 16673 break; 16674 } 16675 off = opt[IPOPT_OFFSET] - 1; 16676 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16677 case IPOPT_TS_PRESPEC: 16678 case IPOPT_TS_PRESPEC_RFC791: 16679 case IPOPT_TS_TSANDADDR: 16680 bcopy(&ire->ire_src_addr, 16681 (char *)opt + off, IP_ADDR_LEN); 16682 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16683 /* FALLTHRU */ 16684 case IPOPT_TS_TSONLY: 16685 off = opt[IPOPT_OFFSET] - 1; 16686 /* Compute # of milliseconds since midnight */ 16687 gethrestime(&now); 16688 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16689 now.tv_nsec / (NANOSEC / MILLISEC); 16690 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16691 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16692 break; 16693 } 16694 break; 16695 } 16696 } 16697 return (0); 16698 } 16699 16700 /* 16701 * This is called after processing at least one of AH/ESP headers. 16702 * 16703 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16704 * the actual, physical interface on which the packet was received, 16705 * but, when ip_strict_dst_multihoming is set to 1, could be the 16706 * interface which had the ipha_dst configured when the packet went 16707 * through ip_rput. The ill_index corresponding to the recv_ill 16708 * is saved in ipsec_in_rill_index 16709 * 16710 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16711 * cannot assume "ire" points to valid data for any IPv6 cases. 16712 */ 16713 void 16714 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16715 { 16716 mblk_t *mp; 16717 ipaddr_t dst; 16718 in6_addr_t *v6dstp; 16719 ipha_t *ipha; 16720 ip6_t *ip6h; 16721 ipsec_in_t *ii; 16722 boolean_t ill_need_rele = B_FALSE; 16723 boolean_t rill_need_rele = B_FALSE; 16724 boolean_t ire_need_rele = B_FALSE; 16725 netstack_t *ns; 16726 ip_stack_t *ipst; 16727 16728 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16729 ASSERT(ii->ipsec_in_ill_index != 0); 16730 ns = ii->ipsec_in_ns; 16731 ASSERT(ii->ipsec_in_ns != NULL); 16732 ipst = ns->netstack_ip; 16733 16734 mp = ipsec_mp->b_cont; 16735 ASSERT(mp != NULL); 16736 16737 16738 if (ill == NULL) { 16739 ASSERT(recv_ill == NULL); 16740 /* 16741 * We need to get the original queue on which ip_rput_local 16742 * or ip_rput_data_v6 was called. 16743 */ 16744 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16745 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16746 ill_need_rele = B_TRUE; 16747 16748 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16749 recv_ill = ill_lookup_on_ifindex( 16750 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16751 NULL, NULL, NULL, NULL, ipst); 16752 rill_need_rele = B_TRUE; 16753 } else { 16754 recv_ill = ill; 16755 } 16756 16757 if ((ill == NULL) || (recv_ill == NULL)) { 16758 ip0dbg(("ip_fanout_proto_again: interface " 16759 "disappeared\n")); 16760 if (ill != NULL) 16761 ill_refrele(ill); 16762 if (recv_ill != NULL) 16763 ill_refrele(recv_ill); 16764 freemsg(ipsec_mp); 16765 return; 16766 } 16767 } 16768 16769 ASSERT(ill != NULL && recv_ill != NULL); 16770 16771 if (mp->b_datap->db_type == M_CTL) { 16772 /* 16773 * AH/ESP is returning the ICMP message after 16774 * removing their headers. Fanout again till 16775 * it gets to the right protocol. 16776 */ 16777 if (ii->ipsec_in_v4) { 16778 icmph_t *icmph; 16779 int iph_hdr_length; 16780 int hdr_length; 16781 16782 ipha = (ipha_t *)mp->b_rptr; 16783 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16784 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16785 ipha = (ipha_t *)&icmph[1]; 16786 hdr_length = IPH_HDR_LENGTH(ipha); 16787 /* 16788 * icmp_inbound_error_fanout may need to do pullupmsg. 16789 * Reset the type to M_DATA. 16790 */ 16791 mp->b_datap->db_type = M_DATA; 16792 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16793 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16794 B_FALSE, ill, ii->ipsec_in_zoneid); 16795 } else { 16796 icmp6_t *icmp6; 16797 int hdr_length; 16798 16799 ip6h = (ip6_t *)mp->b_rptr; 16800 /* Don't call hdr_length_v6() unless you have to. */ 16801 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16802 hdr_length = ip_hdr_length_v6(mp, ip6h); 16803 else 16804 hdr_length = IPV6_HDR_LEN; 16805 16806 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16807 /* 16808 * icmp_inbound_error_fanout_v6 may need to do 16809 * pullupmsg. Reset the type to M_DATA. 16810 */ 16811 mp->b_datap->db_type = M_DATA; 16812 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16813 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16814 } 16815 if (ill_need_rele) 16816 ill_refrele(ill); 16817 if (rill_need_rele) 16818 ill_refrele(recv_ill); 16819 return; 16820 } 16821 16822 if (ii->ipsec_in_v4) { 16823 ipha = (ipha_t *)mp->b_rptr; 16824 dst = ipha->ipha_dst; 16825 if (CLASSD(dst)) { 16826 /* 16827 * Multicast has to be delivered to all streams. 16828 */ 16829 dst = INADDR_BROADCAST; 16830 } 16831 16832 if (ire == NULL) { 16833 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16834 MBLK_GETLABEL(mp), ipst); 16835 if (ire == NULL) { 16836 if (ill_need_rele) 16837 ill_refrele(ill); 16838 if (rill_need_rele) 16839 ill_refrele(recv_ill); 16840 ip1dbg(("ip_fanout_proto_again: " 16841 "IRE not found")); 16842 freemsg(ipsec_mp); 16843 return; 16844 } 16845 ire_need_rele = B_TRUE; 16846 } 16847 16848 switch (ipha->ipha_protocol) { 16849 case IPPROTO_UDP: 16850 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16851 recv_ill); 16852 if (ire_need_rele) 16853 ire_refrele(ire); 16854 break; 16855 case IPPROTO_TCP: 16856 if (!ire_need_rele) 16857 IRE_REFHOLD(ire); 16858 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16859 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16860 IRE_REFRELE(ire); 16861 if (mp != NULL) 16862 squeue_enter_chain(GET_SQUEUE(mp), mp, 16863 mp, 1, SQTAG_IP_PROTO_AGAIN); 16864 break; 16865 case IPPROTO_SCTP: 16866 if (!ire_need_rele) 16867 IRE_REFHOLD(ire); 16868 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16869 ipsec_mp, 0, ill->ill_rq, dst); 16870 break; 16871 default: 16872 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16873 recv_ill, B_FALSE); 16874 if (ire_need_rele) 16875 ire_refrele(ire); 16876 break; 16877 } 16878 } else { 16879 uint32_t rput_flags = 0; 16880 16881 ip6h = (ip6_t *)mp->b_rptr; 16882 v6dstp = &ip6h->ip6_dst; 16883 /* 16884 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16885 * address. 16886 * 16887 * Currently, we don't store that state in the IPSEC_IN 16888 * message, and we may need to. 16889 */ 16890 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16891 IP6_IN_LLMCAST : 0); 16892 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16893 NULL, NULL); 16894 } 16895 if (ill_need_rele) 16896 ill_refrele(ill); 16897 if (rill_need_rele) 16898 ill_refrele(recv_ill); 16899 } 16900 16901 /* 16902 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16903 * returns 'true' if there are still fragments left on the queue, in 16904 * which case we restart the timer. 16905 */ 16906 void 16907 ill_frag_timer(void *arg) 16908 { 16909 ill_t *ill = (ill_t *)arg; 16910 boolean_t frag_pending; 16911 ip_stack_t *ipst = ill->ill_ipst; 16912 16913 mutex_enter(&ill->ill_lock); 16914 ASSERT(!ill->ill_fragtimer_executing); 16915 if (ill->ill_state_flags & ILL_CONDEMNED) { 16916 ill->ill_frag_timer_id = 0; 16917 mutex_exit(&ill->ill_lock); 16918 return; 16919 } 16920 ill->ill_fragtimer_executing = 1; 16921 mutex_exit(&ill->ill_lock); 16922 16923 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 16924 16925 /* 16926 * Restart the timer, if we have fragments pending or if someone 16927 * wanted us to be scheduled again. 16928 */ 16929 mutex_enter(&ill->ill_lock); 16930 ill->ill_fragtimer_executing = 0; 16931 ill->ill_frag_timer_id = 0; 16932 if (frag_pending || ill->ill_fragtimer_needrestart) 16933 ill_frag_timer_start(ill); 16934 mutex_exit(&ill->ill_lock); 16935 } 16936 16937 void 16938 ill_frag_timer_start(ill_t *ill) 16939 { 16940 ip_stack_t *ipst = ill->ill_ipst; 16941 16942 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16943 16944 /* If the ill is closing or opening don't proceed */ 16945 if (ill->ill_state_flags & ILL_CONDEMNED) 16946 return; 16947 16948 if (ill->ill_fragtimer_executing) { 16949 /* 16950 * ill_frag_timer is currently executing. Just record the 16951 * the fact that we want the timer to be restarted. 16952 * ill_frag_timer will post a timeout before it returns, 16953 * ensuring it will be called again. 16954 */ 16955 ill->ill_fragtimer_needrestart = 1; 16956 return; 16957 } 16958 16959 if (ill->ill_frag_timer_id == 0) { 16960 /* 16961 * The timer is neither running nor is the timeout handler 16962 * executing. Post a timeout so that ill_frag_timer will be 16963 * called 16964 */ 16965 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16966 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 16967 ill->ill_fragtimer_needrestart = 0; 16968 } 16969 } 16970 16971 /* 16972 * This routine is needed for loopback when forwarding multicasts. 16973 * 16974 * IPQoS Notes: 16975 * IPPF processing is done in fanout routines. 16976 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16977 * processing for IPsec packets is done when it comes back in clear. 16978 * NOTE : The callers of this function need to do the ire_refrele for the 16979 * ire that is being passed in. 16980 */ 16981 void 16982 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16983 ill_t *recv_ill, boolean_t esp_in_udp_packet) 16984 { 16985 ill_t *ill = (ill_t *)q->q_ptr; 16986 uint32_t sum; 16987 uint32_t u1; 16988 uint32_t u2; 16989 int hdr_length; 16990 boolean_t mctl_present; 16991 mblk_t *first_mp = mp; 16992 mblk_t *hada_mp = NULL; 16993 ipha_t *inner_ipha; 16994 ip_stack_t *ipst; 16995 16996 ASSERT(recv_ill != NULL); 16997 ipst = recv_ill->ill_ipst; 16998 16999 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17000 "ip_rput_locl_start: q %p", q); 17001 17002 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17003 ASSERT(ill != NULL); 17004 17005 17006 #define rptr ((uchar_t *)ipha) 17007 #define iphs ((uint16_t *)ipha) 17008 17009 /* 17010 * no UDP or TCP packet should come here anymore. 17011 */ 17012 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17013 ipha->ipha_protocol != IPPROTO_UDP); 17014 17015 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17016 if (mctl_present && 17017 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17018 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17019 17020 /* 17021 * It's an IPsec accelerated packet. 17022 * Keep a pointer to the data attributes around until 17023 * we allocate the ipsec_info_t. 17024 */ 17025 IPSECHW_DEBUG(IPSECHW_PKT, 17026 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17027 hada_mp = first_mp; 17028 hada_mp->b_cont = NULL; 17029 /* 17030 * Since it is accelerated, it comes directly from 17031 * the ill and the data attributes is followed by 17032 * the packet data. 17033 */ 17034 ASSERT(mp->b_datap->db_type != M_CTL); 17035 first_mp = mp; 17036 mctl_present = B_FALSE; 17037 } 17038 17039 /* 17040 * IF M_CTL is not present, then ipsec_in_is_secure 17041 * should return B_TRUE. There is a case where loopback 17042 * packets has an M_CTL in the front with all the 17043 * IPsec options set to IPSEC_PREF_NEVER - which means 17044 * ipsec_in_is_secure will return B_FALSE. As loopback 17045 * packets never comes here, it is safe to ASSERT the 17046 * following. 17047 */ 17048 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17049 17050 /* 17051 * Also, we should never have an mctl_present if this is an 17052 * ESP-in-UDP packet. 17053 */ 17054 ASSERT(!mctl_present || !esp_in_udp_packet); 17055 17056 17057 /* u1 is # words of IP options */ 17058 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17059 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17060 17061 if (u1 || (!esp_in_udp_packet && !mctl_present)) { 17062 if (u1) { 17063 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17064 if (hada_mp != NULL) 17065 freemsg(hada_mp); 17066 return; 17067 } 17068 } else { 17069 /* Check the IP header checksum. */ 17070 #define uph ((uint16_t *)ipha) 17071 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17072 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17073 #undef uph 17074 /* finish doing IP checksum */ 17075 sum = (sum & 0xFFFF) + (sum >> 16); 17076 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17077 if (sum && sum != 0xFFFF) { 17078 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17079 goto drop_pkt; 17080 } 17081 } 17082 } 17083 17084 /* 17085 * Count for SNMP of inbound packets for ire. As ip_proto_input 17086 * might be called more than once for secure packets, count only 17087 * the first time. 17088 */ 17089 if (!mctl_present) { 17090 UPDATE_IB_PKT_COUNT(ire); 17091 ire->ire_last_used_time = lbolt; 17092 } 17093 17094 /* Check for fragmentation offset. */ 17095 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17096 u1 = u2 & (IPH_MF | IPH_OFFSET); 17097 if (u1) { 17098 /* 17099 * We re-assemble fragments before we do the AH/ESP 17100 * processing. Thus, M_CTL should not be present 17101 * while we are re-assembling. 17102 */ 17103 ASSERT(!mctl_present); 17104 ASSERT(first_mp == mp); 17105 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17106 return; 17107 } 17108 /* 17109 * Make sure that first_mp points back to mp as 17110 * the mp we came in with could have changed in 17111 * ip_rput_fragment(). 17112 */ 17113 ipha = (ipha_t *)mp->b_rptr; 17114 first_mp = mp; 17115 } 17116 17117 /* 17118 * Clear hardware checksumming flag as it is currently only 17119 * used by TCP and UDP. 17120 */ 17121 DB_CKSUMFLAGS(mp) = 0; 17122 17123 /* Now we have a complete datagram, destined for this machine. */ 17124 u1 = IPH_HDR_LENGTH(ipha); 17125 switch (ipha->ipha_protocol) { 17126 case IPPROTO_ICMP: { 17127 ire_t *ire_zone; 17128 ilm_t *ilm; 17129 mblk_t *mp1; 17130 zoneid_t last_zoneid; 17131 17132 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17133 ASSERT(ire->ire_type == IRE_BROADCAST); 17134 /* 17135 * In the multicast case, applications may have joined 17136 * the group from different zones, so we need to deliver 17137 * the packet to each of them. Loop through the 17138 * multicast memberships structures (ilm) on the receive 17139 * ill and send a copy of the packet up each matching 17140 * one. However, we don't do this for multicasts sent on 17141 * the loopback interface (PHYI_LOOPBACK flag set) as 17142 * they must stay in the sender's zone. 17143 * 17144 * ilm_add_v6() ensures that ilms in the same zone are 17145 * contiguous in the ill_ilm list. We use this property 17146 * to avoid sending duplicates needed when two 17147 * applications in the same zone join the same group on 17148 * different logical interfaces: we ignore the ilm if 17149 * its zoneid is the same as the last matching one. 17150 * In addition, the sending of the packet for 17151 * ire_zoneid is delayed until all of the other ilms 17152 * have been exhausted. 17153 */ 17154 last_zoneid = -1; 17155 ILM_WALKER_HOLD(recv_ill); 17156 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17157 ilm = ilm->ilm_next) { 17158 if ((ilm->ilm_flags & ILM_DELETED) || 17159 ipha->ipha_dst != ilm->ilm_addr || 17160 ilm->ilm_zoneid == last_zoneid || 17161 ilm->ilm_zoneid == ire->ire_zoneid || 17162 ilm->ilm_zoneid == ALL_ZONES || 17163 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17164 continue; 17165 mp1 = ip_copymsg(first_mp); 17166 if (mp1 == NULL) 17167 continue; 17168 icmp_inbound(q, mp1, B_TRUE, ill, 17169 0, sum, mctl_present, B_TRUE, 17170 recv_ill, ilm->ilm_zoneid); 17171 last_zoneid = ilm->ilm_zoneid; 17172 } 17173 ILM_WALKER_RELE(recv_ill); 17174 } else if (ire->ire_type == IRE_BROADCAST) { 17175 /* 17176 * In the broadcast case, there may be many zones 17177 * which need a copy of the packet delivered to them. 17178 * There is one IRE_BROADCAST per broadcast address 17179 * and per zone; we walk those using a helper function. 17180 * In addition, the sending of the packet for ire is 17181 * delayed until all of the other ires have been 17182 * processed. 17183 */ 17184 IRB_REFHOLD(ire->ire_bucket); 17185 ire_zone = NULL; 17186 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17187 ire)) != NULL) { 17188 mp1 = ip_copymsg(first_mp); 17189 if (mp1 == NULL) 17190 continue; 17191 17192 UPDATE_IB_PKT_COUNT(ire_zone); 17193 ire_zone->ire_last_used_time = lbolt; 17194 icmp_inbound(q, mp1, B_TRUE, ill, 17195 0, sum, mctl_present, B_TRUE, 17196 recv_ill, ire_zone->ire_zoneid); 17197 } 17198 IRB_REFRELE(ire->ire_bucket); 17199 } 17200 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17201 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17202 ire->ire_zoneid); 17203 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17204 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17205 return; 17206 } 17207 case IPPROTO_IGMP: 17208 /* 17209 * If we are not willing to accept IGMP packets in clear, 17210 * then check with global policy. 17211 */ 17212 if (ipst->ips_igmp_accept_clear_messages == 0) { 17213 first_mp = ipsec_check_global_policy(first_mp, NULL, 17214 ipha, NULL, mctl_present, ipst->ips_netstack); 17215 if (first_mp == NULL) 17216 return; 17217 } 17218 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17219 freemsg(first_mp); 17220 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17221 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17222 return; 17223 } 17224 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17225 /* Bad packet - discarded by igmp_input */ 17226 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17227 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17228 if (mctl_present) 17229 freeb(first_mp); 17230 return; 17231 } 17232 /* 17233 * igmp_input() may have returned the pulled up message. 17234 * So first_mp and ipha need to be reinitialized. 17235 */ 17236 ipha = (ipha_t *)mp->b_rptr; 17237 if (mctl_present) 17238 first_mp->b_cont = mp; 17239 else 17240 first_mp = mp; 17241 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17242 connf_head != NULL) { 17243 /* No user-level listener for IGMP packets */ 17244 goto drop_pkt; 17245 } 17246 /* deliver to local raw users */ 17247 break; 17248 case IPPROTO_PIM: 17249 /* 17250 * If we are not willing to accept PIM packets in clear, 17251 * then check with global policy. 17252 */ 17253 if (ipst->ips_pim_accept_clear_messages == 0) { 17254 first_mp = ipsec_check_global_policy(first_mp, NULL, 17255 ipha, NULL, mctl_present, ipst->ips_netstack); 17256 if (first_mp == NULL) 17257 return; 17258 } 17259 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17260 freemsg(first_mp); 17261 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17262 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17263 return; 17264 } 17265 if (pim_input(q, mp, ill) != 0) { 17266 /* Bad packet - discarded by pim_input */ 17267 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17268 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17269 if (mctl_present) 17270 freeb(first_mp); 17271 return; 17272 } 17273 17274 /* 17275 * pim_input() may have pulled up the message so ipha needs to 17276 * be reinitialized. 17277 */ 17278 ipha = (ipha_t *)mp->b_rptr; 17279 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17280 connf_head != NULL) { 17281 /* No user-level listener for PIM packets */ 17282 goto drop_pkt; 17283 } 17284 /* deliver to local raw users */ 17285 break; 17286 case IPPROTO_ENCAP: 17287 /* 17288 * Handle self-encapsulated packets (IP-in-IP where 17289 * the inner addresses == the outer addresses). 17290 */ 17291 hdr_length = IPH_HDR_LENGTH(ipha); 17292 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17293 mp->b_wptr) { 17294 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17295 sizeof (ipha_t) - mp->b_rptr)) { 17296 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17297 freemsg(first_mp); 17298 return; 17299 } 17300 ipha = (ipha_t *)mp->b_rptr; 17301 } 17302 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17303 /* 17304 * Check the sanity of the inner IP header. 17305 */ 17306 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17307 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17308 freemsg(first_mp); 17309 return; 17310 } 17311 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17312 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17313 freemsg(first_mp); 17314 return; 17315 } 17316 if (inner_ipha->ipha_src == ipha->ipha_src && 17317 inner_ipha->ipha_dst == ipha->ipha_dst) { 17318 ipsec_in_t *ii; 17319 17320 /* 17321 * Self-encapsulated tunnel packet. Remove 17322 * the outer IP header and fanout again. 17323 * We also need to make sure that the inner 17324 * header is pulled up until options. 17325 */ 17326 mp->b_rptr = (uchar_t *)inner_ipha; 17327 ipha = inner_ipha; 17328 hdr_length = IPH_HDR_LENGTH(ipha); 17329 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17330 if (!pullupmsg(mp, (uchar_t *)ipha + 17331 + hdr_length - mp->b_rptr)) { 17332 freemsg(first_mp); 17333 return; 17334 } 17335 ipha = (ipha_t *)mp->b_rptr; 17336 } 17337 if (!mctl_present) { 17338 ASSERT(first_mp == mp); 17339 /* 17340 * This means that somebody is sending 17341 * Self-encapsualted packets without AH/ESP. 17342 * If AH/ESP was present, we would have already 17343 * allocated the first_mp. 17344 */ 17345 first_mp = ipsec_in_alloc(B_TRUE, 17346 ipst->ips_netstack); 17347 if (first_mp == NULL) { 17348 ip1dbg(("ip_proto_input: IPSEC_IN " 17349 "allocation failure.\n")); 17350 BUMP_MIB(ill->ill_ip_mib, 17351 ipIfStatsInDiscards); 17352 freemsg(mp); 17353 return; 17354 } 17355 first_mp->b_cont = mp; 17356 } 17357 /* 17358 * We generally store the ill_index if we need to 17359 * do IPsec processing as we lose the ill queue when 17360 * we come back. But in this case, we never should 17361 * have to store the ill_index here as it should have 17362 * been stored previously when we processed the 17363 * AH/ESP header in this routine or for non-ipsec 17364 * cases, we still have the queue. But for some bad 17365 * packets from the wire, we can get to IPsec after 17366 * this and we better store the index for that case. 17367 */ 17368 ill = (ill_t *)q->q_ptr; 17369 ii = (ipsec_in_t *)first_mp->b_rptr; 17370 ii->ipsec_in_ill_index = 17371 ill->ill_phyint->phyint_ifindex; 17372 ii->ipsec_in_rill_index = 17373 recv_ill->ill_phyint->phyint_ifindex; 17374 if (ii->ipsec_in_decaps) { 17375 /* 17376 * This packet is self-encapsulated multiple 17377 * times. We don't want to recurse infinitely. 17378 * To keep it simple, drop the packet. 17379 */ 17380 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17381 freemsg(first_mp); 17382 return; 17383 } 17384 ii->ipsec_in_decaps = B_TRUE; 17385 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17386 ire); 17387 return; 17388 } 17389 break; 17390 case IPPROTO_AH: 17391 case IPPROTO_ESP: { 17392 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17393 17394 /* 17395 * Fast path for AH/ESP. If this is the first time 17396 * we are sending a datagram to AH/ESP, allocate 17397 * a IPSEC_IN message and prepend it. Otherwise, 17398 * just fanout. 17399 */ 17400 17401 int ipsec_rc; 17402 ipsec_in_t *ii; 17403 netstack_t *ns = ipst->ips_netstack; 17404 17405 IP_STAT(ipst, ipsec_proto_ahesp); 17406 if (!mctl_present) { 17407 ASSERT(first_mp == mp); 17408 first_mp = ipsec_in_alloc(B_TRUE, ns); 17409 if (first_mp == NULL) { 17410 ip1dbg(("ip_proto_input: IPSEC_IN " 17411 "allocation failure.\n")); 17412 freemsg(hada_mp); /* okay ifnull */ 17413 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17414 freemsg(mp); 17415 return; 17416 } 17417 /* 17418 * Store the ill_index so that when we come back 17419 * from IPsec we ride on the same queue. 17420 */ 17421 ill = (ill_t *)q->q_ptr; 17422 ii = (ipsec_in_t *)first_mp->b_rptr; 17423 ii->ipsec_in_ill_index = 17424 ill->ill_phyint->phyint_ifindex; 17425 ii->ipsec_in_rill_index = 17426 recv_ill->ill_phyint->phyint_ifindex; 17427 first_mp->b_cont = mp; 17428 /* 17429 * Cache hardware acceleration info. 17430 */ 17431 if (hada_mp != NULL) { 17432 IPSECHW_DEBUG(IPSECHW_PKT, 17433 ("ip_rput_local: caching data attr.\n")); 17434 ii->ipsec_in_accelerated = B_TRUE; 17435 ii->ipsec_in_da = hada_mp; 17436 hada_mp = NULL; 17437 } 17438 } else { 17439 ii = (ipsec_in_t *)first_mp->b_rptr; 17440 } 17441 17442 if (!ipsec_loaded(ipss)) { 17443 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17444 ire->ire_zoneid, ipst); 17445 return; 17446 } 17447 17448 ns = ipst->ips_netstack; 17449 /* select inbound SA and have IPsec process the pkt */ 17450 if (ipha->ipha_protocol == IPPROTO_ESP) { 17451 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17452 boolean_t esp_in_udp_sa; 17453 if (esph == NULL) 17454 return; 17455 ASSERT(ii->ipsec_in_esp_sa != NULL); 17456 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17457 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17458 IPSA_F_NATT) != 0); 17459 /* 17460 * The following is a fancy, but quick, way of saying: 17461 * ESP-in-UDP SA and Raw ESP packet --> drop 17462 * OR 17463 * ESP SA and ESP-in-UDP packet --> drop 17464 */ 17465 if (esp_in_udp_sa != esp_in_udp_packet) { 17466 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17467 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17468 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17469 &ns->netstack_ipsec->ipsec_dropper); 17470 return; 17471 } 17472 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17473 first_mp, esph); 17474 } else { 17475 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17476 if (ah == NULL) 17477 return; 17478 ASSERT(ii->ipsec_in_ah_sa != NULL); 17479 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17480 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17481 first_mp, ah); 17482 } 17483 17484 switch (ipsec_rc) { 17485 case IPSEC_STATUS_SUCCESS: 17486 break; 17487 case IPSEC_STATUS_FAILED: 17488 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17489 /* FALLTHRU */ 17490 case IPSEC_STATUS_PENDING: 17491 return; 17492 } 17493 /* we're done with IPsec processing, send it up */ 17494 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17495 return; 17496 } 17497 default: 17498 break; 17499 } 17500 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17501 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17502 ire->ire_zoneid)); 17503 goto drop_pkt; 17504 } 17505 /* 17506 * Handle protocols with which IP is less intimate. There 17507 * can be more than one stream bound to a particular 17508 * protocol. When this is the case, each one gets a copy 17509 * of any incoming packets. 17510 */ 17511 ip_fanout_proto(q, first_mp, ill, ipha, 17512 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17513 B_TRUE, recv_ill, ire->ire_zoneid); 17514 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17515 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17516 return; 17517 17518 drop_pkt: 17519 freemsg(first_mp); 17520 if (hada_mp != NULL) 17521 freeb(hada_mp); 17522 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17523 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17524 #undef rptr 17525 #undef iphs 17526 17527 } 17528 17529 /* 17530 * Update any source route, record route or timestamp options. 17531 * Check that we are at end of strict source route. 17532 * The options have already been checked for sanity in ip_rput_options(). 17533 */ 17534 static boolean_t 17535 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17536 ip_stack_t *ipst) 17537 { 17538 ipoptp_t opts; 17539 uchar_t *opt; 17540 uint8_t optval; 17541 uint8_t optlen; 17542 ipaddr_t dst; 17543 uint32_t ts; 17544 ire_t *dst_ire; 17545 timestruc_t now; 17546 zoneid_t zoneid; 17547 ill_t *ill; 17548 17549 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17550 17551 ip2dbg(("ip_rput_local_options\n")); 17552 17553 for (optval = ipoptp_first(&opts, ipha); 17554 optval != IPOPT_EOL; 17555 optval = ipoptp_next(&opts)) { 17556 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17557 opt = opts.ipoptp_cur; 17558 optlen = opts.ipoptp_len; 17559 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17560 optval, optlen)); 17561 switch (optval) { 17562 uint32_t off; 17563 case IPOPT_SSRR: 17564 case IPOPT_LSRR: 17565 off = opt[IPOPT_OFFSET]; 17566 off--; 17567 if (optlen < IP_ADDR_LEN || 17568 off > optlen - IP_ADDR_LEN) { 17569 /* End of source route */ 17570 ip1dbg(("ip_rput_local_options: end of SR\n")); 17571 break; 17572 } 17573 /* 17574 * This will only happen if two consecutive entries 17575 * in the source route contains our address or if 17576 * it is a packet with a loose source route which 17577 * reaches us before consuming the whole source route 17578 */ 17579 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17580 if (optval == IPOPT_SSRR) { 17581 goto bad_src_route; 17582 } 17583 /* 17584 * Hack: instead of dropping the packet truncate the 17585 * source route to what has been used by filling the 17586 * rest with IPOPT_NOP. 17587 */ 17588 opt[IPOPT_OLEN] = (uint8_t)off; 17589 while (off < optlen) { 17590 opt[off++] = IPOPT_NOP; 17591 } 17592 break; 17593 case IPOPT_RR: 17594 off = opt[IPOPT_OFFSET]; 17595 off--; 17596 if (optlen < IP_ADDR_LEN || 17597 off > optlen - IP_ADDR_LEN) { 17598 /* No more room - ignore */ 17599 ip1dbg(( 17600 "ip_rput_local_options: end of RR\n")); 17601 break; 17602 } 17603 bcopy(&ire->ire_src_addr, (char *)opt + off, 17604 IP_ADDR_LEN); 17605 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17606 break; 17607 case IPOPT_TS: 17608 /* Insert timestamp if there is romm */ 17609 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17610 case IPOPT_TS_TSONLY: 17611 off = IPOPT_TS_TIMELEN; 17612 break; 17613 case IPOPT_TS_PRESPEC: 17614 case IPOPT_TS_PRESPEC_RFC791: 17615 /* Verify that the address matched */ 17616 off = opt[IPOPT_OFFSET] - 1; 17617 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17618 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17619 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17620 ipst); 17621 if (dst_ire == NULL) { 17622 /* Not for us */ 17623 break; 17624 } 17625 ire_refrele(dst_ire); 17626 /* FALLTHRU */ 17627 case IPOPT_TS_TSANDADDR: 17628 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17629 break; 17630 default: 17631 /* 17632 * ip_*put_options should have already 17633 * dropped this packet. 17634 */ 17635 cmn_err(CE_PANIC, "ip_rput_local_options: " 17636 "unknown IT - bug in ip_rput_options?\n"); 17637 return (B_TRUE); /* Keep "lint" happy */ 17638 } 17639 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17640 /* Increase overflow counter */ 17641 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17642 opt[IPOPT_POS_OV_FLG] = 17643 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17644 (off << 4)); 17645 break; 17646 } 17647 off = opt[IPOPT_OFFSET] - 1; 17648 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17649 case IPOPT_TS_PRESPEC: 17650 case IPOPT_TS_PRESPEC_RFC791: 17651 case IPOPT_TS_TSANDADDR: 17652 bcopy(&ire->ire_src_addr, (char *)opt + off, 17653 IP_ADDR_LEN); 17654 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17655 /* FALLTHRU */ 17656 case IPOPT_TS_TSONLY: 17657 off = opt[IPOPT_OFFSET] - 1; 17658 /* Compute # of milliseconds since midnight */ 17659 gethrestime(&now); 17660 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17661 now.tv_nsec / (NANOSEC / MILLISEC); 17662 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17663 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17664 break; 17665 } 17666 break; 17667 } 17668 } 17669 return (B_TRUE); 17670 17671 bad_src_route: 17672 q = WR(q); 17673 if (q->q_next != NULL) 17674 ill = q->q_ptr; 17675 else 17676 ill = NULL; 17677 17678 /* make sure we clear any indication of a hardware checksum */ 17679 DB_CKSUMFLAGS(mp) = 0; 17680 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17681 if (zoneid == ALL_ZONES) 17682 freemsg(mp); 17683 else 17684 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17685 return (B_FALSE); 17686 17687 } 17688 17689 /* 17690 * Process IP options in an inbound packet. If an option affects the 17691 * effective destination address, return the next hop address via dstp. 17692 * Returns -1 if something fails in which case an ICMP error has been sent 17693 * and mp freed. 17694 */ 17695 static int 17696 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17697 ip_stack_t *ipst) 17698 { 17699 ipoptp_t opts; 17700 uchar_t *opt; 17701 uint8_t optval; 17702 uint8_t optlen; 17703 ipaddr_t dst; 17704 intptr_t code = 0; 17705 ire_t *ire = NULL; 17706 zoneid_t zoneid; 17707 ill_t *ill; 17708 17709 ip2dbg(("ip_rput_options\n")); 17710 dst = ipha->ipha_dst; 17711 for (optval = ipoptp_first(&opts, ipha); 17712 optval != IPOPT_EOL; 17713 optval = ipoptp_next(&opts)) { 17714 opt = opts.ipoptp_cur; 17715 optlen = opts.ipoptp_len; 17716 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17717 optval, optlen)); 17718 /* 17719 * Note: we need to verify the checksum before we 17720 * modify anything thus this routine only extracts the next 17721 * hop dst from any source route. 17722 */ 17723 switch (optval) { 17724 uint32_t off; 17725 case IPOPT_SSRR: 17726 case IPOPT_LSRR: 17727 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17728 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17729 if (ire == NULL) { 17730 if (optval == IPOPT_SSRR) { 17731 ip1dbg(("ip_rput_options: not next" 17732 " strict source route 0x%x\n", 17733 ntohl(dst))); 17734 code = (char *)&ipha->ipha_dst - 17735 (char *)ipha; 17736 goto param_prob; /* RouterReq's */ 17737 } 17738 ip2dbg(("ip_rput_options: " 17739 "not next source route 0x%x\n", 17740 ntohl(dst))); 17741 break; 17742 } 17743 ire_refrele(ire); 17744 17745 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17746 ip1dbg(( 17747 "ip_rput_options: bad option offset\n")); 17748 code = (char *)&opt[IPOPT_OLEN] - 17749 (char *)ipha; 17750 goto param_prob; 17751 } 17752 off = opt[IPOPT_OFFSET]; 17753 off--; 17754 redo_srr: 17755 if (optlen < IP_ADDR_LEN || 17756 off > optlen - IP_ADDR_LEN) { 17757 /* End of source route */ 17758 ip1dbg(("ip_rput_options: end of SR\n")); 17759 break; 17760 } 17761 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17762 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17763 ntohl(dst))); 17764 17765 /* 17766 * Check if our address is present more than 17767 * once as consecutive hops in source route. 17768 * XXX verify per-interface ip_forwarding 17769 * for source route? 17770 */ 17771 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17772 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17773 17774 if (ire != NULL) { 17775 ire_refrele(ire); 17776 off += IP_ADDR_LEN; 17777 goto redo_srr; 17778 } 17779 17780 if (dst == htonl(INADDR_LOOPBACK)) { 17781 ip1dbg(("ip_rput_options: loopback addr in " 17782 "source route!\n")); 17783 goto bad_src_route; 17784 } 17785 /* 17786 * For strict: verify that dst is directly 17787 * reachable. 17788 */ 17789 if (optval == IPOPT_SSRR) { 17790 ire = ire_ftable_lookup(dst, 0, 0, 17791 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17792 MBLK_GETLABEL(mp), 17793 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17794 if (ire == NULL) { 17795 ip1dbg(("ip_rput_options: SSRR not " 17796 "directly reachable: 0x%x\n", 17797 ntohl(dst))); 17798 goto bad_src_route; 17799 } 17800 ire_refrele(ire); 17801 } 17802 /* 17803 * Defer update of the offset and the record route 17804 * until the packet is forwarded. 17805 */ 17806 break; 17807 case IPOPT_RR: 17808 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17809 ip1dbg(( 17810 "ip_rput_options: bad option offset\n")); 17811 code = (char *)&opt[IPOPT_OLEN] - 17812 (char *)ipha; 17813 goto param_prob; 17814 } 17815 break; 17816 case IPOPT_TS: 17817 /* 17818 * Verify that length >= 5 and that there is either 17819 * room for another timestamp or that the overflow 17820 * counter is not maxed out. 17821 */ 17822 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17823 if (optlen < IPOPT_MINLEN_IT) { 17824 goto param_prob; 17825 } 17826 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17827 ip1dbg(( 17828 "ip_rput_options: bad option offset\n")); 17829 code = (char *)&opt[IPOPT_OFFSET] - 17830 (char *)ipha; 17831 goto param_prob; 17832 } 17833 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17834 case IPOPT_TS_TSONLY: 17835 off = IPOPT_TS_TIMELEN; 17836 break; 17837 case IPOPT_TS_TSANDADDR: 17838 case IPOPT_TS_PRESPEC: 17839 case IPOPT_TS_PRESPEC_RFC791: 17840 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17841 break; 17842 default: 17843 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17844 (char *)ipha; 17845 goto param_prob; 17846 } 17847 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17848 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17849 /* 17850 * No room and the overflow counter is 15 17851 * already. 17852 */ 17853 goto param_prob; 17854 } 17855 break; 17856 } 17857 } 17858 17859 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17860 *dstp = dst; 17861 return (0); 17862 } 17863 17864 ip1dbg(("ip_rput_options: error processing IP options.")); 17865 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17866 17867 param_prob: 17868 q = WR(q); 17869 if (q->q_next != NULL) 17870 ill = q->q_ptr; 17871 else 17872 ill = NULL; 17873 17874 /* make sure we clear any indication of a hardware checksum */ 17875 DB_CKSUMFLAGS(mp) = 0; 17876 /* Don't know whether this is for non-global or global/forwarding */ 17877 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17878 if (zoneid == ALL_ZONES) 17879 freemsg(mp); 17880 else 17881 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 17882 return (-1); 17883 17884 bad_src_route: 17885 q = WR(q); 17886 if (q->q_next != NULL) 17887 ill = q->q_ptr; 17888 else 17889 ill = NULL; 17890 17891 /* make sure we clear any indication of a hardware checksum */ 17892 DB_CKSUMFLAGS(mp) = 0; 17893 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17894 if (zoneid == ALL_ZONES) 17895 freemsg(mp); 17896 else 17897 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17898 return (-1); 17899 } 17900 17901 /* 17902 * IP & ICMP info in >=14 msg's ... 17903 * - ip fixed part (mib2_ip_t) 17904 * - icmp fixed part (mib2_icmp_t) 17905 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17906 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17907 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17908 * - ipRouteAttributeTable (ip 102) labeled routes 17909 * - ip multicast membership (ip_member_t) 17910 * - ip multicast source filtering (ip_grpsrc_t) 17911 * - igmp fixed part (struct igmpstat) 17912 * - multicast routing stats (struct mrtstat) 17913 * - multicast routing vifs (array of struct vifctl) 17914 * - multicast routing routes (array of struct mfcctl) 17915 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17916 * One per ill plus one generic 17917 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17918 * One per ill plus one generic 17919 * - ipv6RouteEntry all IPv6 IREs 17920 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17921 * - ipv6NetToMediaEntry all Neighbor Cache entries 17922 * - ipv6AddrEntry all IPv6 ipifs 17923 * - ipv6 multicast membership (ipv6_member_t) 17924 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17925 * 17926 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17927 * 17928 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17929 * already filled in by the caller. 17930 * Return value of 0 indicates that no messages were sent and caller 17931 * should free mpctl. 17932 */ 17933 int 17934 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 17935 { 17936 ip_stack_t *ipst; 17937 sctp_stack_t *sctps; 17938 17939 if (q->q_next != NULL) { 17940 ipst = ILLQ_TO_IPST(q); 17941 } else { 17942 ipst = CONNQ_TO_IPST(q); 17943 } 17944 ASSERT(ipst != NULL); 17945 sctps = ipst->ips_netstack->netstack_sctp; 17946 17947 if (mpctl == NULL || mpctl->b_cont == NULL) { 17948 return (0); 17949 } 17950 17951 /* 17952 * For the purposes of the (broken) packet shell use 17953 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 17954 * to make TCP and UDP appear first in the list of mib items. 17955 * TBD: We could expand this and use it in netstat so that 17956 * the kernel doesn't have to produce large tables (connections, 17957 * routes, etc) when netstat only wants the statistics or a particular 17958 * table. 17959 */ 17960 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 17961 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 17962 return (1); 17963 } 17964 } 17965 17966 if (level != MIB2_TCP) { 17967 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 17968 return (1); 17969 } 17970 } 17971 17972 if (level != MIB2_UDP) { 17973 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 17974 return (1); 17975 } 17976 } 17977 17978 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 17979 ipst)) == NULL) { 17980 return (1); 17981 } 17982 17983 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 17984 return (1); 17985 } 17986 17987 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 17988 return (1); 17989 } 17990 17991 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 17992 return (1); 17993 } 17994 17995 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 17996 return (1); 17997 } 17998 17999 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18000 return (1); 18001 } 18002 18003 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18004 return (1); 18005 } 18006 18007 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18008 return (1); 18009 } 18010 18011 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18012 return (1); 18013 } 18014 18015 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18016 return (1); 18017 } 18018 18019 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18020 return (1); 18021 } 18022 18023 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18024 return (1); 18025 } 18026 18027 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18028 return (1); 18029 } 18030 18031 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18032 return (1); 18033 } 18034 18035 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18036 return (1); 18037 } 18038 18039 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18040 if (mpctl == NULL) { 18041 return (1); 18042 } 18043 18044 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18045 return (1); 18046 } 18047 freemsg(mpctl); 18048 return (1); 18049 } 18050 18051 18052 /* Get global (legacy) IPv4 statistics */ 18053 static mblk_t * 18054 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18055 ip_stack_t *ipst) 18056 { 18057 mib2_ip_t old_ip_mib; 18058 struct opthdr *optp; 18059 mblk_t *mp2ctl; 18060 18061 /* 18062 * make a copy of the original message 18063 */ 18064 mp2ctl = copymsg(mpctl); 18065 18066 /* fixed length IP structure... */ 18067 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18068 optp->level = MIB2_IP; 18069 optp->name = 0; 18070 SET_MIB(old_ip_mib.ipForwarding, 18071 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18072 SET_MIB(old_ip_mib.ipDefaultTTL, 18073 (uint32_t)ipst->ips_ip_def_ttl); 18074 SET_MIB(old_ip_mib.ipReasmTimeout, 18075 ipst->ips_ip_g_frag_timeout); 18076 SET_MIB(old_ip_mib.ipAddrEntrySize, 18077 sizeof (mib2_ipAddrEntry_t)); 18078 SET_MIB(old_ip_mib.ipRouteEntrySize, 18079 sizeof (mib2_ipRouteEntry_t)); 18080 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18081 sizeof (mib2_ipNetToMediaEntry_t)); 18082 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18083 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18084 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18085 sizeof (mib2_ipAttributeEntry_t)); 18086 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18087 18088 /* 18089 * Grab the statistics from the new IP MIB 18090 */ 18091 SET_MIB(old_ip_mib.ipInReceives, 18092 (uint32_t)ipmib->ipIfStatsHCInReceives); 18093 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18094 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18095 SET_MIB(old_ip_mib.ipForwDatagrams, 18096 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18097 SET_MIB(old_ip_mib.ipInUnknownProtos, 18098 ipmib->ipIfStatsInUnknownProtos); 18099 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18100 SET_MIB(old_ip_mib.ipInDelivers, 18101 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18102 SET_MIB(old_ip_mib.ipOutRequests, 18103 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18104 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18105 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18106 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18107 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18108 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18109 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18110 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18111 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18112 18113 /* ipRoutingDiscards is not being used */ 18114 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18115 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18116 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18117 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18118 SET_MIB(old_ip_mib.ipReasmDuplicates, 18119 ipmib->ipIfStatsReasmDuplicates); 18120 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18121 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18122 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18123 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18124 SET_MIB(old_ip_mib.rawipInOverflows, 18125 ipmib->rawipIfStatsInOverflows); 18126 18127 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18128 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18129 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18130 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18131 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18132 ipmib->ipIfStatsOutSwitchIPVersion); 18133 18134 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18135 (int)sizeof (old_ip_mib))) { 18136 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18137 (uint_t)sizeof (old_ip_mib))); 18138 } 18139 18140 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18141 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18142 (int)optp->level, (int)optp->name, (int)optp->len)); 18143 qreply(q, mpctl); 18144 return (mp2ctl); 18145 } 18146 18147 /* Per interface IPv4 statistics */ 18148 static mblk_t * 18149 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18150 { 18151 struct opthdr *optp; 18152 mblk_t *mp2ctl; 18153 ill_t *ill; 18154 ill_walk_context_t ctx; 18155 mblk_t *mp_tail = NULL; 18156 mib2_ipIfStatsEntry_t global_ip_mib; 18157 18158 /* 18159 * Make a copy of the original message 18160 */ 18161 mp2ctl = copymsg(mpctl); 18162 18163 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18164 optp->level = MIB2_IP; 18165 optp->name = MIB2_IP_TRAFFIC_STATS; 18166 /* Include "unknown interface" ip_mib */ 18167 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18168 ipst->ips_ip_mib.ipIfStatsIfIndex = 18169 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18170 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18171 (ipst->ips_ip_g_forward ? 1 : 2)); 18172 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18173 (uint32_t)ipst->ips_ip_def_ttl); 18174 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18175 sizeof (mib2_ipIfStatsEntry_t)); 18176 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18177 sizeof (mib2_ipAddrEntry_t)); 18178 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18179 sizeof (mib2_ipRouteEntry_t)); 18180 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18181 sizeof (mib2_ipNetToMediaEntry_t)); 18182 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18183 sizeof (ip_member_t)); 18184 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18185 sizeof (ip_grpsrc_t)); 18186 18187 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18188 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18189 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18190 "failed to allocate %u bytes\n", 18191 (uint_t)sizeof (ipst->ips_ip_mib))); 18192 } 18193 18194 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18195 18196 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18197 ill = ILL_START_WALK_V4(&ctx, ipst); 18198 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18199 ill->ill_ip_mib->ipIfStatsIfIndex = 18200 ill->ill_phyint->phyint_ifindex; 18201 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18202 (ipst->ips_ip_g_forward ? 1 : 2)); 18203 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18204 (uint32_t)ipst->ips_ip_def_ttl); 18205 18206 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18207 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18208 (char *)ill->ill_ip_mib, 18209 (int)sizeof (*ill->ill_ip_mib))) { 18210 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18211 "failed to allocate %u bytes\n", 18212 (uint_t)sizeof (*ill->ill_ip_mib))); 18213 } 18214 } 18215 rw_exit(&ipst->ips_ill_g_lock); 18216 18217 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18218 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18219 "level %d, name %d, len %d\n", 18220 (int)optp->level, (int)optp->name, (int)optp->len)); 18221 qreply(q, mpctl); 18222 18223 if (mp2ctl == NULL) 18224 return (NULL); 18225 18226 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18227 } 18228 18229 /* Global IPv4 ICMP statistics */ 18230 static mblk_t * 18231 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18232 { 18233 struct opthdr *optp; 18234 mblk_t *mp2ctl; 18235 18236 /* 18237 * Make a copy of the original message 18238 */ 18239 mp2ctl = copymsg(mpctl); 18240 18241 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18242 optp->level = MIB2_ICMP; 18243 optp->name = 0; 18244 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18245 (int)sizeof (ipst->ips_icmp_mib))) { 18246 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18247 (uint_t)sizeof (ipst->ips_icmp_mib))); 18248 } 18249 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18250 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18251 (int)optp->level, (int)optp->name, (int)optp->len)); 18252 qreply(q, mpctl); 18253 return (mp2ctl); 18254 } 18255 18256 /* Global IPv4 IGMP statistics */ 18257 static mblk_t * 18258 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18259 { 18260 struct opthdr *optp; 18261 mblk_t *mp2ctl; 18262 18263 /* 18264 * make a copy of the original message 18265 */ 18266 mp2ctl = copymsg(mpctl); 18267 18268 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18269 optp->level = EXPER_IGMP; 18270 optp->name = 0; 18271 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18272 (int)sizeof (ipst->ips_igmpstat))) { 18273 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18274 (uint_t)sizeof (ipst->ips_igmpstat))); 18275 } 18276 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18277 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18278 (int)optp->level, (int)optp->name, (int)optp->len)); 18279 qreply(q, mpctl); 18280 return (mp2ctl); 18281 } 18282 18283 /* Global IPv4 Multicast Routing statistics */ 18284 static mblk_t * 18285 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18286 { 18287 struct opthdr *optp; 18288 mblk_t *mp2ctl; 18289 18290 /* 18291 * make a copy of the original message 18292 */ 18293 mp2ctl = copymsg(mpctl); 18294 18295 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18296 optp->level = EXPER_DVMRP; 18297 optp->name = 0; 18298 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18299 ip0dbg(("ip_mroute_stats: failed\n")); 18300 } 18301 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18302 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18303 (int)optp->level, (int)optp->name, (int)optp->len)); 18304 qreply(q, mpctl); 18305 return (mp2ctl); 18306 } 18307 18308 /* IPv4 address information */ 18309 static mblk_t * 18310 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18311 { 18312 struct opthdr *optp; 18313 mblk_t *mp2ctl; 18314 mblk_t *mp_tail = NULL; 18315 ill_t *ill; 18316 ipif_t *ipif; 18317 uint_t bitval; 18318 mib2_ipAddrEntry_t mae; 18319 zoneid_t zoneid; 18320 ill_walk_context_t ctx; 18321 18322 /* 18323 * make a copy of the original message 18324 */ 18325 mp2ctl = copymsg(mpctl); 18326 18327 /* ipAddrEntryTable */ 18328 18329 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18330 optp->level = MIB2_IP; 18331 optp->name = MIB2_IP_ADDR; 18332 zoneid = Q_TO_CONN(q)->conn_zoneid; 18333 18334 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18335 ill = ILL_START_WALK_V4(&ctx, ipst); 18336 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18337 for (ipif = ill->ill_ipif; ipif != NULL; 18338 ipif = ipif->ipif_next) { 18339 if (ipif->ipif_zoneid != zoneid && 18340 ipif->ipif_zoneid != ALL_ZONES) 18341 continue; 18342 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18343 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18344 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18345 18346 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18347 OCTET_LENGTH); 18348 mae.ipAdEntIfIndex.o_length = 18349 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18350 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18351 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18352 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18353 mae.ipAdEntInfo.ae_subnet_len = 18354 ip_mask_to_plen(ipif->ipif_net_mask); 18355 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18356 for (bitval = 1; 18357 bitval && 18358 !(bitval & ipif->ipif_brd_addr); 18359 bitval <<= 1) 18360 noop; 18361 mae.ipAdEntBcastAddr = bitval; 18362 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18363 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18364 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18365 mae.ipAdEntInfo.ae_broadcast_addr = 18366 ipif->ipif_brd_addr; 18367 mae.ipAdEntInfo.ae_pp_dst_addr = 18368 ipif->ipif_pp_dst_addr; 18369 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18370 ill->ill_flags | ill->ill_phyint->phyint_flags; 18371 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18372 18373 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18374 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18375 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18376 "allocate %u bytes\n", 18377 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18378 } 18379 } 18380 } 18381 rw_exit(&ipst->ips_ill_g_lock); 18382 18383 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18384 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18385 (int)optp->level, (int)optp->name, (int)optp->len)); 18386 qreply(q, mpctl); 18387 return (mp2ctl); 18388 } 18389 18390 /* IPv6 address information */ 18391 static mblk_t * 18392 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18393 { 18394 struct opthdr *optp; 18395 mblk_t *mp2ctl; 18396 mblk_t *mp_tail = NULL; 18397 ill_t *ill; 18398 ipif_t *ipif; 18399 mib2_ipv6AddrEntry_t mae6; 18400 zoneid_t zoneid; 18401 ill_walk_context_t ctx; 18402 18403 /* 18404 * make a copy of the original message 18405 */ 18406 mp2ctl = copymsg(mpctl); 18407 18408 /* ipv6AddrEntryTable */ 18409 18410 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18411 optp->level = MIB2_IP6; 18412 optp->name = MIB2_IP6_ADDR; 18413 zoneid = Q_TO_CONN(q)->conn_zoneid; 18414 18415 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18416 ill = ILL_START_WALK_V6(&ctx, ipst); 18417 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18418 for (ipif = ill->ill_ipif; ipif != NULL; 18419 ipif = ipif->ipif_next) { 18420 if (ipif->ipif_zoneid != zoneid && 18421 ipif->ipif_zoneid != ALL_ZONES) 18422 continue; 18423 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18424 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18425 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18426 18427 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18428 OCTET_LENGTH); 18429 mae6.ipv6AddrIfIndex.o_length = 18430 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18431 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18432 mae6.ipv6AddrPfxLength = 18433 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18434 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18435 mae6.ipv6AddrInfo.ae_subnet_len = 18436 mae6.ipv6AddrPfxLength; 18437 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18438 18439 /* Type: stateless(1), stateful(2), unknown(3) */ 18440 if (ipif->ipif_flags & IPIF_ADDRCONF) 18441 mae6.ipv6AddrType = 1; 18442 else 18443 mae6.ipv6AddrType = 2; 18444 /* Anycast: true(1), false(2) */ 18445 if (ipif->ipif_flags & IPIF_ANYCAST) 18446 mae6.ipv6AddrAnycastFlag = 1; 18447 else 18448 mae6.ipv6AddrAnycastFlag = 2; 18449 18450 /* 18451 * Address status: preferred(1), deprecated(2), 18452 * invalid(3), inaccessible(4), unknown(5) 18453 */ 18454 if (ipif->ipif_flags & IPIF_NOLOCAL) 18455 mae6.ipv6AddrStatus = 3; 18456 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18457 mae6.ipv6AddrStatus = 2; 18458 else 18459 mae6.ipv6AddrStatus = 1; 18460 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18461 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18462 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18463 ipif->ipif_v6pp_dst_addr; 18464 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18465 ill->ill_flags | ill->ill_phyint->phyint_flags; 18466 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18467 mae6.ipv6AddrIdentifier = ill->ill_token; 18468 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18469 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18470 mae6.ipv6AddrRetransmitTime = 18471 ill->ill_reachable_retrans_time; 18472 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18473 (char *)&mae6, 18474 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18475 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18476 "allocate %u bytes\n", 18477 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18478 } 18479 } 18480 } 18481 rw_exit(&ipst->ips_ill_g_lock); 18482 18483 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18484 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18485 (int)optp->level, (int)optp->name, (int)optp->len)); 18486 qreply(q, mpctl); 18487 return (mp2ctl); 18488 } 18489 18490 /* IPv4 multicast group membership. */ 18491 static mblk_t * 18492 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18493 { 18494 struct opthdr *optp; 18495 mblk_t *mp2ctl; 18496 ill_t *ill; 18497 ipif_t *ipif; 18498 ilm_t *ilm; 18499 ip_member_t ipm; 18500 mblk_t *mp_tail = NULL; 18501 ill_walk_context_t ctx; 18502 zoneid_t zoneid; 18503 18504 /* 18505 * make a copy of the original message 18506 */ 18507 mp2ctl = copymsg(mpctl); 18508 zoneid = Q_TO_CONN(q)->conn_zoneid; 18509 18510 /* ipGroupMember table */ 18511 optp = (struct opthdr *)&mpctl->b_rptr[ 18512 sizeof (struct T_optmgmt_ack)]; 18513 optp->level = MIB2_IP; 18514 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18515 18516 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18517 ill = ILL_START_WALK_V4(&ctx, ipst); 18518 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18519 ILM_WALKER_HOLD(ill); 18520 for (ipif = ill->ill_ipif; ipif != NULL; 18521 ipif = ipif->ipif_next) { 18522 if (ipif->ipif_zoneid != zoneid && 18523 ipif->ipif_zoneid != ALL_ZONES) 18524 continue; /* not this zone */ 18525 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18526 OCTET_LENGTH); 18527 ipm.ipGroupMemberIfIndex.o_length = 18528 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18529 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18530 ASSERT(ilm->ilm_ipif != NULL); 18531 ASSERT(ilm->ilm_ill == NULL); 18532 if (ilm->ilm_ipif != ipif) 18533 continue; 18534 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18535 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18536 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18537 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18538 (char *)&ipm, (int)sizeof (ipm))) { 18539 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18540 "failed to allocate %u bytes\n", 18541 (uint_t)sizeof (ipm))); 18542 } 18543 } 18544 } 18545 ILM_WALKER_RELE(ill); 18546 } 18547 rw_exit(&ipst->ips_ill_g_lock); 18548 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18549 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18550 (int)optp->level, (int)optp->name, (int)optp->len)); 18551 qreply(q, mpctl); 18552 return (mp2ctl); 18553 } 18554 18555 /* IPv6 multicast group membership. */ 18556 static mblk_t * 18557 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18558 { 18559 struct opthdr *optp; 18560 mblk_t *mp2ctl; 18561 ill_t *ill; 18562 ilm_t *ilm; 18563 ipv6_member_t ipm6; 18564 mblk_t *mp_tail = NULL; 18565 ill_walk_context_t ctx; 18566 zoneid_t zoneid; 18567 18568 /* 18569 * make a copy of the original message 18570 */ 18571 mp2ctl = copymsg(mpctl); 18572 zoneid = Q_TO_CONN(q)->conn_zoneid; 18573 18574 /* ip6GroupMember table */ 18575 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18576 optp->level = MIB2_IP6; 18577 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18578 18579 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18580 ill = ILL_START_WALK_V6(&ctx, ipst); 18581 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18582 ILM_WALKER_HOLD(ill); 18583 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18584 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18585 ASSERT(ilm->ilm_ipif == NULL); 18586 ASSERT(ilm->ilm_ill != NULL); 18587 if (ilm->ilm_zoneid != zoneid) 18588 continue; /* not this zone */ 18589 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18590 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18591 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18592 if (!snmp_append_data2(mpctl->b_cont, 18593 &mp_tail, 18594 (char *)&ipm6, (int)sizeof (ipm6))) { 18595 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18596 "failed to allocate %u bytes\n", 18597 (uint_t)sizeof (ipm6))); 18598 } 18599 } 18600 ILM_WALKER_RELE(ill); 18601 } 18602 rw_exit(&ipst->ips_ill_g_lock); 18603 18604 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18605 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18606 (int)optp->level, (int)optp->name, (int)optp->len)); 18607 qreply(q, mpctl); 18608 return (mp2ctl); 18609 } 18610 18611 /* IP multicast filtered sources */ 18612 static mblk_t * 18613 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18614 { 18615 struct opthdr *optp; 18616 mblk_t *mp2ctl; 18617 ill_t *ill; 18618 ipif_t *ipif; 18619 ilm_t *ilm; 18620 ip_grpsrc_t ips; 18621 mblk_t *mp_tail = NULL; 18622 ill_walk_context_t ctx; 18623 zoneid_t zoneid; 18624 int i; 18625 slist_t *sl; 18626 18627 /* 18628 * make a copy of the original message 18629 */ 18630 mp2ctl = copymsg(mpctl); 18631 zoneid = Q_TO_CONN(q)->conn_zoneid; 18632 18633 /* ipGroupSource table */ 18634 optp = (struct opthdr *)&mpctl->b_rptr[ 18635 sizeof (struct T_optmgmt_ack)]; 18636 optp->level = MIB2_IP; 18637 optp->name = EXPER_IP_GROUP_SOURCES; 18638 18639 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18640 ill = ILL_START_WALK_V4(&ctx, ipst); 18641 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18642 ILM_WALKER_HOLD(ill); 18643 for (ipif = ill->ill_ipif; ipif != NULL; 18644 ipif = ipif->ipif_next) { 18645 if (ipif->ipif_zoneid != zoneid) 18646 continue; /* not this zone */ 18647 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18648 OCTET_LENGTH); 18649 ips.ipGroupSourceIfIndex.o_length = 18650 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18651 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18652 ASSERT(ilm->ilm_ipif != NULL); 18653 ASSERT(ilm->ilm_ill == NULL); 18654 sl = ilm->ilm_filter; 18655 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18656 continue; 18657 ips.ipGroupSourceGroup = ilm->ilm_addr; 18658 for (i = 0; i < sl->sl_numsrc; i++) { 18659 if (!IN6_IS_ADDR_V4MAPPED( 18660 &sl->sl_addr[i])) 18661 continue; 18662 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18663 ips.ipGroupSourceAddress); 18664 if (snmp_append_data2(mpctl->b_cont, 18665 &mp_tail, (char *)&ips, 18666 (int)sizeof (ips)) == 0) { 18667 ip1dbg(("ip_snmp_get_mib2_" 18668 "ip_group_src: failed to " 18669 "allocate %u bytes\n", 18670 (uint_t)sizeof (ips))); 18671 } 18672 } 18673 } 18674 } 18675 ILM_WALKER_RELE(ill); 18676 } 18677 rw_exit(&ipst->ips_ill_g_lock); 18678 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18679 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18680 (int)optp->level, (int)optp->name, (int)optp->len)); 18681 qreply(q, mpctl); 18682 return (mp2ctl); 18683 } 18684 18685 /* IPv6 multicast filtered sources. */ 18686 static mblk_t * 18687 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18688 { 18689 struct opthdr *optp; 18690 mblk_t *mp2ctl; 18691 ill_t *ill; 18692 ilm_t *ilm; 18693 ipv6_grpsrc_t ips6; 18694 mblk_t *mp_tail = NULL; 18695 ill_walk_context_t ctx; 18696 zoneid_t zoneid; 18697 int i; 18698 slist_t *sl; 18699 18700 /* 18701 * make a copy of the original message 18702 */ 18703 mp2ctl = copymsg(mpctl); 18704 zoneid = Q_TO_CONN(q)->conn_zoneid; 18705 18706 /* ip6GroupMember table */ 18707 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18708 optp->level = MIB2_IP6; 18709 optp->name = EXPER_IP6_GROUP_SOURCES; 18710 18711 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18712 ill = ILL_START_WALK_V6(&ctx, ipst); 18713 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18714 ILM_WALKER_HOLD(ill); 18715 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18716 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18717 ASSERT(ilm->ilm_ipif == NULL); 18718 ASSERT(ilm->ilm_ill != NULL); 18719 sl = ilm->ilm_filter; 18720 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18721 continue; 18722 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18723 for (i = 0; i < sl->sl_numsrc; i++) { 18724 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18725 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18726 (char *)&ips6, (int)sizeof (ips6))) { 18727 ip1dbg(("ip_snmp_get_mib2_ip6_" 18728 "group_src: failed to allocate " 18729 "%u bytes\n", 18730 (uint_t)sizeof (ips6))); 18731 } 18732 } 18733 } 18734 ILM_WALKER_RELE(ill); 18735 } 18736 rw_exit(&ipst->ips_ill_g_lock); 18737 18738 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18739 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18740 (int)optp->level, (int)optp->name, (int)optp->len)); 18741 qreply(q, mpctl); 18742 return (mp2ctl); 18743 } 18744 18745 /* Multicast routing virtual interface table. */ 18746 static mblk_t * 18747 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18748 { 18749 struct opthdr *optp; 18750 mblk_t *mp2ctl; 18751 18752 /* 18753 * make a copy of the original message 18754 */ 18755 mp2ctl = copymsg(mpctl); 18756 18757 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18758 optp->level = EXPER_DVMRP; 18759 optp->name = EXPER_DVMRP_VIF; 18760 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18761 ip0dbg(("ip_mroute_vif: failed\n")); 18762 } 18763 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18764 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18765 (int)optp->level, (int)optp->name, (int)optp->len)); 18766 qreply(q, mpctl); 18767 return (mp2ctl); 18768 } 18769 18770 /* Multicast routing table. */ 18771 static mblk_t * 18772 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18773 { 18774 struct opthdr *optp; 18775 mblk_t *mp2ctl; 18776 18777 /* 18778 * make a copy of the original message 18779 */ 18780 mp2ctl = copymsg(mpctl); 18781 18782 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18783 optp->level = EXPER_DVMRP; 18784 optp->name = EXPER_DVMRP_MRT; 18785 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18786 ip0dbg(("ip_mroute_mrt: failed\n")); 18787 } 18788 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18789 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18790 (int)optp->level, (int)optp->name, (int)optp->len)); 18791 qreply(q, mpctl); 18792 return (mp2ctl); 18793 } 18794 18795 /* 18796 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18797 * in one IRE walk. 18798 */ 18799 static mblk_t * 18800 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18801 { 18802 struct opthdr *optp; 18803 mblk_t *mp2ctl; /* Returned */ 18804 mblk_t *mp3ctl; /* nettomedia */ 18805 mblk_t *mp4ctl; /* routeattrs */ 18806 iproutedata_t ird; 18807 zoneid_t zoneid; 18808 18809 /* 18810 * make copies of the original message 18811 * - mp2ctl is returned unchanged to the caller for his use 18812 * - mpctl is sent upstream as ipRouteEntryTable 18813 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18814 * - mp4ctl is sent upstream as ipRouteAttributeTable 18815 */ 18816 mp2ctl = copymsg(mpctl); 18817 mp3ctl = copymsg(mpctl); 18818 mp4ctl = copymsg(mpctl); 18819 if (mp3ctl == NULL || mp4ctl == NULL) { 18820 freemsg(mp4ctl); 18821 freemsg(mp3ctl); 18822 freemsg(mp2ctl); 18823 freemsg(mpctl); 18824 return (NULL); 18825 } 18826 18827 bzero(&ird, sizeof (ird)); 18828 18829 ird.ird_route.lp_head = mpctl->b_cont; 18830 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18831 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18832 18833 zoneid = Q_TO_CONN(q)->conn_zoneid; 18834 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18835 18836 /* ipRouteEntryTable in mpctl */ 18837 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18838 optp->level = MIB2_IP; 18839 optp->name = MIB2_IP_ROUTE; 18840 optp->len = msgdsize(ird.ird_route.lp_head); 18841 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18842 (int)optp->level, (int)optp->name, (int)optp->len)); 18843 qreply(q, mpctl); 18844 18845 /* ipNetToMediaEntryTable in mp3ctl */ 18846 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18847 optp->level = MIB2_IP; 18848 optp->name = MIB2_IP_MEDIA; 18849 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18850 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18851 (int)optp->level, (int)optp->name, (int)optp->len)); 18852 qreply(q, mp3ctl); 18853 18854 /* ipRouteAttributeTable in mp4ctl */ 18855 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18856 optp->level = MIB2_IP; 18857 optp->name = EXPER_IP_RTATTR; 18858 optp->len = msgdsize(ird.ird_attrs.lp_head); 18859 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18860 (int)optp->level, (int)optp->name, (int)optp->len)); 18861 if (optp->len == 0) 18862 freemsg(mp4ctl); 18863 else 18864 qreply(q, mp4ctl); 18865 18866 return (mp2ctl); 18867 } 18868 18869 /* 18870 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18871 * ipv6NetToMediaEntryTable in an NDP walk. 18872 */ 18873 static mblk_t * 18874 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18875 { 18876 struct opthdr *optp; 18877 mblk_t *mp2ctl; /* Returned */ 18878 mblk_t *mp3ctl; /* nettomedia */ 18879 mblk_t *mp4ctl; /* routeattrs */ 18880 iproutedata_t ird; 18881 zoneid_t zoneid; 18882 18883 /* 18884 * make copies of the original message 18885 * - mp2ctl is returned unchanged to the caller for his use 18886 * - mpctl is sent upstream as ipv6RouteEntryTable 18887 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18888 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18889 */ 18890 mp2ctl = copymsg(mpctl); 18891 mp3ctl = copymsg(mpctl); 18892 mp4ctl = copymsg(mpctl); 18893 if (mp3ctl == NULL || mp4ctl == NULL) { 18894 freemsg(mp4ctl); 18895 freemsg(mp3ctl); 18896 freemsg(mp2ctl); 18897 freemsg(mpctl); 18898 return (NULL); 18899 } 18900 18901 bzero(&ird, sizeof (ird)); 18902 18903 ird.ird_route.lp_head = mpctl->b_cont; 18904 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18905 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18906 18907 zoneid = Q_TO_CONN(q)->conn_zoneid; 18908 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 18909 18910 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18911 optp->level = MIB2_IP6; 18912 optp->name = MIB2_IP6_ROUTE; 18913 optp->len = msgdsize(ird.ird_route.lp_head); 18914 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18915 (int)optp->level, (int)optp->name, (int)optp->len)); 18916 qreply(q, mpctl); 18917 18918 /* ipv6NetToMediaEntryTable in mp3ctl */ 18919 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 18920 18921 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18922 optp->level = MIB2_IP6; 18923 optp->name = MIB2_IP6_MEDIA; 18924 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18925 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18926 (int)optp->level, (int)optp->name, (int)optp->len)); 18927 qreply(q, mp3ctl); 18928 18929 /* ipv6RouteAttributeTable in mp4ctl */ 18930 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18931 optp->level = MIB2_IP6; 18932 optp->name = EXPER_IP_RTATTR; 18933 optp->len = msgdsize(ird.ird_attrs.lp_head); 18934 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18935 (int)optp->level, (int)optp->name, (int)optp->len)); 18936 if (optp->len == 0) 18937 freemsg(mp4ctl); 18938 else 18939 qreply(q, mp4ctl); 18940 18941 return (mp2ctl); 18942 } 18943 18944 /* 18945 * IPv6 mib: One per ill 18946 */ 18947 static mblk_t * 18948 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18949 { 18950 struct opthdr *optp; 18951 mblk_t *mp2ctl; 18952 ill_t *ill; 18953 ill_walk_context_t ctx; 18954 mblk_t *mp_tail = NULL; 18955 18956 /* 18957 * Make a copy of the original message 18958 */ 18959 mp2ctl = copymsg(mpctl); 18960 18961 /* fixed length IPv6 structure ... */ 18962 18963 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18964 optp->level = MIB2_IP6; 18965 optp->name = 0; 18966 /* Include "unknown interface" ip6_mib */ 18967 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 18968 ipst->ips_ip6_mib.ipIfStatsIfIndex = 18969 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18970 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 18971 ipst->ips_ipv6_forward ? 1 : 2); 18972 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 18973 ipst->ips_ipv6_def_hops); 18974 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 18975 sizeof (mib2_ipIfStatsEntry_t)); 18976 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 18977 sizeof (mib2_ipv6AddrEntry_t)); 18978 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 18979 sizeof (mib2_ipv6RouteEntry_t)); 18980 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 18981 sizeof (mib2_ipv6NetToMediaEntry_t)); 18982 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 18983 sizeof (ipv6_member_t)); 18984 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 18985 sizeof (ipv6_grpsrc_t)); 18986 18987 /* 18988 * Synchronize 64- and 32-bit counters 18989 */ 18990 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 18991 ipIfStatsHCInReceives); 18992 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 18993 ipIfStatsHCInDelivers); 18994 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 18995 ipIfStatsHCOutRequests); 18996 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 18997 ipIfStatsHCOutForwDatagrams); 18998 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 18999 ipIfStatsHCOutMcastPkts); 19000 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19001 ipIfStatsHCInMcastPkts); 19002 19003 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19004 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19005 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19006 (uint_t)sizeof (ipst->ips_ip6_mib))); 19007 } 19008 19009 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19010 ill = ILL_START_WALK_V6(&ctx, ipst); 19011 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19012 ill->ill_ip_mib->ipIfStatsIfIndex = 19013 ill->ill_phyint->phyint_ifindex; 19014 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19015 ipst->ips_ipv6_forward ? 1 : 2); 19016 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19017 ill->ill_max_hops); 19018 19019 /* 19020 * Synchronize 64- and 32-bit counters 19021 */ 19022 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19023 ipIfStatsHCInReceives); 19024 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19025 ipIfStatsHCInDelivers); 19026 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19027 ipIfStatsHCOutRequests); 19028 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19029 ipIfStatsHCOutForwDatagrams); 19030 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19031 ipIfStatsHCOutMcastPkts); 19032 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19033 ipIfStatsHCInMcastPkts); 19034 19035 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19036 (char *)ill->ill_ip_mib, 19037 (int)sizeof (*ill->ill_ip_mib))) { 19038 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19039 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19040 } 19041 } 19042 rw_exit(&ipst->ips_ill_g_lock); 19043 19044 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19045 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19046 (int)optp->level, (int)optp->name, (int)optp->len)); 19047 qreply(q, mpctl); 19048 return (mp2ctl); 19049 } 19050 19051 /* 19052 * ICMPv6 mib: One per ill 19053 */ 19054 static mblk_t * 19055 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19056 { 19057 struct opthdr *optp; 19058 mblk_t *mp2ctl; 19059 ill_t *ill; 19060 ill_walk_context_t ctx; 19061 mblk_t *mp_tail = NULL; 19062 /* 19063 * Make a copy of the original message 19064 */ 19065 mp2ctl = copymsg(mpctl); 19066 19067 /* fixed length ICMPv6 structure ... */ 19068 19069 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19070 optp->level = MIB2_ICMP6; 19071 optp->name = 0; 19072 /* Include "unknown interface" icmp6_mib */ 19073 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19074 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19075 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19076 sizeof (mib2_ipv6IfIcmpEntry_t); 19077 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19078 (char *)&ipst->ips_icmp6_mib, 19079 (int)sizeof (ipst->ips_icmp6_mib))) { 19080 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19081 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19082 } 19083 19084 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19085 ill = ILL_START_WALK_V6(&ctx, ipst); 19086 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19087 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19088 ill->ill_phyint->phyint_ifindex; 19089 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19090 (char *)ill->ill_icmp6_mib, 19091 (int)sizeof (*ill->ill_icmp6_mib))) { 19092 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19093 "%u bytes\n", 19094 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19095 } 19096 } 19097 rw_exit(&ipst->ips_ill_g_lock); 19098 19099 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19100 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19101 (int)optp->level, (int)optp->name, (int)optp->len)); 19102 qreply(q, mpctl); 19103 return (mp2ctl); 19104 } 19105 19106 /* 19107 * ire_walk routine to create both ipRouteEntryTable and 19108 * ipRouteAttributeTable in one IRE walk 19109 */ 19110 static void 19111 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19112 { 19113 ill_t *ill; 19114 ipif_t *ipif; 19115 mib2_ipRouteEntry_t *re; 19116 mib2_ipAttributeEntry_t *iae, *iaeptr; 19117 ipaddr_t gw_addr; 19118 tsol_ire_gw_secattr_t *attrp; 19119 tsol_gc_t *gc = NULL; 19120 tsol_gcgrp_t *gcgrp = NULL; 19121 uint_t sacnt = 0; 19122 int i; 19123 19124 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19125 19126 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19127 return; 19128 19129 if ((attrp = ire->ire_gw_secattr) != NULL) { 19130 mutex_enter(&attrp->igsa_lock); 19131 if ((gc = attrp->igsa_gc) != NULL) { 19132 gcgrp = gc->gc_grp; 19133 ASSERT(gcgrp != NULL); 19134 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19135 sacnt = 1; 19136 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19137 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19138 gc = gcgrp->gcgrp_head; 19139 sacnt = gcgrp->gcgrp_count; 19140 } 19141 mutex_exit(&attrp->igsa_lock); 19142 19143 /* do nothing if there's no gc to report */ 19144 if (gc == NULL) { 19145 ASSERT(sacnt == 0); 19146 if (gcgrp != NULL) { 19147 /* we might as well drop the lock now */ 19148 rw_exit(&gcgrp->gcgrp_rwlock); 19149 gcgrp = NULL; 19150 } 19151 attrp = NULL; 19152 } 19153 19154 ASSERT(gc == NULL || (gcgrp != NULL && 19155 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19156 } 19157 ASSERT(sacnt == 0 || gc != NULL); 19158 19159 if (sacnt != 0 && 19160 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19161 kmem_free(re, sizeof (*re)); 19162 rw_exit(&gcgrp->gcgrp_rwlock); 19163 return; 19164 } 19165 19166 /* 19167 * Return all IRE types for route table... let caller pick and choose 19168 */ 19169 re->ipRouteDest = ire->ire_addr; 19170 ipif = ire->ire_ipif; 19171 re->ipRouteIfIndex.o_length = 0; 19172 if (ire->ire_type == IRE_CACHE) { 19173 ill = (ill_t *)ire->ire_stq->q_ptr; 19174 re->ipRouteIfIndex.o_length = 19175 ill->ill_name_length == 0 ? 0 : 19176 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19177 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19178 re->ipRouteIfIndex.o_length); 19179 } else if (ipif != NULL) { 19180 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19181 re->ipRouteIfIndex.o_length = 19182 mi_strlen(re->ipRouteIfIndex.o_bytes); 19183 } 19184 re->ipRouteMetric1 = -1; 19185 re->ipRouteMetric2 = -1; 19186 re->ipRouteMetric3 = -1; 19187 re->ipRouteMetric4 = -1; 19188 19189 gw_addr = ire->ire_gateway_addr; 19190 19191 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19192 re->ipRouteNextHop = ire->ire_src_addr; 19193 else 19194 re->ipRouteNextHop = gw_addr; 19195 /* indirect(4), direct(3), or invalid(2) */ 19196 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19197 re->ipRouteType = 2; 19198 else 19199 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19200 re->ipRouteProto = -1; 19201 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19202 re->ipRouteMask = ire->ire_mask; 19203 re->ipRouteMetric5 = -1; 19204 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19205 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19206 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19207 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19208 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19209 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19210 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19211 re->ipRouteInfo.re_flags = ire->ire_flags; 19212 19213 if (ire->ire_flags & RTF_DYNAMIC) { 19214 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19215 } else { 19216 re->ipRouteInfo.re_ire_type = ire->ire_type; 19217 } 19218 19219 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19220 (char *)re, (int)sizeof (*re))) { 19221 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19222 (uint_t)sizeof (*re))); 19223 } 19224 19225 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19226 iaeptr->iae_routeidx = ird->ird_idx; 19227 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19228 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19229 } 19230 19231 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19232 (char *)iae, sacnt * sizeof (*iae))) { 19233 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19234 (unsigned)(sacnt * sizeof (*iae)))); 19235 } 19236 19237 /* bump route index for next pass */ 19238 ird->ird_idx++; 19239 19240 kmem_free(re, sizeof (*re)); 19241 if (sacnt != 0) 19242 kmem_free(iae, sacnt * sizeof (*iae)); 19243 19244 if (gcgrp != NULL) 19245 rw_exit(&gcgrp->gcgrp_rwlock); 19246 } 19247 19248 /* 19249 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19250 */ 19251 static void 19252 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19253 { 19254 ill_t *ill; 19255 ipif_t *ipif; 19256 mib2_ipv6RouteEntry_t *re; 19257 mib2_ipAttributeEntry_t *iae, *iaeptr; 19258 in6_addr_t gw_addr_v6; 19259 tsol_ire_gw_secattr_t *attrp; 19260 tsol_gc_t *gc = NULL; 19261 tsol_gcgrp_t *gcgrp = NULL; 19262 uint_t sacnt = 0; 19263 int i; 19264 19265 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19266 19267 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19268 return; 19269 19270 if ((attrp = ire->ire_gw_secattr) != NULL) { 19271 mutex_enter(&attrp->igsa_lock); 19272 if ((gc = attrp->igsa_gc) != NULL) { 19273 gcgrp = gc->gc_grp; 19274 ASSERT(gcgrp != NULL); 19275 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19276 sacnt = 1; 19277 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19278 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19279 gc = gcgrp->gcgrp_head; 19280 sacnt = gcgrp->gcgrp_count; 19281 } 19282 mutex_exit(&attrp->igsa_lock); 19283 19284 /* do nothing if there's no gc to report */ 19285 if (gc == NULL) { 19286 ASSERT(sacnt == 0); 19287 if (gcgrp != NULL) { 19288 /* we might as well drop the lock now */ 19289 rw_exit(&gcgrp->gcgrp_rwlock); 19290 gcgrp = NULL; 19291 } 19292 attrp = NULL; 19293 } 19294 19295 ASSERT(gc == NULL || (gcgrp != NULL && 19296 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19297 } 19298 ASSERT(sacnt == 0 || gc != NULL); 19299 19300 if (sacnt != 0 && 19301 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19302 kmem_free(re, sizeof (*re)); 19303 rw_exit(&gcgrp->gcgrp_rwlock); 19304 return; 19305 } 19306 19307 /* 19308 * Return all IRE types for route table... let caller pick and choose 19309 */ 19310 re->ipv6RouteDest = ire->ire_addr_v6; 19311 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19312 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19313 re->ipv6RouteIfIndex.o_length = 0; 19314 ipif = ire->ire_ipif; 19315 if (ire->ire_type == IRE_CACHE) { 19316 ill = (ill_t *)ire->ire_stq->q_ptr; 19317 re->ipv6RouteIfIndex.o_length = 19318 ill->ill_name_length == 0 ? 0 : 19319 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19320 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19321 re->ipv6RouteIfIndex.o_length); 19322 } else if (ipif != NULL) { 19323 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19324 re->ipv6RouteIfIndex.o_length = 19325 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19326 } 19327 19328 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19329 19330 mutex_enter(&ire->ire_lock); 19331 gw_addr_v6 = ire->ire_gateway_addr_v6; 19332 mutex_exit(&ire->ire_lock); 19333 19334 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19335 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19336 else 19337 re->ipv6RouteNextHop = gw_addr_v6; 19338 19339 /* remote(4), local(3), or discard(2) */ 19340 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19341 re->ipv6RouteType = 2; 19342 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19343 re->ipv6RouteType = 3; 19344 else 19345 re->ipv6RouteType = 4; 19346 19347 re->ipv6RouteProtocol = -1; 19348 re->ipv6RoutePolicy = 0; 19349 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19350 re->ipv6RouteNextHopRDI = 0; 19351 re->ipv6RouteWeight = 0; 19352 re->ipv6RouteMetric = 0; 19353 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19354 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19355 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19356 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19357 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19358 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19359 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19360 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19361 19362 if (ire->ire_flags & RTF_DYNAMIC) { 19363 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19364 } else { 19365 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19366 } 19367 19368 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19369 (char *)re, (int)sizeof (*re))) { 19370 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19371 (uint_t)sizeof (*re))); 19372 } 19373 19374 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19375 iaeptr->iae_routeidx = ird->ird_idx; 19376 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19377 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19378 } 19379 19380 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19381 (char *)iae, sacnt * sizeof (*iae))) { 19382 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19383 (unsigned)(sacnt * sizeof (*iae)))); 19384 } 19385 19386 /* bump route index for next pass */ 19387 ird->ird_idx++; 19388 19389 kmem_free(re, sizeof (*re)); 19390 if (sacnt != 0) 19391 kmem_free(iae, sacnt * sizeof (*iae)); 19392 19393 if (gcgrp != NULL) 19394 rw_exit(&gcgrp->gcgrp_rwlock); 19395 } 19396 19397 /* 19398 * ndp_walk routine to create ipv6NetToMediaEntryTable 19399 */ 19400 static int 19401 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19402 { 19403 ill_t *ill; 19404 mib2_ipv6NetToMediaEntry_t ntme; 19405 dl_unitdata_req_t *dl; 19406 19407 ill = nce->nce_ill; 19408 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19409 return (0); 19410 19411 /* 19412 * Neighbor cache entry attached to IRE with on-link 19413 * destination. 19414 */ 19415 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19416 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19417 if ((ill->ill_flags & ILLF_XRESOLV) && 19418 (nce->nce_res_mp != NULL)) { 19419 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19420 ntme.ipv6NetToMediaPhysAddress.o_length = 19421 dl->dl_dest_addr_length; 19422 } else { 19423 ntme.ipv6NetToMediaPhysAddress.o_length = 19424 ill->ill_phys_addr_length; 19425 } 19426 if (nce->nce_res_mp != NULL) { 19427 bcopy((char *)nce->nce_res_mp->b_rptr + 19428 NCE_LL_ADDR_OFFSET(ill), 19429 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19430 ntme.ipv6NetToMediaPhysAddress.o_length); 19431 } else { 19432 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19433 ill->ill_phys_addr_length); 19434 } 19435 /* 19436 * Note: Returns ND_* states. Should be: 19437 * reachable(1), stale(2), delay(3), probe(4), 19438 * invalid(5), unknown(6) 19439 */ 19440 ntme.ipv6NetToMediaState = nce->nce_state; 19441 ntme.ipv6NetToMediaLastUpdated = 0; 19442 19443 /* other(1), dynamic(2), static(3), local(4) */ 19444 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19445 ntme.ipv6NetToMediaType = 4; 19446 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19447 ntme.ipv6NetToMediaType = 1; 19448 } else { 19449 ntme.ipv6NetToMediaType = 2; 19450 } 19451 19452 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19453 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19454 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19455 (uint_t)sizeof (ntme))); 19456 } 19457 return (0); 19458 } 19459 19460 /* 19461 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19462 */ 19463 /* ARGSUSED */ 19464 int 19465 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19466 { 19467 switch (level) { 19468 case MIB2_IP: 19469 case MIB2_ICMP: 19470 switch (name) { 19471 default: 19472 break; 19473 } 19474 return (1); 19475 default: 19476 return (1); 19477 } 19478 } 19479 19480 /* 19481 * When there exists both a 64- and 32-bit counter of a particular type 19482 * (i.e., InReceives), only the 64-bit counters are added. 19483 */ 19484 void 19485 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19486 { 19487 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19488 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19489 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19490 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19491 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19492 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19493 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19494 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19495 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19496 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19497 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19498 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19499 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19500 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19501 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19502 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19503 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19504 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19505 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19506 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19507 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19508 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19509 o2->ipIfStatsInWrongIPVersion); 19510 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19511 o2->ipIfStatsInWrongIPVersion); 19512 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19513 o2->ipIfStatsOutSwitchIPVersion); 19514 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19515 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19516 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19517 o2->ipIfStatsHCInForwDatagrams); 19518 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19519 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19520 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19521 o2->ipIfStatsHCOutForwDatagrams); 19522 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19523 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19524 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19525 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19526 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19527 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19528 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19529 o2->ipIfStatsHCOutMcastOctets); 19530 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19531 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19532 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19533 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19534 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19535 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19536 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19537 } 19538 19539 void 19540 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19541 { 19542 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19543 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19544 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19545 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19546 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19547 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19548 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19549 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19550 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19551 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19552 o2->ipv6IfIcmpInRouterSolicits); 19553 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19554 o2->ipv6IfIcmpInRouterAdvertisements); 19555 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19556 o2->ipv6IfIcmpInNeighborSolicits); 19557 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19558 o2->ipv6IfIcmpInNeighborAdvertisements); 19559 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19560 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19561 o2->ipv6IfIcmpInGroupMembQueries); 19562 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19563 o2->ipv6IfIcmpInGroupMembResponses); 19564 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19565 o2->ipv6IfIcmpInGroupMembReductions); 19566 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19567 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19568 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19569 o2->ipv6IfIcmpOutDestUnreachs); 19570 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19571 o2->ipv6IfIcmpOutAdminProhibs); 19572 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19573 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19574 o2->ipv6IfIcmpOutParmProblems); 19575 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19576 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19577 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19578 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19579 o2->ipv6IfIcmpOutRouterSolicits); 19580 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19581 o2->ipv6IfIcmpOutRouterAdvertisements); 19582 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19583 o2->ipv6IfIcmpOutNeighborSolicits); 19584 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19585 o2->ipv6IfIcmpOutNeighborAdvertisements); 19586 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19587 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19588 o2->ipv6IfIcmpOutGroupMembQueries); 19589 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19590 o2->ipv6IfIcmpOutGroupMembResponses); 19591 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19592 o2->ipv6IfIcmpOutGroupMembReductions); 19593 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19594 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19595 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19596 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19597 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19598 o2->ipv6IfIcmpInBadNeighborSolicitations); 19599 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19600 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19601 o2->ipv6IfIcmpInGroupMembTotal); 19602 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19603 o2->ipv6IfIcmpInGroupMembBadQueries); 19604 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19605 o2->ipv6IfIcmpInGroupMembBadReports); 19606 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19607 o2->ipv6IfIcmpInGroupMembOurReports); 19608 } 19609 19610 /* 19611 * Called before the options are updated to check if this packet will 19612 * be source routed from here. 19613 * This routine assumes that the options are well formed i.e. that they 19614 * have already been checked. 19615 */ 19616 static boolean_t 19617 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19618 { 19619 ipoptp_t opts; 19620 uchar_t *opt; 19621 uint8_t optval; 19622 uint8_t optlen; 19623 ipaddr_t dst; 19624 ire_t *ire; 19625 19626 if (IS_SIMPLE_IPH(ipha)) { 19627 ip2dbg(("not source routed\n")); 19628 return (B_FALSE); 19629 } 19630 dst = ipha->ipha_dst; 19631 for (optval = ipoptp_first(&opts, ipha); 19632 optval != IPOPT_EOL; 19633 optval = ipoptp_next(&opts)) { 19634 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19635 opt = opts.ipoptp_cur; 19636 optlen = opts.ipoptp_len; 19637 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19638 optval, optlen)); 19639 switch (optval) { 19640 uint32_t off; 19641 case IPOPT_SSRR: 19642 case IPOPT_LSRR: 19643 /* 19644 * If dst is one of our addresses and there are some 19645 * entries left in the source route return (true). 19646 */ 19647 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19648 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19649 if (ire == NULL) { 19650 ip2dbg(("ip_source_routed: not next" 19651 " source route 0x%x\n", 19652 ntohl(dst))); 19653 return (B_FALSE); 19654 } 19655 ire_refrele(ire); 19656 off = opt[IPOPT_OFFSET]; 19657 off--; 19658 if (optlen < IP_ADDR_LEN || 19659 off > optlen - IP_ADDR_LEN) { 19660 /* End of source route */ 19661 ip1dbg(("ip_source_routed: end of SR\n")); 19662 return (B_FALSE); 19663 } 19664 return (B_TRUE); 19665 } 19666 } 19667 ip2dbg(("not source routed\n")); 19668 return (B_FALSE); 19669 } 19670 19671 /* 19672 * Check if the packet contains any source route. 19673 */ 19674 static boolean_t 19675 ip_source_route_included(ipha_t *ipha) 19676 { 19677 ipoptp_t opts; 19678 uint8_t optval; 19679 19680 if (IS_SIMPLE_IPH(ipha)) 19681 return (B_FALSE); 19682 for (optval = ipoptp_first(&opts, ipha); 19683 optval != IPOPT_EOL; 19684 optval = ipoptp_next(&opts)) { 19685 switch (optval) { 19686 case IPOPT_SSRR: 19687 case IPOPT_LSRR: 19688 return (B_TRUE); 19689 } 19690 } 19691 return (B_FALSE); 19692 } 19693 19694 /* 19695 * Called when the IRE expiration timer fires. 19696 */ 19697 void 19698 ip_trash_timer_expire(void *args) 19699 { 19700 int flush_flag = 0; 19701 ire_expire_arg_t iea; 19702 ip_stack_t *ipst = (ip_stack_t *)args; 19703 19704 iea.iea_ipst = ipst; /* No netstack_hold */ 19705 19706 /* 19707 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19708 * This lock makes sure that a new invocation of this function 19709 * that occurs due to an almost immediate timer firing will not 19710 * progress beyond this point until the current invocation is done 19711 */ 19712 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19713 ipst->ips_ip_ire_expire_id = 0; 19714 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19715 19716 /* Periodic timer */ 19717 if (ipst->ips_ip_ire_arp_time_elapsed >= 19718 ipst->ips_ip_ire_arp_interval) { 19719 /* 19720 * Remove all IRE_CACHE entries since they might 19721 * contain arp information. 19722 */ 19723 flush_flag |= FLUSH_ARP_TIME; 19724 ipst->ips_ip_ire_arp_time_elapsed = 0; 19725 IP_STAT(ipst, ip_ire_arp_timer_expired); 19726 } 19727 if (ipst->ips_ip_ire_rd_time_elapsed >= 19728 ipst->ips_ip_ire_redir_interval) { 19729 /* Remove all redirects */ 19730 flush_flag |= FLUSH_REDIRECT_TIME; 19731 ipst->ips_ip_ire_rd_time_elapsed = 0; 19732 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19733 } 19734 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19735 ipst->ips_ip_ire_pathmtu_interval) { 19736 /* Increase path mtu */ 19737 flush_flag |= FLUSH_MTU_TIME; 19738 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19739 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19740 } 19741 19742 /* 19743 * Optimize for the case when there are no redirects in the 19744 * ftable, that is, no need to walk the ftable in that case. 19745 */ 19746 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19747 iea.iea_flush_flag = flush_flag; 19748 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19749 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19750 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19751 NULL, ALL_ZONES, ipst); 19752 } 19753 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19754 ipst->ips_ip_redirect_cnt > 0) { 19755 iea.iea_flush_flag = flush_flag; 19756 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19757 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19758 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19759 } 19760 if (flush_flag & FLUSH_MTU_TIME) { 19761 /* 19762 * Walk all IPv6 IRE's and update them 19763 * Note that ARP and redirect timers are not 19764 * needed since NUD handles stale entries. 19765 */ 19766 flush_flag = FLUSH_MTU_TIME; 19767 iea.iea_flush_flag = flush_flag; 19768 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19769 ALL_ZONES, ipst); 19770 } 19771 19772 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19773 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19774 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19775 19776 /* 19777 * Hold the lock to serialize timeout calls and prevent 19778 * stale values in ip_ire_expire_id. Otherwise it is possible 19779 * for the timer to fire and a new invocation of this function 19780 * to start before the return value of timeout has been stored 19781 * in ip_ire_expire_id by the current invocation. 19782 */ 19783 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19784 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19785 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19786 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19787 } 19788 19789 /* 19790 * Called by the memory allocator subsystem directly, when the system 19791 * is running low on memory. 19792 */ 19793 /* ARGSUSED */ 19794 void 19795 ip_trash_ire_reclaim(void *args) 19796 { 19797 netstack_handle_t nh; 19798 netstack_t *ns; 19799 19800 netstack_next_init(&nh); 19801 while ((ns = netstack_next(&nh)) != NULL) { 19802 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19803 netstack_rele(ns); 19804 } 19805 netstack_next_fini(&nh); 19806 } 19807 19808 static void 19809 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19810 { 19811 ire_cache_count_t icc; 19812 ire_cache_reclaim_t icr; 19813 ncc_cache_count_t ncc; 19814 nce_cache_reclaim_t ncr; 19815 uint_t delete_cnt; 19816 /* 19817 * Memory reclaim call back. 19818 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19819 * Then, with a target of freeing 1/Nth of IRE_CACHE 19820 * entries, determine what fraction to free for 19821 * each category of IRE_CACHE entries giving absolute priority 19822 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19823 * entry will be freed unless all offlink entries are freed). 19824 */ 19825 icc.icc_total = 0; 19826 icc.icc_unused = 0; 19827 icc.icc_offlink = 0; 19828 icc.icc_pmtu = 0; 19829 icc.icc_onlink = 0; 19830 ire_walk(ire_cache_count, (char *)&icc, ipst); 19831 19832 /* 19833 * Free NCEs for IPv6 like the onlink ires. 19834 */ 19835 ncc.ncc_total = 0; 19836 ncc.ncc_host = 0; 19837 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19838 19839 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19840 icc.icc_pmtu + icc.icc_onlink); 19841 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19842 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19843 if (delete_cnt == 0) 19844 return; 19845 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19846 /* Always delete all unused offlink entries */ 19847 icr.icr_ipst = ipst; 19848 icr.icr_unused = 1; 19849 if (delete_cnt <= icc.icc_unused) { 19850 /* 19851 * Only need to free unused entries. In other words, 19852 * there are enough unused entries to free to meet our 19853 * target number of freed ire cache entries. 19854 */ 19855 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19856 ncr.ncr_host = 0; 19857 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19858 /* 19859 * Only need to free unused entries, plus a fraction of offlink 19860 * entries. It follows from the first if statement that 19861 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19862 */ 19863 delete_cnt -= icc.icc_unused; 19864 /* Round up # deleted by truncating fraction */ 19865 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19866 icr.icr_pmtu = icr.icr_onlink = 0; 19867 ncr.ncr_host = 0; 19868 } else if (delete_cnt <= 19869 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19870 /* 19871 * Free all unused and offlink entries, plus a fraction of 19872 * pmtu entries. It follows from the previous if statement 19873 * that icc_pmtu is non-zero, and that 19874 * delete_cnt != icc_unused + icc_offlink. 19875 */ 19876 icr.icr_offlink = 1; 19877 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19878 /* Round up # deleted by truncating fraction */ 19879 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19880 icr.icr_onlink = 0; 19881 ncr.ncr_host = 0; 19882 } else { 19883 /* 19884 * Free all unused, offlink, and pmtu entries, plus a fraction 19885 * of onlink entries. If we're here, then we know that 19886 * icc_onlink is non-zero, and that 19887 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19888 */ 19889 icr.icr_offlink = icr.icr_pmtu = 1; 19890 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19891 icc.icc_pmtu; 19892 /* Round up # deleted by truncating fraction */ 19893 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19894 /* Using the same delete fraction as for onlink IREs */ 19895 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19896 } 19897 #ifdef DEBUG 19898 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19899 "fractions %d/%d/%d/%d\n", 19900 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 19901 icc.icc_unused, icc.icc_offlink, 19902 icc.icc_pmtu, icc.icc_onlink, 19903 icr.icr_unused, icr.icr_offlink, 19904 icr.icr_pmtu, icr.icr_onlink)); 19905 #endif 19906 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 19907 if (ncr.ncr_host != 0) 19908 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19909 (uchar_t *)&ncr, ipst); 19910 #ifdef DEBUG 19911 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19912 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19913 ire_walk(ire_cache_count, (char *)&icc, ipst); 19914 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19915 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19916 icc.icc_pmtu, icc.icc_onlink)); 19917 #endif 19918 } 19919 19920 /* 19921 * ip_unbind is called when a copy of an unbind request is received from the 19922 * upper level protocol. We remove this conn from any fanout hash list it is 19923 * on, and zero out the bind information. No reply is expected up above. 19924 */ 19925 mblk_t * 19926 ip_unbind(queue_t *q, mblk_t *mp) 19927 { 19928 conn_t *connp = Q_TO_CONN(q); 19929 19930 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19931 19932 if (is_system_labeled() && connp->conn_anon_port) { 19933 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19934 connp->conn_mlp_type, connp->conn_ulp, 19935 ntohs(connp->conn_lport), B_FALSE); 19936 connp->conn_anon_port = 0; 19937 } 19938 connp->conn_mlp_type = mlptSingle; 19939 19940 ipcl_hash_remove(connp); 19941 19942 ASSERT(mp->b_cont == NULL); 19943 /* 19944 * Convert mp into a T_OK_ACK 19945 */ 19946 mp = mi_tpi_ok_ack_alloc(mp); 19947 19948 /* 19949 * should not happen in practice... T_OK_ACK is smaller than the 19950 * original message. 19951 */ 19952 if (mp == NULL) 19953 return (NULL); 19954 19955 return (mp); 19956 } 19957 19958 /* 19959 * Write side put procedure. Outbound data, IOCTLs, responses from 19960 * resolvers, etc, come down through here. 19961 * 19962 * arg2 is always a queue_t *. 19963 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19964 * the zoneid. 19965 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19966 */ 19967 void 19968 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19969 { 19970 ip_output_options(arg, mp, arg2, caller, &zero_info); 19971 } 19972 19973 void 19974 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 19975 ip_opt_info_t *infop) 19976 { 19977 conn_t *connp = NULL; 19978 queue_t *q = (queue_t *)arg2; 19979 ipha_t *ipha; 19980 #define rptr ((uchar_t *)ipha) 19981 ire_t *ire = NULL; 19982 ire_t *sctp_ire = NULL; 19983 uint32_t v_hlen_tos_len; 19984 ipaddr_t dst; 19985 mblk_t *first_mp = NULL; 19986 boolean_t mctl_present; 19987 ipsec_out_t *io; 19988 int match_flags; 19989 ill_t *attach_ill = NULL; 19990 /* Bind to IPIF_NOFAILOVER ill etc. */ 19991 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19992 ipif_t *dst_ipif; 19993 boolean_t multirt_need_resolve = B_FALSE; 19994 mblk_t *copy_mp = NULL; 19995 int err; 19996 zoneid_t zoneid; 19997 int adjust; 19998 uint16_t iplen; 19999 boolean_t need_decref = B_FALSE; 20000 boolean_t ignore_dontroute = B_FALSE; 20001 boolean_t ignore_nexthop = B_FALSE; 20002 boolean_t ip_nexthop = B_FALSE; 20003 ipaddr_t nexthop_addr; 20004 ip_stack_t *ipst; 20005 20006 #ifdef _BIG_ENDIAN 20007 #define V_HLEN (v_hlen_tos_len >> 24) 20008 #else 20009 #define V_HLEN (v_hlen_tos_len & 0xFF) 20010 #endif 20011 20012 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20013 "ip_wput_start: q %p", q); 20014 20015 /* 20016 * ip_wput fast path 20017 */ 20018 20019 /* is packet from ARP ? */ 20020 if (q->q_next != NULL) { 20021 zoneid = (zoneid_t)(uintptr_t)arg; 20022 goto qnext; 20023 } 20024 20025 connp = (conn_t *)arg; 20026 ASSERT(connp != NULL); 20027 zoneid = connp->conn_zoneid; 20028 ipst = connp->conn_netstack->netstack_ip; 20029 20030 /* is queue flow controlled? */ 20031 if ((q->q_first != NULL || connp->conn_draining) && 20032 (caller == IP_WPUT)) { 20033 ASSERT(!need_decref); 20034 (void) putq(q, mp); 20035 return; 20036 } 20037 20038 /* Multidata transmit? */ 20039 if (DB_TYPE(mp) == M_MULTIDATA) { 20040 /* 20041 * We should never get here, since all Multidata messages 20042 * originating from tcp should have been directed over to 20043 * tcp_multisend() in the first place. 20044 */ 20045 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20046 freemsg(mp); 20047 return; 20048 } else if (DB_TYPE(mp) != M_DATA) 20049 goto notdata; 20050 20051 if (mp->b_flag & MSGHASREF) { 20052 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20053 mp->b_flag &= ~MSGHASREF; 20054 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20055 need_decref = B_TRUE; 20056 } 20057 ipha = (ipha_t *)mp->b_rptr; 20058 20059 /* is IP header non-aligned or mblk smaller than basic IP header */ 20060 #ifndef SAFETY_BEFORE_SPEED 20061 if (!OK_32PTR(rptr) || 20062 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20063 goto hdrtoosmall; 20064 #endif 20065 20066 ASSERT(OK_32PTR(ipha)); 20067 20068 /* 20069 * This function assumes that mp points to an IPv4 packet. If it's the 20070 * wrong version, we'll catch it again in ip_output_v6. 20071 * 20072 * Note that this is *only* locally-generated output here, and never 20073 * forwarded data, and that we need to deal only with transports that 20074 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20075 * label.) 20076 */ 20077 if (is_system_labeled() && 20078 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20079 !connp->conn_ulp_labeled) { 20080 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20081 connp->conn_mac_exempt, ipst); 20082 ipha = (ipha_t *)mp->b_rptr; 20083 if (err != 0) { 20084 first_mp = mp; 20085 if (err == EINVAL) 20086 goto icmp_parameter_problem; 20087 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20088 goto discard_pkt; 20089 } 20090 iplen = ntohs(ipha->ipha_length) + adjust; 20091 ipha->ipha_length = htons(iplen); 20092 } 20093 20094 ASSERT(infop != NULL); 20095 20096 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20097 /* 20098 * IP_PKTINFO ancillary option is present. 20099 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20100 * allows using address of any zone as the source address. 20101 */ 20102 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20103 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20104 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20105 if (ire == NULL) 20106 goto drop_pkt; 20107 ire_refrele(ire); 20108 ire = NULL; 20109 } 20110 20111 /* 20112 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20113 * ill index passed in IP_PKTINFO. 20114 */ 20115 if (infop->ip_opt_ill_index != 0 && 20116 connp->conn_xmit_if_ill == NULL && 20117 connp->conn_nofailover_ill == NULL) { 20118 20119 xmit_ill = ill_lookup_on_ifindex( 20120 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20121 ipst); 20122 20123 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20124 goto drop_pkt; 20125 /* 20126 * check that there is an ipif belonging 20127 * to our zone. IPCL_ZONEID is not used because 20128 * IP_ALLZONES option is valid only when the ill is 20129 * accessible from all zones i.e has a valid ipif in 20130 * all zones. 20131 */ 20132 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20133 goto drop_pkt; 20134 } 20135 } 20136 20137 /* 20138 * If there is a policy, try to attach an ipsec_out in 20139 * the front. At the end, first_mp either points to a 20140 * M_DATA message or IPSEC_OUT message linked to a 20141 * M_DATA message. We have to do it now as we might 20142 * lose the "conn" if we go through ip_newroute. 20143 */ 20144 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20145 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20146 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20147 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20148 if (need_decref) 20149 CONN_DEC_REF(connp); 20150 return; 20151 } else { 20152 ASSERT(mp->b_datap->db_type == M_CTL); 20153 first_mp = mp; 20154 mp = mp->b_cont; 20155 mctl_present = B_TRUE; 20156 } 20157 } else { 20158 first_mp = mp; 20159 mctl_present = B_FALSE; 20160 } 20161 20162 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20163 20164 /* is wrong version or IP options present */ 20165 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20166 goto version_hdrlen_check; 20167 dst = ipha->ipha_dst; 20168 20169 if (connp->conn_nofailover_ill != NULL) { 20170 attach_ill = conn_get_held_ill(connp, 20171 &connp->conn_nofailover_ill, &err); 20172 if (err == ILL_LOOKUP_FAILED) { 20173 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20174 if (need_decref) 20175 CONN_DEC_REF(connp); 20176 freemsg(first_mp); 20177 return; 20178 } 20179 } 20180 20181 20182 /* is packet multicast? */ 20183 if (CLASSD(dst)) 20184 goto multicast; 20185 20186 /* 20187 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20188 * takes precedence over conn_dontroute and conn_nexthop_set 20189 */ 20190 if (xmit_ill != NULL) { 20191 goto send_from_ill; 20192 } 20193 20194 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20195 (connp->conn_nexthop_set)) { 20196 /* 20197 * If the destination is a broadcast or a loopback 20198 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20199 * through the standard path. But in the case of local 20200 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20201 * the standard path not IP_XMIT_IF. 20202 */ 20203 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20204 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20205 (ire->ire_type != IRE_LOOPBACK))) { 20206 if ((connp->conn_dontroute || 20207 connp->conn_nexthop_set) && (ire != NULL) && 20208 (ire->ire_type == IRE_LOCAL)) 20209 goto standard_path; 20210 20211 if (ire != NULL) { 20212 ire_refrele(ire); 20213 /* No more access to ire */ 20214 ire = NULL; 20215 } 20216 /* 20217 * bypass routing checks and go directly to 20218 * interface. 20219 */ 20220 if (connp->conn_dontroute) { 20221 goto dontroute; 20222 } else if (connp->conn_nexthop_set) { 20223 ip_nexthop = B_TRUE; 20224 nexthop_addr = connp->conn_nexthop_v4; 20225 goto send_from_ill; 20226 } 20227 20228 /* 20229 * If IP_XMIT_IF socket option is set, 20230 * then we allow unicast and multicast 20231 * packets to go through the ill. It is 20232 * quite possible that the destination 20233 * is not in the ire cache table and we 20234 * do not want to go to ip_newroute() 20235 * instead we call ip_newroute_ipif. 20236 */ 20237 xmit_ill = conn_get_held_ill(connp, 20238 &connp->conn_xmit_if_ill, &err); 20239 if (err == ILL_LOOKUP_FAILED) { 20240 BUMP_MIB(&ipst->ips_ip_mib, 20241 ipIfStatsOutDiscards); 20242 if (attach_ill != NULL) 20243 ill_refrele(attach_ill); 20244 if (need_decref) 20245 CONN_DEC_REF(connp); 20246 freemsg(first_mp); 20247 return; 20248 } 20249 goto send_from_ill; 20250 } 20251 standard_path: 20252 /* Must be a broadcast, a loopback or a local ire */ 20253 if (ire != NULL) { 20254 ire_refrele(ire); 20255 /* No more access to ire */ 20256 ire = NULL; 20257 } 20258 } 20259 20260 if (attach_ill != NULL) 20261 goto send_from_ill; 20262 20263 /* 20264 * We cache IRE_CACHEs to avoid lookups. We don't do 20265 * this for the tcp global queue and listen end point 20266 * as it does not really have a real destination to 20267 * talk to. This is also true for SCTP. 20268 */ 20269 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20270 !connp->conn_fully_bound) { 20271 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20272 if (ire == NULL) 20273 goto noirefound; 20274 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20275 "ip_wput_end: q %p (%S)", q, "end"); 20276 20277 /* 20278 * Check if the ire has the RTF_MULTIRT flag, inherited 20279 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20280 */ 20281 if (ire->ire_flags & RTF_MULTIRT) { 20282 20283 /* 20284 * Force the TTL of multirouted packets if required. 20285 * The TTL of such packets is bounded by the 20286 * ip_multirt_ttl ndd variable. 20287 */ 20288 if ((ipst->ips_ip_multirt_ttl > 0) && 20289 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20290 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20291 "(was %d), dst 0x%08x\n", 20292 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20293 ntohl(ire->ire_addr))); 20294 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20295 } 20296 /* 20297 * We look at this point if there are pending 20298 * unresolved routes. ire_multirt_resolvable() 20299 * checks in O(n) that all IRE_OFFSUBNET ire 20300 * entries for the packet's destination and 20301 * flagged RTF_MULTIRT are currently resolved. 20302 * If some remain unresolved, we make a copy 20303 * of the current message. It will be used 20304 * to initiate additional route resolutions. 20305 */ 20306 multirt_need_resolve = 20307 ire_multirt_need_resolve(ire->ire_addr, 20308 MBLK_GETLABEL(first_mp), ipst); 20309 ip2dbg(("ip_wput[TCP]: ire %p, " 20310 "multirt_need_resolve %d, first_mp %p\n", 20311 (void *)ire, multirt_need_resolve, 20312 (void *)first_mp)); 20313 if (multirt_need_resolve) { 20314 copy_mp = copymsg(first_mp); 20315 if (copy_mp != NULL) { 20316 MULTIRT_DEBUG_TAG(copy_mp); 20317 } 20318 } 20319 } 20320 20321 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20322 20323 /* 20324 * Try to resolve another multiroute if 20325 * ire_multirt_need_resolve() deemed it necessary. 20326 */ 20327 if (copy_mp != NULL) 20328 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20329 if (need_decref) 20330 CONN_DEC_REF(connp); 20331 return; 20332 } 20333 20334 /* 20335 * Access to conn_ire_cache. (protected by conn_lock) 20336 * 20337 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20338 * the ire bucket lock here to check for CONDEMNED as it is okay to 20339 * send a packet or two with the IRE_CACHE that is going away. 20340 * Access to the ire requires an ire refhold on the ire prior to 20341 * its use since an interface unplumb thread may delete the cached 20342 * ire and release the refhold at any time. 20343 * 20344 * Caching an ire in the conn_ire_cache 20345 * 20346 * o Caching an ire pointer in the conn requires a strict check for 20347 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20348 * ires before cleaning up the conns. So the caching of an ire pointer 20349 * in the conn is done after making sure under the bucket lock that the 20350 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20351 * caching an ire after the unplumb thread has cleaned up the conn. 20352 * If the conn does not send a packet subsequently the unplumb thread 20353 * will be hanging waiting for the ire count to drop to zero. 20354 * 20355 * o We also need to atomically test for a null conn_ire_cache and 20356 * set the conn_ire_cache under the the protection of the conn_lock 20357 * to avoid races among concurrent threads trying to simultaneously 20358 * cache an ire in the conn_ire_cache. 20359 */ 20360 mutex_enter(&connp->conn_lock); 20361 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20362 20363 if (ire != NULL && ire->ire_addr == dst && 20364 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20365 20366 IRE_REFHOLD(ire); 20367 mutex_exit(&connp->conn_lock); 20368 20369 } else { 20370 boolean_t cached = B_FALSE; 20371 connp->conn_ire_cache = NULL; 20372 mutex_exit(&connp->conn_lock); 20373 /* Release the old ire */ 20374 if (ire != NULL && sctp_ire == NULL) 20375 IRE_REFRELE_NOTR(ire); 20376 20377 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20378 if (ire == NULL) 20379 goto noirefound; 20380 IRE_REFHOLD_NOTR(ire); 20381 20382 mutex_enter(&connp->conn_lock); 20383 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20384 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20385 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20386 if (connp->conn_ulp == IPPROTO_TCP) 20387 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20388 connp->conn_ire_cache = ire; 20389 cached = B_TRUE; 20390 } 20391 rw_exit(&ire->ire_bucket->irb_lock); 20392 } 20393 mutex_exit(&connp->conn_lock); 20394 20395 /* 20396 * We can continue to use the ire but since it was 20397 * not cached, we should drop the extra reference. 20398 */ 20399 if (!cached) 20400 IRE_REFRELE_NOTR(ire); 20401 } 20402 20403 20404 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20405 "ip_wput_end: q %p (%S)", q, "end"); 20406 20407 /* 20408 * Check if the ire has the RTF_MULTIRT flag, inherited 20409 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20410 */ 20411 if (ire->ire_flags & RTF_MULTIRT) { 20412 20413 /* 20414 * Force the TTL of multirouted packets if required. 20415 * The TTL of such packets is bounded by the 20416 * ip_multirt_ttl ndd variable. 20417 */ 20418 if ((ipst->ips_ip_multirt_ttl > 0) && 20419 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20420 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20421 "(was %d), dst 0x%08x\n", 20422 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20423 ntohl(ire->ire_addr))); 20424 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20425 } 20426 20427 /* 20428 * At this point, we check to see if there are any pending 20429 * unresolved routes. ire_multirt_resolvable() 20430 * checks in O(n) that all IRE_OFFSUBNET ire 20431 * entries for the packet's destination and 20432 * flagged RTF_MULTIRT are currently resolved. 20433 * If some remain unresolved, we make a copy 20434 * of the current message. It will be used 20435 * to initiate additional route resolutions. 20436 */ 20437 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20438 MBLK_GETLABEL(first_mp), ipst); 20439 ip2dbg(("ip_wput[not TCP]: ire %p, " 20440 "multirt_need_resolve %d, first_mp %p\n", 20441 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20442 if (multirt_need_resolve) { 20443 copy_mp = copymsg(first_mp); 20444 if (copy_mp != NULL) { 20445 MULTIRT_DEBUG_TAG(copy_mp); 20446 } 20447 } 20448 } 20449 20450 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20451 20452 /* 20453 * Try to resolve another multiroute if 20454 * ire_multirt_resolvable() deemed it necessary 20455 */ 20456 if (copy_mp != NULL) 20457 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20458 if (need_decref) 20459 CONN_DEC_REF(connp); 20460 return; 20461 20462 qnext: 20463 /* 20464 * Upper Level Protocols pass down complete IP datagrams 20465 * as M_DATA messages. Everything else is a sideshow. 20466 * 20467 * 1) We could be re-entering ip_wput because of ip_neworute 20468 * in which case we could have a IPSEC_OUT message. We 20469 * need to pass through ip_wput like other datagrams and 20470 * hence cannot branch to ip_wput_nondata. 20471 * 20472 * 2) ARP, AH, ESP, and other clients who are on the module 20473 * instance of IP stream, give us something to deal with. 20474 * We will handle AH and ESP here and rest in ip_wput_nondata. 20475 * 20476 * 3) ICMP replies also could come here. 20477 */ 20478 ipst = ILLQ_TO_IPST(q); 20479 20480 if (DB_TYPE(mp) != M_DATA) { 20481 notdata: 20482 if (DB_TYPE(mp) == M_CTL) { 20483 /* 20484 * M_CTL messages are used by ARP, AH and ESP to 20485 * communicate with IP. We deal with IPSEC_IN and 20486 * IPSEC_OUT here. ip_wput_nondata handles other 20487 * cases. 20488 */ 20489 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20490 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20491 first_mp = mp->b_cont; 20492 first_mp->b_flag &= ~MSGHASREF; 20493 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20494 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20495 CONN_DEC_REF(connp); 20496 connp = NULL; 20497 } 20498 if (ii->ipsec_info_type == IPSEC_IN) { 20499 /* 20500 * Either this message goes back to 20501 * IPsec for further processing or to 20502 * ULP after policy checks. 20503 */ 20504 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20505 return; 20506 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20507 io = (ipsec_out_t *)ii; 20508 if (io->ipsec_out_proc_begin) { 20509 /* 20510 * IPsec processing has already started. 20511 * Complete it. 20512 * IPQoS notes: We don't care what is 20513 * in ipsec_out_ill_index since this 20514 * won't be processed for IPQoS policies 20515 * in ipsec_out_process. 20516 */ 20517 ipsec_out_process(q, mp, NULL, 20518 io->ipsec_out_ill_index); 20519 return; 20520 } else { 20521 connp = (q->q_next != NULL) ? 20522 NULL : Q_TO_CONN(q); 20523 first_mp = mp; 20524 mp = mp->b_cont; 20525 mctl_present = B_TRUE; 20526 } 20527 zoneid = io->ipsec_out_zoneid; 20528 ASSERT(zoneid != ALL_ZONES); 20529 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20530 /* 20531 * It's an IPsec control message requesting 20532 * an SADB update to be sent to the IPsec 20533 * hardware acceleration capable ills. 20534 */ 20535 ipsec_ctl_t *ipsec_ctl = 20536 (ipsec_ctl_t *)mp->b_rptr; 20537 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20538 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20539 mblk_t *cmp = mp->b_cont; 20540 20541 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20542 ASSERT(cmp != NULL); 20543 20544 freeb(mp); 20545 ill_ipsec_capab_send_all(satype, cmp, sa, 20546 ipst->ips_netstack); 20547 return; 20548 } else { 20549 /* 20550 * This must be ARP or special TSOL signaling. 20551 */ 20552 ip_wput_nondata(NULL, q, mp, NULL); 20553 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20554 "ip_wput_end: q %p (%S)", q, "nondata"); 20555 return; 20556 } 20557 } else { 20558 /* 20559 * This must be non-(ARP/AH/ESP) messages. 20560 */ 20561 ASSERT(!need_decref); 20562 ip_wput_nondata(NULL, q, mp, NULL); 20563 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20564 "ip_wput_end: q %p (%S)", q, "nondata"); 20565 return; 20566 } 20567 } else { 20568 first_mp = mp; 20569 mctl_present = B_FALSE; 20570 } 20571 20572 ASSERT(first_mp != NULL); 20573 /* 20574 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20575 * to make sure that this packet goes out on the same interface it 20576 * came in. We handle that here. 20577 */ 20578 if (mctl_present) { 20579 uint_t ifindex; 20580 20581 io = (ipsec_out_t *)first_mp->b_rptr; 20582 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20583 /* 20584 * We may have lost the conn context if we are 20585 * coming here from ip_newroute(). Copy the 20586 * nexthop information. 20587 */ 20588 if (io->ipsec_out_ip_nexthop) { 20589 ip_nexthop = B_TRUE; 20590 nexthop_addr = io->ipsec_out_nexthop_addr; 20591 20592 ipha = (ipha_t *)mp->b_rptr; 20593 dst = ipha->ipha_dst; 20594 goto send_from_ill; 20595 } else { 20596 ASSERT(io->ipsec_out_ill_index != 0); 20597 ifindex = io->ipsec_out_ill_index; 20598 attach_ill = ill_lookup_on_ifindex(ifindex, 20599 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20600 if (attach_ill == NULL) { 20601 ASSERT(xmit_ill == NULL); 20602 ip1dbg(("ip_output: bad ifindex for " 20603 "(BIND TO IPIF_NOFAILOVER) %d\n", 20604 ifindex)); 20605 freemsg(first_mp); 20606 BUMP_MIB(&ipst->ips_ip_mib, 20607 ipIfStatsOutDiscards); 20608 ASSERT(!need_decref); 20609 return; 20610 } 20611 } 20612 } 20613 } 20614 20615 ASSERT(xmit_ill == NULL); 20616 20617 /* We have a complete IP datagram heading outbound. */ 20618 ipha = (ipha_t *)mp->b_rptr; 20619 20620 #ifndef SPEED_BEFORE_SAFETY 20621 /* 20622 * Make sure we have a full-word aligned message and that at least 20623 * a simple IP header is accessible in the first message. If not, 20624 * try a pullup. 20625 */ 20626 if (!OK_32PTR(rptr) || 20627 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20628 hdrtoosmall: 20629 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20630 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20631 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20632 if (first_mp == NULL) 20633 first_mp = mp; 20634 goto discard_pkt; 20635 } 20636 20637 /* This function assumes that mp points to an IPv4 packet. */ 20638 if (is_system_labeled() && q->q_next == NULL && 20639 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20640 !connp->conn_ulp_labeled) { 20641 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20642 &adjust, connp->conn_mac_exempt, ipst); 20643 ipha = (ipha_t *)mp->b_rptr; 20644 if (first_mp != NULL) 20645 first_mp->b_cont = mp; 20646 if (err != 0) { 20647 if (first_mp == NULL) 20648 first_mp = mp; 20649 if (err == EINVAL) 20650 goto icmp_parameter_problem; 20651 ip2dbg(("ip_wput: label check failed (%d)\n", 20652 err)); 20653 goto discard_pkt; 20654 } 20655 iplen = ntohs(ipha->ipha_length) + adjust; 20656 ipha->ipha_length = htons(iplen); 20657 } 20658 20659 ipha = (ipha_t *)mp->b_rptr; 20660 if (first_mp == NULL) { 20661 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20662 /* 20663 * If we got here because of "goto hdrtoosmall" 20664 * We need to attach a IPSEC_OUT. 20665 */ 20666 if (connp->conn_out_enforce_policy) { 20667 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20668 NULL, ipha->ipha_protocol, 20669 ipst->ips_netstack)) == NULL)) { 20670 BUMP_MIB(&ipst->ips_ip_mib, 20671 ipIfStatsOutDiscards); 20672 if (need_decref) 20673 CONN_DEC_REF(connp); 20674 return; 20675 } else { 20676 ASSERT(mp->b_datap->db_type == M_CTL); 20677 first_mp = mp; 20678 mp = mp->b_cont; 20679 mctl_present = B_TRUE; 20680 } 20681 } else { 20682 first_mp = mp; 20683 mctl_present = B_FALSE; 20684 } 20685 } 20686 } 20687 #endif 20688 20689 /* Most of the code below is written for speed, not readability */ 20690 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20691 20692 /* 20693 * If ip_newroute() fails, we're going to need a full 20694 * header for the icmp wraparound. 20695 */ 20696 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20697 uint_t v_hlen; 20698 version_hdrlen_check: 20699 ASSERT(first_mp != NULL); 20700 v_hlen = V_HLEN; 20701 /* 20702 * siphon off IPv6 packets coming down from transport 20703 * layer modules here. 20704 * Note: high-order bit carries NUD reachability confirmation 20705 */ 20706 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20707 /* 20708 * FIXME: assume that callers of ip_output* call 20709 * the right version? 20710 */ 20711 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20712 ASSERT(xmit_ill == NULL); 20713 if (attach_ill != NULL) 20714 ill_refrele(attach_ill); 20715 if (need_decref) 20716 mp->b_flag |= MSGHASREF; 20717 (void) ip_output_v6(arg, first_mp, arg2, caller); 20718 return; 20719 } 20720 20721 if ((v_hlen >> 4) != IP_VERSION) { 20722 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20723 "ip_wput_end: q %p (%S)", q, "badvers"); 20724 goto discard_pkt; 20725 } 20726 /* 20727 * Is the header length at least 20 bytes? 20728 * 20729 * Are there enough bytes accessible in the header? If 20730 * not, try a pullup. 20731 */ 20732 v_hlen &= 0xF; 20733 v_hlen <<= 2; 20734 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20735 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20736 "ip_wput_end: q %p (%S)", q, "badlen"); 20737 goto discard_pkt; 20738 } 20739 if (v_hlen > (mp->b_wptr - rptr)) { 20740 if (!pullupmsg(mp, v_hlen)) { 20741 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20742 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20743 goto discard_pkt; 20744 } 20745 ipha = (ipha_t *)mp->b_rptr; 20746 } 20747 /* 20748 * Move first entry from any source route into ipha_dst and 20749 * verify the options 20750 */ 20751 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20752 zoneid, ipst)) { 20753 ASSERT(xmit_ill == NULL); 20754 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20755 if (attach_ill != NULL) 20756 ill_refrele(attach_ill); 20757 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20758 "ip_wput_end: q %p (%S)", q, "badopts"); 20759 if (need_decref) 20760 CONN_DEC_REF(connp); 20761 return; 20762 } 20763 } 20764 dst = ipha->ipha_dst; 20765 20766 /* 20767 * Try to get an IRE_CACHE for the destination address. If we can't, 20768 * we have to run the packet through ip_newroute which will take 20769 * the appropriate action to arrange for an IRE_CACHE, such as querying 20770 * a resolver, or assigning a default gateway, etc. 20771 */ 20772 if (CLASSD(dst)) { 20773 ipif_t *ipif; 20774 uint32_t setsrc = 0; 20775 20776 multicast: 20777 ASSERT(first_mp != NULL); 20778 ip2dbg(("ip_wput: CLASSD\n")); 20779 if (connp == NULL) { 20780 /* 20781 * Use the first good ipif on the ill. 20782 * XXX Should this ever happen? (Appears 20783 * to show up with just ppp and no ethernet due 20784 * to in.rdisc.) 20785 * However, ire_send should be able to 20786 * call ip_wput_ire directly. 20787 * 20788 * XXX Also, this can happen for ICMP and other packets 20789 * with multicast source addresses. Perhaps we should 20790 * fix things so that we drop the packet in question, 20791 * but for now, just run with it. 20792 */ 20793 ill_t *ill = (ill_t *)q->q_ptr; 20794 20795 /* 20796 * Don't honor attach_if for this case. If ill 20797 * is part of the group, ipif could belong to 20798 * any ill and we cannot maintain attach_ill 20799 * and ipif_ill same anymore and the assert 20800 * below would fail. 20801 */ 20802 if (mctl_present && io->ipsec_out_attach_if) { 20803 io->ipsec_out_ill_index = 0; 20804 io->ipsec_out_attach_if = B_FALSE; 20805 ASSERT(attach_ill != NULL); 20806 ill_refrele(attach_ill); 20807 attach_ill = NULL; 20808 } 20809 20810 ASSERT(attach_ill == NULL); 20811 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20812 if (ipif == NULL) { 20813 if (need_decref) 20814 CONN_DEC_REF(connp); 20815 freemsg(first_mp); 20816 return; 20817 } 20818 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20819 ntohl(dst), ill->ill_name)); 20820 } else { 20821 /* 20822 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 20823 * and IP_MULTICAST_IF. 20824 * Block comment above this function explains the 20825 * locking mechanism used here 20826 */ 20827 if (xmit_ill == NULL) { 20828 xmit_ill = conn_get_held_ill(connp, 20829 &connp->conn_xmit_if_ill, &err); 20830 if (err == ILL_LOOKUP_FAILED) { 20831 ip1dbg(("ip_wput: No ill for " 20832 "IP_XMIT_IF\n")); 20833 BUMP_MIB(&ipst->ips_ip_mib, 20834 ipIfStatsOutNoRoutes); 20835 goto drop_pkt; 20836 } 20837 } 20838 20839 if (xmit_ill == NULL) { 20840 ipif = conn_get_held_ipif(connp, 20841 &connp->conn_multicast_ipif, &err); 20842 if (err == IPIF_LOOKUP_FAILED) { 20843 ip1dbg(("ip_wput: No ipif for " 20844 "multicast\n")); 20845 BUMP_MIB(&ipst->ips_ip_mib, 20846 ipIfStatsOutNoRoutes); 20847 goto drop_pkt; 20848 } 20849 } 20850 if (xmit_ill != NULL) { 20851 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20852 if (ipif == NULL) { 20853 ip1dbg(("ip_wput: No ipif for " 20854 "IP_XMIT_IF\n")); 20855 BUMP_MIB(&ipst->ips_ip_mib, 20856 ipIfStatsOutNoRoutes); 20857 goto drop_pkt; 20858 } 20859 } else if (ipif == NULL || ipif->ipif_isv6) { 20860 /* 20861 * We must do this ipif determination here 20862 * else we could pass through ip_newroute 20863 * and come back here without the conn context. 20864 * 20865 * Note: we do late binding i.e. we bind to 20866 * the interface when the first packet is sent. 20867 * For performance reasons we do not rebind on 20868 * each packet but keep the binding until the 20869 * next IP_MULTICAST_IF option. 20870 * 20871 * conn_multicast_{ipif,ill} are shared between 20872 * IPv4 and IPv6 and AF_INET6 sockets can 20873 * send both IPv4 and IPv6 packets. Hence 20874 * we have to check that "isv6" matches above. 20875 */ 20876 if (ipif != NULL) 20877 ipif_refrele(ipif); 20878 ipif = ipif_lookup_group(dst, zoneid, ipst); 20879 if (ipif == NULL) { 20880 ip1dbg(("ip_wput: No ipif for " 20881 "multicast\n")); 20882 BUMP_MIB(&ipst->ips_ip_mib, 20883 ipIfStatsOutNoRoutes); 20884 goto drop_pkt; 20885 } 20886 err = conn_set_held_ipif(connp, 20887 &connp->conn_multicast_ipif, ipif); 20888 if (err == IPIF_LOOKUP_FAILED) { 20889 ipif_refrele(ipif); 20890 ip1dbg(("ip_wput: No ipif for " 20891 "multicast\n")); 20892 BUMP_MIB(&ipst->ips_ip_mib, 20893 ipIfStatsOutNoRoutes); 20894 goto drop_pkt; 20895 } 20896 } 20897 } 20898 ASSERT(!ipif->ipif_isv6); 20899 /* 20900 * As we may lose the conn by the time we reach ip_wput_ire, 20901 * we copy conn_multicast_loop and conn_dontroute on to an 20902 * ipsec_out. In case if this datagram goes out secure, 20903 * we need the ill_index also. Copy that also into the 20904 * ipsec_out. 20905 */ 20906 if (mctl_present) { 20907 io = (ipsec_out_t *)first_mp->b_rptr; 20908 ASSERT(first_mp->b_datap->db_type == M_CTL); 20909 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20910 } else { 20911 ASSERT(mp == first_mp); 20912 if ((first_mp = allocb(sizeof (ipsec_info_t), 20913 BPRI_HI)) == NULL) { 20914 ipif_refrele(ipif); 20915 first_mp = mp; 20916 goto discard_pkt; 20917 } 20918 first_mp->b_datap->db_type = M_CTL; 20919 first_mp->b_wptr += sizeof (ipsec_info_t); 20920 /* ipsec_out_secure is B_FALSE now */ 20921 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20922 io = (ipsec_out_t *)first_mp->b_rptr; 20923 io->ipsec_out_type = IPSEC_OUT; 20924 io->ipsec_out_len = sizeof (ipsec_out_t); 20925 io->ipsec_out_use_global_policy = B_TRUE; 20926 io->ipsec_out_ns = ipst->ips_netstack; 20927 first_mp->b_cont = mp; 20928 mctl_present = B_TRUE; 20929 } 20930 if (attach_ill != NULL) { 20931 ASSERT(attach_ill == ipif->ipif_ill); 20932 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20933 20934 /* 20935 * Check if we need an ire that will not be 20936 * looked up by anybody else i.e. HIDDEN. 20937 */ 20938 if (ill_is_probeonly(attach_ill)) { 20939 match_flags |= MATCH_IRE_MARK_HIDDEN; 20940 } 20941 io->ipsec_out_ill_index = 20942 attach_ill->ill_phyint->phyint_ifindex; 20943 io->ipsec_out_attach_if = B_TRUE; 20944 } else { 20945 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20946 io->ipsec_out_ill_index = 20947 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20948 } 20949 if (connp != NULL) { 20950 io->ipsec_out_multicast_loop = 20951 connp->conn_multicast_loop; 20952 io->ipsec_out_dontroute = connp->conn_dontroute; 20953 io->ipsec_out_zoneid = connp->conn_zoneid; 20954 } 20955 /* 20956 * If the application uses IP_MULTICAST_IF with 20957 * different logical addresses of the same ILL, we 20958 * need to make sure that the soruce address of 20959 * the packet matches the logical IP address used 20960 * in the option. We do it by initializing ipha_src 20961 * here. This should keep IPsec also happy as 20962 * when we return from IPsec processing, we don't 20963 * have to worry about getting the right address on 20964 * the packet. Thus it is sufficient to look for 20965 * IRE_CACHE using MATCH_IRE_ILL rathen than 20966 * MATCH_IRE_IPIF. 20967 * 20968 * NOTE : We need to do it for non-secure case also as 20969 * this might go out secure if there is a global policy 20970 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20971 * address, the source should be initialized already and 20972 * hence we won't be initializing here. 20973 * 20974 * As we do not have the ire yet, it is possible that 20975 * we set the source address here and then later discover 20976 * that the ire implies the source address to be assigned 20977 * through the RTF_SETSRC flag. 20978 * In that case, the setsrc variable will remind us 20979 * that overwritting the source address by the one 20980 * of the RTF_SETSRC-flagged ire is allowed. 20981 */ 20982 if (ipha->ipha_src == INADDR_ANY && 20983 (connp == NULL || !connp->conn_unspec_src)) { 20984 ipha->ipha_src = ipif->ipif_src_addr; 20985 setsrc = RTF_SETSRC; 20986 } 20987 /* 20988 * Find an IRE which matches the destination and the outgoing 20989 * queue (i.e. the outgoing interface.) 20990 * For loopback use a unicast IP address for 20991 * the ire lookup. 20992 */ 20993 if (IS_LOOPBACK(ipif->ipif_ill)) 20994 dst = ipif->ipif_lcl_addr; 20995 20996 /* 20997 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20998 * We don't need to lookup ire in ctable as the packet 20999 * needs to be sent to the destination through the specified 21000 * ill irrespective of ires in the cache table. 21001 */ 21002 ire = NULL; 21003 if (xmit_ill == NULL) { 21004 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21005 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21006 } 21007 21008 /* 21009 * refrele attach_ill as its not needed anymore. 21010 */ 21011 if (attach_ill != NULL) { 21012 ill_refrele(attach_ill); 21013 attach_ill = NULL; 21014 } 21015 21016 if (ire == NULL) { 21017 /* 21018 * Multicast loopback and multicast forwarding is 21019 * done in ip_wput_ire. 21020 * 21021 * Mark this packet to make it be delivered to 21022 * ip_wput_ire after the new ire has been 21023 * created. 21024 * 21025 * The call to ip_newroute_ipif takes into account 21026 * the setsrc reminder. In any case, we take care 21027 * of the RTF_MULTIRT flag. 21028 */ 21029 mp->b_prev = mp->b_next = NULL; 21030 if (xmit_ill == NULL || 21031 xmit_ill->ill_ipif_up_count > 0) { 21032 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21033 setsrc | RTF_MULTIRT, zoneid, infop); 21034 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21035 "ip_wput_end: q %p (%S)", q, "noire"); 21036 } else { 21037 freemsg(first_mp); 21038 } 21039 ipif_refrele(ipif); 21040 if (xmit_ill != NULL) 21041 ill_refrele(xmit_ill); 21042 if (need_decref) 21043 CONN_DEC_REF(connp); 21044 return; 21045 } 21046 21047 ipif_refrele(ipif); 21048 ipif = NULL; 21049 ASSERT(xmit_ill == NULL); 21050 21051 /* 21052 * Honor the RTF_SETSRC flag for multicast packets, 21053 * if allowed by the setsrc reminder. 21054 */ 21055 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21056 ipha->ipha_src = ire->ire_src_addr; 21057 } 21058 21059 /* 21060 * Unconditionally force the TTL to 1 for 21061 * multirouted multicast packets: 21062 * multirouted multicast should not cross 21063 * multicast routers. 21064 */ 21065 if (ire->ire_flags & RTF_MULTIRT) { 21066 if (ipha->ipha_ttl > 1) { 21067 ip2dbg(("ip_wput: forcing multicast " 21068 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21069 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21070 ipha->ipha_ttl = 1; 21071 } 21072 } 21073 } else { 21074 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21075 if ((ire != NULL) && (ire->ire_type & 21076 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21077 ignore_dontroute = B_TRUE; 21078 ignore_nexthop = B_TRUE; 21079 } 21080 if (ire != NULL) { 21081 ire_refrele(ire); 21082 ire = NULL; 21083 } 21084 /* 21085 * Guard against coming in from arp in which case conn is NULL. 21086 * Also guard against non M_DATA with dontroute set but 21087 * destined to local, loopback or broadcast addresses. 21088 */ 21089 if (connp != NULL && connp->conn_dontroute && 21090 !ignore_dontroute) { 21091 dontroute: 21092 /* 21093 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21094 * routing protocols from seeing false direct 21095 * connectivity. 21096 */ 21097 ipha->ipha_ttl = 1; 21098 /* 21099 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21100 * along with SO_DONTROUTE, higher precedence is 21101 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21102 */ 21103 if (connp->conn_xmit_if_ill == NULL) { 21104 /* If suitable ipif not found, drop packet */ 21105 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21106 ipst); 21107 if (dst_ipif == NULL) { 21108 ip1dbg(("ip_wput: no route for " 21109 "dst using SO_DONTROUTE\n")); 21110 BUMP_MIB(&ipst->ips_ip_mib, 21111 ipIfStatsOutNoRoutes); 21112 mp->b_prev = mp->b_next = NULL; 21113 if (first_mp == NULL) 21114 first_mp = mp; 21115 goto drop_pkt; 21116 } else { 21117 /* 21118 * If suitable ipif has been found, set 21119 * xmit_ill to the corresponding 21120 * ipif_ill because we'll be following 21121 * the IP_XMIT_IF logic. 21122 */ 21123 ASSERT(xmit_ill == NULL); 21124 xmit_ill = dst_ipif->ipif_ill; 21125 mutex_enter(&xmit_ill->ill_lock); 21126 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21127 mutex_exit(&xmit_ill->ill_lock); 21128 xmit_ill = NULL; 21129 ipif_refrele(dst_ipif); 21130 ip1dbg(("ip_wput: no route for" 21131 " dst using" 21132 " SO_DONTROUTE\n")); 21133 BUMP_MIB(&ipst->ips_ip_mib, 21134 ipIfStatsOutNoRoutes); 21135 mp->b_prev = mp->b_next = NULL; 21136 if (first_mp == NULL) 21137 first_mp = mp; 21138 goto drop_pkt; 21139 } 21140 ill_refhold_locked(xmit_ill); 21141 mutex_exit(&xmit_ill->ill_lock); 21142 ipif_refrele(dst_ipif); 21143 } 21144 } 21145 21146 } 21147 /* 21148 * If we are bound to IPIF_NOFAILOVER address, look for 21149 * an IRE_CACHE matching the ill. 21150 */ 21151 send_from_ill: 21152 if (attach_ill != NULL) { 21153 ipif_t *attach_ipif; 21154 21155 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21156 21157 /* 21158 * Check if we need an ire that will not be 21159 * looked up by anybody else i.e. HIDDEN. 21160 */ 21161 if (ill_is_probeonly(attach_ill)) { 21162 match_flags |= MATCH_IRE_MARK_HIDDEN; 21163 } 21164 21165 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21166 if (attach_ipif == NULL) { 21167 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21168 goto discard_pkt; 21169 } 21170 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21171 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21172 ipif_refrele(attach_ipif); 21173 } else if (xmit_ill != NULL || (connp != NULL && 21174 connp->conn_xmit_if_ill != NULL)) { 21175 /* 21176 * Mark this packet as originated locally 21177 */ 21178 mp->b_prev = mp->b_next = NULL; 21179 /* 21180 * xmit_ill could be NULL if SO_DONTROUTE 21181 * is also set. 21182 */ 21183 if (xmit_ill == NULL) { 21184 xmit_ill = conn_get_held_ill(connp, 21185 &connp->conn_xmit_if_ill, &err); 21186 if (err == ILL_LOOKUP_FAILED) { 21187 BUMP_MIB(&ipst->ips_ip_mib, 21188 ipIfStatsOutDiscards); 21189 if (need_decref) 21190 CONN_DEC_REF(connp); 21191 freemsg(first_mp); 21192 return; 21193 } 21194 if (xmit_ill == NULL) { 21195 if (connp->conn_dontroute) 21196 goto dontroute; 21197 goto send_from_ill; 21198 } 21199 } 21200 /* 21201 * Could be SO_DONTROUTE case also. 21202 * check at least one interface is UP as 21203 * specified by this ILL 21204 */ 21205 if (xmit_ill->ill_ipif_up_count > 0) { 21206 ipif_t *ipif; 21207 21208 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21209 if (ipif == NULL) { 21210 ip1dbg(("ip_output: " 21211 "xmit_ill NULL ipif\n")); 21212 goto drop_pkt; 21213 } 21214 /* 21215 * Look for a ire that is part of the group, 21216 * if found use it else call ip_newroute_ipif. 21217 * IPCL_ZONEID is not used for matching because 21218 * IP_ALLZONES option is valid only when the 21219 * ill is accessible from all zones i.e has a 21220 * valid ipif in all zones. 21221 */ 21222 match_flags = MATCH_IRE_ILL_GROUP | 21223 MATCH_IRE_SECATTR; 21224 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21225 MBLK_GETLABEL(mp), match_flags, ipst); 21226 /* 21227 * If an ire exists use it or else create 21228 * an ire but don't add it to the cache. 21229 * Adding an ire may cause issues with 21230 * asymmetric routing. 21231 * In case of multiroute always act as if 21232 * ire does not exist. 21233 */ 21234 if (ire == NULL || 21235 ire->ire_flags & RTF_MULTIRT) { 21236 if (ire != NULL) 21237 ire_refrele(ire); 21238 ip_newroute_ipif(q, first_mp, ipif, 21239 dst, connp, 0, zoneid, infop); 21240 ipif_refrele(ipif); 21241 ip1dbg(("ip_wput: ip_unicast_if\n")); 21242 ill_refrele(xmit_ill); 21243 if (need_decref) 21244 CONN_DEC_REF(connp); 21245 return; 21246 } 21247 ipif_refrele(ipif); 21248 } else { 21249 goto drop_pkt; 21250 } 21251 } else if (ip_nexthop || (connp != NULL && 21252 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21253 if (!ip_nexthop) { 21254 ip_nexthop = B_TRUE; 21255 nexthop_addr = connp->conn_nexthop_v4; 21256 } 21257 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21258 MATCH_IRE_GW; 21259 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21260 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21261 } else { 21262 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21263 ipst); 21264 } 21265 if (!ire) { 21266 /* 21267 * Make sure we don't load spread if this 21268 * is IPIF_NOFAILOVER case. 21269 */ 21270 if ((attach_ill != NULL) || 21271 (ip_nexthop && !ignore_nexthop)) { 21272 if (mctl_present) { 21273 io = (ipsec_out_t *)first_mp->b_rptr; 21274 ASSERT(first_mp->b_datap->db_type == 21275 M_CTL); 21276 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21277 } else { 21278 ASSERT(mp == first_mp); 21279 first_mp = allocb( 21280 sizeof (ipsec_info_t), BPRI_HI); 21281 if (first_mp == NULL) { 21282 first_mp = mp; 21283 goto discard_pkt; 21284 } 21285 first_mp->b_datap->db_type = M_CTL; 21286 first_mp->b_wptr += 21287 sizeof (ipsec_info_t); 21288 /* ipsec_out_secure is B_FALSE now */ 21289 bzero(first_mp->b_rptr, 21290 sizeof (ipsec_info_t)); 21291 io = (ipsec_out_t *)first_mp->b_rptr; 21292 io->ipsec_out_type = IPSEC_OUT; 21293 io->ipsec_out_len = 21294 sizeof (ipsec_out_t); 21295 io->ipsec_out_use_global_policy = 21296 B_TRUE; 21297 io->ipsec_out_ns = ipst->ips_netstack; 21298 first_mp->b_cont = mp; 21299 mctl_present = B_TRUE; 21300 } 21301 if (attach_ill != NULL) { 21302 io->ipsec_out_ill_index = attach_ill-> 21303 ill_phyint->phyint_ifindex; 21304 io->ipsec_out_attach_if = B_TRUE; 21305 } else { 21306 io->ipsec_out_ip_nexthop = ip_nexthop; 21307 io->ipsec_out_nexthop_addr = 21308 nexthop_addr; 21309 } 21310 } 21311 noirefound: 21312 /* 21313 * Mark this packet as having originated on 21314 * this machine. This will be noted in 21315 * ire_add_then_send, which needs to know 21316 * whether to run it back through ip_wput or 21317 * ip_rput following successful resolution. 21318 */ 21319 mp->b_prev = NULL; 21320 mp->b_next = NULL; 21321 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21322 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21323 "ip_wput_end: q %p (%S)", q, "newroute"); 21324 if (attach_ill != NULL) 21325 ill_refrele(attach_ill); 21326 if (xmit_ill != NULL) 21327 ill_refrele(xmit_ill); 21328 if (need_decref) 21329 CONN_DEC_REF(connp); 21330 return; 21331 } 21332 } 21333 21334 /* We now know where we are going with it. */ 21335 21336 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21337 "ip_wput_end: q %p (%S)", q, "end"); 21338 21339 /* 21340 * Check if the ire has the RTF_MULTIRT flag, inherited 21341 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21342 */ 21343 if (ire->ire_flags & RTF_MULTIRT) { 21344 /* 21345 * Force the TTL of multirouted packets if required. 21346 * The TTL of such packets is bounded by the 21347 * ip_multirt_ttl ndd variable. 21348 */ 21349 if ((ipst->ips_ip_multirt_ttl > 0) && 21350 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21351 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21352 "(was %d), dst 0x%08x\n", 21353 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21354 ntohl(ire->ire_addr))); 21355 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21356 } 21357 /* 21358 * At this point, we check to see if there are any pending 21359 * unresolved routes. ire_multirt_resolvable() 21360 * checks in O(n) that all IRE_OFFSUBNET ire 21361 * entries for the packet's destination and 21362 * flagged RTF_MULTIRT are currently resolved. 21363 * If some remain unresolved, we make a copy 21364 * of the current message. It will be used 21365 * to initiate additional route resolutions. 21366 */ 21367 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21368 MBLK_GETLABEL(first_mp), ipst); 21369 ip2dbg(("ip_wput[noirefound]: ire %p, " 21370 "multirt_need_resolve %d, first_mp %p\n", 21371 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21372 if (multirt_need_resolve) { 21373 copy_mp = copymsg(first_mp); 21374 if (copy_mp != NULL) { 21375 MULTIRT_DEBUG_TAG(copy_mp); 21376 } 21377 } 21378 } 21379 21380 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21381 /* 21382 * Try to resolve another multiroute if 21383 * ire_multirt_resolvable() deemed it necessary. 21384 * At this point, we need to distinguish 21385 * multicasts from other packets. For multicasts, 21386 * we call ip_newroute_ipif() and request that both 21387 * multirouting and setsrc flags are checked. 21388 */ 21389 if (copy_mp != NULL) { 21390 if (CLASSD(dst)) { 21391 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21392 if (ipif) { 21393 ASSERT(infop->ip_opt_ill_index == 0); 21394 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21395 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21396 ipif_refrele(ipif); 21397 } else { 21398 MULTIRT_DEBUG_UNTAG(copy_mp); 21399 freemsg(copy_mp); 21400 copy_mp = NULL; 21401 } 21402 } else { 21403 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21404 } 21405 } 21406 if (attach_ill != NULL) 21407 ill_refrele(attach_ill); 21408 if (xmit_ill != NULL) 21409 ill_refrele(xmit_ill); 21410 if (need_decref) 21411 CONN_DEC_REF(connp); 21412 return; 21413 21414 icmp_parameter_problem: 21415 /* could not have originated externally */ 21416 ASSERT(mp->b_prev == NULL); 21417 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21418 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21419 /* it's the IP header length that's in trouble */ 21420 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21421 first_mp = NULL; 21422 } 21423 21424 discard_pkt: 21425 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21426 drop_pkt: 21427 ip1dbg(("ip_wput: dropped packet\n")); 21428 if (ire != NULL) 21429 ire_refrele(ire); 21430 if (need_decref) 21431 CONN_DEC_REF(connp); 21432 freemsg(first_mp); 21433 if (attach_ill != NULL) 21434 ill_refrele(attach_ill); 21435 if (xmit_ill != NULL) 21436 ill_refrele(xmit_ill); 21437 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21438 "ip_wput_end: q %p (%S)", q, "droppkt"); 21439 } 21440 21441 /* 21442 * If this is a conn_t queue, then we pass in the conn. This includes the 21443 * zoneid. 21444 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21445 * in which case we use the global zoneid since those are all part of 21446 * the global zone. 21447 */ 21448 void 21449 ip_wput(queue_t *q, mblk_t *mp) 21450 { 21451 if (CONN_Q(q)) 21452 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21453 else 21454 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21455 } 21456 21457 /* 21458 * 21459 * The following rules must be observed when accessing any ipif or ill 21460 * that has been cached in the conn. Typically conn_nofailover_ill, 21461 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21462 * 21463 * Access: The ipif or ill pointed to from the conn can be accessed under 21464 * the protection of the conn_lock or after it has been refheld under the 21465 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21466 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21467 * The reason for this is that a concurrent unplumb could actually be 21468 * cleaning up these cached pointers by walking the conns and might have 21469 * finished cleaning up the conn in question. The macros check that an 21470 * unplumb has not yet started on the ipif or ill. 21471 * 21472 * Caching: An ipif or ill pointer may be cached in the conn only after 21473 * making sure that an unplumb has not started. So the caching is done 21474 * while holding both the conn_lock and the ill_lock and after using the 21475 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21476 * flag before starting the cleanup of conns. 21477 * 21478 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21479 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21480 * or a reference to the ipif or a reference to an ire that references the 21481 * ipif. An ipif does not change its ill except for failover/failback. Since 21482 * failover/failback happens only after bringing down the ipif and making sure 21483 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21484 * the above holds. 21485 */ 21486 ipif_t * 21487 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21488 { 21489 ipif_t *ipif; 21490 ill_t *ill; 21491 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21492 21493 *err = 0; 21494 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21495 mutex_enter(&connp->conn_lock); 21496 ipif = *ipifp; 21497 if (ipif != NULL) { 21498 ill = ipif->ipif_ill; 21499 mutex_enter(&ill->ill_lock); 21500 if (IPIF_CAN_LOOKUP(ipif)) { 21501 ipif_refhold_locked(ipif); 21502 mutex_exit(&ill->ill_lock); 21503 mutex_exit(&connp->conn_lock); 21504 rw_exit(&ipst->ips_ill_g_lock); 21505 return (ipif); 21506 } else { 21507 *err = IPIF_LOOKUP_FAILED; 21508 } 21509 mutex_exit(&ill->ill_lock); 21510 } 21511 mutex_exit(&connp->conn_lock); 21512 rw_exit(&ipst->ips_ill_g_lock); 21513 return (NULL); 21514 } 21515 21516 ill_t * 21517 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21518 { 21519 ill_t *ill; 21520 21521 *err = 0; 21522 mutex_enter(&connp->conn_lock); 21523 ill = *illp; 21524 if (ill != NULL) { 21525 mutex_enter(&ill->ill_lock); 21526 if (ILL_CAN_LOOKUP(ill)) { 21527 ill_refhold_locked(ill); 21528 mutex_exit(&ill->ill_lock); 21529 mutex_exit(&connp->conn_lock); 21530 return (ill); 21531 } else { 21532 *err = ILL_LOOKUP_FAILED; 21533 } 21534 mutex_exit(&ill->ill_lock); 21535 } 21536 mutex_exit(&connp->conn_lock); 21537 return (NULL); 21538 } 21539 21540 static int 21541 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21542 { 21543 ill_t *ill; 21544 21545 ill = ipif->ipif_ill; 21546 mutex_enter(&connp->conn_lock); 21547 mutex_enter(&ill->ill_lock); 21548 if (IPIF_CAN_LOOKUP(ipif)) { 21549 *ipifp = ipif; 21550 mutex_exit(&ill->ill_lock); 21551 mutex_exit(&connp->conn_lock); 21552 return (0); 21553 } 21554 mutex_exit(&ill->ill_lock); 21555 mutex_exit(&connp->conn_lock); 21556 return (IPIF_LOOKUP_FAILED); 21557 } 21558 21559 /* 21560 * This is called if the outbound datagram needs fragmentation. 21561 * 21562 * NOTE : This function does not ire_refrele the ire argument passed in. 21563 */ 21564 static void 21565 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21566 ip_stack_t *ipst) 21567 { 21568 ipha_t *ipha; 21569 mblk_t *mp; 21570 uint32_t v_hlen_tos_len; 21571 uint32_t max_frag; 21572 uint32_t frag_flag; 21573 boolean_t dont_use; 21574 21575 if (ipsec_mp->b_datap->db_type == M_CTL) { 21576 mp = ipsec_mp->b_cont; 21577 } else { 21578 mp = ipsec_mp; 21579 } 21580 21581 ipha = (ipha_t *)mp->b_rptr; 21582 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21583 21584 #ifdef _BIG_ENDIAN 21585 #define V_HLEN (v_hlen_tos_len >> 24) 21586 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21587 #else 21588 #define V_HLEN (v_hlen_tos_len & 0xFF) 21589 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21590 #endif 21591 21592 #ifndef SPEED_BEFORE_SAFETY 21593 /* 21594 * Check that ipha_length is consistent with 21595 * the mblk length 21596 */ 21597 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21598 ip0dbg(("Packet length mismatch: %d, %ld\n", 21599 LENGTH, msgdsize(mp))); 21600 freemsg(ipsec_mp); 21601 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21602 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21603 "packet length mismatch"); 21604 return; 21605 } 21606 #endif 21607 /* 21608 * Don't use frag_flag if pre-built packet or source 21609 * routed or if multicast (since multicast packets do not solicit 21610 * ICMP "packet too big" messages). Get the values of 21611 * max_frag and frag_flag atomically by acquiring the 21612 * ire_lock. 21613 */ 21614 mutex_enter(&ire->ire_lock); 21615 max_frag = ire->ire_max_frag; 21616 frag_flag = ire->ire_frag_flag; 21617 mutex_exit(&ire->ire_lock); 21618 21619 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21620 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21621 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21622 21623 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21624 (dont_use ? 0 : frag_flag), zoneid, ipst); 21625 } 21626 21627 /* 21628 * Used for deciding the MSS size for the upper layer. Thus 21629 * we need to check the outbound policy values in the conn. 21630 */ 21631 int 21632 conn_ipsec_length(conn_t *connp) 21633 { 21634 ipsec_latch_t *ipl; 21635 21636 ipl = connp->conn_latch; 21637 if (ipl == NULL) 21638 return (0); 21639 21640 if (ipl->ipl_out_policy == NULL) 21641 return (0); 21642 21643 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21644 } 21645 21646 /* 21647 * Returns an estimate of the IPsec headers size. This is used if 21648 * we don't want to call into IPsec to get the exact size. 21649 */ 21650 int 21651 ipsec_out_extra_length(mblk_t *ipsec_mp) 21652 { 21653 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21654 ipsec_action_t *a; 21655 21656 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21657 if (!io->ipsec_out_secure) 21658 return (0); 21659 21660 a = io->ipsec_out_act; 21661 21662 if (a == NULL) { 21663 ASSERT(io->ipsec_out_policy != NULL); 21664 a = io->ipsec_out_policy->ipsp_act; 21665 } 21666 ASSERT(a != NULL); 21667 21668 return (a->ipa_ovhd); 21669 } 21670 21671 /* 21672 * Returns an estimate of the IPsec headers size. This is used if 21673 * we don't want to call into IPsec to get the exact size. 21674 */ 21675 int 21676 ipsec_in_extra_length(mblk_t *ipsec_mp) 21677 { 21678 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21679 ipsec_action_t *a; 21680 21681 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21682 21683 a = ii->ipsec_in_action; 21684 return (a == NULL ? 0 : a->ipa_ovhd); 21685 } 21686 21687 /* 21688 * If there are any source route options, return the true final 21689 * destination. Otherwise, return the destination. 21690 */ 21691 ipaddr_t 21692 ip_get_dst(ipha_t *ipha) 21693 { 21694 ipoptp_t opts; 21695 uchar_t *opt; 21696 uint8_t optval; 21697 uint8_t optlen; 21698 ipaddr_t dst; 21699 uint32_t off; 21700 21701 dst = ipha->ipha_dst; 21702 21703 if (IS_SIMPLE_IPH(ipha)) 21704 return (dst); 21705 21706 for (optval = ipoptp_first(&opts, ipha); 21707 optval != IPOPT_EOL; 21708 optval = ipoptp_next(&opts)) { 21709 opt = opts.ipoptp_cur; 21710 optlen = opts.ipoptp_len; 21711 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21712 switch (optval) { 21713 case IPOPT_SSRR: 21714 case IPOPT_LSRR: 21715 off = opt[IPOPT_OFFSET]; 21716 /* 21717 * If one of the conditions is true, it means 21718 * end of options and dst already has the right 21719 * value. 21720 */ 21721 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21722 off = optlen - IP_ADDR_LEN; 21723 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21724 } 21725 return (dst); 21726 default: 21727 break; 21728 } 21729 } 21730 21731 return (dst); 21732 } 21733 21734 mblk_t * 21735 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21736 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21737 { 21738 ipsec_out_t *io; 21739 mblk_t *first_mp; 21740 boolean_t policy_present; 21741 ip_stack_t *ipst; 21742 ipsec_stack_t *ipss; 21743 21744 ASSERT(ire != NULL); 21745 ipst = ire->ire_ipst; 21746 ipss = ipst->ips_netstack->netstack_ipsec; 21747 21748 first_mp = mp; 21749 if (mp->b_datap->db_type == M_CTL) { 21750 io = (ipsec_out_t *)first_mp->b_rptr; 21751 /* 21752 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21753 * 21754 * 1) There is per-socket policy (including cached global 21755 * policy) or a policy on the IP-in-IP tunnel. 21756 * 2) There is no per-socket policy, but it is 21757 * a multicast packet that needs to go out 21758 * on a specific interface. This is the case 21759 * where (ip_wput and ip_wput_multicast) attaches 21760 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21761 * 21762 * In case (2) we check with global policy to 21763 * see if there is a match and set the ill_index 21764 * appropriately so that we can lookup the ire 21765 * properly in ip_wput_ipsec_out. 21766 */ 21767 21768 /* 21769 * ipsec_out_use_global_policy is set to B_FALSE 21770 * in ipsec_in_to_out(). Refer to that function for 21771 * details. 21772 */ 21773 if ((io->ipsec_out_latch == NULL) && 21774 (io->ipsec_out_use_global_policy)) { 21775 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21776 ire, connp, unspec_src, zoneid)); 21777 } 21778 if (!io->ipsec_out_secure) { 21779 /* 21780 * If this is not a secure packet, drop 21781 * the IPSEC_OUT mp and treat it as a clear 21782 * packet. This happens when we are sending 21783 * a ICMP reply back to a clear packet. See 21784 * ipsec_in_to_out() for details. 21785 */ 21786 mp = first_mp->b_cont; 21787 freeb(first_mp); 21788 } 21789 return (mp); 21790 } 21791 /* 21792 * See whether we need to attach a global policy here. We 21793 * don't depend on the conn (as it could be null) for deciding 21794 * what policy this datagram should go through because it 21795 * should have happened in ip_wput if there was some 21796 * policy. This normally happens for connections which are not 21797 * fully bound preventing us from caching policies in 21798 * ip_bind. Packets coming from the TCP listener/global queue 21799 * - which are non-hard_bound - could also be affected by 21800 * applying policy here. 21801 * 21802 * If this packet is coming from tcp global queue or listener, 21803 * we will be applying policy here. This may not be *right* 21804 * if these packets are coming from the detached connection as 21805 * it could have gone in clear before. This happens only if a 21806 * TCP connection started when there is no policy and somebody 21807 * added policy before it became detached. Thus packets of the 21808 * detached connection could go out secure and the other end 21809 * would drop it because it will be expecting in clear. The 21810 * converse is not true i.e if somebody starts a TCP 21811 * connection and deletes the policy, all the packets will 21812 * still go out with the policy that existed before deleting 21813 * because ip_unbind sends up policy information which is used 21814 * by TCP on subsequent ip_wputs. The right solution is to fix 21815 * TCP to attach a dummy IPSEC_OUT and set 21816 * ipsec_out_use_global_policy to B_FALSE. As this might 21817 * affect performance for normal cases, we are not doing it. 21818 * Thus, set policy before starting any TCP connections. 21819 * 21820 * NOTE - We might apply policy even for a hard bound connection 21821 * - for which we cached policy in ip_bind - if somebody added 21822 * global policy after we inherited the policy in ip_bind. 21823 * This means that the packets that were going out in clear 21824 * previously would start going secure and hence get dropped 21825 * on the other side. To fix this, TCP attaches a dummy 21826 * ipsec_out and make sure that we don't apply global policy. 21827 */ 21828 if (ipha != NULL) 21829 policy_present = ipss->ipsec_outbound_v4_policy_present; 21830 else 21831 policy_present = ipss->ipsec_outbound_v6_policy_present; 21832 if (!policy_present) 21833 return (mp); 21834 21835 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21836 zoneid)); 21837 } 21838 21839 ire_t * 21840 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21841 { 21842 ipaddr_t addr; 21843 ire_t *save_ire; 21844 irb_t *irb; 21845 ill_group_t *illgrp; 21846 int err; 21847 21848 save_ire = ire; 21849 addr = ire->ire_addr; 21850 21851 ASSERT(ire->ire_type == IRE_BROADCAST); 21852 21853 illgrp = connp->conn_outgoing_ill->ill_group; 21854 if (illgrp == NULL) { 21855 *conn_outgoing_ill = conn_get_held_ill(connp, 21856 &connp->conn_outgoing_ill, &err); 21857 if (err == ILL_LOOKUP_FAILED) { 21858 ire_refrele(save_ire); 21859 return (NULL); 21860 } 21861 return (save_ire); 21862 } 21863 /* 21864 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21865 * If it is part of the group, we need to send on the ire 21866 * that has been cleared of IRE_MARK_NORECV and that belongs 21867 * to this group. This is okay as IP_BOUND_IF really means 21868 * any ill in the group. We depend on the fact that the 21869 * first ire in the group is always cleared of IRE_MARK_NORECV 21870 * if such an ire exists. This is possible only if you have 21871 * at least one ill in the group that has not failed. 21872 * 21873 * First get to the ire that matches the address and group. 21874 * 21875 * We don't look for an ire with a matching zoneid because a given zone 21876 * won't always have broadcast ires on all ills in the group. 21877 */ 21878 irb = ire->ire_bucket; 21879 rw_enter(&irb->irb_lock, RW_READER); 21880 if (ire->ire_marks & IRE_MARK_NORECV) { 21881 /* 21882 * If the current zone only has an ire broadcast for this 21883 * address marked NORECV, the ire we want is ahead in the 21884 * bucket, so we look it up deliberately ignoring the zoneid. 21885 */ 21886 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21887 if (ire->ire_addr != addr) 21888 continue; 21889 /* skip over deleted ires */ 21890 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21891 continue; 21892 } 21893 } 21894 while (ire != NULL) { 21895 /* 21896 * If a new interface is coming up, we could end up 21897 * seeing the loopback ire and the non-loopback ire 21898 * may not have been added yet. So check for ire_stq 21899 */ 21900 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21901 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21902 break; 21903 } 21904 ire = ire->ire_next; 21905 } 21906 if (ire != NULL && ire->ire_addr == addr && 21907 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21908 IRE_REFHOLD(ire); 21909 rw_exit(&irb->irb_lock); 21910 ire_refrele(save_ire); 21911 *conn_outgoing_ill = ire_to_ill(ire); 21912 /* 21913 * Refhold the ill to make the conn_outgoing_ill 21914 * independent of the ire. ip_wput_ire goes in a loop 21915 * and may refrele the ire. Since we have an ire at this 21916 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21917 */ 21918 ill_refhold(*conn_outgoing_ill); 21919 return (ire); 21920 } 21921 rw_exit(&irb->irb_lock); 21922 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21923 /* 21924 * If we can't find a suitable ire, return the original ire. 21925 */ 21926 return (save_ire); 21927 } 21928 21929 /* 21930 * This function does the ire_refrele of the ire passed in as the 21931 * argument. As this function looks up more ires i.e broadcast ires, 21932 * it needs to REFRELE them. Currently, for simplicity we don't 21933 * differentiate the one passed in and looked up here. We always 21934 * REFRELE. 21935 * IPQoS Notes: 21936 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21937 * IPsec packets are done in ipsec_out_process. 21938 * 21939 */ 21940 void 21941 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21942 zoneid_t zoneid) 21943 { 21944 ipha_t *ipha; 21945 #define rptr ((uchar_t *)ipha) 21946 queue_t *stq; 21947 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21948 uint32_t v_hlen_tos_len; 21949 uint32_t ttl_protocol; 21950 ipaddr_t src; 21951 ipaddr_t dst; 21952 uint32_t cksum; 21953 ipaddr_t orig_src; 21954 ire_t *ire1; 21955 mblk_t *next_mp; 21956 uint_t hlen; 21957 uint16_t *up; 21958 uint32_t max_frag = ire->ire_max_frag; 21959 ill_t *ill = ire_to_ill(ire); 21960 int clusterwide; 21961 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21962 int ipsec_len; 21963 mblk_t *first_mp; 21964 ipsec_out_t *io; 21965 boolean_t conn_dontroute; /* conn value for multicast */ 21966 boolean_t conn_multicast_loop; /* conn value for multicast */ 21967 boolean_t multicast_forward; /* Should we forward ? */ 21968 boolean_t unspec_src; 21969 ill_t *conn_outgoing_ill = NULL; 21970 ill_t *ire_ill; 21971 ill_t *ire1_ill; 21972 ill_t *out_ill; 21973 uint32_t ill_index = 0; 21974 boolean_t multirt_send = B_FALSE; 21975 int err; 21976 ipxmit_state_t pktxmit_state; 21977 ip_stack_t *ipst = ire->ire_ipst; 21978 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21979 21980 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21981 "ip_wput_ire_start: q %p", q); 21982 21983 multicast_forward = B_FALSE; 21984 unspec_src = (connp != NULL && connp->conn_unspec_src); 21985 21986 if (ire->ire_flags & RTF_MULTIRT) { 21987 /* 21988 * Multirouting case. The bucket where ire is stored 21989 * probably holds other RTF_MULTIRT flagged ire 21990 * to the destination. In this call to ip_wput_ire, 21991 * we attempt to send the packet through all 21992 * those ires. Thus, we first ensure that ire is the 21993 * first RTF_MULTIRT ire in the bucket, 21994 * before walking the ire list. 21995 */ 21996 ire_t *first_ire; 21997 irb_t *irb = ire->ire_bucket; 21998 ASSERT(irb != NULL); 21999 22000 /* Make sure we do not omit any multiroute ire. */ 22001 IRB_REFHOLD(irb); 22002 for (first_ire = irb->irb_ire; 22003 first_ire != NULL; 22004 first_ire = first_ire->ire_next) { 22005 if ((first_ire->ire_flags & RTF_MULTIRT) && 22006 (first_ire->ire_addr == ire->ire_addr) && 22007 !(first_ire->ire_marks & 22008 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22009 break; 22010 } 22011 } 22012 22013 if ((first_ire != NULL) && (first_ire != ire)) { 22014 IRE_REFHOLD(first_ire); 22015 ire_refrele(ire); 22016 ire = first_ire; 22017 ill = ire_to_ill(ire); 22018 } 22019 IRB_REFRELE(irb); 22020 } 22021 22022 /* 22023 * conn_outgoing_ill is used only in the broadcast loop. 22024 * for performance we don't grab the mutexs in the fastpath 22025 */ 22026 if ((connp != NULL) && 22027 (connp->conn_xmit_if_ill == NULL) && 22028 (ire->ire_type == IRE_BROADCAST) && 22029 ((connp->conn_nofailover_ill != NULL) || 22030 (connp->conn_outgoing_ill != NULL))) { 22031 /* 22032 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22033 * option. So, see if this endpoint is bound to a 22034 * IPIF_NOFAILOVER address. If so, honor it. This implies 22035 * that if the interface is failed, we will still send 22036 * the packet on the same ill which is what we want. 22037 */ 22038 conn_outgoing_ill = conn_get_held_ill(connp, 22039 &connp->conn_nofailover_ill, &err); 22040 if (err == ILL_LOOKUP_FAILED) { 22041 ire_refrele(ire); 22042 freemsg(mp); 22043 return; 22044 } 22045 if (conn_outgoing_ill == NULL) { 22046 /* 22047 * Choose a good ill in the group to send the 22048 * packets on. 22049 */ 22050 ire = conn_set_outgoing_ill(connp, ire, 22051 &conn_outgoing_ill); 22052 if (ire == NULL) { 22053 freemsg(mp); 22054 return; 22055 } 22056 } 22057 } 22058 22059 if (mp->b_datap->db_type != M_CTL) { 22060 ipha = (ipha_t *)mp->b_rptr; 22061 } else { 22062 io = (ipsec_out_t *)mp->b_rptr; 22063 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22064 ASSERT(zoneid == io->ipsec_out_zoneid); 22065 ASSERT(zoneid != ALL_ZONES); 22066 ipha = (ipha_t *)mp->b_cont->b_rptr; 22067 dst = ipha->ipha_dst; 22068 /* 22069 * For the multicast case, ipsec_out carries conn_dontroute and 22070 * conn_multicast_loop as conn may not be available here. We 22071 * need this for multicast loopback and forwarding which is done 22072 * later in the code. 22073 */ 22074 if (CLASSD(dst)) { 22075 conn_dontroute = io->ipsec_out_dontroute; 22076 conn_multicast_loop = io->ipsec_out_multicast_loop; 22077 /* 22078 * If conn_dontroute is not set or conn_multicast_loop 22079 * is set, we need to do forwarding/loopback. For 22080 * datagrams from ip_wput_multicast, conn_dontroute is 22081 * set to B_TRUE and conn_multicast_loop is set to 22082 * B_FALSE so that we neither do forwarding nor 22083 * loopback. 22084 */ 22085 if (!conn_dontroute || conn_multicast_loop) 22086 multicast_forward = B_TRUE; 22087 } 22088 } 22089 22090 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22091 ire->ire_zoneid != ALL_ZONES) { 22092 /* 22093 * When a zone sends a packet to another zone, we try to deliver 22094 * the packet under the same conditions as if the destination 22095 * was a real node on the network. To do so, we look for a 22096 * matching route in the forwarding table. 22097 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22098 * ip_newroute() does. 22099 * Note that IRE_LOCAL are special, since they are used 22100 * when the zoneid doesn't match in some cases. This means that 22101 * we need to handle ipha_src differently since ire_src_addr 22102 * belongs to the receiving zone instead of the sending zone. 22103 * When ip_restrict_interzone_loopback is set, then 22104 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22105 * for loopback between zones when the logical "Ethernet" would 22106 * have looped them back. 22107 */ 22108 ire_t *src_ire; 22109 22110 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22111 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22112 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22113 if (src_ire != NULL && 22114 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22115 (!ipst->ips_ip_restrict_interzone_loopback || 22116 ire_local_same_ill_group(ire, src_ire))) { 22117 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22118 ipha->ipha_src = src_ire->ire_src_addr; 22119 ire_refrele(src_ire); 22120 } else { 22121 ire_refrele(ire); 22122 if (conn_outgoing_ill != NULL) 22123 ill_refrele(conn_outgoing_ill); 22124 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22125 if (src_ire != NULL) { 22126 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22127 ire_refrele(src_ire); 22128 freemsg(mp); 22129 return; 22130 } 22131 ire_refrele(src_ire); 22132 } 22133 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22134 /* Failed */ 22135 freemsg(mp); 22136 return; 22137 } 22138 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22139 ipst); 22140 return; 22141 } 22142 } 22143 22144 if (mp->b_datap->db_type == M_CTL || 22145 ipss->ipsec_outbound_v4_policy_present) { 22146 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22147 unspec_src, zoneid); 22148 if (mp == NULL) { 22149 ire_refrele(ire); 22150 if (conn_outgoing_ill != NULL) 22151 ill_refrele(conn_outgoing_ill); 22152 return; 22153 } 22154 } 22155 22156 first_mp = mp; 22157 ipsec_len = 0; 22158 22159 if (first_mp->b_datap->db_type == M_CTL) { 22160 io = (ipsec_out_t *)first_mp->b_rptr; 22161 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22162 mp = first_mp->b_cont; 22163 ipsec_len = ipsec_out_extra_length(first_mp); 22164 ASSERT(ipsec_len >= 0); 22165 /* We already picked up the zoneid from the M_CTL above */ 22166 ASSERT(zoneid == io->ipsec_out_zoneid); 22167 ASSERT(zoneid != ALL_ZONES); 22168 22169 /* 22170 * Drop M_CTL here if IPsec processing is not needed. 22171 * (Non-IPsec use of M_CTL extracted any information it 22172 * needed above). 22173 */ 22174 if (ipsec_len == 0) { 22175 freeb(first_mp); 22176 first_mp = mp; 22177 } 22178 } 22179 22180 /* 22181 * Fast path for ip_wput_ire 22182 */ 22183 22184 ipha = (ipha_t *)mp->b_rptr; 22185 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22186 dst = ipha->ipha_dst; 22187 22188 /* 22189 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22190 * if the socket is a SOCK_RAW type. The transport checksum should 22191 * be provided in the pre-built packet, so we don't need to compute it. 22192 * Also, other application set flags, like DF, should not be altered. 22193 * Other transport MUST pass down zero. 22194 */ 22195 ip_hdr_included = ipha->ipha_ident; 22196 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22197 22198 if (CLASSD(dst)) { 22199 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22200 ntohl(dst), 22201 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22202 ntohl(ire->ire_addr))); 22203 } 22204 22205 /* Macros to extract header fields from data already in registers */ 22206 #ifdef _BIG_ENDIAN 22207 #define V_HLEN (v_hlen_tos_len >> 24) 22208 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22209 #define PROTO (ttl_protocol & 0xFF) 22210 #else 22211 #define V_HLEN (v_hlen_tos_len & 0xFF) 22212 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22213 #define PROTO (ttl_protocol >> 8) 22214 #endif 22215 22216 22217 orig_src = src = ipha->ipha_src; 22218 /* (The loop back to "another" is explained down below.) */ 22219 another:; 22220 /* 22221 * Assign an ident value for this packet. We assign idents on 22222 * a per destination basis out of the IRE. There could be 22223 * other threads targeting the same destination, so we have to 22224 * arrange for a atomic increment. Note that we use a 32-bit 22225 * atomic add because it has better performance than its 22226 * 16-bit sibling. 22227 * 22228 * If running in cluster mode and if the source address 22229 * belongs to a replicated service then vector through 22230 * cl_inet_ipident vector to allocate ip identifier 22231 * NOTE: This is a contract private interface with the 22232 * clustering group. 22233 */ 22234 clusterwide = 0; 22235 if (cl_inet_ipident) { 22236 ASSERT(cl_inet_isclusterwide); 22237 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22238 AF_INET, (uint8_t *)(uintptr_t)src)) { 22239 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22240 AF_INET, (uint8_t *)(uintptr_t)src, 22241 (uint8_t *)(uintptr_t)dst); 22242 clusterwide = 1; 22243 } 22244 } 22245 if (!clusterwide) { 22246 ipha->ipha_ident = 22247 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22248 } 22249 22250 #ifndef _BIG_ENDIAN 22251 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22252 #endif 22253 22254 /* 22255 * Set source address unless sent on an ill or conn_unspec_src is set. 22256 * This is needed to obey conn_unspec_src when packets go through 22257 * ip_newroute + arp. 22258 * Assumes ip_newroute{,_multi} sets the source address as well. 22259 */ 22260 if (src == INADDR_ANY && !unspec_src) { 22261 /* 22262 * Assign the appropriate source address from the IRE if none 22263 * was specified. 22264 */ 22265 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22266 22267 /* 22268 * With IP multipathing, broadcast packets are sent on the ire 22269 * that has been cleared of IRE_MARK_NORECV and that belongs to 22270 * the group. However, this ire might not be in the same zone so 22271 * we can't always use its source address. We look for a 22272 * broadcast ire in the same group and in the right zone. 22273 */ 22274 if (ire->ire_type == IRE_BROADCAST && 22275 ire->ire_zoneid != zoneid) { 22276 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22277 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22278 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22279 if (src_ire != NULL) { 22280 src = src_ire->ire_src_addr; 22281 ire_refrele(src_ire); 22282 } else { 22283 ire_refrele(ire); 22284 if (conn_outgoing_ill != NULL) 22285 ill_refrele(conn_outgoing_ill); 22286 freemsg(first_mp); 22287 if (ill != NULL) { 22288 BUMP_MIB(ill->ill_ip_mib, 22289 ipIfStatsOutDiscards); 22290 } else { 22291 BUMP_MIB(&ipst->ips_ip_mib, 22292 ipIfStatsOutDiscards); 22293 } 22294 return; 22295 } 22296 } else { 22297 src = ire->ire_src_addr; 22298 } 22299 22300 if (connp == NULL) { 22301 ip1dbg(("ip_wput_ire: no connp and no src " 22302 "address for dst 0x%x, using src 0x%x\n", 22303 ntohl(dst), 22304 ntohl(src))); 22305 } 22306 ipha->ipha_src = src; 22307 } 22308 stq = ire->ire_stq; 22309 22310 /* 22311 * We only allow ire chains for broadcasts since there will 22312 * be multiple IRE_CACHE entries for the same multicast 22313 * address (one per ipif). 22314 */ 22315 next_mp = NULL; 22316 22317 /* broadcast packet */ 22318 if (ire->ire_type == IRE_BROADCAST) 22319 goto broadcast; 22320 22321 /* loopback ? */ 22322 if (stq == NULL) 22323 goto nullstq; 22324 22325 /* The ill_index for outbound ILL */ 22326 ill_index = Q_TO_INDEX(stq); 22327 22328 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22329 ttl_protocol = ((uint16_t *)ipha)[4]; 22330 22331 /* pseudo checksum (do it in parts for IP header checksum) */ 22332 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22333 22334 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22335 queue_t *dev_q = stq->q_next; 22336 22337 /* flow controlled */ 22338 if ((dev_q->q_next || dev_q->q_first) && 22339 !canput(dev_q)) 22340 goto blocked; 22341 if ((PROTO == IPPROTO_UDP) && 22342 (ip_hdr_included != IP_HDR_INCLUDED)) { 22343 hlen = (V_HLEN & 0xF) << 2; 22344 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22345 if (*up != 0) { 22346 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22347 hlen, LENGTH, max_frag, ipsec_len, cksum); 22348 /* Software checksum? */ 22349 if (DB_CKSUMFLAGS(mp) == 0) { 22350 IP_STAT(ipst, ip_out_sw_cksum); 22351 IP_STAT_UPDATE(ipst, 22352 ip_udp_out_sw_cksum_bytes, 22353 LENGTH - hlen); 22354 } 22355 } 22356 } 22357 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22358 hlen = (V_HLEN & 0xF) << 2; 22359 if (PROTO == IPPROTO_TCP) { 22360 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22361 /* 22362 * The packet header is processed once and for all, even 22363 * in the multirouting case. We disable hardware 22364 * checksum if the packet is multirouted, as it will be 22365 * replicated via several interfaces, and not all of 22366 * them may have this capability. 22367 */ 22368 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22369 LENGTH, max_frag, ipsec_len, cksum); 22370 /* Software checksum? */ 22371 if (DB_CKSUMFLAGS(mp) == 0) { 22372 IP_STAT(ipst, ip_out_sw_cksum); 22373 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22374 LENGTH - hlen); 22375 } 22376 } else { 22377 sctp_hdr_t *sctph; 22378 22379 ASSERT(PROTO == IPPROTO_SCTP); 22380 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22381 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22382 /* 22383 * Zero out the checksum field to ensure proper 22384 * checksum calculation. 22385 */ 22386 sctph->sh_chksum = 0; 22387 #ifdef DEBUG 22388 if (!skip_sctp_cksum) 22389 #endif 22390 sctph->sh_chksum = sctp_cksum(mp, hlen); 22391 } 22392 } 22393 22394 /* 22395 * If this is a multicast packet and originated from ip_wput 22396 * we need to do loopback and forwarding checks. If it comes 22397 * from ip_wput_multicast, we SHOULD not do this. 22398 */ 22399 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22400 22401 /* checksum */ 22402 cksum += ttl_protocol; 22403 22404 /* fragment the packet */ 22405 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22406 goto fragmentit; 22407 /* 22408 * Don't use frag_flag if packet is pre-built or source 22409 * routed or if multicast (since multicast packets do 22410 * not solicit ICMP "packet too big" messages). 22411 */ 22412 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22413 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22414 !ip_source_route_included(ipha)) && 22415 !CLASSD(ipha->ipha_dst)) 22416 ipha->ipha_fragment_offset_and_flags |= 22417 htons(ire->ire_frag_flag); 22418 22419 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22420 /* calculate IP header checksum */ 22421 cksum += ipha->ipha_ident; 22422 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22423 cksum += ipha->ipha_fragment_offset_and_flags; 22424 22425 /* IP options present */ 22426 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22427 if (hlen) 22428 goto checksumoptions; 22429 22430 /* calculate hdr checksum */ 22431 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22432 cksum = ~(cksum + (cksum >> 16)); 22433 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22434 } 22435 if (ipsec_len != 0) { 22436 /* 22437 * We will do the rest of the processing after 22438 * we come back from IPsec in ip_wput_ipsec_out(). 22439 */ 22440 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22441 22442 io = (ipsec_out_t *)first_mp->b_rptr; 22443 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22444 ill_phyint->phyint_ifindex; 22445 22446 ipsec_out_process(q, first_mp, ire, ill_index); 22447 ire_refrele(ire); 22448 if (conn_outgoing_ill != NULL) 22449 ill_refrele(conn_outgoing_ill); 22450 return; 22451 } 22452 22453 /* 22454 * In most cases, the emission loop below is entered only 22455 * once. Only in the case where the ire holds the 22456 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22457 * flagged ires in the bucket, and send the packet 22458 * through all crossed RTF_MULTIRT routes. 22459 */ 22460 if (ire->ire_flags & RTF_MULTIRT) { 22461 multirt_send = B_TRUE; 22462 } 22463 do { 22464 if (multirt_send) { 22465 irb_t *irb; 22466 /* 22467 * We are in a multiple send case, need to get 22468 * the next ire and make a duplicate of the packet. 22469 * ire1 holds here the next ire to process in the 22470 * bucket. If multirouting is expected, 22471 * any non-RTF_MULTIRT ire that has the 22472 * right destination address is ignored. 22473 */ 22474 irb = ire->ire_bucket; 22475 ASSERT(irb != NULL); 22476 22477 IRB_REFHOLD(irb); 22478 for (ire1 = ire->ire_next; 22479 ire1 != NULL; 22480 ire1 = ire1->ire_next) { 22481 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22482 continue; 22483 if (ire1->ire_addr != ire->ire_addr) 22484 continue; 22485 if (ire1->ire_marks & 22486 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22487 continue; 22488 22489 /* Got one */ 22490 IRE_REFHOLD(ire1); 22491 break; 22492 } 22493 IRB_REFRELE(irb); 22494 22495 if (ire1 != NULL) { 22496 next_mp = copyb(mp); 22497 if ((next_mp == NULL) || 22498 ((mp->b_cont != NULL) && 22499 ((next_mp->b_cont = 22500 dupmsg(mp->b_cont)) == NULL))) { 22501 freemsg(next_mp); 22502 next_mp = NULL; 22503 ire_refrele(ire1); 22504 ire1 = NULL; 22505 } 22506 } 22507 22508 /* Last multiroute ire; don't loop anymore. */ 22509 if (ire1 == NULL) { 22510 multirt_send = B_FALSE; 22511 } 22512 } 22513 22514 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22515 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22516 mblk_t *, mp); 22517 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22518 ipst->ips_ipv4firewall_physical_out, 22519 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22520 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22521 if (mp == NULL) 22522 goto release_ire_and_ill; 22523 22524 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22525 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22526 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22527 if ((pktxmit_state == SEND_FAILED) || 22528 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22529 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22530 "- packet dropped\n")); 22531 release_ire_and_ill: 22532 ire_refrele(ire); 22533 if (next_mp != NULL) { 22534 freemsg(next_mp); 22535 ire_refrele(ire1); 22536 } 22537 if (conn_outgoing_ill != NULL) 22538 ill_refrele(conn_outgoing_ill); 22539 return; 22540 } 22541 22542 if (CLASSD(dst)) { 22543 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22544 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22545 LENGTH); 22546 } 22547 22548 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22549 "ip_wput_ire_end: q %p (%S)", 22550 q, "last copy out"); 22551 IRE_REFRELE(ire); 22552 22553 if (multirt_send) { 22554 ASSERT(ire1); 22555 /* 22556 * Proceed with the next RTF_MULTIRT ire, 22557 * Also set up the send-to queue accordingly. 22558 */ 22559 ire = ire1; 22560 ire1 = NULL; 22561 stq = ire->ire_stq; 22562 mp = next_mp; 22563 next_mp = NULL; 22564 ipha = (ipha_t *)mp->b_rptr; 22565 ill_index = Q_TO_INDEX(stq); 22566 ill = (ill_t *)stq->q_ptr; 22567 } 22568 } while (multirt_send); 22569 if (conn_outgoing_ill != NULL) 22570 ill_refrele(conn_outgoing_ill); 22571 return; 22572 22573 /* 22574 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22575 */ 22576 broadcast: 22577 { 22578 /* 22579 * Avoid broadcast storms by setting the ttl to 1 22580 * for broadcasts. This parameter can be set 22581 * via ndd, so make sure that for the SO_DONTROUTE 22582 * case that ipha_ttl is always set to 1. 22583 * In the event that we are replying to incoming 22584 * ICMP packets, conn could be NULL. 22585 */ 22586 if ((connp != NULL) && connp->conn_dontroute) 22587 ipha->ipha_ttl = 1; 22588 else 22589 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22590 22591 /* 22592 * Note that we are not doing a IRB_REFHOLD here. 22593 * Actually we don't care if the list changes i.e 22594 * if somebody deletes an IRE from the list while 22595 * we drop the lock, the next time we come around 22596 * ire_next will be NULL and hence we won't send 22597 * out multiple copies which is fine. 22598 */ 22599 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22600 ire1 = ire->ire_next; 22601 if (conn_outgoing_ill != NULL) { 22602 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22603 ASSERT(ire1 == ire->ire_next); 22604 if (ire1 != NULL && ire1->ire_addr == dst) { 22605 ire_refrele(ire); 22606 ire = ire1; 22607 IRE_REFHOLD(ire); 22608 ire1 = ire->ire_next; 22609 continue; 22610 } 22611 rw_exit(&ire->ire_bucket->irb_lock); 22612 /* Did not find a matching ill */ 22613 ip1dbg(("ip_wput_ire: broadcast with no " 22614 "matching IP_BOUND_IF ill %s\n", 22615 conn_outgoing_ill->ill_name)); 22616 freemsg(first_mp); 22617 if (ire != NULL) 22618 ire_refrele(ire); 22619 ill_refrele(conn_outgoing_ill); 22620 return; 22621 } 22622 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22623 /* 22624 * If the next IRE has the same address and is not one 22625 * of the two copies that we need to send, try to see 22626 * whether this copy should be sent at all. This 22627 * assumes that we insert loopbacks first and then 22628 * non-loopbacks. This is acheived by inserting the 22629 * loopback always before non-loopback. 22630 * This is used to send a single copy of a broadcast 22631 * packet out all physical interfaces that have an 22632 * matching IRE_BROADCAST while also looping 22633 * back one copy (to ip_wput_local) for each 22634 * matching physical interface. However, we avoid 22635 * sending packets out different logical that match by 22636 * having ipif_up/ipif_down supress duplicate 22637 * IRE_BROADCASTS. 22638 * 22639 * This feature is currently used to get broadcasts 22640 * sent to multiple interfaces, when the broadcast 22641 * address being used applies to multiple interfaces. 22642 * For example, a whole net broadcast will be 22643 * replicated on every connected subnet of 22644 * the target net. 22645 * 22646 * Each zone has its own set of IRE_BROADCASTs, so that 22647 * we're able to distribute inbound packets to multiple 22648 * zones who share a broadcast address. We avoid looping 22649 * back outbound packets in different zones but on the 22650 * same ill, as the application would see duplicates. 22651 * 22652 * If the interfaces are part of the same group, 22653 * we would want to send only one copy out for 22654 * whole group. 22655 * 22656 * This logic assumes that ire_add_v4() groups the 22657 * IRE_BROADCAST entries so that those with the same 22658 * ire_addr and ill_group are kept together. 22659 */ 22660 ire_ill = ire->ire_ipif->ipif_ill; 22661 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22662 if (ire_ill->ill_group != NULL && 22663 (ire->ire_marks & IRE_MARK_NORECV)) { 22664 /* 22665 * If the current zone only has an ire 22666 * broadcast for this address marked 22667 * NORECV, the ire we want is ahead in 22668 * the bucket, so we look it up 22669 * deliberately ignoring the zoneid. 22670 */ 22671 for (ire1 = ire->ire_bucket->irb_ire; 22672 ire1 != NULL; 22673 ire1 = ire1->ire_next) { 22674 ire1_ill = 22675 ire1->ire_ipif->ipif_ill; 22676 if (ire1->ire_addr != dst) 22677 continue; 22678 /* skip over the current ire */ 22679 if (ire1 == ire) 22680 continue; 22681 /* skip over deleted ires */ 22682 if (ire1->ire_marks & 22683 IRE_MARK_CONDEMNED) 22684 continue; 22685 /* 22686 * non-loopback ire in our 22687 * group: use it for the next 22688 * pass in the loop 22689 */ 22690 if (ire1->ire_stq != NULL && 22691 ire1_ill->ill_group == 22692 ire_ill->ill_group) 22693 break; 22694 } 22695 } 22696 } else { 22697 while (ire1 != NULL && ire1->ire_addr == dst) { 22698 ire1_ill = ire1->ire_ipif->ipif_ill; 22699 /* 22700 * We can have two broadcast ires on the 22701 * same ill in different zones; here 22702 * we'll send a copy of the packet on 22703 * each ill and the fanout code will 22704 * call conn_wantpacket() to check that 22705 * the zone has the broadcast address 22706 * configured on the ill. If the two 22707 * ires are in the same group we only 22708 * send one copy up. 22709 */ 22710 if (ire1_ill != ire_ill && 22711 (ire1_ill->ill_group == NULL || 22712 ire_ill->ill_group == NULL || 22713 ire1_ill->ill_group != 22714 ire_ill->ill_group)) { 22715 break; 22716 } 22717 ire1 = ire1->ire_next; 22718 } 22719 } 22720 } 22721 ASSERT(multirt_send == B_FALSE); 22722 if (ire1 != NULL && ire1->ire_addr == dst) { 22723 if ((ire->ire_flags & RTF_MULTIRT) && 22724 (ire1->ire_flags & RTF_MULTIRT)) { 22725 /* 22726 * We are in the multirouting case. 22727 * The message must be sent at least 22728 * on both ires. These ires have been 22729 * inserted AFTER the standard ones 22730 * in ip_rt_add(). There are thus no 22731 * other ire entries for the destination 22732 * address in the rest of the bucket 22733 * that do not have the RTF_MULTIRT 22734 * flag. We don't process a copy 22735 * of the message here. This will be 22736 * done in the final sending loop. 22737 */ 22738 multirt_send = B_TRUE; 22739 } else { 22740 next_mp = ip_copymsg(first_mp); 22741 if (next_mp != NULL) 22742 IRE_REFHOLD(ire1); 22743 } 22744 } 22745 rw_exit(&ire->ire_bucket->irb_lock); 22746 } 22747 22748 if (stq) { 22749 /* 22750 * A non-NULL send-to queue means this packet is going 22751 * out of this machine. 22752 */ 22753 out_ill = (ill_t *)stq->q_ptr; 22754 22755 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22756 ttl_protocol = ((uint16_t *)ipha)[4]; 22757 /* 22758 * We accumulate the pseudo header checksum in cksum. 22759 * This is pretty hairy code, so watch close. One 22760 * thing to keep in mind is that UDP and TCP have 22761 * stored their respective datagram lengths in their 22762 * checksum fields. This lines things up real nice. 22763 */ 22764 cksum = (dst >> 16) + (dst & 0xFFFF) + 22765 (src >> 16) + (src & 0xFFFF); 22766 /* 22767 * We assume the udp checksum field contains the 22768 * length, so to compute the pseudo header checksum, 22769 * all we need is the protocol number and src/dst. 22770 */ 22771 /* Provide the checksums for UDP and TCP. */ 22772 if ((PROTO == IPPROTO_TCP) && 22773 (ip_hdr_included != IP_HDR_INCLUDED)) { 22774 /* hlen gets the number of uchar_ts in the IP header */ 22775 hlen = (V_HLEN & 0xF) << 2; 22776 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22777 IP_STAT(ipst, ip_out_sw_cksum); 22778 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22779 LENGTH - hlen); 22780 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22781 } else if (PROTO == IPPROTO_SCTP && 22782 (ip_hdr_included != IP_HDR_INCLUDED)) { 22783 sctp_hdr_t *sctph; 22784 22785 hlen = (V_HLEN & 0xF) << 2; 22786 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22787 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22788 sctph->sh_chksum = 0; 22789 #ifdef DEBUG 22790 if (!skip_sctp_cksum) 22791 #endif 22792 sctph->sh_chksum = sctp_cksum(mp, hlen); 22793 } else { 22794 queue_t *dev_q = stq->q_next; 22795 22796 if ((dev_q->q_next || dev_q->q_first) && 22797 !canput(dev_q)) { 22798 blocked: 22799 ipha->ipha_ident = ip_hdr_included; 22800 /* 22801 * If we don't have a conn to apply 22802 * backpressure, free the message. 22803 * In the ire_send path, we don't know 22804 * the position to requeue the packet. Rather 22805 * than reorder packets, we just drop this 22806 * packet. 22807 */ 22808 if (ipst->ips_ip_output_queue && 22809 connp != NULL && 22810 caller != IRE_SEND) { 22811 if (caller == IP_WSRV) { 22812 connp->conn_did_putbq = 1; 22813 (void) putbq(connp->conn_wq, 22814 first_mp); 22815 conn_drain_insert(connp); 22816 /* 22817 * This is the service thread, 22818 * and the queue is already 22819 * noenabled. The check for 22820 * canput and the putbq is not 22821 * atomic. So we need to check 22822 * again. 22823 */ 22824 if (canput(stq->q_next)) 22825 connp->conn_did_putbq 22826 = 0; 22827 IP_STAT(ipst, ip_conn_flputbq); 22828 } else { 22829 /* 22830 * We are not the service proc. 22831 * ip_wsrv will be scheduled or 22832 * is already running. 22833 */ 22834 (void) putq(connp->conn_wq, 22835 first_mp); 22836 } 22837 } else { 22838 out_ill = (ill_t *)stq->q_ptr; 22839 BUMP_MIB(out_ill->ill_ip_mib, 22840 ipIfStatsOutDiscards); 22841 freemsg(first_mp); 22842 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22843 "ip_wput_ire_end: q %p (%S)", 22844 q, "discard"); 22845 } 22846 ire_refrele(ire); 22847 if (next_mp) { 22848 ire_refrele(ire1); 22849 freemsg(next_mp); 22850 } 22851 if (conn_outgoing_ill != NULL) 22852 ill_refrele(conn_outgoing_ill); 22853 return; 22854 } 22855 if ((PROTO == IPPROTO_UDP) && 22856 (ip_hdr_included != IP_HDR_INCLUDED)) { 22857 /* 22858 * hlen gets the number of uchar_ts in the 22859 * IP header 22860 */ 22861 hlen = (V_HLEN & 0xF) << 2; 22862 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22863 max_frag = ire->ire_max_frag; 22864 if (*up != 0) { 22865 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22866 up, PROTO, hlen, LENGTH, max_frag, 22867 ipsec_len, cksum); 22868 /* Software checksum? */ 22869 if (DB_CKSUMFLAGS(mp) == 0) { 22870 IP_STAT(ipst, ip_out_sw_cksum); 22871 IP_STAT_UPDATE(ipst, 22872 ip_udp_out_sw_cksum_bytes, 22873 LENGTH - hlen); 22874 } 22875 } 22876 } 22877 } 22878 /* 22879 * Need to do this even when fragmenting. The local 22880 * loopback can be done without computing checksums 22881 * but forwarding out other interface must be done 22882 * after the IP checksum (and ULP checksums) have been 22883 * computed. 22884 * 22885 * NOTE : multicast_forward is set only if this packet 22886 * originated from ip_wput. For packets originating from 22887 * ip_wput_multicast, it is not set. 22888 */ 22889 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22890 multi_loopback: 22891 ip2dbg(("ip_wput: multicast, loop %d\n", 22892 conn_multicast_loop)); 22893 22894 /* Forget header checksum offload */ 22895 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22896 22897 /* 22898 * Local loopback of multicasts? Check the 22899 * ill. 22900 * 22901 * Note that the loopback function will not come 22902 * in through ip_rput - it will only do the 22903 * client fanout thus we need to do an mforward 22904 * as well. The is different from the BSD 22905 * logic. 22906 */ 22907 if (ill != NULL) { 22908 ilm_t *ilm; 22909 22910 ILM_WALKER_HOLD(ill); 22911 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22912 ALL_ZONES); 22913 ILM_WALKER_RELE(ill); 22914 if (ilm != NULL) { 22915 /* 22916 * Pass along the virtual output q. 22917 * ip_wput_local() will distribute the 22918 * packet to all the matching zones, 22919 * except the sending zone when 22920 * IP_MULTICAST_LOOP is false. 22921 */ 22922 ip_multicast_loopback(q, ill, first_mp, 22923 conn_multicast_loop ? 0 : 22924 IP_FF_NO_MCAST_LOOP, zoneid); 22925 } 22926 } 22927 if (ipha->ipha_ttl == 0) { 22928 /* 22929 * 0 => only to this host i.e. we are 22930 * done. We are also done if this was the 22931 * loopback interface since it is sufficient 22932 * to loopback one copy of a multicast packet. 22933 */ 22934 freemsg(first_mp); 22935 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22936 "ip_wput_ire_end: q %p (%S)", 22937 q, "loopback"); 22938 ire_refrele(ire); 22939 if (conn_outgoing_ill != NULL) 22940 ill_refrele(conn_outgoing_ill); 22941 return; 22942 } 22943 /* 22944 * ILLF_MULTICAST is checked in ip_newroute 22945 * i.e. we don't need to check it here since 22946 * all IRE_CACHEs come from ip_newroute. 22947 * For multicast traffic, SO_DONTROUTE is interpreted 22948 * to mean only send the packet out the interface 22949 * (optionally specified with IP_MULTICAST_IF) 22950 * and do not forward it out additional interfaces. 22951 * RSVP and the rsvp daemon is an example of a 22952 * protocol and user level process that 22953 * handles it's own routing. Hence, it uses the 22954 * SO_DONTROUTE option to accomplish this. 22955 */ 22956 22957 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22958 ill != NULL) { 22959 /* Unconditionally redo the checksum */ 22960 ipha->ipha_hdr_checksum = 0; 22961 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22962 22963 /* 22964 * If this needs to go out secure, we need 22965 * to wait till we finish the IPsec 22966 * processing. 22967 */ 22968 if (ipsec_len == 0 && 22969 ip_mforward(ill, ipha, mp)) { 22970 freemsg(first_mp); 22971 ip1dbg(("ip_wput: mforward failed\n")); 22972 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22973 "ip_wput_ire_end: q %p (%S)", 22974 q, "mforward failed"); 22975 ire_refrele(ire); 22976 if (conn_outgoing_ill != NULL) 22977 ill_refrele(conn_outgoing_ill); 22978 return; 22979 } 22980 } 22981 } 22982 max_frag = ire->ire_max_frag; 22983 cksum += ttl_protocol; 22984 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22985 /* No fragmentation required for this one. */ 22986 /* 22987 * Don't use frag_flag if packet is pre-built or source 22988 * routed or if multicast (since multicast packets do 22989 * not solicit ICMP "packet too big" messages). 22990 */ 22991 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22992 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22993 !ip_source_route_included(ipha)) && 22994 !CLASSD(ipha->ipha_dst)) 22995 ipha->ipha_fragment_offset_and_flags |= 22996 htons(ire->ire_frag_flag); 22997 22998 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22999 /* Complete the IP header checksum. */ 23000 cksum += ipha->ipha_ident; 23001 cksum += (v_hlen_tos_len >> 16)+ 23002 (v_hlen_tos_len & 0xFFFF); 23003 cksum += ipha->ipha_fragment_offset_and_flags; 23004 hlen = (V_HLEN & 0xF) - 23005 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23006 if (hlen) { 23007 checksumoptions: 23008 /* 23009 * Account for the IP Options in the IP 23010 * header checksum. 23011 */ 23012 up = (uint16_t *)(rptr+ 23013 IP_SIMPLE_HDR_LENGTH); 23014 do { 23015 cksum += up[0]; 23016 cksum += up[1]; 23017 up += 2; 23018 } while (--hlen); 23019 } 23020 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23021 cksum = ~(cksum + (cksum >> 16)); 23022 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23023 } 23024 if (ipsec_len != 0) { 23025 ipsec_out_process(q, first_mp, ire, ill_index); 23026 if (!next_mp) { 23027 ire_refrele(ire); 23028 if (conn_outgoing_ill != NULL) 23029 ill_refrele(conn_outgoing_ill); 23030 return; 23031 } 23032 goto next; 23033 } 23034 23035 /* 23036 * multirt_send has already been handled 23037 * for broadcast, but not yet for multicast 23038 * or IP options. 23039 */ 23040 if (next_mp == NULL) { 23041 if (ire->ire_flags & RTF_MULTIRT) { 23042 multirt_send = B_TRUE; 23043 } 23044 } 23045 23046 /* 23047 * In most cases, the emission loop below is 23048 * entered only once. Only in the case where 23049 * the ire holds the RTF_MULTIRT flag, do we loop 23050 * to process all RTF_MULTIRT ires in the bucket, 23051 * and send the packet through all crossed 23052 * RTF_MULTIRT routes. 23053 */ 23054 do { 23055 if (multirt_send) { 23056 irb_t *irb; 23057 23058 irb = ire->ire_bucket; 23059 ASSERT(irb != NULL); 23060 /* 23061 * We are in a multiple send case, 23062 * need to get the next IRE and make 23063 * a duplicate of the packet. 23064 */ 23065 IRB_REFHOLD(irb); 23066 for (ire1 = ire->ire_next; 23067 ire1 != NULL; 23068 ire1 = ire1->ire_next) { 23069 if (!(ire1->ire_flags & 23070 RTF_MULTIRT)) { 23071 continue; 23072 } 23073 if (ire1->ire_addr != 23074 ire->ire_addr) { 23075 continue; 23076 } 23077 if (ire1->ire_marks & 23078 (IRE_MARK_CONDEMNED| 23079 IRE_MARK_HIDDEN)) { 23080 continue; 23081 } 23082 23083 /* Got one */ 23084 IRE_REFHOLD(ire1); 23085 break; 23086 } 23087 IRB_REFRELE(irb); 23088 23089 if (ire1 != NULL) { 23090 next_mp = copyb(mp); 23091 if ((next_mp == NULL) || 23092 ((mp->b_cont != NULL) && 23093 ((next_mp->b_cont = 23094 dupmsg(mp->b_cont)) 23095 == NULL))) { 23096 freemsg(next_mp); 23097 next_mp = NULL; 23098 ire_refrele(ire1); 23099 ire1 = NULL; 23100 } 23101 } 23102 23103 /* 23104 * Last multiroute ire; don't loop 23105 * anymore. The emission is over 23106 * and next_mp is NULL. 23107 */ 23108 if (ire1 == NULL) { 23109 multirt_send = B_FALSE; 23110 } 23111 } 23112 23113 out_ill = ire_to_ill(ire); 23114 DTRACE_PROBE4(ip4__physical__out__start, 23115 ill_t *, NULL, 23116 ill_t *, out_ill, 23117 ipha_t *, ipha, mblk_t *, mp); 23118 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23119 ipst->ips_ipv4firewall_physical_out, 23120 NULL, out_ill, ipha, mp, mp, ipst); 23121 DTRACE_PROBE1(ip4__physical__out__end, 23122 mblk_t *, mp); 23123 if (mp == NULL) 23124 goto release_ire_and_ill_2; 23125 23126 ASSERT(ipsec_len == 0); 23127 mp->b_prev = 23128 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23129 DTRACE_PROBE2(ip__xmit__2, 23130 mblk_t *, mp, ire_t *, ire); 23131 pktxmit_state = ip_xmit_v4(mp, ire, 23132 NULL, B_TRUE); 23133 if ((pktxmit_state == SEND_FAILED) || 23134 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23135 release_ire_and_ill_2: 23136 if (next_mp) { 23137 freemsg(next_mp); 23138 ire_refrele(ire1); 23139 } 23140 ire_refrele(ire); 23141 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23142 "ip_wput_ire_end: q %p (%S)", 23143 q, "discard MDATA"); 23144 if (conn_outgoing_ill != NULL) 23145 ill_refrele(conn_outgoing_ill); 23146 return; 23147 } 23148 23149 if (CLASSD(dst)) { 23150 BUMP_MIB(out_ill->ill_ip_mib, 23151 ipIfStatsHCOutMcastPkts); 23152 UPDATE_MIB(out_ill->ill_ip_mib, 23153 ipIfStatsHCOutMcastOctets, 23154 LENGTH); 23155 } else if (ire->ire_type == IRE_BROADCAST) { 23156 BUMP_MIB(out_ill->ill_ip_mib, 23157 ipIfStatsHCOutBcastPkts); 23158 } 23159 23160 if (multirt_send) { 23161 /* 23162 * We are in a multiple send case, 23163 * need to re-enter the sending loop 23164 * using the next ire. 23165 */ 23166 ire_refrele(ire); 23167 ire = ire1; 23168 stq = ire->ire_stq; 23169 mp = next_mp; 23170 next_mp = NULL; 23171 ipha = (ipha_t *)mp->b_rptr; 23172 ill_index = Q_TO_INDEX(stq); 23173 } 23174 } while (multirt_send); 23175 23176 if (!next_mp) { 23177 /* 23178 * Last copy going out (the ultra-common 23179 * case). Note that we intentionally replicate 23180 * the putnext rather than calling it before 23181 * the next_mp check in hopes of a little 23182 * tail-call action out of the compiler. 23183 */ 23184 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23185 "ip_wput_ire_end: q %p (%S)", 23186 q, "last copy out(1)"); 23187 ire_refrele(ire); 23188 if (conn_outgoing_ill != NULL) 23189 ill_refrele(conn_outgoing_ill); 23190 return; 23191 } 23192 /* More copies going out below. */ 23193 } else { 23194 int offset; 23195 fragmentit: 23196 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23197 /* 23198 * If this would generate a icmp_frag_needed message, 23199 * we need to handle it before we do the IPsec 23200 * processing. Otherwise, we need to strip the IPsec 23201 * headers before we send up the message to the ULPs 23202 * which becomes messy and difficult. 23203 */ 23204 if (ipsec_len != 0) { 23205 if ((max_frag < (unsigned int)(LENGTH + 23206 ipsec_len)) && (offset & IPH_DF)) { 23207 out_ill = (ill_t *)stq->q_ptr; 23208 BUMP_MIB(out_ill->ill_ip_mib, 23209 ipIfStatsOutFragFails); 23210 BUMP_MIB(out_ill->ill_ip_mib, 23211 ipIfStatsOutFragReqds); 23212 ipha->ipha_hdr_checksum = 0; 23213 ipha->ipha_hdr_checksum = 23214 (uint16_t)ip_csum_hdr(ipha); 23215 icmp_frag_needed(ire->ire_stq, first_mp, 23216 max_frag, zoneid, ipst); 23217 if (!next_mp) { 23218 ire_refrele(ire); 23219 if (conn_outgoing_ill != NULL) { 23220 ill_refrele( 23221 conn_outgoing_ill); 23222 } 23223 return; 23224 } 23225 } else { 23226 /* 23227 * This won't cause a icmp_frag_needed 23228 * message. to be generated. Send it on 23229 * the wire. Note that this could still 23230 * cause fragmentation and all we 23231 * do is the generation of the message 23232 * to the ULP if needed before IPsec. 23233 */ 23234 if (!next_mp) { 23235 ipsec_out_process(q, first_mp, 23236 ire, ill_index); 23237 TRACE_2(TR_FAC_IP, 23238 TR_IP_WPUT_IRE_END, 23239 "ip_wput_ire_end: q %p " 23240 "(%S)", q, 23241 "last ipsec_out_process"); 23242 ire_refrele(ire); 23243 if (conn_outgoing_ill != NULL) { 23244 ill_refrele( 23245 conn_outgoing_ill); 23246 } 23247 return; 23248 } 23249 ipsec_out_process(q, first_mp, 23250 ire, ill_index); 23251 } 23252 } else { 23253 /* 23254 * Initiate IPPF processing. For 23255 * fragmentable packets we finish 23256 * all QOS packet processing before 23257 * calling: 23258 * ip_wput_ire_fragmentit->ip_wput_frag 23259 */ 23260 23261 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23262 ip_process(IPP_LOCAL_OUT, &mp, 23263 ill_index); 23264 if (mp == NULL) { 23265 out_ill = (ill_t *)stq->q_ptr; 23266 BUMP_MIB(out_ill->ill_ip_mib, 23267 ipIfStatsOutDiscards); 23268 if (next_mp != NULL) { 23269 freemsg(next_mp); 23270 ire_refrele(ire1); 23271 } 23272 ire_refrele(ire); 23273 TRACE_2(TR_FAC_IP, 23274 TR_IP_WPUT_IRE_END, 23275 "ip_wput_ire: q %p (%S)", 23276 q, "discard MDATA"); 23277 if (conn_outgoing_ill != NULL) { 23278 ill_refrele( 23279 conn_outgoing_ill); 23280 } 23281 return; 23282 } 23283 } 23284 if (!next_mp) { 23285 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23286 "ip_wput_ire_end: q %p (%S)", 23287 q, "last fragmentation"); 23288 ip_wput_ire_fragmentit(mp, ire, 23289 zoneid, ipst); 23290 ire_refrele(ire); 23291 if (conn_outgoing_ill != NULL) 23292 ill_refrele(conn_outgoing_ill); 23293 return; 23294 } 23295 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23296 } 23297 } 23298 } else { 23299 nullstq: 23300 /* A NULL stq means the destination address is local. */ 23301 UPDATE_OB_PKT_COUNT(ire); 23302 ire->ire_last_used_time = lbolt; 23303 ASSERT(ire->ire_ipif != NULL); 23304 if (!next_mp) { 23305 /* 23306 * Is there an "in" and "out" for traffic local 23307 * to a host (loopback)? The code in Solaris doesn't 23308 * explicitly draw a line in its code for in vs out, 23309 * so we've had to draw a line in the sand: ip_wput_ire 23310 * is considered to be the "output" side and 23311 * ip_wput_local to be the "input" side. 23312 */ 23313 out_ill = ire_to_ill(ire); 23314 23315 DTRACE_PROBE4(ip4__loopback__out__start, 23316 ill_t *, NULL, ill_t *, out_ill, 23317 ipha_t *, ipha, mblk_t *, first_mp); 23318 23319 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23320 ipst->ips_ipv4firewall_loopback_out, 23321 NULL, out_ill, ipha, first_mp, mp, ipst); 23322 23323 DTRACE_PROBE1(ip4__loopback__out_end, 23324 mblk_t *, first_mp); 23325 23326 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23327 "ip_wput_ire_end: q %p (%S)", 23328 q, "local address"); 23329 23330 if (first_mp != NULL) 23331 ip_wput_local(q, out_ill, ipha, 23332 first_mp, ire, 0, ire->ire_zoneid); 23333 ire_refrele(ire); 23334 if (conn_outgoing_ill != NULL) 23335 ill_refrele(conn_outgoing_ill); 23336 return; 23337 } 23338 23339 out_ill = ire_to_ill(ire); 23340 23341 DTRACE_PROBE4(ip4__loopback__out__start, 23342 ill_t *, NULL, ill_t *, out_ill, 23343 ipha_t *, ipha, mblk_t *, first_mp); 23344 23345 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23346 ipst->ips_ipv4firewall_loopback_out, 23347 NULL, out_ill, ipha, first_mp, mp, ipst); 23348 23349 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23350 23351 if (first_mp != NULL) 23352 ip_wput_local(q, out_ill, ipha, 23353 first_mp, ire, 0, ire->ire_zoneid); 23354 } 23355 next: 23356 /* 23357 * More copies going out to additional interfaces. 23358 * ire1 has already been held. We don't need the 23359 * "ire" anymore. 23360 */ 23361 ire_refrele(ire); 23362 ire = ire1; 23363 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23364 mp = next_mp; 23365 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23366 ill = ire_to_ill(ire); 23367 first_mp = mp; 23368 if (ipsec_len != 0) { 23369 ASSERT(first_mp->b_datap->db_type == M_CTL); 23370 mp = mp->b_cont; 23371 } 23372 dst = ire->ire_addr; 23373 ipha = (ipha_t *)mp->b_rptr; 23374 /* 23375 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23376 * Restore ipha_ident "no checksum" flag. 23377 */ 23378 src = orig_src; 23379 ipha->ipha_ident = ip_hdr_included; 23380 goto another; 23381 23382 #undef rptr 23383 #undef Q_TO_INDEX 23384 } 23385 23386 /* 23387 * Routine to allocate a message that is used to notify the ULP about MDT. 23388 * The caller may provide a pointer to the link-layer MDT capabilities, 23389 * or NULL if MDT is to be disabled on the stream. 23390 */ 23391 mblk_t * 23392 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23393 { 23394 mblk_t *mp; 23395 ip_mdt_info_t *mdti; 23396 ill_mdt_capab_t *idst; 23397 23398 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23399 DB_TYPE(mp) = M_CTL; 23400 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23401 mdti = (ip_mdt_info_t *)mp->b_rptr; 23402 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23403 idst = &(mdti->mdt_capab); 23404 23405 /* 23406 * If the caller provides us with the capability, copy 23407 * it over into our notification message; otherwise 23408 * we zero out the capability portion. 23409 */ 23410 if (isrc != NULL) 23411 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23412 else 23413 bzero((caddr_t)idst, sizeof (*idst)); 23414 } 23415 return (mp); 23416 } 23417 23418 /* 23419 * Routine which determines whether MDT can be enabled on the destination 23420 * IRE and IPC combination, and if so, allocates and returns the MDT 23421 * notification mblk that may be used by ULP. We also check if we need to 23422 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23423 * MDT usage in the past have been lifted. This gets called during IP 23424 * and ULP binding. 23425 */ 23426 mblk_t * 23427 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23428 ill_mdt_capab_t *mdt_cap) 23429 { 23430 mblk_t *mp; 23431 boolean_t rc = B_FALSE; 23432 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23433 23434 ASSERT(dst_ire != NULL); 23435 ASSERT(connp != NULL); 23436 ASSERT(mdt_cap != NULL); 23437 23438 /* 23439 * Currently, we only support simple TCP/{IPv4,IPv6} with 23440 * Multidata, which is handled in tcp_multisend(). This 23441 * is the reason why we do all these checks here, to ensure 23442 * that we don't enable Multidata for the cases which we 23443 * can't handle at the moment. 23444 */ 23445 do { 23446 /* Only do TCP at the moment */ 23447 if (connp->conn_ulp != IPPROTO_TCP) 23448 break; 23449 23450 /* 23451 * IPsec outbound policy present? Note that we get here 23452 * after calling ipsec_conn_cache_policy() where the global 23453 * policy checking is performed. conn_latch will be 23454 * non-NULL as long as there's a policy defined, 23455 * i.e. conn_out_enforce_policy may be NULL in such case 23456 * when the connection is non-secure, and hence we check 23457 * further if the latch refers to an outbound policy. 23458 */ 23459 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23460 break; 23461 23462 /* CGTP (multiroute) is enabled? */ 23463 if (dst_ire->ire_flags & RTF_MULTIRT) 23464 break; 23465 23466 /* Outbound IPQoS enabled? */ 23467 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23468 /* 23469 * In this case, we disable MDT for this and all 23470 * future connections going over the interface. 23471 */ 23472 mdt_cap->ill_mdt_on = 0; 23473 break; 23474 } 23475 23476 /* socket option(s) present? */ 23477 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23478 break; 23479 23480 rc = B_TRUE; 23481 /* CONSTCOND */ 23482 } while (0); 23483 23484 /* Remember the result */ 23485 connp->conn_mdt_ok = rc; 23486 23487 if (!rc) 23488 return (NULL); 23489 else if (!mdt_cap->ill_mdt_on) { 23490 /* 23491 * If MDT has been previously turned off in the past, and we 23492 * currently can do MDT (due to IPQoS policy removal, etc.) 23493 * then enable it for this interface. 23494 */ 23495 mdt_cap->ill_mdt_on = 1; 23496 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23497 "interface %s\n", ill_name)); 23498 } 23499 23500 /* Allocate the MDT info mblk */ 23501 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23502 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23503 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23504 return (NULL); 23505 } 23506 return (mp); 23507 } 23508 23509 /* 23510 * Routine to allocate a message that is used to notify the ULP about LSO. 23511 * The caller may provide a pointer to the link-layer LSO capabilities, 23512 * or NULL if LSO is to be disabled on the stream. 23513 */ 23514 mblk_t * 23515 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23516 { 23517 mblk_t *mp; 23518 ip_lso_info_t *lsoi; 23519 ill_lso_capab_t *idst; 23520 23521 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23522 DB_TYPE(mp) = M_CTL; 23523 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23524 lsoi = (ip_lso_info_t *)mp->b_rptr; 23525 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23526 idst = &(lsoi->lso_capab); 23527 23528 /* 23529 * If the caller provides us with the capability, copy 23530 * it over into our notification message; otherwise 23531 * we zero out the capability portion. 23532 */ 23533 if (isrc != NULL) 23534 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23535 else 23536 bzero((caddr_t)idst, sizeof (*idst)); 23537 } 23538 return (mp); 23539 } 23540 23541 /* 23542 * Routine which determines whether LSO can be enabled on the destination 23543 * IRE and IPC combination, and if so, allocates and returns the LSO 23544 * notification mblk that may be used by ULP. We also check if we need to 23545 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23546 * LSO usage in the past have been lifted. This gets called during IP 23547 * and ULP binding. 23548 */ 23549 mblk_t * 23550 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23551 ill_lso_capab_t *lso_cap) 23552 { 23553 mblk_t *mp; 23554 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23555 23556 ASSERT(dst_ire != NULL); 23557 ASSERT(connp != NULL); 23558 ASSERT(lso_cap != NULL); 23559 23560 connp->conn_lso_ok = B_TRUE; 23561 23562 if ((connp->conn_ulp != IPPROTO_TCP) || 23563 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23564 (dst_ire->ire_flags & RTF_MULTIRT) || 23565 !CONN_IS_LSO_MD_FASTPATH(connp) || 23566 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23567 connp->conn_lso_ok = B_FALSE; 23568 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23569 /* 23570 * Disable LSO for this and all future connections going 23571 * over the interface. 23572 */ 23573 lso_cap->ill_lso_on = 0; 23574 } 23575 } 23576 23577 if (!connp->conn_lso_ok) 23578 return (NULL); 23579 else if (!lso_cap->ill_lso_on) { 23580 /* 23581 * If LSO has been previously turned off in the past, and we 23582 * currently can do LSO (due to IPQoS policy removal, etc.) 23583 * then enable it for this interface. 23584 */ 23585 lso_cap->ill_lso_on = 1; 23586 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23587 ill_name)); 23588 } 23589 23590 /* Allocate the LSO info mblk */ 23591 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23592 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23593 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23594 23595 return (mp); 23596 } 23597 23598 /* 23599 * Create destination address attribute, and fill it with the physical 23600 * destination address and SAP taken from the template DL_UNITDATA_REQ 23601 * message block. 23602 */ 23603 boolean_t 23604 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23605 { 23606 dl_unitdata_req_t *dlurp; 23607 pattr_t *pa; 23608 pattrinfo_t pa_info; 23609 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23610 uint_t das_len, das_off; 23611 23612 ASSERT(dlmp != NULL); 23613 23614 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23615 das_len = dlurp->dl_dest_addr_length; 23616 das_off = dlurp->dl_dest_addr_offset; 23617 23618 pa_info.type = PATTR_DSTADDRSAP; 23619 pa_info.len = sizeof (**das) + das_len - 1; 23620 23621 /* create and associate the attribute */ 23622 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23623 if (pa != NULL) { 23624 ASSERT(*das != NULL); 23625 (*das)->addr_is_group = 0; 23626 (*das)->addr_len = (uint8_t)das_len; 23627 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23628 } 23629 23630 return (pa != NULL); 23631 } 23632 23633 /* 23634 * Create hardware checksum attribute and fill it with the values passed. 23635 */ 23636 boolean_t 23637 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23638 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23639 { 23640 pattr_t *pa; 23641 pattrinfo_t pa_info; 23642 23643 ASSERT(mmd != NULL); 23644 23645 pa_info.type = PATTR_HCKSUM; 23646 pa_info.len = sizeof (pattr_hcksum_t); 23647 23648 /* create and associate the attribute */ 23649 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23650 if (pa != NULL) { 23651 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23652 23653 hck->hcksum_start_offset = start_offset; 23654 hck->hcksum_stuff_offset = stuff_offset; 23655 hck->hcksum_end_offset = end_offset; 23656 hck->hcksum_flags = flags; 23657 } 23658 return (pa != NULL); 23659 } 23660 23661 /* 23662 * Create zerocopy attribute and fill it with the specified flags 23663 */ 23664 boolean_t 23665 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23666 { 23667 pattr_t *pa; 23668 pattrinfo_t pa_info; 23669 23670 ASSERT(mmd != NULL); 23671 pa_info.type = PATTR_ZCOPY; 23672 pa_info.len = sizeof (pattr_zcopy_t); 23673 23674 /* create and associate the attribute */ 23675 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23676 if (pa != NULL) { 23677 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23678 23679 zcopy->zcopy_flags = flags; 23680 } 23681 return (pa != NULL); 23682 } 23683 23684 /* 23685 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23686 * block chain. We could rewrite to handle arbitrary message block chains but 23687 * that would make the code complicated and slow. Right now there three 23688 * restrictions: 23689 * 23690 * 1. The first message block must contain the complete IP header and 23691 * at least 1 byte of payload data. 23692 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23693 * so that we can use a single Multidata message. 23694 * 3. No frag must be distributed over two or more message blocks so 23695 * that we don't need more than two packet descriptors per frag. 23696 * 23697 * The above restrictions allow us to support userland applications (which 23698 * will send down a single message block) and NFS over UDP (which will 23699 * send down a chain of at most three message blocks). 23700 * 23701 * We also don't use MDT for payloads with less than or equal to 23702 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23703 */ 23704 boolean_t 23705 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23706 { 23707 int blocks; 23708 ssize_t total, missing, size; 23709 23710 ASSERT(mp != NULL); 23711 ASSERT(hdr_len > 0); 23712 23713 size = MBLKL(mp) - hdr_len; 23714 if (size <= 0) 23715 return (B_FALSE); 23716 23717 /* The first mblk contains the header and some payload. */ 23718 blocks = 1; 23719 total = size; 23720 size %= len; 23721 missing = (size == 0) ? 0 : (len - size); 23722 mp = mp->b_cont; 23723 23724 while (mp != NULL) { 23725 /* 23726 * Give up if we encounter a zero length message block. 23727 * In practice, this should rarely happen and therefore 23728 * not worth the trouble of freeing and re-linking the 23729 * mblk from the chain to handle such case. 23730 */ 23731 if ((size = MBLKL(mp)) == 0) 23732 return (B_FALSE); 23733 23734 /* Too many payload buffers for a single Multidata message? */ 23735 if (++blocks > MULTIDATA_MAX_PBUFS) 23736 return (B_FALSE); 23737 23738 total += size; 23739 /* Is a frag distributed over two or more message blocks? */ 23740 if (missing > size) 23741 return (B_FALSE); 23742 size -= missing; 23743 23744 size %= len; 23745 missing = (size == 0) ? 0 : (len - size); 23746 23747 mp = mp->b_cont; 23748 } 23749 23750 return (total > ip_wput_frag_mdt_min); 23751 } 23752 23753 /* 23754 * Outbound IPv4 fragmentation routine using MDT. 23755 */ 23756 static void 23757 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23758 uint32_t frag_flag, int offset) 23759 { 23760 ipha_t *ipha_orig; 23761 int i1, ip_data_end; 23762 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23763 mblk_t *hdr_mp, *md_mp = NULL; 23764 unsigned char *hdr_ptr, *pld_ptr; 23765 multidata_t *mmd; 23766 ip_pdescinfo_t pdi; 23767 ill_t *ill; 23768 ip_stack_t *ipst = ire->ire_ipst; 23769 23770 ASSERT(DB_TYPE(mp) == M_DATA); 23771 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23772 23773 ill = ire_to_ill(ire); 23774 ASSERT(ill != NULL); 23775 23776 ipha_orig = (ipha_t *)mp->b_rptr; 23777 mp->b_rptr += sizeof (ipha_t); 23778 23779 /* Calculate how many packets we will send out */ 23780 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23781 pkts = (i1 + len - 1) / len; 23782 ASSERT(pkts > 1); 23783 23784 /* Allocate a message block which will hold all the IP Headers. */ 23785 wroff = ipst->ips_ip_wroff_extra; 23786 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23787 23788 i1 = pkts * hdr_chunk_len; 23789 /* 23790 * Create the header buffer, Multidata and destination address 23791 * and SAP attribute that should be associated with it. 23792 */ 23793 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23794 ((hdr_mp->b_wptr += i1), 23795 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23796 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23797 freemsg(mp); 23798 if (md_mp == NULL) { 23799 freemsg(hdr_mp); 23800 } else { 23801 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23802 freemsg(md_mp); 23803 } 23804 IP_STAT(ipst, ip_frag_mdt_allocfail); 23805 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23806 return; 23807 } 23808 IP_STAT(ipst, ip_frag_mdt_allocd); 23809 23810 /* 23811 * Add a payload buffer to the Multidata; this operation must not 23812 * fail, or otherwise our logic in this routine is broken. There 23813 * is no memory allocation done by the routine, so any returned 23814 * failure simply tells us that we've done something wrong. 23815 * 23816 * A failure tells us that either we're adding the same payload 23817 * buffer more than once, or we're trying to add more buffers than 23818 * allowed. None of the above cases should happen, and we panic 23819 * because either there's horrible heap corruption, and/or 23820 * programming mistake. 23821 */ 23822 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23823 goto pbuf_panic; 23824 23825 hdr_ptr = hdr_mp->b_rptr; 23826 pld_ptr = mp->b_rptr; 23827 23828 /* Establish the ending byte offset, based on the starting offset. */ 23829 offset <<= 3; 23830 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23831 IP_SIMPLE_HDR_LENGTH; 23832 23833 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23834 23835 while (pld_ptr < mp->b_wptr) { 23836 ipha_t *ipha; 23837 uint16_t offset_and_flags; 23838 uint16_t ip_len; 23839 int error; 23840 23841 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23842 ipha = (ipha_t *)(hdr_ptr + wroff); 23843 ASSERT(OK_32PTR(ipha)); 23844 *ipha = *ipha_orig; 23845 23846 if (ip_data_end - offset > len) { 23847 offset_and_flags = IPH_MF; 23848 } else { 23849 /* 23850 * Last frag. Set len to the length of this last piece. 23851 */ 23852 len = ip_data_end - offset; 23853 /* A frag of a frag might have IPH_MF non-zero */ 23854 offset_and_flags = 23855 ntohs(ipha->ipha_fragment_offset_and_flags) & 23856 IPH_MF; 23857 } 23858 offset_and_flags |= (uint16_t)(offset >> 3); 23859 offset_and_flags |= (uint16_t)frag_flag; 23860 /* Store the offset and flags in the IP header. */ 23861 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23862 23863 /* Store the length in the IP header. */ 23864 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23865 ipha->ipha_length = htons(ip_len); 23866 23867 /* 23868 * Set the IP header checksum. Note that mp is just 23869 * the header, so this is easy to pass to ip_csum. 23870 */ 23871 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23872 23873 /* 23874 * Record offset and size of header and data of the next packet 23875 * in the multidata message. 23876 */ 23877 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23878 PDESC_PLD_INIT(&pdi); 23879 i1 = MIN(mp->b_wptr - pld_ptr, len); 23880 ASSERT(i1 > 0); 23881 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23882 if (i1 == len) { 23883 pld_ptr += len; 23884 } else { 23885 i1 = len - i1; 23886 mp = mp->b_cont; 23887 ASSERT(mp != NULL); 23888 ASSERT(MBLKL(mp) >= i1); 23889 /* 23890 * Attach the next payload message block to the 23891 * multidata message. 23892 */ 23893 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23894 goto pbuf_panic; 23895 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23896 pld_ptr = mp->b_rptr + i1; 23897 } 23898 23899 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23900 KM_NOSLEEP)) == NULL) { 23901 /* 23902 * Any failure other than ENOMEM indicates that we 23903 * have passed in invalid pdesc info or parameters 23904 * to mmd_addpdesc, which must not happen. 23905 * 23906 * EINVAL is a result of failure on boundary checks 23907 * against the pdesc info contents. It should not 23908 * happen, and we panic because either there's 23909 * horrible heap corruption, and/or programming 23910 * mistake. 23911 */ 23912 if (error != ENOMEM) { 23913 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23914 "pdesc logic error detected for " 23915 "mmd %p pinfo %p (%d)\n", 23916 (void *)mmd, (void *)&pdi, error); 23917 /* NOTREACHED */ 23918 } 23919 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23920 /* Free unattached payload message blocks as well */ 23921 md_mp->b_cont = mp->b_cont; 23922 goto free_mmd; 23923 } 23924 23925 /* Advance fragment offset. */ 23926 offset += len; 23927 23928 /* Advance to location for next header in the buffer. */ 23929 hdr_ptr += hdr_chunk_len; 23930 23931 /* Did we reach the next payload message block? */ 23932 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23933 mp = mp->b_cont; 23934 /* 23935 * Attach the next message block with payload 23936 * data to the multidata message. 23937 */ 23938 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23939 goto pbuf_panic; 23940 pld_ptr = mp->b_rptr; 23941 } 23942 } 23943 23944 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23945 ASSERT(mp->b_wptr == pld_ptr); 23946 23947 /* Update IP statistics */ 23948 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23949 23950 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23951 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23952 23953 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23954 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23955 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23956 23957 if (pkt_type == OB_PKT) { 23958 ire->ire_ob_pkt_count += pkts; 23959 if (ire->ire_ipif != NULL) 23960 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23961 } else { 23962 /* The type is IB_PKT in the forwarding path. */ 23963 ire->ire_ib_pkt_count += pkts; 23964 ASSERT(!IRE_IS_LOCAL(ire)); 23965 if (ire->ire_type & IRE_BROADCAST) { 23966 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23967 } else { 23968 UPDATE_MIB(ill->ill_ip_mib, 23969 ipIfStatsHCOutForwDatagrams, pkts); 23970 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23971 } 23972 } 23973 ire->ire_last_used_time = lbolt; 23974 /* Send it down */ 23975 putnext(ire->ire_stq, md_mp); 23976 return; 23977 23978 pbuf_panic: 23979 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23980 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23981 pbuf_idx); 23982 /* NOTREACHED */ 23983 } 23984 23985 /* 23986 * Outbound IP fragmentation routine. 23987 * 23988 * NOTE : This routine does not ire_refrele the ire that is passed in 23989 * as the argument. 23990 */ 23991 static void 23992 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23993 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 23994 { 23995 int i1; 23996 mblk_t *ll_hdr_mp; 23997 int ll_hdr_len; 23998 int hdr_len; 23999 mblk_t *hdr_mp; 24000 ipha_t *ipha; 24001 int ip_data_end; 24002 int len; 24003 mblk_t *mp = mp_orig, *mp1; 24004 int offset; 24005 queue_t *q; 24006 uint32_t v_hlen_tos_len; 24007 mblk_t *first_mp; 24008 boolean_t mctl_present; 24009 ill_t *ill; 24010 ill_t *out_ill; 24011 mblk_t *xmit_mp; 24012 mblk_t *carve_mp; 24013 ire_t *ire1 = NULL; 24014 ire_t *save_ire = NULL; 24015 mblk_t *next_mp = NULL; 24016 boolean_t last_frag = B_FALSE; 24017 boolean_t multirt_send = B_FALSE; 24018 ire_t *first_ire = NULL; 24019 irb_t *irb = NULL; 24020 mib2_ipIfStatsEntry_t *mibptr = NULL; 24021 24022 ill = ire_to_ill(ire); 24023 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24024 24025 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24026 24027 if (max_frag == 0) { 24028 ip1dbg(("ip_wput_frag: ire frag size is 0" 24029 " - dropping packet\n")); 24030 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24031 freemsg(mp); 24032 return; 24033 } 24034 24035 /* 24036 * IPsec does not allow hw accelerated packets to be fragmented 24037 * This check is made in ip_wput_ipsec_out prior to coming here 24038 * via ip_wput_ire_fragmentit. 24039 * 24040 * If at this point we have an ire whose ARP request has not 24041 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24042 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24043 * This packet and all fragmentable packets for this ire will 24044 * continue to get dropped while ire_nce->nce_state remains in 24045 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24046 * ND_REACHABLE, all subsquent large packets for this ire will 24047 * get fragemented and sent out by this function. 24048 */ 24049 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24050 /* If nce_state is ND_INITIAL, trigger ARP query */ 24051 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24052 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24053 " - dropping packet\n")); 24054 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24055 freemsg(mp); 24056 return; 24057 } 24058 24059 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24060 "ip_wput_frag_start:"); 24061 24062 if (mp->b_datap->db_type == M_CTL) { 24063 first_mp = mp; 24064 mp_orig = mp = mp->b_cont; 24065 mctl_present = B_TRUE; 24066 } else { 24067 first_mp = mp; 24068 mctl_present = B_FALSE; 24069 } 24070 24071 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24072 ipha = (ipha_t *)mp->b_rptr; 24073 24074 /* 24075 * If the Don't Fragment flag is on, generate an ICMP destination 24076 * unreachable, fragmentation needed. 24077 */ 24078 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24079 if (offset & IPH_DF) { 24080 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24081 if (is_system_labeled()) { 24082 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24083 ire->ire_max_frag - max_frag, AF_INET); 24084 } 24085 /* 24086 * Need to compute hdr checksum if called from ip_wput_ire. 24087 * Note that ip_rput_forward verifies the checksum before 24088 * calling this routine so in that case this is a noop. 24089 */ 24090 ipha->ipha_hdr_checksum = 0; 24091 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24092 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24093 ipst); 24094 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24095 "ip_wput_frag_end:(%S)", 24096 "don't fragment"); 24097 return; 24098 } 24099 /* 24100 * Labeled systems adjust max_frag if they add a label 24101 * to send the correct path mtu. We need the real mtu since we 24102 * are fragmenting the packet after label adjustment. 24103 */ 24104 if (is_system_labeled()) 24105 max_frag = ire->ire_max_frag; 24106 if (mctl_present) 24107 freeb(first_mp); 24108 /* 24109 * Establish the starting offset. May not be zero if we are fragging 24110 * a fragment that is being forwarded. 24111 */ 24112 offset = offset & IPH_OFFSET; 24113 24114 /* TODO why is this test needed? */ 24115 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24116 if (((max_frag - LENGTH) & ~7) < 8) { 24117 /* TODO: notify ulp somehow */ 24118 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24119 freemsg(mp); 24120 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24121 "ip_wput_frag_end:(%S)", 24122 "len < 8"); 24123 return; 24124 } 24125 24126 hdr_len = (V_HLEN & 0xF) << 2; 24127 24128 ipha->ipha_hdr_checksum = 0; 24129 24130 /* 24131 * Establish the number of bytes maximum per frag, after putting 24132 * in the header. 24133 */ 24134 len = (max_frag - hdr_len) & ~7; 24135 24136 /* Check if we can use MDT to send out the frags. */ 24137 ASSERT(!IRE_IS_LOCAL(ire)); 24138 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24139 ipst->ips_ip_multidata_outbound && 24140 !(ire->ire_flags & RTF_MULTIRT) && 24141 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24142 ill != NULL && ILL_MDT_CAPABLE(ill) && 24143 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24144 ASSERT(ill->ill_mdt_capab != NULL); 24145 if (!ill->ill_mdt_capab->ill_mdt_on) { 24146 /* 24147 * If MDT has been previously turned off in the past, 24148 * and we currently can do MDT (due to IPQoS policy 24149 * removal, etc.) then enable it for this interface. 24150 */ 24151 ill->ill_mdt_capab->ill_mdt_on = 1; 24152 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24153 ill->ill_name)); 24154 } 24155 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24156 offset); 24157 return; 24158 } 24159 24160 /* Get a copy of the header for the trailing frags */ 24161 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24162 if (!hdr_mp) { 24163 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24164 freemsg(mp); 24165 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24166 "ip_wput_frag_end:(%S)", 24167 "couldn't copy hdr"); 24168 return; 24169 } 24170 if (DB_CRED(mp) != NULL) 24171 mblk_setcred(hdr_mp, DB_CRED(mp)); 24172 24173 /* Store the starting offset, with the MoreFrags flag. */ 24174 i1 = offset | IPH_MF | frag_flag; 24175 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24176 24177 /* Establish the ending byte offset, based on the starting offset. */ 24178 offset <<= 3; 24179 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24180 24181 /* Store the length of the first fragment in the IP header. */ 24182 i1 = len + hdr_len; 24183 ASSERT(i1 <= IP_MAXPACKET); 24184 ipha->ipha_length = htons((uint16_t)i1); 24185 24186 /* 24187 * Compute the IP header checksum for the first frag. We have to 24188 * watch out that we stop at the end of the header. 24189 */ 24190 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24191 24192 /* 24193 * Now carve off the first frag. Note that this will include the 24194 * original IP header. 24195 */ 24196 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24197 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24198 freeb(hdr_mp); 24199 freemsg(mp_orig); 24200 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24201 "ip_wput_frag_end:(%S)", 24202 "couldn't carve first"); 24203 return; 24204 } 24205 24206 /* 24207 * Multirouting case. Each fragment is replicated 24208 * via all non-condemned RTF_MULTIRT routes 24209 * currently resolved. 24210 * We ensure that first_ire is the first RTF_MULTIRT 24211 * ire in the bucket. 24212 */ 24213 if (ire->ire_flags & RTF_MULTIRT) { 24214 irb = ire->ire_bucket; 24215 ASSERT(irb != NULL); 24216 24217 multirt_send = B_TRUE; 24218 24219 /* Make sure we do not omit any multiroute ire. */ 24220 IRB_REFHOLD(irb); 24221 for (first_ire = irb->irb_ire; 24222 first_ire != NULL; 24223 first_ire = first_ire->ire_next) { 24224 if ((first_ire->ire_flags & RTF_MULTIRT) && 24225 (first_ire->ire_addr == ire->ire_addr) && 24226 !(first_ire->ire_marks & 24227 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24228 break; 24229 } 24230 } 24231 24232 if (first_ire != NULL) { 24233 if (first_ire != ire) { 24234 IRE_REFHOLD(first_ire); 24235 /* 24236 * Do not release the ire passed in 24237 * as the argument. 24238 */ 24239 ire = first_ire; 24240 } else { 24241 first_ire = NULL; 24242 } 24243 } 24244 IRB_REFRELE(irb); 24245 24246 /* 24247 * Save the first ire; we will need to restore it 24248 * for the trailing frags. 24249 * We REFHOLD save_ire, as each iterated ire will be 24250 * REFRELEd. 24251 */ 24252 save_ire = ire; 24253 IRE_REFHOLD(save_ire); 24254 } 24255 24256 /* 24257 * First fragment emission loop. 24258 * In most cases, the emission loop below is entered only 24259 * once. Only in the case where the ire holds the RTF_MULTIRT 24260 * flag, do we loop to process all RTF_MULTIRT ires in the 24261 * bucket, and send the fragment through all crossed 24262 * RTF_MULTIRT routes. 24263 */ 24264 do { 24265 if (ire->ire_flags & RTF_MULTIRT) { 24266 /* 24267 * We are in a multiple send case, need to get 24268 * the next ire and make a copy of the packet. 24269 * ire1 holds here the next ire to process in the 24270 * bucket. If multirouting is expected, 24271 * any non-RTF_MULTIRT ire that has the 24272 * right destination address is ignored. 24273 * 24274 * We have to take into account the MTU of 24275 * each walked ire. max_frag is set by the 24276 * the caller and generally refers to 24277 * the primary ire entry. Here we ensure that 24278 * no route with a lower MTU will be used, as 24279 * fragments are carved once for all ires, 24280 * then replicated. 24281 */ 24282 ASSERT(irb != NULL); 24283 IRB_REFHOLD(irb); 24284 for (ire1 = ire->ire_next; 24285 ire1 != NULL; 24286 ire1 = ire1->ire_next) { 24287 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24288 continue; 24289 if (ire1->ire_addr != ire->ire_addr) 24290 continue; 24291 if (ire1->ire_marks & 24292 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24293 continue; 24294 /* 24295 * Ensure we do not exceed the MTU 24296 * of the next route. 24297 */ 24298 if (ire1->ire_max_frag < max_frag) { 24299 ip_multirt_bad_mtu(ire1, max_frag); 24300 continue; 24301 } 24302 24303 /* Got one. */ 24304 IRE_REFHOLD(ire1); 24305 break; 24306 } 24307 IRB_REFRELE(irb); 24308 24309 if (ire1 != NULL) { 24310 next_mp = copyb(mp); 24311 if ((next_mp == NULL) || 24312 ((mp->b_cont != NULL) && 24313 ((next_mp->b_cont = 24314 dupmsg(mp->b_cont)) == NULL))) { 24315 freemsg(next_mp); 24316 next_mp = NULL; 24317 ire_refrele(ire1); 24318 ire1 = NULL; 24319 } 24320 } 24321 24322 /* Last multiroute ire; don't loop anymore. */ 24323 if (ire1 == NULL) { 24324 multirt_send = B_FALSE; 24325 } 24326 } 24327 24328 ll_hdr_len = 0; 24329 LOCK_IRE_FP_MP(ire); 24330 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24331 if (ll_hdr_mp != NULL) { 24332 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24333 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24334 } else { 24335 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24336 } 24337 24338 /* If there is a transmit header, get a copy for this frag. */ 24339 /* 24340 * TODO: should check db_ref before calling ip_carve_mp since 24341 * it might give us a dup. 24342 */ 24343 if (!ll_hdr_mp) { 24344 /* No xmit header. */ 24345 xmit_mp = mp; 24346 24347 /* We have a link-layer header that can fit in our mblk. */ 24348 } else if (mp->b_datap->db_ref == 1 && 24349 ll_hdr_len != 0 && 24350 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24351 /* M_DATA fastpath */ 24352 mp->b_rptr -= ll_hdr_len; 24353 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24354 xmit_mp = mp; 24355 24356 /* Corner case if copyb has failed */ 24357 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24358 UNLOCK_IRE_FP_MP(ire); 24359 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24360 freeb(hdr_mp); 24361 freemsg(mp); 24362 freemsg(mp_orig); 24363 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24364 "ip_wput_frag_end:(%S)", 24365 "discard"); 24366 24367 if (multirt_send) { 24368 ASSERT(ire1); 24369 ASSERT(next_mp); 24370 24371 freemsg(next_mp); 24372 ire_refrele(ire1); 24373 } 24374 if (save_ire != NULL) 24375 IRE_REFRELE(save_ire); 24376 24377 if (first_ire != NULL) 24378 ire_refrele(first_ire); 24379 return; 24380 24381 /* 24382 * Case of res_mp OR the fastpath mp can't fit 24383 * in the mblk 24384 */ 24385 } else { 24386 xmit_mp->b_cont = mp; 24387 if (DB_CRED(mp) != NULL) 24388 mblk_setcred(xmit_mp, DB_CRED(mp)); 24389 /* 24390 * Get priority marking, if any. 24391 * We propagate the CoS marking from the 24392 * original packet that went to QoS processing 24393 * in ip_wput_ire to the newly carved mp. 24394 */ 24395 if (DB_TYPE(xmit_mp) == M_DATA) 24396 xmit_mp->b_band = mp->b_band; 24397 } 24398 UNLOCK_IRE_FP_MP(ire); 24399 24400 q = ire->ire_stq; 24401 out_ill = (ill_t *)q->q_ptr; 24402 24403 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24404 24405 DTRACE_PROBE4(ip4__physical__out__start, 24406 ill_t *, NULL, ill_t *, out_ill, 24407 ipha_t *, ipha, mblk_t *, xmit_mp); 24408 24409 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24410 ipst->ips_ipv4firewall_physical_out, 24411 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24412 24413 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24414 24415 if (xmit_mp != NULL) { 24416 putnext(q, xmit_mp); 24417 24418 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24419 UPDATE_MIB(out_ill->ill_ip_mib, 24420 ipIfStatsHCOutOctets, i1); 24421 24422 if (pkt_type != OB_PKT) { 24423 /* 24424 * Update the packet count and MIB stats 24425 * of trailing RTF_MULTIRT ires. 24426 */ 24427 UPDATE_OB_PKT_COUNT(ire); 24428 BUMP_MIB(out_ill->ill_ip_mib, 24429 ipIfStatsOutFragReqds); 24430 } 24431 } 24432 24433 if (multirt_send) { 24434 /* 24435 * We are in a multiple send case; look for 24436 * the next ire and re-enter the loop. 24437 */ 24438 ASSERT(ire1); 24439 ASSERT(next_mp); 24440 /* REFRELE the current ire before looping */ 24441 ire_refrele(ire); 24442 ire = ire1; 24443 ire1 = NULL; 24444 mp = next_mp; 24445 next_mp = NULL; 24446 } 24447 } while (multirt_send); 24448 24449 ASSERT(ire1 == NULL); 24450 24451 /* Restore the original ire; we need it for the trailing frags */ 24452 if (save_ire != NULL) { 24453 /* REFRELE the last iterated ire */ 24454 ire_refrele(ire); 24455 /* save_ire has been REFHOLDed */ 24456 ire = save_ire; 24457 save_ire = NULL; 24458 q = ire->ire_stq; 24459 } 24460 24461 if (pkt_type == OB_PKT) { 24462 UPDATE_OB_PKT_COUNT(ire); 24463 } else { 24464 out_ill = (ill_t *)q->q_ptr; 24465 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24466 UPDATE_IB_PKT_COUNT(ire); 24467 } 24468 24469 /* Advance the offset to the second frag starting point. */ 24470 offset += len; 24471 /* 24472 * Update hdr_len from the copied header - there might be less options 24473 * in the later fragments. 24474 */ 24475 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24476 /* Loop until done. */ 24477 for (;;) { 24478 uint16_t offset_and_flags; 24479 uint16_t ip_len; 24480 24481 if (ip_data_end - offset > len) { 24482 /* 24483 * Carve off the appropriate amount from the original 24484 * datagram. 24485 */ 24486 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24487 mp = NULL; 24488 break; 24489 } 24490 /* 24491 * More frags after this one. Get another copy 24492 * of the header. 24493 */ 24494 if (carve_mp->b_datap->db_ref == 1 && 24495 hdr_mp->b_wptr - hdr_mp->b_rptr < 24496 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24497 /* Inline IP header */ 24498 carve_mp->b_rptr -= hdr_mp->b_wptr - 24499 hdr_mp->b_rptr; 24500 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24501 hdr_mp->b_wptr - hdr_mp->b_rptr); 24502 mp = carve_mp; 24503 } else { 24504 if (!(mp = copyb(hdr_mp))) { 24505 freemsg(carve_mp); 24506 break; 24507 } 24508 /* Get priority marking, if any. */ 24509 mp->b_band = carve_mp->b_band; 24510 mp->b_cont = carve_mp; 24511 } 24512 ipha = (ipha_t *)mp->b_rptr; 24513 offset_and_flags = IPH_MF; 24514 } else { 24515 /* 24516 * Last frag. Consume the header. Set len to 24517 * the length of this last piece. 24518 */ 24519 len = ip_data_end - offset; 24520 24521 /* 24522 * Carve off the appropriate amount from the original 24523 * datagram. 24524 */ 24525 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24526 mp = NULL; 24527 break; 24528 } 24529 if (carve_mp->b_datap->db_ref == 1 && 24530 hdr_mp->b_wptr - hdr_mp->b_rptr < 24531 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24532 /* Inline IP header */ 24533 carve_mp->b_rptr -= hdr_mp->b_wptr - 24534 hdr_mp->b_rptr; 24535 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24536 hdr_mp->b_wptr - hdr_mp->b_rptr); 24537 mp = carve_mp; 24538 freeb(hdr_mp); 24539 hdr_mp = mp; 24540 } else { 24541 mp = hdr_mp; 24542 /* Get priority marking, if any. */ 24543 mp->b_band = carve_mp->b_band; 24544 mp->b_cont = carve_mp; 24545 } 24546 ipha = (ipha_t *)mp->b_rptr; 24547 /* A frag of a frag might have IPH_MF non-zero */ 24548 offset_and_flags = 24549 ntohs(ipha->ipha_fragment_offset_and_flags) & 24550 IPH_MF; 24551 } 24552 offset_and_flags |= (uint16_t)(offset >> 3); 24553 offset_and_flags |= (uint16_t)frag_flag; 24554 /* Store the offset and flags in the IP header. */ 24555 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24556 24557 /* Store the length in the IP header. */ 24558 ip_len = (uint16_t)(len + hdr_len); 24559 ipha->ipha_length = htons(ip_len); 24560 24561 /* 24562 * Set the IP header checksum. Note that mp is just 24563 * the header, so this is easy to pass to ip_csum. 24564 */ 24565 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24566 24567 /* Attach a transmit header, if any, and ship it. */ 24568 if (pkt_type == OB_PKT) { 24569 UPDATE_OB_PKT_COUNT(ire); 24570 } else { 24571 out_ill = (ill_t *)q->q_ptr; 24572 BUMP_MIB(out_ill->ill_ip_mib, 24573 ipIfStatsHCOutForwDatagrams); 24574 UPDATE_IB_PKT_COUNT(ire); 24575 } 24576 24577 if (ire->ire_flags & RTF_MULTIRT) { 24578 irb = ire->ire_bucket; 24579 ASSERT(irb != NULL); 24580 24581 multirt_send = B_TRUE; 24582 24583 /* 24584 * Save the original ire; we will need to restore it 24585 * for the tailing frags. 24586 */ 24587 save_ire = ire; 24588 IRE_REFHOLD(save_ire); 24589 } 24590 /* 24591 * Emission loop for this fragment, similar 24592 * to what is done for the first fragment. 24593 */ 24594 do { 24595 if (multirt_send) { 24596 /* 24597 * We are in a multiple send case, need to get 24598 * the next ire and make a copy of the packet. 24599 */ 24600 ASSERT(irb != NULL); 24601 IRB_REFHOLD(irb); 24602 for (ire1 = ire->ire_next; 24603 ire1 != NULL; 24604 ire1 = ire1->ire_next) { 24605 if (!(ire1->ire_flags & RTF_MULTIRT)) 24606 continue; 24607 if (ire1->ire_addr != ire->ire_addr) 24608 continue; 24609 if (ire1->ire_marks & 24610 (IRE_MARK_CONDEMNED| 24611 IRE_MARK_HIDDEN)) { 24612 continue; 24613 } 24614 /* 24615 * Ensure we do not exceed the MTU 24616 * of the next route. 24617 */ 24618 if (ire1->ire_max_frag < max_frag) { 24619 ip_multirt_bad_mtu(ire1, 24620 max_frag); 24621 continue; 24622 } 24623 24624 /* Got one. */ 24625 IRE_REFHOLD(ire1); 24626 break; 24627 } 24628 IRB_REFRELE(irb); 24629 24630 if (ire1 != NULL) { 24631 next_mp = copyb(mp); 24632 if ((next_mp == NULL) || 24633 ((mp->b_cont != NULL) && 24634 ((next_mp->b_cont = 24635 dupmsg(mp->b_cont)) == NULL))) { 24636 freemsg(next_mp); 24637 next_mp = NULL; 24638 ire_refrele(ire1); 24639 ire1 = NULL; 24640 } 24641 } 24642 24643 /* Last multiroute ire; don't loop anymore. */ 24644 if (ire1 == NULL) { 24645 multirt_send = B_FALSE; 24646 } 24647 } 24648 24649 /* Update transmit header */ 24650 ll_hdr_len = 0; 24651 LOCK_IRE_FP_MP(ire); 24652 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24653 if (ll_hdr_mp != NULL) { 24654 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24655 ll_hdr_len = MBLKL(ll_hdr_mp); 24656 } else { 24657 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24658 } 24659 24660 if (!ll_hdr_mp) { 24661 xmit_mp = mp; 24662 24663 /* 24664 * We have link-layer header that can fit in 24665 * our mblk. 24666 */ 24667 } else if (mp->b_datap->db_ref == 1 && 24668 ll_hdr_len != 0 && 24669 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24670 /* M_DATA fastpath */ 24671 mp->b_rptr -= ll_hdr_len; 24672 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24673 ll_hdr_len); 24674 xmit_mp = mp; 24675 24676 /* 24677 * Case of res_mp OR the fastpath mp can't fit 24678 * in the mblk 24679 */ 24680 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24681 xmit_mp->b_cont = mp; 24682 if (DB_CRED(mp) != NULL) 24683 mblk_setcred(xmit_mp, DB_CRED(mp)); 24684 /* Get priority marking, if any. */ 24685 if (DB_TYPE(xmit_mp) == M_DATA) 24686 xmit_mp->b_band = mp->b_band; 24687 24688 /* Corner case if copyb failed */ 24689 } else { 24690 /* 24691 * Exit both the replication and 24692 * fragmentation loops. 24693 */ 24694 UNLOCK_IRE_FP_MP(ire); 24695 goto drop_pkt; 24696 } 24697 UNLOCK_IRE_FP_MP(ire); 24698 24699 mp1 = mp; 24700 out_ill = (ill_t *)q->q_ptr; 24701 24702 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24703 24704 DTRACE_PROBE4(ip4__physical__out__start, 24705 ill_t *, NULL, ill_t *, out_ill, 24706 ipha_t *, ipha, mblk_t *, xmit_mp); 24707 24708 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24709 ipst->ips_ipv4firewall_physical_out, 24710 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24711 24712 DTRACE_PROBE1(ip4__physical__out__end, 24713 mblk_t *, xmit_mp); 24714 24715 if (mp != mp1 && hdr_mp == mp1) 24716 hdr_mp = mp; 24717 if (mp != mp1 && mp_orig == mp1) 24718 mp_orig = mp; 24719 24720 if (xmit_mp != NULL) { 24721 putnext(q, xmit_mp); 24722 24723 BUMP_MIB(out_ill->ill_ip_mib, 24724 ipIfStatsHCOutTransmits); 24725 UPDATE_MIB(out_ill->ill_ip_mib, 24726 ipIfStatsHCOutOctets, ip_len); 24727 24728 if (pkt_type != OB_PKT) { 24729 /* 24730 * Update the packet count of trailing 24731 * RTF_MULTIRT ires. 24732 */ 24733 UPDATE_OB_PKT_COUNT(ire); 24734 } 24735 } 24736 24737 /* All done if we just consumed the hdr_mp. */ 24738 if (mp == hdr_mp) { 24739 last_frag = B_TRUE; 24740 BUMP_MIB(out_ill->ill_ip_mib, 24741 ipIfStatsOutFragOKs); 24742 } 24743 24744 if (multirt_send) { 24745 /* 24746 * We are in a multiple send case; look for 24747 * the next ire and re-enter the loop. 24748 */ 24749 ASSERT(ire1); 24750 ASSERT(next_mp); 24751 /* REFRELE the current ire before looping */ 24752 ire_refrele(ire); 24753 ire = ire1; 24754 ire1 = NULL; 24755 q = ire->ire_stq; 24756 mp = next_mp; 24757 next_mp = NULL; 24758 } 24759 } while (multirt_send); 24760 /* 24761 * Restore the original ire; we need it for the 24762 * trailing frags 24763 */ 24764 if (save_ire != NULL) { 24765 ASSERT(ire1 == NULL); 24766 /* REFRELE the last iterated ire */ 24767 ire_refrele(ire); 24768 /* save_ire has been REFHOLDed */ 24769 ire = save_ire; 24770 q = ire->ire_stq; 24771 save_ire = NULL; 24772 } 24773 24774 if (last_frag) { 24775 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24776 "ip_wput_frag_end:(%S)", 24777 "consumed hdr_mp"); 24778 24779 if (first_ire != NULL) 24780 ire_refrele(first_ire); 24781 return; 24782 } 24783 /* Otherwise, advance and loop. */ 24784 offset += len; 24785 } 24786 24787 drop_pkt: 24788 /* Clean up following allocation failure. */ 24789 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24790 freemsg(mp); 24791 if (mp != hdr_mp) 24792 freeb(hdr_mp); 24793 if (mp != mp_orig) 24794 freemsg(mp_orig); 24795 24796 if (save_ire != NULL) 24797 IRE_REFRELE(save_ire); 24798 if (first_ire != NULL) 24799 ire_refrele(first_ire); 24800 24801 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24802 "ip_wput_frag_end:(%S)", 24803 "end--alloc failure"); 24804 } 24805 24806 /* 24807 * Copy the header plus those options which have the copy bit set 24808 */ 24809 static mblk_t * 24810 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24811 { 24812 mblk_t *mp; 24813 uchar_t *up; 24814 24815 /* 24816 * Quick check if we need to look for options without the copy bit 24817 * set 24818 */ 24819 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24820 if (!mp) 24821 return (mp); 24822 mp->b_rptr += ipst->ips_ip_wroff_extra; 24823 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24824 bcopy(rptr, mp->b_rptr, hdr_len); 24825 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24826 return (mp); 24827 } 24828 up = mp->b_rptr; 24829 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24830 up += IP_SIMPLE_HDR_LENGTH; 24831 rptr += IP_SIMPLE_HDR_LENGTH; 24832 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24833 while (hdr_len > 0) { 24834 uint32_t optval; 24835 uint32_t optlen; 24836 24837 optval = *rptr; 24838 if (optval == IPOPT_EOL) 24839 break; 24840 if (optval == IPOPT_NOP) 24841 optlen = 1; 24842 else 24843 optlen = rptr[1]; 24844 if (optval & IPOPT_COPY) { 24845 bcopy(rptr, up, optlen); 24846 up += optlen; 24847 } 24848 rptr += optlen; 24849 hdr_len -= optlen; 24850 } 24851 /* 24852 * Make sure that we drop an even number of words by filling 24853 * with EOL to the next word boundary. 24854 */ 24855 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24856 hdr_len & 0x3; hdr_len++) 24857 *up++ = IPOPT_EOL; 24858 mp->b_wptr = up; 24859 /* Update header length */ 24860 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24861 return (mp); 24862 } 24863 24864 /* 24865 * Delivery to local recipients including fanout to multiple recipients. 24866 * Does not do checksumming of UDP/TCP. 24867 * Note: q should be the read side queue for either the ill or conn. 24868 * Note: rq should be the read side q for the lower (ill) stream. 24869 * We don't send packets to IPPF processing, thus the last argument 24870 * to all the fanout calls are B_FALSE. 24871 */ 24872 void 24873 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24874 int fanout_flags, zoneid_t zoneid) 24875 { 24876 uint32_t protocol; 24877 mblk_t *first_mp; 24878 boolean_t mctl_present; 24879 int ire_type; 24880 #define rptr ((uchar_t *)ipha) 24881 ip_stack_t *ipst = ill->ill_ipst; 24882 24883 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24884 "ip_wput_local_start: q %p", q); 24885 24886 if (ire != NULL) { 24887 ire_type = ire->ire_type; 24888 } else { 24889 /* 24890 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24891 * packet is not multicast, we can't tell the ire type. 24892 */ 24893 ASSERT(CLASSD(ipha->ipha_dst)); 24894 ire_type = IRE_BROADCAST; 24895 } 24896 24897 first_mp = mp; 24898 if (first_mp->b_datap->db_type == M_CTL) { 24899 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24900 if (!io->ipsec_out_secure) { 24901 /* 24902 * This ipsec_out_t was allocated in ip_wput 24903 * for multicast packets to store the ill_index. 24904 * As this is being delivered locally, we don't 24905 * need this anymore. 24906 */ 24907 mp = first_mp->b_cont; 24908 freeb(first_mp); 24909 first_mp = mp; 24910 mctl_present = B_FALSE; 24911 } else { 24912 /* 24913 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24914 * security properties for the looped-back packet. 24915 */ 24916 mctl_present = B_TRUE; 24917 mp = first_mp->b_cont; 24918 ASSERT(mp != NULL); 24919 ipsec_out_to_in(first_mp); 24920 } 24921 } else { 24922 mctl_present = B_FALSE; 24923 } 24924 24925 DTRACE_PROBE4(ip4__loopback__in__start, 24926 ill_t *, ill, ill_t *, NULL, 24927 ipha_t *, ipha, mblk_t *, first_mp); 24928 24929 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24930 ipst->ips_ipv4firewall_loopback_in, 24931 ill, NULL, ipha, first_mp, mp, ipst); 24932 24933 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24934 24935 if (first_mp == NULL) 24936 return; 24937 24938 ipst->ips_loopback_packets++; 24939 24940 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24941 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24942 if (!IS_SIMPLE_IPH(ipha)) { 24943 ip_wput_local_options(ipha, ipst); 24944 } 24945 24946 protocol = ipha->ipha_protocol; 24947 switch (protocol) { 24948 case IPPROTO_ICMP: { 24949 ire_t *ire_zone; 24950 ilm_t *ilm; 24951 mblk_t *mp1; 24952 zoneid_t last_zoneid; 24953 24954 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24955 ASSERT(ire_type == IRE_BROADCAST); 24956 /* 24957 * In the multicast case, applications may have joined 24958 * the group from different zones, so we need to deliver 24959 * the packet to each of them. Loop through the 24960 * multicast memberships structures (ilm) on the receive 24961 * ill and send a copy of the packet up each matching 24962 * one. However, we don't do this for multicasts sent on 24963 * the loopback interface (PHYI_LOOPBACK flag set) as 24964 * they must stay in the sender's zone. 24965 * 24966 * ilm_add_v6() ensures that ilms in the same zone are 24967 * contiguous in the ill_ilm list. We use this property 24968 * to avoid sending duplicates needed when two 24969 * applications in the same zone join the same group on 24970 * different logical interfaces: we ignore the ilm if 24971 * it's zoneid is the same as the last matching one. 24972 * In addition, the sending of the packet for 24973 * ire_zoneid is delayed until all of the other ilms 24974 * have been exhausted. 24975 */ 24976 last_zoneid = -1; 24977 ILM_WALKER_HOLD(ill); 24978 for (ilm = ill->ill_ilm; ilm != NULL; 24979 ilm = ilm->ilm_next) { 24980 if ((ilm->ilm_flags & ILM_DELETED) || 24981 ipha->ipha_dst != ilm->ilm_addr || 24982 ilm->ilm_zoneid == last_zoneid || 24983 ilm->ilm_zoneid == zoneid || 24984 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24985 continue; 24986 mp1 = ip_copymsg(first_mp); 24987 if (mp1 == NULL) 24988 continue; 24989 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24990 mctl_present, B_FALSE, ill, 24991 ilm->ilm_zoneid); 24992 last_zoneid = ilm->ilm_zoneid; 24993 } 24994 ILM_WALKER_RELE(ill); 24995 /* 24996 * Loopback case: the sending endpoint has 24997 * IP_MULTICAST_LOOP disabled, therefore we don't 24998 * dispatch the multicast packet to the sending zone. 24999 */ 25000 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25001 freemsg(first_mp); 25002 return; 25003 } 25004 } else if (ire_type == IRE_BROADCAST) { 25005 /* 25006 * In the broadcast case, there may be many zones 25007 * which need a copy of the packet delivered to them. 25008 * There is one IRE_BROADCAST per broadcast address 25009 * and per zone; we walk those using a helper function. 25010 * In addition, the sending of the packet for zoneid is 25011 * delayed until all of the other ires have been 25012 * processed. 25013 */ 25014 IRB_REFHOLD(ire->ire_bucket); 25015 ire_zone = NULL; 25016 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25017 ire)) != NULL) { 25018 mp1 = ip_copymsg(first_mp); 25019 if (mp1 == NULL) 25020 continue; 25021 25022 UPDATE_IB_PKT_COUNT(ire_zone); 25023 ire_zone->ire_last_used_time = lbolt; 25024 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25025 mctl_present, B_FALSE, ill, 25026 ire_zone->ire_zoneid); 25027 } 25028 IRB_REFRELE(ire->ire_bucket); 25029 } 25030 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25031 0, mctl_present, B_FALSE, ill, zoneid); 25032 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25033 "ip_wput_local_end: q %p (%S)", 25034 q, "icmp"); 25035 return; 25036 } 25037 case IPPROTO_IGMP: 25038 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25039 /* Bad packet - discarded by igmp_input */ 25040 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25041 "ip_wput_local_end: q %p (%S)", 25042 q, "igmp_input--bad packet"); 25043 if (mctl_present) 25044 freeb(first_mp); 25045 return; 25046 } 25047 /* 25048 * igmp_input() may have returned the pulled up message. 25049 * So first_mp and ipha need to be reinitialized. 25050 */ 25051 ipha = (ipha_t *)mp->b_rptr; 25052 if (mctl_present) 25053 first_mp->b_cont = mp; 25054 else 25055 first_mp = mp; 25056 /* deliver to local raw users */ 25057 break; 25058 case IPPROTO_ENCAP: 25059 /* 25060 * This case is covered by either ip_fanout_proto, or by 25061 * the above security processing for self-tunneled packets. 25062 */ 25063 break; 25064 case IPPROTO_UDP: { 25065 uint16_t *up; 25066 uint32_t ports; 25067 25068 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25069 UDP_PORTS_OFFSET); 25070 /* Force a 'valid' checksum. */ 25071 up[3] = 0; 25072 25073 ports = *(uint32_t *)up; 25074 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25075 (ire_type == IRE_BROADCAST), 25076 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25077 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25078 ill, zoneid); 25079 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25080 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25081 return; 25082 } 25083 case IPPROTO_TCP: { 25084 25085 /* 25086 * For TCP, discard broadcast packets. 25087 */ 25088 if ((ushort_t)ire_type == IRE_BROADCAST) { 25089 freemsg(first_mp); 25090 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25091 ip2dbg(("ip_wput_local: discard broadcast\n")); 25092 return; 25093 } 25094 25095 if (mp->b_datap->db_type == M_DATA) { 25096 /* 25097 * M_DATA mblk, so init mblk (chain) for no struio(). 25098 */ 25099 mblk_t *mp1 = mp; 25100 25101 do { 25102 mp1->b_datap->db_struioflag = 0; 25103 } while ((mp1 = mp1->b_cont) != NULL); 25104 } 25105 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25106 <= mp->b_wptr); 25107 ip_fanout_tcp(q, first_mp, ill, ipha, 25108 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25109 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25110 mctl_present, B_FALSE, zoneid); 25111 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25112 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25113 return; 25114 } 25115 case IPPROTO_SCTP: 25116 { 25117 uint32_t ports; 25118 25119 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25120 ip_fanout_sctp(first_mp, ill, ipha, ports, 25121 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25122 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25123 return; 25124 } 25125 25126 default: 25127 break; 25128 } 25129 /* 25130 * Find a client for some other protocol. We give 25131 * copies to multiple clients, if more than one is 25132 * bound. 25133 */ 25134 ip_fanout_proto(q, first_mp, ill, ipha, 25135 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25136 mctl_present, B_FALSE, ill, zoneid); 25137 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25138 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25139 #undef rptr 25140 } 25141 25142 /* 25143 * Update any source route, record route, or timestamp options. 25144 * Check that we are at end of strict source route. 25145 * The options have been sanity checked by ip_wput_options(). 25146 */ 25147 static void 25148 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25149 { 25150 ipoptp_t opts; 25151 uchar_t *opt; 25152 uint8_t optval; 25153 uint8_t optlen; 25154 ipaddr_t dst; 25155 uint32_t ts; 25156 ire_t *ire; 25157 timestruc_t now; 25158 25159 ip2dbg(("ip_wput_local_options\n")); 25160 for (optval = ipoptp_first(&opts, ipha); 25161 optval != IPOPT_EOL; 25162 optval = ipoptp_next(&opts)) { 25163 opt = opts.ipoptp_cur; 25164 optlen = opts.ipoptp_len; 25165 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25166 switch (optval) { 25167 uint32_t off; 25168 case IPOPT_SSRR: 25169 case IPOPT_LSRR: 25170 off = opt[IPOPT_OFFSET]; 25171 off--; 25172 if (optlen < IP_ADDR_LEN || 25173 off > optlen - IP_ADDR_LEN) { 25174 /* End of source route */ 25175 break; 25176 } 25177 /* 25178 * This will only happen if two consecutive entries 25179 * in the source route contains our address or if 25180 * it is a packet with a loose source route which 25181 * reaches us before consuming the whole source route 25182 */ 25183 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25184 if (optval == IPOPT_SSRR) { 25185 return; 25186 } 25187 /* 25188 * Hack: instead of dropping the packet truncate the 25189 * source route to what has been used by filling the 25190 * rest with IPOPT_NOP. 25191 */ 25192 opt[IPOPT_OLEN] = (uint8_t)off; 25193 while (off < optlen) { 25194 opt[off++] = IPOPT_NOP; 25195 } 25196 break; 25197 case IPOPT_RR: 25198 off = opt[IPOPT_OFFSET]; 25199 off--; 25200 if (optlen < IP_ADDR_LEN || 25201 off > optlen - IP_ADDR_LEN) { 25202 /* No more room - ignore */ 25203 ip1dbg(( 25204 "ip_wput_forward_options: end of RR\n")); 25205 break; 25206 } 25207 dst = htonl(INADDR_LOOPBACK); 25208 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25209 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25210 break; 25211 case IPOPT_TS: 25212 /* Insert timestamp if there is romm */ 25213 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25214 case IPOPT_TS_TSONLY: 25215 off = IPOPT_TS_TIMELEN; 25216 break; 25217 case IPOPT_TS_PRESPEC: 25218 case IPOPT_TS_PRESPEC_RFC791: 25219 /* Verify that the address matched */ 25220 off = opt[IPOPT_OFFSET] - 1; 25221 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25222 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25223 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25224 ipst); 25225 if (ire == NULL) { 25226 /* Not for us */ 25227 break; 25228 } 25229 ire_refrele(ire); 25230 /* FALLTHRU */ 25231 case IPOPT_TS_TSANDADDR: 25232 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25233 break; 25234 default: 25235 /* 25236 * ip_*put_options should have already 25237 * dropped this packet. 25238 */ 25239 cmn_err(CE_PANIC, "ip_wput_local_options: " 25240 "unknown IT - bug in ip_wput_options?\n"); 25241 return; /* Keep "lint" happy */ 25242 } 25243 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25244 /* Increase overflow counter */ 25245 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25246 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25247 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25248 (off << 4); 25249 break; 25250 } 25251 off = opt[IPOPT_OFFSET] - 1; 25252 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25253 case IPOPT_TS_PRESPEC: 25254 case IPOPT_TS_PRESPEC_RFC791: 25255 case IPOPT_TS_TSANDADDR: 25256 dst = htonl(INADDR_LOOPBACK); 25257 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25258 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25259 /* FALLTHRU */ 25260 case IPOPT_TS_TSONLY: 25261 off = opt[IPOPT_OFFSET] - 1; 25262 /* Compute # of milliseconds since midnight */ 25263 gethrestime(&now); 25264 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25265 now.tv_nsec / (NANOSEC / MILLISEC); 25266 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25267 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25268 break; 25269 } 25270 break; 25271 } 25272 } 25273 } 25274 25275 /* 25276 * Send out a multicast packet on interface ipif. 25277 * The sender does not have an conn. 25278 * Caller verifies that this isn't a PHYI_LOOPBACK. 25279 */ 25280 void 25281 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25282 { 25283 ipha_t *ipha; 25284 ire_t *ire; 25285 ipaddr_t dst; 25286 mblk_t *first_mp; 25287 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25288 25289 /* igmp_sendpkt always allocates a ipsec_out_t */ 25290 ASSERT(mp->b_datap->db_type == M_CTL); 25291 ASSERT(!ipif->ipif_isv6); 25292 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25293 25294 first_mp = mp; 25295 mp = first_mp->b_cont; 25296 ASSERT(mp->b_datap->db_type == M_DATA); 25297 ipha = (ipha_t *)mp->b_rptr; 25298 25299 /* 25300 * Find an IRE which matches the destination and the outgoing 25301 * queue (i.e. the outgoing interface.) 25302 */ 25303 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25304 dst = ipif->ipif_pp_dst_addr; 25305 else 25306 dst = ipha->ipha_dst; 25307 /* 25308 * The source address has already been initialized by the 25309 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25310 * be sufficient rather than MATCH_IRE_IPIF. 25311 * 25312 * This function is used for sending IGMP packets. We need 25313 * to make sure that we send the packet out of the interface 25314 * (ipif->ipif_ill) where we joined the group. This is to 25315 * prevent from switches doing IGMP snooping to send us multicast 25316 * packets for a given group on the interface we have joined. 25317 * If we can't find an ire, igmp_sendpkt has already initialized 25318 * ipsec_out_attach_if so that this will not be load spread in 25319 * ip_newroute_ipif. 25320 */ 25321 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25322 MATCH_IRE_ILL, ipst); 25323 if (!ire) { 25324 /* 25325 * Mark this packet to make it be delivered to 25326 * ip_wput_ire after the new ire has been 25327 * created. 25328 */ 25329 mp->b_prev = NULL; 25330 mp->b_next = NULL; 25331 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25332 zoneid, &zero_info); 25333 return; 25334 } 25335 25336 /* 25337 * Honor the RTF_SETSRC flag; this is the only case 25338 * where we force this addr whatever the current src addr is, 25339 * because this address is set by igmp_sendpkt(), and 25340 * cannot be specified by any user. 25341 */ 25342 if (ire->ire_flags & RTF_SETSRC) { 25343 ipha->ipha_src = ire->ire_src_addr; 25344 } 25345 25346 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25347 } 25348 25349 /* 25350 * NOTE : This function does not ire_refrele the ire argument passed in. 25351 * 25352 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25353 * failure. The nce_fp_mp can vanish any time in the case of 25354 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25355 * the ire_lock to access the nce_fp_mp in this case. 25356 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25357 * prepending a fastpath message IPQoS processing must precede it, we also set 25358 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25359 * (IPQoS might have set the b_band for CoS marking). 25360 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25361 * must follow it so that IPQoS can mark the dl_priority field for CoS 25362 * marking, if needed. 25363 */ 25364 static mblk_t * 25365 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25366 { 25367 uint_t hlen; 25368 ipha_t *ipha; 25369 mblk_t *mp1; 25370 boolean_t qos_done = B_FALSE; 25371 uchar_t *ll_hdr; 25372 ip_stack_t *ipst = ire->ire_ipst; 25373 25374 #define rptr ((uchar_t *)ipha) 25375 25376 ipha = (ipha_t *)mp->b_rptr; 25377 hlen = 0; 25378 LOCK_IRE_FP_MP(ire); 25379 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25380 ASSERT(DB_TYPE(mp1) == M_DATA); 25381 /* Initiate IPPF processing */ 25382 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25383 UNLOCK_IRE_FP_MP(ire); 25384 ip_process(proc, &mp, ill_index); 25385 if (mp == NULL) 25386 return (NULL); 25387 25388 ipha = (ipha_t *)mp->b_rptr; 25389 LOCK_IRE_FP_MP(ire); 25390 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25391 qos_done = B_TRUE; 25392 goto no_fp_mp; 25393 } 25394 ASSERT(DB_TYPE(mp1) == M_DATA); 25395 } 25396 hlen = MBLKL(mp1); 25397 /* 25398 * Check if we have enough room to prepend fastpath 25399 * header 25400 */ 25401 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25402 ll_hdr = rptr - hlen; 25403 bcopy(mp1->b_rptr, ll_hdr, hlen); 25404 /* 25405 * Set the b_rptr to the start of the link layer 25406 * header 25407 */ 25408 mp->b_rptr = ll_hdr; 25409 mp1 = mp; 25410 } else { 25411 mp1 = copyb(mp1); 25412 if (mp1 == NULL) 25413 goto unlock_err; 25414 mp1->b_band = mp->b_band; 25415 mp1->b_cont = mp; 25416 /* 25417 * certain system generated traffic may not 25418 * have cred/label in ip header block. This 25419 * is true even for a labeled system. But for 25420 * labeled traffic, inherit the label in the 25421 * new header. 25422 */ 25423 if (DB_CRED(mp) != NULL) 25424 mblk_setcred(mp1, DB_CRED(mp)); 25425 /* 25426 * XXX disable ICK_VALID and compute checksum 25427 * here; can happen if nce_fp_mp changes and 25428 * it can't be copied now due to insufficient 25429 * space. (unlikely, fp mp can change, but it 25430 * does not increase in length) 25431 */ 25432 } 25433 UNLOCK_IRE_FP_MP(ire); 25434 } else { 25435 no_fp_mp: 25436 mp1 = copyb(ire->ire_nce->nce_res_mp); 25437 if (mp1 == NULL) { 25438 unlock_err: 25439 UNLOCK_IRE_FP_MP(ire); 25440 freemsg(mp); 25441 return (NULL); 25442 } 25443 UNLOCK_IRE_FP_MP(ire); 25444 mp1->b_cont = mp; 25445 /* 25446 * certain system generated traffic may not 25447 * have cred/label in ip header block. This 25448 * is true even for a labeled system. But for 25449 * labeled traffic, inherit the label in the 25450 * new header. 25451 */ 25452 if (DB_CRED(mp) != NULL) 25453 mblk_setcred(mp1, DB_CRED(mp)); 25454 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25455 ip_process(proc, &mp1, ill_index); 25456 if (mp1 == NULL) 25457 return (NULL); 25458 } 25459 } 25460 return (mp1); 25461 #undef rptr 25462 } 25463 25464 /* 25465 * Finish the outbound IPsec processing for an IPv6 packet. This function 25466 * is called from ipsec_out_process() if the IPsec packet was processed 25467 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25468 * asynchronously. 25469 */ 25470 void 25471 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25472 ire_t *ire_arg) 25473 { 25474 in6_addr_t *v6dstp; 25475 ire_t *ire; 25476 mblk_t *mp; 25477 ip6_t *ip6h1; 25478 uint_t ill_index; 25479 ipsec_out_t *io; 25480 boolean_t attach_if, hwaccel; 25481 uint32_t flags = IP6_NO_IPPOLICY; 25482 int match_flags; 25483 zoneid_t zoneid; 25484 boolean_t ill_need_rele = B_FALSE; 25485 boolean_t ire_need_rele = B_FALSE; 25486 ip_stack_t *ipst; 25487 25488 mp = ipsec_mp->b_cont; 25489 ip6h1 = (ip6_t *)mp->b_rptr; 25490 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25491 ASSERT(io->ipsec_out_ns != NULL); 25492 ipst = io->ipsec_out_ns->netstack_ip; 25493 ill_index = io->ipsec_out_ill_index; 25494 if (io->ipsec_out_reachable) { 25495 flags |= IPV6_REACHABILITY_CONFIRMATION; 25496 } 25497 attach_if = io->ipsec_out_attach_if; 25498 hwaccel = io->ipsec_out_accelerated; 25499 zoneid = io->ipsec_out_zoneid; 25500 ASSERT(zoneid != ALL_ZONES); 25501 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25502 /* Multicast addresses should have non-zero ill_index. */ 25503 v6dstp = &ip6h->ip6_dst; 25504 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25505 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25506 ASSERT(!attach_if || ill_index != 0); 25507 if (ill_index != 0) { 25508 if (ill == NULL) { 25509 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25510 B_TRUE, ipst); 25511 25512 /* Failure case frees things for us. */ 25513 if (ill == NULL) 25514 return; 25515 25516 ill_need_rele = B_TRUE; 25517 } 25518 /* 25519 * If this packet needs to go out on a particular interface 25520 * honor it. 25521 */ 25522 if (attach_if) { 25523 match_flags = MATCH_IRE_ILL; 25524 25525 /* 25526 * Check if we need an ire that will not be 25527 * looked up by anybody else i.e. HIDDEN. 25528 */ 25529 if (ill_is_probeonly(ill)) { 25530 match_flags |= MATCH_IRE_MARK_HIDDEN; 25531 } 25532 } 25533 } 25534 ASSERT(mp != NULL); 25535 25536 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25537 boolean_t unspec_src; 25538 ipif_t *ipif; 25539 25540 /* 25541 * Use the ill_index to get the right ill. 25542 */ 25543 unspec_src = io->ipsec_out_unspec_src; 25544 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25545 if (ipif == NULL) { 25546 if (ill_need_rele) 25547 ill_refrele(ill); 25548 freemsg(ipsec_mp); 25549 return; 25550 } 25551 25552 if (ire_arg != NULL) { 25553 ire = ire_arg; 25554 } else { 25555 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25556 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25557 ire_need_rele = B_TRUE; 25558 } 25559 if (ire != NULL) { 25560 ipif_refrele(ipif); 25561 /* 25562 * XXX Do the multicast forwarding now, as the IPsec 25563 * processing has been done. 25564 */ 25565 goto send; 25566 } 25567 25568 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25569 mp->b_prev = NULL; 25570 mp->b_next = NULL; 25571 25572 /* 25573 * If the IPsec packet was processed asynchronously, 25574 * drop it now. 25575 */ 25576 if (q == NULL) { 25577 if (ill_need_rele) 25578 ill_refrele(ill); 25579 freemsg(ipsec_mp); 25580 return; 25581 } 25582 25583 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25584 unspec_src, zoneid); 25585 ipif_refrele(ipif); 25586 } else { 25587 if (attach_if) { 25588 ipif_t *ipif; 25589 25590 ipif = ipif_get_next_ipif(NULL, ill); 25591 if (ipif == NULL) { 25592 if (ill_need_rele) 25593 ill_refrele(ill); 25594 freemsg(ipsec_mp); 25595 return; 25596 } 25597 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25598 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25599 ire_need_rele = B_TRUE; 25600 ipif_refrele(ipif); 25601 } else { 25602 if (ire_arg != NULL) { 25603 ire = ire_arg; 25604 } else { 25605 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25606 ipst); 25607 ire_need_rele = B_TRUE; 25608 } 25609 } 25610 if (ire != NULL) 25611 goto send; 25612 /* 25613 * ire disappeared underneath. 25614 * 25615 * What we need to do here is the ip_newroute 25616 * logic to get the ire without doing the IPsec 25617 * processing. Follow the same old path. But this 25618 * time, ip_wput or ire_add_then_send will call us 25619 * directly as all the IPsec operations are done. 25620 */ 25621 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25622 mp->b_prev = NULL; 25623 mp->b_next = NULL; 25624 25625 /* 25626 * If the IPsec packet was processed asynchronously, 25627 * drop it now. 25628 */ 25629 if (q == NULL) { 25630 if (ill_need_rele) 25631 ill_refrele(ill); 25632 freemsg(ipsec_mp); 25633 return; 25634 } 25635 25636 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25637 zoneid, ipst); 25638 } 25639 if (ill != NULL && ill_need_rele) 25640 ill_refrele(ill); 25641 return; 25642 send: 25643 if (ill != NULL && ill_need_rele) 25644 ill_refrele(ill); 25645 25646 /* Local delivery */ 25647 if (ire->ire_stq == NULL) { 25648 ill_t *out_ill; 25649 ASSERT(q != NULL); 25650 25651 /* PFHooks: LOOPBACK_OUT */ 25652 out_ill = ire_to_ill(ire); 25653 25654 DTRACE_PROBE4(ip6__loopback__out__start, 25655 ill_t *, NULL, ill_t *, out_ill, 25656 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25657 25658 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25659 ipst->ips_ipv6firewall_loopback_out, 25660 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25661 25662 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25663 25664 if (ipsec_mp != NULL) 25665 ip_wput_local_v6(RD(q), out_ill, 25666 ip6h, ipsec_mp, ire, 0); 25667 if (ire_need_rele) 25668 ire_refrele(ire); 25669 return; 25670 } 25671 /* 25672 * Everything is done. Send it out on the wire. 25673 * We force the insertion of a fragment header using the 25674 * IPH_FRAG_HDR flag in two cases: 25675 * - after reception of an ICMPv6 "packet too big" message 25676 * with a MTU < 1280 (cf. RFC 2460 section 5) 25677 * - for multirouted IPv6 packets, so that the receiver can 25678 * discard duplicates according to their fragment identifier 25679 */ 25680 /* XXX fix flow control problems. */ 25681 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25682 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25683 if (hwaccel) { 25684 /* 25685 * hardware acceleration does not handle these 25686 * "slow path" cases. 25687 */ 25688 /* IPsec KSTATS: should bump bean counter here. */ 25689 if (ire_need_rele) 25690 ire_refrele(ire); 25691 freemsg(ipsec_mp); 25692 return; 25693 } 25694 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25695 (mp->b_cont ? msgdsize(mp) : 25696 mp->b_wptr - (uchar_t *)ip6h)) { 25697 /* IPsec KSTATS: should bump bean counter here. */ 25698 ip0dbg(("Packet length mismatch: %d, %ld\n", 25699 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25700 msgdsize(mp))); 25701 if (ire_need_rele) 25702 ire_refrele(ire); 25703 freemsg(ipsec_mp); 25704 return; 25705 } 25706 ASSERT(mp->b_prev == NULL); 25707 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25708 ntohs(ip6h->ip6_plen) + 25709 IPV6_HDR_LEN, ire->ire_max_frag)); 25710 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25711 ire->ire_max_frag); 25712 } else { 25713 UPDATE_OB_PKT_COUNT(ire); 25714 ire->ire_last_used_time = lbolt; 25715 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25716 } 25717 if (ire_need_rele) 25718 ire_refrele(ire); 25719 freeb(ipsec_mp); 25720 } 25721 25722 void 25723 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25724 { 25725 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25726 da_ipsec_t *hada; /* data attributes */ 25727 ill_t *ill = (ill_t *)q->q_ptr; 25728 25729 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25730 25731 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25732 /* IPsec KSTATS: Bump lose counter here! */ 25733 freemsg(mp); 25734 return; 25735 } 25736 25737 /* 25738 * It's an IPsec packet that must be 25739 * accelerated by the Provider, and the 25740 * outbound ill is IPsec acceleration capable. 25741 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25742 * to the ill. 25743 * IPsec KSTATS: should bump packet counter here. 25744 */ 25745 25746 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25747 if (hada_mp == NULL) { 25748 /* IPsec KSTATS: should bump packet counter here. */ 25749 freemsg(mp); 25750 return; 25751 } 25752 25753 hada_mp->b_datap->db_type = M_CTL; 25754 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25755 hada_mp->b_cont = mp; 25756 25757 hada = (da_ipsec_t *)hada_mp->b_rptr; 25758 bzero(hada, sizeof (da_ipsec_t)); 25759 hada->da_type = IPHADA_M_CTL; 25760 25761 putnext(q, hada_mp); 25762 } 25763 25764 /* 25765 * Finish the outbound IPsec processing. This function is called from 25766 * ipsec_out_process() if the IPsec packet was processed 25767 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25768 * asynchronously. 25769 */ 25770 void 25771 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25772 ire_t *ire_arg) 25773 { 25774 uint32_t v_hlen_tos_len; 25775 ipaddr_t dst; 25776 ipif_t *ipif = NULL; 25777 ire_t *ire; 25778 ire_t *ire1 = NULL; 25779 mblk_t *next_mp = NULL; 25780 uint32_t max_frag; 25781 boolean_t multirt_send = B_FALSE; 25782 mblk_t *mp; 25783 ipha_t *ipha1; 25784 uint_t ill_index; 25785 ipsec_out_t *io; 25786 boolean_t attach_if; 25787 int match_flags; 25788 irb_t *irb = NULL; 25789 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25790 zoneid_t zoneid; 25791 ipxmit_state_t pktxmit_state; 25792 ip_stack_t *ipst; 25793 25794 #ifdef _BIG_ENDIAN 25795 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25796 #else 25797 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25798 #endif 25799 25800 mp = ipsec_mp->b_cont; 25801 ipha1 = (ipha_t *)mp->b_rptr; 25802 ASSERT(mp != NULL); 25803 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25804 dst = ipha->ipha_dst; 25805 25806 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25807 ill_index = io->ipsec_out_ill_index; 25808 attach_if = io->ipsec_out_attach_if; 25809 zoneid = io->ipsec_out_zoneid; 25810 ASSERT(zoneid != ALL_ZONES); 25811 ipst = io->ipsec_out_ns->netstack_ip; 25812 ASSERT(io->ipsec_out_ns != NULL); 25813 25814 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25815 if (ill_index != 0) { 25816 if (ill == NULL) { 25817 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25818 ill_index, B_FALSE, ipst); 25819 25820 /* Failure case frees things for us. */ 25821 if (ill == NULL) 25822 return; 25823 25824 ill_need_rele = B_TRUE; 25825 } 25826 /* 25827 * If this packet needs to go out on a particular interface 25828 * honor it. 25829 */ 25830 if (attach_if) { 25831 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25832 25833 /* 25834 * Check if we need an ire that will not be 25835 * looked up by anybody else i.e. HIDDEN. 25836 */ 25837 if (ill_is_probeonly(ill)) { 25838 match_flags |= MATCH_IRE_MARK_HIDDEN; 25839 } 25840 } 25841 } 25842 25843 if (CLASSD(dst)) { 25844 boolean_t conn_dontroute; 25845 /* 25846 * Use the ill_index to get the right ipif. 25847 */ 25848 conn_dontroute = io->ipsec_out_dontroute; 25849 if (ill_index == 0) 25850 ipif = ipif_lookup_group(dst, zoneid, ipst); 25851 else 25852 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25853 if (ipif == NULL) { 25854 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25855 " multicast\n")); 25856 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25857 freemsg(ipsec_mp); 25858 goto done; 25859 } 25860 /* 25861 * ipha_src has already been intialized with the 25862 * value of the ipif in ip_wput. All we need now is 25863 * an ire to send this downstream. 25864 */ 25865 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25866 MBLK_GETLABEL(mp), match_flags, ipst); 25867 if (ire != NULL) { 25868 ill_t *ill1; 25869 /* 25870 * Do the multicast forwarding now, as the IPsec 25871 * processing has been done. 25872 */ 25873 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25874 (ill1 = ire_to_ill(ire))) { 25875 if (ip_mforward(ill1, ipha, mp)) { 25876 freemsg(ipsec_mp); 25877 ip1dbg(("ip_wput_ipsec_out: mforward " 25878 "failed\n")); 25879 ire_refrele(ire); 25880 goto done; 25881 } 25882 } 25883 goto send; 25884 } 25885 25886 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25887 mp->b_prev = NULL; 25888 mp->b_next = NULL; 25889 25890 /* 25891 * If the IPsec packet was processed asynchronously, 25892 * drop it now. 25893 */ 25894 if (q == NULL) { 25895 freemsg(ipsec_mp); 25896 goto done; 25897 } 25898 25899 /* 25900 * We may be using a wrong ipif to create the ire. 25901 * But it is okay as the source address is assigned 25902 * for the packet already. Next outbound packet would 25903 * create the IRE with the right IPIF in ip_wput. 25904 * 25905 * Also handle RTF_MULTIRT routes. 25906 */ 25907 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25908 zoneid, &zero_info); 25909 } else { 25910 if (attach_if) { 25911 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25912 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25913 } else { 25914 if (ire_arg != NULL) { 25915 ire = ire_arg; 25916 ire_need_rele = B_FALSE; 25917 } else { 25918 ire = ire_cache_lookup(dst, zoneid, 25919 MBLK_GETLABEL(mp), ipst); 25920 } 25921 } 25922 if (ire != NULL) { 25923 goto send; 25924 } 25925 25926 /* 25927 * ire disappeared underneath. 25928 * 25929 * What we need to do here is the ip_newroute 25930 * logic to get the ire without doing the IPsec 25931 * processing. Follow the same old path. But this 25932 * time, ip_wput or ire_add_then_put will call us 25933 * directly as all the IPsec operations are done. 25934 */ 25935 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25936 mp->b_prev = NULL; 25937 mp->b_next = NULL; 25938 25939 /* 25940 * If the IPsec packet was processed asynchronously, 25941 * drop it now. 25942 */ 25943 if (q == NULL) { 25944 freemsg(ipsec_mp); 25945 goto done; 25946 } 25947 25948 /* 25949 * Since we're going through ip_newroute() again, we 25950 * need to make sure we don't: 25951 * 25952 * 1.) Trigger the ASSERT() with the ipha_ident 25953 * overloading. 25954 * 2.) Redo transport-layer checksumming, since we've 25955 * already done all that to get this far. 25956 * 25957 * The easiest way not do either of the above is to set 25958 * the ipha_ident field to IP_HDR_INCLUDED. 25959 */ 25960 ipha->ipha_ident = IP_HDR_INCLUDED; 25961 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25962 zoneid, ipst); 25963 } 25964 goto done; 25965 send: 25966 if (ire->ire_stq == NULL) { 25967 ill_t *out_ill; 25968 /* 25969 * Loopbacks go through ip_wput_local except for one case. 25970 * We come here if we generate a icmp_frag_needed message 25971 * after IPsec processing is over. When this function calls 25972 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25973 * icmp_frag_needed. The message generated comes back here 25974 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25975 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25976 * source address as it is usually set in ip_wput_ire. As 25977 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25978 * and we end up here. We can't enter ip_wput_ire once the 25979 * IPsec processing is over and hence we need to do it here. 25980 */ 25981 ASSERT(q != NULL); 25982 UPDATE_OB_PKT_COUNT(ire); 25983 ire->ire_last_used_time = lbolt; 25984 if (ipha->ipha_src == 0) 25985 ipha->ipha_src = ire->ire_src_addr; 25986 25987 /* PFHooks: LOOPBACK_OUT */ 25988 out_ill = ire_to_ill(ire); 25989 25990 DTRACE_PROBE4(ip4__loopback__out__start, 25991 ill_t *, NULL, ill_t *, out_ill, 25992 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25993 25994 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25995 ipst->ips_ipv4firewall_loopback_out, 25996 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 25997 25998 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25999 26000 if (ipsec_mp != NULL) 26001 ip_wput_local(RD(q), out_ill, 26002 ipha, ipsec_mp, ire, 0, zoneid); 26003 if (ire_need_rele) 26004 ire_refrele(ire); 26005 goto done; 26006 } 26007 26008 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26009 /* 26010 * We are through with IPsec processing. 26011 * Fragment this and send it on the wire. 26012 */ 26013 if (io->ipsec_out_accelerated) { 26014 /* 26015 * The packet has been accelerated but must 26016 * be fragmented. This should not happen 26017 * since AH and ESP must not accelerate 26018 * packets that need fragmentation, however 26019 * the configuration could have changed 26020 * since the AH or ESP processing. 26021 * Drop packet. 26022 * IPsec KSTATS: bump bean counter here. 26023 */ 26024 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26025 "fragmented accelerated packet!\n")); 26026 freemsg(ipsec_mp); 26027 } else { 26028 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26029 } 26030 if (ire_need_rele) 26031 ire_refrele(ire); 26032 goto done; 26033 } 26034 26035 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26036 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26037 (void *)ire->ire_ipif, (void *)ipif)); 26038 26039 /* 26040 * Multiroute the secured packet, unless IPsec really 26041 * requires the packet to go out only through a particular 26042 * interface. 26043 */ 26044 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26045 ire_t *first_ire; 26046 irb = ire->ire_bucket; 26047 ASSERT(irb != NULL); 26048 /* 26049 * This ire has been looked up as the one that 26050 * goes through the given ipif; 26051 * make sure we do not omit any other multiroute ire 26052 * that may be present in the bucket before this one. 26053 */ 26054 IRB_REFHOLD(irb); 26055 for (first_ire = irb->irb_ire; 26056 first_ire != NULL; 26057 first_ire = first_ire->ire_next) { 26058 if ((first_ire->ire_flags & RTF_MULTIRT) && 26059 (first_ire->ire_addr == ire->ire_addr) && 26060 !(first_ire->ire_marks & 26061 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26062 break; 26063 } 26064 } 26065 26066 if ((first_ire != NULL) && (first_ire != ire)) { 26067 /* 26068 * Don't change the ire if the packet must 26069 * be fragmented if sent via this new one. 26070 */ 26071 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26072 IRE_REFHOLD(first_ire); 26073 if (ire_need_rele) 26074 ire_refrele(ire); 26075 else 26076 ire_need_rele = B_TRUE; 26077 ire = first_ire; 26078 } 26079 } 26080 IRB_REFRELE(irb); 26081 26082 multirt_send = B_TRUE; 26083 max_frag = ire->ire_max_frag; 26084 } else { 26085 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26086 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26087 "flag, attach_if %d\n", attach_if)); 26088 } 26089 } 26090 26091 /* 26092 * In most cases, the emission loop below is entered only once. 26093 * Only in the case where the ire holds the RTF_MULTIRT 26094 * flag, we loop to process all RTF_MULTIRT ires in the 26095 * bucket, and send the packet through all crossed 26096 * RTF_MULTIRT routes. 26097 */ 26098 do { 26099 if (multirt_send) { 26100 /* 26101 * ire1 holds here the next ire to process in the 26102 * bucket. If multirouting is expected, 26103 * any non-RTF_MULTIRT ire that has the 26104 * right destination address is ignored. 26105 */ 26106 ASSERT(irb != NULL); 26107 IRB_REFHOLD(irb); 26108 for (ire1 = ire->ire_next; 26109 ire1 != NULL; 26110 ire1 = ire1->ire_next) { 26111 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26112 continue; 26113 if (ire1->ire_addr != ire->ire_addr) 26114 continue; 26115 if (ire1->ire_marks & 26116 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26117 continue; 26118 /* No loopback here */ 26119 if (ire1->ire_stq == NULL) 26120 continue; 26121 /* 26122 * Ensure we do not exceed the MTU 26123 * of the next route. 26124 */ 26125 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26126 ip_multirt_bad_mtu(ire1, max_frag); 26127 continue; 26128 } 26129 26130 IRE_REFHOLD(ire1); 26131 break; 26132 } 26133 IRB_REFRELE(irb); 26134 if (ire1 != NULL) { 26135 /* 26136 * We are in a multiple send case, need to 26137 * make a copy of the packet. 26138 */ 26139 next_mp = copymsg(ipsec_mp); 26140 if (next_mp == NULL) { 26141 ire_refrele(ire1); 26142 ire1 = NULL; 26143 } 26144 } 26145 } 26146 /* 26147 * Everything is done. Send it out on the wire 26148 * 26149 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26150 * either send it on the wire or, in the case of 26151 * HW acceleration, call ipsec_hw_putnext. 26152 */ 26153 if (ire->ire_nce && 26154 ire->ire_nce->nce_state != ND_REACHABLE) { 26155 DTRACE_PROBE2(ip__wput__ipsec__bail, 26156 (ire_t *), ire, (mblk_t *), ipsec_mp); 26157 /* 26158 * If ire's link-layer is unresolved (this 26159 * would only happen if the incomplete ire 26160 * was added to cachetable via forwarding path) 26161 * don't bother going to ip_xmit_v4. Just drop the 26162 * packet. 26163 * There is a slight risk here, in that, if we 26164 * have the forwarding path create an incomplete 26165 * IRE, then until the IRE is completed, any 26166 * transmitted IPsec packets will be dropped 26167 * instead of being queued waiting for resolution. 26168 * 26169 * But the likelihood of a forwarding packet and a wput 26170 * packet sending to the same dst at the same time 26171 * and there not yet be an ARP entry for it is small. 26172 * Furthermore, if this actually happens, it might 26173 * be likely that wput would generate multiple 26174 * packets (and forwarding would also have a train 26175 * of packets) for that destination. If this is 26176 * the case, some of them would have been dropped 26177 * anyway, since ARP only queues a few packets while 26178 * waiting for resolution 26179 * 26180 * NOTE: We should really call ip_xmit_v4, 26181 * and let it queue the packet and send the 26182 * ARP query and have ARP come back thus: 26183 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26184 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26185 * hw accel work. But it's too complex to get 26186 * the IPsec hw acceleration approach to fit 26187 * well with ip_xmit_v4 doing ARP without 26188 * doing IPsec simplification. For now, we just 26189 * poke ip_xmit_v4 to trigger the arp resolve, so 26190 * that we can continue with the send on the next 26191 * attempt. 26192 * 26193 * XXX THis should be revisited, when 26194 * the IPsec/IP interaction is cleaned up 26195 */ 26196 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26197 " - dropping packet\n")); 26198 freemsg(ipsec_mp); 26199 /* 26200 * Call ip_xmit_v4() to trigger ARP query 26201 * in case the nce_state is ND_INITIAL 26202 */ 26203 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26204 goto drop_pkt; 26205 } 26206 26207 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26208 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26209 mblk_t *, ipsec_mp); 26210 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26211 ipst->ips_ipv4firewall_physical_out, 26212 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26213 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26214 if (ipsec_mp == NULL) 26215 goto drop_pkt; 26216 26217 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26218 pktxmit_state = ip_xmit_v4(mp, ire, 26219 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26220 26221 if ((pktxmit_state == SEND_FAILED) || 26222 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26223 26224 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26225 drop_pkt: 26226 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26227 ipIfStatsOutDiscards); 26228 if (ire_need_rele) 26229 ire_refrele(ire); 26230 if (ire1 != NULL) { 26231 ire_refrele(ire1); 26232 freemsg(next_mp); 26233 } 26234 goto done; 26235 } 26236 26237 freeb(ipsec_mp); 26238 if (ire_need_rele) 26239 ire_refrele(ire); 26240 26241 if (ire1 != NULL) { 26242 ire = ire1; 26243 ire_need_rele = B_TRUE; 26244 ASSERT(next_mp); 26245 ipsec_mp = next_mp; 26246 mp = ipsec_mp->b_cont; 26247 ire1 = NULL; 26248 next_mp = NULL; 26249 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26250 } else { 26251 multirt_send = B_FALSE; 26252 } 26253 } while (multirt_send); 26254 done: 26255 if (ill != NULL && ill_need_rele) 26256 ill_refrele(ill); 26257 if (ipif != NULL) 26258 ipif_refrele(ipif); 26259 } 26260 26261 /* 26262 * Get the ill corresponding to the specified ire, and compare its 26263 * capabilities with the protocol and algorithms specified by the 26264 * the SA obtained from ipsec_out. If they match, annotate the 26265 * ipsec_out structure to indicate that the packet needs acceleration. 26266 * 26267 * 26268 * A packet is eligible for outbound hardware acceleration if the 26269 * following conditions are satisfied: 26270 * 26271 * 1. the packet will not be fragmented 26272 * 2. the provider supports the algorithm 26273 * 3. there is no pending control message being exchanged 26274 * 4. snoop is not attached 26275 * 5. the destination address is not a broadcast or multicast address. 26276 * 26277 * Rationale: 26278 * - Hardware drivers do not support fragmentation with 26279 * the current interface. 26280 * - snoop, multicast, and broadcast may result in exposure of 26281 * a cleartext datagram. 26282 * We check all five of these conditions here. 26283 * 26284 * XXX would like to nuke "ire_t *" parameter here; problem is that 26285 * IRE is only way to figure out if a v4 address is a broadcast and 26286 * thus ineligible for acceleration... 26287 */ 26288 static void 26289 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26290 { 26291 ipsec_out_t *io; 26292 mblk_t *data_mp; 26293 uint_t plen, overhead; 26294 ip_stack_t *ipst; 26295 26296 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26297 return; 26298 26299 if (ill == NULL) 26300 return; 26301 ipst = ill->ill_ipst; 26302 /* 26303 * Destination address is a broadcast or multicast. Punt. 26304 */ 26305 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26306 IRE_LOCAL))) 26307 return; 26308 26309 data_mp = ipsec_mp->b_cont; 26310 26311 if (ill->ill_isv6) { 26312 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26313 26314 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26315 return; 26316 26317 plen = ip6h->ip6_plen; 26318 } else { 26319 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26320 26321 if (CLASSD(ipha->ipha_dst)) 26322 return; 26323 26324 plen = ipha->ipha_length; 26325 } 26326 /* 26327 * Is there a pending DLPI control message being exchanged 26328 * between IP/IPsec and the DLS Provider? If there is, it 26329 * could be a SADB update, and the state of the DLS Provider 26330 * SADB might not be in sync with the SADB maintained by 26331 * IPsec. To avoid dropping packets or using the wrong keying 26332 * material, we do not accelerate this packet. 26333 */ 26334 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26335 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26336 "ill_dlpi_pending! don't accelerate packet\n")); 26337 return; 26338 } 26339 26340 /* 26341 * Is the Provider in promiscous mode? If it does, we don't 26342 * accelerate the packet since it will bounce back up to the 26343 * listeners in the clear. 26344 */ 26345 if (ill->ill_promisc_on_phys) { 26346 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26347 "ill in promiscous mode, don't accelerate packet\n")); 26348 return; 26349 } 26350 26351 /* 26352 * Will the packet require fragmentation? 26353 */ 26354 26355 /* 26356 * IPsec ESP note: this is a pessimistic estimate, but the same 26357 * as is used elsewhere. 26358 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26359 * + 2-byte trailer 26360 */ 26361 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26362 IPSEC_BASE_ESP_HDR_SIZE(sa); 26363 26364 if ((plen + overhead) > ill->ill_max_mtu) 26365 return; 26366 26367 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26368 26369 /* 26370 * Can the ill accelerate this IPsec protocol and algorithm 26371 * specified by the SA? 26372 */ 26373 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26374 ill->ill_isv6, sa, ipst->ips_netstack)) { 26375 return; 26376 } 26377 26378 /* 26379 * Tell AH or ESP that the outbound ill is capable of 26380 * accelerating this packet. 26381 */ 26382 io->ipsec_out_is_capab_ill = B_TRUE; 26383 } 26384 26385 /* 26386 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26387 * 26388 * If this function returns B_TRUE, the requested SA's have been filled 26389 * into the ipsec_out_*_sa pointers. 26390 * 26391 * If the function returns B_FALSE, the packet has been "consumed", most 26392 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26393 * 26394 * The SA references created by the protocol-specific "select" 26395 * function will be released when the ipsec_mp is freed, thanks to the 26396 * ipsec_out_free destructor -- see spd.c. 26397 */ 26398 static boolean_t 26399 ipsec_out_select_sa(mblk_t *ipsec_mp) 26400 { 26401 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26402 ipsec_out_t *io; 26403 ipsec_policy_t *pp; 26404 ipsec_action_t *ap; 26405 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26406 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26407 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26408 26409 if (!io->ipsec_out_secure) { 26410 /* 26411 * We came here by mistake. 26412 * Don't bother with ipsec processing 26413 * We should "discourage" this path in the future. 26414 */ 26415 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26416 return (B_FALSE); 26417 } 26418 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26419 ASSERT((io->ipsec_out_policy != NULL) || 26420 (io->ipsec_out_act != NULL)); 26421 26422 ASSERT(io->ipsec_out_failed == B_FALSE); 26423 26424 /* 26425 * IPsec processing has started. 26426 */ 26427 io->ipsec_out_proc_begin = B_TRUE; 26428 ap = io->ipsec_out_act; 26429 if (ap == NULL) { 26430 pp = io->ipsec_out_policy; 26431 ASSERT(pp != NULL); 26432 ap = pp->ipsp_act; 26433 ASSERT(ap != NULL); 26434 } 26435 26436 /* 26437 * We have an action. now, let's select SA's. 26438 * (In the future, we can cache this in the conn_t..) 26439 */ 26440 if (ap->ipa_want_esp) { 26441 if (io->ipsec_out_esp_sa == NULL) { 26442 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26443 IPPROTO_ESP); 26444 } 26445 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26446 } 26447 26448 if (ap->ipa_want_ah) { 26449 if (io->ipsec_out_ah_sa == NULL) { 26450 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26451 IPPROTO_AH); 26452 } 26453 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26454 /* 26455 * The ESP and AH processing order needs to be preserved 26456 * when both protocols are required (ESP should be applied 26457 * before AH for an outbound packet). Force an ESP ACQUIRE 26458 * when both ESP and AH are required, and an AH ACQUIRE 26459 * is needed. 26460 */ 26461 if (ap->ipa_want_esp && need_ah_acquire) 26462 need_esp_acquire = B_TRUE; 26463 } 26464 26465 /* 26466 * Send an ACQUIRE (extended, regular, or both) if we need one. 26467 * Release SAs that got referenced, but will not be used until we 26468 * acquire _all_ of the SAs we need. 26469 */ 26470 if (need_ah_acquire || need_esp_acquire) { 26471 if (io->ipsec_out_ah_sa != NULL) { 26472 IPSA_REFRELE(io->ipsec_out_ah_sa); 26473 io->ipsec_out_ah_sa = NULL; 26474 } 26475 if (io->ipsec_out_esp_sa != NULL) { 26476 IPSA_REFRELE(io->ipsec_out_esp_sa); 26477 io->ipsec_out_esp_sa = NULL; 26478 } 26479 26480 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26481 return (B_FALSE); 26482 } 26483 26484 return (B_TRUE); 26485 } 26486 26487 /* 26488 * Process an IPSEC_OUT message and see what you can 26489 * do with it. 26490 * IPQoS Notes: 26491 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26492 * IPsec. 26493 * XXX would like to nuke ire_t. 26494 * XXX ill_index better be "real" 26495 */ 26496 void 26497 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26498 { 26499 ipsec_out_t *io; 26500 ipsec_policy_t *pp; 26501 ipsec_action_t *ap; 26502 ipha_t *ipha; 26503 ip6_t *ip6h; 26504 mblk_t *mp; 26505 ill_t *ill; 26506 zoneid_t zoneid; 26507 ipsec_status_t ipsec_rc; 26508 boolean_t ill_need_rele = B_FALSE; 26509 ip_stack_t *ipst; 26510 ipsec_stack_t *ipss; 26511 26512 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26513 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26514 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26515 ipst = io->ipsec_out_ns->netstack_ip; 26516 mp = ipsec_mp->b_cont; 26517 26518 /* 26519 * Initiate IPPF processing. We do it here to account for packets 26520 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26521 * We can check for ipsec_out_proc_begin even for such packets, as 26522 * they will always be false (asserted below). 26523 */ 26524 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26525 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26526 io->ipsec_out_ill_index : ill_index); 26527 if (mp == NULL) { 26528 ip2dbg(("ipsec_out_process: packet dropped "\ 26529 "during IPPF processing\n")); 26530 freeb(ipsec_mp); 26531 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26532 return; 26533 } 26534 } 26535 26536 if (!io->ipsec_out_secure) { 26537 /* 26538 * We came here by mistake. 26539 * Don't bother with ipsec processing 26540 * Should "discourage" this path in the future. 26541 */ 26542 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26543 goto done; 26544 } 26545 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26546 ASSERT((io->ipsec_out_policy != NULL) || 26547 (io->ipsec_out_act != NULL)); 26548 ASSERT(io->ipsec_out_failed == B_FALSE); 26549 26550 ipss = ipst->ips_netstack->netstack_ipsec; 26551 if (!ipsec_loaded(ipss)) { 26552 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26553 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26554 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26555 } else { 26556 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26557 } 26558 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26559 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26560 &ipss->ipsec_dropper); 26561 return; 26562 } 26563 26564 /* 26565 * IPsec processing has started. 26566 */ 26567 io->ipsec_out_proc_begin = B_TRUE; 26568 ap = io->ipsec_out_act; 26569 if (ap == NULL) { 26570 pp = io->ipsec_out_policy; 26571 ASSERT(pp != NULL); 26572 ap = pp->ipsp_act; 26573 ASSERT(ap != NULL); 26574 } 26575 26576 /* 26577 * Save the outbound ill index. When the packet comes back 26578 * from IPsec, we make sure the ill hasn't changed or disappeared 26579 * before sending it the accelerated packet. 26580 */ 26581 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26582 int ifindex; 26583 ill = ire_to_ill(ire); 26584 ifindex = ill->ill_phyint->phyint_ifindex; 26585 io->ipsec_out_capab_ill_index = ifindex; 26586 } 26587 26588 /* 26589 * The order of processing is first insert a IP header if needed. 26590 * Then insert the ESP header and then the AH header. 26591 */ 26592 if ((io->ipsec_out_se_done == B_FALSE) && 26593 (ap->ipa_want_se)) { 26594 /* 26595 * First get the outer IP header before sending 26596 * it to ESP. 26597 */ 26598 ipha_t *oipha, *iipha; 26599 mblk_t *outer_mp, *inner_mp; 26600 26601 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26602 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26603 "ipsec_out_process: " 26604 "Self-Encapsulation failed: Out of memory\n"); 26605 freemsg(ipsec_mp); 26606 if (ill != NULL) { 26607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26608 } else { 26609 BUMP_MIB(&ipst->ips_ip_mib, 26610 ipIfStatsOutDiscards); 26611 } 26612 return; 26613 } 26614 inner_mp = ipsec_mp->b_cont; 26615 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26616 oipha = (ipha_t *)outer_mp->b_rptr; 26617 iipha = (ipha_t *)inner_mp->b_rptr; 26618 *oipha = *iipha; 26619 outer_mp->b_wptr += sizeof (ipha_t); 26620 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26621 sizeof (ipha_t)); 26622 oipha->ipha_protocol = IPPROTO_ENCAP; 26623 oipha->ipha_version_and_hdr_length = 26624 IP_SIMPLE_HDR_VERSION; 26625 oipha->ipha_hdr_checksum = 0; 26626 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26627 outer_mp->b_cont = inner_mp; 26628 ipsec_mp->b_cont = outer_mp; 26629 26630 io->ipsec_out_se_done = B_TRUE; 26631 io->ipsec_out_tunnel = B_TRUE; 26632 } 26633 26634 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26635 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26636 !ipsec_out_select_sa(ipsec_mp)) 26637 return; 26638 26639 /* 26640 * By now, we know what SA's to use. Toss over to ESP & AH 26641 * to do the heavy lifting. 26642 */ 26643 zoneid = io->ipsec_out_zoneid; 26644 ASSERT(zoneid != ALL_ZONES); 26645 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26646 ASSERT(io->ipsec_out_esp_sa != NULL); 26647 io->ipsec_out_esp_done = B_TRUE; 26648 /* 26649 * Note that since hw accel can only apply one transform, 26650 * not two, we skip hw accel for ESP if we also have AH 26651 * This is an design limitation of the interface 26652 * which should be revisited. 26653 */ 26654 ASSERT(ire != NULL); 26655 if (io->ipsec_out_ah_sa == NULL) { 26656 ill = (ill_t *)ire->ire_stq->q_ptr; 26657 ipsec_out_is_accelerated(ipsec_mp, 26658 io->ipsec_out_esp_sa, ill, ire); 26659 } 26660 26661 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26662 switch (ipsec_rc) { 26663 case IPSEC_STATUS_SUCCESS: 26664 break; 26665 case IPSEC_STATUS_FAILED: 26666 if (ill != NULL) { 26667 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26668 } else { 26669 BUMP_MIB(&ipst->ips_ip_mib, 26670 ipIfStatsOutDiscards); 26671 } 26672 /* FALLTHRU */ 26673 case IPSEC_STATUS_PENDING: 26674 return; 26675 } 26676 } 26677 26678 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26679 ASSERT(io->ipsec_out_ah_sa != NULL); 26680 io->ipsec_out_ah_done = B_TRUE; 26681 if (ire == NULL) { 26682 int idx = io->ipsec_out_capab_ill_index; 26683 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26684 NULL, NULL, NULL, NULL, ipst); 26685 ill_need_rele = B_TRUE; 26686 } else { 26687 ill = (ill_t *)ire->ire_stq->q_ptr; 26688 } 26689 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26690 ire); 26691 26692 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26693 switch (ipsec_rc) { 26694 case IPSEC_STATUS_SUCCESS: 26695 break; 26696 case IPSEC_STATUS_FAILED: 26697 if (ill != NULL) { 26698 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26699 } else { 26700 BUMP_MIB(&ipst->ips_ip_mib, 26701 ipIfStatsOutDiscards); 26702 } 26703 /* FALLTHRU */ 26704 case IPSEC_STATUS_PENDING: 26705 if (ill != NULL && ill_need_rele) 26706 ill_refrele(ill); 26707 return; 26708 } 26709 } 26710 /* 26711 * We are done with IPsec processing. Send it over 26712 * the wire. 26713 */ 26714 done: 26715 mp = ipsec_mp->b_cont; 26716 ipha = (ipha_t *)mp->b_rptr; 26717 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26718 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26719 } else { 26720 ip6h = (ip6_t *)ipha; 26721 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26722 } 26723 if (ill != NULL && ill_need_rele) 26724 ill_refrele(ill); 26725 } 26726 26727 /* ARGSUSED */ 26728 void 26729 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26730 { 26731 opt_restart_t *or; 26732 int err; 26733 conn_t *connp; 26734 26735 ASSERT(CONN_Q(q)); 26736 connp = Q_TO_CONN(q); 26737 26738 ASSERT(first_mp->b_datap->db_type == M_CTL); 26739 or = (opt_restart_t *)first_mp->b_rptr; 26740 /* 26741 * We don't need to pass any credentials here since this is just 26742 * a restart. The credentials are passed in when svr4_optcom_req 26743 * is called the first time (from ip_wput_nondata). 26744 */ 26745 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26746 err = svr4_optcom_req(q, first_mp, NULL, 26747 &ip_opt_obj, B_FALSE); 26748 } else { 26749 ASSERT(or->or_type == T_OPTMGMT_REQ); 26750 err = tpi_optcom_req(q, first_mp, NULL, 26751 &ip_opt_obj, B_FALSE); 26752 } 26753 if (err != EINPROGRESS) { 26754 /* operation is done */ 26755 CONN_OPER_PENDING_DONE(connp); 26756 } 26757 } 26758 26759 /* 26760 * ioctls that go through a down/up sequence may need to wait for the down 26761 * to complete. This involves waiting for the ire and ipif refcnts to go down 26762 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26763 */ 26764 /* ARGSUSED */ 26765 void 26766 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26767 { 26768 struct iocblk *iocp; 26769 mblk_t *mp1; 26770 ip_ioctl_cmd_t *ipip; 26771 int err; 26772 sin_t *sin; 26773 struct lifreq *lifr; 26774 struct ifreq *ifr; 26775 26776 iocp = (struct iocblk *)mp->b_rptr; 26777 ASSERT(ipsq != NULL); 26778 /* Existence of mp1 verified in ip_wput_nondata */ 26779 mp1 = mp->b_cont->b_cont; 26780 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26781 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26782 /* 26783 * Special case where ipsq_current_ipif is not set: 26784 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26785 * ill could also have become part of a ipmp group in the 26786 * process, we are here as were not able to complete the 26787 * operation in ipif_set_values because we could not become 26788 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26789 * will not be set so we need to set it. 26790 */ 26791 ill_t *ill = q->q_ptr; 26792 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26793 } 26794 ASSERT(ipsq->ipsq_current_ipif != NULL); 26795 26796 if (ipip->ipi_cmd_type == IF_CMD) { 26797 /* This a old style SIOC[GS]IF* command */ 26798 ifr = (struct ifreq *)mp1->b_rptr; 26799 sin = (sin_t *)&ifr->ifr_addr; 26800 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26801 /* This a new style SIOC[GS]LIF* command */ 26802 lifr = (struct lifreq *)mp1->b_rptr; 26803 sin = (sin_t *)&lifr->lifr_addr; 26804 } else { 26805 sin = NULL; 26806 } 26807 26808 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26809 ipip, mp1->b_rptr); 26810 26811 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26812 } 26813 26814 /* 26815 * ioctl processing 26816 * 26817 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26818 * the ioctl command in the ioctl tables, determines the copyin data size 26819 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26820 * 26821 * ioctl processing then continues when the M_IOCDATA makes its way down to 26822 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26823 * associated 'conn' is refheld till the end of the ioctl and the general 26824 * ioctl processing function ip_process_ioctl() is called to extract the 26825 * arguments and process the ioctl. To simplify extraction, ioctl commands 26826 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26827 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26828 * is used to extract the ioctl's arguments. 26829 * 26830 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26831 * so goes thru the serialization primitive ipsq_try_enter. Then the 26832 * appropriate function to handle the ioctl is called based on the entry in 26833 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26834 * which also refreleases the 'conn' that was refheld at the start of the 26835 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26836 * 26837 * Many exclusive ioctls go thru an internal down up sequence as part of 26838 * the operation. For example an attempt to change the IP address of an 26839 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26840 * does all the cleanup such as deleting all ires that use this address. 26841 * Then we need to wait till all references to the interface go away. 26842 */ 26843 void 26844 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26845 { 26846 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26847 ip_ioctl_cmd_t *ipip = arg; 26848 ip_extract_func_t *extract_funcp; 26849 cmd_info_t ci; 26850 int err; 26851 boolean_t entered_ipsq = B_FALSE; 26852 26853 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26854 26855 if (ipip == NULL) 26856 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26857 26858 /* 26859 * SIOCLIFADDIF needs to go thru a special path since the 26860 * ill may not exist yet. This happens in the case of lo0 26861 * which is created using this ioctl. 26862 */ 26863 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26864 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26865 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26866 return; 26867 } 26868 26869 ci.ci_ipif = NULL; 26870 if (ipip->ipi_cmd_type == MISC_CMD) { 26871 /* 26872 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26873 */ 26874 if (ipip->ipi_cmd == IF_UNITSEL) { 26875 /* ioctl comes down the ill */ 26876 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26877 ipif_refhold(ci.ci_ipif); 26878 } 26879 err = 0; 26880 ci.ci_sin = NULL; 26881 ci.ci_sin6 = NULL; 26882 ci.ci_lifr = NULL; 26883 } else { 26884 switch (ipip->ipi_cmd_type) { 26885 case IF_CMD: 26886 case LIF_CMD: 26887 extract_funcp = ip_extract_lifreq; 26888 break; 26889 26890 case ARP_CMD: 26891 case XARP_CMD: 26892 extract_funcp = ip_extract_arpreq; 26893 break; 26894 26895 case TUN_CMD: 26896 extract_funcp = ip_extract_tunreq; 26897 break; 26898 26899 case MSFILT_CMD: 26900 extract_funcp = ip_extract_msfilter; 26901 break; 26902 26903 default: 26904 ASSERT(0); 26905 } 26906 26907 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26908 if (err != 0) { 26909 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26910 return; 26911 } 26912 26913 /* 26914 * All of the extraction functions return a refheld ipif. 26915 */ 26916 ASSERT(ci.ci_ipif != NULL); 26917 } 26918 26919 /* 26920 * If ipsq is non-null, we are already being called exclusively 26921 */ 26922 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26923 if (!(ipip->ipi_flags & IPI_WR)) { 26924 /* 26925 * A return value of EINPROGRESS means the ioctl is 26926 * either queued and waiting for some reason or has 26927 * already completed. 26928 */ 26929 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26930 ci.ci_lifr); 26931 if (ci.ci_ipif != NULL) 26932 ipif_refrele(ci.ci_ipif); 26933 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26934 return; 26935 } 26936 26937 ASSERT(ci.ci_ipif != NULL); 26938 26939 if (ipsq == NULL) { 26940 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26941 ip_process_ioctl, NEW_OP, B_TRUE); 26942 entered_ipsq = B_TRUE; 26943 } 26944 /* 26945 * Release the ipif so that ipif_down and friends that wait for 26946 * references to go away are not misled about the current ipif_refcnt 26947 * values. We are writer so we can access the ipif even after releasing 26948 * the ipif. 26949 */ 26950 ipif_refrele(ci.ci_ipif); 26951 if (ipsq == NULL) 26952 return; 26953 26954 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26955 26956 /* 26957 * For most set ioctls that come here, this serves as a single point 26958 * where we set the IPIF_CHANGING flag. This ensures that there won't 26959 * be any new references to the ipif. This helps functions that go 26960 * through this path and end up trying to wait for the refcnts 26961 * associated with the ipif to go down to zero. Some exceptions are 26962 * Failover, Failback, and Groupname commands that operate on more than 26963 * just the ci.ci_ipif. These commands internally determine the 26964 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26965 * flags on that set. Another exception is the Removeif command that 26966 * sets the IPIF_CONDEMNED flag internally after identifying the right 26967 * ipif to operate on. 26968 */ 26969 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26970 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26971 ipip->ipi_cmd != SIOCLIFFAILOVER && 26972 ipip->ipi_cmd != SIOCLIFFAILBACK && 26973 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26974 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26975 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26976 26977 /* 26978 * A return value of EINPROGRESS means the ioctl is 26979 * either queued and waiting for some reason or has 26980 * already completed. 26981 */ 26982 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26983 26984 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26985 26986 if (entered_ipsq) 26987 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26988 } 26989 26990 /* 26991 * Complete the ioctl. Typically ioctls use the mi package and need to 26992 * do mi_copyout/mi_copy_done. 26993 */ 26994 void 26995 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26996 { 26997 conn_t *connp = NULL; 26998 26999 if (err == EINPROGRESS) 27000 return; 27001 27002 if (CONN_Q(q)) { 27003 connp = Q_TO_CONN(q); 27004 ASSERT(connp->conn_ref >= 2); 27005 } 27006 27007 switch (mode) { 27008 case COPYOUT: 27009 if (err == 0) 27010 mi_copyout(q, mp); 27011 else 27012 mi_copy_done(q, mp, err); 27013 break; 27014 27015 case NO_COPYOUT: 27016 mi_copy_done(q, mp, err); 27017 break; 27018 27019 default: 27020 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27021 break; 27022 } 27023 27024 /* 27025 * The refhold placed at the start of the ioctl is released here. 27026 */ 27027 if (connp != NULL) 27028 CONN_OPER_PENDING_DONE(connp); 27029 27030 if (ipsq != NULL) 27031 ipsq_current_finish(ipsq); 27032 } 27033 27034 /* 27035 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27036 */ 27037 /* ARGSUSED */ 27038 void 27039 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27040 { 27041 conn_t *connp = arg; 27042 tcp_t *tcp; 27043 27044 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27045 tcp = connp->conn_tcp; 27046 27047 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27048 freemsg(mp); 27049 else 27050 tcp_rput_other(tcp, mp); 27051 CONN_OPER_PENDING_DONE(connp); 27052 } 27053 27054 /* Called from ip_wput for all non data messages */ 27055 /* ARGSUSED */ 27056 void 27057 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27058 { 27059 mblk_t *mp1; 27060 ire_t *ire, *fake_ire; 27061 ill_t *ill; 27062 struct iocblk *iocp; 27063 ip_ioctl_cmd_t *ipip; 27064 cred_t *cr; 27065 conn_t *connp; 27066 int err; 27067 nce_t *nce; 27068 ipif_t *ipif; 27069 ip_stack_t *ipst; 27070 char *proto_str; 27071 27072 if (CONN_Q(q)) { 27073 connp = Q_TO_CONN(q); 27074 ipst = connp->conn_netstack->netstack_ip; 27075 } else { 27076 connp = NULL; 27077 ipst = ILLQ_TO_IPST(q); 27078 } 27079 27080 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27081 27082 switch (DB_TYPE(mp)) { 27083 case M_IOCTL: 27084 /* 27085 * IOCTL processing begins in ip_sioctl_copyin_setup which 27086 * will arrange to copy in associated control structures. 27087 */ 27088 ip_sioctl_copyin_setup(q, mp); 27089 return; 27090 case M_IOCDATA: 27091 /* 27092 * Ensure that this is associated with one of our trans- 27093 * parent ioctls. If it's not ours, discard it if we're 27094 * running as a driver, or pass it on if we're a module. 27095 */ 27096 iocp = (struct iocblk *)mp->b_rptr; 27097 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27098 if (ipip == NULL) { 27099 if (q->q_next == NULL) { 27100 goto nak; 27101 } else { 27102 putnext(q, mp); 27103 } 27104 return; 27105 } 27106 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27107 /* 27108 * the ioctl is one we recognise, but is not 27109 * consumed by IP as a module, pass M_IOCDATA 27110 * for processing downstream, but only for 27111 * common Streams ioctls. 27112 */ 27113 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27114 putnext(q, mp); 27115 return; 27116 } else { 27117 goto nak; 27118 } 27119 } 27120 27121 /* IOCTL continuation following copyin or copyout. */ 27122 if (mi_copy_state(q, mp, NULL) == -1) { 27123 /* 27124 * The copy operation failed. mi_copy_state already 27125 * cleaned up, so we're out of here. 27126 */ 27127 return; 27128 } 27129 /* 27130 * If we just completed a copy in, we become writer and 27131 * continue processing in ip_sioctl_copyin_done. If it 27132 * was a copy out, we call mi_copyout again. If there is 27133 * nothing more to copy out, it will complete the IOCTL. 27134 */ 27135 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27136 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27137 mi_copy_done(q, mp, EPROTO); 27138 return; 27139 } 27140 /* 27141 * Check for cases that need more copying. A return 27142 * value of 0 means a second copyin has been started, 27143 * so we return; a return value of 1 means no more 27144 * copying is needed, so we continue. 27145 */ 27146 if (ipip->ipi_cmd_type == MSFILT_CMD && 27147 MI_COPY_COUNT(mp) == 1) { 27148 if (ip_copyin_msfilter(q, mp) == 0) 27149 return; 27150 } 27151 /* 27152 * Refhold the conn, till the ioctl completes. This is 27153 * needed in case the ioctl ends up in the pending mp 27154 * list. Every mp in the ill_pending_mp list and 27155 * the ipsq_pending_mp must have a refhold on the conn 27156 * to resume processing. The refhold is released when 27157 * the ioctl completes. (normally or abnormally) 27158 * In all cases ip_ioctl_finish is called to finish 27159 * the ioctl. 27160 */ 27161 if (connp != NULL) { 27162 /* This is not a reentry */ 27163 ASSERT(ipsq == NULL); 27164 CONN_INC_REF(connp); 27165 } else { 27166 if (!(ipip->ipi_flags & IPI_MODOK)) { 27167 mi_copy_done(q, mp, EINVAL); 27168 return; 27169 } 27170 } 27171 27172 ip_process_ioctl(ipsq, q, mp, ipip); 27173 27174 } else { 27175 mi_copyout(q, mp); 27176 } 27177 return; 27178 nak: 27179 iocp->ioc_error = EINVAL; 27180 mp->b_datap->db_type = M_IOCNAK; 27181 iocp->ioc_count = 0; 27182 qreply(q, mp); 27183 return; 27184 27185 case M_IOCNAK: 27186 /* 27187 * The only way we could get here is if a resolver didn't like 27188 * an IOCTL we sent it. This shouldn't happen. 27189 */ 27190 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27191 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27192 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27193 freemsg(mp); 27194 return; 27195 case M_IOCACK: 27196 /* /dev/ip shouldn't see this */ 27197 if (CONN_Q(q)) 27198 goto nak; 27199 27200 /* Finish socket ioctls passed through to ARP. */ 27201 ip_sioctl_iocack(q, mp); 27202 return; 27203 case M_FLUSH: 27204 if (*mp->b_rptr & FLUSHW) 27205 flushq(q, FLUSHALL); 27206 if (q->q_next) { 27207 putnext(q, mp); 27208 return; 27209 } 27210 if (*mp->b_rptr & FLUSHR) { 27211 *mp->b_rptr &= ~FLUSHW; 27212 qreply(q, mp); 27213 return; 27214 } 27215 freemsg(mp); 27216 return; 27217 case IRE_DB_REQ_TYPE: 27218 if (connp == NULL) { 27219 proto_str = "IRE_DB_REQ_TYPE"; 27220 goto protonak; 27221 } 27222 /* An Upper Level Protocol wants a copy of an IRE. */ 27223 ip_ire_req(q, mp); 27224 return; 27225 case M_CTL: 27226 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27227 break; 27228 27229 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27230 TUN_HELLO) { 27231 ASSERT(connp != NULL); 27232 connp->conn_flags |= IPCL_IPTUN; 27233 freeb(mp); 27234 return; 27235 } 27236 27237 /* M_CTL messages are used by ARP to tell us things. */ 27238 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27239 break; 27240 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27241 case AR_ENTRY_SQUERY: 27242 ip_wput_ctl(q, mp); 27243 return; 27244 case AR_CLIENT_NOTIFY: 27245 ip_arp_news(q, mp); 27246 return; 27247 case AR_DLPIOP_DONE: 27248 ASSERT(q->q_next != NULL); 27249 ill = (ill_t *)q->q_ptr; 27250 /* qwriter_ip releases the refhold */ 27251 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27252 ill_refhold(ill); 27253 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27254 return; 27255 case AR_ARP_CLOSING: 27256 /* 27257 * ARP (above us) is closing. If no ARP bringup is 27258 * currently pending, ack the message so that ARP 27259 * can complete its close. Also mark ill_arp_closing 27260 * so that new ARP bringups will fail. If any 27261 * ARP bringup is currently in progress, we will 27262 * ack this when the current ARP bringup completes. 27263 */ 27264 ASSERT(q->q_next != NULL); 27265 ill = (ill_t *)q->q_ptr; 27266 mutex_enter(&ill->ill_lock); 27267 ill->ill_arp_closing = 1; 27268 if (!ill->ill_arp_bringup_pending) { 27269 mutex_exit(&ill->ill_lock); 27270 qreply(q, mp); 27271 } else { 27272 mutex_exit(&ill->ill_lock); 27273 freemsg(mp); 27274 } 27275 return; 27276 case AR_ARP_EXTEND: 27277 /* 27278 * The ARP module above us is capable of duplicate 27279 * address detection. Old ATM drivers will not send 27280 * this message. 27281 */ 27282 ASSERT(q->q_next != NULL); 27283 ill = (ill_t *)q->q_ptr; 27284 ill->ill_arp_extend = B_TRUE; 27285 freemsg(mp); 27286 return; 27287 default: 27288 break; 27289 } 27290 break; 27291 case M_PROTO: 27292 case M_PCPROTO: 27293 /* 27294 * The only PROTO messages we expect are ULP binds and 27295 * copies of option negotiation acknowledgements. 27296 */ 27297 switch (((union T_primitives *)mp->b_rptr)->type) { 27298 case O_T_BIND_REQ: 27299 case T_BIND_REQ: { 27300 /* Request can get queued in bind */ 27301 if (connp == NULL) { 27302 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27303 goto protonak; 27304 } 27305 /* 27306 * The transports except SCTP call ip_bind_{v4,v6}() 27307 * directly instead of a a putnext. SCTP doesn't 27308 * generate any T_BIND_REQ since it has its own 27309 * fanout data structures. However, ESP and AH 27310 * come in for regular binds; all other cases are 27311 * bind retries. 27312 */ 27313 ASSERT(!IPCL_IS_SCTP(connp)); 27314 27315 /* Don't increment refcnt if this is a re-entry */ 27316 if (ipsq == NULL) 27317 CONN_INC_REF(connp); 27318 27319 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27320 connp, NULL) : ip_bind_v4(q, mp, connp); 27321 if (mp == NULL) 27322 return; 27323 if (IPCL_IS_TCP(connp)) { 27324 /* 27325 * In the case of TCP endpoint we 27326 * come here only for bind retries 27327 */ 27328 ASSERT(ipsq != NULL); 27329 CONN_INC_REF(connp); 27330 squeue_fill(connp->conn_sqp, mp, 27331 ip_resume_tcp_bind, connp, 27332 SQTAG_BIND_RETRY); 27333 } else if (IPCL_IS_UDP(connp)) { 27334 /* 27335 * In the case of UDP endpoint we 27336 * come here only for bind retries 27337 */ 27338 ASSERT(ipsq != NULL); 27339 udp_resume_bind(connp, mp); 27340 } else if (IPCL_IS_RAWIP(connp)) { 27341 /* 27342 * In the case of RAWIP endpoint we 27343 * come here only for bind retries 27344 */ 27345 ASSERT(ipsq != NULL); 27346 rawip_resume_bind(connp, mp); 27347 } else { 27348 /* The case of AH and ESP */ 27349 qreply(q, mp); 27350 CONN_OPER_PENDING_DONE(connp); 27351 } 27352 return; 27353 } 27354 case T_SVR4_OPTMGMT_REQ: 27355 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27356 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27357 27358 if (connp == NULL) { 27359 proto_str = "T_SVR4_OPTMGMT_REQ"; 27360 goto protonak; 27361 } 27362 27363 if (!snmpcom_req(q, mp, ip_snmp_set, 27364 ip_snmp_get, cr)) { 27365 /* 27366 * Call svr4_optcom_req so that it can 27367 * generate the ack. We don't come here 27368 * if this operation is being restarted. 27369 * ip_restart_optmgmt will drop the conn ref. 27370 * In the case of ipsec option after the ipsec 27371 * load is complete conn_restart_ipsec_waiter 27372 * drops the conn ref. 27373 */ 27374 ASSERT(ipsq == NULL); 27375 CONN_INC_REF(connp); 27376 if (ip_check_for_ipsec_opt(q, mp)) 27377 return; 27378 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27379 B_FALSE); 27380 if (err != EINPROGRESS) { 27381 /* Operation is done */ 27382 CONN_OPER_PENDING_DONE(connp); 27383 } 27384 } 27385 return; 27386 case T_OPTMGMT_REQ: 27387 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27388 /* 27389 * Note: No snmpcom_req support through new 27390 * T_OPTMGMT_REQ. 27391 * Call tpi_optcom_req so that it can 27392 * generate the ack. 27393 */ 27394 if (connp == NULL) { 27395 proto_str = "T_OPTMGMT_REQ"; 27396 goto protonak; 27397 } 27398 27399 ASSERT(ipsq == NULL); 27400 /* 27401 * We don't come here for restart. ip_restart_optmgmt 27402 * will drop the conn ref. In the case of ipsec option 27403 * after the ipsec load is complete 27404 * conn_restart_ipsec_waiter drops the conn ref. 27405 */ 27406 CONN_INC_REF(connp); 27407 if (ip_check_for_ipsec_opt(q, mp)) 27408 return; 27409 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27410 if (err != EINPROGRESS) { 27411 /* Operation is done */ 27412 CONN_OPER_PENDING_DONE(connp); 27413 } 27414 return; 27415 case T_UNBIND_REQ: 27416 if (connp == NULL) { 27417 proto_str = "T_UNBIND_REQ"; 27418 goto protonak; 27419 } 27420 mp = ip_unbind(q, mp); 27421 qreply(q, mp); 27422 return; 27423 default: 27424 /* 27425 * Have to drop any DLPI messages coming down from 27426 * arp (such as an info_req which would cause ip 27427 * to receive an extra info_ack if it was passed 27428 * through. 27429 */ 27430 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27431 (int)*(uint_t *)mp->b_rptr)); 27432 freemsg(mp); 27433 return; 27434 } 27435 /* NOTREACHED */ 27436 case IRE_DB_TYPE: { 27437 nce_t *nce; 27438 ill_t *ill; 27439 in6_addr_t gw_addr_v6; 27440 27441 27442 /* 27443 * This is a response back from a resolver. It 27444 * consists of a message chain containing: 27445 * IRE_MBLK-->LL_HDR_MBLK->pkt 27446 * The IRE_MBLK is the one we allocated in ip_newroute. 27447 * The LL_HDR_MBLK is the DLPI header to use to get 27448 * the attached packet, and subsequent ones for the 27449 * same destination, transmitted. 27450 */ 27451 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27452 break; 27453 /* 27454 * First, check to make sure the resolution succeeded. 27455 * If it failed, the second mblk will be empty. 27456 * If it is, free the chain, dropping the packet. 27457 * (We must ire_delete the ire; that frees the ire mblk) 27458 * We're doing this now to support PVCs for ATM; it's 27459 * a partial xresolv implementation. When we fully implement 27460 * xresolv interfaces, instead of freeing everything here 27461 * we'll initiate neighbor discovery. 27462 * 27463 * For v4 (ARP and other external resolvers) the resolver 27464 * frees the message, so no check is needed. This check 27465 * is required, though, for a full xresolve implementation. 27466 * Including this code here now both shows how external 27467 * resolvers can NACK a resolution request using an 27468 * existing design that has no specific provisions for NACKs, 27469 * and also takes into account that the current non-ARP 27470 * external resolver has been coded to use this method of 27471 * NACKing for all IPv6 (xresolv) cases, 27472 * whether our xresolv implementation is complete or not. 27473 * 27474 */ 27475 ire = (ire_t *)mp->b_rptr; 27476 ill = ire_to_ill(ire); 27477 mp1 = mp->b_cont; /* dl_unitdata_req */ 27478 if (mp1->b_rptr == mp1->b_wptr) { 27479 if (ire->ire_ipversion == IPV6_VERSION) { 27480 /* 27481 * XRESOLV interface. 27482 */ 27483 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27484 mutex_enter(&ire->ire_lock); 27485 gw_addr_v6 = ire->ire_gateway_addr_v6; 27486 mutex_exit(&ire->ire_lock); 27487 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27488 nce = ndp_lookup_v6(ill, 27489 &ire->ire_addr_v6, B_FALSE); 27490 } else { 27491 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27492 B_FALSE); 27493 } 27494 if (nce != NULL) { 27495 nce_resolv_failed(nce); 27496 ndp_delete(nce); 27497 NCE_REFRELE(nce); 27498 } 27499 } 27500 mp->b_cont = NULL; 27501 freemsg(mp1); /* frees the pkt as well */ 27502 ASSERT(ire->ire_nce == NULL); 27503 ire_delete((ire_t *)mp->b_rptr); 27504 return; 27505 } 27506 27507 /* 27508 * Split them into IRE_MBLK and pkt and feed it into 27509 * ire_add_then_send. Then in ire_add_then_send 27510 * the IRE will be added, and then the packet will be 27511 * run back through ip_wput. This time it will make 27512 * it to the wire. 27513 */ 27514 mp->b_cont = NULL; 27515 mp = mp1->b_cont; /* now, mp points to pkt */ 27516 mp1->b_cont = NULL; 27517 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27518 if (ire->ire_ipversion == IPV6_VERSION) { 27519 /* 27520 * XRESOLV interface. Find the nce and put a copy 27521 * of the dl_unitdata_req in nce_res_mp 27522 */ 27523 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27524 mutex_enter(&ire->ire_lock); 27525 gw_addr_v6 = ire->ire_gateway_addr_v6; 27526 mutex_exit(&ire->ire_lock); 27527 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27528 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27529 B_FALSE); 27530 } else { 27531 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27532 } 27533 if (nce != NULL) { 27534 /* 27535 * We have to protect nce_res_mp here 27536 * from being accessed by other threads 27537 * while we change the mblk pointer. 27538 * Other functions will also lock the nce when 27539 * accessing nce_res_mp. 27540 * 27541 * The reason we change the mblk pointer 27542 * here rather than copying the resolved address 27543 * into the template is that, unlike with 27544 * ethernet, we have no guarantee that the 27545 * resolved address length will be 27546 * smaller than or equal to the lla length 27547 * with which the template was allocated, 27548 * (for ethernet, they're equal) 27549 * so we have to use the actual resolved 27550 * address mblk - which holds the real 27551 * dl_unitdata_req with the resolved address. 27552 * 27553 * Doing this is the same behavior as was 27554 * previously used in the v4 ARP case. 27555 */ 27556 mutex_enter(&nce->nce_lock); 27557 if (nce->nce_res_mp != NULL) 27558 freemsg(nce->nce_res_mp); 27559 nce->nce_res_mp = mp1; 27560 mutex_exit(&nce->nce_lock); 27561 /* 27562 * We do a fastpath probe here because 27563 * we have resolved the address without 27564 * using Neighbor Discovery. 27565 * In the non-XRESOLV v6 case, the fastpath 27566 * probe is done right after neighbor 27567 * discovery completes. 27568 */ 27569 if (nce->nce_res_mp != NULL) { 27570 int res; 27571 nce_fastpath_list_add(nce); 27572 res = ill_fastpath_probe(ill, 27573 nce->nce_res_mp); 27574 if (res != 0 && res != EAGAIN) 27575 nce_fastpath_list_delete(nce); 27576 } 27577 27578 ire_add_then_send(q, ire, mp); 27579 /* 27580 * Now we have to clean out any packets 27581 * that may have been queued on the nce 27582 * while it was waiting for address resolution 27583 * to complete. 27584 */ 27585 mutex_enter(&nce->nce_lock); 27586 mp1 = nce->nce_qd_mp; 27587 nce->nce_qd_mp = NULL; 27588 mutex_exit(&nce->nce_lock); 27589 while (mp1 != NULL) { 27590 mblk_t *nxt_mp; 27591 queue_t *fwdq = NULL; 27592 ill_t *inbound_ill; 27593 uint_t ifindex; 27594 27595 nxt_mp = mp1->b_next; 27596 mp1->b_next = NULL; 27597 /* 27598 * Retrieve ifindex stored in 27599 * ip_rput_data_v6() 27600 */ 27601 ifindex = 27602 (uint_t)(uintptr_t)mp1->b_prev; 27603 inbound_ill = 27604 ill_lookup_on_ifindex(ifindex, 27605 B_TRUE, NULL, NULL, NULL, 27606 NULL, ipst); 27607 mp1->b_prev = NULL; 27608 if (inbound_ill != NULL) 27609 fwdq = inbound_ill->ill_rq; 27610 27611 if (fwdq != NULL) { 27612 put(fwdq, mp1); 27613 ill_refrele(inbound_ill); 27614 } else 27615 put(WR(ill->ill_rq), mp1); 27616 mp1 = nxt_mp; 27617 } 27618 NCE_REFRELE(nce); 27619 } else { /* nce is NULL; clean up */ 27620 ire_delete(ire); 27621 freemsg(mp); 27622 freemsg(mp1); 27623 return; 27624 } 27625 } else { 27626 nce_t *arpce; 27627 /* 27628 * Link layer resolution succeeded. Recompute the 27629 * ire_nce. 27630 */ 27631 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27632 if ((arpce = ndp_lookup_v4(ill, 27633 (ire->ire_gateway_addr != INADDR_ANY ? 27634 &ire->ire_gateway_addr : &ire->ire_addr), 27635 B_FALSE)) == NULL) { 27636 freeb(ire->ire_mp); 27637 freeb(mp1); 27638 freemsg(mp); 27639 return; 27640 } 27641 mutex_enter(&arpce->nce_lock); 27642 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27643 if (arpce->nce_state == ND_REACHABLE) { 27644 /* 27645 * Someone resolved this before us; 27646 * cleanup the res_mp. Since ire has 27647 * not been added yet, the call to ire_add_v4 27648 * from ire_add_then_send (when a dup is 27649 * detected) will clean up the ire. 27650 */ 27651 freeb(mp1); 27652 } else { 27653 ASSERT(arpce->nce_res_mp == NULL); 27654 arpce->nce_res_mp = mp1; 27655 arpce->nce_state = ND_REACHABLE; 27656 } 27657 mutex_exit(&arpce->nce_lock); 27658 if (ire->ire_marks & IRE_MARK_NOADD) { 27659 /* 27660 * this ire will not be added to the ire 27661 * cache table, so we can set the ire_nce 27662 * here, as there are no atomicity constraints. 27663 */ 27664 ire->ire_nce = arpce; 27665 /* 27666 * We are associating this nce with the ire 27667 * so change the nce ref taken in 27668 * ndp_lookup_v4() from 27669 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27670 */ 27671 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27672 } else { 27673 NCE_REFRELE(arpce); 27674 } 27675 ire_add_then_send(q, ire, mp); 27676 } 27677 return; /* All is well, the packet has been sent. */ 27678 } 27679 case IRE_ARPRESOLVE_TYPE: { 27680 27681 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27682 break; 27683 mp1 = mp->b_cont; /* dl_unitdata_req */ 27684 mp->b_cont = NULL; 27685 /* 27686 * First, check to make sure the resolution succeeded. 27687 * If it failed, the second mblk will be empty. 27688 */ 27689 if (mp1->b_rptr == mp1->b_wptr) { 27690 /* cleanup the incomplete ire, free queued packets */ 27691 freemsg(mp); /* fake ire */ 27692 freeb(mp1); /* dl_unitdata response */ 27693 return; 27694 } 27695 27696 /* 27697 * update any incomplete nce_t found. we lookup the ctable 27698 * and find the nce from the ire->ire_nce because we need 27699 * to pass the ire to ip_xmit_v4 later, and can find both 27700 * ire and nce in one lookup from the ctable. 27701 */ 27702 fake_ire = (ire_t *)mp->b_rptr; 27703 /* 27704 * By the time we come back here from ARP 27705 * the logical outgoing interface of the incomplete ire 27706 * we added in ire_forward could have disappeared, 27707 * causing the incomplete ire to also have 27708 * dissapeared. So we need to retreive the 27709 * proper ipif for the ire before looking 27710 * in ctable; do the ctablelookup based on ire_ipif_seqid 27711 */ 27712 ill = q->q_ptr; 27713 27714 /* Get the outgoing ipif */ 27715 mutex_enter(&ill->ill_lock); 27716 if (ill->ill_state_flags & ILL_CONDEMNED) { 27717 mutex_exit(&ill->ill_lock); 27718 freemsg(mp); /* fake ire */ 27719 freeb(mp1); /* dl_unitdata response */ 27720 return; 27721 } 27722 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27723 27724 if (ipif == NULL) { 27725 mutex_exit(&ill->ill_lock); 27726 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27727 freemsg(mp); 27728 freeb(mp1); 27729 return; 27730 } 27731 ipif_refhold_locked(ipif); 27732 mutex_exit(&ill->ill_lock); 27733 ire = ire_ctable_lookup(fake_ire->ire_addr, 27734 fake_ire->ire_gateway_addr, IRE_CACHE, 27735 ipif, fake_ire->ire_zoneid, NULL, 27736 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27737 ipif_refrele(ipif); 27738 if (ire == NULL) { 27739 /* 27740 * no ire was found; check if there is an nce 27741 * for this lookup; if it has no ire's pointing at it 27742 * cleanup. 27743 */ 27744 if ((nce = ndp_lookup_v4(ill, 27745 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27746 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27747 B_FALSE)) != NULL) { 27748 /* 27749 * cleanup: 27750 * We check for refcnt 2 (one for the nce 27751 * hash list + 1 for the ref taken by 27752 * ndp_lookup_v4) to check that there are 27753 * no ire's pointing at the nce. 27754 */ 27755 if (nce->nce_refcnt == 2) 27756 ndp_delete(nce); 27757 NCE_REFRELE(nce); 27758 } 27759 freeb(mp1); /* dl_unitdata response */ 27760 freemsg(mp); /* fake ire */ 27761 return; 27762 } 27763 nce = ire->ire_nce; 27764 DTRACE_PROBE2(ire__arpresolve__type, 27765 ire_t *, ire, nce_t *, nce); 27766 ASSERT(nce->nce_state != ND_INITIAL); 27767 mutex_enter(&nce->nce_lock); 27768 nce->nce_last = TICK_TO_MSEC(lbolt64); 27769 if (nce->nce_state == ND_REACHABLE) { 27770 /* 27771 * Someone resolved this before us; 27772 * our response is not needed any more. 27773 */ 27774 mutex_exit(&nce->nce_lock); 27775 freeb(mp1); /* dl_unitdata response */ 27776 } else { 27777 ASSERT(nce->nce_res_mp == NULL); 27778 nce->nce_res_mp = mp1; 27779 nce->nce_state = ND_REACHABLE; 27780 mutex_exit(&nce->nce_lock); 27781 nce_fastpath(nce); 27782 } 27783 /* 27784 * The cached nce_t has been updated to be reachable; 27785 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27786 */ 27787 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27788 freemsg(mp); 27789 /* 27790 * send out queued packets. 27791 */ 27792 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27793 27794 IRE_REFRELE(ire); 27795 return; 27796 } 27797 default: 27798 break; 27799 } 27800 if (q->q_next) { 27801 putnext(q, mp); 27802 } else 27803 freemsg(mp); 27804 return; 27805 27806 protonak: 27807 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27808 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27809 qreply(q, mp); 27810 } 27811 27812 /* 27813 * Process IP options in an outbound packet. Modify the destination if there 27814 * is a source route option. 27815 * Returns non-zero if something fails in which case an ICMP error has been 27816 * sent and mp freed. 27817 */ 27818 static int 27819 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27820 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27821 { 27822 ipoptp_t opts; 27823 uchar_t *opt; 27824 uint8_t optval; 27825 uint8_t optlen; 27826 ipaddr_t dst; 27827 intptr_t code = 0; 27828 mblk_t *mp; 27829 ire_t *ire = NULL; 27830 27831 ip2dbg(("ip_wput_options\n")); 27832 mp = ipsec_mp; 27833 if (mctl_present) { 27834 mp = ipsec_mp->b_cont; 27835 } 27836 27837 dst = ipha->ipha_dst; 27838 for (optval = ipoptp_first(&opts, ipha); 27839 optval != IPOPT_EOL; 27840 optval = ipoptp_next(&opts)) { 27841 opt = opts.ipoptp_cur; 27842 optlen = opts.ipoptp_len; 27843 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27844 optval, optlen)); 27845 switch (optval) { 27846 uint32_t off; 27847 case IPOPT_SSRR: 27848 case IPOPT_LSRR: 27849 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27850 ip1dbg(( 27851 "ip_wput_options: bad option offset\n")); 27852 code = (char *)&opt[IPOPT_OLEN] - 27853 (char *)ipha; 27854 goto param_prob; 27855 } 27856 off = opt[IPOPT_OFFSET]; 27857 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27858 ntohl(dst))); 27859 /* 27860 * For strict: verify that dst is directly 27861 * reachable. 27862 */ 27863 if (optval == IPOPT_SSRR) { 27864 ire = ire_ftable_lookup(dst, 0, 0, 27865 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27866 MBLK_GETLABEL(mp), 27867 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27868 if (ire == NULL) { 27869 ip1dbg(("ip_wput_options: SSRR not" 27870 " directly reachable: 0x%x\n", 27871 ntohl(dst))); 27872 goto bad_src_route; 27873 } 27874 ire_refrele(ire); 27875 } 27876 break; 27877 case IPOPT_RR: 27878 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27879 ip1dbg(( 27880 "ip_wput_options: bad option offset\n")); 27881 code = (char *)&opt[IPOPT_OLEN] - 27882 (char *)ipha; 27883 goto param_prob; 27884 } 27885 break; 27886 case IPOPT_TS: 27887 /* 27888 * Verify that length >=5 and that there is either 27889 * room for another timestamp or that the overflow 27890 * counter is not maxed out. 27891 */ 27892 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27893 if (optlen < IPOPT_MINLEN_IT) { 27894 goto param_prob; 27895 } 27896 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27897 ip1dbg(( 27898 "ip_wput_options: bad option offset\n")); 27899 code = (char *)&opt[IPOPT_OFFSET] - 27900 (char *)ipha; 27901 goto param_prob; 27902 } 27903 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27904 case IPOPT_TS_TSONLY: 27905 off = IPOPT_TS_TIMELEN; 27906 break; 27907 case IPOPT_TS_TSANDADDR: 27908 case IPOPT_TS_PRESPEC: 27909 case IPOPT_TS_PRESPEC_RFC791: 27910 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27911 break; 27912 default: 27913 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27914 (char *)ipha; 27915 goto param_prob; 27916 } 27917 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27918 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27919 /* 27920 * No room and the overflow counter is 15 27921 * already. 27922 */ 27923 goto param_prob; 27924 } 27925 break; 27926 } 27927 } 27928 27929 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27930 return (0); 27931 27932 ip1dbg(("ip_wput_options: error processing IP options.")); 27933 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27934 27935 param_prob: 27936 /* 27937 * Since ip_wput() isn't close to finished, we fill 27938 * in enough of the header for credible error reporting. 27939 */ 27940 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27941 /* Failed */ 27942 freemsg(ipsec_mp); 27943 return (-1); 27944 } 27945 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27946 return (-1); 27947 27948 bad_src_route: 27949 /* 27950 * Since ip_wput() isn't close to finished, we fill 27951 * in enough of the header for credible error reporting. 27952 */ 27953 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27954 /* Failed */ 27955 freemsg(ipsec_mp); 27956 return (-1); 27957 } 27958 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27959 return (-1); 27960 } 27961 27962 /* 27963 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27964 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27965 * thru /etc/system. 27966 */ 27967 #define CONN_MAXDRAINCNT 64 27968 27969 static void 27970 conn_drain_init(ip_stack_t *ipst) 27971 { 27972 int i; 27973 27974 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27975 27976 if ((ipst->ips_conn_drain_list_cnt == 0) || 27977 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27978 /* 27979 * Default value of the number of drainers is the 27980 * number of cpus, subject to maximum of 8 drainers. 27981 */ 27982 if (boot_max_ncpus != -1) 27983 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27984 else 27985 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27986 } 27987 27988 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27989 sizeof (idl_t), KM_SLEEP); 27990 27991 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 27992 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 27993 MUTEX_DEFAULT, NULL); 27994 } 27995 } 27996 27997 static void 27998 conn_drain_fini(ip_stack_t *ipst) 27999 { 28000 int i; 28001 28002 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28003 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28004 kmem_free(ipst->ips_conn_drain_list, 28005 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28006 ipst->ips_conn_drain_list = NULL; 28007 } 28008 28009 /* 28010 * Note: For an overview of how flowcontrol is handled in IP please see the 28011 * IP Flowcontrol notes at the top of this file. 28012 * 28013 * Flow control has blocked us from proceeding. Insert the given conn in one 28014 * of the conn drain lists. These conn wq's will be qenabled later on when 28015 * STREAMS flow control does a backenable. conn_walk_drain will enable 28016 * the first conn in each of these drain lists. Each of these qenabled conns 28017 * in turn enables the next in the list, after it runs, or when it closes, 28018 * thus sustaining the drain process. 28019 * 28020 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28021 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28022 * running at any time, on a given conn, since there can be only 1 service proc 28023 * running on a queue at any time. 28024 */ 28025 void 28026 conn_drain_insert(conn_t *connp) 28027 { 28028 idl_t *idl; 28029 uint_t index; 28030 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28031 28032 mutex_enter(&connp->conn_lock); 28033 if (connp->conn_state_flags & CONN_CLOSING) { 28034 /* 28035 * The conn is closing as a result of which CONN_CLOSING 28036 * is set. Return. 28037 */ 28038 mutex_exit(&connp->conn_lock); 28039 return; 28040 } else if (connp->conn_idl == NULL) { 28041 /* 28042 * Assign the next drain list round robin. We dont' use 28043 * a lock, and thus it may not be strictly round robin. 28044 * Atomicity of load/stores is enough to make sure that 28045 * conn_drain_list_index is always within bounds. 28046 */ 28047 index = ipst->ips_conn_drain_list_index; 28048 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28049 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28050 index++; 28051 if (index == ipst->ips_conn_drain_list_cnt) 28052 index = 0; 28053 ipst->ips_conn_drain_list_index = index; 28054 } 28055 mutex_exit(&connp->conn_lock); 28056 28057 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28058 if ((connp->conn_drain_prev != NULL) || 28059 (connp->conn_state_flags & CONN_CLOSING)) { 28060 /* 28061 * The conn is already in the drain list, OR 28062 * the conn is closing. We need to check again for 28063 * the closing case again since close can happen 28064 * after we drop the conn_lock, and before we 28065 * acquire the CONN_DRAIN_LIST_LOCK. 28066 */ 28067 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28068 return; 28069 } else { 28070 idl = connp->conn_idl; 28071 } 28072 28073 /* 28074 * The conn is not in the drain list. Insert it at the 28075 * tail of the drain list. The drain list is circular 28076 * and doubly linked. idl_conn points to the 1st element 28077 * in the list. 28078 */ 28079 if (idl->idl_conn == NULL) { 28080 idl->idl_conn = connp; 28081 connp->conn_drain_next = connp; 28082 connp->conn_drain_prev = connp; 28083 } else { 28084 conn_t *head = idl->idl_conn; 28085 28086 connp->conn_drain_next = head; 28087 connp->conn_drain_prev = head->conn_drain_prev; 28088 head->conn_drain_prev->conn_drain_next = connp; 28089 head->conn_drain_prev = connp; 28090 } 28091 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28092 } 28093 28094 /* 28095 * This conn is closing, and we are called from ip_close. OR 28096 * This conn has been serviced by ip_wsrv, and we need to do the tail 28097 * processing. 28098 * If this conn is part of the drain list, we may need to sustain the drain 28099 * process by qenabling the next conn in the drain list. We may also need to 28100 * remove this conn from the list, if it is done. 28101 */ 28102 static void 28103 conn_drain_tail(conn_t *connp, boolean_t closing) 28104 { 28105 idl_t *idl; 28106 28107 /* 28108 * connp->conn_idl is stable at this point, and no lock is needed 28109 * to check it. If we are called from ip_close, close has already 28110 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28111 * called us only because conn_idl is non-null. If we are called thru 28112 * service, conn_idl could be null, but it cannot change because 28113 * service is single-threaded per queue, and there cannot be another 28114 * instance of service trying to call conn_drain_insert on this conn 28115 * now. 28116 */ 28117 ASSERT(!closing || (connp->conn_idl != NULL)); 28118 28119 /* 28120 * If connp->conn_idl is null, the conn has not been inserted into any 28121 * drain list even once since creation of the conn. Just return. 28122 */ 28123 if (connp->conn_idl == NULL) 28124 return; 28125 28126 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28127 28128 if (connp->conn_drain_prev == NULL) { 28129 /* This conn is currently not in the drain list. */ 28130 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28131 return; 28132 } 28133 idl = connp->conn_idl; 28134 if (idl->idl_conn_draining == connp) { 28135 /* 28136 * This conn is the current drainer. If this is the last conn 28137 * in the drain list, we need to do more checks, in the 'if' 28138 * below. Otherwwise we need to just qenable the next conn, 28139 * to sustain the draining, and is handled in the 'else' 28140 * below. 28141 */ 28142 if (connp->conn_drain_next == idl->idl_conn) { 28143 /* 28144 * This conn is the last in this list. This round 28145 * of draining is complete. If idl_repeat is set, 28146 * it means another flow enabling has happened from 28147 * the driver/streams and we need to another round 28148 * of draining. 28149 * If there are more than 2 conns in the drain list, 28150 * do a left rotate by 1, so that all conns except the 28151 * conn at the head move towards the head by 1, and the 28152 * the conn at the head goes to the tail. This attempts 28153 * a more even share for all queues that are being 28154 * drained. 28155 */ 28156 if ((connp->conn_drain_next != connp) && 28157 (idl->idl_conn->conn_drain_next != connp)) { 28158 idl->idl_conn = idl->idl_conn->conn_drain_next; 28159 } 28160 if (idl->idl_repeat) { 28161 qenable(idl->idl_conn->conn_wq); 28162 idl->idl_conn_draining = idl->idl_conn; 28163 idl->idl_repeat = 0; 28164 } else { 28165 idl->idl_conn_draining = NULL; 28166 } 28167 } else { 28168 /* 28169 * If the next queue that we are now qenable'ing, 28170 * is closing, it will remove itself from this list 28171 * and qenable the subsequent queue in ip_close(). 28172 * Serialization is acheived thru idl_lock. 28173 */ 28174 qenable(connp->conn_drain_next->conn_wq); 28175 idl->idl_conn_draining = connp->conn_drain_next; 28176 } 28177 } 28178 if (!connp->conn_did_putbq || closing) { 28179 /* 28180 * Remove ourself from the drain list, if we did not do 28181 * a putbq, or if the conn is closing. 28182 * Note: It is possible that q->q_first is non-null. It means 28183 * that these messages landed after we did a enableok() in 28184 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28185 * service them. 28186 */ 28187 if (connp->conn_drain_next == connp) { 28188 /* Singleton in the list */ 28189 ASSERT(connp->conn_drain_prev == connp); 28190 idl->idl_conn = NULL; 28191 idl->idl_conn_draining = NULL; 28192 } else { 28193 connp->conn_drain_prev->conn_drain_next = 28194 connp->conn_drain_next; 28195 connp->conn_drain_next->conn_drain_prev = 28196 connp->conn_drain_prev; 28197 if (idl->idl_conn == connp) 28198 idl->idl_conn = connp->conn_drain_next; 28199 ASSERT(idl->idl_conn_draining != connp); 28200 28201 } 28202 connp->conn_drain_next = NULL; 28203 connp->conn_drain_prev = NULL; 28204 } 28205 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28206 } 28207 28208 /* 28209 * Write service routine. Shared perimeter entry point. 28210 * ip_wsrv can be called in any of the following ways. 28211 * 1. The device queue's messages has fallen below the low water mark 28212 * and STREAMS has backenabled the ill_wq. We walk thru all the 28213 * the drain lists and backenable the first conn in each list. 28214 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28215 * qenabled non-tcp upper layers. We start dequeing messages and call 28216 * ip_wput for each message. 28217 */ 28218 28219 void 28220 ip_wsrv(queue_t *q) 28221 { 28222 conn_t *connp; 28223 ill_t *ill; 28224 mblk_t *mp; 28225 28226 if (q->q_next) { 28227 ill = (ill_t *)q->q_ptr; 28228 if (ill->ill_state_flags == 0) { 28229 /* 28230 * The device flow control has opened up. 28231 * Walk through conn drain lists and qenable the 28232 * first conn in each list. This makes sense only 28233 * if the stream is fully plumbed and setup. 28234 * Hence the if check above. 28235 */ 28236 ip1dbg(("ip_wsrv: walking\n")); 28237 conn_walk_drain(ill->ill_ipst); 28238 } 28239 return; 28240 } 28241 28242 connp = Q_TO_CONN(q); 28243 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28244 28245 /* 28246 * 1. Set conn_draining flag to signal that service is active. 28247 * 28248 * 2. ip_output determines whether it has been called from service, 28249 * based on the last parameter. If it is IP_WSRV it concludes it 28250 * has been called from service. 28251 * 28252 * 3. Message ordering is preserved by the following logic. 28253 * i. A directly called ip_output (i.e. not thru service) will queue 28254 * the message at the tail, if conn_draining is set (i.e. service 28255 * is running) or if q->q_first is non-null. 28256 * 28257 * ii. If ip_output is called from service, and if ip_output cannot 28258 * putnext due to flow control, it does a putbq. 28259 * 28260 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28261 * (causing an infinite loop). 28262 */ 28263 ASSERT(!connp->conn_did_putbq); 28264 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28265 connp->conn_draining = 1; 28266 noenable(q); 28267 while ((mp = getq(q)) != NULL) { 28268 ASSERT(CONN_Q(q)); 28269 28270 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28271 if (connp->conn_did_putbq) { 28272 /* ip_wput did a putbq */ 28273 break; 28274 } 28275 } 28276 /* 28277 * At this point, a thread coming down from top, calling 28278 * ip_wput, may end up queueing the message. We have not yet 28279 * enabled the queue, so ip_wsrv won't be called again. 28280 * To avoid this race, check q->q_first again (in the loop) 28281 * If the other thread queued the message before we call 28282 * enableok(), we will catch it in the q->q_first check. 28283 * If the other thread queues the message after we call 28284 * enableok(), ip_wsrv will be called again by STREAMS. 28285 */ 28286 connp->conn_draining = 0; 28287 enableok(q); 28288 } 28289 28290 /* Enable the next conn for draining */ 28291 conn_drain_tail(connp, B_FALSE); 28292 28293 connp->conn_did_putbq = 0; 28294 } 28295 28296 /* 28297 * Walk the list of all conn's calling the function provided with the 28298 * specified argument for each. Note that this only walks conn's that 28299 * have been bound. 28300 * Applies to both IPv4 and IPv6. 28301 */ 28302 static void 28303 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28304 { 28305 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28306 ipst->ips_ipcl_udp_fanout_size, 28307 func, arg, zoneid); 28308 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28309 ipst->ips_ipcl_conn_fanout_size, 28310 func, arg, zoneid); 28311 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28312 ipst->ips_ipcl_bind_fanout_size, 28313 func, arg, zoneid); 28314 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28315 IPPROTO_MAX, func, arg, zoneid); 28316 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28317 IPPROTO_MAX, func, arg, zoneid); 28318 } 28319 28320 /* 28321 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28322 * of conns that need to be drained, check if drain is already in progress. 28323 * If so set the idl_repeat bit, indicating that the last conn in the list 28324 * needs to reinitiate the drain once again, for the list. If drain is not 28325 * in progress for the list, initiate the draining, by qenabling the 1st 28326 * conn in the list. The drain is self-sustaining, each qenabled conn will 28327 * in turn qenable the next conn, when it is done/blocked/closing. 28328 */ 28329 static void 28330 conn_walk_drain(ip_stack_t *ipst) 28331 { 28332 int i; 28333 idl_t *idl; 28334 28335 IP_STAT(ipst, ip_conn_walk_drain); 28336 28337 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28338 idl = &ipst->ips_conn_drain_list[i]; 28339 mutex_enter(&idl->idl_lock); 28340 if (idl->idl_conn == NULL) { 28341 mutex_exit(&idl->idl_lock); 28342 continue; 28343 } 28344 /* 28345 * If this list is not being drained currently by 28346 * an ip_wsrv thread, start the process. 28347 */ 28348 if (idl->idl_conn_draining == NULL) { 28349 ASSERT(idl->idl_repeat == 0); 28350 qenable(idl->idl_conn->conn_wq); 28351 idl->idl_conn_draining = idl->idl_conn; 28352 } else { 28353 idl->idl_repeat = 1; 28354 } 28355 mutex_exit(&idl->idl_lock); 28356 } 28357 } 28358 28359 /* 28360 * Walk an conn hash table of `count' buckets, calling func for each entry. 28361 */ 28362 static void 28363 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28364 zoneid_t zoneid) 28365 { 28366 conn_t *connp; 28367 28368 while (count-- > 0) { 28369 mutex_enter(&connfp->connf_lock); 28370 for (connp = connfp->connf_head; connp != NULL; 28371 connp = connp->conn_next) { 28372 if (zoneid == GLOBAL_ZONEID || 28373 zoneid == connp->conn_zoneid) { 28374 CONN_INC_REF(connp); 28375 mutex_exit(&connfp->connf_lock); 28376 (*func)(connp, arg); 28377 mutex_enter(&connfp->connf_lock); 28378 CONN_DEC_REF(connp); 28379 } 28380 } 28381 mutex_exit(&connfp->connf_lock); 28382 connfp++; 28383 } 28384 } 28385 28386 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28387 static void 28388 conn_report1(conn_t *connp, void *mp) 28389 { 28390 char buf1[INET6_ADDRSTRLEN]; 28391 char buf2[INET6_ADDRSTRLEN]; 28392 uint_t print_len, buf_len; 28393 28394 ASSERT(connp != NULL); 28395 28396 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28397 if (buf_len <= 0) 28398 return; 28399 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28400 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28401 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28402 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28403 "%5d %s/%05d %s/%05d\n", 28404 (void *)connp, (void *)CONNP_TO_RQ(connp), 28405 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28406 buf1, connp->conn_lport, 28407 buf2, connp->conn_fport); 28408 if (print_len < buf_len) { 28409 ((mblk_t *)mp)->b_wptr += print_len; 28410 } else { 28411 ((mblk_t *)mp)->b_wptr += buf_len; 28412 } 28413 } 28414 28415 /* 28416 * Named Dispatch routine to produce a formatted report on all conns 28417 * that are listed in one of the fanout tables. 28418 * This report is accessed by using the ndd utility to "get" ND variable 28419 * "ip_conn_status". 28420 */ 28421 /* ARGSUSED */ 28422 static int 28423 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28424 { 28425 conn_t *connp = Q_TO_CONN(q); 28426 28427 (void) mi_mpprintf(mp, 28428 "CONN " MI_COL_HDRPAD_STR 28429 "rfq " MI_COL_HDRPAD_STR 28430 "stq " MI_COL_HDRPAD_STR 28431 " zone local remote"); 28432 28433 /* 28434 * Because of the ndd constraint, at most we can have 64K buffer 28435 * to put in all conn info. So to be more efficient, just 28436 * allocate a 64K buffer here, assuming we need that large buffer. 28437 * This should be OK as only privileged processes can do ndd /dev/ip. 28438 */ 28439 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28440 /* The following may work even if we cannot get a large buf. */ 28441 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28442 return (0); 28443 } 28444 28445 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28446 connp->conn_netstack->netstack_ip); 28447 return (0); 28448 } 28449 28450 /* 28451 * Determine if the ill and multicast aspects of that packets 28452 * "matches" the conn. 28453 */ 28454 boolean_t 28455 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28456 zoneid_t zoneid) 28457 { 28458 ill_t *in_ill; 28459 boolean_t found; 28460 ipif_t *ipif; 28461 ire_t *ire; 28462 ipaddr_t dst, src; 28463 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28464 28465 dst = ipha->ipha_dst; 28466 src = ipha->ipha_src; 28467 28468 /* 28469 * conn_incoming_ill is set by IP_BOUND_IF which limits 28470 * unicast, broadcast and multicast reception to 28471 * conn_incoming_ill. conn_wantpacket itself is called 28472 * only for BROADCAST and multicast. 28473 * 28474 * 1) ip_rput supresses duplicate broadcasts if the ill 28475 * is part of a group. Hence, we should be receiving 28476 * just one copy of broadcast for the whole group. 28477 * Thus, if it is part of the group the packet could 28478 * come on any ill of the group and hence we need a 28479 * match on the group. Otherwise, match on ill should 28480 * be sufficient. 28481 * 28482 * 2) ip_rput does not suppress duplicate multicast packets. 28483 * If there are two interfaces in a ill group and we have 28484 * 2 applications (conns) joined a multicast group G on 28485 * both the interfaces, ilm_lookup_ill filter in ip_rput 28486 * will give us two packets because we join G on both the 28487 * interfaces rather than nominating just one interface 28488 * for receiving multicast like broadcast above. So, 28489 * we have to call ilg_lookup_ill to filter out duplicate 28490 * copies, if ill is part of a group. 28491 */ 28492 in_ill = connp->conn_incoming_ill; 28493 if (in_ill != NULL) { 28494 if (in_ill->ill_group == NULL) { 28495 if (in_ill != ill) 28496 return (B_FALSE); 28497 } else if (in_ill->ill_group != ill->ill_group) { 28498 return (B_FALSE); 28499 } 28500 } 28501 28502 if (!CLASSD(dst)) { 28503 if (IPCL_ZONE_MATCH(connp, zoneid)) 28504 return (B_TRUE); 28505 /* 28506 * The conn is in a different zone; we need to check that this 28507 * broadcast address is configured in the application's zone and 28508 * on one ill in the group. 28509 */ 28510 ipif = ipif_get_next_ipif(NULL, ill); 28511 if (ipif == NULL) 28512 return (B_FALSE); 28513 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28514 connp->conn_zoneid, NULL, 28515 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28516 ipif_refrele(ipif); 28517 if (ire != NULL) { 28518 ire_refrele(ire); 28519 return (B_TRUE); 28520 } else { 28521 return (B_FALSE); 28522 } 28523 } 28524 28525 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28526 connp->conn_zoneid == zoneid) { 28527 /* 28528 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28529 * disabled, therefore we don't dispatch the multicast packet to 28530 * the sending zone. 28531 */ 28532 return (B_FALSE); 28533 } 28534 28535 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28536 /* 28537 * Multicast packet on the loopback interface: we only match 28538 * conns who joined the group in the specified zone. 28539 */ 28540 return (B_FALSE); 28541 } 28542 28543 if (connp->conn_multi_router) { 28544 /* multicast packet and multicast router socket: send up */ 28545 return (B_TRUE); 28546 } 28547 28548 mutex_enter(&connp->conn_lock); 28549 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28550 mutex_exit(&connp->conn_lock); 28551 return (found); 28552 } 28553 28554 /* 28555 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28556 */ 28557 /* ARGSUSED */ 28558 static void 28559 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28560 { 28561 ill_t *ill = (ill_t *)q->q_ptr; 28562 mblk_t *mp1, *mp2; 28563 ipif_t *ipif; 28564 int err = 0; 28565 conn_t *connp = NULL; 28566 ipsq_t *ipsq; 28567 arc_t *arc; 28568 28569 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28570 28571 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28572 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28573 28574 ASSERT(IAM_WRITER_ILL(ill)); 28575 mp2 = mp->b_cont; 28576 mp->b_cont = NULL; 28577 28578 /* 28579 * We have now received the arp bringup completion message 28580 * from ARP. Mark the arp bringup as done. Also if the arp 28581 * stream has already started closing, send up the AR_ARP_CLOSING 28582 * ack now since ARP is waiting in close for this ack. 28583 */ 28584 mutex_enter(&ill->ill_lock); 28585 ill->ill_arp_bringup_pending = 0; 28586 if (ill->ill_arp_closing) { 28587 mutex_exit(&ill->ill_lock); 28588 /* Let's reuse the mp for sending the ack */ 28589 arc = (arc_t *)mp->b_rptr; 28590 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28591 arc->arc_cmd = AR_ARP_CLOSING; 28592 qreply(q, mp); 28593 } else { 28594 mutex_exit(&ill->ill_lock); 28595 freeb(mp); 28596 } 28597 28598 ipsq = ill->ill_phyint->phyint_ipsq; 28599 ipif = ipsq->ipsq_pending_ipif; 28600 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28601 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28602 if (mp1 == NULL) { 28603 /* bringup was aborted by the user */ 28604 freemsg(mp2); 28605 return; 28606 } 28607 28608 /* 28609 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28610 * must have an associated conn_t. Otherwise, we're bringing this 28611 * interface back up as part of handling an asynchronous event (e.g., 28612 * physical address change). 28613 */ 28614 if (ipsq->ipsq_current_ioctl != 0) { 28615 ASSERT(connp != NULL); 28616 q = CONNP_TO_WQ(connp); 28617 } else { 28618 ASSERT(connp == NULL); 28619 q = ill->ill_rq; 28620 } 28621 28622 /* 28623 * If the DL_BIND_REQ fails, it is noted 28624 * in arc_name_offset. 28625 */ 28626 err = *((int *)mp2->b_rptr); 28627 if (err == 0) { 28628 if (ipif->ipif_isv6) { 28629 if ((err = ipif_up_done_v6(ipif)) != 0) 28630 ip0dbg(("ip_arp_done: init failed\n")); 28631 } else { 28632 if ((err = ipif_up_done(ipif)) != 0) 28633 ip0dbg(("ip_arp_done: init failed\n")); 28634 } 28635 } else { 28636 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28637 } 28638 28639 freemsg(mp2); 28640 28641 if ((err == 0) && (ill->ill_up_ipifs)) { 28642 err = ill_up_ipifs(ill, q, mp1); 28643 if (err == EINPROGRESS) 28644 return; 28645 } 28646 28647 if (ill->ill_up_ipifs) 28648 ill_group_cleanup(ill); 28649 28650 /* 28651 * The operation must complete without EINPROGRESS since 28652 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28653 * Otherwise, the operation will be stuck forever in the ipsq. 28654 */ 28655 ASSERT(err != EINPROGRESS); 28656 if (ipsq->ipsq_current_ioctl != 0) 28657 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28658 else 28659 ipsq_current_finish(ipsq); 28660 } 28661 28662 /* Allocate the private structure */ 28663 static int 28664 ip_priv_alloc(void **bufp) 28665 { 28666 void *buf; 28667 28668 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28669 return (ENOMEM); 28670 28671 *bufp = buf; 28672 return (0); 28673 } 28674 28675 /* Function to delete the private structure */ 28676 void 28677 ip_priv_free(void *buf) 28678 { 28679 ASSERT(buf != NULL); 28680 kmem_free(buf, sizeof (ip_priv_t)); 28681 } 28682 28683 /* 28684 * The entry point for IPPF processing. 28685 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28686 * routine just returns. 28687 * 28688 * When called, ip_process generates an ipp_packet_t structure 28689 * which holds the state information for this packet and invokes the 28690 * the classifier (via ipp_packet_process). The classification, depending on 28691 * configured filters, results in a list of actions for this packet. Invoking 28692 * an action may cause the packet to be dropped, in which case the resulting 28693 * mblk (*mpp) is NULL. proc indicates the callout position for 28694 * this packet and ill_index is the interface this packet on or will leave 28695 * on (inbound and outbound resp.). 28696 */ 28697 void 28698 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28699 { 28700 mblk_t *mp; 28701 ip_priv_t *priv; 28702 ipp_action_id_t aid; 28703 int rc = 0; 28704 ipp_packet_t *pp; 28705 #define IP_CLASS "ip" 28706 28707 /* If the classifier is not loaded, return */ 28708 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28709 return; 28710 } 28711 28712 mp = *mpp; 28713 ASSERT(mp != NULL); 28714 28715 /* Allocate the packet structure */ 28716 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28717 if (rc != 0) { 28718 *mpp = NULL; 28719 freemsg(mp); 28720 return; 28721 } 28722 28723 /* Allocate the private structure */ 28724 rc = ip_priv_alloc((void **)&priv); 28725 if (rc != 0) { 28726 *mpp = NULL; 28727 freemsg(mp); 28728 ipp_packet_free(pp); 28729 return; 28730 } 28731 priv->proc = proc; 28732 priv->ill_index = ill_index; 28733 ipp_packet_set_private(pp, priv, ip_priv_free); 28734 ipp_packet_set_data(pp, mp); 28735 28736 /* Invoke the classifier */ 28737 rc = ipp_packet_process(&pp); 28738 if (pp != NULL) { 28739 mp = ipp_packet_get_data(pp); 28740 ipp_packet_free(pp); 28741 if (rc != 0) { 28742 freemsg(mp); 28743 *mpp = NULL; 28744 } 28745 } else { 28746 *mpp = NULL; 28747 } 28748 #undef IP_CLASS 28749 } 28750 28751 /* 28752 * Propagate a multicast group membership operation (add/drop) on 28753 * all the interfaces crossed by the related multirt routes. 28754 * The call is considered successful if the operation succeeds 28755 * on at least one interface. 28756 */ 28757 static int 28758 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28759 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28760 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28761 mblk_t *first_mp) 28762 { 28763 ire_t *ire_gw; 28764 irb_t *irb; 28765 int error = 0; 28766 opt_restart_t *or; 28767 ip_stack_t *ipst = ire->ire_ipst; 28768 28769 irb = ire->ire_bucket; 28770 ASSERT(irb != NULL); 28771 28772 ASSERT(DB_TYPE(first_mp) == M_CTL); 28773 28774 or = (opt_restart_t *)first_mp->b_rptr; 28775 IRB_REFHOLD(irb); 28776 for (; ire != NULL; ire = ire->ire_next) { 28777 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28778 continue; 28779 if (ire->ire_addr != group) 28780 continue; 28781 28782 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28783 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28784 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28785 /* No resolver exists for the gateway; skip this ire. */ 28786 if (ire_gw == NULL) 28787 continue; 28788 28789 /* 28790 * This function can return EINPROGRESS. If so the operation 28791 * will be restarted from ip_restart_optmgmt which will 28792 * call ip_opt_set and option processing will restart for 28793 * this option. So we may end up calling 'fn' more than once. 28794 * This requires that 'fn' is idempotent except for the 28795 * return value. The operation is considered a success if 28796 * it succeeds at least once on any one interface. 28797 */ 28798 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28799 NULL, fmode, src, first_mp); 28800 if (error == 0) 28801 or->or_private = CGTP_MCAST_SUCCESS; 28802 28803 if (ip_debug > 0) { 28804 ulong_t off; 28805 char *ksym; 28806 ksym = kobj_getsymname((uintptr_t)fn, &off); 28807 ip2dbg(("ip_multirt_apply_membership: " 28808 "called %s, multirt group 0x%08x via itf 0x%08x, " 28809 "error %d [success %u]\n", 28810 ksym ? ksym : "?", 28811 ntohl(group), ntohl(ire_gw->ire_src_addr), 28812 error, or->or_private)); 28813 } 28814 28815 ire_refrele(ire_gw); 28816 if (error == EINPROGRESS) { 28817 IRB_REFRELE(irb); 28818 return (error); 28819 } 28820 } 28821 IRB_REFRELE(irb); 28822 /* 28823 * Consider the call as successful if we succeeded on at least 28824 * one interface. Otherwise, return the last encountered error. 28825 */ 28826 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28827 } 28828 28829 28830 /* 28831 * Issue a warning regarding a route crossing an interface with an 28832 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28833 * amount of time is logged. 28834 */ 28835 static void 28836 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28837 { 28838 hrtime_t current = gethrtime(); 28839 char buf[INET_ADDRSTRLEN]; 28840 ip_stack_t *ipst = ire->ire_ipst; 28841 28842 /* Convert interval in ms to hrtime in ns */ 28843 if (ipst->ips_multirt_bad_mtu_last_time + 28844 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28845 current) { 28846 cmn_err(CE_WARN, "ip: ignoring multiroute " 28847 "to %s, incorrect MTU %u (expected %u)\n", 28848 ip_dot_addr(ire->ire_addr, buf), 28849 ire->ire_max_frag, max_frag); 28850 28851 ipst->ips_multirt_bad_mtu_last_time = current; 28852 } 28853 } 28854 28855 28856 /* 28857 * Get the CGTP (multirouting) filtering status. 28858 * If 0, the CGTP hooks are transparent. 28859 */ 28860 /* ARGSUSED */ 28861 static int 28862 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28863 { 28864 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28865 28866 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28867 return (0); 28868 } 28869 28870 28871 /* 28872 * Set the CGTP (multirouting) filtering status. 28873 * If the status is changed from active to transparent 28874 * or from transparent to active, forward the new status 28875 * to the filtering module (if loaded). 28876 */ 28877 /* ARGSUSED */ 28878 static int 28879 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28880 cred_t *ioc_cr) 28881 { 28882 long new_value; 28883 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28884 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28885 28886 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28887 return (EPERM); 28888 28889 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28890 new_value < 0 || new_value > 1) { 28891 return (EINVAL); 28892 } 28893 28894 if ((!*ip_cgtp_filter_value) && new_value) { 28895 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28896 ipst->ips_ip_cgtp_filter_ops == NULL ? 28897 " (module not loaded)" : ""); 28898 } 28899 if (*ip_cgtp_filter_value && (!new_value)) { 28900 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28901 ipst->ips_ip_cgtp_filter_ops == NULL ? 28902 " (module not loaded)" : ""); 28903 } 28904 28905 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28906 int res; 28907 netstackid_t stackid; 28908 28909 stackid = ipst->ips_netstack->netstack_stackid; 28910 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28911 new_value); 28912 if (res) 28913 return (res); 28914 } 28915 28916 *ip_cgtp_filter_value = (boolean_t)new_value; 28917 28918 return (0); 28919 } 28920 28921 28922 /* 28923 * Return the expected CGTP hooks version number. 28924 */ 28925 int 28926 ip_cgtp_filter_supported(void) 28927 { 28928 return (ip_cgtp_filter_rev); 28929 } 28930 28931 28932 /* 28933 * CGTP hooks can be registered by invoking this function. 28934 * Checks that the version number matches. 28935 */ 28936 int 28937 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28938 { 28939 netstack_t *ns; 28940 ip_stack_t *ipst; 28941 28942 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28943 return (ENOTSUP); 28944 28945 ns = netstack_find_by_stackid(stackid); 28946 if (ns == NULL) 28947 return (EINVAL); 28948 ipst = ns->netstack_ip; 28949 ASSERT(ipst != NULL); 28950 28951 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28952 netstack_rele(ns); 28953 return (EALREADY); 28954 } 28955 28956 ipst->ips_ip_cgtp_filter_ops = ops; 28957 netstack_rele(ns); 28958 return (0); 28959 } 28960 28961 /* 28962 * CGTP hooks can be unregistered by invoking this function. 28963 * Returns ENXIO if there was no registration. 28964 * Returns EBUSY if the ndd variable has not been turned off. 28965 */ 28966 int 28967 ip_cgtp_filter_unregister(netstackid_t stackid) 28968 { 28969 netstack_t *ns; 28970 ip_stack_t *ipst; 28971 28972 ns = netstack_find_by_stackid(stackid); 28973 if (ns == NULL) 28974 return (EINVAL); 28975 ipst = ns->netstack_ip; 28976 ASSERT(ipst != NULL); 28977 28978 if (ipst->ips_ip_cgtp_filter) { 28979 netstack_rele(ns); 28980 return (EBUSY); 28981 } 28982 28983 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28984 netstack_rele(ns); 28985 return (ENXIO); 28986 } 28987 ipst->ips_ip_cgtp_filter_ops = NULL; 28988 netstack_rele(ns); 28989 return (0); 28990 } 28991 28992 /* 28993 * Check whether there is a CGTP filter registration. 28994 * Returns non-zero if there is a registration, otherwise returns zero. 28995 * Note: returns zero if bad stackid. 28996 */ 28997 int 28998 ip_cgtp_filter_is_registered(netstackid_t stackid) 28999 { 29000 netstack_t *ns; 29001 ip_stack_t *ipst; 29002 int ret; 29003 29004 ns = netstack_find_by_stackid(stackid); 29005 if (ns == NULL) 29006 return (0); 29007 ipst = ns->netstack_ip; 29008 ASSERT(ipst != NULL); 29009 29010 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29011 ret = 1; 29012 else 29013 ret = 0; 29014 29015 netstack_rele(ns); 29016 return (ret); 29017 } 29018 29019 static squeue_func_t 29020 ip_squeue_switch(int val) 29021 { 29022 squeue_func_t rval = squeue_fill; 29023 29024 switch (val) { 29025 case IP_SQUEUE_ENTER_NODRAIN: 29026 rval = squeue_enter_nodrain; 29027 break; 29028 case IP_SQUEUE_ENTER: 29029 rval = squeue_enter; 29030 break; 29031 default: 29032 break; 29033 } 29034 return (rval); 29035 } 29036 29037 /* ARGSUSED */ 29038 static int 29039 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29040 caddr_t addr, cred_t *cr) 29041 { 29042 int *v = (int *)addr; 29043 long new_value; 29044 29045 if (secpolicy_net_config(cr, B_FALSE) != 0) 29046 return (EPERM); 29047 29048 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29049 return (EINVAL); 29050 29051 ip_input_proc = ip_squeue_switch(new_value); 29052 *v = new_value; 29053 return (0); 29054 } 29055 29056 /* ARGSUSED */ 29057 static int 29058 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29059 caddr_t addr, cred_t *cr) 29060 { 29061 int *v = (int *)addr; 29062 long new_value; 29063 29064 if (secpolicy_net_config(cr, B_FALSE) != 0) 29065 return (EPERM); 29066 29067 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29068 return (EINVAL); 29069 29070 *v = new_value; 29071 return (0); 29072 } 29073 29074 /* 29075 * Handle changes to ipmp_hook_emulation ndd variable. 29076 * Need to update phyint_hook_ifindex. 29077 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29078 */ 29079 static void 29080 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29081 { 29082 phyint_t *phyi; 29083 phyint_t *phyi_tmp; 29084 char *groupname; 29085 int namelen; 29086 ill_t *ill; 29087 boolean_t new_group; 29088 29089 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29090 /* 29091 * Group indicies are stored in the phyint - a common structure 29092 * to both IPv4 and IPv6. 29093 */ 29094 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29095 for (; phyi != NULL; 29096 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29097 phyi, AVL_AFTER)) { 29098 /* Ignore the ones that do not have a group */ 29099 if (phyi->phyint_groupname_len == 0) 29100 continue; 29101 29102 /* 29103 * Look for other phyint in group. 29104 * Clear name/namelen so the lookup doesn't find ourselves. 29105 */ 29106 namelen = phyi->phyint_groupname_len; 29107 groupname = phyi->phyint_groupname; 29108 phyi->phyint_groupname_len = 0; 29109 phyi->phyint_groupname = NULL; 29110 29111 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29112 /* Restore */ 29113 phyi->phyint_groupname_len = namelen; 29114 phyi->phyint_groupname = groupname; 29115 29116 new_group = B_FALSE; 29117 if (ipst->ips_ipmp_hook_emulation) { 29118 /* 29119 * If the group already exists and has already 29120 * been assigned a group ifindex, we use the existing 29121 * group_ifindex, otherwise we pick a new group_ifindex 29122 * here. 29123 */ 29124 if (phyi_tmp != NULL && 29125 phyi_tmp->phyint_group_ifindex != 0) { 29126 phyi->phyint_group_ifindex = 29127 phyi_tmp->phyint_group_ifindex; 29128 } else { 29129 /* XXX We need a recovery strategy here. */ 29130 if (!ip_assign_ifindex( 29131 &phyi->phyint_group_ifindex, ipst)) 29132 cmn_err(CE_PANIC, 29133 "ip_assign_ifindex() failed"); 29134 new_group = B_TRUE; 29135 } 29136 } else { 29137 phyi->phyint_group_ifindex = 0; 29138 } 29139 if (ipst->ips_ipmp_hook_emulation) 29140 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29141 else 29142 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29143 29144 /* 29145 * For IP Filter to find out the relationship between 29146 * names and interface indicies, we need to generate 29147 * a NE_PLUMB event when a new group can appear. 29148 * We always generate events when a new interface appears 29149 * (even when ipmp_hook_emulation is set) so there 29150 * is no need to generate NE_PLUMB events when 29151 * ipmp_hook_emulation is turned off. 29152 * And since it isn't critical for IP Filter to get 29153 * the NE_UNPLUMB events we skip those here. 29154 */ 29155 if (new_group) { 29156 /* 29157 * First phyint in group - generate group PLUMB event. 29158 * Since we are not running inside the ipsq we do 29159 * the dispatch immediately. 29160 */ 29161 if (phyi->phyint_illv4 != NULL) 29162 ill = phyi->phyint_illv4; 29163 else 29164 ill = phyi->phyint_illv6; 29165 29166 if (ill != NULL) { 29167 mutex_enter(&ill->ill_lock); 29168 ill_nic_info_plumb(ill, B_TRUE); 29169 ill_nic_info_dispatch(ill); 29170 mutex_exit(&ill->ill_lock); 29171 } 29172 } 29173 } 29174 rw_exit(&ipst->ips_ill_g_lock); 29175 } 29176 29177 /* ARGSUSED */ 29178 static int 29179 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29180 caddr_t addr, cred_t *cr) 29181 { 29182 int *v = (int *)addr; 29183 long new_value; 29184 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29185 29186 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29187 return (EINVAL); 29188 29189 if (*v != new_value) { 29190 *v = new_value; 29191 ipmp_hook_emulation_changed(ipst); 29192 } 29193 return (0); 29194 } 29195 29196 static void * 29197 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29198 { 29199 kstat_t *ksp; 29200 29201 ip_stat_t template = { 29202 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29203 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29204 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29205 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29206 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29207 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29208 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29209 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29210 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29211 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29212 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29213 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29214 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29215 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29216 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29217 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29218 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29219 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29220 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29221 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29222 { "ip_opt", KSTAT_DATA_UINT64 }, 29223 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29224 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29225 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29226 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29227 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29228 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29229 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29230 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29231 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29232 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29233 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29234 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29235 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29236 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29237 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29238 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29239 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29240 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29241 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29242 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29243 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29244 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29245 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29246 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29247 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29248 }; 29249 29250 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29251 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29252 KSTAT_FLAG_VIRTUAL, stackid); 29253 29254 if (ksp == NULL) 29255 return (NULL); 29256 29257 bcopy(&template, ip_statisticsp, sizeof (template)); 29258 ksp->ks_data = (void *)ip_statisticsp; 29259 ksp->ks_private = (void *)(uintptr_t)stackid; 29260 29261 kstat_install(ksp); 29262 return (ksp); 29263 } 29264 29265 static void 29266 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29267 { 29268 if (ksp != NULL) { 29269 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29270 kstat_delete_netstack(ksp, stackid); 29271 } 29272 } 29273 29274 static void * 29275 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29276 { 29277 kstat_t *ksp; 29278 29279 ip_named_kstat_t template = { 29280 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29281 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29282 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29283 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29284 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29285 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29286 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29287 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29288 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29289 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29290 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29291 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29292 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29293 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29294 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29295 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29296 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29297 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29298 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29299 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29300 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29301 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29302 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29303 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29304 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29305 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29306 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29307 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29308 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29309 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29310 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29311 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29312 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29313 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29314 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29315 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29316 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29317 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29318 }; 29319 29320 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29321 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29322 if (ksp == NULL || ksp->ks_data == NULL) 29323 return (NULL); 29324 29325 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29326 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29327 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29328 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29329 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29330 29331 template.netToMediaEntrySize.value.i32 = 29332 sizeof (mib2_ipNetToMediaEntry_t); 29333 29334 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29335 29336 bcopy(&template, ksp->ks_data, sizeof (template)); 29337 ksp->ks_update = ip_kstat_update; 29338 ksp->ks_private = (void *)(uintptr_t)stackid; 29339 29340 kstat_install(ksp); 29341 return (ksp); 29342 } 29343 29344 static void 29345 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29346 { 29347 if (ksp != NULL) { 29348 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29349 kstat_delete_netstack(ksp, stackid); 29350 } 29351 } 29352 29353 static int 29354 ip_kstat_update(kstat_t *kp, int rw) 29355 { 29356 ip_named_kstat_t *ipkp; 29357 mib2_ipIfStatsEntry_t ipmib; 29358 ill_walk_context_t ctx; 29359 ill_t *ill; 29360 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29361 netstack_t *ns; 29362 ip_stack_t *ipst; 29363 29364 if (kp == NULL || kp->ks_data == NULL) 29365 return (EIO); 29366 29367 if (rw == KSTAT_WRITE) 29368 return (EACCES); 29369 29370 ns = netstack_find_by_stackid(stackid); 29371 if (ns == NULL) 29372 return (-1); 29373 ipst = ns->netstack_ip; 29374 if (ipst == NULL) { 29375 netstack_rele(ns); 29376 return (-1); 29377 } 29378 ipkp = (ip_named_kstat_t *)kp->ks_data; 29379 29380 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29381 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29382 ill = ILL_START_WALK_V4(&ctx, ipst); 29383 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29384 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29385 rw_exit(&ipst->ips_ill_g_lock); 29386 29387 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29388 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29389 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29390 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29391 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29392 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29393 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29394 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29395 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29396 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29397 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29398 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29399 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29400 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29401 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29402 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29403 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29404 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29405 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29406 29407 ipkp->routingDiscards.value.ui32 = 0; 29408 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29409 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29410 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29411 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29412 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29413 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29414 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29415 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29416 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29417 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29418 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29419 29420 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29421 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29422 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29423 29424 netstack_rele(ns); 29425 29426 return (0); 29427 } 29428 29429 static void * 29430 icmp_kstat_init(netstackid_t stackid) 29431 { 29432 kstat_t *ksp; 29433 29434 icmp_named_kstat_t template = { 29435 { "inMsgs", KSTAT_DATA_UINT32 }, 29436 { "inErrors", KSTAT_DATA_UINT32 }, 29437 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29438 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29439 { "inParmProbs", KSTAT_DATA_UINT32 }, 29440 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29441 { "inRedirects", KSTAT_DATA_UINT32 }, 29442 { "inEchos", KSTAT_DATA_UINT32 }, 29443 { "inEchoReps", KSTAT_DATA_UINT32 }, 29444 { "inTimestamps", KSTAT_DATA_UINT32 }, 29445 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29446 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29447 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29448 { "outMsgs", KSTAT_DATA_UINT32 }, 29449 { "outErrors", KSTAT_DATA_UINT32 }, 29450 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29451 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29452 { "outParmProbs", KSTAT_DATA_UINT32 }, 29453 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29454 { "outRedirects", KSTAT_DATA_UINT32 }, 29455 { "outEchos", KSTAT_DATA_UINT32 }, 29456 { "outEchoReps", KSTAT_DATA_UINT32 }, 29457 { "outTimestamps", KSTAT_DATA_UINT32 }, 29458 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29459 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29460 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29461 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29462 { "inUnknowns", KSTAT_DATA_UINT32 }, 29463 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29464 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29465 { "outDrops", KSTAT_DATA_UINT32 }, 29466 { "inOverFlows", KSTAT_DATA_UINT32 }, 29467 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29468 }; 29469 29470 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29471 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29472 if (ksp == NULL || ksp->ks_data == NULL) 29473 return (NULL); 29474 29475 bcopy(&template, ksp->ks_data, sizeof (template)); 29476 29477 ksp->ks_update = icmp_kstat_update; 29478 ksp->ks_private = (void *)(uintptr_t)stackid; 29479 29480 kstat_install(ksp); 29481 return (ksp); 29482 } 29483 29484 static void 29485 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29486 { 29487 if (ksp != NULL) { 29488 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29489 kstat_delete_netstack(ksp, stackid); 29490 } 29491 } 29492 29493 static int 29494 icmp_kstat_update(kstat_t *kp, int rw) 29495 { 29496 icmp_named_kstat_t *icmpkp; 29497 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29498 netstack_t *ns; 29499 ip_stack_t *ipst; 29500 29501 if ((kp == NULL) || (kp->ks_data == NULL)) 29502 return (EIO); 29503 29504 if (rw == KSTAT_WRITE) 29505 return (EACCES); 29506 29507 ns = netstack_find_by_stackid(stackid); 29508 if (ns == NULL) 29509 return (-1); 29510 ipst = ns->netstack_ip; 29511 if (ipst == NULL) { 29512 netstack_rele(ns); 29513 return (-1); 29514 } 29515 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29516 29517 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29518 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29519 icmpkp->inDestUnreachs.value.ui32 = 29520 ipst->ips_icmp_mib.icmpInDestUnreachs; 29521 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29522 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29523 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29524 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29525 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29526 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29527 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29528 icmpkp->inTimestampReps.value.ui32 = 29529 ipst->ips_icmp_mib.icmpInTimestampReps; 29530 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29531 icmpkp->inAddrMaskReps.value.ui32 = 29532 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29533 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29534 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29535 icmpkp->outDestUnreachs.value.ui32 = 29536 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29537 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29538 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29539 icmpkp->outSrcQuenchs.value.ui32 = 29540 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29541 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29542 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29543 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29544 icmpkp->outTimestamps.value.ui32 = 29545 ipst->ips_icmp_mib.icmpOutTimestamps; 29546 icmpkp->outTimestampReps.value.ui32 = 29547 ipst->ips_icmp_mib.icmpOutTimestampReps; 29548 icmpkp->outAddrMasks.value.ui32 = 29549 ipst->ips_icmp_mib.icmpOutAddrMasks; 29550 icmpkp->outAddrMaskReps.value.ui32 = 29551 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29552 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29553 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29554 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29555 icmpkp->outFragNeeded.value.ui32 = 29556 ipst->ips_icmp_mib.icmpOutFragNeeded; 29557 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29558 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29559 icmpkp->inBadRedirects.value.ui32 = 29560 ipst->ips_icmp_mib.icmpInBadRedirects; 29561 29562 netstack_rele(ns); 29563 return (0); 29564 } 29565 29566 /* 29567 * This is the fanout function for raw socket opened for SCTP. Note 29568 * that it is called after SCTP checks that there is no socket which 29569 * wants a packet. Then before SCTP handles this out of the blue packet, 29570 * this function is called to see if there is any raw socket for SCTP. 29571 * If there is and it is bound to the correct address, the packet will 29572 * be sent to that socket. Note that only one raw socket can be bound to 29573 * a port. This is assured in ipcl_sctp_hash_insert(); 29574 */ 29575 void 29576 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29577 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29578 zoneid_t zoneid) 29579 { 29580 conn_t *connp; 29581 queue_t *rq; 29582 mblk_t *first_mp; 29583 boolean_t secure; 29584 ip6_t *ip6h; 29585 ip_stack_t *ipst = recv_ill->ill_ipst; 29586 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29587 29588 first_mp = mp; 29589 if (mctl_present) { 29590 mp = first_mp->b_cont; 29591 secure = ipsec_in_is_secure(first_mp); 29592 ASSERT(mp != NULL); 29593 } else { 29594 secure = B_FALSE; 29595 } 29596 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29597 29598 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29599 if (connp == NULL) { 29600 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29601 return; 29602 } 29603 rq = connp->conn_rq; 29604 if (!canputnext(rq)) { 29605 CONN_DEC_REF(connp); 29606 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29607 freemsg(first_mp); 29608 return; 29609 } 29610 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29611 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29612 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29613 (isv4 ? ipha : NULL), ip6h, mctl_present); 29614 if (first_mp == NULL) { 29615 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29616 CONN_DEC_REF(connp); 29617 return; 29618 } 29619 } 29620 /* 29621 * We probably should not send M_CTL message up to 29622 * raw socket. 29623 */ 29624 if (mctl_present) 29625 freeb(first_mp); 29626 29627 /* Initiate IPPF processing here if needed. */ 29628 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29629 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29630 ip_process(IPP_LOCAL_IN, &mp, 29631 recv_ill->ill_phyint->phyint_ifindex); 29632 if (mp == NULL) { 29633 CONN_DEC_REF(connp); 29634 return; 29635 } 29636 } 29637 29638 if (connp->conn_recvif || connp->conn_recvslla || 29639 ((connp->conn_ip_recvpktinfo || 29640 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29641 (flags & IP_FF_IPINFO))) { 29642 int in_flags = 0; 29643 29644 /* 29645 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29646 * IPF_RECVIF. 29647 */ 29648 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29649 in_flags = IPF_RECVIF; 29650 } 29651 if (connp->conn_recvslla) { 29652 in_flags |= IPF_RECVSLLA; 29653 } 29654 if (isv4) { 29655 mp = ip_add_info(mp, recv_ill, in_flags, 29656 IPCL_ZONEID(connp), ipst); 29657 } else { 29658 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29659 if (mp == NULL) { 29660 BUMP_MIB(recv_ill->ill_ip_mib, 29661 ipIfStatsInDiscards); 29662 CONN_DEC_REF(connp); 29663 return; 29664 } 29665 } 29666 } 29667 29668 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29669 /* 29670 * We are sending the IPSEC_IN message also up. Refer 29671 * to comments above this function. 29672 * This is the SOCK_RAW, IPPROTO_SCTP case. 29673 */ 29674 (connp->conn_recv)(connp, mp, NULL); 29675 CONN_DEC_REF(connp); 29676 } 29677 29678 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29679 { \ 29680 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29681 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29682 } 29683 /* 29684 * This function should be called only if all packet processing 29685 * including fragmentation is complete. Callers of this function 29686 * must set mp->b_prev to one of these values: 29687 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29688 * prior to handing over the mp as first argument to this function. 29689 * 29690 * If the ire passed by caller is incomplete, this function 29691 * queues the packet and if necessary, sends ARP request and bails. 29692 * If the ire passed is fully resolved, we simply prepend 29693 * the link-layer header to the packet, do ipsec hw acceleration 29694 * work if necessary, and send the packet out on the wire. 29695 * 29696 * NOTE: IPsec will only call this function with fully resolved 29697 * ires if hw acceleration is involved. 29698 * TODO list : 29699 * a Handle M_MULTIDATA so that 29700 * tcp_multisend->tcp_multisend_data can 29701 * call ip_xmit_v4 directly 29702 * b Handle post-ARP work for fragments so that 29703 * ip_wput_frag can call this function. 29704 */ 29705 ipxmit_state_t 29706 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29707 { 29708 nce_t *arpce; 29709 queue_t *q; 29710 int ill_index; 29711 mblk_t *nxt_mp, *first_mp; 29712 boolean_t xmit_drop = B_FALSE; 29713 ip_proc_t proc; 29714 ill_t *out_ill; 29715 int pkt_len; 29716 29717 arpce = ire->ire_nce; 29718 ASSERT(arpce != NULL); 29719 29720 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29721 29722 mutex_enter(&arpce->nce_lock); 29723 switch (arpce->nce_state) { 29724 case ND_REACHABLE: 29725 /* If there are other queued packets, queue this packet */ 29726 if (arpce->nce_qd_mp != NULL) { 29727 if (mp != NULL) 29728 nce_queue_mp_common(arpce, mp, B_FALSE); 29729 mp = arpce->nce_qd_mp; 29730 } 29731 arpce->nce_qd_mp = NULL; 29732 mutex_exit(&arpce->nce_lock); 29733 29734 /* 29735 * Flush the queue. In the common case, where the 29736 * ARP is already resolved, it will go through the 29737 * while loop only once. 29738 */ 29739 while (mp != NULL) { 29740 29741 nxt_mp = mp->b_next; 29742 mp->b_next = NULL; 29743 ASSERT(mp->b_datap->db_type != M_CTL); 29744 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29745 /* 29746 * This info is needed for IPQOS to do COS marking 29747 * in ip_wput_attach_llhdr->ip_process. 29748 */ 29749 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29750 mp->b_prev = NULL; 29751 29752 /* set up ill index for outbound qos processing */ 29753 out_ill = ire_to_ill(ire); 29754 ill_index = out_ill->ill_phyint->phyint_ifindex; 29755 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29756 ill_index); 29757 if (first_mp == NULL) { 29758 xmit_drop = B_TRUE; 29759 BUMP_MIB(out_ill->ill_ip_mib, 29760 ipIfStatsOutDiscards); 29761 goto next_mp; 29762 } 29763 /* non-ipsec hw accel case */ 29764 if (io == NULL || !io->ipsec_out_accelerated) { 29765 /* send it */ 29766 q = ire->ire_stq; 29767 if (proc == IPP_FWD_OUT) { 29768 UPDATE_IB_PKT_COUNT(ire); 29769 } else { 29770 UPDATE_OB_PKT_COUNT(ire); 29771 } 29772 ire->ire_last_used_time = lbolt; 29773 29774 if (flow_ctl_enabled || canputnext(q)) { 29775 if (proc == IPP_FWD_OUT) { 29776 29777 BUMP_MIB(out_ill->ill_ip_mib, 29778 ipIfStatsHCOutForwDatagrams); 29779 29780 } 29781 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29782 pkt_len); 29783 29784 putnext(q, first_mp); 29785 } else { 29786 BUMP_MIB(out_ill->ill_ip_mib, 29787 ipIfStatsOutDiscards); 29788 xmit_drop = B_TRUE; 29789 freemsg(first_mp); 29790 } 29791 } else { 29792 /* 29793 * Safety Pup says: make sure this 29794 * is going to the right interface! 29795 */ 29796 ill_t *ill1 = 29797 (ill_t *)ire->ire_stq->q_ptr; 29798 int ifindex = 29799 ill1->ill_phyint->phyint_ifindex; 29800 if (ifindex != 29801 io->ipsec_out_capab_ill_index) { 29802 xmit_drop = B_TRUE; 29803 freemsg(mp); 29804 } else { 29805 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29806 pkt_len); 29807 ipsec_hw_putnext(ire->ire_stq, mp); 29808 } 29809 } 29810 next_mp: 29811 mp = nxt_mp; 29812 } /* while (mp != NULL) */ 29813 if (xmit_drop) 29814 return (SEND_FAILED); 29815 else 29816 return (SEND_PASSED); 29817 29818 case ND_INITIAL: 29819 case ND_INCOMPLETE: 29820 29821 /* 29822 * While we do send off packets to dests that 29823 * use fully-resolved CGTP routes, we do not 29824 * handle unresolved CGTP routes. 29825 */ 29826 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29827 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29828 29829 if (mp != NULL) { 29830 /* queue the packet */ 29831 nce_queue_mp_common(arpce, mp, B_FALSE); 29832 } 29833 29834 if (arpce->nce_state == ND_INCOMPLETE) { 29835 mutex_exit(&arpce->nce_lock); 29836 DTRACE_PROBE3(ip__xmit__incomplete, 29837 (ire_t *), ire, (mblk_t *), mp, 29838 (ipsec_out_t *), io); 29839 return (LOOKUP_IN_PROGRESS); 29840 } 29841 29842 arpce->nce_state = ND_INCOMPLETE; 29843 mutex_exit(&arpce->nce_lock); 29844 /* 29845 * Note that ire_add() (called from ire_forward()) 29846 * holds a ref on the ire until ARP is completed. 29847 */ 29848 29849 ire_arpresolve(ire, ire_to_ill(ire)); 29850 return (LOOKUP_IN_PROGRESS); 29851 default: 29852 ASSERT(0); 29853 mutex_exit(&arpce->nce_lock); 29854 return (LLHDR_RESLV_FAILED); 29855 } 29856 } 29857 29858 #undef UPDATE_IP_MIB_OB_COUNTERS 29859 29860 /* 29861 * Return B_TRUE if the buffers differ in length or content. 29862 * This is used for comparing extension header buffers. 29863 * Note that an extension header would be declared different 29864 * even if all that changed was the next header value in that header i.e. 29865 * what really changed is the next extension header. 29866 */ 29867 boolean_t 29868 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29869 uint_t blen) 29870 { 29871 if (!b_valid) 29872 blen = 0; 29873 29874 if (alen != blen) 29875 return (B_TRUE); 29876 if (alen == 0) 29877 return (B_FALSE); /* Both zero length */ 29878 return (bcmp(abuf, bbuf, alen)); 29879 } 29880 29881 /* 29882 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29883 * Return B_FALSE if memory allocation fails - don't change any state! 29884 */ 29885 boolean_t 29886 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29887 const void *src, uint_t srclen) 29888 { 29889 void *dst; 29890 29891 if (!src_valid) 29892 srclen = 0; 29893 29894 ASSERT(*dstlenp == 0); 29895 if (src != NULL && srclen != 0) { 29896 dst = mi_alloc(srclen, BPRI_MED); 29897 if (dst == NULL) 29898 return (B_FALSE); 29899 } else { 29900 dst = NULL; 29901 } 29902 if (*dstp != NULL) 29903 mi_free(*dstp); 29904 *dstp = dst; 29905 *dstlenp = dst == NULL ? 0 : srclen; 29906 return (B_TRUE); 29907 } 29908 29909 /* 29910 * Replace what is in *dst, *dstlen with the source. 29911 * Assumes ip_allocbuf has already been called. 29912 */ 29913 void 29914 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29915 const void *src, uint_t srclen) 29916 { 29917 if (!src_valid) 29918 srclen = 0; 29919 29920 ASSERT(*dstlenp == srclen); 29921 if (src != NULL && srclen != 0) 29922 bcopy(src, *dstp, srclen); 29923 } 29924 29925 /* 29926 * Free the storage pointed to by the members of an ip6_pkt_t. 29927 */ 29928 void 29929 ip6_pkt_free(ip6_pkt_t *ipp) 29930 { 29931 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29932 29933 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29934 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29935 ipp->ipp_hopopts = NULL; 29936 ipp->ipp_hopoptslen = 0; 29937 } 29938 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29939 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29940 ipp->ipp_rtdstopts = NULL; 29941 ipp->ipp_rtdstoptslen = 0; 29942 } 29943 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29944 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29945 ipp->ipp_dstopts = NULL; 29946 ipp->ipp_dstoptslen = 0; 29947 } 29948 if (ipp->ipp_fields & IPPF_RTHDR) { 29949 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29950 ipp->ipp_rthdr = NULL; 29951 ipp->ipp_rthdrlen = 0; 29952 } 29953 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29954 IPPF_RTHDR); 29955 } 29956