1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <sys/mac.h> 60 #include <net/if.h> 61 #include <net/if_arp.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <net/if_dl.h> 66 67 #include <inet/common.h> 68 #include <inet/mi.h> 69 #include <inet/mib2.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/snmpcom.h> 73 #include <inet/optcom.h> 74 #include <inet/kstatcom.h> 75 76 #include <netinet/igmp_var.h> 77 #include <netinet/ip6.h> 78 #include <netinet/icmp6.h> 79 #include <netinet/sctp.h> 80 81 #include <inet/ip.h> 82 #include <inet/ip_impl.h> 83 #include <inet/ip6.h> 84 #include <inet/ip6_asp.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <inet/ip_multi.h> 88 #include <inet/ip_if.h> 89 #include <inet/ip_ire.h> 90 #include <inet/ip_ftable.h> 91 #include <inet/ip_rts.h> 92 #include <inet/ip_ndp.h> 93 #include <inet/ip_listutils.h> 94 #include <netinet/igmp.h> 95 #include <netinet/ip_mroute.h> 96 #include <inet/ipp_common.h> 97 98 #include <net/pfkeyv2.h> 99 #include <inet/ipsec_info.h> 100 #include <inet/sadb.h> 101 #include <inet/ipsec_impl.h> 102 #include <sys/iphada.h> 103 #include <inet/tun.h> 104 #include <inet/ipdrop.h> 105 #include <inet/ip_netinfo.h> 106 107 #include <sys/ethernet.h> 108 #include <net/if_types.h> 109 #include <sys/cpuvar.h> 110 111 #include <ipp/ipp.h> 112 #include <ipp/ipp_impl.h> 113 #include <ipp/ipgpc/ipgpc.h> 114 115 #include <sys/multidata.h> 116 #include <sys/pattr.h> 117 118 #include <inet/ipclassifier.h> 119 #include <inet/sctp_ip.h> 120 #include <inet/sctp/sctp_impl.h> 121 #include <inet/udp_impl.h> 122 #include <inet/rawip_impl.h> 123 #include <inet/rts_impl.h> 124 #include <sys/sunddi.h> 125 126 #include <sys/tsol/label.h> 127 #include <sys/tsol/tnet.h> 128 129 #include <rpc/pmap_prot.h> 130 131 /* 132 * Values for squeue switch: 133 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 134 * IP_SQUEUE_ENTER: squeue_enter 135 * IP_SQUEUE_FILL: squeue_fill 136 */ 137 int ip_squeue_enter = 2; /* Setable in /etc/system */ 138 139 squeue_func_t ip_input_proc; 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 /* 143 * Setable in /etc/system 144 */ 145 int ip_poll_normal_ms = 100; 146 int ip_poll_normal_ticks = 0; 147 int ip_modclose_ackwait_ms = 3000; 148 149 /* 150 * It would be nice to have these present only in DEBUG systems, but the 151 * current design of the global symbol checking logic requires them to be 152 * unconditionally present. 153 */ 154 uint_t ip_thread_data; /* TSD key for debug support */ 155 krwlock_t ip_thread_rwlock; 156 list_t ip_thread_list; 157 158 /* 159 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 160 */ 161 162 struct listptr_s { 163 mblk_t *lp_head; /* pointer to the head of the list */ 164 mblk_t *lp_tail; /* pointer to the tail of the list */ 165 }; 166 167 typedef struct listptr_s listptr_t; 168 169 /* 170 * This is used by ip_snmp_get_mib2_ip_route_media and 171 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 172 */ 173 typedef struct iproutedata_s { 174 uint_t ird_idx; 175 listptr_t ird_route; /* ipRouteEntryTable */ 176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 177 listptr_t ird_attrs; /* ipRouteAttributeTable */ 178 } iproutedata_t; 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 199 uint8_t *laddrp, uint8_t *faddrp) = NULL; 200 201 /* 202 * Synchronization notes: 203 * 204 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 205 * MT level protection given by STREAMS. IP uses a combination of its own 206 * internal serialization mechanism and standard Solaris locking techniques. 207 * The internal serialization is per phyint (no IPMP) or per IPMP group. 208 * This is used to serialize plumbing operations, IPMP operations, certain 209 * multicast operations, most set ioctls, igmp/mld timers etc. 210 * 211 * Plumbing is a long sequence of operations involving message 212 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 213 * involved in plumbing operations. A natural model is to serialize these 214 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 215 * parallel without any interference. But various set ioctls on hme0 are best 216 * serialized. However if the system uses IPMP, the operations are easier if 217 * they are serialized on a per IPMP group basis since IPMP operations 218 * happen across ill's of a group. Thus the lowest common denominator is to 219 * serialize most set ioctls, multicast join/leave operations, IPMP operations 220 * igmp/mld timer operations, and processing of DLPI control messages received 221 * from drivers on a per IPMP group basis. If the system does not employ 222 * IPMP the serialization is on a per phyint basis. This serialization is 223 * provided by the ipsq_t and primitives operating on this. Details can 224 * be found in ip_if.c above the core primitives operating on ipsq_t. 225 * 226 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 227 * Simiarly lookup of an ire by a thread also returns a refheld ire. 228 * In addition ipif's and ill's referenced by the ire are also indirectly 229 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 230 * the ipif's address or netmask change as long as an ipif is refheld 231 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 232 * address of an ipif has to go through the ipsq_t. This ensures that only 233 * 1 such exclusive operation proceeds at any time on the ipif. It then 234 * deletes all ires associated with this ipif, and waits for all refcnts 235 * associated with this ipif to come down to zero. The address is changed 236 * only after the ipif has been quiesced. Then the ipif is brought up again. 237 * More details are described above the comment in ip_sioctl_flags. 238 * 239 * Packet processing is based mostly on IREs and are fully multi-threaded 240 * using standard Solaris MT techniques. 241 * 242 * There are explicit locks in IP to handle: 243 * - The ip_g_head list maintained by mi_open_link() and friends. 244 * 245 * - The reassembly data structures (one lock per hash bucket) 246 * 247 * - conn_lock is meant to protect conn_t fields. The fields actually 248 * protected by conn_lock are documented in the conn_t definition. 249 * 250 * - ire_lock to protect some of the fields of the ire, IRE tables 251 * (one lock per hash bucket). Refer to ip_ire.c for details. 252 * 253 * - ndp_g_lock and nce_lock for protecting NCEs. 254 * 255 * - ill_lock protects fields of the ill and ipif. Details in ip.h 256 * 257 * - ill_g_lock: This is a global reader/writer lock. Protects the following 258 * * The AVL tree based global multi list of all ills. 259 * * The linked list of all ipifs of an ill 260 * * The <ill-ipsq> mapping 261 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 262 * * The illgroup list threaded by ill_group_next. 263 * * <ill-phyint> association 264 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 265 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 266 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 267 * will all have to hold the ill_g_lock as writer for the actual duration 268 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 269 * may be found in the IPMP section. 270 * 271 * - ill_lock: This is a per ill mutex. 272 * It protects some members of the ill and is documented below. 273 * It also protects the <ill-ipsq> mapping 274 * It also protects the illgroup list threaded by ill_group_next. 275 * It also protects the <ill-phyint> assoc. 276 * It also protects the list of ipifs hanging off the ill. 277 * 278 * - ipsq_lock: This is a per ipsq_t mutex lock. 279 * This protects all the other members of the ipsq struct except 280 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 281 * 282 * - illgrp_lock: This is a per ill_group mutex lock. 283 * The only thing it protects is the illgrp_ill_schednext member of ill_group 284 * which dictates which is the next ill in an ill_group that is to be chosen 285 * for sending outgoing packets, through creation of an IRE_CACHE that 286 * references this ill. 287 * 288 * - phyint_lock: This is a per phyint mutex lock. Protects just the 289 * phyint_flags 290 * 291 * - ip_g_nd_lock: This is a global reader/writer lock. 292 * Any call to nd_load to load a new parameter to the ND table must hold the 293 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 294 * as reader. 295 * 296 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 297 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 298 * uniqueness check also done atomically. 299 * 300 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 301 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 302 * as a writer when adding or deleting elements from these lists, and 303 * as a reader when walking these lists to send a SADB update to the 304 * IPsec capable ills. 305 * 306 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 307 * group list linked by ill_usesrc_grp_next. It also protects the 308 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 309 * group is being added or deleted. This lock is taken as a reader when 310 * walking the list/group(eg: to get the number of members in a usesrc group). 311 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 312 * field is changing state i.e from NULL to non-NULL or vice-versa. For 313 * example, it is not necessary to take this lock in the initial portion 314 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 315 * ip_sioctl_flags since the these operations are executed exclusively and 316 * that ensures that the "usesrc group state" cannot change. The "usesrc 317 * group state" change can happen only in the latter part of 318 * ip_sioctl_slifusesrc and in ill_delete. 319 * 320 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 321 * 322 * To change the <ill-phyint> association, the ill_g_lock must be held 323 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 324 * must be held. 325 * 326 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 327 * and the ill_lock of the ill in question must be held. 328 * 329 * To change the <ill-illgroup> association the ill_g_lock must be held as 330 * writer and the ill_lock of the ill in question must be held. 331 * 332 * To add or delete an ipif from the list of ipifs hanging off the ill, 333 * ill_g_lock (writer) and ill_lock must be held and the thread must be 334 * a writer on the associated ipsq,. 335 * 336 * To add or delete an ill to the system, the ill_g_lock must be held as 337 * writer and the thread must be a writer on the associated ipsq. 338 * 339 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 340 * must be a writer on the associated ipsq. 341 * 342 * Lock hierarchy 343 * 344 * Some lock hierarchy scenarios are listed below. 345 * 346 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 347 * ill_g_lock -> illgrp_lock -> ill_lock 348 * ill_g_lock -> ill_lock(s) -> phyint_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 350 * ill_g_lock -> ip_addr_avail_lock 351 * conn_lock -> irb_lock -> ill_lock -> ire_lock 352 * ill_g_lock -> ip_g_nd_lock 353 * 354 * When more than 1 ill lock is needed to be held, all ill lock addresses 355 * are sorted on address and locked starting from highest addressed lock 356 * downward. 357 * 358 * IPsec scenarios 359 * 360 * ipsa_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 362 * ipsec_capab_ills_lock -> ipsa_lock 363 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 364 * 365 * Trusted Solaris scenarios 366 * 367 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 368 * igsa_lock -> gcdb_lock 369 * gcgrp_rwlock -> ire_lock 370 * gcgrp_rwlock -> gcdb_lock 371 * 372 * 373 * Routing/forwarding table locking notes: 374 * 375 * Lock acquisition order: Radix tree lock, irb_lock. 376 * Requirements: 377 * i. Walker must not hold any locks during the walker callback. 378 * ii Walker must not see a truncated tree during the walk because of any node 379 * deletion. 380 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 381 * in many places in the code to walk the irb list. Thus even if all the 382 * ires in a bucket have been deleted, we still can't free the radix node 383 * until the ires have actually been inactive'd (freed). 384 * 385 * Tree traversal - Need to hold the global tree lock in read mode. 386 * Before dropping the global tree lock, need to either increment the ire_refcnt 387 * to ensure that the radix node can't be deleted. 388 * 389 * Tree add - Need to hold the global tree lock in write mode to add a 390 * radix node. To prevent the node from being deleted, increment the 391 * irb_refcnt, after the node is added to the tree. The ire itself is 392 * added later while holding the irb_lock, but not the tree lock. 393 * 394 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 395 * All associated ires must be inactive (i.e. freed), and irb_refcnt 396 * must be zero. 397 * 398 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 399 * global tree lock (read mode) for traversal. 400 * 401 * IPsec notes : 402 * 403 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 404 * in front of the actual packet. For outbound datagrams, the M_CTL 405 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 406 * information used by the IPsec code for applying the right level of 407 * protection. The information initialized by IP in the ipsec_out_t 408 * is determined by the per-socket policy or global policy in the system. 409 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 410 * ipsec_info.h) which starts out with nothing in it. It gets filled 411 * with the right information if it goes through the AH/ESP code, which 412 * happens if the incoming packet is secure. The information initialized 413 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 414 * the policy requirements needed by per-socket policy or global policy 415 * is met or not. 416 * 417 * If there is both per-socket policy (set using setsockopt) and there 418 * is also global policy match for the 5 tuples of the socket, 419 * ipsec_override_policy() makes the decision of which one to use. 420 * 421 * For fully connected sockets i.e dst, src [addr, port] is known, 422 * conn_policy_cached is set indicating that policy has been cached. 423 * conn_in_enforce_policy may or may not be set depending on whether 424 * there is a global policy match or per-socket policy match. 425 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 426 * Once the right policy is set on the conn_t, policy cannot change for 427 * this socket. This makes life simpler for TCP (UDP ?) where 428 * re-transmissions go out with the same policy. For symmetry, policy 429 * is cached for fully connected UDP sockets also. Thus if policy is cached, 430 * it also implies that policy is latched i.e policy cannot change 431 * on these sockets. As we have the right policy on the conn, we don't 432 * have to lookup global policy for every outbound and inbound datagram 433 * and thus serving as an optimization. Note that a global policy change 434 * does not affect fully connected sockets if they have policy. If fully 435 * connected sockets did not have any policy associated with it, global 436 * policy change may affect them. 437 * 438 * IP Flow control notes: 439 * 440 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 441 * cannot be sent down to the driver by IP, because of a canput failure, IP 442 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 443 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 444 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 445 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 446 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 447 * the queued messages, and removes the conn from the drain list, if all 448 * messages were drained. It also qenables the next conn in the drain list to 449 * continue the drain process. 450 * 451 * In reality the drain list is not a single list, but a configurable number 452 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 453 * list. If the ip_wsrv of the next qenabled conn does not run, because the 454 * stream closes, ip_close takes responsibility to qenable the next conn in 455 * the drain list. The directly called ip_wput path always does a putq, if 456 * it cannot putnext. Thus synchronization problems are handled between 457 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 458 * functions that manipulate this drain list. Furthermore conn_drain_insert 459 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 460 * running on a queue at any time. conn_drain_tail can be simultaneously called 461 * from both ip_wsrv and ip_close. 462 * 463 * IPQOS notes: 464 * 465 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 466 * and IPQoS modules. IPPF includes hooks in IP at different control points 467 * (callout positions) which direct packets to IPQoS modules for policy 468 * processing. Policies, if present, are global. 469 * 470 * The callout positions are located in the following paths: 471 * o local_in (packets destined for this host) 472 * o local_out (packets orginating from this host ) 473 * o fwd_in (packets forwarded by this m/c - inbound) 474 * o fwd_out (packets forwarded by this m/c - outbound) 475 * Hooks at these callout points can be enabled/disabled using the ndd variable 476 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 477 * By default all the callout positions are enabled. 478 * 479 * Outbound (local_out) 480 * Hooks are placed in ip_wput_ire and ipsec_out_process. 481 * 482 * Inbound (local_in) 483 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 484 * TCP and UDP fanout routines. 485 * 486 * Forwarding (in and out) 487 * Hooks are placed in ip_rput_forward. 488 * 489 * IP Policy Framework processing (IPPF processing) 490 * Policy processing for a packet is initiated by ip_process, which ascertains 491 * that the classifier (ipgpc) is loaded and configured, failing which the 492 * packet resumes normal processing in IP. If the clasifier is present, the 493 * packet is acted upon by one or more IPQoS modules (action instances), per 494 * filters configured in ipgpc and resumes normal IP processing thereafter. 495 * An action instance can drop a packet in course of its processing. 496 * 497 * A boolean variable, ip_policy, is used in all the fanout routines that can 498 * invoke ip_process for a packet. This variable indicates if the packet should 499 * to be sent for policy processing. The variable is set to B_TRUE by default, 500 * i.e. when the routines are invoked in the normal ip procesing path for a 501 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 502 * ip_policy is set to B_FALSE for all the routines called in these two 503 * functions because, in the former case, we don't process loopback traffic 504 * currently while in the latter, the packets have already been processed in 505 * icmp_inbound. 506 * 507 * Zones notes: 508 * 509 * The partitioning rules for networking are as follows: 510 * 1) Packets coming from a zone must have a source address belonging to that 511 * zone. 512 * 2) Packets coming from a zone can only be sent on a physical interface on 513 * which the zone has an IP address. 514 * 3) Between two zones on the same machine, packet delivery is only allowed if 515 * there's a matching route for the destination and zone in the forwarding 516 * table. 517 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 518 * different zones can bind to the same port with the wildcard address 519 * (INADDR_ANY). 520 * 521 * The granularity of interface partitioning is at the logical interface level. 522 * Therefore, every zone has its own IP addresses, and incoming packets can be 523 * attributed to a zone unambiguously. A logical interface is placed into a zone 524 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 525 * structure. Rule (1) is implemented by modifying the source address selection 526 * algorithm so that the list of eligible addresses is filtered based on the 527 * sending process zone. 528 * 529 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 530 * across all zones, depending on their type. Here is the break-up: 531 * 532 * IRE type Shared/exclusive 533 * -------- ---------------- 534 * IRE_BROADCAST Exclusive 535 * IRE_DEFAULT (default routes) Shared (*) 536 * IRE_LOCAL Exclusive (x) 537 * IRE_LOOPBACK Exclusive 538 * IRE_PREFIX (net routes) Shared (*) 539 * IRE_CACHE Exclusive 540 * IRE_IF_NORESOLVER (interface routes) Exclusive 541 * IRE_IF_RESOLVER (interface routes) Exclusive 542 * IRE_HOST (host routes) Shared (*) 543 * 544 * (*) A zone can only use a default or off-subnet route if the gateway is 545 * directly reachable from the zone, that is, if the gateway's address matches 546 * one of the zone's logical interfaces. 547 * 548 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 549 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 550 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 551 * address of the zone itself (the destination). Since IRE_LOCAL is used 552 * for communication between zones, ip_wput_ire has special logic to set 553 * the right source address when sending using an IRE_LOCAL. 554 * 555 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 556 * ire_cache_lookup restricts loopback using an IRE_LOCAL 557 * between zone to the case when L2 would have conceptually looped the packet 558 * back, i.e. the loopback which is required since neither Ethernet drivers 559 * nor Ethernet hardware loops them back. This is the case when the normal 560 * routes (ignoring IREs with different zoneids) would send out the packet on 561 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 562 * associated. 563 * 564 * Multiple zones can share a common broadcast address; typically all zones 565 * share the 255.255.255.255 address. Incoming as well as locally originated 566 * broadcast packets must be dispatched to all the zones on the broadcast 567 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 568 * since some zones may not be on the 10.16.72/24 network. To handle this, each 569 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 570 * sent to every zone that has an IRE_BROADCAST entry for the destination 571 * address on the input ill, see conn_wantpacket(). 572 * 573 * Applications in different zones can join the same multicast group address. 574 * For IPv4, group memberships are per-logical interface, so they're already 575 * inherently part of a zone. For IPv6, group memberships are per-physical 576 * interface, so we distinguish IPv6 group memberships based on group address, 577 * interface and zoneid. In both cases, received multicast packets are sent to 578 * every zone for which a group membership entry exists. On IPv6 we need to 579 * check that the target zone still has an address on the receiving physical 580 * interface; it could have been removed since the application issued the 581 * IPV6_JOIN_GROUP. 582 */ 583 584 /* 585 * Squeue Fanout flags: 586 * 0: No fanout. 587 * 1: Fanout across all squeues 588 */ 589 boolean_t ip_squeue_fanout = 0; 590 591 /* 592 * Maximum dups allowed per packet. 593 */ 594 uint_t ip_max_frag_dups = 10; 595 596 #define IS_SIMPLE_IPH(ipha) \ 597 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 598 599 /* RFC1122 Conformance */ 600 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 601 602 #define ILL_MAX_NAMELEN LIFNAMSIZ 603 604 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 605 606 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 607 cred_t *credp, boolean_t isv6); 608 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 609 610 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 611 ip_stack_t *); 612 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 613 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 614 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 615 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 616 mblk_t *, int, ip_stack_t *); 617 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 618 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 619 ill_t *, zoneid_t); 620 static void icmp_options_update(ipha_t *); 621 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 622 ip_stack_t *); 623 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 624 zoneid_t zoneid, ip_stack_t *); 625 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 626 static void icmp_redirect(ill_t *, mblk_t *); 627 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 628 ip_stack_t *); 629 630 static void ip_arp_news(queue_t *, mblk_t *); 631 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 632 ip_stack_t *); 633 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 634 char *ip_dot_addr(ipaddr_t, char *); 635 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 636 int ip_close(queue_t *, int); 637 static char *ip_dot_saddr(uchar_t *, char *); 638 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 639 boolean_t, boolean_t, ill_t *, zoneid_t); 640 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, zoneid_t); 642 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 643 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 644 static void ip_lrput(queue_t *, mblk_t *); 645 ipaddr_t ip_net_mask(ipaddr_t); 646 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 647 ip_stack_t *); 648 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 649 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 650 char *ip_nv_lookup(nv_t *, int); 651 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 652 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 654 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 655 ipndp_t *, size_t); 656 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 657 void ip_rput(queue_t *, mblk_t *); 658 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 659 void *dummy_arg); 660 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 661 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 662 ip_stack_t *); 663 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 664 ire_t *, ip_stack_t *); 665 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 666 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 667 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 668 ip_stack_t *); 669 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 670 uint16_t *); 671 int ip_snmp_get(queue_t *, mblk_t *, int); 672 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 673 mib2_ipIfStatsEntry_t *, ip_stack_t *); 674 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 675 ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 682 ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 684 ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 686 ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 688 ip_stack_t *ipst); 689 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 690 ip_stack_t *ipst); 691 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 702 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 703 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 704 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 705 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 706 static boolean_t ip_source_route_included(ipha_t *); 707 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 708 709 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 710 zoneid_t, ip_stack_t *); 711 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 712 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 713 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 714 zoneid_t, ip_stack_t *); 715 716 static void conn_drain_init(ip_stack_t *); 717 static void conn_drain_fini(ip_stack_t *); 718 static void conn_drain_tail(conn_t *connp, boolean_t closing); 719 720 static void conn_walk_drain(ip_stack_t *); 721 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 722 zoneid_t); 723 724 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 725 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 726 static void ip_stack_fini(netstackid_t stackid, void *arg); 727 728 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 729 zoneid_t); 730 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 731 void *dummy_arg); 732 733 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 734 735 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 736 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 737 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 738 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 739 740 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 741 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 742 caddr_t, cred_t *); 743 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 744 caddr_t cp, cred_t *cr); 745 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 746 cred_t *); 747 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 748 caddr_t cp, cred_t *cr); 749 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 750 cred_t *); 751 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 752 cred_t *); 753 static squeue_func_t ip_squeue_switch(int); 754 755 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 756 static void ip_kstat_fini(netstackid_t, kstat_t *); 757 static int ip_kstat_update(kstat_t *kp, int rw); 758 static void *icmp_kstat_init(netstackid_t); 759 static void icmp_kstat_fini(netstackid_t, kstat_t *); 760 static int icmp_kstat_update(kstat_t *kp, int rw); 761 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 762 static void ip_kstat2_fini(netstackid_t, kstat_t *); 763 764 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 765 766 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 767 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 768 769 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 770 ipha_t *, ill_t *, boolean_t); 771 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 772 773 /* How long, in seconds, we allow frags to hang around. */ 774 #define IP_FRAG_TIMEOUT 60 775 776 /* 777 * Threshold which determines whether MDT should be used when 778 * generating IP fragments; payload size must be greater than 779 * this threshold for MDT to take place. 780 */ 781 #define IP_WPUT_FRAG_MDT_MIN 32768 782 783 /* Setable in /etc/system only */ 784 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 785 786 static long ip_rput_pullups; 787 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 788 789 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 790 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 791 792 int ip_debug; 793 794 #ifdef DEBUG 795 uint32_t ipsechw_debug = 0; 796 #endif 797 798 /* 799 * Multirouting/CGTP stuff 800 */ 801 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 802 803 /* 804 * XXX following really should only be in a header. Would need more 805 * header and .c clean up first. 806 */ 807 extern optdb_obj_t ip_opt_obj; 808 809 ulong_t ip_squeue_enter_unbound = 0; 810 811 /* 812 * Named Dispatch Parameter Table. 813 * All of these are alterable, within the min/max values given, at run time. 814 */ 815 static ipparam_t lcl_param_arr[] = { 816 /* min max value name */ 817 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 818 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 819 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 820 { 0, 1, 0, "ip_respond_to_timestamp"}, 821 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 822 { 0, 1, 1, "ip_send_redirects"}, 823 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 824 { 0, 10, 0, "ip_mrtdebug"}, 825 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 826 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 827 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 828 { 1, 255, 255, "ip_def_ttl" }, 829 { 0, 1, 0, "ip_forward_src_routed"}, 830 { 0, 256, 32, "ip_wroff_extra" }, 831 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 832 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 833 { 0, 1, 1, "ip_path_mtu_discovery" }, 834 { 0, 240, 30, "ip_ignore_delete_time" }, 835 { 0, 1, 0, "ip_ignore_redirect" }, 836 { 0, 1, 1, "ip_output_queue" }, 837 { 1, 254, 1, "ip_broadcast_ttl" }, 838 { 0, 99999, 100, "ip_icmp_err_interval" }, 839 { 1, 99999, 10, "ip_icmp_err_burst" }, 840 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 841 { 0, 1, 0, "ip_strict_dst_multihoming" }, 842 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 843 { 0, 1, 0, "ipsec_override_persocket_policy" }, 844 { 0, 1, 1, "icmp_accept_clear_messages" }, 845 { 0, 1, 1, "igmp_accept_clear_messages" }, 846 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 847 "ip_ndp_delay_first_probe_time"}, 848 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 849 "ip_ndp_max_unicast_solicit"}, 850 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 851 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 852 { 0, 1, 0, "ip6_forward_src_routed"}, 853 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 854 { 0, 1, 1, "ip6_send_redirects"}, 855 { 0, 1, 0, "ip6_ignore_redirect" }, 856 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 857 858 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 859 860 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 861 862 { 0, 1, 1, "pim_accept_clear_messages" }, 863 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 864 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 865 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 866 { 0, 15, 0, "ip_policy_mask" }, 867 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 868 { 0, 255, 1, "ip_multirt_ttl" }, 869 { 0, 1, 1, "ip_multidata_outbound" }, 870 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 871 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 872 { 0, 1000, 1, "ip_max_temp_defend" }, 873 { 0, 1000, 3, "ip_max_defend" }, 874 { 0, 999999, 30, "ip_defend_interval" }, 875 { 0, 3600000, 300000, "ip_dup_recovery" }, 876 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 877 { 0, 1, 1, "ip_lso_outbound" }, 878 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 879 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 880 #ifdef DEBUG 881 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 882 #else 883 { 0, 0, 0, "" }, 884 #endif 885 }; 886 887 /* 888 * Extended NDP table 889 * The addresses for the first two are filled in to be ips_ip_g_forward 890 * and ips_ipv6_forward at init time. 891 */ 892 static ipndp_t lcl_ndp_arr[] = { 893 /* getf setf data name */ 894 #define IPNDP_IP_FORWARDING_OFFSET 0 895 { ip_param_generic_get, ip_forward_set, NULL, 896 "ip_forwarding" }, 897 #define IPNDP_IP6_FORWARDING_OFFSET 1 898 { ip_param_generic_get, ip_forward_set, NULL, 899 "ip6_forwarding" }, 900 { ip_ill_report, NULL, NULL, 901 "ip_ill_status" }, 902 { ip_ipif_report, NULL, NULL, 903 "ip_ipif_status" }, 904 { ip_ire_report, NULL, NULL, 905 "ipv4_ire_status" }, 906 { ip_ire_report_v6, NULL, NULL, 907 "ipv6_ire_status" }, 908 { ip_conn_report, NULL, NULL, 909 "ip_conn_status" }, 910 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 911 "ip_rput_pullups" }, 912 { ndp_report, NULL, NULL, 913 "ip_ndp_cache_report" }, 914 { ip_srcid_report, NULL, NULL, 915 "ip_srcid_status" }, 916 { ip_param_generic_get, ip_squeue_profile_set, 917 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 918 { ip_param_generic_get, ip_squeue_bind_set, 919 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 920 { ip_param_generic_get, ip_input_proc_set, 921 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 922 { ip_param_generic_get, ip_int_set, 923 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 924 #define IPNDP_CGTP_FILTER_OFFSET 14 925 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 926 "ip_cgtp_filter" }, 927 { ip_param_generic_get, ip_int_set, 928 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 929 #define IPNDP_IPMP_HOOK_OFFSET 16 930 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 931 "ipmp_hook_emulation" }, 932 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 933 "ip_debug" }, 934 }; 935 936 /* 937 * Table of IP ioctls encoding the various properties of the ioctl and 938 * indexed based on the last byte of the ioctl command. Occasionally there 939 * is a clash, and there is more than 1 ioctl with the same last byte. 940 * In such a case 1 ioctl is encoded in the ndx table and the remaining 941 * ioctls are encoded in the misc table. An entry in the ndx table is 942 * retrieved by indexing on the last byte of the ioctl command and comparing 943 * the ioctl command with the value in the ndx table. In the event of a 944 * mismatch the misc table is then searched sequentially for the desired 945 * ioctl command. 946 * 947 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 948 */ 949 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 950 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 961 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 962 MISC_CMD, ip_siocaddrt, NULL }, 963 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 964 MISC_CMD, ip_siocdelrt, NULL }, 965 966 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 967 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 968 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 969 IF_CMD, ip_sioctl_get_addr, NULL }, 970 971 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 972 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 973 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 974 IPI_GET_CMD | IPI_REPL, 975 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 976 977 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 978 IPI_PRIV | IPI_WR | IPI_REPL, 979 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 980 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 981 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 982 IF_CMD, ip_sioctl_get_flags, NULL }, 983 984 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 985 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 986 987 /* copyin size cannot be coded for SIOCGIFCONF */ 988 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 989 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 990 991 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 992 IF_CMD, ip_sioctl_mtu, NULL }, 993 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 994 IF_CMD, ip_sioctl_get_mtu, NULL }, 995 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 996 IPI_GET_CMD | IPI_REPL, 997 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 998 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 999 IF_CMD, ip_sioctl_brdaddr, NULL }, 1000 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1001 IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_netmask, NULL }, 1003 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1004 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1005 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1006 IPI_GET_CMD | IPI_REPL, 1007 IF_CMD, ip_sioctl_get_metric, NULL }, 1008 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1009 IF_CMD, ip_sioctl_metric, NULL }, 1010 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1011 1012 /* See 166-168 below for extended SIOC*XARP ioctls */ 1013 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1014 ARP_CMD, ip_sioctl_arp, NULL }, 1015 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1016 ARP_CMD, ip_sioctl_arp, NULL }, 1017 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1018 ARP_CMD, ip_sioctl_arp, NULL }, 1019 1020 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 1042 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1043 MISC_CMD, if_unitsel, if_unitsel_restart }, 1044 1045 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 1064 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1065 IPI_PRIV | IPI_WR | IPI_MODOK, 1066 IF_CMD, ip_sioctl_sifname, NULL }, 1067 1068 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 1082 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1083 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1084 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1085 IF_CMD, ip_sioctl_get_muxid, NULL }, 1086 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1087 IPI_PRIV | IPI_WR | IPI_REPL, 1088 IF_CMD, ip_sioctl_muxid, NULL }, 1089 1090 /* Both if and lif variants share same func */ 1091 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1092 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1093 /* Both if and lif variants share same func */ 1094 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1095 IPI_PRIV | IPI_WR | IPI_REPL, 1096 IF_CMD, ip_sioctl_slifindex, NULL }, 1097 1098 /* copyin size cannot be coded for SIOCGIFCONF */ 1099 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1100 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1101 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 1119 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1120 IPI_PRIV | IPI_WR | IPI_REPL, 1121 LIF_CMD, ip_sioctl_removeif, 1122 ip_sioctl_removeif_restart }, 1123 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1124 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1125 LIF_CMD, ip_sioctl_addif, NULL }, 1126 #define SIOCLIFADDR_NDX 112 1127 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1128 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1129 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1130 IPI_GET_CMD | IPI_REPL, 1131 LIF_CMD, ip_sioctl_get_addr, NULL }, 1132 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1133 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1134 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1137 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1138 IPI_PRIV | IPI_WR | IPI_REPL, 1139 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1140 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1141 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1142 LIF_CMD, ip_sioctl_get_flags, NULL }, 1143 1144 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 1147 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1148 ip_sioctl_get_lifconf, NULL }, 1149 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1150 LIF_CMD, ip_sioctl_mtu, NULL }, 1151 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1152 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1153 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1154 IPI_GET_CMD | IPI_REPL, 1155 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1156 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1157 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1158 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1161 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1162 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1163 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1164 IPI_GET_CMD | IPI_REPL, 1165 LIF_CMD, ip_sioctl_get_metric, NULL }, 1166 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1167 LIF_CMD, ip_sioctl_metric, NULL }, 1168 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1169 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1170 LIF_CMD, ip_sioctl_slifname, 1171 ip_sioctl_slifname_restart }, 1172 1173 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1174 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1175 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1176 IPI_GET_CMD | IPI_REPL, 1177 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1178 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1179 IPI_PRIV | IPI_WR | IPI_REPL, 1180 LIF_CMD, ip_sioctl_muxid, NULL }, 1181 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1182 IPI_GET_CMD | IPI_REPL, 1183 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1184 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1185 IPI_PRIV | IPI_WR | IPI_REPL, 1186 LIF_CMD, ip_sioctl_slifindex, 0 }, 1187 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1188 LIF_CMD, ip_sioctl_token, NULL }, 1189 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1190 IPI_GET_CMD | IPI_REPL, 1191 LIF_CMD, ip_sioctl_get_token, NULL }, 1192 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1194 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1197 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1198 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1199 1200 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1201 IPI_GET_CMD | IPI_REPL, 1202 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1203 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1204 LIF_CMD, ip_siocdelndp_v6, NULL }, 1205 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1206 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1207 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1208 LIF_CMD, ip_siocsetndp_v6, NULL }, 1209 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1210 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1211 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1212 MISC_CMD, ip_sioctl_tonlink, NULL }, 1213 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1214 MISC_CMD, ip_sioctl_tmysite, NULL }, 1215 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1216 TUN_CMD, ip_sioctl_tunparam, NULL }, 1217 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1218 IPI_PRIV | IPI_WR, 1219 TUN_CMD, ip_sioctl_tunparam, NULL }, 1220 1221 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1222 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1223 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1224 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1225 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1226 1227 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1228 IPI_PRIV | IPI_WR | IPI_REPL, 1229 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1230 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1231 IPI_PRIV | IPI_WR | IPI_REPL, 1232 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1233 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1234 IPI_PRIV | IPI_WR, 1235 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1236 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1237 IPI_GET_CMD | IPI_REPL, 1238 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1239 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1240 IPI_GET_CMD | IPI_REPL, 1241 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1242 1243 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1244 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1245 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1246 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1247 1248 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1249 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1250 1251 /* These are handled in ip_sioctl_copyin_setup itself */ 1252 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1253 MISC_CMD, NULL, NULL }, 1254 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1255 MISC_CMD, NULL, NULL }, 1256 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1257 1258 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1259 ip_sioctl_get_lifconf, NULL }, 1260 1261 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1262 XARP_CMD, ip_sioctl_arp, NULL }, 1263 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1264 XARP_CMD, ip_sioctl_arp, NULL }, 1265 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1266 XARP_CMD, ip_sioctl_arp, NULL }, 1267 1268 /* SIOCPOPSOCKFS is not handled by IP */ 1269 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1270 1271 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1272 IPI_GET_CMD | IPI_REPL, 1273 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1274 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1275 IPI_PRIV | IPI_WR | IPI_REPL, 1276 LIF_CMD, ip_sioctl_slifzone, 1277 ip_sioctl_slifzone_restart }, 1278 /* 172-174 are SCTP ioctls and not handled by IP */ 1279 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1280 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1281 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1282 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1283 IPI_GET_CMD, LIF_CMD, 1284 ip_sioctl_get_lifusesrc, 0 }, 1285 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1286 IPI_PRIV | IPI_WR, 1287 LIF_CMD, ip_sioctl_slifusesrc, 1288 NULL }, 1289 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1290 ip_sioctl_get_lifsrcof, NULL }, 1291 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1292 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1293 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1294 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1295 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1296 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1297 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1298 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1299 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1300 ip_sioctl_set_ipmpfailback, NULL }, 1301 /* SIOCSENABLESDP is handled by SDP */ 1302 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1303 }; 1304 1305 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1306 1307 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1308 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1309 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1310 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1311 TUN_CMD, ip_sioctl_tunparam, NULL }, 1312 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1313 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1314 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1315 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1317 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1318 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1319 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1320 MISC_CMD, mrt_ioctl}, 1321 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1322 MISC_CMD, mrt_ioctl}, 1323 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1324 MISC_CMD, mrt_ioctl} 1325 }; 1326 1327 int ip_misc_ioctl_count = 1328 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1329 1330 int conn_drain_nthreads; /* Number of drainers reqd. */ 1331 /* Settable in /etc/system */ 1332 /* Defined in ip_ire.c */ 1333 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1334 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1335 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1336 1337 static nv_t ire_nv_arr[] = { 1338 { IRE_BROADCAST, "BROADCAST" }, 1339 { IRE_LOCAL, "LOCAL" }, 1340 { IRE_LOOPBACK, "LOOPBACK" }, 1341 { IRE_CACHE, "CACHE" }, 1342 { IRE_DEFAULT, "DEFAULT" }, 1343 { IRE_PREFIX, "PREFIX" }, 1344 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1345 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1346 { IRE_HOST, "HOST" }, 1347 { 0 } 1348 }; 1349 1350 nv_t *ire_nv_tbl = ire_nv_arr; 1351 1352 /* Defined in ip_netinfo.c */ 1353 extern ddi_taskq_t *eventq_queue_nic; 1354 1355 /* Simple ICMP IP Header Template */ 1356 static ipha_t icmp_ipha = { 1357 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1358 }; 1359 1360 struct module_info ip_mod_info = { 1361 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1362 }; 1363 1364 /* 1365 * Duplicate static symbols within a module confuses mdb; so we avoid the 1366 * problem by making the symbols here distinct from those in udp.c. 1367 */ 1368 1369 /* 1370 * Entry points for IP as a device and as a module. 1371 * FIXME: down the road we might want a separate module and driver qinit. 1372 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1373 */ 1374 static struct qinit iprinitv4 = { 1375 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1376 &ip_mod_info 1377 }; 1378 1379 struct qinit iprinitv6 = { 1380 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1381 &ip_mod_info 1382 }; 1383 1384 static struct qinit ipwinitv4 = { 1385 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1386 &ip_mod_info 1387 }; 1388 1389 struct qinit ipwinitv6 = { 1390 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1391 &ip_mod_info 1392 }; 1393 1394 static struct qinit iplrinit = { 1395 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1396 &ip_mod_info 1397 }; 1398 1399 static struct qinit iplwinit = { 1400 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1401 &ip_mod_info 1402 }; 1403 1404 /* For AF_INET aka /dev/ip */ 1405 struct streamtab ipinfov4 = { 1406 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1407 }; 1408 1409 /* For AF_INET6 aka /dev/ip6 */ 1410 struct streamtab ipinfov6 = { 1411 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1412 }; 1413 1414 #ifdef DEBUG 1415 static boolean_t skip_sctp_cksum = B_FALSE; 1416 #endif 1417 1418 /* 1419 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1420 * ip_rput_v6(), ip_output(), etc. If the message 1421 * block already has a M_CTL at the front of it, then simply set the zoneid 1422 * appropriately. 1423 */ 1424 mblk_t * 1425 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1426 { 1427 mblk_t *first_mp; 1428 ipsec_out_t *io; 1429 1430 ASSERT(zoneid != ALL_ZONES); 1431 if (mp->b_datap->db_type == M_CTL) { 1432 io = (ipsec_out_t *)mp->b_rptr; 1433 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1434 io->ipsec_out_zoneid = zoneid; 1435 return (mp); 1436 } 1437 1438 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1439 if (first_mp == NULL) 1440 return (NULL); 1441 io = (ipsec_out_t *)first_mp->b_rptr; 1442 /* This is not a secure packet */ 1443 io->ipsec_out_secure = B_FALSE; 1444 io->ipsec_out_zoneid = zoneid; 1445 first_mp->b_cont = mp; 1446 return (first_mp); 1447 } 1448 1449 /* 1450 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1451 */ 1452 mblk_t * 1453 ip_copymsg(mblk_t *mp) 1454 { 1455 mblk_t *nmp; 1456 ipsec_info_t *in; 1457 1458 if (mp->b_datap->db_type != M_CTL) 1459 return (copymsg(mp)); 1460 1461 in = (ipsec_info_t *)mp->b_rptr; 1462 1463 /* 1464 * Note that M_CTL is also used for delivering ICMP error messages 1465 * upstream to transport layers. 1466 */ 1467 if (in->ipsec_info_type != IPSEC_OUT && 1468 in->ipsec_info_type != IPSEC_IN) 1469 return (copymsg(mp)); 1470 1471 nmp = copymsg(mp->b_cont); 1472 1473 if (in->ipsec_info_type == IPSEC_OUT) { 1474 return (ipsec_out_tag(mp, nmp, 1475 ((ipsec_out_t *)in)->ipsec_out_ns)); 1476 } else { 1477 return (ipsec_in_tag(mp, nmp, 1478 ((ipsec_in_t *)in)->ipsec_in_ns)); 1479 } 1480 } 1481 1482 /* Generate an ICMP fragmentation needed message. */ 1483 static void 1484 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1485 ip_stack_t *ipst) 1486 { 1487 icmph_t icmph; 1488 mblk_t *first_mp; 1489 boolean_t mctl_present; 1490 1491 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1492 1493 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1494 if (mctl_present) 1495 freeb(first_mp); 1496 return; 1497 } 1498 1499 bzero(&icmph, sizeof (icmph_t)); 1500 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1501 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1502 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1503 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1504 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1505 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1506 ipst); 1507 } 1508 1509 /* 1510 * icmp_inbound deals with ICMP messages in the following ways. 1511 * 1512 * 1) It needs to send a reply back and possibly delivering it 1513 * to the "interested" upper clients. 1514 * 2) It needs to send it to the upper clients only. 1515 * 3) It needs to change some values in IP only. 1516 * 4) It needs to change some values in IP and upper layers e.g TCP. 1517 * 1518 * We need to accomodate icmp messages coming in clear until we get 1519 * everything secure from the wire. If icmp_accept_clear_messages 1520 * is zero we check with the global policy and act accordingly. If 1521 * it is non-zero, we accept the message without any checks. But 1522 * *this does not mean* that this will be delivered to the upper 1523 * clients. By accepting we might send replies back, change our MTU 1524 * value etc. but delivery to the ULP/clients depends on their policy 1525 * dispositions. 1526 * 1527 * We handle the above 4 cases in the context of IPsec in the 1528 * following way : 1529 * 1530 * 1) Send the reply back in the same way as the request came in. 1531 * If it came in encrypted, it goes out encrypted. If it came in 1532 * clear, it goes out in clear. Thus, this will prevent chosen 1533 * plain text attack. 1534 * 2) The client may or may not expect things to come in secure. 1535 * If it comes in secure, the policy constraints are checked 1536 * before delivering it to the upper layers. If it comes in 1537 * clear, ipsec_inbound_accept_clear will decide whether to 1538 * accept this in clear or not. In both the cases, if the returned 1539 * message (IP header + 8 bytes) that caused the icmp message has 1540 * AH/ESP headers, it is sent up to AH/ESP for validation before 1541 * sending up. If there are only 8 bytes of returned message, then 1542 * upper client will not be notified. 1543 * 3) Check with global policy to see whether it matches the constaints. 1544 * But this will be done only if icmp_accept_messages_in_clear is 1545 * zero. 1546 * 4) If we need to change both in IP and ULP, then the decision taken 1547 * while affecting the values in IP and while delivering up to TCP 1548 * should be the same. 1549 * 1550 * There are two cases. 1551 * 1552 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1553 * failed), we will not deliver it to the ULP, even though they 1554 * are *willing* to accept in *clear*. This is fine as our global 1555 * disposition to icmp messages asks us reject the datagram. 1556 * 1557 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1558 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1559 * to deliver it to ULP (policy failed), it can lead to 1560 * consistency problems. The cases known at this time are 1561 * ICMP_DESTINATION_UNREACHABLE messages with following code 1562 * values : 1563 * 1564 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1565 * and Upper layer rejects. Then the communication will 1566 * come to a stop. This is solved by making similar decisions 1567 * at both levels. Currently, when we are unable to deliver 1568 * to the Upper Layer (due to policy failures) while IP has 1569 * adjusted ire_max_frag, the next outbound datagram would 1570 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1571 * will be with the right level of protection. Thus the right 1572 * value will be communicated even if we are not able to 1573 * communicate when we get from the wire initially. But this 1574 * assumes there would be at least one outbound datagram after 1575 * IP has adjusted its ire_max_frag value. To make things 1576 * simpler, we accept in clear after the validation of 1577 * AH/ESP headers. 1578 * 1579 * - Other ICMP ERRORS : We may not be able to deliver it to the 1580 * upper layer depending on the level of protection the upper 1581 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1582 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1583 * should be accepted in clear when the Upper layer expects secure. 1584 * Thus the communication may get aborted by some bad ICMP 1585 * packets. 1586 * 1587 * IPQoS Notes: 1588 * The only instance when a packet is sent for processing is when there 1589 * isn't an ICMP client and if we are interested in it. 1590 * If there is a client, IPPF processing will take place in the 1591 * ip_fanout_proto routine. 1592 * 1593 * Zones notes: 1594 * The packet is only processed in the context of the specified zone: typically 1595 * only this zone will reply to an echo request, and only interested clients in 1596 * this zone will receive a copy of the packet. This means that the caller must 1597 * call icmp_inbound() for each relevant zone. 1598 */ 1599 static void 1600 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1601 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1602 ill_t *recv_ill, zoneid_t zoneid) 1603 { 1604 icmph_t *icmph; 1605 ipha_t *ipha; 1606 int iph_hdr_length; 1607 int hdr_length; 1608 boolean_t interested; 1609 uint32_t ts; 1610 uchar_t *wptr; 1611 ipif_t *ipif; 1612 mblk_t *first_mp; 1613 ipsec_in_t *ii; 1614 ire_t *src_ire; 1615 boolean_t onlink; 1616 timestruc_t now; 1617 uint32_t ill_index; 1618 ip_stack_t *ipst; 1619 1620 ASSERT(ill != NULL); 1621 ipst = ill->ill_ipst; 1622 1623 first_mp = mp; 1624 if (mctl_present) { 1625 mp = first_mp->b_cont; 1626 ASSERT(mp != NULL); 1627 } 1628 1629 ipha = (ipha_t *)mp->b_rptr; 1630 if (ipst->ips_icmp_accept_clear_messages == 0) { 1631 first_mp = ipsec_check_global_policy(first_mp, NULL, 1632 ipha, NULL, mctl_present, ipst->ips_netstack); 1633 if (first_mp == NULL) 1634 return; 1635 } 1636 1637 /* 1638 * On a labeled system, we have to check whether the zone itself is 1639 * permitted to receive raw traffic. 1640 */ 1641 if (is_system_labeled()) { 1642 if (zoneid == ALL_ZONES) 1643 zoneid = tsol_packet_to_zoneid(mp); 1644 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1645 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1646 zoneid)); 1647 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1648 freemsg(first_mp); 1649 return; 1650 } 1651 } 1652 1653 /* 1654 * We have accepted the ICMP message. It means that we will 1655 * respond to the packet if needed. It may not be delivered 1656 * to the upper client depending on the policy constraints 1657 * and the disposition in ipsec_inbound_accept_clear. 1658 */ 1659 1660 ASSERT(ill != NULL); 1661 1662 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1663 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1664 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1665 /* Last chance to get real. */ 1666 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1667 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1668 freemsg(first_mp); 1669 return; 1670 } 1671 /* Refresh iph following the pullup. */ 1672 ipha = (ipha_t *)mp->b_rptr; 1673 } 1674 /* ICMP header checksum, including checksum field, should be zero. */ 1675 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1676 IP_CSUM(mp, iph_hdr_length, 0)) { 1677 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1678 freemsg(first_mp); 1679 return; 1680 } 1681 /* The IP header will always be a multiple of four bytes */ 1682 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1683 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1684 icmph->icmph_code)); 1685 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1686 /* We will set "interested" to "true" if we want a copy */ 1687 interested = B_FALSE; 1688 switch (icmph->icmph_type) { 1689 case ICMP_ECHO_REPLY: 1690 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1691 break; 1692 case ICMP_DEST_UNREACHABLE: 1693 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1694 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1695 interested = B_TRUE; /* Pass up to transport */ 1696 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1697 break; 1698 case ICMP_SOURCE_QUENCH: 1699 interested = B_TRUE; /* Pass up to transport */ 1700 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1701 break; 1702 case ICMP_REDIRECT: 1703 if (!ipst->ips_ip_ignore_redirect) 1704 interested = B_TRUE; 1705 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1706 break; 1707 case ICMP_ECHO_REQUEST: 1708 /* 1709 * Whether to respond to echo requests that come in as IP 1710 * broadcasts or as IP multicast is subject to debate 1711 * (what isn't?). We aim to please, you pick it. 1712 * Default is do it. 1713 */ 1714 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1715 /* unicast: always respond */ 1716 interested = B_TRUE; 1717 } else if (CLASSD(ipha->ipha_dst)) { 1718 /* multicast: respond based on tunable */ 1719 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1720 } else if (broadcast) { 1721 /* broadcast: respond based on tunable */ 1722 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1723 } 1724 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1725 break; 1726 case ICMP_ROUTER_ADVERTISEMENT: 1727 case ICMP_ROUTER_SOLICITATION: 1728 break; 1729 case ICMP_TIME_EXCEEDED: 1730 interested = B_TRUE; /* Pass up to transport */ 1731 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1732 break; 1733 case ICMP_PARAM_PROBLEM: 1734 interested = B_TRUE; /* Pass up to transport */ 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1736 break; 1737 case ICMP_TIME_STAMP_REQUEST: 1738 /* Response to Time Stamp Requests is local policy. */ 1739 if (ipst->ips_ip_g_resp_to_timestamp && 1740 /* So is whether to respond if it was an IP broadcast. */ 1741 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1742 int tstamp_len = 3 * sizeof (uint32_t); 1743 1744 if (wptr + tstamp_len > mp->b_wptr) { 1745 if (!pullupmsg(mp, wptr + tstamp_len - 1746 mp->b_rptr)) { 1747 BUMP_MIB(ill->ill_ip_mib, 1748 ipIfStatsInDiscards); 1749 freemsg(first_mp); 1750 return; 1751 } 1752 /* Refresh ipha following the pullup. */ 1753 ipha = (ipha_t *)mp->b_rptr; 1754 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1755 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1756 } 1757 interested = B_TRUE; 1758 } 1759 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1760 break; 1761 case ICMP_TIME_STAMP_REPLY: 1762 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1763 break; 1764 case ICMP_INFO_REQUEST: 1765 /* Per RFC 1122 3.2.2.7, ignore this. */ 1766 case ICMP_INFO_REPLY: 1767 break; 1768 case ICMP_ADDRESS_MASK_REQUEST: 1769 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1770 !broadcast) && 1771 /* TODO m_pullup of complete header? */ 1772 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1773 interested = B_TRUE; 1774 } 1775 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1776 break; 1777 case ICMP_ADDRESS_MASK_REPLY: 1778 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1779 break; 1780 default: 1781 interested = B_TRUE; /* Pass up to transport */ 1782 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1783 break; 1784 } 1785 /* See if there is an ICMP client. */ 1786 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1787 /* If there is an ICMP client and we want one too, copy it. */ 1788 mblk_t *first_mp1; 1789 1790 if (!interested) { 1791 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1792 ip_policy, recv_ill, zoneid); 1793 return; 1794 } 1795 first_mp1 = ip_copymsg(first_mp); 1796 if (first_mp1 != NULL) { 1797 ip_fanout_proto(q, first_mp1, ill, ipha, 1798 0, mctl_present, ip_policy, recv_ill, zoneid); 1799 } 1800 } else if (!interested) { 1801 freemsg(first_mp); 1802 return; 1803 } else { 1804 /* 1805 * Initiate policy processing for this packet if ip_policy 1806 * is true. 1807 */ 1808 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1809 ill_index = ill->ill_phyint->phyint_ifindex; 1810 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1811 if (mp == NULL) { 1812 if (mctl_present) { 1813 freeb(first_mp); 1814 } 1815 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1816 return; 1817 } 1818 } 1819 } 1820 /* We want to do something with it. */ 1821 /* Check db_ref to make sure we can modify the packet. */ 1822 if (mp->b_datap->db_ref > 1) { 1823 mblk_t *first_mp1; 1824 1825 first_mp1 = ip_copymsg(first_mp); 1826 freemsg(first_mp); 1827 if (!first_mp1) { 1828 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1829 return; 1830 } 1831 first_mp = first_mp1; 1832 if (mctl_present) { 1833 mp = first_mp->b_cont; 1834 ASSERT(mp != NULL); 1835 } else { 1836 mp = first_mp; 1837 } 1838 ipha = (ipha_t *)mp->b_rptr; 1839 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1840 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1841 } 1842 switch (icmph->icmph_type) { 1843 case ICMP_ADDRESS_MASK_REQUEST: 1844 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1845 if (ipif == NULL) { 1846 freemsg(first_mp); 1847 return; 1848 } 1849 /* 1850 * outging interface must be IPv4 1851 */ 1852 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1853 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1854 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1855 ipif_refrele(ipif); 1856 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1857 break; 1858 case ICMP_ECHO_REQUEST: 1859 icmph->icmph_type = ICMP_ECHO_REPLY; 1860 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1861 break; 1862 case ICMP_TIME_STAMP_REQUEST: { 1863 uint32_t *tsp; 1864 1865 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1866 tsp = (uint32_t *)wptr; 1867 tsp++; /* Skip past 'originate time' */ 1868 /* Compute # of milliseconds since midnight */ 1869 gethrestime(&now); 1870 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1871 now.tv_nsec / (NANOSEC / MILLISEC); 1872 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1873 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1874 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1875 break; 1876 } 1877 default: 1878 ipha = (ipha_t *)&icmph[1]; 1879 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1880 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1881 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1882 freemsg(first_mp); 1883 return; 1884 } 1885 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1886 ipha = (ipha_t *)&icmph[1]; 1887 } 1888 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1889 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1890 freemsg(first_mp); 1891 return; 1892 } 1893 hdr_length = IPH_HDR_LENGTH(ipha); 1894 if (hdr_length < sizeof (ipha_t)) { 1895 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1896 freemsg(first_mp); 1897 return; 1898 } 1899 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1900 if (!pullupmsg(mp, 1901 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1902 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1903 freemsg(first_mp); 1904 return; 1905 } 1906 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1907 ipha = (ipha_t *)&icmph[1]; 1908 } 1909 switch (icmph->icmph_type) { 1910 case ICMP_REDIRECT: 1911 /* 1912 * As there is no upper client to deliver, we don't 1913 * need the first_mp any more. 1914 */ 1915 if (mctl_present) { 1916 freeb(first_mp); 1917 } 1918 icmp_redirect(ill, mp); 1919 return; 1920 case ICMP_DEST_UNREACHABLE: 1921 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1922 if (!icmp_inbound_too_big(icmph, ipha, ill, 1923 zoneid, mp, iph_hdr_length, ipst)) { 1924 freemsg(first_mp); 1925 return; 1926 } 1927 /* 1928 * icmp_inbound_too_big() may alter mp. 1929 * Resynch ipha and icmph accordingly. 1930 */ 1931 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1932 ipha = (ipha_t *)&icmph[1]; 1933 } 1934 /* FALLTHRU */ 1935 default : 1936 /* 1937 * IPQoS notes: Since we have already done IPQoS 1938 * processing we don't want to do it again in 1939 * the fanout routines called by 1940 * icmp_inbound_error_fanout, hence the last 1941 * argument, ip_policy, is B_FALSE. 1942 */ 1943 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1944 ipha, iph_hdr_length, hdr_length, mctl_present, 1945 B_FALSE, recv_ill, zoneid); 1946 } 1947 return; 1948 } 1949 /* Send out an ICMP packet */ 1950 icmph->icmph_checksum = 0; 1951 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1952 if (broadcast || CLASSD(ipha->ipha_dst)) { 1953 ipif_t *ipif_chosen; 1954 /* 1955 * Make it look like it was directed to us, so we don't look 1956 * like a fool with a broadcast or multicast source address. 1957 */ 1958 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1959 /* 1960 * Make sure that we haven't grabbed an interface that's DOWN. 1961 */ 1962 if (ipif != NULL) { 1963 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1964 ipha->ipha_src, zoneid); 1965 if (ipif_chosen != NULL) { 1966 ipif_refrele(ipif); 1967 ipif = ipif_chosen; 1968 } 1969 } 1970 if (ipif == NULL) { 1971 ip0dbg(("icmp_inbound: " 1972 "No source for broadcast/multicast:\n" 1973 "\tsrc 0x%x dst 0x%x ill %p " 1974 "ipif_lcl_addr 0x%x\n", 1975 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1976 (void *)ill, 1977 ill->ill_ipif->ipif_lcl_addr)); 1978 freemsg(first_mp); 1979 return; 1980 } 1981 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1982 ipha->ipha_dst = ipif->ipif_src_addr; 1983 ipif_refrele(ipif); 1984 } 1985 /* Reset time to live. */ 1986 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1987 { 1988 /* Swap source and destination addresses */ 1989 ipaddr_t tmp; 1990 1991 tmp = ipha->ipha_src; 1992 ipha->ipha_src = ipha->ipha_dst; 1993 ipha->ipha_dst = tmp; 1994 } 1995 ipha->ipha_ident = 0; 1996 if (!IS_SIMPLE_IPH(ipha)) 1997 icmp_options_update(ipha); 1998 1999 /* 2000 * ICMP echo replies should go out on the same interface 2001 * the request came on as probes used by in.mpathd for detecting 2002 * NIC failures are ECHO packets. We turn-off load spreading 2003 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2004 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2005 * function. This is in turn handled by ip_wput and ip_newroute 2006 * to make sure that the packet goes out on the interface it came 2007 * in on. If we don't turnoff load spreading, the packets might get 2008 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2009 * to go out and in.mpathd would wrongly detect a failure or 2010 * mis-detect a NIC failure for link failure. As load spreading 2011 * can happen only if ill_group is not NULL, we do only for 2012 * that case and this does not affect the normal case. 2013 * 2014 * We turn off load spreading only on echo packets that came from 2015 * on-link hosts. If the interface route has been deleted, this will 2016 * not be enforced as we can't do much. For off-link hosts, as the 2017 * default routes in IPv4 does not typically have an ire_ipif 2018 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2019 * Moreover, expecting a default route through this interface may 2020 * not be correct. We use ipha_dst because of the swap above. 2021 */ 2022 onlink = B_FALSE; 2023 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2024 /* 2025 * First, we need to make sure that it is not one of our 2026 * local addresses. If we set onlink when it is one of 2027 * our local addresses, we will end up creating IRE_CACHES 2028 * for one of our local addresses. Then, we will never 2029 * accept packets for them afterwards. 2030 */ 2031 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2032 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2033 if (src_ire == NULL) { 2034 ipif = ipif_get_next_ipif(NULL, ill); 2035 if (ipif == NULL) { 2036 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2037 freemsg(mp); 2038 return; 2039 } 2040 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2041 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2042 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2043 ipif_refrele(ipif); 2044 if (src_ire != NULL) { 2045 onlink = B_TRUE; 2046 ire_refrele(src_ire); 2047 } 2048 } else { 2049 ire_refrele(src_ire); 2050 } 2051 } 2052 if (!mctl_present) { 2053 /* 2054 * This packet should go out the same way as it 2055 * came in i.e in clear. To make sure that global 2056 * policy will not be applied to this in ip_wput_ire, 2057 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2058 */ 2059 ASSERT(first_mp == mp); 2060 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2061 if (first_mp == NULL) { 2062 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2063 freemsg(mp); 2064 return; 2065 } 2066 ii = (ipsec_in_t *)first_mp->b_rptr; 2067 2068 /* This is not a secure packet */ 2069 ii->ipsec_in_secure = B_FALSE; 2070 if (onlink) { 2071 ii->ipsec_in_attach_if = B_TRUE; 2072 ii->ipsec_in_ill_index = 2073 ill->ill_phyint->phyint_ifindex; 2074 ii->ipsec_in_rill_index = 2075 recv_ill->ill_phyint->phyint_ifindex; 2076 } 2077 first_mp->b_cont = mp; 2078 } else if (onlink) { 2079 ii = (ipsec_in_t *)first_mp->b_rptr; 2080 ii->ipsec_in_attach_if = B_TRUE; 2081 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2082 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2083 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2084 } else { 2085 ii = (ipsec_in_t *)first_mp->b_rptr; 2086 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2087 } 2088 ii->ipsec_in_zoneid = zoneid; 2089 ASSERT(zoneid != ALL_ZONES); 2090 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2091 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2092 return; 2093 } 2094 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2095 put(WR(q), first_mp); 2096 } 2097 2098 static ipaddr_t 2099 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2100 { 2101 conn_t *connp; 2102 connf_t *connfp; 2103 ipaddr_t nexthop_addr = INADDR_ANY; 2104 int hdr_length = IPH_HDR_LENGTH(ipha); 2105 uint16_t *up; 2106 uint32_t ports; 2107 ip_stack_t *ipst = ill->ill_ipst; 2108 2109 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2110 switch (ipha->ipha_protocol) { 2111 case IPPROTO_TCP: 2112 { 2113 tcph_t *tcph; 2114 2115 /* do a reverse lookup */ 2116 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2117 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2118 TCPS_LISTEN, ipst); 2119 break; 2120 } 2121 case IPPROTO_UDP: 2122 { 2123 uint32_t dstport, srcport; 2124 2125 ((uint16_t *)&ports)[0] = up[1]; 2126 ((uint16_t *)&ports)[1] = up[0]; 2127 2128 /* Extract ports in net byte order */ 2129 dstport = htons(ntohl(ports) & 0xFFFF); 2130 srcport = htons(ntohl(ports) >> 16); 2131 2132 connfp = &ipst->ips_ipcl_udp_fanout[ 2133 IPCL_UDP_HASH(dstport, ipst)]; 2134 mutex_enter(&connfp->connf_lock); 2135 connp = connfp->connf_head; 2136 2137 /* do a reverse lookup */ 2138 while ((connp != NULL) && 2139 (!IPCL_UDP_MATCH(connp, dstport, 2140 ipha->ipha_src, srcport, ipha->ipha_dst) || 2141 !IPCL_ZONE_MATCH(connp, zoneid))) { 2142 connp = connp->conn_next; 2143 } 2144 if (connp != NULL) 2145 CONN_INC_REF(connp); 2146 mutex_exit(&connfp->connf_lock); 2147 break; 2148 } 2149 case IPPROTO_SCTP: 2150 { 2151 in6_addr_t map_src, map_dst; 2152 2153 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2154 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2155 ((uint16_t *)&ports)[0] = up[1]; 2156 ((uint16_t *)&ports)[1] = up[0]; 2157 2158 connp = sctp_find_conn(&map_src, &map_dst, ports, 2159 zoneid, ipst->ips_netstack->netstack_sctp); 2160 if (connp == NULL) { 2161 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2162 zoneid, ports, ipha, ipst); 2163 } else { 2164 CONN_INC_REF(connp); 2165 SCTP_REFRELE(CONN2SCTP(connp)); 2166 } 2167 break; 2168 } 2169 default: 2170 { 2171 ipha_t ripha; 2172 2173 ripha.ipha_src = ipha->ipha_dst; 2174 ripha.ipha_dst = ipha->ipha_src; 2175 ripha.ipha_protocol = ipha->ipha_protocol; 2176 2177 connfp = &ipst->ips_ipcl_proto_fanout[ 2178 ipha->ipha_protocol]; 2179 mutex_enter(&connfp->connf_lock); 2180 connp = connfp->connf_head; 2181 for (connp = connfp->connf_head; connp != NULL; 2182 connp = connp->conn_next) { 2183 if (IPCL_PROTO_MATCH(connp, 2184 ipha->ipha_protocol, &ripha, ill, 2185 0, zoneid)) { 2186 CONN_INC_REF(connp); 2187 break; 2188 } 2189 } 2190 mutex_exit(&connfp->connf_lock); 2191 } 2192 } 2193 if (connp != NULL) { 2194 if (connp->conn_nexthop_set) 2195 nexthop_addr = connp->conn_nexthop_v4; 2196 CONN_DEC_REF(connp); 2197 } 2198 return (nexthop_addr); 2199 } 2200 2201 /* Table from RFC 1191 */ 2202 static int icmp_frag_size_table[] = 2203 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2204 2205 /* 2206 * Process received ICMP Packet too big. 2207 * After updating any IRE it does the fanout to any matching transport streams. 2208 * Assumes the message has been pulled up till the IP header that caused 2209 * the error. 2210 * 2211 * Returns B_FALSE on failure and B_TRUE on success. 2212 */ 2213 static boolean_t 2214 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2215 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2216 ip_stack_t *ipst) 2217 { 2218 ire_t *ire, *first_ire; 2219 int mtu; 2220 int hdr_length; 2221 ipaddr_t nexthop_addr; 2222 2223 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2224 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2225 ASSERT(ill != NULL); 2226 2227 hdr_length = IPH_HDR_LENGTH(ipha); 2228 2229 /* Drop if the original packet contained a source route */ 2230 if (ip_source_route_included(ipha)) { 2231 return (B_FALSE); 2232 } 2233 /* 2234 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2235 * header. 2236 */ 2237 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2238 mp->b_wptr) { 2239 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2240 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2241 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2242 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2243 return (B_FALSE); 2244 } 2245 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2246 ipha = (ipha_t *)&icmph[1]; 2247 } 2248 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2249 if (nexthop_addr != INADDR_ANY) { 2250 /* nexthop set */ 2251 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2252 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2253 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2254 } else { 2255 /* nexthop not set */ 2256 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2257 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2258 } 2259 2260 if (!first_ire) { 2261 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2262 ntohl(ipha->ipha_dst))); 2263 return (B_FALSE); 2264 } 2265 /* Check for MTU discovery advice as described in RFC 1191 */ 2266 mtu = ntohs(icmph->icmph_du_mtu); 2267 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2268 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2269 ire = ire->ire_next) { 2270 /* 2271 * Look for the connection to which this ICMP message is 2272 * directed. If it has the IP_NEXTHOP option set, then the 2273 * search is limited to IREs with the MATCH_IRE_PRIVATE 2274 * option. Else the search is limited to regular IREs. 2275 */ 2276 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2277 (nexthop_addr != ire->ire_gateway_addr)) || 2278 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2279 (nexthop_addr != INADDR_ANY))) 2280 continue; 2281 2282 mutex_enter(&ire->ire_lock); 2283 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2284 /* Reduce the IRE max frag value as advised. */ 2285 ip1dbg(("Received mtu from router: %d (was %d)\n", 2286 mtu, ire->ire_max_frag)); 2287 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2288 } else { 2289 uint32_t length; 2290 int i; 2291 2292 /* 2293 * Use the table from RFC 1191 to figure out 2294 * the next "plateau" based on the length in 2295 * the original IP packet. 2296 */ 2297 length = ntohs(ipha->ipha_length); 2298 if (ire->ire_max_frag <= length && 2299 ire->ire_max_frag >= length - hdr_length) { 2300 /* 2301 * Handle broken BSD 4.2 systems that 2302 * return the wrong iph_length in ICMP 2303 * errors. 2304 */ 2305 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2306 length, ire->ire_max_frag)); 2307 length -= hdr_length; 2308 } 2309 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2310 if (length > icmp_frag_size_table[i]) 2311 break; 2312 } 2313 if (i == A_CNT(icmp_frag_size_table)) { 2314 /* Smaller than 68! */ 2315 ip1dbg(("Too big for packet size %d\n", 2316 length)); 2317 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2318 ire->ire_frag_flag = 0; 2319 } else { 2320 mtu = icmp_frag_size_table[i]; 2321 ip1dbg(("Calculated mtu %d, packet size %d, " 2322 "before %d", mtu, length, 2323 ire->ire_max_frag)); 2324 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2325 ip1dbg((", after %d\n", ire->ire_max_frag)); 2326 } 2327 /* Record the new max frag size for the ULP. */ 2328 icmph->icmph_du_zero = 0; 2329 icmph->icmph_du_mtu = 2330 htons((uint16_t)ire->ire_max_frag); 2331 } 2332 mutex_exit(&ire->ire_lock); 2333 } 2334 rw_exit(&first_ire->ire_bucket->irb_lock); 2335 ire_refrele(first_ire); 2336 return (B_TRUE); 2337 } 2338 2339 /* 2340 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2341 * calls this function. 2342 */ 2343 static mblk_t * 2344 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2345 { 2346 ipha_t *ipha; 2347 icmph_t *icmph; 2348 ipha_t *in_ipha; 2349 int length; 2350 2351 ASSERT(mp->b_datap->db_type == M_DATA); 2352 2353 /* 2354 * For Self-encapsulated packets, we added an extra IP header 2355 * without the options. Inner IP header is the one from which 2356 * the outer IP header was formed. Thus, we need to remove the 2357 * outer IP header. To do this, we pullup the whole message 2358 * and overlay whatever follows the outer IP header over the 2359 * outer IP header. 2360 */ 2361 2362 if (!pullupmsg(mp, -1)) 2363 return (NULL); 2364 2365 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2366 ipha = (ipha_t *)&icmph[1]; 2367 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2368 2369 /* 2370 * The length that we want to overlay is following the inner 2371 * IP header. Subtracting the IP header + icmp header + outer 2372 * IP header's length should give us the length that we want to 2373 * overlay. 2374 */ 2375 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2376 hdr_length; 2377 /* 2378 * Overlay whatever follows the inner header over the 2379 * outer header. 2380 */ 2381 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2382 2383 /* Set the wptr to account for the outer header */ 2384 mp->b_wptr -= hdr_length; 2385 return (mp); 2386 } 2387 2388 /* 2389 * Try to pass the ICMP message upstream in case the ULP cares. 2390 * 2391 * If the packet that caused the ICMP error is secure, we send 2392 * it to AH/ESP to make sure that the attached packet has a 2393 * valid association. ipha in the code below points to the 2394 * IP header of the packet that caused the error. 2395 * 2396 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2397 * in the context of IPsec. Normally we tell the upper layer 2398 * whenever we send the ire (including ip_bind), the IPsec header 2399 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2400 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2401 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2402 * same thing. As TCP has the IPsec options size that needs to be 2403 * adjusted, we just pass the MTU unchanged. 2404 * 2405 * IFN could have been generated locally or by some router. 2406 * 2407 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2408 * This happens because IP adjusted its value of MTU on an 2409 * earlier IFN message and could not tell the upper layer, 2410 * the new adjusted value of MTU e.g. Packet was encrypted 2411 * or there was not enough information to fanout to upper 2412 * layers. Thus on the next outbound datagram, ip_wput_ire 2413 * generates the IFN, where IPsec processing has *not* been 2414 * done. 2415 * 2416 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2417 * could have generated this. This happens because ire_max_frag 2418 * value in IP was set to a new value, while the IPsec processing 2419 * was being done and after we made the fragmentation check in 2420 * ip_wput_ire. Thus on return from IPsec processing, 2421 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2422 * and generates the IFN. As IPsec processing is over, we fanout 2423 * to AH/ESP to remove the header. 2424 * 2425 * In both these cases, ipsec_in_loopback will be set indicating 2426 * that IFN was generated locally. 2427 * 2428 * ROUTER : IFN could be secure or non-secure. 2429 * 2430 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2431 * packet in error has AH/ESP headers to validate the AH/ESP 2432 * headers. AH/ESP will verify whether there is a valid SA or 2433 * not and send it back. We will fanout again if we have more 2434 * data in the packet. 2435 * 2436 * If the packet in error does not have AH/ESP, we handle it 2437 * like any other case. 2438 * 2439 * * NON_SECURE : If the packet in error has AH/ESP headers, 2440 * we attach a dummy ipsec_in and send it up to AH/ESP 2441 * for validation. AH/ESP will verify whether there is a 2442 * valid SA or not and send it back. We will fanout again if 2443 * we have more data in the packet. 2444 * 2445 * If the packet in error does not have AH/ESP, we handle it 2446 * like any other case. 2447 */ 2448 static void 2449 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2450 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2451 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2452 zoneid_t zoneid) 2453 { 2454 uint16_t *up; /* Pointer to ports in ULP header */ 2455 uint32_t ports; /* reversed ports for fanout */ 2456 ipha_t ripha; /* With reversed addresses */ 2457 mblk_t *first_mp; 2458 ipsec_in_t *ii; 2459 tcph_t *tcph; 2460 conn_t *connp; 2461 ip_stack_t *ipst; 2462 2463 ASSERT(ill != NULL); 2464 2465 ASSERT(recv_ill != NULL); 2466 ipst = recv_ill->ill_ipst; 2467 2468 first_mp = mp; 2469 if (mctl_present) { 2470 mp = first_mp->b_cont; 2471 ASSERT(mp != NULL); 2472 2473 ii = (ipsec_in_t *)first_mp->b_rptr; 2474 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2475 } else { 2476 ii = NULL; 2477 } 2478 2479 switch (ipha->ipha_protocol) { 2480 case IPPROTO_UDP: 2481 /* 2482 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2483 * transport header. 2484 */ 2485 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2486 mp->b_wptr) { 2487 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2488 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2489 goto discard_pkt; 2490 } 2491 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2492 ipha = (ipha_t *)&icmph[1]; 2493 } 2494 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2495 2496 /* 2497 * Attempt to find a client stream based on port. 2498 * Note that we do a reverse lookup since the header is 2499 * in the form we sent it out. 2500 * The ripha header is only used for the IP_UDP_MATCH and we 2501 * only set the src and dst addresses and protocol. 2502 */ 2503 ripha.ipha_src = ipha->ipha_dst; 2504 ripha.ipha_dst = ipha->ipha_src; 2505 ripha.ipha_protocol = ipha->ipha_protocol; 2506 ((uint16_t *)&ports)[0] = up[1]; 2507 ((uint16_t *)&ports)[1] = up[0]; 2508 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2509 ntohl(ipha->ipha_src), ntohs(up[0]), 2510 ntohl(ipha->ipha_dst), ntohs(up[1]), 2511 icmph->icmph_type, icmph->icmph_code)); 2512 2513 /* Have to change db_type after any pullupmsg */ 2514 DB_TYPE(mp) = M_CTL; 2515 2516 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2517 mctl_present, ip_policy, recv_ill, zoneid); 2518 return; 2519 2520 case IPPROTO_TCP: 2521 /* 2522 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2523 * transport header. 2524 */ 2525 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2526 mp->b_wptr) { 2527 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2528 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2529 goto discard_pkt; 2530 } 2531 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2532 ipha = (ipha_t *)&icmph[1]; 2533 } 2534 /* 2535 * Find a TCP client stream for this packet. 2536 * Note that we do a reverse lookup since the header is 2537 * in the form we sent it out. 2538 */ 2539 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2540 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2541 ipst); 2542 if (connp == NULL) 2543 goto discard_pkt; 2544 2545 /* Have to change db_type after any pullupmsg */ 2546 DB_TYPE(mp) = M_CTL; 2547 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2548 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2549 return; 2550 2551 case IPPROTO_SCTP: 2552 /* 2553 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2554 * transport header. 2555 */ 2556 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2557 mp->b_wptr) { 2558 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2559 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2560 goto discard_pkt; 2561 } 2562 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2563 ipha = (ipha_t *)&icmph[1]; 2564 } 2565 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2566 /* 2567 * Find a SCTP client stream for this packet. 2568 * Note that we do a reverse lookup since the header is 2569 * in the form we sent it out. 2570 * The ripha header is only used for the matching and we 2571 * only set the src and dst addresses, protocol, and version. 2572 */ 2573 ripha.ipha_src = ipha->ipha_dst; 2574 ripha.ipha_dst = ipha->ipha_src; 2575 ripha.ipha_protocol = ipha->ipha_protocol; 2576 ripha.ipha_version_and_hdr_length = 2577 ipha->ipha_version_and_hdr_length; 2578 ((uint16_t *)&ports)[0] = up[1]; 2579 ((uint16_t *)&ports)[1] = up[0]; 2580 2581 /* Have to change db_type after any pullupmsg */ 2582 DB_TYPE(mp) = M_CTL; 2583 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2584 mctl_present, ip_policy, zoneid); 2585 return; 2586 2587 case IPPROTO_ESP: 2588 case IPPROTO_AH: { 2589 int ipsec_rc; 2590 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2591 2592 /* 2593 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2594 * We will re-use the IPSEC_IN if it is already present as 2595 * AH/ESP will not affect any fields in the IPSEC_IN for 2596 * ICMP errors. If there is no IPSEC_IN, allocate a new 2597 * one and attach it in the front. 2598 */ 2599 if (ii != NULL) { 2600 /* 2601 * ip_fanout_proto_again converts the ICMP errors 2602 * that come back from AH/ESP to M_DATA so that 2603 * if it is non-AH/ESP and we do a pullupmsg in 2604 * this function, it would work. Convert it back 2605 * to M_CTL before we send up as this is a ICMP 2606 * error. This could have been generated locally or 2607 * by some router. Validate the inner IPsec 2608 * headers. 2609 * 2610 * NOTE : ill_index is used by ip_fanout_proto_again 2611 * to locate the ill. 2612 */ 2613 ASSERT(ill != NULL); 2614 ii->ipsec_in_ill_index = 2615 ill->ill_phyint->phyint_ifindex; 2616 ii->ipsec_in_rill_index = 2617 recv_ill->ill_phyint->phyint_ifindex; 2618 DB_TYPE(first_mp->b_cont) = M_CTL; 2619 } else { 2620 /* 2621 * IPSEC_IN is not present. We attach a ipsec_in 2622 * message and send up to IPsec for validating 2623 * and removing the IPsec headers. Clear 2624 * ipsec_in_secure so that when we return 2625 * from IPsec, we don't mistakenly think that this 2626 * is a secure packet came from the network. 2627 * 2628 * NOTE : ill_index is used by ip_fanout_proto_again 2629 * to locate the ill. 2630 */ 2631 ASSERT(first_mp == mp); 2632 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2633 if (first_mp == NULL) { 2634 freemsg(mp); 2635 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2636 return; 2637 } 2638 ii = (ipsec_in_t *)first_mp->b_rptr; 2639 2640 /* This is not a secure packet */ 2641 ii->ipsec_in_secure = B_FALSE; 2642 first_mp->b_cont = mp; 2643 DB_TYPE(mp) = M_CTL; 2644 ASSERT(ill != NULL); 2645 ii->ipsec_in_ill_index = 2646 ill->ill_phyint->phyint_ifindex; 2647 ii->ipsec_in_rill_index = 2648 recv_ill->ill_phyint->phyint_ifindex; 2649 } 2650 ip2dbg(("icmp_inbound_error: ipsec\n")); 2651 2652 if (!ipsec_loaded(ipss)) { 2653 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2654 return; 2655 } 2656 2657 if (ipha->ipha_protocol == IPPROTO_ESP) 2658 ipsec_rc = ipsecesp_icmp_error(first_mp); 2659 else 2660 ipsec_rc = ipsecah_icmp_error(first_mp); 2661 if (ipsec_rc == IPSEC_STATUS_FAILED) 2662 return; 2663 2664 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2665 return; 2666 } 2667 default: 2668 /* 2669 * The ripha header is only used for the lookup and we 2670 * only set the src and dst addresses and protocol. 2671 */ 2672 ripha.ipha_src = ipha->ipha_dst; 2673 ripha.ipha_dst = ipha->ipha_src; 2674 ripha.ipha_protocol = ipha->ipha_protocol; 2675 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2676 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2677 ntohl(ipha->ipha_dst), 2678 icmph->icmph_type, icmph->icmph_code)); 2679 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2680 ipha_t *in_ipha; 2681 2682 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2683 mp->b_wptr) { 2684 if (!pullupmsg(mp, (uchar_t *)ipha + 2685 hdr_length + sizeof (ipha_t) - 2686 mp->b_rptr)) { 2687 goto discard_pkt; 2688 } 2689 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2690 ipha = (ipha_t *)&icmph[1]; 2691 } 2692 /* 2693 * Caller has verified that length has to be 2694 * at least the size of IP header. 2695 */ 2696 ASSERT(hdr_length >= sizeof (ipha_t)); 2697 /* 2698 * Check the sanity of the inner IP header like 2699 * we did for the outer header. 2700 */ 2701 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2702 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2703 goto discard_pkt; 2704 } 2705 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2706 goto discard_pkt; 2707 } 2708 /* Check for Self-encapsulated tunnels */ 2709 if (in_ipha->ipha_src == ipha->ipha_src && 2710 in_ipha->ipha_dst == ipha->ipha_dst) { 2711 2712 mp = icmp_inbound_self_encap_error(mp, 2713 iph_hdr_length, hdr_length); 2714 if (mp == NULL) 2715 goto discard_pkt; 2716 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2717 ipha = (ipha_t *)&icmph[1]; 2718 hdr_length = IPH_HDR_LENGTH(ipha); 2719 /* 2720 * The packet in error is self-encapsualted. 2721 * And we are finding it further encapsulated 2722 * which we could not have possibly generated. 2723 */ 2724 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2725 goto discard_pkt; 2726 } 2727 icmp_inbound_error_fanout(q, ill, first_mp, 2728 icmph, ipha, iph_hdr_length, hdr_length, 2729 mctl_present, ip_policy, recv_ill, zoneid); 2730 return; 2731 } 2732 } 2733 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2734 ipha->ipha_protocol == IPPROTO_IPV6) && 2735 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2736 ii != NULL && 2737 ii->ipsec_in_loopback && 2738 ii->ipsec_in_secure) { 2739 /* 2740 * For IP tunnels that get a looped-back 2741 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2742 * reported new MTU to take into account the IPsec 2743 * headers protecting this configured tunnel. 2744 * 2745 * This allows the tunnel module (tun.c) to blindly 2746 * accept the MTU reported in an ICMP "too big" 2747 * message. 2748 * 2749 * Non-looped back ICMP messages will just be 2750 * handled by the security protocols (if needed), 2751 * and the first subsequent packet will hit this 2752 * path. 2753 */ 2754 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2755 ipsec_in_extra_length(first_mp)); 2756 } 2757 /* Have to change db_type after any pullupmsg */ 2758 DB_TYPE(mp) = M_CTL; 2759 2760 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2761 ip_policy, recv_ill, zoneid); 2762 return; 2763 } 2764 /* NOTREACHED */ 2765 discard_pkt: 2766 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2767 drop_pkt:; 2768 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2769 freemsg(first_mp); 2770 } 2771 2772 /* 2773 * Common IP options parser. 2774 * 2775 * Setup routine: fill in *optp with options-parsing state, then 2776 * tail-call ipoptp_next to return the first option. 2777 */ 2778 uint8_t 2779 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2780 { 2781 uint32_t totallen; /* total length of all options */ 2782 2783 totallen = ipha->ipha_version_and_hdr_length - 2784 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2785 totallen <<= 2; 2786 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2787 optp->ipoptp_end = optp->ipoptp_next + totallen; 2788 optp->ipoptp_flags = 0; 2789 return (ipoptp_next(optp)); 2790 } 2791 2792 /* 2793 * Common IP options parser: extract next option. 2794 */ 2795 uint8_t 2796 ipoptp_next(ipoptp_t *optp) 2797 { 2798 uint8_t *end = optp->ipoptp_end; 2799 uint8_t *cur = optp->ipoptp_next; 2800 uint8_t opt, len, pointer; 2801 2802 /* 2803 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2804 * has been corrupted. 2805 */ 2806 ASSERT(cur <= end); 2807 2808 if (cur == end) 2809 return (IPOPT_EOL); 2810 2811 opt = cur[IPOPT_OPTVAL]; 2812 2813 /* 2814 * Skip any NOP options. 2815 */ 2816 while (opt == IPOPT_NOP) { 2817 cur++; 2818 if (cur == end) 2819 return (IPOPT_EOL); 2820 opt = cur[IPOPT_OPTVAL]; 2821 } 2822 2823 if (opt == IPOPT_EOL) 2824 return (IPOPT_EOL); 2825 2826 /* 2827 * Option requiring a length. 2828 */ 2829 if ((cur + 1) >= end) { 2830 optp->ipoptp_flags |= IPOPTP_ERROR; 2831 return (IPOPT_EOL); 2832 } 2833 len = cur[IPOPT_OLEN]; 2834 if (len < 2) { 2835 optp->ipoptp_flags |= IPOPTP_ERROR; 2836 return (IPOPT_EOL); 2837 } 2838 optp->ipoptp_cur = cur; 2839 optp->ipoptp_len = len; 2840 optp->ipoptp_next = cur + len; 2841 if (cur + len > end) { 2842 optp->ipoptp_flags |= IPOPTP_ERROR; 2843 return (IPOPT_EOL); 2844 } 2845 2846 /* 2847 * For the options which require a pointer field, make sure 2848 * its there, and make sure it points to either something 2849 * inside this option, or the end of the option. 2850 */ 2851 switch (opt) { 2852 case IPOPT_RR: 2853 case IPOPT_TS: 2854 case IPOPT_LSRR: 2855 case IPOPT_SSRR: 2856 if (len <= IPOPT_OFFSET) { 2857 optp->ipoptp_flags |= IPOPTP_ERROR; 2858 return (opt); 2859 } 2860 pointer = cur[IPOPT_OFFSET]; 2861 if (pointer - 1 > len) { 2862 optp->ipoptp_flags |= IPOPTP_ERROR; 2863 return (opt); 2864 } 2865 break; 2866 } 2867 2868 /* 2869 * Sanity check the pointer field based on the type of the 2870 * option. 2871 */ 2872 switch (opt) { 2873 case IPOPT_RR: 2874 case IPOPT_SSRR: 2875 case IPOPT_LSRR: 2876 if (pointer < IPOPT_MINOFF_SR) 2877 optp->ipoptp_flags |= IPOPTP_ERROR; 2878 break; 2879 case IPOPT_TS: 2880 if (pointer < IPOPT_MINOFF_IT) 2881 optp->ipoptp_flags |= IPOPTP_ERROR; 2882 /* 2883 * Note that the Internet Timestamp option also 2884 * contains two four bit fields (the Overflow field, 2885 * and the Flag field), which follow the pointer 2886 * field. We don't need to check that these fields 2887 * fall within the length of the option because this 2888 * was implicitely done above. We've checked that the 2889 * pointer value is at least IPOPT_MINOFF_IT, and that 2890 * it falls within the option. Since IPOPT_MINOFF_IT > 2891 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2892 */ 2893 ASSERT(len > IPOPT_POS_OV_FLG); 2894 break; 2895 } 2896 2897 return (opt); 2898 } 2899 2900 /* 2901 * Use the outgoing IP header to create an IP_OPTIONS option the way 2902 * it was passed down from the application. 2903 */ 2904 int 2905 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2906 { 2907 ipoptp_t opts; 2908 const uchar_t *opt; 2909 uint8_t optval; 2910 uint8_t optlen; 2911 uint32_t len = 0; 2912 uchar_t *buf1 = buf; 2913 2914 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2915 len += IP_ADDR_LEN; 2916 bzero(buf1, IP_ADDR_LEN); 2917 2918 /* 2919 * OK to cast away const here, as we don't store through the returned 2920 * opts.ipoptp_cur pointer. 2921 */ 2922 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2923 optval != IPOPT_EOL; 2924 optval = ipoptp_next(&opts)) { 2925 int off; 2926 2927 opt = opts.ipoptp_cur; 2928 optlen = opts.ipoptp_len; 2929 switch (optval) { 2930 case IPOPT_SSRR: 2931 case IPOPT_LSRR: 2932 2933 /* 2934 * Insert ipha_dst as the first entry in the source 2935 * route and move down the entries on step. 2936 * The last entry gets placed at buf1. 2937 */ 2938 buf[IPOPT_OPTVAL] = optval; 2939 buf[IPOPT_OLEN] = optlen; 2940 buf[IPOPT_OFFSET] = optlen; 2941 2942 off = optlen - IP_ADDR_LEN; 2943 if (off < 0) { 2944 /* No entries in source route */ 2945 break; 2946 } 2947 /* Last entry in source route */ 2948 bcopy(opt + off, buf1, IP_ADDR_LEN); 2949 off -= IP_ADDR_LEN; 2950 2951 while (off > 0) { 2952 bcopy(opt + off, 2953 buf + off + IP_ADDR_LEN, 2954 IP_ADDR_LEN); 2955 off -= IP_ADDR_LEN; 2956 } 2957 /* ipha_dst into first slot */ 2958 bcopy(&ipha->ipha_dst, 2959 buf + off + IP_ADDR_LEN, 2960 IP_ADDR_LEN); 2961 buf += optlen; 2962 len += optlen; 2963 break; 2964 2965 case IPOPT_COMSEC: 2966 case IPOPT_SECURITY: 2967 /* if passing up a label is not ok, then remove */ 2968 if (is_system_labeled()) 2969 break; 2970 /* FALLTHROUGH */ 2971 default: 2972 bcopy(opt, buf, optlen); 2973 buf += optlen; 2974 len += optlen; 2975 break; 2976 } 2977 } 2978 done: 2979 /* Pad the resulting options */ 2980 while (len & 0x3) { 2981 *buf++ = IPOPT_EOL; 2982 len++; 2983 } 2984 return (len); 2985 } 2986 2987 /* 2988 * Update any record route or timestamp options to include this host. 2989 * Reverse any source route option. 2990 * This routine assumes that the options are well formed i.e. that they 2991 * have already been checked. 2992 */ 2993 static void 2994 icmp_options_update(ipha_t *ipha) 2995 { 2996 ipoptp_t opts; 2997 uchar_t *opt; 2998 uint8_t optval; 2999 ipaddr_t src; /* Our local address */ 3000 ipaddr_t dst; 3001 3002 ip2dbg(("icmp_options_update\n")); 3003 src = ipha->ipha_src; 3004 dst = ipha->ipha_dst; 3005 3006 for (optval = ipoptp_first(&opts, ipha); 3007 optval != IPOPT_EOL; 3008 optval = ipoptp_next(&opts)) { 3009 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3010 opt = opts.ipoptp_cur; 3011 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3012 optval, opts.ipoptp_len)); 3013 switch (optval) { 3014 int off1, off2; 3015 case IPOPT_SSRR: 3016 case IPOPT_LSRR: 3017 /* 3018 * Reverse the source route. The first entry 3019 * should be the next to last one in the current 3020 * source route (the last entry is our address). 3021 * The last entry should be the final destination. 3022 */ 3023 off1 = IPOPT_MINOFF_SR - 1; 3024 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3025 if (off2 < 0) { 3026 /* No entries in source route */ 3027 ip1dbg(( 3028 "icmp_options_update: bad src route\n")); 3029 break; 3030 } 3031 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3032 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3033 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3034 off2 -= IP_ADDR_LEN; 3035 3036 while (off1 < off2) { 3037 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3038 bcopy((char *)opt + off2, (char *)opt + off1, 3039 IP_ADDR_LEN); 3040 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3041 off1 += IP_ADDR_LEN; 3042 off2 -= IP_ADDR_LEN; 3043 } 3044 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3045 break; 3046 } 3047 } 3048 } 3049 3050 /* 3051 * Process received ICMP Redirect messages. 3052 */ 3053 static void 3054 icmp_redirect(ill_t *ill, mblk_t *mp) 3055 { 3056 ipha_t *ipha; 3057 int iph_hdr_length; 3058 icmph_t *icmph; 3059 ipha_t *ipha_err; 3060 ire_t *ire; 3061 ire_t *prev_ire; 3062 ire_t *save_ire; 3063 ipaddr_t src, dst, gateway; 3064 iulp_t ulp_info = { 0 }; 3065 int error; 3066 ip_stack_t *ipst; 3067 3068 ASSERT(ill != NULL); 3069 ipst = ill->ill_ipst; 3070 3071 ipha = (ipha_t *)mp->b_rptr; 3072 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3073 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3074 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3075 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3076 freemsg(mp); 3077 return; 3078 } 3079 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3080 ipha_err = (ipha_t *)&icmph[1]; 3081 src = ipha->ipha_src; 3082 dst = ipha_err->ipha_dst; 3083 gateway = icmph->icmph_rd_gateway; 3084 /* Make sure the new gateway is reachable somehow. */ 3085 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3086 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3087 /* 3088 * Make sure we had a route for the dest in question and that 3089 * that route was pointing to the old gateway (the source of the 3090 * redirect packet.) 3091 */ 3092 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3093 NULL, MATCH_IRE_GW, ipst); 3094 /* 3095 * Check that 3096 * the redirect was not from ourselves 3097 * the new gateway and the old gateway are directly reachable 3098 */ 3099 if (!prev_ire || 3100 !ire || 3101 ire->ire_type == IRE_LOCAL) { 3102 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3103 freemsg(mp); 3104 if (ire != NULL) 3105 ire_refrele(ire); 3106 if (prev_ire != NULL) 3107 ire_refrele(prev_ire); 3108 return; 3109 } 3110 3111 /* 3112 * Should we use the old ULP info to create the new gateway? From 3113 * a user's perspective, we should inherit the info so that it 3114 * is a "smooth" transition. If we do not do that, then new 3115 * connections going thru the new gateway will have no route metrics, 3116 * which is counter-intuitive to user. From a network point of 3117 * view, this may or may not make sense even though the new gateway 3118 * is still directly connected to us so the route metrics should not 3119 * change much. 3120 * 3121 * But if the old ire_uinfo is not initialized, we do another 3122 * recursive lookup on the dest using the new gateway. There may 3123 * be a route to that. If so, use it to initialize the redirect 3124 * route. 3125 */ 3126 if (prev_ire->ire_uinfo.iulp_set) { 3127 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3128 } else { 3129 ire_t *tmp_ire; 3130 ire_t *sire; 3131 3132 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3133 ALL_ZONES, 0, NULL, 3134 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3135 ipst); 3136 if (sire != NULL) { 3137 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3138 /* 3139 * If sire != NULL, ire_ftable_lookup() should not 3140 * return a NULL value. 3141 */ 3142 ASSERT(tmp_ire != NULL); 3143 ire_refrele(tmp_ire); 3144 ire_refrele(sire); 3145 } else if (tmp_ire != NULL) { 3146 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3147 sizeof (iulp_t)); 3148 ire_refrele(tmp_ire); 3149 } 3150 } 3151 if (prev_ire->ire_type == IRE_CACHE) 3152 ire_delete(prev_ire); 3153 ire_refrele(prev_ire); 3154 /* 3155 * TODO: more precise handling for cases 0, 2, 3, the latter two 3156 * require TOS routing 3157 */ 3158 switch (icmph->icmph_code) { 3159 case 0: 3160 case 1: 3161 /* TODO: TOS specificity for cases 2 and 3 */ 3162 case 2: 3163 case 3: 3164 break; 3165 default: 3166 freemsg(mp); 3167 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3168 ire_refrele(ire); 3169 return; 3170 } 3171 /* 3172 * Create a Route Association. This will allow us to remember that 3173 * someone we believe told us to use the particular gateway. 3174 */ 3175 save_ire = ire; 3176 ire = ire_create( 3177 (uchar_t *)&dst, /* dest addr */ 3178 (uchar_t *)&ip_g_all_ones, /* mask */ 3179 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3180 (uchar_t *)&gateway, /* gateway addr */ 3181 &save_ire->ire_max_frag, /* max frag */ 3182 NULL, /* no src nce */ 3183 NULL, /* no rfq */ 3184 NULL, /* no stq */ 3185 IRE_HOST, 3186 NULL, /* ipif */ 3187 0, /* cmask */ 3188 0, /* phandle */ 3189 0, /* ihandle */ 3190 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3191 &ulp_info, 3192 NULL, /* tsol_gc_t */ 3193 NULL, /* gcgrp */ 3194 ipst); 3195 3196 if (ire == NULL) { 3197 freemsg(mp); 3198 ire_refrele(save_ire); 3199 return; 3200 } 3201 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3202 ire_refrele(save_ire); 3203 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3204 3205 if (error == 0) { 3206 ire_refrele(ire); /* Held in ire_add_v4 */ 3207 /* tell routing sockets that we received a redirect */ 3208 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3209 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3210 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3211 } 3212 3213 /* 3214 * Delete any existing IRE_HOST type redirect ires for this destination. 3215 * This together with the added IRE has the effect of 3216 * modifying an existing redirect. 3217 */ 3218 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3219 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3220 if (prev_ire != NULL) { 3221 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3222 ire_delete(prev_ire); 3223 ire_refrele(prev_ire); 3224 } 3225 3226 freemsg(mp); 3227 } 3228 3229 /* 3230 * Generate an ICMP parameter problem message. 3231 */ 3232 static void 3233 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3234 ip_stack_t *ipst) 3235 { 3236 icmph_t icmph; 3237 boolean_t mctl_present; 3238 mblk_t *first_mp; 3239 3240 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3241 3242 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3243 if (mctl_present) 3244 freeb(first_mp); 3245 return; 3246 } 3247 3248 bzero(&icmph, sizeof (icmph_t)); 3249 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3250 icmph.icmph_pp_ptr = ptr; 3251 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3252 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3253 ipst); 3254 } 3255 3256 /* 3257 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3258 * the ICMP header pointed to by "stuff". (May be called as writer.) 3259 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3260 * an icmp error packet can be sent. 3261 * Assigns an appropriate source address to the packet. If ipha_dst is 3262 * one of our addresses use it for source. Otherwise pick a source based 3263 * on a route lookup back to ipha_src. 3264 * Note that ipha_src must be set here since the 3265 * packet is likely to arrive on an ill queue in ip_wput() which will 3266 * not set a source address. 3267 */ 3268 static void 3269 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3270 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3271 { 3272 ipaddr_t dst; 3273 icmph_t *icmph; 3274 ipha_t *ipha; 3275 uint_t len_needed; 3276 size_t msg_len; 3277 mblk_t *mp1; 3278 ipaddr_t src; 3279 ire_t *ire; 3280 mblk_t *ipsec_mp; 3281 ipsec_out_t *io = NULL; 3282 3283 if (mctl_present) { 3284 /* 3285 * If it is : 3286 * 3287 * 1) a IPSEC_OUT, then this is caused by outbound 3288 * datagram originating on this host. IPsec processing 3289 * may or may not have been done. Refer to comments above 3290 * icmp_inbound_error_fanout for details. 3291 * 3292 * 2) a IPSEC_IN if we are generating a icmp_message 3293 * for an incoming datagram destined for us i.e called 3294 * from ip_fanout_send_icmp. 3295 */ 3296 ipsec_info_t *in; 3297 ipsec_mp = mp; 3298 mp = ipsec_mp->b_cont; 3299 3300 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3301 ipha = (ipha_t *)mp->b_rptr; 3302 3303 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3304 in->ipsec_info_type == IPSEC_IN); 3305 3306 if (in->ipsec_info_type == IPSEC_IN) { 3307 /* 3308 * Convert the IPSEC_IN to IPSEC_OUT. 3309 */ 3310 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3311 BUMP_MIB(&ipst->ips_ip_mib, 3312 ipIfStatsOutDiscards); 3313 return; 3314 } 3315 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3316 } else { 3317 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3318 io = (ipsec_out_t *)in; 3319 /* 3320 * Clear out ipsec_out_proc_begin, so we do a fresh 3321 * ire lookup. 3322 */ 3323 io->ipsec_out_proc_begin = B_FALSE; 3324 } 3325 ASSERT(zoneid == io->ipsec_out_zoneid); 3326 ASSERT(zoneid != ALL_ZONES); 3327 } else { 3328 /* 3329 * This is in clear. The icmp message we are building 3330 * here should go out in clear. 3331 * 3332 * Pardon the convolution of it all, but it's easier to 3333 * allocate a "use cleartext" IPSEC_IN message and convert 3334 * it than it is to allocate a new one. 3335 */ 3336 ipsec_in_t *ii; 3337 ASSERT(DB_TYPE(mp) == M_DATA); 3338 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3339 if (ipsec_mp == NULL) { 3340 freemsg(mp); 3341 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3342 return; 3343 } 3344 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3345 3346 /* This is not a secure packet */ 3347 ii->ipsec_in_secure = B_FALSE; 3348 /* 3349 * For trusted extensions using a shared IP address we can 3350 * send using any zoneid. 3351 */ 3352 if (zoneid == ALL_ZONES) 3353 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3354 else 3355 ii->ipsec_in_zoneid = zoneid; 3356 ipsec_mp->b_cont = mp; 3357 ipha = (ipha_t *)mp->b_rptr; 3358 /* 3359 * Convert the IPSEC_IN to IPSEC_OUT. 3360 */ 3361 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3362 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3363 return; 3364 } 3365 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3366 } 3367 3368 /* Remember our eventual destination */ 3369 dst = ipha->ipha_src; 3370 3371 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3372 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3373 if (ire != NULL && 3374 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3375 src = ipha->ipha_dst; 3376 } else { 3377 if (ire != NULL) 3378 ire_refrele(ire); 3379 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3380 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3381 ipst); 3382 if (ire == NULL) { 3383 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3384 freemsg(ipsec_mp); 3385 return; 3386 } 3387 src = ire->ire_src_addr; 3388 } 3389 3390 if (ire != NULL) 3391 ire_refrele(ire); 3392 3393 /* 3394 * Check if we can send back more then 8 bytes in addition to 3395 * the IP header. We try to send 64 bytes of data and the internal 3396 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3397 */ 3398 len_needed = IPH_HDR_LENGTH(ipha); 3399 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3400 ipha->ipha_protocol == IPPROTO_IPV6) { 3401 3402 if (!pullupmsg(mp, -1)) { 3403 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3404 freemsg(ipsec_mp); 3405 return; 3406 } 3407 ipha = (ipha_t *)mp->b_rptr; 3408 3409 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3410 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3411 len_needed)); 3412 } else { 3413 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3414 3415 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3416 len_needed += ip_hdr_length_v6(mp, ip6h); 3417 } 3418 } 3419 len_needed += ipst->ips_ip_icmp_return; 3420 msg_len = msgdsize(mp); 3421 if (msg_len > len_needed) { 3422 (void) adjmsg(mp, len_needed - msg_len); 3423 msg_len = len_needed; 3424 } 3425 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3426 if (mp1 == NULL) { 3427 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3428 freemsg(ipsec_mp); 3429 return; 3430 } 3431 mp1->b_cont = mp; 3432 mp = mp1; 3433 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3434 ipsec_mp->b_rptr == (uint8_t *)io && 3435 io->ipsec_out_type == IPSEC_OUT); 3436 ipsec_mp->b_cont = mp; 3437 3438 /* 3439 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3440 * node generates be accepted in peace by all on-host destinations. 3441 * If we do NOT assume that all on-host destinations trust 3442 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3443 * (Look for ipsec_out_icmp_loopback). 3444 */ 3445 io->ipsec_out_icmp_loopback = B_TRUE; 3446 3447 ipha = (ipha_t *)mp->b_rptr; 3448 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3449 *ipha = icmp_ipha; 3450 ipha->ipha_src = src; 3451 ipha->ipha_dst = dst; 3452 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3453 msg_len += sizeof (icmp_ipha) + len; 3454 if (msg_len > IP_MAXPACKET) { 3455 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3456 msg_len = IP_MAXPACKET; 3457 } 3458 ipha->ipha_length = htons((uint16_t)msg_len); 3459 icmph = (icmph_t *)&ipha[1]; 3460 bcopy(stuff, icmph, len); 3461 icmph->icmph_checksum = 0; 3462 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3463 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3464 put(q, ipsec_mp); 3465 } 3466 3467 /* 3468 * Determine if an ICMP error packet can be sent given the rate limit. 3469 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3470 * in milliseconds) and a burst size. Burst size number of packets can 3471 * be sent arbitrarely closely spaced. 3472 * The state is tracked using two variables to implement an approximate 3473 * token bucket filter: 3474 * icmp_pkt_err_last - lbolt value when the last burst started 3475 * icmp_pkt_err_sent - number of packets sent in current burst 3476 */ 3477 boolean_t 3478 icmp_err_rate_limit(ip_stack_t *ipst) 3479 { 3480 clock_t now = TICK_TO_MSEC(lbolt); 3481 uint_t refilled; /* Number of packets refilled in tbf since last */ 3482 /* Guard against changes by loading into local variable */ 3483 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3484 3485 if (err_interval == 0) 3486 return (B_FALSE); 3487 3488 if (ipst->ips_icmp_pkt_err_last > now) { 3489 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3490 ipst->ips_icmp_pkt_err_last = 0; 3491 ipst->ips_icmp_pkt_err_sent = 0; 3492 } 3493 /* 3494 * If we are in a burst update the token bucket filter. 3495 * Update the "last" time to be close to "now" but make sure 3496 * we don't loose precision. 3497 */ 3498 if (ipst->ips_icmp_pkt_err_sent != 0) { 3499 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3500 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3501 ipst->ips_icmp_pkt_err_sent = 0; 3502 } else { 3503 ipst->ips_icmp_pkt_err_sent -= refilled; 3504 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3505 } 3506 } 3507 if (ipst->ips_icmp_pkt_err_sent == 0) { 3508 /* Start of new burst */ 3509 ipst->ips_icmp_pkt_err_last = now; 3510 } 3511 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3512 ipst->ips_icmp_pkt_err_sent++; 3513 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3514 ipst->ips_icmp_pkt_err_sent)); 3515 return (B_FALSE); 3516 } 3517 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3518 return (B_TRUE); 3519 } 3520 3521 /* 3522 * Check if it is ok to send an IPv4 ICMP error packet in 3523 * response to the IPv4 packet in mp. 3524 * Free the message and return null if no 3525 * ICMP error packet should be sent. 3526 */ 3527 static mblk_t * 3528 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3529 { 3530 icmph_t *icmph; 3531 ipha_t *ipha; 3532 uint_t len_needed; 3533 ire_t *src_ire; 3534 ire_t *dst_ire; 3535 3536 if (!mp) 3537 return (NULL); 3538 ipha = (ipha_t *)mp->b_rptr; 3539 if (ip_csum_hdr(ipha)) { 3540 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3541 freemsg(mp); 3542 return (NULL); 3543 } 3544 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3545 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3546 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3547 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3548 if (src_ire != NULL || dst_ire != NULL || 3549 CLASSD(ipha->ipha_dst) || 3550 CLASSD(ipha->ipha_src) || 3551 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3552 /* Note: only errors to the fragment with offset 0 */ 3553 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3554 freemsg(mp); 3555 if (src_ire != NULL) 3556 ire_refrele(src_ire); 3557 if (dst_ire != NULL) 3558 ire_refrele(dst_ire); 3559 return (NULL); 3560 } 3561 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3562 /* 3563 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3564 * errors in response to any ICMP errors. 3565 */ 3566 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3567 if (mp->b_wptr - mp->b_rptr < len_needed) { 3568 if (!pullupmsg(mp, len_needed)) { 3569 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3570 freemsg(mp); 3571 return (NULL); 3572 } 3573 ipha = (ipha_t *)mp->b_rptr; 3574 } 3575 icmph = (icmph_t *) 3576 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3577 switch (icmph->icmph_type) { 3578 case ICMP_DEST_UNREACHABLE: 3579 case ICMP_SOURCE_QUENCH: 3580 case ICMP_TIME_EXCEEDED: 3581 case ICMP_PARAM_PROBLEM: 3582 case ICMP_REDIRECT: 3583 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3584 freemsg(mp); 3585 return (NULL); 3586 default: 3587 break; 3588 } 3589 } 3590 /* 3591 * If this is a labeled system, then check to see if we're allowed to 3592 * send a response to this particular sender. If not, then just drop. 3593 */ 3594 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3595 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3596 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3597 freemsg(mp); 3598 return (NULL); 3599 } 3600 if (icmp_err_rate_limit(ipst)) { 3601 /* 3602 * Only send ICMP error packets every so often. 3603 * This should be done on a per port/source basis, 3604 * but for now this will suffice. 3605 */ 3606 freemsg(mp); 3607 return (NULL); 3608 } 3609 return (mp); 3610 } 3611 3612 /* 3613 * Generate an ICMP redirect message. 3614 */ 3615 static void 3616 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3617 { 3618 icmph_t icmph; 3619 3620 /* 3621 * We are called from ip_rput where we could 3622 * not have attached an IPSEC_IN. 3623 */ 3624 ASSERT(mp->b_datap->db_type == M_DATA); 3625 3626 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3627 return; 3628 } 3629 3630 bzero(&icmph, sizeof (icmph_t)); 3631 icmph.icmph_type = ICMP_REDIRECT; 3632 icmph.icmph_code = 1; 3633 icmph.icmph_rd_gateway = gateway; 3634 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3635 /* Redirects sent by router, and router is global zone */ 3636 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3637 } 3638 3639 /* 3640 * Generate an ICMP time exceeded message. 3641 */ 3642 void 3643 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3644 ip_stack_t *ipst) 3645 { 3646 icmph_t icmph; 3647 boolean_t mctl_present; 3648 mblk_t *first_mp; 3649 3650 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3651 3652 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3653 if (mctl_present) 3654 freeb(first_mp); 3655 return; 3656 } 3657 3658 bzero(&icmph, sizeof (icmph_t)); 3659 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3660 icmph.icmph_code = code; 3661 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3662 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3663 ipst); 3664 } 3665 3666 /* 3667 * Generate an ICMP unreachable message. 3668 */ 3669 void 3670 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3671 ip_stack_t *ipst) 3672 { 3673 icmph_t icmph; 3674 mblk_t *first_mp; 3675 boolean_t mctl_present; 3676 3677 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3678 3679 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3680 if (mctl_present) 3681 freeb(first_mp); 3682 return; 3683 } 3684 3685 bzero(&icmph, sizeof (icmph_t)); 3686 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3687 icmph.icmph_code = code; 3688 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3689 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3690 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3691 zoneid, ipst); 3692 } 3693 3694 /* 3695 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3696 * duplicate. As long as someone else holds the address, the interface will 3697 * stay down. When that conflict goes away, the interface is brought back up. 3698 * This is done so that accidental shutdowns of addresses aren't made 3699 * permanent. Your server will recover from a failure. 3700 * 3701 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3702 * user space process (dhcpagent). 3703 * 3704 * Recovery completes if ARP reports that the address is now ours (via 3705 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3706 * 3707 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3708 */ 3709 static void 3710 ipif_dup_recovery(void *arg) 3711 { 3712 ipif_t *ipif = arg; 3713 ill_t *ill = ipif->ipif_ill; 3714 mblk_t *arp_add_mp; 3715 mblk_t *arp_del_mp; 3716 area_t *area; 3717 ip_stack_t *ipst = ill->ill_ipst; 3718 3719 ipif->ipif_recovery_id = 0; 3720 3721 /* 3722 * No lock needed for moving or condemned check, as this is just an 3723 * optimization. 3724 */ 3725 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3726 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3727 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3728 /* No reason to try to bring this address back. */ 3729 return; 3730 } 3731 3732 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3733 goto alloc_fail; 3734 3735 if (ipif->ipif_arp_del_mp == NULL) { 3736 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3737 goto alloc_fail; 3738 ipif->ipif_arp_del_mp = arp_del_mp; 3739 } 3740 3741 /* Setting the 'unverified' flag restarts DAD */ 3742 area = (area_t *)arp_add_mp->b_rptr; 3743 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3744 ACE_F_UNVERIFIED; 3745 putnext(ill->ill_rq, arp_add_mp); 3746 return; 3747 3748 alloc_fail: 3749 /* 3750 * On allocation failure, just restart the timer. Note that the ipif 3751 * is down here, so no other thread could be trying to start a recovery 3752 * timer. The ill_lock protects the condemned flag and the recovery 3753 * timer ID. 3754 */ 3755 freemsg(arp_add_mp); 3756 mutex_enter(&ill->ill_lock); 3757 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3758 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3759 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3760 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3761 } 3762 mutex_exit(&ill->ill_lock); 3763 } 3764 3765 /* 3766 * This is for exclusive changes due to ARP. Either tear down an interface due 3767 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3768 */ 3769 /* ARGSUSED */ 3770 static void 3771 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3772 { 3773 ill_t *ill = rq->q_ptr; 3774 arh_t *arh; 3775 ipaddr_t src; 3776 ipif_t *ipif; 3777 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3778 char hbuf[MAC_STR_LEN]; 3779 char sbuf[INET_ADDRSTRLEN]; 3780 const char *failtype; 3781 boolean_t bring_up; 3782 ip_stack_t *ipst = ill->ill_ipst; 3783 3784 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3785 case AR_CN_READY: 3786 failtype = NULL; 3787 bring_up = B_TRUE; 3788 break; 3789 case AR_CN_FAILED: 3790 failtype = "in use"; 3791 bring_up = B_FALSE; 3792 break; 3793 default: 3794 failtype = "claimed"; 3795 bring_up = B_FALSE; 3796 break; 3797 } 3798 3799 arh = (arh_t *)mp->b_cont->b_rptr; 3800 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3801 3802 /* Handle failures due to probes */ 3803 if (src == 0) { 3804 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3805 IP_ADDR_LEN); 3806 } 3807 3808 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3809 sizeof (hbuf)); 3810 (void) ip_dot_addr(src, sbuf); 3811 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3812 3813 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3814 ipif->ipif_lcl_addr != src) { 3815 continue; 3816 } 3817 3818 /* 3819 * If we failed on a recovery probe, then restart the timer to 3820 * try again later. 3821 */ 3822 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3823 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3824 ill->ill_net_type == IRE_IF_RESOLVER && 3825 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3826 ipst->ips_ip_dup_recovery > 0 && 3827 ipif->ipif_recovery_id == 0) { 3828 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3829 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3830 continue; 3831 } 3832 3833 /* 3834 * If what we're trying to do has already been done, then do 3835 * nothing. 3836 */ 3837 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3838 continue; 3839 3840 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3841 3842 if (failtype == NULL) { 3843 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3844 ibuf); 3845 } else { 3846 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3847 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3848 } 3849 3850 if (bring_up) { 3851 ASSERT(ill->ill_dl_up); 3852 /* 3853 * Free up the ARP delete message so we can allocate 3854 * a fresh one through the normal path. 3855 */ 3856 freemsg(ipif->ipif_arp_del_mp); 3857 ipif->ipif_arp_del_mp = NULL; 3858 if (ipif_resolver_up(ipif, Res_act_initial) != 3859 EINPROGRESS) { 3860 ipif->ipif_addr_ready = 1; 3861 (void) ipif_up_done(ipif); 3862 } 3863 continue; 3864 } 3865 3866 mutex_enter(&ill->ill_lock); 3867 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3868 ipif->ipif_flags |= IPIF_DUPLICATE; 3869 ill->ill_ipif_dup_count++; 3870 mutex_exit(&ill->ill_lock); 3871 /* 3872 * Already exclusive on the ill; no need to handle deferred 3873 * processing here. 3874 */ 3875 (void) ipif_down(ipif, NULL, NULL); 3876 ipif_down_tail(ipif); 3877 mutex_enter(&ill->ill_lock); 3878 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3879 ill->ill_net_type == IRE_IF_RESOLVER && 3880 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3881 ipst->ips_ip_dup_recovery > 0) { 3882 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3883 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3884 } 3885 mutex_exit(&ill->ill_lock); 3886 } 3887 freemsg(mp); 3888 } 3889 3890 /* ARGSUSED */ 3891 static void 3892 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3893 { 3894 ill_t *ill = rq->q_ptr; 3895 arh_t *arh; 3896 ipaddr_t src; 3897 ipif_t *ipif; 3898 3899 arh = (arh_t *)mp->b_cont->b_rptr; 3900 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3901 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3902 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3903 (void) ipif_resolver_up(ipif, Res_act_defend); 3904 } 3905 freemsg(mp); 3906 } 3907 3908 /* 3909 * News from ARP. ARP sends notification of interesting events down 3910 * to its clients using M_CTL messages with the interesting ARP packet 3911 * attached via b_cont. 3912 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3913 * queue as opposed to ARP sending the message to all the clients, i.e. all 3914 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3915 * table if a cache IRE is found to delete all the entries for the address in 3916 * the packet. 3917 */ 3918 static void 3919 ip_arp_news(queue_t *q, mblk_t *mp) 3920 { 3921 arcn_t *arcn; 3922 arh_t *arh; 3923 ire_t *ire = NULL; 3924 char hbuf[MAC_STR_LEN]; 3925 char sbuf[INET_ADDRSTRLEN]; 3926 ipaddr_t src; 3927 in6_addr_t v6src; 3928 boolean_t isv6 = B_FALSE; 3929 ipif_t *ipif; 3930 ill_t *ill; 3931 ip_stack_t *ipst; 3932 3933 if (CONN_Q(q)) { 3934 conn_t *connp = Q_TO_CONN(q); 3935 3936 ipst = connp->conn_netstack->netstack_ip; 3937 } else { 3938 ill_t *ill = (ill_t *)q->q_ptr; 3939 3940 ipst = ill->ill_ipst; 3941 } 3942 3943 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3944 if (q->q_next) { 3945 putnext(q, mp); 3946 } else 3947 freemsg(mp); 3948 return; 3949 } 3950 arh = (arh_t *)mp->b_cont->b_rptr; 3951 /* Is it one we are interested in? */ 3952 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3953 isv6 = B_TRUE; 3954 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3955 IPV6_ADDR_LEN); 3956 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3957 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3958 IP_ADDR_LEN); 3959 } else { 3960 freemsg(mp); 3961 return; 3962 } 3963 3964 ill = q->q_ptr; 3965 3966 arcn = (arcn_t *)mp->b_rptr; 3967 switch (arcn->arcn_code) { 3968 case AR_CN_BOGON: 3969 /* 3970 * Someone is sending ARP packets with a source protocol 3971 * address that we have published and for which we believe our 3972 * entry is authoritative and (when ill_arp_extend is set) 3973 * verified to be unique on the network. 3974 * 3975 * The ARP module internally handles the cases where the sender 3976 * is just probing (for DAD) and where the hardware address of 3977 * a non-authoritative entry has changed. Thus, these are the 3978 * real conflicts, and we have to do resolution. 3979 * 3980 * We back away quickly from the address if it's from DHCP or 3981 * otherwise temporary and hasn't been used recently (or at 3982 * all). We'd like to include "deprecated" addresses here as 3983 * well (as there's no real reason to defend something we're 3984 * discarding), but IPMP "reuses" this flag to mean something 3985 * other than the standard meaning. 3986 * 3987 * If the ARP module above is not extended (meaning that it 3988 * doesn't know how to defend the address), then we just log 3989 * the problem as we always did and continue on. It's not 3990 * right, but there's little else we can do, and those old ATM 3991 * users are going away anyway. 3992 */ 3993 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3994 hbuf, sizeof (hbuf)); 3995 (void) ip_dot_addr(src, sbuf); 3996 if (isv6) { 3997 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3998 ipst); 3999 } else { 4000 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4001 } 4002 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4003 uint32_t now; 4004 uint32_t maxage; 4005 clock_t lused; 4006 uint_t maxdefense; 4007 uint_t defs; 4008 4009 /* 4010 * First, figure out if this address hasn't been used 4011 * in a while. If it hasn't, then it's a better 4012 * candidate for abandoning. 4013 */ 4014 ipif = ire->ire_ipif; 4015 ASSERT(ipif != NULL); 4016 now = gethrestime_sec(); 4017 maxage = now - ire->ire_create_time; 4018 if (maxage > ipst->ips_ip_max_temp_idle) 4019 maxage = ipst->ips_ip_max_temp_idle; 4020 lused = drv_hztousec(ddi_get_lbolt() - 4021 ire->ire_last_used_time) / MICROSEC + 1; 4022 if (lused >= maxage && (ipif->ipif_flags & 4023 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4024 maxdefense = ipst->ips_ip_max_temp_defend; 4025 else 4026 maxdefense = ipst->ips_ip_max_defend; 4027 4028 /* 4029 * Now figure out how many times we've defended 4030 * ourselves. Ignore defenses that happened long in 4031 * the past. 4032 */ 4033 mutex_enter(&ire->ire_lock); 4034 if ((defs = ire->ire_defense_count) > 0 && 4035 now - ire->ire_defense_time > 4036 ipst->ips_ip_defend_interval) { 4037 ire->ire_defense_count = defs = 0; 4038 } 4039 ire->ire_defense_count++; 4040 ire->ire_defense_time = now; 4041 mutex_exit(&ire->ire_lock); 4042 ill_refhold(ill); 4043 ire_refrele(ire); 4044 4045 /* 4046 * If we've defended ourselves too many times already, 4047 * then give up and tear down the interface(s) using 4048 * this address. Otherwise, defend by sending out a 4049 * gratuitous ARP. 4050 */ 4051 if (defs >= maxdefense && ill->ill_arp_extend) { 4052 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4053 B_FALSE); 4054 } else { 4055 cmn_err(CE_WARN, 4056 "node %s is using our IP address %s on %s", 4057 hbuf, sbuf, ill->ill_name); 4058 /* 4059 * If this is an old (ATM) ARP module, then 4060 * don't try to defend the address. Remain 4061 * compatible with the old behavior. Defend 4062 * only with new ARP. 4063 */ 4064 if (ill->ill_arp_extend) { 4065 qwriter_ip(ill, q, mp, ip_arp_defend, 4066 NEW_OP, B_FALSE); 4067 } else { 4068 ill_refrele(ill); 4069 } 4070 } 4071 return; 4072 } 4073 cmn_err(CE_WARN, 4074 "proxy ARP problem? Node '%s' is using %s on %s", 4075 hbuf, sbuf, ill->ill_name); 4076 if (ire != NULL) 4077 ire_refrele(ire); 4078 break; 4079 case AR_CN_ANNOUNCE: 4080 if (isv6) { 4081 /* 4082 * For XRESOLV interfaces. 4083 * Delete the IRE cache entry and NCE for this 4084 * v6 address 4085 */ 4086 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4087 /* 4088 * If v6src is a non-zero, it's a router address 4089 * as below. Do the same sort of thing to clean 4090 * out off-net IRE_CACHE entries that go through 4091 * the router. 4092 */ 4093 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4094 ire_walk_v6(ire_delete_cache_gw_v6, 4095 (char *)&v6src, ALL_ZONES, ipst); 4096 } 4097 } else { 4098 nce_hw_map_t hwm; 4099 4100 /* 4101 * ARP gives us a copy of any packet where it thinks 4102 * the address has changed, so that we can update our 4103 * caches. We're responsible for caching known answers 4104 * in the current design. We check whether the 4105 * hardware address really has changed in all of our 4106 * entries that have cached this mapping, and if so, we 4107 * blow them away. This way we will immediately pick 4108 * up the rare case of a host changing hardware 4109 * address. 4110 */ 4111 if (src == 0) 4112 break; 4113 hwm.hwm_addr = src; 4114 hwm.hwm_hwlen = arh->arh_hlen; 4115 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4116 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4117 ndp_walk_common(ipst->ips_ndp4, NULL, 4118 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4119 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4120 } 4121 break; 4122 case AR_CN_READY: 4123 /* No external v6 resolver has a contract to use this */ 4124 if (isv6) 4125 break; 4126 /* If the link is down, we'll retry this later */ 4127 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4128 break; 4129 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4130 NULL, NULL, ipst); 4131 if (ipif != NULL) { 4132 /* 4133 * If this is a duplicate recovery, then we now need to 4134 * go exclusive to bring this thing back up. 4135 */ 4136 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4137 IPIF_DUPLICATE) { 4138 ipif_refrele(ipif); 4139 ill_refhold(ill); 4140 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4141 B_FALSE); 4142 return; 4143 } 4144 /* 4145 * If this is the first notice that this address is 4146 * ready, then let the user know now. 4147 */ 4148 if ((ipif->ipif_flags & IPIF_UP) && 4149 !ipif->ipif_addr_ready) { 4150 ipif_mask_reply(ipif); 4151 ip_rts_ifmsg(ipif); 4152 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4153 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4154 } 4155 ipif->ipif_addr_ready = 1; 4156 ipif_refrele(ipif); 4157 } 4158 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4159 if (ire != NULL) { 4160 ire->ire_defense_count = 0; 4161 ire_refrele(ire); 4162 } 4163 break; 4164 case AR_CN_FAILED: 4165 /* No external v6 resolver has a contract to use this */ 4166 if (isv6) 4167 break; 4168 ill_refhold(ill); 4169 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4170 return; 4171 } 4172 freemsg(mp); 4173 } 4174 4175 /* 4176 * Create a mblk suitable for carrying the interface index and/or source link 4177 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4178 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4179 * application. 4180 */ 4181 mblk_t * 4182 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4183 ip_stack_t *ipst) 4184 { 4185 mblk_t *mp; 4186 ip_pktinfo_t *pinfo; 4187 ipha_t *ipha; 4188 struct ether_header *pether; 4189 4190 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4191 if (mp == NULL) { 4192 ip1dbg(("ip_add_info: allocation failure.\n")); 4193 return (data_mp); 4194 } 4195 4196 ipha = (ipha_t *)data_mp->b_rptr; 4197 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4198 bzero(pinfo, sizeof (ip_pktinfo_t)); 4199 pinfo->ip_pkt_flags = (uchar_t)flags; 4200 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4201 4202 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4203 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4204 if (flags & IPF_RECVADDR) { 4205 ipif_t *ipif; 4206 ire_t *ire; 4207 4208 /* 4209 * Only valid for V4 4210 */ 4211 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4212 (IPV4_VERSION << 4)); 4213 4214 ipif = ipif_get_next_ipif(NULL, ill); 4215 if (ipif != NULL) { 4216 /* 4217 * Since a decision has already been made to deliver the 4218 * packet, there is no need to test for SECATTR and 4219 * ZONEONLY. 4220 * When a multicast packet is transmitted 4221 * a cache entry is created for the multicast address. 4222 * When delivering a copy of the packet or when new 4223 * packets are received we do not want to match on the 4224 * cached entry so explicitly match on 4225 * IRE_LOCAL and IRE_LOOPBACK 4226 */ 4227 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4228 IRE_LOCAL | IRE_LOOPBACK, 4229 ipif, zoneid, NULL, 4230 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4231 if (ire == NULL) { 4232 /* 4233 * packet must have come on a different 4234 * interface. 4235 * Since a decision has already been made to 4236 * deliver the packet, there is no need to test 4237 * for SECATTR and ZONEONLY. 4238 * Only match on local and broadcast ire's. 4239 * See detailed comment above. 4240 */ 4241 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4242 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4243 NULL, MATCH_IRE_TYPE, ipst); 4244 } 4245 4246 if (ire == NULL) { 4247 /* 4248 * This is either a multicast packet or 4249 * the address has been removed since 4250 * the packet was received. 4251 * Return INADDR_ANY so that normal source 4252 * selection occurs for the response. 4253 */ 4254 4255 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4256 } else { 4257 pinfo->ip_pkt_match_addr.s_addr = 4258 ire->ire_src_addr; 4259 ire_refrele(ire); 4260 } 4261 ipif_refrele(ipif); 4262 } else { 4263 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4264 } 4265 } 4266 4267 pether = (struct ether_header *)((char *)ipha 4268 - sizeof (struct ether_header)); 4269 /* 4270 * Make sure the interface is an ethernet type, since this option 4271 * is currently supported only on this type of interface. Also make 4272 * sure we are pointing correctly above db_base. 4273 */ 4274 4275 if ((flags & IPF_RECVSLLA) && 4276 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4277 (ill->ill_type == IFT_ETHER) && 4278 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4279 4280 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4281 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4282 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4283 } else { 4284 /* 4285 * Clear the bit. Indicate to upper layer that IP is not 4286 * sending this ancillary info. 4287 */ 4288 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4289 } 4290 4291 mp->b_datap->db_type = M_CTL; 4292 mp->b_wptr += sizeof (ip_pktinfo_t); 4293 mp->b_cont = data_mp; 4294 4295 return (mp); 4296 } 4297 4298 /* 4299 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4300 * part of the bind request. 4301 */ 4302 4303 boolean_t 4304 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4305 { 4306 ipsec_in_t *ii; 4307 4308 ASSERT(policy_mp != NULL); 4309 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4310 4311 ii = (ipsec_in_t *)policy_mp->b_rptr; 4312 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4313 4314 connp->conn_policy = ii->ipsec_in_policy; 4315 ii->ipsec_in_policy = NULL; 4316 4317 if (ii->ipsec_in_action != NULL) { 4318 if (connp->conn_latch == NULL) { 4319 connp->conn_latch = iplatch_create(); 4320 if (connp->conn_latch == NULL) 4321 return (B_FALSE); 4322 } 4323 ipsec_latch_inbound(connp->conn_latch, ii); 4324 } 4325 return (B_TRUE); 4326 } 4327 4328 /* 4329 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4330 * and to arrange for power-fanout assist. The ULP is identified by 4331 * adding a single byte at the end of the original bind message. 4332 * A ULP other than UDP or TCP that wishes to be recognized passes 4333 * down a bind with a zero length address. 4334 * 4335 * The binding works as follows: 4336 * - A zero byte address means just bind to the protocol. 4337 * - A four byte address is treated as a request to validate 4338 * that the address is a valid local address, appropriate for 4339 * an application to bind to. This does not affect any fanout 4340 * information in IP. 4341 * - A sizeof sin_t byte address is used to bind to only the local address 4342 * and port. 4343 * - A sizeof ipa_conn_t byte address contains complete fanout information 4344 * consisting of local and remote addresses and ports. In 4345 * this case, the addresses are both validated as appropriate 4346 * for this operation, and, if so, the information is retained 4347 * for use in the inbound fanout. 4348 * 4349 * The ULP (except in the zero-length bind) can append an 4350 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4351 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4352 * a copy of the source or destination IRE (source for local bind; 4353 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4354 * policy information contained should be copied on to the conn. 4355 * 4356 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4357 */ 4358 mblk_t * 4359 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4360 { 4361 ssize_t len; 4362 struct T_bind_req *tbr; 4363 sin_t *sin; 4364 ipa_conn_t *ac; 4365 uchar_t *ucp; 4366 mblk_t *mp1; 4367 boolean_t ire_requested; 4368 boolean_t ipsec_policy_set = B_FALSE; 4369 int error = 0; 4370 int protocol; 4371 ipa_conn_x_t *acx; 4372 4373 ASSERT(!connp->conn_af_isv6); 4374 connp->conn_pkt_isv6 = B_FALSE; 4375 4376 len = MBLKL(mp); 4377 if (len < (sizeof (*tbr) + 1)) { 4378 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4379 "ip_bind: bogus msg, len %ld", len); 4380 /* XXX: Need to return something better */ 4381 goto bad_addr; 4382 } 4383 /* Back up and extract the protocol identifier. */ 4384 mp->b_wptr--; 4385 protocol = *mp->b_wptr & 0xFF; 4386 tbr = (struct T_bind_req *)mp->b_rptr; 4387 /* Reset the message type in preparation for shipping it back. */ 4388 DB_TYPE(mp) = M_PCPROTO; 4389 4390 connp->conn_ulp = (uint8_t)protocol; 4391 4392 /* 4393 * Check for a zero length address. This is from a protocol that 4394 * wants to register to receive all packets of its type. 4395 */ 4396 if (tbr->ADDR_length == 0) { 4397 /* 4398 * These protocols are now intercepted in ip_bind_v6(). 4399 * Reject protocol-level binds here for now. 4400 * 4401 * For SCTP raw socket, ICMP sends down a bind with sin_t 4402 * so that the protocol type cannot be SCTP. 4403 */ 4404 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4405 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4406 goto bad_addr; 4407 } 4408 4409 /* 4410 * 4411 * The udp module never sends down a zero-length address, 4412 * and allowing this on a labeled system will break MLP 4413 * functionality. 4414 */ 4415 if (is_system_labeled() && protocol == IPPROTO_UDP) 4416 goto bad_addr; 4417 4418 if (connp->conn_mac_exempt) 4419 goto bad_addr; 4420 4421 /* No hash here really. The table is big enough. */ 4422 connp->conn_srcv6 = ipv6_all_zeros; 4423 4424 ipcl_proto_insert(connp, protocol); 4425 4426 tbr->PRIM_type = T_BIND_ACK; 4427 return (mp); 4428 } 4429 4430 /* Extract the address pointer from the message. */ 4431 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4432 tbr->ADDR_length); 4433 if (ucp == NULL) { 4434 ip1dbg(("ip_bind: no address\n")); 4435 goto bad_addr; 4436 } 4437 if (!OK_32PTR(ucp)) { 4438 ip1dbg(("ip_bind: unaligned address\n")); 4439 goto bad_addr; 4440 } 4441 /* 4442 * Check for trailing mps. 4443 */ 4444 4445 mp1 = mp->b_cont; 4446 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4447 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4448 4449 switch (tbr->ADDR_length) { 4450 default: 4451 ip1dbg(("ip_bind: bad address length %d\n", 4452 (int)tbr->ADDR_length)); 4453 goto bad_addr; 4454 4455 case IP_ADDR_LEN: 4456 /* Verification of local address only */ 4457 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4458 ire_requested, ipsec_policy_set, B_FALSE); 4459 break; 4460 4461 case sizeof (sin_t): 4462 sin = (sin_t *)ucp; 4463 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4464 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4465 break; 4466 4467 case sizeof (ipa_conn_t): 4468 ac = (ipa_conn_t *)ucp; 4469 /* For raw socket, the local port is not set. */ 4470 if (ac->ac_lport == 0) 4471 ac->ac_lport = connp->conn_lport; 4472 /* Always verify destination reachability. */ 4473 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4474 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4475 ipsec_policy_set, B_TRUE, B_TRUE); 4476 break; 4477 4478 case sizeof (ipa_conn_x_t): 4479 acx = (ipa_conn_x_t *)ucp; 4480 /* 4481 * Whether or not to verify destination reachability depends 4482 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4483 */ 4484 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4485 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4486 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4487 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4488 break; 4489 } 4490 if (error == EINPROGRESS) 4491 return (NULL); 4492 else if (error != 0) 4493 goto bad_addr; 4494 /* 4495 * Pass the IPsec headers size in ire_ipsec_overhead. 4496 * We can't do this in ip_bind_insert_ire because the policy 4497 * may not have been inherited at that point in time and hence 4498 * conn_out_enforce_policy may not be set. 4499 */ 4500 mp1 = mp->b_cont; 4501 if (ire_requested && connp->conn_out_enforce_policy && 4502 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4503 ire_t *ire = (ire_t *)mp1->b_rptr; 4504 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4505 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4506 } 4507 4508 /* Send it home. */ 4509 mp->b_datap->db_type = M_PCPROTO; 4510 tbr->PRIM_type = T_BIND_ACK; 4511 return (mp); 4512 4513 bad_addr: 4514 /* 4515 * If error = -1 then we generate a TBADADDR - otherwise error is 4516 * a unix errno. 4517 */ 4518 if (error > 0) 4519 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4520 else 4521 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4522 return (mp); 4523 } 4524 4525 /* 4526 * Here address is verified to be a valid local address. 4527 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4528 * address is also considered a valid local address. 4529 * In the case of a broadcast/multicast address, however, the 4530 * upper protocol is expected to reset the src address 4531 * to 0 if it sees a IRE_BROADCAST type returned so that 4532 * no packets are emitted with broadcast/multicast address as 4533 * source address (that violates hosts requirements RFC1122) 4534 * The addresses valid for bind are: 4535 * (1) - INADDR_ANY (0) 4536 * (2) - IP address of an UP interface 4537 * (3) - IP address of a DOWN interface 4538 * (4) - valid local IP broadcast addresses. In this case 4539 * the conn will only receive packets destined to 4540 * the specified broadcast address. 4541 * (5) - a multicast address. In this case 4542 * the conn will only receive packets destined to 4543 * the specified multicast address. Note: the 4544 * application still has to issue an 4545 * IP_ADD_MEMBERSHIP socket option. 4546 * 4547 * On error, return -1 for TBADADDR otherwise pass the 4548 * errno with TSYSERR reply. 4549 * 4550 * In all the above cases, the bound address must be valid in the current zone. 4551 * When the address is loopback, multicast or broadcast, there might be many 4552 * matching IREs so bind has to look up based on the zone. 4553 * 4554 * Note: lport is in network byte order. 4555 */ 4556 int 4557 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4558 boolean_t ire_requested, boolean_t ipsec_policy_set, 4559 boolean_t fanout_insert) 4560 { 4561 int error = 0; 4562 ire_t *src_ire; 4563 mblk_t *policy_mp; 4564 ipif_t *ipif; 4565 zoneid_t zoneid; 4566 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4567 4568 if (ipsec_policy_set) { 4569 policy_mp = mp->b_cont; 4570 } 4571 4572 /* 4573 * If it was previously connected, conn_fully_bound would have 4574 * been set. 4575 */ 4576 connp->conn_fully_bound = B_FALSE; 4577 4578 src_ire = NULL; 4579 ipif = NULL; 4580 4581 zoneid = IPCL_ZONEID(connp); 4582 4583 if (src_addr) { 4584 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4585 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4586 /* 4587 * If an address other than 0.0.0.0 is requested, 4588 * we verify that it is a valid address for bind 4589 * Note: Following code is in if-else-if form for 4590 * readability compared to a condition check. 4591 */ 4592 /* LINTED - statement has no consequent */ 4593 if (IRE_IS_LOCAL(src_ire)) { 4594 /* 4595 * (2) Bind to address of local UP interface 4596 */ 4597 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4598 /* 4599 * (4) Bind to broadcast address 4600 * Note: permitted only from transports that 4601 * request IRE 4602 */ 4603 if (!ire_requested) 4604 error = EADDRNOTAVAIL; 4605 } else { 4606 /* 4607 * (3) Bind to address of local DOWN interface 4608 * (ipif_lookup_addr() looks up all interfaces 4609 * but we do not get here for UP interfaces 4610 * - case (2) above) 4611 * We put the protocol byte back into the mblk 4612 * since we may come back via ip_wput_nondata() 4613 * later with this mblk if ipif_lookup_addr chooses 4614 * to defer processing. 4615 */ 4616 *mp->b_wptr++ = (char)connp->conn_ulp; 4617 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4618 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4619 &error, ipst)) != NULL) { 4620 ipif_refrele(ipif); 4621 } else if (error == EINPROGRESS) { 4622 if (src_ire != NULL) 4623 ire_refrele(src_ire); 4624 return (EINPROGRESS); 4625 } else if (CLASSD(src_addr)) { 4626 error = 0; 4627 if (src_ire != NULL) 4628 ire_refrele(src_ire); 4629 /* 4630 * (5) bind to multicast address. 4631 * Fake out the IRE returned to upper 4632 * layer to be a broadcast IRE. 4633 */ 4634 src_ire = ire_ctable_lookup( 4635 INADDR_BROADCAST, INADDR_ANY, 4636 IRE_BROADCAST, NULL, zoneid, NULL, 4637 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4638 ipst); 4639 if (src_ire == NULL || !ire_requested) 4640 error = EADDRNOTAVAIL; 4641 } else { 4642 /* 4643 * Not a valid address for bind 4644 */ 4645 error = EADDRNOTAVAIL; 4646 } 4647 /* 4648 * Just to keep it consistent with the processing in 4649 * ip_bind_v4() 4650 */ 4651 mp->b_wptr--; 4652 } 4653 if (error) { 4654 /* Red Alert! Attempting to be a bogon! */ 4655 ip1dbg(("ip_bind: bad src address 0x%x\n", 4656 ntohl(src_addr))); 4657 goto bad_addr; 4658 } 4659 } 4660 4661 /* 4662 * Allow setting new policies. For example, disconnects come 4663 * down as ipa_t bind. As we would have set conn_policy_cached 4664 * to B_TRUE before, we should set it to B_FALSE, so that policy 4665 * can change after the disconnect. 4666 */ 4667 connp->conn_policy_cached = B_FALSE; 4668 4669 /* 4670 * If not fanout_insert this was just an address verification 4671 */ 4672 if (fanout_insert) { 4673 /* 4674 * The addresses have been verified. Time to insert in 4675 * the correct fanout list. 4676 */ 4677 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4678 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4679 connp->conn_lport = lport; 4680 connp->conn_fport = 0; 4681 /* 4682 * Do we need to add a check to reject Multicast packets 4683 */ 4684 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4685 } 4686 4687 if (error == 0) { 4688 if (ire_requested) { 4689 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4690 error = -1; 4691 /* Falls through to bad_addr */ 4692 } 4693 } else if (ipsec_policy_set) { 4694 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4695 error = -1; 4696 /* Falls through to bad_addr */ 4697 } 4698 } 4699 } 4700 bad_addr: 4701 if (error != 0) { 4702 if (connp->conn_anon_port) { 4703 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4704 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4705 B_FALSE); 4706 } 4707 connp->conn_mlp_type = mlptSingle; 4708 } 4709 if (src_ire != NULL) 4710 IRE_REFRELE(src_ire); 4711 if (ipsec_policy_set) { 4712 ASSERT(policy_mp == mp->b_cont); 4713 ASSERT(policy_mp != NULL); 4714 freeb(policy_mp); 4715 /* 4716 * As of now assume that nothing else accompanies 4717 * IPSEC_POLICY_SET. 4718 */ 4719 mp->b_cont = NULL; 4720 } 4721 return (error); 4722 } 4723 4724 /* 4725 * Verify that both the source and destination addresses 4726 * are valid. If verify_dst is false, then the destination address may be 4727 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4728 * destination reachability, while tunnels do not. 4729 * Note that we allow connect to broadcast and multicast 4730 * addresses when ire_requested is set. Thus the ULP 4731 * has to check for IRE_BROADCAST and multicast. 4732 * 4733 * Returns zero if ok. 4734 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4735 * (for use with TSYSERR reply). 4736 * 4737 * Note: lport and fport are in network byte order. 4738 */ 4739 int 4740 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4741 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4742 boolean_t ire_requested, boolean_t ipsec_policy_set, 4743 boolean_t fanout_insert, boolean_t verify_dst) 4744 { 4745 ire_t *src_ire; 4746 ire_t *dst_ire; 4747 int error = 0; 4748 int protocol; 4749 mblk_t *policy_mp; 4750 ire_t *sire = NULL; 4751 ire_t *md_dst_ire = NULL; 4752 ire_t *lso_dst_ire = NULL; 4753 ill_t *ill = NULL; 4754 zoneid_t zoneid; 4755 ipaddr_t src_addr = *src_addrp; 4756 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4757 4758 src_ire = dst_ire = NULL; 4759 protocol = *mp->b_wptr & 0xFF; 4760 4761 /* 4762 * If we never got a disconnect before, clear it now. 4763 */ 4764 connp->conn_fully_bound = B_FALSE; 4765 4766 if (ipsec_policy_set) { 4767 policy_mp = mp->b_cont; 4768 } 4769 4770 zoneid = IPCL_ZONEID(connp); 4771 4772 if (CLASSD(dst_addr)) { 4773 /* Pick up an IRE_BROADCAST */ 4774 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4775 NULL, zoneid, MBLK_GETLABEL(mp), 4776 (MATCH_IRE_RECURSIVE | 4777 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4778 MATCH_IRE_SECATTR), ipst); 4779 } else { 4780 /* 4781 * If conn_dontroute is set or if conn_nexthop_set is set, 4782 * and onlink ipif is not found set ENETUNREACH error. 4783 */ 4784 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4785 ipif_t *ipif; 4786 4787 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4788 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4789 if (ipif == NULL) { 4790 error = ENETUNREACH; 4791 goto bad_addr; 4792 } 4793 ipif_refrele(ipif); 4794 } 4795 4796 if (connp->conn_nexthop_set) { 4797 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4798 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4799 MATCH_IRE_SECATTR, ipst); 4800 } else { 4801 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4802 &sire, zoneid, MBLK_GETLABEL(mp), 4803 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4804 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4805 MATCH_IRE_SECATTR), ipst); 4806 } 4807 } 4808 /* 4809 * dst_ire can't be a broadcast when not ire_requested. 4810 * We also prevent ire's with src address INADDR_ANY to 4811 * be used, which are created temporarily for 4812 * sending out packets from endpoints that have 4813 * conn_unspec_src set. If verify_dst is true, the destination must be 4814 * reachable. If verify_dst is false, the destination needn't be 4815 * reachable. 4816 * 4817 * If we match on a reject or black hole, then we've got a 4818 * local failure. May as well fail out the connect() attempt, 4819 * since it's never going to succeed. 4820 */ 4821 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4822 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4823 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4824 /* 4825 * If we're verifying destination reachability, we always want 4826 * to complain here. 4827 * 4828 * If we're not verifying destination reachability but the 4829 * destination has a route, we still want to fail on the 4830 * temporary address and broadcast address tests. 4831 */ 4832 if (verify_dst || (dst_ire != NULL)) { 4833 if (ip_debug > 2) { 4834 pr_addr_dbg("ip_bind_connected: bad connected " 4835 "dst %s\n", AF_INET, &dst_addr); 4836 } 4837 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4838 error = ENETUNREACH; 4839 else 4840 error = EHOSTUNREACH; 4841 goto bad_addr; 4842 } 4843 } 4844 4845 /* 4846 * We now know that routing will allow us to reach the destination. 4847 * Check whether Trusted Solaris policy allows communication with this 4848 * host, and pretend that the destination is unreachable if not. 4849 * 4850 * This is never a problem for TCP, since that transport is known to 4851 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4852 * handling. If the remote is unreachable, it will be detected at that 4853 * point, so there's no reason to check it here. 4854 * 4855 * Note that for sendto (and other datagram-oriented friends), this 4856 * check is done as part of the data path label computation instead. 4857 * The check here is just to make non-TCP connect() report the right 4858 * error. 4859 */ 4860 if (dst_ire != NULL && is_system_labeled() && 4861 !IPCL_IS_TCP(connp) && 4862 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4863 connp->conn_mac_exempt, ipst) != 0) { 4864 error = EHOSTUNREACH; 4865 if (ip_debug > 2) { 4866 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4867 AF_INET, &dst_addr); 4868 } 4869 goto bad_addr; 4870 } 4871 4872 /* 4873 * If the app does a connect(), it means that it will most likely 4874 * send more than 1 packet to the destination. It makes sense 4875 * to clear the temporary flag. 4876 */ 4877 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4878 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4879 irb_t *irb = dst_ire->ire_bucket; 4880 4881 rw_enter(&irb->irb_lock, RW_WRITER); 4882 /* 4883 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4884 * the lock to guarantee irb_tmp_ire_cnt. 4885 */ 4886 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4887 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4888 irb->irb_tmp_ire_cnt--; 4889 } 4890 rw_exit(&irb->irb_lock); 4891 } 4892 4893 /* 4894 * See if we should notify ULP about LSO/MDT; we do this whether or not 4895 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4896 * eligibility tests for passive connects are handled separately 4897 * through tcp_adapt_ire(). We do this before the source address 4898 * selection, because dst_ire may change after a call to 4899 * ipif_select_source(). This is a best-effort check, as the 4900 * packet for this connection may not actually go through 4901 * dst_ire->ire_stq, and the exact IRE can only be known after 4902 * calling ip_newroute(). This is why we further check on the 4903 * IRE during LSO/Multidata packet transmission in 4904 * tcp_lsosend()/tcp_multisend(). 4905 */ 4906 if (!ipsec_policy_set && dst_ire != NULL && 4907 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4908 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4909 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4910 lso_dst_ire = dst_ire; 4911 IRE_REFHOLD(lso_dst_ire); 4912 } else if (ipst->ips_ip_multidata_outbound && 4913 ILL_MDT_CAPABLE(ill)) { 4914 md_dst_ire = dst_ire; 4915 IRE_REFHOLD(md_dst_ire); 4916 } 4917 } 4918 4919 if (dst_ire != NULL && 4920 dst_ire->ire_type == IRE_LOCAL && 4921 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4922 /* 4923 * If the IRE belongs to a different zone, look for a matching 4924 * route in the forwarding table and use the source address from 4925 * that route. 4926 */ 4927 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4928 zoneid, 0, NULL, 4929 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4930 MATCH_IRE_RJ_BHOLE, ipst); 4931 if (src_ire == NULL) { 4932 error = EHOSTUNREACH; 4933 goto bad_addr; 4934 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4935 if (!(src_ire->ire_type & IRE_HOST)) 4936 error = ENETUNREACH; 4937 else 4938 error = EHOSTUNREACH; 4939 goto bad_addr; 4940 } 4941 if (src_addr == INADDR_ANY) 4942 src_addr = src_ire->ire_src_addr; 4943 ire_refrele(src_ire); 4944 src_ire = NULL; 4945 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4946 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4947 src_addr = sire->ire_src_addr; 4948 ire_refrele(dst_ire); 4949 dst_ire = sire; 4950 sire = NULL; 4951 } else { 4952 /* 4953 * Pick a source address so that a proper inbound 4954 * load spreading would happen. 4955 */ 4956 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4957 ipif_t *src_ipif = NULL; 4958 ire_t *ipif_ire; 4959 4960 /* 4961 * Supply a local source address such that inbound 4962 * load spreading happens. 4963 * 4964 * Determine the best source address on this ill for 4965 * the destination. 4966 * 4967 * 1) For broadcast, we should return a broadcast ire 4968 * found above so that upper layers know that the 4969 * destination address is a broadcast address. 4970 * 4971 * 2) If this is part of a group, select a better 4972 * source address so that better inbound load 4973 * balancing happens. Do the same if the ipif 4974 * is DEPRECATED. 4975 * 4976 * 3) If the outgoing interface is part of a usesrc 4977 * group, then try selecting a source address from 4978 * the usesrc ILL. 4979 */ 4980 if ((dst_ire->ire_zoneid != zoneid && 4981 dst_ire->ire_zoneid != ALL_ZONES) || 4982 (!(dst_ire->ire_type & IRE_BROADCAST) && 4983 ((dst_ill->ill_group != NULL) || 4984 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4985 (dst_ill->ill_usesrc_ifindex != 0)))) { 4986 /* 4987 * If the destination is reachable via a 4988 * given gateway, the selected source address 4989 * should be in the same subnet as the gateway. 4990 * Otherwise, the destination is not reachable. 4991 * 4992 * If there are no interfaces on the same subnet 4993 * as the destination, ipif_select_source gives 4994 * first non-deprecated interface which might be 4995 * on a different subnet than the gateway. 4996 * This is not desirable. Hence pass the dst_ire 4997 * source address to ipif_select_source. 4998 * It is sure that the destination is reachable 4999 * with the dst_ire source address subnet. 5000 * So passing dst_ire source address to 5001 * ipif_select_source will make sure that the 5002 * selected source will be on the same subnet 5003 * as dst_ire source address. 5004 */ 5005 ipaddr_t saddr = 5006 dst_ire->ire_ipif->ipif_src_addr; 5007 src_ipif = ipif_select_source(dst_ill, 5008 saddr, zoneid); 5009 if (src_ipif != NULL) { 5010 if (IS_VNI(src_ipif->ipif_ill)) { 5011 /* 5012 * For VNI there is no 5013 * interface route 5014 */ 5015 src_addr = 5016 src_ipif->ipif_src_addr; 5017 } else { 5018 ipif_ire = 5019 ipif_to_ire(src_ipif); 5020 if (ipif_ire != NULL) { 5021 IRE_REFRELE(dst_ire); 5022 dst_ire = ipif_ire; 5023 } 5024 src_addr = 5025 dst_ire->ire_src_addr; 5026 } 5027 ipif_refrele(src_ipif); 5028 } else { 5029 src_addr = dst_ire->ire_src_addr; 5030 } 5031 } else { 5032 src_addr = dst_ire->ire_src_addr; 5033 } 5034 } 5035 } 5036 5037 /* 5038 * We do ire_route_lookup() here (and not 5039 * interface lookup as we assert that 5040 * src_addr should only come from an 5041 * UP interface for hard binding. 5042 */ 5043 ASSERT(src_ire == NULL); 5044 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5045 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5046 /* src_ire must be a local|loopback */ 5047 if (!IRE_IS_LOCAL(src_ire)) { 5048 if (ip_debug > 2) { 5049 pr_addr_dbg("ip_bind_connected: bad connected " 5050 "src %s\n", AF_INET, &src_addr); 5051 } 5052 error = EADDRNOTAVAIL; 5053 goto bad_addr; 5054 } 5055 5056 /* 5057 * If the source address is a loopback address, the 5058 * destination had best be local or multicast. 5059 * The transports that can't handle multicast will reject 5060 * those addresses. 5061 */ 5062 if (src_ire->ire_type == IRE_LOOPBACK && 5063 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5064 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5065 error = -1; 5066 goto bad_addr; 5067 } 5068 5069 /* 5070 * Allow setting new policies. For example, disconnects come 5071 * down as ipa_t bind. As we would have set conn_policy_cached 5072 * to B_TRUE before, we should set it to B_FALSE, so that policy 5073 * can change after the disconnect. 5074 */ 5075 connp->conn_policy_cached = B_FALSE; 5076 5077 /* 5078 * Set the conn addresses/ports immediately, so the IPsec policy calls 5079 * can handle their passed-in conn's. 5080 */ 5081 5082 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5083 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5084 connp->conn_lport = lport; 5085 connp->conn_fport = fport; 5086 *src_addrp = src_addr; 5087 5088 ASSERT(!(ipsec_policy_set && ire_requested)); 5089 if (ire_requested) { 5090 iulp_t *ulp_info = NULL; 5091 5092 /* 5093 * Note that sire will not be NULL if this is an off-link 5094 * connection and there is not cache for that dest yet. 5095 * 5096 * XXX Because of an existing bug, if there are multiple 5097 * default routes, the IRE returned now may not be the actual 5098 * default route used (default routes are chosen in a 5099 * round robin fashion). So if the metrics for different 5100 * default routes are different, we may return the wrong 5101 * metrics. This will not be a problem if the existing 5102 * bug is fixed. 5103 */ 5104 if (sire != NULL) { 5105 ulp_info = &(sire->ire_uinfo); 5106 } 5107 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5108 error = -1; 5109 goto bad_addr; 5110 } 5111 } else if (ipsec_policy_set) { 5112 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5113 error = -1; 5114 goto bad_addr; 5115 } 5116 } 5117 5118 /* 5119 * Cache IPsec policy in this conn. If we have per-socket policy, 5120 * we'll cache that. If we don't, we'll inherit global policy. 5121 * 5122 * We can't insert until the conn reflects the policy. Note that 5123 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5124 * connections where we don't have a policy. This is to prevent 5125 * global policy lookups in the inbound path. 5126 * 5127 * If we insert before we set conn_policy_cached, 5128 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5129 * because global policy cound be non-empty. We normally call 5130 * ipsec_check_policy() for conn_policy_cached connections only if 5131 * ipc_in_enforce_policy is set. But in this case, 5132 * conn_policy_cached can get set anytime since we made the 5133 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5134 * called, which will make the above assumption false. Thus, we 5135 * need to insert after we set conn_policy_cached. 5136 */ 5137 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5138 goto bad_addr; 5139 5140 if (fanout_insert) { 5141 /* 5142 * The addresses have been verified. Time to insert in 5143 * the correct fanout list. 5144 */ 5145 error = ipcl_conn_insert(connp, protocol, src_addr, 5146 dst_addr, connp->conn_ports); 5147 } 5148 5149 if (error == 0) { 5150 connp->conn_fully_bound = B_TRUE; 5151 /* 5152 * Our initial checks for LSO/MDT have passed; the IRE is not 5153 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5154 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5155 * ip_xxinfo_return(), which performs further checks 5156 * against them and upon success, returns the LSO/MDT info 5157 * mblk which we will attach to the bind acknowledgment. 5158 */ 5159 if (lso_dst_ire != NULL) { 5160 mblk_t *lsoinfo_mp; 5161 5162 ASSERT(ill->ill_lso_capab != NULL); 5163 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5164 ill->ill_name, ill->ill_lso_capab)) != NULL) 5165 linkb(mp, lsoinfo_mp); 5166 } else if (md_dst_ire != NULL) { 5167 mblk_t *mdinfo_mp; 5168 5169 ASSERT(ill->ill_mdt_capab != NULL); 5170 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5171 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5172 linkb(mp, mdinfo_mp); 5173 } 5174 } 5175 bad_addr: 5176 if (ipsec_policy_set) { 5177 ASSERT(policy_mp == mp->b_cont); 5178 ASSERT(policy_mp != NULL); 5179 freeb(policy_mp); 5180 /* 5181 * As of now assume that nothing else accompanies 5182 * IPSEC_POLICY_SET. 5183 */ 5184 mp->b_cont = NULL; 5185 } 5186 if (src_ire != NULL) 5187 IRE_REFRELE(src_ire); 5188 if (dst_ire != NULL) 5189 IRE_REFRELE(dst_ire); 5190 if (sire != NULL) 5191 IRE_REFRELE(sire); 5192 if (md_dst_ire != NULL) 5193 IRE_REFRELE(md_dst_ire); 5194 if (lso_dst_ire != NULL) 5195 IRE_REFRELE(lso_dst_ire); 5196 return (error); 5197 } 5198 5199 /* 5200 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5201 * Prefers dst_ire over src_ire. 5202 */ 5203 static boolean_t 5204 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5205 { 5206 mblk_t *mp1; 5207 ire_t *ret_ire = NULL; 5208 5209 mp1 = mp->b_cont; 5210 ASSERT(mp1 != NULL); 5211 5212 if (ire != NULL) { 5213 /* 5214 * mp1 initialized above to IRE_DB_REQ_TYPE 5215 * appended mblk. Its <upper protocol>'s 5216 * job to make sure there is room. 5217 */ 5218 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5219 return (0); 5220 5221 mp1->b_datap->db_type = IRE_DB_TYPE; 5222 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5223 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5224 ret_ire = (ire_t *)mp1->b_rptr; 5225 /* 5226 * Pass the latest setting of the ip_path_mtu_discovery and 5227 * copy the ulp info if any. 5228 */ 5229 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5230 IPH_DF : 0; 5231 if (ulp_info != NULL) { 5232 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5233 sizeof (iulp_t)); 5234 } 5235 ret_ire->ire_mp = mp1; 5236 } else { 5237 /* 5238 * No IRE was found. Remove IRE mblk. 5239 */ 5240 mp->b_cont = mp1->b_cont; 5241 freeb(mp1); 5242 } 5243 5244 return (1); 5245 } 5246 5247 /* 5248 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5249 * the final piece where we don't. Return a pointer to the first mblk in the 5250 * result, and update the pointer to the next mblk to chew on. If anything 5251 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5252 * NULL pointer. 5253 */ 5254 mblk_t * 5255 ip_carve_mp(mblk_t **mpp, ssize_t len) 5256 { 5257 mblk_t *mp0; 5258 mblk_t *mp1; 5259 mblk_t *mp2; 5260 5261 if (!len || !mpp || !(mp0 = *mpp)) 5262 return (NULL); 5263 /* If we aren't going to consume the first mblk, we need a dup. */ 5264 if (mp0->b_wptr - mp0->b_rptr > len) { 5265 mp1 = dupb(mp0); 5266 if (mp1) { 5267 /* Partition the data between the two mblks. */ 5268 mp1->b_wptr = mp1->b_rptr + len; 5269 mp0->b_rptr = mp1->b_wptr; 5270 /* 5271 * after adjustments if mblk not consumed is now 5272 * unaligned, try to align it. If this fails free 5273 * all messages and let upper layer recover. 5274 */ 5275 if (!OK_32PTR(mp0->b_rptr)) { 5276 if (!pullupmsg(mp0, -1)) { 5277 freemsg(mp0); 5278 freemsg(mp1); 5279 *mpp = NULL; 5280 return (NULL); 5281 } 5282 } 5283 } 5284 return (mp1); 5285 } 5286 /* Eat through as many mblks as we need to get len bytes. */ 5287 len -= mp0->b_wptr - mp0->b_rptr; 5288 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5289 if (mp2->b_wptr - mp2->b_rptr > len) { 5290 /* 5291 * We won't consume the entire last mblk. Like 5292 * above, dup and partition it. 5293 */ 5294 mp1->b_cont = dupb(mp2); 5295 mp1 = mp1->b_cont; 5296 if (!mp1) { 5297 /* 5298 * Trouble. Rather than go to a lot of 5299 * trouble to clean up, we free the messages. 5300 * This won't be any worse than losing it on 5301 * the wire. 5302 */ 5303 freemsg(mp0); 5304 freemsg(mp2); 5305 *mpp = NULL; 5306 return (NULL); 5307 } 5308 mp1->b_wptr = mp1->b_rptr + len; 5309 mp2->b_rptr = mp1->b_wptr; 5310 /* 5311 * after adjustments if mblk not consumed is now 5312 * unaligned, try to align it. If this fails free 5313 * all messages and let upper layer recover. 5314 */ 5315 if (!OK_32PTR(mp2->b_rptr)) { 5316 if (!pullupmsg(mp2, -1)) { 5317 freemsg(mp0); 5318 freemsg(mp2); 5319 *mpp = NULL; 5320 return (NULL); 5321 } 5322 } 5323 *mpp = mp2; 5324 return (mp0); 5325 } 5326 /* Decrement len by the amount we just got. */ 5327 len -= mp2->b_wptr - mp2->b_rptr; 5328 } 5329 /* 5330 * len should be reduced to zero now. If not our caller has 5331 * screwed up. 5332 */ 5333 if (len) { 5334 /* Shouldn't happen! */ 5335 freemsg(mp0); 5336 *mpp = NULL; 5337 return (NULL); 5338 } 5339 /* 5340 * We consumed up to exactly the end of an mblk. Detach the part 5341 * we are returning from the rest of the chain. 5342 */ 5343 mp1->b_cont = NULL; 5344 *mpp = mp2; 5345 return (mp0); 5346 } 5347 5348 /* The ill stream is being unplumbed. Called from ip_close */ 5349 int 5350 ip_modclose(ill_t *ill) 5351 { 5352 boolean_t success; 5353 ipsq_t *ipsq; 5354 ipif_t *ipif; 5355 queue_t *q = ill->ill_rq; 5356 ip_stack_t *ipst = ill->ill_ipst; 5357 clock_t timeout; 5358 5359 /* 5360 * Wait for the ACKs of all deferred control messages to be processed. 5361 * In particular, we wait for a potential capability reset initiated 5362 * in ip_sioctl_plink() to complete before proceeding. 5363 * 5364 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5365 * in case the driver never replies. 5366 */ 5367 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5368 mutex_enter(&ill->ill_lock); 5369 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5370 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5371 /* Timeout */ 5372 break; 5373 } 5374 } 5375 mutex_exit(&ill->ill_lock); 5376 5377 /* 5378 * Forcibly enter the ipsq after some delay. This is to take 5379 * care of the case when some ioctl does not complete because 5380 * we sent a control message to the driver and it did not 5381 * send us a reply. We want to be able to at least unplumb 5382 * and replumb rather than force the user to reboot the system. 5383 */ 5384 success = ipsq_enter(ill, B_FALSE); 5385 5386 /* 5387 * Open/close/push/pop is guaranteed to be single threaded 5388 * per stream by STREAMS. FS guarantees that all references 5389 * from top are gone before close is called. So there can't 5390 * be another close thread that has set CONDEMNED on this ill. 5391 * and cause ipsq_enter to return failure. 5392 */ 5393 ASSERT(success); 5394 ipsq = ill->ill_phyint->phyint_ipsq; 5395 5396 /* 5397 * Mark it condemned. No new reference will be made to this ill. 5398 * Lookup functions will return an error. Threads that try to 5399 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5400 * that the refcnt will drop down to zero. 5401 */ 5402 mutex_enter(&ill->ill_lock); 5403 ill->ill_state_flags |= ILL_CONDEMNED; 5404 for (ipif = ill->ill_ipif; ipif != NULL; 5405 ipif = ipif->ipif_next) { 5406 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5407 } 5408 /* 5409 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5410 * returns error if ILL_CONDEMNED is set 5411 */ 5412 cv_broadcast(&ill->ill_cv); 5413 mutex_exit(&ill->ill_lock); 5414 5415 /* 5416 * Send all the deferred DLPI messages downstream which came in 5417 * during the small window right before ipsq_enter(). We do this 5418 * without waiting for the ACKs because all the ACKs for M_PROTO 5419 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5420 */ 5421 ill_dlpi_send_deferred(ill); 5422 5423 /* 5424 * Shut down fragmentation reassembly. 5425 * ill_frag_timer won't start a timer again. 5426 * Now cancel any existing timer 5427 */ 5428 (void) untimeout(ill->ill_frag_timer_id); 5429 (void) ill_frag_timeout(ill, 0); 5430 5431 /* 5432 * If MOVE was in progress, clear the 5433 * move_in_progress fields also. 5434 */ 5435 if (ill->ill_move_in_progress) { 5436 ILL_CLEAR_MOVE(ill); 5437 } 5438 5439 /* 5440 * Call ill_delete to bring down the ipifs, ilms and ill on 5441 * this ill. Then wait for the refcnts to drop to zero. 5442 * ill_is_quiescent checks whether the ill is really quiescent. 5443 * Then make sure that threads that are waiting to enter the 5444 * ipsq have seen the error returned by ipsq_enter and have 5445 * gone away. Then we call ill_delete_tail which does the 5446 * DL_UNBIND_REQ with the driver and then qprocsoff. 5447 */ 5448 ill_delete(ill); 5449 mutex_enter(&ill->ill_lock); 5450 while (!ill_is_quiescent(ill)) 5451 cv_wait(&ill->ill_cv, &ill->ill_lock); 5452 while (ill->ill_waiters) 5453 cv_wait(&ill->ill_cv, &ill->ill_lock); 5454 5455 mutex_exit(&ill->ill_lock); 5456 5457 /* 5458 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5459 * it held until the end of the function since the cleanup 5460 * below needs to be able to use the ip_stack_t. 5461 */ 5462 netstack_hold(ipst->ips_netstack); 5463 5464 /* qprocsoff is called in ill_delete_tail */ 5465 ill_delete_tail(ill); 5466 ASSERT(ill->ill_ipst == NULL); 5467 5468 /* 5469 * Walk through all upper (conn) streams and qenable 5470 * those that have queued data. 5471 * close synchronization needs this to 5472 * be done to ensure that all upper layers blocked 5473 * due to flow control to the closing device 5474 * get unblocked. 5475 */ 5476 ip1dbg(("ip_wsrv: walking\n")); 5477 conn_walk_drain(ipst); 5478 5479 mutex_enter(&ipst->ips_ip_mi_lock); 5480 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5481 mutex_exit(&ipst->ips_ip_mi_lock); 5482 5483 /* 5484 * credp could be null if the open didn't succeed and ip_modopen 5485 * itself calls ip_close. 5486 */ 5487 if (ill->ill_credp != NULL) 5488 crfree(ill->ill_credp); 5489 5490 mutex_enter(&ill->ill_lock); 5491 ill_nic_info_dispatch(ill); 5492 mutex_exit(&ill->ill_lock); 5493 5494 /* 5495 * Now we are done with the module close pieces that 5496 * need the netstack_t. 5497 */ 5498 netstack_rele(ipst->ips_netstack); 5499 5500 mi_close_free((IDP)ill); 5501 q->q_ptr = WR(q)->q_ptr = NULL; 5502 5503 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5504 5505 return (0); 5506 } 5507 5508 /* 5509 * This is called as part of close() for IP, UDP, ICMP, and RTS 5510 * in order to quiesce the conn. 5511 */ 5512 void 5513 ip_quiesce_conn(conn_t *connp) 5514 { 5515 boolean_t drain_cleanup_reqd = B_FALSE; 5516 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5517 boolean_t ilg_cleanup_reqd = B_FALSE; 5518 ip_stack_t *ipst; 5519 5520 ASSERT(!IPCL_IS_TCP(connp)); 5521 ipst = connp->conn_netstack->netstack_ip; 5522 5523 /* 5524 * Mark the conn as closing, and this conn must not be 5525 * inserted in future into any list. Eg. conn_drain_insert(), 5526 * won't insert this conn into the conn_drain_list. 5527 * Similarly ill_pending_mp_add() will not add any mp to 5528 * the pending mp list, after this conn has started closing. 5529 * 5530 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5531 * cannot get set henceforth. 5532 */ 5533 mutex_enter(&connp->conn_lock); 5534 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5535 connp->conn_state_flags |= CONN_CLOSING; 5536 if (connp->conn_idl != NULL) 5537 drain_cleanup_reqd = B_TRUE; 5538 if (connp->conn_oper_pending_ill != NULL) 5539 conn_ioctl_cleanup_reqd = B_TRUE; 5540 if (connp->conn_dhcpinit_ill != NULL) { 5541 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5542 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5543 connp->conn_dhcpinit_ill = NULL; 5544 } 5545 if (connp->conn_ilg_inuse != 0) 5546 ilg_cleanup_reqd = B_TRUE; 5547 mutex_exit(&connp->conn_lock); 5548 5549 if (conn_ioctl_cleanup_reqd) 5550 conn_ioctl_cleanup(connp); 5551 5552 if (is_system_labeled() && connp->conn_anon_port) { 5553 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5554 connp->conn_mlp_type, connp->conn_ulp, 5555 ntohs(connp->conn_lport), B_FALSE); 5556 connp->conn_anon_port = 0; 5557 } 5558 connp->conn_mlp_type = mlptSingle; 5559 5560 /* 5561 * Remove this conn from any fanout list it is on. 5562 * and then wait for any threads currently operating 5563 * on this endpoint to finish 5564 */ 5565 ipcl_hash_remove(connp); 5566 5567 /* 5568 * Remove this conn from the drain list, and do 5569 * any other cleanup that may be required. 5570 * (Only non-tcp streams may have a non-null conn_idl. 5571 * TCP streams are never flow controlled, and 5572 * conn_idl will be null) 5573 */ 5574 if (drain_cleanup_reqd) 5575 conn_drain_tail(connp, B_TRUE); 5576 5577 if (connp == ipst->ips_ip_g_mrouter) 5578 (void) ip_mrouter_done(NULL, ipst); 5579 5580 if (ilg_cleanup_reqd) 5581 ilg_delete_all(connp); 5582 5583 conn_delete_ire(connp, NULL); 5584 5585 /* 5586 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5587 * callers from write side can't be there now because close 5588 * is in progress. The only other caller is ipcl_walk 5589 * which checks for the condemned flag. 5590 */ 5591 mutex_enter(&connp->conn_lock); 5592 connp->conn_state_flags |= CONN_CONDEMNED; 5593 while (connp->conn_ref != 1) 5594 cv_wait(&connp->conn_cv, &connp->conn_lock); 5595 connp->conn_state_flags |= CONN_QUIESCED; 5596 mutex_exit(&connp->conn_lock); 5597 } 5598 5599 /* ARGSUSED */ 5600 int 5601 ip_close(queue_t *q, int flags) 5602 { 5603 conn_t *connp; 5604 5605 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5606 5607 /* 5608 * Call the appropriate delete routine depending on whether this is 5609 * a module or device. 5610 */ 5611 if (WR(q)->q_next != NULL) { 5612 /* This is a module close */ 5613 return (ip_modclose((ill_t *)q->q_ptr)); 5614 } 5615 5616 connp = q->q_ptr; 5617 ip_quiesce_conn(connp); 5618 5619 qprocsoff(q); 5620 5621 /* 5622 * Now we are truly single threaded on this stream, and can 5623 * delete the things hanging off the connp, and finally the connp. 5624 * We removed this connp from the fanout list, it cannot be 5625 * accessed thru the fanouts, and we already waited for the 5626 * conn_ref to drop to 0. We are already in close, so 5627 * there cannot be any other thread from the top. qprocsoff 5628 * has completed, and service has completed or won't run in 5629 * future. 5630 */ 5631 ASSERT(connp->conn_ref == 1); 5632 5633 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5634 5635 connp->conn_ref--; 5636 ipcl_conn_destroy(connp); 5637 5638 q->q_ptr = WR(q)->q_ptr = NULL; 5639 return (0); 5640 } 5641 5642 /* 5643 * Wapper around putnext() so that ip_rts_request can merely use 5644 * conn_recv. 5645 */ 5646 /*ARGSUSED2*/ 5647 static void 5648 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5649 { 5650 conn_t *connp = (conn_t *)arg1; 5651 5652 putnext(connp->conn_rq, mp); 5653 } 5654 5655 /* Return the IP checksum for the IP header at "iph". */ 5656 uint16_t 5657 ip_csum_hdr(ipha_t *ipha) 5658 { 5659 uint16_t *uph; 5660 uint32_t sum; 5661 int opt_len; 5662 5663 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5664 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5665 uph = (uint16_t *)ipha; 5666 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5667 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5668 if (opt_len > 0) { 5669 do { 5670 sum += uph[10]; 5671 sum += uph[11]; 5672 uph += 2; 5673 } while (--opt_len); 5674 } 5675 sum = (sum & 0xFFFF) + (sum >> 16); 5676 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5677 if (sum == 0xffff) 5678 sum = 0; 5679 return ((uint16_t)sum); 5680 } 5681 5682 /* 5683 * Called when the module is about to be unloaded 5684 */ 5685 void 5686 ip_ddi_destroy(void) 5687 { 5688 tnet_fini(); 5689 5690 icmp_ddi_destroy(); 5691 rts_ddi_destroy(); 5692 udp_ddi_destroy(); 5693 sctp_ddi_g_destroy(); 5694 tcp_ddi_g_destroy(); 5695 ipsec_policy_g_destroy(); 5696 ipcl_g_destroy(); 5697 ip_net_g_destroy(); 5698 ip_ire_g_fini(); 5699 inet_minor_destroy(ip_minor_arena_sa); 5700 #if defined(_LP64) 5701 inet_minor_destroy(ip_minor_arena_la); 5702 #endif 5703 5704 #ifdef DEBUG 5705 list_destroy(&ip_thread_list); 5706 rw_destroy(&ip_thread_rwlock); 5707 tsd_destroy(&ip_thread_data); 5708 #endif 5709 5710 netstack_unregister(NS_IP); 5711 } 5712 5713 /* 5714 * First step in cleanup. 5715 */ 5716 /* ARGSUSED */ 5717 static void 5718 ip_stack_shutdown(netstackid_t stackid, void *arg) 5719 { 5720 ip_stack_t *ipst = (ip_stack_t *)arg; 5721 5722 #ifdef NS_DEBUG 5723 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5724 #endif 5725 5726 /* Get rid of loopback interfaces and their IREs */ 5727 ip_loopback_cleanup(ipst); 5728 } 5729 5730 /* 5731 * Free the IP stack instance. 5732 */ 5733 static void 5734 ip_stack_fini(netstackid_t stackid, void *arg) 5735 { 5736 ip_stack_t *ipst = (ip_stack_t *)arg; 5737 int ret; 5738 5739 #ifdef NS_DEBUG 5740 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5741 #endif 5742 ipv4_hook_destroy(ipst); 5743 ipv6_hook_destroy(ipst); 5744 ip_net_destroy(ipst); 5745 5746 rw_destroy(&ipst->ips_srcid_lock); 5747 5748 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5749 ipst->ips_ip_mibkp = NULL; 5750 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5751 ipst->ips_icmp_mibkp = NULL; 5752 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5753 ipst->ips_ip_kstat = NULL; 5754 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5755 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5756 ipst->ips_ip6_kstat = NULL; 5757 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5758 5759 nd_free(&ipst->ips_ip_g_nd); 5760 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5761 ipst->ips_param_arr = NULL; 5762 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5763 ipst->ips_ndp_arr = NULL; 5764 5765 ip_mrouter_stack_destroy(ipst); 5766 5767 mutex_destroy(&ipst->ips_ip_mi_lock); 5768 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5769 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5770 rw_destroy(&ipst->ips_ip_g_nd_lock); 5771 5772 ret = untimeout(ipst->ips_igmp_timeout_id); 5773 if (ret == -1) { 5774 ASSERT(ipst->ips_igmp_timeout_id == 0); 5775 } else { 5776 ASSERT(ipst->ips_igmp_timeout_id != 0); 5777 ipst->ips_igmp_timeout_id = 0; 5778 } 5779 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5780 if (ret == -1) { 5781 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5782 } else { 5783 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5784 ipst->ips_igmp_slowtimeout_id = 0; 5785 } 5786 ret = untimeout(ipst->ips_mld_timeout_id); 5787 if (ret == -1) { 5788 ASSERT(ipst->ips_mld_timeout_id == 0); 5789 } else { 5790 ASSERT(ipst->ips_mld_timeout_id != 0); 5791 ipst->ips_mld_timeout_id = 0; 5792 } 5793 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5794 if (ret == -1) { 5795 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5796 } else { 5797 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5798 ipst->ips_mld_slowtimeout_id = 0; 5799 } 5800 ret = untimeout(ipst->ips_ip_ire_expire_id); 5801 if (ret == -1) { 5802 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5803 } else { 5804 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5805 ipst->ips_ip_ire_expire_id = 0; 5806 } 5807 5808 mutex_destroy(&ipst->ips_igmp_timer_lock); 5809 mutex_destroy(&ipst->ips_mld_timer_lock); 5810 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5811 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5812 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5813 rw_destroy(&ipst->ips_ill_g_lock); 5814 5815 ip_ire_fini(ipst); 5816 ip6_asp_free(ipst); 5817 conn_drain_fini(ipst); 5818 ipcl_destroy(ipst); 5819 5820 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5821 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5822 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5823 ipst->ips_ndp4 = NULL; 5824 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5825 ipst->ips_ndp6 = NULL; 5826 5827 if (ipst->ips_loopback_ksp != NULL) { 5828 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5829 ipst->ips_loopback_ksp = NULL; 5830 } 5831 5832 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5833 ipst->ips_phyint_g_list = NULL; 5834 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5835 ipst->ips_ill_g_heads = NULL; 5836 5837 kmem_free(ipst, sizeof (*ipst)); 5838 } 5839 5840 /* 5841 * This function is called from the TSD destructor, and is used to debug 5842 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5843 * details. 5844 */ 5845 static void 5846 ip_thread_exit(void *phash) 5847 { 5848 th_hash_t *thh = phash; 5849 5850 rw_enter(&ip_thread_rwlock, RW_WRITER); 5851 list_remove(&ip_thread_list, thh); 5852 rw_exit(&ip_thread_rwlock); 5853 mod_hash_destroy_hash(thh->thh_hash); 5854 kmem_free(thh, sizeof (*thh)); 5855 } 5856 5857 /* 5858 * Called when the IP kernel module is loaded into the kernel 5859 */ 5860 void 5861 ip_ddi_init(void) 5862 { 5863 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5864 5865 /* 5866 * For IP and TCP the minor numbers should start from 2 since we have 4 5867 * initial devices: ip, ip6, tcp, tcp6. 5868 */ 5869 /* 5870 * If this is a 64-bit kernel, then create two separate arenas - 5871 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5872 * other for socket apps in the range 2^^18 through 2^^32-1. 5873 */ 5874 ip_minor_arena_la = NULL; 5875 ip_minor_arena_sa = NULL; 5876 #if defined(_LP64) 5877 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5878 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5879 cmn_err(CE_PANIC, 5880 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5881 } 5882 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5883 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5884 cmn_err(CE_PANIC, 5885 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5886 } 5887 #else 5888 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5889 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5890 cmn_err(CE_PANIC, 5891 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5892 } 5893 #endif 5894 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5895 5896 ipcl_g_init(); 5897 ip_ire_g_init(); 5898 ip_net_g_init(); 5899 5900 #ifdef DEBUG 5901 tsd_create(&ip_thread_data, ip_thread_exit); 5902 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5903 list_create(&ip_thread_list, sizeof (th_hash_t), 5904 offsetof(th_hash_t, thh_link)); 5905 #endif 5906 5907 /* 5908 * We want to be informed each time a stack is created or 5909 * destroyed in the kernel, so we can maintain the 5910 * set of udp_stack_t's. 5911 */ 5912 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5913 ip_stack_fini); 5914 5915 ipsec_policy_g_init(); 5916 tcp_ddi_g_init(); 5917 sctp_ddi_g_init(); 5918 5919 tnet_init(); 5920 5921 udp_ddi_init(); 5922 rts_ddi_init(); 5923 icmp_ddi_init(); 5924 } 5925 5926 /* 5927 * Initialize the IP stack instance. 5928 */ 5929 static void * 5930 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5931 { 5932 ip_stack_t *ipst; 5933 ipparam_t *pa; 5934 ipndp_t *na; 5935 5936 #ifdef NS_DEBUG 5937 printf("ip_stack_init(stack %d)\n", stackid); 5938 #endif 5939 5940 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5941 ipst->ips_netstack = ns; 5942 5943 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5944 KM_SLEEP); 5945 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5946 KM_SLEEP); 5947 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5948 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5949 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5950 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5951 5952 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5953 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5954 ipst->ips_igmp_deferred_next = INFINITY; 5955 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5956 ipst->ips_mld_deferred_next = INFINITY; 5957 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5958 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5959 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5960 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5961 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5962 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5963 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5964 5965 ipcl_init(ipst); 5966 ip_ire_init(ipst); 5967 ip6_asp_init(ipst); 5968 ipif_init(ipst); 5969 conn_drain_init(ipst); 5970 ip_mrouter_stack_init(ipst); 5971 5972 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5973 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5974 5975 ipst->ips_ip_multirt_log_interval = 1000; 5976 5977 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5978 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5979 ipst->ips_ill_index = 1; 5980 5981 ipst->ips_saved_ip_g_forward = -1; 5982 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5983 5984 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5985 ipst->ips_param_arr = pa; 5986 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5987 5988 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5989 ipst->ips_ndp_arr = na; 5990 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5991 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5992 (caddr_t)&ipst->ips_ip_g_forward; 5993 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5994 (caddr_t)&ipst->ips_ipv6_forward; 5995 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5996 "ip_cgtp_filter") == 0); 5997 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5998 (caddr_t)&ipst->ips_ip_cgtp_filter; 5999 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6000 "ipmp_hook_emulation") == 0); 6001 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6002 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6003 6004 (void) ip_param_register(&ipst->ips_ip_g_nd, 6005 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6006 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6007 6008 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6009 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6010 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6011 ipst->ips_ip6_kstat = 6012 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6013 6014 ipst->ips_ipmp_enable_failback = B_TRUE; 6015 6016 ipst->ips_ip_src_id = 1; 6017 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6018 6019 ip_net_init(ipst, ns); 6020 ipv4_hook_init(ipst); 6021 ipv6_hook_init(ipst); 6022 6023 return (ipst); 6024 } 6025 6026 /* 6027 * Allocate and initialize a DLPI template of the specified length. (May be 6028 * called as writer.) 6029 */ 6030 mblk_t * 6031 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6032 { 6033 mblk_t *mp; 6034 6035 mp = allocb(len, BPRI_MED); 6036 if (!mp) 6037 return (NULL); 6038 6039 /* 6040 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6041 * of which we don't seem to use) are sent with M_PCPROTO, and 6042 * that other DLPI are M_PROTO. 6043 */ 6044 if (prim == DL_INFO_REQ) { 6045 mp->b_datap->db_type = M_PCPROTO; 6046 } else { 6047 mp->b_datap->db_type = M_PROTO; 6048 } 6049 6050 mp->b_wptr = mp->b_rptr + len; 6051 bzero(mp->b_rptr, len); 6052 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6053 return (mp); 6054 } 6055 6056 const char * 6057 dlpi_prim_str(int prim) 6058 { 6059 switch (prim) { 6060 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6061 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6062 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6063 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6064 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6065 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6066 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6067 case DL_OK_ACK: return ("DL_OK_ACK"); 6068 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6069 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6070 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6071 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6072 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6073 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6074 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6075 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6076 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6077 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6078 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6079 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6080 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6081 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6082 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6083 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6084 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6085 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6086 default: return ("<unknown primitive>"); 6087 } 6088 } 6089 6090 const char * 6091 dlpi_err_str(int err) 6092 { 6093 switch (err) { 6094 case DL_ACCESS: return ("DL_ACCESS"); 6095 case DL_BADADDR: return ("DL_BADADDR"); 6096 case DL_BADCORR: return ("DL_BADCORR"); 6097 case DL_BADDATA: return ("DL_BADDATA"); 6098 case DL_BADPPA: return ("DL_BADPPA"); 6099 case DL_BADPRIM: return ("DL_BADPRIM"); 6100 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6101 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6102 case DL_BADSAP: return ("DL_BADSAP"); 6103 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6104 case DL_BOUND: return ("DL_BOUND"); 6105 case DL_INITFAILED: return ("DL_INITFAILED"); 6106 case DL_NOADDR: return ("DL_NOADDR"); 6107 case DL_NOTINIT: return ("DL_NOTINIT"); 6108 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6109 case DL_SYSERR: return ("DL_SYSERR"); 6110 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6111 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6112 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6113 case DL_TOOMANY: return ("DL_TOOMANY"); 6114 case DL_NOTENAB: return ("DL_NOTENAB"); 6115 case DL_BUSY: return ("DL_BUSY"); 6116 case DL_NOAUTO: return ("DL_NOAUTO"); 6117 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6118 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6119 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6120 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6121 case DL_PENDING: return ("DL_PENDING"); 6122 default: return ("<unknown error>"); 6123 } 6124 } 6125 6126 /* 6127 * Debug formatting routine. Returns a character string representation of the 6128 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6129 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6130 * 6131 * Once the ndd table-printing interfaces are removed, this can be changed to 6132 * standard dotted-decimal form. 6133 */ 6134 char * 6135 ip_dot_addr(ipaddr_t addr, char *buf) 6136 { 6137 uint8_t *ap = (uint8_t *)&addr; 6138 6139 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6140 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6141 return (buf); 6142 } 6143 6144 /* 6145 * Write the given MAC address as a printable string in the usual colon- 6146 * separated format. 6147 */ 6148 const char * 6149 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6150 { 6151 char *bp; 6152 6153 if (alen == 0 || buflen < 4) 6154 return ("?"); 6155 bp = buf; 6156 for (;;) { 6157 /* 6158 * If there are more MAC address bytes available, but we won't 6159 * have any room to print them, then add "..." to the string 6160 * instead. See below for the 'magic number' explanation. 6161 */ 6162 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6163 (void) strcpy(bp, "..."); 6164 break; 6165 } 6166 (void) sprintf(bp, "%02x", *addr++); 6167 bp += 2; 6168 if (--alen == 0) 6169 break; 6170 *bp++ = ':'; 6171 buflen -= 3; 6172 /* 6173 * At this point, based on the first 'if' statement above, 6174 * either alen == 1 and buflen >= 3, or alen > 1 and 6175 * buflen >= 4. The first case leaves room for the final "xx" 6176 * number and trailing NUL byte. The second leaves room for at 6177 * least "...". Thus the apparently 'magic' numbers chosen for 6178 * that statement. 6179 */ 6180 } 6181 return (buf); 6182 } 6183 6184 /* 6185 * Send an ICMP error after patching up the packet appropriately. Returns 6186 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6187 */ 6188 static boolean_t 6189 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6190 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6191 zoneid_t zoneid, ip_stack_t *ipst) 6192 { 6193 ipha_t *ipha; 6194 mblk_t *first_mp; 6195 boolean_t secure; 6196 unsigned char db_type; 6197 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6198 6199 first_mp = mp; 6200 if (mctl_present) { 6201 mp = mp->b_cont; 6202 secure = ipsec_in_is_secure(first_mp); 6203 ASSERT(mp != NULL); 6204 } else { 6205 /* 6206 * If this is an ICMP error being reported - which goes 6207 * up as M_CTLs, we need to convert them to M_DATA till 6208 * we finish checking with global policy because 6209 * ipsec_check_global_policy() assumes M_DATA as clear 6210 * and M_CTL as secure. 6211 */ 6212 db_type = DB_TYPE(mp); 6213 DB_TYPE(mp) = M_DATA; 6214 secure = B_FALSE; 6215 } 6216 /* 6217 * We are generating an icmp error for some inbound packet. 6218 * Called from all ip_fanout_(udp, tcp, proto) functions. 6219 * Before we generate an error, check with global policy 6220 * to see whether this is allowed to enter the system. As 6221 * there is no "conn", we are checking with global policy. 6222 */ 6223 ipha = (ipha_t *)mp->b_rptr; 6224 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6225 first_mp = ipsec_check_global_policy(first_mp, NULL, 6226 ipha, NULL, mctl_present, ipst->ips_netstack); 6227 if (first_mp == NULL) 6228 return (B_FALSE); 6229 } 6230 6231 if (!mctl_present) 6232 DB_TYPE(mp) = db_type; 6233 6234 if (flags & IP_FF_SEND_ICMP) { 6235 if (flags & IP_FF_HDR_COMPLETE) { 6236 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6237 freemsg(first_mp); 6238 return (B_TRUE); 6239 } 6240 } 6241 if (flags & IP_FF_CKSUM) { 6242 /* 6243 * Have to correct checksum since 6244 * the packet might have been 6245 * fragmented and the reassembly code in ip_rput 6246 * does not restore the IP checksum. 6247 */ 6248 ipha->ipha_hdr_checksum = 0; 6249 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6250 } 6251 switch (icmp_type) { 6252 case ICMP_DEST_UNREACHABLE: 6253 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6254 ipst); 6255 break; 6256 default: 6257 freemsg(first_mp); 6258 break; 6259 } 6260 } else { 6261 freemsg(first_mp); 6262 return (B_FALSE); 6263 } 6264 6265 return (B_TRUE); 6266 } 6267 6268 /* 6269 * Used to send an ICMP error message when a packet is received for 6270 * a protocol that is not supported. The mblk passed as argument 6271 * is consumed by this function. 6272 */ 6273 void 6274 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6275 ip_stack_t *ipst) 6276 { 6277 mblk_t *mp; 6278 ipha_t *ipha; 6279 ill_t *ill; 6280 ipsec_in_t *ii; 6281 6282 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6283 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6284 6285 mp = ipsec_mp->b_cont; 6286 ipsec_mp->b_cont = NULL; 6287 ipha = (ipha_t *)mp->b_rptr; 6288 /* Get ill from index in ipsec_in_t. */ 6289 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6290 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6291 ipst); 6292 if (ill != NULL) { 6293 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6294 if (ip_fanout_send_icmp(q, mp, flags, 6295 ICMP_DEST_UNREACHABLE, 6296 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6297 BUMP_MIB(ill->ill_ip_mib, 6298 ipIfStatsInUnknownProtos); 6299 } 6300 } else { 6301 if (ip_fanout_send_icmp_v6(q, mp, flags, 6302 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6303 0, B_FALSE, zoneid, ipst)) { 6304 BUMP_MIB(ill->ill_ip_mib, 6305 ipIfStatsInUnknownProtos); 6306 } 6307 } 6308 ill_refrele(ill); 6309 } else { /* re-link for the freemsg() below. */ 6310 ipsec_mp->b_cont = mp; 6311 } 6312 6313 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6314 freemsg(ipsec_mp); 6315 } 6316 6317 /* 6318 * See if the inbound datagram has had IPsec processing applied to it. 6319 */ 6320 boolean_t 6321 ipsec_in_is_secure(mblk_t *ipsec_mp) 6322 { 6323 ipsec_in_t *ii; 6324 6325 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6326 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6327 6328 if (ii->ipsec_in_loopback) { 6329 return (ii->ipsec_in_secure); 6330 } else { 6331 return (ii->ipsec_in_ah_sa != NULL || 6332 ii->ipsec_in_esp_sa != NULL || 6333 ii->ipsec_in_decaps); 6334 } 6335 } 6336 6337 /* 6338 * Handle protocols with which IP is less intimate. There 6339 * can be more than one stream bound to a particular 6340 * protocol. When this is the case, normally each one gets a copy 6341 * of any incoming packets. 6342 * 6343 * IPsec NOTE : 6344 * 6345 * Don't allow a secure packet going up a non-secure connection. 6346 * We don't allow this because 6347 * 6348 * 1) Reply might go out in clear which will be dropped at 6349 * the sending side. 6350 * 2) If the reply goes out in clear it will give the 6351 * adversary enough information for getting the key in 6352 * most of the cases. 6353 * 6354 * Moreover getting a secure packet when we expect clear 6355 * implies that SA's were added without checking for 6356 * policy on both ends. This should not happen once ISAKMP 6357 * is used to negotiate SAs as SAs will be added only after 6358 * verifying the policy. 6359 * 6360 * NOTE : If the packet was tunneled and not multicast we only send 6361 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6362 * back to delivering packets to AF_INET6 raw sockets. 6363 * 6364 * IPQoS Notes: 6365 * Once we have determined the client, invoke IPPF processing. 6366 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6367 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6368 * ip_policy will be false. 6369 * 6370 * Zones notes: 6371 * Currently only applications in the global zone can create raw sockets for 6372 * protocols other than ICMP. So unlike the broadcast / multicast case of 6373 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6374 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6375 */ 6376 static void 6377 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6378 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6379 zoneid_t zoneid) 6380 { 6381 queue_t *rq; 6382 mblk_t *mp1, *first_mp1; 6383 uint_t protocol = ipha->ipha_protocol; 6384 ipaddr_t dst; 6385 boolean_t one_only; 6386 mblk_t *first_mp = mp; 6387 boolean_t secure; 6388 uint32_t ill_index; 6389 conn_t *connp, *first_connp, *next_connp; 6390 connf_t *connfp; 6391 boolean_t shared_addr; 6392 mib2_ipIfStatsEntry_t *mibptr; 6393 ip_stack_t *ipst = recv_ill->ill_ipst; 6394 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6395 6396 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6397 if (mctl_present) { 6398 mp = first_mp->b_cont; 6399 secure = ipsec_in_is_secure(first_mp); 6400 ASSERT(mp != NULL); 6401 } else { 6402 secure = B_FALSE; 6403 } 6404 dst = ipha->ipha_dst; 6405 /* 6406 * If the packet was tunneled and not multicast we only send to it 6407 * the first match. 6408 */ 6409 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6410 !CLASSD(dst)); 6411 6412 shared_addr = (zoneid == ALL_ZONES); 6413 if (shared_addr) { 6414 /* 6415 * We don't allow multilevel ports for raw IP, so no need to 6416 * check for that here. 6417 */ 6418 zoneid = tsol_packet_to_zoneid(mp); 6419 } 6420 6421 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6422 mutex_enter(&connfp->connf_lock); 6423 connp = connfp->connf_head; 6424 for (connp = connfp->connf_head; connp != NULL; 6425 connp = connp->conn_next) { 6426 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6427 zoneid) && 6428 (!is_system_labeled() || 6429 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6430 connp))) { 6431 break; 6432 } 6433 } 6434 6435 if (connp == NULL || connp->conn_upq == NULL) { 6436 /* 6437 * No one bound to these addresses. Is 6438 * there a client that wants all 6439 * unclaimed datagrams? 6440 */ 6441 mutex_exit(&connfp->connf_lock); 6442 /* 6443 * Check for IPPROTO_ENCAP... 6444 */ 6445 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6446 /* 6447 * If an IPsec mblk is here on a multicast 6448 * tunnel (using ip_mroute stuff), check policy here, 6449 * THEN ship off to ip_mroute_decap(). 6450 * 6451 * BTW, If I match a configured IP-in-IP 6452 * tunnel, this path will not be reached, and 6453 * ip_mroute_decap will never be called. 6454 */ 6455 first_mp = ipsec_check_global_policy(first_mp, connp, 6456 ipha, NULL, mctl_present, ipst->ips_netstack); 6457 if (first_mp != NULL) { 6458 if (mctl_present) 6459 freeb(first_mp); 6460 ip_mroute_decap(q, mp, ill); 6461 } /* Else we already freed everything! */ 6462 } else { 6463 /* 6464 * Otherwise send an ICMP protocol unreachable. 6465 */ 6466 if (ip_fanout_send_icmp(q, first_mp, flags, 6467 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6468 mctl_present, zoneid, ipst)) { 6469 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6470 } 6471 } 6472 return; 6473 } 6474 CONN_INC_REF(connp); 6475 first_connp = connp; 6476 6477 /* 6478 * Only send message to one tunnel driver by immediately 6479 * terminating the loop. 6480 */ 6481 connp = one_only ? NULL : connp->conn_next; 6482 6483 for (;;) { 6484 while (connp != NULL) { 6485 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6486 flags, zoneid) && 6487 (!is_system_labeled() || 6488 tsol_receive_local(mp, &dst, IPV4_VERSION, 6489 shared_addr, connp))) 6490 break; 6491 connp = connp->conn_next; 6492 } 6493 6494 /* 6495 * Copy the packet. 6496 */ 6497 if (connp == NULL || connp->conn_upq == NULL || 6498 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6499 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6500 /* 6501 * No more interested clients or memory 6502 * allocation failed 6503 */ 6504 connp = first_connp; 6505 break; 6506 } 6507 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6508 CONN_INC_REF(connp); 6509 mutex_exit(&connfp->connf_lock); 6510 rq = connp->conn_rq; 6511 if (!canputnext(rq)) { 6512 if (flags & IP_FF_RAWIP) { 6513 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6514 } else { 6515 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6516 } 6517 6518 freemsg(first_mp1); 6519 } else { 6520 /* 6521 * Don't enforce here if we're an actual tunnel - 6522 * let "tun" do it instead. 6523 */ 6524 if (!IPCL_IS_IPTUN(connp) && 6525 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6526 secure)) { 6527 first_mp1 = ipsec_check_inbound_policy 6528 (first_mp1, connp, ipha, NULL, 6529 mctl_present); 6530 } 6531 if (first_mp1 != NULL) { 6532 int in_flags = 0; 6533 /* 6534 * ip_fanout_proto also gets called from 6535 * icmp_inbound_error_fanout, in which case 6536 * the msg type is M_CTL. Don't add info 6537 * in this case for the time being. In future 6538 * when there is a need for knowing the 6539 * inbound iface index for ICMP error msgs, 6540 * then this can be changed. 6541 */ 6542 if (connp->conn_recvif) 6543 in_flags = IPF_RECVIF; 6544 /* 6545 * The ULP may support IP_RECVPKTINFO for both 6546 * IP v4 and v6 so pass the appropriate argument 6547 * based on conn IP version. 6548 */ 6549 if (connp->conn_ip_recvpktinfo) { 6550 if (connp->conn_af_isv6) { 6551 /* 6552 * V6 only needs index 6553 */ 6554 in_flags |= IPF_RECVIF; 6555 } else { 6556 /* 6557 * V4 needs index + 6558 * matching address. 6559 */ 6560 in_flags |= IPF_RECVADDR; 6561 } 6562 } 6563 if ((in_flags != 0) && 6564 (mp->b_datap->db_type != M_CTL)) { 6565 /* 6566 * the actual data will be 6567 * contained in b_cont upon 6568 * successful return of the 6569 * following call else 6570 * original mblk is returned 6571 */ 6572 ASSERT(recv_ill != NULL); 6573 mp1 = ip_add_info(mp1, recv_ill, 6574 in_flags, IPCL_ZONEID(connp), ipst); 6575 } 6576 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6577 if (mctl_present) 6578 freeb(first_mp1); 6579 (connp->conn_recv)(connp, mp1, NULL); 6580 } 6581 } 6582 mutex_enter(&connfp->connf_lock); 6583 /* Follow the next pointer before releasing the conn. */ 6584 next_connp = connp->conn_next; 6585 CONN_DEC_REF(connp); 6586 connp = next_connp; 6587 } 6588 6589 /* Last one. Send it upstream. */ 6590 mutex_exit(&connfp->connf_lock); 6591 6592 /* 6593 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6594 * will be set to false. 6595 */ 6596 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6597 ill_index = ill->ill_phyint->phyint_ifindex; 6598 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6599 if (mp == NULL) { 6600 CONN_DEC_REF(connp); 6601 if (mctl_present) { 6602 freeb(first_mp); 6603 } 6604 return; 6605 } 6606 } 6607 6608 rq = connp->conn_rq; 6609 if (!canputnext(rq)) { 6610 if (flags & IP_FF_RAWIP) { 6611 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6612 } else { 6613 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6614 } 6615 6616 freemsg(first_mp); 6617 } else { 6618 if (IPCL_IS_IPTUN(connp)) { 6619 /* 6620 * Tunneled packet. We enforce policy in the tunnel 6621 * module itself. 6622 * 6623 * Send the WHOLE packet up (incl. IPSEC_IN) without 6624 * a policy check. 6625 * FIXME to use conn_recv for tun later. 6626 */ 6627 putnext(rq, first_mp); 6628 CONN_DEC_REF(connp); 6629 return; 6630 } 6631 6632 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6633 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6634 ipha, NULL, mctl_present); 6635 } 6636 6637 if (first_mp != NULL) { 6638 int in_flags = 0; 6639 6640 /* 6641 * ip_fanout_proto also gets called 6642 * from icmp_inbound_error_fanout, in 6643 * which case the msg type is M_CTL. 6644 * Don't add info in this case for time 6645 * being. In future when there is a 6646 * need for knowing the inbound iface 6647 * index for ICMP error msgs, then this 6648 * can be changed 6649 */ 6650 if (connp->conn_recvif) 6651 in_flags = IPF_RECVIF; 6652 if (connp->conn_ip_recvpktinfo) { 6653 if (connp->conn_af_isv6) { 6654 /* 6655 * V6 only needs index 6656 */ 6657 in_flags |= IPF_RECVIF; 6658 } else { 6659 /* 6660 * V4 needs index + 6661 * matching address. 6662 */ 6663 in_flags |= IPF_RECVADDR; 6664 } 6665 } 6666 if ((in_flags != 0) && 6667 (mp->b_datap->db_type != M_CTL)) { 6668 6669 /* 6670 * the actual data will be contained in 6671 * b_cont upon successful return 6672 * of the following call else original 6673 * mblk is returned 6674 */ 6675 ASSERT(recv_ill != NULL); 6676 mp = ip_add_info(mp, recv_ill, 6677 in_flags, IPCL_ZONEID(connp), ipst); 6678 } 6679 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6680 (connp->conn_recv)(connp, mp, NULL); 6681 if (mctl_present) 6682 freeb(first_mp); 6683 } 6684 } 6685 CONN_DEC_REF(connp); 6686 } 6687 6688 /* 6689 * Fanout for TCP packets 6690 * The caller puts <fport, lport> in the ports parameter. 6691 * 6692 * IPQoS Notes 6693 * Before sending it to the client, invoke IPPF processing. 6694 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6695 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6696 * ip_policy is false. 6697 */ 6698 static void 6699 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6700 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6701 { 6702 mblk_t *first_mp; 6703 boolean_t secure; 6704 uint32_t ill_index; 6705 int ip_hdr_len; 6706 tcph_t *tcph; 6707 boolean_t syn_present = B_FALSE; 6708 conn_t *connp; 6709 ip_stack_t *ipst = recv_ill->ill_ipst; 6710 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6711 6712 ASSERT(recv_ill != NULL); 6713 6714 first_mp = mp; 6715 if (mctl_present) { 6716 ASSERT(first_mp->b_datap->db_type == M_CTL); 6717 mp = first_mp->b_cont; 6718 secure = ipsec_in_is_secure(first_mp); 6719 ASSERT(mp != NULL); 6720 } else { 6721 secure = B_FALSE; 6722 } 6723 6724 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6725 6726 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6727 zoneid, ipst)) == NULL) { 6728 /* 6729 * No connected connection or listener. Send a 6730 * TH_RST via tcp_xmit_listeners_reset. 6731 */ 6732 6733 /* Initiate IPPf processing, if needed. */ 6734 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6735 uint32_t ill_index; 6736 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6737 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6738 if (first_mp == NULL) 6739 return; 6740 } 6741 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6742 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6743 zoneid)); 6744 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6745 ipst->ips_netstack->netstack_tcp, NULL); 6746 return; 6747 } 6748 6749 /* 6750 * Allocate the SYN for the TCP connection here itself 6751 */ 6752 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6753 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6754 if (IPCL_IS_TCP(connp)) { 6755 squeue_t *sqp; 6756 6757 /* 6758 * For fused tcp loopback, assign the eager's 6759 * squeue to be that of the active connect's. 6760 * Note that we don't check for IP_FF_LOOPBACK 6761 * here since this routine gets called only 6762 * for loopback (unlike the IPv6 counterpart). 6763 */ 6764 ASSERT(Q_TO_CONN(q) != NULL); 6765 if (do_tcp_fusion && 6766 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6767 !secure && 6768 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6769 IPCL_IS_TCP(Q_TO_CONN(q))) { 6770 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6771 sqp = Q_TO_CONN(q)->conn_sqp; 6772 } else { 6773 sqp = IP_SQUEUE_GET(lbolt); 6774 } 6775 6776 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6777 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6778 syn_present = B_TRUE; 6779 } 6780 } 6781 6782 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6783 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6784 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6785 if ((flags & TH_RST) || (flags & TH_URG)) { 6786 CONN_DEC_REF(connp); 6787 freemsg(first_mp); 6788 return; 6789 } 6790 if (flags & TH_ACK) { 6791 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6792 ipst->ips_netstack->netstack_tcp, connp); 6793 CONN_DEC_REF(connp); 6794 return; 6795 } 6796 6797 CONN_DEC_REF(connp); 6798 freemsg(first_mp); 6799 return; 6800 } 6801 6802 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6803 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6804 NULL, mctl_present); 6805 if (first_mp == NULL) { 6806 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6807 CONN_DEC_REF(connp); 6808 return; 6809 } 6810 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6811 ASSERT(syn_present); 6812 if (mctl_present) { 6813 ASSERT(first_mp != mp); 6814 first_mp->b_datap->db_struioflag |= 6815 STRUIO_POLICY; 6816 } else { 6817 ASSERT(first_mp == mp); 6818 mp->b_datap->db_struioflag &= 6819 ~STRUIO_EAGER; 6820 mp->b_datap->db_struioflag |= 6821 STRUIO_POLICY; 6822 } 6823 } else { 6824 /* 6825 * Discard first_mp early since we're dealing with a 6826 * fully-connected conn_t and tcp doesn't do policy in 6827 * this case. 6828 */ 6829 if (mctl_present) { 6830 freeb(first_mp); 6831 mctl_present = B_FALSE; 6832 } 6833 first_mp = mp; 6834 } 6835 } 6836 6837 /* 6838 * Initiate policy processing here if needed. If we get here from 6839 * icmp_inbound_error_fanout, ip_policy is false. 6840 */ 6841 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6842 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6843 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6844 if (mp == NULL) { 6845 CONN_DEC_REF(connp); 6846 if (mctl_present) 6847 freeb(first_mp); 6848 return; 6849 } else if (mctl_present) { 6850 ASSERT(first_mp != mp); 6851 first_mp->b_cont = mp; 6852 } else { 6853 first_mp = mp; 6854 } 6855 } 6856 6857 6858 6859 /* Handle socket options. */ 6860 if (!syn_present && 6861 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6862 /* Add header */ 6863 ASSERT(recv_ill != NULL); 6864 /* 6865 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6866 * IPF_RECVIF. 6867 */ 6868 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6869 ipst); 6870 if (mp == NULL) { 6871 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6872 CONN_DEC_REF(connp); 6873 if (mctl_present) 6874 freeb(first_mp); 6875 return; 6876 } else if (mctl_present) { 6877 /* 6878 * ip_add_info might return a new mp. 6879 */ 6880 ASSERT(first_mp != mp); 6881 first_mp->b_cont = mp; 6882 } else { 6883 first_mp = mp; 6884 } 6885 } 6886 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6887 if (IPCL_IS_TCP(connp)) { 6888 /* do not drain, certain use cases can blow the stack */ 6889 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6890 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6891 } else { 6892 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6893 (connp->conn_recv)(connp, first_mp, NULL); 6894 CONN_DEC_REF(connp); 6895 } 6896 } 6897 6898 /* 6899 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6900 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6901 * is not consumed. 6902 * 6903 * One of four things can happen, all of which affect the passed-in mblk: 6904 * 6905 * 1.) ICMP messages that go through here just get returned TRUE. 6906 * 6907 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6908 * 6909 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6910 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6911 * 6912 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6913 */ 6914 static boolean_t 6915 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6916 ipsec_stack_t *ipss) 6917 { 6918 int shift, plen, iph_len; 6919 ipha_t *ipha; 6920 udpha_t *udpha; 6921 uint32_t *spi; 6922 uint8_t *orptr; 6923 boolean_t udp_pkt, free_ire; 6924 6925 if (DB_TYPE(mp) == M_CTL) { 6926 /* 6927 * ICMP message with UDP inside. Don't bother stripping, just 6928 * send it up. 6929 * 6930 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6931 * to ignore errors set by ICMP anyway ('cause they might be 6932 * forged), but that's the app's decision, not ours. 6933 */ 6934 6935 /* Bunch of reality checks for DEBUG kernels... */ 6936 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6937 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6938 6939 return (B_TRUE); 6940 } 6941 6942 ipha = (ipha_t *)mp->b_rptr; 6943 iph_len = IPH_HDR_LENGTH(ipha); 6944 plen = ntohs(ipha->ipha_length); 6945 6946 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6947 /* 6948 * Most likely a keepalive for the benefit of an intervening 6949 * NAT. These aren't for us, per se, so drop it. 6950 * 6951 * RFC 3947/8 doesn't say for sure what to do for 2-3 6952 * byte packets (keepalives are 1-byte), but we'll drop them 6953 * also. 6954 */ 6955 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6956 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6957 return (B_FALSE); 6958 } 6959 6960 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6961 /* might as well pull it all up - it might be ESP. */ 6962 if (!pullupmsg(mp, -1)) { 6963 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6964 DROPPER(ipss, ipds_esp_nomem), 6965 &ipss->ipsec_dropper); 6966 return (B_FALSE); 6967 } 6968 6969 ipha = (ipha_t *)mp->b_rptr; 6970 } 6971 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6972 if (*spi == 0) { 6973 /* UDP packet - remove 0-spi. */ 6974 shift = sizeof (uint32_t); 6975 } else { 6976 /* ESP-in-UDP packet - reduce to ESP. */ 6977 ipha->ipha_protocol = IPPROTO_ESP; 6978 shift = sizeof (udpha_t); 6979 } 6980 6981 /* Fix IP header */ 6982 ipha->ipha_length = htons(plen - shift); 6983 ipha->ipha_hdr_checksum = 0; 6984 6985 orptr = mp->b_rptr; 6986 mp->b_rptr += shift; 6987 6988 if (*spi == 0) { 6989 ASSERT((uint8_t *)ipha == orptr); 6990 udpha = (udpha_t *)(orptr + iph_len); 6991 udpha->uha_length = htons(plen - shift - iph_len); 6992 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6993 udp_pkt = B_TRUE; 6994 } else { 6995 udp_pkt = B_FALSE; 6996 } 6997 ovbcopy(orptr, orptr + shift, iph_len); 6998 if (!udp_pkt) /* Punt up for ESP processing. */ { 6999 ipha = (ipha_t *)(orptr + shift); 7000 7001 free_ire = (ire == NULL); 7002 if (free_ire) { 7003 /* Re-acquire ire. */ 7004 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7005 ipss->ipsec_netstack->netstack_ip); 7006 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7007 if (ire != NULL) 7008 ire_refrele(ire); 7009 /* 7010 * Do a regular freemsg(), as this is an IP 7011 * error (no local route) not an IPsec one. 7012 */ 7013 freemsg(mp); 7014 } 7015 } 7016 7017 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 7018 if (free_ire) 7019 ire_refrele(ire); 7020 } 7021 7022 return (udp_pkt); 7023 } 7024 7025 /* 7026 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7027 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7028 * Caller is responsible for dropping references to the conn, and freeing 7029 * first_mp. 7030 * 7031 * IPQoS Notes 7032 * Before sending it to the client, invoke IPPF processing. Policy processing 7033 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7034 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7035 * ip_wput_local, ip_policy is false. 7036 */ 7037 static void 7038 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7039 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7040 boolean_t ip_policy) 7041 { 7042 boolean_t mctl_present = (first_mp != NULL); 7043 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7044 uint32_t ill_index; 7045 ip_stack_t *ipst = recv_ill->ill_ipst; 7046 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7047 7048 ASSERT(ill != NULL); 7049 7050 if (mctl_present) 7051 first_mp->b_cont = mp; 7052 else 7053 first_mp = mp; 7054 7055 if (CONN_UDP_FLOWCTLD(connp)) { 7056 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7057 freemsg(first_mp); 7058 return; 7059 } 7060 7061 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7062 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7063 NULL, mctl_present); 7064 if (first_mp == NULL) { 7065 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7066 return; /* Freed by ipsec_check_inbound_policy(). */ 7067 } 7068 } 7069 if (mctl_present) 7070 freeb(first_mp); 7071 7072 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7073 if (connp->conn_udp->udp_nat_t_endpoint) { 7074 if (mctl_present) { 7075 /* mctl_present *shouldn't* happen. */ 7076 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7077 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7078 &ipss->ipsec_dropper); 7079 return; 7080 } 7081 7082 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7083 return; 7084 } 7085 7086 /* Handle options. */ 7087 if (connp->conn_recvif) 7088 in_flags = IPF_RECVIF; 7089 /* 7090 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7091 * passed to ip_add_info is based on IP version of connp. 7092 */ 7093 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7094 if (connp->conn_af_isv6) { 7095 /* 7096 * V6 only needs index 7097 */ 7098 in_flags |= IPF_RECVIF; 7099 } else { 7100 /* 7101 * V4 needs index + matching address. 7102 */ 7103 in_flags |= IPF_RECVADDR; 7104 } 7105 } 7106 7107 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7108 in_flags |= IPF_RECVSLLA; 7109 7110 /* 7111 * Initiate IPPF processing here, if needed. Note first_mp won't be 7112 * freed if the packet is dropped. The caller will do so. 7113 */ 7114 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7115 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7116 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7117 if (mp == NULL) { 7118 return; 7119 } 7120 } 7121 if ((in_flags != 0) && 7122 (mp->b_datap->db_type != M_CTL)) { 7123 /* 7124 * The actual data will be contained in b_cont 7125 * upon successful return of the following call 7126 * else original mblk is returned 7127 */ 7128 ASSERT(recv_ill != NULL); 7129 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7130 ipst); 7131 } 7132 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7133 /* Send it upstream */ 7134 (connp->conn_recv)(connp, mp, NULL); 7135 } 7136 7137 /* 7138 * Fanout for UDP packets. 7139 * The caller puts <fport, lport> in the ports parameter. 7140 * 7141 * If SO_REUSEADDR is set all multicast and broadcast packets 7142 * will be delivered to all streams bound to the same port. 7143 * 7144 * Zones notes: 7145 * Multicast and broadcast packets will be distributed to streams in all zones. 7146 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7147 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7148 * packets. To maintain this behavior with multiple zones, the conns are grouped 7149 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7150 * each zone. If unset, all the following conns in the same zone are skipped. 7151 */ 7152 static void 7153 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7154 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7155 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7156 { 7157 uint32_t dstport, srcport; 7158 ipaddr_t dst; 7159 mblk_t *first_mp; 7160 boolean_t secure; 7161 in6_addr_t v6src; 7162 conn_t *connp; 7163 connf_t *connfp; 7164 conn_t *first_connp; 7165 conn_t *next_connp; 7166 mblk_t *mp1, *first_mp1; 7167 ipaddr_t src; 7168 zoneid_t last_zoneid; 7169 boolean_t reuseaddr; 7170 boolean_t shared_addr; 7171 ip_stack_t *ipst; 7172 7173 ASSERT(recv_ill != NULL); 7174 ipst = recv_ill->ill_ipst; 7175 7176 first_mp = mp; 7177 if (mctl_present) { 7178 mp = first_mp->b_cont; 7179 first_mp->b_cont = NULL; 7180 secure = ipsec_in_is_secure(first_mp); 7181 ASSERT(mp != NULL); 7182 } else { 7183 first_mp = NULL; 7184 secure = B_FALSE; 7185 } 7186 7187 /* Extract ports in net byte order */ 7188 dstport = htons(ntohl(ports) & 0xFFFF); 7189 srcport = htons(ntohl(ports) >> 16); 7190 dst = ipha->ipha_dst; 7191 src = ipha->ipha_src; 7192 7193 shared_addr = (zoneid == ALL_ZONES); 7194 if (shared_addr) { 7195 /* 7196 * No need to handle exclusive-stack zones since ALL_ZONES 7197 * only applies to the shared stack. 7198 */ 7199 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7200 if (zoneid == ALL_ZONES) 7201 zoneid = tsol_packet_to_zoneid(mp); 7202 } 7203 7204 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7205 mutex_enter(&connfp->connf_lock); 7206 connp = connfp->connf_head; 7207 if (!broadcast && !CLASSD(dst)) { 7208 /* 7209 * Not broadcast or multicast. Send to the one (first) 7210 * client we find. No need to check conn_wantpacket() 7211 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7212 * IPv4 unicast packets. 7213 */ 7214 while ((connp != NULL) && 7215 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7216 !IPCL_ZONE_MATCH(connp, zoneid))) { 7217 connp = connp->conn_next; 7218 } 7219 7220 if (connp == NULL || connp->conn_upq == NULL) 7221 goto notfound; 7222 7223 if (is_system_labeled() && 7224 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7225 connp)) 7226 goto notfound; 7227 7228 CONN_INC_REF(connp); 7229 mutex_exit(&connfp->connf_lock); 7230 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7231 flags, recv_ill, ip_policy); 7232 IP_STAT(ipst, ip_udp_fannorm); 7233 CONN_DEC_REF(connp); 7234 return; 7235 } 7236 7237 /* 7238 * Broadcast and multicast case 7239 * 7240 * Need to check conn_wantpacket(). 7241 * If SO_REUSEADDR has been set on the first we send the 7242 * packet to all clients that have joined the group and 7243 * match the port. 7244 */ 7245 7246 while (connp != NULL) { 7247 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7248 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7249 (!is_system_labeled() || 7250 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7251 connp))) 7252 break; 7253 connp = connp->conn_next; 7254 } 7255 7256 if (connp == NULL || connp->conn_upq == NULL) 7257 goto notfound; 7258 7259 first_connp = connp; 7260 /* 7261 * When SO_REUSEADDR is not set, send the packet only to the first 7262 * matching connection in its zone by keeping track of the zoneid. 7263 */ 7264 reuseaddr = first_connp->conn_reuseaddr; 7265 last_zoneid = first_connp->conn_zoneid; 7266 7267 CONN_INC_REF(connp); 7268 connp = connp->conn_next; 7269 for (;;) { 7270 while (connp != NULL) { 7271 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7272 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7273 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7274 (!is_system_labeled() || 7275 tsol_receive_local(mp, &dst, IPV4_VERSION, 7276 shared_addr, connp))) 7277 break; 7278 connp = connp->conn_next; 7279 } 7280 /* 7281 * Just copy the data part alone. The mctl part is 7282 * needed just for verifying policy and it is never 7283 * sent up. 7284 */ 7285 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7286 ((mp1 = copymsg(mp)) == NULL))) { 7287 /* 7288 * No more interested clients or memory 7289 * allocation failed 7290 */ 7291 connp = first_connp; 7292 break; 7293 } 7294 if (connp->conn_zoneid != last_zoneid) { 7295 /* 7296 * Update the zoneid so that the packet isn't sent to 7297 * any more conns in the same zone unless SO_REUSEADDR 7298 * is set. 7299 */ 7300 reuseaddr = connp->conn_reuseaddr; 7301 last_zoneid = connp->conn_zoneid; 7302 } 7303 if (first_mp != NULL) { 7304 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7305 ipsec_info_type == IPSEC_IN); 7306 first_mp1 = ipsec_in_tag(first_mp, NULL, 7307 ipst->ips_netstack); 7308 if (first_mp1 == NULL) { 7309 freemsg(mp1); 7310 connp = first_connp; 7311 break; 7312 } 7313 } else { 7314 first_mp1 = NULL; 7315 } 7316 CONN_INC_REF(connp); 7317 mutex_exit(&connfp->connf_lock); 7318 /* 7319 * IPQoS notes: We don't send the packet for policy 7320 * processing here, will do it for the last one (below). 7321 * i.e. we do it per-packet now, but if we do policy 7322 * processing per-conn, then we would need to do it 7323 * here too. 7324 */ 7325 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7326 ipha, flags, recv_ill, B_FALSE); 7327 mutex_enter(&connfp->connf_lock); 7328 /* Follow the next pointer before releasing the conn. */ 7329 next_connp = connp->conn_next; 7330 IP_STAT(ipst, ip_udp_fanmb); 7331 CONN_DEC_REF(connp); 7332 connp = next_connp; 7333 } 7334 7335 /* Last one. Send it upstream. */ 7336 mutex_exit(&connfp->connf_lock); 7337 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7338 recv_ill, ip_policy); 7339 IP_STAT(ipst, ip_udp_fanmb); 7340 CONN_DEC_REF(connp); 7341 return; 7342 7343 notfound: 7344 7345 mutex_exit(&connfp->connf_lock); 7346 IP_STAT(ipst, ip_udp_fanothers); 7347 /* 7348 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7349 * have already been matched above, since they live in the IPv4 7350 * fanout tables. This implies we only need to 7351 * check for IPv6 in6addr_any endpoints here. 7352 * Thus we compare using ipv6_all_zeros instead of the destination 7353 * address, except for the multicast group membership lookup which 7354 * uses the IPv4 destination. 7355 */ 7356 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7357 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7358 mutex_enter(&connfp->connf_lock); 7359 connp = connfp->connf_head; 7360 if (!broadcast && !CLASSD(dst)) { 7361 while (connp != NULL) { 7362 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7363 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7364 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7365 !connp->conn_ipv6_v6only) 7366 break; 7367 connp = connp->conn_next; 7368 } 7369 7370 if (connp != NULL && is_system_labeled() && 7371 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7372 connp)) 7373 connp = NULL; 7374 7375 if (connp == NULL || connp->conn_upq == NULL) { 7376 /* 7377 * No one bound to this port. Is 7378 * there a client that wants all 7379 * unclaimed datagrams? 7380 */ 7381 mutex_exit(&connfp->connf_lock); 7382 7383 if (mctl_present) 7384 first_mp->b_cont = mp; 7385 else 7386 first_mp = mp; 7387 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7388 connf_head != NULL) { 7389 ip_fanout_proto(q, first_mp, ill, ipha, 7390 flags | IP_FF_RAWIP, mctl_present, 7391 ip_policy, recv_ill, zoneid); 7392 } else { 7393 if (ip_fanout_send_icmp(q, first_mp, flags, 7394 ICMP_DEST_UNREACHABLE, 7395 ICMP_PORT_UNREACHABLE, 7396 mctl_present, zoneid, ipst)) { 7397 BUMP_MIB(ill->ill_ip_mib, 7398 udpIfStatsNoPorts); 7399 } 7400 } 7401 return; 7402 } 7403 7404 CONN_INC_REF(connp); 7405 mutex_exit(&connfp->connf_lock); 7406 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7407 flags, recv_ill, ip_policy); 7408 CONN_DEC_REF(connp); 7409 return; 7410 } 7411 /* 7412 * IPv4 multicast packet being delivered to an AF_INET6 7413 * in6addr_any endpoint. 7414 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7415 * and not conn_wantpacket_v6() since any multicast membership is 7416 * for an IPv4-mapped multicast address. 7417 * The packet is sent to all clients in all zones that have joined the 7418 * group and match the port. 7419 */ 7420 while (connp != NULL) { 7421 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7422 srcport, v6src) && 7423 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7424 (!is_system_labeled() || 7425 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7426 connp))) 7427 break; 7428 connp = connp->conn_next; 7429 } 7430 7431 if (connp == NULL || connp->conn_upq == NULL) { 7432 /* 7433 * No one bound to this port. Is 7434 * there a client that wants all 7435 * unclaimed datagrams? 7436 */ 7437 mutex_exit(&connfp->connf_lock); 7438 7439 if (mctl_present) 7440 first_mp->b_cont = mp; 7441 else 7442 first_mp = mp; 7443 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7444 NULL) { 7445 ip_fanout_proto(q, first_mp, ill, ipha, 7446 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7447 recv_ill, zoneid); 7448 } else { 7449 /* 7450 * We used to attempt to send an icmp error here, but 7451 * since this is known to be a multicast packet 7452 * and we don't send icmp errors in response to 7453 * multicast, just drop the packet and give up sooner. 7454 */ 7455 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7456 freemsg(first_mp); 7457 } 7458 return; 7459 } 7460 7461 first_connp = connp; 7462 7463 CONN_INC_REF(connp); 7464 connp = connp->conn_next; 7465 for (;;) { 7466 while (connp != NULL) { 7467 if (IPCL_UDP_MATCH_V6(connp, dstport, 7468 ipv6_all_zeros, srcport, v6src) && 7469 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7470 (!is_system_labeled() || 7471 tsol_receive_local(mp, &dst, IPV4_VERSION, 7472 shared_addr, connp))) 7473 break; 7474 connp = connp->conn_next; 7475 } 7476 /* 7477 * Just copy the data part alone. The mctl part is 7478 * needed just for verifying policy and it is never 7479 * sent up. 7480 */ 7481 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7482 ((mp1 = copymsg(mp)) == NULL))) { 7483 /* 7484 * No more intested clients or memory 7485 * allocation failed 7486 */ 7487 connp = first_connp; 7488 break; 7489 } 7490 if (first_mp != NULL) { 7491 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7492 ipsec_info_type == IPSEC_IN); 7493 first_mp1 = ipsec_in_tag(first_mp, NULL, 7494 ipst->ips_netstack); 7495 if (first_mp1 == NULL) { 7496 freemsg(mp1); 7497 connp = first_connp; 7498 break; 7499 } 7500 } else { 7501 first_mp1 = NULL; 7502 } 7503 CONN_INC_REF(connp); 7504 mutex_exit(&connfp->connf_lock); 7505 /* 7506 * IPQoS notes: We don't send the packet for policy 7507 * processing here, will do it for the last one (below). 7508 * i.e. we do it per-packet now, but if we do policy 7509 * processing per-conn, then we would need to do it 7510 * here too. 7511 */ 7512 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7513 ipha, flags, recv_ill, B_FALSE); 7514 mutex_enter(&connfp->connf_lock); 7515 /* Follow the next pointer before releasing the conn. */ 7516 next_connp = connp->conn_next; 7517 CONN_DEC_REF(connp); 7518 connp = next_connp; 7519 } 7520 7521 /* Last one. Send it upstream. */ 7522 mutex_exit(&connfp->connf_lock); 7523 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7524 recv_ill, ip_policy); 7525 CONN_DEC_REF(connp); 7526 } 7527 7528 /* 7529 * Complete the ip_wput header so that it 7530 * is possible to generate ICMP 7531 * errors. 7532 */ 7533 int 7534 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7535 { 7536 ire_t *ire; 7537 7538 if (ipha->ipha_src == INADDR_ANY) { 7539 ire = ire_lookup_local(zoneid, ipst); 7540 if (ire == NULL) { 7541 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7542 return (1); 7543 } 7544 ipha->ipha_src = ire->ire_addr; 7545 ire_refrele(ire); 7546 } 7547 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7548 ipha->ipha_hdr_checksum = 0; 7549 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7550 return (0); 7551 } 7552 7553 /* 7554 * Nobody should be sending 7555 * packets up this stream 7556 */ 7557 static void 7558 ip_lrput(queue_t *q, mblk_t *mp) 7559 { 7560 mblk_t *mp1; 7561 7562 switch (mp->b_datap->db_type) { 7563 case M_FLUSH: 7564 /* Turn around */ 7565 if (*mp->b_rptr & FLUSHW) { 7566 *mp->b_rptr &= ~FLUSHR; 7567 qreply(q, mp); 7568 return; 7569 } 7570 break; 7571 } 7572 /* Could receive messages that passed through ar_rput */ 7573 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7574 mp1->b_prev = mp1->b_next = NULL; 7575 freemsg(mp); 7576 } 7577 7578 /* Nobody should be sending packets down this stream */ 7579 /* ARGSUSED */ 7580 void 7581 ip_lwput(queue_t *q, mblk_t *mp) 7582 { 7583 freemsg(mp); 7584 } 7585 7586 /* 7587 * Move the first hop in any source route to ipha_dst and remove that part of 7588 * the source route. Called by other protocols. Errors in option formatting 7589 * are ignored - will be handled by ip_wput_options Return the final 7590 * destination (either ipha_dst or the last entry in a source route.) 7591 */ 7592 ipaddr_t 7593 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7594 { 7595 ipoptp_t opts; 7596 uchar_t *opt; 7597 uint8_t optval; 7598 uint8_t optlen; 7599 ipaddr_t dst; 7600 int i; 7601 ire_t *ire; 7602 ip_stack_t *ipst = ns->netstack_ip; 7603 7604 ip2dbg(("ip_massage_options\n")); 7605 dst = ipha->ipha_dst; 7606 for (optval = ipoptp_first(&opts, ipha); 7607 optval != IPOPT_EOL; 7608 optval = ipoptp_next(&opts)) { 7609 opt = opts.ipoptp_cur; 7610 switch (optval) { 7611 uint8_t off; 7612 case IPOPT_SSRR: 7613 case IPOPT_LSRR: 7614 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7615 ip1dbg(("ip_massage_options: bad src route\n")); 7616 break; 7617 } 7618 optlen = opts.ipoptp_len; 7619 off = opt[IPOPT_OFFSET]; 7620 off--; 7621 redo_srr: 7622 if (optlen < IP_ADDR_LEN || 7623 off > optlen - IP_ADDR_LEN) { 7624 /* End of source route */ 7625 ip1dbg(("ip_massage_options: end of SR\n")); 7626 break; 7627 } 7628 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7629 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7630 ntohl(dst))); 7631 /* 7632 * Check if our address is present more than 7633 * once as consecutive hops in source route. 7634 * XXX verify per-interface ip_forwarding 7635 * for source route? 7636 */ 7637 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7638 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7639 if (ire != NULL) { 7640 ire_refrele(ire); 7641 off += IP_ADDR_LEN; 7642 goto redo_srr; 7643 } 7644 if (dst == htonl(INADDR_LOOPBACK)) { 7645 ip1dbg(("ip_massage_options: loopback addr in " 7646 "source route!\n")); 7647 break; 7648 } 7649 /* 7650 * Update ipha_dst to be the first hop and remove the 7651 * first hop from the source route (by overwriting 7652 * part of the option with NOP options). 7653 */ 7654 ipha->ipha_dst = dst; 7655 /* Put the last entry in dst */ 7656 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7657 3; 7658 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7659 7660 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7661 ntohl(dst))); 7662 /* Move down and overwrite */ 7663 opt[IP_ADDR_LEN] = opt[0]; 7664 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7665 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7666 for (i = 0; i < IP_ADDR_LEN; i++) 7667 opt[i] = IPOPT_NOP; 7668 break; 7669 } 7670 } 7671 return (dst); 7672 } 7673 7674 /* 7675 * Return the network mask 7676 * associated with the specified address. 7677 */ 7678 ipaddr_t 7679 ip_net_mask(ipaddr_t addr) 7680 { 7681 uchar_t *up = (uchar_t *)&addr; 7682 ipaddr_t mask = 0; 7683 uchar_t *maskp = (uchar_t *)&mask; 7684 7685 #if defined(__i386) || defined(__amd64) 7686 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7687 #endif 7688 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7689 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7690 #endif 7691 if (CLASSD(addr)) { 7692 maskp[0] = 0xF0; 7693 return (mask); 7694 } 7695 7696 /* We assume Class E default netmask to be 32 */ 7697 if (CLASSE(addr)) 7698 return (0xffffffffU); 7699 7700 if (addr == 0) 7701 return (0); 7702 maskp[0] = 0xFF; 7703 if ((up[0] & 0x80) == 0) 7704 return (mask); 7705 7706 maskp[1] = 0xFF; 7707 if ((up[0] & 0xC0) == 0x80) 7708 return (mask); 7709 7710 maskp[2] = 0xFF; 7711 if ((up[0] & 0xE0) == 0xC0) 7712 return (mask); 7713 7714 /* Otherwise return no mask */ 7715 return ((ipaddr_t)0); 7716 } 7717 7718 /* 7719 * Select an ill for the packet by considering load spreading across 7720 * a different ill in the group if dst_ill is part of some group. 7721 */ 7722 ill_t * 7723 ip_newroute_get_dst_ill(ill_t *dst_ill) 7724 { 7725 ill_t *ill; 7726 7727 /* 7728 * We schedule irrespective of whether the source address is 7729 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7730 */ 7731 ill = illgrp_scheduler(dst_ill); 7732 if (ill == NULL) 7733 return (NULL); 7734 7735 /* 7736 * For groups with names ip_sioctl_groupname ensures that all 7737 * ills are of same type. For groups without names, ifgrp_insert 7738 * ensures this. 7739 */ 7740 ASSERT(dst_ill->ill_type == ill->ill_type); 7741 7742 return (ill); 7743 } 7744 7745 /* 7746 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7747 */ 7748 ill_t * 7749 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7750 ip_stack_t *ipst) 7751 { 7752 ill_t *ret_ill; 7753 7754 ASSERT(ifindex != 0); 7755 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7756 ipst); 7757 if (ret_ill == NULL || 7758 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7759 if (isv6) { 7760 if (ill != NULL) { 7761 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7762 } else { 7763 BUMP_MIB(&ipst->ips_ip6_mib, 7764 ipIfStatsOutDiscards); 7765 } 7766 ip1dbg(("ip_grab_attach_ill (IPv6): " 7767 "bad ifindex %d.\n", ifindex)); 7768 } else { 7769 if (ill != NULL) { 7770 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7771 } else { 7772 BUMP_MIB(&ipst->ips_ip_mib, 7773 ipIfStatsOutDiscards); 7774 } 7775 ip1dbg(("ip_grab_attach_ill (IPv4): " 7776 "bad ifindex %d.\n", ifindex)); 7777 } 7778 if (ret_ill != NULL) 7779 ill_refrele(ret_ill); 7780 freemsg(first_mp); 7781 return (NULL); 7782 } 7783 7784 return (ret_ill); 7785 } 7786 7787 /* 7788 * IPv4 - 7789 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7790 * out a packet to a destination address for which we do not have specific 7791 * (or sufficient) routing information. 7792 * 7793 * NOTE : These are the scopes of some of the variables that point at IRE, 7794 * which needs to be followed while making any future modifications 7795 * to avoid memory leaks. 7796 * 7797 * - ire and sire are the entries looked up initially by 7798 * ire_ftable_lookup. 7799 * - ipif_ire is used to hold the interface ire associated with 7800 * the new cache ire. But it's scope is limited, so we always REFRELE 7801 * it before branching out to error paths. 7802 * - save_ire is initialized before ire_create, so that ire returned 7803 * by ire_create will not over-write the ire. We REFRELE save_ire 7804 * before breaking out of the switch. 7805 * 7806 * Thus on failures, we have to REFRELE only ire and sire, if they 7807 * are not NULL. 7808 */ 7809 void 7810 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7811 zoneid_t zoneid, ip_stack_t *ipst) 7812 { 7813 areq_t *areq; 7814 ipaddr_t gw = 0; 7815 ire_t *ire = NULL; 7816 mblk_t *res_mp; 7817 ipaddr_t *addrp; 7818 ipaddr_t nexthop_addr; 7819 ipif_t *src_ipif = NULL; 7820 ill_t *dst_ill = NULL; 7821 ipha_t *ipha; 7822 ire_t *sire = NULL; 7823 mblk_t *first_mp; 7824 ire_t *save_ire; 7825 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7826 ushort_t ire_marks = 0; 7827 boolean_t mctl_present; 7828 ipsec_out_t *io; 7829 mblk_t *saved_mp; 7830 ire_t *first_sire = NULL; 7831 mblk_t *copy_mp = NULL; 7832 mblk_t *xmit_mp = NULL; 7833 ipaddr_t save_dst; 7834 uint32_t multirt_flags = 7835 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7836 boolean_t multirt_is_resolvable; 7837 boolean_t multirt_resolve_next; 7838 boolean_t unspec_src; 7839 boolean_t do_attach_ill = B_FALSE; 7840 boolean_t ip_nexthop = B_FALSE; 7841 tsol_ire_gw_secattr_t *attrp = NULL; 7842 tsol_gcgrp_t *gcgrp = NULL; 7843 tsol_gcgrp_addr_t ga; 7844 7845 if (ip_debug > 2) { 7846 /* ip1dbg */ 7847 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7848 } 7849 7850 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7851 if (mctl_present) { 7852 io = (ipsec_out_t *)first_mp->b_rptr; 7853 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7854 ASSERT(zoneid == io->ipsec_out_zoneid); 7855 ASSERT(zoneid != ALL_ZONES); 7856 } 7857 7858 ipha = (ipha_t *)mp->b_rptr; 7859 7860 /* All multicast lookups come through ip_newroute_ipif() */ 7861 if (CLASSD(dst)) { 7862 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7863 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7864 freemsg(first_mp); 7865 return; 7866 } 7867 7868 if (mctl_present && io->ipsec_out_attach_if) { 7869 /* ip_grab_attach_ill returns a held ill */ 7870 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7871 io->ipsec_out_ill_index, B_FALSE, ipst); 7872 7873 /* Failure case frees things for us. */ 7874 if (attach_ill == NULL) 7875 return; 7876 7877 /* 7878 * Check if we need an ire that will not be 7879 * looked up by anybody else i.e. HIDDEN. 7880 */ 7881 if (ill_is_probeonly(attach_ill)) 7882 ire_marks = IRE_MARK_HIDDEN; 7883 } 7884 if (mctl_present && io->ipsec_out_ip_nexthop) { 7885 ip_nexthop = B_TRUE; 7886 nexthop_addr = io->ipsec_out_nexthop_addr; 7887 } 7888 /* 7889 * If this IRE is created for forwarding or it is not for 7890 * traffic for congestion controlled protocols, mark it as temporary. 7891 */ 7892 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7893 ire_marks |= IRE_MARK_TEMPORARY; 7894 7895 /* 7896 * Get what we can from ire_ftable_lookup which will follow an IRE 7897 * chain until it gets the most specific information available. 7898 * For example, we know that there is no IRE_CACHE for this dest, 7899 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7900 * ire_ftable_lookup will look up the gateway, etc. 7901 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7902 * to the destination, of equal netmask length in the forward table, 7903 * will be recursively explored. If no information is available 7904 * for the final gateway of that route, we force the returned ire 7905 * to be equal to sire using MATCH_IRE_PARENT. 7906 * At least, in this case we have a starting point (in the buckets) 7907 * to look for other routes to the destination in the forward table. 7908 * This is actually used only for multirouting, where a list 7909 * of routes has to be processed in sequence. 7910 * 7911 * In the process of coming up with the most specific information, 7912 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7913 * for the gateway (i.e., one for which the ire_nce->nce_state is 7914 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7915 * Two caveats when handling incomplete ire's in ip_newroute: 7916 * - we should be careful when accessing its ire_nce (specifically 7917 * the nce_res_mp) ast it might change underneath our feet, and, 7918 * - not all legacy code path callers are prepared to handle 7919 * incomplete ire's, so we should not create/add incomplete 7920 * ire_cache entries here. (See discussion about temporary solution 7921 * further below). 7922 * 7923 * In order to minimize packet dropping, and to preserve existing 7924 * behavior, we treat this case as if there were no IRE_CACHE for the 7925 * gateway, and instead use the IF_RESOLVER ire to send out 7926 * another request to ARP (this is achieved by passing the 7927 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7928 * arp response comes back in ip_wput_nondata, we will create 7929 * a per-dst ire_cache that has an ND_COMPLETE ire. 7930 * 7931 * Note that this is a temporary solution; the correct solution is 7932 * to create an incomplete per-dst ire_cache entry, and send the 7933 * packet out when the gw's nce is resolved. In order to achieve this, 7934 * all packet processing must have been completed prior to calling 7935 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7936 * to be modified to accomodate this solution. 7937 */ 7938 if (ip_nexthop) { 7939 /* 7940 * The first time we come here, we look for an IRE_INTERFACE 7941 * entry for the specified nexthop, set the dst to be the 7942 * nexthop address and create an IRE_CACHE entry for the 7943 * nexthop. The next time around, we are able to find an 7944 * IRE_CACHE entry for the nexthop, set the gateway to be the 7945 * nexthop address and create an IRE_CACHE entry for the 7946 * destination address via the specified nexthop. 7947 */ 7948 ire = ire_cache_lookup(nexthop_addr, zoneid, 7949 MBLK_GETLABEL(mp), ipst); 7950 if (ire != NULL) { 7951 gw = nexthop_addr; 7952 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7953 } else { 7954 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7955 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7956 MBLK_GETLABEL(mp), 7957 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7958 ipst); 7959 if (ire != NULL) { 7960 dst = nexthop_addr; 7961 } 7962 } 7963 } else if (attach_ill == NULL) { 7964 ire = ire_ftable_lookup(dst, 0, 0, 0, 7965 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7966 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7967 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7968 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7969 ipst); 7970 } else { 7971 /* 7972 * attach_ill is set only for communicating with 7973 * on-link hosts. So, don't look for DEFAULT. 7974 */ 7975 ipif_t *attach_ipif; 7976 7977 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7978 if (attach_ipif == NULL) { 7979 ill_refrele(attach_ill); 7980 goto icmp_err_ret; 7981 } 7982 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7983 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7984 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7985 MATCH_IRE_SECATTR, ipst); 7986 ipif_refrele(attach_ipif); 7987 } 7988 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7989 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7990 7991 /* 7992 * This loop is run only once in most cases. 7993 * We loop to resolve further routes only when the destination 7994 * can be reached through multiple RTF_MULTIRT-flagged ires. 7995 */ 7996 do { 7997 /* Clear the previous iteration's values */ 7998 if (src_ipif != NULL) { 7999 ipif_refrele(src_ipif); 8000 src_ipif = NULL; 8001 } 8002 if (dst_ill != NULL) { 8003 ill_refrele(dst_ill); 8004 dst_ill = NULL; 8005 } 8006 8007 multirt_resolve_next = B_FALSE; 8008 /* 8009 * We check if packets have to be multirouted. 8010 * In this case, given the current <ire, sire> couple, 8011 * we look for the next suitable <ire, sire>. 8012 * This check is done in ire_multirt_lookup(), 8013 * which applies various criteria to find the next route 8014 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8015 * unchanged if it detects it has not been tried yet. 8016 */ 8017 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8018 ip3dbg(("ip_newroute: starting next_resolution " 8019 "with first_mp %p, tag %d\n", 8020 (void *)first_mp, 8021 MULTIRT_DEBUG_TAGGED(first_mp))); 8022 8023 ASSERT(sire != NULL); 8024 multirt_is_resolvable = 8025 ire_multirt_lookup(&ire, &sire, multirt_flags, 8026 MBLK_GETLABEL(mp), ipst); 8027 8028 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8029 "ire %p, sire %p\n", 8030 multirt_is_resolvable, 8031 (void *)ire, (void *)sire)); 8032 8033 if (!multirt_is_resolvable) { 8034 /* 8035 * No more multirt route to resolve; give up 8036 * (all routes resolved or no more 8037 * resolvable routes). 8038 */ 8039 if (ire != NULL) { 8040 ire_refrele(ire); 8041 ire = NULL; 8042 } 8043 } else { 8044 ASSERT(sire != NULL); 8045 ASSERT(ire != NULL); 8046 /* 8047 * We simply use first_sire as a flag that 8048 * indicates if a resolvable multirt route 8049 * has already been found. 8050 * If it is not the case, we may have to send 8051 * an ICMP error to report that the 8052 * destination is unreachable. 8053 * We do not IRE_REFHOLD first_sire. 8054 */ 8055 if (first_sire == NULL) { 8056 first_sire = sire; 8057 } 8058 } 8059 } 8060 if (ire == NULL) { 8061 if (ip_debug > 3) { 8062 /* ip2dbg */ 8063 pr_addr_dbg("ip_newroute: " 8064 "can't resolve %s\n", AF_INET, &dst); 8065 } 8066 ip3dbg(("ip_newroute: " 8067 "ire %p, sire %p, first_sire %p\n", 8068 (void *)ire, (void *)sire, (void *)first_sire)); 8069 8070 if (sire != NULL) { 8071 ire_refrele(sire); 8072 sire = NULL; 8073 } 8074 8075 if (first_sire != NULL) { 8076 /* 8077 * At least one multirt route has been found 8078 * in the same call to ip_newroute(); 8079 * there is no need to report an ICMP error. 8080 * first_sire was not IRE_REFHOLDed. 8081 */ 8082 MULTIRT_DEBUG_UNTAG(first_mp); 8083 freemsg(first_mp); 8084 return; 8085 } 8086 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8087 RTA_DST, ipst); 8088 if (attach_ill != NULL) 8089 ill_refrele(attach_ill); 8090 goto icmp_err_ret; 8091 } 8092 8093 /* 8094 * Verify that the returned IRE does not have either 8095 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8096 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8097 */ 8098 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8099 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8100 if (attach_ill != NULL) 8101 ill_refrele(attach_ill); 8102 goto icmp_err_ret; 8103 } 8104 /* 8105 * Increment the ire_ob_pkt_count field for ire if it is an 8106 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8107 * increment the same for the parent IRE, sire, if it is some 8108 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8109 */ 8110 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8111 UPDATE_OB_PKT_COUNT(ire); 8112 ire->ire_last_used_time = lbolt; 8113 } 8114 8115 if (sire != NULL) { 8116 gw = sire->ire_gateway_addr; 8117 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8118 IRE_INTERFACE)) == 0); 8119 UPDATE_OB_PKT_COUNT(sire); 8120 sire->ire_last_used_time = lbolt; 8121 } 8122 /* 8123 * We have a route to reach the destination. 8124 * 8125 * 1) If the interface is part of ill group, try to get a new 8126 * ill taking load spreading into account. 8127 * 8128 * 2) After selecting the ill, get a source address that 8129 * might create good inbound load spreading. 8130 * ipif_select_source does this for us. 8131 * 8132 * If the application specified the ill (ifindex), we still 8133 * load spread. Only if the packets needs to go out 8134 * specifically on a given ill e.g. binding to 8135 * IPIF_NOFAILOVER address, then we don't try to use a 8136 * different ill for load spreading. 8137 */ 8138 if (attach_ill == NULL) { 8139 /* 8140 * Don't perform outbound load spreading in the 8141 * case of an RTF_MULTIRT route, as we actually 8142 * typically want to replicate outgoing packets 8143 * through particular interfaces. 8144 */ 8145 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8146 dst_ill = ire->ire_ipif->ipif_ill; 8147 /* for uniformity */ 8148 ill_refhold(dst_ill); 8149 } else { 8150 /* 8151 * If we are here trying to create an IRE_CACHE 8152 * for an offlink destination and have the 8153 * IRE_CACHE for the next hop and the latter is 8154 * using virtual IP source address selection i.e 8155 * it's ire->ire_ipif is pointing to a virtual 8156 * network interface (vni) then 8157 * ip_newroute_get_dst_ll() will return the vni 8158 * interface as the dst_ill. Since the vni is 8159 * virtual i.e not associated with any physical 8160 * interface, it cannot be the dst_ill, hence 8161 * in such a case call ip_newroute_get_dst_ll() 8162 * with the stq_ill instead of the ire_ipif ILL. 8163 * The function returns a refheld ill. 8164 */ 8165 if ((ire->ire_type == IRE_CACHE) && 8166 IS_VNI(ire->ire_ipif->ipif_ill)) 8167 dst_ill = ip_newroute_get_dst_ill( 8168 ire->ire_stq->q_ptr); 8169 else 8170 dst_ill = ip_newroute_get_dst_ill( 8171 ire->ire_ipif->ipif_ill); 8172 } 8173 if (dst_ill == NULL) { 8174 if (ip_debug > 2) { 8175 pr_addr_dbg("ip_newroute: " 8176 "no dst ill for dst" 8177 " %s\n", AF_INET, &dst); 8178 } 8179 goto icmp_err_ret; 8180 } 8181 } else { 8182 dst_ill = ire->ire_ipif->ipif_ill; 8183 /* for uniformity */ 8184 ill_refhold(dst_ill); 8185 /* 8186 * We should have found a route matching ill as we 8187 * called ire_ftable_lookup with MATCH_IRE_ILL. 8188 * Rather than asserting, when there is a mismatch, 8189 * we just drop the packet. 8190 */ 8191 if (dst_ill != attach_ill) { 8192 ip0dbg(("ip_newroute: Packet dropped as " 8193 "IPIF_NOFAILOVER ill is %s, " 8194 "ire->ire_ipif->ipif_ill is %s\n", 8195 attach_ill->ill_name, 8196 dst_ill->ill_name)); 8197 ill_refrele(attach_ill); 8198 goto icmp_err_ret; 8199 } 8200 } 8201 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8202 if (attach_ill != NULL) { 8203 ill_refrele(attach_ill); 8204 attach_ill = NULL; 8205 do_attach_ill = B_TRUE; 8206 } 8207 ASSERT(dst_ill != NULL); 8208 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8209 8210 /* 8211 * Pick the best source address from dst_ill. 8212 * 8213 * 1) If it is part of a multipathing group, we would 8214 * like to spread the inbound packets across different 8215 * interfaces. ipif_select_source picks a random source 8216 * across the different ills in the group. 8217 * 8218 * 2) If it is not part of a multipathing group, we try 8219 * to pick the source address from the destination 8220 * route. Clustering assumes that when we have multiple 8221 * prefixes hosted on an interface, the prefix of the 8222 * source address matches the prefix of the destination 8223 * route. We do this only if the address is not 8224 * DEPRECATED. 8225 * 8226 * 3) If the conn is in a different zone than the ire, we 8227 * need to pick a source address from the right zone. 8228 * 8229 * NOTE : If we hit case (1) above, the prefix of the source 8230 * address picked may not match the prefix of the 8231 * destination routes prefix as ipif_select_source 8232 * does not look at "dst" while picking a source 8233 * address. 8234 * If we want the same behavior as (2), we will need 8235 * to change the behavior of ipif_select_source. 8236 */ 8237 ASSERT(src_ipif == NULL); 8238 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8239 /* 8240 * The RTF_SETSRC flag is set in the parent ire (sire). 8241 * Check that the ipif matching the requested source 8242 * address still exists. 8243 */ 8244 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8245 zoneid, NULL, NULL, NULL, NULL, ipst); 8246 } 8247 8248 unspec_src = (connp != NULL && connp->conn_unspec_src); 8249 8250 if (src_ipif == NULL && 8251 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8252 ire_marks |= IRE_MARK_USESRC_CHECK; 8253 if ((dst_ill->ill_group != NULL) || 8254 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8255 (connp != NULL && ire->ire_zoneid != zoneid && 8256 ire->ire_zoneid != ALL_ZONES) || 8257 (dst_ill->ill_usesrc_ifindex != 0)) { 8258 /* 8259 * If the destination is reachable via a 8260 * given gateway, the selected source address 8261 * should be in the same subnet as the gateway. 8262 * Otherwise, the destination is not reachable. 8263 * 8264 * If there are no interfaces on the same subnet 8265 * as the destination, ipif_select_source gives 8266 * first non-deprecated interface which might be 8267 * on a different subnet than the gateway. 8268 * This is not desirable. Hence pass the dst_ire 8269 * source address to ipif_select_source. 8270 * It is sure that the destination is reachable 8271 * with the dst_ire source address subnet. 8272 * So passing dst_ire source address to 8273 * ipif_select_source will make sure that the 8274 * selected source will be on the same subnet 8275 * as dst_ire source address. 8276 */ 8277 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8278 src_ipif = ipif_select_source(dst_ill, saddr, 8279 zoneid); 8280 if (src_ipif == NULL) { 8281 if (ip_debug > 2) { 8282 pr_addr_dbg("ip_newroute: " 8283 "no src for dst %s ", 8284 AF_INET, &dst); 8285 printf("through interface %s\n", 8286 dst_ill->ill_name); 8287 } 8288 goto icmp_err_ret; 8289 } 8290 } else { 8291 src_ipif = ire->ire_ipif; 8292 ASSERT(src_ipif != NULL); 8293 /* hold src_ipif for uniformity */ 8294 ipif_refhold(src_ipif); 8295 } 8296 } 8297 8298 /* 8299 * Assign a source address while we have the conn. 8300 * We can't have ip_wput_ire pick a source address when the 8301 * packet returns from arp since we need to look at 8302 * conn_unspec_src and conn_zoneid, and we lose the conn when 8303 * going through arp. 8304 * 8305 * NOTE : ip_newroute_v6 does not have this piece of code as 8306 * it uses ip6i to store this information. 8307 */ 8308 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8309 ipha->ipha_src = src_ipif->ipif_src_addr; 8310 8311 if (ip_debug > 3) { 8312 /* ip2dbg */ 8313 pr_addr_dbg("ip_newroute: first hop %s\n", 8314 AF_INET, &gw); 8315 } 8316 ip2dbg(("\tire type %s (%d)\n", 8317 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8318 8319 /* 8320 * The TTL of multirouted packets is bounded by the 8321 * ip_multirt_ttl ndd variable. 8322 */ 8323 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8324 /* Force TTL of multirouted packets */ 8325 if ((ipst->ips_ip_multirt_ttl > 0) && 8326 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8327 ip2dbg(("ip_newroute: forcing multirt TTL " 8328 "to %d (was %d), dst 0x%08x\n", 8329 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8330 ntohl(sire->ire_addr))); 8331 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8332 } 8333 } 8334 /* 8335 * At this point in ip_newroute(), ire is either the 8336 * IRE_CACHE of the next-hop gateway for an off-subnet 8337 * destination or an IRE_INTERFACE type that should be used 8338 * to resolve an on-subnet destination or an on-subnet 8339 * next-hop gateway. 8340 * 8341 * In the IRE_CACHE case, we have the following : 8342 * 8343 * 1) src_ipif - used for getting a source address. 8344 * 8345 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8346 * means packets using this IRE_CACHE will go out on 8347 * dst_ill. 8348 * 8349 * 3) The IRE sire will point to the prefix that is the 8350 * longest matching route for the destination. These 8351 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8352 * 8353 * The newly created IRE_CACHE entry for the off-subnet 8354 * destination is tied to both the prefix route and the 8355 * interface route used to resolve the next-hop gateway 8356 * via the ire_phandle and ire_ihandle fields, 8357 * respectively. 8358 * 8359 * In the IRE_INTERFACE case, we have the following : 8360 * 8361 * 1) src_ipif - used for getting a source address. 8362 * 8363 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8364 * means packets using the IRE_CACHE that we will build 8365 * here will go out on dst_ill. 8366 * 8367 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8368 * to be created will only be tied to the IRE_INTERFACE 8369 * that was derived from the ire_ihandle field. 8370 * 8371 * If sire is non-NULL, it means the destination is 8372 * off-link and we will first create the IRE_CACHE for the 8373 * gateway. Next time through ip_newroute, we will create 8374 * the IRE_CACHE for the final destination as described 8375 * above. 8376 * 8377 * In both cases, after the current resolution has been 8378 * completed (or possibly initialised, in the IRE_INTERFACE 8379 * case), the loop may be re-entered to attempt the resolution 8380 * of another RTF_MULTIRT route. 8381 * 8382 * When an IRE_CACHE entry for the off-subnet destination is 8383 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8384 * for further processing in emission loops. 8385 */ 8386 save_ire = ire; 8387 switch (ire->ire_type) { 8388 case IRE_CACHE: { 8389 ire_t *ipif_ire; 8390 8391 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8392 if (gw == 0) 8393 gw = ire->ire_gateway_addr; 8394 /* 8395 * We need 3 ire's to create a new cache ire for an 8396 * off-link destination from the cache ire of the 8397 * gateway. 8398 * 8399 * 1. The prefix ire 'sire' (Note that this does 8400 * not apply to the conn_nexthop_set case) 8401 * 2. The cache ire of the gateway 'ire' 8402 * 3. The interface ire 'ipif_ire' 8403 * 8404 * We have (1) and (2). We lookup (3) below. 8405 * 8406 * If there is no interface route to the gateway, 8407 * it is a race condition, where we found the cache 8408 * but the interface route has been deleted. 8409 */ 8410 if (ip_nexthop) { 8411 ipif_ire = ire_ihandle_lookup_onlink(ire); 8412 } else { 8413 ipif_ire = 8414 ire_ihandle_lookup_offlink(ire, sire); 8415 } 8416 if (ipif_ire == NULL) { 8417 ip1dbg(("ip_newroute: " 8418 "ire_ihandle_lookup_offlink failed\n")); 8419 goto icmp_err_ret; 8420 } 8421 8422 /* 8423 * Check cached gateway IRE for any security 8424 * attributes; if found, associate the gateway 8425 * credentials group to the destination IRE. 8426 */ 8427 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8428 mutex_enter(&attrp->igsa_lock); 8429 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8430 GCGRP_REFHOLD(gcgrp); 8431 mutex_exit(&attrp->igsa_lock); 8432 } 8433 8434 /* 8435 * XXX For the source of the resolver mp, 8436 * we are using the same DL_UNITDATA_REQ 8437 * (from save_ire->ire_nce->nce_res_mp) 8438 * though the save_ire is not pointing at the same ill. 8439 * This is incorrect. We need to send it up to the 8440 * resolver to get the right res_mp. For ethernets 8441 * this may be okay (ill_type == DL_ETHER). 8442 */ 8443 8444 ire = ire_create( 8445 (uchar_t *)&dst, /* dest address */ 8446 (uchar_t *)&ip_g_all_ones, /* mask */ 8447 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8448 (uchar_t *)&gw, /* gateway address */ 8449 &save_ire->ire_max_frag, 8450 save_ire->ire_nce, /* src nce */ 8451 dst_ill->ill_rq, /* recv-from queue */ 8452 dst_ill->ill_wq, /* send-to queue */ 8453 IRE_CACHE, /* IRE type */ 8454 src_ipif, 8455 (sire != NULL) ? 8456 sire->ire_mask : 0, /* Parent mask */ 8457 (sire != NULL) ? 8458 sire->ire_phandle : 0, /* Parent handle */ 8459 ipif_ire->ire_ihandle, /* Interface handle */ 8460 (sire != NULL) ? (sire->ire_flags & 8461 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8462 (sire != NULL) ? 8463 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8464 NULL, 8465 gcgrp, 8466 ipst); 8467 8468 if (ire == NULL) { 8469 if (gcgrp != NULL) { 8470 GCGRP_REFRELE(gcgrp); 8471 gcgrp = NULL; 8472 } 8473 ire_refrele(ipif_ire); 8474 ire_refrele(save_ire); 8475 break; 8476 } 8477 8478 /* reference now held by IRE */ 8479 gcgrp = NULL; 8480 8481 ire->ire_marks |= ire_marks; 8482 8483 /* 8484 * Prevent sire and ipif_ire from getting deleted. 8485 * The newly created ire is tied to both of them via 8486 * the phandle and ihandle respectively. 8487 */ 8488 if (sire != NULL) { 8489 IRB_REFHOLD(sire->ire_bucket); 8490 /* Has it been removed already ? */ 8491 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8492 IRB_REFRELE(sire->ire_bucket); 8493 ire_refrele(ipif_ire); 8494 ire_refrele(save_ire); 8495 break; 8496 } 8497 } 8498 8499 IRB_REFHOLD(ipif_ire->ire_bucket); 8500 /* Has it been removed already ? */ 8501 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8502 IRB_REFRELE(ipif_ire->ire_bucket); 8503 if (sire != NULL) 8504 IRB_REFRELE(sire->ire_bucket); 8505 ire_refrele(ipif_ire); 8506 ire_refrele(save_ire); 8507 break; 8508 } 8509 8510 xmit_mp = first_mp; 8511 /* 8512 * In the case of multirouting, a copy 8513 * of the packet is done before its sending. 8514 * The copy is used to attempt another 8515 * route resolution, in a next loop. 8516 */ 8517 if (ire->ire_flags & RTF_MULTIRT) { 8518 copy_mp = copymsg(first_mp); 8519 if (copy_mp != NULL) { 8520 xmit_mp = copy_mp; 8521 MULTIRT_DEBUG_TAG(first_mp); 8522 } 8523 } 8524 ire_add_then_send(q, ire, xmit_mp); 8525 ire_refrele(save_ire); 8526 8527 /* Assert that sire is not deleted yet. */ 8528 if (sire != NULL) { 8529 ASSERT(sire->ire_ptpn != NULL); 8530 IRB_REFRELE(sire->ire_bucket); 8531 } 8532 8533 /* Assert that ipif_ire is not deleted yet. */ 8534 ASSERT(ipif_ire->ire_ptpn != NULL); 8535 IRB_REFRELE(ipif_ire->ire_bucket); 8536 ire_refrele(ipif_ire); 8537 8538 /* 8539 * If copy_mp is not NULL, multirouting was 8540 * requested. We loop to initiate a next 8541 * route resolution attempt, starting from sire. 8542 */ 8543 if (copy_mp != NULL) { 8544 /* 8545 * Search for the next unresolved 8546 * multirt route. 8547 */ 8548 copy_mp = NULL; 8549 ipif_ire = NULL; 8550 ire = NULL; 8551 multirt_resolve_next = B_TRUE; 8552 continue; 8553 } 8554 if (sire != NULL) 8555 ire_refrele(sire); 8556 ipif_refrele(src_ipif); 8557 ill_refrele(dst_ill); 8558 return; 8559 } 8560 case IRE_IF_NORESOLVER: { 8561 8562 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8563 dst_ill->ill_resolver_mp == NULL) { 8564 ip1dbg(("ip_newroute: dst_ill %p " 8565 "for IRE_IF_NORESOLVER ire %p has " 8566 "no ill_resolver_mp\n", 8567 (void *)dst_ill, (void *)ire)); 8568 break; 8569 } 8570 8571 /* 8572 * TSol note: We are creating the ire cache for the 8573 * destination 'dst'. If 'dst' is offlink, going 8574 * through the first hop 'gw', the security attributes 8575 * of 'dst' must be set to point to the gateway 8576 * credentials of gateway 'gw'. If 'dst' is onlink, it 8577 * is possible that 'dst' is a potential gateway that is 8578 * referenced by some route that has some security 8579 * attributes. Thus in the former case, we need to do a 8580 * gcgrp_lookup of 'gw' while in the latter case we 8581 * need to do gcgrp_lookup of 'dst' itself. 8582 */ 8583 ga.ga_af = AF_INET; 8584 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8585 &ga.ga_addr); 8586 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8587 8588 ire = ire_create( 8589 (uchar_t *)&dst, /* dest address */ 8590 (uchar_t *)&ip_g_all_ones, /* mask */ 8591 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8592 (uchar_t *)&gw, /* gateway address */ 8593 &save_ire->ire_max_frag, 8594 NULL, /* no src nce */ 8595 dst_ill->ill_rq, /* recv-from queue */ 8596 dst_ill->ill_wq, /* send-to queue */ 8597 IRE_CACHE, 8598 src_ipif, 8599 save_ire->ire_mask, /* Parent mask */ 8600 (sire != NULL) ? /* Parent handle */ 8601 sire->ire_phandle : 0, 8602 save_ire->ire_ihandle, /* Interface handle */ 8603 (sire != NULL) ? sire->ire_flags & 8604 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8605 &(save_ire->ire_uinfo), 8606 NULL, 8607 gcgrp, 8608 ipst); 8609 8610 if (ire == NULL) { 8611 if (gcgrp != NULL) { 8612 GCGRP_REFRELE(gcgrp); 8613 gcgrp = NULL; 8614 } 8615 ire_refrele(save_ire); 8616 break; 8617 } 8618 8619 /* reference now held by IRE */ 8620 gcgrp = NULL; 8621 8622 ire->ire_marks |= ire_marks; 8623 8624 /* Prevent save_ire from getting deleted */ 8625 IRB_REFHOLD(save_ire->ire_bucket); 8626 /* Has it been removed already ? */ 8627 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8628 IRB_REFRELE(save_ire->ire_bucket); 8629 ire_refrele(save_ire); 8630 break; 8631 } 8632 8633 /* 8634 * In the case of multirouting, a copy 8635 * of the packet is made before it is sent. 8636 * The copy is used in the next 8637 * loop to attempt another resolution. 8638 */ 8639 xmit_mp = first_mp; 8640 if ((sire != NULL) && 8641 (sire->ire_flags & RTF_MULTIRT)) { 8642 copy_mp = copymsg(first_mp); 8643 if (copy_mp != NULL) { 8644 xmit_mp = copy_mp; 8645 MULTIRT_DEBUG_TAG(first_mp); 8646 } 8647 } 8648 ire_add_then_send(q, ire, xmit_mp); 8649 8650 /* Assert that it is not deleted yet. */ 8651 ASSERT(save_ire->ire_ptpn != NULL); 8652 IRB_REFRELE(save_ire->ire_bucket); 8653 ire_refrele(save_ire); 8654 8655 if (copy_mp != NULL) { 8656 /* 8657 * If we found a (no)resolver, we ignore any 8658 * trailing top priority IRE_CACHE in further 8659 * loops. This ensures that we do not omit any 8660 * (no)resolver. 8661 * This IRE_CACHE, if any, will be processed 8662 * by another thread entering ip_newroute(). 8663 * IRE_CACHE entries, if any, will be processed 8664 * by another thread entering ip_newroute(), 8665 * (upon resolver response, for instance). 8666 * This aims to force parallel multirt 8667 * resolutions as soon as a packet must be sent. 8668 * In the best case, after the tx of only one 8669 * packet, all reachable routes are resolved. 8670 * Otherwise, the resolution of all RTF_MULTIRT 8671 * routes would require several emissions. 8672 */ 8673 multirt_flags &= ~MULTIRT_CACHEGW; 8674 8675 /* 8676 * Search for the next unresolved multirt 8677 * route. 8678 */ 8679 copy_mp = NULL; 8680 save_ire = NULL; 8681 ire = NULL; 8682 multirt_resolve_next = B_TRUE; 8683 continue; 8684 } 8685 8686 /* 8687 * Don't need sire anymore 8688 */ 8689 if (sire != NULL) 8690 ire_refrele(sire); 8691 8692 ipif_refrele(src_ipif); 8693 ill_refrele(dst_ill); 8694 return; 8695 } 8696 case IRE_IF_RESOLVER: 8697 /* 8698 * We can't build an IRE_CACHE yet, but at least we 8699 * found a resolver that can help. 8700 */ 8701 res_mp = dst_ill->ill_resolver_mp; 8702 if (!OK_RESOLVER_MP(res_mp)) 8703 break; 8704 8705 /* 8706 * To be at this point in the code with a non-zero gw 8707 * means that dst is reachable through a gateway that 8708 * we have never resolved. By changing dst to the gw 8709 * addr we resolve the gateway first. 8710 * When ire_add_then_send() tries to put the IP dg 8711 * to dst, it will reenter ip_newroute() at which 8712 * time we will find the IRE_CACHE for the gw and 8713 * create another IRE_CACHE in case IRE_CACHE above. 8714 */ 8715 if (gw != INADDR_ANY) { 8716 /* 8717 * The source ipif that was determined above was 8718 * relative to the destination address, not the 8719 * gateway's. If src_ipif was not taken out of 8720 * the IRE_IF_RESOLVER entry, we'll need to call 8721 * ipif_select_source() again. 8722 */ 8723 if (src_ipif != ire->ire_ipif) { 8724 ipif_refrele(src_ipif); 8725 src_ipif = ipif_select_source(dst_ill, 8726 gw, zoneid); 8727 if (src_ipif == NULL) { 8728 if (ip_debug > 2) { 8729 pr_addr_dbg( 8730 "ip_newroute: no " 8731 "src for gw %s ", 8732 AF_INET, &gw); 8733 printf("through " 8734 "interface %s\n", 8735 dst_ill->ill_name); 8736 } 8737 goto icmp_err_ret; 8738 } 8739 } 8740 save_dst = dst; 8741 dst = gw; 8742 gw = INADDR_ANY; 8743 } 8744 8745 /* 8746 * We obtain a partial IRE_CACHE which we will pass 8747 * along with the resolver query. When the response 8748 * comes back it will be there ready for us to add. 8749 * The ire_max_frag is atomically set under the 8750 * irebucket lock in ire_add_v[46]. 8751 */ 8752 8753 ire = ire_create_mp( 8754 (uchar_t *)&dst, /* dest address */ 8755 (uchar_t *)&ip_g_all_ones, /* mask */ 8756 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8757 (uchar_t *)&gw, /* gateway address */ 8758 NULL, /* ire_max_frag */ 8759 NULL, /* no src nce */ 8760 dst_ill->ill_rq, /* recv-from queue */ 8761 dst_ill->ill_wq, /* send-to queue */ 8762 IRE_CACHE, 8763 src_ipif, /* Interface ipif */ 8764 save_ire->ire_mask, /* Parent mask */ 8765 0, 8766 save_ire->ire_ihandle, /* Interface handle */ 8767 0, /* flags if any */ 8768 &(save_ire->ire_uinfo), 8769 NULL, 8770 NULL, 8771 ipst); 8772 8773 if (ire == NULL) { 8774 ire_refrele(save_ire); 8775 break; 8776 } 8777 8778 if ((sire != NULL) && 8779 (sire->ire_flags & RTF_MULTIRT)) { 8780 copy_mp = copymsg(first_mp); 8781 if (copy_mp != NULL) 8782 MULTIRT_DEBUG_TAG(copy_mp); 8783 } 8784 8785 ire->ire_marks |= ire_marks; 8786 8787 /* 8788 * Construct message chain for the resolver 8789 * of the form: 8790 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8791 * Packet could contain a IPSEC_OUT mp. 8792 * 8793 * NOTE : ire will be added later when the response 8794 * comes back from ARP. If the response does not 8795 * come back, ARP frees the packet. For this reason, 8796 * we can't REFHOLD the bucket of save_ire to prevent 8797 * deletions. We may not be able to REFRELE the bucket 8798 * if the response never comes back. Thus, before 8799 * adding the ire, ire_add_v4 will make sure that the 8800 * interface route does not get deleted. This is the 8801 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8802 * where we can always prevent deletions because of 8803 * the synchronous nature of adding IRES i.e 8804 * ire_add_then_send is called after creating the IRE. 8805 */ 8806 ASSERT(ire->ire_mp != NULL); 8807 ire->ire_mp->b_cont = first_mp; 8808 /* Have saved_mp handy, for cleanup if canput fails */ 8809 saved_mp = mp; 8810 mp = copyb(res_mp); 8811 if (mp == NULL) { 8812 /* Prepare for cleanup */ 8813 mp = saved_mp; /* pkt */ 8814 ire_delete(ire); /* ire_mp */ 8815 ire = NULL; 8816 ire_refrele(save_ire); 8817 if (copy_mp != NULL) { 8818 MULTIRT_DEBUG_UNTAG(copy_mp); 8819 freemsg(copy_mp); 8820 copy_mp = NULL; 8821 } 8822 break; 8823 } 8824 linkb(mp, ire->ire_mp); 8825 8826 /* 8827 * Fill in the source and dest addrs for the resolver. 8828 * NOTE: this depends on memory layouts imposed by 8829 * ill_init(). 8830 */ 8831 areq = (areq_t *)mp->b_rptr; 8832 addrp = (ipaddr_t *)((char *)areq + 8833 areq->areq_sender_addr_offset); 8834 if (do_attach_ill) { 8835 /* 8836 * This is bind to no failover case. 8837 * arp packet also must go out on attach_ill. 8838 */ 8839 ASSERT(ipha->ipha_src != NULL); 8840 *addrp = ipha->ipha_src; 8841 } else { 8842 *addrp = save_ire->ire_src_addr; 8843 } 8844 8845 ire_refrele(save_ire); 8846 addrp = (ipaddr_t *)((char *)areq + 8847 areq->areq_target_addr_offset); 8848 *addrp = dst; 8849 /* Up to the resolver. */ 8850 if (canputnext(dst_ill->ill_rq) && 8851 !(dst_ill->ill_arp_closing)) { 8852 putnext(dst_ill->ill_rq, mp); 8853 ire = NULL; 8854 if (copy_mp != NULL) { 8855 /* 8856 * If we found a resolver, we ignore 8857 * any trailing top priority IRE_CACHE 8858 * in the further loops. This ensures 8859 * that we do not omit any resolver. 8860 * IRE_CACHE entries, if any, will be 8861 * processed next time we enter 8862 * ip_newroute(). 8863 */ 8864 multirt_flags &= ~MULTIRT_CACHEGW; 8865 /* 8866 * Search for the next unresolved 8867 * multirt route. 8868 */ 8869 first_mp = copy_mp; 8870 copy_mp = NULL; 8871 /* Prepare the next resolution loop. */ 8872 mp = first_mp; 8873 EXTRACT_PKT_MP(mp, first_mp, 8874 mctl_present); 8875 if (mctl_present) 8876 io = (ipsec_out_t *) 8877 first_mp->b_rptr; 8878 ipha = (ipha_t *)mp->b_rptr; 8879 8880 ASSERT(sire != NULL); 8881 8882 dst = save_dst; 8883 multirt_resolve_next = B_TRUE; 8884 continue; 8885 } 8886 8887 if (sire != NULL) 8888 ire_refrele(sire); 8889 8890 /* 8891 * The response will come back in ip_wput 8892 * with db_type IRE_DB_TYPE. 8893 */ 8894 ipif_refrele(src_ipif); 8895 ill_refrele(dst_ill); 8896 return; 8897 } else { 8898 /* Prepare for cleanup */ 8899 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8900 mp); 8901 mp->b_cont = NULL; 8902 freeb(mp); /* areq */ 8903 /* 8904 * this is an ire that is not added to the 8905 * cache. ire_freemblk will handle the release 8906 * of any resources associated with the ire. 8907 */ 8908 ire_delete(ire); /* ire_mp */ 8909 mp = saved_mp; /* pkt */ 8910 ire = NULL; 8911 if (copy_mp != NULL) { 8912 MULTIRT_DEBUG_UNTAG(copy_mp); 8913 freemsg(copy_mp); 8914 copy_mp = NULL; 8915 } 8916 break; 8917 } 8918 default: 8919 break; 8920 } 8921 } while (multirt_resolve_next); 8922 8923 ip1dbg(("ip_newroute: dropped\n")); 8924 /* Did this packet originate externally? */ 8925 if (mp->b_prev) { 8926 mp->b_next = NULL; 8927 mp->b_prev = NULL; 8928 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8929 } else { 8930 if (dst_ill != NULL) { 8931 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8932 } else { 8933 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8934 } 8935 } 8936 ASSERT(copy_mp == NULL); 8937 MULTIRT_DEBUG_UNTAG(first_mp); 8938 freemsg(first_mp); 8939 if (ire != NULL) 8940 ire_refrele(ire); 8941 if (sire != NULL) 8942 ire_refrele(sire); 8943 if (src_ipif != NULL) 8944 ipif_refrele(src_ipif); 8945 if (dst_ill != NULL) 8946 ill_refrele(dst_ill); 8947 return; 8948 8949 icmp_err_ret: 8950 ip1dbg(("ip_newroute: no route\n")); 8951 if (src_ipif != NULL) 8952 ipif_refrele(src_ipif); 8953 if (dst_ill != NULL) 8954 ill_refrele(dst_ill); 8955 if (sire != NULL) 8956 ire_refrele(sire); 8957 /* Did this packet originate externally? */ 8958 if (mp->b_prev) { 8959 mp->b_next = NULL; 8960 mp->b_prev = NULL; 8961 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8962 q = WR(q); 8963 } else { 8964 /* 8965 * There is no outgoing ill, so just increment the 8966 * system MIB. 8967 */ 8968 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8969 /* 8970 * Since ip_wput() isn't close to finished, we fill 8971 * in enough of the header for credible error reporting. 8972 */ 8973 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8974 /* Failed */ 8975 MULTIRT_DEBUG_UNTAG(first_mp); 8976 freemsg(first_mp); 8977 if (ire != NULL) 8978 ire_refrele(ire); 8979 return; 8980 } 8981 } 8982 8983 /* 8984 * At this point we will have ire only if RTF_BLACKHOLE 8985 * or RTF_REJECT flags are set on the IRE. It will not 8986 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8987 */ 8988 if (ire != NULL) { 8989 if (ire->ire_flags & RTF_BLACKHOLE) { 8990 ire_refrele(ire); 8991 MULTIRT_DEBUG_UNTAG(first_mp); 8992 freemsg(first_mp); 8993 return; 8994 } 8995 ire_refrele(ire); 8996 } 8997 if (ip_source_routed(ipha, ipst)) { 8998 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8999 zoneid, ipst); 9000 return; 9001 } 9002 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9003 } 9004 9005 ip_opt_info_t zero_info; 9006 9007 /* 9008 * IPv4 - 9009 * ip_newroute_ipif is called by ip_wput_multicast and 9010 * ip_rput_forward_multicast whenever we need to send 9011 * out a packet to a destination address for which we do not have specific 9012 * routing information. It is used when the packet will be sent out 9013 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 9014 * socket option is set or icmp error message wants to go out on a particular 9015 * interface for a unicast packet. 9016 * 9017 * In most cases, the destination address is resolved thanks to the ipif 9018 * intrinsic resolver. However, there are some cases where the call to 9019 * ip_newroute_ipif must take into account the potential presence of 9020 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9021 * that uses the interface. This is specified through flags, 9022 * which can be a combination of: 9023 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9024 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9025 * and flags. Additionally, the packet source address has to be set to 9026 * the specified address. The caller is thus expected to set this flag 9027 * if the packet has no specific source address yet. 9028 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9029 * flag, the resulting ire will inherit the flag. All unresolved routes 9030 * to the destination must be explored in the same call to 9031 * ip_newroute_ipif(). 9032 */ 9033 static void 9034 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9035 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9036 { 9037 areq_t *areq; 9038 ire_t *ire = NULL; 9039 mblk_t *res_mp; 9040 ipaddr_t *addrp; 9041 mblk_t *first_mp; 9042 ire_t *save_ire = NULL; 9043 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9044 ipif_t *src_ipif = NULL; 9045 ushort_t ire_marks = 0; 9046 ill_t *dst_ill = NULL; 9047 boolean_t mctl_present; 9048 ipsec_out_t *io; 9049 ipha_t *ipha; 9050 int ihandle = 0; 9051 mblk_t *saved_mp; 9052 ire_t *fire = NULL; 9053 mblk_t *copy_mp = NULL; 9054 boolean_t multirt_resolve_next; 9055 boolean_t unspec_src; 9056 ipaddr_t ipha_dst; 9057 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9058 9059 /* 9060 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9061 * here for uniformity 9062 */ 9063 ipif_refhold(ipif); 9064 9065 /* 9066 * This loop is run only once in most cases. 9067 * We loop to resolve further routes only when the destination 9068 * can be reached through multiple RTF_MULTIRT-flagged ires. 9069 */ 9070 do { 9071 if (dst_ill != NULL) { 9072 ill_refrele(dst_ill); 9073 dst_ill = NULL; 9074 } 9075 if (src_ipif != NULL) { 9076 ipif_refrele(src_ipif); 9077 src_ipif = NULL; 9078 } 9079 multirt_resolve_next = B_FALSE; 9080 9081 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9082 ipif->ipif_ill->ill_name)); 9083 9084 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9085 if (mctl_present) 9086 io = (ipsec_out_t *)first_mp->b_rptr; 9087 9088 ipha = (ipha_t *)mp->b_rptr; 9089 9090 /* 9091 * Save the packet destination address, we may need it after 9092 * the packet has been consumed. 9093 */ 9094 ipha_dst = ipha->ipha_dst; 9095 9096 /* 9097 * If the interface is a pt-pt interface we look for an 9098 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9099 * local_address and the pt-pt destination address. Otherwise 9100 * we just match the local address. 9101 * NOTE: dst could be different than ipha->ipha_dst in case 9102 * of sending igmp multicast packets over a point-to-point 9103 * connection. 9104 * Thus we must be careful enough to check ipha_dst to be a 9105 * multicast address, otherwise it will take xmit_if path for 9106 * multicast packets resulting into kernel stack overflow by 9107 * repeated calls to ip_newroute_ipif from ire_send(). 9108 */ 9109 if (CLASSD(ipha_dst) && 9110 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9111 goto err_ret; 9112 } 9113 9114 /* 9115 * We check if an IRE_OFFSUBNET for the addr that goes through 9116 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9117 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9118 * propagate its flags to the new ire. 9119 */ 9120 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9121 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9122 ip2dbg(("ip_newroute_ipif: " 9123 "ipif_lookup_multi_ire(" 9124 "ipif %p, dst %08x) = fire %p\n", 9125 (void *)ipif, ntohl(dst), (void *)fire)); 9126 } 9127 9128 if (mctl_present && io->ipsec_out_attach_if) { 9129 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9130 io->ipsec_out_ill_index, B_FALSE, ipst); 9131 9132 /* Failure case frees things for us. */ 9133 if (attach_ill == NULL) { 9134 ipif_refrele(ipif); 9135 if (fire != NULL) 9136 ire_refrele(fire); 9137 return; 9138 } 9139 9140 /* 9141 * Check if we need an ire that will not be 9142 * looked up by anybody else i.e. HIDDEN. 9143 */ 9144 if (ill_is_probeonly(attach_ill)) { 9145 ire_marks = IRE_MARK_HIDDEN; 9146 } 9147 /* 9148 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9149 * case. 9150 */ 9151 dst_ill = ipif->ipif_ill; 9152 /* attach_ill has been refheld by ip_grab_attach_ill */ 9153 ASSERT(dst_ill == attach_ill); 9154 } else { 9155 /* 9156 * If the interface belongs to an interface group, 9157 * make sure the next possible interface in the group 9158 * is used. This encourages load spreading among 9159 * peers in an interface group. 9160 * Note: load spreading is disabled for RTF_MULTIRT 9161 * routes. 9162 */ 9163 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9164 (fire->ire_flags & RTF_MULTIRT)) { 9165 /* 9166 * Don't perform outbound load spreading 9167 * in the case of an RTF_MULTIRT issued route, 9168 * we actually typically want to replicate 9169 * outgoing packets through particular 9170 * interfaces. 9171 */ 9172 dst_ill = ipif->ipif_ill; 9173 ill_refhold(dst_ill); 9174 } else { 9175 dst_ill = ip_newroute_get_dst_ill( 9176 ipif->ipif_ill); 9177 } 9178 if (dst_ill == NULL) { 9179 if (ip_debug > 2) { 9180 pr_addr_dbg("ip_newroute_ipif: " 9181 "no dst ill for dst %s\n", 9182 AF_INET, &dst); 9183 } 9184 goto err_ret; 9185 } 9186 } 9187 9188 /* 9189 * Pick a source address preferring non-deprecated ones. 9190 * Unlike ip_newroute, we don't do any source address 9191 * selection here since for multicast it really does not help 9192 * in inbound load spreading as in the unicast case. 9193 */ 9194 if ((flags & RTF_SETSRC) && (fire != NULL) && 9195 (fire->ire_flags & RTF_SETSRC)) { 9196 /* 9197 * As requested by flags, an IRE_OFFSUBNET was looked up 9198 * on that interface. This ire has RTF_SETSRC flag, so 9199 * the source address of the packet must be changed. 9200 * Check that the ipif matching the requested source 9201 * address still exists. 9202 */ 9203 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9204 zoneid, NULL, NULL, NULL, NULL, ipst); 9205 } 9206 9207 unspec_src = (connp != NULL && connp->conn_unspec_src); 9208 9209 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9210 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9211 (connp != NULL && ipif->ipif_zoneid != zoneid && 9212 ipif->ipif_zoneid != ALL_ZONES)) && 9213 (src_ipif == NULL) && 9214 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9215 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9216 if (src_ipif == NULL) { 9217 if (ip_debug > 2) { 9218 /* ip1dbg */ 9219 pr_addr_dbg("ip_newroute_ipif: " 9220 "no src for dst %s", 9221 AF_INET, &dst); 9222 } 9223 ip1dbg((" through interface %s\n", 9224 dst_ill->ill_name)); 9225 goto err_ret; 9226 } 9227 ipif_refrele(ipif); 9228 ipif = src_ipif; 9229 ipif_refhold(ipif); 9230 } 9231 if (src_ipif == NULL) { 9232 src_ipif = ipif; 9233 ipif_refhold(src_ipif); 9234 } 9235 9236 /* 9237 * Assign a source address while we have the conn. 9238 * We can't have ip_wput_ire pick a source address when the 9239 * packet returns from arp since conn_unspec_src might be set 9240 * and we lose the conn when going through arp. 9241 */ 9242 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9243 ipha->ipha_src = src_ipif->ipif_src_addr; 9244 9245 /* 9246 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9247 * that the outgoing interface does not have an interface ire. 9248 */ 9249 if (CLASSD(ipha_dst) && (connp == NULL || 9250 connp->conn_outgoing_ill == NULL) && 9251 infop->ip_opt_ill_index == 0) { 9252 /* ipif_to_ire returns an held ire */ 9253 ire = ipif_to_ire(ipif); 9254 if (ire == NULL) 9255 goto err_ret; 9256 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9257 goto err_ret; 9258 /* 9259 * ihandle is needed when the ire is added to 9260 * cache table. 9261 */ 9262 save_ire = ire; 9263 ihandle = save_ire->ire_ihandle; 9264 9265 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9266 "flags %04x\n", 9267 (void *)ire, (void *)ipif, flags)); 9268 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9269 (fire->ire_flags & RTF_MULTIRT)) { 9270 /* 9271 * As requested by flags, an IRE_OFFSUBNET was 9272 * looked up on that interface. This ire has 9273 * RTF_MULTIRT flag, so the resolution loop will 9274 * be re-entered to resolve additional routes on 9275 * other interfaces. For that purpose, a copy of 9276 * the packet is performed at this point. 9277 */ 9278 fire->ire_last_used_time = lbolt; 9279 copy_mp = copymsg(first_mp); 9280 if (copy_mp) { 9281 MULTIRT_DEBUG_TAG(copy_mp); 9282 } 9283 } 9284 if ((flags & RTF_SETSRC) && (fire != NULL) && 9285 (fire->ire_flags & RTF_SETSRC)) { 9286 /* 9287 * As requested by flags, an IRE_OFFSUBET was 9288 * looked up on that interface. This ire has 9289 * RTF_SETSRC flag, so the source address of the 9290 * packet must be changed. 9291 */ 9292 ipha->ipha_src = fire->ire_src_addr; 9293 } 9294 } else { 9295 ASSERT((connp == NULL) || 9296 (connp->conn_outgoing_ill != NULL) || 9297 (connp->conn_dontroute) || 9298 infop->ip_opt_ill_index != 0); 9299 /* 9300 * The only ways we can come here are: 9301 * 1) IP_BOUND_IF socket option is set 9302 * 2) SO_DONTROUTE socket option is set 9303 * 3) IP_PKTINFO option is passed in as ancillary data. 9304 * In all cases, the new ire will not be added 9305 * into cache table. 9306 */ 9307 ire_marks |= IRE_MARK_NOADD; 9308 } 9309 9310 switch (ipif->ipif_net_type) { 9311 case IRE_IF_NORESOLVER: { 9312 /* We have what we need to build an IRE_CACHE. */ 9313 9314 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9315 (dst_ill->ill_resolver_mp == NULL)) { 9316 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9317 "for IRE_IF_NORESOLVER ire %p has " 9318 "no ill_resolver_mp\n", 9319 (void *)dst_ill, (void *)ire)); 9320 break; 9321 } 9322 9323 /* 9324 * The new ire inherits the IRE_OFFSUBNET flags 9325 * and source address, if this was requested. 9326 */ 9327 ire = ire_create( 9328 (uchar_t *)&dst, /* dest address */ 9329 (uchar_t *)&ip_g_all_ones, /* mask */ 9330 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9331 NULL, /* gateway address */ 9332 &ipif->ipif_mtu, 9333 NULL, /* no src nce */ 9334 dst_ill->ill_rq, /* recv-from queue */ 9335 dst_ill->ill_wq, /* send-to queue */ 9336 IRE_CACHE, 9337 src_ipif, 9338 (save_ire != NULL ? save_ire->ire_mask : 0), 9339 (fire != NULL) ? /* Parent handle */ 9340 fire->ire_phandle : 0, 9341 ihandle, /* Interface handle */ 9342 (fire != NULL) ? 9343 (fire->ire_flags & 9344 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9345 (save_ire == NULL ? &ire_uinfo_null : 9346 &save_ire->ire_uinfo), 9347 NULL, 9348 NULL, 9349 ipst); 9350 9351 if (ire == NULL) { 9352 if (save_ire != NULL) 9353 ire_refrele(save_ire); 9354 break; 9355 } 9356 9357 ire->ire_marks |= ire_marks; 9358 9359 /* 9360 * If IRE_MARK_NOADD is set then we need to convert 9361 * the max_fragp to a useable value now. This is 9362 * normally done in ire_add_v[46]. We also need to 9363 * associate the ire with an nce (normally would be 9364 * done in ip_wput_nondata()). 9365 * 9366 * Note that IRE_MARK_NOADD packets created here 9367 * do not have a non-null ire_mp pointer. The null 9368 * value of ire_bucket indicates that they were 9369 * never added. 9370 */ 9371 if (ire->ire_marks & IRE_MARK_NOADD) { 9372 uint_t max_frag; 9373 9374 max_frag = *ire->ire_max_fragp; 9375 ire->ire_max_fragp = NULL; 9376 ire->ire_max_frag = max_frag; 9377 9378 if ((ire->ire_nce = ndp_lookup_v4( 9379 ire_to_ill(ire), 9380 (ire->ire_gateway_addr != INADDR_ANY ? 9381 &ire->ire_gateway_addr : &ire->ire_addr), 9382 B_FALSE)) == NULL) { 9383 if (save_ire != NULL) 9384 ire_refrele(save_ire); 9385 break; 9386 } 9387 ASSERT(ire->ire_nce->nce_state == 9388 ND_REACHABLE); 9389 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9390 } 9391 9392 /* Prevent save_ire from getting deleted */ 9393 if (save_ire != NULL) { 9394 IRB_REFHOLD(save_ire->ire_bucket); 9395 /* Has it been removed already ? */ 9396 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9397 IRB_REFRELE(save_ire->ire_bucket); 9398 ire_refrele(save_ire); 9399 break; 9400 } 9401 } 9402 9403 ire_add_then_send(q, ire, first_mp); 9404 9405 /* Assert that save_ire is not deleted yet. */ 9406 if (save_ire != NULL) { 9407 ASSERT(save_ire->ire_ptpn != NULL); 9408 IRB_REFRELE(save_ire->ire_bucket); 9409 ire_refrele(save_ire); 9410 save_ire = NULL; 9411 } 9412 if (fire != NULL) { 9413 ire_refrele(fire); 9414 fire = NULL; 9415 } 9416 9417 /* 9418 * the resolution loop is re-entered if this 9419 * was requested through flags and if we 9420 * actually are in a multirouting case. 9421 */ 9422 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9423 boolean_t need_resolve = 9424 ire_multirt_need_resolve(ipha_dst, 9425 MBLK_GETLABEL(copy_mp), ipst); 9426 if (!need_resolve) { 9427 MULTIRT_DEBUG_UNTAG(copy_mp); 9428 freemsg(copy_mp); 9429 copy_mp = NULL; 9430 } else { 9431 /* 9432 * ipif_lookup_group() calls 9433 * ire_lookup_multi() that uses 9434 * ire_ftable_lookup() to find 9435 * an IRE_INTERFACE for the group. 9436 * In the multirt case, 9437 * ire_lookup_multi() then invokes 9438 * ire_multirt_lookup() to find 9439 * the next resolvable ire. 9440 * As a result, we obtain an new 9441 * interface, derived from the 9442 * next ire. 9443 */ 9444 ipif_refrele(ipif); 9445 ipif = ipif_lookup_group(ipha_dst, 9446 zoneid, ipst); 9447 ip2dbg(("ip_newroute_ipif: " 9448 "multirt dst %08x, ipif %p\n", 9449 htonl(dst), (void *)ipif)); 9450 if (ipif != NULL) { 9451 mp = copy_mp; 9452 copy_mp = NULL; 9453 multirt_resolve_next = B_TRUE; 9454 continue; 9455 } else { 9456 freemsg(copy_mp); 9457 } 9458 } 9459 } 9460 if (ipif != NULL) 9461 ipif_refrele(ipif); 9462 ill_refrele(dst_ill); 9463 ipif_refrele(src_ipif); 9464 return; 9465 } 9466 case IRE_IF_RESOLVER: 9467 /* 9468 * We can't build an IRE_CACHE yet, but at least 9469 * we found a resolver that can help. 9470 */ 9471 res_mp = dst_ill->ill_resolver_mp; 9472 if (!OK_RESOLVER_MP(res_mp)) 9473 break; 9474 9475 /* 9476 * We obtain a partial IRE_CACHE which we will pass 9477 * along with the resolver query. When the response 9478 * comes back it will be there ready for us to add. 9479 * The new ire inherits the IRE_OFFSUBNET flags 9480 * and source address, if this was requested. 9481 * The ire_max_frag is atomically set under the 9482 * irebucket lock in ire_add_v[46]. Only in the 9483 * case of IRE_MARK_NOADD, we set it here itself. 9484 */ 9485 ire = ire_create_mp( 9486 (uchar_t *)&dst, /* dest address */ 9487 (uchar_t *)&ip_g_all_ones, /* mask */ 9488 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9489 NULL, /* gateway address */ 9490 (ire_marks & IRE_MARK_NOADD) ? 9491 ipif->ipif_mtu : 0, /* max_frag */ 9492 NULL, /* no src nce */ 9493 dst_ill->ill_rq, /* recv-from queue */ 9494 dst_ill->ill_wq, /* send-to queue */ 9495 IRE_CACHE, 9496 src_ipif, 9497 (save_ire != NULL ? save_ire->ire_mask : 0), 9498 (fire != NULL) ? /* Parent handle */ 9499 fire->ire_phandle : 0, 9500 ihandle, /* Interface handle */ 9501 (fire != NULL) ? /* flags if any */ 9502 (fire->ire_flags & 9503 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9504 (save_ire == NULL ? &ire_uinfo_null : 9505 &save_ire->ire_uinfo), 9506 NULL, 9507 NULL, 9508 ipst); 9509 9510 if (save_ire != NULL) { 9511 ire_refrele(save_ire); 9512 save_ire = NULL; 9513 } 9514 if (ire == NULL) 9515 break; 9516 9517 ire->ire_marks |= ire_marks; 9518 /* 9519 * Construct message chain for the resolver of the 9520 * form: 9521 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9522 * 9523 * NOTE : ire will be added later when the response 9524 * comes back from ARP. If the response does not 9525 * come back, ARP frees the packet. For this reason, 9526 * we can't REFHOLD the bucket of save_ire to prevent 9527 * deletions. We may not be able to REFRELE the 9528 * bucket if the response never comes back. 9529 * Thus, before adding the ire, ire_add_v4 will make 9530 * sure that the interface route does not get deleted. 9531 * This is the only case unlike ip_newroute_v6, 9532 * ip_newroute_ipif_v6 where we can always prevent 9533 * deletions because ire_add_then_send is called after 9534 * creating the IRE. 9535 * If IRE_MARK_NOADD is set, then ire_add_then_send 9536 * does not add this IRE into the IRE CACHE. 9537 */ 9538 ASSERT(ire->ire_mp != NULL); 9539 ire->ire_mp->b_cont = first_mp; 9540 /* Have saved_mp handy, for cleanup if canput fails */ 9541 saved_mp = mp; 9542 mp = copyb(res_mp); 9543 if (mp == NULL) { 9544 /* Prepare for cleanup */ 9545 mp = saved_mp; /* pkt */ 9546 ire_delete(ire); /* ire_mp */ 9547 ire = NULL; 9548 if (copy_mp != NULL) { 9549 MULTIRT_DEBUG_UNTAG(copy_mp); 9550 freemsg(copy_mp); 9551 copy_mp = NULL; 9552 } 9553 break; 9554 } 9555 linkb(mp, ire->ire_mp); 9556 9557 /* 9558 * Fill in the source and dest addrs for the resolver. 9559 * NOTE: this depends on memory layouts imposed by 9560 * ill_init(). 9561 */ 9562 areq = (areq_t *)mp->b_rptr; 9563 addrp = (ipaddr_t *)((char *)areq + 9564 areq->areq_sender_addr_offset); 9565 *addrp = ire->ire_src_addr; 9566 addrp = (ipaddr_t *)((char *)areq + 9567 areq->areq_target_addr_offset); 9568 *addrp = dst; 9569 /* Up to the resolver. */ 9570 if (canputnext(dst_ill->ill_rq) && 9571 !(dst_ill->ill_arp_closing)) { 9572 putnext(dst_ill->ill_rq, mp); 9573 /* 9574 * The response will come back in ip_wput 9575 * with db_type IRE_DB_TYPE. 9576 */ 9577 } else { 9578 mp->b_cont = NULL; 9579 freeb(mp); /* areq */ 9580 ire_delete(ire); /* ire_mp */ 9581 saved_mp->b_next = NULL; 9582 saved_mp->b_prev = NULL; 9583 freemsg(first_mp); /* pkt */ 9584 ip2dbg(("ip_newroute_ipif: dropped\n")); 9585 } 9586 9587 if (fire != NULL) { 9588 ire_refrele(fire); 9589 fire = NULL; 9590 } 9591 9592 9593 /* 9594 * The resolution loop is re-entered if this was 9595 * requested through flags and we actually are 9596 * in a multirouting case. 9597 */ 9598 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9599 boolean_t need_resolve = 9600 ire_multirt_need_resolve(ipha_dst, 9601 MBLK_GETLABEL(copy_mp), ipst); 9602 if (!need_resolve) { 9603 MULTIRT_DEBUG_UNTAG(copy_mp); 9604 freemsg(copy_mp); 9605 copy_mp = NULL; 9606 } else { 9607 /* 9608 * ipif_lookup_group() calls 9609 * ire_lookup_multi() that uses 9610 * ire_ftable_lookup() to find 9611 * an IRE_INTERFACE for the group. 9612 * In the multirt case, 9613 * ire_lookup_multi() then invokes 9614 * ire_multirt_lookup() to find 9615 * the next resolvable ire. 9616 * As a result, we obtain an new 9617 * interface, derived from the 9618 * next ire. 9619 */ 9620 ipif_refrele(ipif); 9621 ipif = ipif_lookup_group(ipha_dst, 9622 zoneid, ipst); 9623 if (ipif != NULL) { 9624 mp = copy_mp; 9625 copy_mp = NULL; 9626 multirt_resolve_next = B_TRUE; 9627 continue; 9628 } else { 9629 freemsg(copy_mp); 9630 } 9631 } 9632 } 9633 if (ipif != NULL) 9634 ipif_refrele(ipif); 9635 ill_refrele(dst_ill); 9636 ipif_refrele(src_ipif); 9637 return; 9638 default: 9639 break; 9640 } 9641 } while (multirt_resolve_next); 9642 9643 err_ret: 9644 ip2dbg(("ip_newroute_ipif: dropped\n")); 9645 if (fire != NULL) 9646 ire_refrele(fire); 9647 ipif_refrele(ipif); 9648 /* Did this packet originate externally? */ 9649 if (dst_ill != NULL) 9650 ill_refrele(dst_ill); 9651 if (src_ipif != NULL) 9652 ipif_refrele(src_ipif); 9653 if (mp->b_prev || mp->b_next) { 9654 mp->b_next = NULL; 9655 mp->b_prev = NULL; 9656 } else { 9657 /* 9658 * Since ip_wput() isn't close to finished, we fill 9659 * in enough of the header for credible error reporting. 9660 */ 9661 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9662 /* Failed */ 9663 freemsg(first_mp); 9664 if (ire != NULL) 9665 ire_refrele(ire); 9666 return; 9667 } 9668 } 9669 /* 9670 * At this point we will have ire only if RTF_BLACKHOLE 9671 * or RTF_REJECT flags are set on the IRE. It will not 9672 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9673 */ 9674 if (ire != NULL) { 9675 if (ire->ire_flags & RTF_BLACKHOLE) { 9676 ire_refrele(ire); 9677 freemsg(first_mp); 9678 return; 9679 } 9680 ire_refrele(ire); 9681 } 9682 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9683 } 9684 9685 /* Name/Value Table Lookup Routine */ 9686 char * 9687 ip_nv_lookup(nv_t *nv, int value) 9688 { 9689 if (!nv) 9690 return (NULL); 9691 for (; nv->nv_name; nv++) { 9692 if (nv->nv_value == value) 9693 return (nv->nv_name); 9694 } 9695 return ("unknown"); 9696 } 9697 9698 /* 9699 * This is a module open, i.e. this is a control stream for access 9700 * to a DLPI device. We allocate an ill_t as the instance data in 9701 * this case. 9702 */ 9703 int 9704 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9705 { 9706 ill_t *ill; 9707 int err; 9708 zoneid_t zoneid; 9709 netstack_t *ns; 9710 ip_stack_t *ipst; 9711 9712 /* 9713 * Prevent unprivileged processes from pushing IP so that 9714 * they can't send raw IP. 9715 */ 9716 if (secpolicy_net_rawaccess(credp) != 0) 9717 return (EPERM); 9718 9719 ns = netstack_find_by_cred(credp); 9720 ASSERT(ns != NULL); 9721 ipst = ns->netstack_ip; 9722 ASSERT(ipst != NULL); 9723 9724 /* 9725 * For exclusive stacks we set the zoneid to zero 9726 * to make IP operate as if in the global zone. 9727 */ 9728 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9729 zoneid = GLOBAL_ZONEID; 9730 else 9731 zoneid = crgetzoneid(credp); 9732 9733 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9734 q->q_ptr = WR(q)->q_ptr = ill; 9735 ill->ill_ipst = ipst; 9736 ill->ill_zoneid = zoneid; 9737 9738 /* 9739 * ill_init initializes the ill fields and then sends down 9740 * down a DL_INFO_REQ after calling qprocson. 9741 */ 9742 err = ill_init(q, ill); 9743 if (err != 0) { 9744 mi_free(ill); 9745 netstack_rele(ipst->ips_netstack); 9746 q->q_ptr = NULL; 9747 WR(q)->q_ptr = NULL; 9748 return (err); 9749 } 9750 9751 /* ill_init initializes the ipsq marking this thread as writer */ 9752 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9753 /* Wait for the DL_INFO_ACK */ 9754 mutex_enter(&ill->ill_lock); 9755 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9756 /* 9757 * Return value of 0 indicates a pending signal. 9758 */ 9759 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9760 if (err == 0) { 9761 mutex_exit(&ill->ill_lock); 9762 (void) ip_close(q, 0); 9763 return (EINTR); 9764 } 9765 } 9766 mutex_exit(&ill->ill_lock); 9767 9768 /* 9769 * ip_rput_other could have set an error in ill_error on 9770 * receipt of M_ERROR. 9771 */ 9772 9773 err = ill->ill_error; 9774 if (err != 0) { 9775 (void) ip_close(q, 0); 9776 return (err); 9777 } 9778 9779 ill->ill_credp = credp; 9780 crhold(credp); 9781 9782 mutex_enter(&ipst->ips_ip_mi_lock); 9783 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9784 credp); 9785 mutex_exit(&ipst->ips_ip_mi_lock); 9786 if (err) { 9787 (void) ip_close(q, 0); 9788 return (err); 9789 } 9790 return (0); 9791 } 9792 9793 /* For /dev/ip aka AF_INET open */ 9794 int 9795 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9796 { 9797 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9798 } 9799 9800 /* For /dev/ip6 aka AF_INET6 open */ 9801 int 9802 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9803 { 9804 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9805 } 9806 9807 /* IP open routine. */ 9808 int 9809 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9810 boolean_t isv6) 9811 { 9812 conn_t *connp; 9813 major_t maj; 9814 zoneid_t zoneid; 9815 netstack_t *ns; 9816 ip_stack_t *ipst; 9817 9818 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9819 9820 /* Allow reopen. */ 9821 if (q->q_ptr != NULL) 9822 return (0); 9823 9824 if (sflag & MODOPEN) { 9825 /* This is a module open */ 9826 return (ip_modopen(q, devp, flag, sflag, credp)); 9827 } 9828 9829 ns = netstack_find_by_cred(credp); 9830 ASSERT(ns != NULL); 9831 ipst = ns->netstack_ip; 9832 ASSERT(ipst != NULL); 9833 9834 /* 9835 * For exclusive stacks we set the zoneid to zero 9836 * to make IP operate as if in the global zone. 9837 */ 9838 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9839 zoneid = GLOBAL_ZONEID; 9840 else 9841 zoneid = crgetzoneid(credp); 9842 9843 /* 9844 * We are opening as a device. This is an IP client stream, and we 9845 * allocate an conn_t as the instance data. 9846 */ 9847 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9848 9849 /* 9850 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9851 * done by netstack_find_by_cred() 9852 */ 9853 netstack_rele(ipst->ips_netstack); 9854 9855 connp->conn_zoneid = zoneid; 9856 9857 connp->conn_upq = q; 9858 q->q_ptr = WR(q)->q_ptr = connp; 9859 9860 if (flag & SO_SOCKSTR) 9861 connp->conn_flags |= IPCL_SOCKET; 9862 9863 /* Minor tells us which /dev entry was opened */ 9864 if (isv6) { 9865 connp->conn_flags |= IPCL_ISV6; 9866 connp->conn_af_isv6 = B_TRUE; 9867 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9868 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9869 } else { 9870 connp->conn_af_isv6 = B_FALSE; 9871 connp->conn_pkt_isv6 = B_FALSE; 9872 } 9873 9874 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9875 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9876 connp->conn_minor_arena = ip_minor_arena_la; 9877 } else { 9878 /* 9879 * Either minor numbers in the large arena were exhausted 9880 * or a non socket application is doing the open. 9881 * Try to allocate from the small arena. 9882 */ 9883 if ((connp->conn_dev = 9884 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9885 /* CONN_DEC_REF takes care of netstack_rele() */ 9886 q->q_ptr = WR(q)->q_ptr = NULL; 9887 CONN_DEC_REF(connp); 9888 return (EBUSY); 9889 } 9890 connp->conn_minor_arena = ip_minor_arena_sa; 9891 } 9892 9893 maj = getemajor(*devp); 9894 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9895 9896 /* 9897 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9898 */ 9899 connp->conn_cred = credp; 9900 9901 /* 9902 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9903 */ 9904 connp->conn_recv = ip_conn_input; 9905 9906 crhold(connp->conn_cred); 9907 9908 /* 9909 * If the caller has the process-wide flag set, then default to MAC 9910 * exempt mode. This allows read-down to unlabeled hosts. 9911 */ 9912 if (getpflags(NET_MAC_AWARE, credp) != 0) 9913 connp->conn_mac_exempt = B_TRUE; 9914 9915 connp->conn_rq = q; 9916 connp->conn_wq = WR(q); 9917 9918 /* Non-zero default values */ 9919 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9920 9921 /* 9922 * Make the conn globally visible to walkers 9923 */ 9924 ASSERT(connp->conn_ref == 1); 9925 mutex_enter(&connp->conn_lock); 9926 connp->conn_state_flags &= ~CONN_INCIPIENT; 9927 mutex_exit(&connp->conn_lock); 9928 9929 qprocson(q); 9930 9931 return (0); 9932 } 9933 9934 /* 9935 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9936 * Note that there is no race since either ip_output function works - it 9937 * is just an optimization to enter the best ip_output routine directly. 9938 */ 9939 void 9940 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9941 ip_stack_t *ipst) 9942 { 9943 if (isv6) { 9944 if (bump_mib) { 9945 BUMP_MIB(&ipst->ips_ip6_mib, 9946 ipIfStatsOutSwitchIPVersion); 9947 } 9948 connp->conn_send = ip_output_v6; 9949 connp->conn_pkt_isv6 = B_TRUE; 9950 } else { 9951 if (bump_mib) { 9952 BUMP_MIB(&ipst->ips_ip_mib, 9953 ipIfStatsOutSwitchIPVersion); 9954 } 9955 connp->conn_send = ip_output; 9956 connp->conn_pkt_isv6 = B_FALSE; 9957 } 9958 9959 } 9960 9961 /* 9962 * See if IPsec needs loading because of the options in mp. 9963 */ 9964 static boolean_t 9965 ipsec_opt_present(mblk_t *mp) 9966 { 9967 uint8_t *optcp, *next_optcp, *opt_endcp; 9968 struct opthdr *opt; 9969 struct T_opthdr *topt; 9970 int opthdr_len; 9971 t_uscalar_t optname, optlevel; 9972 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9973 ipsec_req_t *ipsr; 9974 9975 /* 9976 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9977 * return TRUE. 9978 */ 9979 9980 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9981 opt_endcp = optcp + tor->OPT_length; 9982 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9983 opthdr_len = sizeof (struct T_opthdr); 9984 } else { /* O_OPTMGMT_REQ */ 9985 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9986 opthdr_len = sizeof (struct opthdr); 9987 } 9988 for (; optcp < opt_endcp; optcp = next_optcp) { 9989 if (optcp + opthdr_len > opt_endcp) 9990 return (B_FALSE); /* Not enough option header. */ 9991 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9992 topt = (struct T_opthdr *)optcp; 9993 optlevel = topt->level; 9994 optname = topt->name; 9995 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9996 } else { 9997 opt = (struct opthdr *)optcp; 9998 optlevel = opt->level; 9999 optname = opt->name; 10000 next_optcp = optcp + opthdr_len + 10001 _TPI_ALIGN_OPT(opt->len); 10002 } 10003 if ((next_optcp < optcp) || /* wraparound pointer space */ 10004 ((next_optcp >= opt_endcp) && /* last option bad len */ 10005 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10006 return (B_FALSE); /* bad option buffer */ 10007 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10008 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10009 /* 10010 * Check to see if it's an all-bypass or all-zeroes 10011 * IPsec request. Don't bother loading IPsec if 10012 * the socket doesn't want to use it. (A good example 10013 * is a bypass request.) 10014 * 10015 * Basically, if any of the non-NEVER bits are set, 10016 * load IPsec. 10017 */ 10018 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10019 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10020 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10021 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10022 != 0) 10023 return (B_TRUE); 10024 } 10025 } 10026 return (B_FALSE); 10027 } 10028 10029 /* 10030 * If conn is is waiting for ipsec to finish loading, kick it. 10031 */ 10032 /* ARGSUSED */ 10033 static void 10034 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10035 { 10036 t_scalar_t optreq_prim; 10037 mblk_t *mp; 10038 cred_t *cr; 10039 int err = 0; 10040 10041 /* 10042 * This function is called, after ipsec loading is complete. 10043 * Since IP checks exclusively and atomically (i.e it prevents 10044 * ipsec load from completing until ip_optcom_req completes) 10045 * whether ipsec load is complete, there cannot be a race with IP 10046 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10047 */ 10048 mutex_enter(&connp->conn_lock); 10049 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10050 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10051 mp = connp->conn_ipsec_opt_mp; 10052 connp->conn_ipsec_opt_mp = NULL; 10053 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10054 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10055 mutex_exit(&connp->conn_lock); 10056 10057 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10058 10059 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10060 if (optreq_prim == T_OPTMGMT_REQ) { 10061 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10062 &ip_opt_obj, B_FALSE); 10063 } else { 10064 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10065 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10066 &ip_opt_obj, B_FALSE); 10067 } 10068 if (err != EINPROGRESS) 10069 CONN_OPER_PENDING_DONE(connp); 10070 return; 10071 } 10072 mutex_exit(&connp->conn_lock); 10073 } 10074 10075 /* 10076 * Called from the ipsec_loader thread, outside any perimeter, to tell 10077 * ip qenable any of the queues waiting for the ipsec loader to 10078 * complete. 10079 */ 10080 void 10081 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10082 { 10083 netstack_t *ns = ipss->ipsec_netstack; 10084 10085 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10086 } 10087 10088 /* 10089 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10090 * determines the grp on which it has to become exclusive, queues the mp 10091 * and sq draining restarts the optmgmt 10092 */ 10093 static boolean_t 10094 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10095 { 10096 conn_t *connp = Q_TO_CONN(q); 10097 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10098 10099 /* 10100 * Take IPsec requests and treat them special. 10101 */ 10102 if (ipsec_opt_present(mp)) { 10103 /* First check if IPsec is loaded. */ 10104 mutex_enter(&ipss->ipsec_loader_lock); 10105 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10106 mutex_exit(&ipss->ipsec_loader_lock); 10107 return (B_FALSE); 10108 } 10109 mutex_enter(&connp->conn_lock); 10110 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10111 10112 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10113 connp->conn_ipsec_opt_mp = mp; 10114 mutex_exit(&connp->conn_lock); 10115 mutex_exit(&ipss->ipsec_loader_lock); 10116 10117 ipsec_loader_loadnow(ipss); 10118 return (B_TRUE); 10119 } 10120 return (B_FALSE); 10121 } 10122 10123 /* 10124 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10125 * all of them are copied to the conn_t. If the req is "zero", the policy is 10126 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10127 * fields. 10128 * We keep only the latest setting of the policy and thus policy setting 10129 * is not incremental/cumulative. 10130 * 10131 * Requests to set policies with multiple alternative actions will 10132 * go through a different API. 10133 */ 10134 int 10135 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10136 { 10137 uint_t ah_req = 0; 10138 uint_t esp_req = 0; 10139 uint_t se_req = 0; 10140 ipsec_selkey_t sel; 10141 ipsec_act_t *actp = NULL; 10142 uint_t nact; 10143 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10144 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10145 ipsec_policy_root_t *pr; 10146 ipsec_policy_head_t *ph; 10147 int fam; 10148 boolean_t is_pol_reset; 10149 int error = 0; 10150 netstack_t *ns = connp->conn_netstack; 10151 ip_stack_t *ipst = ns->netstack_ip; 10152 ipsec_stack_t *ipss = ns->netstack_ipsec; 10153 10154 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10155 10156 /* 10157 * The IP_SEC_OPT option does not allow variable length parameters, 10158 * hence a request cannot be NULL. 10159 */ 10160 if (req == NULL) 10161 return (EINVAL); 10162 10163 ah_req = req->ipsr_ah_req; 10164 esp_req = req->ipsr_esp_req; 10165 se_req = req->ipsr_self_encap_req; 10166 10167 /* 10168 * Are we dealing with a request to reset the policy (i.e. 10169 * zero requests). 10170 */ 10171 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10172 (esp_req & REQ_MASK) == 0 && 10173 (se_req & REQ_MASK) == 0); 10174 10175 if (!is_pol_reset) { 10176 /* 10177 * If we couldn't load IPsec, fail with "protocol 10178 * not supported". 10179 * IPsec may not have been loaded for a request with zero 10180 * policies, so we don't fail in this case. 10181 */ 10182 mutex_enter(&ipss->ipsec_loader_lock); 10183 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10184 mutex_exit(&ipss->ipsec_loader_lock); 10185 return (EPROTONOSUPPORT); 10186 } 10187 mutex_exit(&ipss->ipsec_loader_lock); 10188 10189 /* 10190 * Test for valid requests. Invalid algorithms 10191 * need to be tested by IPsec code because new 10192 * algorithms can be added dynamically. 10193 */ 10194 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10195 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10196 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10197 return (EINVAL); 10198 } 10199 10200 /* 10201 * Only privileged users can issue these 10202 * requests. 10203 */ 10204 if (((ah_req & IPSEC_PREF_NEVER) || 10205 (esp_req & IPSEC_PREF_NEVER) || 10206 (se_req & IPSEC_PREF_NEVER)) && 10207 secpolicy_ip_config(cr, B_FALSE) != 0) { 10208 return (EPERM); 10209 } 10210 10211 /* 10212 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10213 * are mutually exclusive. 10214 */ 10215 if (((ah_req & REQ_MASK) == REQ_MASK) || 10216 ((esp_req & REQ_MASK) == REQ_MASK) || 10217 ((se_req & REQ_MASK) == REQ_MASK)) { 10218 /* Both of them are set */ 10219 return (EINVAL); 10220 } 10221 } 10222 10223 mutex_enter(&connp->conn_lock); 10224 10225 /* 10226 * If we have already cached policies in ip_bind_connected*(), don't 10227 * let them change now. We cache policies for connections 10228 * whose src,dst [addr, port] is known. 10229 */ 10230 if (connp->conn_policy_cached) { 10231 mutex_exit(&connp->conn_lock); 10232 return (EINVAL); 10233 } 10234 10235 /* 10236 * We have a zero policies, reset the connection policy if already 10237 * set. This will cause the connection to inherit the 10238 * global policy, if any. 10239 */ 10240 if (is_pol_reset) { 10241 if (connp->conn_policy != NULL) { 10242 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10243 connp->conn_policy = NULL; 10244 } 10245 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10246 connp->conn_in_enforce_policy = B_FALSE; 10247 connp->conn_out_enforce_policy = B_FALSE; 10248 mutex_exit(&connp->conn_lock); 10249 return (0); 10250 } 10251 10252 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10253 ipst->ips_netstack); 10254 if (ph == NULL) 10255 goto enomem; 10256 10257 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10258 if (actp == NULL) 10259 goto enomem; 10260 10261 /* 10262 * Always allocate IPv4 policy entries, since they can also 10263 * apply to ipv6 sockets being used in ipv4-compat mode. 10264 */ 10265 bzero(&sel, sizeof (sel)); 10266 sel.ipsl_valid = IPSL_IPV4; 10267 10268 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10269 ipst->ips_netstack); 10270 if (pin4 == NULL) 10271 goto enomem; 10272 10273 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10274 ipst->ips_netstack); 10275 if (pout4 == NULL) 10276 goto enomem; 10277 10278 if (connp->conn_af_isv6) { 10279 /* 10280 * We're looking at a v6 socket, also allocate the 10281 * v6-specific entries... 10282 */ 10283 sel.ipsl_valid = IPSL_IPV6; 10284 pin6 = ipsec_policy_create(&sel, actp, nact, 10285 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10286 if (pin6 == NULL) 10287 goto enomem; 10288 10289 pout6 = ipsec_policy_create(&sel, actp, nact, 10290 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10291 if (pout6 == NULL) 10292 goto enomem; 10293 10294 /* 10295 * .. and file them away in the right place. 10296 */ 10297 fam = IPSEC_AF_V6; 10298 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10299 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10300 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10301 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10302 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10303 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10304 } 10305 10306 ipsec_actvec_free(actp, nact); 10307 10308 /* 10309 * File the v4 policies. 10310 */ 10311 fam = IPSEC_AF_V4; 10312 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10313 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10314 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10315 10316 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10317 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10318 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10319 10320 /* 10321 * If the requests need security, set enforce_policy. 10322 * If the requests are IPSEC_PREF_NEVER, one should 10323 * still set conn_out_enforce_policy so that an ipsec_out 10324 * gets attached in ip_wput. This is needed so that 10325 * for connections that we don't cache policy in ip_bind, 10326 * if global policy matches in ip_wput_attach_policy, we 10327 * don't wrongly inherit global policy. Similarly, we need 10328 * to set conn_in_enforce_policy also so that we don't verify 10329 * policy wrongly. 10330 */ 10331 if ((ah_req & REQ_MASK) != 0 || 10332 (esp_req & REQ_MASK) != 0 || 10333 (se_req & REQ_MASK) != 0) { 10334 connp->conn_in_enforce_policy = B_TRUE; 10335 connp->conn_out_enforce_policy = B_TRUE; 10336 connp->conn_flags |= IPCL_CHECK_POLICY; 10337 } 10338 10339 mutex_exit(&connp->conn_lock); 10340 return (error); 10341 #undef REQ_MASK 10342 10343 /* 10344 * Common memory-allocation-failure exit path. 10345 */ 10346 enomem: 10347 mutex_exit(&connp->conn_lock); 10348 if (actp != NULL) 10349 ipsec_actvec_free(actp, nact); 10350 if (pin4 != NULL) 10351 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10352 if (pout4 != NULL) 10353 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10354 if (pin6 != NULL) 10355 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10356 if (pout6 != NULL) 10357 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10358 return (ENOMEM); 10359 } 10360 10361 /* 10362 * Only for options that pass in an IP addr. Currently only V4 options 10363 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10364 * So this function assumes level is IPPROTO_IP 10365 */ 10366 int 10367 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10368 mblk_t *first_mp) 10369 { 10370 ipif_t *ipif = NULL; 10371 int error; 10372 ill_t *ill; 10373 int zoneid; 10374 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10375 10376 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10377 10378 if (addr != INADDR_ANY || checkonly) { 10379 ASSERT(connp != NULL); 10380 zoneid = IPCL_ZONEID(connp); 10381 if (option == IP_NEXTHOP) { 10382 ipif = ipif_lookup_onlink_addr(addr, 10383 connp->conn_zoneid, ipst); 10384 } else { 10385 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10386 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10387 &error, ipst); 10388 } 10389 if (ipif == NULL) { 10390 if (error == EINPROGRESS) 10391 return (error); 10392 else if ((option == IP_MULTICAST_IF) || 10393 (option == IP_NEXTHOP)) 10394 return (EHOSTUNREACH); 10395 else 10396 return (EINVAL); 10397 } else if (checkonly) { 10398 if (option == IP_MULTICAST_IF) { 10399 ill = ipif->ipif_ill; 10400 /* not supported by the virtual network iface */ 10401 if (IS_VNI(ill)) { 10402 ipif_refrele(ipif); 10403 return (EINVAL); 10404 } 10405 } 10406 ipif_refrele(ipif); 10407 return (0); 10408 } 10409 ill = ipif->ipif_ill; 10410 mutex_enter(&connp->conn_lock); 10411 mutex_enter(&ill->ill_lock); 10412 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10413 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10414 mutex_exit(&ill->ill_lock); 10415 mutex_exit(&connp->conn_lock); 10416 ipif_refrele(ipif); 10417 return (option == IP_MULTICAST_IF ? 10418 EHOSTUNREACH : EINVAL); 10419 } 10420 } else { 10421 mutex_enter(&connp->conn_lock); 10422 } 10423 10424 /* None of the options below are supported on the VNI */ 10425 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10426 mutex_exit(&ill->ill_lock); 10427 mutex_exit(&connp->conn_lock); 10428 ipif_refrele(ipif); 10429 return (EINVAL); 10430 } 10431 10432 switch (option) { 10433 case IP_DONTFAILOVER_IF: 10434 /* 10435 * This option is used by in.mpathd to ensure 10436 * that IPMP probe packets only go out on the 10437 * test interfaces. in.mpathd sets this option 10438 * on the non-failover interfaces. 10439 * For backward compatibility, this option 10440 * implicitly sets IP_MULTICAST_IF, as used 10441 * be done in bind(), so that ip_wput gets 10442 * this ipif to send mcast packets. 10443 */ 10444 if (ipif != NULL) { 10445 ASSERT(addr != INADDR_ANY); 10446 connp->conn_nofailover_ill = ipif->ipif_ill; 10447 connp->conn_multicast_ipif = ipif; 10448 } else { 10449 ASSERT(addr == INADDR_ANY); 10450 connp->conn_nofailover_ill = NULL; 10451 connp->conn_multicast_ipif = NULL; 10452 } 10453 break; 10454 10455 case IP_MULTICAST_IF: 10456 connp->conn_multicast_ipif = ipif; 10457 break; 10458 case IP_NEXTHOP: 10459 connp->conn_nexthop_v4 = addr; 10460 connp->conn_nexthop_set = B_TRUE; 10461 break; 10462 } 10463 10464 if (ipif != NULL) { 10465 mutex_exit(&ill->ill_lock); 10466 mutex_exit(&connp->conn_lock); 10467 ipif_refrele(ipif); 10468 return (0); 10469 } 10470 mutex_exit(&connp->conn_lock); 10471 /* We succeded in cleared the option */ 10472 return (0); 10473 } 10474 10475 /* 10476 * For options that pass in an ifindex specifying the ill. V6 options always 10477 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10478 */ 10479 int 10480 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10481 int level, int option, mblk_t *first_mp) 10482 { 10483 ill_t *ill = NULL; 10484 int error = 0; 10485 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10486 10487 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10488 if (ifindex != 0) { 10489 ASSERT(connp != NULL); 10490 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10491 first_mp, ip_restart_optmgmt, &error, ipst); 10492 if (ill != NULL) { 10493 if (checkonly) { 10494 /* not supported by the virtual network iface */ 10495 if (IS_VNI(ill)) { 10496 ill_refrele(ill); 10497 return (EINVAL); 10498 } 10499 ill_refrele(ill); 10500 return (0); 10501 } 10502 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10503 0, NULL)) { 10504 ill_refrele(ill); 10505 ill = NULL; 10506 mutex_enter(&connp->conn_lock); 10507 goto setit; 10508 } 10509 mutex_enter(&connp->conn_lock); 10510 mutex_enter(&ill->ill_lock); 10511 if (ill->ill_state_flags & ILL_CONDEMNED) { 10512 mutex_exit(&ill->ill_lock); 10513 mutex_exit(&connp->conn_lock); 10514 ill_refrele(ill); 10515 ill = NULL; 10516 mutex_enter(&connp->conn_lock); 10517 } 10518 goto setit; 10519 } else if (error == EINPROGRESS) { 10520 return (error); 10521 } else { 10522 error = 0; 10523 } 10524 } 10525 mutex_enter(&connp->conn_lock); 10526 setit: 10527 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10528 10529 /* 10530 * The options below assume that the ILL (if any) transmits and/or 10531 * receives traffic. Neither of which is true for the virtual network 10532 * interface, so fail setting these on a VNI. 10533 */ 10534 if (IS_VNI(ill)) { 10535 ASSERT(ill != NULL); 10536 mutex_exit(&ill->ill_lock); 10537 mutex_exit(&connp->conn_lock); 10538 ill_refrele(ill); 10539 return (EINVAL); 10540 } 10541 10542 if (level == IPPROTO_IP) { 10543 switch (option) { 10544 case IP_BOUND_IF: 10545 connp->conn_incoming_ill = ill; 10546 connp->conn_outgoing_ill = ill; 10547 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10548 0 : ifindex; 10549 break; 10550 10551 case IP_MULTICAST_IF: 10552 /* 10553 * This option is an internal special. The socket 10554 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10555 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10556 * specifies an ifindex and we try first on V6 ill's. 10557 * If we don't find one, we they try using on v4 ill's 10558 * intenally and we come here. 10559 */ 10560 if (!checkonly && ill != NULL) { 10561 ipif_t *ipif; 10562 ipif = ill->ill_ipif; 10563 10564 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10565 mutex_exit(&ill->ill_lock); 10566 mutex_exit(&connp->conn_lock); 10567 ill_refrele(ill); 10568 ill = NULL; 10569 mutex_enter(&connp->conn_lock); 10570 } else { 10571 connp->conn_multicast_ipif = ipif; 10572 } 10573 } 10574 break; 10575 10576 case IP_DHCPINIT_IF: 10577 if (connp->conn_dhcpinit_ill != NULL) { 10578 /* 10579 * We've locked the conn so conn_cleanup_ill() 10580 * cannot clear conn_dhcpinit_ill -- so it's 10581 * safe to access the ill. 10582 */ 10583 ill_t *oill = connp->conn_dhcpinit_ill; 10584 10585 ASSERT(oill->ill_dhcpinit != 0); 10586 atomic_dec_32(&oill->ill_dhcpinit); 10587 connp->conn_dhcpinit_ill = NULL; 10588 } 10589 10590 if (ill != NULL) { 10591 connp->conn_dhcpinit_ill = ill; 10592 atomic_inc_32(&ill->ill_dhcpinit); 10593 } 10594 break; 10595 } 10596 } else { 10597 switch (option) { 10598 case IPV6_BOUND_IF: 10599 connp->conn_incoming_ill = ill; 10600 connp->conn_outgoing_ill = ill; 10601 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10602 0 : ifindex; 10603 break; 10604 10605 case IPV6_BOUND_PIF: 10606 /* 10607 * Limit all transmit to this ill. 10608 * Unlike IPV6_BOUND_IF, using this option 10609 * prevents load spreading and failover from 10610 * happening when the interface is part of the 10611 * group. That's why we don't need to remember 10612 * the ifindex in orig_bound_ifindex as in 10613 * IPV6_BOUND_IF. 10614 */ 10615 connp->conn_outgoing_pill = ill; 10616 break; 10617 10618 case IPV6_DONTFAILOVER_IF: 10619 /* 10620 * This option is used by in.mpathd to ensure 10621 * that IPMP probe packets only go out on the 10622 * test interfaces. in.mpathd sets this option 10623 * on the non-failover interfaces. 10624 */ 10625 connp->conn_nofailover_ill = ill; 10626 /* 10627 * For backward compatibility, this option 10628 * implicitly sets ip_multicast_ill as used in 10629 * IPV6_MULTICAST_IF so that ip_wput gets 10630 * this ill to send mcast packets. 10631 */ 10632 connp->conn_multicast_ill = ill; 10633 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10634 0 : ifindex; 10635 break; 10636 10637 case IPV6_MULTICAST_IF: 10638 /* 10639 * Set conn_multicast_ill to be the IPv6 ill. 10640 * Set conn_multicast_ipif to be an IPv4 ipif 10641 * for ifindex to make IPv4 mapped addresses 10642 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10643 * Even if no IPv6 ill exists for the ifindex 10644 * we need to check for an IPv4 ifindex in order 10645 * for this to work with mapped addresses. In that 10646 * case only set conn_multicast_ipif. 10647 */ 10648 if (!checkonly) { 10649 if (ifindex == 0) { 10650 connp->conn_multicast_ill = NULL; 10651 connp->conn_orig_multicast_ifindex = 0; 10652 connp->conn_multicast_ipif = NULL; 10653 } else if (ill != NULL) { 10654 connp->conn_multicast_ill = ill; 10655 connp->conn_orig_multicast_ifindex = 10656 ifindex; 10657 } 10658 } 10659 break; 10660 } 10661 } 10662 10663 if (ill != NULL) { 10664 mutex_exit(&ill->ill_lock); 10665 mutex_exit(&connp->conn_lock); 10666 ill_refrele(ill); 10667 return (0); 10668 } 10669 mutex_exit(&connp->conn_lock); 10670 /* 10671 * We succeeded in clearing the option (ifindex == 0) or failed to 10672 * locate the ill and could not set the option (ifindex != 0) 10673 */ 10674 return (ifindex == 0 ? 0 : EINVAL); 10675 } 10676 10677 /* This routine sets socket options. */ 10678 /* ARGSUSED */ 10679 int 10680 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10681 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10682 void *dummy, cred_t *cr, mblk_t *first_mp) 10683 { 10684 int *i1 = (int *)invalp; 10685 conn_t *connp = Q_TO_CONN(q); 10686 int error = 0; 10687 boolean_t checkonly; 10688 ire_t *ire; 10689 boolean_t found; 10690 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10691 10692 switch (optset_context) { 10693 10694 case SETFN_OPTCOM_CHECKONLY: 10695 checkonly = B_TRUE; 10696 /* 10697 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10698 * inlen != 0 implies value supplied and 10699 * we have to "pretend" to set it. 10700 * inlen == 0 implies that there is no 10701 * value part in T_CHECK request and just validation 10702 * done elsewhere should be enough, we just return here. 10703 */ 10704 if (inlen == 0) { 10705 *outlenp = 0; 10706 return (0); 10707 } 10708 break; 10709 case SETFN_OPTCOM_NEGOTIATE: 10710 case SETFN_UD_NEGOTIATE: 10711 case SETFN_CONN_NEGOTIATE: 10712 checkonly = B_FALSE; 10713 break; 10714 default: 10715 /* 10716 * We should never get here 10717 */ 10718 *outlenp = 0; 10719 return (EINVAL); 10720 } 10721 10722 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10723 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10724 10725 /* 10726 * For fixed length options, no sanity check 10727 * of passed in length is done. It is assumed *_optcom_req() 10728 * routines do the right thing. 10729 */ 10730 10731 switch (level) { 10732 case SOL_SOCKET: 10733 /* 10734 * conn_lock protects the bitfields, and is used to 10735 * set the fields atomically. 10736 */ 10737 switch (name) { 10738 case SO_BROADCAST: 10739 if (!checkonly) { 10740 /* TODO: use value someplace? */ 10741 mutex_enter(&connp->conn_lock); 10742 connp->conn_broadcast = *i1 ? 1 : 0; 10743 mutex_exit(&connp->conn_lock); 10744 } 10745 break; /* goto sizeof (int) option return */ 10746 case SO_USELOOPBACK: 10747 if (!checkonly) { 10748 /* TODO: use value someplace? */ 10749 mutex_enter(&connp->conn_lock); 10750 connp->conn_loopback = *i1 ? 1 : 0; 10751 mutex_exit(&connp->conn_lock); 10752 } 10753 break; /* goto sizeof (int) option return */ 10754 case SO_DONTROUTE: 10755 if (!checkonly) { 10756 mutex_enter(&connp->conn_lock); 10757 connp->conn_dontroute = *i1 ? 1 : 0; 10758 mutex_exit(&connp->conn_lock); 10759 } 10760 break; /* goto sizeof (int) option return */ 10761 case SO_REUSEADDR: 10762 if (!checkonly) { 10763 mutex_enter(&connp->conn_lock); 10764 connp->conn_reuseaddr = *i1 ? 1 : 0; 10765 mutex_exit(&connp->conn_lock); 10766 } 10767 break; /* goto sizeof (int) option return */ 10768 case SO_PROTOTYPE: 10769 if (!checkonly) { 10770 mutex_enter(&connp->conn_lock); 10771 connp->conn_proto = *i1; 10772 mutex_exit(&connp->conn_lock); 10773 } 10774 break; /* goto sizeof (int) option return */ 10775 case SO_ALLZONES: 10776 if (!checkonly) { 10777 mutex_enter(&connp->conn_lock); 10778 if (IPCL_IS_BOUND(connp)) { 10779 mutex_exit(&connp->conn_lock); 10780 return (EINVAL); 10781 } 10782 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10783 mutex_exit(&connp->conn_lock); 10784 } 10785 break; /* goto sizeof (int) option return */ 10786 case SO_ANON_MLP: 10787 if (!checkonly) { 10788 mutex_enter(&connp->conn_lock); 10789 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10790 mutex_exit(&connp->conn_lock); 10791 } 10792 break; /* goto sizeof (int) option return */ 10793 case SO_MAC_EXEMPT: 10794 if (secpolicy_net_mac_aware(cr) != 0 || 10795 IPCL_IS_BOUND(connp)) 10796 return (EACCES); 10797 if (!checkonly) { 10798 mutex_enter(&connp->conn_lock); 10799 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10800 mutex_exit(&connp->conn_lock); 10801 } 10802 break; /* goto sizeof (int) option return */ 10803 default: 10804 /* 10805 * "soft" error (negative) 10806 * option not handled at this level 10807 * Note: Do not modify *outlenp 10808 */ 10809 return (-EINVAL); 10810 } 10811 break; 10812 case IPPROTO_IP: 10813 switch (name) { 10814 case IP_NEXTHOP: 10815 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10816 return (EPERM); 10817 /* FALLTHRU */ 10818 case IP_MULTICAST_IF: 10819 case IP_DONTFAILOVER_IF: { 10820 ipaddr_t addr = *i1; 10821 10822 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10823 first_mp); 10824 if (error != 0) 10825 return (error); 10826 break; /* goto sizeof (int) option return */ 10827 } 10828 10829 case IP_MULTICAST_TTL: 10830 /* Recorded in transport above IP */ 10831 *outvalp = *invalp; 10832 *outlenp = sizeof (uchar_t); 10833 return (0); 10834 case IP_MULTICAST_LOOP: 10835 if (!checkonly) { 10836 mutex_enter(&connp->conn_lock); 10837 connp->conn_multicast_loop = *invalp ? 1 : 0; 10838 mutex_exit(&connp->conn_lock); 10839 } 10840 *outvalp = *invalp; 10841 *outlenp = sizeof (uchar_t); 10842 return (0); 10843 case IP_ADD_MEMBERSHIP: 10844 case MCAST_JOIN_GROUP: 10845 case IP_DROP_MEMBERSHIP: 10846 case MCAST_LEAVE_GROUP: { 10847 struct ip_mreq *mreqp; 10848 struct group_req *greqp; 10849 ire_t *ire; 10850 boolean_t done = B_FALSE; 10851 ipaddr_t group, ifaddr; 10852 struct sockaddr_in *sin; 10853 uint32_t *ifindexp; 10854 boolean_t mcast_opt = B_TRUE; 10855 mcast_record_t fmode; 10856 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10857 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10858 10859 switch (name) { 10860 case IP_ADD_MEMBERSHIP: 10861 mcast_opt = B_FALSE; 10862 /* FALLTHRU */ 10863 case MCAST_JOIN_GROUP: 10864 fmode = MODE_IS_EXCLUDE; 10865 optfn = ip_opt_add_group; 10866 break; 10867 10868 case IP_DROP_MEMBERSHIP: 10869 mcast_opt = B_FALSE; 10870 /* FALLTHRU */ 10871 case MCAST_LEAVE_GROUP: 10872 fmode = MODE_IS_INCLUDE; 10873 optfn = ip_opt_delete_group; 10874 break; 10875 } 10876 10877 if (mcast_opt) { 10878 greqp = (struct group_req *)i1; 10879 sin = (struct sockaddr_in *)&greqp->gr_group; 10880 if (sin->sin_family != AF_INET) { 10881 *outlenp = 0; 10882 return (ENOPROTOOPT); 10883 } 10884 group = (ipaddr_t)sin->sin_addr.s_addr; 10885 ifaddr = INADDR_ANY; 10886 ifindexp = &greqp->gr_interface; 10887 } else { 10888 mreqp = (struct ip_mreq *)i1; 10889 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10890 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10891 ifindexp = NULL; 10892 } 10893 10894 /* 10895 * In the multirouting case, we need to replicate 10896 * the request on all interfaces that will take part 10897 * in replication. We do so because multirouting is 10898 * reflective, thus we will probably receive multi- 10899 * casts on those interfaces. 10900 * The ip_multirt_apply_membership() succeeds if the 10901 * operation succeeds on at least one interface. 10902 */ 10903 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10904 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10905 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10906 if (ire != NULL) { 10907 if (ire->ire_flags & RTF_MULTIRT) { 10908 error = ip_multirt_apply_membership( 10909 optfn, ire, connp, checkonly, group, 10910 fmode, INADDR_ANY, first_mp); 10911 done = B_TRUE; 10912 } 10913 ire_refrele(ire); 10914 } 10915 if (!done) { 10916 error = optfn(connp, checkonly, group, ifaddr, 10917 ifindexp, fmode, INADDR_ANY, first_mp); 10918 } 10919 if (error) { 10920 /* 10921 * EINPROGRESS is a soft error, needs retry 10922 * so don't make *outlenp zero. 10923 */ 10924 if (error != EINPROGRESS) 10925 *outlenp = 0; 10926 return (error); 10927 } 10928 /* OK return - copy input buffer into output buffer */ 10929 if (invalp != outvalp) { 10930 /* don't trust bcopy for identical src/dst */ 10931 bcopy(invalp, outvalp, inlen); 10932 } 10933 *outlenp = inlen; 10934 return (0); 10935 } 10936 case IP_BLOCK_SOURCE: 10937 case IP_UNBLOCK_SOURCE: 10938 case IP_ADD_SOURCE_MEMBERSHIP: 10939 case IP_DROP_SOURCE_MEMBERSHIP: 10940 case MCAST_BLOCK_SOURCE: 10941 case MCAST_UNBLOCK_SOURCE: 10942 case MCAST_JOIN_SOURCE_GROUP: 10943 case MCAST_LEAVE_SOURCE_GROUP: { 10944 struct ip_mreq_source *imreqp; 10945 struct group_source_req *gsreqp; 10946 in_addr_t grp, src, ifaddr = INADDR_ANY; 10947 uint32_t ifindex = 0; 10948 mcast_record_t fmode; 10949 struct sockaddr_in *sin; 10950 ire_t *ire; 10951 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10952 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10953 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10954 10955 switch (name) { 10956 case IP_BLOCK_SOURCE: 10957 mcast_opt = B_FALSE; 10958 /* FALLTHRU */ 10959 case MCAST_BLOCK_SOURCE: 10960 fmode = MODE_IS_EXCLUDE; 10961 optfn = ip_opt_add_group; 10962 break; 10963 10964 case IP_UNBLOCK_SOURCE: 10965 mcast_opt = B_FALSE; 10966 /* FALLTHRU */ 10967 case MCAST_UNBLOCK_SOURCE: 10968 fmode = MODE_IS_EXCLUDE; 10969 optfn = ip_opt_delete_group; 10970 break; 10971 10972 case IP_ADD_SOURCE_MEMBERSHIP: 10973 mcast_opt = B_FALSE; 10974 /* FALLTHRU */ 10975 case MCAST_JOIN_SOURCE_GROUP: 10976 fmode = MODE_IS_INCLUDE; 10977 optfn = ip_opt_add_group; 10978 break; 10979 10980 case IP_DROP_SOURCE_MEMBERSHIP: 10981 mcast_opt = B_FALSE; 10982 /* FALLTHRU */ 10983 case MCAST_LEAVE_SOURCE_GROUP: 10984 fmode = MODE_IS_INCLUDE; 10985 optfn = ip_opt_delete_group; 10986 break; 10987 } 10988 10989 if (mcast_opt) { 10990 gsreqp = (struct group_source_req *)i1; 10991 if (gsreqp->gsr_group.ss_family != AF_INET) { 10992 *outlenp = 0; 10993 return (ENOPROTOOPT); 10994 } 10995 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10996 grp = (ipaddr_t)sin->sin_addr.s_addr; 10997 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10998 src = (ipaddr_t)sin->sin_addr.s_addr; 10999 ifindex = gsreqp->gsr_interface; 11000 } else { 11001 imreqp = (struct ip_mreq_source *)i1; 11002 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11003 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11004 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11005 } 11006 11007 /* 11008 * In the multirouting case, we need to replicate 11009 * the request as noted in the mcast cases above. 11010 */ 11011 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11012 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11013 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11014 if (ire != NULL) { 11015 if (ire->ire_flags & RTF_MULTIRT) { 11016 error = ip_multirt_apply_membership( 11017 optfn, ire, connp, checkonly, grp, 11018 fmode, src, first_mp); 11019 done = B_TRUE; 11020 } 11021 ire_refrele(ire); 11022 } 11023 if (!done) { 11024 error = optfn(connp, checkonly, grp, ifaddr, 11025 &ifindex, fmode, src, first_mp); 11026 } 11027 if (error != 0) { 11028 /* 11029 * EINPROGRESS is a soft error, needs retry 11030 * so don't make *outlenp zero. 11031 */ 11032 if (error != EINPROGRESS) 11033 *outlenp = 0; 11034 return (error); 11035 } 11036 /* OK return - copy input buffer into output buffer */ 11037 if (invalp != outvalp) { 11038 bcopy(invalp, outvalp, inlen); 11039 } 11040 *outlenp = inlen; 11041 return (0); 11042 } 11043 case IP_SEC_OPT: 11044 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11045 if (error != 0) { 11046 *outlenp = 0; 11047 return (error); 11048 } 11049 break; 11050 case IP_HDRINCL: 11051 case IP_OPTIONS: 11052 case T_IP_OPTIONS: 11053 case IP_TOS: 11054 case T_IP_TOS: 11055 case IP_TTL: 11056 case IP_RECVDSTADDR: 11057 case IP_RECVOPTS: 11058 /* OK return - copy input buffer into output buffer */ 11059 if (invalp != outvalp) { 11060 /* don't trust bcopy for identical src/dst */ 11061 bcopy(invalp, outvalp, inlen); 11062 } 11063 *outlenp = inlen; 11064 return (0); 11065 case IP_RECVIF: 11066 /* Retrieve the inbound interface index */ 11067 if (!checkonly) { 11068 mutex_enter(&connp->conn_lock); 11069 connp->conn_recvif = *i1 ? 1 : 0; 11070 mutex_exit(&connp->conn_lock); 11071 } 11072 break; /* goto sizeof (int) option return */ 11073 case IP_RECVPKTINFO: 11074 if (!checkonly) { 11075 mutex_enter(&connp->conn_lock); 11076 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11077 mutex_exit(&connp->conn_lock); 11078 } 11079 break; /* goto sizeof (int) option return */ 11080 case IP_RECVSLLA: 11081 /* Retrieve the source link layer address */ 11082 if (!checkonly) { 11083 mutex_enter(&connp->conn_lock); 11084 connp->conn_recvslla = *i1 ? 1 : 0; 11085 mutex_exit(&connp->conn_lock); 11086 } 11087 break; /* goto sizeof (int) option return */ 11088 case MRT_INIT: 11089 case MRT_DONE: 11090 case MRT_ADD_VIF: 11091 case MRT_DEL_VIF: 11092 case MRT_ADD_MFC: 11093 case MRT_DEL_MFC: 11094 case MRT_ASSERT: 11095 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11096 *outlenp = 0; 11097 return (error); 11098 } 11099 error = ip_mrouter_set((int)name, q, checkonly, 11100 (uchar_t *)invalp, inlen, first_mp); 11101 if (error) { 11102 *outlenp = 0; 11103 return (error); 11104 } 11105 /* OK return - copy input buffer into output buffer */ 11106 if (invalp != outvalp) { 11107 /* don't trust bcopy for identical src/dst */ 11108 bcopy(invalp, outvalp, inlen); 11109 } 11110 *outlenp = inlen; 11111 return (0); 11112 case IP_BOUND_IF: 11113 case IP_DHCPINIT_IF: 11114 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11115 level, name, first_mp); 11116 if (error != 0) 11117 return (error); 11118 break; /* goto sizeof (int) option return */ 11119 11120 case IP_UNSPEC_SRC: 11121 /* Allow sending with a zero source address */ 11122 if (!checkonly) { 11123 mutex_enter(&connp->conn_lock); 11124 connp->conn_unspec_src = *i1 ? 1 : 0; 11125 mutex_exit(&connp->conn_lock); 11126 } 11127 break; /* goto sizeof (int) option return */ 11128 default: 11129 /* 11130 * "soft" error (negative) 11131 * option not handled at this level 11132 * Note: Do not modify *outlenp 11133 */ 11134 return (-EINVAL); 11135 } 11136 break; 11137 case IPPROTO_IPV6: 11138 switch (name) { 11139 case IPV6_BOUND_IF: 11140 case IPV6_BOUND_PIF: 11141 case IPV6_DONTFAILOVER_IF: 11142 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11143 level, name, first_mp); 11144 if (error != 0) 11145 return (error); 11146 break; /* goto sizeof (int) option return */ 11147 11148 case IPV6_MULTICAST_IF: 11149 /* 11150 * The only possible errors are EINPROGRESS and 11151 * EINVAL. EINPROGRESS will be restarted and is not 11152 * a hard error. We call this option on both V4 and V6 11153 * If both return EINVAL, then this call returns 11154 * EINVAL. If at least one of them succeeds we 11155 * return success. 11156 */ 11157 found = B_FALSE; 11158 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11159 level, name, first_mp); 11160 if (error == EINPROGRESS) 11161 return (error); 11162 if (error == 0) 11163 found = B_TRUE; 11164 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11165 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11166 if (error == 0) 11167 found = B_TRUE; 11168 if (!found) 11169 return (error); 11170 break; /* goto sizeof (int) option return */ 11171 11172 case IPV6_MULTICAST_HOPS: 11173 /* Recorded in transport above IP */ 11174 break; /* goto sizeof (int) option return */ 11175 case IPV6_MULTICAST_LOOP: 11176 if (!checkonly) { 11177 mutex_enter(&connp->conn_lock); 11178 connp->conn_multicast_loop = *i1; 11179 mutex_exit(&connp->conn_lock); 11180 } 11181 break; /* goto sizeof (int) option return */ 11182 case IPV6_JOIN_GROUP: 11183 case MCAST_JOIN_GROUP: 11184 case IPV6_LEAVE_GROUP: 11185 case MCAST_LEAVE_GROUP: { 11186 struct ipv6_mreq *ip_mreqp; 11187 struct group_req *greqp; 11188 ire_t *ire; 11189 boolean_t done = B_FALSE; 11190 in6_addr_t groupv6; 11191 uint32_t ifindex; 11192 boolean_t mcast_opt = B_TRUE; 11193 mcast_record_t fmode; 11194 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11195 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11196 11197 switch (name) { 11198 case IPV6_JOIN_GROUP: 11199 mcast_opt = B_FALSE; 11200 /* FALLTHRU */ 11201 case MCAST_JOIN_GROUP: 11202 fmode = MODE_IS_EXCLUDE; 11203 optfn = ip_opt_add_group_v6; 11204 break; 11205 11206 case IPV6_LEAVE_GROUP: 11207 mcast_opt = B_FALSE; 11208 /* FALLTHRU */ 11209 case MCAST_LEAVE_GROUP: 11210 fmode = MODE_IS_INCLUDE; 11211 optfn = ip_opt_delete_group_v6; 11212 break; 11213 } 11214 11215 if (mcast_opt) { 11216 struct sockaddr_in *sin; 11217 struct sockaddr_in6 *sin6; 11218 greqp = (struct group_req *)i1; 11219 if (greqp->gr_group.ss_family == AF_INET) { 11220 sin = (struct sockaddr_in *) 11221 &(greqp->gr_group); 11222 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11223 &groupv6); 11224 } else { 11225 sin6 = (struct sockaddr_in6 *) 11226 &(greqp->gr_group); 11227 groupv6 = sin6->sin6_addr; 11228 } 11229 ifindex = greqp->gr_interface; 11230 } else { 11231 ip_mreqp = (struct ipv6_mreq *)i1; 11232 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11233 ifindex = ip_mreqp->ipv6mr_interface; 11234 } 11235 /* 11236 * In the multirouting case, we need to replicate 11237 * the request on all interfaces that will take part 11238 * in replication. We do so because multirouting is 11239 * reflective, thus we will probably receive multi- 11240 * casts on those interfaces. 11241 * The ip_multirt_apply_membership_v6() succeeds if 11242 * the operation succeeds on at least one interface. 11243 */ 11244 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11245 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11246 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11247 if (ire != NULL) { 11248 if (ire->ire_flags & RTF_MULTIRT) { 11249 error = ip_multirt_apply_membership_v6( 11250 optfn, ire, connp, checkonly, 11251 &groupv6, fmode, &ipv6_all_zeros, 11252 first_mp); 11253 done = B_TRUE; 11254 } 11255 ire_refrele(ire); 11256 } 11257 if (!done) { 11258 error = optfn(connp, checkonly, &groupv6, 11259 ifindex, fmode, &ipv6_all_zeros, first_mp); 11260 } 11261 if (error) { 11262 /* 11263 * EINPROGRESS is a soft error, needs retry 11264 * so don't make *outlenp zero. 11265 */ 11266 if (error != EINPROGRESS) 11267 *outlenp = 0; 11268 return (error); 11269 } 11270 /* OK return - copy input buffer into output buffer */ 11271 if (invalp != outvalp) { 11272 /* don't trust bcopy for identical src/dst */ 11273 bcopy(invalp, outvalp, inlen); 11274 } 11275 *outlenp = inlen; 11276 return (0); 11277 } 11278 case MCAST_BLOCK_SOURCE: 11279 case MCAST_UNBLOCK_SOURCE: 11280 case MCAST_JOIN_SOURCE_GROUP: 11281 case MCAST_LEAVE_SOURCE_GROUP: { 11282 struct group_source_req *gsreqp; 11283 in6_addr_t v6grp, v6src; 11284 uint32_t ifindex; 11285 mcast_record_t fmode; 11286 ire_t *ire; 11287 boolean_t done = B_FALSE; 11288 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11289 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11290 11291 switch (name) { 11292 case MCAST_BLOCK_SOURCE: 11293 fmode = MODE_IS_EXCLUDE; 11294 optfn = ip_opt_add_group_v6; 11295 break; 11296 case MCAST_UNBLOCK_SOURCE: 11297 fmode = MODE_IS_EXCLUDE; 11298 optfn = ip_opt_delete_group_v6; 11299 break; 11300 case MCAST_JOIN_SOURCE_GROUP: 11301 fmode = MODE_IS_INCLUDE; 11302 optfn = ip_opt_add_group_v6; 11303 break; 11304 case MCAST_LEAVE_SOURCE_GROUP: 11305 fmode = MODE_IS_INCLUDE; 11306 optfn = ip_opt_delete_group_v6; 11307 break; 11308 } 11309 11310 gsreqp = (struct group_source_req *)i1; 11311 ifindex = gsreqp->gsr_interface; 11312 if (gsreqp->gsr_group.ss_family == AF_INET) { 11313 struct sockaddr_in *s; 11314 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11315 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11316 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11317 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11318 } else { 11319 struct sockaddr_in6 *s6; 11320 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11321 v6grp = s6->sin6_addr; 11322 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11323 v6src = s6->sin6_addr; 11324 } 11325 11326 /* 11327 * In the multirouting case, we need to replicate 11328 * the request as noted in the mcast cases above. 11329 */ 11330 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11331 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11332 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11333 if (ire != NULL) { 11334 if (ire->ire_flags & RTF_MULTIRT) { 11335 error = ip_multirt_apply_membership_v6( 11336 optfn, ire, connp, checkonly, 11337 &v6grp, fmode, &v6src, first_mp); 11338 done = B_TRUE; 11339 } 11340 ire_refrele(ire); 11341 } 11342 if (!done) { 11343 error = optfn(connp, checkonly, &v6grp, 11344 ifindex, fmode, &v6src, first_mp); 11345 } 11346 if (error != 0) { 11347 /* 11348 * EINPROGRESS is a soft error, needs retry 11349 * so don't make *outlenp zero. 11350 */ 11351 if (error != EINPROGRESS) 11352 *outlenp = 0; 11353 return (error); 11354 } 11355 /* OK return - copy input buffer into output buffer */ 11356 if (invalp != outvalp) { 11357 bcopy(invalp, outvalp, inlen); 11358 } 11359 *outlenp = inlen; 11360 return (0); 11361 } 11362 case IPV6_UNICAST_HOPS: 11363 /* Recorded in transport above IP */ 11364 break; /* goto sizeof (int) option return */ 11365 case IPV6_UNSPEC_SRC: 11366 /* Allow sending with a zero source address */ 11367 if (!checkonly) { 11368 mutex_enter(&connp->conn_lock); 11369 connp->conn_unspec_src = *i1 ? 1 : 0; 11370 mutex_exit(&connp->conn_lock); 11371 } 11372 break; /* goto sizeof (int) option return */ 11373 case IPV6_RECVPKTINFO: 11374 if (!checkonly) { 11375 mutex_enter(&connp->conn_lock); 11376 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11377 mutex_exit(&connp->conn_lock); 11378 } 11379 break; /* goto sizeof (int) option return */ 11380 case IPV6_RECVTCLASS: 11381 if (!checkonly) { 11382 if (*i1 < 0 || *i1 > 1) { 11383 return (EINVAL); 11384 } 11385 mutex_enter(&connp->conn_lock); 11386 connp->conn_ipv6_recvtclass = *i1; 11387 mutex_exit(&connp->conn_lock); 11388 } 11389 break; 11390 case IPV6_RECVPATHMTU: 11391 if (!checkonly) { 11392 if (*i1 < 0 || *i1 > 1) { 11393 return (EINVAL); 11394 } 11395 mutex_enter(&connp->conn_lock); 11396 connp->conn_ipv6_recvpathmtu = *i1; 11397 mutex_exit(&connp->conn_lock); 11398 } 11399 break; 11400 case IPV6_RECVHOPLIMIT: 11401 if (!checkonly) { 11402 mutex_enter(&connp->conn_lock); 11403 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11404 mutex_exit(&connp->conn_lock); 11405 } 11406 break; /* goto sizeof (int) option return */ 11407 case IPV6_RECVHOPOPTS: 11408 if (!checkonly) { 11409 mutex_enter(&connp->conn_lock); 11410 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11411 mutex_exit(&connp->conn_lock); 11412 } 11413 break; /* goto sizeof (int) option return */ 11414 case IPV6_RECVDSTOPTS: 11415 if (!checkonly) { 11416 mutex_enter(&connp->conn_lock); 11417 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11418 mutex_exit(&connp->conn_lock); 11419 } 11420 break; /* goto sizeof (int) option return */ 11421 case IPV6_RECVRTHDR: 11422 if (!checkonly) { 11423 mutex_enter(&connp->conn_lock); 11424 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11425 mutex_exit(&connp->conn_lock); 11426 } 11427 break; /* goto sizeof (int) option return */ 11428 case IPV6_RECVRTHDRDSTOPTS: 11429 if (!checkonly) { 11430 mutex_enter(&connp->conn_lock); 11431 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11432 mutex_exit(&connp->conn_lock); 11433 } 11434 break; /* goto sizeof (int) option return */ 11435 case IPV6_PKTINFO: 11436 if (inlen == 0) 11437 return (-EINVAL); /* clearing option */ 11438 error = ip6_set_pktinfo(cr, connp, 11439 (struct in6_pktinfo *)invalp, first_mp); 11440 if (error != 0) 11441 *outlenp = 0; 11442 else 11443 *outlenp = inlen; 11444 return (error); 11445 case IPV6_NEXTHOP: { 11446 struct sockaddr_in6 *sin6; 11447 11448 /* Verify that the nexthop is reachable */ 11449 if (inlen == 0) 11450 return (-EINVAL); /* clearing option */ 11451 11452 sin6 = (struct sockaddr_in6 *)invalp; 11453 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11454 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11455 NULL, MATCH_IRE_DEFAULT, ipst); 11456 11457 if (ire == NULL) { 11458 *outlenp = 0; 11459 return (EHOSTUNREACH); 11460 } 11461 ire_refrele(ire); 11462 return (-EINVAL); 11463 } 11464 case IPV6_SEC_OPT: 11465 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11466 if (error != 0) { 11467 *outlenp = 0; 11468 return (error); 11469 } 11470 break; 11471 case IPV6_SRC_PREFERENCES: { 11472 /* 11473 * This is implemented strictly in the ip module 11474 * (here and in tcp_opt_*() to accomodate tcp 11475 * sockets). Modules above ip pass this option 11476 * down here since ip is the only one that needs to 11477 * be aware of source address preferences. 11478 * 11479 * This socket option only affects connected 11480 * sockets that haven't already bound to a specific 11481 * IPv6 address. In other words, sockets that 11482 * don't call bind() with an address other than the 11483 * unspecified address and that call connect(). 11484 * ip_bind_connected_v6() passes these preferences 11485 * to the ipif_select_source_v6() function. 11486 */ 11487 if (inlen != sizeof (uint32_t)) 11488 return (EINVAL); 11489 error = ip6_set_src_preferences(connp, 11490 *(uint32_t *)invalp); 11491 if (error != 0) { 11492 *outlenp = 0; 11493 return (error); 11494 } else { 11495 *outlenp = sizeof (uint32_t); 11496 } 11497 break; 11498 } 11499 case IPV6_V6ONLY: 11500 if (*i1 < 0 || *i1 > 1) { 11501 return (EINVAL); 11502 } 11503 mutex_enter(&connp->conn_lock); 11504 connp->conn_ipv6_v6only = *i1; 11505 mutex_exit(&connp->conn_lock); 11506 break; 11507 default: 11508 return (-EINVAL); 11509 } 11510 break; 11511 default: 11512 /* 11513 * "soft" error (negative) 11514 * option not handled at this level 11515 * Note: Do not modify *outlenp 11516 */ 11517 return (-EINVAL); 11518 } 11519 /* 11520 * Common case of return from an option that is sizeof (int) 11521 */ 11522 *(int *)outvalp = *i1; 11523 *outlenp = sizeof (int); 11524 return (0); 11525 } 11526 11527 /* 11528 * This routine gets default values of certain options whose default 11529 * values are maintained by protocol specific code 11530 */ 11531 /* ARGSUSED */ 11532 int 11533 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11534 { 11535 int *i1 = (int *)ptr; 11536 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11537 11538 switch (level) { 11539 case IPPROTO_IP: 11540 switch (name) { 11541 case IP_MULTICAST_TTL: 11542 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11543 return (sizeof (uchar_t)); 11544 case IP_MULTICAST_LOOP: 11545 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11546 return (sizeof (uchar_t)); 11547 default: 11548 return (-1); 11549 } 11550 case IPPROTO_IPV6: 11551 switch (name) { 11552 case IPV6_UNICAST_HOPS: 11553 *i1 = ipst->ips_ipv6_def_hops; 11554 return (sizeof (int)); 11555 case IPV6_MULTICAST_HOPS: 11556 *i1 = IP_DEFAULT_MULTICAST_TTL; 11557 return (sizeof (int)); 11558 case IPV6_MULTICAST_LOOP: 11559 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11560 return (sizeof (int)); 11561 case IPV6_V6ONLY: 11562 *i1 = 1; 11563 return (sizeof (int)); 11564 default: 11565 return (-1); 11566 } 11567 default: 11568 return (-1); 11569 } 11570 /* NOTREACHED */ 11571 } 11572 11573 /* 11574 * Given a destination address and a pointer to where to put the information 11575 * this routine fills in the mtuinfo. 11576 */ 11577 int 11578 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11579 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11580 { 11581 ire_t *ire; 11582 ip_stack_t *ipst = ns->netstack_ip; 11583 11584 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11585 return (-1); 11586 11587 bzero(mtuinfo, sizeof (*mtuinfo)); 11588 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11589 mtuinfo->ip6m_addr.sin6_port = port; 11590 mtuinfo->ip6m_addr.sin6_addr = *in6; 11591 11592 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11593 if (ire != NULL) { 11594 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11595 ire_refrele(ire); 11596 } else { 11597 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11598 } 11599 return (sizeof (struct ip6_mtuinfo)); 11600 } 11601 11602 /* 11603 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11604 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11605 * isn't. This doesn't matter as the error checking is done properly for the 11606 * other MRT options coming in through ip_opt_set. 11607 */ 11608 int 11609 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11610 { 11611 conn_t *connp = Q_TO_CONN(q); 11612 ipsec_req_t *req = (ipsec_req_t *)ptr; 11613 11614 switch (level) { 11615 case IPPROTO_IP: 11616 switch (name) { 11617 case MRT_VERSION: 11618 case MRT_ASSERT: 11619 (void) ip_mrouter_get(name, q, ptr); 11620 return (sizeof (int)); 11621 case IP_SEC_OPT: 11622 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11623 case IP_NEXTHOP: 11624 if (connp->conn_nexthop_set) { 11625 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11626 return (sizeof (ipaddr_t)); 11627 } else 11628 return (0); 11629 case IP_RECVPKTINFO: 11630 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11631 return (sizeof (int)); 11632 default: 11633 break; 11634 } 11635 break; 11636 case IPPROTO_IPV6: 11637 switch (name) { 11638 case IPV6_SEC_OPT: 11639 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11640 case IPV6_SRC_PREFERENCES: { 11641 return (ip6_get_src_preferences(connp, 11642 (uint32_t *)ptr)); 11643 } 11644 case IPV6_V6ONLY: 11645 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11646 return (sizeof (int)); 11647 case IPV6_PATHMTU: 11648 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11649 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11650 default: 11651 break; 11652 } 11653 break; 11654 default: 11655 break; 11656 } 11657 return (-1); 11658 } 11659 11660 /* Named Dispatch routine to get a current value out of our parameter table. */ 11661 /* ARGSUSED */ 11662 static int 11663 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11664 { 11665 ipparam_t *ippa = (ipparam_t *)cp; 11666 11667 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11668 return (0); 11669 } 11670 11671 /* ARGSUSED */ 11672 static int 11673 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11674 { 11675 11676 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11677 return (0); 11678 } 11679 11680 /* 11681 * Set ip{,6}_forwarding values. This means walking through all of the 11682 * ill's and toggling their forwarding values. 11683 */ 11684 /* ARGSUSED */ 11685 static int 11686 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11687 { 11688 long new_value; 11689 int *forwarding_value = (int *)cp; 11690 ill_t *ill; 11691 boolean_t isv6; 11692 ill_walk_context_t ctx; 11693 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11694 11695 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11696 11697 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11698 new_value < 0 || new_value > 1) { 11699 return (EINVAL); 11700 } 11701 11702 *forwarding_value = new_value; 11703 11704 /* 11705 * Regardless of the current value of ip_forwarding, set all per-ill 11706 * values of ip_forwarding to the value being set. 11707 * 11708 * Bring all the ill's up to date with the new global value. 11709 */ 11710 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11711 11712 if (isv6) 11713 ill = ILL_START_WALK_V6(&ctx, ipst); 11714 else 11715 ill = ILL_START_WALK_V4(&ctx, ipst); 11716 11717 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11718 (void) ill_forward_set(ill, new_value != 0); 11719 11720 rw_exit(&ipst->ips_ill_g_lock); 11721 return (0); 11722 } 11723 11724 /* 11725 * Walk through the param array specified registering each element with the 11726 * Named Dispatch handler. This is called only during init. So it is ok 11727 * not to acquire any locks 11728 */ 11729 static boolean_t 11730 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11731 ipndp_t *ipnd, size_t ipnd_cnt) 11732 { 11733 for (; ippa_cnt-- > 0; ippa++) { 11734 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11735 if (!nd_load(ndp, ippa->ip_param_name, 11736 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11737 nd_free(ndp); 11738 return (B_FALSE); 11739 } 11740 } 11741 } 11742 11743 for (; ipnd_cnt-- > 0; ipnd++) { 11744 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11745 if (!nd_load(ndp, ipnd->ip_ndp_name, 11746 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11747 ipnd->ip_ndp_data)) { 11748 nd_free(ndp); 11749 return (B_FALSE); 11750 } 11751 } 11752 } 11753 11754 return (B_TRUE); 11755 } 11756 11757 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11758 /* ARGSUSED */ 11759 static int 11760 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11761 { 11762 long new_value; 11763 ipparam_t *ippa = (ipparam_t *)cp; 11764 11765 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11766 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11767 return (EINVAL); 11768 } 11769 ippa->ip_param_value = new_value; 11770 return (0); 11771 } 11772 11773 /* 11774 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11775 * When an ipf is passed here for the first time, if 11776 * we already have in-order fragments on the queue, we convert from the fast- 11777 * path reassembly scheme to the hard-case scheme. From then on, additional 11778 * fragments are reassembled here. We keep track of the start and end offsets 11779 * of each piece, and the number of holes in the chain. When the hole count 11780 * goes to zero, we are done! 11781 * 11782 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11783 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11784 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11785 * after the call to ip_reassemble(). 11786 */ 11787 int 11788 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11789 size_t msg_len) 11790 { 11791 uint_t end; 11792 mblk_t *next_mp; 11793 mblk_t *mp1; 11794 uint_t offset; 11795 boolean_t incr_dups = B_TRUE; 11796 boolean_t offset_zero_seen = B_FALSE; 11797 boolean_t pkt_boundary_checked = B_FALSE; 11798 11799 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11800 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11801 11802 /* Add in byte count */ 11803 ipf->ipf_count += msg_len; 11804 if (ipf->ipf_end) { 11805 /* 11806 * We were part way through in-order reassembly, but now there 11807 * is a hole. We walk through messages already queued, and 11808 * mark them for hard case reassembly. We know that up till 11809 * now they were in order starting from offset zero. 11810 */ 11811 offset = 0; 11812 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11813 IP_REASS_SET_START(mp1, offset); 11814 if (offset == 0) { 11815 ASSERT(ipf->ipf_nf_hdr_len != 0); 11816 offset = -ipf->ipf_nf_hdr_len; 11817 } 11818 offset += mp1->b_wptr - mp1->b_rptr; 11819 IP_REASS_SET_END(mp1, offset); 11820 } 11821 /* One hole at the end. */ 11822 ipf->ipf_hole_cnt = 1; 11823 /* Brand it as a hard case, forever. */ 11824 ipf->ipf_end = 0; 11825 } 11826 /* Walk through all the new pieces. */ 11827 do { 11828 end = start + (mp->b_wptr - mp->b_rptr); 11829 /* 11830 * If start is 0, decrease 'end' only for the first mblk of 11831 * the fragment. Otherwise 'end' can get wrong value in the 11832 * second pass of the loop if first mblk is exactly the 11833 * size of ipf_nf_hdr_len. 11834 */ 11835 if (start == 0 && !offset_zero_seen) { 11836 /* First segment */ 11837 ASSERT(ipf->ipf_nf_hdr_len != 0); 11838 end -= ipf->ipf_nf_hdr_len; 11839 offset_zero_seen = B_TRUE; 11840 } 11841 next_mp = mp->b_cont; 11842 /* 11843 * We are checking to see if there is any interesing data 11844 * to process. If there isn't and the mblk isn't the 11845 * one which carries the unfragmentable header then we 11846 * drop it. It's possible to have just the unfragmentable 11847 * header come through without any data. That needs to be 11848 * saved. 11849 * 11850 * If the assert at the top of this function holds then the 11851 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11852 * is infrequently traveled enough that the test is left in 11853 * to protect against future code changes which break that 11854 * invariant. 11855 */ 11856 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11857 /* Empty. Blast it. */ 11858 IP_REASS_SET_START(mp, 0); 11859 IP_REASS_SET_END(mp, 0); 11860 /* 11861 * If the ipf points to the mblk we are about to free, 11862 * update ipf to point to the next mblk (or NULL 11863 * if none). 11864 */ 11865 if (ipf->ipf_mp->b_cont == mp) 11866 ipf->ipf_mp->b_cont = next_mp; 11867 freeb(mp); 11868 continue; 11869 } 11870 mp->b_cont = NULL; 11871 IP_REASS_SET_START(mp, start); 11872 IP_REASS_SET_END(mp, end); 11873 if (!ipf->ipf_tail_mp) { 11874 ipf->ipf_tail_mp = mp; 11875 ipf->ipf_mp->b_cont = mp; 11876 if (start == 0 || !more) { 11877 ipf->ipf_hole_cnt = 1; 11878 /* 11879 * if the first fragment comes in more than one 11880 * mblk, this loop will be executed for each 11881 * mblk. Need to adjust hole count so exiting 11882 * this routine will leave hole count at 1. 11883 */ 11884 if (next_mp) 11885 ipf->ipf_hole_cnt++; 11886 } else 11887 ipf->ipf_hole_cnt = 2; 11888 continue; 11889 } else if (ipf->ipf_last_frag_seen && !more && 11890 !pkt_boundary_checked) { 11891 /* 11892 * We check datagram boundary only if this fragment 11893 * claims to be the last fragment and we have seen a 11894 * last fragment in the past too. We do this only 11895 * once for a given fragment. 11896 * 11897 * start cannot be 0 here as fragments with start=0 11898 * and MF=0 gets handled as a complete packet. These 11899 * fragments should not reach here. 11900 */ 11901 11902 if (start + msgdsize(mp) != 11903 IP_REASS_END(ipf->ipf_tail_mp)) { 11904 /* 11905 * We have two fragments both of which claim 11906 * to be the last fragment but gives conflicting 11907 * information about the whole datagram size. 11908 * Something fishy is going on. Drop the 11909 * fragment and free up the reassembly list. 11910 */ 11911 return (IP_REASS_FAILED); 11912 } 11913 11914 /* 11915 * We shouldn't come to this code block again for this 11916 * particular fragment. 11917 */ 11918 pkt_boundary_checked = B_TRUE; 11919 } 11920 11921 /* New stuff at or beyond tail? */ 11922 offset = IP_REASS_END(ipf->ipf_tail_mp); 11923 if (start >= offset) { 11924 if (ipf->ipf_last_frag_seen) { 11925 /* current fragment is beyond last fragment */ 11926 return (IP_REASS_FAILED); 11927 } 11928 /* Link it on end. */ 11929 ipf->ipf_tail_mp->b_cont = mp; 11930 ipf->ipf_tail_mp = mp; 11931 if (more) { 11932 if (start != offset) 11933 ipf->ipf_hole_cnt++; 11934 } else if (start == offset && next_mp == NULL) 11935 ipf->ipf_hole_cnt--; 11936 continue; 11937 } 11938 mp1 = ipf->ipf_mp->b_cont; 11939 offset = IP_REASS_START(mp1); 11940 /* New stuff at the front? */ 11941 if (start < offset) { 11942 if (start == 0) { 11943 if (end >= offset) { 11944 /* Nailed the hole at the begining. */ 11945 ipf->ipf_hole_cnt--; 11946 } 11947 } else if (end < offset) { 11948 /* 11949 * A hole, stuff, and a hole where there used 11950 * to be just a hole. 11951 */ 11952 ipf->ipf_hole_cnt++; 11953 } 11954 mp->b_cont = mp1; 11955 /* Check for overlap. */ 11956 while (end > offset) { 11957 if (end < IP_REASS_END(mp1)) { 11958 mp->b_wptr -= end - offset; 11959 IP_REASS_SET_END(mp, offset); 11960 BUMP_MIB(ill->ill_ip_mib, 11961 ipIfStatsReasmPartDups); 11962 break; 11963 } 11964 /* Did we cover another hole? */ 11965 if ((mp1->b_cont && 11966 IP_REASS_END(mp1) != 11967 IP_REASS_START(mp1->b_cont) && 11968 end >= IP_REASS_START(mp1->b_cont)) || 11969 (!ipf->ipf_last_frag_seen && !more)) { 11970 ipf->ipf_hole_cnt--; 11971 } 11972 /* Clip out mp1. */ 11973 if ((mp->b_cont = mp1->b_cont) == NULL) { 11974 /* 11975 * After clipping out mp1, this guy 11976 * is now hanging off the end. 11977 */ 11978 ipf->ipf_tail_mp = mp; 11979 } 11980 IP_REASS_SET_START(mp1, 0); 11981 IP_REASS_SET_END(mp1, 0); 11982 /* Subtract byte count */ 11983 ipf->ipf_count -= mp1->b_datap->db_lim - 11984 mp1->b_datap->db_base; 11985 freeb(mp1); 11986 BUMP_MIB(ill->ill_ip_mib, 11987 ipIfStatsReasmPartDups); 11988 mp1 = mp->b_cont; 11989 if (!mp1) 11990 break; 11991 offset = IP_REASS_START(mp1); 11992 } 11993 ipf->ipf_mp->b_cont = mp; 11994 continue; 11995 } 11996 /* 11997 * The new piece starts somewhere between the start of the head 11998 * and before the end of the tail. 11999 */ 12000 for (; mp1; mp1 = mp1->b_cont) { 12001 offset = IP_REASS_END(mp1); 12002 if (start < offset) { 12003 if (end <= offset) { 12004 /* Nothing new. */ 12005 IP_REASS_SET_START(mp, 0); 12006 IP_REASS_SET_END(mp, 0); 12007 /* Subtract byte count */ 12008 ipf->ipf_count -= mp->b_datap->db_lim - 12009 mp->b_datap->db_base; 12010 if (incr_dups) { 12011 ipf->ipf_num_dups++; 12012 incr_dups = B_FALSE; 12013 } 12014 freeb(mp); 12015 BUMP_MIB(ill->ill_ip_mib, 12016 ipIfStatsReasmDuplicates); 12017 break; 12018 } 12019 /* 12020 * Trim redundant stuff off beginning of new 12021 * piece. 12022 */ 12023 IP_REASS_SET_START(mp, offset); 12024 mp->b_rptr += offset - start; 12025 BUMP_MIB(ill->ill_ip_mib, 12026 ipIfStatsReasmPartDups); 12027 start = offset; 12028 if (!mp1->b_cont) { 12029 /* 12030 * After trimming, this guy is now 12031 * hanging off the end. 12032 */ 12033 mp1->b_cont = mp; 12034 ipf->ipf_tail_mp = mp; 12035 if (!more) { 12036 ipf->ipf_hole_cnt--; 12037 } 12038 break; 12039 } 12040 } 12041 if (start >= IP_REASS_START(mp1->b_cont)) 12042 continue; 12043 /* Fill a hole */ 12044 if (start > offset) 12045 ipf->ipf_hole_cnt++; 12046 mp->b_cont = mp1->b_cont; 12047 mp1->b_cont = mp; 12048 mp1 = mp->b_cont; 12049 offset = IP_REASS_START(mp1); 12050 if (end >= offset) { 12051 ipf->ipf_hole_cnt--; 12052 /* Check for overlap. */ 12053 while (end > offset) { 12054 if (end < IP_REASS_END(mp1)) { 12055 mp->b_wptr -= end - offset; 12056 IP_REASS_SET_END(mp, offset); 12057 /* 12058 * TODO we might bump 12059 * this up twice if there is 12060 * overlap at both ends. 12061 */ 12062 BUMP_MIB(ill->ill_ip_mib, 12063 ipIfStatsReasmPartDups); 12064 break; 12065 } 12066 /* Did we cover another hole? */ 12067 if ((mp1->b_cont && 12068 IP_REASS_END(mp1) 12069 != IP_REASS_START(mp1->b_cont) && 12070 end >= 12071 IP_REASS_START(mp1->b_cont)) || 12072 (!ipf->ipf_last_frag_seen && 12073 !more)) { 12074 ipf->ipf_hole_cnt--; 12075 } 12076 /* Clip out mp1. */ 12077 if ((mp->b_cont = mp1->b_cont) == 12078 NULL) { 12079 /* 12080 * After clipping out mp1, 12081 * this guy is now hanging 12082 * off the end. 12083 */ 12084 ipf->ipf_tail_mp = mp; 12085 } 12086 IP_REASS_SET_START(mp1, 0); 12087 IP_REASS_SET_END(mp1, 0); 12088 /* Subtract byte count */ 12089 ipf->ipf_count -= 12090 mp1->b_datap->db_lim - 12091 mp1->b_datap->db_base; 12092 freeb(mp1); 12093 BUMP_MIB(ill->ill_ip_mib, 12094 ipIfStatsReasmPartDups); 12095 mp1 = mp->b_cont; 12096 if (!mp1) 12097 break; 12098 offset = IP_REASS_START(mp1); 12099 } 12100 } 12101 break; 12102 } 12103 } while (start = end, mp = next_mp); 12104 12105 /* Fragment just processed could be the last one. Remember this fact */ 12106 if (!more) 12107 ipf->ipf_last_frag_seen = B_TRUE; 12108 12109 /* Still got holes? */ 12110 if (ipf->ipf_hole_cnt) 12111 return (IP_REASS_PARTIAL); 12112 /* Clean up overloaded fields to avoid upstream disasters. */ 12113 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12114 IP_REASS_SET_START(mp1, 0); 12115 IP_REASS_SET_END(mp1, 0); 12116 } 12117 return (IP_REASS_COMPLETE); 12118 } 12119 12120 /* 12121 * ipsec processing for the fast path, used for input UDP Packets 12122 * Returns true if ready for passup to UDP. 12123 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12124 * was an ESP-in-UDP packet, etc.). 12125 */ 12126 static boolean_t 12127 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12128 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12129 { 12130 uint32_t ill_index; 12131 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12132 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12133 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12134 udp_t *udp = connp->conn_udp; 12135 12136 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12137 /* The ill_index of the incoming ILL */ 12138 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12139 12140 /* pass packet up to the transport */ 12141 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12142 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12143 NULL, mctl_present); 12144 if (*first_mpp == NULL) { 12145 return (B_FALSE); 12146 } 12147 } 12148 12149 /* Initiate IPPF processing for fastpath UDP */ 12150 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12151 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12152 if (*mpp == NULL) { 12153 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12154 "deferred/dropped during IPPF processing\n")); 12155 return (B_FALSE); 12156 } 12157 } 12158 /* 12159 * Remove 0-spi if it's 0, or move everything behind 12160 * the UDP header over it and forward to ESP via 12161 * ip_proto_input(). 12162 */ 12163 if (udp->udp_nat_t_endpoint) { 12164 if (mctl_present) { 12165 /* mctl_present *shouldn't* happen. */ 12166 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12167 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12168 &ipss->ipsec_dropper); 12169 *first_mpp = NULL; 12170 return (B_FALSE); 12171 } 12172 12173 /* "ill" is "recv_ill" in actuality. */ 12174 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12175 return (B_FALSE); 12176 12177 /* Else continue like a normal UDP packet. */ 12178 } 12179 12180 /* 12181 * We make the checks as below since we are in the fast path 12182 * and want to minimize the number of checks if the IP_RECVIF and/or 12183 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12184 */ 12185 if (connp->conn_recvif || connp->conn_recvslla || 12186 connp->conn_ip_recvpktinfo) { 12187 if (connp->conn_recvif) { 12188 in_flags = IPF_RECVIF; 12189 } 12190 /* 12191 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12192 * so the flag passed to ip_add_info is based on IP version 12193 * of connp. 12194 */ 12195 if (connp->conn_ip_recvpktinfo) { 12196 if (connp->conn_af_isv6) { 12197 /* 12198 * V6 only needs index 12199 */ 12200 in_flags |= IPF_RECVIF; 12201 } else { 12202 /* 12203 * V4 needs index + matching address. 12204 */ 12205 in_flags |= IPF_RECVADDR; 12206 } 12207 } 12208 if (connp->conn_recvslla) { 12209 in_flags |= IPF_RECVSLLA; 12210 } 12211 /* 12212 * since in_flags are being set ill will be 12213 * referenced in ip_add_info, so it better not 12214 * be NULL. 12215 */ 12216 /* 12217 * the actual data will be contained in b_cont 12218 * upon successful return of the following call. 12219 * If the call fails then the original mblk is 12220 * returned. 12221 */ 12222 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12223 ipst); 12224 } 12225 12226 return (B_TRUE); 12227 } 12228 12229 /* 12230 * Fragmentation reassembly. Each ILL has a hash table for 12231 * queuing packets undergoing reassembly for all IPIFs 12232 * associated with the ILL. The hash is based on the packet 12233 * IP ident field. The ILL frag hash table was allocated 12234 * as a timer block at the time the ILL was created. Whenever 12235 * there is anything on the reassembly queue, the timer will 12236 * be running. Returns B_TRUE if successful else B_FALSE; 12237 * frees mp on failure. 12238 */ 12239 static boolean_t 12240 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12241 uint32_t *cksum_val, uint16_t *cksum_flags) 12242 { 12243 uint32_t frag_offset_flags; 12244 ill_t *ill = (ill_t *)q->q_ptr; 12245 mblk_t *mp = *mpp; 12246 mblk_t *t_mp; 12247 ipaddr_t dst; 12248 uint8_t proto = ipha->ipha_protocol; 12249 uint32_t sum_val; 12250 uint16_t sum_flags; 12251 ipf_t *ipf; 12252 ipf_t **ipfp; 12253 ipfb_t *ipfb; 12254 uint16_t ident; 12255 uint32_t offset; 12256 ipaddr_t src; 12257 uint_t hdr_length; 12258 uint32_t end; 12259 mblk_t *mp1; 12260 mblk_t *tail_mp; 12261 size_t count; 12262 size_t msg_len; 12263 uint8_t ecn_info = 0; 12264 uint32_t packet_size; 12265 boolean_t pruned = B_FALSE; 12266 ip_stack_t *ipst = ill->ill_ipst; 12267 12268 if (cksum_val != NULL) 12269 *cksum_val = 0; 12270 if (cksum_flags != NULL) 12271 *cksum_flags = 0; 12272 12273 /* 12274 * Drop the fragmented as early as possible, if 12275 * we don't have resource(s) to re-assemble. 12276 */ 12277 if (ipst->ips_ip_reass_queue_bytes == 0) { 12278 freemsg(mp); 12279 return (B_FALSE); 12280 } 12281 12282 /* Check for fragmentation offset; return if there's none */ 12283 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12284 (IPH_MF | IPH_OFFSET)) == 0) 12285 return (B_TRUE); 12286 12287 /* 12288 * We utilize hardware computed checksum info only for UDP since 12289 * IP fragmentation is a normal occurence for the protocol. In 12290 * addition, checksum offload support for IP fragments carrying 12291 * UDP payload is commonly implemented across network adapters. 12292 */ 12293 ASSERT(ill != NULL); 12294 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12295 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12296 mblk_t *mp1 = mp->b_cont; 12297 int32_t len; 12298 12299 /* Record checksum information from the packet */ 12300 sum_val = (uint32_t)DB_CKSUM16(mp); 12301 sum_flags = DB_CKSUMFLAGS(mp); 12302 12303 /* IP payload offset from beginning of mblk */ 12304 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12305 12306 if ((sum_flags & HCK_PARTIALCKSUM) && 12307 (mp1 == NULL || mp1->b_cont == NULL) && 12308 offset >= DB_CKSUMSTART(mp) && 12309 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12310 uint32_t adj; 12311 /* 12312 * Partial checksum has been calculated by hardware 12313 * and attached to the packet; in addition, any 12314 * prepended extraneous data is even byte aligned. 12315 * If any such data exists, we adjust the checksum; 12316 * this would also handle any postpended data. 12317 */ 12318 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12319 mp, mp1, len, adj); 12320 12321 /* One's complement subtract extraneous checksum */ 12322 if (adj >= sum_val) 12323 sum_val = ~(adj - sum_val) & 0xFFFF; 12324 else 12325 sum_val -= adj; 12326 } 12327 } else { 12328 sum_val = 0; 12329 sum_flags = 0; 12330 } 12331 12332 /* Clear hardware checksumming flag */ 12333 DB_CKSUMFLAGS(mp) = 0; 12334 12335 ident = ipha->ipha_ident; 12336 offset = (frag_offset_flags << 3) & 0xFFFF; 12337 src = ipha->ipha_src; 12338 dst = ipha->ipha_dst; 12339 hdr_length = IPH_HDR_LENGTH(ipha); 12340 end = ntohs(ipha->ipha_length) - hdr_length; 12341 12342 /* If end == 0 then we have a packet with no data, so just free it */ 12343 if (end == 0) { 12344 freemsg(mp); 12345 return (B_FALSE); 12346 } 12347 12348 /* Record the ECN field info. */ 12349 ecn_info = (ipha->ipha_type_of_service & 0x3); 12350 if (offset != 0) { 12351 /* 12352 * If this isn't the first piece, strip the header, and 12353 * add the offset to the end value. 12354 */ 12355 mp->b_rptr += hdr_length; 12356 end += offset; 12357 } 12358 12359 msg_len = MBLKSIZE(mp); 12360 tail_mp = mp; 12361 while (tail_mp->b_cont != NULL) { 12362 tail_mp = tail_mp->b_cont; 12363 msg_len += MBLKSIZE(tail_mp); 12364 } 12365 12366 /* If the reassembly list for this ILL will get too big, prune it */ 12367 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12368 ipst->ips_ip_reass_queue_bytes) { 12369 ill_frag_prune(ill, 12370 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12371 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12372 pruned = B_TRUE; 12373 } 12374 12375 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12376 mutex_enter(&ipfb->ipfb_lock); 12377 12378 ipfp = &ipfb->ipfb_ipf; 12379 /* Try to find an existing fragment queue for this packet. */ 12380 for (;;) { 12381 ipf = ipfp[0]; 12382 if (ipf != NULL) { 12383 /* 12384 * It has to match on ident and src/dst address. 12385 */ 12386 if (ipf->ipf_ident == ident && 12387 ipf->ipf_src == src && 12388 ipf->ipf_dst == dst && 12389 ipf->ipf_protocol == proto) { 12390 /* 12391 * If we have received too many 12392 * duplicate fragments for this packet 12393 * free it. 12394 */ 12395 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12396 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12397 freemsg(mp); 12398 mutex_exit(&ipfb->ipfb_lock); 12399 return (B_FALSE); 12400 } 12401 /* Found it. */ 12402 break; 12403 } 12404 ipfp = &ipf->ipf_hash_next; 12405 continue; 12406 } 12407 12408 /* 12409 * If we pruned the list, do we want to store this new 12410 * fragment?. We apply an optimization here based on the 12411 * fact that most fragments will be received in order. 12412 * So if the offset of this incoming fragment is zero, 12413 * it is the first fragment of a new packet. We will 12414 * keep it. Otherwise drop the fragment, as we have 12415 * probably pruned the packet already (since the 12416 * packet cannot be found). 12417 */ 12418 if (pruned && offset != 0) { 12419 mutex_exit(&ipfb->ipfb_lock); 12420 freemsg(mp); 12421 return (B_FALSE); 12422 } 12423 12424 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12425 /* 12426 * Too many fragmented packets in this hash 12427 * bucket. Free the oldest. 12428 */ 12429 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12430 } 12431 12432 /* New guy. Allocate a frag message. */ 12433 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12434 if (mp1 == NULL) { 12435 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12436 freemsg(mp); 12437 reass_done: 12438 mutex_exit(&ipfb->ipfb_lock); 12439 return (B_FALSE); 12440 } 12441 12442 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12443 mp1->b_cont = mp; 12444 12445 /* Initialize the fragment header. */ 12446 ipf = (ipf_t *)mp1->b_rptr; 12447 ipf->ipf_mp = mp1; 12448 ipf->ipf_ptphn = ipfp; 12449 ipfp[0] = ipf; 12450 ipf->ipf_hash_next = NULL; 12451 ipf->ipf_ident = ident; 12452 ipf->ipf_protocol = proto; 12453 ipf->ipf_src = src; 12454 ipf->ipf_dst = dst; 12455 ipf->ipf_nf_hdr_len = 0; 12456 /* Record reassembly start time. */ 12457 ipf->ipf_timestamp = gethrestime_sec(); 12458 /* Record ipf generation and account for frag header */ 12459 ipf->ipf_gen = ill->ill_ipf_gen++; 12460 ipf->ipf_count = MBLKSIZE(mp1); 12461 ipf->ipf_last_frag_seen = B_FALSE; 12462 ipf->ipf_ecn = ecn_info; 12463 ipf->ipf_num_dups = 0; 12464 ipfb->ipfb_frag_pkts++; 12465 ipf->ipf_checksum = 0; 12466 ipf->ipf_checksum_flags = 0; 12467 12468 /* Store checksum value in fragment header */ 12469 if (sum_flags != 0) { 12470 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12471 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12472 ipf->ipf_checksum = sum_val; 12473 ipf->ipf_checksum_flags = sum_flags; 12474 } 12475 12476 /* 12477 * We handle reassembly two ways. In the easy case, 12478 * where all the fragments show up in order, we do 12479 * minimal bookkeeping, and just clip new pieces on 12480 * the end. If we ever see a hole, then we go off 12481 * to ip_reassemble which has to mark the pieces and 12482 * keep track of the number of holes, etc. Obviously, 12483 * the point of having both mechanisms is so we can 12484 * handle the easy case as efficiently as possible. 12485 */ 12486 if (offset == 0) { 12487 /* Easy case, in-order reassembly so far. */ 12488 ipf->ipf_count += msg_len; 12489 ipf->ipf_tail_mp = tail_mp; 12490 /* 12491 * Keep track of next expected offset in 12492 * ipf_end. 12493 */ 12494 ipf->ipf_end = end; 12495 ipf->ipf_nf_hdr_len = hdr_length; 12496 } else { 12497 /* Hard case, hole at the beginning. */ 12498 ipf->ipf_tail_mp = NULL; 12499 /* 12500 * ipf_end == 0 means that we have given up 12501 * on easy reassembly. 12502 */ 12503 ipf->ipf_end = 0; 12504 12505 /* Forget checksum offload from now on */ 12506 ipf->ipf_checksum_flags = 0; 12507 12508 /* 12509 * ipf_hole_cnt is set by ip_reassemble. 12510 * ipf_count is updated by ip_reassemble. 12511 * No need to check for return value here 12512 * as we don't expect reassembly to complete 12513 * or fail for the first fragment itself. 12514 */ 12515 (void) ip_reassemble(mp, ipf, 12516 (frag_offset_flags & IPH_OFFSET) << 3, 12517 (frag_offset_flags & IPH_MF), ill, msg_len); 12518 } 12519 /* Update per ipfb and ill byte counts */ 12520 ipfb->ipfb_count += ipf->ipf_count; 12521 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12522 ill->ill_frag_count += ipf->ipf_count; 12523 /* If the frag timer wasn't already going, start it. */ 12524 mutex_enter(&ill->ill_lock); 12525 ill_frag_timer_start(ill); 12526 mutex_exit(&ill->ill_lock); 12527 goto reass_done; 12528 } 12529 12530 /* 12531 * If the packet's flag has changed (it could be coming up 12532 * from an interface different than the previous, therefore 12533 * possibly different checksum capability), then forget about 12534 * any stored checksum states. Otherwise add the value to 12535 * the existing one stored in the fragment header. 12536 */ 12537 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12538 sum_val += ipf->ipf_checksum; 12539 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12540 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12541 ipf->ipf_checksum = sum_val; 12542 } else if (ipf->ipf_checksum_flags != 0) { 12543 /* Forget checksum offload from now on */ 12544 ipf->ipf_checksum_flags = 0; 12545 } 12546 12547 /* 12548 * We have a new piece of a datagram which is already being 12549 * reassembled. Update the ECN info if all IP fragments 12550 * are ECN capable. If there is one which is not, clear 12551 * all the info. If there is at least one which has CE 12552 * code point, IP needs to report that up to transport. 12553 */ 12554 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12555 if (ecn_info == IPH_ECN_CE) 12556 ipf->ipf_ecn = IPH_ECN_CE; 12557 } else { 12558 ipf->ipf_ecn = IPH_ECN_NECT; 12559 } 12560 if (offset && ipf->ipf_end == offset) { 12561 /* The new fragment fits at the end */ 12562 ipf->ipf_tail_mp->b_cont = mp; 12563 /* Update the byte count */ 12564 ipf->ipf_count += msg_len; 12565 /* Update per ipfb and ill byte counts */ 12566 ipfb->ipfb_count += msg_len; 12567 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12568 ill->ill_frag_count += msg_len; 12569 if (frag_offset_flags & IPH_MF) { 12570 /* More to come. */ 12571 ipf->ipf_end = end; 12572 ipf->ipf_tail_mp = tail_mp; 12573 goto reass_done; 12574 } 12575 } else { 12576 /* Go do the hard cases. */ 12577 int ret; 12578 12579 if (offset == 0) 12580 ipf->ipf_nf_hdr_len = hdr_length; 12581 12582 /* Save current byte count */ 12583 count = ipf->ipf_count; 12584 ret = ip_reassemble(mp, ipf, 12585 (frag_offset_flags & IPH_OFFSET) << 3, 12586 (frag_offset_flags & IPH_MF), ill, msg_len); 12587 /* Count of bytes added and subtracted (freeb()ed) */ 12588 count = ipf->ipf_count - count; 12589 if (count) { 12590 /* Update per ipfb and ill byte counts */ 12591 ipfb->ipfb_count += count; 12592 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12593 ill->ill_frag_count += count; 12594 } 12595 if (ret == IP_REASS_PARTIAL) { 12596 goto reass_done; 12597 } else if (ret == IP_REASS_FAILED) { 12598 /* Reassembly failed. Free up all resources */ 12599 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12600 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12601 IP_REASS_SET_START(t_mp, 0); 12602 IP_REASS_SET_END(t_mp, 0); 12603 } 12604 freemsg(mp); 12605 goto reass_done; 12606 } 12607 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12608 } 12609 /* 12610 * We have completed reassembly. Unhook the frag header from 12611 * the reassembly list. 12612 * 12613 * Before we free the frag header, record the ECN info 12614 * to report back to the transport. 12615 */ 12616 ecn_info = ipf->ipf_ecn; 12617 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12618 ipfp = ipf->ipf_ptphn; 12619 12620 /* We need to supply these to caller */ 12621 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12622 sum_val = ipf->ipf_checksum; 12623 else 12624 sum_val = 0; 12625 12626 mp1 = ipf->ipf_mp; 12627 count = ipf->ipf_count; 12628 ipf = ipf->ipf_hash_next; 12629 if (ipf != NULL) 12630 ipf->ipf_ptphn = ipfp; 12631 ipfp[0] = ipf; 12632 ill->ill_frag_count -= count; 12633 ASSERT(ipfb->ipfb_count >= count); 12634 ipfb->ipfb_count -= count; 12635 ipfb->ipfb_frag_pkts--; 12636 mutex_exit(&ipfb->ipfb_lock); 12637 /* Ditch the frag header. */ 12638 mp = mp1->b_cont; 12639 12640 freeb(mp1); 12641 12642 /* Restore original IP length in header. */ 12643 packet_size = (uint32_t)msgdsize(mp); 12644 if (packet_size > IP_MAXPACKET) { 12645 freemsg(mp); 12646 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12647 return (B_FALSE); 12648 } 12649 12650 if (DB_REF(mp) > 1) { 12651 mblk_t *mp2 = copymsg(mp); 12652 12653 freemsg(mp); 12654 if (mp2 == NULL) { 12655 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12656 return (B_FALSE); 12657 } 12658 mp = mp2; 12659 } 12660 ipha = (ipha_t *)mp->b_rptr; 12661 12662 ipha->ipha_length = htons((uint16_t)packet_size); 12663 /* We're now complete, zip the frag state */ 12664 ipha->ipha_fragment_offset_and_flags = 0; 12665 /* Record the ECN info. */ 12666 ipha->ipha_type_of_service &= 0xFC; 12667 ipha->ipha_type_of_service |= ecn_info; 12668 *mpp = mp; 12669 12670 /* Reassembly is successful; return checksum information if needed */ 12671 if (cksum_val != NULL) 12672 *cksum_val = sum_val; 12673 if (cksum_flags != NULL) 12674 *cksum_flags = sum_flags; 12675 12676 return (B_TRUE); 12677 } 12678 12679 /* 12680 * Perform ip header check sum update local options. 12681 * return B_TRUE if all is well, else return B_FALSE and release 12682 * the mp. caller is responsible for decrementing ire ref cnt. 12683 */ 12684 static boolean_t 12685 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12686 ip_stack_t *ipst) 12687 { 12688 mblk_t *first_mp; 12689 boolean_t mctl_present; 12690 uint16_t sum; 12691 12692 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12693 /* 12694 * Don't do the checksum if it has gone through AH/ESP 12695 * processing. 12696 */ 12697 if (!mctl_present) { 12698 sum = ip_csum_hdr(ipha); 12699 if (sum != 0) { 12700 if (ill != NULL) { 12701 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12702 } else { 12703 BUMP_MIB(&ipst->ips_ip_mib, 12704 ipIfStatsInCksumErrs); 12705 } 12706 freemsg(first_mp); 12707 return (B_FALSE); 12708 } 12709 } 12710 12711 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12712 if (mctl_present) 12713 freeb(first_mp); 12714 return (B_FALSE); 12715 } 12716 12717 return (B_TRUE); 12718 } 12719 12720 /* 12721 * All udp packet are delivered to the local host via this routine. 12722 */ 12723 void 12724 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12725 ill_t *recv_ill) 12726 { 12727 uint32_t sum; 12728 uint32_t u1; 12729 boolean_t mctl_present; 12730 conn_t *connp; 12731 mblk_t *first_mp; 12732 uint16_t *up; 12733 ill_t *ill = (ill_t *)q->q_ptr; 12734 uint16_t reass_hck_flags = 0; 12735 ip_stack_t *ipst; 12736 12737 ASSERT(recv_ill != NULL); 12738 ipst = recv_ill->ill_ipst; 12739 12740 #define rptr ((uchar_t *)ipha) 12741 12742 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12743 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12744 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12745 ASSERT(ill != NULL); 12746 12747 /* 12748 * FAST PATH for udp packets 12749 */ 12750 12751 /* u1 is # words of IP options */ 12752 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12753 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12754 12755 /* IP options present */ 12756 if (u1 != 0) 12757 goto ipoptions; 12758 12759 /* Check the IP header checksum. */ 12760 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12761 /* Clear the IP header h/w cksum flag */ 12762 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12763 } else if (!mctl_present) { 12764 /* 12765 * Don't verify header checksum if this packet is coming 12766 * back from AH/ESP as we already did it. 12767 */ 12768 #define uph ((uint16_t *)ipha) 12769 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12770 uph[6] + uph[7] + uph[8] + uph[9]; 12771 #undef uph 12772 /* finish doing IP checksum */ 12773 sum = (sum & 0xFFFF) + (sum >> 16); 12774 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12775 if (sum != 0 && sum != 0xFFFF) { 12776 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12777 freemsg(first_mp); 12778 return; 12779 } 12780 } 12781 12782 /* 12783 * Count for SNMP of inbound packets for ire. 12784 * if mctl is present this might be a secure packet and 12785 * has already been counted for in ip_proto_input(). 12786 */ 12787 if (!mctl_present) { 12788 UPDATE_IB_PKT_COUNT(ire); 12789 ire->ire_last_used_time = lbolt; 12790 } 12791 12792 /* packet part of fragmented IP packet? */ 12793 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12794 if (u1 & (IPH_MF | IPH_OFFSET)) { 12795 goto fragmented; 12796 } 12797 12798 /* u1 = IP header length (20 bytes) */ 12799 u1 = IP_SIMPLE_HDR_LENGTH; 12800 12801 /* packet does not contain complete IP & UDP headers */ 12802 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12803 goto udppullup; 12804 12805 /* up points to UDP header */ 12806 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12807 #define iphs ((uint16_t *)ipha) 12808 12809 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12810 if (up[3] != 0) { 12811 mblk_t *mp1 = mp->b_cont; 12812 boolean_t cksum_err; 12813 uint16_t hck_flags = 0; 12814 12815 /* Pseudo-header checksum */ 12816 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12817 iphs[9] + up[2]; 12818 12819 /* 12820 * Revert to software checksum calculation if the interface 12821 * isn't capable of checksum offload or if IPsec is present. 12822 */ 12823 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12824 hck_flags = DB_CKSUMFLAGS(mp); 12825 12826 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12827 IP_STAT(ipst, ip_in_sw_cksum); 12828 12829 IP_CKSUM_RECV(hck_flags, u1, 12830 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12831 (int32_t)((uchar_t *)up - rptr), 12832 mp, mp1, cksum_err); 12833 12834 if (cksum_err) { 12835 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12836 if (hck_flags & HCK_FULLCKSUM) 12837 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12838 else if (hck_flags & HCK_PARTIALCKSUM) 12839 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12840 else 12841 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12842 12843 freemsg(first_mp); 12844 return; 12845 } 12846 } 12847 12848 /* Non-fragmented broadcast or multicast packet? */ 12849 if (ire->ire_type == IRE_BROADCAST) 12850 goto udpslowpath; 12851 12852 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12853 ire->ire_zoneid, ipst)) != NULL) { 12854 ASSERT(connp->conn_upq != NULL); 12855 IP_STAT(ipst, ip_udp_fast_path); 12856 12857 if (CONN_UDP_FLOWCTLD(connp)) { 12858 freemsg(mp); 12859 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12860 } else { 12861 if (!mctl_present) { 12862 BUMP_MIB(ill->ill_ip_mib, 12863 ipIfStatsHCInDelivers); 12864 } 12865 /* 12866 * mp and first_mp can change. 12867 */ 12868 if (ip_udp_check(q, connp, recv_ill, 12869 ipha, &mp, &first_mp, mctl_present, ire)) { 12870 /* Send it upstream */ 12871 (connp->conn_recv)(connp, mp, NULL); 12872 } 12873 } 12874 /* 12875 * freeb() cannot deal with null mblk being passed 12876 * in and first_mp can be set to null in the call 12877 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12878 */ 12879 if (mctl_present && first_mp != NULL) { 12880 freeb(first_mp); 12881 } 12882 CONN_DEC_REF(connp); 12883 return; 12884 } 12885 12886 /* 12887 * if we got here we know the packet is not fragmented and 12888 * has no options. The classifier could not find a conn_t and 12889 * most likely its an icmp packet so send it through slow path. 12890 */ 12891 12892 goto udpslowpath; 12893 12894 ipoptions: 12895 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12896 goto slow_done; 12897 } 12898 12899 UPDATE_IB_PKT_COUNT(ire); 12900 ire->ire_last_used_time = lbolt; 12901 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12902 if (u1 & (IPH_MF | IPH_OFFSET)) { 12903 fragmented: 12904 /* 12905 * "sum" and "reass_hck_flags" are non-zero if the 12906 * reassembled packet has a valid hardware computed 12907 * checksum information associated with it. 12908 */ 12909 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12910 goto slow_done; 12911 /* 12912 * Make sure that first_mp points back to mp as 12913 * the mp we came in with could have changed in 12914 * ip_rput_fragment(). 12915 */ 12916 ASSERT(!mctl_present); 12917 ipha = (ipha_t *)mp->b_rptr; 12918 first_mp = mp; 12919 } 12920 12921 /* Now we have a complete datagram, destined for this machine. */ 12922 u1 = IPH_HDR_LENGTH(ipha); 12923 /* Pull up the UDP header, if necessary. */ 12924 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12925 udppullup: 12926 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12927 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12928 freemsg(first_mp); 12929 goto slow_done; 12930 } 12931 ipha = (ipha_t *)mp->b_rptr; 12932 } 12933 12934 /* 12935 * Validate the checksum for the reassembled packet; for the 12936 * pullup case we calculate the payload checksum in software. 12937 */ 12938 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12939 if (up[3] != 0) { 12940 boolean_t cksum_err; 12941 12942 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12943 IP_STAT(ipst, ip_in_sw_cksum); 12944 12945 IP_CKSUM_RECV_REASS(reass_hck_flags, 12946 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12947 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12948 iphs[9] + up[2], sum, cksum_err); 12949 12950 if (cksum_err) { 12951 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12952 12953 if (reass_hck_flags & HCK_FULLCKSUM) 12954 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12955 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12956 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12957 else 12958 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12959 12960 freemsg(first_mp); 12961 goto slow_done; 12962 } 12963 } 12964 udpslowpath: 12965 12966 /* Clear hardware checksum flag to be safe */ 12967 DB_CKSUMFLAGS(mp) = 0; 12968 12969 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12970 (ire->ire_type == IRE_BROADCAST), 12971 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12972 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12973 12974 slow_done: 12975 IP_STAT(ipst, ip_udp_slow_path); 12976 return; 12977 12978 #undef iphs 12979 #undef rptr 12980 } 12981 12982 /* ARGSUSED */ 12983 static mblk_t * 12984 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12985 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12986 ill_rx_ring_t *ill_ring) 12987 { 12988 conn_t *connp; 12989 uint32_t sum; 12990 uint32_t u1; 12991 uint16_t *up; 12992 int offset; 12993 ssize_t len; 12994 mblk_t *mp1; 12995 boolean_t syn_present = B_FALSE; 12996 tcph_t *tcph; 12997 uint_t ip_hdr_len; 12998 ill_t *ill = (ill_t *)q->q_ptr; 12999 zoneid_t zoneid = ire->ire_zoneid; 13000 boolean_t cksum_err; 13001 uint16_t hck_flags = 0; 13002 ip_stack_t *ipst = recv_ill->ill_ipst; 13003 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13004 13005 #define rptr ((uchar_t *)ipha) 13006 13007 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13008 ASSERT(ill != NULL); 13009 13010 /* 13011 * FAST PATH for tcp packets 13012 */ 13013 13014 /* u1 is # words of IP options */ 13015 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13016 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13017 13018 /* IP options present */ 13019 if (u1) { 13020 goto ipoptions; 13021 } else if (!mctl_present) { 13022 /* Check the IP header checksum. */ 13023 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13024 /* Clear the IP header h/w cksum flag */ 13025 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13026 } else if (!mctl_present) { 13027 /* 13028 * Don't verify header checksum if this packet 13029 * is coming back from AH/ESP as we already did it. 13030 */ 13031 #define uph ((uint16_t *)ipha) 13032 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13033 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13034 #undef uph 13035 /* finish doing IP checksum */ 13036 sum = (sum & 0xFFFF) + (sum >> 16); 13037 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13038 if (sum != 0 && sum != 0xFFFF) { 13039 BUMP_MIB(ill->ill_ip_mib, 13040 ipIfStatsInCksumErrs); 13041 goto error; 13042 } 13043 } 13044 } 13045 13046 if (!mctl_present) { 13047 UPDATE_IB_PKT_COUNT(ire); 13048 ire->ire_last_used_time = lbolt; 13049 } 13050 13051 /* packet part of fragmented IP packet? */ 13052 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13053 if (u1 & (IPH_MF | IPH_OFFSET)) { 13054 goto fragmented; 13055 } 13056 13057 /* u1 = IP header length (20 bytes) */ 13058 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13059 13060 /* does packet contain IP+TCP headers? */ 13061 len = mp->b_wptr - rptr; 13062 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13063 IP_STAT(ipst, ip_tcppullup); 13064 goto tcppullup; 13065 } 13066 13067 /* TCP options present? */ 13068 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13069 13070 /* 13071 * If options need to be pulled up, then goto tcpoptions. 13072 * otherwise we are still in the fast path 13073 */ 13074 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13075 IP_STAT(ipst, ip_tcpoptions); 13076 goto tcpoptions; 13077 } 13078 13079 /* multiple mblks of tcp data? */ 13080 if ((mp1 = mp->b_cont) != NULL) { 13081 /* more then two? */ 13082 if (mp1->b_cont != NULL) { 13083 IP_STAT(ipst, ip_multipkttcp); 13084 goto multipkttcp; 13085 } 13086 len += mp1->b_wptr - mp1->b_rptr; 13087 } 13088 13089 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13090 13091 /* part of pseudo checksum */ 13092 13093 /* TCP datagram length */ 13094 u1 = len - IP_SIMPLE_HDR_LENGTH; 13095 13096 #define iphs ((uint16_t *)ipha) 13097 13098 #ifdef _BIG_ENDIAN 13099 u1 += IPPROTO_TCP; 13100 #else 13101 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13102 #endif 13103 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13104 13105 /* 13106 * Revert to software checksum calculation if the interface 13107 * isn't capable of checksum offload or if IPsec is present. 13108 */ 13109 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13110 hck_flags = DB_CKSUMFLAGS(mp); 13111 13112 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13113 IP_STAT(ipst, ip_in_sw_cksum); 13114 13115 IP_CKSUM_RECV(hck_flags, u1, 13116 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13117 (int32_t)((uchar_t *)up - rptr), 13118 mp, mp1, cksum_err); 13119 13120 if (cksum_err) { 13121 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13122 13123 if (hck_flags & HCK_FULLCKSUM) 13124 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13125 else if (hck_flags & HCK_PARTIALCKSUM) 13126 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13127 else 13128 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13129 13130 goto error; 13131 } 13132 13133 try_again: 13134 13135 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13136 zoneid, ipst)) == NULL) { 13137 /* Send the TH_RST */ 13138 goto no_conn; 13139 } 13140 13141 /* 13142 * TCP FAST PATH for AF_INET socket. 13143 * 13144 * TCP fast path to avoid extra work. An AF_INET socket type 13145 * does not have facility to receive extra information via 13146 * ip_process or ip_add_info. Also, when the connection was 13147 * established, we made a check if this connection is impacted 13148 * by any global IPsec policy or per connection policy (a 13149 * policy that comes in effect later will not apply to this 13150 * connection). Since all this can be determined at the 13151 * connection establishment time, a quick check of flags 13152 * can avoid extra work. 13153 */ 13154 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13155 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13156 ASSERT(first_mp == mp); 13157 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13158 SET_SQUEUE(mp, tcp_rput_data, connp); 13159 return (mp); 13160 } 13161 13162 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13163 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13164 if (IPCL_IS_TCP(connp)) { 13165 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13166 DB_CKSUMSTART(mp) = 13167 (intptr_t)ip_squeue_get(ill_ring); 13168 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13169 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13170 BUMP_MIB(ill->ill_ip_mib, 13171 ipIfStatsHCInDelivers); 13172 SET_SQUEUE(mp, connp->conn_recv, connp); 13173 return (mp); 13174 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13175 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13176 BUMP_MIB(ill->ill_ip_mib, 13177 ipIfStatsHCInDelivers); 13178 ip_squeue_enter_unbound++; 13179 SET_SQUEUE(mp, tcp_conn_request_unbound, 13180 connp); 13181 return (mp); 13182 } 13183 syn_present = B_TRUE; 13184 } 13185 13186 } 13187 13188 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13189 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13190 13191 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13192 /* No need to send this packet to TCP */ 13193 if ((flags & TH_RST) || (flags & TH_URG)) { 13194 CONN_DEC_REF(connp); 13195 freemsg(first_mp); 13196 return (NULL); 13197 } 13198 if (flags & TH_ACK) { 13199 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13200 ipst->ips_netstack->netstack_tcp, connp); 13201 CONN_DEC_REF(connp); 13202 return (NULL); 13203 } 13204 13205 CONN_DEC_REF(connp); 13206 freemsg(first_mp); 13207 return (NULL); 13208 } 13209 13210 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13211 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13212 ipha, NULL, mctl_present); 13213 if (first_mp == NULL) { 13214 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13215 CONN_DEC_REF(connp); 13216 return (NULL); 13217 } 13218 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13219 ASSERT(syn_present); 13220 if (mctl_present) { 13221 ASSERT(first_mp != mp); 13222 first_mp->b_datap->db_struioflag |= 13223 STRUIO_POLICY; 13224 } else { 13225 ASSERT(first_mp == mp); 13226 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13227 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13228 } 13229 } else { 13230 /* 13231 * Discard first_mp early since we're dealing with a 13232 * fully-connected conn_t and tcp doesn't do policy in 13233 * this case. 13234 */ 13235 if (mctl_present) { 13236 freeb(first_mp); 13237 mctl_present = B_FALSE; 13238 } 13239 first_mp = mp; 13240 } 13241 } 13242 13243 /* Initiate IPPF processing for fastpath */ 13244 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13245 uint32_t ill_index; 13246 13247 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13248 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13249 if (mp == NULL) { 13250 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13251 "deferred/dropped during IPPF processing\n")); 13252 CONN_DEC_REF(connp); 13253 if (mctl_present) 13254 freeb(first_mp); 13255 return (NULL); 13256 } else if (mctl_present) { 13257 /* 13258 * ip_process might return a new mp. 13259 */ 13260 ASSERT(first_mp != mp); 13261 first_mp->b_cont = mp; 13262 } else { 13263 first_mp = mp; 13264 } 13265 13266 } 13267 13268 if (!syn_present && connp->conn_ip_recvpktinfo) { 13269 /* 13270 * TCP does not support IP_RECVPKTINFO for v4 so lets 13271 * make sure IPF_RECVIF is passed to ip_add_info. 13272 */ 13273 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13274 IPCL_ZONEID(connp), ipst); 13275 if (mp == NULL) { 13276 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13277 CONN_DEC_REF(connp); 13278 if (mctl_present) 13279 freeb(first_mp); 13280 return (NULL); 13281 } else if (mctl_present) { 13282 /* 13283 * ip_add_info might return a new mp. 13284 */ 13285 ASSERT(first_mp != mp); 13286 first_mp->b_cont = mp; 13287 } else { 13288 first_mp = mp; 13289 } 13290 } 13291 13292 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13293 if (IPCL_IS_TCP(connp)) { 13294 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13295 return (first_mp); 13296 } else { 13297 /* SOCK_RAW, IPPROTO_TCP case */ 13298 (connp->conn_recv)(connp, first_mp, NULL); 13299 CONN_DEC_REF(connp); 13300 return (NULL); 13301 } 13302 13303 no_conn: 13304 /* Initiate IPPf processing, if needed. */ 13305 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13306 uint32_t ill_index; 13307 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13308 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13309 if (first_mp == NULL) { 13310 return (NULL); 13311 } 13312 } 13313 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13314 13315 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13316 ipst->ips_netstack->netstack_tcp, NULL); 13317 return (NULL); 13318 ipoptions: 13319 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13320 goto slow_done; 13321 } 13322 13323 UPDATE_IB_PKT_COUNT(ire); 13324 ire->ire_last_used_time = lbolt; 13325 13326 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13327 if (u1 & (IPH_MF | IPH_OFFSET)) { 13328 fragmented: 13329 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13330 if (mctl_present) 13331 freeb(first_mp); 13332 goto slow_done; 13333 } 13334 /* 13335 * Make sure that first_mp points back to mp as 13336 * the mp we came in with could have changed in 13337 * ip_rput_fragment(). 13338 */ 13339 ASSERT(!mctl_present); 13340 ipha = (ipha_t *)mp->b_rptr; 13341 first_mp = mp; 13342 } 13343 13344 /* Now we have a complete datagram, destined for this machine. */ 13345 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13346 13347 len = mp->b_wptr - mp->b_rptr; 13348 /* Pull up a minimal TCP header, if necessary. */ 13349 if (len < (u1 + 20)) { 13350 tcppullup: 13351 if (!pullupmsg(mp, u1 + 20)) { 13352 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13353 goto error; 13354 } 13355 ipha = (ipha_t *)mp->b_rptr; 13356 len = mp->b_wptr - mp->b_rptr; 13357 } 13358 13359 /* 13360 * Extract the offset field from the TCP header. As usual, we 13361 * try to help the compiler more than the reader. 13362 */ 13363 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13364 if (offset != 5) { 13365 tcpoptions: 13366 if (offset < 5) { 13367 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13368 goto error; 13369 } 13370 /* 13371 * There must be TCP options. 13372 * Make sure we can grab them. 13373 */ 13374 offset <<= 2; 13375 offset += u1; 13376 if (len < offset) { 13377 if (!pullupmsg(mp, offset)) { 13378 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13379 goto error; 13380 } 13381 ipha = (ipha_t *)mp->b_rptr; 13382 len = mp->b_wptr - rptr; 13383 } 13384 } 13385 13386 /* Get the total packet length in len, including headers. */ 13387 if (mp->b_cont) { 13388 multipkttcp: 13389 len = msgdsize(mp); 13390 } 13391 13392 /* 13393 * Check the TCP checksum by pulling together the pseudo- 13394 * header checksum, and passing it to ip_csum to be added in 13395 * with the TCP datagram. 13396 * 13397 * Since we are not using the hwcksum if available we must 13398 * clear the flag. We may come here via tcppullup or tcpoptions. 13399 * If either of these fails along the way the mblk is freed. 13400 * If this logic ever changes and mblk is reused to say send 13401 * ICMP's back, then this flag may need to be cleared in 13402 * other places as well. 13403 */ 13404 DB_CKSUMFLAGS(mp) = 0; 13405 13406 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13407 13408 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13409 #ifdef _BIG_ENDIAN 13410 u1 += IPPROTO_TCP; 13411 #else 13412 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13413 #endif 13414 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13415 /* 13416 * Not M_DATA mblk or its a dup, so do the checksum now. 13417 */ 13418 IP_STAT(ipst, ip_in_sw_cksum); 13419 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13420 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13421 goto error; 13422 } 13423 13424 IP_STAT(ipst, ip_tcp_slow_path); 13425 goto try_again; 13426 #undef iphs 13427 #undef rptr 13428 13429 error: 13430 freemsg(first_mp); 13431 slow_done: 13432 return (NULL); 13433 } 13434 13435 /* ARGSUSED */ 13436 static void 13437 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13438 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13439 { 13440 conn_t *connp; 13441 uint32_t sum; 13442 uint32_t u1; 13443 ssize_t len; 13444 sctp_hdr_t *sctph; 13445 zoneid_t zoneid = ire->ire_zoneid; 13446 uint32_t pktsum; 13447 uint32_t calcsum; 13448 uint32_t ports; 13449 in6_addr_t map_src, map_dst; 13450 ill_t *ill = (ill_t *)q->q_ptr; 13451 ip_stack_t *ipst; 13452 sctp_stack_t *sctps; 13453 boolean_t sctp_csum_err = B_FALSE; 13454 13455 ASSERT(recv_ill != NULL); 13456 ipst = recv_ill->ill_ipst; 13457 sctps = ipst->ips_netstack->netstack_sctp; 13458 13459 #define rptr ((uchar_t *)ipha) 13460 13461 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13462 ASSERT(ill != NULL); 13463 13464 /* u1 is # words of IP options */ 13465 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13466 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13467 13468 /* IP options present */ 13469 if (u1 > 0) { 13470 goto ipoptions; 13471 } else { 13472 /* Check the IP header checksum. */ 13473 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13474 !mctl_present) { 13475 #define uph ((uint16_t *)ipha) 13476 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13477 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13478 #undef uph 13479 /* finish doing IP checksum */ 13480 sum = (sum & 0xFFFF) + (sum >> 16); 13481 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13482 /* 13483 * Don't verify header checksum if this packet 13484 * is coming back from AH/ESP as we already did it. 13485 */ 13486 if (sum != 0 && sum != 0xFFFF) { 13487 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13488 goto error; 13489 } 13490 } 13491 /* 13492 * Since there is no SCTP h/w cksum support yet, just 13493 * clear the flag. 13494 */ 13495 DB_CKSUMFLAGS(mp) = 0; 13496 } 13497 13498 /* 13499 * Don't verify header checksum if this packet is coming 13500 * back from AH/ESP as we already did it. 13501 */ 13502 if (!mctl_present) { 13503 UPDATE_IB_PKT_COUNT(ire); 13504 ire->ire_last_used_time = lbolt; 13505 } 13506 13507 /* packet part of fragmented IP packet? */ 13508 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13509 if (u1 & (IPH_MF | IPH_OFFSET)) 13510 goto fragmented; 13511 13512 /* u1 = IP header length (20 bytes) */ 13513 u1 = IP_SIMPLE_HDR_LENGTH; 13514 13515 find_sctp_client: 13516 /* Pullup if we don't have the sctp common header. */ 13517 len = MBLKL(mp); 13518 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13519 if (mp->b_cont == NULL || 13520 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13521 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13522 goto error; 13523 } 13524 ipha = (ipha_t *)mp->b_rptr; 13525 len = MBLKL(mp); 13526 } 13527 13528 sctph = (sctp_hdr_t *)(rptr + u1); 13529 #ifdef DEBUG 13530 if (!skip_sctp_cksum) { 13531 #endif 13532 pktsum = sctph->sh_chksum; 13533 sctph->sh_chksum = 0; 13534 calcsum = sctp_cksum(mp, u1); 13535 sctph->sh_chksum = pktsum; 13536 if (calcsum != pktsum) 13537 sctp_csum_err = B_TRUE; 13538 #ifdef DEBUG /* skip_sctp_cksum */ 13539 } 13540 #endif 13541 /* get the ports */ 13542 ports = *(uint32_t *)&sctph->sh_sport; 13543 13544 IRE_REFRELE(ire); 13545 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13546 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13547 if (sctp_csum_err) { 13548 /* 13549 * No potential sctp checksum errors go to the Sun 13550 * sctp stack however they might be Adler-32 summed 13551 * packets a userland stack bound to a raw IP socket 13552 * could reasonably use. Note though that Adler-32 is 13553 * a long deprecated algorithm and customer sctp 13554 * networks should eventually migrate to CRC-32 at 13555 * which time this facility should be removed. 13556 */ 13557 flags |= IP_FF_SCTP_CSUM_ERR; 13558 goto no_conn; 13559 } 13560 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13561 sctps)) == NULL) { 13562 /* Check for raw socket or OOTB handling */ 13563 goto no_conn; 13564 } 13565 13566 /* Found a client; up it goes */ 13567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13568 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13569 return; 13570 13571 no_conn: 13572 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13573 ports, mctl_present, flags, B_TRUE, zoneid); 13574 return; 13575 13576 ipoptions: 13577 DB_CKSUMFLAGS(mp) = 0; 13578 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13579 goto slow_done; 13580 13581 UPDATE_IB_PKT_COUNT(ire); 13582 ire->ire_last_used_time = lbolt; 13583 13584 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13585 if (u1 & (IPH_MF | IPH_OFFSET)) { 13586 fragmented: 13587 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13588 goto slow_done; 13589 /* 13590 * Make sure that first_mp points back to mp as 13591 * the mp we came in with could have changed in 13592 * ip_rput_fragment(). 13593 */ 13594 ASSERT(!mctl_present); 13595 ipha = (ipha_t *)mp->b_rptr; 13596 first_mp = mp; 13597 } 13598 13599 /* Now we have a complete datagram, destined for this machine. */ 13600 u1 = IPH_HDR_LENGTH(ipha); 13601 goto find_sctp_client; 13602 #undef iphs 13603 #undef rptr 13604 13605 error: 13606 freemsg(first_mp); 13607 slow_done: 13608 IRE_REFRELE(ire); 13609 } 13610 13611 #define VER_BITS 0xF0 13612 #define VERSION_6 0x60 13613 13614 static boolean_t 13615 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13616 ipaddr_t *dstp, ip_stack_t *ipst) 13617 { 13618 uint_t opt_len; 13619 ipha_t *ipha; 13620 ssize_t len; 13621 uint_t pkt_len; 13622 13623 ASSERT(ill != NULL); 13624 IP_STAT(ipst, ip_ipoptions); 13625 ipha = *iphapp; 13626 13627 #define rptr ((uchar_t *)ipha) 13628 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13629 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13630 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13631 freemsg(mp); 13632 return (B_FALSE); 13633 } 13634 13635 /* multiple mblk or too short */ 13636 pkt_len = ntohs(ipha->ipha_length); 13637 13638 /* Get the number of words of IP options in the IP header. */ 13639 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13640 if (opt_len) { 13641 /* IP Options present! Validate and process. */ 13642 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13643 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13644 goto done; 13645 } 13646 /* 13647 * Recompute complete header length and make sure we 13648 * have access to all of it. 13649 */ 13650 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13651 if (len > (mp->b_wptr - rptr)) { 13652 if (len > pkt_len) { 13653 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13654 goto done; 13655 } 13656 if (!pullupmsg(mp, len)) { 13657 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13658 goto done; 13659 } 13660 ipha = (ipha_t *)mp->b_rptr; 13661 } 13662 /* 13663 * Go off to ip_rput_options which returns the next hop 13664 * destination address, which may have been affected 13665 * by source routing. 13666 */ 13667 IP_STAT(ipst, ip_opt); 13668 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13669 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13670 return (B_FALSE); 13671 } 13672 } 13673 *iphapp = ipha; 13674 return (B_TRUE); 13675 done: 13676 /* clear b_prev - used by ip_mroute_decap */ 13677 mp->b_prev = NULL; 13678 freemsg(mp); 13679 return (B_FALSE); 13680 #undef rptr 13681 } 13682 13683 /* 13684 * Deal with the fact that there is no ire for the destination. 13685 */ 13686 static ire_t * 13687 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13688 { 13689 ipha_t *ipha; 13690 ill_t *ill; 13691 ire_t *ire; 13692 boolean_t check_multirt = B_FALSE; 13693 ip_stack_t *ipst; 13694 13695 ipha = (ipha_t *)mp->b_rptr; 13696 ill = (ill_t *)q->q_ptr; 13697 13698 ASSERT(ill != NULL); 13699 ipst = ill->ill_ipst; 13700 13701 /* 13702 * No IRE for this destination, so it can't be for us. 13703 * Unless we are forwarding, drop the packet. 13704 * We have to let source routed packets through 13705 * since we don't yet know if they are 'ping -l' 13706 * packets i.e. if they will go out over the 13707 * same interface as they came in on. 13708 */ 13709 if (ll_multicast) { 13710 freemsg(mp); 13711 return (NULL); 13712 } 13713 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13715 freemsg(mp); 13716 return (NULL); 13717 } 13718 13719 /* 13720 * Mark this packet as having originated externally. 13721 * 13722 * For non-forwarding code path, ire_send later double 13723 * checks this interface to see if it is still exists 13724 * post-ARP resolution. 13725 * 13726 * Also, IPQOS uses this to differentiate between 13727 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13728 * QOS packet processing in ip_wput_attach_llhdr(). 13729 * The QoS module can mark the b_band for a fastpath message 13730 * or the dl_priority field in a unitdata_req header for 13731 * CoS marking. This info can only be found in 13732 * ip_wput_attach_llhdr(). 13733 */ 13734 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13735 /* 13736 * Clear the indication that this may have a hardware checksum 13737 * as we are not using it 13738 */ 13739 DB_CKSUMFLAGS(mp) = 0; 13740 13741 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13742 MBLK_GETLABEL(mp), ipst); 13743 13744 if (ire == NULL && check_multirt) { 13745 /* Let ip_newroute handle CGTP */ 13746 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13747 return (NULL); 13748 } 13749 13750 if (ire != NULL) 13751 return (ire); 13752 13753 mp->b_prev = mp->b_next = 0; 13754 /* send icmp unreachable */ 13755 q = WR(q); 13756 /* Sent by forwarding path, and router is global zone */ 13757 if (ip_source_routed(ipha, ipst)) { 13758 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13759 GLOBAL_ZONEID, ipst); 13760 } else { 13761 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13762 ipst); 13763 } 13764 13765 return (NULL); 13766 13767 } 13768 13769 /* 13770 * check ip header length and align it. 13771 */ 13772 static boolean_t 13773 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13774 { 13775 ssize_t len; 13776 ill_t *ill; 13777 ipha_t *ipha; 13778 13779 len = MBLKL(mp); 13780 13781 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13782 ill = (ill_t *)q->q_ptr; 13783 13784 if (!OK_32PTR(mp->b_rptr)) 13785 IP_STAT(ipst, ip_notaligned1); 13786 else 13787 IP_STAT(ipst, ip_notaligned2); 13788 /* Guard against bogus device drivers */ 13789 if (len < 0) { 13790 /* clear b_prev - used by ip_mroute_decap */ 13791 mp->b_prev = NULL; 13792 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13793 freemsg(mp); 13794 return (B_FALSE); 13795 } 13796 13797 if (ip_rput_pullups++ == 0) { 13798 ipha = (ipha_t *)mp->b_rptr; 13799 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13800 "ip_check_and_align_header: %s forced us to " 13801 " pullup pkt, hdr len %ld, hdr addr %p", 13802 ill->ill_name, len, ipha); 13803 } 13804 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13805 /* clear b_prev - used by ip_mroute_decap */ 13806 mp->b_prev = NULL; 13807 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13808 freemsg(mp); 13809 return (B_FALSE); 13810 } 13811 } 13812 return (B_TRUE); 13813 } 13814 13815 ire_t * 13816 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13817 { 13818 ire_t *new_ire; 13819 ill_t *ire_ill; 13820 uint_t ifindex; 13821 ip_stack_t *ipst = ill->ill_ipst; 13822 boolean_t strict_check = B_FALSE; 13823 13824 /* 13825 * This packet came in on an interface other than the one associated 13826 * with the first ire we found for the destination address. We do 13827 * another ire lookup here, using the ingress ill, to see if the 13828 * interface is in an interface group. 13829 * As long as the ills belong to the same group, we don't consider 13830 * them to be arriving on the wrong interface. Thus, if the switch 13831 * is doing inbound load spreading, we won't drop packets when the 13832 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13833 * for 'usesrc groups' where the destination address may belong to 13834 * another interface to allow multipathing to happen. 13835 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13836 * where the local address may not be unique. In this case we were 13837 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13838 * actually returned. The new lookup, which is more specific, should 13839 * only find the IRE_LOCAL associated with the ingress ill if one 13840 * exists. 13841 */ 13842 13843 if (ire->ire_ipversion == IPV4_VERSION) { 13844 if (ipst->ips_ip_strict_dst_multihoming) 13845 strict_check = B_TRUE; 13846 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13847 ill->ill_ipif, ALL_ZONES, NULL, 13848 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13849 } else { 13850 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13851 if (ipst->ips_ipv6_strict_dst_multihoming) 13852 strict_check = B_TRUE; 13853 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13854 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13855 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13856 } 13857 /* 13858 * If the same ire that was returned in ip_input() is found then this 13859 * is an indication that interface groups are in use. The packet 13860 * arrived on a different ill in the group than the one associated with 13861 * the destination address. If a different ire was found then the same 13862 * IP address must be hosted on multiple ills. This is possible with 13863 * unnumbered point2point interfaces. We switch to use this new ire in 13864 * order to have accurate interface statistics. 13865 */ 13866 if (new_ire != NULL) { 13867 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13868 ire_refrele(ire); 13869 ire = new_ire; 13870 } else { 13871 ire_refrele(new_ire); 13872 } 13873 return (ire); 13874 } else if ((ire->ire_rfq == NULL) && 13875 (ire->ire_ipversion == IPV4_VERSION)) { 13876 /* 13877 * The best match could have been the original ire which 13878 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13879 * the strict multihoming checks are irrelevant as we consider 13880 * local addresses hosted on lo0 to be interface agnostic. We 13881 * only expect a null ire_rfq on IREs which are associated with 13882 * lo0 hence we can return now. 13883 */ 13884 return (ire); 13885 } 13886 13887 /* 13888 * Chase pointers once and store locally. 13889 */ 13890 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13891 (ill_t *)(ire->ire_rfq->q_ptr); 13892 ifindex = ill->ill_usesrc_ifindex; 13893 13894 /* 13895 * Check if it's a legal address on the 'usesrc' interface. 13896 */ 13897 if ((ifindex != 0) && (ire_ill != NULL) && 13898 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13899 return (ire); 13900 } 13901 13902 /* 13903 * If the ip*_strict_dst_multihoming switch is on then we can 13904 * only accept this packet if the interface is marked as routing. 13905 */ 13906 if (!(strict_check)) 13907 return (ire); 13908 13909 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13910 ILLF_ROUTER) != 0) { 13911 return (ire); 13912 } 13913 13914 ire_refrele(ire); 13915 return (NULL); 13916 } 13917 13918 ire_t * 13919 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13920 { 13921 ipha_t *ipha; 13922 ire_t *src_ire; 13923 ill_t *stq_ill; 13924 uint_t hlen; 13925 uint_t pkt_len; 13926 uint32_t sum; 13927 queue_t *dev_q; 13928 ip_stack_t *ipst = ill->ill_ipst; 13929 mblk_t *fpmp; 13930 13931 ipha = (ipha_t *)mp->b_rptr; 13932 13933 /* 13934 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13935 * The loopback address check for both src and dst has already 13936 * been checked in ip_input 13937 */ 13938 13939 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13940 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13941 goto drop; 13942 } 13943 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13944 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13945 13946 if (src_ire != NULL) { 13947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13948 ire_refrele(src_ire); 13949 goto drop; 13950 } 13951 13952 13953 /* No ire cache of nexthop. So first create one */ 13954 if (ire == NULL) { 13955 boolean_t check_multirt; 13956 13957 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 13958 /* 13959 * We only come to ip_fast_forward if ip_cgtp_filter is 13960 * is not set. So upon return from ire_forward 13961 * check_multirt should remain as false. 13962 */ 13963 if (ire == NULL) { 13964 /* An attempt was made to forward the packet */ 13965 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13966 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13967 mp->b_prev = mp->b_next = 0; 13968 /* send icmp unreachable */ 13969 /* Sent by forwarding path, and router is global zone */ 13970 if (ip_source_routed(ipha, ipst)) { 13971 icmp_unreachable(ill->ill_wq, mp, 13972 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 13973 ipst); 13974 } else { 13975 icmp_unreachable(ill->ill_wq, mp, 13976 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13977 ipst); 13978 } 13979 return (ire); 13980 } 13981 } 13982 13983 /* 13984 * Forwarding fastpath exception case: 13985 * If either of the follwoing case is true, we take 13986 * the slowpath 13987 * o forwarding is not enabled 13988 * o incoming and outgoing interface are the same, or the same 13989 * IPMP group 13990 * o corresponding ire is in incomplete state 13991 * o packet needs fragmentation 13992 * o ARP cache is not resolved 13993 * 13994 * The codeflow from here on is thus: 13995 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13996 */ 13997 pkt_len = ntohs(ipha->ipha_length); 13998 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13999 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14000 !(ill->ill_flags & ILLF_ROUTER) || 14001 (ill == stq_ill) || 14002 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14003 (ire->ire_nce == NULL) || 14004 (pkt_len > ire->ire_max_frag) || 14005 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 14006 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 14007 ipha->ipha_ttl <= 1) { 14008 ip_rput_process_forward(ill->ill_rq, mp, ire, 14009 ipha, ill, B_FALSE); 14010 return (ire); 14011 } 14012 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14013 14014 DTRACE_PROBE4(ip4__forwarding__start, 14015 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14016 14017 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14018 ipst->ips_ipv4firewall_forwarding, 14019 ill, stq_ill, ipha, mp, mp, 0, ipst); 14020 14021 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14022 14023 if (mp == NULL) 14024 goto drop; 14025 14026 mp->b_datap->db_struioun.cksum.flags = 0; 14027 /* Adjust the checksum to reflect the ttl decrement. */ 14028 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14029 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14030 ipha->ipha_ttl--; 14031 14032 /* 14033 * Write the link layer header. We can do this safely here, 14034 * because we have already tested to make sure that the IP 14035 * policy is not set, and that we have a fast path destination 14036 * header. 14037 */ 14038 mp->b_rptr -= hlen; 14039 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14040 14041 UPDATE_IB_PKT_COUNT(ire); 14042 ire->ire_last_used_time = lbolt; 14043 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14044 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14045 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14046 14047 dev_q = ire->ire_stq->q_next; 14048 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 14049 !canputnext(ire->ire_stq)) { 14050 goto indiscard; 14051 } 14052 if (ILL_DLS_CAPABLE(stq_ill)) { 14053 /* 14054 * Send the packet directly to DLD, where it 14055 * may be queued depending on the availability 14056 * of transmit resources at the media layer. 14057 */ 14058 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst); 14059 } else { 14060 DTRACE_PROBE4(ip4__physical__out__start, 14061 ill_t *, NULL, ill_t *, stq_ill, 14062 ipha_t *, ipha, mblk_t *, mp); 14063 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14064 ipst->ips_ipv4firewall_physical_out, 14065 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14066 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14067 if (mp == NULL) 14068 goto drop; 14069 putnext(ire->ire_stq, mp); 14070 } 14071 return (ire); 14072 14073 indiscard: 14074 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14075 drop: 14076 if (mp != NULL) 14077 freemsg(mp); 14078 return (ire); 14079 14080 } 14081 14082 /* 14083 * This function is called in the forwarding slowpath, when 14084 * either the ire lacks the link-layer address, or the packet needs 14085 * further processing(eg. fragmentation), before transmission. 14086 */ 14087 14088 static void 14089 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14090 ill_t *ill, boolean_t ll_multicast) 14091 { 14092 ill_group_t *ill_group; 14093 ill_group_t *ire_group; 14094 queue_t *dev_q; 14095 ire_t *src_ire; 14096 ip_stack_t *ipst = ill->ill_ipst; 14097 14098 ASSERT(ire->ire_stq != NULL); 14099 14100 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14101 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14102 14103 if (ll_multicast != 0) { 14104 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14105 goto drop_pkt; 14106 } 14107 14108 /* 14109 * check if ipha_src is a broadcast address. Note that this 14110 * check is redundant when we get here from ip_fast_forward() 14111 * which has already done this check. However, since we can 14112 * also get here from ip_rput_process_broadcast() or, for 14113 * for the slow path through ip_fast_forward(), we perform 14114 * the check again for code-reusability 14115 */ 14116 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14117 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14118 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14119 if (src_ire != NULL) 14120 ire_refrele(src_ire); 14121 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14122 ip2dbg(("ip_rput_process_forward: Received packet with" 14123 " bad src/dst address on %s\n", ill->ill_name)); 14124 goto drop_pkt; 14125 } 14126 14127 ill_group = ill->ill_group; 14128 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14129 /* 14130 * Check if we want to forward this one at this time. 14131 * We allow source routed packets on a host provided that 14132 * they go out the same interface or same interface group 14133 * as they came in on. 14134 * 14135 * XXX To be quicker, we may wish to not chase pointers to 14136 * get the ILLF_ROUTER flag and instead store the 14137 * forwarding policy in the ire. An unfortunate 14138 * side-effect of that would be requiring an ire flush 14139 * whenever the ILLF_ROUTER flag changes. 14140 */ 14141 if (((ill->ill_flags & 14142 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14143 ILLF_ROUTER) == 0) && 14144 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14145 (ill_group != NULL && ill_group == ire_group)))) { 14146 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14147 if (ip_source_routed(ipha, ipst)) { 14148 q = WR(q); 14149 /* 14150 * Clear the indication that this may have 14151 * hardware checksum as we are not using it. 14152 */ 14153 DB_CKSUMFLAGS(mp) = 0; 14154 /* Sent by forwarding path, and router is global zone */ 14155 icmp_unreachable(q, mp, 14156 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14157 return; 14158 } 14159 goto drop_pkt; 14160 } 14161 14162 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14163 14164 /* Packet is being forwarded. Turning off hwcksum flag. */ 14165 DB_CKSUMFLAGS(mp) = 0; 14166 if (ipst->ips_ip_g_send_redirects) { 14167 /* 14168 * Check whether the incoming interface and outgoing 14169 * interface is part of the same group. If so, 14170 * send redirects. 14171 * 14172 * Check the source address to see if it originated 14173 * on the same logical subnet it is going back out on. 14174 * If so, we should be able to send it a redirect. 14175 * Avoid sending a redirect if the destination 14176 * is directly connected (i.e., ipha_dst is the same 14177 * as ire_gateway_addr or the ire_addr of the 14178 * nexthop IRE_CACHE ), or if the packet was source 14179 * routed out this interface. 14180 */ 14181 ipaddr_t src, nhop; 14182 mblk_t *mp1; 14183 ire_t *nhop_ire = NULL; 14184 14185 /* 14186 * Check whether ire_rfq and q are from the same ill 14187 * or if they are not same, they at least belong 14188 * to the same group. If so, send redirects. 14189 */ 14190 if ((ire->ire_rfq == q || 14191 (ill_group != NULL && ill_group == ire_group)) && 14192 !ip_source_routed(ipha, ipst)) { 14193 14194 nhop = (ire->ire_gateway_addr != 0 ? 14195 ire->ire_gateway_addr : ire->ire_addr); 14196 14197 if (ipha->ipha_dst == nhop) { 14198 /* 14199 * We avoid sending a redirect if the 14200 * destination is directly connected 14201 * because it is possible that multiple 14202 * IP subnets may have been configured on 14203 * the link, and the source may not 14204 * be on the same subnet as ip destination, 14205 * even though they are on the same 14206 * physical link. 14207 */ 14208 goto sendit; 14209 } 14210 14211 src = ipha->ipha_src; 14212 14213 /* 14214 * We look up the interface ire for the nexthop, 14215 * to see if ipha_src is in the same subnet 14216 * as the nexthop. 14217 * 14218 * Note that, if, in the future, IRE_CACHE entries 14219 * are obsoleted, this lookup will not be needed, 14220 * as the ire passed to this function will be the 14221 * same as the nhop_ire computed below. 14222 */ 14223 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14224 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14225 0, NULL, MATCH_IRE_TYPE, ipst); 14226 14227 if (nhop_ire != NULL) { 14228 if ((src & nhop_ire->ire_mask) == 14229 (nhop & nhop_ire->ire_mask)) { 14230 /* 14231 * The source is directly connected. 14232 * Just copy the ip header (which is 14233 * in the first mblk) 14234 */ 14235 mp1 = copyb(mp); 14236 if (mp1 != NULL) { 14237 icmp_send_redirect(WR(q), mp1, 14238 nhop, ipst); 14239 } 14240 } 14241 ire_refrele(nhop_ire); 14242 } 14243 } 14244 } 14245 sendit: 14246 dev_q = ire->ire_stq->q_next; 14247 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14248 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14249 freemsg(mp); 14250 return; 14251 } 14252 14253 ip_rput_forward(ire, ipha, mp, ill); 14254 return; 14255 14256 drop_pkt: 14257 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14258 freemsg(mp); 14259 } 14260 14261 ire_t * 14262 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14263 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14264 { 14265 queue_t *q; 14266 uint16_t hcksumflags; 14267 ip_stack_t *ipst = ill->ill_ipst; 14268 14269 q = *qp; 14270 14271 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14272 14273 /* 14274 * Clear the indication that this may have hardware 14275 * checksum as we are not using it for forwarding. 14276 */ 14277 hcksumflags = DB_CKSUMFLAGS(mp); 14278 DB_CKSUMFLAGS(mp) = 0; 14279 14280 /* 14281 * Directed broadcast forwarding: if the packet came in over a 14282 * different interface then it is routed out over we can forward it. 14283 */ 14284 if (ipha->ipha_protocol == IPPROTO_TCP) { 14285 ire_refrele(ire); 14286 freemsg(mp); 14287 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14288 return (NULL); 14289 } 14290 /* 14291 * For multicast we have set dst to be INADDR_BROADCAST 14292 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14293 * only for broadcast packets. 14294 */ 14295 if (!CLASSD(ipha->ipha_dst)) { 14296 ire_t *new_ire; 14297 ipif_t *ipif; 14298 /* 14299 * For ill groups, as the switch duplicates broadcasts 14300 * across all the ports, we need to filter out and 14301 * send up only one copy. There is one copy for every 14302 * broadcast address on each ill. Thus, we look for a 14303 * specific IRE on this ill and look at IRE_MARK_NORECV 14304 * later to see whether this ill is eligible to receive 14305 * them or not. ill_nominate_bcast_rcv() nominates only 14306 * one set of IREs for receiving. 14307 */ 14308 14309 ipif = ipif_get_next_ipif(NULL, ill); 14310 if (ipif == NULL) { 14311 ire_refrele(ire); 14312 freemsg(mp); 14313 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14314 return (NULL); 14315 } 14316 new_ire = ire_ctable_lookup(dst, 0, 0, 14317 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14318 ipif_refrele(ipif); 14319 14320 if (new_ire != NULL) { 14321 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14322 ire_refrele(ire); 14323 ire_refrele(new_ire); 14324 freemsg(mp); 14325 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14326 return (NULL); 14327 } 14328 /* 14329 * In the special case of multirouted broadcast 14330 * packets, we unconditionally need to "gateway" 14331 * them to the appropriate interface here. 14332 * In the normal case, this cannot happen, because 14333 * there is no broadcast IRE tagged with the 14334 * RTF_MULTIRT flag. 14335 */ 14336 if (new_ire->ire_flags & RTF_MULTIRT) { 14337 ire_refrele(new_ire); 14338 if (ire->ire_rfq != NULL) { 14339 q = ire->ire_rfq; 14340 *qp = q; 14341 } 14342 } else { 14343 ire_refrele(ire); 14344 ire = new_ire; 14345 } 14346 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14347 if (!ipst->ips_ip_g_forward_directed_bcast) { 14348 /* 14349 * Free the message if 14350 * ip_g_forward_directed_bcast is turned 14351 * off for non-local broadcast. 14352 */ 14353 ire_refrele(ire); 14354 freemsg(mp); 14355 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14356 return (NULL); 14357 } 14358 } else { 14359 /* 14360 * This CGTP packet successfully passed the 14361 * CGTP filter, but the related CGTP 14362 * broadcast IRE has not been found, 14363 * meaning that the redundant ipif is 14364 * probably down. However, if we discarded 14365 * this packet, its duplicate would be 14366 * filtered out by the CGTP filter so none 14367 * of them would get through. So we keep 14368 * going with this one. 14369 */ 14370 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14371 if (ire->ire_rfq != NULL) { 14372 q = ire->ire_rfq; 14373 *qp = q; 14374 } 14375 } 14376 } 14377 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14378 /* 14379 * Verify that there are not more then one 14380 * IRE_BROADCAST with this broadcast address which 14381 * has ire_stq set. 14382 * TODO: simplify, loop over all IRE's 14383 */ 14384 ire_t *ire1; 14385 int num_stq = 0; 14386 mblk_t *mp1; 14387 14388 /* Find the first one with ire_stq set */ 14389 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14390 for (ire1 = ire; ire1 && 14391 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14392 ire1 = ire1->ire_next) 14393 ; 14394 if (ire1) { 14395 ire_refrele(ire); 14396 ire = ire1; 14397 IRE_REFHOLD(ire); 14398 } 14399 14400 /* Check if there are additional ones with stq set */ 14401 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14402 if (ire->ire_addr != ire1->ire_addr) 14403 break; 14404 if (ire1->ire_stq) { 14405 num_stq++; 14406 break; 14407 } 14408 } 14409 rw_exit(&ire->ire_bucket->irb_lock); 14410 if (num_stq == 1 && ire->ire_stq != NULL) { 14411 ip1dbg(("ip_rput_process_broadcast: directed " 14412 "broadcast to 0x%x\n", 14413 ntohl(ire->ire_addr))); 14414 mp1 = copymsg(mp); 14415 if (mp1) { 14416 switch (ipha->ipha_protocol) { 14417 case IPPROTO_UDP: 14418 ip_udp_input(q, mp1, ipha, ire, ill); 14419 break; 14420 default: 14421 ip_proto_input(q, mp1, ipha, ire, ill, 14422 B_FALSE); 14423 break; 14424 } 14425 } 14426 /* 14427 * Adjust ttl to 2 (1+1 - the forward engine 14428 * will decrement it by one. 14429 */ 14430 if (ip_csum_hdr(ipha)) { 14431 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14432 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14433 freemsg(mp); 14434 ire_refrele(ire); 14435 return (NULL); 14436 } 14437 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14438 ipha->ipha_hdr_checksum = 0; 14439 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14440 ip_rput_process_forward(q, mp, ire, ipha, 14441 ill, ll_multicast); 14442 ire_refrele(ire); 14443 return (NULL); 14444 } 14445 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14446 ntohl(ire->ire_addr))); 14447 } 14448 14449 14450 /* Restore any hardware checksum flags */ 14451 DB_CKSUMFLAGS(mp) = hcksumflags; 14452 return (ire); 14453 } 14454 14455 /* ARGSUSED */ 14456 static boolean_t 14457 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14458 int *ll_multicast, ipaddr_t *dstp) 14459 { 14460 ip_stack_t *ipst = ill->ill_ipst; 14461 14462 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14463 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14464 ntohs(ipha->ipha_length)); 14465 14466 /* 14467 * Forward packets only if we have joined the allmulti 14468 * group on this interface. 14469 */ 14470 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14471 int retval; 14472 14473 /* 14474 * Clear the indication that this may have hardware 14475 * checksum as we are not using it. 14476 */ 14477 DB_CKSUMFLAGS(mp) = 0; 14478 retval = ip_mforward(ill, ipha, mp); 14479 /* ip_mforward updates mib variables if needed */ 14480 /* clear b_prev - used by ip_mroute_decap */ 14481 mp->b_prev = NULL; 14482 14483 switch (retval) { 14484 case 0: 14485 /* 14486 * pkt is okay and arrived on phyint. 14487 * 14488 * If we are running as a multicast router 14489 * we need to see all IGMP and/or PIM packets. 14490 */ 14491 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14492 (ipha->ipha_protocol == IPPROTO_PIM)) { 14493 goto done; 14494 } 14495 break; 14496 case -1: 14497 /* pkt is mal-formed, toss it */ 14498 goto drop_pkt; 14499 case 1: 14500 /* pkt is okay and arrived on a tunnel */ 14501 /* 14502 * If we are running a multicast router 14503 * we need to see all igmp packets. 14504 */ 14505 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14506 *dstp = INADDR_BROADCAST; 14507 *ll_multicast = 1; 14508 return (B_FALSE); 14509 } 14510 14511 goto drop_pkt; 14512 } 14513 } 14514 14515 ILM_WALKER_HOLD(ill); 14516 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14517 /* 14518 * This might just be caused by the fact that 14519 * multiple IP Multicast addresses map to the same 14520 * link layer multicast - no need to increment counter! 14521 */ 14522 ILM_WALKER_RELE(ill); 14523 freemsg(mp); 14524 return (B_TRUE); 14525 } 14526 ILM_WALKER_RELE(ill); 14527 done: 14528 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14529 /* 14530 * This assumes the we deliver to all streams for multicast 14531 * and broadcast packets. 14532 */ 14533 *dstp = INADDR_BROADCAST; 14534 *ll_multicast = 1; 14535 return (B_FALSE); 14536 drop_pkt: 14537 ip2dbg(("ip_rput: drop pkt\n")); 14538 freemsg(mp); 14539 return (B_TRUE); 14540 } 14541 14542 /* 14543 * This function is used to both return an indication of whether or not 14544 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14545 * and in doing so, determine whether or not it is broadcast vs multicast. 14546 * For it to be a broadcast packet, we must have the appropriate mblk_t 14547 * hanging off the ill_t. If this is either not present or doesn't match 14548 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14549 * to be multicast. Thus NICs that have no broadcast address (or no 14550 * capability for one, such as point to point links) cannot return as 14551 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14552 * the return values simplifies the current use of the return value of this 14553 * function, which is to pass through the multicast/broadcast characteristic 14554 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14555 * changing the return value to some other symbol demands the appropriate 14556 * "translation" when hpe_flags is set prior to calling hook_run() for 14557 * packet events. 14558 */ 14559 int 14560 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14561 { 14562 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14563 mblk_t *bmp; 14564 14565 if (ind->dl_group_address) { 14566 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14567 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14568 MBLKL(mb) && 14569 (bmp = ill->ill_bcast_mp) != NULL) { 14570 dl_unitdata_req_t *dlur; 14571 uint8_t *bphys_addr; 14572 14573 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14574 if (ill->ill_sap_length < 0) 14575 bphys_addr = (uchar_t *)dlur + 14576 dlur->dl_dest_addr_offset; 14577 else 14578 bphys_addr = (uchar_t *)dlur + 14579 dlur->dl_dest_addr_offset + 14580 ill->ill_sap_length; 14581 14582 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14583 bphys_addr, ind->dl_dest_addr_length) == 0) { 14584 return (HPE_BROADCAST); 14585 } 14586 return (HPE_MULTICAST); 14587 } 14588 return (HPE_MULTICAST); 14589 } 14590 return (0); 14591 } 14592 14593 static boolean_t 14594 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14595 int *ll_multicast, mblk_t **mpp) 14596 { 14597 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14598 boolean_t must_copy = B_FALSE; 14599 struct iocblk *iocp; 14600 ipha_t *ipha; 14601 ip_stack_t *ipst = ill->ill_ipst; 14602 14603 #define rptr ((uchar_t *)ipha) 14604 14605 first_mp = *first_mpp; 14606 mp = *mpp; 14607 14608 ASSERT(first_mp == mp); 14609 14610 /* 14611 * if db_ref > 1 then copymsg and free original. Packet may be 14612 * changed and do not want other entity who has a reference to this 14613 * message to trip over the changes. This is a blind change because 14614 * trying to catch all places that might change packet is too 14615 * difficult (since it may be a module above this one) 14616 * 14617 * This corresponds to the non-fast path case. We walk down the full 14618 * chain in this case, and check the db_ref count of all the dblks, 14619 * and do a copymsg if required. It is possible that the db_ref counts 14620 * of the data blocks in the mblk chain can be different. 14621 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14622 * count of 1, followed by a M_DATA block with a ref count of 2, if 14623 * 'snoop' is running. 14624 */ 14625 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14626 if (mp1->b_datap->db_ref > 1) { 14627 must_copy = B_TRUE; 14628 break; 14629 } 14630 } 14631 14632 if (must_copy) { 14633 mp1 = copymsg(mp); 14634 if (mp1 == NULL) { 14635 for (mp1 = mp; mp1 != NULL; 14636 mp1 = mp1->b_cont) { 14637 mp1->b_next = NULL; 14638 mp1->b_prev = NULL; 14639 } 14640 freemsg(mp); 14641 if (ill != NULL) { 14642 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14643 } else { 14644 BUMP_MIB(&ipst->ips_ip_mib, 14645 ipIfStatsInDiscards); 14646 } 14647 return (B_TRUE); 14648 } 14649 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14650 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14651 /* Copy b_prev - used by ip_mroute_decap */ 14652 to_mp->b_prev = from_mp->b_prev; 14653 from_mp->b_prev = NULL; 14654 } 14655 *first_mpp = first_mp = mp1; 14656 freemsg(mp); 14657 mp = mp1; 14658 *mpp = mp1; 14659 } 14660 14661 ipha = (ipha_t *)mp->b_rptr; 14662 14663 /* 14664 * previous code has a case for M_DATA. 14665 * We want to check how that happens. 14666 */ 14667 ASSERT(first_mp->b_datap->db_type != M_DATA); 14668 switch (first_mp->b_datap->db_type) { 14669 case M_PROTO: 14670 case M_PCPROTO: 14671 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14672 DL_UNITDATA_IND) { 14673 /* Go handle anything other than data elsewhere. */ 14674 ip_rput_dlpi(q, mp); 14675 return (B_TRUE); 14676 } 14677 14678 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14679 /* Ditch the DLPI header. */ 14680 mp1 = mp->b_cont; 14681 ASSERT(first_mp == mp); 14682 *first_mpp = mp1; 14683 freeb(mp); 14684 *mpp = mp1; 14685 return (B_FALSE); 14686 case M_IOCACK: 14687 ip1dbg(("got iocack ")); 14688 iocp = (struct iocblk *)mp->b_rptr; 14689 switch (iocp->ioc_cmd) { 14690 case DL_IOC_HDR_INFO: 14691 ill = (ill_t *)q->q_ptr; 14692 ill_fastpath_ack(ill, mp); 14693 return (B_TRUE); 14694 case SIOCSTUNPARAM: 14695 case OSIOCSTUNPARAM: 14696 /* Go through qwriter_ip */ 14697 break; 14698 case SIOCGTUNPARAM: 14699 case OSIOCGTUNPARAM: 14700 ip_rput_other(NULL, q, mp, NULL); 14701 return (B_TRUE); 14702 default: 14703 putnext(q, mp); 14704 return (B_TRUE); 14705 } 14706 /* FALLTHRU */ 14707 case M_ERROR: 14708 case M_HANGUP: 14709 /* 14710 * Since this is on the ill stream we unconditionally 14711 * bump up the refcount 14712 */ 14713 ill_refhold(ill); 14714 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14715 return (B_TRUE); 14716 case M_CTL: 14717 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14718 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14719 IPHADA_M_CTL)) { 14720 /* 14721 * It's an IPsec accelerated packet. 14722 * Make sure that the ill from which we received the 14723 * packet has enabled IPsec hardware acceleration. 14724 */ 14725 if (!(ill->ill_capabilities & 14726 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14727 /* IPsec kstats: bean counter */ 14728 freemsg(mp); 14729 return (B_TRUE); 14730 } 14731 14732 /* 14733 * Make mp point to the mblk following the M_CTL, 14734 * then process according to type of mp. 14735 * After this processing, first_mp will point to 14736 * the data-attributes and mp to the pkt following 14737 * the M_CTL. 14738 */ 14739 mp = first_mp->b_cont; 14740 if (mp == NULL) { 14741 freemsg(first_mp); 14742 return (B_TRUE); 14743 } 14744 /* 14745 * A Hardware Accelerated packet can only be M_DATA 14746 * ESP or AH packet. 14747 */ 14748 if (mp->b_datap->db_type != M_DATA) { 14749 /* non-M_DATA IPsec accelerated packet */ 14750 IPSECHW_DEBUG(IPSECHW_PKT, 14751 ("non-M_DATA IPsec accelerated pkt\n")); 14752 freemsg(first_mp); 14753 return (B_TRUE); 14754 } 14755 ipha = (ipha_t *)mp->b_rptr; 14756 if (ipha->ipha_protocol != IPPROTO_AH && 14757 ipha->ipha_protocol != IPPROTO_ESP) { 14758 IPSECHW_DEBUG(IPSECHW_PKT, 14759 ("non-M_DATA IPsec accelerated pkt\n")); 14760 freemsg(first_mp); 14761 return (B_TRUE); 14762 } 14763 *mpp = mp; 14764 return (B_FALSE); 14765 } 14766 putnext(q, mp); 14767 return (B_TRUE); 14768 case M_IOCNAK: 14769 ip1dbg(("got iocnak ")); 14770 iocp = (struct iocblk *)mp->b_rptr; 14771 switch (iocp->ioc_cmd) { 14772 case SIOCSTUNPARAM: 14773 case OSIOCSTUNPARAM: 14774 /* 14775 * Since this is on the ill stream we unconditionally 14776 * bump up the refcount 14777 */ 14778 ill_refhold(ill); 14779 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14780 return (B_TRUE); 14781 case DL_IOC_HDR_INFO: 14782 case SIOCGTUNPARAM: 14783 case OSIOCGTUNPARAM: 14784 ip_rput_other(NULL, q, mp, NULL); 14785 return (B_TRUE); 14786 default: 14787 break; 14788 } 14789 /* FALLTHRU */ 14790 default: 14791 putnext(q, mp); 14792 return (B_TRUE); 14793 } 14794 } 14795 14796 /* Read side put procedure. Packets coming from the wire arrive here. */ 14797 void 14798 ip_rput(queue_t *q, mblk_t *mp) 14799 { 14800 ill_t *ill; 14801 union DL_primitives *dl; 14802 14803 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14804 14805 ill = (ill_t *)q->q_ptr; 14806 14807 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14808 /* 14809 * If things are opening or closing, only accept high-priority 14810 * DLPI messages. (On open ill->ill_ipif has not yet been 14811 * created; on close, things hanging off the ill may have been 14812 * freed already.) 14813 */ 14814 dl = (union DL_primitives *)mp->b_rptr; 14815 if (DB_TYPE(mp) != M_PCPROTO || 14816 dl->dl_primitive == DL_UNITDATA_IND) { 14817 /* 14818 * SIOC[GS]TUNPARAM ioctls can come here. 14819 */ 14820 inet_freemsg(mp); 14821 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14822 "ip_rput_end: q %p (%S)", q, "uninit"); 14823 return; 14824 } 14825 } 14826 14827 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14828 "ip_rput_end: q %p (%S)", q, "end"); 14829 14830 ip_input(ill, NULL, mp, NULL); 14831 } 14832 14833 static mblk_t * 14834 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14835 { 14836 mblk_t *mp1; 14837 boolean_t adjusted = B_FALSE; 14838 ip_stack_t *ipst = ill->ill_ipst; 14839 14840 IP_STAT(ipst, ip_db_ref); 14841 /* 14842 * The IP_RECVSLLA option depends on having the 14843 * link layer header. First check that: 14844 * a> the underlying device is of type ether, 14845 * since this option is currently supported only 14846 * over ethernet. 14847 * b> there is enough room to copy over the link 14848 * layer header. 14849 * 14850 * Once the checks are done, adjust rptr so that 14851 * the link layer header will be copied via 14852 * copymsg. Note that, IFT_ETHER may be returned 14853 * by some non-ethernet drivers but in this case 14854 * the second check will fail. 14855 */ 14856 if (ill->ill_type == IFT_ETHER && 14857 (mp->b_rptr - mp->b_datap->db_base) >= 14858 sizeof (struct ether_header)) { 14859 mp->b_rptr -= sizeof (struct ether_header); 14860 adjusted = B_TRUE; 14861 } 14862 mp1 = copymsg(mp); 14863 14864 if (mp1 == NULL) { 14865 mp->b_next = NULL; 14866 /* clear b_prev - used by ip_mroute_decap */ 14867 mp->b_prev = NULL; 14868 freemsg(mp); 14869 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14870 return (NULL); 14871 } 14872 14873 if (adjusted) { 14874 /* 14875 * Copy is done. Restore the pointer in 14876 * the _new_ mblk 14877 */ 14878 mp1->b_rptr += sizeof (struct ether_header); 14879 } 14880 14881 /* Copy b_prev - used by ip_mroute_decap */ 14882 mp1->b_prev = mp->b_prev; 14883 mp->b_prev = NULL; 14884 14885 /* preserve the hardware checksum flags and data, if present */ 14886 if (DB_CKSUMFLAGS(mp) != 0) { 14887 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14888 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14889 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14890 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14891 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14892 } 14893 14894 freemsg(mp); 14895 return (mp1); 14896 } 14897 14898 /* 14899 * Direct read side procedure capable of dealing with chains. GLDv3 based 14900 * drivers call this function directly with mblk chains while STREAMS 14901 * read side procedure ip_rput() calls this for single packet with ip_ring 14902 * set to NULL to process one packet at a time. 14903 * 14904 * The ill will always be valid if this function is called directly from 14905 * the driver. 14906 * 14907 * If ip_input() is called from GLDv3: 14908 * 14909 * - This must be a non-VLAN IP stream. 14910 * - 'mp' is either an untagged or a special priority-tagged packet. 14911 * - Any VLAN tag that was in the MAC header has been stripped. 14912 * 14913 * If the IP header in packet is not 32-bit aligned, every message in the 14914 * chain will be aligned before further operations. This is required on SPARC 14915 * platform. 14916 */ 14917 /* ARGSUSED */ 14918 void 14919 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14920 struct mac_header_info_s *mhip) 14921 { 14922 ipaddr_t dst = NULL; 14923 ipaddr_t prev_dst; 14924 ire_t *ire = NULL; 14925 ipha_t *ipha; 14926 uint_t pkt_len; 14927 ssize_t len; 14928 uint_t opt_len; 14929 int ll_multicast; 14930 int cgtp_flt_pkt; 14931 queue_t *q = ill->ill_rq; 14932 squeue_t *curr_sqp = NULL; 14933 mblk_t *head = NULL; 14934 mblk_t *tail = NULL; 14935 mblk_t *first_mp; 14936 mblk_t *mp; 14937 mblk_t *dmp; 14938 int cnt = 0; 14939 ip_stack_t *ipst = ill->ill_ipst; 14940 14941 ASSERT(mp_chain != NULL); 14942 ASSERT(ill != NULL); 14943 14944 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14945 14946 #define rptr ((uchar_t *)ipha) 14947 14948 while (mp_chain != NULL) { 14949 first_mp = mp = mp_chain; 14950 mp_chain = mp_chain->b_next; 14951 mp->b_next = NULL; 14952 ll_multicast = 0; 14953 14954 /* 14955 * We do ire caching from one iteration to 14956 * another. In the event the packet chain contains 14957 * all packets from the same dst, this caching saves 14958 * an ire_cache_lookup for each of the succeeding 14959 * packets in a packet chain. 14960 */ 14961 prev_dst = dst; 14962 14963 /* 14964 * if db_ref > 1 then copymsg and free original. Packet 14965 * may be changed and we do not want the other entity 14966 * who has a reference to this message to trip over the 14967 * changes. This is a blind change because trying to 14968 * catch all places that might change the packet is too 14969 * difficult. 14970 * 14971 * This corresponds to the fast path case, where we have 14972 * a chain of M_DATA mblks. We check the db_ref count 14973 * of only the 1st data block in the mblk chain. There 14974 * doesn't seem to be a reason why a device driver would 14975 * send up data with varying db_ref counts in the mblk 14976 * chain. In any case the Fast path is a private 14977 * interface, and our drivers don't do such a thing. 14978 * Given the above assumption, there is no need to walk 14979 * down the entire mblk chain (which could have a 14980 * potential performance problem) 14981 */ 14982 14983 if (DB_REF(mp) > 1) { 14984 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14985 continue; 14986 } 14987 14988 /* 14989 * Check and align the IP header. 14990 */ 14991 first_mp = mp; 14992 if (DB_TYPE(mp) == M_DATA) { 14993 dmp = mp; 14994 } else if (DB_TYPE(mp) == M_PROTO && 14995 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14996 dmp = mp->b_cont; 14997 } else { 14998 dmp = NULL; 14999 } 15000 if (dmp != NULL) { 15001 /* 15002 * IP header ptr not aligned? 15003 * OR IP header not complete in first mblk 15004 */ 15005 if (!OK_32PTR(dmp->b_rptr) || 15006 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15007 if (!ip_check_and_align_header(q, dmp, ipst)) 15008 continue; 15009 } 15010 } 15011 15012 /* 15013 * ip_input fast path 15014 */ 15015 15016 /* mblk type is not M_DATA */ 15017 if (DB_TYPE(mp) != M_DATA) { 15018 if (ip_rput_process_notdata(q, &first_mp, ill, 15019 &ll_multicast, &mp)) 15020 continue; 15021 15022 /* 15023 * The only way we can get here is if we had a 15024 * packet that was either a DL_UNITDATA_IND or 15025 * an M_CTL for an IPsec accelerated packet. 15026 * 15027 * In either case, the first_mp will point to 15028 * the leading M_PROTO or M_CTL. 15029 */ 15030 ASSERT(first_mp != NULL); 15031 } else if (mhip != NULL) { 15032 /* 15033 * ll_multicast is set here so that it is ready 15034 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15035 * manipulates ll_multicast in the same fashion when 15036 * called from ip_rput_process_notdata. 15037 */ 15038 switch (mhip->mhi_dsttype) { 15039 case MAC_ADDRTYPE_MULTICAST : 15040 ll_multicast = HPE_MULTICAST; 15041 break; 15042 case MAC_ADDRTYPE_BROADCAST : 15043 ll_multicast = HPE_BROADCAST; 15044 break; 15045 default : 15046 break; 15047 } 15048 } 15049 15050 /* Make sure its an M_DATA and that its aligned */ 15051 ASSERT(DB_TYPE(mp) == M_DATA); 15052 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15053 15054 ipha = (ipha_t *)mp->b_rptr; 15055 len = mp->b_wptr - rptr; 15056 pkt_len = ntohs(ipha->ipha_length); 15057 15058 /* 15059 * We must count all incoming packets, even if they end 15060 * up being dropped later on. 15061 */ 15062 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15063 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15064 15065 /* multiple mblk or too short */ 15066 len -= pkt_len; 15067 if (len != 0) { 15068 /* 15069 * Make sure we have data length consistent 15070 * with the IP header. 15071 */ 15072 if (mp->b_cont == NULL) { 15073 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15074 BUMP_MIB(ill->ill_ip_mib, 15075 ipIfStatsInHdrErrors); 15076 ip2dbg(("ip_input: drop pkt\n")); 15077 freemsg(mp); 15078 continue; 15079 } 15080 mp->b_wptr = rptr + pkt_len; 15081 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15082 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15083 BUMP_MIB(ill->ill_ip_mib, 15084 ipIfStatsInHdrErrors); 15085 ip2dbg(("ip_input: drop pkt\n")); 15086 freemsg(mp); 15087 continue; 15088 } 15089 (void) adjmsg(mp, -len); 15090 IP_STAT(ipst, ip_multimblk3); 15091 } 15092 } 15093 15094 /* Obtain the dst of the current packet */ 15095 dst = ipha->ipha_dst; 15096 15097 /* 15098 * The following test for loopback is faster than 15099 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15100 * operations. 15101 * Note that these addresses are always in network byte order 15102 */ 15103 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15104 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15105 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15106 freemsg(mp); 15107 continue; 15108 } 15109 15110 /* 15111 * The event for packets being received from a 'physical' 15112 * interface is placed after validation of the source and/or 15113 * destination address as being local so that packets can be 15114 * redirected to loopback addresses using ipnat. 15115 */ 15116 DTRACE_PROBE4(ip4__physical__in__start, 15117 ill_t *, ill, ill_t *, NULL, 15118 ipha_t *, ipha, mblk_t *, first_mp); 15119 15120 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15121 ipst->ips_ipv4firewall_physical_in, 15122 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15123 15124 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15125 15126 if (first_mp == NULL) { 15127 continue; 15128 } 15129 dst = ipha->ipha_dst; 15130 15131 /* 15132 * Attach any necessary label information to 15133 * this packet 15134 */ 15135 if (is_system_labeled() && 15136 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15137 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15138 freemsg(mp); 15139 continue; 15140 } 15141 15142 /* 15143 * Reuse the cached ire only if the ipha_dst of the previous 15144 * packet is the same as the current packet AND it is not 15145 * INADDR_ANY. 15146 */ 15147 if (!(dst == prev_dst && dst != INADDR_ANY) && 15148 (ire != NULL)) { 15149 ire_refrele(ire); 15150 ire = NULL; 15151 } 15152 opt_len = ipha->ipha_version_and_hdr_length - 15153 IP_SIMPLE_HDR_VERSION; 15154 15155 /* 15156 * Check to see if we can take the fastpath. 15157 * That is possible if the following conditions are met 15158 * o Tsol disabled 15159 * o CGTP disabled 15160 * o ipp_action_count is 0 15161 * o no options in the packet 15162 * o not a RSVP packet 15163 * o not a multicast packet 15164 * o ill not in IP_DHCPINIT_IF mode 15165 */ 15166 if (!is_system_labeled() && 15167 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15168 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15169 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15170 if (ire == NULL) 15171 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15172 ipst); 15173 15174 /* incoming packet is for forwarding */ 15175 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15176 ire = ip_fast_forward(ire, dst, ill, mp); 15177 continue; 15178 } 15179 /* incoming packet is for local consumption */ 15180 if (ire->ire_type & IRE_LOCAL) 15181 goto local; 15182 } 15183 15184 /* 15185 * Disable ire caching for anything more complex 15186 * than the simple fast path case we checked for above. 15187 */ 15188 if (ire != NULL) { 15189 ire_refrele(ire); 15190 ire = NULL; 15191 } 15192 15193 /* 15194 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15195 * server to unicast DHCP packets to a DHCP client using the 15196 * IP address it is offering to the client. This can be 15197 * disabled through the "broadcast bit", but not all DHCP 15198 * servers honor that bit. Therefore, to interoperate with as 15199 * many DHCP servers as possible, the DHCP client allows the 15200 * server to unicast, but we treat those packets as broadcast 15201 * here. Note that we don't rewrite the packet itself since 15202 * (a) that would mess up the checksums and (b) the DHCP 15203 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15204 * hand it the packet regardless. 15205 */ 15206 if (ill->ill_dhcpinit != 0 && 15207 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15208 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15209 udpha_t *udpha; 15210 15211 /* 15212 * Reload ipha since pullupmsg() can change b_rptr. 15213 */ 15214 ipha = (ipha_t *)mp->b_rptr; 15215 udpha = (udpha_t *)&ipha[1]; 15216 15217 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15218 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15219 mblk_t *, mp); 15220 dst = INADDR_BROADCAST; 15221 } 15222 } 15223 15224 /* Full-blown slow path */ 15225 if (opt_len != 0) { 15226 if (len != 0) 15227 IP_STAT(ipst, ip_multimblk4); 15228 else 15229 IP_STAT(ipst, ip_ipoptions); 15230 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15231 &dst, ipst)) 15232 continue; 15233 } 15234 15235 /* 15236 * Invoke the CGTP (multirouting) filtering module to process 15237 * the incoming packet. Packets identified as duplicates 15238 * must be discarded. Filtering is active only if the 15239 * the ip_cgtp_filter ndd variable is non-zero. 15240 */ 15241 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15242 if (ipst->ips_ip_cgtp_filter && 15243 ipst->ips_ip_cgtp_filter_ops != NULL) { 15244 netstackid_t stackid; 15245 15246 stackid = ipst->ips_netstack->netstack_stackid; 15247 cgtp_flt_pkt = 15248 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15249 ill->ill_phyint->phyint_ifindex, mp); 15250 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15251 freemsg(first_mp); 15252 continue; 15253 } 15254 } 15255 15256 /* 15257 * If rsvpd is running, let RSVP daemon handle its processing 15258 * and forwarding of RSVP multicast/unicast packets. 15259 * If rsvpd is not running but mrouted is running, RSVP 15260 * multicast packets are forwarded as multicast traffic 15261 * and RSVP unicast packets are forwarded by unicast router. 15262 * If neither rsvpd nor mrouted is running, RSVP multicast 15263 * packets are not forwarded, but the unicast packets are 15264 * forwarded like unicast traffic. 15265 */ 15266 if (ipha->ipha_protocol == IPPROTO_RSVP && 15267 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15268 NULL) { 15269 /* RSVP packet and rsvpd running. Treat as ours */ 15270 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15271 /* 15272 * This assumes that we deliver to all streams for 15273 * multicast and broadcast packets. 15274 * We have to force ll_multicast to 1 to handle the 15275 * M_DATA messages passed in from ip_mroute_decap. 15276 */ 15277 dst = INADDR_BROADCAST; 15278 ll_multicast = 1; 15279 } else if (CLASSD(dst)) { 15280 /* packet is multicast */ 15281 mp->b_next = NULL; 15282 if (ip_rput_process_multicast(q, mp, ill, ipha, 15283 &ll_multicast, &dst)) 15284 continue; 15285 } 15286 15287 if (ire == NULL) { 15288 ire = ire_cache_lookup(dst, ALL_ZONES, 15289 MBLK_GETLABEL(mp), ipst); 15290 } 15291 15292 if (ire == NULL) { 15293 /* 15294 * No IRE for this destination, so it can't be for us. 15295 * Unless we are forwarding, drop the packet. 15296 * We have to let source routed packets through 15297 * since we don't yet know if they are 'ping -l' 15298 * packets i.e. if they will go out over the 15299 * same interface as they came in on. 15300 */ 15301 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15302 if (ire == NULL) 15303 continue; 15304 } 15305 15306 /* 15307 * Broadcast IRE may indicate either broadcast or 15308 * multicast packet 15309 */ 15310 if (ire->ire_type == IRE_BROADCAST) { 15311 /* 15312 * Skip broadcast checks if packet is UDP multicast; 15313 * we'd rather not enter ip_rput_process_broadcast() 15314 * unless the packet is broadcast for real, since 15315 * that routine is a no-op for multicast. 15316 */ 15317 if (ipha->ipha_protocol != IPPROTO_UDP || 15318 !CLASSD(ipha->ipha_dst)) { 15319 ire = ip_rput_process_broadcast(&q, mp, 15320 ire, ipha, ill, dst, cgtp_flt_pkt, 15321 ll_multicast); 15322 if (ire == NULL) 15323 continue; 15324 } 15325 } else if (ire->ire_stq != NULL) { 15326 /* fowarding? */ 15327 ip_rput_process_forward(q, mp, ire, ipha, ill, 15328 ll_multicast); 15329 /* ip_rput_process_forward consumed the packet */ 15330 continue; 15331 } 15332 15333 local: 15334 /* 15335 * If the queue in the ire is different to the ingress queue 15336 * then we need to check to see if we can accept the packet. 15337 * Note that for multicast packets and broadcast packets sent 15338 * to a broadcast address which is shared between multiple 15339 * interfaces we should not do this since we just got a random 15340 * broadcast ire. 15341 */ 15342 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15343 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15344 ill)) == NULL) { 15345 /* Drop packet */ 15346 BUMP_MIB(ill->ill_ip_mib, 15347 ipIfStatsForwProhibits); 15348 freemsg(mp); 15349 continue; 15350 } 15351 if (ire->ire_rfq != NULL) 15352 q = ire->ire_rfq; 15353 } 15354 15355 switch (ipha->ipha_protocol) { 15356 case IPPROTO_TCP: 15357 ASSERT(first_mp == mp); 15358 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15359 mp, 0, q, ip_ring)) != NULL) { 15360 if (curr_sqp == NULL) { 15361 curr_sqp = GET_SQUEUE(mp); 15362 ASSERT(cnt == 0); 15363 cnt++; 15364 head = tail = mp; 15365 } else if (curr_sqp == GET_SQUEUE(mp)) { 15366 ASSERT(tail != NULL); 15367 cnt++; 15368 tail->b_next = mp; 15369 tail = mp; 15370 } else { 15371 /* 15372 * A different squeue. Send the 15373 * chain for the previous squeue on 15374 * its way. This shouldn't happen 15375 * often unless interrupt binding 15376 * changes. 15377 */ 15378 IP_STAT(ipst, ip_input_multi_squeue); 15379 squeue_enter_chain(curr_sqp, head, 15380 tail, cnt, SQTAG_IP_INPUT); 15381 curr_sqp = GET_SQUEUE(mp); 15382 head = mp; 15383 tail = mp; 15384 cnt = 1; 15385 } 15386 } 15387 continue; 15388 case IPPROTO_UDP: 15389 ASSERT(first_mp == mp); 15390 ip_udp_input(q, mp, ipha, ire, ill); 15391 continue; 15392 case IPPROTO_SCTP: 15393 ASSERT(first_mp == mp); 15394 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15395 q, dst); 15396 /* ire has been released by ip_sctp_input */ 15397 ire = NULL; 15398 continue; 15399 default: 15400 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15401 continue; 15402 } 15403 } 15404 15405 if (ire != NULL) 15406 ire_refrele(ire); 15407 15408 if (head != NULL) 15409 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15410 15411 /* 15412 * This code is there just to make netperf/ttcp look good. 15413 * 15414 * Its possible that after being in polling mode (and having cleared 15415 * the backlog), squeues have turned the interrupt frequency higher 15416 * to improve latency at the expense of more CPU utilization (less 15417 * packets per interrupts or more number of interrupts). Workloads 15418 * like ttcp/netperf do manage to tickle polling once in a while 15419 * but for the remaining time, stay in higher interrupt mode since 15420 * their packet arrival rate is pretty uniform and this shows up 15421 * as higher CPU utilization. Since people care about CPU utilization 15422 * while running netperf/ttcp, turn the interrupt frequency back to 15423 * normal/default if polling has not been used in ip_poll_normal_ticks. 15424 */ 15425 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15426 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15427 ip_ring->rr_poll_state &= ~ILL_POLLING; 15428 ip_ring->rr_blank(ip_ring->rr_handle, 15429 ip_ring->rr_normal_blank_time, 15430 ip_ring->rr_normal_pkt_cnt); 15431 } 15432 } 15433 15434 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15435 "ip_input_end: q %p (%S)", q, "end"); 15436 #undef rptr 15437 } 15438 15439 static void 15440 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15441 t_uscalar_t err) 15442 { 15443 if (dl_err == DL_SYSERR) { 15444 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15445 "%s: %s failed: DL_SYSERR (errno %u)\n", 15446 ill->ill_name, dlpi_prim_str(prim), err); 15447 return; 15448 } 15449 15450 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15451 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15452 dlpi_err_str(dl_err)); 15453 } 15454 15455 /* 15456 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15457 * than DL_UNITDATA_IND messages. If we need to process this message 15458 * exclusively, we call qwriter_ip, in which case we also need to call 15459 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15460 */ 15461 void 15462 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15463 { 15464 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15465 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15466 ill_t *ill = (ill_t *)q->q_ptr; 15467 boolean_t pending; 15468 15469 ip1dbg(("ip_rput_dlpi")); 15470 if (dloa->dl_primitive == DL_ERROR_ACK) { 15471 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15472 "%s (0x%x), unix %u\n", ill->ill_name, 15473 dlpi_prim_str(dlea->dl_error_primitive), 15474 dlea->dl_error_primitive, 15475 dlpi_err_str(dlea->dl_errno), 15476 dlea->dl_errno, 15477 dlea->dl_unix_errno)); 15478 } 15479 15480 /* 15481 * If we received an ACK but didn't send a request for it, then it 15482 * can't be part of any pending operation; discard up-front. 15483 */ 15484 switch (dloa->dl_primitive) { 15485 case DL_NOTIFY_IND: 15486 pending = B_TRUE; 15487 break; 15488 case DL_ERROR_ACK: 15489 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15490 break; 15491 case DL_OK_ACK: 15492 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15493 break; 15494 case DL_INFO_ACK: 15495 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15496 break; 15497 case DL_BIND_ACK: 15498 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15499 break; 15500 case DL_PHYS_ADDR_ACK: 15501 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15502 break; 15503 case DL_NOTIFY_ACK: 15504 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15505 break; 15506 case DL_CONTROL_ACK: 15507 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15508 break; 15509 case DL_CAPABILITY_ACK: 15510 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15511 break; 15512 default: 15513 /* Not a DLPI message we support or were expecting */ 15514 freemsg(mp); 15515 return; 15516 } 15517 15518 if (!pending) { 15519 freemsg(mp); 15520 return; 15521 } 15522 15523 switch (dloa->dl_primitive) { 15524 case DL_ERROR_ACK: 15525 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15526 mutex_enter(&ill->ill_lock); 15527 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15528 cv_signal(&ill->ill_cv); 15529 mutex_exit(&ill->ill_lock); 15530 } 15531 break; 15532 15533 case DL_OK_ACK: 15534 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15535 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15536 switch (dloa->dl_correct_primitive) { 15537 case DL_UNBIND_REQ: 15538 mutex_enter(&ill->ill_lock); 15539 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15540 cv_signal(&ill->ill_cv); 15541 mutex_exit(&ill->ill_lock); 15542 break; 15543 15544 case DL_ENABMULTI_REQ: 15545 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15546 ill->ill_dlpi_multicast_state = IDS_OK; 15547 break; 15548 } 15549 break; 15550 default: 15551 break; 15552 } 15553 15554 /* 15555 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15556 * and we need to become writer to continue to process it. If it's not 15557 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15558 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15559 * some work as part of the current exclusive operation that actually 15560 * is not part of it -- which is wrong, but better than the 15561 * alternative of deadlock (if NEW_OP is always used). Someday, we 15562 * should track which DLPI requests have ACKs that we wait on 15563 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15564 * 15565 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15566 * Since this is on the ill stream we unconditionally bump up the 15567 * refcount without doing ILL_CAN_LOOKUP(). 15568 */ 15569 ill_refhold(ill); 15570 if (dloa->dl_primitive == DL_NOTIFY_IND) 15571 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15572 else 15573 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15574 } 15575 15576 /* 15577 * Handling of DLPI messages that require exclusive access to the ipsq. 15578 * 15579 * Need to do ill_pending_mp_release on ioctl completion, which could 15580 * happen here. (along with mi_copy_done) 15581 */ 15582 /* ARGSUSED */ 15583 static void 15584 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15585 { 15586 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15587 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15588 int err = 0; 15589 ill_t *ill; 15590 ipif_t *ipif = NULL; 15591 mblk_t *mp1 = NULL; 15592 conn_t *connp = NULL; 15593 t_uscalar_t paddrreq; 15594 mblk_t *mp_hw; 15595 boolean_t success; 15596 boolean_t ioctl_aborted = B_FALSE; 15597 boolean_t log = B_TRUE; 15598 hook_nic_event_t *info; 15599 ip_stack_t *ipst; 15600 15601 ip1dbg(("ip_rput_dlpi_writer ..")); 15602 ill = (ill_t *)q->q_ptr; 15603 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15604 15605 ASSERT(IAM_WRITER_ILL(ill)); 15606 15607 ipst = ill->ill_ipst; 15608 15609 /* 15610 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15611 * both are null or non-null. However we can assert that only 15612 * after grabbing the ipsq_lock. So we don't make any assertion 15613 * here and in other places in the code. 15614 */ 15615 ipif = ipsq->ipsq_pending_ipif; 15616 /* 15617 * The current ioctl could have been aborted by the user and a new 15618 * ioctl to bring up another ill could have started. We could still 15619 * get a response from the driver later. 15620 */ 15621 if (ipif != NULL && ipif->ipif_ill != ill) 15622 ioctl_aborted = B_TRUE; 15623 15624 switch (dloa->dl_primitive) { 15625 case DL_ERROR_ACK: 15626 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15627 dlpi_prim_str(dlea->dl_error_primitive))); 15628 15629 switch (dlea->dl_error_primitive) { 15630 case DL_PROMISCON_REQ: 15631 case DL_PROMISCOFF_REQ: 15632 case DL_DISABMULTI_REQ: 15633 case DL_UNBIND_REQ: 15634 case DL_ATTACH_REQ: 15635 case DL_INFO_REQ: 15636 ill_dlpi_done(ill, dlea->dl_error_primitive); 15637 break; 15638 case DL_NOTIFY_REQ: 15639 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15640 log = B_FALSE; 15641 break; 15642 case DL_PHYS_ADDR_REQ: 15643 /* 15644 * For IPv6 only, there are two additional 15645 * phys_addr_req's sent to the driver to get the 15646 * IPv6 token and lla. This allows IP to acquire 15647 * the hardware address format for a given interface 15648 * without having built in knowledge of the hardware 15649 * address. ill_phys_addr_pend keeps track of the last 15650 * DL_PAR sent so we know which response we are 15651 * dealing with. ill_dlpi_done will update 15652 * ill_phys_addr_pend when it sends the next req. 15653 * We don't complete the IOCTL until all three DL_PARs 15654 * have been attempted, so set *_len to 0 and break. 15655 */ 15656 paddrreq = ill->ill_phys_addr_pend; 15657 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15658 if (paddrreq == DL_IPV6_TOKEN) { 15659 ill->ill_token_length = 0; 15660 log = B_FALSE; 15661 break; 15662 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15663 ill->ill_nd_lla_len = 0; 15664 log = B_FALSE; 15665 break; 15666 } 15667 /* 15668 * Something went wrong with the DL_PHYS_ADDR_REQ. 15669 * We presumably have an IOCTL hanging out waiting 15670 * for completion. Find it and complete the IOCTL 15671 * with the error noted. 15672 * However, ill_dl_phys was called on an ill queue 15673 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15674 * set. But the ioctl is known to be pending on ill_wq. 15675 */ 15676 if (!ill->ill_ifname_pending) 15677 break; 15678 ill->ill_ifname_pending = 0; 15679 if (!ioctl_aborted) 15680 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15681 if (mp1 != NULL) { 15682 /* 15683 * This operation (SIOCSLIFNAME) must have 15684 * happened on the ill. Assert there is no conn 15685 */ 15686 ASSERT(connp == NULL); 15687 q = ill->ill_wq; 15688 } 15689 break; 15690 case DL_BIND_REQ: 15691 ill_dlpi_done(ill, DL_BIND_REQ); 15692 if (ill->ill_ifname_pending) 15693 break; 15694 /* 15695 * Something went wrong with the bind. We presumably 15696 * have an IOCTL hanging out waiting for completion. 15697 * Find it, take down the interface that was coming 15698 * up, and complete the IOCTL with the error noted. 15699 */ 15700 if (!ioctl_aborted) 15701 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15702 if (mp1 != NULL) { 15703 /* 15704 * This operation (SIOCSLIFFLAGS) must have 15705 * happened from a conn. 15706 */ 15707 ASSERT(connp != NULL); 15708 q = CONNP_TO_WQ(connp); 15709 if (ill->ill_move_in_progress) { 15710 ILL_CLEAR_MOVE(ill); 15711 } 15712 (void) ipif_down(ipif, NULL, NULL); 15713 /* error is set below the switch */ 15714 } 15715 break; 15716 case DL_ENABMULTI_REQ: 15717 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15718 15719 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15720 ill->ill_dlpi_multicast_state = IDS_FAILED; 15721 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15722 ipif_t *ipif; 15723 15724 printf("ip: joining multicasts failed (%d)" 15725 " on %s - will use link layer " 15726 "broadcasts for multicast\n", 15727 dlea->dl_errno, ill->ill_name); 15728 15729 /* 15730 * Set up the multicast mapping alone. 15731 * writer, so ok to access ill->ill_ipif 15732 * without any lock. 15733 */ 15734 ipif = ill->ill_ipif; 15735 mutex_enter(&ill->ill_phyint->phyint_lock); 15736 ill->ill_phyint->phyint_flags |= 15737 PHYI_MULTI_BCAST; 15738 mutex_exit(&ill->ill_phyint->phyint_lock); 15739 15740 if (!ill->ill_isv6) { 15741 (void) ipif_arp_setup_multicast(ipif, 15742 NULL); 15743 } else { 15744 (void) ipif_ndp_setup_multicast(ipif, 15745 NULL); 15746 } 15747 } 15748 freemsg(mp); /* Don't want to pass this up */ 15749 return; 15750 15751 case DL_CAPABILITY_REQ: 15752 case DL_CONTROL_REQ: 15753 ill_dlpi_done(ill, dlea->dl_error_primitive); 15754 ill->ill_dlpi_capab_state = IDS_FAILED; 15755 freemsg(mp); 15756 return; 15757 } 15758 /* 15759 * Note the error for IOCTL completion (mp1 is set when 15760 * ready to complete ioctl). If ill_ifname_pending_err is 15761 * set, an error occured during plumbing (ill_ifname_pending), 15762 * so we want to report that error. 15763 * 15764 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15765 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15766 * expected to get errack'd if the driver doesn't support 15767 * these flags (e.g. ethernet). log will be set to B_FALSE 15768 * if these error conditions are encountered. 15769 */ 15770 if (mp1 != NULL) { 15771 if (ill->ill_ifname_pending_err != 0) { 15772 err = ill->ill_ifname_pending_err; 15773 ill->ill_ifname_pending_err = 0; 15774 } else { 15775 err = dlea->dl_unix_errno ? 15776 dlea->dl_unix_errno : ENXIO; 15777 } 15778 /* 15779 * If we're plumbing an interface and an error hasn't already 15780 * been saved, set ill_ifname_pending_err to the error passed 15781 * up. Ignore the error if log is B_FALSE (see comment above). 15782 */ 15783 } else if (log && ill->ill_ifname_pending && 15784 ill->ill_ifname_pending_err == 0) { 15785 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15786 dlea->dl_unix_errno : ENXIO; 15787 } 15788 15789 if (log) 15790 ip_dlpi_error(ill, dlea->dl_error_primitive, 15791 dlea->dl_errno, dlea->dl_unix_errno); 15792 break; 15793 case DL_CAPABILITY_ACK: 15794 /* Call a routine to handle this one. */ 15795 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15796 ill_capability_ack(ill, mp); 15797 15798 /* 15799 * If the ack is due to renegotiation, we will need to send 15800 * a new CAPABILITY_REQ to start the renegotiation. 15801 */ 15802 if (ill->ill_capab_reneg) { 15803 ill->ill_capab_reneg = B_FALSE; 15804 ill_capability_probe(ill); 15805 } 15806 break; 15807 case DL_CONTROL_ACK: 15808 /* We treat all of these as "fire and forget" */ 15809 ill_dlpi_done(ill, DL_CONTROL_REQ); 15810 break; 15811 case DL_INFO_ACK: 15812 /* Call a routine to handle this one. */ 15813 ill_dlpi_done(ill, DL_INFO_REQ); 15814 ip_ll_subnet_defaults(ill, mp); 15815 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15816 return; 15817 case DL_BIND_ACK: 15818 /* 15819 * We should have an IOCTL waiting on this unless 15820 * sent by ill_dl_phys, in which case just return 15821 */ 15822 ill_dlpi_done(ill, DL_BIND_REQ); 15823 if (ill->ill_ifname_pending) 15824 break; 15825 15826 if (!ioctl_aborted) 15827 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15828 if (mp1 == NULL) 15829 break; 15830 /* 15831 * Because mp1 was added by ill_dl_up(), and it always 15832 * passes a valid connp, connp must be valid here. 15833 */ 15834 ASSERT(connp != NULL); 15835 q = CONNP_TO_WQ(connp); 15836 15837 /* 15838 * We are exclusive. So nothing can change even after 15839 * we get the pending mp. If need be we can put it back 15840 * and restart, as in calling ipif_arp_up() below. 15841 */ 15842 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15843 15844 mutex_enter(&ill->ill_lock); 15845 15846 ill->ill_dl_up = 1; 15847 15848 if ((info = ill->ill_nic_event_info) != NULL) { 15849 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15850 "attached for %s\n", info->hne_event, 15851 ill->ill_name)); 15852 if (info->hne_data != NULL) 15853 kmem_free(info->hne_data, info->hne_datalen); 15854 kmem_free(info, sizeof (hook_nic_event_t)); 15855 } 15856 15857 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15858 if (info != NULL) { 15859 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15860 info->hne_lif = 0; 15861 info->hne_event = NE_UP; 15862 info->hne_data = NULL; 15863 info->hne_datalen = 0; 15864 info->hne_family = ill->ill_isv6 ? 15865 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15866 } else 15867 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15868 "event information for %s (ENOMEM)\n", 15869 ill->ill_name)); 15870 15871 ill->ill_nic_event_info = info; 15872 15873 mutex_exit(&ill->ill_lock); 15874 15875 /* 15876 * Now bring up the resolver; when that is complete, we'll 15877 * create IREs. Note that we intentionally mirror what 15878 * ipif_up() would have done, because we got here by way of 15879 * ill_dl_up(), which stopped ipif_up()'s processing. 15880 */ 15881 if (ill->ill_isv6) { 15882 /* 15883 * v6 interfaces. 15884 * Unlike ARP which has to do another bind 15885 * and attach, once we get here we are 15886 * done with NDP. Except in the case of 15887 * ILLF_XRESOLV, in which case we send an 15888 * AR_INTERFACE_UP to the external resolver. 15889 * If all goes well, the ioctl will complete 15890 * in ip_rput(). If there's an error, we 15891 * complete it here. 15892 */ 15893 if ((err = ipif_ndp_up(ipif)) == 0) { 15894 if (ill->ill_flags & ILLF_XRESOLV) { 15895 mutex_enter(&connp->conn_lock); 15896 mutex_enter(&ill->ill_lock); 15897 success = ipsq_pending_mp_add( 15898 connp, ipif, q, mp1, 0); 15899 mutex_exit(&ill->ill_lock); 15900 mutex_exit(&connp->conn_lock); 15901 if (success) { 15902 err = ipif_resolver_up(ipif, 15903 Res_act_initial); 15904 if (err == EINPROGRESS) { 15905 freemsg(mp); 15906 return; 15907 } 15908 ASSERT(err != 0); 15909 mp1 = ipsq_pending_mp_get(ipsq, 15910 &connp); 15911 ASSERT(mp1 != NULL); 15912 } else { 15913 /* conn has started closing */ 15914 err = EINTR; 15915 } 15916 } else { /* Non XRESOLV interface */ 15917 (void) ipif_resolver_up(ipif, 15918 Res_act_initial); 15919 err = ipif_up_done_v6(ipif); 15920 } 15921 } 15922 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15923 /* 15924 * ARP and other v4 external resolvers. 15925 * Leave the pending mblk intact so that 15926 * the ioctl completes in ip_rput(). 15927 */ 15928 mutex_enter(&connp->conn_lock); 15929 mutex_enter(&ill->ill_lock); 15930 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15931 mutex_exit(&ill->ill_lock); 15932 mutex_exit(&connp->conn_lock); 15933 if (success) { 15934 err = ipif_resolver_up(ipif, Res_act_initial); 15935 if (err == EINPROGRESS) { 15936 freemsg(mp); 15937 return; 15938 } 15939 ASSERT(err != 0); 15940 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15941 } else { 15942 /* The conn has started closing */ 15943 err = EINTR; 15944 } 15945 } else { 15946 /* 15947 * This one is complete. Reply to pending ioctl. 15948 */ 15949 (void) ipif_resolver_up(ipif, Res_act_initial); 15950 err = ipif_up_done(ipif); 15951 } 15952 15953 if ((err == 0) && (ill->ill_up_ipifs)) { 15954 err = ill_up_ipifs(ill, q, mp1); 15955 if (err == EINPROGRESS) { 15956 freemsg(mp); 15957 return; 15958 } 15959 } 15960 15961 if (ill->ill_up_ipifs) { 15962 ill_group_cleanup(ill); 15963 } 15964 15965 break; 15966 case DL_NOTIFY_IND: { 15967 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15968 ire_t *ire; 15969 boolean_t need_ire_walk_v4 = B_FALSE; 15970 boolean_t need_ire_walk_v6 = B_FALSE; 15971 15972 switch (notify->dl_notification) { 15973 case DL_NOTE_PHYS_ADDR: 15974 err = ill_set_phys_addr(ill, mp); 15975 break; 15976 15977 case DL_NOTE_FASTPATH_FLUSH: 15978 ill_fastpath_flush(ill); 15979 break; 15980 15981 case DL_NOTE_SDU_SIZE: 15982 /* 15983 * Change the MTU size of the interface, of all 15984 * attached ipif's, and of all relevant ire's. The 15985 * new value's a uint32_t at notify->dl_data. 15986 * Mtu change Vs. new ire creation - protocol below. 15987 * 15988 * a Mark the ipif as IPIF_CHANGING. 15989 * b Set the new mtu in the ipif. 15990 * c Change the ire_max_frag on all affected ires 15991 * d Unmark the IPIF_CHANGING 15992 * 15993 * To see how the protocol works, assume an interface 15994 * route is also being added simultaneously by 15995 * ip_rt_add and let 'ipif' be the ipif referenced by 15996 * the ire. If the ire is created before step a, 15997 * it will be cleaned up by step c. If the ire is 15998 * created after step d, it will see the new value of 15999 * ipif_mtu. Any attempt to create the ire between 16000 * steps a to d will fail because of the IPIF_CHANGING 16001 * flag. Note that ire_create() is passed a pointer to 16002 * the ipif_mtu, and not the value. During ire_add 16003 * under the bucket lock, the ire_max_frag of the 16004 * new ire being created is set from the ipif/ire from 16005 * which it is being derived. 16006 */ 16007 mutex_enter(&ill->ill_lock); 16008 ill->ill_max_frag = (uint_t)notify->dl_data; 16009 16010 /* 16011 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16012 * leave it alone 16013 */ 16014 if (ill->ill_mtu_userspecified) { 16015 mutex_exit(&ill->ill_lock); 16016 break; 16017 } 16018 ill->ill_max_mtu = ill->ill_max_frag; 16019 if (ill->ill_isv6) { 16020 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16021 ill->ill_max_mtu = IPV6_MIN_MTU; 16022 } else { 16023 if (ill->ill_max_mtu < IP_MIN_MTU) 16024 ill->ill_max_mtu = IP_MIN_MTU; 16025 } 16026 for (ipif = ill->ill_ipif; ipif != NULL; 16027 ipif = ipif->ipif_next) { 16028 /* 16029 * Don't override the mtu if the user 16030 * has explicitly set it. 16031 */ 16032 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16033 continue; 16034 ipif->ipif_mtu = (uint_t)notify->dl_data; 16035 if (ipif->ipif_isv6) 16036 ire = ipif_to_ire_v6(ipif); 16037 else 16038 ire = ipif_to_ire(ipif); 16039 if (ire != NULL) { 16040 ire->ire_max_frag = ipif->ipif_mtu; 16041 ire_refrele(ire); 16042 } 16043 if (ipif->ipif_flags & IPIF_UP) { 16044 if (ill->ill_isv6) 16045 need_ire_walk_v6 = B_TRUE; 16046 else 16047 need_ire_walk_v4 = B_TRUE; 16048 } 16049 } 16050 mutex_exit(&ill->ill_lock); 16051 if (need_ire_walk_v4) 16052 ire_walk_v4(ill_mtu_change, (char *)ill, 16053 ALL_ZONES, ipst); 16054 if (need_ire_walk_v6) 16055 ire_walk_v6(ill_mtu_change, (char *)ill, 16056 ALL_ZONES, ipst); 16057 break; 16058 case DL_NOTE_LINK_UP: 16059 case DL_NOTE_LINK_DOWN: { 16060 /* 16061 * We are writer. ill / phyint / ipsq assocs stable. 16062 * The RUNNING flag reflects the state of the link. 16063 */ 16064 phyint_t *phyint = ill->ill_phyint; 16065 uint64_t new_phyint_flags; 16066 boolean_t changed = B_FALSE; 16067 boolean_t went_up; 16068 16069 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16070 mutex_enter(&phyint->phyint_lock); 16071 new_phyint_flags = went_up ? 16072 phyint->phyint_flags | PHYI_RUNNING : 16073 phyint->phyint_flags & ~PHYI_RUNNING; 16074 if (new_phyint_flags != phyint->phyint_flags) { 16075 phyint->phyint_flags = new_phyint_flags; 16076 changed = B_TRUE; 16077 } 16078 mutex_exit(&phyint->phyint_lock); 16079 /* 16080 * ill_restart_dad handles the DAD restart and routing 16081 * socket notification logic. 16082 */ 16083 if (changed) { 16084 ill_restart_dad(phyint->phyint_illv4, went_up); 16085 ill_restart_dad(phyint->phyint_illv6, went_up); 16086 } 16087 break; 16088 } 16089 case DL_NOTE_PROMISC_ON_PHYS: 16090 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16091 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16092 mutex_enter(&ill->ill_lock); 16093 ill->ill_promisc_on_phys = B_TRUE; 16094 mutex_exit(&ill->ill_lock); 16095 break; 16096 case DL_NOTE_PROMISC_OFF_PHYS: 16097 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16098 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16099 mutex_enter(&ill->ill_lock); 16100 ill->ill_promisc_on_phys = B_FALSE; 16101 mutex_exit(&ill->ill_lock); 16102 break; 16103 case DL_NOTE_CAPAB_RENEG: 16104 /* 16105 * Something changed on the driver side. 16106 * It wants us to renegotiate the capabilities 16107 * on this ill. One possible cause is the aggregation 16108 * interface under us where a port got added or 16109 * went away. 16110 * 16111 * If the capability negotiation is already done 16112 * or is in progress, reset the capabilities and 16113 * mark the ill's ill_capab_reneg to be B_TRUE, 16114 * so that when the ack comes back, we can start 16115 * the renegotiation process. 16116 * 16117 * Note that if ill_capab_reneg is already B_TRUE 16118 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16119 * the capability resetting request has been sent 16120 * and the renegotiation has not been started yet; 16121 * nothing needs to be done in this case. 16122 */ 16123 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16124 ill_capability_reset(ill); 16125 ill->ill_capab_reneg = B_TRUE; 16126 } 16127 break; 16128 default: 16129 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16130 "type 0x%x for DL_NOTIFY_IND\n", 16131 notify->dl_notification)); 16132 break; 16133 } 16134 16135 /* 16136 * As this is an asynchronous operation, we 16137 * should not call ill_dlpi_done 16138 */ 16139 break; 16140 } 16141 case DL_NOTIFY_ACK: { 16142 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16143 16144 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16145 ill->ill_note_link = 1; 16146 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16147 break; 16148 } 16149 case DL_PHYS_ADDR_ACK: { 16150 /* 16151 * As part of plumbing the interface via SIOCSLIFNAME, 16152 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16153 * whose answers we receive here. As each answer is received, 16154 * we call ill_dlpi_done() to dispatch the next request as 16155 * we're processing the current one. Once all answers have 16156 * been received, we use ipsq_pending_mp_get() to dequeue the 16157 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16158 * is invoked from an ill queue, conn_oper_pending_ill is not 16159 * available, but we know the ioctl is pending on ill_wq.) 16160 */ 16161 uint_t paddrlen, paddroff; 16162 16163 paddrreq = ill->ill_phys_addr_pend; 16164 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16165 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16166 16167 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16168 if (paddrreq == DL_IPV6_TOKEN) { 16169 /* 16170 * bcopy to low-order bits of ill_token 16171 * 16172 * XXX Temporary hack - currently, all known tokens 16173 * are 64 bits, so I'll cheat for the moment. 16174 */ 16175 bcopy(mp->b_rptr + paddroff, 16176 &ill->ill_token.s6_addr32[2], paddrlen); 16177 ill->ill_token_length = paddrlen; 16178 break; 16179 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16180 ASSERT(ill->ill_nd_lla_mp == NULL); 16181 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16182 mp = NULL; 16183 break; 16184 } 16185 16186 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16187 ASSERT(ill->ill_phys_addr_mp == NULL); 16188 if (!ill->ill_ifname_pending) 16189 break; 16190 ill->ill_ifname_pending = 0; 16191 if (!ioctl_aborted) 16192 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16193 if (mp1 != NULL) { 16194 ASSERT(connp == NULL); 16195 q = ill->ill_wq; 16196 } 16197 /* 16198 * If any error acks received during the plumbing sequence, 16199 * ill_ifname_pending_err will be set. Break out and send up 16200 * the error to the pending ioctl. 16201 */ 16202 if (ill->ill_ifname_pending_err != 0) { 16203 err = ill->ill_ifname_pending_err; 16204 ill->ill_ifname_pending_err = 0; 16205 break; 16206 } 16207 16208 ill->ill_phys_addr_mp = mp; 16209 ill->ill_phys_addr = mp->b_rptr + paddroff; 16210 mp = NULL; 16211 16212 /* 16213 * If paddrlen is zero, the DLPI provider doesn't support 16214 * physical addresses. The other two tests were historical 16215 * workarounds for bugs in our former PPP implementation, but 16216 * now other things have grown dependencies on them -- e.g., 16217 * the tun module specifies a dl_addr_length of zero in its 16218 * DL_BIND_ACK, but then specifies an incorrect value in its 16219 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16220 * but only after careful testing ensures that all dependent 16221 * broken DLPI providers have been fixed. 16222 */ 16223 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16224 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16225 ill->ill_phys_addr = NULL; 16226 } else if (paddrlen != ill->ill_phys_addr_length) { 16227 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16228 paddrlen, ill->ill_phys_addr_length)); 16229 err = EINVAL; 16230 break; 16231 } 16232 16233 if (ill->ill_nd_lla_mp == NULL) { 16234 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16235 err = ENOMEM; 16236 break; 16237 } 16238 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16239 } 16240 16241 /* 16242 * Set the interface token. If the zeroth interface address 16243 * is unspecified, then set it to the link local address. 16244 */ 16245 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16246 (void) ill_setdefaulttoken(ill); 16247 16248 ASSERT(ill->ill_ipif->ipif_id == 0); 16249 if (ipif != NULL && 16250 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16251 (void) ipif_setlinklocal(ipif); 16252 } 16253 break; 16254 } 16255 case DL_OK_ACK: 16256 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16257 dlpi_prim_str((int)dloa->dl_correct_primitive), 16258 dloa->dl_correct_primitive)); 16259 switch (dloa->dl_correct_primitive) { 16260 case DL_PROMISCON_REQ: 16261 case DL_PROMISCOFF_REQ: 16262 case DL_ENABMULTI_REQ: 16263 case DL_DISABMULTI_REQ: 16264 case DL_UNBIND_REQ: 16265 case DL_ATTACH_REQ: 16266 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16267 break; 16268 } 16269 break; 16270 default: 16271 break; 16272 } 16273 16274 freemsg(mp); 16275 if (mp1 != NULL) { 16276 /* 16277 * The operation must complete without EINPROGRESS 16278 * since ipsq_pending_mp_get() has removed the mblk 16279 * from ipsq_pending_mp. Otherwise, the operation 16280 * will be stuck forever in the ipsq. 16281 */ 16282 ASSERT(err != EINPROGRESS); 16283 16284 switch (ipsq->ipsq_current_ioctl) { 16285 case 0: 16286 ipsq_current_finish(ipsq); 16287 break; 16288 16289 case SIOCLIFADDIF: 16290 case SIOCSLIFNAME: 16291 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16292 break; 16293 16294 default: 16295 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16296 break; 16297 } 16298 } 16299 } 16300 16301 /* 16302 * ip_rput_other is called by ip_rput to handle messages modifying the global 16303 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16304 */ 16305 /* ARGSUSED */ 16306 void 16307 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16308 { 16309 ill_t *ill; 16310 struct iocblk *iocp; 16311 mblk_t *mp1; 16312 conn_t *connp = NULL; 16313 16314 ip1dbg(("ip_rput_other ")); 16315 ill = (ill_t *)q->q_ptr; 16316 /* 16317 * This routine is not a writer in the case of SIOCGTUNPARAM 16318 * in which case ipsq is NULL. 16319 */ 16320 if (ipsq != NULL) { 16321 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16322 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16323 } 16324 16325 switch (mp->b_datap->db_type) { 16326 case M_ERROR: 16327 case M_HANGUP: 16328 /* 16329 * The device has a problem. We force the ILL down. It can 16330 * be brought up again manually using SIOCSIFFLAGS (via 16331 * ifconfig or equivalent). 16332 */ 16333 ASSERT(ipsq != NULL); 16334 if (mp->b_rptr < mp->b_wptr) 16335 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16336 if (ill->ill_error == 0) 16337 ill->ill_error = ENXIO; 16338 if (!ill_down_start(q, mp)) 16339 return; 16340 ipif_all_down_tail(ipsq, q, mp, NULL); 16341 break; 16342 case M_IOCACK: 16343 iocp = (struct iocblk *)mp->b_rptr; 16344 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16345 switch (iocp->ioc_cmd) { 16346 case SIOCSTUNPARAM: 16347 case OSIOCSTUNPARAM: 16348 ASSERT(ipsq != NULL); 16349 /* 16350 * Finish socket ioctl passed through to tun. 16351 * We should have an IOCTL waiting on this. 16352 */ 16353 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16354 if (ill->ill_isv6) { 16355 struct iftun_req *ta; 16356 16357 /* 16358 * if a source or destination is 16359 * being set, try and set the link 16360 * local address for the tunnel 16361 */ 16362 ta = (struct iftun_req *)mp->b_cont-> 16363 b_cont->b_rptr; 16364 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16365 ipif_set_tun_llink(ill, ta); 16366 } 16367 16368 } 16369 if (mp1 != NULL) { 16370 /* 16371 * Now copy back the b_next/b_prev used by 16372 * mi code for the mi_copy* functions. 16373 * See ip_sioctl_tunparam() for the reason. 16374 * Also protect against missing b_cont. 16375 */ 16376 if (mp->b_cont != NULL) { 16377 mp->b_cont->b_next = 16378 mp1->b_cont->b_next; 16379 mp->b_cont->b_prev = 16380 mp1->b_cont->b_prev; 16381 } 16382 inet_freemsg(mp1); 16383 ASSERT(connp != NULL); 16384 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16385 iocp->ioc_error, NO_COPYOUT, ipsq); 16386 } else { 16387 ASSERT(connp == NULL); 16388 putnext(q, mp); 16389 } 16390 break; 16391 case SIOCGTUNPARAM: 16392 case OSIOCGTUNPARAM: 16393 /* 16394 * This is really M_IOCDATA from the tunnel driver. 16395 * convert back and complete the ioctl. 16396 * We should have an IOCTL waiting on this. 16397 */ 16398 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16399 if (mp1) { 16400 /* 16401 * Now copy back the b_next/b_prev used by 16402 * mi code for the mi_copy* functions. 16403 * See ip_sioctl_tunparam() for the reason. 16404 * Also protect against missing b_cont. 16405 */ 16406 if (mp->b_cont != NULL) { 16407 mp->b_cont->b_next = 16408 mp1->b_cont->b_next; 16409 mp->b_cont->b_prev = 16410 mp1->b_cont->b_prev; 16411 } 16412 inet_freemsg(mp1); 16413 if (iocp->ioc_error == 0) 16414 mp->b_datap->db_type = M_IOCDATA; 16415 ASSERT(connp != NULL); 16416 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16417 iocp->ioc_error, COPYOUT, NULL); 16418 } else { 16419 ASSERT(connp == NULL); 16420 putnext(q, mp); 16421 } 16422 break; 16423 default: 16424 break; 16425 } 16426 break; 16427 case M_IOCNAK: 16428 iocp = (struct iocblk *)mp->b_rptr; 16429 16430 switch (iocp->ioc_cmd) { 16431 int mode; 16432 16433 case DL_IOC_HDR_INFO: 16434 /* 16435 * If this was the first attempt turn of the 16436 * fastpath probing. 16437 */ 16438 mutex_enter(&ill->ill_lock); 16439 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16440 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16441 mutex_exit(&ill->ill_lock); 16442 ill_fastpath_nack(ill); 16443 ip1dbg(("ip_rput: DLPI fastpath off on " 16444 "interface %s\n", 16445 ill->ill_name)); 16446 } else { 16447 mutex_exit(&ill->ill_lock); 16448 } 16449 freemsg(mp); 16450 break; 16451 case SIOCSTUNPARAM: 16452 case OSIOCSTUNPARAM: 16453 ASSERT(ipsq != NULL); 16454 /* 16455 * Finish socket ioctl passed through to tun 16456 * We should have an IOCTL waiting on this. 16457 */ 16458 /* FALLTHRU */ 16459 case SIOCGTUNPARAM: 16460 case OSIOCGTUNPARAM: 16461 /* 16462 * This is really M_IOCDATA from the tunnel driver. 16463 * convert back and complete the ioctl. 16464 * We should have an IOCTL waiting on this. 16465 */ 16466 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16467 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16468 mp1 = ill_pending_mp_get(ill, &connp, 16469 iocp->ioc_id); 16470 mode = COPYOUT; 16471 ipsq = NULL; 16472 } else { 16473 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16474 mode = NO_COPYOUT; 16475 } 16476 if (mp1 != NULL) { 16477 /* 16478 * Now copy back the b_next/b_prev used by 16479 * mi code for the mi_copy* functions. 16480 * See ip_sioctl_tunparam() for the reason. 16481 * Also protect against missing b_cont. 16482 */ 16483 if (mp->b_cont != NULL) { 16484 mp->b_cont->b_next = 16485 mp1->b_cont->b_next; 16486 mp->b_cont->b_prev = 16487 mp1->b_cont->b_prev; 16488 } 16489 inet_freemsg(mp1); 16490 if (iocp->ioc_error == 0) 16491 iocp->ioc_error = EINVAL; 16492 ASSERT(connp != NULL); 16493 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16494 iocp->ioc_error, mode, ipsq); 16495 } else { 16496 ASSERT(connp == NULL); 16497 putnext(q, mp); 16498 } 16499 break; 16500 default: 16501 break; 16502 } 16503 default: 16504 break; 16505 } 16506 } 16507 16508 /* 16509 * NOTE : This function does not ire_refrele the ire argument passed in. 16510 * 16511 * IPQoS notes 16512 * IP policy is invoked twice for a forwarded packet, once on the read side 16513 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16514 * enabled. An additional parameter, in_ill, has been added for this purpose. 16515 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16516 * because ip_mroute drops this information. 16517 * 16518 */ 16519 void 16520 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16521 { 16522 uint32_t old_pkt_len; 16523 uint32_t pkt_len; 16524 queue_t *q; 16525 uint32_t sum; 16526 #define rptr ((uchar_t *)ipha) 16527 uint32_t max_frag; 16528 uint32_t ill_index; 16529 ill_t *out_ill; 16530 mib2_ipIfStatsEntry_t *mibptr; 16531 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16532 16533 /* Get the ill_index of the incoming ILL */ 16534 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16535 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16536 16537 /* Initiate Read side IPPF processing */ 16538 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16539 ip_process(IPP_FWD_IN, &mp, ill_index); 16540 if (mp == NULL) { 16541 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16542 "during IPPF processing\n")); 16543 return; 16544 } 16545 } 16546 16547 /* Adjust the checksum to reflect the ttl decrement. */ 16548 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16549 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16550 16551 if (ipha->ipha_ttl-- <= 1) { 16552 if (ip_csum_hdr(ipha)) { 16553 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16554 goto drop_pkt; 16555 } 16556 /* 16557 * Note: ire_stq this will be NULL for multicast 16558 * datagrams using the long path through arp (the IRE 16559 * is not an IRE_CACHE). This should not cause 16560 * problems since we don't generate ICMP errors for 16561 * multicast packets. 16562 */ 16563 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16564 q = ire->ire_stq; 16565 if (q != NULL) { 16566 /* Sent by forwarding path, and router is global zone */ 16567 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16568 GLOBAL_ZONEID, ipst); 16569 } else 16570 freemsg(mp); 16571 return; 16572 } 16573 16574 /* 16575 * Don't forward if the interface is down 16576 */ 16577 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16578 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16579 ip2dbg(("ip_rput_forward:interface is down\n")); 16580 goto drop_pkt; 16581 } 16582 16583 /* Get the ill_index of the outgoing ILL */ 16584 out_ill = ire_to_ill(ire); 16585 ill_index = out_ill->ill_phyint->phyint_ifindex; 16586 16587 DTRACE_PROBE4(ip4__forwarding__start, 16588 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16589 16590 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16591 ipst->ips_ipv4firewall_forwarding, 16592 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16593 16594 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16595 16596 if (mp == NULL) 16597 return; 16598 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16599 16600 if (is_system_labeled()) { 16601 mblk_t *mp1; 16602 16603 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16604 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16605 goto drop_pkt; 16606 } 16607 /* Size may have changed */ 16608 mp = mp1; 16609 ipha = (ipha_t *)mp->b_rptr; 16610 pkt_len = ntohs(ipha->ipha_length); 16611 } 16612 16613 /* Check if there are options to update */ 16614 if (!IS_SIMPLE_IPH(ipha)) { 16615 if (ip_csum_hdr(ipha)) { 16616 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16617 goto drop_pkt; 16618 } 16619 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16620 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16621 return; 16622 } 16623 16624 ipha->ipha_hdr_checksum = 0; 16625 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16626 } 16627 max_frag = ire->ire_max_frag; 16628 if (pkt_len > max_frag) { 16629 /* 16630 * It needs fragging on its way out. We haven't 16631 * verified the header checksum yet. Since we 16632 * are going to put a surely good checksum in the 16633 * outgoing header, we have to make sure that it 16634 * was good coming in. 16635 */ 16636 if (ip_csum_hdr(ipha)) { 16637 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16638 goto drop_pkt; 16639 } 16640 /* Initiate Write side IPPF processing */ 16641 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16642 ip_process(IPP_FWD_OUT, &mp, ill_index); 16643 if (mp == NULL) { 16644 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16645 " during IPPF processing\n")); 16646 return; 16647 } 16648 } 16649 /* 16650 * Handle labeled packet resizing. 16651 * 16652 * If we have added a label, inform ip_wput_frag() of its 16653 * effect on the MTU for ICMP messages. 16654 */ 16655 if (pkt_len > old_pkt_len) { 16656 uint32_t secopt_size; 16657 16658 secopt_size = pkt_len - old_pkt_len; 16659 if (secopt_size < max_frag) 16660 max_frag -= secopt_size; 16661 } 16662 16663 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16664 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16665 return; 16666 } 16667 16668 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16669 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16670 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16671 ipst->ips_ipv4firewall_physical_out, 16672 NULL, out_ill, ipha, mp, mp, 0, ipst); 16673 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16674 if (mp == NULL) 16675 return; 16676 16677 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16678 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16679 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16680 /* ip_xmit_v4 always consumes the packet */ 16681 return; 16682 16683 drop_pkt:; 16684 ip1dbg(("ip_rput_forward: drop pkt\n")); 16685 freemsg(mp); 16686 #undef rptr 16687 } 16688 16689 void 16690 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16691 { 16692 ire_t *ire; 16693 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16694 16695 ASSERT(!ipif->ipif_isv6); 16696 /* 16697 * Find an IRE which matches the destination and the outgoing 16698 * queue in the cache table. All we need is an IRE_CACHE which 16699 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16700 * then it is enough to have some IRE_CACHE in the group. 16701 */ 16702 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16703 dst = ipif->ipif_pp_dst_addr; 16704 16705 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16706 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16707 if (ire == NULL) { 16708 /* 16709 * Mark this packet to make it be delivered to 16710 * ip_rput_forward after the new ire has been 16711 * created. 16712 */ 16713 mp->b_prev = NULL; 16714 mp->b_next = mp; 16715 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16716 NULL, 0, GLOBAL_ZONEID, &zero_info); 16717 } else { 16718 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16719 IRE_REFRELE(ire); 16720 } 16721 } 16722 16723 /* Update any source route, record route or timestamp options */ 16724 static int 16725 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16726 { 16727 ipoptp_t opts; 16728 uchar_t *opt; 16729 uint8_t optval; 16730 uint8_t optlen; 16731 ipaddr_t dst; 16732 uint32_t ts; 16733 ire_t *dst_ire = NULL; 16734 ire_t *tmp_ire = NULL; 16735 timestruc_t now; 16736 16737 ip2dbg(("ip_rput_forward_options\n")); 16738 dst = ipha->ipha_dst; 16739 for (optval = ipoptp_first(&opts, ipha); 16740 optval != IPOPT_EOL; 16741 optval = ipoptp_next(&opts)) { 16742 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16743 opt = opts.ipoptp_cur; 16744 optlen = opts.ipoptp_len; 16745 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16746 optval, opts.ipoptp_len)); 16747 switch (optval) { 16748 uint32_t off; 16749 case IPOPT_SSRR: 16750 case IPOPT_LSRR: 16751 /* Check if adminstratively disabled */ 16752 if (!ipst->ips_ip_forward_src_routed) { 16753 if (ire->ire_stq != NULL) { 16754 /* 16755 * Sent by forwarding path, and router 16756 * is global zone 16757 */ 16758 icmp_unreachable(ire->ire_stq, mp, 16759 ICMP_SOURCE_ROUTE_FAILED, 16760 GLOBAL_ZONEID, ipst); 16761 } else { 16762 ip0dbg(("ip_rput_forward_options: " 16763 "unable to send unreach\n")); 16764 freemsg(mp); 16765 } 16766 return (-1); 16767 } 16768 16769 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16770 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16771 if (dst_ire == NULL) { 16772 /* 16773 * Must be partial since ip_rput_options 16774 * checked for strict. 16775 */ 16776 break; 16777 } 16778 off = opt[IPOPT_OFFSET]; 16779 off--; 16780 redo_srr: 16781 if (optlen < IP_ADDR_LEN || 16782 off > optlen - IP_ADDR_LEN) { 16783 /* End of source route */ 16784 ip1dbg(( 16785 "ip_rput_forward_options: end of SR\n")); 16786 ire_refrele(dst_ire); 16787 break; 16788 } 16789 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16790 bcopy(&ire->ire_src_addr, (char *)opt + off, 16791 IP_ADDR_LEN); 16792 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16793 ntohl(dst))); 16794 16795 /* 16796 * Check if our address is present more than 16797 * once as consecutive hops in source route. 16798 */ 16799 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16800 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16801 if (tmp_ire != NULL) { 16802 ire_refrele(tmp_ire); 16803 off += IP_ADDR_LEN; 16804 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16805 goto redo_srr; 16806 } 16807 ipha->ipha_dst = dst; 16808 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16809 ire_refrele(dst_ire); 16810 break; 16811 case IPOPT_RR: 16812 off = opt[IPOPT_OFFSET]; 16813 off--; 16814 if (optlen < IP_ADDR_LEN || 16815 off > optlen - IP_ADDR_LEN) { 16816 /* No more room - ignore */ 16817 ip1dbg(( 16818 "ip_rput_forward_options: end of RR\n")); 16819 break; 16820 } 16821 bcopy(&ire->ire_src_addr, (char *)opt + off, 16822 IP_ADDR_LEN); 16823 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16824 break; 16825 case IPOPT_TS: 16826 /* Insert timestamp if there is room */ 16827 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16828 case IPOPT_TS_TSONLY: 16829 off = IPOPT_TS_TIMELEN; 16830 break; 16831 case IPOPT_TS_PRESPEC: 16832 case IPOPT_TS_PRESPEC_RFC791: 16833 /* Verify that the address matched */ 16834 off = opt[IPOPT_OFFSET] - 1; 16835 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16836 dst_ire = ire_ctable_lookup(dst, 0, 16837 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16838 MATCH_IRE_TYPE, ipst); 16839 if (dst_ire == NULL) { 16840 /* Not for us */ 16841 break; 16842 } 16843 ire_refrele(dst_ire); 16844 /* FALLTHRU */ 16845 case IPOPT_TS_TSANDADDR: 16846 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16847 break; 16848 default: 16849 /* 16850 * ip_*put_options should have already 16851 * dropped this packet. 16852 */ 16853 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16854 "unknown IT - bug in ip_rput_options?\n"); 16855 return (0); /* Keep "lint" happy */ 16856 } 16857 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16858 /* Increase overflow counter */ 16859 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16860 opt[IPOPT_POS_OV_FLG] = 16861 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16862 (off << 4)); 16863 break; 16864 } 16865 off = opt[IPOPT_OFFSET] - 1; 16866 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16867 case IPOPT_TS_PRESPEC: 16868 case IPOPT_TS_PRESPEC_RFC791: 16869 case IPOPT_TS_TSANDADDR: 16870 bcopy(&ire->ire_src_addr, 16871 (char *)opt + off, IP_ADDR_LEN); 16872 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16873 /* FALLTHRU */ 16874 case IPOPT_TS_TSONLY: 16875 off = opt[IPOPT_OFFSET] - 1; 16876 /* Compute # of milliseconds since midnight */ 16877 gethrestime(&now); 16878 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16879 now.tv_nsec / (NANOSEC / MILLISEC); 16880 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16881 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16882 break; 16883 } 16884 break; 16885 } 16886 } 16887 return (0); 16888 } 16889 16890 /* 16891 * This is called after processing at least one of AH/ESP headers. 16892 * 16893 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16894 * the actual, physical interface on which the packet was received, 16895 * but, when ip_strict_dst_multihoming is set to 1, could be the 16896 * interface which had the ipha_dst configured when the packet went 16897 * through ip_rput. The ill_index corresponding to the recv_ill 16898 * is saved in ipsec_in_rill_index 16899 * 16900 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16901 * cannot assume "ire" points to valid data for any IPv6 cases. 16902 */ 16903 void 16904 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16905 { 16906 mblk_t *mp; 16907 ipaddr_t dst; 16908 in6_addr_t *v6dstp; 16909 ipha_t *ipha; 16910 ip6_t *ip6h; 16911 ipsec_in_t *ii; 16912 boolean_t ill_need_rele = B_FALSE; 16913 boolean_t rill_need_rele = B_FALSE; 16914 boolean_t ire_need_rele = B_FALSE; 16915 netstack_t *ns; 16916 ip_stack_t *ipst; 16917 16918 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16919 ASSERT(ii->ipsec_in_ill_index != 0); 16920 ns = ii->ipsec_in_ns; 16921 ASSERT(ii->ipsec_in_ns != NULL); 16922 ipst = ns->netstack_ip; 16923 16924 mp = ipsec_mp->b_cont; 16925 ASSERT(mp != NULL); 16926 16927 16928 if (ill == NULL) { 16929 ASSERT(recv_ill == NULL); 16930 /* 16931 * We need to get the original queue on which ip_rput_local 16932 * or ip_rput_data_v6 was called. 16933 */ 16934 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16935 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16936 ill_need_rele = B_TRUE; 16937 16938 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16939 recv_ill = ill_lookup_on_ifindex( 16940 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16941 NULL, NULL, NULL, NULL, ipst); 16942 rill_need_rele = B_TRUE; 16943 } else { 16944 recv_ill = ill; 16945 } 16946 16947 if ((ill == NULL) || (recv_ill == NULL)) { 16948 ip0dbg(("ip_fanout_proto_again: interface " 16949 "disappeared\n")); 16950 if (ill != NULL) 16951 ill_refrele(ill); 16952 if (recv_ill != NULL) 16953 ill_refrele(recv_ill); 16954 freemsg(ipsec_mp); 16955 return; 16956 } 16957 } 16958 16959 ASSERT(ill != NULL && recv_ill != NULL); 16960 16961 if (mp->b_datap->db_type == M_CTL) { 16962 /* 16963 * AH/ESP is returning the ICMP message after 16964 * removing their headers. Fanout again till 16965 * it gets to the right protocol. 16966 */ 16967 if (ii->ipsec_in_v4) { 16968 icmph_t *icmph; 16969 int iph_hdr_length; 16970 int hdr_length; 16971 16972 ipha = (ipha_t *)mp->b_rptr; 16973 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16974 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16975 ipha = (ipha_t *)&icmph[1]; 16976 hdr_length = IPH_HDR_LENGTH(ipha); 16977 /* 16978 * icmp_inbound_error_fanout may need to do pullupmsg. 16979 * Reset the type to M_DATA. 16980 */ 16981 mp->b_datap->db_type = M_DATA; 16982 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16983 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16984 B_FALSE, ill, ii->ipsec_in_zoneid); 16985 } else { 16986 icmp6_t *icmp6; 16987 int hdr_length; 16988 16989 ip6h = (ip6_t *)mp->b_rptr; 16990 /* Don't call hdr_length_v6() unless you have to. */ 16991 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16992 hdr_length = ip_hdr_length_v6(mp, ip6h); 16993 else 16994 hdr_length = IPV6_HDR_LEN; 16995 16996 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16997 /* 16998 * icmp_inbound_error_fanout_v6 may need to do 16999 * pullupmsg. Reset the type to M_DATA. 17000 */ 17001 mp->b_datap->db_type = M_DATA; 17002 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17003 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17004 } 17005 if (ill_need_rele) 17006 ill_refrele(ill); 17007 if (rill_need_rele) 17008 ill_refrele(recv_ill); 17009 return; 17010 } 17011 17012 if (ii->ipsec_in_v4) { 17013 ipha = (ipha_t *)mp->b_rptr; 17014 dst = ipha->ipha_dst; 17015 if (CLASSD(dst)) { 17016 /* 17017 * Multicast has to be delivered to all streams. 17018 */ 17019 dst = INADDR_BROADCAST; 17020 } 17021 17022 if (ire == NULL) { 17023 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17024 MBLK_GETLABEL(mp), ipst); 17025 if (ire == NULL) { 17026 if (ill_need_rele) 17027 ill_refrele(ill); 17028 if (rill_need_rele) 17029 ill_refrele(recv_ill); 17030 ip1dbg(("ip_fanout_proto_again: " 17031 "IRE not found")); 17032 freemsg(ipsec_mp); 17033 return; 17034 } 17035 ire_need_rele = B_TRUE; 17036 } 17037 17038 switch (ipha->ipha_protocol) { 17039 case IPPROTO_UDP: 17040 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17041 recv_ill); 17042 if (ire_need_rele) 17043 ire_refrele(ire); 17044 break; 17045 case IPPROTO_TCP: 17046 if (!ire_need_rele) 17047 IRE_REFHOLD(ire); 17048 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17049 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17050 IRE_REFRELE(ire); 17051 if (mp != NULL) 17052 squeue_enter_chain(GET_SQUEUE(mp), mp, 17053 mp, 1, SQTAG_IP_PROTO_AGAIN); 17054 break; 17055 case IPPROTO_SCTP: 17056 if (!ire_need_rele) 17057 IRE_REFHOLD(ire); 17058 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17059 ipsec_mp, 0, ill->ill_rq, dst); 17060 break; 17061 default: 17062 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17063 recv_ill, B_FALSE); 17064 if (ire_need_rele) 17065 ire_refrele(ire); 17066 break; 17067 } 17068 } else { 17069 uint32_t rput_flags = 0; 17070 17071 ip6h = (ip6_t *)mp->b_rptr; 17072 v6dstp = &ip6h->ip6_dst; 17073 /* 17074 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17075 * address. 17076 * 17077 * Currently, we don't store that state in the IPSEC_IN 17078 * message, and we may need to. 17079 */ 17080 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17081 IP6_IN_LLMCAST : 0); 17082 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17083 NULL, NULL); 17084 } 17085 if (ill_need_rele) 17086 ill_refrele(ill); 17087 if (rill_need_rele) 17088 ill_refrele(recv_ill); 17089 } 17090 17091 /* 17092 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17093 * returns 'true' if there are still fragments left on the queue, in 17094 * which case we restart the timer. 17095 */ 17096 void 17097 ill_frag_timer(void *arg) 17098 { 17099 ill_t *ill = (ill_t *)arg; 17100 boolean_t frag_pending; 17101 ip_stack_t *ipst = ill->ill_ipst; 17102 17103 mutex_enter(&ill->ill_lock); 17104 ASSERT(!ill->ill_fragtimer_executing); 17105 if (ill->ill_state_flags & ILL_CONDEMNED) { 17106 ill->ill_frag_timer_id = 0; 17107 mutex_exit(&ill->ill_lock); 17108 return; 17109 } 17110 ill->ill_fragtimer_executing = 1; 17111 mutex_exit(&ill->ill_lock); 17112 17113 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17114 17115 /* 17116 * Restart the timer, if we have fragments pending or if someone 17117 * wanted us to be scheduled again. 17118 */ 17119 mutex_enter(&ill->ill_lock); 17120 ill->ill_fragtimer_executing = 0; 17121 ill->ill_frag_timer_id = 0; 17122 if (frag_pending || ill->ill_fragtimer_needrestart) 17123 ill_frag_timer_start(ill); 17124 mutex_exit(&ill->ill_lock); 17125 } 17126 17127 void 17128 ill_frag_timer_start(ill_t *ill) 17129 { 17130 ip_stack_t *ipst = ill->ill_ipst; 17131 17132 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17133 17134 /* If the ill is closing or opening don't proceed */ 17135 if (ill->ill_state_flags & ILL_CONDEMNED) 17136 return; 17137 17138 if (ill->ill_fragtimer_executing) { 17139 /* 17140 * ill_frag_timer is currently executing. Just record the 17141 * the fact that we want the timer to be restarted. 17142 * ill_frag_timer will post a timeout before it returns, 17143 * ensuring it will be called again. 17144 */ 17145 ill->ill_fragtimer_needrestart = 1; 17146 return; 17147 } 17148 17149 if (ill->ill_frag_timer_id == 0) { 17150 /* 17151 * The timer is neither running nor is the timeout handler 17152 * executing. Post a timeout so that ill_frag_timer will be 17153 * called 17154 */ 17155 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17156 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17157 ill->ill_fragtimer_needrestart = 0; 17158 } 17159 } 17160 17161 /* 17162 * This routine is needed for loopback when forwarding multicasts. 17163 * 17164 * IPQoS Notes: 17165 * IPPF processing is done in fanout routines. 17166 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17167 * processing for IPsec packets is done when it comes back in clear. 17168 * NOTE : The callers of this function need to do the ire_refrele for the 17169 * ire that is being passed in. 17170 */ 17171 void 17172 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17173 ill_t *recv_ill, boolean_t esp_in_udp_packet) 17174 { 17175 ill_t *ill = (ill_t *)q->q_ptr; 17176 uint32_t sum; 17177 uint32_t u1; 17178 uint32_t u2; 17179 int hdr_length; 17180 boolean_t mctl_present; 17181 mblk_t *first_mp = mp; 17182 mblk_t *hada_mp = NULL; 17183 ipha_t *inner_ipha; 17184 ip_stack_t *ipst; 17185 17186 ASSERT(recv_ill != NULL); 17187 ipst = recv_ill->ill_ipst; 17188 17189 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17190 "ip_rput_locl_start: q %p", q); 17191 17192 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17193 ASSERT(ill != NULL); 17194 17195 17196 #define rptr ((uchar_t *)ipha) 17197 #define iphs ((uint16_t *)ipha) 17198 17199 /* 17200 * no UDP or TCP packet should come here anymore. 17201 */ 17202 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17203 ipha->ipha_protocol != IPPROTO_UDP); 17204 17205 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17206 if (mctl_present && 17207 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17208 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17209 17210 /* 17211 * It's an IPsec accelerated packet. 17212 * Keep a pointer to the data attributes around until 17213 * we allocate the ipsec_info_t. 17214 */ 17215 IPSECHW_DEBUG(IPSECHW_PKT, 17216 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17217 hada_mp = first_mp; 17218 hada_mp->b_cont = NULL; 17219 /* 17220 * Since it is accelerated, it comes directly from 17221 * the ill and the data attributes is followed by 17222 * the packet data. 17223 */ 17224 ASSERT(mp->b_datap->db_type != M_CTL); 17225 first_mp = mp; 17226 mctl_present = B_FALSE; 17227 } 17228 17229 /* 17230 * IF M_CTL is not present, then ipsec_in_is_secure 17231 * should return B_TRUE. There is a case where loopback 17232 * packets has an M_CTL in the front with all the 17233 * IPsec options set to IPSEC_PREF_NEVER - which means 17234 * ipsec_in_is_secure will return B_FALSE. As loopback 17235 * packets never comes here, it is safe to ASSERT the 17236 * following. 17237 */ 17238 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17239 17240 /* 17241 * Also, we should never have an mctl_present if this is an 17242 * ESP-in-UDP packet. 17243 */ 17244 ASSERT(!mctl_present || !esp_in_udp_packet); 17245 17246 17247 /* u1 is # words of IP options */ 17248 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17249 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17250 17251 if (u1 || (!esp_in_udp_packet && !mctl_present)) { 17252 if (u1) { 17253 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17254 if (hada_mp != NULL) 17255 freemsg(hada_mp); 17256 return; 17257 } 17258 } else { 17259 /* Check the IP header checksum. */ 17260 #define uph ((uint16_t *)ipha) 17261 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17262 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17263 #undef uph 17264 /* finish doing IP checksum */ 17265 sum = (sum & 0xFFFF) + (sum >> 16); 17266 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17267 if (sum && sum != 0xFFFF) { 17268 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17269 goto drop_pkt; 17270 } 17271 } 17272 } 17273 17274 /* 17275 * Count for SNMP of inbound packets for ire. As ip_proto_input 17276 * might be called more than once for secure packets, count only 17277 * the first time. 17278 */ 17279 if (!mctl_present) { 17280 UPDATE_IB_PKT_COUNT(ire); 17281 ire->ire_last_used_time = lbolt; 17282 } 17283 17284 /* Check for fragmentation offset. */ 17285 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17286 u1 = u2 & (IPH_MF | IPH_OFFSET); 17287 if (u1) { 17288 /* 17289 * We re-assemble fragments before we do the AH/ESP 17290 * processing. Thus, M_CTL should not be present 17291 * while we are re-assembling. 17292 */ 17293 ASSERT(!mctl_present); 17294 ASSERT(first_mp == mp); 17295 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17296 return; 17297 } 17298 /* 17299 * Make sure that first_mp points back to mp as 17300 * the mp we came in with could have changed in 17301 * ip_rput_fragment(). 17302 */ 17303 ipha = (ipha_t *)mp->b_rptr; 17304 first_mp = mp; 17305 } 17306 17307 /* 17308 * Clear hardware checksumming flag as it is currently only 17309 * used by TCP and UDP. 17310 */ 17311 DB_CKSUMFLAGS(mp) = 0; 17312 17313 /* Now we have a complete datagram, destined for this machine. */ 17314 u1 = IPH_HDR_LENGTH(ipha); 17315 switch (ipha->ipha_protocol) { 17316 case IPPROTO_ICMP: { 17317 ire_t *ire_zone; 17318 ilm_t *ilm; 17319 mblk_t *mp1; 17320 zoneid_t last_zoneid; 17321 17322 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17323 ASSERT(ire->ire_type == IRE_BROADCAST); 17324 /* 17325 * In the multicast case, applications may have joined 17326 * the group from different zones, so we need to deliver 17327 * the packet to each of them. Loop through the 17328 * multicast memberships structures (ilm) on the receive 17329 * ill and send a copy of the packet up each matching 17330 * one. However, we don't do this for multicasts sent on 17331 * the loopback interface (PHYI_LOOPBACK flag set) as 17332 * they must stay in the sender's zone. 17333 * 17334 * ilm_add_v6() ensures that ilms in the same zone are 17335 * contiguous in the ill_ilm list. We use this property 17336 * to avoid sending duplicates needed when two 17337 * applications in the same zone join the same group on 17338 * different logical interfaces: we ignore the ilm if 17339 * its zoneid is the same as the last matching one. 17340 * In addition, the sending of the packet for 17341 * ire_zoneid is delayed until all of the other ilms 17342 * have been exhausted. 17343 */ 17344 last_zoneid = -1; 17345 ILM_WALKER_HOLD(recv_ill); 17346 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17347 ilm = ilm->ilm_next) { 17348 if ((ilm->ilm_flags & ILM_DELETED) || 17349 ipha->ipha_dst != ilm->ilm_addr || 17350 ilm->ilm_zoneid == last_zoneid || 17351 ilm->ilm_zoneid == ire->ire_zoneid || 17352 ilm->ilm_zoneid == ALL_ZONES || 17353 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17354 continue; 17355 mp1 = ip_copymsg(first_mp); 17356 if (mp1 == NULL) 17357 continue; 17358 icmp_inbound(q, mp1, B_TRUE, ill, 17359 0, sum, mctl_present, B_TRUE, 17360 recv_ill, ilm->ilm_zoneid); 17361 last_zoneid = ilm->ilm_zoneid; 17362 } 17363 ILM_WALKER_RELE(recv_ill); 17364 } else if (ire->ire_type == IRE_BROADCAST) { 17365 /* 17366 * In the broadcast case, there may be many zones 17367 * which need a copy of the packet delivered to them. 17368 * There is one IRE_BROADCAST per broadcast address 17369 * and per zone; we walk those using a helper function. 17370 * In addition, the sending of the packet for ire is 17371 * delayed until all of the other ires have been 17372 * processed. 17373 */ 17374 IRB_REFHOLD(ire->ire_bucket); 17375 ire_zone = NULL; 17376 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17377 ire)) != NULL) { 17378 mp1 = ip_copymsg(first_mp); 17379 if (mp1 == NULL) 17380 continue; 17381 17382 UPDATE_IB_PKT_COUNT(ire_zone); 17383 ire_zone->ire_last_used_time = lbolt; 17384 icmp_inbound(q, mp1, B_TRUE, ill, 17385 0, sum, mctl_present, B_TRUE, 17386 recv_ill, ire_zone->ire_zoneid); 17387 } 17388 IRB_REFRELE(ire->ire_bucket); 17389 } 17390 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17391 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17392 ire->ire_zoneid); 17393 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17394 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17395 return; 17396 } 17397 case IPPROTO_IGMP: 17398 /* 17399 * If we are not willing to accept IGMP packets in clear, 17400 * then check with global policy. 17401 */ 17402 if (ipst->ips_igmp_accept_clear_messages == 0) { 17403 first_mp = ipsec_check_global_policy(first_mp, NULL, 17404 ipha, NULL, mctl_present, ipst->ips_netstack); 17405 if (first_mp == NULL) 17406 return; 17407 } 17408 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17409 freemsg(first_mp); 17410 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17411 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17412 return; 17413 } 17414 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17415 /* Bad packet - discarded by igmp_input */ 17416 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17417 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17418 if (mctl_present) 17419 freeb(first_mp); 17420 return; 17421 } 17422 /* 17423 * igmp_input() may have returned the pulled up message. 17424 * So first_mp and ipha need to be reinitialized. 17425 */ 17426 ipha = (ipha_t *)mp->b_rptr; 17427 if (mctl_present) 17428 first_mp->b_cont = mp; 17429 else 17430 first_mp = mp; 17431 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17432 connf_head != NULL) { 17433 /* No user-level listener for IGMP packets */ 17434 goto drop_pkt; 17435 } 17436 /* deliver to local raw users */ 17437 break; 17438 case IPPROTO_PIM: 17439 /* 17440 * If we are not willing to accept PIM packets in clear, 17441 * then check with global policy. 17442 */ 17443 if (ipst->ips_pim_accept_clear_messages == 0) { 17444 first_mp = ipsec_check_global_policy(first_mp, NULL, 17445 ipha, NULL, mctl_present, ipst->ips_netstack); 17446 if (first_mp == NULL) 17447 return; 17448 } 17449 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17450 freemsg(first_mp); 17451 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17452 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17453 return; 17454 } 17455 if (pim_input(q, mp, ill) != 0) { 17456 /* Bad packet - discarded by pim_input */ 17457 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17458 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17459 if (mctl_present) 17460 freeb(first_mp); 17461 return; 17462 } 17463 17464 /* 17465 * pim_input() may have pulled up the message so ipha needs to 17466 * be reinitialized. 17467 */ 17468 ipha = (ipha_t *)mp->b_rptr; 17469 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17470 connf_head != NULL) { 17471 /* No user-level listener for PIM packets */ 17472 goto drop_pkt; 17473 } 17474 /* deliver to local raw users */ 17475 break; 17476 case IPPROTO_ENCAP: 17477 /* 17478 * Handle self-encapsulated packets (IP-in-IP where 17479 * the inner addresses == the outer addresses). 17480 */ 17481 hdr_length = IPH_HDR_LENGTH(ipha); 17482 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17483 mp->b_wptr) { 17484 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17485 sizeof (ipha_t) - mp->b_rptr)) { 17486 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17487 freemsg(first_mp); 17488 return; 17489 } 17490 ipha = (ipha_t *)mp->b_rptr; 17491 } 17492 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17493 /* 17494 * Check the sanity of the inner IP header. 17495 */ 17496 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17497 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17498 freemsg(first_mp); 17499 return; 17500 } 17501 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17502 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17503 freemsg(first_mp); 17504 return; 17505 } 17506 if (inner_ipha->ipha_src == ipha->ipha_src && 17507 inner_ipha->ipha_dst == ipha->ipha_dst) { 17508 ipsec_in_t *ii; 17509 17510 /* 17511 * Self-encapsulated tunnel packet. Remove 17512 * the outer IP header and fanout again. 17513 * We also need to make sure that the inner 17514 * header is pulled up until options. 17515 */ 17516 mp->b_rptr = (uchar_t *)inner_ipha; 17517 ipha = inner_ipha; 17518 hdr_length = IPH_HDR_LENGTH(ipha); 17519 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17520 if (!pullupmsg(mp, (uchar_t *)ipha + 17521 + hdr_length - mp->b_rptr)) { 17522 freemsg(first_mp); 17523 return; 17524 } 17525 ipha = (ipha_t *)mp->b_rptr; 17526 } 17527 if (!mctl_present) { 17528 ASSERT(first_mp == mp); 17529 /* 17530 * This means that somebody is sending 17531 * Self-encapsualted packets without AH/ESP. 17532 * If AH/ESP was present, we would have already 17533 * allocated the first_mp. 17534 */ 17535 first_mp = ipsec_in_alloc(B_TRUE, 17536 ipst->ips_netstack); 17537 if (first_mp == NULL) { 17538 ip1dbg(("ip_proto_input: IPSEC_IN " 17539 "allocation failure.\n")); 17540 BUMP_MIB(ill->ill_ip_mib, 17541 ipIfStatsInDiscards); 17542 freemsg(mp); 17543 return; 17544 } 17545 first_mp->b_cont = mp; 17546 } 17547 /* 17548 * We generally store the ill_index if we need to 17549 * do IPsec processing as we lose the ill queue when 17550 * we come back. But in this case, we never should 17551 * have to store the ill_index here as it should have 17552 * been stored previously when we processed the 17553 * AH/ESP header in this routine or for non-ipsec 17554 * cases, we still have the queue. But for some bad 17555 * packets from the wire, we can get to IPsec after 17556 * this and we better store the index for that case. 17557 */ 17558 ill = (ill_t *)q->q_ptr; 17559 ii = (ipsec_in_t *)first_mp->b_rptr; 17560 ii->ipsec_in_ill_index = 17561 ill->ill_phyint->phyint_ifindex; 17562 ii->ipsec_in_rill_index = 17563 recv_ill->ill_phyint->phyint_ifindex; 17564 if (ii->ipsec_in_decaps) { 17565 /* 17566 * This packet is self-encapsulated multiple 17567 * times. We don't want to recurse infinitely. 17568 * To keep it simple, drop the packet. 17569 */ 17570 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17571 freemsg(first_mp); 17572 return; 17573 } 17574 ii->ipsec_in_decaps = B_TRUE; 17575 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17576 ire); 17577 return; 17578 } 17579 break; 17580 case IPPROTO_AH: 17581 case IPPROTO_ESP: { 17582 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17583 17584 /* 17585 * Fast path for AH/ESP. If this is the first time 17586 * we are sending a datagram to AH/ESP, allocate 17587 * a IPSEC_IN message and prepend it. Otherwise, 17588 * just fanout. 17589 */ 17590 17591 int ipsec_rc; 17592 ipsec_in_t *ii; 17593 netstack_t *ns = ipst->ips_netstack; 17594 17595 IP_STAT(ipst, ipsec_proto_ahesp); 17596 if (!mctl_present) { 17597 ASSERT(first_mp == mp); 17598 first_mp = ipsec_in_alloc(B_TRUE, ns); 17599 if (first_mp == NULL) { 17600 ip1dbg(("ip_proto_input: IPSEC_IN " 17601 "allocation failure.\n")); 17602 freemsg(hada_mp); /* okay ifnull */ 17603 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17604 freemsg(mp); 17605 return; 17606 } 17607 /* 17608 * Store the ill_index so that when we come back 17609 * from IPsec we ride on the same queue. 17610 */ 17611 ill = (ill_t *)q->q_ptr; 17612 ii = (ipsec_in_t *)first_mp->b_rptr; 17613 ii->ipsec_in_ill_index = 17614 ill->ill_phyint->phyint_ifindex; 17615 ii->ipsec_in_rill_index = 17616 recv_ill->ill_phyint->phyint_ifindex; 17617 first_mp->b_cont = mp; 17618 /* 17619 * Cache hardware acceleration info. 17620 */ 17621 if (hada_mp != NULL) { 17622 IPSECHW_DEBUG(IPSECHW_PKT, 17623 ("ip_rput_local: caching data attr.\n")); 17624 ii->ipsec_in_accelerated = B_TRUE; 17625 ii->ipsec_in_da = hada_mp; 17626 hada_mp = NULL; 17627 } 17628 } else { 17629 ii = (ipsec_in_t *)first_mp->b_rptr; 17630 } 17631 17632 if (!ipsec_loaded(ipss)) { 17633 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17634 ire->ire_zoneid, ipst); 17635 return; 17636 } 17637 17638 ns = ipst->ips_netstack; 17639 /* select inbound SA and have IPsec process the pkt */ 17640 if (ipha->ipha_protocol == IPPROTO_ESP) { 17641 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17642 boolean_t esp_in_udp_sa; 17643 if (esph == NULL) 17644 return; 17645 ASSERT(ii->ipsec_in_esp_sa != NULL); 17646 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17647 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17648 IPSA_F_NATT) != 0); 17649 /* 17650 * The following is a fancy, but quick, way of saying: 17651 * ESP-in-UDP SA and Raw ESP packet --> drop 17652 * OR 17653 * ESP SA and ESP-in-UDP packet --> drop 17654 */ 17655 if (esp_in_udp_sa != esp_in_udp_packet) { 17656 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17657 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17658 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17659 &ns->netstack_ipsec->ipsec_dropper); 17660 return; 17661 } 17662 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17663 first_mp, esph); 17664 } else { 17665 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17666 if (ah == NULL) 17667 return; 17668 ASSERT(ii->ipsec_in_ah_sa != NULL); 17669 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17670 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17671 first_mp, ah); 17672 } 17673 17674 switch (ipsec_rc) { 17675 case IPSEC_STATUS_SUCCESS: 17676 break; 17677 case IPSEC_STATUS_FAILED: 17678 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17679 /* FALLTHRU */ 17680 case IPSEC_STATUS_PENDING: 17681 return; 17682 } 17683 /* we're done with IPsec processing, send it up */ 17684 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17685 return; 17686 } 17687 default: 17688 break; 17689 } 17690 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17691 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17692 ire->ire_zoneid)); 17693 goto drop_pkt; 17694 } 17695 /* 17696 * Handle protocols with which IP is less intimate. There 17697 * can be more than one stream bound to a particular 17698 * protocol. When this is the case, each one gets a copy 17699 * of any incoming packets. 17700 */ 17701 ip_fanout_proto(q, first_mp, ill, ipha, 17702 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17703 B_TRUE, recv_ill, ire->ire_zoneid); 17704 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17705 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17706 return; 17707 17708 drop_pkt: 17709 freemsg(first_mp); 17710 if (hada_mp != NULL) 17711 freeb(hada_mp); 17712 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17713 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17714 #undef rptr 17715 #undef iphs 17716 17717 } 17718 17719 /* 17720 * Update any source route, record route or timestamp options. 17721 * Check that we are at end of strict source route. 17722 * The options have already been checked for sanity in ip_rput_options(). 17723 */ 17724 static boolean_t 17725 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17726 ip_stack_t *ipst) 17727 { 17728 ipoptp_t opts; 17729 uchar_t *opt; 17730 uint8_t optval; 17731 uint8_t optlen; 17732 ipaddr_t dst; 17733 uint32_t ts; 17734 ire_t *dst_ire; 17735 timestruc_t now; 17736 zoneid_t zoneid; 17737 ill_t *ill; 17738 17739 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17740 17741 ip2dbg(("ip_rput_local_options\n")); 17742 17743 for (optval = ipoptp_first(&opts, ipha); 17744 optval != IPOPT_EOL; 17745 optval = ipoptp_next(&opts)) { 17746 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17747 opt = opts.ipoptp_cur; 17748 optlen = opts.ipoptp_len; 17749 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17750 optval, optlen)); 17751 switch (optval) { 17752 uint32_t off; 17753 case IPOPT_SSRR: 17754 case IPOPT_LSRR: 17755 off = opt[IPOPT_OFFSET]; 17756 off--; 17757 if (optlen < IP_ADDR_LEN || 17758 off > optlen - IP_ADDR_LEN) { 17759 /* End of source route */ 17760 ip1dbg(("ip_rput_local_options: end of SR\n")); 17761 break; 17762 } 17763 /* 17764 * This will only happen if two consecutive entries 17765 * in the source route contains our address or if 17766 * it is a packet with a loose source route which 17767 * reaches us before consuming the whole source route 17768 */ 17769 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17770 if (optval == IPOPT_SSRR) { 17771 goto bad_src_route; 17772 } 17773 /* 17774 * Hack: instead of dropping the packet truncate the 17775 * source route to what has been used by filling the 17776 * rest with IPOPT_NOP. 17777 */ 17778 opt[IPOPT_OLEN] = (uint8_t)off; 17779 while (off < optlen) { 17780 opt[off++] = IPOPT_NOP; 17781 } 17782 break; 17783 case IPOPT_RR: 17784 off = opt[IPOPT_OFFSET]; 17785 off--; 17786 if (optlen < IP_ADDR_LEN || 17787 off > optlen - IP_ADDR_LEN) { 17788 /* No more room - ignore */ 17789 ip1dbg(( 17790 "ip_rput_local_options: end of RR\n")); 17791 break; 17792 } 17793 bcopy(&ire->ire_src_addr, (char *)opt + off, 17794 IP_ADDR_LEN); 17795 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17796 break; 17797 case IPOPT_TS: 17798 /* Insert timestamp if there is romm */ 17799 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17800 case IPOPT_TS_TSONLY: 17801 off = IPOPT_TS_TIMELEN; 17802 break; 17803 case IPOPT_TS_PRESPEC: 17804 case IPOPT_TS_PRESPEC_RFC791: 17805 /* Verify that the address matched */ 17806 off = opt[IPOPT_OFFSET] - 1; 17807 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17808 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17809 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17810 ipst); 17811 if (dst_ire == NULL) { 17812 /* Not for us */ 17813 break; 17814 } 17815 ire_refrele(dst_ire); 17816 /* FALLTHRU */ 17817 case IPOPT_TS_TSANDADDR: 17818 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17819 break; 17820 default: 17821 /* 17822 * ip_*put_options should have already 17823 * dropped this packet. 17824 */ 17825 cmn_err(CE_PANIC, "ip_rput_local_options: " 17826 "unknown IT - bug in ip_rput_options?\n"); 17827 return (B_TRUE); /* Keep "lint" happy */ 17828 } 17829 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17830 /* Increase overflow counter */ 17831 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17832 opt[IPOPT_POS_OV_FLG] = 17833 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17834 (off << 4)); 17835 break; 17836 } 17837 off = opt[IPOPT_OFFSET] - 1; 17838 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17839 case IPOPT_TS_PRESPEC: 17840 case IPOPT_TS_PRESPEC_RFC791: 17841 case IPOPT_TS_TSANDADDR: 17842 bcopy(&ire->ire_src_addr, (char *)opt + off, 17843 IP_ADDR_LEN); 17844 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17845 /* FALLTHRU */ 17846 case IPOPT_TS_TSONLY: 17847 off = opt[IPOPT_OFFSET] - 1; 17848 /* Compute # of milliseconds since midnight */ 17849 gethrestime(&now); 17850 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17851 now.tv_nsec / (NANOSEC / MILLISEC); 17852 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17853 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17854 break; 17855 } 17856 break; 17857 } 17858 } 17859 return (B_TRUE); 17860 17861 bad_src_route: 17862 q = WR(q); 17863 if (q->q_next != NULL) 17864 ill = q->q_ptr; 17865 else 17866 ill = NULL; 17867 17868 /* make sure we clear any indication of a hardware checksum */ 17869 DB_CKSUMFLAGS(mp) = 0; 17870 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17871 if (zoneid == ALL_ZONES) 17872 freemsg(mp); 17873 else 17874 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17875 return (B_FALSE); 17876 17877 } 17878 17879 /* 17880 * Process IP options in an inbound packet. If an option affects the 17881 * effective destination address, return the next hop address via dstp. 17882 * Returns -1 if something fails in which case an ICMP error has been sent 17883 * and mp freed. 17884 */ 17885 static int 17886 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17887 ip_stack_t *ipst) 17888 { 17889 ipoptp_t opts; 17890 uchar_t *opt; 17891 uint8_t optval; 17892 uint8_t optlen; 17893 ipaddr_t dst; 17894 intptr_t code = 0; 17895 ire_t *ire = NULL; 17896 zoneid_t zoneid; 17897 ill_t *ill; 17898 17899 ip2dbg(("ip_rput_options\n")); 17900 dst = ipha->ipha_dst; 17901 for (optval = ipoptp_first(&opts, ipha); 17902 optval != IPOPT_EOL; 17903 optval = ipoptp_next(&opts)) { 17904 opt = opts.ipoptp_cur; 17905 optlen = opts.ipoptp_len; 17906 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17907 optval, optlen)); 17908 /* 17909 * Note: we need to verify the checksum before we 17910 * modify anything thus this routine only extracts the next 17911 * hop dst from any source route. 17912 */ 17913 switch (optval) { 17914 uint32_t off; 17915 case IPOPT_SSRR: 17916 case IPOPT_LSRR: 17917 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17918 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17919 if (ire == NULL) { 17920 if (optval == IPOPT_SSRR) { 17921 ip1dbg(("ip_rput_options: not next" 17922 " strict source route 0x%x\n", 17923 ntohl(dst))); 17924 code = (char *)&ipha->ipha_dst - 17925 (char *)ipha; 17926 goto param_prob; /* RouterReq's */ 17927 } 17928 ip2dbg(("ip_rput_options: " 17929 "not next source route 0x%x\n", 17930 ntohl(dst))); 17931 break; 17932 } 17933 ire_refrele(ire); 17934 17935 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17936 ip1dbg(( 17937 "ip_rput_options: bad option offset\n")); 17938 code = (char *)&opt[IPOPT_OLEN] - 17939 (char *)ipha; 17940 goto param_prob; 17941 } 17942 off = opt[IPOPT_OFFSET]; 17943 off--; 17944 redo_srr: 17945 if (optlen < IP_ADDR_LEN || 17946 off > optlen - IP_ADDR_LEN) { 17947 /* End of source route */ 17948 ip1dbg(("ip_rput_options: end of SR\n")); 17949 break; 17950 } 17951 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17952 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17953 ntohl(dst))); 17954 17955 /* 17956 * Check if our address is present more than 17957 * once as consecutive hops in source route. 17958 * XXX verify per-interface ip_forwarding 17959 * for source route? 17960 */ 17961 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17962 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17963 17964 if (ire != NULL) { 17965 ire_refrele(ire); 17966 off += IP_ADDR_LEN; 17967 goto redo_srr; 17968 } 17969 17970 if (dst == htonl(INADDR_LOOPBACK)) { 17971 ip1dbg(("ip_rput_options: loopback addr in " 17972 "source route!\n")); 17973 goto bad_src_route; 17974 } 17975 /* 17976 * For strict: verify that dst is directly 17977 * reachable. 17978 */ 17979 if (optval == IPOPT_SSRR) { 17980 ire = ire_ftable_lookup(dst, 0, 0, 17981 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17982 MBLK_GETLABEL(mp), 17983 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17984 if (ire == NULL) { 17985 ip1dbg(("ip_rput_options: SSRR not " 17986 "directly reachable: 0x%x\n", 17987 ntohl(dst))); 17988 goto bad_src_route; 17989 } 17990 ire_refrele(ire); 17991 } 17992 /* 17993 * Defer update of the offset and the record route 17994 * until the packet is forwarded. 17995 */ 17996 break; 17997 case IPOPT_RR: 17998 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17999 ip1dbg(( 18000 "ip_rput_options: bad option offset\n")); 18001 code = (char *)&opt[IPOPT_OLEN] - 18002 (char *)ipha; 18003 goto param_prob; 18004 } 18005 break; 18006 case IPOPT_TS: 18007 /* 18008 * Verify that length >= 5 and that there is either 18009 * room for another timestamp or that the overflow 18010 * counter is not maxed out. 18011 */ 18012 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18013 if (optlen < IPOPT_MINLEN_IT) { 18014 goto param_prob; 18015 } 18016 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18017 ip1dbg(( 18018 "ip_rput_options: bad option offset\n")); 18019 code = (char *)&opt[IPOPT_OFFSET] - 18020 (char *)ipha; 18021 goto param_prob; 18022 } 18023 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18024 case IPOPT_TS_TSONLY: 18025 off = IPOPT_TS_TIMELEN; 18026 break; 18027 case IPOPT_TS_TSANDADDR: 18028 case IPOPT_TS_PRESPEC: 18029 case IPOPT_TS_PRESPEC_RFC791: 18030 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18031 break; 18032 default: 18033 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18034 (char *)ipha; 18035 goto param_prob; 18036 } 18037 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18038 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18039 /* 18040 * No room and the overflow counter is 15 18041 * already. 18042 */ 18043 goto param_prob; 18044 } 18045 break; 18046 } 18047 } 18048 18049 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18050 *dstp = dst; 18051 return (0); 18052 } 18053 18054 ip1dbg(("ip_rput_options: error processing IP options.")); 18055 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18056 18057 param_prob: 18058 q = WR(q); 18059 if (q->q_next != NULL) 18060 ill = q->q_ptr; 18061 else 18062 ill = NULL; 18063 18064 /* make sure we clear any indication of a hardware checksum */ 18065 DB_CKSUMFLAGS(mp) = 0; 18066 /* Don't know whether this is for non-global or global/forwarding */ 18067 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18068 if (zoneid == ALL_ZONES) 18069 freemsg(mp); 18070 else 18071 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18072 return (-1); 18073 18074 bad_src_route: 18075 q = WR(q); 18076 if (q->q_next != NULL) 18077 ill = q->q_ptr; 18078 else 18079 ill = NULL; 18080 18081 /* make sure we clear any indication of a hardware checksum */ 18082 DB_CKSUMFLAGS(mp) = 0; 18083 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18084 if (zoneid == ALL_ZONES) 18085 freemsg(mp); 18086 else 18087 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18088 return (-1); 18089 } 18090 18091 /* 18092 * IP & ICMP info in >=14 msg's ... 18093 * - ip fixed part (mib2_ip_t) 18094 * - icmp fixed part (mib2_icmp_t) 18095 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18096 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18097 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18098 * - ipRouteAttributeTable (ip 102) labeled routes 18099 * - ip multicast membership (ip_member_t) 18100 * - ip multicast source filtering (ip_grpsrc_t) 18101 * - igmp fixed part (struct igmpstat) 18102 * - multicast routing stats (struct mrtstat) 18103 * - multicast routing vifs (array of struct vifctl) 18104 * - multicast routing routes (array of struct mfcctl) 18105 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18106 * One per ill plus one generic 18107 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18108 * One per ill plus one generic 18109 * - ipv6RouteEntry all IPv6 IREs 18110 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18111 * - ipv6NetToMediaEntry all Neighbor Cache entries 18112 * - ipv6AddrEntry all IPv6 ipifs 18113 * - ipv6 multicast membership (ipv6_member_t) 18114 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18115 * 18116 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18117 * 18118 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18119 * already filled in by the caller. 18120 * Return value of 0 indicates that no messages were sent and caller 18121 * should free mpctl. 18122 */ 18123 int 18124 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18125 { 18126 ip_stack_t *ipst; 18127 sctp_stack_t *sctps; 18128 18129 if (q->q_next != NULL) { 18130 ipst = ILLQ_TO_IPST(q); 18131 } else { 18132 ipst = CONNQ_TO_IPST(q); 18133 } 18134 ASSERT(ipst != NULL); 18135 sctps = ipst->ips_netstack->netstack_sctp; 18136 18137 if (mpctl == NULL || mpctl->b_cont == NULL) { 18138 return (0); 18139 } 18140 18141 /* 18142 * For the purposes of the (broken) packet shell use 18143 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18144 * to make TCP and UDP appear first in the list of mib items. 18145 * TBD: We could expand this and use it in netstat so that 18146 * the kernel doesn't have to produce large tables (connections, 18147 * routes, etc) when netstat only wants the statistics or a particular 18148 * table. 18149 */ 18150 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18151 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18152 return (1); 18153 } 18154 } 18155 18156 if (level != MIB2_TCP) { 18157 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18158 return (1); 18159 } 18160 } 18161 18162 if (level != MIB2_UDP) { 18163 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18164 return (1); 18165 } 18166 } 18167 18168 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18169 ipst)) == NULL) { 18170 return (1); 18171 } 18172 18173 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18174 return (1); 18175 } 18176 18177 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18178 return (1); 18179 } 18180 18181 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18182 return (1); 18183 } 18184 18185 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18186 return (1); 18187 } 18188 18189 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18190 return (1); 18191 } 18192 18193 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18194 return (1); 18195 } 18196 18197 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18198 return (1); 18199 } 18200 18201 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18202 return (1); 18203 } 18204 18205 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18206 return (1); 18207 } 18208 18209 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18210 return (1); 18211 } 18212 18213 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18214 return (1); 18215 } 18216 18217 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18218 return (1); 18219 } 18220 18221 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18222 return (1); 18223 } 18224 18225 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18226 return (1); 18227 } 18228 18229 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18230 if (mpctl == NULL) { 18231 return (1); 18232 } 18233 18234 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18235 return (1); 18236 } 18237 freemsg(mpctl); 18238 return (1); 18239 } 18240 18241 18242 /* Get global (legacy) IPv4 statistics */ 18243 static mblk_t * 18244 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18245 ip_stack_t *ipst) 18246 { 18247 mib2_ip_t old_ip_mib; 18248 struct opthdr *optp; 18249 mblk_t *mp2ctl; 18250 18251 /* 18252 * make a copy of the original message 18253 */ 18254 mp2ctl = copymsg(mpctl); 18255 18256 /* fixed length IP structure... */ 18257 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18258 optp->level = MIB2_IP; 18259 optp->name = 0; 18260 SET_MIB(old_ip_mib.ipForwarding, 18261 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18262 SET_MIB(old_ip_mib.ipDefaultTTL, 18263 (uint32_t)ipst->ips_ip_def_ttl); 18264 SET_MIB(old_ip_mib.ipReasmTimeout, 18265 ipst->ips_ip_g_frag_timeout); 18266 SET_MIB(old_ip_mib.ipAddrEntrySize, 18267 sizeof (mib2_ipAddrEntry_t)); 18268 SET_MIB(old_ip_mib.ipRouteEntrySize, 18269 sizeof (mib2_ipRouteEntry_t)); 18270 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18271 sizeof (mib2_ipNetToMediaEntry_t)); 18272 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18273 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18274 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18275 sizeof (mib2_ipAttributeEntry_t)); 18276 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18277 18278 /* 18279 * Grab the statistics from the new IP MIB 18280 */ 18281 SET_MIB(old_ip_mib.ipInReceives, 18282 (uint32_t)ipmib->ipIfStatsHCInReceives); 18283 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18284 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18285 SET_MIB(old_ip_mib.ipForwDatagrams, 18286 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18287 SET_MIB(old_ip_mib.ipInUnknownProtos, 18288 ipmib->ipIfStatsInUnknownProtos); 18289 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18290 SET_MIB(old_ip_mib.ipInDelivers, 18291 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18292 SET_MIB(old_ip_mib.ipOutRequests, 18293 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18294 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18295 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18296 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18297 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18298 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18299 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18300 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18301 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18302 18303 /* ipRoutingDiscards is not being used */ 18304 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18305 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18306 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18307 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18308 SET_MIB(old_ip_mib.ipReasmDuplicates, 18309 ipmib->ipIfStatsReasmDuplicates); 18310 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18311 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18312 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18313 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18314 SET_MIB(old_ip_mib.rawipInOverflows, 18315 ipmib->rawipIfStatsInOverflows); 18316 18317 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18318 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18319 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18320 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18321 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18322 ipmib->ipIfStatsOutSwitchIPVersion); 18323 18324 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18325 (int)sizeof (old_ip_mib))) { 18326 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18327 (uint_t)sizeof (old_ip_mib))); 18328 } 18329 18330 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18331 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18332 (int)optp->level, (int)optp->name, (int)optp->len)); 18333 qreply(q, mpctl); 18334 return (mp2ctl); 18335 } 18336 18337 /* Per interface IPv4 statistics */ 18338 static mblk_t * 18339 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18340 { 18341 struct opthdr *optp; 18342 mblk_t *mp2ctl; 18343 ill_t *ill; 18344 ill_walk_context_t ctx; 18345 mblk_t *mp_tail = NULL; 18346 mib2_ipIfStatsEntry_t global_ip_mib; 18347 18348 /* 18349 * Make a copy of the original message 18350 */ 18351 mp2ctl = copymsg(mpctl); 18352 18353 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18354 optp->level = MIB2_IP; 18355 optp->name = MIB2_IP_TRAFFIC_STATS; 18356 /* Include "unknown interface" ip_mib */ 18357 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18358 ipst->ips_ip_mib.ipIfStatsIfIndex = 18359 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18360 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18361 (ipst->ips_ip_g_forward ? 1 : 2)); 18362 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18363 (uint32_t)ipst->ips_ip_def_ttl); 18364 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18365 sizeof (mib2_ipIfStatsEntry_t)); 18366 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18367 sizeof (mib2_ipAddrEntry_t)); 18368 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18369 sizeof (mib2_ipRouteEntry_t)); 18370 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18371 sizeof (mib2_ipNetToMediaEntry_t)); 18372 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18373 sizeof (ip_member_t)); 18374 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18375 sizeof (ip_grpsrc_t)); 18376 18377 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18378 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18379 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18380 "failed to allocate %u bytes\n", 18381 (uint_t)sizeof (ipst->ips_ip_mib))); 18382 } 18383 18384 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18385 18386 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18387 ill = ILL_START_WALK_V4(&ctx, ipst); 18388 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18389 ill->ill_ip_mib->ipIfStatsIfIndex = 18390 ill->ill_phyint->phyint_ifindex; 18391 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18392 (ipst->ips_ip_g_forward ? 1 : 2)); 18393 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18394 (uint32_t)ipst->ips_ip_def_ttl); 18395 18396 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18397 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18398 (char *)ill->ill_ip_mib, 18399 (int)sizeof (*ill->ill_ip_mib))) { 18400 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18401 "failed to allocate %u bytes\n", 18402 (uint_t)sizeof (*ill->ill_ip_mib))); 18403 } 18404 } 18405 rw_exit(&ipst->ips_ill_g_lock); 18406 18407 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18408 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18409 "level %d, name %d, len %d\n", 18410 (int)optp->level, (int)optp->name, (int)optp->len)); 18411 qreply(q, mpctl); 18412 18413 if (mp2ctl == NULL) 18414 return (NULL); 18415 18416 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18417 } 18418 18419 /* Global IPv4 ICMP statistics */ 18420 static mblk_t * 18421 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18422 { 18423 struct opthdr *optp; 18424 mblk_t *mp2ctl; 18425 18426 /* 18427 * Make a copy of the original message 18428 */ 18429 mp2ctl = copymsg(mpctl); 18430 18431 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18432 optp->level = MIB2_ICMP; 18433 optp->name = 0; 18434 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18435 (int)sizeof (ipst->ips_icmp_mib))) { 18436 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18437 (uint_t)sizeof (ipst->ips_icmp_mib))); 18438 } 18439 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18440 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18441 (int)optp->level, (int)optp->name, (int)optp->len)); 18442 qreply(q, mpctl); 18443 return (mp2ctl); 18444 } 18445 18446 /* Global IPv4 IGMP statistics */ 18447 static mblk_t * 18448 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18449 { 18450 struct opthdr *optp; 18451 mblk_t *mp2ctl; 18452 18453 /* 18454 * make a copy of the original message 18455 */ 18456 mp2ctl = copymsg(mpctl); 18457 18458 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18459 optp->level = EXPER_IGMP; 18460 optp->name = 0; 18461 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18462 (int)sizeof (ipst->ips_igmpstat))) { 18463 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18464 (uint_t)sizeof (ipst->ips_igmpstat))); 18465 } 18466 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18467 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18468 (int)optp->level, (int)optp->name, (int)optp->len)); 18469 qreply(q, mpctl); 18470 return (mp2ctl); 18471 } 18472 18473 /* Global IPv4 Multicast Routing statistics */ 18474 static mblk_t * 18475 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18476 { 18477 struct opthdr *optp; 18478 mblk_t *mp2ctl; 18479 18480 /* 18481 * make a copy of the original message 18482 */ 18483 mp2ctl = copymsg(mpctl); 18484 18485 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18486 optp->level = EXPER_DVMRP; 18487 optp->name = 0; 18488 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18489 ip0dbg(("ip_mroute_stats: failed\n")); 18490 } 18491 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18492 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18493 (int)optp->level, (int)optp->name, (int)optp->len)); 18494 qreply(q, mpctl); 18495 return (mp2ctl); 18496 } 18497 18498 /* IPv4 address information */ 18499 static mblk_t * 18500 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18501 { 18502 struct opthdr *optp; 18503 mblk_t *mp2ctl; 18504 mblk_t *mp_tail = NULL; 18505 ill_t *ill; 18506 ipif_t *ipif; 18507 uint_t bitval; 18508 mib2_ipAddrEntry_t mae; 18509 zoneid_t zoneid; 18510 ill_walk_context_t ctx; 18511 18512 /* 18513 * make a copy of the original message 18514 */ 18515 mp2ctl = copymsg(mpctl); 18516 18517 /* ipAddrEntryTable */ 18518 18519 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18520 optp->level = MIB2_IP; 18521 optp->name = MIB2_IP_ADDR; 18522 zoneid = Q_TO_CONN(q)->conn_zoneid; 18523 18524 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18525 ill = ILL_START_WALK_V4(&ctx, ipst); 18526 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18527 for (ipif = ill->ill_ipif; ipif != NULL; 18528 ipif = ipif->ipif_next) { 18529 if (ipif->ipif_zoneid != zoneid && 18530 ipif->ipif_zoneid != ALL_ZONES) 18531 continue; 18532 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18533 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18534 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18535 18536 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18537 OCTET_LENGTH); 18538 mae.ipAdEntIfIndex.o_length = 18539 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18540 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18541 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18542 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18543 mae.ipAdEntInfo.ae_subnet_len = 18544 ip_mask_to_plen(ipif->ipif_net_mask); 18545 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18546 for (bitval = 1; 18547 bitval && 18548 !(bitval & ipif->ipif_brd_addr); 18549 bitval <<= 1) 18550 noop; 18551 mae.ipAdEntBcastAddr = bitval; 18552 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18553 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18554 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18555 mae.ipAdEntInfo.ae_broadcast_addr = 18556 ipif->ipif_brd_addr; 18557 mae.ipAdEntInfo.ae_pp_dst_addr = 18558 ipif->ipif_pp_dst_addr; 18559 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18560 ill->ill_flags | ill->ill_phyint->phyint_flags; 18561 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18562 18563 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18564 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18565 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18566 "allocate %u bytes\n", 18567 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18568 } 18569 } 18570 } 18571 rw_exit(&ipst->ips_ill_g_lock); 18572 18573 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18574 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18575 (int)optp->level, (int)optp->name, (int)optp->len)); 18576 qreply(q, mpctl); 18577 return (mp2ctl); 18578 } 18579 18580 /* IPv6 address information */ 18581 static mblk_t * 18582 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18583 { 18584 struct opthdr *optp; 18585 mblk_t *mp2ctl; 18586 mblk_t *mp_tail = NULL; 18587 ill_t *ill; 18588 ipif_t *ipif; 18589 mib2_ipv6AddrEntry_t mae6; 18590 zoneid_t zoneid; 18591 ill_walk_context_t ctx; 18592 18593 /* 18594 * make a copy of the original message 18595 */ 18596 mp2ctl = copymsg(mpctl); 18597 18598 /* ipv6AddrEntryTable */ 18599 18600 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18601 optp->level = MIB2_IP6; 18602 optp->name = MIB2_IP6_ADDR; 18603 zoneid = Q_TO_CONN(q)->conn_zoneid; 18604 18605 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18606 ill = ILL_START_WALK_V6(&ctx, ipst); 18607 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18608 for (ipif = ill->ill_ipif; ipif != NULL; 18609 ipif = ipif->ipif_next) { 18610 if (ipif->ipif_zoneid != zoneid && 18611 ipif->ipif_zoneid != ALL_ZONES) 18612 continue; 18613 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18614 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18615 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18616 18617 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18618 OCTET_LENGTH); 18619 mae6.ipv6AddrIfIndex.o_length = 18620 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18621 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18622 mae6.ipv6AddrPfxLength = 18623 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18624 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18625 mae6.ipv6AddrInfo.ae_subnet_len = 18626 mae6.ipv6AddrPfxLength; 18627 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18628 18629 /* Type: stateless(1), stateful(2), unknown(3) */ 18630 if (ipif->ipif_flags & IPIF_ADDRCONF) 18631 mae6.ipv6AddrType = 1; 18632 else 18633 mae6.ipv6AddrType = 2; 18634 /* Anycast: true(1), false(2) */ 18635 if (ipif->ipif_flags & IPIF_ANYCAST) 18636 mae6.ipv6AddrAnycastFlag = 1; 18637 else 18638 mae6.ipv6AddrAnycastFlag = 2; 18639 18640 /* 18641 * Address status: preferred(1), deprecated(2), 18642 * invalid(3), inaccessible(4), unknown(5) 18643 */ 18644 if (ipif->ipif_flags & IPIF_NOLOCAL) 18645 mae6.ipv6AddrStatus = 3; 18646 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18647 mae6.ipv6AddrStatus = 2; 18648 else 18649 mae6.ipv6AddrStatus = 1; 18650 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18651 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18652 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18653 ipif->ipif_v6pp_dst_addr; 18654 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18655 ill->ill_flags | ill->ill_phyint->phyint_flags; 18656 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18657 mae6.ipv6AddrIdentifier = ill->ill_token; 18658 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18659 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18660 mae6.ipv6AddrRetransmitTime = 18661 ill->ill_reachable_retrans_time; 18662 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18663 (char *)&mae6, 18664 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18665 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18666 "allocate %u bytes\n", 18667 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18668 } 18669 } 18670 } 18671 rw_exit(&ipst->ips_ill_g_lock); 18672 18673 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18674 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18675 (int)optp->level, (int)optp->name, (int)optp->len)); 18676 qreply(q, mpctl); 18677 return (mp2ctl); 18678 } 18679 18680 /* IPv4 multicast group membership. */ 18681 static mblk_t * 18682 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18683 { 18684 struct opthdr *optp; 18685 mblk_t *mp2ctl; 18686 ill_t *ill; 18687 ipif_t *ipif; 18688 ilm_t *ilm; 18689 ip_member_t ipm; 18690 mblk_t *mp_tail = NULL; 18691 ill_walk_context_t ctx; 18692 zoneid_t zoneid; 18693 18694 /* 18695 * make a copy of the original message 18696 */ 18697 mp2ctl = copymsg(mpctl); 18698 zoneid = Q_TO_CONN(q)->conn_zoneid; 18699 18700 /* ipGroupMember table */ 18701 optp = (struct opthdr *)&mpctl->b_rptr[ 18702 sizeof (struct T_optmgmt_ack)]; 18703 optp->level = MIB2_IP; 18704 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18705 18706 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18707 ill = ILL_START_WALK_V4(&ctx, ipst); 18708 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18709 ILM_WALKER_HOLD(ill); 18710 for (ipif = ill->ill_ipif; ipif != NULL; 18711 ipif = ipif->ipif_next) { 18712 if (ipif->ipif_zoneid != zoneid && 18713 ipif->ipif_zoneid != ALL_ZONES) 18714 continue; /* not this zone */ 18715 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18716 OCTET_LENGTH); 18717 ipm.ipGroupMemberIfIndex.o_length = 18718 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18719 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18720 ASSERT(ilm->ilm_ipif != NULL); 18721 ASSERT(ilm->ilm_ill == NULL); 18722 if (ilm->ilm_ipif != ipif) 18723 continue; 18724 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18725 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18726 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18727 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18728 (char *)&ipm, (int)sizeof (ipm))) { 18729 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18730 "failed to allocate %u bytes\n", 18731 (uint_t)sizeof (ipm))); 18732 } 18733 } 18734 } 18735 ILM_WALKER_RELE(ill); 18736 } 18737 rw_exit(&ipst->ips_ill_g_lock); 18738 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18739 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18740 (int)optp->level, (int)optp->name, (int)optp->len)); 18741 qreply(q, mpctl); 18742 return (mp2ctl); 18743 } 18744 18745 /* IPv6 multicast group membership. */ 18746 static mblk_t * 18747 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18748 { 18749 struct opthdr *optp; 18750 mblk_t *mp2ctl; 18751 ill_t *ill; 18752 ilm_t *ilm; 18753 ipv6_member_t ipm6; 18754 mblk_t *mp_tail = NULL; 18755 ill_walk_context_t ctx; 18756 zoneid_t zoneid; 18757 18758 /* 18759 * make a copy of the original message 18760 */ 18761 mp2ctl = copymsg(mpctl); 18762 zoneid = Q_TO_CONN(q)->conn_zoneid; 18763 18764 /* ip6GroupMember table */ 18765 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18766 optp->level = MIB2_IP6; 18767 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18768 18769 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18770 ill = ILL_START_WALK_V6(&ctx, ipst); 18771 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18772 ILM_WALKER_HOLD(ill); 18773 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18774 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18775 ASSERT(ilm->ilm_ipif == NULL); 18776 ASSERT(ilm->ilm_ill != NULL); 18777 if (ilm->ilm_zoneid != zoneid) 18778 continue; /* not this zone */ 18779 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18780 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18781 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18782 if (!snmp_append_data2(mpctl->b_cont, 18783 &mp_tail, 18784 (char *)&ipm6, (int)sizeof (ipm6))) { 18785 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18786 "failed to allocate %u bytes\n", 18787 (uint_t)sizeof (ipm6))); 18788 } 18789 } 18790 ILM_WALKER_RELE(ill); 18791 } 18792 rw_exit(&ipst->ips_ill_g_lock); 18793 18794 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18795 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18796 (int)optp->level, (int)optp->name, (int)optp->len)); 18797 qreply(q, mpctl); 18798 return (mp2ctl); 18799 } 18800 18801 /* IP multicast filtered sources */ 18802 static mblk_t * 18803 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18804 { 18805 struct opthdr *optp; 18806 mblk_t *mp2ctl; 18807 ill_t *ill; 18808 ipif_t *ipif; 18809 ilm_t *ilm; 18810 ip_grpsrc_t ips; 18811 mblk_t *mp_tail = NULL; 18812 ill_walk_context_t ctx; 18813 zoneid_t zoneid; 18814 int i; 18815 slist_t *sl; 18816 18817 /* 18818 * make a copy of the original message 18819 */ 18820 mp2ctl = copymsg(mpctl); 18821 zoneid = Q_TO_CONN(q)->conn_zoneid; 18822 18823 /* ipGroupSource table */ 18824 optp = (struct opthdr *)&mpctl->b_rptr[ 18825 sizeof (struct T_optmgmt_ack)]; 18826 optp->level = MIB2_IP; 18827 optp->name = EXPER_IP_GROUP_SOURCES; 18828 18829 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18830 ill = ILL_START_WALK_V4(&ctx, ipst); 18831 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18832 ILM_WALKER_HOLD(ill); 18833 for (ipif = ill->ill_ipif; ipif != NULL; 18834 ipif = ipif->ipif_next) { 18835 if (ipif->ipif_zoneid != zoneid) 18836 continue; /* not this zone */ 18837 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18838 OCTET_LENGTH); 18839 ips.ipGroupSourceIfIndex.o_length = 18840 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18841 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18842 ASSERT(ilm->ilm_ipif != NULL); 18843 ASSERT(ilm->ilm_ill == NULL); 18844 sl = ilm->ilm_filter; 18845 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18846 continue; 18847 ips.ipGroupSourceGroup = ilm->ilm_addr; 18848 for (i = 0; i < sl->sl_numsrc; i++) { 18849 if (!IN6_IS_ADDR_V4MAPPED( 18850 &sl->sl_addr[i])) 18851 continue; 18852 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18853 ips.ipGroupSourceAddress); 18854 if (snmp_append_data2(mpctl->b_cont, 18855 &mp_tail, (char *)&ips, 18856 (int)sizeof (ips)) == 0) { 18857 ip1dbg(("ip_snmp_get_mib2_" 18858 "ip_group_src: failed to " 18859 "allocate %u bytes\n", 18860 (uint_t)sizeof (ips))); 18861 } 18862 } 18863 } 18864 } 18865 ILM_WALKER_RELE(ill); 18866 } 18867 rw_exit(&ipst->ips_ill_g_lock); 18868 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18869 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18870 (int)optp->level, (int)optp->name, (int)optp->len)); 18871 qreply(q, mpctl); 18872 return (mp2ctl); 18873 } 18874 18875 /* IPv6 multicast filtered sources. */ 18876 static mblk_t * 18877 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18878 { 18879 struct opthdr *optp; 18880 mblk_t *mp2ctl; 18881 ill_t *ill; 18882 ilm_t *ilm; 18883 ipv6_grpsrc_t ips6; 18884 mblk_t *mp_tail = NULL; 18885 ill_walk_context_t ctx; 18886 zoneid_t zoneid; 18887 int i; 18888 slist_t *sl; 18889 18890 /* 18891 * make a copy of the original message 18892 */ 18893 mp2ctl = copymsg(mpctl); 18894 zoneid = Q_TO_CONN(q)->conn_zoneid; 18895 18896 /* ip6GroupMember table */ 18897 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18898 optp->level = MIB2_IP6; 18899 optp->name = EXPER_IP6_GROUP_SOURCES; 18900 18901 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18902 ill = ILL_START_WALK_V6(&ctx, ipst); 18903 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18904 ILM_WALKER_HOLD(ill); 18905 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18906 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18907 ASSERT(ilm->ilm_ipif == NULL); 18908 ASSERT(ilm->ilm_ill != NULL); 18909 sl = ilm->ilm_filter; 18910 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18911 continue; 18912 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18913 for (i = 0; i < sl->sl_numsrc; i++) { 18914 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18915 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18916 (char *)&ips6, (int)sizeof (ips6))) { 18917 ip1dbg(("ip_snmp_get_mib2_ip6_" 18918 "group_src: failed to allocate " 18919 "%u bytes\n", 18920 (uint_t)sizeof (ips6))); 18921 } 18922 } 18923 } 18924 ILM_WALKER_RELE(ill); 18925 } 18926 rw_exit(&ipst->ips_ill_g_lock); 18927 18928 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18929 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18930 (int)optp->level, (int)optp->name, (int)optp->len)); 18931 qreply(q, mpctl); 18932 return (mp2ctl); 18933 } 18934 18935 /* Multicast routing virtual interface table. */ 18936 static mblk_t * 18937 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18938 { 18939 struct opthdr *optp; 18940 mblk_t *mp2ctl; 18941 18942 /* 18943 * make a copy of the original message 18944 */ 18945 mp2ctl = copymsg(mpctl); 18946 18947 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18948 optp->level = EXPER_DVMRP; 18949 optp->name = EXPER_DVMRP_VIF; 18950 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18951 ip0dbg(("ip_mroute_vif: failed\n")); 18952 } 18953 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18954 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18955 (int)optp->level, (int)optp->name, (int)optp->len)); 18956 qreply(q, mpctl); 18957 return (mp2ctl); 18958 } 18959 18960 /* Multicast routing table. */ 18961 static mblk_t * 18962 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18963 { 18964 struct opthdr *optp; 18965 mblk_t *mp2ctl; 18966 18967 /* 18968 * make a copy of the original message 18969 */ 18970 mp2ctl = copymsg(mpctl); 18971 18972 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18973 optp->level = EXPER_DVMRP; 18974 optp->name = EXPER_DVMRP_MRT; 18975 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18976 ip0dbg(("ip_mroute_mrt: failed\n")); 18977 } 18978 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18979 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18980 (int)optp->level, (int)optp->name, (int)optp->len)); 18981 qreply(q, mpctl); 18982 return (mp2ctl); 18983 } 18984 18985 /* 18986 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18987 * in one IRE walk. 18988 */ 18989 static mblk_t * 18990 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18991 { 18992 struct opthdr *optp; 18993 mblk_t *mp2ctl; /* Returned */ 18994 mblk_t *mp3ctl; /* nettomedia */ 18995 mblk_t *mp4ctl; /* routeattrs */ 18996 iproutedata_t ird; 18997 zoneid_t zoneid; 18998 18999 /* 19000 * make copies of the original message 19001 * - mp2ctl is returned unchanged to the caller for his use 19002 * - mpctl is sent upstream as ipRouteEntryTable 19003 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19004 * - mp4ctl is sent upstream as ipRouteAttributeTable 19005 */ 19006 mp2ctl = copymsg(mpctl); 19007 mp3ctl = copymsg(mpctl); 19008 mp4ctl = copymsg(mpctl); 19009 if (mp3ctl == NULL || mp4ctl == NULL) { 19010 freemsg(mp4ctl); 19011 freemsg(mp3ctl); 19012 freemsg(mp2ctl); 19013 freemsg(mpctl); 19014 return (NULL); 19015 } 19016 19017 bzero(&ird, sizeof (ird)); 19018 19019 ird.ird_route.lp_head = mpctl->b_cont; 19020 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19021 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19022 19023 zoneid = Q_TO_CONN(q)->conn_zoneid; 19024 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19025 19026 /* ipRouteEntryTable in mpctl */ 19027 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19028 optp->level = MIB2_IP; 19029 optp->name = MIB2_IP_ROUTE; 19030 optp->len = msgdsize(ird.ird_route.lp_head); 19031 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19032 (int)optp->level, (int)optp->name, (int)optp->len)); 19033 qreply(q, mpctl); 19034 19035 /* ipNetToMediaEntryTable in mp3ctl */ 19036 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19037 optp->level = MIB2_IP; 19038 optp->name = MIB2_IP_MEDIA; 19039 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19040 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19041 (int)optp->level, (int)optp->name, (int)optp->len)); 19042 qreply(q, mp3ctl); 19043 19044 /* ipRouteAttributeTable in mp4ctl */ 19045 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19046 optp->level = MIB2_IP; 19047 optp->name = EXPER_IP_RTATTR; 19048 optp->len = msgdsize(ird.ird_attrs.lp_head); 19049 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19050 (int)optp->level, (int)optp->name, (int)optp->len)); 19051 if (optp->len == 0) 19052 freemsg(mp4ctl); 19053 else 19054 qreply(q, mp4ctl); 19055 19056 return (mp2ctl); 19057 } 19058 19059 /* 19060 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19061 * ipv6NetToMediaEntryTable in an NDP walk. 19062 */ 19063 static mblk_t * 19064 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19065 { 19066 struct opthdr *optp; 19067 mblk_t *mp2ctl; /* Returned */ 19068 mblk_t *mp3ctl; /* nettomedia */ 19069 mblk_t *mp4ctl; /* routeattrs */ 19070 iproutedata_t ird; 19071 zoneid_t zoneid; 19072 19073 /* 19074 * make copies of the original message 19075 * - mp2ctl is returned unchanged to the caller for his use 19076 * - mpctl is sent upstream as ipv6RouteEntryTable 19077 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19078 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19079 */ 19080 mp2ctl = copymsg(mpctl); 19081 mp3ctl = copymsg(mpctl); 19082 mp4ctl = copymsg(mpctl); 19083 if (mp3ctl == NULL || mp4ctl == NULL) { 19084 freemsg(mp4ctl); 19085 freemsg(mp3ctl); 19086 freemsg(mp2ctl); 19087 freemsg(mpctl); 19088 return (NULL); 19089 } 19090 19091 bzero(&ird, sizeof (ird)); 19092 19093 ird.ird_route.lp_head = mpctl->b_cont; 19094 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19095 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19096 19097 zoneid = Q_TO_CONN(q)->conn_zoneid; 19098 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19099 19100 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19101 optp->level = MIB2_IP6; 19102 optp->name = MIB2_IP6_ROUTE; 19103 optp->len = msgdsize(ird.ird_route.lp_head); 19104 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19105 (int)optp->level, (int)optp->name, (int)optp->len)); 19106 qreply(q, mpctl); 19107 19108 /* ipv6NetToMediaEntryTable in mp3ctl */ 19109 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19110 19111 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19112 optp->level = MIB2_IP6; 19113 optp->name = MIB2_IP6_MEDIA; 19114 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19115 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19116 (int)optp->level, (int)optp->name, (int)optp->len)); 19117 qreply(q, mp3ctl); 19118 19119 /* ipv6RouteAttributeTable in mp4ctl */ 19120 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19121 optp->level = MIB2_IP6; 19122 optp->name = EXPER_IP_RTATTR; 19123 optp->len = msgdsize(ird.ird_attrs.lp_head); 19124 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19125 (int)optp->level, (int)optp->name, (int)optp->len)); 19126 if (optp->len == 0) 19127 freemsg(mp4ctl); 19128 else 19129 qreply(q, mp4ctl); 19130 19131 return (mp2ctl); 19132 } 19133 19134 /* 19135 * IPv6 mib: One per ill 19136 */ 19137 static mblk_t * 19138 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19139 { 19140 struct opthdr *optp; 19141 mblk_t *mp2ctl; 19142 ill_t *ill; 19143 ill_walk_context_t ctx; 19144 mblk_t *mp_tail = NULL; 19145 19146 /* 19147 * Make a copy of the original message 19148 */ 19149 mp2ctl = copymsg(mpctl); 19150 19151 /* fixed length IPv6 structure ... */ 19152 19153 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19154 optp->level = MIB2_IP6; 19155 optp->name = 0; 19156 /* Include "unknown interface" ip6_mib */ 19157 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19158 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19159 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19160 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19161 ipst->ips_ipv6_forward ? 1 : 2); 19162 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19163 ipst->ips_ipv6_def_hops); 19164 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19165 sizeof (mib2_ipIfStatsEntry_t)); 19166 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19167 sizeof (mib2_ipv6AddrEntry_t)); 19168 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19169 sizeof (mib2_ipv6RouteEntry_t)); 19170 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19171 sizeof (mib2_ipv6NetToMediaEntry_t)); 19172 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19173 sizeof (ipv6_member_t)); 19174 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19175 sizeof (ipv6_grpsrc_t)); 19176 19177 /* 19178 * Synchronize 64- and 32-bit counters 19179 */ 19180 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19181 ipIfStatsHCInReceives); 19182 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19183 ipIfStatsHCInDelivers); 19184 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19185 ipIfStatsHCOutRequests); 19186 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19187 ipIfStatsHCOutForwDatagrams); 19188 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19189 ipIfStatsHCOutMcastPkts); 19190 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19191 ipIfStatsHCInMcastPkts); 19192 19193 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19194 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19195 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19196 (uint_t)sizeof (ipst->ips_ip6_mib))); 19197 } 19198 19199 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19200 ill = ILL_START_WALK_V6(&ctx, ipst); 19201 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19202 ill->ill_ip_mib->ipIfStatsIfIndex = 19203 ill->ill_phyint->phyint_ifindex; 19204 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19205 ipst->ips_ipv6_forward ? 1 : 2); 19206 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19207 ill->ill_max_hops); 19208 19209 /* 19210 * Synchronize 64- and 32-bit counters 19211 */ 19212 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19213 ipIfStatsHCInReceives); 19214 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19215 ipIfStatsHCInDelivers); 19216 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19217 ipIfStatsHCOutRequests); 19218 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19219 ipIfStatsHCOutForwDatagrams); 19220 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19221 ipIfStatsHCOutMcastPkts); 19222 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19223 ipIfStatsHCInMcastPkts); 19224 19225 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19226 (char *)ill->ill_ip_mib, 19227 (int)sizeof (*ill->ill_ip_mib))) { 19228 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19229 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19230 } 19231 } 19232 rw_exit(&ipst->ips_ill_g_lock); 19233 19234 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19235 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19236 (int)optp->level, (int)optp->name, (int)optp->len)); 19237 qreply(q, mpctl); 19238 return (mp2ctl); 19239 } 19240 19241 /* 19242 * ICMPv6 mib: One per ill 19243 */ 19244 static mblk_t * 19245 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19246 { 19247 struct opthdr *optp; 19248 mblk_t *mp2ctl; 19249 ill_t *ill; 19250 ill_walk_context_t ctx; 19251 mblk_t *mp_tail = NULL; 19252 /* 19253 * Make a copy of the original message 19254 */ 19255 mp2ctl = copymsg(mpctl); 19256 19257 /* fixed length ICMPv6 structure ... */ 19258 19259 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19260 optp->level = MIB2_ICMP6; 19261 optp->name = 0; 19262 /* Include "unknown interface" icmp6_mib */ 19263 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19264 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19265 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19266 sizeof (mib2_ipv6IfIcmpEntry_t); 19267 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19268 (char *)&ipst->ips_icmp6_mib, 19269 (int)sizeof (ipst->ips_icmp6_mib))) { 19270 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19271 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19272 } 19273 19274 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19275 ill = ILL_START_WALK_V6(&ctx, ipst); 19276 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19277 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19278 ill->ill_phyint->phyint_ifindex; 19279 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19280 (char *)ill->ill_icmp6_mib, 19281 (int)sizeof (*ill->ill_icmp6_mib))) { 19282 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19283 "%u bytes\n", 19284 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19285 } 19286 } 19287 rw_exit(&ipst->ips_ill_g_lock); 19288 19289 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19290 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19291 (int)optp->level, (int)optp->name, (int)optp->len)); 19292 qreply(q, mpctl); 19293 return (mp2ctl); 19294 } 19295 19296 /* 19297 * ire_walk routine to create both ipRouteEntryTable and 19298 * ipRouteAttributeTable in one IRE walk 19299 */ 19300 static void 19301 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19302 { 19303 ill_t *ill; 19304 ipif_t *ipif; 19305 mib2_ipRouteEntry_t *re; 19306 mib2_ipAttributeEntry_t *iae, *iaeptr; 19307 ipaddr_t gw_addr; 19308 tsol_ire_gw_secattr_t *attrp; 19309 tsol_gc_t *gc = NULL; 19310 tsol_gcgrp_t *gcgrp = NULL; 19311 uint_t sacnt = 0; 19312 int i; 19313 19314 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19315 19316 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19317 return; 19318 19319 if ((attrp = ire->ire_gw_secattr) != NULL) { 19320 mutex_enter(&attrp->igsa_lock); 19321 if ((gc = attrp->igsa_gc) != NULL) { 19322 gcgrp = gc->gc_grp; 19323 ASSERT(gcgrp != NULL); 19324 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19325 sacnt = 1; 19326 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19327 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19328 gc = gcgrp->gcgrp_head; 19329 sacnt = gcgrp->gcgrp_count; 19330 } 19331 mutex_exit(&attrp->igsa_lock); 19332 19333 /* do nothing if there's no gc to report */ 19334 if (gc == NULL) { 19335 ASSERT(sacnt == 0); 19336 if (gcgrp != NULL) { 19337 /* we might as well drop the lock now */ 19338 rw_exit(&gcgrp->gcgrp_rwlock); 19339 gcgrp = NULL; 19340 } 19341 attrp = NULL; 19342 } 19343 19344 ASSERT(gc == NULL || (gcgrp != NULL && 19345 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19346 } 19347 ASSERT(sacnt == 0 || gc != NULL); 19348 19349 if (sacnt != 0 && 19350 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19351 kmem_free(re, sizeof (*re)); 19352 rw_exit(&gcgrp->gcgrp_rwlock); 19353 return; 19354 } 19355 19356 /* 19357 * Return all IRE types for route table... let caller pick and choose 19358 */ 19359 re->ipRouteDest = ire->ire_addr; 19360 ipif = ire->ire_ipif; 19361 re->ipRouteIfIndex.o_length = 0; 19362 if (ire->ire_type == IRE_CACHE) { 19363 ill = (ill_t *)ire->ire_stq->q_ptr; 19364 re->ipRouteIfIndex.o_length = 19365 ill->ill_name_length == 0 ? 0 : 19366 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19367 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19368 re->ipRouteIfIndex.o_length); 19369 } else if (ipif != NULL) { 19370 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19371 re->ipRouteIfIndex.o_length = 19372 mi_strlen(re->ipRouteIfIndex.o_bytes); 19373 } 19374 re->ipRouteMetric1 = -1; 19375 re->ipRouteMetric2 = -1; 19376 re->ipRouteMetric3 = -1; 19377 re->ipRouteMetric4 = -1; 19378 19379 gw_addr = ire->ire_gateway_addr; 19380 19381 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19382 re->ipRouteNextHop = ire->ire_src_addr; 19383 else 19384 re->ipRouteNextHop = gw_addr; 19385 /* indirect(4), direct(3), or invalid(2) */ 19386 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19387 re->ipRouteType = 2; 19388 else 19389 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19390 re->ipRouteProto = -1; 19391 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19392 re->ipRouteMask = ire->ire_mask; 19393 re->ipRouteMetric5 = -1; 19394 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19395 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19396 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19397 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19398 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19399 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19400 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19401 re->ipRouteInfo.re_flags = ire->ire_flags; 19402 19403 if (ire->ire_flags & RTF_DYNAMIC) { 19404 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19405 } else { 19406 re->ipRouteInfo.re_ire_type = ire->ire_type; 19407 } 19408 19409 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19410 (char *)re, (int)sizeof (*re))) { 19411 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19412 (uint_t)sizeof (*re))); 19413 } 19414 19415 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19416 iaeptr->iae_routeidx = ird->ird_idx; 19417 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19418 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19419 } 19420 19421 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19422 (char *)iae, sacnt * sizeof (*iae))) { 19423 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19424 (unsigned)(sacnt * sizeof (*iae)))); 19425 } 19426 19427 /* bump route index for next pass */ 19428 ird->ird_idx++; 19429 19430 kmem_free(re, sizeof (*re)); 19431 if (sacnt != 0) 19432 kmem_free(iae, sacnt * sizeof (*iae)); 19433 19434 if (gcgrp != NULL) 19435 rw_exit(&gcgrp->gcgrp_rwlock); 19436 } 19437 19438 /* 19439 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19440 */ 19441 static void 19442 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19443 { 19444 ill_t *ill; 19445 ipif_t *ipif; 19446 mib2_ipv6RouteEntry_t *re; 19447 mib2_ipAttributeEntry_t *iae, *iaeptr; 19448 in6_addr_t gw_addr_v6; 19449 tsol_ire_gw_secattr_t *attrp; 19450 tsol_gc_t *gc = NULL; 19451 tsol_gcgrp_t *gcgrp = NULL; 19452 uint_t sacnt = 0; 19453 int i; 19454 19455 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19456 19457 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19458 return; 19459 19460 if ((attrp = ire->ire_gw_secattr) != NULL) { 19461 mutex_enter(&attrp->igsa_lock); 19462 if ((gc = attrp->igsa_gc) != NULL) { 19463 gcgrp = gc->gc_grp; 19464 ASSERT(gcgrp != NULL); 19465 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19466 sacnt = 1; 19467 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19468 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19469 gc = gcgrp->gcgrp_head; 19470 sacnt = gcgrp->gcgrp_count; 19471 } 19472 mutex_exit(&attrp->igsa_lock); 19473 19474 /* do nothing if there's no gc to report */ 19475 if (gc == NULL) { 19476 ASSERT(sacnt == 0); 19477 if (gcgrp != NULL) { 19478 /* we might as well drop the lock now */ 19479 rw_exit(&gcgrp->gcgrp_rwlock); 19480 gcgrp = NULL; 19481 } 19482 attrp = NULL; 19483 } 19484 19485 ASSERT(gc == NULL || (gcgrp != NULL && 19486 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19487 } 19488 ASSERT(sacnt == 0 || gc != NULL); 19489 19490 if (sacnt != 0 && 19491 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19492 kmem_free(re, sizeof (*re)); 19493 rw_exit(&gcgrp->gcgrp_rwlock); 19494 return; 19495 } 19496 19497 /* 19498 * Return all IRE types for route table... let caller pick and choose 19499 */ 19500 re->ipv6RouteDest = ire->ire_addr_v6; 19501 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19502 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19503 re->ipv6RouteIfIndex.o_length = 0; 19504 ipif = ire->ire_ipif; 19505 if (ire->ire_type == IRE_CACHE) { 19506 ill = (ill_t *)ire->ire_stq->q_ptr; 19507 re->ipv6RouteIfIndex.o_length = 19508 ill->ill_name_length == 0 ? 0 : 19509 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19510 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19511 re->ipv6RouteIfIndex.o_length); 19512 } else if (ipif != NULL) { 19513 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19514 re->ipv6RouteIfIndex.o_length = 19515 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19516 } 19517 19518 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19519 19520 mutex_enter(&ire->ire_lock); 19521 gw_addr_v6 = ire->ire_gateway_addr_v6; 19522 mutex_exit(&ire->ire_lock); 19523 19524 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19525 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19526 else 19527 re->ipv6RouteNextHop = gw_addr_v6; 19528 19529 /* remote(4), local(3), or discard(2) */ 19530 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19531 re->ipv6RouteType = 2; 19532 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19533 re->ipv6RouteType = 3; 19534 else 19535 re->ipv6RouteType = 4; 19536 19537 re->ipv6RouteProtocol = -1; 19538 re->ipv6RoutePolicy = 0; 19539 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19540 re->ipv6RouteNextHopRDI = 0; 19541 re->ipv6RouteWeight = 0; 19542 re->ipv6RouteMetric = 0; 19543 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19544 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19545 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19546 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19547 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19548 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19549 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19550 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19551 19552 if (ire->ire_flags & RTF_DYNAMIC) { 19553 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19554 } else { 19555 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19556 } 19557 19558 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19559 (char *)re, (int)sizeof (*re))) { 19560 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19561 (uint_t)sizeof (*re))); 19562 } 19563 19564 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19565 iaeptr->iae_routeidx = ird->ird_idx; 19566 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19567 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19568 } 19569 19570 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19571 (char *)iae, sacnt * sizeof (*iae))) { 19572 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19573 (unsigned)(sacnt * sizeof (*iae)))); 19574 } 19575 19576 /* bump route index for next pass */ 19577 ird->ird_idx++; 19578 19579 kmem_free(re, sizeof (*re)); 19580 if (sacnt != 0) 19581 kmem_free(iae, sacnt * sizeof (*iae)); 19582 19583 if (gcgrp != NULL) 19584 rw_exit(&gcgrp->gcgrp_rwlock); 19585 } 19586 19587 /* 19588 * ndp_walk routine to create ipv6NetToMediaEntryTable 19589 */ 19590 static int 19591 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19592 { 19593 ill_t *ill; 19594 mib2_ipv6NetToMediaEntry_t ntme; 19595 dl_unitdata_req_t *dl; 19596 19597 ill = nce->nce_ill; 19598 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19599 return (0); 19600 19601 /* 19602 * Neighbor cache entry attached to IRE with on-link 19603 * destination. 19604 */ 19605 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19606 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19607 if ((ill->ill_flags & ILLF_XRESOLV) && 19608 (nce->nce_res_mp != NULL)) { 19609 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19610 ntme.ipv6NetToMediaPhysAddress.o_length = 19611 dl->dl_dest_addr_length; 19612 } else { 19613 ntme.ipv6NetToMediaPhysAddress.o_length = 19614 ill->ill_phys_addr_length; 19615 } 19616 if (nce->nce_res_mp != NULL) { 19617 bcopy((char *)nce->nce_res_mp->b_rptr + 19618 NCE_LL_ADDR_OFFSET(ill), 19619 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19620 ntme.ipv6NetToMediaPhysAddress.o_length); 19621 } else { 19622 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19623 ill->ill_phys_addr_length); 19624 } 19625 /* 19626 * Note: Returns ND_* states. Should be: 19627 * reachable(1), stale(2), delay(3), probe(4), 19628 * invalid(5), unknown(6) 19629 */ 19630 ntme.ipv6NetToMediaState = nce->nce_state; 19631 ntme.ipv6NetToMediaLastUpdated = 0; 19632 19633 /* other(1), dynamic(2), static(3), local(4) */ 19634 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19635 ntme.ipv6NetToMediaType = 4; 19636 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19637 ntme.ipv6NetToMediaType = 1; 19638 } else { 19639 ntme.ipv6NetToMediaType = 2; 19640 } 19641 19642 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19643 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19644 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19645 (uint_t)sizeof (ntme))); 19646 } 19647 return (0); 19648 } 19649 19650 /* 19651 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19652 */ 19653 /* ARGSUSED */ 19654 int 19655 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19656 { 19657 switch (level) { 19658 case MIB2_IP: 19659 case MIB2_ICMP: 19660 switch (name) { 19661 default: 19662 break; 19663 } 19664 return (1); 19665 default: 19666 return (1); 19667 } 19668 } 19669 19670 /* 19671 * When there exists both a 64- and 32-bit counter of a particular type 19672 * (i.e., InReceives), only the 64-bit counters are added. 19673 */ 19674 void 19675 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19676 { 19677 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19678 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19679 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19680 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19681 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19682 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19683 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19684 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19685 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19686 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19687 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19688 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19689 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19690 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19691 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19692 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19693 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19694 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19695 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19696 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19697 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19698 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19699 o2->ipIfStatsInWrongIPVersion); 19700 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19701 o2->ipIfStatsInWrongIPVersion); 19702 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19703 o2->ipIfStatsOutSwitchIPVersion); 19704 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19705 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19706 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19707 o2->ipIfStatsHCInForwDatagrams); 19708 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19709 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19710 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19711 o2->ipIfStatsHCOutForwDatagrams); 19712 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19713 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19714 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19715 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19716 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19717 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19718 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19719 o2->ipIfStatsHCOutMcastOctets); 19720 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19721 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19722 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19723 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19724 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19725 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19726 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19727 } 19728 19729 void 19730 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19731 { 19732 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19733 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19734 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19735 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19736 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19737 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19738 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19739 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19740 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19741 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19742 o2->ipv6IfIcmpInRouterSolicits); 19743 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19744 o2->ipv6IfIcmpInRouterAdvertisements); 19745 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19746 o2->ipv6IfIcmpInNeighborSolicits); 19747 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19748 o2->ipv6IfIcmpInNeighborAdvertisements); 19749 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19750 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19751 o2->ipv6IfIcmpInGroupMembQueries); 19752 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19753 o2->ipv6IfIcmpInGroupMembResponses); 19754 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19755 o2->ipv6IfIcmpInGroupMembReductions); 19756 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19757 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19758 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19759 o2->ipv6IfIcmpOutDestUnreachs); 19760 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19761 o2->ipv6IfIcmpOutAdminProhibs); 19762 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19763 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19764 o2->ipv6IfIcmpOutParmProblems); 19765 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19766 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19767 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19768 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19769 o2->ipv6IfIcmpOutRouterSolicits); 19770 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19771 o2->ipv6IfIcmpOutRouterAdvertisements); 19772 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19773 o2->ipv6IfIcmpOutNeighborSolicits); 19774 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19775 o2->ipv6IfIcmpOutNeighborAdvertisements); 19776 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19777 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19778 o2->ipv6IfIcmpOutGroupMembQueries); 19779 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19780 o2->ipv6IfIcmpOutGroupMembResponses); 19781 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19782 o2->ipv6IfIcmpOutGroupMembReductions); 19783 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19784 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19785 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19786 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19787 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19788 o2->ipv6IfIcmpInBadNeighborSolicitations); 19789 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19790 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19791 o2->ipv6IfIcmpInGroupMembTotal); 19792 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19793 o2->ipv6IfIcmpInGroupMembBadQueries); 19794 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19795 o2->ipv6IfIcmpInGroupMembBadReports); 19796 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19797 o2->ipv6IfIcmpInGroupMembOurReports); 19798 } 19799 19800 /* 19801 * Called before the options are updated to check if this packet will 19802 * be source routed from here. 19803 * This routine assumes that the options are well formed i.e. that they 19804 * have already been checked. 19805 */ 19806 static boolean_t 19807 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19808 { 19809 ipoptp_t opts; 19810 uchar_t *opt; 19811 uint8_t optval; 19812 uint8_t optlen; 19813 ipaddr_t dst; 19814 ire_t *ire; 19815 19816 if (IS_SIMPLE_IPH(ipha)) { 19817 ip2dbg(("not source routed\n")); 19818 return (B_FALSE); 19819 } 19820 dst = ipha->ipha_dst; 19821 for (optval = ipoptp_first(&opts, ipha); 19822 optval != IPOPT_EOL; 19823 optval = ipoptp_next(&opts)) { 19824 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19825 opt = opts.ipoptp_cur; 19826 optlen = opts.ipoptp_len; 19827 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19828 optval, optlen)); 19829 switch (optval) { 19830 uint32_t off; 19831 case IPOPT_SSRR: 19832 case IPOPT_LSRR: 19833 /* 19834 * If dst is one of our addresses and there are some 19835 * entries left in the source route return (true). 19836 */ 19837 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19838 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19839 if (ire == NULL) { 19840 ip2dbg(("ip_source_routed: not next" 19841 " source route 0x%x\n", 19842 ntohl(dst))); 19843 return (B_FALSE); 19844 } 19845 ire_refrele(ire); 19846 off = opt[IPOPT_OFFSET]; 19847 off--; 19848 if (optlen < IP_ADDR_LEN || 19849 off > optlen - IP_ADDR_LEN) { 19850 /* End of source route */ 19851 ip1dbg(("ip_source_routed: end of SR\n")); 19852 return (B_FALSE); 19853 } 19854 return (B_TRUE); 19855 } 19856 } 19857 ip2dbg(("not source routed\n")); 19858 return (B_FALSE); 19859 } 19860 19861 /* 19862 * Check if the packet contains any source route. 19863 */ 19864 static boolean_t 19865 ip_source_route_included(ipha_t *ipha) 19866 { 19867 ipoptp_t opts; 19868 uint8_t optval; 19869 19870 if (IS_SIMPLE_IPH(ipha)) 19871 return (B_FALSE); 19872 for (optval = ipoptp_first(&opts, ipha); 19873 optval != IPOPT_EOL; 19874 optval = ipoptp_next(&opts)) { 19875 switch (optval) { 19876 case IPOPT_SSRR: 19877 case IPOPT_LSRR: 19878 return (B_TRUE); 19879 } 19880 } 19881 return (B_FALSE); 19882 } 19883 19884 /* 19885 * Called when the IRE expiration timer fires. 19886 */ 19887 void 19888 ip_trash_timer_expire(void *args) 19889 { 19890 int flush_flag = 0; 19891 ire_expire_arg_t iea; 19892 ip_stack_t *ipst = (ip_stack_t *)args; 19893 19894 iea.iea_ipst = ipst; /* No netstack_hold */ 19895 19896 /* 19897 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19898 * This lock makes sure that a new invocation of this function 19899 * that occurs due to an almost immediate timer firing will not 19900 * progress beyond this point until the current invocation is done 19901 */ 19902 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19903 ipst->ips_ip_ire_expire_id = 0; 19904 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19905 19906 /* Periodic timer */ 19907 if (ipst->ips_ip_ire_arp_time_elapsed >= 19908 ipst->ips_ip_ire_arp_interval) { 19909 /* 19910 * Remove all IRE_CACHE entries since they might 19911 * contain arp information. 19912 */ 19913 flush_flag |= FLUSH_ARP_TIME; 19914 ipst->ips_ip_ire_arp_time_elapsed = 0; 19915 IP_STAT(ipst, ip_ire_arp_timer_expired); 19916 } 19917 if (ipst->ips_ip_ire_rd_time_elapsed >= 19918 ipst->ips_ip_ire_redir_interval) { 19919 /* Remove all redirects */ 19920 flush_flag |= FLUSH_REDIRECT_TIME; 19921 ipst->ips_ip_ire_rd_time_elapsed = 0; 19922 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19923 } 19924 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19925 ipst->ips_ip_ire_pathmtu_interval) { 19926 /* Increase path mtu */ 19927 flush_flag |= FLUSH_MTU_TIME; 19928 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19929 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19930 } 19931 19932 /* 19933 * Optimize for the case when there are no redirects in the 19934 * ftable, that is, no need to walk the ftable in that case. 19935 */ 19936 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19937 iea.iea_flush_flag = flush_flag; 19938 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19939 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19940 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19941 NULL, ALL_ZONES, ipst); 19942 } 19943 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19944 ipst->ips_ip_redirect_cnt > 0) { 19945 iea.iea_flush_flag = flush_flag; 19946 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19947 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19948 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19949 } 19950 if (flush_flag & FLUSH_MTU_TIME) { 19951 /* 19952 * Walk all IPv6 IRE's and update them 19953 * Note that ARP and redirect timers are not 19954 * needed since NUD handles stale entries. 19955 */ 19956 flush_flag = FLUSH_MTU_TIME; 19957 iea.iea_flush_flag = flush_flag; 19958 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19959 ALL_ZONES, ipst); 19960 } 19961 19962 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19963 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19964 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19965 19966 /* 19967 * Hold the lock to serialize timeout calls and prevent 19968 * stale values in ip_ire_expire_id. Otherwise it is possible 19969 * for the timer to fire and a new invocation of this function 19970 * to start before the return value of timeout has been stored 19971 * in ip_ire_expire_id by the current invocation. 19972 */ 19973 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19974 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19975 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19976 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19977 } 19978 19979 /* 19980 * Called by the memory allocator subsystem directly, when the system 19981 * is running low on memory. 19982 */ 19983 /* ARGSUSED */ 19984 void 19985 ip_trash_ire_reclaim(void *args) 19986 { 19987 netstack_handle_t nh; 19988 netstack_t *ns; 19989 19990 netstack_next_init(&nh); 19991 while ((ns = netstack_next(&nh)) != NULL) { 19992 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19993 netstack_rele(ns); 19994 } 19995 netstack_next_fini(&nh); 19996 } 19997 19998 static void 19999 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20000 { 20001 ire_cache_count_t icc; 20002 ire_cache_reclaim_t icr; 20003 ncc_cache_count_t ncc; 20004 nce_cache_reclaim_t ncr; 20005 uint_t delete_cnt; 20006 /* 20007 * Memory reclaim call back. 20008 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20009 * Then, with a target of freeing 1/Nth of IRE_CACHE 20010 * entries, determine what fraction to free for 20011 * each category of IRE_CACHE entries giving absolute priority 20012 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20013 * entry will be freed unless all offlink entries are freed). 20014 */ 20015 icc.icc_total = 0; 20016 icc.icc_unused = 0; 20017 icc.icc_offlink = 0; 20018 icc.icc_pmtu = 0; 20019 icc.icc_onlink = 0; 20020 ire_walk(ire_cache_count, (char *)&icc, ipst); 20021 20022 /* 20023 * Free NCEs for IPv6 like the onlink ires. 20024 */ 20025 ncc.ncc_total = 0; 20026 ncc.ncc_host = 0; 20027 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20028 20029 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20030 icc.icc_pmtu + icc.icc_onlink); 20031 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20032 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20033 if (delete_cnt == 0) 20034 return; 20035 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20036 /* Always delete all unused offlink entries */ 20037 icr.icr_ipst = ipst; 20038 icr.icr_unused = 1; 20039 if (delete_cnt <= icc.icc_unused) { 20040 /* 20041 * Only need to free unused entries. In other words, 20042 * there are enough unused entries to free to meet our 20043 * target number of freed ire cache entries. 20044 */ 20045 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20046 ncr.ncr_host = 0; 20047 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20048 /* 20049 * Only need to free unused entries, plus a fraction of offlink 20050 * entries. It follows from the first if statement that 20051 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20052 */ 20053 delete_cnt -= icc.icc_unused; 20054 /* Round up # deleted by truncating fraction */ 20055 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20056 icr.icr_pmtu = icr.icr_onlink = 0; 20057 ncr.ncr_host = 0; 20058 } else if (delete_cnt <= 20059 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20060 /* 20061 * Free all unused and offlink entries, plus a fraction of 20062 * pmtu entries. It follows from the previous if statement 20063 * that icc_pmtu is non-zero, and that 20064 * delete_cnt != icc_unused + icc_offlink. 20065 */ 20066 icr.icr_offlink = 1; 20067 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20068 /* Round up # deleted by truncating fraction */ 20069 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20070 icr.icr_onlink = 0; 20071 ncr.ncr_host = 0; 20072 } else { 20073 /* 20074 * Free all unused, offlink, and pmtu entries, plus a fraction 20075 * of onlink entries. If we're here, then we know that 20076 * icc_onlink is non-zero, and that 20077 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20078 */ 20079 icr.icr_offlink = icr.icr_pmtu = 1; 20080 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20081 icc.icc_pmtu; 20082 /* Round up # deleted by truncating fraction */ 20083 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20084 /* Using the same delete fraction as for onlink IREs */ 20085 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20086 } 20087 #ifdef DEBUG 20088 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20089 "fractions %d/%d/%d/%d\n", 20090 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20091 icc.icc_unused, icc.icc_offlink, 20092 icc.icc_pmtu, icc.icc_onlink, 20093 icr.icr_unused, icr.icr_offlink, 20094 icr.icr_pmtu, icr.icr_onlink)); 20095 #endif 20096 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20097 if (ncr.ncr_host != 0) 20098 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20099 (uchar_t *)&ncr, ipst); 20100 #ifdef DEBUG 20101 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20102 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20103 ire_walk(ire_cache_count, (char *)&icc, ipst); 20104 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20105 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20106 icc.icc_pmtu, icc.icc_onlink)); 20107 #endif 20108 } 20109 20110 /* 20111 * ip_unbind is called when a copy of an unbind request is received from the 20112 * upper level protocol. We remove this conn from any fanout hash list it is 20113 * on, and zero out the bind information. No reply is expected up above. 20114 */ 20115 mblk_t * 20116 ip_unbind(queue_t *q, mblk_t *mp) 20117 { 20118 conn_t *connp = Q_TO_CONN(q); 20119 20120 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20121 20122 if (is_system_labeled() && connp->conn_anon_port) { 20123 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20124 connp->conn_mlp_type, connp->conn_ulp, 20125 ntohs(connp->conn_lport), B_FALSE); 20126 connp->conn_anon_port = 0; 20127 } 20128 connp->conn_mlp_type = mlptSingle; 20129 20130 ipcl_hash_remove(connp); 20131 20132 ASSERT(mp->b_cont == NULL); 20133 /* 20134 * Convert mp into a T_OK_ACK 20135 */ 20136 mp = mi_tpi_ok_ack_alloc(mp); 20137 20138 /* 20139 * should not happen in practice... T_OK_ACK is smaller than the 20140 * original message. 20141 */ 20142 if (mp == NULL) 20143 return (NULL); 20144 20145 return (mp); 20146 } 20147 20148 /* 20149 * Write side put procedure. Outbound data, IOCTLs, responses from 20150 * resolvers, etc, come down through here. 20151 * 20152 * arg2 is always a queue_t *. 20153 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20154 * the zoneid. 20155 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20156 */ 20157 void 20158 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20159 { 20160 ip_output_options(arg, mp, arg2, caller, &zero_info); 20161 } 20162 20163 void 20164 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20165 ip_opt_info_t *infop) 20166 { 20167 conn_t *connp = NULL; 20168 queue_t *q = (queue_t *)arg2; 20169 ipha_t *ipha; 20170 #define rptr ((uchar_t *)ipha) 20171 ire_t *ire = NULL; 20172 ire_t *sctp_ire = NULL; 20173 uint32_t v_hlen_tos_len; 20174 ipaddr_t dst; 20175 mblk_t *first_mp = NULL; 20176 boolean_t mctl_present; 20177 ipsec_out_t *io; 20178 int match_flags; 20179 ill_t *attach_ill = NULL; 20180 /* Bind to IPIF_NOFAILOVER ill etc. */ 20181 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20182 ipif_t *dst_ipif; 20183 boolean_t multirt_need_resolve = B_FALSE; 20184 mblk_t *copy_mp = NULL; 20185 int err; 20186 zoneid_t zoneid; 20187 int adjust; 20188 uint16_t iplen; 20189 boolean_t need_decref = B_FALSE; 20190 boolean_t ignore_dontroute = B_FALSE; 20191 boolean_t ignore_nexthop = B_FALSE; 20192 boolean_t ip_nexthop = B_FALSE; 20193 ipaddr_t nexthop_addr; 20194 ip_stack_t *ipst; 20195 20196 #ifdef _BIG_ENDIAN 20197 #define V_HLEN (v_hlen_tos_len >> 24) 20198 #else 20199 #define V_HLEN (v_hlen_tos_len & 0xFF) 20200 #endif 20201 20202 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20203 "ip_wput_start: q %p", q); 20204 20205 /* 20206 * ip_wput fast path 20207 */ 20208 20209 /* is packet from ARP ? */ 20210 if (q->q_next != NULL) { 20211 zoneid = (zoneid_t)(uintptr_t)arg; 20212 goto qnext; 20213 } 20214 20215 connp = (conn_t *)arg; 20216 ASSERT(connp != NULL); 20217 zoneid = connp->conn_zoneid; 20218 ipst = connp->conn_netstack->netstack_ip; 20219 20220 /* is queue flow controlled? */ 20221 if ((q->q_first != NULL || connp->conn_draining) && 20222 (caller == IP_WPUT)) { 20223 ASSERT(!need_decref); 20224 (void) putq(q, mp); 20225 return; 20226 } 20227 20228 /* Multidata transmit? */ 20229 if (DB_TYPE(mp) == M_MULTIDATA) { 20230 /* 20231 * We should never get here, since all Multidata messages 20232 * originating from tcp should have been directed over to 20233 * tcp_multisend() in the first place. 20234 */ 20235 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20236 freemsg(mp); 20237 return; 20238 } else if (DB_TYPE(mp) != M_DATA) 20239 goto notdata; 20240 20241 if (mp->b_flag & MSGHASREF) { 20242 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20243 mp->b_flag &= ~MSGHASREF; 20244 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20245 need_decref = B_TRUE; 20246 } 20247 ipha = (ipha_t *)mp->b_rptr; 20248 20249 /* is IP header non-aligned or mblk smaller than basic IP header */ 20250 #ifndef SAFETY_BEFORE_SPEED 20251 if (!OK_32PTR(rptr) || 20252 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20253 goto hdrtoosmall; 20254 #endif 20255 20256 ASSERT(OK_32PTR(ipha)); 20257 20258 /* 20259 * This function assumes that mp points to an IPv4 packet. If it's the 20260 * wrong version, we'll catch it again in ip_output_v6. 20261 * 20262 * Note that this is *only* locally-generated output here, and never 20263 * forwarded data, and that we need to deal only with transports that 20264 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20265 * label.) 20266 */ 20267 if (is_system_labeled() && 20268 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20269 !connp->conn_ulp_labeled) { 20270 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20271 connp->conn_mac_exempt, ipst); 20272 ipha = (ipha_t *)mp->b_rptr; 20273 if (err != 0) { 20274 first_mp = mp; 20275 if (err == EINVAL) 20276 goto icmp_parameter_problem; 20277 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20278 goto discard_pkt; 20279 } 20280 iplen = ntohs(ipha->ipha_length) + adjust; 20281 ipha->ipha_length = htons(iplen); 20282 } 20283 20284 ASSERT(infop != NULL); 20285 20286 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20287 /* 20288 * IP_PKTINFO ancillary option is present. 20289 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20290 * allows using address of any zone as the source address. 20291 */ 20292 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20293 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20294 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20295 if (ire == NULL) 20296 goto drop_pkt; 20297 ire_refrele(ire); 20298 ire = NULL; 20299 } 20300 20301 /* 20302 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20303 * passed in IP_PKTINFO. 20304 */ 20305 if (infop->ip_opt_ill_index != 0 && 20306 connp->conn_outgoing_ill == NULL && 20307 connp->conn_nofailover_ill == NULL) { 20308 20309 xmit_ill = ill_lookup_on_ifindex( 20310 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20311 ipst); 20312 20313 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20314 goto drop_pkt; 20315 /* 20316 * check that there is an ipif belonging 20317 * to our zone. IPCL_ZONEID is not used because 20318 * IP_ALLZONES option is valid only when the ill is 20319 * accessible from all zones i.e has a valid ipif in 20320 * all zones. 20321 */ 20322 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20323 goto drop_pkt; 20324 } 20325 } 20326 20327 /* 20328 * If there is a policy, try to attach an ipsec_out in 20329 * the front. At the end, first_mp either points to a 20330 * M_DATA message or IPSEC_OUT message linked to a 20331 * M_DATA message. We have to do it now as we might 20332 * lose the "conn" if we go through ip_newroute. 20333 */ 20334 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20335 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20336 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20337 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20338 if (need_decref) 20339 CONN_DEC_REF(connp); 20340 return; 20341 } else { 20342 ASSERT(mp->b_datap->db_type == M_CTL); 20343 first_mp = mp; 20344 mp = mp->b_cont; 20345 mctl_present = B_TRUE; 20346 } 20347 } else { 20348 first_mp = mp; 20349 mctl_present = B_FALSE; 20350 } 20351 20352 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20353 20354 /* is wrong version or IP options present */ 20355 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20356 goto version_hdrlen_check; 20357 dst = ipha->ipha_dst; 20358 20359 if (connp->conn_nofailover_ill != NULL) { 20360 attach_ill = conn_get_held_ill(connp, 20361 &connp->conn_nofailover_ill, &err); 20362 if (err == ILL_LOOKUP_FAILED) { 20363 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20364 if (need_decref) 20365 CONN_DEC_REF(connp); 20366 freemsg(first_mp); 20367 return; 20368 } 20369 } 20370 20371 /* If IP_BOUND_IF has been set, use that ill. */ 20372 if (connp->conn_outgoing_ill != NULL) { 20373 xmit_ill = conn_get_held_ill(connp, 20374 &connp->conn_outgoing_ill, &err); 20375 if (err == ILL_LOOKUP_FAILED) 20376 goto drop_pkt; 20377 20378 goto send_from_ill; 20379 } 20380 20381 /* is packet multicast? */ 20382 if (CLASSD(dst)) 20383 goto multicast; 20384 20385 /* 20386 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20387 * takes precedence over conn_dontroute and conn_nexthop_set 20388 */ 20389 if (xmit_ill != NULL) 20390 goto send_from_ill; 20391 20392 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20393 /* 20394 * If the destination is a broadcast, local, or loopback 20395 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20396 * standard path. 20397 */ 20398 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20399 if ((ire == NULL) || (ire->ire_type & 20400 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20401 if (ire != NULL) { 20402 ire_refrele(ire); 20403 /* No more access to ire */ 20404 ire = NULL; 20405 } 20406 /* 20407 * bypass routing checks and go directly to interface. 20408 */ 20409 if (connp->conn_dontroute) 20410 goto dontroute; 20411 20412 ASSERT(connp->conn_nexthop_set); 20413 ip_nexthop = B_TRUE; 20414 nexthop_addr = connp->conn_nexthop_v4; 20415 goto send_from_ill; 20416 } 20417 20418 /* Must be a broadcast, a loopback or a local ire */ 20419 ire_refrele(ire); 20420 /* No more access to ire */ 20421 ire = NULL; 20422 } 20423 20424 if (attach_ill != NULL) 20425 goto send_from_ill; 20426 20427 /* 20428 * We cache IRE_CACHEs to avoid lookups. We don't do 20429 * this for the tcp global queue and listen end point 20430 * as it does not really have a real destination to 20431 * talk to. This is also true for SCTP. 20432 */ 20433 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20434 !connp->conn_fully_bound) { 20435 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20436 if (ire == NULL) 20437 goto noirefound; 20438 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20439 "ip_wput_end: q %p (%S)", q, "end"); 20440 20441 /* 20442 * Check if the ire has the RTF_MULTIRT flag, inherited 20443 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20444 */ 20445 if (ire->ire_flags & RTF_MULTIRT) { 20446 20447 /* 20448 * Force the TTL of multirouted packets if required. 20449 * The TTL of such packets is bounded by the 20450 * ip_multirt_ttl ndd variable. 20451 */ 20452 if ((ipst->ips_ip_multirt_ttl > 0) && 20453 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20454 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20455 "(was %d), dst 0x%08x\n", 20456 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20457 ntohl(ire->ire_addr))); 20458 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20459 } 20460 /* 20461 * We look at this point if there are pending 20462 * unresolved routes. ire_multirt_resolvable() 20463 * checks in O(n) that all IRE_OFFSUBNET ire 20464 * entries for the packet's destination and 20465 * flagged RTF_MULTIRT are currently resolved. 20466 * If some remain unresolved, we make a copy 20467 * of the current message. It will be used 20468 * to initiate additional route resolutions. 20469 */ 20470 multirt_need_resolve = 20471 ire_multirt_need_resolve(ire->ire_addr, 20472 MBLK_GETLABEL(first_mp), ipst); 20473 ip2dbg(("ip_wput[TCP]: ire %p, " 20474 "multirt_need_resolve %d, first_mp %p\n", 20475 (void *)ire, multirt_need_resolve, 20476 (void *)first_mp)); 20477 if (multirt_need_resolve) { 20478 copy_mp = copymsg(first_mp); 20479 if (copy_mp != NULL) { 20480 MULTIRT_DEBUG_TAG(copy_mp); 20481 } 20482 } 20483 } 20484 20485 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20486 20487 /* 20488 * Try to resolve another multiroute if 20489 * ire_multirt_need_resolve() deemed it necessary. 20490 */ 20491 if (copy_mp != NULL) 20492 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20493 if (need_decref) 20494 CONN_DEC_REF(connp); 20495 return; 20496 } 20497 20498 /* 20499 * Access to conn_ire_cache. (protected by conn_lock) 20500 * 20501 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20502 * the ire bucket lock here to check for CONDEMNED as it is okay to 20503 * send a packet or two with the IRE_CACHE that is going away. 20504 * Access to the ire requires an ire refhold on the ire prior to 20505 * its use since an interface unplumb thread may delete the cached 20506 * ire and release the refhold at any time. 20507 * 20508 * Caching an ire in the conn_ire_cache 20509 * 20510 * o Caching an ire pointer in the conn requires a strict check for 20511 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20512 * ires before cleaning up the conns. So the caching of an ire pointer 20513 * in the conn is done after making sure under the bucket lock that the 20514 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20515 * caching an ire after the unplumb thread has cleaned up the conn. 20516 * If the conn does not send a packet subsequently the unplumb thread 20517 * will be hanging waiting for the ire count to drop to zero. 20518 * 20519 * o We also need to atomically test for a null conn_ire_cache and 20520 * set the conn_ire_cache under the the protection of the conn_lock 20521 * to avoid races among concurrent threads trying to simultaneously 20522 * cache an ire in the conn_ire_cache. 20523 */ 20524 mutex_enter(&connp->conn_lock); 20525 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20526 20527 if (ire != NULL && ire->ire_addr == dst && 20528 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20529 20530 IRE_REFHOLD(ire); 20531 mutex_exit(&connp->conn_lock); 20532 20533 } else { 20534 boolean_t cached = B_FALSE; 20535 connp->conn_ire_cache = NULL; 20536 mutex_exit(&connp->conn_lock); 20537 /* Release the old ire */ 20538 if (ire != NULL && sctp_ire == NULL) 20539 IRE_REFRELE_NOTR(ire); 20540 20541 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20542 if (ire == NULL) 20543 goto noirefound; 20544 IRE_REFHOLD_NOTR(ire); 20545 20546 mutex_enter(&connp->conn_lock); 20547 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20548 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20549 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20550 if (connp->conn_ulp == IPPROTO_TCP) 20551 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20552 connp->conn_ire_cache = ire; 20553 cached = B_TRUE; 20554 } 20555 rw_exit(&ire->ire_bucket->irb_lock); 20556 } 20557 mutex_exit(&connp->conn_lock); 20558 20559 /* 20560 * We can continue to use the ire but since it was 20561 * not cached, we should drop the extra reference. 20562 */ 20563 if (!cached) 20564 IRE_REFRELE_NOTR(ire); 20565 } 20566 20567 20568 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20569 "ip_wput_end: q %p (%S)", q, "end"); 20570 20571 /* 20572 * Check if the ire has the RTF_MULTIRT flag, inherited 20573 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20574 */ 20575 if (ire->ire_flags & RTF_MULTIRT) { 20576 20577 /* 20578 * Force the TTL of multirouted packets if required. 20579 * The TTL of such packets is bounded by the 20580 * ip_multirt_ttl ndd variable. 20581 */ 20582 if ((ipst->ips_ip_multirt_ttl > 0) && 20583 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20584 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20585 "(was %d), dst 0x%08x\n", 20586 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20587 ntohl(ire->ire_addr))); 20588 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20589 } 20590 20591 /* 20592 * At this point, we check to see if there are any pending 20593 * unresolved routes. ire_multirt_resolvable() 20594 * checks in O(n) that all IRE_OFFSUBNET ire 20595 * entries for the packet's destination and 20596 * flagged RTF_MULTIRT are currently resolved. 20597 * If some remain unresolved, we make a copy 20598 * of the current message. It will be used 20599 * to initiate additional route resolutions. 20600 */ 20601 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20602 MBLK_GETLABEL(first_mp), ipst); 20603 ip2dbg(("ip_wput[not TCP]: ire %p, " 20604 "multirt_need_resolve %d, first_mp %p\n", 20605 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20606 if (multirt_need_resolve) { 20607 copy_mp = copymsg(first_mp); 20608 if (copy_mp != NULL) { 20609 MULTIRT_DEBUG_TAG(copy_mp); 20610 } 20611 } 20612 } 20613 20614 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20615 20616 /* 20617 * Try to resolve another multiroute if 20618 * ire_multirt_resolvable() deemed it necessary 20619 */ 20620 if (copy_mp != NULL) 20621 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20622 if (need_decref) 20623 CONN_DEC_REF(connp); 20624 return; 20625 20626 qnext: 20627 /* 20628 * Upper Level Protocols pass down complete IP datagrams 20629 * as M_DATA messages. Everything else is a sideshow. 20630 * 20631 * 1) We could be re-entering ip_wput because of ip_neworute 20632 * in which case we could have a IPSEC_OUT message. We 20633 * need to pass through ip_wput like other datagrams and 20634 * hence cannot branch to ip_wput_nondata. 20635 * 20636 * 2) ARP, AH, ESP, and other clients who are on the module 20637 * instance of IP stream, give us something to deal with. 20638 * We will handle AH and ESP here and rest in ip_wput_nondata. 20639 * 20640 * 3) ICMP replies also could come here. 20641 */ 20642 ipst = ILLQ_TO_IPST(q); 20643 20644 if (DB_TYPE(mp) != M_DATA) { 20645 notdata: 20646 if (DB_TYPE(mp) == M_CTL) { 20647 /* 20648 * M_CTL messages are used by ARP, AH and ESP to 20649 * communicate with IP. We deal with IPSEC_IN and 20650 * IPSEC_OUT here. ip_wput_nondata handles other 20651 * cases. 20652 */ 20653 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20654 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20655 first_mp = mp->b_cont; 20656 first_mp->b_flag &= ~MSGHASREF; 20657 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20658 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20659 CONN_DEC_REF(connp); 20660 connp = NULL; 20661 } 20662 if (ii->ipsec_info_type == IPSEC_IN) { 20663 /* 20664 * Either this message goes back to 20665 * IPsec for further processing or to 20666 * ULP after policy checks. 20667 */ 20668 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20669 return; 20670 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20671 io = (ipsec_out_t *)ii; 20672 if (io->ipsec_out_proc_begin) { 20673 /* 20674 * IPsec processing has already started. 20675 * Complete it. 20676 * IPQoS notes: We don't care what is 20677 * in ipsec_out_ill_index since this 20678 * won't be processed for IPQoS policies 20679 * in ipsec_out_process. 20680 */ 20681 ipsec_out_process(q, mp, NULL, 20682 io->ipsec_out_ill_index); 20683 return; 20684 } else { 20685 connp = (q->q_next != NULL) ? 20686 NULL : Q_TO_CONN(q); 20687 first_mp = mp; 20688 mp = mp->b_cont; 20689 mctl_present = B_TRUE; 20690 } 20691 zoneid = io->ipsec_out_zoneid; 20692 ASSERT(zoneid != ALL_ZONES); 20693 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20694 /* 20695 * It's an IPsec control message requesting 20696 * an SADB update to be sent to the IPsec 20697 * hardware acceleration capable ills. 20698 */ 20699 ipsec_ctl_t *ipsec_ctl = 20700 (ipsec_ctl_t *)mp->b_rptr; 20701 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20702 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20703 mblk_t *cmp = mp->b_cont; 20704 20705 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20706 ASSERT(cmp != NULL); 20707 20708 freeb(mp); 20709 ill_ipsec_capab_send_all(satype, cmp, sa, 20710 ipst->ips_netstack); 20711 return; 20712 } else { 20713 /* 20714 * This must be ARP or special TSOL signaling. 20715 */ 20716 ip_wput_nondata(NULL, q, mp, NULL); 20717 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20718 "ip_wput_end: q %p (%S)", q, "nondata"); 20719 return; 20720 } 20721 } else { 20722 /* 20723 * This must be non-(ARP/AH/ESP) messages. 20724 */ 20725 ASSERT(!need_decref); 20726 ip_wput_nondata(NULL, q, mp, NULL); 20727 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20728 "ip_wput_end: q %p (%S)", q, "nondata"); 20729 return; 20730 } 20731 } else { 20732 first_mp = mp; 20733 mctl_present = B_FALSE; 20734 } 20735 20736 ASSERT(first_mp != NULL); 20737 /* 20738 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20739 * to make sure that this packet goes out on the same interface it 20740 * came in. We handle that here. 20741 */ 20742 if (mctl_present) { 20743 uint_t ifindex; 20744 20745 io = (ipsec_out_t *)first_mp->b_rptr; 20746 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20747 /* 20748 * We may have lost the conn context if we are 20749 * coming here from ip_newroute(). Copy the 20750 * nexthop information. 20751 */ 20752 if (io->ipsec_out_ip_nexthop) { 20753 ip_nexthop = B_TRUE; 20754 nexthop_addr = io->ipsec_out_nexthop_addr; 20755 20756 ipha = (ipha_t *)mp->b_rptr; 20757 dst = ipha->ipha_dst; 20758 goto send_from_ill; 20759 } else { 20760 ASSERT(io->ipsec_out_ill_index != 0); 20761 ifindex = io->ipsec_out_ill_index; 20762 attach_ill = ill_lookup_on_ifindex(ifindex, 20763 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20764 if (attach_ill == NULL) { 20765 ASSERT(xmit_ill == NULL); 20766 ip1dbg(("ip_output: bad ifindex for " 20767 "(BIND TO IPIF_NOFAILOVER) %d\n", 20768 ifindex)); 20769 freemsg(first_mp); 20770 BUMP_MIB(&ipst->ips_ip_mib, 20771 ipIfStatsOutDiscards); 20772 ASSERT(!need_decref); 20773 return; 20774 } 20775 } 20776 } 20777 } 20778 20779 ASSERT(xmit_ill == NULL); 20780 20781 /* We have a complete IP datagram heading outbound. */ 20782 ipha = (ipha_t *)mp->b_rptr; 20783 20784 #ifndef SPEED_BEFORE_SAFETY 20785 /* 20786 * Make sure we have a full-word aligned message and that at least 20787 * a simple IP header is accessible in the first message. If not, 20788 * try a pullup. 20789 */ 20790 if (!OK_32PTR(rptr) || 20791 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20792 hdrtoosmall: 20793 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20794 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20795 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20796 if (first_mp == NULL) 20797 first_mp = mp; 20798 goto discard_pkt; 20799 } 20800 20801 /* This function assumes that mp points to an IPv4 packet. */ 20802 if (is_system_labeled() && q->q_next == NULL && 20803 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20804 !connp->conn_ulp_labeled) { 20805 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20806 &adjust, connp->conn_mac_exempt, ipst); 20807 ipha = (ipha_t *)mp->b_rptr; 20808 if (first_mp != NULL) 20809 first_mp->b_cont = mp; 20810 if (err != 0) { 20811 if (first_mp == NULL) 20812 first_mp = mp; 20813 if (err == EINVAL) 20814 goto icmp_parameter_problem; 20815 ip2dbg(("ip_wput: label check failed (%d)\n", 20816 err)); 20817 goto discard_pkt; 20818 } 20819 iplen = ntohs(ipha->ipha_length) + adjust; 20820 ipha->ipha_length = htons(iplen); 20821 } 20822 20823 ipha = (ipha_t *)mp->b_rptr; 20824 if (first_mp == NULL) { 20825 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20826 /* 20827 * If we got here because of "goto hdrtoosmall" 20828 * We need to attach a IPSEC_OUT. 20829 */ 20830 if (connp->conn_out_enforce_policy) { 20831 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20832 NULL, ipha->ipha_protocol, 20833 ipst->ips_netstack)) == NULL)) { 20834 BUMP_MIB(&ipst->ips_ip_mib, 20835 ipIfStatsOutDiscards); 20836 if (need_decref) 20837 CONN_DEC_REF(connp); 20838 return; 20839 } else { 20840 ASSERT(mp->b_datap->db_type == M_CTL); 20841 first_mp = mp; 20842 mp = mp->b_cont; 20843 mctl_present = B_TRUE; 20844 } 20845 } else { 20846 first_mp = mp; 20847 mctl_present = B_FALSE; 20848 } 20849 } 20850 } 20851 #endif 20852 20853 /* Most of the code below is written for speed, not readability */ 20854 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20855 20856 /* 20857 * If ip_newroute() fails, we're going to need a full 20858 * header for the icmp wraparound. 20859 */ 20860 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20861 uint_t v_hlen; 20862 version_hdrlen_check: 20863 ASSERT(first_mp != NULL); 20864 v_hlen = V_HLEN; 20865 /* 20866 * siphon off IPv6 packets coming down from transport 20867 * layer modules here. 20868 * Note: high-order bit carries NUD reachability confirmation 20869 */ 20870 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20871 /* 20872 * FIXME: assume that callers of ip_output* call 20873 * the right version? 20874 */ 20875 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20876 ASSERT(xmit_ill == NULL); 20877 if (attach_ill != NULL) 20878 ill_refrele(attach_ill); 20879 if (need_decref) 20880 mp->b_flag |= MSGHASREF; 20881 (void) ip_output_v6(arg, first_mp, arg2, caller); 20882 return; 20883 } 20884 20885 if ((v_hlen >> 4) != IP_VERSION) { 20886 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20887 "ip_wput_end: q %p (%S)", q, "badvers"); 20888 goto discard_pkt; 20889 } 20890 /* 20891 * Is the header length at least 20 bytes? 20892 * 20893 * Are there enough bytes accessible in the header? If 20894 * not, try a pullup. 20895 */ 20896 v_hlen &= 0xF; 20897 v_hlen <<= 2; 20898 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20899 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20900 "ip_wput_end: q %p (%S)", q, "badlen"); 20901 goto discard_pkt; 20902 } 20903 if (v_hlen > (mp->b_wptr - rptr)) { 20904 if (!pullupmsg(mp, v_hlen)) { 20905 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20906 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20907 goto discard_pkt; 20908 } 20909 ipha = (ipha_t *)mp->b_rptr; 20910 } 20911 /* 20912 * Move first entry from any source route into ipha_dst and 20913 * verify the options 20914 */ 20915 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20916 zoneid, ipst)) { 20917 ASSERT(xmit_ill == NULL); 20918 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20919 if (attach_ill != NULL) 20920 ill_refrele(attach_ill); 20921 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20922 "ip_wput_end: q %p (%S)", q, "badopts"); 20923 if (need_decref) 20924 CONN_DEC_REF(connp); 20925 return; 20926 } 20927 } 20928 dst = ipha->ipha_dst; 20929 20930 /* 20931 * Try to get an IRE_CACHE for the destination address. If we can't, 20932 * we have to run the packet through ip_newroute which will take 20933 * the appropriate action to arrange for an IRE_CACHE, such as querying 20934 * a resolver, or assigning a default gateway, etc. 20935 */ 20936 if (CLASSD(dst)) { 20937 ipif_t *ipif; 20938 uint32_t setsrc = 0; 20939 20940 multicast: 20941 ASSERT(first_mp != NULL); 20942 ip2dbg(("ip_wput: CLASSD\n")); 20943 if (connp == NULL) { 20944 /* 20945 * Use the first good ipif on the ill. 20946 * XXX Should this ever happen? (Appears 20947 * to show up with just ppp and no ethernet due 20948 * to in.rdisc.) 20949 * However, ire_send should be able to 20950 * call ip_wput_ire directly. 20951 * 20952 * XXX Also, this can happen for ICMP and other packets 20953 * with multicast source addresses. Perhaps we should 20954 * fix things so that we drop the packet in question, 20955 * but for now, just run with it. 20956 */ 20957 ill_t *ill = (ill_t *)q->q_ptr; 20958 20959 /* 20960 * Don't honor attach_if for this case. If ill 20961 * is part of the group, ipif could belong to 20962 * any ill and we cannot maintain attach_ill 20963 * and ipif_ill same anymore and the assert 20964 * below would fail. 20965 */ 20966 if (mctl_present && io->ipsec_out_attach_if) { 20967 io->ipsec_out_ill_index = 0; 20968 io->ipsec_out_attach_if = B_FALSE; 20969 ASSERT(attach_ill != NULL); 20970 ill_refrele(attach_ill); 20971 attach_ill = NULL; 20972 } 20973 20974 ASSERT(attach_ill == NULL); 20975 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20976 if (ipif == NULL) { 20977 if (need_decref) 20978 CONN_DEC_REF(connp); 20979 freemsg(first_mp); 20980 return; 20981 } 20982 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20983 ntohl(dst), ill->ill_name)); 20984 } else { 20985 /* 20986 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20987 * and IP_MULTICAST_IF. The block comment above this 20988 * function explains the locking mechanism used here. 20989 */ 20990 if (xmit_ill == NULL) { 20991 xmit_ill = conn_get_held_ill(connp, 20992 &connp->conn_outgoing_ill, &err); 20993 if (err == ILL_LOOKUP_FAILED) { 20994 ip1dbg(("ip_wput: No ill for " 20995 "IP_BOUND_IF\n")); 20996 BUMP_MIB(&ipst->ips_ip_mib, 20997 ipIfStatsOutNoRoutes); 20998 goto drop_pkt; 20999 } 21000 } 21001 21002 if (xmit_ill == NULL) { 21003 ipif = conn_get_held_ipif(connp, 21004 &connp->conn_multicast_ipif, &err); 21005 if (err == IPIF_LOOKUP_FAILED) { 21006 ip1dbg(("ip_wput: No ipif for " 21007 "multicast\n")); 21008 BUMP_MIB(&ipst->ips_ip_mib, 21009 ipIfStatsOutNoRoutes); 21010 goto drop_pkt; 21011 } 21012 } 21013 if (xmit_ill != NULL) { 21014 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21015 if (ipif == NULL) { 21016 ip1dbg(("ip_wput: No ipif for " 21017 "xmit_ill\n")); 21018 BUMP_MIB(&ipst->ips_ip_mib, 21019 ipIfStatsOutNoRoutes); 21020 goto drop_pkt; 21021 } 21022 } else if (ipif == NULL || ipif->ipif_isv6) { 21023 /* 21024 * We must do this ipif determination here 21025 * else we could pass through ip_newroute 21026 * and come back here without the conn context. 21027 * 21028 * Note: we do late binding i.e. we bind to 21029 * the interface when the first packet is sent. 21030 * For performance reasons we do not rebind on 21031 * each packet but keep the binding until the 21032 * next IP_MULTICAST_IF option. 21033 * 21034 * conn_multicast_{ipif,ill} are shared between 21035 * IPv4 and IPv6 and AF_INET6 sockets can 21036 * send both IPv4 and IPv6 packets. Hence 21037 * we have to check that "isv6" matches above. 21038 */ 21039 if (ipif != NULL) 21040 ipif_refrele(ipif); 21041 ipif = ipif_lookup_group(dst, zoneid, ipst); 21042 if (ipif == NULL) { 21043 ip1dbg(("ip_wput: No ipif for " 21044 "multicast\n")); 21045 BUMP_MIB(&ipst->ips_ip_mib, 21046 ipIfStatsOutNoRoutes); 21047 goto drop_pkt; 21048 } 21049 err = conn_set_held_ipif(connp, 21050 &connp->conn_multicast_ipif, ipif); 21051 if (err == IPIF_LOOKUP_FAILED) { 21052 ipif_refrele(ipif); 21053 ip1dbg(("ip_wput: No ipif for " 21054 "multicast\n")); 21055 BUMP_MIB(&ipst->ips_ip_mib, 21056 ipIfStatsOutNoRoutes); 21057 goto drop_pkt; 21058 } 21059 } 21060 } 21061 ASSERT(!ipif->ipif_isv6); 21062 /* 21063 * As we may lose the conn by the time we reach ip_wput_ire, 21064 * we copy conn_multicast_loop and conn_dontroute on to an 21065 * ipsec_out. In case if this datagram goes out secure, 21066 * we need the ill_index also. Copy that also into the 21067 * ipsec_out. 21068 */ 21069 if (mctl_present) { 21070 io = (ipsec_out_t *)first_mp->b_rptr; 21071 ASSERT(first_mp->b_datap->db_type == M_CTL); 21072 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21073 } else { 21074 ASSERT(mp == first_mp); 21075 if ((first_mp = allocb(sizeof (ipsec_info_t), 21076 BPRI_HI)) == NULL) { 21077 ipif_refrele(ipif); 21078 first_mp = mp; 21079 goto discard_pkt; 21080 } 21081 first_mp->b_datap->db_type = M_CTL; 21082 first_mp->b_wptr += sizeof (ipsec_info_t); 21083 /* ipsec_out_secure is B_FALSE now */ 21084 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21085 io = (ipsec_out_t *)first_mp->b_rptr; 21086 io->ipsec_out_type = IPSEC_OUT; 21087 io->ipsec_out_len = sizeof (ipsec_out_t); 21088 io->ipsec_out_use_global_policy = B_TRUE; 21089 io->ipsec_out_ns = ipst->ips_netstack; 21090 first_mp->b_cont = mp; 21091 mctl_present = B_TRUE; 21092 } 21093 if (attach_ill != NULL) { 21094 ASSERT(attach_ill == ipif->ipif_ill); 21095 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21096 21097 /* 21098 * Check if we need an ire that will not be 21099 * looked up by anybody else i.e. HIDDEN. 21100 */ 21101 if (ill_is_probeonly(attach_ill)) { 21102 match_flags |= MATCH_IRE_MARK_HIDDEN; 21103 } 21104 io->ipsec_out_ill_index = 21105 attach_ill->ill_phyint->phyint_ifindex; 21106 io->ipsec_out_attach_if = B_TRUE; 21107 } else { 21108 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21109 io->ipsec_out_ill_index = 21110 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21111 } 21112 if (connp != NULL) { 21113 io->ipsec_out_multicast_loop = 21114 connp->conn_multicast_loop; 21115 io->ipsec_out_dontroute = connp->conn_dontroute; 21116 io->ipsec_out_zoneid = connp->conn_zoneid; 21117 } 21118 /* 21119 * If the application uses IP_MULTICAST_IF with 21120 * different logical addresses of the same ILL, we 21121 * need to make sure that the soruce address of 21122 * the packet matches the logical IP address used 21123 * in the option. We do it by initializing ipha_src 21124 * here. This should keep IPsec also happy as 21125 * when we return from IPsec processing, we don't 21126 * have to worry about getting the right address on 21127 * the packet. Thus it is sufficient to look for 21128 * IRE_CACHE using MATCH_IRE_ILL rathen than 21129 * MATCH_IRE_IPIF. 21130 * 21131 * NOTE : We need to do it for non-secure case also as 21132 * this might go out secure if there is a global policy 21133 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21134 * address, the source should be initialized already and 21135 * hence we won't be initializing here. 21136 * 21137 * As we do not have the ire yet, it is possible that 21138 * we set the source address here and then later discover 21139 * that the ire implies the source address to be assigned 21140 * through the RTF_SETSRC flag. 21141 * In that case, the setsrc variable will remind us 21142 * that overwritting the source address by the one 21143 * of the RTF_SETSRC-flagged ire is allowed. 21144 */ 21145 if (ipha->ipha_src == INADDR_ANY && 21146 (connp == NULL || !connp->conn_unspec_src)) { 21147 ipha->ipha_src = ipif->ipif_src_addr; 21148 setsrc = RTF_SETSRC; 21149 } 21150 /* 21151 * Find an IRE which matches the destination and the outgoing 21152 * queue (i.e. the outgoing interface.) 21153 * For loopback use a unicast IP address for 21154 * the ire lookup. 21155 */ 21156 if (IS_LOOPBACK(ipif->ipif_ill)) 21157 dst = ipif->ipif_lcl_addr; 21158 21159 /* 21160 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21161 * We don't need to lookup ire in ctable as the packet 21162 * needs to be sent to the destination through the specified 21163 * ill irrespective of ires in the cache table. 21164 */ 21165 ire = NULL; 21166 if (xmit_ill == NULL) { 21167 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21168 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21169 } 21170 21171 /* 21172 * refrele attach_ill as its not needed anymore. 21173 */ 21174 if (attach_ill != NULL) { 21175 ill_refrele(attach_ill); 21176 attach_ill = NULL; 21177 } 21178 21179 if (ire == NULL) { 21180 /* 21181 * Multicast loopback and multicast forwarding is 21182 * done in ip_wput_ire. 21183 * 21184 * Mark this packet to make it be delivered to 21185 * ip_wput_ire after the new ire has been 21186 * created. 21187 * 21188 * The call to ip_newroute_ipif takes into account 21189 * the setsrc reminder. In any case, we take care 21190 * of the RTF_MULTIRT flag. 21191 */ 21192 mp->b_prev = mp->b_next = NULL; 21193 if (xmit_ill == NULL || 21194 xmit_ill->ill_ipif_up_count > 0) { 21195 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21196 setsrc | RTF_MULTIRT, zoneid, infop); 21197 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21198 "ip_wput_end: q %p (%S)", q, "noire"); 21199 } else { 21200 freemsg(first_mp); 21201 } 21202 ipif_refrele(ipif); 21203 if (xmit_ill != NULL) 21204 ill_refrele(xmit_ill); 21205 if (need_decref) 21206 CONN_DEC_REF(connp); 21207 return; 21208 } 21209 21210 ipif_refrele(ipif); 21211 ipif = NULL; 21212 ASSERT(xmit_ill == NULL); 21213 21214 /* 21215 * Honor the RTF_SETSRC flag for multicast packets, 21216 * if allowed by the setsrc reminder. 21217 */ 21218 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21219 ipha->ipha_src = ire->ire_src_addr; 21220 } 21221 21222 /* 21223 * Unconditionally force the TTL to 1 for 21224 * multirouted multicast packets: 21225 * multirouted multicast should not cross 21226 * multicast routers. 21227 */ 21228 if (ire->ire_flags & RTF_MULTIRT) { 21229 if (ipha->ipha_ttl > 1) { 21230 ip2dbg(("ip_wput: forcing multicast " 21231 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21232 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21233 ipha->ipha_ttl = 1; 21234 } 21235 } 21236 } else { 21237 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21238 if ((ire != NULL) && (ire->ire_type & 21239 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21240 ignore_dontroute = B_TRUE; 21241 ignore_nexthop = B_TRUE; 21242 } 21243 if (ire != NULL) { 21244 ire_refrele(ire); 21245 ire = NULL; 21246 } 21247 /* 21248 * Guard against coming in from arp in which case conn is NULL. 21249 * Also guard against non M_DATA with dontroute set but 21250 * destined to local, loopback or broadcast addresses. 21251 */ 21252 if (connp != NULL && connp->conn_dontroute && 21253 !ignore_dontroute) { 21254 dontroute: 21255 /* 21256 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21257 * routing protocols from seeing false direct 21258 * connectivity. 21259 */ 21260 ipha->ipha_ttl = 1; 21261 21262 /* If suitable ipif not found, drop packet */ 21263 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21264 if (dst_ipif == NULL) { 21265 noroute: 21266 ip1dbg(("ip_wput: no route for dst using" 21267 " SO_DONTROUTE\n")); 21268 BUMP_MIB(&ipst->ips_ip_mib, 21269 ipIfStatsOutNoRoutes); 21270 mp->b_prev = mp->b_next = NULL; 21271 if (first_mp == NULL) 21272 first_mp = mp; 21273 goto drop_pkt; 21274 } else { 21275 /* 21276 * If suitable ipif has been found, set 21277 * xmit_ill to the corresponding 21278 * ipif_ill because we'll be using the 21279 * send_from_ill logic below. 21280 */ 21281 ASSERT(xmit_ill == NULL); 21282 xmit_ill = dst_ipif->ipif_ill; 21283 mutex_enter(&xmit_ill->ill_lock); 21284 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21285 mutex_exit(&xmit_ill->ill_lock); 21286 xmit_ill = NULL; 21287 ipif_refrele(dst_ipif); 21288 goto noroute; 21289 } 21290 ill_refhold_locked(xmit_ill); 21291 mutex_exit(&xmit_ill->ill_lock); 21292 ipif_refrele(dst_ipif); 21293 } 21294 } 21295 /* 21296 * If we are bound to IPIF_NOFAILOVER address, look for 21297 * an IRE_CACHE matching the ill. 21298 */ 21299 send_from_ill: 21300 if (attach_ill != NULL) { 21301 ipif_t *attach_ipif; 21302 21303 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21304 21305 /* 21306 * Check if we need an ire that will not be 21307 * looked up by anybody else i.e. HIDDEN. 21308 */ 21309 if (ill_is_probeonly(attach_ill)) { 21310 match_flags |= MATCH_IRE_MARK_HIDDEN; 21311 } 21312 21313 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21314 if (attach_ipif == NULL) { 21315 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21316 goto discard_pkt; 21317 } 21318 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21319 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21320 ipif_refrele(attach_ipif); 21321 } else if (xmit_ill != NULL) { 21322 ipif_t *ipif; 21323 21324 /* 21325 * Mark this packet as originated locally 21326 */ 21327 mp->b_prev = mp->b_next = NULL; 21328 21329 /* 21330 * Could be SO_DONTROUTE case also. 21331 * Verify that at least one ipif is up on the ill. 21332 */ 21333 if (xmit_ill->ill_ipif_up_count == 0) { 21334 ip1dbg(("ip_output: xmit_ill %s is down\n", 21335 xmit_ill->ill_name)); 21336 goto drop_pkt; 21337 } 21338 21339 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21340 if (ipif == NULL) { 21341 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21342 xmit_ill->ill_name)); 21343 goto drop_pkt; 21344 } 21345 21346 /* 21347 * Look for a ire that is part of the group, 21348 * if found use it else call ip_newroute_ipif. 21349 * IPCL_ZONEID is not used for matching because 21350 * IP_ALLZONES option is valid only when the 21351 * ill is accessible from all zones i.e has a 21352 * valid ipif in all zones. 21353 */ 21354 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21355 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21356 MBLK_GETLABEL(mp), match_flags, ipst); 21357 /* 21358 * If an ire exists use it or else create 21359 * an ire but don't add it to the cache. 21360 * Adding an ire may cause issues with 21361 * asymmetric routing. 21362 * In case of multiroute always act as if 21363 * ire does not exist. 21364 */ 21365 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21366 if (ire != NULL) 21367 ire_refrele(ire); 21368 ip_newroute_ipif(q, first_mp, ipif, 21369 dst, connp, 0, zoneid, infop); 21370 ipif_refrele(ipif); 21371 ip1dbg(("ip_output: xmit_ill via %s\n", 21372 xmit_ill->ill_name)); 21373 ill_refrele(xmit_ill); 21374 if (need_decref) 21375 CONN_DEC_REF(connp); 21376 return; 21377 } 21378 ipif_refrele(ipif); 21379 } else if (ip_nexthop || (connp != NULL && 21380 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21381 if (!ip_nexthop) { 21382 ip_nexthop = B_TRUE; 21383 nexthop_addr = connp->conn_nexthop_v4; 21384 } 21385 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21386 MATCH_IRE_GW; 21387 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21388 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21389 } else { 21390 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21391 ipst); 21392 } 21393 if (!ire) { 21394 /* 21395 * Make sure we don't load spread if this 21396 * is IPIF_NOFAILOVER case. 21397 */ 21398 if ((attach_ill != NULL) || 21399 (ip_nexthop && !ignore_nexthop)) { 21400 if (mctl_present) { 21401 io = (ipsec_out_t *)first_mp->b_rptr; 21402 ASSERT(first_mp->b_datap->db_type == 21403 M_CTL); 21404 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21405 } else { 21406 ASSERT(mp == first_mp); 21407 first_mp = allocb( 21408 sizeof (ipsec_info_t), BPRI_HI); 21409 if (first_mp == NULL) { 21410 first_mp = mp; 21411 goto discard_pkt; 21412 } 21413 first_mp->b_datap->db_type = M_CTL; 21414 first_mp->b_wptr += 21415 sizeof (ipsec_info_t); 21416 /* ipsec_out_secure is B_FALSE now */ 21417 bzero(first_mp->b_rptr, 21418 sizeof (ipsec_info_t)); 21419 io = (ipsec_out_t *)first_mp->b_rptr; 21420 io->ipsec_out_type = IPSEC_OUT; 21421 io->ipsec_out_len = 21422 sizeof (ipsec_out_t); 21423 io->ipsec_out_use_global_policy = 21424 B_TRUE; 21425 io->ipsec_out_ns = ipst->ips_netstack; 21426 first_mp->b_cont = mp; 21427 mctl_present = B_TRUE; 21428 } 21429 if (attach_ill != NULL) { 21430 io->ipsec_out_ill_index = attach_ill-> 21431 ill_phyint->phyint_ifindex; 21432 io->ipsec_out_attach_if = B_TRUE; 21433 } else { 21434 io->ipsec_out_ip_nexthop = ip_nexthop; 21435 io->ipsec_out_nexthop_addr = 21436 nexthop_addr; 21437 } 21438 } 21439 noirefound: 21440 /* 21441 * Mark this packet as having originated on 21442 * this machine. This will be noted in 21443 * ire_add_then_send, which needs to know 21444 * whether to run it back through ip_wput or 21445 * ip_rput following successful resolution. 21446 */ 21447 mp->b_prev = NULL; 21448 mp->b_next = NULL; 21449 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21450 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21451 "ip_wput_end: q %p (%S)", q, "newroute"); 21452 if (attach_ill != NULL) 21453 ill_refrele(attach_ill); 21454 if (xmit_ill != NULL) 21455 ill_refrele(xmit_ill); 21456 if (need_decref) 21457 CONN_DEC_REF(connp); 21458 return; 21459 } 21460 } 21461 21462 /* We now know where we are going with it. */ 21463 21464 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21465 "ip_wput_end: q %p (%S)", q, "end"); 21466 21467 /* 21468 * Check if the ire has the RTF_MULTIRT flag, inherited 21469 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21470 */ 21471 if (ire->ire_flags & RTF_MULTIRT) { 21472 /* 21473 * Force the TTL of multirouted packets if required. 21474 * The TTL of such packets is bounded by the 21475 * ip_multirt_ttl ndd variable. 21476 */ 21477 if ((ipst->ips_ip_multirt_ttl > 0) && 21478 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21479 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21480 "(was %d), dst 0x%08x\n", 21481 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21482 ntohl(ire->ire_addr))); 21483 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21484 } 21485 /* 21486 * At this point, we check to see if there are any pending 21487 * unresolved routes. ire_multirt_resolvable() 21488 * checks in O(n) that all IRE_OFFSUBNET ire 21489 * entries for the packet's destination and 21490 * flagged RTF_MULTIRT are currently resolved. 21491 * If some remain unresolved, we make a copy 21492 * of the current message. It will be used 21493 * to initiate additional route resolutions. 21494 */ 21495 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21496 MBLK_GETLABEL(first_mp), ipst); 21497 ip2dbg(("ip_wput[noirefound]: ire %p, " 21498 "multirt_need_resolve %d, first_mp %p\n", 21499 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21500 if (multirt_need_resolve) { 21501 copy_mp = copymsg(first_mp); 21502 if (copy_mp != NULL) { 21503 MULTIRT_DEBUG_TAG(copy_mp); 21504 } 21505 } 21506 } 21507 21508 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21509 /* 21510 * Try to resolve another multiroute if 21511 * ire_multirt_resolvable() deemed it necessary. 21512 * At this point, we need to distinguish 21513 * multicasts from other packets. For multicasts, 21514 * we call ip_newroute_ipif() and request that both 21515 * multirouting and setsrc flags are checked. 21516 */ 21517 if (copy_mp != NULL) { 21518 if (CLASSD(dst)) { 21519 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21520 if (ipif) { 21521 ASSERT(infop->ip_opt_ill_index == 0); 21522 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21523 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21524 ipif_refrele(ipif); 21525 } else { 21526 MULTIRT_DEBUG_UNTAG(copy_mp); 21527 freemsg(copy_mp); 21528 copy_mp = NULL; 21529 } 21530 } else { 21531 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21532 } 21533 } 21534 if (attach_ill != NULL) 21535 ill_refrele(attach_ill); 21536 if (xmit_ill != NULL) 21537 ill_refrele(xmit_ill); 21538 if (need_decref) 21539 CONN_DEC_REF(connp); 21540 return; 21541 21542 icmp_parameter_problem: 21543 /* could not have originated externally */ 21544 ASSERT(mp->b_prev == NULL); 21545 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21546 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21547 /* it's the IP header length that's in trouble */ 21548 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21549 first_mp = NULL; 21550 } 21551 21552 discard_pkt: 21553 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21554 drop_pkt: 21555 ip1dbg(("ip_wput: dropped packet\n")); 21556 if (ire != NULL) 21557 ire_refrele(ire); 21558 if (need_decref) 21559 CONN_DEC_REF(connp); 21560 freemsg(first_mp); 21561 if (attach_ill != NULL) 21562 ill_refrele(attach_ill); 21563 if (xmit_ill != NULL) 21564 ill_refrele(xmit_ill); 21565 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21566 "ip_wput_end: q %p (%S)", q, "droppkt"); 21567 } 21568 21569 /* 21570 * If this is a conn_t queue, then we pass in the conn. This includes the 21571 * zoneid. 21572 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21573 * in which case we use the global zoneid since those are all part of 21574 * the global zone. 21575 */ 21576 void 21577 ip_wput(queue_t *q, mblk_t *mp) 21578 { 21579 if (CONN_Q(q)) 21580 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21581 else 21582 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21583 } 21584 21585 /* 21586 * 21587 * The following rules must be observed when accessing any ipif or ill 21588 * that has been cached in the conn. Typically conn_nofailover_ill, 21589 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21590 * 21591 * Access: The ipif or ill pointed to from the conn can be accessed under 21592 * the protection of the conn_lock or after it has been refheld under the 21593 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21594 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21595 * The reason for this is that a concurrent unplumb could actually be 21596 * cleaning up these cached pointers by walking the conns and might have 21597 * finished cleaning up the conn in question. The macros check that an 21598 * unplumb has not yet started on the ipif or ill. 21599 * 21600 * Caching: An ipif or ill pointer may be cached in the conn only after 21601 * making sure that an unplumb has not started. So the caching is done 21602 * while holding both the conn_lock and the ill_lock and after using the 21603 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21604 * flag before starting the cleanup of conns. 21605 * 21606 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21607 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21608 * or a reference to the ipif or a reference to an ire that references the 21609 * ipif. An ipif does not change its ill except for failover/failback. Since 21610 * failover/failback happens only after bringing down the ipif and making sure 21611 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21612 * the above holds. 21613 */ 21614 ipif_t * 21615 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21616 { 21617 ipif_t *ipif; 21618 ill_t *ill; 21619 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21620 21621 *err = 0; 21622 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21623 mutex_enter(&connp->conn_lock); 21624 ipif = *ipifp; 21625 if (ipif != NULL) { 21626 ill = ipif->ipif_ill; 21627 mutex_enter(&ill->ill_lock); 21628 if (IPIF_CAN_LOOKUP(ipif)) { 21629 ipif_refhold_locked(ipif); 21630 mutex_exit(&ill->ill_lock); 21631 mutex_exit(&connp->conn_lock); 21632 rw_exit(&ipst->ips_ill_g_lock); 21633 return (ipif); 21634 } else { 21635 *err = IPIF_LOOKUP_FAILED; 21636 } 21637 mutex_exit(&ill->ill_lock); 21638 } 21639 mutex_exit(&connp->conn_lock); 21640 rw_exit(&ipst->ips_ill_g_lock); 21641 return (NULL); 21642 } 21643 21644 ill_t * 21645 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21646 { 21647 ill_t *ill; 21648 21649 *err = 0; 21650 mutex_enter(&connp->conn_lock); 21651 ill = *illp; 21652 if (ill != NULL) { 21653 mutex_enter(&ill->ill_lock); 21654 if (ILL_CAN_LOOKUP(ill)) { 21655 ill_refhold_locked(ill); 21656 mutex_exit(&ill->ill_lock); 21657 mutex_exit(&connp->conn_lock); 21658 return (ill); 21659 } else { 21660 *err = ILL_LOOKUP_FAILED; 21661 } 21662 mutex_exit(&ill->ill_lock); 21663 } 21664 mutex_exit(&connp->conn_lock); 21665 return (NULL); 21666 } 21667 21668 static int 21669 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21670 { 21671 ill_t *ill; 21672 21673 ill = ipif->ipif_ill; 21674 mutex_enter(&connp->conn_lock); 21675 mutex_enter(&ill->ill_lock); 21676 if (IPIF_CAN_LOOKUP(ipif)) { 21677 *ipifp = ipif; 21678 mutex_exit(&ill->ill_lock); 21679 mutex_exit(&connp->conn_lock); 21680 return (0); 21681 } 21682 mutex_exit(&ill->ill_lock); 21683 mutex_exit(&connp->conn_lock); 21684 return (IPIF_LOOKUP_FAILED); 21685 } 21686 21687 /* 21688 * This is called if the outbound datagram needs fragmentation. 21689 * 21690 * NOTE : This function does not ire_refrele the ire argument passed in. 21691 */ 21692 static void 21693 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21694 ip_stack_t *ipst) 21695 { 21696 ipha_t *ipha; 21697 mblk_t *mp; 21698 uint32_t v_hlen_tos_len; 21699 uint32_t max_frag; 21700 uint32_t frag_flag; 21701 boolean_t dont_use; 21702 21703 if (ipsec_mp->b_datap->db_type == M_CTL) { 21704 mp = ipsec_mp->b_cont; 21705 } else { 21706 mp = ipsec_mp; 21707 } 21708 21709 ipha = (ipha_t *)mp->b_rptr; 21710 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21711 21712 #ifdef _BIG_ENDIAN 21713 #define V_HLEN (v_hlen_tos_len >> 24) 21714 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21715 #else 21716 #define V_HLEN (v_hlen_tos_len & 0xFF) 21717 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21718 #endif 21719 21720 #ifndef SPEED_BEFORE_SAFETY 21721 /* 21722 * Check that ipha_length is consistent with 21723 * the mblk length 21724 */ 21725 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21726 ip0dbg(("Packet length mismatch: %d, %ld\n", 21727 LENGTH, msgdsize(mp))); 21728 freemsg(ipsec_mp); 21729 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21730 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21731 "packet length mismatch"); 21732 return; 21733 } 21734 #endif 21735 /* 21736 * Don't use frag_flag if pre-built packet or source 21737 * routed or if multicast (since multicast packets do not solicit 21738 * ICMP "packet too big" messages). Get the values of 21739 * max_frag and frag_flag atomically by acquiring the 21740 * ire_lock. 21741 */ 21742 mutex_enter(&ire->ire_lock); 21743 max_frag = ire->ire_max_frag; 21744 frag_flag = ire->ire_frag_flag; 21745 mutex_exit(&ire->ire_lock); 21746 21747 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21748 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21749 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21750 21751 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21752 (dont_use ? 0 : frag_flag), zoneid, ipst); 21753 } 21754 21755 /* 21756 * Used for deciding the MSS size for the upper layer. Thus 21757 * we need to check the outbound policy values in the conn. 21758 */ 21759 int 21760 conn_ipsec_length(conn_t *connp) 21761 { 21762 ipsec_latch_t *ipl; 21763 21764 ipl = connp->conn_latch; 21765 if (ipl == NULL) 21766 return (0); 21767 21768 if (ipl->ipl_out_policy == NULL) 21769 return (0); 21770 21771 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21772 } 21773 21774 /* 21775 * Returns an estimate of the IPsec headers size. This is used if 21776 * we don't want to call into IPsec to get the exact size. 21777 */ 21778 int 21779 ipsec_out_extra_length(mblk_t *ipsec_mp) 21780 { 21781 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21782 ipsec_action_t *a; 21783 21784 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21785 if (!io->ipsec_out_secure) 21786 return (0); 21787 21788 a = io->ipsec_out_act; 21789 21790 if (a == NULL) { 21791 ASSERT(io->ipsec_out_policy != NULL); 21792 a = io->ipsec_out_policy->ipsp_act; 21793 } 21794 ASSERT(a != NULL); 21795 21796 return (a->ipa_ovhd); 21797 } 21798 21799 /* 21800 * Returns an estimate of the IPsec headers size. This is used if 21801 * we don't want to call into IPsec to get the exact size. 21802 */ 21803 int 21804 ipsec_in_extra_length(mblk_t *ipsec_mp) 21805 { 21806 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21807 ipsec_action_t *a; 21808 21809 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21810 21811 a = ii->ipsec_in_action; 21812 return (a == NULL ? 0 : a->ipa_ovhd); 21813 } 21814 21815 /* 21816 * If there are any source route options, return the true final 21817 * destination. Otherwise, return the destination. 21818 */ 21819 ipaddr_t 21820 ip_get_dst(ipha_t *ipha) 21821 { 21822 ipoptp_t opts; 21823 uchar_t *opt; 21824 uint8_t optval; 21825 uint8_t optlen; 21826 ipaddr_t dst; 21827 uint32_t off; 21828 21829 dst = ipha->ipha_dst; 21830 21831 if (IS_SIMPLE_IPH(ipha)) 21832 return (dst); 21833 21834 for (optval = ipoptp_first(&opts, ipha); 21835 optval != IPOPT_EOL; 21836 optval = ipoptp_next(&opts)) { 21837 opt = opts.ipoptp_cur; 21838 optlen = opts.ipoptp_len; 21839 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21840 switch (optval) { 21841 case IPOPT_SSRR: 21842 case IPOPT_LSRR: 21843 off = opt[IPOPT_OFFSET]; 21844 /* 21845 * If one of the conditions is true, it means 21846 * end of options and dst already has the right 21847 * value. 21848 */ 21849 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21850 off = optlen - IP_ADDR_LEN; 21851 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21852 } 21853 return (dst); 21854 default: 21855 break; 21856 } 21857 } 21858 21859 return (dst); 21860 } 21861 21862 mblk_t * 21863 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21864 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21865 { 21866 ipsec_out_t *io; 21867 mblk_t *first_mp; 21868 boolean_t policy_present; 21869 ip_stack_t *ipst; 21870 ipsec_stack_t *ipss; 21871 21872 ASSERT(ire != NULL); 21873 ipst = ire->ire_ipst; 21874 ipss = ipst->ips_netstack->netstack_ipsec; 21875 21876 first_mp = mp; 21877 if (mp->b_datap->db_type == M_CTL) { 21878 io = (ipsec_out_t *)first_mp->b_rptr; 21879 /* 21880 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21881 * 21882 * 1) There is per-socket policy (including cached global 21883 * policy) or a policy on the IP-in-IP tunnel. 21884 * 2) There is no per-socket policy, but it is 21885 * a multicast packet that needs to go out 21886 * on a specific interface. This is the case 21887 * where (ip_wput and ip_wput_multicast) attaches 21888 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21889 * 21890 * In case (2) we check with global policy to 21891 * see if there is a match and set the ill_index 21892 * appropriately so that we can lookup the ire 21893 * properly in ip_wput_ipsec_out. 21894 */ 21895 21896 /* 21897 * ipsec_out_use_global_policy is set to B_FALSE 21898 * in ipsec_in_to_out(). Refer to that function for 21899 * details. 21900 */ 21901 if ((io->ipsec_out_latch == NULL) && 21902 (io->ipsec_out_use_global_policy)) { 21903 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21904 ire, connp, unspec_src, zoneid)); 21905 } 21906 if (!io->ipsec_out_secure) { 21907 /* 21908 * If this is not a secure packet, drop 21909 * the IPSEC_OUT mp and treat it as a clear 21910 * packet. This happens when we are sending 21911 * a ICMP reply back to a clear packet. See 21912 * ipsec_in_to_out() for details. 21913 */ 21914 mp = first_mp->b_cont; 21915 freeb(first_mp); 21916 } 21917 return (mp); 21918 } 21919 /* 21920 * See whether we need to attach a global policy here. We 21921 * don't depend on the conn (as it could be null) for deciding 21922 * what policy this datagram should go through because it 21923 * should have happened in ip_wput if there was some 21924 * policy. This normally happens for connections which are not 21925 * fully bound preventing us from caching policies in 21926 * ip_bind. Packets coming from the TCP listener/global queue 21927 * - which are non-hard_bound - could also be affected by 21928 * applying policy here. 21929 * 21930 * If this packet is coming from tcp global queue or listener, 21931 * we will be applying policy here. This may not be *right* 21932 * if these packets are coming from the detached connection as 21933 * it could have gone in clear before. This happens only if a 21934 * TCP connection started when there is no policy and somebody 21935 * added policy before it became detached. Thus packets of the 21936 * detached connection could go out secure and the other end 21937 * would drop it because it will be expecting in clear. The 21938 * converse is not true i.e if somebody starts a TCP 21939 * connection and deletes the policy, all the packets will 21940 * still go out with the policy that existed before deleting 21941 * because ip_unbind sends up policy information which is used 21942 * by TCP on subsequent ip_wputs. The right solution is to fix 21943 * TCP to attach a dummy IPSEC_OUT and set 21944 * ipsec_out_use_global_policy to B_FALSE. As this might 21945 * affect performance for normal cases, we are not doing it. 21946 * Thus, set policy before starting any TCP connections. 21947 * 21948 * NOTE - We might apply policy even for a hard bound connection 21949 * - for which we cached policy in ip_bind - if somebody added 21950 * global policy after we inherited the policy in ip_bind. 21951 * This means that the packets that were going out in clear 21952 * previously would start going secure and hence get dropped 21953 * on the other side. To fix this, TCP attaches a dummy 21954 * ipsec_out and make sure that we don't apply global policy. 21955 */ 21956 if (ipha != NULL) 21957 policy_present = ipss->ipsec_outbound_v4_policy_present; 21958 else 21959 policy_present = ipss->ipsec_outbound_v6_policy_present; 21960 if (!policy_present) 21961 return (mp); 21962 21963 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21964 zoneid)); 21965 } 21966 21967 ire_t * 21968 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21969 { 21970 ipaddr_t addr; 21971 ire_t *save_ire; 21972 irb_t *irb; 21973 ill_group_t *illgrp; 21974 int err; 21975 21976 save_ire = ire; 21977 addr = ire->ire_addr; 21978 21979 ASSERT(ire->ire_type == IRE_BROADCAST); 21980 21981 illgrp = connp->conn_outgoing_ill->ill_group; 21982 if (illgrp == NULL) { 21983 *conn_outgoing_ill = conn_get_held_ill(connp, 21984 &connp->conn_outgoing_ill, &err); 21985 if (err == ILL_LOOKUP_FAILED) { 21986 ire_refrele(save_ire); 21987 return (NULL); 21988 } 21989 return (save_ire); 21990 } 21991 /* 21992 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21993 * If it is part of the group, we need to send on the ire 21994 * that has been cleared of IRE_MARK_NORECV and that belongs 21995 * to this group. This is okay as IP_BOUND_IF really means 21996 * any ill in the group. We depend on the fact that the 21997 * first ire in the group is always cleared of IRE_MARK_NORECV 21998 * if such an ire exists. This is possible only if you have 21999 * at least one ill in the group that has not failed. 22000 * 22001 * First get to the ire that matches the address and group. 22002 * 22003 * We don't look for an ire with a matching zoneid because a given zone 22004 * won't always have broadcast ires on all ills in the group. 22005 */ 22006 irb = ire->ire_bucket; 22007 rw_enter(&irb->irb_lock, RW_READER); 22008 if (ire->ire_marks & IRE_MARK_NORECV) { 22009 /* 22010 * If the current zone only has an ire broadcast for this 22011 * address marked NORECV, the ire we want is ahead in the 22012 * bucket, so we look it up deliberately ignoring the zoneid. 22013 */ 22014 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22015 if (ire->ire_addr != addr) 22016 continue; 22017 /* skip over deleted ires */ 22018 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22019 continue; 22020 } 22021 } 22022 while (ire != NULL) { 22023 /* 22024 * If a new interface is coming up, we could end up 22025 * seeing the loopback ire and the non-loopback ire 22026 * may not have been added yet. So check for ire_stq 22027 */ 22028 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22029 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22030 break; 22031 } 22032 ire = ire->ire_next; 22033 } 22034 if (ire != NULL && ire->ire_addr == addr && 22035 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22036 IRE_REFHOLD(ire); 22037 rw_exit(&irb->irb_lock); 22038 ire_refrele(save_ire); 22039 *conn_outgoing_ill = ire_to_ill(ire); 22040 /* 22041 * Refhold the ill to make the conn_outgoing_ill 22042 * independent of the ire. ip_wput_ire goes in a loop 22043 * and may refrele the ire. Since we have an ire at this 22044 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22045 */ 22046 ill_refhold(*conn_outgoing_ill); 22047 return (ire); 22048 } 22049 rw_exit(&irb->irb_lock); 22050 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22051 /* 22052 * If we can't find a suitable ire, return the original ire. 22053 */ 22054 return (save_ire); 22055 } 22056 22057 /* 22058 * This function does the ire_refrele of the ire passed in as the 22059 * argument. As this function looks up more ires i.e broadcast ires, 22060 * it needs to REFRELE them. Currently, for simplicity we don't 22061 * differentiate the one passed in and looked up here. We always 22062 * REFRELE. 22063 * IPQoS Notes: 22064 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22065 * IPsec packets are done in ipsec_out_process. 22066 * 22067 */ 22068 void 22069 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22070 zoneid_t zoneid) 22071 { 22072 ipha_t *ipha; 22073 #define rptr ((uchar_t *)ipha) 22074 queue_t *stq; 22075 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22076 uint32_t v_hlen_tos_len; 22077 uint32_t ttl_protocol; 22078 ipaddr_t src; 22079 ipaddr_t dst; 22080 uint32_t cksum; 22081 ipaddr_t orig_src; 22082 ire_t *ire1; 22083 mblk_t *next_mp; 22084 uint_t hlen; 22085 uint16_t *up; 22086 uint32_t max_frag = ire->ire_max_frag; 22087 ill_t *ill = ire_to_ill(ire); 22088 int clusterwide; 22089 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22090 int ipsec_len; 22091 mblk_t *first_mp; 22092 ipsec_out_t *io; 22093 boolean_t conn_dontroute; /* conn value for multicast */ 22094 boolean_t conn_multicast_loop; /* conn value for multicast */ 22095 boolean_t multicast_forward; /* Should we forward ? */ 22096 boolean_t unspec_src; 22097 ill_t *conn_outgoing_ill = NULL; 22098 ill_t *ire_ill; 22099 ill_t *ire1_ill; 22100 ill_t *out_ill; 22101 uint32_t ill_index = 0; 22102 boolean_t multirt_send = B_FALSE; 22103 int err; 22104 ipxmit_state_t pktxmit_state; 22105 ip_stack_t *ipst = ire->ire_ipst; 22106 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22107 22108 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22109 "ip_wput_ire_start: q %p", q); 22110 22111 multicast_forward = B_FALSE; 22112 unspec_src = (connp != NULL && connp->conn_unspec_src); 22113 22114 if (ire->ire_flags & RTF_MULTIRT) { 22115 /* 22116 * Multirouting case. The bucket where ire is stored 22117 * probably holds other RTF_MULTIRT flagged ire 22118 * to the destination. In this call to ip_wput_ire, 22119 * we attempt to send the packet through all 22120 * those ires. Thus, we first ensure that ire is the 22121 * first RTF_MULTIRT ire in the bucket, 22122 * before walking the ire list. 22123 */ 22124 ire_t *first_ire; 22125 irb_t *irb = ire->ire_bucket; 22126 ASSERT(irb != NULL); 22127 22128 /* Make sure we do not omit any multiroute ire. */ 22129 IRB_REFHOLD(irb); 22130 for (first_ire = irb->irb_ire; 22131 first_ire != NULL; 22132 first_ire = first_ire->ire_next) { 22133 if ((first_ire->ire_flags & RTF_MULTIRT) && 22134 (first_ire->ire_addr == ire->ire_addr) && 22135 !(first_ire->ire_marks & 22136 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22137 break; 22138 } 22139 } 22140 22141 if ((first_ire != NULL) && (first_ire != ire)) { 22142 IRE_REFHOLD(first_ire); 22143 ire_refrele(ire); 22144 ire = first_ire; 22145 ill = ire_to_ill(ire); 22146 } 22147 IRB_REFRELE(irb); 22148 } 22149 22150 /* 22151 * conn_outgoing_ill variable is used only in the broadcast loop. 22152 * for performance we don't grab the mutexs in the fastpath 22153 */ 22154 if ((connp != NULL) && 22155 (ire->ire_type == IRE_BROADCAST) && 22156 ((connp->conn_nofailover_ill != NULL) || 22157 (connp->conn_outgoing_ill != NULL))) { 22158 /* 22159 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22160 * option. So, see if this endpoint is bound to a 22161 * IPIF_NOFAILOVER address. If so, honor it. This implies 22162 * that if the interface is failed, we will still send 22163 * the packet on the same ill which is what we want. 22164 */ 22165 conn_outgoing_ill = conn_get_held_ill(connp, 22166 &connp->conn_nofailover_ill, &err); 22167 if (err == ILL_LOOKUP_FAILED) { 22168 ire_refrele(ire); 22169 freemsg(mp); 22170 return; 22171 } 22172 if (conn_outgoing_ill == NULL) { 22173 /* 22174 * Choose a good ill in the group to send the 22175 * packets on. 22176 */ 22177 ire = conn_set_outgoing_ill(connp, ire, 22178 &conn_outgoing_ill); 22179 if (ire == NULL) { 22180 freemsg(mp); 22181 return; 22182 } 22183 } 22184 } 22185 22186 if (mp->b_datap->db_type != M_CTL) { 22187 ipha = (ipha_t *)mp->b_rptr; 22188 } else { 22189 io = (ipsec_out_t *)mp->b_rptr; 22190 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22191 ASSERT(zoneid == io->ipsec_out_zoneid); 22192 ASSERT(zoneid != ALL_ZONES); 22193 ipha = (ipha_t *)mp->b_cont->b_rptr; 22194 dst = ipha->ipha_dst; 22195 /* 22196 * For the multicast case, ipsec_out carries conn_dontroute and 22197 * conn_multicast_loop as conn may not be available here. We 22198 * need this for multicast loopback and forwarding which is done 22199 * later in the code. 22200 */ 22201 if (CLASSD(dst)) { 22202 conn_dontroute = io->ipsec_out_dontroute; 22203 conn_multicast_loop = io->ipsec_out_multicast_loop; 22204 /* 22205 * If conn_dontroute is not set or conn_multicast_loop 22206 * is set, we need to do forwarding/loopback. For 22207 * datagrams from ip_wput_multicast, conn_dontroute is 22208 * set to B_TRUE and conn_multicast_loop is set to 22209 * B_FALSE so that we neither do forwarding nor 22210 * loopback. 22211 */ 22212 if (!conn_dontroute || conn_multicast_loop) 22213 multicast_forward = B_TRUE; 22214 } 22215 } 22216 22217 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22218 ire->ire_zoneid != ALL_ZONES) { 22219 /* 22220 * When a zone sends a packet to another zone, we try to deliver 22221 * the packet under the same conditions as if the destination 22222 * was a real node on the network. To do so, we look for a 22223 * matching route in the forwarding table. 22224 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22225 * ip_newroute() does. 22226 * Note that IRE_LOCAL are special, since they are used 22227 * when the zoneid doesn't match in some cases. This means that 22228 * we need to handle ipha_src differently since ire_src_addr 22229 * belongs to the receiving zone instead of the sending zone. 22230 * When ip_restrict_interzone_loopback is set, then 22231 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22232 * for loopback between zones when the logical "Ethernet" would 22233 * have looped them back. 22234 */ 22235 ire_t *src_ire; 22236 22237 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22238 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22239 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22240 if (src_ire != NULL && 22241 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22242 (!ipst->ips_ip_restrict_interzone_loopback || 22243 ire_local_same_ill_group(ire, src_ire))) { 22244 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22245 ipha->ipha_src = src_ire->ire_src_addr; 22246 ire_refrele(src_ire); 22247 } else { 22248 ire_refrele(ire); 22249 if (conn_outgoing_ill != NULL) 22250 ill_refrele(conn_outgoing_ill); 22251 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22252 if (src_ire != NULL) { 22253 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22254 ire_refrele(src_ire); 22255 freemsg(mp); 22256 return; 22257 } 22258 ire_refrele(src_ire); 22259 } 22260 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22261 /* Failed */ 22262 freemsg(mp); 22263 return; 22264 } 22265 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22266 ipst); 22267 return; 22268 } 22269 } 22270 22271 if (mp->b_datap->db_type == M_CTL || 22272 ipss->ipsec_outbound_v4_policy_present) { 22273 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22274 unspec_src, zoneid); 22275 if (mp == NULL) { 22276 ire_refrele(ire); 22277 if (conn_outgoing_ill != NULL) 22278 ill_refrele(conn_outgoing_ill); 22279 return; 22280 } 22281 } 22282 22283 first_mp = mp; 22284 ipsec_len = 0; 22285 22286 if (first_mp->b_datap->db_type == M_CTL) { 22287 io = (ipsec_out_t *)first_mp->b_rptr; 22288 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22289 mp = first_mp->b_cont; 22290 ipsec_len = ipsec_out_extra_length(first_mp); 22291 ASSERT(ipsec_len >= 0); 22292 /* We already picked up the zoneid from the M_CTL above */ 22293 ASSERT(zoneid == io->ipsec_out_zoneid); 22294 ASSERT(zoneid != ALL_ZONES); 22295 22296 /* 22297 * Drop M_CTL here if IPsec processing is not needed. 22298 * (Non-IPsec use of M_CTL extracted any information it 22299 * needed above). 22300 */ 22301 if (ipsec_len == 0) { 22302 freeb(first_mp); 22303 first_mp = mp; 22304 } 22305 } 22306 22307 /* 22308 * Fast path for ip_wput_ire 22309 */ 22310 22311 ipha = (ipha_t *)mp->b_rptr; 22312 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22313 dst = ipha->ipha_dst; 22314 22315 /* 22316 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22317 * if the socket is a SOCK_RAW type. The transport checksum should 22318 * be provided in the pre-built packet, so we don't need to compute it. 22319 * Also, other application set flags, like DF, should not be altered. 22320 * Other transport MUST pass down zero. 22321 */ 22322 ip_hdr_included = ipha->ipha_ident; 22323 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22324 22325 if (CLASSD(dst)) { 22326 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22327 ntohl(dst), 22328 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22329 ntohl(ire->ire_addr))); 22330 } 22331 22332 /* Macros to extract header fields from data already in registers */ 22333 #ifdef _BIG_ENDIAN 22334 #define V_HLEN (v_hlen_tos_len >> 24) 22335 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22336 #define PROTO (ttl_protocol & 0xFF) 22337 #else 22338 #define V_HLEN (v_hlen_tos_len & 0xFF) 22339 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22340 #define PROTO (ttl_protocol >> 8) 22341 #endif 22342 22343 22344 orig_src = src = ipha->ipha_src; 22345 /* (The loop back to "another" is explained down below.) */ 22346 another:; 22347 /* 22348 * Assign an ident value for this packet. We assign idents on 22349 * a per destination basis out of the IRE. There could be 22350 * other threads targeting the same destination, so we have to 22351 * arrange for a atomic increment. Note that we use a 32-bit 22352 * atomic add because it has better performance than its 22353 * 16-bit sibling. 22354 * 22355 * If running in cluster mode and if the source address 22356 * belongs to a replicated service then vector through 22357 * cl_inet_ipident vector to allocate ip identifier 22358 * NOTE: This is a contract private interface with the 22359 * clustering group. 22360 */ 22361 clusterwide = 0; 22362 if (cl_inet_ipident) { 22363 ASSERT(cl_inet_isclusterwide); 22364 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22365 AF_INET, (uint8_t *)(uintptr_t)src)) { 22366 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22367 AF_INET, (uint8_t *)(uintptr_t)src, 22368 (uint8_t *)(uintptr_t)dst); 22369 clusterwide = 1; 22370 } 22371 } 22372 if (!clusterwide) { 22373 ipha->ipha_ident = 22374 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22375 } 22376 22377 #ifndef _BIG_ENDIAN 22378 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22379 #endif 22380 22381 /* 22382 * Set source address unless sent on an ill or conn_unspec_src is set. 22383 * This is needed to obey conn_unspec_src when packets go through 22384 * ip_newroute + arp. 22385 * Assumes ip_newroute{,_multi} sets the source address as well. 22386 */ 22387 if (src == INADDR_ANY && !unspec_src) { 22388 /* 22389 * Assign the appropriate source address from the IRE if none 22390 * was specified. 22391 */ 22392 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22393 22394 /* 22395 * With IP multipathing, broadcast packets are sent on the ire 22396 * that has been cleared of IRE_MARK_NORECV and that belongs to 22397 * the group. However, this ire might not be in the same zone so 22398 * we can't always use its source address. We look for a 22399 * broadcast ire in the same group and in the right zone. 22400 */ 22401 if (ire->ire_type == IRE_BROADCAST && 22402 ire->ire_zoneid != zoneid) { 22403 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22404 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22405 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22406 if (src_ire != NULL) { 22407 src = src_ire->ire_src_addr; 22408 ire_refrele(src_ire); 22409 } else { 22410 ire_refrele(ire); 22411 if (conn_outgoing_ill != NULL) 22412 ill_refrele(conn_outgoing_ill); 22413 freemsg(first_mp); 22414 if (ill != NULL) { 22415 BUMP_MIB(ill->ill_ip_mib, 22416 ipIfStatsOutDiscards); 22417 } else { 22418 BUMP_MIB(&ipst->ips_ip_mib, 22419 ipIfStatsOutDiscards); 22420 } 22421 return; 22422 } 22423 } else { 22424 src = ire->ire_src_addr; 22425 } 22426 22427 if (connp == NULL) { 22428 ip1dbg(("ip_wput_ire: no connp and no src " 22429 "address for dst 0x%x, using src 0x%x\n", 22430 ntohl(dst), 22431 ntohl(src))); 22432 } 22433 ipha->ipha_src = src; 22434 } 22435 stq = ire->ire_stq; 22436 22437 /* 22438 * We only allow ire chains for broadcasts since there will 22439 * be multiple IRE_CACHE entries for the same multicast 22440 * address (one per ipif). 22441 */ 22442 next_mp = NULL; 22443 22444 /* broadcast packet */ 22445 if (ire->ire_type == IRE_BROADCAST) 22446 goto broadcast; 22447 22448 /* loopback ? */ 22449 if (stq == NULL) 22450 goto nullstq; 22451 22452 /* The ill_index for outbound ILL */ 22453 ill_index = Q_TO_INDEX(stq); 22454 22455 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22456 ttl_protocol = ((uint16_t *)ipha)[4]; 22457 22458 /* pseudo checksum (do it in parts for IP header checksum) */ 22459 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22460 22461 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22462 queue_t *dev_q = stq->q_next; 22463 22464 /* flow controlled */ 22465 if ((dev_q->q_next || dev_q->q_first) && 22466 !canput(dev_q)) 22467 goto blocked; 22468 if ((PROTO == IPPROTO_UDP) && 22469 (ip_hdr_included != IP_HDR_INCLUDED)) { 22470 hlen = (V_HLEN & 0xF) << 2; 22471 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22472 if (*up != 0) { 22473 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22474 hlen, LENGTH, max_frag, ipsec_len, cksum); 22475 /* Software checksum? */ 22476 if (DB_CKSUMFLAGS(mp) == 0) { 22477 IP_STAT(ipst, ip_out_sw_cksum); 22478 IP_STAT_UPDATE(ipst, 22479 ip_udp_out_sw_cksum_bytes, 22480 LENGTH - hlen); 22481 } 22482 } 22483 } 22484 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22485 hlen = (V_HLEN & 0xF) << 2; 22486 if (PROTO == IPPROTO_TCP) { 22487 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22488 /* 22489 * The packet header is processed once and for all, even 22490 * in the multirouting case. We disable hardware 22491 * checksum if the packet is multirouted, as it will be 22492 * replicated via several interfaces, and not all of 22493 * them may have this capability. 22494 */ 22495 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22496 LENGTH, max_frag, ipsec_len, cksum); 22497 /* Software checksum? */ 22498 if (DB_CKSUMFLAGS(mp) == 0) { 22499 IP_STAT(ipst, ip_out_sw_cksum); 22500 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22501 LENGTH - hlen); 22502 } 22503 } else { 22504 sctp_hdr_t *sctph; 22505 22506 ASSERT(PROTO == IPPROTO_SCTP); 22507 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22508 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22509 /* 22510 * Zero out the checksum field to ensure proper 22511 * checksum calculation. 22512 */ 22513 sctph->sh_chksum = 0; 22514 #ifdef DEBUG 22515 if (!skip_sctp_cksum) 22516 #endif 22517 sctph->sh_chksum = sctp_cksum(mp, hlen); 22518 } 22519 } 22520 22521 /* 22522 * If this is a multicast packet and originated from ip_wput 22523 * we need to do loopback and forwarding checks. If it comes 22524 * from ip_wput_multicast, we SHOULD not do this. 22525 */ 22526 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22527 22528 /* checksum */ 22529 cksum += ttl_protocol; 22530 22531 /* fragment the packet */ 22532 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22533 goto fragmentit; 22534 /* 22535 * Don't use frag_flag if packet is pre-built or source 22536 * routed or if multicast (since multicast packets do 22537 * not solicit ICMP "packet too big" messages). 22538 */ 22539 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22540 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22541 !ip_source_route_included(ipha)) && 22542 !CLASSD(ipha->ipha_dst)) 22543 ipha->ipha_fragment_offset_and_flags |= 22544 htons(ire->ire_frag_flag); 22545 22546 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22547 /* calculate IP header checksum */ 22548 cksum += ipha->ipha_ident; 22549 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22550 cksum += ipha->ipha_fragment_offset_and_flags; 22551 22552 /* IP options present */ 22553 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22554 if (hlen) 22555 goto checksumoptions; 22556 22557 /* calculate hdr checksum */ 22558 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22559 cksum = ~(cksum + (cksum >> 16)); 22560 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22561 } 22562 if (ipsec_len != 0) { 22563 /* 22564 * We will do the rest of the processing after 22565 * we come back from IPsec in ip_wput_ipsec_out(). 22566 */ 22567 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22568 22569 io = (ipsec_out_t *)first_mp->b_rptr; 22570 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22571 ill_phyint->phyint_ifindex; 22572 22573 ipsec_out_process(q, first_mp, ire, ill_index); 22574 ire_refrele(ire); 22575 if (conn_outgoing_ill != NULL) 22576 ill_refrele(conn_outgoing_ill); 22577 return; 22578 } 22579 22580 /* 22581 * In most cases, the emission loop below is entered only 22582 * once. Only in the case where the ire holds the 22583 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22584 * flagged ires in the bucket, and send the packet 22585 * through all crossed RTF_MULTIRT routes. 22586 */ 22587 if (ire->ire_flags & RTF_MULTIRT) { 22588 multirt_send = B_TRUE; 22589 } 22590 do { 22591 if (multirt_send) { 22592 irb_t *irb; 22593 /* 22594 * We are in a multiple send case, need to get 22595 * the next ire and make a duplicate of the packet. 22596 * ire1 holds here the next ire to process in the 22597 * bucket. If multirouting is expected, 22598 * any non-RTF_MULTIRT ire that has the 22599 * right destination address is ignored. 22600 */ 22601 irb = ire->ire_bucket; 22602 ASSERT(irb != NULL); 22603 22604 IRB_REFHOLD(irb); 22605 for (ire1 = ire->ire_next; 22606 ire1 != NULL; 22607 ire1 = ire1->ire_next) { 22608 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22609 continue; 22610 if (ire1->ire_addr != ire->ire_addr) 22611 continue; 22612 if (ire1->ire_marks & 22613 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22614 continue; 22615 22616 /* Got one */ 22617 IRE_REFHOLD(ire1); 22618 break; 22619 } 22620 IRB_REFRELE(irb); 22621 22622 if (ire1 != NULL) { 22623 next_mp = copyb(mp); 22624 if ((next_mp == NULL) || 22625 ((mp->b_cont != NULL) && 22626 ((next_mp->b_cont = 22627 dupmsg(mp->b_cont)) == NULL))) { 22628 freemsg(next_mp); 22629 next_mp = NULL; 22630 ire_refrele(ire1); 22631 ire1 = NULL; 22632 } 22633 } 22634 22635 /* Last multiroute ire; don't loop anymore. */ 22636 if (ire1 == NULL) { 22637 multirt_send = B_FALSE; 22638 } 22639 } 22640 22641 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22642 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22643 mblk_t *, mp); 22644 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22645 ipst->ips_ipv4firewall_physical_out, 22646 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22647 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22648 if (mp == NULL) 22649 goto release_ire_and_ill; 22650 22651 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22652 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22653 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22654 if ((pktxmit_state == SEND_FAILED) || 22655 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22656 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22657 "- packet dropped\n")); 22658 release_ire_and_ill: 22659 ire_refrele(ire); 22660 if (next_mp != NULL) { 22661 freemsg(next_mp); 22662 ire_refrele(ire1); 22663 } 22664 if (conn_outgoing_ill != NULL) 22665 ill_refrele(conn_outgoing_ill); 22666 return; 22667 } 22668 22669 if (CLASSD(dst)) { 22670 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22671 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22672 LENGTH); 22673 } 22674 22675 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22676 "ip_wput_ire_end: q %p (%S)", 22677 q, "last copy out"); 22678 IRE_REFRELE(ire); 22679 22680 if (multirt_send) { 22681 ASSERT(ire1); 22682 /* 22683 * Proceed with the next RTF_MULTIRT ire, 22684 * Also set up the send-to queue accordingly. 22685 */ 22686 ire = ire1; 22687 ire1 = NULL; 22688 stq = ire->ire_stq; 22689 mp = next_mp; 22690 next_mp = NULL; 22691 ipha = (ipha_t *)mp->b_rptr; 22692 ill_index = Q_TO_INDEX(stq); 22693 ill = (ill_t *)stq->q_ptr; 22694 } 22695 } while (multirt_send); 22696 if (conn_outgoing_ill != NULL) 22697 ill_refrele(conn_outgoing_ill); 22698 return; 22699 22700 /* 22701 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22702 */ 22703 broadcast: 22704 { 22705 /* 22706 * To avoid broadcast storms, we usually set the TTL to 1 for 22707 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22708 * can be overridden stack-wide through the ip_broadcast_ttl 22709 * ndd tunable, or on a per-connection basis through the 22710 * IP_BROADCAST_TTL socket option. 22711 * 22712 * In the event that we are replying to incoming ICMP packets, 22713 * connp could be NULL. 22714 */ 22715 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22716 if (connp != NULL) { 22717 if (connp->conn_dontroute) 22718 ipha->ipha_ttl = 1; 22719 else if (connp->conn_broadcast_ttl != 0) 22720 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22721 } 22722 22723 /* 22724 * Note that we are not doing a IRB_REFHOLD here. 22725 * Actually we don't care if the list changes i.e 22726 * if somebody deletes an IRE from the list while 22727 * we drop the lock, the next time we come around 22728 * ire_next will be NULL and hence we won't send 22729 * out multiple copies which is fine. 22730 */ 22731 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22732 ire1 = ire->ire_next; 22733 if (conn_outgoing_ill != NULL) { 22734 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22735 ASSERT(ire1 == ire->ire_next); 22736 if (ire1 != NULL && ire1->ire_addr == dst) { 22737 ire_refrele(ire); 22738 ire = ire1; 22739 IRE_REFHOLD(ire); 22740 ire1 = ire->ire_next; 22741 continue; 22742 } 22743 rw_exit(&ire->ire_bucket->irb_lock); 22744 /* Did not find a matching ill */ 22745 ip1dbg(("ip_wput_ire: broadcast with no " 22746 "matching IP_BOUND_IF ill %s dst %x\n", 22747 conn_outgoing_ill->ill_name, dst)); 22748 freemsg(first_mp); 22749 if (ire != NULL) 22750 ire_refrele(ire); 22751 ill_refrele(conn_outgoing_ill); 22752 return; 22753 } 22754 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22755 /* 22756 * If the next IRE has the same address and is not one 22757 * of the two copies that we need to send, try to see 22758 * whether this copy should be sent at all. This 22759 * assumes that we insert loopbacks first and then 22760 * non-loopbacks. This is acheived by inserting the 22761 * loopback always before non-loopback. 22762 * This is used to send a single copy of a broadcast 22763 * packet out all physical interfaces that have an 22764 * matching IRE_BROADCAST while also looping 22765 * back one copy (to ip_wput_local) for each 22766 * matching physical interface. However, we avoid 22767 * sending packets out different logical that match by 22768 * having ipif_up/ipif_down supress duplicate 22769 * IRE_BROADCASTS. 22770 * 22771 * This feature is currently used to get broadcasts 22772 * sent to multiple interfaces, when the broadcast 22773 * address being used applies to multiple interfaces. 22774 * For example, a whole net broadcast will be 22775 * replicated on every connected subnet of 22776 * the target net. 22777 * 22778 * Each zone has its own set of IRE_BROADCASTs, so that 22779 * we're able to distribute inbound packets to multiple 22780 * zones who share a broadcast address. We avoid looping 22781 * back outbound packets in different zones but on the 22782 * same ill, as the application would see duplicates. 22783 * 22784 * If the interfaces are part of the same group, 22785 * we would want to send only one copy out for 22786 * whole group. 22787 * 22788 * This logic assumes that ire_add_v4() groups the 22789 * IRE_BROADCAST entries so that those with the same 22790 * ire_addr and ill_group are kept together. 22791 */ 22792 ire_ill = ire->ire_ipif->ipif_ill; 22793 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22794 if (ire_ill->ill_group != NULL && 22795 (ire->ire_marks & IRE_MARK_NORECV)) { 22796 /* 22797 * If the current zone only has an ire 22798 * broadcast for this address marked 22799 * NORECV, the ire we want is ahead in 22800 * the bucket, so we look it up 22801 * deliberately ignoring the zoneid. 22802 */ 22803 for (ire1 = ire->ire_bucket->irb_ire; 22804 ire1 != NULL; 22805 ire1 = ire1->ire_next) { 22806 ire1_ill = 22807 ire1->ire_ipif->ipif_ill; 22808 if (ire1->ire_addr != dst) 22809 continue; 22810 /* skip over the current ire */ 22811 if (ire1 == ire) 22812 continue; 22813 /* skip over deleted ires */ 22814 if (ire1->ire_marks & 22815 IRE_MARK_CONDEMNED) 22816 continue; 22817 /* 22818 * non-loopback ire in our 22819 * group: use it for the next 22820 * pass in the loop 22821 */ 22822 if (ire1->ire_stq != NULL && 22823 ire1_ill->ill_group == 22824 ire_ill->ill_group) 22825 break; 22826 } 22827 } 22828 } else { 22829 while (ire1 != NULL && ire1->ire_addr == dst) { 22830 ire1_ill = ire1->ire_ipif->ipif_ill; 22831 /* 22832 * We can have two broadcast ires on the 22833 * same ill in different zones; here 22834 * we'll send a copy of the packet on 22835 * each ill and the fanout code will 22836 * call conn_wantpacket() to check that 22837 * the zone has the broadcast address 22838 * configured on the ill. If the two 22839 * ires are in the same group we only 22840 * send one copy up. 22841 */ 22842 if (ire1_ill != ire_ill && 22843 (ire1_ill->ill_group == NULL || 22844 ire_ill->ill_group == NULL || 22845 ire1_ill->ill_group != 22846 ire_ill->ill_group)) { 22847 break; 22848 } 22849 ire1 = ire1->ire_next; 22850 } 22851 } 22852 } 22853 ASSERT(multirt_send == B_FALSE); 22854 if (ire1 != NULL && ire1->ire_addr == dst) { 22855 if ((ire->ire_flags & RTF_MULTIRT) && 22856 (ire1->ire_flags & RTF_MULTIRT)) { 22857 /* 22858 * We are in the multirouting case. 22859 * The message must be sent at least 22860 * on both ires. These ires have been 22861 * inserted AFTER the standard ones 22862 * in ip_rt_add(). There are thus no 22863 * other ire entries for the destination 22864 * address in the rest of the bucket 22865 * that do not have the RTF_MULTIRT 22866 * flag. We don't process a copy 22867 * of the message here. This will be 22868 * done in the final sending loop. 22869 */ 22870 multirt_send = B_TRUE; 22871 } else { 22872 next_mp = ip_copymsg(first_mp); 22873 if (next_mp != NULL) 22874 IRE_REFHOLD(ire1); 22875 } 22876 } 22877 rw_exit(&ire->ire_bucket->irb_lock); 22878 } 22879 22880 if (stq) { 22881 /* 22882 * A non-NULL send-to queue means this packet is going 22883 * out of this machine. 22884 */ 22885 out_ill = (ill_t *)stq->q_ptr; 22886 22887 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22888 ttl_protocol = ((uint16_t *)ipha)[4]; 22889 /* 22890 * We accumulate the pseudo header checksum in cksum. 22891 * This is pretty hairy code, so watch close. One 22892 * thing to keep in mind is that UDP and TCP have 22893 * stored their respective datagram lengths in their 22894 * checksum fields. This lines things up real nice. 22895 */ 22896 cksum = (dst >> 16) + (dst & 0xFFFF) + 22897 (src >> 16) + (src & 0xFFFF); 22898 /* 22899 * We assume the udp checksum field contains the 22900 * length, so to compute the pseudo header checksum, 22901 * all we need is the protocol number and src/dst. 22902 */ 22903 /* Provide the checksums for UDP and TCP. */ 22904 if ((PROTO == IPPROTO_TCP) && 22905 (ip_hdr_included != IP_HDR_INCLUDED)) { 22906 /* hlen gets the number of uchar_ts in the IP header */ 22907 hlen = (V_HLEN & 0xF) << 2; 22908 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22909 IP_STAT(ipst, ip_out_sw_cksum); 22910 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22911 LENGTH - hlen); 22912 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22913 } else if (PROTO == IPPROTO_SCTP && 22914 (ip_hdr_included != IP_HDR_INCLUDED)) { 22915 sctp_hdr_t *sctph; 22916 22917 hlen = (V_HLEN & 0xF) << 2; 22918 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22919 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22920 sctph->sh_chksum = 0; 22921 #ifdef DEBUG 22922 if (!skip_sctp_cksum) 22923 #endif 22924 sctph->sh_chksum = sctp_cksum(mp, hlen); 22925 } else { 22926 queue_t *dev_q = stq->q_next; 22927 22928 if ((dev_q->q_next || dev_q->q_first) && 22929 !canput(dev_q)) { 22930 blocked: 22931 ipha->ipha_ident = ip_hdr_included; 22932 /* 22933 * If we don't have a conn to apply 22934 * backpressure, free the message. 22935 * In the ire_send path, we don't know 22936 * the position to requeue the packet. Rather 22937 * than reorder packets, we just drop this 22938 * packet. 22939 */ 22940 if (ipst->ips_ip_output_queue && 22941 connp != NULL && 22942 caller != IRE_SEND) { 22943 if (caller == IP_WSRV) { 22944 connp->conn_did_putbq = 1; 22945 (void) putbq(connp->conn_wq, 22946 first_mp); 22947 conn_drain_insert(connp); 22948 /* 22949 * This is the service thread, 22950 * and the queue is already 22951 * noenabled. The check for 22952 * canput and the putbq is not 22953 * atomic. So we need to check 22954 * again. 22955 */ 22956 if (canput(stq->q_next)) 22957 connp->conn_did_putbq 22958 = 0; 22959 IP_STAT(ipst, ip_conn_flputbq); 22960 } else { 22961 /* 22962 * We are not the service proc. 22963 * ip_wsrv will be scheduled or 22964 * is already running. 22965 */ 22966 (void) putq(connp->conn_wq, 22967 first_mp); 22968 } 22969 } else { 22970 out_ill = (ill_t *)stq->q_ptr; 22971 BUMP_MIB(out_ill->ill_ip_mib, 22972 ipIfStatsOutDiscards); 22973 freemsg(first_mp); 22974 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22975 "ip_wput_ire_end: q %p (%S)", 22976 q, "discard"); 22977 } 22978 ire_refrele(ire); 22979 if (next_mp) { 22980 ire_refrele(ire1); 22981 freemsg(next_mp); 22982 } 22983 if (conn_outgoing_ill != NULL) 22984 ill_refrele(conn_outgoing_ill); 22985 return; 22986 } 22987 if ((PROTO == IPPROTO_UDP) && 22988 (ip_hdr_included != IP_HDR_INCLUDED)) { 22989 /* 22990 * hlen gets the number of uchar_ts in the 22991 * IP header 22992 */ 22993 hlen = (V_HLEN & 0xF) << 2; 22994 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22995 max_frag = ire->ire_max_frag; 22996 if (*up != 0) { 22997 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22998 up, PROTO, hlen, LENGTH, max_frag, 22999 ipsec_len, cksum); 23000 /* Software checksum? */ 23001 if (DB_CKSUMFLAGS(mp) == 0) { 23002 IP_STAT(ipst, ip_out_sw_cksum); 23003 IP_STAT_UPDATE(ipst, 23004 ip_udp_out_sw_cksum_bytes, 23005 LENGTH - hlen); 23006 } 23007 } 23008 } 23009 } 23010 /* 23011 * Need to do this even when fragmenting. The local 23012 * loopback can be done without computing checksums 23013 * but forwarding out other interface must be done 23014 * after the IP checksum (and ULP checksums) have been 23015 * computed. 23016 * 23017 * NOTE : multicast_forward is set only if this packet 23018 * originated from ip_wput. For packets originating from 23019 * ip_wput_multicast, it is not set. 23020 */ 23021 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23022 multi_loopback: 23023 ip2dbg(("ip_wput: multicast, loop %d\n", 23024 conn_multicast_loop)); 23025 23026 /* Forget header checksum offload */ 23027 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23028 23029 /* 23030 * Local loopback of multicasts? Check the 23031 * ill. 23032 * 23033 * Note that the loopback function will not come 23034 * in through ip_rput - it will only do the 23035 * client fanout thus we need to do an mforward 23036 * as well. The is different from the BSD 23037 * logic. 23038 */ 23039 if (ill != NULL) { 23040 ilm_t *ilm; 23041 23042 ILM_WALKER_HOLD(ill); 23043 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23044 ALL_ZONES); 23045 ILM_WALKER_RELE(ill); 23046 if (ilm != NULL) { 23047 /* 23048 * Pass along the virtual output q. 23049 * ip_wput_local() will distribute the 23050 * packet to all the matching zones, 23051 * except the sending zone when 23052 * IP_MULTICAST_LOOP is false. 23053 */ 23054 ip_multicast_loopback(q, ill, first_mp, 23055 conn_multicast_loop ? 0 : 23056 IP_FF_NO_MCAST_LOOP, zoneid); 23057 } 23058 } 23059 if (ipha->ipha_ttl == 0) { 23060 /* 23061 * 0 => only to this host i.e. we are 23062 * done. We are also done if this was the 23063 * loopback interface since it is sufficient 23064 * to loopback one copy of a multicast packet. 23065 */ 23066 freemsg(first_mp); 23067 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23068 "ip_wput_ire_end: q %p (%S)", 23069 q, "loopback"); 23070 ire_refrele(ire); 23071 if (conn_outgoing_ill != NULL) 23072 ill_refrele(conn_outgoing_ill); 23073 return; 23074 } 23075 /* 23076 * ILLF_MULTICAST is checked in ip_newroute 23077 * i.e. we don't need to check it here since 23078 * all IRE_CACHEs come from ip_newroute. 23079 * For multicast traffic, SO_DONTROUTE is interpreted 23080 * to mean only send the packet out the interface 23081 * (optionally specified with IP_MULTICAST_IF) 23082 * and do not forward it out additional interfaces. 23083 * RSVP and the rsvp daemon is an example of a 23084 * protocol and user level process that 23085 * handles it's own routing. Hence, it uses the 23086 * SO_DONTROUTE option to accomplish this. 23087 */ 23088 23089 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23090 ill != NULL) { 23091 /* Unconditionally redo the checksum */ 23092 ipha->ipha_hdr_checksum = 0; 23093 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23094 23095 /* 23096 * If this needs to go out secure, we need 23097 * to wait till we finish the IPsec 23098 * processing. 23099 */ 23100 if (ipsec_len == 0 && 23101 ip_mforward(ill, ipha, mp)) { 23102 freemsg(first_mp); 23103 ip1dbg(("ip_wput: mforward failed\n")); 23104 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23105 "ip_wput_ire_end: q %p (%S)", 23106 q, "mforward failed"); 23107 ire_refrele(ire); 23108 if (conn_outgoing_ill != NULL) 23109 ill_refrele(conn_outgoing_ill); 23110 return; 23111 } 23112 } 23113 } 23114 max_frag = ire->ire_max_frag; 23115 cksum += ttl_protocol; 23116 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23117 /* No fragmentation required for this one. */ 23118 /* 23119 * Don't use frag_flag if packet is pre-built or source 23120 * routed or if multicast (since multicast packets do 23121 * not solicit ICMP "packet too big" messages). 23122 */ 23123 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23124 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23125 !ip_source_route_included(ipha)) && 23126 !CLASSD(ipha->ipha_dst)) 23127 ipha->ipha_fragment_offset_and_flags |= 23128 htons(ire->ire_frag_flag); 23129 23130 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23131 /* Complete the IP header checksum. */ 23132 cksum += ipha->ipha_ident; 23133 cksum += (v_hlen_tos_len >> 16)+ 23134 (v_hlen_tos_len & 0xFFFF); 23135 cksum += ipha->ipha_fragment_offset_and_flags; 23136 hlen = (V_HLEN & 0xF) - 23137 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23138 if (hlen) { 23139 checksumoptions: 23140 /* 23141 * Account for the IP Options in the IP 23142 * header checksum. 23143 */ 23144 up = (uint16_t *)(rptr+ 23145 IP_SIMPLE_HDR_LENGTH); 23146 do { 23147 cksum += up[0]; 23148 cksum += up[1]; 23149 up += 2; 23150 } while (--hlen); 23151 } 23152 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23153 cksum = ~(cksum + (cksum >> 16)); 23154 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23155 } 23156 if (ipsec_len != 0) { 23157 ipsec_out_process(q, first_mp, ire, ill_index); 23158 if (!next_mp) { 23159 ire_refrele(ire); 23160 if (conn_outgoing_ill != NULL) 23161 ill_refrele(conn_outgoing_ill); 23162 return; 23163 } 23164 goto next; 23165 } 23166 23167 /* 23168 * multirt_send has already been handled 23169 * for broadcast, but not yet for multicast 23170 * or IP options. 23171 */ 23172 if (next_mp == NULL) { 23173 if (ire->ire_flags & RTF_MULTIRT) { 23174 multirt_send = B_TRUE; 23175 } 23176 } 23177 23178 /* 23179 * In most cases, the emission loop below is 23180 * entered only once. Only in the case where 23181 * the ire holds the RTF_MULTIRT flag, do we loop 23182 * to process all RTF_MULTIRT ires in the bucket, 23183 * and send the packet through all crossed 23184 * RTF_MULTIRT routes. 23185 */ 23186 do { 23187 if (multirt_send) { 23188 irb_t *irb; 23189 23190 irb = ire->ire_bucket; 23191 ASSERT(irb != NULL); 23192 /* 23193 * We are in a multiple send case, 23194 * need to get the next IRE and make 23195 * a duplicate of the packet. 23196 */ 23197 IRB_REFHOLD(irb); 23198 for (ire1 = ire->ire_next; 23199 ire1 != NULL; 23200 ire1 = ire1->ire_next) { 23201 if (!(ire1->ire_flags & 23202 RTF_MULTIRT)) { 23203 continue; 23204 } 23205 if (ire1->ire_addr != 23206 ire->ire_addr) { 23207 continue; 23208 } 23209 if (ire1->ire_marks & 23210 (IRE_MARK_CONDEMNED| 23211 IRE_MARK_HIDDEN)) { 23212 continue; 23213 } 23214 23215 /* Got one */ 23216 IRE_REFHOLD(ire1); 23217 break; 23218 } 23219 IRB_REFRELE(irb); 23220 23221 if (ire1 != NULL) { 23222 next_mp = copyb(mp); 23223 if ((next_mp == NULL) || 23224 ((mp->b_cont != NULL) && 23225 ((next_mp->b_cont = 23226 dupmsg(mp->b_cont)) 23227 == NULL))) { 23228 freemsg(next_mp); 23229 next_mp = NULL; 23230 ire_refrele(ire1); 23231 ire1 = NULL; 23232 } 23233 } 23234 23235 /* 23236 * Last multiroute ire; don't loop 23237 * anymore. The emission is over 23238 * and next_mp is NULL. 23239 */ 23240 if (ire1 == NULL) { 23241 multirt_send = B_FALSE; 23242 } 23243 } 23244 23245 out_ill = ire_to_ill(ire); 23246 DTRACE_PROBE4(ip4__physical__out__start, 23247 ill_t *, NULL, 23248 ill_t *, out_ill, 23249 ipha_t *, ipha, mblk_t *, mp); 23250 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23251 ipst->ips_ipv4firewall_physical_out, 23252 NULL, out_ill, ipha, mp, mp, 0, ipst); 23253 DTRACE_PROBE1(ip4__physical__out__end, 23254 mblk_t *, mp); 23255 if (mp == NULL) 23256 goto release_ire_and_ill_2; 23257 23258 ASSERT(ipsec_len == 0); 23259 mp->b_prev = 23260 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23261 DTRACE_PROBE2(ip__xmit__2, 23262 mblk_t *, mp, ire_t *, ire); 23263 pktxmit_state = ip_xmit_v4(mp, ire, 23264 NULL, B_TRUE); 23265 if ((pktxmit_state == SEND_FAILED) || 23266 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23267 release_ire_and_ill_2: 23268 if (next_mp) { 23269 freemsg(next_mp); 23270 ire_refrele(ire1); 23271 } 23272 ire_refrele(ire); 23273 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23274 "ip_wput_ire_end: q %p (%S)", 23275 q, "discard MDATA"); 23276 if (conn_outgoing_ill != NULL) 23277 ill_refrele(conn_outgoing_ill); 23278 return; 23279 } 23280 23281 if (CLASSD(dst)) { 23282 BUMP_MIB(out_ill->ill_ip_mib, 23283 ipIfStatsHCOutMcastPkts); 23284 UPDATE_MIB(out_ill->ill_ip_mib, 23285 ipIfStatsHCOutMcastOctets, 23286 LENGTH); 23287 } else if (ire->ire_type == IRE_BROADCAST) { 23288 BUMP_MIB(out_ill->ill_ip_mib, 23289 ipIfStatsHCOutBcastPkts); 23290 } 23291 23292 if (multirt_send) { 23293 /* 23294 * We are in a multiple send case, 23295 * need to re-enter the sending loop 23296 * using the next ire. 23297 */ 23298 ire_refrele(ire); 23299 ire = ire1; 23300 stq = ire->ire_stq; 23301 mp = next_mp; 23302 next_mp = NULL; 23303 ipha = (ipha_t *)mp->b_rptr; 23304 ill_index = Q_TO_INDEX(stq); 23305 } 23306 } while (multirt_send); 23307 23308 if (!next_mp) { 23309 /* 23310 * Last copy going out (the ultra-common 23311 * case). Note that we intentionally replicate 23312 * the putnext rather than calling it before 23313 * the next_mp check in hopes of a little 23314 * tail-call action out of the compiler. 23315 */ 23316 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23317 "ip_wput_ire_end: q %p (%S)", 23318 q, "last copy out(1)"); 23319 ire_refrele(ire); 23320 if (conn_outgoing_ill != NULL) 23321 ill_refrele(conn_outgoing_ill); 23322 return; 23323 } 23324 /* More copies going out below. */ 23325 } else { 23326 int offset; 23327 fragmentit: 23328 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23329 /* 23330 * If this would generate a icmp_frag_needed message, 23331 * we need to handle it before we do the IPsec 23332 * processing. Otherwise, we need to strip the IPsec 23333 * headers before we send up the message to the ULPs 23334 * which becomes messy and difficult. 23335 */ 23336 if (ipsec_len != 0) { 23337 if ((max_frag < (unsigned int)(LENGTH + 23338 ipsec_len)) && (offset & IPH_DF)) { 23339 out_ill = (ill_t *)stq->q_ptr; 23340 BUMP_MIB(out_ill->ill_ip_mib, 23341 ipIfStatsOutFragFails); 23342 BUMP_MIB(out_ill->ill_ip_mib, 23343 ipIfStatsOutFragReqds); 23344 ipha->ipha_hdr_checksum = 0; 23345 ipha->ipha_hdr_checksum = 23346 (uint16_t)ip_csum_hdr(ipha); 23347 icmp_frag_needed(ire->ire_stq, first_mp, 23348 max_frag, zoneid, ipst); 23349 if (!next_mp) { 23350 ire_refrele(ire); 23351 if (conn_outgoing_ill != NULL) { 23352 ill_refrele( 23353 conn_outgoing_ill); 23354 } 23355 return; 23356 } 23357 } else { 23358 /* 23359 * This won't cause a icmp_frag_needed 23360 * message. to be generated. Send it on 23361 * the wire. Note that this could still 23362 * cause fragmentation and all we 23363 * do is the generation of the message 23364 * to the ULP if needed before IPsec. 23365 */ 23366 if (!next_mp) { 23367 ipsec_out_process(q, first_mp, 23368 ire, ill_index); 23369 TRACE_2(TR_FAC_IP, 23370 TR_IP_WPUT_IRE_END, 23371 "ip_wput_ire_end: q %p " 23372 "(%S)", q, 23373 "last ipsec_out_process"); 23374 ire_refrele(ire); 23375 if (conn_outgoing_ill != NULL) { 23376 ill_refrele( 23377 conn_outgoing_ill); 23378 } 23379 return; 23380 } 23381 ipsec_out_process(q, first_mp, 23382 ire, ill_index); 23383 } 23384 } else { 23385 /* 23386 * Initiate IPPF processing. For 23387 * fragmentable packets we finish 23388 * all QOS packet processing before 23389 * calling: 23390 * ip_wput_ire_fragmentit->ip_wput_frag 23391 */ 23392 23393 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23394 ip_process(IPP_LOCAL_OUT, &mp, 23395 ill_index); 23396 if (mp == NULL) { 23397 out_ill = (ill_t *)stq->q_ptr; 23398 BUMP_MIB(out_ill->ill_ip_mib, 23399 ipIfStatsOutDiscards); 23400 if (next_mp != NULL) { 23401 freemsg(next_mp); 23402 ire_refrele(ire1); 23403 } 23404 ire_refrele(ire); 23405 TRACE_2(TR_FAC_IP, 23406 TR_IP_WPUT_IRE_END, 23407 "ip_wput_ire: q %p (%S)", 23408 q, "discard MDATA"); 23409 if (conn_outgoing_ill != NULL) { 23410 ill_refrele( 23411 conn_outgoing_ill); 23412 } 23413 return; 23414 } 23415 } 23416 if (!next_mp) { 23417 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23418 "ip_wput_ire_end: q %p (%S)", 23419 q, "last fragmentation"); 23420 ip_wput_ire_fragmentit(mp, ire, 23421 zoneid, ipst); 23422 ire_refrele(ire); 23423 if (conn_outgoing_ill != NULL) 23424 ill_refrele(conn_outgoing_ill); 23425 return; 23426 } 23427 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23428 } 23429 } 23430 } else { 23431 nullstq: 23432 /* A NULL stq means the destination address is local. */ 23433 UPDATE_OB_PKT_COUNT(ire); 23434 ire->ire_last_used_time = lbolt; 23435 ASSERT(ire->ire_ipif != NULL); 23436 if (!next_mp) { 23437 /* 23438 * Is there an "in" and "out" for traffic local 23439 * to a host (loopback)? The code in Solaris doesn't 23440 * explicitly draw a line in its code for in vs out, 23441 * so we've had to draw a line in the sand: ip_wput_ire 23442 * is considered to be the "output" side and 23443 * ip_wput_local to be the "input" side. 23444 */ 23445 out_ill = ire_to_ill(ire); 23446 23447 DTRACE_PROBE4(ip4__loopback__out__start, 23448 ill_t *, NULL, ill_t *, out_ill, 23449 ipha_t *, ipha, mblk_t *, first_mp); 23450 23451 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23452 ipst->ips_ipv4firewall_loopback_out, 23453 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23454 23455 DTRACE_PROBE1(ip4__loopback__out_end, 23456 mblk_t *, first_mp); 23457 23458 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23459 "ip_wput_ire_end: q %p (%S)", 23460 q, "local address"); 23461 23462 if (first_mp != NULL) 23463 ip_wput_local(q, out_ill, ipha, 23464 first_mp, ire, 0, ire->ire_zoneid); 23465 ire_refrele(ire); 23466 if (conn_outgoing_ill != NULL) 23467 ill_refrele(conn_outgoing_ill); 23468 return; 23469 } 23470 23471 out_ill = ire_to_ill(ire); 23472 23473 DTRACE_PROBE4(ip4__loopback__out__start, 23474 ill_t *, NULL, ill_t *, out_ill, 23475 ipha_t *, ipha, mblk_t *, first_mp); 23476 23477 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23478 ipst->ips_ipv4firewall_loopback_out, 23479 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23480 23481 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23482 23483 if (first_mp != NULL) 23484 ip_wput_local(q, out_ill, ipha, 23485 first_mp, ire, 0, ire->ire_zoneid); 23486 } 23487 next: 23488 /* 23489 * More copies going out to additional interfaces. 23490 * ire1 has already been held. We don't need the 23491 * "ire" anymore. 23492 */ 23493 ire_refrele(ire); 23494 ire = ire1; 23495 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23496 mp = next_mp; 23497 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23498 ill = ire_to_ill(ire); 23499 first_mp = mp; 23500 if (ipsec_len != 0) { 23501 ASSERT(first_mp->b_datap->db_type == M_CTL); 23502 mp = mp->b_cont; 23503 } 23504 dst = ire->ire_addr; 23505 ipha = (ipha_t *)mp->b_rptr; 23506 /* 23507 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23508 * Restore ipha_ident "no checksum" flag. 23509 */ 23510 src = orig_src; 23511 ipha->ipha_ident = ip_hdr_included; 23512 goto another; 23513 23514 #undef rptr 23515 #undef Q_TO_INDEX 23516 } 23517 23518 /* 23519 * Routine to allocate a message that is used to notify the ULP about MDT. 23520 * The caller may provide a pointer to the link-layer MDT capabilities, 23521 * or NULL if MDT is to be disabled on the stream. 23522 */ 23523 mblk_t * 23524 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23525 { 23526 mblk_t *mp; 23527 ip_mdt_info_t *mdti; 23528 ill_mdt_capab_t *idst; 23529 23530 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23531 DB_TYPE(mp) = M_CTL; 23532 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23533 mdti = (ip_mdt_info_t *)mp->b_rptr; 23534 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23535 idst = &(mdti->mdt_capab); 23536 23537 /* 23538 * If the caller provides us with the capability, copy 23539 * it over into our notification message; otherwise 23540 * we zero out the capability portion. 23541 */ 23542 if (isrc != NULL) 23543 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23544 else 23545 bzero((caddr_t)idst, sizeof (*idst)); 23546 } 23547 return (mp); 23548 } 23549 23550 /* 23551 * Routine which determines whether MDT can be enabled on the destination 23552 * IRE and IPC combination, and if so, allocates and returns the MDT 23553 * notification mblk that may be used by ULP. We also check if we need to 23554 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23555 * MDT usage in the past have been lifted. This gets called during IP 23556 * and ULP binding. 23557 */ 23558 mblk_t * 23559 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23560 ill_mdt_capab_t *mdt_cap) 23561 { 23562 mblk_t *mp; 23563 boolean_t rc = B_FALSE; 23564 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23565 23566 ASSERT(dst_ire != NULL); 23567 ASSERT(connp != NULL); 23568 ASSERT(mdt_cap != NULL); 23569 23570 /* 23571 * Currently, we only support simple TCP/{IPv4,IPv6} with 23572 * Multidata, which is handled in tcp_multisend(). This 23573 * is the reason why we do all these checks here, to ensure 23574 * that we don't enable Multidata for the cases which we 23575 * can't handle at the moment. 23576 */ 23577 do { 23578 /* Only do TCP at the moment */ 23579 if (connp->conn_ulp != IPPROTO_TCP) 23580 break; 23581 23582 /* 23583 * IPsec outbound policy present? Note that we get here 23584 * after calling ipsec_conn_cache_policy() where the global 23585 * policy checking is performed. conn_latch will be 23586 * non-NULL as long as there's a policy defined, 23587 * i.e. conn_out_enforce_policy may be NULL in such case 23588 * when the connection is non-secure, and hence we check 23589 * further if the latch refers to an outbound policy. 23590 */ 23591 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23592 break; 23593 23594 /* CGTP (multiroute) is enabled? */ 23595 if (dst_ire->ire_flags & RTF_MULTIRT) 23596 break; 23597 23598 /* Outbound IPQoS enabled? */ 23599 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23600 /* 23601 * In this case, we disable MDT for this and all 23602 * future connections going over the interface. 23603 */ 23604 mdt_cap->ill_mdt_on = 0; 23605 break; 23606 } 23607 23608 /* socket option(s) present? */ 23609 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23610 break; 23611 23612 rc = B_TRUE; 23613 /* CONSTCOND */ 23614 } while (0); 23615 23616 /* Remember the result */ 23617 connp->conn_mdt_ok = rc; 23618 23619 if (!rc) 23620 return (NULL); 23621 else if (!mdt_cap->ill_mdt_on) { 23622 /* 23623 * If MDT has been previously turned off in the past, and we 23624 * currently can do MDT (due to IPQoS policy removal, etc.) 23625 * then enable it for this interface. 23626 */ 23627 mdt_cap->ill_mdt_on = 1; 23628 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23629 "interface %s\n", ill_name)); 23630 } 23631 23632 /* Allocate the MDT info mblk */ 23633 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23634 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23635 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23636 return (NULL); 23637 } 23638 return (mp); 23639 } 23640 23641 /* 23642 * Routine to allocate a message that is used to notify the ULP about LSO. 23643 * The caller may provide a pointer to the link-layer LSO capabilities, 23644 * or NULL if LSO is to be disabled on the stream. 23645 */ 23646 mblk_t * 23647 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23648 { 23649 mblk_t *mp; 23650 ip_lso_info_t *lsoi; 23651 ill_lso_capab_t *idst; 23652 23653 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23654 DB_TYPE(mp) = M_CTL; 23655 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23656 lsoi = (ip_lso_info_t *)mp->b_rptr; 23657 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23658 idst = &(lsoi->lso_capab); 23659 23660 /* 23661 * If the caller provides us with the capability, copy 23662 * it over into our notification message; otherwise 23663 * we zero out the capability portion. 23664 */ 23665 if (isrc != NULL) 23666 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23667 else 23668 bzero((caddr_t)idst, sizeof (*idst)); 23669 } 23670 return (mp); 23671 } 23672 23673 /* 23674 * Routine which determines whether LSO can be enabled on the destination 23675 * IRE and IPC combination, and if so, allocates and returns the LSO 23676 * notification mblk that may be used by ULP. We also check if we need to 23677 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23678 * LSO usage in the past have been lifted. This gets called during IP 23679 * and ULP binding. 23680 */ 23681 mblk_t * 23682 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23683 ill_lso_capab_t *lso_cap) 23684 { 23685 mblk_t *mp; 23686 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23687 23688 ASSERT(dst_ire != NULL); 23689 ASSERT(connp != NULL); 23690 ASSERT(lso_cap != NULL); 23691 23692 connp->conn_lso_ok = B_TRUE; 23693 23694 if ((connp->conn_ulp != IPPROTO_TCP) || 23695 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23696 (dst_ire->ire_flags & RTF_MULTIRT) || 23697 !CONN_IS_LSO_MD_FASTPATH(connp) || 23698 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23699 connp->conn_lso_ok = B_FALSE; 23700 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23701 /* 23702 * Disable LSO for this and all future connections going 23703 * over the interface. 23704 */ 23705 lso_cap->ill_lso_on = 0; 23706 } 23707 } 23708 23709 if (!connp->conn_lso_ok) 23710 return (NULL); 23711 else if (!lso_cap->ill_lso_on) { 23712 /* 23713 * If LSO has been previously turned off in the past, and we 23714 * currently can do LSO (due to IPQoS policy removal, etc.) 23715 * then enable it for this interface. 23716 */ 23717 lso_cap->ill_lso_on = 1; 23718 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23719 ill_name)); 23720 } 23721 23722 /* Allocate the LSO info mblk */ 23723 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23724 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23725 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23726 23727 return (mp); 23728 } 23729 23730 /* 23731 * Create destination address attribute, and fill it with the physical 23732 * destination address and SAP taken from the template DL_UNITDATA_REQ 23733 * message block. 23734 */ 23735 boolean_t 23736 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23737 { 23738 dl_unitdata_req_t *dlurp; 23739 pattr_t *pa; 23740 pattrinfo_t pa_info; 23741 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23742 uint_t das_len, das_off; 23743 23744 ASSERT(dlmp != NULL); 23745 23746 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23747 das_len = dlurp->dl_dest_addr_length; 23748 das_off = dlurp->dl_dest_addr_offset; 23749 23750 pa_info.type = PATTR_DSTADDRSAP; 23751 pa_info.len = sizeof (**das) + das_len - 1; 23752 23753 /* create and associate the attribute */ 23754 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23755 if (pa != NULL) { 23756 ASSERT(*das != NULL); 23757 (*das)->addr_is_group = 0; 23758 (*das)->addr_len = (uint8_t)das_len; 23759 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23760 } 23761 23762 return (pa != NULL); 23763 } 23764 23765 /* 23766 * Create hardware checksum attribute and fill it with the values passed. 23767 */ 23768 boolean_t 23769 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23770 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23771 { 23772 pattr_t *pa; 23773 pattrinfo_t pa_info; 23774 23775 ASSERT(mmd != NULL); 23776 23777 pa_info.type = PATTR_HCKSUM; 23778 pa_info.len = sizeof (pattr_hcksum_t); 23779 23780 /* create and associate the attribute */ 23781 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23782 if (pa != NULL) { 23783 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23784 23785 hck->hcksum_start_offset = start_offset; 23786 hck->hcksum_stuff_offset = stuff_offset; 23787 hck->hcksum_end_offset = end_offset; 23788 hck->hcksum_flags = flags; 23789 } 23790 return (pa != NULL); 23791 } 23792 23793 /* 23794 * Create zerocopy attribute and fill it with the specified flags 23795 */ 23796 boolean_t 23797 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23798 { 23799 pattr_t *pa; 23800 pattrinfo_t pa_info; 23801 23802 ASSERT(mmd != NULL); 23803 pa_info.type = PATTR_ZCOPY; 23804 pa_info.len = sizeof (pattr_zcopy_t); 23805 23806 /* create and associate the attribute */ 23807 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23808 if (pa != NULL) { 23809 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23810 23811 zcopy->zcopy_flags = flags; 23812 } 23813 return (pa != NULL); 23814 } 23815 23816 /* 23817 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23818 * block chain. We could rewrite to handle arbitrary message block chains but 23819 * that would make the code complicated and slow. Right now there three 23820 * restrictions: 23821 * 23822 * 1. The first message block must contain the complete IP header and 23823 * at least 1 byte of payload data. 23824 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23825 * so that we can use a single Multidata message. 23826 * 3. No frag must be distributed over two or more message blocks so 23827 * that we don't need more than two packet descriptors per frag. 23828 * 23829 * The above restrictions allow us to support userland applications (which 23830 * will send down a single message block) and NFS over UDP (which will 23831 * send down a chain of at most three message blocks). 23832 * 23833 * We also don't use MDT for payloads with less than or equal to 23834 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23835 */ 23836 boolean_t 23837 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23838 { 23839 int blocks; 23840 ssize_t total, missing, size; 23841 23842 ASSERT(mp != NULL); 23843 ASSERT(hdr_len > 0); 23844 23845 size = MBLKL(mp) - hdr_len; 23846 if (size <= 0) 23847 return (B_FALSE); 23848 23849 /* The first mblk contains the header and some payload. */ 23850 blocks = 1; 23851 total = size; 23852 size %= len; 23853 missing = (size == 0) ? 0 : (len - size); 23854 mp = mp->b_cont; 23855 23856 while (mp != NULL) { 23857 /* 23858 * Give up if we encounter a zero length message block. 23859 * In practice, this should rarely happen and therefore 23860 * not worth the trouble of freeing and re-linking the 23861 * mblk from the chain to handle such case. 23862 */ 23863 if ((size = MBLKL(mp)) == 0) 23864 return (B_FALSE); 23865 23866 /* Too many payload buffers for a single Multidata message? */ 23867 if (++blocks > MULTIDATA_MAX_PBUFS) 23868 return (B_FALSE); 23869 23870 total += size; 23871 /* Is a frag distributed over two or more message blocks? */ 23872 if (missing > size) 23873 return (B_FALSE); 23874 size -= missing; 23875 23876 size %= len; 23877 missing = (size == 0) ? 0 : (len - size); 23878 23879 mp = mp->b_cont; 23880 } 23881 23882 return (total > ip_wput_frag_mdt_min); 23883 } 23884 23885 /* 23886 * Outbound IPv4 fragmentation routine using MDT. 23887 */ 23888 static void 23889 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23890 uint32_t frag_flag, int offset) 23891 { 23892 ipha_t *ipha_orig; 23893 int i1, ip_data_end; 23894 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23895 mblk_t *hdr_mp, *md_mp = NULL; 23896 unsigned char *hdr_ptr, *pld_ptr; 23897 multidata_t *mmd; 23898 ip_pdescinfo_t pdi; 23899 ill_t *ill; 23900 ip_stack_t *ipst = ire->ire_ipst; 23901 23902 ASSERT(DB_TYPE(mp) == M_DATA); 23903 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23904 23905 ill = ire_to_ill(ire); 23906 ASSERT(ill != NULL); 23907 23908 ipha_orig = (ipha_t *)mp->b_rptr; 23909 mp->b_rptr += sizeof (ipha_t); 23910 23911 /* Calculate how many packets we will send out */ 23912 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23913 pkts = (i1 + len - 1) / len; 23914 ASSERT(pkts > 1); 23915 23916 /* Allocate a message block which will hold all the IP Headers. */ 23917 wroff = ipst->ips_ip_wroff_extra; 23918 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23919 23920 i1 = pkts * hdr_chunk_len; 23921 /* 23922 * Create the header buffer, Multidata and destination address 23923 * and SAP attribute that should be associated with it. 23924 */ 23925 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23926 ((hdr_mp->b_wptr += i1), 23927 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23928 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23929 freemsg(mp); 23930 if (md_mp == NULL) { 23931 freemsg(hdr_mp); 23932 } else { 23933 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23934 freemsg(md_mp); 23935 } 23936 IP_STAT(ipst, ip_frag_mdt_allocfail); 23937 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23938 return; 23939 } 23940 IP_STAT(ipst, ip_frag_mdt_allocd); 23941 23942 /* 23943 * Add a payload buffer to the Multidata; this operation must not 23944 * fail, or otherwise our logic in this routine is broken. There 23945 * is no memory allocation done by the routine, so any returned 23946 * failure simply tells us that we've done something wrong. 23947 * 23948 * A failure tells us that either we're adding the same payload 23949 * buffer more than once, or we're trying to add more buffers than 23950 * allowed. None of the above cases should happen, and we panic 23951 * because either there's horrible heap corruption, and/or 23952 * programming mistake. 23953 */ 23954 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23955 goto pbuf_panic; 23956 23957 hdr_ptr = hdr_mp->b_rptr; 23958 pld_ptr = mp->b_rptr; 23959 23960 /* Establish the ending byte offset, based on the starting offset. */ 23961 offset <<= 3; 23962 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23963 IP_SIMPLE_HDR_LENGTH; 23964 23965 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23966 23967 while (pld_ptr < mp->b_wptr) { 23968 ipha_t *ipha; 23969 uint16_t offset_and_flags; 23970 uint16_t ip_len; 23971 int error; 23972 23973 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23974 ipha = (ipha_t *)(hdr_ptr + wroff); 23975 ASSERT(OK_32PTR(ipha)); 23976 *ipha = *ipha_orig; 23977 23978 if (ip_data_end - offset > len) { 23979 offset_and_flags = IPH_MF; 23980 } else { 23981 /* 23982 * Last frag. Set len to the length of this last piece. 23983 */ 23984 len = ip_data_end - offset; 23985 /* A frag of a frag might have IPH_MF non-zero */ 23986 offset_and_flags = 23987 ntohs(ipha->ipha_fragment_offset_and_flags) & 23988 IPH_MF; 23989 } 23990 offset_and_flags |= (uint16_t)(offset >> 3); 23991 offset_and_flags |= (uint16_t)frag_flag; 23992 /* Store the offset and flags in the IP header. */ 23993 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23994 23995 /* Store the length in the IP header. */ 23996 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23997 ipha->ipha_length = htons(ip_len); 23998 23999 /* 24000 * Set the IP header checksum. Note that mp is just 24001 * the header, so this is easy to pass to ip_csum. 24002 */ 24003 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24004 24005 /* 24006 * Record offset and size of header and data of the next packet 24007 * in the multidata message. 24008 */ 24009 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24010 PDESC_PLD_INIT(&pdi); 24011 i1 = MIN(mp->b_wptr - pld_ptr, len); 24012 ASSERT(i1 > 0); 24013 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24014 if (i1 == len) { 24015 pld_ptr += len; 24016 } else { 24017 i1 = len - i1; 24018 mp = mp->b_cont; 24019 ASSERT(mp != NULL); 24020 ASSERT(MBLKL(mp) >= i1); 24021 /* 24022 * Attach the next payload message block to the 24023 * multidata message. 24024 */ 24025 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24026 goto pbuf_panic; 24027 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24028 pld_ptr = mp->b_rptr + i1; 24029 } 24030 24031 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24032 KM_NOSLEEP)) == NULL) { 24033 /* 24034 * Any failure other than ENOMEM indicates that we 24035 * have passed in invalid pdesc info or parameters 24036 * to mmd_addpdesc, which must not happen. 24037 * 24038 * EINVAL is a result of failure on boundary checks 24039 * against the pdesc info contents. It should not 24040 * happen, and we panic because either there's 24041 * horrible heap corruption, and/or programming 24042 * mistake. 24043 */ 24044 if (error != ENOMEM) { 24045 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24046 "pdesc logic error detected for " 24047 "mmd %p pinfo %p (%d)\n", 24048 (void *)mmd, (void *)&pdi, error); 24049 /* NOTREACHED */ 24050 } 24051 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24052 /* Free unattached payload message blocks as well */ 24053 md_mp->b_cont = mp->b_cont; 24054 goto free_mmd; 24055 } 24056 24057 /* Advance fragment offset. */ 24058 offset += len; 24059 24060 /* Advance to location for next header in the buffer. */ 24061 hdr_ptr += hdr_chunk_len; 24062 24063 /* Did we reach the next payload message block? */ 24064 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24065 mp = mp->b_cont; 24066 /* 24067 * Attach the next message block with payload 24068 * data to the multidata message. 24069 */ 24070 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24071 goto pbuf_panic; 24072 pld_ptr = mp->b_rptr; 24073 } 24074 } 24075 24076 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24077 ASSERT(mp->b_wptr == pld_ptr); 24078 24079 /* Update IP statistics */ 24080 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24081 24082 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24083 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24084 24085 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24086 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24087 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24088 24089 if (pkt_type == OB_PKT) { 24090 ire->ire_ob_pkt_count += pkts; 24091 if (ire->ire_ipif != NULL) 24092 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24093 } else { 24094 /* The type is IB_PKT in the forwarding path. */ 24095 ire->ire_ib_pkt_count += pkts; 24096 ASSERT(!IRE_IS_LOCAL(ire)); 24097 if (ire->ire_type & IRE_BROADCAST) { 24098 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24099 } else { 24100 UPDATE_MIB(ill->ill_ip_mib, 24101 ipIfStatsHCOutForwDatagrams, pkts); 24102 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24103 } 24104 } 24105 ire->ire_last_used_time = lbolt; 24106 /* Send it down */ 24107 putnext(ire->ire_stq, md_mp); 24108 return; 24109 24110 pbuf_panic: 24111 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24112 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24113 pbuf_idx); 24114 /* NOTREACHED */ 24115 } 24116 24117 /* 24118 * Outbound IP fragmentation routine. 24119 * 24120 * NOTE : This routine does not ire_refrele the ire that is passed in 24121 * as the argument. 24122 */ 24123 static void 24124 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24125 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24126 { 24127 int i1; 24128 mblk_t *ll_hdr_mp; 24129 int ll_hdr_len; 24130 int hdr_len; 24131 mblk_t *hdr_mp; 24132 ipha_t *ipha; 24133 int ip_data_end; 24134 int len; 24135 mblk_t *mp = mp_orig, *mp1; 24136 int offset; 24137 queue_t *q; 24138 uint32_t v_hlen_tos_len; 24139 mblk_t *first_mp; 24140 boolean_t mctl_present; 24141 ill_t *ill; 24142 ill_t *out_ill; 24143 mblk_t *xmit_mp; 24144 mblk_t *carve_mp; 24145 ire_t *ire1 = NULL; 24146 ire_t *save_ire = NULL; 24147 mblk_t *next_mp = NULL; 24148 boolean_t last_frag = B_FALSE; 24149 boolean_t multirt_send = B_FALSE; 24150 ire_t *first_ire = NULL; 24151 irb_t *irb = NULL; 24152 mib2_ipIfStatsEntry_t *mibptr = NULL; 24153 24154 ill = ire_to_ill(ire); 24155 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24156 24157 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24158 24159 if (max_frag == 0) { 24160 ip1dbg(("ip_wput_frag: ire frag size is 0" 24161 " - dropping packet\n")); 24162 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24163 freemsg(mp); 24164 return; 24165 } 24166 24167 /* 24168 * IPsec does not allow hw accelerated packets to be fragmented 24169 * This check is made in ip_wput_ipsec_out prior to coming here 24170 * via ip_wput_ire_fragmentit. 24171 * 24172 * If at this point we have an ire whose ARP request has not 24173 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24174 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24175 * This packet and all fragmentable packets for this ire will 24176 * continue to get dropped while ire_nce->nce_state remains in 24177 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24178 * ND_REACHABLE, all subsquent large packets for this ire will 24179 * get fragemented and sent out by this function. 24180 */ 24181 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24182 /* If nce_state is ND_INITIAL, trigger ARP query */ 24183 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24184 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24185 " - dropping packet\n")); 24186 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24187 freemsg(mp); 24188 return; 24189 } 24190 24191 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24192 "ip_wput_frag_start:"); 24193 24194 if (mp->b_datap->db_type == M_CTL) { 24195 first_mp = mp; 24196 mp_orig = mp = mp->b_cont; 24197 mctl_present = B_TRUE; 24198 } else { 24199 first_mp = mp; 24200 mctl_present = B_FALSE; 24201 } 24202 24203 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24204 ipha = (ipha_t *)mp->b_rptr; 24205 24206 /* 24207 * If the Don't Fragment flag is on, generate an ICMP destination 24208 * unreachable, fragmentation needed. 24209 */ 24210 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24211 if (offset & IPH_DF) { 24212 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24213 if (is_system_labeled()) { 24214 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24215 ire->ire_max_frag - max_frag, AF_INET); 24216 } 24217 /* 24218 * Need to compute hdr checksum if called from ip_wput_ire. 24219 * Note that ip_rput_forward verifies the checksum before 24220 * calling this routine so in that case this is a noop. 24221 */ 24222 ipha->ipha_hdr_checksum = 0; 24223 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24224 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24225 ipst); 24226 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24227 "ip_wput_frag_end:(%S)", 24228 "don't fragment"); 24229 return; 24230 } 24231 /* 24232 * Labeled systems adjust max_frag if they add a label 24233 * to send the correct path mtu. We need the real mtu since we 24234 * are fragmenting the packet after label adjustment. 24235 */ 24236 if (is_system_labeled()) 24237 max_frag = ire->ire_max_frag; 24238 if (mctl_present) 24239 freeb(first_mp); 24240 /* 24241 * Establish the starting offset. May not be zero if we are fragging 24242 * a fragment that is being forwarded. 24243 */ 24244 offset = offset & IPH_OFFSET; 24245 24246 /* TODO why is this test needed? */ 24247 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24248 if (((max_frag - LENGTH) & ~7) < 8) { 24249 /* TODO: notify ulp somehow */ 24250 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24251 freemsg(mp); 24252 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24253 "ip_wput_frag_end:(%S)", 24254 "len < 8"); 24255 return; 24256 } 24257 24258 hdr_len = (V_HLEN & 0xF) << 2; 24259 24260 ipha->ipha_hdr_checksum = 0; 24261 24262 /* 24263 * Establish the number of bytes maximum per frag, after putting 24264 * in the header. 24265 */ 24266 len = (max_frag - hdr_len) & ~7; 24267 24268 /* Check if we can use MDT to send out the frags. */ 24269 ASSERT(!IRE_IS_LOCAL(ire)); 24270 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24271 ipst->ips_ip_multidata_outbound && 24272 !(ire->ire_flags & RTF_MULTIRT) && 24273 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24274 ill != NULL && ILL_MDT_CAPABLE(ill) && 24275 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24276 ASSERT(ill->ill_mdt_capab != NULL); 24277 if (!ill->ill_mdt_capab->ill_mdt_on) { 24278 /* 24279 * If MDT has been previously turned off in the past, 24280 * and we currently can do MDT (due to IPQoS policy 24281 * removal, etc.) then enable it for this interface. 24282 */ 24283 ill->ill_mdt_capab->ill_mdt_on = 1; 24284 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24285 ill->ill_name)); 24286 } 24287 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24288 offset); 24289 return; 24290 } 24291 24292 /* Get a copy of the header for the trailing frags */ 24293 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24294 if (!hdr_mp) { 24295 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24296 freemsg(mp); 24297 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24298 "ip_wput_frag_end:(%S)", 24299 "couldn't copy hdr"); 24300 return; 24301 } 24302 if (DB_CRED(mp) != NULL) 24303 mblk_setcred(hdr_mp, DB_CRED(mp)); 24304 24305 /* Store the starting offset, with the MoreFrags flag. */ 24306 i1 = offset | IPH_MF | frag_flag; 24307 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24308 24309 /* Establish the ending byte offset, based on the starting offset. */ 24310 offset <<= 3; 24311 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24312 24313 /* Store the length of the first fragment in the IP header. */ 24314 i1 = len + hdr_len; 24315 ASSERT(i1 <= IP_MAXPACKET); 24316 ipha->ipha_length = htons((uint16_t)i1); 24317 24318 /* 24319 * Compute the IP header checksum for the first frag. We have to 24320 * watch out that we stop at the end of the header. 24321 */ 24322 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24323 24324 /* 24325 * Now carve off the first frag. Note that this will include the 24326 * original IP header. 24327 */ 24328 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24329 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24330 freeb(hdr_mp); 24331 freemsg(mp_orig); 24332 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24333 "ip_wput_frag_end:(%S)", 24334 "couldn't carve first"); 24335 return; 24336 } 24337 24338 /* 24339 * Multirouting case. Each fragment is replicated 24340 * via all non-condemned RTF_MULTIRT routes 24341 * currently resolved. 24342 * We ensure that first_ire is the first RTF_MULTIRT 24343 * ire in the bucket. 24344 */ 24345 if (ire->ire_flags & RTF_MULTIRT) { 24346 irb = ire->ire_bucket; 24347 ASSERT(irb != NULL); 24348 24349 multirt_send = B_TRUE; 24350 24351 /* Make sure we do not omit any multiroute ire. */ 24352 IRB_REFHOLD(irb); 24353 for (first_ire = irb->irb_ire; 24354 first_ire != NULL; 24355 first_ire = first_ire->ire_next) { 24356 if ((first_ire->ire_flags & RTF_MULTIRT) && 24357 (first_ire->ire_addr == ire->ire_addr) && 24358 !(first_ire->ire_marks & 24359 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24360 break; 24361 } 24362 } 24363 24364 if (first_ire != NULL) { 24365 if (first_ire != ire) { 24366 IRE_REFHOLD(first_ire); 24367 /* 24368 * Do not release the ire passed in 24369 * as the argument. 24370 */ 24371 ire = first_ire; 24372 } else { 24373 first_ire = NULL; 24374 } 24375 } 24376 IRB_REFRELE(irb); 24377 24378 /* 24379 * Save the first ire; we will need to restore it 24380 * for the trailing frags. 24381 * We REFHOLD save_ire, as each iterated ire will be 24382 * REFRELEd. 24383 */ 24384 save_ire = ire; 24385 IRE_REFHOLD(save_ire); 24386 } 24387 24388 /* 24389 * First fragment emission loop. 24390 * In most cases, the emission loop below is entered only 24391 * once. Only in the case where the ire holds the RTF_MULTIRT 24392 * flag, do we loop to process all RTF_MULTIRT ires in the 24393 * bucket, and send the fragment through all crossed 24394 * RTF_MULTIRT routes. 24395 */ 24396 do { 24397 if (ire->ire_flags & RTF_MULTIRT) { 24398 /* 24399 * We are in a multiple send case, need to get 24400 * the next ire and make a copy of the packet. 24401 * ire1 holds here the next ire to process in the 24402 * bucket. If multirouting is expected, 24403 * any non-RTF_MULTIRT ire that has the 24404 * right destination address is ignored. 24405 * 24406 * We have to take into account the MTU of 24407 * each walked ire. max_frag is set by the 24408 * the caller and generally refers to 24409 * the primary ire entry. Here we ensure that 24410 * no route with a lower MTU will be used, as 24411 * fragments are carved once for all ires, 24412 * then replicated. 24413 */ 24414 ASSERT(irb != NULL); 24415 IRB_REFHOLD(irb); 24416 for (ire1 = ire->ire_next; 24417 ire1 != NULL; 24418 ire1 = ire1->ire_next) { 24419 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24420 continue; 24421 if (ire1->ire_addr != ire->ire_addr) 24422 continue; 24423 if (ire1->ire_marks & 24424 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24425 continue; 24426 /* 24427 * Ensure we do not exceed the MTU 24428 * of the next route. 24429 */ 24430 if (ire1->ire_max_frag < max_frag) { 24431 ip_multirt_bad_mtu(ire1, max_frag); 24432 continue; 24433 } 24434 24435 /* Got one. */ 24436 IRE_REFHOLD(ire1); 24437 break; 24438 } 24439 IRB_REFRELE(irb); 24440 24441 if (ire1 != NULL) { 24442 next_mp = copyb(mp); 24443 if ((next_mp == NULL) || 24444 ((mp->b_cont != NULL) && 24445 ((next_mp->b_cont = 24446 dupmsg(mp->b_cont)) == NULL))) { 24447 freemsg(next_mp); 24448 next_mp = NULL; 24449 ire_refrele(ire1); 24450 ire1 = NULL; 24451 } 24452 } 24453 24454 /* Last multiroute ire; don't loop anymore. */ 24455 if (ire1 == NULL) { 24456 multirt_send = B_FALSE; 24457 } 24458 } 24459 24460 ll_hdr_len = 0; 24461 LOCK_IRE_FP_MP(ire); 24462 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24463 if (ll_hdr_mp != NULL) { 24464 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24465 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24466 } else { 24467 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24468 } 24469 24470 /* If there is a transmit header, get a copy for this frag. */ 24471 /* 24472 * TODO: should check db_ref before calling ip_carve_mp since 24473 * it might give us a dup. 24474 */ 24475 if (!ll_hdr_mp) { 24476 /* No xmit header. */ 24477 xmit_mp = mp; 24478 24479 /* We have a link-layer header that can fit in our mblk. */ 24480 } else if (mp->b_datap->db_ref == 1 && 24481 ll_hdr_len != 0 && 24482 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24483 /* M_DATA fastpath */ 24484 mp->b_rptr -= ll_hdr_len; 24485 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24486 xmit_mp = mp; 24487 24488 /* Corner case if copyb has failed */ 24489 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24490 UNLOCK_IRE_FP_MP(ire); 24491 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24492 freeb(hdr_mp); 24493 freemsg(mp); 24494 freemsg(mp_orig); 24495 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24496 "ip_wput_frag_end:(%S)", 24497 "discard"); 24498 24499 if (multirt_send) { 24500 ASSERT(ire1); 24501 ASSERT(next_mp); 24502 24503 freemsg(next_mp); 24504 ire_refrele(ire1); 24505 } 24506 if (save_ire != NULL) 24507 IRE_REFRELE(save_ire); 24508 24509 if (first_ire != NULL) 24510 ire_refrele(first_ire); 24511 return; 24512 24513 /* 24514 * Case of res_mp OR the fastpath mp can't fit 24515 * in the mblk 24516 */ 24517 } else { 24518 xmit_mp->b_cont = mp; 24519 if (DB_CRED(mp) != NULL) 24520 mblk_setcred(xmit_mp, DB_CRED(mp)); 24521 /* 24522 * Get priority marking, if any. 24523 * We propagate the CoS marking from the 24524 * original packet that went to QoS processing 24525 * in ip_wput_ire to the newly carved mp. 24526 */ 24527 if (DB_TYPE(xmit_mp) == M_DATA) 24528 xmit_mp->b_band = mp->b_band; 24529 } 24530 UNLOCK_IRE_FP_MP(ire); 24531 24532 q = ire->ire_stq; 24533 out_ill = (ill_t *)q->q_ptr; 24534 24535 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24536 24537 DTRACE_PROBE4(ip4__physical__out__start, 24538 ill_t *, NULL, ill_t *, out_ill, 24539 ipha_t *, ipha, mblk_t *, xmit_mp); 24540 24541 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24542 ipst->ips_ipv4firewall_physical_out, 24543 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24544 24545 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24546 24547 if (xmit_mp != NULL) { 24548 putnext(q, xmit_mp); 24549 24550 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24551 UPDATE_MIB(out_ill->ill_ip_mib, 24552 ipIfStatsHCOutOctets, i1); 24553 24554 if (pkt_type != OB_PKT) { 24555 /* 24556 * Update the packet count and MIB stats 24557 * of trailing RTF_MULTIRT ires. 24558 */ 24559 UPDATE_OB_PKT_COUNT(ire); 24560 BUMP_MIB(out_ill->ill_ip_mib, 24561 ipIfStatsOutFragReqds); 24562 } 24563 } 24564 24565 if (multirt_send) { 24566 /* 24567 * We are in a multiple send case; look for 24568 * the next ire and re-enter the loop. 24569 */ 24570 ASSERT(ire1); 24571 ASSERT(next_mp); 24572 /* REFRELE the current ire before looping */ 24573 ire_refrele(ire); 24574 ire = ire1; 24575 ire1 = NULL; 24576 mp = next_mp; 24577 next_mp = NULL; 24578 } 24579 } while (multirt_send); 24580 24581 ASSERT(ire1 == NULL); 24582 24583 /* Restore the original ire; we need it for the trailing frags */ 24584 if (save_ire != NULL) { 24585 /* REFRELE the last iterated ire */ 24586 ire_refrele(ire); 24587 /* save_ire has been REFHOLDed */ 24588 ire = save_ire; 24589 save_ire = NULL; 24590 q = ire->ire_stq; 24591 } 24592 24593 if (pkt_type == OB_PKT) { 24594 UPDATE_OB_PKT_COUNT(ire); 24595 } else { 24596 out_ill = (ill_t *)q->q_ptr; 24597 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24598 UPDATE_IB_PKT_COUNT(ire); 24599 } 24600 24601 /* Advance the offset to the second frag starting point. */ 24602 offset += len; 24603 /* 24604 * Update hdr_len from the copied header - there might be less options 24605 * in the later fragments. 24606 */ 24607 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24608 /* Loop until done. */ 24609 for (;;) { 24610 uint16_t offset_and_flags; 24611 uint16_t ip_len; 24612 24613 if (ip_data_end - offset > len) { 24614 /* 24615 * Carve off the appropriate amount from the original 24616 * datagram. 24617 */ 24618 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24619 mp = NULL; 24620 break; 24621 } 24622 /* 24623 * More frags after this one. Get another copy 24624 * of the header. 24625 */ 24626 if (carve_mp->b_datap->db_ref == 1 && 24627 hdr_mp->b_wptr - hdr_mp->b_rptr < 24628 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24629 /* Inline IP header */ 24630 carve_mp->b_rptr -= hdr_mp->b_wptr - 24631 hdr_mp->b_rptr; 24632 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24633 hdr_mp->b_wptr - hdr_mp->b_rptr); 24634 mp = carve_mp; 24635 } else { 24636 if (!(mp = copyb(hdr_mp))) { 24637 freemsg(carve_mp); 24638 break; 24639 } 24640 /* Get priority marking, if any. */ 24641 mp->b_band = carve_mp->b_band; 24642 mp->b_cont = carve_mp; 24643 } 24644 ipha = (ipha_t *)mp->b_rptr; 24645 offset_and_flags = IPH_MF; 24646 } else { 24647 /* 24648 * Last frag. Consume the header. Set len to 24649 * the length of this last piece. 24650 */ 24651 len = ip_data_end - offset; 24652 24653 /* 24654 * Carve off the appropriate amount from the original 24655 * datagram. 24656 */ 24657 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24658 mp = NULL; 24659 break; 24660 } 24661 if (carve_mp->b_datap->db_ref == 1 && 24662 hdr_mp->b_wptr - hdr_mp->b_rptr < 24663 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24664 /* Inline IP header */ 24665 carve_mp->b_rptr -= hdr_mp->b_wptr - 24666 hdr_mp->b_rptr; 24667 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24668 hdr_mp->b_wptr - hdr_mp->b_rptr); 24669 mp = carve_mp; 24670 freeb(hdr_mp); 24671 hdr_mp = mp; 24672 } else { 24673 mp = hdr_mp; 24674 /* Get priority marking, if any. */ 24675 mp->b_band = carve_mp->b_band; 24676 mp->b_cont = carve_mp; 24677 } 24678 ipha = (ipha_t *)mp->b_rptr; 24679 /* A frag of a frag might have IPH_MF non-zero */ 24680 offset_and_flags = 24681 ntohs(ipha->ipha_fragment_offset_and_flags) & 24682 IPH_MF; 24683 } 24684 offset_and_flags |= (uint16_t)(offset >> 3); 24685 offset_and_flags |= (uint16_t)frag_flag; 24686 /* Store the offset and flags in the IP header. */ 24687 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24688 24689 /* Store the length in the IP header. */ 24690 ip_len = (uint16_t)(len + hdr_len); 24691 ipha->ipha_length = htons(ip_len); 24692 24693 /* 24694 * Set the IP header checksum. Note that mp is just 24695 * the header, so this is easy to pass to ip_csum. 24696 */ 24697 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24698 24699 /* Attach a transmit header, if any, and ship it. */ 24700 if (pkt_type == OB_PKT) { 24701 UPDATE_OB_PKT_COUNT(ire); 24702 } else { 24703 out_ill = (ill_t *)q->q_ptr; 24704 BUMP_MIB(out_ill->ill_ip_mib, 24705 ipIfStatsHCOutForwDatagrams); 24706 UPDATE_IB_PKT_COUNT(ire); 24707 } 24708 24709 if (ire->ire_flags & RTF_MULTIRT) { 24710 irb = ire->ire_bucket; 24711 ASSERT(irb != NULL); 24712 24713 multirt_send = B_TRUE; 24714 24715 /* 24716 * Save the original ire; we will need to restore it 24717 * for the tailing frags. 24718 */ 24719 save_ire = ire; 24720 IRE_REFHOLD(save_ire); 24721 } 24722 /* 24723 * Emission loop for this fragment, similar 24724 * to what is done for the first fragment. 24725 */ 24726 do { 24727 if (multirt_send) { 24728 /* 24729 * We are in a multiple send case, need to get 24730 * the next ire and make a copy of the packet. 24731 */ 24732 ASSERT(irb != NULL); 24733 IRB_REFHOLD(irb); 24734 for (ire1 = ire->ire_next; 24735 ire1 != NULL; 24736 ire1 = ire1->ire_next) { 24737 if (!(ire1->ire_flags & RTF_MULTIRT)) 24738 continue; 24739 if (ire1->ire_addr != ire->ire_addr) 24740 continue; 24741 if (ire1->ire_marks & 24742 (IRE_MARK_CONDEMNED| 24743 IRE_MARK_HIDDEN)) { 24744 continue; 24745 } 24746 /* 24747 * Ensure we do not exceed the MTU 24748 * of the next route. 24749 */ 24750 if (ire1->ire_max_frag < max_frag) { 24751 ip_multirt_bad_mtu(ire1, 24752 max_frag); 24753 continue; 24754 } 24755 24756 /* Got one. */ 24757 IRE_REFHOLD(ire1); 24758 break; 24759 } 24760 IRB_REFRELE(irb); 24761 24762 if (ire1 != NULL) { 24763 next_mp = copyb(mp); 24764 if ((next_mp == NULL) || 24765 ((mp->b_cont != NULL) && 24766 ((next_mp->b_cont = 24767 dupmsg(mp->b_cont)) == NULL))) { 24768 freemsg(next_mp); 24769 next_mp = NULL; 24770 ire_refrele(ire1); 24771 ire1 = NULL; 24772 } 24773 } 24774 24775 /* Last multiroute ire; don't loop anymore. */ 24776 if (ire1 == NULL) { 24777 multirt_send = B_FALSE; 24778 } 24779 } 24780 24781 /* Update transmit header */ 24782 ll_hdr_len = 0; 24783 LOCK_IRE_FP_MP(ire); 24784 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24785 if (ll_hdr_mp != NULL) { 24786 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24787 ll_hdr_len = MBLKL(ll_hdr_mp); 24788 } else { 24789 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24790 } 24791 24792 if (!ll_hdr_mp) { 24793 xmit_mp = mp; 24794 24795 /* 24796 * We have link-layer header that can fit in 24797 * our mblk. 24798 */ 24799 } else if (mp->b_datap->db_ref == 1 && 24800 ll_hdr_len != 0 && 24801 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24802 /* M_DATA fastpath */ 24803 mp->b_rptr -= ll_hdr_len; 24804 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24805 ll_hdr_len); 24806 xmit_mp = mp; 24807 24808 /* 24809 * Case of res_mp OR the fastpath mp can't fit 24810 * in the mblk 24811 */ 24812 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24813 xmit_mp->b_cont = mp; 24814 if (DB_CRED(mp) != NULL) 24815 mblk_setcred(xmit_mp, DB_CRED(mp)); 24816 /* Get priority marking, if any. */ 24817 if (DB_TYPE(xmit_mp) == M_DATA) 24818 xmit_mp->b_band = mp->b_band; 24819 24820 /* Corner case if copyb failed */ 24821 } else { 24822 /* 24823 * Exit both the replication and 24824 * fragmentation loops. 24825 */ 24826 UNLOCK_IRE_FP_MP(ire); 24827 goto drop_pkt; 24828 } 24829 UNLOCK_IRE_FP_MP(ire); 24830 24831 mp1 = mp; 24832 out_ill = (ill_t *)q->q_ptr; 24833 24834 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24835 24836 DTRACE_PROBE4(ip4__physical__out__start, 24837 ill_t *, NULL, ill_t *, out_ill, 24838 ipha_t *, ipha, mblk_t *, xmit_mp); 24839 24840 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24841 ipst->ips_ipv4firewall_physical_out, 24842 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24843 24844 DTRACE_PROBE1(ip4__physical__out__end, 24845 mblk_t *, xmit_mp); 24846 24847 if (mp != mp1 && hdr_mp == mp1) 24848 hdr_mp = mp; 24849 if (mp != mp1 && mp_orig == mp1) 24850 mp_orig = mp; 24851 24852 if (xmit_mp != NULL) { 24853 putnext(q, xmit_mp); 24854 24855 BUMP_MIB(out_ill->ill_ip_mib, 24856 ipIfStatsHCOutTransmits); 24857 UPDATE_MIB(out_ill->ill_ip_mib, 24858 ipIfStatsHCOutOctets, ip_len); 24859 24860 if (pkt_type != OB_PKT) { 24861 /* 24862 * Update the packet count of trailing 24863 * RTF_MULTIRT ires. 24864 */ 24865 UPDATE_OB_PKT_COUNT(ire); 24866 } 24867 } 24868 24869 /* All done if we just consumed the hdr_mp. */ 24870 if (mp == hdr_mp) { 24871 last_frag = B_TRUE; 24872 BUMP_MIB(out_ill->ill_ip_mib, 24873 ipIfStatsOutFragOKs); 24874 } 24875 24876 if (multirt_send) { 24877 /* 24878 * We are in a multiple send case; look for 24879 * the next ire and re-enter the loop. 24880 */ 24881 ASSERT(ire1); 24882 ASSERT(next_mp); 24883 /* REFRELE the current ire before looping */ 24884 ire_refrele(ire); 24885 ire = ire1; 24886 ire1 = NULL; 24887 q = ire->ire_stq; 24888 mp = next_mp; 24889 next_mp = NULL; 24890 } 24891 } while (multirt_send); 24892 /* 24893 * Restore the original ire; we need it for the 24894 * trailing frags 24895 */ 24896 if (save_ire != NULL) { 24897 ASSERT(ire1 == NULL); 24898 /* REFRELE the last iterated ire */ 24899 ire_refrele(ire); 24900 /* save_ire has been REFHOLDed */ 24901 ire = save_ire; 24902 q = ire->ire_stq; 24903 save_ire = NULL; 24904 } 24905 24906 if (last_frag) { 24907 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24908 "ip_wput_frag_end:(%S)", 24909 "consumed hdr_mp"); 24910 24911 if (first_ire != NULL) 24912 ire_refrele(first_ire); 24913 return; 24914 } 24915 /* Otherwise, advance and loop. */ 24916 offset += len; 24917 } 24918 24919 drop_pkt: 24920 /* Clean up following allocation failure. */ 24921 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24922 freemsg(mp); 24923 if (mp != hdr_mp) 24924 freeb(hdr_mp); 24925 if (mp != mp_orig) 24926 freemsg(mp_orig); 24927 24928 if (save_ire != NULL) 24929 IRE_REFRELE(save_ire); 24930 if (first_ire != NULL) 24931 ire_refrele(first_ire); 24932 24933 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24934 "ip_wput_frag_end:(%S)", 24935 "end--alloc failure"); 24936 } 24937 24938 /* 24939 * Copy the header plus those options which have the copy bit set 24940 */ 24941 static mblk_t * 24942 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24943 { 24944 mblk_t *mp; 24945 uchar_t *up; 24946 24947 /* 24948 * Quick check if we need to look for options without the copy bit 24949 * set 24950 */ 24951 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24952 if (!mp) 24953 return (mp); 24954 mp->b_rptr += ipst->ips_ip_wroff_extra; 24955 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24956 bcopy(rptr, mp->b_rptr, hdr_len); 24957 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24958 return (mp); 24959 } 24960 up = mp->b_rptr; 24961 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24962 up += IP_SIMPLE_HDR_LENGTH; 24963 rptr += IP_SIMPLE_HDR_LENGTH; 24964 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24965 while (hdr_len > 0) { 24966 uint32_t optval; 24967 uint32_t optlen; 24968 24969 optval = *rptr; 24970 if (optval == IPOPT_EOL) 24971 break; 24972 if (optval == IPOPT_NOP) 24973 optlen = 1; 24974 else 24975 optlen = rptr[1]; 24976 if (optval & IPOPT_COPY) { 24977 bcopy(rptr, up, optlen); 24978 up += optlen; 24979 } 24980 rptr += optlen; 24981 hdr_len -= optlen; 24982 } 24983 /* 24984 * Make sure that we drop an even number of words by filling 24985 * with EOL to the next word boundary. 24986 */ 24987 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24988 hdr_len & 0x3; hdr_len++) 24989 *up++ = IPOPT_EOL; 24990 mp->b_wptr = up; 24991 /* Update header length */ 24992 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24993 return (mp); 24994 } 24995 24996 /* 24997 * Delivery to local recipients including fanout to multiple recipients. 24998 * Does not do checksumming of UDP/TCP. 24999 * Note: q should be the read side queue for either the ill or conn. 25000 * Note: rq should be the read side q for the lower (ill) stream. 25001 * We don't send packets to IPPF processing, thus the last argument 25002 * to all the fanout calls are B_FALSE. 25003 */ 25004 void 25005 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25006 int fanout_flags, zoneid_t zoneid) 25007 { 25008 uint32_t protocol; 25009 mblk_t *first_mp; 25010 boolean_t mctl_present; 25011 int ire_type; 25012 #define rptr ((uchar_t *)ipha) 25013 ip_stack_t *ipst = ill->ill_ipst; 25014 25015 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25016 "ip_wput_local_start: q %p", q); 25017 25018 if (ire != NULL) { 25019 ire_type = ire->ire_type; 25020 } else { 25021 /* 25022 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25023 * packet is not multicast, we can't tell the ire type. 25024 */ 25025 ASSERT(CLASSD(ipha->ipha_dst)); 25026 ire_type = IRE_BROADCAST; 25027 } 25028 25029 first_mp = mp; 25030 if (first_mp->b_datap->db_type == M_CTL) { 25031 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25032 if (!io->ipsec_out_secure) { 25033 /* 25034 * This ipsec_out_t was allocated in ip_wput 25035 * for multicast packets to store the ill_index. 25036 * As this is being delivered locally, we don't 25037 * need this anymore. 25038 */ 25039 mp = first_mp->b_cont; 25040 freeb(first_mp); 25041 first_mp = mp; 25042 mctl_present = B_FALSE; 25043 } else { 25044 /* 25045 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25046 * security properties for the looped-back packet. 25047 */ 25048 mctl_present = B_TRUE; 25049 mp = first_mp->b_cont; 25050 ASSERT(mp != NULL); 25051 ipsec_out_to_in(first_mp); 25052 } 25053 } else { 25054 mctl_present = B_FALSE; 25055 } 25056 25057 DTRACE_PROBE4(ip4__loopback__in__start, 25058 ill_t *, ill, ill_t *, NULL, 25059 ipha_t *, ipha, mblk_t *, first_mp); 25060 25061 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25062 ipst->ips_ipv4firewall_loopback_in, 25063 ill, NULL, ipha, first_mp, mp, 0, ipst); 25064 25065 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25066 25067 if (first_mp == NULL) 25068 return; 25069 25070 ipst->ips_loopback_packets++; 25071 25072 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25073 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25074 if (!IS_SIMPLE_IPH(ipha)) { 25075 ip_wput_local_options(ipha, ipst); 25076 } 25077 25078 protocol = ipha->ipha_protocol; 25079 switch (protocol) { 25080 case IPPROTO_ICMP: { 25081 ire_t *ire_zone; 25082 ilm_t *ilm; 25083 mblk_t *mp1; 25084 zoneid_t last_zoneid; 25085 25086 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25087 ASSERT(ire_type == IRE_BROADCAST); 25088 /* 25089 * In the multicast case, applications may have joined 25090 * the group from different zones, so we need to deliver 25091 * the packet to each of them. Loop through the 25092 * multicast memberships structures (ilm) on the receive 25093 * ill and send a copy of the packet up each matching 25094 * one. However, we don't do this for multicasts sent on 25095 * the loopback interface (PHYI_LOOPBACK flag set) as 25096 * they must stay in the sender's zone. 25097 * 25098 * ilm_add_v6() ensures that ilms in the same zone are 25099 * contiguous in the ill_ilm list. We use this property 25100 * to avoid sending duplicates needed when two 25101 * applications in the same zone join the same group on 25102 * different logical interfaces: we ignore the ilm if 25103 * it's zoneid is the same as the last matching one. 25104 * In addition, the sending of the packet for 25105 * ire_zoneid is delayed until all of the other ilms 25106 * have been exhausted. 25107 */ 25108 last_zoneid = -1; 25109 ILM_WALKER_HOLD(ill); 25110 for (ilm = ill->ill_ilm; ilm != NULL; 25111 ilm = ilm->ilm_next) { 25112 if ((ilm->ilm_flags & ILM_DELETED) || 25113 ipha->ipha_dst != ilm->ilm_addr || 25114 ilm->ilm_zoneid == last_zoneid || 25115 ilm->ilm_zoneid == zoneid || 25116 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25117 continue; 25118 mp1 = ip_copymsg(first_mp); 25119 if (mp1 == NULL) 25120 continue; 25121 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25122 mctl_present, B_FALSE, ill, 25123 ilm->ilm_zoneid); 25124 last_zoneid = ilm->ilm_zoneid; 25125 } 25126 ILM_WALKER_RELE(ill); 25127 /* 25128 * Loopback case: the sending endpoint has 25129 * IP_MULTICAST_LOOP disabled, therefore we don't 25130 * dispatch the multicast packet to the sending zone. 25131 */ 25132 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25133 freemsg(first_mp); 25134 return; 25135 } 25136 } else if (ire_type == IRE_BROADCAST) { 25137 /* 25138 * In the broadcast case, there may be many zones 25139 * which need a copy of the packet delivered to them. 25140 * There is one IRE_BROADCAST per broadcast address 25141 * and per zone; we walk those using a helper function. 25142 * In addition, the sending of the packet for zoneid is 25143 * delayed until all of the other ires have been 25144 * processed. 25145 */ 25146 IRB_REFHOLD(ire->ire_bucket); 25147 ire_zone = NULL; 25148 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25149 ire)) != NULL) { 25150 mp1 = ip_copymsg(first_mp); 25151 if (mp1 == NULL) 25152 continue; 25153 25154 UPDATE_IB_PKT_COUNT(ire_zone); 25155 ire_zone->ire_last_used_time = lbolt; 25156 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25157 mctl_present, B_FALSE, ill, 25158 ire_zone->ire_zoneid); 25159 } 25160 IRB_REFRELE(ire->ire_bucket); 25161 } 25162 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25163 0, mctl_present, B_FALSE, ill, zoneid); 25164 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25165 "ip_wput_local_end: q %p (%S)", 25166 q, "icmp"); 25167 return; 25168 } 25169 case IPPROTO_IGMP: 25170 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25171 /* Bad packet - discarded by igmp_input */ 25172 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25173 "ip_wput_local_end: q %p (%S)", 25174 q, "igmp_input--bad packet"); 25175 if (mctl_present) 25176 freeb(first_mp); 25177 return; 25178 } 25179 /* 25180 * igmp_input() may have returned the pulled up message. 25181 * So first_mp and ipha need to be reinitialized. 25182 */ 25183 ipha = (ipha_t *)mp->b_rptr; 25184 if (mctl_present) 25185 first_mp->b_cont = mp; 25186 else 25187 first_mp = mp; 25188 /* deliver to local raw users */ 25189 break; 25190 case IPPROTO_ENCAP: 25191 /* 25192 * This case is covered by either ip_fanout_proto, or by 25193 * the above security processing for self-tunneled packets. 25194 */ 25195 break; 25196 case IPPROTO_UDP: { 25197 uint16_t *up; 25198 uint32_t ports; 25199 25200 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25201 UDP_PORTS_OFFSET); 25202 /* Force a 'valid' checksum. */ 25203 up[3] = 0; 25204 25205 ports = *(uint32_t *)up; 25206 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25207 (ire_type == IRE_BROADCAST), 25208 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25209 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25210 ill, zoneid); 25211 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25212 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25213 return; 25214 } 25215 case IPPROTO_TCP: { 25216 25217 /* 25218 * For TCP, discard broadcast packets. 25219 */ 25220 if ((ushort_t)ire_type == IRE_BROADCAST) { 25221 freemsg(first_mp); 25222 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25223 ip2dbg(("ip_wput_local: discard broadcast\n")); 25224 return; 25225 } 25226 25227 if (mp->b_datap->db_type == M_DATA) { 25228 /* 25229 * M_DATA mblk, so init mblk (chain) for no struio(). 25230 */ 25231 mblk_t *mp1 = mp; 25232 25233 do { 25234 mp1->b_datap->db_struioflag = 0; 25235 } while ((mp1 = mp1->b_cont) != NULL); 25236 } 25237 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25238 <= mp->b_wptr); 25239 ip_fanout_tcp(q, first_mp, ill, ipha, 25240 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25241 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25242 mctl_present, B_FALSE, zoneid); 25243 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25244 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25245 return; 25246 } 25247 case IPPROTO_SCTP: 25248 { 25249 uint32_t ports; 25250 25251 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25252 ip_fanout_sctp(first_mp, ill, ipha, ports, 25253 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25254 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25255 return; 25256 } 25257 25258 default: 25259 break; 25260 } 25261 /* 25262 * Find a client for some other protocol. We give 25263 * copies to multiple clients, if more than one is 25264 * bound. 25265 */ 25266 ip_fanout_proto(q, first_mp, ill, ipha, 25267 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25268 mctl_present, B_FALSE, ill, zoneid); 25269 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25270 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25271 #undef rptr 25272 } 25273 25274 /* 25275 * Update any source route, record route, or timestamp options. 25276 * Check that we are at end of strict source route. 25277 * The options have been sanity checked by ip_wput_options(). 25278 */ 25279 static void 25280 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25281 { 25282 ipoptp_t opts; 25283 uchar_t *opt; 25284 uint8_t optval; 25285 uint8_t optlen; 25286 ipaddr_t dst; 25287 uint32_t ts; 25288 ire_t *ire; 25289 timestruc_t now; 25290 25291 ip2dbg(("ip_wput_local_options\n")); 25292 for (optval = ipoptp_first(&opts, ipha); 25293 optval != IPOPT_EOL; 25294 optval = ipoptp_next(&opts)) { 25295 opt = opts.ipoptp_cur; 25296 optlen = opts.ipoptp_len; 25297 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25298 switch (optval) { 25299 uint32_t off; 25300 case IPOPT_SSRR: 25301 case IPOPT_LSRR: 25302 off = opt[IPOPT_OFFSET]; 25303 off--; 25304 if (optlen < IP_ADDR_LEN || 25305 off > optlen - IP_ADDR_LEN) { 25306 /* End of source route */ 25307 break; 25308 } 25309 /* 25310 * This will only happen if two consecutive entries 25311 * in the source route contains our address or if 25312 * it is a packet with a loose source route which 25313 * reaches us before consuming the whole source route 25314 */ 25315 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25316 if (optval == IPOPT_SSRR) { 25317 return; 25318 } 25319 /* 25320 * Hack: instead of dropping the packet truncate the 25321 * source route to what has been used by filling the 25322 * rest with IPOPT_NOP. 25323 */ 25324 opt[IPOPT_OLEN] = (uint8_t)off; 25325 while (off < optlen) { 25326 opt[off++] = IPOPT_NOP; 25327 } 25328 break; 25329 case IPOPT_RR: 25330 off = opt[IPOPT_OFFSET]; 25331 off--; 25332 if (optlen < IP_ADDR_LEN || 25333 off > optlen - IP_ADDR_LEN) { 25334 /* No more room - ignore */ 25335 ip1dbg(( 25336 "ip_wput_forward_options: end of RR\n")); 25337 break; 25338 } 25339 dst = htonl(INADDR_LOOPBACK); 25340 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25341 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25342 break; 25343 case IPOPT_TS: 25344 /* Insert timestamp if there is romm */ 25345 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25346 case IPOPT_TS_TSONLY: 25347 off = IPOPT_TS_TIMELEN; 25348 break; 25349 case IPOPT_TS_PRESPEC: 25350 case IPOPT_TS_PRESPEC_RFC791: 25351 /* Verify that the address matched */ 25352 off = opt[IPOPT_OFFSET] - 1; 25353 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25354 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25355 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25356 ipst); 25357 if (ire == NULL) { 25358 /* Not for us */ 25359 break; 25360 } 25361 ire_refrele(ire); 25362 /* FALLTHRU */ 25363 case IPOPT_TS_TSANDADDR: 25364 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25365 break; 25366 default: 25367 /* 25368 * ip_*put_options should have already 25369 * dropped this packet. 25370 */ 25371 cmn_err(CE_PANIC, "ip_wput_local_options: " 25372 "unknown IT - bug in ip_wput_options?\n"); 25373 return; /* Keep "lint" happy */ 25374 } 25375 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25376 /* Increase overflow counter */ 25377 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25378 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25379 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25380 (off << 4); 25381 break; 25382 } 25383 off = opt[IPOPT_OFFSET] - 1; 25384 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25385 case IPOPT_TS_PRESPEC: 25386 case IPOPT_TS_PRESPEC_RFC791: 25387 case IPOPT_TS_TSANDADDR: 25388 dst = htonl(INADDR_LOOPBACK); 25389 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25390 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25391 /* FALLTHRU */ 25392 case IPOPT_TS_TSONLY: 25393 off = opt[IPOPT_OFFSET] - 1; 25394 /* Compute # of milliseconds since midnight */ 25395 gethrestime(&now); 25396 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25397 now.tv_nsec / (NANOSEC / MILLISEC); 25398 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25399 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25400 break; 25401 } 25402 break; 25403 } 25404 } 25405 } 25406 25407 /* 25408 * Send out a multicast packet on interface ipif. 25409 * The sender does not have an conn. 25410 * Caller verifies that this isn't a PHYI_LOOPBACK. 25411 */ 25412 void 25413 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25414 { 25415 ipha_t *ipha; 25416 ire_t *ire; 25417 ipaddr_t dst; 25418 mblk_t *first_mp; 25419 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25420 25421 /* igmp_sendpkt always allocates a ipsec_out_t */ 25422 ASSERT(mp->b_datap->db_type == M_CTL); 25423 ASSERT(!ipif->ipif_isv6); 25424 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25425 25426 first_mp = mp; 25427 mp = first_mp->b_cont; 25428 ASSERT(mp->b_datap->db_type == M_DATA); 25429 ipha = (ipha_t *)mp->b_rptr; 25430 25431 /* 25432 * Find an IRE which matches the destination and the outgoing 25433 * queue (i.e. the outgoing interface.) 25434 */ 25435 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25436 dst = ipif->ipif_pp_dst_addr; 25437 else 25438 dst = ipha->ipha_dst; 25439 /* 25440 * The source address has already been initialized by the 25441 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25442 * be sufficient rather than MATCH_IRE_IPIF. 25443 * 25444 * This function is used for sending IGMP packets. We need 25445 * to make sure that we send the packet out of the interface 25446 * (ipif->ipif_ill) where we joined the group. This is to 25447 * prevent from switches doing IGMP snooping to send us multicast 25448 * packets for a given group on the interface we have joined. 25449 * If we can't find an ire, igmp_sendpkt has already initialized 25450 * ipsec_out_attach_if so that this will not be load spread in 25451 * ip_newroute_ipif. 25452 */ 25453 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25454 MATCH_IRE_ILL, ipst); 25455 if (!ire) { 25456 /* 25457 * Mark this packet to make it be delivered to 25458 * ip_wput_ire after the new ire has been 25459 * created. 25460 */ 25461 mp->b_prev = NULL; 25462 mp->b_next = NULL; 25463 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25464 zoneid, &zero_info); 25465 return; 25466 } 25467 25468 /* 25469 * Honor the RTF_SETSRC flag; this is the only case 25470 * where we force this addr whatever the current src addr is, 25471 * because this address is set by igmp_sendpkt(), and 25472 * cannot be specified by any user. 25473 */ 25474 if (ire->ire_flags & RTF_SETSRC) { 25475 ipha->ipha_src = ire->ire_src_addr; 25476 } 25477 25478 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25479 } 25480 25481 /* 25482 * NOTE : This function does not ire_refrele the ire argument passed in. 25483 * 25484 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25485 * failure. The nce_fp_mp can vanish any time in the case of 25486 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25487 * the ire_lock to access the nce_fp_mp in this case. 25488 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25489 * prepending a fastpath message IPQoS processing must precede it, we also set 25490 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25491 * (IPQoS might have set the b_band for CoS marking). 25492 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25493 * must follow it so that IPQoS can mark the dl_priority field for CoS 25494 * marking, if needed. 25495 */ 25496 static mblk_t * 25497 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25498 { 25499 uint_t hlen; 25500 ipha_t *ipha; 25501 mblk_t *mp1; 25502 boolean_t qos_done = B_FALSE; 25503 uchar_t *ll_hdr; 25504 ip_stack_t *ipst = ire->ire_ipst; 25505 25506 #define rptr ((uchar_t *)ipha) 25507 25508 ipha = (ipha_t *)mp->b_rptr; 25509 hlen = 0; 25510 LOCK_IRE_FP_MP(ire); 25511 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25512 ASSERT(DB_TYPE(mp1) == M_DATA); 25513 /* Initiate IPPF processing */ 25514 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25515 UNLOCK_IRE_FP_MP(ire); 25516 ip_process(proc, &mp, ill_index); 25517 if (mp == NULL) 25518 return (NULL); 25519 25520 ipha = (ipha_t *)mp->b_rptr; 25521 LOCK_IRE_FP_MP(ire); 25522 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25523 qos_done = B_TRUE; 25524 goto no_fp_mp; 25525 } 25526 ASSERT(DB_TYPE(mp1) == M_DATA); 25527 } 25528 hlen = MBLKL(mp1); 25529 /* 25530 * Check if we have enough room to prepend fastpath 25531 * header 25532 */ 25533 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25534 ll_hdr = rptr - hlen; 25535 bcopy(mp1->b_rptr, ll_hdr, hlen); 25536 /* 25537 * Set the b_rptr to the start of the link layer 25538 * header 25539 */ 25540 mp->b_rptr = ll_hdr; 25541 mp1 = mp; 25542 } else { 25543 mp1 = copyb(mp1); 25544 if (mp1 == NULL) 25545 goto unlock_err; 25546 mp1->b_band = mp->b_band; 25547 mp1->b_cont = mp; 25548 /* 25549 * certain system generated traffic may not 25550 * have cred/label in ip header block. This 25551 * is true even for a labeled system. But for 25552 * labeled traffic, inherit the label in the 25553 * new header. 25554 */ 25555 if (DB_CRED(mp) != NULL) 25556 mblk_setcred(mp1, DB_CRED(mp)); 25557 /* 25558 * XXX disable ICK_VALID and compute checksum 25559 * here; can happen if nce_fp_mp changes and 25560 * it can't be copied now due to insufficient 25561 * space. (unlikely, fp mp can change, but it 25562 * does not increase in length) 25563 */ 25564 } 25565 UNLOCK_IRE_FP_MP(ire); 25566 } else { 25567 no_fp_mp: 25568 mp1 = copyb(ire->ire_nce->nce_res_mp); 25569 if (mp1 == NULL) { 25570 unlock_err: 25571 UNLOCK_IRE_FP_MP(ire); 25572 freemsg(mp); 25573 return (NULL); 25574 } 25575 UNLOCK_IRE_FP_MP(ire); 25576 mp1->b_cont = mp; 25577 /* 25578 * certain system generated traffic may not 25579 * have cred/label in ip header block. This 25580 * is true even for a labeled system. But for 25581 * labeled traffic, inherit the label in the 25582 * new header. 25583 */ 25584 if (DB_CRED(mp) != NULL) 25585 mblk_setcred(mp1, DB_CRED(mp)); 25586 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25587 ip_process(proc, &mp1, ill_index); 25588 if (mp1 == NULL) 25589 return (NULL); 25590 } 25591 } 25592 return (mp1); 25593 #undef rptr 25594 } 25595 25596 /* 25597 * Finish the outbound IPsec processing for an IPv6 packet. This function 25598 * is called from ipsec_out_process() if the IPsec packet was processed 25599 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25600 * asynchronously. 25601 */ 25602 void 25603 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25604 ire_t *ire_arg) 25605 { 25606 in6_addr_t *v6dstp; 25607 ire_t *ire; 25608 mblk_t *mp; 25609 ip6_t *ip6h1; 25610 uint_t ill_index; 25611 ipsec_out_t *io; 25612 boolean_t attach_if, hwaccel; 25613 uint32_t flags = IP6_NO_IPPOLICY; 25614 int match_flags; 25615 zoneid_t zoneid; 25616 boolean_t ill_need_rele = B_FALSE; 25617 boolean_t ire_need_rele = B_FALSE; 25618 ip_stack_t *ipst; 25619 25620 mp = ipsec_mp->b_cont; 25621 ip6h1 = (ip6_t *)mp->b_rptr; 25622 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25623 ASSERT(io->ipsec_out_ns != NULL); 25624 ipst = io->ipsec_out_ns->netstack_ip; 25625 ill_index = io->ipsec_out_ill_index; 25626 if (io->ipsec_out_reachable) { 25627 flags |= IPV6_REACHABILITY_CONFIRMATION; 25628 } 25629 attach_if = io->ipsec_out_attach_if; 25630 hwaccel = io->ipsec_out_accelerated; 25631 zoneid = io->ipsec_out_zoneid; 25632 ASSERT(zoneid != ALL_ZONES); 25633 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25634 /* Multicast addresses should have non-zero ill_index. */ 25635 v6dstp = &ip6h->ip6_dst; 25636 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25637 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25638 ASSERT(!attach_if || ill_index != 0); 25639 if (ill_index != 0) { 25640 if (ill == NULL) { 25641 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25642 B_TRUE, ipst); 25643 25644 /* Failure case frees things for us. */ 25645 if (ill == NULL) 25646 return; 25647 25648 ill_need_rele = B_TRUE; 25649 } 25650 /* 25651 * If this packet needs to go out on a particular interface 25652 * honor it. 25653 */ 25654 if (attach_if) { 25655 match_flags = MATCH_IRE_ILL; 25656 25657 /* 25658 * Check if we need an ire that will not be 25659 * looked up by anybody else i.e. HIDDEN. 25660 */ 25661 if (ill_is_probeonly(ill)) { 25662 match_flags |= MATCH_IRE_MARK_HIDDEN; 25663 } 25664 } 25665 } 25666 ASSERT(mp != NULL); 25667 25668 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25669 boolean_t unspec_src; 25670 ipif_t *ipif; 25671 25672 /* 25673 * Use the ill_index to get the right ill. 25674 */ 25675 unspec_src = io->ipsec_out_unspec_src; 25676 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25677 if (ipif == NULL) { 25678 if (ill_need_rele) 25679 ill_refrele(ill); 25680 freemsg(ipsec_mp); 25681 return; 25682 } 25683 25684 if (ire_arg != NULL) { 25685 ire = ire_arg; 25686 } else { 25687 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25688 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25689 ire_need_rele = B_TRUE; 25690 } 25691 if (ire != NULL) { 25692 ipif_refrele(ipif); 25693 /* 25694 * XXX Do the multicast forwarding now, as the IPsec 25695 * processing has been done. 25696 */ 25697 goto send; 25698 } 25699 25700 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25701 mp->b_prev = NULL; 25702 mp->b_next = NULL; 25703 25704 /* 25705 * If the IPsec packet was processed asynchronously, 25706 * drop it now. 25707 */ 25708 if (q == NULL) { 25709 if (ill_need_rele) 25710 ill_refrele(ill); 25711 freemsg(ipsec_mp); 25712 return; 25713 } 25714 25715 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25716 unspec_src, zoneid); 25717 ipif_refrele(ipif); 25718 } else { 25719 if (attach_if) { 25720 ipif_t *ipif; 25721 25722 ipif = ipif_get_next_ipif(NULL, ill); 25723 if (ipif == NULL) { 25724 if (ill_need_rele) 25725 ill_refrele(ill); 25726 freemsg(ipsec_mp); 25727 return; 25728 } 25729 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25730 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25731 ire_need_rele = B_TRUE; 25732 ipif_refrele(ipif); 25733 } else { 25734 if (ire_arg != NULL) { 25735 ire = ire_arg; 25736 } else { 25737 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25738 ipst); 25739 ire_need_rele = B_TRUE; 25740 } 25741 } 25742 if (ire != NULL) 25743 goto send; 25744 /* 25745 * ire disappeared underneath. 25746 * 25747 * What we need to do here is the ip_newroute 25748 * logic to get the ire without doing the IPsec 25749 * processing. Follow the same old path. But this 25750 * time, ip_wput or ire_add_then_send will call us 25751 * directly as all the IPsec operations are done. 25752 */ 25753 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25754 mp->b_prev = NULL; 25755 mp->b_next = NULL; 25756 25757 /* 25758 * If the IPsec packet was processed asynchronously, 25759 * drop it now. 25760 */ 25761 if (q == NULL) { 25762 if (ill_need_rele) 25763 ill_refrele(ill); 25764 freemsg(ipsec_mp); 25765 return; 25766 } 25767 25768 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25769 zoneid, ipst); 25770 } 25771 if (ill != NULL && ill_need_rele) 25772 ill_refrele(ill); 25773 return; 25774 send: 25775 if (ill != NULL && ill_need_rele) 25776 ill_refrele(ill); 25777 25778 /* Local delivery */ 25779 if (ire->ire_stq == NULL) { 25780 ill_t *out_ill; 25781 ASSERT(q != NULL); 25782 25783 /* PFHooks: LOOPBACK_OUT */ 25784 out_ill = ire_to_ill(ire); 25785 25786 DTRACE_PROBE4(ip6__loopback__out__start, 25787 ill_t *, NULL, ill_t *, out_ill, 25788 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25789 25790 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25791 ipst->ips_ipv6firewall_loopback_out, 25792 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25793 25794 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25795 25796 if (ipsec_mp != NULL) 25797 ip_wput_local_v6(RD(q), out_ill, 25798 ip6h, ipsec_mp, ire, 0); 25799 if (ire_need_rele) 25800 ire_refrele(ire); 25801 return; 25802 } 25803 /* 25804 * Everything is done. Send it out on the wire. 25805 * We force the insertion of a fragment header using the 25806 * IPH_FRAG_HDR flag in two cases: 25807 * - after reception of an ICMPv6 "packet too big" message 25808 * with a MTU < 1280 (cf. RFC 2460 section 5) 25809 * - for multirouted IPv6 packets, so that the receiver can 25810 * discard duplicates according to their fragment identifier 25811 */ 25812 /* XXX fix flow control problems. */ 25813 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25814 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25815 if (hwaccel) { 25816 /* 25817 * hardware acceleration does not handle these 25818 * "slow path" cases. 25819 */ 25820 /* IPsec KSTATS: should bump bean counter here. */ 25821 if (ire_need_rele) 25822 ire_refrele(ire); 25823 freemsg(ipsec_mp); 25824 return; 25825 } 25826 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25827 (mp->b_cont ? msgdsize(mp) : 25828 mp->b_wptr - (uchar_t *)ip6h)) { 25829 /* IPsec KSTATS: should bump bean counter here. */ 25830 ip0dbg(("Packet length mismatch: %d, %ld\n", 25831 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25832 msgdsize(mp))); 25833 if (ire_need_rele) 25834 ire_refrele(ire); 25835 freemsg(ipsec_mp); 25836 return; 25837 } 25838 ASSERT(mp->b_prev == NULL); 25839 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25840 ntohs(ip6h->ip6_plen) + 25841 IPV6_HDR_LEN, ire->ire_max_frag)); 25842 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25843 ire->ire_max_frag); 25844 } else { 25845 UPDATE_OB_PKT_COUNT(ire); 25846 ire->ire_last_used_time = lbolt; 25847 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25848 } 25849 if (ire_need_rele) 25850 ire_refrele(ire); 25851 freeb(ipsec_mp); 25852 } 25853 25854 void 25855 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25856 { 25857 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25858 da_ipsec_t *hada; /* data attributes */ 25859 ill_t *ill = (ill_t *)q->q_ptr; 25860 25861 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25862 25863 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25864 /* IPsec KSTATS: Bump lose counter here! */ 25865 freemsg(mp); 25866 return; 25867 } 25868 25869 /* 25870 * It's an IPsec packet that must be 25871 * accelerated by the Provider, and the 25872 * outbound ill is IPsec acceleration capable. 25873 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25874 * to the ill. 25875 * IPsec KSTATS: should bump packet counter here. 25876 */ 25877 25878 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25879 if (hada_mp == NULL) { 25880 /* IPsec KSTATS: should bump packet counter here. */ 25881 freemsg(mp); 25882 return; 25883 } 25884 25885 hada_mp->b_datap->db_type = M_CTL; 25886 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25887 hada_mp->b_cont = mp; 25888 25889 hada = (da_ipsec_t *)hada_mp->b_rptr; 25890 bzero(hada, sizeof (da_ipsec_t)); 25891 hada->da_type = IPHADA_M_CTL; 25892 25893 putnext(q, hada_mp); 25894 } 25895 25896 /* 25897 * Finish the outbound IPsec processing. This function is called from 25898 * ipsec_out_process() if the IPsec packet was processed 25899 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25900 * asynchronously. 25901 */ 25902 void 25903 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25904 ire_t *ire_arg) 25905 { 25906 uint32_t v_hlen_tos_len; 25907 ipaddr_t dst; 25908 ipif_t *ipif = NULL; 25909 ire_t *ire; 25910 ire_t *ire1 = NULL; 25911 mblk_t *next_mp = NULL; 25912 uint32_t max_frag; 25913 boolean_t multirt_send = B_FALSE; 25914 mblk_t *mp; 25915 ipha_t *ipha1; 25916 uint_t ill_index; 25917 ipsec_out_t *io; 25918 boolean_t attach_if; 25919 int match_flags; 25920 irb_t *irb = NULL; 25921 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25922 zoneid_t zoneid; 25923 ipxmit_state_t pktxmit_state; 25924 ip_stack_t *ipst; 25925 25926 #ifdef _BIG_ENDIAN 25927 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25928 #else 25929 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25930 #endif 25931 25932 mp = ipsec_mp->b_cont; 25933 ipha1 = (ipha_t *)mp->b_rptr; 25934 ASSERT(mp != NULL); 25935 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25936 dst = ipha->ipha_dst; 25937 25938 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25939 ill_index = io->ipsec_out_ill_index; 25940 attach_if = io->ipsec_out_attach_if; 25941 zoneid = io->ipsec_out_zoneid; 25942 ASSERT(zoneid != ALL_ZONES); 25943 ipst = io->ipsec_out_ns->netstack_ip; 25944 ASSERT(io->ipsec_out_ns != NULL); 25945 25946 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25947 if (ill_index != 0) { 25948 if (ill == NULL) { 25949 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25950 ill_index, B_FALSE, ipst); 25951 25952 /* Failure case frees things for us. */ 25953 if (ill == NULL) 25954 return; 25955 25956 ill_need_rele = B_TRUE; 25957 } 25958 /* 25959 * If this packet needs to go out on a particular interface 25960 * honor it. 25961 */ 25962 if (attach_if) { 25963 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25964 25965 /* 25966 * Check if we need an ire that will not be 25967 * looked up by anybody else i.e. HIDDEN. 25968 */ 25969 if (ill_is_probeonly(ill)) { 25970 match_flags |= MATCH_IRE_MARK_HIDDEN; 25971 } 25972 } 25973 } 25974 25975 if (CLASSD(dst)) { 25976 boolean_t conn_dontroute; 25977 /* 25978 * Use the ill_index to get the right ipif. 25979 */ 25980 conn_dontroute = io->ipsec_out_dontroute; 25981 if (ill_index == 0) 25982 ipif = ipif_lookup_group(dst, zoneid, ipst); 25983 else 25984 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25985 if (ipif == NULL) { 25986 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25987 " multicast\n")); 25988 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25989 freemsg(ipsec_mp); 25990 goto done; 25991 } 25992 /* 25993 * ipha_src has already been intialized with the 25994 * value of the ipif in ip_wput. All we need now is 25995 * an ire to send this downstream. 25996 */ 25997 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25998 MBLK_GETLABEL(mp), match_flags, ipst); 25999 if (ire != NULL) { 26000 ill_t *ill1; 26001 /* 26002 * Do the multicast forwarding now, as the IPsec 26003 * processing has been done. 26004 */ 26005 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26006 (ill1 = ire_to_ill(ire))) { 26007 if (ip_mforward(ill1, ipha, mp)) { 26008 freemsg(ipsec_mp); 26009 ip1dbg(("ip_wput_ipsec_out: mforward " 26010 "failed\n")); 26011 ire_refrele(ire); 26012 goto done; 26013 } 26014 } 26015 goto send; 26016 } 26017 26018 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26019 mp->b_prev = NULL; 26020 mp->b_next = NULL; 26021 26022 /* 26023 * If the IPsec packet was processed asynchronously, 26024 * drop it now. 26025 */ 26026 if (q == NULL) { 26027 freemsg(ipsec_mp); 26028 goto done; 26029 } 26030 26031 /* 26032 * We may be using a wrong ipif to create the ire. 26033 * But it is okay as the source address is assigned 26034 * for the packet already. Next outbound packet would 26035 * create the IRE with the right IPIF in ip_wput. 26036 * 26037 * Also handle RTF_MULTIRT routes. 26038 */ 26039 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26040 zoneid, &zero_info); 26041 } else { 26042 if (attach_if) { 26043 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26044 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26045 } else { 26046 if (ire_arg != NULL) { 26047 ire = ire_arg; 26048 ire_need_rele = B_FALSE; 26049 } else { 26050 ire = ire_cache_lookup(dst, zoneid, 26051 MBLK_GETLABEL(mp), ipst); 26052 } 26053 } 26054 if (ire != NULL) { 26055 goto send; 26056 } 26057 26058 /* 26059 * ire disappeared underneath. 26060 * 26061 * What we need to do here is the ip_newroute 26062 * logic to get the ire without doing the IPsec 26063 * processing. Follow the same old path. But this 26064 * time, ip_wput or ire_add_then_put will call us 26065 * directly as all the IPsec operations are done. 26066 */ 26067 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26068 mp->b_prev = NULL; 26069 mp->b_next = NULL; 26070 26071 /* 26072 * If the IPsec packet was processed asynchronously, 26073 * drop it now. 26074 */ 26075 if (q == NULL) { 26076 freemsg(ipsec_mp); 26077 goto done; 26078 } 26079 26080 /* 26081 * Since we're going through ip_newroute() again, we 26082 * need to make sure we don't: 26083 * 26084 * 1.) Trigger the ASSERT() with the ipha_ident 26085 * overloading. 26086 * 2.) Redo transport-layer checksumming, since we've 26087 * already done all that to get this far. 26088 * 26089 * The easiest way not do either of the above is to set 26090 * the ipha_ident field to IP_HDR_INCLUDED. 26091 */ 26092 ipha->ipha_ident = IP_HDR_INCLUDED; 26093 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26094 zoneid, ipst); 26095 } 26096 goto done; 26097 send: 26098 if (ire->ire_stq == NULL) { 26099 ill_t *out_ill; 26100 /* 26101 * Loopbacks go through ip_wput_local except for one case. 26102 * We come here if we generate a icmp_frag_needed message 26103 * after IPsec processing is over. When this function calls 26104 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26105 * icmp_frag_needed. The message generated comes back here 26106 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26107 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26108 * source address as it is usually set in ip_wput_ire. As 26109 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26110 * and we end up here. We can't enter ip_wput_ire once the 26111 * IPsec processing is over and hence we need to do it here. 26112 */ 26113 ASSERT(q != NULL); 26114 UPDATE_OB_PKT_COUNT(ire); 26115 ire->ire_last_used_time = lbolt; 26116 if (ipha->ipha_src == 0) 26117 ipha->ipha_src = ire->ire_src_addr; 26118 26119 /* PFHooks: LOOPBACK_OUT */ 26120 out_ill = ire_to_ill(ire); 26121 26122 DTRACE_PROBE4(ip4__loopback__out__start, 26123 ill_t *, NULL, ill_t *, out_ill, 26124 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26125 26126 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26127 ipst->ips_ipv4firewall_loopback_out, 26128 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26129 26130 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26131 26132 if (ipsec_mp != NULL) 26133 ip_wput_local(RD(q), out_ill, 26134 ipha, ipsec_mp, ire, 0, zoneid); 26135 if (ire_need_rele) 26136 ire_refrele(ire); 26137 goto done; 26138 } 26139 26140 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26141 /* 26142 * We are through with IPsec processing. 26143 * Fragment this and send it on the wire. 26144 */ 26145 if (io->ipsec_out_accelerated) { 26146 /* 26147 * The packet has been accelerated but must 26148 * be fragmented. This should not happen 26149 * since AH and ESP must not accelerate 26150 * packets that need fragmentation, however 26151 * the configuration could have changed 26152 * since the AH or ESP processing. 26153 * Drop packet. 26154 * IPsec KSTATS: bump bean counter here. 26155 */ 26156 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26157 "fragmented accelerated packet!\n")); 26158 freemsg(ipsec_mp); 26159 } else { 26160 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26161 } 26162 if (ire_need_rele) 26163 ire_refrele(ire); 26164 goto done; 26165 } 26166 26167 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26168 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26169 (void *)ire->ire_ipif, (void *)ipif)); 26170 26171 /* 26172 * Multiroute the secured packet, unless IPsec really 26173 * requires the packet to go out only through a particular 26174 * interface. 26175 */ 26176 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26177 ire_t *first_ire; 26178 irb = ire->ire_bucket; 26179 ASSERT(irb != NULL); 26180 /* 26181 * This ire has been looked up as the one that 26182 * goes through the given ipif; 26183 * make sure we do not omit any other multiroute ire 26184 * that may be present in the bucket before this one. 26185 */ 26186 IRB_REFHOLD(irb); 26187 for (first_ire = irb->irb_ire; 26188 first_ire != NULL; 26189 first_ire = first_ire->ire_next) { 26190 if ((first_ire->ire_flags & RTF_MULTIRT) && 26191 (first_ire->ire_addr == ire->ire_addr) && 26192 !(first_ire->ire_marks & 26193 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26194 break; 26195 } 26196 } 26197 26198 if ((first_ire != NULL) && (first_ire != ire)) { 26199 /* 26200 * Don't change the ire if the packet must 26201 * be fragmented if sent via this new one. 26202 */ 26203 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26204 IRE_REFHOLD(first_ire); 26205 if (ire_need_rele) 26206 ire_refrele(ire); 26207 else 26208 ire_need_rele = B_TRUE; 26209 ire = first_ire; 26210 } 26211 } 26212 IRB_REFRELE(irb); 26213 26214 multirt_send = B_TRUE; 26215 max_frag = ire->ire_max_frag; 26216 } else { 26217 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26218 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26219 "flag, attach_if %d\n", attach_if)); 26220 } 26221 } 26222 26223 /* 26224 * In most cases, the emission loop below is entered only once. 26225 * Only in the case where the ire holds the RTF_MULTIRT 26226 * flag, we loop to process all RTF_MULTIRT ires in the 26227 * bucket, and send the packet through all crossed 26228 * RTF_MULTIRT routes. 26229 */ 26230 do { 26231 if (multirt_send) { 26232 /* 26233 * ire1 holds here the next ire to process in the 26234 * bucket. If multirouting is expected, 26235 * any non-RTF_MULTIRT ire that has the 26236 * right destination address is ignored. 26237 */ 26238 ASSERT(irb != NULL); 26239 IRB_REFHOLD(irb); 26240 for (ire1 = ire->ire_next; 26241 ire1 != NULL; 26242 ire1 = ire1->ire_next) { 26243 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26244 continue; 26245 if (ire1->ire_addr != ire->ire_addr) 26246 continue; 26247 if (ire1->ire_marks & 26248 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26249 continue; 26250 /* No loopback here */ 26251 if (ire1->ire_stq == NULL) 26252 continue; 26253 /* 26254 * Ensure we do not exceed the MTU 26255 * of the next route. 26256 */ 26257 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26258 ip_multirt_bad_mtu(ire1, max_frag); 26259 continue; 26260 } 26261 26262 IRE_REFHOLD(ire1); 26263 break; 26264 } 26265 IRB_REFRELE(irb); 26266 if (ire1 != NULL) { 26267 /* 26268 * We are in a multiple send case, need to 26269 * make a copy of the packet. 26270 */ 26271 next_mp = copymsg(ipsec_mp); 26272 if (next_mp == NULL) { 26273 ire_refrele(ire1); 26274 ire1 = NULL; 26275 } 26276 } 26277 } 26278 /* 26279 * Everything is done. Send it out on the wire 26280 * 26281 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26282 * either send it on the wire or, in the case of 26283 * HW acceleration, call ipsec_hw_putnext. 26284 */ 26285 if (ire->ire_nce && 26286 ire->ire_nce->nce_state != ND_REACHABLE) { 26287 DTRACE_PROBE2(ip__wput__ipsec__bail, 26288 (ire_t *), ire, (mblk_t *), ipsec_mp); 26289 /* 26290 * If ire's link-layer is unresolved (this 26291 * would only happen if the incomplete ire 26292 * was added to cachetable via forwarding path) 26293 * don't bother going to ip_xmit_v4. Just drop the 26294 * packet. 26295 * There is a slight risk here, in that, if we 26296 * have the forwarding path create an incomplete 26297 * IRE, then until the IRE is completed, any 26298 * transmitted IPsec packets will be dropped 26299 * instead of being queued waiting for resolution. 26300 * 26301 * But the likelihood of a forwarding packet and a wput 26302 * packet sending to the same dst at the same time 26303 * and there not yet be an ARP entry for it is small. 26304 * Furthermore, if this actually happens, it might 26305 * be likely that wput would generate multiple 26306 * packets (and forwarding would also have a train 26307 * of packets) for that destination. If this is 26308 * the case, some of them would have been dropped 26309 * anyway, since ARP only queues a few packets while 26310 * waiting for resolution 26311 * 26312 * NOTE: We should really call ip_xmit_v4, 26313 * and let it queue the packet and send the 26314 * ARP query and have ARP come back thus: 26315 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26316 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26317 * hw accel work. But it's too complex to get 26318 * the IPsec hw acceleration approach to fit 26319 * well with ip_xmit_v4 doing ARP without 26320 * doing IPsec simplification. For now, we just 26321 * poke ip_xmit_v4 to trigger the arp resolve, so 26322 * that we can continue with the send on the next 26323 * attempt. 26324 * 26325 * XXX THis should be revisited, when 26326 * the IPsec/IP interaction is cleaned up 26327 */ 26328 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26329 " - dropping packet\n")); 26330 freemsg(ipsec_mp); 26331 /* 26332 * Call ip_xmit_v4() to trigger ARP query 26333 * in case the nce_state is ND_INITIAL 26334 */ 26335 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26336 goto drop_pkt; 26337 } 26338 26339 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26340 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26341 mblk_t *, ipsec_mp); 26342 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26343 ipst->ips_ipv4firewall_physical_out, NULL, 26344 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26345 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26346 if (ipsec_mp == NULL) 26347 goto drop_pkt; 26348 26349 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26350 pktxmit_state = ip_xmit_v4(mp, ire, 26351 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26352 26353 if ((pktxmit_state == SEND_FAILED) || 26354 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26355 26356 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26357 drop_pkt: 26358 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26359 ipIfStatsOutDiscards); 26360 if (ire_need_rele) 26361 ire_refrele(ire); 26362 if (ire1 != NULL) { 26363 ire_refrele(ire1); 26364 freemsg(next_mp); 26365 } 26366 goto done; 26367 } 26368 26369 freeb(ipsec_mp); 26370 if (ire_need_rele) 26371 ire_refrele(ire); 26372 26373 if (ire1 != NULL) { 26374 ire = ire1; 26375 ire_need_rele = B_TRUE; 26376 ASSERT(next_mp); 26377 ipsec_mp = next_mp; 26378 mp = ipsec_mp->b_cont; 26379 ire1 = NULL; 26380 next_mp = NULL; 26381 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26382 } else { 26383 multirt_send = B_FALSE; 26384 } 26385 } while (multirt_send); 26386 done: 26387 if (ill != NULL && ill_need_rele) 26388 ill_refrele(ill); 26389 if (ipif != NULL) 26390 ipif_refrele(ipif); 26391 } 26392 26393 /* 26394 * Get the ill corresponding to the specified ire, and compare its 26395 * capabilities with the protocol and algorithms specified by the 26396 * the SA obtained from ipsec_out. If they match, annotate the 26397 * ipsec_out structure to indicate that the packet needs acceleration. 26398 * 26399 * 26400 * A packet is eligible for outbound hardware acceleration if the 26401 * following conditions are satisfied: 26402 * 26403 * 1. the packet will not be fragmented 26404 * 2. the provider supports the algorithm 26405 * 3. there is no pending control message being exchanged 26406 * 4. snoop is not attached 26407 * 5. the destination address is not a broadcast or multicast address. 26408 * 26409 * Rationale: 26410 * - Hardware drivers do not support fragmentation with 26411 * the current interface. 26412 * - snoop, multicast, and broadcast may result in exposure of 26413 * a cleartext datagram. 26414 * We check all five of these conditions here. 26415 * 26416 * XXX would like to nuke "ire_t *" parameter here; problem is that 26417 * IRE is only way to figure out if a v4 address is a broadcast and 26418 * thus ineligible for acceleration... 26419 */ 26420 static void 26421 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26422 { 26423 ipsec_out_t *io; 26424 mblk_t *data_mp; 26425 uint_t plen, overhead; 26426 ip_stack_t *ipst; 26427 26428 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26429 return; 26430 26431 if (ill == NULL) 26432 return; 26433 ipst = ill->ill_ipst; 26434 /* 26435 * Destination address is a broadcast or multicast. Punt. 26436 */ 26437 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26438 IRE_LOCAL))) 26439 return; 26440 26441 data_mp = ipsec_mp->b_cont; 26442 26443 if (ill->ill_isv6) { 26444 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26445 26446 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26447 return; 26448 26449 plen = ip6h->ip6_plen; 26450 } else { 26451 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26452 26453 if (CLASSD(ipha->ipha_dst)) 26454 return; 26455 26456 plen = ipha->ipha_length; 26457 } 26458 /* 26459 * Is there a pending DLPI control message being exchanged 26460 * between IP/IPsec and the DLS Provider? If there is, it 26461 * could be a SADB update, and the state of the DLS Provider 26462 * SADB might not be in sync with the SADB maintained by 26463 * IPsec. To avoid dropping packets or using the wrong keying 26464 * material, we do not accelerate this packet. 26465 */ 26466 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26467 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26468 "ill_dlpi_pending! don't accelerate packet\n")); 26469 return; 26470 } 26471 26472 /* 26473 * Is the Provider in promiscous mode? If it does, we don't 26474 * accelerate the packet since it will bounce back up to the 26475 * listeners in the clear. 26476 */ 26477 if (ill->ill_promisc_on_phys) { 26478 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26479 "ill in promiscous mode, don't accelerate packet\n")); 26480 return; 26481 } 26482 26483 /* 26484 * Will the packet require fragmentation? 26485 */ 26486 26487 /* 26488 * IPsec ESP note: this is a pessimistic estimate, but the same 26489 * as is used elsewhere. 26490 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26491 * + 2-byte trailer 26492 */ 26493 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26494 IPSEC_BASE_ESP_HDR_SIZE(sa); 26495 26496 if ((plen + overhead) > ill->ill_max_mtu) 26497 return; 26498 26499 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26500 26501 /* 26502 * Can the ill accelerate this IPsec protocol and algorithm 26503 * specified by the SA? 26504 */ 26505 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26506 ill->ill_isv6, sa, ipst->ips_netstack)) { 26507 return; 26508 } 26509 26510 /* 26511 * Tell AH or ESP that the outbound ill is capable of 26512 * accelerating this packet. 26513 */ 26514 io->ipsec_out_is_capab_ill = B_TRUE; 26515 } 26516 26517 /* 26518 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26519 * 26520 * If this function returns B_TRUE, the requested SA's have been filled 26521 * into the ipsec_out_*_sa pointers. 26522 * 26523 * If the function returns B_FALSE, the packet has been "consumed", most 26524 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26525 * 26526 * The SA references created by the protocol-specific "select" 26527 * function will be released when the ipsec_mp is freed, thanks to the 26528 * ipsec_out_free destructor -- see spd.c. 26529 */ 26530 static boolean_t 26531 ipsec_out_select_sa(mblk_t *ipsec_mp) 26532 { 26533 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26534 ipsec_out_t *io; 26535 ipsec_policy_t *pp; 26536 ipsec_action_t *ap; 26537 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26538 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26539 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26540 26541 if (!io->ipsec_out_secure) { 26542 /* 26543 * We came here by mistake. 26544 * Don't bother with ipsec processing 26545 * We should "discourage" this path in the future. 26546 */ 26547 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26548 return (B_FALSE); 26549 } 26550 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26551 ASSERT((io->ipsec_out_policy != NULL) || 26552 (io->ipsec_out_act != NULL)); 26553 26554 ASSERT(io->ipsec_out_failed == B_FALSE); 26555 26556 /* 26557 * IPsec processing has started. 26558 */ 26559 io->ipsec_out_proc_begin = B_TRUE; 26560 ap = io->ipsec_out_act; 26561 if (ap == NULL) { 26562 pp = io->ipsec_out_policy; 26563 ASSERT(pp != NULL); 26564 ap = pp->ipsp_act; 26565 ASSERT(ap != NULL); 26566 } 26567 26568 /* 26569 * We have an action. now, let's select SA's. 26570 * (In the future, we can cache this in the conn_t..) 26571 */ 26572 if (ap->ipa_want_esp) { 26573 if (io->ipsec_out_esp_sa == NULL) { 26574 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26575 IPPROTO_ESP); 26576 } 26577 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26578 } 26579 26580 if (ap->ipa_want_ah) { 26581 if (io->ipsec_out_ah_sa == NULL) { 26582 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26583 IPPROTO_AH); 26584 } 26585 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26586 /* 26587 * The ESP and AH processing order needs to be preserved 26588 * when both protocols are required (ESP should be applied 26589 * before AH for an outbound packet). Force an ESP ACQUIRE 26590 * when both ESP and AH are required, and an AH ACQUIRE 26591 * is needed. 26592 */ 26593 if (ap->ipa_want_esp && need_ah_acquire) 26594 need_esp_acquire = B_TRUE; 26595 } 26596 26597 /* 26598 * Send an ACQUIRE (extended, regular, or both) if we need one. 26599 * Release SAs that got referenced, but will not be used until we 26600 * acquire _all_ of the SAs we need. 26601 */ 26602 if (need_ah_acquire || need_esp_acquire) { 26603 if (io->ipsec_out_ah_sa != NULL) { 26604 IPSA_REFRELE(io->ipsec_out_ah_sa); 26605 io->ipsec_out_ah_sa = NULL; 26606 } 26607 if (io->ipsec_out_esp_sa != NULL) { 26608 IPSA_REFRELE(io->ipsec_out_esp_sa); 26609 io->ipsec_out_esp_sa = NULL; 26610 } 26611 26612 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26613 return (B_FALSE); 26614 } 26615 26616 return (B_TRUE); 26617 } 26618 26619 /* 26620 * Process an IPSEC_OUT message and see what you can 26621 * do with it. 26622 * IPQoS Notes: 26623 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26624 * IPsec. 26625 * XXX would like to nuke ire_t. 26626 * XXX ill_index better be "real" 26627 */ 26628 void 26629 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26630 { 26631 ipsec_out_t *io; 26632 ipsec_policy_t *pp; 26633 ipsec_action_t *ap; 26634 ipha_t *ipha; 26635 ip6_t *ip6h; 26636 mblk_t *mp; 26637 ill_t *ill; 26638 zoneid_t zoneid; 26639 ipsec_status_t ipsec_rc; 26640 boolean_t ill_need_rele = B_FALSE; 26641 ip_stack_t *ipst; 26642 ipsec_stack_t *ipss; 26643 26644 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26645 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26646 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26647 ipst = io->ipsec_out_ns->netstack_ip; 26648 mp = ipsec_mp->b_cont; 26649 26650 /* 26651 * Initiate IPPF processing. We do it here to account for packets 26652 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26653 * We can check for ipsec_out_proc_begin even for such packets, as 26654 * they will always be false (asserted below). 26655 */ 26656 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26657 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26658 io->ipsec_out_ill_index : ill_index); 26659 if (mp == NULL) { 26660 ip2dbg(("ipsec_out_process: packet dropped "\ 26661 "during IPPF processing\n")); 26662 freeb(ipsec_mp); 26663 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26664 return; 26665 } 26666 } 26667 26668 if (!io->ipsec_out_secure) { 26669 /* 26670 * We came here by mistake. 26671 * Don't bother with ipsec processing 26672 * Should "discourage" this path in the future. 26673 */ 26674 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26675 goto done; 26676 } 26677 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26678 ASSERT((io->ipsec_out_policy != NULL) || 26679 (io->ipsec_out_act != NULL)); 26680 ASSERT(io->ipsec_out_failed == B_FALSE); 26681 26682 ipss = ipst->ips_netstack->netstack_ipsec; 26683 if (!ipsec_loaded(ipss)) { 26684 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26685 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26686 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26687 } else { 26688 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26689 } 26690 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26691 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26692 &ipss->ipsec_dropper); 26693 return; 26694 } 26695 26696 /* 26697 * IPsec processing has started. 26698 */ 26699 io->ipsec_out_proc_begin = B_TRUE; 26700 ap = io->ipsec_out_act; 26701 if (ap == NULL) { 26702 pp = io->ipsec_out_policy; 26703 ASSERT(pp != NULL); 26704 ap = pp->ipsp_act; 26705 ASSERT(ap != NULL); 26706 } 26707 26708 /* 26709 * Save the outbound ill index. When the packet comes back 26710 * from IPsec, we make sure the ill hasn't changed or disappeared 26711 * before sending it the accelerated packet. 26712 */ 26713 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26714 int ifindex; 26715 ill = ire_to_ill(ire); 26716 ifindex = ill->ill_phyint->phyint_ifindex; 26717 io->ipsec_out_capab_ill_index = ifindex; 26718 } 26719 26720 /* 26721 * The order of processing is first insert a IP header if needed. 26722 * Then insert the ESP header and then the AH header. 26723 */ 26724 if ((io->ipsec_out_se_done == B_FALSE) && 26725 (ap->ipa_want_se)) { 26726 /* 26727 * First get the outer IP header before sending 26728 * it to ESP. 26729 */ 26730 ipha_t *oipha, *iipha; 26731 mblk_t *outer_mp, *inner_mp; 26732 26733 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26734 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26735 "ipsec_out_process: " 26736 "Self-Encapsulation failed: Out of memory\n"); 26737 freemsg(ipsec_mp); 26738 if (ill != NULL) { 26739 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26740 } else { 26741 BUMP_MIB(&ipst->ips_ip_mib, 26742 ipIfStatsOutDiscards); 26743 } 26744 return; 26745 } 26746 inner_mp = ipsec_mp->b_cont; 26747 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26748 oipha = (ipha_t *)outer_mp->b_rptr; 26749 iipha = (ipha_t *)inner_mp->b_rptr; 26750 *oipha = *iipha; 26751 outer_mp->b_wptr += sizeof (ipha_t); 26752 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26753 sizeof (ipha_t)); 26754 oipha->ipha_protocol = IPPROTO_ENCAP; 26755 oipha->ipha_version_and_hdr_length = 26756 IP_SIMPLE_HDR_VERSION; 26757 oipha->ipha_hdr_checksum = 0; 26758 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26759 outer_mp->b_cont = inner_mp; 26760 ipsec_mp->b_cont = outer_mp; 26761 26762 io->ipsec_out_se_done = B_TRUE; 26763 io->ipsec_out_tunnel = B_TRUE; 26764 } 26765 26766 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26767 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26768 !ipsec_out_select_sa(ipsec_mp)) 26769 return; 26770 26771 /* 26772 * By now, we know what SA's to use. Toss over to ESP & AH 26773 * to do the heavy lifting. 26774 */ 26775 zoneid = io->ipsec_out_zoneid; 26776 ASSERT(zoneid != ALL_ZONES); 26777 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26778 ASSERT(io->ipsec_out_esp_sa != NULL); 26779 io->ipsec_out_esp_done = B_TRUE; 26780 /* 26781 * Note that since hw accel can only apply one transform, 26782 * not two, we skip hw accel for ESP if we also have AH 26783 * This is an design limitation of the interface 26784 * which should be revisited. 26785 */ 26786 ASSERT(ire != NULL); 26787 if (io->ipsec_out_ah_sa == NULL) { 26788 ill = (ill_t *)ire->ire_stq->q_ptr; 26789 ipsec_out_is_accelerated(ipsec_mp, 26790 io->ipsec_out_esp_sa, ill, ire); 26791 } 26792 26793 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26794 switch (ipsec_rc) { 26795 case IPSEC_STATUS_SUCCESS: 26796 break; 26797 case IPSEC_STATUS_FAILED: 26798 if (ill != NULL) { 26799 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26800 } else { 26801 BUMP_MIB(&ipst->ips_ip_mib, 26802 ipIfStatsOutDiscards); 26803 } 26804 /* FALLTHRU */ 26805 case IPSEC_STATUS_PENDING: 26806 return; 26807 } 26808 } 26809 26810 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26811 ASSERT(io->ipsec_out_ah_sa != NULL); 26812 io->ipsec_out_ah_done = B_TRUE; 26813 if (ire == NULL) { 26814 int idx = io->ipsec_out_capab_ill_index; 26815 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26816 NULL, NULL, NULL, NULL, ipst); 26817 ill_need_rele = B_TRUE; 26818 } else { 26819 ill = (ill_t *)ire->ire_stq->q_ptr; 26820 } 26821 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26822 ire); 26823 26824 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26825 switch (ipsec_rc) { 26826 case IPSEC_STATUS_SUCCESS: 26827 break; 26828 case IPSEC_STATUS_FAILED: 26829 if (ill != NULL) { 26830 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26831 } else { 26832 BUMP_MIB(&ipst->ips_ip_mib, 26833 ipIfStatsOutDiscards); 26834 } 26835 /* FALLTHRU */ 26836 case IPSEC_STATUS_PENDING: 26837 if (ill != NULL && ill_need_rele) 26838 ill_refrele(ill); 26839 return; 26840 } 26841 } 26842 /* 26843 * We are done with IPsec processing. Send it over 26844 * the wire. 26845 */ 26846 done: 26847 mp = ipsec_mp->b_cont; 26848 ipha = (ipha_t *)mp->b_rptr; 26849 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26850 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26851 } else { 26852 ip6h = (ip6_t *)ipha; 26853 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26854 } 26855 if (ill != NULL && ill_need_rele) 26856 ill_refrele(ill); 26857 } 26858 26859 /* ARGSUSED */ 26860 void 26861 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26862 { 26863 opt_restart_t *or; 26864 int err; 26865 conn_t *connp; 26866 26867 ASSERT(CONN_Q(q)); 26868 connp = Q_TO_CONN(q); 26869 26870 ASSERT(first_mp->b_datap->db_type == M_CTL); 26871 or = (opt_restart_t *)first_mp->b_rptr; 26872 /* 26873 * We don't need to pass any credentials here since this is just 26874 * a restart. The credentials are passed in when svr4_optcom_req 26875 * is called the first time (from ip_wput_nondata). 26876 */ 26877 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26878 err = svr4_optcom_req(q, first_mp, NULL, 26879 &ip_opt_obj, B_FALSE); 26880 } else { 26881 ASSERT(or->or_type == T_OPTMGMT_REQ); 26882 err = tpi_optcom_req(q, first_mp, NULL, 26883 &ip_opt_obj, B_FALSE); 26884 } 26885 if (err != EINPROGRESS) { 26886 /* operation is done */ 26887 CONN_OPER_PENDING_DONE(connp); 26888 } 26889 } 26890 26891 /* 26892 * ioctls that go through a down/up sequence may need to wait for the down 26893 * to complete. This involves waiting for the ire and ipif refcnts to go down 26894 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26895 */ 26896 /* ARGSUSED */ 26897 void 26898 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26899 { 26900 struct iocblk *iocp; 26901 mblk_t *mp1; 26902 ip_ioctl_cmd_t *ipip; 26903 int err; 26904 sin_t *sin; 26905 struct lifreq *lifr; 26906 struct ifreq *ifr; 26907 26908 iocp = (struct iocblk *)mp->b_rptr; 26909 ASSERT(ipsq != NULL); 26910 /* Existence of mp1 verified in ip_wput_nondata */ 26911 mp1 = mp->b_cont->b_cont; 26912 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26913 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26914 /* 26915 * Special case where ipsq_current_ipif is not set: 26916 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26917 * ill could also have become part of a ipmp group in the 26918 * process, we are here as were not able to complete the 26919 * operation in ipif_set_values because we could not become 26920 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26921 * will not be set so we need to set it. 26922 */ 26923 ill_t *ill = q->q_ptr; 26924 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26925 } 26926 ASSERT(ipsq->ipsq_current_ipif != NULL); 26927 26928 if (ipip->ipi_cmd_type == IF_CMD) { 26929 /* This a old style SIOC[GS]IF* command */ 26930 ifr = (struct ifreq *)mp1->b_rptr; 26931 sin = (sin_t *)&ifr->ifr_addr; 26932 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26933 /* This a new style SIOC[GS]LIF* command */ 26934 lifr = (struct lifreq *)mp1->b_rptr; 26935 sin = (sin_t *)&lifr->lifr_addr; 26936 } else { 26937 sin = NULL; 26938 } 26939 26940 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26941 ipip, mp1->b_rptr); 26942 26943 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26944 } 26945 26946 /* 26947 * ioctl processing 26948 * 26949 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26950 * the ioctl command in the ioctl tables, determines the copyin data size 26951 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26952 * 26953 * ioctl processing then continues when the M_IOCDATA makes its way down to 26954 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26955 * associated 'conn' is refheld till the end of the ioctl and the general 26956 * ioctl processing function ip_process_ioctl() is called to extract the 26957 * arguments and process the ioctl. To simplify extraction, ioctl commands 26958 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26959 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26960 * is used to extract the ioctl's arguments. 26961 * 26962 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26963 * so goes thru the serialization primitive ipsq_try_enter. Then the 26964 * appropriate function to handle the ioctl is called based on the entry in 26965 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26966 * which also refreleases the 'conn' that was refheld at the start of the 26967 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26968 * 26969 * Many exclusive ioctls go thru an internal down up sequence as part of 26970 * the operation. For example an attempt to change the IP address of an 26971 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26972 * does all the cleanup such as deleting all ires that use this address. 26973 * Then we need to wait till all references to the interface go away. 26974 */ 26975 void 26976 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26977 { 26978 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26979 ip_ioctl_cmd_t *ipip = arg; 26980 ip_extract_func_t *extract_funcp; 26981 cmd_info_t ci; 26982 int err; 26983 boolean_t entered_ipsq = B_FALSE; 26984 26985 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26986 26987 if (ipip == NULL) 26988 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26989 26990 /* 26991 * SIOCLIFADDIF needs to go thru a special path since the 26992 * ill may not exist yet. This happens in the case of lo0 26993 * which is created using this ioctl. 26994 */ 26995 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26996 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26997 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26998 return; 26999 } 27000 27001 ci.ci_ipif = NULL; 27002 if (ipip->ipi_cmd_type == MISC_CMD) { 27003 /* 27004 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27005 */ 27006 if (ipip->ipi_cmd == IF_UNITSEL) { 27007 /* ioctl comes down the ill */ 27008 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27009 ipif_refhold(ci.ci_ipif); 27010 } 27011 err = 0; 27012 ci.ci_sin = NULL; 27013 ci.ci_sin6 = NULL; 27014 ci.ci_lifr = NULL; 27015 } else { 27016 switch (ipip->ipi_cmd_type) { 27017 case IF_CMD: 27018 case LIF_CMD: 27019 extract_funcp = ip_extract_lifreq; 27020 break; 27021 27022 case ARP_CMD: 27023 case XARP_CMD: 27024 extract_funcp = ip_extract_arpreq; 27025 break; 27026 27027 case TUN_CMD: 27028 extract_funcp = ip_extract_tunreq; 27029 break; 27030 27031 case MSFILT_CMD: 27032 extract_funcp = ip_extract_msfilter; 27033 break; 27034 27035 default: 27036 ASSERT(0); 27037 } 27038 27039 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27040 if (err != 0) { 27041 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27042 return; 27043 } 27044 27045 /* 27046 * All of the extraction functions return a refheld ipif. 27047 */ 27048 ASSERT(ci.ci_ipif != NULL); 27049 } 27050 27051 /* 27052 * If ipsq is non-null, we are already being called exclusively 27053 */ 27054 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27055 if (!(ipip->ipi_flags & IPI_WR)) { 27056 /* 27057 * A return value of EINPROGRESS means the ioctl is 27058 * either queued and waiting for some reason or has 27059 * already completed. 27060 */ 27061 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27062 ci.ci_lifr); 27063 if (ci.ci_ipif != NULL) 27064 ipif_refrele(ci.ci_ipif); 27065 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27066 return; 27067 } 27068 27069 ASSERT(ci.ci_ipif != NULL); 27070 27071 if (ipsq == NULL) { 27072 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27073 ip_process_ioctl, NEW_OP, B_TRUE); 27074 entered_ipsq = B_TRUE; 27075 } 27076 /* 27077 * Release the ipif so that ipif_down and friends that wait for 27078 * references to go away are not misled about the current ipif_refcnt 27079 * values. We are writer so we can access the ipif even after releasing 27080 * the ipif. 27081 */ 27082 ipif_refrele(ci.ci_ipif); 27083 if (ipsq == NULL) 27084 return; 27085 27086 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27087 27088 /* 27089 * For most set ioctls that come here, this serves as a single point 27090 * where we set the IPIF_CHANGING flag. This ensures that there won't 27091 * be any new references to the ipif. This helps functions that go 27092 * through this path and end up trying to wait for the refcnts 27093 * associated with the ipif to go down to zero. Some exceptions are 27094 * Failover, Failback, and Groupname commands that operate on more than 27095 * just the ci.ci_ipif. These commands internally determine the 27096 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27097 * flags on that set. Another exception is the Removeif command that 27098 * sets the IPIF_CONDEMNED flag internally after identifying the right 27099 * ipif to operate on. 27100 */ 27101 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27102 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27103 ipip->ipi_cmd != SIOCLIFFAILOVER && 27104 ipip->ipi_cmd != SIOCLIFFAILBACK && 27105 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27106 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27107 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27108 27109 /* 27110 * A return value of EINPROGRESS means the ioctl is 27111 * either queued and waiting for some reason or has 27112 * already completed. 27113 */ 27114 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27115 27116 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27117 27118 if (entered_ipsq) 27119 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27120 } 27121 27122 /* 27123 * Complete the ioctl. Typically ioctls use the mi package and need to 27124 * do mi_copyout/mi_copy_done. 27125 */ 27126 void 27127 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27128 { 27129 conn_t *connp = NULL; 27130 27131 if (err == EINPROGRESS) 27132 return; 27133 27134 if (CONN_Q(q)) { 27135 connp = Q_TO_CONN(q); 27136 ASSERT(connp->conn_ref >= 2); 27137 } 27138 27139 switch (mode) { 27140 case COPYOUT: 27141 if (err == 0) 27142 mi_copyout(q, mp); 27143 else 27144 mi_copy_done(q, mp, err); 27145 break; 27146 27147 case NO_COPYOUT: 27148 mi_copy_done(q, mp, err); 27149 break; 27150 27151 default: 27152 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27153 break; 27154 } 27155 27156 /* 27157 * The refhold placed at the start of the ioctl is released here. 27158 */ 27159 if (connp != NULL) 27160 CONN_OPER_PENDING_DONE(connp); 27161 27162 if (ipsq != NULL) 27163 ipsq_current_finish(ipsq); 27164 } 27165 27166 /* 27167 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27168 */ 27169 /* ARGSUSED */ 27170 void 27171 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27172 { 27173 conn_t *connp = arg; 27174 tcp_t *tcp; 27175 27176 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27177 tcp = connp->conn_tcp; 27178 27179 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27180 freemsg(mp); 27181 else 27182 tcp_rput_other(tcp, mp); 27183 CONN_OPER_PENDING_DONE(connp); 27184 } 27185 27186 /* Called from ip_wput for all non data messages */ 27187 /* ARGSUSED */ 27188 void 27189 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27190 { 27191 mblk_t *mp1; 27192 ire_t *ire, *fake_ire; 27193 ill_t *ill; 27194 struct iocblk *iocp; 27195 ip_ioctl_cmd_t *ipip; 27196 cred_t *cr; 27197 conn_t *connp; 27198 int err; 27199 nce_t *nce; 27200 ipif_t *ipif; 27201 ip_stack_t *ipst; 27202 char *proto_str; 27203 27204 if (CONN_Q(q)) { 27205 connp = Q_TO_CONN(q); 27206 ipst = connp->conn_netstack->netstack_ip; 27207 } else { 27208 connp = NULL; 27209 ipst = ILLQ_TO_IPST(q); 27210 } 27211 27212 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27213 27214 switch (DB_TYPE(mp)) { 27215 case M_IOCTL: 27216 /* 27217 * IOCTL processing begins in ip_sioctl_copyin_setup which 27218 * will arrange to copy in associated control structures. 27219 */ 27220 ip_sioctl_copyin_setup(q, mp); 27221 return; 27222 case M_IOCDATA: 27223 /* 27224 * Ensure that this is associated with one of our trans- 27225 * parent ioctls. If it's not ours, discard it if we're 27226 * running as a driver, or pass it on if we're a module. 27227 */ 27228 iocp = (struct iocblk *)mp->b_rptr; 27229 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27230 if (ipip == NULL) { 27231 if (q->q_next == NULL) { 27232 goto nak; 27233 } else { 27234 putnext(q, mp); 27235 } 27236 return; 27237 } 27238 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27239 /* 27240 * the ioctl is one we recognise, but is not 27241 * consumed by IP as a module, pass M_IOCDATA 27242 * for processing downstream, but only for 27243 * common Streams ioctls. 27244 */ 27245 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27246 putnext(q, mp); 27247 return; 27248 } else { 27249 goto nak; 27250 } 27251 } 27252 27253 /* IOCTL continuation following copyin or copyout. */ 27254 if (mi_copy_state(q, mp, NULL) == -1) { 27255 /* 27256 * The copy operation failed. mi_copy_state already 27257 * cleaned up, so we're out of here. 27258 */ 27259 return; 27260 } 27261 /* 27262 * If we just completed a copy in, we become writer and 27263 * continue processing in ip_sioctl_copyin_done. If it 27264 * was a copy out, we call mi_copyout again. If there is 27265 * nothing more to copy out, it will complete the IOCTL. 27266 */ 27267 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27268 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27269 mi_copy_done(q, mp, EPROTO); 27270 return; 27271 } 27272 /* 27273 * Check for cases that need more copying. A return 27274 * value of 0 means a second copyin has been started, 27275 * so we return; a return value of 1 means no more 27276 * copying is needed, so we continue. 27277 */ 27278 if (ipip->ipi_cmd_type == MSFILT_CMD && 27279 MI_COPY_COUNT(mp) == 1) { 27280 if (ip_copyin_msfilter(q, mp) == 0) 27281 return; 27282 } 27283 /* 27284 * Refhold the conn, till the ioctl completes. This is 27285 * needed in case the ioctl ends up in the pending mp 27286 * list. Every mp in the ill_pending_mp list and 27287 * the ipsq_pending_mp must have a refhold on the conn 27288 * to resume processing. The refhold is released when 27289 * the ioctl completes. (normally or abnormally) 27290 * In all cases ip_ioctl_finish is called to finish 27291 * the ioctl. 27292 */ 27293 if (connp != NULL) { 27294 /* This is not a reentry */ 27295 ASSERT(ipsq == NULL); 27296 CONN_INC_REF(connp); 27297 } else { 27298 if (!(ipip->ipi_flags & IPI_MODOK)) { 27299 mi_copy_done(q, mp, EINVAL); 27300 return; 27301 } 27302 } 27303 27304 ip_process_ioctl(ipsq, q, mp, ipip); 27305 27306 } else { 27307 mi_copyout(q, mp); 27308 } 27309 return; 27310 nak: 27311 iocp->ioc_error = EINVAL; 27312 mp->b_datap->db_type = M_IOCNAK; 27313 iocp->ioc_count = 0; 27314 qreply(q, mp); 27315 return; 27316 27317 case M_IOCNAK: 27318 /* 27319 * The only way we could get here is if a resolver didn't like 27320 * an IOCTL we sent it. This shouldn't happen. 27321 */ 27322 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27323 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27324 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27325 freemsg(mp); 27326 return; 27327 case M_IOCACK: 27328 /* /dev/ip shouldn't see this */ 27329 if (CONN_Q(q)) 27330 goto nak; 27331 27332 /* Finish socket ioctls passed through to ARP. */ 27333 ip_sioctl_iocack(q, mp); 27334 return; 27335 case M_FLUSH: 27336 if (*mp->b_rptr & FLUSHW) 27337 flushq(q, FLUSHALL); 27338 if (q->q_next) { 27339 putnext(q, mp); 27340 return; 27341 } 27342 if (*mp->b_rptr & FLUSHR) { 27343 *mp->b_rptr &= ~FLUSHW; 27344 qreply(q, mp); 27345 return; 27346 } 27347 freemsg(mp); 27348 return; 27349 case IRE_DB_REQ_TYPE: 27350 if (connp == NULL) { 27351 proto_str = "IRE_DB_REQ_TYPE"; 27352 goto protonak; 27353 } 27354 /* An Upper Level Protocol wants a copy of an IRE. */ 27355 ip_ire_req(q, mp); 27356 return; 27357 case M_CTL: 27358 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27359 break; 27360 27361 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27362 TUN_HELLO) { 27363 ASSERT(connp != NULL); 27364 connp->conn_flags |= IPCL_IPTUN; 27365 freeb(mp); 27366 return; 27367 } 27368 27369 /* M_CTL messages are used by ARP to tell us things. */ 27370 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27371 break; 27372 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27373 case AR_ENTRY_SQUERY: 27374 ip_wput_ctl(q, mp); 27375 return; 27376 case AR_CLIENT_NOTIFY: 27377 ip_arp_news(q, mp); 27378 return; 27379 case AR_DLPIOP_DONE: 27380 ASSERT(q->q_next != NULL); 27381 ill = (ill_t *)q->q_ptr; 27382 /* qwriter_ip releases the refhold */ 27383 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27384 ill_refhold(ill); 27385 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27386 return; 27387 case AR_ARP_CLOSING: 27388 /* 27389 * ARP (above us) is closing. If no ARP bringup is 27390 * currently pending, ack the message so that ARP 27391 * can complete its close. Also mark ill_arp_closing 27392 * so that new ARP bringups will fail. If any 27393 * ARP bringup is currently in progress, we will 27394 * ack this when the current ARP bringup completes. 27395 */ 27396 ASSERT(q->q_next != NULL); 27397 ill = (ill_t *)q->q_ptr; 27398 mutex_enter(&ill->ill_lock); 27399 ill->ill_arp_closing = 1; 27400 if (!ill->ill_arp_bringup_pending) { 27401 mutex_exit(&ill->ill_lock); 27402 qreply(q, mp); 27403 } else { 27404 mutex_exit(&ill->ill_lock); 27405 freemsg(mp); 27406 } 27407 return; 27408 case AR_ARP_EXTEND: 27409 /* 27410 * The ARP module above us is capable of duplicate 27411 * address detection. Old ATM drivers will not send 27412 * this message. 27413 */ 27414 ASSERT(q->q_next != NULL); 27415 ill = (ill_t *)q->q_ptr; 27416 ill->ill_arp_extend = B_TRUE; 27417 freemsg(mp); 27418 return; 27419 default: 27420 break; 27421 } 27422 break; 27423 case M_PROTO: 27424 case M_PCPROTO: 27425 /* 27426 * The only PROTO messages we expect are ULP binds and 27427 * copies of option negotiation acknowledgements. 27428 */ 27429 switch (((union T_primitives *)mp->b_rptr)->type) { 27430 case O_T_BIND_REQ: 27431 case T_BIND_REQ: { 27432 /* Request can get queued in bind */ 27433 if (connp == NULL) { 27434 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27435 goto protonak; 27436 } 27437 /* 27438 * The transports except SCTP call ip_bind_{v4,v6}() 27439 * directly instead of a a putnext. SCTP doesn't 27440 * generate any T_BIND_REQ since it has its own 27441 * fanout data structures. However, ESP and AH 27442 * come in for regular binds; all other cases are 27443 * bind retries. 27444 */ 27445 ASSERT(!IPCL_IS_SCTP(connp)); 27446 27447 /* Don't increment refcnt if this is a re-entry */ 27448 if (ipsq == NULL) 27449 CONN_INC_REF(connp); 27450 27451 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27452 connp, NULL) : ip_bind_v4(q, mp, connp); 27453 if (mp == NULL) 27454 return; 27455 if (IPCL_IS_TCP(connp)) { 27456 /* 27457 * In the case of TCP endpoint we 27458 * come here only for bind retries 27459 */ 27460 ASSERT(ipsq != NULL); 27461 CONN_INC_REF(connp); 27462 squeue_fill(connp->conn_sqp, mp, 27463 ip_resume_tcp_bind, connp, 27464 SQTAG_BIND_RETRY); 27465 } else if (IPCL_IS_UDP(connp)) { 27466 /* 27467 * In the case of UDP endpoint we 27468 * come here only for bind retries 27469 */ 27470 ASSERT(ipsq != NULL); 27471 udp_resume_bind(connp, mp); 27472 } else if (IPCL_IS_RAWIP(connp)) { 27473 /* 27474 * In the case of RAWIP endpoint we 27475 * come here only for bind retries 27476 */ 27477 ASSERT(ipsq != NULL); 27478 rawip_resume_bind(connp, mp); 27479 } else { 27480 /* The case of AH and ESP */ 27481 qreply(q, mp); 27482 CONN_OPER_PENDING_DONE(connp); 27483 } 27484 return; 27485 } 27486 case T_SVR4_OPTMGMT_REQ: 27487 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27488 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27489 27490 if (connp == NULL) { 27491 proto_str = "T_SVR4_OPTMGMT_REQ"; 27492 goto protonak; 27493 } 27494 27495 if (!snmpcom_req(q, mp, ip_snmp_set, 27496 ip_snmp_get, cr)) { 27497 /* 27498 * Call svr4_optcom_req so that it can 27499 * generate the ack. We don't come here 27500 * if this operation is being restarted. 27501 * ip_restart_optmgmt will drop the conn ref. 27502 * In the case of ipsec option after the ipsec 27503 * load is complete conn_restart_ipsec_waiter 27504 * drops the conn ref. 27505 */ 27506 ASSERT(ipsq == NULL); 27507 CONN_INC_REF(connp); 27508 if (ip_check_for_ipsec_opt(q, mp)) 27509 return; 27510 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27511 B_FALSE); 27512 if (err != EINPROGRESS) { 27513 /* Operation is done */ 27514 CONN_OPER_PENDING_DONE(connp); 27515 } 27516 } 27517 return; 27518 case T_OPTMGMT_REQ: 27519 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27520 /* 27521 * Note: No snmpcom_req support through new 27522 * T_OPTMGMT_REQ. 27523 * Call tpi_optcom_req so that it can 27524 * generate the ack. 27525 */ 27526 if (connp == NULL) { 27527 proto_str = "T_OPTMGMT_REQ"; 27528 goto protonak; 27529 } 27530 27531 ASSERT(ipsq == NULL); 27532 /* 27533 * We don't come here for restart. ip_restart_optmgmt 27534 * will drop the conn ref. In the case of ipsec option 27535 * after the ipsec load is complete 27536 * conn_restart_ipsec_waiter drops the conn ref. 27537 */ 27538 CONN_INC_REF(connp); 27539 if (ip_check_for_ipsec_opt(q, mp)) 27540 return; 27541 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27542 if (err != EINPROGRESS) { 27543 /* Operation is done */ 27544 CONN_OPER_PENDING_DONE(connp); 27545 } 27546 return; 27547 case T_UNBIND_REQ: 27548 if (connp == NULL) { 27549 proto_str = "T_UNBIND_REQ"; 27550 goto protonak; 27551 } 27552 mp = ip_unbind(q, mp); 27553 qreply(q, mp); 27554 return; 27555 default: 27556 /* 27557 * Have to drop any DLPI messages coming down from 27558 * arp (such as an info_req which would cause ip 27559 * to receive an extra info_ack if it was passed 27560 * through. 27561 */ 27562 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27563 (int)*(uint_t *)mp->b_rptr)); 27564 freemsg(mp); 27565 return; 27566 } 27567 /* NOTREACHED */ 27568 case IRE_DB_TYPE: { 27569 nce_t *nce; 27570 ill_t *ill; 27571 in6_addr_t gw_addr_v6; 27572 27573 27574 /* 27575 * This is a response back from a resolver. It 27576 * consists of a message chain containing: 27577 * IRE_MBLK-->LL_HDR_MBLK->pkt 27578 * The IRE_MBLK is the one we allocated in ip_newroute. 27579 * The LL_HDR_MBLK is the DLPI header to use to get 27580 * the attached packet, and subsequent ones for the 27581 * same destination, transmitted. 27582 */ 27583 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27584 break; 27585 /* 27586 * First, check to make sure the resolution succeeded. 27587 * If it failed, the second mblk will be empty. 27588 * If it is, free the chain, dropping the packet. 27589 * (We must ire_delete the ire; that frees the ire mblk) 27590 * We're doing this now to support PVCs for ATM; it's 27591 * a partial xresolv implementation. When we fully implement 27592 * xresolv interfaces, instead of freeing everything here 27593 * we'll initiate neighbor discovery. 27594 * 27595 * For v4 (ARP and other external resolvers) the resolver 27596 * frees the message, so no check is needed. This check 27597 * is required, though, for a full xresolve implementation. 27598 * Including this code here now both shows how external 27599 * resolvers can NACK a resolution request using an 27600 * existing design that has no specific provisions for NACKs, 27601 * and also takes into account that the current non-ARP 27602 * external resolver has been coded to use this method of 27603 * NACKing for all IPv6 (xresolv) cases, 27604 * whether our xresolv implementation is complete or not. 27605 * 27606 */ 27607 ire = (ire_t *)mp->b_rptr; 27608 ill = ire_to_ill(ire); 27609 mp1 = mp->b_cont; /* dl_unitdata_req */ 27610 if (mp1->b_rptr == mp1->b_wptr) { 27611 if (ire->ire_ipversion == IPV6_VERSION) { 27612 /* 27613 * XRESOLV interface. 27614 */ 27615 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27616 mutex_enter(&ire->ire_lock); 27617 gw_addr_v6 = ire->ire_gateway_addr_v6; 27618 mutex_exit(&ire->ire_lock); 27619 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27620 nce = ndp_lookup_v6(ill, 27621 &ire->ire_addr_v6, B_FALSE); 27622 } else { 27623 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27624 B_FALSE); 27625 } 27626 if (nce != NULL) { 27627 nce_resolv_failed(nce); 27628 ndp_delete(nce); 27629 NCE_REFRELE(nce); 27630 } 27631 } 27632 mp->b_cont = NULL; 27633 freemsg(mp1); /* frees the pkt as well */ 27634 ASSERT(ire->ire_nce == NULL); 27635 ire_delete((ire_t *)mp->b_rptr); 27636 return; 27637 } 27638 27639 /* 27640 * Split them into IRE_MBLK and pkt and feed it into 27641 * ire_add_then_send. Then in ire_add_then_send 27642 * the IRE will be added, and then the packet will be 27643 * run back through ip_wput. This time it will make 27644 * it to the wire. 27645 */ 27646 mp->b_cont = NULL; 27647 mp = mp1->b_cont; /* now, mp points to pkt */ 27648 mp1->b_cont = NULL; 27649 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27650 if (ire->ire_ipversion == IPV6_VERSION) { 27651 /* 27652 * XRESOLV interface. Find the nce and put a copy 27653 * of the dl_unitdata_req in nce_res_mp 27654 */ 27655 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27656 mutex_enter(&ire->ire_lock); 27657 gw_addr_v6 = ire->ire_gateway_addr_v6; 27658 mutex_exit(&ire->ire_lock); 27659 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27660 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27661 B_FALSE); 27662 } else { 27663 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27664 } 27665 if (nce != NULL) { 27666 /* 27667 * We have to protect nce_res_mp here 27668 * from being accessed by other threads 27669 * while we change the mblk pointer. 27670 * Other functions will also lock the nce when 27671 * accessing nce_res_mp. 27672 * 27673 * The reason we change the mblk pointer 27674 * here rather than copying the resolved address 27675 * into the template is that, unlike with 27676 * ethernet, we have no guarantee that the 27677 * resolved address length will be 27678 * smaller than or equal to the lla length 27679 * with which the template was allocated, 27680 * (for ethernet, they're equal) 27681 * so we have to use the actual resolved 27682 * address mblk - which holds the real 27683 * dl_unitdata_req with the resolved address. 27684 * 27685 * Doing this is the same behavior as was 27686 * previously used in the v4 ARP case. 27687 */ 27688 mutex_enter(&nce->nce_lock); 27689 if (nce->nce_res_mp != NULL) 27690 freemsg(nce->nce_res_mp); 27691 nce->nce_res_mp = mp1; 27692 mutex_exit(&nce->nce_lock); 27693 /* 27694 * We do a fastpath probe here because 27695 * we have resolved the address without 27696 * using Neighbor Discovery. 27697 * In the non-XRESOLV v6 case, the fastpath 27698 * probe is done right after neighbor 27699 * discovery completes. 27700 */ 27701 if (nce->nce_res_mp != NULL) { 27702 int res; 27703 nce_fastpath_list_add(nce); 27704 res = ill_fastpath_probe(ill, 27705 nce->nce_res_mp); 27706 if (res != 0 && res != EAGAIN) 27707 nce_fastpath_list_delete(nce); 27708 } 27709 27710 ire_add_then_send(q, ire, mp); 27711 /* 27712 * Now we have to clean out any packets 27713 * that may have been queued on the nce 27714 * while it was waiting for address resolution 27715 * to complete. 27716 */ 27717 mutex_enter(&nce->nce_lock); 27718 mp1 = nce->nce_qd_mp; 27719 nce->nce_qd_mp = NULL; 27720 mutex_exit(&nce->nce_lock); 27721 while (mp1 != NULL) { 27722 mblk_t *nxt_mp; 27723 queue_t *fwdq = NULL; 27724 ill_t *inbound_ill; 27725 uint_t ifindex; 27726 27727 nxt_mp = mp1->b_next; 27728 mp1->b_next = NULL; 27729 /* 27730 * Retrieve ifindex stored in 27731 * ip_rput_data_v6() 27732 */ 27733 ifindex = 27734 (uint_t)(uintptr_t)mp1->b_prev; 27735 inbound_ill = 27736 ill_lookup_on_ifindex(ifindex, 27737 B_TRUE, NULL, NULL, NULL, 27738 NULL, ipst); 27739 mp1->b_prev = NULL; 27740 if (inbound_ill != NULL) 27741 fwdq = inbound_ill->ill_rq; 27742 27743 if (fwdq != NULL) { 27744 put(fwdq, mp1); 27745 ill_refrele(inbound_ill); 27746 } else 27747 put(WR(ill->ill_rq), mp1); 27748 mp1 = nxt_mp; 27749 } 27750 NCE_REFRELE(nce); 27751 } else { /* nce is NULL; clean up */ 27752 ire_delete(ire); 27753 freemsg(mp); 27754 freemsg(mp1); 27755 return; 27756 } 27757 } else { 27758 nce_t *arpce; 27759 /* 27760 * Link layer resolution succeeded. Recompute the 27761 * ire_nce. 27762 */ 27763 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27764 if ((arpce = ndp_lookup_v4(ill, 27765 (ire->ire_gateway_addr != INADDR_ANY ? 27766 &ire->ire_gateway_addr : &ire->ire_addr), 27767 B_FALSE)) == NULL) { 27768 freeb(ire->ire_mp); 27769 freeb(mp1); 27770 freemsg(mp); 27771 return; 27772 } 27773 mutex_enter(&arpce->nce_lock); 27774 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27775 if (arpce->nce_state == ND_REACHABLE) { 27776 /* 27777 * Someone resolved this before us; 27778 * cleanup the res_mp. Since ire has 27779 * not been added yet, the call to ire_add_v4 27780 * from ire_add_then_send (when a dup is 27781 * detected) will clean up the ire. 27782 */ 27783 freeb(mp1); 27784 } else { 27785 ASSERT(arpce->nce_res_mp == NULL); 27786 arpce->nce_res_mp = mp1; 27787 arpce->nce_state = ND_REACHABLE; 27788 } 27789 mutex_exit(&arpce->nce_lock); 27790 if (ire->ire_marks & IRE_MARK_NOADD) { 27791 /* 27792 * this ire will not be added to the ire 27793 * cache table, so we can set the ire_nce 27794 * here, as there are no atomicity constraints. 27795 */ 27796 ire->ire_nce = arpce; 27797 /* 27798 * We are associating this nce with the ire 27799 * so change the nce ref taken in 27800 * ndp_lookup_v4() from 27801 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27802 */ 27803 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27804 } else { 27805 NCE_REFRELE(arpce); 27806 } 27807 ire_add_then_send(q, ire, mp); 27808 } 27809 return; /* All is well, the packet has been sent. */ 27810 } 27811 case IRE_ARPRESOLVE_TYPE: { 27812 27813 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27814 break; 27815 mp1 = mp->b_cont; /* dl_unitdata_req */ 27816 mp->b_cont = NULL; 27817 /* 27818 * First, check to make sure the resolution succeeded. 27819 * If it failed, the second mblk will be empty. 27820 */ 27821 if (mp1->b_rptr == mp1->b_wptr) { 27822 /* cleanup the incomplete ire, free queued packets */ 27823 freemsg(mp); /* fake ire */ 27824 freeb(mp1); /* dl_unitdata response */ 27825 return; 27826 } 27827 27828 /* 27829 * update any incomplete nce_t found. we lookup the ctable 27830 * and find the nce from the ire->ire_nce because we need 27831 * to pass the ire to ip_xmit_v4 later, and can find both 27832 * ire and nce in one lookup from the ctable. 27833 */ 27834 fake_ire = (ire_t *)mp->b_rptr; 27835 /* 27836 * By the time we come back here from ARP 27837 * the logical outgoing interface of the incomplete ire 27838 * we added in ire_forward could have disappeared, 27839 * causing the incomplete ire to also have 27840 * dissapeared. So we need to retreive the 27841 * proper ipif for the ire before looking 27842 * in ctable; do the ctablelookup based on ire_ipif_seqid 27843 */ 27844 ill = q->q_ptr; 27845 27846 /* Get the outgoing ipif */ 27847 mutex_enter(&ill->ill_lock); 27848 if (ill->ill_state_flags & ILL_CONDEMNED) { 27849 mutex_exit(&ill->ill_lock); 27850 freemsg(mp); /* fake ire */ 27851 freeb(mp1); /* dl_unitdata response */ 27852 return; 27853 } 27854 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27855 27856 if (ipif == NULL) { 27857 mutex_exit(&ill->ill_lock); 27858 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27859 freemsg(mp); 27860 freeb(mp1); 27861 return; 27862 } 27863 ipif_refhold_locked(ipif); 27864 mutex_exit(&ill->ill_lock); 27865 ire = ire_ctable_lookup(fake_ire->ire_addr, 27866 fake_ire->ire_gateway_addr, IRE_CACHE, 27867 ipif, fake_ire->ire_zoneid, NULL, 27868 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27869 ipif_refrele(ipif); 27870 if (ire == NULL) { 27871 /* 27872 * no ire was found; check if there is an nce 27873 * for this lookup; if it has no ire's pointing at it 27874 * cleanup. 27875 */ 27876 if ((nce = ndp_lookup_v4(ill, 27877 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27878 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27879 B_FALSE)) != NULL) { 27880 /* 27881 * cleanup: 27882 * We check for refcnt 2 (one for the nce 27883 * hash list + 1 for the ref taken by 27884 * ndp_lookup_v4) to check that there are 27885 * no ire's pointing at the nce. 27886 */ 27887 if (nce->nce_refcnt == 2) 27888 ndp_delete(nce); 27889 NCE_REFRELE(nce); 27890 } 27891 freeb(mp1); /* dl_unitdata response */ 27892 freemsg(mp); /* fake ire */ 27893 return; 27894 } 27895 nce = ire->ire_nce; 27896 DTRACE_PROBE2(ire__arpresolve__type, 27897 ire_t *, ire, nce_t *, nce); 27898 ASSERT(nce->nce_state != ND_INITIAL); 27899 mutex_enter(&nce->nce_lock); 27900 nce->nce_last = TICK_TO_MSEC(lbolt64); 27901 if (nce->nce_state == ND_REACHABLE) { 27902 /* 27903 * Someone resolved this before us; 27904 * our response is not needed any more. 27905 */ 27906 mutex_exit(&nce->nce_lock); 27907 freeb(mp1); /* dl_unitdata response */ 27908 } else { 27909 ASSERT(nce->nce_res_mp == NULL); 27910 nce->nce_res_mp = mp1; 27911 nce->nce_state = ND_REACHABLE; 27912 mutex_exit(&nce->nce_lock); 27913 nce_fastpath(nce); 27914 } 27915 /* 27916 * The cached nce_t has been updated to be reachable; 27917 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27918 */ 27919 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27920 freemsg(mp); 27921 /* 27922 * send out queued packets. 27923 */ 27924 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27925 27926 IRE_REFRELE(ire); 27927 return; 27928 } 27929 default: 27930 break; 27931 } 27932 if (q->q_next) { 27933 putnext(q, mp); 27934 } else 27935 freemsg(mp); 27936 return; 27937 27938 protonak: 27939 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27940 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27941 qreply(q, mp); 27942 } 27943 27944 /* 27945 * Process IP options in an outbound packet. Modify the destination if there 27946 * is a source route option. 27947 * Returns non-zero if something fails in which case an ICMP error has been 27948 * sent and mp freed. 27949 */ 27950 static int 27951 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27952 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27953 { 27954 ipoptp_t opts; 27955 uchar_t *opt; 27956 uint8_t optval; 27957 uint8_t optlen; 27958 ipaddr_t dst; 27959 intptr_t code = 0; 27960 mblk_t *mp; 27961 ire_t *ire = NULL; 27962 27963 ip2dbg(("ip_wput_options\n")); 27964 mp = ipsec_mp; 27965 if (mctl_present) { 27966 mp = ipsec_mp->b_cont; 27967 } 27968 27969 dst = ipha->ipha_dst; 27970 for (optval = ipoptp_first(&opts, ipha); 27971 optval != IPOPT_EOL; 27972 optval = ipoptp_next(&opts)) { 27973 opt = opts.ipoptp_cur; 27974 optlen = opts.ipoptp_len; 27975 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27976 optval, optlen)); 27977 switch (optval) { 27978 uint32_t off; 27979 case IPOPT_SSRR: 27980 case IPOPT_LSRR: 27981 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27982 ip1dbg(( 27983 "ip_wput_options: bad option offset\n")); 27984 code = (char *)&opt[IPOPT_OLEN] - 27985 (char *)ipha; 27986 goto param_prob; 27987 } 27988 off = opt[IPOPT_OFFSET]; 27989 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27990 ntohl(dst))); 27991 /* 27992 * For strict: verify that dst is directly 27993 * reachable. 27994 */ 27995 if (optval == IPOPT_SSRR) { 27996 ire = ire_ftable_lookup(dst, 0, 0, 27997 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27998 MBLK_GETLABEL(mp), 27999 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28000 if (ire == NULL) { 28001 ip1dbg(("ip_wput_options: SSRR not" 28002 " directly reachable: 0x%x\n", 28003 ntohl(dst))); 28004 goto bad_src_route; 28005 } 28006 ire_refrele(ire); 28007 } 28008 break; 28009 case IPOPT_RR: 28010 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28011 ip1dbg(( 28012 "ip_wput_options: bad option offset\n")); 28013 code = (char *)&opt[IPOPT_OLEN] - 28014 (char *)ipha; 28015 goto param_prob; 28016 } 28017 break; 28018 case IPOPT_TS: 28019 /* 28020 * Verify that length >=5 and that there is either 28021 * room for another timestamp or that the overflow 28022 * counter is not maxed out. 28023 */ 28024 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28025 if (optlen < IPOPT_MINLEN_IT) { 28026 goto param_prob; 28027 } 28028 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28029 ip1dbg(( 28030 "ip_wput_options: bad option offset\n")); 28031 code = (char *)&opt[IPOPT_OFFSET] - 28032 (char *)ipha; 28033 goto param_prob; 28034 } 28035 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28036 case IPOPT_TS_TSONLY: 28037 off = IPOPT_TS_TIMELEN; 28038 break; 28039 case IPOPT_TS_TSANDADDR: 28040 case IPOPT_TS_PRESPEC: 28041 case IPOPT_TS_PRESPEC_RFC791: 28042 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28043 break; 28044 default: 28045 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28046 (char *)ipha; 28047 goto param_prob; 28048 } 28049 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28050 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28051 /* 28052 * No room and the overflow counter is 15 28053 * already. 28054 */ 28055 goto param_prob; 28056 } 28057 break; 28058 } 28059 } 28060 28061 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28062 return (0); 28063 28064 ip1dbg(("ip_wput_options: error processing IP options.")); 28065 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28066 28067 param_prob: 28068 /* 28069 * Since ip_wput() isn't close to finished, we fill 28070 * in enough of the header for credible error reporting. 28071 */ 28072 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28073 /* Failed */ 28074 freemsg(ipsec_mp); 28075 return (-1); 28076 } 28077 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28078 return (-1); 28079 28080 bad_src_route: 28081 /* 28082 * Since ip_wput() isn't close to finished, we fill 28083 * in enough of the header for credible error reporting. 28084 */ 28085 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28086 /* Failed */ 28087 freemsg(ipsec_mp); 28088 return (-1); 28089 } 28090 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28091 return (-1); 28092 } 28093 28094 /* 28095 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28096 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28097 * thru /etc/system. 28098 */ 28099 #define CONN_MAXDRAINCNT 64 28100 28101 static void 28102 conn_drain_init(ip_stack_t *ipst) 28103 { 28104 int i; 28105 28106 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28107 28108 if ((ipst->ips_conn_drain_list_cnt == 0) || 28109 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28110 /* 28111 * Default value of the number of drainers is the 28112 * number of cpus, subject to maximum of 8 drainers. 28113 */ 28114 if (boot_max_ncpus != -1) 28115 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28116 else 28117 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28118 } 28119 28120 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28121 sizeof (idl_t), KM_SLEEP); 28122 28123 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28124 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28125 MUTEX_DEFAULT, NULL); 28126 } 28127 } 28128 28129 static void 28130 conn_drain_fini(ip_stack_t *ipst) 28131 { 28132 int i; 28133 28134 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28135 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28136 kmem_free(ipst->ips_conn_drain_list, 28137 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28138 ipst->ips_conn_drain_list = NULL; 28139 } 28140 28141 /* 28142 * Note: For an overview of how flowcontrol is handled in IP please see the 28143 * IP Flowcontrol notes at the top of this file. 28144 * 28145 * Flow control has blocked us from proceeding. Insert the given conn in one 28146 * of the conn drain lists. These conn wq's will be qenabled later on when 28147 * STREAMS flow control does a backenable. conn_walk_drain will enable 28148 * the first conn in each of these drain lists. Each of these qenabled conns 28149 * in turn enables the next in the list, after it runs, or when it closes, 28150 * thus sustaining the drain process. 28151 * 28152 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28153 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28154 * running at any time, on a given conn, since there can be only 1 service proc 28155 * running on a queue at any time. 28156 */ 28157 void 28158 conn_drain_insert(conn_t *connp) 28159 { 28160 idl_t *idl; 28161 uint_t index; 28162 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28163 28164 mutex_enter(&connp->conn_lock); 28165 if (connp->conn_state_flags & CONN_CLOSING) { 28166 /* 28167 * The conn is closing as a result of which CONN_CLOSING 28168 * is set. Return. 28169 */ 28170 mutex_exit(&connp->conn_lock); 28171 return; 28172 } else if (connp->conn_idl == NULL) { 28173 /* 28174 * Assign the next drain list round robin. We dont' use 28175 * a lock, and thus it may not be strictly round robin. 28176 * Atomicity of load/stores is enough to make sure that 28177 * conn_drain_list_index is always within bounds. 28178 */ 28179 index = ipst->ips_conn_drain_list_index; 28180 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28181 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28182 index++; 28183 if (index == ipst->ips_conn_drain_list_cnt) 28184 index = 0; 28185 ipst->ips_conn_drain_list_index = index; 28186 } 28187 mutex_exit(&connp->conn_lock); 28188 28189 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28190 if ((connp->conn_drain_prev != NULL) || 28191 (connp->conn_state_flags & CONN_CLOSING)) { 28192 /* 28193 * The conn is already in the drain list, OR 28194 * the conn is closing. We need to check again for 28195 * the closing case again since close can happen 28196 * after we drop the conn_lock, and before we 28197 * acquire the CONN_DRAIN_LIST_LOCK. 28198 */ 28199 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28200 return; 28201 } else { 28202 idl = connp->conn_idl; 28203 } 28204 28205 /* 28206 * The conn is not in the drain list. Insert it at the 28207 * tail of the drain list. The drain list is circular 28208 * and doubly linked. idl_conn points to the 1st element 28209 * in the list. 28210 */ 28211 if (idl->idl_conn == NULL) { 28212 idl->idl_conn = connp; 28213 connp->conn_drain_next = connp; 28214 connp->conn_drain_prev = connp; 28215 } else { 28216 conn_t *head = idl->idl_conn; 28217 28218 connp->conn_drain_next = head; 28219 connp->conn_drain_prev = head->conn_drain_prev; 28220 head->conn_drain_prev->conn_drain_next = connp; 28221 head->conn_drain_prev = connp; 28222 } 28223 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28224 } 28225 28226 /* 28227 * This conn is closing, and we are called from ip_close. OR 28228 * This conn has been serviced by ip_wsrv, and we need to do the tail 28229 * processing. 28230 * If this conn is part of the drain list, we may need to sustain the drain 28231 * process by qenabling the next conn in the drain list. We may also need to 28232 * remove this conn from the list, if it is done. 28233 */ 28234 static void 28235 conn_drain_tail(conn_t *connp, boolean_t closing) 28236 { 28237 idl_t *idl; 28238 28239 /* 28240 * connp->conn_idl is stable at this point, and no lock is needed 28241 * to check it. If we are called from ip_close, close has already 28242 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28243 * called us only because conn_idl is non-null. If we are called thru 28244 * service, conn_idl could be null, but it cannot change because 28245 * service is single-threaded per queue, and there cannot be another 28246 * instance of service trying to call conn_drain_insert on this conn 28247 * now. 28248 */ 28249 ASSERT(!closing || (connp->conn_idl != NULL)); 28250 28251 /* 28252 * If connp->conn_idl is null, the conn has not been inserted into any 28253 * drain list even once since creation of the conn. Just return. 28254 */ 28255 if (connp->conn_idl == NULL) 28256 return; 28257 28258 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28259 28260 if (connp->conn_drain_prev == NULL) { 28261 /* This conn is currently not in the drain list. */ 28262 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28263 return; 28264 } 28265 idl = connp->conn_idl; 28266 if (idl->idl_conn_draining == connp) { 28267 /* 28268 * This conn is the current drainer. If this is the last conn 28269 * in the drain list, we need to do more checks, in the 'if' 28270 * below. Otherwwise we need to just qenable the next conn, 28271 * to sustain the draining, and is handled in the 'else' 28272 * below. 28273 */ 28274 if (connp->conn_drain_next == idl->idl_conn) { 28275 /* 28276 * This conn is the last in this list. This round 28277 * of draining is complete. If idl_repeat is set, 28278 * it means another flow enabling has happened from 28279 * the driver/streams and we need to another round 28280 * of draining. 28281 * If there are more than 2 conns in the drain list, 28282 * do a left rotate by 1, so that all conns except the 28283 * conn at the head move towards the head by 1, and the 28284 * the conn at the head goes to the tail. This attempts 28285 * a more even share for all queues that are being 28286 * drained. 28287 */ 28288 if ((connp->conn_drain_next != connp) && 28289 (idl->idl_conn->conn_drain_next != connp)) { 28290 idl->idl_conn = idl->idl_conn->conn_drain_next; 28291 } 28292 if (idl->idl_repeat) { 28293 qenable(idl->idl_conn->conn_wq); 28294 idl->idl_conn_draining = idl->idl_conn; 28295 idl->idl_repeat = 0; 28296 } else { 28297 idl->idl_conn_draining = NULL; 28298 } 28299 } else { 28300 /* 28301 * If the next queue that we are now qenable'ing, 28302 * is closing, it will remove itself from this list 28303 * and qenable the subsequent queue in ip_close(). 28304 * Serialization is acheived thru idl_lock. 28305 */ 28306 qenable(connp->conn_drain_next->conn_wq); 28307 idl->idl_conn_draining = connp->conn_drain_next; 28308 } 28309 } 28310 if (!connp->conn_did_putbq || closing) { 28311 /* 28312 * Remove ourself from the drain list, if we did not do 28313 * a putbq, or if the conn is closing. 28314 * Note: It is possible that q->q_first is non-null. It means 28315 * that these messages landed after we did a enableok() in 28316 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28317 * service them. 28318 */ 28319 if (connp->conn_drain_next == connp) { 28320 /* Singleton in the list */ 28321 ASSERT(connp->conn_drain_prev == connp); 28322 idl->idl_conn = NULL; 28323 idl->idl_conn_draining = NULL; 28324 } else { 28325 connp->conn_drain_prev->conn_drain_next = 28326 connp->conn_drain_next; 28327 connp->conn_drain_next->conn_drain_prev = 28328 connp->conn_drain_prev; 28329 if (idl->idl_conn == connp) 28330 idl->idl_conn = connp->conn_drain_next; 28331 ASSERT(idl->idl_conn_draining != connp); 28332 28333 } 28334 connp->conn_drain_next = NULL; 28335 connp->conn_drain_prev = NULL; 28336 } 28337 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28338 } 28339 28340 /* 28341 * Write service routine. Shared perimeter entry point. 28342 * ip_wsrv can be called in any of the following ways. 28343 * 1. The device queue's messages has fallen below the low water mark 28344 * and STREAMS has backenabled the ill_wq. We walk thru all the 28345 * the drain lists and backenable the first conn in each list. 28346 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28347 * qenabled non-tcp upper layers. We start dequeing messages and call 28348 * ip_wput for each message. 28349 */ 28350 28351 void 28352 ip_wsrv(queue_t *q) 28353 { 28354 conn_t *connp; 28355 ill_t *ill; 28356 mblk_t *mp; 28357 28358 if (q->q_next) { 28359 ill = (ill_t *)q->q_ptr; 28360 if (ill->ill_state_flags == 0) { 28361 /* 28362 * The device flow control has opened up. 28363 * Walk through conn drain lists and qenable the 28364 * first conn in each list. This makes sense only 28365 * if the stream is fully plumbed and setup. 28366 * Hence the if check above. 28367 */ 28368 ip1dbg(("ip_wsrv: walking\n")); 28369 conn_walk_drain(ill->ill_ipst); 28370 } 28371 return; 28372 } 28373 28374 connp = Q_TO_CONN(q); 28375 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28376 28377 /* 28378 * 1. Set conn_draining flag to signal that service is active. 28379 * 28380 * 2. ip_output determines whether it has been called from service, 28381 * based on the last parameter. If it is IP_WSRV it concludes it 28382 * has been called from service. 28383 * 28384 * 3. Message ordering is preserved by the following logic. 28385 * i. A directly called ip_output (i.e. not thru service) will queue 28386 * the message at the tail, if conn_draining is set (i.e. service 28387 * is running) or if q->q_first is non-null. 28388 * 28389 * ii. If ip_output is called from service, and if ip_output cannot 28390 * putnext due to flow control, it does a putbq. 28391 * 28392 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28393 * (causing an infinite loop). 28394 */ 28395 ASSERT(!connp->conn_did_putbq); 28396 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28397 connp->conn_draining = 1; 28398 noenable(q); 28399 while ((mp = getq(q)) != NULL) { 28400 ASSERT(CONN_Q(q)); 28401 28402 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28403 if (connp->conn_did_putbq) { 28404 /* ip_wput did a putbq */ 28405 break; 28406 } 28407 } 28408 /* 28409 * At this point, a thread coming down from top, calling 28410 * ip_wput, may end up queueing the message. We have not yet 28411 * enabled the queue, so ip_wsrv won't be called again. 28412 * To avoid this race, check q->q_first again (in the loop) 28413 * If the other thread queued the message before we call 28414 * enableok(), we will catch it in the q->q_first check. 28415 * If the other thread queues the message after we call 28416 * enableok(), ip_wsrv will be called again by STREAMS. 28417 */ 28418 connp->conn_draining = 0; 28419 enableok(q); 28420 } 28421 28422 /* Enable the next conn for draining */ 28423 conn_drain_tail(connp, B_FALSE); 28424 28425 connp->conn_did_putbq = 0; 28426 } 28427 28428 /* 28429 * Walk the list of all conn's calling the function provided with the 28430 * specified argument for each. Note that this only walks conn's that 28431 * have been bound. 28432 * Applies to both IPv4 and IPv6. 28433 */ 28434 static void 28435 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28436 { 28437 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28438 ipst->ips_ipcl_udp_fanout_size, 28439 func, arg, zoneid); 28440 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28441 ipst->ips_ipcl_conn_fanout_size, 28442 func, arg, zoneid); 28443 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28444 ipst->ips_ipcl_bind_fanout_size, 28445 func, arg, zoneid); 28446 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28447 IPPROTO_MAX, func, arg, zoneid); 28448 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28449 IPPROTO_MAX, func, arg, zoneid); 28450 } 28451 28452 /* 28453 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28454 * of conns that need to be drained, check if drain is already in progress. 28455 * If so set the idl_repeat bit, indicating that the last conn in the list 28456 * needs to reinitiate the drain once again, for the list. If drain is not 28457 * in progress for the list, initiate the draining, by qenabling the 1st 28458 * conn in the list. The drain is self-sustaining, each qenabled conn will 28459 * in turn qenable the next conn, when it is done/blocked/closing. 28460 */ 28461 static void 28462 conn_walk_drain(ip_stack_t *ipst) 28463 { 28464 int i; 28465 idl_t *idl; 28466 28467 IP_STAT(ipst, ip_conn_walk_drain); 28468 28469 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28470 idl = &ipst->ips_conn_drain_list[i]; 28471 mutex_enter(&idl->idl_lock); 28472 if (idl->idl_conn == NULL) { 28473 mutex_exit(&idl->idl_lock); 28474 continue; 28475 } 28476 /* 28477 * If this list is not being drained currently by 28478 * an ip_wsrv thread, start the process. 28479 */ 28480 if (idl->idl_conn_draining == NULL) { 28481 ASSERT(idl->idl_repeat == 0); 28482 qenable(idl->idl_conn->conn_wq); 28483 idl->idl_conn_draining = idl->idl_conn; 28484 } else { 28485 idl->idl_repeat = 1; 28486 } 28487 mutex_exit(&idl->idl_lock); 28488 } 28489 } 28490 28491 /* 28492 * Walk an conn hash table of `count' buckets, calling func for each entry. 28493 */ 28494 static void 28495 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28496 zoneid_t zoneid) 28497 { 28498 conn_t *connp; 28499 28500 while (count-- > 0) { 28501 mutex_enter(&connfp->connf_lock); 28502 for (connp = connfp->connf_head; connp != NULL; 28503 connp = connp->conn_next) { 28504 if (zoneid == GLOBAL_ZONEID || 28505 zoneid == connp->conn_zoneid) { 28506 CONN_INC_REF(connp); 28507 mutex_exit(&connfp->connf_lock); 28508 (*func)(connp, arg); 28509 mutex_enter(&connfp->connf_lock); 28510 CONN_DEC_REF(connp); 28511 } 28512 } 28513 mutex_exit(&connfp->connf_lock); 28514 connfp++; 28515 } 28516 } 28517 28518 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28519 static void 28520 conn_report1(conn_t *connp, void *mp) 28521 { 28522 char buf1[INET6_ADDRSTRLEN]; 28523 char buf2[INET6_ADDRSTRLEN]; 28524 uint_t print_len, buf_len; 28525 28526 ASSERT(connp != NULL); 28527 28528 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28529 if (buf_len <= 0) 28530 return; 28531 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28532 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28533 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28534 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28535 "%5d %s/%05d %s/%05d\n", 28536 (void *)connp, (void *)CONNP_TO_RQ(connp), 28537 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28538 buf1, connp->conn_lport, 28539 buf2, connp->conn_fport); 28540 if (print_len < buf_len) { 28541 ((mblk_t *)mp)->b_wptr += print_len; 28542 } else { 28543 ((mblk_t *)mp)->b_wptr += buf_len; 28544 } 28545 } 28546 28547 /* 28548 * Named Dispatch routine to produce a formatted report on all conns 28549 * that are listed in one of the fanout tables. 28550 * This report is accessed by using the ndd utility to "get" ND variable 28551 * "ip_conn_status". 28552 */ 28553 /* ARGSUSED */ 28554 static int 28555 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28556 { 28557 conn_t *connp = Q_TO_CONN(q); 28558 28559 (void) mi_mpprintf(mp, 28560 "CONN " MI_COL_HDRPAD_STR 28561 "rfq " MI_COL_HDRPAD_STR 28562 "stq " MI_COL_HDRPAD_STR 28563 " zone local remote"); 28564 28565 /* 28566 * Because of the ndd constraint, at most we can have 64K buffer 28567 * to put in all conn info. So to be more efficient, just 28568 * allocate a 64K buffer here, assuming we need that large buffer. 28569 * This should be OK as only privileged processes can do ndd /dev/ip. 28570 */ 28571 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28572 /* The following may work even if we cannot get a large buf. */ 28573 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28574 return (0); 28575 } 28576 28577 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28578 connp->conn_netstack->netstack_ip); 28579 return (0); 28580 } 28581 28582 /* 28583 * Determine if the ill and multicast aspects of that packets 28584 * "matches" the conn. 28585 */ 28586 boolean_t 28587 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28588 zoneid_t zoneid) 28589 { 28590 ill_t *in_ill; 28591 boolean_t found; 28592 ipif_t *ipif; 28593 ire_t *ire; 28594 ipaddr_t dst, src; 28595 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28596 28597 dst = ipha->ipha_dst; 28598 src = ipha->ipha_src; 28599 28600 /* 28601 * conn_incoming_ill is set by IP_BOUND_IF which limits 28602 * unicast, broadcast and multicast reception to 28603 * conn_incoming_ill. conn_wantpacket itself is called 28604 * only for BROADCAST and multicast. 28605 * 28606 * 1) ip_rput supresses duplicate broadcasts if the ill 28607 * is part of a group. Hence, we should be receiving 28608 * just one copy of broadcast for the whole group. 28609 * Thus, if it is part of the group the packet could 28610 * come on any ill of the group and hence we need a 28611 * match on the group. Otherwise, match on ill should 28612 * be sufficient. 28613 * 28614 * 2) ip_rput does not suppress duplicate multicast packets. 28615 * If there are two interfaces in a ill group and we have 28616 * 2 applications (conns) joined a multicast group G on 28617 * both the interfaces, ilm_lookup_ill filter in ip_rput 28618 * will give us two packets because we join G on both the 28619 * interfaces rather than nominating just one interface 28620 * for receiving multicast like broadcast above. So, 28621 * we have to call ilg_lookup_ill to filter out duplicate 28622 * copies, if ill is part of a group. 28623 */ 28624 in_ill = connp->conn_incoming_ill; 28625 if (in_ill != NULL) { 28626 if (in_ill->ill_group == NULL) { 28627 if (in_ill != ill) 28628 return (B_FALSE); 28629 } else if (in_ill->ill_group != ill->ill_group) { 28630 return (B_FALSE); 28631 } 28632 } 28633 28634 if (!CLASSD(dst)) { 28635 if (IPCL_ZONE_MATCH(connp, zoneid)) 28636 return (B_TRUE); 28637 /* 28638 * The conn is in a different zone; we need to check that this 28639 * broadcast address is configured in the application's zone and 28640 * on one ill in the group. 28641 */ 28642 ipif = ipif_get_next_ipif(NULL, ill); 28643 if (ipif == NULL) 28644 return (B_FALSE); 28645 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28646 connp->conn_zoneid, NULL, 28647 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28648 ipif_refrele(ipif); 28649 if (ire != NULL) { 28650 ire_refrele(ire); 28651 return (B_TRUE); 28652 } else { 28653 return (B_FALSE); 28654 } 28655 } 28656 28657 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28658 connp->conn_zoneid == zoneid) { 28659 /* 28660 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28661 * disabled, therefore we don't dispatch the multicast packet to 28662 * the sending zone. 28663 */ 28664 return (B_FALSE); 28665 } 28666 28667 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28668 /* 28669 * Multicast packet on the loopback interface: we only match 28670 * conns who joined the group in the specified zone. 28671 */ 28672 return (B_FALSE); 28673 } 28674 28675 if (connp->conn_multi_router) { 28676 /* multicast packet and multicast router socket: send up */ 28677 return (B_TRUE); 28678 } 28679 28680 mutex_enter(&connp->conn_lock); 28681 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28682 mutex_exit(&connp->conn_lock); 28683 return (found); 28684 } 28685 28686 /* 28687 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28688 */ 28689 /* ARGSUSED */ 28690 static void 28691 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28692 { 28693 ill_t *ill = (ill_t *)q->q_ptr; 28694 mblk_t *mp1, *mp2; 28695 ipif_t *ipif; 28696 int err = 0; 28697 conn_t *connp = NULL; 28698 ipsq_t *ipsq; 28699 arc_t *arc; 28700 28701 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28702 28703 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28704 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28705 28706 ASSERT(IAM_WRITER_ILL(ill)); 28707 mp2 = mp->b_cont; 28708 mp->b_cont = NULL; 28709 28710 /* 28711 * We have now received the arp bringup completion message 28712 * from ARP. Mark the arp bringup as done. Also if the arp 28713 * stream has already started closing, send up the AR_ARP_CLOSING 28714 * ack now since ARP is waiting in close for this ack. 28715 */ 28716 mutex_enter(&ill->ill_lock); 28717 ill->ill_arp_bringup_pending = 0; 28718 if (ill->ill_arp_closing) { 28719 mutex_exit(&ill->ill_lock); 28720 /* Let's reuse the mp for sending the ack */ 28721 arc = (arc_t *)mp->b_rptr; 28722 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28723 arc->arc_cmd = AR_ARP_CLOSING; 28724 qreply(q, mp); 28725 } else { 28726 mutex_exit(&ill->ill_lock); 28727 freeb(mp); 28728 } 28729 28730 ipsq = ill->ill_phyint->phyint_ipsq; 28731 ipif = ipsq->ipsq_pending_ipif; 28732 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28733 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28734 if (mp1 == NULL) { 28735 /* bringup was aborted by the user */ 28736 freemsg(mp2); 28737 return; 28738 } 28739 28740 /* 28741 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28742 * must have an associated conn_t. Otherwise, we're bringing this 28743 * interface back up as part of handling an asynchronous event (e.g., 28744 * physical address change). 28745 */ 28746 if (ipsq->ipsq_current_ioctl != 0) { 28747 ASSERT(connp != NULL); 28748 q = CONNP_TO_WQ(connp); 28749 } else { 28750 ASSERT(connp == NULL); 28751 q = ill->ill_rq; 28752 } 28753 28754 /* 28755 * If the DL_BIND_REQ fails, it is noted 28756 * in arc_name_offset. 28757 */ 28758 err = *((int *)mp2->b_rptr); 28759 if (err == 0) { 28760 if (ipif->ipif_isv6) { 28761 if ((err = ipif_up_done_v6(ipif)) != 0) 28762 ip0dbg(("ip_arp_done: init failed\n")); 28763 } else { 28764 if ((err = ipif_up_done(ipif)) != 0) 28765 ip0dbg(("ip_arp_done: init failed\n")); 28766 } 28767 } else { 28768 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28769 } 28770 28771 freemsg(mp2); 28772 28773 if ((err == 0) && (ill->ill_up_ipifs)) { 28774 err = ill_up_ipifs(ill, q, mp1); 28775 if (err == EINPROGRESS) 28776 return; 28777 } 28778 28779 if (ill->ill_up_ipifs) 28780 ill_group_cleanup(ill); 28781 28782 /* 28783 * The operation must complete without EINPROGRESS since 28784 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28785 * Otherwise, the operation will be stuck forever in the ipsq. 28786 */ 28787 ASSERT(err != EINPROGRESS); 28788 if (ipsq->ipsq_current_ioctl != 0) 28789 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28790 else 28791 ipsq_current_finish(ipsq); 28792 } 28793 28794 /* Allocate the private structure */ 28795 static int 28796 ip_priv_alloc(void **bufp) 28797 { 28798 void *buf; 28799 28800 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28801 return (ENOMEM); 28802 28803 *bufp = buf; 28804 return (0); 28805 } 28806 28807 /* Function to delete the private structure */ 28808 void 28809 ip_priv_free(void *buf) 28810 { 28811 ASSERT(buf != NULL); 28812 kmem_free(buf, sizeof (ip_priv_t)); 28813 } 28814 28815 /* 28816 * The entry point for IPPF processing. 28817 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28818 * routine just returns. 28819 * 28820 * When called, ip_process generates an ipp_packet_t structure 28821 * which holds the state information for this packet and invokes the 28822 * the classifier (via ipp_packet_process). The classification, depending on 28823 * configured filters, results in a list of actions for this packet. Invoking 28824 * an action may cause the packet to be dropped, in which case the resulting 28825 * mblk (*mpp) is NULL. proc indicates the callout position for 28826 * this packet and ill_index is the interface this packet on or will leave 28827 * on (inbound and outbound resp.). 28828 */ 28829 void 28830 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28831 { 28832 mblk_t *mp; 28833 ip_priv_t *priv; 28834 ipp_action_id_t aid; 28835 int rc = 0; 28836 ipp_packet_t *pp; 28837 #define IP_CLASS "ip" 28838 28839 /* If the classifier is not loaded, return */ 28840 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28841 return; 28842 } 28843 28844 mp = *mpp; 28845 ASSERT(mp != NULL); 28846 28847 /* Allocate the packet structure */ 28848 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28849 if (rc != 0) { 28850 *mpp = NULL; 28851 freemsg(mp); 28852 return; 28853 } 28854 28855 /* Allocate the private structure */ 28856 rc = ip_priv_alloc((void **)&priv); 28857 if (rc != 0) { 28858 *mpp = NULL; 28859 freemsg(mp); 28860 ipp_packet_free(pp); 28861 return; 28862 } 28863 priv->proc = proc; 28864 priv->ill_index = ill_index; 28865 ipp_packet_set_private(pp, priv, ip_priv_free); 28866 ipp_packet_set_data(pp, mp); 28867 28868 /* Invoke the classifier */ 28869 rc = ipp_packet_process(&pp); 28870 if (pp != NULL) { 28871 mp = ipp_packet_get_data(pp); 28872 ipp_packet_free(pp); 28873 if (rc != 0) { 28874 freemsg(mp); 28875 *mpp = NULL; 28876 } 28877 } else { 28878 *mpp = NULL; 28879 } 28880 #undef IP_CLASS 28881 } 28882 28883 /* 28884 * Propagate a multicast group membership operation (add/drop) on 28885 * all the interfaces crossed by the related multirt routes. 28886 * The call is considered successful if the operation succeeds 28887 * on at least one interface. 28888 */ 28889 static int 28890 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28891 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28892 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28893 mblk_t *first_mp) 28894 { 28895 ire_t *ire_gw; 28896 irb_t *irb; 28897 int error = 0; 28898 opt_restart_t *or; 28899 ip_stack_t *ipst = ire->ire_ipst; 28900 28901 irb = ire->ire_bucket; 28902 ASSERT(irb != NULL); 28903 28904 ASSERT(DB_TYPE(first_mp) == M_CTL); 28905 28906 or = (opt_restart_t *)first_mp->b_rptr; 28907 IRB_REFHOLD(irb); 28908 for (; ire != NULL; ire = ire->ire_next) { 28909 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28910 continue; 28911 if (ire->ire_addr != group) 28912 continue; 28913 28914 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28915 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28916 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28917 /* No resolver exists for the gateway; skip this ire. */ 28918 if (ire_gw == NULL) 28919 continue; 28920 28921 /* 28922 * This function can return EINPROGRESS. If so the operation 28923 * will be restarted from ip_restart_optmgmt which will 28924 * call ip_opt_set and option processing will restart for 28925 * this option. So we may end up calling 'fn' more than once. 28926 * This requires that 'fn' is idempotent except for the 28927 * return value. The operation is considered a success if 28928 * it succeeds at least once on any one interface. 28929 */ 28930 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28931 NULL, fmode, src, first_mp); 28932 if (error == 0) 28933 or->or_private = CGTP_MCAST_SUCCESS; 28934 28935 if (ip_debug > 0) { 28936 ulong_t off; 28937 char *ksym; 28938 ksym = kobj_getsymname((uintptr_t)fn, &off); 28939 ip2dbg(("ip_multirt_apply_membership: " 28940 "called %s, multirt group 0x%08x via itf 0x%08x, " 28941 "error %d [success %u]\n", 28942 ksym ? ksym : "?", 28943 ntohl(group), ntohl(ire_gw->ire_src_addr), 28944 error, or->or_private)); 28945 } 28946 28947 ire_refrele(ire_gw); 28948 if (error == EINPROGRESS) { 28949 IRB_REFRELE(irb); 28950 return (error); 28951 } 28952 } 28953 IRB_REFRELE(irb); 28954 /* 28955 * Consider the call as successful if we succeeded on at least 28956 * one interface. Otherwise, return the last encountered error. 28957 */ 28958 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28959 } 28960 28961 28962 /* 28963 * Issue a warning regarding a route crossing an interface with an 28964 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28965 * amount of time is logged. 28966 */ 28967 static void 28968 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28969 { 28970 hrtime_t current = gethrtime(); 28971 char buf[INET_ADDRSTRLEN]; 28972 ip_stack_t *ipst = ire->ire_ipst; 28973 28974 /* Convert interval in ms to hrtime in ns */ 28975 if (ipst->ips_multirt_bad_mtu_last_time + 28976 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28977 current) { 28978 cmn_err(CE_WARN, "ip: ignoring multiroute " 28979 "to %s, incorrect MTU %u (expected %u)\n", 28980 ip_dot_addr(ire->ire_addr, buf), 28981 ire->ire_max_frag, max_frag); 28982 28983 ipst->ips_multirt_bad_mtu_last_time = current; 28984 } 28985 } 28986 28987 28988 /* 28989 * Get the CGTP (multirouting) filtering status. 28990 * If 0, the CGTP hooks are transparent. 28991 */ 28992 /* ARGSUSED */ 28993 static int 28994 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28995 { 28996 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28997 28998 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28999 return (0); 29000 } 29001 29002 29003 /* 29004 * Set the CGTP (multirouting) filtering status. 29005 * If the status is changed from active to transparent 29006 * or from transparent to active, forward the new status 29007 * to the filtering module (if loaded). 29008 */ 29009 /* ARGSUSED */ 29010 static int 29011 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29012 cred_t *ioc_cr) 29013 { 29014 long new_value; 29015 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29016 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29017 29018 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29019 return (EPERM); 29020 29021 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29022 new_value < 0 || new_value > 1) { 29023 return (EINVAL); 29024 } 29025 29026 if ((!*ip_cgtp_filter_value) && new_value) { 29027 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29028 ipst->ips_ip_cgtp_filter_ops == NULL ? 29029 " (module not loaded)" : ""); 29030 } 29031 if (*ip_cgtp_filter_value && (!new_value)) { 29032 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29033 ipst->ips_ip_cgtp_filter_ops == NULL ? 29034 " (module not loaded)" : ""); 29035 } 29036 29037 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29038 int res; 29039 netstackid_t stackid; 29040 29041 stackid = ipst->ips_netstack->netstack_stackid; 29042 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29043 new_value); 29044 if (res) 29045 return (res); 29046 } 29047 29048 *ip_cgtp_filter_value = (boolean_t)new_value; 29049 29050 return (0); 29051 } 29052 29053 29054 /* 29055 * Return the expected CGTP hooks version number. 29056 */ 29057 int 29058 ip_cgtp_filter_supported(void) 29059 { 29060 return (ip_cgtp_filter_rev); 29061 } 29062 29063 29064 /* 29065 * CGTP hooks can be registered by invoking this function. 29066 * Checks that the version number matches. 29067 */ 29068 int 29069 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29070 { 29071 netstack_t *ns; 29072 ip_stack_t *ipst; 29073 29074 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29075 return (ENOTSUP); 29076 29077 ns = netstack_find_by_stackid(stackid); 29078 if (ns == NULL) 29079 return (EINVAL); 29080 ipst = ns->netstack_ip; 29081 ASSERT(ipst != NULL); 29082 29083 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29084 netstack_rele(ns); 29085 return (EALREADY); 29086 } 29087 29088 ipst->ips_ip_cgtp_filter_ops = ops; 29089 netstack_rele(ns); 29090 return (0); 29091 } 29092 29093 /* 29094 * CGTP hooks can be unregistered by invoking this function. 29095 * Returns ENXIO if there was no registration. 29096 * Returns EBUSY if the ndd variable has not been turned off. 29097 */ 29098 int 29099 ip_cgtp_filter_unregister(netstackid_t stackid) 29100 { 29101 netstack_t *ns; 29102 ip_stack_t *ipst; 29103 29104 ns = netstack_find_by_stackid(stackid); 29105 if (ns == NULL) 29106 return (EINVAL); 29107 ipst = ns->netstack_ip; 29108 ASSERT(ipst != NULL); 29109 29110 if (ipst->ips_ip_cgtp_filter) { 29111 netstack_rele(ns); 29112 return (EBUSY); 29113 } 29114 29115 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29116 netstack_rele(ns); 29117 return (ENXIO); 29118 } 29119 ipst->ips_ip_cgtp_filter_ops = NULL; 29120 netstack_rele(ns); 29121 return (0); 29122 } 29123 29124 /* 29125 * Check whether there is a CGTP filter registration. 29126 * Returns non-zero if there is a registration, otherwise returns zero. 29127 * Note: returns zero if bad stackid. 29128 */ 29129 int 29130 ip_cgtp_filter_is_registered(netstackid_t stackid) 29131 { 29132 netstack_t *ns; 29133 ip_stack_t *ipst; 29134 int ret; 29135 29136 ns = netstack_find_by_stackid(stackid); 29137 if (ns == NULL) 29138 return (0); 29139 ipst = ns->netstack_ip; 29140 ASSERT(ipst != NULL); 29141 29142 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29143 ret = 1; 29144 else 29145 ret = 0; 29146 29147 netstack_rele(ns); 29148 return (ret); 29149 } 29150 29151 static squeue_func_t 29152 ip_squeue_switch(int val) 29153 { 29154 squeue_func_t rval = squeue_fill; 29155 29156 switch (val) { 29157 case IP_SQUEUE_ENTER_NODRAIN: 29158 rval = squeue_enter_nodrain; 29159 break; 29160 case IP_SQUEUE_ENTER: 29161 rval = squeue_enter; 29162 break; 29163 default: 29164 break; 29165 } 29166 return (rval); 29167 } 29168 29169 /* ARGSUSED */ 29170 static int 29171 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29172 caddr_t addr, cred_t *cr) 29173 { 29174 int *v = (int *)addr; 29175 long new_value; 29176 29177 if (secpolicy_net_config(cr, B_FALSE) != 0) 29178 return (EPERM); 29179 29180 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29181 return (EINVAL); 29182 29183 ip_input_proc = ip_squeue_switch(new_value); 29184 *v = new_value; 29185 return (0); 29186 } 29187 29188 /* 29189 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29190 * ip_debug. 29191 */ 29192 /* ARGSUSED */ 29193 static int 29194 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29195 caddr_t addr, cred_t *cr) 29196 { 29197 int *v = (int *)addr; 29198 long new_value; 29199 29200 if (secpolicy_net_config(cr, B_FALSE) != 0) 29201 return (EPERM); 29202 29203 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29204 return (EINVAL); 29205 29206 *v = new_value; 29207 return (0); 29208 } 29209 29210 /* 29211 * Handle changes to ipmp_hook_emulation ndd variable. 29212 * Need to update phyint_hook_ifindex. 29213 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29214 */ 29215 static void 29216 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29217 { 29218 phyint_t *phyi; 29219 phyint_t *phyi_tmp; 29220 char *groupname; 29221 int namelen; 29222 ill_t *ill; 29223 boolean_t new_group; 29224 29225 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29226 /* 29227 * Group indicies are stored in the phyint - a common structure 29228 * to both IPv4 and IPv6. 29229 */ 29230 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29231 for (; phyi != NULL; 29232 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29233 phyi, AVL_AFTER)) { 29234 /* Ignore the ones that do not have a group */ 29235 if (phyi->phyint_groupname_len == 0) 29236 continue; 29237 29238 /* 29239 * Look for other phyint in group. 29240 * Clear name/namelen so the lookup doesn't find ourselves. 29241 */ 29242 namelen = phyi->phyint_groupname_len; 29243 groupname = phyi->phyint_groupname; 29244 phyi->phyint_groupname_len = 0; 29245 phyi->phyint_groupname = NULL; 29246 29247 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29248 /* Restore */ 29249 phyi->phyint_groupname_len = namelen; 29250 phyi->phyint_groupname = groupname; 29251 29252 new_group = B_FALSE; 29253 if (ipst->ips_ipmp_hook_emulation) { 29254 /* 29255 * If the group already exists and has already 29256 * been assigned a group ifindex, we use the existing 29257 * group_ifindex, otherwise we pick a new group_ifindex 29258 * here. 29259 */ 29260 if (phyi_tmp != NULL && 29261 phyi_tmp->phyint_group_ifindex != 0) { 29262 phyi->phyint_group_ifindex = 29263 phyi_tmp->phyint_group_ifindex; 29264 } else { 29265 /* XXX We need a recovery strategy here. */ 29266 if (!ip_assign_ifindex( 29267 &phyi->phyint_group_ifindex, ipst)) 29268 cmn_err(CE_PANIC, 29269 "ip_assign_ifindex() failed"); 29270 new_group = B_TRUE; 29271 } 29272 } else { 29273 phyi->phyint_group_ifindex = 0; 29274 } 29275 if (ipst->ips_ipmp_hook_emulation) 29276 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29277 else 29278 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29279 29280 /* 29281 * For IP Filter to find out the relationship between 29282 * names and interface indicies, we need to generate 29283 * a NE_PLUMB event when a new group can appear. 29284 * We always generate events when a new interface appears 29285 * (even when ipmp_hook_emulation is set) so there 29286 * is no need to generate NE_PLUMB events when 29287 * ipmp_hook_emulation is turned off. 29288 * And since it isn't critical for IP Filter to get 29289 * the NE_UNPLUMB events we skip those here. 29290 */ 29291 if (new_group) { 29292 /* 29293 * First phyint in group - generate group PLUMB event. 29294 * Since we are not running inside the ipsq we do 29295 * the dispatch immediately. 29296 */ 29297 if (phyi->phyint_illv4 != NULL) 29298 ill = phyi->phyint_illv4; 29299 else 29300 ill = phyi->phyint_illv6; 29301 29302 if (ill != NULL) { 29303 mutex_enter(&ill->ill_lock); 29304 ill_nic_info_plumb(ill, B_TRUE); 29305 ill_nic_info_dispatch(ill); 29306 mutex_exit(&ill->ill_lock); 29307 } 29308 } 29309 } 29310 rw_exit(&ipst->ips_ill_g_lock); 29311 } 29312 29313 /* ARGSUSED */ 29314 static int 29315 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29316 caddr_t addr, cred_t *cr) 29317 { 29318 int *v = (int *)addr; 29319 long new_value; 29320 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29321 29322 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29323 return (EINVAL); 29324 29325 if (*v != new_value) { 29326 *v = new_value; 29327 ipmp_hook_emulation_changed(ipst); 29328 } 29329 return (0); 29330 } 29331 29332 static void * 29333 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29334 { 29335 kstat_t *ksp; 29336 29337 ip_stat_t template = { 29338 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29339 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29340 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29341 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29342 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29343 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29344 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29345 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29346 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29347 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29348 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29349 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29350 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29351 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29352 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29353 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29354 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29355 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29356 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29357 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29358 { "ip_opt", KSTAT_DATA_UINT64 }, 29359 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29360 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29361 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29362 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29363 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29364 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29365 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29366 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29367 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29368 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29369 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29370 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29371 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29372 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29373 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29374 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29375 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29376 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29377 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29378 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29379 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29380 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29381 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29382 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29383 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29384 }; 29385 29386 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29387 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29388 KSTAT_FLAG_VIRTUAL, stackid); 29389 29390 if (ksp == NULL) 29391 return (NULL); 29392 29393 bcopy(&template, ip_statisticsp, sizeof (template)); 29394 ksp->ks_data = (void *)ip_statisticsp; 29395 ksp->ks_private = (void *)(uintptr_t)stackid; 29396 29397 kstat_install(ksp); 29398 return (ksp); 29399 } 29400 29401 static void 29402 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29403 { 29404 if (ksp != NULL) { 29405 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29406 kstat_delete_netstack(ksp, stackid); 29407 } 29408 } 29409 29410 static void * 29411 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29412 { 29413 kstat_t *ksp; 29414 29415 ip_named_kstat_t template = { 29416 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29417 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29418 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29419 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29420 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29421 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29422 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29423 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29424 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29425 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29426 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29427 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29428 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29429 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29430 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29431 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29432 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29433 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29434 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29435 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29436 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29437 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29438 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29439 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29440 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29441 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29442 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29443 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29444 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29445 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29446 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29447 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29448 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29449 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29450 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29451 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29452 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29453 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29454 }; 29455 29456 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29457 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29458 if (ksp == NULL || ksp->ks_data == NULL) 29459 return (NULL); 29460 29461 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29462 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29463 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29464 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29465 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29466 29467 template.netToMediaEntrySize.value.i32 = 29468 sizeof (mib2_ipNetToMediaEntry_t); 29469 29470 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29471 29472 bcopy(&template, ksp->ks_data, sizeof (template)); 29473 ksp->ks_update = ip_kstat_update; 29474 ksp->ks_private = (void *)(uintptr_t)stackid; 29475 29476 kstat_install(ksp); 29477 return (ksp); 29478 } 29479 29480 static void 29481 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29482 { 29483 if (ksp != NULL) { 29484 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29485 kstat_delete_netstack(ksp, stackid); 29486 } 29487 } 29488 29489 static int 29490 ip_kstat_update(kstat_t *kp, int rw) 29491 { 29492 ip_named_kstat_t *ipkp; 29493 mib2_ipIfStatsEntry_t ipmib; 29494 ill_walk_context_t ctx; 29495 ill_t *ill; 29496 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29497 netstack_t *ns; 29498 ip_stack_t *ipst; 29499 29500 if (kp == NULL || kp->ks_data == NULL) 29501 return (EIO); 29502 29503 if (rw == KSTAT_WRITE) 29504 return (EACCES); 29505 29506 ns = netstack_find_by_stackid(stackid); 29507 if (ns == NULL) 29508 return (-1); 29509 ipst = ns->netstack_ip; 29510 if (ipst == NULL) { 29511 netstack_rele(ns); 29512 return (-1); 29513 } 29514 ipkp = (ip_named_kstat_t *)kp->ks_data; 29515 29516 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29517 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29518 ill = ILL_START_WALK_V4(&ctx, ipst); 29519 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29520 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29521 rw_exit(&ipst->ips_ill_g_lock); 29522 29523 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29524 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29525 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29526 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29527 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29528 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29529 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29530 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29531 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29532 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29533 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29534 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29535 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29536 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29537 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29538 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29539 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29540 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29541 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29542 29543 ipkp->routingDiscards.value.ui32 = 0; 29544 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29545 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29546 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29547 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29548 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29549 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29550 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29551 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29552 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29553 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29554 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29555 29556 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29557 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29558 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29559 29560 netstack_rele(ns); 29561 29562 return (0); 29563 } 29564 29565 static void * 29566 icmp_kstat_init(netstackid_t stackid) 29567 { 29568 kstat_t *ksp; 29569 29570 icmp_named_kstat_t template = { 29571 { "inMsgs", KSTAT_DATA_UINT32 }, 29572 { "inErrors", KSTAT_DATA_UINT32 }, 29573 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29574 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29575 { "inParmProbs", KSTAT_DATA_UINT32 }, 29576 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29577 { "inRedirects", KSTAT_DATA_UINT32 }, 29578 { "inEchos", KSTAT_DATA_UINT32 }, 29579 { "inEchoReps", KSTAT_DATA_UINT32 }, 29580 { "inTimestamps", KSTAT_DATA_UINT32 }, 29581 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29582 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29583 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29584 { "outMsgs", KSTAT_DATA_UINT32 }, 29585 { "outErrors", KSTAT_DATA_UINT32 }, 29586 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29587 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29588 { "outParmProbs", KSTAT_DATA_UINT32 }, 29589 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29590 { "outRedirects", KSTAT_DATA_UINT32 }, 29591 { "outEchos", KSTAT_DATA_UINT32 }, 29592 { "outEchoReps", KSTAT_DATA_UINT32 }, 29593 { "outTimestamps", KSTAT_DATA_UINT32 }, 29594 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29595 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29596 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29597 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29598 { "inUnknowns", KSTAT_DATA_UINT32 }, 29599 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29600 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29601 { "outDrops", KSTAT_DATA_UINT32 }, 29602 { "inOverFlows", KSTAT_DATA_UINT32 }, 29603 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29604 }; 29605 29606 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29607 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29608 if (ksp == NULL || ksp->ks_data == NULL) 29609 return (NULL); 29610 29611 bcopy(&template, ksp->ks_data, sizeof (template)); 29612 29613 ksp->ks_update = icmp_kstat_update; 29614 ksp->ks_private = (void *)(uintptr_t)stackid; 29615 29616 kstat_install(ksp); 29617 return (ksp); 29618 } 29619 29620 static void 29621 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29622 { 29623 if (ksp != NULL) { 29624 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29625 kstat_delete_netstack(ksp, stackid); 29626 } 29627 } 29628 29629 static int 29630 icmp_kstat_update(kstat_t *kp, int rw) 29631 { 29632 icmp_named_kstat_t *icmpkp; 29633 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29634 netstack_t *ns; 29635 ip_stack_t *ipst; 29636 29637 if ((kp == NULL) || (kp->ks_data == NULL)) 29638 return (EIO); 29639 29640 if (rw == KSTAT_WRITE) 29641 return (EACCES); 29642 29643 ns = netstack_find_by_stackid(stackid); 29644 if (ns == NULL) 29645 return (-1); 29646 ipst = ns->netstack_ip; 29647 if (ipst == NULL) { 29648 netstack_rele(ns); 29649 return (-1); 29650 } 29651 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29652 29653 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29654 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29655 icmpkp->inDestUnreachs.value.ui32 = 29656 ipst->ips_icmp_mib.icmpInDestUnreachs; 29657 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29658 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29659 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29660 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29661 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29662 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29663 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29664 icmpkp->inTimestampReps.value.ui32 = 29665 ipst->ips_icmp_mib.icmpInTimestampReps; 29666 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29667 icmpkp->inAddrMaskReps.value.ui32 = 29668 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29669 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29670 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29671 icmpkp->outDestUnreachs.value.ui32 = 29672 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29673 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29674 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29675 icmpkp->outSrcQuenchs.value.ui32 = 29676 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29677 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29678 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29679 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29680 icmpkp->outTimestamps.value.ui32 = 29681 ipst->ips_icmp_mib.icmpOutTimestamps; 29682 icmpkp->outTimestampReps.value.ui32 = 29683 ipst->ips_icmp_mib.icmpOutTimestampReps; 29684 icmpkp->outAddrMasks.value.ui32 = 29685 ipst->ips_icmp_mib.icmpOutAddrMasks; 29686 icmpkp->outAddrMaskReps.value.ui32 = 29687 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29688 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29689 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29690 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29691 icmpkp->outFragNeeded.value.ui32 = 29692 ipst->ips_icmp_mib.icmpOutFragNeeded; 29693 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29694 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29695 icmpkp->inBadRedirects.value.ui32 = 29696 ipst->ips_icmp_mib.icmpInBadRedirects; 29697 29698 netstack_rele(ns); 29699 return (0); 29700 } 29701 29702 /* 29703 * This is the fanout function for raw socket opened for SCTP. Note 29704 * that it is called after SCTP checks that there is no socket which 29705 * wants a packet. Then before SCTP handles this out of the blue packet, 29706 * this function is called to see if there is any raw socket for SCTP. 29707 * If there is and it is bound to the correct address, the packet will 29708 * be sent to that socket. Note that only one raw socket can be bound to 29709 * a port. This is assured in ipcl_sctp_hash_insert(); 29710 */ 29711 void 29712 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29713 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29714 zoneid_t zoneid) 29715 { 29716 conn_t *connp; 29717 queue_t *rq; 29718 mblk_t *first_mp; 29719 boolean_t secure; 29720 ip6_t *ip6h; 29721 ip_stack_t *ipst = recv_ill->ill_ipst; 29722 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29723 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29724 boolean_t sctp_csum_err = B_FALSE; 29725 29726 if (flags & IP_FF_SCTP_CSUM_ERR) { 29727 sctp_csum_err = B_TRUE; 29728 flags &= ~IP_FF_SCTP_CSUM_ERR; 29729 } 29730 29731 first_mp = mp; 29732 if (mctl_present) { 29733 mp = first_mp->b_cont; 29734 secure = ipsec_in_is_secure(first_mp); 29735 ASSERT(mp != NULL); 29736 } else { 29737 secure = B_FALSE; 29738 } 29739 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29740 29741 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29742 if (connp == NULL) { 29743 /* 29744 * Although raw sctp is not summed, OOB chunks must be. 29745 * Drop the packet here if the sctp checksum failed. 29746 */ 29747 if (sctp_csum_err) { 29748 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29749 freemsg(first_mp); 29750 return; 29751 } 29752 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29753 return; 29754 } 29755 rq = connp->conn_rq; 29756 if (!canputnext(rq)) { 29757 CONN_DEC_REF(connp); 29758 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29759 freemsg(first_mp); 29760 return; 29761 } 29762 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29763 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29764 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29765 (isv4 ? ipha : NULL), ip6h, mctl_present); 29766 if (first_mp == NULL) { 29767 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29768 CONN_DEC_REF(connp); 29769 return; 29770 } 29771 } 29772 /* 29773 * We probably should not send M_CTL message up to 29774 * raw socket. 29775 */ 29776 if (mctl_present) 29777 freeb(first_mp); 29778 29779 /* Initiate IPPF processing here if needed. */ 29780 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29781 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29782 ip_process(IPP_LOCAL_IN, &mp, 29783 recv_ill->ill_phyint->phyint_ifindex); 29784 if (mp == NULL) { 29785 CONN_DEC_REF(connp); 29786 return; 29787 } 29788 } 29789 29790 if (connp->conn_recvif || connp->conn_recvslla || 29791 ((connp->conn_ip_recvpktinfo || 29792 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29793 (flags & IP_FF_IPINFO))) { 29794 int in_flags = 0; 29795 29796 /* 29797 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29798 * IPF_RECVIF. 29799 */ 29800 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29801 in_flags = IPF_RECVIF; 29802 } 29803 if (connp->conn_recvslla) { 29804 in_flags |= IPF_RECVSLLA; 29805 } 29806 if (isv4) { 29807 mp = ip_add_info(mp, recv_ill, in_flags, 29808 IPCL_ZONEID(connp), ipst); 29809 } else { 29810 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29811 if (mp == NULL) { 29812 BUMP_MIB(recv_ill->ill_ip_mib, 29813 ipIfStatsInDiscards); 29814 CONN_DEC_REF(connp); 29815 return; 29816 } 29817 } 29818 } 29819 29820 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29821 /* 29822 * We are sending the IPSEC_IN message also up. Refer 29823 * to comments above this function. 29824 * This is the SOCK_RAW, IPPROTO_SCTP case. 29825 */ 29826 (connp->conn_recv)(connp, mp, NULL); 29827 CONN_DEC_REF(connp); 29828 } 29829 29830 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29831 { \ 29832 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29833 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29834 } 29835 /* 29836 * This function should be called only if all packet processing 29837 * including fragmentation is complete. Callers of this function 29838 * must set mp->b_prev to one of these values: 29839 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29840 * prior to handing over the mp as first argument to this function. 29841 * 29842 * If the ire passed by caller is incomplete, this function 29843 * queues the packet and if necessary, sends ARP request and bails. 29844 * If the ire passed is fully resolved, we simply prepend 29845 * the link-layer header to the packet, do ipsec hw acceleration 29846 * work if necessary, and send the packet out on the wire. 29847 * 29848 * NOTE: IPsec will only call this function with fully resolved 29849 * ires if hw acceleration is involved. 29850 * TODO list : 29851 * a Handle M_MULTIDATA so that 29852 * tcp_multisend->tcp_multisend_data can 29853 * call ip_xmit_v4 directly 29854 * b Handle post-ARP work for fragments so that 29855 * ip_wput_frag can call this function. 29856 */ 29857 ipxmit_state_t 29858 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29859 { 29860 nce_t *arpce; 29861 queue_t *q; 29862 int ill_index; 29863 mblk_t *nxt_mp, *first_mp; 29864 boolean_t xmit_drop = B_FALSE; 29865 ip_proc_t proc; 29866 ill_t *out_ill; 29867 int pkt_len; 29868 29869 arpce = ire->ire_nce; 29870 ASSERT(arpce != NULL); 29871 29872 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29873 29874 mutex_enter(&arpce->nce_lock); 29875 switch (arpce->nce_state) { 29876 case ND_REACHABLE: 29877 /* If there are other queued packets, queue this packet */ 29878 if (arpce->nce_qd_mp != NULL) { 29879 if (mp != NULL) 29880 nce_queue_mp_common(arpce, mp, B_FALSE); 29881 mp = arpce->nce_qd_mp; 29882 } 29883 arpce->nce_qd_mp = NULL; 29884 mutex_exit(&arpce->nce_lock); 29885 29886 /* 29887 * Flush the queue. In the common case, where the 29888 * ARP is already resolved, it will go through the 29889 * while loop only once. 29890 */ 29891 while (mp != NULL) { 29892 29893 nxt_mp = mp->b_next; 29894 mp->b_next = NULL; 29895 ASSERT(mp->b_datap->db_type != M_CTL); 29896 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29897 /* 29898 * This info is needed for IPQOS to do COS marking 29899 * in ip_wput_attach_llhdr->ip_process. 29900 */ 29901 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29902 mp->b_prev = NULL; 29903 29904 /* set up ill index for outbound qos processing */ 29905 out_ill = ire_to_ill(ire); 29906 ill_index = out_ill->ill_phyint->phyint_ifindex; 29907 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29908 ill_index); 29909 if (first_mp == NULL) { 29910 xmit_drop = B_TRUE; 29911 BUMP_MIB(out_ill->ill_ip_mib, 29912 ipIfStatsOutDiscards); 29913 goto next_mp; 29914 } 29915 /* non-ipsec hw accel case */ 29916 if (io == NULL || !io->ipsec_out_accelerated) { 29917 /* send it */ 29918 q = ire->ire_stq; 29919 if (proc == IPP_FWD_OUT) { 29920 UPDATE_IB_PKT_COUNT(ire); 29921 } else { 29922 UPDATE_OB_PKT_COUNT(ire); 29923 } 29924 ire->ire_last_used_time = lbolt; 29925 29926 if (flow_ctl_enabled || canputnext(q)) { 29927 if (proc == IPP_FWD_OUT) { 29928 29929 BUMP_MIB(out_ill->ill_ip_mib, 29930 ipIfStatsHCOutForwDatagrams); 29931 29932 } 29933 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29934 pkt_len); 29935 29936 putnext(q, first_mp); 29937 } else { 29938 BUMP_MIB(out_ill->ill_ip_mib, 29939 ipIfStatsOutDiscards); 29940 xmit_drop = B_TRUE; 29941 freemsg(first_mp); 29942 } 29943 } else { 29944 /* 29945 * Safety Pup says: make sure this 29946 * is going to the right interface! 29947 */ 29948 ill_t *ill1 = 29949 (ill_t *)ire->ire_stq->q_ptr; 29950 int ifindex = 29951 ill1->ill_phyint->phyint_ifindex; 29952 if (ifindex != 29953 io->ipsec_out_capab_ill_index) { 29954 xmit_drop = B_TRUE; 29955 freemsg(mp); 29956 } else { 29957 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29958 pkt_len); 29959 ipsec_hw_putnext(ire->ire_stq, mp); 29960 } 29961 } 29962 next_mp: 29963 mp = nxt_mp; 29964 } /* while (mp != NULL) */ 29965 if (xmit_drop) 29966 return (SEND_FAILED); 29967 else 29968 return (SEND_PASSED); 29969 29970 case ND_INITIAL: 29971 case ND_INCOMPLETE: 29972 29973 /* 29974 * While we do send off packets to dests that 29975 * use fully-resolved CGTP routes, we do not 29976 * handle unresolved CGTP routes. 29977 */ 29978 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29979 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29980 29981 if (mp != NULL) { 29982 /* queue the packet */ 29983 nce_queue_mp_common(arpce, mp, B_FALSE); 29984 } 29985 29986 if (arpce->nce_state == ND_INCOMPLETE) { 29987 mutex_exit(&arpce->nce_lock); 29988 DTRACE_PROBE3(ip__xmit__incomplete, 29989 (ire_t *), ire, (mblk_t *), mp, 29990 (ipsec_out_t *), io); 29991 return (LOOKUP_IN_PROGRESS); 29992 } 29993 29994 arpce->nce_state = ND_INCOMPLETE; 29995 mutex_exit(&arpce->nce_lock); 29996 /* 29997 * Note that ire_add() (called from ire_forward()) 29998 * holds a ref on the ire until ARP is completed. 29999 */ 30000 30001 ire_arpresolve(ire, ire_to_ill(ire)); 30002 return (LOOKUP_IN_PROGRESS); 30003 default: 30004 ASSERT(0); 30005 mutex_exit(&arpce->nce_lock); 30006 return (LLHDR_RESLV_FAILED); 30007 } 30008 } 30009 30010 #undef UPDATE_IP_MIB_OB_COUNTERS 30011 30012 /* 30013 * Return B_TRUE if the buffers differ in length or content. 30014 * This is used for comparing extension header buffers. 30015 * Note that an extension header would be declared different 30016 * even if all that changed was the next header value in that header i.e. 30017 * what really changed is the next extension header. 30018 */ 30019 boolean_t 30020 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30021 uint_t blen) 30022 { 30023 if (!b_valid) 30024 blen = 0; 30025 30026 if (alen != blen) 30027 return (B_TRUE); 30028 if (alen == 0) 30029 return (B_FALSE); /* Both zero length */ 30030 return (bcmp(abuf, bbuf, alen)); 30031 } 30032 30033 /* 30034 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30035 * Return B_FALSE if memory allocation fails - don't change any state! 30036 */ 30037 boolean_t 30038 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30039 const void *src, uint_t srclen) 30040 { 30041 void *dst; 30042 30043 if (!src_valid) 30044 srclen = 0; 30045 30046 ASSERT(*dstlenp == 0); 30047 if (src != NULL && srclen != 0) { 30048 dst = mi_alloc(srclen, BPRI_MED); 30049 if (dst == NULL) 30050 return (B_FALSE); 30051 } else { 30052 dst = NULL; 30053 } 30054 if (*dstp != NULL) 30055 mi_free(*dstp); 30056 *dstp = dst; 30057 *dstlenp = dst == NULL ? 0 : srclen; 30058 return (B_TRUE); 30059 } 30060 30061 /* 30062 * Replace what is in *dst, *dstlen with the source. 30063 * Assumes ip_allocbuf has already been called. 30064 */ 30065 void 30066 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30067 const void *src, uint_t srclen) 30068 { 30069 if (!src_valid) 30070 srclen = 0; 30071 30072 ASSERT(*dstlenp == srclen); 30073 if (src != NULL && srclen != 0) 30074 bcopy(src, *dstp, srclen); 30075 } 30076 30077 /* 30078 * Free the storage pointed to by the members of an ip6_pkt_t. 30079 */ 30080 void 30081 ip6_pkt_free(ip6_pkt_t *ipp) 30082 { 30083 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30084 30085 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30086 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30087 ipp->ipp_hopopts = NULL; 30088 ipp->ipp_hopoptslen = 0; 30089 } 30090 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30091 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30092 ipp->ipp_rtdstopts = NULL; 30093 ipp->ipp_rtdstoptslen = 0; 30094 } 30095 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30096 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30097 ipp->ipp_dstopts = NULL; 30098 ipp->ipp_dstoptslen = 0; 30099 } 30100 if (ipp->ipp_fields & IPPF_RTHDR) { 30101 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30102 ipp->ipp_rthdr = NULL; 30103 ipp->ipp_rthdrlen = 0; 30104 } 30105 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30106 IPPF_RTHDR); 30107 } 30108